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INTRODUCTION 
 
 
 
Despite the significant successes and achievements in 
astrophysics and geophysics over recent decades, the 
problems of the origin of the Solar system and the formation 
of planets remain important and relevant, if only because 
there is no general or consistent scenario for the formation of 
the proto-Sun and the protoplanetary system from a protosolar 
nebula (molecular cloud). 

In particular, in astrophysics, there is the problem of the 
gravitational condensation of an infinitely spread gas-dust 
cosmic matter which is closely related to the problem of 
gravitational instability and the well-known Jeans criterion 
[1]. The main difficulty of the theory of Jeans is associated 
with the gravitational paradox, that is, for an infinite 
homogeneous substance, there exists no potential of the force 
of gravity [2]. In other words, due to the absence of the 
gravitational field inside a spread molecular cloud, 
gravitational tightening could not arise. 

Recently, the general problems of the formation of 
protoplanetary systems, the study of their dynamical behavior, 
and the formation and evolution of the planets have begun 
attracting additional attention among the scientific community 
in connection with the discovery of extrasolar planets, 
considered one of the greatest achievements of modern 
astronomy.  

Our understanding of our place in the Universe changed 
measurably in 1995 when Michel Mayor and Didier Queloz of 
Geneva Observatory in Switzerland announced the discovery 
of an extrasolar planet around a star, 51 Pegasi, similar to our 
Sun [3]. Geoff Marcy and Paul Butler in the United States 
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soon confirmed their discovery, and the science of 
observational extrasolar planetology was born. The field has 
exploded in recent years, resulting in publications showing 
numerous planetary systems in 2019 (see http://exoplanet.eu/ 
and http://exoplanets.org/). Most of these systems contain one 
or more gas-giant planet close, or very close, to their parent 
star. In that, they do not resemble our Solar system. In this 
connection, the recent paper [4] tallies: 

The discovery of the gas-giant planet – named 51 Pegasi b after its 
parent star, 51 Pegasi – came as a surprise. Gas-giant planets, such 
as Jupiter, are located in the outer parts of the Solar System. The 
prevailing theory was, and still is, that the formation of these 
planets requires icy building blocks that are available only in cold 
regions far away from stars. Yet Mayor and Queloz found 51 
Pegasi b to be orbiting about ten times closer to its host star than 
Mercury is to the Sun... One possible explanation is that the planet 
formed farther out and then migrated to its current location. 

Nevertheless, earlier detection of planets with masses 
approximately equal to the mass of our Earth EarthM is 

evidence that there exist extrasolar planets with low masses. 
In addition to obtaining important knowledge about the 
formation and structure of new planetary systems, that is, 
exoplanetary systems, these discoveries provoke genuine 
interest among the scientific community regarding the 
prospects for finding life in the Universe. 

However, the questions considered in this monograph deal 
mainly with the problems of cosmogony and only partially 
touch upon cosmology. Cosmological bodies include large-
scale space objects (for example, galaxies and their clusters) 
based on the fact that cosmology is a science that studies the 
properties and evolution of the Universe as a whole. In this 
context, cosmogonical bodies unite stars, protostars, interstellar 
molecular clouds, planetary systems, protoplanetary gas-dust 
disks, planets, protoplanets, and natural satellites of planets. 
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Generally speaking, the cosmogony, according to O. Yu. 
Schmidt [5], includes both planetary cosmogony and stellar 
cosmogony, that is, such directions have been developing 
within the framework of various cosmogonical theories. 

Several cosmogonical theories are known to explain the 
formation of the Solar system, the formation of planets and 
the estimation of planetary orbits [1–16]:  

 
 electromagnetic theories based on the works of O. K. 

Birkeland [17], H. P. Berlage [18], H. Alfvén [9, 19, 
20], and others; 

 gravitational theories based on the works of O. Yu. 
Schmidt [5, 6, 21], L. E. Gurevich and A. I. Lebedinsky 
[22, 23], M. M. Woolfson [14, 24], V. S. Safronov [2], 
S. H. Dole [25], A. V. Vityazev [12], and others; 

 nebular theories based on the works of C. F. von 
Weizsäcker [26, 27], G. P. Kuiper [28, 29], F. Hoyle 
[30, 31], D. Ter Haar [7, 32], T. Nakano [33], A. G. W. 
Cameron [7, 10] and others; 

 quantum mechanical theories based on the works of E. 
Nelson [34, 35], L. Nottale [36, 37], G. Ord [37, 38], M. 
De Oliveira Neto [15, 39], A. G. Agnese and R. Festa 
[40], M. S. El Naschie [41, 42], E. G. Sidharth [43] and 
others. 

 
The state and achievements of cosmogonical theories are 

described by Stephen G. Brush in his review “Theories of the 
origin of the Solar system 1956–1985” [11]: 

Attempts to find a plausible naturalistic explanation of the origin of 
the Solar system began about 350 years ago but have not yet been 
quantitatively1 successful. The period 1956–1985 includes the first 
phase of intensive space research; new results from lunar and 
planetary exploration might be expected to have played a major 

 
1 Emphasis added.  
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role in the development of ideas about lunar and planetary 
formation. While this is indeed the case for theories of the origin of 
the moon (selenogony), it was not true for the Solar system in 
general, where ground-based observations (including meteorite 
studies) were frequently more decisive. During this period most 
theorists accepted a monistic scenario: the collapse of a gas-dust 
cloud to form the sun with a surrounding disk, and condensation of 
that disk to form planets, were seen as part of a single process. 
Theorists differed on how to explain the distribution of angular 
momentum between sun and planets, on whether planets formed 
directly by condensation of gaseous protoplanets or by accretion of 
solid planetesimals, on whether the Solar nebula “was ever hot and 
turbulent enough to vaporize and completely mix its components, 
and on whether an external cause such as a supernova explosion 
triggered” the initial collapse of the cloud. Only in selenogony was 
a tentative consensus reached on a single working hypothesis with 
quantitative results. 

Despite a large amount of research and a huge number of 
works aimed at studying the formation of the Solar system, 
because of a lack of quantitative results these theories cannot 
fully explain all the phenomena observed – in particular, the 
four groups of facts following Ter Haar [6, 44 p. 277]. (The 
last concerns the distribution of angular momentum: although 
the Sun has more than 99% of total mass of the Solar system, 
only 2% of the total angular momentum belongs to Sun, while 
the remaining 98% belongs to the planets (see also 
Introduction in Chapter 6).) 

In this context, beginning in 1996 the statistical theory for 
a cosmogonical body formation has been developed [45–70] 
by the author of this monograph, based on the so-called model 
of a spheroidal body forming through numerous gravitational 
interactions of its parts and particles (see also recent articles, 
book, and chapters [16, 71–79]). 

The notion of a spheroidal body means a sphere-like  
body whose iso-surfaces (the surfaces of equal mass density) 
are spheroids (in the case of rotation of this body) or spheres 
(in the absence of visible motion). The area of investigations 
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within the framework of the statistical theory mainly relates  
to Newtonian gravity and partly affects Newtonian quantum 
gravity (this area is highlighted by the arc in Figure I.1 which 
was proposed on the website of the Bremen University in 
2003 (http://www.zarm.uni-bremen.de/2forschung/gravi/ 
gravity_main.htm). In this sense, th  present book continues 
the analytical tradition of Cambridge Scholars, starting with 
the works of I. Newton, G. Stokes, J. Maxwell, Lord Rayleigh 
(J. Strutt), J. Jeans, A. Eddington, R. Lyttleton, R. Fowler, and 
other scientists. 

This book has two parts. Part I (Chapters 1–5) seeks to 
acquaint the readers with the developing statistical theory of 
gravitating cosmogonical body formation. Within the 
framework of this theory, the models, as well as the 
evolutionary equations of the statistical mechanics, are 
proposed. The well-known problem of gravitational 
condensation of infinite distributed cosmic substance (in 
particular, the Jeans gravitational instability) is solved by the 
proposed statistical model of spheroidal bodies. For the first 
time, the statistical model of slow-flowing gravitational 
condensation based on the anti-diffusion process allows a 
solution to the gravitational paradox for an infinite 
homogeneous spatial spread substance. With the use of this 
statistical model, a new nonlinear time-dependent 
Schrödinger-like undulatory equation describing the processes 
of cosmogonical body formation is derived. 

In detail, in Chapter 1, the problem of the gravitational 
condensation of the spread cosmic matter is considered for the 
formation of protoplanets in the gravitational field. In 
particular, Sections 1.1–1.6 describe the main problems of the 
theory of gravitational condensation and the theory of 
gravitational instability applied to the molecular (gas-dust) 
cloud. In Section 1.7, the general evolutionary equation for 
the distribution function is obtained [16, 65, 73] which 
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generalizes the well-known Jeans equation characterizing the 
dynamical behavior of the gas-dust cloud. 

 

Figure I.1. 
 

As shown in Chapter 2, the particle distribution functions 
obtained in Section 2.1, as well as the mass density of a 
sphere-like gaseous body (an immovable spheroidal body) 
[45–61], characterize the first stage of evolution: from a 
molecular cloud (nebula) to a forming core (proto-Sun) 
together with the outer shell (protosolar nebula). In Sections 
2.4 and 2.5 the gravitational potential and the potential energy 
of a gravitating sphere-like gaseous body, are calculated. The 
probabilistic interpretation of physical values describing the 
gravitational interaction of particles in a sphere-like gaseous 
body is considered in Section 2.6. Under the condition of 
mechanical equilibrium, the pressure inside a sphere-like 
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gaseous body is calculated in Section 2.8, as well as its 
internal energy in Section 2.9. 

Chapter 3 is devoted to the study of statistical models of a 
rotating and gravitating spheroidal body to describe the 
evolution of a protoplanetary gaseous (gas-dust) cloud around 
a forming star. In particular, Section 3.1 considers the 
statistical interpretation of Poincaré’s well-known general 
theorem and the Roche model for a slowly rotating and 
gravitating spheroidal body, that is, for a sphere-like gaseous 
body. In Section 3.3, the equilibrium distribution function of 
liquid particles relative to the spatial coordinates is derived, 
and the mass density function is also obtained for a uniformly 
rotating and gravitating spheroidal body with a small angular 
velocity. In Section 3.4 the distribution function of the 
specific angular momentum and the angular momentum 
density for a uniformly rotating spheroidal body are derived. 
The average value of specific angular momentum and the total 
angular momentum of a rotating spheroidal body being in 
relative mechanical equilibrium are calculated [16, 73]. The 
determination of the gravitational potential in the case of a 
uniformly rotating spheroidal body is discussed in Section 
3.6. Section 3.7 estimates the potential energy of a uniformly 
rotating and gravitating spheroidal body. Moreover, as shown 
here, the disk-shaped spheroidal body does not possess its 
own gravitational energy. As noted in Section 3.8, the derived 
mass density function characterizes the flattening process: 
from initial spherical shapes (for an immovable spheroidal 
body) through flattened ellipsoidal shapes (for a rotating 
spheroidal body) to spheroidal disks. So, in Chapter 3 the 
second stage of evolution is described: from the protosolar 
nebula to the forming protoplanetary gas-dust disk. 

Chapter 4 considers equations of a forming spheroidal 
body (both the centrally symmetric and the axially symmetric 
spheroidal body) in the process of its initial gravitational 
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condensation. In Section 4.1, the basic anti-diffusion equation 
of the initial gravitational condensation of a non-rotating (or 
slowly rotating) spheroidal body from an infinitely spread 
matter is derived, and in Section 4.2, the general differential 
equations for physical values describing the anti-diffusion 
process of initial gravitational condensation of a spheroidal 
body in the vicinity of mechanical equilibrium are obtained. 
In other words, these equations show that the gravitational 
field tightening of the molecular cloud (nebula) is preceded by 
its initial anti-diffusion condensation [16, 65, 68]. Namely, 
two particular cases of the basic equation of slow-flowing 
initial gravitational condensation are considered in Sections 
4.3 and 4.5. In Section 4.6, the possible dynamical states of 
the forming of a centrally symmetric spheroidal body from an 
infinitely spread gas-dust matter are systematized. The 
general anti-diffusion equation for a slowly evolving process 
of initial gravitational condensation of an axially symmetric 
spheroidal body (which is formed as a result of its rotation) is 
derived in Section 4.7. 

Chapter 5 is devoted to the derivation of a new time-
dependent nonlinear Schrödinger-like equation of a 
cosmogonical body formation [68, 71, 73, 77, 78] and the 
development of a scenario for the gravitational field origin 
based on an avalanche anti-diffusion mass transfer in a 
forming spheroidal body (see Sections 5.1–5.4), when in 
addition to the anti-diffusion velocity of particles, the usual 
(hydrodynamic) velocity arises. Nevertheless, the main result 
of the research in this chapter is the derivation of the 
generalized nonlinear Schrödinger-like equation in Section 
5.6, describing not only the state of virial mechanical 
equilibrium and quasi-equilibrium gravitational compression 
state close to the mechanical equilibrium (with a slowly 
varying anti-diffusion coefficient) but also gravitational 
instability states leading to the formation of a cosmogonical 
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body (see Section 5.7). In particular cases, the nonlinear time-
dependent generalized Schrödinger-like equation becomes the 
well-known time-dependent Schrödinger equation or the 
generalized Schrödinger equation in Nottale’s form (see 
Section 5.5). The cubic time-dependent Schrödinger-like 
equation describing cosmogonical body formation in the state 
of soliton disturbances is derived in Section 5.7. Since this 
equation has a soliton solution, the cubic Schrödinger-like 
equation can describe an evolution of the envelope of a wave 
packet of Jeans’ substantial waves that propagate in a 
nonlinear and dispersive medium of a forming cosmogonical 
body (following the gravitational instability theory of Jeans 
[1]). 

 Part II of this monograph (Chapters 6–9) explores 
theoretical and practical approaches to investigating our Solar 
system and other exoplanetary systems. In particular, a new 
universal stellar law (USL) for extrasolar planetary systems 
connecting the temperature, size, and mass of each star is 
justified. Within the framework of the developed statistical 
theory, a new law (generalizing the famous law of O. Yu. 
Schmidt, for example) for the distribution of the planetary 
distances in our Solar system is proposed. 

In detail, the third stage of evolution is considered in 
Chapter 6: from a protoplanetary flattened gas-dust disk to 
originating protoplanets [16, 65, 73]. The proposed statistical 
theory is applied primarily to develop two models of 
protoplanet formation (see Sections 6.1 and 6.2) and 
explaining the distribution law of planetary distances in the 
Solar system (see subsection 6.1.3), although the results 
presented in subsection 6.2.2 are also suitable for the 
construction of models of formation of exoplanetary systems. 
In more detail, the obtained distribution function of a specific 
angular momentum for a rotating uniformly spheroidal body 
(as a gas-dust flattened protoplanetary cloud) is used in 
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Section 6.1. Since the specific angular momentums (for 
particles or planetesimals) are averaged during a 
conglomeration process (under a planetary embryo formation) 
the specific angular momentum for a protoplanet of the Solar 
system is found in subsection 6.1.1. As a result, a new law for 
planetary distances (which generalizes Schmidt’s law) is 
derived theoretically in subsection 6.1.2. Moreover, unlike the 
well-known planetary distance laws, the proposed law is 
established by a physical dependence of planetary distances 
from the value of the specific angular momentum. Within the 
framework of the second model, Section 6.2 develops an 
alternative heat emission model of protoplanet formation. As 
shown in subsection 6.2.1, in the state of relative mechanical 
equilibrium of particles moving in elliptical orbits in the 
gravitational field, an equation for the heat distribution 
function of the specific angular momentum is derived. Within 
the framework of this model, only 0.8% of the total number of 
particles of the Solar system composing the protoplanetary 
cloud has the angular momentum 15.6 times higher than the 
angular momentum of the remaining 99% of particles in the 
Solar system. This conclusion is in full agreement with Ter 
Haar’s above-mentioned four facts of a nonuniform 
distribution of the angular momentum in the Solar system [7, 
32]. 

Chapter 7 investigates the orbits of moving planets and 
bodies in the centrally symmetric gravitational field of a 
gravitating and rotating spheroidal body simulating the 
protostar with the flattened gas-dust disk during the planetary 
stage of its evolution. Though orbits of moving bodies and 
particles into a flattened rotating spheroidal body are circular 
initially, they could however be distorted by collisions with 
planetesimals and gravitational interactions with neighboring 
originating protoplanets during the evolutionary process of 
protoplanetary formation. This chapter shows that the orbits 
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of moving particles are formed by the action of the centrally 
symmetric gravitational field mainly in the final stage of 
decay of a gravitating and rotating spheroidal body when the 
particle orbits become Keplerian. In Section 7.1, the 
estimation of the gravitational potential in the remote zone 
based on the general solution of the Poisson equation and the 
general expression for the gravitational potential of an axially 
symmetric spheroidal body is obtained. Section 7.2 
investigates the orbits of moving planets and bodies in the 
centrally symmetric gravitational field of a gravitating and 
rotating spheroidal body during the planetary stage of its 
evolution. In Section 7.3, calculation of the orbit of the planet 
Mercury as well as estimation of angular displacement of 
Mercury’s perihelion based on the statistical theory of 
gravitating spheroidal bodies is carried out. As a result, this 
section shows that according to the proposed statistical theory 
of gravitating spheroidal bodies the turn of perihelion of 
Mercury’s orbit is equal to 43.93'' per century, which is 
consistent with the conclusions of Einstein’s general theory of 
relativity (his analogous estimation is equal to 43.03'') and 
astronomical observation data (43.11'' 0.45'').  

In Chapter 8, the statistical theory of gravitating spheroidal 
bodies is applied to derive and develop a USL for the 
investigation of extrasolar systems [75, 76]. A preliminary 
estimate of an average gravitational potential energy of 
interaction of a particle with the gravitational field of a 
spheroidal body is given in Section 8.1. Section 8.2 then 
considers the derivation of the equation of the state of an ideal 
stellar substance taking into account an extended substance 
called the stellar corona. In other words, the stellar corona 
together with the star is described through the model of a 
rotating and gravitating spheroidal body in Section 8.2. 
Using the virial theorem as well as the theorem of uniform 
distribution of energy on freedom degrees for each particle 
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inside a rotating and gravitating spheroidal body, the USL 
for a star including its stellar corona is justified. In the case of 
the Sun, the verification of USL shows its validity with the 
relative error equal to 3.37% (see Section 8.3). Section 8.3 
then considers the modification of the USL, taking into 
account the ratio of the temperature of the Solar corona to an 
effective temperature of the Sun’s surface. The verification of 
the modified USL for other stars belonging to the different 
spectral classes and types is carried out in Section 8.3. 
Theoretical estimations of temperatures of stellar coronas for 
stars belonging to the different spectral classes as well as 
orbital and thermodynamical characteristics of multi-planet 
extrasolar systems are investigated in Sections 8.4 and 8.5. 
So, the knowledge of some characteristics for multi-planet 
extrasolar systems permits us to refine a star’s own 
parameters. In this context, comparison with estimations of 
temperatures using the regression dependences for multi-
planet extrasolar systems attests the results obtained. In 
Section 8.6, the known Hertzsprung–Russell dependence is 
derived from USL directly.  

In the final chapter (9) of this monograph, the stability of 
planetary orbits based on the statistical theory of gravitating 
spheroidal bodies is investigated [16, 45–79]. Using the 
obtained USL and its modification connecting temperature, 
size, and mass of a star the combination of Kepler’s 3rd law 
with the universal stellar law (3KL-USL) is derived in Section 
9.1 [79]. As shown in Section 9.1, the combined 3KL-USL 
law connects among themselves both the mechanical values 
(the Keplerian angular velocity K  and the major semi-axis 
a  of a planetary orbit) and the statistical (thermodynamic) 
values (the parameter of gravitational condensation  and the 
temperature T ). The proposed 3KL–USL thus explains the 
stability of planetary orbits in extrasolar systems. In this 
context, Section 9.2 investigates the additional periodic force 
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causing the radial and axial orbital oscillations (which modify 
initial circular orbits of bodies) based on the approach of 
Alfvén and Arrhenius [9, 19, 20]. A prediction of the Alfvén–
Arrhenius specific additional periodic force within the 
framework of the Newtonian theory of gravity is considered 
in Section 9.3. As shown in Section 9.4, from the point of 
view of the theory of retarded potentials the wave 
gravitational potential and the Alfvén–Arrhenius specific 
additional periodic force arise in the remote zone II of the 
gravitational field under the orbital motion of a body around 
the central gravitating body. The obtained spectral 
representations correspond entirely to the analogous spectral 
expansion derived in the statistical theory of gravitating 
spheroidal bodies (see Chapter 5). Thus, the proposed 
statistical theory of the formation of planetary systems 
pointing to the regular and wave gravitational potentials 
origin is confirmed by the theories of existence (Newtonian 
and retarded potentials). Section 9.5 finds that additional 
periodic force is similar to Hooke’s force which affects free 
oscillations of a body in orbit. Due to dissipation, these 
oscillations are damped gradually, so that they need support 
through the periodic impact of the additional periodic force by 
analogy with the principle of an anchoring mechanism in a 
clock. Section 9.6 justifies that the spatial deviation of the 
gravitational potential of an ellipsoid-like rotating 
cosmogonical body from the centrally symmetric field r/1 – 
gravitational potential (of a sphere-like body) implies 
different values of the radial and the axial orbital oscillations. 

The investigations presented in this monograph in the field 
of theoretical statements on the processes of self-organization 
in a spread gas-dust cosmic media and the development of 
statistical models for the formation of planetary systems and 
the origin of planets (including planets in our Solar system 
and other extrasolar systems) have been widely discussed and 
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reported at several international conferences, in particular, 
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PART I 

A STATISTICAL MECHANICS  
OF THE FORMATION OF GRAVITATING 

COSMOGONICAL BODIES 
 
 
 

Looking at the sky today, we see structures of every scale, 
from stars and planets to galaxies and galaxy clusters. The 
investigations of structure formation attempt to model how 
these structures formed by gravitational instability from small 
early density fluctuations. As we know, the problem of 
gravitational instability, along with the gravitational 
condensation problem, was first investigated by Sir James 
Jeans [1]. Indeed, the linearized theory of gravitational 
instability leads to the well-known Jeans criterion: 

c  (I.1) 
where  is a wavelength of oscillating disturbances and c  is 

a critical wavelength of the disturbance. Nevertheless, it is 
well known that an infinite homogeneous non-rotating 
substance can not be in an equilibrium state. Small 
disturbances do not, therefore, manage to form any dense 
bunches. However, the process of planet formation takes a 
very long time and, in this context, Newtonian consideration 
of local equilibrium systems becomes preferable, as pointed 
by Viktor S. Safronov [2]. 

The main difficulty with Jeans’ theory is connected to a 
gravitational paradox [2]: for an infinite homogeneous 
substance there exists no potential for a gravitational field 

g in accord with Poisson equation: 
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If a mass density value 0  then, according to Eq. (I.2), both 

gravitational potential  g  
and, therefore, specific 

gravitational force gf  display unlimited growth depending on 

the distance [2]. Indeed, a constant limit existing for g  in 

spatial infinity leads to the representation that a mass density 
of a substance tends to zero in infinity. This difficulty is 
reduced within the framework of Jeans’ theory and its next 
modifications using a supposition that the Poisson equation 
(I.2) cannot be applied to an infinite substance in whole but to 
disturbances  from a mean value only. It is also supposed 
that there is no gravitational force in an infinite homogeneous 
immovable substance because a gradient of acceleration and 
pressure is absent. Otherwise, it could not be at rest [2].  

An important law of statistical mechanics can be obtained 
by an equation for the evolution of a distribution function  
of a gas-dust substance known as the Jeans equation [1]: 

0
tzwyxuz

w
yx

u ggg  (I.3) 

where zwyxu ,, . However, because of the 
abovementioned gravitational paradox, the main problem of 
self-condensation of an infinitely distributed substance was 
not solved by Jeans’ theory. 

Ultimately, some problems of gravitational condensation of 
an infinitely distributed substance, as a molecular cloud, 
within the framework of Jeans’ theory are the following [1-8]: 

 a noncontradictory model of gravitational condensation 
of a molecular cloud is absent; 

 a gravitational potential for an immovable molecular 
cloud is not defined analytically; 
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 difficulties occur in finding a general (not partial) 
solution for Jeans’ equation (I.3) because of the 
impossibility of determining an analytical expression for 
the gravitational potential of a molecular cloud. 

 
Part I of this monograph develops an initial model of a 

slowly evolving process of the gravitational condensation of 
a molecular cloud, thus solving the gravitational paradox 
relative to an infinite homogeneous substance. 
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CHAPTER ONE 

ON THE PROBLEMS OF THE ORIGIN OF  
THE INITIAL GRAVITATIONAL CONDENSATION 

OF SPREAD COSMIC MATTER 
 
 
 

The Universal Gravitation Law, discovered by Sir Isaac 
Newton in 1687 [80], has played crucial role in the formation 
of our knowledge about the Universe and the cosmic space 
surrounding us. Further studies related to the theory of 
General Relativity by Albert Einstein [81] advanced our 
understanding of the origin of the Universe, although many 
unresolved problems (that are discussed in this chapter) 
remain. In attempting to understand the formation of galaxies 
and their clusters, cosmologists are looking for evidence of 
the accumulation of cosmic matter, that is, cosmic 
irregularities or textures in the Universe [82–84]. However, 
the standard cosmological theory of the expansion of space in 
the early universe (in particular, the “hot universe” model of 
George Gamov and the “cosmic inflation” model of Alan 
Guth [85, 86]) is contradicted by the observations of the large-
scale structure of the Universe [83].  

Developing the hydrodynamic approach to cosmology 
[87], Neil Turok and Dan N. Spergel proposed the texture 
theory [83]. At present, modern observational data on the 
anisotropy of microwave radiation have also been obtained, 
reducing the popularity of texture theory [88]. Inflation theory 
predicts the spectrum of the microwave background which is 
in good agreement with the observational data. Moreover, by 
invoking an additional hypothesis about the existence of dark 
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matter, it makes it possible even to explain the formation of 
the large-scale structure of the Universe [89–92]. 

Although this monograph is primarily devoted to problems 
of cosmogony, nevertheless, the general approach developed 
in it consists of the existence of similar stages of matter self-
organization in scenarios of the formation of both large-scale 
space objects (galaxies and their clusters) and smaller-scale 
objects (stars and planetary systems) from spread cosmic 
matter [16, 68, 73]. It is well known (see, for example, [12]) 
that the interstellar cosmic medium contains very little dust 
and behaves practically as a single-component gaseous 
medium. Therefore, the main results in the theory of 
gravitational condensation and gravitational instability were 
first obtained for such a single-component medium by the 
famous astrophysicist Sir James Jeans in 1902 [1 pp. 346–
348, 95]. 

Nevertheless, the main difficulty of the Jeans theory is 
related to the gravitational paradox: for an infinite 
homogeneous medium, there is no potential for the force of 
gravity [2]. In addition, there are other fundamental 
difficulties in the theory of gravitational condensation and the 
theory of gravitational instability in infinitely spread media. 
For example: the problem of forming a center of spread 
cosmic matter under its initial gravitational tightening or the 
other known problems of statistical mechanics of a gas-dust 
(molecular) cloud; and the impossibility of finding a general 
but non-partial solution to the Jeans equation due to the 
difficulty in determining the analytical expression for 
gravitational potential of a molecular cloud, an infinite mass 
density on the periphery of a rotating molecular cloud 
according to the theory of Jeans. 

This chapter is devoted to a detailed description of the 
problems of the initial gravitational tightening origin of 
spread cosmic matter and to finding a possible way to solve 
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them based on the new evolutionary equation of the statistical 
mechanics of the molecular (gas-dust) cloud [16, 65, 73] 
obtained in Section 1.7. 

1.1. On Newton’s Universal Gravitation Law and the 
problem of finding the mass center of a spread cosmic 

matter under its initial gravitational condensation 

The Universe, as is now known from observations of the 
cosmic microwave background radiation, began in a hot, 
dense, nearly uniform state approximately 13.8 billion years 
ago [83, 84]. However, looking at the sky today, we see 
structures of all scales, from stars and planets to galaxies and, 
on still larger scales, galaxy clusters and sheet-like structures 
of galaxies separated by enormous voids containing few 
galaxies. Thus, reviews of the large-scale distribution of 
galaxies show how our modern Universe is inhomogeneous 
because galaxies tend to congestion (see Figure 1.1) forming 
layers, clusters, and accumulations surrounding the more sparse 
domains, that is, voids [83]. 

Structure formation attempts to model how these structures 
formed by gravitational instability from small early density 
fluctuations. In this regard, the investigation of the origin and 
evolution of the structure of the Universe is one of the most 
ambitious and urgent problems of modern cosmology. In the 
new reviews on the distribution of galaxies, huge bubbles and 
layers extending hundreds of millions of light-years have been 
found. The most popular models – G. Gamow’s “hot” Universe 
and A. Guth’s “cosmic inflation” Universe [85, 86] – 
successfully describe many aspects of the structure of the 
Universe but they do not explain the large-scale clustering of 
the cosmos, that is, all matter in the Universe entirely [83, 84]. 
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Figure 1.1. Fragment of the sky map with plotted galaxies (indicated by 
white dots) located at distances of up to 2 billion light-years [83] 

In their attempts to understand the formation of galaxies 
and their clusters, cosmologists are looking for evidence of 
congestion in the form of cosmic irregularities, that is, 
textures in the early Universe [83, 84]. However, the standard 
cosmological theory of the expanding Universe (even taking 
into account Guth’s inflation phase, i.e., a short-term rapid 
expansion [85, 86]) is contradicted by the observations of the 
large-scale structure [83]. Nevertheless, the observational data 
on the anisotropy of microwave radiation obtained at present 
do not testify in favor of the texture theory of Spergel–Turok, 
since, according to the latter, the Doppler peak in microwave 
radiation is suppressed [88]. On the contrary, the inflationary 
theory predicts the spectrum of the microwave background 
which is in good agreement with the observational data, and 
with the usage of an additional hypothesis about the existence 
of dark matter, it even makes it possible to explain the 
formation of the large-scale structure of the Universe [89–92]. 

In this regard, a possible answer lies in the existence of 
similar stages of self-organization of matter in the scenarios of 
formation of both large-scale space objects (such as galaxies 
and their clusters) and less large-scale ones (in particular, 
stars and planetary systems) from spread cosmic matter [16, 
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73]. Modern concepts of the cosmic dispersed matter based on 
astrophysical data obtained using radio telescopes say that a 
cold porous gas-dust medium forms molecular clouds which 
spread in interstellar space “with some tendency for local 
clustering are a large number of ‘cores’...” [10].  

If we conditionally divide this medium into elementary 
domains, then, using the terminology of hydrodynamics [94], 
they can be considered to be “liquid particles” by mass im  

(see Fig. 1.2); in this connection, we note that these liquid 
particles are not elementary but themselves consist of a 
multitude of elementary particles of mass 0m  [94]. According 

to the Newton’s Universal Gravitation Law, established by the 
brilliant physicist Sir Isaac Newton [80, 95], these particles 
must interact with each other through local gravitational 
forces, the magnitude of which is determined by Newtonian 
law: 

2
ij

ji
ij r

mm
F  (1.1.1) 

where 
2211 /kgmN1067.6  is the Newtonian gravitational 

constant, 

im  and jm  are masses of the interacting i -th and j -th 

liquid particles, and 

ijr  is a distance between the i -th and j -th particles.  

In other words, following the Universal Gravitation Law, a 
particle im  attracts another particle jm  with the force ijF  

defined by the formula (1.1.1). Obviously, with the same 
magnitude of the force, another particle jm attracts the 

particle im . The vector, representing the force ijF  in its action 

on the particle im , is located on the positive real axis, having 

an origin in the center of mass im  of the first particle, and is 
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directed toward the second particle jm ; the vector, which 

represents the force of attraction of a particle jm  by a 

particle im , has an origin at the center of mass jm and is 

located on an oppositely positive real axis directed toward the 
particle im  (see Fig. 1.2). 

 

 

Figure 1.2. The interaction of particles in a porous gas-dust medium 

If we consider all the pairwise interactions of liquid 
particles among themselves then a resulting force of all the 
gravitational interactions of these particles of cosmic matter 
among themselves can be calculated as follows: 

ij
ij ij

ji

ij
ij r

r
mm

FF
3

. (1.1.2) 

The direction of the resulting force F  will be determined 
by the location of a larger number of liquid particles 
constiting the gas-dust matter, that is, by the location of a 
densely filled subspace with liquid particles in which there are 
almost no cavities (voids). 
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In particular, if we consider an ideal case of the distribution 
of cosmic matter in the form of a line segment of particles of 
the same type with diameter 1iD , that is, as a stretched needle 

(Fig. 1.3), it is easy to see that the resulting gravitational force 
will be directed to the geometric center of this needle: 

 

 

Figure 1.3. The scheme of attraction of particles placed in a line 

This is not surprising because of the total number N  of 
particles. The number of particles attracting a selected particle 
(marked by hatching in Figure 1.3) to the periphery of the 
needle is 1 while the number of particles attracting this 
particle to the center is 1N . In the case of a large ensemble of 
particles )1(N , the resulting central force NFc ~ , and the 
resulting peripheral force 1~pF , that is, pc FF  occurs with an 

increase in the total number N  of particles. 
In the second ideal case, the distribution of cosmic matter 

in the form of a flat figure, that is, of a circle or disk (see Fig. 
1.4), uniformly filled with radially located particles of the 
same type with 1iD  (the number of which along the radial 

direction N  approximately determines a diameter of this disk) 
the number of peripheral particles is approximately equal to 
the length of a circumference ]ent[ N  while the number of 
interior particles is proportional to the area of the inner circle 

])2/)2((ent[ 2N . In other words, at very large N  a 
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resulting central force 2~ NFc  and a resulting peripheral force 

NFp ~ , that is, pc FF  with an unlimited increase in the 

ensemble of particles. This means that the peripheral particles 
making up the shell practically do not attract the interior 
particles of the disk-shaped body (see later the well-known 
theorem of Newton [80, 95, 96]). 

 

 

Figure 1.4. The scheme of the interaction of particles inside a disk-shaped 
figure 

Finally, the third case of the distribution of cosmic gas-dust 
matter refers to the case of a three-dimensional figure which 
is the sphere uniformly filled with particles of the same type 
having a diameter equal to the length N  of a sequence of 
radially located particles with 1iD  (Fig. 1.5). 
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Figure 1.5. The scheme of attraction of particles inside the sphere 

If we consider any cross-section of the above-mentioned 
sphere (passing through its geometric center) and then 
arbitrarily select the diameter (composed by radially located 
liquid particles) in it, then we come to the consideration of the 
first model (Fig. 1.3). Indeed, it can be seen in this figure that 
lateral resulting forces cannot act on a test particle located on 
the diameter due to the symmetry of the circular cross-section 
relative to the diameter of the sphere (since there are 
approximately equal numbers of particles on either side of the 
diameter the resulting peripheral forces compensate each 
other). As a result, only an uncompensated central resulting 
force acts on the test particle directed to the center along the 
diameter. When placing a test particle directly in this center of 
the sphere the resulting central gravitational force is equal to 
zero due to the attraction of an equal number of particles 
located in all directions from the center. If we relocate a test 
particle from the center to the periphery, the resulting central 
gravitational force becomes greater being proportional to the 
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number of particles contained in the volume of an inner 
concentric sphere (on the surface of which this test particle is 
now located). As in the previous case, this means that the 
peripheral particles (constituting the shell in the form of a 
spherical layer) do not attract the interior particles of the inner 
sphere. Indeed, when N  is large enough, then by analogy with 
the second case, the resulting central force 3~ NFc  , and the 

resulting peripheral force 2~ NFp , that is, pc FF  at large N ; 

as a result, the center of gravity (center of mass) of the cloud 
of gas-dust matter coincides with its geometric center. 

Since the problem of determining the center of spread 
matter as a system of particles (in particular, of a molecular 
cloud) is important under its initial gravitational condensation, 
let us consider some mathematical foundations for finding the 
center of mass of a particle system. As F. Moulton pointed out 
in [96], the center of mass of a system of particles having 
equal masses, that is, of equal single mass points, is defined as 
a point, the distance to which from any plane is equal to the 
average distance of all mass points from this plane. This 
should occur for three coordinate planes. Indeed, let 

),,( 111 zyx , ),,( 222 zyx , etc. represent the rectangular 
coordinates of various single mass points while z y x ,,  are the 
rectangular coordinates of their center of mass. Then, 
according to the definition we have: 

N

i
i

N

i
i

N

i
i z

N
zy

N
yx

N
x

111

1
 ,

1
 ,

1
 (1.1.3) 

where N  is a number of particles in a molecular cloud. If 0m  

is a mass of each particle, that is, the mass of the whole 
system of particles is equal NmM 0 , then Eqs (1.1.3) 

become: 
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. (1.1.4) 

 
It remains to prove that the distance to a point ) ,,( zy x from 
any other plane is also the average distance of mass points 
from the plane [96]. To this end, we write the equation of an 
arbitrary plane: 

0dczbyax . (1.1.5) 
The distance to the point ) ,,( zy x  from this plane is 
determined by the formula: 

222 cba
dzcybxad , (1.1.6) 

and the distance to a certain point ),,( iii zyx  from the same 

plane is respectively: 

222 cba
dczbyaxd iii

i . (1.1.7) 

Then from Eqs (1.1.3), (1.1.6), and (1.1.7) it follows that: 

N

d

cbaN

dczbyax

cbaN

Ndzcybxa
d

N

i
i

N

i
iii

N

i
i

N

i
i

N

i
i

1

222

1

222

111

)(
, (1.1.8) 

Q.E.D. Therefore, the point ) ,,( zy x represented by Eq. 
(1.1.3) satisfies the definition of the center of mass relative to 
all planes. 

When the particle system contains particles of unequal 
mass, it is possible to consider two cases in which the masses 
of these particles are commensurable and incommensurable 
[96]. In the case in which the masses of the particles are 
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commensurable, a certain mass unit 0m  is selected, for which 

all N  the masses of the particles are divided without 
remainder. Let us suppose that the first particle has a 
mass 01mp , the second has 02mp , and so on, and 

let 101 mmp , 202 mmp , etc. Then we can assume that the 

system of particles consists of ...21 pp mass points, each 

having mass 0m . Then, according to the above regarding Eqs 

(1.1.4), we directly obtain that: 

 ,
1

 ,
1

1

1
0

1
0

1

1
0

1
0 N

i
iiN

i
i

N

i
iiN

i
iiN

i
i

N

i
ii

ym
Mpm

ypm
yxm

Mpm

xpm
x  

N

i
iiN

i
i

N

i
ii

zm
Mpm

zpm
z

1

1
0

1
0 1

 (1.1.9)  

which proves the requirement. 
In the case in which the masses of the particles are 

incommensurable, we can choose an arbitrary mass unit 0m  

smaller than each of the N  masses of the particles. Then the 
masses of these particles will be expressed by a product 0m  of 

an integer plus some residues. If we neglect the residues Eqs. 
(1.1.9) then give the center of mass. Now let us take as a new 
unit of mass any share of 0m . As a result, the residues remain 

the same or decrease (depending on their value) [96]. This 
share 0m  may be so small that each residue will be less than 

any given value. It is obvious that these Eqs (1.1.9) are also 
applicable if im  are masses of particles minus residues. But 

since the shares of 0m  tend to zero the sum of the residues 

also tends to zero, that is, the expressions (1.1.9) tend to the 
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limits in which im  are masses of single mass points [96]. 

Therefore, in all cases (commensurable or incommensurable 
masses of particles) a point is determined by Eqs (1.1.9) that 
satisfies the definition of the center of mass. 

So, to prove the validity of the formulas for the definition 
of the center of mass of a system of particles, it is sufficient to 
show that Eqs (1.1.9) do not change, firstly, when the origin 
of coordinates changes or, secondly, when the rotation occurs 
around one of these axes. To change the origin of coordinates 
let us move it along the axis x  at a distance a : 

axx . 
Then, taking into account this substitution the first equation in 
(1.1.9) becomes: 

 ,
1

)(
1

1

1

1

N

i

N

i
i

ii

N

i
ii M

m
axm

M
axm

M
ax  

whence: 

 xm
M

x
N

i
ii ,

1

1

 

so that this formula is the same as before. 
Now let us turn the axes x  and y  around the axis z  at an 

angle . The substitution performing the rotation is a known 
rotation transformation: 

.cossin

;sincos

yxy
yxx

 

After this substitution the first two equations in (1.1.9) take 
the following form: 

;
1

sin
1

cossincos
11

N

i
ii

N

i
ii ym

M
xm

M
yx  

.
1

cos
1

sincossin
11

N

i
ii

N

i
ii ym

M
xm

M
yx  
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Multiplying the first equation by cos  and the second by 
sin  and then adding and subtracting the resulting equations 
we find: 

 
1

;
1

11

N

i
ii

N

i
ii ym

M
yxm

M
x . 

Thus, the point ) ,,( zy x  meets the definition of the center 
of mass for any plane [96]. Leonard Euler proposed for the 
center of mass the name of the center of inertia. 

If the mass points describing a system of particles become 
more and more numerous and more closely located to each 
other, then at the limit the system of particles approaches a 
solid body. Such bodies are characterized by continuous mass 
distribution of medium. To write the formulas for coordinates 
of the center of mass of a solid body one must take the limits 
of the expressions (1.1.9) for which ),...,1( Nimi  tend to 

zero. At the limit, the sums go into definite integrals, therefore 
coordinates of the center of continuous masses are the 
following: 

M

M

M

M

M

M

dm

zdm
z

dm

ydm
y

dm

xdm
x  , ,  (1.1.10) 

and the integrals are taken over the whole continuous medium 
of a solid body. 

If the solid body under consideration is nonuniform in its 
mass distribution, then a mass density function ),,( zyx  
is introduced, so that a mass element dm  in rectangular 
coordinates is written as follows: 

dxdydzdm . (1.1.11) 
Given the formula (1.1.11), Eqs (1.1.10) take the form: 
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V

V

V

V

V

V

dxdydz

dxdydzz
z

dxdydz

dxdydzy
y

dxdydz

dxdydzx
x  , ,  (1.1.12) 

where integrals are taken over the whole volume V  of a solid 
body. Similarly, Eqs (1.1.12) written in the Cartesian 
coordinate system can be represented in curvilinear coordinate 
systems (mainly in cylindrical and spherical ones). 

All the above considerations are valid for the case when a 
cosmic molecular cloud has finite dimensions, so that the 
question of determining its center, surface, and volume looks 
quite correct. However, the problem becomes much more 
complicated when it concerns huge cosmic formations 
(nebulae) in which a fairly cold porous gas-dust medium 
spreads in infinite space. The following question is then 
relevant: what is the mechanism for the origin of the initial 
gravitational condensation of infinitely spread cosmic matter? 

First of all, let us consider another conceptual model. We 
suppose that the texture of a spread porous gas-dust medium 
can be modeled by a foamed liquid consisting of a collection 
of bubbles of various sizes (small, medium, and large) tightly 
adjacent to each other (see Fig. 1.2). Bubbles make up 
multiple voids where cosmic matter is absent, moreover, the 
matter itself forms the walls of bubbles and is also located in 
the inter-bubble space. It is known from the theory of the 
Newtonian potential [95, 96, 97] that the magnitude of the 
gravitational force both in a spherical layer of finite thickness 
and in an infinitely thin spherical layer as well as in cavities 
of an ellipsoidal shape (infinitely thin and finite thickness) is 
zero according to the theorem of Newton mentioned above. 

Indeed, the attraction of a thin homogeneous spherical 
layer at an interior point, like other simple bodies such as 
spheres, was first considered by Newton in his “Principia,” 
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Book I, Section XII, Proposition LXX [80]. The following 
proof essentially coincides with the proof given by him [96]. 

Let us consider a spherical layer formed by two infinitely 
close spherical surfaces S  and S , and let P  be a point of 
unit mass located inside it (Fig. 1.6). 

 

 
Figure 1.6. The scheme of attraction of a thin homogeneous spherical 
layer at a point inside it 

Let us construct an infinitely small cone with a solid angle 
and a vertex at a point P . Let  be a mass density of the 

layer. Then the mass of an element of the layer at A  is equal 

to 
2

m AB AP ; similarly, the mass of a layer element in 

A  is: 
2

m A B A P . According to (1.1.1) the forces of 
attraction of the mass point P  by the elements of layer m  and 
m  are respectively equal to: 

.
1

;
1

22
PA

mF
AP

mF  

Since A B AB then F AB F , and this is also 
true for each infinitely small solid angle with a vertex at a 
point P . Thus, a thin homogeneous spherical layer attracts a 
point inside it equally in opposite directions, that is, according 
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to (1.1.2) the resultant gravitational force 0F . This is 

applicable for any number of thin spherical layers and, 
therefore, for a spherical layer of a finite thickness which 
proves Newton’s theorem. 

Similarly, the attraction of a thin homogeneous ellipsoidal 
layer at an interior point can be studied (the corresponding 
theorem was given in “Principia” [80], Book I, Section XIII, 
Proposition XCI, Corollary 3). A thin layer enclosed between 
two similar and similarly placed surfaces of homogeneous 
ellipsoids is called an elliptic homeoid [96]. Let us consider 
the attraction of an elliptic homeoid bounded by two similar 
ellipsoids E  and E at an interior point P of a unit mass (Fig. 
1.7). 

 

 

Figure 1.7. The scheme of attraction of a thin homogeneous ellipsoidal 
layer at a point inside it 

Let us construct an infinitely small cone with a solid angle 
 and with a vertex P . The masses of two infinitely small 

elements near points A  and A  are defined as 
2

m AB AP and 
2

m A B A P . Accordng to 
(1.1.1) the attraction forces of the mass point P of a unit mass 
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by the layer m  and m  are equal 

to
2

/F m AP and
2

/F m A P respectively. 

Let us construct a diameter CC parallel to AA  at an 
elliptical cross-section by a plane, passing through the axis of 
the cone and the center of the ellipse, and then draw its 
conjugate diameter OO . It is the conjugate diameter for both 

elliptic cross-sections E  and E . Therefore, OO  divides in 
two every chord parallel to CC  whence ABBA , therefore, 
the attractions of the point P  by the opposite elements A  and 
A  are equal to each other. Since this is applicable for each 
infinitely small solid angle, whose vertex is at P , then the 
resulting gravitational force (1.1.2) is equal to zero: 0F . 

So, the forces of attraction of a thin elliptic homeoid at an 
interior point are equal in opposite directions. This statement 
is applicable for any number of thin layers and, as a result, for 
layers of finite thickness which proves, in general, the Newton 
theorem [80, 95, 96]: 

Theorem 1.1 (the Newton theorem). A homogeneous 
layer, bounded by two similar and similarly placed concentric 
ellipsoids, does not exert attraction at a point into the internal 
cavity of the layer. 

P. Dive [98] proved that the inverse conclusion of 
Newton’s theorem is also true. 

Corollary 1.1. A potential function (gravitational potential) 
of a homogeneous layer at an interior point  has a constant 
value into all internal cavity of the layer. 

Really, according to Theorem 1.1 since an interior point 
 does not undergo any attraction from a homogeneous 

layer, then all components of the resulting gravitational force 
along coordinate axes are equal to zero The gravitational 
potential function should, therefore, be constant. 

Let us consider a very useful application of Newton’s 
theorem in the case of an inhomogeneous ellipsoid [99]. To 
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this end, if we take the main axes of an inhomogeneous 
ellipsoid  as the coordinate axes we can then write its 
equation in the form: 

2 2 2

2 2 2
1

x y z
a b c

 (1.1.13) 

where cba ,,  are major semi-axes of the ellipsoid under the 

assumption abc . Let us introduce a family { E } of 

concentric, similar, and similarly located ellipsoids with a 
parameter k  defined by the equation: 

2 2 2
2

2 2 2

x y z k
a b c

. (1.1.14) 

Let be the current coordinates ' ' ', ,x y z  of an interior point  

and ' ' '( , , )x y z  be a mass density of an inhomogeneous 
ellipsoidal body bounded by a surface  at the point M . If for 
a fixed value k  the density  has a constant value at all 

points on the surface kE , but it changes upon transition from 

one surface of the family to another, that is, under changing a 
parameter k , then we can say that the inhomogeneous body 

 bounded by the surface of an ellipsoid  possesses an 
ellipsoidal structure or has an ellipsoidal mass density 
distribution [99]. In this case, the mass density ( )  will be 
a function of only one (0 1)k k and 0k  corresponds to 
the center of the ellipsoidal body whereas the value 1k  
conforms to its surface [99]. Therefore, we can write that: 

'2 '2 '2

2 2 2
( ) ( ) ( )

x y zk
a b c

 (1.1.15) 

where ' ' ', ,x kx y ky z kz . To find the gravitational 
potential function of such an ellipsoidal body we proceed as 
follows: we select from this body  an infinitely thin 
ellipsoidal layer bounded by two infinitely close surfaces 
belonging to the family kE , and we first find an expression for 
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the gravitational potential of this layer (supposing it can be 
considered as homogeneous) at both exterior and interior 
point . 

As a consequence of this supposition as well as Theorem 
1.1 and Corollary 1.1, the following theorem holds [99]: 

Theorem 1.2. A gravitational potential function of a layer 
bounded by two similar, infinitely close ellipsoids has a 
constant value at all points of an ellipsoid which is confocal to 
this layer. 

In particular, if an interior point does not undergo any 
attraction from an infinitely thin ellipsoidal layer then the 
gravitational potential function of this layer has a constant 
value at an internal confocal ellipsoid in accordance with 
Corollary 1.1. 

So, by splitting the whole ellipsoidal body  into an 
infinite number of such infinitely thin, homogeneous 
ellipsoidal layers, we then obtain the gravitational potential of 
the whole ellipsoidal body as a sum of potentials of all 
infinitely thin layers [99], that is, as an integral of the 
gravitational potential of k -layer taken to the parameter k  
from zero up to one. Thus, first of all, we need to find an 
expression for the gravitational potential of an infinitely thin 
layer 'T  with a constant mass density  bounded by two 
infinitely close, concentric, similar and similarly spaced 
ellipsoids. To do this, we use the abovementioned Theorems 
1.1 and 1.2. 

Let ( , , )P x y z  be a point lying outside a layer '  bounded 

by a surface '
1  with semi-axes ' ' ', ,a b c  and by an infinitely 

close surface '
2 . Then the equation of an ellipsoid passing 

through the point  and being confocal to an ellipsoid '
1  has 

the form: 
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2 2 2

'2 ' '2 ' '2 '
1

x y z
a b c

. (1.1.16) 

According to Theorem 1.2, the gravitational potential '  of 

the layer '  has a constant value at all points of this ellipsoid 
but upon transition from one confocal ellipsoid to another, 
that is, under a changing parameter ' , the gravitational 
potential is also changing. Consequently, the potential '  of 
an infinitely thin layer at an exterior point of a unit mass is a 
function only of '  which in turn is a function of the 
coordinates of the point P  [99]: 

'

' '
'

' '2 ( )

m ds
R s

 (1.1.17) 

where '  is a positive root of Eq. (1.1.15): 
' ' '2 ' '2 ' '2 '( ) ( )( )( )R s a s b s c s , (1.1.18) 

and 'm  is a mass of the infinitely thin layer 'T ,  is the 
Newtonian gravitational constant. 

As the point  is approaching the surface '
1  of the 

ellipsoid, the parameter ' 0 . Therefore, taking into account 
that the gravitational potential is a continuous function in all 
space, and inside the layer 'T , it is a constant value following 
Newton’s theorem (see Theorems 1.1, 1.2 and Corollary 1.1) 
we can obtain the following potential expression for an 
interior point [99]: 

' '
'

' '
02 ( )

m ds
R s

. (1.1.19) 

Now we turn to finding the gravitational potential of a 
continuous ellipsoidal body , bounded by a surface , the 
mass density of which is determined by the law (1.1.15). Let 
us consider a family of similar concentric ellipsoids k  and 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

44

select a layer '  bounded by an ellipsoid '
1  with semi-axes 

' ' ', ,a ka b kb c kc  and by an ellipsoid '
2  with semi-

axes '' '' ''( ) , ( ) , ( )a k dk a b k dk b c k dk c . The 

gravitational potential of the layer 'T  at an outer point 
( , , )P x y z  is then determined by the formula (1.1.17), and its 

mass is equal: 
' 2 3 34

( )[( ) ]
3

m abc k k dk k , (1.1.20) 

whence, neglecting the terms higher than the first order of 
value dk , we obtain: 

' 2 24 ( )m dm abc k k dk . (1.1.21) 

Making the substitution ' 2s k  and denoting the 
gravitational potential of the layer '  (as an infinitely small 
part of the gravitational potential of the whole body ) 
through gd  instead ' , we can write: 

2

2
2 2

2 2 2 2 2 2 2 2 2'/

2 4

3 2 2 2

2 2

2 2 2

2 ( )
( )( )( )

( )2
( )( )( )

( ) ,
( )( )( )

g k

s

s

k dd abc k k dk
k a k k b k k c k

dabc k k dk
k a b c

dabc k dk
a b c

 
 
 
 
 

(1.1.22) 

where 2 'k s . Given the designation: 
2 2 2( ) ( )( )( )R a b c  (1.1.23) 

the expression (1.1.22), therefore, takes the form: 
2 2( )

( )g s

dd abc k dk
R

, (1.1.24) 

and s  is determined by the equation derived from Eq. 
(1.1.16): 

2
2

2

2

2

2

2

k
sc

z
sb

y
sa

x
. (1.1.25) 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Problems of the Origin of the Initial Gravitational Condensation  
of Spread Cosmic Matter 

45 

Integrating now the equality (1.1.24) with respect to k  or 
2k , which is the same, from zero to one, we obtain the 

gravitational potential of the whole ellipsoidal body : 

s
g R

ddkkabcP
)(

)()(
1

0

22 , (1.1.26) 

which can be written shorter, supposing: 

s R
dabcs

)(
)(0 , (1.1.27) 

in the following form [99]: 
1

0

22
0 )()()( dkksPg . (1.1.28) 

To lead the formulas (1.1.26), (1.1.28) to the classical 
Dirichlet form [99], we consider the function 2( )k as 

integrable in the interval 20 1k  and assume: 
1

222

2

)()(
k

dkkk . (1.1.29) 

Applying to (1.1.28) the method for integrating by parts we 
obtain: 

1

0

0
2

1

0

2
0 )()()()()( sdkksPg . (1.1.30) 

However, when 2 1k  we have (1) 0 , and if 2 0k , as 
can be seen from Eq. (1.1.25), we have s , and therefore 

0 ( ) 0 , that is, the integrated part disappears: 
12

0 0
( ) ( ) 0s k . 

In the remaining integral we take the integration variable s  
instead of 2k . The new boundary will then be  and  where 

 is determined by an equation resulting from Eq. (1.1.25) at 
2 1k , that is, by the following equation: 
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2 2 2

2 2 2
1

x y z
a b c

, (1.1.31) 

and the expression for the gravitational potential function 
takes the final form: 

)(

)(
)(

2

sR
dskabcPg . (1.1.32) 

If const  then 2(1 )k , where 2k is determined by 
Eq. (1.1.25), so that we obtain the Dirichlet formula for the 
potential of a homogeneous ellipsoid at an exterior point [99, 
100]: 

)(
1)(

2

2

2

2

2

2

sR
ds

sc
z

sb
y

sa
xabcPg . (1.1.33) 

Let us find the components of the specific gravitational 
force, that is, when the ellipsoidal body  gravitationally acts 
on an exterior mass point of a unit mass. Differentiating Eq. 
(1.1.32) with respect to , for example, we have [99]: 

2
2

2

2

2

( )
[ ( )] 2

( ) ( ) ( )

( )
2 ,

( ) ( )

g
s

abc k dsk abcx
x R x a s R s

k dsabcx
a s R s

 
 
 
 

(1.1.34) 
because when s  we have 2 1k  and (1) 0  

respectively. Then we can find the component xf  and, 

similarly, the other two yf , zf  as the following [99]: 
2

2

( )
2 ;

( ) ( )
g

x
k dsf abcx

x a s R s
 (1.1.35a) 

2

2

( )
2 ;

( ) ( )
g

y
k dsf abcy

y b s R s
 (1.1.35b) 

2

2

( )
2

( ) ( )
g

z
k dsf abcz

z c s R s
. (1.1.35c) 
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When const  these formulas become the formulas for the 
components of the specific gravitational force of a homogeneous 
ellipsoid. 

It is clear that the components of the resulting gravitational 
force (1.1.2) of the ellipsoidal body  acting on an exterior 
point having mass m  are equal: 

2

2

( )
2 ;

( ) ( )x x
k dsF mf m abcx

a s R s
 (1.1.36a) 

2

2

( )
2 ;

( ) ( )y y
k dsF mf m abcy

b s R s
 (1.1.36b) 

2

2

( )
2

( ) ( )z z
k dsF mf m abcz

c s R s
. (1.1.36c) 

We now consider the gravitational potential of a body  
with an ellipsoidal density distribution for the case when the 
attracted point  of unit mass lies inside the ellipsoid E  [99], 
that is, when: 

2 2 2

2 2 2
1

x y z
a b c

. 

Let us select from the family of similar ellipsoids kE  the one 

that passes through a point , and denote by 0k  0(0 1)k  the 

parameter value k  corresponding to this ellipsoid (Fig. 1.8). 

 

Figure 1.8. The layered representation of a body with an ellipsoidal mass 
density distribution 
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Obviously, for all infinitely thin ellipsoidal layers '  lying 
inside the ellipsoid 

0

'
0(0 )kE k k  the point  is exterior, 

and for layers lying outside 
0

'
0( 1)kE k k  the point  is 

interior. Therefore, to get the expression for the full 
gravitational potential of the body  at the interior point , 
it is necessary to integrate the expression (1.1.24) with respect 
to 2k , from zero to 2

0k , and add to the obtained expression the 

result of integrating an expression like (1.1.24) with respect to 
2k  for the gravitational potential of the layer '  at the interior 

point, from 2
0k  to one [99]. 

But the expression of the gravitational potential of the 
infinitely thin layer at the interior point is obtained from 
(1.1.24) by replacing the lower integral limit s  through zero, 
and therefore we have [99]: 

0

1
22

0

22

)(
)(

)(
)()(

2
0

2
0

R
ddkk

R
ddkkabcP

ks

k

g . (1.1.37) 

Applying to the first of these integrals the integration formula 
by parts and taking into account that if 2 0k  then s  and 
if 2 2

0k k  then 0s , we obtain: 
2
0

0

0
2 )()()(

k

g sdkP  (1.1.38) 

and passing here to the integration variable s , we finally find: 

0

2

)(

)(
)(

sR
dskabcPg . (1.1.39) 

When const  we obtain the expression of the gravitational 
potential of a homogeneous ellipsoid at the interior point. 

Differentiating (1.1.39) relative to , ,x y z  we find the 
components of the specific gravitational force (acting on a 
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particle of a unit mass) inside the whole ellipsoidal body  
[99]: 

2

20

( )
2

( ) ( )
g

x
k dsf abcx

x a s R s
, (1.1.40a) 

2

20

( )
2

( ) ( )
g

y
k dsf abcy

y a s R s
, (1.1.40b) 

2

20

( )
2

( ) ( )
g

z
k dsf abcz

z c s R s
. (1.1.40c) 

As shown in [99], the gravitational potential of the 
ellipsoidal body (defined by the formula (1.1.39)) satisfies the 
Poisson equation [100]: 

42
g . (1.1.41) 

Now let us return to the consideration of the 
abovementioned conceptual model. According to Newton’s 
theorem (see Theorems 1.1, 1.2 and Corollary 1.1) a porous 
gas-dust medium spread in outer space in the form of a 
collection of bubbles of various sizes and shapes (spherical 
and ellipsoidal, see Fig. 1.6 and 1.7) does not have a 
gravitational field inside bubble structures. Consequently, 
insignificant bursts of gravitational forces can only be 
associated with cosmic matter contained in inter-bubble gaps. 
Thus, the resulting gravitational force of the finite segment of 
such bubble matter will be negligible. When averaging it over 
an infinitely extended space occupied by bubble matter we 
obtain a zero value.  

So, since the resulting gravitational force, averaged over 
space, is equal to zero then such spread matter cannot 
condense into a denser formation under the action of just its 
gravitational forces. The situation does not change 
significantly if all bubbles are replaced by liquid particles of 
spread cosmic matter, as in the case of the ideal models 
considered above (see Figures 1.3–1.5). Thus, within the 
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framework of the traditional field theory [100], it is 
impossible to find an explanation for the phenomenon of 
initial gravitational contraction of infinitely distributed cosmic 
matter in space.  

In this regard, it is appropriate to recall the dictum of the 
great mathematician and physicist Blaise Pascal who stated in 
his book “Pensées”: “Space is an infinite sphere: the center is 
everywhere but there is no circle anywhere.” Similar views 
were held by Sir Isaac Newton. In his first letter to Dr. 
Bentley (Dec. 10, 1692) he wrote the following [1 p.352, 
101]: 

It seems to me that if the matter of our sun and planets, and all the 
matter of the universe, were evenly scattered throughout all the 
heavens, and every particle had an innate gravity toward all the 
rest, and the whole space throughout which this matter was 
scattered, was finite, the matter on the outside of this space would 
by its gravity tend toward all the matter on the inside, and by 
consequence fall down into the middle of the whole space, and 
there compose one great spherical mass. But if the matter were 
evenly disposed throughout an infinite space, it could never 
convene into one mass; but some of it would convene into one 
mass and some into another, so as to make an infinite number of 
great masses, scattered great distances from one to another 
throughout all that infinite space. And thus might the sun and fixed 
stars be formed, supposing the matters were of a lucid nature. 

In this context, as S. Weinberg [101] pointed out, the 
difficulty of understanding the problems of the dynamics of 
an infinite medium greatly paralyzed further progress until the 
appearance of Einstein’s general theory of relativity (GR). In 
the framework of GR, Albert Einstein used the existing 
mathematical theory of non-Euclidean geometry to explain 
gravity as an effect of the curvature of space and time. 
Einstein tried to find a solution to his equations that would 
describe the space-time geometry of the Universe as a whole. 
Following the cosmological ideas existing at that time, 
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Einstein in particular sought a solution that would be 
homogeneous, isotropic, and static [101]. However, such a 
solution was not found. To build a model that satisfied these 
cosmological requirements, Einstein was forced, as Weinberg 
put it, to “disfigure” his equations by introducing a term, the 
so-called cosmological constant, which “spoiled the elegance 
of the original theory but could serve to balance the force of 
gravitational attraction at large distances” [101 p.37]. 
Moreover, L.D. Landau and E.M. Lifschitz [100], as well as 
several other scientists, also held a similar negative opinion 
regarding the introduction of Einstein’s cosmological 
constant. In particular, in [100 p. 544] it is indicated that “the 
introduction of a constant term into the density of the 
Lagrangian function, which is completely independent of the 
field state, would mean ascribing to space-time a 
fundamentally unremovable curvature that is connected 
neither matter nor gravitational waves.” 

We note, however, that Einstein himself, in his work “The 
problems of cosmology and the general theory of relativity” 
[102], pointed to the same difficulties inherent in both 
Newton’s theory and Einstein’s GR in connection with the 
infinitely spread cosmic matter. Here is what, in particular, he 
wrote about this [102]: 

 
It is known that the Poisson differential equation1 

42
g  

in conjunction with the equation of motion of a mass point cannot 
completely replace the theory of long-range action of Newton. It is 
necessary to add the condition that the potential g  in spatial 

infinity tends to a certain limit. The situation is similar in the theory 
of gravity resulting from the general principle of relativity; here 
also the boundary conditions for spatial infinity should be added to 
the differential equations if we consider the world as infinitely 
extended in space. 

 
1 With author’s designations of values. 
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Fortunately, progress has recently been made in 
understanding the role and significance of the cosmological 
constant for modern astrophysics. The physical interpretation 
of the cosmological constant introduced by Einstein into GR 
in a somewhat formal way has been formed gradually, decade 
after decade, beginning with the works of W. de Sitter, G. 
Lemaître, R.C. Tolman, H. Bondi et al. [103]. As A. Chernin 
notes in his article [103 p.1154], “it is now considered 
generally accepted that the cosmological constant describes a 
cosmic vacuum, i.e. such a state of cosmic energy which has a 
constant density in time and everywhere in space, and any 
reference system. According to these properties, the vacuum 
fundamentally differs from all other forms of cosmic energy, 
the density of which is heterogeneous in space, decreases with 
time during cosmological expansion and may be different in 
other reference systems.” 

Although the vacuum is called cosmic, it is present 
everywhere and appears in atomic physics and microphysics 
where it represents the lowest energy state of quantum fields. 
This is the same vacuum in which interactions of elementary 
particles are observed and which directly manifests itself 
experimentally, for example, in the Lamb shift of the spectral 
lines of atoms and the Casimir effect [103]. In such 
experiments, the presence of the vacuum occurs but at the 
same time, the value of its density is not yielded by 
measurement. The problem of the vacuum energy density is 
considered to be the most complex problem of modern 
fundamental physics [104]. 

This monograph develops another interpretation of 
both the Einstein equation for a gravitational potential with 
a cosmological constant [73] and the phenomenon of the 
initial gravitational condensation of infinitely spread 
cosmic matter within the framework of the proposed 
statistical theory of cosmogonical bodies forming (see 
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Chapters 2–5 in the monograph as well as 
Refs.[16,65,73]). 

1.2. The virial theorem 

The foregoing results, as well as others of a more general 
kind, may also be obtained from a theorem proved 
mathematically by Henri Poincaré (Poincaré’s Theorem) [1, 
105] though this result as a virial theorem was first formulated 
by Rudolf Clausius in his lectures on thermodynamics [106, 
107]. 

We consider a collection of detached masses (clouds) 
moving under no force except their mutual gravitational 
attraction. The masses may be molecules, dust particles, 
atoms or electrons [1]; for convenience, we shall speak of 
them as molecules (as well as molecular clouds respectively). 

Let 0m  be a mass of the particle (molecule) and zyx ,,  be 

its coordinates. Let us denote by zyx FFF ,,  the components of 

force acting on the particle. According to Newton second law, 
the equations of motion of a single particle of mass 0m  are: 

.;; 2

2

02

2

02

2

0 zyx F
dt

zdmF
dt

ydmF
dt

xdm  (1.2.1) 

On the other hand, it is not difficult to see that: 
2

02

2

00
2

02

2

2

1

dt
dxm

dt
xdxm

dt
dxx

dt
dmxm

dt
d

, (1.2.2) 

whence: 
2

02
02

2

2

2

0 2

1

dt
dx

x
mxm

dt
d

xdt
xdm . (1.2.3) 

Using the first equality in (1.2.1) as well as the equation 
(1.2.3) we find that: 

xxF
dt
dxmxm

dt
d 2

0
2

02

2

2

1
 (1.2.4a) 
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and by analogy: 

yyF
dt
dymym

dt
d 2

0
2

02

2

2

1
, (1.2.4b) 

zzF
dt
dzmzm

dt
d 2

0
2

02

2

2

1
. (1.2.4c) 

Summing all the preceding equations (1.2.4a), (1.2.4b) and 
(1.2.4c), we obtain [106 p.93]: 

zyx zFyFxF
dt
dz

dt
dy

dt
dxmrm

dt
d 222

0
2

02

2

2

1 .(1.2.5) 

Let us note that the first addend on the right-hand side of 
Eq. (1.2.5) is the double kinetic energy of a single particle of 
mass 0m . If the summation extends over all the molecules of 

the cloud, so that kE  is the total kinetic energy of translation 

of the cloud, then Eq. (1.2.5) becomes: 

)(2
2

1
2

2

iii ziyi
i

xik FzFyFxE
dt

Id
, (1.2.6) 

where I  is a moment of inertia of the cloud relative to an 
origin of coordinates, i.e. to the center of mass of the cloud 
(see Section 1.1), defined by the formula: 

i
iirmI ),( 2

0  (1.2.7a) 

and kE  is the total kinetic energy of translation of the cloud 

(relative to the origin of coordinates): 

i

iii
ik dt

dz
dt
dy

dt
dxmE

222

02

1
. (1.2.7b) 

The second addend on the right-hand side of Eq. (1.2.6) is 
called the Clausius’ virial [106 p.94]. To estimate the value of 
virial we call our attention to two selected particles with 
masses 01m  and 02m  located at points  ),,( 111 zyx  and 
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),,( 222 zyx . Let a force acting on the first particle relative to 

the second has components
12xF ,

12yF and 
12zF . Then the force 

influencing the second particle through the first has the 
components

12xF ,
12yF and

12zF  respectively. The 

contribution in the virial from these two forces is equal to: 
)()()( 212121 121212

zzFyyFxxF zyx  

and, therefore, the virial of a particle system (cloud) is 
defined as follows [106 p.94]: 

i j
jizjiyjix zzFyyFxxFW

ijijij
)]()()([ , (1.2.8) 

where the summation extends over all pairs of particles 
(molecules). For a cloud of particles with such a low mass 
density that it is possible to assume the validity of the laws of 
ideal gases, all forces (except gravitational) can be ignored 
[106]. So, we can suppose that

ijxF , 
ijyF  and 

ijzF are 

components of the force of gravity: 

;
2

ij
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ij

ji
x r
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r
mm
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 (1.2.9a) 

;
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y r
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 (1.2.9b) 
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z r
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r
mm

F
ij 2

, (1.2.9c) 

where is the Newtonian gravitational constant, ji mm ,  are 

any pair of particles, ijr is their distance apart. Then, according 

to (1.2.8), the virial is equal to [106 p.94]: 

ij

ji
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i j i j ij

ji
ij

ij

ji

r
mm

r
r
mm 2
3

, (1.2.10) 

where the summation extends over all pairs of particles. Thus, 
the virial W is the total gravitational potential energy pE  of 

the particle system (molecular cloud) under study [106 p.94]. 
Therefore, if the only forces which act on the molecules are 
those arising from their mutual gravitation [1 p.67], we have: 

i
z

i
y

i
x z

WF
y
WF

x
WF

iii
;; , (1.2.11) 

where W  is the total gravitational potential energy of the 
molecular cloud following the formula (1.2.10). As known 
(see, for example [108]), for a m -th order homogeneous 
function f , the Euler’s theorem is true, i.e. if 

,...),(,...),( yxfkkykxf m  then ,...),(... yxmfy
y
fx

x
f . 

Since W is homogeneous in iii zyx ,,  and of dimensions 

1m , it follows from this theorem that: 

i i
i

i
i

i
i W

z
Wz

y
Wy

x
Wx . (1.2.12) 

Taking into account (1.2.11) and (1.2.12), the equation (1.2.6) 
now assumes the form: 

WE
dt

Id
k2

2

1
2

2

. (1.2.13) 

If the particle system forming a molecular cloud has attained a 
steady state, i.e. const I , the left-hand member vanishes, 
and Eq. (1.2.13) becomes: 

02 WEk . (1.2.14) 
This is known as the virial theorem [1, 105-107]: 

Theorem 1.3 (the virial theorem). For self-gravitating 
masses in a steady state, the kinetic energy of a system of 
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particles is equal to minus ½ of the total gravitational 
potential energy. 

Later A.S. Eddington has remarked in his work [109 p.525] 
that the virial theorem is not restricted to only states of steady 
motion of particle systems, i.e. it can be extended in the form 
(1.2.13). Therefore, for the unstable motion of a cloud of 
particles, the following result should be used [1, 109]: 

Theorem 1.4 (the Poincaré–Eddington’s theorem). For 
self-gravitating masses, under the condition of their unstable 
motion, the sum of the double kinetic energy and the total 
gravitational potential energy of a system of particles is equal 
to: 

2

2

2

1
2

dt
IdWEk , 

where I  stands for expression (1.2.7a) of the inertia moment 
of the particle system relative to its center of mass. 

In conclusion of this section, let us apply the virial theorem 
to a cloud-like configuration of an ideal gas being in both 
mechanical and thermodynamic equilibrium. First of all, as J. 
Jeans pointed out2 [1]: 

 
We can write the kinetic energy (1.2.7b) in the form: 

,
2

1 2
0

i
iik vmE  

where 222 )/()/()/( dtdzdtdydtdxv iiii is a velocity of 

translation of a i -th molecule of mass im0
. The potential energy 

W  may similarly be written in the form:  

i
giimW 02

1
, (1.2.16) 

 
2 With the author’s numeration of formulas and designations  
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where gi  is the gravitational potential at the i -th point occupied 

by the mass im0 . Thus, according to (1.2.15), (1.2.16) the 

Poincaré’s theorem (1.2.14) takes the form that 

i
giii vm 0

2

12
0

 (1.2.17) 

so that, in the steady state, the average value of 2
iv , averaged over 

all the separate masses, is equal to the average value of 
g2

1 . 

If the system of particles is of total mass M and has a mean radius 
r , the average value g2

1  is of the order of magnitude of  rM/ , 

so that the average value 
__

2v  is of this order of magnitude (in 
accord with (1.2.17)). This provides a convenient rough measure of 
the average velocity of agitation of a system of gravitating masses 
in a steady state: it is equally applicable to systems of stars, star 
clusters, nebulae, and masses of gravitating gas. 
 
If the particles which constitute the system are taken to be 

the molecules of a gas (or other independently moving units 
such as atoms, free electrons, etc.) then, as known from the 
molecular kinetic theory [1, 110], the mean square value of 
their velocity is equal to: 

T
m

Tkv B 33

0

__
2 , (1.2.18) 

where T  is a temperature of the ideal gas,  
KJ1038049.1 23

Bk   is the Boltzmann constant, 

K)(moleJ3169.8  AB Nk  is the universal gaseous 

constant ( 123 mole10023.6AN is the Avogadro number), 

ANm0  is a molar mass of the gaseous substance, 0m  is a 

mass of the molecule. 
Then the mean temperature of the gas is of the order of 

magnitude: 

3r
MT , (1.2.19) 
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where 2311 skgm10673.6 is the Newtonian 
gravitational constant, so that the mean internal temperatures 
of different stars are approximately proportional to the values 
of  / rM  for these stars [1]. 

In particular, J. Jeans found from this formula that if the 
Sun is supposed to be formed of hydrogen molecules (for 
which the relative molecular weight 016.2r ), its mean 
temperature must be of the order of 15,000,000 degrees [1]. 
Indeed, it directly follows from the formula (1.2.19) that if the 
Sun (for which SunM = 1.98.1030 kg and Sunr = 6.95.108 m) is 

predominantly formed from hydrogen ions, deuterium, and 
helium with a mean molar mass 

mole)kg(10210 33
r , then its mean temperature 

should be equal to: 

.K 1047,1
 K)(moleJ3169.83

mole/kg102

m1095.6

kg1098.1kgmJ1067.6

7
3

8

30211

T
 

 
 

(1.2.20) 

Let us note that modern data on the physical characteristics 
of the Sun indicate that the temperature of its core is 
commensurable with the Jeans estimation and is 
approximately equal K000,500,13 while the temperature of 
its corona is K000,500,1~ only. 

1.3. On the gravitational instability of Jeans  
and the rotational instability of Rayleigh in a  

gravitating molecular cloud  

It is known (see, for example, [12]) that the interstellar 
medium contains very little dust and practically behaves as a 
single-component gaseous substance, i.e. the molecular cloud. 
Therefore, the main result in the theory of gravitational 
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instability for such a single-component medium was first 
obtained by famous astrophysicist Sir James H. Jeans in 1902 
whose theory is described below [1 p.346-348]. First of all, J. 
Jeans noted [1 p.351-352] that: 

“...the general conception of the stars having been formed out of a 
homogeneous medium by a process of condensation under gravity 
is of course very old, being indeed almost as old as the law of 
gravitation itself.” 

Now we are going to study a system of particles as a 
single-component molecular cloud. Let us consider any 
motion of a continuous mass of gas or other compressible 
matter, this being determined by the Euler hydrodynamic 
equation in Cartesian coordinates [94, 111]: 

z
pfa

y
pfa

x
pfa zzyyxx

1
;

1
;

1
, (1.3.1) 

where zyx aaa ,, are the components of acceleration of an 

infinitely small volume of a continuous medium, i.e. the so-
called “liquid” particle [94] which is momentarily at zyx ,, , 

zyx fff ,, are the components of specific gravitational force, 

p  is a pressure. 
In the case of the barotropic motion of a continuous gas 

medium, the pressure is a function of the density only. This 
means that a function (potential) of the pressure to be 
introduced [111]: 

0

( )
p

p

dp
, (1.3.2) 

so that the equations of motion (1.3.1) become: 

x xa f
x

; (1.3.3a) 

y ya f
y

; (1.3.3b) 
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z za f
z

. (1.3.3c) 

Along with the usual motion of a “liquid” particle, 
described by Eqs (1.3.3a-c), we consider the modified 
(variational) motion of this particle under the action of a 
certain perturbation [1]. Let us compare the motion with a 
slightly varied motion such that the particle which is at zyx ,,  
at the time t  in the original motion is at zyx ,,  at 
the time t  in the varied motion. The acceleration of this 
particle in the varied motion has components: 

222222 /;/;/ dtdadtdadtda zyx , 

so that the particle which is at zyx ,,  at time t  in the varied 
motion has components of acceleration [1]: 

zayaxadtda xxxx //// 22 ; 

zayaxadtda yyyy //// 22 ; 

zayaxadtda zzzz //// 22 . 

As a result of varying the motion let the density and the 
components of specific gravitational force at zyx ,,  be 
changed to 

zzyyxx ffffff ,,, . 

Then, according to (1.3.1) the equations which govern the 
varied motion are: 

2

2

( )x x x
x x x

a a ada f f
dt x y z x

;(1.3.4a) 

2

2

( )y y y
y y y

a a ada f f
dt x y z y

;(1.3.4b) 
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2

2

( )z z z
z z z

a a ada f f
dt x y z z

.(1.3.4c) 

Subtracting corresponding sides of these equations (1.3.4a-c) 
and Eqs(1.3.3a-c), we obtain [1]: 

2

2
x x x

x
a a ad f

dt x y z x
; (1.3.5a) 

2

2

y y y
y

a a ad f
dt x y z y

; (1.3.5b) 

2

2
z z z

z
a a ad f

dt x y z z
, (1.3.5c) 

where: 
1 p . (1.3.6) 

The obtained three equations (1.3.5a)-(1.3.5c) are linear ones 
in ,, .  

To perform some simplifications, we use the continuity 
equation [94, 111]: 

,0

)()()(

z
v

y
v

x
v

z
v

y
v

x
v

tz
v

y
v

x
v

t

zyx

zyx
zyx

which, after multiplying by t  and introducing the Euler’s 

notation zyx vwvvu  , , , twttu ,, , 

can be written as follows [73]: 

zyxzyxt
t . (1.3.7) 
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Taking into account the fact that 
zyxtt ////  from the 

relation (1.3.7) we finally get that: 

zyx
. (1.3.8) 

Substitution (1.3.8) into Eq. (1.3.6) gives the following 
formula [1]: 

p
x y z

. (1.3.9) 

The obtained three equations (1.3.5a)-(1.3.5c) can be 
conveniently written in the form of a single vector equation 
[73]: 

2

2
( )

d a f
dt

, (1.3.10) 

where ),,(),,,(),,,( zyxzyx ffffaaaa , moreover, 

according to (1.3.9) we have [73]: 

p . 

The condition that Eqs (1.3.5a)-(1.3.5c) (or the vector 
equation (1.3.10)) shall have a solution, other than the trivial 
one 0 , is expressed by the vanishing of a quantity 
which involves only the coefficients of ,,  and their 
differentials in equations Eqs (1.3.5a)-(1.3.5c), etc. In this 
connection J. Jeans wrote [1 p.346-347]: 

 
When conditions are such that this quantity vanishes, we are at 
what may be described as a dynamical point of bifurcation. Indeed, 
two alternative motions are open, both of which satisfy the 
dynamical equations of motion. In one the liquid particle which 
was at dzzdyydxx ,,  at time dtt  moves to zyx ,,  at 

time t ; in the other, it moves to zyx ,, .  
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As in the corresponding statical problem, there may or may not be a 
transfer of stabilities at a point of bifurcation. To discuss the 
question of stability we merely have to examine whether small 
displacements ,,  determined by equations (1.3.5a-c) will 

increase beyond limit or not. If they are found to increase beyond 
limit, the original unvaried motion was unstable, and the system 
changes over to the varied motion at the point of bifurcation; in the 
reverse case the original motion was stable and the displacement 

,, , if set up, merely behaves as a small oscillation about a 

stable state of motion. 
 
Let us note that equations (1.3.5a)-(1.3.5c) are too complex 

to be solved in the most general case, but we can obtain a 
knowledge of the general nature of the solution by 
considering the simple case in which zyx aaa ,,  are 

approximately constant throughout a large extent of the 
medium, this including the case of a medium at rest. In this 
case, the equations (1.3.5a)-(1.3.5c) assume the form [1]: 

d
dps

x
f

dt
d

x2

2

; (1.3.11a) 

d
dps

y
f

dt
d

y2

2

; (1.3.11b) 

d
dps

z
f

dt
d

z2

2

, (1.3.11c) 

where /s  is a value of condensation of a continuous 
medium which in accordance with (1.3.8) is defined by the 
following formula: 

zyx
s . (1.3.12) 

Differentiating each of the equations (1.3.11a)-(1.3.11c) with 
respect to zyx ,,  and adding them, we obtain: 
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.
)()()(

)///(

2

2

2

2

2

2

2

2

d
dps

zyxz
f

y
f

x
f

dt
zyxd

zyx

 
 
 

(1.3.13a) 

Taking into account relation (1.3.12) and using the Poisson 
equation (1.1.41): 

4)(
)()()( 2

g
zyx f

z
f

y
f

x
f

, (1.3.13b) 

the equation (1.3.13a) takes the final form [1]: 

d
dpss

dt
sd 2
2

2

4 . (1.3.14) 

Unlike Eqs (1.3.11a)-(1.3.11c), this equation involves only 
the one variable s  and “so determines the way in which s  
changes throughout the motion” [1 p. 347]. 

On omitting the first term on the right-hand side of Eq. 
(1.3.14), we obtain the equation of propagation of rarefactions 
and condensations of the medium, when the gravitational 
attraction of the medium on itself is neglected [1]. In this case, 
the equation (1.3.14) reduces to Laplace’s equation [94, 111]: 

sddp
dt

sd 2
2

2

)/( , (1.3.15a) 

indicating propagation in the form of waves of sound, with the 
usual speed 

d
dpc . (1.3.15b) 

To discuss the more general problem in its simplest form, let 
us confine our attention to a region of space within which 

ddp /  may be treated as constant [1], and consider pure 
wave-motion along the axis of Ox , the value of s  being 
supposed equal to: 
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)/2cos()(),( xtSxts , (1.3.16) 
so that  is a wavelength. Taking into account this 
substitution, Eq. (1.3.14) becomes: 

S
d
dp

dt
Sd 2

2

2 2
4 . (1.3.17) 

As known, the solution of a harmonic equation of the kind 
(1.3.17) is a complex-valued exponential function: 

tetStS
~i

0 )()( , 1i , (1.3.18) 

where the square of a new generalized frequency ~  [73] is: 

4/)/2(~ 22 ddp . (1.3.19) 
It is easily seen that this represents wave-motion along the 
axis of Ox , with a speed of propagation [1]: 

2)2/(4/2/~~ ddpc . (1.3.20) 

Here J. Jeans noted3 [1 p.348]: 
 

If we again omit the gravitational term 4 , we have a wave-

motion which travels with a uniform velocity 2
1

)/( ddp  

independently of the wavelength. The restoration of the 
gravitational term invariably lessens the velocity of propagation, 
but since the term in question is multiplied by 2 , we see that the 
effect of gravitation is inappreciable for waves of short wavelength. 
For waves of longer wavelength, the gravitational term becomes 
more important. Finally, a value of is reached at which the 
velocity of propagation, as given by formula (1.3.20), disappears 
altogether and subsequently becomes imaginary. For such values of 

there can be no proper propagation of waves; the value of 2~ , as 
given by equation (1.3.19), becomes negative, so that the time 

factors te
~i  assume the form te , where  is real. This 

represents unstable motion, the initial condensations and 
rarefactions increasing exponentially with the time. 

 
3 With some author’s designations and formula numeration  
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We can see that the equation (1.3.14) determines possible 
distributions of condensation )(s  and rarefaction )( s  which 
may be superposed on to the original motion. It now appears 
that all distributions which vary harmonically are unstable if 
their wavelength is greater than a critical wavelength c  

[1] defined by: 

d
dp

c , (1.3.21) 

at which 0~c , as it was already noted by Jeans in his 
analysis of formula (1.3.20). In passing, we note that in a 
gravitating medium the speed of a “heavy” sound is less than 
usual one [12, 73], according to the same formula (1.3.20). 
Since the usual speed of sound following (1.3.15b) is equal 

ddpc / , then the substitution of this value in (1.3.21) 

directly leads to the formula that determines the critical 
wavelength c of the perturbation: 

cc . (1.3.22) 

Having determined the critical wavelength (1.3.22), it is easy 
to formulate the Jeans criterion of gravitational instability 
[2]: 

c . (1.3.23) 
Since the speed of wave disturbances in a non-gravitating 
medium is 2/c , where  is a circular frequency of 
wave disturbances in a non-gravitating medium, we can 
rewrite the inequality (1.3.23) using (1.3.22) as follows: 

/)2/( , (1.3.24) 

whence it immediately follows that: 

42 . (1.3.25) 
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Inequality (1.3.25) is known as Jeans’ condition [16, 65, 73] 
which gives the critical frequency 2c of the wave 

perturbation leading to gravitational instability in a gas-dust 
medium. 

The further development of the linearized theory of 
gravitational instability of Jeans was mainly associated with 
accounting the role of rotation as well as a magnetic field [2, 
12]. Indeed, in 1955 S. Chandrasekhar generalized the Jeans 
problem in the case of an infinite homogeneous medium with 
uniform rotation [112]. Then in 1958 N. Bel and E. 
Schatzman [113] obtained a similar result for a homogeneous 
in mass density ( const ) but non-uniformly rotating 
medium. They considered disturbances propagating in a plane 
perpendicular to the axis of rotation z , symmetrical about this 
axis and independent of z . The condition of gravitational 
instability in a cylindrical coordinate system ),,( zh , these 
authors obtained in the form [2, 113]: 

4
4

4)(2
2

2

2

222

h
cc

dh
hd

h
, (1.3.26) 

where )(h  is an angular velocity. As noted in [73], both 
the Jeans condition (1.3.25) and the condition (1.3.26) can be 
obtained from the condition of the negative square of 
generalized frequency: 

0~2 . (1.3.27) 
Indeed, substituting into the inequality (1.3.27) the square of 
the generalized frequency (according to formula (1.3.19)) and 
taking into account (1.3.15b), we obtain that: 

4)/2( 22 c , (1.3.28) 
whence the Jeans criterion (1.3.25) for a non-rotating one-
component medium follows immediately. If we now consider 

the square of the generalized frequency 2~  within the 
framework of the Bel–Schatzman’s model: 
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4
2

)2(

1)(2~
2

2

2
2

d
dp

d
dp

hdh
hd

h
, (1.3.29) 

then the substitution (1.3.29) into inequality (1.3.27) leads to 
the condition of gravitational instability (1.3.26) for a medium 
with non-uniform rotation. As seen, the square of the 
generalized frequency in the Bel–Schatzman’s model (1.3.29) 
includes the square of the generalized frequency for the Jeans 
model (1.3.19) together with two additional terms depending 
on the angular velocity  and coordinate h . 

In the local approximation ( h ), as follows from 
(1.3.29) and (1.3.15b), the Bel–Schatzman’s linearized 
dispersion equation (for axially symmetric radial 
perturbations) has the form [12]: 

4~ 2222 ck , (1.3.30a) 
where /2k  is a wave number, so ck  is a circular 
frequency, and  is an epicyclic frequency: 

dh
hd

hdh
hd

h

22

3

2
2 )(1)(2

. (1.3.30b) 

When const  the equation (1.3.30a) is reduced to the 
Chandrasekhar’s dispersion equation [12, 112]: 

4)()2(~ 222 kc , (1.3.31a) 
and at 0  it becomes the Jeans equation (1.3.19) for a non-
rotating medium: 

4)(~ 22 kc . (1.3.31b) 
For all the above cases (1.3.30a)-(1.3.31b), the dependence of 

the perturbations on the time is taken in the form 
i te and, as 

indicated in (1.3.27), the instability occurs when 0~2 . The 
obtained expressions refer to media that are infinite both in 
the radial direction and along the axis of rotation [12]. 
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Therefore, they are not applicable to thin disks with 
thickness hb . 

The dispersion equation for rotating flat systems of finite 
thickness was obtained by Safronov [114]: 

)(4)(~ 222 bkfkc . (1.3.32a) 

As can be seen from equation (1.3.32a), it differs from 
equation (1.3.30a) by the multiplier 1)(kbf  in the last term 
on the right-hand side of (1.3.32a), since the gravitational 
attraction of ring is much less than the attraction of infinite 
(along z ) cylinder. At first, the factor )(kbf  was determined 
numerically [2], but then a simple and at the same time quite 
satisfactory analytical approximation was found for it [115]. 
As a result, the Safronov’s dispersion equation (1.3.32a) 
acquired the form: 

1222 )/21(4)(~ kbkc . (1.3.32b) 
In studies of the stability of the spiral structure of galaxies, 

a dispersion equation for axially symmetric perturbations in 
an infinitely thin disk was obtained and developed by A. 
Toomre [116], P. Goldreich and D. Lynden-Bell [117], P. 
Goldreich and W.R. Ward [118]: 

kkc 2)(~ 222 , (1.3.32c) 
where is a surface mass density of disk. Let us note that this 
relation is immediately obtained from (1.3.32b) if we suppose 

0kb  in it [12]. Therefore, it is a satisfactory approximation 
when disturbance wavelengths exceed the thickness of the 
disk about the order (or more). For short-wavelength 
disturbances, it gives a big mistake overstating the 
gravitational attraction of perturbing ring )2/1( kb times 
and, then so that, underestimating the critical value of the 
surface mass density at which gravitational instability begins 
[12]. In contrast, the Bel–Schatzman’s equation (1.3.30a) can 
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be obtained from (1.3.32b) when kb , i.e. it is unfit under 
the previous condition 1kb . 

In addition to gravitational instability, the study of 
rotational instability under the formation of a molecular cloud 
(and, generally speaking, disordered macroscopic motions 
(turbulence) in it) is a significant problem for clarifying the 
evolution of a gas-dust medium [2]. The nature of further 
processes in the cloud should have depended on whether the 
damping of these initial motions occurred or some kind of 
stationary turbulent motion of the medium arose. 

The idea of turbulence was first introduced by C.F. von 
Weizsäcker into the cosmogony [26] being a sort of return to 
the classical vortices of Descartes. Weizsäcker drew attention 
to the fact that the Reynolds number Re  for the cosmic 
diffuse medium is enormous, i.e. it is much higher than the 
critical value cRe  [2, 111]. Since then, turbulence has been 

considered as one of the most widespread states of cosmic 
matter. Weizsäcker also suggested that turbulence played an 
important role in the formation of celestial bodies and their 
systems [26]. In his opinion, planets, stars, galaxies and other 
structures arose from the turbulent vortices of appropriate 
scales. In particular, for the protoplanetary cloud its Reynolds 
number: 

l
Re , (1.3.33) 

where  is a mass density, l  is a size,  is a velocity,  is a 
dynamic coefficient of viscosity of flowing gas-dust medium, 
was found more than 1010 , i.e. cRe1010 ~Re 1410  [2, 12]. 

In order to explain the law of planetary distances, Weizsäcker 
supposed that turbulent motions in the protoplanetary cloud 
were a regular system of vortices whose sizes were 
proportional to the distances from the Sun [26]. 
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However, it should be noted that in rotating hydrodynamic 
systems the Reynolds number is not the main criterion for the 
stability of motion [2]. To clarify the basic properties of 
medium motion in a protoplanetary gas-dust cloud, which is 
enough flat system, one can use hydrodynamic studies of the 
motion of liquid between rotating cylinders (the so-called 
Couette–Taylor flow [94, 119]). 

According to the well-known Rayleigh criterion [120] 
proved for an incompressible non-viscous fluid, the necessary 
and sufficient condition of stability of purely rotational 
motion of ideal incompressible fluid with an angular velocity 

)(h  depending on the radial component h  in the 
cylindrical coordinate system ), ,( zh  is: 

0
)( 22

dh
hd

 (1.3.34a) 

throughout the fluid under consideration. The Rayleigh 
criterion (1.3.34a) was confirmed by theoretical and 
experimental investigations of Taylor [121]. In particular, it 
was found that the viscosity of the fluid reinforces its stability. 
Thus, rotational instability arises if the condition (1.3.34a) is 
violated somewhere. Since the squared epicyclic frequency 
(1.3.30b) is a part of the inequality (1.3.34a) then the Rayleigh 
condition of rotational instability looks as follows [73]: 

032h . (1.3.34b) 
However, Chandrasekhar emphasized that if the Rayleigh 

criterion (1.3.34a) is fulfilled, then the moving fluid is 
necessarily stable; if not, then it is not necessarily unstable 
[122]. He carried out a theoretical consideration of the 
problem of stability in the more general case when the 
distance between the cylinders is not small relative to the 
radius. Calculations performed for two coaxial cylinders 
(when the radius of the outer one is two times greater than the 
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radius of the inner cylinder) were confirmed by the 
experiments of R.J. Donnelly and D. Fultz [123, 124]. 

Thus, according to (1.3.27), (1.3.30a) the Bel–Shatzman’s 
condition (1.3.26) of gravitational instability for a rotating 
medium includes both the Jeans condition (1.3.25) of 
gravitational instability for a non-rotating medium and the 
Rayleigh’s condition (1.3.34b) of rotational instability [73]: 

0422 , 02 . (1.3.35) 
Entirely, the rotational instability can promote gravitational 
instability in a rotating molecular cloud following (1.3.35). 

Let us note the Rayleigh criterion (1.3.34a) essentially 
depends on the change of the square of the specific angular 
momentum 2  with respect to the radial coordinate h  
because: 

2h . (1.3.36) 
Similarly, the square of the epicyclic frequency (1.3.30b) 
depends on the change 2  that is a part of the generalized 
frequency in accord with the definition (1.3.30a) as well as 
the Bel–Shatzman’s condition (1.3.26) of gravitational 
instability for a non-uniformly rotating medium. Thus, both 
the rotational instability of motion (1.3.34b) and the 
gravitational instability (1.3.26) depend on the law of 
distribution of the specific angular momentum in a gas-dust 
medium along the radial coordinate h . In other words, the 
specific angular momentum is an important quantity 
characterizing the evolution of gas-dust medium (in 
particular, a protoplanetary gas-dust cloud, see Chapter 6). 

According to the Rayleigh criterion (1.3.34a), the 
protoplanetary cloud must be stable in rotational motion. 
Indeed, the specific angular momentum of particle possessing 
Keplerian circular motion is proportional h , namely, 

Mh  [2, 12], i.e. it grows with increasing h , so that the 

stability condition (1.3.34a) is fulfilled. The gaseous pressure 
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in the protoplanetary cloud is small, i.e. the motions of its 
particles should be practically the Keplerian ones [2]. If we 
neglect the gas pressure gradient dp/dh  then the Rayleigh 
criterion (1.3.34a) as applied to a planar protoplanetary cloud 
reduces to the stability condition of circular orbits well known 
in stellar dynamics [2, 125]: 

03

h
h

h
g

, (1.3.37) 

where g  is a gravitational potential at a distance h  from the 

axis of rotation (and the axis of symmetry) of the system 
(protoplanetary gas-dust cloud). 

The mass of a protoplanetary cloud is small compared to 
the mass of a star (the Sun), so that the gravitation is 
predominantly determined by this central body, i.e. 

2// hMhg . Thus, condition (1.3.37) is fulfilled, and, 

consequently, circular orbits in the protoplanetary cloud are 
stable [2]. 

It is clear that under the conditions (1.3.34a) and (1.3.37) 
the possibility of convection origin in the cloud is not taken 
into account, although Weizsäcker [126] tried to justify the 
existence of turbulence in rotating cosmic gaseous masses 
(including the protoplanetary cloud) through the condition for 
the convection origin. However, Weizsäcker neglected the 
rotation and did not take into account the Rayleigh stability 
criterion (1.3.34a). 

But as known from the Rayleigh criterion (1.3.34a), the 
fluid motion with axial symmetric rotation is stable relative to 
small radial perturbations if its specific angular momentum 
increases with distance h  from the rotation axis like the 
specific angular momentum of a disk with Keplerian rotation 
for which Mhh2  [12]. 
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As shown by V.S. Safronov and E.L. Ruskol [127], due to 
this reason the convection in the radial direction could not 
occur in the protoplanetary cloud and, therefore, could not be 
a source of the turbulence itself, as Weizsäcker suggested [26, 
126]. Thus, the rotating protoplanetary cloud must be stable 
relative to small perturbations, therefore convection could not 
arise in it, and consequently, Weizsäcker’s idea relative to 
cloud turbulence associated with convection is not confirmed. 

1.4. Poincaré’s general theorem and Roche’s  
model apropos the equilibrium figure for rotating  

and gravitating continuous medium 

Here we consider a general theorem for a rotating 
continuous medium originally given by Henri Poincaré [1 
p.264, 105 p.22]. 

Let the motion of a continuous mass of gas or liquid (for 
example, molecular cloud) which is rotating approximately as 
a rigid (solid) body with angular velocity  be referred to 
axes rotating with angular velocity . The equations of 
motion of a rotating continuous mass are similar to those 
discussed above (1.3.1) with the addition of components of 
specific centrifugal force. This means that instead of the 
gravitational potential g  we should consider the general 
potential g  of gravitational and inertial (centrifugal) fields 

(or the potential of weight force [97]): 

cgg V , (1.4.1) 
where )()2/1( 222 yxVc is the potential of centrifugal 

force. According to Eqs (1.1.40a)- (1.1.40c) we see that the 
components of the specific gravitational force are equal to: 

x
f g

xg ,   
y

f g
yg

,   
z

f g
zg . (1.4.2) 
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Similarly, we can also find the components of specific 
centrifugal force in the case of const : 

x
x

Vf c
xc

2 , y
y

Vf c
yc

2 , 

0
z

Vf c
zc . 

(1.4.3) 

Let zyx aaa ,, be the components of acceleration of an 

infinitely small volume of a continuous medium (“liquid” 
particle) and let wu ,,  be the components of 
velocity ),,( wuv , which we assume to be small, of any 
element of the mass relative to these rotating axes [1]. 
Obviously: 

dt
duax ,   

dt
day ,   

dt
dwaz . (1.4.4) 

Taking into account three equations in (1.3.1) as well as Eqs 
(1.4.1)-(1.4.4) we obtain the equations of motion of any small 
element of the continuous mass which are three Euler 
hydrodynamic equations in the case of rotation: 

;
12

x
px

xdt
du g  

;
12

y
py

ydt
d g  

z
p

zdt
dw g 1

, 

(1.4.5) 

where p  is a pressure,  is a mass density. Differentiating 
these three equations (1.4.5) with respect to zyx ,,  and 
adding corresponding sides we get: 
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.
111

2 22

z
p

zy
p

yx
p

x

z
w

yx
u

dt
d

g

 

 
 
 

(1.4.6) 

Taking into account the Poisson equation (1.1.41) we see that 
Eq. (1.4.6) becomes [1]: 

.
111

24 2

z
p

zy
p

yx
p

x

z
w

yx
u

dt
d

 

 
 
 

(1.4.7) 

Let us multiply both sides of Eq. (1.4.7) by the element of 
volume dxdydzdV , and integrate throughout the whole of 
the rotating mass. On transforming the first and last integrals 
by Gauss–Ostrogradsky’ and Green’s theorems [1, 128], we 
obtain: 

dS
n
pdVdSnv

dt
d 1

42)( 2 , (1.4.8) 

where the surface integrals extend over the whole surface of 
the mass, mwlkuvn )(  is the scalar product, and 

mlk ,,  are the direction-cosines of the outward normal 
),,( mlkn  to this surface at any point, and n/  denotes 

differentiation along this normal. 
If  V is the whole volume of the rotating mass, the surface 

integral on the left-hand side of Eq. (1.4.8) measures the rate 
of increase of  V , and this integral may be estimated as 
follows [1]: 
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.

)/()(

dt
dVdSdr

dt
d

dSdtdrdSvdSnv

S
n

S
n

S
n

S

 

 
 
 

(1.4.9) 

The volume integral on the right-hand side of Eq. (1.4.8) 
maybe calculated using the theorem on the average [128]: 

VdV
V

)42(]42[ 22 , (1.4.10) 

where  is the mean mass density of the whole mass. Taking 
into account Eqs (1.4.9), (1.4.10) we write the equation 
(1.4.8) in the form: 

dS
n
pV

dt
Vd 1

)42( 2
2

2

. (1.4.11) 

Since the pressure  p vanishes at the boundary of the mass 
and must be positive at all interior points, then it is a 
decreasing function inside the volume V . Consequently, 

0/ np  is necessarily negative, so that the last term on the 
right-hand side of Eq. (1.4.11) is necessarily positive: 

0
1 dS

n
p

.  (1.4.12) 

For the mass to be in a state of steady rotation, the left-hand 
member of the equation (1.4.11) must vanish ( 0/ 22 dtVd ), 
so that taking into account the condition (1.4.12) we must 
have [1, 105 p.22]: 

22 . (1.4.13) 
Thus, the obtained inequality (1.4.13) shows that a general 
theorem on rotating masses has been proved [1 p.264]: 

Theorem 1.5 (the Poincaré’s general theorem on rotating 
masses). Whatever the arrangement of the mass, a rotation of 
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speed greater than that given by the equation 22  is 
inconsistent with a steady rotation. 

The inequality (1.4.13) is the original Poincaré theorem 
which determines the upper bound of the angular velocity for 
a steady rotation of masses. If the inequality (1.4.13) is not 
satisfied, 22 / dtVd  must be positive, so that the mass must 
continually increase its rate of expansion, or, if it is 
contracting, the contraction will be checked and ultimately 
replaced by an expansion [1]. 

The Poincaré theorem is closely related to the condition for 
the existence of an equilibrium figure for a rotating and 
gravitating mass of a liquid with a convex surface (for 
example, a rotating gas mass of a molecular cloud). As is 
known [44, 97, 111], the equilibrium figure of the liquid mass 
is found from the condition that the external (free) surface is 
equipotential, therefore the equation Cg  defines a family 

of level surfaces of the general potential of gravity (1.4.1). By 
generalizing the Poisson equation (1.1.41) we can see that the 
general potential g  satisfies the following differential 

equation [44]: 

surface; ialequipotentan 
by  bounded  volumea inside 24

surface. ialequipotent at the 

22
g

g C
(1.4.14) 

Indeed, let us suppose that the inverse Poincaré’s condition 
[44] holds: 

22 . (1.4.15) 
Then, according to the first equation from (1.4.14) it should 
be 02

g . This means that g  is a convex (concave down) 

function, and the inequality Cg must be satisfied. 
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Otherwise, at some point M  it would be C
Mg , i.e. the 

function g would reach a minimum inside the region 

bounded by an equipotential surface [44]. But then at this 
point, it would be 02

Mg that is impossible under the 

condition of the form (1.4.15). 
Further, according to the condition of hydrostatic 

equilibrium [94] which is the particular case of Euler 
hydrodynamic equations (1.4.5) when the acceleration is 
absent: 0),,( zyx aaaa , the following relationship holds: 

gp1
, (1.4.16) 

which, taking into account (1.4.14), can be integrated: 

)0(
1

00

g

r

g

r

Crdrdp
eqeq

, (1.4.17) 

where eqr  is a vector-hodograph of the equipotential surface. 

Applying to the first of these integrals on the left-hand side of 
Eq. (1.4.17) the integration formula by parts and taking into 
account that if eqrr  then 0)( eqrp , we obtain: 

rdpprdpprdp
eqeqeqeq rrrr

0000

1

)0(

)0(11 .(1.4.18) 

In both cases of const  and )(r  is a diminishing function 
with a maximum in the point 0r  the right-hand side of Eq. 
(1.4.18) should be negative because 0p  and 0 . 

However, since Cg  in accord with (1.4.15), then 

0)0( Cg  on the right-hand side of Eq. (1.4.17) whereas 

0
1

0

rdp
eqr

 on the left-hand side of Eq. (1.4.17) in 

accordance with Eq. (1.4.18). Consequently, in this case, the 
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pressure inside the volume must be negative 0p . So, under 

the inverse condition 22 , the area inside the volume 
bounded by the equipotential surface will be in a state of 
tension, and equilibrium cannot be reached. Thus, the 
condition for the existence of an equilibrium figure of any 
rotating and gravitating mass of a continuous medium is based 
on the Poincaré theorem. 

As it follows from this proof of the condition for the 
existence of an equilibrium figure, there are the cases of an 
incompressible continuous medium ( const ) and 
inhomogeneous continuous medium (  is a diminishing 
function with a maximum in the center). Following U. Crudeli 
and W. Nicliborc (for example, see [44], [129], [130]), the 
condition for the existence of an equilibrium figure with a 
convex surface (with a positive pressure inside it) for an 
inhomogeneous continuous medium (fluid or gas-dust 
continuous medium) can be written as the following 
inequality: 

max
2 ,  (1.4.19) 

where max  is the maximum value of mass density inside the 

inhomogeneous continuous medium. It is well known [1 
p.250-251] the various models of an inhomogeneous 
continuous medium, in particular, the Darwin mass density 
law, the Shuster mass density law, and the Roche model (see 
also Section 2.2). In Roche’s model, the whole of the mass is 
supposed to be concentrated at the center, so that Roche’s 
model and the incompressible model form the two limiting 
cases of the general compressible mass. 

In studying the configurations and motion of an 
incompressible mass, one of the main difficulties was found 
to lie in the determination of the gravitational potential (for 
example, see the Dirichlet formula (1.1.33) in Section 1.1). In 
Roche’s model, no such difficulty occurs: the whole mass is 
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collected at a point and the gravitational potential is 
simply rM / . To discuss the Roche’s model [1 p.252] we 
consider the problem of single mass M rotating freely in 
space with an angular velocity , so that its general potential 
of gravity (following formula (1.4.1)) is equal: 

)(
2
1 222

222
yx

zyx

M
Vcgg , (1.4.20) 

where rMg /  is the gravitational potential according to 

the Roche model, 22)2/1( hVc  is the potential of 

centrifugal force [95, 97], 222 zyxr , 22 yxh . 

We have just seen in Eq.(1.4.14) that the boundary of the 
continuous mass must be one of the equipotential surfaces 

constg , therefore bearing in mind (1.4.20), equation of 

equipotential surfaces takes the form: 

const)(
2

1 222
yxr

M
.  (1.4.21) 

On sketching out the forms of the equipotential surfaces 
constg  (see Fig. 1.9), Jeans noted [1 p.252] that:  

...all possible configurations for a Roche’s model must lie on one 
linear series, and this may in every case be supposed to start from 
the spherical configuration for which ... vanishes. As we proceed 
along this series, the different boundaries are equipotentials which 
differ more and more from spheres, until finally it may happen that 
the equipotential which forms the boundary coincides with one 
which marks a transition from closed to open equipotentials. 
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Figure 1.9. Graphic representation of equipotential surfaces in the Roche 
model 

Thus, the condition for a point of bifurcation or a turning 
point is that there shall be two adjacent configurations of 
equilibrium, and hence two different boundaries possible for 
the same value . Then Jeans continued: 

 
Such a transition must necessarily be through an equipotential 
which intersects itself, and therefore through an equipotential on 
which a point of equilibrium occurs. Such a point is determined by 
the equations: 

0
zyx

ggg . (1.4.22) 

As g  decreases following (1.4.20), the condition for a point 

of equilibrium (1.4.22) will first be satisfied in the plane Oxy . 
In this plane the condition becomes: 

0
yx

gg .  (1.4.23) 

Substituting (1.4.20) into (1.4.23) we obtain that: 

2 2

3 3

11
2 2 0

22

g M M
x x x xx r r ; 
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0
2

3 yy
r
M

y
g

, 

whence it follows that the condition (1.4.23) is satisfied if:  

0
2

3r
M

. (1.4.24) 

In other words, if 0h  is the radius of the cross-section in 

the plane of Oxy  then, according to (1.4.24), the equality 
holds [1]: 

3
0

2 hM ,  (1.4.25a) 

i.e. the desired radius is equal to: 
3/12

0 )/( Mh . (1.4.25b) 
The equation (1.4.25a) admits of a very simple interpretation: 
at a distance 0h  from the nucleus, the gravitation force is 

2
0/ hM  while centrifugal force is 0

2 h . So, equality 

(1.4.25a) expresses that these forces are equal. Thus, a point 
of equilibrium occurs when centrifugal force just balances the 
force of gravity. The same result follows from the equation 
(1.4.16) because the condition (1.4.22) leads to: 

0
z
p

y
p

x
p

,  (1.4.26) 

which defines the same point in equilibrium, so that gas 
pressure exerts no force on the matter at the point of 
equilibrium [1]. 

According to Eq. (1.4.21) the particular equipotential on 
which the point of equilibrium occurs is readily found to be: 

)(
2

1 222
cc

c

zr
r
M

 

223/222
3/12 2

1
)/(

2

1

)/( czM
M

M  
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223/23/423/23/2

2

1
)(

2

1
)( czMM  

23/2 )(
2

1
)(

2

3
czM , (1.4.27) 

where cz  is a coordinate (along the z-coordinate axis) of the 

point located on the critical equipotential surface, cr  is a 

distance from the center of mass, i.e. 222
cccc zyxr [73]. In 

the plane Oxy  3/12
0 )/( Mhrc  and 0cz , so that the 

expression (1.4.27) takes the form: 

3/2

0

23/2 )(
2

3
)(

2

1
)(

2

3 MzM
cz

c . (1.4.28) 

Thus, the constant in Eq. (1.4.21) in the case of a critical 
equipotential surface is determined using formula (1.4.28), so 
that the equation itself of a critical equipotential surface 
containing an equilibrium point has the form [1]: 

3/2222 )(
2

3
)(

2

1 Myx
r
Mcrit

g . (1.4.29) 

The surfaces constg  are found to lie as in Fig. 1.9, the 

critical equipotential defined by Eq.(1.4.29) being drawn 
thick. 

Putting 22 yxh and using the notation 
3/12

0 )/( Mh in accord with (1.4.25b) we can rewrite 

(1.4.29) as the following [73]: 

0

31
2

31

32

23
0

2
2 1

2
3

2
3

2
3

2
11

hMM)(h
h

r

/

/

/

, 

whence it follows the equation of the critical equipotential 
surface [1]: 
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0
3

0

2 1
2
3

2
11

hh
h

r . (1.4.30) 

Taking into account that 22 zhr  we convert equation 
(1.4.30) to the form: 

3
0

22
0

3
0

2

022 2

3

2
11

2
31

h
hh

h
h

hzh ,  

where we can express [73]: 
6 6 4 2 2 4 6

2 20 0 0 0
2 2 2 2 2 2
0 0

2 2 2 2 2
0 0

2 2 2
0

4 4 9 6

(3 ) (3 )

( ) (4 )
.

(3 )

h h h h h h hz h
h h h h

h h h h
h h

 

 
 
 

(1.4.31) 

Thus, according to (1.4.31), the function describing the 
critical equipotential surface (1.4.30) (see also Fig. 1.9) 
assumes the form [1]: 

22
022

0

22
0 4

3
)( hh

hh
hhhz , (1.4.32) 

i.e. the critical equipotential is bounded by two functions 
)(hz and )(hz  [73]. In [1 p. 253], the volume bounded by a 

critical equipotential surface is estimated. Indeed, in the 
cylindrical coordinate system this volume can be calculated 
by the following integral [73]: 

0

0

2

0

0

0

22
022

0

22
0 4

3
4)(2

h h
crit

eq hdhhh
hh
hhhdhdhzV

2
0

1

0

2
02

0

2
03

0 )/()/(4
)/(3
)/(1

2 hhdhh
hh
hhh
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...180371866.04}
3
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ln

3

4
3{4 3

0
3

0 hh (1.4.33) 

If  denotes the mean density of all the matter inside this 

critical equipotential, this volume crit
eqV  is equal to the mass 

M  divided by . Hence, taking into account (1.4.25b) let us 
calculate the following relation [1, 73]: 

.360743732.0

2

180371866.04

222 3
0

3
0

3
0

22

h
h

h
V

M
V crit

eq
crit

eq

 

 
 
 

(1.4.34) 
Thus, according to the Roche’s model the relationship occurs: 

2360743732.02 , (1.4.35) 
confirming the validity of inequality (1.4.13) implying from 
Poincaré’s general theorem derived from more general 
conditions (see the proved above Theorem 1.5) [73]. Further 
Jeans pointed out the following [1 p.254] 4: 
 

 
4 With some author’s designations and figure numeration  
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Let the value of 2/2  increase continuously in a mass of 

compressible matter in which the distribution of density is 
approximately that represented in Roche’s model. The spherical 
configuration corresponds to 02/2 , and as 2/2  

increases, the boundary assumes in turn the shape of the different 
equipotentials shewn in Fig. 1.9, until it reaches the value 

360744.02/2  at which the series of configurations comes 

abruptly to an end, through there being no closed equipotentials 
corresponding to higher values of 2/2 . 

In this connection, the question naturally arises: when does 
the value 2  first exceed the critical value 2360744.0 ? 

Indeed, when 2  reaches this value, 0h  is determined by the 

formula (1.4.25b). If 2  increases further, 0h  decreases, since 
the mass of the central core M  remains the same. Thus, there 
is a new critical equipotential of smaller radius, and so of 
higher density, for which both 2  and  are increased, but 

2/2  retains its original value of 0.360744. 
Nevertheless, Jeans noted there: 

 
An increase in  can be met by the mass shrinking to this new 
configuration. But we have already seen that the particles which 
formed the sharp edge of the original configuration were in pure 
orbital motion under the gravitational attraction of the central 
nucleus alone. When the mass shrinking can exercise no grip on 
these particles, so that they are left revolving in their original orbits 
with their original angular velocity. 

Thus as 2  steadily increases, a rotating mass, formed after 
Roche’s model, will pass through a series of pseudo-spheroidal 
configurations, rotating as a rigid body, until 2  reaches the 
critical value 2360744.0 . At this stage, the shape of the mass 

is that of a lenticular figure with a sharp edge. Beyond this rotation 
as a rigid body is impossible. As 2  increases further, the central 
mass shrinks,  increasing so that 2/2  remains constantly 

equal to 0.360744. It retains its original lenticular configuration, 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Problems of the Origin of the Initial Gravitational Condensation  
of Spread Cosmic Matter 

89 

but as it shrinks it leaves behind it successive rings of particles 
rotating in its equatorial plane. Thus the complete mass at any 
instant consists of a central lenticular mass rotating as a rigid body 
with an angular velocity given always by 360744.02/2 , 

together with rings of particles occupying the equatorial plane, and 
rotating at slower speeds. 
 
The above concept was formulated using the well-known 

nebular hypothesis of Kant and Laplace. P.-S. Laplace 
believed that ordinary astronomical mass shrunk continually 
as a result of the emission of radiation from its surface. As a 
result, its density should continually increase as well as the 
value of 2 , according to the law of conservation of angular 
momentum. Thus, Laplace consequently supposed that the 
normal astronomical mass passed through the sequence of the 
above-described configurations [131 Note VII, Vol. VI, p. 
498]. In particular, he believed that Saturn, surrounded by a 
series of rings, is an example of the final configuration, and 
Saturn’s satellites had been formed by the condensation of 
similar rings, i.e. the present rings also would in time 
condense into satellites. Moreover, Laplace hypothesized that 
the planets and satellites of the Solar system had been 
produced by the condensation of rings of this type formed as a 
result of shrinkage of a central cooling mass of the protosolar 
nebula [1]. 

According to the ideas of Laplace and Roche the ring of 
matter which was thrown off from the Sun, and ultimately 
formed the planets, was rotating at one time as a closed ring 
with approximately the same angular velocity as the main 
mass of the Sun. If Sun  was the mean density of the Sun, the 

squared angular velocity of rotation 2  would be estimated 
by the Roche model (1.4.35): 

2
Sun0.360743732 2 , (1.4.36) 
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whence, by using the Poincaré’s general theorem, it follows 
from inequality (1.4.13) that: 

Sun0.360743732 . (1.4.37) 
This inequality (1.4.37) shows that unless the ring condensed 
at once to have a mass density of at least a third of the mean 
density of the main mass of the Sun, it could not rotate 
steadily but would continually expand under the centrifugal 
forces arising from its rotation [1]. 

1.5. On the fundamental difficulties of the theory of 
gravitational instability and the theory of gravitational 

condensation of an infinitely spread media 

The problem of gravitational condensation of an infinitely 
spread cosmic medium is closely related to the problem of 
gravitational instability (see Section 1.3 and the numerous 
works [1, 2, 6, 93, 118]). The linearized theory of 
gravitational instability, developed for some specific cases, 
leads to the well-known Jeans criterion (1.3.22), (1.3.23) 
indicating its universality [2 p.60]. At the same time, some 
works (see, for example, [132, 133]) point to an incorrectness 
of its derivation because the infinite homogeneous non-
rotating medium could not be in an equilibrium state so that 
small disturbances did not manage to form any sufficiently 
dense condensations, for example, galaxies [132, 133], in 
such non-equilibrium (expanding or contracting) system. 
However, as Victor S. Safronov [2] objected, when studying 
the formation of stars and, especially planets, there are no 
difficulties with long times. 

Thus, since the process of planet formation is very long in 
the time, the Newtonian consideration of bounded equilibrium 
system (like locally equilibrium systems in thermodynamics 
[134, 135]) becomes preferable, as it pointed by Safronov [2 
p.60]. Moreover, one of the important problems is the study of 
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instability in an infinite homogeneous medium at rest [2]. As 
already noticed, concerning infinity I. Newton thought that 
“some of it would convene into one mass and some into 
another,...and thus might the sun and fixed stars be formed” [1 
p.353]. 

The Jeans criterion can be considered as the first 
approximation which in the simplest cases gives the correct 
order of the critical wavelength of perturbation leading to 
instability. Since the forces opposing the instability origin, it 
takes into account only the gas pressure in the disturbance 
wave, this criterion gives the lower limit of the critical 
wavelength [2]. 

The main difficulty of the theory of Jeans is associated 
with the gravitational paradox: for an infinite homogeneous 
medium, there exists no potential for the force of gravity [2]. 
Indeed, from the Poisson equation of the form (1.1.41) (or 
(I.2)) it follows that if the mass density 0  then the 
gravitational potential g  and, therefore, the gravitational 

force gF  also grows unlimitedly with distance. This difficulty 

is avoided within the framework of Jeans’ theory and in its 
subsequent generalizations using the supposition that the 
Poisson equation does not apply to the whole infinite medium 
but only to disturbances  (see Eq. (1.3.13b)), i.e. to mass 
density deviations from its mean value . Here it has just 
been assumed that in the “true” infinite homogeneous 
immovable system the gravitational force should be absent 
since there is no pressure gradient and acceleration in it. 
Otherwise, it could not be at rest [2 p.61].  

Let us note additionally that an infinite system cannot be 
obtained by passing to the limit r  from a finite system 
(for example, spherical one). Such a statement of the problem 
does not apply to gravitationally coupled finite systems, for 
which the Poisson equation should be satisfied in Newtonian 
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approximation or its analog in the relativistic consideration 
[100]. 

Although the Jeans theory of gravitational instability has 
been presented in Section 1.3, nevertheless, now we briefly 
consider the main steps of the Jeans criterion derivation 
proposed by V.S. Safronov [2]. First of all, let us investigate 
the forces acting on an element of a continuous medium. 
When a wave disturbance is propagating two forces arise: the 
gravitational force, associated with the density 
perturbation , and the gas pressure force depended on the 
density gradient . In the case of a plane wave, the 
wavefront is a sphere at the initial point of excitation, so that 
the gravitational potential at the interior point of this sphere is 
equal [95, 97]: 

2
0

2
0

22
0 3

2
2)3(

3

2 rRrRg , (1.5.1) 

where 0  is  a mass density, R  is a radius of the sphere, 

Rr . Relative to the point of excitation ( 0r ) of the 
medium with the radius of the spherical wavefront )(tRR , 
we can calculate the strength of gravitational field or the 
specific gravitational force gf , i.e. the gravitational force gF  

per mass unit, based on the well-known relation [100]: 

rgg etRf )(4 0 ,  (1.5.2) 

whence an increment of the specific gravitational force 
becomes [2]:  

rg ef 04 ,  (1.5.3) 

where R  is a displacement of a continuous medium, re  
is a basic vector along the radial axis. Using the spherical 
coordinate system the specific surface force pf  of the gas 

pressure is determined by the ratio [111]: 
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,
11

rrp e
r

pe
r
ppf  (1.5.4) 

and following the above formula (1.3.15b) its increment 
accordingly looks like: 

rp e
r

cf
2

, (1.5.5) 

where 0/ ddpc  is the speed of propagation of small 

perturbations (waves of sound) in a continuous medium [94, 
111],  is a small perturbation of mass density of a 

continuous medium, and 0 , 0  is a mass density of 

a rest continuous medium [111]. 
Bearing in mind that the mass density increment  does 

not depend on the angular coordinates  and , we can easily 
find the relation for it in the spherical coordinate system 

),,(r  in accord with the above-derived formulas (1.3.8), 
(1.3.12): 

r
. (1.5.6) 

Since the displacement )(tR  is assumed to be infinitely 
small then according to formula (1.5.6) the relation (1.5.4) can 
be represented in the form: 

,
)(

)(

2

2
2

2

2

2
2

2
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(1.5.7) 

where the product of derivatives of small quantities (with 
respect to coordinates) is omitted in the last relation (as the 
infinitesimal value of higher-order) [111]. According to the 
condition of hydrostatic equilibrium (1.4.16) of a continuous 
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medium [94] and Eqs (1.5.2), (1.5.4) the well-known 
condition of mechanical equilibrium takes place: 

0pg ff , (1.5.8) 

whence, taking into account (1.5.3) and (1.5.7), it follows 
directly:  

2

2
2

04
r

c .  (1.5.9) 

A sinusoidal perturbation satisfies the equation (1.5.9): 

rt 2
sin0 . (1.5.10) 

Indeed, according to Eq. (1.5.10) if we calculate the 
derivatives of  with respect to r  we get: 

2

0

2

2

2 2
)

2
sin(

2 rt
r

. (1.5.11) 

Substituting (1.5.11) into (1.5.9) we find that: 

2

2
2

0

4
4 c ,  (1.5.12) 

whence it immediately follows that: 

0

2
2 c

.  (1.5.13) 

As it is known from Section 1.3, the equation (1.5.13) 
determines the critical wavelength c  (1.3.22) of wave 

disturbance: 

0

cc ,   

since the instability condition [2]: 
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pg ff  (1.5.14) 
leads to the well-known criterion of Jeans (1.3.23).  

So, the Jeans condition (1.3.23) says that a continuous 
medium filling a certain space is gravitationally unstable if 
any small mass density perturbations arising in it grow 
indefinitely with time due to the gravitation and, as a result, 
violate its equilibrium. Perturbations that have increased due 
to gravity lead to the formation of separate condensed 
bunches from a gas-dust continuous medium spread in space, 
i.e. they stimulate the process of gravitational condensation 
of a molecular cloud. As J. Jeans [1 p. 348] noted:  

 
A medium of dimensions much greater than c  would tend to form 

condensations whose mean distance apart would be comparable 
with c . 

 
In the particular adiabatic case, when the pressure p  and 

mass density  of a continuous medium are connected by a 

relation of the adiabatic type ~p , we can find the square 
of the speed of propagation of wave perturbations [94, 111]: 

p
d
dpc2 . (1.5.15) 

Substituting the expression for c  from (1.5.15) into (1.3.22) 
we obtain: 

p
c

1
. (1.5.16) 

Other modifications of formula (1.3.22) are also possible if 
we are going to use the results of the molecular kinetic theory 
[1, 110, 136], in particular: 

__
2

3

1 vp , (1.5.17) 
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where 
__

2v  is the mean of the squared velocity [136] of the 
particles of which the medium is formed. Substituting (1.5.17) 
into (1.5.16) we may express c in the equivalent form [1]: 

3/
__

2vc . (1.5.18) 

Further, J. Jeans noted that “any mass of sufficiently great 
extent must break up into condensations, but this is obviated 
by the circumstance that c  tends to increase pari passu with 
the size of the mass” [1 p.348]. Indeed, for the most general 
case of a cloud of particles (say, gas molecules), which form a 
single mass in a state of mechanical equilibrium, relation 
(1.2.17) has been obtained using the virial theorem in Section 
1.2. According to it the mean of the squared velocity of the 

particles 
__

2v is equal to the average value 2/g , and this is of 

the order of magnitude of  RM/ , where M is the total mass 
and rR  is the average radius of the system. Taking into 

account the fact that  RM/v
__

2 we can obtain the following 
modification of the formula (1.5.18) (or (1.3.22)): 

R
R
M

c 3

2

3
, (1.5.19) 

so that Rc 2 , i.e. the critical wavelength is approximately 

equal to the diameter of the molecular cloud. Thus, a single 
mass of medium in a state of mechanical equilibrium does not 
tend to break up into condensations at distances apart less 
than its average diameter. This does not leave room for any 
subordinate condensation: the mass itself constitutes the one 
and only condensation possible [1 p. 349]. 
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In general, according to (1.5.18) the value c
2  is 

proportional to 
__

2v  which in turn is proportional to the 
temperature T of a continuous medium so that the next 
modification of (1.5.18) is valid: 

0m
TkB

c . (1.5.20) 

As follows from (1.5.20), a sudden cooling of a molecular 
cloud reduces the value of critical wavelength c  [1 p.349]. 
Here J. Jeans defined more exactly: 

Cooling will ultimately result in contraction and by the time the 
mass has so far contracted as to be again in equilibrium, the value 
of R2 , the diameter, will again be equal to c , and no subsidiary 

condensations can be formed. But if a mass is cooled so rapidly that 
its linear dimensions cannot keep pace, or for any other reason do 

not keep pace, with its fall of temperature, then c
2 becomes less 

than the dimensions of the mass, and subsidiary condensations will 
form at distance apart of the order of c . 

The average mass of gas-dust matter in the vicinity of 
condensation caused by gravitational instability is estimated 
by the value: 

ccM 3~ ,  (1.5.21a) 
and taking into account the formula (1.5.18), it is equal [1]: 

2/3__
22/1 3/~ vM c . (1.5.21b) 

If we consider 
__

2v  as an expression for the mean of the 
squared velocity (1.2.18) in Section 1.2, then the formula 
(1.5.21b) takes the form: 
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2/3

2
0

2/1~
TkmnM B

c , (1.5.22a) 

and if 2v is the square of the average arithmetic velocity 

0/8 mTkv B  [110, 136], then (1.5.21b) is written as 

follows: 
2/3

2
0

2/1 2

9

38
~

TkmnM B
c . (1.5.22b) 

Another modification of formula (1.3.22) is possible if the 
molecular cloud is considered an ideal gas for which the 
known Clapeyron–Mendeleev’ equation (or the usual Boyle–
Charles law [1]) is true: 

Tp , (1.5.23) 

where p  is a pressure,  is a molar mass of continuous 
medium,  is a density, T  is a temperature, 

  8.3169 J (mole K)  is the universal gaseous constant. 
Using the equation of state (1.5.23) it is easy to find: 

T
d
dpc2 , 

 where c  is the isothermal speed of sound: 

Tc . (1.5.24) 

Substituting (1.5.24) into (1.3.22) we obtain: 

n
T

m
k

m
TkT BB

c
00

/
, (1.5.25) 
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where 0/ mn  is a particle concentration, 0m  is a mass of 

the particle (molecule), A0 Nm  and AN  Bk , and 
123 mole10023.6AN  is the Avogadro 

number, KJ1038049.1 23
Bk   is the Boltzmann constant. 

As shown in Section 1.3, when c  a small initial 

perturbation 0  becomes aperiodic and grows exponentially 

with time: te
~i

0  where 

]/1[4i4/)/2(i~ 222
cddp  is the 

imaginary value, following (1.3.19) and (1.3.21). But one 
such perturbation does not directly lead to the formation of a 
three-dimensional bunch [12]. It constantly slows down and 
ends with the appearance of a flat layer. After a new 
perturbation along with the layer a cylinder is formed, and 
finally, another perturbation along the cylinder leads to its 
decay into separate bunches [2]. 

 Consequently, the critical wavelength c  does not yet 

determine the critical mass of bunches formed as a result of 
gravitational instability [12], since the propagation velocity c  
of wave disturbances at c , according to (1.3.20), 

becomes imaginary, i.e. no perturbations can propagate 
beyond the instability region. However, following Jeans, we 
can estimate the order of value of the critical mass of bunches 
based on the relations (1.5.21a) and (1.5.25): 

2/3

2/12/3
3 ~~

nTM cc . (1.5.26) 

This ratio almost coincides with the condition that the 
molecular cloud is compressed under the action of 
gravitational forces if the time of free fall of particles in it is 
less than the time of propagation of a sound wave through it 
[137]. As follows from relation (1.5.26) as well as analysis of 
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formula (1.5.20), the colder gas-dust medium (and higher its 
density), the smaller mass of bunches able to be formed due to 
gravitational instability. 

Let us note that the instability condition (1.5.14) directly 
implies the energetic condition of gravitational binding: 

UEg , (1.5.27) 

meaning that a bunch (clot) of the matter can form a 
gravitationally coupled system if its gravitational potential 
energy gE  exceeds the internal energy U  [73].  

As S. Weinberg noted [101], the condition (1.5.27) leads to 
the determination of the Jeans mass: 

22/3

2/3

~
pM J , (1.5.28) 

where p  is a mean pressure,  is a mean density, 
2211 /kgmN1067.6  is the Newton gravitational constant. 

So, the Jeans mass (1.5.28) is the minimum mass yielding to 
gravitational binding at a given density and pressure. It is 
since the force of attraction inside any arising bunch of a 
substance increases with an increase in the volume of the 
bunch while the pressure force is proportional to the area of 
the bunch. 

Indeed, the gravitational potential energy of a molecular 

cloud is equal MdVE g
V

gg 2

1

2

1 , the internal energy 

is /MpVpdVpU
V

 respectively and the 

average potential, as noted above, is equal rg M/ , and the 

average radius Rr  can be estimated as 3 /)4/3( MR  

under the assumption of the spherically symmetric molecular 
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cloud. Substitution of these values into inequality (1.5.27) 
gives the required result (1.5.28) [73]. 

It is easy to see that the substitution in (1.5.28) of a 
quantity p  expressed from the equation of state (1.5.23) 
transforms relation (1.5.28) into (1.5.26). It should be noted 
that relation (1.5.28) is more general than the analogous 
(1.5.26) since it is not limited to the ideal gas model [73]; 
moreover, (1.5.28) applies to the study of gravitational 
condensation of molecular clouds of gas-dust matter having a 
temperature near absolute zero. 

As seen from the above, there are fundamental difficulties 
in the theory of gravitational condensation for a homogeneous 
non-rotating infinitely spread medium. As for rotating 
infinitely spread media, the Poisson equation (1.1.41) (or 
(I.2)) also applies only to mass density perturbations  (see 
Eq. (1.3.13b)). Moreover, it is assumed that the undisturbed 
medium is in equilibrium. But the question of how this 
equilibrium is realized is usually not considered [2]. However, 
in contrast to the infinite homogeneous rest medium in a 
rotating system of particles (for example, in the molecular 
cloud) there is a centrifugal force. It can be assumed that this 
force is balanced by the gravitational force of a substance 
enclosed in a cylinder of radius h  and infinite along the axis 
z . This means that Poisson equation (I.2) is applied to a 
homogeneous medium in the direction of the axis h , but at the 
same time it cannot be applied in the direction of the axis z  
for the same reasons as in the Jeans theory (see Section 1.3), 
i.e. because there are no forces that could counteract the 
gravity in this direction [2]. 

The condition of relative equilibrium in the direction h  
establishes a relationship between the mass density  and the 
angular velocity . According to Poincaré’s general theorem 
on rotating masses (see Theorem 1.5) we have 2 . 
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Substituting this value  into the condition of the Bel–
Schatzman’ gravitational instability (1.3.26) we obtain, taking 
into account the value of the wave number /2k , that: 

2 2
2 2

2

2 2 ( 2 )
4

(2 )

d h ck c
h dh h

, 

whence under the condition of local approximation h we 
obtain the following inequality [73]: 

2 28 4k c .  (1.5.29) 
Thus, according to inequality (1.5.29), we find that the 

critical density  necessary for the origin and development 
of instability should be at least twice the mean density  at 
which relative equilibrium is observed [2]. However, the Bel–
Schatzman’ gravitational instability (1.3.26) was derived 
under the condition of homogeneous mass 
density const . Consequently, when perturbations 
propagate in a plane perpendicular to the axis z , gravitational 
instability does not arise in this case, i.e. no gravitational 
condensation occurs. So, since the condition of gravitational 
instability (1.3.26) presupposes const  and const , 
then such a system cannot be in equilibrium. To reach 
equilibrium, R. Simon proposed to place in it additional non-
gaseous masses with a mass density s  depending only on h  

[138], although the instability condition (1.3.26) has not again 
been satisfied for such a system [2]. As S.Weindenschilling 
noted later [139], “the critical density is necessary for 
gravitational instability to occur, but is not sufficient”, since 
“planetesimals form not by gravitational instability, but by 
collisional coagulation”. 

Thus, for the rotating systems under consideration, the 
equilibrium condition based on the application of the Poisson 
equation (see Eq.(1.4.7) in the proof of the Poincaré’s general 
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theorem) is inconsistent with the Jeans theory of gravitational 
instability and, as a consequence, gravitational condensation. 
A similar result was obtained by Jeans for a finite spherical 
mass in equilibrium: it cannot disintegrate into separate parts 
as a result of gravitational instability. So, the theory of 
gravitational instability in an infinite (along z ) rotating 
medium has mainly a mathematical interest since there are no 
real systems to which it could be applied [2]. Following V.S. 
Safronov, the problem of gravitational instability in real 
astronomical systems of finite sizes, mainly, spherical and flat 
ones is more relevant (in particular, in gas-dust spherical 
formations and disks). 

Taking into account these difficulties in the theory of 
gravitational instability and gravitational condensation, we 
can use another method based on the virial theorem for 
estimating the critical mass necessary for beginning the 
collapse of an already formed molecular cloud (see Theorem 
1.4 in Section 1.2). According to Poincaré–Eddington’s 
theorem (1.2.13) to compress a molecular cloud, the right-
hand side of Eq. (1.2.13) must be negative, i.e. 

0/)2/1( 22 dtId . So that the particle system to be in 

equilibrium, it is necessary that 0/ 22 dtId , and then Eq. 
(1.2.13) goes into the Poincaré’s equation (1.2.14). In the 
simplest case of a homogeneous spherical cloud, the 
equilibrium mass value practically coincides cM  in relation 

(1.5.26). 
The advantage of expression (1.2.13) is that it can be easily 

generalized to more complex cases when: the molecular cloud 
rotates, it has a magnetic field, it is subjected to external 
pressure, it is heterogeneous in density, etc. [12]. Let us 
denote trough ,,,  dimensionless relations to the absolute 

value of the potential energy gE  of the cloud, respectively, 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

104

the total thermal energy 2/2vM  of the particles of the cloud, 

its rotational energy 2/2I , the energy of the magnetic field 
2/2

AMv  and the energy of external pressure Vpe . Then for a 

homogeneous spherical molecular cloud with mass M and 
radius R  we have [12]: 

,2/;2/

;2/;2/

2

22

gegA

gg

EVpEMv

EIEvM
  

(1.5.30) 

where 5/3,5/3 22 MRIRMEg , and 4mA Hv  is a 

velocity of Alfvén’s waves [9], mH  is a strength of the 

magnetic field, ep  is an external pressure, 3/4 3RV  is a 

volume of a spherical molecular cloud. The virial equilibrium 
condition of the molecular cloud following Eqs (1.2.14) and 
(1.5.30) can be written as follows [12]: 

01)(2 . (1.5.31) 
Introducing the function )()()( RRRf  

2/1)()( RR , one can study the equation (1.5.31): the 
equilibrium is stable if the derivative is negative, i.e. 

0)(Rf  [140]. However, for the collapse to be possible, it is 
necessary 0)(Rf  while the derivative must be positive: 

0)(Rf . In the simplest case of an isolated molecular cloud 
with 0 , only the internal gaseous pressure obstructs 
its compression. According to (1.5.26), (1.5.28) and (1.2.13) 
under medium conditions in interstellar clouds ( 3cm10~n , 

K100~T ), gravitational forces can prevent this pressure only 
in the case of a very large cloud mass 4

Sun~ 10cM M M  

where SunM  is the mass of the Sun [12, 141]. Therefore, for 
giant complexes of interstellar clouds, this condition is 
satisfied.  

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Problems of the Origin of the Initial Gravitational Condensation  
of Spread Cosmic Matter 

105 

The question of the formation of the complexes themselves 
is an independent problem. The cloud complexes are located 
mainly in the spiral branches of the Galaxy. In this regard, 
some researchers believe that as though the spiral waves of 
density promoted to the initial compression of gas [12]. Then 
it intensified as a result of various types of instabilities 
(Rayleigh’s rotational instability (1.3.34b), thermal instability, 
and others) leading to the general process of star formation 
(see (1.3.35)) [73]. In the process of star formation, massive 
stars quickly “burn out” and then they could explode forming 
compacted gas shells expanding with high velocity. The shells 
and the shock wave ionization fronts condense the 
surrounding colder gas so that the term  is dominant in the 
expression (1.5.31). In this case 0)(Rf , therefore, cold 
clouds are compressed to the concentrations 

)(cm1010~ 332n  [12].  
As the Galaxy rotates large volumes of gas, taking part in 

its rotation, have a large angular momentum and cannot be 
compressed to stellar densities. In the expression (1.5.31), the 
addendum  begins to dominate, and the compression is 
terminated. Since the critical mass decreases with increasing 
mass density in Eq. (1.5.26), the cloud disintegrates into 
smaller fragments. In this case, part of the rotational angular 
momentum of the cloud passes into the orbital and rotational 
angular momentums of these fragments [12]. The latter, 
losing their rotational angular momentums (for example, due 
to a magnetic field damping [9]), can be compressed further 
for some time collapsing up to stars. One of these fragments 
was our protosolar nebula which gave birth to the Sun and the 
Solar planetary system [12].  

This brief semi-qualitative scenario is based not so much 
on theoretical estimates as on some observational data of the 
interstellar clouds of our Galaxy. Cloud complexes represent 
the concentration of gas-dust clouds with a wide variety of 
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masses, mass densities, and temperatures. The temperatures of 
dark clouds are very low (about 10 K), and their 
concentrations range from 102–103 particles per 1 cm3 up to 
105–106 per 1 cm3. These dark cold clouds are called 
molecular clouds because they contain CO, 2  and many 
other more complex compounds, moreover, hydrogen in them 
is also in the molecular state 2 and constitutes the main 
fraction. The composition of solid particles (dust particles) 
constitutes about 1% of the whole medium by weight [12]. 
Cold clouds are in relative equilibrium. When the balance is 
violated, the collapse of more dense molecular clouds leads to 
star formation. 

Numerical calculations of the gravitational collapse of 
protostellar nebulae have been carried out repeatedly, and 
they are continuing at present (see, for example, review 
articles by W.M. Tscharnuter [142], B. Larson [143], P. 
Bodenheimer and D.C. Black [144], A.P. Boss [145] and et 
al.). The initial parameters of molecular clouds have usually 
been taken from the condition of just beginning the Jeans 
instability. At a mass close to the solar one and a temperature 
of 10K, the relations (1.3.22) and (1.5.26) have given 

cm10~ 17
0R , 35

0 cm103~n  and 318
0 g/cm10~ . 

In the simplest case of one-dimensional calculations of a 
spherically symmetric collapse of a non-rotating cloud, a 
sharply expressed non-homology of compression has been 
revealed. The central region has been compressed much 
faster, and at density 312 g/cm10~ , it has become opaque 
[145], so that beginning with this moment it has been 
compressed not isothermally, but adiabatically. Rapid heating 
has led to stopping compression and the formation of a quasi-
equilibrium core with mass 2

Sun~ 10cM M .The remaining gas 

mass (shell), being almost transparent, has continued to 
contract isothermally at K10~T  with a speed close to the 
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free-fall velocity. Having dropped to the core, the gas has 
formed on its surface a shock wavefront. When the mass 
density 37 g/cm10~  and temperature K102~ 3T  have 
been reached in the center of the core, the dissociation of 2 
has begun, and the core has collapsed again [145]. After 
dissociation and ionization at 32 g/cm10~ , K103 4T  

and Sun~ 0.03cM M , the core has become hydrostatically 

equilibrium [12, 145]. 
Most two-dimensional calculations (axially symmetric 

collapse of a rotating molecular cloud) have been carried out 
for rapidly rotating clouds with parameter 
values 12

0 1010~ , i.e. when the total angular momentum 

of a cloud /scmg10 254
0L . Having confirmed the non-

homology of compression, they have revealed a new 
characteristic feature of the process: in the isothermal region 
around the core in a plane perpendicular to the axis of 
rotation, a denser ring structure has been formed [12]. 

 Very laborious three-dimensional calculations have 
confirmed the formation of a ring in the isothermal region and 
have revealed its instability relative to non-axially symmetric 
perturbations [146]. The extrapolation of the data of 
Bodenheimer and Black [144] on the size of the core at the 
instant of the appearance of the ring under the condition of 
small values  has led to the conclusion that at 

/scmg10~ 252L  the formation of the Sun with a planetary 
system is possible in principle [147]. At an angular 
momentum, an order of magnitude greater, a double or 
multiple stars could most likely be formed due to the violation 
of the stability of rotating self-gravitating bodies [1, 148] 
whereas if a momentum less than an order of magnitude then 
a single star without a planetary system could be formed. 
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However, within the framework of such a model of 
evolution and separation during the collapse of the protosolar 
nebula into the core and the ring structure, it is impossible to 
solve the main problem of the distribution of angular 
momentum in the Solar system, which was a stumbling-block 
for all previous cosmogonical hypotheses and models [2, 6, 
12]. At /scmg10~ 252L  gas falls to the center inside the area 
with a radius of AU1.0~ , but for the formation of a pre-
planetary disk, it needs an effective transfer of the angular 
momentum from this area to the outside.  

Thus, the mechanism of a very fast transfer of the angular 
momentum at which a high concentration of a substance in 
the disk near its center would be maintained during the entire 
collapse is unknown up to now [12]. In passing, we note that 
the value of /scmg10~ 252L  is obtained from the 
consideration that the angular velocity of the protosolar 
nebula was of the same order as the angular velocity of 
rotation of the Galaxy itself 115 s10~ , so that at 

cm10~ 17
0R  and /scmg10~ 252

0L  the angular velocity 
115 s102.1  can just be found. 

The export of the angular momentum from the core leads 
to the formation in its equatorial plane of the embryo of a disk 
with differential rotation around the core. An instability origin 
is possible in this zone accompanied by gas turbulence. If 
some source continues to maintain the turbulent state in the 
disk then the disk can grow to the size of a planetary system 
in time. The evolution of similar circum-stellar disks has been 
considered in some papers [149, 150, 151, 152]. However, the 
fundamentally important question of maintaining turbulence 
in the gaseous disk remains unresolved. As noted in Section 
1.3, due to the validity of the Rayleigh criterion (1.3.34a) for 
the protoplanetary cloud, convection could not occur in the 
radial direction there and, therefore, it could not be a source of 
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turbulence, as Weizsäcker suggested [26, 126]. Later attempts 
by Lin and Papaloizou [153, 154] to construct a model in 
which turbulence is generated by convection in a z-direction 
parallel to the axis of rotation also did not lead to noticeable 
success. Therefore, models with only convective turbulence 
are scarcely applicable to the solar nebula [12]. In this regard, 
the problem of other mechanisms for the turbulence origin in 
rotating gaseous disks is still quite actual. 

Summarizing the above, it can be stated that a satisfactory 
solution to the problem of protosolar nebula origin is hardly 
possible without building a general theory of the formation of 
single stars, stars with disk-shaped shells and multiple stars. 
Such a theory will most likely reflect the probabilistic nature 
of the star formation process [12]. In any case, to get rid of the 
numerous shortages, contradictions and difficulties that have 
been listed very briefly in this section, such a theory should be 
developed as self-sufficient as possible, independent of some 
kind of “first pushes” from the outside, like “mysterious” 
spiral mass density waves [12] coming from the depths of 
spiral arms of our Galaxy. 

1.6. Fundamental principles and main problems of  
the statistical mechanics of a molecular cloud 

To solve the posed problem of the initial gravitational 
condensation of the molecular (gas-dust protoplanetary) 
cloud, it is appropriate to apply the methods of statistical 
mechanics, especially, because the liquid particles in 
deterministic hydrodynamics themselves consist of an 
ensemble of elementary particles with mass 0m ). Indeed, in 

complex systems consisting of a large number of particles, it 
is practically impossible to observe or theoretically determine 
exactly the behavior of all particles of the system [110, 155]. 
If we suppose that the positions and velocities of all particles 
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of a molecular cloud are known at some instance, then it 
would be almost impossible to use conventional mechanics 
methods to predict the future states of the complex system (in 
this case, the molecular cloud) due to a computational 
complexity and a large number of particles. However, in 
statistical mechanics, there are methods whose application 
allows us to investigate not the exact behavior of each particle 
separately, but the behavior of the whole particle system 
determining the behavior of most particles [110, 155]. So, 
statistical mechanics does not consider hopeless attempts to 
predict in advance the exact behavior of each particle as it is 
limited only by statistical methods studying the behavior of 
the greater number of particles with similar properties. 

The isolated cloud of gas-dust particles left to itself, like 
the system of gas molecules, is constantly changing, and also 
tending to the most probable state. The difference between 
the mean values of the squares of any two velocity 
components of the gas molecules along some axis is not zero; 
due to collisions of molecules and close passage of them near 
each other, this difference tends to zero following the 
exponential law te  [155]. The time interval during which 
this difference decreases by a factor e  is called the 
“relaxation time”. As known [110, 136], for gas under normal 
conditions, this value is very small (in particular, for air under 
normal conditions the relaxation time is about 10-10 seconds). 
On the contrary, for the ensemble of stars, when stars play the 
role of particles [155-157], the relaxation times are very long 
(in particular, Charlier in 1917 determined the relaxation time 
for the Galaxy to be equal to 16104 years). This time interval 
is much longer than the ages of stars accepted in astrophysics, 
as a result of which there is no statistical equilibrium state in 
the Galaxy, so that we can talk only about approximation to 
this state [110, 155, 156]. As Jeans [1 p.318-319] first showed 
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that if 0V  a is the velocity of a star before the encounter began 

then: 
 
...encounters with small value of 

0V  are far more effective than 

those for which 
0V  is large. For this reason, on averaging we must 

take a rather small value for 
0V , and shall select 100V kms. a 

second 610 . With these values, the interval of time ... is found to 
be 22107  seconds or about 15102 years...Thus collisions between 
stars are so rare that they may be disregarded. 
 

In other words, in the Galaxy one can consider the motions of 
stars as the motions of single mass points in the general force 
field of the whole system. Thus, the most important difference 
between a star system and a system of gas particles is that the 
influence of collisions can be neglected in a star system [155-
157]. 

The system of dust and gas particles under study, forming a 
gas-dust protoplanetary cloud, has a relaxation time longer 
than the laboratory system of gas molecules, but much smaller 
than the system of stars (as intermediate in size of system and 
mass of particles between the first and the second system). As 
a result, if we neglect the influence of external forces on a 
given gas-dust protoplanetary cloud, then this cloud left to 
itself will not noticeably change in shape and its size with the 
time. Such a state is the state of mechanical equilibrium [2, 
155, 157]. As noted in [16], the fluctuation interactions of 
subsystems of this system in the form of a gas-dust 
protoplanetary cloud can constantly disturb this equilibrium 
although very slowly (like the effect of irregular forces in 
stellar systems, following V.A. Ambartsumian [155]). In other 
words, a gas-dust cloud can be in a state of mechanical 
equilibrium at each instance, so that the evolution of a gas-
dust protoplanetary cloud consists of a permanent change of 
one equilibrium state by another [47, 145]. It is appropriate to 
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call such a protoplanetary system of gas and dust particles 
stationary one [65, 73], and the period during which the 
action of fluctuation interactions of subsystems becomes 
noticeable is the relaxation time of the gas-dust 
protoplanetary cloud [65, 155]. Let us note that without 
disturbing fluctuation interactions of the subsystems, the same 
state of mechanical equilibrium would continue indefinitely, 
i.e. this would be a state of statistical equilibrium of a gas-
dust protoplanetary cloud. 

To present the fundamentals of the statistical mechanics of 
a protoplanetary system of gas and dust particles, one should 
dwell on the distinctive features of the statistical mechanics of 
protoplanetary gas-dust systems from traditional statistical 
physics [110]. In many respects, they coincide with the 
distinctions of stellar systems considered by K.F. 
Ogorodnikoff [156]. In other words, unlike statistical physics 
and thermodynamics, the complete statistical equilibrium is 
unattainable in protoplanetary gas-dust systems and all 
equilibrium internal parameters of these systems depend not 
only on the integral of energy but on integral of angular 
momentums (or areas) [158]. In this regard, the ergodic 
property [110] does not apply to protoplanetary gas-dust 
systems, usually assumed for traditional systems of gas 
molecules within the framework of statistical physics (since 
for protoplanetary systems the equilibrium parameters depend 
not only on the energy integral). 

Now we introduce a Cartesian frame of reference inside a 
molecular (gas-dust protoplanetary cloud) and denote the 
rectangular coordinates of gas and dust particles through 

zyx ,, so that the location of each particle is determined by 
the radius vector ),,( zyxr . We suppose, bypassing all the 
problems mentioned in Section 1.5, that the protoplanetary 
cloud has its gravitational field, therefore we choose the 
center of mass as the origin of a coordinate system (see 
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Section 1.1). So, assuming a given centrally symmetric 
gravitational field in the protoplanetary cloud, we can define 
the strength of the gravitational field or acceleration [100]: 

ra g / , (1.6.1a) 

where g  is the gravitational potential of the protoplanetary 

gas-dust system. If wu ,,  are components of the velocity 
vector v ( , , )u w  of particles moving in the gravitational 
field relative to the given coordinate system then: 

dtdzwdtdydtdxu /,/,/ . (1.6.1b) 

Since evolution of a gas-dust cloud consists in a 
replacement of equilibrium states, we can introduce the 
particle distribution function ),,,,,,( twuzyx  of 
coordinates zyx ,,  and velocities wu ,,  [1, 155], such that 
its value determines a probability to find particles of a gas-
dust cloud, possessing coordinates between x  and dxx , y  
and dyy , z  and dzz  as well as components of velocities 
between u  and duu ,  and d , w  and dww . It is 
naturally assumed that 0  when wu ,,  since 
otherwise the considered protoplanetary cloud would not be 
real and would immediately disintegrate. The function 

),,,,,,( twuzyx  can describe a certain velocity body, in 
particular, an ellipsoid of velocities [155] if the velocity body 
does not depend on tzyx ,,, . If the distribution function  
does not depend on time t  only then such a distribution is 
called stationary, and the system itself is stationary [155].  

Now let us consider an ensemble of particles whose 
number is defined by the distribution function  multiplied 
by the total number N of particles into a protoplanetary cloud: 

dwdxdydzdudtwuzyxN ),,,,,,( . (1.6.2) 
According to the above, these particles have coordinates 

zyx ,,  and velocity components wu ,,  for a given instance t . 
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Integrating over all wu ,,  we find the number of particles in 
a unit of volume, or, in other words, the spatial concentration 
n  of particles in a given place zyx ,,  and at a given 
instance t : 

dwdudtwuzyxNtzyxn ),,,,,,(),,,( . (1.6.3) 

Using (1.6.3) the mass density  of a protoplanetary 
substance is calculated as follows: 

nm0 , (1.6.4 ) 
if all particles of the protoplanetary cloud have the same mass 

0m , and if the particles have different masses im0  then the 

mass density is equal to: 

i
iinm0 . (1.6.4b) 

According to Eqs (1.6.3), (1.6.4 ,b) in a stationary system, 
in every elementary volume there is always a constant, 
steady-state distribution of particles in directions and values 
of their velocities. Consequently, in the place of particles, 
leaving this volume due to their movement, the equal number 
of particles is coming with the same distribution of velocities 
and their directions [155]. 

Since ),,,( tzyxg  is the gravitational potential of the whole 

system of particles, the motion of each of these particles will 
be determined by the equations in accord (1.4.4), (1.6.1a): 

xdt
dua g

x ; 
ydt

da g
y ; 

zdt
dwa g

z . 

After a time dt   the parallel motion of these particles will take 
them to a position wdtzdtyudtx ,, , while their 
gravitational accelerations will have increased their velocity 
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components dt
z

wdt
y

dt
x

u ggg ,, . By analogy 

with (1.6.2), confining our attention to a small region dxdydz  
of space, we find that the number of particles within this 
region, whose velocity components wu ,,  lie within 
prescribed limits dwdud , is:  

.),

,,,,,(

dwdxdydzduddttdt
z

w

dt
y

dt
x

uwdtzdtyudtxN

g

gg

(1.6.5) 

Since we investigate the same ensemble of particles, i.e. the 
particles “specified in both groups are identical” [1, 155], 
expression (1.6.5) must be equal to the analogous (1.6.2) 
whence it follows that:   

.0),,,,,,(

),,,,,,(

twuzyx

dttdt
z

wdt
y

dt
x

uwdtzdtyudtx ggg

By expanding the left-hand side of this equation in Taylor 
series and limiting to terms of the first order of smallness, we 
must accordingly have:  

0dt
t

dt
zw

dt
y

dt
xu

wdt
z

dt
y

udt
x

g

gg

whence it follows the partial differential equation [1, 93, 155]: 

0
wzyuxz

w
yx

u
t

ggg .  (1.6.6) 

This equation, first derived in 1915 by J. Jeans, plays a 
significant role in the dynamics of stellar systems. As Jeans 
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noted, equation (1.6.6) is identical to the Boltzmann equation 
in the kinetic theory of gases [1]:  

 
This is the differential equation which must be satisfied by the 
distribution-function  throughout any motion whatever of a 
system of stars. It will be seen to be identical with the 
corresponding equation in the kinetic theory of gases, except that 
the terms arising from collisions are left out. 
 

Indeed, the collisionless kinetic Boltzmann equation states 
[159]: 

0v
p

F
t

, (1.6.6*) 

where p  is a momentum of a particle of mass 0m , UF  

is a force acting on the particle from the external field )(rU  
[159]. Taking into account that 

),,(v,v, 00 wumpmF g , the Jeans equation 

(1.6.6) directly follows from the Boltzmann kinetic equation 
relative to a Cartesian frame of reference ),,( zyx  whose 
origin of coordinates coincides with the center of mass of the 
molecular (gas-dust protoplanetary) cloud. Nevertheless, J. 
Jeans [1 p.364] indicated to the above important distinction: 

 
Just as, in the kinetic theory, the gas may be imagined divided up 
into a system of showers of parallel-moving molecules, so in stellar 
dynamics, the stars may be imagined divided up into a system of 
parallel-moving clusters. But there is the essential difference that in 
stellar dynamics these clusters retain their identity through long 
periods of time, whereas in gas-theory they do not. 
 
We also note that the Jeans equation (1.6.6) directly 

follows from the continuity equation for the flow of phase 
trajectories in the state-space ),,,,,( wuzyx  of the system of 
particles [73, 155]. Indeed, let us write the Hamilton function 
per unit mass of the molecular cloud: 
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),,,()( 222
2
1 tzyxwuH g  (1.6.7) 

It is known [158] that canonical variables iq  (generalized 

coordinates) and ip  (generalized impulses) satisfy the 

equations of mechanics in the Hamilton form: 

i
i

i
i q

Hp
p
Hq ; ,   3,2,1i , (1.6.8) 

where wppupzqyqxq 321321 ,,,,, , moreover, 

from the fundamentals of statistical physics it immediately 
follows that the Liouville theorem [110] is valid for the 
distribution function . According to the Liouville theorem 
for the distribution function ),,,,,,( 321321 tpppqqq , there is 

a continuity equation showing the invariance of the total 
number of system states (or the total number of phase points) 
in 6-dimensional phase space ),,,,,( 321321 pppqqq with the 

time: 

0
Dt
D

, (1.6.9a) 

where DtD /  denotes the Stokes operator of the form [110, 
155]: 

3

1i i
i

i
i p

p
q

q
tDt

D
. (1.6.9b) 

From Hamilton equations (1.6.8) and Hamilton’s functions 
(1.6.7) directly follow the relations of the kind: 

utzyxwu
uu

Hx g ),,,(
2

222

; (1.6.10a) 

.),,,(
2

222

x
tzyxwu

xx
Hu g

g  (1.6.10b) 

The last relations (1.6.10a) and (1.6.10b) show that after 
denoting by 321321 ,,,,, pwppuqzqyqx  the 
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continuity equation (1.6.9a), (1.6.9b) goes into the Jeans 
equation (1.6.6), i.e. the Jeans equation directly follows from 
the continuity equation for the flow of trajectories in the phase 
space [73]. Let us note that the Jeans equation (1.6.6) can also 
be considered as the continuity equation (1.3.7) in the real 
space ),,( zyx  if 0g  or as the continuity equation with 

variable masses if 0g  
[94, 111].  

To solve the Jeans equation (1.6.6) for , the Lagrange’s 
rule directs us to compose the characteristic equations [1 
p.364]:  

dt

z

dw

y

d

x

du
w
dzdy

u
dx

ggg
, 

(1.6.11) 

thereby, reducing the equation (1.6.6) to a system of ordinary 
differential equations which are merely the equations of 
motion of particles in the general gravitational field of the 
whole system (molecular cloud).  

System (1.6.11) has independent integrals 621 ,....,, III  

depending on the form of the potential function g  and being 

the first integrals of particle motion. The solution of the 
equation (1.6.6) is then simply: 

),,,,,(),,,,,,( 654321 IIIIIIftwuzyx , (1.6.12) 
where f  is any arbitrary function. 

To write the general solution (1.6.12) we need to know all 
six integrals, however, as noted in [1 p.364, 155], it is 
impossible to find them as long as the analytical expression 
for the gravitational potential ),,,( tzyxg  is unknown. 

Finding this expression is the most important and complex 
task of statistical dynamics (both for the system of particles of 
a molecular cloud and for the star system) [155]. If the 
analytical expression g  is absent, we can draw some 
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conclusions under the condition of certain restrictions 
superimposed on g  [1, 155]. 

Let us consider the first case when the system of particles 
of a molecular cloud is in a stationary state, i.e. the 
gravitational potential g  and also the distribution function 

 does not depend on time. In this case, one such integral 
can be written down at once, namely the integral of energy 
[155]. Indeed, from Eq. (1.6.11) we directly find that: 

dz
z

wdwdy
y

ddx
x

udu ggg ,, . (1.6.13) 

   
Adding these three relations in (1.6.13) we obtain: 

g
ggg ddz

z
dy

y
dx

x
wud )(

2

1 222 . (1.6.14) 

Since the square of the velocity vector 2v  is expressed in 
terms of the sum of squares of its components: 

2222v wu  in the Cartesian frame of reference, then 
after the integration of Eq. (1.6.14) we find the integral of 
energy per unit mass [1 p.365]: 

constv
2

1 2
1 gI . (1.6.15) 

Other integrals exist in special cases of the considered 
system of particles of a molecular cloud. If a stationary 
system is asymmetric then, except 1I , we cannot find other 

integrals without knowledge of g  [1, 155], therefore the 

following particular solution for the distribution function 
occurs: 

)v()v()( 2
2
12

2
1

1 ggI . (1.6.16) 

In this case, the velocity distribution is spherical since  
depends on the square 2v . As for the mass density 
distribution, i.e. the distribution of particles for spatial 
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coordinates zyx ,, , it can be arbitrary (depending on the 

analytical expression of function g ) [155]. However, there is 

no spherical velocity distribution in the Galaxy, therefore this 
particular case is not observed, generally speaking [155]. 
Nevertheless, there may be other special cases. For example, 
if for any particle 02v2

g , this means that the total energy 

of this particle is positive or equal to zero. Such a particle 
should be removed from the considered molecular (gas-dust 
protoplanetary) cloud. Moreover, its velocity will be greater 
than or equal to the velocity of escape 

g2  (this velocity is 

also called critical or parabolic) [155]. “Thus the search for 
systems in steady motion with no symmetry at all has failed; 
no such motion is possible” [1 p.367]. 

Let us consider the second case corresponding to the 
stationary particle system of a molecular cloud with spherical 
symmetry [1 p.365]. In this case, the gravitational field is 
centrally symmetric, so that g  is a function only of r , the 

distance from the center of the molecular cloud: 
222 zyxr . (1.6.17) 

Using (1.6.17) it is not difficult to see that: 

r
x

zyx
x

x
r

222

2
1 2

. (1.6.18) 

In view of (1.6.18), the characteristic equations (1.6.11) 
assume the form: 

rr
z
dw

rr
y
d

rr
x
du

w
dzdy

u
dx

ggg
. 

(1.6.19) 

Taking into account Eqs (1.6.19), for example, it is not 
difficult to get that: 
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rr
ydu

rr
xd gg 11

, (1.6.20a) 

udydx , (1.6.20b) 
and also that: 

 
rr

zd
rr

ydw gg 11
, (1.6.21a) 

dzwdy  (1.6.21b) 
and finally: 

 
rr

zdu
rr

xdw gg 11
, (1.6.22a) 

udzwdx . (1.6.22b) 
Indeed, from Eqs (1.6.20a), (1.6.20b) - (1.6.22a), (1.6.22b) it 
immediately follows the equations: 

,, udydxyduxd  (1.6.23a) 
,, wdydzydwzd  (1.6.23b) 
., udzwdxzduxdw  (1.6.23c) 

Adding in pairs the relations in (1.6.23a), (1.6.23b), (1.6.23c) 
and then integrating them, we obtain three integrals:  

constyux , 
constywz , 
constzuxw , 

expressing that the moments of momentum 2I , 3I , 4I  per unit 

mass about the axes of coordinates zyx ,,  remain constant [1, 
155]: 

  const2 yuxI , (1.6.24a) 
const3 zywI , (1.6.24b) 
const4 xwzuI . (1.6.24c) 

Apart from special artificial cases of g  [96, 155], there can 

be no integrals beyond those already mentioned, so that the 
distribution function  must be of the form 
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),,,( 4321 IIII , (1.6.25) 
where 4321 ,,, IIII  are given by the relations (1.6.15), 

(1.6.24 )-(1.6.24c). For instance, if 2/2krg , where k  is 

constant, there are additional integrals of the type: 
const2/)( 22

5 kxuI , const2/)( 22
6 kyI , 

const2/)( 22
7 kzwI , but only two of them are 

independent because 7651 IIII , therefore, the 
corresponding motion being one in which each particle 
describes a continually repeated elliptic orbit about the center 
[96]. 

Obviously, in systems with spherical symmetry the 
concentration n  (or mass density ) and the potential g  of 

the whole system are functions of r  only, since the 
concentration n , like the mass density i

i
i nm0 , has a 

spherical symmetry by condition, and the potential g  is 

connected with the mass density by Poisson equation (1.1.41): 

i
i

ig nm0
2 4 . (1.6.26) 

Since Eq. (1.6.26) is true, it immediately follows that if the 
gravitational field is spherically symmetrical then the 
concentration function in  is also spherically symmetric and 

the mass density is arranged in spherical shells. Let us note 
that the mass density is also obtained by integrating the 
distribution function (1.6.25) with respect to all values of 

wu ,, , i.e. if we substitute the expression (1.6.3) into Poisson 

equation (1.6.26) instead of in , we obtain a condition that the 

distribution function i  has to satisfy [155]: 

dwdudtwuzyxNm ii
i

ig ),,,,,,(4 0
2 . (1.6.27) 
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The system of dust and gas particles must satisfy both the 
statistical condition (Jeans equation (1.6.6)) and this 
dynamical condition (Poisson equation (1.6.27)). The latter 
condition is also valid in the case of an external 
potential 1

g since 12
g  for particles of a molecular cloud is 

zero (since the function 1
g  does not add mass to the particle 

system). 
For the resulting mass density to depend only on r , the 

distribution function (1.6.25) should depend only on r. This 
means that 432 ,, III   must enter in  as expressions 

depending only on 2222 zyxr . Such an expression is 
the total angular momentum per unit mass which in accord 
with (1.6.24a) - (1.6.24c) is equal to: 

2222
4

2
3

2
2 )()()( xwzuzywyuxIII  

wyzuwxzuxy
uzwuywx

222

)()()( 222222222

 

)222

()()( 222222222222

zwyzwxuyxu
wzyuxwuzyx

 

2222222 )()()( zwyxuwuzyx . (1.6.28) 
With a view to further transformation of (1.6.28), we can note 
that the time derivative of (1.6.17) is equal to: 

,
222

2

1

222

r
zwyxu

r
zwyxu

zyx
dt
d

dt
drvr

 
 
 

(1.6.29) 

where rv  denotes the component of the velocity v  along the 
radius r . Taking into account (1.6.17) and (1.6.29), 
expression (1.6.28) takes the form: 

)(vv 22222222
4

2
3

2
2 rr vrvrrIII . (1.6.30) 
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In the spherical coordinates ,,r , 2v can be decomposed into 
three components: 

2222v vvvr , (1.6.31) 
so that it immediately follows from (1.6.15), (1.6.30), (1.6.31) 
that:  

)( 2222
4

2
3

2
2 vvrIII ,  

and the distribution function (1.6.25) should be of the form [1, 
155]: 

)sinv,v())(,v( 2222
2
12222

2
1 rvvr gg , (1.6.32) 

where  is the angle between the directions of r  and v . At 
any single point in space, the law of distribution   depends 
on v  and on . With this law of distribution, the velocities of 
particles are not uniformly distributed over all directions in 
space, for this would require that  should depend on v  
only. Indeed, both components of the velocity v  and v , 

being perpendicular to the radius vector r , enter 
symmetrically in the expression (1.6.32), therefore their 
distribution is circular [155]. The asymmetry of the velocity 
distribution is caused by the component rv , so that const  
are surfaces of revolution near the radius r . Thus, the 
velocity-diagram for the motions of the particles near a given 
point will not be spherically symmetrical but will be a figure 
of revolution, having the radius through the point to the center 
of the system as an origin [1]. It will be directed either the 
preferred motion of particles on the radial component or, 
conversely, fewer particles, i.e. stars in the case of a star 
system, will move in this direction. Respectively, the velocity 
body will be stretched or, conversely, compressed in the radial 
direction [155]. In the case of the star system, for example in 
the Galaxy, the major axis of the velocity ellipsoid is directed 
approximately to the center of the system. But since our 
Galaxy Milky Way does not possess spherical symmetry, this 
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case should be rejected again, however, it can occur in 
spherical star clusters [1]. 

Now we consider the third case corresponding to the 
stationary system of particles of a molecular cloud with axial 
symmetry. Let z  be the axis of symmetry. The equation of 
characteristics (1.6.19) gives only two integrals: 1I  and 2I the 
latter being obtained relative to the axis z : 

const2 yuxI .  
Indeed, using the cylindrical coordinate system: 

zzhyhx ;sin;cos , (1.6.33) 

where 22 yxh , we can define the components of the 

velocity vector v  in the cylindrical coordinates ),,( zh : 

.

;)(

;

z
dt
dzv

hh
dt
dv

h
dt
dhv

z

h

 (1.6.34) 

Taking into account the relations (1.6.33) and (1.6.34), we 
find the relationship between the components of the velocity 
vector in the Cartesian system ),,( wvu  and the cylindrical 

system ),,( zh vvv :  

.

;cossincossin

;sincossincos

z

h

h

v
dt
dzw

vvhh
dt
dy

vvhh
dt
dxu

 (1.6.35) 
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So, we consider the system of generalized coordinates 
),,( 321 qqq  where zqqhq 321 ,,  and accordingly a 

system of generalized velocities of the form: 
zqqhq 321 ,, . (1.6.36) 

Let us compose the Lagrange function of a unit mass particle 
and then use the Euler–Lagrange variational equations in 
cylindrical coordinates [158]:  

.),()(
2

1

),()(
2

1

2222

222

zhzhh

zhvvvL

g

gzh

 (1.6.37) 

Using (1.6.37) we write the Euler–Lagrange equations relative 
to the generalized coordinates and velocities (1.6.36): 

h
L

h
L

dt
d

; (1.6.38a) 

LL
dt
d

; (1.6.38b) 

z
L

z
L

dt
d

. (1.6.38c) 

As follows from Eqs (1.6.38a)-(1.6.38c): 

h
h

dt
dv

dt
hd gh 2 ; (1.6.39a) 

0
)()( 2

g

dt
hvd

dt
hd

; (1.6.39b) 

zdt
dv

dt
zd gz . (1.6.39c) 

The second equation (1.6.39b) vanishes due to the axial 
symmetry which allows us to find the second integral being 
the angular momentum per unit mass around the axis z  [1, 
155]: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Problems of the Origin of the Initial Gravitational Condensation  
of Spread Cosmic Matter 

127 

hvhI 2
2 . (1.6.40) 

So, taking the axis of symmetry to be the axis of z , the only 
integrals of equations (1.6.19) are seen to be the energy 
integral (1.6.15), and the integral (1.6.40), which expresses 
that the moment of momentum of a particle about the z -axis 
remains constant. Hence the only possible state of steady 
motion is one in which the distribution function (1.6.25) is of 
the form [1, 155]: 

),v(),2v(),( 22
2
12

21 hhvII gg . (1.6.41) 

From (1.6.41) it can be seen that the distribution with respect 
to hv  and zv  is symmetrical, while the values v  are met 

more often or scarcer than the previous components [155]. 
The velocity body will be elongated or compressed in a 
direction perpendicular to the direction to the center of the 
system. 

In 1922 and a little later, J. Jeans believed that this 
particular case took place in the Galaxy since the direction of 
the vertex of stellar motions is 340 , and according to 
Kapteyn’s discovery of the phenomenon “star-streaming” [1], 
the direction to the center was obtained 257 , i.e. 
perpendicular to the line of vertices. At present, it is known 
that the direction to the center is 330 , i.e. it almost 
coincides with the direction of the vertices deviating from it to 
10  [155]. Since there are serious reasons to consider the 
Galaxy as a system with axial symmetry (due to the rotation 
of the Galaxy, study of its structure, comparison with other 
galaxies), the resulting discrepancy can be explained either by 
the fact that the Galaxy is not in a completely stationary state 
or that it is not a particular solution (1.6.41) but some other. 
Let us note that it is impossible to write a general solution 
without knowing the analytical expression for the potential 

g  [155].  
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Until now, the Jeans equation (1.6.6) is considered as a 
differential equation for the distribution function , 
considering the analytical expression of the potential g  to be 

unknown and only imposing some restrictions on it. Jeans [1] 
followed this path bypassing the problem that solutions 
(1.6.16), (1.6.32), (1.6.41) are particular ones, but not general, 
even for these restrictions discussed above. Meanwhile, the 
question of the physical significance of these particular 
solutions is not clear, and the missing independent integrals 
must exist in a real physical problem. 

It is alleged [155] to be more appropriate another way that 
J.H. Oort [157] and then S.Chandrasekhar [125] followed. 
Within the framework of this approach, the Jeans equation 
(1.6.6) is supposed to be considered as a differential equation 
for the potential g finding, and the distribution function  

can be given one or another suitable form [155]. In this case, 
 should depend on both distribution of stellar densities 

(concentrations) n  in the Galaxy and distribution of 
velocities, moreover, the last is supposed to be taken as the 
Schwarzschild’s “ellipsoidal” distribution [1, 155]: 

222222

const wmluke , (1.6.42) 
resulting from astronomical observations. However, the idea 
of attaching the distribution function  to the so-called 
“suitable form” cannot be considered rigorously scientifically, 
since such a function must be obtained by successive 
mathematical derivations from a physical model describing a 
system of particles under given conditions [73]. 

Such an attempt to derive the distribution function , and 
hence the analytical form of the functions of mass density  
and particle concentration n was made by J. Jeans within his 
theory as applied to star systems [1 p.371]. Now we are going 
to briefly describe the main results of the theory of Jeans, not 
limited to the system of stars, but considering, in general, the 
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system of particles in the form of some kind of molecular or 
gas-dust cloud. 

As J. Jeans [1 pp.370-371] claimed, a law of distribution of 
velocity body of the type (1.6.41): 

 
…will give steady motion except for the disturbing effects of 
encounters of near stars. Further, this formula has been found to 
include all possible cases of stable steady motion. 

The effect of near encounters will be slowly to change the 
character of the motion, and after a sufficiently long time... the 
system of stars will tend to a steady state in which even close 
encounters do not disturb the statistical specification of motion.  

During this process, the form of the function  must change, 
and when the final steady state is attained, the general principles of 
statistical mechanics indicate* (see details in [160 §107, ch.V])5  
that the form of the function  must be: 

 
)(2

21
210),( IImeAII , (1.6.43) 

where A ,  and  are constants. Inserting their values for 

1I  and 2I  from relations (1.6.15) and (1.6.24a), the 
distribution function (1.6.43) becomes: 

)](22v[
21

2
0),( yuxm geAII   

)](22)[( 222
0 yuxwum geA   

]2/)([2])()[(
222

0
222

0 yxmwxyum geeA . (1.6.44) 
As noted in this section (see formulas (1.6.3), (1.6.4 , b), 

(1.6.27)), the concentration (or mass density) is obtained by 
integrating the distribution function  with respect to all 
values of the velocity components wu ,,  from  to . 

Indeed, ),( 21 II  is a joint distribution function at spatial 
coordinates zyx ,,  and velocity components wu ,, , so that 
we can separately consider the distribution function at 
velocities: 

 
5 The author’s remark 
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])()[(
v

222
0),,( wxyumeBwu , (1.6.45) 

where B  is a normalizing factor, such that CBA  
(compare with the Schwarzschild’s distribution function 
(1.6.42)). This function ),,(v wu  satisfies the 

normalization condition: 

,1])()[(

v

222
0 dwdudeB

dwdud

wxyum
 (1.6.46) 

therefore, integrating (1.6.44) over all values of wu ,,  from 
 to  and taking into account (1.6.46), we find that the 

distribution function at zyx ,,  must be of the form [1]: 
]2/)([2 222

0),,( yxm
r

geCzyx , (1.6.47) 

where C  is a constant. Using the normalization condition 
(1.6.46), we can estimate the constant B  in (1.6.44), (1.6.45): 

1
2

0
2

0
2

0 )()( dwededueB wmxmyum , 

whence: 

1
1

33

0

2

dse
m

B s , 

and taking into account the fact that dse s2

 [128] we 

obtain: 
2/3

0 /mB .   (1.6.48) 

According to (1.6.48) the distribution function (1.6.47), 
describing both a system of stars and a molecular (gas-dust) 
cloud takes the form: 

]2/)([2

2/3

0

222
0),,( yxm

r
ge

m
Azyx . (1.6.49) 
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Now we will consider a molecular (gas-dust) cloud 
exclusively. As mentioned above (see Sections 1.2 and 1.5, in 
particular, the formula (1.2.18)), the mean squared velocity 

__
2v  in the state of thermodynamic equilibrium can be 

expressed through the temperature T of a molecular cloud 
based on molecular kinetic theory [110, 160]. On the other 
hand, the mean square value of velocity in accordance with 
(1.6.45) and (1.6.48) can be calculated as follows: 

])()[(/ 2222/3
0

__
2 wxyumv  

dwdude wxyum ])()[( 222
0  

dwededueyum wmxmyum 2
0

2
0

2
0 )()(22/3

0 )({/

dweduedex wmyumxm 2
0

2
0

2
0 )()(2)(  

}
2

0
2

0
2

0 )()(2 deduedwew xmyumwm

0

2

0

2
3

0

2/3
0

1

2

31
/3

2

mm
dses

m
m s .(1.6.50) 

According to (1.6.50) the mean kinetic energy kE  of a 

particle of mass 0m  is equal: 

1

4

31

2

3

22 0

0

__
2

0

m
mvmEk , (1.6.51a) 

that is, kE  is expressed by the well-known formula of 

molecular kinetic theory: 

2

3 TkE B
k , (1.6.51b) 

where Bk  is the Boltzmann constant. The comparison 
(1.6.51 ) with (1.6.51b) gives the sought expression for the 
constant : 
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TkB2/1 . (1.6.52) 
In turn, the direct substitutions (1.6.48) and (1.6.52) of 
constants B  and  respectively in the formula (1.6.45) gives 
a Maxwellian law of the kind: 

])()[(2/2/3
0v

222
02/),,( wxyuTkm

B
BeTkmwu , (1.6.53) 

and the substitution (1.6.52) in the formula (1.6.49) gives the 
distribution function at spatial coordinates: 

]2/)([/

2/3

0

222
02

),,( yxTkmB
r

gBe
m

TkAzyx , (1.6.54) 

where the constant A  should be determined from the 
normalization condition of the function (1.6.54). 

According to (1.6.3) and (1.6.54), the concentration and 
mass density of a rotating mass of gas can be expressed by the 
formulas [1]: 

]2/)(),,([/
0

222
0),,(),,( yxzyxTkm

r
gBenzyxNzyxn ; (1.6.55) 

]2/)(),,([/
00

222
0),,(),,( yxzyxTkm

r
gBezyxNmzyx . (1.6.56) 

As follows from (1.6.55), (1.6.56), just as in a rotating mass 
of gas (molecular cloud), the surfaces of equal density have 
equations of the form: 

const)(
2

1
),,( 222 yxzyxg , (1.6.57) 

coinciding with Eqs (1.4.21) in Section 1.4, which is the well-
known fact in the theory of gravitational potential and 
hydrodynamics [95, 111]. 

It should be noted [1 pp.371-372], however, that the Jeans 
law of mass density (1.6.56) as well as Eq. (1.6.49): 

 
…which must obtain in the final state gives infinite density at an 
infinite distance from the center except when 0 . Even when 

0 , it gives a finite density at all distances from the center, so 
that the system of stars is of infinite extent in space; it is in fact 
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arranged like a mass of gas in isothermal equilibrium without 
rotation. 
When  is different from zero, the formula shews that there can be 
no steady state until all the stars have been scattered to infinity. 
Actually, as we have seen (Section 1.4 in this monograph6), the 
surfaces of equal density (1.6.57) consist of some closed surfaces 
and some open surfaces. If the density at the last of the closed 
surfaces is quite small, then the stars inside it form an 
approximately permanent system, although there is a continual 
slow loss of stars across this surface. If however the density at the 
last closed surface, and so also at the first open surface, is not quite 
small, there will be a rapid loss across these surfaces, the stars 
streaming off in all directions in their efforts to establish the law of 
density (1.6.57), and as the velocity of many of these is, by formula 
(1.6.44), greater than the velocities of escape 

g2 , a great part of 

the loss is permanent. 
 
Thus, the Jeans theory, which leads to the law of mass 

density of the form (1.6.56), refutes the fact of the long 
existence of a molecular (gas-dust) cloud or star system under 
study (moreover, according to (1.6.45) “in this motion there is 
no star-streaming” [1]). The infinite mass density at the 
periphery of a molecular (gas-dust) rotating cloud is one of 
those difficulties of the Jeans theory concerning the 
impossibility of determining the gravitational potential for 
infinitely spread media (see Section 1.5, [73]). Consequently, 
within the framework of the Jeans theory, in particular, the 
density law of the form (1.6.56), it is impossible to construct a 
consistent model of the mass density distribution of a 
cosmogonical body, therefore, new statistical models of 
cosmogonical bodies forming are needed. 

Such models have been proposed in several works, for 
example, see [161-166]. Following I. Prigogine and G. 
Severne [161], a fundamental quantity in the mean-field 
theory, namely the number density or concentration ),( trn , in 

 
6 The author’s remark and numeration 
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particular, of the gas of stars, called later on the “gravitational 
plasma” has been introduced. The foundation of the mean-
field theory is the collisionless kinetic equation of Vlasov 
[159] looking like the Boltzmann collisionless equation 
(1.6.6*) but in which the self-consistent force of gravitational 
interaction [164] (or the mean-field expression of force [166]) 
is used: 

.r
r

r
),r(

rv)r(),v,r(),(

13

1

1
1

2
0

11111

d
r
rtnm

ddrFttrF

 
 
 

(1.6.58) 

Using (1.6.58) in [164], screening of the Newtonian 
potential of a moving test body in a homogeneous Maxwellian 
gas of gravitating bodies has been investigated based on the 
Vlasov collisionless equation of and Poisson equation. The 
modified potential has been expressed in terms of the test 
particle velocity and the gravitational susceptibility of the 
system. Since all bodies in such a system execute a thermal 
motion, a renormalized gravitational potential in the system 
has been determined by way of averaging the test-body 
potential over the body velocities with the Maxwellian 
distribution function [164]. It has been found that the resultant 
renormalized potential not only decays faster than the 
Newtonian potential but also oscillates with the period on 
order of the Jeans length. Bashkirov and Vityazev have 
supposed that a dark matter allowance in the system gives rise 
to a significant decrease in the oscillation period, 
nevertheless, they have stated that the observable period of 
these oscillations enables us to estimate the Jeans wave 
number for the dark matter [164]. 

Using (1.6.58) as well as the Vlasov collisionless equation 
in [166], it has been noted that the standard results of 
equilibrium statistical physics do not apply at all in the 
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statistical mechanics of “gravitational plasma”. Yves Pomeau 
has also explained that the mean-field theory valid for “short 
time scales” of the order of the orbital period of a star in the 
mean-field of the stellar cluster. He has also pointed out this 
mean-field theory is not the last word, because it leaves 
unspecified some functions and does not truly include 
irreversible effects due to the close interactions between stars 
or to resonant interaction between their orbits. In this 
connection, the concepts of classical statistical mechanics 
behind Boltzmann–Gibbs equilibrium theory cannot be used 
in this field because, fundamentally, the ergodic theory does 
not make sense there so that there is no proper way of 
defining entropy and temperature. The work [167] confirms 
that a classical statistical mechanics of gravitation can not be 
constructed with the Boltzmann–Gibbs distribution because 
the integral needed for building up the partition function 
includes an exponential and thus diverges. In this regard, Y. 
Pomeau has stated that “therefore, the dynamical problem has 
to be solved one way or the other” [166]. 

Thus, although the problem of gravitational self-
condensation of an infinite spread cosmic medium is not 
solved completely within the framework of these modern 
theories, nevertheless, the statistical theory of the initial 
gravitational formation of a cosmogonical body from 
infinitely distributed matter remains highly relevant. 

1.7. On the evolutional equation in the statistical 
mechanics of molecular clouds 

The problems of the theory of gravitational condensation of a 
molecular (gas-dust) cloud are explained in Sections 1.1–1.6, 
among them, are the following [73]: 
– the absence of a clear mechanism of gravitational 

condensation of the infinitely spread matter, including the 
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source of origin and supporting waves of gravitational 
instability; 

–  the absence of analytical expressions of gravitational 
potential and force of gravity for an infinitely distributed 
homogeneous rest medium; 

–  the impossibility of applying exclusively the deterministic 
approach to a correct description of the behavior of a large 
number of particles of a gravitating molecular cloud; 

–  the impossibility of finding a general (but not particular) 
solution of the Jeans equation due to the above difficulty of 
determining the gravitational potential of a molecular (gas-
dust) cloud; 

–  the infinite value of the mass density at the periphery of a 
rotating molecular (gas-dust) cloud according to the Jeans 
theory. 
In this regard, it is necessary to study in more detail the 

evolution of the statistical distribution function describing the 
state of spread matter (in the form of a molecular cloud) in 
space and time [16, 65, 73]. The starting point in the study of 
the evolution of the distribution function is the condition of 
existence of a point of mechanical equilibrium (or relative 
mechanical equilibrium), as a rule, being unstable in time. 
The unstable mechanical equilibrium of a molecular cloud is 
gradually replaced by a non-equilibrium state slowly flowing 
with the time.  

First of all, let us consider an almost immovable molecular 
(gas-dust) cloud in a state of unstable mechanical equilibrium. 
Let ),,,( tzyx  be a probability density function for the 
location of particles in this immovable cloud, describing the 
spatial distribution of particles at some instance 0tt . If we 

choose in a three-dimensional real space 3  some fixed point 
with coordinates ),,( zyx , then near this point we can 
determine the ensemble of particles in a small region of space 
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dxdydz , whose the number is currently determined by the 
distribution function  multiplied by dxdydz  and by N  (the 
total number of particles in the cloud). However, due to their 
interactions, after a time interval t , these same particles 
already occupy a position zzyyxx ,, . Since the 
number of observable particles of the ensemble is fixed, 
because we do not consider birth and death process for 
particles in the time interval t , this proves the correctness of 
the following equality [73]: 

.),,,(

),,,(

0

0

dxdydztzyxN
dxdydzttzzyyxxN

  
(1.7.1) 

Indeed, as already noted in Section 1.6, equation (1.7.1) is 
true because the same ensemble of particles is considered all 
the time (see (1.6.2) and (1.6.5)). 

Further, under the assumption that an initial evolution of 
the molecular (gas-dust) cloud is caused by a slow process of 
gravitational tightening (contraction) of its local domains of 
spread matter (parts of this molecular cloud) [16, 73], the 
changed distribution function near the point ),,( zyx  in the 

time interval t  from 0t  to tt0  is described by 

),,,( 0 ttzzyyxx . Since this function describes 

a physical process of gravitational contraction, then it is 
differentiable, and therefore it can be expanded into a Taylor 
series in a vicinity of the point ),,,( 0tzyx  [16, 65, 

73]:
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For the convenience of further considerations, let us put the 
point ),,( zyx  to the origin of a frame of reference and 
investigate the space-time behavior of  in the case of very 

small distances 222 )()()( zyxr from the origin of 

coordinates. Due to the homogeneity and isotropy of space, 

we suppose that 222 )()()( zyx , i.e. 22 )(
3

1
)( rx . 

Taking into account these assumptions, the relation (1.7.2) 
becomes [16, 73]: 

...)(
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1

3

),,,(),3,3,3(
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2
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),,,(,,,(),,,(),,,(

00

000

0000

tzyxtzyxtzyx

tzyxtzyxtzyxtzyx

zyx
r

t
tzyx

r

tzyxttrzryrx

 (1.7.3) 

Due to the condition of existence of a point of 
equilibrium, the function  has an extremum in the origin of 
coordinates, therefore: 

,0),,,(),,,(),,,( 000 tzyxtzyxtzyx zyx
 (1.7.4) 

and, consequently, the relation (1.7.3) takes the form [16, 65, 
73]:  

...)(
3

1

),,,(),3,3,3(

),,,(
22

),,,(

00

00 tzyxtzyx r
t

t

tzyxttrzryrx
 (1.7.5) 

As far as 1)( 2r  and 1t , we are restricted only by 
terms of the first and second order of smallness concerning 

t  and r  on the right-hand side of Eq. (1.7.5). Moreover, 
since the same ensemble of particles is considered, then 
according to Eq. (1.7.1) we find that:  
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),3,3,3( 0 ttrzryrx    

),,,( 0tzyx .                                   (1.7.6) 

Taking into account Eq. (1.7.6) the relation (1.7.5) becomes: 

0
)(

3

1
),,,(

2
2

),,,( 00 tzyxtzyx t
r

t
. (1.7.7) 

Strict equality in (1.7.7) is attained when 0r  and 
0t : 

 0
3

)(
lim ),,,(

2
2

0
0

),,,( 00 tzyx
t
rtzyx t

r
t

. (1.7.8) 

If there exists the limit in Eq. (1.7.8) then we need to find it 
[16, 73]: 

G
t

r

t
r 3

)(
lim

2

0
0

, (1.7.9) 

and considering formally v
t
r

t
r

0
0

lim  as a certain velocity of 

microscopic movement of particles, we can write (1.7.9) as 
follows [16, 73]: 

rv
3

1
G . (1.7.10) 

Let us note that the physical meaning of the gravitational 
contraction coefficient G  (1.7.10) will be clarified later (see 
Chapter 4). Taking into account (1.7.9), (1.7.10), the equation 
(1.7.8) becomes the following: 

),,,(
2

),,,( 00 tzyxtzyxt
G . (1.7.11) 

Because of the arbitrariness of the choice of the point of 
origin of coordinates and the reference time, it is obvious that 
equation (1.7.11) is valid not only for a fixed 
point ),,,( 0tzyx but also for any point ),,,( tzyx  [16, 47, 65, 

73]: 
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2G
t

. (1.7.12) 

In this regard, without loss of generality, we consider Eq. 
(1.7.12) simply as an anti-diffusion equation or an evolutional 
equation of a slow-flowing gravitational condensation 
(tightening) [16, 47, 48, 65, 73]. The evolutional equation 
(1.7.12) describing the Gauss–Markov process results from 
the Chapman–Kolmogorov equation in its limiting case when, 
following I.Prigogine [134], “between neighboring points 
there occur very quick jumps ( 0t ) for very small 
distances ( 0r )”, and the coefficient G  being defined by 
Eq. (1.7.9). 

Now let us consider a moving (for example, rotating) 
molecular cloud in its gravitational field which is in a state of 
relative mechanical equilibrium. In this case, the probability 
density  of particle detection in this molecular is a function 
of not only the spatial coordinates zyx ,,  and time t  but also 
the velocity projections wu ,,  in the Cartesian coordinate 
system, respectively, i.e. ),,,,,,( twuzyx . The origin 

of a gravitational field with a potential g  and strength 

ga  as well as the velocity ),,(v wu  and, 

respectively, momentum v0mp  or angular momentum 

[ ]L r p ) of particles leads to reducing the role of slow-
flowing anti-diffusion processes in gravitational condensation 
entirely (since processes in the gravitational field result 
quickly enough). In this connection, the time evolution of the 
distribution function ),,,,,,( twuzyx  from the state of 
relative mechanical equilibrium should be considered at 
infinitely small intervals dt . In other words, instead of Eq. 
(1.7.2) we consider the expansion of a function 

),,,,,,( twuzyx  in a Taylor series of the form: 
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dt
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uwdtzdtyudtx ggg

wdt
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dt
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udt
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...dt
t

dt
zw

dt
y

dt
xu

ggg          (1.7.13) 

Since the same ensemble of particles is considered all the 
time, then by analogy with Eq. (1.7.1) the following equality 
is true: 

,,,,,,( dt
z

wdt
y

dt
x

uwdtzdtyudtxN ggg

dwdxdydzdudtwuzyxNdwdxdydzduddtt ),,,,,,() .  (1.7.14) 
whence it immediately follows that: 

),,,,,,( dttdt
z

wdt
y

dt
x

uwdtzdtyudtx ggg  

(1.7.15) 
),,,,,,( twuzyx . 

If we are restricted only by the first-order terms of smallness 
in the series (1.7.13) and take into account Eq. (1.7.15), we 
can transform Eq. (1.7.13) to the Jeans equation (1.6.6): 

0
twzyuxz

w
yx

u ggg  (1.7.16) 

Both equations (1.7.12) and (1.7.16) describe different 
stages of the evolution of a molecular cloud. Consequently, 
there is some more general evolutionary equation [16, 65, 73] 
which generalizes the derived evolutional equation (1.7.12) 
and the Jeans equation (1.7.16): 

uxz
w

yx
u

t
g  

02G
wzy

gg .           (1.7.17) 
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In vector notation, the generalized evolutionary equation 
(1.7.17) has the form [16, 65, 73]: 

0G
v

v 2
gt

, (1.7.18) 

where ),,(v wu . As follows directly from Eq. (1.7.18), in 
the absence of the particle velocity )0v(  of the molecular 
cloud, equation (1.7.18) coincides with the evolutional 
equation (1.7.12), and in the presence of velocity )0v( , the 
Jeans equation (1.7.17 ) is a special case of Eq. (1.7.18), since 
the contribution of the second-order term 2G  on the left-
hand side of this evolutionary equation is negligible compared 

to first-order terms v  and gv
, i.e.  

2G gv
v .  

Conclusion and comments 

This chapter is devoted to a review of the problems of the 
origin of the initial gravitational condensation (tightening) of 
spread cosmic matter and finding a way to their possible 
solution. Sections 1.1–1.6 described the main problems of the 
theory of gravitational condensation and the theory of 
gravitational instability applied to the molecular (gas-dust) 
cloud, namely: 

 the problem of the formation of a center of spread 
cosmic matter under its initial gravitational 
condensation; 

 the absence of a clear mechanism of gravitational 
condensation of infinitely distributed matter, including 
the source of origin and supporting waves of 
gravitational instability; 
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 the absence of analytical expressions of gravitational 
potential and force of gravity for an infinitely 
distributed homogeneous rest medium (including the 
mechanism for the origin of a gravitational field in such 
media); 

 the impossibility of applying exclusively the 
deterministic approach to a correct description of the 
behavior of a large number of particles of a gravitating 
molecular cloud; 

 the impossibility of finding a general, and not a 
particular solution of the Jeans equation due to the 
difficulty of determining the analytical expression for 
the gravitational potential of molecular cloud; 

 the infinite value of the mass density at the periphery of 
a rotating molecular cloud according to the Jeans 
theory. 

In Section 1.7, the anti-diffusion equation (1.7.12) was 
derived, that is, an evolutional equation of a slow-flowing 
gravitational condensation (tightening) of a molecular cloud 
in a state of unstable mechanical equilibrium [16, 47, 48, 65, 
73]. Assuming that the evolution of a molecular (gas-dust) 
cloud is due to the extremely slow process of gravitational 
tightening of local domains of spread matter (for example, 
parts of a molecular cloud) [16], the anti-diffusion equation 
(1.7.12) describes the initial (first) stage of its evolution. As 
shown in Section 1.7, the second stage of the evolution of a 
molecular (gas-dust) cloud, being in a state of relative 
mechanical equilibrium in its gravitational field, obeys the 
Jeans equation (1.7.16) [1 p. 366–348, 93]. Thus, both 
Eq. (1.7.12) and Eq. (1.7.16) are evolutionary equations 
describing different stages of the evolution of a molecular 
cloud. 

In this regard, many of the above-mentioned problems of 
the theory of gravitational condensation and the theory of the 
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gravitational instability of the molecular (gas-dust) cloud are 
removed if we take into account the initial evolutional 
equation (1.7.12) along with the traditional Jeans equation 
(1.7.16). For this reason, the more general equation (1.7.17) of 
the evolution of a molecular cloud is proposed in Section 1.7, 
which generalizes the evolutional equations (1.7.12) and 
(1.7.16) (in vector notation, the generalized evolutionary 
equation has the form (1.7.18)) [16, 65, 73]). Obviously, in 
the absence of velocities )0v(  of movement of particles in 
a molecular (gas-dust) cloud, Eq. (1.7.18) coincides with the 
evolutional equation (1.7.12), and in the presence of velocities 

)0v( , the evolutional equation of Jeans (1.7.16) is a special 
case of Eq. (1.7.18). 

Thus, the introduction of the anti-diffusion equation 
(1.7.12) describing the initial stage of the evolution of a 
molecular (gas-dust) cloud, gives us a foundation to a 
systematic and consistent study of statistical models of the 
gravitational formation of cosmogonical bodies. 
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THE STATISTICAL MODEL OF INITIAL 

GRAVITATIONAL INTERACTIONS OF 

PARTICLES IN A MOLECULAR CLOUD 
 
 
 

This chapter discusses the model of the initial gravitational 
condensation of an isolated interstellar cloud. As noted in 
Section 1.5 of Chapter 1, the galactic interstellar cloud 
complexes represent the concentration of gas-dust clouds with 
a wide variety of masses, densities, and temperatures. Dark 
clouds have very low temperatures (only K10T ) with a 

small concentration of particles (about 51 1010n  particles 
per 1 cm3) and an insignificant quantity of dust-particles 
(approximately %1  of the mass of the gaseous substance of a 
cloud). The masses of such clouds vary from SuncM M  to 

4
Sun10cM M where SunM  is the mass of the Sun. Since 

molecules of 2 , , and other compounds were found in 
these clouds they are called molecular clouds [10], especially 
because they are based on molecular hydrogen 2. 

According to astrophysical observations, giant cold 
molecular clouds are approximately in a state of virial 
equilibrium (see details in Section 1.2), that is, the 
gravitational binding energy of such a cloud is balanced by 
the kinetic energy of the molecules forming the cloud. Any 
perturbation of a molecular cloud can violate this state of 
equilibrium which ultimately leads to the star formation 
process. As noted in Section 1.5, examples of such 
disturbances are spiral density waves inside galaxies, shock 
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waves from supernova explosions, as well as a cloud coming 
nearer to or colliding with another molecular cloud. However, 
apart from their dependence on the type of perturbation source 
in the case of the large intensity of perturbation, the forces of 
gravitational interactions can be greater than the forces due to 
thermal kinetic energy inside some part of a molecular cloud 
(see the definition of Jeans’ critical mass (1.5.26), (1.5.28), 
and respective comments). As a result of gas compression of a 
giant molecular cloud, a protostar is formed in the interstellar 
medium. The protostellar phase is an early stage in the 
process of star formation beginning with the formation of a 
condensed core in a molecular cloud. 

In Chapter 1, the numerous difficulties for theoretical 
justification of the initial gravitational contraction of cosmic 
matter were noted, especially in what concerns the 
impossibility of the gravitational potential finding for an 
infinitely distributed homogeneous medium as well as the 
lack of a clear understanding of the nature of emergence of 
the gravitational instability waves in a molecular cloud. 
Nevertheless, Section 1.7 showed a possible way to resolve 
these difficulties and contradictions using the slowly evolving 
(anti-diffusion) gravitational condensation model (see Eq. 
(1.7.12) and Ref. [16, 47, 65–68, 73]). In this regard, such a 
scenario is entirely possible when the anti-diffusion 
condensation of a part of a molecular cloud predetermines the 
beginning of its further gravitational compression forming a 
new body from an infinitely distributed medium and, thereby, 
eliminating contradictions relative to the definition of 
gravitational potential based on the Poisson equation (I.2) (see 
also Eq. (1.1.41) in Section 1.1). 

Thus, the aim of this chapter is to develop a statistical 
model of the initial gravitational interaction of particles in a 
molecular cloud, in particular, to find the distribution function 
of a great number of interacting particles in space [45, 46]. 
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Really, since the discovery by Newton of the Universal 
Gravitation Law [80], and later the creation by Einstein of 
general relativity (GR) [81, 168, 169] the interest in this area 
of research has not lessened, as demonstrated by the great 
number of works dedicated to it. In spite of the considerable 
successes of GR, the nature of the gravitational interaction has 
not been completely revealed, especially in what concerns the 
quantum theory of gravitation. As Stephen Hawking said in 
[170 p.199]:  

 
I think it would be fair to say that we do not yet have a fully 
satisfactory and consistent quantum theory of gravity. 
 

As a consequence, in the 1960s and 1990s, alternative models 
of the gravitation theory were proposed (e.g. the Brance–
Dicke theory [171], the Logunov–Mestvirishvili relativistic 
theory of gravity [172–174], the Nicolis–Prigogine 
cosmological model [135], the Nottale scale relativistic theory 
[175, 176], and others). The area of research within the 
framework of the developed statistical theory of the formation 
of cosmogonical bodies [16, 45–71] includes the Newtonian 
theory of gravity and particularly the Newtonian quantum 
theory of gravity to investigate an isolated cold molecular 
cloud. 

2.1. The derivation of a function of particle distribution in 
space based on the statistical model of a molecular cloud 

Let us consider the main statements of the statistical theory of 
gravity [16, 45–71] beginning from the derivation of the 
distribution function of particles in a space filled in a 
homogeneous and isotropic dust-gaseous nebula representing 
a molecular cloud. In other words, the question is about the 
distribution of molecules in space. The statistical aspect of the 
problem results from the fact that the body being considered, 
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consisting of the gaseous matter, is a system containing a 
large number of molecules (or atoms) interacting among 
themselves by oscillation in a cosmic vacuum. In 
microphysics, the cosmic vacuum represents a ground 
energetic state of quantum fields, and its experimental 
manifestation is the Casimir effect [103 p. 1154]. Similar 
oscillations modifying forms of molecule/atom trajectories 
have been considered by Nelson [34, 35] and later on by 
Nottale [175, 176]. We can, therefore, comment on their local 
oscillatory interactions. 

So, let us consider an immovable molecular cloud as a 
system of particles in a state of unstable mechanical 
equilibrium at the initial time moment 0tt . Numerous 

fluctuations of particle concentration caused by their local 
oscillations do not allow us to predict with certainty the 
behavior of the system as a whole. We represent the 
molecular cloud as a gaseous body satisfying the following 
assumptions [16, 45–47, 73]: 

 
1. The gaseous body is considered in a homogeneous and 

isotropic space. 
2. The gaseous body under consideration is homogeneous 

in its chemical structure, that is, it consists of N  
identical particles with the same mass 0m . 

3. The gaseous body is isolated, that is, it is not subject to 
the influence of external fields or other bodies. 

4. The gaseous body is isothermal and has a low 
temperature (as a rule K10T ), besides TTdeg  

where 3/2
0

2
deg )/( nkmhT B is a degeneration 

temperature [110], n  is a concentration of particles, h  
is the Planck constant, Bk  is the Boltzmann constant. 
5.  The initial process of the oscillating interaction of 

particles is slow flowing with time. 
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Thus, all directions in space are considered to be equally 
valid, that is, an isotropic space is dealt with. A gaseous body 
consisting of N  similar particles of mass 0m  is placed within 

it. Inside it, let us choose some spatial coordinates and a 
direction in space. If we choose the finite solid angle dO  we 
can state that the number of particles sited at finite distances 
in the direction within dO  is equal to 

4

dO
N

dN
, (2.1.1) 

hence 

4

dONdN . (2.1.2) 

Formula (2.1.2) states the particle distribution in the 
direction r  in space. To calculate the solid angle in (2.1.2) 
we consider the direction of the angles within d,  and 

d,  into a sphere of radius r . Then, according to Fig. 
2.1, the solid angle “cuts” on the sphere the area element 

ddrdS sin2  whence 

dd
r
dSdO sin

2
, (2.1.3) 

where  is an azimuth angle and  is a polar angle. 
Substituting (2.1.3) in (2.1.2) we obtain the number of 
particles the radius-vectors of which have the directions close 
to the given direction [136]: 

4

sin
,

ddNdN . (2.1.4) 

Now we are interested in the following: how many 
particles have radius-vectors in a certain interval near the 
given radius-vector r ? This question is about the distribution 
of particles in space. 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

150

 

Figure 2.1. The scheme of calculating the solid angle describing direction 
inside azimuth and polar angular intervals  

The statistical aspect of this problem results from the fact 
that numerous fluctuations of particle concentration caused by 
their local interactions do not allow us to predict with 
certainty the behavior of this system. Therefore, we can 
develop a statistical model similar to the Maxwell velocity 
distribution of particles [110, 136] for describing the behavior 
of the system consisting of N  particles of mass 0m . 

Let a radius-vector r  with coordinates ),,( zyx  be chosen 
in a three-dimensional space. If in the gaseous body there are 
N  particles, then xdN  of them have coordinates in the 

interval ],[ dxxx , and ydN  and zdN  have coordinates in the 

intervals ],[ dyyy  and ],[ dzzz  respectively at a given 
instant of time. The probabilities of any particle having 
coordinates in the above-mentioned intervals are equal to: 

dxx
N

dNdp x
x ; dyy

N
dN

dp y
y ;  
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dzz
N

dNdp z
z , (2.1.5) 

where x , y  and z  are one-dimensional probability 
densities, that is, shares of particles whose coordinates belong 
to the elementary intervals close to x , y , and z  respectively 
[16, 45, 46]. 

Let us introduce a three-dimensional distribution 
characteristic, that is, a volume density of probability: 

dzdydxzyx
N

dN
dp zyx

zyx ,,,,
,, . (2.1.6) 

Taking into account the condition of homogeneous and 
isotropic space with a gaseous body, the volume density of 
probability has to depend on the value of rr  only, that is, 

rzyx ,,  where 222 zyxr . Hence, Eq. (2.1.6) 

takes the form [45, 46]: 
dzdydxrdp zyx ,, . (2.1.7) 

On the other hand, a particle has all the three given 
coordinates independent of each other. Then, according to the 
theorem of complex event probability we have: 

dzdydxzyxdpdpdpdp zyxzyx ,, . (2.1.8) 
Comparing Eq. (2.1.7) with Eq. (2.1.8), we obtain the 
factorization rule for a probability volume density function 
[45, 46]: 

rzyx . (2.1.9) 
Proceeding from Eq. (2.1.9) one can define , , , and  
analogously to the scheme formulated in deducing the 
Maxwell molecule velocity distribution [110, 136]. Indeed, 
differentiating r  as a composite function (with respect to 
x ) we represent the functional equation (2.1.9) as a 
differential one [16, 45]: 
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x
rrzyx . (2.1.10) 

It is not difficult to see that 

r
xxzyx

x
r

2
2

1 2/1222 . (2.1.11) 

With provision for Eq. (2.1.11) let us divide Eq. (2.1.10) by 
Eq. (2.1.9): 

r
x

r
r

x
x

, 

whence we obtain: 

rr
r

xx
x

. (2.1.12 ) 

Similarly, when differentiating r  relative to y  and z  one 
can write down that 

rr
r

yy
y

; (2.1.12b) 

rr
r

zz
z

. (2.1.12c) 

Since in Eqs (2.1.12 )–(2.1.12c) the right-hand parts are the 
same, the left-hand ones are equal to each other: 

zz
z

yy
y

xx
x

. 

These equalities persist when  is some constant (its physical 
sense is to be defined below). Hence, for example, it follows 
that 

x
x
x

. 

Integrating both parts of this equality we obtain the form of a 
function  satisfying Eq. (2.1.9): 

2/2xeCx , 
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where C is an integration constant. Similar expressions can be 
written down for y  and z . The normalization condition 

of the probability density 1dxx  results in the integral 

convergence which only fulfills with 0 . Moreover, the 
parameter 0  because from physical reasoning it is clear 
that under the increase of x  the share of particles is to 
decrease due to gravitation in accord with the formula 
obtained. Using the normalization condition one can find the 
integration constant 2/12/C as well as the desired 
function: 

2

2

2

x

ex . (2.1.13) 

Since the expressions for y  and z  have a form similar 
to (2.1.13), it is not difficult, according to (2.1.9), to write 
down an expression for the probability volume density 
function [45, 46]: 

2

2

23

2

r
er . (2.1.14) 

Thus, according to Eqs (2.1.14) and (2.1.6) the probability of 
a particle having coordinates in the intervals close to zyx ,,  is 
equal to: 

dzdydxe
N

dN
dp

rzyx
zyx

2

2

23
,,

,, 2
. (2.1.15) 

Now let us find the probability of a value r  being confined 
between r  and drr  for any particle: 

drrf
N

dNdp r
r , (2.1.16) 

where rf  is to be a probability density. In spherical 
coordinates, the volume of the spherical layer at distance r  

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

154

from the center of coordinates (see Fig. 2.1) is equal 
to drr 24 . It is not difficult to see from Eq. (2.1.16) that 

drrrdpr
24 . (2.1.17) 

It follows from Eqs (2.1.14), (2.1.16), and (2.1.17) that the 
share of particles being at distances close to r  is equal to  

22

23
2

2

2
44 rerrrf

r
. (2.1.18) 

According to (2.1.16) and (2.1.18), the share of particles 
being at distances close to r  is equal to  

drre
N

dN r
r 22

2
3

2

2
4 . (2.1.19) 

We note this relationship, in its form, resembles completely 
the Maxwell molecule velocity distribution law if in Eq. 
(2.1.19) r  is replaced by v . 

As follows from Eqs (2.1.4), (2.1.19), and the complex 
event probability theorem, the share of particles being at 
distances close to r  at a solid angle close to O  is equal to 
[45, 46]: 

N
dN

N
dN

N
dN rr ,,,   

23 2
22

1
4 sin

2 4

r
e r dr d d   

.sin
2

22

23 2

dddrre
r

 (2.1.20) 

 
Relationship (2.1.20) describes the distribution of particles 
according to the distance from the center and to the direction 
in space in the spherical coordinates ,r  and . 

Thus, following Eqs (2.1.18) and (2.1.19), the share of 
particles at distances 21 rrr  from the center is equal to: 
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.
2

1

21

r

r

rrr drrf
N

N
 (2.1.21) 

To reveal the character of distribution we shall investigate the 
function )(rf .  

 From the normalization condition, it follows that the area 
under the curve )(rf  is finite. According to (2.1.18) at small 
values of r  this function )(rf  increases, whereas at large 
r  it diminishes abruptly. Consequently, )(rf  has a 
maximum (see Fig. 2.2) when 

0)2(
2

4
)( 32

23 2

rre
dr

rdf r
, 

 

 
Figure 2.2. The probability density function of finding particles positioned 
at distances r  from the center of masses  

whence it follows that the most probable distance (where 
there is the greatest number of particles in its neighborhood) 
is determined by the formula [45]: 

2
prr . (2.1.22) 

On the other hand, from (2.1.22) it is not difficult to express 
the parameter : 
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2

2

prr
. (2.1.23) 

Taking into account (2.1.23) the probability density can be 
written as follows: 

22

3

24
)( prrr

pr

e
r
rrf . (2.1.24) 

Now we can also calculate the average distance of particles 
from the origin of coordinates: 

0

0 )( drrfr
N

rdN
r

r

. 
(2.1.25) 

Substituting relationship (2.1.19) into (2.1.25) we obtain: 

0

23
23 2

2

4 drerr
r

. (2.1.26) 

Performing the substitution sr
21

2
 we can transform 

(2.1.26) to the form [45]: 

2
2

24

0

3
21

2

dsesr s . (2.1.27) 

Comparing (2.1.27) with (2.1.22) one can see that 

.
2

prrr  (2.1.28) 

It follows from (2.1.28) that the average distance is 
2

 

times larger than the most probable one. Let us calculate the 
root-mean-square distance [45]: 

.
3

2

4
)(

21

2

0

4
2321

0

2
__
2

2

drerdrrfrrr
r

sq  (2.1.29) 
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From the comparison of (2.1.22), (2.1.27), and (2.1.29) it is 
not difficult to see that prsq rrr . However, the main 

conclusion from the foregoing is the fact that particles, under 
the influence of their interactions, concentrate at the distance 
const

 from the center of masses, that is, into the volume 

23
2

3

4
prV . 

2.2. The distribution of mass density as a result  
of the initial gravitational interaction of particles  

in a molecular cloud 

Let us consider the relation (2.1.20) describing the 
distribution density of particles which are at distances close to 
r  with angles close to  and . Taking into account that an 
elementary volume in spherical coordinates is 

drddrdV sin2  we can transform (2.1.20) into: 

.
2

2

2

23
,, dVe

N
dN rr  (2.2.1) 

Now let us rewrite Eq. (2.2.1) as follows: 

.
2

2

2

23
,, rr eN

dV
dN

 (2.2.2) 

The value ,,,, / rr ndVdN  is a local concentration of 

particles near a point with coordinates ,,r . Considering 
this we have: 

.
2

2

2

23
r

eNrn  (2.2.3) 
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As seen from (2.2.3), the concentration of particles does not 
depend on directions in space characterized by angles  and 

 but changes depending on distance r  only. 
If all the particles are alike and have mass 0m  (see the 

assumption 2) then, by multiplying both sides of relation 
(2.2.3) by 0m , one obtains [45, 46]: 

,
22

22

2

23

2

23

0

rr
eMeNmr  (2.2.4) 

where rnmr 0  is a mass density of substance consisting 
of the particles and NmM 0   is a mass of the gaseous body 
composed of these particles. By denoting 

2/3
0 2/M the expression (2.2.4) is written down as 

follows:  
2

2
0

r
er , (2.2.5) 

where  is the abovementioned positive parameter, and the 

value 0  is written as 
0

0 V
M  when 

3

0 /2/2 2
3

V  

or concerning (2.1.22) 0  can be rewritten down in the 

form
prV

M
3

4
0  with 3

3

4
prpr rV . It is evident from 

(2.2.5) that r  is a diminishing function with a maximum in 
the point 0r  (Fig. 2.3). 
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Figure 2.3. The mass density of a gaseous body as a function of distance r  

 

Indeed, from the equation 01 22
02

2 2

re
dr

rd r
 

one finds the point of inflection of the function r  [46]: 

2

1
*

prr
r . (2.2.6) 

As appears from the relation (2.2.5) and Fig. 2.3, under the 
influence of oscillatory interactions of particles, there arises a 
substance mass density inhomogeneous along the radial 
coordinate r . The greatest mass density is concentrated in the 
interval *,0 r ,  where /1*r  is a point of the mass 
density bending, outside of which it decreases quickly 
(Fig. 2.3). For example, at the distance prrr 2  from the 

center the mass density decreases in comparison with that in 
the center 552/ 4

0 erpr  times. This means that at 

distances greater than prr2  the density of particles is 

insignificant. 
In such a way, under the action of their own oscillatory 

interactions as well as originating gravitational forces, a great 
number of particles are forming a sphere-like gaseous body 
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(see Fig. 2.4) whose mass density is uniform in all directions 
at the same distance from the center of the mass [45, 46]. In 
this connection, we interpret local oscillatory particle 
interactions as the initial gravitational interactions of 
particles.  

 
Figure 2.4.  The graphic representation of a sphere-like gaseous body 
formed by a collection of interacting particles 

There is a critical (threshold) value c that if c then a 

gravitational field arises in the sphere-like gaseous body [16, 
59, 65]. Because a mass density value strictly depends on  
in the formula (2.2.5) this positive parameter defines a 
measure of gravitational interactions of particles in a gaseous 
body. It is, therefore, called the parameter of gravitational 
condensation [16, 47]. As also follows from (2.2.5), the iso-
surface of mass density (isostere) for such a gaseous cloud is a 
sphere. Let us note that because of Rr  ~* , where R  is the 
mean radius of a gaseous body, then 2/1 ~ R  is a very small 
positive parameter of gravitational condensation. As a mean 
radius R of a forming sphere-like gaseous body can also be 
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choosing the most probable distance *2 rrpr  
close to 

which there is the greatest number of particles [45, 46, 73].  
Thus, we can speak of the process of the gravitational 

forming of a sphere-like gaseous body whose core is nearly a 
solid *rr  while the shell is gaseous prrr 2 . Indeed, the 

snow mass density (200 kg/m3) is higher than that of water 
vapor (0.484 kg/m3) by about 400 times [177]: a similar 
decrease of density in the case of the sphere-like gaseous 
body is observed with the increase of distance from its center 
about prrr 6  ( 4046/ 6

0 erpr times). 

Comparing Figs. 2.2 and 2.3, we can see that though 
particles concentrate near the most probable distance prr , 

nevertheless, the maximum mass density is at 0  r . In fact, 
by associating formulas (2.1.14) and (2.2.4) one can easily see 
that 

rMr , (2.2.7) 
where r  is a volume probability density function having a 

maximum at 0 r  (like the function r ). Moreover, from 
the normalization condition of the volume probability density: 

V

dVr 1, (2.2.8) 

it follows that formula (2.2.7) can be transformed into the 
well-known relation: 

V V

MdVrMdVr . 

Let us note that within the framework of the developed 
statistical model of initial gravitational particle interaction this 
work considers both a gaseous protostellar (in particular, 
presolar) nebula (a molecular cloud) and a gas-dust 
protoplanetary cloud as gravitating sphere-like gaseous 
bodies with different masses and sizes respectively [16]. If we 
start from the conception for forming a sphere-like gaseous 
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body as the protostar (in particular, the proto-sun) inside a 
protostellar (presolar) nebula then the derived distribution 
function of particles, as well as the mass density of this 
immovable gaseous body, characterizes the first stage of 
evolution: from a protostellar molecular cloud (the presolar 
nebula) to a forming core of protostar (the proto-sun) together 
with its shell as a gas-dust protoplanetary cloud (the solar 
nebula). Here we note again that Rr  ~* , where R  is a radius 
of a forming protostar (the proto-sun), and 2/1 ~ R  
respectively.  

As mentioned by Cameron [10], using radio observations, 
and later the infrared from IRAS data, there has been in recent 
years a great deal of progress in understanding how stars are 
generally formed in dense molecular clouds. In particular, he 
wrote: 

 
Detailed studies of dense molecular clouds have shown that spread 
throughout them, with some tendency for local clustering, are a 
large number of “cores”, in which the local gas density is typically 
about 30 times higher than in the average part of the cloud (where 
it may typically be about 103 molecules cm-3). ... These cores have 

masses usually within a factor of a few of about 1 Sun .M [10 p. 443] 

 
Using the proposed statistical model it is not difficult to see 
that the mass density (2.2.5) of a sphere-like body decreases 
in )(/0 r = 30 times on a distance *6.2 rr  from its center 

(here /1*r in accordance with (2.2.6)).  

It is interesting to note, under this condition ( *6.2 rr ), 
that Kuiper’s famous hypothesis [28] about the mass of the 
protoplanetary cloud: 

Sun   0.1protopl. cloudM M  

is also true. In fact, for a sphere-like body with mass density 
(2.2.5) from the condition [16]: 
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MdV
bV

9.0 , (2.2.9) 

where M is a mass of a protostellar (presolar) molecular 
cloud, it follows directly the relation: 

,9.0
2

0

2/22/3 2
br

r drer  

which after the change of variables rs takes the form 
[16, 73]: 

2/9.0
0

2/2 2
bs

s dses , (2.2.10) 

where bb rs respectively. The numerical calculation of 

the integral (2.2.10) gives us the value 5.2bs  corresponding 

to the desired distance *5.2 rr  which satisfies Cameron’s 
condition on the mass density decreasing 30 times. Thus, the 
derived distribution function of particles, as well as the mass 
density of a sphere-like gaseous body, describe the first 
(protostellar) stage of evolution: from a presolar molecular 
cloud to a forming core (the proto-sun) together with its shell 
(the solar nebula).   

Now let us consider briefly the following question: how is 
the mass density relation (2.2.5) correlated with other known 
cosmogonical models of mass density? In this connection, we 
call our attention to the Jeans discussion of special models 
(see §228, p.250 in [1]): 

 
Leaving the realm of general principles, we now turn to a 
discussion of the behaviour of particular models, conforming to 
special laws of compressibility.   There are, of course, an infinite 
variety of arrangements of compressible matter possible, while the 
full discussion of even a single case presents a problem of 
considerable difficulty and complexity... 
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Compressibility of matter necessarily results in variations of 
density in the compressible mass, and the greater the 
compressibility of the matter, the greater these variations of density 
will be... 

In a sense, this problem formed a limiting case of the problem of 
the motion of a compressible mass. At the other extreme, there will 
be another limiting case in which the compressibility is so great 
that infinite variations of density may be expected. Mathematically 
this limiting case may be specified by the condition that the density 
is infinite or zero at different places. Physically, this limiting case 
proves not to be so artificial as its mathematical specification might 
lead us to suppose. 

 
In particular, the complete law of density obtained by Darwin 
and others [1, 178] states: 

 
In  a  mass of gas  at rest with the temperature uniform throughout 
(isothermal equilibrium), the density at great distances from the 
center falls off as 2/1 r ...: 

2

2

0 r
ar , (2.2.11) 

so that, when viewed from a very great distance, the density may be 
regarded as infinite at the center and zero everywhere else. The 
total mass is, however, infinite, so that a finite mass of gas in 
isothermal equilibrium will be of zero density everywhere. [1] 

 
Similarly, for a mass of gas in adiabatic equilibrium with the 
ratio of the specific heat of gas Vp cc /  equal to 5

11 , the law 

of density first given by Schuster [1, 179] is: 

2/5220 /1
1
ar

r . (2.2.12) 

Again, when this mass of gas is viewed from a sufficient distance, 
the value of becomes infinite at the center and zero everywhere 

else. The same is true for any value of from 1 to 5
11 . The mass is 

infinite when
5
11 but becomes finite when 5

11 . [1] 
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The relation (2.2.12) is also known as the law of mass density 
decreasing of “degree 5/2” [106]. 

This same model, in which the density is infinite or very 
great over a point or small concentrated area but zero 
everywhere else, has been largely utilized by Roche in his 
research on cosmogony [180], and was suitably called 
“Roche’s model” [1 p.251]:   

 
Roche interpreted it physically as referring to a small and intensely 
dense solid nucleus surrounded by an atmosphere of negligible 
density. In Roche’s model, the whole of the mass is supposed 
concentrated at the center; in this respect, it differs from a mass of 
gas in isothermal equilibrium, although giving a faithful 
representation of an adiabatic mass for which 

5
11 . 

 
Let us show that the proposed law of mass density 

distribution (2.2.5) generalizes the well-known laws of 
Darwin, Schuster, and Roche (see Section 1.4). For this we 
present the parameter of gravitational compression  in the 
form: 

2/2 ak , (2.2.13) 
where k and 2a are some parameters. Immediate substitution 
of (2.2.13) into (2.2.5) gives the following formula: 

karrak
rak

ee
er

2222

22

/

0

)/(

0)/(
0 . (2.2.14) 

Taking into account that the parameter 1  for real 
cosmogonical bodies following (2.2.6) and, on the contrary, 
the parameter 2a  is very large concerning (2.2.13): 12a , 
we can represent the exponent in the denominator of the ratio 
(2.2.14) by two terms of the Maclaurin series: 

.1
2

2
/ 22

a
re ar  (2.2.15) 

Substituting (2.2.15) into (2.2.14) we obtain the following 
expression for the mass density: 
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.
/1

1
22

2

0220 k

k

k ra
a

ar
r  (2.2.16) 

The relation (2.2.16) generalizes both the Schuster law 
(2.2.12) when 2/5k and the Darwin law (2.2.11) under the 

condition that 1k and a new value 22 raR  defines the 
above-mentioned “sufficient distance” [1]. 

So, the derived formula (2.2.5) of mass density in the 
particular case gives the law (2.2.16), in turn generalizing the 
Darwin law and the Schuster law of “degree 5/2”. Because of 
the very fast exponential decay of function in (2.2.5), it is 
clear that the proposed law of mass distribution in a sphere-
like gaseous body also generalizes the well-known Roche 
model.  

Thus, the mass distribution formula (2.2.5) obtained within 
the framework of statistical theory is just a common one 
allowing it to be used for analyzing the processes of formation 
and the evolution of both protostellar molecular clouds 
(protostars) and gas-dust protoplanetary clouds (as well as 
protoplanets). 

2.3. The critical (threshold) value of mass density  
and gravitational condensation parameter 

According to the Jeans theory (see Section 1.3 in Chapter 
1), in a gravitating continuous medium, the speed of a 
“heavy” sound c~  is less than the usual speed of sound 

ddpc /  and using (1.3.20) it is expressed by the formula: 

/~ 22cc . (2.3.1) 

Accordingly, using the formulas (1.3.19) and (2.3.1), the 
frequency ~  of “heavy” sound is equal to  

4)/2(~)/2(~ 22cc . (2.3.2) 
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Taking into account formulas (2.3.1) and (2.3.2), Jeans 
suggested that with increasing wavelength of perturbations to 
the value of the critical wavelength c  (1.3.21) the speed of 

perturbation propagation c~  tends to zero as well as the 
frequency of perturbations ~ , and they then become 
imaginary which leads to an increase of gravitational 
instability and, as a result, to the gravitational tightening of 
the gaseous substance [1]. According to (1.3.21) the critical 
value of the wavelength c  (when 0~c  and 0~ ) is 

determined by the formula: 
/cc .  (2.3.3) 

However, in his theory, Jeans did not answer the two 
essential questions: Why can the perturbation wavelength 
increase with the time? What is the source (or mechanism) of 
the amplification of gravitational perturbations?  

On the contrary, the statistical theory of initial gravitational 
interactions shows that (due to the initial gravitational 
interactions of particles) the mass density of a molecular 
cloud evolves from the almost uniform distribution law 
(uniform mass density) to the Gaussian mass distribution law 
(see Sections 2.1, 2.2 and (2.2.5)): 

2

2
0

r
er , (2.3.4) 

where 2/3
0 )2/(M and  is a parameter of 

gravitational condensation of a forming sphere-like gaseous 
body that can depend on the time, that is, )(t . 

Indeed, if in the initial state of a molecular (gas-dust) cloud 
0 , then according to (2.3.4) the mass density becomes 

homogeneous: 0  as it was originally assumed. Although 

the mechanism and model of the initial gravitational 
interaction of particles will be discussed in detail in 
subsequent chapters of this monograph (see Chapters 4 and 
5), here we note that the elementary premises to justify the 
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evolutionary process of a slow-flowing gravitational 
condensation have been given in Section 1.7 under derivation 
of the anti-diffusion equation (1.7.12) and analyzing 
evolutionary equations (1.7.17) and (1.7.18) of the statistical 
mechanics of a molecular cloud (see also [16, 73]). 

 Thus, unlike the Jeans theory in the framework of the 
developed theory of initial particle interactions, the main 
reason for the speed and frequency of disturbances first 
becoming zero ( 0~c , 0~ ) and then imaginary is the 

existence of a critical (threshold) mass density value c [73]. 

So, due to the evolutionary process of initial gravitational 
particle interactions in a certain part (usually at the geometric 
center) of a molecular cloud, the critical mass density value 

c  is reached when 0~c  and 0~ . According to (2.3.1) 

and (2.3.2) it means that 
22 / cc  

whence the critical mass density value immediately follows: 
22 /cc . (2.3.5a) 

Moreover, according to the foregoing, the wavelength of the 
disturbances  is assumed to be constant c . In turn, this 

means that cc c /2  , so that the formula (2.3.5a) takes 

the form: 

.
4

2
c

c  (2.3.5b) 

Let us note that the relation (2.3.5b) defines the critical 
frequency cc 2 leading to the gravitational instability 

in accord with the formula (1.3.25) (compare with (3.1.26)). 
Taking into account that the mass density (2.3.4) uniquely 

depends on the gravitational condensation parameter  it is 
quite possible to determine the critical value of the parameter 

c  when the initial particle interactions within the process of 
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anti-diffusion are sharply amplified and replaced by 
gravitational compression due to an originating gravitational 
field. Initially, when an anti-diffusion process arises, the 
parameter  is very small, that is, 0 . It then increases to 
a certain critical value c  (see details in Section 5.2 or works 

[16, 47, 65]), so that a core of a sphere-like gaseous body with 
a radius R  begins to form. Taking into account that 

2/1 ~ Rc  we also find that 1c . In this regard, near the 

center of a sphere-like gaseous body being formed 

12/2rce  at 0c , that is, ,0c and the formula 

(2.3.5b) takes the form: 

42

22/3

ccM . (2.3.6) 

Using the relation (2.3.6) it is easy to estimate the desired 
critical value of the gravitational condensation parameter: 

3/23/2

3/4

~
M
c

c , (2.3.7a) 

which we can also express more exactly as follows: 
3/223/1

2 M
c

c . (2.3.7b) 

Thus, during the formation of the core of a sphere-like 
gaseous body (when the gravitational condensation parameter 
reaches a certain critical value c ) wave gravitational 

perturbations that had previously freely propagated in a 
gaseous substance cease to propagate due to their deceleration 
in an increased gravitational field and a partial reflection of 
these waves from a spherical surface of the isostere of mass 
density bending. According to the formula (2.2.6) an equation 
of the critical isostere of mass density bending is the 
following: 
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3/123/126/1
* )/(~)/()/2(/1)( ccccc MMrR . (2.3.8) 

Because the frequency of these perturbations (2.3.2) 
becomes imaginary it makes it possible to change the wave 
mode of propagation of initial gravitational disturbances to an 
aperiodic mode of their amplification [1]. In this connection, a 
sphere with a radius cR ~  becomes a peculiar spherical 
resonator of gravitational oscillations [73]. Thus, in the 
framework of the statistical theory of initial gravitational 
interactions, the Jeans criterion (see Section 1.3) has acquired 
a new meaning.  

Let us note that the stage of the initial anti-diffusion 
process can last long enough while an intensity of initial 
gravitational interactions of particles (characterized by the 
parameter ) gradually increases up to the value c  defined 
by the formula (2.3.7a). Obviously, at the stage of the anti-
diffusion process, global coherent (consistent) gravitational 
interactions of particles do not occur (although local ones can 
take place). The Newtonian gravitational constant, therefore, 

 is assumed to be zero and that, in turn, leads to equalities 
cc~  and ~  in accordance with the formulas (2.3.1) and 

(2.3.2). 
Using (2.3.1) and (2.3.4) we can estimate a dependence of 

the speed of “heavy” sound c~ on the gravitational 
condensation parameter  for which we calculate the 
following derivatives: 

ccd
cd

~
1

2/

)/(

2

1~ 2

22

2

; (2.3.9a) 

22

22
0

20
2

2/~
1

2

~~ rr
ere

d
d

cd
d

d
cd

d
cd

 

22

2
0

2
2

2/3

2/12

2)2(2

3
~2
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ereM
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.
3

~4
2

2

r
c

 (2.3.9b) 

As follows from (2.3.9b), the extreme (minimal) value of the 
speed of “heavy” sound depending on  is reached when 

.
3

2r
 (2.3.10) 

According to (2.1.29) the condition (2.3.10) (when the wave 
disturbances are damped) is fulfilled only in the case of 

sqrr .  (2.3.11) 
Thus, the speed of gravitational perturbations attains its 
minimum, that is, the zero speed when sqrr . So, the wave 

disturbances attenuate on isostere of the root-mean-square 
distance (due to their deceleration in the formed gravitational 
field of the main mass of sphere-like gaseous body). 

2.4. The strength and potential of the gravitational  
field of a sphere-like gaseous body formed by a  

collection of interacting particles 

As mentioned in Sections 2.2 and 2.3, there are the critical 
(threshold) values of mass density c  (2.3.5 , b) and the 

gravitational condensation parameter c  (2.3.7 , b) when a 

weak gravitational field arises in a sphere-like gaseous body 
that is forming. 

Supposing c  let us calculate the characteristics of the 

gravitational field produced by a collection of interacting 
particles in the form of a sphere-like gaseous body. We shall 
use the gravitational field equation in nonrelativistic 
mechanics written down in the form of Poisson equation [99, 
100] (see also Eq. (1.1.41)): 

42
g , (2.4.1) 
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where 2
 
is the Laplace operator, 2211 /kgmN1067.6  is 

the Newtonian gravitational constant, g  is a gravitational 

field potential,  is a body mass density. 
Taking into account that following (2.2.5) the mass density 

2/
0

2rer  is a function of distance r  alone in Eq. 

(2.1.4) the gravitational potential does not depend on a 
direction in space for a sphere-like gaseous body. In 
compliance with this fact, we consider only the radial part of 
the Laplacian in the spherical system of coordinates, so that 
Eq. (2.1.4) becomes the following [16, 45, 46, 65, 73]: 

,4
1 2

2
0

2
2

rg e
dr

rd
r

dr
d

r
 (2.4.2) 

whence 

.4
2

22
0

2
rg er

dr
d

r
dr
d

 (2.4.3) 

Integrating Eq. (2.4.3) over r  one obtains: 

2
0

22

0

2

4
r

dxex

dr
rd

r x

g . 
 

(2.4.4) 

On the other hand, the derivative 
dr

rd g  determines the 

gradient value: 

ggrada . (2.4.5) 
Moreover, the gradient is also termed the strength of the 
gravitational field [100]. Indeed, the gradient expression in 
spherical coordinates (under the mentioned 

condition 0gg ) transforms into 
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.grad
r
r

dr
rd

e
dr

rd
rra g

r
g

g  (2.4.6) 

Resulting from (2.4.4)–(2.4.6) the strength of the gravitational 
field produced by a collection of interacting particles is 
expressed in the following relation [45, 46]: 

.4
2

0

22

0

2

r
r

r

dxex
ra

r x

 

 
 

(2.4.7) 

The strength (2.4.7) determines the field of accelerations 
acquired by bodies under the influence of the gravitational 
field produced by a collection of particles. As seen from 
(2.4.7), the vector of the gravitational field strength is in the 
opposite direction to vector r , that is, it is directed to the 
center of masses of a sphere-like gaseous body. Further, we 
shall be interested in the strength value (acceleration of 
bodies) [45, 46]: 

,4
2

0

22

0

2

r

dxex
ra

r x

 
(2.4.8a) 

which, taking into account that 2/3
0 2/M , is 

presented as follows [45, 46]: 

2/erf22
r

r
Mra , (2.4.8b) 

where 2/erf2 r  is a nonelementary function of the type: 
x

s dsesx
0

2
2

24
)(erf . The tables of special distribution 

probabilities can be used for calculating )(erf2 x , in particular, 
the table of the error function )erf(x  [128, 136]. Thus, we 
shall use two formulas, (2.4.8a) and (2.4.8b), for calculating 
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the strength value, the former being convenient for analysis, 
the latter for numerical calculations. 

According to Newton’s second law, the acceleration (the 
gravitational field strength) being known, the force acting in 
this field on a body of mass  m  is equal to 

rmramF gg grad . (2.4.9) 

In accordance with (2.4.8a) and (2.4.8b) the gravitation force 
value is determined using the following relations [45, 46]: 

2
0

22

0

2

4
r

dxex
mF

r x

g , 
 

(2.4.10a) 

2/erf22
r

r
MmFg . (2.4.10b) 

The relations thus obtained, (2.4.10a) and (2.4.10b), need 
to be compared with the results of classical physics. 
According to the well-known universal gravitation law of 
Newton [80], two-point bodies, material points, or two 
spherical bodies, attract to each other with the force equal to 

2r
MmFg , (2.4.11) 

where 
 is the Newtonian gravitational constant, 

M  and m  are masses of interacting particles (spherical 
bodies), and 
r  is a distance between their mass centers. 
Let, as before, M  be the mass of a sphere-like gaseous 

body formed by a collection of interacting particles, and m  be 
the mass of some particle (or a spherical body). We assume 
that they are at a distance prrr 2  from each other. Let r  

increase infinitely. Then from the foregoing, it follows that 
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1
4

2/erflim
0

2
2

2

dsesr s

r
. (2.4.12) 

On account of (2.4.12) with large r  the formula (2.4.10b) 
coincides with (2.4.11), that is, at infinitely large distances, 
r , the gravitational interaction forces tend to zero just as 

2/1 r . Similarly, in the case of large r  the gravitational field 
strength value (2.4.8b) will take the form: 

2r
Mra . (2.4.13) 

Now let us consider another case, a limited one of 
(2.4.8a,b), with small r . It is known [100] that the strength 
value inside a homogeneous sphere of constant density 0  is 
equal to: 

rra 03

4
. (2.4.14) 

In the case of small r , the function 22

2
1

2

xe
x

 is in the 

subintegral expression in (2.4.8a). Because of this formula 
(2.4.8 ) transforms into 

.
3

4103

1

4
2

1

4 0
2

53

02
0

22

0 r
r

rr

r

dxxx
ra

r

 
 

(2.4.15) 

In (2.4.15) values greater than the second order of smallness 
of r  have been ignored. Thus, formulas (2.4.15) and (2.4.14) 
coincide. As follows from them, 0)(ra  with 0r , that is, 
there is no field in the center of the body. 

In this way, the relation obtained, (2.4.8a) (or (2.4.8b)), for 
the strength of gravitational field of a sphere-like gaseous 
body, the body having been formed from a large number of 
interacting particles, includes the known results of (2.4.13) 
and (2.4.14) as particular cases with r  values large and small, 
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respectively. It should be noted that classical formulas 
(2.4.13) and (2.4.14) can not be used if there is no preliminary 
information about the value r . Indeed, according to (2.4.14) 

0ra  when 0r , whereas according to (2.4.13) 

ra  when 0r , which is absurd. On the contrary, 

according to (2.4.13) 0ra  with r . At the same time, 

according to (2.4.14), ra  with r . It makes no 

sense. It is obvious that (2.4.14) is valid for a small r  only, 
while (2.4.13) is only for a large one. But in the case of 
medium-size r -s we should use the formulas obtained, 
(2.4.8a) or (2.4.8b); these show that the relations (2.4.13) and 
(2.4.14) conform just as solutions are “sewn together” at 
domain boundaries in mathematical physics problems. 

As an example let us consider the plotted dependence [177] 
of gravity acceleration g  on the distance r  to the center of 
the Earth (Fig. 2.5). As seen from this figure, the function 

)(rg  maximum is reached when Rr  is the Earth’s radius. 
As pointed out above, the relation (2.4.8a) (or (2.4.8b)) 
includes (2.4.13) and (2.4.14) in the cases of large and small 
r , and even medium r , that is, the relation obtained can be 
used directly, and it does not require any agreement of results 
with different r .  

 

 

Figure 2.5. The gravity acceleration dependence on the distance r  to the 
Earth’s center diagram (R is a mean radius of the Earth) 
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Let us investigate the type of dependence of field strength 
)(raa  according to (2.4.8a, b). As mentioned above, since 
0)(ra  both with 0r  and with r , the function )(ra  

has a maximum which is determined by the following 
equation: 

0
1

4
0

22
20

2r x
dxex

rdr
d

dr
rda

. (2.4.16) 

Hence it is not difficult to see that 
r rx

erdxex
0

2
3

22
22

2
. (2.4.17) 

To find maxr we have to differentiate the integral equation 

(2.4.17): 

rererer
rrr 222

2
3

2222

22

3
. (2.4.18) 

It follows from (2.4.18) (58) that 

*max

1 rr . (2.4.19) 

Comparing (2.4.19) with (2.2.6) one can see that the strength 
maximum of a gravitational field is reached at the point of 
mass density bending (Fig. 2.6). The course of the plotted 

)(ra  dependence in Fig. 2.6 resembles that of )(rg  in Fig. 2.5 
obtained in classical theory. 
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Figure 2.6. The sphere-like gaseous body’s gravitational field strength 
dependence on distance r diagram 

In such a way, a mass density overfall of a sphere-like 
gaseous body gives rise to a maximum value of the 
gravitational field strength produced by this body. It should be 
noted that the maximum value of the distribution function is 
reached when *2rrpr . 

Now let us return to the formula (2.4.4) and calculate the 
gravitational potential [45, 46]: 

r x

g Cdrdxex
r

r
0

22
20

21
4 , (2.4.20) 

where  is an integration constant defined from the condition 
that the potential is equal to zero on the infinity: 0g . 

To simplify (2.4.20) we can transform the indefinite integral 
based on the integration formula by parts: 

r rxr x
drer

r
dxex

r
drdxex

r 0

2222

0

22
2

222 111
 

r rx
edxex

r 0

222
22 11

. (2.4.21) 

To simplify the last expression we shall calculate (using 
the integrating rule by parts) the following integral: 
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r r xrx
dxexerdxe

0 0

2222
222

, 

whence 
r r rxx

erdxedxex
0 0

2222
222 11

. (2.4.22) 

Substituting (2.4.22) into (2.4.21) we obtain 
 

2 2 2
2 2 2 2 2

0 0

1 1 1 1 12r r
x x r r

2 x e dx dr e dx r e e
r r

 

2

2

0

1 r
x

e dx
r

. (2.4.23) 

On account of (2.4.23) the formula (2.4.20) takes the form: 
r x

g Cdxe
r

r
0

20 .
4 2

 (2.4.24) 

From the condition 0g  and the formula (2.4.24) we 

obtain: 

.0
1

lim
4

0

20
2r x

r
Cdxe

r
 (2.4.25) 

Since
0 0

2/12/1

2

22

22 2
2

dsedxe sx
 then 

0C . Thus, the gravitational potential is determined by the 
following relation [16, 45, 46]: 

r x

g dxe
r

r
0

20
24 . (2.4.26) 

Using the error function 
x

s dsex
0

22
erf  [128] let us 

transform (2.4.26) into: 
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2/

0

0

2/3

0
g 2/erf

224 r
s r

r
dse

r
r

2

 

.2/erf
M r
r

 (2.4.27) 

Since 12/erflim r
r

 then for large r  the last expression 

turns into  

r
Mrg . (2.4.28) 

Relation (2.4.28), as known from [100], describes the 
gravitational potential of a field produced by one particle (or a 
spherical body) of mass M . However, as noted correctly in 
[100], “potential of its field in the point 0r  turns into 
infinity.” Thus, according to the classical field theory, the 
particle “should have infinite ‘own’ energy and, consequently, 
infinite mass. Physical nonsense of this result shows the main 
principles ... lead to that its applicability should be bounded 
by specific limits” [100 p.121].  

In another way, the situation is as in the case of the 
developed statistical theory of the initial gravitational 
interactions of particles. Indeed, in the case of small r , the 

function 22

2
1

2

re
r

 leads to the transformation of the 

formula (2.4.26) using the designation (2.1.22): 

30

0

20

6

4

2
1

4 rr
r

dxx
r

r
r

g  

.)3/2(2
3

24 2
0

2
0

200 rrr pr  (2.4.29) 

Though, in the expression (2.4.29), values higher than the 
second order of smallness of r  have been ignored. 
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Nevertheless, the gravitational potential in the point 0r  is a 

finite value: 04
)0(g . 

On the other hand, as is known from the classical theory of 
potentials [95, 97], the potential of a sphere at an interior 
point is equal to 

)3(
3

2
)( 22 rRrg , (2.4.30) 

where R  is a radius of the sphere and  is a density of mass. 
Obviously, formulas (2.4.29) and (2.4.30) coincide if prrR  

and 0  (for example, for the Earth as a sphere-like body 

its radius R  can be estimated by prrR ). Moreover, as seen 

from (2.4.29), at small distances from the center ( 0r ), the 
field potential is proportional to the mass density near the 

center 0  and the sphere area of radius *r : *
2

* 4
4 rS . 

Thus, the expression (2.4.29) describes the potential in the 
near zone of the gravitational field while (2.4.28) describes 
that in the remote one. 

2.5. The potential energy of a gravitating  
sphere-like gaseous body 

The potential energy of a particle in a gravitational field is 
equal to its mass multiplied by the potential of the field. The 
potential energy of any distribution of masses is, therefore, 
described by the expression [100]: 

V
gg dVE

2

1
. (2.5.1) 

In the spherical system of coordinates the expression (2.5.1) 
has the form: 
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0

2

0 0

2 sin
2

1 drddrE gg . (2.5.2) 

Since )(r  and )(rgg  are functions independent of 

angle variables  and  then, having done the integration 
over and  in (2.5.2), we obtain: 

0

22 drrrrE gg . (2.5.3) 

Substituting expressions (2.2.5) and (2.4.26) for )(r and 
)(rg  in the (2.5.3) we obtain: 

r

0

2

0

2

2
0

2 228 drdxeerE
xr

g . (2.5.4) 

To calculate gE  we can use the formula of integrating by 

parts in the relation (2.5.4): 

0

2222

0

22

2
0

2

0

2

0

2

2
0

2 188 r xrr xr

g dxeedrdxeerE  

00
2/12

2
0

2

2

2
0

2

0

22
22

22 881 dsedredree srrr
 

2/5
2

02/5

2
0

2

4
2

8
. (2.5.5) 

Taking into account that 
2/3

0 2
M we transform the 

formula (2.5.5) into the following [45, 46]: 

.
2

4
22/5

2
0

MEg  (2.5.6) 

From (2.5.6) it is not difficult to see that 
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.4
4

2

24

2

2 M

E

M

E gg  (2.5.7) 

Since  is proportional to 2
gE , then, although 0gE , the 

parameter .0   
The following distances have been deduced before: 

1
*r  is a point of mass density overfall; 

2
prr  is a most probable distance; 

2
2r  is an average distance; and 

3
sqr  is a root-mean-square distance. 

According to (2.5.6) we can deduce one more distance, that is, 
an effective radius of the body: 

r , (2.5.8) 

close to sqr  in value. On account of (2.5.8) one obtains [45, 

46]: 

r
MEg 2

2

. (2.5.9) 

Now let us introduce some physical value: 

r
k , (2.5.10) 

the measuring unit of which is J/kg2. Substituting (2.5.10) into 
(2.5.9) we obtain: 

2

2MkEg . (2.5.11) 
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According to (2.5.11), value k  is the proportionality 
coefficient between the potential energy and the square of 
body mass. Let us find what k  depends on. We shall use 
formula (2.5.6) transformed on account of the fact that 

*/1 r : 

*

2

2
*

2

*

2

4

1

2 S
M

r

M
r

MEg , (2.5.12) 

where *S  is an area of a sphere of radius *r . Comparing 

(2.5.11) with (2.5.12) one can see that 

*

2

S
k . (2.5.13) 

From (2.5.13) one can see that the smaller the sphere area on 
which the overfall of body mass density occurs, the greater 
the proportionality coefficient between mass and energy. In 
other words, the higher the curvature of the mass density 
overfall sphere, the greater the potential energy with the same 
mass. 

As an example let us consider a homogeneous spherical 
body, a sphere of radius a  and constant mass density. Using 
(2.5.1), it is not difficult to calculate the potential energy of a 
gravitating sphere which is equal to [100]: 

a
mE s

g 5

3 2

, (2.5.14) 

where  m  is a mass of the sphere. From (2.5.14) and (2.5.11) 
it is clear that the proportionality coefficient in the case of the 
sphere is equal to: 

a
k

5

6
. (2.5.15) 

We consider now a gravitating sphere-like gaseous body of 
mass M  and a spherical body of mass  m  and radius a . 
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From the condition of their energies being equal (see relations 
(2.5.9) and (2.5.14)) one obtains: 

a
m

r
M

5

3

2

22

, (2.5.16) 

whence 

a
r

m
M

5

6
2

2

. (2.5.17) 

It follows from (2.5.17) that if, instead of a sphere-like 
gaseous body, one chooses a homogeneous spherical one, 
equivalent to the former both in energy and in mass, then such 
a body must have a radius equal to: 

5

6

5

6 ra . (2.5.18) 

It is quite clear because a sphere-like gaseous body also 
contains particles of its substance outside distance r , that is, 
a spherical body of a larger radius is required for the masses 

 m and M to be equal. 
Let us evaluate the relationship between the potential 

energy of particles, the own potential energy, and the potential 
energy of the interaction of these particles, the mutual 
potential energy. Taking it that particles are spherical bodies 
of mass 0m  and radius 0a , their total own potential energy, 

according to (2.5.14), is equal to 

0

0

5

3

a
MmNEE s

g . (2.5.19) 

On the other hand, the total potential energy of a gravitating 
body is determined by relation (2.5.9). On account of (2.5.9) 
and (2.5.19), the potential energy of the interaction of these 
particles in a sphere-like gaseous body, the mutual potential 
energy, is equal to 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

186

0

0

0

0
int 5

6

25

6

2 ar
NMm

a
m

r
MMEEE g . (2.5.20)

   
One can see from (2.5.20) that the energy of interaction is 
proportional to the mass of the body and to that of the particle. 

Let us consider a single particle of mass 0m  in the 

collective gravitational field of a sphere-like gaseous body of 
mass M  situated at distance r  from the body’s center. We 
now evaluate the potential energy of the interaction of the 
particle with the sphere-like body. It is clear that on part of the 
field the particle is affected by a gravitational force rFg  

which tends to move the particles to the center of masses. 
While at an infinite distance from the center, the potential 
energy of interaction is equal to zero. Therefore, the potential 
energy of a particle situated at distance r  from the center is 
equal (with an accuracy to the sign) to the work done by the 
gravitational force in moving the particle from infinity to the 
given point: 

r

g rdrFrArEint .  (2.5.21) 

On account of (2.4.6) and (2.4.9) the formula (2.5.21) takes 
the form: 

.00

)(

)(

00int

rmrm

dmdr
dr

rd
mrE

ggg

r

g

r
g

 

 
 
 

(2.5.22) 
Using relations (2.5.22) and (2.4.26) one can easily 

calculate the energy of the interaction of a sphere-like gaseous 
body and a particle placed at different distances from the 
center of masses. Since energy depends on the distance at 
which a particle is, and particles themselves are distributed 
over space, one can determine the mean potential energy of 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Statistical Model of Initial Gravitational Interactions  
of Particles in a Molecular Cloud 

187 

interaction of a particle with a sphere-like gaseous body 
formed by a collection of such particles [45, 46]: 

0

0

0

int drrfrmdrrfrEE g . (2.5.23) 

Let us use the relation (2.4.26) for calculating rg ; on 

account of it and (2.1.18) the relation (2.5.23) takes the form: 

drredxe
r

mE r
r

x 22/

2/3

0 0

2/00
22

2
4

14
 

.
2

44

0 0

2/2/
2/3

2/3
00

22
r

rr drdxeerm
 (2.5.24) 

The integral entering the relation (2.5.24) has been calculated 
in (2.5.5), it is equal to 

2

11
2/3

00

2/

0

2/ 222

dredrdxeer r
r

xr . (2.5.25) 

With (2.5.25) the relation (2.5.24) takes the form: 

2

4

2

14 00
2/32/3

2/3
00 m

2
4mE . (2.5.26) 

Substituting 
2/3

0 2
M in (2.5.26) we obtain [45, 46]: 

r
MmMmmE 0000

2

4
. (2.5.27) 

Let dMm0  in (2.5.27). Taking this into account, the 

formula (2.5.27) is transformed into 

r
dMMEd . (2.5.28) 

By integrating both parts of Eq.(2.5.28) we obtain again the 
formula (2.5.9): 
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.
2

2

gE
r

MEd  (2.5.29) 

Thus, according to (2.5.9), (2.5.27), and (2.5.29), the potential 
energy of a gravitating sphere-like gaseous body is only then 
equal to the total mean potential energy of the gravitational 
interaction of particles when these particles have infinitely 
small masses [45, 46, 73]. Indeed, in this case, particles do not 
possess their own gravitational energy because, according to 
(2.5.9) and (2.5.14), it is a value of the second order of 
smallness with respect to dM . In fact, with putting the 
question in this way, we deal with massless particles whose 
gravitational energy is the potential energy of the interactions 
of particles between one another [68]. Further, from (2.5.27) it 
follows that 

E
Mmr 0 , (2.5.30) 

.
2

0
22

0
2

2

Mm
E

Mm
E

 (2.5.31) 

Using the sense of parameter  (defined by (2.5.31)) let us 
investigate the character of distributing particles near distance 
r  depending on the physical values in the formula (2.5.31). 
According to (2.1.22) the most probable distance prr  near 

which one can find the greatest share of particles can be 
calculated using (2.5.31): 

E
Nm

E
Mmrpr

2
00 222

. (2.5.32) 

As prr  is the maximum of the probability density function 

)(rf , then, on account of (2.5.32), the formula (2.1.24) 
becomes [46]: 
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.2
4

2

0
22 /22

3

0

/

3

2
rMm

E
rr

pr

er
Mm

Ee
r
rrf pr  (2.5.33) 

As seen from (2.5.32) and (2.5.33), the type of function )(rf  

is determined by parameters E , 0m , and M  (see Fig.2.7). 

 
Figure 2.7. The diagrams of probability densities as functions of distance 
r depending on the mean potential energy E  of gravitational interaction 
of particles in a sphere-like gaseous body, M  is a mass of the sphere-like 
gaseous body, im0  is a particle mass 

Indeed, according to (2.5.32) the maximum of this function is 
nearer to the origin of coordinates, the greater the mean 
energy of the gravitational interaction E , and the smaller the 
mass of the body M  and mass 0m  of particles the body 

consists of. So, for the two functions )(1 rf  and )(2 rf  in 

Fig. 2.7 the abscissa of the 1
prr  maximum of the former 

function is less than that of the 2
prr  maximum of the latter, if 

21 EE , or 21 MM , or 0201 mm . If the condition 

0201 mm  is valid then the condition 21 MM  is fulfilled 
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automatically provided the two sphere-like gaseous bodies 
under consideration contain the same number of particles N  
(the more so, if in the first body there are fewer of them: 

21 NN ). 
Similar reasoning can also be applied to the function of the 

density distribution of mass )(r . Indeed, substituting (2.5.31) 
into (2.2.5) one obtains [45, 46]: 

2

0 /2
0

rMm
E

er , (2.5.34) 

where
3

0
20

22

1

m
E

M
. Since, according to (2.2.6) the 

bending point for )(r  is equal to 2/* prrr , then, taking 

into account Eq. (2.5.32), the mass density of a sphere-like 
gaseous body is more concentrated near the center of masses, 
the greater E  and the smaller M  and 0m [45, 46]. 

Thus, a sphere-like gaseous body has a “strict” (distinct) 
outline if the potential energy of gravitational interaction of 
the body particles is sufficiently great and the body mass itself 
and its particle masses are relatively small [45, 46, 73]. 
Ordinary macroscopic bodies possess distinct outlines due to 
their relatively small masses and to sufficiently great energies 
of the interaction of particles the bodies consist of. On the 
contrary, giant cosmic objects (star formations, nebulae, etc.) 
have fuzzy contours because of their huge masses and the 
enormous number of particles forming them [45, 46, 73].  

2.6. The probability interpretation of physical  
values describing the gravitational interaction of particles 

in a sphere-like gaseous body 

In dealing with the statistical model of the gravitational 
interaction of particles it has been supposed that: 
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 particles are isolated from other bodies and exterior 
fields; 

 particles are at sufficiently low temperatures; 
 time is an almost fixed value for slow-flowing processes 

of initial gravitational condensation, that is, the initial 
gravitational interactions are considered in quasi-statics. 

 
Since the statistical model has been taken as the basis of 

describing the gravitational interactions of particles, 
probability functions should be expected to be involved in 
physical values as well. Indeed, as follows from (2.2.7), the 
mass density of a sphere-like gaseous body is proportional to 
the volume probability density: 

rMr , 

where 14
0

2drrrdVr
V

. The gravitational field 

strength value according to (2.4.8 ), on account of 

22

2/3 2

2
4 rerf

r
 and 

2/3

0 2
M , is written 

down as follows [73]: 

rxP
r
Mdxxf

r
Mdxex

r
ra

rr x

2
0

2
0

22
20

21
4 , (2.6.1) 

where rxP  is a probability of share of particles being at 
distances r  from the mass center of a sphere-like gaseous 
body. As results from (2.6.1), the strength (acceleration) is 
directly proportional to the probability of finding particles in 
the interval rx0 , that is, with 0r  the strength 0)(ra  
because 0)0(P . At large distances r  the probability 

1xP and 0/lim 2rMa
r

. 

On account of (2.6.1), the gravitational force value is equal 
to  

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

192

rxP
r
mMrmarFg 2

. (2.6.2) 

In other words, the gravitational force is a force due to the 
probability of the greatest number of particles being in a given 
point of space [45, 73]. 

Taking into account that
2/3

0 2
M  and also the type 

of function r , the volume probability density according to 
(2.1.14), the formula (2.4.26) for the gravitational potential is 
transformed into: 

rr x

g dxx
r
Mdxe

r
Mr

00

2

2/3
4

2

4 2

. (2.6.3) 

On the other hand, the gravitational potential (2.4.20), on 
account of 0C  and notations for rf  and 0 , takes the 
form [73]: 

.
1

2
drrxP

r
Mrg  (2.6.4) 

Using the integration by parts formula the relation (2.6.4) 
becomes: 

.
1

11

drrf
r

MrxP
r
M

drrxP
dr
d

r
rxP

r
Mrg

 

If one substitutes the type of function rf  in the last addend 
then, on account of the formula (2.1.14), it is written as 
follows: 

drreMdrrf
r

M
r 2

2

2/3

2
4

1
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rMeM r 4

2
2

2

4 2

2

2/3

. 
(2.6.5) 

Using the simple formula (2.2.7), the relation (2.6.5) takes the 
form: 

rdrrf
r

M 41
. (2.6.6) 

Thus, it follows from (2.6.4)–(2.6.6) that 

.
44 rMrxP

r
MrrxP

r
Mrg  (2.6.7) 

Comparing (2.6.3) with (2.6.7) one obtains the expressions for 
the gravitational potential [45, 46, 73]: 

.
44

0

r

g dxx
r
MrMrxP

r
Mr  (2.6.8) 

Thus, all the values depending on r : mass density r ; 
gravitational strength ra ; gravitational force rFg ; and 

gravitational potential )(rg  are of probability nature due, 

possibly, to the fact that a sphere-like gaseous body formed 
under the influence of initial gravitational interactions does 
not have distinctly outlined borders, but rather fuzzy borders. 
It is the absence of clearly visible covering of such a body at 
small distances from its iso-surface of mass density (isostere) 

*rr  which can only be seen, with a certain amount of truth, 
at considerable distances that result in the probability 
character of gravitational values. 

 Therefore, it is the application of averaged gravitational 
values, for example, a mean-field strength value: 

0

drrfraa , (2.6.9) 

that makes it possible to exclude the probability effect. Now 
let us calculate an average value a  of gravitational field 
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strength. Substituting the formulas (2.1.18) and (2.4.8 ) into 
(2.6.9) and considering the relation (2.4.22) one can find: 

r
xr

rr x

drdxexeM

drredxex
r

a

0

2/2

0

2/32

22

0

2/3

22

0
20

22

22

2/4

2
4

1
4

 

.
2

2

12

0

222

222

0

2/

0

2/
2

0

2

0

2/

0

2/
3

r
r

xr

r
r

xr

eMdrdxeeM

rdedrdxeeM

 

The integral in the curly brackets is calculated because 

0

2

00 2

1 rfrdfrfdrrfrf , 

whence 

.
2

21
2
1

2/
1

10
2
12

2

2

0

2

0

2

0

2/
2

2

2

r
MMMdueM

MdxeMa

u

r
x

 

Thus, an average value 

1
22r

Ma  (2.6.10) 

is equal to the mean strength value of the gravitational field of 
a sphere-like gaseous body. 

As the final result of this section, let us formulate the 
following theorem [73]: 

Theorem 2.1 (an analog of the Newton general theorem in 
statistical interpretation). Spherical layer, bounded by two 
similar and similarly placed concentric spherical surfaces, 
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inside a sphere-like gaseous body, does not exert attraction at 
a point into the internal domain of this layer. 

 
Proof: let us insert inside a sphere-like gaseous body 

(around its center of mass) a spherical layer, bounded by two 
similar and similarly placed concentric spherical surfaces at 
distances R  and the sphere of radius RR  from the mass 
center of a sphere-like gaseous body. As follows from the 
derived formula (2.6.1), the strength is directly proportional to 
the probability of finding particles in the interval rx0 : 

)(),(
2

rxP
r
Mra . (2.6.11) 

Choosing drrR  we can see that the strength at the point 
M  (placed at a distance r  from the mass center) depends on 
all rx  , that is, it does not depend on rR . Consequently, 
the value of gravitational field strength at the point M  
depends exclusively on attractions of mass points belonging 
to the sphere of radius r . Let us choose a new sphere of 
radius RR . According to (2.6.11) the value of gravitational 
field strength at the interior point M of this sphere does not 
depend on attractions of mass points belonging to a spherical 
layer, bounded by two similar concentric spherical surfaces of 
radii R  and RR  respectively. The theorem is proved. 

2.7. The statistical model of gravitation treated from  
the point of view of Einstein’s general relativity 

According to (2.2.5) the distribution law of mass density of 
the sphere-like body in its own gravitational field is 
determined by the relation: 

2/
0

2rer , 
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where 
0

2/3

0 2 V
MM  and 

3
2

0V . Further, we 

assume the following principle of equivalence: the 
distribution of mass in a space of given volume may be 
changed by changing the mass density (with the volume being 
fixed) or by changing, or rather curving the volume (with the 
mass density remaining unchanged) [16, 45, 46]. Following it, 
a nonuniformity of mass density distribution is due to space 
curvature as a result of which the volume of a curved space is 
expressed by the following function [45, 46, 73]: 

2/
0

2reV
r

MV , (2.7.1) 

where 00 /MV  is a volume which would be occupied by a 

body if it possessed constant density and mass equal to that of 
a sphere-like gaseous body. 

As we know [100], the geometric space volume element is 
given in curvilinear coordinates 21,uu , and 3u  not by 

321 dudududV  itself but by the product dVĝ  where ĝ  is 

space metric tensor determinant. 
The sphere-like gaseous body under consideration is 

characterized by a centrally symmetric distribution of 
substance, it produces a gravitational field possessing the 
central symmetry. The centrally symmetric gravitational field 
is also typical of a spherical body, and of a body whose 
particles are in centrally symmetric motion, the velocity of 
every particle being directed along the radius [100]. If one 
uses spherical space coordinates ,r  and  then the 

“centrally symmetric expression” for the interval 2ds  is 
determined within the framework of the GR as follows [100, 
168, 169, 181, 182, 183]: 

22222222 sin dreddrdtceds , (2.7.2) 
where  
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c  is the speed of light, 
t  is time, and 

 and  are some functions of tr, .  
Here the coordinates of the four-dimensional curvilinear space 
are ,0 ctu  321 ,, uuru . It follows from (2.7.2) that 

for metric tensor components other than zero we obtain the 
following expressions: 

sin,,, 2
33

2
221100 rgrgegeg . (2.7.3) 

The space metric, being a particular case of the space-time 
metric (2.7.2), is determined by the expression for spatial 
distance element: 

2222222 sin drdrdredl . (2.7.4) 
The spatial volume element in the metric (2.7.2) or (2.7.4) is 
[100]: 

0
2/2/24 dVedrerdV , (2.7.5) 

where drrdV 2
0 4 . Using the metric tensor values (2.7.3), 

Christoffel symbols kl
i  are calculated, followed by the 

calculation of Ricci tensor components i
kR  [81, 100, 168, 

169, 181, 182, 183]; as a result, Einstein’s equations for the 
centrally symmetric gravitational field have the form [100]: 

22
1

14

1118

rrrr
eT

c
, (2.7.6) 

rrrrr
eT

c
T

c
1

2

1

2

188
2

2

2
3

34
2

24
 

ctctctct
e

rr 2

1

2

1

2

1

2

1
2

2

2

, (2.7.7) 

22
0

04

1118

rrrr
eT

c
, (2.7.8) 
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ctr
eT

c
18 1

04
, (2.7.9) 

where k
iT  are energy-impulse tensor components. Analyzing 

the Einstein equations (2.7.6)–(2.7.9) one can put forward 
some general considerations on the centrally symmetric 
gravitational field inside gravitating masses [100, 183]. It is 
seen from (2.7.8) that with 0r     must also turn into 
zero, at least like 2r ; otherwise, the right-hand side of the 
equation, with 0r , would turn into infinity, that is, 0

0T  

would have in 0r  a singular point [100].  
Because of the positive definiteness of energy 00

0T , it 

follows from (2.7.8) that 

01
18

2
0

04 rr
ee

r
T

c
. (2.7.10a) 

From the condition of the inequality (2.7.10a) being fulfilled 
it follows that 1e , that is, 

0 . (2.7.10b) 
Integrating the Einstein equation (2.7.8) formally, with the 
boundary condition 00r , one obtains [100]: 

,
8

1
0

20
04

r

drrT
rc

e  (2.7.11a) 

whence 

.
8

1ln
0

20
04

r

drrT
rc

 (2.7.11b) 

In the case of static distribution of the substance 0
0T  is an 

energy density, so that the formula (2.7.11a) and (2.7.11b) 
take the form: 

r

drr
rc

e
0

2
4

8
1 ; (2.7.12a) 
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r

drr
rc 0

2
4

8
1ln . (2.7.12b) 

At very large distances r , that is, far from the masses 
producing the field, the space metric is automatically the 
Galilean one: 0,0  [100]. In fact, the energy density 

of the gravitational field 00
0T  with r , so that Eq. 

(2.7.8) becomes the following: 

01
r

ree . (2.7.13a) 

Integrating this Eq. (2.7.13a) we have: 

r
e const

1 , (2.7.13b) 

where the second addend rconst/  within the framework of 
GR is chosen to obtain Newton’s the universal gravitation law 
at large distances [100], that is, to be equal to 

rcMrcr g /)/2()()/2(const/ 22  in the remote zone 

of field of gravitating masses M . Taking into account the 
integration constant 2/2const cM  the formula (2.7.13b) 
becomes [100]: 

2

2
1

rc
Me . (2.7.13c) 

Using (2.7.13c) we can also see that for large r  the space 
metric (2.7.4) is transformed into Schwarzschild’s space 
metric [100,183]: 

2222
2

2 sin
1

ddr

r
r

drdl
g

, 
(2.7.13d) 
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where 
2

2

c
Mrg  is the so-called gravitational radius of the 

body. Comparing (2.7.12a) with (2.7.13c), it is not difficult to 
find 

r r

drr
c

drr
c

M
0 0

2
2

2
2

4
4

. (2.7.14) 

As mentioned above, the spatial volume element in the metric 
(2.7.2) is defined by the formula (2.7.5) within the framework 
of GR, that is, it is equal to drerdV 2/24 . The formula 
(2.7.14) can, therefore, be written as follows [73]: 

dVe
c

drree
c

M
V

r
2/

2
22/2/

2
0

4 . (2.7.15) 

In the case of the initial process of gravitational 
condensation of the cosmogonical body, the energy density of 
gravitating masses  is small enough, so that the uniform 

distribution law of energy density 0  occurs. Since the 

energy density 2
00 c  in GR the formula (2.7.15) takes the 

simple form [73]: 

.2/
0 dVeM

V

 (2.7.16) 

For the same reason, we assume that 10  and the 

value r  is limited by the radius R  of a gravitational 
instability domain (an area of gravitational field forming), that 
is, Rr . In this connection the formula (2.7.12b) goes over 
to the following: 

2
4

0

0

2
4 3

88 r
c

drr
rc

r

, (2.7.17) 

whence under the choice of 4
0 3/8 c  [73] we obtain 

2r . (2.7.18) 
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Substitution of (2.2.18) into (2.2.16) gives the distribution 
function of mass density r  in accordance with the 
following formula obtained within the framework of GR: 

dVeM r

V

2/
0

2

. (2.7.19) 

It coincides absolutely with the function of mass density 
(2.2.5) derived in the statistical theory of the formation of 
cosmogonical bodies [16, 46, 54]. 

Further, let us consider the derivation of the function of 
mass density r  based on the proposed principle of 
equivalence (2.7.1). Indeed, one can obtain the same formula 
(2.7.18) from the comparison of (2.7.1) with (2.7.5). 
Summing up, the formulas (2.7.1), (2.7.5), and (2.7.18) show 
that the expression for the space volume element obtained by 
the statistical model of gravitation and by GR coincide [45, 
46, 54].  

It is easy to see from (2.7.18) that, with 0r , the value 
2r  becomes zero according to the 2r  law, as was 

pointed out in analyzing Einstein’s equations (2.7.6)–(2.7.9). 
It is evident, too, that 00

2
0 rr r  and 02r  

according to the inequality (2.7.10b). Thus, the results 
obtained based on the statistical model of initial gravitation 
agree, on the whole, with those of Einstein GR [16, 45, 46, 
54]. 

At last, let us try to obtain the relations (2.1.14) and (2.2.5) 
from the point of view of GR, jointly with the proposed 
principle of equivalence [16, 45, 54]. According to the 
statistical model, there are a fixed number N of identical 
particles with mass 0m into the sphere-like gaseous body, that 
is, 

const0NmM . 
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Because of the mass of a sphere-like gaseous body is 
constM   then  

0)( VddM . (2.7.20) 
It follows from Eq. (2.7.20) directly that 0dVVd  
whence 

.
V
dVd

 (2.7.21) 

Integrating Eq. (2.7.21) we obtain [16, 54, 73]: 
)()(

00

rV

V

r

V
dVd

 (2.7.22) 

and then  

,
)(

ln
)(

ln
00 V
rVr

 (2.7.23) 

where )0(0  and )0(0 VV . Thus, it follows directly 

from Eqs (2.7.5) and (2.7.18):    

0
2/2/ 2

)0()( VeVerV r . (2.7.24) 

Taking into account Eqs (2.7.23) and (2.7.24) we obtain: 

2/
)(

ln 2

0

rr
, (2.7.25) 

whence the relation (2.2.5) follows immediately (and then 
(2.1.14)) which has been derived already within the 
framework of the statistical model of initial gravity (see 
Sections 2.1 and 2.2). 

2.8. The pressure in a gravitating sphere-like gaseous body 
formed by a collection of interacting particles 

As far back as the 17th century, Sir Isaac Newton in particular 
stressed the role of pressure inside the body in the 
gravitational interaction of particles forming it, since for 
gravitation to result in gathering a substance into separate 
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clots it must overcome the substance pressure as well as 
radiation pressure associated with it [101]. 

Let us consider the sphere-like body formed by the initial 
collective gravitational field of interacting particles as a 
continuous medium (liquid or gaseous). Further, we assume 
that the liquid or gas is in mechanical equilibrium in the 
gravitational field. For a liquid or a gas at rest 0v  the 
Euler equation [94, 111]: 

ap
t

vv
v

 
takes in the form: 

,grad ap  (2.8.1) 
where  

p  is a pressure,  
 is a density,  

a  is a strength of the gravitational field, and 
 is the Hamiltonian. 

Let us derive an equilibrium equation for a very big mass 
of liquid forming a sphere-like body part of which is kept 
together by the forces of gravitation (a star) [94]. Let g  be 

the gravitational potential of a field produced by a sphere-like 
body which satisfies the differential equation in the Poisson 
form in accordance with (2.4.1): 

42
g . (2.8.2) 

According to (2.4.5), the strength of the gravitational field 

gra grad , so that the condition of mechanical 

equilibrium (2.8.1) assumes the form: 

gp gradgrad . (2.8.3) 
Dividing Eq. (2.8.3) by , applying to both its sides the 
operation div and using Eq. (2.8.2), we obtain [94]: 
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4grad
1 pdiv . (2.8.4) 

As was stressed in [94], only mechanical equilibrium is 
dealt with here, the existence of complete thermal equilibrium 
in Eq. (2.8.4) is not presupposed at all. However, it should be 
noted that pressure and density definitely determine the 
temperature at a given point of a liquid. Since density is only 
a function of the radial ordinate r , and pressure (according to 
(2.8.4)) as well, the temperature should be a function of r  
only. Otherwise, with the temperature being different in 
different places of a liquid at the same altitude, mechanical 
equilibrium in it is impossible. Thus, given mechanical 
equilibrium in the gravitational field, density and pressure 
distribution and temperature depend on r  alone. 

If the body does not rotate then in equilibrium it will have 
a spherical form (it also follows from (2.2.5)) and the density 
and pressure distribution in it will be centrally symmetric 
[94]. Under this condition Eq. (2.8.4) written down in the 
spherical coordinates will assume the form: 

4
1 2

2 dr
dpr

dr
d

r
. (2.8.5) 

Taking into account that 2/
0

2rer based on the relation 

(2.2.5) and Eq. (2.8.5) we can obtain: 

2
0

2/2

0

2

4
1

r

dxex

dr
rdp

r

r
x

, 
(2.8.6) 

whence 
r

xr dxexe
rdr

rdp

0

2/22/
2

2
0

221
4 . (2.8.7) 

Integrating (2.8.7) we shall have [47, 49]: 
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r
xr Cdrdxexe

r
rp

0

2/22/
2

2
0

221
4 , (2.8.8) 

where C is an integration constant which can be found from 
the condition that pressure is equal to zero at an infinite 
distance from a sphere-like gaseous body’s center: 0p . 

The integral in (2.8.8) will be calculated using the rule of 
integrating by parts [49]: 

r
xr

r
xr dxexe

r
dxexe

r
dr

0

2/22/

0

2/22/
2

2222 1

drreexedxexe
r

drere
r

drdxexer
r

r
r

xr
r

xr

r
rrxr

22222

2222

0

2/22/

0

2/22/

0

2/22/2/22/

1

11

 

2

0

2/22/

0

2/22/ 22222

2

11 rdedrdxexedxexe
r

r
r

xr
r

xr

22222

2

11

0

2/22/

0

2/22/ r
r

xr
r

xr edrdxexedxexe
r

.         (2.8.9) 

Let us simplify the second integral in the given expression 
(2.8.9) using relation (2.4.22) [47, 73]: 

r
xr

r
xr drdxeedrdxexe

0

2/2/

0

2/22/ 2222 1
 

r
xrrr drdxeedrere

0

2/2/2/2/ 2222 11
 

.
2

1

2

1

2

1 222

2

2

0

2/2
2

r
r

xr edxerde  (2.8.10) 

Substituting (2.8.10) in (2.8.9) we obtain, as a result: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

206

r
xr drdxexe

r 0

2/22/
2

221
 

2 2 2 2 2

2

/2 2 /2 /2

0 0

1 1 1 1

2 2 2

r r
r x x r re x e dx e dx e e

r
 

2222 1

2

11
2

0

2/

0

2/22/ r
r

x
r

xr edxedxexe
r

 (2.8.11) 

For simplifying (2.8.11) we shall again use the relation 
(2.4.22) with provision for which we obtain: 

22222 1

2

1111
2

0

2/2/

0

2/2/ r
r

xr
r

xr edxeerdxee
r

 

22222 1

2

111
2

0

2/

0

2/2/ r
r

xr
r

xr edxeedxee
r

 

2

0

2/

0

2/2/ 222

2

11 r
x

r
xr dxedxee

r
. (2.8.12) 

At last, substituting (2.8.12) into (2.8.8) we obtain an 
expression for pressure [47,73]: 

Cdxedxee
r

rp
r

x
r

xr

2

0

2/

0

2/2/2
0

222

2

11
4  

Cdxee
r

dxe
r

xr
r

x

0

2/2/

0

2/2
0

222

2

11
4 . (2.8.13) 

Considering that 0p  we can determine C : 

0

2/

0

2/2
0

22

2

1
4 dxedxeC xx . (2.8.14) 
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Taking into account that 
2

2

00

2/ 22

dsedxe sx  the 

relation (2.8.14) will be written down in the form: 
2

02
0 22

1
4C . (2.8.15) 

Substituting (2.8.15) in (2.8.13) we shall finally obtain the 
expression for pressure inside a sphere-like gaseous body [47, 
49, 73]: 

2
0

0

2/2/

0

2/2
0

222

2

11
4

r
rr

r
x dxee

r
dxerp  

4

1

2

1
4

0

2/2/

2

0

2/2
0

222
r

xr
r

x dxee
r

dxe . (2.8.16) 

Using the error function 
x

s dsex
0

22
erf  [128] we shall 

transform (2.8.16) into the form: 

4

212

2

1
4

2/

0

2/

2
2/

0

2
0

222
r

sr
r

s dsee
r

dserp  

12/erf
22

2/erf 2/2
2

0
2

re
r

r r . 

With provision for the relation 

2/erf
2/

2 2/2

r
rd

de r , 

we shall finally obtain [47, 73]: 

2/[erf 2
2

0 rrp

].12/erf2/erf
2/

1 ' rr
r

                 (2.8.17) 
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Thus, the formula: 

2/
2

0 rQrp  (2.8.18) 

is valid where 1erf/erf/1erf 2 xdxxdxxxQ . 
Let us investigate the pressure as a function rpp . For 

this we shall find a derivative of p  relative to r , using 
(2.8.16): 

r
xrr dxeere

rdr
rdp

0

2/2/2/
2

2
0

2221
4 . (2.8.19) 

From the condition of extremum, it is not difficult to see that 

0
1 2/

2

2re
r

 with r , 

and also 
r

xr dxeer
0

2/2/ 22

, 

whence 

02/2 2rer  with .0r  
Let us find pressure values at the extremum points 0r  and 
r : 

4
limlim

2

1
40 0

2/

0

2

0

2/

0

2
0

2

2

r

dxe
dxep

r
x

r

r
x

r
 

;4
2

0  (2.8.20) 

4
lim

2

1
4

2/

0

2/

2

0

2/2
0

2

22

r
edxedxep

r

r

xx  
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.0
422

1
4

2

2
0  (2.8.21) 

As follows directly from (2.8.21), the relation is true:

  .)2/1(
4

2

0

2/2

dxe x  (2.8.22) 

Thus, rpp  is a nonnegative function: 0rp , 

because 00max pp  (since 0,00 ) and 

0min pp . 
Let us find the inflection point of the given function, for 

which we shall seek the condition when .0/ 22 drrpd  It is 
not difficult to see from (2.8.19) that 

r
xr

r
xr dxee

r
dxee

rdr
rpd

0

2/2/

0

2/2/
3

2
02

2
2222 12

4

22

2
2

2
rr ee

r
, 

hence the condition of the second derivative being equal to 
zero means that 

2
2/

2
0

2/ 1
12

2
1

1 22

r
e

r
dxe

r
r

r
x  (2.8.23) 

or 

2

1
2

2

2/

0

2/

2

2

r
rr

e

dxe

r

r
x

. 
 

(2.8.24) 

Expressions (2.8.23) and (2.8.24) become identities when 
r  and 0r  because all the functions are nonnegative 

( 12r  and 22r  vanish only at imaginary values of r  
which is impossible since r  is a distance). Consequently, the 
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inflection points coincide with those of maximum and 
minimum of the function rp . 

Thus, the pressure is a monotonically diminishing 
positively defined function of r  (see Fig. 2.8) which 
corresponds to its physical sense completely. 

 

 

Figure 2.8. The graphic dependence of pressure on distance r into a 
sphere-like gaseous body  

It should be noted that in the framework of GR one cannot 
always succeed in getting a pressure function agreeing with its 
physical sense. Thus, Sir A. S. Eddington, considering 
Schwartzschield’s solution of the Einstein equations for a 
homogeneous liquid sphere of radius a , pointed out [183 
p.318–319, 320]: 

Pressure vanishes at ar  and would become negative if we tried to 
extend the solution to the boundary ar . Therefore, a sphere is a 
boundary of a liquid. If one finds it necessary to extend the solution 
to the region outside the sphere, one should proceed from a 
different 2ds  (interval1) which corresponds to the vacuum 
equations…  As long as the dimensions of a sphere are small, this 
difference does not result in great discrepancy; but for big spheres, 
pressure near the center is very large, and both solutions may differ 
(from each other) greatly. It is easily proved that for big spheres 
where 2/19/5a the Schwartzschield solution gives in the 

 
1 The author’s remark (see Section 2.7) 
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central point a negative value for k
iT  (energy-impulse tensor2). 

Therefore, even without reaching the boundary 2/19/8a , the 

solution does not seem to have any physical sense… 

We note that since Schwartzshield’s solution for a sphere 
of the non-compressible liquid has the form 21ln r  
where  is a certain constant, for small r ’s it turns into 

2r  which corresponds completely to the provisions of 
the statistical model proposed [45, 73] (see also Section 2.7). 

2.9. The internal energy of a gravitating  
sphere-like gaseous body  

Let us use (2.9.1) and the formula (2.4.26) for the 
gravitational potential of a sphere-like gaseous body: 

r
x

g dxe
r

r
0

2/0
24

, (2.9.1) 

in order to transform expression (2.8.16) for rp  [47, 73]: 

42

1
4

4
2

0

2/2
0

0

2/2/
2

0
222

r
x

r
xr dxedxee

r
rp

 

2

0

2/

2

0

2/2
0

2/
0

0

2/0

22

22

2

1

2

1
4

4

dxedxe

edxe
r

x
r

x

r
r

x

 

2

0

2/

2

0

2/2
0

22

2 dxedxerr x
r

x
g .(2.9.2) 

 
2 The author’s comment (see Section 2.7) 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

212

Considering that a gravitating sphere-like gaseous body is 
at the temperature close to the absolute zero, that is, at 

0T , the basic thermodynamic relation [94, 110] will 
assume the following form: 

dVpdU g ,     (2.9.3) 

where gdU  is an infinitesimal change of internal gravitational 

energy of a gravitating sphere-like gaseous body. 
Substituting (2.9.2) into (2.9.3) we obtain [47, 73]: 

dVdxedxedVrrdU x
r

x
gg

2

0

2/

2

0

2/2
0

22

2 , 

hence the internal energy of a gravitating sphere-like body is 
equal to 

V

x
r

x

V
gg dVdxedxedVrrU

2

0

2/

2

0

2/2
0

22

2  

21 gg UU . (2.9.4) 

In (2.9.4) the first addend 1gU  is, as we known [100], a 

double of the potential energy of any distribution of masses: 

,
2

1

V
gg dVE  (2.9.5) 

that is, gg EU 21 . In the case of a gravitating sphere-like 

gaseous body for calculating gE  and 2gU  it is relevant to use 

the spherical system of coordinates in which 
dddrrdV sin2 . According to (2.5.6) the potential energy 

of a gravitating sphere-like body [45, 46]: 

.
2

4
22/5

2
0

MEg  (2.9.6) 

Consequently, the addend 1gU  is equal to: 
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.8 2
2/5

2
01 MU g  (2.9.7) 

Let us calculate the second addend in (2.9.4) [47, 49, 73]: 

drddrdxedxeU x
r

x
g sin2 2

0

2

0 0

2

0

2/

2

0

2/2
02

22

 

drdxedxer
r

xx

0

2

0

2/

2

0

2/22
0

2 22

8 . (2.9.8) 

We can calculate the integral in (2.9.8) using the method of 
integrating by parts  [47, 49, 73]: 

drdxedxerU
r

xx
g

0

2

0

2/

2

0

2/22
02

22

8  

0

22

2

0

2/

2

0

2/
3

2
0 3

8
r

xx dxedxer
 

0

2/

0

2/
3

22

2
3

dredxer r
r

x . (2.9.9) 

Let us apply the L’Hospital rule for calculating the first 
addend in braces in (2.9.9): 

0

22

2

0

2/

2

0

2/
3

3

r
xx dxedxer

 

3

2

0

2/

2

0

2/

/13

1
lim

22

r

dxedxe
r

xx

r
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2

0

2/

2

0

2/3

0

22

3

1
lim

r
xx

r
dxedxer  

0
/13

2

3

1
lim

4
0

2/2/ 22

r

dxee
r

xr

r
 

0
9

2
lim

0

2/

2/

4
2

2 dxe
e

r x
rr

.  (2.9.10) 

With provision for (2.9.10) the relation (2.9.9) will assume the 
form  [47, 49, 73]: 

drdxeerU
r

xr
g

0 0

2/2/3
2

0
2

22

3

16
. (2.9.11) 

For calculating (2.9.11) let us use the rule of integrating by 
parts: 

drdxeerU
r

xr
g

0 0

2/2/3
2

0
2

22

3

16
 

r
rx drerdxe

0

2/32/
2

0

0

22

3

16
 

0

2/32/ 22

drdrere rr . (2.9.12) 

To calculate (2.9.12) it is necessary to find the indefinite 
integral placed in round brackets. With this aim we shall use 
the rule of integration by parts for finding the following 
indefinite integral: 

drererdrer rrr 2/32/22/ 222

22

1
, 

hence 
2/22/2/3 222

2
1 rrr erdrerdrer   
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22/2/222/ 211 222

reerdre rrr . (2.9.13) 

Substituting (2.9.13) into (2.9.12) we obtain  [47, 49, 73]: 

0

22

0

2/22/
2

0
2

21

3

16 r
xr

g dxereU  

0

2
2

0

0

2/22/ 2

3

1621 222

drredrere rrr  

00

2
2

0
22 2

3

16 dredrer rr . (2.9.14) 

Using the rule of integration by parts let us express the 
integrals in (2.9.14), one through the other: 

0

2

00

22

0

22

22 drerdrerrerdre rrrr , 

whence 

00

2 22

2

1 dredrer rr . (2.9.15) 

Substituting (2.9.15) into (2.9.14) we obtain  [47, 49, 73]: 

0
2

2
0

0

2
0

2

22

2

5

3

162

2

1

3

16 dredreU rr
g  

2

1

3

401

2

5

3

16
2

2
0

0
2

2
0 2

dse s
 

2/5
2

0

2/52
0

3

2
6

3

20
 (2.9.16) 

As a result, according to (2.9.4) and with provision for 
(2.9.7) and (2.9.16), the internal energy of a gravitating body 
is equal to  [47, 49, 73]: 
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2/5
2

0

2/5
2

021 3

2
68ggg UUU  

2/5
2

0

2/5
2

0 3

4

3

1
1 . (2.9.17) 

Taking into account that 2/3
0 2/M we can transform 

(2.9.17) into the form  [47, 49, 73]: 

2
2/53

2

6

1

23

4 MMU g . (2.9.18) 

It is easy to see from (2.9.18) that 
2

24

2

2

636

M
U

M
U gg . (2.9.19) 

Formula (2.9.19) expresses the dependence of  on the 
internal energy of a gravitating sphere-like body. Similarly to 
(2.5.11), the internal energy can be expressed through the 
value /k  as follows: 

6

2MkU g . (2.9.20) 

The internal energy (2.9.18) in magnitude is less than the 
potential one (2.9.6) of a gravitating sphere-like gaseous 
body: 

362

222 MMMUE gg . (2.9.21) 

Namely, according to (2.9.6) and (2.9.18) the internal energy 
due to the pressure inside a gravitating sphere-like gaseous 
body is three times less than the potential energy of this body: 

3
62

22 MM
U
E

g

g
. (2.9.22) 

Integrating the formula (2.9.3) we obtain: 
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V
g pdVU .  (2.9.23) 

Analogously, if we represent the potential energy gE
 
of a 

gravitating sphere-like gaseous body in the form: 

V
g wdVE , (2.9.24) 

where w  is an energy density of gravitational potential energy 
[47], then as follows from (2.9.22), (2.9.23), and (2.9.24), the 
pressure p  itself is three times less than the gravitational 

potential energy density w  of a sphere-like gaseous body 

[73]. This conclusion about the relationship between p  and 
w  is in complete agreement with the results of Einstein’s GR 
[81, 100] and with the Nicolis–Prigogine cosmological model 
[135 p.322] of the irreversible process of particle formation 
due to gravitational energy, according to which 3/wp . 

2.10. The Jeans mass and the number of particles needed 
for gravitational binding of a sphere-like gaseous body 

In order for a substance bunch to form a gravitationally 
coupled system, it is necessary that its gravitational energy 
exceeds the internal one. The gravitational potential energy of 
a bunch which is a sphere-like gaseous body of mass M  is 
determined by relation (2.9.6), that is, 

r
MEg 2

2

, (2.10.1) 

where r  is an effective radius of a sphere-like gaseous body. 
The internal energy of a sphere-like gaseous body (2.9.17) can 
be expressed through the maximum pressure (2.8.20) and the 
effective radius by the following relation: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

218

3
0

2/3

0 43

4

43

4 rppU g , (2.10.2) 

where )0(0 pp . Consequently, according to the formula 

(1.5.27) (see Section 1.5) the gravitational binding 
(compression) will prevail if 

gg UE , (2.10.3) 

that is, with provision for (2.10.1) and (2.10.2) we have: 
3

0
2

43

4
2/ rprM , 

whence 
4

0
2

43

8 rpM . (2.10.4) 

Taking into account that the maximum density 
32/32/3

0 /12/2/ rMM , it is not difficult to see 

that 
3/1

02

1 Mr . (2.10.5) 

Using (2.10.4) and (2.10.5) we rewrite the condition of 
gravitational tightening in the form: 

3/4

0
0

2

43

2 MpM , 

from where 

2
0

2/3

2/3
0

2/3

43

2 pM . (2.10.6) 

Following formula (1.5.28) from Section 1.5, on the right-
hand side of (2.10.6), the value known in the literature as the 
Jeans mass [101]: 
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22/3

2/3

~
pM J . (2.10.7) 

As noted in Section 1.5 (see (1.5.21a,b), (1.5.22a,b), (1.5.26), 
and (1.5.28)), the Jeans mass is the minimum mass to be 
gravitationally binding at given density and pressure. It is 
caused by the fact that the force of gravitation inside any 
originating substance bunch increases with the increase of the 
bunch size whereas the pressure does not depend on the size 
[101]. Let us note that according to (1.5.16) the average mass 
(1.5.21a) of a gas-dust bunch becomes equal to  

22/3

2/32/32/3

3
~

1
~

ppM c , (2.10.8) 

that is, it practically coincides with the Jeans mass: 

Jc MM 2/3~  in accordance with formulas (2.10.7) and 

(2.10.8). 
Now if we take into account that NmM 0  in (2.10.6) 

then we get: 

0
2

0
2/3

2/3
0

2/3

43

2

m
pN . (2.10.9a) 

From (2.10.9a), up to an insignificant numerical factor, we 
determine the number of particles necessary for the 
gravitational binding estimated by the internal state values 0  

and 0p
 

in the center of a sphere-like gaseous body [73]: 

0
2

0
2/3

2/3
0)0( ~

m
pNJ . (2.10.9b) 

As seen from (2.10.6) and (2.10.9b), for a sphere-like gaseous 
body, the estimations of the Jeans mass or the Jeans number  
can be determined by pressure and density in the center of this 
body. 
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The value )0(
JN will be called the Jeans number depending 

on 0  and
 

0p . Thus, the gravitational binding in a substance 

clot of mass M  (having the number of particles N ) occurs 
with the following condition fulfilled: 

)0(
JMM , 

where )0(
JM  is determined according to (2.10.7) (this 

condition for the same substance being )0(
JNN ). 

On the other hand, it is intuitively comprehensible that any 
sphere-like gaseous body has a mass no less than the Jeans 
mass. Indeed, substituting into (2.10.7) maximum values of 
pressure 0p  and density 0  we obtain [73]: 

2/3
0

2/3

2
0

2/3

2/33
0

2/3

2
0

2/3

2/3
0)0( 4

4/
~

pM J

 
2/3

2/3

2/3

2/32/3

2

4
4

2

1 MM , 

whence 

)0(
2/3

4

2
~ JMM . (2.10.10) 

According to (3.3.10) the mass M of a sphere-like gaseous 
body is 34/2 2/3  times larger than the Jeans mass 

)0(
JM  (or is comparable to it). In the most general case, a 

similar conclusion can be obtained [73]. Indeed, to calculate 
the Jeans mass JM  we use the relations (2.9.6) and (2.9.18) 
under the following condition: 

gg UE , (2.10.11) 

that is, when the gravitational potential energy is compared 
with the internal energy. Under this condition, the process of 
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gravitational tightening (binding) can begin, so that the 
inequality (2.10.3) becomes valid. 

So, according to the condition (2.10.11) and the relations 
(2.10.1) and (2.10.2) we have: 

3
0

2 )]4(3/4[2/ rprM J , 

whence, taking into account the value )0(0 pp  (2.8.20), we 

obtain: 

4
2
02

3

8 rM J . (2.10.12) 

Then, substituting in (2.10.12) the value of the effective 
radius (2.5.8) of the sphere-like gaseous body we obtain the 
equality: 

2
0

3
2

3

8
JM , 

which after substitution of the maximum density value 
2/3

0 2/M  becomes: 

22

3

1 MM J . (2.10.13) 

Obviously, the relation (2.10.13) has been obtained yet in 
accordance with (2.9.22). 

Thus, according to the result obtained (2.10.13), a 
gravitational field is present in a formed sphere-like gaseous 
body, causing a process of gravitational contraction, since the 
mass M of the formed sphere-like body exceeds 3  times the 

Jeans critical mass JM [73]: 

JMM 3 . (2.10.14) 

A comparison of (2.10.10) with (2.10.14) shows that the 
formation of a gravitating sphere-like gaseous body with 
parameters near the center gives a Jeans mass )0(

JM  3 times 

smaller than the Jeans mass JM  formed over the sphere-like 
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body as a whole. As mentioned in Section 2.3, there is a 
critical value c of the gravitational condensation parameter 

defined by the formulas (2.3.7a, b) when the initial 
gravitational interactions of particles within the anti-diffusion 
process are amplified coherently and form a gravitational field 
leading to the gravitational compression of a sphere-like 
gaseous body. According to formulas (2.10.10) and (2.10.14) 
the field gravitational interactions of particles cover not all 
particles, that is, the total mass M of a sphere-like gaseous 

body, but only its part is determined by the Jeans mass JM . 

Moreover, if the particles are chosen near the center of a 
sphere-like gaseous body where the density and pressure are 
maximal, that is, particle interactions are more intense, then 
the Jeans number )0(

JN of particles according to (2.10.9b), and 

therefore the Jeans mass )0(
JM , is about three times less than 

the total number N of particles and, accordingly, the total 
mass M  of a sphere-like gaseous body. On average, the Jeans 

mass JM  (and, therefore, the Jeans number JN ) is 3  times 

smaller than the total mass M  (total number of particles N ) 
of a sphere-like gaseous body according to formula (2.10.14). 

The approximate dimension of a domain of field 
gravitational interactions of particles can be estimated using 
formula (2.3.8). So, near the center of a sphere-like gaseous 
body, the domain of gravitational field interactions (whose 

mass is equal )0(
JM ) is characterized by a sphere of the 

following radius [73]:  
3/126/13/12)0(6/1)0( )3/()/2()/()/2( ccJJ MMR  

3/126/1 )/()9/2( cM . (2.10.15a) 
Inside a sphere-like gaseous body, the domain of field 

gravitational interactions with mass JM is described by a 

sphere of the respective radius [73]: 
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3/126/13/126/1 )3/()/2()/()/2( ccJJ MMR  

.)/()3/2( 3/126/1
cM  (2.10.15b) 

According to (2.3.8), (2.10.15a), and (2.10.15b), the ratio 

of the radii )0(
JR , JR  to the radius cR  shows that the linear 

size of the domain of field gravitational interactions is 3 3  

times smaller (near the center) and 6 3 times smaller (on the 
average) relative to the linear size of the area of the initial 
gravitational interactions of particles of a sphere-like gaseous 
body. 

Consequently, inside the domain of field interactions of 

particles the parameter of gravitational condensation )0(
J  (or 

J ) is higher than inside a sphere-like gaseous body entirely 

(being formed as a result of the initial gravitational 
interactions of particles). In this regard, it is important to 
investigate the equations of the initial gravitational interaction 
of particles (see Chapters 4 and 5) to explain the mechanism 
of the origin of field gravitational interactions inside a sphere-
like gaseous body. As the final result, let us consider the 
following general theorem [73]: 

Theorem 2.2 (the necessary and sufficient conditions of 
mass distribution of an isolated immovable molecular cloud in 
its gravitational field). 

A gravitating isolated immovable molecular cloud is in a 
state of virial equilibrium if and only if its mass density 
distribution satisfies the law: 

2

2
0

r
er , 

Tk
m

B3

4 0 , (2.10.16) 

where 
)0(0 ,  

 is a parameter of gravitational condensation,  
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 and Bk  are the constants of Newton and Boltzmann 
respectively,  

0m  is a mass of a molecule,  
T  is a temperature, and 

 is an initial mass density of an isolated immovable 
molecular cloud. 

 
Proof: first of all, let us derive the mass density distribution 

of particles of an isolated immovable molecular cloud in its 
gravitational field under the condition of virial mechanical 
equilibrium. Under the condition of mechanical (hydrostatic) 
equilibrium of a gas (or liquid) in a field of force, the Euler 
equation (2.8.1) is true. Within the framework of the 
molecular kinetic theory, according to the known Clapeyron–
Mendeleev equation of state of an ideal gas [110, 136] (or the 
Boyle–Charles law [1]), it follows that 

Tnkp B ; (2.10.17a) 

nm0 , (2.10.17b) 

where )(),,( rnzyxnn  is a concentration of molecules of 

an ideal gas and 0m  is a mass of a molecule. Substituting the 

formulas (2.10.17a) and (2.10.17b) into Eq. (2.8.1) we obtain: 

anmTnkB 0)(grad  , (2.10.18) 

where a  is an acceleration, that is, the gravitational field 
strength ggrada . Taking into account that, following 

assumption 4, the molecular cloud is isothermal and has a low 
( K10T ) temperature (being in a state of thermodynamic 
equilibrium) T can be considered as independent on the 
spatial coordinates ),,( zyxr . In this connection, the 
differential operator of the gradient is equal to:  
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r
nTkTnk BB )(grad . (2.10.19) 

Taking into account (2.4.5) and (2.10.19), Eq. (2.10.18) takes 
the form: 

r
nm

r
nTkB

g
0 , (2.10.20a) 

whence  

g0dm
n
dnTkB . (2.10.20b) 

To find the change of the interior gravitational potential 

gd  of an isolated immovable molecular cloud let us use the 

formula (2.4.30) neglecting the exact shape of this cloud 
because the wavefront of arising gravitational perturbations is 
a sphere [95, 97]: 

rdrd g 3

4
, (2.10.21) 

where  is an initial mass density of an immovable 
molecular cloud. Substituting the formula (2.10.21) in 
Eq. (2.10.20b) we obtain: 

rdrm
n
dnTkB 03

4 . (2.10.22) 

Integrating Eq. (2.10.22) we find: 

r

B

n

n

rdr
Tk

m
n
dn

0

0

3

4

0

 (2.10.23a) 

and then  

23

4
ln

2
0

0

r
Tk

m
n
n

B

. (2.7.23b) 
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By denoting 
Tk

m

B3

4 0 , the concentration of molecules of an 

isolated immovable molecular cloud can be written in 
accordance with (2.7.23b): 

2

2
0

r
enrn , 

Tk
m

B3

4 0 . (2.10.24) 

With provision for the relation (2.10.17b), we shall finally 
obtain the formula (2.10.16) of mass density for an isolated 
immovable molecular cloud in its gravitational field. The 
necessary condition is proved. 

Now we are going to prove that the formula (2.10.16) 
corresponds to the mass density of gravitating isolated 
immovable molecular cloud is in a state of virial equilibrium. 
As shown in Section 2.1 (see the derivation based on formulas 
from (2.1.1) to (2.1.15)) and Section 2.2 (see the respective 
formulas from (2.2.1) to (2.2.5)), due to their own oscillatory 
interactions as well as originating gravitational forces a great 
number of particles form an isolated isothermal sphere-like 
gaseous body whose mass density is uniform in all directions 
at the same distance from the mass center: 

2

2
0

r
er , (2.10.25a) 

where  
2/3

0 2/)0( M , 

 is a parameter of gravitational condensation, and 
M  is a mass of a sphere-like gaseous body.  

As noted there, if the parameter of gravitational condensation 
 exceeds a critical (threshold) value c  then a gravitational 

field arises in the sphere-like gaseous body. Indeed, as shown 
in Section 2.3, initially oscillatory interactions of particles can 
lead to the gravitational instability of the sphere-like gaseous 
body with a critical wavelength c . Gravitational instabilities 
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( c ) in a sphere-like gaseous body then form a 

gravitationally coupled bunch with the Jeans critical mass 
3/2/32/3 MMM Jc  , as mentioned above, relative to 

the relations (2.10.8) in this section. As the final result, a 
gravitational field is originating in the sphere-like gaseous 
body under the given low temperature, so that the mass 
density of a gravitating sphere-like gaseous body satisfies the 
following formula in accordance with (2.3.7b), (2.10.14), 
(2.10.25a): 

2

2
0

r
er ,  c , (2.10.25b) 

where 
3/22 / Mcc . As follows from the formula 

(2.10.25b), the parameter of gravitational condensation  can 
vary with the time. Therefore, under the condition of a steady-
state virial equilibrium this parameter  can be expressed by 
the given temperature T  according to formula (1.5.26) of a 
gravitating sphere-like gaseous body (by analogy, see the so-
called USL in Chapter 8). As a result, the formula (2.10.16) 
follows directly from (2.10.25b). The theorem is proved. 

Corollary 2.1. The evolution of the mass density of a 
gravitating sphere-like gaseous body with the time is 
described by the formula: 

2

2

)(

0,
rt

etr , ct)( , 
3/22 / Mcc , (2.10.26) 

whose the particular case is the formula (2.10.16) describing a 
state of virial equilibrium, where 2/3

0 2/M ,  is a 

parameter of gravitational condensation,  is the Newtonian 
gravitational constant, M  is a mass of a molecular cloud, and 

c  is a critical frequency leading to the gravitational 

instability. 
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Corollary 2.2. The dynamics of the evolution process of a 
gravitating sphere-like gaseous body includes multivariate 
states of virial equilibrium. 

Corollary 2.3. Gravitating sphere-like gaseous bodies can 
be the model of a gravitationally coupled bunch (planetesimal). 

In fact, according to (2.10.8) a gravitationally coupled 
bunch possesses the Jeans critical mass 

3/2/32/3 MMM Jc . 

Conclusion and comments 

The principal conclusion resulting from the statistical model 
considered is that gravitating bodies have indistinct contours. 
It is necessary to note that some arguments in favor of the 
existence of fuzzy borders were partly expressed in some 
works. Thus, A. S. Eddington [183 p.320], considering 
Schwarzschild’s solution to Einstein’s equations for a 
homogeneous liquid sphere, pointed out that  

 
For large spheres … Schwarzschild’s solution provides, in the 

central point, a negative value for k
iT  (the energy-impulse tensor3). 

Therefore, even before approaching the border 
9

8a , the 

solution seems to cease possessing any physical sense. It is most 
regretful that it is for large spheres that the solution stops being 
real, for the existence of the upper border for spheres is one of the 
most interesting points of the whole problem. 
 
Note that, since Schwarzschild’s solution for a sphere of an 

uncompressed liquid has the form: 21ln r , where  

is a certain constant, for small r  it transforms to 2r , 
which corresponds completely to provisions of the proposed 

 
3 The author’s remark (see Section 2.7) 
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statistical model (see, e.g., (2.7.18)). Further, since 

ra
9

8
 is an average distance (2.1.27), then for all rr  

the statistical model agrees with that of Schwarzschild 
obtained in the framework of GR (see Section 2.7). It should 
also be noted that in both models the value  is constant. 
This is also confirmed by the results obtained by J.R. 
Oppenheimer and H. Snyder [184]. 

However, as was mentioned above by Eddington, 
Schwarzschild’s model provides a noncontradictory 
description for small-size spheres and fits poorly in the case 
of large-size ones. But it is the latter ones that can be the basis 
for modeling the structure and evolution of stars. In 
connection with this, Ya. B. Zeldovich and I. D. Novikov, 
investigating in [182 p.355] the statistical characteristics of 
star substance distribution, noted that 

 
…the definition being unsatisfactory is the fact that a sphere with a 
distinct border is taken. The result is greatly affected by a random 
position of objects. It is necessary to introduce a weight function 
equal to 1 inside the sphere and decreasing smoothly to the edges, 
“blurring” thereby the distinctness of the border.  
 

For investigating the distribution of objects on a given scale 
of the order  R  they determined the mass of a body as 

function 
0

2/ 22
4 drreRM Rr . Comparing this formula 

with (2.2.5), one can see that in the case
2/3

0 2
M , 

the value 2/2 R . Though the definition RM  was 
introduced artificially, however,  

…it is very important that in the new definition the distinct border 
is absent. [182] 
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Finally, A. G. W. Cameron [10 p.443], considering the 
possible scenarios for star cores forming in dense molecular 
clouds, also pointed out that  

 
...it is difficult to define a radius for these cores since their densities 
drop off smoothly from the central value toward the background, 
but most measurements would place the radius at about 0.1 parsec 
or less. 
 
As shown in Section 2.2, within the framework of the 

proposed statistical theory the mass density (2.2.5) of a 
sphere-like body decreases in )(/0 r =30 times on a 

distance *6.2 rr  from its center where /1*r  (in accord 
with (2.2.6)). This result satisfies Cameron’s condition on the 
mass density decreasing 30 times away from a forming stellar 
core [10]. In this connection, the Kuiper hypothesis that the 
mass of a protoplanetary cloud Sun   0.1protopl. cloudM M  is also 

true. Thus, the derived functions of particle distribution and 
the mass density of a sphere-like gaseous body describe the 
first (protostellar) stage of evolution: from a molecular cloud 
to a forming core with its shell (protostar).   

As noted in Section 2.5, according to the statistical model 
of an initial gravitational interaction of molecular cloud 
particles, with a fixed dynamic solution in time, the notion of 
“distinctness” or “blurring” of borders of gravitating bodies is 
highly relative. Thus, a gravitating body has a distinctly 
outlined shape, if the potential energy of the gravitational 
interaction of its particles is sufficiently great, the body mass 
itself and the masses of particles forming it being relatively 
small (in the framework of the given model the existence of 
massless particles is admitted) [45, 46]. So, ordinary 
macroscopic bodies have distinct contours due to their 
relatively small masses, whereas giant cosmic objects have 
fuzzy ones because of their huge masses and a vast number of 
particles forming them. 
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In this connection, in Section 2.6 the probabilistic 
interpretation of physical values describing the gravitational 
interaction of particles in a sphere-like gaseous body is 
considered. As a corollary of this approach, the analog of 
Newton’s general theorem in statistical interpretation 
(Theorem 2.1) is proved: 

 
A spherical layer, bounded by two similar and similarly placed 
concentric spherical surfaces, inside a sphere-like gaseous body, 
does not exert attraction at a point into the internal domain of this 
layer. 
 
Under the condition of mechanical equilibrium, the 

pressure (2.8.16) inside a sphere-like gaseous body [47, 49] is 
calculated in Section 2.8, while Section 2.9 shows that the 
internal energy associated with it is three times less than the 
potential energy of the gravitating sphere-like gaseous body 
(see the formula (2.9.22)). Section 2.10 is devoted to 
estimating the Jeans mass as well as the number of particles 
necessary for the gravitational binding of a sphere-like 
gaseous body. According to the result obtained (2.10.14), a 
gravitational field is present in the formed sphere-like gaseous 
body, causing a process of gravitational contraction, and the 
mass M of the formed sphere-like gaseous body exceeds the 

Jeans critical mass JM  by a factor of 3  times. 
Resuming the results of this chapter, in Section 2.10 the 

general Theorem 2.2 is proved, which says: 
 

a gravitating isolated immovable molecular cloud is in a state of 
virial equilibrium if and only if its mass density distribution 
satisfies the law: 

2

2
0

r
er , 

Tk
m

B3

4 0 , 

where 
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)0(0 ,  

 is a parameter of gravitational condensation, 

 and Bk  are the constants of Newton and Boltzmann 

respectively, 

0m  is a mass of a molecule, 

T  is a temperature, and 

 is an initial mass density of an isolated immovable molecular 
cloud. 

 
Thus, the statistical model has been developed to study in 

detail the complex dynamical picture of the gravitational 
interaction of particles. It, therefore, describes a certain fixed 
dynamical solution only. So, the principal provisions of the 
statistical model of particle gravitational interaction can be 
used as a basis for investigating the structure and evolution of 
large cosmic objects (stars and planetary systems). 
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CHAPTER THREE 

FORMATION OF COSMOGONICAL  
BODIES BASED ON A STATISTICAL MODEL  

OF A ROTATING AND GRAVITATING 

SPHEROIDAL BODY 
 
 
 

The previous chapter clarified the statistical theory of a non-
rotating and slowly compressible sphere-like gaseous body 
formed by a set of interacting particles (isolated from the 
influence of external fields and bodies) in its gravitational 
field. According to Corollary 2.2 of Theorem 2.2, the general 
form of the probability volume density function (2.1.14) of a 
sphere-like gaseous body: 

2

2

23

2
)(

r
er , 

is not determined by the presence of gravitational field 
exclusively, that is, it is valid before the gravitational field 
origin when c , 3/22 / Mcc . So, like the well-known 

Gibbs distribution [110]: 

Tk
E

n
B

n

e
Z

Ep 1
)( , 

where 

n

Tk
E

B

n

eZ , 

nE  is an energy,  

T  is a temperature of a gas, and 
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Bk  is the Boltzmann constant,  
the proposed distribution (2.1.14) is, generally speaking, true 
both in macroscopic and microscopic applications. In the case 
of microscopic application, interacting molecules or atoms of 
gas can form new aggregate nano- and micro-particles called 
colloidal or liquid particles (in hydrodynamic meaning [94]). 
As pointed out in [94], any liquid particle having a small 
element of a medium volume is still considered to be large 
enough to contain many molecules. In turn, the liquid 
particles constitute a molecular cloud at low temperatures. 

This chapter explores the formation of a predominantly 
slowly rotating and gravitating cosmogonical body from the 
molecular cloud based on the statistical model of the so-called 
spheroidal body [16, 73]. Here, as in the previous chapter, it is 
initially assumed that a rotating gravitating spheroidal body is 
homogeneous in chemical composition and isolated from the 
influence of other fields and bodies, being in a state of 
relative mechanical equilibrium. As a rule, the temperature of 
a rotating spheroidal body is supposed to be both close to 
absolute zero (with relatively small masses of spheroidal 
bodies, in particular, a protoplanetary cloud or disk) and high 
enough (for huge masses, for example, when describing 
stellar systems).  

In connection with the foregoing, the following 
assumptions are used in this chapter: 

 
1.  The gaseous body (molecular cloud) under 

consideration is homogeneous in its chemical structure, 
that is, it consists of N  identical liquid particles of the 
mass 0m ; 

2.  The gaseous cloud is isolated one, that is, as a rule it is 
not subjected to influence from external fields and 
bodies, except for the model of the formation of a 
rotating disk; 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Formation of Cosmogonical Bodies based on a Statistical Model  
of a Rotating and Gravitating Spheroidal Body 

235 

3. The initial molecular cloud is isothermal and has a low 
temperature T  (as a rule K10T ), or it has a 
sufficiently high temperature (for huge masses of 
gravitating gas in the state of virial equilibrium under 
star formation); 

4.  The initial process of the oscillating interaction of liquid 
particles is slow-flowing with the time; 

5.  Except for the initial rotation case and the model of a 
disk-shaped body, a rotating gaseous cloud is found in 
the relative mechanical equilibrium (the case of 
observed particle velocities 0v ), that is, the 
evolutional gaseous body is uniformly rotating as a 
whole. 

 
Using these assumptions and the results of the previous 

chapter, this chapter is devoted to the study of statistical 
models of a rotating and gravitating spheroidal body to 
describe the evolution of a protoplanetary gas-dust cloud 
around a forming star (in particular, the proto-sun) based on 
the flatness process modeling from the initial sphere-like body 
(in the case of a non-rotating spheroidal body) through 
flattened ellipsoidal forms (in the case of a rotating and 
gravitating spheroidal body) to the protoplanetary disk (disk-
shaped spheroidal body). 

3.1. Poincaré’s general theorem and Roche’s model in 
statistical interpretation for a slowly rotating and 

gravitating cosmogonical body 

As shown in the previous section, under the action of its own 
oscillatory interactions, a great number of particles form a 
sphere-like gaseous body from the molecular cloud. In this 
section, we consider a slowly rotating and gravitating gaseous 
body.  
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As noted in the introduction to this chapter, interacting 
molecules or atoms of gas form new aggregate nano- and 
micro-particles called the liquid particles [94]. These liquid 
particles constitute a slowly rotating sphere-like gaseous body 
that possesses angular velocity. 

We assume that at any initial time instant of rotation of a 
sphere-like gaseous body, all liquid particles composing it 
have a variation in the values of angular velocity, and each of 
the liquid particles has its angular velocity vector 

),,( zyx  oriented randomly in space. Then, in the 

process of rotation of the sphere-like gaseous body, some 
equalization of the angular velocities of liquid particles takes 
place that allows us to consider the rotation of this body in the 
steady state as a whole. 

So, according to the theorem on multiplying the 
probabilities of independent events, the probability that any 
liquid particle inside a rotating sphere-like gaseous body has 
coordinates in the vicinity of zyx ,,  and simultaneously the 
components of the vector of angular velocity lying in the 
intervals near zyx ,,  is equal to: 

.),,(),,(

,,,,,,,,,

zyxzyx

zyxzyx

dddzddydxzyx

dpdpdp
zyxzyx  (3.1.1) 

According to (3.1.1), we should introduce a joint probability 
volume density function ),(r , which is the six-
dimensional probability density to locate a liquid particle in a 
rotating sphere-like gaseous body: 

,)()(,,,,

,,,,,,

rzyx

zyxr

zyx

zyx
 (3.1.2) 

so that 
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,,

,,,,,,,,,,

dVrdVdVr

dddzddydxzyxdp
eff

zyxzyxzyx zyx
 (3.1.3) 

where  
)(reff  is an effective probability volume density,  

dzdydxdV , and 

zyx ddddV  [52, 73]. 

To find the effective probability volume density )(reff  
in the case of a slowly rotating sphere-like gaseous body, it is 
necessary to determine ),(r . To this end, we should 
consider the phase space composed of the components of 
angular velocity ),,( zyx . In connection with the 

foregoing, we assume that at an initial instant of rotation 

x
dN liquid particles have angular velocity x -components in 

the elementary interval ],[ xxx d ;
y

dN  liquid particles 

have angular velocity y -components in the elementary 

interval ],[ yyy d ; and 
z

dN  liquid particles have 

angular velocity z -components in the elementary interval 
],[ zzz d .Since the sphere-like gaseous body contains 

N  liquid particles, the probabilities that any liquid particle 
has angular velocity components in the indicated intervals 
equal, respectively: 

xx d
N

dN
dp x

x
)( , yy d

N
dN

dp y

y
)( , 

zz d
N

dN
dp z

z
)( , (3.1.4) 

where )( x , )( y  and )( z are the probability densities 

characterizing the share of liquid particles whose angular 
velocities belong to the elementary intervals near yx ,  and 
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z  respectively. Similarly to formula (2.1.6) from Section 
2.1, we can introduce the three-dimensional probability 
density as follows: 

zyxzyx ddd
N

dN
dp zyx

zyx
),,(

,,

,, . (3.1.5) 

Taking into account that dVddd zyx  is an element of 

volume in the phase space of angular velocities, and 
222

zyx is a value of angular velocity, we 

rewrite formula (3.1.5) in the form: 
dVdp

zyx
)(,, . (3.1.6) 

It is clear that a rotating liquid particle has all three 
components zyx ,,  of the angular velocity and 

independently of each other. According to the theorem on 
multiplying the probabilities of independent events we obtain: 

.)()()(

,,

dV

dpdpdpdp

zyx

zyxzyx
 (3.1.7) 

Comparing (3.1.7) with (3.1.6) it is not difficult to see that: 
)()()()( zyx . (3.1.8) 

Using (3.1.8) we can define the type of functions  and  
by analogy with the scheme described in Section 2.1 under 
derivation of the distribution function of particles in space 
(see also [16, 45, 46, 73]). Representing the functional 
equation (3.1.8) in the form of three partial differential 
equations with respect to yx , and z  we obtain: 

)(

)(

)(

)(

)(

)(

zz

z

yy

y

xx

x . (3.1.9) 

Taking into account Eqs (3.1.9) let us note that these 
equalities are valid for independent variables yx ,  and z . 
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They must, therefore, be identically equal to some constant 
. Whence it immediately follows that: 

2

2

2
)(

x

ex , 2

2

2
)(

y

ey , 

2

2

2
)(

z

ez , (3.1.10) 

where the parameter 0  in accordance with the 

normalization condition for probability densities )( x , 

)( y  and )( z . According to (3.1.10) and (3.1.8), the 

three-dimensional probability density (or volume one in the 
phase space of angular velocities) of detecting a liquid particle 
with a given angular velocity  is determined by the formula 
[52]: 

2

23 2

2
)( e , (3.1.11) 

because the normalizing factor is 232/C . 

In the case of small values of the angular velocity  and 

finite value of the parameter , that is, when 1
2

2 , the 

three-dimensional probability density (3.1.11) can be 
represented by the first terms of the Taylor series [52, 73]: 

2
1

1
)(

2

0V
, (3.1.12) 

where 3/4 3
00V  is the volume of a small sphere with a 

radius 10 whose center is the origin of 3-dimensional 

space of angular velocities ),,( zyx . The normalizing 

factor in formula (3.1.12) is 0/1 VC . Indeed, according to 

the normalization condition we have: 
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V

dV d
V

 

Taking into account that 222
zyx , the probability 

that a liquid particle inside a rotating sphere-like gaseous 
body has projections of the angular velocity vector within the 
intervals ],[ xxx d , ],[ yyy d , ],[ zzz d  is 

equal to: 

0

2

,, 2
1)(

V
dVdVdp

zyx
. (3.1.13) 

Obviously, 0VdV  but because of 10  then 

dVV 0 , so that the formula (3.1.13) goes into the 

following: 

,
2

1
2

,, zyx
dp  1, 00 . (3.1.14) 

The plot of the function )( on the interval ],0[ 0  is 

presented in Figure 3.1.  
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Figure 3.1. Graphic representation of the probability density function 
)(  in the case of small angular velocity 1, 00   

As seen in Fig. 3.1, at this interval, )(  is almost 
constant with a slight decline 2.0  if 1. This means 

that for small values of angular velocity 1, 00  the 

function )(  can be approximated by a uniform law of 
probability density distribution. 

So, taking into account the above-mentioned inequality: 

1
2

2  (3.1.15) 

the three-dimensional probability density )(  is described 
by the formula (3.1.12) so that in this case the effective 
probability volume density )(reff  following (5.1.1)–(5.1.3) 
takes the form [52, 73]: 

2
2

2

)(
)(

2
1)()(

rrrreff , (3.1.16) 

where  is some unknown positive parameter ( 0). To 
clarify the physical meaning of this parameter in the case of a 
slowly rotating sphere-like gaseous body let us use the 
Poisson equation. 
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As shown in Section 2.2, the mass density  of a non-
rotating sphere-like gaseous body is expressed through its 
volume probability density  by the very simple relation 
(2.2.7), that is, M . So, substituting (2.2.7) into the 
Poisson equation (2.4.1) we obtain [73]: 

42
g ,     (3.1.17) 

where  

g  is a potential of the gravitational field, 

 is the gravitational constant of Newton, and 
M  is a mass of the sphere-like gaseous body. 
As shown in Section 1.4 (see formula (1.4.1)), if the 

sphere-like gaseous body is rotating freely in space with an 
angular velocity )(t , then the general potential of 

gravity ),v,( trgg  should be considered instead of 

trg ,  since trtrtvr gg ,v
2

1
,,, 2  is a function of 

not only r , but also velocity ][v r  [48, 50]. In other 
words, in this particular case of rotational motion, the 
generalized potential of the gravitational field is called the 

general potential of gravity 2][
2
1

,,, rttrtvr gg  

because its addend 2][
2
1 rtVc  is known as the 

potential of centrifugal force [95, 97]. So, according to the 
above, instead of Eq. (3.1.17) we use Poisson equation for the 
general potential of gravity g  (see Eq. (1.4.14)) which for a 

rotating sphere-like gaseous body takes the form [50, 53, 73]: 
2 2 24 2 4 ( / 2 )g . (3.1.18) 

Finally, taking into account the Poisson equations (3.1.17) and 
(3.1.18) in parallel with the formula (3.1.16), we can estimate 
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the effective probability volume density that we are looking 
for as [52, 73]: 

2 ( )
( ) ( )

2
eff tr r , (3.1.19) 

which is essentially a probability volume density to locate a 
particle in a rotating sphere-like gaseous body. Moreover, 
comparing the right-hand sides of Poisson equations (3.1.17) 
and (3.1.18) we find that the distribution function of particles 
inside a slowly rotating sphere-like gaseous body undergoes a 
perturbation due to rotation and, as a result, it can be 
represented as: 

2 ( )
( ) ( ) ( , ) ( )

2
eff tr r r r , 

2

1
2

. (3.1.20) 

where )(r  is a stationary isotropic spatially homogeneous 
distribution function, unperturbed by the field of gravity, and 

),(r  is its small deviation under the influence of the field 
of centrifugal force which, as follows from (3.1.20), is equal 
to: 

2 ( )
( , )

2

tr . (3.1.21) 

Let us note that although formulas (3.1.16) and (3.1.20) are 
obtained using completely different theories (the first in the 
framework of statistical representations whereas the second 
based on the deterministic theory), nevertheless, they lead to 
the same result which allows us to estimate a small 
perturbation of distribution function ),(r : 

22

)( 2
2r , (3.1.22) 
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whence the meaning of the desired parameter  directly 
follows in the case of a slowly rotating sphere-like gaseous 
body [52, 73]: 

)(

1

)(

1

rr
. (3.1.23) 

Since the three-dimensional probability density )(  and the 

effective probability volume density )(reff , described by 
formulas (3.1.12) and (3.1.16) respectively, are obtained 
under the assumption that the parameter 2/2  is small 
following inequality (3.1.15), then substituting the derived 
formula (3.1.23) into this inequality (3.1.15) we obtain 
Poincaré’s well-known general theorem on rotating masses 
(Theorem 1.5) [1, 105 p.22] (see also inequality (1.4.13) in 
Section 1.4): 

1
)(2

2

r
. (3.1.23) 

Thus, the obtained inequality (3.1.23) proves Poincaré’s 
general theorem in statistical interpretation for a slowly 
rotating and gravitating sphere-like gaseous body [52, 73]: 

Theorem 3.1 (an analog of Poincaré’s general theorem in 
statistical interpretation). The steady motion of a rotating and 
gravitating sphere-like gaseous body is possible only with 
small values of the argument 2/2  of the distribution 
function in space of angular velocities of liquid particles 
constituent it, that is, at 1. 

As shown in Section 1.4, Theorem 1.5 is closely related to 
the condition (1.4.14) for the existence of an equilibrium 
figure for rotating and gravitating masses of a liquid. So, the 
condition for the existence of the equilibrium figure of a 
slowly rotating and gravitating sphere-like gaseous body (as 
well as any rotating and gravitating gaseous masses of a 
molecular cloud) is based on Theorem 3.1. 
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In Section 2.2, various models of a gas-dust medium in 
cosmogony problems have been considered. As noted there, 
for a gaseous bunch at rest with a uniformly distributed 
temperature throughout its volume (the case of isothermal 
equilibrium) the Darwin mass density law (2.2.11) is valid, 
whereas in the case of adiabatic equilibrium with the ratio 

5/6/ Vp cc  Schuster’s mass density law (2.2.12) is true, 

similar to the well-known Roche model in which the mass 
density has an infinitely large value in the center of the core 
and a very small value in the peripheral region [1, 180]. As 
shown in Section 2.2, all the above models (including the 
Roche model) are specific cases of the proposed sphere-like 
gaseous body model with the law of mass density (2.2.5) [16, 
73]. 

As J. Jeans noted [1 p. 255], both Roche’s model and the 
well-known model of incompressible homogeneous fluid [1, 
148] form the two limiting cases of the general 
compressible mass changing the spatial configuration with 
increasing angular velocity of rotation: Roche’s model 
breaking up through the shedding of successive rings of 
matter from its equator (see (1.4.37)), the incompressible 
mass breaking by fission into two parts.  

Moreover, in the case of an incompressible continuous 
medium under increasing angular velocity of its rotation, a 
linear series of continuous configurations of equilibrium 
(stable or unstable) is observed: spherical, spheroidal, 
ellipsoidal, and pear-shaped [1, 148]. The violation of stability 
and the transition to different configurations occur through the 
bifurcation points. In turn, the condition for a point of 
bifurcation [135] is that there shall be two adjacent 
configurations of equilibrium, and hence two different 
boundaries (equipotential surfaces) are possible for the same 
values of angular velocity . For example, the transition 
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from the Maclaurin spheroid to the Jacobi ellipsoid occurs 
under the following condition [1]: 

18712.02/2 . (3.1.24) 
So, in the case being discussed of an incompressible 
continuous medium, the Maclaurin spheroid becomes unstable 
when the angular velocity of rotation  satisfies this 
condition (3.1.24).  

As for Roche’s model, which, on the contrary, represents 
the extreme limit of compressibility, the angular velocity of 
rotation  at which the mass begins to break-up is given by 
the above condition (1.4.35): 

360744.02/2 . (3.1.25) 
In this regard, Jeans proposed a generalized Roche model 

[1], which combines some of the properties of both of the two 
models so far discussed, namely, the generalized Roche 
model consisting of a homogeneous incompressible mass of 
finite size and finite density 0 , surrounded by an atmosphere 

of negligible density. Thus, the generalized Roche model, in 
general, resembles the model of sphere-like gaseous body 
proposed in Chapter 2 [16, 45, 46, 73]. 

Let us note that the results obtained by the Roche model 
are also fully confirmed within the framework of the 
developed statistical theory. Indeed, as shown above in 
Section 2.3, the finding of the critical values of the mass 
density c  and the parameter of gravitational compression c  

of a sphere-like gaseous body results in the radius of critical 
iso-surface of mass density bending in accordance with the 
formula (2.3.8): 

3/126/1
* )/()/2(/1)( cccc MrR , 

where cc 2 is the critical frequency of gravitational 

perturbations leading to the gravitational instability. On the 
other hand, as shown when considering Roche’s model in 
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Section 1.4, the radius of critical equipotential surface 
(1.4.29) is defined by formula (1.4.25b): 

3/12
0 )/( Mh . 

So, directly comparing formulas (1.4.25b) and (2.3.8) under 
the assumption that cRh0  we obtain: 

cc 11952.1
2

4 . (3.1.26) 

According to (3.1.26) the break-up angular velocity  is 12% 
higher than the critical frequency c  (that is, almost 

coincides) of gravitational perturbations leading to the 
gravitational instability in a sphere-like gaseous body. Indeed, 
when the gravitational condensation parameter reaches the 
critical value c  the breaking of plane waves of initial 
gravitational perturbations takes place. As a result, the 
propagation wave mode of initial gravitational perturbations is 
changed by an aperiodic mode of their amplification due to 
the formation of a core with the radius cR ~  in a sphere-like 

gaseous body. Moreover, the initial wave disturbances with 
frequency c  as a result of their interference can lead to a 

rotation of the formed core with the angular velocity c . 

Thus, within the framework of the theory of rotating and 
gravitating sphere-like gaseous bodies, both Poincaré’s 
general theorem in the statistical interpretation (3.1.23) is 
derived and the main results of Roche’s model (1.4.25b), 
(3.1.26) is also obtained. 

3.2. The nonequilibrium particle distribution  
function for spatial coordinates in a sphere-like  

gaseous body during its initial rotation 

To describe the initial rotation of a sphere-like gaseous 
body, we introduce two frames of reference: an immovable 
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(inertial) system of coordinates zyx ; and a moving 
(rotating) coordinate system zyx  which is assumed to be 
rigidly connected with the sphere-like gaseous body. It is 
convenient to match the origins of both inertial and rotating 
frames of reference with the center of inertia of the sphere-
like gaseous body (see Fig. 3.2). 

 

 

Figure 3.2. Graphic representation of the model of initial rotation of a 
sphere-like gaseous body 
 
The radius-vectors r and r of the same point of the sphere-
like gaseous body in two different reference systems zyx  
and zyx , of which the first rotates relative to the second at 
an infinitesimal angle d , are connected to each other by the 
Galilean transformation [158]: 

])([ rtdrr , tt , (3.2.1) 
where d  is a vector of infinitesimal rotation whose absolute 
value is equal to the angle d  of rotation, and its direction 
coincides with the axis of rotation (and so that the direction of 
rotation corresponds to the screw rule with respect to the 
direction d ), and t  and t  is the time in the reference 
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systems zyx  and zyx  [158]. Under such a rotation, an 
increment of the radius vector drawn from the common origin 
of frames of reference (located on the axis of rotation) to a 
given point of the sphere-like gaseous body is equal: 

][ rdrd , 

since, as can be seen from Fig. 3.2, the movement of the end 
of the radius vector is related to the angle by the relation 
[158]: 

drrd sin . 

So, according to (3.2.1) the radius vector r of a liquid 
particle relative to the system zyx  is added by the radius 
vector r  relative to the system zyx  and the increment of the 
radius vector rd  as a result of the rotation of the liquid 
particle together with the system zyx . 

As known from Section 2.1 [16, 45, 46], according to 
formula (2.1.14), the probability volume density function of 
detecting a liquid particle with a given radius vector r inside 
a gravitating sphere-like gaseous body is equal: 

2/2/3 2

)2/()( rer . (3.2.2) 

Substituting (3.2.1) into (3.2.2) and then taking into account 
that 0][ rdr as well as 2222 sin][ rdrd , we obtain 
[73]: 

2/)][(2/3 2

)2/(),( rdredr  
2/][][2/2/3 22

)2/( rdrdrr eee  

.)2/( 2/sin2/2/3 2222 drr ee  (3.2.3) 

So, according to (3.2.3) we have [73]: 

.)2/(),,( 2/)sin1(2/3 222 dredr  (3.2.4) 
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In the general case, the angular velocity of rotation of a 
sphere-like gaseous body is equal to 

dtd / , (3.2.5) 

so that according to (2.1.14), (3.2.4), and (3.2.5) the function 
),,( dr  describes the distribution of liquid particles for the 

spatial coordinates in a sphere-like gaseous body at the 
beginning of its rotation, that is, in the nonequilibrium case 
[73]: 

2/sin2/2/3 22222

)2/(),,( dtrr eedtr  

2
222

2

sin
1)(

dtrr . (3.2.6) 

On the other hand, according to (3.1.16), formula (3.2.6) 
describes the effective probability volume density )(reff of 
detecting a liquid particle at the initial instant of rotation of a 
sphere-like gaseous body, if we assume the initial value of the 
parameter  to be equal 222

0 sin dtr  under this 

nonequilibrium rotation. 
It is desirable to bridge over, if possible, the wide gap 

between these two different approaches in Section 3.1 and 
Section 3.2. To some extent, a bridge is formed by the 
consideration of a nonequilibrium volume probability density 
function for spatial coordinates in a sphere-like gaseous body 
during its rotation [73]. Omitting any details of derivation (as 
its analog  will be presented in the following section), as 
shown in [73], the nonequilibrium probability volume density 
function to locate a liquid particle inside a rotating sphere-like 
gaseous body is equal [57, 73]: 

2/)sin1(
2/3

2/3

0

222

)2/sinerf(

2
)(,, re

r
tr  (3.2.7) 
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where 0  is an azimuth angular parameter. Comparing (3.2.7) 

with (3.2.4), it is easy to see that the formula (3.2.7) for a 
nonequilibrium probability volume density of the liquid 
particle detection in a rotating sphere-like gaseous body 
generalizes the formula obtained (3.2.4) for the probability 
volume density for a sphere-like gaseous body at the very 
beginning of its rotation. 

3.3. Derivation of the equilibrium distribution function of 
liquid particles in space and mass density functions based 

on the statistical model of a uniformly rotating and 
gravitating spheroidal body with a small angular velocity 

As shown in the previous chapter, interacting molecules or 
atoms of gas form new aggregate nano- and micro-particles 
called colloidal or liquid particles (in hydrodynamic meaning 
[94]). As pointed out in [94], any liquid particle having a 
small element of a medium volume is still considered to be 
large enough to contain many molecules. The liquid particles 
(which constitute a molecular cloud at low temperatures) also 
have oscillatory interactions among themselves. In reality, in 
macrophysics (when liquid particles can be regarded as 
planetesimals [139]) it is alleged that the cosmological 
constant [102] describes the cosmic vacuum [103, 104]. Its 
experimental manifestations on cosmic scales are, therefore, 
the fluctuations stipulated by Alfvén–Arrhenius oscillations 
[9, 19]. Moreover, we know [9, 19] that due to the radial and 
the axial oscillations the moving solid bodies in the 
gravitational field of a central body have elliptic and inclined 
orbits. 

Let us consider an initially immovable molecular cloud in a 
state of unstable mechanical equilibrium at the instant 0tt . 

The statistical aspect of this problem results from the 
abovementioned fact that numerous fluctuations of liquid 
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(colloidal) particle concentration caused by their local initial 
oscillations do not allow us to predict with certainty the 
behavior of the system as a whole. We are now interested in 
the following: how many liquid particles have radius-vectors 
in an interval near the given radius vector r ?  

To answer this, we investigate the evolution of a gaseous 
cloud consisting of N  similar liquid particles of mass 0m  in 

an initially isotropic space. Let a radius vector r  with 
coordinates ),,( zh  be chosen in three-dimensional space, 
that is, we use a cylindrical frame of reference with its origin 
in the geometrical center of a gaseous cloud: 

;coshx ;sinhy zz , (3.3.1) 

where 22 yxh , 20,,0 zh . 

The choice of the rotating cylindrical frame of reference gives 
us an advantage in the case of rotation because a rotating 
uniformly gaseous body (with a constant angular velocity ) 
remains relatively immovable in this system of coordinates. 
For a plane of rotation, we choose the plane Oxy , that is, we 
consider Oz  to be the axis of rotation of this gaseous cloud. 
Then, with reasoning similar to the derivation of the particle 
distribution function relative to coordinates for a non-rotating 
sphere-like gaseous body in Section 2.1, we can introduce the 
probabilities that a particle at a given time has coordinates in 
intervals ],[ dhhh , ],[ d , ],[ dzzz . Concretely, if 

in the gaseous body there are N  particles, then hdN  have 

coordinates in the interval ],[ dhhh , dN  and zdN  have 

coordinates in the intervals ],[ d  and ],[ dzzz  

respectively at the given instant 0tt . The probabilities of 

any liquid particle having coordinates in these intervals are 
equal respectively [16, 65, 73] to: 
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N
dNdhhdp h

h )( ;    
N

dNhddp )( ; 

N
dNdzzdp z

z )( , (3.3.2) 

where )(),(),( zh  are one-dimensional probability 
densities, characterizing shares of liquid particles whose 
coordinates belong to the elementary intervals close to h , , 
and z  respectively. 

Let us introduce a three-dimensional probability [16, 55, 
73]: 

dzdhdhzh
N

dN
dp zh

zh ,,,,
,, , (3.3.3) 

where ),,( zh  is a volume density of probability to locate a 
liquid particle inside a gaseous cloud in the cylindrical system 
of coordinates. 

On the other hand, a liquid particle has all the three given 
coordinates independent of each other in the initial (non-
rotating) instant 0tt  as well as in any instant of uniform 

rotating (since within the uniform rotating gaseous cloud the 
liquid particles do not move relative to the rotating frame of 
reference with a constant angular velocity const ). Then, 
according to the theorem of complex event probability we 
have [16, 55, 65, 73]:                              

dzhdhdzhdp zh )()()( ,, . (3.3.4) 

Comparing Eq. (3.3.3) with Eq. (3.3.4) we obtain the 
factorization rule for the probability volume density function 
[16, 55, 65]: 

)()()( ),,( zhzh . (3.3.5) 
Taking into account the condition of initial isotropy and 

homogeneity of space with a gaseous body (in the initial 
instant 0tt ), the volume density of probability has to depend 
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on the value of the distance rr  from a given particle to its 

center [16, 45, 46, 55, 73], that is, rzh ,, , where 

.

sincos

22

22222222

zh

zhhzyxr
 (3.3.6) 

Hence, we assume that Eq. (3.3.5) takes the same form in the 
closest instant dttt 0  at the beginning of rotation [16, 73]: 

)()()( )( zhr . (3.3.7) 
Starting from the functional equation (3.3.7) we can define 

the form of function . Differentiating  as a composite 
function with respect to h, let us represent Eq. (3.3.7) in the 
differential equation form [16, 65, 73]: 

zh
h
rr . (3.3.8) 

Then let us calculate the partial derivative hr / : 

r
hzh

hh
r 22 . (3.3.9) 

With provision for Eq. (3.3.9) the equation (3.3.8) becomes: 

zh
r
hr . (3.3.10) 

Dividing Eq. (3.3.10) by Eq. (3.3.7) we obtain [16, 55, 73]: 

)(rr
r

hh
h

. (3.3.11) 

Analogously we can derive a differential ratio relative to the 
space coordinate z : 

)(rr
r

zz
z

. (3.3.12) 

Now from Eq. (3.3.7) let us find the differential equation 
with respect to the angular coordinate : 
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rrzh )()( . (3.3.13) 

It is to be noted that the right-hand part of Eq. (3.3.13) 
becomes zero at the initial instant 0tt  because 0/r  

according to Eq. (3.3.6), i.e. 0  respectively in the left-

hand part of Eq. (3.3.13) at the initial instant 0tt . 

Consequently, the differential equation (3.3.13) with respect 
to  has nonzero both right and left-hand parts of Eq. (3.3.13) 
at the next instant dttt 0  only. In other words, beginning 

with this instant, the interference of the orthogonal radial and 
axial initial oscillations can lead to the rotational motion of 
liquid particles [73]. 

To calculate the partial derivative /r  let us consider a 
motion of a liquid particle (situated distance h from the axis 
Oz ) over the plane of rotation. From the beginning 0tt  of a 

nonuniform (unsteady-state) rotation of the gaseous body with 
an angular velocity )(t , a liquid particle begins to move 
inside it in the opposite direction to this rotation owing to an 
inertia force action. In this connection, if the frame of 
reference with a gaseous body turns on a small angle  then 
particles rotate on  the next instant dttt 0 . If any 

particle moves along an arc of a circle on a small angle  
then the length of its span is equal to 

)cos(222 hhhhl )2/sin(2)cos1(2 hh . 

Since the angle  is small enough ( 1), the distance r  

(from the origin of coordinates to a moving liquid particle) 
can be estimated as: 

2222222 zhhzlhr  . (3.3.14) 

According to Eq. (3.3.14) the desired partial derivative is 
equal [16, 55, 73]: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

256

r
h

zhh

hr 2

2222

2
2
1 2

. (3.3.15) 

Let us note though that, according to the new definition 
(3.3.14) of distance, rhhr /)1(/ 2 . But the previous 
formula for the partial derivative (3.3.9) remains correct 
because terms )( 2O are neglected. As follows from formulas 
(3.3.14) and (3.3.15), the direct dependence r  on  means 
modifying the form of the gaseous body through its rotation, 
that is, such dependence defines a non-stationarity form of the 
gaseous body in the rotating frame of reference under initial 
rotation at dttt 0 . 

Substituting Eq. (3.3.15) into Eq. (3.3.13) we obtain [16, 
55, 73]: 

)(2 rr
r

h
. (3.3.16) 

Since in Eqs (3.3.11), (3.3.12), and (3.3.16) the right-hand 
parts are the same, the left-hand parts are then equal among 
themselves: 

2hzz
z

hh
h

. (3.3.17) 

The left, central and right-hand parts of Eqs (3.3.17) are 
functions of either h  or z , or h and , that is, according to 
the independence of these coordinates it takes place only in 
the case of the constancy of these parts individually [16, 55-
57, 73]: 

)(/)()/1()(/)()(/)( 2hzzzhhh , (3.3.18) 
where  is a constant called, as before in Section 2.2, the 
parameter of gravitational condensation [16, 73]. 

Since  is an increasing function with a tendency toward 
stabilization const  during an infinitesimal interval dt , we 
need to take into account some peculiarities of integration of 
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Eqs (3.3.18) concerning the angular coordinate  at the 
relative mechanical equilibrium of the rotating gaseous body. 
So, integrating Eqs (3.3.18) under the condition of 
stabilization of the variable  to its constant value 0  (which 

is the upper limit of ), we obtain: 

hdhhdhh )(/ ; (3.3.19a) 

zdzzdzz )(/ ; (3.3.19b) 
00

)(

2)(/ dhd . (3.3.19c) 

Taking into account the preliminary condition that terms 
)( 2O  can be neglected in the third Eq. (3.3.19c) because 

0  (excepting the upper limit value 10 ), we can 

rewrite Eqs (3.3.19a–c) in the form: 

2/
1

2

)( hech ; (3.3.20a) 
2/

2

2

)( zecz ; (3.3.20b) 
2/

0

2
0

2

)( he  ( 0 ). (3.3.20c) 

According to Eqs (3.3.7) and (3.3.20a–c) it is not difficult 
to write down a general expression for the equilibrium 
function of probability volume density to locate a liquid 
particle relative to the rotating frame of reference [16, 73]: 

2/))1((
00

22
0

2

)()()(),,( zheCzhzh , (3.3.21) 

where 021ccC  is a constant of integration. The parameter 

0  because from physical reasoning it is clear that under 

increasing 22 zhr  the share of liquid particles, 
following Eq. (3.3.21), is to decrease due to gravitational 
interactions, therefore  is the parameter of gravitational 
condensation. Moreover, the normalization condition of the 
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probability volume density 
V

dV 1 results in the integral 

convergence which only fulfills when 0 . Starting from the 
normalization condition for the probability volume density 
(3.3.21): 

V

zh dzehdheCdV
0

2/2/)1( 12
22

0
2

, 

we can find )1()2/( 2
0

2/3C  and, hence, derive the 

probability volume density function describing a liquid 
particle distribution into a rotating gaseous body (being in a 
state of relative mechanical equilibrium) in the cylindrical 
coordinates [16, 65, 73]: 

2/))1((2
0

2/3 22
0

2

)1()2/(),( zhezh  , (3.3.22a) 

as well as in the Cartesian coordinates: 
2/))1()1((2

0
2/3 22

0
22

0
2

)1()2/(),,( zyxezyx  , (3.3.22b) 

and in the spherical coordinates: 
2/)sin1(2

0
2/3 22

0
2

)1()2/(),( rer  , (3.3.22c) 

where  and  are polar and azimuth angles and 0  is a 

constant of stabilization of the angular variable . 
When 02

0  the formula (3.3.22c) goes to the formula 

(2.1.14), describing the equilibrium function of probability 
volume density for the non-rotational case (or slowly 
rotational one) [16, 45, 46, 73]: 

2/2/3 2

)2/()( rer  . 
Now let us note that the relationship (3.3.3) describes the 

distribution of liquid particles along the distance from the 
geometrical center and the direction in space in cylindrical 
coordinates ,h , and z . Taking into account that an 
elementary volume in cylindrical coordinates is 

dzhdhddV  we can transform Eq. (3.3.3) into 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Formation of Cosmogonical Bodies based on a Statistical Model  
of a Rotating and Gravitating Spheroidal Body 

259 

.)1()2/(

,,

2/))1((2
0

2/3

,,

22
0

2 zh

zh

eN

zhN
dV

dN
 (3.3.23) 

The value zh
zh n

dV
dN

,,
,,  is a local concentration of liquid 

particles near a point with coordinates zh ,, . Considering 
(3.3.23) we have: 

2/))1((2
0

2/3 22
0

2

)1()2/(, zheNzhn . (3.3.24) 

If all liquid particles are like and have mass 0m , then, by 

multiplying both sides of relation (3.3.24) by 0m , we obtain: 

,),()1()2/(

)1()2/(,
2/))1((2

0
2/3

2/))1((2
0

2/3
0

22
0

2

22
0

2

zhMeM

eNmzh
zh

zh

 
 
 

(3.3.25) 
where nm0  is a mass density of the gaseous substance and 

NmM 0  is a mass of the gaseous body composed of the 

liquid particles. 
By denoting 2/3

0 )2/(M  the mass density for a 

rotating and gravitating gaseous body, being in a state of 
relative mechanical equilibrium, can be written in cylindrical, 
Cartesian, and spherical coordinate systems respectively [16, 
55, 56, 73]:  

2/))1((2
00

22
0

2

)1(),( zhezh  , (3.3.26a) 

2/))1()1((2
00

22
0

22
0

2

)1(),,( zyxezyx , (3.3.26b) 

2/)sin1(2
00

22
0

2

)1(),( rer . (3.3.26c) 

The iso-surfaces (isostere) of the mass density (3.3.26a–c) 
are flattened ellipsoidal ones and 2

0  is a parameter of their 

flatness ( 0  is the eccentricity of an ellipse). As a rule 10 , 
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so that these mass density iso-surfaces become spheroidal 
surfaces.  

Thus, under the influence of the initial oscillations of liquid 
particles an isolated gaseous cloud can be transformed into the 
spheroid-like gaseous body or, simply put, the spheroidal 
body [16, 56, 65, 73]. 

Let us note the important particular case of spheroidal 
bodies which are sphere-like gaseous bodies (see Section 2.2). 
Indeed, we can see if 02

0  then the equation (3.3.26c) 

becomes the mass density function (2.2.5) for a slowly 
rotating or immovable spheroidal body [16, 45, 46–48, 73]: 

2/
0

2

)( rer . (3.3.27) 

On the contrary, if the squared eccentricity 12
0  then the 

equation (3.3.26a) can describe the mass density of a flattened 
gaseous disk [16, 73]: 

2/2

)(),( z
c ehzh , (3.3.28) 

where 2/)1(2
0

2/3

1

2
0

2

2
0

)1()2/(lim)( h

M

c eMh is a value 

of mass density in a central flat of this gaseous disk, M  is a 
mass of star plus mass of gaseous protoplanetary disk, that is, 
the total mass of an initial prestellar molecular cloud (a more 
rigorous justification of formula (3.3.28) will be given in 
below in Section 3.8). 

It is interesting to note that this formula (3.3.28) 
completely coincides with the known barometric formula (for 
a flat rotating disk) obtained with the usage of the hydrostatic 
mechanical equilibrium condition [2 p.36, 23 p.769] (or with 
the same formula of mass density distribution in the disk 
“standard” model derived using the hydrostatic equilibrium 
condition jointly with the ideal gas state equation [12 p.19]). 
Moreover, L.E. Gurevich and A.I. Lebedinsky used the 
designation )(max h  instead of )(hc . 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Formation of Cosmogonical Bodies based on a Statistical Model  
of a Rotating and Gravitating Spheroidal Body 

261 

In sum, the obtained function of mass density (3.3.26a–c) 
characterizes a flatness process: from initial spherical forms 
(for a non-rotational spheroidal body case (3.3.27)) through 
flattened ellipsoidal forms (for a rotating and gravitating 
spheroidal body (3.3.26c)) to fuzzy contour disks (3.3.28) 
when the squared eccentricity 2

0  varies from 0 to 1. This 

means that the derived function (3.3.26a–c) is appropriate to 
describe the evolution of a protoplanetary gaseous (gas-dust) 
disk around a star. 

As noted in Section 1.7, one of the main difficulties has 
been found to lie in the determination of the analytical 
expression for the gravitational potential of a cosmogonical 
body including the rotating and gravitating spheroidal body 
model (3.3.26a–c). Although the derivation of gravitational 
potential of a rotating and gravitating spheroidal body will be 
given below in Sections 3.6 and 3.7, let us nevertheless 
substantiate the fact that the equation of mass density iso-
surfaces of a rotating spheroidal body in relative mechanical 
equilibrium can be directly obtained from both the 
equilibrium distribution function of its mass density and the 
equilibrium hydrodynamic equations in the potential field of 
its internal forces. To do this, we prove an auxiliary statement 
[73]: 

Lemma 3.1. The iso-surface of the mass density of a 
spheroidal body being in absolute or relative mechanical 
equilibrium coincides with the equipotential surface of the 
field of potential forces. 

Proof: we first consider the spheroidal body as an 
absolutely rest continuous medium in full accordance with the 
property of its light mobility [111]. In this case, the tangential 
components of the stress tensor are zero, and the total value of 
normal stresses at a given point of the medium, taken with a 
minus sign, is equal to the pressure p  at this point. Then the 
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equilibrium condition of a continuous medium is described by 
the Euler equation of statics of medium [111]: 

pf grad , (3.3.29) 

where f  is a specific force (field strength),  is a mass 
density (density of the medium). 

It is possible to exclude the mass density  and pressure p  
from equation (3.3.29); for this, we take from both its parts 
the operation of curl, that is, rot . Then p  is excluded because 

0gradrot p . As a result, equation (3.3.29) takes the form: 

0)rot( f . (3.3.30) 
Further, opening the brackets in Eq. (3.3.30) in accord with 
the well-known vector analysis rule [100, 111], we obtain: 

0][gradrot ff , (3.3.31) 

and, scalar multiplying both sides of equality (3.3.31) on f , 
we have: 

0rot ff . (3.3.32) 
Equation (3.3.32) determines the general restriction 

imposed on the class of forces, under the action of which the 
absolute equilibrium of a continuous medium with light 
mobility is possible. On the other hand, Eq. (3.3.32) defines 
the condition for the existence of surfaces 

const),,( zyx normal to the force lines of the field, that 
is, equipotential surfaces. 

Indeed, let us intersect the force lines of the field with a 
family of surfaces const),,( zyx and require that these 
surfaces be orthogonal to the force lines of the field. For this, 
what is normal at any point on the surface must coincide in 
direction with the strength f  at that point, that is, equality is 
required: 

gradf . (3.3.33) 
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Taking from both sides of this equality the operation of a 
vortex rot , we have following the known formulas of vector 
analysis [100, 111] that: 

.]grad[grad

]grad[gradgradrot)gradrot(rot f
 (3.3.34) 

Then, using the formula (3.3.33), we transform (3.3.34) to the 
form: 

][grad
1

rot ff , (3.3.35) 

and hence, due to the perpendicularity of the vector product to 
its multipliers the condition (3.3.32) is carried out 
immediately. Thus, equation (3.3.32) determines the condition 
for the existence of equipotential surfaces of the field (normal 
cross-sections of the force lines of the force field). 

The forces satisfying the above condition (3.3.32) include 
forces having a potential, in particular, the potential of a 
gravitational field g . Since the strength of the gravitational 

field (specific gravitational force) gf  is equal to: 

ggf grad , 

then: 
0rot gf . (3.3.36) 

According to (3.3.31) in this case, the following condition 
is true: 

0]grad[grad][grad ggf , (3.3.37) 

whence it follows that under condition of absolute mechanical 
equilibrium of a continuous medium in a spheroidal body, the 
force lines of the gravitational field are orthogonal to the iso-
surfaces (surfaces of equal mass density) and also that the iso-
surfaces of a rest spheroidal body coincide with the 
equipotential surfaces of the gravitational field of a spheroidal 
body in mechanical equilibrium. 
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Now let us consider a gravitating spheroidal body as a 
relatively resting continuous medium, that is, such a 
continuous medium being at relative rest for some coordinate 
system uniformly rotating with an angular velocity  [111]. 
In this case, equation (3.3.32) determines the condition of the 
relative mechanical equilibrium of a continuous medium in a 
rotating spheroidal body if f  is a total strength of the 

gravitational field with potential g  and the inertial field of 

centrifugal forces with potential cV : 

cg fff , (3.3.38a) 

where 

ggf grad ; (3.3.38b) 

cc Vf grad . (3.3.38c) 

According to Eqs (3.3.38a)–(3.3.38c) the following equality 
takes place: 

0rotrotrot cg fff , (3.3.39) 

and in accordance with relations (3.3.31) and (3.3.39) the 
following condition is true: 

0)](grad[grad][grad cg Vf ,  (3.3.40) 

which states that under the condition of relative mechanical 
equilibrium of a continuous medium of a spheroidal body, the 
iso-surfaces of the mass density of a rotating spheroidal body 
coincide with the equipotential surfaces of the total potential 
field of gravitational and centrifugal forces of a spheroidal 
body in relative mechanical equilibrium. 

Summarizing the above, it is not difficult to see that the 
iso-surface equation: 

const),(r  
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coincides with the equipotential surface of the total potential 

cg V  of the field of gravitational and centrifugal forces 

of a rotating spheroidal body: 
const),(r , 

which proves the lemma. 
Theorem 3.2. For a gravitating spheroidal body to be in 

absolute or relative mechanical equilibrium under the action 
of a potential field of forces, it is necessary and sufficient that 
the equipotential surfaces of the field coincide with mass 
density iso-surfaces (isostere) and isobars. 

Proof: necessity directly follows from the fact that when 
the medium is in equilibrium, the force lines of the field are 
perpendicular to the isobars (surfaces of equal pressure) 
following Eqs (3.3.29) and (3.3.33). According to Lemma 3.1, 
at the equilibrium of a continuous medium in a gravitating 
spheroidal body under the action of a potential field of forces, 
the equipotential surfaces of the field coincide with mass 
density iso-surfaces and, therefore, isobars with regard to Eq. 
(3.3.29). 

To prove the sufficiency, it is necessary to prove the 
inverse statement: if the isobars coincide with the iso-surfaces 
of mass density, then the equilibrium of the continuous 
medium of a spheroidal body is possible only in the case of a 
potential field of forces. Indeed, from the condition: 

0]grad[grad p , (3.3.41) 
because of Eq. (3.3.29), it immediately follows that: 

0]grad[ f , (3.3.42) 
so that we can conclude based on Eq. (3.3.31) that: 

0rot f , (3.3.43) 

that is, gradf . Thus, the theorem is proved [56, 73]. 

Remark 3.1. The gravitational field ( g ) of a resting 

spheroidal body or the total (gravitational and inertial of 
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centrifugal force) field ( cg V ) in the case of a rotating 

spheroidal body has been considered as a potential field of 
forces acting on a continuous medium of a spheroidal body. 

Corollary 3.1. The iso-surface of the mass density of a 
spheroidal body is a sphere in space if and only if the 
potential field of forces is its gravitational field of the resting 
spheroidal body being in absolute mechanical equilibrium. 

Proof: the necessity of this statement easily follows from 
the fact that in accordance with the formula (2.2.5) from 
Chapter 2 (or (3.3.26c) if 00 ), the mass density of a resting 

spheroidal body could be constant over the observation 
interval ],[ 00 obsTttt , that is: 

const)( 2/
0

2rer  (3.3.44) 

in case:  
const2222 zyxr  (3.3.45) 

(of course, we assume that const)(t on the observation 

interval ],[ 00 obsTtt ). Hence, if the mass density iso-surface 

(3.3.44) is a sphere (3.3.45) then according to Lemma 3.1 and 
Theorem 3.2 the equipotential surface of the potential field of 
forces must be a sphere. 

On the other hand, according to (3.3.29) the equilibrium 
equation for a continuous medium of a spheroidal body in the 
potential field of gravitational forces can be written in the 
form: 

pg gradgrad . (3.3.46) 
According to Theorem 3.2, const  on the equipotential 
surface of the potential field of forces, which is the 
gravitational field, so that it directly follows from Eq. (3.3.46) 
that: 

constgp .  (3.3.47) 
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But according to the same Theorem 3.2 on the equipotential 
surface (since it coincides with the isobar) constp which, in 
turn, allows writing (3.3.47) in the form of: 

constg . (3.3.48) 
Substituting in (3.3.48) the formula (2.4.26) for the 

gravitational potential of a resting ( 00 ) spheroidal body 

[16, 47, 73], we obtain: 
r

r dre
r 0

2/0 const
4 2

 (3.3.49) 

which, under the invariability )(t  on the observation interval 

],[ 00 obsTttt , gives the desired equation of the sphere 

(3.3.45). The corollary is proven. 
Corollary 3.2. The iso-surface of the mass density of a 

spheroidal body is described by a flattened ellipsoid 
(spheroid) in space if and only if the potential field of forces 
is the total potential field of gravitational and centrifugal 
forces of a rotating spheroidal body in relative mechanical 
equilibrium. 

Proof: the necessity of this statement directly follows from 
the fact that, in accordance with formulas (3.3.26a–c), the 
mass density of a rotating spheroidal body (being in relative 
mechanical equilibrium) could be constant: 

const)1()( 2/)sin1(2
00

22
0

2rer , (3.3.50) 

in case: 

const
/2)1(/2)1(/2

2

2
0

2

2
0

2 zyx
 (3.3.51) 

and if const)(t on the observation interval 

],[ 00 obsTttt . According to (3.3.51) an iso-surface of the 

mass density of a spheroidal body being in relative 
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mechanical equilibrium is a flattened ellipsoid of rotation, that 
is, the spheroid since 1  and 10 . 

On the other hand, according to Eq. (3.3.29) and Eqs 
(3.3.38a–c), the equation of relative equilibrium of a 
continuous medium of a rotating spheroidal body in the total 
potential field of gravitational and centrifugal forces is written 
in the form: 

pVcg grad)(grad . (3.3.52) 
But according to Theorem 3.2, const on the equipotential 
surface of the potential field of forces, which is the total 
potential field of gravitational and centrifugal forces, so that it 
directly follows from Eq. (3.3.52) that: 

const)( cg Vp . (3.3.53) 
According to the same Theorem 3.2 constp on an 
equipotential surface (because it coincides with the isobar), so 
that Eq. (3.3.53) becomes: 

constcg V . (3.3.54) 
Since the iso-surface of mass density (3.3.50) is a spheroid 
(3.3.51), then according to Lemma 3.1 and Theorem 3.2, the 
equipotential surface of the potential field of forces (3.3.54) 
must also be a spheroid, which proves corollary. 

Remark 3.2. As noted in Section 3.1, the total potential of 
the common field of the gravitational and centrifugal forces is 
called the general potential of gravity cgg V  [95, 97]. 

Taking into account that )(
2

1
][

2

1 2222 yxrVc , 

the equipotential surface equation (3.3.54) of the potential 
field of forces, which is the total potential field of 
gravitational and centrifugal forces, takes the form: 

const2/)( 222 yxgg . (3.3.55) 
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In the case of a very slow rotation of the spheroidal body, 
when 1, equation (3.3.54) degenerates into the 
equipotential surface equation of the gravitational field of a 
slowly rotating spheroidal body: 

constg , 

which in space, according to Corollary 3.2, must also be 
described by Eq. (3.3.51). This conclusion will be confirmed 
by the analytical formula of the gravitational potential of a 
spheroidal body in Section 3.6. 

3.4. Derivation of the distribution function of the specific 
angular momentum value and angular momentum density 

for a uniformly rotating spheroidal body in a state of 
relative mechanical equilibrium 

The distribution function of the specific angular momentum 
value for a uniformly rotating spheroidal body ( const ) is 
easily derived based on the obtained (in Section 3.3) relation 
for the probability volume density ),( zh  in a cylindrical 
coordinate system (we assume that the axis of rotation of a 
spheroidal body coincides with the axisOz ). Indeed, let us use 
the probability volume density (3.3.22a) of detecting particles 
at distances close to h  from the axis Oz  in a rotating 
spheroidal body in the relative mechanical equilibrium state 
(Fig. 3.3).  
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Figure 3.3. The scheme for calculating a share of particles having the same 
value of specific angular momentum in a uniformly rotating spheroidal 
body 

Let us note that, following (2.1.16), the probability that the 
coordinate h  belongs to the interval ],[ dhhh  for a particle is 
equal [16, 73]: 

dhhhhdhhf
N

dNdp h
h ,,)( , (3.4.1) 

where NdNh /  is a share of particles located at distances 
(from the axis of rotation Oz ) close to h , and )(hf  is a one-
dimensional probability density to locate a particle at distance 
h  from the axis of rotation. 

On the other hand, according to (3.3.22a), the probability 

hdp  can be calculated by integrating the probability volume 
density function ),( zh  with respect to the coordinates z and 
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of the cylindrical system (except for the coordinate h ) [16, 
56, 73]: 

2

0

),( hdhdzdzhdph  

dzehdh zh 2/))1((2
0

2/3 22
0

2

2)1()2/(  

hdhedze hz 2/)1(2/2
0

2/3
22

0
2

)1(
2

 

hdhe h 2/)1(2
0

22
0)1(  (3.4.2) 

From a comparison of (3.4.1) and (3.4.2), we obtain the share 
of particles, located at distances close to h  from the axis of 
rotation Oz , equal to [16, 56, 73]: 

hdhe
N

dN hh 2/)1(2
0

22
0)1( . (3.4.3) 

Now we can see in Fig. 3.3 that the share of particles 
located near the distance close to h  from the axis Oz  of 
rotation, that is, into a volume of an annular cylindrical layer 

dhhh, , is equal to the share of particles rotating with a 

constant angular velocity  around the axis Oz  and having 
the values of specific angular momentum value in the interval 

d, :  

NdNNdNh // , dhhhh , , 

d, . 
(3.4.4) 

Evidently, the relation (3.4.4) is valid for a rotating 
spheroidal body in the state of relative mechanical 
equilibrium [16, 73]. Under this condition, the moving 
particles being at distance h  from the axis of rotation Oz  
have circular orbits into a uniformly rotating spheroidal body 
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and, therefore, the value of the z -projection of angular 
momentum acting on a particle of mass 0m  is equal [158]: 

2
00 hmL z .  (3.4.5) 

As follows from Eq. (3.4.5), the value of the z -projection of 
specific angular momentum:  

2
00 / hmL z  (3.4.6) 

is directly proportional to the square of the distance from the 
axis of rotation Oz  into a uniformly rotating spheroidal body. 

Consequently, the share of particles having a specific 
angular momentum value in the interval d,  , 
following Eqs (3.4.4) and (3.4.6), is equal to:  

NdNNdN h //  

)(]2/)1([ 22/)1(2
0

22
0 hde h  

,]2/)1([ 2/)1(2
0

2
0 de  (3.4.7) 

   
where  is a value of specific angular momentum [16, 73]. 
Similar to (3.4.1), the probability that the value of specific 
angular momentum belongs to the interval d,  is 
equal: 

de
N

dNdpdf 2/)1(
2
0 2

0

2

)1(
)( , (3.4.8) 

that is, a desired probability density function )(f , 
expressing a mass distribution by values of specific angular 
momentum, is described by the formula [16, 73]: 

2
0(1 )2

0 2
(1 )

( )
2

f e . (3.4.9) 

This function (3.4.9) satisfies the normalization condition as a 
function of the distribution of specific angular momentum: 

1)(
0

df , (3.4.10 ) 
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because 

.
2

)1(
)( 2/)1(

2
02/)1( 2

0
2
0 ededf  (3.4.10b) 

Let us calculate an average value of specific angular 
momentum based on the integration by the parts with the 
usage of formulas (3.4.10a–b):  

0

0

0

)()()( dfddfdf  

0

2/)1(
0

2/)1( )(
2
0

2
0 dee  

0

2
02/)1(

2
0 2

)1(

)1(

2 2
0 de  

2 2
0 00

2 2
( ) .

(1 ) (1 )
f d  (3.4.11) 

According to (3.4.8) and (3.4.9), the quantity of particles 
having values of specific angular momentum close to  is 
equal to: 

dNfdeNdN )(
2

)1( 2/)1(
2
0 2

0 . (3.4.12) 

Using (3.4.12), it is not difficult to find a total angular 
momentum of a uniformly rotating spheroidal body being in 
relative mechanical equilibrium [16, 73]: 

MdfNmdNmL
N

)(
0

0

0

0 , (3.4.13) 

where M  is a mass of a spheroidal body (for example, the 
total mass of a star and protoplanetary gas-dust disk 
[16]). Substituting (3.4.11) into (3.4.13), we obtain that the 
value of the total angular momentum of a uniformly rotating 
spheroidal body is expressed by the formula [16, 73]: 
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)1(

2
2
0

ML . (3.4.14) 

In the particular case of a slowly rotating spheroidal body 
when 02

0
, that is, without a deformation variation of the 

spherical iso-surface of mass density, the value of its total 
angular momentum is equal: 

ML 2
, (3.4.15) 

which follows naturally from the just derived formula (3.4.14) 
at .00   

As we know [12], generally speaking, the total angular 
momentum of a rotating axial symmetric body relative to the 
cylindrical coordinate system is determined by the following 
formula: 

V

dzhdhdhzhzhL 2),(),(   

0

3),(),(2 dhdzhzhzh , (3.4.16) 

where ),( zh  is a function of mass density and 
),( zh  is a function of angular velocity. As applied to a 

uniformly rotating spheroidal body, const),( zh  in 
the state of relative mechanical equilibrium. Expression 
(3.4.16), therefore, goes into the following: 

0

3 .),(2 dhdzhzhL  (3.4.17) 

Substituting into (3.4.17) formula (3.3.26a) for the mass 
density of a uniformly rotating spheroidal body and taking 
into account the result of integration (3.2.13) we obtain: 

0

2/32/)1(2
0

2/3
22

0
2

)1(
2

2 dzedhheML zh  
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0

2/)1(32/2/3
2
0 22

0
2

2

1 dhehdzeM hz  

2 2 2 2
0 0

2
(1 ) /2 (1 ) /23/2 20

2 2
0 0 0

1 2 1 2

(1 ) (1 )2
h hM e h e  

2
0

2

(1 )

M
 (3.4.18) 

So, although formula (3.4.18) for the total angular 
momentum of a uniformly rotating spheroidal body has been 
derived in a different way than (3.4.14), nevertheless, both of 
them lead to the same result. Indeed, the formula (3.4.14) has 
also been obtained under the assumption of the relative 
mechanical equilibrium of a spheroidal body when 

const . Thus, in the state of relative mechanical 
equilibrium, the initial formulas (3.4.13) and (3.4.16) 
coincide. Indeed, the z-projection of specific angular 
momentum is expressed by formula (3.4.6), so that with 
regard for (3.4.6) expression (3.4.16) takes the form:  

0

)(),(2 hdhdzhzhL   

0

)(),(2 hdhdzhzhM . (3.4.19) 

On the other hand, according to (3.4.1)–(3.4.4), (3.4.7) and 
(3.4.8), the following equalities are true [16, 73]: 

hdhdzhdzdhhfdf
2

0

),()()(   

hdhdzzh ),(2 , (3.4.20) 

whence we can see that formula (3.4.19) goes to (3.4.13). 
Obviously, formula (3.4.16) is more general than formula 
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(3.4.17) or (3.4.13), because it takes into account the 
nonequilibrium case when the angular velocity  is a 
function of spatial coordinates called the vorticity ),( zh  
[111]: 

1
2 ( , ).h z  (3.4.21) 

Denoting by the function of the specific angular momentum: 
2( , ) 2 ( , )h z h h z , (3.4.22) 

we can rewrite the formula (3.4.16) in the form : 

0

),(),(2 hdhdzzhzhL . (3.4.23) 

The obtained formula (3.4.23) as well as the formula for the 
mass distribution: 

0

),(2 hdhdzzhM  (3.4.24) 

are appropriate to use in the models of forming cosmogonical 
bodies (planetesimals, planetary embryos, protoplanets, and 
protostars) [73]. 

Obviously, in the stationary case of relative mechanical 
equilibrium, formula (3.4.24) gives a constant value 

constM  which directly follows under substitution of 
formula (3.3.26a) for mass density into (3.4.24): 

hdhdzeMM zh 2/])1([

0

2
0

2/3 22
0

2

)1()2/(2  

0

2/22
0

2/)1( 222
0 ]2/)1([2/ dzehdeM zh  

const/22/ MM . 
Using (5.4.17), it is easy to find the angular momentum 

distribution function in space ),( zhl , that is, the density of 
angular momentum in the case of a uniformly rotating 
spheroidal body [73]: 
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V

dzhdhdhzhdVzhlL
0

2

0

2),(),(   

V

dVzhh ),(2 , (3.4.25) 

hence the density of angular momentum is equal [73]: 
),(),( 2 zhhzhl . (3.4.26) 

Substituting into (3.4.26) the mass density formula (3.3.26a) 
we get: 

2/])1([22
0

2/3 22
0

2

)1()2/(),( zhehMzhl . (3.4.27) 

On the other hand, from (3.4.13) it immediately follows 
that the average specific angular momentum is equal to: 

M
L

, (3.4.28) 

so that from (3.4.25), (3.4.26), and (3.4.28) we have: 

V V

dVzhdV
M

zhl
),(

),(
, (3.4.29) 

where ),( zh is a density of the average specific angular 
momentum in space [73]. Taking into account that the 
specific angular momentum in a uniformly rotating spheroidal 
body in accordance with (3.4.6) is equal 2h , from 
(3.4.26), (3.4.27), and (3.4.29) we obtain [73]: 

),()(),( zhhzhl ; (3.4.30a) 

dVe zh

V

2/])1[(2
0

2/3 222
0)1()2/(   

V

dVzhh ),()( , (3.4.30b) 

which is fully confirmed by formula (3.4.19). Bearing in mind 
that )(h  is a function of h  only, but not of z , the 
formula (3.4.30b) can be simplified [73]: 
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dzddhheeh zh 2/2/)1(2
0

0

2

0

2/3 222
0)1(2/)(  

dhhehdze hz 2/)1(

0

2/
2/3

22/3
22

0
2

)(
2

)1(
2  

,)()()()1(
0

2/)1(

0

2
0

22
0 dhhfhdhehh h  (3.4.31) 

where 
2/)1(2

0

22
0)1()( hehhf . (3.4.32) 

According to (3.4.2), (3.4.3), as well as (3.4.31) and 
(3.4.32), )(hf  is a distribution function of the specific angular 
momentum on distance. The graphic dependence of the 
distribution function (3.4.32) of the specific angular 
momentum on distance h  recalls the gravitational field 
strength dependence )(raa  on distance r  diagram (see 
Fig. 2.6) for a sphere-like gaseous body [73]. Indeed, let us 
find the point of extremum of function )(hf , for which we 
calculate: 

])1(1[)1()(' 22
0

2/)1(2
0

22
0 hehf h . 

By analogy with Eq. (2.4.16), equality 0)(' hf means the 
presence of a maximum point of the distribution function of 
the specific angular momentum when: 

)1(

1
2
0

*h . (3.4.33) 

According to (3.4.27), the formula for the density of 
angular momentum at a fixed value 0zz  has the form: 

2/)1(22/2
0

2/3
0

22
0

2
0)1()2/(),( hz eheMzhl . (3.4.34) 
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The similar function ),()( 0
0

zhl
z

hl  graph is shown in Fig. 

2.2, corresponding to the probability density function )(rf  
for finding particles located at distances r from the center. 
Analogously to (2.1.22), we first calculate: 

])1(2[)1()2/()(' 22
0

2

)1(
2
0

2/3

0

2
0

22
0

hehM
z

hl
zh

 

and then, using  0)('
0z

hl , we can find the maximum point 

of the density of angular momentum: 

*2
0

2
)1(

2 hhpr . (3.4.35) 

Considering the maximum points (3.4.33) and (3.4.35) we can 
affirm that an “export” of the specific angular momentum by 
particles from the axis of rotation to the region *hh  occurs 
in a uniformly rotating spheroidal body. 

3.5. The distribution function of particles in space  
for a rotating and gravitating spheroidal body from the 

point of view of the general relativity theory 

Unlike the point discussed in Section 2.7, the gravitational 
field of a rotating body within the framework of the general 
relativity (GR) theory is characterized by an axially 
symmetric stationary Kerr metric [100]: 

222
2

22
2

2 1= ddrdtc
rr

ds g  

dtd
rar

d
rar

ar gg 2
2

222
2

2
22 sin

2
sinsin , (3.5.1) 

where the following notations are introduced: 
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22= arrr g ,    2222 cos= ar ,   cMLa /= , 

and 
2

2
=

c
Mrg  is a gravitational radius of the body, L  is an 

angular momentum, M is a mass of the body,  is the 
gravitational constant of Newton, and c  is the speed of light. 
As follows from (3.5.1), the components of the metric space-
time tensor are defined by the expressions: 

,=,=,1= 2
22

2

11200 gg
rr

g g   

22
2

2
22

33 sinsin=
rar

arg g , (3.5.2) 

2
23003 sin==
rar

gg g
.  

The pure spatial Kerr metric is determined by the 
expression for the spatial distance element [100]: 

2
2

2
222

2
2

/1

sin
= d

rr
ddrdl

g

, (3.5.3) 

that is, 
2

11 =ĝ , 2
22 =ĝ , .

/1

sin
=ˆ

2

2

33 rr
g

g

 Taking into 

account that: 
22222222 sin)(=cos= aarar , (3.5.4) 

we can represent the value  as follows: 
rrarrar gg

22222 sin=)(= . (3.5.5) 

As noted in [100] (and it will be shown below), the 
determinant of the metric space-time tensor for the Kerr 
metric (3.5.1) is equal: 

24 sin=g , (3.5.6) 
while the determinant of the metric spatial three-dimensional 
tensor can be found by (3.5.3) in the form [73]: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Formation of Cosmogonical Bodies based on a Statistical Model  
of a Rotating and Gravitating Spheroidal Body 

281 

2

24

/1

sin
=ˆ

rr
g

g

. (3.5.7) 

Taking into account the modified relations for 2 and  in 
(3.5.4) and (3.5.5), we transform the components 11g , 11ĝ  
from (3.5.2) and (3.5.3) as follows: 

=
sin

==
222

22

11 rra
g

g

  

2
2

2

2
sin

/
1

1

a
r

rg
, 

(3.5.8a) 

2
2

2

2

11

sin
/

1

1
=ˆ

a
r

rg
g

. 
(3.5.8b) 

By analogy with the derivation of the Schwarzschild metric 
[100] for a centrally symmetric gravitational field (see 
formulas (2.7.2)–(2.7.5) in Section 2.7), we assume that at 
large distances: 

r
r

r
re g

g /
1=

/
1

1
2

2

. 
(3.5.9) 

This means that according to (3.5.8a) and (3.5.9) we have 
[73]: 

2

1111
2

2

2

2

=ˆ==

sin
/

1

1 gg
a

r
r

e
g

. 
(3.5.10) 

According to (3.5.9) and (3.5.10) we can generalize the spatial 
Kerr metric under consideration of the following components 
of the three-dimensional metric tensor [54, 73]: 

,=,= 2
2211 geg   

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

282

222
2

2
33 sin=sin=sin= e

e
eeg , (3.5.11) 

22
33

2
2211 sin=ˆ,=ˆ,=ˆ eggeg . 

From (3.5.11) it immediately follows that the determinant of 
this type of three-dimensional (spatial) metric tensor is equal 
[73]: 

24222 sin=sin=ˆ eeeg . (3.5.12) 
It is obvious that the formula (3.5.12) generalizes (3.5.7). 
Further, the spatial volume element in the generalized Kerr 
metric is determined in accordance with (3.5.12) by the 
relation [54, 73]: 

0
2/22/

0 =sin=ˆ= dVeddrdeVdgdV , (3.5.13) 

where ddrddV sin= 2
0 is an element of spatial volume 

in the flattened spherical coordinate system and 
ddrdVd =0 is a product of the differentials of three spatial 

coordinates ,,r . The expression for 0dV  in the flattened 

spherical coordinate system will be obtained below. 
Let us note that relation (3.5.13) can be directly derived 

from the expression for the spatial distance element (3.5.3) in 
the Kerr metric: 

2
2

2
222

2

/1

sin
= d

rr
ddrdV

g

  

ddrd
rrg

2

2

/1

sin
=  (3.5.14) 

with the subsequent generalization of relation (3.5.14) based 
on (3.5.9): 

0
2/22/ =sin= dVeddrdedV , (3.5.15) 
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where, as will be shown below, ddrddV sin= 2
0 is an 

element of spatial volume in the flattened spherical coordinate 
system. 

Similar to the case of the Schwarzschild metric [100], the 
element of spatial volume according to (2.7.5) is equal to: 

0
2/22/ =sin= dVeddrdredV , (3.5.16) 

where ddrdrdV sin= 2
0  is a volume element in the 

traditional spherical coordinate system. 
According to the formula (2.7.18) from Section 2.7 (as 

well as from the comparison of (3.5.15) with (3.5.16)), it 
follows that for small distances the function  takes the form 
[16, 73]: 

1) for the Schwarzschild metric 
2= r , (3.5.17a) 

2) for the Kerr metric 
]sin)[(== 22222 aar . (3.5.17b) 

Using (3.5.17b) we can introduce a new distance: 
222 = arr . (3.5.18) 

By substituting (3.5.17b) and (3.5.18) into (3.5.15) we obtain 
the following relation [73]: 

0
2

2sin
2

2
1

2

= dVedV

a

rr
. 

 
 

(3.5.19) 
Starting from the relation (3.5.19) between the elements of 

spatial volume in the generalized Kerr metric, we can obtain 
the form of equilibrium function of the probability volume 
density for a uniformly rotating spheroidal body following the 
scheme proposed in Section 2.7 (see also [16, 73]). Indeed, 
since a uniformly rotating spheroidal body contains a fixed 
number N of particles identical in mass 0m , that is, 

const== 0NmM , then 

0== VddM . (3.5.20) 
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From (3.5.20) it directly follows that: 
VddV = , 

from where: 

V
dVd

= . (3.5.21) 

Integrating (3.5.21) we obtain [73]: 

,=
)(

0

)(

0

rV

V

r

V
dVd

 (3.5.22) 

whence: 

00

)(
ln=

)(
ln

V
rVr

, (3.5.23) 

where ),(rrr  and 0=0 , 0=0 VV . According to 

(3.5.19) there is a relationship between 0V  and )(rV in the 

curvilinear Kerr space. Let us note, however, following 
quantum mechanics and statistical physics, that the 
volume 0dV  cannot be infinitely small and must be bounded 

below by the elementary volume of the quantum mechanical 
cell [110]: 

2/3
0

3

0 )2( Tkm
hVV

B
quant . (3.5.24) 

Then, as follows from (3.5.19) and (3.5.24), the next 
relationship holds: 

0
2

2sin
2

2
1

2

=, VeV

a

rr
r , 

 
 

(3.5.25) 

where 22= arr , and cMLa /=  is a constant. Taking into 
account the relation (3.5.25), equality (3.5.23) takes the form: 

2

sin1
=

,
ln

2
2

2

2

0

rrr
a

, 
 

(3.5.26) 
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whence: 
2/]2sin2)/(1[2

0=, rrr ae . (3.5.27) 

According to (2.2.7), the mass density (3.5.27) of a rotating 
spheroidal body is directly related to the probability volume 
density ,r  by the simple relation: 

,=, rr M , (3.5.28) 
where M is a mass of a spheroidal body. From (3.5.27) and 
(3.5.28) it immediately follows that from the point of view of 
GR, the volume density of the probability of detecting a 
particle in a uniformly rotating spheroidal body is equal [54, 
73]: 

2/]2sin2)/(1[2

0 )/(=, rrr aeM . (3.5.29) 

Comparing (3.5.29) with a similar relation (3.3.22c) obtained 
in the framework of the statistical theory (see Section 3.3), we 
can see that: 

)1()2/(= 2
0

2/30

M
; (3.5.30a) 

0r
a

 at rr , 10 , (3.5.30b) 

where 
Mca /I= , 

I  is a moment of inertia, and  

0  is a stabilization constant of the angular azimuth 

variable. 
In conclusion, as already mentioned above, we derive 

formulas (3.5.6) and (3.5.15), that is, initially we find the 
value of the determinant of the metric space-time tensor for 
the Kerr metric (3.5.1): 
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which completely coincides with the formula (3.5.6). 
We now make some important clarifications regarding the 

above. Let us note that in accordance with (3.5.4), (3.5.15), 
(3.5.18), and (3.5.19) we have: 

=sinsin= 2222

sin
2

2
1

2

2

ddrdaedV

a

a
r

rr   

.sinsin1 22
2

2
2

sin
2

2
1

2

2

ddrdae

a

a
r

r

rr
 

 
 

(3.5.31) 
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Obviously, under the condition r  (or r ), the Kerr 
spatial volume element (3.5.31) tends to the Schwarzschild 
spatial volume element (3.5.16), since: 

0sin2
2

2

r
a

 and rr  at r . (3.5.32) 

In the absence of mass, the Kerr metric (3.5.1) should be 
reduced to Galilean one [100]. Indeed, under condition 

0=M  provided that 0gr , the Kerr metric (3.5.1) goes into 

the following: 

222222
2

2
222 sin= dddrdtcds r

r
 (3.5.33) 

in accordance with (3.5.18), which is a Galilean metric 
written in flattened spherical spatial coordinates: 

222222 = dzdydxdtcds . (3.5.34) 
The transformation of these coordinates into the Cartesian is 
carried out by the formulas [100]: 

cossin=cossin= 22 rarx ; (3.5.35a) 

sinsin=sinsin= 22 rary ; (3.5.35b) 

cos= rz , (3.5.35c) 
and the surfaces const=r  are flattened ellipsoids of rotation: 

1=
2

2

22

22

r
z

ar
yx

. (3.5.36) 

Finally, let us estimate the volume element in flattened 
spherical coordinates, for which we calculate the Lamé 
coefficients in this coordinate system (3.5.35a–c): 

222

r
z

r
y

r
xHr   

2222
22

2

cossincossin
ar

r
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22

222 cos

ar
ar

; (3.5.37a) 

222 zyxH   

2222222 sinsincoscos rar  
222 cosar ; (3.5.37b) 

222 zyxH   

22222 cossinsinar   

sin22 ar . (3.5.37c) 

Using (3.5.37a–c), it is easy to see that the volume element in 
the flattened spherical coordinate system is equal to: 

ddrdarddrdHHHdV r sincos== 222 , (3.5.38) 
so that with regard to the notation (3.5.4) it is described by the 
formula [73]: 

ddrddV sin= 2 . (3.5.39) 
As mentioned above, this formula has been used in 
determining relations (3.5.13) and (3.5.15). 

3.6. The strength and potential of the gravitational  
field of a uniformly rotating spheroidal body 

As mentioned in Sections 2.2 and 2.3 in Chapter 2, there is the 
critical value c  of the gravitational condensation parameter 

(2.3.7 , b) when a weak gravitational field arises in a forming 
sphere-like gaseous body. Supposing the condition of the 
gravitational field arising is valid: c , we intend to find 

the gravitational potential and strength of a uniformly rotating 
spheroidal body. To this end, let us use Eqs (1.1.40a)–
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(1.1.40c) from Chapter 1 (see also [99]) for finding the 
gravitational strength a  (or specific gravitational force gf ) of 

a uniformly rotating spheroidal body. 
So, substituting into Eqs (1.1.40a–c) the analytical form of 

the mass density (3.3.26b) with regard to Eq. (3.3.51), that is, 
assuming: 

)1(/2 2
0ba ; /2c  

in Eqs (1.1.40a–c), we finally obtain [70, 74]: 
2 2 2

2
02/ (1 ) 2/

2
0

2
0

2

2 2
(1 )

x y z
s s

g x
Mx dsf e e

s s

; 
(3.6.1a) 

2 2 2

2
02/ (1 ) 2/

2
0

2
0

2

2 2
(1 )

x y z
s s

g y
My dsf e e

s s

; 
(3.6.1b) 

2 2 2

2
02/ (1 ) 2/

3/2
0

2
0

2

2 2
(1 )

x y z
s s

g z
Mz dsf e e

s s

. 
(3.6.1c) 

Since the x - projection of the gravitational field strength in 
accordance with Eq. (2.4.5) is 

g
x g xa f

x
, 

of course, the gravitational potential g can be calculated by 

integrating relation (3.6.1a) with respect to x : 
2 2

2
0

2

(1 )

0

2

x y

s
g

g g xdx C f dx C M xdx e
x
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2

2

2

2
0

2 2
(1 )

z

s dse C

s s

 

2 22

2 2
0 0

2 22 2
(1 ) (1 )

0
2
0

2
22

(1 )

y xz
s ssM xe e e d

s

2
0

2 2
(1 )

ds C
s s

 

2 2 2

2
0

2 2
(1 )

0
2
0

2 2
(1 )

x y z
s sM dse e C

s s

.(3.6.2a)    

Similarly, the gravitational potential is found through 
the y -projection (3.6.1b) of specific gravitational force: 

g
g g ydy C f dy C

y
  

2 2 2

2
0

2 2
(1 )

0
2
0

2 2
(1 )

x y z
s sM dse e C

s s
. (3.6.2b) 

As for the z -projection (3.6.1c), with some difference in the 
integration process over z , we then obtain the same 
result:

2 2

2
0

2

(1 )

0

2

x y

s
g

g g z
Mdz C f dz C zdz e

z
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2

3/2

2
0

2 2
(1 )

z

s dse C
s s

2 2 2

2
0

2 2 2
(1 )

0
2

x y z
s sM ze e d

s

2
0
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(1 )

ds C
s s

2 2 2

2
0

2 2
(1 )

0
2
0

.
2 2

(1 )

x y z
s sM dse e C

s s

 (3.6.2c)   

Thus, according to Eqs (3.6.2a–c) the gravitational 
potential of a rotating spheroidal body is described by the 
expression [74, 78]: 

2 2 2

2
0

2 2
(1 )

0
2
0

2 2
(1 )

x y z
s s

g
M dse e C

s s

 

2 2 2 20
2
0

(1 )( )

2 (1 )3/2 2 2
0 2

0 0

(1 )
2 2 (1 )

x y z
s sM dse e C

s s
(3.6.3)  

So, formula (3.6.3) is true only if the components 
, ,g x g y g zf f f of the specific gravitational force have been 

calculated correctly. To verify this, we need to find the 
divergence of the specific gravitational force: 
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div g x g y g z
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f f f
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4
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                   (3.6.4) 

Let us calculate the auxiliary integral using integration by 
parts: 

1/2

3/2 22
000 0

1 (2 ) 1

2 (1 ) 1/ 22 (1 ) 2

ds s
ss s

 

2
1/2 0

2 2
00

(1 )2
2

(2 (1 ))
s ds

s
 

2
0 2 2

0 0

1
2(1 ) .

2 2 (2 (1 ))

ds
s s

 (3.6.5) 

According to (3.6.5) the following identity holds [74, 185]: 

2
0 22

0 0

2 (1 )
2 2 (1 )

ds

s s
  

3/2 2
0 0

1
.

(2 ) 2 (1 ) 2

ds
s s

 (3.6.6) 

Taking into account properties (3.6.5), (3.6.6) let us 
transform equation (3.6.4). For this purpose, we calculate 
separately the first integral from the right-hand side of Eq. 
(3.6.4) using the integration method by parts: 
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2 2 2
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              (3.6.7) 

As we did in (3.6.5), we need to note the same property for 
indefinite integrals: 

2 3/2
0(2 (1 )) (2 )

ds
s s

  

2
02 2 2

0 0

2 1
2(1 )

2 (2 (1 )) 2 (2 (1 ))

ds
s s s s

 (3.6.8) 

from which the analog of identity (3.6.6) directly follows [74, 
185]: 

2
02 3/2 2 2

0 0

2(1 )
(2 (1 )) (2 ) 2 (2 (1 ))

ds ds
s s s s

 

2
0

2 /

2 (2 (1 ))s s
.      (3.6.9) 

By analogy with (3.6.7), we can also compute by 
integration by parts the third integral in the right-hand side of 
equation (3.6.4): 
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.                                   (3.6.10) 

According to (3.6.4), let us calculate separately the sum of 
the first and third integrals, for which we need to add (3.6.7) 
and (3.6.10), taking into account the identity (3.6.9): 
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   (3.6.11) 
Finally, substituting (3.6.11) in the right-hand side of 

equation (3.6.4), we get: 
2 2 2 2
0(1 )( )

3/2 2 3/2 22 2
0 0

2 4
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Mf M e
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2 22 2 2
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0 00

2 (2 (1 ))2/2/ (1 )

x y z
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2 2 2
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s sM x y dse
s ss
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[(1 )( ) ]/22
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2

x y zM e .              (3.6.12) 

So, according to (3.6.12) the following identity is true: 
),,(4div zyxfg ,    (3.6.13) 

where ),,( zyx  is the mass density (3.3.26b) of a rotating 

spheroidal body: 2/))1()1((2
00

22
0

22
0

2

)1(),,( zyxezyx , 
3/2

0 / 2M . Taking into account Eq. (2.4.5), we can 

transform the obtained equation (3.6.13) to the well-known 
Poisson equation (2.4.1): 

),,(4)graddiv( 2
g zyxg  (3.6.14) 

so that correctness of Poisson equation (3.6.14) means that the 
specific gravitational force gf  (or the gravitational field 

strength) of a uniformly rotating spheroidal body satisfies Eq. 
(3.6.13). 

On the other hand, identity (3.6.13) and Poisson equation 
(3.6.14) imply that formula (3.6.3) looks highly like a 
function of the gravitational potential of a uniformly rotating 
spheroidal body with the mass density (3.3.26b) under the 
condition 0 , because 0g  when 

, ,x y z : 
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(1 )( )

22 (1 )

2
0 0

.
2 (2 (1 ))

x y z
ss dse

s s
 (3.6.15a) 

The formulas for the gravitational potential of a uniformly 
rotating spheroidal body have the form in the cylindrical and 
spherical coordinate systems respectively [78, 185]: 

3/2 2
0, (1 )g

Mh z   

2 2 2
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22 (1 )
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0 02 (2 (1 ))

h z
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; (3.6.15b) 

3/2 2
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Mr   

2 2 2
2 0
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(1 )sin cos

22 (1 )

2
0 0

.
2 (2 (1 ))

r
ss dse

s s
 (3.6.15c) 

Let us make sure directly that the gravitational potential 
(3.6.15a) of a uniformly rotating spheroidal body satisfies the 
Poisson equation of the kind (3.6.14) or (2.4.1). Taking into 
account the type of Laplace operator [95, 96, 99], we first 
calculate the second derivatives of the function of 
gravitational potential  g   for the Cartesian coordinates 

, 1, 2,3ix i , that is, 1 2 3, ,x x x y x z : 
2 2 2 2 2 2
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2(1 )2 0

0

2 22
(1 )

2

2
0

2
2

(1 )

x y z

s s

x y z

s s xe e
x x s

 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

300
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 (3.6.16) 

Because of (3.6.15a) and (3.6.16), the left-hand side of the 
Poisson equation (2.4.1) takes the form: 
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                                              (3.6.17) 
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Let us calculate the first integral in the right-hand side of 
equation (3.6.17) using the method of integration by parts: 
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.                                  (3.6.18) 
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Similarly, we can calculate the second integral in the right-
hand side of equation (3.6.17) using the integration method by 
parts: 

2 2 2

2
0

2 2

(1 )5/2 2
0 3/2 2

0 0

2
(1 )

(2 ) 2 (1 )

x y z

s sM dse
s s

  
2 2 2

2
0

2 2

(1 )5/2 2
0 3/2 2

0

0

2
(1 )

(2 ) 2 (1 )

x y z

s sM dse
s s

2 2 2

2
0

2 2
(1 )5/2 2 2 2

0 2
0

2
0

2 1
(1 ) ( )

2
(1 )

x y z
s sM x y e e

s

2 2 2

2
0

2 2 '
(1 )2

2 ' 3/2 ' 2
00

1

(2 ) (2 (1 ))2

x y z
s s dsz e e ds

s s
s

2 2 2

2
0

2 2

(1 )5/2 2
0 3/2 2

0

0

2
(1 )

(2 ) 2 (1 )

x y z

s sM dse
s s
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2 2 2

2 2
2(1 )0

2 2 2
5/2 2

0 2 2
0

2
0

2
(1 )

22
(1 )

x y z

s sM x y z e
ss

'

' 3/2 ' 2
0(2 ) (2 (1 ))

ds ds
s s

,                                  (3.6.19) 

Finally, substituting (3.6.18) and (3.6.19) into equation 
(3.6.17) and taking into account the identity (3.6.9), we 
obtain: 

2 2 2

2
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2 25/2 2
(1 )2 20

0 2 2
0

0
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2(1 )
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x y z

s s
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s s
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2 25/2 2 2 2 2 '
(1 ) 20

02 2 ' ' 2 2
0 0
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0
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x y z

s sM x y z dse ds
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2 2 2
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2 2 2 2
0[(1 )( ) ]/23/2 2

0

2
(1 ) x y zM e .                (3.6.20) 

The result obtained (3.6.20) proves the validity of the 
Poisson equation (2.4.1) in the case of mass density described 
by the function (3.3.26b). The solvability of the Poisson 
equation for the function (3.6.15a) of the gravitational 
potential of a rotating spheroidal body is thus justified. 

3.7. The potential energy of a uniformly rotating  
and gravitating spheroidal body 

Since the potential energy of a particle in a gravitational field 
is equal to its mass multiplied by the potential of the field 
[94], then the potential energy of any distribution of 
gravitating masses is described by expression (2.5.1): 

V
gg dVE

2

1
, (3.7.1) 

where  and g  are supposed to be the mass density 

(3.3.26b) and the gravitational potential (3.6.15a) of a 
uniformly rotating spheroidal body respectively, 

dxdydzdV . So, gravitational energy (3.7.1) is calculated by 

integrating the expression (3.6.15a) for g  multiplied by 
1

2
 

over the total volume of a uniformly rotating spheroidal body: 
2 2
0(1 )

3/ 2 2 2 2
0 0 0

1
(1 ) (1 )

2

x

g g
V V

ME dV e

 
2 2 2 22 2 22 0 00

2 2
0 0

(1 ) (1 )(1 )
2 (1 ) 2 (1 ) 22 2

2
0 02 (2 (1 ))

x yy zz
s s s dsdVe e e e e

s s
2 1

1
3/2 2 2 2 1 /2

0 0 2
0 0

(1 )
2 2 (2 (1 ))

z
sM ds e dz

s s
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2 2
2 20 0

2 2
0 0

(1 ) (1 )1 1
1 1

2 21 (1 )/2 1 (1 )/2
x y

s se dx e dy  

2 2
0 02

2
0

1 2 (1 )/2

2 (1 )3/2 2 2
0 0 2

0 0

(1 )
2 2 (2 (1 ))

s
x

sM ds e dx
s s

 
2 2
0 02 2

2
0

1 2 (1 )/2
(2 /2)

2 (1 ) 2

s
sy zs se dy e dz

 

     (3.7.2) 

Let us carry out a change of variables: 
' ' '; ; ,x ax y by z cz  (3.7.3) 

where  
2 2
0 0

2
0

1 2 (1 ) / 2
;

2 (1 )

s
a b

s
2 / 2

2

s
c

s
. 

According to the change (3.7.3), the right-hand side of 
equation (3.7.2) becomes: 

' 2
' 2

02 2 2
0 0 2 2 2

0 0 0 0

2 (1 )
2 (1 )

2 (2 (1 )) 1 2 (1 ) / 2

x
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dx sdsE e
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0
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(2 / 2)1 2 (1 ) / 2

y zdy s dz se e
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0 0 0
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ds
s s

2 2 3/2 3/2 3/2
0 0 2

0 0

2 (1 ) 2
4 (4 (1 ))

ds
s s

2 2 5/2
0 0

3/2 2
0 0

4 (1 )

4 (4 (1 ))

ds
s s

5/2
2 2
0 0 3/2 2

02

4 2
4 (1 )

4

d s

s s
.            (3.7.4)

         
Introducing the following designations: 
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4 s ; 
2 4s ; 

2
01q , 

it is not difficult to see that Eq. (3.7.4) takes the form: 
5/2

2 2
0 0 2 2 2

02

8 (1 )
( 4)g

dE   

5/2
2 2
0 0 2 2 2

0 02

8 (1 )
(1 ) (2 )

d
  

2
0

5/2
2 2
0 0 2 2

02 1

8 1
(2 )

dq
q

. (3.7.5) 

Bearing in mind the table integral: 

2 2

1
arctan

dq q C
q a a a

 (3.7.6a) 

and using the trigonometric property: 

arctan arccot
2

x+ x       

or 
 

arccot arctan
2

x x  (3.7.6b) 

we calculate the definite integral (3.7.5) as 

2
0

5/2
2 2
0 0

0 0 2 1

1
8 1 arctan

2 2g
qE  

5/2 2 2
0 02

0
0 0

1 1
4 arctan

2
 

5/2 2 2
0 02

0
0 0

1 1
4 arccot . (3.7.7) 
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Finally, taking into account that 3/2
0 ( / 2 )M , the 

value (3.7.7) of gravitational energy of a uniformly rotating 
spheroidal body is equal [79]: 

2 22
0 0

0 0

1 1
arccot

2g
ME . (3.7.8) 

In the particular case 0 0  formula (3.7.8) gives an 

estimation of the gravitational energy of a non-rotating 
(weakly rotating) spheroidal body: 

0 0

2 22
0 0

0 0
0 0

1 1
lim lim arccot

2g
ME   

0 0

2
0

2
2 0
00 0

0

1
arccot

lim 1 lim
2

M
 

 

0

2
0

2
0

0
0

1
arccot

lim
2

M
. 

(3.7.9) 

To reveal the uncertainty 
0

0
 in (3.7.9) following the rule of 

L’Hospital, let us calculate the derivative: 

0

2
0 20

02 22
00 0 00

2
0

1 21 1 1
arccot 1

1 2 11
 

2 2
02 20

0 022 2
00 0

11
1

1 1
. (3.7.10) 

Substituting (3.7.10) into (3.7.9) we finally obtain: 
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0 0

2
20
022

0

0 0

1
1

lim lim
2 1g
ME  

 

2 20 1

2 1 2

M M
. (3.7.11) 

The obtained relation (3.7.11) coincides completely with the 
formula (2.5.6) of gravitational energy in the case of a 
spherically symmetric spheroidal body or sphere-like gaseous 
body (see Section 2.5 of Chapter 2 and [46, 73, 76]). 

We now investigate another extreme case of a uniformly 
rotating spheroidal body when 0 1, that is, let us estimate 

the gravitational energy of a flattened spheroidal body: 

0 0

2 22
0 0

1 1
0 0

1 1
lim lim arccot

2g
ME  

2 20
arccot 0 0 0

2 1 2 2

M M
. (3.7.12) 

As follows from (3.7.12), the disk-shaped (flattened) 
spheroidal body does not possess its gravitational energy, that 
is, in fact, there is no gravitational interaction of particles 
inside a disk-shaped body; therefore, particles inside it move 
along independent Keplerian orbits. 

Indeed, according to the condition of the statistical 
equilibrium of a gravitating body [110]: 

0

const,g m
 (3.7.13) 

where  is a chemical potential. We know [110] that 

Tp
 is the volume assigned to a single particle under 

the condition of constant temperature constT . Taking into 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

310

account that 0m
, where 0m  is a mass of a particle,  is a 

mass density, we obtain: 

0 0 0

0
0 0

p p p

p p p

m dpdp dp m m , (3.7.14) 

where 
0

p

p

dp
 is a pressure function [111]. Taking into 

account (3.7.14), the statistical equilibrium condition (3.7.13) 
in the layers of a gravitating body becomes: 

constg . (3.7.15) 
In the case of a disk-shaped spheroidal body, the result 
(3.7.12) means that it is actually 0  inside a disk-shaped 
body, which confirms the above idea that the particles do not 
interact there. In other words, when 0 1 , the decay of the 

spheroidal body takes place as such. Indeed, under the 
condition of the relative mechanical equilibrium of a 
uniformly rotating and gravitating body, equation (3.7.15) is 
replaced by a more general one [111]: 

constg cV , (3.7.16) 

where 
22 21 1

2 2cV r r is a potential of centrifugal 

force. Therefore, in the case of a flattened ( 0 1) rotating 

spheroidal body, equation (3.7.16) degenerates into the 
following: 

constg cV , (3.7.17) 
which means that inside a rotating disk-shaped spheroidal 
body there is no pressure gradient, and the particles rotate 
independently along their orbits in the plane of the disk under 
the condition of equality of the gravitational and centrifugal 
forces. 
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 The fact that the rotating spheroidal body’s own 
gravitational energy decreases as it flattens can be well 
illustrated by the estimation (3.7.8) in the case of 00 1. 

For example, let 0 1 / 2 , then: 
2 2
0 0

0 0

1 1 1 1 2 1 1 2
arccot arccot

1 2 1 2
  

arccot1 1
4

. (3.7.18) 

Taking into account (3.7.18) the body’s own gravitational 
energy (3.7.8) is equal to: 

0

2 2

1/ 2
.

2 4 8g
M ME , (3.7.19) 

which is approximately 21% less than the gravitational energy 
(3.7.11) of a spherically symmetric spheroidal body. Thus, as 
a result of the rotation of a gravitating spheroidal body, the 
internal processes of flattening its shape lead to a decrease in 
its gravitational energy, contributing to the transition of its 
constituent parts to Keplerian orbital motion. 

3.8. The mass density of a rotating flattened  
(disk-shaped) spheroidal body and the model  

of formation of a rotating disk 

According to formula (2.2.4) from Section 2.2, the mass 
density of a non-rotating gravitating spheroidal body (or 
sphere-like gaseous body) is described by the expression [45, 
46]: 

2/2/3)0( 2

)2/()( reMr , (3.8.1) 

and in accordance with the formula (3.3.26c) from Section 
3.3, the mass density of a uniformly rotating spheroidal body 
is characterized by the relation [16, 55]: 
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2/)sin1(2
0

2/3)1( 22
0

2

)1()2/(),( reMr . (3.8.2) 

If we assume, as in Sections 3.2 and 3.3, that as a result of 
the action of inertial forces during the initial nonuniform 
rotation of a spheroidal body, the initial formation of the core 
and shell regions takes place, then from relation (3.8.2) it 
follows that in the case of steady uniform rotation of a 
spheroidal body, M is a total mass of its core (having 

mass 0M ) and shell (having mass 1M ), that is: 

10 MMM . (3.8.3) 
Obviously, in formula (3.8.1) 0MM  due to the fact that, in 

a non-rotating spheroidal body, there is no explicit separation 
into the core and the shell (in the form of a gas-dust cloud). 

Comparing (3.8.2) with (3.8.1) we obtain: 
2/sin2

0
)0()1( 222

0)1()(),( rerr , (3.8.4a) 

where: 
2/2/3

10
)0( 2

)2/)(()( reMMr . (3.8.4b) 

If a rotating spheroidal body of mass 10 MMM  

interacts with a moving (or immovable) gas-dust cloud of 
mass 2M  in its motion, then, by analogy with (3.8.4 ) and 
(3.8.4b), it should be expected that the mass density of the 
combined body (rotating spheroidal body together with 
captured gas-dust bunch) is equal to: 

2/sin2
1

)1()2( 222
1)1(),(),( rerr , (3.8.5a) 

where 
2/)sin1(2

0
2/3

210
)1( 22

0
2

)1()2/)((),( reMMMr . (3.8.5b) 

Substituting (3.8.5b) into (3.8.5a), we obtain: 
2/)sin1(1

0

2
2

0

2/3)2(

2
1

0

22

)1()2/(),( l
lr

l
l

i
i eMr . (3.8.6) 
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Summarizing (3.8.6), it is easy to see that if a rotating 
spheroidal body repeatedly captures gas-dust bunches, then its 
mass density can be expressed by the following formula [73]: 

1

0

2/sin22/

0

2/3)( 2222

)1()2/(),(
n

l

r
l

r
n

i
i

n leeMr  

.)1()2/(
2/)sin1(1

0

2

0

2/3

2
1

0

22
n

l
lrn

l
l

n

i
i eM  (3.8.7) 

According to (3.8.7), as a result of a series of captures by a 
rotating spheroidal body of gas-dust bunches (with different 
angular momentum), an increase in the eccentricity of the 
combined body occurs: 

1

0

22
n

l
l . (3.8.8) 

Indeed, in a spherical coordinate system, surfaces of equal 
mass density (3.8.2) of a uniformly rotating spheroidal body 
are described by the equation: 

1sin222
0

2 rr , 

which, in the Cartesian coordinate system, appears as: 
1)1()1( 222

0
22

0 zyx . (3.8.9) 

Taking into account the change ,/1*r equation (3.8.9) 
is reduced to the usual equation of an ellipsoid flattened along 
the axis of rotation Oz , that is, a spheroid: 

1
)1(/)1(/ 2

*

2

2
0

2
*

2

2
0

2
*

2

r
z

r
y

r
x

. (3.8.10) 

As we know, the geometrical eccentricity of a flattened 
ellipsoid with a major semi-axis a and a minor semi-axis b  is 
defined as follows: 

abae /22 , (3.8.11) 
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and a value 22 bac is called the focal length. It is easy to 
see that in the case of a spheroid (3.8.10) the geometric 
eccentricity is equal to: 

2
0*

2
*

2
0

2
* 1//)1/( rrre   

.1)1/(11 0
2
0

2
0  (3.8.12) 

In addition to the geometric eccentricity, as we know from the 
theory of equilibrium figure of rotating planets, a parameter of 
relative flattening is determined [44]: 

abaec /)( , (3.8.13) 

where a  is an equatorial radius and b
 
is a polar radius. In the 

case of a slightly flattened ellipsoid or spheroid (3.8.10), the 
relative flattening ce  is equal to: 

2
0

2
0**

2
0* 111//1/ rrrec . (3.8.14) 

If we take into account the condition of weak flattening 
12

0 , then expression (3.8.14) becomes: 

2/2/2/1111 22
0

2
0

2
0 eec . (3.8.15) 

If 02
0  (the case of a sphere), then also 0eec , and if 

12
0  (the case of a disk), then 1eec  as well. 

So, taking into account the condition of the derivation of 
the model of a uniformly rotating spheroidal body in Section 
3.3, the quantity 12

0 , that is, 10 0 , and in its sense 2
0  

is the square of the geometric eccentricity in accordance with 
(3.8.12). Thus, as noted in [16, 55], the function of mass 
density (3.8.4a) characterizes the flattening process: from the 
initial spherical forms (in the case of a non-rotating spheroidal 
body with mass density )()0( r ) through flattened ellipsoidal 
forms (in the case of a rotating and gravitating spheroidal 
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body with mass density ),()1( r ) to the disk (a disk-shaped 

spheroidal body with mass density ),()( rn ) when the 

squared eccentricity 2
0  varies from 0 to 1. This means that 

the mass density function studied ),()1( r  is suitable to the 
description of the evolution of a protoplanetary gaseous (gas-
dust) disk around a star (in particular, the Sun) [16, 55, 73]. 

Let us onsider the above in more detail in the case of a 
flattened rotating spheroidal body. According to (3.8.7) and 
(3.8.8), as a result of the capture of gas-dust clots by a rotating 
spheroidal body, there is an increase in the geometric 
eccentricity as well as in the mass of the whole body. A 
diagram of the flattening of a rotating spheroidal body is 
shown in Fig. 3.4. 

n

i
i

n

MMMMMMMMMMM

rrrr

0
210100

)()2()1()0(

...

),(...),(),()(

  

Figure 3.4. Diagram of the formation of a flattened (disk-shaped) rotating 
spheroidal body 

We suppose that at each stage of the flattening of a rotating 
spheroidal body the square of the geometric eccentricity 

2
l satisfies the following inequalities: 

12
l ,     12

ml ,     1m . (3.8.16) 

According to (3.8.16) we take into account the smallness 
value )( 2

lO  which allows us to make some simplifications, 
for example: 

1

0

22
1

2
1

2
0

1

0

2

0
1...1)1(lim

2

n

l
ln

n

l
l

l

. (3.8.17) 
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If we assume that during the subsequent stages of capture of 
gas-dust clots by a forming flattened spheroidal body, its 
eccentricity is changed as follows: 

2
0

22
1 / ll , (3.8.18a) 

then the eccentricity of the combined body (3.8.8) is equal to: 

)1(22
0

6
0

4
0

2
0

1

0

22 ... n
n

l
l   

)1/()1( 2
0

2
0

2
0

1

0

2
0

2
0

n
n

i

i . (3.8.18b) 

If n  is large enough ( n ) and the ratio 2
0  of geometric 

eccentricities is small )1( 2
0 in accordance with (3.8.16), 

then the formula (3.8.18b) takes the form: 
.)1/()1())1/((lim

2
0

2
0

2
0

2
0

2
0

1

2

2
0

n

n
 

(3.8.19) 

Let us note that condition (5.7.18a) is consistent with 
inequalities (5.7.16), because if, for example, 12/12

0 , 

12
1 , then 12/1 62

5 . Consequently, 

1,0limlim
2
0

)1(2
0

2 n

n
n

n
. (3.8.20) 

Taking into account Eq. (3.8.20) the relation (3.8.17) can be 
rewritten as follows: 

2
1

0

2
1

0

2
lim1lim1)1(lim
n

n

l
l

n

n

l
l

n
, (3.8.21) 

where the designation 2

 
is introduced following (3.8.8) and 

(3.8.18b). 
If the number of the captures n  of gas-dust bunches is 

sufficiently large ( n ), then taking into account (3.8.21), 
the mass density of a rotating spheroidal body (together with 
gas-dust bunches) takes the form: 

),(lim),( )( rr n

n
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2/)sin1(
2/3

1

0

2

0

2
1

0

22

)2/()1(limlim

n

l
lrn

l
l

n

n

i
i

n
eM  

2/)sin1(2/32

0

222

)2/()1(lim
r

n

i
i

n
eM . (3.8.22) 

However, given the reasoning about the condition (3.8.20), 
taking 2/12

0  from (3.8.19) we obtain: 

1)1/(limlim
2
0

2
0

2/1

2

2/1

2
0

2
0

n
. 

(3.8.23) 

Further, denoting the total mass M of a flattened spheroidal 

body together with captured gas-dust bunches as 
n

i
iMM

1

 

we find that: 

MM
M

n

i
i

n
limlim

1

. (3.8.24) 

As a result, using the conditions (3.8.23) and (3.8.24), we can 
obtain from (3.8.22) the mass density of a rotating disk-
shaped spheroidal body [73]: 

2/)sin1(22/3

1

222

2

)1()2/(lim),( r

M
eMr  

2/)sin1(

1

2/32

1

222

2

2

lim)2/()1(lim
r

M
eM  

2/cos2/32

1

22

2

)2/()1(lim
r

M
eM . 

(3.8.25) 

Introducing the limit value of mass in the disk-shaped 
spheroidal body: 

)1(lim)1(lim
2

0

1

2

1 22

NmMm
NM

 
(3.8.26) 
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and taking into account cosrz  in relation (3.8.25), we 
shall again write formula (3.3.28) of the mass density of the 
disk-shaped spheroidal body [16, 73]: 

2/2/3 2

)2/()( zemz , (3.8.27) 

which is a function of only a single coordinate z  in the case 
of a spheroidal disk.  

As noted, in the case of a spheroidal disk 12 , the 
geometric eccentricity and compression are equal to the unity, 
that is, 1eec . In other words, the disk can be considered 
as a strongly flattened spheroidal body with an eccentricity 
equal to 1. Indeed, from (3.8.7) and (3.8.22) it follows that in 
the cylindrical coordinate system the mass density of a 
flattened spheroidal body is: 

2/)1(22/3

0

222

)1()2/(),( zh
n

i
i eMzh . (3.8.28) 

It is clear when n  and 12  the relation (3.8.28) 
naturally goes into (3.8.27). Under these limiting conditions, 
the diagram in Fig. 3.4 may describe the process of the 
formation of thin rings of the type around Saturn in a 
protoplanetary cloud around a protoplanetary embryo. 

As already mentioned in Section 3.3, the obtained formula 
(3.8.27) for the mass density of a disk-shaped spheroidal body 
completely coincides with the so-called barometric formula 
for plane rotating systems [2]. As known [2], the plane 
systems in astrophysics are called systems whose thickness B  
is much less than the distance h  from the center of a system 
rotating with angular velocity , for example, these are 
preplanetary clouds. The thickness of a preplanetary cloud is 
determined by the thermal velocities of particles and can be 
found from an expression similar to the barometric formula 
for the Earth’s atmosphere. In this connection, let us consider 
the following general theorem [73]: 
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Theorem 3.3 (the necessary and sufficient conditions of 
mass distribution of an isolated rotating disk in the 
gravitational field). 

A rotating and gravitating gaseous disk is in a state of 
relative mechanical equilibrium if and only if its mass density 
distribution satisfies the barometric formula: 

2

2
0

z
ez , 

__
22 /3 v , (3.8.29) 

where 
)0(0 , 

 is a parameter of gravitational condensation,  
 is an angular velocity, and  

__
2v  is a mean of the squared heat velocities of the particles 

of which the disk is formed.  
Proof: first of all, we intend to prove this theorem by 

analogy with Theorem 2.2 from Chapter 2. We start, 
therefore, to derive the mass density function of an isolated 
rotating disk being in its gravitational field under the 
condition of relative equilibrium. Let us assume that the 
preplanetary cloud consists of a single-component rotating 
laminar gas. Its relative equilibrium in a radial direction h  
(perpendicular to the axis of rotation) is supported mainly by 
rotation. The gas pressure gradient along 2/Bz  is very 

small [26], so that the rotation is almost Keplerian, that is, 
according to Eq. (1.4.5) gravitational acceleration is balanced 
by specific centrifugal force: 

02hah , (3.8.30) 

where ha  is a gravitational acceleration in the direction of the 

axis Oh  and 22 yxh . It is created by the gravitational 

attraction of a central body (a star, for example, the Sun) and 
the gravitational attraction of a cloud. The latter does not 
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play a significant role so that it can be neglected if the cloud 
density is several times lower than the critical value when a 
gravitational instability arises in the cloud (see Sections 1.3 
and 1.5). Consequently, determining 2/ hMfa chgh  

and substituting it into Eq. (3.8.30), we obtain: 
32 / hMc , (3.8.31) 

where cM  is a mass of a central body (in particular, the Sun). 

In contrast, the equilibrium in the direction z  (perpendicular 
to the central plane) is maintained by a pressure gradient [2], 
so that the Euler equation [94, 111]: 

apt /v)v(/v   

under the condition of hydrostatic equilibrium )0v(  takes 
the form: 

zadzdp / , (3.8.32) 
where za  is a gravitational acceleration in the direction of the 
axis Oz . Bearing in mind that the gravitational attraction of 
the cloud can be neglected, we take into account only the 
gravitational attraction of the central body whose 
gravitational potential is expressed by the formula: 

22/),( zhMzh cg , (3.8.33a) 

whence gravitational acceleration ga  in the direction 

Oz  should be equal to: 
32/322 /)/(/ hzMzhzMza ccgz , (3.8.33b) 

where h  is a distance from the axis of rotation. Taking into 
account Eq. (3.8.31) the formula (3.8.33b) becomes: 

zaz
2 . (3.8.34) 

Substituting (3.8.34) into (3.8.32) we obtain the following 
equation: 

./)/1( 2zdzdp  (3.8.35) 
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Since the preplanetary cloud has a constant temperature and 
contains the same particles, it follows from the molecular 
kinetic theory [110, 136, 160] that: 

__
2)3/1( vp , (3.8.36) 

where 
__

2v  is the mean of the squared velocity of a particle. 
From the condition of constant temperature and identity of 
particles, we evaluate that the means of the squared velocities 
of particles do not depend on z . Taking into account (3.8.36) 
this allows us to write equation (3.8.35) as follows: 

zdzdv 2
__

2 /)/1()3/1( , 
whence after integration of this equation, it is easy to find the 
mass density of the gaseous disk [2]: 

__
222 2/3

0)( vzez , (3.8.37) 

where 0  is a mass density in the central part of the gaseous 

disk when 0z . Denoting through: 
__

22 /3 v  (3.8.38) 

and substituting (3.8.38) in relation (3.8.37) we finally obtain 
formula (3.8.29) of mass density for an isolated rotating disk 
in the gravitational field. So, the necessary condition is 
proved. 

Now we need to prove that formula (3.8.29) corresponds to 
the mass density of an isolated gravitating and rotating disk in 
the gravitational field being in a state of both relative 
mechanical and hydrostatic equilibrium. As shown in Section 
3.3 (see the derivation based on formulas from (3.3.2) to 
(3.3.25)), due to their own oscillatory interactions as well as 
originating gravitational forces a great number of liquid 
particles form an isolated uniformly rotating spheroidal body 
whose mass density is described by formulas (3.3.26a–c). 
Following Corollary 3.2 since the iso-surfaces of mass density 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

322

(3.3.26a–c) of a spheroidal body are described by spheroids 
(3.3.51) then the total potential field of gravitational and 
centrifugal forces of a rotating spheroidal body is being in 
relative equilibrium in accordance with (3.3.54). In reality, 
according to formula (3.6.15a) from Section 3.6, the equation 
of the equipotential surface of the gravitational field of a 
uniformly rotating spheroidal body is also described by 
spheroid (3.3.51). According to Theorem 3.2, the state of 
relative mechanical equilibrium of a spheroidal body 
presupposes the state of hydrostatic equilibrium when the 
equipotential surfaces of its gravitational field coincide with 
isobars. Using the diagram in Fig. 3.4 we can again describe 
the process of formation of an isolated rotating gaseous disk 
based on interactions of the rotating spheroidal body with 
captured gas-dust bunches. Formally reasoning, if we assume 

12
0  in Eq. (3.3.26a) from Section 3.3 (or 12 in 

Eq. (3.8.22)) then we obtain equation (3.3.28) (or (3.8.27)) 
describing the mass density of an isolated gravitating and 
rotating gaseous disk [16, 73]: 

2/
0

2

)( zez , (3.8.39) 

where, according to formulas (3.8.26) and (3.8.27), the value 
of mass density in a central plane of this gaseous disk is equal 
to: 

.)2/()1(lim)2/( 2/32
0

1

2/3
0 2

0

mM
M

 
(3.8.40) 

Comparing formula (3.8.37) with a similar relation 
(3.8.39), obtained exclusively within the framework of the 
statistical theory of gravity, we can see their complete identity 
suggesting that 

2/3
0 )2/()0( m . (3.8.41) 

Thus, this theorem is proved. 
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Corollary 3.3. The dynamics of the evolution process of 
formation of an isolated gravitating and rotating gaseous disk 
include multivariate states of relative mechanical equilibrium. 

Proof: as noted by Jeans [1 p.338], “for any rotating mass 
whatever, the shape of figure is determined approximately by 
the value 2/2 , and depends on nothing else,” because  
the geometrical eccentricity of a rotating ellipsoid can be 
approximately expressed by the angular velocity  as:  

24

3 2

e . (3.8.42) 

where  is a mean density of the mass. In conformity with 
the process of formation of an isolated rotating gaseous disk 
in Fig. 3.4, formula (3.8.42) means that eccentricity l  at l -

stage of formation of a flattened spheroidal body can be found 
as follows: 

2
2 3

4 2
l

l
l

. (3.8.43) 

According to Theorem 3.3 (in particular, see formula (3.8.37)) 
the angular velocity l  determines the mass density l  at l -

stage of formation of an isolated rotating spheroidal body 
being in the l -state of relative mechanical equilibrium where 

1,...,1,0 nl . The corollary is proven. 
Since according to formula (1.2.18) from Section 1.2 of 

Chapter 1, the mean of the squared heat velocities of particles 
__

2v  is proportional to the mean internal temperature T of a 
gaseous disk (in accordance with assumption 3 of this Chapter 
the rotating spheroidal disk is an isothermal one being at a 
temperature 0T ), then the derived formulas (3.8.38) and 
(3.8.41) clearly explain the cause for the increase in both the 
gravitational compression parameter  (with decreasing 
temperature T ) and the mass density 0  in the central part of 
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the gaseous disk. Such a conclusion is in complete agreement 
with the theory of the gravitational instability of Jeans [1], 
described in Sections 1.3 and 1.5 of Chapter 1. Namely, 
according to Jeans’ theory, the cooling of a gas-dust cloud 
reduces the value of critical wave-length c  which, in turn, 
leads to further contraction of the cloud owing to a 
gravitational condensation process (see formulas (1.5.20) and 
(1.5.26)). 

Let us note that according to (3.8.37), the surface mass 
density of a flat disk can be found by the formula: 

dzz)( , 

whereas the thickness B  of a homogeneous disk-shaped 
rotating system is equal [2]: 

dzzB )()/1(/ 00 . (3.8.44) 

Substituting (3.8.37) into (3.8.44), it is not difficult to find B  
[73]: 

dzedzeB zvvz 2/)/3(2/3
00

2
__

22
__

222

)/1(  

__
2

__
22 3

2

/3

2 v

v
. (3.8.45) 

To simplify formula (3.8.45), we use the connection between 

the mean square of the velocity 
__

2v and the square of the 

arithmetic mean velocity 2v of the heat motion of particles 

taking place in the Maxwellian distribution of velocities. This 
connection can be easily revealed using the comparison of 
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formulas (2.1.27) and (2.1.29) from Section 2.1, meaning v  

instead of r
 
and 

__
2v instead of 

__
2r  in them: 

2
__

2

8

3 vv . (3.8.46) 

Taking into account the relation (3.8.46), the formula (3.8.45) 
becomes: 

vvB
28

3

3

21 2 , (3.8.47) 

where v  is an arithmetic mean velocity of particles. So, 
formulas (3.8.45) and (3.8.47) show that the thickness of the 
preplanetary cloud (disk) is determined by the heat velocities 
of the particles [2]. The accounting of relation (3.8.46) allows 
us to transform the formula (3.8.38) for estimating the 
parameter of gravitational condensation  in a rotating 
spheroidal disk [73]: 

2
8

v
.  (3.8.48) 

Finally, let us try to estimate the square of the total 
geometric eccentricity 2  of a rotating disk-shaped spheroidal 
body. For this purpose, we use the model of formation of a 
flattened (disk-shaped) rotating spheroidal body (see Fig. 3.4) 
and note that the above arguments have some common 
features with the Roche model discussed in Sections 1.4 and 
3.1. It especially concerns the changing of the shape of 
equipotential surfaces (see Fig. 1.9) as the value 2/2  
increases until it reaches its limit value of 0.360744 in 
accordance with (1.4.34), so that when 2  exceeds the 
critical value 2360744.0  for the first time, then its 
further increase can lead to a loss of mass in the volume of 
this new equipotential configuration [1]. 
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Indeed, the change in the shape of a rotating spheroidal 
body (see Fig. 3.4) within the framework of the developed 
model for the formation of a spheroidal disk is associated with 
an increase in the square of the geometric eccentricity 
following (3.8.8) and (3.8.23), while according to the Roche 
model as well as Corollary 3.3 the change in the shape of a 
rotating body is stipulated by the increase in angular velocity 

. In this regard, we shall find the dependence 2  on the 
magnitude . 

In the framework of the Roche model, equation (1.4.21) is 
considered for the equipotential surface of a rotating solitary 
gas-dust cloud which at the pole *rr  (in the direction z ) of 
the chosen equipotential surface takes the form: 

const
*r
M

 (3.8.49) 

which, in turn, allows us to clarify the constant in the equation 
under consideration (1.4.21) and rewrite it as follows: 

*

222
)(

2
1

r
M

yxr
M

. (3.8.50) 

Dividing the left-hand side of Eq. (3.8.50) by its right-hand 
side, we obtain: 

222** sin
2

1
1 rM

r
r
r

, (3.8.51) 

where the next equation immediately follows [73]: 
1

22*
2

*
sin

2
1

1 r
M

rrr
. 

(3.8.52) 

In the theory of a rotating planet figure (in particular, 

Earth) a small dimensionless quantity 1
*

*
2

a
r

 is 

considered in the hydrostatic equilibrium approximation (for 
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example, for the Earth rotating with an angular velocity of 
1s13700/1 , it is equal to the value 1/300 [44, 186]).  

Taking into account that 2
*** /)( rMraa  is a value of 

gravitational acceleration at the pole, this small dimensionless 
quantity is equal: 

M
r

a
r 3

*
2

*

*
2

. (3.8.53) 

According to the Roche model, an equilibrium figure for the 
solitary non-rotating gas-dust cloud should be the sphere [44, 
111]: 

*rr . (3.8.54) 
For a gas-dust cloud freely rotating with an infinitely small 
angular velocity , equation (3.8.52) also transforms into the 
sphere equation (3.8.54), that is: 

*rr   at  0/3
*

2 Mr . (3.8.55) 
So, taking into account (3.8.53)–(3.8.55) due to the smallness 
of the parameter 1/3

*
2 Mr  (due to the very small 

rotation of the solitary gas-dust cloud), the equation of the 
equipotential surface (3.8.52) is approximately described by 
an equation of the spheroid: 

2
3

*
2

*
sin

2
1

1
M
rrr

. 
 

(3.8.56) 

On the other hand, according to formula (3.8.10) and 
(3.3.51) from Section 3.3, the iso-surface of the mass density 
of a spheroidal body in relative mechanical equilibrium is a 
flattened ellipsoid of rotation whose equation in the spherical 
coordinate system has the form: 

const2/)sin1( 22
0

2r . (3.8.57) 
Putting the constant equal 2/1const  in equation (3.8.57) 
and introducing the traditional designation /1*r  in 
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accordance with the formula (2.2.6), we can express the 
coordinate r  from this equation: 

2/122
0* sin1rr , 

where, because of the smallness of the parameter 2
0 , that is, 

12
0 , we obtain an approximate equation of the spheroid: 

22
0* sin

2

1
1rr . (3.8.58) 

Following Corollary 3.2 of Theorem 3.2 and Remark 3.2 
from Section 3.3, we conclude (because of the coincidence of 
equations (3.8.56) and (3.8.58)) that 

*

*
2

*
2

2
0

3

a
r

M
r

. (3.8.59) 

Generalizing (3.8.59) we find: 

)(
*

)(
*

2)(
*

2
2

3

l

l
l

l
l

l a
r

M
r

, 1,...,1,0 nl . (3.8.60) 

Let us note that choosing the mean volume 

3/4/
3)(

*
l

ll rVM  we can transform formula (3.8.60) to 

the kind (3.8.43). Finally, using (3.8.60) as well as (3.8.8) we 
obtain: 

1

0
)(

*

)(
*

2
2

n

l
l

l
l

a
r

, (3.8.61) 

where 0 , *
)0(

* rr , *
)0(

* aa . Formulas (3.8.59)–

(3.8.61) give an explicit form of the dependence of the square 
of geometric eccentricity 2

l  and the total geometric 

eccentricity 2  on the parameters of a rotating disk-shaped 
spheroidal body. 
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Conclusion and comments 

This chapter has been occupied with an investigation into the 
configurations assumed by masses rotating freely in space 
under their gravitational forces [1]. Before leaving the 
theoretical discussion, and turning our attention to the actual 
problems of astrophysics, it may be profitable to summarize 
the main theoretical results which have been obtained. 

First of all, since this chapter is devoted to the study of 
statistical models of a rotating and gravitating spheroidal 
body to describe the evolution of a protoplanetary gaseous 
(gas-dust) cloud around a forming star, Section 3.1 considers 
the statistical interpretation of Poincaré’s well-known general 
theorem and the Roche model for a slowly rotating and 
gravitating spheroidal body, that is, for a sphere-like gaseous 
body. In particular, the distribution function (3.1.11) is 
introduced in the space of angular velocities. Moreover, the 
effective probability volume density (3.1.16) is essentially a 
probability volume density )(reff  of detecting a particle in 
a rotating spheroidal body. Since the effective probability 
volume density is obtained under the assumption of the 
smallness of the parameter 2/2 , this condition 
automatically leads to Poincaré’s well-known general theorem 
(3.1.23) in statistical interpretation for a slowly rotating and 
gravitating spheroidal body, that is, Theorem 3.1 says [52, 
73]: 

Stable movement of a rotating and gravitating spheroidal body is 

possible only for small values of the argument 2/2  of the 

distribution function in space of angular velocities of its constituent 
liquid particles, i.e. when 1. 

The Poincaré theorem is closely related to the condition for 
the existence of an equilibrium figure for a rotating and 
gravitating mass of a liquid with a convex surface (for 
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example, a rotating gaseous mass of a molecular cloud). Since 
the liquid mass equilibrium figure is found from the condition 
that the external (free) surface should be equipotential, the 
equation of the critical equipotential surface (1.4.29) is 
considered within the framework of the Roche model (see 
also Section 1.4). As we know, the Roche model leads to the 
limit relation (3.1.25) confirming the general conclusion that 
follows from the Poincaré theorem. Section 3.1 also notes that 
the results obtained using the Roche model are fully 
confirmed within the framework of the developed theory of 
forming spheroidal bodies. In particular, according to formula 
(3.1.26), when the wave propagation of initial gravitational 
perturbations changes to an aperiodic mode of their 
amplification (due to the formation of the core of a spheroidal 
body), the wave perturbations lead to the self-rotation of the 
forming core as a result of their interference. Let us note that 
the break-up angular velocity  of rotation is 12% higher 
than the critical frequency c of the wave perturbations. Thus, 

within the framework of the theory of rotating and gravitating 
spheroidal bodies, both the Poincaré general theorem is 
derived in the statistical interpretation (3.1.23) (see Theorem 
3.1) and the main result (1.4.25b) of the Roche model is also 
obtained by formula (2.3.8).  

In Section 3.2, using the proposed model of initial rotation 
of a spheroidal body, the evolution of a nonequilibrium 
function of distribution of liquid particles for the spatial 
coordinates in a gaseous body at the beginning of its rotation 
is considered. Namely, a nonequilibrium function of the form 
(3.2.4) (or (3.2.6)) is obtained. As noted, formula (3.2.6) 
describes the effective probability volume density )(reff to 
locate a liquid particle at the initial instant of rotation of a 
sphere-like gaseous body. 

 In Section 3.3, the equilibrium distribution function of 
liquid particles with respect to the spatial coordinates is 
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derived, and the mass density function is also obtained for a 
uniformly rotating and gravitating spheroidal body with a 
small angular velocity const . Although in a uniformly 
rotating spheroidal body the particles do not move relative to 
the rotating cylindrical frame of reference itself, however, 
from the beginning of a nonuniform (unsteady-state) rotation 
of gaseous body with an angular velocity )(t  a liquid 
particle begins to move inside it in the opposite direction to 
this rotation owing to an inertia force action (in fact, the 
uniform rotation of the body always precedes unsteady 
nonequilibrium initial rotation, as noted in Section 3.2). That 
is why in the subsequent reasoning there are distinctive 
features of the derivation related to the integration process of 
the third differential equation (3.3.18) along the angular 
coordinate . Namely, to derive the distribution function of 
particles inside a spheroidal body being in relative 
mechanical equilibrium (i.e., relative to a coordinate system 
rotating with a constant angular velocity ), we take into 
account that the variable  in equation (3.3.19c) stabilizes 
after some time to its constant value 0  which is the upper 

limit value of . As a result, in Section 3.3, expressions for 
the probability volume density function (3.3.22a–c) and mass 
density (3.3.26a–c) of a rotating spheroidal body in the state 
of relative mechanical equilibrium are obtained [16, 73]. In 
Section 3.3, Lemma 3.1 is proved, according to which the iso-
surface of the mass density of a spheroidal body being in 
absolute or relative mechanical equilibrium coincides with the 
equipotential surface of the field of potential forces, and also 
Theorem 3.2, which says [73]: 

 
In order for a gravitating spheroidal body to be in absolute or 
relative mechanical equilibrium under the action of a potential field 
of forces, it is necessary and sufficient that the equipotential 
surfaces of the field coincide with mass density iso-surfaces 
(isostere) and isobars. 
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Corollary 3.2 is also considered, according to which the iso-
surface of the mass density of a spheroidal body is described 
by a flattened ellipsoid (spheroid) in space if and only if the 
potential field of forces is the total potential field of 
gravitational and centrifugal forces of a rotating spheroidal 
body being in relative mechanical equilibrium. So, according 
to Lemma 3.1 and Theorem 3.2, in the case of a very slow 
rotation of a spheroidal body ( 12 ), the equation of the 
equipotential surface of the gravitational field of a slowly 
rotating spheroidal body must also be described in space by a 
flattened ellipsoid of the form (3.3.51). 

Using the relation (3.3.22a) for the probability volume 
density function ),( zh  of detecting particles in a rotating 
spheroidal body in the state of relative mechanical 
equilibrium (Fig. 3.3), in Section 3.4 the distribution function 
(3.4.9) of the specific angular momentum )(f  and the 
angular momentum distribution function in space ),( zhl , that 
is, angular momentum density (3.4.27), for a uniformly 
rotating spheroidal body are derived. The average value of 
specific angular momentum (3.4.11) and the total angular 
momentum (3.4.13) of a rotating spheroidal body being in 
relative mechanical equilibrium are calculated [16, 73]. The 
distribution function (3.4.32) of the specific angular 
momentum )(hf  on distance h  from the axis of rotation Oz  
is found. It is noted that the presence of maximum points of 
the distribution functions of the specific angular momentum 
and the density of angular momentum means that an “export” 
of the specific angular momentum by particles from the axis 
of rotation to the region *hh  occurs in a uniformly rotating 
spheroidal body. 

Section 3.5 provides the derivation of a function of the 
spatial distribution of particles for a rotating and gravitating 
spheroidal body within the framework of the GR theory when 
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the gravitational field of a rotating body is characterized by an 
axially symmetric stationary Kerr’ metric [54, 73]. It is shown 
that, from the point of view of GR, the probability volume 
density function of detecting a particle in a uniformly rotating 
spheroidal body is described by the relation (3.5.29). 
Comparing (3.5.29) with a similar relation (3.3.22a) obtained 
within the framework of the statistical theory of gravity (see 
Section 3.3), we can see a certain similarity when the 
conditions (3.5.30a) and (3.5.30b) are fulfilled. 

The determination of the gravitational potential based on 
general Eqs (1.1.40a)–(1.1.40c) from Chapter 1 for finding 
the specific gravitational force gf  (or gravitational strength 

a ) in the case of a uniformly rotating spheroidal body is 
discussed in Section 3.6. It is shown that the gravitational 
potential of a uniformly rotating spheroidal body is described 
by the expressions (3.6.15a– ) in the different coordinates, 
and it satisfies the Poisson equation (3.6.14). The form of the 
obtained formulas (3.6.15a– ) fully confirms the main 
conclusion of Corollary 3.2 of Theorem 3.2 and Remark 3.2 
from Section 3.3 that the equipotential surface equation of the 
gravitational field of a slowly rotating (i.e. 12

0 ) 

spheroidal body should also be described in space by a 
flattened ellipsoid of the form (3.3.51). 

Section 3.7 shows that the potential energy of a uniformly 
rotating and gravitating spheroidal body is estimated by 
formula (3.7.8). In the particular case 0 0 , formula (3.7.8) 

gives an estimation of the gravitational energy (3.7.11) of a 
spherically symmetric spheroidal body, that is, sphere-like 
gaseous body (see formula (2.5.6) in Sections 2.5 of Chapter 
2). In the other particular case 0 1 , formula (3.7.8) 

demonstrates that the gravitational energy of a disk-shaped 
(flattened) spheroidal body is equal to zero in accordance with 
(3.7.12), that is, the disk-shaped spheroidal body does not 
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possess its gravitational energy. This means that inside a 
rotating disk-shaped spheroidal body there is no pressure 
gradient, and the particles move independently along their 
orbits in the plane of the disk under condition (3.7.17) of 
equality of the gravitational and centrifugal forces. 

In Section 3.8, the mass density of a flattened rotating 
spheroidal body (see formula (3.8.7)) is investigated, and a 
model for the formation of a rotating spheroidal disk is 
proposed. Within the framework of the model being 
developed, as a result of a series of captures by a rotating 
spheroidal body of gas-dust clots, both the mass and the 
eccentricity of the combined body increase following the 
formula (3.8.8). A diagram of the flattening of a rotating 
spheroidal body and the formation of a disk-shaped body is 
shown in Fig. 3.4. Under conditions (3.8.23), (3.8.24), and 
(3.8.26), the mass density of a rotating spheroidal disk of the 
form (3.8.27) is derived. This result is a part of the proved 
Theorem 3.3, which says:  

 
A rotating and gravitating gaseous disk is in a state of relative 
mechanical equilibrium if and only if its mass density distribution 
satisfies the barometric formula: 

2

2
0

z
ez ,  

__
22 /3 v ,   

  
where )0(0 ,  is a parameter of gravitational condensation, 

 is an angular velocity, and 
__

2v  is a mean of the squared heat 
velocities of the particles of which the disk is formed. 
 

According to Theorem 3.3, formula (3.8.27) completely 
coincides with the barometric formula (3.8.37) for plane 
rotating systems being under the condition of hydrostatic 
mechanical equilibrium. A comparison of these formulas 
gives us a possibility to find an analytical dependence (3.8.48) 
of the parameter of gravitational condensation  of a rotating 
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spheroidal disk on the angular velocity  and arithmetic 
mean heat velocity v  of a particle. According to the proved 
Corollary 3.3, the dynamics of the evolution process of 
formation of an isolated gravitating and rotating gaseous disk 
includes multivariate states of relative mechanical 
equilibrium. 

Let us summarize some results. In Sections 2.1–2.10 of 
Chapter 2, the proposed statistical theory proceeds from the 
concept of forming a sphere-like gaseous body (a spheroidal 
body at 0 0 ) as an initial protoplanetary system (including 

a proto-sun within a protosolar nebula) from a nebula. As 
shown there, the obtained functions of particle distribution 
and mass density of an immovable (or slowly rotating when 

0 0 ) spheroidal body characterize the first stage of 
evolution: from a molecular cloud (nebula) to a forming core 
(proto-Sun) together with the outer shell (protosolar nebula). 

In Sections 3.1–3.8 of this chapter, the second stage of 
evolution is described: from the protosolar nebula to the 
forming protoplanetary gas-dust disk based on the obtained 
distribution functions (nonequilibrium and equilibrium) and 
the mass density of rotating spheroidal body. As noted in 
Section 3.8, the resulting mass density function characterizes 
the flattening process: from initial spherical shapes (for an 
immovable spheroidal body) through flattened ellipsoidal 
shapes (for a rotating spheroidal body) to spheroidal disks 
when the square of the geometric eccentricity 2

0  varies from 

0 to 1. The resulting formulas (3.3.26a–c) and (3.8.27) may 
describe possible scenarios of the formation of both a star and 
a protoplanetary gas-dust disk around it (in particular, the Sun 
together with its protoplanetary gas-dust disk). 
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CHAPTER FOUR 

EQUATIONS AND STATE PARAMETERS OF A 

FORMING SPHEROIDAL BODY IN THE PROCESS 

OF INITIAL GRAVITATIONAL CONDENSATION  
 
 
 

The phenomenon of gravitation concerns all the branches of 
physics, both traditional and newly emerging. In this 
connection, G. Nicolis and I. Prigogine in the book [135] 
pointed out, in particular, that “the self-organization theory 
cannot be completed without involving the force of 
gravitation, the most universal of all the known forces.”  

In Chapters 2 and 3, statistical models of the gravitational 
interaction of particles were proposed (the immovable and 
rotating cases respectively). In the framework of these 
models, cosmogonical bodies have fuzzy contours and are 
represented by spheroidal forms [16, 45, 46, 73]. In 
particular, in Chapter 2 a centrally symmetric distribution of 
particles in space was used whose form is analogous to the 
one describing the Maxwell velocity distribution law. 

The present chapter, being the continuation of Chapters 2 
and 3, is aimed at the investigation of a slow-flowing-in time 
process of gravitational condensation experienced by a 
chemically homogeneous spheroidal body [47, 73], 
unaffected by other fields and bodies, and having a 
temperature close to absolute zero. In other words, in Chapter 
3, both intensive parameters of the state of a spheroidal body 
(for example, pressure, temperature or chemical potential) 
were investigated, and differential equations describing the 
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dynamics of a forming spheroidal body in the process of 
slow-flowing initial gravitational condensation were derived. 

As follows from the results of statistical mechanics of 
irreversible processes [134], the condition of a not too large 
concentration gradient (the substance mass density  does 
not change noticeably through a distance of the order of the 
particle-free mean path, that is, the interphase boundaries 
within the body volume are absent) “implies the proximity of 
locally treated distribution functions of impulses and particle 
mutual positions to the Maxwell–Boltzmann equilibrium 
distribution.” The foregoing means that the approach being 
described here, as well as that in Chapters 2 and 3, is in 
complete agreement with the statistical mechanics of 
irreversible processes. In addition, the anti-diffusion equation 
(1.7.12) predicted in Section 1.7 of Chapter 1 is also derived 
in this chapter within the framework of the more general 
model of a slowly compressible spheroidal body [16, 47, 65, 
73]. As mentioned above, due to initial oscillatory interactions 
of colloidal particles, a spheroidal (cosmogonical) body can 
be formed in an immovable isolated molecular cloud. 

In connection with the above remarks, in this chapter, as a 
rule, the following assumptions are used [16, 47, 49, 73]: 
1.  The spheroidal body considered is homogeneous, that is, it 

consists of like particles of mass 0m . 

2.  The spheroidal body is not affected by external fields and 
bodies. 

3.  The initial spheroidal body is isothermal, being at a 
temperature T  close to absolute zero. Moreover degTT , 

where degT  is the temperature of degeneration [110] (this 

does not apply to the subsequent virial equilibrium states 
considered in Section 4.1 when 0T  following the 
reasoning from Section 1.2). 
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4.  The concentration gradient is not too great in the sense that 
the interphase boundaries inside the spheroidal body are 
absent.  

5.  The spheroidal body is in a state of mechanical equilibrium 
(there is no flow of mass), or in a state close to equilibrium 
(a weak mass flow), that is, anti-diffusion process of the 
initial gravitational condensation is a slow-flowing-in time 
one, as a rule [16, 47, 49, 73] (although, as shown in 
Section 4.6, the differential equations obtained in Section 
4.2 for physical values are quite general, allowing us to 
describe, among other things, the avalanche gravitational 
compression due to the gravitational field that arises in the 
spheroidal body). 

4.1. The main anti-diffusion equation of initial 
gravitational condensation of a spheroidal body with a 

centrally symmetric distribution of masses from an 
infinitely spread matter 

Let us find the differential equation describing the process of 
gravitational condensation of a non-rotating or slowly rotating 
spheroidal body at 0 0  having a centrally symmetric 

distribution of mass density (sphere-like gaseous body) near 
an equilibrium state (in the vicinity of mechanical 
equilibrium) [16, 47, 48, 73]. Henceforth, we will consider 
that parameter 0  is a slowly changing function of time 
starting from a certain instant 0t , that is, t  at 0tt . 

Moreover, as follows from the derivation of formula (2.1.13), 
the function t  is a positively defined monotonically 
increasing in time function (Fig. 4.1). 
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Figure 4.1. The parameter  dependence on time t   

Indeed, with the increase of function t  the 
maximum of the probability density function of revealing 
particles: 

22/2/3 2

/2, rerf r  (4.1.1) 

shifts to the left and increases in amplitude, as is shown in 
Fig.4.2. 
 

 
Figure 4.2. The probability densities as a function of distance r depending 
on the parameter  

This means that the diagram of the spheroidal body mass 
density function: 

2/
2/3

2

2
, reMr  (4.1.2) 
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has a steeper slope to the axis of abscissa, with  increasing 
(see Fig. 4.3), which, in turn, results in concentrating a mass 
of a non-rotating (or slowly rotating) spheroidal body near its 
center, that is, in gravitational condensation (compression).  

 

 

Figure 4.3. The mass density of a spheroidal body as a function of distance 
r  depending on the parameter   

It is important to note here that, despite the seeming 
decrease of spheroidal body size (Fig. 4.4), the number of 
particles comprising it, N , does not decrease, that is, the total 
spheroidal body mass remains constant: const M . 

 

 

Figure 4.4. The graphic representation of gravitational condensation of a 
spheroidal body with the time 

Let us consider the mass density  as a function of two 
variables r  and t . Since the dependence on t  is expressed by 
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a composite function, we shall calculate partial derivative  
with respect to t : 

dt
d

t
. (4.1.3) 

As follows from (4.1.3), it is necessary first to calculate the 
derivative of  with respect to , applying relation (4.1.2) 
for that purpose [16, 47, 48, 73]: 

2/
22/3

2/
2/3

2/1 22

222

1

2

3 rr erMeM  

2
2/1

2/3

2/

3
22

2

reM r
. (4.1.4) 

Let us now calculate the Laplacian operator of a scalar 
function , taking into account that the spheroidal body has a 
centrally symmetric distribution of mass density. With 
provision for this, the Laplacian in the spherical system of 
coordinates has the form: 

2/3
2/3

2
2

2
2 2

2

1,1 rerM
rrr

rr
rr

 

22/
2/3

3
2

2

reM r . (4.1.5) 

Comparing (4.1.4) and (4.1.5) one can see that these 
relations coincide to the accuracy of a multiplier 22/1 , that 
is, the following relation is valid:  

2
22

1
. (4.1.6) 

Substituting (4.1.6) into (4.1.5), we obtain [16, 47, 48, 73]: 

2
22

1

dt
d

t
.  (4.1.7) 

The relation obtained (4.1.7) serves as a reminder, in its 
form, of the anti-diffusion equation  (the sign ‘ ’ in the right-
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hand part testifies that the initial density disturbance will not 

decrease but rather increase 0
2

1
2 dt

d ), while, at the same 

time, it principally differs from the diffusion equation. As 
follows from (4.1.7), introducing the gravitational 
compression function (GCF) as a function of time t  through 
the formula  [16, 47, 48, 73]: 

dt
dt

22

1
)(G , (4.1.8) 

we can write the basic anti-diffusion equation of the initial 
gravitational condensation of a non-rotating (or slowly 
rotating at 00

) spheroidal body in the form [16, 47, 48, 

73]: 
2)( t

t
G . (4.1.9a) 

Since )(t  is a monotonically increasing function of time, 
then 0)(tG . This means that, according to (4.1.9a), the 
initial perturbation of the mass density of a spheroidal body 
will not damp (as in the diffusion equation [94]), but increase. 
By (2.2.7) rMr , so that a similar equation also holds 
for the volume density of probability for detecting particles in 
a gaseous matter of a spheroidal body [16, 47, 48, 73]: 

2)( t
t

G . (4.1.9b) 

Rewriting (4.1.8) in the form: 

,)(2
2

dttd
G  (4.1.10) 

and then integrating (4.1.10), we obtain: 

0 0

,)(2
2

t

t

dttd
G  

where )( 00 t . Hence it is not difficult to see that: 
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.

)(21
1

)(2

1

00

0

0

0

t

t

t

t

dttdtt GG

 
(4.1.11) 

Substituting (4.1.11) into (2.2.4), we then obtain: 

.))(4/2(),( 0
0

2

0

/2)(4
2/3

0

t

t
dtt

r

t

t

edttMtr
G

G  (4.1.12) 

Relation (4.1.12) is a solution of the derived differential 
equation (4.1.9a). If a function )(tG  of the form (4.1.8) takes 
a constant value constG , then the basic equation of 
gravitational compression (4.1.9b) of a spheroidal body 
generalizes the anti-diffusion equation (1.7.12), derived in 
Section 1.7. Thus, the model of a slowly flowing gravitational 
contraction of a spheroidal body near a state of unstable 
mechanical equilibrium adequately describes the evolutionary 
processes of the gravitational contraction of a molecular (gas-
dust) cloud having a rather low temperature and being solitary 
in space. 

As we know from Section 1.2 (in particular, Theorem 1.4), 
for a solitary molecular (gas-dust) cloud being in unstable 
motion, the Poincaré–Eddington virial theorem is valid (see 
formula (1.2.13)). This virial theorem in the Poincaré–
Eddington interpretation applied to a radially moving 
spheroidal body with 00  reads as follows [73]: 

Theorem 4.1 (the Poincaré–Eddington virial theorem 
applied to a spheroidal body with a centrally symmetric 
distribution of masses being in unstable radial motion). For a 
self-gravitating spheroidal body with a centrally symmetric 
distribution of masses under the condition of their unstable 
radial motion the sum of the double kinetic energy and the 
total gravitational potential energy of this sphere-like gaseous 
system of particles is equal:  

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Equations and State Parameters of a Forming Spheroidal Body  
in the Process of Initial Gravitational Condensation  

345 

)(22 tMEE gk G , (4.1.13) 

where 

kE  and gE  are respectively the kinetic and gravitational 

potential energy of the particles forming a spheroidal body 
at 00

, 

)(tG  is a derivative of GCF )(tG  of the spheroidal body 
with a centrally symmetric distribution of masses, and 
M is its total mass. 
Proof: We can now apply Theorem 1.4 (the virial theorem 

in the Poincaré–Eddington interpretation) to the sphere-like 
gaseous system of particles being in unstable motion: 

2

2 )(
2
1

2
dt

tIdEE gk ,  (4.1.14) 

where )(tI  is a moment of inertia of a spheroidal body at 

00  which can be easily calculated using the spherically 

symmetric distribution law of its mass density (2.2.5):  

dxdydzyxtI )()( 22  

ddrdrr
0 0

2

0

222 sinsin  

0

4

0

2 sin)cos1(2 drrd  

.
3

8
cos)cos1(2

0

4

0

4
1

1

2 drrdrrd
 (4.1.15) 

As we know [16, 47, 65, 73], in the process of gravitational 
condensation of a spheroidal body, the parameter  increases 
monotonically with the time, that is, )(t  is a positive 
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definite monotonically increasing function of time. This 
means that the function of the mass density: 

2

)(2/3 2

2

)(
))(,(

rt

etMtr  (4.1.16) 

has a steeper descent to the radial axis r  under increasing 
)(t  which ultimately leads to compaction of the mass of 

spheroidal body near its center. The change in mass density 
along with r  leads to a change in the value of the moment of 
inertia of a spheroidal body with the time: 

.)(
2

3

2
))(,(

3

8
)( 2

)(

0

42/3

0

4

2

drertMdrtrrtI
rt

 (4.1.17) 

Using the integration rule by parts (see (2.9.15)), it is easy to 
show that the following relations hold:  

drerdrer
rrt
2

0

22

)(

0

4

22

3
; 

0

22

)(

0

2

22

1 dredrer
rrt

. 

Then taking into account these relation expressions, (4.1.17) 
takes the form: 

0

2

)(

2
2

3 2

3
))((

2

3

2
)( dretMtI

rt

  

.
)(

2
2

3
))((

2
3
2

2/5
2/3

t
MtM  (4.1.18) 

On the other hand, the relation (4.1.15) can be directly 
calculated in the cylindrical coordinate system ),,( zh : 
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)(

21

2
2

2

2

))((

22
2

)(
))(,,()(

2/12

2/3

0

2

0

23
2/3

0

2

0

2

22

t
MtM

dzedhehtMdhdzdhtzhhtI
zr

which completely coincides with (4.1.18). Substituting 
(4.1.18) into Eq. (4.1.14), we obtain: 

.
))(1(

2
2

2

dt
tdMEE gk  (4.1.19) 

Taking into account (4.1.8) we transform the right-hand side 
of equation (4.1.19) to the form: 

dt
d

dt
dM

dt
tdM

22

2 1))(1(
  

)(2
)(

2
2

1
2

2
tM

dt
tdM

dt
d

dt
dM G

G
, (4.1.20) 

where )(tG  is a derivative of the function )(tG with respect to 
the time. Finally, substituting expression (4.1.20) into the 
right-hand side of Eq. (4.1.19) we obtain, as a result, Eq. 
(4.1.13). The theorem is proved. 

Remark 4.1. According to (4.1.18), in the case of a slowly 
and uniformly rotating spheroidal body when 00  and 

const , the value of its total angular momentum IL  
becomes equal to: 

)(

2

t
MIL , 

which fully coincides with the earlier derived formula (3.4.15) 
in Section 3.4. 

Corollary 4.1. In a state of mechanical equilibrium of a 
spheroidal body with a centrally symmetric distribution of 
masses, GCF )(tG  should be a constant gravitational 
contraction coefficient: 
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const)( sGG t . (4.1.21) 
Proof: In reality, as we know from Section 1.2, in the state 

of mechanical equilibrium, the right-hand side of Eq. (4.1.13) 
following the Theorem 1.3 (the virial theorem) and formula 
(1.2.14), must be equal to zero, that is, 0)(tG . This means 
that equality (4.1.21) occurs, and the basic anti-diffusion 
equation (4.1.9b) of the initial gravitational condensation of a 
spheroidal body with a centrally symmetric distribution of 
masses becomes Eq. (1.7.12) of slow-flowing gravitational 
condensation. This corollary is proved [73]. 

Summarizing the above, we conclude that an approximate 
graph of the GCF change from the initial instant 0t of the anti-

diffusion process of the beginning of gravitational 
condensation to the instant st  of the stabilization of the slow-
flowing gravitational condensation process is shown in Fig. 
4.5,a. Subject to the constancy of the gravitational contraction 
coefficient (4.1.21), beginning from the instant st , the formula 

(4.1.11) takes the form [73]: 
1)(21

)(21
)( ssss

ss

s tt
tt

t G
Gs

, (4.1.22) 

where )( ss t  is a value of the parameter of gravitational 
condensation corresponding to the time instant st  of 
stabilization of GCF. 
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a) 

 
b) 

Figure 4.5.  The diagrams of dependence on the time for GCF )(tG (a) and 

the parameter )(t of gravitational condensation (b) from the beginning of 

the anti-diffusion process of the gravitational compression of a spheroidal 
body 

Corollary 4.2 (Analog of Einstein’s formula in the 
Brownian motion theory [136]). The mean-square distance of 
displacement of a colloidal particle in an immovable or slowly 
rotating spheroidal body during the time interval stt  is 

equal: 

sG6
__

2r . (4.1.23) 

Proof: taking into account Corollary 4.1, let us rewrite 
formula (4.1.22) as follows: 

)(2
1

)(

1
s

s

tt
t sG . (4.1.24) 

According to formula (2.1.29) from Section 2.1, in the state of 
relative mechanical equilibrium, the mean-square distance of 
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displacement of a colloidal particle in an immovable (or 
slowly rotating) spheroidal body is equal to: 

3__
2r . (4.1.25) 

Using the new notation (4.1.25) formula (4.1.24) becomes: 

ss rr G6
__

2
__

2 , 

where ssr /1
__

2  and stt , that is, the mean-square 

distance of displacement of the colloidal particle 
__

2
__

2
__

2 rrr s can be found by formula (4.1.23). The corollary 

is proved. 
Remark 4.2. The formula (4.1.23) of Corollary 4.2 points 

to the existence of dark matter owing to which molecules 
(atoms) and, generally speaking, the colloidal (liquid) 
particles interact and form spheroidal bodies, that is, 
cosmogonical objects. 

Taking into account 1s  the formula (4.1.22) goes to 

the following: 
)],(21[)( ssss ttt G  (4.1.26) 

which approximately describes the linear law of increasing 
the parameter of gravitational condensation with the time. 
Consequently, starting from the instant st  of the stabilization 

of GCF, formula (4.1.22), due to the smallness of s , 

describes the almost linear law of increasing )(t  with 
the time t , which is illustrated in Fig. 4.5,b. Generally 
speaking, the initial instant 0t  of the beginning of the anti-

diffusion process of the initial gravitational interactions of 
particles also corresponds to a certain state of the initial virial 
(unstable mechanical) equilibrium, so that in this case formula 
(4.1.26) takes the form: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Equations and State Parameters of a Forming Spheroidal Body  
in the Process of Initial Gravitational Condensation  

351 

)](21[)( 000 ttt 0G , (4.1.27) 
and this directly follows from (4.1.11) when dttt 0 . In 

other words, there are many states of virial (unstable relative 
mechanical) equilibrium in the process of gravitational 
condensation of a spheroidal body with a centrally symmetric 
distribution of masses. Thus, we can formulate the following: 

Corollary 4.3. The dynamics of the condensation process 
of a spheroidal body with a centrally symmetric mass 
distribution include multivariate states of unstable mechanical 
equilibrium. 

As follows from Corollaries 2.2, 3.3, and 4.1, Corollary 4.3 
is also true. This means that instants 0t  and st  are repeated, 

that is, (1)
0 0 1t t T  and (1)

1s st t T , then (2) (1)
0 0 2t t T  and 

(2) (1)
2s st t T ,…. We observe, as noted in Section 1.2, that the 

virial theorem applied to large cloud-like configurations of 
ideal gas being in mechanical equilibriums (stellar systems, 
nebulae, and interstellar gas masses) can lead to a significant 
increase in the average temperature of the gravitating gas  [1]. 

Under the condition of infinite smallness of the initial 
parameter of gravitational condensation ( 10 ) as well as 

under the assumption 00t , formula (4.1.12) with regard for 

(4.1.22) takes the form: 

2/]21[
0

2/3

0 0
2

0}31{
2

),( tretMtr 0G
0G . (4.1.28) 

So, according to the above graphs in Fig. 4.5a and b, at the 
beginning of the anti-diffusion process the parameter  is 
constant ( 0 ) and, respectively, 0)(tG in accordance 

with (4.1.8). Then )(tG  and )(t  increase until the instant st  
of stabilization sGG )(t , which corresponds to almost linear 

growth of )(t  with stt , that is, in the state of virial 
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mechanical equilibrium the parameter  in the first 
approximation linearly depends on t . 

Thus, in a state close to mechanical equilibrium, the 
parameter of gravitational condensation  of a spheroidal 
body almost linearly increases with the time t  (see formulas 
(4.1.22), (4.1.26), and (4.1.27)). Two special cases of the anti-
diffusion equation (4.1.9a) of slow-flowing initial 
gravitational condensation will be considered in Section 4.3: 
quasi-equilibrium gravitational condensation ( 1Gt 2/ ) and 

initial gravitational condensation ( 2Gt /2 ) of a weakly 
gravitating spheroidal body formed from an infinitely spread 
matter [47]. 

4.2. General differential equations for physical values 
describing the anti-diffusion process of an initial 

gravitational condensation of a centrally symmetric 
spheroidal body near mechanical equilibrium 

Let us find the form of differential equations that are 
satisfied by other physical values that describe an anti-
diffusion process of the initial gravitational condensation of a 
spheroidal body with centrally symmetric mass density 
(sphere-like gaseous body). As noted in Section 2.6, the 
physical values describing the gravitational interaction of 
particles have a probabilistic interpretation. Indeed, the 
analysis of relations (2.6.1)–(2.6.3) demonstrates that physical 
values considered within the framework of the statistical 
model of gravity [16, 45, 46, 73] contain either an exponential 

function 2/2xe -like as a multiplier, or its integral (the 
integral of probability theory). 

Using the reasoning given in Section 4.1, we similarly 
assume that t  is a positively defined monotonically 
increasing function of time (Fig. 4.1). Indeed, as the function 
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t  increases, the maximum of probability density 
function (4.1.1) for detecting particles shifts to the left and 
increases in amplitude (see Fig. 4.2), and the mass density 
function (4.1.2) also increases in amplitude and has a steeper 
descent to the abscissa axis (see Fig. 4.3) which leads to the 
concentration of mass of a spheroidal body (sphere-like 
gaseous body) near its center, that is, to the anti-diffusion 
gravitational condensation of the spheroidal body based on 
the initial gravitational interactions of particles. 

Another important remark concerns the virial equilibrium 
state considered in Section 4.1, or rather one of the states of 
unstable mechanical equilibrium. Although the parameter of 
gravitational condensation  increases linearly with time t , 
the corresponding anti-diffusion process does not disturb the 
virial equilibrium of a spheroidal body, since in this state 
GCF is constant: const)( sGG t in accordance with 

(4.1.21). 
Now we are going to obtain the form of a differential 

equation which satisfies function (4.1.1) of the probability 
density of particles being there. For that purpose ),(rf  will 
be expressed in terms of mass density ),(r  using (4.1.1) 
and (4.1.2): 

),(
4

),(
2

r
M

rrf , (4.2.1) 

whence: 

),(
4

),(
2

rf
r

Mr . (4.2.2) 

Substituting (4.2.2) in (4.1.6), we obtain: 

),(
1

2

1
),(

1
2

2
22

rf
r

rf
r

. (4.2.3) 

Developing the form of the Laplacian operator in the case 
of the centrally symmetric solution in (4.2.3), we will have: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 
 

354

22
2

22 2

),(11),(1 rf
rr

r
rr

rf
r

, 

whence: 

=
),(1

),(
2

2

1
=

),(
23

2
2 r

rf
r

rf
r

r
r

rf
 

2

2

22

2

),(),(2
),(

2

2

1

=
),(

),(
2

2

1
=  

r
rf

r
rf

r
rf

r

r
rfrf

rr
. 

Thus, finally, we have [48, 73]: 

),(
2),(2),(

2

1
=

),(
22

2

2
rf

rr
rf

rr
rfrf . (4.2.4) 

Expressing in the right-hand part of (4.2.4) the differential 
operators through the Laplacian of the scalar function written 
down in the spherical coordinates: 

2

2
2

2
2 ),(),(2),(1

),(
r
rf

r
rf

rr
rfr

rr
rf ,   

we obtain [48, 73]: 

),(
2),(4

),(
2

1
=

),(
2

2
2

rf
rr

rf
r

rfrf . (4.2.5) 

Using the formula (4.1.8) and Eq. (4.2.5) the differential 
equation for probability density can be written down in the 
general case [48, 73]: 

),(
2

+
),(4

),()(=
),(

2
2 trf

rr
trf

r
trft

t
trf

G . (4.2.6) 

Let us find the differential equation form satisfied by the 
value of gravitational field strength ))(,( tra  in the anti-
diffusion process of gravitational condensation. We shall 
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begin with expressing ))(,( tra  through ),(r , applying 
(2.4.8 ) and (4.1.2): 

dxxx
r

ra
r

),(
4

),(
0

2
2

.  (4.2.7) 

It is not difficult to obtain from (4.2.7) that: 

)),((
1

4

1
=),( 2

2
rar

rr
r . (4.2.8) 

Substituting (4.2.8) in equation (4.1.6) we obtain: 

)),((
1

2

1
=)),((

1 2
2

2
2

2
2

rar
rr

rar
rr

. (4.2.9) 

Applying the expression for the Laplacian operator of a 
scalar function in spherical coordinates: 

r
r

rr
2

2
2 1

 = , expression (4.2.9) will be written 

down in the form: 

2
2

2
2

2
2

2 2

),(11
=

),(1 rar
rrr

r
rr

rar
rr

whence: 

2
2

2 2

),(1
=

),( rar
rrr

ra
. (4.2.10) 

Simplifying (4.2.5), the strength value differential equation is 
presented in the form: 

)),((
1

2

1
=

),( 2
22

rar
rrr

ra
. (4.2.11) 

Removing the parentheses from the right-hand part of (4.2.11) 
we obtain: 

= 
),(

+),(2
1

2

1
=

),( 2
22 r

rarrra
rr

ra
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=
),(

+),(
2

2

1
2 r

rara
rr

 

2

2

22

),(),(2
+),(

2

2

1
= 

r
ra

r
ra

r
ra

r
. (4.2.12) 

Thus, according to (4.2.12) the differential equation for the 
value ),(ra  is finally produced [48, 73]: 

),(
2),(2

+
),(

2

1
=

),(
22

2

2
ra

rr
ra

rr
rara

. (4.2.13) 

On the other hand, taking into consideration that the 
irrotational (potential) gravitational field strength ),(ra  is a 
vector function, its Laplacian operator has the form [128]: 

),(grad),(2 rara div . (4.2.14) 
In spherical coordinates, relation (4.2.14) for 

rerara ),(),(  is written down as follows: 

rerar
rrr

ra ),(
1

),( 2
2

2 , (4.2.15) 

where re  is a unit basis vector along coordinate r . 
Comparing Eq. (4.2.15) with Eq. (4.2.11), the gravitational 
field strength equation is written down in the vector form: 

)),((
2

1
=

),( 2
2

rara
. (4.2.16) 

Taking into account that t  is a monotonically 

increasing time function, ta  is calculated using (4.1.8) 
and (4.2.16): 

ata
dt
d

dt
da

t
a 22

2
)(=

2

1
== G , 

whence we obtain finally [48, 73]: 
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at
t
a 2)(= G . (4.2.17) 

As seen from (4.2.17), the anti-diffusion equation for 
gravitational field strength describes the dynamics of the 
strength vector of the gravitational field of a centrally 
symmetric spheroidal body in space and in time. Following 
[73] if we determine:  

02/ii)( mt sGG , (4.2.17*) 
where the constant  is identified with Planck constant 
divided by 2 , i  is the imaginary unit, equation (4.2.17) 
describes the Schrödinger linear equation [187]. As we know 
[188], the solution of equation (4.2.17) can determine the 
initial conditions for the solution of a nonlinear equation such 
as the Schrödinger cubic equation: 

22=i aaa
t
a

DG , 

where a  is, generally speaking, a complex-valued strength 
vector, G  and D  are constants. The analog of Schrödinger’s 
nonlinear (cubic) equation in nonlinear optics has a soliton 
solution describing the self-focusing of an electromagnetic 
flux in a nonlinear media whose dielectric permeability 
depends on the electric field strength [188], that is, the 
envelopes of solutions of this equation in the form of a 
traveling nonlinear waves are solitons (or solitary waves) 
[188, 189]. In principle, a model of nonequilibrium 
gravitational compression can also lead to a sharp increase in 
the intensity of the anti-diffusion flow (see Eqs (4.6.22) and 
(5.7.18) in Chapter 5), so that the solution of equation (4.2.17) 
determines the initial conditions for the soliton solution of the 
nonlinear anti-diffusion equation. 

For the case of quasi-equilibrium compression ( Gt 2/ ) 
[47, 65] considered in the next section, the spatial form of the 
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initial gravitational strength soliton 
r

G
tr

drer
G
t

r
Mtra

0

42
2/3

2

2

2

1
),(  is shown in Fig. 4.6. 

 

 

Figure 4.6. The spatial representation of the initial strength soliton of the 
gravitational field of a spheroidal body  

Outwardly, the initial gravitational strength soliton ),( tra  
looks like an initial probabilistic one ),( trf , although it has 
“sharper” vertices. In the process of propagation, the initial 
soliton ),( tra  is deformed to become “steeper,” so that its 
geometrical center is displaced towards the center of 
coordinates (see Fig. 4.6). 

Applying formula (2.6.1) from Section 2.6, according to 

which )(),(
2

rxP
r
Mra , a differential equation for 

probability )( rxP  is obtained by (4.2.13): 
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)(
1

2
)( 22

2

22 rxP
rr

MrxP
r
M

)(
2

)(
12

42
rxP

r
rxP

rrr

r
rxP

r
rxP

rr
M )(1

)(
2

2 232

)(
2)(1

)(
22

423
rxP

rr
rxP

r
rxP

rr

r
rxP

rr
rxP

r
M )(2)(1

2 2

2

22
, 

whence it finally results [48, 73] in: 

r
rxP

rr
rxPrxP )(2)(

2

1)(
2

2

2
. (4.2.18) 

Checking the validity of equation (4.2.18) we calculate the 
first derivative of )( rxP  with respect to  following 

(2.6.1): 

2/3

2/

0

2

0

2/22/3

2

22

2
2

=
4

 =
2)(

r

r
s

r
x

er

dsesdxexrxP

and then we find the second derivative with respect to r : 

r
rxP

rr
rxP )(2)(

2

2

2/22/32/22/3 22 222 rr er
r

er
r
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2/22/32/2/3 22

)(
2

2
2 rr errre

2/32/52/22/3 22 222 rr erer
r

 

Comparing these relations, one can see that they coincide up 
to the multiplier 22/1 , that is, equation (4.2.18) is valid. 

Let us write down a differential equation for probability 
)( rxP  characterizing the gravitational condensation 

dynamics in time [48, 73]. To this end, the partial derivative 
of probability with the time will be calculated, with provision 
for relations (4.1.8) and (4.2.18): 

r
rxP

rr
rxP

dt
d

t
rxP ttt )(2)(

2

1)(
2

2

2
 

r
rxP

rr
rxPt tt )(2)(

)(
2

2

G , 

whence we obtain the desired differential equation [48, 73]: 

r
rxP

rr
rxPt

t
rxP ttt )(2)(

)(
)(

2

2

G . (4.2.19) 

Thus, the probability )( rxPt  of a certain share of 

particles in a spheroidal body being at distances r  from the 
center of masses at a certain instant t  satisfies equation 
(4.2.19). Let us note that the equation (4.2.19), in the general 
form, looks like the Fokker–Planck differential equation [190, 
191], while its partial form resembles the differential equation 
for a random walk of a particle describing the Markov process 
[134]: 

r
P

r
PD

t
P

2
2

2

, (4.2.20) 

where  
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P  is a probability of a particle being in the interval 
[ drrr, ] at the instant t ,  

 D  is a diffusion coefficient, and 
 is a “drift” coefficient.  

The equation (4.2.20) describing the Gauss–Markov process 
results from the Chapman–Kolmogorov equation in its 
limiting case when “between neighbouring points there occur 
very quick jumps ( 0t ) for very small distances 
( r 0 )” [134], the diffusion coefficients being equal to: 

t
rD

t
r 2

lim
2

0
0

,  (4.2.21) 

and the “drift” coefficient is accordingly: 

r
Dpq

t
rpq

r
t
r

)(
lim

2

)(
lim

0
0
0

, (4.2.22) 

where q  is a probability of a particle moving in the positive 
direction and p  is a probability of a particle moving in the 
negative direction [134]. Let us note that for the Brownian 
motion of a particle 2/1pq , that is, the “drift” 
coefficient 0 . In other words, the “drift” coefficient is due 
to the difference between probabilities of transition of p  and 
q . 

A similar gravitational “drift” coefficient g  is available in 

equation (4.2.19), describing the slow-flowing gravitational 
condensation of a centrally symmetric spheroidal body [48, 
73]. Like the “drift coefficient” (4.2.22) in the problem of 
random walk (4.2.20) is related to the diffusion coefficient 
(4.2.21), g  is similarly expressed through GCF (4.1.8) or the 

gravitational contraction coefficient sG  in the particular case 

of unstable mechanical equilibrium (see formula (1.7.9) 
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analogous to (4.2.21)), as follows directly from equation 
(4.2.19): 

r
trtg
)(

),(
G

. (4.2.23) 

As follows from the comparison of (4.1.8) with (4.2.21) 
and (4.2.23) with (4.2.22), coefficients D  and  are 

constants, while )(tG  and )( rtg ,  are variables. Besides, 

equations (4.2.19) and (4.2.20) differ in sign in their right-
hand parts. This means that despite the outward similarity of 
differential equations (4.2.19) and (4.2.20), the anti-diffusion 
process of the initial gravitational condensation is radically 
different from those of diffusion (though certain conclusions 
obtained for the diffusion processes might also be applied in 
the statistical model of gravity). In particular, in [134 p. 248] 
it is shown that in an equilibrium thermodynamic state “the 
distribution of fluctuations is a Gauss one.” Indeed, according 
to the statistical theory [190], the Fokker–Planck equation, a 
special case of which is (4.2.20), under the condition of 
infinitely distant boundaries has a fundamental solution, 
which is described by normal law. Strictly speaking, it should 
be noted that a similar situation also occurs in the slow 
gravitational condensation in the vicinity of unstable 
mechanical equilibrium (see Sections 2.1 and 2.6, and also 
[16, 45, 47,  49, 73]). 

With provision for the notation of (4.2.23) and of the form 
of Laplacian for a scalar function written down in spherical 
coordinates, equation (4.2.19) is presented as follows [48, 73]: 

r
rxPrtrxt

t
rxP t

g
t )(

)()G(
)(

),(42
tP . (4.2.24) 

The equation obtained (4.2.24) describes the dynamics of the 
probability of finding particles during t  at distances r  to 
the center of mass. 
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Let us find now the form of a differential equation satisfied 
by a gravitational field potential ),(rg . To do this we are 

going to use formula (2.4.26) from which we shall express 
),(rg  through ),(rg  and vice versa: 

r

g dxx
r

r
0

),(
4

),( , (4.2.25) 

)),((
4

),( arr
r

r g . (4.2.26) 

Substituting (4.2.26) into equation (4.1.6) we obtain: 

)),((
4

rr
r g   

)),((
42

1 2

2
rr

r g . (4.2.27) 

To further simplify this relation, we note that according to the 
Poisson equation [100]: 

,42 rg , (4.2.28) 

so that taking into account (4.2.26) we obtain [73]: 

,2 rr
r gg . (4.2.29) 

Using (4.2.29), expression (4.2.27) can be represented as: 

,
2

1
, 22

2
2 rr gg , 

whence it follows that 

,
2

1, 2
2

r
r

g
g . (4.2.30) 

It is possible to verify the validity (4.2.30) by directly 
calculating the Laplacian and the derivative of the 
gravitational potential (4.2.25) with respect to : 
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r
r

r
rr

r g
g

,1
, 2

2
2

223
2

2
22,2, rgg eM

r
r

rr
r

;

r
xg dxe

r
Mr

0

2
21

2

2

12,

2
21

0

22
21

22

2

12
2

2 r
r

x eMdxex
r

M
. 

With provision for formula (4.1.8) and equation (4.2.30), let 
us write the anti-diffusion equation characterizing the 
dynamics of change in the gravitational potential with time: 

gg
gg t

dt
d

dt
d

t
22

2
)(

2

1
G , 

whence this relation takes on the form [73]: 

0
)(

12

tt
g

g G
. (4.2.31) 

The resulting equation determines the potential of the 
gravitational field outside the center of mass of a centrally 
symmetric spheroidal body since it does not take into account 
the mass density function ),( tr . On the contrary, the 
Poisson equation of the type (4.2.28) characterizes the 
potential of the gravitational field depending on the mass 
distribution function ),( tr  in space. Considering that both 
the homogeneous equation (4.2.31) and the Poisson equation 
(4.2.28) are linear, their joint solution will satisfy a non-
homogeneous equation of the form [73]: 

4
)(

12

tt
g

g G
. (4.2.32) 

Indeed, as we know [192], a solution of a non-
homogeneous linear equation of the type (4.2.32) can be 
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represented as the sum of a solution of the homogeneous 
equation (4.2.31) and a particular integral of the same 
equation with the right-hand side of the form (4.2.28). The 
resulting equation is important in problems of initial 
gravidynamics, as is the well-known D’Alembert equation 
used in electrodynamics [100], for determining the potential 
of the electromagnetic field created by moving charges: 

e
e

e tc
4

1
2

2

2
2 ,  (4.2.33) 

where  
c  is the speed of light,  

e  is a charge density, and 

e  is an electromagnetic potential. 

However, the obtained Eq. (4.2.32), in contrast to Eq. 
(4.2.33), is a diffusion (or rather parabolic) type equation, 
while Eq. (4.2.33) is a wave equation (of the hyperbolic type). 

In deriving formula (4.2.16), relation (4.2.14) has been 
used, which is a consequence of the condition of the 
potentiality of the strength (acceleration) field ),( tra  of a 
weakly gravitating spheroidal body. The potential 
(irrotational) character of the acceleration field results directly 
from relation (2.4.8a) (or (4.2.7)) describing the gravitational 
field strength of a centrally symmetric spheroidal body. 
Indeed, according to (2.4.8 ) and the results obtained in 
Section 2.4, the strength vector of the quasistatic (in the case 

const ) gravitational field of a centrally symmetric 
spheroidal body (sphere-like gaseous body) is: 

r
r

r

dxex
Mra

r x

2
0

22

23

2

2
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r

r x

e
r

dxex

2
0

22

0

2

4 , 
(4.2.34) 

where 23
0 2M . Taking into account the condition of 

spherical symmetry for this spheroidal body and the relation 
(2.2.4), we can calculate the divergence of the vector function 
(4.2.34): 

r x

r dxex
rr

ar
rr

ra
0

22
02

2
2

2

4
11

div  

reer
r

rr

44
4 2

0
22

2
0

22

. 

On the other hand, for a constant in time gravitational field, 
Poisson equation (4.2.28) is valid which, taking into account 
that ga grad  [100] as well as 

agg divdiv grad2 , we can represent in the form: 

4adiv , (4.2.35) 
coinciding with the previous relation (see also Eq. (3.6.13) 
from Chapter 3). 

Let us note that in the general case t , that is, in 

expressions (4.2.34) and (4.2.35) traa ,  and tr ,  
are functions of time. To take into account the dynamics of 
changes in the strength of the potential (irrotational) 
gravitational field of a centrally symmetric spheroidal body, 
equation (4.2.32) can be represented as: 

4
)(

1

tt
a g

G
div . (4.2.36) 

It is clear that Eq. (4.2.36) generalizes Eq. (4.2.35) in the case 
of a variable (in time) irrotational gravitational field. Taking 
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from both sides of Eq. (4.2.36) the operation of a gradient, we 
get: 

4grad
)(

1
grad gtt

a
G

div . (4.2.37) 

Taking into account that the relation (4.2.14) is valid for an 
irrotational gravitational field and, as consequence, 

trtra g ,grad, , expression (4.2.37) can be 

represented as follows: 

4
)(

12

t
a

t
a

G
. (4.2.38) 

The non-homogeneous equation (4.2.38) obtained naturally 
generalizes the homogeneous equation (4.2.17) which 
determines the strength of an irrotational (vortex-free) 
gravitational field far from the iso-surface of the mass density 
bending when 0  (see Section 2.2). It also generalizes 
equation (4.2.35) which characterizes the irrotational static 
gravitational field created by immovable masses. As well as 
equation (4.2.32) for gravitational potential, equation (4.2.38) 
for an irrotational gravitational field strength belongs to the 
class of second-order differential equations of parabolic type. 

4.3. Special cases of the basic equation of slow-flowing 
initial gravitational condensation and its solution  

near the state of mechanical equilibrium of a centrally 
symmetric spheroidal body 

To write down a more explicit form of Eq. (4.1.7) it is 
necessary to determine function t  such that 0  at 

0tt . With this aim one should recall the sense of parameter 

 as defined by formula (2.5.7) in Sections 2.5: 
2

24

2

2

24

M
E

M
E gg , (4.3.1) 
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where 

gE  is a potential energy of a centrally symmetric 

gravitating spheroidal body,  
M  is a mass of a spheroidal body, and  

 is the Newton’s gravitational constant.  
According to (2.5.31) there is another formula for 
determining : 

2

0
22

0

2

2 Mm
E

Mm
E

, (4.3.2) 

where E  is a mean potential energy of interaction of a 
particle with the centrally symmetric gravitating spheroidal 
body and 0m  is a mass of a particle. 

Relations (4.3.1) and (4.3.2) are obtained in Chapter 2, 
with  being supposed to be constant. But now that t  
is a positively defined monotonically increasing function of 
time t , it is necessary to find out which of the physical values 
involved in (4.3.1) and (4.3.2) depend on t . As already 
mentioned, the mass constM , therefore it cannot depend 
on t . Consequently, in the process of gravitational 
compression, it is the potential gravitational energy that 
changes: tEE gg  in formula (4.3.1) and tEE  in 

(4.3.2). To further the calculations, we use, for example, 
formula (4.3.2). 

Considering that the gravitational condensation process 
occurs in an unstable vicinity of mechanical equilibrium at 

0tt , let us expand function t  into a Taylor series: 

...
2

1 2
02

0
2

0
0

0 tt
dt

tdtt
dt

tdtt  (4.3.3) 

Using (4.3.2) one can easily see, for example, that: 
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002
0

00 2 tEtE
Mmdt

tEd
Edt

td
, 

whence it follows that relation (4.3.3) can be written down in 
the form [47, 73]: 

0000
2

2
0

2 tttEtEtE
Mm

t  

...2
000

2

0 tttEtEtE . (4.3.4) 

Expression (4.3.4) allows several important particular cases; 
let us consider some of them [47]: 
 

) The case of infinitely small removal (in time) from an 
unstable mechanical equilibrium of a centrally symmetric 
gravitating spheroidal body (quasi-equilibrium condensation). 
 

Limiting ourselves in (4.3.4) to values not higher than 
those of the first order of smallness with respect to 0tt  we 

obtain: 

0000
2

2
0

2 tttEtEtE
Mm

t   

ttEtEttEtEtE
Mm 000000

2
2

0

22   

t
Mm

tEtE
2

0

002
. (4.3.5a) 

In (4.3.5a) it has been taken into account that for a small-
in-value gravitational potential 
energy 02 0000

2 ttEtEtE , that is, the value 

0000
2

2
0

0 2 ttEtEtE
Mm

 can be neglected. With 

provision for (4.3.5a) the expression for )(tG (in round 
brackets in Eq. (4.1.7)) can be written as follows: 
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2
0

00

22

00

4
0

2

2

222

1
)(

Mm
tEtE

ttEtE
Mm

dt
dtG  

2
00

2
0 1

4 ttEtE
Mm

. (4.3.6a) 

Substituting (4.3.6a) in Eq. (4.1.7) and introducing a 
coefficient of gravitational compression [47, 73]: 

00

2
0

4 tEtE
MmG , (4.3.7a) 

we obtain the following equation [47, 73]: 
22 G

t
t . (4.3.8a) 

The given differential equation describes the process of 
quasi-equilibrium slow-flowing gravitational condensation in 
time so that, from now on, the anti-diffusion coefficient G  is 
named gravitational compression factor [47, 73]. Gravitational 
condensation along with diffusion and thermoconductivity are 
the examples of evolutionary processes which “cannot be 
described nontrivially without introducing directly to the 
direction of time” [134, 135]. Indeed, in reversing time in the 
equations describing diffusion and heat conduction, or in the 
gravitational condensation obtained Eq. (4.3.8a), one comes to 
quite different laws. Thus, because of the unidirectional nature 
in time of the diffusion and heat conduction processes, and of 
the slow-flowing gravitation one as well, time is also 
unidirectional (in contrast with Newton’s classical mechanics, 
Maxwell’s electrodynamics, and Einstein’s relativity theory 
[100, 158]). 

Thus, the centrally symmetric mass density of a spheroidal 
body in the quasi-equilibrium state satisfies the differential 
equation of a slow-flowing gravitational condensation 
(4.3.8a). In connection with some mathematical analogy in the 
processes of gravitational condensation and diffusion (heat 
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conduction), one can assume that gravitational interaction 
among bodies is due to the necessity of equalizing the 
distribution of mass densities over space according to the law 
(4.1.2) which, with provision for the gravitational 
compression factor G introduced (4.3.7a) and the relation 
obtained from (4.3.5a) and (4.3.7a): 

G
t

2
, (4.3.9a) 

takes on the form [47, 73]: 
Gtret

G
Mtr 4/2/3

2/3

2

8
, . (4.3.10a) 

The obtained formula (4.3.9a) (as well as (4.3.10a)) confirms 
linear dependence (4.1.26) of the gravitational condensation 
parameter  on the time t , derived in Section 4.1 under the 
condition of the state of unstable mechanical equilibrium (see 
also (4.1.28)). 

The form of relations (4.3.8a)–(4.3.10a) remains complete 
if one applies (4.3.1) expressing the dependence of  on the 
potential energy gE  of a centrally symmetric gravitating 

spheroidal body. In this case (as with (4.3.4)) we consider 
that: 

0000
2

42 2
4 tttEtEtE
M

t ggg  

...2
000

2
0 tttEtEtE ggg , 

whence, taking into account the terms of not higher than the 
first order of smallness with respect to 0tt , we obtain the 
linear law of increasing the parameter of gravitational 
condensation  with time: 

t
M

tEtE gg
4

00

2

8
. (4.3.11a) 

After which, using (4.3.11a), we calculate: 
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22
00

42

2 162

1
)(

t
G

ttEtE
M

dt
dt

gg

G , 

where: 

00

22

4

)2/(

tEtE
MG

gg

. (4.3.12a) 

 
b) The case of initial gravitational condensation (the 

formation of a centrally symmetric spheroidal body [47, 73]). 
 
Let us assume that the process of forming a centrally 

symmetric spheroidal body starts, arbitrarily, at the instance 
00t , and that, at 00t , the gravitational interaction of 

particles is absent, that is, 00E  is an unstable zero 
equilibrium state. Then, as follows from (4.3.4), we obtain: 

2
2

0

2
0 t
Mm

Et . (4.3.5b) 

With provision for (4.3.5b), the expression for )(tG in round 
brackets in Eq. (4.1.7) takes the form: 

2
0

2

442

4
0

2

02

022

1
)(

Mm
tE

tE
Mm

dt
dtG   

3

2

0 1

0

1

tE
Mm

. (4.3.6b) 

Substituting (4.3.6b) (67b) into Eq. (4.1.7) and introducing the 
following gravitational compression factor [47, 73]: 

2

0

0

1

E
MmG , (4.3.7b) 

we obtain the differential equation for the initial gravitational 
condensation [47, 73]: 
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23 G
t

t . (4.3.8b) 

In contrast with Eq. (4.3.8a), the given Eq. (4.3.8b) is 
reversible in time, that is, under reflection tt , it retains 
the form. In this sense, a similar situation occurs in describing 
gravitation in Einstein’s theory of GR [81, 100]. It should also 
be noted that a situation in which one equation (4.3.8a) 
describes only the direct gravitational condensation process, 
and the other one (4.3.8b) describes both the direct and the 
reverse gravitational condensation processes does occur in the 
formalism of other physical phenomena. Indeed, in [134] it is 
pointed out that “in inhomogeneous, or anisotropic media, in 
membranes or liquid phases, for instance, in the presence of 
actually nonlinear chemical reactions, diffusion flows may 
have the reverse direction. Then the substance is transferred 
against the concentration gradient.” This means that the 
corresponding differential equation describing the nonlinear 
diffusion process allows as a solution both the direct and the 
reverse diffusion flow. A similar situation in considering the 
initial gravitational condensation Eq. (4.3.8b) is likely to be 
accounted for by an equiprobable possibility of both the 
gravitational condensation process (compression) and the 
gravitational rarefaction process (expansion) arising in a 
particular point of space at the initial stage of gravitational 
interaction of particles [47, 73]. Most probably, the 
predominance of one process over the other is determined by 
the presence of the substance density fluctuations in a 
particular point of space at a particular instant. 

From the comparison of (4.3.5b) with (4.3.7b), it is not 
difficult to see that: 

G
t 2

. (4.3.9b) 
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The substitution of (4.3.9b) into relation (4.1.2) results in the 
following expression for mass density [47, 73]: 

Gtret
G
Mtr 2/3

2/3

22

2
, . (4.3.10b) 

Likewise, if one uses (4.3.1) expressing the dependence of 
 on the potential energy gE  of the centrally symmetric 

gravitating spheroidal body one again obtains the relations 
(4.3.8b)–(4.3.10b). But parameters  and G  involved in 
them will be somewhat different. As with (4.3.5b), 
substituting (4.3.1) into (4.3.3), one can easily see that: 

2

2

2

'

4

2
2

2

)0(204 t
M

E
M

tE
g

g
. (4.3.11b) 

whence: 

332

42

2 042

1
)(

t
G

tE
M

dt
dt

g

G , 

also: 
2

2

02

1

gE
MG . (4.3.12b) 

As is evident from (4.3.12b), the gravitational compression 
factor is directly proportional to the fourth power of the 
spheroidal body mass and inversely proportional to the square 
of the gravitational potential energy rate-of-change of this 
body. Thus, in deriving equations (4.3.8a, b) of a slow-
flowing quasi-equilibrium and initial gravitational 
condensation, the expressions for the variable  described by 
relations (4.3.9a, b) have been obtained. 

Let us note that if  is determined by the expression: 

Dt2

1
, 
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where D  is a certain positive constant whose sense will be 
cleared up below and t  is time, then the differential equation 
(4.1.6) with respect to  is transformed into the linear one 
with respect to t . Indeed, according to (4.1.7) it is not 
difficult to see that: 

2
222 2

1

4/12

1

DttDt
, 

whence: 
2D

t
. (4.3.13) 

The equation obtained coincides completely with that of 
diffusion, that is, the constant D  has the sense of the diffusion 
factor. Mass density  satisfying (4.3.13) has the form: 

Dtre
Dt
Mtr 4/

2/3

2

8
, , 

which is in complete agreement with what is stated in [94]. 
The present relation for the “diffusion” mass density, to the 
accuracy of the change tt /1 , is inverse to the relation 
(4.3.10a) describing particle gravitational interaction in the 
proximity of equilibrium state. Consequently, in the linear 
approximation of the gravitational condensation function t  
with respect to t , the case ) of slow-flowing quasi-
equilibrium gravitational condensation is qualitatively like an 
anti-diffusion process (see Section 1.7 as well as [16, 65]).  

The behavior of the initial gravitational condensation (case 
b)) is different. Here the function t  is, already in the initial 
approximation, a square function of time in accordance with 
(4.3.5b), and the mass density under such gravitational 
condensation is now satisfying the relation (4.3.10b). It is 
clear that the diffusion flow cannot now compensate for the 
initial gravitational one. Let us note from (4.3.10b) that, as a 
result of evolution at separate fixed points of a centrally 
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symmetric spheroidal body, condensation may be followed by 
rarefaction 0, tr  at t , that is, there may occur 
cavities (or voids, as indicated in Section 1.1) inside it. This 
fact is completely confirmed by up-to-date astrophysical 
observations of cosmic space and modern theories according 
to which forming cosmogonical bodies (in particular, 
molecular clouds) are porous (see Section 1.1), that is, there 
are numerous voids in them [10, 83]. 

The obtained differential equations of quasi-equilibrium 
slow-flowing and initial gravitational condensation can be 
combined in one equation of the following form: 

2G
t

t n , (4.3.14) 

Where 3,2n . But in Section 4.5, we will consider 
predominantly Eq. (4.3.14) with 3n , that is, the process of 
the initial gravitational condensation of a centrally symmetric 
spheroidal body. 

4.4. The gravity–thermodynamic relationship  for a 
centrally symmetric gravitating spheroidal body 

To derive some thermodynamic expressions applicable to a 
centrally symmetric spheroidal body, we shall use the Gibbs 
relation in the case of thermodynamic (heat) equilibrium 
[110]: 

dmdVpdUdST , (4.4.1) 
where 

T  is a temperature,  
S  is an entropy,  

 U is an internal energy,  
p  is a pressure,  
V  is a volume,  

 is a chemical potential, and 
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 m is a mass.  
Following equilibrium thermodynamics, we have in a heat 
equilibrium state [134]: 

ln,* TkpT B , (4.4.2) 
where 

Bk  is the Boltzmann constant,  
 is a mass density, and 
* is a mean value of . 

Formula (4.4.2) was derived in thermodynamics for the case 
of a highly rarefied system, that is, for a mixture under 
conditions of small concentration gradients [134]. 

Let us consider an entropy change dS  over a time interval 
dt . As shown by I. Prigogine [108, 134], it can be divided 
into the sum of two contributions: 

SdSddS ie , (4.4.3) 
where Sde  is an external entropy flow due to the energy and 

substance exchange with the environment and Sdi  is an 

entropy production inside the system due to irreversible 
processes such as gravitational condensation, diffusion, 
thermal conductivity, or chemical reactions. 

According to the second law of thermodynamics: 
0Sdi .  (4.4.4) 

Moreover, the equality sign in (4.4.4) corresponds to 
thermodynamic equilibrium in the system. It is clear that for 
an isolated system 0Sde , that is, 0SddS i . On the 

contrary, for an open system expression (4.4.3) for entropy 
change contains the term Sde  corresponding to exchange, 

with 0Sde  or 0Sde  [134].  
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As before, we assume that forming cosmogonical bodies 
(in the absence of rotation*) are described by the model of a 
sphere-like gaseous body (or centrally symmetric spheroidal 
body) in a state of mechanical equilibrium (or relative 
mechanical equilibrium in the case of rotation). As indicated 
in [94, 106], the mechanical equilibrium of the system does 
not at all imply relaxation toward thermodynamic 
equilibrium. 

To derive a gravithermodynamic relation for a centrally 
symmetric spheroidal body, let us outline irreversible 
processes that may, in principle, take place in it. As already 
mentioned, these processes are initial gravitational 
condensation, diffusion, heat conduction, also those based on 
reactions (chemical, nuclear, etc.). We assume that 
concentration gradients in a centrally symmetric spheroidal 
body are not too large, that is, the process of gravitational 
condensation goes on slowly in time, which, in turn, means a 
state close to equilibrium (mechanical and thermal).  

We note that the process of slow-flowing gravitational 
condensation is inverse concerning the diffusion process (see 
Section 4.3, (4.3.10a) and (4.3.13)), characterized in (4.4.1) 
by chemical potential 0 . Consequently, the slow-flowing 
gravitational condensation can be similarly described through 
gravitational thermodynamic potential 0g  [47, 49]. In 
connection with this we add to formula (4.4.1) a term 
containing the gravitational thermodynamic potential [47, 49, 
73]: 

dmgdmdVpdUdST . (4.4.5) 
Relation (4.4.5) describes the locally equilibrium 
thermodynamic state of a gravitating spheroidal body being 

 
* In the presence of rotation, the sphere-like gaseous body (centrally 
symmetric spheroidal body) is transformed into an axially symmetric 
spheroidal one (or simply, a spheroidal body). 
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simultaneously in a state of mechanical (or relative 
mechanical) equilibrium. We can rewrite relation (4.4.5) 
relative to the internal energy: 

dmgdmdVpdSTdU . (4.4.6) 
Let us take advantage of the term dmg  having the 

dimension of energy (due to gravitational condensation), so as 
to find the relation describing g . As before, just as in Chapter 
2 and [16, 45, 65], supposing that the spheroidal body has a 
temperature close to absolute zero K0T , we can 
simplify expression (4.4.6) by canceling the terms associated 
with thermal conduction and diffusion (the diffusion factor in 
the linear approximation is, as we know [136], proportional to 
T ). With provision for these simplifications, relation (4.4.6) 
is written down in the form: 

dmgdVpdU g . (4.4.7) 
As we know from (4.4.7), the infinitesimal change of the 

internal gravitational energy of a centrally symmetric 
spheroidal body consists of two terms, the first of which 

dVpdU p
g  is associated with the substance pressure (see 

relation (2.9.3)), and the second dmgdU m
g  is related to the 

mass transfer due to gravitational condensation. Assuming, as 
above, that gravitational condensation goes on slowly 
( const)(tG according to (4.1.21)), we consider the 
gravitating spheroidal body in mechanical equilibrium. In this 
case, integrating (4.4.7) with respect to volume, we obtain: 

VV

m
g

p
gg dVgdVpUUU .  (4.4.8) 

The first term (4.4.8) has been calculated in Section 2.9: 
according to relation (2.9.18) it is determined by: 

2

6

1 MU p
g . (4.4.9) 
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The second term (4.4.8) should be calculated using the 
spherical system of coordinates: 

0

2

0 0

22/
0 sin

2

drddrergU rm
g   

0

2/2
0

2

4 drergr r   

0

2/2
2/3

2/3
2

2
4 drerrgM r , (4.4.10) 

where rg  is an unknown function formalizing the 
gravitational thermodynamic potential. It is clear that under 
the above-mentioned conditions of the absolutely low 
temperature and mechanical equilibrium, the potential energy 
of the centrally symmetric gravitating spheroidal body is 
consumed in overcoming the substantial pressure and in the 
mass transfer due to gravitational condensation. Equilibrium 
in a continuous-in-time process of gravitational condensation 
sets in when the gravitating spheroidal body’s potential 
energy becomes equal to its internal one: 

gg UE . (4.4.11) 

On the one hand, the centrally symmetric spheroidal 
body’s internal energy, in absolute value, is the greater the 
more substance gets through the fixed spherical surface 
surrounding its center. On the other hand, it also increases 
with the increase of pressure inside the volume confined by 
this surface. 

Thus, under the equilibrium condition (4.4.11) with regard 
to (4.4.8) one can see that: 

p
gg

m
g UEU , (4.4.12) 

and with provision for relations (2.9.21), (4.4.10) and 
(4.4.12), we obtain that: 
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0

2/22/3
2

22

3
drerrgMM r , 

whence: 

230

2/2 2 Mdrerrg r . (4.4.13) 

Relation (4.4.13) is an integral (with respect to rg ) 
equation having an infinite number of solutions. We shall 
seek the solution of Eq. (4.4.13) in the form of the power 
function: 

nrCrg , (4.4.14) 
where n  is an integer and C  is a constant. With provision for 
(4.4.14), equation (4.4.13) takes the form: 

1

230

2/2 2

C
Mdrer rn , (4.4.15) 

with ,...2,1,0,1,2...,n . Taking advantage of relations 
(2.4.22), (2.9.13), (2.9.15) and (4.1.18) and using the 
integration rule by parts, one can calculate the integral in the 
left-hand part of Eq. (4.4.15) for some odd and even n : 

1
,

1

2 0

2/
2/1

0

2/ 22

drerdre rr ; 

2
0

2/3
2/3

0

2/2 2
,

1

2

22

drerdrer rr ; 

 

          3
0

2/5
2/5

0

2/4 8
,

3

2

22

drerdrer rr ; (4.4.16) 

4
0

2/7
2/7

0

2/6 48
,

15

2

22

drerdrer rr ; 
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Substituting the integral values (4.4.16) into (4.4.15) we 
obtain the form of function (4.4.14) for different values of n : 

r
Mrg

r
Mrg 1

23
;

1

3 2 ; 

rMrgMrg
26

;
3

; 

       3222/3

224
;

9
rMrgrMrg ; (4.4.17) 

5342/5

2144
;

45
rMrgrMrg ; 

Analyzing relations (4.4.17) one sees that the solutions 
rg  obtained for positive ,...5,4,3,2,1n , do not fit since 

the gravitational thermodynamic potential cannot increase as a 
power function of r  which is the distance to the spheroidal 
body center of masses. It is also evident that the 
thermodynamic gravitational potential cannot be constant (the 
case 0n ) because at infinity it must be equal to zero. To 
clear up which solutions with negative values of n  fit as 
expressions for the gravitational thermodynamic potential, we 
shall turn to the relation (2.4.27) formalizing the gravitational 
field potential of a centrally symmetric spheroidal body [16, 
45, 46]: 

2/erf r
r
Mrg , (4.4.18) 

where 
2/

0

22
2/erf

r
s dser  is the error function. It 

follows from the comparison of (4.4.18) with (4.4.17) that the 
solution in the case of 2n  is canceled, as well as all others 
obtained for 2n . Thus, the only expression possible for the 
gravitational thermodynamic potential of a centrally 
symmetric spheroidal body is the following [47, 49, 73]: 
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r
Mrg

23

1
. (4.4.19) 

As follows from (4.4.19), the gravitational thermodynamic 
potential is a decreasing, with the increase of r , function, a 
hyperbola, with 0g . Near the center of masses (with 

0r ) the value of the gravitational thermodynamic potential 
becomes infinitely large (see Fig. 4.7). 

 

 

Figure 4.7. The graphic dependences of the gravitational potential g and 

the gravitational thermodynamic potential  g on the distance r  

According to (2.4.28)–(2.4.29) for large values r  expression 
(4.4.18) turns into the formula of Newtonian gravitational 
potential produced by one particle (or a spherical body) of 
mass M : 

r
Mrg , (4.4.20) 

and for small values r  (4.4.18) becomes the formula of the 
interior gravitational potential in the center of a sphere of 
mass M : 
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2/10 24 Mrg  (4.4.21) 

 
(see Section 2.4). The diagram for rg  is presented in Fig. 

4.7 which shows that the gravitational thermodynamic 
potential becomes equal to the gravitational field potential of 
a centrally symmetric spheroidal body under the condition: 

...2357.0
23

1

2
erf r . 

Using the error function table [128], one can easily see that 
2357.0212.0erf , whence: 

prc rr 212.0
2

212.0 , (4.4.22) 

where prr  is the most probable distance [45, 46]. 

With the decrease of r  (the distance to the center of 
masses, beginning with cr ) the absolute value rg  becomes 

much larger than rg . This means that a more intensive 

anti-diffusion mass transfer of substance begins (when crr ) 

leading to a process of condensation of a centrally symmetric 
spheroidal body (if crr

 
then the process of condensation of 

the spheroidal body is less significant because a gravity-field 
process prevails). 

Comparing (4.4.19) with (4.4.18), it is not difficult to 
express the gravitational field potential in terms of the 
gravitational thermodynamic one [47, 73]: 

2/erf23 rrgrg . (4.4.23) 

Revealing the sense of parameter  through, say, formula 
(4.3.9b), one can write down relation (4.4.23) as follows: 

G
rtrgrg
2

erf23 ,  (4.4.24) 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Equations and State Parameters of a Forming Spheroidal Body  
in the Process of Initial Gravitational Condensation  

385 

where G  is a gravitational compression factor (4.3.7b).  

4.5. The mass density and internal energy flows  
for slow-flowing and initial gravitational condensation  

of a centrally symmetric spheroidal body 

We are going to use the general equation (4.3.14) of slow-
flowing and initial gravitational condensation, for this we 
shall rewrite it as follows: 

2
nt

G
t

, (4.5.1) 

where  is the Hamilton differential operator and .3,2n  
Since mass density  is a scalar value, then grad . 
According to (4.3.7a) and (4.3.7b), the gravitational 
compression factor G  does not depend on the spatial variable 
r . Eq. (4.5.1) can, therefore, be rewritten as follows: 

gradnn t
G

t
G

t
div , (4.5.2) 

whence: 

0gradnt
G

t
div . (4.5.3) 

Relation (4.5.3) reminds us completely that in the 
continuity equation [94] expressing the law of conservation of 
mass in a nonrelativistic system: 

0j
t

div , 

where j  is a mass flow density of the continuous medium. In 
this connection, the value in round brackets in Eq. (4.5.3) has 
the sense of anti-diffusion flow density j  arising at the 
gravitational condensation of a centrally symmetric spheroidal 
body [47, 73]: 
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gradnt
Gj .  (4.5.4) 

Moreover, relation (4.5.4) with 2n  describes the flow 
density for the quasi-equilibrium slow-flowing gravitational 
condensation and that, with 3n , it corresponds to the flow 
density for the initial gravitational condensation. 

Since  is a function of the spatial variable r , then in the 

spherical system of coordinates 
r
r

dr
de

dr
d

rgrad . 

Taking into account the fact that according to (4.1.2) the mass 
density  is an exponentially decreasing function, its 

derivative 0
rd

d
. Consequently, the direction of the anti-

diffusion flow density vector j  is directly opposite to the 

basis vector re , that is, the vector j  is directed to a centrally 
symmetric spheroidal body center. 
Let us note that relations (4.3.14) and (4.5.2)–(4.5.4) have 
been obtained under the conditions of small concentration 
gradients and a sufficiently slow gravitational condensation, 
which allowed us to consider the coefficients  and G  to be 
independent of r . It is clear that, at large concentration 
gradients, GCF G  is a function of both t  and r , that is, 
equation (4.5.3) is transformed into the following: 

grad, rt
t

Gdiv . (4.5.5) 

In this connection, similarly to (4.5.4), a diffusion flow of a 
substance A  is introduced in the same way as in the book by 
G. Nicolis and I. Prigogine [134 p. 230]: 

r
Dj A

AA , (4.5.6) 
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where A  is a mass density of the substance A  which, in the 
framework of the trimolecular model, changes in space and in 
time (inside a system with semipermeable walls) according to 
the equation [134 p.141]: 

)0(
2
A

2

AA
A lr

r
D

t
, (4.5.7) 

where AD  is a diffusion factor of the substance A  and the 

boundary conditions are: A)()0( AA l . As noted in 
[108, 134], at large density gradients, the conductive or 
diffusion flow (4.5.6) becomes nonlinear, as a result of which 
the diffusion exchange processes proceed fairly quickly; in 
other words, AD  becomes a function of both r  and t , that is, 

),(AA trDD . A similar situation is observed in the case of 
anti-diffusion gravitational condensation in accordance with 
equation (4.5.5) (details are presented in Chapter 5). 

Thus, according to the definition of the flow density [94], 
the quantity of mass transported by it is equal to: 

dtSdjdm , (4.5.8) 

where dSnSd  is an oriented elementary site ( n  is an 
external normal to the elementary site dS ) and dt  is an 
infinitesimal time increment. Revealing the sense of the scalar 
product of vectors in (4.5.8) we obtain: 

dtdSjdm cos , (4.5.9) 
where  is an angle between the external normal to the site 
and the flow density vector. Since the flow enters inside the 
body, the angle 2/ . We are going to calculate dm  
in accordance with (4.5.9). Let us outline, arbitrarily, two 
concentric spheres of radii r  and  drr  inside the 
spheroidal body confining the volumes V and dVV , 
respectively (Fig. 4.8a). 
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a)      b)   
 
Figure 4.8. The scheme of gravitational compaction of a centrally 
symmetric spheroidal body: 
a) by reducing the allocated volume VdVV ; b) due to the influx of 
mass into a fixed volume region V   

 
The process of the slow-flowing initial gravitational 

condensation of a centrally symmetric spheroidal body 
involves decreasing the concentric sphere volumes 

VdVV , with the number of particles in them remaining 
the same (see Fig.4.8a). It is equivalent to the process of the 
mass dm   “inflow” into the sphere of volume V  at the 
expense of the anti-diffusion flow j  in accordance with 
(4.5.4) (see Fig. 4.8b). 

Taking into account that the radius r  of a sphere of the 
volume V  is fixed and that a sphere of the volume dVV  is 
situated at an infinitely small distance from the first sphere, 
one can see that the angle between the external normal n  to 
the spheres mentioned and the flow direction j  persists and is 
equal to . The quantity of mass  dm  transported by the 
flow (4.5.9) through the surface of the sphere with radius r  
and area 24 rS  is then equal to: 

dtrjdm 24 . (4.5.10) 

With provision for (4.5.4) relation (4.5.10) is written down in 
the form [47, 49, 73]: 
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dtr
rt

Gdm n
24

, (4.5.11) 

where tr, . Taking into consideration that 

drddrdV sin2  is the elementary volume in the 
spherical system of coordinates, one can calculate the mass of 
the sphere of radius r  before the beginning of gravitational 
condensation, that is, before the flow j  in-coming: 

r

V

drddrtrdVtrm
0 0

2

0

2 sin,,   

r

drrtr
0

2,4 . (4.5.12) 

After the flow j  in-coming, in time dt , to the sphere of 
radius  r (see Fig. 4.8b), the mass of the latter is changed by 
the value dm  and is equal to: 

r

V

drrdttrdVdttrdmm
0

2,4, . (4.5.13) 

Comparing (4.5.11)–(4.5.13) it is not difficult to see that: 
r

drrdttr
0

2,4   

dtr
r

tr
t

Gdrrtr n

r
2

0

2 ,4
,4 , (4.5.14) 

whence, after differentiating with respect to r , both parts of 
Eq. (4.5.14) it is easy to see that: 

trdttrr ,,2   

dt
r

trr
r

trr
t
G

n

,
2

,
2

2
2 . (4.5.15) 
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Taking into consideration that the Laplacian of , according 

to (4.1.5), is equal to ,
2

2

2
2

rrr
 and 

dt
trdttr

t
,, , we obtain from (4.5.15) equation 

(4.3.14) of slow-flowing initial gravitational condensation 
[47, 73]: 

tr
t
G

t
tr

n ,
, 2 . 

The present equation is obtained proceeding not from the 
function tr, , but from the model of slow-flowing initial 
gravitational condensation. Applying this model for the case 

3n , that is, for initial gravitational condensation, we shall 
now calculate the mass transfer, and the internal energy change 
in the whole centrally symmetric spheroidal body, caused by it 
in some finite time t . With that aim, on the sphere of radius 
r , we isolate an elementary parallelepiped of volume 

drddrdV sin2 , as shown in Fig. 4.9. The upper part of 
the elementary parallelepiped is situated on the sphere of radius 

 drr , the lower one is located on the radius r  sphere. 
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Figure 4.9. Diagram of the passage of the anti-diffusion mass flow j  

through two concentric spheres located at an infinitely small distance from 
each other 

The respective areas of these facets, elementary sites on the 
spheres with radii  drr  and r , are equal to: 

dddrrrdddrrdS sin2sin 22
1 , 

ddrdS sin2
2 . (4.5.16) 

According to (4.5.9), in time dt , through the site 1dS , an 
elementary mass arrives inside the elementary parallelepiped: 

dtdSjtrdm 11 cos,,,   

dtdddrrrj sin2cos 2 , (4.5.17) 
and through 2dS  an elementary mass flows out: 

dtddrjtrdm sincos,,, 2
2 . (4.5.18) 

The elementary mass that entered into the elementary 
parallelepiped during dt  is equal [47, 49] to: 

dtdddrrjdmdmtrdm sincos2,,, 21 . (4.5.19) 
Let us consider the two upper hemispheres of radii  drr  

and r , which confine the elementary volume dV  being 
examined. This means that the interval of angle  change is 
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equal to 2/ , that of angle  is 2 . Inside the radius  drr  
sphere, let us consider several concentric hemispheres 
separated from one another by infinitely small distances dr . 
The mass exchange inside the elementary parallelepipeds 
confined between the concentric hemispheres is determined 
by the formula (4.5.19). Because the direction of normal n  to 
the site coincides with that of the radius-vector r  in the 
spherical system of coordinates, as is seen from Fig. 4.10, the 
angles  and  are bound by the following relation: 

.  
As already mentioned in examining the model in Fig. 4.8, 

the directions of the external normals to 1dS  and 2dS  
practically coincide because of the infinitely small distance 
between them. However, with moving nearer and nearer to the 
center of masses of the centrally symmetric spheroidal body, 
the curvature of the concentric hemispheres increases, which 
causes incoincidence of the directions of external normals to 
them, and finally results in the change of  from  to 2/    
( 2/0  respectively). 

 

Figure 4.10. The scheme of motion of anti-diffusion mass flow j  through 

an elementary site located at a distance r  from the center of a centrally 
symmetric spheroidal body 

According to the foregoing, from (4.5.19) we obtain: 
2

0

2/

0

sincos2, dddtdrjrtrdm   
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dtdrjrdtdrjr 22
2

1
2 . (4.5.20) 

With provision for (4.5.4), for the case 3n , formula 
(4.5.20) takes on the form: 

dtdrr
rt

Gtrdm
3

2, . (4.5.21) 

Taking into account form (4.3.10b) of the mass density 
function tr, , let us calculate the partial derivative r/ : 

GtrGtr e
GG

rMte
G
tr

G
Mt

r
2/

2/3

5
2/

2

2/3

3
2222

22
. (4.5.22) 

Substituting (4.5.22) into (4.5.21), we obtain [73]: 

dtdre
G
rMttrdm Gtr 2/

2/32/1

22
22

2
, . (4.5.23) 

Formula (4.5.23) describes the mass “inflow” in time dt  into 
an infinitely thin hemisphere layer situated near the radius r  
hemisphere. The same formula is also valid for the 
hemisphere layer situated diametrically opposite the one 
examined in Fig. 4.9. Consequently, “the total mass inflow”, 
caused by gravitational compression, into the dr -thick sphere 
layer, situated at distance r  from the center of masses of a 
centrally symmetric spheroidal body, in infinitely small time 
dt , is equal to [47, 49, 73]: 

dtdre
G
rMttrdm Gtr 2/

2/32/1

22
22

2

2
,   

dtdre
G

rMt Gtr 2/
2/3

22
222

. (4.5.24) 

According to (4.4.7) and (4.4.19) the sphere layer internal 
energy change, associated with the inflow of mass (4.5.24) in 
the process of the slow-flowing gravitational condensation of 
a centrally symmetric spheroidal body, is formalized by the 
relation [47, 49]: 
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dtdre
G

tMr
r
MtrdmrgtrdU Gtr

g
2/

2/3

22
222

23

1
,,  

dtdrert
G

M Gtr 2/2
2/32/1

2
22

3
. (4.5.25) 

Having summed up (4.5.24) over all the concentrically 
situated sphere layers, one can find the quantity of mass 
transported inside the centrally symmetric spheroidal body in 
the process of gravitational condensation in infinitely small 
time dt : 

0

2/2
2/3

2
222 drer

G
dtMttdm Gtr . (4.5.26) 

To calculate the definite integral in the right-hand part of 
(4.5.26) we shall use (4.4.16) considering Gt /2 : 

t
dtM

GtG
dtMttdm 2/322/3

2

/

1

2

2
.  (4.5.27) 

Similarly to (4.5.27), we shall calculate the centrally 
symmetric spheroidal body internal energy change in an 
infinitely small time dt  in the process of gravitational 
condensation, having summed up (4.5.25) over all the 
concentrically situated sphere layers, and then having used 
(4.4.16): 

0

2/
2/32/1

22
22

3
drer

G
dttMtdU Gtr

g   

G
dtM

GtG
dttM

3/

1

3

2

22/32/1

22

. (4.5.28) 

Expressing dt  from (4.5.27), we can find the connection 
between tdU g  and tdm : 

tdm
G

Mt
M

tdmt
G

MtdU g
33

2

. (4.5.29) 
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Using the sense of  from (4.3.9b) we rewrite (4.5.29) as 
follows: 

3

tdmMtdU g . (4.5.30) 

Formula (4.5.30) establishes the connection between the 
internal energy change and the change of mass due to its 
displacement in the process of slow-flowing condensation of a 
centrally symmetric spheroidal body. As follows from 
(4.5.28), the internal energy change, associated with the mass 
displacement caused by the slow-flowing gravitational 
condensation of a centrally symmetric spheroidal body in 
some finite time t , is expressed by relation [47, 49, 73]: 

G
tMtUU gg

3

2

. (4.5.31) 

On the other hand, as shown in Section 4.4, under the 
conditions of mechanical equilibrium, the internal 
gravitational energy associated with the substance mass 
transfer is expressed by the formula: 

3

2MU m
g , (4.5.32) 

and with provision for the sense of parameter  according to 
(4.3.9b), relation (4.5.32) is written in the form: 

G
tMU m

g
3

2

. (4.5.33) 

As follows from (4.5.33), the change in the time interval 

12 ttt  of the internal gravitational energy owing to the 
substance mass-transfer is expressed by the formula: 

G
tMtUtUU m

g
m

g
m

g
3

2

12 . (4.5.34) 
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Comparing (4.5.34) with relation (4.5.31) obtained in a 
different way, one is convinced of their complete identity [47, 
49, 73]. 

Let us calculate the internal energy flow density due to the 
slow gravitational mass-transfer. According to (4.4.7), the 
infinitely small change of centrally symmetric spheroidal 
body internal gravitational energy is expressed by the relation: 

dmgdVpdU g , 

whence, introducing the internal gravitational energy density 
g  [47, 73], we obtain: 

dVgdVpdVg  

or finally: 
gpg .  (4.5.35) 

Differentiating (4.5.35) with respect to time t , and taking 
into consideration that, according to (4.4.19), g  does not 
depend on t , we have [47, 49]: 

t
g

t
p

t
g . (4.5.36) 

Making use of the continuity equation (4.5.3) and the mass 
flow density expression (4.5.4), from (4.5.36) we obtain: 

jg
t
p

t
g div . (4.5.37) 

Transforming (4.5.37) with the aid of the familiar vector 
analysis formula [128]: jgjgjg , it is not 
difficult to see that: 

jgjg
t
p

t
g graddiv . (4.5.38) 

To reveal the sense of the value jg  we shall make use of 
relations (4.4.7) and (4.5.8). Combining them, it is not 
difficult to ascertain that the infinitely small internal energy 
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change associated with anti-diffusion mass-transfer is 
expressed by the formula: 

dtSdjgdU m
g . (4.5.39) 

Similarly to relation (4.5.8), determining the mass flow 
density, relation (4.5.39) establishes the sense of the internal 
energy flow density due to anti-diffusion mass-transfer: 

jgu m
g . (4.5.40) 

Further, it is also evident that the internal gravitational energy 
density change becomes both from pressure and from anti-
diffusion mass-transfer, that is, 

tt
p

ttt

m
g

m
g

p
gg . (4.5.41) 

With provision for (4.5.40) and (4.5.41), relation (4.5.38) 
takes on the form: 

gju
t

m
g

m
g graddiv . (4.5.42) 

Now let us rewrite (4.5.42) as follows [47, 73]: 

0gradgju
t

m
g

m
g div .  (4.5.43) 

Formula (4.5.43) establishing the relationship between the 
internal gravitational energy density caused by anti-diffusion 
mass-transfer, m

g , and the internal energy flow density 

associated with anti-diffusion mass-transfer, m
gu , expresses 

the law of conservation of internal energy for the slow-
flowing gravitational condensation of a centrally symmetric 
spheroidal body. 
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4.6. Dynamical states of a forming centrally symmetric 
spheroidal body near the points of mechanical equilibrium 

We consider a centrally symmetric spheroidal body being 
formed, the dynamical states of which depend exclusively on 
the parameter of gravitational condensation )(t  [16, 47, 
73], as a dynamical system with one degree of freedom in the 
space of states. In the general case, the behavior (motion) of the 
one-dimensional dynamical system is described by a single 
variable )(t  that satisfies a differential equation of the form: 

)(
)( f

dt
td

. (4.6.1) 

We suppose that the function )(f  is analytic on the axis of 
abscissa, with the exception, perhaps, of a finite set of points. 
The state-space of the considered dynamical system (4.6.1) is a 
straight line (Fig. 4.11), and the motion of this system 
corresponds to the translation of the imaging point )(t  along 
this straight line. 

 

 

Figure 4.11. Model of a dynamical system with one degree of freedom  

According to the Cauchy theorem [193], the differential 
equation (4.6.1) under given initial conditions )( 0t  has a 

unique solution. The equilibrium state (position) of the system, 
that is, singular point of the equation (4.6.1), is obtained from 
the solution of the equation:  
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0)( 0f . (4.6.2) 

Let the solutions of this equation be points [193]: 
nkk ,...,1,0,)(

0 . (4.6.3) 

By equation (4.6.2) and the condition 0)/( )(kdtd , the 
equilibrium state: 

)()( kt  (4.6.4) 

is also a solution of the equation of motion (4.6.1) for initial 
conditions )()0( k . 

It follows from the Cauchy uniqueness theorem that if the 
motion of the system did not begin from an equilibrium 
state, then the system cannot reach this state in a finite time. 
Otherwise, despite the Cauchy theorem, it is for the 
equilibrium state that, along with the solution )()( kt , 
there will be a second solution [193]. 

Thus, the imaging point can only asymptotically tend to the 
equilibrium state when t . In Fig. 4.11 shows an example 
of the course of a function )(f  and the corresponding 
straight line of states with the indicated direction of the 
trajectories [193]. It can be expected that the singular point 

)1(  is stable, and the singular points )2(  and )3(  are 
unstable. To study stability using the Lyapunov criterion, we 
restrict ourselves to small deviations from equilibrium: 

0)()( tt . (4.6.5) 
By decomposing the function )(f  in a Taylor series in a 

neighborhood 0 , from (4.6.1), (4.6.5) we obtain: 

...)(
2

1
)()(

)( 2
0

"
0

'
0 fff

dt
td

. (4.6.6) 

Taking into account the condition (4.6.2) and equation (4.6.6), 
we find in the linear approximation that: 
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)(
)(

0
'f

dt
td . (4.6.7) 

As we know, the solution to such a linear equation (4.6.7) is: 
tfet )( 0

'

)0()( . (4.6.8) 

In particular, for 0)( 0
'f  we have: 

0)()( 0tt   at t . 

In other words, the solution 0  is asymptotically stable in the 

sense of Lyapunov, while when 0)( 0
'f , there is 

instability.  
 Consideration of an example in Fig. 4.11 shows that for 

the left equilibrium state 0)( )1('f , that is, this state is 

stable, while the state )2(  is unstable because 0)( )2('f  

[193]. For a stationary state )3( , taking into account that 
0)( )3('f , for small deviations, we can write the equation: 

2
0

" )(
2

1)( f
dt

td
, (4.6.9) 

whose solution is the function [193]: 

tf
t

]2/)([)/1(

1
)(

)3("
0

. (4.6.10) 

If the initial perturbation is such that 00 , then the system 

returns to a stationary state 0 , if so 00 , then the 

system moves away from the stationary state. Therefore, the 
point )3(  is unstable in the sense of Lyapunov [193]. 

Summing up the brief analysis, it can be argued that in a 
system with one degree of freedom the following typical 
situations are possible [73]: 
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a)  asymptotic stability when 0)( 0
'f  (exponential 

decay of deviations from the equilibrium state); 
b)  instability when 0)( 0

'f  (exponential increase in 

deviations from the stationary state); and 
c)  unstable equilibrium requiring additional analysis in the case 

of 0)( 0
'f  [193]. 

It should be noted in particular that the above typical 
situations have already been partially considered in the 
present and previous sections of this monograph, as well as in 
the works [16, 47, 48, 65, 73]. Indeed, in Section 4.3, the case 
of an infinitely small removal (in time) from an unstable 
mechanical equilibrium state of a centrally symmetric 
gravitating spheroidal body (a quasi-equilibrium 
condensation, in particular, the special case of initial 
instability of type b) was investigated in detail; in Section 2.3, 
the critical (threshold) values of mass density c  and 

gravitational condensation parameter c  were found, at which 

the gravitational interactions of particles due to the anti-
diffusion process become sharply amplified and replaced by 
fast-flowing gravitational compression (contraction) resulting 
in gravitational field origin (the above case of an 
exponentially increasing instability of type b); in Section 4.1, 
the case of unstable virial equilibrium of the anti-diffusion 
process of gravitational condensation of a centrally symmetric 
spheroidal body (the above case of unstable mechanical 
equilibrium of type c) was also considered. Indeed, a 
comparison of formulas (4.1.22) and (4.6.10) shows their 
identity.  

In this regard, it is advisable to systematize the possible 
dynamical states of a forming centrally symmetric spheroidal 
body from infinitely spread gas-dust matter [73]: 

1) The initial equilibrium state of a gas-dust nebula 
(molecular cloud), when the parameter of gravitational 
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condensation const)(t , GCF becomes the gravitational 

compression coefficient 0
2

1
)(

2 dt
dtG , and the basic 

anti-diffusion equation of initial gravitational condensation 
(4.1.9a) is degenerate, that is: 

0 
t

. (4.6.11) 

2) A particular case of initial instability at infinitesimal removal 
(in time) from an unstable equilibrium state of a gas-dust nebula 
is a quasi-equilibrium gravitational condensation [47, 48], when, 
according to (4.3.9a), the parameter of gravitational condensation 

Gt 2/ , the gravitational compression factor constG , 
GCF 2/)( tGtG in accordance with (4.3.6a), (4.3.7a), so that 
the basic anti-diffusion equation of gravitational condensation 
(4.1.9a) goes into equation (4.3.8a) of the quasi-equilibrium 
gravitational condensation, that is: 

22 )/( tG
t

. (4.6.12) 

3) Gravitational instability, that is, an avalanche-like 
gravitational compression due to the arising gravitational field of a 
centrally symmetric spheroidal body, when according to (2.3.7a, 
b), the parameter of gravitational condensation reaches its critical 
value c  as a result of an exponential 

increase tfet )( 0
'

)0()( following (4.6.8), whereas GCF 
can be found as: 

tf

tf
e

dt
d

e
t )(

2
)(

0
'

0
'

)0(
)0(2

1
)(G   

tfef )(0
'

0
'

)0(2

)( , (4.6.13a) 

and the basic anti-diffusion equation of gravitational condensation 
(4.1.9a) takes the form: 
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2
0

' ))(2/)(( tf
t

. (4.6.13b) 

4) Unstable virial mechanical equilibrium of the anti-diffusion 
process of gravitational condensation of a centrally symmetric 
spheroidal body [16, 63, 64, 65] when, according to (4.1.21), GCF 
is constant, that is, const)( st GG , the parameter of 

gravitational condensation 1)(21)( ssss ttt G  

increases almost linearly with the time in accord with (4.1.22) and 
(4.1.23) where )( ss t , and the basic anti-diffusion equation of 

gravitational condensation (4.1.9a) becomes the following virial 
equilibrium equation: 

2
sG

t
. (4.6.14) 

      
Let us note that from a direct comparison of formula 

(4.1.22) with (4.6.10) it follows that: 
4/)( )3("fsG ,   (4.6.15) 

if 0st , that is, 0)( ss t . In other words, knowing GCF 

sG , from (4.6.15) it is easy to find the value of the second 

derivative of a function )(f  at the point of virial equilibrium: 

sG4)( )3("f . (4.6.16) 
Similarly, we can find the value of the first derivative of a 

function )(f at the point of the initial equilibrium state. To 
do this, we first consider the particular case of initial 
instability at an infinitesimal removal in time from an unstable 
equilibrium state (a quasi-equilibrium gravitational 
condensation), for which the parameter of gravitational 
condensation is Gt 2/  following (4.3.9a). Then, 
according to (4.1.8), GCF is easily found: 

22
2/

2/2

1
)(

t
GGt

dt
d

Gt
tG , (4.6.17) 
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which completely coincides with the previously derived 
formula (4.3.6a) or (4.3.12a), according to which: 

.
4

)2/(

4 00

22

00

2
0

tEtE
M

tEtE
MmG

gg

 (4.6.18) 

Assuming an infinitesimal removal in time ( 0t ) from the 
equilibrium state for the case of initial gravitational 
instability, we can approximate the function (4.6.8) by the 
Maclaurin series in the linear approximation: 

])(1[)( 0
'

0
)(

0
0

'

tfet tf . (4.6.19) 

Since 10  and 1)( 0
'f , in (4.6.19) we restrict 

ourselves to the consideration of only the second term: 
tft )()( 0

'
0 . (4.6.20) 

Comparing formula (4.6.20) with the one mentioned above 
(4.3.9a), we obtain: 

))(2/(1 0
'

0 fG , 

where the desired value of the first derivative calculated at a 
point 0  immediately follows: 

)2/(1)( 00
' Gf . (4.6.21) 

Taking into account (4.6.21), the approximate equation 
( 0t ) of an avalanche-type gravitational compression 
(4.6.13b) takes the form: 

21
0 )](4[ tG

t
, (4.6.22) 

where Gtet 02/
0)( . Knowing the values of the 

derivatives of a function )(f  at the equilibrium points 
according to (4.6.16) and (4.6.21), we can try to reconstruct this 
function as well as the differential equation (4.6.1). This 
means a more accurate description of the dynamical states of 
a forming centrally symmetric spheroidal body depending on 
general function )(t  (instead of the “small deviations” 
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function )(t  being the parameter of gravitational 
condensation) permitting us to find a general form of the mass 
density function ),(r . 

4.7. The derivation of the general anti-diffusion equation 
for a slowly evolving process of gravitational condensation 

of a rotating axially symmetric spheroidal body 

Now let us derive the differential equation for a formation 
process of a spheroidal body having an axially symmetric 
distribution of mass density (or, simply speaking, a spheroidal 
body) when its mass density iso-surface is evolving from the 
sphere to a spheroid. In this connection, using the cylindrical 
frame of reference ),,( zh we consider the mass density 
function (3.3.26a) of a rotating spheroidal body in a vicinity 
of relative mechanical equilibrium (see Section 3.3 and [16, 
73]). 

Let us calculate derivative of with respect to the spatial 

coordinates h  and z as well as the parameters  and  0  
supposing these are to be slowly changing functions with the 
time, that is, )(t and )(00 t  [79]: 

2/])1([
2
0

2/1
22

0
2

2

1

22

3 zheM  

2/])1([
222

02
0

2/3
22

0
2

]
2
)1(

[)1(
2

zhezhM  

)];)1((3[
2

22
0

2 zh  (4.7.1) 

2/])1([
00

0

22
0

2

)2( zhe   

2/])1([
0

2
2
00

22
0

2

)}2(
2

){1( zheh
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)];1(
2

1[
1

2 2
0

2
2
0

0 h  (4.7.2) 

)}(
1

{)1(
1 2/])1([2

0
22

0
2 22

0
2 zh

h eh
hhh

h
hh

 

];)1(2[)1( 22
0

2
0 h (4.7.3) 

}{)1( 2/])1([2
002

2
2 22

0
2 zh

z ez
zz

 

];1[)1()1( 222/])1([2
00

22
0

2

zze zh (4.7.4) 
222
zh  

])1(
2

1[2)])1((3[ 22
0

2
0

22
0

2 hzh
 

(4.7.5) 

So, taking into account (4.7.1) we can see that: 

2)])1((3[ 22
0

2 zh  (4.7.6) 

and according to (4.7.2) we find: 

00

2
022

0 2

1
])1(

2
1[ h . (4.7.7) 

With regard for (4.7.6), (4.7.7) equation (4.7.5) becomes [79]: 

0

2
00

22 )1(2 . (4.7.8) 

Now we suppose that an evolution of the mass density of a 
rotating spheroidal body with the time can be expressed by a 
composite function of )(t  and )(00 t . In the first 

place, we obtain the basic anti-diffusion equation (4.1.9a) in 
the special case of the fixed parameter 0 [16, 73]: 

22
2

)G(
2

1 t
dt
d

dt
d

t
. (4.7.9a) 

On the other hand, the following equation is true under 
consideration of the fixed parameter [77, 79]: 
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20
2
00

0

0 )1(

1

dt
d

dt
d

t
. (4.7.9b) 

Intending to study a temporal evolution of a solution to 
Eq. (4.7.8) we need to investigate the functional dependence 

)(00  occurring when c , where )( cc t and ct  
is a moment of rotation origin. However, it is impossible 
under the initial statement (3.3.18) about the independence  
of the coordinates zh ,, . Consequently, the total derivative 
of the mass density function  (with respect to the time) can 
be represented by the following relation: 

dt
d

dt
d

dt
d 0

0

. (4.7.10) 

To find 0/  let us use Eq. (4.7.8) at the fixed parameter 

 whence the desired partial derivative is equal to: 
2

2
000 )1(

1
. (4.7.11a) 

Analogously, if the parameter 0  is fixed then the above-

mentioned basic equation relatively  (similar to (4.1.6)) 
follows directly from Eq. (4.7.8): 

2
22

1
. (4.7.11b) 

Substituting (4.7.11a) and (4.7.11b) into (4.7.10) leads to the 
following general equation of anti-diffusion concerning a 
deformation of a spheroidal body as a result of its rotation 
[77, 79]: 

2)(G
~ t

dt
d

, (4.7.12) 

where )(G
~ t  is an anti-diffusion function, that is, the 

generalized GCF, taking account of flattening process into the 
rotating axially symmetric spheroidal body [77, 79]: 
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dt
d

dt
d

t
t 0

2
00

2 )1(

1

)(2

1
)(G

~
. (4.7.13) 

In the case of the finite value of  and 0  the anti-

diffusion function )(G
~ t  can increase unlimitedly when 0  

(at the so-called initial anti-diffusion condensation) and when 
00  (at the initial flattening). Therefore, the anti-diffusion 

condensation instant and the flattening instant can be the 
same, but it is possible that they can be inconsistent in 
general. Probably, the flattening occurs when the gravitational 
field arises in a spheroidal body, that is, in the case if )(t  

exceeds its threshold value c [16, 65, 73]. 

According to (3.3.25) M , so that the analogous 
equation (4.7.12) of general anti-diffusion condensation of 
gaseous substance is true for the function of volume 
probability density  to locate liquid particles in an axially 
symmetric spheroidal body [77, 79]: 

2)(G
~ t

dt
d

. (4.7.14) 

When the parameter 0  becomes finite, 00  then a 

centrally symmetric spheroidal body (sphere-like gaseous 
body) begins to deform (to be flattened) implying a 
bifurcation on the diagram of dynamical states of this body. 
As noticed by Jeans [1 p.188, p.190, p.191],  

 
On continually varying some parameter (say 

0
, is allowed slowly 

to vary1) we pass through a whole series of continuous 
configurations of equilibrium, which form what Poincaré has called 
a “linear series”. …Every point on a linear series is a configuration 
of equilibrium; a question which is of the utmost importance in 
cosmogonical problem is whether this equilibrium is stable or 

 
1 Author’s remark 
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unstable. … Thus we see that there is an exchange of stabilities at 
the point of bifurcation. 
  
In this connection, if we suppose that )(t  is a 

variable of one-dimensional state-space of a spheroidal body 
then 0  can be considered as a control parameter [119, 135]. 

In reality, “the conditions of secular stability assume a 
somewhat different form for a mass rotating freely in space. 
In this case, the rate of rotation is not constant, but changes as 
the moment of inertia of the mass changes … Secular stability 
is lost at a ‘turning point’ or ‘point of bifurcation’” [1 p.199-
201]. Jeans then clarified [1 p.207, p.209] that: 

 
If 0 ,…so that the configuration must be spherical. If  is 
small, although not actually zero, a spherical surface does not 

satisfy the condition, the term )(
2

1 222 yx  destroying the 

spherical symmetry. In this case, as we shall see almost 
immediately, the configuration is that of an oblate spheroid of small 
ellipticity…Two linear series of equilibrium configuration, which 
are spheroidal and ellipsoidal respectively. The configurations 
which form the first series are commonly known as Maclaurin’s 
spheroids; those which form the second as Jacobi’s ellipsoids… . 
 
So, according to Eq. (4.7.12), a variation of the form of an 

axially symmetric spheroidal body is caused by dissipation, 
that is, by the gravitational energy changing due to the 
internal energy of the particles of a gaseous cloud. According 
to (3.3.26a) the flattening process cannot decrease the anti-
diffusion condensation in the axial direction, but it can reduce 
the anti-diffusion condensation in the plane of rotation of an 
axially symmetric spheroidal body. 
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Conclusion and comments 

According to the statistical models of a slowly flowing 
gravitational interaction of gas-dust body particles considered 
in Chapters 2 and 3, under the influence of initial oscillations 
of the particles an isolated gaseous cloud can be condensed to 
a centrally symmetric spheroidal body (see Chapter 2) or 
axially symmetric spheroidal body (see Chapter 3). Each of 
these models developed for a detailed study of a complex 
dynamical picture of the gravitational interaction of particles 
describes only a certain dynamical solution near an 
equilibrium state.  

In Section 4.1 of this chapter, the basic anti-diffusion 
equation (4.1.9a, b) of the initial gravitational condensation of 
a non-rotating (or slowly rotating) spheroidal body from 
infinitely spread matter was derived, and in Section 4.2, the 
general differential equations for physical values describing 
the anti-diffusion process of the initial gravitational 
condensation of a spheroidal body near the state of 
mechanical equilibrium were obtained. An important result 
obtained here says that the anti-diffusion process does not 
violate the virial equilibrium of a centrally symmetric 
spheroidal body since according to Corollary 4.1 in the 
unstable mechanical equilibrium state GCF )(tG  remains 

constant: const)( st GG , although the parameter of 

gravitational condensation  increases almost linearly with 
the time t  following formulas (4.1.22), (4.1.26), and (4.1.27).  

In Section 4.1, the Poincaré–Eddington virial theorem was 
applied to a spheroidal body with a centrally symmetric 
distribution of masses (being in unstable radial motion), and 
as a result Theorem 4.1 was proved: 

 
For a self-gravitating spheroidal body with a centrally symmetric 
distribution of masses under the condition of their unstable radial 
motion the sum of the double kinetic energy and the total 
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gravitational potential energy of this sphere-like gaseous system of 
particles is equal:  

)(22 tMEE gk G , 

where kE  and gE  are respectively the kinetic and potential energy 

of the particles forming a spheroidal body at 00
, )( tG  is a 

derivative of GCF )(tG  of the spheroidal body with a centrally 

symmetric distribution of masses, M is its total mass. 
 
 By analogy with Einstein’s formula in the Brownian 

motion theory, Corollary 4.2 is also derived which states: 
 

the mean-square distance of displacement of a colloidal particle in 
an immovable or slowly rotating spheroidal body during the time 

interval stt  is equal: 

sr G6
__

2 . 

According to Corollary 4.2 displacement and then interaction 
of colloidal particles (as well as molecules and atoms) can be 
caused by the existence of a dark matter. As a result, centrally 
symmetric or axially symmetric spheroidal bodies are formed.  

Section 4.2 also shows that both the strength and potential 
of a weak gravitational field of a slowly contracting centrally 
symmetric spheroidal body satisfy second-order differential 
equations of parabolic type, that is, anti-diffusion equations of 
the form (4.2.17) or (4.2.31) respectively. 

Two particular cases of the basic equation of slow-flowing 
initial gravitational condensation were considered in Section 
4.3, namely, equations (4.3.8a) and (4.3.8b) of a slow-flowing 
gravitational condensation of a centrally symmetric spheroidal 
body near an unstable mechanical equilibrium state: quasi-
equilibrium gravitational condensation ( 1Gt 2/ ) and initial 
gravitational condensation ( 2Gt /2 ) [47, 73]. 

In Section 4.4, the gravity–thermodynamic relation (4.4.6) 
was introduced (for a centrally symmetric gravitating 
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spheroidal body). Using this the gravitational thermodynamic 
potential (4.4.19) was determined. As shown in Sections 4.4 
and 4.5, about 2/3 of the gravitational potential energy is 
spent on anti-diffusion mass transfer of matter inside a 
centrally symmetric gravitating spheroidal body, determined 
by the gravitational thermodynamic potential rg  [47, 49, 
73]. In Section 4.5, the densities of mass flow (4.5.4) and 
internal energy flow (4.5.40) are introduced for the process of 
slow-flowing initial gravitational condensation of a centrally 
symmetric spheroidal body. 

In Section 4.6, the possible dynamical states of forming a 
centrally symmetric spheroidal body from an infinitely spread 
gas-dust matter are systematized: 

 the initial equilibrium state of a gas-dust nebula 
(molecular cloud), when the parameter of gravitational 
condensation const)(t , and GCF 0)(tG ; 

 the case of initial instability at infinitesimal removal (in 
time) from an unstable equilibrium state of a gas-dust 
nebula being a quasi-equilibrium gravitational 
condensation [47, 48], when, according to (4.3.9a), the 
parameter of gravitational condensation Gt 2/ , the 
gravitational compression factor constG , and GCF 

2/)( tGtG following (4.3.6a), (4.3.7a); 

 the case of an avalanche-like gravitational compression 
due to the arising gravitational field of a centrally 
symmetric spheroidal body, when according to (4.6.8) the 
parameter of gravitational condensation is exponentially 

increasing tfet )( 0
'

)0()( , and GCF is 

tfeft )(0
'

0
'

)0(2

)(
)(G  in accordance with (4.6.13a); 

and 
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 the case of unstable mechanical equilibrium of the anti-
diffusion process of gravitational condensation of a 
centrally symmetric spheroidal body [16, 63–65] when the 
parameter of gravitational condensation 

1)(21)( ssss ttt G  is almost linearly 

increasing with the time following (4.1.22), (4.1.23), 
where )( ss t and GCF is constant const)( st GG  

in accordance with (4.1.21). 
In Section 4.7, the general anti-diffusion equation (4.7.12) 

for a slowly evolving process of initial gravitational 
condensation of an axially symmetric spheroidal body (which 
is formed in result of its rotation) was derived. The basic anti-
diffusion equation (4.1.9a) of the initial gravitational 
condensation of an immovable (or slowly rotating at 00 ) 

centrally symmetric spheroidal body was obtained as a special 
result (see Eq. (4.7.11b)). Since the evolution of the mass 
density of a rotating spheroidal body includes both anti-
diffusion and flattening processes, a generalized GCF )(G

~ t  is 
introduced in accordance with (4.7.13). Obviously, GCF 
(4.1.8) is the particular case of generalized GCF (4.7.13) when 

the flattening process is absent ( 00 , 00 ). As 

indicated, since )(t  is a variable of one-dimensional 

state-space of an axially symmetric spheroidal body then 0  
can be considered as a control parameter within the 
framework of the self-organization theory [135]. 

So, summing up, we note that in [135] gravitation was 
treated from the point of view of the self-organization theory 
(synergetics), first of all, as “a primary irreversible process.” 
Such an interpretation was mainly because evolution 
processes “cannot be described by some nontrivial means, 
without involving time direction” [134]. Indeed, heat 
conduction, diffusion, chemical reactions, biological and 
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physiological processes, and so forth, are examples of 
dissipation processes, that is, the ones connected with 
consumption (dissipation) of energy (e.g., heat). As a result of 
this, in the reversing of time, say, in diffusion equations 
describing these processes (see e.g., (4.3.13)), “we obtain 
quite different laws” [135]. Thus, one of the principal results 
of the development of synergetics is a “rediscovery” of time 
in physics [194, 195], so that synergetics marked a passage 
from physics of being to physics of becoming with its “time 
arrow” (a pattern suggested by A. Eddington) [196, 197]. 

In connection with this, there have recently appeared many 
papers of philosophical character devoted to the attempts to 
gain new insight into “the views of the nature, properties, and 
structure of time” [194–198]. The unsatisfactory description 
by physics of natural phenomena was formulated by I. 
Prigogine thus: “Reversibility of laws of dynamics, as well as 
of laws of quantum mechanics and relativity theory, expresses 
… a radical negation of time” [194 p.7]. “The disparity 
between time being unidirectional, which results from the 
second law of thermodynamics, and the reversibility of the 
rest of fundamental physical laws worried A. Einstein very 
much” [195]. He considered “the time arrow to be always 
connected with thermodynamic conditions,” but “while we 
possess, mainly, direct knowledge of elementary processes, 
there is a corresponding reverse process for each of them” 
[199 p.58]. 

However, it should be noted, that gravitation, despite being 
an evolutional process, cannot be classified completely as a 
dissipative process because it is connected with accumulation 
rather than with the dissipation of energy. As a result of 
Section 4.3, the phenomenon of the slow-flowing 
gravitational condensation of a centrally symmetric spheroidal 
body is described by, at least, two anti-diffusion equations. 
One of them, characterizing the process of the initial slow-
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flowing gravitational condensation (see (4.3.8b)), is reversible 
in time, while the other, describing the quasi-equilibrium 
slow-flowing gravitational condensation (see (4.3.8a)), is 
irreversible in time [16, 47, 73]. This means that the evolution 
in time of the complex physical phenomenon under study is 
presented through several differential equations, some of 
which are reversible in time, others are irreversible. 
Consequently, the same complex phenomenon cannot be 
characterized based on reversibility in time alone [73].  

In connection with the above-noted disparity of time being 
unidirectional, resulting from the second law of 
thermodynamics, and the reversibility of the principal 
fundamental laws of physics, it is reasonable to accept the 
point of view of H. Bergson, V. Vernadsky, and I. Prigogine 
on the necessity of distinguishing (alongside physical time) 
“the so-called second time characterizing the process of the 
system change in the course of its irreversible development, 
or its age” [195, 197]. Such a point of view is, at present, the 
acceptable one, since there is a hypothesis of S. Weinberg, 
according to which, energy dissipation, on the scale of the 
expanding Universe, may someday become reversible [101]. 
This means that the kinetic energy and radiation of galaxies 
that are moving away from one another are not devalued in 
the thermodynamic sense but are accumulated in the fields of 
gravitation, which, in turn, will inevitably result in the 
compression of the Universe. 

In conclusion, we will point out that for all the varied 
points of view and mathematical models that have been 
presented to explain a physical phenomenon, fortunately, they 
frequently agree as far as the main deductions and evaluations 
are concerned. Thus, according to the proposed statistical 
model of gravity, pressure inside a spheroidal body under 
mechanical equilibrium is three times less than the potential 
energy density of gravitating the spheroidal body (formula 
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(2.9.22) as well as (2.5.6) and (4.4.9)), which agrees with the 
deductions of Einstein’s general relativity theory [100], and 
also with the Nicolis–Prigogine cosmological model [135] of 
the irreversible process of particles origin at the expense of 
gravitational energy. It means that in the course of 
development of our knowledge, the most essential provisions 
and deductions resulting from various theoretical 
constructions will, undoubtedly, remain, and the seeming 
contradictions will complement each other in the unique 
comprehension of the essence of physical phenomena. 
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This chapter considers statistical theory in order to derive and 
develop a new generalized nonlinear Schrödinger-like 
equation of a cosmogonical body formation [68, 71, 73, 77, 
78]. In the previous chapters, the statistical theory for a 
cosmogonical body formation (the so-called spheroidal body 
with fuzzy boundaries) was proposed (see also [16, 45–67, 
73]). Within the framework of this theory, interactions of 
oscillating particles inside a spheroidal body lead to a 
gravitational condensation increasing with time. Moreover, 
under the condition of critical values of mass density (or the 
parameter of gravitational condensation ) the centrally 
symmetric gravitational field arises in such a spheroidal body 
[16, 65, 73]. 

In this connection, the main problem in understanding the 
statistical model is what mechanism of particle interactions 
leads to the slow-flowing process of an initial gravitational 
condensation of a spheroidal body. As shown in Chapter 2, 
interacting molecules or atoms of gas form new aggregate 
nano- and micro-particles called colloidal or liquid particles 
(in hydrodynamic meaning [94]). As was pointed out in [94], 
any liquid particle having a small element of a medium 
volume is still considered to be large enough to contain many 
molecules. The liquid particles (constituting a molecular 
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cloud at low temperatures) also have oscillatory interactions 
among themselves. In reality, in macrophysics it is alleged 
that the cosmological constant [102] describes the cosmic 
vacuum [103, 104] and therefore, its experimental 
manifestation on cosmic scales is the fluctuations stipulated 
by Alfvén–Arrhenius oscillations [9, 19, 20]. Moreover, as we 
know [9, 19, 20] that due to the radial and the axial 
oscillations the moving solid bodies in the gravitational field 
of a central body have elliptic and inclined orbits. 

Recently, L. Nottale [36, 37, 175, 176, 200, 201] has 
developed his theory of the scale relativity to describe both 
deterministic and stochastic behavior of a particle in the 
gravitational field of a cosmogonical body. In Nottale’s 
model, both direct and reverse Wiener stochastic processes 
are considered in parallel, which leads to the introduction of a 
twin Wiener (backward and forward) process as a single 
complex process [175, 176]. For the first time, the backward 
and the forward derivatives for the Wiener process were 
introduced within the framework of the statistical mechanics 
of Nelson [34, 35]. Both Nelson’s statistical mechanics and 
Nottale’s scale relativistic theory investigate families of 
virtual particle trajectories that are continuous but 
nondifferentiable. The important point in Nelson’s works [34, 
35] is that a diffusion process can be described in terms of a 
Schrödinger-type equation with help of the hypothesis that 
any particle in the empty space, under the influence of any 
interaction field, is also subject to a universal Brownian 
motion (i.e., from the mathematical viewpoint, a Markov–
Wiener process) based on the hypothesis on the quantum 
nature of space-time or quantum fluctuations on cosmic scale 
[35–43]. However, despite the important role of Nelson’s and 
Nottale’s theories the general equation of gravitational 
condensation has not been obtained. 
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In this connection, we derive the generalized nonlinear 
Schrödinger-like equation describing the evolution of 
dynamical states of a forming cosmogonical body within the 
framework of the proposed statistical theory of gravitating 
spheroidal bodies [68, 71, 73]. This equation proves to be 
more general than analogous equations obtained in Nelson’s 
stochastic mechanics [34] and Nottale’s scale relativistic 
theory [175, 176]. This chapter investigates different 
dynamical states of a gravitating spheroidal body and 
respective forms of the generalized nonlinear time-dependent 
Schrödinger-like equation [77, 78]. In particular, this equation 
also explains an initial slowly evolving process of 
gravitational condensation of a cosmogonical body from an 
infinitely distributed gaseous substance and hence solves the 
gravitational paradox problem. 

5.1. The density of anti-diffusion mass flow and  
the anti-diffusion velocity into a gravitational 

compressible spheroidal body 

At first, we are going to use equation (4.1.9a) (or (4.7.9a)) of 
the initial gravitational condensation of a centrally symmetric 
spheroidal body (sphere-like cosmogonical body) under the 
assumption 00 . By analogy with Section 4.5, we shall 

also rewrite it taking into account that GCF )(tG  does not 
depend on the spatial variable r, therefore: 

0grad)(t
t

Gdiv . (5.1.1) 

The relation (5.1.1) fully reminds us of the continuity 
equation expressing the law of conservation of mass in a 
nonrelativistic system [94]: 

0j
t

div , (5.1.2) 
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where j  is a mass flow density of a continuous medium. In 
this connection, the value in round brackets of Eq. (5.1.1) has 
the sense of a mass flow density (like a conductive flow [108, 
134]) j  arising at the gravitational compression of a 
spheroidal body [47–49]: 

grad)(tj G . (5.1.3) 
For the first time, the conductive (owing to diffusion or 

thermal conductivity) flows in dissipative systems were 
investigated by I. Prigogine (see, for example, [108, 134]). As 
it follows from Eq. (5.1.3) directly, there exists an anti-
diffusion mass flow density in a slowly compressible 
gravitating spheroidal body [16, 47, 73]. Applying the 
equation of continuity (5.1.2) to this anti-diffusion flow 
density (5.1.3), we obtain again the mentioned linear anti-
diffusion equation (4.1.9a). Since  is a function of the 
spatial variable r , then in the spherical system of coordinates 

r
r

r
e

r rgrad . Taking into account the fact that 

according to (4.1.2) the mass density  is an exponentially 

decreasing function, then its derivative 0
r

. Consequently, 

the direction of the anti-diffusion flow density vector j  is 

directly opposite to the basis vector re , that is, the vector j  is 
directed to the spheroidal body center. Equations obtained 
(5.1.1) and (5.1.3) generalize analogous Eqs (4.5.3) and 
(4.5.4) in the case of the slow-flowing initial gravitational 
condensation of a centrally symmetric spheroidal body. 

Like the elementary particle momentum operator 
ip̂  in quantum mechanics [202–204] we can introduce 

from Eq. (5.1.3) a velocity operator in the case of 
unobservable velocities of particles [48, 53, 68]: 
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)(ˆ tv G , (5.1.4) 
that is, v̂  is an operator of unobservable anti-diffusion 
velocity. Taking into account this Eq. (5.1.4) the anti-
diffusion mass flow density (5.1.3) of slow-flowing 
gravitational contraction of a spheroidal body (with 
unobservable velocities of particles) can be written as follows 
[48, 53, 68]: 

vj ˆ . (5.1.5) 

According to Eq. (5.1.5) the continuity equation (5.1.2) takes 
the form [68, 73]: 

0)ˆ(v
t

div . (5.1.6) 

As has been mentioned above, I. Prigogine, G. Nicolis, and 
P. Glansdorff studied the so-called conductive (diffusive and 
thermal conductive) flows [108, 134] satisfying equations 
analogous to Eqs (5.1.2) and (5.1.6). In this connection, along 
with the velocity operator v̂  let us introduce a conductive 
velocity for the anti-diffusion mass flow density or, simply 
put, the anti-diffusion velocity (unlike that of the ordinary 
hydrodynamic velocity v ) for an immovable or a slowly 
rotating spheroidal body [64, 67, 68, 73]: 

)/ln(grad)(
/

)/(
)G()(u 0

0

0 ttt GG . (5.1.7) 

Obviously, the anti-diffusion velocity u  of anti-diffusion 
mass flow density satisfies the well-known continuity 
equation of the kind: 

0)u(div
t

. (5.1.8) 

Using this continuity equation (5.1.8) we can calculate the 
partial derivative of the anti-diffusion velocity (5.1.7) with 
respect to the time [64, 67, 68, 73]: 
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t
t

dt
td

t
1

grad)(lngrad
)(u

G
G

 

))u((
1

)(u
)(

1)(
divG

G

G t
tdt

td
 

uu)(u
)(ln t

dt
td

G
G

 

.u
)(ln

)ugrad()ugrad()( 2

dt
tdt G

divG  (5.1.9) 

An advantage of the anti-diffusion velocity notion (5.1.7) 
versus the velocity operator notion (5.1.4) to be introduced is 
contained in the fact that the anti-diffusion velocity of liquid 
particles inside a slow-flowing gravitational compressible 
spheroidal body can become observable if the mass density of 
a centrally symmetric spheroidal body is very small. Indeed, 
according to Eq. (5.1.7) if the mass density 0  then the 
anti-diffusion velocity u  (under the condition that grad  
is to be finitary). The condition of smallness for the mass 
density  takes place in the molecular clouds of spread gas-
dust matter in space [10]. Thus, as a result of spheroidal body 
formation from an initial weakly condensed gas-dust cloud, it 
might be a sharp increase of the anti-diffusion velocity of 
particles into the forming spheroidal body under the condition 
of the finiteness of the mass density gradient. Indeed, as 
shown in Section 4.6, if 0)( 0

'f  in formula (4.6.8) then 

gravitational instability occurs, which is accompanied by an 
avalanche-like gravitational compression due to the gravitational 
field arising in a centrally symmetric spheroidal body when the 
parameter of gravitational condensation reaches its critical value 

c  as a result of an exponential increase tfet )( 0
'

)0()( in 
accordance with (4.6.8). 
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In this case it is reasonable to rewrite Eq. (5.1.9) based on 
the familiar formulas of vector analysis [94, 111]: 

urotuuuugrad
2

1 2 ; (5.1.10a) 

)urot(rot)ugrad(u2 div . (5.1.10b) 

Taking into account Eq. (5.1.7) one can see that 0urot , so 
that Eqs (5.1.10a, b) become respectively: 

uu2ugrad 2 ; (5.1.11a) 

)ugrad(u2 div . (5.1.11b) 

Substituting Eqs (5.1.11a, b) into Eq. (5.1.9) we obtain [68, 
73]: 

u
)(ln

uu2u)(
u 2

dt
tdt

t
G

G . (5.1.12) 

Taking into account Eq. (5.1.11a) again, the equation (5.1.12) 
can be written as follows: 

u
)(ln

u)()2/ugrad(uu
u 22

dt
tdt

t
G

G . (5.1.13) 

The equation obtained, (5.1.13), is similar to the Navier–
Stokes equation of motion of a viscous liquid [94, 111] under 
the condition that a gas-dust substance of a spheroidal body is 
isolated from the influence of external fields and 

const)( st GG . 

Now let us estimate the anti-diffusion velocity (5.1.7) of 
particles into a spherically symmetric gravitational 
compressible spheroidal body taking account of its mass 
density function (2.2.5): 

rttrttttr )()(2/)()(ln)G(),(u 2

0

GG . (5.1.14) 
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We can see that the anti-diffusion velocity u  is expressed by 
the very simple relation (5.1.14) in the case of a sphere-like 
cosmogonical body. The obtained Eq. (5.1.14) recalls the 
formula of the velocity of autowave front propagation [66, 73] 
for gravitational strength magnitude in the remote zone of a 
slowly compressible gravitating spheroidal body, according to 

which: *** )()(
2

1

)(

)(

2

1 rttr
t
tr G

G

G
 if 00t  and 

0)(t  [66, 73]. 
Along with the anti-diffusion velocity, u there exists an 

ordinary hydrodynamic velocity v (or a convective velocity 
[108]). In principle, the hydrodynamic velocity v of mass 
flow arises as a result of powerful gravitational contraction of 
a centrally symmetric spheroidal body on the next (field) 
stages of its evolution. When c  the growing magnitude 

of gravitational field strength a induces the significant (i.e., 
observable) value of the hydrodynamic velocity v of mass 
flows moving into a spheroidal body. This means that the 
value of anti-diffusion velocity (5.1.7) becomes much less 
than the value of hydrodynamic velocity, that is: 

vu . (5.1.15) 

Under this condition (5.1.15), a common (hydrodynamic and 
anti-diffusion) mass flow density inside a centrally symmetric 
spheroidal body satisfies the hydrodynamic equation of 
continuity [94, 111]: 

0)v(div
t

. (5.1.16) 

Taking into account Eq. (5.1.16) we can also calculate the 
partial derivative of the anti-diffusion velocity (5.1.7) with 
respect to time [68, 73] in accordance with the condition 
(5.1.15): 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Generalized Nonlinear Schrödinger-like Equation Describing  
the Evolution of a Forming Cosmogonical Body 

425

t
t

dt
td

t
1

grad)(lngrad
)(u

G
G

 

))v((
1

)(u
)(

1)(
divG

G

G t
tdt

td
 

vv)(u
)(ln t

dt
td

G
G

 

.u
)(ln

)uvgrad()vgrad()(
dt

tdt G
divG  (5.1.17) 

As we know from a fluid-like description [94, 111], the 
complete time-derivative of the common (hydrodynamic plus 
anti-diffusion) velocity uv  inside a centrally symmetric 
spheroidal body defines the common acceleration (or 
gravitational field strength) including the partial time-
derivatives and convective derivatives [68, 73]: 

uu
u

v)v(
v)uv(

ttdt
da . (5.1.18) 

Taking into account Eq. (5.1.13) as well as Eq. (5.1.11a), the 
complete acceleration (5.1.18) can be represented in the form 
[68, 71, 73]: 

dt
da )uv(

  

u
)(ln

u)(uuv)v(
v 2

dt
tdt

t
G

G . (5.1.19) 

Let us note that since the mass density of a spheroidal body 
is directly proportional to the probability volume density 
function  according to Eq. (2.2.7), the anti-diffusion 
velocity (5.1.7) (or (5.1.14)) can be defined through the 
probability volume density function: 

lngrad)()(u tt GG . (5.1.20) 
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Obviously, the anti-diffusion velocity (5.1.20) of probability 
volume flow density also satisfies Eqs (5.1.9), (5.1.13), 
(5.1.14), and (5.1.17)–(5.1.19). 

Secondly, in the case of an axially symmetric spheroidal 
body 00 , therefore using the general equation of anti-

diffusion mass transfer (4.7.12) we can estimate an anti-
diffusion velocity of liquid particles inside a rotating 
ellipsoid-like cosmogonical body [73, 77] taking into account 
its mass density formula (3.3.26a): 

0/),(lngrad)(G
~

)(G
~

u zhtt   

2/11lngrad)(G
~ 22

0
22

0 zht   

zzhhzh eeezeht uu1)(G
~ 2

0 , (5.1.21) 

where he  and ze  are the basis vectors of cylindrical frame of 

reference and hu  and zu are the radial h -projection and the 

axial z -projection of the anti-diffusion velocity respectively 
[73, 77]: 

hth
2
01)(G

~
u ; (5.1.22a) 

ztz )(G
~

u . (5.1.22b) 

Taking into account that 0urot  for the anti-diffusion 
velocity defined by Eq. (5.1.21) we can see that Eqs (5.1.11a, 
b) are also true. Thus, if we replace GCF )G(t on the 

generalized GCF )(G
~ t  in the Eqs (5.1.9), (5.1.13), and 

(5.1.17)–(5.1.20) they remain valid in the general case of a 
rotating and gravitating ellipsoid-like cosmogonical body. For 
example, analogs of Eqs (5.1.17) and (5.1.19) in the case of 
an axially symmetric spheroidal body have the form: 

u
)(

~
ln

)uvgrad()vgrad()(
~u

dt
tdt

t
G

divG ; (5.1.23) 
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u
)(

~
ln

u)(
~

uuv)v(
v 2

dt
tdt

t
a G

G .
 

(5.1.24) 

5.2. The initial potential of an arising gravitational field, 
the initial gravitational strength induced by the anti-

diffusion velocity, and the characterizing number K as a 
control parameter of dynamical states of a forming 

spheroidal body 

Using the definitions (5.1.3) and (5.1.7) of the mass flow density 
j  and the anti-diffusion velocity u  let us investigate explicitly 

the case of an avalanche gravitational compression of a centrally 
symmetric spheroidal body as a consequence of an arising 
gravitational field in it (see Section 4.6, formula (4.6.8)). Firstly, 
we suppose that in the case of an initial gravitational instability 
(the quasi-equilibrium gravitational condensation under the 
condition of unobservable velocities of particles [16, 53, 68, 73]) 
the hydrodynamic velocity v  of moving particles is absent 
practically, that is, 0v . In addition, its partial and convective 
derivatives are also equal to zero: 

0v)v(
v

t
. (5.2.1) 

Taking into account Eqs (5.1.7) and (5.2.1) as well as the 
simplified formulas of vector analysis (5.1.11a), (5.1.11b) and 
relation (5.1.19) takes the form [73, 77]: 

u
)(ln

u)(uu 2

dt
tdta G

G   

0

2

ln)G(
)lnG(

udiv)G(
2

u t
dt

tdt   

,ln)(Gudiv)G(
2

u

0

2

tt  (5.2.2) 
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whence using Eqs (2.2.5) and (5.1.14) we can establish that an 
induced acceleration is calculated by the formula: 

22222 )(
2

1
)(G)()(G3)()(G

2

1 rttttrtta  

rtttt )(G)()(G)( 2 . (5.2.3) 
According to the field theory [100], after a gravitational field 
becoming its strength a can be calculated directly by the 
gravitational potential g : ga grad , therefore, as follows 

from Eq. (5.2.3), the arising gravitational potential has to be 
equal to: 

222 )()(G
2

1

)(
)()(

2

1 rtt
t

rttg
6

G2  (5.2.4a) 

or: 

)()()()(G)()(
2

1 22 ttrttttg
22 3GG . (5.2.4b) 

As can be seen from Eq. (5.2.4b), the gravitational potential 

g  
of a forming centrally symmetric spheroidal body is the 

sum of a regular part )()()()(
2

1 22 ttrttg
22 3GG  and a 

fluctuation part 2)()(G
2

1 rttg . Moreover, if 

)()( tt GG  then Eq. (5.2.4a) becomes the following: 

)(
)()(G

2

1 22

t
rttgg

62 . (5.2.5) 

Taking into account the definition of GCF (4.1.8), we can 
transform Eq. (5.2.5) for the arising gravitational potential of 
an initial gravitational field of a forming centrally symmetric 
spheroidal body [73, 77]: 
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)(
)()(G

2

1
),( 22

t
rtttrg

62   

)(
)()(

4
1

)()(
1

8
1 22

2

2 t
rtt

t
r

dt
d

t
6

G
6

. (5.2.6) 

On the other hand, after obtaining a critical (threshold) 
value c , as mentioned in Sections 2.3 and 2.4 of Chapter 

2, the gravitational field arises inside a sphere-like gaseous 
body (or a centrally symmetric spheroidal body), so that we 
can estimate the inner gravitational potential of the centrally 
symmetric spheroidal body (in the near zone I of the 
gravitational field) based on Eq. (2.4.29): 

30

0

20(I)

6

4

2
1

4 rr
r

dxx
r

r

g  

6

3

2 20 r , (5.2.7) 

where 2/3
0 )2/(M  in accordance with formula (2.2.5). 

If we consider in Eq. (5.2.6) that 

ct)(  at ctt , (5.2.8) 

where )( cc t  is a critical value of the parameter of 

gravitational condensation at the beginning of gravitational 
field origin ctt , then formulas (5.2.6) and (5.2.7) become 

practically identical to each other. This means that the origin 
of the gravitational field inside a forming centrally symmetric 
spheroidal body occurs at the time ctt  when the 

monotonically increasing function )(t  reaches its critical 

value c  following the condition (5.2.8). By comparing 

Eq. (5.2.6) with Eq. (5.2.7) we obtain the equation [73]: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

430

3

)(2

)(

1

8

1 0

2

2
c

dt
d

t
,  ctt , (5.2.9) 

which takes place if the following differential equation is true:  

C
t
t

2

)(

)(
, (5.2.10) 

where 
3

16 0C . As follows directly from Eq. (5.2.10): 

3
4

)(

)( 0C
t
t

. (5.2.11) 

Separating variables and integrating this differential equation 
(5.2.11) we obtain: 

  
t

tcc

dtd
3

4 0 , 

whence: 

)(
3

4
)(

ln 0
c

c

ttt
, (5.2.12) 

where )( cc t . Ultimately, as is obvious from (5.2.12) the 

solutions of Eq. (5.2.10) are the following [73]: 
)(3/4 0)( ctt

c et ; (5.2.13a) 
)(3/4 0)( ctt

c et . (5.2.13b) 

So, the temporal evolution of the parameter of gravitational 
condensation at the instant of gravitational field origin inside 
a forming centrally symmetric spheroidal body is described 
by dependencies (5.2.13a, b). If we consider a forming 
centrally symmetric spheroidal body like the 1D dynamical 
system (see Section 4.6) then both obtained solutions 
(5.2.13a) and (5.2.13b) are solutions of the Cauchy linearized 
problem of the kind (4.6.7): 
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tfet )( 0
'

)0()( , (5.2.14) 

where 3/4)( 00
'f  or 3/4)( 00

'f  if 0ct . 

In particular, when 0)( 0
'f  then the solution is 

asymptotically stable in Lyapunov’s meaning. Otherwise, 
when 0)( 0

'f  the gravitational instability occurs if ctt , 

that is the avalanche gravitational compression as a 
consequence of an arising gravitational field into a centrally 
symmetric spheroidal body [73]. In this case, according to Eq. 
(5.2.13a), the parameter of gravitational condensation )(t  
increases exponentially up to its stabilization value: 

)(3/4 0 cs tt
cs e , (5.2.15) 

where: 
2/3

0 )2/()( cc M  (5.2.16) 

and )( ss t , st  is a stabilization instant. Thus, the process 

of avalanche gravitational compression forms a dense bunch 
(core) with the central mass density: 

2/3
0 )2/()( sss M ,  stt  (5.2.17) 

as well as the inner gravitational potential (I)
g following the 

formula (5.2.7): 

s

s
g r 6

3

)(2 20(I) ,    stt . (5.2.18a) 

Generalizing (5.2.18a) we can also estimate the gravitational 
potential g  in accordance with the formula (2.4.27) [16, 73]: 

2/

0

0
22)(4

),(
sr

s

ss

s
sg dse

r
r  , stt . (5.2.18b) 

Similar reasoning takes place in the case of a rotating 
axially symmetric spheroidal body, that is, when 00  we 

also suppose that in the case of an initial gravitational 
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instability (under condition of unobservable velocities of 
particles [68, 73, 77]) the hydrodynamic velocity v of moving 
particles and its partial and convective derivatives are equal to 
zero in accordance with (5.2.1). Taking into account Eqs 
(5.1.21) and (5.2.1) as well as the simplified formulas of 
vector analysis (5.1.11a,b),  the relation (5.1.24) takes the 
form [73, 77]: 

u
)(

~
ln

u)(
~

uu 2

dt
tdta G

G   

0

2

ln)(G
~)(G

~
ln

udiv)(G
~

2

u t
dt

tdt   

0

2

ln)(G
~

udiv)(G
~

2

u tt  . (5.2.19) 

Using estimations of the radial h -projection (5.1.22a) and the 
axial z -projection (5.1.22b) of anti-diffusion velocity (5.1.21) 
of particles as well as Eqs (3.3.26a), an acceleration (or initial 
gravitational field strength) induced by the anti-diffusion 
process inside an axially symmetric spheroidal body 
(ellipsoid-like cloud) is calculated by the formula [73, 77]: 

]/ln)(G
~

uudiv)(G
~

2/u2/[u 0
22 teeta zzhhzh

112)(G
~

1)(G
~

2

1
grad[ 2

0
2222

0
222 tzht

 

]1ln2))1(()(G
~

2

1 2
0

22
0

2 zht .  (5.2.20)  

According to Eq. (5.2.20), when a gravitational field is 
arising, its strength a can be calculated directly through the 
gravitational potential g : ga grad , therefore: 

)(

2)1(4
1)()(

~

2

1 2
02222

0
2

t
zhttg

2G  
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2
02 2 2

0

2 ln 11
G( ) ( ) (1 ) .

2 ( )
t t h z

t
 (5.2.21) 

Analogously to Eq. (5.2.4b), the arising gravitational 
potential g  

of a forming axially symmetric spheroidal body 

(5.2.21) is the sum of a regular part  

)(

2)1(4
1)()(

~

2

1 2
02222

0
2

t
zhttg

2G   

and a fluctuation part 

)(

1ln2
)1()()(G

~

2

1 2
0222

0 t
zhttg

 

 if )(
~

)(
~ tt GG  , so that in this case Eq. (5.2.21) takes the 

form [77]: 

)(

2)1(4
1)()(

~

2

1 2
02222

0
2

t
zhttgg

2G .(5.2.22) 

Obviously, if 00 then formula (5.2.22) becomes the 

formula of the arising gravitational potential (5.2.5) (or 
(5.2.18a)) of a forming centrally symmetric spheroidal body. 

Let us note that according to the Jeans criterion (1.3.25) 
developed within the framework of his linearized theory of 
gravitational instability [1 p. 345–350] we can estimate the 
critical value of mass density c  through the critical 

wavelength c  or the critical circular frequency c  of 

propagation of condensations and rarefactions in a medium: 

4

2
c

c . (5.2.23) 

By comparing Eq. (5.2.23) with Eq. (5.2.16) we can express 
the critical parameter of gravitational condensation c  
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through the critical circular frequency c  of propagation of 
disturbances (“the initial condensations and rarefactions 
increasing exponentially with the time” [1 p. 348]) in a 
forming centrally symmetric spheroidal body (see the same 
formula (2.3.7b) in Section 2.3 of Chapter 2): 

3/223/1

2 M
c

c . (5.2.24) 

As the parameter of gravitational condensation 
)(t reaches its critical value c , the propagation of 

gravitational disturbances with the circular frequency c  
(or the wavelength c ) ceases to be wave-motion and 

leads to an unstable motion according to the Jeans criterion 
(1.3.25). In this case, the parameter of gravitational 
condensation increases exponentially with the time in 
accordance with Eq. (5.2.13a) whereas GCF decreases 
exponentially with the time [73]: 

t
c

t
c

e
dt
d

e
t 3/4

23/4

0

02

1
)(G  

t

c

e 3/40 0
3/2

, (5.2.25a) 

so that the anti-diffusion equation (4.1.9a) of gravitational 
compression of an immovable (of slowly rotating) centrally 
symmetric spheroidal body takes the form: 

20

)(

3/2

tt
. (5.2.25b) 

Thus, the above-mentioned arguments under the derivation 
of Eqs (5.1.1)–(5.1.20) in Section 5.1 confirm entirely the 
scenario of a gravitational field arising (see Eqs (5.2.2)–
(5.2.6)) based on a transfer of the anti-diffusion velocity of 
particles motion into a forming centrally symmetric spheroidal 
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body. The same concerns the scenario of the gravitational 
field arising into a forming axially symmetric spheroidal body 
(see Eqs (5.2.19)–(5.2.22)). 

Let us consider a general approach to investigate different 
dynamical states of a forming spheroidal body. Using Eqs 
(5.1.17), (5.1.19) and the simplified formulas of vector 
analysis (5.1.11a,b), we can carry out an analysis of 
dynamical states of a forming centrally symmetric spheroidal 
body by introducing the scales of physical values 

sFUVLT G,,,,, , and the respective dimensionless variables 

gfuv ,,,,,  as follows: 

;u;v;; uUvVLrTt   

)()(; tgtfFa sGG . (5.2.26) 

By substituting Eqs (5.2.26) into Eqs (5.1.17) and (5.1.19) 
and taking into account simplified formulas (5.1.11a, b) we 
obtain: 

)grad()grad()(
2

uv
L

VUv
L
Vtu

T
U

divG   

u
d

d
T
U )(ln G

; (5.2.27a) 

)2/grad()( 2
22

u
L

Uvv
L

VfFv
T
V

  

u
dt

td
T
Uu

L
Ut )(ln

)grad()(
2

G
divG

. (5.2.27b) 

Similarly to [111], dividing Eq. (5.2.27b) by LV /2  and Eq. 
(5.2.27a) by LVU / we derive the following dimensionless 
equations: 

)grad()grad(
ReK

1
Sh uvvu s div

G
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u
dt

tgd )(ln
Sh ; (5.2.28a) 

)2/grad(K)(
Fr

1
Sh 22 uvvfv

  

u
dt

tgdutgs )(ln
KSh)grad()(

Re

K
div

G
, (5.2.28b) 

where  

VTL /Sh  is the Strouhal number,  
FLV /Fr 2  is the Froude number, 

/Re VL is the Reynolds number (  is a kinematic 
coefficient of viscosity of flow of liquid particles [111]), 
and 

VU /K  is a new number of similarity. 
The new number of similarity is a measure of the values 

u  versus v  prevailing: 

v

u
K . (5.2.29) 

When this similarity number exceeds unity ( 1K ) then the 
anti-diffusion condensation of a centrally symmetric 
spheroidal body occurs exclusively, so that the value of 
hydrodynamic velocity is negligible )0v(  because a 

gravitational field is absent in practice. If the similarity 
number becomes close to unity ( 1K ) then the 
hydrodynamic velocity v of mass flow arises as a result of a 
gravitational contraction of a centrally symmetric spheroidal 
body on the field stage of its evolution. As mentioned with 
regard to Eq. (5.1.15) in Section 5.1, the value of anti-
diffusion velocity (5.1.7) becomes much less than the value of 
hydrodynamic velocity vu when 1K . This means 

that the growing magnitude of powerful gravitational field 
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strength a  induces the significant value of the hydrodynamic 
velocity v  of mass flows moving into a centrally symmetric 
spheroidal body. Thus, like the Mach number M  [111] the 
new number of similarity K  is a control parameter of 
dynamical states of a forming centrally symmetric spheroidal 
body. 

As shown in [77], in the case of a rotating axially 
symmetric spheroidal body ( 00 ) we can also obtain 

equations analogous to Eqs (5.2.28a) and (5.2.28b): 

)grad()grad(
ReK

1
~

Sh uvvu s div
G

  

u
dt

tgd )(ln
Sh ; (5.2.30a) 

)2/grad(K)(
Fr

1
Sh 22 uvvfv

  

u
dt

tgdutgs )(ln
KSh)grad()(

Re

K
~

div
G

. (5.2.30b) 

In particular, in the special case 1K  corresponding to 
the initial quasi-equilibrium gravitational condensation state 
the dimensionless Eqs (5.2.28a, b) are reduced to one 
dimensionless equation of the kind: 

uutgu s Sh)grad()(
Re

1
)2/Kgrad( 2 div

G
, (5.2.31) 

which corresponds to the following equation: 

t
t u

)ugrad()()2/ugrad( 2 divG . (5.2.32) 

Except for the anti-diffusion solution, the equation (5.2.32) 
has a wave solution in the vicinity of equilibrium state when 

constsG  and 1u : 
tkrk

ss
tkrk ss ere GG G

22 i
0

i
0uu , 1i . (5.2.33) 
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In the initial quasi-equilibrium gravitational condensation 
state, the wave solution (5.2.33) is generated. Moreover, it 
induces specific wave force: 

0
i2 2

)()ugrad()( rekttf tkrk
ss

sGGGdivG . (5.2.34) 

Like Eq. (4.2.17*), if we determine Gs  as iGs , the wave 

solution (5.2.33) determines an additional periodic force of 
the Alfvén–Arrhenius kind [9, 19]: 

2i( G )2
0G( ) G skr k t

a s sf t k e r  (5.2.35) 

and respective spatial oscillations in the different domains of a 
forming centrally symmetric spheroidal body (see the next 
section). 

5.3. The equilibrium dynamical states after the origin of a 
gravitational field inside a forming spheroidal body 

Let us consider a frequency interpretation of the gravitational 
potential and the gravitational strength of a forming centrally 
symmetric spheroidal body (sphere-like cosmogonical body). 
As shown in Section 5.2, the acceleration (5.2.3) induced by 
anti-diffusion velocity in a forming centrally symmetric 
spheroidal body is calculated by the formula: 

rttttra )](G)()([G)()( 2 . (5.3.1) 

According to Newton’s second law, the equation of motion of 
a particle under action of specific force a  into a forming 
centrally symmetric spheroidal body is the following: 

0)](G)()([G)( 2
2

2

rtttt
dt

rd
. (5.3.2) 

Since Eq. (5.3.2) is a harmonic oscillator equation, then the 
inducible acceleration a  based on the anti-diffusion process 
has to be the oscillating specific force (because 0)0(a ) with 
the circular frequency of the radial oscillations: 

)](G)()([G)()( 2 ttttt , (5.3.3) 
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so that, at the stage of a gravitational field formation, the 
following representation for )(t  in accordance with the 
formula (5.3.3) is true [77]: 

)()()()( 222 ttt , (5.3.4) 

where: 

)()(G)( 222 ttt ; (5.3.5a) 

)()(G)()( 2 ttt  (5.3.5b) 
and , generally speaking, is a generalized circular 
frequency since the value )(G t  can be negative ( 0)(G t ), that 

is, )(i)()( ttt , 1i . This representation 
(5.3.4) is equivalent to the mentioned expansion of 
gravitational potential (5.2.4a, b) of a forming centrally 
symmetric spheroidal body as the sum ggg  

of the 

regular part )()(2/)()( 22 ttrttg
22 3GG  and the 

fluctuation part 2/)()(G 2rttg . Consequently, according 

to Eq. (5.3.4), the regular part for )(2 t
 
can be a squared 

main circular frequency of radial oscillations (or angular 

velocity of rotation) )(
2 t  whereas its fluctuation part is a 

squared generalized circular frequency )()( 2 t  of 
fluctuations. Indeed, by substituting Eqs (5.3.5a, b) into Eq. 
(5.3.1) we obtain: 

rtrtrtta )()()()]()()([ 2222
  

rttrttrt )()()())(()]]([)([ 2 , (5.3.6) 
because: 

)()(]][[
2 rfrrr c , (5.3.7) 

where cf   is a specific (per mass unit) centrifugal force. 
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As follows directly from Eqs (5.3.6) and (5.3.7), there 
exists no absolutely immovable spheroidal body after the 
emergence of a gravitational field but there are the very slow 
or slow rotating spheroidal bodies. Here we intend to consider 
the cases of mechanical equilibrium and quasi-equilibrium for 
a slowly rotating spheroidal body, that is, for a centrally 
symmetric spheroidal body. 

Let us consider two important cases of equilibrium 
dynamical states for a centrally symmetric spheroidal body 
[205]. 

1) An induced acceleration a  in Eq. (5.3.1) becomes the 
regular gravitational field strength 

gfa  under the condition 

of mechanical equilibrium when constG)G( st : 

ra s
22

equilgequilg Ggradgrad , (5.3.8) 

because 0)(G t  and 0)()( 2 t  based on Eq. (5.3.5b). 
According to (5.3.3), (5.3.4), and (5.3.5a, b) the main circular 
frequency of radial oscillations being an angular velocity of 
rotation   in the case of full mechanical equilibrium is 
equal to the following: 

sG . (5.3.9) 

In the mechanical quasi-equilibrium state r under stable 
rotation, that is, 0)( r  in the expression: 

)(]][[2 rrr  , so that Eq. (5.3.8) becomes: 

c
2 ]][[ frra . (5.3.10) 

Therefore the regular gravitational acceleration a  (or the 
specific force of gravity

gf ) is compensated by the specific 

centrifugal force cf  completely: 0cg ff . 

As shown in Section 4.1 (see (4.1.22) and (4.1.27)), while 
GCF remains a fixed value under condition of mechanical 
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equilibrium: constG)G( st , the parameter of gravitational 

condensation )(t  monotonically increases with time as a 
linear function approximately: 

)](G21[)(21)( 1
ssssssss ttttt G , (5.3.11) 

where )( ss t  is a stabilization value of the parameter of 

gravitational condensation at the instant of GCF stabilization 

stt . Then the basic anti-diffusion Eq. (4.1.9a) of 

gravitational condensation of a slowly rotating spheroidal 
body takes the form in the case of virial equilibrium: 

2
st

G . (5.3.12) 

2) Under the condition of mechanical quasi-equilibrium, 
the small fluctuations of gravitational field strength a  in a 
centrally symmetric spheroidal body are possible, so that, 
generally speaking, although 0)(G t , st G)G( . Therefore, 

taking into account Eq. (5.3.1) as well as Eq. (5.3.8), we 
obtain:  

)grad(grad gequilgquasiequilga   

rtraa )(GG 22
s . (5.3.13) 

According to Eqs (5.3.1), (5.3.9), and (5.3.10) the relation 
(5.3.13) becomes [77]: 

rtraaa )(G2   

ac ffrtr )()(]][[ 2 , (5.3.14) 

where cf  is the mentioned (in the previous case) specific 

centrifugal force and af  is a specific additional periodic force 

of Alfvén–Arrhenius type (5.2.35) respectively: 
]][[2 rrfc ; (5.3.15a) 

rtrtfa
2))(()(G , (5.3.15b) 
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whence we conclude that the gravitational acceleration a , 
more exactly, the specific force of gravity gf  is balanced by 

the vector sum of cf  and af , that is, acg fff .  

The obtained Eq. (5.3.15b) shows that a small temporal 
deviation (from sG ) of GCF )G(t  for a spherically symmetric 

spheroidal body under the condition of mechanical quasi-
equilibrium is determined by an oscillation behavior of its 
derivative )(G t . This implies the special cases both 0)(G t  
and 0)(G t , that is, 0)( 2  and 0)( 2 . Therefore, if the 

squared generalized circular frequency 0)( 2  then, 

according to Eq. (5.3.15b), the additional periodic force af  
becomes oriented opposite the gravitational force

gf  (see also 

Sections 9.2, 9.5 in the next Chapter 9). 
According to Eq. (5.2.35) and (5.3.9) the specific additional 

periodic force of Alfvén–Arrhenius can be written in the form: 

retrtf trk
a

)i(2 )())(( , (5.3.16) 

where 2)()( ktt G  is a main circular frequency of radial 

oscillations. Since A  , constA , moreover,  in Eq. 
(5.3.16) under the condition of equilibrium, then the squared 

generalized circular frequency )()( 2 t of fluctuations is 

equal to: 
2 2 i( )( ( )) kr tt A e .                  (5.3.17) 

We should note that the mechanical quasi-equilibrium case 
corresponds to the virial theorem in Poincaré–Eddington’s 
form applied to a centrally symmetric spheroidal body being 
in unstable radial motion (see Theorem 4.1) [73]: 

)(22 gk tMEE G , (5.3.18) 

where 

kE  is the total kinetic energy,  
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gE  is the total gravitational potential energy of a centrally 

symmetric spheroidal body in the form of a collection 
(cloud) of particles moving under no forces except their 
mutual gravitational attraction,  

)(tG  is a derivative of GCF )(tG  of a centrally symmetric 
spheroidal body, and 
M is its total mass. 
According to the reasoning relative to Eqs (5.3.13)–

(5.3.15a, b), the GCF derivative changing )(tG  has an 
oscillating character in Eq. (5.3.18), namely, in the case of a 
quasi-equilibrium state. The more simple mechanical 
equilibrium occurs if 0)(tG , that is, when the Poincaré–
Eddington virial theorem becomes the Poincaré virial theorem 
(see Theorem 1.3 in Section 1.2 and Section 4.1). 

In spite of the almost linear increasing parameter of 
gravitational condensation (5.3.11) we can note that its 
average integral value remains stable during the main period 
T of oscillations of a gravitational field: 

Tt

t
s dtt

T
t

s

s

1
)( , (5.3.19a) 

where st  is a stabilization instant of time, as well as in quasi-

equilibrium state the following equation is true: 
const)( st GG . (5.3.19b) 

Indeed, the following theorem results [205]:  
Theorem 5.1. The average integral value of the parameter 

of gravitational condensation does not depend on the duration 
of the period averaging both in equilibrium and in quasi-
equilibrium states of a centrally symmetric (or slowly 
rotating) spheroidal body: 

const
1 s

s

Tt

t

dtt
T
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where T is a period averaging and st  is a stabilization instant 

of the equilibrium state of a centrally symmetric spheroidal 
body. 

Proof: a) as we know from from the Poincaré virial 
theorem, in the mechanical equilibrium state of a centrally 
symmetric spheroidal body the right-hand side of Eq. (5.3.18) 
must be equal to zero, that is, 0)(tG . This means that GCF 
becomes a constant coefficient: constG)G( st . 

Let us calculate an indefinite integral of the function 
(5.3.11): 

)(G21ln
G2

1

)(G21
)( sss

ssss

s ttdt
tt

dtt  

)())(G2(
G2

1
sssss

s

tttt , (5.3.20) 

because 1s . It follows directly from Eq. (5.3.20) that 

,)()( s

s

s

s

s Tttdtt s
Tt

ts

Tt

t

that is, Eq. (5.3.19a) is true for 

T  in the case of a centrally symmetric (or slowly 
rotating) spheroidal body being in the equilibrium state. 

b) Generally speaking, the Poincaré–Eddington virial 
theorem is described by Eq. (5.3.18) in conformity to a 
centrally symmetric (or slowly rotating) compressible 
spheroidal body in quasi-equilibrium state. In this case of a 
quasi-equilibrium state, the GCF derivative changing )(tG  
has an oscillating character, therefore 0)(G t , that is, Eq. 
(5.3.19b) occurs. Taking into account the definition of GCF 
(4.1.8), equation (5.3.19b) becomes: 

s

Tt

t

dt
dt
d

T
t GG

s

s

22

11
)( . (5.3.21) 

By rewriting Eq. (5.3.21) and then integrating it we find that: 
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s

Tt Tt

t

tdtt
T

d
T

2GGG )(2)(
1

2
1

)(

2

s

s

s

s

, (5.3.22) 

whence: 

const2
)()( s

1
s

1

sT
Ttt

G . (5.3.23) 

As follows from Eq. (5.3.23), the next equation is true: 

TtT
Tt

)(2121
)(

s

s

ss

s
s

GG
, (5.3.24) 

where )( ss t is a stabilization value of the parameter of 

gravitational condensation when GCF stabilization first 
occurs. Since T  is an arbitrary temporal period then Eq. 
(5.3.24) becomes Eq. (5.3.11) if Ttt s . Consequently, we 

consider again the equilibrium case (a). So, repeating 
analogous arguments relating to Eq. (5.3.20), we prove this 
theorem for the quasi-equilibrium case when 

1
)()(21)( sss tttt G . 

Thus, GCF )(tG  can be a periodic function (in general, a 
quasiperiodic function [119]) in the case of quasi-equilibrium 
state of a compressible slowly rotating spheroidal body, 
therefore it can be expanded by mean of Fourier series: 

1

22
s )sin(G)(

n
nnn tnBAtG , (5.3.25) 

where 

2/;
2

;arctan

;)sin()(
2

;)cos()(
2

s

2/

2/

2/

2/

Ttt
TB

A

dttnt
T

Bdttnt
T

A

n

n
n

T

T
n

T

T
n GG
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[206].Using Eqs (5.3.9), (5.3.19a), and Theorem 5.1 we can 
also note that the average integral value of the angular 
velocity of rotation is equal [205]: 

sss

Tt

t
s tdtt

T
t G)(G)(

1
)(

s

s

. (5.3.26a) 

Taking into account Eq. (5.3.5a) as well as Eqs (5.3.19b) and 
(5.3.26a), we find that the average integral value of circular 
frequency of the radial oscillations coincides with the value of 
the angular velocity of rotation in the case of quasi-
equilibrium state:  

ssss tt G)()( . (5.3.26b) 

In this connection, supposing that  in Eq. (5.3.25) can be 
the same average integral value of circular frequency in Eq. 
(5.3.26b), that is, s , we can differentiate Eq. (5.3.25) to 

find the GCF derivative: 

1
s

22
s )cos()(

n
nnn tnBAntG . (5.3.27a) 

The right-hand part of Eq. (5.3.27a) describes the derivative 
of quasi-equilibrium GCF since 

)2cos(2)cos()( 2s
2
2

2
2s1s

2
1

2
1s tBAtBAtG  

0...)3sin(3 3s
2
3

2
3s tBA . (5.3.27b) 

Let us note after finishing the process of avalanche 
gravitational compression and forming a dense core with the 
central mass density )( s0  in accordance with Eq. (5.2.17) 

the average integral value of the gravitational potential 
(5.2.4b) of a slowly rotating spheroidal body )0( 2

0  in 

quasi-equilibrium state is equal to: 

s
sss rtrttt 6

G
2

1
)(G)()(G)(G

2

1 2222
s

222
g 3 ,(5.3.28) 
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stt .That completely coincides with the inner gravitational 
potential  (5.2.18a). Comparing Eq. (5.3.28) with Eq. (5.2.5) 
under the condition 02

0 , we can also see that the average 

integral value of the gravitational potential g  is the regular 

part of the gravitational potential g  
of a slowly rotating 

spheroidal body in the equilibrium state. 
Now let us estimate the frequencies of the radial and axial 

oscillations of a rotating axially symmetric spheroidal body 
(or a rotating ellipsoid-like cosmogonical body) when 00 . 

Using Eq. (5.2.20) we can obtain the induced acceleration of 
an initial gravitational field: 

zh ezehtta 22
0

2 1)()(
~ 2G   

zh ezehtt 2
01)()(G

~
. (5.3.29) 

According to Newton’s second law [158], the equation of 
motion of a particle under action of specific force a  into a 
forming axially symmetric spheroidal body is the following 
[77]: 

2
0

2
02

2

1)()(
~

[1)(
)( ttt

dt
ezehd zh 2G   

.0)](G
~

)()(
~

)[()](G
~

zh eztttteht 2G  (5.3.30) 

Unlike Eq. (5.3.2), equation (5.3.30) is a sum of two harmonic 
oscillatory equations, so that the inducible acceleration a  
leads to the oscillating motion of particles. According to Eq. 
(5.3.30) we can obtain the radial h -projection and the axial 
z -projection of this vector equation of motion of a particle 
under action of a specific force (5.3.29) into an axially 
symmetric spheroidal body [77]: 

0]1)()(G
~

1)()(
~

[ 2
0

22
0

2
2

2

htttt
dt

hd 2G ; (5.3.31a) 
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0)]()(G
~

)()(
~

[ 2

2

2

ztttt
dt

zd 2G . (5.3.31b) 

It follows from Eq. (5.3.31a) that the circular frequency of 
the radial oscillations is expressed by the formula [77]: 

2
0

22
0

2 1)()(G
~

1)()(
~

)( ttttth
2G , (5.3.32) 

so that, at the stage of formation of an ellipsoid-like 
cosmogonical body, the following representation for )(th  in 

accordance with the formula (5.3.32) is true: 

)()()()( 222 ttt hhh , (5.3.33) 

where: 
22

0
22

1)()(
~

)( ttth
2G ; (5.3.34a) 

2
0

2 1)()(G
~

)()( ttth  (5.3.34b) 

and h , generally speaking, is a generalized circular 

frequency of the radial oscillations since )(G
~ t  can be a 

negative value ( 0)(G
~ t ). This representation (5.3.33) is 

equivalent to the mentioned expansion of gravitational 
potential (5.2.21) of a forming axially symmetric spheroidal 
body as a sum of the regular part g  and the fluctuation part 

g . Consequently, according to Eq. (5.3.33) the regular part 

of 2
h  can be a squared angular velocity of rotation 

)()(
22 tt h  in the equatorial ),( yx plane whereas its 

fluctuation part is a squared generalized circular frequency 
2)( h of perturbations. Indeed, by substituting Eqs (5.3.34a, 

b) into Eq. (5.3.29) we obtain [77]: 

htta hhh )]()()([ 22
  

hach ffhtht )()()( 22 , (5.3.35) 
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where cf  is a specific (per mass unit) centrifugal force and 

haf  is a h -projection of specific additional periodic force of 

Alfvén–Arrhenius (see analogous formulas (5.3.15b) and 
(5.3.16)). 

It follows from Eq. (5.3.31b) the circular frequency of the 
axial oscillations is expressed by the formula [77]: 

)()(G
~

)()(
~

)( 2 tttttz
2G , (5.3.36) 

so that according to Eq. (5.3.36): 

)()()()( 222 ttt zzz , (5.3.37) 

where: 

)()(
~

)( 22 tttz
2G ; (5.3.38a) 

)()(G
~

)()( 2 tttz  (5.3.38b) 

and z  is a generalized circular frequency of the axial 
oscillations. 

So, the gravitational acceleration a  (or the specific force of 

gravity gf ) is balanced by the vector sum of specific 

centrifugal force cf  and specific additional periodic force af  

of Alfvén–Arrhenius (see analogous Eq. (5.3.14)): 

ac ffa , (5.3.39) 

where: 

)]]([)([)(2 trtrtfc ; (5.3.40a) 

rettrtf trk
a

)i(2 )()())(( . (5.3.40b) 

According to Eqs (5.3.29), (5.3.32), (5.3.34a), (5.3.36), and 
(5.3.38a), in the particular case of relative mechanical 
equilibrium, that is, under the condition of stabilization of the 

generalized GCF constG
~

)(G
~

st , the induced acceleration 

of a stationary gravitational field is equal: 
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zhs ezeha 22
0

22 1
~
G , (5.3.41) 

so that the circular frequencies of the radial h  and the axial 

oscillations z  inside an ellipsoid-like cosmogonical body 
are described respectively by the formulas [73, 77]:  

2
01G

~
shh ; (5.3.42a) 

.G
~

szz  (5.3.42b) 

According to (5.3.42a) and (5.3.42b), we can see that in the 
case of relative mechanical equilibrium of a rotating axially 
symmetric spheroidal body the following inequality is true:  

hz , (5.3.43) 

and that this fully confirms the analogous conclusion of 
Alfvén and Arrhenius [9, 19] (see also Section 9.6 of Chapter 
9). 

5.4. The dynamical states after the decay of a rotating 
spheroidal body and the formation of protoplanetary shells 

Taking into account the definition of the average integral 
value of angular velocity (the main circular frequency of the 
oscillations) (5.3.26a) under the condition of mechanical 
quasi-equilibrium const)( st GG  of a centrally symmetric 
(slowly rotating) spheroidal body we can rewrite Eq. (5.3.28) 
as follows: 

222 3
2

1

2

1
)( prs

s
sg rrrr 22 6

, (5.4.1) 

where sprr /2  is the most probable distance (2.1.22) for 

particle distribution in space [46]. Let us note if g  
in the left-

hand part of Eq. (5.4.1) is the stabilization value of inner 
gravitational potential (I)

g  following the formula (5.2.18a) 
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then by choosing prrr 2
 
the right-hand part of Eq. (5.4.1) 

determines the absolute value of a centrifugal potential of the 
kind: 

22

2

1
)2( prsprc rrV , (5.4.2) 

where 222 ][
2

1

2

1
)( rrrV ssc  is the centrifugal 

potential. This equality of the absolute values of averaged 
gravitational and centrifugal potentials: 0gcV

 
when 

prrr 2
 
means that decay of a centrally symmetric spheroidal 

body (or collapse of a gas-dust cloud [11]) occurs at distances 

prrr . Let us investigate in detail an initial separation of a 

slowly rotating spheroidal body on a core and exterior shells. 
First of all, we note that the stability of rotating 

configurations has long been studied (see review in [1, 207], 
for example with Maclaurin spheroids, where the density  is 

supposed constant or with the Roche model, which assumes 
an infinite central condensation (see Section 1.4)). As A. 
Maeder noted [207 p. 19–20],  

 
In the case of the Maclaurin spheroids, the equilibrium 
configurations flatten for high rotation. For extremely high angular 
momentum, it tends toward an infinitely thin circular disk. The 
maximum value of the angular velocity  (supposed to be constant 
in the body) is 4494.02

max
. In reality, some instabilities 

would occur before this limit is reached. In the case of the Roche 
model with constant  (this is not a necessary assumption), the 
equilibrium figure also flattens to reach a ratio of 2/3 between the 
polar and the equatorial radii, with a maximum angular 
velocity 7215.02

max
, where  is the mean density... Except 

for the academic case of stars with constant density or nearly 
constant density, the Roche approximation better corresponds to the 
stellar reality. Recent results from long-baseline interferometry ... 
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support the application of the Roche model in the cases of Altair 
and Achernar, which both rotate very fast close to their break-up 
velocities.... 
 
In the considered case of a slowly rotating spheroidal body 

model with the constant value of angular velocity s  
throughout the nebula interior, we can see (comparing Eq. 
(5.2.7) with Eq. (5.3.28) and taking into account (5.3.26a, b) 
as well as the virial theorem: 02 gcV ) that a maximum 

(break-up) angular velocity is: 

0
02

max 6667.0
3

2
, (5.4.3) 

where 2/3
0 )2/(M  is a density in the center of a slowly 

rotating spheroidal body. In other words, the maximum values 
of the angular velocity in the Roche model and the spheroidal 
body model almost coincide, that is, following A. Maeder 
both model approximations “better correspond to the stellar 
reality.” We also state that “more elaborate models consider 
differential rotation, in particular the case of the so-called 
shellular rotation…” [207 p. 20, 29–34]. Unlike the 
mechanical equilibrium case when the mentioned models 
were applied to a solid-body rotation with 

const throughout the stellar interior, in the case of 
differential rotation of a centrally symmetric spheroidal body 
we start from the equality of averaged gravitational and 
centrifugal potentials ( 0gcV ) and the equivalence of Eq. 

(5.2.7) and Eq. (5.3.28) respectively: 

3

4
G 0222

sss . (5.4.4) 

By comparing Eq. (5.2.18) with Eq. (5.3.28) and taking into 
account the notation (5.3.26a, b) we can see that: 
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3
0222 2

33

)(4
G ss

sss
M

, (5.4.5) 

whence we can obtain the following analog of Kepler 3rd law 
[77]: 

MRss
32  (5.4.6) 

under the supposition that a characteristic orbital radius is 
equal: 

s
sR

3 2/3
. (5.4.7) 

In reality, as mentioned relative to Eq. (5.4.2), equality of 
averaged gravitational and centrifugal potentials ( 0gcV ) 

means a decay, that is, the separation of a centrally symmetric 
spheroidal body, at distances prrr  because of prs rR  

where ssR /554988.1  and sprr /2
 
[73, 77]. 

Taking into account that the Keplerian angular velocity of 
the orbital motion is: 

3K a
M  (5.4.8) 

with the period KKT /2 and the orbital semi-major axis a  
[158], the expression (5.4.8) after substitution (5.4.6) can be 
represented as follows: 

2/3
K )/( aRss , (5.4.9) 

where s is a main circular frequency of oscillations. 

The separation process of a centrally symmetric spheroidal 
body leads to the formation of its inner zone I (a stellar core) 
and remote zone II (an exterior shell). Respectively, we 
consider the inner gravitational potential (I)

g  
(see Eq. 

(5.2.18a)): 
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s

s
sg rr 6

3

)(2
),( 20(I) , stt  (5.4.10a) 

as well as the exterior gravitational potential (II)
g  for 

large r (see Eq. (5.2.18b)): 

r
Mr

r
Mr ssg 2/erf),((II)  , stt , (5.4.10b) 

where 
x

s dsex
0

22
erf  is the error function [128]. The 

evolution of the core and exterior hull describes the processes 
of the formation of a central cosmogonical body (a protostar) 
and numerous shells (a disk with embryos of forming 
protoplanets). 

Analogously, the decay of an axially symmetric spheroidal 
body on its core and its exterior shell leads to its 
fragmentation stage describing the process of formation of a 
fast rotating cosmogonical body. In the case of a rapidly 
rotating spheroidal body, the axial rotation of the spheroidal 
body creates a flattening of its core. As shown in Section 3.6 
of Chapter 3, the gravitational potential (3.6.15b) for a 
rotating and gravitating axially symmetric spheroidal body is 
determined in cylindrical coordinates zh ,,  as follows: 

2 2 2
0

2
0

3/2 2
0

(1 )

22 (1 )

2
0 0

, (1 )

2 (2 (1 ))

g

h z
ss

Mh z

dse
s s

.
 

As follows from this equation, the gravitational potential in a 
near zone of a uniformly rotating axially symmetric 
spheroidal body can be described by the following expression 
[77, 79]: 
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2)1(4
1

112

1
2,

2
02222

022
0

2
0

0
(I) zhzhg

. (5.4.11) 

The process of avalanche gravitational compression of an 
axially symmetric spheroidal body forms a dense bunch (core) 
with the central mass density (5.2.17): 

2/3
0 )2/()( ss M ,  stt , 

so that formula (5.4.11) for the inner gravitational potential 
(I)
g  takes the form: 

112

1
)(2,, 22

0

2
0

0
(I)

ssg zh   

s

zh 2)1(4
1

2
02222

0 ,    stt . (5.4.12) 

   
Obviously, if 00  then Eq. (5.4.12) becomes Eq. (5.4.10a). 

In other words, when a forming ellipsoid-like cosmogonical 
body reaches the relative mechanical equilibrium state 

( constG
~

)(G
~

st ) at stt  then the equivalence of Eq. 

(5.4.12) and Eq. (5.2.22) takes place [77], whence:  

112

1
)(2

~

2

1
22

0

2
0

0
22

sssG , (5.4.13) 

where )(0 s  is a central mass density at the stabilization 

instant st . As follows from Eq. (5.4.13), 
2
0

2/322
0

22 1)2/(4]112[
~

sss MG . (5.4.14) 

Taking into account the definitions (5.3.42a) and (5.3.42b) we 
can find that: 

3
2
0

22 2
12 s

zh M . (5.4.15) 
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Introducing a total circular frequency of oscillations for a 
rotating and gravitating axially symmetric spheroidal body: 

3/)2(
~ 22

zhs , (5.4.16) 

we can rewrite Eq. (5.4.15) as follows:  

.
2

3

1~ 32
02 s

s
M

 (5.4.17) 

In the case of 00  Eq. (5.4.17) becomes Eq. (5.4.5), while 

the total circular frequency of oscillations s
~

 coincides with 

the main circular frequency of oscillations s . By analogy 

with (5.4.6) we obtain a version of Kepler’s third law for the 
case of an axially symmetric spheroidal body [77]:  

MRss
32~

, (5.4.18) 

where sR~  is a respective characteristic orbital radius: 

s
sR

3 2
0 2/)1/(3~

. (5.4.19) 

In reality, according to Eq. (5.4.13), the condition of equality 
of gravitational and centrifugal potentials ( 0gcV ) means 

the collapse of an axially symmetric spheroidal body at 

distances sRr ~
 

where ssR 3 2
0 )1(/554988.1

~
. The 

separation process of an axially symmetric spheroidal body 
leads to the formation of its inner zone I (a stellar core) and its 
remote zone II (an exterior shell). The evolution of core and 
exterior shell describes the processes of formation of a central 
ellipsoid-like cosmogonical body (a protostar) and numerous 
shells (a disk with embryos of forming protoplanets) [208]. 

As a rule 10 , therefore sshz
~

 in Eqs 

(5.4.15)–(5.4.18), so that we can investigate without any 
simplifications the case of a centrally symmetric (slowly 
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rotating) spheroidal body. We consider later on the inner 
gravitational potential (I)

g  and the exterior gravitational 

potential (II)
g  in accordance with formulas (5.4.10a) and 

(5.4.10b) respectively. Due to the decay of a gravitating 
spheroidal body and formation of its remote zone II (where 
the equality of gravitational and centrifugal potentials occurs) 
the equality of respective strengths takes place at least when 

ar . Indeed, it directly follows from (5.4.8): 

)()( 22
2 af

r
M

a
Maaf g

ar
Kc , (5.4.20) 

where
 

(II)grad ggf is a value of gravity strength in the 

remote zone II following Newton’s third law.  
According to Eqs (5.3.5a, b), (5.3.6), and (5.3.8), in the 

first case of the mechanical equilibrium ( constG)G( st ) 

the specific force of gravity gf  in the remote zone II  

( 0(II)
gcV ) is exactly compensated by the centrifugal 

specific force cf  exclusively because 0af , that is, equality 

of gravitational and centrifugal strengths takes place for the 
all equidistant r . The simplest type of motion of particle with 
a constant velocity 0v  around the center of a spheroidal body 

is, therefore, a circular orbit with radius 0R : 

0Rrr . (5.4.21) 

Taking into account Eq. (5.4.5) we obtain: 

Ms
2
sG

2
3 . (5.4.22) 

As seen from Eq. (5.4.22), in this case, the specific force of 

gravity gf  is equal to: 
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R
rg e

R
e

r
M

r
r

r
Mf 2

0

s
2

equil
2

G

2
3

0

2

. (5.4.23) 

So, when a body moves exclusively along an undisturbed 
circular orbit 0Rr  around the core of a slowly rotating 

spheroidal body the specific force of gravity gf is exactly 

compensated by the specific centrifugal force cf  so that the 

equation is true:  

0
2
K2

0

sG

2
3 R

R
s

2

, 

from which expressions (5.4.8) and (5.4.9) are immediately 
obtained if 0Ra . 

As seen from Eqs (5.3.13)–(5.3.15a, b), the specific force 

of gravity gf  in the second case of the mechanical quasi-

equilibrium ( st GG )( , 0)(tG ) for the remote zone II 

( 0(II)
gcV ) is equal to: 

)grad(grad (II)(II)
quasiequil

(II)
ggggf   

acgc ffV )grad( (II) . (5.4.24) 

So, the decay of a rotating and gravitating spheroidal body 
and the formation of its remote zone II leads to the equality 

agc fff  of respective field strengths (see also Eq. (9.2.2) 

in Section 9.2 of Chapter 9).   
Now let us separate the average and fluctuation parts in the 

quasi-equilibrium case being considered. According to Eqs 
(5.3.14) and (5.3.15a), the specific force of gravity gf  inside a 

slowly rotating spheroidal body, that is, into the near zone I of 

the gravitational field
 

(I)grad ggf , in the case mentioned 
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of mechanical quasi-equilibrium is determined by the 
analogous formula: 

rttttf gg )()(G)()(Ggrad quasiequil
(I) 22 . (5.4.25) 

On the other hand, using formula (5.2.7), we can calculate the 
gravitational field strength of a centrally symmetric spheroidal 
body in the zone I of the gravitational field in general [46, 
77]: 

rf gg 3

4
grad 0(I) . (5.4.26) 

According to Eqs (5.3.28) and (5.2.17), the comparison of Eqs 
(5.4.25) and (5.4.26) leads to the following averaged relation 
[205]: 

)(
3

4
)(

3

4
)()(G)()(G 00

22
sttttt   

)(
3

2
3

2 2/32/3 tMM
s . (5.4.27) 

Taking into account Eq. (5.3.27b), we note that Eq. 
(5.4.27) generalizes Eq. (5.4.22) because the case of 
mechanical quasi-equilibrium is more general than the case of 
mechanical equilibrium, that is, the averaged quasi-
equilibrium is equilibrium. Hence, we obtain the quasi-
equilibrium analog (5.4.27) of formula (5.4.22). Using Eq. 
(5.4.27) we can modify formula (5.2.18b) for the averaged 

gravitational potential ))(,(),( trr gsg  when stt [205]: 
2/

0
2/3

0
2/32/

0

0
22 2))(()2(2)(4 ss r

s

s

r
s

ss

s
g dse

r
tdse

r
 

2/erf
)()(G)()(G

2
3

2/3

22

s
s

r
r

tttt . (5.4.28) 

Consequently, the gravitational potential, in the case of 
mechanical quasi-equilibrium, is equal to 
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2/erf
)()(G)()(G

2
3 2/3

22

quasiequil s
s

g r
r

tttt
. (5.4.29) 

Now let us transform expression in the numerator of (5.4.29): 

)()(G)(
)(2

1
)()(G)()(G 2

2

2
22 ttt

dt
d

t
tttt  

)()(G)G(
2
1 tt

dt
dt . (5.4.30) 

We are then going to use the Fourier series representation of 
GCF (5.3.25) and its derivative (5.3.27a) as periodic functions 
(in the case of a quasi-equilibrium state of a slowly rotating 
spheroidal body [205, 209]) in Eq. (5.4.30): 

)()(G)()G(
2

1
)()(G)()(G 22 tttttttt  

1

22

1

22 )cos()()sin(G)(
2

1

n
nsnns

n
nsnns tnBAnttnBAt  

1

22G
2

G

n
nns

s ba  

)cos()
2

3
cos(

2

1
nssns tnntn , (5.4.31) 

where: 

.arctan;)sin()/G)(
2

/G;)cos()/G)(
2

/G

2/

2/

2/

2/

n

n
n

T

T
ss

snn

T

T
sssnn

b
adttnt

T

Bbdttnt
T

Aa

(G

(G

. 

In the parenthesis of the right-hand side of Eq. (5.4.31), the 
sum of two harmonic oscillations of the same frequency is 
written, therefore according to the formula of the addition of 
two harmonic oscillations the resulting oscillation can be 
found by the parallelogram rule [206], so that we have: 
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)()(G)()(G 22 tttt   

1

222 )cos(]/[411G
2

1

n
nssns tnn , (5.4.32) 

where 22
nnn ba  and  

.
tan/2

tan)/2(1
arctan

cos)/2(sin
sin)/2(cos

arctan
ns

ns

nsn

nsn
n n

n
n

n  

According to Eq. (5.3.24), from the beginning instant of 
time st of stabilization of GCF, the parameter of gravitational 

condensation, in the case of a quasi-equilibrium state, is 

)]()(21[)( sss tttt G  for the finite time intervals stt , 

so that the derivative: 

st G2
s2)( , )(ts GG . (5.4.33) 

 

Then, substituting Eq. (5.4.33) into Eq. (5.4.32) and taking 
into account formula (5.3.26b) we find [205, 209]: 

)()(G)()(G 22 tttt  

1

222 )cos()]/)([1)((1
n

nsnn tntnba s
2
s

2
sG  

1

)cos()(1
n

nsn tntC2
s

2
sG , (5.4.34a) 

where:  
2222 ;]/)([1)( nnnnn bactnctC s  and   

ns

ns
n tn

tn
tan/)(

tan)/)((1
arctan . (5.4.34b) 

Let us note that the substitution of Eq. (5.4.34a) into Eq. 

(5.4.28) gives the identity because 0)cos( nstn . 

Moreover, this substitution in Eq. (5.4.29) shows (with regard 
for formula (5.4.22)) that: 
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2/erf

)cos()(1

2
3 1

quasiequil s
n

nsns

g r
r

tntC2
sG

 

1

)(cos)(12/erf
n

nsns tntCr
r
M . (5.4.35) 

For large r  ( r ), the error function 12/erf sr , 

therefore, in the remote zone II Eq. (5.4.35) becomes [205, 
209]: 

(II)

equil

(II)

quasiequil

(II)
ggg   

1

)cos()(
n

nsn tntC
r
M

r
M

. (5.4.36) 

Comparing Eq. (5.4.36) with Eq. (5.4.24) we can see that:  

,(II)

equil

(II)

r
M

gg   

1

(II) )cos()(
n

nsng tntC
r
M

; (5.4.37a) 

as well as:  

,grad
2

(II)

equil r
r

r
Mf gg   

r
rtntC

r
Mf

n
nsnga

1
2

(II) )cos()(grad . (5.4.37b) 

According to Eq. (5.4.24) and Eq. (5.4.37b), we can 
estimate the specific force of gravity in the remote zone II of 
the quasi-equilibrium gravitational field as follows [205, 209]:  

r
r

r

tntCM

r
r

r
Mf n

nsn

g 2
1

quasiequil2

)cos()(1

 

acag ffff
equil

. (5.4.38) 
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Evidently, formula (5.4.38) generalizes (5.4.23) in that case if 

0)cos()(
1n

nsn tntC , so that the Alfvén–Arrhenius 

specific additional periodic force af  causing the radial and 

axial oscillations (which modify an initially circular orbit [9, 
19]) can be calculated by the following relation [205, 209]: 

r
rtntC

r
Mf

n
nsna

1
2

)cos()(   

r
rtntC

r n
nsn

s

1
2
s )cos()(

G

2
3

2

, (5.4.39) 

where s  is the average integral value of the main circular 

frequency of radial oscillations inside a forming core of a 
centrally symmetric (slowly rotating) spheroidal body (a 
central cosmogonical body). 

It follows directly from Eq. (5.4.39) that the Alfvén–

Arrhenius specific additional periodic force af  is the sum of 

spectral components with multiple ordered frequencies to the 
average main circular frequency [205, 209]: 

),2(),( )2()1( rtfrtff sasaa   

...),(..),3( )()3( rtlf.rtf s
l

asa , (5.4.40a) 

where: 

,
)cos()(

),(
2

)(

r
r

r
tltCMrtlf lsl

s
l

a ,...3,2,1l  (5.4.40b) 

Let us note that similar results occur in the case of a 
rotating axially symmetric spheroidal body. In particular, the 
Alfvén–Arrhenius specific additional periodic force af  is the 

sum of spectral components (5.4.40b) with multiple ordered 
frequencies to the circular frequencies of both radial h  and 

axial z oscillations. Indeed, owing to the fluctuation part 
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g  of gravitational potential (5.2.21) of a forming axially 

symmetric spheroidal body in its quasi-equilibrium state, the 
radial and the axial oscillations of the orbital motion of 
particles also exist under the action of a specific additional 
periodic force in the remote zone. So, following Alfvén and 
Arrhenius [9, 19], the circular orbit of moving particles in the 
gravitational field can be modified by both the radial and the 
axial oscillations. 

5.5. Interconnections of the proposed statistical theory  
of gravitating spheroidal bodies with Nelson’s statistical 

mechanics and Nottale’s scale relativistic theory 

Let us consider some results obtained in Sections 5.1–5.4 
from the point of view of Nelson’s statistical mechanics and 
Nottale’s scale relativistic theory. Within the framework of 
Nelson’s statistical mechanics [34, 35], a particle (for 
example, an atom or electron) in an external field is 
considered. The atom is regarded as a point particle of mass 

0m  in the sense of Newtonian mechanics. Nelson’s basic 

assumption was that any particle of mass 0m  constantly 

undergoes a universal Brownian motion with diffusion 
coefficient D  inversely proportional to 0m  [34]: 

02/ mD , (5.5.1) 

where the constant  (having the dimensions of action) is 
identified with the Planck constant divided by 2 , that is, as 
usual 2h . As in the theory of macroscopic Brownian 
motion, the influence of the external force is expressed by 

Newton’s second law: amF 0 , where a  is a mean 

acceleration of the colloidal particle. On the other hand, the 
particle (in particular, electron) is in dynamical equilibrium 
between the random force causing the Brownian motion and the 
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external force (attractive Coulomb force of nucleus), so its 
trajectory is very irregular (analogous behaviour of a particle 
into a colloidal suspension also occurs in dynamical equilibrium 
between osmotic forces and gravity) [34]. This means that the 
dependence of a coordinate x  of the moving particle on time t  
can be described by a stochastic process )(tx . However, it is 
well known [210–212] that for many stochastic processes )(tx  
is not differentiable. Following E. Nelson [34], the both mean 
forward and mean backward derivatives of the stochastic 
process are to be introduced to this end: 

tt
txttx

tdt
txd )()(

0

lim)(
; (5.5.2a) 

tt
ttxtx

tdt
txd )()(

0

lim)(
, (5.5.2b) 

where t  denotes the conditional expectation (average) 

given the state of the system with the time t . It should be 
from comparing Eq. (5.5.2a) with Eq. (5.5.2b) that the mean 
backward derivative can be obtained from the mean forward 
derivative by the reflection [200]: tt . 

Let tw ,x  be the probability density of a vector-valued 
stochastic process )(tx  where )(),(),()( 321 txtxtxtx  
denotes the position of a Brownian particle with the time t . 
Then the probability density satisfies both the forward and 
backward Fokker–Planck equations [34, 190, 191]: 

wDw
t
w 2)( vdiv ; (5.5.3a) 

wDw
t
w 2)( vdiv , (5.5.3b) 

where v  and v are vector-valued functions on space-time 
called the mean forward and backward velocities [34] in the 
sense of the definitions  (5.5.2a,b): 
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dt
td )(xv ; (5.5.4a) 

dt
td )(xv .

 
(5.5.4b) 

Using the definitions (5.5.4a, b), E. Nelson introduced two 
averaged velocities, the so-called the current (or ordinary 
regular) velocity v  as well as the osmotic velocity u  [34]: 

)(
2

1
v vv ; (5.5.5a) 

)(
2

1
u vv .

 
(5.5.5b) 

Let us note that by comparing Eq. (5.5.3a) with Eq. (5.5.3b) 
we find that: 

}{}{ wDwwDw
t
w vv , 

whence Eq. (5.5.5b) becomes: 

wD
w
wD lngrad)(

2

1
u vv , (5.5.6) 

that is, in other words, by subtracting Eq. (5.5.3a) from Eq. 
(5.5.3b) and taking into account Eq. (5.5.5b) we obtain Eq. 
(5.5.6). Nelson noted in [34] that: 

  
According to Einstein’s theory [46] of Brownian motion, (26) 1 , 
i.e. our (5.5.6), is the velocity acquired by a Brownian particle, in 
equilibrium with respect to an external force, to balance the 
osmotic force.  
 
Moreover, according to Eq. (5.5.5a), the average of Eq. 

(5.5.3a) and Eq. (5.5.3b) yields the ordinary equation of 
continuity (see Eq. (5.1.16)): 

 
1 The formula numeration corresponds to Nelson’s paper [34]. 
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)v(w
t
w

div . (5.5.7) 

Using the equation of continuity (5.5.7), we can compute the 
partial derivative of the osmotic velocity (5.5.6) with respect 
to the time: 

))v((
11

grad
u w

w
D

t
w

w
D

t
div   

)uvgrad()vgrad(vv divD
w
wD . (5.5.8) 

Let us note that Nelson’s equation (5.5.8) is the particular 
case of equation (5.1.17) obtained within the framework of the 
statistical theory of spheroidal bodies (see Section 5.1 of this 
chapter). Indeed, Eq. (5.1.17) goes over to Eq. (5.5.8) and the 
anti-diffusion velocity (5.1.20) becomes Nelson’s osmotic 
velocity (5.5.6) when const)( st GG  and, moreover, the 

value sG  should be equal to 02/ mD  in accordance with 

Eq. (5.5.1), that is, the proposed statistical theory of 
spheroidal bodies generalizes some statements of Nelson’s 
statistical mechanics. 

Following Nelson, the mean acceleration is defined by the 
mean second derivative of a stochastic process [34]: 

dt
d

dt
da vv

2

1
  

uu)u(v)v(
v 2D
t

. (5.5.9) 

This Nelson equation (5.5.9) is a particular case of the equation 
(5.1.19) already obtained in Section 5.1 based on the statistical 
theory of spheroidal bodies. Indeed, if const)( st GG . 

Moreover, the value sG  is equal to 02/ mD  due to Eq. 

(5.5.1), then Eq. (5.1.19) becomes Eq. (5.5.9). 
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E. Nelson also showed in his paper [34] that both Eqs 
(5.5.8) and (5.5.9) are equivalent to the time-dependent 
Schrödinger equation [187]. Taking into account the above-
mentioned remarks relative to the considered Eqs (5.1.17) and 
(5.5.8), Eqs (5.1.20) and (5.5.6), and Eqs (5.1.19) and (5.5.9), 
we conclude that the main results of Nelson’s statistical 
mechanics can be obtained within the framework of the 
proposed statistical theory of spheroidal bodies. Moreover, 
Nelson’s statistical mechanics is based on the hypothesis that 
particles in empty space (or the ether) are subject to a 
universal Brownian motion [34, 35]. However, the nature of 
such motion was not explained. On the contrary, the 
developing statistical theory of spheroidal bodies does not use 
any additional hypothesis because the behavior of particles 
in a spheroidal body is explored through the above proposed 
statistical model (see Section 3.3 in Chapter 3). 

The scale of the relativistic theory of L. Nottale [36, 37, 
175, 176, 200, 201] is the furthest development of Nelson’s 
statistical mechanics. This theory extends Einstein’s principle 
of relativity to scale laws because relativity had only been 
applied to motion laws up to then [200]. Nottale’s theory of 
scale-relativity is based on three hypotheses [201]. 

Indeed, within the framework of Nottale’s approach, both 
direct and reverse processes in parallel are considered. That 
leads to the introduction of a twin Wiener (backward and 
forward) process described in terms of a single complex 
process [37, 175, 176, 200]. Then, in terms of this global tool, 
reversibility is recovered. Following Nelson [34], the mean 
forward and backward derivatives (5.5.2a, b) are also 
considered in Nottale’s theory. From these quantities and the 
properties of the “double-Wiener” process, L. Nottale 
introduced a complex derivative operator [200]: 

dt
dd

dt
dd

td 2
i

2
d

. (5.5.10) 
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Applying Eq. (5.5.10) to the position vector x  and bearing in 
mind Eqs (5.5.4a, b) as well as Nelson’s definitions (5.5.5a, 
b), it yields the above-mentioned complex velocity: 

dt
dd

dt
dd

td 2
i

2
V

xxxxxd
  

uiv
2

i
2

vvvv
. (5.5.11) 

Taking into account Nelson’s Eqs (5.5.5a), (5.5.6), and 
(5.5.9), Nottale’s complex derivative operator (5.5.10) with the 
usage of Eq. (5.5.11) can be represented in the form [37, 175, 
176, 200, 201]: 

,iViuiv 22 D
t

D
ttd

d
 (5.5.12) 

where D  is a parameter characterizing the fractal behavior of 

trajectories [201]. Since the mean velocity V  is complex-
valued, the same is true of a Lagrange function, then of the 
generalized action S  [37, 175, 176, 200, 201]. The complex 

velocity V  is a gradient of the complex action S : 

0/V mS . (5.5.13) 

Nottale also introduced a complex wave function : 
DmS 02/ie . (5.5.14) 

According to Eqs (5.5.13) and (5.5.14), this is related to the 

complex velocity V  as follows [176, 200]: 

)(i2V lnD . (5.5.15) 

Let us consider now a particle with mass 0m  moving in a 

gravitational field and subjected to strong chaos [200]. Using 
the Nottale’s complex derivative operator (5.5.12) as well as 

the complex velocity V  notion (5.5.11), Newton’s 
fundamental equation of dynamics becomes [200]: 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 
 

470

gm
td

m 00 V
d

, (5.5.16) 

where g  
is Newtonian potential. Taking into account Eqs 

(5.5.12) and (5.5.15) one can write the fundamental equation 
of dynamics (5.5.16) in terms of the new quantity   [176]: 

gmD
t

mD
td

mD 0

2

00 }i{i2)(i2 lnln
d

. 

Integrating this equation finally yields the generalized time-
dependent Schrödinger equation [175, 176, 200, 201]: 

)2(2i 0
22

00 gmDm
t

Dm , (5.5.17) 

whence taking into account the representation 
DmEtertr 02/i)(),(  this follows directly the generalized 

stationary Schrödinger equation in the form of Nottale: 
EmDm g )2( 0

22
0 . (5.5.18) 

The meaning of  can be understood by setting *w  
where w  can be interpreted as giving the probability density 
of the particle positions. Thus, within the framework of 
Nottale’s approach, the Newtonian equation of dynamics can 
be transformed and integrated in terms of the generalized 
Schrödinger equations (5.5.17) and (5.5.18). Thus, Nottale’s 
theory of scale-relativity was initially developed to refound 
quantum mechanics on first principles, although the scale-
relativistic approach can be applied not only at small scales 
but also at very large space-time scales [176]. In this case, 
Eqs (5.5.17) and (5.5.18) must be independent of the test-
particle mass 0m  and, as a consequence, the parameter D  
takes the form [201]: 

2/MD , (5.5.19) 
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where  is the Newtonian gravitational constant and  is a 
fundamental constant that has the dimension of velocity. In 
addition, the ratio c/  plays the role of a gravitational 
coupling constant [201, 213]. 

Unlike Nottale’s scale relativistic theory (when 
2/MD ) or Nelson’s statistical mechanics (when 

02/ mD ), within the framework of the proposed statistical 

theory of spheroidal bodies, the gravitational compression 
function )(tG  can be a constant const)( st GG  only in the 

very particular cases if a spheroidal body is being in states of 
mechanical or relative mechanical equilibrium [16, 47, 68, 71, 
73] (it follows from a comparison of the obtained Eqs (5.1.17) 
and (5.1.19) with the relevant Eqs (5.5.8) and (5.5.9)). 
Moreover, within the framework of Nottale’s scale relativistic 
theory an irregular behavior of trajectories of particles is 
explained by the fractal properties of the space-time 
continuum exclusively [201] whereas, as noted in Section 3.3 
of Chapter 3, such irregular trajectories are caused by the 
initial oscillations of interacting particles in accordance with 
the anti-diffusion process into a gravitational compressible 
spheroidal body. 

5.6. The derivation of the generalized nonlinear 
Schrödinger-like equation in the statistical theory of 

gravitating spheroidal bodies 

As shown in Sections 4.1 and 4.7, initially the probability 
density for observing an oscillating colloidal (or liquid) 
particle satisfies the anti-diffusion equation (4.1.9a) or (4.7.12) 
when 00 , that is, consideration in Sections 3.3, 4.1, and 4.7 

points to an initial quasi-equilibrium gravitational 
condensation occurring in a forming spheroidal body. On the 
other hand, a sharp increase of the anti-diffusion velocity 
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(5.1.7) when 0 , as noted in Section 5.1, can lead to the 
coherent displacement of particles inside a spheroidal body 
and, as a consequence, to a resonance increase of the 
parameter of gravitational condensation )(t  (see respective 
formula (5.2.13a) in Section 5.2). This means that nonlinear 
phenomena arise as a result of self-organization processes 
[135] into a spheroidal body under its formation. These 
nonlinear phenomena induce nonlinear autowaves satisfying a 
nonlinear undulatory Schrödinger-like equation [68, 71, 73]. 

Now let us note that the well-known linear Schrödinger 
equation [187], as well as its generalization (5.5.17), were 
mentioned in Section 5.5 in connection with Nelson’s 
statistical mechanics and Nottale’s scale relativity. Moreover, 
both these equations of Schrödinger are derived in the special 
case of a constant )(tG  in the anti-diffusion equation (4.1.9b). 
Nevertheless, this chapter studies the general case of )(tG  
which can be different from Nelson’s and Nottale’s 
considerations. This is the reason why we must return to the 
derived (in Section 5.1) equations for calculating the partial 
derivatives (relatively to t ) of anti-diffusion velocity and 
ordinary hydrodynamic velocity to obtain a nonlinear 
generalized Schrödinger-like equation by analogy with 
Nelson’s and Nottale’s theories.  

So, now let us consider again Eqs (5.1.17) and (5.1.19) 
derived within the framework of the statistical theory of a 
gravitating centrally symmetric spheroidal body. Taking into 
account the simple formulas (5.1.11a, b) and (5.1.20), then 
Eqs (5.1.17) and (5.1.19) can be rewritten in the form: 

u
)(ln

)uvgrad()vgrad()(
u

dt
tdt

t
G

divG ; (5.6.1a) 

)2/ugrad(v)v(
v 2a
t  
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u
)(ln

)ugrad()(
dt

tdt G
divG . (5.6.1b) 

Let us investigate some special solutions of Eqs (5.6.1a, b) in 
the case that the acceleration (or gravitational field strength) 
coming from a gravitational field potential of a spheroidal 
body, in other words,  

ga grad , (5.6.2) 

under the assumption that the hydrodynamic velocity v  is a 
gradient of a statistical action  which is a potential of 
velocity [68, 71, 73]: 

grad)(2v tG . (5.6.3) 

In the special case of a constant )(tG  as 02/ m  Eq. (5.6.3) 

becomes the Nelson formula [34]: gradv
0m

. In this 

connection, 0vrot , thus, )2/vgrad(v)v( 2 . Since u is 
also a gradient due to Eq. (5.1.20), as well as a  and v  
according to Eqs (5.6.2) and (5.6.3), then Eqs (5.6.1a, b) 
become the following: 

)uvgrad()vgrad()(
)ln)((

grad divG
G t

t
t

 

lngrad)(}/)(ln{ tdttd GG ; (5.6.4a) 

)2/ugrad()2/vgrad(grad
))(2(

grad 22
gt

tG
 

lngrad)(}/)(ln{)ugrad()( tdttdt GGdivG . (5.6.4b) 
Integrating these Eqs (5.6.4a, b) and considering a 
simplification dttdtdttd /)()(}/)(ln{ GGG , we can find 
that: 

ln
)(

uvv)(
)ln)((

dt
tdt

t
t G

divG
G

; (5.6.5a) 
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ln
)(

u)(
2

u

2

v))(2( 22

dt
tdt

t
t

g
G

divG
G

. (5.6.5b) 

Let us carry out a change of dependent variable: 

ln
2

1
; (5.6.6a) 

ie , (5.6.6b) 

where  is defined by Eq. (5.6.3), 1i . It follows directly 
from Eqs (5.6.6a, b) that: 

ie ,  (5.6.7) 

so that 
2
 as usual. According to the first change 

(5.6.6a) it is not difficult to see that: 
2)(2

))(2( t
t
t 2G

G
  

dt
tdt )(

2)(4
G

G2 ; (5.6.8a) 

22 ))((2))((2
))(2( tt

t
t

g
22 GG

G
 

dt
tdt )(

2)(2 2 G
G2 . (5.6.8b) 

Let us rewrite these two Eqs (5.6.8a, b) as one. To this end, after 
the multiplication of the second Eq. (5.6.8b) on an imaginary 
unit and with the addition of Eqs (5.6.8a, b), we find [68, 71, 
73]: 

)i)((2ii)i)((2 22tt
t g

2GG  

dt
tdt )(

i1(2)i()(2i 2 G
)G . (5.6.9) 

Taking into account the second change (5.6.6b) we can see that  
;lni  
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;lnlnln2
2

 

;/ln)i(  

,/)(/)i( 2222  

so that Eq. (5.6.9) takes the form: 
2

2

ln
)(

i1()(2iiln)(2
dt

tdtt
t g

G
)GG 2 . (5.6.10) 

After some transformations and simplifications Eq. (5.6.10) 
can be represented as follows: 

ln
)(

i1i()(2)(2i 2

dt
tdt

t
t g

G
)2GG 2  

ln
)(

i
dt

td G
2 , (5.6.11) 

whence we can obtain a nonlinear time-dependent generalized 
Schrödinger-like equation of the kind [68, 71, 73]: 

lniln
)(

)(2)(2i 2

dt
tdt

t
t g

G
2GG 2 . (5.6.12) 

In the case of a rotating axially symmetric spheroidal body 
when 00 , as noted in Section 5.1, we can replace GCF 

)G(t on the generalized GCF )(G
~ t  in the Eqs (5.1.9), (5.1.13), 

and (5.1.17)–(5.1.20), so that  Eqs (5.6.1a, b) as well as 
(5.6.12) remain valid in the general case of a rotating axially 
symmetric spheroidal body. So, we can obtain the nonlinear 
time-dependent generalized Schrödinger-like equation 
describing the formation of a rotating and gravitating 
ellipsoid-like cosmogonical body [77]: 

argln
)(

~
2)(

~
2)(

~
2i 2

dt
tdt

t
t g

G
GG 2 , (5.6.13) 

where g is a general potential of gravitational and inertial 

(centrifugal) fields (see Section 1.4). 
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Let us note that const)( st GG  or const
~

)(
~

st GG  in 

the relative mechanical equilibrium states of a spheroidal 
body [16, 68, 71, 73], so the generalized nonlinear time-
dependent Schrödinger-like equation (5.6.12) (or (5.6.13)) 
becomes linear in these special cases: for example, the time-
dependent Schrödinger equation [187] is a particular case of 
Eq. (5.6.12) if )(tG satisfies the Nelson basic assumption 
(5.5.1), as well as the time-dependent Schrödinger equation in 
the form of Nottale (5.5.17), and is a special case of Eq. 
(5.6.12). So, Nelson’s and Nottale’s considerations are 
appropriate, mainly in the case of gravitational interaction of 
particles in a spheroidal body being in a virial equilibrium 
state. We can note that the derived generalized nonlinear 
time-dependent Schrödinger-like equation (5.6.12) (or 
(5.6.13)) also describes the gravitational instability state with 
an increase of gravitational compression leading to the 
formation of a core of a cosmogonical body. Since it is 
difficult to find a general solution to the generalized nonlinear 
Schrödinger-like equation (5.6.12) (or (5.6.13)), we intend to 
consider its important particular cases below. 

5.7. Some particular cases of the generalized nonlinear 
Schrödinger-like equation describing different dynamical 

states of a gravitating spheroidal body  

Let us consider different dynamical states of a gravitating 
centrally symmetric spheroidal body as well as the respective 
forms of the generalized nonlinear time-dependent 
Schrödinger-like equation (5.6.12) (or (5.6.13)) in the case of 
the axially symmetric spheroidal body). Indeed, the derived 
equation (5.6.12) describes not only the mentioned state of 
mechanical equilibrium [68, 71, 73] when GCF 

RconstG)G( st  and R  or C : 
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2

1
i 2

gss t
2GG  (5.7.1) 

and the quasi-equilibrium gravitational condensation state 
[68, 71, 73] with a slowly (periodically) varying GCF 
increment when R]cos1[G)G( tt ss  and R  or  

C : 

ln
)(

2

1
)()(i 2

dt
tdt

t
t g

G
GG 2 , (5.7.2) 

but also the initial equilibrium gravitational condensation 
state [16, 73] occurring in a forming gas-dust protoplanetary 
cloud: 

i 2
st

G  (5.7.3) 

as well as the soliton disturbances state [77] arising in a 
spheroidal body under formation: 

)(ln

2

1
)(i

22

dt
tdt

t
G

G  (5.7.4) 

and the gravitational instability states [71, 73] when GCF 
C)(tG   and Cargie : 

argln
)(

2
1

)()(i 2

dt
tdt

t
t g

G
GG 2 , (5.7.5) 

including the increase of gravitational compression of a 
spheroidal body providing the formation of a core of 
cosmogonical body if 2arg0  (the case of unlimited 
gravitational compression leading to a collapse occurs when 

Znn,2argarg ). 
Let us note that according to the relation (5.6.7) the 

probability density function  satisfies the anti-
diffusion equation of the type (4.1.9b) while this wave 
function  satisfies the generalized nonlinear time-dependent 
Schrödinger-like equation (5.6.12). However, in the case of a 
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constant )G(t  in Eq. (4.1.9b) the equivalence between Eq. 
(4.1.9b) and Eq. (5.6.12) becomes possible because the 
derived equation (5.6.12) (or (5.7.5)) goes over the well-
known linear time-dependent Schrödinger equation (5.7.1). 
Thus, the generalized nonlinear Schrödinger-like equation 
describes different dynamical states of a gravitating 
spheroidal body.  

Now let us consider some wave solutions of the 
generalized nonlinear Schrödinger-like equation taking into 
account its important particular cases (5.7.3) and (5.7.4).  

The initial equilibrium gravitational condensation state is 
realized in a forming gas-dust protoplanetary cloud when the 
initial gravitational field g  

is absent ( 0g ) and 

G( ) G constst so that the generalized nonlinear 

Schrödinger-like equation (5.6.12) becomes the linearized 
Schrödinger equation (5.7.3). This equation has a wave 
solution in the vicinity of the equilibrium state when 

constsG : 
0i( )

0( , ) st krr t e , 1i . (5.7.6) 

Indeed, let us calculate the derivatives of  with respect to 
the spatial vector r  and the time t : 

0i( )
0i( ) ist krk e k

r
; (5.7.7a) 

0
2

i( )2 2
02

( ) st krk e k
r

; (5.7.7b) 

0i( )
0i ist kr

s se
t

. (5.7.7c) 

So, comparing (5.7.7b) and (5.7.7c) we can see that: 
2

2 2
i s

t k r
. (5.7.8) 
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Since Eq. (5.7.8) coincides with Eq. (5.7.3), the following 
formula is true: 

2G kss . (5.7.9) 

Taking into account formula (5.7.9) the wave solution (5.7.6) 
of Eq. (5.7.3) is rewritten in the form: 

)i(
0

02

),( rktksetr G . (5.7.10) 

According to Eqs (5.2.33), (5.2.35) the analogous wave 
solutions occur, for example, for the anti-diffusion velocity 

)i(
0

0
u

2

uu~ tkrk se G . In other words, in the quasi-

equilibrium gravitational condensation state with a 
periodically varying GCF G( ) G [1 cos ]s st t , the wave 

solutions u~  are generated, moreover, they induce specific 
periodic forces (5.2.35), (5.3.16), or (5.4.39) and respective 
spatial oscillations (like the radial and the axial oscillations of 
Alfvén–Arrhenius [9, 19]) in the different domains of a 
forming spheroidal body (see Sections 5.2-5.4 and 9.2). 

We will now investigate nonlinear wave solutions of the 
generalized nonlinear Schrödinger-like equation. As shown in 
Sections 5.1 and 5.2, as a result of the formation of a core of a 
cosmogonical body (based on a model of a spheroidal body) 
from an initial weakly condensed molecular cloud, a sharp 
increase in the anti-diffusion velocity of particles inside the 
cloud is highly likely leading to the gravitational field origin, 
subsequently. In this connection, we consider a possible 
scenario of transition from solutions of Eq. (5.7.3) in the form 
of plane waves of the type (5.7.10) (corresponding to the state 
of initial gravitational condensation of the molecular cloud) to 
nonlinear wave solutions of the generalized nonlinear 
Schrödinger-like equation (5.7.5) for the case 1K  (see Eqs 
(5.2.31)–(5.2.34) in Section 5.2).  

In other words, let us pass from equation (5.7.3) to a more 
general equation with a time-varying GCF )G(t  under the 
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condition that the absolute value of the wave function is still 
small, that is, 1)(t . To this end, we use the generalized 

nonlinear Schrödinger-like equation (5.7.5) of a spheroidal 
body formation from a molecular cloud in a state of 
gravitational instability but under the condition of the 
smallness of the initial gravitational field g  

and the absolute 

value )(t
 
respectively: 

arg2ln
)(

)(2)(2i
22

dt
tdt

t
t g

G
GG 2 . (5.7.11) 

In this case, the logarithmic function in the right-hand side of 
Eq. (5.7.11) can be decomposed into a Taylor series and 
restricted to the first term of smallness [214]: 

1...2/]1[]1[])1[1ln(ln
222222 . (5.7.12) 

Using (5.7.12) equation, (5.7.11) takes the form:         
)(

)(2)(2i
22

dt
tdt

t
t G

GG 2   

)1arg2(
)(

dt
td

g
G . (5.7.13) 

Dividing both sides of Eq. (5.7.13) by )(2 tG  we obtain: 

)(2

)(
)(i

22

t
tt

t G

G
G   

arg)(2)(
)(2

1 tt
t g GG

G
. (5.7.14) 

According to Eq. (5.6.3) and (5.6.7) the argument of the 
wave function is the statistical action so that the 
hydrodynamic velocity is to be its gradient: 

grad)(2v tG . (5.7.15) 
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Since there is no practically hydrodynamic velocity for a 
motionless molecular cloud )0v( ,

 
the value of statistical 

action is also negligible: 
0arg . (5.7.16) 

Taking into account the condition (5.7.16), Eq. (5.7.14) goes 
to the following [214]:  

)(ln

2

1
)(i

22

dt
tdt

t
G

G   

)(
)(2

1 t
t g G

G
. (5.7.17) 

When a spheroidal body is forming from an initial weakly 
condensed molecular cloud, its initial gravitational potential 

g  
is proportional to )(tG , as noted in Sections 5.2 and 

Ref.[77]. So, taking this circumstance into account, Eq. 
(5.7.17) is noticeably simplified [214]: 

)(ln
2
1

)(i
22

dt
tdt

t
G

G . (5.7.18) 

We can note that the obtained equation (5.7.18) fully 
corresponds to the announced nonlinear Schrödinger-like 
equation (5.7.4) of a spheroidal body forming in the state of 
soliton disturbances. Indeed, denoting in Eq. (5.7.18) 

by )(tG , 
dt

td )(ln

2

1 G
, A  we obtain the well-known 

nonlinear (cubic) Schrödinger equation (NSE) [188]: 

AAA
t
A 22i , (5.7.19) 

where trAA ,  is an amplitude of the envelope of the wave 

packet and , are some values. 

NSE, a nonlinear second-order partial differential equation 
describing the wave packet envelope in a medium with 
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dispersion and cubic nonlinearity, is one of the key equations 
playing an important role in the theory of nonlinear waves, in 
particular, in nonlinear optics and plasma physics [188], 
[215–217]. Using Maxwell equations, as well as equations of 

a medium, in the case of a slowly varying amplitude EA  of 

a linearly polarized wave: 

xtkxtzyxAtzyx e)](iexp[),,,(
2

1
),,,(E 0  (5.7.20) 

in the reference system of a moving electromagnetic pulse 
( )(/, 0glab zttz  where  

0
/)( 0 kg  is the group 

velocity, a scalar equation of the NSE-type (5.7.19) can be 
obtained within the framework of the paraxial approximation 
[217]. In this case, the cubic term in the right-hand side of Eq. 
(5.7.19) describes the optical effect of Kerr, that is, a change 
of the refractive index of optical material is proportional to 
the second power of strength of the acting electric field. 

Since NSE (5.7.19) completely corresponds to the cubic 
generalized Schrödinger-like equation (5.7.18) for the state of 
soliton perturbations, this means that just as NSE (5.7.19) 
describes an evolution of the envelope of a wave packet of 
electromagnetic waves propagating in nonlinear dispersible 
media, the cubic generalized Schrödinger-like equation 
(5.7.18) describes an evolution of the envelope of a wave 
packet of Jeans’ substantial waves that propagate in a 
nonlinear and dispersive medium of a forming cosmogonical 
body (following the theory of gravitational instability of Jeans 
[1] (see also Section 1.3)). 

Using a suitable choice of parameters, Eq. (5.7.18) (or NSE 
(5.7.19)) can be reduced to a standard dimensionless form of 
the one-dimensional cubic generalized Schrödinger-like 
equation [215]: 
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0i
2

2

2

xt
, (5.7.21) 

where, in the general case, ),( tx  is a complex-valued 

function. The particular solution of Eq. (5.7.21) in the form of 
a traveling nonlinear wave satisfying the condition 0  at 

x  is the following [215, 216]: 

)4(2ch

)(42iexp
2),(

0

0
22

xtxa
taxatx , (5.7.22) 

where a ,  and 0 , 0x  are arbitrary constants. As we know 

[188, 215, 216], the envelopes of the NSE solution in the form 
of a traveling nonlinear wave (5.7.22) are also called solitons 
(see Fig. 5.1). 

 

Figure 5.1. Soliton solution of a one-dimensional cubic generalized 
Schrödinger-like equation of a forming spheroidal body  

Thus, this feature of the solution behavior in Fig. 5.1 has 
predetermined the title of equation (5.7.4). 
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5.8. Derivation of the reduced model in the state-space of a 
nonlinear dynamical system describing the behavior of the 

cubic generalized Schrödinger-like equation 

Considering the one-dimensional partial differential equation 
(5.7.21) we will obtain a system of ordinary differential 
equations (ODEs) in state-space like the well-known Lorenz 
system [218]. To this end, we intend to rewrite solution 
(5.7.22) in the form: 

),(i
0 ),(),( txtxtx e  , (5.8.1) 

where, according to formula (5.6.7), ),(),(0 txtx  and 

),( tx  is a one-dimensional probability density function [71, 

214]. In this case, for the derivatives in Eq. (5.7.21) the 
following expressions are valid: 

i
0

i
0 i ee

t
,   i'

0
i'

0 i ee
x

, (5.8.2a) 

i2'
0

i''
0

i''
0

i''
02

2

ii2 eeee
x

, (5.8.2b) 

where the dot means differentiation with respect to the time 
while the dash is differentiation relative to the coordinate in 
(5.8.2a,b) (the arguments of functions are omitted for brevity). 

Substitution of (5.8.2a) and (5.8.2b) into Eq. (5.7.21) leads 
to the following equation: 

3
0

2'
0

''
0

''
0

''
000 ii2i , (5.8.3) 

so that after separation of the real and imaginary parts we 
obtain: 

.2

;
''

0
''

00

3
0

2'
0

''
00  (5.8.4) 

Let us represent the system of two equations (5.8.4) in the 
form [214]: 
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.2

;

''
0

''
00

2
0

2'

0

''
0

 (5.8.5) 

Relations (5.8.5) are a system of nonlinear equations leading 
to the reduced model like the Lorenz model allowing chaotic 
dynamics in state-space [218]. With a view to further 
transformation of the system (5.8.5), we assume that the 
amplitude ),(0 tx  depends on the coordinate rather weakly 

that initially takes place in the molecular cloud (when 
0 ). This assumption permits us to neglect the term 

0
''

0 /  in the first equation of the system (5.8.5). As a result, 

we obtain the following system of equations [214]: 

.2

;
''

0
''

00

2
0

2'

 (5.8.6) 

In (5.8.6), two variables x  and t  still appear in explicit 
form. To use only one variable (temporal) t  we can apply the 
Galerkin’s method known in hydrodynamics for flow stability 
problem solving [119]. According to this method, we are 
going to look for the functions 0  and  in the form of 

expansions in a set of orthogonal basic functions: 
);cos)(sin)((),(0 nkxtBnkxtAtx n

n
n   

).cos)(sin)((),( nkxtHnkxtGtx n
n

n  (5.8.7) 

Choosing the concrete expansions (5.8.7), then substituting 
them into (5.8.6) and grouping the terms associated with the 
different components of these expansions we obtain various 
ODE systems of the kind: 

),...,( 21 ni qqqfq , (5.8.8) 
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where iq  are amplitudes in expansions (5.8.7), that is, 

nn BA , , and so forth, and the function ),...,( 21 nqqqf  is a 

polynomial one in the case under consideration. 
So, the nonlinearity in this reduced mathematical model is 

associated respectively with the nonlinear terms in equations 
of the system (5.8.6), and it is manifested when the 
multiplication of two trigonometric functions of the series 
(5.8.7) gives the third one, also presenting in the given 
decomposition. Later on, we consider expansions involving 
second-order harmonics only [214].  

With a view to simplification, we can additionally assume 
a weak dependence of phase  on the time leading to the 

condition 0 , that is consonant with the above-mentioned 
condition (5.7.16). This means that we can pass from system 
(5.8.6) to a single nonlinear equation relative to the function 

),(0 tx . In this case, we obtain an expression for the 

coordinate derivative of 0  from the first equation of system 

(5.8.6): 

0
' , (5.8.9) 

which after substitution into the second equation of this 
system leads to a simple nonlinear differential equation for 

0  [214]: 
'
00

'
000

'
00 32 . (5.8.10) 

To eliminate the coordinate derivative from Eq. (5.8.10) 
and obtain the model in a reduced form (just as it has been 
done in the works [218, 219, 220] concerning problems of 
Rayleigh–Benard (convection in the heated layer [119]), 
Couette–Taylor (flows between coaxial rotating cylinders 
[121], [221]), Görtler (flows past a concave wall [222])) we 
suppose that the function ),(0 tx  is periodic with respect to x  
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so that we can represent it in the form of a decomposition in a 
trigonometric series leaving the first and second harmonics: 

kxtDkxtCkxtBkxtAtx 2cos)(2sin)(cos)(sin)(),(0 . (5.8.11) 
Then for the derivative with respect to the coordinate, we 
obtain the expression: 

kxktDkxktCkxktBkxktAtx 2sin2)(2cos2)(sin)(cos)(),('0 . (5.8.12) 
After substituting (5.8.11) and (5.8.12) into Eq. (5.8.10) we 
have: 

kxtDkxtCkxtBkxtA 2cos)(2sin)(cos)(sin)(  

kxkxkCAkxkxABkkxkxkA 2cossin2sinsincossin(3 2  

kxkxkBkxkxBAkkxkxkDA sincoscoscos2sinsin2 2  
kxkxCAkkxkxkDBkxkxkCB cos2sin2sincos22coscos2  
kxkxkDCkxkxkCkxkxCBk 2sin2sin22cos2sin2sin2sin 2  
kxkxkCDkxkxDBkkxkxDAk 2cos2cos2sin2coscos2cos  

),2sin2cos22 kxkxkD  

whence, after separation of the terms associated with various 
components of the decomposition (5.8.11), we obtain the 
following system of ODEs: 

.3

;
2

3

;
2

3

;
2

3

22

ABkD

ABkC

BCADkB

BDACkA

 (5.8.13) 

Renaming coefficients DCBA ,,,  with the preceding notation 

4321 ,,, qqqq  in Eq. (5.8.8) and introducing the control 

parameter 2/3ka  we obtain the following reduced 
model [214]: 
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.2

;)(

;)(

;)(

214

2
1

2
23

32412

42311

qaqq
qqaq

qqqqaq
qqqqaq

 (5.8.14) 

The obtained system (5.8.14) is an ODE system with 
quadratic nonlinearity, so in this sense, it is similar to the 
logistic parabola model [119] as well as the Lorenz model 
[218] and the model describing dynamical behavior of flow 
with a curvature of streamlines [219]: 

,

;

;

3213

21312

32121

dqqqq
cqbqqqq
qqqaqq

 (5.8.15) 

however, unlike the final case, it contains four instead of three 
equations.  

As seen from a comparison of Eq. (5.7.18) with Eq. 
(5.7.21), the value  in Eq. (5.7.21) is proportional to )(tG  
under consideration of a one-dimensional version of the cubic 
generalized Schrödinger-like equation (5.7.18) of a forming 
spheroidal body in the state of soliton perturbations [214]. 
This means that the control parameter a  of the reduced model 
(5.8.14) in the state-space of the nonlinear dynamical system 
(describing the behavior of the cubic generalized Schrödinger-

like equation (5.7.18)) is determined by the values of )(tG .  

Conclusion and comments 

As already pointed out, inside a forming spheroidal body a 
colloidal particle undergoes attractions from originating 
numerous cores causing an oscillatory character of particle 
dynamics [68, 73]. The main contribution of this chapter has 
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been to show that interactions of oscillating particles lead to 
increasing gravitational condensation (as a consequence, to 
the gravitational formation of a cosmogonical body) as well as 
the evolution of dynamical states of a forming cosmogonical 
body described by the generalized nonlinear Schrödinger-like 
equation. 

Section 5.1 considered the density of anti-diffusion mass 
flows into a slow-flowing gravitational compressible 
spheroidal body. Here the notions of anti-diffusion velocity 
(5.1.7) and (5.1.21) both a centrally symmetric spheroidal 
body and an axially symmetric spheroidal body were 
introduced respectively. Equations (5.1.9), (5.1.17) for 
calculating the partial derivative of the anti-diffusion velocity 
with respect to time (in the cases of absence or presence of the 
ordinary hydrodynamic velocity inside a centrally symmetric 
spheroidal body) were obtained. Equation (5.1.19) relative to 
the complete time-derivative of the common (hydrodynamic 
plus anti-diffusion) velocity was derived. In the case of an 
axially symmetric spheroidal body, the analogous Eqs 
(5.1.23), (5.1.24) were also considered. 

Section 5.2 investigated the initial gravitational field 
potential and the strength induced by anti-diffusion velocity 
into forming centrally and axially symmetric spheroidal 
bodies. This section derived equations (5.2.4a,b) and (5.2.21) 
of arising gravitational potential of an initial gravitational 
field for both forming spheroidal bodies. Within the 
framework of the statistical theory of gravitating spheroidal 
bodies, it showed that the gravitational potential g  

of a 

forming spheroidal body is the sum of an average (statistical 
regular) part g  and a fluctuation part g . If the parameter 

of gravitational condensation )(t  reaches its critical value 

c  then the propagation of gravitational disturbances with the 

circular frequency c  (or the wavelength c ) ceases 
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to be wave-motion and leads to an unstable motion according 
to the Jeans criterion (1.3.23). In this case, the parameter of 
gravitational condensation increases exponentially with the 
time in accordance with Eq. (5.2.13a), that is, an avalanche 
gravitational compression occurs as a consequence of the 
arising gravitational field of a spheroidal body. The complete 
analysis of dynamical states of a centrally symmetric 
spheroidal body can be carried out by respective 
dimensionless Eqs (5.2.28a, b) using the similarity numbers 
(for example, the introduced characterizing K number 
(5.2.29)). Since the new number K  is a measure of the 
prevailing value of anti-diffusion velocity u relative to the 

value of hydrodynamic velocity v  the number K  can be 

considered as a control parameter of dynamical states of a 
centrally symmetric spheroidal body and an axially symmetric 
spheroidal body (see respective Eqs (5.2.30a, b)). 

In Section 5.3, a frequency interpretation of the 
gravitational potential (as well as the gravitational strength) of 
forming centrally and axially symmetric spheroidal body was 
considered. By analogy with the mentioned expansion of 
gravitational potential (5.2.4b), we found in Eq. (5.3.4) that 
statistical regular part of the circular frequency of radial 
oscillations )(t  is the angular velocity )(t  of the rotational 
motion of a particle whereas its fluctuation part is a 
generalized circular frequency )(t  of fluctuations of the 
particle inside a centrally symmetric spheroidal body. As 
consequence, the inducible gravitational acceleration (5.3.14) 
is the sum of a specific centrifugal force cf  and a specific 

additional periodic force of Alfvén–Arrhenius af  [9, 19] in 

the case of quasi-equilibrium state of a centrally symmetric 
(or slowly rotating) spheroidal body. This result points to a 
possibility of the presence of statistical oscillations of motion 
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in planetary orbits, that is, oscillations of the major semi-axis 
a  and the orbital angular velocity  of rotation of bodies and 
planets around stars (see Sections 9.1 and 9.5).  

The spatial deviation of the gravitational potential function 
(5.2.21) of an axially symmetric spheroidal body implies a 
difference in the values of the radial h  and the axial z  
oscillations in accordance with Eqs (5.3.42a, b) and (5.3.43) 
even in the case of its relative mechanical equilibrium 

const)G
~

)(G
~

( st . Indeed, such a conclusion is confirmed 

by existing Alfvén–Arrhenius radial and axial orbital 
oscillations of moving bodies [9, 19].  

Generally, two important cases of mechanical equilibrium 
and quasi-equilibrium states for centrally and axially 
symmetric spheroidal bodies are considered, but the GCF 

derivatives )(tG  and )(G
~ t  have an oscillating character only 

in the case of quasi-equilibrium state, therefore average 
integral values were introduced in Section 5.3. Here, Theorem 
5.1 was proved, which says:  

 
The average integral value of the parameter of gravitational 
condensation does not depend on the duration of the period 
averaging both in equilibrium and in quasi-equilibrium states of a 
centrally symmetric (or slowly rotating) spheroidal body: 

const
1 s

s

Tt

t

dtt
T

, 

where T is a period averaging,
 st  is a stabilization instant of the 

equilibrium state of a centrally symmetric spheroidal body. 
 
Using Theorem 5.1 we found that in the quasi-equilibrium 

state the average integral value of circular frequency of the 
radial oscillations coincides with the value of angular velocity 
of rotation. At the same time, the average integral value g  

of 
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the gravitational potential (5.2.4b) coincides with the inner 
gravitational potential (5.2.18a) of a slowly rotating 
spheroidal body )0( 2

0 , that is, g  is the regular part g  
of 

gravitational potential in the equilibrium state. 
Section 5.4 describes the dynamical states after the decay 

of a rotating spheroidal body and the formation of a 
protoplanetary system. Starting from the equality of averaged 
gravitational and centrifugal potentials ( 0gcV ) we 

obtain the analog of Kepler’s third law (5.4.6) in the case of 
decay of a centrally symmetric spheroidal body or the analog 
of Kepler’s third law (5.4.18) in the case of decay of an 
axially symmetric spheroidal body. The separation process of 
centrally and axially symmetric spheroidal bodies leads to the 
formation of its inner zone I (a stellar core) and remote zone 
II (an exterior shell). In this connection, we consider the inner 
gravitational potential (I)

g  
(see Eq. (5.4.10a) or Eq. (5.4.14)) 

as well as the exterior gravitational potential (II)
g  for large 

r (see Eq. (5.4.10b)). Using the spectral representation of 
GCF (5.3.25) and its derivative (5.3.27a) as periodic functions 
(in the case of quasi-equilibrium state of a slowly rotating 
spheroidal body) we present the gravitational potential 

quasiequilg  of the kind (5.4.29) through Fourier series (5.4.35). 

For large r  we also have the spectral representation (5.4.36) 
of the exterior gravitational potential 

quasiequil

(II)
g as well as the 

spectral representation (5.4.38) of the specific force of gravity 

agg fff
equilquasiequil

 in the remote zone II of quasi-

equilibrium gravitational field. This means that the Alfvén–
Arrhenius specific additional periodic force af  is also the sum 

(5.4.40a) of spectral components ),()( rtlf s
l

a  with multiple 
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ordered frequencies to the average main circular 
frequency s . Similar results occur in the case of a rotating 

axially symmetric spheroidal body. Namely, the Alfvén–
Arrhenius specific additional periodic force af  is the sum of 

analogous spectral components (5.4.40b) with multiple 
ordered frequencies to the circular frequencies of both radial 

h  and axial z oscillations [77]. That is why the circular 

orbit of moving particles in the remote zone II of the 
gravitational field can be modified by both the radial and the 
axial oscillations (following Alfvén and Arrhenius [9, 19]). 

Thus, Sections 5.3 and 5.4 showed that the temporal 
deviation of GCF )G(t  of a spheroidal body under the 
condition of its mechanical quasi-equilibrium leads to it 
becoming an Alfvén–Arrhenius additional periodic force 
modifying forms of circular orbits to slightly elliptical orbits 
of moving bodies. The temporal deviation of GCF )G(t  is 

determined by an oscillation behavior of its derivative )(tG  
that implies the special case when 0)(tG  and, therefore, 

0)( 2  as well as 0),()( rtlf s
l

a , that is, according to 

Eq. (5.3.15b) or Eq. (5.4.39) the additional periodic force af  
becomes oriented opposite the gravitational force gf  (hence, 

realizing the so-called principle of an anchoring mechanism in 
planetary systems [77]).  

In Section 5.5, interconnections of the proposed statistical 
theory of spheroidal bodies with Nelson’s statistical 
mechanics and Nottale’s scale relativistic theory were 
investigated. As pointed out in this section, both Nelson’s 
statistical mechanics and Nottale’s scale relativistic theory 
introduce so-called mean forward and mean backward 
derivatives. It is remarkable that, in the proposed statistical 
theory of spheroidal bodies, the main equations (relative to 
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the anti-diffusion velocity) have been obtained without 
introducing any mean forward nor mean backward 
derivatives of stochastic processes. In this regard, the 
proposed statistical theory differs profoundly from Nelson’s 
stochastic mechanics [34, 35] as well as from Nottale’s scale 
relativistic theory [36, 37, 175, 176, 200, 201]. Moreover, the 
obtained main Eqs (5.1.17) and (5.1.19) are more general than 
analogous Eqs (5.5.8) and (5.5.9) in Nelson’s stochastic 
mechanics. Indeed, within the framework of the proposed 
statistical theory of spheroidal bodies the generalized 
Schrödinger equations (5.5.17) and (5.5.18) can also be 
derived as in Nottale’s scale relativistic theory. So, Nelson’s 
and Nottale’s considerations are appropriate mainly in the 
case of gravitational interaction of particles in a spheroidal 
body being in a mechanical equilibrium state. 

In Section 5.6, the generalized nonlinear time-dependent 
Schrödinger-like equation describing a gravitational formation 
of a cosmogonical body was derived. The derived nonlinear 
time-dependent generalized Schrödinger-like equation 
(5.6.12) for the case of a centrally symmetric spheroidal body 
(or Eq. (5.6.13) in the case of axially symmetric spheroidal 
body) describes not only the mentioned states of mechanical 
equilibrium ( const)( st GG  or const

~
)(

~
st GG )  and quasi-

equilibrium gravitational compression state close to the 
mechanical equilibrium with a slowly varying anti-diffusion 
coefficient [68, 71, 73] but gravitational instability states 
leading to formation of a cosmogonical body. So, this 
equation predicts gravitational instability states in a forming 
spheroidal body. When GCF )G(t  is a constant, the nonlinear 
time-dependent generalized Schrödinger-like equation 
(5.6.12) becomes Eq. (5.7.1) corresponding to the well-known 
time-dependent Schrödinger equation [187] or the generalized 
Schrödinger equation in Nottale’s form (5.5.17).  
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Indeed, the next Section 5.7 considered different dynamical 
states of a gravitating spheroidal body and respective forms of 
the generalized nonlinear time-dependent Schrödinger-like 
equation (5.6.12) (or Eq. (5.6.13)): the initial equilibrium 
gravitational condensation state (5.7.3); the mechanical 
equilibrium case (5.7.1); the quasi-equilibrium case (5.7.2); 
the soliton disturbances state (5.7.4); and the gravitational 
instability case (5.7.5). As mentioned here, the last case 
includes the avalanche gravitational compression increasing 
among them the case of unlimited gravitational compression 
leading to a collapse of a spheroidal body. Thus, an evolution 
of dynamical states of a spheroidal body can be investigated 
using the generalized nonlinear time-dependent Schrödinger-
like equation (5.6.12) (or Eq. (5.6.13)). In particular, when a 
cosmogonical body is formed in the state of soliton 
perturbations nonlinear waves of various types arise there 
including soliton-like waves. The cubic time-dependent 
Schrödinger-like equation describing cosmogonical body 
formation in the state of soliton disturbances was derived in 
Section 5.7. The soliton solution of the cubic generalized 
Schrödinger-like equation of a forming spheroidal body was 
considered, hence the propagation of soliton waves of 
Schrödinger-type during the formation of the core of a 
cosmogonical body was justified. 

In Section 5.8, the reduced model representing the 
dynamical system (5.8.14) of four ordinary nonlinear 
differential equations (with quadratic nonlinearity) into the 
state-space of the cubic generalized Schrödinger-like equation 
was derived. 

The obtained result relative to the generalized nonlinear 
time-dependent Schrödinger-like equation (5.6.12) (or 
(5.6.13)) has been suggested in accordance with similar 
conclusions by I. Prigogine, E. Rössler, M. El Naschie [41], 
and Ord [223, 224] that the Schrödinger equation could be 
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universal. In other words, it may have a large domain of 
applications, but with interpretations different from that of 
standard quantum mechanics. 

On the whole, it should be mentioned that the derived 
nonlinear generalized Schrödinger-like equation is a 
macroscopic equation (5.6.12) (or (5.6.13)) unlike the 
quantum mechanical Schrödinger equation [187]. In this 
connection, we emphasize that the quantum mechanical 
Schrödinger equation describes the microscopic behavior of a 
particle. Due to the Casimir effect, the oscillation behavior of 
particles (before the origin of the gravitational field in a 
molecular cloud) is described by the time-dependent 
Schrödinger equation for the quantum-mechanical harmonic 
oscillator [187, 225]:  

2
0

22

0

2

,,
22

, mktk
m

t
t

i xxx , (A5.1) 

where 
its solution is a wave function t,x ,  

0m  is a mass of a particle,  

is its angular frequency of oscillations, 
2
3

2
2

2
1

2 qqqx , and  

iq  is a displacement of a particle from an equilibrium 

position.  
To construct a realistic physical picture when a wave is 
localized in a finite region of the space, the concept of a wave 
packet was introduced (in which amplitudes are localized in 
some spatial domain). Thus, by the wave packet one means a 
superposition of a sufficient number of wave functions of 
different frequencies and amplitudes: 

0

,,
n

nn tat xx . (A5.2) 
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As a result, we can describe a particle (moving under the 
influence of spontaneous harmonic forces from local cores 
inside a molecular cloud) not as a “point mass” but as a “wave 
packet” (A5.2). It has been reported in [225] that a particle 
described by the three-dimensional harmonic oscillator is 
characterized also as an oscillating expectation value of a 
three-dimensional Gaussian wave packet and also an 
oscillating width of this packet. In the one-dimensional case 
( 1qx ), an evolution of the probability density to observe a 
particle described by a quantum mechanical oscillator with 
the initial expectation values of position 0x  and momentum 

00p , the width of the initial wave packet 
0x  with time t  

is also characterized by a Gaussian wave packet  [225]: 

t
txx
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with the oscillating expectation value txtx cos00  and the 

oscillating width
00

2sincos4 24
0

24
xxx ttt  

and 00 / m . 

Taking into account that oscillations of three-dimensional 
Gaussian wave packet are independent (they are also 
orthogonal to one another), their resulting oscillation has an 
elliptical trajectory of motion. This means that the shape of an 
oscillating particle is described by an ellipsoid changing with 
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the time, just as the trajectory of motion of this particle in the 
space is elliptical [225].  

During a slowly evolving process of initial gravitational 
condensation of a forming spheroidal body from an infinitely 
distributed substance (a molecular cloud) the parameter of 
gravitational condensation )(t  increases with the time 
t that leads to a growth of the potential gravitational energy 
(see formula (2.5.6) in Section 2.5):  

)(

2
),(),(

2

1
)(

2 tMdVtrtrtE
V

gg , (A5.4) 

where M  is a mass of a forming spheroidal body, and and 

g  are mass density (2.2.5) and gravitational potential 

(2.4.26) respectively (in the case of a centrally symmetric 
spheroidal body). When an essential growth of the potential 
gravitational energy (A5.4) occurs then nonlinear phenomena 
arise owing to self-organization processes [134, 193] of 
interactions of oscillating particles into a spheroidal body 
under its formation. These nonlinear phenomena induce 
nonlinear waves satisfying a nonlinear undulatory 
Schrödinger-like equation (5.6.12) (or (5.6.13)), in particular 
Eq. (5.7.4) (in which except a wave function tr ,  there is a 
temporal function called GCF )G(t ). So, the GCF (4.1.8) or 
(4.7.13) is a measure of interactions of oscillating particles 
into a forming spheroidal body. Really, in the case of a 
constant st G)G(  the derived nonlinear Schrödinger-like 

equation (5.6.12) becomes similar to the time-dependent 
Schrödinger equation (A5.1) if we might assume formally that 

xr , 02/G)G( mt s  and 2/22
0 xmg . 

Despite the derived nonlinear Schrödinger-like equation 
(5.6.12) (or (5.6.13)) being a macroscopic equation while the 
quantum mechanical Schrödinger equation (A5.1) is a 
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microscopic equation, they are associated among themselves 
like the macroscopic hydrodynamic equation of Euler and the 
microscopic kinetic equation of Boltzmann because the Euler 
equation can be derived through the Boltzmann microscopic 
equation [193].  
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PART II:  

THE STATISTICAL THEORY OF  
GRAVITY IN SOLAR AND EXTRASOLAR  

SYSTEM APPLICATIONS 
 
 
 

According to considered statistical theory, the formation of 
cosmogonical bodies (see Chapters 1–3) as part of the process 
of planetary system formation—from a protoplanetary cloud to 
the star with planets—can be described by a multi-scale control 
parameter of dynamical states of a spheroidal body, called the 
parameter of gravitational condensation . For example, the 
nebular origin of our Solar system permits us to describe the 
proto-Sun together with a flattened gas-dust protoplanetary 
cloud as the model of a rotating and gravitating spheroidal 
body. According to Hoyle’s theory, an evolutionary process for 
the formation of the Solar system based on the nebular origin 
leads to the compression of the proto-Sun and, as a 
consequence, rotational instabilities when the radius of the 
proto-Sun became equal to  103 10

Sun-protoR m. If we 

investigate the proto-Sun inside the protoplanetary cloud 
separately as a spheroidal body then the parameter of 
gravitational condensation of the proto-Sun is equal to: 

)(m1011.1
1 221

2
Sun-proto

Sun-proto R
. (II.1) 

Then, bearing in mind that a primary presolar cloud has a 
mass density of 1 atom per sm3 and an angular velocity of 

 ~ 10-15 s-1 (as for our Galaxy on the whole), Hoyle found 
that the angular momentum value of the presolar nebula 
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(cloud) has to be equal 44104L   kg m2 /s, that is, the mean 
value of specific angular momentum for the forming Solar 
system is  102.012/ 14ML m2/s if the mass of the 
presolar cloud is approximately  101.988 30M  kg. Using 
our formula, )1(/2 2

0ML , it is not difficult to see that 

the parameter of gravitational condensation of the flattened 
cloud can be estimated by the same value, that is, 

)(m1011.1 221
Sun-protocloud-proto . 

On the other hand, the usage of this statistical theory, as 
well as laws of celestial mechanics in conformity to the stars, 
requires us to take into account an extended substance called a 
stellar corona. Therefore, we have to consider the stellar 
corona (in particular, the solar one) because the Sun is 
assumed to be present as the solar disk (for which the 
equatorial radius is m10955.6 8

SunR ) embedded into the 

solar corona following this statistical theory. In this 
connection, the stellar corona together with its star might be 
described using the model of a gravitating spheroidal body, 
that is, the parameter of gravitational condensation  of 
such a spheroidal body can be estimated by the linear size 
of its core and the thickness of a visible part of the stellar 
corona. In particular, the parameter of gravitational 
condensation  of a spheroidal body in the case of the Sun 
with its corona has been estimated by the following value 
[72, 73]: 

)(m1082970117771.2
)3(

1 219
2

Sun
corona&Sun R

. (II.2) 

From the point of view of the general statements of the 
statistical theory of gravitating cosmogonical bodies, its 
application to the concrete cosmogonical body (protoplanetary 
cloud, proto-star,  star, planet, or satellite) requires the use of 
the respective estimations (similar to (II.1), (II.2), etc.) of the 
parameter of gravitational condensation . 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER SIX 

ON THE MODELS OF PROTOPLANETARY 

FORMATION AND THE LAWS OF PLANETARY 

DISTANCES IN THE SOLAR SYSTEM AND 

OTHER EXOPLANETARY SYSTEMS 
 
 
 

Understanding conformities in the Solar system is connected 
with solving the problem of the origin and evolution of our 
Solar system or other extrasolar planetary (exoplanetary) 
systems in the Universe. This problem, starting with 
Descartes, has attracted the attention of natural scientists. As 
we know, many models of the Solar system formation are 
based on nebular theories, theories of the capture of celestial 
bodies and interstellar gas-dust matter, theories of plasma-
dust interactions, and so forth (see, for example [6–14]). 

In 1766, Johann Titius von Wittenberg outlined his famous 
commentary on planetary distances for the Solar system in the 
form of a geometric progression with the factor of 2 (the so-
called Titius–Bode law) on the pages of the German 
translation of Charles Bonnet’s book “Contemplation de la 
Nature.” Then, in 1772, Johann Bode revealed this 
commentary and included it in the text of his book [8]. 

The idea underlying the Titius–Bode law is related with 
Johann Kepler, who tried to explain the observable relative 
sizes of planetary orbits using celestial spheres and regular 
polygons (he also drew attention to a gap existing between the 
orbits of Mars and Jupiter, where there should be one small 
“invisible” planet) [226]. With his discovery of the Universal 
gravitation law [80], Isaac Newton gave us an explanation not 
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only of the dynamics of the orbital motion of the planets 
based on gravitational forces, but also proposed a theoretical 
basis for the derivation of Kepler’s laws. Christian Wolf, who 
believed that the planetary orbits obeyed some regularity [8], 
also conveyed cosmogonical ideas to his brilliant pupil 
Immanuel Kant, who published his theory of the Universe in 
1755 [227]. 

Thus, scientific cosmogony originates from the famous 
works of Kant (1755) and Laplace (1796) [227, 228]. Both of 
them came up with the unique idea of the formation of planets 
from matter scattered in outer space, that is, from a 
protoplanetary cloud, which in its general form occurs in 
modern cosmogonical theories. Kant and Laplace built their 
hypotheses for the formation of the Solar system based on the 
general idea of the simultaneous origin of both the Sun and 
planets from matter scattered in outer space [227, 228]. 
Nevertheless, it is now well known that the main difficulty of 
the Kant–Laplace hypothesis was the problem of the 
appearance of angular momentum in the Solar system. 

The Titius–Bode law was very successful in discovering 
Uranus, asteroids and their orbital locations. In addition, the 
mathematician Karl Gauss developed the now famous least 
squares method for solving problems in celestial mechanics. 
Various modifications and generalizations to the Titius–Bode 
law have been proposed by Wurm, Gilbert, Challis, 
Kirkwood, Chambers, Charlier, Blagg [229], Richardson 
[230], and others. These modifications were purely empirical 
expressions for the observable distribution of planetary 
distances in the Solar system or distance distributions for the 
moons of Jupiter and Saturn. As a rule, all these generalized 
laws of planetary distances were described by a geometric 
progression with a factor of 1.73 or 1.89 (and not 2), whose 
terms were multiplied by a periodic function expressing a 
deviation from the geometric progression itself. 
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The next significant achievement in solving the problems 
of cosmogony and its further development was Jean’s theory 
[1, 93] (see also Sections 1.3, 1.5 of this monograph). 
Beginning in the 1940s, a great number of works were carried 
out in the field of cosmogony: in particular, in 1943, von 
Weizsäcker proposed a nebular theory to explain the 
evolutionary processes of the formation of our Solar system 
[26, 27]. Later other evolutionary theories were developed by, 
for example, O. Yu. Schmidt [6, 21], Kuiper [28, 29], Hoyle 
[30, 31], Ter Haar [7, 32], and Cameron [7, 10]. According to 
Ter Haar (1948), a viable cosmogonical theory should explain 
the following four groups of facts [6, 44 p.277]: 
 Group “A” is the law of the orbits: the planetary orbits are 

almost circular; they lie in the same plane; the rotation 
occurs in one direction; and the Sun rotates in the same 
direction. Moreover, the equatorial plane of the Sun close 
to the same orbital plane; 

 Group “B” is the law of planetary distances: the planets are 
not randomly distributed; there is a conformity in their 
distances empirically formulated by Bode (in the form of 
the Titius–Bode law); 

 Group “C” is the separation of the planets into two 
different groups: the inner planets (Mercury, Venus, Earth, 
and Mars) are relatively small, but with high density, a 
rather slow rotation around the axis, and small numbers of 
satellites; the outer planets (Jupiter, Saturn, Uranus, 
Neptune) are large, with lower density, high velocity of 
rotation, and numerous satellites (Pluto is not included 
because it is located on the edge of the Solar system and 
may not fit into the law); 

 Group “D” is the distribution of angular momentum: 
though the Sun has more than 99% of the total mass of the 
Solar system, it accounts for less than 2% of the angular 
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momentum, while the remaining 98% belong to the 
planets. 
Using the Titius–Bode law, Otto Yu. Schmidt proposed his 

model of the origin of planets and satellites suggesting they 
were dependent on the distribution of specific angular 
momentum in the Solar system [6]. However, Schmidt’s 
model was not able to explain the origin of the angular 
momentum itself in a gas-dust cloud orbiting the Sun, and his 
hypothesis that the moving gas-dust cloud is captured by the 
Sun does not look convincing enough since the process of 
permanent gas-dust cloud capture by other stars during the 
formation of exoplanetary systems seems unlikely. Up to 
now, the essential question remains unanswered: Does the 
Titius–Bode law have a physical meaning? 

Our understanding of our place in the Universe changed 
radically in 1995 when Michel Mayor and Didier Queloz of 
Geneva Observatory in Switzerland announced the discovery 
of an extrasolar planet around a star similar to our Sun [3]. 
Geoff Marcy and Paul Butler in the United States soon 
confirmed their discovery, and the science of observational 
extrasolar planetology was born. The field has expanded 
significantly in recent years, resulting in numerous 
publications on planetary systems in 2019 (see 
http://exoplanet.eu/ and http://exoplanets.org/ for an up-to-
date list). Most of these systems contain one or more gas giant 
planet close, or very close, to their parent star, and thus, do 
not resemble our Solar system. Nevertheless, in 2010, an 
international group of astronomers, using the HARPS 
spectrograph of the European Southern Observatory (ESO) in 
La Silla (Chile), reported the discovery of new planets by the 
variations of the solar-type HD 10180 star. This exoplanetary 
system comprises at least five Neptune-like planets with 
minimum masses ranging from 12 to 25 EarthM , orbiting the 

solar-type star HD 10180 at separations between 0.06 and 1.4 
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AU [231]. Moreover, their orbits are almost circular. Using 
data about this system together with information about other 
planetary systems, the researchers found a certain analog of 
the Titius–Bode rule for exoplanetary systems, which may be 
a reflection of the general regularity of the process of 
planetary formation. 

Various theories were proposed to explain the Titius–Bode 
law [8], although, generally speaking, they were intended 
directly for estimating planetary distances and studying 
planetary orbits. These theories, overlapping each other by 
research methods, are conventionally divided into five 
categories [16]: 
 electromagnetic; 
 gravitational; 
 nebular; 
 quantum mechanical; and 
 statistical theories. 

We note once again that the theories under consideration 
are fairly general since their tasks are broader than exploring 
only the Titius–Bode law. In particular, Alfvén’s 
electromagnetic theory is found to be very important because 
it reveals the mechanism of the damping action of the 
magnetic field in transferring angular momentum from the 
Sun to an ionizing gas around the Sun [9]. Based on such a 
process of momentum transmission to massive ions, Alfvén 
derived a relation linking masses and distances corresponding 
to the Titius–Bode law. 

Schmidt’s gravitational theory [6, 21] is based on the idea 
of the capture of a dust-gas cloud by the Sun and showed the 
importance of the process of a conglomeration of dust 
particles in the formation of planets. Indeed, this process leads 
to the Titius–Bode law due to the phenomenon of the 
“scooping out” of the gas-dust matter of the cloud by the 
neighboring protoplanets owing to the difference between 
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specific angular momentums for these protoplanets. Schmidt’s 
theory was actively continued by his colleagues and pupils: 
L.E. Gurevich and A.I. Lebedinsky [22, 23], V.S. Safronov 
[2], A.V. Vityazev, and others [12]. In particular, Viktor S. 
Safronov was the first to suggest the so-called planetesimal 
hypothesis stating that planets were formed from dust grains 
that collided and stuck to form larger and larger bodies, that 
is, planetesimals which then began to interact gravitationally 
between themselves. Dole [25] also developed and modeled 
the dust accumulation (around a planetary core or planetary 
embryo) process describing the absorption of gas by planets 
with “critical sizes” and, hence, leading to the formation of 
giant planets. 

Von Weizsäcker’s nebular theory [26, 27] provoked the 
greatest interest among scientists. It pointed out the importance 
of turbulent processes in the formation of a protosolar cloud. 
Von Weizsäcker showed that turbulent motions lead to the 
formation of vortex cells located in ring regions, and then to 
condensation of a substance between the rings. As a result, the 
Titius–Bode law can be predicted. The initial hypothesis of von 
Weizsäcker has been modified by many scientists [8]. The 
development and continuation of modern nebular theory is 
traced to Kuiper [28, 29], who not only suggested that the 
protoplanetary nebula was significantly more massive than the 
present-day sum of planetary masses, perhaps exceeding 0.1 of 
Sun’s mass MS but also proposed that the gas giant planets are 
the result of gaseous accretion of solid protoplanetary cores 
(see [232 p. 495]). 

Some recent works have been devoted to investigating the 
possibility of describing planetary orbits based on quantum 
mechanical approaches [15, 36–40, 233–235]. A brief review 
of the set of these theoretical studies has been made by De 
Oliveira Neto and co-workers [15]. One of the interesting 
results found refers to the prediction of a fundamental radius 
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given by r = 0.05AU, also predicted by Nottale [36, 37], and 
Agnese and Festa [40, 233] in their studies. In particular, 
Agnese and Festa [40] described the Solar system as a 
gravitational atom (these authors also proposed a formula 
describing the distances to the bodies of the Solar system). 
Following the Bohr–Sommerfeld atomic theory foundations, 
quantum mechanics emerged with its Schrödinger equation. A 
derivation of the Schrödinger equation from Newtonian 
mechanics was given in the works of E. Nelson [34, 35] (see 
details in Section 5.5). The important point in Nelson’s works 
is that a diffusion process can be described in terms of a 
Schrödinger-type equation, with the help of the hypothesis 
that any particle in the empty space, under the influence of 
any interaction field, is also subject to a universal Brownian 
motion [41] based on the quantum nature of space-time in 
quantum gravity theories or on quantum fluctuations on a 
cosmic scale [37, 38, 43]. In this context, the possibility of 
describing a classical process like the formation of the Solar 
system in terms of quantum mechanics can be considered 
seriously [15]. As for macroscopic bodies, the chaotic 
behavior of the Solar system during its formation and 
evolution [236, 237] indicates a diffusion process to be 
described in terms of a Schrödinger-type equation. The 
description of the planetary system using a Schrödinger-type 
diffusion equation has been presented in [15]. As shown in 
[235], an analysis of the relationship to the electrostatic and 
gravitational forces has revealed the utility of the Newton 
gravity constant for the estimation of planetary orbits. A 
review of simple quantization procedures, a utility of a 
Schrödinger-type equation and Newton’s dimensionless 
constant of gravity has been provided [238]. Recently, a 
membrane model has been proposed to explain regularities in 
the distribution of distances of bodies in the Solar system 
[239]. As shown in Chapter 5, the most common nonlinear 
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time-dependent Schrödinger-like equation of the form 
(5.6.13) has been derived [68, 71, 77], describing the 
formation of a cosmogonical body (see details in Section 5.6). 

In spite of a great number of works aimed at exploring the 
formation of the Solar system and significant efforts by many 
brilliant scientists, the these theories have not been able to 
explain completely all phenomena occurring in the Solar 
system. In this connection, the statistical theory (presented in 
this monograph as well as in [16, 45–71]) for the formation of 
a cosmogonical body (the so-called spheroidal body) using 
numerous gravitational interactions of its parts (particles) has 
been proposed. The domain of investigations within the 
framework of the proposed statistical theory of gravity 
includes Newtonian gravity and partly Newtonian quantum 
gravity. As we know from Chapters 2–5 of this monograph, 
the proposed theory starts from the conception for forming a 
spheroidal body inside a gas-dust protoplanetary nebula 
enabling it to derive the form of distribution functions, mass 
density, gravitational potentials, and strengths for an 
immovable and rotating spheroidal body [45–56] and also to 
find the distribution function of specific angular momentum 
[16, 56–60, 65] for a uniformly rotating spheroidal body.  

Chapter 6 discusses the statistical theory to develop models 
of the formation of the solar and exoplanetary systems. It 
investigates a gas-dust protoplanetary cloud as a rotating and 
gravitating spheroidal body having the specific angular 
momentum distribution function. Since the specific angular 
momentums of moving particles of a gas-dust cloud are 
averaged during the conglomeration process, the mean 
specific angular momentum for a planet of the Solar system 
(as well as a planetary distance) can be found through such 
procedure. This chapter presents a new law on planetary 
distances in the Solar system [16, 65, 73] which generalizes 
the well-known Schmidt law.  
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6.1. Evolution equations of the distribution of the  
specific angular momentum in the protoplanetary cloud 

and the laws on planetary distances 

The results obtained in the previous chapters now allow us to 
proceed to the consideration of the next stage of evolution: 
from a flattened protoplanetary gas-dust disk to the 
originating protoplanets. Let us note that the formulas 
(3.3.26a–c), and (3.8.27) point to a common scenario of the 
formation of both a star and a protoplanetary gas-dust disk 
around it (in particular, the Sun and the solar protoplanetary 
gas-dust disk) because M  is considered here as the total mass 
of the star (Sun) and the protoplanetary (solar) gas-dust disk. 
Indeed, as noted in the work [240]: 

Measurements of the composition of the Earth, Moon, and 
meteorites support a common origin for the Sun and planets (e.g., 
Harris 1976; Anders & Grevesse 1989).  

So, in this section, let us consider a statistical model of the 
origin of protoplanets embedded in a flattened gas-dust 
protoplanetary disk (see Section 3.4) based on the distribution 
function (3.4.9) of the specific angular momentum for a 
uniformly rotating spheroidal body (as a flattened gas-dust 
protoplanetary clouds) [16, 65, 73]. 

Schmidt’s cosmogonical hypothesis on the origin of the 
Solar system as a result of the evolution of gas-dust swarm 
was used by L.E. Gurevich and A.I. Lebedinsky in their 
studies [22, 23] to show that the swarm condensation process 
takes place necessarily (even if there were no initial bunches 
or protoplanetary embryos and the cloud itself consisted only 
of dust and gas), thanks to the following scenario [6 p.27, 21]: 
a) as a result of collisions, the relative velocities of particles 

decrease, so that the system flattens and thereby becomes 
denser, hence, increasing the frequency of collisions; 
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b) after reaching a certain critical value of the density, the 
system cannot remain in its previous state: under the 
influence of the forces of gravity, the intensive formation 
of condensations (the so-called planetesimals) begins [2, 
12]; 

c) these condensations (planetesimals) have a flattened shape 
and masses of the order of the masses of asteroids; 

d) in turn, the condensations are forced to collide (due to the 
small mean free path) and merge into a small number of 
large bodies called protoplanets.  
In its entirety, the scenario described is confirmed by 

numerous results of computational modeling. Indeed, the last 
four decades of research in this area have shown that 
numerical modeling has become an important part of 
understanding the evolution of the Solar system. A 
contemporary understanding holds that the evolution from 
dust to planet can be divided into three successive phases (see 
for example [208, 241 p. 267]). The first main stage is the 
coagulation of micrometer-sized grains into kilometer-sized 
planetesimals (see [2, 118, 139, 242, 243, 244]). The first is 
that planetesimals form as the result of gravitational 
instability in the solar nebula, in which solids are sufficiently 
concentrated to enable planetesimals to form purely by self-
gravity (e.g., [118, 245, 246]). The second is that 
planetesimals form by the direct collisional accretion between 
colliding particles (e.g., [242, 247, 248]), that is, grains are 
assumed to stick together if an impact occurs at a critical, 
threshold velocity [249]. Due to the stochastic nature of 
growth, not all planetesimals grow at the same rate and some 
will become more massive than others. More massive bodies 
are more effectively able to accrete the surrounding 
planetesimals. This quickly leads to a runaway accretion 
process (e.g., [250, 251, 252, 253]) beginning the second main 
phase. In a swarm of planetesimals, the relative velocity relv  
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is governed by their frequent encounters with one another, 
and given their small gravity, is kept low [208]. Runaway 
growth is stalled somewhat when the planetary embryos grow 
large enough that their gravitational perturbations on the 
planetesimals become the dominant influence on relv . As this 
occurs, planetesimals decouple from gaseous disk and start to 
interact gravitationally with each other. This catalyzes the 
second phase completely: a runaway growth leading to the 
formation of a planetary embryo with masses 1%–10% of that 
of Earth EarthM  [254, 255]. These embryos accrete material 

locally and form a dense population distributed throughout the 
Solar system. In the third (and final) stage of terrestrial planet 
accretion, the gravitational effect of the planetesimals begins 
to fade as their numbers decrease, and the planetary embryos 
begin to perturb one another onto crossing orbits. Planets then 
begin to grow from collisions between embryos and the 
accretion of remaining planetesimals. This stage is 
characterized by relatively violent, stochastic large collisions 
as compared to the previous stages, where the continual 
accretion of small bodies dominates [208, 256]. 

In contrast to the numerical models for planet formation 
with enormous numerical efforts, the present chapter relies on 
analytical principles only. Although the numerical models 
seem to be quite capable already, it is always useful to check 
at least with one from the mentioned theoretical approaches, 
whether the results are still reasonable. 

Chapter 6 shows that the evolution of a flattened rotating 
and gravitating spheroidal body, in particular, and, generally 
speaking, the proposed statistical theory proves to be useful 
for explaining the origin of the Solar system [16, 65, 73]. 
Indeed, let us briefly consider the evolution of two 
neighboring bunches (protoplanetary embryos) being in the 
growth stage. As Schmidt noted [6 p. 32–33]:  
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If their orbits are very close, they will quickly exhaust the supply of 
bodies and particles moving in the region between their orbits. If 
two planetary embryos do not unite into one, then in the future they 
will acquire mass and momentum already predominantly from 
bodies turning from the outer sides of the exhausted zone. In this 
case, the momentum per unit mass of one planet will decrease, the 
other will increase, and the radii of the orbits of two planets will 
begin to diverge. Thus, in the process of growth of the planets at 
the expense of bodies and particles, it lies the principle of adjusting 
the distances between them. 

Following the logic of Schmidt’s reasoning, one can find 
the law of planetary distances between bunches 
(protoplanetary formations) in a rotating spheroidal body, 
bypassing the detailed kinetics of the process. Namely, his 
model (explaining the law of planetary distances) is based on 
the hypothesis that each law of distribution of a specific 
angular momentum  of particles with a distribution function 
f  corresponds to its law of planetary distances [6]. It 

follows from the fact that when planets are formed (for 
example, in the Solar system) each particle (or a conglomerate 
of particles, generally speaking, a planetesimal [2, 12, 242, 
245, 246]) in a gas-dust protoplanetary cloud (or a swarm of 
planetesimals) has the greatest chance of hitting in that 
protoplanet, the specific angular momentum which differs 
least of all from the specific angular momentum of the 
particle (or the planetesimal). Although individual particles 
may not fall into their bunch, however, following O. Yu. 
Schmidt [6 p. 33], 

These deviations are mutually compensated so that for the 
calculation it can be assumed that the particles are precisely 
distributed over the “areas” outlined on the axis of specific angular 
momentum for each planet. The boundary of the area we will 
consider the value of specific momentum, equidistant from the 
specific momentum of two neighboring planets. 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Models of Protoplanetary Formation and the Laws of Planetary  
Distances in the Solar System and Other Exoplanetary Systems 

515 

However, O. Yu. Schmidt could not analytically derive the 
form of the distribution function f  of the specific angular 
momentum within the framework of his model, noting only 
that f  changes with the time in the process of cloud 
evolution, but this is still an unsolved problem [6 p. 35–36]. 

6.1.1. Review of particular cases of the distribution  
function of the specific angular momentum of forming 

protoplanets and the law of planetary distances from the point 
of view of the statistical theory of spheroidal bodies 

Using Schmidt’s cosmogonical hypothesis of evolution from 
the flattened protoplanetary gas-dust disk to the emerging 
protoplanets [6, 21], let us consider a flattened protoplanetary 
gas-dust cloud based on the model of a rotating and 
gravitating spheroidal body with the distribution function of 
the specific angular momentum f  described by formula 
(3.4.9) from Section 3.4. 

Let n  be a value of specific angular momentum 

corresponding to the boundary between the domains of n-th 
and 1n -th protoplanets (bunches or protoplanetary 
embryos in the flattened gas-dust protoplanetary cloud), 
whose specific angular momentums are equal to n  and 1n  

respectively (Fig. 6.1). 
 

 
1nnn  

Figure 6.1.  Graphic representation of the conditional border between the 
regions of n -th and 1n -th forming protoplanets 
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Then, following the hypothesis of Schmidt, we can see 
that: 

2
1nn

n . (6.1.1) 

During the process of a conglomeration of particles of gas-
dust media in a bunch, their specific angular momentums are 
averaged and the specific angular momentum of the bunch 
(planetesimal) as a forming protoplanet is, therefore, the ratio 
[6]: 

n

n

n

n
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n

1

1
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. (6.1.2) 

According to Eq. (3.4.9) obtained in the statistical theory [16, 
73], the probability density distribution function of the 
specific angular momentum is: 

2

)1(2
0

2
0

2

)1(
)( ef . (6.1.3) 

In the assumption of the smallness of an inverse average value 
of the specific angular momentum 1  since 1 in 
accordance with (3.4.11): 

1
2

)1( 2
01 , (6.1.4) 

we obtain the function )(f  to be approximated by a uniform 
distribution law of the kind: 

const
2

)1(
)(

2
0f . (6.1.5) 

Taking into account that 2h  as well as Eq. (3.4.4) we 
obtain: 
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where
2

2
0

2

)1(
2

0 )1()(
h

hehf is the particle distribution 

function (3.4.3) with respect to the radial coordinate h  in a 
rotating (with uniform angular velocity const ) spheroidal 
body, that is, one-dimensional probability density of finding a 
particle in a uniformly rotating spheroidal body at the 
distance h  from the axis of rotation. 

On the other hand, a one-dimensional probability density 
function )(hf of particle detection along the radial coordinate 
h  can be found through the volume probability density 
function ),( zh based on the following relation: 

2

0

),()( hdzdzhhf . (6.1.7) 

Substituting (6.1.7) into Eq. (6.1.6) we obtain: 
2

0

),()( dzdzhhdhdf . (6.1.8) 

Taking into account that 2h  and that, moreover, 
const , equation (6.1.8) can be rewritten as follows: 

2

0

),()(2 dzdzhf . (6.1.9) 

When the condition of smallness (6.1.4) is carried out, the 
function )(f  is approximated by the uniform law (6.1.5), so 
that Eq. (6.1.9) takes the form: 
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that is, the relation is true: 

2
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2
0dzzh . (6.1.10b) 

Taking into account that ),(),( zhMdzzh  is the mass 
density of a spheroidal body we obtain the requirement: 

2
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2
0Mdzzh . (6.1.11) 

Moreover, the function of mass density  must satisfy this 
requirement under the condition of the uniform law (6.1.5) of 
angular momentum distribution )(f . As is well known [6, 12, 
16], in the case of the uniform distribution law (6.1.5), 
Schmidt’s law of planetary distances occurs: 

nccan 21 , (6.1.12) 

where 1c , 2c  are some constants. Thus, if the mass density of 
a spheroidal body satisfies the condition (6.1.11) then 
Schmidt’s law (6.1.12) takes place. This result generalizes and 
refines the conclusion of J. Laskar [257]: for a constant mass 
density (constant distribution) )(a  the orbital major semi-

axes na  of formed extrasolar planets satisfy the relation: 

nccan 21 , that is, Schmidt’s law of planetary distances 

(6.1.12). 
Indeed, taking into account: 
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where )(h  is a surface mass density, we establish from Eq. 
(6.1.10a) that: 
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whence, bearing in mind that 
22
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dze
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, we derive the 

condition of Laskar (constancy of the surface mass density): 
const)1()( 2

0Mh , (6.1.14) 

because h  is a radial coordinate axis along which the major 
semi-axes a  of planet orbits are measured. 

Now we consider another case investigated by J. Laskar 
[257], namely when: 

2/3)( aca . (6.1.15) 
Indeed, formula (6.1.15) can be obtained as a special case of 
(6.1.13) representing )(h in the form: 
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that is, by introducing a variable: 
3/)1( 2

0
2hea , (6.1.17a) 

we can write Eq. (6.1.16) in the form: 
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Taking into account that 2h  let us rewrite (6.1.17a) in 
relation to the variable , choosing the value of the specific 
angular momentum equal to n : 
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whence: 

nna
3

)1(
ln

2
0 . (6.1.18b) 

So, we can determine the value of specific angular momentum 
along the border between n-th and 1n -th protoplanets: 
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Substituting (6.1.17a)–( 6.1.17c) into Eq. (6.1.6) we have: 
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Given (6.1.19a, b), let us calculate the integrals in Eq. (6.1.2): 
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12/5
2/5

2/32

3

2

3
)(   

2/32/3
1 nn aa ; (6.1.20a) 
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n

n

n

n

a

a

adaadf
11

ln
)1(2

9
)( 2/5

2
0

  

n

n

a

an

n daa
a
a

aa
1

2/5

1

2/3
2

0 3

2
ln

3

2

)1(2

9
  

)lnln(
)1(

3 2/3
1

2/3
12

0

nnnn aaaa   

).(
)1(

2 2/32/3
12

0

nn aa  (6.1.20b) 

Substituting (6.1.20a and b) into (6.1.2) we yield: 
                      

2/32/3
1

2/3
1

2/3
12

0

lnln
)1(

3

nn

nnnn

n aa

aaaa
  

2/32/3
1

2/32/3
1

2
0 )1(

2

nn

nn

aa
aa

  

.
)1(

2lnln

)1(

3
2

0
2/32/3

1

2/3
1

2/3
1

2
0 nn

nnnn

aa
aaaa

 (6.1.21) 

According to Eq. (3.4.11) (or condition (6.1.4)): 

)1(

2
2

0

 (6.1.22) 

and also taking into account that: 

1

2/32/3
1

1
2/3

1
2/3

1
2/3

1

2/3
1

2/3
1

ln
)ln(ln

lnln
lnln

n

nn

nnn

nnnn

nnnn

a
aa

aaa
aaaa
aaaa

, 

that is,  
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2/32/3
1

12/3

12/32/3
1

2/3
1

2/3
1

ln

ln
lnln

nn

n

n
n

n
nn

nnnn

aa
a

aa
a

aa
aaaa

 

,

1

ln

ln
2/3

1

1
1

n

n

n

n

n

a
a

a
a

a  

we obtain: 

1

1

ln
2
3

ln
2

3
2/3

1

1
1

1

n

n

n

n

nn

a
a

a
a

a . (6.1.23) 

Carrying out the long division on the left-hand side of Eq. 
(6.1.23) we find: 

)/ln(
2
3

)/(1

)/ln()/(

)/ln()/(
2
3

)/ln(
2
3

)/ln(
2

3

1

2/3
1

2/3
1

2/3
1

1
2/3

11

1

nn

nn

nnnn

nnnnnn

nn

aa

aa

aaaa

aaaaaa

aa

, 

that allows us to write Eq. (6.1.23) in the form: 

1

1

ln

ln
2

3
ln

2

3
2/3

1

2/3

1

2/3

1

1
1

1

n

n

n

n

n

n

n

n
nn

a
a

a
a

a
a

a
aa . (6.1.24) 

According to (6.1.18c), (6.1.22), and (6.1.24), it follows 
directly that: 
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1

1

ln
2
3

ln
2
3

ln
2

3
ln

)1(

3
2/3

1

1

1
1

2
0

n

n

nn

nn

a
a

aa
aa , 

(6.1.25a) 

whence: 

3

2

1

lnln
lnln 2/3

1

1
1

n

n

nn
nn

a
a

aaaa . 
(6.1.25b) 

Using (6.1.1), (6.1.18c), and (6.1.22) and taking into account 

that nn aln
2

3
 and nn aln

2

3
 we obtain: 

2

lnln
ln 1

1
nn

n
aaa . (6.1.26) 

Substituting (6.1.26) into Eq. (6.1.25b) this equation becomes: 

1

lnlnlnln

3

4
lnlnln2 2/3

1

1

11
1

nn

nn

nnnn
nnn

aa
aa

aaaaaaa , 

(6.1.27 ) 

whence: 

1

lnln

3

4
lnln 4/3

1

1

11
1

n

n

nn
nn

a
a

aaaa . 
(6.1.27b) 

Taking into account that: 

1

1

4/3

1

1 ln1
n

n

n

n

a
a

a
a , (6.1.28) 

equation (6.1.27b) with sufficient accuracy is approximated as 
follows: 

3

4
lnln 1nn aa  (6.1.29) 

or: 
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,...3,2,1,
3

4
ln

1

n
a
a

n

n  . (6.1.30) 

Exponentiating equation (6.1.30) we find that: 
...3,2,1,3/4

1 neaa nn , (6.1.31a) 
that is:  

,...,

,

,

3/4
23

3/4
12

3/4
01

eaa
eaa
eaa

 (6.1.31b) 

whence: 

,...,

,

,

3

4
3

03

3

4
2

02

3

4
1

01

eaa

eaa

eaa

 (6.1.31c) 

Summarizing Eqs (6.1.31c) we find: 

,...3,2,1,3

4

0 neaa
n

n  (6.1.32) 

Taking the logarithm of (6.1.32) we obtain the relation: 

neaa bbnb log
3

4
loglog 0 , (6.1.33a) 

that in the case of constants selecting 01 log ac b  and 

ec blog
3

4
2  passes into the law of planetary distances of 

Gurevich and Lebedinsky [23] and other authors: 
nccanb 21log , (6.1.33b) 

which proves Laskar’s proposition [257]. It is clear that Eq. 
(6.1.33b) corresponds to the exponential type of law: 

nc
n bCa 2

1 , (6.1.33c) 

where 1
1

cbC . Obviously, Eq. (6.1.33c) generalizes several 
empirical laws proposed by Murray and Dermott (1999) [258, 
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259], Poveda and Lara (2008) [260, 261], Flores-Gutierrez 
and  Garcia-Guerra (2011) [262], and others.  

6.1.2. The general equation of distribution of the specific 
angular momentum of forming protoplanets 

Now let us consider the general derivation of the law of 
planetary distances within the framework of the statistical 
theory of spheroidal bodies (without any restriction like 
(6.1.4)). 

Using Eqs (6.1.2), (6.1.3) we can calculate: 

n

n

n

n

n

n

n

n

df

dfddf

df

df
n

n

n

1

1

1

1

)(

)()(

)(

)(
1

  

1

2

)1(

2

)1(

1

2

)1(

2
0

1

2
0

2
0

n

n

n

n

e

dee
n

n   

1

2

)1(

2

)1(

1

2

)1(

2
0

1

2
0

2
0

n

n

n

n

e

dee
n

n . (6.1.34a) 

Taking into account that Eq. (6.1.22) (see also (6.1.4)) we 
obtain: 
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1

11

1

1 1

n

n

n

n

n

n

n

n

n

n

n

e

ee

e

dee
n

n  

.
1

1

1

1

1

nn

nn

ee

ee

e

e
nn

n

n

n

n

 (6.1.34b) 

Performing the long division in the right-hand side of Eq. 
(6.1.34b) we obtain: 

n

nn

nn

nn
nn

n

nn

nn

ee

e

ee

ee 1

1

1

1

)( 1

1

, 

that allows us to write Eq. (6.1.34b) in the form: 

1

1

)( 1

nn

n

ee

enn
nn   

1
)(

1

1nn

e

nn
n . (6.1.35) 

Multiplying both sides of Eq. (6.1.35) by 1we obtain: 

1

)(
1 1

1 )(

1
111

nne
nn

nn . (6.1.36) 

To limit 01  in equation (6.1.36) let us use L’Hospital’s 
rule: 
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,0111

)(
lim1

1

)(
lim10

1

1

)(
1

1

0)(

1
1

0
1

111
11

nn

nn

nn

nnnn

nnnn ee

that is, we obtain the identity. Using (6.1.1) for Eq. (6.1.35) 
we obtain: 

12

1

2 2/)(

111
1

11 nne
nnnnnn

n , (6.1.37) 

from which we obtain the general difference equation: 

1
2

2/)(
11

1
11 nne

nn
nn . (6.1.38) 

Let us consider some particular cases of the equation 
(6.1.38): 

a) if the condition (6.1.4) is true then we can represent the 
exponential function in Eq. (6.1.38) by Maclaurin’s series in 
the linear approximation: 

2

1
)(1 11

2/)( 11
nn

nne . (6.1.39 ) 

Substituting (6.1.39a) into the equation (6.1.38) we obtain: 

2/)(
2

11

11
1

nn

nn
nn ,  

whence follows a uniform law of distribution of the specific 
angular momentum: 

const0 11 nnnn ; (6.1.39b) 
b) taking into account the condition (6.1.4) let us represent 

the exponential function in Eq. (6.1.38) by Maclaurin’s series 
in the quadratic approximation: 

2

2
11112/)(

4!2

)(

2
111 nnnnnne . (6.1.40a) 

Substituting (6.1.40a) into the Eq. (6.1.38) we obtain: 
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22
1111

11
1 8/)(2/)(

2
nnnn

nn
nn  

4/)(1

2
2

11
11

nn
n  

,
224

122 1111
1

111
1

nnnn
n

nn
n  

that is: 
02 11 nnn . (6.1.40b) 

The characteristic equation for the second order difference 
equation (6.1.40b) has the form ( n

nZ ): 

0)1(12 22 ZZZ , (6.1.41) 
whose solutions are two identical roots 121 ZZ , that is, 
the one with a multiplicity of 2d . This means that the 
linear difference equation of the form (6.1.40b) has a solution 
in the form of an arithmetic progression: 

nBAZnBA n
n ][)( 1 . (6.1.42) 

Based on the logical deduction of (6.1.40b) and (6.1.42) we 
conclude that the following constants A  and B  should be 
chosen: 

0A ; (6.1.43a) 
dB nnnn 11 , (6.1.43b) 

where d  is a difference. 
Using the condition of decay ( 0gcV ) of spheroidal 

body (see Section 5.4) and Eq. (7.3.43) for n-th protoplanet 
(see Section 7.3 in the next Chapter 7) we find that: 

)1( 2
nnn eMa , (6.1.44) 

where na  are the major semi-axes of protoplanets, and ne  are 

the geometric eccentricities of orbits. Substitution of (6.1.43a, 
b), and (6.1.44) into Eq. (6.1.42) gives Schmidt’s law of 
planetary distances [6]: 
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2 0(1 )n n n
A Bn dR a e n
M M M M

. (6.1.45) 

If 0n then it follows directly from Eq. (6.1.45) that:  

)1( 2
000 eMa ; (6.1.46) 

c) concerning the condition (6.1.4) let us represent the 
exponential function in Eq. (6.1.38) by Maclaurin’s series in 
the cubic approximation: 

2/)( 11 nne   

3

3
11

2

2
1111

8!3
)(

4!2
)(

21
1 nnnnnn . (6.1.47) 

Substituting (6.1.47) into equation (6.1.38) we obtain: 

12 nn  

33
11

22
1111

11

48/)(8/)(2/)( nnnnnn

nn  

,

24
)(

4
1

2
2

2

2
1111

1
nnnn

n  
(6.1.48a) 

and taking into account the approximation: 

2
2

11111

24
)(

4
1

1

nnnn

 
 

2
2

11

2

11111

24
)(

44
1 nnnnnn  

2
2

11111

48

)(

4
1 nnnn  (6.1.48b) 

we have: 

2
2

11111
1 48

)(

4
122 nnnn

nn  
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24

)(

2
22

2
1111

1
nnnn

n  

,
24

)(

2

2
1111 nnnn  

 
whence: 

0)(
12

2 2
11

1

11 nnnnn . (6.1.49) 

The characteristic equation for the difference equation 
(6.1.49) has the form: 

0)(
12

2 211
1

11 nnnnn  

or: 

0)1(
12

)1( 22)1(2
1

21 ZZ nn , 

whence we find that: 

0)1(
12

1)1( 21
1

2 ZZ n . (6.1.50) 

The characteristic equation (6.1.50) is reduced to two 
equations:  

;0)1( 2  (6.1.51a) 

12)1( 12 nZ . (6.1.51b) 

The solution of Eq. (6.1.51a) is the root 1)1(
1Z  of a 

multiplicity of 2d , and the solutions of Eq. (6.1.51b) are 

)1(n -th power roots nkeZ
k

nn
k ,...,1,0,12 1

2i
1)2(  with 

sufficient accuracy (under condition 01 , that is, 
). As a result, the nonlinear difference equation 

(6.1.49) at the linear approximation ( 01 ) has a general 
solution [16, 73]: 
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n

k

n
kk

n
n ZCZnBA

0

)2()1(
1 ][][)(   

n

k

k
n

nnn
k eCnBA

0

1

2i
112 . (6.1.52) 

Taking into account (6.1.44), from Eq. (6.1.52) the law of 
planetary distances of the kind [73] follows directly: 

i2
2 11

0

(1 ) 12
nn n k

k nn
n n n

k

CA BR a e n e
M M M

 

/2

1

0

2
2 12 cos

1

ent nn
n

k
k

na bn c k
n

, (6.1.53) 

if 2/ent,...,1,0,*
1 nkcc kkn , MCc kk / , 

MAa / , MBb / . 

6.1.3. A statistical model of evolution for rotating  
and gravitating spheroidal bodies and its application  
to the problem of distribution of planetary distances  

in the Solar system 

Let us now use the cosmological hypothesis of Schmidt [6, 
21] at develop a statistical model of a rotating and gravitating 
spheroidal body in the stage of evolution from a 
protoplanetary flattened gas-dust disk to the formation of 
protoplanets. As noted in Sections 6.1.1 and 6.1.2, this theory 
starts from that fact that during the process of the origin of a 
protoplanet, each particle (or generally speaking, 
planetesimal) in a gas-dust protoplanetary cloud (in a swarm 
of planetesimals) has a chance to land on the protoplanet 
whose specific angular momentum value is the same as one 
for the particle/planetesimal (or it differs less than all values 
for other protoplanets). 

We consider a flattened gas-dust protoplanetary cloud as a 
uniformly rotating and gravitating spheroidal body with the 
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specific angular momentum distribution function (6.1.3). 
Analogously to Sections 6.1.1 and 6.1.2, taking into account 
that the inverse parameter 1  for the specific angular 
momentum of a spheroidal body is very small in accordance 
with (6.1.4), we can also represent the function of specific 
angular momentum )(f  by Maclaurin’s series [16, 73]: 

22
0

2
0

2
0

2

)1(

2

1

2

)1(
1

2

)1(
)(f . (6.1.54) 

Let us limit the series (6.1.54) by the zeroth term, that is, we 
suppose that  

const2/)1()( 2
0f . (6.1.55) 

Taking into account Eq. (6.1.55), the formula (6.1.2) 
becomes: 

n

n

n

n

ddn

11

))2/)1((/())2/)1((( 2
0

2
0  

.2/)( 1nn  (6.1.56) 
Substituting Eq. (6.1.1) into Eq. (6.1.56) we obtain the 
difference equation (see the case of quadratic approximation 
b) in Sections 6.1.2): 

2/)( 11 nnn . (6.1.57) 
It is clear that Eq. (6.1.57) describes the well-known property 
of an arithmetic progression whose n -th term is calculated by 
the formula: 

ndn 0 , (6.1.58) 
where d  is the difference and 0  is the first (the zeroth) term 

of an arithmetic progression. 
Taking into account Eq. (6.1.58) and formula (6.1.44) for 

the relation of the specific angular momentum n  with the 

square root of radius nR  for orbit for the n -th protoplanet 
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(under the condition of the circular character of planetary 
orbit when 0ne ): 

nn RM , (6.1.59) 

we conclude that zeroth approximation of function )(f  leads 
to Schmidt’s well-known law: 

nbaRn , (6.1.60) 

where ba,  are some constants. In 1944, O. Schmidt derived 
his law for planetary distances. However, for the defined 
constants a  and b  this law (6.1.60) does not permit us to 
estimate correctly planetary distances for all planets of the 
Solar system. In connection with this Schmidt [6, 21] 
proposed using his law (6.1.60) in a combination, that is, 
separately for the planets of the Earth group on the one hand 
and for the planets of the Jupiter group on the other. 
Moreover, the distribution function of a specific angular 
momentum of a gas-dust cloud was not derived analytically 
within the framework of Schmidt’s model [16, 73]. 

In our view, the cause of the above-mentioned problem 
with Schmidt’s lies in the distribution function being too 
simplified as a uniform kind (6.1.55) for a specific angular 
momentum. As shown in Sections 6.1.2, to modify the 
evolution model for planet formation let us use the linear 
approximation of the function )(f , taking into account both 
zeroth and first terms [16, 73]: 

2

)1(
1

2

)1(
)(

2
0

2
0f .  (6.1.61) 

Bearing in mind Eq. (6.1.61), we can obtain from formula 
(6.1.2) the following: 
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))(
4

)1(
1

)(
6

)1(

2

)(

1

2
0

2
11

2
2
01

nn

nnnn
nn

n . (6.1.62) 

and then with the use of Eq. (6.1.22) and Eq. (6.1.1) we 
finally have the difference equation (see the analogous case c) 
of cubic approximation in Sections 6.1.2): 

.
)2(4

)])(()2[(
3

2

11
1

11
2

11

1

11

nnn

nnnnnnnnnn

n
 (6.1.63) 

To find its solution let us carry out the following substitution: 
,3,2,1, nZ n

n . (6.1.64) 
As a result of this, we obtain from Eqs (6.1.63) and (6.1.64) 
the following characteristic equation [16, 73]: 

01)1()3/()1( 2112 ZZZ n  (6.1.65) 
which is reduced to two equations: 

0)1( 2Z  (6.1.66a) 
and: 

3)1( 21 ZZ n . (6.1.66b) 

Taking into account that  when 0  in the right-
hand part of Eq. (6.1.66b), that is, in the left-hand part 

121 )1( nn ZZZ  at 0  (see (II.1)), the characteristic 
equation (6.1.66b) can be simplified to the form [16, 73]: 

31nZ  (6.1.67) 
Equation (6.1.66a) has one root with double multiplicity: 

2,1 1
)1(

1 dZ  (6.1.68a) 
while equation (6.1.67) has 1n  roots: 

)1(,,0,3 )1/(2i1)2( nkeZ nkn
k . (6.1.68b) 

According to the roots (6.1.68a) and (6.1.68b), the general 
solution of the difference equation (6.1.63) has the form [16, 
73]: 
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n

k

n
kk

n
n ZAZBnA

0

)2()1(
1 ][])[(   

]2/[

1
0

)1/( )1/(2cos(2)3(
nent

k
k

nn nnkAABnA , (6.1.69) 

where it has been taken into consideration that 
*

1 k
AAA knk ,  under derivation of Eq. (6.1.69). The 

obtained formula (6.1.69) points to a quantization of the 
specific angular momentum n  as well as a possibility to 

represent the specific angular momentum as a wave packet: 

})1/(2exp{i
0

n

k
kn nnkC . A similar conclusion has been 

proposed within the framework of the above-mentioned 
quantum mechanical approach [15, 34–42, 233–235, 238]. 

Taking into account Eq. (6.1.59), the solution (6.1.69) 
permits us to obtain a new law for the square root of planetary 
distances (see also Eq. (6.1.53)) in the form [16, 65, 73]: 

]2/[

1
0

1

1

2
cos2)3(

nent

k
k

n
n

n n
nkaabnaR , (6.1.70) 

where ]2/[0 ,...,,, naaba  are coefficients to be sought for a 

planetary system (the Solar system) in the form of dependence 
on . The proposed law for planetary distances (6.1.70) 
generalizes Schmidt’s well-known law (6.1.60). Let us note 
that the quantization of specific angular momentum n  leads 

to the quantization of planetary orbits following the quantum 
mechanical approach [15, 34–42, 200, 201, 233–235, 238]. 

Now let us consider the evolution of our Solar system based 
on a nebular origin following the theory of Hoyle [30, 31]. 
Undoubtedly, the nebular origin of the Solar system permits us 
to describe the proto-Sun together with a flattened gas-dust 
protoplanetary cloud as a model of a rotating and gravitating 
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spheroidal body. According to Hoyle’s theory [8, 30], we 
consider an angular momentum value of the presolar nebula 
(cloud) being equal to /s)m(kg104/s)cm(g104 244251L . 
This value was obtained by Hoyle bearing in mind that a 
primary presolar cloud has a mass density 1 atom per 1 sm3 and 
angular velocity -15 1~ 10 s as for our Galaxy as a whole [8, 
10]. It is well known that the mass of the presolar cloud is 
approximately 301.988 10 (kg)M . Then it is not difficult to 
see that the mean value of specific angular momentum for the 
forming Solar system is 14 2/ 2.012 10 (m / s)L M . 

Let us apply the proposed law (6.1.70) to the estimation of 
the planetary distance in the forming Solar system [16, 73]. 
Supposing the case n 0 corresponds to the planet of Mercury, 
n 1 conforms to Venus, n 2 corresponds to the Earth, ..., 
n  8 corresponds to Pluto we can calculate the value 

)1/()3( nn  in (6.1.70) for different values of n  (see Table 6.1). 
The proposed law for planetary distances (6.1.70) gives us 

the calculated formulas to estimate the square root of 
distances for all planets of the Solar system [16, 73]: 

00 aaR ;  

)2()3( 10
2/1

1 aabaR ;  

)()3(2 10
3/2

2 aabaR ;  

0
4/3

3 )3(3 abaR ;  

)
5

3
cos2()3(4 10

5/4
4 aabaR ; (6.1.71) 

)()3(5 210
6/5

5 aaabaR ;  

)];
7

cos
7

3
cos

7

5
cos(2[)3(6 3210

7/6
6 aaaabaR   

];2)(2[)3(7 4310
8/7

7 aaaabaR   
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)]
9

cos
2

1

9

5
cos

9

7
cos(2[)3(8 43210

9/8
8 aaaaabaR ,  

where the coefficients are to be equal to a = 0.622173;  b = 
0.228316;  12

0 0.597348 10a ; 12
1 2.773092 10a ; 

12
2 1.534506 10a ; 12

3 0.925297 10a ; 12
4 0.816924 10a  

(see Table 6.1). 
Taking advantage of coefficients and substituting theirs in 

Eqs (6.1.71), we can find distance square root estimations for 
the planets of the Solar system. The preliminary calculations 
of 8,...,1,0,nRn  in accordance with Eqs (6.1.71) and Table 

6.1 give us a good agreement with the observable data (see 
Table 6.2), excepting the case of 8n  for Pluto. To decrease 
the error of estimation 8R  we can introduce an additional 
coefficient 5a  in the formulas (6.1.71). 

In other words, instead of the previous formula 8R  for 

Pluto in (6.1.71), we have to use the following [16, 73]: 

,)]
9

cos)(
2

1

9

5
cos

9

7
cos(2[

)3(8

543210

9/8
8

aaaaaa

baR
 (6.1.72) 

where 12
5 0.7679326 10a . However, such a decision violates 

the proposed law (6.1.70) because the necessary number of 
coefficients is equal to 4]2/[nent  only. In this connection, 
there is no reason to include the data (6.1.72) for Pluto in 
Table 6.2. 

Table 6.2 presents the values of the square root of 
planetary distances calculated following the proposed law. In 
Table 6.3, a comparative analysis of different laws is 
presented [6, 8, 12]. As follows from Table 6.3 and Fig. 6.2, 
the proposed law gives the best results in the prediction of 
planetary distances for the Solar system. 
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In reality, for all planets of the Solar system, excepting the 
Earth and Pluto, the absolute estimation error (and, naturally, 
the relative one) is equal to 0% (for the Earth, the absolute 
estimation error is 11% and the relative one is 10%). Thus, the 
mean error of estimation of planetary distances in the Solar 
system is equal to 1.4% in accordance with the proposed law. 
For comparison, Table 6.3 also presents both the well-known 
Titius–Bode law and its modification of Wurm [8]:  

7,,...,2,1,0,,2 nbaR n
n  (6.1.73) 

where 387.0a and 293.0b . However, formula (6.1.73) 
indicates additional planets between Mercury and Venus. On 
this question of “the lost planet,” the answer can be found in 
the form of the proposition of J. Bailey [263]: “The Moon 
may be a former planet.” According to this proposition, the 
Moon had an unstable orbit from which it was captured by the 
Earth [8]. However, the modern point of view considers the 
Moon’s origin to be result of a collision of a former planet 
with the proto-Earth [264–269]. Moreover, the Titius–Bode 
law does predict the existence of a “trans-martian” planet 
between Mars and Jupiter [8] (see Table 6.3). In fact, the area 
is occupied by the asteroid belt, with the dwarf planet, Ceres, 
the largest body in the belt.     

The empirical formula of Blagg [229]: 

,7,...,2,1,0,1,2

)],([)7275.1(

n
nfBAR n

n  (6.1.74) 

 where 
A and B are constants,  
f is a periodic function, and  

 and  are constant angles); 
as well as the empirical formula of Richardson [230]: 

10,...,2,1),()728.1( nFAR nn
n

n , (6.1.75) 
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where nn )13/4( and nF  is a periodic function, also predict 
the existence of the so-called “trans-Martian” planet. This 
produces a “gap” between Mars and Jupiter because Ceres is 
not considered a planet. Although the formulas of Blagg and 
Richardson are pure heuristic and having no theoretical base, 
nevertheless, they revealed the presence of a periodic function 
in the planetary distance laws (6.1.74) and (6.1.75). This fact is 
fully confirmed by the proposed theoretical law (6.1.70). 

Unlike Blagg’s and Richardson’s empirical formulas, 
Schmidt’s law (6.1.60) was founded using scientific hypothesis 
on a correspondence between the specific angular momentum 
distribution law of gas-dust protoplanetary cloud and the 
planetary distances law. Schmidt’s law, (Table 6.3) (6.1.60) 
estimates the distances for outer planets (beginning from Jupiter) 
at 28.2a , 0.1b  and separately for inner planets (beginning 
from Mercury) at 62.0a and 20.0b . In fact, Schmidt 
proposed two laws of the Solar system’s origin [6, 8]. 
Nevertheless, because Schmidt’s law (6.1.60) is a particular case 
of the law (6.1.70) then the proposed law connects these two 
laws as a whole. Indeed, this law surely predicts the planetary 
distances for the Solar system, except for the Earth and Pluto. 

Let us note that this exception is not a deficiency in the 
proposed theory since the theories of von Weizsäcker [26, 27] 
and Ter Haar and Cameron [7] also revealed an exceptional 
peculiarity for the Earth and Pluto. In particular, Ter Haar and 
Cameron supposed that the best factor in the geometrical 
progression for planetary distances is equal to 1.89 because 
this number was obtained within the framework of von 
Weizsäcker’s theory [26, 27] (see also the like estimation of 
Murray and Dermott [258, 259]). Namely, this geometrical 
progression gives a divergence with observable planetary data 
for the Earth and the Pluto only. Thus, the proposed law and 
von Weizsäcker’s and Ter Haar–Cameron’s theories lead to a 
similar result. 
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Figure 6.2. The diagram of measure of deviation 

,%/)( obs
n

obs
n

th
n RRR for planets of the Solar system where obs

nR  is a 

value of real (observable) planetary distances in the Solar system, th
nR  is 

an estimation of planetary distances following theoretical laws, n  is a 
planet number  

6.2. The thermal emission model of  
protoplanetary cloud formation 

Schmidt’s cosmogonical hypothesis on the origin of the Solar 
system as a result of the evolution of gas-dust meteorite 
swarm can be put forward on a basis of the emission model of 
evolutionary development from the flattened protoplanetary 
gas-dust disk to the emerging protoplanets [6, 21]. As 
Schmidt noted, a swarm of relatively large bodies and small 
particles exists for quite a long time before being merged into 
large bodies, that is, into protoplanets [6 p.31]: 
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During this time, these bodies and particles mixed and interacted. 
The magnitude of the momentum was different in different parts of 
the swarm, but the direction of the cumulative momentum of one or 
another fairly large part of the swarm could not differ cardinally for 
the parts that went to the formation of individual planets. 
Therefore, the momentums of the planets should be approximately 
parallel. This is the explanation for the coplanarity of the planetary 
orbits: all the planets move very close to the constant (Laplace) 
plane and in the same direction. 

Thus, all the laws of planetary orbits – motion almost in one plane, 
in one direction and almost in circles – are explained simply and 
naturally, based on the idea of the formation of planets by 
combining a very large number of bodies.  

As mentioned in some recent works (see, for example, 
[232, 241, 270, 271]) within the last decade, a coherent 
scenario has arisen for the formation of the terrestrial planets 
from an initial dusty protoplanetary disk. The modern insight 
is the result of numerous N-body computational simulations 
of the Solar system formation (see [242, 247, 251, 272-277) 
and numerical high-resolution hydrodynamic as well as 
magneto-hydrodynamic calculations ([145, 256, 278–282]). 

6.2.1. The distribution functions of moving particles  
in the gravitational field of a spheroidal body due  

to heat emission of particles in the outer protoplanetary 
shell under formation 

As already noted, the main challenge of modern cosmogonical 
theories is the problem of the distribution of angular 
momentum in the Solar system: while the Sun constitutes 
more than 99% of the total mass of the Solar system (the total 
mass of all planets is equal to only 1/745 or 0.13% of the 
Sun’s mass), it fits less than 2% of the total angular 
momentum only, that is, the remaining 98% belong to the 
planet exclusively [44 p. 277]. In our opinion [73], a possible 
explanation for the angular momentum removal to the 
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periphery of the Solar system is caused by the thermal and 
gravitational instabilities of a forming spheroidal body. 
Indeed, the rapid increase of the gravitational field in the 
instable gravitating spheroidal body leads to disturbances of 
the particle distribution function of the rotating spheroidal 
body in passing from one virial equilibrium state to another 
(at the given temperature). 

As shown in Sections 3.3 and 3.4, the equilibrium 
distribution functions (volume density of probability function 

),( zh and the distribution function of specific angular 
momentum on the distance )(hf ) are described by formulas 
(3.3.22a) and (3.4.32) of the kind: 

2/))1((2
0

2/3 22
0

2

)1()2/(),( zhezh ; (6.2.1 ) 
2/)1(2

0

22
0)1()( hehhf . (6.2.1b) 

Jeans found that under the transition to a new state of virial 
equilibrium it is possible that the temperature of gravitating 
gas masses (nebulae) increases due to the energy of the 
gravitational field [1 p.68]. This means that the unstable state 
of virial equilibrium can be violated with the increasing 
temperature of a spheroidal body. Conversely, the 
temperature increase leads to an increase in the kinetic energy 
of the thermal motion of particles, so that many of them 
acquire the mean square velocity of thermal movement 
becoming greater than the escape velocity from the spheroidal 
body, that is, 

gv 2
__

2 . Leaving the spheroidal body these 

particles begin to move on Keplerian elliptical orbits (see 
[158] or (7.2.29) in the next Chapter 7): 

*

2

cos1

1

e
ear , (6.2.2) 

where a  is a major semi-axes of protoplanets, and e  is an 
eccentricity of the orbit of a particle. 
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Using the formula of the gravitational potential of a 
rotating spheroidal body in a remote zone *r r  (see formula 

(7.2.20) in Chapter 7 and [72, 73]): 

0
22

0

0
sin1

|,
* r

Mr rrg ,  (6.2.3) 

we can find the critical velocity of the escape of particles from 
this spheroidal body (excluding the potential of  centrifugal 
force): 

4
0

22
0 sin1

2
2v

r

M
gc . (6.2.4a) 

If we take into account the potential of the centrifugal force 
2])[2/1( rVc  [53, 95, 97], the escape velocity of particles 

from a rotating spheroidal body can be calculated through the 
potential of gravity cgg V  as follows: 

222 sin),(22v rrV gcgc   

222 hg . (6.2.4b) 

In connection with this, we need to estimate the number of 
particles leaving a rotating spheroidal body (due to their 
thermal chaotic motions) and moving along Keplerian 
elliptical trajectories in its gravitational field. According to [1 
p. 364] the particle distribution function of gas-dust 
protoplanetary cloud (system of stars) in its gravitational field 
obeys the Jeans equation. As shown by Jeans [1 p. 371] (see 
also Section 1.6), the joint distribution function of the spatial 
coordinates zyx ,,  and the velocity components wu ,,  for such 
particles is described by the expression (1.6.44): 

),,(),,()v,( v wuzyxr r   
])()[(]2/)([2 222

0
222

0 wxyumyxm eea g   

.]2/)([2])()[(
222

0
222

0 yxmwxyum geceb  (6.2.5) 
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Substituting the integration constants 2/3
0 /mb  and 

TkB2/1  into Eq. (6.2.5) in accordance with (1.6.48) and 
(1.6.52) gives us the form of the Jeans joint distribution 
function of spatial coordinates as well as velocity components 
for particles in a gravitational field: 

),,(),,()v,( v wuzyxr r   

)](2[2/

2/3

0
222

0

2
yxTkm

B

gBe
Tk

mc   

,])()[(2/ 222
0 wxyuTkm Be  (6.2.6) 

where 1-23
B KJ101.38k is the Boltzmann constant. In 

particular, as follows from Eq. (6.2.6), the Jeans distribution 
function of the spatial coordinates of particles in the 
gravitational field of a uniformly rotating spheroidal body 
with the gravitational potential (5.4.11) at an interior point: 

3

24

2)1(4
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1
2,

2
00

2
02222

022
0

2
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zhzhg

 

becomes the following: 
)]()

3

4
(

8
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2
2222000

),,(
yxr

Tk
m

r
Beczyx  

])
4

3
([

3

24 2

0

2
20000 hr

Tk
m

Tk
m

BB eec . 
(6.2.7) 

Comparing Eq. (6.2.7) with the formula (6.2.1 ) for the 
equilibrium probability volume density function to locate a 
particle in a uniformly rotating gravitating spheroidal body we 
can see their full identity allowing us to determine the basic 
parameters in the state of virial equilibrium of a rotating 
spheroidal body (see also Theorem 1.5, 2.2, 3.1 and 3.3): 

Tkm B3/2 00 ; (6.2.8 ) 
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0
22

0 4/3 ; (6.2.8b) 
62

0
2/3 )1()2/( ec . (6.2.8c) 

Assuming )3/4/( 3
*0 rM , /1*r  the formulas 

(6.2.8a) and (6.2.8b) obtain the following: 
3

*0 2/ TrkMm B ; (6.2.9a) 

Mr /3
*

22
0 . (6.2.9b) 

As follows from (6.2.9a), the parameter of gravitational 
condensation  is directly proportional to the potential 
energy *0*int

/ rMmrEg of a particle in the gravitational 

field at distance *r from the center and inversely proportional 
to the temperature T  of a rotating spheroidal body in the 
virial equilibrium state. Let us note that if 12

0  in (6.2.9b) 

then 0
3/12

* )/( hMr  is the radius of the critical (cross-
section) equipotential surface in Roche’s model [1 p. 252] 
(see also Section 1.4, (1.4.25b)), therefore 1/ 3

0
3

*
2
0 hr  as a 

rule, that is, Eq. (6.2.9b) is valid. 
We will  now estimate the number 1 of particles leaving a 

rotating spheroidal body being in a state of virial equilibrium 
with temperature T . According to the Poincaré virial theorem 
[1 p. 68, 105] (see also Section 1.2) applying to the gravitating 
spheroidal body as a cloud-like configuration of ideal gas, the 

mean value of square velocity of thermal particle motion 2v , 

averaged over all the separate masses, is equal to half the 

average value of the gravitational potential g2

1
 of 

gaseous cloud in the steady state (see Theorem 1.3), or the 
absolute value of average potential energy of interaction gE  

of a particle is equal to the double average kinetic energy 

kE  of a moving particle. Using the Maxwell velocity 
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distribution law [110] we can find the share of particles whose 
velocities are close to the given speed v of the heat motion: 

Tk
m

e
Tk

m
N

dN
B

2
0

2

v2/3

B

0v

2
. (6.2.10a) 

However, the magnitude of the resulting velocity of the 
moving particle into a uniformly rotating spheroidal body 
consists of orbital velocity hr ][  and heat speed v , so 

that when we estimate the number 1  of particles leaving a 
rotating spheroidal body at temperature T , we should use the 
Jeans distribution function of velocity components ),,(v wu  

incoming in Eq. (6.2.6) instead of Eq. (6.2.10a): 
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. (6.2.10b) 

When the critical escape velocity 
g2v  , according to 

(6.2.4a), the number 1 of particles leaving a spheroidal body 
due to thermal chaotic motion can be expressed by the 
formula [73]: 

g
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mN . (6.2.11) 

Let us estimate the number of particles having the critical 
thermal velocity 

gc 2v  in the case of the Solar system. 

Taking into account that the Sun and the solar corona were 
formed mainly of hydrogen atoms with the mass 

27
H0 106734.1m (kg) [206], the temperature of the solar 

corona is approximately (K)105.1 6T  [283], the radius of 

the solar disk is equal to 810955.6R  (m), the thickness of 
the visible part of the solar corona is estimated by the value 

R2  (see Section 7.3 in the next Chapter 7) and, therefore, 
9

* 100865.23RRr  (m) [76], the squared geometric 
eccentricity of the solar disk with a visible part of the solar 
corona is 52

0 10799992.1 in accordance with formula 

(7.3.42) from Section 7.3 (see also [72, 73]), we can estimate 
the values in formula (6.2.11): 
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To estimate the value of the integral in Eq. (6.2.11) in the case 
of the Solar system we transform it into the form [73]: 
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and then use the values of (6.2.12a, b) and the table to 

calculate the probability 

*

2 2/
*

2

1
]Pr[

s

s dsess  that the 

observed value of a standard normal random variable exceeds 
the preassigned value [284 p.500] when 

2054693.3/v B0
* Tkms c :  

2054693.3

14.52
1 278781.1

2

1
2

2

edseN s   

00585769.0278781.1000674212.02N   
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NN 0082.00074907.00006742.02 . (6.2.13b) 
Thus, according to (6.2.13b) in the virial equilibrium state 

at the temperature (K)105.1 6T , the number 1 of particles 
leaving the solar corona by heat emission can be up to 0.8% 
of the total number N of particles of the Solar system. This 
qualitative estimation is entirely consistent with the above-
mentioned fact that more than 99% of the total mass of the 
Solar system is concentrated in the Sun. Let us note that the 
part 1  of all particles leaving a spheroidal body to collide 
with the 2  particles of the peripheral region of the rotating 
spheroidal body. As a result, some particles leaving the 
spheroidal body come back. So, only a small fraction of the 
particles that have left can be moving on elliptical orbits in the 
gravitational field of a spheroidal body. 

By analogy with Eq. (6.2.13b) the number 2  of particles 
from the peripheral region is also easily estimated through the 
distribution function of specific angular momentum (6.2.1b) 

and the maximum point value )1(/1 2
0*hh of this 

distribution function [73]: 

dhheNdhhfNdN h

hh
h

2/)1(2
0
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2

22
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2

)1()(  

2/)1(

2/)1(

22
0

2/)1( 22
0

22
0

22
0 ]2/)1([ h

h

h NehdeN  

NNe 60653.02/1 . (6.2.14) 
Because 12 according to (6.2.13b) and (6.2.14), the 
scattering of 1 particles leaving the spheroidal body due to 
the thermal emission on 2  particles from the periphery of 
rotating spheroidal body takes place, leading to a reduction in 
the number of particles really leaving the spheroidal body (in 
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the case of the Solar system from 0.8% to 0.13% of the total 
number of particles). 

The Jeans distribution function (6.2.10b) of particles 
leaving the spheroidal body can be regarded as a joint 
distribution function of both components of the thermal 
velocity ),,(v wu  and the coordinates ,h  of the plane 

motion (or components of the orbital velocity ][ 1 r , where 
22

1 2 ) for particles in the gravitational field of a 
spheroidal body [73]: 

22

B

02

B

0 ]2[
2

v
2

2/3

B

0
1 2

])[,v(
h

Tk
m

Tk
m

ee
Tk

mr  

2
1

B

02

B

0 ][
2

v
2

2/3

B

0

2

r
Tk

m
Tk

m

ee
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m , (6.2.15) 

after carrying out the respective normalization of this function 
to find . Thus, the joint distribution function of particles in 
the gravitational field of a spheroidal body can be written as 
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Moreover, the normalization condition of the function 
])([ 1 r looks like a two-dimensional analog of the 

normalization condition of the function )v( : 

0
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11 ][][])([ yx rdrdr   

0
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2 1)(
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B

2
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dhhdeA
h

Tk
m

, (6.2.16b) 

whence it follows that: 
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Tk
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B

0

2
. (6.2.16c) 

Taking into account (6.5.16a)–(6.5.16c) the distribution 
function of the particle components of the orbital velocity 

][ 1 r , where 22
1 , can be written as [73]: 
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In a state of the relative mechanical equilibrium of orbiting 
particles in the gravitational field of a spheroidal body, we 
assume that 2)/( ra , , that is, 22

1 3 , so 
that the formula (6.2.17a) becomes the following [73]: 
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As we know [158] that the projection of angular momentum 

0L  on the axis n  (passing through the center) is preserved 

under the motion of a particle with a mass 0m  in the field with 

central symmetry: 

const2
00 hmL n . 

The value of the normal projection of the specific angular 
momentum is then equal to 

2
00 / hmL n . 

In the state of relative mechanical equilibrium of 
individual particles moving in elliptical orbits (in the 
gravitational field of a spheroidal body with a constant 
angular velocity const11 around the axis Oz ) and 

having a specific angular momentum value 2
1h , the 

equation (6.2.17a) can be transformed to find the distribution 
function of the specific angular momentum as a result of heat 
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emission, that is, briefly speaking, the heat (thermal) 
distribution function of the specific angular momentum 

)(Tf . For this we note that the share 1/dN of particles 
rotating in elliptical orbits with a constant angular velocity 

const11 around the axis Oz  and having a specific 
angular momentum in the interval d,  is equal to the 

share 1][
/

1 r
dN of particles moving due to thermal emission 

with the orbital velocities close to hr 11 ][  which can 

be estimated using (6.2.17a) as follows [73]: 
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whence we can see that: 

Tk
m

T e
Tk

mf B

10

2

B

10

2
)( . (6.2.18b) 

Furthermore, we can calculate the average specific angular 
momentum as a result of heat emission through integration by 
parts [73]: 

0

0
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)()()( dfddfdf TTTT  
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2/ )( B10B10 dee TkmTkm   

0 10

B

10

B .
2

)(
2

m
Tkdf

m
Tk

T  (6.2.19) 

According to Eq. (6.2.18a), the number of particles having 
values of the specific angular momentum close to  resulting 
from thermal emission is equal to: 
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2/10
1

10 . (6.2.20) 

Starting from (6.2.20) it is easy to calculate the total angular 
momentum of the rotating outer shell formed by particles 
leaving the spheroidal body due to thermal emission in 
relative mechanical equilibrium [73]: 

TTT mdfmdNmL 10

0

10

0

0 )(
1

, (6.2.21) 

where 1  is a number of particles leaving the spheroidal 
body due to thermal chaotic motion. Substituting (6.2.19) into 
(6.2.21) we find that the value of total angular momentum of 
the uniformly rotating outer shell formed by the particles that 
have left as a result of heat emission is expressed by the 
formula [73]: 

1011

1 222

m
TMkNTkTkL BBB

T , (6.2.22) 

where N/1  is a share of the total number of particles 
leaving the spheroidal body due to thermal chaotic motion 
(according to Eq. (6.2.13b) 0082.0  for the Solar system). 

For comparison, we note that the value of the total angular 
momentum of a uniformly rotating spheroidal body is given 
by formula (3.4.14) from Section 3.4 [16 p.1493]: 

)1(

2
2
0

ML . (6.2.23) 

Let us compare the value of the total angular momentum 
(6.2.23) of a uniformly rotating spheroidal body with the total 
angular momentum value (6.2.22) of a uniformly rotating 
outer shell (protoplanetary cloud) in the case of the Solar 
system. As in formula (6.2.17b), we suppose that , 

2/3)/( ra  in a state of relative mechanical equilibrium 
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of a rotating protoplanetary cloud in the gravitational field of 

the Sun, so that 322
1 . 

Taking into account that the Sun was formed mainly from 
hydrogen atoms with mass 27

H0 106734.1m  (kg) [206], the 

average temperature T  of Sun is approximately 
)K(1047.1 7 [1], the angular speed of rotation of the 

externally visible layers of the Sun (at the equator) is equal to 
61091.2  (s-1) [283], the parameter of gravitational 

condensation of spheroidal body in the case of the Sun is 
estimated by the value 1910297.2 (m-2) (see formula 
(7.3.41) from Section 7.3 of Chapter 7 as well as Chapter 8 
and [76 p. 13]), the square geometric eccentricity of the solar 
disk is 52

0 10799992.1  (see formula (7.3.42) from Section 

7.3 and [72, 73]), we can estimate the values of the total 
angular momentums of the protoplanetary cloud and the Sun 
based on Eqs (6.2.22) and (6.2.23):  

6
Sun

Sun2 19 5
0

2 2 2.91 10

(1 ) 2.297 10 (1 1.799992 10 )

ML M  

13 2
Sun2.534 10 (kg  m /s)M ; (6.2.24a) 

23 7
Sun

Sun27 6
0 1

2 2 1.38 10 1.47 10 0.0082

3 1.6734 10 2.91 10  
B

T
k TML M
m

 

14 2
Sun3.945 10 (kg m /s)M , (6.2.24b) 

where SunM  is the mass of the Sun. These quality evaluations 

(6.2.24a) and (6.2.24b) provide useful although rough 
estimations of the total angular momentums of the Sun and 
the protoplanetary cloud  showing that 

57.15/ LLT . (6.2.25) 
What is surprising is the fact that only 0.8% of the total 
number of particles of the Solar system composing the 
protoplanetary cloud have the angular momentum that is 15.6 
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times higher than the angular momentum of the remaining 
99% [73]. 

Thus, according to the estimations (6.2.24a, b), only 6% of 
the total angular momentum belongs to the Sun, and the 
remaining 94% fits on the protoplanetary cloud. These 
qualitative estimations in the case of the Solar system, in 
general, confirm the known fact of nonuniform distribution of 
the angular momentum noted by Ter Haar [7, 32]: only 2% of 
the total angular momentum belongs to the Sun, while the 
remaining 98% belongs to the planets. They also point to the 
possibility of usage of the model considered above of 
“removal” of the maximal specific angular momentum from 
spheroidal body by particles due to their thermal emissions.  

A more appropriate model of removal of angular 
momentum by particles as a result of the thermal emission 
from the spheroidal body and, therefore, more accurate 
estimations of the total angular momentum of Sun and the 
protoplanetary cloud can be obtained by taking into account 
the multiple of states of virial equilibrium of a spheroidal 
body at different temperatures lT  which is also confirmed by 

numerical modeling of the protostellar hydrodynamic collapse 
of stars under their formation [144, 145]. 

Let us note that, according to (3.8.7) from Section 3.8, 
there is a representation of the mass density of an oblate 
spheroidal body: 
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which then leads to a factorization of the volume probability 
density ),()( rn since the latter is related to the mass 

density ),(),( )(

0

)( rMr n
n

i
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According to (6.2.27), the volume probability density 
),()( rn is represented as a product of the following factors: 

;)2/()( 2/2/3)0( 2rer  

(6.2.28) 
;)1(),( 2/sin2

00

222
0 rer  

;)1(),( 2/sin2
11

222
1 rer  

.)1(),( 2/sin2
11

222
1 r

nn
ner  

We can note that the obtained distribution function 
(6.2.17a) of the components of orbital velocity for the 
particles from the peripheral region remains entirely a 
flattening cofactor 1

ll of the probability volume density 

(6.2.28) of a spheroidal body under its rotation: 
2/121 22

)1()()( h
lll

lehh , (6.2.29a) 

whence: 
),()(),( )1(

0
)0( zhhzh . (6.2.29b) 

This is the first stage of factorization of the probability 
volume density of an immovable spheroidal body being in the 
state virial equilibrium at the temperature 1T , that is, the first 
step of the flattening of a spheroidal body due to its rotation. 
In fact, the l -th factorization step of the probability volume 
density of a rotating spheroidal body : 

),()()...(),( )(
10

)0( zhhhzh l
l  , (6.2.30a) 

Means the l -th step of the flattening of rotating spheroidal 
body under transition to the state of virial equilibrium at the 
temperature lT  when: 

2/
0

)(

1

2

2
)(),(lim zl

l

ehzh
l

, (6.2.30b) 

where )(0 h  is a value of probability volume density in a 

central flat of the oblate spheroidal body representing a gaseous 
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disk. Moreover, according to the known barometric formula 

(3.8.37): 
__

222 2/3
0)( vzez  [2 p.36, 12], the mass 

density )(z of a protoplanetary flattened gaseous (gas-dust) disk 

has the same cofactor 2 2
03 / /

__
2

Bv m k T  in the argument of 

the exponential function as in formula (6.2.17a). This means a 
new sense of the parameter of gravitational condensation 

23 /
__

2v applied to the external gas-dust bunches 
originating as a result of the thermal emission of particles from a 
rotating spheroidal body at its transition from one virial 
equilibrium state to another. We also note that the definition of 
the meaning of the parameter of gravitational condensation of a 
spheroidal body in a state of virial equilibrium, according to 
(6.2.8 ), as well as its square geometric eccentricity (6.2.8b) 
allows us to describe the cofactor (6.2.29a) of l -th step 
factorization of the probability volume density ),()( zhl  of an 

oblate spheroidal body as the following: 
2/)2/(1

0
2 22

0)4/31()( hTkm
l

Beh . (6.2.30c) 

Thus, under the separation of a spheroidal body to the core 
and the outer shells due to the thermal emission of particles 
and gravitational (rotational) instabilities, the physical 
meaning of the values describing a spheroidal body as a whole 
can vary significantly concerning the outer gas-dust shells of a 
forming protoplanetary cloud. 

6.2.2. An application of a statistical model of particles 
moving in the gravitational field of a spheroidal body due 

to heat emission to the problems of the formation of 
exoplanetary systems 

The discovery of a planet orbiting the star 51 Pegasi (Mayor 
& Queloz, 1995) marked the birth of a new field of 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



On the Models of Protoplanetary Formation and the Laws of Planetary  
Distances in the Solar System and Other Exoplanetary Systems 

561 

astronomy, the study of extrasolar planetary systems around 
Main Sequence stars. Since then, many planets outside our 
own Solar system have been discovered [285]. These planets 
most closely resemble the gas giant planets, with masses in 
the range 20–3000 EarthM , where EarthM  is the mass of Earth, 

but many of them are either in highly eccentric or very small 
(0.1–50.02 AU) orbits. The latter have surface temperatures 
up to 2,000 K, and are hence known as “Hot Jupiters.” The 
existence of Hot Jupiters can be explained by the inward 
migration of planets formed at larger distances from their star, 
most likely due to tidal interactions with the circumstellar 
disk. 

Studies have revealed that Hot Jupiters preferentially form 
around higher metallicity stars; almost 15% of solar-type stars 
with metallicity greater than 1/3 that of the Sun possess at 
least one planet of Saturn mass or larger, and the lowest mass 
exoplanets range from 5 to 7 EarthM . Moreover, many of the 

moving extrasolar planets have large eccentricities and angles 
of inclination in their orbits, which together comprise the 
main distinguishing features of exoplanetary systems in 
comparison with our Solar system. However, at present, the 
methods of observational extrasolar planetology continue to 
develop and improve, so that soon more and more extrasolar 
planets with dimensions and masses similar to our Earth will 
be observable. Recently, two extrasolar planets with masses 
and radii close to those of the Earth have been discovered: 
CoRoT-7b [286, 287] and GJ 1214 b [288]. 

High-precision observations of the radial velocity of 
motion now allow us to find extrasolar planets with minimal 
masses of the order 1.9 EarthM  [289]. Preliminary results of 

surveys based on the HARPS spectrograph revealed a large 
population of planets like Neptune and super-Earths at 
distances of approximately 0.5 AU from stars of the solar 
type. Moreover, hundreds of “potential planets” of small radii 
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have been also announced by a group of researchers known as 
“Kepler” [290]. So, the study of populations of extrasolar 
planets of small masses has become the main direction of 
research for the coming years. 

A high-precision radial-velocity survey of approximately 
400 of the brightest stars adjacent to the Sun is currently being 
carried out using the HARPS spectrograph [291]. Observation 
results have already shown the presence of small orbital 
objects, that is, extrasolar planets of small mass around a 
series of stars: HD 160691 [292, 293], HD 69830 [294], HD 
4308 [295], HD 40307 [296], HD 47186, HD 181433 [297] 
and HD 90156. 

In 2010, an international team of astronomers revealed 
traces of the presence of extrasolar planets through 
oscillations of the Sun-like star HD 10180 using the HARPS 
spectrograph at the ESO in La Silla [231]. At least five 
extrasolar planets have been found around the star HD 10180, 
resembling Neptune and moving in almost circular orbits: 
their masses range from 13 to 25 times the Earth’s mass 
( EarthM ), and the period of their orbital motion varies from 6 

to 600 days. The distance from them to the star HD 10180 is 
respectively from 0.06 to 1.4 AU.  

From an observational point of view, it should be stated 
that exoplanetary systems exhibit a huge variety of their 
properties indicating complex processes of their formation. 
Figure 6.3 shows the values of the major semi-axes of 
ellipsoidal orbits of extrasolar planets, that is, distances (in 
AU) from them to the star, for 15 exoplanetary systems 
(including our Solar system) having more than three 
extrasolar planets [231]. Using data on these exoplanetary 
systems, this section investigates the Titius–Bode law (or its 
analog) for exoplanetary systems reflecting the general laws 
of the formation of extrasolar planets. 
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Figure 6.3. The values of major semi-axes na  in logarithmic scale (AU) of 

the ellipsoidal orbits of extrasolar planets for the 15 planetary systems 
with at least three known planets as of May 2010 (the numbers give the 
minimal distance between adjacent planets expressed in mutual Hill radii) 
[231] 

As already noted here, in the exoplanetary systems that 
have been studied, the moving extrasolar planets often have 
more significant eccentricities e  and angles of inclination i  
of their orbits in comparison with the planets of the Solar 
system. This means that the statistical model of moving 
particles proposed in the previous subsection 6.2.1 due to 
thermal emission in the gravitational field of a spheroidal 
body can be applied to solving the problems of the formation 
of extrasolar planets. 
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According to (6.2.13b), in the state of virial equilibrium of 
a certain Sun-like star (at its corona temperature 

(K)105.1 6T ), the number of particles 1 leaving this star as 
a result of thermal emission and moving along inclined 
elliptical orbits in its gravitational field can be up to 0.8% of 
the total number N  of particles of the exoplanetary system. 
Moreover, as noted in Section 5.4 and subsection 6.2.1 when 
a spheroidal body is divided as a result of the thermal 
emission of particles or gravitational (rotational) instabilities, 
the physical meaning of values describing the spheroidal body 
as a whole can change after its decay and the formation of the 
external gas-dust protoplanetary shells. Indeed, from the 
reasoning in Section 7.2 (see formula (7.2.43)), it immediately 
follows that the double areal velocity C  of the orbital motion 
of a particle in the gravitational field of a rotating spheroidal 
body completely coincides with the value of the specific 
angular momentum of the particle : 

4
0

22
0

2

sin1

)1( eMa
C . (6.2.31) 

Let us note that in Sections 3.4, 6.1.1, and 6.1.2, the 
variable  was used to denote the value of specific angular 
momentum inside a uniformly rotating spheroidal body in the 
state of relative mechanical equilibrium, in particular, the 
average specific angular momentum  has been calculated 
by the formula (3.4.28). In this regard, to denote the value of 
the specific angular momentum of a particle in the 
gravitational field of a rotating spheroidal body, it is 
advisable to use the variable C  instead of . Such a 
difference in notation is related to the fundamental differences 
in the nature of their origin, as well as in the quantities and 
directions characterizing the orbital angular momentum of a 
particle and the inner angular momentum of a particle in a 
uniformly rotating spheroidal body (for example, the average 
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specific orbital angular momentum C  of a stream of particles 
cannot be found by formula (3.4.28) since, instead of L and 
M , TL  and 10m  should be used following (6.2.21)). 

As already noted in Section 6.1, the formation of planets is 
possible not only based on a gas-dust protoplanetary 
substance (for example, a protostellar nebula simulated by a 
uniformly rotating spheroidal body), but also by capturing and 
merging particles and bodies moving in close orbits 
(meteorites, asteroids, planetesimals, etc.) in the star’s 
gravitational field in accordance with Schmidt’s model [6, 
21]. Then, for a body (or a particle) of the exoplanetary 
system (including the solar one), moving in an orbit with a 
large semi-axis a  and eccentricity e , the value of the orbital 
specific angular momentum can be determined using the 
formula (6.2.31) taking into account that 12

0  and 

1sin 0 : 

)1( 2eMaC . (6.2.32) 

where C  is a double areal velocity of the orbital motion of a 
particle.  

According to the Schmidt approach [6, 8, 21], the 
distributions of orbits and masses of moving bodies 
(meteorites, planetesimals, planetary embryos) with orbital 
specific angular momentum belonging to some interval of 
values, is described by the formulas: 

e
ela

1

1

2
, (6.2.33a) 

demdm
2

, (6.2.33b) 

where l  is a limiting distance at which the capture is carried 
out and which is constant for all systems [21] (in fact, l  is a 
parameter of the parabolic orbit which becomes an elliptic one 
when capture occurs, which is then pRl 2/ and aRa in 
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accordance with (7.2.38)). According to formulas (6.2.32) and 
(6.2.33a), we establish that the orbital specific angular 
momentum of a moving body is equal: 

)1(2/ eMlC . (6.2.34) 
According to (6.1.1), let n  be a value of the orbital 

specific angular momentum corresponding to the border 
between the regions of n -th and )1(n -th extrasolar 
protoplanets (or planetary embryos), whose orbital specific 
angular momentums are equal respectively to nC  and 1nC . 
Then for a moving body at the boundary distance, for which 
the value ne  is known, the orbital specific angular momentum 
can be found by the relation: 

)1(2/ nn eMl . (6.2.35) 
Equating the orbital angular momentum of the n -extrasolar 

planet to the total orbital angular momentum of bodies 
moving in close orbits (particles due to thermal emission or 
meteoritic matter [8, 21]), we have: 

demeMlCm
n

n

e

e
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2
2/ 11 nnnn eeeemMl . (6.2.36) 

Using the designation: 

)(
2 1nnn eemm , (6.2.37) 

the previous equality (6.2.36) (in view of (6.2.37)) takes the 
form: 

)(
22

)1()1(

2 1
1

nn
nnn

nnn
meeMlmCm . (6.2.38) 
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As shown in Section 6.1 (see analogous formula (6.1.40b)), 
taking into account (6.1.1) we can establish from the derived 
formula (6.2.38) that: 

2
11 nn

n
CCC  (6.2.39a) 

and then: 

2
11 nn

n
aa

a . (6.2.39b) 

The solution of the difference equation (6.2.39b) is the well-
known Schmidt law of planetary distances (6.1.12): 

nan 21 c+ , (6.2.40) 

where 1  and 2c  are some constants. As a result, according to 
the considered model of Schmidt, orbits of the formed 
extrasolar planets should be close to circular and na  should be 
a radius of the circular orbit nR . Then, according to formula 
(6.1.44), the value of orbital specific angular momentum of 
the formed protoplanet is equal to nn MaC*  which is 

observed in some exoplanetary systems (for example, in HD 
10180) and in our Solar system. 

So, according to (6.2.40), the major semi-axes  an of 
orbits of the extrasolar planets being formed can satisfy 
Schmidt’s law of planetary distances. Indeed, a closer 
examination of Fig. 6.4 shows that the exponential laws of 
planetary distances of Titius–Bode may indeed occur in some 
exoplanetary systems. As shown in subsection 6.1.1 (see 
formula (6.1.15)), following J. Laskar [257], the exponential 
law of the form  c+  = log 21 nan is obtained when the initial 

distribution density )(a  of planetesimals is approximated by 

a function 2/3a , while at a constant density )(a , the major 

semi-axes  na of the orbits of extrasolar planets satisfy the 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Six 
 

568

relation of the form nan 21 c+ , that is, Schmidt’s law of 

planetary distances (6.2.40). 
However, this conclusion can be drawn with confidence 

when all extrasolar planets are discovered in the exoplanetary 
systems under study, especially low-mass planets. At the 
present level of development of the observational technique 
based on the HARPS spectrograph, the discovery of new 
extrasolar planets of small mass within 1 AU is no simple 
task. Therefore, in the conditions of limited data, it is not 
worth thinking about some “missing” planets, possibly 
included in the interplanetary distances, so that these data 
fully comply with the Titius–Bode law of planetary distances.  

However, even the quickest glance at Fig. 6.3 shows that a 
fairly regular interval between adjacent extrasolar planets is 
observed mainly for low-mass exoplanetary systems HD 
40307, HD 69830, and HD 10180 and to a lesser extent for GJ 
581. Among massive exoplanetary systems (for example, 55 
Cnc) there is also an almost regular interval of planetary 
distances [259], but the presence of gas giant planets in this 
system makes the interactions of extrasolar planets among 
themselves much stronger and, perhaps, indicates a different 
scenario of formation of massive exoplanetary systems in 
comparison with low-mass exoplanetary systems. In this 
regard, concentrating on considering only low-mass 
exoplanetary systems, Fig. 6.4 shows the graphs of 
correspondence of the observed distributions of the major 
semi-axes  na of the orbits of extrasolar planets to the 

exponential law of planetary distances  c = 21
n

na ( see also 

[258, 259]) as a function of the number n  of extrasolar 
planets, starting with  1n  [231]. 
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Figure 6.4. The fit of exponential laws to semi-major axes  na as a 

function of planet number n  for the inner Solar system (black), HD 40307 

(red), GJ 581 (blue), HD 69830 (green) and HD 10180 (magenta) [211] 

Satisfactory compliance has been obtained for low-mass 
exoplanetary systems HD 40307, HD 69830, and HD 10180 
with a relative standard deviation error of 0.57%, 10.2%, and 
12.0%, respectively. Compliance with the exponential law of 
Titius–Bode (or Murray–Dermott [258, 259]) of the observed 
distributions of planetary distances for the inner planets in our 
Solar system, as we know, gives a relative error of deviation 
of 8.0%. For the exoplanetary system GJ 581, this 
correspondence is less convincing, since the variance of the 
relative deviation error is 21.0% (perhaps, due to the existence 
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of an additional body there between the third and fourth 
planets in this system). 

We emphasize that one should not consider the Titius–
Bode laws of planetary distances in any other meaning, except 
in the sense of a possible consequence of the features (a kind 
of “signature”) of the processes of planetary formation, since 
these laws are characteristic only of certain types of planetary 
systems, for example, low mass configurations of many 
bodies, that is, low-mass exoplanetary systems. Massive 
exoplanetary systems, on the other hand, apparently 
experienced a more chaotic history in their formation [231, 
236, 237], which indicates the possible applicability of the 
statistical model of randomly moving particles due to thermal 
emissions in the gravitational field of the spheroidal body (see 
subsection 6.2.1) to explain the scenario of the formation of 
protoplanets in massive exoplanetary systems. Moreover, 
even for not all low-mass systems, the exponential laws of 
planetary distances of the Titius–Bode type are valid (for 
example, as in the case of GJ 581), since the physics of 
planetary formation itself is so complex and diverse that it is 
difficult to expect the existence of any universal ordering rule 
for planets (see for comparison the model of formation of 
protoplanets based on the evolution of a flattened rotating 
spheroidal body and by capturing and merging particles and 
bodies moving in close orbits, described in Section 3.8, 
subsection 6.1.1, and this subsection).  

So, in the general case, when considering of a model of 
formation of protoplanets based on the capture and 
combination of bodies and particles moving in close orbits 
due to thermal emission, which mainly takes place in massive 
exoplanetary systems, the value of the orbital angular 
momentum of n -th protoplanet with mass nm  according to 

(6.2.32), that is, by formula (6.2.31) under the assumption 
12

0 and 1sin 0 , is equal to: 
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21 nnnn eMamC . (6.2.41) 

Since the orbit of each particle leaving a spheroidal body 
due to chaotic thermal motion has a chaotic inclination of its 
elliptical orbit, the averaged orbit of the n -th planet of the 
exoplanetary system is also characterized by an average angle 
of inclination ni , so it is advisable to consider the z -
projection of the angular momentum of the n -th planet: 

nnnnnnnnnz ieaMmieMamC cos)1(cos1 22 . (6.2.42) 

Following P. Laplace [131 vol. XI p.49], let us consider a 
value called the deficit of the angular momentum: 

nnnnnznn ieMamCCC cos11 2*  

nnn ie cos11 2 , (6.2.43) 

where nnn Mam are the quantities that are essentially 

constants in averaged equations relative to the average 
longitude, as Laskar [257] noted, that is, the magnitudes of the 
specific angular momentum *

nC  in the case of circular orbits. 

Using the value of the angular momentum deficit (6.2.43), 
Laplace proved that variations of eccentricities and 
inclinations of the orbits of forming planets are limited to the 
first order. In particular, if the total deficit of angular 

momentum 
1

0

pn

n
nCC , where pn  is the number of all 

planets, is equal to zero for the planetary system: 

0cos11 2
1

0
nn

n

n
n ieC

p

, (6.2.44) 

then the averaged motion of the planets is flat and circular, 
and also stable in time [257]. As Laskar pointed out, large 
values of the angular momentum deficit always lead to 
chaotic system behavior [236, 237], which is observed in 
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some exoplanetary systems [257, 285]. Thus, the deficit of 
angular momentum is a measure of the amplitude of 
nonlinearity present in the averaged planetary system. Indeed, 
the planetary system is stable if the total angular momentum 

deficit 
1

0

pn

n
nCC is not so significant in accordance with 

(6.2.43) that collisions of the planets would be possible [257]. 
In the process of collisions of protoplanets (planetary 
embryos, planetesimals, and particles), the local deficit of 
angular momentum decreases, leading to a reduction in the 

total deficit of angular momentum 
1

0

pn

n
nCC , so that the 

trajectories of motion of protoplanets are averaged. As a 
result, collisions cease immediately, as soon as the total 
deficit of the angular momentum becomes so small that 
planetary collisions cannot be possible. 

Thus, when the temperature in a rotating spheroidal body 
(in the state of virial equilibrium) becomes so significant that 
some of the particles leave the body as a result of thermal 
emission, the total deficit of the angular momentum of the 
particles leaving the spheroidal body will be sufficiently large 
due to their motion along the Keplerian elliptical trajectories 
with large inclinations. In this situation, collisions of particles 
become inevitable, accompanied by a decrease in the total 
deficit of angular momentum. As a result, their trajectories 
converge and are averaged, leading to the formation of 
protoplanetary embryos, having a maximum specific angular 
momentum in comparison with the remaining particles of a 
spheroidal body (see formulas (3.4.33)–(3.4.35) in Section 3.4 
as well as formulas (6.2.24a) and (6.2.24b) in subsection 
6.2.1)) due to the “thermal removal” of the maximal specific 
angular momentum from the boundary region *hh  of the 
spheroidal body (for example, from the stellar corona). 
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Unfortunately, at the present level of development of the tools 
of observational extrasolar planetology, a detailed study of 
stellar coronas and their influence on the formation of 
exoplanetary systems is difficult. In this regard, we confine 
ourselves to the study of some Sun-like stars assuming them 
to have similar solar coronas (see Section 7.3 and the next 
Chapter 8). 

Conclusion and comments 

There exist a number of theories for exploring the formation 
of the Solar system and estimating planetary orbits [1–44, 
127, 237, 298–300]: 
 electromagnetic theories by, for example, Birkeland (1912) 

and Alfvén (1942);  
 gravitational theories by, for example, (Schmidt (1944), 

Gurevich and Lebedinsky (1950), Woolfson (1964, 2000), 
and Safronov (1969);  

 nebular theories by, for example, von Weizsäcker (1943, 
1947), Berlage (1948), Kuiper (1949, 1951), Hoyle (1960, 
1963), Ter Haar (1963, 1972), and Cameron (1963, 1988); 
and 

 quantum mechanical theories by, for example, Nelson 
(1966, 1985), Nottale (1993, 1996), De Oliveira Neto 
(1996, 2004), and Agnese and Festa (1997). 

In spite of a great amount of work aimed at exploring the 
formation of the Solar system, the theories mentioned are not 
able to explain all phenomena. In this connection, in 1996, the 
statistical theory for the formation of a cosmological body (the 
so-called spheroidal body model) was proposed [45-79]. The 
present monograph develops this statistical theory relative to 
our Solar system and other exoplanetary systems formation.  

As shown in Chapters 2 and 3 of this monograph, the 
proposed theory starts from the conception for the formation 
of a spheroidal body as a protoplanetary system from a 
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protoplanetary nebula (or proto-Sun inside a presolar nebula). 
In particular, in Chapter 2, the derived distribution functions 
of particles as well as the mass density of an immovable 
spheroidal body were used to characterize the first stage of 
evolution: from a presolar molecular nebula to a forming core 
(proto-Sun) together with its shell (the solar nebula).   

Chapter 3 described the second stage of evolution: from the 
solar nebula to a forming protoplanetary gas-dust disk based 
on the derived distribution function and the density mass 
function for a rotating spheroidal body. As shown in Chapter 
3, the derived function of mass density (3.3.26a–c) 
characterizes a flatness process: from initial spherical forms 
(for a non-rotational spheroidal body case (3.3.27)) through 
flattened ellipsoidal forms (for a rotating spheroidal body 
(3.3.26c)) to fuzzy contour disks (3.3.28) when the squared 
eccentricity 2

0  varies from 0 to 1. The obtained formulas, 
(3.3.26a–c) and (3.3.28), can describe a possible scenario of 
the formation both of a star and of a protoplanetary gas-dust 
disk around it (in particular, the Sun and the solar 
protoplanetary gas-dust disk). 

The differential equations describing the process of 
gravitational condensation of a spheroidal body (from an 
infinitely distributed substance) in the vicinity of mechanical 
equilibrium were derived in Chapters 4 and 5. In particular, 
Sections 1.7, 4.1, and 4.7 also considered a problem of 
gravitational condensation of a gas-dust protoplanetary cloud 
with a view to protoplanetary formation in its gravitational 
field. Section 4.1 (as well as 4.7) derived a more general 
evolutionary equation (relative to a distribution function) 
which generalizes the Jeans equation characterizing 
protoplanetary system behavior. In Chapter 5, the generalized 
nonlinear time-dependent Schrödinger-like equation 
describing a common scenario of gravitational formation of a 
cosmogonical body was derived. 
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In the present Chapter 6, the next stage of evolution (from 
a protoplanetary flattened gas-dust disk to originating 
protoplanets) has been considered. To this end, the 
distribution function (3.4.9) of a specific angular momentum 
for a rotating uniformly spheroidal body (as a gas-dust 
flattened protoplanetary cloud) was used. As the specific 
angular momentums (for particles or planetesimals) are 
averaged during a conglomeration process (under a planetary 
embryo formation) the specific angular momentum for a 
protoplanet of the Solar system was found in subsection 6.1.1. 
As a result, a new law (6.1.53) for planetary distances (which 
generalizes Schmidt’s law) was derived theoretically in 
subsection 6.1.2. Moreover, unlike the well-known planetary 
distance laws, the proposed law was established by a physical 
dependence of planetary distances from the value of the 
specific angular momentum. 

Subsection 6.1.3 considered an application of the proposed 
law for planetary distances to our Solar system. As shown in 
this subsection (see Tables 6.2 and 6.3), this new law has 
given a very good estimation of real planetary distances in the 
Solar system (0% for the relative error of estimation and 1.4% 
for the absolute error). In addition, its maximal value is equal 
to 11% for the Earth, but for Pluto, the proposed law gives too 
high an error according to the derived rule ]2/[nent  
determining the maximal number of necessary coefficients ka  
in the law (6.1.70).  

Thus, this chapter has shown: 
1.  The proposed law of the planetary distances based on a 

model of a spheroidal body is found in agreement with 
the Solar system’s observable planetary distances.  

2.  The analysis of Tables 6.2 and 6.3 points to two 
possible scenarios: a capture of the Moon by the Earth 
(known as Bailey’s proposition [8, 263]) or the Moon 
forming from rocky debris after the collision of a former 
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planet with the proto-Earth (the leading modern 
Hartmann–Davis hypothesis and its development within 
the framework of the giant impact theory [264–269]). 

3.  There is no gap between the orbits of Mars and Jupiter 
and we cannot, therefore, say that there is a planet 
missing in that region (see Table 6.3). 

4.  The ninth planet Pluto did not form as part of our Solar 
system forming. It is more probable that it was attracted 
by the Solar system (this proposition was stated by von 
Weizsäcker, Schmidt, Ter Haar, and Cameron). 

According to the first conclusion, this chapter has shown 
that the proposed law for predicting the distance between the 
Sun and a planet of the Solar system is relatively accurate for 
most planets (see Figure 6.2) but it is not very good for Earth 
and particularly poor for Pluto. The fourth conclusion 
presented also at sessions ST0/PS0 “Plasma processes at 
Earth and other Solar system bodies” and PS15 “Models of 
Solar system forming” of the General Assembly of the 
European Geosciences Union in Vienna, Austria, 2–7 April 
2006 [56, 57] was confirmed by the decision of the 26th  
General Assembly of the International  Astronomical Union 
in Prague, Czech Republic, 14–17 August 2006 (see 
http://www.astronomy2006.com/ ). 

Section 6.2 developped an alternative heat emission model 
of the formation of protoplanets. As shown in subsection 
6.2.1, in the state of relative mechanical equilibrium of 
particles moving in elliptical orbits in the gravitational field of 
a spheroidal body and having a specific angular momentum 
value 2

1h , equation (6.2.18b) for the heat distribution 
function )(Tf of the specific angular momentum was 
derived. Within the framework of this model, only 0.8% of 
the total number of particles in the Solar system composing 
the protoplanetary cloud have angular momentum 15.6 times 
higher than the angular momentum of the remaining 99% of 
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particles of the Solar system. This conclusion agrees entirely 
with the known fact of a nonuniform distribution of the 
angular momentum noted by Ter Haar [7, 32]: only 2% of the 
total angular momentum belongs to the Sun, while the 
remaining 98% part belongs to the planets. 

The discovery of extrasolar planets is one of the greatest 
achievements of modern astronomy, and the recent discovery 
of planets with masses comparable to the mass of the Earth 
indicates that extrasolar planets of low mass also exist. In 
subsection 6.2.2, an application of a statistical model of 
particles moving in the gravitational field of a spheroidal body 
due to heat emission to the problems of the formation of 
exoplanetary systems is considered. As pointed out, the 
exponential laws of planetary distances of Titius–Bode (or 
Murray–Dermott) may occur in some exoplanetary systems. 
Indeed, satisfactory compliance with the exponential law of 
Titius–Bode has been obtained for low-mass exoplanetary 
systems HD 40307, HD 69830, and HD 10180 with a relative 
standard deviation error of 0.57%, 10.2%, and 12.0%, 
respectively.  

Let us note that the proposed simple statistical approach to 
the investigation of our Solar system as well as the formation 
of exoplanetary systems describes only a natural self-
evolution or an inner process of development of protoplanets 
from a dust-gas cloud. However, this approach naturally does 
not include any dynamics like collisions and giant impacts of 
protoplanets with large cosmic bodies. Henceforth, the 
presented statistical theory will only be able to predict with 
certainty the protoplanets’ positions according to the proposed 

]2/[nent  rule (see Eq. (6.1.70)), that is, the findings in this 
chapter are useful for predicting if the position of a planet 
today coincides with its protoplanet’s location or not. 
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As pointed in Chapter 6, despite great successes in recent 
decades in the fields of both astrophysics and geophysics, 
many problems in relation to the formation of the Solar 
system (as well as other exoplanetary systems) remain 
unresolved, in part because there is now no single general and 
uncontested scenario for the formation of a proto-sun and 
protoplanetary system from a protosolar nebula (a molecular 
cloud). At present, in cosmogony, there are electromagnetic, 
gravitational, nebular, quantum mechanical, and statistical 
theories [16, 73]. In spite of a great many works aimed at 
solving the problems of planetary formation, the theories 
mentioned above are not able to fully explain all phenomena 
occurring in our Solar system and other exoplanetary systems. 
Within the framework of the proposed statistical theory for a 
cosmogonical body forming (see Chapters 2–5), the 
conception of the evolution of the so-called spheroidal body 
inside a gas-dust protoplanetary nebula has been developed. 
This permits us to derive the form of distribution functions as 
particles in a space, the mass density, the gravitational 
potentials and the strengths for both immovable and rotating 
spheroidal bodies (Chapter 2). In addition we can find the 
distribution function of specific angular momentum (Chapter 
3) and the general differential equations for the physical 
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values describing the anti-diffusion process of the initial 
gravitational condensation of immovable and rotating 
spheroidal bodies (Chapter 4). As the specific angular 
momentums are averaged during the conglomeration process, 
the specific angular momentum for a protoplanet in a forming 
planetary system (as well as a planetary distance) can be 
found using such procedures (Chapters 5–6). 

As pointed in Section 6.1, the proposed statistical approach 
to the formation of the Solar system describes only the 
internal process of self-organization of protoplanets from a 
gas-dust cloud and therefore does not include such additional 
dynamic processes as collisions and the huge influences of 
protoplanets or other big cosmic bodies (asteroids and a 
swarm of planetesimals or meteorites). Hence, the proposed 
statistical theory of a protoplanet’s origin based on the 
evolution of a flattened rotating and gravitating spheroidal 
body cannot precisely predict the position of planets in the 
case of giant impacts and, as a consequence, it is also unable 
to authentically estimate their orbits. Indeed, the orbits of 
moving particles inside a flattened rotating and gravitating 
spheroidal body are initially circular. However, during the 
evolution of a spheroidal body at the formation of 
protoplanets these orbits can be deformed a little due to 
collisions with other particles or gravitational influences of 
forming adjacent planetesimals. As the famous astrophysicist 
V.S. Safronov remarked [2 p.145]: 

The assumption of initial movement of particles on circular orbits 
looks natural. At small masses of bodies, their gravitational 
variations were weak, and particles moved on the orbits close to 
circular. In the process of growth of a planet, deviations of orbits 
from circular increased, and all bodies of a zone had an opportunity 
to be joined in one planet. 

So, the process of evolution of a rotating and gravitating 
spheroidal body at first leads to its flattening, and the process 
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then results in its disintegration (decay) on forming 
protoplanets (see Sections 5.4 and 3.8, Eq. (3.8.8)). Hence, the 
orbits of moving particles at later stages of evolution of a 
rotating and gravitating spheroidal body are formed mainly 
under the influence of its central gravitational field, that is, in 
essence, they are Keplerian [158]. In this context, we shall 
consider in more detail the calculation of orbits of moving 
bodies and planets in a centrally symmetric gravitational field 
of a rotating and gravitating spheroidal body on the planetary 
stage of its evolution. 

On the other hand, this chapter shows that the orbits of 
moving particles are formed by the action of the centrally 
symmetric gravitational field mainly in the later stages of 
evolution of a gravitating and rotating spheroidal body, that is, 
when the particle orbits become Keplerian. In this context, 
this chapter also investigates the orbits of moving planets and 
bodies in the centrally symmetric gravitational field of a 
gravitating and rotating spheroidal body during the planetary 
stage of its evolution. 

7.1. alculation of the gravitational potential in a remote 
zone of a uniformly rotating spheroidal body 

Let us consider some statements of the statistical theory of the 
formation of cosmological bodies (see Chapters 2–3), 
beginning with the distribution function of particles in a space 
in a homogeneous gaseous (dust-like) nebula. As shown in 
Section 3.3, the mass density for a rotating and gravitating 
spheroidal body being in a state of relative mechanical 
equilibrium can be written in the cylindrical, Cartesian, and 
spherical coordinate system by the formulas (3.3.26a)–
(3.3.26c) respectively: 

2/))1((2
0

2/3 22
0

2

)1()2/(),( zheMzh  
2/))1((2

00

22
0

2

)1( zhe , (7.1.1a) 
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2/))1()1((2
00

22
0

22
0

2

)1(),,( zyxezyx , (7.1.1b) 
2/)sin1(2

00

22
0

2

)1(),( rer , (7.1.1c) 

where NmM 0  is the mass of a rotating and gravitating 

spheroidal body. Obviously, the iso-surfaces of the mass 
density (7.1.1a–c) are flattened ellipsoidal ones and 2

0  is a 

parameter of their flatness (a squared eccentricity of an 
ellipse). As pointed out in Section 3.3, the function of mass 
density (7.1.1a–c) characterizes a flatness process: from initial 
spherical forms (in the case of a non-rotational spheroidal 
body) through flattened ellipsoidal forms (for a rotating and 
gravitating spheroidal body) to fuzzy contour disks when the 
squared eccentricity 2

0  varies from 0 to 1. This means that the 

derived function (7.1.1a–c) is appropriate to describe the 
evolution of a protoplanetary gaseous (gas-dust) disk around a 
star (in particular, the Sun). 

As shown in Sections 2.2 and 2.3, in the non-rotational 
case there is a threshold value of the parameter of 
gravitational condensation c  that, if c , then a weak 

gravitational field with gravitational potential g  arises in a 

spheroidal body. According to (7.1.1a–c) we can try to seek a 
solution g  in the remote zone bearing in mind the Poisson 

equation [72, 73]. 
As we know from the theory of potential [95, 97], the 

general solution of the Poisson equation: 

4=2
g  (7.1.2) 

has the form: 

Vd
rr

rr
Vg '

)(
=

'

, (7.1.3) 

where 
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)( 'r  is a mass density of a gravitating body, 
'r  is a radius vector of a volume element of the body 

(distance from the center of mass of the body to a given 
volume element), and 
r  is a radius vector of observations of the gravitational 
field. 
Initially, we apply the formula (7.1.3) to the calculation of 

the potential of a non-rotating spheroidal body with mass 
density (2.2.5): 

2/
2

0=)( rer , (7.1.4) 

where 2/3
0 )2/(M . To do this, first note (see [44, 95]) 

that: 

cos2=' 22 rrrrrr , (7.1.5a) 

where: 
)(cossinsincoscos=cos . (7.1.5b) 

We note that if  then we obtain 
)(cos=sinsincoscos=cos , that is, 

= . Taking into account this notion let us find the 
gravitational potential in the remote zone II: 

=
cos2

sin
=)(

0 0

2

0
22

22/2

0
r r

g
rrrr

ddrdrer   

0

2

0
22

0

2/22
0

cos2

sin rd
rrrr
dder

r
r

. (7.1.6) 

We will now consider the case rr  by selecting a spherical 
volume of radius r  around the origin of coordinates. To 
estimate the gravitational potential of the spherical volume: 

0

2

0
22

0

2

2

2
0

0/ cos2

sin
lim)( rd

rrrr
dderrrr

r r

rr
g ,(7.1.7a) 
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let us calculate separately the inner integral in this expression: 

=

cos21

sin1
lim=

cos2

sin
lim

0

2

0
20/

0
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220/

r
r

r
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dd
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r
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4
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1
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0

2

0
0/

. (7.1.7b) 

Substituting (7.1.7b) into (7.1.7a) we obtain [72, 73]: 
r r
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rde
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 (7.1.8) 

So, if rr  then (7.1.8) becomes formula (2.4.26) for the 
gravitational potential of a non-rotating spheroidal body [16, 
45, 46]. The second case *rrr  leads to the same result if 
instead of the limit 0/ rr  in (7.1.8) we consider the limit 

rr  under the condition *rr . 
Thus, the formula (7.1.6) coincides with the expression for 

the gravitational potential of a non-rotating spheroidal body 
(2.4.26). Moreover, the magnitude of the potential rg  of 

the spheroidal body is determined by the mass of an inner ball 
with the radius r  (see Eq. (2.6.11) and Theorem 2.1). 
Similarly, we attempt to derive the potential of the 
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gravitational field in a remote zone for the case of a uniformly 
rotating spheroidal body based on the general solution (7.1.3) 
of the Poisson equation [72, 73]. 

More exactly, using the general solution (7.1.3) of the 
Poisson equation (7.1.2), let us calculate the estimation of the 
gravitational potential of a uniformly rotating spheroidal body 
under the following conditions [62, 72, 73]: 

1) a distance r  from the center of mass of a spheroidal 
body to a volume element dV  in the process of 
integration in this area V  is not greater than the distance 
r  from the center to the point of observation of the 
gravitational field (the test body in the point M): 

rr ; (7.1.9a) 
2) a distance r  from the center of mass O to the 

observation point M is much larger than the distance 
/1*r  from the center to the point of density 

inflection (a conditional shell) of a spheroidal body or 
the extremum point of gravitational field strength: 

 rr*  (the condition of the remote zone);         (7.1.9b) 
3) an evaluation of the gravitational potential g  is carried 

out by accounting for the terms of first-order relative to 
small quantity 2

0 , that is, 
2
0= Og . (7.1.9c) 

We now find the gravitational potential of a uniformly 
rotating spheroidal body in a remote zone of the gravitational 
field based on the conditions (7.1.9a–c); to this end let us 
extract initially some ellipsoidal volume around the origin of 
coordinates (Fig. 7.1). 
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Figure 7.1. Scheme for calculating the gravitational potential of a 
uniformly rotating spheroidal body in a remote zone of the gravitational 
field 
 

The integration over the volume V  should be then carried 
out on the elements dV  that are disposed concentrically on 
oblate ellipsoidal surfaces. These confocal oblate ellipsoidal 
surfaces are isosteres of a uniformly rotating spheroidal body 
with a mass density of the kind (7.1.1b). 

As a result of such constructions, the radius vector R  of a 
volume element dV of the body is a hodograph whose 
endpoint moves on a given ellipsoidal surface (see Fig. 7.1). 
Similarly, we assume that the endpoint of the radius vector R  
of the observation point of the field belongs to an ellipsoidal 
surface limiting the volume V  of a rotating spheroidal body. 

So, R  are the radius-vectors of points of the ellipsoidal 
surfaces in a Cartesian coordinate system: 

1=
2/12/12/

2

2
0

2

2
0

2 zyx
. (7.1.10) 
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Moreover, R  is a radius vector of a point on the surface of 
the ellipsoid bounding the volume V . Let us note that 
according to the Newton theorem (see Theorem 1.2 in Section 
1.1 and [95]) a homogeneous body, bounded by two similar 
and similarly placed concentric ellipsoids, has no attraction at 
points inside the inner cavity V . Since the mass density 

),,( zyx  of a spheroidal body (under the condition (7.1.9b)) 
is insignificant and can be considered homogeneous, then 
following Newton’s theorem an area external to the volume 
V  of spheroidal body has practically no influence on the 
magnitude of potential g  that also follows from the 

derivation of formula (7.1.8) in the case of a non-rotating 
spheroidal body. In a spherical coordinate system: 

cos=

;sinsin=

;cossin=

rz
ry
rx

 (7.1.11a) 

the argument of the function of mass density (7.1.1b) takes 
the form: 
 

=cossin1=11 22222
0

222
0

22
0 rrzyx  

)sin(1 22
0

2r . (7.1.11b) 

If, however, we use the elliptical, or more exactly, the 
spheroidal coordinate system (in the flattened spherical 
coordinates [72, 73]):  
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then the above-mentioned argument of the function of the 
mass density (10.1.32a) can be written more simply [62, 72, 
73]: 

22222222
0

22
0 =cossin=11 RRRzyx . (7.1.12b) 

Comparing (7.1.11b) and (7.1.12b), it is not difficult to see 
that: 

22
0

22 sin1= rR . (7.1.13) 

In the flattened spherical coordinates, the length of a vector 
R  according to (7.1.12b) is defined by the relation: 

222
0

22
0 11= zyxR , (7.1.14a) 

and the distance between two vectors R  and R  is found by 
the cosine theorem: 

=cos2= 22 RRRRRR   

cos21
'2'

R
R

R
RR . (7.1.14b) 

Moreover, because of (7.1.12b) the function of mass 
density (7.1.1b) in the flattened spherical coordinates has a 
very simple form [62, 72, 73]: 

2/
2

2
0

2/3

1
2

= ReMR  (7.1.15) 

reminding us of the mass density function (7.1.4) for a non-
rotating spheroidal body (up to a factor 2

01 ). In this regard, 

the gravitational potential of a uniformly rotating spheroidal 
body in the remote zone can be calculated similarly to the 
above-mentioned approach (7.1.6)–(7.1.8) for a non-rotating 
spheroidal body. 

Now let us calculate the Lamé coefficients for the flattened 
spherical coordinates in the general form (7.1.12a): 
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1

sin
==

RzyxH . (7.1.16c) 

Using (7.1.16a–c) let us find the volume element dV  in the 
flattened spherical coordinates [62, 72, 73]: 

2/32
0
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)1(
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=d=

RdRdHHHdV R   

d)cos1()sin1( 22
0

22
0 dRd . (7.1.17) 

Finally, taking into account formulas (7.1.14b), (7.1.15), 
(7.1.17) and conditions (7.1.9a–c) let us calculate an 
estimation of the gravitational potential (7.1.3) in a remote 
zone of a uniformly rotating spheroidal body in the flattened 
spherical coordinates [62, 72, 73]: 

* 2
( ) =

1 / 2 / cos
g R R

R dV
R

R R R R RV
 

R

RRRRR

ReRM

00

2

0
'sin

cos/2/1

2/

1

12/
2

2
2

2/32
0

2
0

2/3

 

'dE'''cos1'sin1 22
0

22
0 ddR  

R

RRRRR

RdReRM

0 cos/2/1

2/

1

2/
2

2
2

2
0

2/3

 

0
''sin'cos1'sin12 22

0
22

0 d . (7.1.18) 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Seven 
 

590

Let us calculate separately the integrals in (7.1.18). As in 
the case of a non-rotating spheroidal body, that is, according 
to derivations (7.1.7a, b) and (7.1.8), to calculate the integral 
by R  first we select an ellipsoidal volume with the radius 

vector R  around the origin of coordinates (see Fig.7.1) and 
then apply the limiting condition for the denominator: 

R
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R 0

2 2/1
. (7.1.19) 

Since the relation (7.1.19) holds for all concentric ellipsoidal 

volumes with the length of the radius vector RR , then 

according to (7.1.9a) it is also suitable for the considered 

ellipsoidal area of volume V  when RR  (in other words, 

for RR  and even RR = ). Indeed, at RR =  the 

function 02/2Re  because *RR  according to the 
condition of a remote zone (7.1.9b). Thus, starting from 
(7.1.9a) and (7.1.9b), the required integral in (7.1.18) is equal 
[62, 72, 73]: 
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R

RdRe
R 0

2 2/1 . (7.1.20) 

To calculate the second integral with respect to ' , 
belonging to Eq. (7.1.18), we use the substitution 

'cos0s : 
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The integral (7.1.21) can be expressed in terms of the elliptic 
integrals of the first and second kind [301 p.262]. However, 
taking into account the third condition (7.1.9c) the desired 
integral (7.1.21) can be calculated much more easily [72, 73]: 
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222
0 12=''sin'cos'sin1 d . (7.1.22) 

Here the terms of the fourth order of smallness )( 4
0O  are 

neglected under the derivation of (7.1.22). 
Thus, bearing in mind the integrals (7.1.20) and (7.1.22) 

calculated under the conditions (7.1.9a–c), the estimation of 
the gravitational potential in a remote zone (7.1.18) for a 
uniformly rotating spheroidal body is equal [72, 73]: 
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Under derivations (7.1.8) and (7.1.23), an idea about the 
maximal exclusion of dependencies on spatial coordinates on 
equipotential surfaces has been exploited (in particular, on the 
spheres in the first case, and on the flattened ellipsoids in the 
second case). If we use an eigen coordinate system (for 
example, spherical or ellipsoidal) then a canonical coordinate 
is to be r  for a sphere or R  in the case of an oblate ellipsoid 
(instead of r  and  in accordance with (7.1.13)). In this 
connection, using (7.1.13), we can estimate the gravitational 
potential in a remote zone of uniformly rotating spheroidal 
body in the spherical coordinates [72, 73]: 

22
0 sin1

12
=),(

* r
Mr

rrg   

22
0

2
sin1

0

2/

r
r rde . (7.1.24) 

Now we can verify the accuracy of the derived estimation 
(7.1.24) by the usage of the general expression (3.6.15a) for 
the gravitational potential of an axially symmetric spheroidal 
body (see Section 3.6). Using (3.6.15a) let us estimate the 
gravitational potential in a remote zone of the gravitational 
field of a rotating spheroidal body when: 

prrr , (7.1.25a) 

where 
2
0

2

(1 )prr . Since the points at prr belong to some 

equipotential surface of -spheroid, then the above-
mentioned condition (7.1.25a) means that:  

2 2 2 2 2 2
0 0 0(1 ) (1 ) [2 (1 )] / .x y z  (7.1.25b) 

Taking into account the conditions (7.1.25a) and (7.1.25b), 
the formula for the gravitational potential in the remote zone 
becomes: 
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3/2 2
0(1 )

pr
g r r

M
  

2 2 2

2
0

2

(1 )

2
0

,
2 (2 (1 ))

x y z
zs s dse e

s s
 (7.1.26a) 

where value  is a positive root of equation [99]: 
2 2 2

2 2
0 0

1
2 2 2

(1 ) (1 )

x y z
. 

(7.1.26b) 

Taking into account (7.1.25a) and (7.1.25b), let us transform 
(7.1.26a): 

2 2 2 2 20 0
2
0

(1 ) (1 ) 2
2 (1 ) 03/2 2 2

0

2 (1 )
(1 )

2pr

x y z
s s

g r r

sM e e
s

 
2 2 2 2 20 0

2
0

2
0

(1 ) (1 )
0 2 (1 )3/2 2 2

02 3/2 1/ 2 (1 )
0

(1 )
[2 (1 )]

x y z
s sds M e e

s
 

2
0 2 2

0 0

2 1
1

2 (1 ) 2 (1 )

s d
s s

. (7.1.27) 

Using the representation: 
2
0

2 2
0 0

1 1

2 2 (1 ) (2 )(2 (1 ))

s
s s s s

, 

we can rewrite Eq. (7.1.27) as follows: 
2 2 2 2 2
0 0

2
0

2
0

(1 ) (1 )
0 2 (1 )

1/ 2 (1 )

2
pr

x y z
s

g r r

M e  

22
0

2
0 22 (1 )2

0 2
0

1
1

2 2 (1 )

sz
sss e d

s s
. (7.1.28) 
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Applying the condition (7.1.25a) we have:  

1
2

2
0 s

s
, 

so that relation (7.1.28) can be approximated by the relation: 
2 2 2 2 2
0 02

0 2

(1 ) (1 )
1/ 2 (1 )

1/

0

2
pr

x y z

g r r

M e d , (7.1.29) 

where the following designation is used in (7.1.29): 

2
0

1

2 (1 )s
. 

According to (7.1.14a), 2 2 2 2 2 2
0 0(1 ) (1 )x y z R  , so 

that relation (7.1.29) becomes: 
2

2 20/ 2 (1 )

0

1
2 ( )

pr

R R
g r r

M e d R
R

. (7.1.30) 

Using a change of dependent variable '/ 2r R  in (7.1.30) 
we obtain: 

2
202 / 2 (1 ) ' /2

0

1
2 '

2pr

R r
g r r

M e dr
R

 

2
20/ 1 (1 )/2 ' /2

0

2
'.

R rM e dr
R

 (7.1.31) 

So, according to (7.1.31) the estimation of the gravitational 
potential in the remote zone of a rotating spheroidal body 
takes the form: 

2 2 2 2 2
0 0

2

(1 ) (1 )pr
g r r

M
x y z

 

2
20/ 1 (1 )/2 ' /2

0
'

R re dr  

3/2

3/2 2 2 2 2 2
0 0

2 2

2 (1 ) (1 )

M
x y z
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2
20/ 1 (1 )/2 ' /2

0 2 2 2 2 20
0 0

1
' 4

(1 ) (1 )

R re dr
x y z

 

2
20/ 1 (1 )/2 ' /2

0
'.

R re dr  (7.1.32a) 

In cylindrical and spherical coordinate systems, the 
gravitational potential of a rotating spheroidal body in a 
remote zone is determined by the following expressions 
respectively: 

0 2 2 2
0

1
4

(1 )pr
g r r h z

  

2 2 2 2
20 0(1 ) / 1 (1 )/2 ' /2

0
'

h z re dr ; (7.1.32b) 

0 2 2
0

1
4

1 sinpr
g r r r

  

2 2 2
20 01 sin / 1 (1 )/2 ' /2

0
'

r re dr . (7.1.32c) 

When choosing 0 , formula (7.1.32c) gives the derived 
estimation (7.1.24) of the gravitational potential of a rotating 
spheroidal body in a remote zone [72]. In the case of 00  
and 0 , we obtain the above estimation (7.1.8) in a remote 
zone of the gravitational potential for an immovable 
spheroidal body. 

Substituting (7.1.24) into the left-hand side of Poisson 
equation (7.1.2), as well as (7.1.1c) into the right-hand side, 
we can see that the absolute error of estimation of the 
Laplacian of the gravitational potential (7.1.24) of a uniformly 
rotating spheroidal body is expressed by the following 
relation [72, 73]: 

2
0

22
0

22
0

0 1

),(4

sin1

cos
),,(

rabs . (7.1.33a) 
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The relative error in estimating the Laplacian of the 
gravitational potential (7.1.24) is given by relation [72, 73]: 

22
0

2

2
0

2
0

0 sin1

cos

1
),(rel . (7.1.33b) 

So, absolute and relative errors depend on the angular 
coordinate  and the value of oblateness 2

0 . In particular, if 

02
0  then there are no errors: 0),,( 0

abs , 

0),( 0
rel . Thus, for the case of a weakly flattened 

spheroidal body ( 12
0 ), the obtained formula (7.1.24) of 

estimation of the gravitational potential in a remote zone is 
exact enough since the maximum relative error in calculating 
the Laplacian of the gravitational potential tends to zero: 

1)1/(),0( 2
0

2
00max

rel . 

7.2. The calculation of the orbits of planets and bodies of 
the Solar system in a centrally symmetric gravitational 

field of a rotating spheroidal body based on Binet’s 
differential equation 

As is well known [96, 158], the general method for finding an 
orbit consists of the integration of the differential equations of 
motion with the subsequent exception of time. Often it is a 
very complex process and, therefore, a natural question arises 
as to whether it is possible to exclude time before integration 
so that integration has given the required orbit directly. In 
particular, as shown in [96], it is possible in that case, when 
force does not depend on time. So, we consider the motion of 
the material point subject to the action of the central force of 
a gravitational attraction1. 

 
1 This material was previously published in Solar System: Structure, 
Formation and Exploration, edited by Matteo de Rossi in 2012 [72] and is 
being reproduced with permission from Nova Science Publishers, Inc. 
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Let gf  be a specific value of gravitational force, that is, an 

acceleration to which the point is subjected. By definition of 
the central force, directions of this force always pass through 
a fixed point (or center) which we shall accept for the origin 
of coordinates. If  is the center of force, then  is some 
position of a moving point in a plane XY  whose rectangular 
coordinates are x  and y , and polar coordinates are r  and  
accordingly (Fig. 7.2). The projections of accelerations on 
axes x  and y  are also then accordingly equal to cosgf  

and singf , and the differential equations of motion 

become: 

r
xff

dt
xd

gg cos
2

2

;
r
yff

dt
yd

gg sin
2

2

. (7.2.1) 

  

 

Figure 7.2. Graphic representation of the motion of a material point in a 
field of the central force 

Multiplying the first equation in (7.2.1) by y  and the 
second equation on x , then adding them we obtain: 

0
2

2

2

2

dt
xdy

dt
ydx . (7.2.2) 
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Adding and subtracting the value 
dt
dy

dt
dx

 in the left-hand part 

of the equation (7.2.2) we transform it to the kind: 

0
2

2

2

2

dt
dxy

dt
dyx

dt
d

dt
xdy

dt
dx

dt
dy

dt
dy

dt
dx

dt
ydx . (7.2.3) 

Integrating the equation (7.2.3) we find that 

C
dt
dxy

dt
dyx , (7.2.4) 

where C  is a constant of integration. To find out the sense of 
a constant of integration in (7.2.4) we shall consider the 
motion of a material point in a plane XY  for a time interval 

t  (Fig. 7.2). Let S  designate the area of triangle OPQ 
limited by radius vector in Fig. 7.2 for a time interval t : 

)sin(

2
)sin(

2

1 '
' rrrrS . (7.2.5) 

If an angle  decreases unlimitedly then the area of triangle 

OPQ tends to the area of the sector. Moreover, the limit 'r  is 
r . Passing to the limit at 0t in (7.2.5) we obtain: 

drrrdS
t

2
'

0 2

1)sin(

2
lim , 

whence it directly follows that:  

dt
dr

dt
dS 2

2

1
. (7.2.6) 

The value (7.2.6) is called an areal velocity of a moving point 
[96]. By substitution: 

,arctan,22

x
yyxr  

let us write the following expression for the areal velocity in 
rectangular coordinates: 

][arctan)(
2

1 22

x
y

dt
dyx

dt
dS
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x
y

dt
d

xy
yx

2
22

)/(1

1
)(

2

1
  

dt
dxy

dt
dyx

x
xyxyx

2

1

2

1
2

2 . (7.2.7) 

So, comparing now equations (7.2.4) and (7.2.7), we can 
see that the required constant C  is expressed by the areal 
velocity [96]: 

22 rSC , (7.2.8) 
where S  is an area limited by radius vector with the time t . 
According to (7.2.8) if the origin of coordinates is chosen by a 
suitable way then motion obeys the law of the areas:  

const2r . Integrating equation (7.2.8) we obtain: 

cCtS
2

1
, 

that is, the area S  changes directly proportional to time 
(Kepler’s second law [96, 158]). 

To derive the equation of an orbit of a material point let us 
return to equations of movement (7.2.1). According to a 
primary assumption, the function gf  does not depend on time 

then t  is considered relative to derivatives only. However, for 
the exception of t  it is necessary first to reduce the order of 
derivatives. For convenience, we transform equations (7.2.1) 
in the polar coordinates [96]. 

As in polar coordinates cosrx  and sinry , the 
velocity components in rectangular coordinates are then 
expressed through components in polar coordinates: 

sincossincos vv
dt
dr

dt
dr

dt
dxv rx ; (7.2.9a) 

cossincossin vv
dt
dr

dt
dr

dt
dyv ry , (7.2.9b) 
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where dtdrvr /  and dtdrv /  are the polar 

components of velocity on radius vector and along a 
perpendicular to it. To find acceleration components let us 
differentiate the formulas (7.2.9a) and (7.2.9b): 

cos
2

2

2

2

2

dt
dr

dt
rd

dt
xdax   

sin2
2

2

dt
d

dt
dr

dt
dr ; (7.2.10a) 

cos2
2

2

2

2

dt
d

dt
dr

dt
dr

dt
yday   

sin
2

2

2

dt
dr

dt
rd

, (7.2.10b) 

whence by analogy with (7.2.9a) and (7.2.9b), the polar 
components of acceleration ra  and a  (on radius vector and 
along a perpendicular to it) can be calculated through 
formulas [96]: 

2

2

2

dt
dr

dt
rdar ; (7.2.11a) 

dt
dr

dt
d

rdt
d

dt
dr

dt
dra 2

2

2 1
2 . (7.2.11b) 

According to Fig. 7.2 the polar components of acceleration 
on radius vector ra  and along a perpendicular a  are equal to 

gf  and 0. Then following formulas (7.2.11 ) and (7.2.11b) 

the differential equations of movement become: 

gf
dt
dr

dt
rd 2

2

2

; (7.2.12a) 
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.0
1 2

dt
dr

dt
d

r
 (7.2.12b) 

But according to the formula (7.2.8), the integral for the 
second of these equations is equal: 

,2 C
dt
dr  

so, excepting dtd /  from equation (7.2.12a) and using this 
integral we obtain: 

gf
r
C

dt
rd

3

2

2

2

. (7.2.13) 

Supposing qr /1  we calculate, in view of (7.2.8), the 
following derivatives: 

d
dqC

dt
d

d
dq

qdt
dq

qdt
dr

22

11
; (7.2.14a) 

2

2
22

2

2

2

2

d
qdqC

dt
d

d
qdC

d
dq

dt
dC

dt
rd

. (7.2.14b) 

Substituting (7.2.14b) into equation (7.2.13) we obtain the 
differential equation of the second-order relatively q  [96]: 

2

2
22

d
qdqqCfg . (7.2.15) 

As the integral of Eq. (7.2.15) expresses q  and 
consequently r  as a function of , this equation, after 
integration, gives a relation between  and r . On the other 
hand, equation (7.2.15) can be used for a finding of the law of 
the central force that undergoes a material point to move 
along the given curve. For this purpose, it is necessary to 
write only the equation of a curve in polar coordinates and 
then to calculate the right-hand part of Eq. (7.2.15). This 
problem is much easier than a direct problem of a finding of 
an orbit when the law of force is given [96]. 
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Taking into account that ggf grad , that is, for the 

considered flat motion drdff ggg /  and also that 

qr /1 , we present equation (7.2.15) in the form of Binet’s 
formula [96, 200] allowing us to define an orbit of a moving 
material point (planet) in the central gravitational field: 

)(
11 '

2

2

2

2

r
C
r

rrd
d

g , (7.2.16) 

where )(rg  is a function of gravitational potential and 
2rC  is an areal constant. 

As shown in Section 7.1, the gravitational potential of a 
rotating spheroidal body in a remote zone is described by the 
formula (7.1.24), that is, 

22
0

2

*

sin1

0

2/

22
0 sin1

12
=),(

r
r

rrg rde
r

Mr . (7.2.17) 

To take advantage of the Binet equation (7.2.16) for the 
definition of an orbit of a planet moving in the central 
gravitational field of a rotating spheroidal body, we shall 
carry out an approximation of potential (7.2.17) under the 
condition of */ rr  where, as designated above, /1*r . 

As a first approximation, the gravitational potential 
(7.2.17) of a rotating spheroidal body in the remote zone can 
be estimated by the formula [72]: 

22
0 sin1

22
),(

* r

Mr
rrg  

*

2

22
0

/

2/

2/sin1

0

)2/(
rr

r
r

rde  
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r
s

r

dse
r

M 2

22
0 2/sin1

0
22

0 sin1

2
 

dse
r

M s
r

r

2

22
0 2/sin1

0
22

0

lim
2

sin1
 

.
sin1 22

0r

M
 (7.2.18) 

Supposing the condition of smallness 12
0  formula 

(7.2.18) can be approximated also as follows: 

2
2

0 sin
2

1),(
* r

Mr
rrg . (7.2.19) 

Taking into account that the orbit of each forming planet 
moving in the central gravitational field of a rotating 
spheroidal body lies entirely in the same plane, 

const0 , near to an equatorial plane of the 

protoplanetary gas-dust cloud ( 2/ ), that is, 2/0 , 

formula (7.2.18) becomes: 

0
22

0

0
sin1

),(
* r

Mr
rrg . (7.2.20) 

Substituting (7.2.20) into Binet’s formula (7.2.16), we 
derive the equation of an orbit of a planet in a remote zone of 
a rotating spheroidal body [70, 72]: 

0
22

0
22

2

sin1

11

C
M

rrd
d

, (7.2.21) 

where 2rC  is an areal constant and 0
2sin  is a parameter. 

Carrying out the usual substitution qr /1  in equation 
(7.2.21) we obtain: 
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0
22

0
22

2

sin1C

Mq
d

qd
. (7.2.22) 

Multiplying both parts (7.2.22) by 
d
dq

2  following the 

solution offered in [96]: 

d
dq

C

M
d
dqq

d
qd

d
dq

0
22

0
22

2

sin1
222 , 

we transform this equation into the kind: 

d
dq

C

Mq
d
d

d
dq

d
d

0
22

0
2

2
2

sin1
2 . (7.2.23) 

Integrating (7.2.23) we find the first integral of the given 
equation: 

1

0
22

0
2

2
2

sin1

2 cq
C

Mq
d
dq

 

( 1c  is a constant of integration) whence we obtain: 

1

0
22

0
2

2

sin1

2 cq
C

Mq
d
dq

 

1

0
22

0

22
2

0
22

0
2 sin1

)/(

sin1
cCM

C

Mq  

and at last, 

2

0
22

0
2

1

0
22

0

22

sin1sin1

)/(

C
MqcCM

dqd . 

(7.2.24) 
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Let 2
10

22
0

22 )sin1/()/( kcCM  and 

sCMq )sin1/( 0
22

0
2 . Choosing the bottom sign in 

the equation (7.2.24) we write the given equation in the form 
[96]: 

2222 )/(1

)/(

)/(1

1

ks
ksd

ks
ds

ksk
dsd . (7.2.25) 

Then, integrating (7.2.25), we obtain: 

2arccos c
k
s

, 

whence: 

2cos cks , (7.2.26) 
where 2c  is a constant of integration. Returning to a variable 
q  and then to r , we can write (7.2.26) in the form: 

2

0
22

0
2

cos
sin1

1 ck
C

M
r

, 

whence: 

20
22

0
2

0
22

0
2

cossin1)/(1

sin1)/(

ckMC

MC
r . (7.2.27) 

Substituting the parameter 

)sin1()/(1)sin1/( 0
22

0
22

10
22

0
2 MCcCMk  in 

equation (7.2.27) we obtain: 

20
22

0
22

1

0
22

0
2

cos)sin1()/(11

sin1)/(

cMCc

MC
r . (7.2.28) 

At the choice of a constant as 22
1 )/( CMc , that directly 

follows from the designation 2k , equation (7.2.28) of the 
orbit of a planet in a remote zone of the gravitational field of 
a rotating spheroidal body goes over to the following [70, 72]: 
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200

0
22

0
2

cossin1

sin1)/(

c
MC

r . (7.2.29) 

If we assume that i2/ 0  where i  is an angle of an 
inclination of an orbital plane then the equation (7.2.29) 
becomes: 

20

22
0

2

coscos1

cos1)/(

ci
iMC

r . (7.2.30) 

So, comparing (7.2.29) with the polar equation of conic 
section with a focus in the origin of coordinates 

cos1 e
pr  [96, 158] we find that: 

0
22

0
2 sin1)/( MCp , 00 sine , 

2c  
(7.2.31) 

where p  is a parameter of an orbit, e  is an eccentricity of 
orbits and *2c  is a constant. Moreover, *  is an angle 
between the polar axis and the endpoint of the big axis 
directed to vertex [96]. Constants 2C , 0  and 0  also are 

defined by initial conditions, and in turn, they define p  and e  
using (7.2.31). If 1e  then the conic section is an ellipse; if 

1e  then the conic section is a parabola; if 1e  then the 
conic section is a hyperbole; if 0e  then the conic section is 
a circle. 

As 12
0  and 1sin 0  then according to formula 

(7.2.31) 1e , that is, the conic section is an ellipse with 
small eccentricity. In other words, formula (7.2.30) expresses 
the equation of an ellipse in polar coordinates with the origin 
in focus, that is, planets of the Solar system move in elliptic 
orbits, in one of whose focus there is the Sun (the Kepler first 
law) [96, 158]. 
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Let us note that elliptic orbits of planets of the Solar system 
are almost circular, namely 0e  at 0 0  and 0e  

at 2/ 0 , that is, (7.2.30) is the equation of a circle at 

0 0  or 2/i , and, accordingly, at 2/ 0  or 0i , 

relation (7.2.30) is the equation of an ellipse with small 
eccentricity. 

According to the derived formula (7.2.31) and known 
formulas of analytical geometry the major and minor semi-
axes of an ellipse are accordingly equal [72]: 

0
22

0

2

0
22

0

0
22

0
2

2
sin1sin1

sin1)/(

1 M

CMC
e

pa , (7.2.32a) 

M
CMC

e
pb

2

0
22

0

0
22

0
2

2 sin1

sin1)/(

1
. (7.2.32b) 

The least distance, called the perihelion, of an orbit and the 
greatest distance, called the aphelion, of orbit up to the center 
of the field (which is the focus) are accordingly defined by 
expressions [72]: 

0
22

0

00
2

min
sin1

)sin1(
)1(

1 M

C
ea

e
pr   

00

00
2

sin1

sin1

M
C

, (7.2.33a) 

0
22

0

00
2

max
sin1

)sin1(
)1(

1 M

C
ea

e
pr   

00

00
2

sin1

sin1

M
C

. (7.2.33b) 

The time it takes a planet with mass m  to circle in an 
elliptic orbit, that is, the period T  of its motion, can be 
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conveniently defined using the law of conservation of the 
angular momentum in the form of «integral of the areas» 
[158]: 

const22 SmmrLL z , (7.2.34) 

where S  is the above-mentioned value of areal velocity 
(7.2.6) of a moving body. Integrating this equality on time 
from 0 up to T  we obtain [158]: 

LTmS2 , (7.2.35) 
where S  is an area of an orbit. For an ellipse abS , so 
using formulas (7.2.8), (7.2.31), and (7.2.32a, b) we can find 
that: 

C
apa

S
ea

mL
ab

L
mST

/2

2

12

/

22 222

 

C
MCa

C
pa 0

22
0

22/32/3 sin1)/(22
 

M
a

M
a 0

22
02/3

4
0

22
02/3 sin1

2
sin12

. (7.2.36) 

The fact that the square of a period must be proportional to 
the cube of a linear size of orbit expresses the Kepler third 
law [96, 158], namely, the ratio of the cubes of the major 
semi-axes of orbits to the squares of the orbital times for all 
planets of the Solar system is the same [72]:  

const
sin14 0

22
0

22

3 M
T
a

. (7.2.37) 

Thus, moving bodies (conglomerates of particles, 
planetesimals, planetary embryos, and planets) in a remote 
zone of a rotating spheroidal body have trajectories in the 
form of ellipses with the origin in focus. In other words, the 
orbits of the Solar system’s planets, distant enough from the 
Sun ( */ rr ), are described by ellipses with small 
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eccentricities (this fact occurs for all planets beginning with 
Venus). Indeed, the value of the geometrical eccentricity of 

orbit abae /22  can be defined easily by the condition 
of derivation of the equation (7.2.29) of the planetary orbit in 
a remote zone of the gravitational field of a uniformly  
rotating spheroidal body, that is, according to the formula 
(7.2.31) 10 e . Besides the geometrical ones, in 
astrophysics [12]: 

)/()( papao RRRRe , (7.2.38) 
is considered an orbital eccentricity, where maxrRa  is an 

aphelion of orbit and minrRp  is its perihelion. According to 

formulas (7.2.33 , b), the orbital eccentricity (7.2.38) is equal 
to: 

eeaeaeaeaeo )1()1(/)1()1( , (7.2.39) 
that is, it coincides with geometrical eccentricity for the type 
of orbits of planets moving in a remote zone of the 
gravitational field of a uniformly rotating spheroidal body. 

Let us note in particular that the derived expression 
(7.2.37) for Kepler’s third law generalizes the known relation 
obtained in the theory of Newton [80, 96, 158] in the sense 
that the constant in the right-hand side includes, besides  

and M , additional parameters 2
0  and 0 . Thus, the ratio of 

cubes of the major semi-axes of orbits to squares of the 
rotation periods for any n -th planet of the Solar system is 
equal. Moreover, a constant coincides with the constant of 
Newton 24/M  up to a very small value 

1sin)2/1( 0
22

0 : 

const
sin1

1

4
0

22
0

22

3 M
T
a

n

n . (7.2.40) 
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The specific angular momentum of the n -th planet 
following formulas (7.2.32 , b) and (7.2.35), that is, the 

relation 21 nnn eab , is equal: 

n

nn

n

nn

n

n

n

n
n T

ea
T

ba
T
S

m
L 22 1222

. (7.2.41) 

It follows from Kepler’s third law in the formulation (7.2.40) 
that: 

M
aT nn

4 2
002/3 )sin(12

. (7.2.42) 

Substituting (7.2.42) into (7.2.41) we find the value of 
specific angular momentum of the n -th planet: 

4 2
00

2

4 2
00

2/3

22

)sin(1

)1(

/)sin(12

12 nn

n

nn
n

eMa

Ma

ea
. (7.2.43) 

Let us note that the value of specific angular momentum of 
the n -th planet (7.2.43) obtained using the statistical theory of 
spheroidal bodies generalizes (when 00 ) the analogous 

formula )1( 2
nnn eMa   [6, 8] derived within the 

framework of Newton’s theory up to very small value 
1sin)4/1( 0

22
0  [72]: 

])2/sin(1[)1( 2
00

2
nnn eMa . (7.2.44) 

Taking into account that 0
22

0
2 sinne , in accordance with 

(7.2.31), the formula (7.2.43) becomes: 

2

4 2

2

1
1

)1(
nn

n

nn
n eMa

e

eMa
. (7.2.45) 

According to the formula (7.2.45), the value of specific 
angular momentum n  of the n -th planet depends on the 
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eccentricity value ne  of orbit (as the function 4 21 ne ) more 

weakly than the analogous value n  depends first of all on ne  

(as 21 ne within the framework of the Newtonian theory) 

due to the account of influence of a flattening parameter 0  

and the initial value of a polar angle 0  (angle of an 

inclination i  of the orbital plane). Thus, within the framework 
of the statistical theory of spheroidal bodies orbits of forming 
planets are closest to circular when, according to formula 
(6.1.59), nn MR  ( nR  is a radius of a circular orbit) 

that takes place in our Solar system. As shown by Schmidt [6, 
21], the formation of planets is possible not only based on 
gas-dust protoplanetary substance (protosolar nebula) but also 
through the capture of moving bodies (meteorites, asteroids, 
etc.) in close orbit to the gravitational field of a star (see 
subsection 6.2.2). For a body moving in an orbit (with the 
major semi-axis a  and the eccentricity e ) in the Solar 
system, Shmidt defined the above-mentioned value of specific 
angular momentum following Newton’s theory: 

)1( 2eMa . (7.2.46) 

If, instead of (7.2.46), we take advantage of the result (7.2.45) 
obtained within the framework of the statistical theory of 
spheroidal bodies then the value of specific angular 
momentum is equal: 

21 eMa , (7.2.47) 

then the analogous substitution of (6.2.33a) into (7.2.47) gives 
us: 

4/14/3 )1/()1(2/ eeMl . (7.2.48) 

Thus, according to (7.2.48) the law of planetary distances 
in the case of the formation of planets through the capture of 
bodies in close orbits will have more complex dependence. 
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7.3. Calculation of the orbit of the planet Mercury  
and estimation of the angular displacement of  

Mercury’s perihelion based on the statistical theory  
of gravitating spheroidal bodies 

As shown in Section 7.2, moving solid bodies in a remote 
zone of a rotating spheroidal body have elliptic trajectories of 
the kind (7.2.29). This means that orbits for planets 
sufficiently remote from the Sun in the Solar system 
( */ rr ) are described by ellipses with a focus on the origin 
of coordinates and with small eccentricities. The planet 
nearest to the Sun, Mercury, has a more complex trajectory. 
Namely, in the case of Mercury, the angular displacement of a 
Newtonian ellipse is observed during one circle in the orbit2 
(Fig. 7.3), that is, a regular (secular) shift of the perihelion of 
Mercury’s orbit occurs [100 p.391]. 

 

 

Figure 7.3. The graphic representation of shift of the perihelion of the 
Mercury’ orbit 

 
2 This material was previously published in Solar System: Structure, 
Formation and Exploration, edited by Matteo de Rossi in 2012 [72] and is 
being reproduced with permission from Nova Science Publishers, Inc. 
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Inspired by his successful explanation of the deviation of 
the orbit of Uranus, which led to the discovery of the new 
planet Neptune, the famous astronomer U.J.J. Leverrier 
engaged in the analysis of the orbit of Mercury. In 1859, 
regarding the anomalous additional advance of the perihelion 
of Mercury at 31'' in the century, he argued [8]:  

The conclusion is clear enough. In the vicinity of Mercury, more 
precisely between it and the Sun, undoubtedly, there is still 
unknown matter. Is it a single planet, or several small planets, or 
asteroids, or, finally, cosmic dust – the theory cannot give an 
answer to this..  

As we know, by the specific use of Newton’s law, a 
solution to the problem of Mercury was established using the 
theory of general relativity. On this occasion, in 1917, 
Einstein in his work “On the special and general theory of 
relativity” wrote [302 p.561]: 

Indeed, astronomers found that the theory of Newton is not 
sufficient to calculate the observable motion of Mercury with an 
accuracy which can be reached under observation at present. After 
all disturbing influences of other planets on the motion of Mercury 
were taken into account, it was found (Leverrier, 1859; Newcomb, 
1895) what remains unexplained is the motion of the perihelion of 
the orbit of Mercury, the velocity of which does not differ 
noticeably from the above-mentioned +43 arc-seconds per century. 
The error of this empirical result is only a few seconds. 

In connection with this statement (concerning the secular 
displacement of the perihelion of Mercury’s orbit), we note 
that from the general position of the statistical theory of 
gravitating spheroidal bodies both Leverrier’s point of view 
(on the existence of unknown matter) and Einstein’s (on the 
theory of Newton) are almost the same. Indeed, there exists a 
plasma and gas-dust substance around the core of a rotating 
spheroidal body (in this case, the Sun) and, taking into 
account the fact that forming cosmogonical bodies have fuzzy 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Seven 
 

614

outlines and are represented by spheroidal forms, it requires 
some clarification of Newton’s law concerning a gravitating 
spheroidal body [16, 47, 48, 65, 73]. 

So, to find the trajectory of Mercury within the framework 
of the statistical theory of gravitating spheroidal bodies, it is 
necessary to estimate the gravitational potential at a nearby 
distance from the Sun, that is, in a remote zone of the 
gravitational field and the immediate vicinity of the core of a 
rotating spheroidal body [48, 70, 72, 73]. As well as in 
Section 7.2, let us use formula (7.2.18): 

22
0 sin1

),(
* r

Mr
rrg

, (7.3.1) 

which because of the smallness of parameter 12
0 and 

1sin  becomes the following: 

2
2

0 sin
2

1),(
* r

Mr
rrg , (7.3.2) 

where /1*r  and  is a parameter of gravitational 
condensation of a spheroidal body [47, 65]. Let us note that 
formula (7.3.2), as well as (7.2.19), can be obtained by a 
Maclaurin series expansion of function (7.2.17) on degrees of 
a small parameter 2

0  in linear approximation and under the 

condition */ rr . 
To estimate the gravitational potential (7.3.2) at a closer 

distance from the core of a rotating spheroidal body, we take 
into account the fact that Mercury (being the closest planet to 
the Sun) circles the Sun in a rather strongly elongated and 
inclined elliptic orbit (its eccentricity is equal to 0.205, and 
the orbital inclination to the ecliptic plane is 7°, that is, 
approximately 6.3° to the main plane of the Solar system). 
Although, as noted in Section 7.2, all the formed planets in 
the remote zone of a rotating spheroidal body have the elliptic 
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and inclined orbits of the kind (7.2.30), the eccentricities and 
angles of inclination of orbits for all other planets of the Solar 
system are very small (their eccentricities are in the interval 
0.0017–0.093, and the inclinations of orbits to the main plane 
of the Solar system belong to the interval 0.3°–2.2°). 

The above-noted feature of the highly elongated elliptic 
orbit of Mercury leads to the fact that in the perihelion of its 
orbit Mercury is more than one and a half times closer to the 
Sun than in the aphelion. Taking into account its closest 
proximity to the Sun and the essential inclination of its orbit, 
we conclude that the projection of the perihelion point of 
Mercury’s orbit directly falls into a nearby vicinity of the Sun, 
namely, in the visible part of the solar corona [70, 72], 
interpreted as the core of a rotating and gravitating spheroidal 
body (see Fig.7.4). 

 

 

Figure 7.4. Graphic representation of the orbit of a moving planet near to 
an equatorial plane of the core of a gravitating and rotating spheroidal 
body 
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Indeed, if i  is an angle of inclination of the orbital plane 
of a planet then the distance h  from the moving planet to an 
axis of rotation of the core of a spheroidal body 
(perpendicular to the equatorial plane of a spheroidal body) is 
expressed through the distance r  from the planet up to the 
center of a rotating and gravitating spheroidal body by the 
simple relation: 

irh cos . (7.3.3) 
As the orbit of each planet (moving in the central gravitational 
field of a rotating spheroidal body) entirely lays in one plane 
characterized by a constant polar angle const  (Fig. 7.4) 
then given a relation i2/  formula (7.3.3) takes the 
form: 

sinrh . (7.3.4) 
As already noted, for the planet Mercury which is located 

closest to a visible part of the Solar corona (or the core of a 
rotating and gravitating spheroidal body whose equatorial 
plane is allocated by the gray color in Fig. 7.4), we estimate 
with sufficient accuracy that prrh , where *2 rrpr  (see 

(2.2.6) in Section 2.2). Therefore, it follows from (7.3.4) 
directly that: 

r
r

r
rpr *2

sin . (7.3.5) 

So, supposing rrrrpr /2/sin * , then according to 

(7.3.5), the formula for estimation of gravitational potential 
(7.3.2) at closer distance from the core of a rotating spheroidal 
body (in vicinities of Mercury’ orbit) can be presented as 
follows: 

2

2
0

2

2
*

2
0 11|

* rr
M

r
r

r
Mr rrg , (7.3.6) 
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where /0*00 r  is a value with the dimension of 

length which is small in comparison with distance from the 
moving planet up to the center of a rotating and gravitating 
spheroidal body (taking into account that rr*  and 

12
0 ). Let us note that an analogous formula (7.3.6) was 

obtained by H. Alfvén and G. Arrhenius [9 p. 45] bearing in 
mind the following: “The axial rotations (spins) of the planets 
change the shape of these bodies from spherical to ellipsoidal. 
We can consider their gravitation to consist of a Coulomb 
field from a sphere, on which is superimposed the field from 
the ‘equatorial bulge’”. 

Substituting (7.3.6) into the Binet formula (7.2.16) we 
obtain the equation of the disturbed orbit of a planet (the 
Mercury) in the vicinity of the core of a rotating spheroidal 
body: 

2

2
0

22

2
0

22

2

2

2 3
1

3
1

11

rC
M

rr
M

C
r

rrd
d

, (7.3.7) 

where 2rC . After the traditional substitution rq /1  
equation (7.3.7) becomes the following: 

2
2

2
0

22

2 3
q

C
M

C
Mq

d
qd

. (7.3.8) 

Multiplying both parts (7.3.8) on 
d
dq

2  we can transform this 

equation into the kind: 

3
2

2
0

2
2

2
22 q

d
dq

C
M

d
dq

C
Mq

d
d

d
dq

d
d

. (7.3.9) 

Integrating (7.3.9), we calculate the first integral of this 
equation: 

1
3

2

2
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2
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2
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C
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C
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d
dq
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3
2

2
02

21

22 q
C
Mqq

C
Mc , (7.3.10) 

 
whence we find that: 

1
222

02
1

2 cqqq
C

M
d
dq

. 

Separating variables in the given equation we obtain: 

1
22

02 1
2 cqqq
C

M
dqd . 

(7.3.11) 

Supposing 2
01 /1c , 

0

2

2 M
C

, let us rewrite (7.3.11) in 

the form: 

2
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22
02

1
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2 qqq
C

M

dqd  
 

qq
dq

q
C

Mq

dq

0
2

0

2
0

2
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0

112
1

 

1

)()/2(
2

0

00

q

qd
.  (7.3.12) 

Introducing the designation qs 0  and then integrating 

(7.3.12) we obtain: 

222
0 1][

2 c
s

ds
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2224
0 )1(2

2 c
ss
ds

, (7.3.13) 

where 2c  is a constant of integration. 
The relation (7.3.13) led to the elliptic integral of 1-st kind 

which expresses  as a function from s  [301 p. 274]. Taking 
inverse functions and values, we can express r  as a Jacobi 
elliptic function from . As a result, the equation of the 
disturbed orbit of a planet (near to the core of a rotating 
spheroidal body) describes spirals for which a circle passing 
through the origin of coordinates and a circle with the origin 
in the center are limiting cases [96], that is, the disturbed 
trajectories of the finite motion of a planet are not closed [158 
p. 46]. 

To obtain an equation of the disturbed orbit of the planet 
Mercury in an explicit form we shall attempt to make some 
simplification of the initial equation (7.3.10). First of all, let 
us note that a similar equation (7.3.10) was derived by 
Einstein within the framework of his GR theory. Indeed, if we 

introduce designations CM 22
0 /2 , 22 //2 BCM , 

and 2
1 /2 BDc  then this equation (7.3.10) becomes exactly 

equation (11)3 from Einstein’s work [303] (a similar equation 
(18) was also deduced by K. Schwarzschild in his work [302], 
[304 p. 206]). As Einstein indicated in his work, this equation 
differs from the corresponding equation of Newton’s theory 
only in the last term, 3q , in the right-hand part which 
allowed him to replace, with sufficient accuracy, the solution 
of this equation in the form of an elliptic integral by pseudo-
elliptic integral (which could be calculated using elementary 
functions) [301 p. 105]. 

 
3 With the original numeration of formula used in the work [303] 
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In this context, within the framework of the proposed 
statistical theory of gravitating spheroidal bodies, we can also 
introduce convenient notations 22

0 /2 CM  and 
2

0
2 //2 CM with the aim of expressing a polynomial 

1
2

0
23 )/()( cqqqqK  in the right-hand part of the 

equation (7.3.10) through a corresponding polynomial 

1
2

0
2 )/()( cqqqN  in the right-hand part of equation 

of Newton’s theory based on an algorithm for division of two 
polynomials with a residue: 

)()()()( qRqNqLqK , (7.3.14) 
where )(mod)()( qNqKqR  is a polynomial residue, besides 

)(deg)(deg qNqR  [305]. Direct application of the 
algorithm of the division of polynomials with the residue 
(procedure of division by “corner”) gives [72, 73, 74]: 

2
0

2 /1)( qqL , (7.3.15a) 
2

0
2

1
4

0
3

1 /)/()( cqcqR . (7.3.15b) 

So, according to formulas (7.3.14) and (7.3.15a, b) the 
polynomial in the right-hand part of the equation (7.3.10) can 
be expressed as follows [72, 73, 74]: 

2
0

2

14
0

3

12
0

2

)()()1()( cqcqNqqK . (7.3.16) 

Using the results in Section 7.2, we suppose that the 
constant of integration 1c  should be proportional to the value 

4
0

222
0

22 4/)2/()/( CM . Because of that 

1, we are limited  by terms not higher than the second 
order of smallness relative to  in this formula, that is, 

)( 2O : 

)()1()()1()( 12
0

2
2

0

2

2
0

2

cqqqqNqqK . (7.3.17) 
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At last, substituting the formula (7.3.17) into equation 
(7.3.10), we obtain [72, 74]: 

2
2

12 2
0 0

( ) 1
dq K q q q q c
d

, (7.3.18) 

    
whence, after separation of variables and integration of 
equation (7.3.18), we find that: 

2
12 2

0 0

1

dqd

q q q c
. 

(7.3.19) 

Decomposing function 2/12
0

2 ])/[1( q  in the 

Maclaurin series we can write integral (7.3.19) in the form: 

2
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cqq

dqq
  

1
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0
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cqq

dq
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0
2 )/(2

c
cqq

qdq
, (7.3.20) 

where 2c  is a constant of integration. By analogy with the 
transformation of the radical in denominator of the right-hand 
part of equation (7.2.24), we shall write down radicals in 
denominators of subintegral expressions in the right-hand part 
of the equation (7.3.20): 

22
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dq
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222
01

22
0 2/)2/(2

c
qc

qdq
. (7.3.21) 

Introducing the previous notations (as in Section 7.2) 

1
22

0
2 )2/( ck  and 2

02/qs  we can note that 

integrals in the right-hand part of the equation (7.3.21) have a 

meaning only if 22 sk , that is, 1
k
s

. Taking this into 

account and choosing the bottom sign in equation (7.3.21) we 
obtain [73]: 

222
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sk
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2
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2
arccos

4

3
1 csk

k
s

. (7.3.22) 

Using the above-mentioned condition 1/ ks , let us present 

the function 22 sk  belonging to the right-hand part of the 
equation (7.3.22) in the form: 

k
skksksk arccossin)/(1 222 , 

and then expand it in the Maclaurin series: 

k
sksk arccossin22   

...
!3

)/arccos(
arccos

3ksk
k
sk . (7.3.23) 
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Being restricted by the first term in the Maclaurin series 
(7.3.23) and substituting it in Eq. (7.3.22) we can simplify this 
equation essentially [72, 74]: 

22
0

2

arccos
4

3

2
1 c

k
sk

, (7.3.24) 

whence: 

2
0

2
2

4/32/1
cos

k
cks . (7.3.25) 

Returning to the variable q  and then r  we can write 
(7.3.25) in the form: 

2
0

2
2

2
0 4/32/1

cos
2

1

k
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r
, 

whence: 
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k
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r . 
(7.3.26) 

Substituting into Eq. (7.3.26) the value of the parameter 

1
22

0 )2/( ck  we obtain [73]: 
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(7.3.27) 

Because of the smallness of the parameter , that is, 1, 
equation (7.3.27) becomes: 

.

4
]

2
13[1cos

2
11

/2

22
0

2
22

0
1

22
0

1

2
0

ccc

r  

(7.3.28) 

Taking into account the notation 22
0 /2 CM , 

accepted above, we can determine the values 
MC //2 22

0  and 22
0

2
0

2 )/(4/ CM , so that 

equation (7.3.28) for a disturbed orbit of the planet Mercury 
takes the form [70, 72-74]: 

2

2

2
0

22

1

22

1

2

]13[1cos11

/

c
C
M

M
Cc

M
Cc

MCr  

(7.3.29) 

As a result, comparing (7.3.29) with the polar equation of 
conic section with a focus in the origin of coordinates 

cos1 e
pr  [96, 158] we find that:  

MCp /2 ;   22
1 )/(1 MCce ; 
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2

2

2
0

22

1 ]13[1 c
C
M

M
Cc , (7.3.30) 

where 
p  is a parameter of an orbit, 
e  is an eccentricity of orbits,  
and *2c  is a constant. 

In addition, *  is an angle between the polar axis and the 
endpoint of the big axis directed to vertex [96]. As mentioned 
above in Section 7.2, the constants 2C , 1c , and 2c  are defined 
by initial conditions, and in turn, they define p  and e  using 
(7.3.30). 

Taking into account the smallness of the parameter 
22

0 /2 CM , equation (7.3.28) of the disturbed orbit of a 

planet cannot differ so considerably from equation (7.2.28) of 
orbit for a planet in a remote zone of a gravitational field of a 
rotating spheroidal body. In connection with that for the 
undisturbed orbit of a planet in a remote zone of a 
gravitational field, the constant of integration 1c  (in Section 

7.2) is chosen to be equal, 22
1 )/( CMc . There is a reason 

to suppose that 22
1 )/( CMc , besides 22

1 )/( CMc  

and 01c . This means that, according to (7.3.30), the 
eccentricity e  of the disturbed orbit should be 

1)/(1 22
1 MCce , that is, formula (7.3.29) expresses 

the equation of the “disturbed” ellipse in polar coordinates 
with the origin of coordinates in focus [72, 73, 74]: 

)(])3(1[cos1

/

*

2

2

2
0

2

C
Mee

MCr , 
(7.3.31) 
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that is, the planet Mercury is moving in a precessing elliptic 
orbit since there is a modulating multiplier of a phase (an 
azimuth angle * ) in equation (7.3.31): 

2

2

2
0)3(1

C
Me . (7.3.32) 

Moreover, the multiplier  is close to unity because 

1)2/()/( 2
0

222
0 CM  [73]. Let us note that 

according to the derived formula (7.3.31) and the formula of 
analytical geometry the major semi-axis a  of an ellipse is 
equal to: 

2

2

1
/
e
MCa , 

so that we find the known formula [6, 8]: 
)1( 22 eMaC . (7.3.33) 

Substituting (7.3.33) into formula (7.3.32) we obtain: 
2

2
0

)1(
)3(1

ea
e . (7.3.34) 

So, according to formulas (7.3.31) and (7.3.34), at the full 
circle of a planet in the disturbed orbit the increment of a 
phase is given by: 

222

2
0

)1(

)3(2
22

ea
e

. (7.3.35) 

The second summand represents the required angular 
movement of a Newtonian ellipse during one turn of a planet 
in the disturbed orbit, that is, displacement of the perihelion of 
orbit for the period is equal to the following angle [72, 73]: 

222

2
0

)1(

)3(2

ea
e

. (7.3.36) 

Taking into account that the value *00 r  according to 

(7.3.6), formula (7.3.36) becomes [70, 72-74]: 
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222

2
0

)1(

)3(2

ea
e

, (7.3.37) 

where through a  and e  the major semi-axis and the 
eccentricity of the orbit of Mercury are designated 
respectively,  is a parameter of gravitational compression 
and 0  is a geometrical eccentricity of the core of a rotating 

and gravitating spheroidal body (the Sun) [16]. Taking into 
account Kepler’s third law [96, 158] and expressing from it a 
square of the major semi-axis, formula, (7.3.37) takes the 
form [70, 72-74]: 

222

2
0

3

)1(

)3(8

eMT
ea

, (7.3.38) 

where T  is a period of the turn of Mercury around the Sun. 
Before we begin to consider the calculation of the 

displacement of Mercury’s perihelion according to the 
obtained formula (7.3.37), let us note that a similar formula of 
an estimation of the angular shift of Mercury’ perihelion by 
period has been offered by L. Nottale [200]: 

222

2

)1(

6

ea
, (7.3.39) 

where MA 2/2 . Moreover, a value A  is treated as the 
difference of polar and equatorial moments of inertia for the 
oblate object, namely, the Solar system. 

Moreover, in the above-mentioned work [303 p. 446], 
Einstein showed that under the condition of the whole 
turn of Mercury’s perihelion moves on an angle: 

)1(

6

)1(
3

222 eac
M

ea
A

, (7.3.40) 

where c  is the speed of light; in this connection he noted: 

Calculation gives the planet Mercury a turn of perihelion of 43'' per 
century, while astronomers indicate 45'' 5'' as an inexplicable 
difference between observations and Newton’s theory. This means 
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full agreement with observations.  

In other his work “On the special and general theory of 
relativity,” on the occasion of displacement of Mercury’s 
perihelion Einstein wrote [302 p. 195–196]: 

If we calculate a gravitational field up to higher-order values and 
with the corresponding accuracy to calculate movement in an orbit 
of a mass point with infinitesimal mass then the following 
deviation from the laws of movement of planets of Kepler–Newton 
is obtained. The elliptic orbit of a planet undergoes the slow 
rotation in a direction of motion of the planet which is equal to 

)1(
24

222

2
3

ecT
a  

during one full turn of the planet. In this formula a  means the major 
semi-axis, c  is the speed of light in usual units, e  is the eccentricity 
of the orbit, T  is the period of a turn of the planet in seconds. 

For the planet Mercury, the rotation of an orbit equal to 43'' a the 
century is obtained that precisely corresponds to the value 
established by astronomers (Leverrier). Astronomers have found 
that some part of the general movement of the perihelion of this 
planet is not explained by disturbing action of other planets and is 
equal to the pointed out value. 

So, following formula (7.3.37), let us calculate the 
displacement of the perihelion of the orbit of Mercury based on 
the statistical theory of gravitating spheroidal bodies [72, 73]. 
First of all, according to (7.3.37), it is necessary to estimate  
(which is a parameter of gravitational condensation of a 
spheroidal body, that is, of the Sun) based on an estimation of 
the linear size of its core, that is, of the thickness of a visible 
part of the solar corona (see Fig. 7.5). 

As we know, the solar corona represents the external 
layers of an atmosphere of the Sun, and it extends, at least, 
up to the borders of our Solar system in the form of “a solar 
wind,” that is, our Earth, along with the other planets of the 
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Solar system, could be said to lie within the solar corona. In 
this connection, the Sun together with the solar corona can 
be described by the model of a rotating and gravitating 
spheroidal body [72, 73]. 

The spectrum of the solar corona consists of three 
components called L-, K-, and F-components (see Fig. 7.6). In 
particular, the K-component represents a continuous spectrum 
of the corona, and in its background, one can see the emission 
L-component within the apparent interval 9'–10' from a visible 
edge of the Sun. Beginning with the apparent height at around 
3' and above we see the Fraunhoffer’s spectrum constituting the 
F-component of the solar corona. 

 

 

Figure 7.5. The solar corona imprinted during a solar eclipse in 1999 

The F-spectrum of the corona is formed as a result of 
sunlight scattering on particles of interplanetary dust. In 
immediate proximity to the Sun the dust cannot exist, 
therefore the F-spectrum starts to dominate in the spectrum 
of the corona at some distance (at the apparent height 20') 
from the Sun. 
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Disk
Edge of disk

Clear sky with a haze

Pure blue sky

Sky in middle
of full phase of eclipse

 

Figure 7.6. Graphic dependence of relative brightness of components of 
the spectrum of the solar corona on distance up to edge of a disk 

As we can see in Fig. 7.6, a recession of plots of 
dependencies of the relative brightness of components of 
the spectrum of the Solar corona occurs at the distance of 
3–3.5 radii from the center, that is, at 2–2.5 radii from the 
edge of the solar disk. Indeed, the well-known astronomer 
at NASA, S. Odenwald in his investigation “How thick is the 
solar corona?” wrote [306]: 

The corona actually extends throughout the entire solar system as a 
“wind” of particles, however, the densest parts of the corona are 
usually seen not more than about 1–2 solar radii from the surface or 
about 690,000 to 1.5 million kilometers at the equator. Near the 
poles, it seems to be a bit flatter.... 

Thus, accepting the thickness of a visible part of the 
solar corona as equal, R2  (here R  is a radius of the 
solar disk), we find that RRr 3* . In other words, the 

parameter of gravitational condensation 2
*/1 r  of a 

spheroidal body in the case of the Sun with its corona (for 
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which the equatorial radius of disk 810955.6R m) can be 
estimated by the value [72, 73, 76]: 

19
2

1082970117771.2
)3(

1

R
(m-2). (7.3.41) 

According to formula (3.8.14) in Section 3.8, if a  and b  
are equatorial and polar radii of the disk then a relative 
flattening abaec /)(  of a spheroid (a flattened ellipsoid) can 

be expressed through its geometrical eccentricity 

aba /22
0

 as 2
011ce  whence, in view of the value 

of flatness for the Sun 6109ce , we find that the square of 
geometrical eccentricity of the core of a rotating spheroidal 
body, that is, the solar disk together with a visible part of the 
solar corona, is equal: 

522
0 107999919.1)1(1 ce . (7.3.42) 

At last, taking into account that the major semi-axis of the 
orbit of the planet Mercury is 

10107909068.5a (m), (7.3.43) 
and its orbital eccentricity is equal to 

20530294.0e , (7.3.44) 
let us substitute all the mentioned values (7.3.41)–(7.3.44) 
into formula (7.3.37) and calculate the angular displacement 
of the perihelion of Mercury’s orbit for one circle [72-74]:  

19174779689.01033534601566.31082970117771.2

107999919.120530294.382831853071.6
2119

5

 

81058016929.0 .         (7.3.45) 
Taking into account that the sidereal period of a turn of 

Mercury is equal to 87.969 terrestrial days then during one 
terrestrial year Mercury performs 4.15214450545 orbits 
around the Sun so that angular displacement of the perihelion 
of its orbit for one terrestrial year is to be 

64393039181.051521445054.4 . Thus, according to 
the statistical theory of gravitating spheroidal bodies the turn 
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of the perihelion of Mercury’s orbit is equal to 43.93 angular 
seconds per century which is consistent with the conclusions 
of Einstein’s GR and astronomical observations (see Table 
7.1) because an accuracy of modern astronomical 
measurements of movement of the perihelion of Mercury is 
0.4500'' per century from Clemence’s analysis [168, 307]. 

Let us note that the calculated values of the parameter of 
gravitational compression (7.3.41) and the square of 
geometrical eccentricity (7.4.42) of a rotating spheroidal body 
allow us to estimate a characteristic length 0 : 

62
0*00 10852249876.8/r (m), (7.3.46) 

which appears considerably smaller than the average distance 
from the Sun as far as Mercury 101079.5r (m), as it was 
supposed initially at the derivation of formula (7.3.6). At the 
same time, the value 9

* 100865.2/1r  (m) is almost 28 
times smaller than the average distance r  from the Sun to 
Mercury. This made it possible to legitimately use it in the 
above calculations for the estimation (7.3.1) of the 
gravitational potential in the remote zone of a rotating 
spheroidal body. In this connection, the formula obtained, 
(7.3.37), is suitable for calculating angular displacements of 
perihelia of the subsequent planets (after Mercury) though it is 
obvious that because of even greater deviation of the 
characteristic length 0  and the average distance r  from the 

Sun up to any of these planets, angular displacements of the 
perihelia of their orbits will be negligible. As Einstein 
remarked [303]:  

For the Earth and Mars astronomers point to the turn 11'' and 9'' a 
century accordingly whereas our formula gives only 4'' and 1''. 
However, owing to small eccentricity of orbits of these planets 
observational data are insufficiently exact. 
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Indeed, modern data [302 p. 447] in Table 7.1 about turns 
of perihelia in the orbits of the neighboring planets to 
Mercurfy testify in favor of both Einstein’s GR and the 
proposed statistical theory of gravitating spheroidal bodies 
[72, 73]. Unlike Einstein’s formula (7.3.40), the proposed 
formula (7.3.37) depends on both the parameter of flatness 

0 of a star (the Sun) and its evolutionary parameter 

gravitational condensation )(t , that is, formula (7.3.37) 
(or (7.3.38)) takes into account the dynamics of the star. 

Conclusion and Comments 

In this chapter, we have considered the statistical theory of 
gravitating spheroidal bodies to develop and apply a model of 
formation and self-organization in the case of the Solar 
system. In this context, this chapter also investigated the 
orbits of moving planets and bodies in the centrally symmetric 
gravitational field of a gravitating and rotating spheroidal 
body during the planetary stage of its evolution. 

Though orbits of moving bodies and particles into a 
flattened rotating spheroidal body are initially circular, they 
could be distorted by collisions with planetesimals and 
gravitational interactions with neighboring originating 
protoplanets during the evolutionary process of protoplanetary 
formation. In reality, at first, the process of evolution of 
gravitating and rotating spheroidal body leads to their 
flattening. After that, the evolutionary process results in their 
decay into forming protoplanets. This chapter showed that the 
orbits of moving particles are formed by the action of a 
centrally symmetric gravitational field mainly on the later 
stages of the evolution of a gravitating and rotating spheroidal 
body, that is, when the particle orbits become Keplerian.  

In Section 7.1, the proposed theory started with the 
conception for forming a rotating spheroidal body as the 
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protoplanetary system from a protoplanetary nebula (or proto-
Sun inside a presolar nebula) using the above-derived 
distribution function and the density mass function (7.1.1a)–
(7.1.1c). The estimation of the gravitational potential (7.1.24) 
in a remote zone of a uniformly rotating spheroidal body 
based on the general solution (7.1.3) of the Poisson equation 
was then obtained. Section 7.1 also verified the accuracy of 
the derived estimation (7.1.24) by the use of the general 
expression (3.6.15a) for the gravitational potential of an 
axially symmetric spheroidal body (see Section 3.6). Indeed, 
using (3.6.15a), as shown in Section 7.1, the gravitational 
potential in a remote zone of the gravitational field of a 
rotating spheroidal body (when prrr ) is estimated by 

formula (7.1.32c) whose particular case is the estimation 
explained above (7.1.24) at 0 . 

In Section 7.2, the planetary stage of evolution of a 
gravitating and rotating spheroidal body was considered. This 
section investigated the orbits of moving planets and bodies in 
the centrally symmetric gravitational field of a gravitating and 
rotating spheroidal body during the planetary stage of its 
evolution. To this end, the calculation of the orbit of a planet 
(for example, one belonging to our Solar system) in the 
centrally symmetric gravitational field based on Binet’s 
differential equation (7.2.16) was carried out. In particular, 
using the obtained approximation of the gravitational potential 
in the remote zone (7.2.18) and solving the respective Binet 
equation (7.2.21), relation (7.2.29) for the Keplerian orbit of a 
planet in the gravitational field of a rotating spheroidal body 
was derived. As noted here, the formation of planets is 
possible not only based on particles of the protoplanetary gas-
dust cloud (modeled by a gravitating and rotating spheroidal 
body) but also through the capture and joining of bodies 
moving in close orbits (meteorites, asteroids, etc.) in a 
gravitational field of a star (the Sun). 
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In Section 7.3, calculation of the orbit of the planet 
Mercury, as well as estimation of angular displacement of 
Mercury’s perihelion based on the statistical theory of 
gravitating spheroidal bodies was carried out. As noted here, 
because of its close proximity to the Sun and the essential 
inclination of its orbit, the projection of the perihelion point of 
Mercury’s orbit falls directly into the close vicinity of the 
Sun, namely, in the visible part of the solar corona, interpreted 
as the core of a rotating and gravitating spheroidal body. In 
this connection, as is well known, the angular displacement of 
a Newtonian ellipse is observed during one rotation of 
Mercury in orbit, that is, the secular shift of the perihelion of 
Mercury’s orbit occurs. Using estimation (7.3.6) of the 
gravitational potential in the case of closer distance from the 
core of a rotating spheroidal body (in the vicinities of 
Mercury’ orbit) and solving Binet’s “disturbed” equation 
(7.3.7), an equation for precessing elliptic orbit (7.3.31) of the 
planet Mercury was derived. Taking into account equation 
(7.3.31), formula (7.3.37) for calculating the displacement of 
the perihelion of Mercury’orbit for the period was proposed in 
Section 7.3. As a result, this section shows that according to 
the proposed statistical theory of gravitating spheroidal bodies 
the turn of the perihelion of Mercury’s orbit is equal to 43.93'' 
per century. That is consistent with the conclusions of 
Einstein’s GR theory (his analogous estimation was equal to 
43.03'') and astronomical observation data (43.11'' 0.45'').  
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CHAPTER EIGHT 

THE DERIVATION OF THE UNIVERSAL 

STELLAR LAW FOR EXTRASOLAR SYSTEMS 
 
 
 

Between 1911 and 1924, the astronomers Russell, 
Hertzsprung, and Eddington established that for stars of the 
Main Sequence there is a dependence of luminosity of a star 
on the temperature of its stellar surface (the diagram of 
Hertzsprung–Russell). There is also a connection between 
luminosity L  and mass M  of star (the diagram of mass 
luminosity) [1, 109]. According to this diagram for stars of 
the Main Sequence, the mass-luminosity dependence looks 
like sML , where 2.6s  for stars of small mass 
( 2.0/lg1.1 SunMM ), 4.2s  for stars of medium mass 

( 4.0/lg2.0 SunMM ), and 3.3s  for stars of large mass 

( 7.1/lg6.0 SunMM ), SunM  is the mass of the Sun. In 

Sections 2.10, 6.2, and the monograph [73 p. 416], the 
different versions of invariant relations between the 
temperature T , the concentration n , and the parameter of 
gravitational condensation  of Sun-like stars have been 
derived using the models of rotating and gravitating 
spheroidal bodies (see Theorem 2.2, formulas (2.10.16) and 
(6.2.8 )–(6.2.8c)). Recently, P. Pintr et al. have found 
heuristic regression dependences, that is, they have studied 
the regression dependence of the distance of planets na   from 

the central stars on the parameter of specific angular 
momentum nnva  ( na  is a planetary distance and nv  is a 

planetary velocity) and then they have applied the regression 
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analysis to other physical parameters of stars, namely, effTan , 
Lan , and Jan , where effT  is an effective temperature of a 

stellar surface, L  is a luminosity of a star, and J  is a stellar 
irradiance for the multi-planet extrasolar systems [308]. This 
raises a question as to whether there exists, as in the Kepler 
laws, a universal law for the planetary systems connecting the 
temperature, size, and mass of each star? 

According to the considered statistical theory of gravitating 
spheroidal bodies (see Chapters 1–5) under the application of 
laws of celestial mechanics in conformity with cosmogonical 
bodies (especially, to the stars), it is necessary to take into 
account an extended substance called the stellar corona. In 
this connection, the stellar corona together with the star’s core 
can be described by the model of a rotating and gravitating 
spheroidal body. Moreover, the parameter of gravitational 
condensation  of a spheroidal body (describing the Sun, in 
particular) has been estimated through the linear size of its 
core, that is, by the thickness of a visible part of the solar 
corona (see Section 7.3 of the previous Chapter 7). Indeed, 
NASA astronomer Dr. S. Odenwald in his notice “How thick 
is the solar corona?” wrote [306]:  

The corona actually extends throughout the entire solar system as a 
“wind” of particles, however, the densest parts of the corona is 
usually seen not more than about 1–2 solar radii from the surface or 
about 690,000 to 1.5 million kilometers at the equator. Near the 
poles, it seems to be a bit flatter.... 

A recession of plots of dependencies of the relative 
brightness of components of the spectrum of the solar 
corona occurs at a distance of 3–3.5 radii from the center, 
that is, at 2–2.5 radii from the edge of the solar disk (see 
Fig. 7.6). Thus, accepting the thickness of a visible part of 
the solar corona equal to R2  (here R  is the radius of 
the solar disk) we find that RRr 3* , where 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Derivation of the Universal Stellar Law for Extrasolar Systems 
 

639 

/1*r . In other words, the parameter of gravitational 

condensation 2
*/1 r  of a spheroidal body in the case of 

the Sun with its corona (for which the equatorial radius of 
the disk 810955.6R m) can be estimated by the value 
following formula (7.3.41) from Section 7.3 (see also formula 
(II.2) and Ref. [72, 73]): 

19
2

1082970117771.2
)3(

1

R
(m-2). 

So, the procedure for finding  is based on the known 3 -
rule in the statistical theory, where /1  is a root-mean-
square deviation of a random variable. 

Indeed, taking into account the solar corona in calculating 
the perturbed orbit of Mercury allows us to estimate the 
displacement of the perihelion of Mercury’s orbit per period 
within the framework of the statistical theory of gravitating 
spheroidal bodies. As we know, Newton’s law, using the 
theory of general relativity (GR), found a solution to the 
problem of Mercury [81, 303]. Nevertheless, we note that 
from the general position of the statistical theory of 
gravitating spheroidal bodies, the points of view of both 
Leverrier (on the existence of unknown matter) and Einstein 
(on the insufficiency of the Newton’s theory) are almost the 
same (see Section 7.3). Indeed, there exists plasma as well as 
a gas-dust substance around the core of a cosmogonical body 
(in particular, the solar corona in the case of the Sun), that is, 
the account of the circumstances that forming cosmogonical 
bodies have no precise outlines and are represented by means 
of spheroidal forms demands some specification in Newton’s 
law in connection with a gravitating spheroidal body.  

Using the Binet formula the equation of the disturbed orbit 
of a planet (Mercury) in the vicinity of the core of a rotating 
and gravitating spheroidal body has been derived (see Section 
7.3). The obtained relationship expresses the equation of the 
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so-called “disturbed” ellipse in polar coordinates with the 
origin of coordinates in focus, that is, the planet Mercury is 
moving in a precessing elliptic orbit since there is a 
modulating multiplier of the phase (or azimuth angle). So, 
within the framework of the statistical theory of gravitating 
spheroidal bodies the required angular motion of a Newtonian 
ellipse during one turn of Mercury in the disturbed orbit (or 
the displacement of the perihelion of its orbit in the period) 
was estimated in Section 7.3 (see formula  (7.3.37) ) and [72, 
73]: 

222

2
0

)1(

)3(2

ea
e

, 
where through a  and e  a major semi-axis and an eccentricity 
of the disturbed orbit are designated respectively,  is a 
parameter of gravitational condensation, and 0  is a 
geometrical eccentricity of the core of a rotating and 
gravitating spheroidal body (the Sun). Thus, according to the 
proposed formula (7.3.45), the turn of the perihelion of 
Mercury’s orbit is equal to 43.93'' per century (see Table 7.1 
in Chapter 7). This is consistent with conclusions of 
Einstein’s theory of GR theory (his analogous estimation is 
43.03'') and astronomical observation data (43.11 0.45'') [72, 
73]. 

This chapter also considers the solar corona in connection 
with so-called universal stellar law (USL) [75, 76] introduced 
in Section 8.2. Then it is taking into account in calculating the 
ratio of the temperature of the solar corona to an effective 
temperature of the Sun’s surface and the modification of the 
USL in Section 8.3. To test the accuracy of USL for different 
types of stars, the temperature of the stellar corona is 
estimated in Section 8.4. Section 8.5 shows that knowledge of 
some characteristics for multi-planet extrasolar systems 
permits us to refine own parameters of stars. In reality, 
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numerous papers are devoted to recent investigations of the 
exoplanetary systems (for example, [15, 76, 200, 201, 231, 
233, 235, 238–240, 257, 259–261, 285–299, 308–318]). In 
this context, comparison with estimations of temperatures 
using the above-mentioned regression dependences for multi-
planet extrasolar systems fully justifies the results obtained. 

8.1. On the potential and potential energy of the 
gravitational field of a spheroidal body 

According to the statistical theory of gravitating spheroidal 
bodies (see Chapters 1–4 and also [16, 73]), a mass density 
function (3.3.26c) of a uniformly rotating spheroidal body has 
the form: 

2/)sin1(2
00

22
0

2

)1(),( rer , (8.1.1) 

and in the case of 02
0

 the mass density function of a 

slowly rotating spheroidal body becomes: 
2/2

0=)( rer , (8.1.2) 

where 
 2/3

0 2/M  is a density in the center of a spheroidal 

body,  
M  is a mass of a spheroidal body, and  

 is a parameter of gravitational condensation.  
As follows from (8.1.2), the probability density function of a 
particle having distance r  being confined between r  and 

drr  from the center of a slowly rotating (immovable) 
spheroidal body can be expressed by the formula (2.1.18): 

2

22
2/3

2
4

r
errf . (8.1.3) 

Let us calculate the characteristics of the gravitational field 
produced by a collection of isolated particles in the form of a 
spheroidal body. As shown in Section 3.6, the gravitational 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Eight 
 

642

potential of a uniformly rotating spheroidal body with the 
mass density (3.3.26c) is described by formula (3.6.15c). In 
the particular case of 0 0 , formula (3.6.15c) gives the 

following result: 
2

0

3/2
2

3/20 0
( )

(2 )

r
s

g
dsr M e

s
 (8.1.4) 

where 2211 /kgmN10673.6  is the Newtonian constant of 
gravitation. Using the sequence of transformations of Eq. 
(8.1.4) we can obtain expression of the form:   

2

0

3/2
2

3/20 0
( )

(2 )

r
s

g
dsr M e

s
  

23/2
2

0

2 1 2
( )

2 2

rr
sM re d

r s
. (8.1.5) 

In other words, by changing variables: 

' 2

2
r r

s
 (8.1.6) 

in (8.1.5), we obtain the resulting formula: 
' 2

0

3/2 /2 '

0 0

2 1
( )

r r
g r M e dr

r
  

'2 '2
3/2

/2 ' /2 '
03/2 0 0

1 1
4 4

(2 )

r rr rM e dr e dr
r r

, (8.1.7) 

that is, we derive formula (2.4.26) for the gravitational 
potential of a slowly rotating (immovable) spheroidal body 
(see Section 2.4): 

2

0 2

0

4 r
r

g r e dr
r

. (8.1.8) 

Unlike the resulting formula (8.1.8), where integration is 
performed by coordinate r (or distance from the center of a 
weakly rotating spheroidal body to the observation point), in 
formula (8.1.4), integration is carried out with respect to the 
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state parameter s  of the weakly rotating spheroidal body. 
Indeed, according to (8.1.4), we have: 

/ 2
( )

2 1 ( / 2)
s

s s
. (8.1.9) 

As shown in Section 4.1, in the state of virial equilibrium of 
an immovable spheroidal body (when const)( sGG t ) 

formula (4.1.22) for the gravitational condensation parameter 
)(t  is valid: 

)(21
)(

ss

s

tt
t

sG
, (8.1.10) 

where ( )s st  is the parameter corresponding to the 

stabilization. In the general case of an arbitrary gravitational 
compression function (GCF) )(tG , a formula similar to 
(4.1.22) takes the form: 

t

t

dtt
t

0

)(21

)(

0

0

G

, 
(8.1.11) 

where 0 0( )t  is an initial parameter. If we rewrite formula 

(8.1.11) in the following form: 

0

)(21

)(

0

0
t

t

dtt
t

G

, 
(8.1.12) 

and compare it with (8.1.9), then the equivalence condition 
for these formulas means that: 

0 / 2 ; (8.1.13a) 
0

2 G( )
t

t
s t dt . (8.1.13b) 

In other words, the state parameter s  of a gravitating 
spheroidal body is an integral time function of GCF, showing 
the history of the states of gravitational contraction of a 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Eight 
 

644

spheroidal body: from the state of an infinitely spread 
molecular cloud ( 0s  at 0t t ) to the state of unlimitedly 

compressed spheroidal body to a point ( s  at t ). If a 
gravitationally compressible spheroidal body passes through 
an infinitely large number of exclusively equilibrium states, 
then rewriting formula (8.1.10) as follows:  

( )
1 2 G ( )

s

s s s

t
t t

, (8.1.14) 

and then comparing it with (8.1.9), we obtain:  
/ 2s ; (8.1.15a) 

2G ( )s ss t t . (8.1.15b) 

From (8.1.15b) it directly follows that the state parameter s  is 
proportional to the inverse time, but according to the initial 
formula (8.1.10), the time of evolution of a gravitating 
spheroidal body goes from an unstable equilibrium state of a 
molecular cloud to a state of unlimited compression to a point. 
In this connection, it is advisable to rewrite formula (8.1.9) on 
the contrary, replacing s  by s , so that the state parameter 
would be proportional to the time of evolution of the 
spheroidal body: 

/ 2
( )

2 1 ( / 2)
s

s s
, (8.1.16) 

where ,..., 1,0s . In this form, formula (8.1.16) is 
completely equivalent to the original formulas (8.1.10) or 
(8.1.11) with the state s  corresponding to the state of a 
spread molecular cloud, and the state 0s  respecting to the 
unlimited compression of the spheroidal body to a point. In 
this connection, formula (8.1.4) of the gravitational potential 
of a weakly rotating spheroidal body takes form: 

2

0

3/2
0

2
3/20 (2 )

r
s

g
dsM e

s
. (8.1.17) 
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Using (8.1.17) we can estimate the gravitational potential 
of an immovable spheroidal body in the near zone ( 0)r , 
for which we expand the exponential function in the 
Maclaurin series limiting it by the first terms: 

0

3/2 0 2
3/20

1
2 (2 )g

dsM r
s s

 

3/2 0 02
3/2 5/2

{ }
(2 ) (2 )

ds dsM r
s s

 

0 03/2 2
3/2 5/2

1 ( ) ( )

(2 ) (2 )

M d s d sr
s s

 

3/2 2
3/2 5/22 2

1 (2 ) (2 )

(2 ) (2 )

M d s d sr
s s

 

Introducing the change of variables st 2  and then 
integrating the last expression we obtain: 

0

1/2 3/2
3/2 2

0
2 2

1

1/ 2 3 / 2g
M t tr  

2 2
3/2 3/2

3/2

2 2 2

3 2 32 2

M r M r
 

3/2 2 2

03/2

2 2
2 2 .

(2 ) 3 3

r rM  (8.1.18a) 

The same result is obtained using formula (8.1.8) in the case 
of small 1r  (see formula (2.4.29) in Section 2.4 and also 
[16, 46, 73]): 

2 30 0

1 0

4 4
( ) 1

2 6

r

g r
r r dr r r

r r
 

2

0

2
2

3

r
. (8.1.18b) 
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Using the error function 
x

s dsex
0

22
erf  [128], we can 

transform (8.1.8) into (2.4.27): 

2
erf

24 2

0

0
g

2

r
r
Mdse

r
r

r

s . (8.1.19) 

Since 12/erflim r
r

 then for large r  the last expression 

turns into: 

r
Mrg . (8.1.20) 

Relation (8.1.20), as we know, describes the gravitational 
potential of a field produced by one particle (or a spherical 
body) of mass M . Thus, expression (8.1.18b) describes the 
gravitational potential in the near zone of the field, while Eq. 
(8.1.20) describes that in the remote one. 

The potential energy of a particle in a gravitational field is 
equal to its mass multiplied by the potential of the field. The 
potential energy of any distribution of masses is described by 
the expression [100]: 

V
g dVE

2

1
g , (8.1.21) 

where  and g  are supposed to be the mass density 

(3.3.26b) and the gravitational potential (3.6.15a) of a 
uniformly rotating spheroidal body respectively. As shown in 
Section 3.7, the value of gravitational energy (3.7.8) of a 
uniformly rotating spheroidal body is equal to: 

2 22
0 0

0 0

1 1
arccot

2g
ME . (8.1.22) 
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In the particular case of 0 0 , formula (8.1.22) gives an 

estimation of the gravitational energy of a non-rotating 
(weakly rotating) spheroidal body: 

2

2

g

ME . (8.1.23) 

From (8.1.23) it is not difficult to see that: 

4

2
g

2

4

M
E

. (8.1.24) 

According to (8.1.23) one can deduce a distance called the 
effective radius of the body (see Section 2.5): 

r . (8.1.25) 

On account of (8.1.25) we obtain formula (2.5.9) [46, 73]: 

r
ME
2

2

g . (8.1.26) 

Let us consider a single small body (a test particle) of mass 
m  in the gravitational field of its own collective body of mass 
M , situated at distance r  from the body center. Now evaluate 
the potential energy of interaction of the particle and the 
spheroidal body: 

rmrE gintg . (8.1.27) 

Using relations (8.1.2), (8.1.3), (8.1.21), and (8.1.27) one 
can easily calculate the energy of interaction of a spheroidal 
body and a test particle placed at different distances from the 
center of masses. Since energy depends on distance at which a 
test particle is, and particles themselves are distributed over 
space, one can determine the average gravitational potential 
energy of interaction of a test particle with a spheroidal body 
formed by a collection of such particles: 
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0

g

0
intgg drrfrmdrrfrEE . (8.1.28) 

As shown in Section 2.5, relation (8.1.28) takes the form (see 
formula (2.5.27) and [46, 73]): 

r
mMmE

2

4 0
g .  (8.1.29) 

Let be dMm  in (8.1.29). Taking this into account 
formula (8.1.29) is transformed into: 

r
dMMEd g . (8.1.30) 

By integrating both parts of (8.1.30) we obtain the formula 
(8.1.26), that is: 

g

2

g 2
E

r
MEd . (8.1.31) 

Thus, according to (8.1.26), (8.1.29), and (8.1.31), the 
potential energy of the gravitating spheroidal body is only 
then equal to the total average potential energy of the 
gravitational interaction of particles when these particles have 
infinitely small masses [46, 73]. Indeed, in this case, particles 
do not possess their own gravitational energy because, 
according to (8.1.26), it is a value of the second-order of 
smallness with respect to dM . In fact, putting the question in 
this way, we deal with massless particles whose gravitational 
energy is the potential energy of interaction of particles 
between one another (see Section 2.5). Further, supposing 

0mm  for each particle of one-component gas it follows 

from (8.1.25) and (8.1.29) that: 
2

0

g

Mm
E

, (8.1.32) 
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where gE  is an average gravitational potential energy of 

interaction of a particle 0m  with the gravitational field of a 

spheroidal body.  
Thus, a spheroidal body has a “strict” (distinct) outline if 

the potential energy of the gravitational interaction of the 
body particles is sufficiently great, and the body mass itself 
and its particle masses are relatively small. Ordinary 
macroscopic bodies possess distinct outlines due to their 
relatively small masses and to sufficiently great energies of 
the interaction of particles the bodies consist of. On the 
contrary, giant cosmic objects (star formations, nebulae, etc.) 
have fuzzy contours because of their huge masses and 
enormous numbers of particles forming them. For instance, 
the Earth’s atmosphere has an indistinct outline, the 
temperature being different at various altitudes, so does the 
Sun’s photosphere which also lacks temperature balance. 

8.2. Derivation of the universal stellar law 

As shown in Section 6.2 (as well as the monograph [73 
p.398]), under a condition of virial balance of a rotating and 
gravitating spheroidal body its parameter of gravitational 
condensation  is expressed by the formula (6.2.8 ) : 

Tk
m
B

00

3

2
, (8.2.1) 

where  and Bk  are the constants of Newton and Boltzmann 

respectively, and 0m  is a mass of a particle. 

Taking into account (8.1.2), that is, that according to the 
statistical theory of gravitating spheroidal bodies (see Chapter 
2 and 3) the density in the center of a spheroidal body is equal 
to: 
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2/3

0 2
M , (8.2.2) 

let us rewrite formula (8.2.1) for the parameter of 
gravitational condensation: 

2

0

B3
2

Mm
Tk

. (8.2.3) 

It is not difficult to see that invariant relations follow from 
Eqs (8.2.1) and (8.2.3) directly (see also [73 p.416]): 

B00 3

2
const

km
T

; (8.2.4a) 

B0 23const
k

T
Mm

. (8.2.4b) 

Let us try to justify them. In reality, within a framework of 
the statistical theory of gravitating spheroidal bodies, that is, 
under supposition that the geometrical eccentricity of the core 
of a rotating and gravitating spheroidal body 00 , in 

particular, for the solar disk 52
0 107999919.1  (see 

formula (7.3.42) in Section 7.3 and [72, 73]), the similar 
formula (8.1.32) has been derived for one-component gas in 
the previous Section 8.1. 

The following result, as well as others of a more general 
kind, may also be obtained from a virial theorem of Poincaré 
[105] (see Theorem 1.3): 

02 gk EE , (8.2.5) 

where kE  is the total kinetic energy of translation and gE  is 

the total gravitational potential energy of a steady state 
system in the form of a collection of detached masses moving 
under no force except their own mutual gravitational 
attraction. 
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Let us apply Poincaré’s virial theorem to a cloud-like 
configuration of ideal gas as a gravitating spheroidal body in 
the steady state. As shown in Section 1.2, we can write the 
kinetic energy kE  in the form [1]: 

,
2

1
k

2
0k

l l
lll EvmE  (8.2.6) 

where lv  is a velocity of translation of a l -th particle of mass 

lm0 , and lEk  is an average kinetic energy of a moving l -th 

particle. The gravitational potential energy gE  may similarly 

be written in the form [1]: 

l
l

l
ll EmE gg0g 2

1
, (8.2.7) 

where lg  is a gravitational potential at the l -th point 

occupied by mass 0m , and lEg  is an average potential energy 

of interaction of a particle with a cloud. Taking into account 
(8.2.6) and (8.2.7), Poincaré’s theorem (8.2.5) becomes: 

l l
lllll EEvm ,02

2

1
gkg

2
0  (8.2.8) 

so that, in the steady state, the average value of 2
lv , averaged 

over all the separate masses, is equal to the average value of 

lg2

1
 [1], or the absolute value of average potential energy 

of interaction lEg  of a particle is equal to the double average 

kinetic energy lEk  of a moving particle [107] (because of the 

arbitrariness of l -th particle, we will further omit the index l  
in (8.2.8)). 

As Sir J. Jeans remarked, this virial theorem of the kind 
(8.2.8) “provides a convenient rough measure of the average 
velocity of agitation of a system of gravitating masses in a 
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steady state: it is equally applicable to systems of stars, star-
clusters, nebulae, and masses of gravitating gas” [1 p.68]. 

Taking into account the condition of mechanical balance 
and using the virial theorem (8.2.8) as well as the theorem of 
uniform distribution of energy on freedom degrees for each 
particle [110] (under a condition hTkB , where Bk  and h  
are the constants of Boltzmann and Planck respectively, T is a 
temperature, is a frequency) we obtain: 

TikTkiEE BBkg 2
22 , (8.2.9a) 

where kE  is the kinetic energy of the heat movement of a 
particle, and i  is a number of freedom degree of a moving 
particle. In particular 3i  for the translational movement of 
a particle (for example, an atom of hydrogen H with mass 

H0 mm ), so: 

TkTkE BBg 3
2

3
2 . (8.2.9b) 

If the particles which constitute the system are taken to 
be the molecules of a gas, or other independently moving 
units such as atoms, free electrons, ions, and so forth, then 

according to (8.2.9b) 2v  is equal to rHB /3 mk  times the 

temperature of the gas, where r  is its mean relative 
molecular weight. Thus, according to the virial theorem 
(8.2.8), the mean temperature of the gas is of the order 
of magnitude of: 

B

rH

B

rH
g 332

1

k
m

r
M

k
m

, (8.2.10) 

so that the mean internal temperatures of different stars 
are approximately proportional to the values of rM /r  
for these stars [1 p.68], that is, stellar temperatures are 
very high as a consequence of their enormous masses M . 
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From (8.1.32) and (8.2.9a) it follows directly that the 
parameter of gravitational condensation  of a spheroidal 
body, being formed by a collection of particles of a one-
component ideal gas, is equal [75, 76]: 

2

0

B

2

0

B

M
T

m
ik

Mm
Tik

. (8.2.11) 

Nevertheless, even if the spheroidal body was initially formed 
exclusively based on a cloud of molecular hydrogen (with 

2r ), then as a result of gravitational heating (8.2.10), 
ionization and later nuclear reactions other atoms appear (for 
example, atoms of helium He, carbon C, oxygen O, etc.). 
Thus, in this case of the formation of a spherical body based 
on multi-component ionized gas, formula (8.2.11) becomes: 

2

0

B

M
T

m
ik

, (8.2.12) 

where < > is an operation of statistical averaging. In reality, in 
the process of a rise in temperature, the composition of 
existing particles becomes simpler in the stellar atmosphere. 
Spectral analysis of stars belonging to the spectral classes O, 
B, and A (with temperatures from 52,500 K to 7,550 K) 
shows lines of the ionized hydrogen and helium as well as 
ions of metals in their atmospheres, whereas in the spectral 
class K (4,050–5,250 K) radicals are already found out, and 
there even exist molecule oxides in the spectral class of M 
(2,500–3,850 K). For stars belonging to the first four classes, 
hydrogen and helium lines prevail, but in the process of the 
temperature falling, lines of other elements also appear. 
Besides, there even appear the lines pointing to the existence 
of chemical compounds, though these compounds are still 
very simple (CH, OH, NH, CH2, C2, C3, , etc.). External 
layers of stars consist mainly of hydrogen so, on average, 
there are only 1,000 atoms of helium, five atoms of oxygen 
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and less than one atom of other elements per 10,000 atoms of 
hydrogen. 

As follows directly from (8.2.12), the equation [75, 76] is 
true: 

0

B

m
ik

T
M

. (8.2.13) 

The operation of statistical averaging in (8.2.13) means that:  

00 m
i

m
i

, (8.2.14a) 

where i  is an average number of degrees of freedom for a 

particle with averaged mass 0m . Following S. 

handrasekhar [106], it is convenient to express the averaged 
mass of a particle 0m  through a mean relative molecular 

weight r  of a highly ionized stellar substance and the mass 

of proton pm : 

pr0 mm , (8.2.14b) 

where 27
p 1067248.1m  kg (instead of Hm  though 

pH mm ). Similarly to (8.2.14b), the average number of 

degrees of freedom of a particle with averaged mass 0m  is 

equal: 

piii , (8.2.14c) 

where 3pi  is the number of translation degrees of freedom 

of a proton with mass pm , and i  is an average number of all 

degrees of freedom for a particle with a mean relative 
molecular weight r . 
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Substituting (8.2.14b) and (8.2.14c) into (8.2.13) allows us 
to write down the following equation connecting macroscopic 
and microscopic physical values: 

rp

B 3

m
ik

T
M

. (8.2.15) 

Now let us introduce a new constant called the universal 
stellar constant [75, 76]: 

2311

23
B

skgm10673.6

KJ1038049.1
14159265.333

k
 

)mKkg(1010003963.1 212 . (8.2.16) 
Taking (8.2.15) and (8.2.16) into account, we obtain the 
equation of state of an ideal stellar substance [75, 76]: 

T
m

iM
rp

, (8.2.17) 

named so by analogy to the known Clapeyron–Mendeleev 
equation of the state of an ideal gas (or the usual Boyle–
Charles law [1]). Stars that obey the equation of the state of an 
ideal stellar substance (8.2.17) we can call ideal.  

Having rewritten the equation of the state of an ideal stellar 
substance (8.2.17) in the form: 

T
Mm

i
pr , (8.2.18) 

we obtain the universal stellar law (USL) [75, 76]: 

constpr

T
Mm

i
. (8.2.19) 

Obviously, a verification of USL (8.2.19) for different stars 
requires estimating their parameters , M , T and also r , 
that is, chemical composition of stars. 
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8.3. Estimation of mean relative molecular  
weight of a highly ionized stellar substance and 

verification of the universal stellar law 

As already noted, the spectral analysis of different stars 
reveals lines mainly of ionized hydrogen and helium. There 
are stars having the heightened content of a certain chemical 
element (carbon stars, silicon stars, iron stars, etc.). Stars with 
an abnormal compositions of chemical elements are numerous 
enough. At the same time, the stellar chemical composition 
depends on where the star is situated the Galaxy. Old stars in 
the spherical part of the Galaxy contain few atoms of heavy 
elements; by contrast, there are many heavy elements in stars 
belonging to the peripheral spiral branches of the Galaxy as 
well as its flat part where new stars are arising. Therefore, it is 
possible to connect the presence of heavy elements with 
features of the chemical evolution characterizing the life of a 
star. 

It is well-known [106] that a mean relative molecular 
weight r  of a highly ionized stellar substance can be found 
with the formula: 

Z
ZZx

1
r , (8.3.1) 

where Zx  is the relative content of an element with an atomic 
serial number Z  in a mass unit of a stellar matter, and Z  is 
the number of free particles per unit of atomic weight ZA  
produced by each atom of an element as a result of its 
ionization.  

As shown by handrasekhar [106], as a first 
approximation under the condition of full ionization for an 
element with atomic serial number Z  and relative atomic 
weight ZA , the value Z  is equal: 
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Z
Z A

Z 1
. (8.3.2) 

As follows from the periodic system of chemical elements, 
under the condition of excluding the easiest elements (namely, 
hydrogen H and helium He) the ratio Z  is equal to 
approximately ½ following (8.3.2) since a serial number Z of 
elements defines a total number of electrons in an atom. 

Hence, if we suppose that there are Hx  grams of hydrogen, 

Hex  grams of helium, and HeH1 xxxZ  grams of “heavy 

elements” in 1 gram of stellar matter then we can find that: 
2H ;   4/3He ;   2/1Z , 

that allows us to define the mean relative molecular 
weight r  of a highly ionized stellar substance as the first 
approximation according to formula (8.3.1): 

HeH
HeHHeH

r 5.031

2

1
2
1

4
3

2

1

xxxxxx
 . 

(8.3.3) 

The second approximation takes into account the 
ionization state of a stellar substance so that the value of Z  
can be more precisely calculated by the Strömgren’s formula 
[319]: 

n TkZ
Z Z

n

e
TG

N

n
A

Be

2

1

2
1

1 , (8.3.4) 

where Z
n  is an average ionized potential of various electron 

layers defined according to the Bohr’s theory as: 

22

2
e

42 e2

hn
ZmZ

n ; (8.3.5a) 

where 
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n  is the main quantum number ( 1n  for the K-electron, 
2n  for the L-electron, 3n  for the M-electron, etc.), 

eN  is a number of free electrons in a volume unit,  

TG  is calculated by the formula of statistical physics 
[320]: 

3

23
Be2

2
h

TkmTG , (8.3.5b) 

em  is a mass of an electron,  

h  is the Planck constant, and  
other designations have the usual sense.  
Comparing (8.3.4) with (8.3.2) we can see that the value 

in the square brackets in formula (8.3.4) is the corrected (by 
Strömgren) number of free particles per one nucleus with 
charge eZ  [319]. Then, according to (8.3.1), a mean 
relative molecular weight r  of a mixture of chemical 

elements with the values Z  (calculated using (8.3.4)) and 

the determined values of abundance Zx  as previously, it is 
equal: 

11
r

Z
ZZx

, (8.3.6a) 

where 

Z
ZZx . (8.3.6b) 

Having used (8.3.4), (8.3.5a, b), and (8.3.6a, b), Strömgren 
calculated r  for the so-called “Russell’s mixture” in which 
elements O, (Na+Mg), Si, (K+Ca), and Fe meet in the weight 
proportion 8:4:1:1:2 at the preassigned values T and 

eNTG . In particular, when K107T and 5ln eNTG  

he found that 52.0R and 92.11
RR  [319]. 
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Reasoning in accordance with the above-mentioned, that is, 
that 1 gram of a stellar substance contains Hx  grams of , 

Hex  grams of  and HeH1 xx  grams of the “Russell’s 

mixture,” we establish that the required mean relative 
molecular weight r  is estimated by Strömgren’s formula: 

HeHHeH

r

1
4
3

2

1

xxxx R

. 
(8.3.7) 

which is more exact in comparison with formula (8.3.3). 
Using his method [106], Strömgren calculated the values 

r  and deduced the conclusions relatively of the hydrogen 
content of those stars for which there were reliable data 
concerning their luminosity L , mass M  , and radius R . Thus, 
estimating the hydrogen content of the Sun he established 
that: 

3ln
eN
TG

; (8.3.8a) 

36.0Hx ; (8.3.8b) 
00.1r . (8.3.8c) 

Concerning the hydrogen content of the Capella A (or 
Aurigae, HD340029=HIP24608) he found that 

7ln
eN
TG

, 30.0Hx  and accordingly 01.1r . 

In reality, according to the modern data on the relative 
quantity content of atoms in the stars the photospheric 
composition of the Sun includes hydrogen H (73.46 %), 
helium He (24.85 %), oxygen O (0.77 %), carbon C (0.29 %), 
iron Fe (0.16 %), neon Ne (0.12 %), nitrogen N (0.09 %), 
silicon Si (0.07 %), magnesium Mg (0.05 %), sulfur S (0.04 
%) [283]. The relative content of hydrogen Hx , helium 

Hex and “heavy elements” HeH1 xxxZ  in a mass unit of 
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the stellar substance of the Sun is then estimated by the values 
[75, 76]: 

3527.0Hx ; 

4772.0Hex ; 

17.0Zx . 
As noticed by handrasekhar [106] in the assumption that the 
helium content can be neglected, formulas (8.3.3) and (8.3.7) 
give us an approximately identical estimation of the mean 
relative molecular weight of a stellar matter: 

HHH
r 12

1

31

2

xxx R

. (8.3.9a) 

Then according to (8.3.9a) in the case of the Sun, we can 
establish that 

97.0
3527.031

2
r , (8.3.9b) 

which practically coincides with the Strömgren’s estimation 
(8.3.8c). According to [321 p.51] the mean relative atomic 
weight of full ionized stellar plasma may be estimated by the 
smaller value 60.0r . However, there are no data about the 

average number of degrees of freedom i  in this case. 
So, being guided by the Strömgren’s estimation 00.1r  

and the proposition 1i , let us verify the equation of the state 
of an ideal stellar substance (8.2.17) as well as the USL 
(8.2.18) in the case of the Sun [75, 76]: 

corSun

Sunp
Sun T

Mm
. (8.3.10) 

Relatively corSunT , the analysis of references [322]–[325] 

shows “…that the temperature of the corona was mostly 
recorded in a range of 1,000,000 to 2,000,000 K, whereas the 
temperatures of the other layers were more exact numbers. 
This is because the temperature drops slowly as you move 
from the corona into space. The variance in temperature is 
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also due to the fact that the Sun’s corona has no defined 
boundary…” [326]. This means that the average temperature 
of the Sun’s corona can be chosen as 1,500,000 K [283, 326].  

According to the left-hand part of (8.3.10) and taking into 
account that the mass of the Sun kg109891.1 30

SunM , the 

average temperature of the Solar corona 
K105.1 6

corSunT [283, 326], and the parameter of 

gravitational condensation of the Sun 
219

Sun m1029701.2 , we calculate: 

6

3027
19

corSun

Sunp
Sun 105.1

109891.11067248.1
1029701.2

T
Mm

 

)mKkg(10062937513.1 212 . (8.3.11) 
Comparing (8.3.11) with (8.2.16) shows a coincidence up 

to the relative error equal to [75, 76] 

%37.3%100corSun

Sunp
Sun T

Mm

, 

which testifies to the validity of USL for the Sun which is a 
star of type G2V. Starting from formula (8.3.11) it is possible 
to verify USL for other Sun-like stars since in our Milky Way 
alone there are more than 100 billion stars of type G2. 

Indeed, the average value of the effective temperature of 
the surface of the Sun is K10778.5 3

SuneffT  [283] whereas 

the temperature of its corona is accordingly equal to 
K105.1 6

SuncorT , that is, after finding the ratio: 

2
3

6

Suneff

Suncor 10596.2
10778.5

105.1

T
T

, (8.3.12) 

we can use the effective temperature SuneffT  instead of the 

temperature of its corona SuncorT  in the USL (8.2.18). Then, 
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expressing corT  through effT  for a star belonging to the 

spectral class G (in particular, the Sun) we obtain the 
modified USL (relatively effT ): 

eff

p

T
Mm

, (8.3.13) 

where  
m)/K(kg10856296878.210596.2 2102 . (8.3.14) 

Besides the Solar system, we will now focus on the study 
of the multi-planet extrasolar systems Kepler-20 [285, 318], 
HD10180 [231], HIP14810 [285], 61Virginis [285], 55Cnc 
[259, 285], Alpha Centauri [285], Upsilon Andromedae [285, 
309], and Gliese 876 [285, 310] whose stars belong to the 
different spectral classes G, F, K, and M. 

We would like to verify the correctness of the modified 
USL (8.3.13) for these multi-planet systems [75, 76]. First of 
all, we note that the satisfiability of equality (8.3.13) for the 
Sun belonging to the spectral type G2V is confirmed by the 
calculations in (8.3.11), that is, the modified USL (8.3.13) is 
carried out for the Sun with the relative accuracy %37.3  
[76]. 

Example 8.3.1. For the second representative of this 
spectral class of stars, namely for the star Kepler-20 of type 
G8, we know [285, 308, 318] that: 

kg108140592.1kg109891.1912.0912.0 3030
Sun20-Kepler MM ; 

m1056552.6m10955.6944.0944.0 88
Sun20-Kepler RR ; 

and 
K546620-KeplereffT . 

that is, the square root of the parameter of gravitational 
condensation for the star Kepler-20 is equal: 

)(m1007702868.5
1056552.63

1
3

1 110
8

20-Kepler
20-Kepler R

. 
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Then, according to (8.3.13) we obtain: 

3

3027
10

20-Keplereff

20-Keplerp
20-Kepler 10466.5

108140592.11067248.1
1007702868.5

T
Mm  

)mKkg(10818074.2 210 . (8.3.15) 
Comparing (8.3.15) with (8.3.14) shows that the modified 
USL (8.3.13) is carried out with relative accuracy 

%34.1%100
8562969.2

8180739.28562969.2
 for the star 

Kepler-20 of type G8. 
Example 8.3.2. Let us test the realizability of the modified 

USL (8.3.13) for a representative of spectral class G, namely 
for the star HD10180 of type G1V [231, 285]: 

kg10108446.2kg109891.106.106.1 3030
SunHD10180 MM ; 

m10955.6 8
SunHD10180 RR ; and 

K5911HD10180effT , 

whence 
11018

HD10180
HD10180 m10792715.4m10

955.63

1

3

1

R
. 

Substituting the estimated parameter for HD10180 into the 
left-hand part of Eq. (8.3.13) we have: 

3

302710

0HD1018eff

0HD1018p
HD10180 10911.5

10108446.21067248.110792715.4

T
Mm  

)mKkg(108591969.2 210 . (8.3.16) 
Thus, according to (8.3.16) the modified USL (8.3.13) is 

carried out with the relative error 

%1.0
8562969.2

8591969.28562969.2
 for the star HD10180 of 

type G1V.  
Example 8.3.3. Now let us verify the modified USL 

(8.3.13) for a representative of spectral class G which is the 
star HIP14810 of type G5 [285]: 
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kg10969209.1kg109891.199.099.0 3030
SunHIP14810 MM ; 

m10955.6 8
SunHIP14810 RR ; and 

K5485HIP14810effT , 

whence 
11019

SunHIP14810 m107927132.41029701.2 . 

Then, according to (8.3.13) we obtain: 

3

3027
10

HIP14810eff

HIP14810p
HIP14810 10485.5

10969209.11067248.1
107927132.4

T
Mm  

)mKkg(1087778.2 210 . (8.3.17) 
Comparing (8.3.17) with (8.3.14) shows that the modified 
USL (8.3.13) is carried out with relative accuracy 

%75.0%100
8562969.2

8777798.28562969.2
 for the star 

HIP14810 of class G5. 
Example 8.3.4. For one more representative of spectral 

class G, namely for the star 61Virginis of type G5V, we know 
[285] that: 

kg10889645.1kg109891.195.095.0 3030
Sun61Vir MM ; 

m105377.6m10955.694.094.0 88
Sun61Vir RR ; and 

K553161VireffT , 

that is, the square root of the parameter of gravitational 
condensation for the star 61Virginis is equal: 

)(m10098633056.5
105377.63

1

3

1 110
8

61Vir
61Vir R

. 

Then, according to (8.3.13) we obtain: 

3

3027
10

61Vireff

61Virp
61Vir 10531.5

10889645.11067248.1
1009863306.5

T
Mm  

)mKkg(109133406.2 210 . (8.3.18) 
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Comparing (8.3.18) with (8.3.14) shows that the modified 
USL (8.3.13) is carried out with relative accuracy 

%997.1%100
8562969.2

9133406.28562969.2
 for the star 

61Virginis of type G5V. The quite high accuracy of this law 
for the given stellar class of G can most likely be explained 
by the good approximation corT  for these stars based on the 

formula (8.3.12). 
Example 8.3.5. Let us investigate the law (8.3.13) for a 

representative of spectral class K which is the star 55 Cancri 
(55Cnc=HD75732=HIP43580) of type KOIV-V. According 
to the paper [259] as well as the catalog [285] the mass and 
the effective temperature of the stellar surface of the star 55 
Cancri are equal respectively: 

kg10800136.1905.0 30
Sun55Cnc MM ; 

K519655CnceffT , 

and the radius is 
m10558565.610955.6943.0943.0 88

Sun55Cnc mRR . 

Let us find an estimation of the value: 

)(m10082412591.5
10558565.63

1

3

1 110
8

Cnc55
Cnc55 R

 
and then calculate the left-hand part of the equation (8.3.13): 

3

3027
10

Cnc55eff

Cnc55p
Cnc55 10196.5

108001355.11067248.1
100824126.5

T
Mm  

)mKkg(109448753.2 210 . (8.3.19) 
The modified USL (8.3.13) for the star 55Cancri of type 

KOIV-V is carried out with a relative error 

%1.3%100
8562969.2

9448753.28562969.2
 that confirms 
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precise enough estimations of the effective temperature, mass, 
and radius of this star. 

Example 8.3.6. For the second representative of this 
spectral class K, namely for the star  Centauri of type K1V, 
it we know [285] that: 

kg108578194.1kg109891.1934.0934.0 3030
SunCent MM ; 

m10002165.6m10955.6863.0863.0 88
SunCent RR ; 

and 
K5214CenteffT . 

that is, the square root of the parameter of gravitational 
condensation for the star  Centauri is equal: 

)(m105535516.5
10002165.63

1

3

1 110
8

Cent
Cent R

. 

Then, according to (8.3.13), we obtain: 

3

3027
10

enteff

entp
Cent 10214.5

108578194.11067248.1
10553552.5

T
Mm  

)mKkg(10309514.3 210 . (8.3.20) 
The modified USL (8.3.13) is carried out with a relative 

accuracy %87.15%100
8562969.2

3095139.38562969.2
 

following (8.3.20) for the star  Centauri of type K1V which 
is caused, probably, by an inexact estimation of temperature 
of its corona Cnc55T  for this class K, that is, through a directly 
proportional dependence (8.3.14) as in the special case of 
G2V. 

Example 8.3.7. Now we shall consider the modified USL 
(8.3.13) for a star of new class F using an example of the Ups 
Andromedae of type F8V [285, 308, 309]: 

kg10526157.227.1 30
SunAnd MM ; 

m101343605.1631.1 9
SunAnd RR ; and 

K6212AndeffT . 
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To this end we shall find the following value: 

)(m109385132.2
104030815.3

1

3

1 110
9

And
And R

, 

after which we shall be able to estimate the left-hand part of 
the equation (8.3.13): 

3

3027
10

Andeff

Andp
And 10212.6

10526157.21067248.1
10938513.2

T
Mm  

)mKkg(10998561.1 210 . (8.3.21) 

According to (8.3.21) for the star  Andromedae of type 
F8V, the law (8.3.13) is carried out approximately with a 
relative error %30  because of the estimation of the corona 
temperature of the star  Andromedae based on (8.3.12) or 
(8.3.14) is rough for stars of class F. 

Example 8.3.8. At last, we shall consider characteristics of 
the star Gliese 876 of type M4V [261, 285, 310]: 

kg10643594.6kg109891.1334.0334.0 2930
Sun876Gl MM ; 

m105038.2m10955.636.036.0 88
Sun876Gl RR ; and 

K3350876GleffT , 

and then also check them for conformity to the law (8.3.13) 
for which we will first calculate:  

)(m103313097.110
5114.7

1

3

1 198

876Gl
876Gl R

 

and after that we shall find: 
29

3

27
9

876Gleff

876Glp
876Gl 10643594.6

1035.3

1067248.1
103313097.1

T
Mm  

)mKkg(104156873.4 210 . (8.3.22) 
For the star Gliese 876, the modified USL (8.3.13) is 

carried out very approximately with the high relative error 
%59.54  as this star belongs to the class M (type M4V) 

for which the relation between the temperature of its corona 
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876GlcorT  and effective temperature of its surface 876GleffT  is 

not known exactly (because the expression (8.3.12) is true 
mainly for the class G). 

The low accuracy of this law for the stars belonging to the 
spectral classes F or M can most likely be explained by the 
approximation corT  which is too rough for the more bright or 
dim stars based on the formulas (8.3.12) or (8.3.14) [75, 76]. 

Stellar parameters being estimated in the above-mentioned 
examples are placed in Table 8.1. This table also contains data 
relative to other stars belonging to the high order spectral 
classes O, B, and A (for simplification we suppose that 1r  

and 1i  for all types of stars). Indeed, it is well-known that 
1r  for numerous stars (in particular, 01.1r  for Capella 

A [106]).  
The investigation of the character of the function of 

relative error  (see Fig. 8.1) depending on different types of 
stars reveals determinate regularity for very bright and dim 
stars; the low accuracy of the modified USL (8.3.13) for stars 
belonging to the high order spectral classes O, B, and A 
( %50 ) as well as for stars belonging to the last spectral 
class M ( %60 ). This fact can be explained only by 
simple linear dependence )( effcor TT  according to (8.3.12) in 

the case of the Sun. Indeed, the Sun belongs to the spectral 
class G. We can, therefore, reach a good approximation corT  
for the stars of this spectral class (see Example 8.3.1–8.3.4 
and Table 8.1) using the formula (8.3.12) [76]. Thus, finding 
the dependence )( effcor TT  is an important task. 

As seen in Table 8.1 and Fig. 8.1, there also exists an 
abnormal group of intermediate-mass red giants (belonging to 
the spectral class K mainly) as 24 Sextanis, 18 Delphini, 
Capella A, 14 Andromedae,  Cephei,  Ceti,  Aquilae, and 
11 omae [312, 313, 316] whose chemical composition 
includes even radicals except ions and electrons. In this 
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connection our preliminary assumption (8.3.9b), that is, 
1r , gives us a very high relative error %75  here, 

therefore following A. Eddington [1, 106], it is reasonable to 
suppose that 2r  for this group of red giants (see Table 

8.2). In other words, the ratio i/r  can be an increasing 
function in the case of stars belonging to the spectral class K 
following the modified USL (8.3.13), as shown in Table 8.2 
[76]. 

Table 8.3 contains the data from Tables 8.1 and 8.2 
together with the errors in measurements of mass, radius, 
and effective temperature as well as estimations for the 
modified USL with relative errors. To recalculate the 
estimations obtained in Tables 8.1 and 8.2 for modified USL 
relative to different classes of stars, the following simple 
operations are used: 

);()()()( yxbaybxa  
);()()( bxayabybxa and 

,)/1(/1)( 21 xaaxa  
where x  and y are the instrumental errors in measurements of 

the physical values a  and b , so that ax  and by . As 

seen in Table 8.3, the instrumental errors in measurements of 
mass, radius, and effective temperature define the lower limit 
of relative error %,  testifying to the validity of the modified 
USL at the level of %3  for ideal stars, that is, for the stars 
obeying the equation of state of an ideal stellar substance 
(8.2.17). 
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Chapter Eight 
 

676

8.4. Estimation of the temperature of the stellar corona 

To test the accuracy of USL for other stars, it is necessary to 
estimate the temperature of their stellar coronas corT  using the 

value of the effective radiative temperature effT  of the stars’ 
surfaces. To measure the real (thermodynamic) temperature 
T of a body through its effective radiative temperature effT  the 

following relation can be used: 

4

eff

TA
TT , (8.4.1) 

where a factor TA  is an integral absorptivity of a body. 

Moreover, for a real body 1TA  [206] the radiative 
temperature is always less than the real temperature. Indeed, 

TA  is the ratio of the powers of integral radiant emittance of 

the given body ( TE ) and the perfect black body ( T ) at a 
temperature T following Kirchhoff’s law: 

TTT EA / . (8.4.2) 

TA , therefore, has the meaning of the power of the blackness 

of a body: 10 TA , that is, for the black body 1TA , and 

for the mirror body 0TA . According to the Stefan-
Boltzmann law, the power of integral radiant emittance of the 
perfect black body is equal: 

4
effTT , (8.4.3) 

where )K(W/m106686.5 428  is the Stefan–Boltzmann 
constant. 

Taking into account (8.4.1), we write USL (8.2.17) for an 
arbitrary case of a remote star [76]: 

4
eff

pr

TAT
Mm

i
. (8.4.4) 

Let us note that except for the temperature of a body the value 
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TA  in (8.4.4) depends on its chemical composition as well as 
the form and the surface condition [206]. 

As a first approximation, the value 4
TA  for each 

considered star depends on its temperature T , that is, on the 
above-mentioned value i . Nevertheless, in the general case 

TA  is also a function of the star’s chemical composition 

defining the mentioned parameter r , the star’s form 
determining its radius R  and star’s surface condition 
depending on its stellar belonging to the different spectral 
classes {..., F, G, K,...}, that is, 

)K,...}G,F,{...,,,,( r iRAA TT . In this context, it should be 
reasonable to consider the dependencies on the spectral 
classes directly as ),,( rFF RiAA TT , ),,( rGG RiAA TT , 

),,( rKK RiAA TT . 
In particular (for the Sun), the effective radiative 

temperature of its solar surface is equal: 
K10778.5 3

effSunT , 

whereas the temperature of its corona is:  
K105.1 6

corSunT . 

Using (8.4.1), we can estimate a 4-th degree root of an 
integral absorptivity of the solar corona: 

3
6

3

Suncor

Suneff
4

Suncor 10852.3
105.1

10778.5

T
T

AT . (8.4.5) 

Since, for any other star, the temperature of its stellar corona 
is unknown, it is not possible to estimate 4

TA  directly as for 

the Sun. So, let us, therefore, consider relation (8.4.2) for the 
Sun separately and any other star belonging to the spectral 
class G:  

corSuncorSuncorSun / TTT EA ; (8.4.6a) 

GcorGcorGcor / TTT EA . (8.4.6b) 
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Dividing (8.4.6b) on (8.4.6a) we obtain: 

Gcor

corSun

corSun

Gcor

corSun

Gcor

T

T

T

T

T

T

E
E

A
A

. (8.4.7) 

Taking into account the Stefan–Boltzmann law (8.4.3), 
relation (8.4.7) passes into the following: 

4

Geff

Suneff

Gcor

corSun

corSun

Gcor

T
T

E
E

A
A

T

T

T

T  (8.4.8) 

As follows from equation (8.4.8), choosing 
s

TT TTEE 4
GeffSuneffGcorcorSun //  the ratio (8.4.7) becomes: 

ss

T

T

T
T

T
T

A
A

Suneff

Geff

Geff

Suneff

corSun

Gcor  , (8.4.9) 

whence 
4/

Suneff

Geff4
corSun

4
Gcor

s

TT T
T

AA . (8.4.10) 

Substituting (8.4.10) into (8.4.4) leads to the equation:  
4/

Geff

Suneff

4
corSunGeff

pr

s

T T
T

AT
Mm

i
, (8.4.11) 

which allows USL to be presented in the form: 
4/1

corSun

Suneff

4/1
Geff

pr

T

s

s A
T

T
Mm

i
. (8.4.12) 

Choosing some value s  and also R3/1  ( R  is a star 
radius) according to the mentioned 3 -rule, we can derive the 
empirical variant of USL [76]: 

4/1

corSun

Suneff

4/1
Geff

pr

3 T

s

s A
T

T
Mm

iR
. (8.4.13) 

If the parameters of a star are given in units relative to the 
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Sun’s parameters:  

SunRkR R ; (8.4.14a) 

SunMkM M , (8.4.14b) 
then having divided Eq. (8.4.11) by the similar equation 
concerning the Sun we obtain:  

4
corSun

4/

Geff

Suneff

4
corSun

Suneff

Sunp

Sun

Geff

Sunpr

Sun

1
1

3
1

3
1

T

s

T

M

R

A

T
T

A

T
Mm

R

T
Mkm

iRk
, 

whence 
4/

Geff

Suneff

Geff

Suneffr1
s

M
R T

T
T

T
k

ik
. 

In other words, the relation: 
1

4

Geff

Suneffr

s

R

M

T
T

k
k

i
 (8.4.15) 

is valid. Moreover, it allows finding as a first approximation: 
4s . (8.4.16) 

The more exact value s  can be found by taking the 
logarithm of equation (8.4.15): 

Geff

Suneffr ln1
4

ln
T

Ts
k
k

i R

M ,  

whence it directly follows that 

.
lnln

lnlnlnln
14

ln

ln
44

GeffSuneff

r

Geff

Suneff

r

TT
kki

T
T

k
k

is RMR

M

 (8.4.17) 

Coming from formulas (8.4.1), (8.4.10), and (8.4.17), it is 
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easy to calculate the temperature of a stellar G-corona through 
the temperature of a solar corona [76]: 

Geff

Suneff

r

ln

ln

1

Suneff

Geff4
Sun

Geff
Gcor

T
T

k
k

i

T

R

M

T
TA

TT  

 

)/ln(

)/ln()/ln(

Geff

Suneff
Suncor

GeffSuneff

r

TT
kki RM

T
T

T . (8.4.18a) 

Using formula (8.4.18a) we can calculate the temperature 
of stellar corona GcorT  accurately enough for stars belonging 

to the spectral class G. This formula can be applied 
approximately to the different spectral classes (see Table 8.4, 
the values r  for the Xi Persei and the Tau Scorpio were 
calculated in accordance with [106]). Table 8.4 shows that 
functional dependence GcorT  on stellar spectral classes M, K, 

G,.., O is described by monotonically increasing function 
except for the group of red giants (K0III- K1III-V). This can 
probably be explained by the origin of radicals and other 
chemical elements in the stellar substance of red giants, that 
is, by chemical composition changing from 1r  to 2r  

approximately. In other words, if 1i  as usual then 
2/r i . This means that a new virial equilibrium takes 

place with a new temperature state of the stellar corona GcorT  

in the case of red giant stars. There are also radicals in the 
stellar substance of the spectral class M. However, in this case 

2r  and 2i  simultaneously due to the temperature of 
stellar corona of class M becoming higher than for red giants 
(K0III- K1III-V).  

Obviously, if for each spectral class we can find a 
representative star (such as the Sun for the spectral class G) 
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then the relation (8.4.18a) determines a sufficiently exact 
dependence between corT  of the given spectral class and effT  

of its representative (for example, between FcorT  and AndeffT  if 

the last value is supposed to be known). Evidently, the 
formula (8.4.18a) does not have a high relative accuracy of 
estimation corT  for all distant spectral classes from G. 

Let us note that the formula (8.4.18a) can be easily 
transformed into the simpler form. In reality, according to the 
Eqs (8.4.17) and (8.4.18a) and taking into account (8.4.15) we 
obtain [76]:  

R

M

s

k
k

i
T

T
T

TT r
Suncor

1
4

Geff

Suneff
SuncorGcor , 

that is, a relation in the form: 

R

M

k
k

i
TT r

SuncorGcor  . (8.4.18b) 

This form does not comprise GeffT  or SuneffT  at all. 

Analogously, the dependences, say, KcorT )( 55CnceffT  and 

corT )( 876GleffT  can be written.  That is why the estimation of 

FcorT , KcorT  or corT  through SuncorT  (in accordance with 

(8.4.18a, b)) leads to more big errors. 

8.5. Comparison with estimations of  
temperatures based on regression dependences  

for multi-planet extrasolar systems 

In this section, following Pintr et al. [308], we shall focus 
mainly on the spectral classes of stars F, G, K, and M. This is 
justified since the life spans of spectral classes of stars O, B, 
and A are so short that the complex life could never form on 
the planets associated with them [308]. 
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According to Schneider’s catalogue [285], the spectral 
classes of interest here can be characterized as: 

– spectral class F with effT  between 6,000 and 7,500 K; 

– spectral class G with effT  between 5,200 and 6,000 K; 

– spectral class K with effT  between 3,700 and 5,200 K; 

and 
– spectral class M with effT  less than 3,700 K. 

Recently Pintr et al. obtained the regression dependences 
of the effective temperature of a stellar surface effT  from 

specific angular momentum nnva  ( na  is a planetary distance 

and nv  is a planetary velocity) for the different spectral 

classes of star [308]: 
9963.117

Feff )(104 nnn vaTa  (8.5.1a) 

with the coefficient of determination R2=0.997 for stars of the 
spectral class F; 

976.116
Geff )(101 nnn vaTa  (8.5.1b) 

with the coefficient of determination of regression R2=0.995 
for stars belonging to the spectral class G; 

807.114
Keff )(104 nnn vaTa  (8.5.1c) 

with  the coefficient of determination R2=0.776 for the stellar 
spectral class K; and 

814.114
Meff )(105 nnn vaTa  (8.5.1d) 

with the coefficient of determination R2=0.974 for stars of the 
spectral class M.  

In reality, according to Kepler’s 3rd law: 
Ma nn

23 , (8.5.2) 

where na  is a major semi-axis of the planetary orbit, and n  

is an angular velocity of motion of a planet in its orbit. 
Supposing that nnn av  is Kepler’s velocity of the 
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movement of a planet, let us use Kepler’s law in the form of 
Utting [8]: 

Mva nn
2 . (8.5.3) 

In turn, the right-hand part of Eq. (8.5.3) can be expressed 
from the equation (8.2.15) of the state of an ideal stellar 
substance taking into account a designation (8.2.16): 

RT
m

ikTi
m

kM
rp

B

rp

B 93
. (8.5.4) 

Comparing (8.5.3) with (8.5.4), we obtain:  

2

B

rp2

B

rp

93
nnnn va

Rik
m

va
ik

m
T , (8.5.5) 

whence 

2

B

rp )(
3

nnn va
ik

m
Ta . (8.5.6) 

Substituting (8.4.1) into the formula (8.5.6) we rewrite it as 
follows: 

2

B

4
rp

eff )(
3

nn
T

n va
ik

Am
Ta . (8.5.7) 

Introducing the following notation: 

ik
Am T

B

4
rp

3
K , (8.5.8) 

we obtain a theoretical dependence confirming the mentioned 
regression equations (8.5.1a)–(8.5.1d) of Pintr et al. (PPLP 
equations) as a whole: 

2
eff )(K nnn vaTa , (8.5.9a) 

though comparing (8.5.1c) and (8.5.1d) with (8.5.7) reveals an 
approximation lack in the degree of nnva . Taking into account 

the estimation (8.4.5) let us calculate the value of the 
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theoretical coefficient K  for the Sun which is a representative 
of stars of the spectral class G: 

11038049.114159265.33

10297.210852.311067248.1
K

23

19327

Sun  

)msK(104206.0 3216 . (8.5.9b) 
The derived theoretical estimation (8.5.9b) corresponds 
closely to the heuristic PPLP dependence (8.5.1a) for stars of 
the spectral class F and corresponds satisfactorily (8.5.1b) for 
stars of the spectral class G.  

On the other hand, taking into account (8.5.3) and (8.5.5), 
it is not difficult to see that for any star: 

M
Rik

m
T

B

rp

9
, 

so that 

MA
Rik

m
T T

4

B

rp
eff

9
. (8.5.10) 

Using (8.5.3), let us represent the heuristic PPLP 
dependences (8.5.1a)–(8.5.1d) by analogy with (8.5.10) in the 
form: 

M
va

T
nn

0037.0

17

Feff )(

104
; (8.5.11a) 

M
va

T
nn

024.0

16

Geff )(

101
; (8.5.11b) 

M
va

T
nn

193.0

14

Keff )(

104
; (8.5.11c) 

M
va

T
nn

186.0

14

Meff )(

105
. (8.5.11d) 

Comparing (8.5.10) with (8.5.11a)–(8.5.11d) shows that the 
following heuristic estimations are valid: 
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rp

B
0037.0

17

4
F

9

)(

104

m
Rik

va
A

nn
T ; (8.5.12a) 

rp

B
024.0

16

4
G

9

)(

101

m
Rik

va
A

nn
T ; (8.5.12b) 

rp

B
193.0

14

4
K

9

)(

104

m
Rik

va
A

nn
T ; (8.5.12c) 

rp

B
186.0

14

4
M

9
  

)(

105

m
Rik

va
A

nn
T . (8.5.12d) 

Calculating the common constant in (8.5.12a)–(8.5.12d) 
separately: 

)kgKJ(1031670892.1
1067248.1

1038049.114159265.399 5
27

23

p

B

m
k , 

let us rewrite the formulas (8.5.12a)–(8.5.12d) in the form: 

r
0037.0

12

4
F )(

10266835678.5 Ri
va

A
nn

T ; (8.5.13a) 

r
024.0

11

4
G )(

1031670892.1 Ri
va

A
nn

T ; (8.5.13b) 

r
193.0

9

4
K )(

10266835678.5 Ri
va

A
nn

T ; (8.5.13c) 

r
186.0

9

4
M )(

105835446.6 Ri
va

A
nn

T . (8.5.13d) 

Using (8.4.1) and (8.5.13a)–(8.5.13d), we can estimate the 
average temperature of the stellar corona for the spectral 
classes of stars F, G, K, and M [76]: 

Ri
vaTT nn r

12

0037.0

FeffFcor 10266835678.5

)(
; (8.5.14a) 
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Ri
vaTT nn r

11

024.0

GeffGcor 1031670892.1

)(
; (8.5.14b) 

Ri
vaTT nn r

9

193.0

KeffKcor 10266835678.5

)(
; (8.5.14c) 

Ri
vaTT nn r

9

186.0

MeffMcor 105835446.6

)(
. (8.5.14d) 

Using heuristic dependence (8.5.11b) we can suppose that 
this relation is also valid for the Sun belonging to the spectral 
class G, that is,  

Sun024.0

16

Suneff )(

101 M
va

T
nn

. (8.5.15) 

Dividing both parts of Eq. (8.5.11b) on the respective parts of 
(8.5.15) we obtain: 

Mk
M

M
T
T

SunSuneff

Geff . (8.5.16) 

According to Eq. (8.5.14b) we can estimate the average value 
of the temperature of the solar corona because the Sun 
belongs to the spectral class G: 

Sun
11

024.0

SuneffSuncor 1

1

1031670892.1

)(

R
vaTT nn . (8.5.17) 

Analogously dividing Eq. (8.5.14b) by Eq. (8.5.17) we find 
[76]: 

RkiT
T

R
R

iT
T

T
T 1r

Suneff

GeffSunr

Suneff

Geff

Suncor

Gcor . (8.5.18) 

Taking into account (8.5.16), we again derive from (8.5.18) 
the above-mentioned formula (8.4.18b). Thus, the regression 
dependences for multiplanet extrasolar systems confirm the 
result obtained in Section 8.4 completely [76]. 
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Example 8.5.1. Let us estimate the temperature of stellar 
corona for the star Andromedae which is a representative 
of the spectral type F8. Taking into account that 

4),s/(m1035.6 215 nva nn  [308] we obtain in accordance 

with (8.5.14a) [76]: 

912

0037.015

Fcor 101343605.1

1

10266835678.5

)1035.6(
6212T  

(K)1091.18959969 6 .  
Since the theoretical estimation of the temperature of stellar 
corona (8.4.18a) for the star Andromedae is equal, 

K10167995095.1 6
AndcorT  (see Table 8.4), then the 

relative error of discrepancy 
%85.1%100/ AndcorFcorAndcorcor TTTT . Of course, 

the heuristic estimation FcorT  is more exact under comparison 

with the preliminary estimation in Example 8.3.7 where 
(K)106126352.110596.210212.6

~ 623
AndcorT  (in this 

case %38corT ). 

Example 8.5.2. Let us calculate the estimation of the 
temperature of stellar corona for the star Kepler-20 which is a 
representative of the spectral class G (type G8). According to 
the formula (8.5.14b), Example 8.3.1 and the average value 
for the Kepler-20 5),s/(m104148.1 215 nva nn  [308] we 

obtain [76]: 

811

024.015

Gcor 1056552.6

1

1031670892.1

)104148.1(
5466T  

(K)1041.46058690 6 .  
Taking into account that, according to Table 8.4, the theoretic 
estimation of the temperature of its stellar corona 

K10449.1 6
20-KeplercorT , we find that a relative error of 
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discrepancy is 
%8.0%100/ 20-KeplercorGcor20-Keplercorcor TTTT ; for 

comparison, for a preliminary estimation in Example 8.3.1 
62

20-Keplercor 1041897.110596.25466
~T (K), the relative 

error is equal %1.2corT . 
Example 8.5.3. Let us estimate the temperature of stellar 

corona for the star 55Cnc belonging to the spectral class K 
(type KOIV-V). Taking into account that 

5),s/(m105998.3 215 nva nn  [308], as well as Example 

8.3.5, we obtain following (8.5.14c) [76]: 

89

193.015

Kcor 10558565.6

1

10266835678.5

)105998.3(
5196T  

610512419515.1 (K).  
Taking into account Table 8.4, the theoretic estimation of the 
temperature of its stellar corona 

K10439554612.1 6
55CnccorT  we can find a relative error: 

 %1.5%100/ 55CnccorKcor55Cnccorcor TTTT . 

According to Example 8.3.5, a preliminary estimation is: 
62

55Cnccor 1034899.110596.25196
~T (K), so that the 

respective error %3.6corT . 
Example 8.5.4. Let us calculate the estimation of the 

temperature of stellar corona for the star Gliese 876 
belonging to the spectral class M (type M4V). According to 
the formula (8.5.14d), Example 8.3.8 and the average value 
for the Gliese 876 4),s/(m1092.9 214 nva nn  [308] we 

obtain [76]: 

89

186.014

Mcor 105038.2

1

105835446.6

)1092.9(
3350T  

(K)1071.25122830 6 .  
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Since the theoretic estimation of the temperature of stellar 
corona (8.4.18a) for the star Gliese 876 is equal 

K10391666667.1 6
876GlcorT  (see Table 8.4), then the 

relative error of discrepancy 
%10%100/ 876GlcorMcor876Glcorcor TTTT . 

Nevertheless, the heuristic estimation McorT  is more exact 

under comparison with the preliminary estimation in 
Example 8.3.8 where 

(K)106966.810596.23350
~ 52

876GlcorT  (in this 

case %5.37corT ). 

Thus, the heuristic estimations (8.5.14a)–(8.5.14d) 
confirm satisfactorily enough the derived theoretic formulas 
(8.4.18a, b) for estimation of the temperature of stellar corona 
of multi-planet extrasolar systems (see Table 8.5 as well as 
the derivation (8.4.18b) based on (8.5.15)–(8.5.18)). 

8.6. Derivation of Hertzsprung–Russell’s  
dependence based on the USL 

Let us note that a variant of the Hertzsprung–Russell 
dependence can be obtained from (8.3.13) directly [76]. 
Indeed, if we use the Stefan–Boltzmann law and calculate the 
luminosity of a star in the form: 

4
eff

24 TRL , (8.6.1) 

where R  is the stellar radius and  is the Stefan–Boltzmann 
constant, we can formulate the modified USL (8.3.13) through 
L : 

44

p 2/

L
Mm

R . (8.6.2) 

Taking into account that according to (II.2) and (7.3.41) the 
square root of the parameter of gravitational condensation is 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Eight 692

approximately equal R3/1 , we can establish from (8.6.2) 
that: 

2

44

p

3
4

R
Mm

L . (8.6.3) 

Remarking that M/2)( 0
2/33  according to (8.1.2), 

where 0  is a density in the center of a spheroidal body, we 

obtain from (8.6.3) the variant of Hertzsprung–Russell’s 
dependence [76]: 

4 42
p p2/3 10/3 4

0

8 4

9 9

m m
L M M . (8.6.4) 

As follows from (8.6.4), the obtained dependence confirms 
Hertzsprung–Russell’s law completely in the case of s  lying 
between 3.3 and 4 (see the introduction to this chapter), that 
is, for stars of medium and large masses ( Sunlg / 1.7M M ). 

As concerns the other types of star (small and medium 
masses), the initial USL (8.2.19) should be used (not its 
approximate version in the form of modified USL (8.3.13)) 
together with the extended variants of formulas (8.4.18a, b) 
for estimation of temperature of the stellar corona corT for not 

only the spectral class G but for F, , , and so forth. 

Conclusion and comments 

In this chapter, we have considered the statistical theory of 
gravitating spheroidal bodies to derive and develop a 
universal stellar law for extrasolar systems. In the previous 
chapters, we proposed the statistical theory for a 
cosmogonical body forming (so-called spheroidal body). In 
conformity with stars, the proposed theory takes into account 
an extended substance called the stellar corona. That is why 
the stellar corona, together with the star’s core, can be 
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described by the model of a rotating and gravitating 
spheroidal body. In this context, Section 8.1 considers the 
different forms of the potential and potential energy of the 
gravitational field of spheroidal bodies.  

Section 8.2 derived equation of state (8.2.17) of an ideal 
stellar substance based on the conception of a gravitating 
spheroidal body in as much as cosmic interstellar space is not 
empty (in particular, the mean mass density of substance in 
the neighborhood of the Sun is 24 36 10 g m whereas in 

interstellar space it is 24 33 10 g m ) [75, 76]. Using this 
equation, the universal stellar law (USL) for planetary 
systems [76] (connecting the temperature, size, and mass of 
stars) was obtained in Section 8.2. Analysis of the USL 
(8.2.19) and its version (8.3.13) has shown that most of them 
correspond to a category of ideal (or classical) stars (and, 
respectively, planetary systems) independent of the spectral 
belonging to , , , F, G, , and  classes (see Table 8.1, 
Table 8.3, and Fig. 8.1). The ordinary classical stars satisfy 
USL relative to their temperatures, sizes, and masses and 
possess maximal mass densities in the star centers according 
to (8.1.1) or (8.1.2). Nevertheless, there exists a subclass of 
stars called the group of red giants (for example, 18 Delphini, 
 Aquilae, HD 81688, 4 Ursae Majoris, Betelgeus , etc.) for 

which some characteristics, among them the temperature of 
the stellar corona (see Table 8.2), differ essentially from 
analogous characteristics of classical stars. In this context, due 
to the unstable process of stellar diameters, it is assumed that 
cavities form inside them (it is well-known that the diameter 
of Betelgeuse (  Orionis) has decreased systematically by 
15% between 1993 and 2009 [327]).Section 8.3 also 
considered the solar corona in connection with the USL. To 
modify the USL [76], it takes into account the effective 
temperature effT of the Sun’s surface in calculating the ratio 
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(8.3.12) of the temperature of the solar corona corT to effT . To 

test the justice of the modified USL (8.3.13) for different 
types of star entirely, the temperature of the stellar corona 

corT was estimated approximately in Section 8.4 (see the 

formulas (8.4.18a), (8.4.18b) and Table 8.4). 
Section 8.5 showed that knowledge of some characteristics 

for multi-planet extrasolar systems permits us to refine a 
star’s own parameters [76]. In this context, comparison with 
estimations of temperatures using the above-mentioned 
regression dependences for multi-planet extrasolar systems 
testifies to the results obtained. In Section 8.6, the known 
Hertzsprung–Russell dependence was derived from the USL 
directly.  

Using the modified USL (8.3.13) some predictions of a 
star’s parameters can be made. In particular, for the star HD 
181433 (see [285]), the modified USL (8.3.13) gives the 
following estimation of unknown radius: 

m10102823.6 8
HD181433R  as well as for  Gem [285] the 

modified USL (8.3.13) permits us to find the unknown 
effective temperature K5582Gem  effT .  Moreover, using the 

formula (8.4.18a, b) it becomes possible to estimate the 
temperature of its stellar corona as K10553.1 6

Gemcor T . 
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CHAPTER NINE 

THE EXPLANATION OF THE ORIGIN OF THE 

ALFVÉN–ARRHENIUS OSCILLATING FORCE 

MODIFYING FORMS OF PLANETARY ORBITS IN 

THE SOLAR SYSTEM AND OTHER 

EXOPLANETARY SYSTEMS  
 
 
 

We develop the statistical theory of gravitating spheroidal 
bodies to explain the stability of the orbital motions of planets 
as well as the forms of planetary orbits with regard to the 
Alfvén–Arrhenius oscillating force [9, 19, 20] in our Solar 
system and other exoplanetary systems. The statistical theory 
of the formation of gravitating spheroidal bodies was 
proposed in Chapters 1–5 (see also our previous works [16, 
45–79]). Starting from the concept of forming a spheroidal 
body inside a gas-dust protoplanetary nebula, this theory 
solves the problem of gravitational condensation of a gas-dust 
protoplanetary cloud with a view to planet formation in its 
gravitational field and derives the law of planetary distances 
in the Solar system generalizing the well-known laws [16, 65, 
73]. Within the framework of the statistical theory of 
gravitating spheroidal bodies, the new universal stellar law 
(USL) [75, 76] connecting the temperature, size, and mass of 
each star was derived in Chapter 8. 

In this chapter, we also consider the USL to explain the 
stability of planetary orbits in extrasolar systems. Since the 
USL is based on applying the Poincaré virial theorem to a 
cloud-like configuration of ideal gas as the stellar corona 
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together with the star in a mechanical equilibrium state then 
the question arises as to how long the gravitational field of the 
star remains stable. Naturally, the stabilities, as well as the 
forms of planetary orbits, depend directly on the constancy of 
a gravitational field level around a star. As Alfvén and 
Arrhenius noted [9, 19 pp. 343–344]: 

The typical orbits of satellites and planets are circles in certain 
preferred planes. In satellite systems, the preferred planes tend to 
coincide with equatorial planes of the central bodies. In the 
planetary system, the preferred plane is essentially the orbital plane 
of Jupiter (because this is the biggest planet), which is close to the 
plane of the ecliptic. The circular motion with period T is usually 
modified by superimposed oscillations. Radial oscillations (in the 
preferred plane) with period T change the circle into an ellipse 
with eccentricity e . Axial oscillations (perpendicular to the 
preferred plane), also with a period T , make the orbit inclined at 
an angle i to this plane. 

Thus, due to the radial (axial) oscillating force, the orbits 
of moving planets in the Solar system are described by 
ellipses with focuses on the origin of coordinates and small 
eccentricities (inclinations). In this connection, the following 
question arises: What is the cause of the radial and the axial 
oscillations as well as the nature of the periodic radial and 
the periodic axial forces? 

In this chapter, we explain the origin of these oscillating 
forces [9, 19, 20] which modify forms of planetary orbits 
within the framework of the statistical theory of gravitating 
spheroidal bodies. A justification of the stability of orbital 
motions of planets based on the USL as well as on the forms 
of planetary orbits with regard to the Alfvén–Arrhenius 
oscillating forces in our Solar system and other exoplanetary 
systems is considered. Concretely, as shown in Chapter 5, a 
temporal deviation of the gravitational compression function 
(GCF) of a spheroidal body (at first modeling a gas-dust 
protoplanetary cloud) induces the additional periodic forces. 
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Then after the decay of the spheroidal body (see Section 5.4), 
the same additional periodic forces make the planetary orbits 
elliptic ones [79].  

Indeed, as alleged earlier, orbits of moving particles inside 
a flattened rotating and gravitating gas-dust protoplanetary 
cloud are initially circular. However, during the evolution of 
this protoplanetary cloud at the formation of protoplanets 
these orbits can be deformed a little due to collisions with 
other particles or gravitational influences of forming adjacent 
planetesimals. In particular, V.S. Safronov remarked [2 
p.145]: 

The assumption of initial motion of particles in circular orbits looks 
natural. At small masses of bodies, their gravitational variations 
were weak, and particles moved in orbits close to the circular ones. 
In the process of a planet growth, deviations of orbits from the 
circular increased, and all bodies of a zone had an opportunity to be 
joined in one planet. 

However, it should be noted that orbits of the moving 
bodies at the later stages of evolution of a gas-dust 
protoplanetary cloud are formed mainly under the influence of 
its centrally symmetric gravitational field. The solution of 
Binet’s equation, therefore, determines the elliptic (or 
Keplerian) forms of planetary orbits [96]. Moreover, both the 
Newtonian theory of gravity [80] and the consequent 
Laplacean celestial mechanics [228] explain the elliptic orbits 
based on centrally symmetric gravitational forces exclusively 
and do not consider the processes of formation (including 
collisions, giant impacts, accretions, or gravitational 
influences of other bodies). This means that such modification 
(from the circular orbit to the elliptic one) cannot be explained 
by a process of formation only since the possible reason 
consists of a temporal deviation (pulsations) of the 
gravitational field of a central body (a star) into a 
protoplanetary cloud. These small pulsations of compression 
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induce the radial and the axial oscillations (with the circular 
frequencies h  and z  respectively) of orbital body motion. 

As Alfvén and Arrhenius noted, the motion in a centrally 
symmetric gravitational field “is degenerate in the sense that 

zh ... This is due to the fact that there is no preferred 

direction” [9, 19]. On the contrary, we confirm here that a 
spatial deviation of the gravitational potential from the 
centrally symmetric one defines a difference in the values of 
the radial and the axial orbital oscillations (when zh ) for 

a rotating ellipsoid-like spheroidal body. That is why an 
interference of these orbital oscillations can lead to the 
nonuniform rotation of the stellar layers at different latitudes 
of a star. 

In this chapter, we will also show that the stability of 
parameters of planetary orbits is determined by a constancy of 
the specific entropy in conformity with the principles of self-
organization in complex systems [79]. We note that a 
temporal deviation of GCF leads periodically to the special 
cases when the additional periodic force becomes a 
counterbalance to the gravitational force, that is, the principle 
of an anchoring mechanism occurs in planetary systems 
(Chapter 5). Owing to this principle, the stability of planetary 
orbits is realized in our Solar system and other exoplanet 
systems.  

Besides the Solar system, here we will focus on the study 
of the multi-planet extrasolar systems as such Kepler-20 [285, 
318], HD10180 [231], HIP14810 [285], 61Virginis [285], 
55Cnc [259, 285, 308], Alpha Centauri [285], Upsilon 
Andromedae [257, 285, 309], Gliese 876 [285, 310] as well as 
24 Sextanis, 18 Delphini, Capella A, 14 Andromedae,  
Cephei,  Ceti, Aquilae, 11 omae [312, 313, 316, 327] etc. 
whose stars belong to the different spectral classes F,G, K, 
and M. 
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9.1. The derivation of the combination of Kepler’s  
3rd law with the universal stellar law (3KL-USL)  
and an explanation of the stability of planetary  

orbits through 3KL-USL 

For a one-component gaseous cloud (for a spheroidal body 
formed by a collection N of similar particles with the masses 

0m  so that NmM 0  is its mass) let us use the virial theorem 

of Poincaré (see Theorem 1.3 in Section 1.2) [1, 105, 106]: 
02 gk EE , (9.1.1) 

where kE is the total kinetic energy and gE is the total 

gravitational potential energy of a steady state system in the 
form of a collection of particles moving under no forces except 
their mutual gravitational attraction. 

According to Boltzmann’s molecular kinetic theory, the 
total kinetic energy of the heat movement of particles kE
connects with the interior energy U of ideal gas. As noticed 
by S. handrasekhar [106], for a cloud-like configuration of 
an ideal gas the following formula is true: 

UTNkEk )1(
2

3

2

3
B , (9.1.2) 

where 
U is the interior energy of a cloud-like configuration of an 
ideal gas,  

 is the polytropic exponent, and  
KJ1038049.1 23

Bk is the Boltzmann constant.  
It follows directly from the Poincaré virial theorem (9.1.1) 
and formula (9.1.2) that: 

0)1(3 gEU . (9.1.3) 

We note that in the case of Eq. (4.4.11) the polytropic index is 
equal to 3/2 (see Sections 2.9 and 4.4). Let EUEg be 
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the total energy of a cloud-like configuration of the ideal gas. 
Then, according to Eq. (9.1.3) we can establish that: 

gEUE
33

43
)43( . (9.1.4) 

As shown by handrasekhar [106], a gaseous sphere is stable 
when 3/4 . Let E  and U  be a change of the total 
energy and a change of the interior energy respectively. Then, 
according to (9.1.4), the quantity of energy lost by radiation 

E  during the compression process of a cloud-like 
configuration is equal to: 

0
33

43
gEE , (9.1.5) 

whereas the interior energy increases by the following 
quantity: 

0
33

1
gEU . (9.1.6) 

It follows from Eqs (9.1.4)–(9.1.6) as well as Eq. (8.1.22), 
a share of the gravitational potential energy in the form of 
the work gE  done by the gravitational compression is only 

partly (in 
)1(3

43
times) scattered in space through radiation 

whereas a remaining part (
)1(3

1

)1(3

43
1 ) is spent to 

increase the temperature T  of a cloud-like gaseous 
configuration [106].  

On the other hand, if a gravitating spheroidal body is the 
evolutionary model of a star then a significant part of its 
gravitational potential energy during the compression process 
goes over to the particle heat motions into it [79, 328]. In this 
connection, the question arises: how long and why is a stable 
level of the gravitational field in fixed points of space (for 
example, around stars) supported? 
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The preliminary reply follows from Eqs (8.1.22)-(8.1.24), 
and (8.1.32) (in Section 8.1) under the consideration that the 
parameter of gravitational condensation is changing with the 
time, that is, )(t . Namely, owing to the slowly 
increasing parameter of gravitational condensation of a 
spheroidal body: 

1212 ,)()( tttt , (9.1.7) 
the absolute value of gravitational potential energy is also 
growing: 

1212 ,)()( ttEtEtE ggg . (9.1.8) 

In other words, the speed of dissipation gE
 
is equal to the 

speed of changing in the steady state of the virial 
equilibrium of a spheroidal body. To answer the formulated 
question quantitatively let us use the universal stellar law 
(USL) from the previous Section 8.2 [75, 76]. 

First of all, let us note that the USL (8.2.18) connects the 
temperature, the size, and the mass of a star [76]: 

T
Mm

i
pr , (9.1.9) 

where 

)mKkg(1010003963.13 212Bk

 
is the universal 

stellar constant (8.2.16), 
kg1067248.1 27

pm  is the mass of a proton, 

i  is an average relative number of all degrees of freedom 
for the particle 0m of a highly ionized stellar substance 

with a mean relative molecular weight r , that is, 

pr0 mm  , and  

ii 3 is a number of all degrees of freedom. 
As shown in Section 8.3, by calculating the left-hand part 

of Eq. (9.1.9) for the Sun and comparing it with the universal 
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stellar constant , we find a coincidence up to the relative 
error equal to %37.3  that testifies to the validity of the 
USL for the Sun. 

To verify the USL for other stars, we need approximation 

corT  through the effective temperature effT  of the stellar 

surface of these stars, that is, the modification of USL. This 
modified USL (8.3.13) can be verified by calculating the left-
hand part of Eq. (9.1.9) with the usage of parameters for the 
different types of stars (see Table 8.1 and Ref. [75, 76]).  

First of all, we can note the satisfiability of Eq. (9.1.9) for 
the stars belonging to the spectral class G, like the Sun: 
namely, Table 9.1 shows that the modified USL applies with 
the relative accuracy %34.1 for the star Kepler-20 of type 
G8, it is applied with the small relative error %1.0  for 
HD10180 of type G1V and with high relative 
accuracy %75.0  for the star HIP14810 of class G5 [76]. 
On the other hand, the modified USL applies with 

%87.15  for the star Centauri of type K1V which is 
caused, probably, by an inexact estimation of temperature of 
its corona (see Cnc55T  for the respective class K), that is, 

through a directly proportional dependence corT  on effT  as in 

the special case of the Sun (for type G2V). Thus, the low 
accuracy of this law for the stars belonging to the spectral 
classes F or M, most likely, can be explained by too rough an 
approximation corT  for the more bright or dim stars [76, 79].  

For an abnormal group of intermediate-mass red giants—
24 Sextanis, 18 Delphini, Capella A, 14 Andromedae,  
Cephei,  Ceti,  Aquilae, 11 omae [312, 313, 316, 327] 
(whose chemical composition includes radicals, ions, and 
electrons)—we suppose 2r  in Table 9.1 (unlike Table 
8.1). 
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Supposing the mass of a spheroidal body is to be a 
constant, that is, constM , let us apply USL (9.1.9) for two 
different states of a spheroidal body under the assumption that 

)(t is a variable in a dynamical state-space of this 
spheroidal body: 

1

p

1

1r
1 T

Mm
i

, (9.1.10a) 

2

p

2

2r
2 T

Mm
i

, (9.1.10b) 

where )( ll t , )(rr ll t , )( ll tii  and )( ll tTT , 2,1l . 

Dividing Eq. (9.1.10b) into Eq. (9.1.10a) we obtain: 

2r

1r

1

2

1

2

1

2

i
i

T
T

. (9.1.11) 

As noted in [79], as a rule, 121 ii  for a highly ionized stellar 
substance, therefore following Eq. (9.1.11) we conclude that: 

2

2r

1r

1

2

1

2

T
T

. (9.1.12) 

The ratio shows that the parameter of gravitational 
condensation  increases when the temperature T of the shell 
of a spheroidal body (called the stellar corona) grows whereas 
the mean relative molecular weight r  reduces, that is,  
is directly proportional to the squared T and inversely 
proportional to the squared r . The finding r  is no simple 
task in the case of a highly ionized stellar substance [106], so 
that formula (9.1.12) can be used for calculating r  in the 
process of the evolution of a star: 

2

1

1

2
1r2r T

T
. (9.1.13) 
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Now with the aim of answering the main question on how 
a stable level of the gravitational potential g  

is supported 

around a star in an exoplanet system and how, because of this, 
the stability of planetary orbit occurs, let us consider jointly 
USL (9.1.9) and Kepler’s 3rd law (3KL) [206]: 

22
K

3

4T

Ma , (9.1.14) 

where a  is a major semi-axis of the planetary orbit, and KT  is 
a Keplerian period of motion of the planet around its star 
(belonging to our Solar or exoplanet system). 

Taking into account the formula of the universal stellar 
constant (8.2.16) let us rewrite USL (9.1.9) in the following 
way: 

MTk
m

i
B

rp

3 . (9.1.15) 

Then substituting the left-hand part of (9.1.15) into the right-
hand part of Eq. (9.1.14) we obtain the combined Kepler 3rd 

law with the universal stellar law (3KL-USL) [79, 328]: 

rp
2/32

K

3

4

3

T

i
m

a
 , (9.1.16) 

where TkB is a statistical temperature [110]. The 
combined law (9.1.16) shows that the stability of parameters 
of planetary orbits is determined by the constancy of the 
value: 

const
r

i
, (9.1.17) 

that is fully confirmed by Eq. (9.1.11). 
Introducing an angular velocity KK T/2 of rotational 

motion of a planet around a star, the combined law (9.1.16) 
can be written in the following form: 
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Tisa
r

2
K

3 , (9.1.18) 

where: 

p

B3
m
ks   (9.1.19a) 

is a constant with the value equal to: 

)KkgJ(103890297.4
kg1067248.1

KJ1038049.1
14159265.33 4

27

23

s . 

Let us note that this constant has a physical measure of the 
specific heat capacity Vc  or the specific entropy s  [206], that 

is, according to Eqs (9.1.18) and (9.1.19a) the stability of the 
parameters of planetary orbits is determined by a constancy of 
the specific entropy s  in conformity with the principles of 
self-organization in complex systems [134, 135]. Indeed, the 
constant s  can be represented as the following [79]: 

p

)1(

ppp

B 22

2

3
33 VA cNks , (9.1.19b) 

where  
)1(

Vc
 
is a molar heat capacity of one-atomic gas under the 

condition of its constant volume V , 

AN  is the Avogadro constant, and 

 is the universal gaseous constant [206].  
Then, according to Eqs (9.1.14), (9.1.18) and (9.1.19b) we 
obtain: 

TicTisaM V
rp

)1(

r

2
K

3 2
 

uTcTc
V

i
V 22

2
)(

, (9.1.20a) 

where 
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Tcu V  is a specific value of the interior energy of ideal 

gas, 
/)(i

VV cc
 
is a specific heat capacity, and 

2/2/3)1()( iicic V
i
V  

is a molar heat capacity of an 

ideal gas. 
Moreover, pr . Since the specific value of the interior 

energy is dmdUu /  (where U is interior energy of a 
spheroidal configuration of an ideal gas, and dm  is an 
elementary mass) we can suppose that MUdmdU //  at the 
initial stage of formation of a spheroidal body with the total 
mass M . Then taking into account formula (8.1.23) from 
Section 8.1 as well as (9.1.20a) we establish that: 

gEMU
2

2

,  (9.1.20b) 

whence 3/4  following Eq. (9.1.3), that is, the 
gravitational potential energy is spent by the interior energy 
under the condition of virial equilibrium of a spheroidal body. 
As A.Ritter showed in 1878 [106], the polytropic process with 

3/4  has a special “cosmogonical” interest. 

The combined law connects the mechanical values a  and 

K  in the left-hand part of Eq. (9.1.18) and the statistical 

(thermodynamic) values , T , i , and r  in the right-hand 
part of this equation. It means that the stability of the 
mechanical values (including the angular velocity K  and the 
major semi-axis a  of a planetary orbit) depends on a 
statistical regularity of the right-hand part of Eq. (9.1.18). 
Thus, we conclude there is a possibility of the presence of 
statistical oscillations of motion in planetary orbit [79, 328], 
that is, the oscillations of the major semi-axis a  and the 
orbital angular velocity K  of the rotational motion of planets 
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and bodies around stars. Indeed, this conclusion is fully 
confirmed by the existing radial and axial orbital oscillations 
of bodies described for the first time by Alfvén and Arrhenius 
[9, 19]. 

9.2. On the Alfvén–Arrhenius specific additional periodic 
force modifying circular orbits of bodies 

At the simplest type of body motion with a constant velocity 

0v  around a central gravitating body in a circular orbit with 

radius 0R , the specific force (per mass unit) of gravity gf  
is 

exactly compensated for by the centrifugal specific force cf : 

cg ff , (9.2.1) 

whereas an additional specific force acts upon the body at the 
modification of the circular orbit: 

gca fff . (9.2.2) 

As we know [96], the orbits of bodies moving in a 
centrally symmetric gravitational field of central body can be 
calculated by the equation in the form:  

gf
r
C

dt
rd

3

2

2

2

, (9.2.3) 

where C  is an areal velocity [96, 158]:  
2rC . (9.2.4) 

Comparing Eq. (9.2.2) with Eq. (9.2.3) we establish that:  

3

2

r
Cfc ; (9.2.5a) 

2

2

dt
rdfa .

 
(9.2.5b) 

Following Alfvén and Arrhenius [9, 19], a body’s circular 
orbit can be modified by both the radial and the axial 
oscillations. We can, therefore, consider separately the radial 
h - and the axial z -projection of the force af . As usual, the 
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body location in orbit can be estimated by the radius-vector r  
with length equal to: 

22 zhr . (9.2.6) 

Initially, a body is moving along an unperturbed circular orbit 
whose equation is: 

0Rr , (9.2.7) 

where
0

2
0

2
00 HZHR  

because 00Z , that is, it is 

assumed that the unperturbed circular orbit is situated in the 
plane Oxy . 

Thus, if the body is displaced radially from 0Rh  to 

hRh 0 , it is acted upon by the force (per mass unit):  

h
h

f
Rfhf

R

a
aa

h

hh

0

)()( 0 , (9.2.8) 

which can be represented by the Taylor series in linear 
approximation (9.2.8) as far as Rh . Taking (9.2.1) into 
account, we note this force has to be equal to zero 0)( 0Rf

ha  
under the condition (9.2.7) so that according to Eqs (9.2.2), 
(9.2.5a), and (9.2.8) we obtain:  

h
h
rf

r
C

r
h

h
f

f
R

g
R

a
a

h

h

00

3

2

  

.
33

00

4

2

4

2

h
r
f

r
Ch

r
h

r
f

r
C

R

g

R

g  (9.2.9) 

On the other hand, the substitution (9.2.8) into Eq. (9.2.5b) 
with regard to 0)( 0Rf

ha  
and hRh 0  yields a harmonic 

oscillator equation [73]: 

0
)(

0

2

2

h
h

f
dt

hd

R

ah , (9.2.10) 
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that is, a circular frequency h  of the harmonic oscillator 

is
0R

a

h
f

h . Thus, the body oscillates in the radial h -direction 

around the circle with the angular frequency [9, 19]:  
  

000

4
0

2

4

2 33

R

g

R

g

R

a
h r

f
R
C

r
f

r
C

h
f

h . (9.2.11) 

Taking into account the condition (9.2.1) for the circular 
orbit and Eq. (9.2.5a), expression (9.2.11) for the frequency of 
the radial oscillations takes the form:  

0
0

0 )(3

R

gg
h r

f
R

Rf
. (9.2.12) 

If the body is displaced in the z -direction (axial direction), it 
is acted upon by the force

zaf which can be defined like the 

expansion (9.2.8): 

z
z

f
z

z
f

fzf zz

zz

aa
aa

00

)0()( . (9.2.13) 

According to Eq. (9.2.5b) and the formula (9.2.13) the axial 
oscillations in the z -direction are described by the same form 
(9.2.10) of harmonic oscillator equation, namely [73]:  

0
)(

0

2

2

z
z

f
dt

zd za . (9.2.14) 

As to the angular -component of the additional specific 
force af , Alfvén and Arrhenius supposed that 0af . 

Because 0afdiv  for a periodic force and the same 

divergence of af in the cylindrical coordinate system is:  

0
)(1)(1

z
ff

hh
hf

h
f zh aaa

adiv , 
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then: 

h
f

h
f

z
f

hhz aaa . (9.2.15) 

Substituting (9.2.15) into Eq. (9.2.14) we find the circular 
frequency of the axial oscillations [9, 19]: 

000
000 Z

aa

Z

g

Z

a
z h

f
h

f
z

f
z

f
hhzz  

00
22

0 000
R
f

r
f

zr

ff
h

f g

R

g

Z

gc

Z

g hhh , (9.2.16) 

where it was considered in Eq. (9.2.16) that the specific 

centrifugal force cf does not contribute to the z -projection of 

the specific periodic force: 
zz ga ff because 0

zcf  
as well as 

00 HR  when 00Z , 000Zch
f . As follows from (9.2.12) and 

(9.2.16), the equation holds [9, 19]:  

0

0

0

0

0

022 )(2)()(3

00
R

Rf
R
Rf

r
f

r
f

R
Rf gg

R

g

R

gg
zh . (9.2.17) 

Let us note that when a body is moving in a circular orbit of 
the radius 0R  with the constant velocity 0v  the force of 

gravitational attraction is exactly compensated for by the 
centrifugal force (9.2.5a), so that:  

0

2
0

R
vfg , (9.2.18) 

that is, the orbital angular velocity is: 

00

0
K R

f
R
v g  (9.2.19) 
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and the period of this motion KK /2T we know as the 
Keplerian period [96, 158]. Substituting (9.2.19) into Eq. 
(9.2.17) we obtain [9, 19]: 

2
K

22 2zh . (9.2.20) 

It is well known [80, 96] that moving bodies draw elliptical 
orbits (6.2.2) in the gravitational field of a central body, and 
the central body is in the orbital focus according to Kepler’s 
1st law: 

cos1

)1( 2

e
ear , (9.2.21) 

where e  is an eccentricity of the elliptical orbit, and a  is an 
orbital semi-major axis of this ellipse. When 0 we have the 
perihelion of this orbit )1(min ea  and when  we 

obtain the aphelion )1(max ea . It is clear that if 0e  then 

Eq. (9.2.21) describes a circular orbit (9.2.7):  
ar , (9.2.22) 

where aR0  is a radius of the circular orbit. According to 

Eq. (9.2.21) the location coordinate h  in the orbit is given by: 

cos1

cos)1(

cos1

sin)1( 22

e
iea

e
eah  (9.2.23a) 

and the orbital position coordinate z is found accordingly:  

cos1

sin)1(

cos1

cos)1( 22

e
iea

e
eaz , (9.2.23b) 

where  is a polar angle, i  is an angle of inclination 
( 2/i ). Since )1( 22 eMaC  then the values 

iMCiea cos)/(cos)1( 22  in Eq. (9.2.23a) and 

iMCiea sin)/(sin)1( 22  in Eq. (9.2.23b) indicate the 
projections of the specific angular momentum on the axis Oz  
and the plane xOy , that is, we can talk about the angular 
momentum deficit iC cos  and iC sin  introduced by Laplace 
firstly [228, 257].  
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If 1e  then, taking into account only the first order term 
on e  in Eq. (9.2.21), we obtain the equation of an almost 
circular orbit:  

]cos1[ ear . (9.2.24) 
As in Eqs (9.2.23a, b) the projections of Eq. (9.2.24) on the 
axis Oz  and the plane xOy with regard for the angle of 
inclination 1i  respectively take the forms [9, 19]: 

]cos1[]cos1[cos hh eaeiah ; (9.2.25a) 

zz aiiaz sinsinsin , (9.2.25b) 
where in Eqs (9.2.25a) and (9.2.25b), we have taken into 
account that iisin , 1cos i  at 0i . In view of the 
identity of Eqs (9.2.24) and (9.2.25a) the index h  can be 
replaced by r . 

According to the obtained Eqs (9.2.25a) and (9.2.25b), the 
deviation of the elliptical orbit (with a small eccentricity 

1e ) from the circular one is described by the radial 
harmonic oscillation with the amplitude aea  (here 0Ra ) 

and the circular frequency h  following (9.2.11): 

)cos(cos 0
0 hhh teReaah , (9.2.26a) 

and the deviation of this coplanar orbit from the plane xOy is 
described by the axial harmonic oscillation with the amplitude 

aia  (where 0Ra ) and the circular frequency z  in 

accordance with (9.2.16): 
)sin(sin 0

0 zzz tiRiaz , (9.2.26b) 

where 0
h , 0

z  are initial phase angles of the radial and the 

axial oscillations.  
Taking into account the dependence (9.2.20) of the circular 

frequencies h , z , and K , let us introduce the following 

angular velocity [9, 19]: 

hKP . (9.2.27) 
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Using Eq. (9.2.27) we can write the above-mentioned relation 
(9.2.26a) as follows:  

0
PK00 cos htteRRh . (9.2.28) 

In this context, H. Alfvén proposed an approximate 
description of Kepler’s motion using the guiding-center 
method [9, 19, 329] (a similar idea was first formulated within 
the framework of the Ptolemaic system of the world). 
According to this method which was developed in plasma 
physics [19 p. 344, 329], let us place a moving frame of 
reference with the origin at a point moving along the 
unperturbed orbit (circle) with the angular velocity K  (see 
Figure 9.1). The origin of such a system is called “the 
guiding-center,” and the axis O  points in the radial direction 
and the axis O  in the forward tangential direction. 

 

Figure 9.1. An approximate description of the motion using the guiding-
center method 

According to Fig. 9.1 the guiding-center moves with a 
constant velocity along the dashed circle with a radius 0R  in 

the center of which there is an attracting mass M . In turn, the 
body with a mass m  moves in an “epicycle” (around the 
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guiding-center) which is an ellipse with a minor axis 0eR . 

Thus, the pericenter moves (more precisely, it precesses) with 
the angular velocity P  defined by formula (9.2.27). Indeed, 
it follows from Eqs (9.2.12) and (9.2.27) directly that rotation 
with the frequency P  is opposite to the Keplerian rotation 
with K . The linear tangential velocity of motion along the 
axis O  is equal to a difference in the values of the azimuthal 
velocities along with the slightly elliptical and the circular 
orbits: 

K00 Rrvv
dt
dv . (9.2.29) 

Taking into account formula (9.2.4) and Eqs (9.2.24), 
(9.2.25a) the angular velocity of a body moving in the slightly 
elliptical orbit is: 

)cos(21 0
2
0

2 hhte
R
C

r
C

dt
d

  

)cos(21 0
K hhte . (9.2.30) 

Substituting (9.2.30) into (9.2.29) we find that: 

)cos(
2

)( 0

0
K0 hhtR

eCR
dt
d

. (9.2.31) 

Integrating Eq. (9.2.31) and bearing in mind formula (9.2.27) 
we define: 

)sin(2)sin(
12 0K

0
0

0
hh

h
hh

h

teRt
R
eC

 

)sin(]1[2 0
PK

P
0 h

h

tteR . (9.2.32) 

From the comparison of Eqs (9.2.32) and (9.2.28) with regard 
to hP  it follows that the epicycle is an ellipse with the 

axis ratio 2:1 and the minor axis 0eR . Moreover, “the epicycle 

motion is retrograde” [9, 19]. The pericenter (point closest to 
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the center of attraction) is reached when  is a minimum, that 
is, when:  

.,...2,1,0,20
PK nntt h  (9.2.33) 

Assuming:  
0

PP ht , (9.2.34) 

we obtain that the pericenter is reached when: 

K

P 2 nt , (9.2.35) 

that is, according to (9.2.27) the pericenter has a precession 
with the angular velocity P  [9, 19].  

In a similar way (see (9.2.27)) Alfvén and Arrhenius 
introduced the following oscillation frequency:  

zK ,  (9.2.36) 

so that we can find that the axial oscillation equation (9.2.26b) 
takes the form:  

)sin( 0
K0 zttiRz , (9.2.37) 

where i  is an inclination ( 1i ). The angular velocity 
 

determines the angle 
 
of the “ascending node” [96], that is, 

the point where the coordinate z  becomes positive:  
0
zt  . (9.2.38) 

Let us note when an orbiting body moves in the 
gravitational field of a non-rotating central body the specific 
force of attraction (or the gravitational field strength) is equal 
to:  

2r
Mfg , (9.2.39) 

where M is a mass of the central body,  is the Newtonian 
gravitational constant. From Eq. (9.2.39) we establish directly 
that: 
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r
f

r
f gg 2

. (9.2.40) 

Substitution of (9.2.40) into the formulas (9.2.12) and (9.2.16) 
shows that: 

K
0

0

0

0g

0

0 )()(2)(3

R
Rf

R
Rf

R
Rf gg

h ; (9.2.41a) 

K
0

0

0

0

0

0 )()()(2

R
Rf

R
Rf

R
Rf ggg

z ,
 

(9.2.41b) 

that is, Kzh  in the case of non-rotating (immovable) 

central body. This means that the identity (9.2.20) is true, and 
3
0K / RM is the Keplerian angular velocity in 

accordance with (9.2.19) and (9.2.39). 
The significance of (9.2.41a, b) is that the frequencies of 

radial and axial oscillations coincide with the fundamental 
angular velocity of circular motion when a body is moving in 
the slightly elliptical orbit in the central gravitational field of 
a non-rotating body. Consequently, in this case 0P , 

that is, there is no precession of the pericenter or the nodes. 
According to Eqs (9.2.28) and (9.2.32) the body moves along 
the epicycle [9, 19]: 

)cos( 0
K0 hteR ; (9.2.42a) 

)sin(2 0
K0 hteR . (9.2.42b) 

The center of the epicycle moves with constant velocity in the 
circle with the radius 0R . The motion in the epicycle takes 

place in the retrograde direction (see Fig.9.1). According to 
the condition (9.2.41b), the equation for the axial oscillations 
(9.2.37) becomes: 

)sin( 0
K0 ztiRz . (9.2.43) 
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As a result, the orbit of the moving body in the gravitational 
field of the central body is an ellipse but its plane has the 
inclination i  with the plane of an undisturbed circular motion. 

Thus, at the transition from the circular to the slightly 
elliptical orbit, an additional periodic force acts on the body, 
as Alfvén and Arrhenius indicated [9, 19]. Indeed, when the 
body is moving along a circular (undisturbed) orbit with a 
constant velocity 0v  the specific gravitational attraction gf

 
is 

exactly balanced by the specific centrifugal force cf  (see Eq. 

(9.2.1)):  

0
2
K

0

2
0 R

R
vff cg . (9.2.44a) 

Since )1( 22 eMaC  the additional periodic force af  
can be found if first we calculate the specific centrifugal force 

cf  for a body moving in the disturbed (slightly elliptical) 

orbit following (9.2.5a), (9.2.21), (9.2.41a), and (9.2.39): 

r
ea

r
M

r
eMa

r
Crfc

)1()1( 2

23

2

3

2
2  

0
Kcos1 hg tef , (9.2.44b) 

whence, taking into account Eqs (9.2.2), (9.2.30), (9.2.41a), 
and Eq. (9.2.44a), we establish that, if K , then the 
specific periodic radial force is equal [73]: 

0
K2

0
K coscos hhggca t

r
Meteffff  

0
K0

2
K cos htRe . (9.2.45) 

Here it seems natural to ask: What is the nature of an 
additional radial force? As shown in Sections 5.2–5.4 above, 
the proposed statistical theory of gravitating spheroidal bodies 
provides a possible answer to this question using formula 
(5.2.3) for calculating the gravitational field strength a of a 
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forming spheroidal body (see relevant formulas (5.4.38) and 
(5.4.39)). 

9.3. Newtonian prediction of the Alfvén–Arrhenius 
specific additional periodic force 

In the remote zone II, particles move around a central 
cosmogonical body in the orbits with the Keplerian angular 
velocity (see, for example, (5.4.8) in Chapter 5) following 
Kepler’s 3rd law [96, 158]. The particles, having almost 
identical specific orbital angular momentums, form exterior 
shells. During the process of a conglomeration of particles of 
gas-dust matter, their specific angular momentums are to be 
averaged thus forming bunches (or protoplanetary embryos 
[208, 250]) in the exterior shells (see formula (6.1.2) from 
Section 6.1 of Chapter 6). In other words, during the process 
of protoplanet origin, each particle in a gas-dust 
protoplanetary cloud (generally speaking, a swarm of those 
particles or planetesimals) has a chance to reach (or land on) 
the protoplanet whose specific angular momentum value is 
the same as one for the particle/planetesimal (see Chapter 6 
and Ref. [2, 6, 21, 242–247]). Though it seems surprising,  we 
show below that knowledge of the process of a 
conglomeration of particles based on the coincidence of their 
specific orbital angular momentums reveals the Alfvén–
Arrhenius additional orbital periodic force [205]. 

Indeed, starting from the law of conservation of specific 
orbital angular momentum (6.2.32) (or (7.2.43)) in the central 
gravitational field for all particles of a protoplanetary embryo: 

const)1( 22 eMarC  (9.3.1) 

and taking into account equation (9.2.21) of the orbit of a 
moving particle: 
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)(cos1

)1( 2

te
ear , (9.3.2) 

we have: 

))(cos1(2 teMrr , (9.3.3) 

whence: 
))(cos1(32 teMr , (9.3.4) 

where e  is an eccentricity of the elliptical orbit. Like Eq. 
(5.4.20) from Section 5.4, rewriting Eq. (9.3.4) we obtain 
again [205]: 

agc fft
r
Me

r
Mrf )(cos

22
2 , (9.3.5) 

which entirely confirms the obtained Eqs (5.4.24) and (5.4.38) 
in Section 5.4 (as well as Eq. (9.2.2) for a slightly elliptical 
orbit in the previous Section 9.2). Taking into account Eqs 
(9.2.2) and (9.3.5) we also find additionally: 

)(cos
2

t
r
Mefa , (9.3.6) 

which verifies Eq. (9.2.45) completely [205]. 
Now let us consider the forming l -protoplanetary embryo 

moving around the core of a spheroidal cloud (as a central 
cosmogonical body) in orbit with the l -Keplerian angular 
velocity in accordance with the formula (5.4.8): 

3K
l

l a
M

, (9.3.7a) 

then: 
0

K)( lll tt ,   )0(0
ll . (9.3.7b) 

Taking into account Eq. (9.3.7b) the specific additional 
periodic Alfvén–Arrhenius force (9.3.6) acting on l -
protoplanetary embryo (or protoplanet) becomes: 
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Nlt
r
Mef ll
l

lal
,...,1),cos( 0

K2 . (9.3.8) 

Comparing Eq. (9.3.8) with Eq. (5.4.40b) we conclude that 
formula (9.3.8) corresponds well to a spectral component 

)(l
af in the expansion (5.4.40a) [205]. 

9.4. The regular and wave gravitational potentials arising 
under the orbital motion of a gravitating body in the 

theory of retarded gravitational potentials 

The consideration in Sections 5.4, 9.2, 9.3 points to a wave 
gravitational potential  (II)

g  (5.4.37a) arising in a remote 

zone II under the orbital motion of a gravitating body around 
a central body (the core of a spheroidal cloud). We are now 
going to investigate the wave gravitational field origin from 
the point of view of the theory of retarded potentials [100]. 

 First, let us consider the body of mass m  (planet) moving 
in an orbit in the gravitational field of a central body (star) of 
mass M.  Relative to an observer on the planet m , the central 
body M moves along an elliptical orbit around the planet 
being in focus. We will now study the variable gravitational 
field in the presence of an orbitally moving mass. As we know 
from field theory [100], in this case, the Poisson equation 
(2.4.1) is generalized by means of the D’Alembert equation 
(see Eq. (4.2.33)): 

2
2

2

1
4 ,g

g
gc t

 (9.4.1) 

where 

gc  is the speed of gravitational interactions, 
2211 /kgmN1067.6  is the Newtonian gravitational 

constant, 
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g  is a gravitational field potential, and  

 is a body mass density.  
Its solution, for arbitrary mass distribution with a mass 
density ( , )r t , is defined by a formula of the retarded 
potentials of gravitational field induced by a moving body 
[100, 205]: 

'

'
, / g

g
V

r t R c
dV

R
, (9.4.2) 

where R R  is a distance from a volume element to the 

“observation point” of measurement of the gravitational 
potential, and dV  is an element of volume, that is, 

' ' ' ' ' ' ' ' ', , ( , , )R r r dV dx dy dz r x y z . The field created by 
moving masses can be decomposed into monochromatic 
waves [100]. The potential of a separate monochromatic field 
component has the form i te , where  is a Fourier 

component of the gravitational potential, i 1 . According to 
the equation of D’Alembert (9.4.1), the mass density  can 
also be subjected to spectral decomposition. The Fourier 
transform of the mass density function with a delayed 
argument is, therefore, expressed through the Fourier 

component of mass density  [205]: 
i

i ( )
i, ( , ) g g

R R
c ct

g

Rr t e dt r e d e
c

. (9.4.3) 

Using (9.4.2), (9.4.3) we can obtain [100, 205]: 
i /

i ( / )

  

' '
g

g

R c
t

V

R c

V

e dV e dV dt
R R

 (9.4.4) 

In a remote zone II, we can consider the moving central 
body as a material point M relative to the distant planet m, so 
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that the mass density  at the large distance can be 
approximated by - function: 

0[ ' ( )]M r r t , (9.4.5) 

where 0( )r t  is a radius-vector of moving mass which is a 

function of time. Substituting (9.4.5) into (9.4.4) and then 
integrating with respect to 'dV  (leading to replace 'r  by 0( )r t ) 

we obtain [100]: 

i [ ( ) / ]1

( )
gt R t cM e dt

R t
, (9.4.6) 

where ( )R t  is a distance from the moving mass to the 
observation point. A formula similar to (9.4.6) can also be 
written when the spectral decomposition of the mass density 
contains a discrete series of frequencies. Indeed, in the case of 
periodic (with a period K2 /T ) orbital motion of a mass 

point, the spectral decomposition of the gravitational field 
contains only the frequencies of the form Kn , so that the 

corresponding components of the gravitational potential have 
the form [100, 205]: 

Ki [ ( )/ ]

0 ( )

gn t R t cT

n
M e dt
T R t

 , (9.4.7) 

where K 2 /T . In field theory [100 §70], an approach to 

calculate the radiation accompanying the elliptic motion of 
two particles attracted by the Coulomb law is known. Taking 
into account equation (9.3.2) of the elliptical orbit (with an 
eccentricity 1e ) in polar coordinates, the spectral 
components of the gravitational potential (9.4.7) can be 
rewritten using the parametric representation of the 
dependence R  on t  [158, 205]: 

(1 cos )R a e ; (9.4.8a) 
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3

( sin )
at e
M

, (9.4.8b) 

whence 32 /T a M  or 3
K /M a , [0, 2 ] . In other 

words, a full circle in the elliptic orbit corresponds to a 
change in the parameter from  0  to 2  (at the moment 

0t , a gravitating body is in the perihelion). So, substituting 
Eqs (9.4.8a, b) into Eq. (9.4.7) we obtain: 

Ki [ sin (1 cos )]
2

K

K0

1
(1 cos )

2 (1 cos )

g
n e a e

c

n
M e e d

a e
 

Ki [ sin (1 cos )]2

02
g

an e e
cM e d

a
. (9.4.9) 

The integral in Eq. (9.4.9) should be calculated taking into 
account the well-known formula of the theory of Bessel 
functions [330]: 

2
i( sin )

0 0

1 1
cos( sin ) ( )

2
n p

ne d n p d J p , (9.4.10) 

where ( )nJ p  is the Bessel function of integer order n . 

Moreover, p ne  in Eq. (9.4.9). So, to find the integral 
(9.4.9), we can apply the method of integration by parts using 
Eq. (9.4.10) [205, 331]: 

Ki [ sin (1 cos )]2

02
g

an e e
c

n
M e d
a

 

Ki
(1 cos ) 2

i[ sin ]

02
g

n a e
c n enM e e d

a
 

Ki
(1 cos )2 i[ ' sin ']K

0

( i ) sin
'g

n a e
c n en

g

n a e e e d d
c
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K Ki (1 ) i
(1 cos )2

K

0
( ) i

2
g g

n a e n a e
c c

n
g

eanM J en e e
a c

 

i [ sin ]( )sinn ee d d . (9.4.11) 

Under the condition of the very high speed of the 
gravitational interaction: 

K / 1gn a c
, (9.4.12) 

the spectral representation of the gravitational potential g  

based on damping monochromatic waves (9.4.11) has the 
form [205, 331]:  

K K Ki i i
0

1

(0) ( )( )n t n t n t
g n n

n n

Me J J en e e
a

 

K
1

1 2 ( )cos( )n
n

M J en n t
a

. (9.4.13) 

This spectral representation (9.4.13) of the gravitational 
potential is obtained here under the condition of the infinitely 
high speed of the gravitational interaction (9.4.12) and the 
property ( ) ( )n nJ en J en  which follows from the definition 

(9.4.10) of the Bessel integral of integer order n  for p ne .  
The comparison of Eq. (9.4.13) with Eq. (5.4.36) (or Eq. 
(5.4.35) in general) shows that ( ) 2 ( )n nC t J en . The 

expression (9.4.13) is, therefore, a special case of formula 
(5.4.35). Thus, the obtained spectral representation (9.4.13) 
completely corresponds to the spectral expansion (5.4.36) 
derived within the framework of the statistical theory of 
gravitating spheroidal bodies (see Chapter 5). 

Now we will obtain a spectral representation of the 
gravitational potential g  in the case of the finite speed gc of 

propagation of gravitational interactions. For this purpose, we 
use the Fourier series expansion in the Bessel functions of the 
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second exponential function belonging to the subintegral 
expression (9.4.9): 

K K Ki i i
(1 cos ) cos

g g g

n a n a n eae
c c ce e e . 

(9.4.14) 

Decomposing the function (9.4.14) in a Fourier series [330 
p. 384] we obtain: 

K K Ki i i
cos

K Kcos( cos ) isin( cos )g g g

n a n ea n a
c c c

g g

n ea n eae e e
c c

 

Ki

K K
0 2

1

( ) 2 ( 1) ( ) cos 2g

n a
c m

m
mg g

n ea n eae J J m
c c

 

' K
2 ' 1

' 1

i 2 ( 1) ( ) cos(2 ' 1)m
m

m g

n eaJ m
c

. (9.4.15) 

Then substituting (9.4.15) into (9.4.11) we obtain [331]: 
Ki

2 i [ sin ] K K
0 20

1

( ) 2 ( 1) ( )cos2
2

g

n a
cn e m

n m
mg g

n ea n eaM e e J J m d
a c c

 

Ki
2 i [ sin ] ' K

2 ' 10
' 1

2i
( 1) ( )cos(2 ' 1)

2
g

n a
cn e m

m
m g

n eaM e e J m d
a c

 

K Ki i
2 i [ sin ]K

0 0

1 2
( )

2
g g

n a n a
c cn e

g

n eaM Me J e d e
a c a

 

Ki
2 i [ sin ]K

2 0
1

1 2
( 1) ( ) cos2 i

2
g

n a
cm n e

m
m g

n ea MJ e m d e
c a

 

2 i[ sin ]K
2 1 0

1

( 1) ( ) cos(2 1)m n en
m

m g

n eaJ e m d
c

. (9.4.16) 

 
To find the spectral components of the gravitational potential 
(9.4.16), it is necessary to calculate the following three 
integrals:  
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2 i [ sin ]

0 0

1 1
cos( sin ) ( );

2
n e

ne d n en d J en  (9.4.17a) 

2 i [ sin ]

0 0

0

1 1
cos(2 ) cos( sin )cos(2 )

2
1

{cos( )cos( sin ) sin( )sin( sin )}cos(2 )

n ee m d n en m d

n en n en m d
 

0

1
{[cos( )cos(2 )]cos( sin ) [sin( )cos(2 )]sin( sin )}n m en n m en d  

0 0

0 0

1 1
cos( 2 ) cos( sin ) cos( 2 ) cos( sin )

2 2
1 1

sin( 2 ) sin( sin ) sin( 2 ) sin( sin )
2 2

n m en d n m en d

n m en d n m en d

 

0 0

1 1
( ) [cos( sin )cos sin( sin )sin ] cos( sin )nJ z z n z n d n z d  

0 0

1 1
cos([ 2 ] sin ) cos([ 2 ] sin )

2 2
n m en d n m en d  

2 2

1
[ ( ) ( )];

2 n m n mJ en J en  (9.4.17b) 

2 i[ sin ]

0

1
cos(2 1)

2
n ene m d  

i(2 1) i(2 1)2 i[ sin ]

0

1

2 2

m m
n en e ee d  

2 2i[( 2 1) sin ] i[( 2 1) sin ]

0 0

1 1

4 4
n m en n m ene d e d  

0

1
cos([ 2 1] sin )

2
n m en d  

0

1
cos([ 2 1] sin )

2
n m en d

2 1 2 1

1
[ ( ) ( )].

2 n m n mJ en J en  (9.4.17c) 
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Finally, we substitute (9.4.17a), (9.4.17b), and (9.4.17c) 
into Eq. (9.4.16) [205, 331]: 

Ki

K
0 ( ) ( )g

n a
c

n n
g

n eaM e J J en
a c

 

Ki

K
2 2 2

1

2 1
( 1) ( ) [ ( ) ( )]

2
g

n a
c m

m n m n m
m g

n eaM e J J en J en
a c

 

Ki

K
2 1 2 1 2 1

1

i2 1
( 1) ( ) [ ( ) ( )]

2
g

n a
c m

m n m n m
m g

n eaM e J J en J en
a c

. (9.4.18) 

Using the property 2( 1) im m , 2 1 2 2 1 2 1i i im m m  let us 
simplify Eq. (9.4.18): 

Ki

K K
0 2 2

1

{ ( ) ( ) ( 1) ( ) ( )g

n a
c m

n n m n m
mg g

n ea n eaM e J J en J J en
a c c

 

K K
2 2 2 1 2 1

1 1

( 1) ( ) ( ) i ( 1) ( ) ( )m m
m n m m n m

m mg g

n ea n eaJ J en J J en
c c

 

K
2 1 (2 1)

1

( 1) ( ) ( ) }m
m n m

m g

n eaJ J en
c

 

Ki

2K K
0 2 2

1

[ ( ) ( ) {i ( ) ( )g

n a
c m

n m n m
mg g

n ea n eaM e J J en J J en
a c c

 

2 1 2K K
2 1 2 1 2 2

1

i ( ) ( )} {i ( ) ( )m m
m n m m n m

mg g

n ea n eaJ J en J J en
c c

 

2 1 K
2 1 (2 1)i ( ) ( )}]m

m n m
g

n eaJ J en
c

 

Ki

2K K
0 2 2

1

[ ( ) ( ) {i ( ) ( )g

n a
c m

n m n m
mg g

n ea n eaM e J J en J J en
a c c

 

2 1 2K K
2 1 (2 1) 2 2

1

i ( ) ( )} {i ( ) ( )m m
m n m m n m

mg g

n ea n eaJ J en J J en
c c

 

 EBSCOhost - printed on 2/13/2023 10:52 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Nine 
 

730

2 1 K
2 1 (2 1)i ( ) ( )}]m

m n m
g

n eaJ J en
c

. (9.4.19) 

Let us note that in the right-hand part of equality (9.4.19), the 
even ( ' 2n m ) and odd ( ' 2 1n m ) terms are grouped in 
two sums separately, and therefore it is advisable to unite 
them: 

Ki

' 'K K
0 ' '

' 1

[ ( ) ( ) ( 1) i ( ) ( )g

n a
c n n

n n n n n
ng g

n ea n eaM e J J en J J en
a c c

 

Ki

' ' K K
' ' 0

' 1

( 1) i ( ) ( )] [ ( ) ( )g

n a
cn n

n n n n
n g g

n ea n eaMJ J en e J J en
c a c

 

' K
' ' '

1

( i) ( )[ ( ) ( )]n
n n n n n

n g

n eaJ J en J en
c

. (9.4.20) 

So, according to the derivations (9.4.11)–(9.4.20), the spectral 
components of the gravitational potential with regard to the 
finite speed gc  of gravitational waves have the form [205]: 

K K
0

1

{ ( ) ( ) ( i) ( )s
n n s

sg g

n ea n eaM J J en J
a c c

 

Ki

[ ( ) ( )]} g

n a
c

n s n sJ en J en e . (9.4.21) 

Using (9.4.21) we can estimate the first spectral components 
of the gravitational potential: 

0 0 0
1

{ (0) (0) ( i) (0)[ (0) (0)]} 1s
s s s

s

M J J J J J
a

 

1

{1 1 ( i) 0 [0 ( 1) 0]} ,s s

s

M M
a a

 (9.4.22) 

because 0 (0) 1J  and (0) 0sJ   if 0s ; 
Ki

K K
1 0 1 1 1

1

{ ( ) ( ) ( i) ( )[ ( ) ( )]} g

a
cs

s s s
sg g

ea eaM J J e J J e J e e
a c c
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K K
0 1 1 2 0{ ( ) ( ) i ( )[ ( ) ( )]

g g

ea eaM J J e J J e J e
a c c

 

Ki

K
2 3 1( )[ ( ) ( )]...} g

a
c

g

eaJ J e J e e
c

. (9.4.23) 

We restrict ourselves in formula (9.4.23) by the first two 
terms of the series: 

Ki

K K
1 0 1 1 2 0{ ( ) ( ) i ( )[ ( ) ( )]} g

a
c

g g

ea eaM J J e J J e J e e
a c c

. (9.4.24a) 

  
Analogously, using (9.4.21) we can estimate the spectral 
components 2  and 3  limiting ourselves to the first two 

terms of the series: 
Ki2

K K
2 0 2 2 2

1

2 2
{ ( ) (2 ) ( i) ( )[ (2 ) (2 )]} g

a
cs

s s s
sg g

ea eaM J J e J J e J e e
a c c

 

Ki2

K K
0 2 1 3 1

2 2
{ ( ) (2 ) i ( )[ (2 ) (2 )]} ;g

a
c

g g

ea eaM J J e J J e J e e
a c c

 (9.4.24b) 

Ki3

K K
3 0 3 1 4 2

3 3
{ ( ) (3 ) i ( )[ (3 ) (3 )]} g

a
c

g g

ea eaM J J e J J e J e e
a c c

. (9.4.24c) 

Because 1e and K / 1gea c , for the calculation: 

K K K
0 0 0 0

2 3
( ), ( ), ( ), ( )

g g g

ea ea eaJ e J J J
c c c

,

K K K
1 1 1 1

2 3
( ), ( ), ( ), ( )

g g g

ea ea eaJ e J J J
c c c

, 2 2 2( ), (2 ), (3 )J e J e J e ,…, 

we can use the expansion in a series of the Bessel function of 
integer order: 

2

0

( 1)
( )

2 !( )! 2

n rr

n
r

z zJ z
r r n

 (9.4.25a) 

and in the particular case when 0n  [330]: 
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2

0 2
0

( 1)
( )

( !) 2

rr

r

zJ z
r

. (9.4.25b) 

Using (9.4.25b) we estimate 0( )J x  at points 

K, / ,...gx e e a c : 
2 4 6

0

1 1
( ) 1 ...;

2 4 2 36 2

e e eJ e  (9.4.26a) 

2 4 6

K K K K
0

1 1
1 ...,

2 4 2 36 2g g g g

ea ea ea eaJ
c c c c

(9.4.26b) 

in accordance with (9.4.25a), we calculate 1( )J x at points 

K, / , ...gx e e a c : 
2 4 6

1

1 1 1
( ) 1 ... ;

2 2 2 2 3! 2 3!4! 2

e e e eJ e   (9.4.27a) 

2 4 6

K K K K K
1

1 1 1
1 ...

2 2 2 12 2 144 2g g g g g

ea ea ea ea eaJ
c c c c c

(9.4.27b) 

and then 2( )J x at points K K, / , 2 , 2 / ,...g gx e e a c e e a c : 
2 2 4 6

2

1 1 1 1
( ) ...

2 2 6 2 48 2 720 2

e e e eJ e ; (9.4.28a) 

2 2 4 6

K K K K K
2

1 1 1 1
... ;

2 2 6 2 48 2 720 2g g g g g

ea ea ea ea eaJ
c c c c c

 (9.4.28b) 

as well as )(3 xJ and )(4 xJ  at points ex 3 : 
3 2 4 6

3

3 1 1 3 1 3 1 3
(3 ) ...

2 6 24 2 120 2 4320 2

e e e eJ e ; (9.4.29a) 

4 2 4 6

4

3 1 1 3 1 3 1 3
(3 ) ...

2 24 120 2 1440 2 30240 2

e e e eJ e . (9.4.29b) 
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Then, limiting ourselves in Eqs (9.4.26a, b)–(9.4.29a, b) to 
terms of the second order of smallness and substituting the 
corresponding expressions in Eqs (9.4.24a)–(9.4.24c) we 
obtain: 

2 22

K K K
1

1 1
1 1 i 1

2 2 2 2 2 2 2g g g

ea ea eaM e e
a c c c

 

Ki2 2 2
1 1

1
2 2 6 2 2

g

a
ce e e e  

Ki

K

2 i 2
g

a
c

g

e aM e e
a c

; (9.4.30a) 

K
2 2i2

2 2K K K
2

1 1 1
1 i 1

2 6 2
g

a
c

g g g

ea ea eaM e e e
a c c c

 

Ki222
3 2 2 K1 1 1

1
6 24 2 2 i

g

a
c

g

e aM ee e e e e
a c

; (9.4.30b) 

2 23 2

K K K
3

3 3 33 1 1 3 1
1 i 1

2 2 6 24 2 2 2 2g g g

ea ea eaM e e
a c c c

 

Ki34 2 4
3 1 3 1 1 3

... ...
2 24 2 2 6 2

g

a
ce e e e  

Ki333
K279

16 i16
g

a
c

g

e aM e e
a c

. (9.4.30c) 

Let us estimate the spectral component of the gravitational 
potential (9.4.21) in the case of negative integers, that is, 
for ( )n Z . Indeed, according to the property of Bessel 
functions we have [330]: 

( ) ( 1) ( )n
n nJ z J z . (9.4.31) 
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Taking into account formula (9.4.10) and property (9.4.31), 
we find that: 

K K K( 1)s
s s s

g g g

ea ea eaJ J J
c c c

, (9.4.32a) 

whence it follows that the above-mentioned (relative to 
Eq. (9.4.13)) identity is valid: 

( ) ( )n nJ ne J ne . (9.4.32b) 

Using properties (9.4.32a) and (9.4.32b) we can write the 
formula for n based on Eq. (9.4.21): 

K
0{ ( )n n

g

n eaM J J en
a c

 

Ki

K

1

( i) [ ( ) ( )]} g

n a
cs

s n s n s
s g

n eaJ J en J en e
c

 

K
0{ ( )n

g

n eaM J J en
a c

 

Ki

K

1

i [ ( ) ( )]} g

n a
cs

s n s n s
s g

n eaJ J en J en e
c

 

K
0{ ( )n

g

n eaM J J en
a c

  

K
*i

K

1

( i) [ ( ) ( )]} *g

n a
cs

s n s n s n
s g

n eaJ J en J en e
c

, (9.4.33) 

where * is the symbol of complex conjugation. So, according 
to formula (9.4.33) and Eqs (9.4.30a)–(9.4.30c) the following 
relationships hold: 

Ki

K
1 1* 2 i 2

g

a
c

g

e aM e e
a c

; (9.4.34a) 
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Ki 222
K

2 2 i
g

a
c

g

e aM e e
a c

; (9.4.34b) 

Ki333
K

3

279

16 i16
g

a
c

g

e aM e e
a c

. (9.4.34c) 

Taking into account (9.4.22), (9.4.30a)–(9.4.30c), and 
(9.4.34a)–(9.4.34c) we obtain the expression for the retarded 
gravitational potential based on the first four monochromatic 
waves [331]: 

K K
K

333 i(3 3 )
i K

3

9 31 9

2 8 2i 8
g

at
cn t

g n
n g

e aM ee e
a c

 

K K K K
22 i(2 2 ) i( )

K K2

2 2i 2 2i
g g

a at t
c c

g g

e a e aM e M ee e
a c a c

 

K K K K
22i( ) i(2 2 )

K K2

2 2i 2 2i
g g

a at t
c c

g g

e a e aM M e M ee e
a a c a c

 

K K3 3 i(3 3 )
K31 9 9

2 8 2i 8
g

at
c

g

aM e e e
a c

. (9.4.35) 

Grouping the conjugate spectral components (according to 
(9.4.33)) into pairs and then using the Euler formula in Eq. 
(9.4.35) we obtain [331]:  

K Kcos( )g
g

M M ae t
a a c

 

2K
K K K Ksin( ) cos(2 2 )

g g g

aM a M ae t e t
a c c a c

 

2K
K K

2
sin(2 2 )

g g

aM ae t
a c c

 

3 3K
K K K K

39 9
cos(3 3 ) sin(3 3 )

8 8g g g

aM a M ae t e t
a c a c c
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K
K K K K[cos( ) sin( )]

g g g

aM M a ae t t
a a c c c

 

2
K K[cos(2 2 )

g

M ae t
a c

3K
K K K K

2 9
sin(2 2 )] [cos(3 3 )

8g g g

a a M at e t
c c a c

K
K K

3
sin(3 3 )].

g g

a at
c c

 (9.4.36) 

As seen in the right-hand side of Eq. (9.4.36), the sum of 
two harmonic oscillations of the same frequency is written in 
the square brackets. Therefore (according to the formula of 
the addition of two harmonic oscillations) the resulting 
oscillation can be found by the parallelogram rule [206] so 
that we have [331]: 

2
K K 11 [ / ] cos( )g g

M Me a c t
a a

 

2 2
K K 21 [2 / ] cos(2 )g

Me a c t
a

 

3 2
K K 3

9
1 [3 / ] cos(3 ) ...,

8 g
Me a c t
a

 (9.4.37) 

where:  

K K K

K K K

sin( / ) ( / ) cos( / )
arctan

cos( / ) ( / )sin( / )
g g g

n
g g g

n a c n a c n a c
n a c n a c n a c

 

K K

K K

/ tan( / )
arctan

( / ) tan( / ) 1
g g

g g

n a c n a c
n a c n a c

,  

1,2,3,...n . As can be seen from (9.4.37), this series is a 
special case of formula (5.4.35) or (5.4.36) obtained within 
the framework of the statistical theory of gravitating 
spheroidal bodies (see Section 5.4 of Chapter 5). By 
comparing Eq. (9.4.37) and Eq. (5.4.36) we find that the wave 
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gravitational potential (II)
g  from the point of view of the 

theory of retarded gravitational potentials is expressed by the 
formula: 

(II) 2
K K 11 [ / ] cos( )g g

Me a c t
a

  

2 2
K K 21 [2 / ] cos(2 )g

Me a c t
a

  

3 2
K K 3

9
1 [3 / ] cos(3 ) ...,

8 g
Me a c t
a

 (9.4.38) 

moreover, 2
K1 ]/[1 gcaeC , 2

K
2

2 ]/2[1 gcaeC , 

2
K

3
3 ]/3[1

8

9
gcaeC ,... According to (9.4.38) as well 

as (5.4.37a), the wave gravitational potential  (II)
g  arises in 

the remote zone II under the orbital motion of a body around 
the central gravitating body (the core of a spheroidal cloud). 

9.5. Oscillations of gravitational field strength acting on 
planets: toward the nature of Alfvén–Arrhenius 

oscillations from the point of view of the statistical theory 

Indeed, within the framework of the statistical theory of 
gravitating spheroidal bodies the gravitational potential of a 
spheroidal body g in the case of its mechanical quasi-
equilibrium (following formula (5.4.35)) is equal: 

1
quasiequil

)cos()(12/erf
n

nsnsg tntCr
r
M

, (9.5.1) 

where s is an average integral value of main circular 

frequency (5.3.26b) of the radial oscillations inside a forming 
core of a centrally symmetric (slowly rotating) spheroidal 
body (a central cosmogonical body). For large r ( r ) the 
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error function 12/erf sr . In a remote zone II Eq. 

(9.5.1), therefore, becomes [205]: 
(II)

equil

(II)

quasiequil

(II)
ggg   

1

)cos()(
n

nsn tntC
r
M

r
M

, (9.5.2) 

whence, in accordance with the formula (5.4.37a), we have: 

,(II)

equil

(II)

r
M

gg  (9.5.3a) 

1

(II) )cos()(
n

nsng tntC
r
M

. (9.5.3b) 

According to Eq. (9.5.2) the specific force of gravity in a 
remote zone II of a quasi-equilibrium gravitational field has 
the form (5.4.38): 

quasiequil2
(II)grad  

r
r

r
Mf gg   

ag
n

nsn

ff
r
r

r

tntCM

equil2
1

)cos()(1

, 
(9.5.4) 

that is:  

,grad
2

(II)

equil r
r

r
Mf gg  (9.5.5a) 

r
rtntC

r
Mf

n
nsnga

1
2

(II) )cos()(grad . (9.5.5b) 

Evidently, formula (9.5.5b) generalizes (9.2.45) or (9.3.8), so 
that the Alfvén–Arrhenius specific additional periodic force 

af  causing the radial and axial oscillations (which modify an 

initial circular orbit of protoplanets (see Sections 9.2 and 9.3)) 
can be calculated using this relation (9.5.5b) [205, 328].  
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Moreover, comparing Eq. (9.5.5b) (or (5.4.37b)) with Eq. 
(9.3.8) we find approximately that:  

)cos()()cos( 0
K ll nslnlll tntCte , (9.5.6) 

that is, according to Eqs (5.4.40a, b) the moving l -protoplanet 
undergoes the action of a spectral component of the Alfvén–
Arrhenius additional periodic force, mainly that spectral 
component whose frequency sln  is close to the l -Keplerian 

angular velocity lK  (this is the first scenario). There exists 

the second scenario based on the orbital motion of l -
protoplanet in a fast oscillating wave gravitational field of the 
central gravitating body (the core of a spheroidal body) [158, 
328].  

As mentioned in Section 9.2, the amplitude (9.2.28) of 
small orbital forced oscillations of l -planet (protoplanet) 
depends on the amplitude of a constraining periodic force 
(9.2.45) of Alfvén–Arrhenius. In particular, Eq. (9.2.45) shows 
that the amplitude of the specific additional periodic force of 
Alfvén–Arrhenius )(tfa  is equal to: 

2
K00 lll Ref , (9.5.7) 

where lRa 0 . Indeed, it is well known in mechanical system 

theory [206] that the amplitude 0f  of a constraining specific 

periodic force depends on the amplitude 0x  of small forced 

vibrations: 
22222

000 4)(xf , (9.5.8) 

where 

0  is a circular frequency of the eigen (free) oscillations of 

system,  
 is a damping factor, and  
 is a circular frequency of the forced oscillations.  
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If 0 in Eq. (9.5.8) then 2
00 xf

 
[206] which 

corresponds to Eq. (9.5.7) when lK  and ll Rex 00 . Let 

us also note that if 0  (the resonance action) in Eq. 

(9.5.8) then 00 2 xf  [206] which can correspond to Eq. 

(9.5.7), too, at lK , lle K2  and lRx 00 . So, the 

stationary forced oscillations are also harmonic with the same 
circular frequency : 

)cos(0 txx , (9.5.9) 
that is fully confirmed by Eqs (9.2.28) and (9.2.45) in Section 
9.2.  

Thus, according to the simple first scenario based on the 
theory of retarded gravitational potentials, if sll nK  then a 

selective action of the central cosmogonical body on l -
protoplanet can occur. The dynamical system “central 
cosmogonical body– l -protoplanet” is, therefore, a singular 
selective filter with the resonance frequency sln . 

Considering each l -protoplanet as a selective receiver of a 
respective ln -spectral component of the oscillation part of the 

gravitational field strength of a central cosmogonical body, 
we conclude that spectral components of the oscillating 
gravitational strength with multiple frequencies skn , sln , 

smn ,... act permanently on planets moving around a central 

cosmogonical body in their orbits with the Keplerian angular 
velocities skk nK , sll nK , smm nK ,... like 

periodic forces of an anchoring mechanism. 
On the whole, the protoplanetary system can be considered 

as a complex dynamical system supporting steady dynamical 
states of its subsystems (orbital motion of protoplanets) 
through the oscillation components of the strength 
gravitational field of a central cosmogonical body (or specific 
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additional periodic force of Alfvén–Arrhenius). Similar to an 
oscillating circuit of the selective receiver, each protoplanet 
undergoes the greatest effect of such harmonics of oscillating 
gravitational force (see Eq. (9.5.5b)) whose circular 
frequencies correspond to the orbital angular velocity lK . 

However, the condition of the infinitesimal closeness of these 
frequencies is not always accessible within the framework of 
the assumption that GCF )(tG  is a periodic function (5.3.25) 
only (see Section 5.3). Indeed, the quasi-equilibrium state of a 
compressible gravitating spheroidal body when 

const)( st GG  admits a more general model of 
quasiperiodic function [119]. So, in the case of mechanical 
quasi-equilibrium an oscillating behavior of the GCF, 
generally speaking, is described by a quasiperiodic function 

),...,G()G( 1 ttt r . Since the quasiperiodic function has r  
main periods iiT /2  (when rii ,...,1,  are the main 
frequencies) then the condition (5.3.19b) also applies (see 
Theorem 5.1). In the simplest case, if a quasiperiodic function 
is the sum of periodic functions: 

r

i
iir tttt

1
1 )(G),...,G()G(  , (9.5.10) 

then its Fourier spectrum consists of components with 

frequencies r,...,1  and their harmonics: 

rrmm ,...,11 , (9.5.11) 

where rmm ,...,1  are positive integers, that is, im . 

Moreover, if the quasiperiodic function includes the products 
of periodic (in particular, harmonic) functions )(G)(G tt jjii  
then its Fourier spectrum contains spectral components with 

main frequencies ji  and ji  as well as their 

harmonics. In general, the Fourier spectrum of quasiperiodic 
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function nonlinearly depending on periodic functions 
,,...,1),(G ritii  contains spectral components with all 

frequencies of the kind [119]: 

rrmmm ...2211 , (9.5.12) 

where rmm ,...,1  are arbitrary positive integers, besides the 
ratio ji /

 
could be a rational or irrational number. In the 

last (irrational) case, as we know from number theory, these 
sums jjii mm  form an point that is dense everywhere, 

set on the real frequency axis among them for 2r . That is 
why any real positive number (for example, the value of l -
orbital angular velocity lK ) is infinitesimally close to some 

sum 21 slsl mn , where 1s  and 2s  are the main 
frequencies (in particular, the main circular frequencies of the 
oscillations of gravitational field strength into a forming 
protoplanetary system). 

Thus, if we consider GCF )G(t  as a quasiperiodic function 
satisfying condition (9.5.10) for 2r , that is, 

)(G)(G)G( 2211 ttt ss , then, following the derivation of 

Eqs (5.4.30)-(5.4.34a, b) for each 2,1),(G itsii , we obtain 

the generalization of Eq. (9.5.6): 
)cos()()cos( 1s

0
K ll nlnlll tntAte   

)cos()( 2s ll mlm tmtA . (9.5.13) 

Moreover, these main circular frequencies 1s  and 2s  have 

to be very close with each other in accordance with physical 
reasoning (because of beating) [206], that is, the moving l -
protoplanet undergoes the action of a superposition of two 
spectral components of the Alfvén–Arrhenius additional 
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periodic force, namely, of those spectral components with 
frequencies close to the l -Keplerian angular velocity. 

To obtain the infinitesimal closeness of these frequencies 
we can consider the quasiperiodic function nonlinearly 
depending on two periodic functions 
G ( ) G [1 sin ], G , 1, 2i si si i si i sit a t a i , in the form of 

their product: 
)(G)(G)G( 2211 ttt ss  

]sinsinsinsin1[GG 2121221121 ttaatata ssssss

taatata sssss 21212211 cos)2/(sinsin1[G  

],cos)2/( 2121 taa ss  (9.5.14) 

where 21GGG sss . Taking into account Eq. (9.5.14) we can 

see that: const)( st GG , if the averaging is carried out on a 

multiple period. Using Eq. (9.5.14) let us calculate Eq. 
(5.4.30) in this case: 

)()(G)()G(
2

1
)()(G)()(G 22 tttttttt  

)cos(4/G)(G
2

1
11s

22
1

2
1ss ss tat  

)cos(4/G 22s
22

2
2

2s ss ta  

)cos(4/)2/(G 212s1s
22

2s1s
2

21s sstaa  

)cos(4/)2/(G 212s1s
22

2s1s
2

21s sstaa , 

whence: 
)()(G)()(G 22 tttt  

)cos()/2(11[G
2

1
11s

2
11s ss ta  
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)cos()/2(1 22s
2

22 ss ta  

)cos()/2(1)2/( 212s1s
2

2s1s21 sstaa

)]cos()/2(1)2/( 212s1s
2

2s1s21 sstaa
,
 (9.5.15) 

where: 
 ;

2
arctan

1
1

s
s ;

2
arctan

2
2

s
s

;
2

arctan 2s1s
21 ss

s1 s2
1 2

2
arctan .s s  

Obviously, Eq. (9.5.15) recalls analogous Eq. (5.4.32) for the 
pure periodic function. Generalizing Eq. (9.5.6) we can, 
therefore, see that: 

)cos()/2(1)cos( 11s
2

11
0

K sslll tate  

)cos()/2(1 22s
2

22 ss ta  

)cos()/2(1)2/( 212s1s
2

2s1s21 sstaa  

),cos()/2(1)2/( 212s1s
2

2s1s21 sstaa  (9.5.16) 

that is, some angular velocities can be close to the main 
circular frequencies 1s  and 2s or their combinations 

2s1s  and 2s1s . 

In the more general case of arbitrary periodic functions 
)(G 1s1 t and )(G 2s2 t  (when the quasiperiodic function is 

equal to their product) we can expand each of them in a 
Fourier series like Eq. (5.3.25): 

,2,1,)]sin(1[G)(G
1

s
22

s itnbat
i

iii
n

iniinnsii  (9.5.17) 

where: 
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/2

s

/2

2
G ( ) / G ]cos( ) ;

i

i i

i

T

ni i i s i s
i T

a t n t dt
T

[  

/2

s

/2

2
G ( ) / G ]sin( ) ; arctan ;

i

i

i i i i

ii

T
n

n i i s i s n
i nT

a
b t n t dt

T b
[ .

2
s

i
i T

 

Then, according to Eq. (9.5.17), the quasiperiodic function as 
their product can be represented by the relation: 

)(G)(G)G( 2211 ttt ss  

1 1
222

22
111

22

1 2

2211
)sin()sin(1[G

n n
nsnnnsnns tnbatnba  

1 1
222111

2222

1 2

2211
)]sin()sin())((

n n
nsnsnnnn tntnbaba  (9.5.18) 

The last term in the right-hand part of Eq. (9.5.18) can be 
calculated as follows: 

1 1
22s211s1

2222

1 2

2211
)]sin()sin())((

n n
nnnnnn tntnbaba  

)cos())(( 212s21s1
1 1

2222
2
1

1 2

2211 nn
n n

nnnn tnnbaba  

).cos())(( 212s21s1
1 1

2222
2
1

1 2

2211 nn
n n

nnnn tnnbaba  (9.5.19) 

Let us note that for Eq. (9.5.19) calculating the multiple 
( 2r ) Fourier series [191] can be used: 

n

n
nc i)( ec , 

where rrnnn s2s21s1 ...n , in particular, in the given 

case ))(( 2222

221121 nnnnnn babacccn , ),( 21 nnn . Substituting 

Eq. (9.5.19) into Eq. (9.5.18) we then find the derivative: 
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1
11s1111ss

1

cosG)(G
n

nn tncnt  

1
22s2222ss

2

cosG
n

nn tncn  

212s21s12s21s1
1 1

21s sin)2/(G
1 2

nn
n n

nn tnnnncc  

.sin)2/(G 212s21s12s21s1
1 1

21s

1 2

nn
n n

nn tnnnncc  (9.5.20) 

Therefore, following the derivation of Eq. (5.4.30)-(5.4.32) 
and using Eq. (9.5.18)-(9.5.20) we can see that: 

)()(G)()G(
2

1
)()(G)()(G 22 tttttttt  

1
11s1

2
1s11s

1

)cos()/2(11)[2/(G
n

nn tnnc  

1
22s2

2
2s22

2

)cos()/2(1
n

nn tnnc  

2s21s1

1 2

2s21s1
1 1

2
2s21s1212

1 cos)/2(1 nn
n n

nn tnnnncc

.cos
2

1
2s21s1

1 2

2s21s1
1 1

2

2s21s1
212

1
nn

n n
nn tnn

nn
cc  (9.5.21) 

As in (9.5.16), we can see analogously that the angular 
velocities ,,,1,K Nll can be close to the multiply circular 

frequencies 11 )( sln  and 22 )( sln , where N)(),( 21 lnln , as well 

as combinations of these frequencies 2s21s1 )()( lnln  and 

2s21s1 )()( lnln . 
Thus, though the quasi-equilibrium state of a compressible 

gravitating spheroidal body implies both a model of a 
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periodic function and a quasiperiodic function for an 
oscillation behavior of the GCF description, the general 

condition const)( st GG  (or 0G )(t ) is common for these 

models. In this connection, the average of the quasi-
equilibrium gravitational potential (9.5.1) (or (9.5.2)) means 
that 

)(),(
equilquasiequil

rtr gg . (9.5.22) 

In this meaning, formula (5.4.29) in Section 5.4 generalizes 
not only Eq. (9.5.5b) (or (5.4.35)) in that case if )G(t  as well 

as )(G t  is a periodic function in accordance with the 
expansion in the Fourier series (5.3.27a), but it includes the 
more complex cases when )G(t  as well as )(G t  are 
quasiperiodic functions of the kind (9.5.14), (9.5.18)), and 
(9.5.20). So, the deviation of each moving l -protoplanet away 
from its initial circular orbit lRr 0 can occur under the 

action of the specific additional force af caused by 

quasiperiodic fluctuations (based on the multiple Fourier 
series) of the GCF derivative )(G t  of a central body (the star). 

The quasiperiodic (or periodic) fluctuations of GCF of the 
central stellar body (as the core of a spheroidal body) mean 
that a star with a stellar corona undergoes small compression 
pulsations which induce the radial and axial oscillations of the 
orbital motion of protoplanets (planets).  Thus, according to 
the proposed statistical theory, the quasi-equilibrium 
gravitational field of a central stellar body and, as a 
consequence, the Alfvén–Arrhenius additional force 
(modifying forms of circular planetary orbits to elliptical 
ones) is caused by fluctuations of the GCF )G(t  relative to its 
stabilization value constGs . 

Using Eqs (9.3.8) and (9.5.5b) we can estimate the absolute 
values of the pulsations of the Alfvén–Arrhenius specific 
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force relative to the specific force of gravity acting on each l -
protoplanet, for which let us find the ratio: 

Nle

r
M

t
r
Me

f

f
l

l

ll
l

l

g

a

l

l ,...,1,

)cos(

2

0
K2

. (9.5.23) 

The action of an additional force 
laf  is similar to Hooke’s 

spring force which affects free oscillations of the body. Due to 
dissipation, these oscillations are damped gradually, so that 
they need support through the periodic (quasiperiodic) impact 
of the additional force 

laf  by analogy with the principle of an 
anchoring mechanism in a clock. The frequency of action of 
the additional force is lK  for the l -protoplanet. As 

mentioned above, there are the main circular frequencies 1s , 

2s , 3s ,... of the quasiperiodic pulsations of GCF of a central 

stellar body (including the rotational angular velocity s  of 

exterior media of the stellar corona). The Keplerian angular 
velocity of motion lK  of l -protoplanet is, therefore, equal to 

sii ln )(  where si  is some main circular frequency of 

pulsations of the central stellar body.  
For example, according to the first scenario the Sun 

(including the Solar corona) has two main circular frequencies 
of inner oscillations 1s , 2s , at least supporting stable motion 

planets in the Solar system, that is, the so-called the main 
planetary circular frequencies: Hz104 -10

1s  and 

Hz105.1 -8
2s . This means that there were some stable 

stages in the process of compression of the proto-Sun and the 
formation of planets ( 9N ) from a protoplanetary cloud. In 
particular, multiple frequencies 9K12 s , 8K13 s , 
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7K16 s , 6K117 s , and  5K142 s correspond to the 

Keplerian angular velocities of the orbital movement of Pluto, 
Neptune, Uranus, Saturn, and Jupiter respectively (see Table 
9.2), that is, to the stage of the Jupiter group planet formation. 
The next stage was connected with the Earth group planet 
formation, therefore multiply frequencies 4K22 s , 

3K24 s , 2K26 s  and 1K216 s  correspond to the 

Keplerian angular velocities of the orbital motion of Mars, 
Earth, Venus, and Mercury (see Table 9.2). 

According to Eq. (9.2.30) in Section 9.2, we can estimate 
the real part of the generalized circular frequency (5.3.5b) of 
radial oscillations for l -planet moving in slightly elliptical 
orbit:  

)cos(2Re 0
KKK

)(
hllllll

l
h te , (9.5.24) 

that is, the amplitude of the real part of the generalized 
circular frequency of oscillations of angular velocity is  

Nle ll
l

hl ,...,2,1,2Remax K
)(0

. (9.5.25) 

The amplitudes (9.5.25) of the real parts of the generalized 
circular frequencies of angular velocity fluctuations for the 
Solar system planets are estimated in Table 9.2, according to 
which:  

]2,2[ 0
91s

0
91s9K , ]3,3[ 0

81s
0
81s8K , 

]6,6[ 0
71s

0
71s7K , ]17,17[ 0

61s
0
61s6K , 

]42,42[ 0
51s

0
51s5K  as well as ]2,2[ 0

42s
0
42s4K , 

]4,4[ 0
32s

0
32s3K , ]6,6[ 0

22s
0
22s2K , 

]16,16[ 0
12s

0
12s1K , that is, only the planet Venus 

does not belong to the frequency interval. 
Using Eqs (9.5.23) and (9.5.25) the comparative analysis 

of some orbital characteristics of planets for the Solar system 
is realized in Table 9.2. Here the values of amplitudes 0

af of 
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the specific force of Alfvén–Arrhenius (9.3.8) are estimated 
for the planets of the Solar system. Taking into account that 
1AU is equal to the distance from the Sun to the Earth (the 
major semi-axis of its orbit is m101.495983 11

Eartha ), the 

dependencies of amplitudes of specific additional periodic 
force 0

af on the planetary distances Earth/ aad  are presented 

in Fig. 9.2.  
Table 9.2 and Fig. 9.2 show that the most significant values 

of the amplitude of specific additional periodic force occur for 
Mercury ( Gal8135531.00

af ) and Mars 

( Gal84768023.00
af ). The amplitudes of additional periodic 

forces 00

ll ala fmF acting on the Solar system planets (with the 

masses 9,...,2,1, lml ) are also estimated in Table 9.2. 
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9.6. Axial and radial oscillations of the orbital  
motion in the gravitational field of a rotating and 

gravitating ellipsoid-like central body 

Let us now estimate the frequencies of the radial and axial 
oscillations of a rotating and gravitating ellipsoid-like central 
cosmogonical body (the star) from the point of view of the 
statistical theory [16, 73, 77]. As noted in Section 9.2 (see Eqs 
(9.2.41a, b)), the motion in a gravitational field of an almost 
immovable (slowly rotating) spheroidal body is degenerate in 
the sense that Kzh . However, the axial rotation of a 

spheroidal body creates a flattening of its core, that is, the 
gravitational field of a rotating spheroidal body deviates from 
the centrally symmetric field of a sphere-like body. 

Indeed, since the gravitational potential in the remote zone 
II of a uniformly rotating spheroidal body is described by the 
expression (7.1.24) in spherical coordinates [72, 73]: 

22
0 sin1

2
|,

* r

Mr rrg  

22
0

sin1

0

2

sin1
|]2/exp[

*

22
0

r
Mrdr rr

r

 

r
r

r
r
M

r
M

g2

2
*

2
02

2
0 1sin
2

1 , (9.6.1) 

the potential of the gravitational field of a rotating spheroidal 
body then deviates from the centrally symmetric field r/1 – 
potential of the sphere-like spheroidal body (see Eq. (7.3.6) in 
Section 7.3). Using the formula (9.6.1) we can estimate the 
gravitational field strength which is essentially a specific 
force of gravity [72, 73]:  

**

,,
rrgrrg rrf   
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rfe
rr

M
gr2

2
0

2

3
1 , (9.6.2) 

where 0, 0*00 r . Indeed, as seen from (9.6.2) the 

gravitational field of an ellipsoid-like cosmogonical body 
consists of the 2/1 r –field from a spherically symmetric body, 
on which is superimposed the field from the “equatorial 
bulge” [9, 19]. In this regard, the calculation of the derivative 

rfg /  in accordance with (9.6.2) gives the following:  

2
0

2
0

0g02
0

2
0

0g

3
1

3
0 R

RfRf
R

Rfrf gRg , (9.6.3a) 
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g . (9.6.3b) 

In view of Eqs (9.6.3a) and (9.6.3b)—as well as Eq. (9.2.40) 
from Section 9.2—the frequency of the radial orbital 
oscillations (9.2.12) of a body in the gravitational field of a 
rotating spheroidal body is equal: 

0
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while the frequency of the axial orbital oscillations (9.2.16) of 
a body in the gravitational field of a rotating spheroidal body 
is respectively:  
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Comparing Eq. (9.2.19) (from Section 9.2) with Eqs (9.6.4) 

and (9.6.5) we find that in the case of a rotating flattened 
spheroidal body the Alfvén–Arrhenius inequalities are also 
true [19 p.348]:  

hz K . (9.6.6) 

Let us note that within the framework of the statistical theory 
of gravitating spheroidal bodies (see Section 5.3 of Chapter 5) 
according to Eq. (5.3.43) the analogous inequality is also true 
in the case of the relative mechanical equilibrium 

const)G
~

)(G
~

( st  of a rotating axially symmetric spheroidal 

body (ellipsoid-like cloud): 

hz . (9.6.7) 

Moreover, when a gravitational field in an ellipsoid-like body 
becomes stable, an interference of the orthogonal radial and 
the axial oscillations leads to the rotation of the core of this 
spheroidal body. According to (9.6.7), the interferences of 
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these orbital oscillations may be various at different latitudes 
of the core of the ellipsoid-like cloud modeled on a star (with 
stellar corona). That is why we can consider a uniform 
angular velocity of rotation  that it is relative to the chosen 
latitude only (for example, in the equatorial plane of a star). In 
particular, the Sun’s sidereal rotation period is 05.25SunT  

days at the equator, 38.25SunT  days at the 16 latitude and 

4.34SunT days at the poles [283], that is, 
16

Sun0 s109030759.2 , 16

Sun16
s108653291.2 , and  

16

Sun90
s101140131.2 respectively. 

Returning to Eqs (9.6.4) and (9.6.5) we can obtain 
similarly Eq. (9.2.20) showing that: 

0

0

2

0

0

0

0

0

0

2

0

0

0

022 93
R
Rf

RR
Rf

R
Rf

RR
Rf gggg

zh  

0

0

2

0

0

0

0 62
R

Rf
RR

Rf gg  

.
3

12312312
2
0

2
02

K

2

0

02
K

2

0

0

0

0

RRRR
Rfg  (9.6.8) 

By analogy with Eq. (9.2.20), if the expression in the right-
hand side of Eq. (9.6.8) is assumed to be the double square of 
a new Kepler angular velocity, that is, the Kepler orbital 
frequency under the condition of action of the constraining 
force 42

0 /3 rMfg in accordance with Eq. (9.6.2): 

2

0

0

0

0g

0

0
*

g*
K 31

RR
Rf

R
Rf

  

2
0

2
0

K

3
1

R
, (9.6.9) 
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then formula (9.6.9) shows that the Keplerian angular velocity 
of a body’s motion in orbit around a rotating ellipsoid-like 
cosmogonical body is slightly increased in comparison with 
the Keplerian angular velocity of orbital motion around a 
spherically symmetric cosmogonical body:  

3

0

0
K R

. (9.6.10) 

Then, using (9.6.10), formula (9.6.9) takes the form:  
22

K
2*

K . (9.6.11) 

Consequently, taking into account the definition (9.6.9) and 
Eq. (9.6.8) we obtain: 

2*
K

22 2zh . (9.6.12) 

As shown in Section 7.3, under the action of the 
constraining force gf  in accordance with Eq. (9.6.2) the orbit 

of a planet (for example, Mercury) in the vicinity of the core 
of a rotating spheroidal body becomes disturbed. On the other 
hand, the planet Mercury is moving in a precessing elliptic 
orbit (7.3.29) with the orbital angular velocity (9.6.9) (since 
there is a modulating multiplier  (7.3.32) of the phase in 
equation (7.3.31) of the “disturbed” ellipse with the origin of 
polar coordinates in its focus). Using Eqs (9.6.2), (9.6.4), 
(9.6.5), (9.6.8), and (9.6.10) the comparative analysis of some 
orbital characteristics of planets for the Solar system is carried 
out in Table 9.3 (see also Figs. 9.3–9.5). 
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According to Eqs (9.2.27) and (9.2.36), as well as the 
Alfvén–Arrhenius’ inequalities (9.6.6), this means that in the 
remote zone of the gravitational field of a rotating ellipsoid-
like body the pericenter moves with the angular velocity: 

0KP h , (9.6.13) 
that is, in the prograde direction, whereas the nodes move 
with the angular velocity: 

0K z , (9.6.14) 
that is, in the retrograde direction [19 p. 348]. The calculated 
values of angular velocities P  

and  following Eqs 

(9.6.13) and (9.6.14) for planets of the Solar system are 
placed in Table 9.3 and also presented in the form of Figures 
9.4 and 9.5. Comparing Table 9.2 with Table 9.3 we can see 

that the specific additional periodic force af  in 
1310 1.6296 times greater than the specific constraining force 

gf
 
acting on Mercury; the analogous specific periodic force 

af  
in 1410 1.1467 times greater than the respective specific 

constraining force gf  acting on Mars. Consideration of 

Figures 9.4 and 9.5 also reveals a singular point on the plots 
of dependencies of P  and 

 
on the planetary distances d  

in the vicinity of Saturn. 
Further, taking into account Eqs (9.6.12), (9.6.13), and 

(9.6.14) we obtain: 
2
K

2
K

2
PK 2)()( , (9.6.15) 

whence it follows using (9.6.11) that: 

K

222
P

P 2

2
. (9.6.16) 

Since the right-hand term is very small in Eq. (9.6.16) it can 
be neglected so that we estimate in a first approximation: 
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P . (9.6.17) 
Introducing (9.6.17) into Eq. (9.6.16) we obtain in a second 
approximation: 

P , (9.6.18a) 
where: 

22
0 KP

2
K 0

3

R
. (9.6.18b) 

Let us note that the Alfvén–Arrhenius estimation of  is 

K
2
P /  [9, 19]. Nevertheless, as Alfvén and Arrhenius 

indicated this formula gives a result in good agreement with 
the elaborate treatment by the usual methods in the case of 
small inclinations [9, 19 pp. 348–349]. Due to the fact that 
both the values  and 2

0  in (9.6.8) and (9.6.18b) have a 

statistical meaning, we can conclude that the radial and the 
axial oscillations modifying the initially circular orbit are 
determined by the statistical nature of processes of 
cosmogonical body formation.

Conclusion and comments 

In this chapter, we have investigated the stability of planetary 
orbits based on the statistical theory of gravitating spheroidal 
bodies [16, 45–73]. Using the obtained universal stellar law 
(USL) [75, 76] and the modification of the USL connecting 
the temperature, size, and mass of a star (see Table 9.1) we 
show in Section 9.1 that knowledge of some orbital 
characteristics of multi-planet extrasolar systems refines the 
knowledge of the parameters of the stars based on the 
combination of Kepler’s 3rd law and the universal stellar law 
(3KL-USL) [79]. 

Indeed, as shown in Section 9.1, the combined 3KL-USL 
law (9.1.18) connects among themselves both the mechanical 
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values (the Keplerian angular velocity K  and the major 
semi-axis a  of a planetary orbit) and the statistical 
(thermodynamic) values (the parameter of gravitational 
condensation  and the temperature T ). This means that the 
stability of the mechanical values (belonging to the left-hand 
part of Eq. (9.1.18)) directly depends on the statistical 
regularity of the right-hand part of the 3KL–USL equation 
(9.1.18). This relation points to a possibility of the presence of 
statistical oscillations of the motion of planets in orbit, that is, 
oscillations of the major semi-axis a  and the orbital angular 
velocity K  of rotation of planets around stars as well as 
bodies around planets. Such a conclusion is confirmed by the 
existence of the Alfvén–Arrhenius radial and axial orbital 
oscillations of planets and satellites [9, 19], as wel as by the 
experiments of V. Janibekov on board the orbital station 
“Mir.” This section also noted that the stability of the 
parameters of planetary orbits is determined by a constancy of 
the specific entropy (9.1.19b) in conformity with the 
principles of self-organization in complex systems [79]. 
Therefore, the proposed 3KL–USL explains the stability of 
planetary orbits in extrasolar systems. 

In this context, Section 9.2 investigates the additional 
periodic force af  (9.2.45) causing the radial and axial orbital 

oscillations (which modify initial circular orbits of bodies) 
based on the approach of Alfvén and Arrhenius [9, 19]. A 
prediction of the Alfvén–Arrhenius specific additional 
periodic force within the framework of the Newtonian theory 
of gravity was considered in Section 9.3. As shown in Section 
9.4, from the point of view of the theory of retarded 
potentials, the wave gravitational potential (II)

g (9.3.38) and 

the Alfvén–Arrhenius specific additional periodic force 
(II)grad gaf arise in a remote zone II of the gravitational 

field under the orbital motion of a body around a central 
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gravitating body [205, 331]. The obtained spectral 
representations (9.4.13) and (9.4.37) correspond completely to 
the spectral expansion (5.4.36) derived in the statistical theory 
of gravitating spheroidal bodies (see Chapter 5). Thus, the 
proposed statistical theory of the formation of planetary 
systems, pointing to the regular and wave gravitational 
potentials origin, is confirmed by the theories of existence 
(Newtonian and retarded potentials ones) [205, 331]. 

Indeed, as shown in the previous Sections 5.2–5.4 and the 
current Section 9.5, within the framework of the statistical 
theory of gravitating spheroidal bodies the nature of the 
Alfvén–Arrhenius additional periodic force af  (9.5.5b) is 

caused by the wave gravitational potential  g  (9.5.3b) 

origin due to the periodic (or quasiperiodic) fluctuations of the 
derivative of the gravitational compression function (GCF) 

)(G t  of a central body (the star) in accordance with Eqs 
(5.3.27a), (5.4.29), (5.4.34a, b), (5.4.35), and (5.4.37a, b). 
Concretely, using the statistical theory of gravitating 
spheroidal bodies we affirm the following: 

 

– the temporal deviation of GCF )G(t  (or )(G
~ t ) of a central 

cosmogonical body (a star) in quasi-equilibrium state (in a vicinity 

of its equilibrium value constGs )
 
leads to the origin of the 

additional periodic force
 af  modifying forms of the circular orbits 

of moving bodies (planets and satellites) to the slightly elliptical 
orbits (see Table 9.2 and Fig. 9.2); 

– in special cases, when 0)(G t  (or 0)(G
~ t ), that is, 

0)( 2 , the additional periodic force af  becomes oriented 

opposite the gravitational force gf  following Eqs (5.3.15b), 

(5.3.40b), (5.4.39), and (9.2.45). 
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This means that the principle of an anchoring mechanism 
is realized in planetary systems. In particular, Section 9.5 
finds that the additional periodic force af  is similar to 

Hooke’s force which affects free oscillations of a body in 
orbit. Due to dissipation, these oscillations are damped 
gradually, so that they need support through the periodic 
impact of the additional force af  by analogy with the 

principle of an anchoring mechanism in a clock. The 
frequency of action of the additional periodic force 

laf  
is lK  

for the l -protoplanet. As mentioned in Section 9.5, there are 
the main circular frequencies 1s , 2s , 3s ,... of the 

quasiperiodic pulsations of GCF of a central stellar body 
(including the stellar corona). The Keplerian angular velocity 
of motion lK  of l -protoplanet is, therefore, equal to sii ln )(  

where si  is some main circular frequency of pulsations of 

the central stellar body. 
Section 9.6 also justifies that the spatial deviation of the 

gravitational potential
 

(9.6.1) of an ellipsoid-like rotating 
cosmogonical body from the centrally symmetric field r/1 – 
gravitational potential (of a sphere-like spheroidal body) 
implies different values of the radial h  and the axial z  
orbital oscillations in accordance with (9.6.6) (even in the 

case of relative mechanical equilibrium constG
~

)(G
~

st ). 

An interference of these orbital oscillations leads, therefore, 
as a rule to a nonuniform rotation of the stellar layers at 
different latitudes of a star. As shown in Sections 7.3 and 9.6, 
under the action of the constraining force gf  (9.6.2), a planet 

(for example, Mercury) in the vicinity of an ellipsoid-like 
rotating cosmogonical body is moving in the precessing 
elliptic orbit (7.3.29) with orbital angular velocity (9.6.9) (see 
data in Table 9.3 and Figs. 9.3-9.5). 
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