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1

Over the last 50 years, mechanical, biological, and chemical innovations 
have more than doubled agricultural output while scarcely changing input 
quantities (Alston et al. 2010). In 1957, Zvi Griliches estimated that the 
internal rate of return (IRR) for research on new corn hybrids was around 
40 percent. A meta-analysis of research and development (R&D) productiv-
ity estimates for 1965 to 2005 suggests even higher returns for those years, 
with a median estimate of 45 percent (Fuglie and Heisey 2007).

Yet returns to agricultural R&D are exceedingly difficult to measure. Even 
when costs and benefits are known, creating accurate summary statistics 
can be challenging. For example, an analysis of 2,242 investment evalua-
tions between 1958 and 2011 has found that calculating a modified internal 
rate of return instead of the standard IRR is associated with an enormous 
decline in reported returns to agricultural R&D, reducing the estimated 
median annual return from 39 percent to less than 10 percent (Hurley, Rao, 
and Pardey 2014).1

1. Another potential issue is that some of the welfare benefits of agricultural innovation may 
accrue to consumers in the form of lower prices for agricultural goods. Low price elasticities of 
demand for agricultural products imply that productivity gains from freely accessible agricul-

Introduction

Petra Moser

Petra Moser is a professor of economics at New York University, a research fellow of the 
Center for Economic Policy Research, and a research associate of  the National Bureau of 
Economic Research.

Early drafts of the chapters in this book were presented and discussed at the NBER confer-
ence on the “Economics of Research and Innovation in Agriculture,” Washington, DC, May 17, 
2019, funded by the US Department of Agriculture. I am grateful for the excellent comments 
on this chapter from Matt Clancy, James McDonald, Paul Rhode, Michael Roberts, Brian 
Wright, and two anonymous readers. For acknowledgments, sources of research support, and 
disclosure of the author’s material financial relationships, if  any, please see https:// www .nber 
.org /books -and -chapters /economics -research -and -innovation -agriculture /introduction 
-economics -research -and -innovation -agriculture.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



2    Petra Moser

Moreover, many recent studies find that returns to agricultural research 
have been declining of late. Andersen, Alston, Pardey, and Smith (2018) 
document that US multifactor farm productivity grew at an annual average 
rate of 1.16 percent per year during 1990–2007, down from 1.42 percent 
per year for 1910–2007. They also find that US yields of major crops grew 
at an annual average rate of  1.17 percent for 1990–2009 compared with 
1.81 percent for 1936–90. Similarly, an analysis of research inputs and total 
factor productivity (TFP) between 1970 and 2007 indicates that TFP growth 
declined slightly in agriculture, while effective research investments rose by 
a factor of  two (Bloom et al. 2019), suggesting that research productiv-
ity declined by a factor of nearly four, equivalent to an average decline of 
3.7 percent per year.

Intensifying the potential threat of  diminished productivity, the share 
of  gross domestic product (GDP) to agricultural R&D has declined in 
many wealthy countries. Historically, the US public sector has been a 
top performer in worldwide agricultural R&D. This situation, however, 
has changed significantly in recent years, and the United States has lost 
its dominant position, falling behind China in 2009 through at least 2013 
(Clancy, Fuglie, and Heisey 2016). In 1995, total global spending on agri-
cultural R&D was around $33 billion. Roughly two-thirds of this spending 
originated from governments, universities, and nonprofits, while one-third 
originated from profit-motivated R&D (Pardey and Beintema 2001). Five 
years later, by 2000, total global spending was roughly the same, but the 
share of public to profit-motivated R&D had changed to 60 and 40 percent 
(Pardey et al. 2006), highlighting a growing reliance on industry funding for 
agricultural R&D.

This book provides new evidence on the potential impact of this shift from 
public to private sector funding and, more generally, furthers our under-
standing of the returns to public and private spending R&D. Measuring 
research and innovation is difficult in any field, but particularly in agricul-
ture, and data constraints create major challenges for empirical analyses. 
To address these challenges, chapters in this book present original data sets 
ranging from text-based measures of  innovation to animal-level data on 
dairy cow performance and fine-grained data on yields. Comments on these 
chapters discuss remaining measurement challenges and suggest promising 
directions for future data efforts and analyses.

Thematically, the chapters examine the sources of agricultural knowledge 
and investigate challenges for measuring the returns to the adoption of new 
agricultural technologies, survey knowledge spillovers from universities to 
agricultural innovation, and explore interactions between university engage-

tural innovations reduce the price of agricultural goods (Guttman 1978), making consumers 
the primary beneficiaries of such innovations. With free trade and reasonable transport costs, 
these welfare gains diffuse across domestic and foreign consumers, reducing domestic consum-
ers’ willingness to pay.
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ment and scientific productivity. Analyses of  agricultural venture capital 
point to that industry as an evolving source of funding for agricultural R&D.

Methodologically, the research in this book spans a diverse spectrum, 
from archival research and text analysis to survey design and structural 
estimates. Yet all these individual contributions share some common traits. 
Several chapters use more fine-grained data than have been previously avail-
able to challenge prior findings (e.g., chapters 2 and 4) or resolve unanswered 
questions (e.g., chapter 3). Individual chapters use novel empirical methods 
to understand the sources of agricultural innovation (chapter 1), while oth-
ers provide descriptions of important and new phenomena that are impor-
tant for agricultural innovation (chapters 5 and 6). Chapters with a historical 
focus provide important insights that speak to our current challenges, such 
as agricultural adaptation to climate change. Building on this work, discus-
sions for each chapter outline promising directions for future research.

I.1  Tracing Agricultural Productivity to Its Source

In their chapter, “The Roots of  Agricultural Innovation: Patent Evi-
dence of Knowledge Spillovers,” Matt Clancy, Paul Heisey, Yongjie Ji, and 
GianCarlo Moschini investigate knowledge spillovers from innovations out-
side of agriculture as sources of agricultural innovation. While many previ-
ous analyses have investigated knowledge spillovers, nearly all these studies 
have focused on spillover between different segments of agricultural R&D 
(e.g., Evenson 1989) or across states or countries (Alston 2002). This chapter 
extends prior studies in two major directions by (1) examining spillovers 
from other industries into agriculture and (2) introducing a new method to 
measure knowledge spillovers through text analysis.

Using the full text of US agricultural patents issued between 1976 and 
2016, Clancy and his coauthors construct three complementary measures of 
knowledge spillovers: (1) citations to nonagricultural patents, (2) citations 
to scientific publications in nonagricultural journals, and (3) a text-analysis 
algorithm that identifies “text-novel concepts” that are novel to agricultural 
patents but not to other technology fields. The authors apply these three 
measures to patents in subsectors of agriculture: animal health, biocides, 
fertilizer, machinery, plants, and research tools.

Analyses of all three measures indicate that more than half  of all patents 
in agriculture have benefitted from knowledge sources outside of agricul-
ture (figure I.1). In three of  the six subsectors—animal health, fertilizer, 
and machinery—more than half  of  all spillovers into agriculture appear 
to have originated from other industries. In animal health, the share of 
outside knowledge among cited patents is extremely large, on the order of 
90 percent. In only one subsector—plants—knowledge flows typically origi-
nate from agricultural R&D.

Nonagricultural sources of knowledge flows into agriculture are, how-
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4    Petra Moser

ever, rarely completely detached from agricultural research. For example, 
agricultural patents are more likely to cite scientific publications in biology 
and chemistry compared with publications in other journals. Agricultural 
patents are more likely to cite or share text-novel concepts with the nonag-
ricultural patents of firms that have at least one agricultural patent in their 
portfolio.

The new text-analysis measure of spillovers is a major contribution of this 
chapter, and it introduces a useful complement to citations as a measure of 
knowledge flows. Methodologically, Clancy and his coauthors define text-
novel concepts as words and phrases (strings) that are new in agricultural 
patents in the second half  of their data (for patents with application years 
between 1996 and 2018). First, they identify roughly 100 text-novel concepts 
in each of the six subsectors. Then they search all US patents in other sec-
tors (outside of their six subsectors) for prior mentions of these concepts. 
For example, the string pyrimethamine does not appear in any animal health 
patents before 1996 but is a common term in animal health patents after-
ward, making it a text-novel concept. When earlier patents on human health 
mention pyrimethamine, their measure records an incidence of knowledge 
spillover from human health to animal health.

Using these new text-based measures, the authors make two important 
points. First, they show that knowledge spillovers from nonagricultural 
sources are essential to agricultural innovation. Second, they find that 
 citation-based measures of knowledge spillovers, which have been used as 
the standard measure of knowledge spillovers, overstate the share of knowl-
edge spillovers within agriculture relative to text-based measures (figure I.1). 
Within the agricultural sector, the authors identify several areas in which 
findings from citation-based measures may be misleading. In biocides, for 
example, most patents cite nonagricultural patents and journals, which sug-
gests that most spillovers originate from other disciplines. Using the measure 
of text-novel concepts, however, the authors show that these concepts are 
never mentioned in earlier patents outside of biocides, which indicates that 
they may have originated in biocides.

Their discussant, Alberto Galasso, emphasizes that these findings have 
important implications for our understanding of  how shocks propagate 
through the economy through industry linkages (Barrot and Sauvagnat 
2016). He also suggests a potential refinement for estimates of  knowl-
edge spillovers by controlling for the size of technology fields. A relatively 
small field like animal health may appear to draw more knowledge from 
a large field, like chemistry, simply because chemistry is a very large field; 
controlling for field size will address this issue. Galasso further highlights the 
importance of distinguishing involuntary spillovers from intentional knowl-
edge transfer through licensing contracts between nonagricultural and agri-
cultural firms. This concept is picked up and extended in later chapters on 
knowledge flows between universities and industry.
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I.2  Selection as a Challenge for Measuring Returns to 
Biological Innovation

A chapter by Jared Hutchins, Brent Hueth, and Guilherme Rosa on 
“Quantifying Heterogeneous Returns to Genetic Selection: Evidence from 
Wisconsin Dairies” uses individual-level microdata on milk production in 
a structural model to estimate the impact of genetic selection. The dairy 
industry has experienced a 3 to 4 percent increase in milk yields per year; 
half  of this increase has been attributed to genetic improvement in the qual-
ity of bulls. Yet the match between the bull and the dame (the mother of a 
new cow) may be just as important as the quality of the bull. Such selection 
is a common problem in estimating returns to agricultural innovation. For 
hybrid corn, for example, a substantive share of the increase in yields after 
the adoption of hybrid corn is due to the fit between the hybrid seed and its 
most productive environment, as Griliches (1957) has shown for the early 
20th-century United States and Suri (2011) for modern-day Kenya.

Observing and identifying selection in the dairy industry, however, is dif-
ficult because success takes several years to observe. For corn, the success of 
a new match can be observed within the season. Cows, however, take three 
years to mature before they produce milk. This delay between the matching 
of a dame and a bull and the breeder’s ability to observe the milk production 

Fig. I.1 Knowledge spillovers into agriculture
Note: Knowledge spillovers into agricultural patents from other fields, measured through the 
traditional measure of Citations to Patents and the author’s new text-based measure of Impor-
tant New Concepts in Text. This latter variable captures concepts that do not appear in a given 
subsector before 1996 but become important afterward. The figure is based on data from 
chapter 1 in this book.
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of their offspring is simply too long to allow for experimental learning. As 
a result, genetic improvements in dairy occur gradually through an endog-
enous process of selection that is mediated by demand and supply.

Hutchins, Hueth, and Rosa estimate the contribution of this selection pro-
cess using uniquely detailed data on the “genetic merit” of individual bulls 
from the Dairy Herd Improvement (DHI) program. Going back to 1908, this 
program of the US Department of Agriculture (USDA) covers roughly half  
of all dairy herds in the United States. Widely adopted since the early 1960s, 
artificial insemination technologies have created unprecedented opportuni-
ties to observe the performance of bulls, who can now produce thousands 
of offspring. Every daughter of a bull contributes new data, improving the 
estimates of milk production associated with his genes. The authors exploit 
these data to estimate a structural model of genetic improvement and selec-
tion in the form of assortative matching between a high-value cow and a bull.

Estimates from a structural model of returns to high-yield genetics imply 
that 75 percent of these returns are driven by selection in the form of assor-
tative matching. Exploiting animal-level data, the authors show that pro-
ductivity gains are driven by matching at the level of animals and not just at 
the farm. In other words, they show that productivity in dairy has increased 
not only because better farmers choose better bulls but also because farmers 
match productive cows with productive bulls.

These findings indicate that farmers are critical to determining the returns 
to biological innovation today. This is similar to the role they played in 
US innovation historically, when farmers often discovered new varieties of 
food and feed crops. Olmstead and Rhode (2008), for example, examine the 
challenges that informational problems and cross-fertilization created for 
innovations by private farmers and breeders in cotton. According to Robert 
Evenson, until the end of the 19th century, all crucial mechanical inventions 
in agriculture were the work of farmers and local blacksmiths rather than 
of large corporations (cited in Wright 2012, 1718).

I.3  Innovation as a Response to Environmental Shocks

Expanding on the theme of farmers’ role in selecting the most produc-
tive technologies, a chapter by Keith Meyers and Paul W. Rhode examines 
farmers’ decisions to adopt heat-resistant corn hybrids after a series of cata-
strophic droughts and harvest failures in the 1930s. In “Yield Performance 
of Corn under Heat Stress: A Comparison of Hybrid and Open-Pollinated 
Seeds during a Period of Technological Transformation, 1933–55,” Meyers 
and Rhode use newly recovered data from the archives of Zvi Griliches to 
reexamine the diffusion of hybrid corn seeds immediately following the Dust 
Bowl (1930–36).

Hybridization, which creates a new variety by crossing two corn (so-called 
filial F1) varieties, provided a new method of developing higher-yielding 
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and more resilient seeds. Compared with the traditional open-pollinated 
seeds (which are simply allowed to propagate in the fields), hybrids yield 
more corn and take less time to mature. They also have stronger roots and 
thicker stalks, which make them less susceptible to breaking in wind or 
rain; they are more resistant to disease; and they are more likely to survive a 
drought. Yet hybrid seeds also cost more than open-pollinated seeds (Olm-
stead and Rhode 2008), and farmers cannot save hybrid seeds from their 
harvest to plant in the following year because the offspring of saved seeds 
return to the characteristics of  the parental varieties (instead of exhibit-
ing the desirable traits of the purchased hybrid seed). As a result, farmers 
who switch to hybrid seeds must buy new seeds from the breeder every year 
instead of building their own supply. These trade-offs led to an uneven adop-
tion of hybrid corn, which Meyers and Rhode reexamine in their chapter.

Griliches (1957) showed that expected improvements in hybrid yields 
drove the adoption of hybrid corn in the Corn Belt and the Great Plains. 
Yet, Meyers and Rhode note, Griliches may have overlooked a significant 
link between the adoption of hybrids and a period of devastating droughts 
and crop failures during the Dust Bowl years of 1934 and 1936. Narrative 
historical evidence suggests that corn farmers learned about the benefits of 
planting drought-resistant hybrids by observing neighbors’ crops failing or 
surviving during these droughts. The late Richard Sutch (2011) argued that 
drought resistance became more salient to farmers as a result of  climate 
shocks, and he highlighted the USDA’s role in promoting hybrid seeds after 
the Dust Bowl.

In fact, hybrid corn gained its most substantial foothold in US agricul-
ture in 1937, just one year after the catastrophic harvest failures of 1936 
(figure I.2), and was planted on more than 40 percent of corn acreage in the 
most productive counties of Iowa and Illinois.

To investigate whether hybrids did in fact mediate the effects of weather 
shocks—in the form of extreme heat and drought—Meyers and Rhode 
have returned to Griliches’s archives to construct fine-grained geographic 
data on hybrid corn adoption and yields, matched with historical data on 
droughts. While existing analyses rely on state-level data, this substantial 
effort of data collection allows Meyers and Rhode to examine adoption pat-
terns at the level of crop reporting districts (CRDs), roughly the size of 10 
neighboring counties. This analysis indicates corn breeding allowed the corn 
frontier to move farther north, into Canada. Focusing on heat tolerance as 
a measure for tolerance to droughts, Meyers and Rhode show that hybrid 
corn grown in Iowa from 1928 to 1942 did exhibit heat tolerance relative to 
open-pollinated varieties, consistent with the findings of Sutch (2011). These 
results, however, do not replicate in other states, and reduced temperature 
sensitivity does not appear when comparing hybrid and open-pollinated 
yields grown in other states. This latter finding supports Griliches’s decision 
to ignore drought tolerance in his analysis of hybrid adoption.
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Their discussant, Michael Roberts, is even more skeptical than the authors 
of the view that the adoption of hybrid corn was a response to the Dust 
Bowl and issues a stark warning about the limits of  technical change in 
agriculture as a response to climate change. Schlenker and Roberts (2009), 
for example, have shown that the number of extreme heat days above 29°C 
is the best predictor of corn yields. Modern data indicate that high-yielding 
genetically modified varieties that are prevalent today are even more sensi-
tive to extreme heat than the traditional varieties (Lobell, Schlenker, and 
Costa-Roberts 2011).2

In the 20th century, US agriculture was able to capitalize on vast produc-
tivity gains by developing plants with immense yield potential (the maximum 
output given available sunlight and light) and by creating varieties to match 
the available sunlight and water across the United States while also pro-
cessing massive amounts of nitrogen from fertilizers. Today, nitrogen is no 
longer a limiting factor, and the adoption of genetically modified crops (such 
as Roundup Ready corn) has made it easier to control weeds (Roundup, or 
glyphosate) and pests (through BT strains). Yet the large plants of today 

2. Genetically engineered drought tolerance was introduced in corn hybrids in 2012 and 
became broadly available the following year. By 2016, 22 percent of total US planted corn 
acreage was drought tolerant. As the research of Richard Sutch as well as Meyers and Rhode 
would suggest, adoption has been concentrated in drought-prone regions (despite the hybrids’ 
limited ability to protect against the most extreme droughts; McFadden et al. 2019).

Fig. I.2 US corn yields, 1888–2014
Note: From Michael Robert’s comment on the chapter by Meyers and Rhode in this book (see 
chapter 3), using data on corn yields from the USDA’s National Agricultural Statistics Service 
(https:// www .nass .usda .gov).
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with their deep roots require more water, leaving modern varieties vulnerable 
to droughts. The unusually hot summer of 2012 approached the tempera-
tures of the Dust Bowl. Current climate models predict many more summers 
like 2012, with even hotter temperatures. Roberts warns that innovation 
in corn and other crops may be unable to deal with extreme temperatures. 
Plants have reached the biological limits of  photosynthesis, requiring an 
entirely new approach for a second Green Revolution.

Recent advances in the emerging field of synthetic biology may offer a 
much-needed novel approach by targeting improvements in photosynthetic 
efficiency. For example, a survey article by Batista-Silva et al. (2020) dis-
cusses the progress and challenges of engineering improved photosynthesis 
through synthetic biology as a potential path toward improving the utiliza-
tion of solar energy and carbon sources to produce food, fiber, and fuel.

I.4  Universities as a Source of Agricultural Innovation and 
Productivity Gains

Publicly funded research has been a major source of  innovation and 
advances in agricultural productivity throughout American history (e.g., 
Shih and Wright 2011; Olmstead and Rhode 2008). Since their foundation 
under the Morrill Land-Grant Acts of  1862 (7 U.S.C. §301 et seq.), the 
original 52 land grant universities have been the key institutions in creat-
ing and disseminating agricultural innovations (Wright 2012), establishing 
vital links among universities, farmers, and industry. With the 1862 act, the 
US government allotted 30,000 acres of  federal land per state to finance 
the foundation of practically oriented research and training universities.3 
The 1887 Hatch Act (7 U.S.C. § 361a et seq.) added research capabilities 
through state agricultural experiment stations, supported by grants of addi-
tional federal lands. In 1890, the second Morrill Act (7 U.S.C. §322 et seq.) 
increased the funding of these new colleges to $25,000 per year and speci-
fied that African Americans could receive education in existing land grant 
colleges and in new colleges designed for that purpose. Finally, in 1914, the 
Smith-Lever Act established a cooperative extension service to inform farm-
ers about agricultural innovations and establish home instruction to help 
farmers learn about new agricultural techniques.

In its early decades of operation, the US land grant system supported 
agricultural productivity by encouraging the diffusion of European inno-
vations. Evenson (1978), for example, documents that advances in agricul-
tural productivity between 1870 and 1925 were strongly correlated with 
total real public spending on agricultural research during the preceding 18 

3. Southern states had originally opposed the Morrill Act, and it only passed after the South 
seceded from the United States. As a result, none of the original 52 land grant colleges oper-
ated in the South.
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years, but largely based on the adoption of European inventions. It took 
several decades, until the 1930s, for the system of land grant colleges and 
experiment stations to become an efficient source of domestic agricultural 
innovation (Huffman and Evenson 2006). Kantor and Whalley (2019) find 
that the establishment of agricultural experiment stations at existing land 
grant institutions through the Hatch Act of 1887 took between 20 and 30 
years to increase land productivity in neighboring counties. Olmstead and 
Rhode (2002, 931–32) show that, with the exception of early advances in 
corn, yields for field crops only began to increase after 1930. US wheat yields 
increased only 1.75 bushel per acre between 1866 and 1939 but increased by 
about 2.25 percent per year afterward, doubling wheat yields by the 1970s.

Rosenberg and Nelson (1994) reason that the land grant college system 
was uniquely suited to resolve a fundamental tension created by industry 
funding for academic research. University research is typically “basic” 
research, aimed at understanding fundamentals, with payoffs that are often 
uncertain, distant, and exceedingly difficult to appropriate. By contrast, 
industry research targets specific problems and challenges with payoffs that 
are substantially more immediate and are expected to directly benefit the 
firm that funds the R&D. Due to this tension, many academics view industry 
funding as a direct threat to their research and academic integrity, as targeted 
problem-solving takes time from basic research and sometimes even threat-
ens open communications that are critical to academic exchange. According 
to Rosenberg and Nelso, the institutional features of the land grant college, 
with a firm commitment to knowledge diffusion and the implementation of 
feedback from local users, are uniquely suited to easing the tension between 
basic and applied research, especially after the Smith-Lever Act of  1914 
provided funding for agricultural extension.

In “Local Effects of  Land Grant Colleges on Agricultural Innovation 
and Output,” Michael J. Andrews estimates the effect of establishing a land 
grant college on invention and agricultural performance on surrounding 
locations. To make some progress toward identifying the causal effect of 
establishing a land grant college on invention, Andrews compares locations 
that received a land grant college to “runner-up” counties that competed for 
establishing a land grant college but ultimately lost. Comparing changes in 
patenting in college and runner-up counties, Andrews shows that patenting 
increased in winning countries (compared to runner-up counties) after the 
establishment of a land grant college.

Patents, however, are an extremely noisy and potentially biased mea-
sure of agricultural innovations. Agricultural innovations of a chemical or 
mechanical nature were patentable throughout this period, while seeds and 
other types of biological innovations had no intellectual property protec-
tion. Moreover, even among innovations that were patentable, there were 
large differences in the share of innovations that inventors chose to patent 
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across sectors and over time. An analysis of innovations exhibited at world 
technology fairs between 1851 and 1915 shows that roughly half  of all agri-
cultural machinery was covered by patents throughout this period (Moser 
2012). By contrast, chemical innovations were almost never patented at the 
beginning of this period and experienced a dramatic shift toward patenting 
after improvements in analytic methods reduced the effectiveness of secrecy 
as an alternative to patents. Biological innovations first became subject to 
intellectual property rights through the Plant Patent Act of  1930. Plant 
patents, however, are substantially narrower than utility patents, and they 
are limited to asexually reproducing plants (plants, such as apples and roses, 
that reproduce by roots, shoots, or buds). Plant patent protection excludes 
plants that reproduce sexually, through seeds, as well as potatoes and other 
tubers (Moser and Rhode 2012).4

To address these issues, Andrews uses historical data on the introduction 
of new wheat varieties from Clark, Martin, and Ball (1922) as an alterna-
tive, nonpatent measure of innovation. This measure shows that land grant 
counties were about five times more likely to introduce a new wheat variety 
compared with runner-up counties after the establishment of a land grant 
college.

These findings are consistent with earlier research by Olmstead and Rhode 
(2002) that documents how the land grant system helped create and diffuse 
critical innovations in wheat through the type of regional adaptive research 
for which the system had been designed. As the center of gravity of wheat 
production extended westward to less-favorable environments, breeders in 
the land grant system identified and selected varieties that could tolerate 
drought, cold, insect pests, rusts, and other fungal diseases in these newly 
established growing regions.

Investigating funding as a mechanism for encouraging innovation, 
Andrews shows that the effects of land grant colleges on local innovations 
were largest following the passage of legislation, such as the Hatch Act of 
1887, which increased funding for agricultural research.

Turning to agricultural productivity, however, Andrews finds that com-
pared with runner-up counties, land grant counties experienced only small 
(and often negligible) improvements in agricultural productivity, measured 
by improvements in yields, crop output, or the production of  livestock. 
Andrews explains that the productivity benefits of land grant research may 

4. Using new varieties of roses as a nonpatent measure of innovation, Moser and Rhode 
(2012) investigate whether the creation of plant patents in 1930 led to a significant increase in 
agricultural innovation. (Notably, most plant patents until the 1960s covered roses. Data on 
registrations of newly created roses indicate no increase in innovation after 1930: Less than 
20 percent of new roses were patented, European breeders continued to create most new roses, 
and there was no increase in the number of new varieties per year after 1931. Instead, influential 
new varieties appear to have been a by-product of publicly funded research.)
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have diffused beyond the borders of the college county through a combina-
tion of outreach and university engagement (as described in chapter 5 of 
this book).

Placing Andrews’s results in the broader context of productivity spillovers 
suggests that the geographic diffusion of  spillovers—beyond the county 
level—is a likely explanation for the weakness of county-level productivity 
effects. In a state-level analysis of productivity spillovers, Alston et al. (2010) 
show that over half  of the measured within-state productivity gains result 
from public research investments made elsewhere. Alston et al. estimate 
that the average marginal internal rate of return of public research accruing 
within the source state is 18.9 percent, significantly less than the estimated 
overall IRR of 22.7 for the entire nation. Thus the “failure” of the land grant 
system may lie in Alston et al.’s focus on state-level agricultural priorities 
and a lack of specificity of their research to local (county-level) conditions 
rather than in low productivity gains overall.

In his discussion, Bhaven N. Sampat highlights the usefulness of  this 
chapter for the broader literature on returns from publicly funded research, 
which has held up the land grant system as a model of technology transfer 
that was more successful than the current, post-Bayh-Dole system of patent 
licensing (Mowery et al. 2004). Sampat also reminds us of Brian Wright’s 
(2012) positive assessment of the land grant system. Citing the findings of 
Olmstead and Rhode (2002), Wright (2012, 1719) reports that by 1919, more 
than three-quarters of US wheat acreage used new varieties that had not 
been developed before the Morrill Act.

Sampat also points out that a strict focus on the diffusion of specific vari-
eties may miss the contributions of universities if  academic research contrib-
utes research techniques and tools rather than new products. In the words 
of Griliches (1957, 502), “Hybrid corn was the invention of a method of 
inventing.” Citing primarily Stackman, Bradfield, and Mangelsdorf (1967), 
Wright (2012, 1720–25) documents how research methods developed within 
the land grant system facilitated the development of new wheat varieties in 
Mexico after 1943 and supported research to improve rice in India and the 
Philippines. More recently, an analysis of drug development between 1985 
and 2005 has shown that public sector labs enable two-thirds of marketed 
drugs, even though they only directly create one-tenth of these new drugs 
(Sampat and Lichtenberg 2011).

I.5  Industry Engagement and Scientific Productivity

In their research on “Academic Engagement, Commercialization, and 
Scholarship: Empirical Evidence from Agricultural and Life Scientists at US 
Land Grant Universities,” Bradford Barham, Jeremy Foltz, and Ana Paula 
Melo examine links between industry funding and the activities, attitudes, 
and research choices of agricultural and life science faculty at land grant 
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colleges. Their analysis focuses on two major questions: (1) What types of 
interactions are most likely to increase industry funding for faculty research? 
and (2) How does funding from industry influence the research of scientists? 
To answer the first question, the authors analyze two waves, conducted in 
2005 and 2015, of a survey of faculty at all 52 original land grant colleges. 
To analyze interactions between faculty and industry, the authors distin-
guish academic engagement (in the form of sponsored research, collabora-
tions, and presentations) from commercialization (which includes patenting, 
licensing, and start-ups).5

Survey responses from faculty at land grant colleges reveal that academic 
engagement has generated between 15 and 20 times more research fund-
ing than academic commercialization. Engagement dates back to the land 
grant universities’ emphasis—since their inception in the 19th century—on 
practical agricultural and engineering sciences, formal extension appoint-
ments for faculty, and ongoing outreach with farms and firms to improve 
their performance. Dispelling the fear that engagement with industry crowds 
out research, the authors also find that faculty who are more engaged with 
industry publish more.

Notably, their surveys uncover important differences in the faculty-
industry relations across universities (figure I.3), which suggests that the 
institutional characteristics of universities play an important role in shaping 
links between academia and industry. As universities have been affected by 
dwindling state and federal support (e.g., Ehrenberg 2012), understanding 
sources of funding becomes critical. In principle, the passage of the Bayh-
Dole Act in 1981 has created a new framework to commercialize innova-
tions and discoveries associated with federally sponsored research (Sampat 
2006; Thursby and Thursby 2011). Yet the creation of stronger incentives 
at publicly funded institutions through Bayh-Dole appears to have failed 
to encourage innovation. The findings of Barham, Foltz, and Melo suggest 
that, at least for the agricultural sector, the key institutions for university-
industry relations had already been established in the 19th century through 
the US system of land grant colleges.

Their discussant, Nicola Bianchi, emphasizes that this chapter is one of 
the most thorough analyses of university-industry relations to date but also 
proposes promising directions for future research. For example, Bianchi 
points out that there is room to investigate the links between declining gov-
ernment grants and faculty involvement in university-industry relations. 
Follow-on research could also take advantage of publicly available sources 
on research output, including patents and publications, to complement the 
chapter’s rich existing data from faculty surveys.

5. This distinction is adopted to match recent papers on university-industry relations in 
Europe, such as Perkmann et al. (2013); Tartari, Perkmann, and Salter (2014); Tartari and 
Salter (2015); and Sengupta and Ray (2017). 
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I.6  Financing Future Innovations through Venture Capital

A final chapter on “Venture Capital and the Transformation of Private 
R&D for Agriculture” presents a forward-looking analysis of recent trends 
in the financing of innovations. In this chapter, Gregory D. Graff, Felipe de 
Figueiredo Silva, and David Zilberman document the dramatic expansion 
of venture capital (VC) investments in agriculture start-ups, especially in 
the wake of the financial crisis of 2008. Between the early 2000s and 2018, 
VC investments in start-ups focusing on agricultural R&D increased from 
just tens of millions to more than seven billion. Notably, VC investment in 
agriculture start-ups increased not only in absolute terms but also relative to 

Fig. I.3 University-level probabilities of faculty engagement with industry
Note: From the chapter by Barham, Foltz, and Melo in this book (see chapter 5). OLS esti-
mates and 95 percent confidence for 52 university fixed effects (with the University of 
 Wisconsin-Madison as the excluded category). The dependent variable is an indicator that 
equals 1 if  a faculty member is engaged in any type of university-industry relations (UIR). 
Estimates control for gender, being a professor, and having received a PhD from a land grant 
university. Standard errors are clustered at the university level.
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the overall supply of capital invested by the public sector and by public firms. 
To perform their analysis, the authors combine data from three proprietary 
sources (Crunchbase, PitchBook, and VentureSource) to construct a new 
data set consisting of 4,500 start-ups in agriculture, with more than 10,000 
financial transactions, including information on investments and exits.

Although, historically, private investment in agricultural R&D in emerg-
ing economies has been low (Pardey and Beintema 2001; Pardey et al. 2006), 
the authors report robust start-up activities in the larger emerging economies 
like India, China, and Brazil. In regression analyses, they examine poten-
tial causes for this shift, using data on 4,500 start-ups across 124 countries. 
Although the largest share of the start-ups in their sample operates in the 
United States (33 percent) and the European Union (23 percent), a signifi-
cant share of the remaining 44 percent of start-ups is in emerging economies. 
The authors’ regressions indicate that investments are strongly correlated 
with past liquidity events, suggesting that the expansion of VC investment 
in agriculture start-ups reflects a response to new investment opportunities 
in agriculture.

For a subset of  these start-ups, their data also include information on 
investment and exit deals between 1981 and 2018. These data indicate that 
successful exits, in the forms of initial public offerings (IPOs) and mergers 
and acquisitions (M&A), led to higher VC investments. Comparing different 
types of exits, the authors find that prior IPOs are associated with a stronger 
increase in investments than prior M&As. These findings are important for 
researchers and policy makers who aim to support agricultural innovation 
and R&D. Overall, the authors conclude that venture capitalists’ willingness 
to invest may have been affected by an increase in the ratio of agricultural 
prices to nonagricultural commodity prices, highly visible exits of  major 
players in the agriculture technology space, changes in agricultural labor 
markets, and advances in enabling (general purpose) technologies, such as 
cheaper genome sequencing, genome editing, or increasing data capacity of 
sensors and networks.

A discussion by Michael Ewens suggests promising directions for future 
research. First, Ewens suggests extending the existing results with an in-depth 
analysis of a single source. Such an analysis would address empirical chal-
lenges that result from variation in the coverage of agricultural VCs across 
the merged sources. Some of these analyses may require hand- collecting 
additional data, especially to expand the coverage of agriculture start-ups 
in emerging economies. Second, Ewens recommends additional analyses 
within agriculture to identify areas that grew differentially after 2008, using 
data on agricultural prices. For example, a potential extension would apply 
an empirical strategy implemented by Ewens, Nanda, and Rhodes-Kropf 
(2018), which examines the effects of the cloud on VC in information tech-
nology. An extension to agriculture could exploit the effects of  the same 
technology shock across different sectors within agriculture. Third, Ewens 
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recommends examining the identities of investors, possibly by tracking the 
work histories of VC partners that choose to finance start-ups in agriculture. 
This question is particularly interesting and important because agriculture 
is a nontraditional investment for both VC and private equity.

I.7  Summing Up

Importantly, the economics of  agricultural innovation is even broader 
than the research included in this volume. While this book is focused pri-
marily on agricultural innovation in the United States, a rich literature in 
development economics examines forces that drive the adoption of agri-
cultural innovations (e.g., Foster and Rosenzweig 1995; Conley and Udry 
2010; Suri 2011)

Other recent research has examined the effects of  restrictions on the 
supply of farm labor on agricultural innovation, using historical restrictions 
on immigration as a source of exogenous variation (Clemens, Lewis, and 
Postel 2018; San 2020). These papers build on a long tradition of economic 
research on endogenous technical change reaching back to Hicks (1932). 
In fact, much of  what we know about endogenous technical change has 
been learned in the context of labor-saving innovations in agriculture (e.g., 
Hayami and Ruttan 1970). These analyses range from the adoption of trac-
tors in the first half  of the 20th century to co-robots (machines that work 
alongside humans) that weed crops today and grafting robots that replace 
humans in the labor-intensive task of grafting herbaceous seedlings of fruits 
and vegetable crops (Gallardo and Sauer 2018).

Despite these omissions, the chapters in this book outline diverse research 
that improves our understanding of agricultural innovation. This agenda 
spans several fields within economics, reaching from agricultural economics 
and economic history to finance and industrial organization. Authors of 
chapters, and their discussants, suggest promising opportunities for future 
research on the economics of agricultural innovation.

References

Alston, Julian M. 2002. “Spillovers.” Australian Journal of Agricultural and Resource 
Economics 46 (3): 315–46.

Alston, Julian M., Matthew A. Andersen, Jennifer S. James, and Philip G. Pardey. 
2010. Persistence Pays: U.S. Agricultural Productivity Growth and the Benefits from 
Public R&D Spending. New York: Springer.

Andersen, Matthew, Julian Alston, Philip Pardey, and Aaron Smith. 2018. “A Cen-
tury of  U.S. Farm Productivity Growth: A Surge Then a Slowdown.” Ameri-

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction    17

can Journal of Agricultural Economics 100:1072–90. https:// doi .org /10 .1093 /ajae 
/aay023.

Barrot, J., and J. Sauvagnat. 2016. “Input Specificity and the Propagation of Idio-
syncratic Shocks in Production Networks.” Quarterly Journal of Economics 
131:1543–92.

Batista-Silva, Willian, Paula da Fonseca-Pereira, Auxiliadora Oliveira Martins, 
Agustín Zsögön, Adriano Nunes-Nesi, and Wagner L. Araújo. 2020. “Engineer-
ing Improved Photosynthesis in the Era of Synthetic Biology.” Plant Communica-
tions 1, no. 2 (March 9): 1–17. https:// www .sciencedirect .com /science /article /pii 
/S2590346220300134 #abs0010.

Bloom, Nicholas A., Charles I. Jones, John Van Reenen, and Michael Webb. 2020. 
“Are Ideas Getting Harder to Find?” American Economic Review 110, no. 4 (April): 
1104–44.

Clancy, Matthew, Keith Fuglie, and Paul Heisey. 2016. “U.S. Agricultural R&D in an 
Era of Falling Public Funding.” Amber Waves, November 10, 2016. US Depart-
ment of Agriculture, Economic Research Service.

Clark, J. A., J. H. Martin, and C. R. Ball. 1922. Classification of American Wheat 
Varieties. US Department of Agrigulture Bulletin no. 1074, November 8, 1922. 
Revised August 1923. Washington, DC: Government Printing Office.

Clemens, Michael A., Ethan G. Lewis, and Hannah Postel. 2018. “Immigration 
Restrictions as Active Labor Market Policy: Evidence from the Mexican Bracero 
Exclusion.” American Economic Review 108 (6): 1468–87.

Conley, Timothy G., and Chris Udry. 2010. “Learning about a New Technology: Pine-
apple in Ghana.” American Economic Review 100, no. 1 (March): 35–69. https:// 
www .aeaweb .org /articles ?id = 10 .1257 /aer .100 .1 .35.

Ehrenberg, R. 2012. “American Higher Education in Transition.” Journal of Eco-
nomic Perspectives 26:193–216.

Evenson, Robert E. 1978. “A Century of Productivity Change in U.S. Agriculture: 
An Analysis of the Role of Invention, Research and Extension.” Center Discus-
sion Paper No. 296. New Haven, CT: Yale University, Economic Growth Center.

———. 1989. “Spillover Benefits of  Agricultural Research: Evidence from U.S. 
Experience.” American Journal of Agricultural Economics 71 (2): 447–52.

Ewens, Michael, Ramana Nanda, and Matthew Rhodes-Kropf. 2018. “Cost of 
Experimentation and the Evolution of Venture Capital.” NBER Working Paper 
No. 24523. Cambridge, MA: National Bureau of Economic Research.

Foster, Andrew D., and Mark R. Rosenzweig. 1995. “Learning by Doing and Learn-
ing from Others: Human Capital and Technical Change in Agriculture.” Journal 
of Political Economy 103 (6): 1176–209.

Fuglie, Keith O., and Paul W. Heisey. 2007. Economic Returns to Public Agricultural 
Research. Economic Brief  No. 6388, US Department of Agriculture, Economic 
Research Service.

Gallardo, R. Karina, and Johannes Sauer. 2018. “Adoption of Labor-Saving Tech-
nologies in Agriculture.” Annual Reviews of Resource Economics 10:185–206.

Griliches, Zvi. 1957. “Hybrid Corn: An Exploration in the Economics of Techno-
logical Change.” Econometrica 25 (4): 501–22. https:// doi .org /10 .2307 /1905380.

Guttman, J. 1978. “Interest Groups and the Demand for Agricultural Research.” 
Journal of Political Economy 86:467–84.

Hayami, Y., and V. W. Ruttan. 1970. “Factor Prices and Technical Change in Agricul-
tural Development: The United States and Japan, 1880–1960.” Journal of Political 
Economy 18:1115–41.

Hicks, J. 1932. The Theory of Wages. London: Macmillan.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



18    Petra Moser

Huffman, W. E., and R. E. Evenson. 2006. “Do Formula or Competitive Grant 
Funds Have Greater Impacts on State Agricultural Productivity?” American Jour-
nal of Agricultural Economics 88:783–98.

Hurley, Terrance M., Xudong Rao, and Philip Pardey. 2014. “Re-examining the 
Reported Rates of Return to Food and Agricultural Research and Development 
American.” Journal of Agricultural Economics 96 (5): 1492–1504.

Kantor, Shawn, and Alexander Whalley. 2019. “Research Proximity and Productiv-
ity: Long Term Evidence from Agriculture.” Journal of Political Economy 127 
(2): 819–54.

Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and 
G. L. Hammer. 2014. “Greater Sensitivity to Drought Accompanies Maize Yield 
Increase in the U.S. Midwest.” Science 344 (6183): 515–19.

Lobell, David B., Wolfram Schlenker, and Justin Costa-Roberts. 2011. “Climate 
Trends and Global Crop Production since 1980.” Science, 333 (6042): 616–20. 
https:// doi .org /10 .1126 /science .1204531.

McFadden, Jonathan, David Smith, Seth Wechsler, and Steven Wallander. 2019. 
“Development, Adoption, and Management of Drought-Tolerant Corn in the 
United States.” Economic Research Service, Economic Information Bulletin no. 
204, January 2019.

Moser, Petra. 2012. “Innovation without Patents—Evidence from World’s Fairs.” 
Journal of Law and Economics 55 (1): 43–74.

Moser, Petra, and Paul W. Rhode. 2012. “Did Plant Patents Create the American 
Rose?” In The Rate and Direction of Technological Change, edited by Joshua 
Lerner and Scott Stern, 413–41. Chicago: University of Chicago Press.

Mowery, D. C., R. R. Nelson, B. N. Sampat, and A. A. Ziedonis. 2004. Ivory Tower 
and Industrial Innovation: University-Industry Technology Transfer before and after 
the Bayh-Dole Act. Palo Alto, CA: Stanford University Press.

Olmstead, Alan L., and Paul W. Rhode. 2002. “The Red Queen and the Hard Reds: 
Productivity Growth in American Wheat, 1800–1940.” Journal of Economic His-
tory 62 (2): 929–66.

———. 2008. Creating Abundance: Biological Innovation and American Agricultural 
Development. Cambridge: Cambridge University Press.

Pardey, Philip G., and Nienke M. Beintema. 2001. Slow Magic: Agricultural R&D a 
Century after Mendel. Agricultural Science and Technology Indicators Initiative 
(ASTI). Washington, DC: International Food Policy Research Institute (IFPRI).

Pardey, Philip G., Nienke M. Beintema, Steven Dehmer, and Steven Wood. 2006. 
Agricultural Research: A Growing Global Divide? Agricultural Science and Tech-
nology Indicators Initiative (ASTI). Washington, DC: International Food Policy 
Research Institute (IFPRI).

Perkmann, Markus, Valentina Tartari, Maureen McKelvey, Erkko Autio, Anders 
Broström, Pablo D’Este, Riccardo Fini et al. 2013. “Academic Engagement and 
Commercialisation: A Review of  the Literature on University–Industry Rela-
tions.” Research Policy 42 (2): 423–42.

Roberts, Michael J., and Wolfram Schlenker. 2011. “The Evolution of Heat Toler-
ance of Corn: Implications for Climate Change.” In The Economics of Climate 
Change: Adaptations Past and Present, edited by Gary D. Libecap and Richard 
H. Steckel, 225–51. Chicago: University of Chicago Press.

Rosenberg, Nathan, and Richard Nelson. 1994. “American Universities and Tech-
nical Advance in Industry.” Research Policy 23 (3): 323–48. https:// EconPapers 
.repec .org /RePEc: eee: respol: v: 23: y: 1994: i: 3: p: 323–48.

Sampat, B. 2006. “Patenting and US Academic Research in the 20th Century: The 
World before and after Bayh-Dole.” Research Policy 35:772–89.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction    19

Sampat, Bhaven N., Frank R. Lichtenberg. 2011. “What Are the Respective Roles 
of the Public and Private Sectors in Pharmaceutical Innovation?” Health Affairs 
30 (2): 332–39. https:// doi .org /10 .1377 /hlthaff .2009 .0917.

San, Shmuel. 2020. “Labor Supply and Directed Technical Change: Evidence from 
the Abrogation of  the Bracero Program in 1964.” Working paper, New York 
University, New York, NY, November 9, 2020. https:// mulysan .github .io /San 
_bracero .pdf.

Schlenker, Wolfram, and Michael J. Roberts. 2009. “Nonlinear Temperature Effects 
Indicate Severe Damages to U.S. Crop Yields under Climate Change.” Proceed-
ings of the National Academy of Sciences 106 (37): 15594–98. https:// doi .org /10 
.1073 /pnas .0906865106.

Sengupta, Abhijit, and Amit S. Ray. 2017. “University Research and Knowledge 
Transfer: A Dynamic View of Ambidexterity in British Universities.” Research 
Policy 46 (5): 881–97.

Shih, Tiffany M., and Brian D. Wright. 2011. “Agricultural Innovation.” In Accel-
erating Energy Innovation: Insights from Multiple Sectors, edited by Rebecca M. 
Henderson and Richard G. Newell, 49–85. Chicago: University of Chicago Press.

Stackman, E. C., Richard Bradfield, and Paul Mangelsdorf. 1967. Campaigns against 
Hunger. Cambridge, MA: Belknap Press of Harvard University Press.

Suri, Tavneet. 2011. “Selection and Comparative Advantage in Technology Adop-
tion.” Econometrica 79 (1): 159–209.

Sutch, Richard. 2011. “The Impact of the 1936 Corn Belt Drought on American 
Farmers’ Adoption of Hybrid Corn.” In The Economics of Climate Change: Adap-
tations Past and Present, edited by Gary D. Libecap and Richard H. Steckel, 
195–223. Chicago: University of Chicago Press.

Tartari, V., M. Perkmann, and A. Salter. 2014. “In Good Company: The Influ-
ence of Peers on Industry Engagement by Academic Scientists.” Research Policy 
43:1189–203.

Tartari, V., and A. Salter. 2015. “The Engagement Gap: Exploring Gender Dif-
ferences in University—Industry Collaboration Activities.” Research Policy 44: 
1176–91.

Thursby, J., and M. Thursby. 2011. “Has the Bayh-Dole Act Compromised Basic 
Research?” Research Policy 40:1077–83.

Wright, Brian D. 2012. “Grand Missions of  Agricultural Innovation.” Research 
Policy 41 (10): 1716–28.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



21

1.1  Introduction

Changes in the technology of farming have profoundly affected US pro-
duction agriculture over the past century (Gardner 2002). Myriad inno-
vations adopted by farmers contributed to this transformation, including 
mechanization; vastly improved genetics for plants and animals; novel 
inputs such as fertilizers, pesticides, and antibiotics; and the reorganization 
of  farming activities to exploit specialization and scale economies. The 
results are impressive: between 1950 and 2015, for example, the total factor 
productivity index for US agriculture increased by 167 percent compared to 
97 percent for the US nonfarm private sector.1

Digging deeper into the causes of these waves of agricultural technical 
change uncovers the critical role played by past research and development 

1. Agricultural total factor productivity data based on input, output, and productivity data 
published by the USDA’s Economic Research Service (ERS; USDA ERS 2020). US nonfarm 
private sector total factor productivity taken from table XG4–2 from US Bureau of Labor 
Statistics (2007).
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(R&D) activities. Griliches’s (1957) pioneering work on the yield improve-
ments due to hybrid maize found a large payoff to the cumulated past 
research investment in this technology: a benefit-cost ratio of 7, or an inter-
nal rate of return of about 40 percent. More broadly, for a set of studies 
published over the 1965–2005 period, the median estimate of the internal 
rate of return of agricultural R&D was 45 percent, or a benefit-cost ratio 
of about 10 (Fuglie and Heisey 2007).

R&D explicitly focused on agriculture, conducted by firms and public 
organizations, is obviously essential to agricultural innovation. Nonagricul-
tural R&D, however, may also play a role via so-called knowledge spillovers. 
The most immediate output of R&D is new knowledge, but it has long been 
recognized that the R&D performed by one entity (e.g., a public lab, or a 
firm) in a given industry may have substantial productivity impacts outside 
this entity or industry (Griliches 1992). At a positive level, spillovers create 
serious challenges to the task of inferring, from data, what R&D effort had 
which effect on outcomes of interest.

In this chapter, we focus squarely on assessing the extent to which knowl-
edge spillovers may impact agricultural innovation. With some caveats, 
discussed later, we find that our proxies for knowledge flows—citations to 
patents, citations to scientific papers, and novel text—suggest that more than 
50 percent of knowledge spillovers originate in nonagricultural knowledge 
domains.

Knowledge spillovers have received limited attention in previous agricul-
tural R&D studies. The typical econometric procedure has been to regress 
an estimate of agricultural productivity on relevant past R&D expenditures. 
To account for spillovers, some studies include broader measures of R&D 
expenditures. Attention has mostly concerned spillover between segments of 
agricultural R&D (Evenson 1989), or privileged spatial R&D spillovers—
that is, across states or countries (Latimer and Paarlberg 1965; Khanna, 
Huffman, and Sandler 1994). Alston (2002) concludes that such spillovers 
are sizeable: interstate or international R&D spillovers may account for 
more than half  of the measured agricultural productivity growth. Consid-
eration of vertical spillover effects in agriculture is rare. One exception is 
Wang, Xia, and Buccola (2009), who relate public research in three life sci-
ence fields (biology, agriculture, and medicine), and private research in two 
of these fields (agriculture and medicine), to research output (measured by 
patents) of private firms in agriculture and medicine.2

This chapter’s contribution is to provide new methods and data on the 
scope of knowledge spillovers in agriculture. In contrast to most studies in 
this area, we do not attempt to calculate the rate of return on R&D. Instead, 

2. Consistent with our results, Wang, Xia, and Buccola (2009) find evidence of substantial 
spillovers from upstream biological to downstream agricultural and medical science and from 
the public to the private sector in both downstream agriculture and downstream medicine.
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we measure the extent of knowledge spillovers by directly observing prox-
ies for knowledge flows and measuring the share of these that originate in 
nonagricultural knowledge domains. The goal is to provide new evidence 
on the extent to which agricultural technologies draw on knowledge orig-
inally developed outside of  agriculture. We do so by developing various 
knowledge-flow proxies embedded in US agricultural patents granted over 
the 1976–2018 period.

Our initial step is to identify a set of relevant agricultural patents among the 
universe of US patents granted over this period. Note that while our analysis 
is restricted to US patents, these patents proxy global agricultural research. 
Depending on the subsector, we estimate that 14 percent to 49 percent of 
US agricultural patents are based on foreign research. We identify patents 
belonging to six distinct subsectors of agriculture: animal health, biocides, 
fertilizer, machinery, plants, and agricultural research tools (hereafter short-
ened to “research tools”). We chose these six subsectors because we can 
identify their patents with relative precision and because, while not exhaus-
tive, they span the major biological, chemical, and mechanical technology 
fields that have contributed to productivity growth in agriculture. Given 
significant differences in the size, organization, and scientific-technological 
knowledge base of these subsectors, our results are consistently presented 
separately for the six subsectors of interest. We then track the knowledge 
roots of each patent, using three proxies embedded in the patent document.

The first proxy we consider is citations to prior patents, which provides a 
measure of how agricultural innovations build on other (patented) technol-
ogies. When the cited patent is not an agricultural patent, this provides direct 
evidence of a knowledge spillover from outside agriculture. Furthermore, 
one advantage of studying citations to patents is that we can also identify 
the assignee of the cited patent. A major part of our work is to determine 
the “agricultural focus” of assignees’ R&D based on the share of agricul-
tural patents in the assignee’s recent patent portfolio. This permits us to go 
beyond the binary classification of whether a cited patent is agricultural 
and instead characterize it based on the agricultural focus of its assignee. 
For example, we can measure whether a cited patent belongs to a firm that 
generally specializes in agricultural R&D or belongs to an assignee that has 
zero agricultural patents.

The second proxy we employ is citations to scientific journal articles, which 
provides a measure of how agricultural innovations build on prior research. 
Citations to the scientific literature are important as a way of capturing the 
impact of public sector research, because public sector research frequently 
does not result in a patent. We create a classification system for scientific 
journals, identifying agricultural science, other biology, other chemistry, and 
“other” journals. We interpret a citation to a nonagricultural journal as 
evidence of a knowledge spillover to agriculture from outside of its natural 
knowledge domain.
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Whereas citations to prior patents are generally acknowledged to contain 
both signal and noise, there is debate about the relative magnitude of each. 
For example, Chen (2017) finds the textual similarity of patents to their cita-
tions is much higher than to a control. An early survey by Jaffe, Trajtenberg, 
and Fogarty (2000), however, found that only 38 percent of  respondents 
were aware of the cited patent before or during the invention. Other papers 
have also found evidence that citations may not reflect genuine knowledge 
flows (Lampe 2012; Moser, Ohmstedt, and Rhode 2018).3 For this reason, 
we also develop a third method of measuring knowledge flows based on the 
text of patents.

The text analysis we develop identifies words and phrases that are new and 
important in agricultural patents applied for in the second half  of our data 
sample (1996–2018). We call these words and phrases “text-novel concepts” 
and identify more than 100 in each subsector. We then scan the text of the 
entire patent corpus for prior patents (outside the agricultural subsector) 
that also mention these text-novel concepts. For example, in animal health, 
the word pyrimethamine and the phrase equine protozoal myeloencephalitis 
do not appear in any animal health patents prior to 1996 but are relatively 
common thereafter. In this case, we interpret prior mentions of pyrimeth-
amine in human health patents prior to 1996 as evidence of a knowledge 
spillover from outside agriculture.

Our main finding is that knowledge spillovers from outside agriculture 
are important and influential for agricultural R&D, possibly as much as 
knowledge generated within agricultural science domains. In three of the 
subsectors studied—animal health, fertilizer, and machinery—every one of 
our proxies for knowledge flows originates outside of agriculture more than 
50 percent of the time. In two additional sectors—biocides and research 
tools—we have mixed evidence, but the majority of our proxies still origi-
nate outside of agriculture over 50 percent of the time. Only in the plants 
subsector do we typically find most knowledge flows point to agricultural 
technologies and research, though even this is not unanimous.

A second finding is that the nonagricultural domains that are important 
sources of knowledge spillover to agriculture are, in some sense, “close” to 
agriculture. It is typically more common for agricultural patents to cite or 
share text-novel concepts with the (nonagricultural) patents of firms that 
have at least one agricultural patent, even though the majority of patents 
belong to assignees with zero agricultural patents. Likewise, it is more com-
mon for citations to nonagricultural science journals to go to biology and 
chemistry journals than other journals, even though other journals account 
for the majority of journals.

Lastly, we demonstrate how text analysis can be a useful complement to 

3. In general, there seems to be less cause for concern about bias in citations to the scientific 
literature (Roach and Cohen 2013).
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citation-based measures of knowledge flows. In some cases, our text analysis 
suggests areas where citation-based results may be misleading. For example, 
in the biocides sector, the majority of patent citations flow to nonagricultural 
patents and journals. However, we find the majority of text-novel concepts 
for this sector (typically chemical names) have no prior mention outside of 
agriculture. It seems many of these chemicals appear for the first time in the 
patent corpus as part of a biocide patent.

Our text analysis, in principle, has the ability to capture much deeper roots 
of knowledge than citations. It may be that an idea developed originally far 
outside of agriculture eventually enters agriculture via a long chain of cita-
tions. Because citation-based measures of knowledge spillovers only observe 
the last step in such chains, when an agricultural patent makes citations, these 
citations may understate the role of nonagricultural knowledge spillovers. 
In contrast, our text analysis lets us track all prior mentions of important 
concepts used in agricultural R&D, including mentions that are many steps 
removed from agriculture. Consistent with this notion, we find the share of 
text-novel concepts that originate in agricultural patents is smaller when 
measured using text rather than citations (except in the biocides sector).

The rest of the chapter is organized as follows: Section 1.2 describes our 
methodology for generating data on agricultural R&D output, knowledge 
flows, and originating knowledge domain and gives an example. Section 1.3 
presents our main results. Section 1.4 discusses these results, and section 1.5 
establishes that they are robust to a series of alternative assumptions. Section 
1.6 concludes with some directions for future research.

1.2  Data

Our goal is to measure the extent of knowledge spill-ins for agricultural 
R&D. To accomplish this, we require three elements: a measure of  agri-
cultural research output, a measure of knowledge flows, and a measure of 
originating knowledge domain. These three components, plus our proxies 
for them, are illustrated in figure 1.1.

Working from right to left, to measure agricultural research output, we 
use patents with primarily agricultural applications. Our chapter focuses on 
six agricultural subsectors: animal health, biocides, fertilizer, machinery, 

Fig. 1.1 Knowledge spill-ins and proxy elements
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plants, and research tools. We describe our method for identifying these 
patents in section 1.2.1. We measure knowledge flows in three ways: patent 
citations to other patents, patent citations to academic journals, and shared 
patent text. We describe how we generate these three proxies in section 1.2.2. 
We also define the originating knowledge domain in three ways: with patent 
technology classes, with assignee type, and with journal subject areas. We 
describe these methods in section 1.2.3. Section 1.2.4 provides some brief  
summary statistics for our data.

1.2.1  Measuring Agricultural Research Output

We use the universe of US patents granted between 1976 and 2018 for our 
analysis, though for some subsectors, we only have data through 2015. Over 
this period, 5,886,981 patents were granted. While we use this entire data set 
in our analysis, we are particularly interested in the subset of patents closely 
related to agriculture. Conceptually, our guiding principle is to identify pat-
ents over technologies used primarily in either agricultural production or 
agricultural research. We attempt to exclude patented technologies that have 
many applications but where agriculture is not the primary use. For example, 
the CRISPR gene-editing technology has applications in agriculture but also 
many more applications in human medicine and fundamental research. We 
include only the subset of CRISPR patents that is closely related to agri-
cultural research.

Our analysis is focused on six agricultural subsectors where we are able 
to identify related patents with relatively high precision: animal health, bio-
cides, fertilizer, machinery, plants, and research tools. While we feel that 
these capture a large share of the major technological developments in agri-
culture over the last 40 years, we do not claim our analysis is exhaustive. In 
particular, the livestock genetics sector does not rely on patent protection 
to the same extent that the crop genetics sector does, and so we lack any 
information on this important sector. Another notable sector we are missing 
is information technology (e.g., software) applied to agriculture, for which 
we lack reliable means of distinguishing software with primarily agricultural 
application from others. Also note that our analysis does not extend to the 
processing of agricultural products, either into food, feed, or biofuel.

With one exception (described below), our classification of patents starts 
with the cooperative patent classification (CPC) system. The CPC system is 
used by the US Patent and Trademark Office (USPTO) to classify patents 
into different technology categories in order to facilitate USPTO patent 
examiners (and other interested parties) in finding relevant prior art. We use 
the cpc_current file, available on the USPTO’s PatentsView website, as our 
primary source. Patents are generally assigned multiple classifications, but 
we use only the primary classification for the purpose of allocating patents 
to a particular group.

For the biocide, fertilizer, and machinery subsectors, we identify CPC 
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codes associated with the relevant sector and assign patents with identi-
fied codes as their primary classification to the relevant sector. A complete 
list of patents by subsector is available in the supplemental materials. Here 
we briefly describe our approach:

Biocides: This subsector includes fungicides, herbicides, insecticides, pes-
ticides, and other chemicals meant to control biological pests. We start 
with CPC classification A01N, which includes these chemicals as well as 
chemicals for the preservation of bodies. We include any classifications 
under A01N related to biocides but exclude classifications related to the 
preservation of bodies (which tend to begin with A01N 1/).

Fertilizer: This subsector includes chemical fertilizers. We use CPC clas-
sifications beginning with C05, which corresponds to chemical fertilizer 
technology.

Machinery: This subsector includes agricultural machinery, with a focus on 
mechanically powered machinery. Within the CPC classification A01, 
we include any classification related to agricultural machinery (e.g., 
harvesting, mowing, planting, milking) and exclude many other catego-
ries unrelated to machinery (e.g., structures, forestry, fishing, hunting, 
and most of the other agricultural subsectors considered). Most of our 
agricultural machinery patents are classified under A01B, A01C, A01D, 
and A01F. Within the machinery categories, we also exclude classifica-
tions related to hand tools and animal-driven machinery.

These three subsectors require no additional processing. For the plant 
cultivar and agricultural research tools subsectors, the CPC classifica-
tion system is not sufficiently precise for our purposes, so we supplement 
the CPC approach with manual cleaning.

Plants: This subsector includes utility patents for specific plant varieties/
cultivars.4 We begin with the set of patents assigned primary CPC code 
A01H, which includes both patented plant cultivars and plant modifi-
cation and reproduction techniques as well as related technologies. We 
exclude CPC codes related to nonagricultural plants and fungi. From 
the remaining set, we manually identify patents for plant cultivars by 
inspecting the patent title, abstract, and claims.

Biological research tools: This subsector (hereafter shortened to “research 
tools”) includes technologies for conducting biological research—for 
example, genetic engineering and traditional breeding techniques. We 
begin with CPC classifications under the category A01H that are related 
to processes for modifying agricultural plants and add some classifica-
tions under CPC class C12N (microorganisms and enzymes) that are 
specifically designated as being for the modification of plants. Note that 

4. Note that this subsector does not include “plant patents,” a distinct form of intellectual 
property dating to 1930 and applicable to asexually reproduced plants (Clancy and Moschini 
2017).
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A01H also includes plant cultivar patents; we exclude any patents that 
are already classified in the plants subsector.

Animal health: This subsector includes all patents associated with medical 
technologies approved for use in veterinary medicine by the US Food 
and Drug Administration (FDA).

To obtain data on animal health patents, we adopt a different approach 
than that used for the other subsectors. While the CPC system suffices 
to identify patents related to medical technology, it does not distinguish 
between medical technologies for human application and those for non-
human animal application. Instead, to identify patents for veterinary medi-
cine technologies, we rely on FDA archival data. To facilitate generic com-
petition in the animal health market, since 1989 the FDA has maintained 
a list of patents associated with all approved veterinary medicine products. 
Using archival records of this list, Clancy and Sneeringer (2018) develop a 
list of all patents associated with approved veterinary medicine products.

It should be noted that the patents in the animal health subsector are sub-
ject to a selection effect that is not present in the other sectors. This is because 
animal health patents are only included if  they are associated with veterinary 
drugs that eventually receive FDA approval. Drugs that are not approved 
may have associated patents, and we miss these. This selection effect may 
bias our results for this subsector in two ways. First, if  successful and unsuc-
cessful drugs enjoy spill-ins at differential rates, our results will only apply to 
successful drugs. In our robustness checks, however, we find little evidence 
in other subsectors that the most valuable patents differ dramatically in 
their citation patterns. Second, and perhaps more importantly, by omitting 
patents associated with unsuccessful drug applications, we will misclassify 
citations to these patents as citations to nonagricultural patents. This may 
partially account for our finding that animal health relies more on nonagri-
cultural knowledge flows than other agricultural subsectors (although there 
are, of course, other plausible explanations for such a finding).

Figure 1.2 illustrates the annual number of (granted) patents, by applica-
tion year, in each of these subsectors. A few preliminary observations are 
in order. First, most subsectors exhibit a sharp decline in patents in the last 
few years of the sample. This is due to a truncation effect: we only observe 
patents if  they are granted by 2016 in most sectors (we have data until 2018 
for our plants and research tools subsectors), and few patents applied for in 
2014 and 2015 are granted by 2016.

Second, the plants and research tools subsectors exhibit a sharp increase 
from zero (or close to zero) in the 1980s. This is due to legal changes in the 
patentability of biological innovation in the wake of the 1980 Diamond v. 
Chakraborty Supreme Court case (Clancy and Moschini 2017). Prior to 
1980, biological innovations such as new plant varieties were not patentable 
subject matter. It is important to note that any R&D related to biological 
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innovation that occurs prior to 1980 is unlikely to be reflected in the patent 
record.

Finally, note that the scale of the vertical axis in figure 1.2 varies substan-
tially across sectors. In our data set, the animal health sector has the smallest 
number of patents (414), and the machinery subsector has the most (19,362). 
Because of the variability in the size of the subsector, how long innovation 
in the subsector has been eligible for patent protection, and the presence of 
selection effects in the animal health subsector, in this chapter, we always 
report disaggregated results by subsector.

1.2.2  Measuring Knowledge Flows

Our first measure of knowledge flows is patent citations to other patents. 
We use the USPTO PatentsView data set uspatentcitation as our source for 
patent citations. This provides the patent number of  both the citing and 
cited patent, and identifies who added the citation (the applicant, examiner, 
or other parties), from 2002 onward. Because we will be aggregating cited 
patents into different sectors and assignee types, we limit ourselves to cita-
tions to patents granted between 1976 and 2016.

Our second measure of knowledge flows is patent citations to academic 
journals. We estimate public sector patents are just 2 percent of all patents 
granted in our observation period, far below the public sector’s share of 
R&D (agricultural or otherwise). Accordingly, to measure the role of public 
sector R&D, it is important to supplement our patent citation analysis with 
journal citations. Analysis of citations to nonpatent literature is complicated 
by the absence of standardized citation formatting. Patent applicants cite 
articles in a wide variety of ways: with or without abbreviations, with com-
mas or periods to divide information, and with differences in the order of 
author names, year, title, journal, volume number, and so on. An emerging 
literature is attempting to match the raw citation text in patent documents 
to standardized journal entries in databases such as Clarivate (formerly 
Thompson Reuters) Web of  Science, Elsevier Scopus, Google Scholar, 
Crossref, PubMed, and the Microsoft Academic Graph (MSAG). We use 
Marx and Fuegi (2019), a data set based on text-analysis algorithms that 
matches raw patent text to entries in the MSAG. Marx and Fuegi (2019) 
estimate they capture 90 percent of citations with 99 percent accuracy.

Our third measure of knowledge flows is a novel use of patent text, extend-
ing approaches pioneered by Packalen and Bhattacharya (2015) and Bals-
meier et al. (2018). We identify a large set of text-novel concepts—proxied by 
one-, two-, and three-word strings of text—that are popular in agricultural 
innovation in the second half  of our data set but absent from the first half. 
We find all mentions of these text-novel concepts in other patents and use 
earlier mentions of the concept as a measure of potential knowledge flow. 
Because this approach is novel, we describe it in some detail here.

The goal of  this approach is to identify strings of  text in patents that 
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proxy for concrete ideas and concepts with technological applications. Fol-
lowing Packalen and Bhattacharya (2015), we define a “concept” as a text 
string consisting of one, two, or three words, without separating punctuation 
between them (i.e., hyphens are permitted).

For a given agricultural subsector’s patents, we break the text of the title, 
abstract, and claims into concepts. This includes all individual words as well 
as all sequences of two or three words, as long as the words are not divided by 
punctuation (with the exception of hyphens). We focus on the title, abstract, 
and claims because these likely are most informative as to the important 
concepts in a patent: titles and abstracts are meant to succinctly describe 
the innovation, while claims are legally binding.

We next clean the text of these concepts, using an approach similar to 
Packalen and Bhattacharya (2015). We convert all text into lowercase letters. 
We then exclude concepts with numbers as one of the words, concepts where 
words are divided by punctuation, or concepts that are unusually short and 
long (in terms of their total number of characters).5

This leaves us with a very large set of text, most of which does not cor-
respond to ideas and concepts with technological applications. To focus on 
new ideas in agriculture, we next divide our data set in half. The concepts in 
patents applied for in the first half of our observation period (1976–96) form 
a baseline dictionary. The concepts in patents applied for in the second half  
of our observation period (1996–2016) form a set of recent concepts. Any 
recent concept that is not contained in the baseline dictionary is considered 
a novel concept. Intuitively, this is a string of text that did not appear in any 
of the subsector’s patent abstracts, titles, or claims prior to 1996 but does 
appear after 1996.

Next we calculate the number of  subsector patents that contain each 
novel concept in the abstract, title, or claim. We call these “mentions.” For 
example, the word trimethoprim refers to an antibiotic. It does not appear 
in any animal health patents prior to 1996 but appears in eight patents after 
1996. We therefore say trimethoprim is a novel concept with eight mentions.

Our goal is to identify a set of important agricultural concepts. To do this, 
we first identify the 200-plus novel concepts with the most mentions. We 
frequently identify more than 200 concepts in this first pass, because men-
tions are necessarily integers and usually there are multiple concepts with 
the same number of mentions as the 200th concept. By construction, these 
are strings of text that did not appear in any of the sector’s patent abstracts, 
titles, or claims prior to 1996 but were relatively common after 1996.

To increase our confidence that our concepts are good proxies for concrete 
ideas and concepts with technological applications, we go beyond Packalen 

5. Following Packalen and Bhattacharya (2015), we exclude one-word concepts shorter than 
3 characters or longer than 29 characters, two-word concepts shorter than 7 characters or lon-
ger than 59 characters, and three-word concepts shorter than 11 characters or longer than 89 
characters. We also exclude concepts that include words in the Python NLTK stop words list.
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and Bhattacharya (2015) and Balsmeier et al. (2018) and manually clean 
the set of candidate concepts using these four guidelines. We exclude the 
following:

1. Concepts with numbers and measurements: These are unlikely to cor-
respond to generalizable ideas or concepts, as they usually refer to specific 
measurements that are not good proxies in the absence of more context (e.g., 
“90 degrees,” “1,500 mL”).

2. Connective phrases: These are largely free of concepts and ideas with 
technological applications and instead likely reflect variation in preferred 
patent language (e.g., “combinations thereof,” “one particular type”).

3. Words with multiple context-dependent meanings: When a set of 
words can have significantly different meanings in different contexts, then 
it is a poor proxy for our purposes because it may be mentioned in multiple 
patents with no technological similarity (e.g., “artificial,” which could be 
paired with “intelligence,” “insemination,” or “sunlight”).

4. Concepts including uninformative words: If  some of the words in a 
concept appear to be valid (not excludable by any other criteria), but they 
only appear in conjunction with an additional word that is uninformative 
(e.g., “said” or “and”), we exclude the concept. In these cases, it is likely that 
the concept is not really novel—only the conjunction of the concept and 
the uninformative word (e.g., “said data structure,” “the database” [if  “data 
structure” and “database” do not appear as novel concepts themselves, then 
they were in use in 1976–96; only the exact formulation adding “said” or 
“the” was not]).

Three of  the coauthors independently examined the list of  candidate 
concepts using the foregoing four criteria, and any concept excluded by 
at least two of the three coauthors was removed. These exclusion criteria 
remove 37 percent of the top 200 concepts overall, with a low of 11 percent 
in biocides and a high of 47 percent in machinery. As a robustness check, we 
reperform our analysis on the set of concepts that are retained unanimously 
by all these coauthors. What remains constitutes our set of text-novel con-
cepts. They form a set of text proxies for concrete technological ideas that 
are important in agricultural innovation over the 1996–2016 period and are 
new at least in the sense that they were not used over 1976–96 in patents. 
In some cases, the underlying concepts are not actually new but represent 
one of two things: first, the discovery of new applications for ideas that had 
been in a state of dormancy over 1976–96; and second, an expansion of the 
use of technological terms from the scientific literature to patent text. This 
latter phenomenon is often the result of an expansion of patentability, as 
in the case of utility patents for plant cultivars. For patents granted after 
1996, depending on the subsector, anywhere from 17 percent (in machinery) 
to 94 percent (in plants) of patents mention one of the associated text-novel 
concepts. See table 1.5 for the breakdown by subsector.
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The top 10 text-novel concepts in each subsector are listed in table 1.1. 
See the appendix for a complete list of top text-novel concepts in each sub-
sector, broken down by those unanimously retained (the majority) and 
those retained only by two out of three reviewers (which are excluded in a 
robustness check). A cursory look at table 1.1 illustrates how text concepts 
align with our intuitions about the knowledge base in different fields: ani-
mal health, plants, and research tools all involve biological terms; biocides 
is mostly chemical names; machinery includes different mechanical com-
ponents; and so on. In our main specification, we give equal weight to all 
concepts, but in our robustness checks, we show our results are robust to the 
clustering of concepts into families of related concepts.

To pinpoint potential knowledge flows, we identify any patents (whether 
agricultural or not) that mention these concepts. To do this, we again break 
the text of each patent’s title, abstract, and claims into concepts; clean the 
text of these concepts; and identify any concepts that match the set of text-
novel concepts in agriculture. These form the set of all patents (agricultural 
and otherwise) that mention any text-novel concepts in agriculture. We 
interpret such mentions as informative (albeit noisily) of knowledge flows 
and indicative that relevant research was ongoing in the sector to which 
agricultural researchers may have been exposed.

1.2.3  Originating Knowledge Domains

To measure the source of  knowledge flows, we define the originating 
knowledge domain in three ways. Our first approach is simply to leverage 
our work of identifying patents in distinct agricultural subsectors. When 

Table 1.1 Top 10 text-novel concepts by patent subsector, 1996–2016

Top 10 text-novel concepts

Animal health Protozoal, trimethoprim, microbial, microbial infection, ear, 
preservative, terbinafine, penetration enhancer, kinase, bird

Biocides Thiamethoxam, azoxystrobin, clothianidin, trifloxystrobin, spinosad, 
acetamiprid, thiacloprid, prothioconazole, pyraclostrobin, 
emamectin

Fertilizer Selenium, itaconic, tea, canola, mean particle, chlorine dioxide, wetting 
agents, phosphite, ferrate, compost tea

Machinery Controller configured, actuator configured, apparatus configured, 
antenna, dairy livestock, arm configured, flexible cutterbar assembly, 
controller operable, opening configured, gps receiver

Plants Insect resistance, transgene, conversion, locus, trait selected, locus 
conversion, carbohydrate, backcross, metabolism, carbohydrate 
metabolism 

Research tools 
 
 

 
 
 

Clustal, one regulatory sequence, silencing, polynucleotide selected, 
isolated polynucleotides, chimeric gene results, polynucleotide 
operably linked, polynucleotide operably, polyunsaturated fatty 
acids,Rnai
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a cited patent, or a patent linked by common text, belongs to one of our 
agricultural subsectors, we use the subsector as the originating knowledge 
domain. We find it useful, in general, to group these sectors by “own sub-
sector” (e.g., an animal health patent citing another patent belonging to 
animal health), “other agriculture” (e.g., an animal health patent citing an 
agricultural research tools patent), and “not agriculture” (e.g., an animal 
health patent citing a human health patent).

1.2.3.1  Assignees

Our second approach relies on the assignees and inventors associated 
with patents. Most patents have an assignee, usually corresponding to the 
employer of one of the patent’s inventors, and all patents have an inventor 
(or inventors). We are interested in distinguishing among assignees that are 
specialized in agriculture, assignees that conduct agricultural R&D but for 
whom it is not their primary focus, and assignees that conduct no agricul-
tural R&D.

The problem of assignee disambiguation and inventor disambiguation in 
patents is an active area of research. In brief, this is the challenge of deter-
mining when two patents belong to the same assignee or inventor. What 
makes this challenging is that the USPTO does not assign unique IDs to 
inventors and assignees. Instead, assignees and inventors are listed as text 
in the patent document. The same set of text (e.g., “John Smith”) may refer 
to different individuals/assignees. Or different text (e.g., “IBM” and “Inter-
national Business Machines”) may refer to the same individual/assignee.

We primarily rely on the disambiguation data set built by Balsmeier et al. 
(2018). These authors begin with the hand-curated NBER patent data proj-
ect, which matched patents granted between 1976 and 2006 with publicly 
traded companies in the Compustat data set. Balsmeier et al. (2018) then use 
a k-nearest neighbor clustering algorithm for the remaining patents. This 
algorithm identifies the five assignees “closest” to the unmatched patent’s 
assignee—in terms of having similar inventors, CPC codes, locations, and 
cited patents. It compares the assignee name of the unmatched patent to the 
names of these five nearest assignees and takes the closest match, provided 
the similarity of this match exceeds a threshold. Otherwise, a new assignee is 
added to the data set. A similar technique is used to disambiguate inventors.

We use Balsmeier et al. (2018) to differentiate between patents with assign-
ees and those with individual inventors. However, assignees can take many 
forms: private firms, government agencies, nonprofit organizations, and even 
individuals different from the inventor who are assigned the patent. Bals-
meier et al. (2018) do not distinguish between different kinds of assignees. 
We attempt to separate public sector assignees from private sector ones and 
then to characterize the extent of agricultural specialization for private sec-
tor assignees.

We adopt two approaches to identifying public sector assignees. First, the 
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USPTO’s PatentsView assignee and patent_assignee files indicate whether 
an assignee is a government agency (state, federal or foreign). We classify 
the assignees of any patent with all government agency assignees as public 
sector assignees. Second, we use a list of keywords to identify major nongov-
ernmental agency public sector assignees.6 Any assignee that includes one of 
these keywords is also classified as a public sector patent.

Patents not classified as belonging to the public sector or individual inven-
tors belong mostly to private sector firms. We are interested in characterizing 
the extent to which these firms’ R&D focus is agricultural. We face two chal-
lenges here: ascertaining the extent of agricultural R&D and determining 
how to classify assignees that change their research focus over time. Some 
major firms dramatically reinvented themselves as agricultural companies 
over our observation period (Monsanto is a notable example), and so we 
need a way to distinguish between different phases of the firm’s existence.

We use the share of patents classified as belonging to one of our agricul-
tural subsectors to determine an assignee’s agricultural focus. To capture 
the fact that assignees may change their research focus over time, we use 
only patents granted in the preceding five years to construct a time-varying, 
assignee-specific agricultural focus.7 While we use this continuous measure 
of agricultural R&D focus, we also construct three types of assignee, where 
types can change from year to year:

Specialized agricultural assignee: A firm for which 50 percent or more 
of their patents, granted in the last five years, belong to one of our six 
agricultural subsectors.

Minority agricultural assignee: A firm that has at least one agricultural 
patent in the last five years but for which less than 50 percent of their 
patents, granted in the last five years, belong to one of our six agricul-
tural subsectors.

Nonagricultural assignee: A firm with no patents granted in the last five 
years that belong to one of our six agricultural subsectors.

Our choice of five years balances two competing desires. A shorter time 
window introduces more noise into our estimates. A longer time frame is 
slow to recognize when a firm reorients its R&D focus. To assign firms a 

6. Keywords include university, universities, college, colleges, institute of technology, foun-
dation, school, polytechnic institute, virginia tech, Argonne, Tulane education, board of regents, 
universita, universitat, universite, and universidad.

We find these keywords largely match the number of patents granted to US colleges and 
universities, as reported by the USPTO and the NSF, in 2011 (USPTO Patent Technology 
Monitoring Team 2019).

7. When we do not have data on five prior years of patenting (i.e., in the first four years after 
an assignee begins to patent or the first four years in our data set), we use the patents granted in 
the first available five years or the maximum number of years available if  five are not available. 
For example, for a patent granted in 1977, we use patents granted in 1976–80 to determine the 
assignee type in 1977.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



36    Matthew Clancy, Paul Heisey, Yongjie Ji, and GianCarlo Moschini

position in the technology space, it is common to use the entire period under 
observation (see, e.g., Greenstone, Hornbeck, and Moretti 2010; Bloom, 
Schankerman, and Van Reenen 2013), and so our time five-year lag is rela-
tively short. We find that using a longer time window results in fewer firms 
that we classify as specialized agricultural firms. Therefore, if  we used a 
longer time frame, it would likely strengthen our conclusion that nonagri-
cultural firms are a major source of knowledge flows in agriculture.

Approximately 5 percent of patents lack disambiguated assignee data in 
Balsmeier et al. (2018), and we assign these to an “unclassifiable” category. 
When a patent has multiple assignees spanning different types, we fraction-
ally allocate the patent across different assignee types. Lastly, note that there 
is no concordance between assignees in the USPTO PatentsView data and 
the Balsmeier et al. (2018) data set. In the rare case (less than 1.5 percent) 
where a patent has multiple assignees, and some but not all are indicated as 
government agencies by the USPTO data sets, we cannot determine which 
of the assignees in Balsmeier et al. (2018) are the government agencies (text 
similarity matching fails). We allocate this small number of patents to the 
unclassifiable category.

Based on these criteria, 55 percent of  all patents over our observation 
period belong to nonagricultural assignees, 23 percent belong to minority 
agricultural assignees, 15 percent belong to individuals, 5 percent are unclas-
sifiable, 2 percent belong to public sector firms, and 0.5 percent belong to 
specialized agricultural firms. For comparison, patents in any of our agricul-
tural subsectors account for 1 percent of all patents granted over the period. 
Note that this implies the agricultural patents of minority agricultural firms 
account for slightly more than 3 percent of their patents.

Table 1.2 displays the four assignees with the most patents in each agri-
cultural subsector. As expected, they largely correspond to well-known  
firms.

1.2.3.2  Journal Classification

Our first two approaches to defining the originating knowledge domain 
are only appropriate for knowledge flows that are proxied by patents (i.e., 
either cited patents or patents with shared text concepts). Here we develop 
a third approach—appropriate for our journal citation proxy of knowledge 
flows—based on the classification of cited journals into broad academic cat-
egories. We create four main categories: agricultural science journals, other 
biology/biochemistry journals, other chemistry journals, and other journals.

Our list is based on the SCImago portal for the Scopus abstract and cita-
tion database for peer-reviewed literature.8 Journals are placed in broad 
“subject areas,” and within each subject area are more narrowly defined 

8. See the website at https:// www .scimagojr .com/.
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“subject categories.” Journals can be placed in more than one subject cat-
egory and, for that matter, in more than one subject area. To create the 
“agricultural science” category, we start with two SCImago subject areas: 
(1) “agricultural and biological sciences” and (2) “veterinary sciences.” 
Table 1.3 lists the subject categories within these two areas and shows how 
the journals of each subject category are treated.

Note that because journals can be cross listed in several categories, it is 

Table 1.2 Top four patent-holding assignees by subsector, 1976–2016

Top four assignees by patent holdings

Animal health Pfizer Inc., Eli Lilly and Company, Alza Corporation, Hoechst 
Aktiengesellschaft

Biocides Hoechst Aktiengesellschaft, BASF Aktiengesellschaft, Sumitomo 
Chemical Company Limited, CIBA Geigy Corporation

Fertilizer Union Oil Company of California, Tennessee Valley Authority, OMS 
Investments Inc., Allied Signal Inc.

Machinery Deere and Company, CNH America LLC, Unisys Corporation, J I Case 
Company

Plants Pioneer Hi Bred International Inc., Monsanto Technology LLC, Stine 
Seed Farm Inc., Syngenta Participation AG

Research tools 
 

 
 

Pioneer Hi Bred International Inc., E I Du Pont De Nemours and 
Company, Monsanto Technology LLC, The Regents of the University 
of California

Table 1.3 Defining the set of agricultural sciences journals

 Agricultural and biological sciences  

Agricultural and biological sciences (misc.) Journals manually inspected
Agronomy and crop science All journals included
Animal science and zoology Journals manually inspected
Aquatic science Journals not inspected
Ecology, evolution, behavior, and systematics Journals not inspected
Food science Journals not inspected
Forestry Journals not inspected
Horticulture All journals included
Insect science Journals manually inspected
Plant science Journals manually inspected

 Soil science  All journals included  

Veterinary science

Equine Journals not inspected
Food animals All journals included
Small animals Journals not inspected

 Veterinary (misc.)  Journals manually inspected 
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possible for a journal to be designated as an agricultural science journal 
even if  it belongs to one of the subject categories whose journals we do not 
inspect. This can occur, for example, if  the journal is also listed in a category 
we do inspect. Eliminating duplicate entries results in a set of 981 journals 
classified as “agricultural sciences.”

To create our set of “other biology/biochemistry” journals, we begin with 
all journals in the SCImago Agricultural and Biological Sciences area and 
Veterinary Sciences area that ended up not being included in the aforemen-
tioned agricultural sciences category. To this, we add all journals classified by 
SCImago in the “biochemistry, genetics, and molecular biology” subject area 
that were not already classified as Agricultural Sciences by us. This results in 
a set of 3,029 journals classified as “all other biology/biochemistry.”

To create the “other chemistry” journal list, we combine all journals (not 
already classified in the preceding steps) from the “chemistry” and “chemical 
engineering” subject areas in the SCImago set. This results in a set of 995 
journals classified as “other chemistry.”

Lastly, all remaining journals in SCImago are classified as “other.” It 
is important to note that this category contains several prominent multi-
disciplinary journals, such as Science, Nature, and PNAS. We show our 
results are robust to separating out these three major journals into their own 
category. In all cases, we retain journals, book series, and trade journals but 
mostly exclude conferences and proceedings volumes. This results in a set 
of 21,166 other journals.

A final challenge remains. Our source for journal citations is Marx and 
Fuegi (2019), which links the raw text in patents to entries in the MSAG. 
We match journal titles in the MSAG to journal titles in our SCImago clas-
sification system by a Levenshtein distance text-matching algorithm (we 
retain matches above 90 percent confidence). For “agricultural sciences,” we 
further manually check all journal matches. Table 1.4 illustrates the share 
of MSAG journals that we successfully match to journals in the SCImago.

As indicated by table 1.4, we always match the majority of journals and 
typically match approximately 75 percent. Our performance is worse in the 
machinery subsector (60.9 percent)—this is probably due to the fact that 
this is a field where citations to academic journals are rare and citations to 
conference proceeding papers (which we mostly exclude) are common. In 
the plants subsector, the MSAG is unable to match 25 percent of nonpatent 
citations to journals. The manual inspection of a sample of these citations 
indicates that they mostly accrue to books, which are also not in our data set.

1.2.4  Summary

Table 1.5 provides a summary of our data.
Note that the subsectors vary significantly in their propensity to cite, espe-

cially with respect to nonpatent references (the majority of  which are to 
academic journals). The machinery and fertilizer subsectors, for example, 

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Roots of Agricultural Innovation    39

cite more patents than any other subsector but the fewest nonpatent refer-
ences. Meanwhile, the research tools subsector cites nonpatent literature at 
more than four times the rate of the next highest subsector.

Subsectors also vary in their concentration. Whereas fertilizer patents 
are dispersed among a plethora of small assignees, plant patents are highly 
concentrated in a small number of firms (with Monsanto and Pioneer alone 
accounting for more than half  of all patents). Table 1.5 also highlights how 
our text-analysis approach varies in how representative it is for different 
subsectors. Whereas the majority of patents granted after 1996 in animal 
health and plants carry one of our text-novel concepts, only 17 percent of 
such patents in machinery do (although, as the largest single subsector, the 
small share translates into thousands of patents).

Table 1.4 Journal match performance

  

Matched to 
SCImago journals  

(%)  

Matched in MSAG 
to other journals  

(%)  

Not matched in MSAG 
to journals  

(%)

Animal health 75.6 16.9 7.5
Biocides 79.6 10.2 10.2
Fertilizer 74.1 11.9 14.0
Machinery 60.9 10.1 29.0
Plants 73.0 1.6 25.4
Research tools 92.4  3.5  4.1

Note: MSAG denotes Microsoft Academic Graph. Column (1) is the share of patent citations 
to journals in the MSAG that we match to journals in SCImago. Column (2) is the share of 
citations in the MSAG that Microsoft indicates correspond to journals but for which we are 
unable to match the entry to a journal in SCImago. Column (3) is the set of  citations that 
Microsoft lacks enough information about to match to a journal.

Table 1.5 Summary statistics

  Patents  

Share top 
four assignees  

(%)  

Avg. 
patent cites 

made  

Avg. 
nonpatent 
cites made  

Share patents 
w/ text concepts 

(%)

Animal health 414 24.9 9.4 8.5 76.3
Biocide 12,774 13.7 8.3 6.5 24.2
Fertilizer 2,554 3.7 10.7 3.4 32.9
Machinery 19,362 16.8 13.2 1 16.7
Plants 10,216 67.0 7.6 9.2 94.4
Research tools 10,872  21.5  7.5  37.3  41.6

Note: “Patents” is the number of patents in the subsector. “Share top four assignees” is the 
share of these patents assigned to the four largest assignees. “Avg. patent cites made” is 
the mean number of citations made to other patents per patent. “Avg. nonpatent cites made” 
is the mean number of nonpatent references per patent. “Share patents w/ text concepts” is the 
share of patents granted after 1996 that mention one of the top text concepts included in our 
text analysis.
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While not a major focus of our chapter, the extent of foreign research in 
our data is also of interest and can be proxied by the share of foreign inven-
tors on a given patent. Using the USPTO PatentsView inventors location 
data set, we classify patents as being derived from foreign research if  all 
the inventors have non-US addresses and as being derived from domestic 
research if  all the inventors have US addresses. For patents with some, but 
not all, inventors residing abroad, we classify the patent as fractionally for-
eign based on the share of its inventors that reside abroad (i.e., a patent with 
one out of two inventors residing abroad is listed as 0.5 foreign patents). By 
this measure, plants have the fewest foreign patents (14 percent) and biocides 
the most (49 percent). Table 1.A1 provides a full breakdown by subsector.

1.2.5  An Example

As an example, consider patent 5,747,476, titled “Treatment of Equine Pro-
tozoal Myeloencephalitis.” The patent was applied for in July 1996, granted 
in May 1998, and assigned to the Mortar & Pestle Veterinary Pharmacy 
Inc. in Des Moines, Iowa. We classify this as an animal health patent. As 
the title suggests, it describes a novel treatment for equine protozoal myelo-
encephalitis (EPM), a debilitating neurologic disease that affects horses. At 
the time of the patent application, EPM was commonly treated by crushing 
two different kinds of tablets intended to treat humans—one with the active 
ingredient pyrimethamine and another with a trimethoprim- sulfonamide 
combination—and suspending the mixture in solution. This was given to the 
horse prior to feeding, often for 90 days. The patent describes a new therapy, 
designed specifically for EPM, that involves a compound of pyrimethamine 
and a sulfonamide (“preferably sulfadiazine”) but with a much smaller dose 
of trimethoprim (or none at all).

Such an innovation obviously builds on ideas developed outside of agri-
culture. Pyrimethamine was discovered in 1952 and developed into an anti-
malarial treatment (for humans) in 1953 but has many applications in treat-
ing parasitic diseases. Sulfanomides have an even older history, forming part 
of the first set of antibiotics widely used (again, for humans) in the 1930s. 
However, their joint application in treating EPM is novel.

Patent 5,747,476 reflects these deep roots in several ways. It cites 10 pat-
ents, most of which have little to do with veterinary medicine (the oldest 
being US patent 4,293,547: “Method of Treating Malaria,” granted in 1981). 
We identify patents as pertaining to agriculture if  they belong in one of our 
agricultural patent data sets (which the cited ones do not) or if  the assign-
ees of these cited patents have other agricultural patents within the last five 
years. Where they do, we find that the share of agricultural patents is quite 
small. To take one example, patent 4,293,547 belongs to the Upjohn Com-
pany, and only 1.1 percent of its patents were agricultural in 1981 (over the 
preceding five years).

Only one cited patent belongs to a publicly owned entity: patent 5,486,535, 
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“Method of Treating Toxoplasmosis,” which is assigned to the regents of the 
University of California. To understand the patent’s use of publicly funded 
knowledge, we instead turn to its 13 citations to journals. The cited references 
include the American Journal of Veterinary Research, the Canadian Veteri-
nary Journal, and the Journal of Parasitology. Of these, we classify the first 
two as agricultural science journals and the last as a biology/biochemistry 
journal, suggesting this patent draws on both specific agricultural research 
and basic biology.

Finally, the text of  the patent itself  contains important concepts. The 
word pyrimethamine is absent in our animal health data set for the first half  
of our observation period but relatively common in the second half, so it is 
one of our top text-novel concepts. The words equine protozoal myeloenceph-
alitis represent another concept that is absent over 1976–95 but relatively 
common in animal health patents after 1995.

When we search the broader patent corpus for patents including the word 
pyrimethamine (in the title, abstract, or claims), we find many examples that 
predate its use in animal health (hardly surprising, given its history) not 
among the patents cited. These patents provide a third indicator that this 
patent draws on knowledge developed outside of agriculture. In contrast, 
the phrase equine protozoal myeloencephalitis appears for the first time in 
any US patent in patent 5,747,746. Beginning with this example, it goes on 
to appear in several other patents in animal health. In contrast to pyrimeth-
amine, the concept of (treating) equine protozoal myeloencephalitis is one 
that was born in agriculture, reflecting the primarily agricultural research 
base upon which it is based.

1.3  Main Results

We here present five different measures of knowledge spill-ins to agricul-
ture. We begin with results that use patent citations and then present results 
that rely on citations to nonpatent literature and results that use shared text 
concepts.

1.3.1  Patent Citations

In figure 1.3, we show the share of citations made by each agricultural 
subsector that originate in their own subsector (i.e., animal health patents 
citing animal health patents) and other subsectors (i.e., animal health pat-
ents citing research tool patents).

It is apparent that for the first four agricultural subsectors, more than 
half  of citations accrue to patents not classified as agricultural patents. This 
indicates a substantial role for knowledge spill-ins from outside agriculture. 
In these four sectors, the second most cited subsector is the own subsector. 
There is very little knowledge flow between different agricultural subsectors.

In contrast, the majority of citations in the plants and research tools sub-
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sectors accrue to patents that belong to these subsectors. While the research 
tools subsector still cites a substantial number of patents outside of agricul-
ture (40.9 percent), in the plants subsector, citations to other plant patents 
and to research tool patents account for almost 100 percent of all citations 
made.

Table 1.6 breaks down the share of citations from each subsector to the 
type of assignee/inventor associated with the cited patent. As noted in sec-
tion 1.2.3, we divide nonindividual assignees into four categories: assignees 
(mostly firms) specializing in agricultural R&D, assignees (mostly firms) 
that conduct some agricultural R&D but for whom such activities are the 
minority, assignees (mostly firms) conducting no agricultural R&D, and the 
public sector (mostly government, universities, and not-for-profit organiza-
tions). We omit the patents of unclassified assignees, which never receive 
more than 1.5 percent of citations.

Only in the plants subsector do the majority of cited patents belong to 
assignees that specialize in agriculture. A plurality of patent citations in the 
machinery subsector also originates with assignees that specialize in agri-
culture. For animal health, biocides, fertilizer, and research tools, either a 
plurality or a majority of patent citations originate in agricultural minority 
firms. In no sector do more than 21 percent of patent citations originate with 

Fig. 1.3 Share of patent citations to agricultural subsectors
Note: The citing sector is on the horizontal axis. Only cited patents granted between 1976 and 
2016 are included. Each citation is counted once, even if  multiple citations point to the same 
patent. Own sector gives the share of these citations to patents in the same subsector. Other 
agriculture gives the share of these citations to any other agricultural subsector. The remain-
ing share of citations accrues to patents not contained in any of our agricultural subsectors.
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assignees that do not conduct any agricultural research (even though these 
assignees account for 55 percent of all patents over this period). Public sec-
tor research is disproportionately important for all firms (considering that it 
accounts for just 2 percent of all patents) and especially important for plant 
and research tools patents.

Figure 1.4 presents more granular information on the agricultural focus 
of cited patents. For each point (x,y), share y of  all citations made by the 
subsector accrue to patents belonging to firms with x percent or less agri-
cultural patents over the past five years. Note that this sample is conditional 
on the citation going to an assignee and not a public sector organization or 
individual inventor.

The concave-to-convex curves in most of these figures tell us that most 
citations go to firms that either are very specialized in agriculture (i.e., a 
very large share of the assignees’ patents are classified as agricultural) or 
have only a tiny agricultural R&D operation (i.e., a very small share of the 
assignee’s patents are agricultural). Only the machine subsector is an outlier, 
with an approximately linear curve. No curve has a convex-to-concave S 
shape, which would characterize the presence of many cited assignees with 
an agricultural focus near 50 percent. This suggests our division of assignees 
into agricultural minority and agricultural specialized is a reasonable one. 
It also suggests most of the agricultural minority patents have only a tiny 
footprint in agriculture.

1.3.2  Journal Citations

In figure 1.5, we present the share of matched SCImago journal citations 
belonging to different journal categories.

Only in the plants subsector do the majority of cited journals belong to 

Table 1.6 Share of patent citations to assignee types

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public sector  

(%)  
Individuals  

(%)

Animal health 1.8 69.1 18.4 4.1 6.2
Biocides 8.6 65.1 13.2 4.6 7.8
Fertilizer 17.4 33.7 20.7 4.5 23.5
Machinery 33.5 29.1 8.8 1.1 27.5
Plants 80.6 5.4 0.3 12.8 0.6
Research tools 28.1  38.2  12.8  13.6  5.8

Note: The rows indicate the citing agricultural subsector and columns the assignee and inven-
tor type to which the cited patents belong. Specialized ag assignees have more than 50 percent 
of their patents belonging to an agricultural subsector in the last five years. Minority ag as-
signees have more than zero patents belonging to an agricultural subsector in the last five years 
but less than 50 percent. Non-ag assignees have no patents belonging to agricultural subsec-
tors. Public sector assignees correspond to government and nonprofit organizations. “Indi-
viduals” refers to patents owned by individual inventors. Rows do not add up to 100 percent—
the remainder of patent citations are made to unclassified assignees (see section 1.2.3.1).
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Fig. 1.4 Share of citations to assignees by agriculture specialization
Note: Cumulative distribution function for citations by agricultural focus of cited assignee. 
For each point (x,y), share y of  all citations made by the subsector accrue to patents belonging 
to firms with x percent or fewer agricultural patents over the past five years. Note that this 
sample is conditional on the citation going to an assignee and not a public sector organization 
or individual inventor.
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the agricultural sciences category. In the fertilizer and machinery subsectors, 
a plurality of cited journals belong to the agricultural sciences sector. With 
the exception of machinery, the other biology and biochemistry category 
is either the most or next-most important category of cited journals. In the 
machinery subsector, other journals are the second-most important source.

1.3.3  Shared Text Concepts

Our shared text concept results are designed to detect the sources of 
important new (or at least recently reawakened) concepts in agriculture. 
An important difference compared to the foregoing analysis is that whereas 
citations track knowledge flows “one step removed,” our text approach can 
accurately track the “deep roots” of knowledge spill-ins. For example, an 
idea originating in a distant technology sector may pass through a long 
sequence of citations before finally being cited by an agricultural patent. To 
generate the following results, we perform the following calculation for each 
text-novel concept (see section 1.2.2) in each subsector. First, we identify the 
earliest subsector patent that mentions the concept. We use the application 
date of this patent as the date this text-novel concept is first applied in that 
subsector.

Next, we look for any mention of the concept in patents granted prior to 

Fig. 1.5 Share of journal citations to journal categories
Note: Citing agricultural subsector is listed on the horizontal axis. Shares are given condi-
tional on matching journal title to the SCImago database. The remaining share of citations to 
journals accrues to other journals in SCImago that we do not classify as one of the above 
categories.
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this date. By construction, none of these patents will be in the “own subsec-
tor” prior to this date, but they may have been used in other agricultural 
subsectors or outside of  agriculture. If  there are any antecedent patents 
mentioning the concept, we compute the share of these that belong to each 
originating knowledge domain. Denote the share of concept c’s prior men-
tions originating in knowledge domain i by si(c). If  no prior patents men-
tion the concept, we say the concept has no prior mentions (si(c) = 1, with 
i denoting “no prior mentions”). We then take the average share across all 
text-novel concepts:

(1) pi =
1
n

si(c)
c=1

n

.

Intuitively, the interpretation of pi is the probability that a randomly selected 
knowledge flow from a randomly selected text-novel concept c originates in 
sector i. Figure 1.6 depicts the probability that a random knowledge flow 
from a concept originates in agriculture.

In the biocides sector, fully 63 percent of top text-novel concepts appear 

Fig. 1.6 Probability of antecedent text-novel concept mentions across agricul-
tural subsectors
Note: Each bar gives the probability of a randomly selected patent mentioning a randomly 
mentioned text-novel concept that originates in a given sector. Antecedent mentions are all 
those made by patents applied for prior to the first patent in the given subsector that mentions 
the concept. The remaining share of antecedent mentions accrues to patents not classified as 
agriculture.
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for the first time in the patent corpus as part of the title, abstract, or claims of 
a biocide patent. This turns out to be an exception. Other than the biocides 
sector, the majority of text-novel concepts in each subsector are mentioned 
in earlier patents. The majority of these are mentioned by patents outside 
of agriculture. Again, there is little transfer of knowledge from within agri-
culture, with the exception of the plant subsector, where 20 percent of prior 
mentions come from the research tools subsector and 5 percent from the 
biocides subsector.

Table 1.7 performs the same exercise for the type of assignee/inventor. 
Most text-novel concepts are mentioned before their use in agriculture by 
patents that do not specialize in agricultural R&D. This is consistent with 
figure 1.6, which establishes that most text-novel concepts are not mentioned 
in other agricultural sectors prior to their appearance in a given subsector. 
A large share of these concepts are mentioned, however, in firms with some 
agricultural research. The plurality of  mentions occurs in minority agri-
cultural assignees in four of the six sectors, whereas the plurality occurs in 
nonagricultural assignees in the other two (machinery and research tools).

Figure 1.7 again presents more granular information on the agricultural 
focus of patents mentioning text-novel concepts. Any point (x,y) in figure 1.7 
gives the cumulative probability x that a randomly selected knowledge flow 
containing a randomly selected concept belongs to a patent with agricultural 
focus y or less. Note that this sample is even more restricted than figure 1.6, 

Table 1.7 Share of antecedent text-novel concept mentions across assignee type

  

Ag 
specialized  

(%)  

Ag 
minority  

(%)  
Non-ag  

(%)  
Public  

(%)  
Individuals  

(%)  

No prior 
mention  

(%)

Animal health 1.2 44.1 31.2 7.0 9.4 5.1
Biocide 3.5 26.3 4.8 0.9 0.3 63.3
Fertilizer 2.5 29.8 29.0 4.3 11.2 22.1
Machine 2.8 16.1 42.3 1.0 11.8 25.5
Plant 10.8 28.7 23.3 10.4 5.9 19.5
Research tools 2.1  25.4  30.3  13.3  7.2  19.7

Note: An entry gives the probability that a randomly selected patent mentioning a randomly 
selected text-novel concept originates with a given assignee type. Antecedent mentions are all 
those made by patents applied for prior to the first patent in the given subsector that mentions 
the concept. Specialized ag assignees have more than 50 percent of their patents belonging to 
an agricultural subsector in the last five years. Minority ag assignees have more than zero 
patents belonging to an agricultural subsector in the last five years but less than 50 percent. 
Non-ag assignees have no patents belonging to agricultural subsectors. Public sector assignees 
correspond to government and nonprofit organizations. “Individuals” refers to patents owned 
by individual inventors. “No prior mention” indicates the concept has no prior mentions. 
Rows do not add up to 100 percent—the remainder of patent mentions (0.1–1.5 percent) are 
made to unclassified assignees (see section 1.2.3.1).
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since it excludes the patents of public sector firms and individuals as well as 
text-novel concepts that have no prior mentions.

Unlike figure 1.6, these shapes are mostly just concave rather than con-
cave-to-convex (the plant subsector being the only one showing a significant 
concave ending). This suggests that prior mentions by minority agricultural 
assignees are mostly assignees with only a small agricultural focus—much 
less than 50 percent. For important text-novel concepts that are not born in 
agriculture, they tend to come from firms with either no history in agricul-
ture or a very minor one.

Fig. 1.7 Cumulative probability of antecedent text-novel concept mentions by as-
signee specialization in agriculture
Note: Cumulative distribution function for prior mentions of text concepts by agricultural 
focus of cited assignee. Any point (x,y) in figure 1.7 gives the cumulative probability x a ran-
domly selected knowledge flow containing a randomly selected concept belonging to a patent 
with agricultural focus y or less. Note that this sample is even more restricted than figure 1.6, 
since it excludes the patents of public sector firms and individuals as well as text concepts that 
have no prior mentions.
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1.4  Discussion

Section 1.3 describes five different measures of the extent of knowledge 
spill-ins to agriculture. Each measure emphasizes a different potential aspect 
of  spill-ins. Section 1.3.1 emphasizes the flow of knowledge in the space 
of patented technologies across our entire time period. Section 1.3.3 also 
focuses on the space of patented technologies but looks specifically at a sub-
set of “concepts” that arose to prominence in agriculture during the second 
half  of our observation period. It measures the extent of prior R&D (poten-
tially many citations removed) related to these concepts outside of the par-
ticular agricultural subsector. Section 1.3.2, in contrast, examines the flow 
of knowledge from the primarily academic sector to patented technology.

Summarizing this heterogenous set of proxies is challenging, but one of 
our overarching conclusions is that knowledge spill-ins from outside agri-
culture are likely as important as knowledge generated within agricultural 
domains. This conclusion is bolstered by figure 1.8, which indicates the share 
of  knowledge flows that originate in an agricultural knowledge domain, 
defined below.

In this figure, we pull together proxies for the share of knowledge flows 
originating in agriculture:

• Patent cites 1: Share of patent citations to agricultural subsectors in 
figure 1.3.

• Patent cites 2: Share of  patent citations to specialized agricultural 
assignees in table 1.6.

• Journal cites: Share of journal citations to agricultural sciences journals 
in figure 1.5.

• Text concepts 1: Probability that a text-novel concept has either no prior 

Fig. 1.7 (cont.)
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mention or a knowledge flow originating with an agricultural patent in 
figure 1.6.

• Text concepts 2: Sum of the no prior mention and specialized agricul-
tural columns in table 1.7.

By these definitions, the animal health, fertilizer, and machine subsectors 
source the majority (more than half) of their ideas from outside agriculture, 
as measured by any proxy.

The evidence is more mixed for the research tools and biocide subsec-
tors. For research tools, 55 percent of patent citations refer back to other 
research tools patents, and another 4 percent originate with other agricul-
tural patents. However, most of  these patents are assigned to firms that 
are not specialized in agriculture, and most of the text-novel concepts in 
research tools patents are mentioned in patents that lie outside agriculture. 
Moreover, research tools patents cite academic journals at four times the 
rate of any other sector, but only 34 percent of citations flow to agricultural 
science journals.

Biocide patent and journal citations primarily flow to nonagricultural 
firms, patents, and journals. However, the strong majority of text-novel text 
concepts in biocides have no prior mention and appear for the first time 
in the patent corpus in a biocide patent. The majority of  these concepts 
are chemical names, suggesting the subsector develops many chemicals for 

Fig. 1.8 Share of knowledge flows originating within agriculture
Note: Patent cites 1 is the sum of own-sector and other-agriculture bars from figure 1.3. Patent 
cites 2 is the share of citations going to specialized-ag assignees in table 1.6. Journal cites is the 
share of journal citations to agricultural science journals from figure 1.5. Text concepts 1 is 
the sum of no-prior and other-agriculture bars from figure 1.6. Text concepts 2 is the sum of 
no-prior and ag-specialized categories in table 1.7.
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application in agriculture that appear nowhere else in the patent corpus. 
This is an observation that would be missed if  we relied solely on citations.

Finally, plants seem to be different. The majority of  citations flow to 
specialized agricultural firms, agricultural patents, and agricultural science 
journals. For text concepts, the majority are mentioned in nonagricultural 
patents before their appearance in patents for plant varieties, but not by an 
overwhelming number (55 percent). It is important to note that utility pat-
ents for plants differ from other utility patents in more than just their subject 
matter. This field is dominated to an unusual extent by a small number of 
firms, with some evidence that they use a standardized template for new 
patents (Moser, Ohmstedt, and Rhode 2018).

Taken together, in no field do all our knowledge-flow proxies agree that 
agriculture is the main source of inputs. Rather, spill-ins from outside agri-
culture appear to matter—and to matter a great deal in most subsectors. We 
now turn to the nature of these nonagricultural spill-ins.

Whereas our chapter does not try to rigorously define the “distance” 
between different knowledge domains, our results do provide some evidence 
that knowledge flows from outside of agriculture do not originate “too far” 
from agriculture. In figure 1.9, we present an attempt to measure whether 
knowledge flows originate “far” from agriculture by resorting to some rea-
sonable but perhaps ad hoc assumptions. We assume research originating in 

Fig. 1.9 Share of nonagricultural knowledge flows originating “close”  
to agriculture
Note: Patent cites 2 is the share of citations to nonspecialized ag assignees that are classified 
as minority ag. Journal cites 2 is the share of nonagricultural journal citations classified as 
biology/biochemistry or chemical / chemical engineering. Text concepts 2 is the share of prior 
text mentions by nonspecialized ag assignees that are classified as minority ag.
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“nonagricultural” assignees (tables 1.6 and 1.9) is further from agriculture 
than research originating in “minority agricultural” firms. This would be the 
case, for example, if  an assignee’s knowledge capital has some agricultural 
applications. In this case, the fact that the assignee also patents in agriculture 
is a signal that it has recognized the agricultural application of its knowl-
edge capital. The animal health sector would seem to be a good example 
of this kind of dynamic. Much of the basic research on health for humans 
or animals is similar at the cellular level, even though the human health 
market is vastly larger than the veterinary health market (Sneeringer and 
Clancy 2020). That said, caution is warranted, because an assignee may also 
be a conglomerate with many parallel research operations that effectively 
embody separate knowledge capital stocks.

We feel it is also reasonable to assume biology and chemistry are scientific 
disciplines that are among the closest to agriculture, and so citations to bio-
logical and chemistry journals are indicators that fields “close” to agriculture 
matter. Agriculture is typically classified as one of  the life sciences (e.g., 
by the National Science Foundation [NSF]), and agricultural science has 
deep roots in chemistry (Huffman and Evenson 2006). Figure 1.9 uses these 
notions to provide some evidence that knowledge from outside agriculture 
is not “too far” away.

In this figure, we pull together very rough proxies for the distance from 
agriculture of nonagricultural knowledge flows.

• Patent cites 2: Share of citations to assignees, but not specialized agricul-
tural assignees, that are classified as minority agricultural (as opposed 
to nonagricultural).

• Journal cites: Share of nonagricultural science journal citations to jour-
nals classified as biology/biochemistry or chemical/chemical engineer-
ing (as opposed to “other”).

• Text concepts 2: Share of  prior text mentions by assignees, but not 
specialized agricultural assignees, that are classified as minority agri-
cultural (as opposed to nonagricultural).

In contrast to figure 1.9, most proxies now clear the 50 percent line. Where 
we can reasonably rank knowledge domains as being closer or further from 
agriculture, nonagricultural knowledge flows in animal health, biocides, fer-
tilizer, and plants are more likely to come from knowledge domains close to 
agriculture than from afar. For machinery and research tools, text concepts 
tend to be mentioned more often in nonagricultural assignees than in minor-
ity agricultural ones. Machinery is also more likely to cite other journals than 
biology or chemistry ones, which is not surprising. Note, however, that the 
machinery sector cites by far the fewest journal publications.

Together, figures 1.8 and 1.9 suggest that while nonagricultural knowledge 
sources are very important, some nonagricultural knowledge domains are 
clearly more relevant than others. Whereas we view this conclusion as more 
tentative than our first one, it has relevance for science policy in agriculture.
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1.5  Robustness Checks

In this section, we conduct a wide array of robustness checks. To prevent 
the main chapter from becoming too long, we report tables in the appendix 
and merely summarize important details in the text.

1.5.1  Patent Citations

We investigate three potential sources of bias in our patent citation fig-
ures: first, that our results are driven by assignee’s self-citation of their own 
patents; second, that our results are robust to the exclusion of examiner-
added citations; and third, that our results are robust when we restrict atten-
tion only to the most valuable patents (those receiving a high number of 
citations themselves).

There is a debate about the extent to which patent citations may be 
biased by a tendency for firms to cite their own work or by the additional 
citations added by patent examiners (Lampe 2012; Moser, Ohmstedt, and 
Rhode 2018). To assess whether our results are driven by self-citation, we 
first remove all citations from assignees to their own patents. Because so 
many individual inventors have a single patent, and because it is harder  
to accurately disambiguate inventor names, we restrict attention to assignee 
self-citation. The results are presented in tables 1.A2 and 1.A3.

Excluding self-citations does not materially change the distribution of 
patent citations across different agricultural sectors, with one exception. 
In figure 1.3, the share of citations from plant patents to plant patents is 
69 percent, but when we exclude self-citations, this falls to 56 percent. Simi-
larly, in table 1.6, the share of citations to specialized agricultural firms is 
81 percent, but when we exclude self-citations, this falls to 69 percent. Moser, 
Ohmstedt, and Rhode (2018), studying a sample of  hybrid corn patents 
granted between 1985 and 2002, find that self-citations frequently reflect 
genuine cumulative innovation, as firms build on the prior genetic stock of 
their earlier patented plant cultivars. Therefore, it is not at all clear that the 
smaller share of 56 percent should be preferred to our baseline estimate of 
69 percent.

Next, we remove all examiner-added citations. This is only possible for 
the period 2002 onward, when patents begin to identify who added a cita-
tion. There is some debate about whether examiner-added citations are 
good proxies for knowledge flows. If  applicants seek to avoid citing relevant 
prior art for strategic reasons, examiner-added citations can correct this bias 
(Lampe 2012). Moreover, Chen (2017) finds examiner-added citations are 
more textually similar to the patent than other patents. That said, there is 
a large literature that highlights potential issues with examiner-added cita-
tions. For example, Moser, Ohmstedt, and Rhode (2018) find that examiners 
of hybrid corn patents are biased toward adding from their set of preferred 
patents and that patents will tend to be added more for physical similar-
ity of plants rather than genetic heritage. Jaffe and de Rassenfosse (2017) 
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summarize a number of  other studies that describe potential distortions 
examiner-added citations may introduce. Tables 1.A4 and 1.A5 present the 
distribution of patent citations for patents granted after 2002, excluding 
examiner-added citations.

Removing examiner-added citations leaves our results largely unchanged, 
with one exception. In the machinery subsector, in figure 1.3 we found that 
48 percent of patents citations originated in the machinery subsector and 
52 percent originated outside of  agriculture. In table 1.A4, we instead 
find that 56 percent of citations originate in the machinery subsector and 
44 percent originate outside of agriculture. It turns out, however, that this 
has little to do with examiners and is instead driven by restricting patents 
to those granted after 2002. If  we restrict attention to patents granted after 
2002 (table 1.A6), 56 percent of patent citations in the machinery subsector 
originate in the same sector. Indeed, across all subsectors, there is a slight 
increase in patents originating from within the same subsector when we 
restrict attention to more recent patents.

Our final robustness check relates to the heterogenous value of patents. 
Many studies (see Nagaoka, Motohashi, and Goto 2010 for an overview) 
have shown that the value of patents is highly skewed. A small number of 
patents account for a disproportionately large share of value. Our results 
may be misleading if  the minority of valuable patents differ in the sources of 
their knowledge compared to patents as a whole. To check this, we identify 
the set of most valuable patents in agriculture, defined as those receiving 
eight or more citations in the five years following the date they are granted 
(this necessarily means we do not include patents from the last five years 
of  our sample).9 Patents receiving eight or more citations are in the top 
5 percent for all agricultural patents. Tables 1.A7 and 1.A8 repeat our patent 
citation analysis for this subset of elite patents.

Restricting our attention to only the citations made by “elite” patents, we 
find that a significantly higher share of citations originate from within the 
same subsector for the fertilizer, machinery, and research tools subsectors. 
Indeed, for machinery, the effect is large enough to tip the share of citations 
originating in the machinery subsector above 50 percent, from 48 percent in 
figure 1.3 to 64 percent, in table 1.A7. In no other sector, however, does the 
share of citations from a given sector cross the 50 percent threshold, and so 
the conclusions drawn from our figures 1.8 and 1.9 remain valid. Turning to 
the share of citations received by different assignee types, restricting atten-
tion to only the most highly cited patents has the largest impact for the plant 
subsector, where the share of citations to specialized agricultural firms drops 
from 81 percent to 67 percent, and the share of citations to public sector 
patents rises from 13 percent to 25 percent.

9. Citations received is a common proxy for the value of patents. See Nagaoka, Motohashi, 
and Goto (2010).
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1.5.2  Journal Citations

Flagship multidisciplinary journals such as Science, Nature, and PNAS 
present a challenge to our journal citation analysis. We classify these jour-
nals as “other,” but citations to these journals could conceivably be to top 
articles in agricultural science, biology, or chemistry. In table 1.A9, we break 
out citations to these three journals as a separate category. In the research 
tools subsector, these three journals account for 14.2 percent of all jour-
nal citations. However, even if  the cited articles are all agricultural science 
articles, we still find about 50 percent of all journal citations would be to 
agricultural science. In the other subsectors, these three journals account 
for 1.3–3.9 percent of citations to academic work, suggesting that the main 
conclusions presented in section 1.4 are robust.

1.5.3  Text Concepts

We check the robustness of our text concept analysis to three alternative 
specifications. First, we impose stricter criteria to our manual cleaning of 
concepts in agriculture. Second, we use an alternative weighting scheme that 
controls for the possibility that some of our concepts are duplicates that 
refer to the same underlying idea. Third, we use an alternative weighting 
scheme that puts more weight on clusters of concepts that are used in more 
future patents.

Tables 1.A10 and 1.A11 impose stricter criteria to our manual cleaning 
of  text-novel concepts in agriculture. To manually clean concepts, three 
coauthors independently apply four exclusion rules (see section 1.2.2) to all 
concepts in our data. There is some subjectivity in these rules—for example, 
in judging what is an “uninformative” word and what “connective phrases” 
are. In the main specification, we retain a concept when at least two of the 
three judges retain it. In our robustness check, we require all three inspectors 
to agree for a concept to be retained. Depending on the subsector, this leads 
to us excluding an additional 10–20 percent of the original 200 concepts 
(the set of included and excluded concepts is available in tables A.16–A.21 
of the appendix). Our core results, however, are not substantively changed 
by this stricter exclusion policy. In figures 1.8 and 1.9, none of the bars flip 
from being above 50 percent to below it, or vice versa.

Tables 1.A12 and 1.A13 summarize our text data in a different way. One 
possible concern with our text-analysis approach is that we may be “double 
counting” some concepts. This could occur, for example, if  two concepts 
refer to the same underlying idea. For example, suppose pyrimethamine is 
exclusively used to treat variants of the disease myeloencephalitis. When-
ever the concept pyrimethamine appears in a patent, so too does the phrase 
myeloencephalitis, and vice versa, although perhaps not in the same sentence 
(or paragraph). Section 1.3.3 treats these two phrases as distinct concepts. 
There, we compute the share of prior mentions for each of these concepts 
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and then average over all these shares. But it could be argued the two con-
cepts pyrimethamine and myeloencephalitis only really refer to one under-
lying idea (treating the disease with the antibiotic), since they are always 
and everywhere used together. If  this is correct, then we are giving too much 
weight to the shares of prior patents mentioning these concepts by counting 
each concept separately.

Here, we consider an alternative approach that creates “families” of 
related concepts. For each concept, we look for its first appearance in a given 
agricultural subsector, which we call an originating patent. All concepts in 
the same originating patent constitute a family of related concepts.

For example, if  pyrimethamine and myeloencephalitis are always used 
together, then they will both appear for the first time in animal health in the 
same patent and therefore will belong to the same family. For each of these 
families, we find the set of unique patents applied for before the originating 
patent with any concepts in the family. We compute the share of these pat-
ents originating in different knowledge domains. Denote the share of patents 
with concepts from family f that originate in knowledge domain i by si( f ).

We then average these shares over all families:

(2) pi =
1
n

si( f )
f =1

n

.

This methodology uses originating patents to define families of related con-
cepts and give each family the same weight, ensuring we do not double count 
concepts referring to the same concept. The trade-off with this approach is 
that a concept with no prior mentions may belong to a family of concepts 
that do have prior mentions. This methodology obscures the fact because it 
treats families of concepts as units of observation.

This alternative methodology does have some significant impacts on our 
results, but none large enough to alter the conclusions in figures 1.8 and 
1.9. Indeed, our major conclusion that ideas from outside of agriculture 
are important is actually strengthened. Under this alternative weighting 
scheme, the share of concepts originating in patents outside agriculture rises 
in every subsector, as does the share of concepts originating in the patents 
of nonagricultural assignees.

Lastly, we weight families of  concepts by the number of  agricultural 
patents that end up using any concepts in the family. Let w( f ) denote the 
number of patents in a subsector that use any concept in family f. Our final 
weighting scheme is as follows:

(3) pi =
w( f )si( f )f =1

n

w( f )f =1
n .

Intuitively, this puts more weight on families of  concepts that subse-
quently end up being used more heavily in the agricultural subsector. The 
results, presented in tables 1.A14 and 1.A15, do not differ materially from 
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tables 1.A12 and 1.A13, although they again tend to increase the weight put 
on families of concepts originating outside of agriculture.

1.6  Conclusions

Agricultural total factor productivity grew enormously over the past cen-
tury. In the years to come, continued increases in agricultural productivity 
will be essential for meeting the challenge of feeding a rising world popula-
tion amid the trials of climate change. There is widespread recognition that 
past R&D investments were crucial to developing the new and improved 
agricultural technologies that have mediated these celebrated productivity 
gains. This chapter presents new evidence on the structure of knowledge 
underpinning agricultural R&D, with an emphasis on the role of knowl-
edge spillovers across scientific and technological domains.

Using agricultural patents in animal health, biocides, fertilizer, machinery, 
plants, and research tools as measures of agricultural research outputs, we 
track knowledge flows into agriculture in five different ways. We start with 
citations to patents in agricultural subsectors and across different types of 
inventive organizations and individuals. To capture knowledge flows from 
academia, we also track citations to journal articles across different journal 
categories. Finally, we complement these citation-based approaches with 
text analysis, where we identify text concepts that are new (in text) and 
important in agriculture in the second half  of our observation period. We 
then track the appearance of these text concepts in earlier patents.

Our results indicate a major role for ideas that originate outside of agricul-
ture, perhaps a role as important as R&D conducted within agriculture. In 
the animal health, fertilizer, and machinery subsectors, across every measure 
we find that the majority of knowledge flows originate in nonagricultural 
knowledge domains. In the remaining three subsectors, we find mixed evi-
dence: some of our indicators suggest that the majority of knowledge origi-
nates outside agriculture, while some originates from within. Amid these 
sets, the strongest case for knowledge originating primarily from within agri-
culture is the plant subsector, which mainly cites other agricultural patents 
and agricultural science journals. But even this subsector has the majority 
of its text concepts appearing outside of agriculture prior to their appear-
ance in plant patents.

We also present some evidence that these “outside agriculture” knowledge 
domains remain predictably close to agriculture. Whereas agricultural sci-
ence journals do not account for the majority of journal citations in most 
subsectors, together with biology and chemistry journals, they do. Moreover, 
our other measures of knowledge flows indicate that organizations with at 
least some agricultural patents do R&D more relevant to agriculture than 
organizations with no agricultural patents.

The novelty of this chapter is to use information contained in patents, 
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through patent citations and text analysis, to study agricultural knowl-
edge flows, and this work suggests a number of possible avenues for future 
research. First, our text concept approach can be easily extended to the 
corpus outside of patents. In particular, academic journals are a promising 
avenue to explore. For example, we find the biocide sector originates the 
majority of its text concepts and that these concepts tend to be chemical 
names. At the same time, the sector heavily cites chemistry journals, and it 
would be interesting to see if  these chemical names appear first in chemis-
try journals. Outside of agriculture, Li, Azoulay, and Sampat (2017) track 
knowledge flows from life science patents to basic research and find that 
30 percent of National Institutes of Health (NIH) grants result in publica-
tions that are subsequently cited by life science patents. Our text-analysis 
approach could help identify cases where NIH funding results in ideas that 
are used in life science patents without a direct citation. More generally, this 
approach can be extended to books, company filings, and so on.

Second, the combination of text-novel concepts and citations represents a 
clear opportunity to track the diffusion of specific ideas through technology 
space. Are citations a channel through which text concepts flow, and if  so, 
can we track the movement of an idea originating in one technology field 
through a chain of linked citations to an eventual application in a distant 
technology field? This would allow one to examine the factors that most 
facilitate the transfer of ideas. Lastly, the analysis we have presented can be 
brought to bear on work linking agricultural R&D to agricultural produc-
tivity measures. Patents may serve as new proxies for knowledge capital—
proxies with more detailed information about the relevant R&D spending 
both in agriculture and beyond.

Albeit preliminary, we may attempt to draw some normative implica-
tions of  the results presented in this chapter. The early work of  Schultz 
(1956) and Griliches (1958) underscored agriculture’s leading position in 
identifying the role of technical progress on productivity. A large and var-
ied literature has since established the fundamental role that investments in 
science and technological R&D have on innovation and economic growth. 
The many market failures that beset the innovation process suggest a critical 
role for public policies to fund and support the R&D enterprise. Evidence 
of past remarkable successes has fostered the belief  that scientific research is 
underfunded and that a renewed investment impetus would raise economic 
growth. The insight is particularly relevant for US agriculture, where public 
R&D investments have substantially declined, in real terms, over the last 
decade (USDA ERS 2019). Meritorious calls for increased public agricul-
tural R&D inevitably meet the reality of the declining availability of public 
funds. In this age of scarcity, science policy needs to be mindful of the com-
plexity and connectedness of the research enterprise. As highlighted in the 
model of Akcigit, Hanley, and Serrano-Velarde (2021), the spillover effects 
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from basic research are critical. In our context, the knowledge spillovers we 
have identified suggest that agricultural science policy might best support 
agricultural productivity growth if  it retains a holistic perspective. Attention 
to the broader research agenda—and in particular, to areas that while not 
being strictly agriculture oriented have traditionally been connected with 
agricultural innovation—is of paramount importance. Priorities that rely 
on narrowly defined measures of past returns to R&D may not provide the 
most productive use of scarce public R&D funds.

Appendix

Table 1.A1 Share of patents derived from domestic and foreign research

Derived from

   
Domestic research  

(%)  
Foreign research  

(%)  

Animal health 65.4 34.6
Biocides 51.2 48.8
Fertilizer 59.8 40.2
Machinery 64.5 35.5
Plants 85.9 14.1

 Research tools 59.7  40.3  

Note: Patents are fractionally classified as derived from domestic or foreign research based on 
the share of inventors listing a US (domestic) or non-US (foreign) address.

Table 1.A2 Share of patent citations to agricultural subsectors, excluding assignee 
self-citations

  
Own sector  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 5.8 2.4 91.8
Biocides 23.1 3.6 73.3
Fertilizer 26.3 5.0 68.7
Machinery 46.3 0.1 53.6
Plants 56.1 41.8 2.1
Research tools 53.3  3.5  43.2

Note: The rows indicate the citing agricultural subsector and columns the subsector to which 
cited patents belong. Only cited patents granted between 1976 and 2016 are included. Each 
citation is counted once, even if  multiple citations point to the same patent. “Own sector” 
gives the share of these citations to patents in the same subsector. “Other agriculture” gives 
the share of these citations to any other agricultural subsector. “Not agriculture” gives the 
share of citations to patents not contained in any of our agricultural subsectors. We exclude 
citations made by assignees to their own patents.
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Table 1.A3 Share of patent citations to assignee types, excluding self-citations

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public sector  

(%)  
Individuals  

(%)

Animal health 1.8 63.1 22.2 4.8 7.5 
Biocides 8.5 62.5 14.8 4.6 8.8 
Fertilizer 17.0 32.0 21.7 4.4 24.6 
Machinery 32.0 27.7 9.5 1.1 29.6 
Plants 69.2 8.5 0.5 20.4 1.0 
Research tools 26.1  37.9  14.1  14.0  6.4 

Note: The rows indicate the citing agricultural subsector and columns the assignee and inven-
tor type to which the cited patents belong. Specialized ag assignees have more than 50 percent 
of their patents belonging to an agricultural subsector in the last five years. Minority ag as-
signees have more than zero patents belonging to an agricultural subsector in the last five years 
but less than 50 percent. Non-ag assignees have no patents belonging to agricultural subsec-
tors. Public sector assignees correspond to government and nonprofit organizations. Indi-
viduals refers to patents owned by individual inventors. Rows do not add up to 100 percent—
the remainder of patent citations (0.1–1.4 percent) are made to unclassified assignees (see 
section 1.2.3.1). We exclude citations made by assignees to their own patents.

Table 1.A4 Share of patent citations to agricultural subsectors (2002 and later), 
excluding examiner-added citations

  
Own sector  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 6.9 2.4 90.7
Biocides 24.4 4.7 70.8
Fertilizer 29.3 6.6 64.1
Machinery 56.4 0.2 43.5
Plants 67.0 31.8 1.2
Research tools 55.9  3.3  40.9

Note: The rows indicate the citing agricultural subsector and columns the subsector to which 
cited patents belong. Only cited patents granted between 1976 and 2016 are included, and only 
citing patents granted after 2002 are presented. Each citation is counted once, even if  multiple 
citations point to the same patent. “Own sector” gives the share of these citations to patents 
in the same subsector. “Other agriculture” gives the share of these citations to any other agri-
cultural subsector. “Not agriculture” gives the share of citations to patents not contained in 
any of our agricultural subsectors. We exclude citations made by patent examiners.
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Table 1.A5 Share of patent citations to assignee types (2002 and later), excluding 
examiner-added citations

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public sector  

(%)  
Individuals  

(%)

Animal health 1.2 64.0 25.0 4.7 4.9
Biocides 9.3 62.6 14.9 4.4 7.7
Fertilizer 18.0 31.3 23.1 5.4 22.0
Machinery 35.7 28.5 9.5 1.3 25.0
Plants 79.4 5.5 0.3 14.0 0.6
Research tools 28.0  38.7  13.5  13.2  5.2

Note: The rows indicate the citing agricultural subsector and columns the assignee and inven-
tor type to which the cited patents belong. Only cited patents granted between 1976 and 2016 
are included, and only citing patents granted after 2002 are presented. Specialized ag assignees 
have more than 50 percent of their patents belonging to an agricultural subsector in the last 
five years. Minority ag assignees have more than zero patents belonging to an agricultural 
subsector in the last five years but less than 50 percent. Non-ag assignees have no patents be-
longing to agricultural subsectors. Public sector assignees correspond to government and 
nonprofit organizations. Individuals refers to patents owned by individual inventors. Rows do 
not add up to 100 percent—the remainder of patent citations (0.1–1.4 percent) are made to 
unclassified assignees (see section 1.2.3.1). We exclude citations made by patent examiners.

Table 1.A6 Share of patent citations to agricultural subsectors (2002 and later)

  
Own sector  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 8.7 2.5 88.8
Biocides 26.0 4.5 69.5
Fertilizer 31.0 6.2 62.8
Machinery 55.7 0.1 44.1
Plants 69.9 28.8 1.2
Research tools 57.0  3.5  39.5

Note: The rows indicate the citing agricultural subsector and columns the subsector to which 
cited patents belong. Only cited patents granted between 1976 and 2016 are included, and only 
citing patents granted after 2002 are presented. Each citation is counted once, even if  multiple 
citations point to the same patent. “Own sector” gives the share of these citations to patents 
in the same subsector. “Other agriculture” gives the share of these citations to any other agri-
cultural subsector. “Not agriculture” gives the share of citations to patents not contained in 
any of our agricultural subsectors.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Table 1.A7 Share of patent citations from highly cited patents to 
agricultural subsectors

  
Own sector  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 0.0 0.0 100.0
Biocides 25.8 7.0 67.2
Fertilizer 41.1 1.9 57.0
Machinery 63.7 0.1 36.2
Plants 61.3 37.2 1.5
Research tools 68.1  2.2  29.7

Note: The rows indicate the citing agricultural subsector and columns the subsector to which 
cited patents belong. Only cited patents granted between 1976 and 2016 are included and only 
citing patents that receive eight or more citations in the five years after their grant dates. Each 
citation is counted once, even if  multiple citations point to the same patent. “Own sector” 
gives the share of these citations to patents in the same subsector. “Other agriculture” gives 
the share of these citations to any other agricultural subsector. “Not agriculture” gives the 
share of citations to patents not contained in any of our agricultural subsectors.

Table 1.A8 Share of patent citations from highly cited patents to assignee types

  
Ag specialized 

(%)  
Ag minority 

(%)  
Non-ag 

(%)  
Public sector  

(%)  
Individuals 

(%)

Animal health 0.0 88.9 11.1 0.0 0.0
Biocides 10.3 72.7 9.1 1.9 5.1
Fertilizer 23.9 30.2 24.3 2.4 19.1
Machinery 42.1 27.4 5.3 1.1 24.0
Plants 67.5 6.8 0.2 24.9 0.5
Research tools 30.7  47.8  7.8  8.5  4.0

Note: The rows indicate the citing agricultural subsector and columns the assignee and inven-
tor type to which the cited patents belong. Only cited patents granted between 1976 and 2016 
are included and only citing patents receiving eight or more citations within the first five years 
after being granted. Specialized ag assignees have more than 50 percent of their patents be-
longing to an agricultural subsector in the last five years. Minority ag assignees have more than 
zero patents belonging to an agricultural subsector in the last five years but less than 50 per-
cent. Non-ag assignees have no patents belonging to agricultural subsectors. Public sector 
assignees correspond to government and nonprofit organizations. Individuals refers to pat-
ents owned by individual inventors. Rows do not add up to 100 percent—the remainder of 
patent citations (up to 1.1 percent) are made to unclassified assignees (see section 1.2.3.1).
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Table 1.A9 Share of journal citations to journal categories, separating out science, 
nature, and PNAS

  

Agricultural 
sciences  

(%)  

Other 
biology and 
biochemistry  

(%)  

Chemistry/ 
chemical 

engineering  
(%)  

Science, 
nature, 
PNAS  

(%)  

Other 
Scimago  

(%)

Animal health 17.6 43.4 7.2 3.4 28.3
Biocides 32.3 37.2 11.6 3.9 15.1
Fertilizer 40.1 30.6 14.3 1.3 13.7
Machinery 41.6 15.6 7.7 2.7 32.5
Plants 72.7 22.8 0.3 3.8 0.5
Research tools 34.0  45.4  0.8  14.2  5.6

Note: Each entry is the share of identified journal citations originating in patents in the row 
subsector that go to journals in the column category.

Table 1.A10 Share of antecedent text-novel concept mentions to agricultural 
subsectors, strict inclusion criteria

  
No prior mention  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 4.9 2.0 93.1
Biocide 65.7 4.3 30.0
Fertilizer 20.2 4.2 75.6
Machine 32.9 0.0 67.1
Plant 17.0 28.8 54.2
Research tools 23.8  5.4  70.8

Note: An entry gives the probability that a randomly selected patent mentioning a randomly 
mentioned text-novel concept originates in a given sector. Antecedent mentions are all those 
made by patents applied for prior to the first patent in the given subsector that mentions the 
concept. This table includes a concept only if  it is included by all three coauthor inspectors.
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Table 1.A11 Share of antecedent text-novel concept mentions to assignee type, strict  
inclusion criterion

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public  

(%)  
Individuals  

(%)  
No prior mention  

(%)

Animal health 1.2 46.0 29.9 7.4 9.1 4.9
Biocide 3.7 25.2 3.7 0.6 0.1 65.7
Fertilizer 2.8 30.4 29.4 4.9 11.3 20.2
Machine 1.3 16.8 35.4 0.9 12.0 32.9
Plant 12.9 31.1 21.4 10.7 5.3 17.0
Research tools 1.9  25.9  27.4  12.7  6.8  23.8

Note: An entry gives the probability that a randomly selected patent mentioning a randomly selected 
text-novel concept originates with a given assignee type. Antecedent mentions are all those made by 
patents applied for prior to the first patent in the given subsector that mentions the concept. Specialized 
ag assignees have more than 50 percent of their patents belonging to an agricultural subsector in the last 
five years. Minority ag assignees have more than zero patents belonging to an agricultural subsector in 
the last five years but less than 50 percent. Non-ag assignees have no patents belonging to agricultural 
subsectors. Public sector assignees correspond to government and nonprofit organizations. Individuals 
refers to patents owned by individual inventors. “No prior mention” indicates the concept has no prior 
mentions. Rows do not add up to 100 percent—the remainder of patent mentions (up to 0.8 percent) are 
made to unclassified assignees (see section 1.2.3.1). This table includes a concept only if  it is included by 
all three coauthor inspectors.

Table 1.A12 Share of antecedent text-novel concept mentions to agricultural 
subsectors, weighted by concept family

  
No prior mention  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 2.5 3.7 93.8
Biocide 56.8 6.5 36.7
Fertilizer 4.2 7.7 88.1
Machine 16.7 0.1 83.3
Plant 9.4 27.4 63.2
Research tools 17.6  4.5  77.9

Note: An entry gives the probability that a randomly selected patent mentioning a text-novel 
concept from a randomly selected family of concepts originates in a given sector. Antecedent 
mentions are all those made by patents applied for prior to the first patent in the given sub-
sector that mentions the concept.
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Table 1.A13 Share of antecedent text-novel concept mentions to assignee-type, weighted by 
concept family

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public  

(%)  
Individuals  

(%)  
No prior mention  

(%)

Animal health 0.9 44.3 34.2 5.3 10.3 2.5
Biocide 5.3 29.6 6.2 1.1 0.5 56.8
Fertilizer 1.8 38.4 36.3 5.3 12.8 4.2
Machine 3.3 17.6 46.5 1.2 14.2 16.7
Plant 9.6 33.2 28.5 9.4 7.5 9.4
Research tools 3.2  24.0  31.4  13.1  8.4  17.6

Note: An entry gives the probability that a randomly selected patent mentioning a text-novel concept 
from a randomly selected concept family originates with a given assignee type. Antecedent mentions are 
all those made by patents applied for prior to the first patent in the given subsector that mentions the 
concept. Specialized ag assignees have more than 50 percent of their patents belonging to an agricultural 
subsector in the last five years. Minority ag assignees have more than zero patents belonging to an agri-
cultural subsector in the last five years but less than 50 percent. Non-ag assignees have no patents belong-
ing to agricultural subsectors. Public sector assignees correspond to government and nonprofit organiza-
tions. Individuals refers to patents owned by individual inventors. “No prior mention” indicates the 
concept has no prior mentions. Rows do not add up to 100 percent—the remainder of patent mentions 
(up to 1.6 percent) are made to unclassified assignees (see section 1.2.3.1).

Table 1.A14 Share of antecedent text-novel concept mentions to agricultural 
subsectors, weighted by concept family and subsequent patents

  
No prior mention  

(%)  
Other agriculture  

(%)  
Not agriculture  

(%)

Animal health 1.6 3.1 95.3
Biocide 52.3 8.1 39.6
Fertilizer 3.8 7.4 88.9
Machine 14.5 0.0 85.5
Plant 4.9 21.4 73.7
Research tools 14.4  4.2  81.4

Note: An entry gives the probability that a randomly selected patent mentioning a text-novel 
concept from a randomly selected family of concepts originates in a given sector, where the 
probability of selecting a concept family is weighted by the number of ag subsector patents us-
ing concepts belonging to the family. Antecedent mentions are all those made by patents ap-
plied for prior to the first patent in the given subsector that mentions the concept.
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Table 1.A15 Share of antecedent text-novel concept mentions to assignee type, weighted by 
concept family and subsequent patents

  
Ag specialized  

(%)  
Ag minority  

(%)  
Non-ag  

(%)  
Public  

(%)  
Individuals  

(%)  
No prior mention  

(%)

Animal health 0.8 44.8 34.5 5.1 10.8 1.6
Biocide 5.9 32.4 6.8 1.1 0.6 52.3
Fertilizer 1.8 38.9 36.6 5.0 12.2 3.8
Machine 4.1 17.2 48.2 1.3 14.0 14.5
Plant 7.8 35.4 32.4 9.0 8.6 4.9
Research tools 3.1  22.6  33.0  15.2  8.4  14.4

Note: An entry gives the probability that a randomly selected patent mentioning a text-novel concept 
from a randomly selected concept family originates with a given assignee type, where the probability of 
selecting a concept family is weighted by the number of ag subsector patents using concepts belonging 
to the family. Antecedent mentions are all those made by patents applied for prior to the first patent in 
the given subsector that mentions the concept. Specialized ag assignees have more than 50 percent 
of their patents belonging to an agricultural subsector in the last five years. Minority ag assignees have 
more than zero patents belonging to an agricultural subsector in the last five years but less than 50 per-
cent. Non-ag assignees have no patents belonging to agricultural subsectors. Public sector assignees 
correspond to government and nonprofit organizations. Individuals refers to patents owned by individ-
ual inventors. “No prior mention” indicates the concept has no prior mentions. Rows do not add up to 
100 percent—the remainder of patent mentions (up to 1.6 percent) are made to unclassified assignees 
(see section 1.2.3.1).
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Table 1.A16 Top 117 text-novel animal health concepts

Unanimous (included in robustness check)

protozoal sarcocystis physiologically active
protozoal myeloencephalitis cyclooxygenase-2 volatile liquid
equine protozoal myeloencephalitis milbemycin oxime bovine respiratory
myeloencephalitis releasing hormone bovine respiratory disease
equine protozoal gonadotropin releasing hormone respiratory disease
trimethoprim gonadotropin swine respiratory
microbial oral mucosa pharmacologically active compound
microbial infection equimolar pharmacologically active
ear propofol diabetes
preservative prodrug weaning
terbinafine cyclooxygenase without heat
penetration enhancer bacterial protozoa heat detection
dermal penetration bacterial protozoa infections without heat detection
dermal protozoa infections sow
dermal penetration enhancer kinases c1-c6alkyl
kinase polymorph isoxazoline-substituted
janus kinase transmucosal insemination
janus felis buprenorphine
bird ctenocephalides felis spinosad
injection site ctenocephalides linoleic
single injection hydrate linoleic acid
hydrophilic surfactant octyl animal selected
stearoyl groups octyl salicylate catalytic
independently stearoyl groups succinic alkyl substituted
stearoyl succinic acid tobramycin
palmitoyl groups xanthan gum hydroxypropylcellulose
palmitoyl xanthan folic acid
asthma equines folic
fentanyl furoate ethanesulfonic
hydroxypropylmethylcellulose mometasone furoate ethanesulfonic acid
hydroxypropylmethylcellulose dissolved mometasone methanesulfonic acid
pyrimethamine gnrh methanesulfonic
epm buccal hydroxypropyl cellulose
prophylactic  cox-2  phenol

Consensus (excluded in robustness check)

mediated containing hydroxypropylmethylcellulose thickener
independently stearoyl gonadotropin releasing breeding
pharmaceutically active agent synchronizing daily dosage
veterinary applications transmucosal administration sweetener
controlled-  gum  sweeteners

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Table 1.A17 Top 177 text-novel biocides concepts

Unanimous (included in robustness check)

thiamethoxam boscalid spirodiclofen
azoxystrobin ethiprole asulam
clothianidin methoxyfenozide noviflumuron
trifloxystrobin cinosulfuron thifluzamide
spinosad penoxsulam strobilurin
acetamiprid flonicamid halofenozide
thiacloprid triflumuron oxasulfuron
prothioconazole neonicotinoid quinoxyfen
pyraclostrobin benoxacor diofenolan
emamectin isoxaflutole ethaboxam
emamectin benzoate tebufenpyrad trifloxysulfuron
fluquinconazole sulfosulfuron gamma-cyhalothrin
dinotefuran novel active compound cyazofamid
lufenuron metaflumizone dioxygenase
imazamox dimoxystrobin fenpyroximate
controlling animal pests isoxadifen-ethyl milbemectin
nitenpyram spiromesifen cloquintocet
kresoxim-methyl metosulam zeta-cypermethrin
mesotrione pyridaben bromobutide
ipconazole teflubenzuron halosulfuron-methyl
fluoxastrobin florasulam thifensulfuron-methyl
sulfentrazone chlorfluazuron c1-c4-alkoxy
hexaflumuron cyclosulfamuron mefenoxam
chlorfenapyr imazapic chlorantraniliprole
cloquintocet-mexyl protoporphyrinogen pyroquilon
flumioxazin protoporphyrinogen oxidase fluxofenim
tebufenozide fenclorim fenhexamid
indoxacarb orysastrobin tritosulfuron
famoxadone penthiopyrad oxabetrinil
c1-c4-alkyl spirotetramat mepronil
mefenpyr-diethyl flutolanil tricyclazole
picoxystrobin isoxaben thenylchlor
novaluron carfentrazone-ethyl acibenzolar-s-methyl
pymetrozine propaquizafop aminopyralid
flumetsulam foramsulfuron flubendiamide
spinetoram simeconazole flufenacet
boxh pyridalyl etoxazole
ethoxysulfuron fenamidone metominostrobin
diafenthiuron pyrifenox isoprothiolane
spiroxamine tau-fluvalinate iodosulfuron
triazamate iprovalicarb moxidectin
daimuron fosamine fosthiazate
iminoctadine oxadiargyl diflufenzopyr
fenoxaprop-p furametpyr c1-c4-haloalkyl
carfentrazone doramectin macrocyclic
phytopathogenic harmful fungi flufenerim cyometrinil
phytopathogenic harmful probenazole nithiazine
fluopyram trinexapac-ethyl bixafen
pyridin-3-yl diclosulam isotianil
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Unanimous (included in robustness check)

chromafenozide bifenazate saflufenacil
cyhalofop-butyl mandipropamid fluopicolide
pyributicarb cyprosulfamide flupyrsulfuron
kinoprene cyflufenamid metalaxyl-m
triazoxide mepanipyrim pyriprole
nanoparticles metrafenone benthiavalicarb
clodinafop proquinazid cyantraniliprole
    tolfenpyrad

Consensus (excluded in robustness check)

extenders and/or surfactants preventively
ch3 r14
plant essential  fully halogenated   

Table 1.A17 (cont.)

Table 1.A18 Top 213 text-novel fertilizer concepts

Unanimous (included in robustness check)

selenium inorganic substrate component biomass particles
itaconic inorganic substrate organic drying
itaconic moieties cell component compound drying
itaconic acid corn steep organic compound drying
itaconic anhydride corn steep liquor compound drying agent
compost tea fertigation biotic
canola bactericide co2
canola oil maleic moieties vermicompost
particle domain bioorganic recurring polymeric
mean particle domain inorganically augmented bioorganic fertilizer polymeric subunits
water-dispersible particle bioorganic fertilizer recurring polymeric subunits
particle dispersion inorganically augmented bioorganic sulfate nitrate
polymer-containing composition inorganically augmented ammonium sulfate nitrate
soil amendment compositions animal manures wood ash
chlorine dioxide hydrolyzed animal plant nutrient content
wetting agents animal hair mycorrhizal fungi
phosphite hydrolyzed animal hair seed meal
ferrate urea-formaldehyde polymer soy meal
sodium ferrate vinylic polymer triple super phosphate
calcium ferrate vinylic dried residue
potassium ferrate vinylic polymers industrial molasses
decompose potassium polycarboxylated polymer pharmaceutical fermentation
potassium minerals polycarboxylated threonine
decompose potassium minerals municipal biosolids ellipsoideus
decompose potassium compounds biochar delbrueckii
partial salt meat meal saccharomyces delbrueckii
copolymer salt cerevisiae green waste
block copolymer saccharomyces cerevisiae toxins
yeast cell saccharomyces cerevisiae hansen heat source
yeast cells hansen abiotic
carbon-skeleton energy cerevisiae hansen dissolved materials
carbon-skeleton calcium hypochlorite phosphorus minerals

(continued)
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Unanimous (included in robustness check)

carbon skeleton energy adenosine decompose phosphorus minerals
skeleton energy adenosine triphosphate decompose phosphorus
complex carbon triphosphate biostimulant
carbon compounds atp radical polymerization
complex carbon compounds nh4 free radical polymerization
binder component ester groups swine manure
water-soluble binder environmentally friendly bio
substrate component biomass feedstock dissolved oxygen
metal silicate saccharomyces uvarum beijer saccharomyces ludwigii
electrical conductivity uvarum saccharomyces willianus
heat-dried biosolids uvarum beijer willianus
heat-dried saccharomyces uvarum saccharomyces rosei
lower alcohol beijer rosei
pva mellis rouxii
bactericidal saccharomyces mellis saccharomyces rouxii
neodymium saccharomyces microellipsoides saccharomyces sake
bifenthrin microellipsoides sake
c1-c4 alcohols oviformis exiguus
electromagnetic field saccharomyces oviformis saccharomyces exiguus
decompose phosphorous saccharomyces fermentati carlsbergensis
decompose phosphorous 
compounds

fermentati saccharomyces carlsbergensis

aluminum phosphate saccharomyces logos chevalieri
organic alcohols logos saccharomyces chevalieri
sylvinite  ludwigii  saccharomyces sp.

Consensus (excluded in robustness check)

tea energy component bimodal vinylic
mean particle skeleton energy component bimodal vinylic polymer
particle domain size decompose complex carbon ch2
polymer-containing decompose complex overproduce
biological fertilizer composition convert complex overproduce growth
domain size ranges convert complex carbon paste-like
mean particle size binder component present paste-like material
amendment compositions steep liquor dust control
enhancing soil hemp drying agent selected
soil fertility fertilizer marketplace quick drying
salt form agricultural fertilizer marketplace drying properties
partial salt form agricultural crop organic drying agent
form granulated particles commercial agricultural fertilizer quick drying properties
form granulated polymer made integrated system
yeast cell component  polymer composition also  mgso

Table 1.A18 (cont.)
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Table 1.A19 Top 106 text-novel machinery concepts

Unanimous (included in robustness check)

aeration apparatus operating travel controller communicatively
axle driving apparatus operating travel direction controller communicatively coupled
antenna wheel configured air cart
robotic arm operative control perimeter wall
flexible cutterbar assembly rolling basket upright axes spaced
modular disc cutterbar teatcup liner residue spreader
modular disc foot platform crop residue spreader
cutterbar assembly flexes position based rotary milking
fore-and-aft draper receiving data pin configured
flexible draper meter roller aeration tine
trimmer head assembly robotic attacher aeration pockets
nontransitory computer axle driving unit energy storage device
computer readable agricultural row unit wireless communication
computer readable medium forward working direction crop throughput
nontransitory computer readable zero radius turning residue chopper
computer program product approximate zero aeration tines
product tank grain cart tool coupled
gps receiver ecu imaging device
seed metering system pump mounting surface inductor box
location-determining receiver rotary cutting deck output device
location-determining computer-readable distribution lines
gnss receiver location information horizontal cutter disks
gnss motor mounting surface generally horizontal cutter
    positions spaced transversely

Consensus (excluded in robustness check)

controller configured system based module configured
actuator configured controllably operable plate configured
apparatus configured control unit configured belt configured
dairy livestock vehicle position sensor arrangement
arm configured agricultural working machine processor configured
cutterbar assembly attached valve configured manner selected
assembly flexes motor configured conveyor configured
sickle assembly supported characteristic data units configured
controller operable controller receiving adjustment mechanism configured
opening configured chamber configured controller controlling
harvesting header operable headland crop inputs
readable medium  executable  evaluate
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Table 1.A20 Top 118 text-novel plants concepts

Unanimous (included in robustness check)

transgene modified carbohydrate metabolism genetic material
transgene encoding acid metabolism glyphosate
transgene encodes phenoxy proprionic acid glufosinate
locus conversion phenoxy sulfonylurea
single locus phenoxy proprionic transgenic
single locus conversion proprionic benzonitrile
backcross conversion proprionic acid triazine
backcross nucleic acid backcrossing
backcross progeny nucleic tissue cultures
progeny plants altered fatty bacillus
selected progeny altered bacillus thuringiensis
trait selected altered phosphorus thuringiensis
selected progeny plants phosphorus bacillus thuringiensis endotoxin
herbicide selected altered carbohydrates endotoxin
selected backcross carbohydrates thuringiensis endotoxin
produce selected altered fatty acids pest resistance
selected backcross progeny fatty acids dicamba
backcross progeny plants altered antioxidants herbicide resistant
higher backcross antioxidants imidazolinone
higher backcross progeny altered essential amino transgenes
transformation amino insect resistant
f1 progeny amino acids fungal
insect resistance essential amino waxy starch
plant derived essential amino acids pistil
soybean hulls modified protein root tip
modified fatty acid protein concentrate bacterial
modified fatty protein isolate viral disease
fatty acid metabolism herbicide tolerance hypocotyl
metabolism abiotic stress introgressed
carbohydrate metabolism abiotic traits introgressed
carbohydrate abiotic stress tolerance
modified carbohydrate  herbicide resistance

Consensus (excluded in robustness check)

transgene confers produce backcross progeny isolate
encoding locus confers subsequent generation
transgene conferring single locus confers environmental conditions
conversion plant product site-specific recombination
locus commodity plant recombination
locus conversion confers commodity plant product waxy
desired trait hulls tip
produce backcross  concentrate  corn variety
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Table 1.A21 Top 122 text-novel research tools concepts

Unanimous (included in robustness checks)

clustal alignment method hairpin rna abiotic stress tolerance
clustal method amplicon seed-preferred
novel nucleotide elongase hemp
single nucleotide antibody compositions digestibility
sequence identity based nitrogen use efficiency pufas
identity based increased biomass biofuel
gene silencing increased seed yield colloid
transcribable polynucleotide increased oil agr
transcribable polynucleotide molecule switchgrass schizochytrium
isolated polynucleotides agrobacterium-mediated transcription factors
chimeric gene results mediated transformation lyophilization
pesticidal polypeptide agrobacterium-mediated transformation poaceae
polyunsaturated fatty acids olive sirna
oilseed plant isolated polypeptides salinity
plant biomass diacylglycerol epa
nucleic acid segments diacylglycerol acyltransferase dalapon
eicosapentaenoic acid mirna fescue
eicosapentaenoic salix thraustochytrium
docosahexaenoic acid salix species pathogen-inducible promoter
docosahexaenoic crucifers dehalogenase
acid metabolism heterologous nucleotide sequences hppd
acid segments molecular markers castor bean
fatty acid metabolism stress-related protein coconut palm
wild type variety carbohydrate metabolism snp
rnai fluorescent protein silage
turfgrass green fluorescent starch branching
double-stranded rna green fluorescent protein frt
rna interference  vicia species  cosmetics

Consensus (excluded in robustness checks)

clustal polynucleotide operably nitrogen use
clustal v method isolated polynucleotides encoding polypeptides encoded
clustal v coding nucleic food product
alignment method coding nucleic acid primer pair
clustal alignment acid molecules encoding stress-related
pairwise alignment acid molecule operably gene involved
one regulatory sequence type variety full complement
provides recombinant expression corresponding wild element operably linked
silencing full-length complement agronomic interest
polynucleotide selected representative seed recombination sites
isolated polynucleotide selected encodes seq orientation relative
one polynucleotide encodes seq id increasing resistance
polynucleotide operably linked  use efficiency

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



74    Matthew Clancy, Paul Heisey, Yongjie Ji, and GianCarlo Moschini

References

Akcigit, Ufuk, Douglas Hanley, and Nicolas Serrano-Velarde. 2021. “Back to Basics: 
Basic Research Spillovers, Innovation Policy, and Growth.” Review of Economic 
Studies 88 (1): 1–43. https:// doi .org /10 .1093 /restud /rdaa061.

Alston, J. M. 2002. “Spillovers.” Australian Journal of Agricultural and Resource 
Economics 46 (3): 315–46.

Balsmeier, B., M. Assaf, T. Chesebro, G. Fierro, K. Johnson, S. Johnson, G. C. Li, S. 
Lück, D. O’Reagan, B. Yeh, and G. Zang. 2018. “Machine Learning and Natural 
Language Processing on the Patent Corpus: Data, Tools, and New Measures.” 
Journal of Economics & Management Strategy 27 (3): 535–53.

Bloom, Nicholas, Mark Schankerman, and John Van Reenen. 2013. “Identify-
ing Technology Spillovers and Product Market Rivalry.” Econometrica 81 (4): 
1347–93.

Chen, Lixin. 2017. “Do Patent Citations Indicate Knowledge Linkage? The Evi-
dence from Text Similarities between Patents and Their Citations.” Journal of 
Informetrics 11:63–79.

Clancy, M. S., and G. Moschini. 2017. “Intellectual Property Rights and the Ascent 
of Proprietary Innovation in Agriculture.” Annual Review of Resource Economics 
9:53–74.

Clancy, Matthew, and Sneeringer, Stacy. 2018. “Eating the Seed Corn? The Impact 
of Generic Drug Entry on Innovation in Animal Health.” Paper presented at the 
Agricultural and Applied Economics Association annual meeting, August 5–7, 
2018, Washington, DC. doi /10 .22004 /ag .econ .274379.

Evenson, R. E. 1989. “Spillover Benefits of Agricultural Research: Evidence from 
U.S. Experience.” American Journal of Agricultural Economics 71 (2): 447–52.

Fuglie, K. O., and P. W. Heisey. 2007. Economic Returns to Public Agricultural 
Research. Economic Brief  No. 10, US Department of  Agriculture, Economic 
Research Service.

Gardner, B. L. 2002. American Agriculture in the Twentieth Century: How It Flour-
ished and What It Cost. Cambridge, MA: Harvard University Press.

Greenstone, M., R. Hornbeck, and E. Moretti. 2010. “Identifying Agglomeration 
Spillovers: Evidence from Winners and Losers of Large Plant Openings.” Journal 
of Political Economy 118 (3): 536–98.

Griliches, Z. 1957. “Hybrid Corn: An Exploration in the Economics of Technologi-
cal Change.” Econometrica 25 (4): 501–22.

———. 1958. “Research Costs and Social Returns: Hybrid Corn and Related Inno-
vations.” Journal of Political Economy 66 (5): 419.

———. 1992. “The Search for R&D Spillovers.” Supplement, Scandinavian Journal 
of Economics 94:29–47.

Huffman, W. E., and R. E. Evenson. 2006. Science for Agriculture: A Long-Term 
Perspective. 2nd ed. Ames, IA: Blackwell.

Jaffe, A. B., and G. de Rassenfosse. 2017. “Patent Citation Data in Social Science 
Research: Overview and Best Practices.” Journal of the Association for Information 
Science and Technology 68 (6): 1360–74.

Jaffe, Adam B., Manuel Trajtenberg, and Michael S. Fogarty. 2000. “The Mean-
ing of Patent Citations: Report on the NBER/Case-Western Reserve Survey of 
Patentees.” NBER Working Paper No. 7631. Cambridge, MA: National Bureau 
of Economic Research.

Khanna, J., W. E. Huffman, and T. Sandler. 1994. “Agricultural Research Expen-

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Roots of Agricultural Innovation    75

ditures in the United States: A Public Goods Perspective.” Review of Economics 
and Statistics 76 (2): 267–77.

Lampe, Ryan. 2012. “Strategic Citation.” Review of Economic Studies 94 (1): 320–33.
Latimer, R., and D. Paarlberg. 1965. “Geographic Distribution of Research Costs 

and Benefits.” Journal of Farm Economics 47 (2): 234–41.
Li, Danielle, Pierre Azoulay, and Bhaven N. Sampat. 2017. “The Applied Value of 

Public Investments in Biomedical Research.” Science 356 (6333): 78–81.
Marx, M., and A. Fuegi. 2019. “Reliance on Science in Patenting.” Working paper, 

Boston University, Boston, MA, February 20, 2019. Available at SSRN.
Moser, Petra, Joerg Ohmstedt, and Paul W. Rhode. 2018. “Patent Citations—an 

Analysis of Quality Differences and Citing Practices in Hybrid Corn.” Manage-
ment Science 64 (4): 1926–40.

Nagaoka, S., K. Motohashi, and A. Goto. 2010. “Patent Statistics as an Innovation 
Indicator.” In Handbook of the Economics of Innovation, edited by B. H. Hall and 
N. Rosenberg, 1083–1127. Amsterdam: North Holland Publishing.

Packalen, M., and J. Bhattacharya. 2015. “New Ideas in Invention.” NBER Work-
ing Paper No. 20922. Cambridge, MA: National Bureau of Economic Research.

Roach, Michael, and Wesley M. Cohen. 2013. “Lens or Prism? Patent Citations as 
a Measure of Knowledge Flows from Public Research.” Management Science 59 
(2): 504–25.

Schultz, T. W. 1956. “Reflections on Agricultural Production, Output and Supply.” 
Journal of Farm Economics 38 (3): 748–62.

Sneeringer, Stacy, and Matt Clancy. 2020. “Incentivizing New Veterinary Pharma-
ceutical Products to Combat Antibiotic Resistance.” Applied Economic Perspec-
tives and Policy 42 (4): 653–73.

United States Bureau of Labor Statistics. 2007. “Technical Information about the 
BLS Multifactor Productivity Measures.” September 26, 2007. https:// www .bls 
.gov /mfp /special _requests /mfptablehis .xlsx.

United States Department of  Agriculture (USDA), Economic Research Service 
(ERS). 2019. “Agricultural Research Funding in the Public and Private Sectors.” 
Last updated September 30, 2019. https:// www .ers .usda .gov /data -products 
/agricultural -research -funding -in -the -public -and -private -sectors/.

———. 2020. “Agricultural Productivity in the U.S.” Last updated November 17, 
2020. https:// www .ers .usda .gov /data -products /agricultural -productivity -in -the 
-us/.

United States Patent and Trademark Office (USPTO) Patent Technology Monitor-
ing Team. 2019. U.S. Colleges and Universities—Utility Patent Grants, Calendar 
Years 1969–2012. https:// www .uspto .gov /web /offices /ac /ido /oeip /taf /univ /org _gr 
/all _univ _ag .htm.

Wang, C., Y. Xia, and S. Buccola. 2009. “Public Investment and Industry Incentives 
in Life-Science Research.” American Journal of Agricultural Economics 91 (2): 
374–88.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



76    Alberto Galasso

Comment Alberto Galasso

Economists use the terms knowledge spillovers and research spillovers to 
in dicate the positive effects that the research and development (R&D) invest-
ments of one firm may have on other firms. The idea that research in vestments 
generate positive externalities, and thus increase productivity growth and 
subsequent innovation of other firms, is one of the primary justifications 
for government R&D support policies.

How to identify and measure research spillovers is one of  the clas-
sic research questions in the field of economics of innovation. For many 
decades, researchers struggled to find a way to measure empirically these 
spillovers. Krugman (1991, 53) wrote that knowledge spillovers “are invis-
ible; they leave no paper trail by which they may be measured and tracked, 
and there is nothing to prevent the theorist from assuming anything about 
them that she likes.”

Empirical scholars responded to Krugman, documenting and leveraging 
a variety of paper trails in the forms of citations in patents and scientific pub-
lications. This generated a vibrant, large, and growing literature.1 Clancy, 
Heisey, Ji, and Moschini contribute to this stream of research, providing a 
thoughtful examination of knowledge spillovers from nonagricultural tech-
nologies into agricultural innovation.

The chapter employs three different empirical measures of  knowledge 
spillovers. The first measure exploits citations made by patent documents. 
Consider a patent protecting an agricultural technology that cites many 
prior patents that are not classified by the patent office as agricultural tech-
nologies. In this case, the citation pattern suggests that knowledge spillovers 
from outside agriculture were important for the development of the innova-
tion. The chapter builds on this idea and also leverages the richness of the 
patent data to measure the specialization of the firm owning the cited patent. 
As more agricultural patents cite firms that are not specialized in agriculture, 
support for the idea that there are important knowledge spillovers from 
other industries grows stronger.

The second measure of spillovers presented in the chapter relies on pat-
ent citations to scientific publications. The intuition behind this measure is 
that citations from agricultural patents to nonagricultural academic jour-

1. See Bloom, Schankerman, and Van Reenen (2013) for a recent contribution and a descrip-
tion of the various empirical approaches developed in the literature.
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nals reveal that academic research in other scientific domains has significant 
knowledge spillover into agriculture.

The final measure is based on a text-analysis algorithm that identifies 
the appearance of new “textual concepts” (i.e., text strings) on agricultural 
patents. With this approach, the presence of knowledge spillovers is revealed 
by textual concepts that are new in agricultural patents but are not novel in 
other technology fields.

The empirical analysis in the chapter suggests that knowledge spillovers 
from outside agriculture are a statistically significant and economically 
important driver of agricultural innovation. A large fraction of these spill-
overs appear to be derived from biology and chemistry, two research fields 
that are technologically close to agriculture.

The large spillovers documented by Clancy, Heisey, Ji, and Moschini have 
important implications for our understanding of how shocks propagate in 
the economy through industry linkages. There is a growing literature exam-
ining how supply-and-demand shocks that originate in one industry may 
percolate through vertical chains or disseminate to other industries (Barrot 
and Sauvagnat 2016; Galasso and Luo 2018). The results described in the 
chapter show strong research linkages between agriculture and other tech-
nology areas, which suggest that agricultural innovation may be exposed to 
shocks in these research domains.

To develop some policy implications, it is important to understand the 
channels through which knowledge is transmitted to (and from) agricultural 
research. Numerous studies in the economics of innovation literature implic-
itly assume that knowledge flows are not tradable and that the empirically 
measured research spillovers only capture unintended external effects. While 
this may be an appropriate assumption in some contexts, it may not be valid 
in many technology sectors. In the presence of  well-functioning markets 
for technology, knowledge may be transmitted across firms through patent 
licensing contracts. Moreover, firms may leverage their intellectual property 
assets to facilitate knowledge exchanges with some fields but not others. As 
explained in a recent study by Arque-Castells and Spulber (2019), to under-
stand the role played by the market for technology, it is essential to assess the 
wedge between the social and private rates of return of R&D. Combining 
data on out-of-field citations with data on patent licensing, reassignment, 
and litigation may help us understand the extent to which knowledge flows 
are internalized.

The innovation literature has stressed the importance of  general pur-
pose technologies (GPTs). These are inventions that have potential applica-
tions across a wide number of sectors (Bresnahan and Trajtenberg 1995). 
Examples of GPTs include the steam engine, the electric motor, micropro-
cessors, and more recently, artificial intelligence. GPTs have been shown 
to be powerful sources of growth in sectors that can develop complemen-
tary technologies. The literature has documented substantial heterogeneity 
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across sectors in this respect. These differences are typically linked to market 
structures and appropriability conditions. In light of these findings, an inter-
pretation of the results described by Clancy, Heisey, Ji, and Moschini is that 
the agricultural sector has been very effective at exploiting GPTs originating 
in other sectors. In principle, the high rate of GPT adoption by agricultural 
innovators may have enhanced the innovation incentives in the GPT itself  
(Cockburn, Henderson, and Stern 2019).

The estimates in the chapter show that the percentage of prior-art cita-
tions that accrue to patents not classified as agricultural patents is very large 
in some agricultural subsectors. For example, about 90 percent of patents 
cited by animal health patents are not classified by the US Patent and Trade-
mark Office (USPTO) as agricultural patents. This is a striking result. One 
important thing to notice, though, is that interpreting the magnitude of 
citation-based measures of spillovers is challenging. This is because it is not 
clear what the appropriate benchmark should be. As a reasonable first step, 
Clancy, Heisey, Ji, and Moschini examine whether the fraction of citations 
made to nonagricultural patents is above or below 50 percent. Technol-
ogy areas in which more than half  of the cited references belong to other 
fields are highlighted as fields receiving large external knowledge spillovers. 
A more general analysis of this issue may require benchmarking the pro-
pensity of agricultural patents to cite out-of-the-field patents with similar 
propensity measures in other technological areas.

From a conceptual perspective, one also has to consider the possibility 
that the magnitude of spillover effects may be determined by the relative size 
of a technology field. This may be particularly important when two research 
areas are technologically very close but differ in size. Consider the follow-
ing example in which there are two technology fields, field A and field B. In 
field A, there are 10 patents, and in field B, there are 90 patents. Now assume 
that each of these 100 patents randomly cites one of the other 99 patents. In 
this case, if  citations are independent and identically distributed, one would 
observe many more patents in field A citing patents in field B than patents 
in field B citing patents in field A. At the same time, the high propensity of 
field A patents to cite out-of-the-field patents is not really revealing that 
each invention in field A builds disproportionally from field B. It is simply 
reflecting the fact that A is a small field, with fewer knowledge inputs to draw 
from, and heavily connected to the larger field B.

In conclusion, Clancy, Heisey, Ji, and Moschini make a convincing case 
that ideas that originate outside of agriculture have important effects on 
agricultural research, perhaps a role as important as R&D investments 
within agriculture. They also provide a variety of  different and powerful 
empirical measures to capture knowledge flows into agriculture. Future 
research should focus on further understanding the drivers and implica-
tions of these important findings.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Comment    79

References

Arque-Castells, P., and D. Spulber. 2019. “Measuring the Private and Social Returns 
to R&D: Unintended Spillovers versus Technology Markets.” Northwestern Law 
& Econ Research working paper, Chicago, IL.

Barrot, J., and J. Sauvagnat. 2016. “Input Specificity and the Propagation of Idio-
syncratic Shocks in Production Networks.” Quarterly Journal of Economics 
131:1543–92.

Bloom, N., M. Schankerman, and J. Van Reenen. 2013. “Identifying Technology 
Spillovers and Product Market Rivalry.” Econometrica 81:1347–93.

Bresnahan, T., and M. Trajtenberg. 1995. “General Purpose Technologies ‘Engines 
of Growth’?” Journal of Econometrics 65:83–108.

Cockburn, I., R. Henderson, and S. Stern. 2019. “The Impact of Artificial Intel-
ligence on Innovation.” In The Economics of Artificial Intelligence: An Agenda, 
edited by A. Agrawal, J. Gans, and A. Goldfarb, 115–46. Chicago: University of 
Chicago Press.

Galasso, A., and H. Luo. 2018. “When Does Product Liability Risk Chill Innova-
tion? Evidence from Medical Implants.” NBER Working Paper No. 25068. Cam-
bridge, MA: National Bureau of Economic Research.

Krugman, Paul R. 1991. Geography and Trade. Cambridge, MA: MIT Press.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



81

2.1  Introduction

Biological innovation is an important driver of productivity growth in 
the agricultural sector (Olmstead and Rhode 2008). This is especially so in 
the dairy sector, where milk yield has grown 3–4 percent per year during the 
past century; 50 percent of this growth is typically attributed to improve-
ment in livestock genetics (Pryce and Veerkamp 2001). However, growth 
can be overattributed to genetic improvement when models ignore the fact 
that dairy farmers select genetics based on their farm’s returns to a given 
type of genetics. This is because in the dairy sector, the vast majority of 
“experimentation” undertaken to identify high-performing genetics takes 
place in nonexperimental conditions. Starting in 1908, the US Department 
of Agriculture (USDA) initiated a program, in partnership with land grant 
universities and local associations of dairy farmers, to measure and record 
animal-level performance (CDCB 2017). This partnership, which eventually 
came to be known as the Dairy Herd Improvement (DHI) program, contin-
ues to this day. Data from commercial dairy herds that participate in the DHI 
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program (roughly half of all US dairy herds) are used to estimate the “genetic 
merit” of individual male dairy cattle (sires). Specifically, USDA scientists 
use regression models to identify the impact of a sire on the performance 
of its offspring. Because of these nonexperimental conditions, these public 
estimates of sire productivity can contain both the quality of the genetics 
and the skill of the farmer in selecting them to the right environment. With-
out understanding the contribution of farmer management and selection 
to productivity, productivity growth in the dairy sector may be mistakenly 
attributed to the work of breeders instead of to both breeders and farmers.

Our work decomposes total productivity change on Wisconsin dairy 
farms due to genetics into separate effects for genetic improvement and 
endogenous selection. Using data from a large sample of Wisconsin dairy 
farms and national-level data on dairy sire rankings, we develop and esti-
mate a model that accounts for selection behavior in the animal’s production 
function. We find that selection accounts for as much as 75 percent of the 
total productivity improvement in fat and protein yield in dairy cows. Our 
results provide evidence for positive assortative matching, whereby farmers 
who adopt above-average yield genetics also perform better than average for 
their chosen genetics. Further, we find that management behavior accounts 
for a significant portion of within-herd cow-level heterogeneity in genetic 
choice, suggesting that, contrary to previous evidence, farmers manage at 
the animal level and not solely at the herd level; this implies that previous 
regression models controlling only for herd-level variation do not adequately 
control for selection bias in the production function. Overall, our results 
indicate that a large portion of productivity growth in dairy farming can 
be explained by farmers’ ability to identify and select genetics that are well 
suited to their production environment—not solely the quality of the genet-
ics they choose.

Using on-farm data to calculate the genetic merit of different sires, thus 
far the engine of  genetic progress in the dairy industry, runs the risk of 
entangling the management savvy of dairy farmers with the quality of the 
genetics. Artificial insemination (AI) technologies, widely adopted begin-
ning in the 1960s, expanded opportunities to track and identify the per-
formance of sires. Modern AI technologies permit a single sire to produce 
hundreds of thousands of offspring, and each female offspring (birthed on 
the farm of a DHI program participant) contributes new sire evaluation 
data, improving estimates of genetic merit. Genetic merit in turn strongly 
influences the market price AI companies receive for their genetic material. 
However, the very thing that makes dairy unique also makes isolating the 
contribution of genetics tricky. Research by economists on technology adop-
tion has shown that productivity gains can be overattributed to technology 
when there is “positive assortative matching,” meaning the very ones that 
benefit the most from technology are the ones who will adopt it. Hybrid 
seeds, for example, were adopted into their most productive environments in 
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the United States (Griliches 1957) as well as in Kenya (Suri 2011). Similarly, 
technologies such as fertilizer are often applied by farmers who have the 
highest returns from applying it (Foltz, Aldana, and Laris 2014).

Our work modifies the canonical modeling framework used by quantita-
tive geneticists for determining genetic merit by accounting for the selection 
behavior of dairy farmers. Our research bridges two scientific domains, both 
indebted to the seminal work of Sewall Wright, that diverged early in the 
20th century in their approaches to explaining the contribution of genetics 
in the farm production function. Using a control function approach, we find 
that the average returns to the adoption of high-yield genetics on dairy farms 
are as much as 75 percent lower after accounting for confounding factors. 
We find evidence of positive assortative matching at the cow level and the 
herd level, suggesting that dairy farmers manage their herds at the level of 
individual cows. Our work makes a novel contribution to the literature on 
technology adoption by investigating a level of detail in selection behavior 
that is previously unexplored in the agricultural sector.

We start with the idea that farmers select genetics based on their ex ante 
returns to the technology, which will cause them to “match” sire genetics to 
cows in a specific way. We assume further that some of the factors affecting 
match quality are observed by farmers but not by researchers. Using the 
framework of the correlated random coefficient (CRC) model, we explore 
the effect of this selection behavior on returns to production traits in dairy 
cattle and test whether correcting for selection behavior affects the estima-
tion of the average effect. We use random variation in country-wide genetic 
evaluations as an instrument to identify the effect of choosing dairy sires 
with high predicted transmitting ability (PTA) indices for fat and protein 
yield in the cow’s production function, and we use the residual from the 
first stage to identify the heterogeneity in the effect. We find that the average 
return from increasing the index one unit, which is a one-unit increase in 
pounds of fat or protein production, is .6 and .4 for fat and protein without 
controlling for selection behavior. These estimates drop to .15 and .18 after 
controlling for selection behavior, which means that as much 75 percent 
of the return to high-yield genetics is explained by this matching behavior. 
Finally, we find that the heterogeneity in returns is over both farms and 
animals; this implies the high productivity gains are being driven by animal-
level matching and not just farm-level matching. This changes the narrative 
of farm productivity in the dairy industry quite drastically: instead of the 
triumph of animal breeders and scientists alone, it is growth accomplished 
by a partnership between farmers and breeders.

2.2  Related Literature

Though seldom pointed out, the estimation of breeding values in quan-
titative genetics and production function estimation in economics share a 
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common history. The roots of both can be traced back to Sewall Wright, 
who pioneered work in population genetics, paving the way for the field of 
modern quantitative genetics (Gianola and Rosa 2015). Wright also concep-
tualized the notion of “path analysis,” which later evolved to be known as 
“instrumental variables,” and applied it to supply and demand systems as 
well as simultaneous equation models of commodity prices (Wright 1928; 
Wright 1925). From this common origin, economics and quantitative genet-
ics diverged in point of focus with respect to estimating the following equa-
tion:

(1) y = Zμ + Xβ + ε,

where y is the output (e.g., butterfat production of a dairy cow or yield of a 
strain of maize), Z is an incidence matrix of genetic technologies or types, 
X is a matrix of “environment” covariates unrelated to genetics, and ε is the 
unexplained component of y.

In quantitative genetics, the parameters β are modeled as fixed, but the 
parameter μ is treated as the outcome of a genetic process and thus consid-
ered a random variable with a covariance matrix mapping all the relation-
ships among genotypes. Nowhere has this genetic model developed quite 
the importance it has in animal breeding as a result of the work of C. R. 
Henderson (1953, 1973). Prior to Henderson’s work, there was no widely 
used method for attributing the performance of  different livestock to its 
parents. The Henderson mixed model (HMM), still used in the US national 
DHI program, models breeding values as draws from the random variable 
μ (Henderson 1975).

The HMM has become integral to the dairy genetics industry because 
estimates of μ for each sire, ˆ , strongly influence market prices for dairy 
genetics. PTA, which is ˆ / 2, is roughly interpreted as the value that a sire 
has for a particular trait y, which is predicted to be “transmitted” to the off-
spring (Van Vleck 1987). The national DHI program produces PTA values 
for a wide variety of traits including milk yield, fat yield, fertility, longev-
ity, and “conformance” (elements of body structure such as udder size and 
height). Once published, these values influence adoption decisions, which 
then result in new data that feed back into the DHI program as raw data 
to create breeding values for new sires and to update estimates for breeding 
values of existing sires. Building from Sewall Wright, the HMM has become 
an important source of genetic progress for the dairy industry.

The field of economics developed in parallel to Henderson’s work but 
focused on a different set of estimation issues with respect to equation (1). 
In particular, the production function literature in economics has centered 
on the assumptions needed to identify estimate μ. If  the adoption of cer-
tain genetics is associated with unobserved components of y, this means 
Cov(Z,ε) ≠ 0, and standard regression approaches yield biased estimates of μ.  
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This bias was more generally referred to by Mundlak (1961) as “manage-
ment bias,” defined as the presence of unobserved management decisions (or 
conditions of the decision environment) that influence input choice by farm-
ers (genetic selection in this context). Griliches (1957) specifically suggested 
in the case of hybrid corn that genetic technology was historically adopted 
into the environment where it was the most profitable. Solutions to this 
problem have evolved from the simple fixed effects approach of Mundlak 
(1961) to invoking the wisdom of Sewall Wright and using exogenous varia-
tion to identify structural parameters of production functions (Griliches 
and Mairesse 1995).

More recently, labor economists have developed new frameworks for 
thinking about this identification issue. The Roy model (Roy 1951) posited 
that occupation decisions, much like technology adoption decisions, are not 
chosen randomly; instead, they are generated from behavior that takes into 
consideration ex ante idiosyncratic returns that are difficult to measure. This 
implies that measuring the returns to some decision on an outcome, such as 
the effect of the adoption of technology on firm output, is subject to a “selec-
tion bias” that must be dealt with in something like equation (1) (Heckman 
and Vytlacil 1998). A similar logic can be applied to the choice of genet-
ics, since farmers likely observe or know something ex ante, un observed to 
researchers, and affecting relative returns across relevant genetic profiles. 
Suri (2011) formalized the link between labor economics and production 
function estimation by using the Roy model to study selection bias in tech-
nology adoption. Her study found that farmers in Kenya adopted hybrid 
maize if  their personal unobserved return was high, suggesting “positive 
assortative matching.” This has in turn helped spur a growing literature on 
quantifying the heterogeneous returns to agricultural technology adoption 
in other contexts (Foltz, Aldana, and Laris 2014; Michler et al. 2019; Zeitlin 
et al. 2010).

Our analysis circles back to an empirical question that has been studied 
for nearly 100 years: How do we evaluate the performance of animal genetics 
from observational data? We unite two divergent fields of study, economics 
and quantitative genetics, by bringing the insights and theory of economic 
analysis to the wealth of data on dairy animal performance and genetics 
and its associated modeling approaches. Returning to the basic structure of 
the HMM, we focus on estimating the effects of the genetic indices, PTAs, 
for production traits in dairy cattle and whether estimation suffers from 
selection bias. If  PTAs are affected by selection behavior, this indicates that 
part of dairy farm productivity usually attributed to genetic progress should 
also be attributed to farmer skill at matching genetics to their environments.

In the next section, we provide a theoretical framework for thinking about 
heterogeneous returns to dairy genetics and how their effect on productivity 
can be investigated using Wooldridge’s (2015) CRC model.
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2.3  Theory and Methodology

To begin, consider the case where choosing genetics is equivalent to choos-
ing to increase or decrease a single trait by purchasing a sire with a particular 
PTA value. Every sire can be described as a vector of PTA index values for 
various traits, and in this case, we can think of genetic selection as the choice 
of a vector of index values. In reality, choosing a sire is a discrete decision, 
as the farmer faces some choice set of  sires from various AI companies. 
We assume in what follows that the space of PTAs is “dense enough” that 
a farmer can choose any level of the trait they want from their choice set 
independently of other traits. We further assume this decision is only based 
on the trait itself  and not on the sire’s identity or on the AI company that 
is offering it for sale.

Studying adoption via a continuous variable is preferable to the discrete 
approach in this case because it is not known which sires are in the farmer’s 
choice set. There are more than 10,000 unique sires in our data, and many 
more are actually available to farmers. Future analysis of the space of sires 
may be able to find a reduced dimensionality representation suitable for 
discrete choice analysis. As a first attempt, we study only the adoption of 
the traits via the PTA index to be able to apply a wider range of econometric 
tools.

2.3.1  Theoretical Framing

The following simple model demonstrates the role of farm- and animal-
level heterogeneity in estimating the average returns to genetic investments 
via a continuous index. Unlike other input decisions, the decision to invest 
in genetics by choosing a certain sire happens three years before the animal 
starts producing. Assume that there is only one trait, z, which the producer 
has to choose three years before the cow begins production to maximize ex 
ante expected return:

maxz (z,x,v) wz,

where x and v are observable and unobservable management at the farm 
level,  is expected lifetime profit, and w is the price of purchasing one more 
unit of a trait.

In this model, the choice of z is only affected by farm-level heterogeneity, 
v and x. This is the level at which heterogeneity is usually analyzed based 
on the notion that management decisions operate at the level of an entire 
farm (Mundlak 1961; Suri 2011). What the above does not consider is that 
the characteristics of  the mate—that is, the animal that is bred with the 
sire—should also affect returns to z.

Call these unobserved animal-level characteristics u. We can modify the 
above model only slightly to show why these characteristics are important. 
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Instead of z affecting  directly, it operates indirectly through a transmission 
function f(z,u), which takes the traits of the father, or “sire” (z), and the traits 
of the mother, or “dam” (u), and maps to a new trait value, z′:

 maxz (z ,x,v) wz

s.t. z = f (z,u).

Now the optimal choice of  z depends on the current period price that is 
to be paid versus the expected increase in profit weighted by how well the 
trait transmits. Adding this transmission function implies that unobserved 
heterogeneity affecting the adoption of z operates at the farm and animal 
levels. This is an important distinction and departure from the assumptions 
of both economic and animal science models of the returns to adoption. 
Economic models of the effect of technology adoption consider heterogene-
ity at the firm or farm level due to the assumption that confounding variation 
is from management behavior affecting all plots and animals. Animal science 
models refer to confounding variation at the animal level as “preferential 
treatment” and generally only control for farm-level effects because the lit-
erature does not find substantive evidence of animal-level decision-making 
that would bias evaluations (Graham, Smith, and Gibson 1991; Tierney 
and Schaeffer 1994).

Despite the lack of attention in the literature, animal-level heterogeneity 
can play its own part in biasing evaluations. If  the manager observes com-
ponents of u that are unobserved in data, then he or she may invest z with 
animals where the return is highest. Our next step is to investigate how the 
existence of unobserved u will affect our empirical evaluations of the returns 
to z in a production function.

2.3.2  Empirical Model

In data, we observe farms j and cows i during time period t. The PTA 
value of the sire chosen for an animal, zij, is time invariant. Using the above 
framework, we assume that there are animal-level (uij) and farm-level (vj) 
“match quality” components that affect return to adoption of zij. Assume 
further that the total return is linearly separable, such that the total return 
is . Define this payoff as relative to some average expected return  so that 
uij and vj are the farm’s known deviation from this average, ij = uij + vj. The 
returns to zij for a given animal i and farm j are thus ij = + ij.

Heterogeneity in the production function manifests in the coefficients 
for zij :

yijt = ijzij + Xijt + ijt.

Assuming a constant slope to identify  has the following effect on the equa-
tion:
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 yijt = ( + ij)zij + Xijt + ijt

= zij + Xijt + ( ijzij + ijt)

= zij + Xijt + ijt.

Because ij is unobserved match quality, then ordinary least squares will 
not identify an unbiased . It is biased because the variable return to a trait 

ijzij is in the error term so that E(zij ξijt) ≠ 0. Instrumental variables will also 
not identify  because anything correlated with z must be correlated with ξ 
(Cornelissen et al. 2016).

Our identification strategy in this chapter uses instead the control function 
method and its specific approach to random coefficients, the CRC model. 
With this approach, we approximate input demand with a linear function 
of observed covariates plus an excluded variable and use the residual from 
the approximation to proxy for match quality in the production function. 
Wooldridge (2015) spells out two main conditions for the control function 
method to identify  and uncover heterogeneity in the effect of a trait. Defin-
ing ηij as the residual term from a linear approximation of trait demand for 
zij , the two conditions for the CRC model are as follows:

A1: E( ijt | ij) = ij

A2: E( ij | ij) = ij

These are both strict assumptions about how informative the residual 
ηij is in capturing bias and match quality. A1 is a standard assumption for 
control function methods and says that selection bias takes a particular 
form: the conditional expectation of unobserved components of output is 
linear in ηij . A2 says that the heterogeneous slope coefficient defined across 
cows must be proportional to the input demand residual ηij . The unobserved 
components to technology adoption must include ij if  the manager con-
siders their ex ante returns when choosing zij , but this assumption restricts 
their relationship to be proportional. Using A2, we can use ηij interacted 
with zij to proxy for an estimate of ij . Either of these assumptions can be 
relaxed to be nonlinear, but explicit functional forms must be given so that 
we know how to include η in the production function. In our analysis, we 
maintain the linear forms.

We also need an exogenous shifter of zij that is uncorrelated with εijt. Our 
instrument is the difference between the sire’s PTA at the time it was chosen 
and its PTA value at its next evaluation four months after the adoption date 
(t′): zij = zij

t zij.1 PTAs for every sire are updated by the Council on Dairy 
Cattle Breeding (CDCB) every four months using herd testing data from 

1. Special thanks to our discussant, Paul Scott, for this suggestion.
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around the country. The change in PTA from one evaluation to the next 
Δzij is linearly related to zij and so is a relevant predictor, but the size of the 
deviation has to do with the performance of the sire’s daughters all across 
the country. This deviation is likely unrelated to unobserved production εijt 
because it is based on the performance of other offspring of the sire before 
εijt is ever realized. It is also unlikely that the updates happening right after 
the use of the genetics will somehow influence future management of that 
offspring; if  this were the case, the PTA value of that sire at the time the off-
spring ij starts producing would be the more actionable information rather 
than the intermediate updates. For these reasons, we believe Δzij satisfies 
the exclusion restriction needed for an instrument. Our approach shares 
similarities to the control function approaches of  Levinsohn and Petrin 
(2003) and Olley and Pakes (1996), which also use dynamic input lags as an 
exogenous source of variation to identify production function parameters.

Using A1 and A2 and the instrument Δzij, we can adjust the production 
function for the bias resulting from heterogeneous returns. Defining ˆ ijt as 
the estimated residual from the first-stage input demand, we now write our 
empirical model as two equations:

 zij = 0 + zij + 0Xijt + ijt

yijt = 1 + zij + ˆ ijt + ˆ ijt zij + 1Xijt + ijt×

• yijt: dairy cow performance for butterfat/protein in a given lactation
• zij: value of  PTA butterfat/protein of  the sire chosen at the time of 

adoption
• Δzij: deviation in trait value in the next updated evaluation
• Xijt: time-varying management decisions affecting y (a full list can be 

found in appendix A)
• ηijt: input demand residual

Our main research question has to do with the parameters , ρ, and ψ.  
The hypothesis of “perfect transmission” of a trait is that  = 1, so a one-unit 
increase in PTA causes a one-unit increase in the offspring’s performance 
(Kearney et al. 2004). How much this parameter differs from one before 
and after our bias correction indicates whether unobserved management 
decisions affect the average return to a trait in our sample. If  ρ is statistically 
different than zero, this rejects the null hypothesis that the models with and 
without the correction are equivalent (Wooldridge 2015).

Finally, ψ indicates the relationship between match quality and returns 
to z. If  ψ > 0, then cows matched with a sire that has higher-than-expected 
PTA will also have a higher marginal return to PTA in their production 
function. This is consistent with the “positive assortative matching” story, 
which is that farmers adopt traits that work particularly well on their farms.
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2.3.3  Heterogeneity Distribution

An output of  the above model is an estimate of  μij, ˆ ij = + ˆ ijt .2 
Assuming our theoretical framework from before, this estimate contains 
both μij and vj. The farm-specific component vj has been the focus of most 
studies in economics and is controlled for in animal science using fixed effects 
(termed “contemporary groups” in the animal science literature). However, 
we may also be interested in how much of the distribution in returns is driven 
by the animal-specific component uij . If  there are heterogeneous returns at 
the animal level, then this means that the returns to the adoption of genet-
ics are diverse even within a given farm environment. It also implies that 
sire evaluation models using farm fixed effects do not completely control 
for confounding factors and that there is evidence of managers matching 
specific genetics to specific animals, which could bias estimates of the return 
to genetics.

After estimating the parameters , ρ, and ψ, we estimate the distribution 
ˆ ij using the CRC model with three different specifications: no fixed effects, 
herd fixed effects, and herd-by-time fixed effects. The first specification esti-
mates a distribution that contains both uij and vj, and the second nets out 
vj. The third specification mimics the fixed effects strategy of many genetic 
evaluation models, which use a herd fixed effect interacted with the time of 
the observation to soak up dynamic management decisions affecting the 
returns to genetics.

2.4  Data

As described above, the market for dairy sires makes heavy use of CDCB 
evaluations, which are calculated from DHI data. In addition to milk yield 
and somatic cell count, the DHI program tracks the number of times per 
day each cow is milked (usually two, sometimes three), their calving and 
birth dates, and their “lactation number” (the number of lactation cycles 
a cow has been through at a given point in time). Unfortunately, no other 
management decisions are observed. Our current data set covers DHI herds 
served by one dairy records processing center in the state of Wisconsin from 
June 2011 to January 2015, which is representative of about 40 percent of 
Wisconsin dairy herds. At the lactation level, there about 1 million lactation 
records for approximately 277,000 dairy cows on 1,500 dairy farms.

Because of the lack of management decisions observed in DHI data, the 
HMM includes in X a number of fixed effects to attempt to control for the 
confounding impact of management on genetics. In this model, we control 

2. Note that this is in contrast to HMM, which would assume a normal distribution for such 
an effect and center it at zero. We gain flexibility with the distribution of the coefficient only 
because we specify exactly what determines the distribution, which is the unobserved variation 
in input demand.
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for lactation length, lactation number, and proportion of lactation milked 
three times a day in our specification. This is also a “cohort” effect, which 
is an interaction between herd and test month, which is a herd-specific time 
trend. There are also biological factors such as birth year, calving month, 
and breed that are included as fixed effects. In addition to these controls, we 
also include prices such as the milk price, the ration cost, and the price of 
replacement heifers. In our main specification, we use only herd fixed effects 
but also estimate the model with herd-by-time effects as a robustness check 
when looking at relevant distributions.

Every cow that shows up in DHI data has an ID that connects back 
to a sire and associated evaluation available from the CDCB. The CDCB 
updates evaluations three times a year, and these PTA values are the ones 
that will appear to the farmer when choosing genetics. Sire evaluations are 
publicly available on the CDCB’s website and are reported by AI companies 
when selling sires. These evaluations are updated four times a year. Using 
the sire IDs in our data set, we recovered all available records of these sires 
throughout time and matched them to cow records. Thus for each cow in 
our data, we know the PTA value of its parent sire at the time the choice of 
sire was made. The “time they were chosen” is calculated as 10 months prior 
to the cow’s birth date to account for the gestation period of a dairy cow. 
Our data set contains more than 7,000 unique dairy sires matched to our  
1 million lactation records.

We use the folowing prive covariates in our model. For ouput and input 
price, we use “income over feed cost,” a relationship between milk price and 
ration cost determined by the 2006 farm bill. We also include the price of 
16 percent dairy ration as an additional proxy for feed cost. Finally, we 
include the cost of replacement, which we calculate as the beef price per 
pound times 1,400, the typical weight of a dairy cow, minus the cost of a 
replacement heifer.

In addition to issues discussed thus far, the analysis of dairy cow lacta-
tion records is complicated by survival bias for cows on their second lacta-
tion onward. Managers may remove cows from their herd if  they do not 
meet some threshold of production during the first lactation. This selection 
issue is discussed in detail in Henderson (1975), and often lactation records 
of cows past lactation one are not used in sire evaluations for this reason. 
Keeping this in mind, we implement practices commonly followed in dairy 

Table 2.1 Records description

Herds 1,459
Sires 7,628
Dairy cows 277,695
Number of lactations 424,910

 Lactation records  1,065,308  
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science literature when analyzing lactation data. We do not consider cows 
that are lactation six or higher (about .1 percent of the data), and we analyze 
“primiparous” (first lactation) cows separately from “multiparous” cows. 
Primiparous cows should not be subject to survival bias, while multiparous 
cows are a subset of the first group that was not culled. It should be the 
case that multiparous cows are more subject to the management bias we 
discuss, and we analyze this group separately to see how our bias correction 
works differently in this subset. If  bias is severe in multiparous cows, this 
suggests an interaction between the behavior affecting genetic selection and 
the behavior affecting culling decisions.

Using our matched data, we graph the kernel densities of  PTA values 
for butterfat and protein chosen in this sample with dotted lines indicating 
their average. Recall that the HMM used to produce PTA measures fixes the 
distribution to be normal with a mean of zero for the relevant population. 
The densities are not centered at zero and are not symmetric; both densities 
have very long left tails, which shift averages to the left.

This does not give any indication of at what level the selection is occurring, 
however. For example, do farmers simply choose the same PTA value for all 
their animals in a month? At what level is there variation in the chosen traits? 
A quick calculation of within-group sum of squares can shed light on how 
variable each selected trait is within a given herd versus between herds. For 
example, if  a farmer simply chooses the same trait value for all his or her 
cows, then the sum of squares within herds should be zero. The farmer may 
choose the same trait in all time periods or, within a certain month, choose 
the same value for all cows. The difference between herd-month and herd 
essentially approximates the importance of  time-variant factors, such as 
prices and other economic factors. We calculate the ratio between the within 

Table 2.2 Covariate description

   Mean  SD  

Continuous variables   
PTA fat 28.79 27.12 
PTA protein 21.46 20.48 
Proportion milked 3× 0.58 0.49 
Lactation length 310.44 23.48 
Herd size 157.35 232.99
Binary variables (%)   

Lactation number   
1st 45.73  
2nd 28.71  
3rd 15.35  
4th 7.34  

 5th  2.87    
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sum of squares for these two groups (herd-adoption month and herd) and 
the total sum of squares.3

The proportion of  the sum of squares total explained by within-herd 
variation in choices of both traits is quite large: about 80 percent for herd-
adoption month and around 95 percent for herd. This is evidence that the 
largest amount of variation in trait choices is within a herd and not between 
herds, or a large variation at the cow level. This is not consistent with a model 
where heterogeneity in selection behavior is driven at the herd level. Given 
this indicative evidence, we proceed to our empirical model to explore the 
impact of this heterogeneity in selection on the average return to high-yield 
genetics.

2.5  Results

We study the traits protein and butterfat, which are the components of 
milk that are most important to profitability for dairy farmers in Wisconsin. 
The PTA index is in units of pounds of fat and protein and represents the 

3. Calculated as g=1
G

i=1
I (yig yg)2 / g=1

G
i=1
I (yig y)2, where G is either herd groups or herd 

adoption month group.

Fig. 2.1 Distributions of PTAs in the data

Table 2.3 Proportion of SST explained

   PTA fat  PTA protein  

Herd 0.954920 0.955163 
 Herd by time 0.811062  0.797823  
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expected increase in yield of a dairy cow using the given sire relative to a 
base sire (whose PTA is zero). Specifically, they are predictions of a statistical 
model, the HMM, which are interpreted as the increase in fat or protein for 
the specific sire that is chosen. Since the outcome yijt is measured in the same 
units as PTA, if   = 1, then increases in sire ability correspond one-to-one 
with increases in the offspring’s ability.

For each trait, we estimate several different specifications to examine how 
the coefficient on z changes with different corrections. We estimate ordinary 
least squares (OLS), OLS with herd fixed effects, two-stage least squares, 
two-stage least squares with herd fixed effects, and correlated random coef-
ficients (i.e., including ˆ ijt and ˆ ijt × zij

 as regressors in a fixed effects regres-
sion). If  heterogeneity is only at the herd level, then according to Wooldridge 
(2005), herd fixed effects alone should identify the average treatment effect. 
Including the control function terms (ˆ ijt and ˆ ijt × zij

) in the fixed effects 
model identifies the heterogeneity within herds specifically, so the difference 
between these specifications provides evidence regarding the importance of 
cow heterogeneity in determining the average effect.

Finally, noting that the marginal benefit of a trait is given by

 ˆ ijt = + ˆ ˆ ijt,

we can graph the resulting distribution to examine the variability of returns 
across the entire sample. In each specification, we analyze three samples 
based on the lactation year: all lactations, first lactations, and later lacta-
tions. The first-lactation cows are studied separately because they are not 
subject to survival bias, as later-lactation cows possibly are. Estimates of the 
first stage of the model from which the input demand residual is calculated 
are presented in appendix B. Standard errors are calculated clustered at the 
herd level and cluster bootstrapped for the CRC model.

2.5.1  Fat

For both OLS and fixed effects, the average return to increasing the but-
terfat of a sire is positive and different than 0. It is around 0.6, meaning a 
one-unit increase in a pound of PTA causes a 0.6-pound increase in off-
spring. The correction, however, attenuates the effect toward 0 by a large 
amount. When using instrumental variables and a constant coefficient on 
zij, the coefficient is near 0, implying that the correction takes away most of 
the productivity gain that would otherwise be (mis)attributed to the choice 
of PTA. The average effect identified in the CRC model is higher, about 0.14, 
with a positive and significant ρ (meaning there was significant selection bias 
in the OLS specification). The CRC specification also tells us that cows with 
a higher than predicted amount of the trait have a higher marginal return to 
the trait—that is, ψ > 0. At all levels, we reject the hypothesis that ρ = ψ = 0, 
which indicates that the model with the correction is statistically different 
than the model without it. This suggests that the instrument was necessary 
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to correct the estimates for endogeneity. These results imply that the average 
effect of investing in high-fat genetics is reduced by 75 percent after taking 
into account confounding factors. More than half  of the return to PTA fat 
is explained by unobserved confounding variables.

Table 2.5 shows a similar pattern to the whole sample and further indicates 
large differences in first- and later-lactation cows for average returns. There 
is strong evidence of selection behavior that affects the returns to genetics, as 
the average return for first-lactation cows is half  that of later-lactation cows. 
If  this difference is generated by culling, it indicates that farmers cull cows in 
their first lactation that have low marginal return to the high-yield genetics.

2.5.2  Protein

Similar to fat, the average returns to protein are much lower when account-
ing for confounding factors. Using simple OLS, the return to protein is 0.427 
and indistinguishable from 0 when using instrumental variables. Using the 
CRC model, the effect is different than 0 but is less than half  of the OLS 

Table 2.4 All lactations

OLS FE IV IV + FE CRC + FE
  (1)  (2)  (3)  (4)  (5)

PTA fat 0.604*** 0.544*** 0.0325** 0.0355*** 0.149*** 
(0.0321) (0.0134) (0.00723) (0.00434) (0.0083) 

ˆ      0.563*** 
    (0.0236) 

ˆ  × PTA fat     0.0066*** 

N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308
Adj. R2  0.351  0.562  0.345  0.557  0.564 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 2.5 Across lactation cows

All
First 

lactation
Later 

lactation
   (1)  (2)  (3)  

PTA fat 0.14933*** 0.10593*** 0.19799*** 
(0.00827) (0.00829) (0.01303) 

ˆ 0.56271*** 0.53914*** 0.58808*** 
(0.02364) (0.02447) (0.03091) 

ˆ  × PTA fat 0.00662*** 0.00602*** 0.00724*** 
(0.00037) (0.00042) (0.00044) 

N 1,065,308 511,446 553,859 
 Adj. R2  0.564  0.537  0.514  

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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coefficient when controlling for confounding factors: the estimate changes 
from 0.43 to 0.18. The direction of ψ suggests positive assortative match-
ing for the adoption of high-protein genetics, just as for high-fat genetics. 
When looking at different lactations, there is less evidence of culling based 
on returns to protein. There are slightly lower returns for first-lactation cows 
than later-lactation cows, but it is a much smaller difference compared to 
the differences for fat.

2.5.3  Distributions

Here we estimate the resulting distributions from the CRC specification, 
ˆ ijt = + ˆ ˆ ijt . Figure 2.2 shows the distribution of returns across all lacta-
tions for fat and protein. Figure 2.3 shows the distributions of both traits 
across different lactations and across different levels of fixed effects. In addi-
tion to using herd fixed effects, we also include a combination of three fixed 
effects for herd, test month, and calving month. The product of these three 
indicator variables is typically referred to as a “contemporary group effect” 

Table 2.6 All lactations

OLS FE IV IV + FE CRC + FE
  (1)  (2)  (3)  (4)  (5)

PTA protein 0.427*** 0.358*** 0.00883 0.0165*** 0.21724 *** 
(0.0343) (0.0109) (0.00603) (0.00381) (0.011) 

ˆ ijt     0.25252*** 
    (0.0102) 

ˆ ijt × PTA protein     0.00983*** 

N 1,065,308 1,065,308 1,065,308 1,065,308 1,065,308 
Adj. R2  0.451  0.669  0.448  0.667  0.671 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 2.7 Across lactation cows

All
First 

lactation
Later 

lactation
   (1)  (2)  (3)  

PTA protein 0.21724*** 0.19005*** 0.23834*** 
(0.011) (0.01104) (0.0134) 

ˆ 0.25252*** 0.2472*** 0.26652*** 
(0.02248) (0.02271) (0.02875) 

ˆ  × PTA protein 0.00983*** 0.00997*** 0.00972*** 
(0.00041) (0.00042) (0.0005) 

N 1,065,308 511,446 553,859 
 Adj. R2  0.671  0.632  0.622  

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Fig. 2.2 Distributions of returns

Fig. 2.3 Fat and protein distributions
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in a genetic evaluation model. Table 2.8 shows the means and standard 
deviations of all of the distributions.

While different in their average effect, both traits have about the same 
standard deviation. For fat, a part of the distribution actually has a neg-
ative coefficient for adoption. For that farm or animal, the returns from 
adopting the technology may in fact be negative because of a combination 
of management environment and unobserved animal-level factors. In this 
case, however, it is hard to justify why increasing a trait in one parent would 
actually decrease that same trait in the offspring. The reason for this may be 
that high-fat or high-protein genetics are correlated with another trait that 
may negatively affect milk production in certain environments. We made 

Fig. 2.3 (cont.)
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the assumption that traits could be chosen independent of  one another, 
but in reality, traits have genetic correlations. For example, high milk yield 
and health are negatively correlated, so increasing production traits could 
negatively impact health, causing a decrease in phenotypic yield. A more 
advanced model of adoption would need to find a way to model their adop-
tion together and explicitly include these correlations as part of the choice 
problem.

Figure 2.3 shows the differences in returns across lactations and across 
different fixed effects specifications. The distributions across lactations sup-
port the results in tables 2.5 and 2.7. The goal of using different fixed effects 
specifications was to look at the effects of parsing out herd-level unobserved 
factors vj versus animal-level unobserved factors uij from the distribution 
ˆ ij. Without any fixed effects, the effect sizes are 0.17 and 0.25 for fat and 
protein, respectively. After netting out time-invariant herd effects, the effect 
sizes drop to 0.15 and 0.218. Finally, when netting out all herd-level varia-
tion using herd-by-time effects, the effect sizes drop to 0.132 and 0.187. The 
resulting distributions are entirely generated by variation in input demand 
at the animal level, meaning dairy farm managers observe animal-level 
returns that they use to choose genetics. These results imply that, on aver-
age, these returns make up 77 percent and 75 percent of the variable returns 
to investment in high-yield genetics. A sizable portion of the selection pro-
cess, therefore, appears to happen at the level of animals rather than at the 
level of farms.

2.6  Discussion and Conclusion

We examine the effect of economic selection behavior on the returns to the 
adoption of genetic technology for dairy farms in Wisconsin. Previous lit-
erature has attributed a large amount of productivity growth on dairy farms 
to improvements in genetics without considering the possibility that traits 
are selected into environments because of unobserved (to the researcher) 

Table 2.8 Distributions of marginal returns

Fat Protein

  Mean  Std. dev  Mean  Std. dev

All lactations 0.150 0.151 0.218 0.164 
First lactations 0.106 0.133 0.191 0.161 
Later lactations 0.199 0.168 0.239 0.166 
No fixed effects 0.170 0.185 0.249 0.197 
Herd fixed effects 0.150 0.151 0.218 0.164 
Herd-by-time fixed effects 0.132  0.146  0.187  0.158 
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farm- or animal-specific returns to a given trait. Using the theoretical frame-
work of the Roy model, we argue that farm- and animal-level heterogene-
ity may bias estimates in the returns to genetic traits such as butterfat and 
protein through the selection process. We use herd testing association data 
on dairy cows and the evaluations of their sires at the time they were chosen 
to estimate a CRC model. Our approach permits us to examine the effects 
of correcting for bias when estimating the impact of genetic improvement 
on productivity, the effect of selection behavior as a source of heterogene-
ity in returns to traits, and the relative importance of cow-level heterogeneity 
versus farm-level heterogeneity.

We find that correcting for selection bias lowers the estimated contribu-
tion of genetic improvement to productivity differences across cows by an 
average of 50 percent. We estimate average returns to adopting genetics with 
1 more pound of fat or protein to be about 0.6 pounds and 0.4 pounds before 
the correction and 0.15 pounds and 0.2 pounds after correction for selection 
bias. Our model also indicates positive assortative matching, meaning farms 
with the highest return to adopting a given set of traits are the ones that 
adopt, giving credence to the upward bias in the coefficients. We also find 
that first-lactation cows have the lowest average return to high-yield genet-
ics, indicating that farmers tend to cull cows with lower-than-expected ex 
post marginal return to the traits. Analyzing the distributions of returns, we 
find that up to 75 percent of the heterogeneity in returns generated from the 
input demand residual were at the animal level instead of the farm level. This 
implies that the factors confounding the returns to genetics are also at the 
animal level; cows with different trait investments are managed differently 
in ways that are not controlled for using farm-level fixed effects.

This study has several limitations that should be addressed in future work. 
First, we model trait adoption as though each trait could be chosen inde-
pendent of other traits. This may not be a reasonable assumption given the 
extent to which traits are correlated with one another. Accounting for this 
possibility would require using a system of equations with cross-equation 
restrictions limiting trait-selection possibilities to those that are feasible 
given relevant empirical context. Such a model might be able to explain why 
there are negative returns to high-yield genetics for some animals and farms. 
Second, we treat trait investment as continuous even though farms choose 
sires discretely. This assumes that the trait values are dense enough to treat 
the variable as continuous, whereas the adoption decision is discrete over a 
choice set of individual bulls. One way to model this as a discrete problem 
while also taking into account correlations between traits would be to use 
a lower dimensionality representation of sires determined from the data. 
Unsupervised machine learning methods such as K-means clustering could 
be used to characterize an implied grouping of sires that have certain traits 
in common. The problem of choosing traits would then become one of 
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choosing a basket of traits represented by a certain grouping of bulls. The 
matching decision itself  also needs further elaboration. In future work, we 
hope to turn our attention to data on breeding decisions where we have addi-
tional data that may permit a more detailed investigation of the selection 
decision. We also aim to develop a more sophisticated modeling approach 
that will take into account that farmers select a portfolio of traits rather 
than choosing one at a time.

Despite these shortcomings, our results point to new possibilities for 
studying technology adoption and suggest the need for a reinterpretation 
of and further research on the expansive literature that examines the contri-
bution of genetic progress to productivity growth in the dairy sector. For the 
economics field tackling technology adoption, animal-level heterogeneity 
is important and should not be overlooked. Appendix B contains the first-
stage results of the model, which show that cows with higher trait investment 
are milked more frequently and survive to more lactations. If  such behavior 
happens at the animal level, it is important to take this into account when 
thinking of  sources of  farm productivity that farmers may act on in the 
context of  the Roy model. Previous studies of  farm productivity usually 
identify “unobserved” returns at the farm level, and for this reason, many 
papers studying dairy farms or animal operations sum production to the 
herd level. This assumption also suggests a reevaluation of extension pro-
gramming developed to advise farmers about herd-level management. Our 
work shows that a large amount of the heterogeneity in returns is driven by 
animal-level variation, meaning there are ample opportunities to increase 
productivity by emphasizing management on this level. Agricultural data 
are becoming more granular, and there is no doubt there will be increasing 
opportunities for economics research to take selection of genetics by farm-
ers into account. We consider only animal agriculture, where every animal 
must be bred, but the approach we develop here may also be used at some 
scale in crop agriculture.

Overall, we find that selection behavior biases estimates of the effect that 
genetic improvement alone has on productivity growth. An important com-
ponent of productivity change depends on farmers choosing genetics that 
work particularly well in conditions that are idiosyncratic to their individual 
farming operations. This changes the narrative regarding the source of farm 
productivity in the dairy industry from one where science alone is the source 
of gains from new technology to one where growth is the result of comple-
mentary inputs provided by farmers and scientists. Indeed, the success of 
the dairy industry thus far depends on collaboration among farmers and 
scientists via institutions often taken for granted, such as the DHI program, 
land grant universities, and a variety of industry collaborators (represented 
collectively by the CDCB). The interplay among these organizations and 
the remarkable record of  success (as measured by productivity growth) 

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



102    Jared Hutchins, Brent Hueth, and Guilherme Rosa

they have achieved make the dairy industry a unique model of research and 
innovation in agriculture that merits further analysis and critique in the 
economics field.

Appendix A

Regression Controls

To select controls for the animal equation, we draw on the animal science 
literature to inform controls we include in the model.

The vector Xijt contains the following variables:

• Economic Controls
- cost of 16 percent dairy ration
- income over feed cost
- replacement cost (beef price $/lb × 1,400 − cost of replacement heifer)
- time trend

• Biological Controls
- calving month (indicator)
- test month (indicator)
- birth year (indicator)
- lactation number (indicator)
- Holstein (indicator)

• Management Controls
- proportion of lactation milked three times a day
- herd size (deviations from average)
- lactation length (days in milk of record)

Appendix B

First-Stage Estimates

The first-stage equation for our model uses past variation in a sire’s evalua-
tion, which occurs at the national level as a source of exogenous variation:

zij = 0 j + zij + 0Xijt + ijt.

While this prediction is time invariant (the selection occurs only once), the 
residual ηijt will still be time variant because of the term Xijt. Due to the pres-
ence of Xijt, the first stage essentially treats the same cow at different points 
in time as entirely separate cows who happen to have the same values of zij. 
This means that when we examine the PTA investment for one cow at two 
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different lactations, it essentially treats these as two adoption decisions; by 
deciding to let the animal keep producing, the manager implicitly adopts the 
genetics again. This is not necessarily problematic, but we must estimate the 
model on these surviving animals separately to understand how the culling 
decision interacts with the adoption of genetics.

One implication of this approach is that the first stage will help us under-
stand the trait investments for animals that survive. Table 2.9 shows the 
results of the first stage and the coefficients on animal-level variables. Both 
OLS and fixed effects are shown to get a sense of what level of variation is 
important. For example, both lactation length and lactation number are 
significant in predicting z, which implies that cows that have a larger trait 
investment are milked longer and are more likely to not be culled in their 
first year. Milking the cow three times per day is significant in the OLS 
specification but not in the fixed effects, implying that farms that choose 
higher investments in production traits also milk more intensively at the herd 
level. Holstein cows are also most likely to have the highest investment in 
production traits, which is to be expected given their comparative advantage 
in high-volume production.

Differences across production traits are mostly seen in the culling deci-

Table 2.9 First stage regression

PTA fat PTA protein

  OLS  FE  OLS  FE

Δzij 0.499*** 0.500*** 0.495*** 0.496*** 
(0.000648) (0.000613) (0.000550) (0.000514) 

Lactation no. = 2 1.589*** 0.368* 1.793*** 0.954*** 
(0.265) (0.207) (0.193) (0.157) 

Lactation no. = 3 2.220*** −0.195 2.789*** 1.132*** 
(0.519) (0.409) (0.376) (0.310) 

Lactation no. = 4 3.164*** −0.393 3.675*** 1.254*** 
(0.766) (0.594) (0.569) (0.461) 

Lactation no. = 5 3.839*** −0.787 4.718*** 1.610*** 
(0.999) (0.786) (0.746) (0.605) 

Proportion milked 3× 1.528*** −0.310 1.210*** −0.0692 
(0.481) (0.687) (0.351) (0.382) 

Herd size 0.0000154 −0.000717 −0.0000608 −0.000657 
(0.000258) (0.000572) (0.000198) (0.000519) 

Lactation length (days) 0.00640*** 0.00561*** 0.00559*** 0.00522*** 
(0.00108) (0.000913) (0.000781) (0.000678) 

Holstein 1.475 3.191*** 3.260*** 2.707*** 
(1.475) (0.561) (0.791) (0.656) 

Observations 1,641,022 1,641,022 1,641,022 1,641,022 
Adjusted R2  0.249  0.303  0.281  0.333 

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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sion. Without herd fixed effects, cows that are kept past the first lactation 
have higher trait investment for both fat and protein. Once herd fixed effects 
are used, fewer differences are seen across lactations considering only ani-
mal-level variation. For fat, only second-lactation cows have marginally 
more fat investment than first-lactation cows. For protein, all later-lactation 
cows have higher investments in protein (on the order of one pound more). 
One thing that can be learned from these results is that adoption and other 
management decisions are inextricably linked. Specifically, cows that have a 
high PTA investment are more likely to be kept, milked longer, and milked 
more intensively.
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3.1  Introduction

The advent of commercially viable hybrid corn seeds in the 1930s pre-
ceded a rapid rise in US corn yields over the rest of the 20th century. This 
technology spread and quickly replaced the once predominant open- 
pollinated seed varieties grown in the United States. Zvi Griliches’s (1957) 
pathbreaking work used the example of hybrid corn seeds to explain pat-
terns in technological diffusion. Griliches hypothesized that hybrid seeds 
had a fixed productivity advantage over open-pollinated seeds and increased 
the potential yield ceiling of  corns. Hybrid corn adoption started where 
(open-pollinated) yields were initially higher, and adoption patterns radiated 
out from these areas. Other observers including Culver and Hyde (2001) and 
Sutch (2008, 2011) claim that hybrid corn seeds performed better relative to 
open- pollinated seeds principally during conditions of drought. Academic 
research, however, has not determined to what extent hybrid seeds mitigated 
the effects of drought and heat stress (temperatures generally associated with 
reductions in corn yields and drought-like conditions).1 Using uncovered 

1. For corn, daily temperature averages in excess of 29°C are associated with reductions in 
corn yields (Schlenker and Roberts 2009; Schauberger et al. 2017). We also use drought mea-
sures as reported in the Palmer drought severity index (PDSI) as a measure of weather stress. 
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archival records, we study how prolonged periods of abnormal temperatures 
and dryness affected yields for the two types of corn seed. We use both vari-
ables denoting drought and deviations in agronomic measures of growing 
degree days (GDDs).

The work of economic historians entails the development and rediscovery 
of novel data sources. Such archival resources contain reams of informa-
tive records with granular details that are not available in official digitally 
curated publications. Through archival work, economic historians can 
answer otherwise unanswerable questions. In our efforts to understand the 
hybrid diffusion story, we have located, digitized, and organized a treasure 
trove of unpublished manuscripts reporting on hybrid corn diffusion and 
performance at a more granular geographic level than is available in US 
Department of Agriculture (USDA) publications. Using unpublished docu-
ments contained in Zvi Griliches’s personal manuscripts and field trial data 
buried in obscure Iowa experimental station reports, we construct a panel of 
hybrid and open-pollinated corn yields. With these records, we can ascertain 
whether hybrid seeds exhibited drought tolerance or if  Griliches’s assump-
tion that hybrid seeds increased the yield potential overall were correct.

Understanding the relative performance of  hybrid versus open-polli-
nated corn seeds during periods of  drought informs our understanding 
of the mechanisms driving the diffusion of the new technology. The Pio-
neer Hi-Bred Corn Company introduced the first successful commercial 
hybrid corn seeds in the early 1930s during a period of extreme farm dis-
tress, historically low commodity prices, and adverse weather conditions. 
While hybrid seeds cost two to three times more than their open-pollinated 
counterparts, they quickly replaced open-pollinated corns. If  hybrid corns 
exhibited drought tolerance, then those traits could explain the rapid dif-
fusion of hybrid seed technology in response to the distress caused by the 
Dust Bowl droughts of the 1930s (Dowell and Jesness 1939; Crabb 1947).

Past research studying hybrid corn adoption starts with the pathbreak-
ing work of  Zvi Griliches (1957, 1958, 1960, 1980). Griliches’s analyses 
posited that the profitability of  the new seed technology, as captured by 
expected yield improvements, drove adoption. Even though hybrid seeds 
diffused across the Corn Belt and Great Plains during a period of extreme 
drought, Griliches did not investigate the effect of  weather on adoption. 
In his preferred specification, Griliches assumed that the new hybrids were 
superior to the existing open-pollinated varieties by a multiple that did not 
vary significantly over time, across regions, or over weather conditions.

More recent research contests Griliches’s account and suggests that 
drought shocks in 1934 and 1936 accelerated hybrid adoption (Culver 

The PDSI captures drought-like conditions over multiple months due to excess temperatures 
and water deficits. The PDSI is strongly correlated with measures of soil moisture (Dai and 
NCAR 2019).
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and Hyde 2001; Sutch 2008, 2011). Richard Sutch notes that hybrid seeds 
remained relatively expensive during the 1930s—a period of historically low 
commodity prices—and that the geographic pattern of hybrid corn diffu-
sion shows a dependence on local weather conditions. Narrative evidence 
adds further support. To cite one example, a New York Times headline read 
in 1940, “50% of Corn Crop in Hybrid Species . . . Agricultural Marketing 
Service Lays Its Popularity to Drought Resistance.”2 Indeed, Sutch (2008, 
2011) highlights the USDA’s role in promoting the adoption of hybrid seed 
technology and argues that hybrid corn’s tolerance to drought conditions 
made the technology more salient for farmers. The economic stress of the 
Great Depression and extreme droughts of  the 1930s eroded the wealth 
of farmers. One would expect slower hybrid adoption under such circum-
stances. Richard Hornbeck (2012) finds that many of the adaptive responses 
to the Dust Bowl were relatively slow. In comparison, from 1931 onward, 
US farmers rapidly adopted hybrid corn. This turn toward hybrids may 
have mitigated some of the adverse effects of the Dust Bowl. Switching to 
hybrids was costly. Nevertheless, the varieties produced by hybrid breeders 
promised beneficial qualities, including higher yields, shortened the time 
to maturity, stronger root systems, thicker stalks, disease resistance, and 
drought tolerance.

3.2  Factors Driving Hybrid Adoption and the (Potential) Yield Advantage 
of Hybrid Corn Seeds

The story of hybrid corn has been told many times (Crabb 1947; Fitzger-
ald 1990; Kloppenburg 1988; Olmstead and Rhode 2008). For economists, 
the starting point is Griliches (1957). In his seminal article, Griliches ana-
lyzed this “invention of a way to invent” and mapped estimated parameters 
of  the diffusion process into economic variables of  supply and demand. 
He viewed the diffusion process as primarily a shift between two equilibria 
over time rather than as a shift of equilibria. He fit logistic curves to annual 
diffusion data for states and crop reporting districts, reducing the differ-
ences across regions to differences in three parameters: origins, slopes, and 
ceilings.3 The origin represented the year (relative to 1940) when diffusion 
in an area crossed the 10 percent adoption threshold. Griliches related the 
origin date to the “availability” of hybrid seed—and more specifically, to 

2. “50% of Corn Crop in Hybrid Species . . . Agricultural Marketing Service Lays Its Popu-
larity to Drought Resistance,” New York Times, September 10, 1940. The text noted the hybrid’s 
advantages of both drought resistance and higher yields.

3. The analysis covered 31 (out of 48) states and 132 (out of 249) crop reporting districts 
(CRDs) in the period up to 1956. The USDA’s Agricultural Marketing Service (ASM) made 
available unpublished data for the CRDs. Griliches restricted his analysis to observations 
between 0.05 and 0.95 of his estimated ceiling level, K. The ceiling was estimated in an admit-
tedly ad hoc way by picking the K that makes the resulting diffusion curves plotted on logistic 
graph paper look linear.
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supply-side forces, including the profitability of seed producers, the cost of 
innovation, and the potential market density. He related the slope (or speed 
of  diffusion) and the ceiling levels to demand-side forces, specifically to 
the profitability to farmers of using the new seed. Griliches found that the 
estimated speed of adoption was rather uniform but declined as one moved 
away from the center of the Corn Belt. The origin date and ceiling level also 
declined with distance from the center.

Griliches (1957) argued the diffusion process could be interpreted in a way 
that was consistent with rational, long-run, profit-seeking behavior by seed 
producers and farmers. He made no reference to adverse weather shocks 
or the drought-resistance qualities of  hybrid varieties.4 According to his 
preferred specification, hybrids promised a time- and region-invariant yield 
increase—in the range of  10–15 percent—over existing open-pollinated 
varieties. He further argued that including the changing advantages of the 
new seed, the prices of corn output, or the prices of hybrid seed would add 
“nothing of significance” to the explanation of the diffusion process.5

Griliches (1957) tabulated but did not use USDA data on the prices (per 
bushel) of hybrid and open-pollinated seed by state (box 59).6 He argued 
that the hybrid seed prices did not vary significantly across space and could 
be ignored in his analysis of the rate of diffusion (which was modeled as a 
transition between two equilibria). His treatment of hybrid seed prices is 
problematic for several reasons. The leading seed companies, especially in 
the early periods, possessed some market power to set hybrid prices. The 
farmer’s adoption decision relied not on the hybrid corn price alone but on 
the hybrid seed price relative to other prices—for example, the price of open-
pollinated seed. In figure 3.1, the average price of hybrid seed at the state 
level is approximately 2 to 3 times greater than the average price of open-
pollinated seed. Over the 1937–57 period, the coefficient of variation of the 
price of hybrid seed across states averaged approximately 10 percent. The 
coefficient of variations of the ratio of hybrid to open-pollinated seed was 
substantially higher, averaging 16 percent. Griliches also ignored changes 
over time. In the late 1930s, hybrid seed cost about 3.5 times as much as 
open-pollinated seed. By the mid-1950s, the ratio had fallen roughly in half, 
to about 1.8 times. Griliches tabulated but did not use state-level data on 
seeding rates (box 59).7 Again, he argued the cross-state variation was neg-
ligible. The coefficient of variation of seeding rates in bushels per acre was 
around 18.7 percent.

4. Although weather conditions clearly affected the “availability” of seed on the supply side 
and the drought-resistance qualities of new seed impacted the farmer profitability and “accep-
tance” on the demand side, Griliches does not mention weather effects in the text of his work.

5. It should be noted that in the mid-1950s, Griliches did not have access to low-cost comput-
ing power to conduct his econometric analysis. His records show calculations made by hand. 
This helps explain why he sought such parsimonious specification. 

6. Griliches relied on a USDA publication entitled “Seed Crops.” These data are essentially 
the same as in USDA (1963).

7. These data were based on USDA (1945, 1949, 1950).
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Griliches’s pathbreaking work inspired a vigorous scholarly response (see 
Skinner and Staiger 2007). Sutch (2008, 2011) revisited the early diffusion 
of  hybrid corn, emphasizing the role of  adverse weather shocks.8 Sutch 
(2008) argued that marketing campaigns and drought stresses (and the 1936 
drought in particular) caused farmers to make the costly switch from open-
pollinated to hybrid corns. The use of commercial hybrid seed reduced the 
self-sufficiency of farmers at a time of severe market stress, plausibly increas-
ing risk. Sutch asserted that the early hybrid varieties were not inherently 
superior to available open-pollinated seeds and that farmers were rightly 
slow to adopt the expensive seeds in the late 1920s and early 1930s. Sutch 
(2008, 11) wrote, “During the Depression hybrid seed was selling in Iowa 
for $6.00 a bushel. Since a bushel of seed would plant two acres, a farmer 
would have to expect a financial gain of $3.00 an acre to be tempted to pay 
full price. Expecting no more than 32 cents per bushel for the crop when 
sold, the advantage of hybrid seed would have had to approach 9 bushels 
per acre, not the 4–6 seen in the Iowa field tests.”9

Sutch (2008) argued the adverse weather shocks of  the mid-1930s, in 

8. Rural sociologists Bruce Ryan and N. C. Gross (1943, 1950) had conducted an earlier study 
of how Iowa farmers learned about hybrid technologies and how peer effects influenced their 
adoption decisions. They found that younger and more educated farmers adopted hybrids more 
readily than older or less educated farmers. They also highlighted the importance of drought 
conditions on early adoption.

9. Sutch (2008) noted that commodity prices were low and seed was expensive. His analysis 
did not mention that seed prices were endogenous, set according to market conditions. Nor did 
he address the subsidies hybrid seed producers gave farmers to adopt hybrids. One strategy seed 
sellers used to promote adoption was to initially offer farmers enough hybrid seed to plant half  
a field and take payment as the difference in yields at the end of the growing season. 

Fig. 3.1 Nominal prices ($) of open-pollinated (OP) and hybrid corn seeds
Sources: Pioneer Company Archives; USDA (1963). Prices paid by farmers for seed: spring 
season averages, 1926–61: September 15, 1949–61, prices by states and the United States. 
Statistical Bulletin No. 328 (Washington, DC: GPO).
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combination with an intense USDA propaganda campaign, convinced 
midwestern farmers to adopt the new seed. He noted the conflict of  inter-
est that hybrid pioneer Henry A. Wallace faced serving as USDA secre-
tary while retaining ownership of Pioneer Hybrid.10 Other observers in the 
1930s, including the Chicago Tribune, were even more critical, arguing the 
yield-enhancing seed increased crop output at the very time that federal 
farm programs, run by Wallace, sought to reduce output through acreage 
restrictions.

Narrative evidence suggests that farmers readily noticed that hybrid corn 
coped with the dry conditions better than open-pollinated corn planted 
nearby. As one farmer put it, in these very bad years, the hybrid corn was 
the last to die (Urban 1975). Singling out the 1936 Dust Bowl drought, 
Sutch (2011) performed an analysis of hybrid diffusion on state-level data 
in the Corn Belt in the 1930s and argued that the 1936 drought hastened 
the adoption of hybrids through learning effects. Sutch was hampered by 
the lack of comprehensive, geographically decentralized data. He was able 
to identify records on hybrid and open-pollinated seed productivity only 
from Iowa. With our new data (or more accurately, newly recovered old 
data), we seek to address these issues afresh and study hybrid performance 
from the late 1920s through the 1950s.11 Combining our data sources allows 
us to construct a panel of hybrid corn yields, open-pollinated yields, yield 
differences, hybrid adoption rates, temperature exposure, and precipitation 
at the crop reporting district (CRD) and year levels for the regions where 
hybrid seeds first diffused.12

3.3  Building Our New Panel Data Set

3.3.1  Data on Hybrid Corn Adoption

The hybrid corn adoption data used in this research project come from 
unpublished USDA data and notes contained in Zvi Griliches’s archival 
collection held at the Special Collections Library at Harvard University.13 
These data, on the percentage of maize acreage planted in hybrid seed, are 
available at the level of the CRD. These detailed records—drawn from a grid 
of roughly nine entries per state—are based on unpublished data from the 
USDA’s Agricultural Marketing Service (AMS). We have recovered these 

10. Pioneer was one of the leading commercial seed companies; other leadings hybrid pro-
ducers at the time included DeKalb, Funk Farms, and Pfister.

11. We thank Richard Sutch for making us aware that the CRD-level diffusion data were 
available in the Griliches archives.

12. CRDs are relatively equivalent to contemporary agricultural statistics districts.
13. We thank Diane Griliches for allowing access to these materials. We have also sought 

data at the USDA and AAA collections at the National Archives and the National Agricultural 
Library.
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series for use for the first time since the 1950s. Many previous researchers had 
to rely on the USDA’s state-level data from Agricultural Statistics.

The CRD diffusion data were compiled from (1) a set of  handwritten 
spreadsheets for the 1944–55 period; (2) a spreadsheet for Ohio CRDs for 
the 1935–54 period; (3) very carefully marked diffusion graphs drawn by 
Griliches’s own hand, all in box 58; and (4) typed sheets for all the CRDs 
in the United States in 1959 in box 60. The graphs indicate the annual rate 
of diffusion by CRD for each state on a 100-point (or finer) scale covering 
the period from the first diffusion to 1954/55. The numbers derived from the 
graphs match exactly those from available nongraphical sources.14

The adoption data allow us to define the region of interest for this study. 
Figure 3.2 visualizes how hybrid corn rapidly diffused across the Corn Belt 
and the United States in the years following its initial introduction.

3.3.2  Data on Yields of Hybrid and Open-Pollinated Corns

The yield data used in this empirical inquiry come from two primary 
sources. The first source is the data from experimental farm trials in Iowa 

14. We have data for the northeastern states from 1945 on. However, these data do not cover 
the period of early hybrid adoption in northeastern states. We are seeking to supplement these 
data but have not been successful in our search for other archival sources. Griliches did collect 
maps of CRD data from the AAA for the 1938–41 period (box 57). The AAA data have more 
extensive geographic coverage than the AMS data that Griliches chiefly used. Where there is 
overlap, the differences are relatively minor.

Fig. 3.2 Crop reporting district map, years when hybrid corns exceed 10 percent of 
planted corn
Source: Compiled from Zvi Griliches’s Archival Records.
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from 1928 to 1942. These trials, which compared the relative performance of 
hybrid seeds to open-pollinated seeds, are reported in Zuber and Robinson 
(1941, 1942). These were the sources that Sutch investigated.15

The second source of information on yields is unpublished data held in 
the Griliches archives. Griliches collected voluminous data on the differ-
ential yields achieved by hybrid seed relative to open-pollinated seed. The 
data, including the results of state yield trials and Agricultural Adjustment 
Administration (AAA) surveys as well as some yield data, are at the sub-
state level (boxes 57, 60).16 The CRD data that Griliches actually used in his 
analysis were derived from AMS studies of “identicals,” covering the period 
from 1939 on (box 59). For early adopting states such as Iowa and Illi-
nois, the series is short because little open-pollinated seed was grown after 
the mid-1940s. Griliches used the AMS series chiefly in summary form. 
Note that these data do not allow a direct measurement of the effects of the 
weather shocks (e.g., droughts) of the mid-1930s. But the Iowa experimental 
trial yield data do.

Thus Griliches’s archival records provide two measures for compar-
ing hybrid and open-pollinated yield differences. For some CRDs, aver-
age hybrid and open-pollinated corn yields are available for selected years 
between 1937 and 1941. Figure 3.3 presents the regions these data cover 
and the differences between hybrid and open-pollinated yields by quartile.

An alternative measure for the difference between hybrid and open- 
pollinated yields comes from yield “identicals.” These are average differences 
in hybrid and open-pollinated corn seeds grown on the same farm within a 
CRD. These “identicals” are more consistently documented in Griliches’s 
archival records. The identical data are reported from 1939 to 1953, have 
broader geographic coverage than the alternative yield data, and are pre-
sented in figure 3.4. With both the seed type yield specific data and “iden-
ticals” data, there is a broad geographic coverage. The trade-off with these 
data is that they cover a time period almost a decade after hybrids had 
initially entered the market.

The rediscovery and rescue of the yield data, separating open-pollinated 
and hybrid yields by CRD, again demonstrate the value of archival research. 
Zvi Griliches was a preeminent researcher who collected and analyzed the 
pertinent evidence relevant to his study. He knew the importance of making 
direct comparisons of the yields of corn varieties under comparable settings, 
at the same time, and in the same place. He collected data from experiment 

15. Sutch (2011) described ratios from Iowa corn yield tests as representing all varieties tested. 
But the data are in fact for reporting section varieties, the subset of varieties entered in tests 
in all three districts in a section. Records from Iowa reports average yield for all and section 
varieties for 1928–32 ratios for all and the section subset are reported. The average hybrid to 
openpollinated yield ratio was 1.1069 for all varieties entered but 1.095 for section varieties.  
A further issue with the test data is that the districts and trial locations change (marginally) over 
time. How these inconsistencies affect the comparison is unclear, a priori.

16. The substate regions covered do not always translate directly into CRDs.
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Fig. 3.3 Average hybrid minus average open-pollinated corn yield per acre, quar-
tiles, 1937–41
Source: Griliches’s Archival Records.

Fig. 3.4 “Yield identicals” per acre, quartiles, 1939–53
Source: Griliches’s Archival Records.
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station trials and real-world production of identical farms. In his model, the 
yield difference drove adoption, and hence Griliches sought independent 
measures of the gap.

3.3.3  Data on Weather

The weather data used in this study also come from two sources. The 
first is the Palmer drought severity index (PDSI) derived from the Global 
Historic Climatology Network (Menne et al. 2012). Drought conditions are 
generally associated with prolonged periods of above-average temperatures 
and moisture deficits. The PDSI utilized a hydrological accounting model 
to assess cumulative departure in surface water balance. The PDSI captures 
drought conditions over a multimonth period and is strongly correlated with 
observed soil moisture levels (Dai and NCAR 2019).17

Extreme deviations in temperature are also often correlated with drought. 
Therefore, we use temperature and precipitation from Schlenker and Rob-
erts (2009) as our second measure of weather variation.18 GDDs are aggrega-
tions of daily temperature conditions and a common measure utilized in the 
literature studying climate change and agriculture. Such measures account 
for deviations in aggregate temperature exposure over a period of time but 
do not necessarily discern differences between more mild, prolonged tem-
perature spikes and shorter, more extreme temperature spikes. Schlenker and 
Roberts’s information on GDDs is based on the PRISM weather data set.19 
The raw data consist of daily minimum and maximum temperatures as well 
as total precipitation on a 2.5-by-2.5-mile grid of the continental United 
States. For each CRD, we use this gridded data to calculate the average daily 
minimum and maximum temperatures along with total daily precipitation. 
We then construct GDDs in accordance with agronomically observed heat 
sensitivity in corn yields, heat in excess of 29°C (Schlenker and Roberts 2009; 
Schauberger et al. 2017). For each growing season, defined as lasting from 
April 1 to September 30, we calculate the total number of moderate GDDs 
and extreme GDDs.

(1) GDD =
Tmax Tmin

2
Tbase

0

if
Tmax Tmin

2
> Tbase

if
Tmax Tmin

2
Tbase

.

The equation above defines a GDD as the average daily temperature cal-
culated between the daily maximum temperature, Tmax, and daily minimum 

17. The index is normalized around 0, with values greater than 0 associated with abnormally 
wet conditions for a specific region and values less 0 zero associated with abnormally dry 
conditions for a specific region. Values on the index between −1 and −2 denote mild drought 
conditions, values between −2 and −3 denote moderate drought conditions, and values less 
than −3 denote extreme drought conditions.

18. We thank Michael Roberts for recommending that we use this source.
19. See the website at http:// prism .oregonstate .edu.
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temperature, Tmin, minus some base temperature, Tbase. A GDD measures 
the amount of heat exposure crops receive during a specific day and takes a 
value of zero for days below Tbase. Following the example of Schlenker and 
Roberts (2009), we differentiate between two measures of heat exposure for 
corn for each CRD for each year from 1920 to 1955 using GDD. We first sum 
up the number of GDD between 10°C and 29°C during the growing season 
as moderate GDDs. This calculation assumes a base temperature of 10°C. 
We sum days with average temperatures in excess of 29°C as extreme GDDs 
(and assume a base temperature of 29°C in this calculation). In addition to 
these heat measures, we also total the amount of precipitation during the 
growing season.

3.4  Empirical Analysis of Our Panel Data Set

3.4.1  Summary Statistics

Tables 3.1 and 3.2 describe the two unbalanced samples constructed for 
the analysis. In the hybrid and open-pollinated yields sample, most data 
are for the years 1939 to 1941 and do coincide with the end of the Dust 
Bowl drought waves. The yield-identical data span from 1939 to 1953 and 

Table 3.1 Summary statistics of hybrid and open-pollinated yields sample

Variable  Observations  Mean  Std. dev.  Min  Max

Hybrid yield per acre 211 51.430 15.069 13 97.969
Open-pollinated yield per acre 211 40.669 15.854 3.8 90.092
Yield difference 211 10.761 4.8226 2 31.700
Moderate drought, PDSI 211 0.531 0.500 0 1
Extreme drought, PDSI 211 0.289 0.454 0 1
Moderate growing degree days 211 1,773.318 228.086 1,181.853 2,433.123
Extreme growing degree days 211 60.205 29.489 12.248 146.674
Precipitation 211 0.545 0.113 0.254 0.879
Precipitation squared 211 0.310 0.128 0.065 0.773
Year  211  1,939.787  1.103  1,937  1,941

Table 3.2 Summary statistics of yield identicals sample

Variable  Observations  Mean  Std. dev.  Min  Max

Yield identical 989 6.029 3.148 0.1 31
Moderate drought, PDSI 989 0.568 0.500 0 1
Extreme drought, PDSI 989 0.267 0.442 0 1
Moderate growing degree days 989 1,581.220 348.529 841.531 2433.123
Extreme growing degree days 989 47.621 38.649 0.721 214.064
Precipitation 989 0.547 0.160 0.197 1.233
Precipitation squared 989 0.325 0.199 0.039 1.519
Year  989  1,944.219  3.876  1,939  1,953
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have broader geographic coverage and more variability in their measures of 
heat exposure and precipitation. The difference between hybrid corn and 
open-pollinated yields is on average 10.8 bushels of corn per acre. The yield 
identical finds a smaller difference of 6 bushels per acre for corns grown on 
the same farm.

Table 3.3 summarizes the Iowa experimental trial data from 1928 to 1942. 
The ratio of hybrid corn yields to open-pollinated yields ranges from 97.4 to 
153.4 and is on average 114.3. These data suggest that hybrid corn seeds out-
performed open-pollinated corns by 14.3 percent between 1926 and 1941. 
This average is consistent with Griliches’s claims.20

3.4.2  Empirical Method and Results

To assess the relationship between drought and yield performance of 
hybrid and open-pollinated corns, we run the following regression speci-
fication:

(2) yit = 1MD + 2EDit + i + t + it .

The variable yit denotes the natural log of the corn yields, yield difference, 
or yield identical in CRD i in year t. In the Iowa trials data, yit, denote the 
ratio of hybrid yields divided by open-pollinated yields. These outcomes are 
regressed on moderate and extreme drought indicator variables constructed 
from the PDSI, MDit, and EDit. We construct these drought indicators from 
the average PDSI over the growing season (April–September). Time-invariant 
effects specific to each CRD are controlled for by using CRD fixed effects, αi, 
and a quadratic time trend, γt, controls for potential underlying trends, such 
as concurrent changes in technology, shared across CRDs. Heteroskedastic 
standard errors, εit, are clustered at the state (or CRD) level to account for 
potential correlation in the errors shared across CRDs from the same state.

20. As Sutch (2011) notes, Griliches did not fully credit the yield gaps reports in the Iowa 
corn yield test data because the farmers engaged in the test program were plausibly not repre-
sentative of the farm population and achieved yields that were substantially higher than those 
commonly prevailing.

Table 3.3 Summary statistics of Iowa experimental trials sample

Variable  Observations  Mean  Std. dev. Min  Max

Yield ratio, hybrid/open-pollinated 170 114.303 10.585 97.4 153.9
Moderate drought, PDSI 170 0.5 0.515 0 1
Extreme drought, PDSI 170 0.224 0.418 0 1
Moderate growing degree days 170 1,688.860 155.203 1,289.026 2,091.285
Extreme growing degree days 170 57.457 35.310 9.589 206.420
Precipitation 170 0.567 0.088 0.394 0.841
Precipitation squared 170 0.329 0.105 0.155 0.708
Year  170  1,933.565  4.740  1,926  1,941
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To assess the effects of heat exposure on the yield performance of hybrid 
and open-pollinated corns, we run the following linear regression specifica-
tion:

(3) yit = 1MGDDit + 2EGDDit + 1Precit + 2Prec2 + i + t + it.

The specification using GDDs follows the predominant paradigm used in 
the agricultural economics literature. The outcomes of interest, corn yields, 
are regressed on the temperature measures of moderate and extreme GDDs, 
MGDDit and EGDDit. To address the relationship between corn yields and 
rainfall we control for growing season precipitation quadratically with 
PRECit and PRECit

2 .

3.4.3  Iowa Experimental Farm Results, 1926–42

Much of the foundational work on developing commercial hybrid corn 
seeds occurred in Iowa. We use experimental farm data from Zuber and 
Robinson (1941, 1942) to study the relationship between heat stress and the 
performance of  hybrid corns relative to open-pollinated corns. The data 
from the Iowa corn yield tests allow us to study hybrid performance when 
commercial hybrids are introduced and novel. They also let us study hybrid 
performance during early waves of the Dust Bowl droughts. Figure 3.5 sug-
gests that hybrid yield performance in Iowa was much greater in 1936, a 
year of extreme Dust Bowl drought, relative to open-pollinated seed lines. 
It appears the pattern in hybrid to open-pollinated yield ratios starts to shift 
upward in 1936. Both the floor and average of the ratios also increase until 
1942. The last year that yields for open-pollinated corns are reported in Iowa 

Fig. 3.5 Hybrid to open-pollinated corn yield ratios, Iowa trials data, 1926–41
Source: Authors’ tabulation.
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stations is 1942. This is because hybrid corn seed technology had come to 
dominate corn production in Iowa by that time.

In table 3.4, we regress the Iowa yield ratio against the moderate and 
extreme drought indicator variables. Moderate drought does not seem to 
have a differential effect on the relative performance of hybrid seed corn rela-
tive to open-pollinated corn. Both specifications (2) and (3) find that extreme 
drought increases the relative performance of hybrids to open-pollinated 
corns substantially and indicate that hybrids in the Iowa field trials exhibited 
some drought tolerance while the open-pollinated corns failed.

In table 3.5, we regress the Iowa yield ratio against the temperature and 

Table 3.4 Drought and Iowa hybrid and open-pollinated corn ratios, 1926–41

Iowa yield ratio Iowa yield ratio
   (1)  (2)  

Moderate drought, PDSI 1.22031 1.64091
(1.32036) (1.34115)

Extreme drought, PDSI 6.45368*** 14.31629***
(2.16306) (3.39188)

CRD fixed effects Yes Yes
Quad. time trend Yes No
Year fixed effects No Yes
Sample 1926–41 1926–41

N 170 170
 Adj. R2  0.251  0.449  

Robust standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.5 Extreme heat and Iowa hybrid and open-pollinated corn ratios, 1926–41

Iowa yield ratio Iowa yield ratio
   (1)  (2)  

Moderate GDD, 10°–29°C −0.02343*** −0.02925
(0.00867) (0.03604)

Extreme GDD, > 29°C 0.21526*** 0.41668***
(0.04057) (0.09231)

Precipitation, meters −12.79066 24.73739
(65.88781) (80.88737)

Precipitation2 14.94762 −17.50428
(51.77032) (65.28811)

CRD fixed effects Yes Yes
Quad. time trend Yes No
Year fixed effects No Yes
Sample 1926–41 1926–41

N 170 170
 Adj. R2  0.391  0.488  

Robust standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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precipitation data. We find results that are consistent with Sutch’s (2011) 
arguments about the role that drought played in diffusion. Specification (2) 
finds that moderate GDDs decrease the relative performance of hybrids, and 
the effect is statistically significant at the 1 percent level. A 100-unit increase 
in moderate GDDs decreases the ratio by 2.3. The statistical significance of 
the negative effect of moderate GDDs is sensitive to the choice of quadratic 
time trends or year fixed effects. The coefficients for extreme GDDs show 
that the relative performance of hybrids increased during periods of extreme 
heat. In specification (2), a 100-unit increase in extreme GDDs increases 
the ratio by 21.5 and by 41.7 in specification (3). In both specifications, the 
coefficients are statistically significant at the 1 percent level. These results 
support the narrative accounts that hybrid corns performed much better 
than open-pollinated corns during periods of drought.

3.4.4  Variety-Specific Yield and Yield-Identical Regressions

The yields of hybrid seed corn and open-pollinated seed corn appear to 
have a fixed gap on average. The kernel density plots of variety-specific yields 
in figure 3.6 suggest that hybrid seeds shifted the yield distribution to the 
right. Limiting the sample to CRDs experiencing a drought in a year pro-
vides a similar pattern.21 Figure 3.7 presents kernel density plots of variety-
specific yields, and the peaks of the distributions are in similar locations to 

21. We define drought as moderate or worse on the PDSI (a value less than −2).

Fig. 3.6 Kernel density plots of hybrid and open-pollinated corn yields, various 
ranges between 1937 and 1941
Source: Authors’ tabulation.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



122    Keith Meyers and Paul W. Rhode

those in figure 3.6. The distribution of yields during droughts shifts prob-
ability mass toward the left, but there does not appear to be a stark contrast 
between the two figures suggesting drought-specific vigor in hybrid seeds 
relative to open-pollinated seeds. Our regression analysis using yield-specific 
data further suggests that hybrid seeds were not necessarily drought tolerant 
relative to open-pollinated seeds.

Columns (1), (2), and (3) in table 3.6 report the effects of moderate and 
extreme drought on hybrid and open-pollinated corn yields. These yields 
are averages per acre of specific seeds within each CRD. Column (4) reports 
the effects of temperature and precipitation on yield “identicals,” which is 
the average difference in hybrid and open-pollinated yields for farms where 
both seed types were grown. The results from columns (1) and (2) suggest 
that moderate drought did not strongly reduce hybrid or open-pollinated 
yields. Extreme drought decreases both hybrid and open-pollinated yields, 
and the effects are significant at the 5 percent level and below. Neverthe-
less, the extreme drought indicator variable does not find a strong statisti-
cally significant change in either the yield gap or yield “identical” variables. 
Table 3.7 provides an alternative specification where quadratic time trends 
are replaced with year fixed effects.

Tables 3.8 and 3.9 report the relationship between GDDs and precipita-
tion on the measures of hybrid versus open-pollinated performance. In table 
3.7, the results from columns (1) and (2) suggest that corn yields increase for 

Fig. 3.7 Kernel density plots of hybrid and open-pollinated corn yields under 
drought conditions, various ranges between 1937 and 1941
Source: Authors’ tabulation.
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both hybrid and open-pollinated corns under moderate GDDs. However, 
the regression coefficients are essentially the same and suggest that 100 addi-
tional moderate GDDs increase corn yields by approximately 6.7 percent 
(the coefficients are statistically significant at the 1 percent level). Column 
(3) presents some evidence that hybrid corns perform better relative to open-

Table 3.6 Regression results, effect of palmer drought severity index drought 
measures on corn yields, quadratic time trends

ln(hybrid yield 
per acre)

ln(open-pollinated 
yield per acre)

ln(yield 
difference)

ln(yield 
identical)

  (1)  (2)  (3)  (4)

Moderate drought, PDSI −0.04312 −0.03525 −0.04267 −0.04166
(0.03872) (0.04083) (0.06336) (0.04742)
[0.02462]* [0.02867] [0.05517] [0.04121]

Extreme drought, PDSI −0.12809 −0.15996 −0.05841 −0.07761
(0.04796)** (0.07718)* (0.09487) (0.03967)* 
[0.03173]*** [0.04594]*** [0.06713] [0.05908]

CRD fixed effects Yes Yes Yes Yes
Quad. time trend Yes Yes Yes Yes
Sample 1937–41 1937–41 1937–41 1939–53

N 212 212 211 989
Adj. R2  0.760  0.824  0.471  0.346

Standard errors in parentheses are clustered by state. Standard errors clustered by crop report-
ing district are in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.7 Regression results, effect of PDSI index drought measures on corn yields, 
year fixed effects

ln(hybrid yield 
per acre)

ln(open-pollinated 
yield per acre)

ln(yield 
difference)

ln(yield 
identical)

  (1)  (2)  (3)  (4)

Moderate drought, PDSI −0.02516 −0.03045 0.01987 −0.03732
(0.03830) (0.04180) (0.06250) (0.04316)

Extreme drought, PDSI [0.02267] [0.02857] [0.06014] [0.04327]
−0.09129 −0.14050 0.02762 −0.06327
(0.07218) (0.10992) (0.07857) (0.05739)
[0.03849]** [0.05543]** [0.07215] [0.07011]

CRD fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Sample 1937–41 1937–41 1937–41 1939–53

N 212 212 211 989
Adj. R2  0.771  0.824  0.490  0.354

Standard errors in parentheses are clustered by state. Standard errors clustered by CRD are in 
brackets. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.8 Regression results, effect of heat stress on corn yields, quadratic time trends

ln(hybrid yield 
per acre)

ln(open-pollinated 
yield per acre)

ln(yield 
difference)

ln(yield 
identical)

  (1)  (2)  (3)  (4)

Moderate GDD, 10°–29°C 0.00065 0.00066 0.00047 0.00041
(0.00012)*** (0.00017)*** (0.00035) (0.00023)*
[0.00009]*** [0.00012]*** [0.00021]** [0.00022]* 

Extreme GDD, > 29°C −0.00720 −0.01086 0.00055 −0.00362
(0.00224)** (0.00415)** (0.00382) (0.00157)**
[0.00154]*** [0.00243]*** [0.00271] [0.00136]***

Precipitation, meters 0.05134 1.28623 0.52408 2.16976
(1.49331) (1.51984) (2.34221) (0.78107)**
[1.13843] [1.34332] [2.03963] [0.62225]***

Precipitation2 −0.249615 −1.311283 −0.750254 −1.577880
(1.22555) (1.19457) (2.04302) (0.49249)***
[0.93803] [1.10756] [1.71669] [0.42972]***

CRD fixed effects Yes Yes Yes Yes
Quad. time trend Yes Yes Yes Yes
Sample 1937–41 1937–41 1937–41 1939–53

N 212 212 211 989
Adj. R2  0.812  0.876  0.487  0.364

Standard errors in parentheses are clustered by state. Standard errors clustered by CRD are in brackets. 
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.9 Alternative specification, regression results, effect of heat stress on corn 
yields, year fixed effects

ln(hybrid yield 
per acre)

ln(open-pollinated 
yield per acre)

ln(yield 
difference)

ln(yield 
identical)

  (1)  (2)  (3)  (4)

Moderate GDD, 10°–29°C 0.00068 0.00083 −0.00133 −0.00031
(0.00061) (0.00080) (0.00155) (0.00022)
[0.00051] [0.000579] [0.00111] [0.00039]

Extreme GDD, 29°C −0.00749 −0.01135 0.00308 −0.00250
(0.00284)** (0.00477)** (0.00459) (0.00151)
[0.00175]*** [0.00274]*** [0.00338] [0.00164]

Precipitation, meters −0.44043 1.018168 −3.05435 1.441982
(1.62519) (1.67158) (2.75151) (0.86282)
[1.57646] [1.84648] [2.93167] [0.72885]*

Precipitation2 0.261705 −0.98615 2.33118 −0.95899
(1.29111) (1.24845) (2.12156) (0.60857)
[1.30403] [1.54234] [2.45383] [0.49951]*

CRD fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Sample 1937–41 1937–41 1937–41 1939–53

N 212 212 211 989
Adj. R2  0.810  0.874  0.498  0.366

Standard errors in parentheses are clustered by state. Standard errors clustered by CRD are in 
brackets. * p < 0.10, ** p < 0.05, *** p < 0.01.
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pollinated corns. The yield gap between the two hybrid and open-pollinated 
varieties increases with additional moderate GDDs, with a 100-unit increase 
in moderate GDDs increasing the yield gap by 0.48 percent (this result is sta-
tistically significant at the 5 percent level when standard errors are clustered 
at the CRD level). The outcomes for yield “identicals” in column (4) cor-
roborate this result and suggest that a 100-unit increase in moderate GDDs 
raises the yield gap by 0.42 percent (this result is statistically significant at 
the 10 percent level under both state and CRD clustered errors).

Extreme GDDs negatively affect the performance of  both hybrid and 
open-pollinated corns. According to columns (1) and (2) in table 3.8, a 100-
unit increase in extreme GDDs reduces hybrid corn yields per acre by approx-
imately 51.3 percent and reduces open-pollinated corn yields by 66.2 percent 
(both coefficients are statistically significant at the 5 percent level). However, 
there is no statistically significant difference in the gap between the two vari-
eties observed in column (3). According to the yield “identicals” regression 
in column (4), additional extreme GDDs reduce the performance of hybrids 
relative to open-pollinated corns. An additional 100 extreme GDDs reduces 
the yield “identicals” by 30.4 percent (this effect is statistically significant at 
the 5 percent and 1 percent levels depending on clustering). Only in column 
(4) does total precipitation during the growing season appear to affect the 
observed difference in hybrid corn and open-pollinated corn yields. In col-
umns (1) through (3), we find no statistically significant relationship between 
corn yields and changes in precipitation. This gap appears to be increasing 
in magnitude until total annual precipitation exceeds 68.7 centimeters, and 
rainfall decreases hybrid performance relative to open-pollinated corns once 
total rainfall exceeds 137.3 centimeters. In table 3.9, we present an alternative 
specification using year fixed effects in place of the quadratic time trends. 
For all specifications, this change removes all statistical significance associ-
ated with moderate GDDs. The statistical significance for the negative effect 
of extreme GDDs on the yield “identicals” also attenuates. For the hybrid 
and open-pollinated corn yields, this specification change does not appear 
to alter yield sensitivity to extreme GDDs. Using year fixed effects does not 
substantively change the coefficients or statistical significance of extreme 
GDDs in specifications (2) and (3).

3.5  Conclusion

Our work returning to the original source materials used by Griliches 
reveals that hybrid seeds increased productivity in corns over a wide range 
of weather conditions rather than principally during droughts. This find-
ing is consistent with Griliches’s assumption that hybrid seed technology 
increased overall yield potential. We find little evidence that hybrid corn 
seeds performed differentially better than open-pollinated seeds in periods 
of drought. If  hybrid corns exhibited a unique tolerance toward drought, 
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then we would expect that the difference between hybrid and open-pollinated 
corn yields to increase in periods of drought. The measures of yield dif-
ference suggest that drought conditions decreased the relative advantages 
of  hybrid corns over open-pollinated corns. The evidence using GDDs 
also does not support the narrative that hybrid seeds outperformed open-
pollinated seeds when exposed to extreme temperatures. If  anything, the 
yield advantage of hybrids may have increased during periods of moderate 
temperatures. Our results indicate that the main benefit hybrid seeds pro-
vide in mitigating the adverse effects of drought and extreme temperature 
is their overall increase in the yield ceiling. This increase in yields cushions 
the adverse effects of drought.

The arguments made by rural sociologists and historians regarding 
drought-tolerant hybrids derive from the experiences of early hybrid adopt-
ers in Iowa and seem particular to that region during the Dust Bowl. For 
CRDs in Iowa from 1928 to 1942, extreme temperatures increased the yield 
performance of hybrid seeds relative to open-pollinated seeds. This evidence 
is consistent with the claims of Richard Sutch and the rural sociologists 
regarding the drought-tolerant nature of hybrids. In Iowa, hybrid corns out-
performed their open-pollinated contemporaries. The patterns we uncover 
are consistent with a scenario where farmers’ preferences for drought toler-
ance drove hybrid adoption. Nevertheless, seed producers were introducing a  
tremendous variety of hybrid seed lines and hybrid varieties marketed out-
side of Iowa after the period of the Dust Bowl. From the data, it appears 
these varieties did not exhibit the same drought-resistant characteristics 
observed in the Iowa experimental field trials.

Appendix

In figures 3.A1 and 3.A2, we plot fitted quadric lines to the data to highlight 
the relationship between moderate and extreme GDDs and corn yields. We 
construct estimated hybrid and open-pollinated corn yields using data on 
harvested corn acreage and output from the National Agricultural Statistics 
Service’s Quick Stats 2.0 program, the yield “identical,” and information on 
share of acreage planted as hybrid corn.22 This descriptive evidence suggests 
that hybrid performance increases more under moderate GDDs than open-
pollinated corns. It also suggests that the difference in yields is either fixed 
or decreasing in response to extreme GDDs.

22. The formulas used to construct the data are Yieldop = Yieldtotal – Sharehybrid ∗ Identical and 
Yieldhy = Yieldop + Identical, where Yieldtotal is the overall average yield in a CRD from Quick 
Stats and Sharehybrid is the fraction of acreage planted as hybrid seed.
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Fig. 3.A1 Moderate GDDs and fitted quadratic lines for constructed and actual 
hybrid and open-pollinated corn yields
Source: Authors’ calculations.

Fig. 3.A2 Extreme GDDs and fitted quadratic lines for constructed and actual hy-
brid and open-pollinated corn yields
Source: Authors’ calculations.
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Comment Michael J. Roberts

3.C1  Introduction

Keith Meyers and Paul Rhode consider an iconic and transformational 
period of  time in economic and agricultural history: the adoption and 
spread of hybrid corn. This topic may seem obscure to some in the discipline, 
and it would be even more obscure were it not for the famous work of Zvi 
Griliches (1957), who documented the S curve of technological adoption 
that is now almost universally emblematic of transformation and change. 
This particular technical change and all that was associated with it—the 
systematic commercial breeding of seed, massive growth in chemical fertil-
izer and pesticide applications, and increasing mechanization—mattered 
tremendously. It marked an acceleration of productivity growth that liter-
ally fed the world as its population soared from about 2.3 billion to over 
7 billion. Today, we produce over five times as much corn per acre of land 
as we did before the adoption of  hybrid corn (figure 3.C1). Other crops 
have seen similar advances. With most of the planet’s arable land already 
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planted with crops, even 75 years ago, it seems unlikely that, without this 
innovation, there would be enough arable land on Earth to feed the current 
population. But with yield growth exceeding average population growth 
after hybrid corn adoption, the pressure on cropland expansion was greatly 
subdued. And more importantly, food prices fell even with soaring demand, 
sparing untold misery. Agriculture today comprises a tiny share of the gross 
domestic product (GDP) and is a sector we largely take for granted, mainly 
as a result of this remarkable technical change.

Meyers and Rhode follow up on a hypothesis put forward by Richard Sutch 
(2011) that hybrid adoption, and the ensuing “Green Revolution” of US and 
eventually global agriculture, was precipitated by devastating drought and 
crop failure associated with the Dust Bowl years of 1934 and 1936. In 1937, 
the year after the most devastating harvest in US history, hybrid corn gained 
its first substantial foothold, being used for over 40 percent of corn plantings 
in the most productive counties of Iowa and Illinois. While a productivity 
boost from hybrids had been discovered much earlier, the gains demonstrated 
in experimental trials were not enough to justify the high price of commercial 
seed. The vast majority of farmers still used open-pollinated seed retained 
from their last harvest, with a much lower opportunity cost.

Evidence presented by Sutch, further buttressed by more formal analy-
ses of Meyers and Rhode, shows that early hybrid varieties not just were 
higher yielding than open-pollinated corn but also performed relatively well 

Fig. 3.C1 US corn yields, 1888–2014
Source: These data are from https:// ourworldindata .org /crop -yields, which has graphs and 
data to show a more comprehensive presentation of global agricultural productivity growth. 
The data can also be obtained from USDA’s National Agricultural Statistics Service (https:// 
www .nass .usda .gov).
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in drought conditions. This boost was especially evident in 1936. When com-
bined with altered expectations stemming from the hottest and driest sum-
mers ever experienced in the Corn Belt region, this yield advantage appears 
to have been enough to entice a substantial number of farmers to purchase 
and plant commercially bred hybrids for the first time. This likely began in 
Iowa and central Illinois because these were the most productive areas, and 
if  the productivity boost from hybrids was at least somewhat proportional 
(as opposed to additive), hybrids would be profitable there first. As adop-
tion spread in later years, it seemed to stretch gradually from higher to lesser 
productive regions. To a first approximation, more farmers adopted hybrid 
corn as it became economic to do so, a key theme of Griliches’s work.

The main novelty of Meyers and Rhode is their rediscovery and use of a 
data set collected by Griliches that includes early hybrid adoption rates for 
each crop reporting district (CRD), each of which is composed of about 10 
contiguous counties. Most scholars have used only state-level data, which 
can obscure important within-state variation in weather, climate, and hybrid 
adoption rates. These new data allow for considerably more statistical power 
to test the idea that drought was a catalyst for early hybrid adoption. Meyers 
and Rhode also employ a formal regression analysis not attempted by Sutch.

A hopeful suggestion of Sutch, and of Meyers and Rhode, is that the pros-
pect of devastating impacts of climate change on US (Schlenker and Roberts 
2009) and global (Lobell, Schlenker, and Costa-Roberts 2011) agriculture 
may induce innovation and productivity growth that far surpasses nearer-
term damages, much as the Dust Bowl seems to have done in the late 1930s. 
Matthew Kahn (2013) has a similar hopeful outlook. While I am generally 
persuaded by Sutch, Meyers, and Rhode that drought conditions of  the 
late 1930s hastened the early adoption of hybrid corn, it is hard to know 
by how much this mattered for the long-run productivity trend. And while 
many point to genetically modified crops—including “drought-tolerant” 
varieties—as an emerging technology that could aid our adaption to climate 
change, I think there is good reason to be skeptical that these will impart a 
second Green Revolution as substantial as the one launched by hybrid corn.

In the next section, I briefly review some technical suggestions, some of 
which appear to have been adopted by the authors. In the third section, I step 
back to consider this chapter in the broader context of what we know about 
potential climate change impacts on agriculture more broadly and why the 
next Green Revolution, if  it comes, may look quite different from the first.

3.C2  Technical Comments

3.C2.1  Measuring Drought

The key prediction variable that Meyers and Rhode considered in their 
first draft was the Palmer drought severity index (PDSI). This choice of mea-
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sure is understandable given its prevalence. Drought is a complex thing to 
measure, for it depends on both supply and demand of soil moisture. Rain-
fall drives supply, while ground cover (plant type) and vapor pressure deficit 
(a lack of humidity) drive demand via evapotranspiration and evaporation. 
The PDSI was the first measure to account for both supply and demand of 
moisture, and it is based on ground cover of native grasses in Kansas, plus 
parametric assumptions calibrated by Palmer over 50 years ago (Palmer 
1965). Unfortunately, the PDSI just does not predict corn yield outcomes 
very well.

In our experience, the single weather measure that best predicts corn yields 
is that of extreme heat—that is, growing degree days (GDDs) above 29°C 
(Schlenker and Roberts 2009). A quadratic in growing-season total precipi-
tation and/or a measure of precipitation in July and August aid predictions, 
but only slightly. This extreme heat measure is highly correlated with aver-
age vapor pressure deficit in July and August, which suggests that the mea-
sure captures drought (Roberts, Schlenker, and Eyer 2013). A physiologi-
cal model of corn plant growth and seed formation can predict outcomes 
slightly better, and this model considers the full chronological sequence of 
weather, corn evapotranspiration, and soil water balance, but it still cannot 
fully account for the impacts of  extreme heat (Roberts et al. 2017). The 
notable sensitivity to extreme heat is a critical worry about climate change, 
and it looks like recent crop varieties, almost all genetically modified, are 
even more sensitive to it (Lobell et al. 2014; Roberts and Schlenker 2014), a 
point I will return to in the next section.

3.C2.2  Regression Model

Meyers and Rhode developed a model that predicted the log odds ratio 
of hybrid corn adoption as a function of previous season weather, CRD 
fixed effects, and a set of baseline 1930 (pre–Dust Bowl) characteristics to 
account for pre–Dust Bowl trends. The model seems fine as a first cut, but  
I had some concerns and suggestions. First, while the adoption of hybrid 
corn is a discrete choice and reversible in principle, the data suggest strongly 
that the decision is irreversible or nearly so. Thus a change in the adoption 
share is likely to be permanent. This suggests the use of differences in the log 
odds ratio instead of levels. Unit root tests could be employed as a formal 
test between levels and differences, but such tests are notoriously weak, so 
it may be best to simply report results for both levels and differences and 
perhaps consider a validation exercise that compares out-of-sample fore-
casts with actual adoption rates. Another approach may be to use a survival 
model wherein the dependent variable is the time until X percent of acreage 
in a crop district is planted with hybrid corn. To account for time-varying 
factors affecting survival time (like exogenous weather), the well-known Cox 
proportional hazard could be used.
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3.C2.3  Zeros and Ones

To calculate the log odds ratio, Meyers and Rhode need to adjust the raw 
shares of hybrid and open-pollinated varieties, since these shares are often 
one or zero, and the log is undefined. In their initial paper, they added 0.001 
to zeros and subtracted 0.001 from ones. This decision struck me as ad hoc, 
one that could cause high-leverage outliers that could bias regression results. 
Instead, it would be preferable to adjust all values by the same constant, not 
just the zeros and ones, so that the transformation of variables is consistent. 
This is sometimes called the Haldane-Anscombe correction. Better would 
be to make the adjustment an estimable parameter. For example, if  Y is the 
share of acreage planted with hybrid corn and a is the adjustment param-
eter, log odds ratio then becomes log(Y + a) – log(1 – Y + a), where a is a 
parameter to be estimated.

3.C2.4  Spatial Correlation

Climate, weather, soils, and many unobservable factors are all spatially 
correlated. Thus while weather can be a compelling instrument due to its 
exogeneity and near randomness in a fixed location when looking over 
appropriate time scales, regression errors tend to be highly spatially cor-
related. Meyers and Rhode cluster residuals by CRD, which accounts for 
serial correlation within CRDs, but residuals will still be correlated, and 
strongly so, for bordering CRDs. The CRD fixed effects only account for 
geospatial differences in mean outcomes. Within a year, however, all man-
ner of unobservables and weather anomalies will be similar in nearby areas. 
Estimated standard errors will be too small. While it can be challenging to 
get standard errors right, when modeling crop yields in US agriculture, Wol-
fram Schlenker and I have found that clustering by state gives very similar 
standard errors as more sophisticated methods, such as Conley’s method 
adapted for panel data.1

3.C2.5  Preadoption Productivity Differences

As noted earlier, Meyers and Rhode accounted for preadoption differ-
ences in productivity and other factors by interacting year fixed effects with 
variables from the 1930 Census of Agriculture. This strikes me as a sensible 
approach. The one concern I have is that a key control variable here is the 
1930 yield, which is a rather transitory measure of productivity. It is impor-
tant to recognize that crop yields vary tremendously from year to year and 
region to region, largely due to the weather, such that the yield outcome 

1. To implement Conley’s method adapted for panel data with independent time periods, 
originally used by Schlenker and Roberts (2009), see the code developed by Thiemo Fetzer 
(2014) and Solomon Hsiang (2010). The Conley approach may be less appropriate for data 
with serial correlation, such as hybrid adoption.
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from any single year can be a poor reflection of  anticipated or expected 
yield, which presumably drives decision-making. The added variance will 
likely cause attenuation bias of the control variable coefficient and therefore 
insufficiently account for preadoption productivity differences. Instead of 
using the outcome from this one census year, the authors could instead use 
average annual yield over the decade from 1920 through 1930. Annual-, 
county-, and crop district–level data are available from the US Department 
of Agriculture (USDA) to construct such a measure.

3.C2.6  Adoption Model, Yield Model, or Both?

Meyers and Rhode presented results from a regression model predicting 
hybrid corn adoption as a function of past weather. This approach seems 
reasonable. These results are nicely complemented by a working paper by 
Claire Palandri, David Popp, and Wolfram Schlenker (2019), who consider 
how hybrid corn adoption affected sensitivity to extreme heat, and I shared 
those preliminary results with Meyers, Rhode, and other attendees at the 
NBER workshop. Palandri, Popp, and Schlenker present regression results 
similar to what Meyers and Rhode also exhibit in their chapter. Both works 
show that hybrid adoption is associated with lower sensitivity to extreme 
heat, which seems consistent with the idea that the extreme drought condi-
tions of the Dust Bowl years may have been a catalyst for adoption.

A key question I posed at the NBER workshop was whether the apparent 
drought resistance of early hybrids reflected in the postadoption observa-
tional data was the right magnitude to rationally provoke adoption in sub-
sequent years. That is, can the adoption model and yield-response models 
be reconciled?

This question still needs answering. Careful development of the answer 
may be complicated. A critical piece concerns the way drought incidence 
in the 1930s changed expectations for future drought. Broadly speaking, 
weather looks approximately independent and identically distributed from 
one year to the next, so a severe drought in one year should not typically 
lead to altered expectations for the next year. The 1930s, however, were 
quite different, having several of the hottest and driest years on record in 
short succession.2 Perhaps the appropriate way to tie the yield and adoption 
models together is to consider how much future expectations would have 
needed to change following the droughts of 1934 and 1936 in order to entice 
the rational adoption of hybrid corn. Another related question concerns 
how long diminished expectations would have needed to persist to continue 
influencing adoption in future years, as drought became less prevalent. Was 
drought an ongoing impetus for the expansion of hybrid corn or simply a 
catalyst in the initial year? These questions do not have clear answers, but 
it would seem that a rolling time series weather forecast, or perhaps even a 

2. See the top panel of figure 2 in Palandri, Popp, and Schlenker (2019).
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short-window moving average (over, say, a backward-looking five years), 
might give a reasonable proxy for expected weather.

3.C3  Lessons for Adaptation

While possible links between the Dust Bowl and the emergence of hybrid 
corn adoption are interesting and should be studied in greater depth, I think 
we ought to be circumspect about drawing lessons about adaptation to cli-
mate change today. The evidence brought to bear so far suggests that the 
hot and dry Dust Bowl years spurred the initial adoption of hybrid corn 
in Iowa and Illinois. At the same time, it is hard to see how hybrids would 
not have emerged anyway, if  only a year or two later. Some of the analysis  
I suggest above may shed greater light on the enduring importance of 
extreme drought as a motive to adopt new technologies.

The trade-offs associated with the adoption of new crop varieties are quite 
different today. Many point to new genetically modified crops, and espe-
cially “drought-tolerant” varieties, as a viable means of adapting to climate 
change. The data, however, indicate that today’s very-high-yielding corn vari-
eties are more sensitive to extreme heat than past varieties (Lobell et al. 2014).

Growing drought sensitivity may be a testament to the success of seed 
development more generally. At a fundamental level, plant growth is 
Leontief, limited by the input in least supply. The critical inputs: sunlight, 
water, and nitrogen, which are the fundamental inputs to photosynthesis. 
Over time, crops have been bred to take the greatest advantage of the avail-
able resources to generate the maximum possible yield in each location 
(Cassman, Grassini, and van Wart 2010; Wright 2012). In earlier decades, 
the critical limiting input was nitrogen, which, even in rich soils, naturally 
occurs in much smaller quantities than became available after the Harbor-
Bosch process made chemical fertilizer possible. Crop plants needed to be 
bred to manage higher nitrogen intake. The plants needed to be able to grow 
larger, stiffer, and with deeper roots to stand taller in higher planting densi-
ties. Thus early crop breeding led plants to have much higher yield potential, 
which crop scientists define as the maximum possible output given available 
sunlight and water, assuming a sufficient availability of nitrogen and no pest 
damage. Successive crop varieties were bred to fit the available sunlight and 
water in each area and to handle massive growth in fertilizer inputs.

Today, nitrogen is almost never the limiting factor; indeed, excess applica-
tions, applied just in case moisture and sunlight are sufficiently high, are the 
key reason for nutrient runoff into streams, lakes, and oceans, causing algae 
blooms and eutrophication (Babcock 1992; Tilman et al. 2002). And while 
today’s plants have remarkable yield potential, the large plants with deep roots 
transpire much more water than crops from earlier generations or, for that 
matter, native grasses that underpin the PDSI. In more recent generations, 
genetically modified crops have aided management, making it easier to con-
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trol weeds (glyphosate) and pests (BT strains), thereby helping farmers close 
the gap between yield outcome and yield potential. As a result, outcomes are 
more likely to be limited by other essential inputs, especially water. Thus one 
hypothesis is that earlier generations of hybrids grew yield outcomes mainly 
by growing yield potential, while later generations grew yield by closing the 
gap between realized yield and yield potential (Grassini, Yang, and Cassman 
2009). Today, for many crops, and especially corn, crop scientists suggest that 
we are approaching the limit of what is possible (Van Wart et al. 2013).

Despite climate change, the highly productive Corn Belt has, so far, never 
experienced drought conditions nearly as severe as the 1930s. While the 
Midwest has experienced warming, it has mainly come during the winter and 
early spring, while summers have been relatively mild. Crop varieties have 
been bred to take the greatest advantage of the almost-ideal climate. While 
mild summers in the Corn Belt region have been a boon to US agricultural 
production, the region’s vulnerability was evident during the unusually hot 
2012 season, which came closer to Dust Bowl extremes (Boyer et al. 2013). 
Projections from climate models suggest that we have been lucky so far to 
have not experienced more years like 2012. More pointedly, I am not aware 
of any emerging technology that is likely to change the fundamentals of crop 
production the way hybrid corn did in the 1930s. At least for some crops, 
like corn, we are approaching the limits of photosynthesis (Grassini, Yang, 
and Cassman 2009). This suggests a new Green Revolution will require an 
altogether different approach.

Climate adversity and associated higher prices might push future innova-
tion. But this will likely take time, as it always has. To my knowledge, at least 
since the adoption of hybrid corn and the birth of modern agriculture, pro-
ductivity trends appear roughly linear over time and divorced from obvious 
inducing incentives, like prices or extreme events (Grassini, Eskridge, and 
Cassman 2013), with hybrid adoption a very notable exception. If  we want 
to count on the idea that induced innovation will save us from climate change 
impacts, then I believe we need considerably more evidence to support this 
hopeful vision. To me, the prospect is daunting because “more than 90 per 
cent of the calories that feed humanity come from the handful of plants 
that our ancestors domesticated between 9500 and 3500 BC—wheat, rice, 
maize (called ‘corn’ in the US), potatoes, millet and barley” (Harari 2014, 
78). Most aspects of our economy—energy, clothing, housing, retail trade, 
communication—have undergone multiple reinventions in history. Food 
production has not.
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4.1  Introduction

The US land grant college system is frequently hailed as a major success 
of agricultural innovation policy (Wright 2012). To be sure, agriculture both 
in the United States and around the world has become massively more pro-
ductive over the last 150 years. Moreover, many land grant college towns are 
now innovation hubs (Harrington and Sauter 2018) and frequently top lists 
of best places to live (Im 2019). But to what extent are these facts caused by 
the presence of a land grant college, and how much is due to innate location 
fundamentals?

This question is typically difficult to answer. Simply comparing places 
with land grant colleges to places without is unlikely to give the true causal 
effect of a college. Even more frustrating is that it is not clear in which direc-
tion this naive comparison is biased. On one hand, land grant colleges were 
likely established in up-and-coming regions with access to natural amenities 
like rivers to facilitate transportation and the diffusion of new ideas, suggest-
ing that estimates of the effect of colleges are biased upward. On the other 
hand, states might choose to locate their land grants close to farmers and 
far from innovative major cities, implying a downward bias. Indeed, I show 
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that both of these factors were important when states were deciding where 
to locate their land grant colleges.

To overcome these challenges, I identify cases in which the location of 
colleges was determined essentially at random. This randomization ensures 
that estimates of the local effect of land grant colleges represent the true 
causal effect of the college. More specifically, I use the natural experiments 
introduced in Andrews (2021b), identifying “runner-up” counties that were 
strongly considered to become the site of a new college but were ultimately 
not selected for reasons that are as good as random assignment. As just one 
example, the location of North Dakota State University was determined by 
drawing lots, and hence the location of the college site was literally random. 
The locations of many other land grant colleges, including the University 
of Maine and the University of Nevada, were decided as the result of par-
ticularly close and contentious votes. For still other colleges, such as Iowa 
State University and the University of Illinois, locations were determined 
by auction-like processes in which counties submitted bids to receive a new 
college, and I can compare the bids of the winning and losing finalist sites. 
While Andrews (2021b) focuses on a broad cross section of different types 
of colleges, here I narrow the focus to land grant colleges but examine a wide 
set of agriculture-related outcomes. The first contribution of this chapter 
is to elaborate on the site selection processes for the land grants, providing 
detailed narrative evidence about the kinds of decisions made and trade-offs 
considered when choosing the location for agricultural colleges.

Next, I use the runner-up counties as counterfactuals for locations that 
received land grant colleges in a differences-in-differences framework and 
present a number of results. I begin by showing that counties that received a 
land grant colleges have about 54 log points more patents per year than the 
runner-up counties after the land grant college is established. I also observe 
an increase in agriculture-related patents of about 9 log points in land grant 
colleges relative to runner-up counties after establishing the land grant, 
although this is imprecisely estimated.1 I find no evidence that land grant col-
lege counties increase the share of county patents belonging to these agri-
culture-related technology classes. While not precisely estimated, land grant 
colleges also appear to cause an increase in county population, a factor that 
is likely to positively affect aggregate invention but may dilute the focus on 
agriculture.

These results follow a sizable body of research on the local effects of col-
leges that use patents to proxy for innovation (Andrews 2021b; Hausman 
2017; Jaffe 1989; Kantor and Whalley 2014). But patents are less likely to 
serve as an effective proxy in agriculture than in other sectors because many 

1. I use the classification of agricultural patents as defined by Hall, Jaffe, and Trajtenberg 
(2001). This includes patents that are filed in technology classes related to, for instance, plant 
and animal husbandry, food, agricultural techniques and processes, and farm machinery like 
harvesters and combines.
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agricultural improvements are not patentable.2 I make some progress on this 
issue by using data on the location of origin of new US wheat varieties from 
a historical US Department of Agriculture (USDA) report (Clark, Martin, 
and Ball 1922). While the data are much sparser than those for patents, con-
taining information for only 227 new varieties between 1822 and 1922, I find 
that land grant counties are about five times more likely to introduce a new 
wheat variety than the runner-up counties after the college is established.

While land grant college counties see sizable increases in local innovations 
relative to the runner-up counties, they see modest and imprecisely estimated 
effects on agricultural outcomes, including agricultural yields, total agricul-
tural output, crop output, and livestock production. This overall finding, 
that land grant college counties have large increases in local agricultural 
innovation but little increase in local agricultural output, could be inter-
preted as evidence that either innovations developed at land grant colleges 
are diffusing to the areas that will use them or innovations developed at land 
grant colleges are irrelevant for agriculture within the state.

While more study is needed to conclusively distinguish between these 
interpretations and rule out alternative explanations, the data on wheat vari-
eties (Clark, Martin, and Ball 1922) can again be helpful here. The most 
commonly planted wheat variety in 1919 was Turkey wheat. Accounting 
for almost 30 percent of all wheat acreage nationwide, it was likely brought 
to the United States from Russia in the 1870s by immigrants who settled in 
rural Kansas. The most commonly planted variety that came from a land 
grant experiment station was Poole wheat, accounting for about 3.5 percent 
of national acreage in 1919 after first being documented at the Ohio State 
University in 1884. On average, in 1919 wheat varieties developed at land 
grant colleges and their experiment stations tend to be less widely grown than 
varieties developed elsewhere. This provides some suggestive evidence that 
land grant innovations may not have been particularly relevant or impact-
ful, although I stress that much more evidence is needed to substantiate this 
conclusion and to see if  it holds for years after 1922.

Are these results on agricultural innovation and performance unique to 
land grant institutions, or would establishing a college of any type produce 
similar outcomes? To answer this, I compare my sample of land grant col-
leges to a sample of non–land grant colleges for which I am also able to iden-
tify runner-up locations. These non–land grant colleges do not have the same 
mandated focus on agricultural research that the land grant institutions do. 
While measured imprecisely, the estimated increase in local patenting and 
population is smaller following the establishment of  land grant colleges 

2. While asexually reproduced plants became eligible for protection under a plant patent in 
1930, and both asexually and sexually reproduced plants became utility patent eligible in the 
late 1980s, none of these methods were available at the time land grant colleges were estab-
lished. See Moser and Rhode (2012) and Moscona (2019) for studies on the effects of patent 
protection laws for plants.
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than following the establishment of  other types of  colleges. In terms of 
agricultural outcomes, the story is less clear: land grant colleges are associ-
ated with a larger increase in local agricultural yield relative to other types 
of colleges but smaller increases in local agricultural output, and in most 
cases, the magnitudes are small. In short, it is difficult to definitively conclude 
that land grant colleges play a unique role in promoting local agricultural 
innovation or output.

Finally, I attempt to get a sense of what drives the observed local effective-
ness of land grant colleges. Several pieces of legislation have been passed 
since the land grant college system was first established in 1862, each of 
which has affected land grant colleges and their role in agricultural innova-
tion in different ways. One piece of legislation that was particularly impor-
tant was the Hatch Act of 1887, which established state agricultural experi-
ment stations and provided direct federal funding for agricultural research. 
The post–World War II era also represented a watershed moment in the 
federal government’s relationship to agricultural research, as exemplified 
by the Research and Marketing Act of 1946, which reorganized the admin-
istration of federal research support and greatly increased the level of fed-
eral spending going to land grant colleges. I show that the difference in 
innovation between college and runner-up counties increases following the 
passage of these pieces of legislation. This is suggestive evidence that these 
laws had their intended effect: as funding for agricultural research at land 
grant colleges increases, these counties indeed produce more innovations. 
The increase following the passage of these pieces of legislation is larger 
for land grant colleges than for non–land grant ones, so the effect does not 
appear to be driven by, for instance, college life cycle effects.

In sum, all these results paint a picture in which explicit funding of agri-
cultural research had large positive effects on the amount of  measured 
agricultural innovation, but there is less clarity regarding how useful these 
innovations were or how widely they diffused.

This chapter is organized as follows: section 4.2 provides a rich descrip-
tion of the land grant college site selection experiments and describes the 
sample of colleges used in this chapter, section 4.3 presents the results, and 
section 4.4 concludes.

4.2  Land Grant College Site Selection Experiments

The main difficulty with attempting to estimate the causal effect of estab-
lishing an institution of higher education, including a land grant college, 
is that these institutions are not located at random. For instance, colleges 
were often located in up-and-coming areas that were more productive and 
innovative than other areas in the same state, and so comparing places that 
get colleges to these other locations will overstate the effect of a college. At 
the same time, many land grant colleges were located away from productive 
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population centers with the belief  that proximity to urban areas would dis-
tract students from their learning. On a similar note, state officials frequently 
wanted to locate public universities close to the geographic center of the state 
so that they could be equally accessible to all; these concerns often trumped 
desires to locate colleges in more productive areas. Indeed, many land grant 
colleges appear to have been located so as to be, as one university president 
put it, “equally inaccessible from all parts” of  the state (Dunaway 1946, 
14–15). Hence it is ex ante unclear whether college location decisions are  
likely to bias estimates of the effects of colleges upward or downward.

To overcome this challenge, I use the data and estimation strategy from 
Andrews (2021b). More specifically, I examine the historical record to find 
locations that were finalists to become the site of a new college, similar to 
the technique used to identify counterfactual locations for large manufactur-
ing plants in Greenstone, Hornbeck, and Moretti (2010). I further restrict 
attention to cases in which the choice of the winning finalist site is as good 
as random assignment. I refer to the losing finalists as “runner-up” sites. 
Andrews (2021b) examines colleges of various types, while in this chapter, 
my primary goal is understanding the role of land grant colleges.3

Andrews (2021b) provides a detailed overview of these natural experi-
ments, including showing that college and runner-up sites are observa-
tionally similar prior to establishing the college, showing that college and 
runner-up sites evolve along parallel trends prior to establishing the college, 
conducting numerous placebo tests, and describing qualitatively the site 
selection process, arguing that these decisions were fraught with randomness  
and unpredictability (see also Andrews 2021a). I therefore take the oppor-
tunity here to describe several of these college site selection experiments in 
more detail than is possible in this other work, providing a deeper under-
standing of the kinds of historical contingencies at work while referring the 
reader to Andrews (2021b) for technical details.

I begin with a description of the college site selection process in North 
Dakota, where the state legislature literally randomly assigned the location 
of its land grant college, North Dakota State University (NDSU).4 In an 
effort to get northern towns to support the move of the Dakota Territory’s 
capital to the south, Territorial Governor Nehemiah Ordway promised other 
state institutions, including the agricultural college and the state university, 
to towns in the north. (This push to move the capital would eventually result 
in the Dakotas splitting into North and South in 1889.) Representatives from 
the towns of Fargo, Grand Forks, Jamestown, and Bismarck all wanted one 
of the educational institutions, and despite furious negotiations, they could 

3. For the purposes of this chapter, I do not consider historically black colleges and universi-
ties (HBCUs) funded under the Second Morrill Act of 1890 as land grants. Reclassifying them 
as land grant colleges does not qualitatively alter the results.

4. The location of the University of North Dakota was also assigned randomly at the same 
time and in the same manner; see section 4.2.1.
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not be made to agree. Finally, in 1883, with a legislative deadline approach-
ing, the representatives agreed in exasperation to draw lots to allocate the 
institutions. Fargo won the agricultural college. Seven years later, the school 
was formally established as the state land grant university (Geiger 1958, 
13–27). In the empirical analysis below, I compare Fargo to Jamestown 
and Bismarck, the runner-up sites, to estimate the effect of  the college.5 
One point worth emphasizing is that Jamestown and Bismarck looked very 
similar to Fargo prior to the establishment of NDSU and, as far as one can 
ascertain from the historical data, all had the climate, infrastructure, and 
temperament to successfully support a school. The point is not that the 
location of NDSU was random but rather that it was random among the 
set of finalist locations. Thus comparing Fargo to only the runner-up sites 
ensures that the comparison locations are good counterfactuals for Fargo.

Of course, literal random assignment of college sites is rather rare. More 
common are cases in which states set out a number of criteria that any pro-
spective site must meet and then painstakingly surveyed areas for their suit-
ability. Many “wannabe” locations were eliminated at this stage. Among the 
remaining candidate locations, a board of trustees or site selection commit-
tee would typically meet and debate. Finally, the decision would then come 
to a vote. These votes were often quite contentious. I consider a candidate 
location to be as good as randomly assigned if, following this process in 
which less suitable sites are eliminated, the vote between the winner and the 
loser is very close. This occurred, for instance, in the cases of the University 
of Maine (Smith 1979), the University of Nevada (Doten 1924), Clemson 
University (Reel 2011), and the University of  Tennessee (Montgomery, 
Folmsbee, and Greene 1984).

The University of  California, Davis, provides an example of  a typical 
site selection process. Berkeley was originally the location of California’s 
only land grant college, but from the very beginning, critics complained 
that Berkeley was not climatically representative of  the rest of  the state 
and so was a poor site for agricultural research.6 In 1905, the California 
state legislature voted to establish a model farm operated independently of 
the Berkeley campus. The site selection commission was overwhelmed by 
more than 70 offers from around the state. When narrowing down the sites, 
the commission set the following criteria: “The farm site should lie within 
the central portion of the state, in close proximity to a main railroad line, 
with easy access to good service; its soils should consist largely of medium 
loam not subject to flooding or under a level; an irrigation system should 

5. I do not consider Grand Forks as a runner-up site because it received an institution of 
higher education of its own. Including the few cases in which the “losing” sites receive a college 
does not meaningfully alter any results.

6. The original location of California’s land grant college was selected because it was close 
to San Francisco but far enough away to avoid distractions. The trustees settled on Berkeley 
only after planned land purchases in neighboring counties fell through (Ferrier 1930, 157–214).
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already be in place; and the proposed property should be situated within 
the vicinity of a clean and progressive town. Additionally, [the commission] 
thought the site ought optimally to represent the state’s ‘typical’ rainfall and 
general agriculture (i.e., irrigated crops) and avoid extreme heat or other 
insalubrious conditions” (Scheuring 2001, 18). As this quote demonstrates, 
representative climatic conditions and infrastructure to support farming 
were often explicit criteria when deciding land grant locations, providing 
confidence that winning and runner-up sites are likely similar in terms of 
their suitability for agriculture. Given the parameters of this refined search, 
the California commission was left with four finalist locations in Davis, 
Walnut Creek, Suisun, and Woodland. Although final votes among these 
finalists are not known, the final meeting to select among these sites dragged 
on for hours, highlighting just how contentious the decision was. Davis was 
selected only after speculators tripled the price of land at the commission’s 
first choice. The farm was officially established in 1906 and would become 
a full-fledged agricultural college in 1921.

The other way in which land grant college sites were often selected was 
through an auction-like process. Based on the prevailing interpretation of 
the 1862 Morrill Act, states could use their land grant endowment to fund 
the operating expenses of agricultural colleges but could not use them for 
purchasing land or erecting buildings. If  a state wanted to create a new 
agricultural college from scratch, they often solicited bids from localities 
in the state. I consider the college site to be as good as randomly assigned 
if  candidates’ bids are known and the winning bid is very similar to that of 
the losing bids. These close bidding processes are typically also followed by 
a contentious vote among a site selection committee. These auction-type 
processes occurred for schools such as the University of Arkansas (Reynolds 
and Thomas 1910), the University of Illinois at Urbana-Champaign (Turner 
1932; Solberg 1968), Iowa State University (Ross 1958), the Missouri Uni-
versity of Science and Technology (Roberts 1946), and the University of 
Missouri (Rees and Walsworth 1989; Burnes 2014).

In many cases, the decision of where to locate a college was contentious 
not only among a site selection committee but also among the residents 
of the state. The University of Florida provides such an example. In 1905, 
Florida had eight small institutions of higher education scattered across 
the state. In an effort to consolidate, the legislature passed the Buckman 
Act, which closed the existing institutions, reevaluated the best locations, 
and then reestablished the college at a potentially new site. Gainesville and 
Lake City quickly emerged as the clear frontrunners to become the new site 
of the college. Lake City had the added distinction of being the location of 
the previous Florida Agricultural College. Both Gainesville and Lake City 
submitted bids of similar amounts, and when it came time for the board of 
control of the university system to vote on the matter, Gainesville won over 
Lake City, six to four, following a contentious debate. But as acrimonious 
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as the vote was, it paled in comparison to the views of the citizens of Lake 
City: as materials from the former agricultural college were being packed to 
move to their new home in Gainesville, they were done so under an armed 
guard for fear of rioting (Proctor and Langley 1986, 18–26).

In still other cases, unusual, “fluky” events proved decisive in determining 
the location of land grant colleges. The establishment of Cornell University 
(New York’s land grant college and the only private land grant institution) 
provides such an example. What would become Cornell University was 
originally intended to be located at the People’s College in Havana, New 
York, but the state senator sponsoring the bill suffered an ill-timed stroke, 
delaying the decision. Later, the legislature was strongly considering plac-
ing the college in Ovid when a well-known advocate for the compassionate 
treatment of the insane died midspeech before the state assembly in Albany. 
State senators Andrew White and Ezra Cornell were able to use the death to 
convince the legislature that Ovid should receive an insane asylum instead of 
a college. Satisfied with the arrangement, Ovid’s representatives then decided 
to support whatever location White and Cornell decided to endorse, creating 
a dominant legislative coalition (Bishop 1962; Kammen 2003). Even then, 
the decision was not settled: White and Cornell each wanted to place the col-
lege in their hometowns, with White being from Syracuse and Cornell from 
Ithaca. But Cornell adamantly refused to allow the college to be located in 
Syracuse because as a young man, he had been “robbed [there] not once but 
twice” (Kammen 2003, 13); White and Cornell settled on Ithaca instead.

Other colleges provide further examples of  serendipity determining a 
school’s location. Louisiana State University moved to Baton Rouge after 
its prior location burned down, and only a few sites in the state had the 
infrastructure to take on the school on short notice (Fleming 1936). There 
are even accounts (possibly apocryphal) that the location of Texas Agricul-
tural and Mechanical University was decided by a poker game (Dethloff 
1975, 18)!

Even acts of God intervened to determine college location. In 1885, Ari-
zona’s famous (or infamous) “Thieving Thirteenth” legislature met to divvy 
up the territory’s state institutions. The citizens of Tucson had their hearts 
set on obtaining the state insane asylum when they set off for the legislative 
assembly in Prescott. But flooding on the Salt River delayed the Tucson 
delegates, and when they arrived in Prescott, the insane asylum had already 
been spoken for. The people of Tucson were stuck with the state’s land grant 
college, which became the University of Arizona (Martin 1960, 21–25; Wag-
oner 1970, 194–222; Cline 1983, 2–4).

As these examples illustrate, the narrative historical record contains rich 
details about both the locations that received land grant colleges and those 
that were strongly considered but ultimately did not. Some of these details 
suggest variation that may be useful for additional analysis. For example, in 
the case of North Dakota State and the University of Arizona, the “losing 
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towns” that did not receive the land grant college received another type of 
institution instead. Likewise, in the case of Cornell University, Ovid received 
an insane asylum in lieu of the land grant college. Syracuse, another runner-
up for Cornell University, did not receive any other institution at the time 
Cornell was established but did receive a university of its own within a few 
decades. In this chapter, I abstract from these issues, but I discuss them in 
some detail in Andrews (2021b). Analysis of other types of heterogeneity—
such as exploring more finely differences across types of institutions, geog-
raphy, or other local conditions—may be of interest for future work. All this 
is possible using the details available in the narrative record.

4.2.1  Non–Land Grant Colleges

Similar strategies can be used to determine runner-up locations for non–
land grant colleges as well. As mentioned above, North Dakota drew lots 
to determine the location of its flagship public university, the University of 
North Dakota, as well as its land grant college. In the case of the Georgia 
Institute of Technology, 24 rounds of balloting were required before Atlanta 
was selected over Macon (McMath et al. 1985, 24–32). For Southern Arkan-
sas University, 8 rounds of balloting were required (Willis 2009, 21–43), and 
the University of  Mississippi took 7 (Sansing 1999, 1–24).7 Auction-like 
processes and other “fluky” events are likewise common for the non–land 
grant colleges.

In sections 4.3.1 and 4.3.2, I use non–land grant colleges as a set of “con-
trol institutions” to gain a sense of whether the effects I observe from estab-
lishing land grant colleges are caused by policies specifically related to land 
grants or whether they are common to all institutions of higher education. 
The appendix lists more details about the sample of non–land grant colleges 
used in this chapter.

4.2.2  The Sample of Colleges

In total, there are 29 cases in which the site selection decision for a land 
grant college was as good as random, representing 55 percent of the 53 non-
HBCU US land grant institutions. As in Andrews (2021b), all results in this 
chapter are robust to dropping individual colleges or types of site selection 
decisions. Table 4.1 lists each of these 29 colleges, the winning county of 
each, the runner-up counties, and the year in which the college is established.

Table 4.2 presents summary statistics of the land grant college site selec-
tion experiments. The median land grant college had 1 runner-up county, 
with the mean having about 1.5 runner-up counties. The median runner-up 
site is about 110 kilometers from the college site, although there is consider-

7. Southern Arkansas University actually began as an agricultural school, although it was 
not a land grant college. The results in this chapter are insensitive to dropping schools like 
Southern Arkansas or reclassifying them as “land grants.”
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able heterogeneity, with the mean runner-up being 150 kilometers away, the 
farthest runner-up being 550 kilometers away, and the closest runner-up 
being only 30 kilometers away.

Throughout this chapter, I define the year in which a college is established 
to be the year in which the college site is selected, as described in the college 
site selection experiments above. In some cases, this date is not the same as 
the date at which an institution was formally founded, nor need it coincide 
with the date at which the college opened its doors. Results are unchanged 
when using the first year students attended or the first year students gradu-
ated as the establishment year. In section 4.3.2, I investigate the importance 
of other dates in a college’s life, such as the year a college began receiving 
reliable federal research funding. Most of the sample colleges selected their 
sites and opened their doors in the first decade and a half  after the Morrill 
Land-Grant Act was passed. Two schools were established before the act 
and obtained land grant status later. Western states typically established 
their land grant colleges around the same time they obtained statehood, with 
several states doing so in the 1880s and 1890s. Southern states could not take 
advantage of the Morrill Act while in rebellion against the US government 
during the Civil War, so all southern schools in the sample established their 
colleges in 1869 or later. There is thus substantial temporal variation in the 
establishment of land grant colleges.

4.3  Results

Figure 4.1 plots four different outcome variables for the land grant and 
runner-up counties over time. Year 0 is normalized to be the year in which 
each land grant college is established. In panel (a), I plot logged patent-
ing, in panel (b) logged county population, panel (c) logged agricultural 
yield (i.e., log(ValueAgr.Output / FarmAcres)), and panel (d) the logged 
value of all agricultural output. Throughout, all US patenting data come 
from the data set assembled in Berkes (2018), population data come from 
the National Historical Geographic Information System (Manson et al. 
2018), and all agricultural data come from agricultural censuses, cleaned 
and compiled by Haines, Fishback, and Rhode (2018). For the popu-

Table 4.2 Summary statistics of land grant college experiments

  N  Mean  SD  Min  Median  Max

# Runner-up counties 29 1.55 0.69 1.00 1.00 3.00
Distance to college 45 150.38 111.88 30.31 109.28 553.35
Year established  29  1877.28  13.28  1855  1872  1906

Note: Number of runner-up counties, average distance from the runner-up counties to the 
college site, and experiment year for the land grant college experiments in the sample.
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Fig. 4.1 Land grant college counties and runner-up counties
Note: Plots of various outcome variables in land grant colleges (solid lines) and runner-up 
counties (dashed lines). The x axis shows the number of years since the land grant college 
experiment. The year of the college experiment is normalized to year 0.
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lation and agricultural data that come from federal census data, I linearly 
interpolate values for all between-census years; unless otherwise noted, 
results are not sensitive to alternative interpolation approaches or to only 
using data from census years.

These four pictures tell the main story of this chapter: counties that receive 
a land grant college see a measurable increase in local invention, especially 

Fig. 4.1 (cont.)
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after about five decades. There is weak and noisy evidence that land grant 
colleges also cause increases in population, a major driver of local invention 
for the larger sample of colleges considered in Andrews (2021b). But the 
counties that receive land grant colleges see no clear increase in agricultural 
yield or output relative to the runners-up; while the agricultural measures 
fluctuate over time, these fluctuations are typically common to both the col-
lege and runner-up counties.

Table 4.3 confirms these results in a regression framework. I estimate the 
simple differences-in-differences model:

(1) Yit = 1LandGrantCountyi  × PostLandGrantit + 2PostLandGrantit

+ Countyi + Yeart + it.

LandGrantCountyi is an indicator variable equal to one for the counties that 
receive land grant colleges. PostLandGrantit is an indicator variable equal 
to one in years t after the establishment of the college for which county i 

Table 4.3 Differences-in-differences results comparing land grant college counties to  
runner-up counties

  
log(patents  

+ 1)  

log(ag. 
patents  

+ 1)  
Frac. ag. 
patents  

New 
wheat 
variety  

log(total 
pop.)  

log(frac. 
urban)

A. Innovation and population outcomes
CollegeCounty ∗ PostCollege 0.539** 0.0857 0.00246 0.0168** 0.0966 0.00319 

(0.193) (0.0624) (0.0196) (0.00605) (0.199) (0.0304) 
PostCollege 0.0970 0.105 0.0228 −0.00711* 0.287 0.0264 

(0.172) (0.0627) (0.0147) (0.00282) (0.157) (0.0232) 

Num. counties × years 13,141 13,141 9,745 6,639 12,449 9,477 
Adj. R2  0.721  0.314  0.0461  0.00778  0.799  0.702 

  
log(ag.  
yields)  

log(value 
agricultural 
output + 1)  

log(value 
crops + 1)  

log(value 
livestock 

products + 1)  

B. Agricultural outcomes
CollegeCounty ∗ PostCollege 0.0998 0.156 0.127 −0.0419 

(0.118) (0.286) (0.331) (0.385) 
PostCollege −0.177* 0.314 0.189 0.628 

(0.0837) (0.222) (0.280) (0.355) 

Num. counties × years 11,780 12,190 12,190 12,190 
Adj. R2  0.914  0.923  0.956  0.938  

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
Note: Differences-in-differences regression results comparing land grant college counties to runner-up 
counties before and after establishing each college. Panel (a) uses innovation and population outcomes 
as the dependent variables. Panel (b) uses agricultural yield and output as the dependent variables. All 
regressions include county and year fixed effects. Standard errors are clustered at the county level.
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was either the winner or runner-up. Countyi is a county fixed effect, Yeari is 
a year effect, and εit is an idiosyncratic error term. The estimation sample is 
made up of the college and runner-up counties for all years for which data 
are available; not all variables are available for all years. In all regressions 
that follow, I cluster standard errors at the county level.

I estimate effects of establishing a land grant college for a larger battery 
of outcome variables than I present in figure 4.1. Panel (a) of table 4.3 shows 
results for innovation and population outcomes. Column (1) confirms the 
results from panel (a) of figure 4.1: establishing a land grant college causes 
about 54 log points more patents per year relative to the runner-up counties. 
Column (2) specifically examines patents classified as agricultural accord-
ing to the NBER patent classification system (Hall, Jaffe, and Trajtenberg 
2001).8 While the estimated coefficient is positive, it is imprecisely estimated 
and much smaller in magnitude than overall patenting—at a roughly 9 log 
point increase in agricultural patents per year. Column (3) shows that there 
is no significant change in the fraction of agricultural patents in land grant 
college counties after establishing a new college.9

One challenge with measuring agricultural innovation is that many impor-
tant breakthroughs, particularly the development of new and improved crop 
varieties, are not patented (Olmstead and Rhode 2008).10 To provide some 
insight into the location of nonpatented agricultural invention, I consult a 
USDA technical report (Clark, Martin, and Ball 1922) that attempts to clas-
sify every variety of wheat grown in the United States as of 1920. Crucially, 
and exceedingly rare among agricultural studies, the authors also provide 
the histories of each wheat variety, including how, when, and where each 
variety was developed and/or introduced to the United States. This allows 
me to investigate the extent to which land grant colleges directly contributed 
to innovation in the wheat sector. Because individual counties are extremely 
unlikely to develop more than one variety in a given year, in column (4)  
I present estimates from a regression in which the outcome variable is an 
indicator that is equal to one if  a county develops a new variety in that year 
and zero otherwise.11 Establishing a land grant college has a statistically 

8. These correspond to the following US patent classification classes: 8, 19, 71, 127, 442, 504, 
43, 47, 56, 99, 111, 119, 131, 426, 449, 452, and 460. The results are robust to using alternative 
definitions of what constitutes an agricultural patent.

9. This variable is constructed as the number of agricultural patents divided by the number 
of patents with a known patent class (Marco et al. 2015). Patent class information is still miss-
ing for some patents, particularly older ones. This measure is undefined when a county has no 
patents in a given year and when the class is unknown for all patents in a county in a given year.

10. This is not to say that patent data are irrelevant to an understanding of  agricultural 
innovation, only that patent data alone paint an incomplete picture. Improvements in farm 
implements and mechanized equipment, often highlighted as vital contributors to American 
agricultural development (Cochrane 1979; Hayami and Ruttan 1985), were patentable.

11. Note that in contrast to the data on patenting, the wheat varieties data from this report 
are unavailable after 1922. In ongoing work, I attempt to transcribe more recent USDA reports 
that contain histories of crop varieties developed in later years and to gather data on yields or 
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significant increase in the likelihood of introducing a new variety, on the 
order of 2 percent. Given that the baseline probability of introducing a new 
wheat variety in a given year for this sample of counties is about 0.4 percent, 
counties that receive a land grant college are about five times more likely to 
introduce a new variety after the college is established.

Consistent with panel (b) of figure 4.1, column (5) shows that establishing 
a land grant college is associated with a positive but statistically insignifi-
cant increase in total population of about 10 log points. The fraction of the 
county population living in urban areas, shown in column (6), is also positive 
but statistically insignificant and is close to zero in magnitude.

In panel (b) of table 4.3, I show results for various agricultural outcomes. 
In column (1), I show that establishing a new college has no statistically 
significant effect on agricultural yields, although the coefficient is positive 
and nontrivial in magnitude, equal to a roughly 10 log point increase in 
agricultural yield relative to the runner-up counties. One issue with yield as 
an outcome variable is that it is defined as the value of agricultural output 
divided by agricultural land, and establishing a new college may affect both 
the numerator and the denominator. In particular, a successful land grant 
college may induce more marginal land to come into agricultural produc-
tion, decreasing yield while increasing output. In columns (2) through (4), 
I estimate the effect of establishing a land grant college on several output 
measures: the total value of agricultural output, the value of crop output, 
and the value of livestock produced. In all cases, establishing a land grant 
college has statistically insignificant effects, although the effect is positive 
and sizable in magnitude for agricultural output and crop output.12 This sug-
gests that the land grant counties are increasing the amount of agricultural 
land relative to the runner-up counties, consistent with untabulated results 
on the amount of improved farm acreage.

In a related paper, Kantor and Whalley (2019) conclude that land grant 
colleges cause an increase in the value of agricultural output in the areas 
closest to the college. It is worth exploring why the conclusions in panel (b) 
of table 4.3 differ from those in Kantor and Whalley (2019). First of all, the 
two studies use different samples of colleges. My sample consists of all land 
grant colleges for which I can identify a runner-up location, while Kantor 
and Whalley (2019) focus on land grant colleges in the Northeast, Mid-
west, and Texas. However, even when restricting attention to the land grant 
colleges in the states studied by Kantor and Whalley (2019), I find results 

other measures of quality for the different varieties. I thank Paul Heisey for pointing out the 
existence of these later reports and discussing their potential usefulness for research on the 
geography of invention.

12. The agricultural results here present one case in which interpolation meaningfully alters 
point estimates. When using only data from agricultural census years, the coefficients for agri-
cultural yield, agricultural output, and crop output are all smaller in magnitude, and the coef-
ficient on agricultural output becomes negative. These results are available upon request.
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similar to those in table 4.3, and if  anything, the coefficient on agricultural 
output is even closer to zero in magnitude; these results are available upon 
request. The most important difference is that the two studies ask subtly 
different questions. The independent variable in Kantor and Whalley (2019) 
is the distance from each county (not just the runners-up) to the land grant 
college interacted with a year fixed effect, whereas I compare the land grant 
college counties only to the runner-up counties. While Kantor and Whalley 
(2019) ask how agricultural output decreases with distance from a land grant 
college, I compare locations that would have been equally suitable sites to 
conduct agricultural research and see how agricultural outcomes change 
when one of these locations gets a land grant college. If  land grant colleges 
are indeed located in the areas most suitable for agriculture, as the discussion 
in section 4.2 suggests, with surrounding areas less suitable for agriculture 
and likely less able to take advantage of agricultural innovations, then we 
should expect to see a negative gradient of agricultural output with distance, 
as documented in Kantor and Whalley (2019).13 It should also be noted that 
I find similar dynamics to Kantor and Whalley (2019): as shown in panel 
(d) of figure 4.1, the difference between the land grant college counties and 
the runner-up counties is largest in the earliest decades after a college is 
established before shrinking to virtually nothing. In contrast to Kantor and 
Whalley (2019), however, this difference is small in magnitude and statisti-
cally insignificant.14

How to interpret the large positive coefficients for local innovation out-
comes and small-in-magnitude and statistically insignificant coefficients for 
agricultural outcomes? One interpretation is that the agricultural innova-
tions documented in panel (a) of table 4.3 successfully diffuse throughout the 
land grant college’s state, so the county from which these innovations origi-
nated saw little benefit from them relative to the otherwise similar runner-up 

13. In the online appendix to Kantor and Whalley (2019), the authors conduct a robustness 
test using runner-up counties (see their appendix section 4 and tables A2 and A9). As explained 
in Andrews (2020b), the Kantor and Whalley (2019) runner-up counties include those from low-
quality site selection experiments. Additionally, in some cases, I am able to identify additional 
runner-up sites not used in Kantor and Whalley. The sample of runner-up locations in Kantor 
and Whalley therefore differ slightly from the sample used in this chapter. In their specification,  
Kantor and Whalley use the distance from the runner-up counties to each county interacted 
with year fixed effects as additional independent variables. They show that while the value of 
agricultural output decreases with distance to the land grant experiment station, it increases 
with distance to the runner-up counties. Note that this is different from the analysis I conduct 
in this chapter.

14. Kantor and Whalley (2019) also find significant declines in the value of  agricultural 
output with distance from the land grant for six decades, whereas in panel (d), the diff erence 
between land grant and runner-up counties closes after about five decades. Other differ-
ences between the studies may explain this discrepancy. As noted above, the two studies use a 
different sample of colleges. Kantor and Whalley use the passage of the Hatch Act in the 1880s 
as their date of treatment, whereas I use the establishment of the college (I examine the effects 
of the Hatch Act in section 4.3.2). And Kantor and Whalley include a number of 1880 county 
characteristics interacted with year effects as additional control variables.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



156    Michael J. Andrews

counties. Alternatively, the results could be interpreted as evidence that the 
innovations developed in land grant college counties are irrelevant to agri-
cultural production in the state, or that the agricultural outcome measures 
are mismeasuring true agricultural productivity.

As a first pass to addressing this question, I again turn to the data on the 
introduction of new wheat varieties from Clark, Martin, and Ball (1922). In 
addition to detailed histories of each variety, the report contains results from 
a 1919 survey of the total national acreage planted in each wheat variety. By 
comparing acreage planted of varieties developed at land grant sites to those 
developed elsewhere, I get a sense of whether land grant varieties tended to 
diffuse widely by 1919. I restrict attention only to varieties introduced since 
the passage of the Morrill Land-Grant Act in 1862 to avoid counting variet-
ies from before the land grant system could have had any effect.

I present results in table 4.4. In column (1), I count all varieties that Clark, 
Martin, and Ball (1922) indicate were introduced as a result of  research 
at land grant colleges or state agricultural experiment stations.15 About 
30 percent of  all new varieties introduced between 1862 and 1919 came 
from land grant research. In column (2), in addition to the varieties attrib-
uted to land grant research in column (1), I include any varieties introduced 
in a county that had a land grant college, even if  the land grant site was 
not explicitly mentioned in the varietal history. Including these additional 
varieties increases the share of varieties from land grant college counties to 
about 36 percent of all new varieties. In columns (3) and (4), I calculate the 
national acreage planted of varieties developed at land grant sites. Varieties 

15. In the calculations, I include wheat varieties developed outside the United States as long 
as Clark, Martin, and Ball (1922) can identify the location within the United States at which 
the variety is first introduced. Many (although not all) of the varieties attributed to land grant 
research were initially developed outside the United States, lending support to the claims in 
Alston (2002) and Maredia, Ward, and Byerlee (1996) that federal support of  agricultural 
innovation generated sizable international spillovers.

Table 4.4 Share of wheat varieties from land grant research

Share varieties Share acres

  
Land grant  

research  
Land grant  

counties  
Land grant  

research  
Land grant  

counties

Post Morrill Act 0.303 0.355 0.097 0.131
Post Hatch Act  0.347  0.389  0.113  0.166

Note: Columns (1) and (2) list the share of new wheat varieties introduced since the passage 
of the Morrill Act in 1862 (row 1) and the passage of the Hatch Act in 1887 (row 2). Col-
umn (1) shows the share of varieties introduced as a result of  land grant college research. 
Column (2) includes any varieties introduced in land grant college counties, regardless of 
whether they were the result of  programmatic research. Columns (3) and (4) do the same but 
weight each variety by acreage planted.
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introduced as a result of land grant research account for only 10 percent 
of planted acreage, and all varieties from land grant counties account for 
13 percent of  acreage. Comparing the number of varieties introduced to 
the acreage results suggests that land grant research produced varieties that 
were, on average, less useful for American farmers. In row (2), I repeat the 
exercise but keep only varieties introduced since the passage of the Hatch 
Act in 1887, which established and provided federal funding for agricultural 
experiment stations. When restricting attention to this period in which land 
grant research was on an even firmer financial footing and was conducted in 
a larger number of geographic locations, land grant colleges account for a 
slightly larger share of both varieties and acreage (35 percent and 11 percent, 
respectively). This is also true when including all varieties introduced in land 
grant counties (39 percent of varieties and 17 percent of acreage).

From these results, it appears that land grant colleges played an outsized 
role in discovering and inventing new wheat varieties, although varieties 
developed at land grant locations were less widely planted on average than 
varieties grown elsewhere. This suggests that land grant colleges may not 
cause much of an increase in local agricultural yield and output because the 
agricultural innovations they produce are of low quality or useful for only 
a small constituency.

I stress that this conclusion is highly preliminary and suggestive, and sev-
eral caveats are in order. First, Clark, Martin, and Ball (1922) may have been 
more likely to uncover information on low-quality varieties when they were 
developed at land grant sites, and so their data may suffer from survivorship 
bias. Additionally, it is possible land grant colleges played a larger role in 
the development of different species of crops or in the development of farm 
machinery, or that their role qualitatively changed in recent decades; addi-
tional USDA reports would be particularly useful to address these issues. 
It is also likely that land grant colleges played a substantial role in promot-
ing the diffusion of wheat varieties developed elsewhere. Indeed, several of 
the descriptions of varieties indicate that agricultural experiment station 
researchers scoured the country to discover varieties developed by obscure 
farmers.16 Much more work is needed to conclusively determine why land 
grants appear to have a large positive local effect on innovation but little 
effect on local agricultural output and yield.

4.3.1  Comparing Land Grant Colleges to Other Types of Colleges

Is there something “special” about the land grant college program, or 
would the observed positive effects on innovation be observed anytime an 

16. As one example, the Wyandotte variety was discovered by researchers from the Ohio 
agricultural experiment station at Columbus being grown on a farm in Nevada, Ohio, although 
the variety’s exact origins remain a mystery. The Indiana agricultural experiment station in 
Bloomington frequented Everitt’s O.K. Seed Store in Indianapolis to learn about new varieties 
from across the country.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



158    Michael J. Andrews

institution of higher education is established? To answer this question, I 
use data from all college site selection experiments, not just the land grants.

Figure 4.2 plots the difference between college and runner-up counties 
separately for land grant and non–land grant colleges for the same four out-
come variables as in figure 4.1. Both types of colleges had small and largely 
constant differences prior to the colleges being established.17 Both types of 
colleges exhibit an increase in patenting and population after establishment, 
although at different rates. In particular, while the non–land grant college 
counties see almost immediate increases in local population relative to their 
runner-up counties, the land grant college counties see large increases in 
population only after about seven decades. The pictures for agricultural yield 
and output are less clear, with particularly large fluctuations for land grant 
colleges but no obvious trend.

I next test the difference between the types of colleges more formally in a 
triple differences framework. I estimate

(2) Yit = 1CollegeCountyi PostCollegeit LandGranti

+ 2CollegeCountyi PostCollegeit + 3LandGranti

 PostCollegeit + 4PostCollegeit + Countyi + Yeart + it ,

where CollegeCountyi is a dummy equal to one if  county i ever receives a 
college of any type, PostCollegeit is a dummy equal to one in years t after 
the establishment of the college for which county i was either the winner 
or runner-up, and LandGranti is a dummy equal to one if  i was either the 
winner or runner-up for a land grant college.

I present results in table 4.5 for the same outcome variables as measured 
in table 4.3.18 The variable of  interest, CollegeCountyi × PostCollegeit × 
LandGranti, should not be interpreted as causal, since colleges are not ran-
domly assigned to be either land grants or other types of institutions. And 
the triple interaction term is rarely statistically significant, which is not sur-
prising given the relatively small number of college experiments. Neverthe-
less, the coefficients suggest an interesting pattern. After establishing a land 
grant college, the growth in patenting in the college counties is about nine 
log points smaller than the growth in patenting after establishing a non–land 
grant college. Agricultural patenting also increases by less after establishing 
a land grant college, although the coefficient is close to zero in magnitude. 

17. In all cases, I fail to reject the null hypothesis of parallel pretrends for both the land grant 
and non–land grant colleges; results are available upon request. The plotted figures can be 
misleading in the earliest years, since data are not available for all colleges three decades before 
the college establishment date.

18. Results comparing land grant to non–land grant colleges are similar when restricting 
the sample of non–land grant colleges to include only public colleges (typically flagship state 
universities that are not also land grant colleges, such as the University of North Dakota), 
although the smaller sample of colleges results in less precise estimates; these results are avail-
able upon request.
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Fig. 4.2 Difference between college and runner-up counties for land grant colleges 
and non–land grant colleges
Note: Plots of the difference between college and runner-up counties for various outcome 
variables for land grant colleges (solid lines) and non–land grant colleges (dashed lines). The 
x axis shows the number of years since the land grant college experiment. The year of the col-
lege experiment is normalized to year 0.
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But when focusing on non-patent-based agricultural innovations, land grant 
colleges do have a larger effect than the non–land grant colleges: the increase 
in the likelihood of introducing new wheat varieties is 2 percent more in col-
lege counties after establishing a land grant college than after establishing 
a non–land grant institution, an effect that is statistically significant at the 
10 percent level. Land grant colleges are also associated with less population 
growth and urbanization than the non–land grant colleges. Agricultural 

Fig. 4.2 (cont.)
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yield appears to increase more in counties that receive a land grant college 
than in counties that receive other types of colleges, but if  anything, land 
grant colleges see worse outcomes in terms of total agricultural output, crop 
output, and livestock.

The coefficient on CollegeCountyi × PostCollegeit measures the effect 
of establishing non–land grant colleges and shows that these other types 
of institutions also generate sizable increases in local patenting and agri-
cultural patenting and create positive but statistically insignificant and 
small-in- magnitude increases in agricultural output. Unlike the land grant 

Table 4.5 Triple differences results comparing the LandGrant to non–LandGrant colleges

  
log(patents  

+ 1)  

log(ag.  
patents  

+ 1)  
Frac. ag.  
patents  

New  
wheat  
variety  

log(total  
pop.)  

log(frac. 
urban)

A. Innovation and population outcomes
College ∗ PostCollege ∗ 

LandGrant
−0.0934 −0.00639 0.00930 0.0157* −0.385 −0.0616 
(0.263) (0.0757) (0.0257) (0.00640) (0.262) (0.0433) 

CollegeCounty ∗ PostCollege 0.634*** 0.0926* −0.00842 0.00118 0.487** 0.0649* 
(0.183) (0.0426) (0.0170) (0.00206) (0.164) (0.0310) 

PostCollege ∗ LandGrant 0.209 0.0798 0.0129 −0.000826 0.216 0.0438 
(0.182) (0.0570) (0.0172) (0.00164) (0.182) (0.0267) 

PostCollege −0.126 −0.00841 0.00906 −0.00103 0.00980 −0.00970 
(0.107) (0.0333) (0.0116) (0.00168) (0.0966) (0.0164) 

Num. counties × years 34,911 34,911 24,115 17,760 33,541 25,601 
Adj. R2  0.724  0.297  0.0527  0.00408  0.803  0.734 

  
log(ag. 
yields)  

log(value 
agricultural 
output + 1)  

log(value 
crops  
+ 1)  

log(value 
livestock 

products + 1)  

B. Agricultural outcomes
College ∗ PostCollege ∗ 

LandGrant
0.0538 −0.0462 −0.0544 −0.146 

(0.144) (0.366) (0.432) (0.472) 
CollegeCounty ∗ PostCollege 0.0337 0.203 0.182 0.123 

(0.0985) (0.219) (0.275) (0.265) 
PostCollege ∗ LandGrant −0.177* −0.0331 –0.0922 0.497

(0.0751) (0.199) (0.245) (0.265)
PostCollege 0.108 0.227* 0.157 0.0103

(0.0555) (0.0953) (0.121) (0.119)

Num. counties × years 32,092 33,312 33,312 33,312 
Adj. R2  0.918  0.926  0.966  0.947  

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
Note: Triple differences regression results comparing college counties to runner-up counties before and 
after establishing each college for LandGrant and non–LandGrant colleges. Panel (a) uses innovation 
and population outcomes as the dependent variables. Panel (b) uses agricultural yield and output as the 
dependent variables. All regressions include county and year fixed effects. Standard errors are clustered 
at the county level.
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colleges, the non–land grant colleges create large increases in local popula-
tion and statistically significant increases in urbanization. The coefficient on 
LandGranti × PostCollegeit measures how the land grant runner-up coun-
ties perform after establishing a land grant college relative to the non–land 
grant runners-up after establishing a non–land grant college and is thus a 
plausible measure of spillovers from land grants. The coefficient is negative 
for agricultural yield, agricultural output, and crop output, although it is 
positive for all measures of innovation. This calls into question whether the 
land grant colleges were more effective at generating innovations that dif-
fused throughout their states than were other types of colleges. Conclusions 
about spillovers and diffusion should be made with caution, however, since 
the non–land grant runner-up counties may be exposed to innovations from 
a nearby land grant college, and vice versa. A full exploration of these issues 
is beyond the scope of this chapter.

4.3.2  What Pieces of Land Grant Legislation Were Most Effective?

The current land grant college system is the result of several pieces of leg-
islation, from the 1862 Morrill Act to the most recent farm bill, each of 
which affected the local innovation ecosystem in different ways. To speak 
of “the effect” of land grant colleges is therefore to obscure many distinc-
tions that may be important for policy makers. As a first pass at under-
standing which pieces of  legislation had the largest local effect, I repeat 
the basic differences-in-differences analysis from above but define multiple 
“postperiod” dummy variables that are equal to one during time periods that 
denote given legislative epochs. I examine the difference between land grant 
college counties and runner-up counties following the initial establishment 
of land grant colleges under the Morrill Act of 1862, the establishment of 
agricultural experiment stations following the Hatch Act of 1887, and the 
post–World War II era in which the federal government became much more 
directly involved in research funding, exemplified by the 1946 Research and 
Marketing Act.19 Each of these dates marks a commonly recognized turning 
point in the funding of higher education, particularly in relation to agricul-
tural research. Numerous studies highlight the pioneering role of the 1862 

19. Many other important pieces of legislation could be studied as well, such as the Second 
Morrill Act of 1890, which established additional land grant colleges, especially for African 
Americans; the 1906 Adams Act, which provided additional federal funding for scientific 
research; the 1925 Purnell Act, which provided federal funding for applied research to aid the 
local agricultural sector; or the 1935 Bankhead-Jones Act, which introduced formula funding 
and federal and state matching grants for basic agricultural research. Alston and Pardey (1996) 
provide a useful summary of major legislation related to agricultural research. In additional 
untabulated analysis, I consider the effects of these other pieces of legislation as well. Unfortu-
nately, many of the acts occurred within a decade or two of one another, making it extremely 
difficult to separate the effects of particular laws. I therefore focus on what I consider the most 
important changes in legislation, with the caveat that additional research is needed to conclu-
sively determine the effects of each policy.
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Morrill Act in establishing institutions dedicated to agricultural education 
and research, including several full-length histories (Edmond 1978; Cross 
1999, 77–94; Geiger and Sorber 2013; Sorber 2018). A sizable literature 
also examines the effects of  the 1887 Hatch Act, which established state 
agricultural experiment stations and provided federal funding to conduct 
research at those stations, marking the beginning of direct federal funding 
of agricultural research activities (Kerr 1987; Ferleger 1990; Hillison 1996; 
Kantor and Whalley 2019). The 1946 Research and Marketing Act, which 
dramatically increased federal spending on state agricultural experiment 
stations and reorganized the administration of federal agricultural research 
support, has been the least examined by historians of agriculture or educa-
tion, although it has not been completely ignored (Bowers 1982; Alston 
and Pardey 1996). More broadly, the 1946 act exemplifies the federal gov-
ernment’s changing approach in the postwar world, with the end of World 
War II widely recognized as a watershed moment in the federal government’s 
support for university research (Geiger 1993; Rosenberg and Nelson 1994; 
Mowery and Rosenberg 1998; Mowery and Sampat 2001).

I estimate the following model:

(3) Yit = 1LandGrantCountyi PostMorrillActit + 2LandGrantCountyi

 PostHatchActit + 3LandGrantCountyi PostWorldWarIIit

+ Countyi + Yeart + it ,

where PostMorrilAct equals one for 1862 ≤ t < 1887, PostHatchAct equals 
one for 1887 ≤ t < 1946, and PostWorldWarII equals one for 1946 ≤ t.20  
I focus on the first cohort of land grant colleges, established between 1862 
and 1870, to see how a constant set of colleges changes over the life cycle.

I present results in table 4.6. When splitting up the patenting results into 
four time periods (the period before the 1862 Morrill Act, which is the base 
time, and the time periods corresponding to each of the three interaction 
terms), individual coefficients are typically not statistically significant. It 
appears that the college counties only begin to see larger levels of patent-
ing relative to the runners-up after the passage of the Hatch Act, with an 
even larger increase observed after World War II. Agricultural patenting, 
however, exhibits a different pattern, with the increase in the level of agricul-
tural patents growing in college counties relative to runners-up immediately 
following the passage of the Morrill Act, falling to almost zero following 
the Hatch Act, and finally rebounding after World War II. The fraction of 
agricultural patents appears to increase in land grant college counties rela-
tive to the runners-up after the Morrill and Hatch Acts but decreases after 

20. Results are similar when replacing the year fixed effects with the much coarser time period 
dummies for PostMorrilAct, PostHatchAct, and PostWorldWarII.
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World War II, although the post–World War II magnitude is small.21 Popu-
lation and urbanization exhibit increases in college counties relative to the 
runners-up that are large in magnitude following World War II: total popula-
tion increases by a statistically significant 54 log points, with urbanization 
increases by 9 log points. Total population shows a sizable 11 log point 
increase following the Hatch Act as well. For agricultural yield, agricultural 

21. Because the data on the introduction of  new wheat varieties are from a 1922 report 
(Clark, Martin, and Ball 1922), no post–World War II observations are available, and so I do 
not examine that outcome variable in table 4.6.

Table 4.6 Comparing land grant college counties to runner-up counties following several pieces 
of legislation

  
log(patents 

+ 1)  

log(ag. 
patents  

+ 1)  
Frac. ag. 
patents  

log(total 
pop.)  

log(frac. 
urban)

A. Innovation and population outcomes
College ∗ Post–Morrill Act −0.0165 0.108 0.0643 −0.0151 −0.0202 

(0.255) (0.152) (0.0453) (0.210) (0.0330) 
College ∗ Post–Hatch Act 0.466 0.0238 0.0389 0.112 0.0182 

(0.340) (0.0914) (0.0305) (0.289) (0.0420) 
College ∗ Post–World War II 0.646 0.179 −0.00594 0.538** 0.0911 

(0.332) (0.0914) (0.0100) (0.156) (0.0587) 

Num. counties × years 4,451 4,451 3,526 4,378 3,538 
Adj. R2  0.747  0.304  0.0582  0.846  0.744 

  
log(ag. 
yields)  

log(value 
agricultural 
output + 1)  

log(value 
crops  
+ 1)  

log(value 
livestock 

products + 1)  

B. Agricultural outcomes
College ∗ Post–Morrill Act −0.0765 −0.128 −0.107 0.228 

(0.0810) (0.302) (0.264) (0.423) 
College ∗ Post–Hatch Act −0.0280 −0.0222 −0.0692 −0.161 

(0.137) (0.357) (0.376) (0.324) 
College ∗ Post–World War II 0.0459 0.0971 0.106 0.0909 

(0.0800) (0.261) (0.426) (0.238) 

Num. counties × years 4,188 4,398 4,398 4,398 
Adj. R2  0.951  0.947  0.973  0.950  

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
Note: Differences-in-differences regression results comparing college counties to runner-up counties be-
fore and after several major land grant–related pieces of legislation for the cohort of land grant colleges 
established between 1860 and 1870. Panel (a) uses innovation and population outcomes as the dependent 
variables. Panel (b) uses agricultural yield and output as the dependent variables. All regressions include 
county and year fixed effects. Standard errors are clustered at the county level.
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output, and crop output, the land grant college counties see a decrease rela-
tive to the runner-up counties following the Morrill and Hatch Acts before 
seeing increases after World War II, although most of these coefficients are 
fairly small in magnitude, with magnitudes between 2 and 13 log points. 
Livestock products actually exhibit the largest increase in college counties 
relative to the runners-up in the years following the Morrill Act, making it 
difficult to tell a consistent story about the role of each piece of legislation 
on local agricultural outcomes.

While suggestive, interpreting the results in table 4.6 is difficult. New col-
leges began as very small institutions that then grew over time, raising the 
possibility that larger differences between the college and runner-up counties 
after 1887 or 1946 are driven by the “natural” growth of these colleges rather 
than by specific policies. To attempt to account for this, I compare the effect 
of the 1862–70 land grant colleges to the effect of other types of colleges 
that were established between 1860 and 1870.

Figure 4.3 shows the difference in patenting between college and runner-
up counties for this cohort of colleges, where calendar years are plotted on 
the x-axis and the passage of the Morrill, Hatch, and Research and Market-
ing Acts are indicated. The land grant college counties see sizable increases 
in the number of patents relative to the runner-up counties beginning in the 

Fig. 4.3 Difference between college and runner-up counties for land grant colleges 
and non–land grant colleges, calendar time
Note: Plot of the difference in logged patenting between college and runner-up counties for 
land grant colleges (solid lines) and non–land grant colleges (dashed lines) established be-
tween 1860 and 1870. The x axis shows calendar years.
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early 1900s, while a similar takeoff for the non–land grant college counties 
does not begin until about 1960.22 To formalize these findings, I estimate 
the following:

(4) Yit = 1CollegeCountyi PostMorrillActit LandGranti

+ 2CollegeCountyi PostHatchActit LandGranti

+ 3CollegeCountyi PostWorldWarIIit LandGranti

+ 4CollegeCountyi PostMorrillActit + 5CollegeCountyi

 PostHatchActit + 6CollegeCountyi PostWorldWarIIit

+ 7LandGranti PostMorrillActit + 8LandGranti

 PostHatchActit + 9LandGranti PostWorldWarIIit

+ Countyi + Yeart + it.

The triple interaction terms β1 – β3 show the effect of establishing a land 
grant college relative to the effect of establishing other types of colleges in 
each time period. The interaction terms β4 – β6 show the average effect of 
establishing non–land grant colleges in each time period, while the interac-
tion terms β7 – β9 show the difference between all counties under consider-
ation to receive a land grant college and all counties under consideration 
for other types of colleges in each time period. The assumption needed to 
identify the triple interactions terms of interest is that, without the research-
related legislation, land grant and non–land grant colleges of the same age 
would have similar effects on the local economy at every point in time.

Results are presented in table 4.7. For readability, I only present coefficient 
estimates for the triple interactions terms, β1 – β3; full results are available 
upon request. All coefficients of interest are—again not surprisingly—not 
statistically significant, but many are large in magnitude. After the Morrill 
Act, land grant colleges have roughly 15 log points less of an increase in 
local patenting than do the non–land grant colleges. This reverses after the 
Hatch Act, with land grant colleges increasing local patenting relative to 
their runner-up counties by 46 log points more than the non–land grant col-
leges after the Hatch Act and 37 log points more after World War II. Land 
grant colleges have larger increases in the level of agricultural patenting than 
do the non–land grant patents for all three periods, although in all periods, 
the land grant colleges see a decline in the share of agricultural patents rela-
tive to the non–land grant colleges, with the largest decline in the share of  
7 log points occurring after the passage of the Hatch Act.

22. The differences in the relative dynamics of patenting between figures 4.3 and 4.2 is due 
to the fact that the figures are plotting patenting for a different sample of colleges, with figure 
4.3 containing only the schools established between 1860 and 1870.
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The land grant colleges see less of an increase in population after the Mor-
rill and Hatch Acts than do the non–land grant colleges, although following 
World War II, the land grant colleges have a roughly 25 log points larger 
increase in population than do the non–land grant colleges. In all three peri-
ods, the land grant colleges have larger increases in urbanization (or, at least, 
less of a decrease), although the magnitudes are very small until after World 
War II. Land grant colleges have a larger increase in agricultural yield only 
after World War II, although they have an increase in agricultural output 
and crop output following the Hatch Act as well and an increase in the value 
of livestock products sold in all three periods. If  anything, land grant col-
leges see a decline in agricultural yield, agricultural output, and crop output 
relative to the non–land grant colleges in the initial decades following the 
passage of the Morrill Act.

Table 4.7 Comparing the land grant to non–land grant colleges following several pieces  
of legislation

  
log(patents 

+ 1)  
log(ag. 

patents + 1)  
Frac. ag. 
patents  

log(total 
pop.)  

log(frac. 
urban)

A. Innovation and population outcomes
College ∗ Post–Morrill Act ∗ 

LandGrant
−0.149 0.149 −0.0372 −0.276 0.00831 
(0.347) (0.146) (0.0797) (0.213) (0.0398) 

College ∗ Post–Hatch Act ∗ 
LandGrant

0.456 0.0250 −0.0696 −0.148 0.0193 
(0.441) (0.0932) (0.0759) (0.317) (0.0662) 

College ∗ Post–World War II 
∗ LandGrant

0.365 0.165 −0.0131 0.246 0.0460 
(0.407) (0.107) (0.0524) (0.218) (0.0846) 

Num. counties × years 7,248 7,248 5,253 7,227 5,817 
Adj. R2  0.750  0.289  0.0454  0.868  0.771 

  
log(Ag. 
Yields)  

log(Value 
Agricultural 
Output + 1)  

log(Value 
Crops + 1)  

log(Value 
Livestock 

Products + 1)  

B. Agricultural outcomes
College ∗ Post–Morrill Act * 

LandGrant
−0.0598 −0.0179 −0.152 0.179 
(0.162) (0.481) (0.398) (0.692) 

College ∗ Post–Hatch Act ∗ 
LandGrant

−0.0199 0.153 0.126 0.0783 
(0.144) (0.480) (0.505) (0.462) 

College ∗ Post–World War II 
∗ LandGrant

0.0941 0.302 0.388 0.145 
(0.0953) (0.344) (0.679) (0.289) 

Num. counties × years 6,947 7,267 7,267 7,267 
Adj. R2  0.956  0.957  0.976  0.956  

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
Note: Triple difference regression results comparing land grant college counties to runner-up counties 
before and after several major land grant–related pieces of legislation for the cohort of land grant and 
non–land grant colleges established between 1860 and 1870. Panel (a) uses innovation and population 
outcomes as the dependent variables. Panel (b) uses agricultural yield and output as the dependent vari-
ables. All regressions include county and year fixed effects. Standard errors are clustered at the county level.
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These results should be interpreted with caution for several reasons. First, 
every college that received funding through the Hatch Act also received 
funding through the earlier Morrill Act; thus the coefficients on Hatch Act 
funding should be interpreted as the effect of Hatch Act funding conditional 
on also receiving Morrill Act funding, and the coefficients on post–World 
War II funding should be interpreted similarly. This point is important  
to the extent that Hatch Act funding complemented rather than substi-
tuted Morrill Act funding, building on institutions and programs established 
under the earlier law. Second and related, because all the land grant colleges 
receive funding under all three acts, it is impossible to identify the effects 
of the Hatch Act from those of the Morrill Act that take several decades to 
manifest. This is less of a concern when interpreting the coefficients on the 
Research and Marketing Act, which went into effect almost six decades after 
the Hatch Act. Finally, none of the triple interaction terms are statistically 
different from zero; while not surprising given the sample sizes involved, 
one should refrain from drawing dramatic conclusions from these results.

Despite these caveats, facilitating comparisons of different types of insti-
tutions over distinct epochs of federal involvement in agricultural research 
opens the door to many interesting lines of study. Changes that occur in the 
postwar period are particularly interesting, because while legislation such 
as the 1946 Research and Marketing Act specifically targeted agricultural 
research that was largely conducted at land grant colleges, postwar federal 
involvement in science and research occurred in nearly all sectors, not merely 
agriculture.23 The fact that land grant colleges had a long-established his-
tory of supporting applied research may have made land grant colleges a 
particularly attractive destination of  federal funding in the postwar era;  
I leave a deeper exploration of this issue to future work.

4.4  Conclusion

In this chapter, I provide detailed descriptions of the processes through 
which states decided where to locate their land grant colleges. Serendipity 
frequently played a role in determining college location, and I exploit this 
fact to identify runner-up sites that would have received land grant colleges 
but for as-good-as-random reasons.

Using these runner-up sites as counterfactuals for locations that receive 
a land grant college, I show that local agricultural innovation, measured 
both by patents and new crop varieties, increases in college counties relative 
to the runners-up after establishing a land grant college. While land grant 

23. One may worry that only a few federal institutions dominated postwar federal funding 
and that these institutions are missing from my sample. O’Mara (2005), for example, documents 
how skewed federal funding was across institutions. While MIT and Stanford are not in my 
sample, Georgia Tech (which massively increased its share of federal funding in the 1960s and 
1970s) is included as a non–land grant college.
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colleges see a sizable increase in innovation, they have small and imprecisely 
estimated improvements in agricultural performance relative to the runner-
up counties. These results lend themselves to several interpretations. One 
interpretation is that innovations developed at land grant colleges diffuse 
effectively, but it could also be the case that land grant college innovations 
have limited relevance to farmers working within the same state. Additional 
research is needed to determine how the diffusion process for land grant 
innovations operates. Kantor and Whalley (2019) provide a promising first 
step in this direction, focusing on the role of geographic proximity and com-
munications technologies in explaining the diffusion from land grant col-
leges, but much work remains to be done.

More work is also needed to understand exactly what types of policies 
led to the success of the land grant program and which of these policies can 
be replicated in other contexts or with other types of institutions. In this 
chapter, I present suggestive evidence that the Hatch Act and post–World 
War II federal funding, both of which provided direct federal support for 
agricultural research, were particularly effective in promoting local inven-
tion. Limited variation in the implementation of similar large-scale policies 
makes these types of questions difficult to answer today. While the historical 
evidence presented in this chapter is not conclusive, my hope is that the data 
and methodology presented here will prove to be of continuing utility in 
addressing important questions for agricultural innovation policy.
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Comment Bhaven N. Sampat

4.C1  Background

This chapter examines the effects of land grant universities on local inno-
vation and agricultural output. It is a useful contribution not only to the 
literature on agricultural innovation but also to the broader literature on 
returns from publicly funded research.

In previous work, I have been among those who have pointed to the land 
grant college system as an exemplar of university applied research and dis-
semination working well. In particular, I have held up the land grant system 
as a good model of technology and knowledge transfer and as perhaps bet-
ter at securing social returns from publicly funded research than the current 
system focused on patenting, licensing, and technology transfer (Mowery 
et al. 2004).

Reading this chapter led me to rethink this.

4.C2  Summary

As the chapter indicates, a big problem in the economics literature exam-
ining the effects of universities on local outcomes is that universities are not 
randomly located.

Through meticulous (and what seems like very labor intensive but also 
fun!) historical research, Andrews finds the cases where the location of the 
land grant university within a state was chosen through an “as good as 
random” process and focuses empirical analyses on these 29 universities. 
A big contribution of  this chapter is laying out the site choice decision, 
which points to the importance of politics, personalities, and happenstance 
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ment at Columbia University and a research associate of the National Bureau of Economic 
Research.
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in these decisions. This alone will be useful for future empirical research on 
the economics of agricultural research.

Next, Andrews tests whether the establishment of a land grant college 
had effects on local innovation and agricultural output. The identification 
approach involves comparing outcomes for the land grant counties versus 
the “good as random” runner-ups.

The chapter finds that measures of agricultural innovation (patents and 
new crop varieties) increase in these counties. These effects are large and 
statistically significant. However, when the chapter looks next at measures 
of agricultural performance (agricultural yields, the value of agricultural 
output, the value of crop output, the value of livestock produced), there do 
not appear to be strong local effects.

This leaves us with a puzzle. Why, if  innovation increases locally, includ-
ing agricultural innovation, do we fail to see local productivity effects? As 
the chapter points out, one potential explanation is that the innovation was 
not very useful to local farmers. Another is that it was useful, but it diffused 
broadly throughout the state, including to the runner-up county. These dif-
ferent explanations would obviously lead us to very different assessments 
of the land grant universities from a national perspective or that of state 
taxpayers.

Unfortunately, it is not possible to test directly which of the competing 
explanations is more plausible given the data that are available. As a second 
best, Andrews does provide some evidence from a catalog of wheat varieties, 
showing that land grant universities came up with about 30 percent of new 
wheat varieties, but these accounted for only 10 percent of national acreage. 
That is, yes, there was wheat innovation, but it did not broadly diffuse. One 
thing that we do not learn from this exercise is whether these innovations 
were useful locally (in the land grant counties themselves), but that too likely 
reflects data constraints.

4.C3  Suggestions

The next steps in this line of research would seem to be to better distin-
guish between the competing explanations. I have a few other observations 
and suggestions as well.

First, the finding that only about 10 percent of wheat acreage in home 
states was from land grants contrasts with previous, more positive assess-
ments of the Morrill Act (Wright 2012), which suggest that three-fourths 
of wheat acreage by 1920 used wheat varieties that were unavailable when 
the act passed.

But it also seems possible that the land grant research had an indirect effect 
on productivity—producing new research techniques and science rather 
than new varieties themselves. I read the literature on the economic impact 
of universities as suggesting that actual products from academic research 
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are less important than research techniques and tools (Cohen, Nelson, and 
Walsh 2002). Indeed, Griliches’s famous article on hybrid corn emphasizes 
that “hybrid corn was the invention of a method of inventing” (Griliches 
1957, 502). My own research in a very different context, drug development 
over the 1988–2005 period, suggests that public sector labs account directly 
for about 10 percent of drugs but may enable two-thirds of marketed drugs 
(Sampat and Lichtenberg 2011). Cockburn and Henderson (2000) find simi-
lar orders of magnitude for drugs. All this would seem to suggest that for 
land grants, tracking disembodied knowledge flows and indirect effects of 
the universities may be useful going forward. Similarly, it may be interesting 
to track where graduates went to assess the role of knowledge “wrapped up 
in people,” to paraphrase Robert Oppenheimer (Zolas et al. 2015).

Another explanation for the puzzle that I flagged above—that land grants 
helped with local innovation but not output—is that the universities were 
not sufficiently focused on local demand. There is a gap between the inno-
vation that universities do and what the funders want. This echoes broader 
critiques of public research in science and technology policy, where concern 
by policy makers that research is not effectively targeted to demand, or not 
effectively diffused, has ebbed and flowed over the post–World War II era 
(Brooks 1996; Geiger 2008). I am not exactly sure how to test this without 
data on research investments and agricultural needs, but it would seem to 
me that if  this were the case for the land grants (or similarly, if  diffusion 
and “translation” of the research findings were not effective), one would 
see some qualitative evidence in state-level debates about funding. If  the 
land grant innovation is not that useful after all, where are the disgruntled 
state taxpayers? This seems trackable through testimony, media articles, or 
the historical literature. The idea that land grant research was not actually 
that relevant (or that good) would challenge the prevailing understanding 
on the political economy of land grants, suggesting they were a model of 
use-oriented research and active dissemination that worked—and worked 
because they were responsive to local taxpayers. This is precisely why it is 
important to do.

Though there is a lot more to be done, this chapter, and the author’s com-
panion work, represent an excellent start on what will be a very important 
line of research that will contribute not only to assessment of the land grants 
and the Morrill Act but also to our understanding of the economics of inno-
vation and diffusion and potentially the political economy of innovation 
policy. I appreciate the opportunity to comment on it in its germinal stages.
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5.1  Introduction

Research on the factors shaping university-industry relations (UIR) has 
exploded in recent decades, as reflected by the hundreds of recent articles 
published on this topic.1 At the heart of this take-off was the push by uni-
versities worldwide to pursue opportunities to commercialize intellectual 
property rights. Arguably, the 1981 passage of  the Bayh-Dole Act put 
US public research universities at the forefront of  this global expansion. 
It extended the intellectual property rights of  American universities and 
their researchers to commercialize innovations and discoveries associated 
with federally sponsored research (Henderson, Jaffe, and Trajtenberg 1998; 
Grimaldi et al. 2011; Sampat 2006; Thursby and Thursby 2011). European 
and universities elsewhere followed suit to varying degrees. In the process, 
UIR around the globe expanded traditional scholarship models of publish-

1. See, for example, Agrawal (2001); Djokovic and Souitaris (2008); Geuna and Muscio 
(2009); Perkmann et al. (2013); and Sengupta and Ray (2017).
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ing and training students into directly engaging with industry and entering 
commercial domains via patents, start-ups, and other forms of corporate-
university alliances.

Our study sheds light on the ground level of  UIR at leading US land 
grant universities (LGUs) by examining the activities, attitudes, and research 
choices of individual agricultural and life science (ALS) faculty. At LGUs, 
faculty engagement with industry dates back to the end of the 19th century 
based on an explicit emphasis on practical agricultural and engineering sci-
ences, formal extension appointments for faculty, and ongoing outreach 
with farms and firms to improve their performance. The recent salience of 
UIR activities to US LGUs stems from the financial stress they faced over 
the past three decades due to declines in state and federal support (Just 
and Huffman 2009; Ehrenberg 2012; Hoag 2005).2 Hence most US LGUs 
pursued academic commercialization as a potential mechanism to generate 
royalties and start-up revenue streams (Thursby and Thursby 2011).

Our chapter exploits rich, unique, and representative individual-level 
cross-sectional and panel survey data gathered in 2005 and 2015 from ALS 
faculty from all 52 of the original 1863 US LGUs. We explore the prevalence, 
intensity, and importance of US land grant faculty’s work with industry as 
compared to traditional scholarship activities. We also examine how faculty 
attitudes toward research choices shape their participation in UIR and how 
they combine UIR with traditional scholarship activities. We divide univer-
sity industry relations into two types.3 One is academic engagement (AE), 
defined as faculty participation in sponsored and collaborative research, 
contract research, consulting, and informal relationships with private firms 
and institutions. Academic commercialization (AC) is the other, defined as 
faculty participation in private intellectual property creation (via invention 
disclosures, patents, and licensing) and entrepreneurship (e.g., start-ups). 
These definitions are used in other recent articles that examine UIR among 
university faculty in Europe (D’Este and Perkmann 2011; Perkmann, King, 
and Pavelin 2011; Tartari, Perkmann, and Salter 2014; Tartari and Salter 
2015; Sengupta and Ray 2017).

These apparently contrasting categories are not mutually exclusive types 
of UIR, with many faculty doing both AE and AC. In our analysis, we con-
trast faculty who engage in these three categories—engagement (AE), com-
mercialization (AC), and both (AE/AC)—with faculty who are not engaged 
in any of the three, which we categorize as traditional scholarship (TS).4 

2. For example, compared to the 2007–8 school year, state spending on higher education, 
which is a significant portion of LGU budgets nationwide, was down in 2015 by 23 percent, or 
$2,026 per student (Mitchell, Palacios, and Leachman 2015).

3. We follow the classification adopted in Perkmann et al. (2013).
4. We are cognizant of the long-standing tradition of faculty, especially at LGUs, engaging 

with industry. Our nomenclature is meant to distinguish between the traditional activities of 
teaching and research with UIR.
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Together, these four categories (AE, AC, AE/AC, and TS) characterize how 
university faculty engage with industry.

We address four major questions: What is the prevalence and intensity of 
AE and AC activities among ALS faculty at flagship public research univer-
sities across the United States? What role does UIR play in funding faculty 
research? How do the research and teaching outputs of faculty active in UIR 
activities compare with those of traditional scholars? And last but certainly 
not least, how do the UIR activities and attitudes of land grant ALS fac-
ulty align with researcher motivations for their choice of research problem? 
Because UIR activities “tend to be individually driven and pursued on a 
discretionary basis” (Perkmann et al. 2015, 424), we examine them at the indi-
vidual faculty level, where we can probe how they meet the values and motiva-
tions of faculty. Participation largely depends on the “independent initiative 
of autonomous, highly skilled” faculty pursuing research and knowledge 
transfer activities that they value for scientific and/or commercial reasons.

Our work builds on several recent research contributions and is especially 
motivated by the Perkmann et al. (2013) review on faculty activity in UIR. 
They identify three major information gaps, which we address directly in 
this chapter. One is the lack of comparative evidence from US universities 
regarding faculty engagement in distinct types of UIR activities, since the 
literature is mostly based on European university data. They also document 
surprisingly little examination of the two UIR activities (engagement and 
commercialization) side by side and the factors shaping faculty engagement 
with them. Although there is a vast body of research on AC and its impacts 
on faculty scholarship (Agrawal and Henderson 2002; Azoulay, Ding, and 
Stuart 2007), relatively little research compares and contrasts it with the full 
set of possible ways for faculty to engage with industry, as we do here. The 
third is the lack of temporal—including longitudinal—evidence that allows 
attention to trends over time of innovation in UIR. This is now a relatively 
mature episode, with the academic commercialization take-off in the United 
States having occurred by the 1990s and in Europe not long afterward, which 
warrants study.

Other recent papers help motivate this article. Sengupta and Ray (2017) 
probe the dynamic relationship between both types of UIR (what they call 
“knowledge transfer”) and traditional research outputs at UK research uni-
versities. Using a longitudinal, university-level data set (spanning 2008–14), 
they find that both AE and AC are positively associated with past research 
performance. However, consistent with the higher prevalence and intensity 
of AE relative to AC in UK universities, they also show that only the former 
has strong positive feedback effects on subsequent research performance 
via both funding and research scholarship (using both quantity and quality 
measures). This major finding in the United Kingdom helps set the broad 
stage for our analysis of UIR and research activities among individual ALS 
faculty in the major US LGUs.
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D’Este and Perkmann (2011) distinguish between two ways in which 
faculty attitudes toward UIR may shape their participation. In the first, 
faculty are viewed as academic entrepreneurs who seek to engage in UIR 
for commercialization reasons, what we refer to as commercial motivation. 
In the second, faculty are viewed as scientists operating in a strongly insti-
tutionalized environment who mainly seek UIR collaborations to advance 
their research efforts, what we later call intrinsic motivation. We recover 
these motivations from our data using factor analysis of attitudinal ques-
tions and then, in a similar fashion to D’Este and Perkmann, link them to 
faculty activity choices.

Finally, Perkmann et al. (2013), as well as Sengupta and Ray (2017), high-
light the potential importance of university-level infrastructure, research 
quality, and incentives for promotion and salary increases in shaping faculty 
engagement with UIR activities. Specifically, the historical experience and 
current resource base associated with university technology transfer offices 
can positively shape UIR outcomes. Likewise, universities with higher- 
quality research performance may be more attractive to industry partners 
and thus attract UIR. Cutting the other way is the possibility that faculty at 
the very top universities, especially in some fields, may be less inclined toward 
applied research and UIR relative to pursuing large public or foundation 
grants and peer-based collaborations.

Our analysis of  the data on LGU faculty answers the four research 
questions as follows. First, at US LGUs, AE, which includes sponsored 
research, industry collaborations, and presentations, is far more prevalent 
and intensively pursued than is AC, which includes patenting, licensing, and 
start-ups. Several decades into the LGU push toward commercialization, 
faculty participation appears to have plateaued at much lower levels than 
their academic engagement. And additional longitudinal evidence shows 
that AE is the more steadily pursued form of UIR, while AC appears to be 
more opportunistic, perhaps consistent with the notion that only occasional 
scientific breakthroughs are worthy of a patent.

Second, commercialization generates very low levels of revenue streams 
for the operation of LGU faculty research labs. By contrast, funding gener-
ated by sponsored research of various sorts (including continued support 
from commodity organizations) outpaces commercialization revenues by a 
ratio of about 10:1 and represents for many faculty a substantive portion 
of their research lab expenditures. Nonetheless, public funding, especially 
federal funds, continues to be the majority source of faculty lab funding. 
Thus while AE is far more important as a revenue stream for faculty research 
activities than is AC, it remains overall a distant second to public funds.

Third, consistent with many previous studies, we find that UIR activities 
of  both types are higher among faculty with higher levels of  traditional 
academic scholarship outputs. Thus UIR and academic scholarship appear 
to be synergistic, reflecting at an individual level the dynamic feedbacks 
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identified by Sengupta and Ray (2017) in UK data at a university level. This 
“synergy” finding also implies that concerns about major trade-offs between 
faculty UIR activity and traditional academic scholarship may be offtrack. 
Indeed, they appear to overlook a positive dynamic feedback loop that can 
nourish more of both types of activity over time.

Finally, the regression analysis reveals that individual-, institutional-, 
and university-level factors all help explain faculty UIR activity. As found 
elsewhere, attitudes and activity choice align in ways that are consistent 
with faculty participating in UIR for reasons related to advancing scientific 
research rather than pursuing commercialization outcomes. The university-
level fixed effect results are also intriguing, as they suggest that higher levels 
of UIR activity are contingent on culture, history, location, and quality of 
science associated with the overall university (not just individual faculty).

The next section describes the context of colleges of agricultural and life 
sciences at US LGUs, while section 5.3 introduces the data and explains 
our methods. Section 5.4 presents the results, while section 5.5 discusses 
the implications of our findings for UIR in the United States. Section 5.6 
concludes.

5.2  US Land Grant Universities

Three major legislative acts frame the long-standing tradition of academic 
engagement at US LGUs (Fitzgerald et al. 2012). The first is the Morrill 
Act of 1862, which granted states land to help finance the establishment of 
public universities. They emphasized agricultural and mechanical arts in 
support of those two major economic sectors while broadening access to 
education and training. The second is the Hatch Act of 1887, which provided 
funding to LGUs to invest in agricultural experimental stations. It recog-
nized the value of increasing public commitment to research that advanced 
knowledge for both farmers and consumers with respect to production and 
nutrition/health outcomes. Finally, the Smith-Lever Act of  1914 created 
the infrastructure for delivering knowledge to society via an extension sys-
tem. It aimed at both sharing research discoveries with farmers, firms, and 
consumers and identifying future research issues based on feedback from 
those and other “stakeholders.” Combined, these three acts shaped a long 
and rich history of AE at US LGUs that featured colleges of agriculture 
(and later “life sciences”) as the cutting edge of UIR activities. Some faculty 
appointments included explicit attention to “extension” in combination with 
traditional scholarship: research and instruction duties.

Faculty in US colleges of  agricultural and life sciences generally span 
the breadth of basic and applied sciences reflected across the rest of public 
research universities. Some departments are filled primarily with basic sci-
entists. This holds especially in “biology” departments, such as genetics, 
molecular biology, and biochemistry, as well as in “ecology” departments 
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(of various names). There are mostly applied (but some basic) scientists in 
animal science departments (including specialties in dairy or poultry sci-
ence), food and nutrition science departments, plant science departments 
(including agronomy, entomology, horticulture, plant pathology, and soil 
science), and agricultural or biosystems engineering. Finally, colleges of 
agricultural and life sciences have social science departments of  various 
names that include economists, sociologists, journalism and communica-
tions scholars, and regional planning and community development faculty. 
While most of these social scientists tend to work on more “applied” ques-
tions, there are also some who could be viewed as closer to “basic” in their 
orientation to pursuing advances on “theory” and “measurement” issues 
rather than emphasizing applied questions. Thus the fields in US LGUs tend 
to provide distinctive “institutional” contexts in which to frame the likely 
connections between faculty and UIR activities.

In the 1990s, as with other universities, AC efforts took off in US LGUs 
colleges of  agricultural and life sciences (Barham, Foltz, and Kim 2002; 
Foltz, Kim, and Barham 2003; Sampat 2006). Biotechnology patents espe-
cially were viewed as a potential source of growth and expansion in both 
UIR and revenue streams for universities and faculty inventors. A plethora 
of  literature explores this period (Phan and Siegel 2006; Grimaldi et al. 
2011), with a primary focus on whether academic activities and the pursuit 
of open science would be advanced or reduced by the attention to commer-
cialization efforts (Thursby and Thursby 2011). At the “field level,” this AC 
push arguably expanded the potential for higher levels of faculty participa-
tion in UIR among more basic scientists who might be able to pursue patents 
on discoveries more readily than they might seek out sponsored research 
or active collaboration with industry scientists. Thus it is arguable that AC 
engagement may be higher among biologists, but the long-standing engage-
ment with AE activities by the more applied scientists could also readily give 
rise to patenting and commercialization efforts depending on the research 
topics and discoveries being pursued. These cross-cutting trends make it dif-
ficult to envision a clear distinction in terms of AC participation across the 
natural science fields. On the other hand, social scientists are far less likely 
to be engaged with patenting and licensing efforts. Most of  their “idea” 
discoveries are likely to be algorithms and statistical or system modeling 
innovations rather than material ones. As a result, AC participation among 
social scientists is likely to be lower than other types of science faculty in 
colleges of agricultural and life sciences.

The rise in US LGU efforts to promote AC coincided with a secular 
decline in federal and state support for higher education (Ehrenberg 2012). 
While LGUs were initially able to largely compensate for that decline by rais-
ing tuition fees, significant pressures on the research and salary expenditures 
were experienced especially between 2005 and 2015 (Mitchell, Palacios, and 
Leachman 2015). During that time period, most LGUs experienced an over-

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Academic Engagement, Commercialization, and Scholarship    185

all decline in state revenues. Faculty increasingly experienced real declines in 
salary levels as well as increased pressure to pursue extramural funding of 
various types—including UIR—to support their labs and salaries (Ameri-
can Academy of Arts and Sciences 2016). Indeed, many colleges of agricul-
tural and life sciences pursued conversions of faculty salary contracts from 
12-month to 9-month appointments. Faculty were “incentivized” to pursue 
the additional 3 months of salary through external sources or “administra-
tive” postings. All of these changes could potentially be viewed as commer-
cial or financial motivations to increase both AE and AC efforts, if  in fact 
they held potential for filling holes in research budgets and faculty summer 
salary needs.

Two other contextual trends in US LGUs warrant attention here. One is 
the pressure on research time associated with “changes” in university bud-
gets. As documented in Barham, Foltz, and Prager (2014), US LGU ALS 
faculty reported declines in “research time” and concomitant increases in 
time spent on administrative activities. Reducing support staff and increas-
ing faculty reporting efforts is one way in which LGUs dealt with budget cuts 
and compliance demands. This could have put pressure on faculty to limit 
UIR as part of the overall pressure on their time, especially research time. 
The other one, which is “more speculative,” is the potential for morale issues 
associated with this long period of budget pressures and time constraints. 
It seems likely that these could have either dampened enthusiasm for UIR 
activities (exhaustion) or increased incentives for faculty to pursue especially 
commercial links for more personal gain.

5.3  Data, Methods, and Descriptive Statistics

This chapter is based on data collected in surveys of ALS faculty con-
ducted in 2005 and 2015. In each data collection effort, we administered a 
survey to nearly 3,000 ALS faculty at all of  the US LGUs established in 
1863.5 Both surveys had a sample frame that included all tenure-track fac-
ulty scientists in ALS departments at these LGUs. We culled faculty names 
from university web directories to create the cross-sectional sample frame 
and then randomly selected a sample of  scientists who were sent a web-
based survey with follow-up paper-mail reminders as in Dillman (2011). In 
addition to the random samples in both years, we also resampled respon-
dents from the 2005 survey in 2015 in order to have longitudinal data on 
faculty. The response rate in 2015 was 32 percent based on respondents who 
answered at least one survey question, with a higher response rate in 2005 
of 68 percent.6

5. The institutional review board at UW-Madison approved both of these surveys, with the 
latest approval being #2015–0924.

6. For more about the surveys, see Goldberger et al. (2005) and Barham et al. (2017).
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Response rates in 2015 did vary somewhat by discipline, from a high of 
42 percent among plant scientists (the largest discipline represented) to only 
28 percent among agricultural engineering scientists (the smallest discipline). 
We accept the null hypothesis of no response rate bias (see Barham et al. 
2017) with respect to the following observed characteristics: field, gender, 
faculty size of  the agricultural college, total university research funding, 
or total full-time university student enrollment. In appendix A, we report 
further sample restrictions. Our final sample for analysis, from the random 
sample data collection, covers 925 scientists in 2005 and 615 in 2015 across 
all 52 LGUs. We also report results from the longitudinal sample of 244 
scientists surveyed in both years.

Table 5.1 details the set of questions with respect to faculty UIR activities 
in our data. AE activities span a similar range described in the aforemen-
tioned studies in the United Kingdom. They cover collaborations, spon-
sored research by industry (and commodity organizations), presentations 
to industry or farmers, and research problem identification. Likewise, AC 
activities span invention disclosures, patenting, licensing, product develop-
ment, and start-ups.

We use these UIR-related items in the data to construct categorical vari-
ables of  AE and AC participation measures as well as ones that identify 

Table 5.1 Types of UIR and survey items included

  Survey item description

U
ni

ve
rs

it
y-

in
du

st
ry

 re
la

ti
on

s

Academic 
engagement

Faculty participation 
in sponsored and 
collaborative 
research, contract 
research, and 
information 
relationships with 
private firms and 
institutions.

Research support from private industry 
Research support from commodity organizations 
Collaborated with scientists in private industry 
Coauthored with scientists in private industry 
Presented to farmers or farm organizations 
Presented to commodity groups 
Presented to the private industry 
Farmers or farm org. helped you identify a research 

problem
Collaborated on a research project with farmers or 

farm org.
Coauthorship on paper or patent with farmers or 

farm org. 

Academic 
commercialization 
 
 
 
 
 

  
 
 
 
 
 
 

Faculty participation 
in private intellectual 
property creation—
via invention 
disclosure, patents, 
and licensing—and 
entrepreneurship 
(e.g., start-ups).

 
 
 
 
 
 
 

Licensing or patenting revenue
# disclosures generated 
# patent applications generated 
# patents issued 
# patents licensed out 
# products under regulatory review generated 
# products on the market generated 
# start-up companies founded 
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when individuals do both. We classify individuals not fitting in any UIR 
category as traditional scholars. The participation measure is “liberal” in 
the sense that participating in any of the AE or AC activities identifies an 
individual with that category. We use these categorical variables to describe 
trends in UIR participation on the “extensive” margin.

In addition to individual participation in UIR, the subsequent analysis 
also focuses on other faculty research activities. We mostly focus on pub-
lishing articles, training graduate students, and receiving research funding. 
Those research activities are incorporated into the comparisons of faculty 
across UIR categories in order to help identify the potential for synergies or 
trade-offs between UIR and traditional scholarship outcomes. Similarly, we 
use data on total research grant revenues and different sources of revenue, 
such as federal, state, industry, commodity groups, foundations, and licens-
ing revenues.

Two other important sets of measures from the survey warrant descrip-
tion here. First, in both 2005 and 2015 surveys, respondents were asked 
about what motivated them to pursue a certain research topic in the last 
five years. They are generally oriented toward “intrinsic” motivations, such 
as “scientific curiosity” or “potential contribution to scientific theory,” or 
extrinsic ones, such as “potential marketability” or “potential to patent and 
license the discovery.” The full set of 14 questions are shared in table 5.8. The 
items are arranged in a five-point Likert scale, with a score of 1 being “Not 
at all” and a score of 5 being “Extremely.” Responses to these questions are 
examined using factor analysis in order to uncover latent factors that might 
shape faculty research choice. We interpret the estimated factor loadings to 
identify the subset of items with internal consistency, which we classified 
as two factors: intrinsic and extrinsic motivations to pursue research. We 
calculate indexes for each measure of intrinsic and extrinsic motivations. 
Indexes are calculated as the response average for the block of items within 
each factor as reported in table 5.9.

We begin with three broad observations that start to frame US LGUs’ 
participation in UIR activities. They can be gleaned from tables 5.2, 5.3, and 
5.4. Table 5.2 provides a comparison for 2005 and 2015 of the prevalence 
of each of the UIR activities. Table 5.3 provides a comparison over time of 
faculty participation in the four UIR categories. In table 5.4, we describe 
participation rates in AE and AC UIR activities by gender, rank, appoint-
ment type, and field.

We find that US LGU faculty participation rates in UIR activities are 
high (table 5.2), averaging 78 percent of faculty participating in any type 
of UIR (table 5.3). Consistent with other evidence in the literature, AE is 
far more prevalent than AC, with about 76 percent of LGU faculty pursu-
ing AE as compared to 19 percent in some type of AC in 2015. Moreover, 
if  we isolate on the exclusive AC category in table 5.3, we find that around 
2–3 percent of faculty are just doing AC in the two time periods. In other  
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words, the vast majority of faculty engaged in AC activities are also active 
in AE. The proportion of faculty that are not engaged in UIR, the TS cat-
egory, is greater than the total proportion active in AC. Thus academic 
commercialization is the least prevalent in the mix of faculty engagement 
types examined here.

UIR participation declined somewhat between 2005 and 2015. Declines 

Table 5.2 AE and AC activity participation rates and counts, 2005 and 2015

2005 2015

  Rate  Count  Rate  Count  Δ p.p.

Academic engagement
Had research support from private industry 0.47 437 0.45 275 −0.03
Had research support from commodity organizations 0.32 294 0.29 177 −0.03
Collaborated with scientists in private industry 0.29 265 0.36 219 0.07**
Coauthored with scientists in private industry 0.13 118 0.15 93 0.02
Presented to farmers or farm organizations 0.42 385 0.38 233 −0.04
Presented to commodity groups 0.32 299 0.31 188 −0.02
Presented to the private industry 0.32 299 0.29 181 −0.03
Had help from farmers or farm organizations to you 

identify a research problem 0.37 341 0.38 233 0.01
Collaborated on a research project with farmers or 

farm organizations 0.27 253 0.31 192 0.04
Coauthorship on paper or patent with farmers or farm 

organizations 0.03 30 0.03 18 −0.00

Academic commercialization
Received any royalties income from patent (past five 

years) 0.04 39 0.05 31 0.01
Had licensing or patenting revenue returned to your 

research lab (last year) 0.02 23 0.04 23 0.01
Number of disclosures generated 0.16 144 0.13 81 −0.02
Number of patent applications generated 0.16 146 0.11 68 −0.05**
Number of patents issued 0.10 88 0.06 39 −0.03*
Number of patents licensed out 0.04 40 0.04 22 −0.01
Number of products under regulatory review generated 0.02 20 0.01 9 −0.01
Number of products on the market generated 0.07 67 0.05 29 −0.03*
Number of start-up companies founded  0.04  35  0.03  17  −0.01

Table 5.3 Faculty participation rates in UIR, 2005 and 2015

  2005  2015  Diff.

Academic engagement (AE) 0.75 0.76 0.01
Academic commercialization (AC) 0.26 0.19 –0.07**

Mutually exclusive measures
Academic engagement (AE)—exclusively 0.53 0.60 0.07*
AE and AC 0.22 0.17 –0.05**
Academic commercialization (AC)—exclusively 0.03 0.02 –0.01
Traditional scholarship  0.22  0.22  0.00

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Academic Engagement, Commercialization, and Scholarship    189

in commercialization activities led the way, with a 7 percentage point decline 
from 26 percent of respondents in 2005 to 19 percent in 2015. When we look 
at the four exclusive measures, this change concentrates on faculty moving 
from practicing both engagement and commercialization to engagement 
only. AE participation was essentially unchanged. The decline in AC between 
2005 and 2015 contradicts the expected increase based on  university-level 
commercialization promotion in previous decades. We conclude that the 
popular perception following university rhetoric on the expansion of UIR 
activities is not borne out by the behavior of LGU faculty in terms of engag-
ing with industry in commercialization activities.

Across fields, participation varies between 60 and 95 percent of faculty 
engaging in any of the three types of UIR, as detailed in table 5.4. Although 
participation rates shown in the table are within each faculty characteris-
tic, we also performed statistical tests to identify the differences in UIR 
participation across categories. There is statistically significant variation at 
a 95 percent level across gender, with men being on average 8 percentage 
points more likely to engage in any UIR than women. We find no statistically 
significant differences in participation by appointment type and/or level. In 
terms of field-of-study differences, the highest rates are in applied/produc-
tion agricultural disciplines, while the lowest UIR participation rates are in 
the 60–70 percent range for the biological and social sciences. This outcome 
is also consistent with findings from the United Kingdom mentioned above, 
where more basic research is associated with relatively lower UIR activity.

While suggestive of  different norms, the decline in commercialization 

Table 5.4 Individual characteristics of UIR categories, 2005 and 2015

2005 2015

 AE  AE/AC  AC  TS  AE  AE/AC  AC  TS

Male 0.54 0.23 0.03 0.20 0.58 0.19 0.02 0.21
Female 0.50 0.17 0.04 0.29 0.63 0.11 0.02 0.24
Rank

Professor 0.50 0.25 0.03 0.22 0.57 0.21 0.02 0.20
Associate professor 0.59 0.20 0.03 0.18 0.64 0.09 0.01 0.25
Assistant professor 0.54 0.17 0.04 0.24 0.61 0.14 0.03 0.21

Fields
Ag engineering 0.54 0.33 0.04 0.09 0.58 0.29 0.03 0.10
Animal science 0.59 0.33 0.03 0.05 0.61 0.24 0.02 0.13
Biology 0.19 0.24 0.12 0.45 0.34 0.18 0.11 0.38
Plant science 0.59 0.28 0.03 0.10 0.69 0.22 0.01 0.08
Ecology 0.65 0.09 0.01 0.25 0.63 0.06 0.01 0.29
Food/nutrition 0.49 0.36 0.03 0.12 0.44 0.35 0.00 0.21
Social sciences  0.53  0.04  0.01  0.41  0.57  0.03  0.02  0.39

Note: This table displays summary statistics by type of UIR and traditional scholarship. Pro-
portions sum to 100 across columns. AE = academic engagement; AC = academic commercial-
ization. We define traditional scholarship (TS) as those that do not engage in either AC or AE.
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captured in the cross-section analyses might be a result of changes in the 
demographic composition of types of faculty. To control for potential demo-
graphic composition changes, we next investigate the individuals for which 
we have panel data among which demographic composition is constant. This 
smaller panel data set was gathered as part of the ongoing study to examine 
the persistence of individual participation in each of the categories. Table 5.5 
provides a transition matrix between 2005 and 2015 of UIR participation 
rates across the categories.

We offer four observations based on the transition patterns in table 5.5. 
First, AE or mixed UIR categories show a higher rate of persistence over 
time than does commercialization only. There is a high exit rate out of AC 
reflected in the AE/AC and AC rows, where only a little over half  of faculty 
that were doing commercialization in 2000–2005 stay engaged in AC activi-
ties in the 2010–15 time period. By contrast, about 85–90 percent of faculty 
who were engaged in AE or both activities in 2000–2005 remain engaged 
with AE activities in 2010–15. Second, the AC category is by far the least 
likely to gain faculty across the two time periods, reflecting the low likeli-
hood of faculty activity in just commercialization. In fact, the decline in AC 
evident in the cross-sectional data also shows up as a lack of persistence and 
a lack of new faculty entrants into this activity. Third, a transition to AE/AC 
from any of the other categories is far more likely, suggesting the potential 
joint nature of AE with AC rather than the move to commercialization as an 
independent activity. Fourth, 25 percent of traditional scholars transitioned 
to AE activities over time, but at the same time, a larger number of scholars 
transitioned from UIR categories into the TS category. Thus the TS category 
increases from 16 percent to 20 percent of the sample, showing its robustness 
to the purported increase in UIR emphasis at LGUs.

Table 5.6 shows research funding for different UIR participation catego-
ries. It compares amounts of funding from different sources as well as the 
shares associated with each funding source.7 Across all the UIR categories, 

7. Note that “private industry” and “commodity organization” funding are used to define 
AE, and “patent royalties” is used to define AC. Therefore, by definition, these amounts are 
zero for some UIR categories.

Table 5.5 Persistence in faculty participation in UIR

2015

  AE  AE/AC  AC  TS  Total

2005
Academic engagement (AE) 99 27 2 18 146
AE and AC 16 30 2 4 52
Academic commercialization (AC) 1 2 1 2 6
Traditional scholarship (TS) 11 1 2 26 40
Total  127  60  7  50  244

This table reports results from the panel data linking individuals between 2005 and 2015 waves.
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federal funding remains the primary source of research funds, with industry 
and commodity organizations playing a substantial but subordinate role. At 
less than 2 percent overall, licensing revenues from AC activities are a trivial 
source, and they are one-tenth the value of the funds earned from private 
industry and one-third the value of funds from commodity organization 
sources. Interestingly, faculty who earned patent royalties are only found 
within the AC faculty who also engage in AE. It is also worth noting that 
for the median research lab revenue, those associated with faculty engaged 
in AC and AE/AC have the highest research funding levels across both years 
of data. Both AE-only and TS labs have lower levels of funding.

For each category of  UIR, table 5.7 reports on scholarly outputs—
namely, articles published in the last five years and being the main advisor 
for PhD and master’s students. Consistent with many other previous studies 
in the literature, academic outcomes are robust to faculty participation in 
UIR activities. The most active faculty in UIR, the AE/AC group, have the 
highest article productivity (mean of 23 articles in 2010–15) and a similar 
number of PhD students trained (mean of 2.5 in 2010–15) to the AC group 
(2.6). These compare with about 14 articles over 2010–15 for AE and TS cat-
egories and 1.6 PhD students for those two categories. The high outputs of 
the AE/AC group are consistent with synergies between UIR and scholarly 
outputs that are found in econometric studies elsewhere (e.g., Foltz, Kim, 

Table 5.6 Research lab financial sources across UIR types, 2005 and 2015

2005 2015

  AE  AE/AC  AC  TS  AE  AE/AC  AC  TS

Research lab  
revs mean $ 155,491 213,848 197,625 107,411 293,202 403,127 346,602 271,649

Research lab  
revs median $ 75,000 150,000 101,500 60,000 100,000 200,000 250,000 60,000

Fed grants $ 89,900 112,497 157,860 77,634 180,415 238,995 274,314 223,796
% 51.86 50.97 63.14 60.71 49.03 52.30 73.00 64.58

State grants $ 15,335 18,127 7,432 6,370 20,216 18,422 14,286 18,168
% 9.16 6.25 7.32 8.06 8.14 5.18 2.86 5.22

Private industry $ 16,618 39,090 — — 36,547 69,626 — —
% 11.96 17.63 — — 12.67 17.15 — —

Commodity orgs $ 7,385 10,623 — — 19,348 24,674 — —
% 8.37 8.78 — — 8.84 7.92 — —

Foundations $ 6,016 9,339 6,398 7,087 12,326 17,228 35,232 15,828
% 4.04 3.61 3.59 6.99 6.08 5.06 10.21 6.14

University funds $ 10,717 14,521 21,747 9,487 16,513 28,892 16,341 11,190
% 10.90 7.74 17.50 15.19 11.05 9.44 13.21 13.49

Patent royalties $ — 3,699 — — — 4,110 — —
% — 1.06 — — — 1.42 — —

Others $ 3,440 1,418 3,250 1,003 5,454 1,181 6,429 471
 % 2.08  1.02  5.31  2.51  1.18  0.55  0.71  1.56
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and Barham 2003). Table 5.7 is also noteworthy for providing continued 
evidence of rising productivity over time of US LGU faculty based on article 
counts (Prager, Foltz, and Barham 2014).8

We turn next to table 5.8, showing the values or stated preferences of 
US LGU faculty with respect to their motivations for “research problem 
choice.” We first report for both 2005 and 2015 the average scores (1 low 
to 5 high) and compare them across UIR categories. In both years, “enjoy 
the research” and “scientific curiosity” scores average well above 4 for all 
categories of faculty. By contrast, the scores for “potential marketability” 
or “private firms commercialization interest” are lower for all the UIR cat-
egories relative to intrinsic motivations by at least a full point and oftentimes 
two or three points.

We next use factor analysis to recover underlying factors explaining the 
variance in the motivations for research choices data. Two factors explain 
most of the variance in the data, which we identify as intrinsic and extrin-
sic motivation factors (table 5.9). We constructed indexes (simple average) 
within the items identified as a factor. Some have consistent “high load-
ings” within each identified factor, such as scientific curiosity or potential 
contribution to scientific theory, which we interpret as intrinsic motivation. 
Meanwhile, likely interest by private firms in commercializing the discovery 

8. We make no effort to control for quality or potential increases in coauthorship, either of 
which could lead to an adjustment in the raw measure provided here. The evidence from Foltz, 
Kim, and Barham (2003) suggests that quantity and quality (as measured by citations) are 
highly correlated, which means the bias from unmeasured quality could be small. We have no 
evidence on which way the bias from coauthorship patterns might go.

Table 5.7 Scholarly outputs across UIR types, 2005 and 2015

2005

AE AE/AC AC TS

  Mean  Median  Mean  Median  Mean  Median  Mean  Median

Scholarly articles (5 yrs) 11.55 9 16.79 14 14.81 13 10.61 9
Master students (5 yrs) 3.08 2 2.61 2 1.94 1 2.95 1
PhD students (5 yrs) 1.22  1  1.75  1  1.88  2  1.72  1

2015

AE AE/AC AC TS

  Mean  Median  Mean  Median  Mean  Median  Mean  Median

Scholarly articles (5 yrs) 14.41 12 23.45 19 21.36 16 14.37 11
Master students (5 yrs) 2.79 2 2.41 2 1.86 1 1.77 1
PhD students (5 yrs)  1.61  1  2.48  2  2.64  2  1.67  1
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Table 5.8 Research choice criteria across UIR types, 2005 and 2015

2005 2015

Research choice criteria  AE  AE/AC  AC  TS  AE  AE/AC  AC  TS

Enjoy doing this kind of research 4.50 4.53 4.69 4.69 4.27 4.33 4.50 4.50
Potential contribution to scientific 

theory 3.49 3.78 4.38 4.13 3.37 3.73 4.50 3.83
Scientific curiosity 4.15 4.26 4.44 4.36 4.02 4.17 4.36 4.40
Probability of publication in 

professional journal 3.88 3.86 4.09 4.09 3.81 3.90 4.50 4.02
Potential marketability 2.42 3.35 2.69 1.64 1.77 3.06 2.21 1.36
Availability of private and corporate 

funds 2.88 3.35 2.03 1.71 2.84 3.48 2.00 1.89
Request made by clientele 3.28 3.32 2.06 2.09 3.09 2.97 1.64 1.76
Feedback from extension personnel 2.79 2.61 1.78 1.70 2.62 2.42 1.71 1.62
Potential to patent and license the 

findings 1.48 2.47 2.25 1.18 1.20 2.46 1.86 1.11
Interest by private firms in 

commercializing the discovery 1.79 2.76 2.09 1.25 1.44 2.66 1.71 1.15
Importance to society 4.31 4.27 4.28 4.21 4.06 4.27 4.29 3.95
Approval of colleagues 2.50 2.43 2.03 2.50 2.29 2.48 2.29 2.25
Availability of public funds 3.92 4.04 3.91 3.63 3.76 4.14 4.00 3.49
Availability of research facilities  3.46  3.83  3.25  3.11  3.28  3.89  4.14  2.86

Note: These questions are reported using a five-point Likert scale, with a score of 1 being “Not at all” 
and a score of 5 being “Extremely.”

Table 5.9 Factor loadings estimation, after rotation

Item  Extrinsic  Intrinsic

Potential contribution to scientific theory  0.62 
Probability of publication in professional journal  0.48 
Enjoy doing this kind of research  0.51 
Scientific curiosity  0.63 
Request made by clientele 0.52  
Feedback from extension personnel 0.47  
Potential to patent and license the research findings 0.67  
Interest by private firms in commercializing the discovery 0.75  
Potential marketability 0.67  
Availability of private and corporate funds 0.52  
Availability of research facilities   
Approval of colleagues   
Availability of public, state, and federal funds   
Importance to society     

Note: Factors are calculated jointly for both waves. Comparing eigenvalues and their vari-
ances, we confirm the existence of two factors. Together, they explain 93 percent of the vari-
ance. We used principal factor with orthogonal quartimax rotation to estimate the factor 
loadings. Measures on intrinsic and extrinsic motivations are calculated as the average of the 
items within each identified factor.
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and potential marketability of  the final product “load high” in what we 
interpret as extrinsic motivation.

We show the distribution of the indexes by UIR category in figure 5.1. In 
2005 and 2015, faculty report higher mean intrinsic than extrinsic motiva-
tions when it comes to research problem choice. The distribution of intrinsic 
motivations is skewed to the right, averaging 4 points. Meanwhile, extrinsic 

Fig. 5.1 Distribution of extrinsic and intrinsic incentives indexes, pooled cross- 
section data
Note: This figure displays the distribution of the calculated intrinsic and extrinsic indexes 
from the cross-section data for individual surveys in both 2005 and 2015.
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motivation appears to be less important to faculty, averaging 2 points. Both 
measures decreased between 2005 and 2015, with the larger decrease in extrin-
sic motivation moving the distribution of that measure to be almost entirely 
distributed below “neutral.” Meanwhile, the intrinsic index, while decreasing, 
remained strongly distributed in the very to extremely important zone.

In figure 5.2, we report the distributions of  the motivation indexes by 

Fig. 5.2 Distribution of intrinsic and extrinsic motivation by UIR category, 2005 
and 2015 pooled—index
Note: This figure displays the distribution of the calculated intrinsic and extrinsic indexes 
from the cross-section data for individual surveys in both 2005 and 2015 by UIR category.
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UIR category. As would be expected by their actions, traditional scholars 
are skewed far to the right on intrinsic motivations and far to the left on 
commercial ones. Yet we see that both categories of commercialization (AC 
and AE/AC) also have high levels of scientific motivation, with only AE as 
distinctly below the others. AE/AC appears to show both the highest average 
levels of commercial motivation and the greatest diversity of motivations 
within the category, as exemplified by a flatter distribution. The AC-only 
group shows high levels of intrinsic motivation as well as a bimodal distri-
bution of commercial motivation, with some at both high and low levels.9

5.4  Empirical Strategy and Results

Descriptive statistics show remarkable differences in academic outputs 
across UIR categories and in factors shaping research topic choice. In order 
to isolate these relationships, we use regression techniques to estimate corre-
lations between UIR categories and various university outputs. The models, 
which should be interpreted as correlational rather than causal, use TS as 
our comparison category.

In the first set of estimates, we explore individual and institutional deter-
minants of UIR engagement, including the relative role of faculty motiva-
tions, and field- and university-specific effects while controlling for faculty 
characteristics. We estimate equation (1) using a linear probability model with 
standard errors clustered at the university level to account for  university-level 
heteroskedasticity. Our dependent variable UIRifu is a binary indicator vari-
able for any UIR engagement, relative to TS. We adopt a flexible functional 
form to capture the potential correlation between motivation and UIR par-
ticipation, k=1

k=4Qki
m, with m ∈ {Int, Ext}. The regressors QkF m are indicators 

for each quartile k of  each motivation Fm distribution. We omit the first 
quartile: Q1F

m. The vector X measures individual characteristics and includes 
gender, university appointment (professor, assistant professor, or full profes-
sor), and an indicator for whether the scientist was awarded a PhD from a 
land grant institution. The variables μf and νu are field and university fixed 
effects, respectively.

(1) UIRifu = + k=1
k=4

k
SQkFi

Sci + k=1
k=4

k
CQkFi

Com + Xi + f + u + ifu.

To demonstrate the correlations between UIR participation and our vari-
ables of interest, which are all categorical, we plot the effects in a series of 
figures. Figures 5.3 and 5.4 plot the set of estimated parameters for categori-
cal variables k

m, μf , and νu, which are, respectively, motivation categories, 
university effects, and field effects.

9. Results for the exclusive AC category need to be interpreted with caution due to the small 
number of cases in our sample.
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Figure 5.3 shows the parameter estimates for quartiles of  the intrinsic 
and extrinsic motivation indexes on the probability that a faculty member 
engages in UIR activities. The figure shows estimated parameters for both 
unconditional (no other controls) and conditional (all controls in equation 
[1]) along with 95 percent confidence bands. The figure shows that as the 
intrinsic index increases, the probability of doing UIR activities marginally 
decreases, with intrinsic motivation playing a small role in differentiating 
UIR engagement. As for extrinsic motivation, there is a higher probability 
of UIR engagement as this indexes increases. These correlations corroborate 
the descriptive statistics that intrinsic motivation is high across the board, 
whereas extrinsic motivation plays an important role in differentiating UIR 
engagement. Overall, these determinants are robust to the inclusion of a 
variety of controls.

In figure 5.4, we show how the estimated parameters on university fixed 
effects, estimated from equation (1), vary across universities, with the Uni-
versity of Wisconsin-Madison (UW-Madison), which has the oldest tech-
nology transfer office among US universities, used as the baseline. There are 
relatively high university-specific effects, which indicate more UIR activity 
at that university compared to UW-Madison, at some of the large LGUs 
such as Illinois; the University of Massachusetts Amherst; the University  
of California, Davis; and Purdue. But we also see some smaller LGUs such 
as Alaska and Vermont in the top 15. There are some surprising effects with 
Cornell in the bottom tier along with a number of smaller LGUs that have 
fewer resources and newer traditions of UIR. Since we have controlled in 
these regressions for both individual- and university-observable character-
istics, the best interpretation for these results is a measure of the UIR “cul-
ture” at these universities. Institutions such as Cornell may have stronger 
basic science cultures with less focus on UIR, while the large LGUs that 
are high on the list may have stronger outreach and extension cultures that 
promote more UIR.

The second half  of the figure shows the estimated parameters on the field 
of specialty-level fixed effects, with plant sciences, which is the largest cat-
egory, as the baseline. The other production agriculture sciences—namely, 
animal sciences, agricultural engineering, and food and nutrition studies—
are not statistically distinguishable from plant sciences. This result, likely 
driven by academic engagement in production agriculture fields, is expected. 
Ecology and basic biological sciences, however, show lower levels of UIR 
engagement than do plant sciences, despite those fields possibly having 
higher potential in commercialization. This may be due to the stronger basic 
science orientation of these fields relative to applied production sciences. 
And as one would expect, the social sciences are at the lowest levels of all of 
the agriculture and life science college disciplines in terms of UIR activities.

In a second set of regression estimates, we isolate how each type of UIR 
activity correlates with academic productivity. The uniqueness of our data 
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Fig. 5.3 Linear probability model: (Any) UIR engagement by quartile of attitudes
Note: Coefficients are for quartiles of  motivation, with the first quartile as omitted variable. 
Dependent variable is an indicator for whether individual engages in any UIR type (1) as op-
posed to being a traditional scholar (0). Unconditional estimates include a survey year 
dummy. Controls for the conditional estimates include gender, position as professor, a dummy 
for whether PhD was in a land grant institution, field (plant science, ag/engineering, animal 
science, biology, ecology, food/nutrition, and sociology), and university fixed effects, which 
correspond to the 52 land grant universities. Standard errors are clustered at the university 
level.
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set allows us to control for an often unobserved dimension of individual 
heterogeneity: faculty motivations, both intrinsic and extrinsic. This allows 
us to measure the direct effects of these characteristics beyond their effects 
that run through UIR engagement. We also control for individual, field, and 
institutional characteristics.

We estimate different versions of equation (2), in which Yifu varies in each 
regression covering the number of journal articles, PhD graduates, and total 
funding for scientist i in field f at university u. AC, AE/AC, and AE are our 
mutually exclusive measures of UIR, and TS is the omitted baseline cat-
egory. The values Fi

I and Fi
E are the index scores for intrinsic and extrinsic 

Fig. 5.4 Linear probability model of UIR engagement—field and university  
fixed effects
Note: For both panels, dependent variable is an indicator for whether individual engages in 
any UIR type (1) as opposed to being a traditional scholar (0). (a) Coefficients are for 52 
university indicators, with University of Wisconsin-Madison as omitted variable. (b) Coeffi-
cients are for field indicators, with plant science as the omitted variable. We choose plant sci-
ence as the omitted variables for being the most popular field in our sample. Additional con-
trols include gender, position as professor, and a dummy for whether PhD was in a land grant 
institution. Standard errors are clustered at the university level.
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motivation, respectively. The vector X measures individual characteristics 
and includes gender, university appointment (professor, assistant professor, 
or full professor), and an indicator for whether the scientist was awarded 
a PhD from a land grant institution. The variables μf and νu are field and 
university fixed effects, respectively. The standard errors are clustered at the 
university level to control for university-level heteroskedasticity.

(2) Yifu = + 1AC + 2AE
AC

+ 3AE + SFi
S + CFi

C + Xi + f + u + ifu.

Table 5.10 shows the results of  estimating equation (2) with journal 
articles and PhD students produced over the last five years as the dependent 
variable. The columns provide increasing levels of control variables: the first 
is the baseline, the second adds in our motivational measures, the third adds 
individual controls, and the fourth adds field and university fixed effects. One 
sees two dominant statistically significant and large effects: (1) compared 
to traditional scholars, AE/AC and AC-only faculty produce more journal 
articles and more PhD students, and (2) levels of intrinsic motivations are 
directly correlated with both journal articles and PhD students, whereas 
extrinsic (commercial) motivations do not play a direct role besides those 
embedded in how they determine UIR participation. Overall, the picture 
that emerges from table 5.10 is that UIR faculty, especially those with com-
mercial ties, are more productive than traditional scholars. In addition, 
those in the AE-only category appear to produce scholarship and students 
at about the level of traditional scholars.

Table 5.11 shows the results of estimating equation (2) using the amount 

Fig. 5.4 (cont.)
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of total funding and public funding as two dependent variables. It is worth 
noting that our categories of UIR are partially created with funding data, 
so we should expect a positive relationship with total funding, though not 
with public funding. Here we see very strong and statistically significant cor-
relations of any UIR activity with both total funding and federal funding. 
While the former is somewhat expected, the latter suggests that rather than 
being a distraction from TS directions, faculty engagement in UIR activi-
ties is synergistic in terms of bringing in federal funding, which is generally 
associated with TS. Again, we see strong correlations of intrinsic motiva-
tions with both total and federal funding, suggesting a direct effect, whereas 
extrinsic motivation does not have such a direct effect.

5.5  Discussion

Our empirical results present a number of new findings for the study of 
UIR activities at US universities on several important fronts. First, fac-
ulty participation rates in UIR activities are quite high; generally, around 
70–80 percent of  US LGU agricultural and life scientists engage in AE, 
AC, or both. Second, faculty participation in UIR is predominantly in the 
area of AE, the more traditional type of research collaboration involving 
sponsored research, industry collaboration (including farmers and their 
commodity organizations), and other types of research exchanges (presen-
tations and shared problem identification). In fact, only about 2–3 percent 
of faculty in either the 2005 or 2015 survey participated in just AC activities. 
Third, as a source of research funding for ALS faculty at US LGUs, AE 
industry revenues completely dominate AC license revenues, but the largest 
individual faculty funding levels come from those who do both AE and AC. 
Overall, patent license revenues provide about 1 percent of lab revenues as 
compared to approximately 25 percent share of lab revenues coming from 
industry and commodity group funds. This funding outcome appears to 
be in “steady state” now 35 years after the passage of the Bayh-Dole Act 
and more than 25 years after the takeoff of US public university patenting 
activity, as the ratio of AE to AC funding was the same in 2015 as it was in  
2005.

This study also finds descriptive evidence that UIR activities are highly 
correlated and likely synergistic with traditional academic scholarship activ-
ities. This outcome is consistent with previous studies that find the more 
productive researchers are also often the ones most highly “in demand” or 
active in UIR activities. While this study does not undertake the type of 
longitudinal dynamic statistical analysis as do Sengupta and Ray (2017), 
who find positive feedbacks between AE and research outcomes at the uni-
versity level, prima facie evidence presented in our work at the individual 
faculty level is consistent with that outcome. In particular, our finding that 
the AE/AC faculty persist across time periods and that this group has more 
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research revenues and higher publication and student counts demonstrates 
this individual positive feedback loop.

In examining factors shaping the participation of US LGU faculty with 
UIR activities, we find that institutional factors, specifically “fields” or “dis-
ciplines,” are a significant conditioning factor, with more applied science 
fields such as plant and animal sciences having higher UIR rates than more 
basic ones such as biological and ecological ones. Additional analyses show 
that most of the differences in UIR activity by field are driven by variations 
in AE rather than AC. This finding is consistent with both the lower overall 
participation in AC and the fact that most of the faculty active in AC are 
also active in AE. The reverse is not true. Most faculty engaged in AE are not 
active in AC. In this regard, it appears that AC may be somewhat opportu-
nistic and may depend on the types of inventions or discoveries being made 
by scientists. Put simply, ongoing collaboration with industry or sponsored 
research arrangements may, from time to time, give rise to the pursuit of 
invention disclosures and patents, and so entry and exit into AC activities 
appear to occur regularly, as shown in the transition matrix in table 5.5.

The most substantive individual factors shaping the intensity of participa-
tion in UIR appear to be faculty “attitudes” with respect to research prob-
lem choice. While we do not attempt here to identify a causal relationship 
between attitudes and UIR activity involvement, ALS faculty at US LGUs 
report that their research problem choices are strongly driven by intrinsic 
factors, such as curiosity or the potential to contribute to scientific theory 
relative to intrinsic motives. This is true across all the UIR categories used 
here, though what distinguishes AE, AC, and AE/AC from TS is a somewhat 
stronger level of extrinsic motive. This basic preference for science has been 
a consistent outcome across decades of surveys of US LGU faculty and is 
consistent also with the continued importance of federal competitive grants 
as a primary source of research funding.

Finally, university fixed effect measures in our UIR regressions reveal sta-
tistically significant differences in university “cultures” with respect to UIR. 
These differences appear to relate to the timing of initial commercialization 
activity and potentially to other historical and locational factors that could 
be important for how they shape faculty behavior over time. This is an area 
of ongoing interest and potentially productive future inquiry.

5.6  Conclusion

This chapter has examined UIR activities of ALS faculty at the premier 
US LGUs, using survey data gathered from large, random, and longitudinal 
samples in 2005 and 2015. The analysis of this unique set of data fills an 
empirical gap identified in the literature by carefully exploring the relative 
importance of AE and AC. Because US LGUs are the “ground zero” of US 
public research university UIR activities, the empirical context is of broader 
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significance to the United States and beyond. We have found descriptive and 
correlational evidence that traditional academic scholarship has not system-
atically been distorted or constrained in the ways that some originally feared 
and that UIR—while important to faculty, universities, and society—is not 
a fundamental threat to the advancement of science.

At US LGUs, the long-standing tradition of AE, involving sponsored 
research and direct collaboration with scientists and managers in indus-
try and agriculture, dominates the new AC relationships in prevalence and 
importance for faculty research funding. Moreover, these two types of UIR 
appear to be complements, with AC being an occasional outgrowth of AE 
in some fields and for some faculty, which likely depends on the continu-
ity of AE relationships to emerge. Seen in this way, the UIR activities of 
agricultural and life scientists at LGUs are more of a natural outgrowth 
of the land grant system’s traditional model of working with industry to 
foster improved outcomes in their own states and the nation. Fears of UIR 
subverting the LGU mission appear to be misplaced. Rather, we find that 
UIR complements the traditional work of  top scholars in ALS fields in 
part by helping them access more funding and connections with industries 
in their field.

The data described and analyzed in this article represent a valuable 
resource for investigators who seek to understand the workings of  ALS 
research in the United States. Future exploration with these data will seek 
to pursue causal identification of UIR participation and intensity outcomes 
using historical information as instruments as well as more exploitation of 
the panel data. Expanding the focus on university-level factors seems worth 
special attention in this effort. Adding to the current data set with measures 
of journal quality would also be a useful contribution. In addition, given 
the significant growth in the proportion of women and foreign faculty in the 
US LGUs over time, there are open important questions as to whether this 
has changed the dynamics of UIR participation. Using the data described in 
this chapter to analyze how the ALS research establishment has or has not 
diversified over the last quarter century, and the effects thereof on research 
output and topics, is an important avenue for understanding the conduct 
of science.

Appendix

Sample Selection and Imputation of Missing Values

Within the subsample of individuals who completed the survey, there was a 
large number of missing responses. We assumed a set of hypotheses in order 
to impute the missing values. (1) Research attitudes: Likert scale ranging 

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



206    Bradford Barham, Jeremy Foltz, and Ana Paula Melo

from 1 to 5. We assigned a neutral value, 3, if  the individual answered the 
block at least partially. When all responses are missing, variables remain 
coded as missing. (2) UIR-related measures: individual responses with miss-
ing values are replaced with 0 when the person answered part of the block. 
When all individual responses for the questions within the block are missing, 
we do not input values. (3) Extension and outreach: missing responses are 
coded as 0 if  the block was partially answered. If  all questions within block 
were not answered, variables remain coded as missing. (4) PhD students: 
missing responses are coded as 0 if  the block was partially answered. If  all 
questions within the block were not answered, variables remain coded as 
missing. For each block, we created variables indicating the total number 
of imputed values, and results are robust to adding these variables in the 
regression as a control. These results are available upon request.
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Comment Nicola Bianchi

This chapter explores the characteristics of  university-industry relations 
(UIR) among agricultural and life science (ALS) faculty at US land grant 
universities (LGUs). This research question is interesting because there is a 
common belief  that US universities are relying more and more on UIR to 
replace dwindling funding from the state and federal government. Despite 
the plausible growing importance of UIR activities, little is known about 
their features, their links with professors’ academic output, and their con-
sequences for academic research.

This chapter contributes to our understanding of UIR in several ways. 
It uses extensive survey data collected in 2005 and 2015 to explore UIR at 
LGUs. The sample is large, covering 946 professors in 2005 and 626 pro-
fessors in 2015. Among these faculty members, 234 are surveyed in both 
years, allowing the analysis to have a panel component. Moreover, the survey 
asks detailed questions about UIR, permitting the authors to distinguish 
between different forms of UIR. Specifically, the chapter is able to differenti-
ate between academic engagement (AE) and academic commercialization 
(AC). AE describes any form of faculty participation in shared research. 
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It involves, for example, research support from industry, participation in 
industry presentations, and research collaborations with industry experts. 
AC describes any form of faculty participation in private intellectual prop-
erty creation. For example, it involves the creation of patents, products, or 
start-ups with industrial partners.

This chapter adopts different methodologies to describe the characteris-
tics of UIR. It compares differences in the average characteristics of faculty 
members participating in different types of UIR. Moreover, it creates a UIR 
index via principal factor analysis. Finally, it uses multivariate regressions 
to concurrently control for multiple drivers of UIR.

Before moving to the discussion of the main results, it should be noted that 
this chapter accomplishes a lot. It produces an impressively extensive anal-
ysis on UIR. It answers at least six different and important research ques-
tions on the topic. Moreover, the chapter uses newly available survey data. 
These data are great for many reasons. First, the sample size is big enough to 
obtain precise estimates. Second, this survey is designed to ask very detailed 
questions on UIR. As a result, the survey allows the authors to study cor-
relations that could not be addressed by previous research on this topic. 
Given the importance of the data, I think that future work should put more 
emphasis on them. It should be clearer that the data represent a significant 
contribution to the literature. Moreover, future work should include more 
information on the survey itself, especially on the 2005 wave. In addition, 
any upcoming research should discuss the representativeness of the sample. 
It would be very informative to have a table in which the faculty members in 
the sample are compared to all other ALS professors at US LGUs. Ideally, 
the average characteristics of these two groups will be statistically similar. In 
addition, I think that a natural way to expand the data would be to incorpo-
rate administrative data on patent production and on publications instead of 
relying exclusively on self-reported output measures. The addition of these 
data sets would be valuable for at least two reasons. First, any self-reported 
variable raises questions about its reliability. Administrative or third-party 
data would assuage these concerns. Second, these types of administrative 
data would include objective measures of the quality of the academic pro-
duction, which are missing from the current analysis.

Moving to the discussion on the findings, the first main result shows that 
between 80 and 90 percent of surveyed faculty members participate in UIR. 
Moreover, there is little variance across gender and academic rank. There 
is, however, significant variance across academic fields. The UIR rate var-
ies from 94 percent in animal science to only 68 percent in social sciences. 
In future work, I would emphasize a bit more this last finding (differences 
across fields). Furthermore, it would be very beneficial to draw a tighter 
connection between the results and the hypotheses outlined in section 5.3. 
For example, I think it would be better to state that the differences across 

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



210    Nicola Bianchi

fields are consistent with hypothesis 7. In addition, it would be beneficial to 
remind the reader that the high average participation rate is consistent with 
hypothesis 1. 

The second main result is that AE is much more prevalent than AC. In 
2005, 55 percent of faculty members participated in only AE activities, while 
only 3 percent participated in only AC activities. Among the remaining fac-
ulty members, 23 percent participated in both, while 19 percent did not 
participate in UIR at all. This result is interesting because it might speak 
to the nature of  AC and AE activities. Is it possible that AC is, in most 
cases, the second or advanced phase of UIR after an initial period limited 
to AE activities? This could be true because most collaborations might start 
solely as research support. Sometimes, research activities (AE) are success-
ful and open the path for further collaboration on commercialization (AC). 
This pattern could explain why AE is more widespread. Moreover, it would 
explain why almost nobody engages exclusively in AC activities.

The third main result shows that UIR participation fell by 3 percentage 
points between 2005 and 2015. Over this period, the largest shifts were away 
from AE/AC combined and from AC only. Instead, the participation rate in 
AE only increased by 7 percentage points. These results are very interesting 
because they partially contradict the hypothesis that states that UIR activi-
ties are on the rise. The truth is that only a subgroup of UIR, AE activities, 
has been increasing over the last 15 years. I think that future research could 
estimate the same changes in UIR using a multinomial logit model. This 
type of model would account for the fact that the outcomes (participation 
in UIR) are mutually exclusive and would produce more robust estimates.

The fourth main result shows that funding for UIR came predominantly 
from federal and state grants. Moreover, the importance of  government 
grants increased over time. Possibly contrary to popular belief, patent roy-
alties are not a substantial stream of revenues. On average, they contribute 
around 1 percent of revenues for faculty members participating in AC activi-
ties. These results are very interesting because they partially contradict the 
idea that dwindling government grants are one of the driving forces of UIR. 
Although it is true that state grants have been decreasing between 2005 and 
2015, federal grants increased over time. It is also true that revenues from 
private industry have been increasing. A hypothesis is that UIR activities 
provide significant funding for US LGU research activities. Based on his-
torical trends in AE and the recent push for the expansion of AC activities, 
along with declines in state funding levels, UIR is expected to play a signifi-
cant and perhaps growing role in funding faculty research activities. These 
results, however, paint a more complex picture. Therefore, I think that future 
research should have a more nuanced discussion on how these results relate 
to the original hypothesis. Moreover, although the main finding is quite 
clear (strong reliance on federal funding), I have some doubts about other 
sources of funding. “Private industry” is a very general label for a funding 
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source. The same comment applies to “Foundations.” Would it be possible 
to dig deeper into these sources and unpack their overall contribution into 
smaller subgroups? I think that doing so would help with interpretation. It 
would be especially important for “Private industry,” considering that it is a 
funding source that is becoming more important over time.

The fifth main result shows a positive correlation between UIR and schol-
arly output. Specifically, faculty members engaged in UIR have an average 
academic production that is higher, compared with faculty members not 
engaging in UIR. Moreover, the scholarly production is the highest for pro-
fessors who engage in both AE and AC. This result corroborates the hypoth-
esis that “UIR activities are broadly synergistic with other US LGU outputs 
such as producing articles and training graduate students.” I think that this 
result is fascinating because it is the first step toward addressing what might 
motivate professors to engage in UIR. Future research should dig deeper 
into these findings. First, I think that this analysis requires a multivariate 
regression. In fact, a regression could allow the authors to estimate the cor-
relation between UIR and scholarly output while also controlling for other 
extraneous factors. Moreover, it would allow the authors to assess whether 
differences across UIR are statistically significant. Second, as mentioned 
above, adding external data on academic activity (e.g., the Web of Science 
Data by Thomson Reuters) would make it possible to measure the quality 
of the scholarly output instead of focusing only on quantity. Beyond these 
technical issues, I have some comments on the interpretation of these inter-
esting results. The chapter states that these findings are consistent with the 
idea that there are “synergies” between UIR and academic activities. What 
is the true meaning of synergies in this context? Is synergy just a synonym 
of correlation, meaning that in the data, the two activities are more likely to 
happen together? Or does synergy imply an actual mechanism?

The sixth main result shows that scientific motivations to engage in UIR 
are more important than commercial ones. These findings are fascinat-
ing but come with some caveats. First, the motivations for UIR are self-
reported. This is not necessarily a limitation of the data, because there is no 
other way to collect this information. However, self-reported data could be 
skewed toward finding that scientific motivations are more important than 
any other factor. There is likely a strong negative stigma attached to fac-
ulty members who identify commercial motivations as their primary driver.  
I think that future research should discuss this fact. Second, these results are 
only partially corroborating the authors’ claims. Specifically, a hypothesis is 
that the pursuit of scientific discoveries is the primary motivation shaping 
US LGU faculty participation in UIR activities. I think that the results in 
table 5.8 do not necessarily prove this point. In other words, they do not 
prove that scientific motivations are the primary motivation behind UIR. 
These findings prove that scientific motivations are more widespread and 
common than commercial motivations. Third, I would emphasize how com-
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mercial motivations are more common among UIR faculty. Specifically, the 
share of faculty members who have commercial motives is often more than 
1 percentage point higher among faculty members engaging in UIR. Fourth, 
as I explained in the previous paragraph, this analysis should be performed 
using multivariate regressions.

The seventh main result shows how a UIR index, built using principal 
component analysis, is correlated with scientific and commercial motiva-
tions. I agree with the idea of building a UIR index, because engaging in UIR 
activities is likely a continuous choice, not a dichotomous one. Specifically, 
the chapter creates two indices: one index for AE and one for AC. The main 
issue is that a change in these two indices implies different comparisons. As 
shown in figure 5.1, an increase in the AE index compares faculty members 
not engaging in UIR to faculty members engaging almost exclusively in AE. 
Instead, an increase in the AC index compares faculty members engaging in 
AE to faculty members engaging in both AE and AC. These discrepancies 
make the interpretation of these last results a little complex.

To conclude, this chapter represents one of the most thorough explora-
tions of UIR to date. The analysis of newly available survey data dispels 
some common misconceptions about UIR. Specifically, the chapter sug-
gests that there are stark differences between AE and AC activities. As a 
consequence, every discussion on this topic should take into account that 
the various types of UIR have very different characteristics. I suggest that 
future research addresses the following four main issues. First, it would be 
beneficial to assess the representativeness of the survey data with respect 
to all ALS professors at US LGUs. Second, follow-up work should discuss 
in greater detail the complex relationship between trends in government 
grants (federal vs. state) and participation in UIR activities. Third, the anal-
ysis of the effects of UIR activities on scholarly output should be based on 
multivariate regressions in order to control for confounding factors. More-
over, future work should add third-party administrative data on academic 
publications and patent production (such as the Web of Science database) 
in order not to rely on self-reported outputs exclusively. Fourth, the UIR 
indexes should be redesigned to make them more comparable.
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6.1  Introduction

Innovation in the agricultural and food system has been fundamental 
in enabling it to feed the world. Developments in mechanical, chemical, 
and biological technologies have contributed to productivity gains that have 
more than doubled outputs of agricultural production over the last 50 years 
while scarcely changing the aggregate quantity of inputs (Alston et al. 2010). 
Innovations in harvesting, processing, and other postharvest steps have also 
increased the capacity and efficiency of the food system, helping improve 
food security and the nutritional quality of diets for a growing global popu-
lation (FAO 2018).

Innovation in modern agriculture increasingly occurs as a result of formal 
research and development (R&D) activities, conducted in both the public 
sector and the private sector. Historically, agricultural R&D has been highly 
managed. In the mid-19th century, it was led by governments supporting 
agricultural research stations and research at agricultural colleges and uni-
versities. By the mid-20th century, an international agricultural research 
system, supported and overseen by philanthropic foundations and inter-
national organizations, became a major source of new innovations. During 
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this same time frame, large corporate agribusiness and food firms increased 
their R&D with the objective of maximizing the profitability of their core 
production and marketing activities.

While government investments in agricultural R&D have been declining 
in real terms in high-income countries over the last several decades, industry 
investments in agricultural R&D have increased steadily (Fuglie et al. 2012; 
Pardey et al. 2016). Globally, annual industry expenditures on agricultural 
R&D in 2009 were in the range of $10 billion (Fuglie et al. 2011) to $16 bil-
lion (Pardey et al. 2015). The most recent available global estimate of indus-
try’s agricultural R&D was $15.6 billion in 2014 (Fuglie 2016). However, all 
such estimates primarily consider publicly listed companies that are subject 
to public disclosure requirements by securities regulators. Such estimates 
have largely ignored small- and medium-size enterprises (SMEs) because 
historically, they have contributed very little to industry R&D.

In recent years, however, there has been a surge in the founding and financ-
ing of start-up companies seeking to develop and apply new technologies in 
agriculture and the food system. These companies are privately held and have 
raised significant amounts of equity-based investment from venture capital 
(VC) funds and related private sources such as seed, angel, and other private 
equity investors. According to industry reports, in recent years, up to several 
billion dollars annually have been invested into such agricultural technology 
(or “agtech”) start-up companies (AgFunder 2015, 2019; CBInsights 2017; 
Dutia 2014; Finistere Ventures 2019; KPMG 2018). While the phenomenon 
of start-up companies or new technology-based firms (NTBFs) introducing 
new technologies to agriculture is itself  not new, recent rates appear to be 
unprecedented in terms of both the number of start-ups and the amount 
being invested in them.

Yet these various accounts of R&D investment in agriculture draw on a 
range of different private data sources and industry subsector definitions 
and thus vary in terms of how prevalent they find agtech start-ups to be and 
how much VC they find is being invested in the industry. To some extent, this 
variation is due to the inherent challenges of industry classifications. Estab-
lished categories tend to reflect the incumbent structure of industry—such 
as seeds, agricultural chemicals, or agricultural machinery. However, many 
of the recent agtech start-ups span conventional industry categories. For 
example, a start-up may have its primary industry classification in software, 
yet that software may be highly specialized for data management and deci-
sion support of  on-farm crop production. One perennial question is the 
extent to which downstream food manufacturing, wholesale, and retail cat-
egories should be included and how, especially since the business models of 
some of today’s leading start-ups explicitly seek to shorten or span the entire 
“farm-to-table” value chain. Variations in accounting of VC investments 
are also due to the fact that, historically, private investments in agricultural 
R&D have been quite low in developing countries (Pardey and Beintema 
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2001; Pardey et al. 2006). Yet recently, robust start-up activity and private 
investment is being reported in middle- and lower-income countries, espe-
cially in the larger emerging economies like India (AgFunder 2018b), China 
(AgFunder 2018a; Gooch and Gale 2018), and Brazil (Mondin and Tomé 
2018; Dias, Jardim, and Sakuda 2019). Data sources and procedures for sys-
tematic compilation of small-scale private business activity in such countries 
are nascent at best. It is not clear why this surge in venture investment in 
agricultural technology has occurred in middle- and lower-income countries 
now or what factors account for this apparent upturn, but it appears to be 
an important part of  this global phenomenon and has remained largely 
unrecorded.

We present evidence in this chapter that until 2006, the amount invested 
globally in agtech start-ups remained relatively negligible, typically less 
than $200 million per year, then grew steadily from 2007 to 2009 and then 
exploded in 2010, exceeding $3 billion annually in recent years. One industry 
source claims that venture investments in agricultural technology may have 
been as high as $7 billion in 2018 (AgFunder 2019). At that rate, VC and 
associated private investors could be allocating up to half  as much toward 
agricultural R&D as are the corporate members of the industry.

These start-ups and their R&D activities can be expected to impact exist-
ing agricultural technologies and industry structure. These start-ups are tap-
ping new sources of financing to support R&D for agriculture. Compared 
to established R&D organizations, in both the public and private sectors, 
venture-backed start-ups are subject to different incentives and constraints 
and are connected to different professional networks. This allows them, col-
lectively, to pursue a larger and more diverse range of R&D projects. Some 
of the R&D conducted by start-ups may be complementary to R&D by  
established organizations. Some are even spun off from established R&D 
organizations to build on discoveries made within those organizations in 
order to transfer or translate those findings into market applications. Other 
start-ups are contributing new research tools or platform technologies—
such as novel sensor systems, artificial intelligence algorithms, or genome 
editing technologies—that could improve the research productivity of all 
agricultural R&D organizations, public and private. Yet other start-ups may 
be directly competing with established public sector or corporate R&D agen-
das, seeking to “disrupt” current technologies or ways of doing business.

The VC-backed start-up is effectively a mechanism to contain the finan-
cial risks of prospecting in the process of R&D, reducing or managing the 
technical and market uncertainties of innovation. While many start-ups fail 
in the attempt, some do prevail in bringing their innovation to market. An 
increase in the rate of successful start-ups may help counter recent trends of 
increased market concentration in agribusiness, in which fewer larger firms 
have been accounting for ever greater shares of private sector R&D (Fuglie 
2016). VC-backed start-ups bring Schumpeter’s “gale of creative destruc-
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tion,” supplanting some current technologies and companies. Without inno-
vation, market concentration can lead to exploitative monopolies, but with 
innovation, new competition can erode monopoly power (Zilberman, Lu, 
and Reardon 2019).

This chapter investigates the increase in the number of new agricultural 
technology start-ups globally. What are the dynamics of entry and growth 
of  new firms financed by VC? Where is it occurring? To what extent are 
they concentrated in high-income countries? And what are the main market 
categories or technologies they are pursuing?

This chapter also explores a range of economic factors and circumstances 
that might help explain this growth of VC investments in agriculture. A better 
understanding of the factors causing this investment will help us anticipate 
whether it is merely a transient phenomenon or whether it constitutes a more 
enduring shift in the composition and dynamics of agricultural R&D. Other 
industries, such as software, internet services, and pharmaceuticals, have 
both enjoyed exponential growth and endured downturns in venture invest-
ment, most famously with the bursting of the tech bubble circa 1999–2000. 
Yet today, those sectors continue to exhibit an innovation ecosystem that is 
routinely refreshed by new start-ups funded by VC in an ongoing virtuous 
cycle. The fundamental question is the extent to which the R&D and innova-
tion system of agriculture is being transformed by this influx of equity-based 
private investments in R&D-intensive start-up companies and whether it will 
come to operate more like these other high-tech industries in the long run.

To investigate these changes, we compile a global data set of 4,552 compa-
nies in agriculture, founded from 1977 to 2017, with 11,998 associated finan-
cial transactions, including investments into and exits from these start-ups. 
The lack of reporting requirements for privately held firms generally makes 
it difficult to systematically track start-ups and their financing (Cumming 
and Johan 2017). To overcome this challenge, we draw primarily from the 
commercial data vendor PitchBook (by Morningstar) and augment its data 
with additional company and financial transaction records from competing 
commercial data sources, VentureSource (by Dow Jones) and Crunchbase 
(founded by TechCrunch). The financial transactions reported include a 
range of VC, seed, and angel investments; some other private equity deals; 
and debt financing. They also include transactions by which early inves-
tors and founders exit their investments in these start-ups, such as initial 
public offerings (IPOs), mergers and acquisitions (M&As), and other types 
of buyouts. While the transactions data do indicate some bankruptcies and 
closures of the start-up firms, the reporting of these is incomplete, and so we 
are left to impute a rate of firm closures based on clues in the data. Together, 
these data allow us to explore the start-up life cycles and exit outcomes 
over time and across the full range of different technologies being devel-
oped (e.g., biotech vs. software), across the full range of subsectors of agri-
culture (e.g., inputs vs. outputs, or crops vs. livestock), and across the globe.
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Our data summaries show exponential growth in the number of start-ups 
from about 2009 to the present. The largest share of start-ups is in the United 
States (33 percent), followed by Europe (23 percent), with the remainder 
(44 percent) elsewhere in the world. Significant numbers are in emerging 
and developing economies, such as India (5 percent), China (4 percent), and 
Brazil (2 percent). In terms of technologies being developed, about one-third 
of the new start-ups involve computer, information technology (IT), and 
data-related technologies; another third involve biotechnology, breeding, 
genetics, or animal health; and the final third encompass a wide range of 
other technologies, applications, and business models, including marketing 
and sales, financial and business services, and even on-farm production.

This chapter proceeds as follows. We turn next to a quick overview of the 
economic literature on agricultural R&D and on VC. We then introduce a 
new data set on agricultural technology start-ups. The full sample of start-
ups is used to track overall trends, such as founding rates, the geography 
of start-ups globally, and start-ups by technology or industry categories.  
A narrower subset of  start-ups that also have data on their investments 
is used to analyze growth in investments and factors associated with that 
growth, both at the firm level and at the industry level. The results suggest 
that recent surges in commodity prices—together with higher amounts of 
VC being invested overall and signals from successful exits in agriculture—
may have led to the rise in VC investments in agriculture. We conclude that 
VC investments into start-up companies represent an important new source  
of  R&D expenditures with the potential to transform many aspects of 
private R&D for agriculture.

6.2  Literature Review

6.2.1  Financing of R&D in Agriculture

There is a robust agricultural economics literature on the institutional and 
financing aspects of agricultural R&D (Alston et al. 2010; Huffman and 
Evenson 2006; Pardey, Alston, and Ruttan 2010; Sunding and Zilberman 
2001). Relative to other industries, agriculture has long had a high ratio of 
public sector to private sector R&D. Pardey and Beintema (2001) tracked 
spending globally over several decades and estimate that in 1995, total global 
agricultural R&D was $33.2 billion, of  which 65 percent ($21.7 billion) 
was by public sector sources (defined as research conducted by or funded 
by governments, academics, or nonprofit organizations), while 35 percent 
($11.5 billion) was by the private sector (defined as profit-motivated R&D 
by privately or publicly held companies and state organizations). Five years 
later, in 2000, global total spending on agricultural R&D was only slightly 
higher, at $33.7 billion, and the sectoral shares had adjusted slightly, with the 
share conducted by the public sector down to approximately 60 percent and 
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the share conducted by the private sector up to around 40 percent (Pardey 
et al. 2006).

Several key trends have been observed in the composition of agricultural 
R&D globally. The share of global agricultural R&D conducted in middle- 
and low-income countries is about 45 percent versus 55 percent conducted 
in high-income countries, which is a much higher share than overall R&D 
conducted in low- and middle-income countries, which is 22 percent versus 
78 percent in high-income countries (Pardey et al. 2015). However, of the 
agricultural R&D conducted in low- and middle-income countries, very 
little of it is in the private sector. Historically, private sector R&D in devel-
oping countries is very low: in 1995, of the agricultural R&D conducted in 
developing countries, only 5.5 percent was by the private sector (Pardey and 
Beintema 2001).

Over the last two decades, agricultural R&D has grown steadily but 
unevenly. In the United States and other high-income countries, public sec-
tor spending is growing only very slowly in nominal terms and has declined 
in real terms (Pardey et al. 2016). At the same time, public sector spend-
ing has surged in middle-income countries, particularly in China (Hu et al. 
2011). Private sector R&D has grown steadily in both high-income and 
middle-income countries. Private expenditures on agricultural R&D in 2009 
were on the order of $10 billion (Fuglie et al. 2011) to $16 billion (Pardey 
et al. 2015), with differences in the estimates depending largely on which 
industry subsectors of  the agricultural and food system are included or 
how data for unobserved spending by SMEs is estimated (Fuglie 2016). The 
most recent available global estimate of private sector agricultural R&D 
was $15.6 billion in 2014 (Fuglie 2016). At the same time, private sector 
agricultural R&D has become increasingly concentrated in the hands of 
fewer, larger companies (Fuglie et al. 2011).

Such accounts, however, have been based primarily on R&D spending by 
publicly listed companies. It has not been feasible nor, frankly, relevant to 
be concerned about R&D spending by SMEs, including VC-backed com-
panies. While biotechnology start-ups were observed to have contributed 
significantly to the rise of genetic engineering in agriculture in the 1980s 
and 1990s (Fuglie et al. 2011; Fuglie 2016; Graff, Rausser, and Small 2003), 
levels of R&D spending and other financial data on such privately held com-
panies are relatively inaccessible, as they are not subject to the same report-
ing requirements as publicly traded firms. Moreover, the relative amounts 
of R&D spending contributed by SMEs have historically been negligible 
(Fuglie 2016).

6.2.2  Venture Capital Investments

Dixit and Pindyck (1994) developed the standard methodology used 
to assess investment decisions, taking uncertainty and irreversibility into 
account. They argue that while the net present value approach is meaningful 
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when considering whether to make an investment at a given moment in time, 
in most realistic situations, investors also have to decide about the timing 
of their investment and therefore have to take into account the randomness 
of key variables such as costs. The timing of an investment is thus triggered 
when the key random variable exceeds a certain threshold, also known as 
a hurdle rate. A good example of this approach in agriculture is the uncer-
tainty around investing in new irrigation technologies due to agricultural 
prices and weather uncertainty (Carey and Zilberman 2002). Farmers only 
adopt new irrigation technologies when prices exceed a certain threshold.

The same basic logic can be applied to VC investments in agricultural 
technology start-ups. Even though VC investments have been feasible for 
decades, it was only after 2010 that they increased significantly (see figure 
6.4). Several factors may have affected the hurdle rate, such as an increase 
in the ratio of agricultural prices to nonagricultural commodity prices, the 
occurrence of large exit events in highly visible start-ups, the emergence of 
new technological opportunities based on advances in enabling technologies 
(such as genome sequencing, genome editing, or data capacity of sensors 
and networks), and changes in (agricultural) labor markets in both high-
income and middle-income countries.

In general, it has been shown that the dynamics of VC markets are driven 
by several measurable factors, including expected investment returns, the 
overall health of the economy, industry characteristics, and company finan-
cial performance variables (Gompers and Lerner 2004). VC funds that invest 
in agriculture are no different. Fundamentally, they are seeking returns on 
investment. Investors compare performance across industries, aspiring to 
identify high expected returns. Large positive swings in agricultural com-
modity prices would be expected to shift the supply of  VC investments 
toward start-ups in this industry. Changes in commodity prices such as those 
observed especially between 2007 and 2014 might have played a role in the 
increase of the supply of VC investments in agriculture, even though Deloof 
and Vanacker (2018) observe that Belgian start-ups founded during the 2007 
crisis had a greater chance of facing bankruptcy. In examining economic 
determinants of VC funding, Groh and Wallmeroth (2016) and Jeng and 
Wells (2000) investigate both developed countries and emerging markets. 
Groh and Wallmeroth (2016) show that the global share of VC investments 
in emerging markets increased from 2.4 percent in 2000 to 20.8 percent in 
2013, indicating that the salient factors for VC investors are increasingly 
found in emerging markets.

Gompers and Lerner (2004) point out the greater number of rounds and 
larger amounts of VC investments go into high-tech industries, such as com-
puters and biotechnology, compared to other more traditional industries. 
Puri and Zarutskie (2012) compare VC- and non-VC-financed firms and find 
that the key firm characteristic that attracts VC investment is its potential 
for scale. Even though agriculture, broadly speaking, may be considered 
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a traditional industry with low margins, most VC investments in the sec-
tor are targeting the application of high technologies, such as geospatial 
technologies, digital sensors, robotics, biotechnology, automated vertical 
farming, alternative protein products, artificial intelligence–driven decision-
making tools, and big data for supply chain management (AgFunder 2015; 
Graff, Berklund, and Rennels 2014; Rausser, Gordon, and Davis 2018). 
Regulations can influence investments in agricultural technologies as well. 
For example, regulations imposed by different countries or regions (such 
as the European Union) on gene editing might lead to big changes in bio-
tech investments, with potential market uptake depending on whether other 
countries will follow the European or the American regulatory standards for 
this technology (Rausser, Gordon, and Davis 2018).

6.2.3  Venture Capital Exits

There is a growing literature examining exit outcomes as a key factor in 
the functioning of venture capital markets. Large exit events, including IPOs 
and M&As of start-ups may foment further investments. There is evidence 
on the positive effect of the size of IPO exits (Jeng and Wells 2000) and M&A 
exits (Félix, Pires, and Gulamhussen 2013; Groh and Wallmeroth 2016) 
on subsequent VC investments in earlier-stage start-ups. In agriculture, the 
acquisitions of the Climate Corporation by Monsanto in 2013 for $930 mil-
lion and of Blue River Technology by John Deere in 2017 for $305 million 
were widely publicized and may have stimulated subsequent investments by 
VCs in other agricultural technology start-ups.

The literature investigating start-up exits identifies key factors that affect 
both new company starts and existing companies’ survival, such as real 
interest rates, other macroeconomic variables, company sizes, and industry-
specific variables (Holmes, Hunt, and Stone 2010; Giovannetti, Ricchiuti, 
and Velucchi 2011). Audretsch (1994, 1995) also shows that such variables 
can in turn determine the exit outcome—finding, for example, that start-up 
size is related to chance of exit, while industry growth rate is not. Puri and 
Zarutskie’s (2012) comparison of VC-backed and non-VC-backed compa-
nies finds evidence that companies with VC investors have a higher likeli-
hood of resulting in an M&A or IPO exit and a lower likelihood of a failed 
exit, controlling for industry-specific characteristics and year fixed effects. 
Gompers and Lerner (2004) have extensive discussions on the likelihood of 
start-ups going public via IPO, and they show that generally better industry 
conditions, such as those captured in an industry equity index (e.g., bio-
technology index), are positively associated with that industry’s number of  
IPOs.

Previous and contemporaneous exit outcomes, even in emerging and 
developing economies, are found to be directly associated with VC invest-
ments. While Groh and Wallmeroth (2016) find evidence that M&As impact 
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VC funding positively, Jeng and Wells (2000) find that IPOs play a greater 
role in determining VC investments in the later stages of the start-up life 
cycle. Investments into technologies that may be related to the agricul-
tural industry are also location specific (Kolympiris and Kalaitzandonakes 
2013; Pe’er and Keil 2013; Kolympiris, Kalaitzandonakes, and Miller 2015; 
Kolympiris, Hoenen, and Kalaitzandonakes 2017). This, combined with 
observations that overall agricultural R&D activities have shifted toward 
emerging markets, makes it reasonable to expect that the share of VC invest-
ments in agriculture has shifted toward emerging markets as well.

6.2.4  Venture Capital and Innovation

Following results by Kortum and Lerner (2000), which suggest that VC 
dollars may be three times as productive as corporate R&D dollars in gen-
erating patents, a number of studies have examined the relationship between 
VC and innovation. The hypothesis that VC-backed firms are more innova-
tive is consistent with more general observations that VC investors select 
firms that are more likely to succeed and to do so at scale (Baum and Silver-
man 2004; Engel and Keilbach 2007; Puri and Zarutskie 2012), but there is 
also evidence that VC investors encourage companies in which they invest 
to enhance their knowledge absorption and R&D capacity (Da Rin and 
Penas 2017). There is evidence that start-ups receiving VC investments file 
more patent applications both in the short run and more permanently, and 
moreover, those patent applications are more likely to be granted, an indica-
tion of higher-quality innovation (Arqué-Castells 2012).

Within the population of VC-backed start-ups, there may be higher pay-
offs for those that are more innovative. Nadeau (2011) finds that VC-backed 
start-ups that exit via the more profitable IPO route are more likely to be 
engaged in patenting than those that exit via M&A, at least in key sectors 
such as biotechnology, IT, and internet services. Gaulé (2015) similarly finds 
that VC-backed start-ups with higher-quality patents are more likely to be 
successful, exiting via an IPO or a highly valued M&A.

One question that arises is the extent to which private equity or VC invest-
ment into start-up companies can be compared to or even proxy for R&D 
expenditures. Kortum and Lerner (2000) and Metrick (2007) distinguish 
between R&D financed by corporations and R&D financed by VC. How-
ever, publicly traded corporations report R&D expenditures according to 
established requirements, while small privately held firms do not. Kortum 
and Lerner (2000) assume that the bulk of venture financing goes to support 
innovative activities while acknowledging that some VC investments may be 
made in low-technology start-ups or may be spent on other activities such 
as marketing. Whether these exceptions are greater in agriculture than in 
industries that have traditionally received VC investment is an important 
but ultimately empirical question.
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6.3  Data on Venture Capital Investments in Agriculture

The data for this first look at VC investment in agriculture is drawn from 
several commercial data sources and consists of information on 4,552 start-
up companies and 7,596 financing deals. We follow the approach of Hall 
and Woodward (2010) to compile a data set drawn from a variety of sources 
in order to overcome the limitations of data reporting and potential biases 
of  any one source. Of the sources we draw on, the industry standard is 
generally regarded to be PitchBook, a financial database focused on VC 
and private equity investing, owned by Morningstar. Data from PitchBook 
are then augmented with data from two other sources: VentureSource and 
Crunchbase. From each source, two types of data are available, linked in a 
one-to-many relationship: data on companies and data on financing deals 
of those companies.

A comparison of company data listings across these three sources was 
undertaken with an expectation that overlap among data sources would 
allow for the cross-validation of firms and their deals. However, as figure 6.1 
illustrates, we find minimal overlap of company listings across these sources. 
Our initial sampling, drawn from PitchBook, included 2,005 companies 
founded in the 40 years from 1977 to 2017, along with 3,667 financial deals 
for those companies, as designated by PitchBook’s “AgTech Vertical” indus-
try category.1 From VentureSource, by Dow Jones, we drew an additional 

1. PitchBook (n.d.) defines an industry vertical or vertical market as “a more specific industry 
classification” that “identifies companies that offer niche products or fit into multiple indus-
tries” or that represents “new fields with promising companies that attract investors.” Pitch-
Book describes the agtech vertical as consisting of “companies that provide services, engage 

Fig. 6.1 Venn diagram of data accessed on new start-ups in agriculture and their fi-
nancial deals by data source
Note: Our primary data source is PitchBook, augmented by additional company and financial 
deal records from VentureSource and then Crunchbase; data for just 12 percent of total start-
ups were found to be available from more than one source.

 EBSCOhost - printed on 2/8/2023 8:01 PM via . All use subject to https://www.ebsco.com/terms-of-use



Venture Capital and Private R&D    223

680 companies with 1,759 associated deals—identified by VentureSource’s 
“Agriculture and Forestry” industry category2—that were not found in the 
PitchBook data. From Crunchbase—identified by their “Agriculture and 
Farming” industry group3—we drew an additional 1,885 companies beyond 
those listed in either PitchBook or VentureSource and 2,170 associated deals 
for those companies. Just 557 (12 percent) of the total companies were found 
in more than one data source, and only 90 (2 percent) of the total companies 
identified were listed in all three sources.4 This pattern of data availability 
suggests that any analysis based on one primary data source (e.g., AgFunder 
2015, 2019; CBInsights 2017; Finistere Ventures 2019; KPMG 2018) pro-
vides only a limited and largely separate sampling of overall venture invest-
ments in the industry.

Of the total 4,552 unique companies and 7,596 unique deals, we take 
about half  of  the data records on companies and deals in our collection 
from PitchBook and the other half  from VentureSource and Crunchbase 
(figure 6.1). Of these sources, PitchBook had the most complete data over-
all, VentureSource was more complete in reporting older companies and 
deals, and Crunchbase was helpful in identifying a wider range of start-up 
companies internationally, but unfortunately, it was not able to provide as 
much coverage of deal information for those firms. Overall, deals data are 
associated with only 1,584 (35 percent) of the companies in the combined 
data set. Of the subset of companies with deal data, 1,366 (29 percent of the 
total) report at least one deal in which the amount is disclosed (others report 
deals that occurred but do not disclose amounts), and 1,092 (24 percent) 
report an identified exit deal.

Given these discrepancies in the availability of  deal information, the 
subsequent analysis is undertaken in two parts. First, we summarize major 
industry trends using the full data set of 4,552 companies. Second, we sum-
marize investments and exits for the 1,348 start-ups with accompanying 
deals data that disclose amounts, and we analyze those factors that may 
be associated with the recent growth in those investments. Arguably, given 
the skewed nature of valuations and investments in VC markets generally, 

in scientific research, or develop technology which has the express purpose of enhancing the 
sustainability of  agriculture. This includes wireless sensors to monitor soil, air and animal 
health; hydroponic and aquaponic systems; remote-controlled irrigation systems; aerial photo 
technology to analyze field conditions; biotech platforms for crop yields; data-analysis software 
to augment planting, herd, poultry and livestock management; automation software to manage 
farm task workflows; and accounting software to track and manage facility and task expenses.”

2. VentureSource’s “Agriculture and Forestry” industry category is a subset within its larger 
category of “Industrial Goods and Materials.” 

3. Crunchbase’s “Agriculture and Farming” industry group includes companies in agricul-
ture, agtech, animal feed, aquaculture, equestrian, farming, forestry, horticulture, hydroponics, 
and livestock. 

4. For those 12 percent listed in more than one data source, for each company we use only data 
from one source, depending on availability, in the following order of preference: (1) PitchBook, 
(2) VentureSource, (3) Crunchbase. See the numbers of companies and deals in figure 6.1.
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together with a propensity to report information on larger, more significant 
investments and exits (Hall and Woodward 2010), it stands to reason that 
the 29 percent of companies with disclosed deals represents a greater share 
of the overall financing activity in the industry. It is important to emphasize 
that despite efforts to be inclusive, this data set is still necessarily an under-
representation of overall activity in the industry. Yet it provides a broad, 
representative sampling of  private investment activity across agriculture 
globally.

6.3.1  Full Combined Data Set of Start-Up Companies in Agriculture: 
Global Summary Statistics

For many of the 4,552 companies in the combined sample, the founding 
date is available. For those companies with the founding date missing but 
for which deal information is available, we use the date of the first deal as 
a proxy for the founding year. Figure 6.2 plots the number of start-ups by 
founding year.

Qualitatively, there appear to have been three phases of growth in agri-
cultural start-ups. First, from 1977 to 1991, we see steady, slow growth, 
with between 20 and 50 start-ups globally each year (however, this time 
period precedes the full data coverage for some of  the countries and/or 
data sources on which this data set draws). In the second phase, from 1992 
to 2008, the growth rate appears to have increased, yet it also appears to be 
more volatile—characteristic of the wider tech sector during this period—

Fig. 6.2 VC-funded start-ups in agriculture by founding year, 1977–2017
N = 3,891 companies for which founding year is reported or proxied by first deal date
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with a downturn for several years following the bursting of the tech bubble 
in 2000. Third, starting in 2009—a year after grain prices reached a peak 
associated with the expansion of the US biofuel mandate (Wright 2009)—
growth in start-ups experienced a sharp increase that, arguably, continues 
until the end of the time frame of this analysis despite the right-hand trun-
cation seen here.5

The overall sample of  4,552 companies also includes data on physical 
address, which allows us to analyze the geographical distribution of entre-
preneurship in agriculture globally. We find 1,483 start-ups in the United 
States, which accounts for about 33 percent of the global sample (figure 6.3). 
Within the United States, by far the most are in the state of  California 
(348), with other leading states including Colorado, New York, Texas, Mas-
sachusetts, and Illinois. Of the US start-ups, 320 were located across the 
11 midwestern states that encompass the highly fertile Corn Belt region. 
The European Union has 1,063 start-ups, accounting for about 23 percent 
of the global total, led by the United Kingdom (with 261), France (173), 
and Spain (102). Canada is home to 228 start-ups (5 percent of the global 
total). Among the emerging markets, India stands out with 210 start-ups, 
followed by China (172). South American countries have 144 start-ups in the 
sample, led by Brazil (88). Agricultural start-ups are also found in Africa, 
with the most in South Africa (41), followed by Kenya (31) and Nigeria (27). 
The pattern of VC-funded start-ups follows the growth pattern of VC in 
developing countries identified by Groh and Wallmeroth (2016). This global 
distribution of start-ups appears to track somewhat more closely with the 
pattern of public sector agricultural R&D, with a significant share in emerg-
ing and developing economies (Pardey et al. 2016), compared to the pattern 
of private sector agricultural R&D, which is more heavily concentrated in 
high-income countries (Fuglie 2016).

The categorization of start-up companies by industry—or of innovations 
by technology field—has long been a fraught exercise. Of the three data 
sources, each provides several data fields describing the company, its market 
activities, and the technologies it is developing. However, the descriptions 
of companies are very heterogeneous, even within the same data field from 
the same source. Even standardized industry category variables, which are 
more consistently reported within each data source, are not readily com-
parable across the three data sources. We therefore construct a common 
categorization for the start-ups in the combined sample, drawing on the 
full range of these descriptive data fields across all three sources based on 

5. The apparent decline in start-ups after 2014 is, arguably, due to truncation in the data. 
New companies generally get reported to these data sources upon their first formal equity-
based investment, which can occur up to several years following the founding of the company. 
Industry reports such as AgFunder (2019) show steady continued growth in start-up activity 
through 2018.
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Fig. 6.3 The global scope of new VC-funded start-ups in agriculture, 1977–2018
Note: (a) Global density mapping by city and/or postal code and (b) global share by country 
and region
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industry observations (see Graff, Berklund, and Rennels 2014; Dutia 2014; 
and AgFunder 2019), as detailed in the appendix.

It is important to note that the categories we develop are not exclusive. 
By their very nature, start-ups often span more than one industry or tech-
nology. Of the 4,552 start-ups in the data set, 1,226 (27 percent) span more 
than one category in table 6.1. Of these, 1,048 start-ups are classified in two 
categories, 161 in three, and 15 in four. For example, we have a start-up that 
is developing sensors with specialized data management tools to conduct 
high-throughput phenotyping to decipher crop genetics. Such a firm would 
be labeled with three of these categories: (1) electronic devices, sensors, and 
systems; (2) software, data, and information technologies; and (3) genetics, 
breeding, biotech, and health. While such an approach does result in multi-
counting of firms by categories, it is not an uncommon practice.6

Table 6.1 displays the number of start-ups described by each of the cat-
egories we developed. Just over half  of  the start-ups in the data set are 
involved in some form of agricultural input technology or service, which in 
turn encompasses a number of different technology-based subcategories. Of 
these, the two largest are software and data (which describes 942 start-ups) 
and biotech, genetics, or health (which describes 918 start-ups). Companies 
identified by one or both of these categories attracted more than 60 percent 
of the venture investments made in the industry in 2016.

6. For example, under the International Patent Classification (IPC) system, multiple patent 
classifications can be assigned to a single patent.

Table 6.1 Industry and technology categories characterizing venture-funded start-
ups in agriculture

Category*  

Number of start-ups 
with activities described 

by each category

Agricultural input technologies and services 2,482
Software, data, and information technologies 942
Electronic devices, sensors, and systems (electronic hardware) 430
Genetics, breeding, biotech, and health 918
Chemicals 230
Machinery and equipment (mechanical hardware) 302

Agricultural input distributions and sales 678
Agricultural production and farming 467
Agricultural output marketing, processing, and manufacturing 730
Consumer products and services 105
Business and financial services 539
Online services and content 471
Unspecified  1,165

N = 4,552 firms, of which 1,226 (27 percent) are identified with two or more categories
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6.3.2  Subsample of Companies with Reported Deals: Investments 
and Exits

Of the 4,552 companies in the overall data set, only 1,584 (35 percent) are 
associated with the 7,596 reported deals (which, again, include investments, 
successful exits, and reported closures or bankruptcies). However, of these 
reported deals, many do not disclose the amount of the deal. To analyze VC 
investment trends, we narrow our information down to a subsample of just 
those 1,367 start-ups (29 percent of the overall sample) that report at least 
one venture-type money-in investment with a disclosed amount. In other 
words, all additional money-in investments received by that same start-up 
are considered in this analysis, including grants, angel, and seed stage invest-
ments; early-stage VC, late-stage VC; debt; and any other private equity 
investments. Companies that did not report deal amounts and companies 
with only private equity investments or debt financing were dropped from 
the sample for this part of the analysis. Figure 6.3 displays the total money-in 
investments by type and year for those firms from 1977 to 2017.

Total money-in investments over the entire period were $22.1 billion. 
Following the growth in new start-ups overall (see figure 6.2), investments 
exhibited a sharp increase starting in 2010 and reached an annual maximum 
of $3.2 billion in 2017 (figure 6.4). We can be confident that this maximum 
would be exceeded in 2018 were these data not truncated, as industry reports 
indicate investments in 2018 significantly exceeded those in 2017 (AgFunder 
2019). Early- and late-stage VC (totaling $8.1 and $8.4 billion, respectively) 

Fig. 6.4 Investments into VC-funded start-ups in agriculture by type of investment, 
1977–2017
Note: PE = private equity; VC = venture capital
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represent most of the money raised by these start-ups. Even though absolute 
amounts increased substantially over time, the composition of investments 
between early-stage and late-stage VC remained quite stable. Debt financing 
of these firms totaled $4.2 billion but appears more sporadic, coming in large 
tranches when it does occur.

The ultimate fates of the 1,584 start-up companies with any associated 
data on transactions can be roughly divided into three types of outcomes. 
First, some start-ups go through a successful financial exit. In that transac-
tion, the initial venture investors are able to exit their ownership of otherwise 
illiquid equity shares and realize a return on their investment. Successful 
exits include IPOs, M&As by other companies, and other less common buy-
outs, such as management buyouts or private equity buyouts. Second, the 
fate of start-ups that are not successful is the closure of the company—with 
some filing for bankruptcy, some liquidating assets, and some quietly wind-
ing down operations until they are effectively defunct. The third fate, if  
neither of the other two has occurred, is for a start-up to remain in business 
as a privately held company.

Cumulatively, for the 1,584 start-ups for which we have transaction data, 
we find that 150 (9.5 percent) exited via IPO, 739 (46.7 percent) exited via 
M&A, and 159 (10.0 percent) exited via some other buyout. Interestingly, 
just 49 of the start-ups (3.1 percent) reported closure or bankruptcy, imply-
ing that 487 (30.1 percent) are still in business. Not only does this ratio 
seem unrealistic, but others have identified a strong bias against negative 
news—including firm closures, small investments, and other indicators of 
underperformance—in VC data sets such as these (Hall and Woodward 
2010). We find that of the 49 start-ups that do report closures, 90 percent 
of these closed within four years of their last money-in deal. It stands to 
reason that companies relying on VC need to raise new money every two to 
four years, and if  they stop doing so, it is a strong indication that they have 
closed. Given that many of the 487 (30.1 percent) start-ups deemed “still in 
business” had fallen silent, lacking any newly announced deals for more than 
four years, we estimate that 417 (26.3 percent) face a similar probability of 
having closed, and thus, just 70 (4.4 percent) of the total sample were likely 
still in business.

Looking at exits and closures over time (figure 6.7a), we see that they 
occurred only sporadically prior to the mid-2000s. The number of  exits 
began to grow steadily after 2005 and peaked in 2015. The number of closures 
(reported and estimated) began to increase about five years later, around 
2010. Exit amounts are much more sporadic and took off dramatically in 
2008, when over $2.3 billion was realized by investors (figure 6.7b). The 
maximum year for exit amounts was 2013, at close to $6 billion, mostly due 
to M&As. While the counts of exits (figure 6.7a) have displayed a smoother 
year-on-year growth trend, the sporadic nature of the values of exits (figure 
6.7b) belies the tendency for exit valuations of start-ups in VC portfolios to 
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be highly skewed, which has been generally observed in venture investing 
for decades (Gompers and Lerner 2004; Metrick 2007).

6.4  Analysis of Factors Associated with Increased Venture Capital 
Investments in Agriculture

There are a number of possible explanations for the sharp increase in agri-
cultural technology start-ups beginning in 2009 (figure 6.2) and the steep rise 
in private investments into those companies starting in 2010 (figure 6.4). The 
simplest hypothesis, following the logic of Dixit and Pindyck (1994), is that 
prices across the industry pushed potential returns above a critical threshold. 
Agricultural commodity prices, indeed, increased strongly in 2007 and 2008 
and then, after a correction in 2009, surged to even higher levels from 2011 
to 2014 (figure 6.5a). While certainly logical, agricultural commodity prices 
alone do not seem sufficient to explain why VC investments began to flow 
into agriculture.

A more nuanced hypothesis is that the ratio of  commodity prices in 
agriculture to prices in other sectors of the economy, particularly energy, 
may have diverted investments toward agriculture. And the timing of those 
shifts may also have played a role. “Cleantech” investment funds—which 
had focused primarily on the energy sector, presumably encouraged by high 
energy prices—may have discovered agriculture when investing in biofuels. 
Crude oil prices faced a sharp increase in 2007 and 2008, followed by a 
marked downturn in 2009, and while oil rebounded and remained around 
$100/barrel from 2011 to 2014, it fell back to less than $50/barrel within a 
year (figure 6.5b). At key points when oil prices dropped, investors in clean-
tech may have pivoted toward opportunities in agriculture as agricultural 
commodity prices remained higher. While such conditions seem to have 
held for only short windows of time (comparing figures 6.5a and 6.5b), the 
swings in price ratios may have been enough for venture investors to have 
discovered the agricultural sector. Once found, agriculture continued to be 
a focus of investor attention.

There is also very likely a supply-side factor, given that overall VC invest-
ments in the economy increased steadily during this period. Ewens, Nanda, 
and Rhodes-Kropf (2018) document an increase in investment volume by 
existing VC firms as well as an increase in entry by new financial intermediar-
ies after 2006. Figure 6.6 shows that growth in investment in agtech appears 
to be correlated with total VC investment in the United States (PwC 2019) 
Thus an additional hypothesis is that a greater supply of VC coupled with 
lower costs of early-stage investing in this time period pushed VC investing 
into adjacent industries from its traditional core of software, computer/net-
working equipment, online businesses, and biotechnology (Ewens, Nanda, 
and Rhodes-Kropf 2018).

Finally, it is reasonable to expect that market signals from successful exits 
may have played a role. The most desired outcomes for VC investors are IPO 
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or M&A exits, as these generate the largest payoffs. Other exit outcomes, 
such as management buyouts or asset acquisitions, might merely return the 
initial investment via the sale of the start-up’s assets. Gompers and Lerner 
(2004), Jeng and Wells (2000), and a literature spawned by such studies 
present evidence that successful exits influence subsequent VC investments.

Anecdotally, there were several large exits from agricultural start-ups in 
the years around the upturn in venture investment—including the $283 mil-

Fig. 6.5a Investments in agricultural technology start-ups plotted against agricul-
tural commodity prices (base year 2010 = 100)

Fig. 6.5b Investments in agricultural technology start-ups plotted against oil prices 
(US$/barrel)
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lion IPO of Agria in 2007, the €1.9 billion private equity buyout of Arysta 
LifeScience in 2008, and the $279 million IPO of Digital Globe in 2009. 
According to the data, a regular rhythm of IPOs and M&As began in 2006, 
with significant returns first logged in 2008 (figures 6.7a and 6.7b) coincid-
ing with the sharp increase in the numbers of new start-ups (figure 6.2) and 
investments (figure 6.4). In agriculture, it appears that M&As have generated 
much larger gross returns for VC investors than IPOs (figure 6.7b). These 
patterns corroborate the idea that the occurrence of IPOs and M&As sig-
nal returns being made on venture investments in agriculture, thus helping 
attract new investors to the newer start-ups in agriculture.

6.4.1  Regression Analysis of Investments at a Firm Level

A regression analysis was undertaken to offer a more systematic descrip-
tion of the relationships between VC investments in agricultural start-ups 
and several of these factors hypothesized to influence decisions by venture 
capitalists to invest. A simple framework used for analysis at the firm level 
is described by equation (1):

(1) yit = + 1P1,t k + 2P2,t k + 3VCt + 1ee t k
m&a+ 2ee t k

ipo + Xi + uit,

where the dependent variable, yit, is the sum of reported amounts of invest-
ments received by a start-up i in year t. If  a start-up did not exist in year t, the 
observation is dropped. If  a start-up did exist in year t but simply received no 
investment, the observation is kept, and yit = 0. If  a start-up received more 
than one investment in a given year, then those investments are summed.

Of the independent variables in equation (1), the P1,t–k are agricultural 
commodity prices, lagged k years, for which World Bank and Food and 

Fig. 6.6 Investments in agricultural technology start-ups plotted against total an-
nual VC investments in the United States
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Agriculture Organization (FAO) agricultural commodity price indices as 
well as nominal soybean prices are considered. We also focus our analysis 
on possible changes in the relationship with agricultural commodity prices 
in the period after 2000, when they began to grow and became more volatile, 
by interacting agricultural prices with a date range dummy variable. The 
P2t are nominal oil prices. The VCt are total annual VC investments in the 
United States according to PricewaterhouseCoopers (PwC). The exit vari-
ables ee t k

m&a and ee t k
ipo  measure the annual sum of money raised in IPO and 

Fig. 6.7 Exits by VC investors from start-ups in agriculture
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M&A exits of the agricultural start-ups in the sample k years prior to year 
t. The Xi are control variables. The sample is very heterogenous, including 
firms in different stages of the start-up life cycle, in different countries, and 
in different industry categories. Company age is used to control for stage in 
the start-up life cycle. Dummy variables are added for start-up locations in 
the United States and Europe. And dummy variables are added for the 12 
industry categories described in table 6.1. Finally, uit is the random error 
term clustered at the firm level.

Since data for the independent variables of oil prices and total VC invest-
ments were available only after 1995, the sample incorporates investment 
activity from 1995 to 2017. We build an unbalanced panel that consists 
of  12,094 observations involving 1,447 start-ups. Most of the firms were 
founded after 1995, with the frequency of firms entering the data set increas-
ing toward the end of the period, according to the trend illustrated in figure 
6.2. We have 2,439 firm-year observations with positive investment values 
and 9,655 with zero values. Due to this censoring from below, we use a tobit 
regression model.

We are not attempting to deal here with three important econometric chal-
lenges in working with these data. First, we are not dealing with unreported 
data, at two levels, in the dependent variable: for many start-ups, we observe 
that investments occurred, but their value is not reported, which therefore 
gets represented as a zero value; but we also know that there are many more 
investments that are entirely unreported. Second, we are not dealing with 
the unbalanced nature of the panel. And third, we are not attempting to deal 
with the endogeneity or the dynamic nature of these investments. Clearly, the 
trends we have summarized in the previous section are all largely moving in 
the same direction, making identification problematic yet beyond the scope 
of this chapter’s objective as a descriptive exercise.

Table 6.2 presents results for the firm-level regression described by equa-
tion (1). The estimation results corroborate observations from the summary 
statistics displayed in figure 6.5a that trends in agricultural commodity 
prices are positively associated with trends in investments in agtech start-
ups. The result that investments are more strongly associated with agricul-
tural commodity prices after 2000 is consistent with the notion that growing 
commodity prices could have shifted the attention of VC investors toward 
agricultural markets.7 Oil prices, in contrast, are negatively related to invest-
ments. This may be picking up the trends visible in figure 6.5b—namely, 
that investments initially remained low as oil prices increased and then later 
boomed as oil prices fell.8

7. Estimation results were found to be robust across various versions of the model that used 
different prices and lags, not reported here.

8. In addition, we tested the effect of the ratio of agricultural commodity prices to oil prices 
in regressions not reported here, with a larger ratio indicating a potentially greater return in 
agriculture compared to energy. We find a strong positive effect of the price ratio on the size of 
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The variable of  total VC investments reflects the overall health of  VC 
markets and implies a greater availability of VC investments, which is plau-
sibly associated with increased investments in start-ups in agriculture, all 
else being equal.9

Coefficients on the agIPO and agM&A variables indicate that the higher 
amounts realized in a previous year’s exits by agtech start-ups are posi-
tively associated with higher investments in agtech start-ups in subsequent  

investments when limited to the 2000–2017 window. The coefficient on the price ratio over the 
entire time frame is, however, not significant.

9. We also separately added an interaction between the total VC investments variable and a 
2000–2018 dummy, but the resulting coefficient indicates no stronger relationship during this 
more limited period.

Table 6.2 Firm-level tobit regression of commodity prices, lagged exits, and total 
VC supply on investments made in existing firms annually over the period 
1995−2017

Dependent variable

 Independent variables  
Amount invested in 

firm i in year t  

Ag commodity prices 0.01170
(0.02122)

Ag commodity prices after 2000 0.08949***
(0.02211)

Oil prices −0.31869***
(0.08935)

Ag IPO amounts, lagged 1 year 0.01204***
(0.00443)

Ag M&A amounts, lagged 1 year 0.00179***
(0.00049)

Total VC invested in US 0.00026***
(0.00005)

Firm age −0.88796***
(0.18550)

EU dummy −1.99442
(1.32819)

US dummy 9.52096***
(2.35058)

Industry category dummies
Constant −85.62672***

(18.55865)
 Observations  12,094  

Note: Standard errors in parentheses. *** for 1 percent significance, ** for 5 percent, and * for 
10 percent. All lagged variables are lagged only one period. IPOs and M&A values for agricul-
ture and total VC for the United States are in US$ million; ag commodity price is the nominal 
US soy price in US$/metric tons; oil price is West Texas Intermediate (WTI), Cushing, Okla-
homa, US$ per barrel, annual, not seasonally adjusted, available at FRED. Dependent vari-
able of annual firm deals value is in US$ million.
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years.10 IPOs appear to be more strongly associated than are M&As, but 
both are statistically significant in this regression. Both types of exits could 
be interpreted as playing a role in signaling returns and attracting invest-
ments into agriculture, in line with previous observations in the literature 
(Gompers and Lerner 2004; Jeng and Wells 2000).

Additional insights arise from the control variables in equation (1) and 
table 6.2. It appears that location is an important differentiator. Even though 
similar numbers of  start-ups are found in the United States and Europe 
(figure 6.3b), the estimated coefficient on the US dummy variable is strongly 
positive and significant, while the estimated coefficient on the European 
dummy variable is negative and significant. This corroborates common 
observations that VC finance is more mature and active in the United States, 
and generally, US start-ups tend to receive greater VC investments compared 
to non-US start-ups. The estimated coefficient on the company age variable 
would be expected to be positive to indicate a positive relationship between 
age and investments: companies that have been in the market longer and 
have grown larger tend to receive larger VC investments, which is by design 
in most VC investment strategies (Gompers and Lerner 2004; Metrick 2007). 
The negative coefficient on company age likely reflects a high frequency of 
zero annual investments for older start-ups. This could arise because we 
still give four years of zero investments after the last reported investment to 
those companies that we estimate are ultimately closed; perhaps this is too 
generous, if  many of these companies in fact closed sooner (and thus those 
observations should have been dropped rather than assigned a yit = 0). Coef-
ficients on industry category dummies are positive and significant (in order 
of magnitude) for (1) biotechnology, genetics, and health; (2) chemicals; and 
(3) software, data, and information technologies, indicating relatively more 
and/or larger investments are received by companies in these categories.

6.4.2  Regression Analysis of Investments at an Industry Level

To explore venture investments made at the level of the industry catego-
ries described in table 6.1 (and detailed in the appendix), a similar model is 
estimated:

(2) yct = + 1P1,t k + 2P2,t k + 3VCt + 1ee t k
m&a + 2ee t k

ipo + Xc + uct ,

where the dependent variable now is yct, the annual sum of investments for 
all start-ups in industry category c during year t. There are reasons to believe 
that factors affecting investment may vary across industry or technology. As 
already noted, about a quarter of the start-ups in the sample are categorized 
in more than one industry classification due to the multidisciplinary nature 
of the technologies being developed or due to integration across markets. 
We therefore split these start-ups’ investment amounts across the relevant 

10. Test regressions find that exits in the same year are not significantly related to investments.
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categories (e.g., if  start-up A appears in two categories, we multiply its invest-
ments in year t by 0.5 and allocate to both categories for year t). The inde-
pendent variables are the same as defined for equation (1).

We build a balanced panel of 12 industry categories over 24 years from 
1995 to 2018 to estimate a fixed effects model also using a tobit regression 
model. Table 6.3 presents estimation results for investments aggregated by 
industry category. At this level of aggregation, coefficients on the indepen-
dent variables are naturally greater than in the firm-level analysis. Agricul-
tural commodity prices, at least after 2000, exhibit a significant positive coef-
ficient. Oil prices are again negatively related to investments in agricultural 
start-ups. Coefficients on the agIPO and agM&A variables are again positive 
and significant, with the magnitude of the IPO coefficient again larger than 
the M&A coefficient. The variable for total annual VC investments is posi-
tively and significantly related to VC investments in agriculture.

At the industry level of aggregation, not all of the control variables used 
in the firm-level analysis—such as age or location—are meaningful. Fixed 

Table 6.3 Industry-level tobit regression of commodity prices, lagged exits, and 
total VC supply on investments made in 12 industry categories annually 
over the period 1995−2017

Dependent variable 

 Independent variables  
Amount invested in 

industry category c in year t  

Ag commodity prices 0.29046
(0.25682)

Ag commodity prices after 2000 0.49434**
(0.22219)

Oil prices −2.72660
(1.73527)

Ag IPO amounts, lagged 1 year 0.18959***
(0.06578)

Ag M&A amounts, lagged 1 year 0.01305*
(0.00693)

Total VC invested in US 0.00085**
(0.00040)

Industry category dummies
Constant −372.03315***

(103.07161)
 Observations  288  

Note: Standard errors in parentheses. *** for 1 percent significance, ** for 5 percent and * for 
10 percent. All lagged variables are lagged only one period. IPO and M&A values for agricul-
ture and total VC for the United States are in US$ million; ag commodity price is the nominal 
US soy price in US$/metric tons; oil price is West Texas Intermediate (WTI), Cushing, Okla-
homa, US$ per barrel, annual, not seasonally adjusted available at FRED. Dependent vari-
able of annual firm deals value is in US$ million.
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effects for industry categories are jointly statistically significant. A few of 
these have larger values, including (in order) (1) online services and content; 
(2) software, data, and information technologies; (3) marketing, processing, 
and distribution; and (4) agricultural input distribution and sales, indicat-
ing that relatively more frequent and/or larger aggregate investments are 
received in these categories.

6.5  Summary and Conclusions

The VC-backed start-up is a mechanism to contain the financial risks of 
prospecting and thereby manage the technical and market uncertainties of 
innovation. The population of start-ups developing innovations for agricul-
ture has increased substantially over the last decade in not only high-income 
countries but also emerging and developing countries. Venture investments 
in such start-ups have grown as well—almost half  as much as the estimated 
amounts of global corporate agriculture R&D expenditures. This first look 
has introduced extensive representative data on start-up companies related 
to agriculture and their financial transactions, and it has explored several 
factors that are likely to be related to the observed increase in private venture 
investment in agricultural R&D.

Simple tests of several hypotheses suggest that agricultural commodity 
prices and successful exits have been closely associated with increased VC 
investments in agriculture. Especially the run-up in agricultural commodity 
prices after 2000 appears correlated with investment levels. Both IPO and 
M&A exit amounts realized by agricultural start-ups are associated with 
subsequent investments at both the firm and industry levels. IPOs appear 
to have a stronger relationship with new investments than do M&As, even 
though a much larger share of the returns realized from exits come from 
M&As. Investments in agricultural start-ups are to some extent technol-
ogy specific, favoring biotech, online businesses, software, commodity pro-
cessing, and agricultural input dealers. There is also evidence that start-ups 
in the United States receive more venture investments than start-ups in other 
countries, all else being equal.

This analysis sheds light on an important new source of R&D expenditure 
that has the potential to transform many aspects of private R&D for agri-
culture, altering the risk profile of innovations being pursued, the networks 
of highly skilled human capital being accessed, and the market power of 
companies introducing innovations throughout the agricultural value chain. 
Much is needed in the way of  further economic analysis of  these trends 
to improve on current models and explore the factors potentially driving 
such investments (e.g., public sector research, other sources of technologi-
cal opportunity, increased labor costs, or shifts in consumer demand) and 
the determinants and impacts of different types of exits (with IPOs creating 
independent competitors but M&As putting new technologies under the 
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control of industry incumbents). Venture capital has discovered agriculture, 
but it has only begun to impact agriculture.

Appendix

Characterization of Agricultural Start-Up Firms by Industry 
and Technology

In the data obtained from commercial vendors, either start-up companies 
self-report or the commercial data vendor composes a business descrip-
tion, usually a short paragraph, and assigns an industry code or segment 
categorization. These vary, however, across vendors. In order to ascertain 
more uniformly the industry or technology in which start-ups are engaged, 
we queried and filtered the company description and industry categorization 
fields to assign start-ups to 12 categories, as summarized in table 6.1. These 
categories are relied on to introduce field-specific controls in our estimations 
(tables 6.2 and 6.3). The following notes describe in greater detail the types 
of businesses that are included in each of the categories:

Business and financial services
 1. Real estate, land brokerages
 2. Human resource management, labor contracting, training and edu-

cation services
 3. Financial services, investment
 4. Insurance, risk management
 5. Industry associations and advocacy
 6. Economic development and regional development organizations
 7. Business-to-business (B2B) services or marketplaces (in combina-

tion with the online category)
 8. Publishing, catalogs, information for industry clients (may be in 

combination with the online category)
 9. Consulting and advisory services
10. Contract research services

Online services and content
 1. Online, website, web, or portal; often platform
 2. B2B or business-to-consumer (B2C); almost always in combination 

with another appropriate category
 3. Apps or mobile; often in combination with the software, data, and 

information technologies category

Genetics, breeding, biotech, and health
 1. Companies described as biotech
 2. Companies that mention genetics
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 3. Breeding
 4. Biological control
 5. Biopesticides
 6. Biofertilizers, compost, biochar, other biologically derived soil 

amendments
 7. Microbial/microbiome
 8. Animal health, including vaccines (but not feed additives)
 9. Animal reproduction, such as sexing, artificial insemination (AI)

Chemicals
 1. Agricultural chemical manufacturing
 2. Any of the chemical “-cides” (pesticides, insecticides, herbicides, 

fungicides, etc.), if  not explicitly biological (i.e., not biopesticides or 
not if explicitly described as a protein or peptide, which are instead 
included in the “genetics, breeding, biotech, and health” category)

 3. Mention of a specific class of chemical compound that character-
izes the company’s products

 4. Inert materials with beneficial properties as soil additives, fillers, 
growth media, weed blockers, mulches, and so on

 5. Nanomaterials
Note: The use of this category indicates R&D or manufacturing, 

not merely distribution or “provider” of chemical products.

Electronic devices, sensors, and systems (electronic hardware)
 1. Use of the words device or sensor, smart or automated systems, 

measurement or monitoring in electronics context
 2. Hardware (as opposed to software)
 3. Robots, drones, unmanned or autonomous vehicles (UAVs)
 4. Lighting or LED systems for contained or indoor agriculture
 5. Control systems

Note: This category includes technologies/products that would 
be in electrical engineering, not mechanical, civil, or hydrologi-
cal engineering (these are under the “machinery and equipment 
[mechanical hardware]” category).

Software, data, and information technologies
 1. Software or app
 2. Data
 3. Analytics
 4. Artificial intelligence or machine learning
 5. Blockchain or distributed ledger

Machinery and equipment (mechanical hardware)
 1. Manufacture of farm machinery or equipment
 2. Development or sales of vertical or indoor agricultural equipment 

and infrastructure (not control systems or automation, which are 
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included under the “electronic devices, sensors, and systems [elec-
tronic hardware]” category)

Note: This category does not include the distribution, import, 
or sales of  farm machinery and equipment; these are under the 
“agricultural input distribution and sales” category.

Agricultural input distribution and sales
 1. Distribution, sales, retail, wholesale, supply, provision (but not 

manufacturing) of a range of agricultural inputs, including
a. seeds, plant starts
b. agricultural chemicals, pesticides, fertilizers
c. biological amendments, inputs
d. animal feed, feed additives, supplements
e. animal health, veterinary products and supplies
f. young live animals (chicks, fish fry, etc.)
g. farm supplies, aquaculture supplies
h. machinery and equipment (for farms, ranches, aquaculture, fish-

ing, timber operations)
i. parts and services

 2. Small minority include agricultural services, such as contract har-
vesting, piecework, agronomic consulting services, monitoring, and 
management

 3. Does not include provision of or contracting of agricultural labor; 
human resource services are all under the “business and financial 
services” category

 4. When the input is animal feed (1.d above), this category is often 
used in combination with the agricultural outputs marketing, pro-
cessing, and manufacturing category if  the company also manu-
factures or produces the animal feed, which often involves grain or 
oilseed milling

Agricultural production and farming
 1. Actual operation of a farm or other agricultural production opera-

tion such as a ranch or fish hatchery
 2. Cultivation
 3. Production
 4. Often includes the phrase provision of agricultural services
 5. Often mentions actual commodities produced
 6. In combination with the agricultural outputs marketing, pro-

cessing, and manufacturing category if  the company is a vertically 
integrated agribusiness (e.g., in livestock, oil palm)

 7. In combination with the agricultural outputs marketing, pro-
cessing, and manufacturing category if  vertically integrated fresh 
market (e.g., fruit, vegetable, produce)

 8. In combination with the “agricultural output marketing, processing, 
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and manufacturing” category and with the “consumer products or 
services” category if  it includes the phrases community-supported 
agriculture (CSA), farm to table, locally produced, and so on

Agricultural output marketing, processing, and manufacturing
 1. Postharvest marketing, distribution, export/import, brokering
 2. Transportation, logistics
 3. Processing, milling

a. animal slaughter, meat processing, meat packing
b. grain milling, feed manufacturing
c. oilseed pressing, processing
d. cotton ginning
e. sawmills
f. ethanol plants

 4. Other fermentation, extraction, separation, purification for ingre-
dient manufacturing; animal feed additives (amino acids, micronu-
trients, etc.)

 5. Food manufacturing; food brand or category for broad market (i.e., 
national or commodity-wide)

 6. Wineries, breweries, distilleries
 7. Farmers’ markets, local food marketing

Consumer products and services
 1. Explicit mention of the consumer, home, or household
 2. Retail
 3. A specific final product, often branded
 4. Direct marketing or distribution to final consumer (not to stores, 

restaurants, or other food services)
 5. Consumer connected to production/distribution (e.g., community 

agriculture, farm to table, farm share schemes)
 6. Mention of garden, gardening supplies, garden equipment, indoor 

gardening systems, if  clearly intended for home (not for horticul-
ture or greenhouse industry)

Unspecified
 1. Unable to determine: combined industry/technology descriptions 

are too general or missing altogether
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Comment Michael Ewens

6.C1  Summary

This chapter investigates the trends in global private equity (PE) and ven-
ture capital (VC) investments in agriculture start-ups. After finding evidence 
for rapid increases in capital flow to these start-ups—particularly after the 
financial crisis of 2008—the chapter explores the sources of changes. Specif-
ically, the capital provided to these start-ups is growing relative to the supply 
of capital invested by the public sector and public firms. Next, a regression 
analysis confirms that investment in agricultural sectors is strongly corre-
lated with both past liquidity events in the sector and changes in prices for 
major commodities. The results are consistent with investors responding to 
investment opportunity signals in the agricultural space.

Answers to these questions are important for researchers and policy mak-
ers who aim to support the agricultural sector and its innovation. More 
broadly, the analysis of changing investor behaviors, such as new allocations 
to new industries, reveals where start-up financing constraints lie. Finally, 
the results contribute to perennial debates around public versus private 
research and development (R&D) spending.

The comments on this chapter focus on several topics, including data 
construction and interpretation and suggestions for additional analyses.

6.C1.1  Combining Databases: Benefits and Pitfalls

The chapter describes a major data exercise merging three databases: 
Crunchbase, PitchBook (Morningstar), and VentureSource (Dow Jones). 
The authors should be applauded for combining these related but distinct 
sources of data. However, such merges face challenges when data providers 
differ in their coverage and industry classification methodologies. Consider 
first the VentureSource database provided by Dow Jones. In my experi-
ence using this data, I have learned that their best coverage is for US-based 
start-ups backed by VC. Informal conversations with the data provider also 
revealed that the data quality is high only after 1990 (the firm was founded 
in 1987). Next, PitchBook provides significantly wider coverage by region 
than VentureSource. Early focus was on the US PE ecosystem but has grown 
and—in my opinion—improved over the last five to seven years. Given their 
founding in 2007, it is not clear where their historical data was sourced, 
which is an important uncertainty when merging with databases that have 
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longer time series. Finally, Crunchbase fills out the financing coverage. This 
database is best known for its coverage of US early-stage (often pre-VC) 
financings. It began in 2007 by a technology blogger to keep track of start-
ups covered on its site and grew as a wiki-style page. It also appears to have 
benefited from the switch away from PDF to XML-formatted regulatory 
filings for PE exemption notices in 2009. Given its short history and nar-
row industry focus in the early years, its quality for agriculture start-ups is 
unclear.

My suggestion to the authors is to first motivate the merge of these three 
databases. For example, is there evidence that one has poor coverage of exits 
or nonsoftware companies? The main concern is that the quality, coverage, 
and definitions differ widely across (and possibly within) data providers. 
Note that each of these companies likely makes most of their revenue from 
nonacademic customers, which means they are less concerned with histori-
cal data and have resources devoted to the current period. The best moti-
vation for this merge would be to fill in gaps in each databases’ coverage. 
Alternatively, the authors could pick one as a “master” data set and use the 
remaining two to fill in coverage gaps or missing values.

As an example of possible time-varying coverage, consider a query of 
PitchBook for US-based agricultural start-ups financed in 1990–2018 for 
“all” investor types in figure 6.C1.

Several questions emerge from this figure that warrant some discussion 

Fig. 6.C1 Agtech start-ups, PitchBook
Note: The figure reports the count of VC/PE-backed US-based agtech start-ups from 1990 to 
2018. The left axis and bars report the raw counts of the number of start-ups raising such 
capital. The line reports the fraction that are “VC backed” according to PitchBook.
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in the chapter. First, note the increase in counts that coincides with the 
founding of PitchBook in 2007. Can the authors confirm that this is a real 
phenomenon rather than a coverage change? Second, for the chapter’s anal-
ysis of VC-backing changes over the sample period, how does one explain 
the line of percent VC backed? It exhibits significant variation but no major 
break in the 2008–9 period.

Next, I was able to conduct a quick merge of VentureSource and Pitch-
Book for US-based VC-backed agricultural start-ups. The first challenge is 
selecting industries. Unlike publicly traded firms that have at least one Stan-
dard Industrial Classification (SIC) code, private firms have self-assigned 
industries or classifications given by data providers. Private firm data pro-
viders do not always use SIC or North American Industry Classification 
System (NAICS) codes, which limits merging across databases. My attempt 
to get agricultural start-ups in VentureSource and PitchBook was thus chal-
lenging. For VentureSource, I choose the broad category “Agriculture and 
Forestry” with added flags in business descriptions for “farm,” “harvest,” 
and “agriculture.” The latter is important because tractor guidance software 
is categorized as “Software,” but the start-ups have “farm” in their descrip-
tion. I followed the chapter’s approach to querying PitchBook.

The merge of VentureSource and PitchBook was done using the start-
up’s name (after some basic cleaning). Figure 6.C2 presents the number 
of observations from the successful merge of the search results using the 
“Agriculture and Forestry” category (51 matches) and the 105 keywords. The 

Fig. 6.C2 Merge of VentureSource and PitchBook
Note: The figure reports the counts of successful merges of start-ups in VentureSource and 
PitchBook using two different search queries for VentureSource.
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results indicate not only that casting a wide net in any search is important for 
increasing the sample size but also that individual matches demand random 
checks for false positives.

A closer analysis of the failed merges suggests that some hand collection 
is necessary. Aerial Intelligence (figure 6.C3) is found in PitchBook, but 
not as an agriculture firm. The start-up’s description strongly suggests it is 
agtech. Next, the start-up VinSense is not found in VentureSource. It has the 
following business description: “Developer of a crop management software 
designed to enhance crop uniformity and increase crop volume. The com-
pany’s software helps to improve crop management using soil sensors and 
offers optimal soil nutrient management, enabling producers, field manag-
ers and winemakers to manage soil moisture, pruning, irrigation, canopy 
management and water conservation.”1

An analysis of VinSense’s financings shows that over half  of its capital 
raised was in the form of government grants, while its equity investors made 
abnormally small investments. This example makes clear that data provid-
ers also have different methodologies to determine what constitutes “VC 
backed.” It also shows how valuable merging different databases can be for 
improving coverage. I would like to see more discussion of the rules each 
data provider uses when classifying and collecting data for the industries 
of interest.

1. See the company website at https:// www .vinsense .net /product -services/.

Fig. 6.C3 Example description of start-up in PitchBook not listed as “agtech”
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Because data providers change methodology and quality over time, merg-
ing them can create spurious trends. This leads to two concrete suggestions:

1. Run the analysis on each database separately and demonstrate that 
results all go in the same direction.

2. Manually merge all three using a wide net on each database and docu-
ment why they disagree.

6.C1.2  What’s the Counterfactual?

The chapter argues that there has been a meaningful increase in capi-
tal provided to agriculture start-ups. The authors could do more to tease 
out the overall or macro trends from these changes. For example, figure 
6.C4 shows the number of start-ups backed by VC since 1990 (according to 
VentureSource). The vertical dashed line shows the break in financing pro-
posed by the authors. Clearly, the overall VC market experienced a change 
around 2008. Thus I suggest that the authors isolate an area within agricul-
ture that grew differently. For example, one could conduct a structural break 
test with an unknown break in mean (constant), repeating the exercise for 
the changes in agricultural prices.

6.C1.3  What Are the Next Steps?

The chapter has the opportunity to explore deeper issues in both agri-
culture and venture capital. The chapter hints at one direction: “Several 
factors may have affected the hurdle rate, such as an increase in the ratio of 
agricultural prices to nonagricultural commodity prices, the occurrence of 

Fig. 6.C4 Number of start-ups financed by VC
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large exit events in highly visible start-ups, the emergence of new techno-
logical opportunities based on advances in enabling technologies (such as 
cheaper genome sequencing, genome editing, or data capacity of sensors 
and networks), and changes in (agricultural) labor markets in both high-
income and middle-income countries.”

One suggestion is to follow a similar strategy found in Ewens, Nanda, and 
Rhodes-Kropf (2018). They study the impact of changing start-up costs 
after the introduction of the cloud. Their focus was on the information tech-
nology (IT) sector; however, it is likely that impacts are within agriculture. 
The same technological shock could be used to study the role of investor 
value-add to this industry or how capital flows between different sectors in 
the agricultural space.

Another avenue for additional analysis begins with the premise that the 
increase in capital to agriculture is real. One can ask, Who are the investors? 
This is an interesting question because agriculture is a nontraditional space 
for both VC and PE. One prediction is that existing investors are pivoting 
toward agriculture to exploit new technology in the space. Here, changes in 
investing represent not a demand shock but rather a spillover from a lack 
of investment opportunities elsewhere. Alternatively, the new investments 
have new investor entrants that are VCs. Such a pattern is consistent with a 
supply-side shock or exits from established agtech firms. One way to inves-
tigate this issue would require tracking the work histories of the partners 
in the start-up financings. Finally, it is possible that the growth in agtech 
is facilitated by new types of  investors (e.g., incubators, corporate VC, PE 
hybrids)? If  so, then the facts would be consistent with existing VCs having 

Fig. 6.C5 Figure 6.4 from chapter 6
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real constraints on either skill or capital for agricultural investment oppor-
tunities. In fact, figure 6.4 in the chapter (re-created below) shows that VC is 
not the only source of capital in these start-ups and there is some evidence 
of changing composition of investors.

6.C2  Conclusion

The chapter documents changes to the entrepreneurial finance ecosys-
tem in agriculture. Moreover, it documents strong correlations between the 
flows to start-ups and signals of investment opportunities. My suggestions 
for the authors are threefold. First, they should conduct a careful review 
of the database creation with particular attention paid to the variation in 
industry and coverage differences by data provider. Next, more evidence is 
needed to convincingly demonstrate that the financing environment changed 
in agriculture in ways different from that experienced in all of the start-up 
ecosystem. Finally, the authors have many opportunities to explore how VC 
investment dynamics are connected to changes in the agriculture industry 
or changes to the supply side of the market.
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