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Chapter 1

Introduction

1.1 Preface

This book is a quantum field theory treatise that aims to simplify the
subject by including some mathematical techniques devised in the
50’s and 60’s which have not yet percolated on the physicists’ family.
With them what one might call a Schwartz’ distributions approach to
quantum field theory can be devised. Our purpose is twofold: i) to
make accessible the concomitant design, on the one hand, and ii) to
spread it by making the construct more well known, on the other. The
conjunction of these mathematics with the dimensional regularization
approach of Giambiagi and Bollini vastly expands the outreach of
quantum field theory (QFT), as we will show here.

The main difficulty of conventional QFT concerns infinities. QFT is
plagued by puzzling infinities, that emerge when dealing with basic
entities called quantum propagators. One is not exaggerating by as-
serting that quantum propagators (QP) are the very quantities around
which quantum field theory revolves. QP constitute its main predic-
tors. The central idea to be advanced here is that CP are Schwartz’
distributions (SD). This book is mainly concerned with this last state-
ment. We will in it step-by-step develop an SD approach to quantum
field theory, which is absent from all extant QFT textbooks.

1
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2 CHAPTER 1. INTRODUCTION

1.2 Why is this book needed?

As stated in the Preface, the main difficulty of quantum field the-
ory (QFT) concerns infinities. QFT is plagued by puzzling infinities.
For instance, a familiar example is posed by the energy density of a
static electric field (EE) [1]. It is proportional to the square of its
EE intensity E. The EE intensity at a distance r due to a charge Q
uniformly distributed over a spherical surface of radius R is, in turn,
proportional to Q/r2 for r > R and 0 for r < R [1]. Therefore, the
total energy V of the field is given by [1],

V =
Q2

6πc2
(1/R), (1.2.0.1)

with c light’s speed. This quantity is called the self-energy of the
particle. It obviously diverges as R → 0. Thus, an EE emanating
from a point charge displays infinite energy. Theorizing with point
particles, as in classical analysis, may produce valid results, but when
it involves manipulations of the particles’ fields, these results may be
contaminated by the infinite energy of the field of a point charge [1].
The QFT infinities appear in dealing with quantum propagators.
Quantum propagators are in a sense the quantities around which quan-
tum field theory (QFT) revolves. They are its main predictors and can
be regarded as Green functions and, crucially, also as Schwartz’ distri-
butions (SD). This book is mainly concerned with this last statement.
We will in it develop an SD approach to quantum field theory, which
is absent from all extant QFT textbooks.

The infinities of QFT appear in the guise of products (or, more pre-
cisely, of convolutions) of SDs, We need these products to develop the
QFT theory.

There are other ways of discussing QFT, but this book concentrates
only on the SD approach to QFT. Why? Because it is the only one
that permits an easy handling of non-renormalizable problems, the
main QFT blockage, as we shall see in the next chapters. Thus, SDs
will be one of our main protagonists here. Immediately below, we
denote the propagators as ρ−1. Ours is the only book, as far as we
know, that discusses in detail the SD approach to QFT..

.
Dimensional regularization (DR) is another main QFT issue, and our
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1.3. PREREQUISITES 3

second leitmo in this effort. DR is a method for dealing with infinities
that works by taking the system’s dimension ν as a continuous vari-
able. Calculations use this continuous variable ν, and at the end of
the computations, the limit is taken ν → d, with d = 1, 2, 3, 4, as
the case may be. Thus, this book is the first to detailedly discuss the
two central themes of SD and DR, together with the intimate con-
nection between them. If you read it, you will get easy access to the
deepest secrets of QFT, that are not accessible elsewhere in all their
gory details.

1.3 Prerequisites

What prior knowledge is needed to embark into this book? It treats
very technical issues in theoretical physics, so that a kind of warning
is the honest way to proceed. To make plain sailing of what follows
the reader necessitates acquaintance with a variety of themes. We
might say that one requires the experience equivalent to have followed
two semesters of quantum mechanics (including quantum electrody-
namics), one of quantum field theory, and one of functional analysis.
We emphasize here familiarity with Feynman diagrams A very useful
source of mathematical information (or physical one) is provided by
the two mathematics/physics sections of Wikipedia [1], to which we
will refer when some knowledge is required that we do not have the
space here to discuss at length.

1.4 Book’s organization

Chapters 2 and 3 are of a preparatory character. The first intro-
duces the absolutely central concept of Schwartz distribution (SD)
while the second provides a foretaste of the kind of infinities this
book tries to deal with. Chapter 4 studies in detail the mathemat-
ical concept of Ultradistributions, a special kind of SD that will be-
come our main weapon to face infinities. Chapter 5 discusses a more
involved and historically important approach to avoiding infinities:
Bollini-Giamgiaggi’s dimensional regularization. In Chapter 6 we in-
troduce our two most important physical quantities: the Feynman
and Wheeler propagators, that can be regarded as special SDs. All
infinities in quantum field theory can be shown to emerge as we face
the convolution of ultradistibution (UD)s, that we analyze in Chap-
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4 CHAPTER 1. INTRODUCTION

ter 7. We specialize this subject to even tempered UDs in Chapter
8, to Lorentz invariant UDs in chapter 9, and to UDs of exponential
type in chapter 10. Final words regarding all these UDs are found in
chapter 11. The formidable mathematical apparatus developed in the
preceding chapters is applied to two important physical problems in
chapters 12 an 13. An epilogue closes the book in Chapter 14.
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Chapter 2

Distribution Theory

2.1 Introduction to Schwartz’
distributions

SDs are special linear functionals. They are continuous and one de-
fines them over a space of infinitely differentiable functions. The perti-
nent derivatives are themselves generalized functions as well [1]. The
most commonly encountered generalized function is the delta func-
tion. These mathematical objects are the main mathematical tools
of this book. Schwartz’ distributions (generalized functions) (SD) are
thus mathematical objects devised with the intent of generalizing the
concept of function that we learned at an early age [1].

Distribution theory (DT) constitutes a powerful tool for physics en-
deavors. In particular, for physicists the paradigmatic example is the
Dirac’s delta that we learned at college.

DT regards distributions as linear functionals acting on a space of so-
called test functions [1]. Now, which set of test functions is appealed
to constitutes the essential question for this book. A good choice is
important in order to tackle difficult problems.

As stated, SD act by integration over a test function. Thus, the
particular choice we make for the space of test functions, when we are
given several options, is of crucial importance, because each choice
leads to a different space of distributions. Selecting as test functions

5
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6 CHAPTER 2. DISTRIBUTION THEORY

smooth functions with compact support leads to the conventional,
standard Schwartz distributions one finds in textbooks.

One can instead appeal to a very nice space, that of smooth and
rapidly diminishing (faster than any polynomial growth) test functions
(also called Schwartz’ test functions). This choice yields the so-called
tempered distributions, that will play a protagonist’s role below. They
possess a well defined (distributional) Fourier transform.

We have above defined distributions as a special class of linear func-
tionals: those that map a set of test functions into the set of complex
numbers C. In the simplest situation, the set of test functions to have
in mind is the set of functions D = {φ} displaying two properties i)
φ is infinitely differentiable (smooth) and 2) φ has compact support.
A Schwartz’ distribution (SD) T is the linear mapping T : D → C.
For the delta function one writes < δ,φ >= φ(0), which entails that
δ computes a test function at the origin [1]. A SD can be multiplied
by complex numbers and added together, yielding another SD. They
may also be multiplied by smooth functions and we keep looking at a
SD [1]. We usually denote by Tf the distribution

Tf =< T,φ >=

∫
R

f(x)φ(x)dx, (2.1.0.1)

for φ ∈ D and x ∈ R, with R the set of reals. One would like to be
able to select a definition for the derivative of a distribution which
displays the property that T ′

f = Tf ′ [1]. A distribution is called regular
if f is an ordinary function [1]. In this case, integrating by parts one
has

< f ′, φ >=

∫
R

f ′(x)φ(x)dx =

[f(x)φ(x)]∞−∞ −

∫
R

f(x)φ ′(x)dx = − < f,φ ′ >, (2.1.0.2)

which leads us to define, for a SD in general,

< T ′, φ >= − < T,φ ′ > . (2.1.0.3)

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.2. EXPLICITLY LORENTZ INVARIANT DISTRIBUTIONS 7

2.2 Explicitly Lorentz invariant distribu-
tions

In special relativity, physics equations and important quantities should
have the same form in all inertial frames. This invariance of form
is called Lorentz invariance and is usually expressed in Minkowski’s
space [1]. In this Section you will find important definitions. We con-
sider first the case of the ν-dimensional Minkowskian space Mν of

special relativity. Let S
′
be the space of the above mentioned Schwartz

test tempered distributions, belonging to the space of smooth and
rapidly diminishing (faster than any polynomial growth) test func-

tions [5, 6] and consider an element g ∈ S
′
. Focus attention now

upon a new set S
′
L defined below. In such a context we say that

g ∈ S
′
L if and only if

g(ρ) =
dl

dρl
f(ρ), (2.2.0.1)

where the derivative is to be regarded in the sense of distributions
discussed above, l is a natural number, ρ = k2 = k20 − k21 − k22 − · · ·−
k2ν−1, and our as yet unknown f ∈ Mν satisfies

∞∫
−∞

|f(ρ)|

(1+ ρ2)n
dρ < ∞, (2.2.0.2)

and is also continuous in Mν. The exponent n is a natural number.
We assert then that f belongs to a new set T1L. This new set is also

called in a different way (S
′
LA) via the equality T1L = S

′
LA.

In the case of the Euclidean space Rν, let g ∈ S
′
. We say that g ∈ S

′
R

if and only if

g(k) =
dl

dkl
f(k), (2.2.0.3)

where k2 = k20 + k21 + k22 + · · ·+ k2ν−1, with f(k) satisfying

∞∫
0

|f(k)|

(1+ k2)n
dk < ∞, (2.2.0.4)

and f(k) is continuous in Rν. We assert then that f ∈ T1R = S
′
RA, a

new subset.
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8 CHAPTER 2. DISTRIBUTION THEORY

We will grandly, but also aptly call S
′
LA and S

′
RA the Fourier Anti-

transformed spaces of S
′
L and S

′
R, respectively.
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Chapter 3

Analytical
regularization

Let us have a taste of the problems to be tackled in this book. We will
now speak of propagators, quantities that specify at time t the proba-
bility amplitudes for traveling from one site to another [1]. Precisely,
one of the main problems in quantum field theory (QFT) is the con-
volution of propagators [2]. The purpose of this Section is to describe
how the convolution of two propagators, our leit motif in this book,
is to be calculated using analytical regularization (AR) [2, 3]. This is
a sophisticated procedure employed to convert some kind of mathe-
matical problems into other simpler ones [1]. Historically, one wished
to transform those boundary value problems that can be written as
Fredholm integral equations (of the first kind) involving singular op-
erators into equivalent Fredholm integral equations of the second kind
[1]. Why? Because the latter may be easier to analytically treat and
can be studied with discretization schemes (like the finite differences
method) because they are point-wise convergent [1]. A modified AR
constituted the prerequisite step, developed by Bollini and Giambiagi
(BG), that led a posteriori to the discovery of dimensional regulariza-
tion [3]. All that the reader needs in this respect is explained below.

BG confronted the convolution of propagators ρ−1 corresponding to
a scalar field without mass, the simplest scenario, working in a Eu-
clidean space, that is able to deal with spin zero particles [3]. One must
consider the quantity K(x, t; x ′, t ′) =< x|Û(t, t ′)|x ′ >, where Û(t, t ′)
is the unitary time-evolution operator for the system taking states at

9
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10 CHAPTER 3. ANALYTICAL REGULARIZATION

time t ′ to states at time t. Then, the propagators’ convolution

ρ−1 ∗ ρ−1 =

∫
d4p

�p2(�p− �k)2
(3.1.0.1)

where ρ−1 = K−2 is the field propagator. In these circumstances
we define the analytic extension of the convolution by introducing a
complex arbitrary number α and writing the α-generalized expression
[3] (

ρ−1 ∗ ρ−1
)
α
=

∫
d4p

�p2α(�p− �k)2α
. (3.1.0.2)

Introduce now two auxiliary quantities A and B, called generalized
Feynman’s parameters [1]

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

1∫
0

xα−1(1− x)β−1

[Ax+ B(1− x)]α+β
dx, (3.1.0.3)

and cast the above convolution in the fashion

(
ρ−1 ∗ ρ−1

)
α
=

Γ(2α)

[Γ(α)]2

∫
d4p

1∫
0

xα−1(1− x)β−1

[(�p− �k)2x+ �p2(1− x)]2α
dx =

Γ(2α)

[Γ(α)]2

1∫
0

xα−1(1− x)β−1dx

∫
d4p

[(�p− �k)2x+ �p2(1− x)]2α
, (3.1.0.4)

or, in simpler manner (
ρ−1 ∗ ρ−1

)
α
=

Γ(2α)

[Γ(α)]2

1∫
0

xα−1(1− x)β−1dx

∫
d4p

[(�p− �kx)2 + �k2x(1− x)]2α
. (3.1.0.5)

Making now the change of variables �s = �p − �kx and calling a =
�k2x(1− x) we obtain

(
ρ−1 ∗ ρ−1

)
α
=

Γ(2α)

[Γ(α)]2

1∫
0

xα−1(1− x)β−1dx

∫
d4s

,
(�s2 + a)2α,

(3.1.0.6)
or
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(
ρ−1 ∗ ρ−1

)
α
= 2π2 Γ(2α)

[Γ(α)]2

1∫
0

xα−1(1− x)β−1dx

∞∫
0

s3

(s2 + a)2α
ds.

(3.1.0.7)
Making another change of variables y = s2 we have

(
ρ−1 ∗ ρ−1

)
α
= π2 Γ(2α)

[Γ(α)]2

1∫
0

xα−1(1− x)β−1dx

∞∫
0

y

(y+ a)2α
dy.

(3.1.0.8)
Using now the essential reference for any theorist [4], we can indeed
calculate the previous integral, obtaining

(
ρ−1 ∗ ρ−1

)
α
= π2 Γ(2α− 2)

[Γ(α)]2

1∫
0

xα−1(1− x)α−1

[k2x(1− x)]2α−2
dx, (3.1.0.9)

or

(
ρ−1 ∗ ρ−1

)
α
= π2 Γ(2α− 2)

[Γ(α)]2
k4−4α

1∫
0

[x(1− x)]1−αdx. (3.1.0.10)

Employing again results given in [4] we have now

(
ρ−1 ∗ ρ−1

)
α
= π2 Γ(2α− 2)

[Γ(α)]2
k4−4α [Γ(2− α)]2

Γ(4− 2α)
. (3.1.0.11)

At this point we tell you, dear reader, that our four-dimensional con-
volution is to be obtained as the residue in the pole when α tends to
one (see [3]), a fact that we ask you to graciously accept. Thus,

ρ−1 ∗ ρ−1 = lim
α→1

∂

∂α

{
(α− 1)π2 Γ(2α− 2)

[Γ(α)]2
k4−4α [Γ(2− α)]2

Γ(4− 2α)

}
.

(3.1.0.12)
Using once again [4] we have

Γ(4− 2α) = 23−2απ− 1
2 Γ(2− α)Γ

(
5

2
− α

)
. (3.1.0.13)

Evaluating the limit, we get for the four-dimensional convolution,
without much pain, the desired final result

ρ−1 ∗ ρ−1 = −π2[ln ρ− 1]. (3.1.0.14)
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12 CHAPTER 3. ANALYTICAL REGULARIZATION

We have seen that, in order to face Eq. (3.1.0.1), we made an α-detour
that allowed for a simple solution. This detour was grandly called an
analytical regularization, which sounds wise and sophisticated enough,
but is essentially simple.
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Chapter 4

Ultradistributions

4.1 Distributions of exponential type

For the benefit of the reader, we present here a brief description of
the main properties of the so called tempered ultradistributions and of
ultradistributions of exponential type (UET). We need for this purpose
to recapitulate some well known ideas regarding Hilbert spaces [1].

Remember first from elementary quantum mechanics that a count-
able Hilbert H space is one possessing a countable basis [1]. One
defines at this junction the related notion of nuclear spaces. These
are spaces that retain some convenient features of finite-dimensional
vector spaces, particularly with respect to their topology [1]. In this
regard, we think of those special semi-norms whose unit balls’ sizes
diminish in rapid fashion. All finite-dimensional vector spaces are
nuclear, of course.

Let us pass now to the important notion of rigged Hilbert space (RHS)
[1]. A RHS consists of 1) a Hilbert space H plus 2) a subspaceΦ which
carries a finer topology that of H [1]. Thus, Φ ⊂ H. Then, we define
the RHS in terms of the inequalities Φ ⊂ H ⊂ Φ

′
, with Φ

′
the dual

space to Φ [1], a triplet of symbols [1].

Notations. Our notation is almost textually taken from Ref. [9]. Let
R

n (respectively C
n) be the real (respectively complex) n-dimensional

space whose points are denoted by x = (x1, x2, ..., xn) (resp. z =
(z1, z2, ..., zn)). We shall use the following notations

13
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14 CHAPTER 4. ULTRADISTRIBUTIONS

(i) x+y = (x1+y1, x2+y2, ..., xn+yn) ; αx = (αx1, αx2, ..., αxn)

(ii)x � 0 means x1 � 0, x2 � 0, ..., xn � 0

(iii)x · y =
n∑

j=1

xjyj

(iV)| x |=
n∑

j=1

| xj |

Consider the set of n-tuples of natural numbers N
n. If p ∈ N

n,
then p = (p1, p2, ..., pn), where pj is a natural number, 1 � j �
n. p + q denote (p1 + q1, p2 + q2, ..., pn + qn) and p � q means
p1 � q1, p2 � q2, ..., pn � qn. xp means xp1

1 xp2

2 ...xpn
n . We denote

by | p |=
n∑

j=1

pj and by Dp we understand the differential operator

∂p1+p2+...+pn/∂x1
p1∂x2

p2 ...∂xn
pn .

For any natural number k we define xk = xk1x
k
2 ...x

k
n and ∂k/∂xk =

∂nk/∂xk1∂x
k
2 ...∂x

k
n.

4.1.1 An important set of test functions

This is the spaceH of test functions such that ep|x||Dqφ(x)| is bounded
for any natural numbers p and q. This test-space is of great impor-
tance for our present purposes. It is defined (Ref. [7]) by means of
the countable set of norms

‖φ̂‖p = sup
0≤q≤p, x

ep|x|
∣∣Dqφ̂(x)

∣∣ , p = 0, 1, 2, ... (4.1.1.1)

According to reference [8], H is a countable and nuclear Hilbert space
K{Mp} with

Mp(x) = e(p−1)|x| , p = 1, 2, ... (4.1.1.2)

K{e(p−1)|x|} complies with a special mathematical demand called
(N ) by Guelfand (Ref. [8]), whose details we do not really need to
enter into. Let us insist on the fact that K{e(p−1)|x|} is a countable
Hilbert and nuclear space

K{e(p−1)|x|} = H =

∞⋂
p=1

Hp (4.1.1.3)
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4.1. DISTRIBUTIONS OF EXPONENTIAL TYPE 15

where Hp is obtained by completing H with the norm induced by the
scalar product

< φ̂, ψ̂ >p =

∞∫
−∞

e2(p−1)|x|

p∑
q=0

Dqφ̂(x)Dqψ̂(x) dx ; p = 1, 2, ...

(4.1.1.4)
where dx = dx1 dx2...dxn.

If we take the conventional scalar product

< φ̂, ψ̂ >=

∞∫
−∞

φ̂(x)ψ̂(x) dx, (4.1.1.5)

then Ho, completed with (4.1.1.5), is the familiar old Hilbert space
H of square integrable functions.

4.1.2 The associated distributions

Consider the space generated by exponentials e(p)|x|, with p real. Dis-
tributions of exponential type (Ref. [9]) are those belonging to the
space of continuous linear functionals defined on H = K{e(p−1)|x|}.
The new space is itself a Hilbert space, the dual of H, with the same
dimension. We are speaking of the space Λ∞. To repeat, this space
can be identified with the set of continuous linear functionals. We
will badly need such space, that we call the one of distributions of
exponential type (Ref. [9]).

Let Hy stand for the Heaviside function. The Fourier transform of a
distribution of exponential type F̂ is called a tempered ultradistribu-
tion, being given by (see [9, 10])

F(k) =

∞∫
−∞

Hy[�(k)]Hy[�(x)] −Hy[−�(k)]Hy[−�(x)]F̂(x)eikx dx =

Hy[�(k)]

∞∫
0

F̂(x)eikx −Hy[−�(k)]

0∫
−∞

F̂(x)eikx (4.1.2.6)

where F is, as stated above, the corresponding tempered ultradistri-
bution (see also the next section).
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16 CHAPTER 4. ULTRADISTRIBUTIONS

The triplet

H = (H,H,Λ∞) (4.1.2.7)

is a rigged Hilbert Space (or a Guelfand’s triplet [8]). Moreover, we
have H ⊂ S ⊂ H ⊂ S ′ ⊂ Λ∞, where S is the Schwartz space of
rapidly decreasing test functions (Refs. [5, 6]).

Any rigged Hilbert space G = (Φ,H,Φ
′
) displays the fundamental

property that a linear and symmetric operator on Φ, which admits
an extension to a self-adjoint operator in H, has a complete set of
generalized eigenfunctions in Φ

′
, with real eigenvalues [1].

4.2 Tempered ultradistributions

They are the Fourier transforms of distributions of exponential type.
The Fourier transform of a function φ̂ ∈ H is

φ(z) =
1

2π

∞∫
−∞

φ̂(x) eiz·x dx (4.2.0.1)

Here φ(z) is entire analytic and rapidly decreasing on straight lines
parallel to the real axis. We call H the set of all such functions.

H = F {H} (4.2.0.2)

It is called a Z{Mp} countably normed and complete space (Ref. [7]),
with

Mp(z) = (1+ |z|)p (4.2.0.3)

H is a nuclear space defined with the norms

‖φ‖pn = sup
z∈Vn

(1+ |z|)
p
|φ(z)| (4.2.0.4)

where Vk = {z = (z1, z2, ..., zn) ∈ C
n | Imzj |� k, 1 � j � n},

We can define the usual scalar product

< φ(z), ψ(z) >=

∞∫
−∞

φ(z)ψ1(z) dz =

∞∫
−∞

φ̂(x)ψ̂(x) dx (4.2.0.5)
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4.2. TEMPERED ULTRADISTRIBUTIONS 17

where

ψ1(z) =

∞∫
−∞

ψ̂(x) e−iz·x dx

and dz = dz1 dz2...dzn. By completing H with the norm induced by
(4.2.0.5) we once again obtain the Hilbert space of square integrable
functions. The dual of H is the space U of tempered ultradistributions
(Refs. [9, 10]). Namely, a tempered ultradistribution is a continuous
linear functional defined on the space H of entire functions rapidly
decreasing on straight lines parallel to the real axis. The set U =
(H, H,U) is also a rigged Hilbert space.

Moreover, we have H ⊂ S ⊂ H ⊂ S ′ ⊂ U . Now, U can also be
characterized in the following way (Ref. [9]): let Aω be the space of
all special functions F(z), that will become very important to us, such
that

A) F(z) is analytic on the set {z ∈ C
n|Im(z1)| > p, |Im(z2)| >

p, ..., |Im(zn)| > p}.
B) F(z)/zp is bounded continuous in {z ∈ C

n|Im(z1)| � p, |Im(z2)| �
p, ..., |Im(zn)| � p}, where p = 0, 1, 2, ... depends on F(z).

Let Π be the set of all z-dependent pseudo-polynomials (defined be-
low) z ∈ C

n. Then U is the quotient space

C) U = Aω/Π. Let us clarify that, by a pseudo-polynomial, we refer
to a function of z of the form∑

s z
s
jG(z1, ..., zj−1, zj+1, ..., zn) withG(z1, ..., zj−1, zj+1, ..., zn) ∈ Aω.

Due to these properties it is possible to represent any ultradistribution
as (Ref. [9])

F(φ) =< F(z), φ(z) >=

∮
Γ

F(z)φ(z) dz, (4.2.0.6)

where Γ = Γ1 ∪ Γ2 ∪ ...Γn. The path Γj runs parallel to the real axis
from −∞ to ∞ for Im(zj) > ζ, ζ > p and back from ∞ to −∞ for
Im(zj) < −ζ, −ζ < −p. (Γ surrounds all the singularities of F(z)
). Recall now that a branch cut [1] is a special curve (with ends
possibly open, closed, or half-open) in the complex plane [1]. Across
it, an analytic multivalued function is discontinuous. For convenience,
branch cuts are often taken as lines or line segments [1]. Branch cuts
(even those consisting of curves) are also known as cut lines [1].
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18 CHAPTER 4. ULTRADISTRIBUTIONS

Formula (4.2.0.6) will be our fundamental representation for a tem-
pered ultradistribution. Sometimes use will be made of “ Dirac’s
formula” for ultradistributions (Ref. [10])

F(z) =
1

(2πi)n

∞∫
−∞

f(t)

(t1 − z1)(t2 − z2)...(tn − zn)
dt (4.2.0.7)

where the “density” f(t) is the cut of F(z) along the real axis and
satisfies ∮

Γ

F(z)φ(z) dz =

∞∫
−∞

f(t)φ(t) dt. (4.2.0.8)

While F(z) is analytic on Γ , the density f(t) is in general singular,
so that the r.h.s. of (4.2.0.7) should be interpreted in the sense of
Schwartz’ distribution’s theory. Another important property of this
analytic representation is the fact that on Γ , F(z) is bounded by a
power of z (Ref. [9])

|F(z)| ≤ C|z|p, (4.2.0.9)

where C and p depend on F. The representation (4.2.0.6) implies
that the sum of a pseudo-polynomial P(z) to F(z) does not alter the
ultradistribution∮

Γ

{F(z) + P(z)}φ(z) dz =

∮
Γ

F(z)φ(z) dz+

∮
Γ

P(z)φ(z) dz

. However, ∮
Γ

P(z)φ(z) dz = 0

as P(z)φ(z) is entire analytic in some of the variables zj (and rapidly
decreasing),

∴
∮
Γ

{F(z) + P(z)}φ(z) dz =

∮
Γ

F(z)φ(z) dz. (4.2.0.10)

The inverse Fourier transform of (4.1.2.6) is given by

F̂(x) =
1

2π

∮
Γ

F(k)e−ikx dk =

∞∫
−∞

f(k)e−ikx dx. (4.2.0.11)
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4.3. ULTRADISTRIBUTIONS OF EXPONENTIAL TYPE 19

4.3 Ultradistributions of exponential type

Any vector space has associated to it what is called a dual space. It
consists of linear functionals of the elements of the original space [1].

Consider the Schwartz space of rapidly decreasing test functions S.
Let Λj be the region of the complex plane defined as

Λj = {z ∈ C|�(z)| < j; j ∈ N} (4.3.0.1)

According to Ref. [10, 11] the space of test functions φ̂ ∈ Vj is
constituted by the set of all entire analytic functions of S for which

||φ̂||j = max
k≤j

{
sup
z∈Λj

[
e(j|�(z)|)|φ̂(k)(z)|

]}
(4.3.0.2)

is finite.

The new space Z is then defined as

Z =

∞⋂
j=0

Vj. (4.3.0.3)

It is a complete countably normed space with the topology generated
by the set of semi-norms {||·||j}j∈N. The topological dual of Z, denoted
by B, is by definition the space of Ultradistributions of exponential
type (Ref.[9, 10, 11]). Let S be the space of rapidly decreasing se-
quences. According to Ref.[8] S is a nuclear space. We consider now
the space of sequences P generated by the Taylor expansion of φ̂ ∈ Z

P =

{
Q

(
φ̂(0), φ̂

′
(0),

φ̂
′′
(0)

2
, ...,

φ̂(n)(0)

n!
, ...

)
; φ̂ ∈ Z

}
. (4.3.0.4)

The norms that define the topology of P are given by

||φ̂||
′
p = sup

n

np

n!
|φ̂n(0)|. (4.3.0.5)

P is a subspace of S and as consequence is a nuclear space. The norms
|| · ||j and || · || ′p are equivalent, the correspondence

Z⇐⇒ P (4.3.0.6)
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being an isomorphism and, therefore, Z is a countably normed nuclear
space. We define now the set of scalar products

< φ̂(z), ψ̂(z) >n=

n∑
q=0

∞∫
−∞

e2n|z|φ̂(q)(z)ψ̂(q)(z) dz =

n∑
q=0

∞∫
−∞

e2n|x|φ̂(q)(x)ψ̂(q)(x) dx. (4.3.0.7)

They induce the norm

||φ̂||
′′
n = [< φ̂(x), φ̂(x) >n]

1
2 . (4.3.0.8)

The norms ||·||j and ||·|| ′′n are equivalent, and therefore Z is a countably
hilbert nuclear space. Thus, if we call now Zp the completion of Z by
the norm p given in (4.3.0.5), we have

Z =

∞⋂
p=0

Zp, (4.3.0.9)

where

Z0 = H, (4.3.0.10)

is the Hilbert space of square integrable functions.

As a consequence the triplet

U = (Z,H,B) (4.3.0.11)

is also a Guelfand’s triplet.

B can also be characterized in the following way (Refs. [9],[10] ):
let Eω be the space of all functions F̂(z) such that A) F̂(z) is an
analytic function for {z ∈ C|Im(z)| > p}. B)- F̂(z)e−p|�(z)|/zp is
a bounded continuous function in {z ∈ C|Im(z)| � p}, where p =
0, 1, 2, ... depends on F̂(z).

Let further N be N = {F̂(z) ∈ EωF̂(z) is entire analytic}. Then

B is the quotient space C) B = Eω/N
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Due to these properties it is possible to represent any ultradistribution
of exponential type as [9, 10]

F̂(φ̂) =< F̂(z), φ̂(z) >=

∮
Γ

F̂(z)φ̂(z) dz, (4.3.0.12)

where the path Γ runs parallel to the real axis from −∞ to ∞ for
Im(z) > ζ, ζ > p and back from ∞ to −∞ for Im(z) < −ζ, −ζ < −p.
( Γ surrounds all the singularities of F̂(z) ).

Eq. (4.3.0.12) will be our fundamental representation for a ultradis-
tribution of exponential type. The “ Dirac’s formula” for ultradistri-
butions of exponential type is (Refs. [9, 10])

F̂(z) ≡ 1

2πi

∞∫
−∞

f̂(t)

t− z
dt ≡ cosh(λz)

2πi

∞∫
−∞

f̂(t)

(t− z) cosh(λt)
dt,

(4.3.0.13)
where the “density” f̂(t) is such that

∮
Γ

F̂(z)φ̂(z) dz =

∞∫
−∞

f̂(t)φ̂(t) dt. (4.3.0.14)

Eq. (4.3.0.13) should be used carefully. While F̂(z) is an analytic
function on Γ , the density f̂(t) is in general singular, so that the right
hand side of (4.3.0.14) should be interpreted again in the sense of
distribution’s theory.

Another important property of the analytic representation is the fact
that, on Γ , F̂(z) is bounded by a exponential and a power of z (Ref.
[9, 10])

|F̂(z)| ≤ C|z|pep|�(z)|, (4.3.0.15)

where C and p depend on F̂.

The representation (4.3.0.12) implies that the addition of any entire
function Ĝ(z) ∈ N to F̂(z) does not alter the ultradistribution∮

Γ

{F̂(z) + Ĝ(z)}φ̂(z) dz =

∮
Γ

F̂(z)φ̂(z) dz+

∮
Γ

Ĝ(z)φ̂(z) dz
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. However, ∮
Γ

Ĝ(z)φ̂(z) dz = 0

as Ĝ(z)φ̂(z) is an entire analytic function,

∴
∮
Γ

{F̂(z) + Ĝ(z)}φ̂(z) dz =

∮
Γ

F̂(z)φ̂(z) dz. (4.3.0.16)

Another very important property of B is that B is reflexive under the
Fourier transform

B = Fc

{
B
}
= F {

B
}
, (4.3.0.17)

where the complex Fourier transform F(k) of F̂(z) ∈ B is given by

F(k) = Hy[�(k)]

∫
Γ+

F̂(z)eikz dz−Hy[−�(k)]

∫
Γ−

F̂(z)eikz dz =

∮
Γ

{Hy[�(k)Hy[�(z)] −Hy[−�(k)Hy[−�(z)]}F̂(z)eikz dz =

H[�(k)]

∞∫
0

f̂(x)eikx dx−H[−�(k)]

0∫
−∞

f̂(x)eikx dx (4.3.0.18)

Here, Γ+ is the part of Γ with �(z) ≥ 0 and Γ− is the part of Γ with
�(z) ≤ 0 Using (4.3.0.18) we can interpret Dirac’s formula as

F(k) ≡ 1

2πi

∞∫
−∞

f(s)

s− k
ds ≡ Fc

{F−1 {f(s)}
}
. (4.3.0.19)

The inverse Fourier transform corresponding to (4.3.0.18) is given by

F̂(z) =
1

2π

∮
Γ

{Hy[�(z)]Hy[−�(k)] −Hy[−�(z)]Hy[�(k)]}F(k)e−ikz dk.

(4.3.0.20)

The treatment of ultradistributions of exponential type defined on C
n

is similar to that for the case of just one variable. Thus let Λj be given
as

Λj = {z = (z1, z2, ..., zn) ∈ C
n|�(zk)| ≤ j 1 ≤ k ≤ n} , (4.3.0.21)
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and

||φ̂||j = max
k≤j

⎧⎨
⎩ sup

z∈Λj

⎡
⎣ej

[
n∑

p=1

|�(zp)|

] ∣∣∣D(k)φ̂(z)
∣∣∣
⎤
⎦
⎫⎬
⎭ , (4.3.0.22)

where D(k) = ∂(k1)∂(k2) · · · ∂(kn) k = k1 + k2 + · · ·+ kn.

Bn
is characterized as follows. Let Enω be the space of all functions

F̂(z) such that
A

′
) F̂(z) is analytic for

{z ∈ C
n|Im(z1)| > p, |Im(z2)| > p, ..., |Im(zn)| > p}.

B
′
) F̂(z)e

−

[
p

n∑
j=1

|�(zj)|

]
/zp is bounded continuous in {z ∈ C

n|Im(z1)| �
p, |Im(z2)| � p, ..., |Im(zn)| � p}, where p = 0, 1, 2, ... depends on F̂(z).
Let further Nn be Nn =

{
F̂(z) ∈ EnωF̂(z) is entire analytic function at

minus in one of the variables zj 1 ≤ j ≤ n}. Then Bn
is the quotient

space
C

′
) Bn

= Enω/Nn We have now

F̂(φ̂) =< F̂(z), φ̂(z) >=

∮
Γ

F̂(z)φ̂(z) dz, (4.3.0.23)

where Γ = Γ1 ∪ Γ2 ∪ ...Γn and the path Γj runs parallel to the real
axis from −∞ to ∞ for Im(zj) > ζ, ζ > p and back from ∞ to −∞
for Im(zj) < −ζ, −ζ < −p. (Again the path Γ surrounds all the
singularities of F̂(z) ). The n-dimensional Dirac’s formula is now

F̂(z) =
1

(2πi)n

∞∫
−∞

f̂(t)

(t1 − z1)(t2 − z2)...(tn − zn)
dt, (4.3.0.24)

and the “density” f̂(t) is such that∮
Γ

F̂(z)φ̂(z) dz =

∞∫
−∞

f̂(t)φ̂(t) dt. (4.3.0.25)

The modulus of F̂(z) is bounded by

|F̂(z)| ≤ C|z|pe

[
p

n∑
j=1

|�(zj)|

]
, (4.3.0.26)

where C and p depend on F̂.
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Chapter 5

Dimensional
regularization (DR)

5.1 Bollini-Giambiaggi dimensional regu-
larization

Our present purpose is to compare a dimensional regularization-
generalization to be obtained later in this book with the usual BG-
DR, highlighting the differences between them. With this purpose
we consider the convolution of two massless propagators in Euclidean
space. We start then with the usual formula for the convolution in
four dimensions that we saw above in Chapter 1

ρ−1 ∗ ρ−1 =

∫
d4p

�p2(�p− �k)2
. (5.1.0.1)

The generalization of the previous convolution to ν dimensions is [12]

(
ρ−1 ∗ ρ−1

)
ν
=

∫
dνp

�p2(�p− �k)2
. (5.1.0.2)

We appeal now to the Feynman’s parameters

1

AB
=

1∫
0

dx

[Ax+ B(1− x)]2
, (5.1.0.3)

25
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26 CHAPTER 5. DIMENSIONAL REGULARIZATION (DR)

and rewrite the convolution as

(
ρ−1 ∗ ρ−1

)
ν
=

∫
dνp

1∫
0

dx

[(�p− �k)2x+ �p2(1− x)]2
=

1∫
0

dx

∫
dνp

[(�p− �k)2x+ �p2(1− x)]2
, (5.1.0.4)

or

(
ρ−1 ∗ ρ−1

)
ν
=

1∫
0

dx

∫
dνp

[(�p− �kx)2 + �k2x(1− x)]2
. (5.1.0.5)

We effect the change of variable �s = �p−�kx, and calling a = �k2x(1−x)
we obtain (

ρ−1 ∗ ρ−1
)
ν
=

1∫
0

dx

∫
dνs

(�s2 + a)2
, (5.1.0.6)

or (
ρ−1 ∗ ρ−1

)
ν
=

2π
ν
2

Γ
(
ν
2

) 1∫
0

dx

∞∫
0

sν−1

(s2 + a)2
ds. (5.1.0.7)

As in Chapter 1 we make another change of variable, y = s2, so that

(
ρ−1 ∗ ρ−1

)
ν
=

π
ν
2

Γ
(
ν
2

) 1∫
0

dx

∞∫
0

y
ν
2
−1

(y+ a)2
dy. (5.1.0.8)

Using [4] we can calculate the previous integral as

(
ρ−1 ∗ ρ−1

)
ν
= π

ν
2 Γ

(
2−

ν

2

) 1∫
0

a
ν
2
−2dx, (5.1.0.9)

or

(
ρ−1 ∗ ρ−1

)
ν
= π

ν
2 Γ

(
2−

ν

2

)
ρ

ν
2
−2

1∫
0

[x(1− x)]
ν
2
−2dx. (5.1.0.10)
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By recourse again to results of [4] this yields

(
ρ−1 ∗ ρ−1

)
ν
=

π
ν
2

[
Γ
(
ν
2
− 1

)]2
ρ

ν
2
−2

Γ(ν− 2)
Γ
(
2−

ν

2

)
. (5.1.0.11)

We realize that the four-dimensional convolution is not univocally
obtained from the ν- dimensional convolution, due to the pole at
ν = 4. There are several ways to choose the finite part of the above
equation, after effecting regularization in the manner described in
previous Chapters.

Instead, we can resort to a new DR-generalization of ours, to be dis-
cussed below, and then keep only the independent term of the ν − 4
calculation. In this way, we get for the four-dimensional convolution
a nicer result. This is

ρ−1 ∗ ρ−1 = −π2[ln ρ+ lnπ−ψ(2)]. (5.1.0.12)

Thus, we make it evident that the original BG-DR demands gen-
eralization, which should motivate the reader, we hope, to continue
reading us.

5.2 DR in configuration space

In order to perform and explain the dimensional regularization in con-
figuration space, Bollini and Giambiaggi [13] resorted to the Bochner’s
formula [14]

f(k) =
(2π)

ν
2

k
ν−2

2

∞∫
0

f̂(r)r
ν
2 J ν−2

2
(kr) dr (5.2.0.1)

where r2 = x20 + x21 + · · · + x2ν−1 ; k2 = k20 + k21 + · · · + k2ν−1 and
J ν

2
is the Bessel’s function of order ν− 2/2. We can write

f̂(r) =
1

(2π)
ν
2 r

ν−2
2

∞∫
0

f(k)k
ν
2 Jν−2

2
(kr) dk (5.2.0.2)

By performing the change of variables x = r2, ρ = k2, (5.2.0.1) can
be re-written as

f(ρ) = π
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4 J ν−2
2

(ρ1/2x1/2) dx (5.2.0.3)
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and (5.2.0.2) as

f̂(x) =
π

(2π)
ν+2

2 x
ν−2

4

∞∫
0

f(ρ)ρ
ν−2

4 Jν−2
2

(x1/2ρ1/2) dρ (5.2.0.4)

Consider now the case in which f is the propagator of the scalar field

f(k) =
1

k2 +m2
(5.2.0.5)

Then,

f̂(r) =
1

(2π)
ν
2 r

ν−2
2

∞∫
0

k
ν
2

k2 +m2
Jν−2

2
(kr) dk. (5.2.0.6)

Using here the result of Ref. [4]

∞∫
0

xν−1

(x2 + a2)μ+1
Jν(bx) dx =

aν−μbμ

2μΓ(μ+ 1)
Kν−μ(ab), (5.2.0.7)

we obtain

∞∫
0

k
ν
2

k2 +m2
Jν−2

2
(kr) dk = m

ν−2
2 Kν−2

2
(mr), (5.2.0.8)

and then

f̂(r) =
r

2−ν
2 m

ν−2
2

(2π)
ν
2

Kν−2
2

(mr). (5.2.0.9)

We consider now the formula

ĝ(r) =
1

(2π)
ν
2 r

ν−2
2

∞∫
0

k
ν
2
−2Jν−2

2
(kr) dk. (5.2.0.10)

So as to evaluate this integral we use the result (see [4])

∞∫
0

xμJν(ax) dx =
2μ

aμ+1

Γ
(

1
2
+ ν

2] +
μ
2

)
Γ
(

1
2
+ ν

2] −
μ
2

) . (5.2.0.11)
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Taking into account that in this case

g(k) =
1

k2
, (5.2.0.12)

we have

ĝ(r) =
2

ν−4
2

(2π)
ν
2

Γ

(
ν− 2

2

)
r2−ν. (5.2.0.13)

We now use the well-known formulas for Fourier transformations

F−1 {f1 ∗ f2 ∗ · · · ∗ fn} = (2π)(n−1)νf̂1f̂2 · · · f̂n, (5.2.0.14)

f1 ∗ f2 ∗ · · · ∗ fn = (2π)(n−1)νF(f̂1f̂2 · · · f̂n). (5.2.0.15)

From (5.2.0.15) we have then

{f ∗ g}ν(k) =
(2π)

ν
2 2

ν−4
2 m

ν−2
2 Γ

(
ν−2
2

)
k

ν−2
2

∞∫
0

r3−νKν−2
2

(kr)Jν−2
2

(kr) dr.

(5.2.0.16)
Using here the result of ref.[4] we find, in terms of hypergeometric
function F,

∞∫
0

x−λKμ(ax)Jν(bx) dx =
bνΓ

(
ν−λ+μ+1

2

)
Γ
(

ν−λ+μ+1
2

)
2λ+1aν−λ+1Γ(ν+ 1)

⊗

F

(
ν− λ+ μ+ 1

2
,
ν− λ− μ+ 1

2
, ν+ 1; −

b2

a2

)
. (5.2.0.17)

We have now for the ν- dimensional convolution{
1

k2
∗ 1

m2 + k2

}
ν

=

∫
dνp

�p2[(�p− �k)2 +m2]
=

2ν−2π
ν
2 mν−4 Γ

(
ν−2
2

)
Γ
(
4−ν
2

)
Γ
(
ν
2

) F

(
1, , 2−

ν

2
,
ν

2
; −

k2

m2

)
. (5.2.0.18)

Now we use the equality

Γ

(
4− ν

2

)
F

(
1,

4− ν

2
;
ν

2
; −

k2

m2

)
=

Γ

(
4− ν

2

)
−

2

ν
Γ

(
6− ν

2

)
k2

m2
F

(
1,

6− ν

2
;
2+ ν

2
; −

k2

m2

)
, (5.2.0.19)
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and then obtain{
1

k2
∗ 1

m2 + k2

}
ν

= 2ν−2π
ν
2 mν−4 Γ

(
ν−2
2

)
Γ
(
ν
2

) ⊗

[
Γ

(
4− ν

2

)
−

2

ν
Γ

(
6− ν

2

)
k2

m2
F

(
1,

6− ν

2
;
2+ ν

2
; −

k2

m2

)]
(5.2.0.20)

or, equivalently,{
1

k2
∗ 1

m2 + k2

}
ν

=
(4π)

ν
2 mν−4

2(ν− 2)
Γ

(
4− ν

2

)
−

(4π)
ν
2 mν−4

ν(ν− 2)
Γ

(
6− ν

2

)
k2

m2
F

(
1,

6− ν

2
;
2+ ν

2
; −

k2

m2

)
. (5.2.0.21)

Then we can write{
1

k2
∗ 1

m2 + k2

}
ν

= Aν + Σ(p, ν), (5.2.0.22)

where

Aν =
(4π)

ν
2 mν−4

2(ν− 2)
Γ

(
4− ν

2

)
, (5.2.0.23)

Σf(p, ν) = −
(4π)

ν
2 mν−4

ν(ν− 2)
Γ

(
6− ν

2

)
k2

m2
F

(
1,

6− ν

2
;
2+ ν

2
; −

k2

m2

)
.

(5.2.0.24)
In four dimensions this reads

Σf(p, 4) = −2π2 k2

m2
F

(
1, 1; 3−

k2

m2

)
, (5.2.0.25)

a nice compact result. The usual ultraviolet divergences appear as
poles of the resultant analytic functions of ν.
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Chapter 6

Feynman and Wheeler
propagators

6.1 Wheeler propagator

Consider now the quantity

GF(x− y) =< 0|T̂Φ(x)Φ(y)|0 > . (6.1.0.1)

This propagator is a Green function of the Klein– Gordon equation,
and is discussed in almost any text-book on quantum mechanics. Not
so well-known at all is the Wheeler propagator. In fact, to provide a
fairly complete description of it constitutes one of the main goals of
this book.
More than half a century ago, J. A. Wheeler and R. P. Feynman
published a work [15] in which they represented electromagnetic inter-
actions by means of half advanced and half retarded Green functions.
The charged medium was supposed to be a perfect absorber, so that
no radiation could possibly escape the system.
We are going to call this kind of Green function a “ Wheeler function”
(or propagator), that had been used before by P. A. M. Dirac [16],
when trying to avoid some run-away solutions, in which one finds
rapid increases that cannot be controlled. Later on, in 1949, J. A.
Wheeler and R. P. Feynman showed that, in spite of the fact that
the Green function contains an advanced part, the results do not
contradict causality [17].

31
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32 CHAPTER 6. FEYNMAN AND WHEELER PROPAGATORS

Of course, the success of QED and renormalization theory made it
soon unnecessary or not advisable to follow that line of research (at
least for electromagnetism).

One of the distinctive characteristics of the Green function used in
references [15, 16, 17] is its lack of asymptotic free waves. This is
the reason behind the choice of a “perfect absorber” for the medium
through which the field propagates. As the quantization of free waves
is associated to free particles, the above mentioned feature of Wheeler-
Green functions implies that no free quantum of the field can ever be
observed. Nevertheless, we are now used to the existence of confined
particles, as quarks. They do not manifest themselves as free entities.
One might give some examples (outside QCD) for which such a behav-
ior is displayed. A Lorentz invariant higher order equation can be
decomposed into Klein-Gordon factors, but the corresponding mass
parameters need not be real. For instance, the equation

(
�2 +m4

)
ϕ =

(
�+ im2

) (
�− im2

)
ϕ = 0, (6.1.0.2)

gives rise to a pair of constituent fields [18] obeying(
�± im2

)
ϕ± = 0. (6.1.0.3)

Any solution of (6.1.0.3) blows-up asymptotically. We can assert that
the corresponding fields should then be forbidden to appear asymptot-
ically as free waves. Therefore, they should have a Wheeler function
as the propagator [18]. Equations similar to (6.1.0.2), or of a more
general nature, might be of the form

(
�n ±m2n

)
ϕ = 0, (6.1.0.4)

and they appear in natural fashion in super-symmetric models for
higher dimensional spaces [20].

Another example is provided by fields obeying Klein-Gordon equa-
tions with a ”wrong” sign of the mass term (as it happens for tachyons).
A careful analysis shows that the propagator should be a Wheeler
function [21, 22]. Accordingly, no tachyon could ever be observed as
a free particle. They can only exist as “mediators” of interactions.

To define propagators in a proper way we have to solve the equations
for the Green functions with suitable boundary conditions. Thus, in
the case of the wave equation
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�G̃(x) = δ(x) (6.1.0.5)

a Fourier transformation gives

G(p) =
(
�p 2 − p2

0

)−1 ≡ (pμp
μ)

−1 ≡ P−1 (6.1.0.6)

Of course, it is necessary to specify the nature of the accompanying
singularity (when the denominator vanishes). Different determina-
tions of them imply different types of Green functions. For the clas-
sical solution of (6.1.0.5) it is natural to use the retarded function
(G̃rt). It corresponds to the propagation towards the future of the
effect produced by the sources. This function can be obtained by
means of a Fourier transform of (6.1.0.6) in which the p0 integration
is taken along a path from −∞ to +∞, leaving the pertinent poles to
the right. In practice, we add to p0 a small positive imaginary part
(this practice is called ”the avoiding of singularities by the ε trick”)

Grt(p) =
[
�p 2 − (p0 + i0)

2
]−1

=

(
�p 2 − p2

0 − i0 signp0

)−1
= (P − i0 signp0)

−1
. (6.1.0.7)

The advanced solution is the complex conjugate of (6.1.0.7)

Gad(p) =
(
�p 2 − p2

0 + i0 signp0

)−1
= (P + i0 signp0)

−1
. (6.1.0.8)

For the Feynman’s propagator, instead, we have to add now a small
imaginary part to P (not just to p0)

G±(p) = (P ± i0)
−1

, (6.1.0.9)

and, in the massive case,

G±(p) =
(
P +m2 ± i0

)−1
. (6.1.0.10)

The Cauchy principal value assigns values to special improper inte-
grals [1]. Without it, one can not use these integrals. The Wheeler
function is half advanced and half retarded. On the real axis, the
Wheeler function coincides with Cauchy’s “ principal value” associ-
ated Green function, which is known to be zero on the mass-shell,
entailing no free waves. Recall that physical configurations of a given
system that happen to satisfy classical equations of motion (CEM) are
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34 CHAPTER 6. FEYNMAN AND WHEELER PROPAGATORS

usually called on shell, while those configurations that do not satisfy
CEM are called off shell [1]. We can write

G±(p) = G(p)± iπδ
(
P +m2

)
, (6.1.0.11)

where

iπδ
(
P +m2

)
=

1

2
G+(p) −

1

2
G−(p). (6.1.0.12)

Equation (6.1.0.11) is a decomposition of the Feynman’s function into
two terms. The first one only contains virtual propagation. The
second one is a Lorentz invariant solution of the homogeneous equation
representing the free particle.

Recall now that the so called Hankel transform is an integral trans-
form [1]. Its defining feature is that the transform becomes equivalent
to a two-dimensional Fourier one, with a radially symmetric integral
kernel [1]. Now, to perform convolution integrations in p-space, we
will utilize the method presented in reference [13]. Essentially, it con-
sists in the use of the Bochner’s theorem for the reduction of the
Fourier transform to a Hankel transform [1]. The nucleus of this
transformation is made to correspond to an arbitrary number of di-
mensions ν, taken as a free parameter. In this way, starting with a
given propagator in p-space, we get a function in x-space whose sin-
gularity at the origin depends analytically on ν . There exists then a
range of values (of ν) such that the product of Green functions exists
and is well determined. In x-space we define

Q = r2 − x20 = xμx
μ

The Fourier transform of the massless Feynman’s function is

F {(P − i0)−1}(x) =
1

(2π)
ν
2

∫
dνp (P − i0)

−1
eipx.

Remember that a Wick rotation is a method for solving a problem in
Minkowski space via a solution to a related problem in Euclidean space
[1]. This is achieved by means of a transformation that substitutes an
imaginary-number variable for a real-number variable [1]. Above then,
by means of a “ Wick rotation”, the p0-integration can be made to run
along the imaginary axis, without crossing any pole. Mathematically,
we perform a dilation
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p0 = ap
′
0 ; x0 =

1

a
x

′
0 ; p0x0 = p

′
0x

′
0. (6.1.0.13)

A subsequent continuation to a = i produces the transformation

P ⇒ �p 2 + p
′2
0 = P

′

Q ⇒ �x 2 + x
′2
0 = Q

′
.

The new quadratic forms are Euclidean and Bochner’s theorem [14]
tells us that the pertinent Fourier transformation reduces to

F {
(P − i0)−1

}
(x) =

i

x
ν
2

∞∫
0

dy
y

ν
2

y2
Jν

2
−1(xy), (6.1.0.14)

where Jα is a Bessel’s function of the first kind and order α. In Eq.
(6.1.0.13) we see that a Wick rotation in p-space (a → i ) implies an
anti-Wick rotation in x-space (a−1 → −i ). We must then choose

x = (Q+ i0)
1
2 .

Note that the imaginary unit in Eq.(6.1.0.14) (r.h.s.), is due to the
transformation dp0 → idp

′
0. From Ref. [4] we get

∞∫
0

dy yμJρ(ay) = 2μa−μ−1
Γ
(

1+ρ+μ
2

)
Γ
(

1+ρ−μ
2

) ,
i.e.,

F
{
(P − i0)

−1
}
(x) = i2

ν
2
−2Γ

(ν
2
− 1

)
(Q+ i0)

1−ν
2 . (6.1.0.15)

More generally, for a function f(P ± i0), we obtain

F {f(P ± i0)} (x) = ∓ i

x
ν
2
−1

∞∫
0

dy y
ν
2 f

(
y2

)Jν
2
−1(xy), (6.1.0.16)

where x = (Q∓ i0)
1
2 . The right hand side of eq.(6.1.0.16) is a Hankel

transform of the function f(y2) [23].

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



36 CHAPTER 6. FEYNMAN AND WHEELER PROPAGATORS

6.2 Massless case

a) Fourier transforms
With the procedures described in section 1, we can obtain the Fourier
transforms of general massless Feynman’s functions, defined as (P ±
i0)α. From (6.1.0.16) and Ref. [4], we get

F {(P ± i0)α} (x) = ∓i22α+ν
2
Γ
(
α+ ν

2

)
Γ(−α)

(Q∓ i0)
−α−ν

2 . (6.2.0.1)

The exponent ofQ∓i0 can be deduced via dimensional considerations,
as described previously above. Furthermore, if we interchange the
quadratic forms P ↔ Q and write F−1 for F , then Eq. (6.2.0.1) is
still valid. We define the massless Wheeler propagator as

Pα =
1

2
(P + i0)

α
+

1

2
(P − i0)

α
. (6.2.0.2)

(We will not use any index for Wheeler functions.) The Fourier trans-
form of (6.2.0.2) is (Cf. Eq.(6.2.0.1))

F {Pα} (x) = i22α+ν
2
Γ
(
α+ ν

2

)
Γ (−α)

[
1

2
(Q+ i0)

−α−ν
2 −

1

2
(Q− i0)

−α−ν
2

]
(6.2.0.3)

Note that we also have the relation (valid for any quadratic form [6])

(Q± i0)
λ
= Qλ

+ + e±iπλQλ
−, (6.2.0.4)

where

Qλ
+ =

{
Qλ Q > 0
0 Q ≤ 0

Qλ
− =

{
(−Q)λ Q < 0
0 Q ≥ 0

Thus, we can rewrite (6.2.0.3) in the form

F {Pα} (x) = 22α+ν
2
Γ
(
α+ ν

2

)
Γ (−α)

sinπ
(
α+

ν

2

)
Q

−α−ν
2

− . (6.2.0.5)
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Equation (6.2.0.5) illustrates another interesting property of Wheeler
functions. They are real and have support inside the light-cone of
the coordinates. Furthermore, for α = −1, the trigonometric function

tends to zero for ν → 4 , but Q
1−ν

2
− has a pole at ν = 4 with residue

δ(Q) [6]. Then,

lim
ν→4

F {
P−1

}
(x) = δ(Q). (6.2.0.6)

In four dimensions the massless Wheeler function is concentrated on
the light cone. From Eq. (6.2.0.5) we obtain

F−1
{
Qλ

−

}
(p) = −

22λ + ν
2

sinπλ

Γ
(
λ+ ν

2

)
Γ (−λ)

P−λ−ν
2 =

22λ+
ν
2 Γ (λ+ 1) Γ

(
λ+

ν

2

)
P−λ−ν

2 , (6.2.0.7)

where the relation

Γ(z)Γ(1− z) =
π

sinπz
,

has been used. From (6.2.0.1) we can also get

F−1
{
Qλ

+

}
(p) = −22λ+

ν
2 Γ (λ+ 1) Γ

(
λ+

ν

2

)
×[

cosπλ P
−λ−ν

2
+ + cos

π

2
ν P

−λ−ν
2

−

]
. (6.2.0.8)

Now, from relation (6.1.0.12) we find

2πiδ(P) = (P − i0)
−1

− (P + i0)
−1

, (6.2.0.9)

and

F {δ(P)} (x) =
2

ν
2
−2

2π
Γ
(ν
2
− 1

) [
(Q+ i0)

1−ν
2 + (Q− i0)

1−ν
2

]
(6.2.0.10)

F {δ(P)} (x) =
2

ν
2
−2

2π
Γ
(ν
2
− 1

) [
Q

1−ν
2

+ − cos
π

2
νQ

1−ν
2

−

]
. (6.2.0.11)

Note that Eq. (6.2.0.5) allows us to obtain the advanced and retarded
components of the Wheeler functions in x-space.
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G̃rt(x) = 2Θ(t)F {Pα} (x); G̃ad(x) = 2Θ(−t)F {Pα} (x),

where Θ(t) is Heaviside’s step function.
b) Convolutions

The convolution product pg is the product of the Fourier transform
of each factor

f(p) ∗ g(p) = cF−1 {F {f(p)} (x)F {g(p)} (x)} (p),

with c = (2π)
ν
2 . (6.2.0.12)

Formula (6.2.0.12) can be taken as a definition of the operation ∗.
The product of distributions inside the curly brackets can be effected
in a suitable range of ν, and analytically extended to other values.
For Feynman’s propagators, (6.2.0.12) gives

(P − i0)
α ∗ (P − i0)

α
= ic2−

ν
2
Γ2

(
α+ ν

2

)
Γ2 (−α)

×

Γ
(
−2α− ν

2

)
Γ (2α+ ν)

(P − i0)
2α+ν

2 . (6.2.0.13)

An analogous equation can be obtained by changing the sign of the
imaginary unit in (6.2.0.13). The convolution of two Feynman’s func-
tions of the same kind (+ or -) gives another Feynman’s function of
the same kind. For Wheeler propagators, Eqs.(6.2.0.5), (6.2.0.7), and
(6.2.0.12) yield

Pα ∗ Pα = 2−
ν
2
−1c

Γ2
(
α+ ν

2

)
Γ2 (−α)

· Γ
(
−2α− ν

2

)
Γ (2α+ ν)

×

tgπ
(
α+

ν

2

)
P2α+ν

2 , (6.2.0.14)

so that the convolution of twoWheeler functions gives another Wheeler
function. For the wave equation we choose α = −1 and

(P − i0)
−1 · (P − i0)

−1
= 2ia(ν) (P − i0)

ν
2
−2

(6.2.0.15)

(P + i0)
−1 · (P + i0)

−1
= −2ia(ν) (P + i0)

ν
2
−2

(6.2.0.16)

P−1 ∗ P−1 = a(ν) tgπ
(ν
2
− 1

)
P

ν
2
−2, (6.2.0.17)
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where

a(ν) = c2−
ν
2
−1Γ2

(ν
2
− 1

) Γ
(
2− ν

2

)
Γ (ν− 2)

.

Eqs. (6.2.0.15) and (6.2.0.16) display a pole for ν → 4 (the usual ul-
traviolet divergence), while (6.2.0.17) is well determined in that limit.
The convolution of two δ(P) functions can be found with the help of
Eqs. (6.2.0.7), (6.2.0.8), (6.2.0.11), and (6.2.0.12).

π2δ(P)∗δ(P) = a(ν) tgπ
(ν
2
− 1

) [
P

ν
2
−2

+ − cos
π

2
νP

ν
2
−2

−

]
. (6.2.0.18)

A comparison with Eq.(6.2.0.15) shows that

π2δ(P) ∗ δ(P) = sgnP · P−1 ∗ P−1. (6.2.0.19)

This relation implies

(P − i0)
−1 ∗ (P + i0)

−1
+ π2δ(P) ∗ δ(P) = 2Θ(P) P−1 ∗ P−1.

The convolution of two Feynman’s propagators of different kinds has
a support outside the light-cone in p-space.

6.3 Massive case

Bradyons, also called tardyons, are particles that travel with velocities
below the speed of light, as opposed to hypothetical tachyons [1]. All
known massive subatomic particles are bradyons. A bradyon field
obeys a normal Klein-Gordon equation. Its Feynman’s propagator is
given by Eq.(6.1.0.10). The Wheeler function is

(
P +m2

)−1
=

1

2

(
P +m2 + i0

)−1
+

1

2

(
P +m2 − i0

)−1
. (6.3.0.1)

To repeat: in quantum field theory, configurations of a physical sys-
tem that satisfy classical equations of motion are called on shell while
those that do not are called off shell [1]. For example, virtual particles
are termed off shell because they do not satisfy the energy–momentum
relation. The on-shell δ-function, solution of the homogeneous equa-
tion is
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δ
(
P +m2

)
=

1

2πi

[(
P +m2 + i0

)−1
−
(
P +m2 − i0

)−1
]

(6.3.0.2)

a) Fourier transforms
To find the Fourier transform of the Feynman propagators we use Eq.
(6.1.0.16) and Ref. [4] (p. 687 - 6.566 - 2)

F
{(

P +m2 ± i0
)−1

}
(x) =

∓im
ν
2
−1 (Q∓ i0)

1
2 (1−

ν
2 )Kν

2
−1

[
m (Q∓ i0)

1
2

]
,

where Kα is a Bessel function of the third kind and order α (for the
definition of different Bessel’s functions we follow Ref. [4], p.951 -
8.40). Note also that with the more general formula of Ref. [4] (p.687
- 6.565 - 4), we can find the Fourier transform of arbitrary powers of
Feynman’s propagator. Using the relation (6.2.0.4) we write

F
{(

P +m2 ± i0
)−1

}
(x) = ∓im

ν
2
−1

[
Q

1
2 (1−

ν
2 )

+ Kν
2
−1

(
mQ

1
2
+

)
+

i
π

2
Q

1
2 (1−

ν
2 )

− Hβ
1−ν

2

(
mQ

1
2
−

)]
, (6.3.0.3)

where β = 1 for the upper sign and β = 2 for the lower sign. It is now
easy to find the transforms of (6.3.0.1) and (6.3.0.2). Consider

F
{(

P +m2
)−1

}
(x) =

π

2
m

ν
2
−1Q

1
2 (1−

ν
2 )

− J1−ν
2

(
mQ

1
2
−

)
(6.3.0.4)

F {
δ
(
P +m2

)}
(x) = −

1

π
m

ν
2
−1

[
Q

1
2 (1−

ν
2 )

+ Kν
2
−1

(
mQ

1
2
+

)
−

π

2
Q

1
2 (1−

ν
2 )

− N1−ν
2

(
mQ

1
2
−

)]
. (6.3.0.5)

Also, for the massive case, the Wheeler function is zero outside the
light-cone. With some slight changes in notation, one can verify that
(6.3.0.3), and (6.3.0.5), coincides with the results of Ref. [4].

b) Convolutions
We are going to follow the procedure already used in Section 2. The
convolution of a massive Feynman propagator with a massless one,
Eqs. (6.2.0.1), (6.3.0.3), and (6.2.0.12) yields
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(
P +m2 − i0

)−1 ∗ (P − i0)
−1

= −2
ν
2
−2cm

ν
2
−1Γ

(ν
2
− 1

)
×

F−1
{
(Q+ i0)

3
2 (1−

ν
2 )Kν

2
−1

[
m (Q+ i0)

1
2

]}
(p).

and, with the help of Eq. (6.1.0.16) and Ref. [4] (p.643 - 6.576 - 3),
we get

(
P +m2 − i0

)−1 ∗ (P − i0)
−1

= i2
ν
2 c

mν−2

Γ
(
ν
2

) Γ (ν
2
− 1

)
Γ
(
2−

ν

2

)
×

F

(
1, 2−

ν

2
,
ν

2
; −

P − i0

m2

)
, (6.3.0.6)

where F(a, b, c; z) is Gauss’ hypergeometric function.

For two Wheeler propagators and two on-shell δ-functions, we can
follow the same method. It is then not difficult to prove the following
relation (compare with (6.2.0.19))

π2δ
(
P +m2

) ∗ δ (P) = sgnP · (P +m2
)−1 ∗ P−1,

or, more generally,

π2δ
(
P +m2

1

) ∗ δ (P +m2
2

)
= sgnP · (P +m2

1

)−1 ∗ (P +m2
2

)−1
.

(6.3.0.7)

6.4 Tachyons

A tachyon field obeys a Klein-Gordon equation with the wrong sign
of the “mass” term. The Green function is an inverse of P − μ2 (we
use μ2 = −m2 for the mass of the tachyon). Although it is not easy
to see what a Feynman’s propagator should be in that case in which
the inverse of P − μ2=�p 2 − p2

0 − μ2 has a pair of imaginary poles
(if �p 2 < μ2), we may nevertheless define

(
P − μ2 ± i0

)−1
= −

(
−P + μ2 ∓ i0

)−1
,

or, introducing the “dual” quadratic form, we arrive at
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+P = −P = p2
0 − �p 2

(
P − μ2 ± i0

)−1
= −

(
+P + μ2 ∓ i0

)−1
.

In other words, instead of propagators with the wrong sign of the mass,
we see that we have propagators with the wrong sign of the metric.
To find the Fourier transform, we recall (see section 2) that we have
an “i” for the Wick rotation of p0. For the dual metric we have three
Wick rotations. The three factors d�p contribute with i3 = −i. We
also note that +Q+ = Q− and +Q− = Q+. Thus, (compare with
(6.3.0.3))

F
{(

P − μ2 ± i0
)−1

}
(x) = ±iμ

ν
2
−1

⎡
⎣Kν

2
−1

(
μQ

1
2
−

)
Q

1
2 (

ν
2
−1)

−

∓

i
π

2

Hβ
1−ν

2

(
μQ

1
2
+

)
Q

1
2 (

ν
2
−1)

+

⎤
⎦ , (6.4.0.1)

where β = 2 for the upper sign and β = 1 for the lower sign. The real
part of (6.4.0.1) is

1

2
F
{(

P − μ2 + i0
)−1

}
(x) +

1

2
F
{(

P − μ2 − i0
)−1

}
(x) =

ReF
{(

P − μ2 ± i0
)−1

}
(x) =

π

2
μ

ν
2
−1Q

1
2 (1−

ν
2 )

+ J1−ν
2
(μQ+) .

(6.4.0.2)
This real part has support outside the light-cone, while for bradyons,
the real part of Feynman’s propagator is zero for xμ space like (Cf.
Eq. (6.3.0.4)).

We will now show that (6.4.0.2) is not the Wheeler propagator for the
tachyon. To see this we go back to the original definition in terms of
a half retarded and a half advanced propagator.

(
P − μ2

)−1
=

1

2

(
P − μ2

)−1

Ad
+

1

2

(
P − μ2

)−1

Rt
. (6.4.0.3)

The Fourier transform is
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F
{(

P − μ2
)−1

}
(x) =

1

(2π)
ν/2

1

2

∫
dνp

eipx

(P − μ2)Ad

+

1

(2π)
ν/2

1

2

∫
dνp

eipx

(P − μ2)Rt
. (6.4.0.4)

We will first evaluate the advanced part of (6.4.0.4), i.e.,

F
{(

P − μ2
)−1

Ad

}
(x) =

1

(2π)
ν/2

∫
dν−1p ei�p·�r

∫
Ad

dp0
e−ip0x0

�p 2 − p2
0 − μ2

,

(6.4.0.5)
where the path of integration runs parallel to the real axis and below
both poles of the integrand. For x0 < 0 the path can be closed on the
upper half plane of p0. The contribution will be that of the residues
at the poles

p0 = ±ω = ±
√
�p 2 − μ2 , if �p 2 ≥ μ2

p0 = ±iω
′
= ±i

√
μ2 − �p 2 , if �p 2 ≤ μ2

F
{(

P − μ2
)−1

Ad

}
(x) =

1

(2π)
ν/2

∫
dν−1pei�p·�r2πi

[(
eiωx0

2ω
−

e−iωx0

2ω

)
Θ
(
�p 2 − μ2

)

+

(
−eω

′
x0

2iω
′ +

e−ω
′
x0

2iω
′

)
Θ
(
μ2 − �p 2

)]
=

−2π

(2π)
ν/2

∫
dν−1pei�p·�r

[
sinωx0

ω
Θ
(
�p 2 − μ2

)
+

shω
′
x0

ω
′ Θ

(
μ2 − �p 2

)]

(6.4.0.6)
Note that we can write the brackets as (Cf. Eq. (6.2.0.4))[

sinωx0

ω
Θ
(
�p 2 − μ2

)
+

shω
′
x0

ω
′ Θ

(
μ2 − �p 2

)]
=

sin
[
x0

(
�p 2 − μ2 + i0

) 1
2

]
(�p 2 − μ2 + i0)

1
2

=
sinx0Ω

Ω
. (6.4.0.7)
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For the spatial Fourier transform (6.4.0.6), we use Bochner’s theorem
(Cf. Eq. (6.1.0.14)))

F
{(

P − μ2
)−1

Ad

}
(x) =

(2π)
1
2
Θ(−t)

r
ν−3

2

∞∫
0

dk k
ν−1

2
sin | t | Ω

Ω
Jν−3

2
(rk).

Eq. 6.737-5, p.761 of the table of Ref. [4] gives now (b = iμ+ 0)

F
{(

P − μ2
)−1

Ad

}
(x) = πμ

ν
2
−1Q

1
2 (1−

ν
2 )

− I1−ν
2

(
μQ

1
2
−

)
(x0 < 0),

(6.4.0.8)
and, of course,

F
{(

P − μ2
)−1

Ad

}
(x) = 0 for x0 ≥ 0.

The retarded Fourier transform reproduces (6.4.0.6), with a change of
sign, for x0 > 0 and is zero for x0 ≤ 0. We then get, for the Wheeler
Green function (6.4.0.4)

F
{(

P − μ2
)−1

}
(x) =

π

2
μ

ν
2
−1Q

1
2 (1−

ν
2 )

− I1−ν
2

(
μQ

1
2
−

)
. (6.4.0.9)

Again, the Wheeler propagator has support inside the light-cone. But,
instead of a Bessel’s function of the first kind, we have now a Bessel’s
function of the second kind. It is clear that by taking into account Eq.
(6.2.0.12), we can evaluate convolutions of different Green functions,
as we did in Section 5.3 for bradyon fields.

6.5 Fields with complex mass parameters

The decomposition in Klein-Gordon factors of a higher order equation
often leads to complex mass parameters. Equation (6.1.0.2) is an
example. The constituent fields obey Eq.(6.1.0.3). A simple higher
order equation such as (6.1.0.4) exhibits the same behavior. Of course,
for a real equation, the masses come in complex conjugate pairs. We
consider

(
�−M2

)
φ = 0 , M = m+ iμ (m > 0). (6.5.0.1)
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This type of equation has been analyzed elsewhere (Ref. [19]). The
Green functions are inverses of P + M2 =Ω2 − p2

0, where Ω=(�p 2 +
M2)1/2. The two poles at p0 ±Ω move when �p 2 varies from 0 to ∞,
on a line contained in a band of width ±iμ, centered at the real axis.

The retarded Green function is obtained with a p0-integration that
runs parallel to the real axis, with Imp0 > |μ|. For the advanced
solution, the integration runs below both poles (Imp0 < −|μ|)

F
{(

P +M2
)−1

Ad

}
(x) =

1

(2π)
ν/2

∫
dν−1p ei�p·�r

∫
Ad

dp0
eip0t

Ω2 − p2
0

=

1

(2π)
ν/2

∫
dν−1p ei�p·�r

2πiΘ(−t)

2Ω

(
eiΩt − e−iΩt

)
=

−2π
Θ(−t)

(2π)
ν/2

∫
dν−1p ei�p·�r

sinΩt

Ω

F
{(

P +M2
)−1

Ad

}
(x) =

(2π)
1
2
Θ(−t)

r
ν−3

2

∞∫
0

dk K
ν−1

2
sinΩ | t |

Ω
Jν−3

2
(rk),

and, according to Ref. [4] (6.735 - 5)

F
{(

P +M2
)−1

Ad

}
(x) = πΘ(−t)M

ν
2
−1Q

1
2 (1−

ν
2 )

− Jν−3
2

(
MQ

1
2
−

)
.

For the retarded Green function we get the same answer, with Θ(+t)
replacing Θ(−t). The Wheeler propagator is then

F
{(

P +M2
)−1

}
(x) =

π

2
M

ν
2
−1Q

1
2 (1−

ν
2 )

− Jν−3
2

(
MQ

1
2
−

)
. (6.5.0.2)

Now we finally have the general result. The Wheeler function propa-
gates inside the light-cone for any value of the mass, real (bradyons),
imaginary (tachyons) or complex (M = m+iμ). In the case of complex
masses, a natural definition for the Feynman propagator is obtained
by a p0-integration along the real axis. It is not difficult to see that
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F
{(

P +M2
)−1

F

}
(x) =

√
π

2
r

3−ν
2

∞∫
0

dk k
ν−1

2

(
sinΩ | t |

Ω
−

i sgnμ
cosΩ | t |

Ω

)
Jν−3

2
(rk). (6.5.0.3)

The first term on the right hand side is the Wheeler function. The
second term corresponds to a positive loop around the pole in the
upper half-plane, and a negative loop around the pole in the lower half-
plane. The conjugate Feynman’s function (not the complex conjugate
one ) is obtained by changing the sign of the second term, that is, by
changing the sign of both loops. The term in cosΩ|t| can be taken
from Ref. [4] (6.735 - 6). With these definitions the Wheeler function
is half Feynman and half its conjugate. Note that for a real mass,
μ corresponds to the “small” negative imaginary part added to the
mass in Feynman’s definition. Accordingly, for real mass we take
sgnμ = −1. Equation (6.5.0.3) can be employed to define

F {
δ
(
P +M2

)}
(x) = −

sgnμ

π

√
π

2
r

3−ν
2

∞∫
0

dk k
ν−1

2
cosΩ | t |

Ω
Jν−3

2
(rk) (6.5.0.4)

(
P +M2

)−1

F
=

(
P +M2

)−1
+ iπδ

(
P +M2

)
. (6.5.0.5)

The last formula is valid for any mass, real or complex.

6.6 Associated vacuum

It is well known that the perturbative solution to the quantum equa-
tion of motion leads to a Green function which is the vacuum expec-
tation value (VEV) of the chronological product of field operators.
Furthermore, when the quanta are not allowed to have negative en-
ergies, the VEV turns out to be Feynman’s propagator. However,
when the energy-momentum vector is space-like, the sign of its en-
ergy component is not Lorentz invariant. It is then natural to look
for symmetry between positive and negative energies. It has been
shown in references [21] and [22] that under this premise, the VEV is
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a Wheeler propagator. Thus, as to clearly see the origin of the differ-
ence between both types of propagators, we are going to compare the
usual procedure with the symmetric one. A quantized Klein-Gordon
field can be written as

ϕ(x) =
1

(2π)
3/2

∫
d3k√
2ω

[
a(�k) eik·x + a+(�k) e−ik·x

]
, (6.6.0.1)

where

[
a(�k), a+(�k

′
)
]
= δ(�k− �k

′
) ; ω =

√
�k 2 +m2.

For simplicity, we are going to consider a single (discretized) degree
of freedom. The raising and lowering operators obey

[
a, a+

]
= 1. (6.6.0.2)

The energy operator is

h =
ω

2

(
aa+ + a+a

)
= ωa+a+

ω

2
= h0 +

ω

2
.

Usually, the ground state energy-operator is called h0. The vacuum
then obeys

h0 | 0 >= 0. (6.6.0.3)

It is a consequence of (6.6.0.2) and (6.6.0.3) that

< 0|aa+|0 >= 1 , < 0|a+a|0 >= 0. (6.6.0.4)

On the other hand, the symmetric vacuum is defined to be the state
that has zero “true energy”

h|0 >=
ω

2

(
aa+ + a+a

)
|0 >= 0. (6.6.0.5)

Equations (6.6.0.2) and (6.6.0.5) imply

< 0|aa+|0 >=
1

2
, < 0|a+a|0 >= −

1

2
. (6.6.0.6)

Let as assume, for the sake of argument, that we define a “ceiling”
state (as opposed to a ground state)
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a+|0 >= 0. (6.6.0.7)

Equations (6.6.0.2) and (6.6.0.7) give

< 0|aa+|0 >= 0 , < 0|a+a|0 >= −1. (6.6.0.8)

The usual normal case, Eq. (6.6.0.4), leads to the Feynman propaga-
tor. The “inverted” case, Eq. (6.6.0.8), leads to its complex conju-
gate. Then Eq. (6.6.0.6), which is one half of (6.6.0.4) and one half
of (6.6.0.8), leads to one half of the Feynman function and one half
of its conjugate. This is the Wheeler propagator defined in section
1. The space of states generated by successive applications of a and
a+ on the symmetric vacuum has an indefinite metric. The scalar
product can be defined by means of the holomorphic representation
[a holomorphic function is a complex-valued function of variables that
is, at every point of its domain, complex differentiable in a neighbor-
hood of the point [1]] [24]. The functional space is formed by analytic
functions f(z), with the scalar product

〈f, g〉 =
∫
dz dze−zzf(z) g(z), (6.6.0.9)

or, in polar coordinates,

〈f, g〉 =
∞∫
0

dρ ρe−ρ2

2π∫
0

dφf(z).g(z) (6.6.0.10)

The raising and lowering operators are represented by

a+ = z , a =
d

dz
. (6.6.0.11)

The symmetric vacuum obeys(
d

dz
z+ z

d

dz

)
f0 =

(
1+ 2z

d

dz

)
f0 = 0,

whose normalized solution is

f0 =
(
2π3/2

)−1/2

z−1/2.

The energy eigenfunctions are
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fn =

[
2πΓ

(
n+

1

2

)]−1/2

z−1/2zn (6.6.0.12)

6.7 Unitarity

In QFT, the equations of motions for the states of a system of inter-
acting fields are formally solved by means of the evolution operator.

U (t, t0) |t0 >= |t > .

The interactions between the quanta of the fields is supposed to take
place in a limited region of space-time. The initial and final times can
be taken to be t0 → −∞ and t → +∞. Thus we define the S-operator

S = U (+∞,−∞) .

We do not intend to discuss the possible problems of such a defini-
tion. Here we are only interested in its relation to Wheeler propa-
gators. Usually, the initial and final states are represented by free
particles. However, when Wheeler fields are present, their quanta ei-
ther mediate interactions between other particles, or they end up at
an absorber. This circumstance had been pointed out by J.A.Wheeler
and R.P.Feynman in references [15] and [17]. As a consequence, the
S-matrix not only contains the initial and final free particles, but it
also contains the states of the absorbers. Through the latter we can
determine the physical quantum numbers of the Wheeler virtual “
asymptotic particles”. For these reasons, even if the initial and final
states do not contain any Wheeler free particle, for the verification of
perturbative unitarity it is necessary to take them into account. We
shall illustrate this point with some examples.

Let us consider four scalar fields φs (s=1,...,4) obeying Klein-Gordon
equations with mass parametersm2

s and an interactionΛ = λφ1φ2φ3φ4.
They can be written as in Eq. (6.6.0.1). Unitarity implies

SS+ = 1,

or, with S = 1− T ,
T + T+ = TT+.

We introduce the initial and final states and also a complete decom-
position of the unity operator
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< α|T + T+|β >=

∫
dσγ < α|T |γ >< γ|T+|β > .

For the perturbative expansion

T =
∑
n

λnTn

< α|Tn + T+
n |β >=

n−1∑
s=1

∫
dσγ < α|Tn−s|γ >< γ|T+

s |β >, (6.7.0.1)

In particular, T0 = 0 and T1=pure imaginary. For n=2,

< α|T2 + T+
2 |β >=

∫
dσγ < α|T1|γ >< γ|T+

1 |β >, (6.7.0.2)

where we will take T1 = iφ1φ2φ3φ4. φ1 and φ2 are supposed to be
normal fields whose states can be obtained from the usual vacuum.

|α >= a+
2 a

+
1 |0 > , |β >= a+

2
′a

+
1

′ |0 > .

On the other hand, for φ3 and φ4 we leave open the possibility of
a choice between the usual vacuum or the symmetric one. The left
hand side of (6.7.0.2) comes from the second order loop formed with
the convolution of a propagator for φ3 and another for φ4. When
both fields are normal, we have the convolution of two Feynman’s
propagators, where the real part is

Re
[(
P +m2

3 − i0
)−1 ∗ (P +m2

4 − i0
)−1

]
=

(
P +m2

3

)−1 ∗ (P +m2
4

)
−

π2δ
(
P +m2

3

) ∗ δ (P +m2
4

)
,

and, according to (6.3.0.7), we have in the physical region (P negative)

Re
[(
P +m2

3 − i0
)−1 ∗ (P +m2

4 − io
)−1

]
=

2
(
P +m2

3

)−1 ∗ (P +m2
4

)−1
(P < 0) . (6.7.0.3)

Equation (6.7.0.3) implies that the left hand side of (6.7.0.2) for Feyn-
man’s particles is twice the value corresponding to Wheeler particles.
The relation (6.7.0.2) is known to be valid for normal fields. Thus,
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there is no point in proving each. We are going to show how the
relative factor 2 arises. The decomposition of unity for normal fields
is

I =

∫
dσγ |γ >< γ| = |0 >< 0|+

∫
dν−1q;a+ (�q) |0 >< 0|a (�q)+

∫
dν−1q1 dν−1q2

1√
2
a+ (�q1)a+(�q2) |0 >< 0|a (�q1)a (�q2)

1√
2
+ ..

(6.7.0.4)
Then, for the T1 matrix we have

< α|T1|γ >=< 0|a1 (�p)φ1(x)|0 >< 0|a2

(
�p

′)
φ2(x)|0 > ×

< 0|φ3(x)a
+
3 (�q3) |0 >< 0|φ4(x)a

+
4 (�q4) |0 >, (6.7.0.5)

where an integration over x-space is understood. When the fields are
expressed in terms of the operators a(q) and a+(q), as in equation
(6.6.0.3), we obtain

< α|T1|γ >=
(2π)

ν

(2π)
2(ν−1)

δ (p− q3 − q4)

4
√
ω1ω2ω3ω4

(p = p1 + p2), (6.7.0.6)

and

< γ|T1|β >=
(2π)

ν

(2π)
2(ν−1)

δ
(
q3 + q4 − p

′
)

4
√
ω

′
1ω

′
2ω3ω4

(p
′
= p

′
1+p

′
2). (6.7.0.7)

Multiplying together (6.7.0.6) and (6.7.0.7), and adding all possible
|γ >< γ| (all �q3 and �q4), we get

∫
dσγ < α|T1|γ >< γ|T+

1 |β >=
δ
(
p− p

′
)

16 (2π)
2ν−4

√
ω1ω2ω

′
1ω

′
2∫

d�q
δ
(
p0 −ω3 (�q) −ω4 (�p− �q)

)
ω3 (�q)ω4 (�p− �q)

. (6.7.0.8)
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This result coincides with (6.7.0.2) (l.h.s.) when the p0-convolution
is carried out. Suppose now that one of the fields, says φ4, has a
Wheeler function as propagator. Instead of Eq. (6.7.0.3) we have

Re
[(
P +m2

3 − i0
)−1 ∗ (P +m2

4 − io
)−1

]
=

(
P +m2

3

)−1 ∗ (P +m2
4

)−1
, (6.7.0.9)

half the value of (6.7.0.3). So as to evaluate the matrix < T1 > for
this case we note that the decomposition of unity for the states of φ4

(with an indefinite metric) is now

I =

∫
dσγ |γ >< γ| =

|0 >< 0|+

∫
dν−1q

√
2a+ (�q) |0 >< 0|a (�q)

√
2−∫

dν−1q
√
2a (�q) |0 >< 0|a+ (�q)

√
2+ .... (6.7.0.10)

The normalization factors come from the VEV quoted in section 5.6,
Eq. (6.6.0.6) It is not necessary to evaluate again the matrix element
(6.7.0.5). Its last vacuum expectation value acquires now a factor 1/2
from Eq. (6.6.0.6), and a factor

√
2 from normalization in (6.7.0.10).

When the matrix for T1 and T+
1 are multiplied together, we get an ex-

tra factor (
√
2/2)2= 1/2, as it should be for unitarity to hold. When

both fields φ3 and φ4 are of the Wheeler type, we get for the convolu-
tion of the respective Wheeler propagators the same result (6.7.0.9).

The matrix element of T1 gains now two factors
√
2/2, i.e. a factor

1/2. When we multiply < T1 >< T+
1 > we get a factor 1/2 · 1/2= 1/4

and we seem to be in trouble with unitarity. However, in this case a
new matrix contributes to < T1 >. It is

< 0|a1 (�p1)φ1(x)a
+
1 (�q1)a

+
1

(
�q

′
1

)
|0 > ×

< 0|a2 (�p2)φ2(x)a
+
2 (�q2)a

+
2

(
�q

′
2

)
|0 >

< 0|φ3(x)a
+
3 (�q3) |0 >< 0|φ4(x)a

+
4 (�q4) |0 >, (6.7.0.11)

(6.7.0.11) is only viable when both φ3 and φ4 are associated with
symmetric vacua. For the first matrix factor we have
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< 0|a1 (�p1)φ1(x)a
+
1 (�q1)a

+
1

(
�q

′
1

)
|0 >=

δ (p1 − q1)
e−iq

′
1x√

2ω1

(
q

′
1

) + δ
(
p1 − q

′
1

) e−iq1x√
2ω1 (q1)

. (6.7.0.12)

A similar matrix factor from < T+
1 > gives

< 0|a1 (�q1)a1

(
�q

′
1

)
φ1(y)a1

(
�p

′
1

)
|0 >=

δ
(
p

′
1 − q

′
1

) eiq1y√
2ω1 (q1)

+ δ
(
p

′
1 − q1

) eiq
′
1y√

2ω1

(
q

′
1

) . (6.7.0.13)

When we multiply together (6.7.0.12) and (6.7.0.13), the crossed terms
do not contribute (δ(p1 − p

′
1) = 0). The other two terms give equal

contributions. A similar evaluation can be done for the second factor
of (6.7.0.11) and the corresponding factor of < T+ >. For this reason
we are going to keep only the first terms from (6.7.0.12) and (6.7.0.13)
(multiplied with the appropriate constants)

< α|T1|γ >=
2

(2π)
2(ν−1)

δ (p1 − q1)
e−iqx

1√
2ω1q1

δ (p2 − q2) ×

e−iq2x

√
2ω2q2

eiq3x

2
√
2ω3q3

eiq4x

2
√
2ω4q4

.

And after performing the x-integration we find

< α|T1|γ >=
(2π)

ν

2 (2π)
2(ν−1)

×

δ
(
−q

′
1 − q

′
2 + q3 + q4

)
δ (p1 − q1) δ (p2 − q2)

4
√
ω

′
1ω

′
2ω3ω4

.

Analogously,

< γ|T+
1 |β >=

(2π)
ν

2 (2π)
2(ν−1)

×
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δ (q1 + q2 − q3 − q4) δ
(
p

′
1 − q

′
1

)
δ
(
p

′
2 − q

′
2

)
4
√
ω

′
1ω

′
2ω3ω4

.

The sum
∫
dσγ < α|T1|γ >< γ|T+

1 |β > corresponds to an integration

on �q1,�q
′
1 ,�q2,�q

′
2 . It is easy to see that, after these operations, we get

one fourth of (6.7.0.8). Thus, we complete the proof of unitarity for
the proposed example.

Let us now consider the case in which φ3 and φ4 are fields obeying
Klein-Gordon equations with complex mass parameters (See section
5.5). The solution of Eq. (6.5.0.1)

(
�−M2

)
φ = 0 , M = m+ iμ (m > 0),

can be written as

φ(x) =
1

(2π)
ν−1

2

∫
dν−1p

ei�p·�x√
2Ω

[
a (�p) e−iΩt + b (�p) eiΩt

]
,

(6.7.0.14)
where

Ω =
(
�p 2 +M2

) 1
2 . (6.7.0.15)

The quantization of φ leads to the rules (ref.[19])[
a (�p) , b

(
�p

′)]
= δ

(
�p− �p

′)
,

and to the adoption of the symmetric vacuum, from which we get

< 0|a (�p)b
(
�p

′)
|0 >= − < 0|b (�p)a

(
�p

′)
|0 >=

1

2
δ
(
�p− �p

′)
.

(6.7.0.16)
Accordingly, the decomposition of unity for complex mass fields is
(compare with (6.7.0.10))

I = |0 >< 0|+

∫
dν−1q

√
2b (�q) |0 >< 0|a (�q) |0 >

√
2−

∫
dν−1q

√
2a (�q) |0 >< 0|b (�q) |0 >

√
2+ ....
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The matrix < α|T1|γ > has the form given in Eq. (6.7.0.5), but now,
instead of a+

3 and a+
4 , we have to write the four possible operatorsa3, a4;

a3, b4; b3, a4, and b3, b4. When multiplied with < γ|T+
1 |β > as in

(6.7.0.8) they give similar contributions except for the signs of ω3

and ω4 in the arguments of the δ-functions. Thus, the δ-function
for each of the terms in the integral of (6.7.0.8) (r.h.s), should be
δ(p0−Ω3−Ω4), δ(p0−Ω3+Ω4), δ(p0+Ω3−Ω4) and δ(p0+Ω3+Ω4),
respectively. This is exactly one half of the convolution product of the
Wheeler propagators for φ3 and φ4. The other half comes from the
contribution of the matrix elements of the form (6.7.0.11). Of course,
for every field corresponding to a complex mass M, there is another
field corresponding to the complex conjugate mass M∗. We have

φ+(x) =
1

(2π)
ν−1

2

∫
dν−1p

e−i�p·�x
√
2Ω∗

[
b+ (�p) e−iΩ∗t + a+ (�p) eiΩ

∗t
]

[
b+ (�p) , a+

(
�p

′)]
= δ

(
�p− �p

′)

< 0|b+ (�p)a+
(
�p

′)
|0 >= − < 0|a+ (�p)b+

(
�p

′)
|0 >=

1

2
δ
(
�p− �p

′)

I = |0 >< 0|+

∫
dν−1q

√
2a+ (�q) |0 >< 0|b+ (�q) |0 >

√
2−

∫
dν−1q

√
2b+ (�q) |0 >< 0|a+ (�q) |0 >

√
2+ ....

The T-matrix can be constructed with the four possible contributions
φ3,φ4; φ3, φ+

4 ; φ+
3 , φ4 and φ+

3 , φ+
4 . Correspondingly, for each

Wheeler propagator with mass M, there is another one with mass
M∗. And of course, four possible convolution products. It is easy to
see that the total convolution is real, as well as the total T-matrix.

The proof of unitarity for the chosen example, where the masses are
complex numbers, contains as particular cases all fields with symmet-
ric vacua. For bradyons M = m. For tachyons, the limit M → iμ
must be taken. Similarly, in other cases a proof of unitarity for Feyn-
man’s propagators, based on the decomposition (6.7.0.4) can be con-
verted into a proof of unitarity for Wheeler propagators by using the
corresponding decomposition (6.7.0.10).
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6.8 Discussion

We have shown that the Wheeler propagator has several interesting
properties. In the first place, note the fact that it implies only virtual
propagation. The on-shell δ-function, solution of the free equation, is
absent. No quantum of the field can be found in a free state. The
propagator vanishes for space-like distances. The field propagation
takes place inside the light-cone. This is true for bradyons, but is also
true for fields that obey the Klein-Gordon equations with the wrong
sign of the mass term, and even for complex mass fields. The convo-
lution of two Wheeler functions gives another Wheeler function. In
p-space, this convolution coincides for P < 0, with the convolution
of the two on-shell δ-functions, in spite of the fact that each of the
latter only contains free propagation, while each of the former only
contains virtual propagation. The usual vacuum state is annihilated
by the lowering operator a, and gives rise to the Feynman propagator.
The Wheeler Green function is associated to the symmetric vacuum.
This vacuum is not annihilated by a, but rather by the “true-energy”
operator, a symmetric combination of annihilation and creation op-
erators. The space of states generated by a and a+ has an indefinite
metric. There are known methods to deal with this kind of space. In
particular we can define and handle all scalar products by means of
the “holomorphic representation” [24]. Due to the absence of asymp-
totic free waves, no Wheeler particle will appear in external legs of
the Feynman’s diagrams. Only that propagator associated to internal
lines will explicitly appear. Thus, the theoretical tools to deal with
matrix elements in spaces with indefinite metric will not in fact be
necessary for the evaluation of cross-sections. However, the decom-
position of unity for spaces with indefinite metric is needed for the
proof of another important issue, as seen above. The inclusion of
Wheeler fields and the corresponding Wheeler propagators does not
produce any violation of unitarity, if only normal particles are found
in external legs of Feynman diagrams. To complete the theoretical
framework for a rigorous mathematical analysis, it is perhaps conve-
nient to notice that the propagators we have defined are continuous
linear functionals on the space of the entire analytic functions rapidly
decreasing on the real axis. They are known in general as “tempered
ultradistributions” [9, 10, 25, 26]. The Fourier transformed space con-
tains the usual distributions and also admits exponentially increasing
functions (distributions of the exponential type), as can be seen in
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Ref. [27]. We must also answer an important question: what are the
possible uses of the Wheeler propagators?

In the first place we would like to stress the fact that the quanta of
Wheeler fields cannot appear as free particles. They can only be de-
tected as virtual mediators of interactions. It is in the light of this
observation that we must look for probable applications. We will first
take the case of a tachyon field. It is known that unitarity cnot be
achieved, provided we accept the implicit premise that only Feyn-
man’s propagators are to be used, with the consequent presence of
free tachyons. This can also be considered to be a proof of the incom-
patibility of unitarity and Feynman’s propagator for tachyons. To this
observation we add the fact that if the propagator is a Wheeler func-
tion, a tachyon cannot propagate freely. Consequently, we are led to
the acceptance of the complete spectrum �p 2 < μ2 and �p 2 ≥ μ2, with
the caveat that the real exponential functions one gets for �p 2 < μ2

are not eigenfunctions of the Hamiltonian (Ref. [22, 28]). Further-
more, this procedure fits naturally into the treatment for complex
mass fields of section 5. To this case one could relate the Higgs bo-
son problems. The scalar field of the standard model behaves as a
tachyon field for low amplitudes. The fact that the Higgs has not yet
been unambiguously observed without controversy, suggests the possi-
bility that the corresponding propagator might be a Wheeler function
[29]. It is easy to see that this assumption does not spoil any of the
experimental confirmations of the model (on the contrary, it explains
the non observation of the free Higgs boson).

Another possible application emerges in higher order equations. Those
equations appear for example in some supersymmetric models for
higher dimensional spaces [30]. They can be decomposed into Klein-
Gordon factors with general mass parameters. The corresponding
fields have Wheeler functions as propagators. It is interesting that
there are models of higher order equations, coupled to electromag-
netism, which can be shown to be unitary, no matter how high the
order may be [31]. The acceptance of tachyons as Wheeler particles
might be of interest for boson string theory. Using the symmetric
vacuum we can show that the Virasoro algebra turns out to be free
of anomalies in spaces of arbitrary number of dimensions [32]. The
excitations of the string are Wheeler functions in this case.
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Chapter 7

Convolution of
ultradistributions

It is sometimes necessary to work with functions that grow exponen-
tially in space or time. For those cases Schwartz’ space of tempered
distributions (see [5, 6]) is too restrictive. On the other hand, the
space of test functions with bounded support allows the distributions
to blow-up more rapidly than any exponential. In this sense, they
should be considered to be too “permissive” for physical applications.
What is needed is an equilibrium between the necessities in x-space
and the possibility to work in the Fourier transformed space (p-space)
with propagators. The latter are, from a mathematical point of view,
analytic functionals defined on a space of entire test functions.

We shall see that the equilibrium sought above is achieved by working
with tempered ultradistributions (see below). They also have the
advantage of being representable by means of analytic functions, so
that, in general, they are easy to work with and have interesting
properties. One of these properties (as we shall see) is the possibility
of defining a convolution product (CP). This possibility suffices in
general for the CP to be valid for any two tempered ultradistributions,
and of course, this automatically provides a definition for the product
of distributions of exponential type in x-space.

59
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7.1 The convolution product

If we try to define the convolution product by means of the naive
relation

(F ∗G){φ} =

∮
Γ1

∮
Γ2

dk1 dk2 F(k1)G(k2)φ(k1 + k2), (7.1.0.1)

we will soon discover that it is not always defined. The reason is
simple. The result of∮

Γ

dk F(k)φ(k+ k
′
) = χ(k

′
),

does not, in general, belong to Hilbert’s space. However, if at least
one of the ultradistributions F and G is rapidly decreasing (say G),
then a convolution can be defined (see Ref. [10]) by

H(k) =

∞∫
−∞

dt f(t)G(k− t), (7.1.0.2)

where f(t) is the density associated to F(k) (Cf. (4.2.0.7), Dirac’s for-
mula for F). In order to eliminate the test function from (7.1.0.1) use
can be made of the complex δ-function, which is an ultradistribution
(Cauchy’s theorem)

δz ′ {φ} = −
1

2πi

∮
Γ

dz
φ(z)

z− z
′ = φ(z

′
), (7.1.0.3)

where the point z
′
is enclosed by Γ . (This procedure was previously

used in Ref. [8]). We can then recast (7.1.0.1) as

(F ∗G){φ} = −
1

2πi

∮
Γ

dz

∮
Γ1

∮
Γ2

dk1 dk2
F(k1)G(k2)

z− k1 − k2
φ(z). (7.1.0.4)

The path Γ must have

|Im(z)| > |Im(k1)|+ |Im(k2)|, (7.1.0.5)
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in order to embrace the point k1 + k2, (k1 ∈ Γ1, k2 ∈ Γ2). Equation
(7.1.0.4) leads to

F ∗G = H = −
1

2πi

∮
Γ1

∮
Γ2

dk1 dk2
F(k1)G(k2)

z− k1 − k2
. (7.1.0.6)

However, we do not expect (7.1.0.6) to define a tempered ultradistri-
bution for every pair F, G. Note that in (7.1.0.1) F and G operate
on φ(k), which is rapidly decreasing, while in (7.1.0.6) they act on
(z − k)−1 (k = k1 + k2). Furthermore, due to (7.1.0.5) and to the
fact that Γ1 and Γ2 run outside a horizontal band containing all the
singularities of F and G, the integrand in (7.1.0.6) is analytic at ev-
ery point of the integration paths. Taking into account the property
(4.2.0.9) of tempered ultradistributions, we come to the conclusion
that the integrations in (7.1.0.6) have at most, a tempered singularity
for k → ∞. We define (see [33])

Hλ(z) =
i

2π

∮
Γ1

∮
Γ2

dk1 dk2
kλ1F(k1)k

λ
2G(k2)

z− k1 − k2
. (7.1.0.7)

Now, if we have the bounds

|F(k1)| ≤ C1|k1|
m ; |G(k2)| ≤ C2|k2|

n, (7.1.0.8)

then (7.1.0.7) is convergent for

Re(λ) < −l− 1 ; l = max{m,n}, (7.1.0.9)

being also analytic in the region (7.1.0.9) of the λ plane. The deriva-
tive with respect to λ merely multiplies by a logarithmic factor the
integrand of (7.1.0.7), without spoiling the convergence. According
to the method of Ref. [34], Hλ can be analytically continued to other
parts of the λ plane. In particular, near the origin we have the Laurent
(or Taylor) expansion

Hλ =
∑
n

H(n)(z)λn, (7.1.0.10)

where the sum might have terms with negative n. We now define the
convolution product as the λ-independent term of (7.1.0.10)

H(z) = H(0)(z). (7.1.0.11)
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Note that the derivatives of Hλ(z) with respect to z can be obtained,
from (7.1.0.7), by taking different powers of the denominator

dpHλ(z)

dzp
= (−1)pp!

i

2π

∮
Γ1

∮
Γ2

dk1 dk2
kΛ1 F(k1)k

Λ
2 G(k2)

(z− k1 − k2)p
. (7.1.0.12)

The convergence of (7.1.0.7) also guarantees that of (7.1.0.12). There-
fore, also ensures analytic behavior in z outside the horizontal band
defined by (7.1.0.5). We will now show that |Hλ(z)| is bounded by a
power of |z| (Cf. (4.2.0.9)). To this end we take

Im(λ) = 0 ; λ < −l− 1 ; z = x+ iy

ki = κi ± iσi ; σi > 0 ; dki = dκi.

The integrals along Γi can be expressed as integrals on dκi between
0 → ∞. Thus, we have

|Hλ| =
1

2π

∣∣∣∣∣∣
∮
Γ1

∮
Γ2

dk1 dk2
kλ1F(k1)k

λ
2G(k2)

z− k1 − k2

∣∣∣∣∣∣ ≤
1

2π

∮
Γ1

∮
Γ2

sgn Im(k1) dk1 sgn Im(k2) dk2×

|k1|
λC1|k1|

m|k2|
λC2|k2|

n

|z− k1 − k2|
≤

C1C2

2π

∮
Γ1

∮
Γ2

sgn Im(k1) dk1 sgn Im(k2) dk2|k1|
λ+m|k2|

λ+n =

8C1C2

π

∞∫
0

∞∫
0

dκ1 dκ2
(
κ21 + σ2

1

)λ+m
2

(
κ22 + σ2

2

)λ+n
2 . (7.1.0.13)

We perform now the change of variables wi = κ2i and obtain

(7.1.0.13) =
2C1C2

π

∞∫
0

dw1 w
− 1

2

1

(
w1 + σ2

1

)λ+m
2 ×

∞∫
0

dw2 w
− 1

2

2

(
w2 + σ2

2

)λ+m
2 = (7.1.0.14)
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2C1C2

π
B
(
1

2
,−

λ+m+ 1

2

)
B
(
1

2
,−

λ+ n+ 1

2

)
σ

λ+m+1
2

1 σ
λ+n+1

2

2 ≤

C(λ,m,n)|z|λ+m+n+1, (7.1.0.15)

where B(x, y) is a Gauss’ beta function. It is to be noted that if G(k)
is a rapidly decreasing ultradistribution, then Hλ(z) (Eq. (7.1.0.7))
coincides with H0(z)

H0(z) =
i

2π

∮
Γ1

dk1 F(k1)

∮
Γ2

dk2
G(k2)

z− k1 − k2
. (7.1.0.16)

In fact, near λ = 0 we have (|k| > 1)

|kλ − 1| ≤ λ(2π+ |ln|k||)|k|λ, (7.1.0.17)

Hλ −H0(z) =
i

2π

∮
Γ1

dk1 kλ1F(k1)

∮
Γ2

dk2 (kλ2 − 1)
G(k2)

z− k1 − k2
+

i

2π

∮
Γ1

dk1 (kλ1 − 1)F(k1)

∮
Γ2

dk2
G(k2)

z− k1 − k2
. (7.1.0.18)

In Eq. (7.1.0.18) the integrals are convergent, as G(k) and kλG(k) are
both rapidly decreasing. Furthermore, due to (7.1.0.17), the difference
Hλ −H0 is proportional to λ, entailing

lim
λ→0

[Hλ −H0] = 0. (7.1.0.19)

Again, when G(k) is rapidly decreasing, the convolution defined in
Ref. [10] reads

H(z) =

∞∫
−∞

dt f(t)G(z− t), (7.1.0.20)

(where f(t) is given by (4.2.0.7), (4.2.0.8), and also coincides with
(7.1.0.16). To show that (7.1.0.16) implies (7.1.0.20), we use (4.2.0.8)
in (7.1.0.16)

H0(z) =
i

2π

∞∫
−∞

dt f(t)

∮
Γ2

dk2
G(k2)

z− k1 − k2
.
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However, if G(t) is the density associated to G(z), then

i

2π

∮
Γ2

dk2
G(k2)

z− t− k2
=

1

2πi

∞∫
−∞

dt2
g(t2)

t2 − (z− t)
= G(z− t),

i.e.,

H0(z) = H(z). (7.1.0.21)

7.1.1 Examples

Here we are going to use definition (7.1.0.7) to evaluate the convolu-
tion of tempered ultradistributions and, indirectly, product of distri-
butions ∈ Λ∞. The convolution theorem tells us that

F {f1(x)f2(x)} =
1

2π
f̌1(k) ∗ f̌2(k), (7.1.1.22)

where

f̌ = F {f(x)} (k).

I) As a first example, we shall consider the distribution xα± (Ref. [6],
ch.1, §3.2, also Ref. [36], ch.4) whose Fourier transform is

x̌α± = ie∓i 1
2
αΓ(α+ 1)k−α−1Θ[∓ε(k)], (7.1.1.23)

where Θ(x) is Heaviside’s step function and ε(k) = sgn Im(k). The
ultradistribution (7.1.1.23) has a line of singularities (a discontinuity)
on the real axis. Accordingly, the path Γ (Cf. (4.2.0.6)) runs parallel
to the real axis at a distance as small as we please.

F
{
xα+x

β
+

}
=

i

4π2

∮
Γ1

dk1

∮
Γ2

dk2
x̌α+x̌

β
+

z− k1 − k2
=

[
i

4π2
ie−iπ

2
αΓ(α+ 1)ie−iπ

2
βΓ(β+ 1)

]
×

∮
Γ1

dk1k
−α−1
1 Θ[−ε(k1)]

∮
Γ2

dk2
k−β−1
2 Θ[−ε(k2)]

z− k1 − k2
.
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The functions Θ[ε(k1)] and Θ[ε(k2)] eliminate the branches of Γ1 and
Γ2 (respectively) on the lower half plane of k1 and k2. By taking the
remaining integration arbitrarily close to the real axis we get

F
{
xα+x

β
+

}
= −[ ]

∮
Γ1

dk1k
−α−1
1 Θ[−ε(k1)]

∞∫
−∞

dy
(y− i0)−β−1

z− k1 − y
=

−[ ]

∮
Γ1

dk1k
−α−1
1 Θ[−ε(k1)]

∞∫
−∞

dy
y−β−1
+ + e−iπ(−β−1)y−β−1

−

z− k1 − y
=

−[ ]

∮
Γ1

dk1k
−α−1
1 Θ[−ε(k1)]

Γ(−β)Γ(1+ β)

(z− k1)β+1
×

[
e−iπ(−β−1) − e−iπε(z)(−β−1)

]
=

2i[ ]Θ[−ε(z)]Γ(−β)Γ(1+ β) sinπ(−β− 1) ×∮
Γ1

dk1
k−α−1
1

(z− k1)β+1
Θ[−ε(k1)] =

2iπΘ[−ε(z)][ ]

∞∫
−∞

dx
x−α−1
+ + e−iπ(−α−1)x−α−1

−

(z− x)β+1
=

2iπΘ[−ε(z)][ ]B(−α,β+ α+ 1)
[
eiπε(z)α − eiπα

]
z−α−β−1 =

2iπ{Θ[−ε(z)]}2[ ]
Γ(−α)Γ(β+ α+ 1)

Γ(β+ 1)
2i sinπ(−α)z−α−β−1 =

ie−iπ
2
(α+β)Γ(α+ β+ 1)z−α−β−1Θ[−ε(z)] =

x̌α+β
+ = F

{
xα+β
+

}
= F

{
xα+x

β
+

}
, (7.1.1.24)

where use has been made of the relation

Γ(λ)Γ(1− λ) =
π

sin(πλ)
.

For the evaluation of the convolution x̌α+ ∗ x̌β− the procedure is entirely
similar. However, in this case one of the integrations gives rise to a
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factor Θ[−ε(z)] and the other to a factor Θ[ε(z)]. So that, instead of
{Θ[−ε(z)]}2 = Θ[−ε(z)], we get Θ[−ε(z)]Θ[ε(z)] = 0. This entails

x̌α+ ∗ x̌β− ≡ 0 ... xα+ · xβ− = 0. (7.1.1.25)

II)As a second example we consider Dirac’s δ-functions, whose Fourier
transform is

δ̌(m) = imkm
ε(k)

2
. (7.1.1.26)

For the convolution (7.1.0.7) we have

δ̌(m) ∗ δ̌(n) =
i

4π

∮
Γ1

dk1 imkλ+m
1

ε(k1)

2

∮
Γ2

dk2
inkλ+n

2 ε(k2)

z− k1 − k2
.

In this case, the factors ε1 and ε2 change the sign of the integrations
in the lower half plane of k1 and k2

im+n+1

4π

∮
Γ1

dk1 kλ+m
1

ε(k1)

2

∞∫
−∞

dy
(y+ i0)λ+n + (y− i0)λ+n

z− k1 − y
=

im+n+1

2π

∮
Γ1

dk1 kλ+m
1

ε(k1)

2

∞∫
−∞

dy
yλ+n
+ + cosπ(λ+ n)yλ+n

−

z− k1 − y
=

im+n+1

2π

∮
Γ1

dk1 kλ+m
1

ε(k1)

2

Γ(λ+ n+ 1)Γ(−λ− n)

z− k1
×

[
cosπ(λ+ n) − e−iπε(z)(λ+n)

]
=

−
iπε(z)

2π
im+n+1

∞∫
−∞

dx
xλ+m
+ + cosπ(λ+m)xλ+m

−

(z− x)−λ−n
=

ε(z)

2
im+n Γ(λ+m+ 1)Γ(−2λ−m− n− 1)

Γ(−λ− n)
z2λ+m+n+1 ×

[
e−iπε(z)(λ+m+1) + cosπ(λ+m)

]
=

[ε(z)]2

2
im+n+1 Γ(λ+m+ 1)Γ(−2λ−m− n− 1)

Γ(−λ− n)
×
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sinπ(λ+m)z2λ+m+n+1 =

λ→0 −→ 0 = δ̌(m) ∗ δ̌(n). (7.1.1.27)

There are two reasons for this null result. The Γ functions have simple
poles when their arguments are negative integers (or zero). Thus, the
ratio of Γ functions has a finite limit. However, they are multiplied
by sinπ(λ+m)λ→0 −→ 0. Furthermore, [ε(z)]2 = 1, and

z2λ+m+n+1
λ→0 −→ zm+n+1

Thus, we can set (C = arbitrary constant)

δ̌(m) ∗ δ̌(n) = Czm+n+1. (7.1.1.28)

However, due to the property C, §3.2, the utradistribution (7.1.1.28)
is equivalent to zero. We have then

δ(m)(x) · δ(n)(x) = 0. (7.1.1.29)

This result was previously obtained in Ref. [35] and can be summa-
rized in general as by the statement “the product of two distributions
with point support is zero”.

III) We can combine examples I and II, to find the product δ(m) ·
x̌α+.

1

2π
δ̌(m) ∗ x̌α+ =

[
i

4π2
imie−iπ

2
αΓ(α+ 1)

]
×

∮
Γ1

dk1 kλ+m
1

ε(k1)

2

∮
Γ2

dk2
k−α−1
2 Θ[−ε(k2)]

z− k1 − k2
=

2πiΘ[−ε(z)][ ]

∞∫
−∞

dx
xλ+m
+ + cosπ(λ+m)xλ+m

−

(z− x)α+1
=

2πiΘ[−ε(z)][ ]
Γ(λ+m+ 1)Γ(α− λ−m)

Γ(α+ 1)
zλ+m−α ×

[
e−iπε(z)(λ+m+1) + cosπ(λ+m)

]
=

2πiΘ[−ε(z)]

(
−

im

4π2
e−iπ

2
α

)
Γ(λ+m+ 1)Γ(α− λ−m) ×
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i sinπ(λ+m) ε(z)zλ+m−α−→ 0λ→0 , (7.1.1.30)

if α is not an integer s such that s ≤ m. When 0 ≤ α = s ≤ m one
has

1

2π
δ̌(m) ∗ x̌s+ = −2iπΘ[−ε(z)]

im

4π2
(−i)siε(z)zλ+m−s ×

Γ(λ+m+ 1)

Γ(λ+m+ 1− s)

sinπ(λ+m)

sinπ(λ+m− s)
=

im

2
(−i)s

Γ(λ+m+ 1)

Γ(λ+m+ 1− s)

sinπ(λ+m)

sinπ(λ+m− s)
Θ[−ε(z)]ε(z)zλ+m−s

λ→0 −→ (−1)s
im−s

2

m!

(m− s)!

ε(z)

2
zm−s =

(−1)s

2

m!

(m− s)!
δ̌(m−s). (7.1.1.31)

In particular, for s = 0 we get

δ(m)(x)Θ(x) =
1

2
δ(m)(x). (7.1.1.32)

If α = s=negative number=−n we must be careful as xα+ has a pole for
α = −n. We shall deal with this case by the replacement α = −n− λ
in (7.1.1.30). One has

Γ(α− λ−m) −→ Γ(−2λ−m− n) =

−
π

Γ(2λ+m+ n+ 1) sinπ(2λ+m+ n)
,

and, when taking the limit λ → 0,

1

2π
δ̌(m) ∗ x−n

+ =
im+n

2

m!

(m+ n)!

(−1)n

2

ε(z)

2
zm+n =

(−1)n

4

m!

(m+ n)!
δ̌(m+n). (7.1.1.33)

In Eqs. (7.1.1.31) and (7.1.1.33) we have used

Θ[−ε(z)]ε(z) = −Θ[−ε(z)] =
1

2
(ε(z) − 1) =

ε(z)

2
−

1

2
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Θ[−ε(z)]ε(z)zs =
ε(z)

2
zs −

1

2
zs ≈ ε(z)

2
zs,

since Czs is equivalent to zero (Cf. (7.1.1.28) ).

There are also similar expressions which originate in the use of x̌α− in
(7.1.1.30). In particular, if we employ

x̌−n = x̌−n
+ + (−1)nx̌−n

− , (7.1.1.34)

then we easily find

1

2π
δ̌(m) ∗ x̌−n =

(−1)n

2

m!

(m+ n)!
δ̌(m+n). (7.1.1.35)

The case m = 0, n = 1, was first published in Ref. [37]. For m = n
and Eq. (7.1.1.35), we use Ref.[38].

IV). To illustrate the use of (7.1.0.10) and (7.1.0.11), we are now
going to examine an interesting example. Let us take the ultradistri-
bution (7.1.1.34), which is found to be

x̌−n =
(−i)nπ

(n− 1)!

[
−

1

πi
ln(k) +

ε(k)

2

]
kn−1. (7.1.1.36)

The convolution product is now

x̌−m ∗ x̌−n = −
(−i)m+n+1

4(m− 1)!(n− 1)!

∮
Γ1

∮
Γ2

dk1 dk2

{
−

1

π2

kλ+m−1
1 ln(k1)k

λ+n−1
2 ln(k2)

z− k1 − k2

−
1

2πi

kλ+m−1
1 ln(k1)k

λ+n−1
2 ε(k2)

z− k1 − k2
+

−
1

2πi

kλ+m−1
1 ε(k1)k

λ+n−1
2 ln(k2)

z− k1 − k2
+

1

4

kλ+m−1
1 ε(k1)k

λ+n−1
2 ε(k2)

z− k1 − k2

}
.

(7.1.1.37)
The last term of (7.1.1.37) is null according to example II). We analyze
now the first term. We shall use the identity

kλ+m−1 ln(k) = Dαk
α+m−1 ; Dα =

∂

∂α

∣∣∣∣
α=λ

,
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that yields
i

4π2

(−i)m+n

(m− 1)!(n− 1)!
×∮

Γ1

∮
Γ2

dk1 dk2
kλ+m−1
1 ln(k1)k

λ+n−1
2 ln(k2)

z− k1 − k2
=

[
i

4π2

(−i)m+n

(m− 1)!(n− 1)!

] ∮
Γ1

dk1 Dαk
α+m−1×

∮
Γ2

dk2
Dβk

β+n−1
2 ln(k2)

z− k1 − k2
=

[ ]DαDβ

∮
Γ1

dk1
kα+m−1
1

(z− k1)1−β−n
×

2i sinπ(β+ n− 1)Γ(β+ n)Γ(1− β− n) =

2πi[ ]DαDβ

∮
Γ1

dk1
kα+m−1
1

(z− k1)1−β−n
=

2πi[ ]DαDβ
Γ(α+m)Γ(1− α−m− β− n)

Γ(1− β− n

2i sinπ(α+m− 1) zα+β+m+n−1 =

4π[ ]DαDβ
Γ(α+m)Γ(β+ n)

Γ(α+ β+ n+m

sinπα sinπβ

sinπ(α+ β)
zα+β+m+n−1 =

−
1

π

(−i)m+n−1

(m+ n− 1)!
DαDβ

{
sinπα sinπβ

sinπ(α+ β)
zα+β+m+n−1

}
, (7.1.1.38)

where we have used the fact that any derivative, Dα or Dβ, acting on
a Γ function will lead to a null result for (7.1.1.38) through the sub-
stitutions α = λ, β = λ, and λ → 0. Now, the derivatives in (7.1.1.38)
give rise essentially to two types of terms. The two derivatives acting
on the trigonometric functions give rise to a pole term (in λ). If one
takes a derivative of the trigonometric functions and a derivative of
zα+β, a constant term is obtained. For the term DαDβz

α+β, the
limit λ → 0 of the trigonometric functions is zero. Thus, we get

= −
(−i)m+n−1

(m+ n− 1)!
zm+n−1

{
1

4

1

λ
z2λ +

1

2
ln(z)

}
.
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The second and third terms of (7.1.1.38) give the same contribution,
that can be evaluated by a similar procedure. This contribution is

1

8π

(−i)m+n−2

(m− 1)!(n− 1)!

∮
Γ1

∮
Γ2

dk1 dk2
kλ+m−1
1 ln(k1)k

λ+n−1
2 ε(k2)

z− k1 − k2
=

(−i)m+n

(m+ n− 1)!

π

4
ε(z) zm+n−1. (7.1.1.39)

According, we finally get

(6.1.37) =
(−i)m+n

(m+ n− 1)!
zm+n−1

{
i

4

1

λ
z2λ +

i

2
ln(z) +

π

2
ε(z)

}
=

(−i)m+n

(m+ n− 1)!
zm+n−1

{
i

4

1

λ
(1+ 2λ ln(z)) +

i

2
ln(z) +

π

2
ε(z)

}
=

(−i)m+nπ

(m+ n− 1)!
zm+n−1

{
−

1

πi
ln(z) +

1

2
ε(z)

}
. (7.1.1.40)

The λ-independent term is recognized to be x̌−m−n (Cf. 5.15). The
pole term is equivalent to zero, according to §3.2 III.

V). Finally, we give a physical example. We consider a massless

scalar λ
4!φ

4(x) theory in four dimensions. For this theory we shall
evaluate the self-energy Green function. The propagator for the field
φ(x) is

Δ(x) = [−4π2(u2 − i0)]−1. (7.1.1.41)

From ref.[36] we have

δ(m)(u2) = δ(m)(x0 + r)(x0 − r)−m−1sgn(x0 − r)+

δ(m)(x0 − r)(x0 + r)−m−1sgn(x0 + r),

where
u2 = x20 − x21 − · · ·− x2n−1

r2 = x21 + x22 + · · ·+ x2n−1

(u2 ± i0)−m = u−2m ± (−1)m

(m− 1)!
iπδ(m−1)(u2)

x−msgn(x) =
(−1)m−1

(m− 1)!
{|x|−1}(m−1),
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—
x|−1 = {sgn(x) ln |x|}

′
+ Cδ(x)

with C an arbitrary constant. According to these equations, we can
write

(u2 − i0)−1 = (2x0)
−1

[
(x0 − r)−1 + (x0 + r)−1

]
+

(2r)−1 [δ(x0 − r) + δ(x0 + r)] + Cδ(x0 − r)δ(x0 + r), (7.1.1.42)

(where C is an arbitrary constant appearing in the definition of some
distributions (see Ref. citetp9, 8.8, 8.9). Using the results of I) to IV)
it is easy show that

(u2 − i0)−1(u2 − i0)−1 = (u2 − i0)−2.

Thus, we have for the self-energy

Σ(x) = (Δ(x))
2
=

1

16π4
(u2 − i0)−2, (7.1.1.43)

where (u2 − i0)−2 is defined in Ref. ([36], 8.8, 8.9).

7.2 Discussion

When we use the perturbative expansion in quantum field theory, we
have to deal with products of distributions in configuration space, or
else, with convolutions in the Fourier transformed p-space. Unfortu-
nately, products or convolutions (of distributions) are in general ill-
defined quantities. However, in physical applications one introduces
some “regularization” scheme, which allows us to give sense to diver-
gent integrals. Among these procedures, we would like to mention
the dimensional regularization method (Refs. [12]). Essentially, the
method consist in the separation of the volume element (dνp) into
an angular factor (dΩ) and a radial factor (pν−1dp). First the angu-
lar integration is carried out and then the number of dimensions ν is
taken as a free parameter, which can later be adjusted so as to yield
a convergent integral that is an analytic function of ν. Our formula
(7.1.0.7) is similar to the expression one obtains with dimensional
regularization. However, the parameter λ is completely independent
of any dimensional interpretation. All ultradistributions provide in-
tegrands ((7.1.0.7)) that are analytic functions along the integration
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path. The parameter λ permits us to control the possible tempered
asymptotic behavior. The existence of a region of analytic character
of λ, and a subsequent continuation to the point of interest (Ref. [6]),
defines the convolution product. These properties show that tempered
ultradistributions provide an appropriate framework for applications
to physics. Furthermore, they can “absorb” arbitrary polynomials,
thanks to Eq. (4.2.0.10), a property that is interesting for renormal-
ization theory.
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Chapter 8

Even tempered
ultradistributions

Geometric quantization is a mathematical approach used to define
a quantum theory corresponding to a given classical theory [1]. In
another vein, loop integrals appear if one considers the Feynman’s
diagrams with one (or more) loops by integrating over the internal
momenta [1]. As we have stressed above, an important issue in QFT is
that of the product of distributions with coincident point singularities,
related to the asymptotic behavior of loop integrals of propagators [1].

From a mathematical point of view, practically all definitions of such
products lead to limitations on the set of distributions that can be mul-
tiplied together to give another distribution of the same kind [9, 10].
The properties of ultradistributions (Refs. [9, 10]) are well adapted
for their use in field theory. In this respect we have shown (Ref. [33])
that it is possible to define, in one dimensional spaces, the convolution
of any pair of tempered ultradistributions, yielding as a result another
tempered ultradistribution. The next step is to consider the convolu-
tion of any pair of tempered ultradistribution in n-dimensional space
[9, 10]. As we shall see, this follows from the formula obtained in Ref.
[33] for one-dimensional spaces. However, the resultant formula is too
involved to be used in practical applications and calculus. Thus, for
applications, it is convenient to consider the convolution of any two
tempered ultradistributions which are even in the variables k0 y ρ
(see section 5).

75
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Ultradistributions also have the advantage of being representable by
means of analytic functions. Accordingly, they are easier to work
with and have interesting properties. One of those properties is that
Schwartz tempered distributions are canonical and continuously in-
jected into tempered ultradistributions.

8.1 Convolutions

The existence of the convolution product between tempered ultradis-
tributions is demonstrated in Ref. [33]. We now define

Hλ(k) =
i

(2π)n

∮
Γ1

∮
Γ2

kλ1F(k1)k
λ
2G(k2)

k− k1 − k2
dk1 dk2, (8.1.0.1)

with (k − k1 − k2 =
∏n

i=1(ki − k1i − k2i)). Let bi be a vertical
band contained in the λi-plane pi. Integral (8.1.0.1) is an analytic
function of λ defined in a domain B given by the Cartesian product of
vertical bands

∏
bi contained in the also Cartesian product P =

∏
pi

of the n λ-planes. Moreover, it is bounded by a power of |k|. Then,
according to the method of Ref. [33], Hλ can be analytically continued
to other parts of P. In particular, near the origin we have the Laurent
expansion

Hλ(k) =
∑
n

H(n)(k)λn. (8.1.0.2)

We now define the convolution product as the λ-independent term of
(8.1.0.2)

H(k) = H(0)(k). (8.1.0.3)

The proof that H(0)(k) is a tempered ultradistribution is similar to
the one given in Ref. [33] for the one-dimensional case. For an imme-
diate application of (8.1.0.1)- (8.1.0.3), we can evaluate the product of
two arbitrary derivatives of an n-dimensional δ distribution. By cal-
culating the convolution product of the Fourier transforms of δ(m)(x)
and δ(n)(x), and then antitransforming, we can show that

δ(m)(x) · δ(n)(x) = 0, (8.1.0.4)

extending the result obtained in Ref. [33] for the one-dimensional
case. Likewise, we can obtain

(xα1

1+ xα2

2+...x
αn
n+) · (xβ1

1+ xβ2

2+...x
βn
n+) = (xα1+β1

1+ xα2+β2

2+ ...xαn+βn
n+ ),

(8.1.0.5)
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generalizing again the result of Ref. [33]. As another example let us
consider the product (x−n1y−m1) · (x−n2y−m2). We have

F {(x−n1y−m1) · (x−n2y−m2)} =

(−i)n1+n2

(n1 + n2 − 1)!
zn1+n2−1
1

[
i

4

z2λ1

1

λ1
+

i

2
ln(z1)+

π

2
Sgn[�(z1)]

] (−i)m1+m2

(m1 +m2 − 1)!
zm1+m2−1
2 ×

[
i

4

z2λ2

2

λ2
+

i

2
ln(z2) +

π

2
Sgn[�(z2)]

]
=

(−i)n1+n2

(n1 + n2 − 1)!
zn1+n2−1
1

[
i

4λ1
×

[1+ 2λ1 ln(z1)] +
i

2
ln(z1) +

π

2
Sgn[�(z1)]

]
×

(−i)m1+m2

(m1 +m2 − 1)!
zm1+m2−1
2 ×

[
i

4λ2
[1+ 2λ2 ln(z2)] +

i

2
ln(z2) +

π

2
Sgn[�(z2)]

]
. (8.1.0.6)

The (λ1; λ2)-independent term is

(−i)n1+n2π

(n1 + n2 − 1)!
zn1+n2−1
1

[
1

πi
ln(z1) −

π

2
Sgn[�(z1)]

]
×

(−i)m1+m2

(m1 +m2 − 1)!
zm1+m2−1
2

[
1

πi
ln(z2) −

π

2
Sgn[�(z2)]

]
, (8.1.0.7)

recognized to be F {x−n1−n2y−m1−m2 }.

8.2 Four dimensional ultradistributions

We pass now to consider the convolution of two even tempered ultra-
distributions. The Fourier transform of a distribution of exponential
type, even in the variables x0 and |�x|, is by definition an even tempered
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ultradistribution in the variables k0 and ρ = (k21 + k22 + · · ·+ k2n)
1/2.

Taking into account the equality

+∞∫
−∞

f̂(x)φ̂(x) dx =

∮
Γ

F(k)φ(k) dk =

+∞∫
−∞

f(k)φ(k) dk, (8.2.0.1)

(where F(k) and f(k) are related by (4.2.0.7), we conclude that f(k)
is even in k0 and ρ.

For most practical applications one has to deal with the convolution
of two Lorentz invariant ultradistributions. They are particular cases
of ultradistributions which are even in two relevant variables, one
temporal and the other spatial, that we call even ultradistributions.
Let as now consider f̂ ∈ H even. Then we can write

f̂(x0, r) =
i

(2π)3r

+∞∫∫
−∞

f(k0, ρ)e
−ik0x0

e−iρr ρ dρdk0 (8.2.0.2)

f(k0, ρ) = −
2πi

ρ

+∞∫∫
−∞

f̂(x0, r)e
ik0x0

eiρr r drdx0. (8.2.0.3)

Let as now take ĝ ∈ H. Then according to (8.2.0.2)

f̂(x)ĝ(x) = −
1

(2π)6r2

+∞∫∫∫∫
−∞

f(k01, ρ1)g(k
0
2, ρ2)e

−i(k0
1+k0

2)x
0

e−i(ρ1+ρ2)r ×

× ρ1ρ2 dρ1 dρ2 dk01 dk02, (8.2.0.4)

and Fourier transforming (8.2.0.4) we have

F {f̂(x)ĝ(x)}(k) =
i

(2π)5ρ

+∞∫
· · ·

∫
−∞

f(k01, ρ1)g(k
0
2, ρ2)e

i(k0−k0
1−k0

2)x
0

ei(ρ−ρ1−ρ2)r ×

× ρ1ρ2 dρ1 dρ2 dk01 dk02 r−1dr dx0. (8.2.0.5)
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Evaluating the integral in the variable x0 and calling h(k0, ρ) =
F {f̂(x)ĝ(x)}(k) in (8.2.0.5), we obtain

h(k0, ρ) = i

+∞∫
· · ·

∫
−∞

f(k01, ρ1)g(k
0
2, ρ2)δ(k

0 − k01 − k02)
ei(ρ−ρ1−ρ2)r

ρ
×

× ρ1ρ2 dρ1 dρ2 dk01 dk02 r−1dr. (8.2.0.6)

We want now to extend h(k0, ρ) to the complex plane as a tempered
ultradistribution. For this we can use, for example, Eq. (4.2.0.7).
First we consider the term

ei(ρ−ρ1−ρ2)r

ρ
. (8.2.0.7)

The extension to the complex plane is

{Θ(r) Θ[�(ρ)] −Θ(−r) Θ[−�(ρ)]}
ei(ρ−ρ1−ρ2)r

ρ
, (8.2.0.8)

where Θ is the Heaviside’s step function and � denotes “Imaginary
part”. On the other hand, the extension of

δ(k0 − k01 − k02), (8.2.0.9)

is

−
1

2πi(k0 − k01 − k02)
. (8.2.0.10)

Replacing [(8.2.0.8) and (8.2.0.10)] into (8.2.0.6), and then integrating
out the variable r, we obtain

H(k0, ρ) =
1

2πρ

+∞∫∫∫∫
−∞

f(k01, ρ1)g(k
0
2, ρ2)

k0 − k01 − k02
×

{Θ[�(ρ)] ln(ρ1 + ρ2 − ρ) +Θ[−�(ρ)] ×
ln(ρ− ρ1 − ρ2)} ρ1ρ2 dρ1 dρ2 dk01 dk02, (8.2.0.11)

where H(k0, ρ) is the extension of f(k0, ρ). Taking into account that
f(k01, ρ1) and g(k02, ρ2) are even functions in the first and second vari-
ables, (8.2.0.11) takes the form

H(k0, ρ) =
1

4πρ

+∞∫∫∫∫
−∞

f(k01, ρ1)g(k
0
2, ρ2)

k0 − k01 − k02
ln[ρ2 − (ρ1 + ρ2)

2] ×
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ρ1ρ2 dρ1 dρ2 dk01 dk02. (8.2.0.12)

The expression (8.2.0.12) for H(k0, ρ) can be re-written in the form

H(k0, ρ) =
1

4πρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

F(k01, ρ1)G(k02, ρ2)

k0 − k01 − k02
ln[ρ2 − (ρ1 + ρ2)

2] ×

ρ1ρ2 dρ1 dρ2 dk01 dk02, (8.2.0.13)

where F(k01, ρ1) andG(k02, ρ2) are, respectively, the extensions of f(k
0
1, ρ1)

and g(k02, ρ2), and where we have taken |�(k0)| > |�(k01)| + |�(k02)|,
|�(ρ)| > |�(ρ1)| + |�(ρ2)|. In addition Γ01 , Γ02 , Γ1, and Γ2 are, re-
spectively, paths (as we have described in section 3) in the variables
k01, k

0
2, ρ1, and ρ2, enclosing all the singularities of the integrand in

(8.2.0.13). The difference between∫
2ρ

ρ2 − (ρ1 + ρ2)2
dρ and ln[ρ2 − (ρ1 + ρ2)

2]

is an entire analytic function. With this substitution into (8.2.0.13)
we obtain

H(k0, ρ) =
1

2πρ

∫
ρ dρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

F(k01, ρ1)G(k02, ρ2)

k0 − k01 − k02

1

ρ2 − (ρ1 + ρ2)2
×

ρ1ρ2 dρ1 dρ2 dk01 dk02. (8.2.0.14)

Now, we can use the method of Ref. [33] to define the convolution for
the case in which F(k01, ρ1) and G(k02, ρ2) are tempered ultradistribu-
tions. We define

Hλ0λ(k
0, ρ) =

1

2πρ

∫
ρ dρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

×

k0 λ0

1 ρλ+1
1 F(k01, ρ1)k

0 λ0

2 ρλ+1
2 G(k02, ρ2)

k0 − k01 − k02
×

1

ρ2 − (ρ1 + ρ2)2
dρ1 dρ2 dk01 dk02. (8.2.0.15)

Integral (8.2.0.15) is an analytic function of (λ0, λ) bounded by a
power of |k| and defined in a domain B, given by the Cartesian product
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of a vertical band b0 contained in the λ0-plane and vertical band b,
contained in the λ-plane. We can again extend this domain using the
method given in Ref. [33] and perform the Laurent expansion

Hλ0λ(k
0, ρ) =

∑
mn

H(m,n)(k0, ρ)λm0 λn. (8.2.0.16)

We define the convolution product as the (λ0, λ)- independent term
of (8.2.0.16)

H(k) = H(k0, ρ) = H(0,0)(k0, ρ). (8.2.0.17)

The proof that H(k) is an ultradistribution is similar to the one given
in Ref. [33] for the one-dimensional case. To simplify the evaluation
of (8.2.0.15) we define

Lλ0λ(k
0, ρ) =

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

k0 λ0

1 ρλ+1
1 F(k01, ρ1)k

0 λ0

2 ρλ+1
2 G(k02, ρ2)

k0 − k01 − k02
×

1

ρ2 − (ρ1 + ρ2)2
dρ1 dρ2 dk01 dk02, (8.2.0.18)

so that

Hλ0λ(k
0, ρ) =

1

2πρ

∫
Lλ0λ(k

0, ρ) ρ dρ. (8.2.0.19)

Now, we will show that the cut on the real axis of (8.2.0.17) hλ0λ(k
0, ρ)

is an even function of k0 and ρ. For this purpose we consider

Hλ0λ(k
0, ρ) =

1

4πρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

k0 λ0

1 ρλ+1
1 F(k01, ρ1)k

0 λ0

2 ρλ+1
2 G(k02, ρ2)

k0 − k01 − k02
×

ln[ρ2 − (ρ1 + ρ2)
2] dρ1 dρ2 dk01 dk02. (8.2.0.20)

(8.2.0.20) is explicitly odd in ρ. For the variable k0 we take into

account that eiπλ0{Sgn[�(k0
1)]+Sgn[�(k0

2)]} = 1, and, as a consequence
(8.2.0.20) is odd in k0 too. We consider now the parity in the variable
ρ ∮

Γ0

∮
Γ

Hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ =
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−

+∞∫∫
−∞

hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ =

−

∮
Γ0

∮
Γ

Hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ =

−

+∞∫∫
−∞

hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ. (8.2.0.21)

Thus, we have
hλ0λ(k

0,−ρ) = hλ0λ(k
0, ρ). (8.2.0.22)

The proof for the variable k0 is similar.

8.3 Massless Wheeler propagators

The massless Wheeler propagator w0 is given by

w0(k) =
i

k20 − ρ2
. (8.3.0.1)

It can be extended to the complex plane as a tempered ultradistribu-
tion in the variables k0 and ρ

W0(k) = −i
Sgn�(k0)

8k0

[
Sgn�(ρ) − Sgn�(k0)

ρ− k0
−

Sgn�(ρ) + Sgn�(k0)

ρ+ k0

]
, (8.3.0.2)

where Sgn(x) is the function sign for the variable x. We proceed
now to evaluate the convolution of two massless Wheeler propagators.
According to (8.2.0.18) and (8.3.0.2) we can write

Lλ0λ(k
0, ρ) = −

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

Sgn�(k01)

8k01
×

[
Sgn�(ρ1) − Sgn�(k01)

ρ1 − k01
−

Sgn�(ρ1) + Sgn�(k01)

ρ1 + k01

]
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Sgn�(k02)

8k02

[
Sgn�(ρ2) − Sgn�(k02)

ρ2 − k02
−

Sgn�(ρ2) + Sgn�(k02)

ρ2 + k02

]
×

k0 λ0

1 ρλ+1
1 k0 λ0

2 ρλ+1
2

(k0 − k01 − k02)[ρ
2 − (ρ1 + ρ2)2]

dρ1 dρ2 dk01 dk02. (8.3.0.3)

Eq. (8.3.0.3) can be written as

Lλ0λ(k
0, ρ) = −

∮
Γ0
1

∮
Γ0
2

+∞∫∫
−∞

{
Sgn�(k01)

8ρ1

[
1

k01 − ρ1
−

1

k01 + ρ1

]
×

[
(ρ1 + i0)

λ+1
+ (ρ1 − i0)

λ+1
]
+

1

8k01

[
1

k01 + ρ1
−

1

k01 − ρ1

]
×

[
(ρ1 + i0)

λ+1
− (ρ1 − i0)

λ+1
]} {

Sgn�(k02)

8ρ2

[
1

k02 − ρ2
−

1

k02 + ρ2

]
×

[
(ρ2 + i0)

λ+1
+ (ρ2 − i0)

λ+1
]
+

1

8k02

[
1

k02 + ρ2
−

1

k02 − ρ2

]
×

[
(ρ2 + i0)

λ+1
− (ρ2 − i0)

λ+1
]} k0 λ0

1 k0 λ0

2 dρ1 dρ2 dk01 dk02

(k0 − k01 − k02)[ρ
2
− (ρ1 + ρ2)2]

.

(8.3.0.4)
Integrating (8.3.0.4) in the variable k01 we obtain

Lλ(k
0, ρ) = −

∮
Γ0
2

+∞∫∫
−∞

{
iπ

4ρ1
Sgn�(k0)

[
1

k02 − (k0 − ρ1)
−

1

k02 − (k0 + ρ1

]
×

[
(ρ1 + i0)

λ+1
+ (ρ1 − i0)

λ+1
]
+

iπ

4ρ1

[
2

k02 − k0
−

1

k02 − (k0 − ρ1)
−

1

k02 − (k0 − ρ1)

]
×

[
(ρ1 + i0)

λ+1
− (ρ1 − i0)

λ+1
]} {

Sgn�(k02)

8ρ2

[
1

k02 − ρ2
−

1

k02 + ρ2

]
×

[
(ρ2 + i0)

λ+1
+ (ρ2 − i0)

λ+1
]
+

1

8k02

[
1

k02 + ρ2
−

1

k02 − ρ2

]
×
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[
(ρ2 + i0)

λ+1
− (ρ2 − i0)

λ+1
]} dρ1 dρ2 dk02

ρ2 − (ρ1 + ρ2)2
, (8.3.0.5)

where we have selected λ0 = 0 due to the fact the integral is convergent
for this value λ0 = 0. There is a sole term in (8.3.0.5) whose integral
is not null. It is

Lλ(k
0, ρ) = −

∮
Γ0
2

+∞∫∫
−∞

iπ

4ρ1
Sgn�(k0)

[
1

k02 − (k0 − ρ1)
−

1

k02 − (k0 + ρ1

]
×

[
(ρ1 + i0)

λ+1
+ (ρ1 − i0)

λ+1
] Sgn�(k02)

8ρ2

[
1

k02 − ρ2
−

1

k02 + ρ2

]
×

[
(ρ2 + i0)

λ+1
+ (ρ2 − i0)

λ+1
] dρ1 dρ2 dk02
ρ2 − (ρ1 + ρ2)2

. (8.3.0.6)

Evaluation of (8.3.0.6) gives

Lλ(k
0, ρ) =

π2k0

2

+∞∫∫
−∞

[
(ρ1 + i0)λ+1 + (ρ1 − i0)λ+1

]×
[
(ρ2 + i0)λ+1 + (ρ2 − i0)λ+1

]
dρ1 dρ2[

(k20 + ρ12 − ρ22)2 − 4k20ρ1
2
]
[ρ2 − (ρ1 + ρ2)2]

. (8.3.0.7)

We can evaluate now the integral in the variable ρ2 in (8.3.0.7). The
result is

Lλ(k
0, ρ) =

π3

16ρ

(1+ cosπλ)2

sin π(λ+1)
2

∞∫
0

dρ1 ρλ1 ×

⎧⎨
⎩e−

iπ
2

(λ+1)Sgn�(k0)(k0 + ρ1)
λ+1 − e−

iπ
2

(λ+1)Sgn�(ρ)(ρ+ ρ1)
λ+1

(ρ− k0)
(

ρ+k0

2
+ ρ1

) −

e−
iπ
2

(λ+1)Sgn�(k0)(k0 + ρ1)
λ+1 − e

iπ
2

(λ+1)Sgn�(ρ)(ρ1 − ρ)λ+1

(ρ+ k0)
(

ρ−k0

2
− ρ1

) −

e
iπ
2

(λ+1)Sgn�(k0)(ρ1 − k0)λ+1 − e−
iπ
2

(λ+1)Sgn�(ρ)(ρ1 + ρ)λ+1

(ρ+ k0)
(

ρ−k0

2
+ ρ1

) +
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e
iπ
2

(λ+1)Sgn�(k0)(ρ1 − k0)λ+1 − e
iπ
2

(λ+1)Sgn�(ρ)(ρ1 − ρ)λ+1

(ρ− k0)
(

ρ+k0

2
− ρ1

)
⎫⎬
⎭ .

(8.3.0.8)
The evaluation of (8.3.0.8) is a tedious task. Fortunately, lim λ → 0
can be taken without any problems in the final steps of the calculation.
The result is

L(k0, ρ) =
π3

4ρ

[π
2
Sgn�(k0)Sgn�(k0 + ρ) +

π

2
Sgn�(ρ)Sgn�(k0 + ρ) +

π

2
Sgn�(k0)Sgn�(ρ− k0) − Sgn�(ρ− k0)

]
− (8.3.0.9)

Eq. (8.3.0.9) can be cast as

L(k0, ρ) =
π4

8ρ

[(
Sgn�(k0) + Sgn�(ρ)

)
Sgn�(ρ+ k0) +

(
Sgn�(k0) − Sgn�(ρ)

)
Sgn�(ρ− k0)

]
=

π4

4ρ
Sgn�(k0)Sgn�(ρ). (8.3.0.10)

Taking into account that

H(k0, ρ) =
1

2πρ

∫
L(k0, ρ)ρ dρ

we obtain

H(k0, ρ) =
π3

8
Sgn�(k0)Sgn�(ρ) = [W0 ∗W0](k

0, ρ), (8.3.0.11)

where the symbol ∗ indicates the convolution product. Thus, the cut
of H(k0, ρ) along the real axis, i.e., the distribution h(k0, ρ) is

h(k0, ρ) =
π3

2
= [w0 ∗w0](k

0, ρ). (8.3.0.12)

8.4 Complex-mass Wheeler propagators

The complex mass Wheeler propagator is

wμ(x) = −
iπ

2

μn/2−1

(2π)n/2
Q

1/2(1−n/2)
− J1−n/2(μQ

1/2
− ), (8.4.0.1)
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and its Fourier transform adopts the form

Wμ(k
0, ρ) = −

iSgn[�(k0)]

8
√
k20 − μ2

⎡
⎣Sgn[�(ρ)] − Sgn[�(

√
k20 − μ2)]

ρ−
√
k20 − μ2

−

Sgn[�(ρ)] + Sgn[�(
√
k20 − μ2)]

ρ+
√
k20 − μ2

⎤
⎦ . (8.4.0.2)

Using (8.4.0.2) we have now

L(k0, ρ) = −

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

Sgn[�(k01)]

8
√
k021 − μ2

1

⎡
⎣Sgn[�(ρ1)] − Sgn[�(

√
k021 − μ2

1)]

ρ1 −
√
k021 − μ2

1

−

Sgn[�(ρ1)] + Sgn[�(
√
k021 − μ2

1)]

ρ+ 1+
√
k021 − μ2

1

⎤
⎦ Sgn[�(k02)]

8
√
k022 − μ2

2

×

⎡
⎣Sgn[�(ρ2)] − Sgn[�(

√
k022 − μ2

2)]

ρ2 −
√
k022 − μ2

2

−

Sgn[�(ρ2)] + Sgn[�(
√
k022 − μ2

2)]

ρ2 +
√
k022 − μ2

2

⎤
⎦ ρ1ρ2dρ1 dρ2 dk01 dk02
(k0 − k01 − k02)[ρ

2 − (ρ1 + ρ2)2]
,

(8.4.0.3)
where we have selected λ0 = λ = 0 due to the fact that (8.4.0.3)
is convergent at this point (this is due to the definition of L(k0, ρ)).
Now, (8.4.0.3) is equal to

L(k0, ρ) = −
1

4

∮
Γ0
1

∮
Γ0
2

+∞∫∫
−∞

Sgn[�(k01)]

ρ21 + μ2
1 − k021

Sgn[�(k02)]

ρ22 + μ2
2 − k022

×

ρ1ρ2

(k0 − k01 − k02)[ρ
2 − (ρ1 + ρ2)2]

dρ1 dρ2 dk01 dk02, (8.4.0.4)

and can be re-written as

L(k0, ρ) = −
1

16

∮
Γ0
1

∮
Γ0
2

+∞∫∫
−∞

Sgn[�(k01)]√
ρ21 + μ2

1

×
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⎡
⎣ 1

k01 −
√
ρ21 + μ2

1

−
1

k01 +
√
ρ21 + μ2

1

⎤
⎦ ×

Sgn[�(k02)]√
ρ22 + μ2

2

⎡
⎣ 1

k02 −
√
ρ22 + μ2

2

−
1

k02 +
√
ρ22 + μ2

2

⎤
⎦ 1

(k0 − k01 − k02)
×

ρ1ρ2

ρ2 − (ρ1 + ρ2)2
dρ1 dρ2 dk01 dk02. (8.4.0.5)

Consider now

∮
Γ0
1

∮
Γ0
2

Sgn[�(k01)]Sgn[�(k
0
2)

k0 − k01 − k02

⎡
⎣ 1

k01 −
√
ρ21 + μ2

1

−
1

k01 +
√
ρ21 + μ2

1

⎤
⎦ ×

⎡
⎣ 1

k02 −
√
ρ22 + μ2

2

−
1

k02 +
√
ρ22 + μ2

2

⎤
⎦ dk01 dk02 =

−
32π2k0

√
ρ21 + μ2

1

√
ρ22 + μ2

2

[k20 + (ρ22 + μ2
2) − (ρ21 + μ2

2)]
2 − 4k20(ρ

2
2 + μ2

2)
. (8.4.0.6)

Replacing this result into (8.4.0.5) we obtain

L(k0, ρ) = 2π2k0
+∞∫∫
−∞

1

[k20 + (ρ22 + μ2
2) − (ρ21 + μ2

2)]
2 − 4k20(ρ

2
2 + μ2

2)
×

ρ1ρ2

ρ2 − (ρ1 + ρ2)2
dρ1 dρ2. (8.4.0.7)

Taking into account that∫
ρ dρ

ρ2 − (ρ1 + ρ2)2
= Θ[�(ρ)] ln(ρ1+ρ2−ρ)+Θ[−�(ρ)] ln(ρ−ρ1−ρ2),

(8.4.0.8)
and using the result (8.4.0.7) we obtain

H(k0, ρ) =
πk0

ρ

+∞∫∫
−∞

1

[k20 + (ρ22 + μ2
2) − (ρ21 + μ2

2)]
2 − 4k20(ρ

2
2 + μ2

2)
×
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Θ[�(ρ)] ln(ρ1 + ρ2 − ρ)+Θ[−�(ρ)] ln(ρ− ρ1 − ρ2) dρ1 dρ2. (8.4.0.9)

Equation (8.4.0.9) can be written in the real ρ-axis as

H(k0, ρ) =
iπ2k0

ρ

+∞∫∫
−∞

Sgn(ρ1 + ρ2 − ρ) ρ1ρ2 dρ1 dρ2

[k20 + (ρ22 + μ2
2) − (ρ21 + μ2

2)]
2 − 4k20(ρ

2
2 + μ2

2)
.

(8.4.0.10)
After evaluation of the double integral of (8.4.0.10) we find

H(k0, ρ) =
π3Sgn[�(k0)]

4(k20 − ρ2)

√
(k20 − ρ2 + μ2

2 − μ2
1)

2 − 4(k20 − ρ2)μ2
2 =

[Wμ1
∗Wμ2

](k0, ρ). (8.4.0.11)

8.5 Discussion

In an earlier work [33] its authors demonstrated the existence of the
convolution of two one-dimensional tempered ultradistributions. Here
we have extended that procedure to an n-dimensional space. In four-
dimensional space we have obtained an expression for the convolution
of two tempered ultradistributions that are even in the variables k0

and ρ. When we use the perturbative expansion in quantum field the-
ory, we have to deal with either products of distributions in configu-
ration space, or with convolutions in the Fourier transformed p-space.
Unfortunately, products or convolutions (of distributions) are, in gen-
eral, ill-defined quantities. However, in physical applications one in-
troduces some “regularization” scheme that allows us to give sense to
divergent integrals. Amongst these procedures we would like to men-
tion the dimensional regularization method (Ref. [12]). Essentially,
the method consists in the separation of the volume element ( dνp )
into an angular factor (dΩ) and a radial factor (pν−1dp). First the
angular integration is carried out and then the number of dimensions
ν is taken as a free parameter that can be adjusted to yield a conver-
gent integral, which is an analytic function of ν. Our Eq. (8.1.0.1)
is similar to the expression one obtains with dimensional regulariza-
tion. However, the parameters λ are completely independent of any
dimensional interpretation. All ultradistributions provide integrands
(in (8.1.0.1)) that are analytic functions along the integration paths.
The parameters λ permit us to control the possible tempered asymp-
totic behavior. Since the existence of a region of analyticity for each λ
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is guaranteed, a subsequent continuation to the point of interest (Ref.
[33]) defines the convolution product. For tempered ultradistributions
(even in the variables k0 and ρ) we have obtained Eq. (8.2.0.15), for
which similar considerations to those given for (7.1.0.7) are valid. The
properties above described show that tempered ultradistributions pro-
vide an appropriate framework for applications in physics. Further-
more, they can “absorb” arbitrary pseudo-polynomials, thanks to Eq.
(4.2.0.10), a property that is interesting for renormalization theory.
For this reason, we began this chapter with a summary of the main
characteristics of n-dimensional tempered ultradistributions and their
Fourier transformed distributions of exponential type.
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Chapter 9

Lorentz
ultradistributions

As previously stated, the question of the product of distributions with
coincident point singularities is related, in field theory (FT), to the
asymptotic behavior of loop integrals of propagators. From a math-
ematical point of view, practically all definitions lead to limitations
on the set of distributions that can be multiplied together to give
another distribution of the same kind. The properties of ultradistri-
butions (Ref. [9, 10]) are well adapted for their use in FT. In this
respect, it was shown (see Ref. [33]) that, in one dimensional space, it
is possible to define the convolution of any pair of tempered ultradis-
tributions, giving as a result another tempered ultradistribution. The
next step is to consider the convolution of any pair of tempered ul-
tradistribution in n-dimensional space, that follows from the formula
obtained in Ref. [33] for one dimensional space (See Ref. [39].) How-
ever, the resultant equation is rather involved to be used in practical
applications. Thus, for applications, it is convenient to consider the
convolution of any two tempered ultradistributions which are even in
the variables k0 and ρ (See Ref. [39]). A further step is to consider
the convolution of two Lorentz invariant tempered ultradistributions
(See Section 8.2).

Ultradistributions also have the advantage of being representable by
means of analytic functions. In general, they are easier to work
with and have interesting properties. One of these properties is that
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Schwartz’ tempered distributions are canonical and continuously in-
jected into tempered ultradistributions and, as a consequence, the
rigged Hilbert space with tempered distributions is canonical and con-
tinuously included in the rigged Hilbert space with tempered ultra-
distributions. )

9.1 Fourier transform in Euclidean space

The Fourier transform of a spherically symmetric function f̂ ∈ H is
given, according to Bochner’s theorem, by

f(k) =
(2π)

ν
2

k
ν−2

2

∞∫
0

f̂(r)r
ν
2 J ν−2

2
(kr) dr, (9.1.0.1)

where r = x20 + x21 + · · ·+ x2ν−1 , k = k20 + k21 + · · ·+ k2ν−1, and J ν
2

is the Bessel’s function of order ν− 2/2. Appealing to the equality

πJ ν−2
2

(z) = e−iπ
4
νKν−2

2
(−iz) + ei

π
4
νKν−2

2
(iz), (9.1.0.2)

where K is the modified Bessel’s function, (9.1.0.1) takes the form

f(k) = 2
(2π)

ν−2
2

k
ν−2

2

∞∫
0

f̂(r)r
ν
2

[
e−iπ

4
νKν−2

2
(−ikr)+

ei
π
4
νKν−2

2
(ikr)

]
dr. (9.1.0.3)

Perform now the change of variables x = r
1
2 , ρ = k

1
2 (9.1.0.1), and

then (9.1.0.3) can be re-written as

f(ρ) = π
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4 J ν−2
2

(ρ1/2x1/2) dx, (9.1.0.4)

f(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4

[
e−iπ

4
νKν−2

2
(−ix1/2ρ1/2)+

,

ei
π
4
νKν−2

2
(ix1/2ρ1/2)

]
dx. (9.1.0.5)

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.1. FOURIER TRANSFORM IN EUCLIDEAN SPACE 93

Here we have taken ρ = γ+ iσ and

ρ1/2 =

√
γ+

√
γ2 + σ2

2
+ iSgn(σ)

√
−γ+

√
γ2 + σ2

2
. (9.1.0.6)

We can extend (9.1.0.4) to the complex plane and obtain the corre-
sponding ultradistribution. As a first step we calculate the Fourier
anti-transform of ρ

2−ν
4 Jν−2

2
(x1/2ρ1/2). We have

1

2π

∞∫
0

ρ
2−ν

4 Jν−2
2

(x1/2ρ1/2)e−iρt dρ =

e
iπ(ν−4)

8 (t− i0)
ν−4

4

πx1/2Γ(ν
2
)

e
ix
8tM 4−ν

4
,ν−2

4

(
−
ix

4t

)
. (9.1.0.7)

We have used above Eq. (6.631-1) of Ref. [4] (M is the Whittaker’s
function). Now we can employ also Eqs. (9.233- 1-2) of Ref. [4] and
write

M 4−ν
4

,ν−2
4

(
−
ix

4t

)
=

Γ(ν
2
)

Γ(ν−2
2

)
e

iπ(4−ν)
4 Wν−4

4
,ν−2

4

(
ix

4t

)
+

Γ
(ν
2

)
e

iπ(2−ν)
2 W 4−ν

4
,ν−2

4

(
−
ix

4t

)
t > 0.

M 4−ν
4

,ν−2
4

(
−
ix

4t

)
=

Γ(ν
2
)

Γ(ν−2
2

)
e

iπ(ν−4)
4 Wν−4

4
,ν−2

4

(
ix

4t

)
+

Γ
(ν
2

)
e

iπ(ν−2)
2 W 4−ν

4
,ν−2

4

(
−
ix

4t

)
t < 0. (9.1.0.8)

As a second step, we calculate the complex Fourier transform of the
second term of (9.1.0.7) using (9.1.0.8). We obtain

Fc

[
e

iπ(ν−4)
8 (t− i0)

ν−4
4

πx1/2Γ(ν
2
)

e
ix
8tM 4−ν

4
,ν−2

4

(
−
ix

4t

)]
(ρ) =

ρ
2−ν

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2) +
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2
4−ν

2 i

Γ(ν−2
2

)
Sν−4

2
,ν−2

2
(x1/2ρ1/2)

}
, (9.1.0.9)

where we have used Eqs. (7.629- 1, 2) of Ref. [4], with S the so-called
Lommel function (Ref. [4], page 349, formula 3). The corresponding
ultradistribution is then defined as

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2)

}
dx +

2π
ν−2

2

Γ(ν−2
2

)ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4 Sν−4
2

,ν−2
2

(x1/2ρ1/2) dx. (9.1.0.10)

When ν = 2n, n an entire number, ρ
2−ν

4 Sν−4
2

,ν−2
2

is equivalent to

zero. In fact

ρ
2−ν

4 Sν−4
2

,ν−2
2

=

ν−4
2∑

m=0

(ν
2
−m)!

m!
4

ν−2−4m
4 x

4m+2−ν
4 ρ

2m+2−ν
2 ,

(9.1.0.11)
so that (9.1.0.11) is a polynomial in ρ−1. However, when the volume
element is taken into account, such expression is transformed into a
polynomial in ρ, which according to (4.2.0.10) leaves us with a null
Ultradistribution. Thus, in this case the second integral in (9.1.0.10)
vanishes so that it becomes

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4

[
Θ[�(ρ)]e−iπ

4
νKν−2

2
(−ix1/2ρ1/2)

−Θ[−�(ρ)]ei
π
4
νKν−2

2
(ix1/2ρ1/2)

]
dx. (9.1.0.12)

Note that the complex Fourier transform (9.1.0.12) is not merely the
Fourier transform (9.1.0.5) in which the variable ρ is considered to
be a complex number. Instead, (9.1.0.12) gives the ultradistribution
associated to f(ρ). In the next section we shall see that formulae
(9.1.0.5) and (9.1.0.12) can be generalized to Minkowskian space.

When f̂ is a spherically symmetric distribution of exponential type,
we can use (9.1.0.10) to define its Fourier transform. In addition, we
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can follow the treatment of Ref. [6] to define the Fourier transform.
Thus, we have

∞∫
0

f(ρ)φ(ρ)ρ
ν−2

2 dρ = (2π)ν
∞∫
0

f̂(x)φ̂(x)x
ν−2

2 dx. (9.1.0.13)

The corresponding tempered ultradistribution in the one-dimensional
complex variable ρ is obtained in the following way: let ĝ(t) be defined
as

ĝ(t) =
1

(2π)ν

∞∫
0

f(ρ)e−iρt dρ. (9.1.0.14)

Then,

F(ρ) = Θ[�(ρ)]

∞∫
0

ĝ(t)eiρt dt−Θ[−�(ρ)]

0∫
−∞

ĝ(t)eiρt dt, (9.1.0.15)

or, if we use Dirac’s formula,

F(ρ) =
1

2πi

∞∫
0

f(t)

t− ρ
dt. (9.1.0.16)

The inversion formula (ν = 2n) for F(ρ) is given by

f̂(x) =
π

(2π)
ν+2

2 x
ν−2

4

∮
Γ

F(ρ)ρ
ν−2

4 Jν−2
2

(x1/2ρ1/2) dρ. (9.1.0.17)

Note that the factor multiplying F(ρ) is an entire function of ρ for
ν = 2n (recall that in complex analysis, an entire function, also called
an integral function, is a complex-valued function that is holomorphic
at all finite points over the whole complex plane [1]). In this case the
first term of (9.1.0.13) takes the form∮

Γ

F(ρ)φ(ρ)ρ
ν−2

2 dρ = (2π)ν
∞∫
0

f̂(x)φ̂(x)x
ν−2

2 dx (9.1.0.18)

We can now define a spherically symmetric tempered ultradistribution
as the complex Fourier transform of a spherically symmetric distribu-
tion of exponential type. Note that a spherically symmetric ultradis-
tribution is not necessarily spherically symmetric in an explicit way.
We will now look at some examples of the use of Fourier transforms.
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9.2 Examples

As a first example we calculate the complex Fourier transform of ear

(where a is a complex number) for ν = 2n. From (9.1.0.12) we write

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

eax
1/2

x
ν−2

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2) dx

}
. (9.2.0.1)

Now,
∞∫
0

eax
1/2

x
ν−2

4 Kν−2
2

(−ix1/2ρ1/2) =

2
√
π e

iπ(ν+2)
4

Γ(ν)

Γ(ν+3
2

)

ρ
ν−2

4

(ρ1/2 − ia)
×

F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
�(ρ) > 0

∞∫
0

eax
1/2

x
ν−2

4 Kν−2
2

(ix1/2ρ1/2) =

2
√
π e−

iπ(ν+2)
4

Γ(ν)

Γ(ν+3
2

)

ρ
ν−2

4

(ρ1/2 + ia)
×

F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2

)
�(ρ) < 0. (9.2.0.2)

To obtain (9.2.0.2) we have used (6.621 - 3) of Ref. [4] (here F is the
hypergeometric function). Thus we have

F(ρ) = (4π)
ν−2

2 i
Γ(ν)

Γ(ν+3
2

)

{
Θ[�(ρ)]

(ρ1/2 − ia)
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
+

Θ[−�(ρ)]

(ρ1/2 + ia)
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2

)}
. (9.2.0.3)
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As a second example, we evaluate the Fourier antitransform of [−2πi(ρ−
μ2)]−1, where μ is a complex number and ν = 2n. Using (9.1.0.17)
we have

f̂(x) = −
π

(2π)
ν+2

2 x
ν−2

4

∮
Γ

ρ
ν−2

4

2πi(ρ− μ2)
Jν−2

2
(x1/2ρ1/2) dρ =

πμ
ν−2

2

(2π)
ν+2

2

x
2−ν

4 Jν−2
2

(μx1/2). (9.2.0.4)

We can test the result (9.2.0.4) by transforming it. For this we take

into account that, for ν even, Jν−2
2

= e
iπ(ν−2)

2 J 2−ν
2

. Thus

F(ρ) =
μ

ν−2
2

4π
e

iπ(ν−2)
2 ρ

2−ν
4

∞∫
0

J 2−ν
2

(μx1/2)×

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2) −

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2)

}
dx. (9.2.0.5)

Now,
∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(−ix1/2ρ1/2) dx =

e
iπ(6−ν)

4 μ
2−ν

2
ρ

ν−2
4

ρ− μ2
; �(ρ) > 0

∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(ix1/2ρ1/2) dx =

e−
iπ(6−ν)

4 μ
2−ν

2
ρ

ν−2
4

ρ− μ2
; �(ρ) < 0, (9.2.0.6)

where we have used (6.576 -3) of Ref. [4] and thus we have

F(ρ) = −
1

2πi(ρ− μ2)
. (9.2.0.7)
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As a third example, we consider the Fourier transform of δ(x− a) for
all ν. Using (9.1.0.10) we obtain

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

a
ν−2

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ia1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ia1/2ρ1/2)

}
+

2π
ν−2

2

Γ(ν−2
2

)ρ
ν−2

4

a
ν−2

4 Sν−4
2

,ν−2
2

(a1/2ρ1/2). (9.2.0.8)

The reader can verify that the cut of (9.2.0.8) along the negative real
axis is zero.

9.3 Fourier transform in Minkowskian space

For the Minkowskian case we begin with the formula

f(k0, k) =
(2π)

ν−1
2

k
ν−3

2

∞∫
−∞

∞∫
0

f̂(x0, r)r
ν−1

2 Jν−3
2

(kr)eik0x
0

dx0 dr,

(9.3.0.1)
that can be re-written as

f(k20 − k2) =
(2π)

ν−3
2

k
ν−3

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
0

f̂(x)eit(x−s2
0+s2)s

ν−1
2 Jν−3

2
(ks) ×

eik0s
0

dt dx ds0 ds. (9.3.0.2)

Now,

∞∫
0

eits
2

s
ν−1

2 Jν−3
2

(ks) ds =
1

2

(
k

2

)ν−3
2

(t+ i0)
1−ν

2 e
i
[

π
2
(ν−1

2
)−k2

4t

]

(9.3.0.3)
∞∫

−∞

e−its2
0eik0s

0

ds0 =
√
π(t− i0)−

1
2 e

i

(
k2
0

4t
−π

4

)
. (9.3.0.4)
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We have used (6.631 -4) and (3.462- 3) of Ref. [4]. With the results
(9.3.0.3) - (9.3.0.4) we obtain for (9.3.0.2)

f(k20 − k2) =
(2π)

ν−3
2

2
ν−1

2

√
π e

iπ(ν−2)
4

∞∫
−∞

∞∫
0

f̂(x)

[
eitxe

i(k2
0
−k2)

4t t−
ν
2 +

e
iπ(2−ν)

2 e−itxe−
i(k2

0
−k2)

4t t−
ν
2

]
dx dt. (9.3.0.5)

We can evaluate the integral in the variable t

∞∫
0

eitxe
iρ
4t t−

ν
2 dt = 2

ν
2
(x+ i0)

ν−2
4

(ρ+ i0)
ν−2

4

Kν−2
2

[−i(x+ i0)1/2(ρ+ i0)1/2]

∞∫
0

e−itxe−
iρ
4t t−

ν
2 dt = 2

ν
2
(x− i0)

ν−2
4

(ρ− i0)
ν−2

4

Kν−2
2

[i(x− i0)1/2(ρ− i0)1/2],

(9.3.0.6)
where ρ = k20 − k2 (here we have used (3.471- 9) of Ref. [4]). Thus,
(9.3.0.5) transforms into

f(ρ) = (2π)
ν−2

2

∞∫
−∞

f̂(x)×

{
e

iπ(ν−2)
4

(x+ i0)
ν−2

4

(ρ+ i0)
ν−2

4

Kν−2
2

[−i(x+ i0)1/2(ρ+ i0)1/2] +

+ e
iπ(2−ν)

4
(x− i0)

ν−2
4

(ρ− i0)
ν−2

4

Kν−2
2

[i(x− i0)1/2(ρ− i0)1/2]

}
dx. (9.3.0.7)

The corresponding inversion formula is then given by

f̂(x) =
1

(2π)
ν+2

2

∞∫
−∞

f(ρ)×

{
e

iπ(ν−2)
4

(ρ+ i0)
ν−2

4

(x+ i0)
ν−2

4

Kν−2
2

[−i(x+ i0)1/2(ρ+ i0)1/2] +
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+ e
iπ(2−ν)

4
(ρ− i0)

ν−2
4

(x− i0)
ν−2

4

Kν−2
2

[i(x− i0)1/2(ρ− i0)1/2]

}
dρ. (9.3.0.8)

Eq. (9.3.0.7) is the generalization of Bochner’s formula (9.1.0.1) to the
Minkowskian Space. In this case, the extension as ultradistribution
of f(ρ) to the complex ρ-plane is immediate

F(ρ) = (2π)
ν−2

2

∞∫
−∞

f̂(x)×

{
Θ[�(ρ)]e

iπ(ν−2)
4

(x+ i0)
ν−2

4

ρ
ν−2

4

Kν−2
2

[−i(x+ i0)1/2ρ1/2] −

Θ[−�(ρ)]e
iπ(2−ν)

4
(x− i0)

ν−2
4

ρ
ν−2

4

Kν−2
2

[i(x− i0)1/2ρ1/2]

}
dx.

(9.3.0.9)
Here we have taken ρ = γ+ iσ and

ρ1/2 =

√
γ+

√
γ2 + σ2

2
+ iSgn(σ)

√
−γ+

√
γ2 + σ2

2
. (9.3.0.10)

It is convenient here to define a Lorentz invariant tempered ultradis-
tribution as the Fourier transform of a Lorentz invariant distribution
of exponential type. Note that a Lorentz invariant tempered ultra-
distribution is not necessarily explicitly Lorentz invariant. When f̂
is a Lorentz invariant distribution of exponential type, we can use
(9.3.0.9) to effect the treatment to be discussed below, starting from

∞∫∫∫∫
−∞

f(ρ)φ(ρ, k0) d4k = (2π)ν
∞∫∫∫∫

−∞

f̂(x)φ̂(x, x0)d4x, (9.3.0.11)

from which we can deduce the equality

∞∫∫
−∞

f(ρ)φ(ρ, k0)(k20 − ρ)
ν−3

2
+ dρ dk0 =

∞∫∫
−∞

f̂(x)φ̂(x, x0)(x− x20)
ν−3

2
+ dx dx0. (9.3.0.12)
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Let g(t) be defined as

ĝ(t) =
1

(2π)ν

∞∫
−∞

f(ρ)e−iρt dρ. (9.3.0.13)

Then,

F(ρ) = Θ[�(ρ)]

∞∫
0

ĝ(t)eiρt dt−Θ[−�(ρ)]

0∫
−∞

ĝ(t)eiρt dt, (9.3.0.14)

or, if we use Dirac’s formula

F(ρ) =
1

2πi

∞∫
−∞

f(t)

t− ρ
dt. (9.3.0.15)

The inverse of the Fourier transform can also be evaluated in the
following way: first, we define

Ĝ(x,Λ) =
1

(2π)
ν+2

2

∮
Γ

F(ρ)×

{
e

iπ(ν−2)
4

(ρ+Λ)
ν−2

4

(x+ i0)
ν−2

4

Kν−2
2

[−i(x+ i0)1/2(ρ+Λ)1/2] +

+ e
iπ(2−ν)

4
(ρ−Λ)

ν−2
4

(x− i0)
ν−2

4

Kν−2
2

[i(x− i0)1/2(ρ−Λ)1/2]

}
dρ,

(9.3.0.16)
and then

f̂(x) = Ĝ(x, i0+). (9.3.0.17)

9.4 Examples

As a first example we consider the Fourier transform of the function

ea
√

|x2
0
−r2|, where a is a complex number. The Fourier transform is

F(ρ) = (2π)
ν−2

2

∞∫
−∞

e|x|
1
2 ×
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{
Θ[�(ρ)]e

iπ(ν−2)
4

(x+ i0)
ν−2

4

ρ
ν−2

4

Kν−2
2

[−i(x+ i0)1/2ρ1/2] −

Θ[−�(ρ)]e
iπ(2−ν)

4
(x− i0)

ν−2
4

ρ
ν−2

4

Kν−2
2

[i(x− i0)1/2ρ1/2]

}
dx.

(9.4.0.1)
Now,

e
iπ(ν−2)

4

∞∫
−∞

ea|x|
1
2 (x+ i0)

ν−2
4 Kν−2

2
[−i(x+ i0)1/2ρ1/2] =

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 − ia)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
−

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 + a)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ ρ1/2

a− ρ1/2

)
�(ρ) > 0

(9.4.0.2)

e
iπ(2−ν)

4

∞∫
−∞

ea|x|
1
2 (x− i0)

ν−2
4 Kν−2

2
[i(x− i0)1/2ρ1/2] =

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e−
iπν
2

(ρ1/2 + ia)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2

)
−

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 + a)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ ρ1/2

a− ρ1/2

)
�(ρ) < 0.

(9.4.0.3)
To obtain (9.4.0.3) and (9.4.0.3) we have used (6.621 - 3) of Ref. [4].
With these results we have

F(ρ) = (4π)
ν−1

2
Γ(ν)

Γ(ν+3
2

)

⎧⎨
⎩Θ[�(ρ)]e

iπν
2

⎡
⎣F

(
ν, ν−1

2
, ν+3

2
, a−iρ1/2

a+iρ1/2

)
(ρ1/2 − ia)ν

−

F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 + a)ν

⎤
⎦−

Θ[−�(ρ)]e−
iπν
2

⎡
⎣F

(
ν, ν−1

2
, ν+3

2
, a+iρ1/2

a−iρ1/2

)
(ρ1/2 + ia)ν

−
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F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 + a)ν

⎤
⎦
⎫⎬
⎭ . (9.4.0.4)

As a second example, we evaluate the Fourier transform of the complex
mass Wheeler propagator. We start with

wμ(x) = −
iπ

2

μ
ν−2

2

(2π)
ν
2

x
2−ν

4
+ J 2−ν

2
(μx

1/2
+ ). (9.4.0.5)

Then, according to (9.3.0.9),

Wμ(ρ) = −
i(μ)

ν−2
4

4

∞∫
0

J 2−ν
2

(μx1/2)×

[
Θ[�(ρ)]

e
iπ(ν−2)

4

ρ
ν−2

4

Kν−2
2

(−ix1/2ρ1/2) −

Θ[−�(ρ)]
e

iπ(2−ν)
4

ρ
ν−2

4

Kν−2
2

(ix1/2ρ1/2)

]
dx. (9.4.0.6)

Taking into account that (See (6.576- 3), ref.[4])

∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(−ix1/2ρ1/2) dx =

2μ
2−ν

2 e
iπ(6−ν)

4
ρ

ν−2
4

ρ− μ2
�(ρ) > 0

∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(ix1/2ρ1/2) dx =

2μ
2−ν

2 e
iπ(ν−6)

4
ρ

ν−2
4

ρ− μ2
�(ρ) < 0, (9.4.0.7)

we obtain

Wμ(ρ) =
i

2

Sgn[�(ρ)]

ρ− μ2
. (9.4.0.8)
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As a third example, we evaluate the transform of δ(x20 − r2). From
(9.3.0.12) we obtain

∞∫∫
−∞

f(ρ)φ(ρ, k0)(k20 − ρ)
ν−3

2
+ dρ dk0 = (2π)ν

∞∫
−∞

φ(0, x0)|x0|ν−3 dx0.

(9.4.0.9)
According to (9.3.0.1), we can write

φ̂(x, x0) = 2−1(2π)−
ν+1

2 (x20 − x)
3−ν

4
+ ×

∞∫∫
−∞

φ(ρ, k0)Jν−3
2

[(x20 − x)
1/2
+ (k20 − ρ)

1/2
+ ]×

(k20 − ρ)
ν−3

4
+ eik0x

0

dk0 dρ, (9.4.0.10)

and consequently,

φ̂(0, x0) = 2−1(2π)−
ν+1

2 |x0|
3−ν

4

∞∫∫
−∞

φ(ρ, k0)Jν−3
2

[|x0|1/2(k20 − ρ)
1/2
+ ]×

(k20 − ρ)
ν−3

4
+ eik0x

0

dk0 dρ. (9.4.0.11)

Then,

(2π)ν
∞∫

−∞

φ(0, x0)|x0|ν−3 dx0 =

2−1(2π)
ν−1

2

∞∫
−∞

φ(ρ, k0)(k20 − ρ)
ν−3

4
+

⎡
⎣ ∞∫
−∞

|x0|
ν−3

2 ×

Jν−3
2

[|x0|1/2(k20 − ρ)
1/2
+ ]eik0x

0

dx0
]
dk0 dρ. (9.4.0.12)

Note that

∞∫
−∞

|x0|
ν−3

2 Jν−3
2

[|x0|1/2(k20 − ρ)
1/2
+ ]eik0x

0

dx0 =

2
ν−3

2√
π

Γ

(
ν− 2

2

)[
e

iπ(ν−2)
2 (ρ+ i0)

2−ν
2 + e

iπ(2−ν)
2 (ρ− i0)

2−ν
2

]
,

(9.4.0.13)
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(see (6.623- 1) in Ref [4]), from which we deduce that

f(ρ) =
(4π)

ν−2
2

2
Γ

(
ν− 2

2

)[
e

iπ(ν−2)
2

(ρ+ i0)
ν−2

2

+
e

iπ(2−ν)
2

(ρ− i0)
ν−2

2

]
.

(9.4.0.14)
Using then [(9.3.0.13) - (9.3.0.14)] or (9.3.0.15), the corresponding
ultradistribution is

F(ρ) = 2−1(4π)
ν−2

2 Γ

(
ν− 2

2

)
Sgn[�(ρ)](−ρ)

2−ν
2 . (9.4.0.15)

If we wish, we can proceed now to the calculation of the convolution
of two spherically symmetric tempered ultradistributions.

9.5 Convolution in Euclidean Space

The expression for the convolution of two spherically symmetric func-
tions was deduced in Ref. [13] (h(k) = (f ∗ g)(k)). Consider

h(k) =
24−νπ

ν−1
2

Γ(ν−1
2

)kν−2

∞∫∫
0

f(k1)g(k2) ×

[4k21k
2
2 − (k2 − k21 − k22)

2]
ν−3

2
+ k1k2 dk1 dk2, (9.5.0.1)

and, with the change of variables ρ = k2,ρ1 = k21, ρ2 = k22 takes the
form

h(ρ) =
22−νπ

ν−1
2

Γ(ν−1
2

)ρ
ν−2

2

∞∫∫
0

f(ρ1)g(ρ2) ×

[4ρ1ρ2 − (ρ− ρ1 − ρ2)
2]

ν−3
2

+ dρ1 dρ2. (9.5.0.2)

In particular, when ν = 4 one has

h(ρ) =
π

2ρ

∞∫∫
0

f(ρ1)g(ρ2)[4ρ1ρ2 −(ρ− ρ1 − ρ2)
2]

1
2
+ dρ1 dρ2. (9.5.0.3)

h(ρ) can be extended to complex plane as an ultradistribution, thus
generalizing the procedure of Ref. [33]. According to (9.3.0.12) we
can then write

f̂(x)ĝ(x) =
π2

(2π)6x

∮
Γ1

∮
Γ2

F(ρ1)G(ρ2)×
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ρ
1/2
1 ρ

1/2
2 J1(x

1/2ρ
1/2
1 )J1(x

1/2ρ
1/2
2 )dρ1 dρ2, (9.5.0.4)

and, Fourier transforming,

F {
f̂(x)ĝ(x)

}
(ρ) =

−π2

(2π)5ρ1/2

∮
Γ1

∮
Γ2

F(ρ1)G(ρ2)ρ
1/2
1 ρ

1/2
2 ×

⎧⎨
⎩

∞∫
0

x−1/2J1(x
1/2ρ

1/2
1 )J1(x

1/2ρ
1/2
2 )

[
Θ[�(ρ)]K1(−ix1/2ρ1/2) −Θ[−�(ρ)]K1(ix

1/2ρ1/2)
]
dx

}
dρ1 dρ2.

(9.5.0.5)
The x-integration can also be performed with the result

∞∫
0

J1(x
1/2ρ

1/2
1 )J1(x

1/2ρ
1/2
2 )K1(−ix1/2ρ1/2)dx =

−i(ρρ1ρ2)
−1

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
�(ρ) > 0,

(9.5.0.6)
∞∫
0

J1(x
1/2ρ

1/2
1 )J1(x

1/2ρ
1/2
2 )K1(ix

1/2ρ1/2)dx =

i(ρρ1ρ2)
−1

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
�(ρ) < 0,

(9.5.0.7)
where we have used (6.578 -2) of [4] and (7) in page 238 of [23]. Thus,

H(ρ) =
iπ

4ρ

∮
Γ1

∮
Γ2

F(ρ1)G(ρ2) ×

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
dρ1 dρ2, (9.5.0.8)

where |�(ρ)| > |�(ρ1)| + |�(ρ2)| We notice here that, in Ref. [33],
the existence of the convolution product between to arbitrary one
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dimensional tempered ultradistributions always exists. Analogously,
for spherically symmetric ultradistributions, we now define

Hλ(ρ) =
iπ

4ρ

∮
Γ1

∮
Γ2

F(ρ1)G(ρ2)ρ
λ
1ρ

λ
2 ×

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
dρ1 dρ2. (9.5.0.9)

Let B be a vertical band contained in the complex λ-plane P. Integral
(9.5.0.9) is an analytic function of λ defined in the domain B. More-
over, it is bounded by a power of |ρ|. Thus, according to the method
of Ref. [33], Hλ can be analytically continued to other parts of P. In
particular, near the origin, we have the Laurent expansion

Hλ(ρ) =

∞∑
n=−m

H(n)(ρ)λn. (9.5.0.10)

We now define the convolution product as the λ-independent term of
(9.5.0.10)

H(ρ) = H(0)(ρ). (9.5.0.11)

The proof that H(ρ) is a tempered ultradistribution is similar to the
one given in Ref. [33] for the one-dimensional case. The Fourier
antitransform of (9.5.0.11) defines the product of two distributions of
exponential type. Let Ĥλ(x) be the Fourier antitransform of Hλ(ρ).
Then,

Ĥλ(x) =

∞∑
n=−m

Ĥ(n)(x)λn. (9.5.0.12)

If we define

f̂λ(x) = F−1{ρλF(ρ)}

ĝλ(x) = F−1{ρλG(ρ)}, (9.5.0.13)

then

Ĥλ(x) = (2π)4f̂λ(x)ĝλ(x), (9.5.0.14)

and taking into account the Laurent expansion of f̂ and ĝ

f̂λ(x) =

∞∑
n=−mf

f̂(n)(x)λn
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ĝλ(x) =

∞∑
n=−mg

ĝ(n)(x)λn, (9.5.0.15)

we can finally write

∞∑
n=−m

Ĥ(n)(x)λn = (2π)4
∞∑

n=−m

(
n+mg∑
k=−mf

f̂(k)(x)ĝ(n−k)(x)

)
λn.

(9.5.0.16)
(m = mf +mg)
Consequently,

Ĥ(0)(x) =

mg∑
k=−mf

f̂(k)(x)ĝ(−k)(x). (9.5.0.17)

We will give now some examples of the use of (9.5.0.11) and (9.5.0.17).

9.6 Examples

As a first example, we evaluate the convolution of two Dirac’s deltas
for complex mass. We have(

δ(ρ− μ2) = −
1

2πi(ρ− μ2)

)

According to (9.5.0.9), (9.5.0.10), and (9.5.0.11), we have

δ(ρ−μ2
1)∗δ(ρ−μ2

2) =
iπ

4ρ

[
ρ− μ2

1 − μ2
2 −

√
(ρ− μ2

1 − μ2
2)

2 − 4μ2
1μ

2
2

]
.

As an ultradistribution, only the term containing the square root is
different from zero (Cf. (9.3.0.11)). Thus,

δ(ρ− μ2
1) ∗ δ(ρ− μ2

2) = −
iπ

4ρ

√
(ρ− μ2

1 − μ2
2)

2 − 4μ2
1μ

2
2. (9.6.0.1)

When μ1 = μ2 = m (m real) we obtain,

δ(ρ−m2) ∗ δ(ρ−m2) = −
iπ

4ρ1/2

√
ρ− 4m2. (9.6.0.2)

As a second example, we evaluate the convolution of two massless
Feynman’s propagators. One has

f(ρ) =
1

ρ
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F(ρ) = −
1

2πiρ
ln(−ρ)

Fλ(ρ) = −
1

2πi
ρλ−1 ln(−ρ)

f̂λ(x) =
1

8π2x1/2

∮
Γ

(
−

1

2πi
ρλ−1 ln(−ρ)

)
ρ1/2J1(x

1/2ρ1/2) dρ =

22λΓ(1+ λ)

4π2Γ(1− λ)
x−λ−1 − eiπλ sin(πλ)

22λΓ(1+ λ)

4π2Γ(1− λ)
x−λ−1 [iπ+

2 ln(2) +ψ(1+ λ) +ψ(1− λ) − ln(x)] , (9.6.0.3)

where ψ(z) = Γ
′
(z)/Γ(z). From (9.6.0.3) we have

f̂λ(x) = (2π)−2x−1 + Sλ(x), (9.6.0.4)

with

lim
λ→0

Sλ(x) = 0

. Then,

f̂2λ(x) = (2π)−4x−2 + Tλ(x), (9.6.0.5)

with

lim
λ→0

Tλ(x) = 0

, so that, as a consequence,

f̂2(x) = (2π)−4x−2. (9.6.0.6)

Taking into account that

F {x−2} = −π2 ln(ρ),

we obtain
1

ρ
∗ 1

ρ
= −π2 ln(ρ). (9.6.0.7)
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9.7 DR-generalization to Minkowskian one

The convolution of two Lorentz invariant functions is given by

{f ∗ g}(p2
μ) =

∞∫
−∞

· · ·
∞∫

−∞

f[(pμ − kμ)
2]g(k2μ) d

νk, (9.7.0.1)

that can be re-written as

∞∫
−∞

· · ·
∞∫

−∞

f(η1)g(η2)δ[η1 − (pμ − kμ)
2]δ(η2 − k2μ) dη1 dη2 dνk.

(9.7.0.2)
We select the axis of coordinates in a way such that the spatial compo-
nent of pμ, �p coincides with the first spatial coordinate (p2

μ = p2
0−p2

1).
Then, we have

π
ν−2

2

2|p0|

∞∫∫∫
−∞

f(η1)g(η2)

Γ
(
ν−2
2

)
[
(p2

μ − η1 + η2 + 2p1k1)
2

4p2
0

− k21 − η2

]ν−4
2

dη1 dη2 dk1. (9.7.0.3)

Using

x
ν−4

2
+ =

Γ
(
ν−2
2

)
eiπ(

2−ν
4

)

2π

∞∫
−∞

(t− i0)
3−ν

2 eitx dt (9.7.0.4)

with

x = −4p2
μk

2
1+4p1k1(p

2
μ−η1+η2)+(p2

μ−η1+η2)
2−4p2

0η2, (9.7.0.5)

we can evaluate the integral in the variable k1 using (2.462 - 1) of Ref.
[4]. The result is

√
2π[i(8tp2

μ − i0)]−
1
2 e

itp2
1
(p2

μ−η1+η2)

p2
μ . (9.7.0.6)

We can now perform the t integration

I = lim
ε→0

Γ
(
ν−2
2

)
e

iπ(1−ν)
4

4
√
π

×
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∞∫
−∞

(t− iε)
2−ν

2 (tp2
μ − iε)−

1
2 e

itp2
0
[(p2

μ−η1+η2)2−4p2
μη2]

p2
μ dt. (9.7.0.7)

Formula (9.7.0.7) is defined for ν = 2n. In this case (9.7.0.7) is pro-
portional to the derivative of the same order of the Dirac’s formula
for

(tp2
μ − i0)−

1
2 e

itp2
0
[(p2

μ−η1+η2)2−4p2
μη2]

p2
μ .

Then, we have

I =
Γ
(
ν−2
2

)
e

iπ(1−ν)
4

4
√
π

∞∫
−∞

(p2
μ − i0)−

1
2 t

1−ν
2

+ e

itp2
0
[(p2

μ−η1+η2)2−4p2
μη2]

p2
μ

+(p2
μ + i0)−

1
2 t

1−ν
2

+ e
−

itp2
0
[(p2

μ−η1+η2)2−4p2
μη2]

p2
μ dt. (9.7.0.8)

The result of (9.7.0.8) is immediate (a Fourier transform). We consider
first the case ν �= 2n+ 1

I =
e

iπ(2−ν)
2

4
√
π

Γ

(
ν− 2

2

)
Γ

(
3− ν

2

)
|p0|

ν−3 ×
⎧⎨
⎩(p2

μ − i0)−
1
2

[
(p2

μ − η1 + η2)
2 − 4p2

μη2

p2
μ

+ i0

]ν−3
2

+eiπ(ν−2) (p2
μ + i0)−

1
2

[
(p2

μ − η1 + η2)
2 − 4p2

μη2

p2
μ

− i0

]ν−3
2

⎫⎬
⎭ .

(9.7.0.9)
With this result we have for (9.7.0.3)

h(ρ) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

) ∞∫∫
−∞

f(ρ1)g(ρ2) ×

{
(ρ− i0)−

1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]ν−3
2

+ eiπ(ν−2) ×

(ρ+ i0)−
1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
− i0

]ν−3
2

}
dρ1 dρ2, (9.7.0.10)
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where ρ = p2
μ and h = f ∗ g.

When ν = 4, we have

h(ρ) =
π

2ρ

∞∫∫
−∞

f(ρ1)g(ρ2)
[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2
] 1

2

+
dρ1 dρ2.

(9.7.0.11)
When ν = 2n+ 1, we obtain

h(ρ) = −
iπn−1

22n(n− 1)!

∞∫∫
−∞

f(ρ1)g(ρ2)×

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ

]n−1 {
(ρ− i0)−

1
2 ×

[
ψ(n) +

iπ

2
+ ln

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]]
− (ρ+ i0)−

1
2

[
ψ(n) +

iπ

2
+ ln

[
−
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]]}
dρ1 dρ2.

(9.7.0.12)
As an example., we will evaluate the convolution of δ(ρ − m2

1) with
δ(ρ−m2

2) for ν �= 2n+ 1. In this case we have

h(ρ) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 ×

{
(ρ− i0)−

1
2

[
(ρ−m2

1 −m2
2)

2 − 4m2
1m

2
2

ρ
+ i0

]ν−3
2

+

eiπ(ν−2)(ρ+ i0)−
1
2

[
(ρ−m2

1 −m2
2)

2 − 4m2
1m

2
2

ρ
− i0

]ν−3
2

}
.

(9.7.0.13)
When ν = 4,m1 = 0,m2 = m, we obtain

δ(ρ) ∗ δ(ρ−m2) =
π

2ρ
|ρ−m2|. (9.7.0.14)

If we use the dimension ν as a regularizing parameter, we can define
the product of two tempered distributions as

ĥ(x, ν) = (2π)νf̂(x, ν)ĝ(x, ν) = (2π)νF−1{f(ρ, ν)}F−1{g(ρ, ν)} =
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F−1{f(ρ, ν) ∗ g(ρ, ν)} = F−1{h(ρ, ν)}, (9.7.0.15)

where F−1 was defined in section 5 by means of (9.3.0.8) and where
(9.7.0.10) should be re-interpreted as

h(ρ, ν) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

) ∞∫∫
−∞

f(ρ1, ν)g(ρ2, ν) ×

{
(ρ− i0)−

1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]ν−3
2

+ eiπ(ν−2) ×

(ρ+ i0)−
1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
− i0

]ν−3
2

}
dρ1 dρ2. (9.7.0.16)

The same procedure is valid when f̂(x, ν) and ĝ(x, ν) are distributions
of exponential type. Here f(ρ, ν) and g(ρ, ν) are defined by

F(ρ, ν) =
1

2πi

∞∫
−∞

f(t, ν)

t− ρ
dt

G(ρ, ν) =
1

2πi

∞∫
−∞

g(t, ν)

t− ρ
dt,

where F and G are the tempered ultradistributions given by

F(ρ, ν) = F {f̂(x, ν)} G(ρ, ν) = F {ĝ(x, ν)}.

A significant result has been achieved at this point, whose impor-
tance must be emphasized. The above described procedure generalizes
to Minkowskian space the dimensional regularization in configuration
space defined in Ref. [13] for Euclidean space.
As an example of the use of this method, we give the evaluation of
the convolution product of two complex mass Wheeler propagators.
From (9.4.0.5) and (9.3.0.9), we have

F {wμ1
(x, ν)wμ2

(x, ν)} =

−
π2

2ρ

(μ1μ2)
ν−2

2

(2π)
ν+2

2

∞∫
0

x
4−ν

2 J 2−ν
2

(μ1x)J 2−ν
2

(μ2x)×
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{
Θ[�(ρ)]e

iπ(ν−2)
4 Kν−2

2
(−ixρ1/2)−

Θ[−�(ρ)]e
iπ(2−ν)

4 Kν−2
2

(ixρ1/2)
}
dx. (9.7.0.17)

To evaluate (9.7.0.17) we use

∞∫
0

J 2−ν
2

(μ1x)J 2−ν
2

(μ2x)Kν−2
2

(xz) dx =

1√
π

Γ
(
3−ν
2

)
2

3ν−6
2

z
2−ν

2

(μ1μ2)
ν−2

2

[
(z2 + μ2

1 + μ2
2)

2 − 4μ2
1μ

2
2

]ν−3
2 , (9.7.0.18)

where to deduce (9.7.0.18) we have used

Kν−2
2

(xz) =
1

2

(zx
2

)ν−2
2

∞∫
0

t−
ν
2 e−t− z2x2

4t dt,

(see (8.432- 6) of Ref. [4]). Thus, from (9.7.0.18) we have

F {wμ1
(x, ν)wμ2

(x, ν)} =
(2π)

1−ν
2

2
3ν−1

2

Γ

(
3− ν

2

)
e

iπ(ν−2)
2 ×

ρ
ν−2

2 Sgn[�(ρ)]
[
(ρ− μ2

1 − μ2
2)

2 − 4μ2
1μ

2
2

]ν−3
2 , (9.7.0.19)

and consequently,

{Wμ1
(ρ, ν) ∗Wμ2

(ρ, ν)} =
(2π)

ν+1
2

2
3ν−1

2

Γ

(
3− ν

2

)
e

iπ(ν−2)
2 ×

ρ
ν−2

2 Sgn[�(ρ)]
[
(ρ− μ2

1 − μ2
2)

2 − 4μ2
1μ

2
2

]ν−3
2 . (9.7.0.20)

9.8 Convolution of L.I. ultradistributions

To obtain an expression for the convolution of two tempered ultra-
distributions we focus attention upon Eq. (9.7.0.11). As a first step,
we extend h(ρ) as a tempered ultradistribution. For this purpose we
consider the function

l(ρ, ρ1, ρ2) =
[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2
] 1

2

+
. (9.8.0.1)
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The Fourier anti-transform of (9.8.0.1) is

l̂(x, ρ1, ρ2) =
e−i(ρ1+ρ2)x

|x|

{
(ρ1ρ2 + i0)

1
2N1

[
2(ρ1ρ2 + i0)

1
2 |x|

]
+

Θ(−ρ1ρ2)
√
−ρ1ρ2J1(2i

√
−ρ1ρ2 |x|)

}
, (9.8.0.2)

whereN1 is the Newman function. If we consider now the distribution

m(ρ, ρ1, ρ2) = ρ−1
[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2
] 1

2

+
, (9.8.0.3)

the corresponding tempered ultradistribution is

M(ρ, ρ1, ρ2) =
1

2πi

∞∫
−∞

t−1
[
(t− ρ1 − ρ2)

2 − 4ρ1ρ2
] 1

2

+

t− ρ
dt, (9.8.0.4)

which can also be written as

M(ρ, ρ1, ρ2) =
1

ρ

{F {̂l}(ρ, ρ1, ρ2) −

1

2

[F {̂l}(i0, ρ1, ρ2) + F {̂l}(−i0, ρ1, ρ2)
]}

. (9.8.0.5)

Thus, the extension to the complex plane of h(ρ), N(ρ) is

N(ρ) =
π

2

∞∫∫
−∞

f(ρ1)g(ρ2)M(ρ, ρ1, ρ2) dρ1 dρ2. (9.8.0.6)

To obtain M in explicit manner we use the following Laplace trans-
forms

L{
t−1N1(at)

}
(s) = −

2

πa

√
s2 + a2 ln

(√
s2 + a2 + s

a

)
+

2s

aπ
(ln(2) + 1− γ) , (9.8.0.7)

L{
t−1J1(at)

}
(s) =

√
s2 + a2 − s

a
, (9.8.0.8)

(see [4] pags. 310 and 313). Thus, we have for the Fourier transforms

F {
|t|−1N1(a|t|)

}
(ρ) =
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−
2

πa

{
Θ[�(ρ)]

[√
a2 − ρ2 ln

(√
a2 − ρ2 − iρ

a

)
+

iρ (ln(2) + 1− γ)] −Θ[−�(ρ)]

[√
a2 − ρ2 ln

(√
a2 − ρ2 + iρ

a

)
−

iρ (ln(2) + 1− γ)]} , (9.8.0.9)

F {
|t|−1J1(a|t|)

}
(ρ) = Θ[�(ρ)]

√
a2 − ρ2 − iρ

a
−

Θ[−�(ρ)]

√
a2 − ρ2 + iρ

a
. (9.8.0.10)

With these results, we obtain

M(ρ) = Θ[�(ρ)]

{
Θ(ρ1ρ2)

√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 ×

ln

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2
√
ρ1ρ2

]
+

Θ(−ρ1ρ2)

{
iπ

2

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2

ln

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−ρ1ρ2

]}}
−

Θ[−�(ρ)]

{
Θ(ρ1ρ2)

√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 ×

ln

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 + i(ρ− ρ1 − ρ2)

2
√
ρ1ρ2

]
+

Θ(−ρ1ρ2)

{
iπ

2

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 + i(ρ− ρ1 − ρ2)

]
+

√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2

ln

[√
4ρ1ρ2 − (ρ− ρ1 − ρ2)2 + i(ρ− ρ1 − ρ2)

2i
√
−ρ1ρ2

]}}
−
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i

2

{
Θ(ρ1ρ2)(ρ1 − ρ2) ln

(
ρ1

ρ2

)
+Θ(−ρ1ρ2)(ρ1 − ρ2) ln

(
−
ρ1

ρ2

)
+

Θ(−ρ1)Θ(ρ2) [iπ(ρ1 − ρ2)

Sgn(ρ1 + ρ2) + 2iπρ2Θ(ρ1 + ρ2) + 2iπρ1Θ(−ρ1 − ρ2)] +

Θ(ρ1)Θ(−ρ2) [−iπ(ρ1 − ρ2)Sgn(ρ1 + ρ2) + 2iπρ1Θ(ρ1 + ρ2) +

2iπρ2Θ(−ρ1 − ρ2)] .} (9.8.0.11)

So as to obtain an expression for the convolution of two ultradistri-
butions, we use for the Heaviside function the identity

Θ(xy) = Θ(x)Θ(y) +Θ(−x)Θ(−y). (9.8.0.12)

Taking into account that

Θ(ρ) = lim
Λ→i0+

1

2πi
[ln(−ρ+Λ) − ln(−ρ−Λ)], (9.8.0.13)

a conceptually simple by rather lengthy expression is obtained for
Lorentz invariant tempered ultradistributions:

Hλ(ρ,Λ) =

1

8π2ρ

∫
Γ1

∫
Γ2

F(ρ1)G(ρ2)ρ
λ
1ρ

λ
2 {Θ[�(ρ)] {[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)]×

[ln(−ρ2+Λ)−ln(−ρ2−Λ)]
√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 +Λ)(ρ2 +Λ)

]

+[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 −Λ)(ρ2 −Λ)

]

+[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+
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√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 +Λ)(ρ2 −Λ)

]}
+[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{

iπ

2

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 −Λ)(ρ2 +Λ)

]}}
−

Θ[−�(ρ)] {[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 −Λ)(ρ2 −Λ)

]

+[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 +Λ)(ρ2 +Λ)

]

+[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 −Λ)(ρ2 +Λ)

]}
+

[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+
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√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√
−(ρ1 +Λ)(ρ2 −Λ)

]}}

−
i

2
×

{[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 +Λ

ρ2 +Λ

)
+ ln

(
−i

√
ρ1 −Λ

ρ2 −Λ

)]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1

Λ− ρ2

)
+ ln

(
i

√
Λ+ ρ1

Λ+ ρ2

)]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ+ ρ1

Λ− ρ2

)
+ ln

(√
Λ− ρ1

Λ+ ρ2

)]
+

(ρ1 − ρ2)

2
[ln(−ρ1 − ρ2 +Λ) − ln(−ρ1 − ρ2 −Λ) −

ln(ρ1 + ρ2 +Λ) + ln(ρ1 + ρ2 −Λ)] + ρ2 [ln(−ρ1 − ρ2 +Λ) −

ln(−ρ1 − ρ2 −Λ)] + ρ1 [ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ)]}

[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1

Λ+ ρ2

)
+ ln

(√
Λ+ ρ1

Λ− ρ2

)]
+

(ρ1 − ρ2)

2
[ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ) −

ln(−ρ1 − ρ2 +Λ) + ln(−ρ1 − ρ2 −Λ)] + ρ1 [ln(−ρ1 − ρ2 +Λ) −

ln(−ρ1 − ρ2 −Λ)] +

ρ2 [ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ)]}}} dρ1 dρ2 (9.8.0.14)

which defines an ultradistribution in the variables ρ and Λ for
|�(ρ)| > �(Λ) > |�(ρ1)|+ |�(ρ2)|.
Let B be a vertical band contained in the complex λ-plane P. The
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integral (9.8.0.14) is an analytic function of λ defined in the domain
B. Moreover, it is bounded by a power of |ρΛ|. Thus, according to
Ref. [33], Hλ(ρ,Λ) can be analytically continued to other parts of P.
We define

H(ρ) = H(0)(ρ, i0+), (9.8.0.15)

Hλ(ρ, i0
+) =

∞∑
−m

H(n)(ρ, i0+)λn. (9.8.0.16)

As in other cases, we further define

{F ∗G}(ρ) = H(ρ), (9.8.0.17)

as the convolution of two Lorentz invariant tempered ultradistribu-
tions. The proof that H(ρ) is a tempered ultradistribution is similar
to the one given in Ref. [33] for the one-dimensional case. Starting
with (9.8.0.14), we can write

Hλ(ρ, i0
+) = −

1

2ρ

∞∫∫
−∞

fλ(ρ1)gλ(ρ2)M(ρ.ρ1, ρ2) dρ1 dρ2, (9.8.0.18)

where fλ(ρ) and gλ(ρ) are defined by Dirac’s formula

ρλFλ(ρ) =
1

2πi

∞∫
−∞

fλ(t)

t− ρ
dt ; ρλGλ(ρ) =

1

2πi

∞∫
−∞

gλ(t)

t− ρ
dt.

(9.8.0.19)
Let Ĥλ(x) be the Fourier anti-transform of Hλ(ρ, i0

+). Then, accord-
ing to (9.5.0.12) - (9.5.0.17), we can express H(0)(x) as a function of
the Laurent expansions of f̂λ(x) and ĝλ(x).

9.9 Examples

As an example of the use of (9.8.0.15), we will evaluate the convolution
product of δ(ρ) and δ(ρ− μ2), with μ = μR + iμI a complex number
such that μ2

R > μ2
I , μRμI > 0. Thus, from (9.8.0.14) we obtain

H0(ρ,Λ) = −

iπ[ln(−μ2 +Λ) − ln(−μ2 + λ)]

{
i(ρ− μ2)

8π2ρ

[
ln

(
ρ− μ2√
Λ(μ2 +Λ)

)
+
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ln

(
μ2 − ρ√

−Λ(μ2 +Λ)

)]
+

μ2 − ρ

16πρ

}

−iπ[ln(−μ2 +Λ) − ln(−μ2 + λ)] ×{
−iμ2)

8π2ρ

[
ln

(√
Λ

μ2 +Λ

)
+ ln

(√
Λ

Λ− μ2

)]
−

μ2

16πρ

}
. (9.9.0.1)

Simplifying terms, (9.9.0.1) leads to

H0(ρ,Λ) = −

iπ[ln(−μ2 +Λ) − ln(−μ2 +Λ)]

{
i(ρ− μ2)

8π2ρ

[
ln
(
ρ− μ2

)
+

ln
(
μ2 − ρ

)]
+

iμ2

8π2ρ

[
ln(μ2 +Λ) + ln(μ2 −Λ)

]}
. (9.9.0.2)

Now, if
F1(μ,Λ) = ln(−μ2 +Λ) − ln(−μ2 −Λ),

then
F1(μ, i0

+) = 2iπ ; μ2
R > μ2

I ; μRμI > 0.

Also, if
F2(μ,Λ) = ln(μ2 +Λ) − ln(μ2 −Λ),

then
F2(μ, i0

+) = 0 ; μ2
R > μ2

I ; μRμI > 0.

Using these results we find

H(ρ) =
i(ρ− μ2)

4ρ

[
ln(ρ− μ2) + ln(μ2 − ρ)

]
+

iμ2

2ρ
ln(μ2). (9.9.0.3)

As an example of the use of (9.5.0.17), we will evaluate the convolution
product of two Dirac’s deltas δ(ρ) ∗ δ(ρ). In this case, we have

Fλ(ρ) = −
ρλ−1

2πi
, (9.9.0.4)

and as a consequence

fλ(ρ) =
sin(πλ)

π
ρλ−1
− . (9.9.0.5)
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The Fourier anti-transform of (9.9.0.5) is

f̂λ(x) −
22λ

4π3

Γ(1+ λ)

Γ(1− λ)

[
x−λ−1
+ − cos(πλ)x−λ−1

−

]
, (9.9.0.6)

which can be written as

f̂λ(x) −
22λ

4π3

Γ(1+ λ)

Γ(1− λ)

[
cos(πλ) − 1

λ
δ(x) + x−1

+ − cos(πλ)x−1
− +

S−λ−1
+ − cos(πλ)S−λ−1

−

]
. (9.9.0.7)

Thus, we have

f̂2λ(x) −
24λ

16π6

Γ2(1+ λ)

Γ2(1− λ)

{
(cos(πλ) − 1)2

λ2
δ2(x) + x−2

+ + cos2(πλ)x−2
− +

[
S−λ−1
+ − cos(πλ)S−λ−1

−

]2
+

2[x−1
+ − cos(πλ)x−1

− ][S−λ−1
+ − cos(πλ)S−λ−1

− ]+

2

[
cos(πλ) − 1

λ
δ(x)

] [
x−1
+ − cos(πλ)x−1

− + S−λ−1
+ − cos(πλ)S−λ−1

−

]}
.

(9.9.0.8)
From (9.9.0.8) we then obtain

lim
λ→0

f̂2λ(x) =
4

(2π)6
x−2, (9.9.0.9)

and taking into account that

F {x−2} =
π3

2
Sgn(ρ), (9.9.0.10)

we find

δ(ρ) ∗ δ(ρ) = π

2
Sgn(ρ). (9.9.0.11)

9.10 N massless Feynman propagators

Let us now calculate the convolution of n massless Feynman propa-
gators (n ≥ 2). For this purpose, we take into account that

F−1 {f1 ∗ f2 ∗ · · · ∗ fn} = (2π)(n−1)νf̂1f̂2 · · · f̂n. (9.10.0.1)
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According to Reference [6], we have

F−1
{
(ρ+ i0)λ−1

}
=

i22λ

(2π)2
Γ(λ+ 1)

Γ(1− λ
(x− i0)−λ−1, (9.10.0.2)

and therefore,

F−1
{
(ρ+ i0)λ−1 ∗ (ρ+ i0)λ−1 ∗ · · · ∗ (ρ+ i0)λ−1

}
=

(2π)4(n−1) i
n22nλ

(2π)2n

[
Γ(λ+ 1)

Γ(λ− 1)

]n
(x− i0)−n(λ+1). (9.10.0.3)

Using again Reference [6] we face now

F
{
(x− i0)−n(λ+1)

}
=

−i24−2n(λ+1)π2 Γ(2− nλ− n)

Γ(nλ+ n)
(ρ+ i0)nλ+n−2, (9.10.0.4)

with which we obtain

(ρ+ i0)λ−1 ∗ (ρ+ i0)λ−1 ∗ · · · ∗ (ρ+ i0)λ−1 =

in−1π2(n−1) Γ
n(λ+ 1)

Γn(1− λ)

Γ(2− nλ− n)

Γ(nλ+ n)
(ρ+ i0)nλ+n−2. (9.10.0.5)

We have then, for the convolution of nmassless Feynman propagators,
the result

i(ρ+ i0)λ−1 ∗ i(ρ+ i0)λ−1 ∗ · · · ∗ i(ρ+ i0)λ−1 =

i(−1)n+1π2(n−1) Γ
n(λ+ 1)

Γn(1− λ)

Γ(2− nλ− n)

Γ(nλ+ n)
(ρ+ i0)nλ+n−2. (9.10.0.6)

After a tedious calculation we find the corresponding Laurent expan-
sion around λ = 0

i(ρ+ i0)λ−1 ∗ i(ρ+ i0)λ−1 ∗ · · · ∗ i(ρ+ i0)λ−1 =
iπ2(n−1)ρn−2

nλΓ(n)Γ(n− 1)
+

iπ2(n−1)ρn−2

Γ(n)Γ(n− 1)
[ln(ρ+ i0) + 2ψ(1) −ψ(n− 1) −ψ(n)] +

∞∑
m=1

am(ρ)λm. (9.10.0.7)

The independent of λ term is the result of the convolution

i(ρ+ i0)−1 ∗ i(ρ+ i0)−1 ∗ · · · ∗ i(ρ+ i0)−1 =

iπ2(n−1)ρn−2

Γ(n)Γ(n− 1)
[ln(ρ+ i0) + 2ψ(1) −ψ(n− 1) −ψ(n)] . (9.10.0.8)

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



124 CHAPTER 9. LORENTZ ULTRADISTRIBUTIONS

9.11 Discussion

The existence of the convolution of two one-dimensional tempered ul-
tradistributions has been previously demonstrated in [33]. Later, the
efforts of Ref. [39] have extended the procedure to an n-dimensional
space. Here we dealt with a four-dimensional space and have given
an expression for the convolution of two tempered ultradistributions
that are even in the variables k0 and ρ. In this chapter we also found
an expression for the convolution of two Lorentz invariant tempered
ultradistributions in both Euclidean and Minkowskian spaces. In an
intermediate step of the associated deduction [see the surroundings of
Eq. (9.7.0.16)] we obtained also a very important result, namely the
generalization to Minkowskian space of the dimensional regularization
technique devised originally for configuration space (Ref. [13]).

When we use the perturbative expansion in quantum field theory, we
often face products of distributions in configuration space, or else, con-
volutions in the Fourier transformed p-space. Unfortunately, products
or convolutions (of distributions) are in general ill-defined quantities.
In such unfortunate circumstances however, in physical applications,
it is customary to introduce some “regularization” scheme, so as to
give sense to divergent integrals. Amongst these procedures, we would
like to mention the dimensional regularization method (Ref. [12]). Es-
sentially, the method consists in the separation of the volume element
(dνp) into an angular factor ( dΩ ) and a radial factor (pν−1dp).
First, the angular integration is carried out and then, the number of
dimensions ν is taken as a free parameter. It can be adjusted to yield
a convergent integral, which is an analytic function of ν.

Our formula (7.34) is similar to the expression one obtains with di-
mensional regularization. However, the parameter λ is now completely
independent of any dimensional interpretation.

All ultradistributions provide integrands (in (7.34)) that are analytic
functions along the integration path. The parameter λ permits us to
control the possible tempered asymptotic behavior (Cf. Eq. (3.9)).
The existence of a region of analyticity in λ, and a subsequent con-
tinuation to the point of interest (Ref. [33] , defines the convolution
product.

The properties just described show that tempered ultradistributions
provide an appropriate framework for applications to physics. Fur-
thermore, they can “absorb” arbitrary pseudo-polynomials, thanks to
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Eq. (3.10), a feature that is interesting for renormalization theory.
For this reason, and also for the benefit of the reader, we began this
chapter with a summary of the main characteristics of n-dimensional
tempered ultradistributions and their Fourier transformed distribu-
tions of exponential type.
As a final remark, we would like to point out that our formula for
convolutions is a definition, and not a regularization technique.
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Chapter 10

Exponential
ultradistributions

We begin by insisting on recalling the following facts. The question
of the product of distributions with coincident point singularities is
related, in field theory, to the asymptotic behavior of loop integrals of
propagators. From a mathematical point of view, the question reduces
to the possibility of defining a product in a ring with zero-factors. As
it is well known, the usual definitions lead to limitations on the set of
distributions that can be multiplied together to give another distribu-
tion of the same kind. The properties of tempered ultradistributions
(Refs. [9, 10]) are well adapted for their use in field theory. In this
respect, it has been shown (Refs. [33, 39, 41]) that it is indeed possible
to define the convolution of any pair of tempered ultradistributions,
giving as a result another tempered ultradistribution.

Ultradistributions have the further advantage of being representable
by means of analytic functions, so that, in general, they are easier to
work with and, as we saw above, have interesting properties. One of
those properties is that Schwartz’s tempered distributions are canoni-
cal and continuously injected into tempered ultradistributions and, as
a consequence, the rigged Hilbert space with tempered distributions is
canonical and continuously included in the rigged Hilbert space with
tempered ultradistributions.

A further advance is that of considering ultradistributions of expo-
nential type (Res. [10, 11]) and to define a convolution product for any
pair of them. This is also made in this chapter, together with some
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128 CHAPTER 10. EXPONENTIAL ULTRADISTRIBUTIONS

examples and applications. It should be remembered that Schwartz’s
tempered distributions and Sebastiao e Silva’s tempered ultradistribu-
tions are canonical and continuously injected into ultradistributions of
exponential type and, as a consequence, the rigged Hilbert spaces with
tempered distributions and tempered ultradistributions are canonical
and continuously included in the rigged Hilbert space with ultradis-
tributions of exponential type.
Furthermore, ultradistributions of exponential type are adequate to
describe Gamow states and exponentially increasing fields in quantum
field theory, as we will show in this chapter.

10.1 Fourier transform in Euclidean space

We define a spherically symmetric ultradistribution of exponential
type F̂(z) as a ultradistribution of exponential type such that f̂(t) in
(4.3.0.24) is spherically symmetric (note that a spherically symmetric
ultradistribution is not necessarily spherically symmetric in explicit
fashion). In this case, we can use for the Fourier transform of f̂(t) the
formula obtained in Ref. [41]

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2)

}
dx +

2π
ν−2

2

Γ(ν−2
2

)ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4 Sν−4
2

,ν−2
2

(x1/2ρ1/2) dx. (10.1.0.1)

When ν = 2n, n an integer number, ρ
2−ν

4 Sν−4
2

,ν−2
2

is null. In fact

ρ
2−ν

4 Sν−4
2

,ν−2
2

=

ν−4
2∑

m=0

(ν
2
−m)!

m!
4

ν−2−4m
4 x

4m+2−ν
4 ρ

2m+2−ν
2 = 0,

(10.1.0.2)
that is null in the complex variable ρ in a space of dimension ν = 2n.
Thus, in this case the second integral in (10.1.0.1) vanishes so that

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

f̂(x)x
ν−2

4

[
Θ[�(ρ)]e−iπ

4
νKν−2

2
(−ix1/2ρ1/2)
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−Θ[−�(ρ)]ei
π
4
νKν−2

2
(ix1/2ρ1/2)

]
dx. (10.1.0.3)

In the next section we shall see that formulae (10.1.0.2) and (10.1.0.3)
can be generalized to Minkowskian space. When f̂ is spherically sym-
metric, we can use (10.1.0.3) to define its Fourier transform. In addi-
tion, for ν = 2n we can follow the treatment of Ref. [6] to define the
Fourier transform. Thus, we have

∞∫
−∞

f(ρ)φ(ρ)ρ
ν−2

2 dρ = (2π)ν
∞∫
0

f̂(x)φ̂(x)x
ν−2

2 dx. (10.1.0.4)

The corresponding ultradistribution of exponential type in the one-
dimensional complex variable ρ is obtained in the following way. Let
ĝ(t) be defined as

ĝ(t) =
1

(2π)ν

∞∫
−∞

f(ρ)e−iρt dρ. (10.1.0.5)

Then,

F(ρ) = Θ[�(ρ)]

∞∫
0

ĝ(t)eiρt dt−Θ[−�(ρ)]

0∫
−∞

ĝ(t)eiρt dt, (10.1.0.6)

or, if we use Dirac’s formula,

F(ρ) =
1

2πi

∞∫
−∞

f(t)

t− ρ
dt. (10.1.0.7)

The inversion formula (ν = 2n) for F(ρ) is given by

f̂(x) =
π

(2π)
ν+2

2 x
ν−2

4

∮
Γ

F(ρ)ρ
ν−2

4 Jν−2
2

(x1/2ρ1/2) dρ. (10.1.0.8)

Note that the part of the integrand that multiplies F(ρ) is an entire
function of ρ for ν = 2n. In this case, the first term of (10.1.0.4) takes
the form∮

Γ

F(ρ)φ(ρ)ρ
ν−2

2 dρ = (2π)ν
∞∫
0

f̂(x)φ̂(x)x
ν−2

2 dx. (10.1.0.9)

We give now same examples of the use of Fourier transforms.
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10.2 Examples

As a first example, we calculate the Fourier transform of

2−νΘ[�(z1)]Θ[�(z2)] · · ·Θ[�(zν)] cosh

(
a

√
z21 + z22 + · · ·+ z2ν

)
,

(10.2.0.1)
where a is a complex number for ν = 2n. From (10.1.0.3)

F(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

∞∫
0

cosh(ax
1
2 )x

ν−2
4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2) dx

}
. (10.2.0.2)

Now,

∞∫
0

eax
1/2

x
ν−2

4 Kν−2
2

(−ix1/2ρ1/2) = 2
√
π e

iπ(ν+2)
4

Γ(ν)

Γ(ν+3
2

)

ρ
ν−2

4

(ρ1/2 − ia)
×

F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
�(ρ) > 0

∞∫
0

eax
1/2

x
ν−2

4 Kν−2
2

(ix1/2ρ1/2) = 2
√
π e−

iπ(ν+2)
4

Γ(ν)

Γ(ν+3
2

)

ρ
ν−2

4

(ρ1/2 + ia)
×

F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2

)
�(ρ) < 0. (10.2.0.3)

To obtain (10.2.0.3) we have used 6.621.(10) of Ref. [4]. Here F is the
hypergeometric function. Thus, we have

F(ρ) = (4π)
ν−2

2 i
Γ(ν)

Γ(ν+3
2

)

{
1

(ρ1/2 − ia)
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
+

1

(ρ1/2 + ia)
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2
.

)}
. (10.2.0.4)

As a second example, we evaluate the Fourier transform of

2−νΘ[�(z1)]Θ[�(z2)] · · ·Θ[�(zν)]
πμ

ν−2
2

(2π)
ν+2

2

(z21 + z22 + · · ·+ z2ν)
2−ν

2 ×
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Jν−2
2

[μ(z21 + z22 + · · ·+ z2ν)
1
2 ]. (10.2.0.5)

We take into account that for ν even, Jν−2
2

= e
iπ(ν−2)

2 J 2−ν
2

. Thus

F(ρ) =
μ

ν−2
2

4π
e

iπ(ν−2)
2 ρ

2−ν
4 ×

∞∫
0

J 2−ν
2

(μx1/2)
{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ix1/2ρ1/2) −

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ix1/2ρ1/2)

}
dx. (10.2.0.6)

Now,
∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(−ix1/2ρ1/2) dx =

e
iπ(6−ν)

4 μ
2−ν

2
ρ

ν−2
4

ρ− μ2
; �(ρ) > 0

∞∫
0

J 2−ν
2

(μx1/2)Kν−2
2

(ix1/2ρ1/2) dx =

e−
iπ(6−ν)

4 μ
2−ν

2
ρ

ν−2
4

ρ− μ2
; �(ρ) < 0, (10.2.0.7)

where we have used 6.576, (3) of Ref. [4]. Thus, we have

F(ρ) = −
1

2πi(ρ− μ2)
. (10.2.0.8)

10.3 Minkowskian space

We define a Lorentz invariant ultradistribution of exponential type
F̂(z) as an ultradistribution of exponential type such that f̂(t) in
(4.3.0.24) is Lorentz invariant (Note that a Lorentz invariant Ultra-
distribution is not necessarily Lorentz invariant in an explicit way).
In this case, we can use for the Fourier transform of f̂(t) the formula
obtained in Ref. [41]
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F(ρ) = (2π)
ν−2

2

∞∫
−∞

f̂(x)×

{
Θ[�(ρ)]e

iπ(ν−2)
4

(x+ i0)
ν−2

4

ρ
ν−2

4

Kν−2
2

[−i(x+ i0)1/2ρ1/2] −

Θ[−�(ρ)]e
iπ(2−ν)

4
(x− i0)

ν−2
4

ρ
ν−2

4

Kν−2
2

[i(x− i0)1/2ρ1/2]

}
dx.

(10.3.0.1)
Here, we have taken ρ = γ+ iσ and

ρ1/2 =

√
γ+

√
γ2 + σ2

2
+ iSgn(σ)

√
−γ+

√
γ2 + σ2

2
. (10.3.0.2)

When f̂ is Lorentz invariant, we can use (10.3.0.1) or adopt the fol-
lowing treatment, starting from

∞∫∫∫∫
−∞

f(ρ)φ(ρ, k0) d4k = (2π)ν
∞∫∫∫∫

−∞

f̂(x)φ̂(x, x0)d4x, (10.3.0.3)

so that we can deduce the equality

∞∫∫
−∞

f(ρ)φ(ρ, k0)(k20 − ρ)
ν−3

2
+ dρ dk0 =

∞∫∫
−∞

f̂(x)φ̂(x, x0)(x− x20)
ν−3

2
+ dx dx0. (10.3.0.4)

Let g(t) be defined as

ĝ(t) =
1

(2π)ν

∞∫
−∞

f(ρ)e−iρt dρ. (10.3.0.5)

Then,

F(ρ) = Θ[�(ρ)]

∞∫
0

ĝ(t)eiρt dt−Θ[−�(ρ)]

0∫
−∞

ĝ(t)eiρt , (10.3.0.6)
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or, if we use Dirac’s formula,

F(ρ) =
1

2πi

∞∫
−∞

f(t)

t− ρ
dt. (10.3.0.7)

The inverse of the Fourier transform can be evaluated in the following
way: we define

Ĝ(x,Λ) =
1

(2π)
ν+2

2

∮
Γ

F(ρ)×

{
e

iπ(ν−2)
4

(ρ+Λ)
ν−2

4

(x+ i0)
ν−2

4

Kν−2
2

[−i(x+ i0)1/2(ρ+Λ)1/2] +

+ e
iπ(2−ν)

4
(ρ−Λ)

ν−2
4

(x− i0)
ν−2

4

Kν−2
2

[i(x− i0)1/2(ρ−Λ)1/2]

}
dρ,

(10.3.0.8)
and then

f̂(x) = Ĝ(x, i0+). (10.3.0.9)

We present now same examples of the use of Fourier transform in
Minkowskian space.

10.4 Examples

As a first example, we consider the Fourier transform of the ultradis-
tribution

2νΘ; �(z0)]Θ[�(z2)] · · ·Θ[�(zν−1)]

[
cosh

(
a
√
|z20 − z21 − · · ·− z2ν−1|

)

+ cos

(
a
√
|z20 − z21 − · · ·− z2ν−1|

)]
, (10.4.0.1)

where a is a complex number. The cut along the real axis of (10.4.0.1)
is

2−1
[
ea

√
|x2

0
−r2| + e−a

√
|x2

0
−r2| + eia

√
|x2

0
−r2| + e−ia

√
|x2

0
−r2|

]
.

(10.4.0.2)
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The Fourier transform is

F(ρ) = (2π)
ν−2

2

∞∫
−∞

e|x|
1
2
2−1×

[
ea

√
|x2

0
−r2| + e−a

√
|x2

0
−r2| + eia

√
|x2

0
−r2| + e−ia

√
|x2

0
−r2|

]
{
Θ[�(ρ)]e

iπ(ν−2)
4

(x+ i0)
ν−2

4

ρ
ν−2

4

Kν−2
2

[−i(x+ i0)1/2ρ1/2] −

Θ[−�(ρ)]e
iπ(2−ν)

4
(x− i0)

ν−2
4

ρ
ν−2

4

Kν−2
2

[i(x− i0)1/2ρ1/2]

}
dx.

(10.4.0.3)
Now,

e
iπ(ν−2)

4

∞∫
−∞

ea|x|
1
2 (x+ i0)

ν−2
4 Kν−2

2
[−i(x+ i0)1/2ρ1/2] =

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 − ia)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a− iρ1/2

a+ iρ1/2

)
−

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 + a)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ ρ1/2

a− ρ1/2

)
�(ρ) > 0

(10.4.0.4)

e
iπ(2−ν)

4

∞∫
−∞

ea|x|
1
2 (x− i0)

ν−2
4 Kν−2

2
[i(x− i0)1/2ρ1/2] =

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e−
iπν
2

(ρ1/2 + ia)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ iρ1/2

a− iρ1/2

)
−

2
ν
2

√
π

Γ(ν)

Γ(ν+3
2

)

e
iπν
2

(ρ1/2 + a)ν
F

(
ν,

ν− 1

2
,
ν+ 3

2
,
a+ ρ1/2

a− ρ1/2

)
�(ρ) < 0

(10.4.0.5)
So as to obtain (10.4.0.4) and (10.4.0.5) we have used 6.621, (3) of
Ref. [4]. With these results we have

F(ρ) =
(4π)

ν−1
2

2

Γ(ν)

Γ(ν+3
2

)

⎧⎨
⎩Θ[�(ρ)]e

iπν
2

⎡
⎣F

(
ν, ν−1

2
, ν+3

2
, a−iρ1/2

a+iρ1/2

)
(ρ1/2 − ia)ν

+
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F
(
ν, ν−1

2
, ν+3

2
, a+iρ1/2

a−iρ1/2

)
(ρ1/2 + ia)ν

+
F
(
ν, ν−1

2
, ν+3

2
, a−ρ1/2

a+ρ1/2

)
(ρ1/2 + a)ν

+

F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 − a)ν

−
F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 + a)ν

−

F
(
ν, ν−1

2
, ν+3

2
, a−ρ1/2

a+ρ1/2

)
(ρ1/2 − a)ν

−
F
(
ν, ν−1

2
, ν+3

2
, a−iρ1/2

a+iρ1/2

)
(ρ1/2 + ia)ν

−

F
(
ν, ν−1

2
, ν+3

2
a+iρ1/2

a−iρ1/2

)
(ρ1/2 − ia)ν

⎤
⎦−

Θ[−�(ρ)]e−
iπν
2

⎡
⎣F

(
ν, ν−1

2
, ν+3

2
, a+iρ1/2

a−iρ1/2

)
(ρ1/2 + ia)ν

+

F
(
ν, ν−1

2
, ν+3

2
, a−iρ1/2

a+iρ1/2

)
(ρ1/2 − ia)ν

+
F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 − a)ν

+

F
(
ν, ν−1

2
, ν+3

2
, a−ρ1/2

a+ρ1/2

)
(ρ1/2 + a)ν

−
F
(
ν, ν−1

2
, ν+3

2
, a+ρ1/2

a−ρ1/2

)
(ρ1/2 + a)ν

−

F
(
ν, ν−1

2
, ν+3

2
, a−ρ1/2

a+ρ1/2

)
(ρ1/2 − a)ν

−
F
(
ν, ν−1

2
, ν+3

2
, a−iρ1/2

a+iρ1/2

)
(ρ1/2 + ia)ν

−

F
(
ν, ν−1

2
, ν+3

2
, a+iρ1/2

a−iρ1/2

)
(ρ1/2 − ia)ν

⎤
⎦
⎫⎬
⎭ . (10.4.0.6)

As a second example, we evaluate the Fourier transform of the ultra-
distribution (ν = 2n)

F̂(z) = −
(−1)

ν
2 iμν−2

2νπ
ν−2

2

Θ[�(z0)]Θ[�(z2)] · · ·−Θ[�(zν−1)]×

∞∑
k=0

(−1)kμ2k(z20 − z21 − · · ·− z2ν−1)
kk

22k(k)!Γ(ν+ k)
. (10.4.0.7)

The cut along the real axis of F̂(z) is

f̂(x) = f̂μ(x+) − f̂μ(x−), (10.4.0.8)
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where

f̂μ(x) = −
iπ

2

μ
ν−2

2

(2π)
ν
2

x
2−ν

4 J 2−ν
2

(μx1/2). (10.4.0.9)

Note that

f̂μ(x+) = wμ(x) = −
iπ

2

μ
ν−2

2

(2π)
ν
2

x
2−ν

4
+ J 2−ν

2
(μx

1/2
+ ), (10.4.0.10)

is the complex mass Wheeler propagator. Thus, according to (10.3.0.1)

F(ρ) = −
i(μ)

ν−2
2

4

∞∫
0

J 2−ν
2

(μx1/2)

{
Θ[�(ρ)]

ρ
ν−2

4

[
e

iπ(ν−2)
4 Kν−2

2
(−ix1/2ρ1/2) +

e
iπ(ν−2)

2 Kν−2
2

(x1/2ρ1/2)
]
−Θ[−�(ρ)]

[
e

iπ(2−ν)
4 Kν−2

2
(ix1/2ρ1/2) +

e
iπ(2−ν)

2 Kν−2
2

(x1/2ρ1/2)
]}

dx. (10.4.0.11)

Taking into account that (see 6.576, (3), Ref. [4])

∞∫
0

J 2−ν
2

(x1/2)Kν−2
2

(−ix1/2ρ1/2) dx =

2μ
2−ν

2 e
iπ(6−ν)

4
ρ

ν−2
4

ρ− μ2
�(ρ) > 0

∞∫
0

J 2−ν
2

(x1/2)Kν−2
2

(ix1/2ρ1/2) dx =

2μ
2−ν

2 e
iπ(ν−6)

4
ρ

ν−2
4

ρ− μ2
�(ρ) < 0

∞∫
0

J 2−ν
2

(x1/2)Kν−2
2

(x1/2ρ1/2) dx = 2μ
2−ν

2
ρ

ν−2
4

ρ+ μ2
, (10.4.0.12)

we obtain

F(ρ) =
i

2
Sgn[�(ρ)]

[
1

ρ− μ2
+

coshπ(ν−2
2

)

ρ+ μ2

]
. (10.4.0.13)
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10.5 UET

Let F̂(z) and Ĝ(z) be ultradistributions of exponential type (UET)
such that their cuts along the real axis are f̂(x) and ĝ(x). We suppose
that F̂(z) and Ĝ(z) are spherically symmetric in the Euclidean case or
Lorentz invariant in Minkowskian space. If we use the dimension ν
as a regularizing parameter we can define the convolution of F(ρ) and
G(ρ) as

F(ρ, ν) ∗G(ρ, ν) = (2π)νF {
f̂(x, ν)ĝ(x, ν)

}
. (10.5.0.1)

10.6 The Euclidean case

As an example of the use of (10.1.0.3) in Euclidean space, we consider
an UET F̂(z) such that f̂(x) is defined at the point a > 0 of the real
axis and takes the value f̂(a), together with the ultradistribution Ĝ(z)
whose cut along the real axis is δ(x− a). According to (10.3.0.1), we
have

F {
F̂
}
(ρ) = F(ρ), (10.6.0.1)

F {δ(x− a)} =

G(ρ) =
(2π)

ν−2
2

ρ
ν−2

4

a
ν−2

4

{
Θ[�(ρ)]e−

iπν
4 Kν−2

2
(−ia1/2ρ1/2)−

Θ[−�(ρ)]e
iπν
4 Kν−2

2
(ia1/2ρ1/2)

}
+

2π
ν−2

2

Γ(ν−2
2

)ρ
ν−2

4

a
ν−2

4 Sν−4
2

,ν−2
2

(a1/2ρ1/2). (10.6.0.2)

Due to

F {
f̂(x)δ(x− a)

}
= f̂(a)F {δ(x− a)} = f̂(a)G(ρ), (10.6.0.3)

we have

F(ρ) ∗G(ρ) = (2π)νf̂(a)G(ρ). (10.6.0.4)
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10.7 The Minkowskian case

We consider now

F(ρ) = G(ρ) =
i

2
Sgn[�(ρ)]

[
1

ρ− μ2
+

coshπ(ν−2
2

)

ρ+ μ2

]
. (10.7.0.1)

From (10.4.0.8) we have

f̂(x) = ĝ(x) =

−
iπ

2

(−μ)
ν−2

2

(2π)
ν
2

[
x

2−ν
4

+ Jν−2
2

(μx
1/2
+ ) − x

2−ν
4

− Jν−2
2

(μx
1/2
− )

]
. (10.7.0.2)

Then,

F(ρ) ∗G(ρ) =

(2π)
ν+1

2

2
3ν−1

2

Γ

(
3− ν

2

)
eiπ(

ν−2
2

)ρ
2−ν

2 Sgn[�(ρ)]×

[
(ρ2 − 2ρμ2)

ν−3
2 + (ρ2 + 2ρμ2)

ν−3
2

]
. (10.7.0.3)

To obtain (10.7.0.3) we use

∞∫
0

J 2−ν
2

(μ1x)J 2−ν
2

(μ2x)Kν−2
2

(xz) dx =

−
1√
π

Γ
(
3−ν
2

)
2

3ν−6
2

z
2−ν

2

(μ1μ2)
ν−2

2

[
(z2 + μ2

1 + μ2
2)

2 − 4μ2
1μ

2
2

]ν−3
2 , (10.7.0.4)

and to deduce (10.7.0.4) we have employed

Kν−2
2

(xz) =
1

2

(zx
2

)ν−2
2

∞∫
0

t−
ν
2 e−t− z2x2

4t dt, (10.7.0.5)

see (8.432-6) of Ref. [4]. We proceed now to the calculation of the
convolution of two UETs.
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10.8 The convolution of two UETs

The convolution of two UETs can be defined with a change in the
formula obtained in Ref. [41] for tempered ultradistributions. Let

Hγλ(k) =
i

2π

∮
Γ1

∮
Γ2

[2 cosh(γk1)]
−λF(k1)[2 cosh(γk2)]

−λG(k2)

k− k1 − k2
dk1 dk2,

(10.8.0.1)

| �(k) |>| �(k1) | + | �(k2 | ; γ < min

(
π

2 | �(k1) |
;

π

2 | �(k2) |

)
.

With this value of γ, the hyperbolic functions has no singularities in
the integration zone. Again, we have the Laurent (or Taylor) expan-
sion

Hγλ(k) =
∑
n

H(n)
γ (k)λn, (10.8.0.2)

where the sum might have terms with negative n. We now define the
convolution product as the λ-independent term of (10.8.0.2)

(F ∗G)(k) = H(k) = H(0)
γ (k) = H(0)(k), (10.8.0.3)

that is γ-independent. To see this we consider a typical integral term
in (10.4.0.1)

I =

∞∫
c

F(k+ iσ)

[coshγ(k+ iσ)]λ
dk, (10.8.0.4)

with
|F(k)| ≤ A |k|

p
ep|�(k)|. (10.8.0.5)

Then, I has the value

I = ei(p+1)

⎡
⎣ ∞∑
n=1;n�=(p−1,p+1)

an(p, σ)
e−c(n−p−1)

n− p− 1
− ap−1(p, σ)

e2c

2

+
ap+1(p, σ)

λγ

]
. (10.8.0.6)

Thus, the λ-independent term of I does not depend on γ. As (10.4.0.1)
is composed of sums and products of integrals of the type (10.4.0.4),
we conclude that (10.4.0.3) is true.
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10.9 Examples

As a first example, we consider the convolution of two exponentials.
Let

F(k) = Sgn[�(k)]
eak

2
; G(k) = Sgn[�(k)]

ebk

2
, (10.9.0.1)

(a and b complex). Then,

Hγλ(k) =

i

8π

∮
Γ1

∮
Γ2

Sgn[�(k1)]e
ak1Sgn[�(k2)]e

bk2

[2 cosh(γk1)]λ[2 cosh(γk2)]λ(k− k1 − k2)
dk1 dk2 =

1

2π

∞∫∫
−∞

eak1ebk2

[2 cosh(γk1)]λ[2 cosh(γk2)]λ(k− k1 − k2)
dk1 dk2, (10.9.0.2)

or

Hγλ(k) =
Θ[�(k)]

2π

∞∫
0

∞∫∫
−∞

eak1ebk2ei(k−k1−k2)t

(eγk1 + e−γk1)λ(eγk2 + e−γk2)λ
dk1 dk2 dt

−
Θ[−�(k)]

2π

0∫
−∞

∞∫∫
−∞

eak1ebk2ei(k−k1−k2)t

(eγk1 + e−γk1)λ(eγk2 + e−γk2)λ
dk1 dk2 dt.

(10.9.0.3)
To evaluate (10.9.0.3) we take into account that

∞∫
−∞

e(a−it)k1

(eγk1 + e−γk1)λ
dk1 =

1

2γ

∞∫
0

y
γλ+a−it

2γ
−1

(1+ Y)
λ

dy =

1

2γ

Γ
(

γλ+a−it
2γ

)
Γ
(

γλ−a+it
2γ

)
Γ(λ)

. (10.9.0.4)

Then,

Hγλ(k) =
1

8πγ2Γ2(λ)

⎧⎨
⎩Θ[�(k)]

∞∫
0

Γ

(
γλ+ a− it

2γ

)
Γ

(
γλ− a+ it

2γ

)
×
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Γ

(
γλ+ b− it

2γ

)
Γ

(
γλ− b+ it

2γ

)
eikt dt −

Θ[−�(k)]

0∫
−∞

Γ

(
γλ+ a− it

2γ

)
Γ

(
γλ− a+ it

2γ

)
×

Γ

(
γλ+ b− it

2γ

)
Γ

(
γλ− b+ it

2γ

)
eikt dt

}
, (10.9.0.5)

and using the equality ([4], 3.381, 4),

∞∫
0

xν−1e−μx dx = μ−νΓ(ν), (10.9.0.6)

so that performing the integral in the variable t, we have, for (10.9.0.5),

Hγλ(k) = −
1

8πiγ2Γ2(λ)

∞∫∫∫∫
0

×

s
γλ+a

2γ
−1

1 e−s1s
γλ−a

2γ
−1

2 e−s2s
γλ+b

2γ
−1

3 e−s3s
γλ−b

2γ
−1

4 e−s4×
1

k+ 1
2γ

ln(s2s4

s1s3
)
ds1 ds2 ds3 ds4. (10.9.0.7)

As

1

k+ 1
2γ

ln(s2s4

s1s3
)
=

∞∑
n=0

(ikI)
n

n!

∂n

∂knR
δ

[
kR +

1

2γ
ln

(
s2s4

s1s3

)]
,

(10.9.0.8)
where (k = kR + ikI) and

δ

[
kR +

1

2γ
ln

(
s2s4

s1s3

)]
=

s1s3

s2
e−2γkRδ

(
s4 −

s1s3

s2
e−2γkR

)
,

(10.9.0.9)
we obtain

Hγλ(k) = −

∞∑
n=0

(ikI)
n

n!

∂n

∂knR

ekR(b−γλ)

4πiγΓ2(λ)

∞∫∫∫∫
0

s
2γλ+a−b

2γ
−1

1 e−s1 ×

s
b−a
2γ

−1

2 e−s2sλ−1
3 e−s3e

−
(

s1s3
s2

e−2γkR

)
ds1 ds2 ds3 ds4. (10.9.0.10)
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After evaluating the four-fold integral, Hγλ takes the form

Hγλ(k) = −
ek(b+γλ)

4πiγΓ(2λ)
Γ

(
a− b+ 2γλ

2γ

)
Γ

(
b− a+ 2γλ

2γ

)
×

F

(
λ+

b− a

2γ
, λ, 2λ; 1− e2γk

)
. (10.9.0.11)

When a �= b
lim
λ→0

Hγλ(k) = 0. (10.9.0.12)

When a = b,

lim
λ→0

Hγλ(k) =
keka

2πi
≡ 0, (10.9.0.13)

and then H(k) is the null ultradistribution Thus, we have finally

Sgn[�(k)]
eak

2
∗ Sgn[�(k)]e

bk

2
= 0,

and Fourier anti-transforming

δ(z− a)δ(z− b) = 0. (10.9.0.14)

As a second example, we consider the convolution of two complex
Dirac deltas

F(k) = −
1

2πi(k− a)
; G(k) = −

1

2πi(k− b)
. (10.9.0.15)

We have

Hγλ(k) =
i

2π

∮
Γ1

∮
Γ2

i

2π(k1 − a)

i

2π(k2 − b)
×

[2 cosh(γk1)]
−λ[2 cosh(γk2)]

−λ

k− k1 − k2
dk1 dk2 = (10.9.0.16)

1

2π

[2 cosh(γa)]−λ[2 cosh(γb)]−λ

k− a− b
, (10.9.0.17)

and, as a consequence,

H(k) = −
1

2πi

1

k− a− b
, (10.9.0.18)

or
δ(k− a) ∗ δ(k− b) = δ(k− a− b), (10.9.0.19)
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and, in configuration space,

Sgn[�(z)]

2
eaz

Sgn[�(z)]

2
ebz =

Sgn[�(z)]

2
e(a+b)z. (10.9.0.20)

Formula (10.3.0.1) can be generalized to ν dimensions

Hγλ(k) =
iν

(2π)ν

∮
Γ1

∮
Γ2

ν∏
j=1

[2 cosh(γjk1j]
−λj [2 cosh(γjk2j)]

−λj

ν∏
j=1

(kj − k1j − k2j)

×

F(k1)G(k2) dνk1 dνk2. (10.9.0.21)

γj < min

(
π

2 | �(k1j) |
;

π

2 | �(k2j) |

)
As in the one-dimensional case,

Hγλ(k) =
∑

n1,n2,..,nν

λn1

1 λn2

2 · · · λnν
ν H(n1+n2+···+nν)(k), (10.9.0.22)

and again,

(F ∗G)(k) = H(k) = H(0)(k). (10.9.0.23)

10.10 Normalization of Gamow states

As an application of the results of the previous discussions we give
in this section a solution to the question of normalization of Gamow
states in quantum mechanics. If we have a Gamow state that de-
pends on l+m variables φ(k1, k2, ..., kl; ρ1, ρ2, ...ρm), and we wish to
calculate

I(k1, k2, .., kl) =

∞∫
−∞

· · ·
∞∫

−∞

|φ|2(k1, k2, .., kl; ρ1, ρ2, .., ρm) dρ1 dρ2 · ·dρm, (10.10.0.1)

we define

Φ(k1, k2, ..., kl; z1, z2, ..., zm) =
1

(2πi)m

∞∫
−∞

· · ·
∞∫

−∞

×

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



144 CHAPTER 10. EXPONENTIAL ULTRADISTRIBUTIONS

|φ|2(k1, k2, ..., kl; ρ1, ρ2, ..., ρm)

(ρ1 − z1)(ρ2 − z2) · · · (ρm − zm)
dρ1 dρ2 · · · dρm, (10.10.0.2)

and

Hγ1γ2...γmλ1λ2...λm
(k1, k2, ..., kl) =

∮
Γ1

· · ·
∮
Γm

×

Φ(k1, k2, ..., kl; z1, z2, ..., zm)

[cosh(γ1z1)]λ1 [cosh(γ2z2)]λ2 ...[cosh(γmzm)]λm
dz1 dz2 · · · dzm.

(10.10.0.3)
We have again the Laurent’s expansion

Hγ1γ2...γmλ1λ2...λm
(k1, k2, ..., kl) =

∑
n1,n2,...nm

×

λn1

1 λn2

2 ...λnm
m H(n1+n2+...+nm)

γ1γ2...γm
(k1, k2, ..., kl), (10.10.0.4)

and as a consequence of Section 9.9 we define

I(k1, k2, ..., kl) = H(k1, k2, ..., kl) = H(0)(k1, k2, ..., kl) =

H(0)
γ1γ2...γm

(k1, k2, ..., kl). (10.10.0.5)

As an example of application of (10.10.0.1-10.10.0.5) we evaluate

I(k) =

∞∫
0

φ2
0(k, r) dr =

∞∫
−∞

Θ(r)φ2
0(k, r) dr, (10.10.0.6)

where φ0(k, r) is the l = 0 function corresponding to the square-well
potential used in Ref. [43]

φ0(k, r) =

{
sin(qr)

q
if r < a

sin(qa)
q

eik(a−r) if r > a.
(10.10.0.7)

Here q is given by

q2 =
2m

�2
[E− V(r)] = k2 −

2m

�2
V(r), (10.10.0.8)

and

V(r) =

{
0 if r > a

−V0 if r ≥ a.
(10.10.0.9)
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We can write

φ(k, r) = [Θ(r) −Θ(r− a)]
sin(qr)

q
+Θ(r− a)

sin(qa)

q
eik(a−r),

(10.10.0.10)

φ2(k, r) = [Θ(r) −Θ(r− a)]
sin2(qr)

q2
+Θ(r− a)

sin2(qa)

q2
e2ik(a−r),

(10.10.0.11)
and, according to (10.10.0.2),

Φ(k, z) =
1

2πi
[ln(a− z) − ln(z)]

sin2(qz)

q2
−

1

2πi

sin2(qa)

q2
ln(a− z).e2ik(a−z) (10.10.0.12)

Thus, we have

Hγλ(k) =
1

2πiq2

∮
Γ

ln(a− z) − ln(z)

[cosh(γz)]λ
sin2(qz) dz −

sin2(qa)

2πiq2
e2ika

∮
Γ

ln(a− z)

[cosh(γz)]λ
e−2ikz dz =

1

q2

a∫
0

sin2(qr)

[cosh(γr)]λ
dr+

sin2(qa)

q2
e2ika

∞∫
a

e−2ikr

[cosh(γr)]λ
dr. (10.10.0.13)

We can evaluate the second integral in (10.10.0.13)

∞∫
a

e−2ikr

[cosh(γr)]λ
dr =

e−a(γλ+2ik)

γλ+ 2ik
F

(
λ,

γλ+ 2ik

2γ
,
γλ+ 2ik

2γ
+ 1; −e4γa

)
. (10.10.0.14)

Taking into account that

lim
λ→0

1

γλ+ 2ik
=

{
−i

2(k−i0) if �(k) = 0
−i
2k

if �(k) �= 0,
(10.10.0.15)
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we obtain

I(k) = H(k) =
1

q2

a∫
0

sin2(qr) dr+
sin2(qa)

2ikq2
=

a

2q2
−

sin(2qa)

4q3
+

sin2(qa)

2ikq2
. (10.10.0.16)

Using now the equality

cos(qa) = −i
k

q
sin(qa), (10.10.0.17)

we have

I(k) =
1+ ika

2ik

q2 − k2

q4
sin2(qa). (10.10.0.18)

This result coincides with the result obtained in Ref. [43].

10.11 Four-dimensional even UETs

The convolution of two even UETs can be defined with a change in
the formula obtained in Ref. [41] for tempered ultradistributions. Let

Hγ0γλ0λ(k
0, ρ) =

1

4πρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

[2cosh(γ0k
0
1)]

−λ0 [2cosh(γρ1)]
−λF(k01, ρ1)

k0 − k01 − k02
×

[2cosh(γ0k
0
2)]

−λ0 [2cosh(γρ2)]
−λG(k02, ρ2) ×

ln[ρ2 − (ρ1 + ρ2)
2]ρ1ρ2 dρ1 dρ2 dk01 dk02, (10.11.0.1)

| �(k0) |>| �(k01 | + | �(k02) | ; | �(ρ) |>| �(ρ1 | + | �(ρ2) |

γ0 < min

(
π

2 | �(k01) |
;

π

2 | �(k02) |

)
; γ < min

(
π

2 | �(ρ1) |
;

π

2 | �(ρ2) |

)
.

The difference between∫
2ρ

ρ2 − (ρ1 + ρ2)2
dρ and ln[ρ2 − (ρ1 + ρ2)

2]
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is an entire analytic function. Substitution now in (10.11.0.1) yields

Hγ0γλ0λ(k
0, ρ) =

1

2πρ

∫
ρ dρ

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

F(k01, ρ1)G(k02, ρ2)

k0 − k01 − k02
×

[2cosh(γ0k
0
1)]

−λ0 [2cosh(γρ1)]
−λ[2cosh(γ0k

0
2)]

−λ0 [2cosh(γρ2)]
−λ×

1

ρ2 − (ρ1 + ρ2)2
ρ1ρ2 dρ1 dρ2 dk01 dk02. (10.11.0.2)

We can again perform the Laurent expansion

Hγ0γλ0λ(k
0, ρ) =

∑
mn

H(m,n)
γ0γ

(k0, ρ)λm0 λn, (10.11.0.3)

and define the convolution product as the (λ0, λ)-independent term of
(10.11.0.3)

H(k) = H(k0, ρ) = H(0,0)
γ0γ

(k0, ρ) = H(0,0)(k0, ρ). (10.11.0.4)

If we define

Lγ0γλ0λ(k
0, ρ) =

∮
Γ0
1

∮
Γ0
2

∮
Γ1

∮
Γ2

F(k01, ρ1)G(k02, ρ2)

k0 − k01 − k02
×

[2cosh(γ0k
0
1)]

−λ0 [2cosh(γρ1)]
−λ[2cosh(γ0k

0
2)]

−λ0 [2cosh(γρ2)]
−λ×

1

ρ2 − (ρ1 + ρ2)2
ρ1ρ2 dρ1 dρ2 dk01 dk02, (10.11.0.5)

then

Hγ0γλ0λ(k
0, ρ) =

1

2πρ

∫
Lγ0γλ0λ(k

0, ρ) ρ dρ. (10.11.0.6)

Now, we will show that the cut on the real axis of (10.11.0.1),
hλ0λ(k

0, ρ), is an even function of k0 and ρ, but it is explicitly odd
in ρ. For the variable k0 we take into account that

eiπλ0{Sgn[�(k0
1)]+Sgn[�(k0

2)]} = 1, and, as a consequence, (10.11.0.1) is
odd in k0 too. We consider now the parity in the variable ρ.∮

Γ0

∮
Γ

Hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ =
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−

+∞∫∫
−∞

hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ =

−

∮
Γ0

∮
Γ

Hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ =

−

+∞∫∫
−∞

hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ. (10.11.0.7)

Thus, we have

hλ0λ(k
0,−ρ) = hλ0λ(k

0, ρ). (10.11.0.8)

The proof for the variable k0 is similar.

10.12 Examples

As a first example, we shall calculate the convolution between F(k0, ρ) =
δ(k20 − a2)δ(ρ− b) and G(k0, ρ) = δ(k20 − c2)δ(ρ− d). We have

H(k0, ρ) =
bd

16π|a||b|ρ
×

(
1

k0 − a− c
+

1

k0 − a+ c
+

1

k0 + a− c
+

1

k0 + a+ c

)
×

ln[ρ2 − (b+ d)2], (10.12.0.1)

and simplifying the last expression,

H(k0, ρ) =
bd

8π|a||b|ρ

[
k0 − a

(k0 − a)2 − c2
+

k0 + a

(k0 + a)2 − c2

]
×

ln[ρ2 − (b+ d)2]. (10.12.0.2)

As a second example, we evaluate the convolution of F(k0, ρ) =
δ(k0)δ(ρ− a) and G(k0, ρ) =

1
2
Sgn[�(k0)]e

ibk0δ(ρ− c). We have

Hγ0γλ0λ(k0, ρ) =

ac

8πρ

ln[ρ2 − (a+ c)2]

[cosh(γa]λ[cosh(γc)]λ

∮
Γ02

Sgn[�(k02)]e
ibk02

[cosh(γ0k02)]λ0(k0 − k02)
dk02
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=
ac

4πρ

ln[ρ2 − (a+ c)2]

[cosh(γa]λ[cosh(γc)]λ

∞∫
−∞

eibk02

[cosh(γ0k02)]λ0(k0 − k02)
dk02.

(10.12.0.3)
Taking into account that

lim λ0 → 0

∞∫
−∞

eibk02

[cosh(γ0k02)]λ0(k0 − k02)
dk02 =

−πiSgn[�(k0)]e
ibk0 , (10.12.0.4)

we obtain

H(k0, ρ) =
ac

4πiρ
Sgn[�(k0)]e

ibk0 ln[ρ2 − (a+ d)2]. (10.12.0.5)

10.13 Convolution of spherically symmet-
ric UET

The convolution of two spherically symmetric UETs can be defined
with a change of the formula obtained in Ref. [41] for tempered ul-
tradistributions. Let

Hγλ(ρ) =
iπ

4ρ

∮
Γ1

∮
Γ2

[2 cosh(γρ1)]
−λF(ρ1)[2 cosh(γρ2)]

−λG(ρ2) ×

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
dρ1 dρ2. (10.13.0.1)

Again, we have the Laurent expansion

Hγλ(ρ) =

∞∑
n=−m

H(n)
γ (ρ)λn. (10.13.0.2)

We now define the convolution product as the λ-independent term of
(10.13.0.2). One has

H(ρ) = H(0)
γ (ρ) = H(0)(ρ). (10.13.0.3)
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Let Ĥγλ(x) be the Fourier anti-transform of Hγλ(ρ). Then,

Ĥγλ(x) =

∞∑
n=−m

Ĥ(n)
γ (x)λn. (10.13.0.4)

If we define
f̂γλ(x) = F−1{[2 cosh(γρ)]−λF(ρ)}

ĝγλ(x) = F−1{[2 cosh(γρ)]−λG(ρ)}, (10.13.0.5)

then,
Ĥγλ(x) = (2π)4f̂γλ(x)ĝγλ(x), (10.13.0.6)

and with the use of the Laurent’s expansion of f̂ together with ĝ we
write

f̂γλ(x) =

∞∑
n=−mf

f̂(n)
γ (x)λn

ĝγλ(x) =

∞∑
n=−mf

ĝ(n)
γ (x)λn, (10.13.0.7)

so that

∞∑
n=−m

Ĥ(n)
γ (x)λn = (2π)4

∞∑
n=−m

(
n∑

k=−m

f̂(k)γ (x)ĝ(n−k)
γ (x)

)
λn,

(10.13.0.8)
(m = mf +mg, and as a consequence,

Ĥ(0)(x) =

0∑
k=−m

f̂(k)γ (x)ĝ(n−k)
γ (x). (10.13.0.9)

We shall now give some examples.

10.14 Examples

The first example that we shall tackle is the convolution between
F[ρ) = δ(ρ− a) and G(ρ) = δ(ρ− b). We have

Hγλ(ρ) =
iπ

4ρ

∮
Γ1

∮
Γ2

[2 cosh(γρ1)]
−λδ(ρ1 −a)[2 cosh(γρ2)]

−λδ(ρ2 −b) ×
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[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ2)2 − 4ρ1ρ2

]
dρ1 dρ2, (10.14.0.1)

whose result is

H(ρ) =
iπ

4ρ

[
ρ− a− b−

√
(ρ− a− b)2 − 4ab

]
. (10.14.0.2)

When a and b are real numbers, from (10.14.0.2) we obtain in the
real ρ-axis

h(ρ) =
π

2ρ

[
(ρ− a− b)2 − 4ab

] 1
2

+
. (10.14.0.3)

As a second example, we evaluate the convolution between F(ρ) =
Ei(−iaρ)eiaρ/2πi and G(ρ) = δ

′
(ρ) = (2πiρ2)−1, where Ei(z) is the

exponential integral function. We have

Hγλ(ρ) =
1

8ρ

∮
Γ1

∮
Γ2

Ei(−iaρ1)e
iaρ1δ

′
(ρ2)

[2 cosh(γρ1)]λ[2 cosh(γρ2)]λ

[
ρ− ρ1 − ρ2 −

√
(ρ− ρ1 − ρ1)2 − 4ρ1ρ2

]
dρ1 dρ2. (10.14.0.4)

After integration in the variable ρ2 we have

Hγλ(ρ) =
1

4ρ

∮
Γ1

ρ1Ei(−iaρ1)e
iaρ1

[2 cosh(γρ1)]λ(ρ1 − ρ)
dρ1 =

1

4ρ

∞∫
0

ρ1e
iaρ1

[2 cosh(γρ1)]λ(ρ1 − ρ)
dρ1 =

1

4ρ

∞∫
0

eiaρ1

[2 cosh(γρ1)]λ
dρ1 +

1

4

∞∫
0

eiaρ1

[2 cosh(γρ1)]λ(ρ1 − ρ)
dρ1.

(10.14.0.5)
For the integrals in (10.14.0.5) (λ → 0) we obtain

H(ρ) =
i

4aρ
−

i

8π
eiaρ.Ei(−iaρ). (10.14.0.6)
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10.15 Convolution of Lorentz invariant UETs

For Lorentz invariant UETs, following Ref. [41] we have,

Hγλ(ρ,Λ) =
1

8π2ρ

∫
Γ1

∫
Γ2

[2 cosh(γρ1)]
−λF(ρ1)[2 cosh(γρ2)]

−λG(ρ2)

{Θ[�(ρ)] {[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)]×

[ln(−ρ2+Λ)−ln(−ρ2−Λ)]
√

4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 +Λ)(ρ2 +Λ)

]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 −Λ)(ρ2 −Λ)

]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 +Λ)(ρ2 −Λ)

]}
+

[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 −Λ)(ρ2 +Λ)

]}}
−

Θ[−�(ρ)] {[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.15. CONVOLUTION OF LORENTZ INVARIANT UETS 153

√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2×

ln

[√
4(ρ1 −Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2 + 2Λ)2 − i(ρ− ρ1 − ρ2 + 2Λ)

2
√
(ρ1 −Λ)(ρ2 −Λ)

]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2×

ln

[√
4(ρ1 +Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2 − 2Λ)2 − i(ρ− ρ1 − ρ2 − 2Λ)

2
√
(ρ1 +Λ)(ρ2 +Λ)

]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 −Λ)(ρ2 +Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 −Λ)(ρ2 +Λ)

]}
+

[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{
iπ

2

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

]
+

√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2×

ln

[√
4(ρ1 +Λ)(ρ2 −Λ) − (ρ− ρ1 − ρ2)2 − i(ρ− ρ1 − ρ2)

2i
√

−(ρ1 +Λ)(ρ2 −Λ)

]}}
−
i

2
×

{[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)] ×

(ρ1 − ρ2)

[
ln

(
i

√
ρ1 +Λ

ρ2 +Λ

)
+ ln

(
−i

√
ρ1 −Λ

ρ2 −Λ

)]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×

(ρ1 − ρ2)

[
ln

(
−i

√
Λ− ρ1

Λ− ρ2

)
+ ln

(
i

√
Λ+ ρ1

Λ+ ρ2

)]
+

[ln(ρ1 +Λ) − ln(ρ1 −Λ)][ln(−ρ2 +Λ) − ln(−ρ2 −Λ)]×
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{
(ρ1 − ρ2)

[
ln

(√
Λ+ ρ1

Λ− ρ2

)
+ ln

(√
Λ− ρ1

Λ+ ρ2

)]
+

(ρ1 − ρ2)

2
[ln(−ρ1 − ρ2 +Λ) − ln(−ρ1 − ρ2 −Λ) −

ln(ρ1 + ρ2 +Λ) + ln(ρ1 + ρ2 −Λ)] + ρ2 [ln(−ρ1 − ρ2 +Λ) −

ln(−ρ1 − ρ2 −Λ)] + ρ1 [ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ)]}

[ln(−ρ1 +Λ) − ln(−ρ1 −Λ)][ln(ρ2 +Λ) − ln(ρ2 −Λ)]×{
(ρ1 − ρ2)

[
ln

(√
Λ− ρ1

Λ+ ρ2

)
+ ln

(√
Λ+ ρ1

Λ− ρ2

)]
+

(ρ1 − ρ2)

2
[ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ) −

ln(−ρ1 − ρ2 +Λ) + ln(−ρ1 − ρ2 −Λ)] + ρ1 [ln(−ρ1 − ρ2 +Λ) −

ln(−ρ1 − ρ2 −Λ)] + ρ2 [ln(ρ1 + ρ2 +Λ) − ln(ρ1 + ρ2 −Λ)]}}} dρ1 dρ2,
(10.15.0.1)

|�(ρ)| > �(Λ) > |�(ρ1)|+ |�(ρ2)| ; γ < min

(
π

2 | �(ρ1) |
;

π

2 | �(ρ2) |

)
.

We define

H(ρ) = H(0)(ρ, i0+) = H(0)
γ (ρ, i0+), (10.15.0.2)

Hγλ(ρ, i0
+) =

∞∑
−m

H(n)
γ (ρ, i0+)λn. (10.15.0.3)

If we take into account that singularities (in the variable Λ) are con-
tained in a horizontal band of width |σ0|, we have

Hγλ(ρ, i0
+) =

∞∑
−m

H
(n)
γλ (ρ, iσ)

(−iσ)n

n!
σ > |σ0|. (10.15.0.4)

As in the other cases discussed above, we define now

{F ∗G}(ρ) = H(ρ), (10.15.0.5)

as the convolution of two Lorentz invariant UETs. Let Ĥγλ(x) be the
Fourier anti-transform of Hγλ(ρ, i0

+)

Ĥγλ(x) =

∞∑
n=−m

Ĥ(n)
γ (x)λn. (10.15.0.6)
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If we define

f̂γλ(x) = F−1{Fγλ(ρ)} = F−1{[cosh(γρ)]−λF(ρ)}

ĝγλ(x) = F−1{Gγλ(ρ)} = F−1{[cosh(γρ)]−λG(ρ)}, (10.15.0.7)

then,

Ĥγλ(x) = (2π)4f̂γλ(x)ĝγλ(x), (10.15.0.8)

and taking into account the Laurent expansion of f̂ together with ĝ

f̂γλ(x) =

∞∑
n=−mf

f̂(n)
γ (x)λn

ĝγλ(x) =

∞∑
n=−mf

ĝ(n)
γ (x)λn, (10.15.0.9)

we can write

∞∑
n=−m

Ĥ(n)
γ (x)λn = (2π)4

∞∑
n=−m

(
n∑

k=−m

f̂(k)γ (x)ĝ(n−k)
γ (x)

)
λn,

(10.15.0.10)
(m = mf +mg)
and as a consequence,

Ĥ(0)(x) =

0∑
k=−m

f̂(k)γ (x)ĝ(n−k)
γ (x). (10.15.0.11)

10.16 Examples

As a first example of the use of (10.15.0.1), we shall evaluate the
convolution product of δ(ρ) with δ(ρ − μ2) with μ = μR + iμI a
complex number such that μ2

R > μ2
I , μRμI > 0. Thus, from (10.15.0.1)

we obtain

Hγλ(ρ,Λ) = −iπ
ln(−μ2 +Λ) − ln(−μ2 + λ)

[2 cosh(γμ2)]λ
×

{
i(ρ− μ2)

8π2ρ

[
ln

(
ρ− μ2√
Λ(μ2 +Λ)

)
+
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ln

(
μ2 − ρ√

−Λ(μ2 +Λ)

)]
+

μ2 − ρ

16πρ

}
−iπ

ln(−μ2 +Λ) − ln(−μ2 + λ)

[2 cosh(γμ2)]λ
×

{
−iμ2)

8π2ρ

[
ln

(√
Λ

μ2 +Λ

)
+ ln

(√
Λ

Λ− μ2

)]
−

μ2

16πρ

}
.

(10.16.0.1)
Simplifying terms, and taking the limit λ → 0, (10.16.0.1) becomes

H(0)(ρ,Λ) = −iπ[ln(−μ2+Λ)−ln(−μ2+λ)]

{
i(ρ− μ2)

8π2ρ

[
ln
(
ρ− μ2

)
+

ln
(
μ2 − ρ

)]
+

iμ2

8π2ρ

[
ln(μ2 +Λ) + ln(μ2 −Λ)

]}
. (10.16.0.2)

Now, if
F1(μ,Λ) = ln(−μ2 +Λ) − ln(−μ2 −Λ)

then,
F1(μ, i0

+) = 2iπ ; μ2
R > μ2

I ; μRμI > 0,

and, if
F2(μ,Λ) = ln(μ2 +Λ) − ln(μ2 −Λ)

then,
F2(μ, i0

+) = 0 ; μ2
R > μ2

I ; μRμI > 0.

Using these results we obtain

H(ρ) =
i(ρ− μ2)

4ρ

[
ln(ρ− μ2) + ln(μ2 − ρ)

]
+
iμ2

2ρ
ln(μ2). (10.16.0.3)

As a second example, we will evaluate the convolution of Θ[�(ρ)]eiaρ

(a real) with δ(ρ). The convolution can be performed on the real
ρ-axis to obtain

hγλ(ρ) =
π

2λ+1ρ

∞∫
−∞

eiaρ2 |ρ− ρ2|

[2 cosh(γρ2)]λ
dρ2, (10.16.0.4)

which can be written as

hγλ(ρ) =
π

2λ+1

⎡
⎣ i

ρ

d

da

ρ∫
−∞

eiaρ2

[2 cosh(γρ2)]λ
dρ2+
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ρ∫
−∞

eiaρ2

[2 cosh(γρ2)]λ
dρ2−

i

ρ

d

da

∞∫
ρ

eiaρ2

[2 cosh(γρ2)]λ
dρ2 −

∞∫
ρ

eiaρ2

[2 cosh(γρ2)]λ
dρ2

⎤
⎦ . (10.16.0.5)

With the use of the results
ρ∫

−∞

eiaρ2

[2 cosh(γρ2)]λ
dρ2 =

e(ia+γλ)ρ

ia+ γλ
×

F

(
λ,

ia+ γλ

2γ
,
ia+ γλ

2γ
+ 1; −e−2γρ

)
, (10.16.0.6)

∞∫
ρ

eiaρ2

[2 cosh(γρ2)]λ
dρ2 =

e(ia−γλ)ρ

γλ− ia
×

,

F

(
λ,

γλ− ia

2γ
,
γλ− ia

2γ
+ 1; −e2γρ

)
, (10.16.0.7)

in the limit λ → 0 we obtain

h(ρ) = −
π

a2

eiaρ

ρ
, (10.16.0.8)

and therefore, in the complex ρ-plane, the corresponding UET is

H(ρ) = −
π

a2ρ

{
Θ[�(ρ)]eiaρ −

1

2

}
. (10.16.0.9)

As the final example, we evaluate the convolution between F(ρ) =
(1/2)Sgn[�(ρ)] eiaρ cosh(ρ1/2) (a real) and G(ρ) = δ(ρ) . We perform
the calculation of the convolution in the real ρ-plane and then we
pass to the complex ρ-plane. By the use of the Taylor’s expansion of
cosh(ρ1/2)

cosh(ρ1/2) =

∞∑
n=0

ρn

2n!
(10.16.0.10)

we obtain

hγλ(ρ) =
π

2ρ

∞∑
n=0

(−i)n

2n!

∂n

∂an

∞∫
−∞

eiaρ1δ(ρ2) ×
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[(ρ− ρ1 − ρ2)
2 − 4ρ1ρ2]

1
2
+

[cosh(γρ1)]λ[cosh(γρ2)]λ
dρ1 dρ2 =

π

2ρ

∞∑
n=0

(−i)n

2n!

∂n

∂an

∞∫
−∞

eiaρ1 |ρ− ρ1|

[cosh(γρ1)]λ
dρ1. (10.16.0.11)

By means of the use of equations (10.16.0.6) and (10.16.0.7), in the
limit λ → 0 we obtain

h(ρ) = −π

(
1+

i

ρ

∂

∂a

) ∞∑
n=0

(−i)n

2n!

∂n

∂an

(
eiaρ

a

)
, (10.16.0.12)

and consequently,

H(ρ) = π

[(
Θ[�(ρ)]

ρ

∂

∂a
−

i

2
Sgn[�(ρ)]

) ∞∑
n=0

(−i)n

2n!

∂n

∂an

(
eiaρ

a

)]
+

π

2ρ

∞∑
n=0

in

2n!

(n+ 1)!

an+2
. (10.16.0.13)

As an example of the use of (10.15.0.11), we will evaluate the con-
volution product of two Dirac’s deltas δ(ρ) ∗ δ(ρ). In this case we
have

Fγλ(ρ) = −
[cosh(γρ)]λ

2πiρ
= −

1

2πiρ
, (10.16.0.14)

and as a consequence

fγλ(ρ) = δ(ρ). (10.16.0.15)

The Fourier anti-transform of (10.16.0.15) is

f̂γλ(x) =
2

(2π)3
x−1. (10.16.0.16)

Thus, we have

f̂2γλ(x) =
4

(2π)6
x−2. (10.16.0.17)

From (10.16.0.17) we obtain

lim
λ→0

f̂2γλ(x) =
4

(2π)6
x−2, (10.16.0.18)

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.16. EXAMPLES 159

and taking into account that

F {x−2} =
π3

2
Sgn(ρ), (10.16.0.19)

we obtain
δ(ρ) ∗ δ(ρ) = π

2
Sgn(ρ). (10.16.0.20)
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Chapter 11

A final word

As we have been insisting above, the issue of defining the product
of two distributions (a product in a ring with divisors of zero) is an
old problem of functional analysis. We have already seen that, in
quantum field theory, the problem of evaluating the product of distri-
butions with coincident point singularities is related to the asymptotic
behavior of loop integrals of propagators.

We also have seen that practically all definitions of that product lead
to limitations on the set of distributions that can be multiplied by
each other to give another distribution of the same type.

In fact, Laurent Schwartz himself was not able to define a product of
distributions regarded as an algebra, instead of as a ring with divisors
of zero.

In References [33, 39, 41, 42], it was demonstrated that it is indeed
possible to define a general convolution between two ultradistribu-
tions of Sebastiao e Silva (ultrahyperfunctions), resulting in another
ultradistribution, and, therefore, a general product in a ring with zero
divisors. Such a ring is the space of distributions of exponential type,
or UETs, obtained by applying the anti-Fourier transform to the space
of tempered ultradistributions. We must clarify at this point that ul-
trahyperfunctions are the generalization and extension to the complex
plane of the Schwartz tempered distributions and of the UETs.

The problem we then faced, and that was answered in this book, is

161
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that of formulating the convolution between ultradistributions. This
is an involved issue, difficult to manage, even if it has the immense
advantage of allowing one to discuss non-renormalizable quantum field
theories, something no one has yet achieved, as far as we know.

Fortunately, we have found in the present book that a method similar
to that used to define the convolution of ultradistributions can also
be used to define the convolution of Lorentz invariant distributions
using the dimensional regularization (DR) of Bollini and Giambiagi
in momentum space. Taking advantage of such DR we can also work
in configuration space [13]. Thus, one can obtain a convolution of
Lorentz invariant tempered distributions in momentum space and the
corresponding product in configuration space [2].

DR is one of the most important advances in theoretical physics and is
used in several disciplines of it [44]-[98]. With it DR happens to be a
convolution of special distributions in momentum space and a product
in a ring with divisors of zero in configuration space. It is our hope
that this convolution can then be used to treat non-renormalizable
quantum field theories.

Thus, a quite significant result is at hand here. One has generalized
Bollini and Giambiagi’s dimensional regularization to all Schwartz
tempered, explicitly Lorentz invariant, distributions (STDELI), some-
thing that Bollini-Giambiagi were unable to achieve. This general-
ization would permit one to deal with non-renormalizable QFT, a
monumental feat indeed, that allows us to forget about so called coun-
terterms.

The vocable counterterm is often used to denote a special term
added to an equation or formula that exactly cancels the contribution
of another term which diverges [1]. This is often done in quantum field
theory, sometimes without adequate justification, regrettably enough.
This should not be done, since a non-renormalizable theory involves
an infinite number of counterterms. The central purpose of the book
was to define a STDELI-convolution in order to avoid counterterms.
The STDELI convolution, once obtained, converts configuration space
into a ring with zero-divisors [2]. In it, one possesses a product be-
tween the ring-elements. Thus, any unitary-causal-Lorentz invariant
theory quantified in such a manner can be said to have become ”pre-
dictive” [2], if we assume knowledge of the pertinent experimental
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results on which the theory is based to begin with [2]. The distinc-
tion between renormalizable and not-renormalizable QFTs becomes
unnecessary now [2].

With our Bollini and Giambiagi generalization, that uses Laurent ex-
pansions in the dimension, all finite constants of the convolutions be-
come completely determined, eliminating arbitrary choices of finite
constants [2]. This is tantamount to eliminating all finite renormal-
izations of the theory [2]. What is the importance of using the term
independent of the dimension in Laurent’s expansion? That the result
obtained for finite convolutions will coincide with such a term. This
translates to configuration space of the product-operation in a ring
with divisors of zero [2][2].

As further examples, we will calculate below some convolutions of dis-
tributions used in quantum field theory. In particular, the convolution
of n massless Feynman propagators and the convolution of n mass-
less Wheeler propagators. For a full discussion about definition and
properties of Wheeler propagators see [99, 100], works which, in turn,
are based on Wheeler and Feynman’s papers [15, 17]. The results
obtained below have already allowed the present authors to calculate
the classical partition function of Newtonian gravity, for the first time
ever, in the Gibbs’ formulation and in the Tsallis’ one [98].

11.1 First generalization of DR

The expression for the convolution of two spherically symmetric func-
tions was deduced in Ref. [41] (h(k, ν) = (f ∗ g)(k, ν))

h(k, ν) =
24−νπ

ν−1
2

Γ(ν−1
2

)kν−2

∞∫∫
0

f(k1, ν)g(k2, ν) ×

[4k21k
2
2 − (k2 − k21 − k22)

2]
ν−3

2
+ k1k2 dk1 dk2. (11.1.0.1)

However, Bollini and Giambiagi did not obtain a product in a ring
with divisors of zero [2], something that we will do now below and
constitutes an essential step.

Consider here that f and g belong to S
′
R. With the change of variables
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ρ = k2, ρ1 = k21, ρ2 = k22 takes the form

h(ρ, ν) =
22−νπ

ν−1
2

Γ(ν−1
2

)ρ
ν−2

2

∞∫∫
0

f(ρ1, ν)g(ρ2, ν) ×

[4ρ1ρ2 − (ρ− ρ1 − ρ2)
2]

ν−3
2

+ dρ1 dρ2. (11.1.0.2)

LetV be a vertical band contained in the complex ν-plane W. Integral
(11.1.0.2) is an analytic function of ν defined in the domain V. Then,
according to the methodology of Ref. [33], h(ν, ρ) can be analytically
continued to other parts of W. In particular, near the dimension ν0

we have the Laurent expansion

h(ρ, ν) =

∞∑
m=−1

h(m)(ρ)(ν− ν0)
m
. (11.1.0.3)

Here, ν0 is the dimension of the considered space. In particular, ν0 =
4 is the dimension that we will focus on. Define now the convolution
product as the (ν− ν0)-independent term of the Laurent’s expansion
(11.1.0.3)

hν0
(ρ) = h(0)(ρ). (11.1.0.4)

Thus, in the ring with zero divisors S
′
RA, we have indeed able to

define a product of distributions. This is exactly what is needed to
start thinking about a non-renormalizable field theory.

11.2 Example

As an example of the use of (11.1.0.4), we evaluate the convolution
of a massless propagator with a propagator corresponding to a scalar
particle of mass m. The result of this convolution, using this formula,
is given in [13]. It is

h(k, ν) = 2ν−2π
ν
2 mν−4 Γ

(
ν−2
2

)
Γ
(
4−ν
2

)
Γ
(
ν
2

) F

(
1,

4− ν

2
;
ν

2
; −

k2

m2

)
.

(11.2.0.1)
Now, we use the equality

Γ

(
4− ν

2

)
F

(
1,

4− ν

2
;
ν

2
; −

k2

m2

)
=
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Γ

(
4− ν

2

)
−

2

ν
Γ

(
6− ν

2

)
k2

m2
F

(
1,

6− ν

2
;
2+ ν

2
; −

k2

.
m2

)
.

(11.2.0.2)
After a tedious calculation, we obtain the corresponding Laurent ex-
pansion of h(k, ν) as

h(k, ν) = −
8π2

ν− 4
+ 4π2

(
C+ 2− ln 4− lnπ− lnm2

)
−

2π2 k2

m2
F

(
1, 1; 3; −

k2

m2

)
+

∞∑
s=1

as(ν− 4)s, (11.2.0.3)

where C is Euler’s constant with the sign changed, C = −0.57721566490.
Thus, we have

1

k2
∗ 1

k2 +m2
= 4π2

(
C+ 2− ln 4− lnπ− lnm2

)
−

2π2 k2

m2
F

(
1, 1; 3; −

k2

m2

)
. (11.2.0.4)

11.3 Second generalization of DR

In this sub-section we repeat the efforts of the preceding one for
Minkowskian space. The generalization of the Bochner’s theorem to
Minkowskian space has been obtained in Reference [41]. The corre-
sponding expression for ν = 2n is

h(ρ, ν) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

) ∞∫∫
−∞

f(ρ1, ν)g(ρ2, ν) ×

{
(ρ− i0)−

1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]ν−3
2

+ eiπ(ν−2) ×

(ρ+ i0)−
1
2

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
− i0

]ν−3
2

}
dρ1 dρ2, (11.3.0.1)

h(ρ, ν) = (f ∗ g)(ρ, ν).
When ν = 2n+ 1 we obtain

h(ρ, ν) = −
iπ

ν−3
2

2ν−1Γ
(
ν−3
2

)
∞∫∫

−∞

f(ρ1, ν)g(ρ2, ν)

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ

]ν−3
2
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{
(ρ− i0)−

1
2 ×[

ψ

(
ν− 1

2

)
+

iπ

2
+ ln

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]]
− (ρ+ i0)−

1
2

[
ψ

(
ν− 1

2

)
+

iπ

2
+ ln

[
−
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2

ρ
+ i0

]]}
dρ1 dρ2.

(11.3.0.2)
For the Minkowskian case one can also employ Laurent’s expansion

h(ρ, ν) =

∞∑
m=−1

h(m)(ρ)(ν− ν0)
m

(11.3.0.3)

and therefore, again, we have for the convolution the result

hν0
(ρ) = h(0)(ρ). (11.3.0.4)

Thus, in the ring with zero divisors S
′
LA we have introduced a product

of distributions.

11.4 Applications

As an application of the use of (11.3.0.1), we will consider the convo-
lution of two Dirac’s δ-Distributions, δ(ρ). The result is

h(ρ, ν) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

)
[
(ρ− i0)−

1
2 (ρ+ i0)

ν−3
2 + eiπ(ν−2)(ρ+ i0)−

1
2 (ρ− i0)

ν−3
2

]
.

(11.4.0.1)
Simplifying terms we obtain

h(ρ, ν) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

)[
ρ

ν−4
2

+ + e
iπ(ν−2)

2 ρ
ν−4

2
−

]
.

(11.4.0.2)
Thus, in four dimensions we have

h4(ρ) = δ(ρ) ∗ δ(ρ) = π

2
Sgn(ρ). (11.4.0.3)

Note that this convolution does not make sense in a four-dimensional
Euclidean space, since in such a case δ(ρ) ≡ 0.
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As a second application, we calculate the convolution
δ(ρ−m2) ∗ δ(ρ−m2). In this case we have

h(ρ, ν) =
π

ν−3
2

2ν−1
e

iπ(2−ν)
2 Γ

(
3− ν

2

)
[
(ρ− i0)−

1
2 (ρ− 2m2 + i0)

ν−3
2 +

eiπ(ν−2)(ρ+ i0)−
1
2 (ρ− 2m2 − i0)

ν−3
2

]
(11.4.0.4)

When ν = 4 we then obtain

δ(ρ−m2) ∗ δ(ρ−m2) =

π

4

[
(ρ− i0)−

1
2 (ρ− 2m2 + i0)

1
2+

eiπ(ν−2)(ρ+ i0)−
1
2 (ρ− 2m2 − i0)

1
2

]
. (11.4.0.5)

N massless Feynman’s propagators

11.5 The Minkowskian space case

This is a significant result. Why? Because it has never been achieved
before. Let us calculate the convolution of n massless Feynman prop-
agators (n ≥ 2). For this purpose we take into account that

F−1 {f1 ∗ f2 ∗ · · · ∗ fn} = (2π)(n−1)νf̂1f̂2 · · · f̂n. (11.5.0.1)

According to Reference [6], we have

F−1
{
(ρ+ i0)−1

}
=

e−
iπ
2

(ν−1)

(2π)ν
2(ν−2)π

ν
2 Γ

(ν
2
− 1

)
(x− i0)1−

ν
2 ,

(11.5.0.2)
and therefore,

F−1
{
(ρ+ i0)−1 ∗ (ρ+ i0)−1 ∗ · · · ∗ (ρ+ i0)−1

}
=

(2π)(n−1)ν e
− iπ

2
(ν−1)n

(2π)νn
2(ν−2)nπ

νn
2

[
Γ
(ν
2
− 1

)]n
(x− i0)n(1−ν

2
).

(11.5.0.3)
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Using again Reference [6] we have now

F
{
(x− i0)n(1−ν

2
)
}
=

e−
iπ
2

(ν−1)

Γ
[
n
(
ν
2
− 1

)]2ν+2n(1−ν
2 )π

ν
2 Γ

[ν
2
+ n

(
1−

ν

2

)]
(ρ+ i0)n(

ν
2
−1)−ν

2 ,

(11.5.0.4)
with which we obtain

(ρ+ i0)−1 ∗ (ρ+ i0)−1 ∗ · · · ∗ (ρ+ i0)−1 =

e−
iπ
2

(n−1)(ν−1)

Γ
[
n
(
ν
2
− 1

)] π
ν
2
(n−1)

[
Γ
(ν
2
− 1

)]n
Γ
[ν
2
+ n

(
1−

ν

2

)]
(ρ+ i0)n(

ν
2
−1)−ν

2 . (11.5.0.5)

We have then, for the convolution of n massless Feynman’s propaga-
tors, the result

i(ρ+ i0)−1 ∗ i(ρ+ i0)−1 ∗ · · · ∗ i(ρ+ i0)−1 =

e
iπ
2

[n−(n−1)(ν−1)]

Γ
[
n
(
ν
2
− 1

)] π
ν
2
(n−1)

[
Γ
(ν
2
− 1

)]n
Γ
[ν
2
+ n

(
1−

ν

2

)]
(ρ+ i0)n(

ν
2
−1)−ν

2 . (11.5.0.6)

After a tedious calculation we obtain the corresponding Laurent ex-
pansion around ν = 4

i(ρ+ i0)−1 ∗ i(ρ+ i0)−1 ∗ · · · ∗ i(ρ+ i0)−1 =
2iπ2(n−1)ρn−2

[Γ(n)]2(ν− 4)
+

iπ2(n−1)ρn−2

Γ(n)Γ(n− 1)

[
ln(ρ+ i0) − iπ+ ln(π) +

n

n− 1
ψ(1) −

n

n− 1
ψ(n)−

ψ(n− 1)] +

∞∑
m=1

am(ρ)(ν− 4)m. (11.5.0.7)

The independent ν − 4 term is the result of the convolution in four
dimensions

[i(ρ+ i0)−1 ∗ i(ρ+ i0)−1 ∗ · · · ∗ i(ρ+ i0)−1]ν0=4 =

iπ2(n−1)ρn−2

Γ(n)Γ(n− 1)

[
ln(ρ+ i0) − iπ+ ln(π) +

n

n− 1
ψ(1) −

n

n− 1
ψ(n)−

ψ(n− 1)] . (11.5.0.8)
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11.6 The Euclidean space case

Let us now calculate the convolution of n massless Feynman propa-
gators (n ≥ 2) in Euclidean space, using again (11.1.0.1). According
to reference [6], we obtain

F−1
{
k−2

}
=

1

(2π)ν
2(ν−2)π

ν
2 Γ

(ν
2
− 1

)
.r2−ν. (11.6.0.1)

For n propagators we have then

F−1
{
k−2 ∗ k−2 ∗ · · · ∗ k−2

}
=

(2π)(n−1)ν

(2π)νn
2(ν−2)nπ

νn
2

[
Γ
(ν
2
− 1

)]n
rn(2−ν). (11.6.0.2)

Appealing again to Reference [6], we can evaluate the corresponding
Fourier transform

F
{
rn(2−ν)

}
=

1

Γ
[
n
(
ν
2
− 1

)]2ν+2n(1−ν
2 )π

ν
2 Γ

[ν
2
+ n

(
1−

ν

2

)]
kn(ν−2)−ν.

(11.6.0.3)
Thus,

k−2 ∗ k−2 ∗ · · · ∗ k−2 =

π
ν
2
(n−1)

Γ
[
n
(
ν
2
− 1

)] [Γ (ν
2
− 1

)]n
Γ
[ν
2
+ n

(
1−

ν

2

)]
kn(ν−2)−ν.

(11.6.0.4)
Let ρ = k2. We have then for the convolution of n massless Feynman
propagators the result

ρ−1 ∗ ρ−1 ∗ · · · ∗ ρ−1 =

π
ν
2
(n−1)

Γ
[
n
(
ν
2
− 1

)] [Γ (ν
2
− 1

)]n
Γ
[ν
2
+ n

(
1−

ν

2

)]
ρn(

ν
2
−1)−ν

2 .

(11.6.0.5)
By recourse to Laurent expansion we then obtain

ρ−1 ∗ ρ−1 ∗ · · · ∗ ρ−1 =
2(−1)nπ2(n−1)ρn−2

[Γ(n)]2(ν− 4)
+

(−1)nπ2(n−1)ρn−2

Γ(n)Γ(n− 1)

[
ln(ρ) + ln(π) +

n

n− 1
ψ(1) −

n

n− 1
ψ(n)−
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ψ(n− 1)] +

∞∑
m=1

am(ρ)(ν− 4)m. (11.6.0.6)

The result of the convolution in four dimensions is then

[ρ−1 ∗ ρ−1 ∗ · · · ∗ ρ−1]ν0=4 =

(−1)nπ2(n−1)ρn−2

Γ(n)Γ(n− 1)

[
ln(ρ) + ln(π) +

n

n− 1
ψ(1) −

n

n− 1
ψ(n)−

ψ(n− 1)] . (11.6.0.7)

We emphasize that the results of this section are completely original.

Massless Wheeler propagators

11.7 Two massless Wheeler propagators

The Wheeler massless propagator is given by (note that this propa-
gator can not be defined in Euclidean space)

W(ρ) =
i

2

[
1

ρ+ i0
+

1

ρ− i0

]
, (11.7.0.1)

and can be written in the form

W(ρ) =
i

ρ+ i0
− πδ(ρ). (11.7.0.2)

Therefore, we have

W(ρ) ∗W(ρ) =
i

ρ+ i0
∗ i

ρ+ i0
− 2πδ(ρ) ∗ i

ρ+ i0
+ π2δ(ρ) ∗ δ(ρ).

(11.7.0.3)
After a long and tedious calculation, using (11.3.0.1) we obtain

−2πδ(ρ) ∗ i

ρ+ i0
=

−iπ
ν−1

2

2ν−2
eiπ(

2−ν
2

)Γ

(
3− ν

2

)
Γ(ν− 2)Γ(3− ν)×

{[
1+ eiπ(ν−2)

] [
1− e−iπ(3−ν)

]
H(ρ)ρ

ν
2
−1 +

2eiπ(
ν−2

2
)
[
eiπ(ν−2) − 1

]
H(−ρ)(−ρ)

ν
2
−2

}
. (11.7.0.4)
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This last equation can be re-written in the form

−2πδ(ρ) ∗ i

ρ+ i0
=

π
ν+3

2 e
iπ
2

(3−ν) cosπ
(
ν−2
2

)
2ν−4Γ

(
ν−1
2

)
sinπ

(
ν−3
2

)
sinπν{

cosπ

(
ν− 2

2

)
H(ρ)ρ

ν
2
−1 − eiπ(ν−2)H(−ρ)(−ρ)

ν
2
−2

}
. (11.7.0.5)

For the first convolution of (11.7.0.3), we have from (11.5.0.8), with
n = 2,

i

ρ+ i0
∗ i

ρ+ i0
=

ei
π
2
(3−ν)π

ν
2

Γ(ν− 2)

[
Γ
(ν
2
− 1

)]2
Γ
(
2−

ν

2

)
(ρ+ i0)

ν
2
−2.

(11.7.0.6)
This equation can be recast in the form

i

ρ+ i0
∗ i

ρ+ i0
=

ei
π
2
(3−ν)π

ν−3
2 cos

(
ν−3
2

)
2νΓ

(
ν−1
2

)
sinπν

(ρ+ i0)
ν
2
−2. (11.7.0.7)

When ν = 4, the sum of (11.7.0.5) and (11.7.0.7) has as a result

i

ρ+ i0
∗ i

ρ+ i0
− 2πδ(ρ) ∗ i

ρ+ i0
= π3H(−ρ). (11.7.0.8)

Using now (11.4.0.3), we find

W(ρ) ∗W(ρ) =
π3

2
. (11.7.0.9)

This result was obtained in Chapter 7, formula (8.3.0.12) using the
convolution of even tempered ultradistributions. The coincidence of
(11.7.0.9) (8.3.0.12) confirms the validity of the results obtained in
section 6 of this chapter. We emphasize that the present results are
obtained in a manner considerably simpler to that of Chapter 7.

11.8 N Massless Wheeler propagators

According to reference [6], we have

F−1
{
(ρ+ i0)−1

}
=

e−
iπ
2

(ν−1)

(2π)ν
2(ν−2)π

ν
2 Γ

(ν
2
− 1

)
(x− i0)1−

ν
2 ,

(11.8.0.1)
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F−1
{
(ρ− i0)−1

}
=

e
iπ
2

(ν−1)

(2π)ν
2(ν−2)π

ν
2 Γ

(ν
2
− 1

)
(x+ i0)1−

ν
2 .

(11.8.0.2)
Thus,

F−1 {W(ρ)} =
iπ

ν
2

(2π)ν
2(ν−2)Γ

(ν
2
− 1

)
sin

(πν
2

)
x
1−ν

2
+ . (11.8.0.3)

As a consequence, we obtain for n Wheeler propagators

F−1 {W(ρ) ∗W(ρ) ∗ · · · ∗W(ρ)} =

inπnν
2

(2π)nν
2n(ν−2)

[
Γ
(ν
2
− 1

)]n
sinn

(πν
2

)
x
n(1−ν

2 )
+ . (11.8.0.4)

Resorting again to Reference [6] we have

F
{
x
n(1−ν

2 )
+

}
= π

ν
2
−12(1−n)ν+2nΓ

(
n+ 1−

nν

2

)
Γ

[
n−

(n− 1)ν

2

]
⊗

1

2

{
e−iπ[n−(n−1)ν

2 ](ρ− i0)(n−1)ν
2
−n + eiπ[n−(n−1)ν

2 ](ρ+ i0)(n−1)ν
2
−n

}
.

(11.8.0.5)
Using (11.8.0.5) we finally arrive at

W(ρ) ∗W(ρ) ∗ · · · ∗W(ρ) =

inπ
ν
2
(n−1)−1

2

[
Γ
(ν
2
− 1

)]n
×

Γ
(
n+ 1−

nν

2

)
Γ

[
n−

(n− 1)ν

2

]
sinn

(πν
2

)
×{

eiπ[n−(n−1)ν
2 ](ρ+ i0)(n−1)ν

2
−n+

e−iπ[n−(n−1)ν
2 ](ρ− i0)(n−1)ν

2
−n

}
. (11.8.0.6)

We see that formula (11.8.0.6) has a zero of order n − 2 for ν ≥ 4, ν
even, and consequently cancels for those dimensions when n ≥ 3. So
we can assert that, for ν = 4

W(ρ) ∗W(ρ) ∗ · · · ∗W(ρ) = 0 (11.8.0.7)

when n ≥ 3.
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11.9 Electron self energy

11.9.1 Original BG electron’s self-energy

The self-energy of the electron (to one loop) is defined as

Σ(p, ν) =
e2

(2π)ν

∫
γμ

[iγ · (p− k) −m]

[(p− k)2 +m2]k2
γμdνk (11.9.1.1)

BG evaluated this integral for the first time [12]. The result they
obtained using their definition of DR is

Σ(p, ν) =
e2

(4π)
ν
2

(m2ρ)
ν
2
−2Γ

(
2−

ν

2

)
{
[(iγ · p+m)(2− ν) − 2m]

2

ν− 2
·

F

(
2−

ν

2
,
ν

2
− 1,

ν

2
; 1−

1

ρ

)
+ [m− (iγ · p+m)]

(
4

ν
− 2

)
·

F

(
2−

ν

2
,
ν

2
,
ν

2
+ 1; 1−

1

ρ

)}
(11.9.1.2)

where the variable ρ is defined as ρ = (p2 + m2)/m2. To obtain
the finite part of self-energy, they used the following method. They
decomposed it the form

Σ(p, ν) = A+ (iγ · p+m)B+ (iγ · p+m)2Σf(p, ν), (11.9.1.3)

where A, B, and Σf(p, ν) have been defined as

A = [Σ(p, ν)]iγ·p+m=0

B =

[
Σ(p, ν) −A

iγ · p+m

]
iγ·p+m=0

Σf(p, ν) =

[
Σ(p, ν) −A− (iγ · p+m)B

(iγ · p+m)2

]
iγ·p+m=0

, (11.9.1.4)

with (iγ ·p+m)−1 = (m− iγ ·p)/(p2 +m2). Σf(p, ν) thus turns out
to be the finite part of self energy. As a result of these definitions we
get

A = −
e2mν−3

(4π)
ν
2

ν− 1

ν− 3
Γ
(
2−

ν

2

)
(11.9.1.5)
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B =
A

m
(11.9.1.6)

Σf(p, ν) =
e2mν−4

(4π)
ν
2

Γ
(
2−

ν

2

)
×

{[
(2− ν)

m− iγ · p
m2ρ

− 4
m− iγ · p
m2ρ2

+
2

mρ

]
·

2

ν− 2
F
(
1, 2−

ν

2
,
ν

2
; 1− ρ

)
+

[
2
m− iγ · p
m2ρ2

−
m− iγ · p

m2ρ
−

1

mρ

](
4

ν
− 2

)

F
(
1, 2−

ν

2
,
ν

2
+ 1; 1− ρ

)
+

ν− 1

ν− 3

[
2
m− iγ · p
m2ρ2

−
1

mρ
+

m− iγ · p
m2ρ

]}
(11.9.1.7)

It should be noted that A and B are independent of p. This result has
not been modified up to the present time. However, that decomposi-
tion has an unwanted aspect. If we closely look at it, (11.9.1.2) has
no quadratic dependence on iγ · p +m, as seen in (11.9.1.4). This is
the consequence of extant products of the gamma function with the
hypergeometric function at a pole of the gamma function. We must
therefore isolate the pole in a proper way to avoid this problem. The
most rigorous way to do this is to use the convolution of Lorentz in-
variant distributions obtained in [2]. If this is done directly, the result
obtained turns out to be very complex to calculate numerically, since
Kamp de Friet (KdF) functions appear, which are very difficult to
evaluate. These functions arise when we derive the hypergeometric
functions (that appear in (11.9.1.2)) with respect to the dimension ν,
so as to perform the corresponding Laurent’s series expansion. In-
stead of doing this directly, before differentiating we must isolate the
gamma function at the pole, from the hypergeometric function, and
subsequently perform the Laurent expansion. We will do that in the
next section.
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11.9.2 Vacuum polarization

BG also calculated the vacuum polarization in QED [12]. The integral
that defines it is given by

Πμ,v(k, ν) =
ie2

(2π)ν
Tr

∫
γμ

iγ · p−m

p2 +m2
γv

iγ · (p− k) −m

(p− k)2 +m2
dνp

(11.9.2.8)
To evaluate it, the following results should be used

Trγμγv = d(ν)ημv, (11.9.2.9)

Trγμγvγργσ = d(ν)(ημvηρσ− ημρηvσ + ημσηvρ), (11.9.2.10)

where d(ν) is an analytic function of the dimension ν, which, for ν
positive integer, matches the number of components of the pertinent
spinor in a ν dimensional space. The result of the integral (11.9.2.8)
is

Πμv(k, ν) =
e2

(4π)
ν
2

d(ν)

3
Γ
(
2−

ν

2

)
mν−4×

(kμkv − ημvk
2)F

(
2−

ν

2
, 2,

5

2
; −

k2

4m2

)
. (11.9.2.11)

In this result, all terms appear save for the first one, the multiplication
of the gamma function by a zero of the hypergeometric function from
which the unit has been subtracted. Therefore, the finite part of the
vacuum polarization is given by

ΠμvF(k, ν) =
e2

(4π)
ν
2

d(ν)

3
Γ
(
2−

ν

2

)
mν−4(kμkv − ημvk

2)

[
F

(
2−

ν

2
, 2,

5

2
; −

k2

4m2

)
− 1

]
, (11.9.2.12)

and the vacuum polarization is written as

Πμv(k, ν) =
e2

(4π)
ν
2

d(ν)

3
Γ
(
2−

ν

2

)
mν−4(kμkv − ημvk

2) +ΠμvF(k, ν)

(11.9.2.13)
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11.10 Exact results of this book

11.10.1 The electron self-energy to one loop

To evaluate the self-energy we use the following equalities

F

(
2−

ν

2
,
ν

2
− 1,

ν

2
; 1−

1

ρ

)
= ρ2−

ν
2 F

(
1, 2−

ν

2
,
ν

2
; 1− ρ

)
,

(11.10.1.1)

F

(
2−

ν

2
,
ν

2
,
ν

2
+ 1; 1−

1

ρ

)
= ρ2−

ν
2 F

(
1, 2−

ν

2
,
ν

2
+ 1; 1− ρ

)
.

(11.10.1.2)
We then write (11.10.1.2) in the form

Σ(p, ν) =
e2

(4π)
ν
2

mν−4Γ
(
2−

ν

2

){
[(iγ · p+m)(2− ν) − 2m]

2

ν− 2
·

F
(
1, 2−

ν

2
,
ν

2
; 1− ρ

)
+ [m− (iγ · p+m)]

(
4

ν
− 2

)
·

F
(
1, 2−

ν

2
,
ν

2
+ 1; 1− ρ

)}
. (11.10.1.3)

Using the following formulas, we can isolate the gamma function at
the pole:

Γ
(
2−

ν

2

)
F
(
1, 2−

ν

2
,
ν

2
; 1− ρ

)
=

Γ
(
2−

ν

2

)
+

2(1− ρ)

ν
Γ
(
3−

ν

2

)
F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
,

(11.10.1.4)

Γ
(
2−

ν

2

)
F
(
1, 2−

ν

2
,
ν

2
+ 1; 1− ρ

)
=

Γ
(
2−

ν

2

)
+

2(1− ρ)

ν+ 2
Γ
(
3−

ν

2

)
F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)
.

(11.10.1.5)
Replacing these results in (11.10.1.3) we obtain

Σ(p, ν) =
e2

(4π)
ν
2

mν−4

{{
[(iγ · p+m)(2− ν) − 2m]

2

ν− 2
+

[m− (iγ · p+m)]
4− 2ν

ν

}
Γ
(
2−

ν

2

)
+
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{
[(iγ · p+m)(2− ν) − 2m]

4(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
+ [m− (iγ · p+m)]

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)}
, (11.10.1.6)

or, equivalently,

Σ(p, ν) =
e2

(4π)
ν
2

mν−4

{{(
4

ν− 2
−

2ν− 4

ν

)
m−

4

ν
(iγ · p+m)

}
Γ
(
2−

ν

2

)
+

{
[(iγ · p+m)(2− ν) − 2m]

4(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
+ [m− (iγ · p+m)]

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)}
. (11.10.1.7)

Note that 1− ρ = −p2/m2. We can decompose the self-energy in the
form

Σ(p, ν) = A+ B(iγ · p+m) + Σf(p, ν), (11.10.1.8)

where A, B, and Σf(p, ν) are given by

A =
e2

(4π)
ν
2

mν−3

(
4

ν− 2
−

2ν− 4

ν

)
Γ
(
2−

ν

2

)
, (11.10.1.9)

B =
e2

(4π)
ν
2

mν−4Γ
(
2−

ν

2

)
(11.10.1.10)

Σf(p, ν) =
e2

(4π)
ν
2

mν−4

{
[(iγ · p+m)(2− ν) − 2m]

4(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
+ [m− (iγ · p+m)]

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)
. (11.10.1.11)
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This decomposition is consistent, since both the self-energy and its
finite part depend linearly on iγ · p + m. Note that Σf(p.ν) can be
re-written as

Σf(p, ν) = Σf1(p, ν) + (iγ · p+m)Σf2(p, ν), (11.10.1.12)

with

Σf1(p, ν) = −
e2

(4π)
ν
2

mν−3

{
8(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
−

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)
, (11.10.1.13)

Σf2(p, ν) =
e2

(4π)
ν
2

mν−4

{
(2− ν)

4(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
−

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)
. (11.10.1.14)

Note that Σf1(p, ν) and Σf2(p, ν) are independent of iγ · p +m. Al-
though makes sense, to have the true convolution we must perform
the Laurent expansion To that end we define

f(ν) =
mν−4

(4π)
ν
2

[(
4

ν− 2
−

2ν− 4

ν

)
m−

4

ν
(iγ · p+m)

]
.

(11.10.1.15)
We then use the following expression for the gamma function

Γ
(
2−

ν

2

)
= −

2

ν− 4
− C+

∞∑
k=1

ck(ν− 4)k, (11.10.1.16)

and then obtain the corresponding Laurent expansion

f(ν)Γ
(
2−

ν

2

)
=

iγ · p
(4π)2(ν− 4)

+

1

(4π)2

{
iγ · p

[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

∞∑
k=1

bk(ν− 4)k

}
.

(11.10.1.17)
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Using the previous result, we have the following expression for the self
energy

Σ(ν, p) =
e2

(4π)2

{
iγ · p
ν− 4

+

iγ · p
[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

∞∑
k=1

bk(ν− 4)k

}
+

e2

(4π)
ν
2

{
[(iγ · p+m)(2− ν) − 2m]

4(1− ρ)

ν(ν− 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 1; 1− ρ

)
+ [m− (iγ · p+m)]

(8− 4ν)(1− ρ)

ν(ν+ 2)
·

F
(
1, 3−

ν

2
,
ν

2
+ 2; 1− ρ

)}
Γ
(
3−

ν

2

)}
. (11.10.1.18)

Completing the Laurent expansion, we have

Σ(ν, p) =
e2

(4π)2

{
iγ · p
ν− 4

+

iγ · p
[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

∞∑
k=1

bk(ν− 4)k+

e2

(4π)
ν
2

iγ · p(1− ρ)

[
1

3
F (1, 1, 4; 1− ρ)+

F (1, 1, 3; 1− ρ)] + 2m(1− ρ)F (1, 1, 3; 1− ρ)+

∞∑
k=1

ck(ν− 4)k

}
, (11.10.1.19)

or, equivalently,

Σ(ν, p) =
e2

(4π)2

{
iγ · p
ν− 4

+

iγ · p
[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

e2

(4π)
ν
2

iγ · p(1− ρ)

[
1

3
F (1, 1, 4; 1− ρ)+

F (1, 1, 3; 1− ρ)] + 2m(1− ρ)F (1, 1, 3; 1− ρ)+
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∞∑
k=1

ak(ν− 4)k

}
. (11.10.1.20)

This last result can be re-written as

Σ(ν, p) =
e2

(4π)2

{
iγ · p+m

ν− 4
−

m

ν− 4
+

iγ · p
[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

e2

(4π)
ν
2

iγ · p(1− ρ)

[
1

3
F (1, 1, 4; 1− ρ)+

F (1, 1, 3; 1− ρ)] + 2m(1− ρ)F (1, 1, 3; 1− ρ)+

∞∑
k=1

ak(ν− 4)k

}
. (11.10.1.21)

We can effect, then, the following decomposition

Σ(p, ν) = A+ (iγ · p+m)B+ Σf(p, ν), (11.10.1.22)

where the constants A and B are given by

A = −
e2m

(4π)2(ν− 4)
, (11.10.1.23)

B =
e2

(4π)2(ν− 4)
, (11.10.1.24)

and the finite part of the self energy is

Σf(ν, p) =
e2

(4π)2
{ iγ · p

[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

e2

(4π)
ν
2

iγ · p(1− ρ)

[
1

3
F (1, 1, 4; 1− ρ)+

1

2
F (1, 1, 3; 1− ρ)] + 2m(1− ρ)F (1, 1, 3; 1− ρ)+

∞∑
k=1

ak(ν− 4)k

}
. (11.10.1.25)
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We have then the four-dimensional result

ΣP(p) = Σf(p, 4) =

e2

(4π)2

{
iγ · p

[
C+ 2 ln(m) − ln(4π) −

1

2

]
+ 2m+

iγ · p(1− ρ)[
1

3
F(1, 1, 4.1− ρ) +

1

2
F(1, 1, 3, 1− ρ)]−

2m(1− ρ)F(1, 1, 3, 1− ρ)} , (11.10.1.26)

which is the exact result of the convolution (see [2]). ΣP(p, ν) is then
the true physical self energy.

11.10.2 Vacuum polarization evaluation

The vacuum polarization can be written in the form

Πμv(k, ν) =
e2

(4π)
ν
2

d(ν)

3
Γ
(
2−

ν

2

)
mν−4(kμkv − ημvk

2) +ΠμvF(k, ν)

(11.10.2.27)
where ΠμvF(k, ν) is given by (11.9.2.12). To perform the Laurent
expansion we define

f(ν) =
1

(4π)
ν
2

d(ν)

3
mν−4(kμkv − ημvk

2), (11.10.2.28)

Thus, we obtain

f(ν)Γ
(
2−

ν

2

)
= −

1

(4π)2

{
d(ν)

3

kμkv − ημvk
2

4− ν
+ (kμkv − ημvk

2)·

{
d(4)

3
[2 ln(m) − ln(4π) − C] +

d ′(4)
3

}
+

∞∑
k=1

bk(ν− 4)k

}
.

(11.10.2.29)
Using this result, we obtain for the vacuum polarization

Πμv(k, ν) = −
e2

(4π)2
d(ν)

3

kμkv − ημvk
2

4− ν
−

e2

(4π)2
{
(kμkv − ημvk

2)·
{
d(4)

3
[2 ln(m) − ln(4π) − C] +

d ′(4)
3

}
+
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∞∑
k=1

bk(ν− 4)k

}
+ ΠμvF(k, ν) (11.10.2.30)

The finite part is now

Πμvf(k, ν) = −
e2

(4π)2
{
(kμkv − ημvk

2)·

{
d(4)

3
(2 ln(m) − ln(4π) − C] +

d ′(4)
3

}
}+ΠμvF(k, 4)+

∞∑
k=1

ak(ν−4)k

(11.10.2.31)
Consequently, we have in four-dimensions the convolution result

ΠμvP(k) = Πμvf(k, 4) = −
e2

(4π)2
{
(kμkv − ημvk

2)·
{
d(4)

3
[2 ln(m) − ln(4π) − C] +

d ′(4)
3

}}
+ ΠμvF(k, 4). (11.10.2.32)

11.11 Discussion

In quantum field theory (QFT), when we use perturbative expansions,
we are dealing with products of distributions in configuration space
or, what is the same, with convolutions of distributions in momentum
space. Four earlier papers [33, 39, 41, 42] have demonstrated the
existence of the convolution of Sebastiao e Silva ultradistributions.
This convolution allows us to treat non- renormalizable QFTs, but
has the disadvantage of being extremely involved.

Following a procedure similar to that of the previously mentioned
papers, we defined here the convolution of Lorentz invariant tempered
distributions, using the dimensional regularization (DR) of Bollini and
Giambiagi. [2]. Appealing to this convolution we have obtained, for
example, the convolution of n massless Feynman propagators both in
Minkowskian and Euclidean spaces and the convolution of two mass-
less Wheeler propagators, all of them original results.

We conclude these considerations by asserting that convolutions pave
the way to the treatment of non-renormalizable quantum field theo-
ries, a significant advance indeed.
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Chapter 12

Non-relativistic QFT

12.1 Introduction

We will work here with non-relativistic quantum field theory propa-
gators (NRP). They are valuable tools in nuclear physics and in the
theory of condensed matter [101]. We will apply NRPs here to gravi-
tation, in the so-called Verlinde’s emergent scenario [127].

Imagine a cube whose sides are labeled the three particular quanti-
ties: 1) Newton’s gravitation constant G, 2) light-velocity’s c, and 3)
Planck’s �. Here we will situate ourselves at the corner with c−1 = 0,
with the other two quantities being finite [127]. Since since we will
appeal in this chapter to potentials entering Schrödinger Equations
(SE), the associated treatment will necessarily be non-relativistic, as
such is the character of SE, of course.

12.1.1 Emergent entropy

In 2011, Verlinde conceived the audacious notion of linking gravity to
an emerging entropic force [103]. Such conjecture was actually proved
valid (in a classical context) afterwards, in [104].

According to [103], gravity is imagined to emerge as a result of infor-
mation concerning the position of material bodies [104]. This great
idea conjoins a ”thermal” treatment of gravitation with ’t Hooft’s cel-
ebrated holographic principle, which leads to view gravitation as an
emergent phenomenon, the key Verlinde’s notion, that generated a
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184 CHAPTER 12. NON-RELATIVISTIC QFT

lot of attention. For example, see [105, 106, 108]. For an excellent
review of the statistical mechanics of gravity consult Padmanabhan
[107]. Verlinde’s initiative motivated works on cosmology, the dark
energy hypothesis, cosmological acceleration, cosmological inflation,
and loop quantum gravity [104]. The related literature is quite large
indeed [106].

The notion of emerging entropic gravity (EEG) is a nice idea that we
will here exploit so as to discuss gravity in a quantum environment,
which has been the dream of many physicist during decades. In a first
manuscript [104], we demonstrated that Verlinde’s emerging gravity
is certainly an entropic force at the classical level, In two posterior
papers [109, 110], we repeated the feat at a quantum level, for both
bosons and fermions. Additionally, in two additional efforts [111, 112],
we effected a first quantization of EEG for bosons and fermions by
solving the associated Schrödinger equations. Now, we will face a
non-relativistic (NR) Quantum Field Theory (QFT) associated to the
EEG for both type of particles, by using

• the results previously obtained in the five papers just cited, plus

• the formulation of the NR QFT described in the classical text
book of Fetter and Walecka’s.

We have certainly taken into account the fact that the NR QFT of
the EEG can be non-renormalizable both for bosons and for fermions
(for the latter above the Fermi level). Such strong inconvenience can
be overcome, however, by recourse to

1. to techniques explained in precedent Chapters of this book and
in either [29, 32, 39, 41], in which a complete treatment on the
quantization of non-renormalizable QFT using ultrahyperfunc-
tions is made, or

2. to the approach of [113], also discussed earlier in this book, in
which one generalizes the Dimensional Regularization (DR) of
Bollini and Giambiagi (BG) [114], showing that this generaliza-
tion is quite apt to quantize non-renormalizable QFTs.
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12.2 A quantum entropic force

12.2.1 Fermionic entropic Force

In this chapter, gravity is regarded as an emergent phenomenon. Ver-
linde states that it derives from the quantum entanglement between
small bits of space-time information [116]. This Verlinde-Gravitation
differs at short distances from Newton’s one. The associated (emer-
gent) gravitation-potential, after introduction into the Schrödinger
equation (SE), will of course yield quantized states with definite ener-
gies. This is our (not Verlinde’s) central observation. These associated
energies are to be regarded as new, not yet reported energy-sources.
To repeat, we speak of sources that have not been taken into ac-
count till now, with the exception of our previous treatments of Refs.
[111, 112]. Thus, the association Verlinde-Schroedinger provides the
Universe with a new source of energy!
We now proceed, as we did in [110], to make use of a statistical treat-
ment of fermion gases. In [110] we encountered a fermion-fermion
gravitational force from such a treatment, specifically, a baryon-baryon
one, that turned out to be proportional to 1/r2 for r larger than one
micron. For smaller r’s, however, more involved, new contributions
arose. Accordingly, the pertinent potential VF(r) differs from New-
ton’s at such short distances. Looking at [110] we see that the asso-
ciated entropic force FeF reads

FeF =
4πλkB (πemE)

3
2

(3N)
3
2 h3

r×
{
ln
[
32πr3 (πemE)

3
2 − (3N)

5
2h3

]
− ln

[
32πr3 (πemE)

3
2

]}
.

(12.2.1.1)
Such is our emergent Verlinde’s gravity force between a couple of
fermions, derived in reference [110], that we will employ in what fol-
lows.

12.2.2 Boson entropic force

An identical procedure to that described above for fermions was also
made for bosons [109], yielding a boson-boson gravitational force, that
again resulted proportional to 1/r2 for distances larger than one mi-
cron, while for smaller distances, novel and more involved contribu-
tions emerged [109]. Thus, the pertinent potential VB(r)will differ
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from the Newtonian one at short distances. The boson-boson entropic
force of [109] reads

FeB =
4πλkB (πemE)

3
2

(3N)
3
2 h3

r×

{
ln
[
32πr3 (πemE)

3
2 + (3N)

5
2h3

]
− ln

[
32πr3 (πemE)

3
2

]}
,

(12.2.2.2)
the emergent Verlinde’s gravity force between a couple of bosons [109].

12.3 Quantum gravitational potential

12.3.1 Gravitational potential for N fermions

We enumerate first some important quantities (constants) introduced
in [110]:

1. a and b of the form

2. a = (3N)
5
2h3 and

3. b = 32π(πemK)
3
2 , with

4. K the total energy of the N fermions (examples will be given
below),

5. r2 = (a/b)1/3.

6. A = Gm2/r2,

where G is the gravitational constant and kB Boltzmann’s constant.
λ3NkB

8π
= 2

3
Gm2, so that the ensuing potential energy VF(r) reads

VF(r) = −Gm2 2b

3a

{
r2

2
ln
(
1−

a

br3

)
Θ

[
r−

(a
b

) 1
3

]
−

a
2
3

2b
2
3

⎧⎪⎨
⎪⎩1

2
ln

⎡
⎢⎣

[
r−

(
a
b

) 1
3

]2
r2 +

(
a
b

) 1
3 r+

(
a
b

) 2
3

⎤
⎥⎦ +

√
3

⎡
⎣arctan

⎡
⎣2r+

(
a
b

) 1
3

√
3
(
a
b

) 1
3

⎤
⎦−

π

2

⎤
⎦
⎫⎬
⎭
⎫⎬
⎭ , (12.3.1.1)
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an important result for us here (note that Θ(x) is the Heaviside step
function).

12.3.2 Boson gravitational potential

The boson-boson gravity’s potential VB(r), with masses m1 = m and
m2 = M, for anN−boson gas, was given in [109] employing the micro-
canonical treatment of Lemons [117]. There, we dealt with identical
bosons so that m = M. In [109], the entropy S for N bosons of total
energy K was obtained. From S we can find an entropic force Fe,
associated, à la Verlinde, to emerging gravity. The associated boson-
boson potential V(r) [109] is to be discussed below.
For deriving V(r) in [109], one needs two constants, a and b, for N
bosons of total energy K, with kB Boltzmann’s constant, e Euler’s
number, and h Planck’s constant. Then,

a = (3N)
5
2h3; b = 32π(πemK)

3
2 . (12.3.2.2)

The relation that defines the proportionality constant λ between Fe
and the entropic gradient [109] becomes now

λ = 8πGm2/3NkB. (12.3.2.3)

It is then shown in [109] that V(r) acquires the form.

VB(r) = Gm2 b

a

{
r2

2
ln
(
1+

a

br3

)
−

a
2
3

2b
2
3

⎧⎪⎨
⎪⎩1

2
ln

⎡
⎢⎣

[
r+

(
a
b

) 1
3

]2
r2 −

(
a
b

) 1
3 r+

(
a
b

) 2
3

⎤
⎥⎦ +

√
3

⎡
⎣π

2
− arctan

⎡
⎣2r−

(
a
b

) 1
3

√
3
(
a
b

) 1
3

⎤
⎦
⎤
⎦
⎫⎬
⎭
⎫⎬
⎭ . (12.3.2.4)

12.3.3 Estimates for r2 and A

Let us give now some numerical estimates for the values of r2 and A.

 EBSCOhost - printed on 2/13/2023 9:11 PM via . All use subject to https://www.ebsco.com/terms-of-use



188 CHAPTER 12. NON-RELATIVISTIC QFT

Fermions

For them we can estimate that, in the Universe, one has [112] N =
6.25 × 1079, K = mc21053Kg, m = 1.63 × 10−27Kg, h being the
Planck’s constant, and G the gravitation constant. So they turn out
to be: r2 = 5.8 × 1035m and A = 8.2 × 10−124Nm This shows that
the discontinuity of the potential corresponding to two baryons is
absolutely negligible.

Bosons

Focus attention on axions, the putative dark particle elementary par-
ticles. For them we estimate that, in the Universe [111] the numbers
are: N = 6× 1079, K = mc25.47× 1053Kg, and m = 2.67× 10−39Kg
Thus, r2 = 7.4× 1024m and A = 2.3× 10−91Nm

12.4 Taylor expansion for V(r)

12.4.1 Fermions

It is impossible to analytically deal with VF(r). Instead, we will appeal
to the rigorous approximation for VF(r) concocted in Ref. [112]. One
subdivides the r axis into four different zones: 0 < r < r0, r0 <
r < r1, r1 < r < r2, and r > r2. We set r0 as 10−10 meters (a typical

Hydrogen-atom’s length), r1as 25 microns, and r2 = (a/b)
1
3 . Remark

that there is empiric evidence for selecting r1 = 25 micrometers [118].
Thus,

VF(r) ≈ VF1(r) + VF2(r) + VF3(r).+ VF4(r). (12.4.1.1)

We proved in [112] that the present approximation is quite good.

For convenience we define

VF0 = −Gm2

(
b

a

) 1
3 7π

6
√
3

(12.4.1.2)

and call VF1 the Taylor polynomial (TA), at zeroth order, for very
small r.

VF1(r) = −Gm2

(
b

a

) 1
3 7π

6
√
3
Θ(r0 − r) = V0Θ(r0 − r). (12.4.1.3)
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For large r one has

VF3(r) = −
Gm2

r
[Θ(r− r1) −Θ(r− r2)]. (12.4.1.4)

For intermediate r−values, r0 < r < r1, we selected the formW(r) = 0
in [110] for interpolating between the fixed points r1 − r0. Thus, as
explained in [110],

VF2(r) = 0. (12.4.1.5)

Finally, for V4(r), in [110] we chose

VF4(r) = −
2Gm2

3r
Θ(r− r2). (12.4.1.6)

12.4.2 Bosons

Schrödinger’s boson equation is, again, not amenable of analytic treat-
ment. In the exploratory analysis of [109], a Taylor expansion was
used that yielded a suitable, rigorous approximation to VB(r). One
had in [111]

VB(r) ≈ VB1(r) + VB2(r) + VB3(r), (12.4.2.7)

It was proven in [111] that this approximate potential is very good
VB1 is the first order Taylor approach for r small enough, that one
uses for 0 < r < r0, with r0 = 10−10m.

VB1(r) = −
πGm2

√
3

(
b

a

) 1
3

Θ(r0 − r) = VB0Θ(r0 − r), (12.4.2.8)

where r1 = 25.0 micron [118], the minimum known distance at which
Newton’s force still works. For large distances one has [111]

VB3(r) = −
Gm2

r
Θ(r− r1). (12.4.2.9)

For the intermediate range r0 < r < r1 we call, first of all, W(r ∝)r2,
i.e., we make an harmonic interpolating-form between r1 and r0. Then
(see details in [111]),

VB2(r) = W(r) = 0 (12.4.2.10)
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12.5 FW’s book’s materials

12.5.1 Preliminaries

We compute next self-energies. In QFT, the energy that a given par-
ticle gains as the result of modifications that it itself generates in its
environment is called the self-energy Σ, that represents the contri-
bution to the particle’s energy, or effective mass, due to interactions
between this particle and its surroundings. In a condensed matter
scenario corresponding to electrons moving in a certain medium, Σ
stands for the potential felt by the electron due to the surrounding’s
interactions with itself. Since electrons repel each other, the mov-
ing electron polarizes those electrons in its neighborhood and then
changes the potential of the moving electron fields.

12.5.2 Dressed fermion propagators

We will calculate here dressed propagators. For an accessible discus-
sion of the concept see, for instance, [101]. In Fetter and Walecka’s
book [115], the authors comprehensively derived a fermion’s non-
relativistic quantum field theory. For free fermions, they introduce
the following (current) propagator:

iG0
αβ(x, t; x

′
, t

′
) =< 0|T [ψα(x, t)ψ

+
β(x

′
, t

′
)]|0 >, (12.5.2.1)

i.e.,

iG0
αβ(x, t; x

′
, t

′
) =

δαβ

(2π)3

∫
eik·(x−x

′
)e−ωk(t−t

′
)×

[
Θ(t− t

′
)Θ(k− kF) −Θ(t

′
− t)Θ(kF − k)

]
d3k, (12.5.2.2)

with Θ the Heaviside’s step function. We appeal here to the well
known relation

Θ(t− t
′
) = −

1

2πi

∞∫
−∞

e−iω(t−t
′
)

ω+ i0
dω, (12.5.2.3)

and find

iG0
αβ(x, t; x

′
, t

′
) =
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δαβ

(2π)3

∫ ∞∫
−∞

eik·(x−x
′
)e−ωk(t−t

′
)

[
Θ(k− kF)

ω−ωk + i0
−

Θ(kF − k)

ω−ωk − i0

]
d3kdω. (12.5.2.4)

Thus, the associated expression in momentum space becomes

Ĝ0
Fαβ(k,ω) = δαβ

[
Θ(k− kF)

ω−ωk + i0
+

Θ(kF − k)

ω−ωk − i0

]
, (12.5.2.5)

where

1

ω−ωk ± i0
= PV

1

ω−ωk
∓ iπδ(ω−ωk), (12.5.2.6)

with k = |k| and ωk =
√
k2/2m (PV stands for ”principal value of the

given function”). The system’s interaction’s Hamiltonian is defined
by a two bodies VF potential

VF(x1 − x2) = VF(|x1 − x2|)1(1)1(2), (12.5.2.7)

with 1 the unity matrix. The dressed propagator of the theory verifies

ĜFαβ = δαβĜF, (12.5.2.8)

i.e., the dressed propagator is diagonal. Then we get (Ĝ0
F(k,ω) ≡

Ĝ0
F(k))

ĜF(k) = Ĝ0
F(k) + Ĝ0

F(k)ΣF(k)Ĝ
0
F(k), (12.5.2.9)

where ΣF(k) is the self-energy of the system (see Preliminaries above).
Thus, one obtains its perturbative expansion, that at first order is

Σ
(1)
F (k) ≡ Σ(1)(k) =

n

�
V̂(0) −

1

(2π)3�

∫
V̂F(k− k

′
)Θ(kF − k

′
)d3k

′
,

(12.5.2.10)
where n = N/V and

V̂F(k) =

∫
VF(x)e

−ik·xd3x. (12.5.2.11)

Accordingly, up to first order,

Ĝ
(1)
F (k) = Ĝ0

F(k) + Ĝ0
F(k)Σ

(1)
F (k)Ĝ0

F(k). (12.5.2.12)
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12.5.3 Bosonic dressed propagators

Fetter and Walecka define for free bosons the following propagator in
momentum space [115]:

iG0(x, t; x
′
, t

′
) =< 0|T [φ(x, t)φ+(x

′
, t

′
)]|0 > . (12.5.3.13)

It reads

Ĝ0
B(k) =

1

k0 −ωk + i0
, (12.5.3.14)

where ωk =
√
k2/2m. Then,

ĜB(k) = −(2π)4n0iδ(k) + Ĝ
′
B(k), (12.5.3.15)

were the primed part refers to the non-condensate (n0 = N0/V)

Ĝ
′(1)
B (k) =

n0

h
Ĝ0

B(k)[V̂B(0) + V̂B(k)]Ĝ
0
B(k), (12.5.3.16)

and

V̂B(k) =

∫
VB(x)e

−ik·xd3x. (12.5.3.17)

12.6 Non-relativistic QFT of emergent grav-
ity

have seen above how quantum potentials enter the Schrödinger equa-
tion, a non-relativistic relation.

12.6.1 Fermions

Above, our goal in getting the NR QFT of the EEG was to compute
Σ(1) for the potential of (12.3.1.1), with 1 the unity matrix,

VF(r) = {VF1(r)Θ(r0 − r)−

Gm2

r
[Θ(r− r1) −Θ(r− r2)] −

2Gm2

3r
Θ(r− r2)

}
1. (12.6.1.1)

Thus, we must find the Fourier transform of VF(r). For VF1 one has

V̂F1(0) = VF0

∫
d3x = 4πVF0

∞∫
0

r2dr = 0, (12.6.1.2)
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an integral for which we have employed the results of [6] regarding the
regularization of integrals dependent on a power of x.
We now calculate I1 defined as

I1 =

2π∫
0

π∫
0

r0∫
0

e−ik·xr2 sin(θ)dφdθdr =

2π∫
0

π∫
0

r2∫
r1

e−ikr cos(θ)r2 sin(θ)dφdθdr =

4π

[
sin(kr0)PV

1

k3
− cos(kr0)PV

1

k

]
. (12.6.1.3)

It satisfies

PV
1

kn
|k=0 = 0. (12.6.1.4)

I1 is the Fourier transform of the first term of (12.6.1.1). Analogously,
we pass to the integral I2

I2 =

2π∫
0

π∫
0

r2∫
r1

r−1e−ik·xr2 sin(θ)dφdθdr =

2π∫
0

π∫
0

r2∫
r1

e−ikr cos(θ)r sin(θ)dφdθdr =

4π[cos(kr1) − cos(kr2)]PV
1

k2
. (12.6.1.5)

I2 is the Fourier transform of the second term of (12.6.1.1).

I3 =

2π∫
0

π∫
0

∞∫
r2

r−1e−ik·xr2 sin(θ)dφdθdr =

2π∫
0

π∫
0

∞∫
r2

e−ikr cos(θ)r sin(θ)dφdθdr =

4π cos(kr2)PV
1

k2
. (12.6.1.6)
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Similarly, I3 is the Fourier transform of the third term of (12.6.1.1)..
We then write

V̂F(k) = 4π

{
VF0

[
sin(kr0)PV

1

k3
− cos(kr0)PV

1

k

]
−

Gm2[cos(kr1) −
1

3
cos(kr2)]PV

1

k2

}
, (12.6.1.7)

and, as a consequence,

V̂F(0) = 0. (12.6.1.8)

Note that

1

(2π)3�

∫
V̂F(k− k

′
)Θ(kF − k

′
)d3k

′ � VF(0) = −
Gm2

r2

7π

4
√
3
,

(12.6.1.9)
where we took kF → ∞ to simplify the computation. We thus find for
the self-energy, up to first order

Σ
(1)
F (k) � Gm2

r2

7π

4
√
3
1. (12.6.1.10)

The unity matrix is included with the goal of emphasizing the matrix
nature. Correspondingly, we also find, up to first order, for the dressed
propagator, the relation

Ĝ
(1)
F (k) � Ĝ0

F(k) +
Gm2

r2

7π

4
√
3
[Ĝ0

F(k)]
2. (12.6.1.11)

If kF → ∞ we have

Ĝ0(k) =
1

ω−ωk − i0
. (12.6.1.12)

In [29] it was been proven that

PV
1

xn
δ(m)(x) =

(−1)n

2

m!

(m+ n)!
δ(m+n)(x). (12.6.1.13)

Employing then the result

PV
1

xn
PV

1

xm
= PV

1

x(n+m)
, (12.6.1.14)
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we find

1

ω−ωk − i0

1

ω−ωk − i0
=

1

(ω−ωk − i0)2
, (12.6.1.15)

so that

[Ĝ0(k)]2 =
1

(ω−ωk − i0)2
. (12.6.1.16)

For V → ∞, n finite, we get

Σ
(1)
F (k) � 0, (12.6.1.17)

and
Ĝ

(1)
F (k) � Ĝ0

F(k). (12.6.1.18)

12.6.2 Bosons

Now we have

VB(r) = VB1(r)Θ(r0 − r) −
Gm2

r
Θ(r− r1). (12.6.2.19)

We need to calculate the Fourier transform of that potential. We
proceed in steps as done for fermions above. For VB1 we have

V̂B1(0) = VB0

∫
d3x = 4πVB0

∞∫
0

r2dr = 0. (12.6.2.20)

This integral is found using the result of [6] regarding the regulariza-
tion of integrals dependent on a power of x.
We now evaluate the integral I1

I1 =

2π∫
0

π∫
0

r0∫
0

e−ik·xr2 sin(θ)dφdθdr =

2π∫
0

π∫
0

r2∫
r1

e−ikr cos(θ)r2 sin(θ)dφdθdr =

4π

[
sin(kr0)PV

1

k3
− cos(kr0)PV

1

k

]
, (12.6.2.21)
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It verifies

PV
1

kn
|k=0 = 0. (12.6.2.22)

I1 is the Fourier transform of the first term of (12.6.1.1). We pass
now to compute the integral I2 defined as

I2 =

2π∫
0

π∫
0

∞∫
r1

r−1e−ik·xr2 sin(θ)dφdθdr =

2π∫
0

π∫
0

∞∫
r1

e−ikr cos(θ)r sin(θ)dφdθdr =

4π cos(kr1)PV
1

k2
. (12.6.2.23)

I2 is the Fourier transform of the second term of (12.6.1.1). For the
full potential we thus have

V̂B(k) = 4π

{
VB0

[
sin(kr0)PV

1

k3
− cos(kr0)PV

1

k

]
−

Gm2 cos(kr1)PV
1

k2

}
. (12.6.2.24)

As a consequence, we get again

V̂B(0) = 0. (12.6.2.25)

For the dressed propagator we find, up to 1st order

Ĝ
′(1)
B (k) = 4π

n0

h

{
VB0

[
sin(kr0)PV

1

k3
− cos(kr0)PV

1

k

]
−

Gm2 cos(kr1)PV
1

k2

}
[Ĝ0(k)]2 (12.6.2.26)

Proceeding as above for the fermion propagator, we now face

[Ĝ0
B(k)]

2 =
1

(k0 −ωk + i0)2
. (12.6.2.27)
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12.7 Discussion

We have in this Chapter constructed the non-relativistic quantum
field theory (NR QFT) of emergent entropic gravitation (EEG), for
pairs of either fermions or bosons that interact amongst themselves
via EEG. Our dealings were based on

• the results of the prior parts of this book [115],

• the Verlinde gravitational potentials found in [109, 110].

These potentials coincide from large distances down to atomic ones
with Newton’s one. They do not diverge at the origin.
Our present discussion generalizes the 1st. quantization methodology
of Refs. [111, 112]. As examples, we have computed the dressed
propagator of the system up to first order in perturbation theory, and
also the self-energy for fermions.

The examples make it clear that we have now at our disposal a viable
non-relativistic quantum field theory of gravitation.

Note that we here spoke just of gravitation à la Verlinde, an emer-
gent gravitational force, not an elementary one. If we were to regard
our Verlinde-potentials as phenomenological ones (not deriving from
an underlying theory), these potentials could be viewed as quantum-
generalized versions of Newton’s classical one, that coincide with clas-
sical gravitation at macroscopic distances [109, 110].
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Chapter 13

Einstein’s gravity QFT

13.1 Introduction

Quantifying Einstein gravity (EG) is the holy grail for many physi-
cists. During the last decades, variegated attempts to construct a
quantum field theory (QFT) of gravitation have failed [128]. Why?
We are convinced that the failure is due to three factors: 1) use of
rigged Hilber spaces (RHS) with undefined metric, 2) non-unitarity
troubles, and also 3) non-renormalizability based issues [128].

We recount here ways of building up an unitary EG’s QFT [128], in
the wake of related efforts by S. N. Gupta [119], although we will de-
viate from such reference by appealing to a different EG-constraint.
This deviation leads to a problem similar to that presented by Quan-
tum Electrodynamics (QED), that people know how to deal with. So
as to quantize the associated non-renormalizable variational problem
we use mathematics’ tools developed in [33, 39, 41, 42, 113]. These
tools derive from the theory of ultradistributions de J. Sebastiao e
Silva (JSS) [10], also known, as we saw above, as ultrahyperfunctions.
The above cited tools were specifically concocted to quantify non-
renormalizable field theories, successfully culminating in [113]. Thus,
one faces a theoretical structure similar to that of QED and endowed
with unitarity at all finite orders in a power expansion in the grav-
itation constant G of the EG Lagrangian. Note that this task was
attempted earlier, without success, fist by Gupta, followed afterwards
by Feynman in his famous Acta Physica Polonica paper [121].
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The secret of quantifying a non-renormalizable field theory, a feat that
has eluded theoretical physicists for decades, is that of possessing a
suitable definition of the two distributions’ product, in a ring with
zero-divisors. Where? In configuration space. The issue was tackled
successfully in [33, 39, 41, 42, 113], but remained mostly ignored by
high energy physicists.
Note that the problem of evaluating the product of distributions with
coincident point singularities is connected to the asymptotic behav-
ior of loop integrals of propagators [33, 39, 41, 42, 113]. Such is the
mathematics → physics link uncovered in [128].

In [33, 39, 41, 42, 113] their authors showed that it is possible to de-
fine a (general) convolution between the ultradistributions of JSS [10]
(Ultrahyperfunctions) that in turn yields another Ultrahyperfunction,
confirming that we have a product in a ring with zero divisors. This
a ring is the space of distributions of exponential type, or ultradistri-
butions of exponential type. How do we obtain them? By applying
the anti-Fourier transform to the space of tempered ultradistributions
or ultradistributions of exponential type. We insist on the fact that
the ultrahyperfunctions are the generalization and extension to the
complex plane of the Schwartz tempered distributions and the distri-
butions of exponential type. The tempered distributions and those of
exponential type are a subset of the ultrahyprefunctions [113]. The
pertinent mathematics were extensively discussed in precedent Chap-
ters of this book.

As we saw in previous Chapters, the convolution, once obtained, con-
verts configuration space into a ring with zero-divisors in which we
defined a product between the ring-elements. Any unitary-causal-
Lorentz invariant theory quantified in such a manner becomes pre-
dictive. The divide between renormalizable on non-renormalizable
QFT’s is not operative now [113].

This all-important convolution employs Laurent’s expansions in the
parameter employed to define it, as we have seen in precedent Chap-
ters. All finite constants of the convolutions become completely deter-
mined, eliminating arbitrary choices of finite constants. This means
that we eliminate all finite renormalizations from the theory and that
the independent term in the Laurent expansion gives the convolution
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value. This fact transfers to configuration space the product-operation
in a ring with divisors of zero [113], as extensively discussed above in
this book.

We will proceed as follows [128]

1. Sect. 2 presents preliminary materials.

2. Sect. 3 is devoted to the QFT Lagrangian for EG.

3. In Sect. 4 we quantize the ensuing theory.

4. In Sect. 5 the graviton’s self-energy is evaluated up to second
order.

5. In Sect. 6 we introduce axions into our picture and deal with
the axions-gravitons interaction.

6. In Sect. 7 we calculate the graviton’s self-energy in the presence
of axions.

7. In Sect. 8 we evaluate, up to second order, the axion’s self-
energy.

13.2 Preliminaries

We consider the most general quantification technique, namely Schwinger-
Feynman’s variational principle [122], which can deal even with high
order supersymmetric theories , as done by [123, 124]. These theo-
ries cannot be quantized with the customary Dirac-brackets approach
[128].

The action for a set of fields is given by [128]

S[σ(x), σ0, φA(x)] =

σ(x)∫
σ0

L[φA(ξ), ∂μφA(ξ), ξ]dξ, (13.2.0.1)
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where σ(x) is a space-like surface passing through the point x. σ0

is the surface that at the remote past, and there, all field variations
vanish. The Schwinger-Feynman variational principle asserts that

”Any Hermitian infinitesimal variation δS of the action induces a
canonical transformation of the vector space in which the quantum
system is defined, and the generator of this transformation is this
same operator δS” [122].

Thus, the following equality emerges thereof

δφA = i[δS, φA]. (13.2.0.2)

For a Poincare transformation one has now

δS = aμPμ +
1

2
aμvMμv, (13.2.0.3)

where the field variation is

δφa = aμP̂μφA +
1

2
aμvM̂μvφA. (13.2.0.4)

From (13.2.0.2) one can appreciate that

∂μφA = i[Pμ, φA]. (13.2.0.5)

More specifically,

∂0φA = i[P0, φA]. (13.2.0.6)

We will use this last result to quantize EG.

13.3 Lagrangian of Einstein’s QFT

The EG Lagrangian is [119]

LG =
1

κ2
R
√
|g|−

1

2
ημv∂αh

μα∂βh
vβ, (13.3.0.1)

with ημν = diag(1, 1, 1,−1), hμν =
√

|g|gμν The 2nd. therm in
(13.3.0.1) establishes the gauge. We consider the linear approximation

hμv = ημv + κφμv, (13.3.0.2)
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where κ is the gravitation’s constant and φμv the graviton field. Then,

LG = LL + LI, (13.3.0.3)

where

LL = −
1

4
[∂λφμv∂

λφμv − 2∂αφμβ∂
βφμα + 2∂αφμα∂βφ

μβ].

(13.3.0.4)
Up to 2nd order, we have [119]

LI = −
1

2
κφμv[

1

2
∂μφ

λρ∂vφλρ + ∂λφμβ∂
βφλ

v − ∂λφμρ∂
λφρ

v ],

(13.3.0.5)
having employed the constraint

φμ
μ = 0. (13.3.0.6)

This constraint is needed so as to satisfy gauge invariance [125] For
the graviton on has now

�φμv = 0, (13.3.0.7)

whose solution is

φμv =
1

(2π)
3
2

∫ [
aμv(�k)√

2k0
eikμxμ

+
a+
μv(

�k)√
2k0

e−ikμxμ

]
d3k, (13.3.0.8)

with k0 = |�k|.

13.4 Quantization of the theory

Start by defining the energy-momentum tensor [128]

Tλ
ρ =

∂L
∂∂ρφμv

∂λφμv − δλρL, (13.4.0.1)

and the time-component of the four-momentum [128]

P0 =

∫
T0
0 d3x. (13.4.0.2)
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Employing (13.3.0.4) one has

T0
0 =

1

4
[∂0φμv∂

0φμv+∂jφμv∂
jφμv−2∂αφμ0∂

0φμα−2∂αφμj∂
jφμα+

2∂αφ
μα∂0φ

0
μ + 2∂αφ

μα∂jφ
j
μ]. (13.4.0.3)

Thus,

P0 =
1

4

∫
|�k|

[
aμv(�k)a

+μv(�k) + a+μv(�k)aμv(�k)
]
d3k. (13.4.0.4)

From (13.2.0.6) we deduce

[P0, aμv(�k)] = −k0aμv(�k)

P0, a
+μv(�k)] = k0a

+μv(�k) (13.4.0.5)

and from the last relation in (13.4.0.5) one has

|�k|a+ρλ( �k ′) =
1

2

∫
|�k|[aμv(�k), a

+ρλ( �k ′)]a+μv(�k) d3k. (13.4.0.6)

Solving this integral equation we find

[aμv(�k), a
+ρλ( �k ′)] =

[
δρμδ

λ
v + δρvδ

λ
μ

]
δ(�k− �k ′). (13.4.0.7)

As usual, the physical state |ψ > is given by the relation

φμ
μ|ψ >= 0. (13.4.0.8)

Appeal to the known definition leads to

Δρλ
μν(x− y) =< 0|T [φμν(x)φ

ρλ(y)]|0 > . (13.4.0.9)

The graviton’s propagator then becomes

Δρλ
μν(x− y) =

i

(2π)4
(δρμδ

λ
v + δρvδ

λ
μ)

∫
eikμ(xμ−yμ)

k2 − i0
d4k. (13.4.0.10)

Thus,

P0 =
1

4

∫
|�k|

[
aμv(�k)a

+μv( �k ′) + a+μv( �k ′)aμv(�k)
]
δ(�k− �k ′)d3kd3k

′
,

(13.4.0.11)
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or, alternatively,

P0 =
1

4

∫
|�k|

[
2a+μv( �k ′)aμv(�k) + δ(�k− �k ′)

]
δ(�k− �k ′)d3kd3k

′
.

(13.4.0.12)
Thus, we obtain

P0 =
1

2

∫
|�k|a+μv(�k)aμv(�k)d

3k, (13.4.0.13)

where we appealed to the well known fact that a product of two deltas

with the same argument is zero [33], i.e., δ(�k− �k ′)δ(�k− �k ′) = 0. We
see that using ultrahyperfunctions is here equivalent to adopting the
normal order in defining the time-component of the four-momentum
[128]

P0 =
1

4

∫
|�k| :

[
aμv(�k)a

+μv(�k) + a+μv(�k)aμv(�k)
]
: d3k. (13.4.0.14)

We insist upon the fact that the physical state verifies not only Eq.
(13.4.0.8) but the relation (see [119])

∂μφ
μv|ψ >= 0, (13.4.0.15)

as well. The ensuing theory is analogous to the QED-one gotten via
the quantization approach of Gupta-Bleuler. This entails that the
theory is unitary for any (finite) perturbative order. From this theory
just one type of graviton arises, φ12, while in Gupta’s one two kinds
of graviton emerge. Of course, this happens for a non-interacting the-
ory, as stated by Gupta [128].

13.4.1 Effects of not using our constraint

If we do appeal to the constraint (13.4.0.8), one has

P0 =
1

2

∫
|�k|

[
a+μv(�k)aμv(�k) −

1

2
a+μ
μ (�k)av

v(
�k)

]
d3k, (13.4.1.16)

and, from the Schwinger-Feynman variational principle, we reach

|�k|a+
ρλ(

�k ′) =
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1

2

∫
|�k|

{
a+μv(�k)[aμv(�k), a

+
ρλ(

�k ′)] −
1

2
a+μ
μ (�k)[av

v(
�k), a+

ρλ(
�k ′)]

}
d3k,

(13.4.1.17)
whose solution becomes

[aμv(�k), a
+
ρλ(

�k ′)] = [ημρηvλ + ηvρημλ − ημvηρλ] δ(�k− �k ′).
(13.4.1.18)

The above is the usual graviton’s quantification, that leads to a the-
oretical framework whose S matrix is NOT unitary [119, 121].

13.5 Graviton’s self energy

To compute the self-energy (SF) we begin with the interaction Hamil-
tonian HI. Remark that the Lagrangian has derivative interaction
terms.

HI =
∂LI

∂∂0φμν
∂0φμν − LI. (13.5.0.1)

A typical term is

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)−1 ∗ kα3

kα4
(ρ− i0)−1. (13.5.0.2)

where ρ = k21 + k22 + k23 − k20
In ν dimensions, the Fourier transform of (13.5.0.2) becomes

F {[kα1
kα2

(ρ− i0)−1 ∗ kα3
kα4

(ρ− i0)−1]ν} =

22ν−2

(2π)ν
πν

[
Γ
(ν
2

)]2
ηα1α2

ηα3α4
(x+ i0)−ν+

22ν−1

(2π)ν
πνΓ

(ν
2

)
Γ
(ν
2
+ 1

)
(ηα1α2

xα3
xα4

+ηα3α4
xα1

xα2
)(x+i0)−ν−1

+
22ν

(2π)ν
πν

[
Γ
(ν
2
+ 1

)]2
xα1

xα2
xα3

xα4
(x+ i0)−ν−2. (13.5.0.3)

where x = x21 + x22 + x23 − x20
Anti-transforming (ep12.5.3) one has

[kα1
kα2

(ρ− i0)−1 ∗ kα3
kα4

(ρ− i0)−1]ν ={
−i

π
ν
2

2

[
Γ
(
ν
2

)]2
Γ(ν)

ηα1α2
ηα3α4

+
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−i
π

ν
2

2

[
Γ
(
ν
2
+ 1

)]2
Γ(ν+ 2)

(ηα1α2
ηα3α4

+ ηα2α3
ηα1α4

+ ηα2α4
ηα1α3

)

}

Γ
(
−
ν

2

)
(ρ− i0)

ν
2 +{

i
π

ν
2

2

Γ
(
ν
2

)
Γ
(
ν
2
+ 1

)
Γ(ν+ 1)

(ηα1α2
kα3

kα4
+ ηα3α4

kα1
kα2

)+

i
π

ν
2

2

[
Γ
(
ν
2
+ 1

)]2
Γ(ν+ 1)

×

(ηα1α2
kα3

kα4
+ ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+ ηα3α4

kα1
kα2

+

ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)} Γ
(
1−

ν

2

)
(ρ− i0)

ν
2
−1−

iπ
ν
2

[
Γ
(
ν
2
+ 1

)]2
Γ(ν+ 2)

kα1
kα2

kα3
kα4

Γ
(
2−

ν

2

)
(ρ− i0)

ν
2
−2. (13.5.0.4)

13.5.1 Self-energy computation for ν = 4

Let us consider the ν-Laurent expansion and keep there the ν − 4
independent term [113]. We Laurent-expand (13.5.0.4) around ν = 4
and obtain [128]

[kα1
kα2

(ρ− i0)−1 ∗ kα3
kα4

(ρ− i0)−1]ν =

i
π2

ν− 4

{
1

5!
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)ρ2 −

[
2

4!
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
) −

1

6!
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+

ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)] ρ+
8

5!
kα1

kα2
kα3

kα4

}
−

iπ2

5!2
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)[

ln(ρ− i0) + lnπ+ C−
46

15

]
ρ2+
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i
π2

4!

{
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln(ρ− i0) + lnπ+ C−

8

3

]
−

1

24
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+

ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+

ηα2α4
kα1

kα3
)

[
ln(ρ− i0) + lnπ+ 2C−

101

15

]}
ρ−

i
π2

30
kα1

kα2
kα3

kα4

[
ln(ρ− i0) + lnπ+ C−

47

30

]
+

∞∑
n=1

an(ν− 4)n

}
.

(13.5.1.5)
The exact value of the convolution that interests us, i.e., the left hand
side of (5.5), is that yielded by the independent term in the precedent
expansion. If the reader is not familiar with this scenario, see for
instance [113]. We arrive at

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)−1 ∗ kα3

kα4
(ρ− i0)−1 = −

iπ2

5!2
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)

[
ln(ρ− i0) + lnπ+ C−

46

15

]
ρ2−

i
π2

4!

{
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln(ρ− i0) + lnπ+ C−

8

3

]
−

1

24
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+

ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+

ηα2α4
kα1

kα3
)

[
ln(ρ− i0) + lnπ+ 2C−

101

15

]}
ρ−

i
π2

30
kα1

kα2
kα3

kα4

[
ln(ρ− i0) + lnπ+ C−

47

30

]}
. (13.5.1.6)

Here we must tackle 1296 diagrams of this sort.
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13.6 Inserting axions into the picture

These are hypothetical elementary particles postulated by Peccei–Quinn
in 1977 to deal with the strong CP problem in quantum chromody-
namics [1]. Should they exist and have low enough mass, they might
be of interest as putative components of cold dark matter [126].

We consider now a massive scalar field (axions) interacting with the
graviton and the Lagrangian is

LGM =
1

κ2
R
√
|g|−

1

2
ημv∂αh

μα∂βh
vβ −

1

2
[hμv∂μφ∂vφ+m2φ2].

(13.6.0.1)
Recast at this stage the Lagrangian in the form

LGM = LL + LI + LLM + LIM, (13.6.0.2)

where

LLM = −
1

2
[∂μφ∂

μφ+m2φ2]. (13.6.0.3)

LIM has become the Lagrangian for the axion-graviton action

LIM = −
1

2
κφμν∂μφ∂νφ. (13.6.0.4)

The new term in the interaction Hamiltonian is then

HIM =
∂LIM

∂∂0φ
∂0φ− LIM. (13.6.0.5)

13.7 Graviton’s complete self energy

The presence of axions creates a novel contribution to the graviton’s
self energy

ΣGMμrvs(k) = kμkr(ρ+m2−i0)−1 ∗kvks(ρ+m2−i0)−1. (13.7.0.1)

To evaluate it we consider the usual ν dimensional integral together
with Feynman-parameters that we denote with the letter x. After a
Wick rotation one finds [128]

[kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1]ν =
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1∫
0

∫
kμkr(pv − kv)(ps − ks)

(k− px)2 + a
dνkdx, (13.7.0.2)

where

a = p2x− p2x2 +m2. (13.7.0.3)

Effect the variables-change u = k− px and get

[kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1]ν =

i

1∫
0

∫
f(u, x, μ, r, v, s)

u2 + a
dνudx, (13.7.0.4)

where
f(u, x, μ, r, v, s) =

uμurpvps(1− x)2 + uμuruvus − uμusprpvx(1− x)−

uμuvprpsx(1− x) − uruspμpvx(1− x) − uruvpμpsx(1− x)+

pμprpvpsx
2(1− x)2 + uvuspμprx

2. (13.7.0.5)

After computing the pertinent integrals we have

[kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1]ν =

i
(ημrkvks + ηvskμkr)m

ν−2π
ν
2

8
Γ
(
1−

ν

2

)
×[

F

(
1, 1−

ν

2
,
3

2
; −

ρ

4m2

)
+

1

3
F

(
1, 1−

ν

2
,
5

2
; −

ρ

4m2

)]
+

i(ημrηvs + ημvηrs + ημsηvr)
π

ν
2 mν

4

Γ
(ν
2

)
Γ
(
−
ν

2

)
F

(
1,−

ν

2
,
3

2
; −

ρ

4m2

)
−

i(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)
mν−2π

ν
2

48
×

Γ
(
1−

ν

2

)
F

(
2, 1−

ν

2
,
5

2
; −

ρ

4m2

)
+

ikμkrkvks
mν−4π

ν
2

12
Γ
(
2−

ν

2

)
F

(
2, 2−

ν

2
,
5

2
; −

ρ

4m2

)
. (13.7.0.6)
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13.7.1 Computing the Self-Energy for ν = 4

We face once again a Laurent’s expansion

[kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1]ν =

−i
π2

ν− 4

{
m2(ημrkvks + ηvskμkr)

[
1

3
+

1

5

ρ

4m2

]
−

2m4(ημrηvs + ημvηrs + ημsηrv)×[
1

8
+

1

6

ρ

4m2
+

1

15

( ρ

4m2

)2
]
−

m2

4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

k2 −m2

12
+

m2

4
+

k2 −m2

30

ρ

4m2
−

1

6
kμkrkvks

}
+

i
m2π2

2
(ημrkvks + ηvskμkr)×[

1

3
(lnm2 + lnπ+ C− 1) +

1

5

ρ

4m2

(
lnm2 + lnπ+ C

)]
+

i
m2π2

30
(ημrkvks + ηvskμkr)

ρ

4m2
×[

F

(
1, 1,

7

2
; −

ρ

4m2

)
+

1

7
F

(
1, 1,

9

2
; −

ρ

4m2

)]
+

−i2π2m4(ημrηvs + ημvηrs + ημsηvr)×{[
1

8
−

1

6

ρ

4m2
−

1

15

( ρ

4m2

)2

+

]
×

(
lnm2 + lnπ+ 1

)
−

1

2

[
3

32
−

1

3

( ρ

4m2

)]}
−

i
2π2m4

105
(ημrηvs + ημvηrs + ημsηvr)

( ρ

4m2

)3

F

(
1, 1,

9

2
; −

ρ

4m2

)
−

i
π2m2(k2 −m2)

12(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

[
1

2

(
lnm2 + lnπ+ C−

1

4

)
+

1

5

(
lnm2 + lnπ+ C

) k2

4m2

]
−
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i
π2m2

8(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

m2

[(
lnm2 + lnπ+ C−

1

4

)
+

k2

6
+

k2

15

k2

4m2

]
−

i
π2m2

10
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

k2 −m2

21(4m2 + k2 − i0)
F

(
1, 1,

9

2
; −

ρ

4m2

)(
k2

4m2

)2

−

i
π2

12
kμkrkvks

[(
lnm2 + lnπ

)
+

k2

4m2 + k2 − i0

]
−

i
π2m2

30
kμkrkvks

k2 −m2

4m2 + k2 − i0

k2

4m2
F

(
1, 1,

7

2
; −

k2

4m2

)
+

∞∑
n=0

an(ν− 4)n. (13.7.1.7)

Thus, the exact result for our four-dimensional convolution is

ΣGMμvrs(k) = kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1 =

i
m2π2

2
(ημrkvks + ηvskμkr)×[

1

3
(lnm2 + lnπ+ C− 1) +

1

5

ρ

4m2

(
lnm2 + lnπ+ C

)]
+

i
m2π2

30
(ημrkvks + ηvskμkr)

ρ

4m2
×[

F

(
1, 1,

7

2
; −

ρ

4m2

)
+

1

7
F

(
1, 1,

9

2
; −

ρ

4m2

)]
+

−i2π2m4(ημrηvs + ημvηrs + ημsηvr)×{[
1

8
−

1

6

ρ

4m2
−

1

15

( ρ

4m2

)2

+

]
×

(
lnm2 + lnπ+ 1

)
−

1

2

[
3

32
−

1

3

( ρ

4m2

)]}
+

i
2π2m4

105
(ημrηvs + ημvηrs + ημsηvr)

( ρ

4m2

)3

F

(
1, 1,

9

2
; −

ρ

4m2

)
−
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i
π2m2(k2 −m2)

12(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

[
1

2

(
lnm2 + lnπ+ C−

1

4

)
+

1

5

(
lnm2 + lnπ+ C

) k2

4m2

]
−

i
π2m2

8(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

m2

[(
lnm2 + lnπ+ C−

1

4

)
+

k2

6
+

k2

15

k2

4m2

]
−

i
π2m2

10
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

k2 −m2

21(4m2 + k2 − i0)
F

(
1, 1,

9

2
; −

ρ

4m2

)(
k2

4m2

)2

−

i
π2

12
kμkrkvks

[(
lnm2 + lnπ

)
−

k2

4m2 + k2 − i0

]
−

i
π2m2

30
kμkrkvks

k2 −m2

4m2 + k2 − i0

k2

4m2
F

(
1, 1,

7

2
; −

k2

4m2

)
(13.7.1.8)

Accordingly, our desired self-energy total is a combination of ΣGα1α2α3α4
(k)

and ΣGMα1α2α3α4
(k).

13.8 Axion’s self energy

It is given by

Σμs(k) = (ημrηvs+ημsηvr)kvkr(ρ+m2−i0)−1∗(ρ−i0)−1. (13.8.0.1)

In ν dimensions we have

[kvkr(ρ+m2−i0)−1∗(ρ−i0)−1]ν =

∫
kvkr

(k2 +m2 − i0)[(p− k)2 − i0]
dνk.

(13.8.0.2)
Using the above Feynman parameters we get

[kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1]ν = i

1∫
0

∫
kvkr

(k− px)2 + a
dνkdx,

(13.8.0.3)
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where
a = (p2 +m2)x− p2x2. (13.8.0.4)

We compute the integral (13.8.0.3), obtaining

[kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1]ν =

i
ηvrm

ν−2π
ν
2

ν
Γ
(
1−

ν

2

)
F
(
1, 1−

ν

2
,
ν

2
+ 1; −

ρ

m2

)
+

2ikvkrm
ν−4π

ν
2

ν+ 2
Γ
(
2−

ν

2

)
F
(
1, 2−

ν

2
,
ν

2
+ 2; −

ρ

m2

)
. (13.8.0.5)

13.8.1 Self-Energy computation for ν = 4

One Laurent-expands now (13.8.0.5) around ν = 4, finding

[kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1]ν =

iπ2

{
1

ν− 4

(
ηvrm

2

2
− 2kvkr

)
+

ηvrm
2

4

[(
1+

1

3

ρ

m2

)(
lnm2 + lnπ+ C−

1

2

)
−

(
1+

1

9

ρ

m2

)]
−

kvkr

3

(
lnm2 + lnπ+ C−

1

2

)
+

1

4

( ρ

m2

)[
ηvrm

2

12

ρ

m2
−

kvkr

3

]
F
(
1, 1, 5; −

ρ

m2

)
+

∞∑
n=1

an(ν− 4)n

}
(13.8.1.6)

As usual, the ν-independent term gives the exact convolution result:

Σvr(k) = kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1 =

iπ2

{
ηvrm

2

4

[(
1+

1

3

ρ

m2

)(
lnm2 + lnπ+ C−

1

2

)
−

(
1+

1

9

ρ

m2

)]
−

kvkr

3

(
lnm2 + lnπ+ C−

1

2

)
+

1

4

( ρ

m2

)[
ηvrm

2

12

ρ

m2
−

kvkr

3

]
F
(
1, 1, 5; −

ρ

m2

)}
(13.8.1.7)
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13.9 Discussion

We have developed above a QFT of Eintein’s gravity (EG), that is
both unitary and finite. These results critically depend upon the
employment of a new constraint that we introduced in defining the
EG-Lagrangian. Laurent expansions were an absolutely necessary tool
here [128].

So as to quantify our theory we used the variational principle of
Schwinger-Feynman’s. This led to only one graviton type φ12.

The underlying mathematics employed here was developed in [33, 39,
41, 42, 113] and is powerful enough so as to be tackle non-renormalizable
field theories, a fact that remained mostly ignored until it was suc-
cessfully exploited in [128].

We have computed in finite and exact fashion

• a graviton’s self-energy in the EG-field,

• such self-energy in the added presence of a massive scalar field
(axions). Two types of diagram appear: the original ones of
the pure EG field plus the ones that emerge on account of the
addition of a scalar field.

• The axion’s self-energy.
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Chapter 14

Further Generalization

14.1 Propagators as Tempered Ultradis-
tributions

The Feynman propagators corresponding to a massless particle F and
a massive (m) particle G are, respectively, the following ultrahyper-
functions

F(ρ) = −Θ[−�(ρ)]ρ−1

G(ρ) = −Θ[−�(ρ)](ρ+m2)−1, (14.1.0.1)

where ρ is a complex variable such that on the real axis one has
ρ = k21 + k22 + k23 − k20. For F and G the following equalities are
satisfied

ρλF(ρ) = −Θ[−�(ρ)]ρλ−1

ρλG(ρ) = −Θ[−�(ρ)](ρ+m2)λ−1, (14.1.0.2)

where one uses (ρ + m2)λ � ρλ, since we have chosen m to be very
small. On the real axis, the previously defined propagators are given
by

F(ρ) = F(ρ+ i0) − F(ρ− i0) = (ρ− i0)−1

g(ρ) = G(ρ+ i0) −G(ρ− i0) = (ρ+m2 − i0)−1. (14.1.0.3)

These are the usual expressions for Feynman propagators.

Consider first the convolution of two massless propagators. We use
(14.1.0.2), since here the corresponding ultrahyperfunctions do not
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have singularities in the complex plane. We obtain, from (9.8.0.14), a
simplified expression for the pertinent convolution

hλ(ρ) =
π

2ρ

∞∫∫
−∞

(ρ1 − i0)λ−1(ρ2 − i0)λ−1

[
(ρ− ρ1 − ρ2)

2 − 4ρ1ρ2
] 1

2

+
dρ1 dρ2. (14.1.0.4)

This expression is nothing but the usual convolution

hλ(ρ) = (ρ− i0)λ−1 ∗ (ρ− i0)λ−1. (14.1.0.5)

In the same manner we obtain for massive propagators

hλ(ρ) = (ρ+m2 − i0)λ−1 ∗ (ρ−m2 − i0)λ−1. (14.1.0.6)

These last two expressions are the ones we will use later to evaluate
the graviton’s self-energy.

14.2 Self energy of the graviton

To evaluate the graviton’s self-energy (SF) we start again with the in-
teraction Hamiltonian HI. Note that the Lagrangian contains deriva-
tive interaction terms.

HI =
∂LI

∂∂0φμν
∂0φμν − LI. (14.2.0.1)

A typical term reads

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)λ−1 ∗kα3

kα4
(ρ− i0)λ−1. (14.2.0.2)

where ρ = k21 + k22 + k23 − k20
The Fourier transform of (14.2.0.2) is

F [kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1] =

−
24(λ+1)

[
Γ(2+ λ)2

]
4Γ(1− λ)2

ηα1α2
ηα3α4

(x+ i0)−2λ−4+

24(λ+1)Γ(2+ λ)Γ(3+ λ)

2Γ(1− λ)2
(ηα1α2

xα3
xα4

+ηα3α4
xα1

xα2
)(x+i0)−2λ−5−
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24(λ+1)Γ(3+ λ)2

Γ(1− λ)
xα1

xα2
xα3

xα4
(x+ i0)−ν−2, (14.2.0.3)

where x = x21 + x22 + x23 − x20.

Anti-transforming the above equation we have

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1 =

iπ2

4Γ(1− λ)2

{
Γ(λ+ 2)

[
Γ(2+ λ)

Γ(2λ+ 4)
− 2

Γ(3+ λ)

Γ(2λ+ 5)

]
ηα1α2

ηα3α4
+

Γ(λ+ 3)2

Γ(2λ+ 6)
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)

}
Γ(−2λ− 2)(ρ− i0)2λ+2+

iπ2Γ(λ+ 3)

2Γ(1− λ)2

{
Γ(2+ λ

Γ(2λ+ 5)
Γ(ν+ 1)(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)−

Γ(λ+ 3)

Γ(2λ+ 6)

(ηα1α2
kα3

kα4
+ ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+ ηα3α4

kα1
kα2

+

ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)} Γ (−2λ− 1) (ρ− i0)2λ+1+

,

iπ2Γ(λ+ 3)2

Γ(1− λ)2Γ(2λ+ 6)
kα1

kα2
kα3

kα4
Γ(−2λ)(ρ− i0)2λ. (14.2.0.4)

14.2.1 Self-Energy evaluation for λ = 0

We appeal now to a λ-Laurent expansion and retain there the λ = 0
independent term.. Thus, we Laurent-expand (14.2.0.4) around λ = 0
and find

kα1
kα2

(ρ− i0)λ−1 ∗ kα3
kα4

(ρ− i0)λ−1 =

−i
π2

4λ

{
1

5!
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)ρ2 −

[
2

4!
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
) −
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1

6!
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+ ηα1α4
kα2

kα3
+

ηα2α3
kα1

kα4
+ ηα2α4

kα1
kα3

)] ρ+
8

5!
kα1

kα2
kα3

kα4

}
−

iπ2

5!2
(ηα1α2

ηα3α4
+ ηα2α3

ηα1α4
+ ηα2α4

ηα1α3
)[

ln(ρ− i0) −
137

60

]
ρ2+

i
π2

4!

{
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln(ρ− i0) −

11

6

]
−

1

24
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+

ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+

ηα2α4
kα1

kα3
)

[
ln(ρ− i0) + lnπ+ 2C−

101

30

]}
ρ−

i
π2

30
kα1

kα2
kα3

kα4

[
ln(ρ− i0) −

47

60

]
+

∞∑
n=1

anλ
n

}
. (14.2.1.5)

The exact value of the convolution we are interested in, i.e., the left
hand side of (14.2.1.5), is given by the independent term in the above
expansion, as it is well-known. We then arrive at

ΣGα1α2α3α4
(k) = kα1

kα2
(ρ− i0)−1 ∗ kα3

kα4
(ρ− i0)−1 = −

iπ2

5!2
(ηα1α2

ηα3α4
+ηα2α3

ηα1α4
+ηα2α4

ηα1α3
)

[
ln(ρ− i0) −

137

60

]
ρ2+

i
π2

4!

{
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
)

[
ln(ρ− i0) −

11

6

]
−

1

24
(ηα1α2

kα3
kα4

+ ηα3α4
kα1

kα2
+ ηα1α3

kα2
kα4

+

ηα1α4
kα2

kα3
+ ηα2α3

kα1
kα4

+

ηα2α4
kα1

kα3
)

[
ln(ρ− i0) + lnπ+ 2C−

101

30

]}
ρ−

i
π2

30
kα1

kα2
kα3

kα4

[
ln(ρ− i0) −

47

60

]}
. (14.2.1.6)

We have to deal with 1296 diagrams of this kind.
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14.3 Complete Graviton’s Self Energy

We include now a massive scalar field (axions) interacting with the
graviton. The Lagrangian is given by (13.6.0.1). The presence of
axions generates a new contribution to the graviton’s self energy

ΣGMμrvs(k) = kμkr(ρ+m2−i0)−1 ∗kvks(ρ+m2−i0)−1. (14.3.0.1)

So as to compute it, we appeal to the usual integral together with the
generalized Feynman-parameters. After a Wick rotation we obtain

kμkr(ρ+m2 − i0)λ−1 ∗ kvks(ρ+m2 − i0)λ−1 =

i

1∫
0

x−λ(1− x)−λ

∫
kμkr(pv − kv)(ps − ks)

[(k− px)2 + a]2−2λ
d4kdx, (14.3.0.2)

where

a = p2x− p2x2 +m2. (14.3.0.3)

After the variables-change u = k− px we find

kμkr(ρ+m2 − i0)λ−1 ∗ kvks(ρ+m2 − i0)λ−1 =

i

1∫
0

x−λ(1− x)−λ

∫
f(u, x, μ, r, v, s)

(u2 + a)2−2λ
d4udx (14.3.0.4)

where

f(u, x, μ, r, v, s) = uμurpvps(1−x)2+uμuruvus−uμusprpvx(1−x)−

uμuvprpsx(1− x) − uruspμpvx(1− x) − uruvpμpsx(1− x)+

pμprpvpsx
2(1− x)2 + uvuspμprx

2. (14.3.0.5)

After evaluation of the pertinent integrals, we arrive at

kμkr(ρ+m2 − i0)λ−1 ∗ kvks(ρ+m2 − i0)λ−1 =

iπ
5
2 22λm2+4λ

16

Γ(−1− 2λ)

Γ(1− λ)
(ημrkvks + ηvskμkr)×
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[
F
(
1− 2λ,−1− 2λ, 3

2
− λ; − ρ

4m2

)
Γ
(
3
2
− λ

) +

F
(
1− λ,−1− 2λ, 5

2
− λ; − ρ

4m2

)
2Γ

(
5
2
− λ

)
]
+

i
iπ

5
2 22λ−1m4+4λ

4
(ημrηvs + ημvηrs + ημsηvr)

Γ (−2− 2λ)

Γ(1− λ)Γ
(
3
2
− λ

)F(−2− 2λ, 1− λ,
3

2
− λ; −

ρ

4m2

)
−

i
iπ

5
2 22λm2+4λ

64
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

Γ (2− λ) Γ(−1− 2λ)

Γ(1− λ)2Γ
(
5
2
− λ

) F

(
−1− 2λ, 2− λ,

5

2
− λ; −

ρ

4m2

)
+

i
iπ

5
2 22λm4λ

32
kμkrkvks[

Γ (3− λ) Γ(−2λ)

Γ(1− λ)2Γ
(
5
2
− λ

)
F

(
−2λ, 2− λ,

5

2
− λ; −

ρ

4m2

)
. (14.3.0.6)

14.3.1 Self-Energy evaluation for λ = 0

We need again a Laurent’s expansion and face

kμkr(ρ+m2 − i0)λ−1 ∗ kvks(ρ+m2 − i0)λ−1 =

i
π2

4λ

{
m2(ημrkvks + ηvskμkr)

[
1

3
+

1

5

ρ

4m2

]
−

m4(ημrηvs + ημvηrs + ημsηrv)×[
1

4
+

1

3

ρ

4m2
+

4

15

( ρ

4m2

)2
]
−

m2

4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

k2 −m2

12
+

m2

4
+

k2 −m2

30

ρ

4m2
−

1

6
kμkrkvks

}
+
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i
m2π2

2
(ημrkvks + ηvskμkr)×[

1

3
(lnm2 +

1

12
) +

1

5

ρ

4m2

(
lnm2 +

13

15

)]
+

i
m2π2

30
(ημrkvks + ηvskμkr)

ρ

4m2
×[

F

(
1, 1,

7

2
; −

ρ

4m2

)
+

1

7
F

(
1, 1,

9

2
; −

ρ

4m2

)]
+

−i
π2m4

4
(ημrηvs + ημvηrs + ημsηvr)×{[

1

2
−

2

3

ρ

4m2
−

8

15

( ρ

4m2

)2

+

]
×

(
lnm2 + 1

)
−

1

2

[
3

2
−

1

9

( ρ

4m2

)
+

52

225

( ρ

4m2

)2
]}

−

i
2π2m4

105
(ημrηvs + ημvηrs + ημsηvr)

( ρ

4m2

)3

F

(
1, 1,

9

2
; −

ρ

4m2

)
−

i
π2m2(k2 −m2)

12(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

[
1

2

(
lnm2 +

1

3

)
+

1

5

(
lnm2 +

5

6

)
k2

4m2

]
−

i
π2m2

8(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

m2

[(
lnm2 +

2

3

)
+

k2

12
+

k2

30

k2

4m2

]
−

iπ2m4

40(4m2 + k2 − i0)

k2

4m2
−

i
π2m2

10
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

k2 −m2

21(4m2 + k2 − i0)
F

(
1, 1,

9

2
; −

ρ

4m2

)(
k2

4m2

)2

−

i
π2

12
kμkrkvks

[(
lnm2 +

3

4

)
+

k2 − 4m2

2(4m2 + k2 − i0)

]
−

i
π2m2

30
kμkrkvks

k2 −m2

4m2 + k2 − i0

k2

4m2
F

(
1, 1,

7

2
; −

k2

4m2

)
+
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∞∑
n=0

anλ
n. (14.3.1.7)

Again, the exact result for our four-dimensional convolution becomes

ΣGMμvrs(k) = kμkr(ρ+m2 − i0)−1 ∗ kvks(ρ+m2 − i0)−1 =

i
m2π2

2
(ημrkvks + ηvskμkr)×[

1

3
(lnm2 +

1

12
) +

1

5

ρ

4m2

(
lnm2 +

13

15

)]
+

i
m2π2

30
(ημrkvks + ηvskμkr)

ρ

4m2
×

[
F

(
1, 1,

7

2
; −

ρ

4m2

)
+

1

7
F

(
1, 1,

9

2
; −

ρ

4m2

)]
+

−i
π2m4

4
(ημrηvs + ημvηrs + ημsηvr)×{[

1

2
−

2

3

ρ

4m2
−

8

15

( ρ

4m2

)2

+

]
×

(
lnm2 + 1

)
−

1

2

[
3

2
−

1

9

( ρ

4m2

)
+

52

225

( ρ

4m2

)2
]}

−

i
2π2m4

105
(ημrηvs + ημvηrs + ημsηvr)

( ρ

4m2

)3

F

(
1, 1,

9

2
; −

ρ

4m2

)
−

i
π2m2(k2 −m2)

12(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

[
1

2

(
lnm2 +

1

3

)
+

1

5

(
lnm2 +

5

6

)
k2

4m2

]
−

i
π2m2

8(4m2 + k2 − i0
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×

m2

[(
lnm2 +

2

3

)
+

k2

12
+

k2

30

k2

4m2

]
−

iπ2m4

40(4m2 + k2 − i0)

k2

4m2
−

i
π2m2

10
(ημskrkv + ημvkrks + ηrskμkv + ηrvkμks)×
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k2 −m2

21(4m2 + k2 − i0)
F

(
1, 1,

9

2
; −

ρ

4m2

)(
k2

4m2

)2

−

i
π2

12
kμkrkvks

[(
lnm2 +

3

4

)
+

k2 − 4m2

2(4m2 + k2 − i0)

]
−

i
π2m2

30
kμkrkvks

k2 −m2

4m2 + k2 − i0

k2

4m2
F

(
1, 1,

7

2
; −

k2

4m2

)
(14.3.1.8)

We have to deal with 9 diagrams of this kind.
Accordingly, our desired self-energy total is a combination of ΣGα1α2α3α4

(k)
and ΣGMα1α2α3α4

(k).

14.4 Self Energy of the Axion

Here, a typical term of the self-energy is

Σvr(k) = kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1. (14.4.0.1)

In four dimensions one has

kvkr(ρ+m2−i0)−1∗(ρ−i0)−1] =

∫
kvkr

(k2 +m2 − i0)[(p− k)2 − i0]
d4k.

(14.4.0.2)
With the Feynman parameters used above we obtain

kvkr(ρ+m2 − i0)λ−1 ∗ (ρ− i0)λ−1 =

i

1∫
0

x−λ(1− x)−λ

∫
kvkr

[(k− px)2 + a]2−λ
d4kdx, (14.4.0.3)

where
a = (p2 +m2)x− p2x2. (14.4.0.4)

We evaluate the integral (14.4.0.3) and find

kvkr(ρ+m2 − i0)λ−1 ∗ (ρ− i0)λ−1 =

i
ηvrm

2+4λπ2

4

Γ(2+ λ)

Γ(1− λ
Γ(−1− 2λ)F

(
−1− 2λ, 1− λ, 3; −

ρ

m2

)
+

ikvkrm
4λπ2

6

Γ(3+ λ)

Γ(1− λ
Γ(−2λ)F

(
−2λ, 1− λ, 4; −

ρ

m2

)
. (14.4.0.5)
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14.4.1 Self-energy evaluation for λ = 0

Once again, we Laurent-expand, this time (14.4.0.5) around λ = 0,
encountering

[kvkr(ρ+m2 − i0)λ−1 ∗ (ρ− i0)λ−1 =

iπ2

{
1

2λ

(
ηvrm

2

4
−

1

3
kvkr

)
+

ηvrm
2

4

[(
1+

1

3

ρ

m2

)(
lnm2 +

1

2

)
−

(
1+

1

6

ρ

m2

)]
−

kvkr

3

(
lnm2 +

3

4

)
+

1

4

( ρ

m2

)[
ηvrm

2

12

ρ

m2
−

kvkr

3

]
F
(
1, 1, 5; −

ρ

m2

)
+

∞∑
n=1

anλ
n

}
. (14.4.1.6)

The λ-independent term gives the exact convolution result we are
looking for

Σvr(k) = [kvkr(ρ+m2 − i0)−1 ∗ (ρ− i0)−1] =

iπ2

{
ηvrm

2

4

[(
1+

1

3

ρ

m2

)(
lnm2 +

1

2

)]
−

(
1+

1

6

ρ

m2

)]
−

kvkr

3

(
lnm2 +

3

4

)
+

1

4

( ρ

m2

)[
ηvrm

2

12

ρ

m2
−

kvkr

3

]
F
(
1, 1, 5; −

ρ

m2

)}
(14.4.1.7)

14.5 Discussion

We have developed above a quantum field theory (QFT) of Ein-
tein’s gravity (EG), that is both unitary and finite, by appeal to the
Schwinger-Feyman variational principle. We emphatically avoid the
functional integral method. Our results critically depend on the use
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of a rather novel constraint the we introduced in defining the EG-
Lagrangian. Laurent expansions were also an indispensable tool for
us.

As stated above, in order to quantify the theory we appealed to the
variational principle of Schwinger-Feynman’s. This process leads to
just one graviton type φ12.

We have evaluated here in finite and exact fashion, for the first time
as far as we know, several quantities:

• the graviton’s self-energy in the EG-field. This requires full use
of the theory of distributions, appealing to the possibility of
creating with them a ring with divisors of zero.

• the above self-energy in the added presence of a massive scalar
field (axions, for instance). Two types of diagram ensue: the
original ones of the pure EG field plus the ones originated by
the addition of a scalar field.

• The axion’s self-energy.
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Chapter 15

Epilogue

In this book we discussed and solved the overarching dilemma of defin-
ing the product of two distributions (a product in a ring with divisors
of zero), which is an old problem of functional analysis. All infinities
in quantum field theory (QFT) can be traced back to such products
[113]. In (QFT), when we use perturbative expansions, we need to
deal with products of distributions in configuration space or, what is
the same, with convolutions of distributions in momentum space. We
have here concentrated efforts on the convolution of Sebastiao e Silva
ultradistributions, that allow us to treat non- renormalizable QFTs,
but has the disadvantage of being extremely involved. We proposed
and illustrated a simpler way of dealing with them.
We appealed for this purpose to the convolution of Lorentz invariant
tempered distributions, using an extension of the dimensional regu-
larization (DR) of Bollini and Giambiagi. With this convolution we
have obtained above, for example, the convolution of n massless Feyn-
man propagators both in Minkowskian and Euclidean spaces and the
convolution of two massless Wheeler propagators, all of them original
results at the time of their publication.
As a final step of this book we told the reader about the Non-relativistic
quantum field theory of Newton’s gravity and the quantum field the-
ory of Einstein’s gravity. Both theories turn out to be finite ones, a
rather important achievement.
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Chapter 16

Bibliography
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