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Preface

By the beginning of the 1990s Imoved to Zaragoza to completemy technical education
in the University. There, I followed the course of celestial mechanics taught by S. Fer-
rer, whose lectures were based on a manuscript he was compiling under the close
supervision of A. Deprit. Regrettably, the manuscript was never concluded and sent
to print, but some parts of it were distributed to the course students like handouts.
That was my first contact with perturbation methods.

At those times Deprit visited regularly the University of Zaragoza, and I had the
opportunity of attending to different lectures and seminars given by him. In particu-
lar, his course on symbolic manipulation with algebra systems was unique. The im-
plementation of consistent simplification rules as well as the precise definition of the
mathematical properties to be assigned to the variety of symbols that supplement the
standard set of Keplerian elements, and infest common expressions of celestial me-
chanics, was central to the course. At the end it was the construction of the tables of
partial derivatives that were essential in the assembly of perturbation solutions when
expansions in the eccentricity are to be avoided.

But it was not until several years later that I paid true attention to perturbation
methods. In my periodic attendances to the AASmeetings I soon realized that approx-
imate mean-element solutions smartly obtained by astrodynamicists could be easily
extended and refined with the help of standard perturbation methods. Moreover, the
fact that Deprit’s perturbation algorithm by Lie transforms is readily implemented in
commercial computer algebra systems paved the way for achieving higher orders in a
perturbation approach. Most of my research since then has focused on astrodynamics
applications of perturbationmethods, and this monograph ismainly the result of that
work.

An introductory chapter provides some context on perturbation methods, whose
use in the solution of astrodynamics problems is as old as the space era, yet reading
it is not essential. Part I deals with the fundamentals of the Lie transforms method in
the form in which it was lately explained by Deprit. My experience is that application
of the Lie transforms method to integrable cases is a good exercise that helps new-
comers in grasping the essence of what is being carried out. That is why two sample
applications to classical integrable problems are also provided in this part.

Part II is devoted to the Earth–artificial satellite problem, which, as customary, is
approached like a perturbed two-body problem. In the first chapter, the integration of
the Kepler problem follows the usualHamiltonian reduction to action-angle variables,
which are the natural variables inwhich perturbed Keplerianmotion is approached in
subsequent chapters. The important contribution of the second zonal harmonic to the
dynamics of close-Earth orbits is profusely discussed in the third chapter. The rest of
the chapters of Part II describe how gravitational and non-gravitational effects acting
on Earth orbiting satellites are treated by perturbations.

https://doi.org/10.1515/9783110668513-201
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VI | Preface

Part III deals with applications of perturbation methods to specific cases of the
restricted three-body problem that are of interest in astrodynamics. After an initial
chapter recalling basic facts of this non-reducible model, three distinct applications
of the perturbation approach are proposed. First, the investigation of the dynamics
about planetary satellites is approached like a perturbed Keplerian problem in a ro-
tating frame. Due to the unstable dynamics that commonly affect science orbits about
planetary satellites, this application shows that, beyond the insights provided by the
mean-element dynamics, the process of mission design gets a significant benefit from
the use of the mean to osculating element transformation. The suitability of the Lie
transforms method for the automatic computation of higher orders of the perturba-
tion solution is clearly illustrated in the next chapter with the analytical computa-
tion of halo orbits. Finally, the last chapter shows the difficulties that may arise in
a perturbation approach when elliptic functions are involved in the process. While
this is not a flaw of the method in itself, it shows the convenience of finding effi-
cient procedures to automatically process special functions in a calculus of pertur-
bations.

Different persons and circumstances kept my interest in the perturbation ap-
proach alive along the years. My acquaintance with the Lie transforms method grew
thanks to many conversations with J. F. Palacián during his short summer visits to
Real Observatorio de la Armada the years 2008 through 2010, in which our techni-
cal discussions were usually ended in a chiringuito after a refreshing bath at one
of the splendid beaches of Cádiz or Chiclana de la Frontera. Later, the interest of
P. Gurfil in onboard orbit propagation under limited resources reawakened my own
interest in intermediary solutions of the artificial satellite problem, giving rise to
three fruitful visits to Technion’s Asher Space Research Institute, in Haifa, in the
course of the years 2011–2014. Frequent and vivid discussions with S. Ferrer about
Hamiltonian simplification procedures (and more), and with J. F. San-Juan on the
technicalities involved in the computation of higher orders of the artificial satellite
problem in closed form were always important stimuli in my research. The latter was
also of invaluable help in finding some of the few old references that are not yet
available in the collections so kindly compiled by the SAO/NASA Astrophysics Data
System.

Attention paid by the new generations of astrodynamicists to the potential of
semi-analytical propagation gaveme the needed impetus to write these notes—whose
original motivation could be traced back to early conversations on the topic with
R. P. Russell. Interaction with R. Armellin and D. Hauteserres while developing soft-
ware for ESA and CNES, respectively, for the efficient semi-analytical propagation
of highly elliptical orbits, deserves particular mention. Also, the contact with young
(and not so young!) colleagues during the KePASSA meetings has been a source of
inspiration.

Lastly, the two PhD courses given in the Department of Aerospace Science and
Technology of Politecnico di Milano the years 2018 and 2020 by the kind invitation
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of C. Colombo (the last one via telecon due to the pandemic), together with the en-
couragement of M. Efroimsky, editor of the series De Gruyter Studies in Mathematical
Physics, were crucial to the completion of the product that is now in your hands, and
I hope that it will meet your expectations.
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1 Introduction

Before the advent of electronic computingmachines, analytical solutions to the orbital
motion of celestial objects were the common source for computing the ephemerides
that are needed for scheduling astronomical observations. These approximate solu-
tions were generally computed by calculating the variations or perturbations of the
orbitalmotionwith respect to a Keplerian ellipse or to othermore sophisticated “inter-
mediary” orbit. With the beginning of the space era, the samemethods were imported
to the realm of astrodynamics for predicting the motion of artificial satellites. How-
ever, the increasing accuracy of observations of both natural and artificial celestial
objects soon made analytical solutions become unpractical. Indeed, including more
andmore perturbation effects in the theory in order to reach the precision required by
observations augmented severely the difficulties in obtaining the solution, on the one
hand, and made the analytical series representing the orbit expand unwieldy, on the
other, with the consequent growth of the computational burden needed to evaluate
the analytical solution.

With the irruption of electronic computers, numerical “special perturbations”
methods took clear advantage over the “general perturbations” provided by the an-
alytical approach. Still, the latter survived thanks to software progress in automatic
symbolic manipulation. In the end, the much faster rate of hardware advances with
respect to software development made the general perturbation methods to be dis-
placed from the original purpose of making accurate predictions. But in no way the
analytical approach became obsolete. New problems originating from the increasing
saturation of the Earth’s close space, as, for instance, the maintenance of space cat-
alogs comprising thousands or millions of objects for collision avoidance purposes,
can be efficiently carried out with analytical perturbation solutions. Their lower ac-
curacy yet much faster computation plays a complementary role to the high-fidelity
numerical integration that would be mandatory when a hazardous conjunction is
detected under the accuracy provided by the analytical prediction. In addition, the
analytical approach is useful in simplifying the dynamical model by removing non-
essential short-period effects, in this way easing the design and optimization of the
end-of-life disposal maneuvers that are required for compliance with current space
law. Moreover, efficient guidance and control algorithms for relative motion, which
are advantageously designed in mean elements, take great benefit of the accurate
analytical conversion between mean and osculating elements that can be achieved
with general perturbations.

Among the different general perturbation methods that make the computation
of (approximate) analytical solutions feasible, the advantages provided by the Lie
transforms method turn it into the standard of these days. It is systematic, specifi-
cally designed for automatic computation by machine, and versatile enough to deal
with different simplificationprocedures. In addition, thismethodavoids the drawback

https://doi.org/10.1515/9783110668513-001
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2 | 1 Introduction

of other perturbation methods of relying on series reversion procedures. The method
of Lie transforms applies generally to perturbations of vectorial flows, but it is par-
ticularly efficient in the treatment of Hamiltonian perturbations, which are the most
common case in orbit propagation problems. Non-conservative effects, like the atmo-
spheric drag which drives the dynamics of the lower altitude satellites orbiting the
Earth, can always be incorporated into the Hamilton equations like generalized forces
in a final step of the simplification procedure.

For these reasons, themost commonorbital perturbations affecting artificial satel-
lite missions are discussed in this monograph under the light of the method of Lie
transforms. In particular, the treatment of perturbations of the Keplerianmotion orig-
inating from the non-homogeneous distribution of the mass of the Earth, as well as
lunisolar perturbations, is profusely discussed. Besides, solutions to the approxima-
tion of the circular restricted three-body problem provided by the Hill problem are
also discussed with full detail in three particular cases that are achievable by pertur-
bations and clearly illustrate the power of the Lie transforms method—as well as the
difficulties that may limit its application. Namely, the motion of a space probe about a
natural satellite perturbed by the gravitational pull of the mother planet, the motion
about the libration points, and the coorbital motion of the (massless) orbiter and the
smaller-mass primary around the primary of bigger mass are analytically solved by
perturbations.

1.1 Perturbed integrable problems

There are just a few dynamical models that can be solved analytically. Real-world
problems include a variety of effects that normally prevent, or at least complicate
to a significant extent, the achievement of analytical solutions. However, in many
cases the effects that frustrate integrability are small and one may reasonably expect
that actual solutions behave like basic integrable models that were slowly distorting
with time. Even though the time evolution of non-integrable problems may be unpre-
dictable (chaotic), the time scale inwhich chaosmanifests is very long in perturbation
problems, at least in some regions of phase space, and hence, computing approximate
analytical solutions makes full sense.

Original efforts in the computation of perturbation solutions to the planetary mo-
tion fructified with Lagrange’s successful method of variation of parameters (see [42],
for instance) in which the solution to the Newtonian equations of motion can be ap-
proachedbyPicard iterations.However, expansions carried out in the iterative process
usuallymake the time explicit, producing the consequent deterioration of the solution
as time grows. The appearance of secular or mixed secular-periodic terms in the ex-
pansion of the variation equations may be avoided with the use of Lindstedt series
[459], in which case themethod of undetermined coefficients is used to split the varia-
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tion equations into a chain of differential equations that are then solved sequentially
[516, 526].

Later efforts in solving perturbation problems resorted toHamilton’s ideas of find-
ing integrals of a differential system by applying canonical transformations of vari-
ables, and gave rise to canonical perturbation methods [55, 144]. The perturbation
approach is now applied to the scalar Hamiltonian function, contrary to the varia-
tion equations, and the solution is found by the stepwise construction of such canon-
ical transformation that, up to some truncation order of the perturbation series, com-
pletely reduces the Hamiltonian to a function that only depends on themomenta con-
jugate to the canonical coordinates [30]. Finding the solution to the equations of mo-
tion (Hamilton equations) is trivial in the new variables, and the problem becomes
solved in the original variables when the transformation constructed in the procedure
is applied to this solution.1

The subsequent appearance of Poincaré’s méthodes nouvelles [558] produces a
breakthrough in the development of perturbation methods. In the Hamilton–Jacobi
style, Poincaré derives the canonical transformation that solves theperturbationprob-
lem from a generating function in mixed variables. Poincaré’s method is not directly
applicable to degenerate perturbed Hamiltonians, a case in which Poincaré himself
suggested to add to the generating function arbitrary functions of the angle variables
[198, 407, 558]. In the latter case, variations of Poincaré’s perturbation method in-
troduced by von Zeipel [698] in his studies of the motion of minor planets, and later
applied by Brouwer [75] to the solution to the artificial satellite problem, achieved
such a great success that the modifications to Poincaré’s method for dealing with per-
turbed degenerate Hamiltonian problems are these days customarily known as either
the Brouwer–von Zeipel [667] or von Zeipel–Brouwer method [198].

The fact that Poincaré’s generating function is inmixed variablesmakes the use of
series reversion procedures necessary, and commonly complicates obtaining the so-
lution to higher than the first order of the perturbation approach. On the other hand,
infinitesimal contact transformations defined by Lie series [254, 458] can be derived
from a generator in an explicit manner, thus paving the way for the eventual appear-
ance of the method of Lie transforms. In the latter case, the canonical transformation
is obtained explicitly fromagenerator in non-mixed variables, in thisway avoiding the
need of series reversion. Beyond the basic ideas in a seminal paper by Hori [303], the
Lie transformmethodwas thoroughly developed byDeprit [151] as a technique specifi-
cally devised for computer implementation.2 In Deprit’s conception, themethod of Lie

1 Integrals found with this method do not exist in general, yet may survive in some non-resonant
regions [29, 353].
2 The independent algorithms of Hori and Deprit are, in fact, equivalent, as discussed by different au-
thors [91, 288, 486]. On the other hand, efficient alternatives to Deprit’s algorithm are commonly used
in other fields than astrodynamics and celestialmechanics, like plasmaphysics, optics, andmolecular
dynamics [177, 178, 619]. Still, the different approaches are essentially equivalent [356].
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transforms enjoys a great generality encompassing a variety of applications [490]. In
particular, different Hamiltonian simplification procedures [166, 167] have been de-
vised based on Deprit’s perturbation algorithm [14, 133, 154, 169, 402, 602], which
furnish the method of Lie transforms with a much wider scope than the traditional
normalization of a Hamiltonian by the introduction of formal integrals [238]. More-
over, the original application of the method of Lie transforms to Hamiltonian pertur-
bationswas very soon extended to generally deal with perturbations of vectorial flows
[282, 304, 333], or with mixed perturbation models [39].

Even though the latter invention of two new operations over power series—the
skew composition and the skew reversion of series—extended the functionalities of
Poincaré’s perturbation method to the same level of the method of Lie transforms
[174], the latter is generally accepted as the standard perturbation method of today
due to its great generality and the simplicity derived from a recursive algorithmic defi-
nition [491]. Because of that, the perturbation solutions in thismonograph deal exclu-
sivelywith themethodof Lie transforms. Themathematical foundations of themethod
are these days rigorously described in different reports and textbooks [54, 93, 94, 491,
510, 627], and hence we only deal with the practical implementation of the method,
to which we devote the first part of the monograph. Thus, Chapter 2 presents the de-
scription of the fundamental algorithm and its application to conservative Hamilto-
nian perturbations. The case in which the perturbation Hamiltonian depends on time
can be equally approached by the simple expedient of moving to the extended phase
space [15, 558, 621], a case that is illustrated later in Chapter 8 with the treatment of
third-body perturbations. The method deals with formal series in the sense that con-
vergence issues are not discussed [239, 595], yet the appearance of small divisors in
the perturbation series is tackled in Chapter 7 in reference to tesseral resonances.

The essence of the method of Lie transforms is illustrated in Chapter 3, where it
is applied to the computation of approximate solutions of two integrable problems,
namely the mathematical pendulum and the triaxial free rigid body. These inte-
grable problems are approached like perturbations of simpler integrable problems:
the spherical rotor in the case of the pendulum (§3.1.2), and the uniaxial free rigid
body (§3.2.6) or the harmonic oscillator for the free rigid body (§3.2.7). The free rigid
body application serves also to show that, in spite of the reduction of a Hamiltonian
perturbation problem to its secular frequencies being naturally approached in the
action-angle variables of the integrable part, which is taken as the zeroth order of
the perturbation Hamiltonian, the procedure is expedited in some cases with the use
of other sets of canonical variables. Indeed, while Hamiltonian perturbation meth-
ods are naturally implemented within an action-angle variable framework, in which
averaging operations are customary [594], a good knowledge of the particular alge-
bra of the functions that comprise the perturbation Hamiltonian when formulated in
other set of canonical variables is of great help in the computation of the perturbation
solution. In particular, the use of complex variables is recognized to be advanta-
geous when dealing with perturbed harmonic motion [373, 399]. At the end, since
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the Hamiltonian reduction is unique [30] one can always recover the action-angle
variable formulation if found convenient.

Hamiltonian simplification algorithms based on Lie transforms are not discussed
in this first part. The point of view of these days is that they are simple particular-
izations of the general procedure based on the solution of the so-called homological
equation. Indeed, at each order of the Lie transform approach the user is endowed
with an ample freedom to choose the form of the new Hamiltonian term, as well as
the arbitrary integration “constant” that leaves undetermined the generating function
term [402, 408, 438, 440–442, 511, 593]. On the contrary, details of the implementa-
tion of the different simplification algorithms are supplied in the chapters where they
are first applied. In particular, the elimination of the parallax and the elimination of
the perigee are discussed in Chapter 6, while the relegation algorithm is introduced in
Chapter 7.

On the other hand, it is worth recalling that physical phenomena are measured
in observable variables (for instance, spherical coordinates), contrary to action-angle
variables. Therefore, having a detailed description of the transformation from the
usual observables to the action-angle variables in which the zeroth-order Hamilto-
nian term is solvedbecomes essential.3 Because of that, the reduction of the integrable
Hamiltonian that defines the zeroth-order term of the perturbation Hamiltonian via
the Hamilton–Jacobi equation [199, 243] is thoroughly discussed in different chapters
of the monograph.

1.2 Artificial satellite theory
Departure from Keplerian motion of close-Earth satellites is mostly driven by the non-
centralities of the Earth’s gravitational potential, the main part of which is due to the
Earth’s oblateness. Disturbances produced by the second zonal harmonic,whose non-
dimensional coefficient is customarily noted J2, cause the precession of the orbital
plane on the equator, and induce a secular trend on the motion of the perigee, which
advances or regresses in the orbital plane depending on orbital inclination and gets
fixed at the critical inclination of 63.4 degrees. In consequence, Keplerian solutions
only are useful in forecasting short arcs of Earth’s satellite orbits under low accuracy
requirements. Even in the short times spent in the free-flight trajectory of a ballistic
missile, the Earth’s oblateness needs to be taken into account [678]. Therefore, early
efforts in making accurate predictions of the motion of Earth’s artificial satellites fo-
cused on the search for analytical solutions to the “main problem” of artificial satel-
lite theory, also called the J2-problem. Even though the J2-problem is not integrable
[102, 312], the time scale in which chaos manifests is only relevant for large values

3 This rule has exceptions and there are cases inwhich the observables are precisely the good solution
variables [644].
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of J2 [70, 138]. On the contrary, in view of the smallness of the Earth’s J2 coefficient,
which is of the order of one thousandth, the search for integrable approximations of
the main problem of artificial satellite theory makes full sense.

A wealth of analytical approximations to the main problem dynamics have been
proposed since the beginning of the space era. These solutions are grouped under
the general name of intermediary orbits, and commonly based on the separability of
the Hamilton–Jacobi equation of some modified version of the main problem Hamil-
tonian [6, 111, 154, 216, 217, 219, 225, 532, 620], yet non-canonical solutions also exist
[33, 326, 606]. While most intermediaries were constrained to mimic the main prob-
lem dynamics up to first-order effects of J2, remarkable exceptions were successful
in handling the whole effect of J2 as well as some second-order effects of the geopo-
tential [5, 37, 38, 315, 466, 662–666]. Still, intermediary solutions fail in predicting
the libration dynamics of the perigee in the vicinity of the critical inclination [218,
261, 301, 316, 555, 625], a fact that is sometimes attributed precisely to their sepa-
rability [119, 168, 406]. Because of that, and due to the increase of computational
power, classical intermediary solutions were soon abandoned in favor of the higher-
accuracy solutions obtainedwith perturbation theory [299]. On the other hand, the in-
terest in intermediary orbits is experiencing some revival these days for their applica-
tion to onboard short-term, orbit propagation under limited computational resources
[51, 259, 268, 269, 393, 475, 603]. Computing perturbations of amoremeaningful inter-
mediary than the Kepler problem should provide more compact equations and seems
a desirable aim [7, 633, 689]. In this sense, the obtention of the action-angle variables
of Vinti’s oblate spheroidal intermediary seems a promising result [681, 688], yet the
higher complexity of the functions involved in the solution with respect to the simpler
Keplerian orbit might counterbalance the expected improvements to some extent.

Dealing with perturbed Keplerian motion is conveniently approached in orbital
elements, which disclose the existence of short- and long-period terms, as well as sec-
ular perturbations (see [341], for instance). Then, in the general framework provided
by perturbation methods [526], solutions of the problem of artificial satellite theory
are commonly decomposed into the mean-elements equations, which provide the or-
bit evolution, and the short-period corrections that are needed for ephemeris com-
putation. The transformation from mean to osculating variables given by the short-
period corrections is obtained analytically, whereas the mean-elements equations re-
main in the form of a reduced differential system. The latter is numerically integrated
with very long step sizes because it only depends on the lower frequencies of the mo-
tion [354, 453]. This semi-analytical integration scheme can cope with many differ-
ent perturbations of the pure Keplerian motion, and it is implemented in different or-
bit integration packages [81, 123, 355, 435, 478, 674, 692]. If, besides, the long-period
effects are removed from the mean-elements equations by means of a new transfor-
mation of variables, which is also computed analytically, one obtains the secular fre-
quencies of the motion. The latter are trivially integrated, thus providing the secular
terms that complete the solution in a pure analytical form [58, 75, 171, 360, 461, 599].
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Alternatively, both the short- and long-period terms can be removed at once, with a
sole transformation, yielding a single set of analytical corrections that may allow for
better code optimization [407]. Evaluation of analytical solutions computed in either
of thesemanners is straightforward and permits the implementation of very fast an ef-
ficient orbit propagators [114, 121, 298, 380, 590, 641]. However, it must be noted that
the validity of the analytical approach is limited to the case ofmotion far away enough
from inclination-related resonances, which require specific treatment [120, 222, 316,
330, 394].

A single general perturbation solution to the artificial satellite problemmakes no
sense if higher-order effects need to be taken into account. On the contrary, specific
perturbation solutions must be computed depending on particular orbital regimes
in which different disturbing effects may dominate the dynamics. Indeed, below the
geosynchronous distance the non-centralities of the geopotential have the most im-
portant effect, which is clearly dominated by the J2 harmonic. Conversely, the gravita-
tional pull of the moon is the most important perturbation above the geosynchronous
distance, followed by that of the sun. The solar radiation pressure yields higher-order
effects for usual satellites, yet they may become comparable to the J2 effect at high
altitudes.

Alternatively to the reduction of the differential system by normalization, Picard’s
iterative approach is sometimes used to solve perturbed Keplerian motion in what is
customarily known as a numerical–analytical approach [4]. Namely, the variation of
parameters equations are solved analytically under the usual averaging assumption
that the parameters (orbital elements) remain constant in the right side of the varia-
tion equations. The validity of this analytical solution, which strongly relays on the
use of special functions, is limited to one anomalistic period, and hence initial condi-
tions must be numerically updated in steps of this size or shorter. Improvements are
found when solving the perturbation equations with respect to an intermediary orbit
in Eulerian elements, as opposite to the variations of Keplerian elements [244].

Perturbed Keplerian motion is efficiently approached in Delaunay action-angle
variables. Therefore, the second part of this monograph starts in Chapter 4 with the
solution of the Kepler problem via the Hamilton–Jacobi reduction to action-angle
variables, yet constrained to the case of bounded, elliptic motion. Besides, the main
problem dynamics is discussed to a considerably extent in Chapter 5. This chapter is
not only useful in understanding intermediary solutions, but it serves to prepare the
reader for the Hamiltonian simplification methods that will be thoroughly discussed
in following chapters of this part.

1.2.1 Significance of Lyapunov instability

Two particular application of the perturbation approach that are conveniently ap-
proached in the mean elements setting are the analysis of end-of-life disposal strate-
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gies [27, 28, 124] and the design of formation flying reconfiguration and station-
keeping maneuvers [16, 211]. The need of having available efficient equations for
carrying out the accurate transformation from osculating to mean elements and vice
versa [256], arises in both kinds of problems. Traditionalmethods for the computation
of the initialization constants of the perturbation solution base either on series rever-
sion or the more common root-finding procedures [90, 675]. On the contrary, the Lie
transforms method provides explicit expressions for the evaluation of both transfor-
mations, direct and inverse, in this way allowing for the instant accurate conversion
from osculating to mean or secular elements [212, 213].

Because of the Lyapunov instability that is inherent in Keplerian motion, it hap-
pens that themost sensitive element to be transformed is the osculating orbit semima-
jor axis, a fact that was clearly observedwhen checking the accuracy of Brouwer’s [75]
seminal solution against numerical integration [469]. Indeed, an error in the osculat-
ing tomean transformation of the semimajor axis directly translates into a comparable
error in the computation of the mean motion in mean variables, with the consequent
impact on the secular frequencies of the motion [63, 181, 393]. This fact makes it quite
desirable to achieve the transformation from osculating tomean elements, at least for
the semimajor axis, up to the same truncation order as the secular terms. On the con-
trary, an error in the opposite transformation, frommean to osculating elements, has
only periodic implications in the computation of ephemerides. Therefore, truncating
this last transformation to a lower order than that of the secular terms usually pro-
vides the required accuracy for most applications, and makes the evaluation of the
analytical solution much more efficient [269].

The way in which the accurate conversions from mean to osculating elements,
and vice versa, affect the precision of an analytical perturbation solution is illustrated
in §6.5 for a higher-order perturbation solution of the main problem.

1.2.2 Geopotential long-period effects in closed form

Traditional efforts in extending perturbation solutions to higher orders resorted to the
use of expansions of the ellipticmotion in powers of the eccentricity [78, 171, 346, 374].
The literal calculation of these kinds of expansions motivated the development of the
first computerized procedures [172, 173, 289], which paved theway for the later appear-
ance of the so-called Poisson series processors [69, 83, 140, 236, 286, 323, 570]. How-
ever, these kinds of expansions cast the analytical solution in the form of long mul-
tivariate Fourier series, whose laborious evaluation discouraged practitioners from
the use perturbation solutions. Alternatively, the computation of the perturbation so-
lution in closed form yields a notable reduction in the size of the series to be evalu-
ated, on the one hand, and widens applicability of the solution to the case of high-
eccentricity orbits, on the other. However, reaching higher orders than that achieved
by Brouwer in his closed-form solution [75] finds real (yet solvable) difficulties in the
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indefinite integration of the equation of the center—a periodic but non-trigonometric
function—and related functions [8, 156, 363, 487, 536].

In the usual approach, in which the short-period terms are removed first, in the
style of Brouwer, these difficulties can be delayed to higher orders after an ad hoc
preprocessing of the original Hamiltonian using the elimination of the parallax sim-
plification technique [154]. Indeed, the elimination of the parallax strips the zonal
potential of non-essential effects and performs wonders in a higher-order normaliza-
tion in closed form [118, 119, 155]. The main features of the elimination of the parallax
canonical simplification are described in §6.2.1.

Alternatively, carrying out the normalization in the reverse order, by first elimi-
nating the long-period terms through the standard normalization of the total angular
momentum, notably simplifies the subsequent removal of short-period terms [408].
This latter approach does not deny the use of the elimination of the parallax as a pre-
liminary simplification, after which the elimination of the perigee [14, 440] is carried
out to reduce the Hamiltonian to a one-degree-of-freedom system depending only on
short-period terms. The result of both eliminations, which can be combined into a
single Lie transformation [593], is what is sometimes called the elimination of the lati-
tude [133, 166]. The consequent removal of the remaining short-period terms with the
standard Delaunay normalization [156] turns the conjugate momentum to the mean
anomaly into the third (formal) integral of the satellite problem, thus achieving the
complete Hamiltonian reduction. Full details of the reverse normalization are given in
§6.4.

Regrettably, the equations of the canonical transformation that eliminates the
perigee are flawed with divisors involving the difference between 4

5 and the square of
the sine of the inclination. Therefore, it becomes singular at the critical direct (resp. in-
verse) inclination of ∼ 63.4 deg (resp. 116.6 deg), and prevents convergence of the per-
turbation solution for inclinations close to that value. This singularity is essential to
the artificial satellite problem [120, 135] due to a resonance between the anomalistic
and draconitic frequencies of the orbiter [216, 394], and hence cannot be avoidedwith
a different choice of variables.

It deserves to be mentioned that, when just dealing with the solution in mean
elements, the removal of short-period terms in closed form commonly deprives the
mean-elements equations from some long-period terms, which, on the contrary, re-
main hidden in the transformation equations of the averaging. This fact may force the
orbit in mean elements to depart from the average evolution of the true orbit. While
this issue was clearly identified in classical closed-form averaging procedures [363], it
may remain hidden when the short-period averaging is carried out after the elimina-
tion of the parallax. In both cases, the situation is partially amended by the addition of
an adequate integration “constant” to the corresponding term of the generating func-
tion of the transformation [197, 437, 442, 488, 618]. This problem does not happen in
the computation of the secular terms, because all the periodic effects are removed in
that case. Issues related to getting themean elements close to the average value of the
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osculating elements are further discussed in §6.7.We remark that this kind of problem
is only relevant for the propagation of the mean-elements orbit, and it has no effect in
a semi-analytical integration scheme, in which the periodic terms are recovered ana-
lytically to get osculating elements.

1.2.3 Tesseral effects

The longitude-dependent terms of the gravitational potential expansion, tesseral and
sectoral harmonics, which are encompassed hereof under the name of tesseral har-
monics, in general just produce short-period variations of small amplitude on themo-
tion of an artificial satellite. Among them, themore relevant effects are related to those
tesseral terms that are free from the argument of the latitude. These terms are some-
times denoted “m-daily” terms because their trigonometric arguments depend only
on integer values of the longitude of the node, and, therefore, repeat their values m
times a day [335].

Interactions between zonal and tesseral harmonics only produce short-period
variations that, besides, remain at higher orders of the perturbation solution [687].
On the contrary, interactions between different tesseral harmonics may produce secu-
lar and long-period variations in addition to the short-period variations. Nevertheless,
their amplitudes are very small and only modify the solution to a very minor extent
[489, 686].

Taking the effect of the tesseral harmonics into account notably complicates the
computation of the analytical perturbation solution in closed form. For this reason
tesseral harmonics perturbations are customarily approached after expanding the
gravitational potential in powers of the eccentricity [82, 341, 348, 563, 638, 685]. Still,
part of these tesseral terms can be previously simplified in closed form with the elim-
ination of the parallax preprocessing [117]. A notable exception is found in the case
of low Earth orbits, where the fact that the mean orbital motion and the Earth’s ro-
tation rate are of different orders of magnitude allows for the closed-form removal of
tesseral terms related to the mean anomaly in the usual form [220, 221, 439, 539, 541].
This approach is illustrated in §7.2.

Efforts in developing algorithms for the closed-form elimination of tesseral effects
in the general case led to the invention of the relegation algorithm [169, 538]. Applica-
tion of this algorithm for the closed-form elimination of tesseral terms in the artificial
satellite problem, the so-called “relegation of the node”, found some success in the
case of super-synchronous orbits [97, 591, 602]. However, the efficiency of the relega-
tionalgorithm ismorequestionable in the case of sub-synchronousorbits. Indeed, due
to a hidden dependence on the eccentricity in the algorithm for the sub-synchronous
relegation [602], the relegation of tesseral effects rarely offers clear advantages when
compared with classical procedures for their elimination based on the traditional ex-
pansions in powers of the eccentricity [438]. Despite this shortcoming, it has been sug-
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gested that the dependence on the eccentricity of the sub-synchronous relegation can
be used to modify the classical relegation algorithm in order to obtain enhanced re-
sults in the elimination of tesseral terms of low-eccentricity orbits close to tesseral
resonances [441]. The classical relegation algorithm for the removal tesseral effects
in closed form is discussed in §7.4, where details on the particular version of the rel-
egation for low-eccentricity orbits are provided, and its efficiency is illustrated with
sample applications.

On the other hand, the short-period elimination of tesseral harmonics in closed
form can be exactly reduced to quadratures [471, 540]. However, the integrals to be
solved involve non-integer combinations of the true and mean anomalies and their
closed-form solution is not known. In consequence, one must resort to series repre-
sentations that involve either the eccentricity or the ratio of the Earth’s rotation rate to
the satellite’s mean motion in order to solve these integrals analytically, thus making
the procedure analogous to the relegation algorithm. Alternatively, these quadratures
canbe solvednumerically, yet they still rely in the series representation to compute the
integration constant of the generating function, which cannot be left arbitrary when
the integration is approached numerically. The exact reduction to quadratures of the
short-period elimination of tesseral effects is outlined in §7.3.

In addition to the short-period tesseral effects of small amplitude, which slightly
affect the precision of the ephemeris provided by the perturbation solution, orbital
configurations leading to tesseral resonance produce noticeable long-period effects
on the semimajor axis. Resonant effects due to tesseral harmonics become apparent
in orbital regimes in which the satellite advancesQ nodal periods in the time in which
the Earth rotates P times relative to the precessing orbital plane, P and Q being mutu-
ally prime integers. That is, the tesseral resonance happens when the combined rate
of variation of the argument of the perigee and the mean anomaly is commensurable
with the combined rate of variation of the longitude of the node and the Earth’s rota-
tion rate. Therefore, tracing tesseral-resonant terms of the geopotential for particular
orbit regimes requires the explicit appearance of the mean anomaly, thus making it
unavoidable to resort to the usual expansions of elliptic motion.

Tesseral resonances bring significant perturbations on time scales of interest for
missionplanningwithout constraint to the case of deep resonances [180]. After remov-
ing short-period terms from the tesseral Hamiltonian by perturbations, the resonant
combination is replaced by a single variable, the so-called longitude of the strobo-
scopic mean node, which defines the geographic position of the subsatellite point at
the time of intersection of the Earth’s equator by the satellite orbit.4 Station-keeping
control strategies are properly developed in the pair given by the stroboscopic mean
node and the semimajor axis [183, 228, 334], the latter being the orbital element that
is primarily affected by the resonance phenomenon.

4 The nomenclature “stroboscopic mean node” has been attributed to Garfinkel [228].
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The analytical approach has been quite successful in the relevant problem of
geosynchronous satellites [18, 52, 53, 341, 509]. In that case, the resonant dynam-
ics is mainly driven by the J2,2 term, which is the longitude-dependent term associ-
ated with the ellipticity of the Earth’s equator. Isolated resonances enjoy the sim-
ple pendulum dynamics, which is an ideal case that can be integrated analytically
[18, 19, 222, 228, 331, 381]. However, when different resonances overlap, the problem
generally remains of two degrees of freedom and, except for special configurations
[434, 443, 612], it is customarily studied by the numerical integration of the long-
term equations, showing that chaos may arise [142, 145, 149, 186–188]. Still, attempts
to deal analytically with the case of non-isolated resonances using Bohlin’s theory
[55, 198] have also been carried out [507, 508, 572, 573].

The peculiarities of the perturbation approach when applied to resonant orbital
regimes is illustrated in §7.5. Because the important case of geosynchronous satellites,
which undergo the effects of the 1:1 tesseral resonance, is profusely discussed in the
literature [45, 509, 522, 531, 613], we rather deal with the case of orbits of traditional
constellations providing global navigation services, which are also significantly af-
fected by different tesseral resonances [108, 146, 580]. Thus, the orbital configuration
of Galileo operational satellites repeats after 17 orbits of the satellite, which is com-
mensurate with 10 rotations of the Earth. While the effects of this shallow 10 to 17
tesseral resonance are not too relevant due to the high altitude of Galileo satellites,
the operational orbits are also slightly affected by the 3 to 5 tesseral resonance, whose
effect can be much more important in the case of Galileo disposal orbits. Besides,
GLONASS satellites are in shallow 8 to 17 resonance, and the GPS constellation is in
deep 1 to 2 resonance. Thus, GPS satellites complete two nodal orbits while the Earth
completes one rotation. Due to this strong resonance all GPS satellites exhibit evident
long-period variations in the semimajor axis [601], with different resonant geopoten-
tial terms having observable effects [309]. In particular, the harmonic coefficients of
degree three and order two produce themain effects onGPS orbits. Still, perturbations
due to this tesseral resonance cannot be considered isolated, and the resonance over-
lapping of other tesseral harmonics must be taken into account. On the other hand,
due to the high altitudes inwhich global navigation satellite systems reside, low-order
truncations of the geopotential normally suffice for different applications [204]. In
consequence, the sample applications provided in §7.5 are limited to a geopotential
truncated to degree and order five.

1.2.4 Lunisolar perturbations

Depending on the orbital regime, lunisolar perturbations caused by the gravitational
pull of both themoonand the sunmay also show important effects in the long-termdy-
namics of Earth orbits. When dealing analytically with gravitational perturbations of
a distant body, the third-body disturbing function is customarily expanded in the ratio
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of satellite’s radius and third body’s radius as an infinite series in Legendre polyno-
mials. For low Earth orbits lunisolar perturbations are small when compared with the
Earth’s oblatenessdisturbing effect, and canbemodeled as secondorder of J2 effects in
a perturbation approach. In that case, neglecting parallactic terms of the third-body
perturbation provides an acceptable modeling of the dynamics [128, 359, 450, 519].
However, parallactic effects due to the lunar attraction are clearly observable in high
Earth orbits, a fact that motivated the early incorporation of these kinds of terms into
the lunar disturbing potential [521].

Initial formulations of the lunar disturbing function referred the angular elements
of the moon to the equatorial plane of the Earth [340], with respect to which the in-
clination and longitude of the node of the moon orbital plane experience important
variations. Alternatively, the inclination of the moon orbit takes an almost constant
value of about 5∘ when referred to the ecliptic, whereas the longitude of the ascend-
ing node in that plane can be approximated by a linear function of time [80, 481].
Therefore, it is advantageous in some cases to refer the moon’s orbital elements to the
ecliptic [366, 367, 581].

Truncations of the lunar disturbing function up to the fourth degree in the par-
allactic ratio are considered acceptable up to the geosynchronous region [121, 640],
yet the fifth degree is also added when a more accurate modeling of the dynamics
is required [437, 488]. Still, higher-degree truncations may be needed when model-
ing high Earth orbits [337, 338, 436]. Available recurrence relations allow for the ex-
tension of the series expansion of the third-body disturbing function to any degree
[98, 230, 233, 348]. Typos and errors in these references that were pointed out in the
literature [382] included in turn additional typos and errors,which onlywere amended
recently for the more relevant formulas [101]. Analogous general derivations are pre-
sented in §8.1, in which we depart from tradition and rather rely on the vectorial ap-
proach in the apsidal frame [425].

In the presence of third-body perturbations, the removal by perturbation meth-
ods of short-period effects related to the mean anomaly of the satellite provides an ef-
ficient way of solving the problem semi-analytically. Formulas for the mean-elements
Hamiltonian as well as the generating function from which short-period corrections
are derived, are discussed in §8.2 for an arbitrary truncation of the third-body disturb-
ing function. Mean motion resonances between the artificial satellite and the moon
are of concern only in cislunar space, and they do not cause trouble in the case of
close Earth orbits. Hence, removing monthly effects, related to the mean anomaly of
the moon, and, in some cases, annual effects related to that of the sun, in addition
to short-period effects associated to the satellite’s mean anomaly, is common practice
to improve performance of the numerical propagations used in the investigation of
the long-term dynamics [122, 382, 437, 443, 617, 683]. The double-averaging procedure
that removes the mean anomaly of the third body is discussed in §8.3 based on the
particular characteristics of the orbits of the Galileo constellation.
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On the contrary, resonances between the mean motion of either the sun or the
moon and the rate of variation of other angular elements of the artificial satellite’s or-
bit are common in orbital regimes below the geostationary region [128, 305, 307, 308].
In particular, apsidal resonances occur when the secular motion of the line of apsides
is commensurablewith themeanmotion of the third body, and nodal resonances hap-
pen when the critical argument is the right ascension of the ascending node [64–66].
These resonancesmay induce important variations in the eccentricity of the satellite’s
orbit and are these days scrutinized as possible natural ways of speeding the satellite
de-orbiting up at the end of life [12, 108, 240, 580]. On the other hand, special config-
urations have been detected in which secular variations in the eccentricity and incli-
nation cancel out giving rise to the so-called balanced Earth satellite orbits [371, 372].
The latter are discussed in §8.5 from the perspective of the ecliptic frame formula-
tion.

1.2.5 Non-conservative perturbations

Perturbed two-body problems in which the perturbations involve the velocity ap-
peared first in connection to the solar system dynamics [556, 561, 568, 690]. Non-con-
servative perturbations may have appreciable effects on Earth satellite orbits [43, 344,
445, 496, 659, 677], but also in other different kinds of orbits [49, 86, 262, 383, 493, 596,
597]. In particular, the force exerted by solar radiation has great importance in the
(passive) dynamical evolution of objects with high area-to-mass ratio, like fragments
of thermal blankets that may detach from the satellite’s body or other similar objects
[25, 95, 107, 210, 460, 576, 639]. But it also provides an inexhaustible source of power
for the propulsion of space vehicles within the solar system that can be effectively
exploited with solar sails [226, 463, 470, 479, 634, 648] and allows for the operation of
novel satellite concepts like “smart dust” devices [32, 126, 484, 528, 699].

Effects of solar radiation pressure (SRP) were clearly identified like the origin of
discrepancies between observed perigee heights of the orbits of some of the first artifi-
cial satellites and corresponding predictions based on conservative force fields mod-
els [523, 545]. This fact led to subsequent theoretical efforts to understand and esti-
mate the long- and short-period effects induced by SRP on the dynamics of artificial
satellites [128, 520], which, under general assumptions, can be modeled like a poten-
tial function [306, 340], in this way making the SRP effect amenable to Hamiltonian
treatment. The modifications of the SRP acceleration resulting from the intermittent
eclipsing of satellites by the Earth were taken into account since the very beginning
[10, 85, 195, 361, 375, 605]. However, the effects of the Earth shadow, which repeat
with the orbital period, are customarily neglected in studies of the long-termbehavior,
where long-period terms make the principal contribution to the orbit dynamics. Dis-
turbances produced by subtle phenomena such as penumbra transitions and albedo
effects have also received important attention in the literature [59, 584, 668–671].
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While the disturbing effects of SRP commonly average out in the long-term, some
orbital configurations lead to resonances between SRP and the motion of the line of
apsides, or the combined motion of this line and the line of nodes [76, 128, 306, 520].
These kinds of resonances produce long-period oscillations of the eccentricity that
may have significant amplitudes, and, similarly to the case of third-body resonances,
are explored these days as a possibility for accelerating de-orbiting of low Earth orbit
satellites at the end of their lifes [13].

The perturbed Keplerian dynamics induced by SRP can be represented by a time-
dependent three degrees of freedom Hamiltonian. However, the convenient formula-
tion in a rotating framemay be used to remove the time dependency from theHamilto-
nian. Except for particular integrable cases, the problem is intractable in its general-
ity. Still, an important insight into the long-term behavior can be obtained through the
perturbation approach. After the usual removal of short-period terms from the Hamil-
tonian, the reduced two-degrees-of-freedom problem becomes integrable [105, 158,
159, 493, 495]. This fact furnishes the reduced model with an analogous category to
the zonal intermediaries of the main problem [224]. On the other hand, simple solu-
tions taking the oblateness disturbing effects into account in addition to SRP [494,
520] show that Earth’s artificial satellites can undergo dramatic orbital changes under
small variations of the initial conditions aswell as the force parameters [125, 369, 370].
The perturbative treatment of SRP disturbances is presented in §9.1.

Another important non-conservative effect is the atmospheric drag, which may
cause important perturbations on the lower Earth orbits. Indeed, the dissipation of
orbital energy caused by the interaction of the upper atmosphere with the satellite,
yields a reduction of the semimajor axis and induces a circularization trend in the
orbit. These dissipative effects are noticeable on altitudes, say, below 2000 km and
become the dominant perturbation in reentry orbits. While atmospheric drag pertur-
bations are not derived from a disturbing function, their effects can still be added like
generalized forces to the Hamilton equations. They are also amenable to perturbation
treatment due to the previously mentioned extensions of the Lie transforms method
to vectorial flows [282, 304, 333].

The drag force is usually modeled as the product of the atmospheric density, the
square of the satellite’s velocity relative to the atmosphere, the reference surface area
of the satellite scaled by the satellite mass, and the “drag coefficient” CD. The latter
depends on gas-surface interactions, which involve a variety of facets like the atmo-
spheric temperature and composition, or the satellite’s shape [501]. While accurate
determinations of the drag coefficient are important for precise orbit predictions [483],
taking a constant valueCD = 2.2 is still customary in long-termorbit prediction of stan-
dard satellites in low Earth orbits [129]. Indeed, due to the difficulties in modeling the
upper atmosphere accurately, the atmospheric density is amajor source of error in pre-
dicting the drag force, a fact that may make efforts in improving the drag coefficient
superfluous [513].
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Pioneering perturbation solutions described the contraction of almost circular
satellite orbits under the disturbing effect of the atmospheric drag alone [131], but fol-
lowing approaches soon included the coupling between the drag and oblateness per-
turbations [79, 378], and removed previous limitations of the perturbation solution to
the case of small eccentricities [379].5 Since then, a variety of analytical solutions of
perturbedKeplerianmotion that include atmospheric drag effects have beenproposed
[40, 148, 285, 475, 476].

On the other hand, it is often enough just to deal with averaged drag effects, which
are obtained after removing the mean anomaly from the drag equations [462]. This is
the common case of orbit propagators in which complex force models are integrated
semi-analytically. Besides, in view of the increasing complexity of atmospheric mod-
els, the averaging is most efficiently carried out by numerical quadrature. This last
case is the only one that is tackled in this monograph, and it is discussed in §9.2.

1.2.6 Action-angle and non-singular variables

The reduction of perturbed Keplerian motion is commonly carried out in Delaunay
canonical variables, which are the action-angle variables of the Kepler problem [144,
243, 395]. Still, it is well known that Delaunay variables suffer the same deficiencies
as their non-canonical counterpart: the Keplerian orbital elements. Indeed, Delaunay
variables are singular for circular orbits, a case in which the argument of the perigee
is not defined, and also in the case of equatorial orbits, where the longitude of the
node is not defined. However, these deficiencies of the Delaunay variables are easily
avoided by reformulating both the secular frequencies and the periodic corrections
of the perturbation solution in non-singular variables. Poincaré canonical variables
[468] or the set of equinoctial orbital elements [31, 72] are popular sets of non-singular
variables used in perturbation theory, yet other different options have been proposed
in the literature [294, 296, 647].

When low-inclination orbits are not of concern, a popular set of non-singular vari-
ables for zero eccentricity orbits based on the traditional set of Keplerian elements
includes the mean distance to the node (or mean argument of the latitude), and the
semi-equinoctial elements that materialize the eccentricity vector in the nodal frame
[130]. These non-singular variables are usually complemented with the longitude of
the node, the inclination, and the semimajor axis [132, 181]. In the Hamiltonian set-
ting, the two last are commonly replaced by the third component of the angular mo-
mentum vector and the Delaunay action, respectively. Still, this last set of variables
lacks canonical structure [171].

5 The solution of [79] was later amended in [658] using a technique developed in [196] for removing
spurious secular terms in dissipative systems.
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Another set of variables that is free from singularities in the case of circular orbits
is the canonical set of polar-nodal variables, yet the singularity remains for equatorial
orbits. Still, the trouble with small divisors only arises when the perturbation model
takes odd zonal harmonics into account. Alternative non-singular variables based on
the polar-nodal set have been proposed to avoid the poor convergence of the short-
period corrections for almost equatorial inclinations, either in the non-canonical [9]
or canonical modalities [121]. Furthermore, the use of polar-nodal variables reduces
dramatically the size of the perturbation series needed in the analytical approach,
in this way improving evaluation of the solution [317, 363]. Their use is then encour-
aged, and it has been suggested that the solution of almost equatorial orbits should
be treated separately. In this last case non-singular variables based on polar-nodal
variables admit radical simplifications [392, 395, 444].

It deserves to bementioned, however, that polar-nodal variables are not very use-
ful in the integration of the mean-element equations, and their utility in dealing with
analytical or semi-analytical solutions of perturbedKeplerianproblems is usually con-
strained to the efficient evaluation of the periodic corrections. Moreover, polar-nodal
variables facilitate the reduction of perturbed Keplerian motion to quasi-Keplerian
systems [154]. This approach provides an efficient alternative to usual orbit predic-
tion procedures [259, 269, 393] that can also be used in the case of relative motion
applications [416].

In spite of the compact formulation and wider applicability of closed-form solu-
tions, the perturbation solution can be notably simplified in the case of orbits with
specific characteristics. This is, in particular, the case of low-eccentricity orbits, where
the closed form is efficiently replaced by short truncations of the usual expansions of
the elliptic motion to the lower orders of the eccentricity. In this way the evaluation of
the perturbation solution is made notably easier [181, 389, 637].

On the other hand, the use of vectorial elements in orbital problems, which can be
traced back to the early works of Strömgren [623] and Milankovitch [497], provides a
compact and elegant representation of the equations of motion, on the one hand, and
releases them from the dependence on a particular reference system, on the other. The
advantages of using Milankovitch’s selection of the eccentricity vector and angular
momentum vector like the vectorial elements in the treatment of very low-eccentricity
orbits were soon recognized [291], and attaching the name of Milankovitch to this set
of orbital parameters seems to have been popularized among some authors after [21].
While vectorial formulations increase the dimension of the differential system to in-
tegrate, this redundancy can be used to evaluate the quality of the numerical inte-
gration, in which, besides, the evaluation of trigonometric functions is reduced to a
minimum [290, 291]. The latter fact, together with the more symmetric form taken by
the equations of motion, makes the differential system simpler to program and faster
to evaluate, thusmaking the vectorial formulations quite appealing in the formulation
of efficient special perturbation schemes [152, 397, 518, 583, 636].
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The vectorial approach also shows realmerits in the formulation of analytical per-
turbations. Indeed, after the seminal application by Musen [520] and subsequent ap-
plications by Allan [17, 20], the use of the vectorial approach in the propagation of
mean elements is experiencing a revival these days [112, 577, 676]. In particular, the
vectorial formulation has demonstrated high efficiency in the integration of the mean
vectorial elements of highly eccentric orbits under third-body perturbations [425].

Vectorial elements have been also useful to show that Keplerian Hamiltonians are
invariant with respect to the group of rotations in a four-dimensional Euclidean space
[512]. This fact becomes evidentwhen the eccentricity and angularmomentumvectors
are replaced by its sum and difference vectors (see §45 of [621]), which are customarily
known asMoser elements or Cartan coordinates [92, 202].6 Since these two vectors en-
joy the same constantmodulus,which is proportional to the orbit’s semimajor axis, an
orbit can be represented by a pair of points on the surface of a sphere, as illustrated in
§8.2.3. This characterization of Keplerianmotion provides another utility of the vecto-
rial elements, like the visualization of a high number of orbits by a cloud of points. In
this way, for instance, the structure of subpopulations of debris orbits is readily made
apparent [629].

1.3 Non-Earth orbits and perturbed non-Keplerian orbits

The first artificial satellites missions were shortly followed by the launching of un-
manned lunar probes, as well as other interplanetary missions. While low Earth or-
bits are accurately represented by the perturbed Keplerian dynamics, the trajectories
of space probes go beyond the distance in which the Earth’s gravitational attraction is
dominant. Then, the orbits do no longer resemble distorted Keplerian ellipses about
the central body, and they need to be computed as particular solutions of a different
problem. More specifically, in different instances the orbit dynamics of artificial satel-
lites is better described in themore general frame of the three-body problem, in which
three point masses evolve only under the influence of their mutual gravitational at-
traction (see [646], for instance).

1.3.1 The restricted three-body problem

Contrary to theKepler problem, the three-bodyproblemcannot be completely reduced
by integrals [558], thus lacking a closed-form solution. Conversely, analytical solu-
tions to the three-body problem can be computed in the form of power series [626], yet

6 Analogous elements seem tohave been customarily usedbyquantumphysicists, and they are some-
times attributed to Jauch and Hill; cf. [120] p. 374.
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the poor convergence of these series makes them useless for computational purposes
[44]. Therefore, it is customary to explore the qualitative aspects of the three-body
problem dynamics by searching for particular solutions of the system, like singular
points, periodic orbits, and other invariant manifolds. In particular, when referring
the motion to the center of mass, the nine degrees of freedom of the three-body prob-
lem can be reduced to just three due to the existence of the energy integral as well as
the preservation of the linear and angular momentum vectors, which, in addition, are
combined with Jacobi’s elimination of the nodes [157, 321, 684].

On the other hand, the model provided by the three-body problem can be notably
simplified when dealing with spacecraft orbits. In that case the mass of the orbiter
is negligible when compared to the mass of most natural celestial bodies of interest.
Therefore, it does not produce observable effects in the motion of the two massive
bodies, the primaries, which then are assumed to evolve about their mutual center of
mass in the two-body problem approximation. When the motion of the primaries is
circular, the simplified problem is called the circular restricted three-body problem, or
CRTBP in short, which is conveniently formulated in a rotating framewith the rotation
rate of the primaries.

In spite of the radical simplifications introduced by the CRTBP approximation, a
general closed-form analytical solution is not known either. Well-known facts of the
dynamics of the CRTBP are that it accepts the Jacobi integral and enjoys five equilib-
rium solutions or libration points, three of them collinear with the primaries and the
other two equilateral to them. Besides, a wealth of periodic solutions are customarily
computed by numerical integration [84, 176, 278, 628]. In particular, periodic orbits
stemming from the libration points are shown to exist after linearization of the flow.
In the case of the collinear points, these kinds of solutions give rise to the planar and
vertical Lyapunov orbits. The analytical continuation of these infinitesimal orbits into
families of periodic orbits of the CRTBP for variations of the Jacobi constant reveals
the existence of new families of periodic orbits that bifurcate from them. Of special
relevance for their application to space mission design are the so-called halo orbits
[62, 191], which bifurcate out of the plane of the primaries from the family of planar
Lyapunov orbits.

In spite of the fact that the applications of perturbation theory in this monograph
do not deal with the CRTBP, but with the simpler Hill problem, we adhere to the tra-
dition of presenting the latter as a limiting case of the former. Hence, the standard
derivation of the CRTBP is first provided in §10.1.

1.3.2 Hill problem simplifications

When the massless body evolves closer to the central body than the distance between
the two point masses, the ratio of the two distances is less than one and the third-
body potential can be replaced by some truncation of its series expansion in Legendre
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polynomials. As long as this ratio is small the first terms of the expansion can be rep-
resentative of the dynamics. If, besides, the mass of the central body is much smaller
than the mass of the other primary, additional simplifications can be carried out that
give rise to the so-called Hill problem [292].

The simplifications of the CRTBP that lead to the Hill problem are described in
§10.2. Itmust be said, however, thatHill’s equations have greater generality thanbeing
a refinement of the restricted three-body problem. Indeed, they can be independently
derived from the general three-body problem when two of the three involved masses
are much smaller than the mass of the heavier body [281, 616]. In that case, the two
lighter masses evolve about the heavier body basically in terms of two separate two-
body problems except when they are close enough to each other, so that their mutual
attraction becomes comparable to the differential attraction of the heavier body.

A remarkable feature of the Hill problem is that it does not depend on physical
parameters, a fact that is shown after scaling the equations of motion using suitable
units of length and time [628]. This useful characteristic provides a wide generality to
the Hill problem, which can be used to represent the dynamics of a small body under
the gravitational action of different pairs of bodies of the solar system. Specific as-
pects of a particular binary system are then manifested when recovering the physical
units. Hence the Hill problem is well suited to the study of a variety of astronomical
and astrodynamics problems, like, for instance, the investigation of satellite encoun-
ters [554], cf. [534, 642, 643, 645], the dynamics of coorbital motion [47, 524], or the
dynamics of relative spacecraft motion [71, 113, 336, 446]. It is also useful in the de-
scription of the spacecraft motion about planetary satellites [419, 430], as well as the
dynamics about asteroids [597]. On the other hand, this simple model may need to
be supplemented with other effects in addition to the mass-point attraction in order
to provide a more accurate model of the dynamics of particular problems. Thus, the
non-centralities of the gravitational potential of the smaller primary, and, in particu-
lar, those related to the ellipsoidal figure, are commonly taken into account in studies
of orbital dynamics close to planetary satellites [432, 585], while solar radiation pres-
sure effects may play an important role in the dynamics about asteroids [215]. Also,
the dynamical coupling produced by large structures, like space tethers, may have
relevant implications on the Hill problem dynamics [550, 551].

The global dynamics of the Hill problemmust necessarily be investigated numeri-
cally. In particular, thorough computations of periodic and quasi-periodic orbits have
been carried out by various authors [275–277, 279, 492]. Besides, due to its interest for
spacemission design, investigation of low-energy transit orbits [127] has received par-
ticular attention, and comprehensive studies of the stable and unstable manifolds as-
sociated to libration point orbits have been carried out in the investigation of the cen-
ter manifold of the collinear libration points [250, 477]. In addition, the construction
of periapsis Poincaré maps has been revealed to be a fruitful procedure in the char-
acterization of escaping and capture trajectories [579, 660]. Other detailed accounts
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on the Hill problem dynamics are given in different studies [611], in which the planar
case is described globally for energy values yielding bounded motion.

Alternatively, purely analytical approachesmayprovideuseful informationon the
Hill problem dynamics in some regions of phase space. In particular, three different
instances inwhich theHill problemcanbe approachedbyperturbations are discussed
in thismonograph; namely, the perturbed Keplerianmotion about planetary satellites
(Chapter 11), the perturbed harmonic motion about the libration points (Chapter 12),
and the coorbital motion of the smaller-mass primary and the spacecraft (Chapter 13).

1.3.3 Motion about planetary satellites

Most natural satellites have masses that are notably smaller than the mass of their
mother planets, and, therefore, are well suited to the small-mass assumption of the
Hill problem, cf. Table 1 of [598]—the Sun–Mercury system being also naturally in-
cluded in this class of models. On the other hand, prospective mapping missions
about planetary satellites require low-altitude orbiters, whose semimajor axis is usu-
ally much shorter than the semimajor axis of the orbit of the natural satellite about
the mother planet, in this way fulfilling also the negligible parallax assumption of
the Hill problem. Then, the Hill problem dynamics fits well to the description of the
motion about planetary satellites. Besides, in those cases in which the orbiter evolves
clearly inside the Hill sphere, which is not always the case [694, 695], the Hill problem
Hamiltonian is naturally arranged in the form of perturbed Keplerian motion, and
hence it is a good candidate for the analytical approach [182, 343].

A low-order perturbation approach suffices for describing the major effects of the
long-term dynamics about planetary satellites. After removing first themean anomaly
of the orbiter in §11.1.1, and then the argument of the node in the rotating frame in
§11.1.2, the reduced problem becomes integrable. The reduced dynamics is discussed
in §11.1.3 and shows the unstable character of high inclination circular orbits. It also
reveals the existence of librational motion of the eccentricity vector about stable ec-
centric orbits in what is known as the Lidov–Kozai resonance [48, 71, 364, 450].7 Be-
yond the qualitative aspects of the planetary satellite dynamics, the accurate descrip-
tion of the solutionmay require one to achievemuch higher orders of the perturbation
approach [357, 418, 419, 535, 652, 656], a procedure that is carried out in §11.2.

On the other hand, because of the usual proximity of a mapping orbiter to the
planetary satellite, the non-centralities of its gravitational field may cause clearly ob-
servable effects in the long-term dynamics. Therefore, these effects must be included

7 A recent proposal suggests to enlarge the prefix to von Zeipel–Lidov–Kozai to credit themuch earlier
findings of Hugo von Zeipel on this topic [313, 697].
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as additional perturbations [365, 432, 452, 457, 592, 598, 650]. In particular, the oblate-
ness and dynamical ellipticity of the planetary satellite are commonly incorporated
into the perturbation model, yet the usual synchronous rotation of the satellite with
its orbital motionmay allow for some simplifications. Still, because higher-order grav-
ity terms may have possible implications in the long-term dynamics [3], the latitudi-
nal asymmetry of the central body is sometimes included in the perturbation model
[389, 421, 547]. The modifications of the dynamics introduced by the ellipsoidal figure
of the natural satellite are discussed in §11.3.

A relevant application of the analytical solution is found in the computation of
long-lifetime science orbits, which is approached in §11.4. Indeed, due to the men-
tioned instability of almost circular high-inclination orbits induced by the planetary
perturbations, the eccentricity of the spacecraft orbit grows exponentially until the
orbiter impacts on the planetary satellite’s surface, if uncontrolled, in relatively short
times. Strategies formaximizing the lifetime of science orbits based on time-to-impact
analytical predictions [598] or the use of the stable/unstable manifold dynamics of
the averaged problem [547] give promising results. Moreover, beyond common lin-
earization procedures [548], the use of higher orders of the mean to osculating ele-
ments transformation provided by the Lie transform perturbation approach may help
in improving lifetimes in the mission design procedure [410, 411]. In addition, as il-
lustrated in §11.4.2, for the low eccentricities and high inclinations required for sci-
ence orbits, the whole sequence of transformations frommean to osculating elements
may be replaced by a single set of simplified non-singular transformation equations
[389].

1.3.4 Libration points orbits

Another region in which the Hill problem is amenable to perturbative treatment is in
the vicinities of the libration points, whose specific characteristics make them attrac-
tive for different space mission applications [11, 190, 249]. In particular, the normal-
ization approach is customarily used in removing the hyperbolic instability associated
with the saddle × center × center character of the libration points equilibria [246]. This
procedure reduces the restricted three-body problem dynamics to its center manifold,
which is of just two degrees of freedom and, therefore, can be explored with the usual
tools on non-linear dynamics, as the computation of Poincaré surfaces of section or
the numerical computation of invariant manifolds [250]. On the other hand, particu-
lar analytical solutions are known to exist either in the linearized or non-linearized
dynamics [515], and analytical approximations of the main existing periodic orbits
about the libration points have been computed eventually, based on Lindstedt series
or analogous expansions [191, 566, 693].

For energy values close enough to the energy of the libration points, the dynam-
ics of the center manifold can also be approached analytically by perturbations, as an
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alternative to the use of Poincaré surfaces of section, yet the dynamics is no longer
that of perturbed Keplerian motion. Indeed, the reduced Hamiltonian of the center
manifold takes the form of a planar perturbed harmonic oscillator that is in the quasi-
resonance condition. The following introduction of a detuning parameter [283] casts
the problem in the form of a perturbed elliptic oscillator. That is, we take an oscillator
in the 1-1 resonance condition for the unperturbed term, whereas the detuned terms
are moved to the disturbing function. That this class of resonant systems can be effi-
ciently approached using perturbation theory is a very well-known fact [198, 472]. In
particular, the short-period terms of the center manifold of the Hill problem Hamil-
tonian are conveniently disclosed when reformulated in Deprit’s Lissajous variables
[160]. Then the resonant normal form Hamiltonian is constructed by standard averag-
ing over the elliptic anomaly.

Splitting the reduction process into two different canonical transformations, the
reduction to the center manifold and the short-period elimination, with focus explic-
itly on the separation of long- and short-period effects of the perturbed motion, pro-
vides the insight usually wanted by astrodynamicists [396]. However, when higher
orders of the perturbation approach are required, the reduction of the problem to a
one-degree-of-freedom Hamiltonian by means of a single Lie transformation is com-
putationally more efficient [103, 238, 564]. Furthermore, when this single transforma-
tion is carried out in complex variables the normalization becomes a simple exercise
of polynomial algebra. The resulting expressions in the normalization process only
involve arithmetic operations, in this way making the evaluation of higher orders of
the analytical, perturbation solution very efficient [424]. This approach clearly illus-
trates the versatility of the Lie transforms method, and is the one that we choose for
the construction of the reduced Hamiltonian in §12.1.

The normalized Hamiltonian with the short-period effects removed is of one de-
gree of freedom. The reduced phase space, which is the sphere [134, 373], is conve-
niently described in Hopf coordinates [300]. Most strikingly, the equations of the re-
duced dynamics turn out to be a particular case of the equations ofmotion of a free gy-
rostat,8 whose analytical integration has been investigated since the pioneering work
of Zhukovski [700] and Volterra [672] (see also [41]). This fact provides one more in-
stance of the analogies between orbital and rotational motions that have been recur-
rently mentioned in the literature [345].

On the other hand, while the complete description of the reduced dynamics on
the sphere is properly done in Hopf variables [163, 498], the use of Deprit’s Lissajous
variables provides immediate insight into thenature of particular solutions.Moreover,
the simple evaluation of the equilibria solutions in these variables at each value of
the elliptic anomaly between 0 and 2π allows for the straightforward reconstruction

8 This fact has been pointed out to the author by Alexander Burov, Dorodnitsyn Computing Centre of
the Russian Academy of Sciences, in private communication of November 2018.
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of their partner periodic orbits, whose period is easily computed from the Hamilton
equation for the variation of the elliptic anomaly [396]. These aspects of the reduced
dynamics are discussed in §12.2.

When higher orders of the perturbation approach are required, their computation
is customarily approached using floating-point arithmetic because of simplicity and
efficiency [171]. Still, this procedure may increase non-negligibly the numerical errors
due to the number representation in the computer. The propagation of the trunca-
tion errors can be studied with the help of interval arithmetic [100, 328]. Alternatively,
the use of complex variables provides a simple way of estimating the accumulation
of truncation errors at each order of the perturbation theory by tracking the residual
complex terms that remain in the normalized Hamiltonian after recovering the real
variables [424].

Alternatively, to mitigate the growth of the truncation errors associated with the
floating-point arithmetic, the perturbation solution is approached exactly using inte-
ger arithmetic. However, the increase in the size of the rational coefficients handled
with the perturbation order, which may become enormous at relatively moderate or-
ders [162],makes the computation of very high orderswith integer arithmetics unprac-
tical. Still, the integer-arithmetic solution can be used as a benchmark with which to
compare the lower orders of the floating-point arithmetic solution, and to estimate
the highest order that may make sense for a floating-point solution [424]. To expedite
evaluation of the perturbation solution, the higher orders of the Lie transformmethod
computed in §12.3 to improve the accuracy of the analytical solution, have been ap-
proached in floating-point arithmetics.

1.3.5 Coorbital motion with low eccentricity

The Hill problem is also useful in describing the interaction of two small bodies orbit-
ing a massive one. Particular instances of the case in which both small bodies evolve
in almost circular orbits with the same semimajor axis give rise to the so-called quasi-
satellite orbits, also named distant retrograde orbits, in which the massless body
seems to evolve in orbit about the smaller primary. As far as this apparent motion oc-
curs out of the Hill sphere, it cannot be approached as a case of perturbed Keplerian
motion about the smaller primary.

Discussions of the possibility of this kind of relativemotion in the solar systemcan
be traced back to the beginning of the twentieth century [319]. Since then, families
of retrograde periodic orbits have been computed numerically by different authors,
either for the Copenhagen problem (primaries with equal masses) [87, 273, 274, 624],
the case of Earth–Moonmasses [68], or thepureHill problem [275]. Brief reviewson the
topic can be consulted in [560, 608, 673], whereas different natural objects in quasi-
satellite orbits that have been identified in the solar system can be found in [205] and
the references therein.
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The strong stability characteristics of quasi-satellite orbits make them appealing
for different astrodynamics applications, like quarantine orbits [50, 376], surveillance
missions related to the protection of the Earth [622], or for “orbiting” about bodies of
non-negligible dimensions and very low mass, as is the case of Phobos [35, 352, 530].

Quasi-satellite orbits are customarily computed numerically like periodic solu-
tions of a restricted three-body problem [46, 235, 429, 456, 499]. Approximate ana-
lytical solutions to the coorbital motion have also been reported that are useful in
the qualitative description of the main facts of the quasi-satellite orbits’ dynamics
[47, 524]. While these rough analytical solutions can be improved when the problem
is approached by Hamiltonian perturbations [454], difficulties arising in the practical
implementation of the perturbation approach derived from the essential dependence
of the solution on special functions constrained the perturbation solution to the lower
orders.9 This fact led to the conclusion that the perturbation approach is just partially
successful [455], with a limited application to the description of the long-term orbital
behavior obtained from the numerical integration of the evolution equations [456]. It
was, perhaps, the untimely demise of Lidovwhichmade the perturbation approach be
abandoned until recently. Still, new applications of the perturbation approach were,
again, limited to the orbit evolution, whose equations are obtained by numerically av-
eraging the higher frequencies of the motion [608]. Numerical averaging techniques
[184, 467, 635] present an alternative to effectively deal with the complications in the
analytical integration of special functions, but they also hinder the computation of
higher orders of the perturbation.

The arrangement of the Hill problem Hamiltonian in a form useful for the pertur-
bation approach to the quasi-satellite orbits problem is discussed in §13.1, yet limited
to theplanar case. TheHamiltonian is split into thequadratic part,which is integrable,
and the non-linear term containing the interaction of the orbiter and the primary. Re-
formulation in epicyclic variables turns the quadratic terms into a completely reduced
Hamiltonian, which is immediately integrated to show that the orbiter moves in an el-
lipse whose center may evolve with linear motion along the direction orthogonal to
the line of the primaries. This linear trend can be removed by the proper selection of
initial conditions, thereby making place to purely periodic motion. When the interac-
tion of the smaller primary with the orbiter becomes significant, the linear motion of
the center of the ellipse may change into a slow oscillatory motion that gives rise to
the quasi-satellite configuration.

The perturbation approach proceeds by removing the phase of the orbiter in its
epicycle, an operation that is efficiently achieved by the method of Lie transforms.
Details of this procedure, including the computation of the short-period corrections,

9 The efficient treatment of special functions in a calculus of perturbation is a problem that seems to
have remained open since many years ago [36, 82, 83, 153].
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are given in §13.2. In this way, the planar case of the Hill problem is reduced to an inte-
grable one-degree-of-freedom Hamiltonian describing the motion of the center of the
reference ellipse (the “deferent” of the epicyclical motion). The nature of this solution
is discussed in §13.3, where, for the lower orders of the perturbation approach, it is
shown that the motion is made of harmonic oscillations and can be nicely expressed
in closed form [401]. Still, the validity of the closed-form solution is constrained to the
case of small amplitude librations of the deferent motion. Higher orders of the single-
averaged Hamiltonian prevent the closed-form solution, yet the long-term motion is
efficiently integrated semi-analytically with very long steps. Alternatively, analytical
solutions in the form of Lindstedt series extend the validity of the purely analytical
approach [398, 403].

As an option to the Lindstedt series approach, a new Lie transformation is carried
out in §13.4 to remove the phase of the deferent. In this way, the planar Hill problem
Hamiltonian is completely reduced, up to the truncation order of the perturbation ap-
proach, thus yielding a trivially integrable Hamiltonian. The evaluation of the secular
terms of the double-averaged solution is computationally undemanding, and it pro-
vides an instant way of exploring quasi-satellite orbit evolution. In addition, when
required, the computation of an ephemeris is straightforward by simply adding the
periodic corrections to the secular solution. These corrections are made of both long-
and short-period effects, and they are obtained analytically as a result of the perturba-
tion procedure. Moreover, the formal integrals of the secular solution can be used as
design parameters in the implementation of quasi-satellite orbits with specific char-
acteristics [404]. In particular, it is shown in §13.5 how commensurability between the
(secular) periods of the orbital and libration motions results in quasi-satellite orbits
of the planar Hill problem that are periodic on average, and approximately periodic in
the non-averaged dynamics. As customary in preliminary mission design procedures
[386, 387, 390], differential corrections can then be used to slightly modify the initial
conditions provided by the analytical solution in order to get an exact periodic orbit
of the non-averaged problem with the required characteristics.
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2 The method of Lie transforms

The solution to different problems of mechanics is made notably easier when discov-
ering a convenient set of variables that simplifies the mathematical formulation of
the problem. In Hamiltonian mechanics, this is the particular case in which we find
a transformation of canonical variables such that, in the new variables, the Hamilto-
nian is reduced to a normal form that is function of only the momenta. Being cyclic
all the coordinates, the problem is trivially integrated. In the new variables, the mo-
menta are integrals of the motion whereas their conjugate coordinates evolve linearly
with frequencies that formally depend on the momenta. The transformation is com-
monly found by the Hamilton–Jacobi method through a generating function in mixed
variables, old coordinates andnewmomenta [30]. This is in the same spirit asHamilto-
nian perturbation methods: to find an infinitesimal contact transformation such that,
in the new variables, the perturbed integrable Hamiltonian takes a simpler form that
makes the integration of the Hamiltonian flow easier.

Beyond traditional perturbation approaches to particular problems, Poincaré pro-
posed a general algorithm that, in the style of theHamilton–Jacobi approach, relies on
a generating function in mixed variables [558]. The construction of the perturbation
solution with Poincaré’s method is straightforward up to the first order of the pertur-
bation approach. But to overcome the difficulties that appear in the computation of
higher orders, which stem from the implicit form of the transformation, onemust deal
with sophisticated operations on power series [174]. Alternatively, perturbation meth-
ods based onLie transforms [151, 303] provide systematic algorithms to extend the per-
turbation solution to higher orders, which, besides, are easily implemented inmodern
commercially available symbolic algebra systems. We only deal with the practical as-
pects that lead to the implementation of the latter, which is generally recognized as
the standard perturbationmethod of these days. Moreover, the following descriptions
are constrained to the case of conservative transformations and functions. The case in
which the time appears explicitly is approached analogously by the simple expedient
of turning to the extended phase space.

2.1 Lie transformation of a function

Let q be a vector of canonical coordinates q = (q1, q2, . . . , ql), and let Q = (Q1,Q2, . . . ,
Ql) be their conjugate momenta. Let 𝒲 ≡ 𝒲(ε;q,Q) be an analytical function of ε
given by the Taylor series expansion

𝒲 = ∑
n≥0

εn

n!
𝒲n+1(q,Q). (2.1)

https://doi.org/10.1515/9783110668513-002
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Then the solution to the differential system

dqk
dε
=
𝜕𝒲
𝜕Qk
,

dQk
dε
= −
𝜕𝒲
𝜕qk
, k = 1, 2, . . . , l, (2.2)

for the initial conditions

q(p,P,0) = p, Q(p,P,0) = P, (2.3)

defines an infinitesimal mapping φ : (p,P, ε) 󳨃→ (q,Q) given by

q = q(p,P, ε), Q = Q(p,P, ε), (2.4)

where p = (p1, p2, . . . , pl) are canonical coordinates and P = (P1,P2, . . . ,Pl) their conju-
gate momenta, which is known as the Lie transformationwith generating function𝒲.
Lie transformations are completely canonical transformations [151, 491] and their ex-
istence in a neighborhood of ε = 0 is guaranteed by the basic theory of differential
equations.

Let F ≡ F(q,Q, ε) be an analytical function depending on the canonical set (q,Q),
as well as on the scalar small parameter ε. F can be expanded as the Taylor series

F = ∑
n≥0

εn

n!
Fn,0(q,Q), Fn,0 =

dnF
dεn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
, (2.5)

where the convenience of using the double subindex notation Fn,0 for the total deriva-
tives of F with respect to the small parameter will become apparent soon.

The function F is reformulated in the (p,P) variables by replacing Eq. (2.4) into
Eq. (2.5). By direct replacement we obtain G = G(p,P, ε) ≡ φF in the form

G = F(q(p,P, ε),Q(p,P, ε), ε) = ∑
n≥0

εn

n!
Fn,0(q(p,P, ε),Q(p,P, ε)), (2.6)

which is not a Taylor series. To obtain G in the form of a Taylor series, we would need
to expand and rearrange the right side of Eq. (2.6).

Rather than solving Eq. (2.2) to get the transformation (2.4), replace it in Eq. (2.6)
and carry out the consequent rearrangement, we will rely on basic operations on
power series to obtain directly G like the Taylor series

G = ∑
n≥0

εn

n!
Gn(p,P), Gn =

dnG
dεn
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
. (2.7)

The direct computation of the coefficients Gn in Eq. (2.7) is done by taking into
account that G = φF ≡ F(q(p,P, ε),Q(p,P, ε), ε) is a composite function, to which we
apply the chain rule. Thus, working in the (q,Q) variables,

G1 =
dG
dε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
, where dG

dε
=
𝜕F
𝜕ε
+

l
∑
k=1
(
𝜕F
𝜕qk

dqk
dε
+
𝜕F
𝜕Qk

dQk
dε
),
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in which, since we are dealing with a Lie transformation, the total derivatives of qk
and Qk with respect to the small parameter are replaced using Eq. (2.2). Hence,

dG
dε
=
𝜕F
𝜕ε
+ {F;𝒲}, (2.8)

where

{F;𝒲} =
l
∑
k=1
(
𝜕F
𝜕qk
𝜕𝒲
𝜕Qk
−
𝜕F
𝜕Qk

𝜕𝒲
𝜕qk
) (2.9)

stands for the Poisson bracket of F and𝒲.

2.1.1 The fundamental recursion

The partial derivative of F with respect to the small parameter in Eq. (2.8) is readily
computed from (2.5),

𝜕F
𝜕ε
= ∑

n≥0

εn

n!
Fn+1,0. (2.10)

On the contrary, the computation of the Poisson bracket of F and𝒲 is a little bit more
involved. First, we plug Eqs. (2.1) and (2.5) into Eq. (2.9), to obtain

{F;𝒲} =
l
∑
k=1
(∑
j≥0

εj

j!
𝜕Fj,0
𝜕qk
∑
i≥0

εi

i!
𝜕𝒲i+1
𝜕Qk
− ∑
j≥0

εj

j!
𝜕Fj,0
𝜕Qk
∑
i≥0

εi

i!
𝜕𝒲i+1
𝜕qk
). (2.11)

At this point, we recall that the product of the power series s1 = ∑j≥0 ajε
j and s2 =

∑i≥0 biε
i, is another power series p = s1s2 = ∑n≥0 cnε

n, whose coefficients are given
by the Cauchy product cn = ∑

n
m=0 an−mbm. Since we are dealing with Taylor series, the

coefficients of the series s1, s2 and p are reorganized in the form aj = Aj/j!, bi = Bi/i!,
cn = Cn/n!. Therefore, the coefficient Cn = n!cn of the Cauchy product reads

Cn = n!
n
∑
m=0

An−m
(n −m)!

Bm
m!
=

n
∑
m=0
(
n
m
)An−mBm.

Computing the series products in Eq. (2.11) in this way, we readily obtain

{F;𝒲} =
l
∑
k=1
∑
n≥0

εn

n!

n
∑
m=0
(
n
m
)(
𝜕Fn−m,0
𝜕qk
𝜕𝒲m+1
𝜕Qk
−
𝜕Fn−m,0
𝜕Qk

𝜕𝒲m+1
𝜕qk
),

where the term inside the parentheses is easily identified with a Poisson bracket after
exchanging the order of the summations. That is,

{F;𝒲} = ∑
n≥0

εn

n!

n
∑
m=0
(
n
m
){Fn−m,0;𝒲m+1}. (2.12)
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Next, Eqs. (2.10) and (2.12) are plugged into Eq. (2.8) to yield

dG
dε
= ∑

n≥0

εn

n!
Fn,1, (2.13)

where

Fn,1 = Fn+1,0 +
n
∑
m=0
(
n
m
){Fn−m,0;𝒲m+1}. (2.14)

So far, all the computations have been carried out in the original (q,Q) variables.
To compute the term G1 ≡ G1(p,P) it only remains to use Eq. (2.3) in order to evaluate
Eq. (2.13) in ε = 0. That is,

G1 =
dG
dε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= ∑

n≥0

εn

n!
Fn,1(q,Q)|ε=0 = F0,1(q|ε=0,Q|ε=0) = F0,1(p,P),

where F0,1 = F1,0 + {F0,0;𝒲1} from Eq. (2.14).
In summary: we started from Eq. (2.5) and arrived at Eq. (2.13), which equations

are formally equal except for the coefficients Fn,0 being replaced by Fn,1. That is,

dG
dε
=

d
dε
∑
n≥0

εn

n!
Fn,0(q,Q) = ∑

n≥0

εn

n!
Fn,1(q,Q).

Proceeding likewise with dG/dε, which is again handled as a composite function,
straightforward computations show that the second derivative of G with respect to ε
is

d2G
dε2
=

d
dε
∑
n≥0

εn

n!
Fn,1(q,Q) = ∑

n≥0

εn

n!
Fn,2(q,Q),

in which

Fn,2 = Fn+1,1 +
n
∑
m=0
(
n
m
) {Fn−m,1;𝒲m+1}.

Then an arbitrary derivative dnG/dεn is computed by induction showing that,
starting from the qth derivative of G,

dqG
dεq
= ∑

n≥0

εn

n!
Fn,q(q,Q),

we obtain the (q + 1)th derivative,

dq+1G
dεq+1
= ∑

n≥0

εn

n!
Fn,q+1(q,Q),
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in which

Fn,q+1 = Fn+1,q +
n
∑
m=0
(
n
m
) {Fn−m,q;𝒲m+1}. (2.15)

Once the total derivatives have been computed up to the desired order, it only
remains to evaluate them at ε = 0, namely,

dqG
dεq
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= ∑

n≥0

εn

n!
Fn,q(q,Q)|ε=0 = F0,q(q|ε=0,Q|ε=0) = F0,q(p,P),

to get the Lie transformation of Eq. (2.5) in the form of the genuine Taylor series given
in Eq. (2.7).

2.1.2 Deprit’s triangle

Deprit’s fundamental recursion (2.15) is visualized in the form of a triangular table

F0,0 F0,1 F0,2 F0,3 F0,4 . . .
F1,0 F1,1 F1,2 F1,3 . . .
F2,0 F2,1 F2,2 . . .
F3,0 F3,1 . . .
F4,0 . . .
. . .

(2.16)

in which the computation of a given term only involves the preceding terms in the
diagonal passing through it, and those in the preceding columns above that diagonal.

For instance, the computation of F0,2 only involves the diagonal terms F1,1 and
F2,0, those above F1,1, namely F0,1, and those above F2,0, namely F1,0 and F0,0. Indeed,
making n = 0, q = 1 in Eq. (2.15) yields F0,2 = F1,1 + {F0,1;𝒲1}, where 𝒲1 is known,
and Eq. (2.15) is used again for computing F1,1 (with n = 1 and q = 0) and F0,1 (with
n = q = 0). That is

F1,1 = F2,0 + (
1
0
){F1,0;𝒲1} + (

1
1
){F0,0;𝒲2},

F0,1 = F1,0 + {F0,0;𝒲1}.

A final remark is in order. While the transformation of the analytical function F
given by Eq. (2.5) into the new variables has been achieved without solving the dif-
ferential system (2.2) that defines the Lie transformation, it obviously plays a funda-
mental role in the computation of the Taylor series expansion (2.7) since Eq. (2.2) has
certainly been used in the construction of Deprit’s recursion (2.15).
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2.1.3 The direct transformation

Note that given the generating function𝒲, the transformation (2.4) can be computed
without need of solving the differential system (2.2). Indeed, the components of a vec-
torial function are scalar functions, to each of which the fundamental recursion (2.15)
can be applied independently.

Thus, denote by x = q1 one of the canonical coordinates of q. It can be assumed
to be given formally by the Taylor series

x = ∑
n≥0

εn

n!
xn,0(q,Q),

where x0,0 = x, and xn,0 vanish for n > 0. Then Eq. (2.15), in which the symbol F
is replaced by the symbol x of the coordinate, is repeatedly applied to compute the
terms

x0,1 = {x;𝒲1}

x1,1 = {x;𝒲2}

x0,2 = x1,1 + {x0,1;𝒲1}

x2,1 = {x;𝒲3}

x1,2 = x2,1 + {x1,1;𝒲1} + {x0,1;𝒲2}

x0,3 = x1,2 + {x0,2;𝒲1}

. . .

(2.17)

and soon. Recall that this sequence is computed in the (q,Q) variables, but, in the end,
the terms x0,n must be evaluated at ε = 0, in which case q(p,P,0) = p, Q(p,P,0) = P.
That is, in the end, q is simply replaced by p, and Q by P, to give the transformation
equation

x = ∑
n≥0

εn

n!
x0,n(p,P),

where x0,0(p,P) = p1 is the corresponding coordinate to x = q1 in the new variables.
Obviously, the same procedure can be applied to the other coordinates as well as

their conjugatemomenta, in thiswayobtaining explicitly thedirect Lie transformation
(2.4) in the form of the Taylor series

q = ∑
n≥0

εn

n!
q0,n(p,P), Q = ∑

n≥0

εn

n!
Q0,n(p,P), (2.18)

where q0,0 = p, and Q0,0 = P.
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2.1.4 Composition of Lie transformations

Let ψ : (s, S, ε) 󳨃→ (p,P) be a new Lie transformation from the (p,P) variables to the
(s, S) ones. If

𝒱 = ∑
n≥0

εn

n!
𝒱n+1(p,P) (2.19)

is the generating function of ψ, the transformation equations p = p(s, S, ε), P =
P(s, S, ε) are now obtained from the solution of the new differential system

dpk
dε
=
𝜕𝒱
𝜕Pk
,

dPk
dε
= −
𝜕𝒱
𝜕pk
, k = 1, 2, . . . , l, (2.20)

for the initial conditions p(s, S,0) = s, S(s, S,0) = S.
We will check that the composition

q = q(p(s, S, ε),P(s, S, ε), ε) = q(s, S, ε),
Q = Q(p(s, S, ε),P(s, S, ε), ε) = Q(s, S, ε),

of the Lie transformations φ and ψ is a new Lie transformation.
To do that we compute the total derivatives of qk = φqk ≡ qk(p,P, ε), and Qk =

φQk ≡ Qk(p,P, ε) with respect to ε. By direct application of the chain rule we obtain

dqk
dε
=

l
∑
j=1
(
𝜕φqk
𝜕pj

dpj
dε
+
𝜕φqk
𝜕Pj

dPj
dε
) +
𝜕φqk
𝜕ε
, (2.21)

where the total derivatives of the (p,P) variables are taken from Eq. (2.20). Besides,
since the transformation qk = φqk is the solution of Eqs. (2.2)–(2.3), it must yield the
identity when plugged into Eq. (2.2). That is,

dφqk
dε
=
𝜕φqk
𝜕ε
≡ φ 𝜕𝒲
𝜕Qk
.

Therefore, Eq. (2.21) turns into

dqk
dε
=

l
∑
j=1
(
𝜕φqk
𝜕pj
𝜕𝒱
𝜕Qj
−
𝜕φqk
𝜕Pj
𝜕𝒱
𝜕qj
) + φ 𝜕𝒲
𝜕Qk
= {φqk ,𝒱} + φ

𝜕𝒲
𝜕Qk
, (2.22)

in which the terms in the right side are functions of the (p,P) variables.
Moreover, due to the invariance of Poisson brackets with respect to completely

canonical transformations, we can evaluate the Poisson bracket in Eq. (2.22) either in
the (p,P) or in the (q,Q) variables; namely, {φqk ,𝒱} = {qk ,φ−1𝒱}. Therefore, we can
rewrite the whole rightmost side of Eq. (2.22) in terms of the (q,Q) variables. Namely,

dqk
dε
= {qk ,φ

−1𝒱} +
𝜕𝒲
𝜕Qk
=
𝜕φ−1𝒱
𝜕Qk
+
𝜕𝒲
𝜕Qk
=
𝜕𝒰
𝜕Qk
, (2.23)
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where

𝒰 = 𝒰(q,Q, ε) ≡𝒲 + φ−1𝒱 . (2.24)

Proceeding analogously with the momenta Qk we readily obtain

dQk
dε
= −
𝜕𝒰
𝜕qk
. (2.25)

In consequence, the solution of Eqs. (2.23)–(2.25) for the initial conditions q(s,
S,0) = s, Q(s, S,0) = S, defines a Lie transformation ϕ : (s, S, ε) 󳨃→ (q,Q), given by the
composition of φ and ψ, which is obtained from the generating function 𝒰 defined in
Eq. (2.24).

The formulation of the generating function 𝒱 = 𝒱(p,P, ε) in the (q,Q) variables
φ−1𝒱 = 𝒱(p(q,Q, ε),P(q,Q, ε), ε), is readily obtained by a new application of the Lie
transforms method, and follows analogous steps as those shown in the next section.

2.1.5 The inverse transformation

The composition of the direct transformationφ : (p,P, ε) 󳨃→ (q,Q) and the inverse one
φ−1 : (q,Q, ε) 󳨃→ (p,P) obviously yields the identity. In this particular case, Eq. (2.24)
turns into𝒲+φ−1𝒱 = 0and the inverse transformation is obtained from thegenerating
function 𝒱 = −φ𝒲. That is,

𝒱 = −𝒲(q(p,P, ε),Q(p,P, ε), ε). (2.26)

Therefore, to compute the inverse transformation of Eq. (2.18), the first step is to
write Eq. (2.26) as an explicit function of (p,P) in the form of a Taylor series. This
is done by standard application of the fundamental recursion (2.15) to the function
R = −𝒲(q,Q, ε). That is, starting from

R(q,Q, ε) = ∑
n≥0

εn

n!
Rn,0,

in which, by comparison with Eq. (2.1), Rn,0 ≡ −𝒲n+1(q,Q), we construct

R(p,P, ε) = ∑
n≥0

εn

n!
R0,n.

Straightforward computations show that

R0,0 = −𝒲1,

R0,1 = −𝒲2,

R0,2 = −𝒲3 − {𝒲2;𝒲1},

R0,3 = −𝒲4 − 2{𝒲3;𝒲1} − {{𝒲2;𝒲1};𝒲1},

R0,4 = . . . . (2.27)
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Finally, we make 𝒱n+1 = R0,n(p,P) to get the generator of the inverse transformation
in the form of the Taylor series

𝒱 = ∑
n≥0

εn

n!
𝒱n+1(p,P).

Once 𝒱 ≡ 𝒱(p,P) has been obtained, the computation of the inverse transforma-
tion

p ≡ ∑
n≥0

εn

n!
p0,n(q,Q), P ≡ ∑

n≥0

εn

n!
P0,n(q,Q), (2.28)

follows exactly the same steps as in the direct case §2.1.3 simply replacing𝒲 by 𝒱.

2.2 Deprit’s perturbations approach

Hamiltonian perturbation problems are generally stated in the form

ℋ = ℋ0 +𝒟, (2.29)

whereℋ0 is an integrable Hamiltonian and𝒟 is a disturbing function that only modi-
fies slightly the integrableHamiltonianflow, that is |𝒟| ≪ |ℋ0| at any time. Thegeneral
goal of the perturbation approach is to find a canonical transformation such that the
transformed Hamiltonian is simpler in the new variables than in the original form.
The simplification will depend on the problem at hand, yet the more common case
consists of making cyclic one of the variables which the new Hamiltonian depends
upon.

2.2.1 Hamiltonian simplification by Lie transforms

The Lie transforms method provides a general frame for the computation of Hamilto-
nian perturbation solutions. Indeed, Eq. (2.29) can be written in the form

ℋ = ∑
m≥0

εm

m!
ℋm,0(q,Q), (2.30)

whereℋ0,0 ≡ ℋ0 and ε is a small parameter that represents the smallness of the dis-
turbing function. In the more favorable case ε would be a physical parameter, but in
general it will be a formal small parameter (ε ≡ 1) used to visualize some dynamical
conditions which would apply to the solutions of interest.

In particular Deprit’s perturbation approach provides the means for computing
the completely canonical Lie transformation

𝒯 : (q,Q) 󳨃→ (p,P; ε), (2.31)
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leading to the desired simplification in the Hamiltonian (2.30). That is,

𝒯 : ℋ = ℋ(q(p,P, ε),Q(p,P, ε), ε) ≡ ∑
m≥0

εm

m!
ℋ0,m(p,P) (2.32)

is “simpler” than Eq. (2.30) up to some truncation order𝒪(εk).
The Lie transformation (2.31) is derived from a generating function of the form of

Eq. (2.1), which is no longer assumed to be known in advance. On the contrary, the
coefficients 𝒲n+1 of the generating function must now be determined stepwise from
the simplification criterion used when approaching each particular problem.

Thus, replacing the generic function F byℋ in Deprit’s recursion (2.15), in which
we make n = q = 0, we obtainℋ0,1 = {ℋ0,0;𝒲1} +ℋ1,0. This equation is rearranged in
the form

{𝒲1;ℋ0,0} = ℋ̃0,1 −ℋ0,1, (2.33)

where ℋ0,0 and ℋ̃0,1 = ℋ1,0 are known functions of the (q,Q) variables, as given in
Eq. (2.30), but both ℋ0,1 and 𝒲1 are undetermined by now. In the perturbation ap-
proach ℋ0,1 is chosen according to the simplification criterion. Finally, 𝒲1 must be
solved from the partial differential equation that is obtained after the evaluation of
the Poisson bracket on the left side of Eq. (2.33).

Once𝒲1 has been computed, the second order of Deprit’s recursion (2.15) yields

ℋ0,2 = {ℋ0,1;𝒲1} +ℋ1,1 (2.34)

where, again from Eq. (2.15),

ℋ1,1 = {ℋ0,0;𝒲2} + {ℋ1,0;𝒲1} +ℋ2,0. (2.35)

As before, after plugging Eq. (2.35) into Eq. (2.34), the latter is rearranged in the form

{𝒲2;ℋ0,0} = ℋ̃0,2 −ℋ0,2, (2.36)

in which ℋ̃0,2 comprises all the terms that have become known hitherto. Namely,

ℋ̃0,2 = ℋ2,0 + {ℋ1,0;𝒲1} + {ℋ0,1;𝒲1}. (2.37)

Again, the new Hamiltonian term ℋ0,2 is chosen according to the simplification cri-
terion, and 𝒲2 must be solved from the partial differential equation stemming from
Eq. (2.36).

Once the procedure has been extended up to the desired truncation order of the
perturbation approach, Eq. (2.32) is obtained in the new variables by simply replacing
q by p and Q by P in the terms ofℋ0,m.
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2.2.2 Example: Small oscillations of the simple pendulum

The simple pendulum is discussed in more detail in §3.1, from which we take the pen-
dulum Hamiltonian

ℋ =
1
2
Θ2 + 2ω2 sin2 1

2
θ, (2.38)

whereΘ is the conjugatemomentum to the angle θ andω is a (dispensable) parameter.
In the case of small oscillations the angle with which the pendulum departs from the
vertical is θ ≪ 1, and hence sin2 1

2θ =
1
4θ

2− 1
48θ

4+ 1
1440θ

6+⋅ ⋅ ⋅ is replaced into Eq. (2.38).
After rearrangement, Eq. (2.38) is written in the form

ℋ =
1
2
(Θ2 + ω2θ2) − 1

4!
ω2θ4 + 1

6!
ω2θ6 + ⋅ ⋅ ⋅ (2.39)

of the typical perturbation Hamiltonian (2.30) in which the small parameter is formal
(ε ≡ 1), the zeroth-order termℋ0,0 =

1
2 (Θ

2 +ω2θ2) is a harmonic oscillator of frequency
ω in the “Cartesian” coordinate θ and conjugate momentum Θ, and the perturbation
terms areℋ1,0 = −

1
4!ω

2θ4,ℋ2,0 =
1
6!ω

2θ6, . . . .
First of all, we apply the harmonic transformation (ϕ,Φ;ω) 󳨃→ (θ,Θ) given by

Θ = √2ωΦcosϕ, θ = √2Φ/ω sinϕ, (2.40)

which is canonical and converts Cartesian variables into harmonic variables. We ob-
tain

ℋ0,0 = ωΦ, ℋ1,0 = −
Φ2

6
sin4 ϕ, ℋ2,0 =

Φ3

45ω
sin6 ϕ, . . . . (2.41)

That is, the action Φ is an integral of the unperturbed problem. If we extend this inte-
gral to the perturbed problem, then it will be trivially solved.

To do that, we apply the procedure described in §2.2.1 to find a canonical trans-
formation (ϕ󸀠,Φ󸀠; ϵ) 󳨃→ (ϕ,Φ) such that it transforms the Hamiltonian in harmonic
variables (ϕ,Φ) into the Hamiltonian

ℋ(ϕ(ϕ󸀠,Φ󸀠; ϵ),Φ(ϕ󸀠,Φ󸀠; ϵ); ϵ) =
n
∑
m=0

ϵm

m!
ℋ0,m(−,Φ

󸀠) + ∑
j>n

ϵj

j!
ℋ0,j(ϕ

󸀠,Φ󸀠),

in the new variables (ϕ󸀠,Φ󸀠). That is, after truncation to order n, the new Hamiltonian
will only depend on the momentum Φ󸀠, which, therefore, becomes a formal integral
of the perturbed problem.

The first step is to solve Eq. (2.33), in which ℋ̃0,1 = ℋ1,0 and

{𝒲1;ℋ0,0} = {𝒲1;ωΦ} = ω
𝜕𝒲1
𝜕ϕ
.
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Therefore,𝒲1 is solved from Eq. (2.33) by indefinite integration. That is,

𝒲1 =
1
ω
∫[−

1
6
Φ2 sin4 ϕ −ℋ0,1(ϕ,Φ)]dϕ, (2.42)

where sin4 ϕ ≡ 1
8 (3 − 4 cos 2ϕ + cos 4ϕ). Choosing

ℋ0,1(ϕ,Φ) = −
1
16
Φ2,

we remove the angle ϕ from the first-order term of the new Hamiltonian. In addition,
this choice converts the integrand of Eq. (2.42) in a purely periodic trigonometric func-
tion of ϕ, which is trivially solved to give

𝒲1 =
1
192

Φ2

ω
(8 sin 2ϕ − sin 4ϕ) + C1(Φ).

The role of the arbitrary functions of the type ofC1 is not discussedhere, andwe simply
make C1 = 0.

Note thatℋ0,1 is the average of ℋ̃0,1 = −
1
6Φ

2 sin4 ϕ in the time in which the angle
ϕ advances one period. That is, the new Hamiltonian term ℋ0,1 = ⟨ℋ̃0,1⟩ϕ has been
chosen by “averaging”.

Once 𝒲1 is obtained we can proceed to the second order of the perturbation ap-
proach, in which, after evaluation of the Poisson bracket, Eq. (2.36) is also solved by
indefinite integration. Namely,

𝒲2 =
1
ω
∫[ℋ̃0,2(ϕ,Φ) −ℋ0,2]dϕ, (2.43)

where the computation of ℋ̃0,2 from Eq. (2.37) only involves the evaluation of Poisson
brackets. Straightforward computations yield

ℋ̃0,2 = −
Φ3

1920ω
(15 − 35 cos 2ϕ + 2 cos 4ϕ + 3 cos 6ϕ).

Then the choice

ℋ0,2 = ⟨ℋ0,2⟩ϕ ≡ −
Φ3

128ω

removes the angle from the new Hamiltonian, as desired, and leaves the integrand of
Eq. (2.43) in the form of a purely periodic function ofϕ, which is trivially integrated to
give

𝒲2 =
1

3840
Φ3

ω2 (35 sin 2ϕ − sin 4ϕ − sin 6ϕ) + C2(Φ).

Once more, we make the trivial choice C2 = 0.
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Because we neglected higher orders of the perturbation in Eq. (2.41), we stop the
computations here. The transformed Hamiltonian is obtained by simply changing old
by new (prime) variables in the termsℋ0,m, (m = 0, 1, 2), yielding

ℋ󸀠 = ωΦ󸀠[1 − 1
16
(Φ󸀠/ω) − 1

256
(Φ󸀠/ω)2 +𝒪(Φ󸀠/ω)3],

whose Hamilton equations are trivially solved to give the secular terms of the solution

Φ󸀠 = Φ󸀠0 −
𝜕ℋ󸀠

𝜕ϕ󸀠
τ = Φ󸀠0, (2.44)

ϕ󸀠 = ϕ󸀠0 +
𝜕ℋ󸀠

𝜕Φ󸀠
τ = ϕ󸀠0 + ω(1 −

1
8
Φ󸀠0
ω
−

3
256

Φ󸀠 20
ω2 )τ, (2.45)

where τ denotes the time. That is, in the case of small oscillations, the simple pendu-
lum behaves, on average, like a harmonic oscillator that evolves with constant, per-
turbed frequency ω̃ = ω[1 − 1

8 (Φ
󸀠
0/ω) −

3
256 (Φ
󸀠
0/ω)

2].
In order to obtain the solution in the original variables we need the direct trans-

formation, which is readily obtained from Eq. (2.17). For the angle ϕ we compute the
sequence

ϕ0,1 = {ϕ;𝒲1} =
𝜕𝒲1
𝜕Φ
=

1
96

Φ
ω
(8 sin 2ϕ − sin 4ϕ),

ϕ1,1 = {ϕ;𝒲2} =
𝜕𝒲2
𝜕Φ
=

1
1280

Φ2

ω2 (35 sin 2ϕ − sin 4ϕ − sin 6ϕ),

ϕ0,2 = ϕ1,1 + {ϕ0,1;𝒲1} = ϕ1,1 +
𝜕ϕ0,1
𝜕ϕ
𝜕𝒲1
𝜕Φ
−
𝜕ϕ0,1
𝜕Φ
𝜕𝒲1
𝜕ϕ

=
1

46080
Φ2

ω2 (1280 sin 2ϕ + 124 sin 4ϕ − 96 sin 6ϕ + 5 sin 8ϕ).

After replacing the original by prime variables, and up to the truncation order of the
perturbation approach, we obtain the direct transformation of the angle ϕ:

ϕ = ϕ󸀠 + 1
96

Φ󸀠

ω
(8 sin 2ϕ󸀠 − sin 4ϕ󸀠) + 1

2!
1

46080
Φ󸀠 2

ω2

× (1280 sin 2ϕ󸀠 + 124 sin 4ϕ󸀠 − 96 sin 6ϕ󸀠 + 5 sin 8ϕ󸀠). (2.46)

Analogously,

Φ0,1 = {Φ;𝒲1} = −
Φ2

ω
4 cos 2ϕ − cos 4ϕ

48
,

Φ1,1 = {Φ;𝒲2} = −
Φ3

ω2
35 cos 2ϕ − 2 cos 4ϕ − 3 cos 6ϕ

1920
,

Φ0,2 = Φ1,1 + {Φ0,1;𝒲1} =
Φ3

ω2
85 − 150 cos 2ϕ + 6 cos 4ϕ + 14 cos 6ϕ

5760
,
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which, after replacing theoriginal byprimevariables, lead to thedirect transformation
of the action Φ:

Φ = Φ󸀠[1 − 1
48

Φ󸀠

ω
(4 cos 2ϕ󸀠 − cos 4ϕ󸀠)

+
1
2!

1
5760

Φ󸀠 2

ω2 (85 − 150 cos 2ϕ
󸀠 + 6 cos 4ϕ󸀠 + 14 cos 6ϕ󸀠)]. (2.47)

The appearance of Φ󸀠 and ϕ󸀠 on the right sides of Eqs. (2.46) and (2.47) must be
replaced by corresponding expressions in Eqs. (2.44) and (2.45), respectively, to ob-
tain the perturbation solution as a function of time and initial conditions. Further-
more, the inverse transformation is needed for the initialization of the constants ϕ󸀠0 =
ϕ󸀠(ϕ0,Φ0), Φ󸀠0 = Φ

󸀠(ϕ0,Φ0), which the secular solution depends upon.We recall that
the first- and second-order terms of the generating function of the inverse transforma-
tion are just the opposites of the corresponding terms of the direct generating function
when it is rewritten in the prime variables—a fact that is no longer true when higher
orders are taken into account, as checked in Eq. (2.27). Straightforward computations
yield the inverse transformation

ϕ󸀠 = ϕ − 1
96

Φ
ω
(8 sin 2ϕ − sin 4ϕ)

−
1
2!

1
46080

Φ2

ω2 (1240 sin 2ϕ − 196 sin 4ϕ + 24 sin 6ϕ − 5 sin 8ϕ),

Φ󸀠 = Φ[1 + 1
48

Φ
ω
(4 cos 2ϕ − cos 4ϕ)

+
1
2!

1
5760

Φ2

ω2 (85 + 60 cos 2ϕ − 6 cos 4ϕ − 4 cos 6ϕ)],

inwhichϕ andΦare replacedby the initial conditionsϕ0 andΦ0 in order to obtain the
corresponding initial conditions in the prime variables that feed the secular solution
(2.44)–(2.45).

2.2.3 The homological equation

The procedure that led to Eqs. (2.33) and (2.36) can be repeated to extend the pertur-
bation approach to any order. It is summarized in the so-called homological equation

ℒ0(𝒲m) = ℋ̃0,m −ℋ0,m, (2.48)

in which the operator

ℒ0 ≡ { ;ℋ0,0} (2.49)
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is customarily known as the Lie derivative in the Hamiltonian flowℋ0,0. Remark that
the Lie derivative provides the time variation of a function along the Hamiltonian flow
stemming fromℋ0,0. This is the only case in which the time derivatives of the coordi-
nates and their conjugatemomenta can be replaced by correspondingHamilton equa-
tions of the integrable partℋ0,0.

Terms ℋ̃0,m in Eq. (2.48) are known from previous computations obtained after
successive evaluations of Deprit’s recursion (2.15), whereas particular choices of the
termsℋ0,m dependon the aimof theperturbation approach. Finally,𝒲m is obtainedas
a particular solution of the partial differential equation (2.48), contrary to the general
or complete solution.

The selection of the termsℋ0,m is arbitrary but only to some extent. Obviously, to
make the perturbation approach feasible, the homological equation must be solvable
for 𝒲m. The conditions that make Eq. (2.48) solvable depend on the algebraic struc-
ture of the functions ℋm,0 that are comprised by the original Hamiltonian (2.30). For
instance, because the terms ℋm,0 in the example §2.2.2 are trigonometric polynomi-
als in ϕ, the choice of the new Hamiltonian terms ℋ0,m = ⟨ℋ̃0,m⟩ϕ, m = 1, 2, made
in Eqs. (2.42) and (2.43), guaranteed that, in addition to obtaining a new Hamiltonian
that only depends on the action, the terms𝒲m of the generating function are solvable
and only depend on trigonometric terms. In this way, the solution of the homological
equation is obtained at any order within the algebra of trigonometric functions.

Inmore abstract terms, the Lie derivative in theHamiltonian flowℋ0,0 = ωΦmaps
Fourier series of the form

F = ∑
j≥0
[Aj(Φ) cos jϕ + Bj(Φ) sin jϕ], (2.50)

into elements

ℒ0 : F(ϕ,Φ) 󳨃→ {F;ωΦ} = ω
𝜕F
𝜕ϕ
,

pertaining either to the kernel of the Lie derivative, which comprises such functions
F = A0(Φ) that ℒ0(F) = 0, or to the image of the Lie derivative, which is made of
such functions F = ∑j≥1[Aj(Φ) cos jϕ + Bj(Φ) sin jϕ] that ℒ0(F) = ∑j≥1[A

󸀠
j (Φ) cos jϕ +

B󸀠j (Φ) sin jϕ].
Applying this decomposition to terms ℋ̃0,m entering the right side of the homo-

logical equation, then selectingℋ0,m in such a way that it cancels out all the terms of
ℋ̃0,m pertaining to the kernel, is what makes 𝒲m to pertain to the image, thus being
solvable—and this is exactly what we did in §2.2.2.

In general, it is a good strategy to identify the algebra of functions to which the
disturbing function of a particular problem pertains, and to choose the new Hamilto-
nian term in such a way that it cancels out all the terms on the right side of Eq. (2.48)
pertaining to the kernel of the Lie derivative of the given problem. This strategy, when
feasible, guarantees that the right side of the homological equation pertains to the
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image of the Lie derivative and, in consequence, the terms of the generating function
can be solved up to arbitrary order of the perturbation approach.

Finally, it must be noted that, in general, the solution of the homological equation
is not unique. Indeed, if the function C0 pertains to the kernel of the Lie derivative,
then replacing 𝒲m by 𝒲m + C0 in Eq. (2.48) also satisfies the homological equation.
This fact was already illustrated in the example of §2.2.2 with the introduction of the
arbitrary integration constants C1 and C2.
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3 Application to integrable problems

Solutions of integrable systems are fruitfully approached in action-angle variables by
solving the Hamilton–Jacobi equation [30, 199, 243]. Because thismethod involves the
determination of a generating function in mixed variables, the solution is commonly
obtained in the form of a mixed transformation. When this solution is achieved in
terms of elementary functions, the transformation to action-angle variables can be
obtained explicitly in closed form, as, for instance, in the case of the harmonic oscil-
lator [627]. However, when the solution relies on special functions, whose evaluation
depends onone ormore parameters in addition to the function’s argument, the action-
angle variables approachmayprovide the closed-form solution in implicit form.While
this is not troublesome in the evaluation of the solution,which is readily donewith the
help of root-finding procedures, the implicit formaswell as the dependence on special
functions may deprive the analytical solution of physical clarity. On the other hand,
when dealing with a perturbed integrable motion the disturbing function is custom-
arily expressed in the action-angle variables of the integrable problem. This process
makes expanding the (implicit) transformation to action-angle variables as a Fourier
series in the argument of the special functions necessary. These kinds of expansions
are not at all trivial—yet these days onefinds enormous assistance in computer algebra
systems—and obtaining them was regarded as a notable achievement [345, 587, 588].

When the closed-form solution involves elliptic functions, the normal way of pro-
ceeding is to replace themby their definitions in terms of Jacobi theta functions,which
in turn are replaced by their usual Fourier series expansion in trigonometric functions
of the elliptic argument, whose coefficients are powers of the elliptic nome [89, 175,
447, 465]. This laborious procedure is further complicated when the modulus of the
elliptic function remains as an implicit function of the action-angle variables, a case
that requires its additional expansion followed by the series reversion, as it happens
with the simple pendulum case [413]. Needless to say that carrying out expansions
only makes sense when the closed-form solution depends on something that is small,
either a physical parameter or the maximum value achieved by some variables, in
this way making the power series to converge. But then the cumbersome procedure
of making the expansions and their subsequent reversions can be completely avoided
by directly approaching the solution of the integrable problem by perturbations.

In this chapter we provide two examples that illustrate the use of the Lie trans-
forms method in the direct computation of the explicit, expanded solution of inte-
grable problems whose closed-form solutions in action-angle variables depend on
special functions and remain implicit. The first case is the simple mathematical pen-
dulum, which is a problem of one degree of freedom, and is free from essential physi-
cal parameters. Since the traditional approach for the oscillatory regimen has already
been outlined in §2.2.2, we only discuss the rotation regime following the descriptions
in [413, 414]. The second example is the free rigid body, which is a system of two de-

https://doi.org/10.1515/9783110668513-003
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grees of freedom and depends essentially on physical parameters. This fact serves to
illustrate the perturbation approach in the case in which the small parameter is phys-
ical [200], and also to discuss the limitations of perturbation solutions when it relies
on a dynamical (formal) small parameter [391, 399].

3.1 The simple gravity pendulum

The simple gravity pendulum consists of a bob of mass m that is attached to one end
of a rod of length l and negligible mass, whose other end is fixed. It evolves under the
action of the local gravity acceleration g without friction, and it is one of the simplest
integrable models. The dynamical system is only of one degree of freedom, but the
nonlinear motion may evolve in different regimes, and one must resort to the use of
special functions to express its general solution in closed form [533]. In particular, the
solution involves the use of Jacobi elliptic functions, and the action-angle variables
can be obtained either by complete Hamiltonian reduction or directly by a canonical
transformation of the traditional solution [67]. A good brief account on the topic from
the point of view of Hamiltonian mechanics can be found in Appendix B of [198].

However elegant the closed-form solution in action-angle variables may be, it is
not practical in common applications because, in addition to depending on special
functions, it is obtained in implicit form. The expansion of the solution in action-angle
variables, while feasible, is not trivial at all [413]. On the contrary, when approached
by perturbations, the computation of the expansion of the explicit solution of the pen-
dulum in action-angle variables is straightforward and systematic [414].

The case of small oscillations about the stable equilibrium position is customarily
studiedwith linearized dynamics. Extending the solution further than the linear terms
by perturbations is well documented in the literature [209, 449, 552] and was already
briefly discussed in §2.2.2.

3.1.1 Hamiltonian reduction

ThependulumHamiltonian represents the total energyℋ = T+V . Thepotential energy
is V = mgh, where the height h = l(1 − cos θ) is measured with respect to the reference
level in which the pendulum reaches the vertical direction, and θ is the angle with
respect to that direction. The kinetic energy is T = 1

2Θ
2/I, where I = ml2 denotes the

moment of inertia, and the angular momentum Θ is the conjugate momentum to the
generalized coordinate θ.

A time scaling τ = It yields

𝒦 = Iℋ ≡ 1
2
Θ2 + ω2(1 − cos θ), (3.1)
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where ω = I√g/l. Now, from Hamilton equations

dθ
dτ
=
𝜕𝒦
𝜕Θ
= Θ, dΘ

dτ
= −
𝜕𝒦
𝜕θ
= −ω2 sin θ,

it is immediately derived the usual equation of the simple pendulum

d2θ
dτ2
+ ω2 sin θ = 0, (3.2)

where the parameter ω can be further eliminated by a convenient choice of units.
Alternatively, for a given value of the energy 𝒦(θ0,Θ0) = E, the trajectories in

phase space are directly obtained from Eq. (3.1) like

Θ = ±ω√2√cos θ − 1 + E/ω2, (3.3)

fromwhich the phase space, the cylinder (θ,Θ), is readily representedwithout need of
integration. This is illustrated in Fig. 3.1, where the trajectories are traveled from left
to right for positive heights on the cylinder (Θ > 0) and from right to left for negative
heights (Θ < 0), and discloses the two different regimes that may exist depending on
the energy value. Namely, the rotation regime E > 2ω2, in which Eq. (3.3) always take
real values, and the oscillation regime 0 ≤ E < 2ω2, where the motion of θ is con-
strained to the interval in which Eq. (3.3) takes real values. In this last region, Fig. 3.1
shows the existence of a fixed point of the elliptic type at E = 0, corresponding to the
stable equilibrium of the pendulum in the downward position (Θ = 0, θ = 0).

Figure 3.1: Phase space of the simple pendulum.

Oscillations and rotations are separated by the trajectory Θ = ±2ω cos 1
2θ correspond-

ing to the energy E = 2ω2; the dashed line in Fig. 3.1 tends asymptotically to Θ = 0,
θ = ±π, which is a fixed point of the hyperbolic type on the surface of the cylinder that
corresponds to the unstable equilibrium of the pendulum in the upward position. The
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branches of this trajectory that depart from (resp. arrive at) the hyperbolic fixed point
are known as their unstable (resp. stable) manifolds.

As an alternative to the classical integration of Eq. (3.2), the solution of the sim-
ple pendulum can be computed by Hamiltonian reduction using the Hamilton–Jacobi
equation [413]. Thus, we look for a canonical transformation (θ,Θ) 󳨃→ (θ󸀠,Θ󸀠) that
transforms the pendulum Hamiltonian (3.1) on a new Hamiltonian 𝒦(θ(θ󸀠,Θ󸀠),Θ(θ󸀠,
Θ󸀠)) ≡ Ψ(−,Θ󸀠) that is cyclic in the new coordinate θ󸀠, whose integration is trivial:
Θ󸀠 = Θ󸀠0, θ󸀠 = θ󸀠0 + (𝜕Ψ/𝜕Θ󸀠)τ.

The required transformation,

θ󸀠 = 𝜕S
𝜕Θ󸀠 , Θ = 𝜕S

𝜕θ
, (3.4)

is derived from a generating function in mixed variables S ≡ S(θ,Θ󸀠), from which the
second equation is replaced into Eq. (3.1) to arrange the Hamilton–Jacobi equation
𝒦(θ, 𝜕S/𝜕θ) = Ψ(Θ󸀠) from which S must be solved [30]. In particular, replacing Θ =
𝜕S/𝜕θ in Eq. (3.1), S is solved by indefinite integration,

S = √2∫[Ψ(Θ󸀠) − 2ω2 sin2(θ/2)]1/2dθ. (3.5)

Plugging Eq. (3.5) into Eq. (3.4) yields

θ󸀠 = √2 𝜕Ψ
𝜕Θ󸀠 ∫ d(θ/2)
√Ψ(Θ󸀠) − 2ω2 sin2(θ/2)

, (3.6)

Θ = √2[Ψ(Θ󸀠) − 2ω2 sin2(θ/2)]1/2, (3.7)

in which the form of the new Hamiltonian Ψ(Θ󸀠) remains undetermined, thus giving
rise to a whole family of transformations parameterized by Ψ [199].

3.1.2 Rotation regime. Solution in action-angle variables

The form of the solution of Eq. (3.6) depends on the dynamical regime in which the
pendulum evolves. In the rotation regime Ψ(−,Θ󸀠) = E > 2ω2, and the family of trans-
formations given by Eqs. (3.7) and (3.6) is expressed in the form

Θ = 2ω
k
√1 − k2 sin2 ψ, (3.8)

θ󸀠 = k
ω
𝜕Ψ
𝜕Θ󸀠 F(ψ, k2), (3.9)

in which

ψ = 1
2
θ, k = ω√2/Ψ(Θ󸀠) < 1, (3.10)
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and F(ψ, k2) ≡ ∫ψ0 (1− k
2 sin2 α)−1/2dα is the incomplete elliptic integral of the first kind

of amplitude ψ and elliptic modulus k.
From the definition of the k in Eq. (3.10), the reduced Hamiltonian of the simple

pendulum is written in the standard form

Ψ = 2ω2

k(Θ󸀠)2 , (3.11)

which allows one to parameterize the family of transformations by k rather than Ψ.
Indeed, from Eq. (3.11) we compute 𝜕Ψ/𝜕Θ󸀠 = −4(ω2/k3)dk/dΘ󸀠, which is placed into
Eq. (3.9), to obtain

θ󸀠 = −4 ω
k2

dk
dΘ󸀠 F(ψ, k2). (3.12)

While any selection k = k(Θ󸀠) will produce the desired Hamiltonian reduction, it
is common to choose k in such away that the new, prime variables remain of the same
nature as the original ones. In particular, the condition ∮dθ󸀠 = 2π, where the integral
is computed along a closed curve in θ, will turn θ󸀠 = θ󸀠(θ,Θ) into an angle [30]. That
is, Eq. (3.12) must fulfill the condition θ󸀠(2π,Θ󸀠) − θ󸀠(0,Θ󸀠) = 2π. Hence,

−4 ω
k2

dk
dΘ󸀠 [F(π, k2) − F(0, k2)] = 2π.

From the properties of the elliptic functions, F(0, k2) = 0 and F(π, k2) = 2K(k2), where
K(k2) denotes the complete elliptic integral of the first kind. Therefore,

dk
dΘ󸀠 = − π4ω k2

K(k2)
, (3.13)

which is plugged into Eq. (3.12) to obtain

θ󸀠 = π
K(k2)

F(ψ, k2). (3.14)

On the other hand, because Eq. (3.13) is in separate variables we readily solve it to
obtain

Θ󸀠 = 4ω
πk

E(k2), (3.15)

where E(k2) is the complete elliptic integral of the second kind.
For given (θ,Θ), k is obtained from Eq. (3.10) where Ψ = ℋ(θ,Θ) = E. Therefore,

Eqs. (3.14)–(3.15) provide explicitly the transformation to the action-angle variables in
which the pendulum Hamiltonian is completely reduced.

To obtain the transformation from action-angle variables to original variables we
must solve θ = 2ψ from Eq. (3.14), which, jointly with Eq. (3.8), yields

θ = 2 am(u, k2), Θ = 2(ω/k)dn(u, k2), (3.16)
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where u = K(k2)θ󸀠/π, am denotes the Jacobi amplitude function, and dn stands for
the Jacobi delta amplitude. Evaluation of Eq. (3.16) requires the previous computation
of k = k(Θ󸀠) from the Eq. (3.15). For numerical evaluation purposes it is readily done
with the usual root-finding procedures. On the contrary, the implicit character of k in
Eq. (3.15) prevents the explicit representation of the completely reduced Hamiltonian
(3.11) in closed form as a function of the new momentum Θ󸀠.

The formal inversion of Eq. (3.15) to get k as an explicit function of Θ󸀠 is needed in
the solution of perturbed pendular motion. After expanding the right side of Eq. (3.15)
in powers of k < 1, we find

2 ω
Θ󸀠 = k(1 + 14k2 + 7

64
k4 + 15

256
k6 + ⋅ ⋅ ⋅),

which, setting ϵ = (ω/Θ)2 < 1, is followed by a series reversion procedure, to obtain

k = 2√ϵ(1 − ϵ + 5
4
ϵ2 − 7

4
ϵ3 + 161

64
ϵ4 + ⋅ ⋅ ⋅). (3.17)

Now, the expanded value k = k(Θ󸀠) can be replaced into both the standard Hamilto-
nian (3.11) and the transformation (3.16)—the latter having been preprocessed using
standard expansions of the Jacobi elliptic functions [175].

3.1.3 Expanded solution by Lie transforms

This involved procedure above is completely avoided by standard application of the
Lie transforms method. Thus, after neglecting the constant term ω2, the Hamiltonian
(3.1) is rearranged in the form

𝒦 =
1
2
Θ2[1 − 2(ω/Θ)2 cos θ], (3.18)

which for values (ω/Θ)2 ≪ 1
2 takes the form of a perturbationHamiltonian. That is, the

simple pendulum in the rotation regime can be viewed as the spherical rotor𝒦0 =
1
2Θ

2

perturbed by the local gravity [627]. In that case,we canuse the Lie transformsmethod
to compute directly the explicit canonical transformation (θ,Θ) 󳨃→ (θ󸀠,Θ󸀠; ε) that, up
to some truncation order εm, converts Eq. (3.18) into a new Hamiltonian depending
only on Θ󸀠.

To this aim, Eq. (3.18) is arranged in the form of the perturbation Hamiltonian
(2.30) with 𝒦 replacingℋ. Namely, 𝒦0,0 = 1

2Θ
2, 𝒦1,0 = − cos θ, 𝒦m,0 = 0 form ≥ 2, and

the small parameter ε = ω2 has dimensions of angular momentum.
The Lie derivative (2.49) is ℒ0 = Θ𝜕/𝜕θ. It immediately shows that its kernel is

made of functions that do not depend on θ, whereas the image of the Lie derivative is
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made of trigonometric polynomials of θwhose coefficients are functions of the kernel.
Then the homological equation (2.48) is solved by indefinite integration,

𝒲m =
1
Θ
∫(𝒦0,m − 𝒦0,m)dθ. (3.19)

At first order,𝒦0,1 = 𝒦1,0 = − cos θ, which is purely periodic. Therefore, we choose
𝒦0,1 = 0 and trivially integrate Eq. (3.19) to get𝒲1 = −Θ−1 sin θ, where we ignored the
arbitrary integration constant. At second order, Eq. (2.37) yields 𝒦0,2 = {𝒦1,0;W1} =
Θ−2 sin2 θ, where the terms of the kernel are easily identified by recalling that sin2 θ =
1
2 −

1
2 cos 2θ. The choice𝒦0,2 = 1

2Θ
−2 cancels the terms of the kernel in the integrand of

Eq. (3.19) out, which then becomes a function of the image. Then Eq. (3.19) is solved
to give 𝒲2 = −

1
4Θ
−3 sin 2θ. Finally, we fill Deprit’s triangle (2.16) by computing the

intermediate term 𝒦1,1 = 1
2Θ
−2 using Deprit’s recursion (2.15).

At third order, after successive applications of Eq. (2.15), we obtain

𝒦0,3 = − 14Θ−4(5 cos θ + 3 cos 3θ),
which pertains to the image of the Lie derivative. In consequence, we choose𝒦0,3 = 0,
compute𝒲3 = −

1
4Θ
−5(5 sin θ + 3 sin 3θ), from Eq. (3.19), and fill Deprit’s triangle with

the terms 𝒦2,1 = 2Θ−4 cos θ and 𝒦1,2 = Θ−4 cos θ, which will be needed in following
orders.

Analogous computations yield

𝒦0,4 = 158 Θ−6, 𝒲4 = −
3
32
Θ−7(72 sin 2θ + 5 sin 4θ),

and so on. After reaching the desired order, the procedure ends writing the terms𝒦0,m
in the new variables. In this way, we obtain the new, completely reduced Hamiltonian
Ψ = ∑m≥0(εm/m!)𝒦0,m(Θ󸀠) given by

Ψ = 1
2
Θ󸀠 2[1 + 1

2
ϵ2 + 5

32
ϵ4 + 9

64
ϵ6 +𝒪(ϵ8)], (3.20)

where the non-dimensional small parameter ϵ = (ω/Θ󸀠)2 < 1, is used for brevity in-
stead of the dimensional one ε = ω2 of the perturbation approach. Comparison of
Eq. (3.20) with the one obtained from the direct expansion of the standard Hamil-
tonian (3.11), after replacing k by the right side of Eq. (3.17), will show that the two
expansions match term by term.

The direct transformation from prime to original variables is computed by stan-
dard application of Deprit’s recursion (2.15). Indeed, since the generating function is
known, replacing x by θ in Eq. (2.17) and evaluating the resulting Poisson brackets, we
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find

θ0,1 = Θ−2 sin θ,
θ1,1 = 34Θ−4 sin 2θ,
θ0,2 = − 12Θ−4 sin 2θ,
θ1,2 = 38Θ−6(13 sin θ + sin 3θ),
θ2,1 = 54Θ−6(5 sin θ + sin 3θ),

and so on. Then, after replacing original by prime variables, the transformation is ob-
tained in the form of a Taylor series θ = ∑m≥0(εm/m!)θ0,m(θ󸀠,Θ󸀠).

We carry out analogous computations for Θ, and reorganize both transformations
in the formof Fourier serieswhose coefficients are truncated series in the small param-
eter. Using again the non-dimensional abbreviation ϵ instead of the small parameter
ε = ω2, we obtain

θ = θ󸀠 +∑
j≥1 zj(ϵ)ϵj sin jθ󸀠, Θ = Θ󸀠∑

j≥0 Zj(ϵ)ϵj cos jθ󸀠, (3.21)

where the coefficients zj and Zj are given in Table 3.1. Like before, it can be checked
that the traditional expansion Eq. (3.16) matches Eq. (3.21) term by term.

Table 3.1: Coefficients in Eq. (3.21) up to𝒪(ϵ6); Z0 = 1 − 1
2 ϵ

2 − 15
32 ϵ

4 − 45
64 ϵ

6.

j: 1 2 3 4 5 6

zj 1 + 11
16 ϵ

2 + 247
256 ϵ

4 1
8 + 3

16 ϵ
2 + 707

2048 ϵ
4 1

48 + 9
192 ϵ

2 1
256 + 3

256 ϵ
2 1

1280
1

6144

Zj 1 + 3
16 ϵ

2 + 39
256 ϵ

4 1
4 + 1

4 ϵ
2 + 395

1024 ϵ
4 1

16 + 7
64 ϵ

2 1
64 + 5

128 ϵ
2 1

256
1

1024

Computation of the expansion of Eqs. (3.14)–(3.15) by Lie transforms requires the pre-
liminary computation of the generating function of the inverse transformation 𝒱 =
−𝒲(θ(θ󸀠,Θ󸀠),Θ(θ󸀠,Θ󸀠)), which is also obtained by Lie transforms in the form of a Tay-
lor series as described in §2.1.3.

3.2 The free rigid body

Another example of the suitability of the Lie transforms for approaching integrable
problems is the free rotation of a rigid body about a fixed point. External forces be-
ing absent, the linear momentum is conserved and the motion is conveniently de-
scribed by the rotation of the rigid body with respect to its center of mass O. Tradi-
tionally, the motion is decomposed into the rotation referred to the body (rotating)

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 The free rigid body | 53

frame (O,b1,b2,b3)—which is attached to the rigid body’s center of mass and defined
by the principal axis of the body—after which the attitude of the body in the space
(inertial) frame (O, s1, s2, s3) is materialized by the Euler angles [243].

Due to the lack of external forces or torques the free rigid body conserves both the
angularmomentum vectorG = 𝕀ω, whereω is the angular velocity and 𝕀 is the inertia
tensor, and the energy, which is limited to the kinetic one,

T = 1
2
ω ⋅ 𝕀ω = 1

2
G ⋅ 𝕀−1 G. (3.22)

Since they are independent, the free rigid bodymotion accepts onemore integral than
the number of degrees of freedom, thus constraining the possible trajectories on the
surface of a torus and making the problem superintegrable [192].

3.2.1 Rotation in the body frame

In the body frame 𝕀 is constant. If, besides, the body axes are chosen parallel to the
axes of principal inertia, then the products of inertia vanish and

𝕀 = (
A 0 0
0 B 0
0 0 C

)

where 0 < A ≤ B ≤ C are the principal moments of inertia, and A + B ≥ C from the
definition of the inertia tensor.

For a given energy T = E > 0 constant, Eq. (3.22) constrains the possible solutions
to the surface

1
2
Aω2

1 +
1
2
Bω2

2 +
1
2
Cω2

3 =
1
2A

g21 +
1
2B

g22 +
1
2C

g23 = E,

where (ω1,ω2,ω3) and (g1, g2, g3) are the components of ω and G, respectively, in the
body frame. This constraint takes the form of an ellipsoid of axes 2AE, 2BE, 2CE. Be-
cause ‖G‖ = G is also constant, themotion is constrained to the sphere g21 +g

2
2+g

2
3 = G

2,
of radius G. The possible trajectories of the angular momentum vector in the body
frame are, therefore, given by the intersection of both surfaces [474], which is illus-
trated in Fig. 3.2 for a Moon-type body.

The instantaneous rotation in the body frame is obtained fromEuler equations for
the variation of the angular momentum (d𝕀ω/dt)s = (d𝕀ω/dt)b +ω × 𝕀ω. For the free
rigid body, we obtain

ω̇1 = −
C − B
A

ω2ω3, ω̇2 =
C − A
B

ω3ω1, ω̇3 = −
B − A
C

ω1ω2. (3.23)

In the particular case of mass distribution with spherical symmetry A = B = C, all
the solutions are equilibria. In the case A = B ̸= C of axial symmetry with respect
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Figure 3.2: Trajectories of the angular momentum vector of a Moon-like free rigid body in the body
frame (A/C = 0.9994, B/C = 0.9996 [208]).
to the axis of maximum inertia (or short axis), ω3 is constant and ω1, ω2 evolve with
harmonic motion. The case A ̸= B = C of axial symmetry with respect to the axis of
minimum inertia (or long axis), is analogous to the previous one.

When A < B < C, simple inspection of Eq. (3.23) shows that free rotations around
the principal axes correspond to dynamical equilibria, whose stability character can
be guessed from Fig. 3.2. Thus, stable rotations around the axis of maximum inertia b3
(ω1 = ω2 = 0) occur for the minimum energy

E3 =
1
2
Cω2 =

1
2C

G2. (3.24)

Unstable rotations around the axis of intermediate inertia b2 (ω1 = ω3 = 0) occur for
the intermediate energy

E2 =
1
2
Bω2 =

1
2B

G2, (3.25)

and the range E3 ≤ E < E2 defines a regime in which the angular momentum vector
rotates about the axis of maximum inertia. Finally, stable rotations around the axis of
minimum inertia b1 (ω2 = ω3 = 0) correspond to the maximum energy

E1 =
1
2
Aω2 =

1
2A

G2, (3.26)

between which value and E2 the angular momentum vector rotates about the axis of
minimum inertia. The different energy regimes are separated by the trajectory with
E = E2 that links the unstable equilibria.

The general solution of Eq. (3.23) is obtained for the different energy regimes in
closed form in terms of Jacobi’s elliptic functions, and in terms of hyperbolic functions
in the case of the separatrix [377, 473].
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3.2.2 Attitude in the space frame

Once the rotation is solved in the body frame, it remains to relate the body and space
frames through the Euler angles (ψ, θ,φ) for precession, inclination and rotation, re-
spectively. They are illustrated in Fig. 3.3, in which the unit vector n = s3 ×b3/‖s3 ×b3‖
defines the node of the body’s equatorial plane (b1,b2) over the space plane (s1, s2),
andm = s3 × n.

Figure 3.3: Euler angles relating the body and space frames.

The desired relation between the components of ω in the body (rotating) frame and
the derivatives of the Euler angles is obtained following the derivations in [682] (see
also [544]). Thus, let v be a vector whose components in the space (inertial) frame vs =
(ξ , η, ζ ) are obtained from the corresponding ones in the body frame vb = (x, y, z) by a
rotation. Usingmatrix notation, (ξ , η, ζ )τ = R (x, y, z)τ, where τ denotes transposition,
and R ≡ R3(−ψ)R1(−θ)R3(−ϕ), where

R3 = (
cos sin 0
− sin cos 0
0 0 1

), R1 = (
1 0 0
0 cos sin
0 − sin cos

), (3.27)

are the usual rotation matrices. Differentiation of the rotation yields ( ̇ξ , η̇, ̇ζ )τ =
R (ẋ, ẏ, ̇z)τ + Ṙ (x, y, z)τ, where ( ̇ξ , η̇, ̇ζ ) are the components of the velocity vector in
the space frame, and (ẋ, ẏ, ̇z) are those in the body frame. Hence, on account of R
being an orthogonal matrix,

(

̇ξ
η̇
̇ζ
) = R[[
[

(
ẋ
ẏ
̇z
)+ RτṘ(

x
y
z
)]]

]

. (3.28)
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Alternatively, from the rule for differentiation of a vector in a moving frame,

dx
dt
= ẋ +ω × x, (3.29)

where the dot over a vector means here derivation of the vector in the rotating frame,
we get the components in the space frame,

(

̇ξ
η̇
̇ζ
) = R[[
[

(
ẋ
ẏ
̇z
)+ Ω(

x
y
z
)]]

]

, Ω = (
0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

). (3.30)

From Eqs. (3.28) and (3.30) we obtain Ω = RτṘ, from which1

ω1(t) = ψ̇ sin θ sinφ + θ̇ cosφ,
ω2(t) = ψ̇ sin θ cosφ − θ̇ sinφ,
ω3(t) = ψ̇ cos θ + φ̇, (3.31)

which is readily solved in the derivatives of the angles to obtain

ψ̇ = [ω1(t) sinφ + ω2(t) cosφ] csc θ,
θ̇ = ω1(t) cosφ − ω2(t) sinφ,
φ̇ = ω3(t) − ψ̇ cos θ. (3.32)

The time solution of Eq. (3.32) involves the use of Jacobi theta functions [322, 571].
Note, however, that an interesting simplification ariseswhen taking the plane per-

pendicular to the angular momentum vector as the inertial plane. Then G = Gs3 and
the components of the angular momentum vector in the body frame are simply

(g1, g2, g3)
τ = (Aω1,Bω2,Cω3)

τ = R3(φ)R1(θ) (0,0,G)
τ,

from which φ and θ are solved without need of integration, whereas the following
integration of ψ̇ from Eq. (3.32) provides ψ in closed form as a function of the elliptic
integrals of the first and the third kinds [245]. Then, referring the solution to a different
fixed plane only involves additional rotations of fixed Euler angles, say (ψ1, θ1,φ1).

3.2.3 The invariable plane

The plane perpendicular to the angular momentum vector is customarily called the
invariable plane, yet it will not remain fixed in the presence of torques. It provides a
natural link between the body frame and any fixed plane.

1 Customary arguments to justify the vectorial decompositionω = ψ̇ s3 + θ̇ n+ φ̇b3 have been pointed
out as erroneous in [448].
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Indeed, let m be a unit vector in the direction of the angular momentum vector,
G = Gm, and let l be a unit vector in the direction defined by the intersection of the
space plane and the invariable plane. Then (see Fig. 3.4 for reference), s3 ⋅m = cos I,
where 0 ≤ I < π is the angle encompassed by s3 and m reckoned counterclockwise
from s3 (the inclination between the invariable and space planes). Besides, we have
s3 ×m = l sin I, where l = s1 cos λ + s2 sin λ and 0 ≤ λ < 2π is the angle encompassed
by s1 and l reckoned counterclockwise from s1—the precession angle of the invariable
plane on the space plane.

Figure 3.4: The invariable planem as an intermediate reference.

Analogously, let ñ be a unit vector in the direction defined by the intersection of the
invariable plane and the equatorial plane of the body. Then m ⋅ b3 = cos J, where
0 ≤ J < π is the angle encompassed bym and b3 reckoned counterclockwise fromm—
the inclination between the invariable plane and the body’s equatorial plane. Besides,
m×b3 = ñ sin J, where ñ = b1 cos ν +b2 sin ν and 0 ≤ ν < 2π is the angle encompassed
by ñ and b1 reckoned counterclockwise from ñ—the rotation angle of the body frame.
Finally, the precession angle of the equatorial plane on the invariable plane μ is de-
fined from l ⋅ ñ = cos μ, (m × l) ⋅ ñ = sin μ, where 0 ≤ μ < 2π is the angle encompassed
by l and ñ reckoned counterclockwise from l.

Then the components of the vector v in the body frame vb and space frame vs are
related by the sequence of rotations vb = R3(ν)R1(J)R3(μ)R1(I)R3(λ) vs. Alternatively,
vs = R3(−λ)R2(−I)R3(−μ)R2(−J)R3(−ν) vb. That is, the body and space frames can be
related by five rotations based on two sets of Euler angles, say (ψ1, θ1,ϕ1,ψ2, θ2,ϕ2),
such that λ = ψ1, I = θ1, μ = ϕ1 + ψ2, J = θ2, and ν = ϕ2. Needless to say that the
construction described above is purely geometric, and no assumption has been made
on the conservation of G.
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3.2.4 Hamiltonian formulation

Like in the case of the simple pendulum, an alternative to the classical integration is
given by the complete Hamiltonian reduction of the free rigid body Hamiltonian.

The first step is to compute the Lagrangian L ≡ L(φ, θ,ψ, φ̇, θ̇, ψ̇). On account of
there not being potential for the torque-free rotation, the total energy is limited to the
kinetic component in Eq. (3.22). Hence, L = 1

2 (Aω
2
1 + Bω

2
2 + C ω

2
3), where the com-

ponents of the angular velocity in the body frame are those in Eq. (3.31). Because the
Lagrangian only involves homogeneous terms of the second degree in the generalized
velocities the Hamiltonian is the total energy [243]. Therefore,ℋ = T = L.

Using Eqs. (3.32) we find that the conjugate momenta to the Euler angles can be
written in the form

Φ = 𝜕L
𝜕φ̇
= G ⋅ b3, Θ = 𝜕L

𝜕θ̇
= G ⋅ n, Ψ = 𝜕L

𝜕ψ̇
= G ⋅ s3. (3.33)

However, rather than constructing the Hamiltonian in Euler variables, it is advisable
to resort to the canonical set of Andoyer variables (λ, μ, ν,Λ,M,N) given by the angles
λ, μ, and ν, used in the description of the invariable plane, and the actions Λ = G cos I,
M = G, andN = G cos J [24]. The canonical transformation from Euler variables to An-
doyer variables can be found, for instance, in [56]. Singularities of Andoyer variables
when I or J vanishes can be avoided using, for instance, the alternative sets proposed
in [206, 207, 287].

From Eq. (3.22) and on account ofℋ = T for the free rigid body, we write

ℋ =
1
2
(
1
A
g21 +

1
B
g22 +

1
C
g23), (3.34)

where

(
g1
g2
g3
) = R3(ν)R1(J) (

0
0
G
) = G(

sin J sin ν
sin J cos ν
cos J

).

Then, replacing G = M and J = arccos(N/M), the free rigid body Hamiltonian in An-
doyer variables is

ℋ =
1
2
(
1
A
sin2 ν + 1

B
cos2 ν)(M2 − N2) +

1
2C

N2, (3.35)

where Λ, λ, and μ are ignorable variables. Therefore, M, Λ, and λ are integrals of
the torque-free motion [150]. These integrals decouple the flow of the free rigid body,
whose reduced dynamics is obtained from the integration of the Hamilton equations

dν
dt
=
𝜕ℋ
𝜕N
= −(

1
A
sin2 ν + 1

B
cos2 ν − 1

C
)N , (3.36)
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dN
dt
= −
𝜕ℋ
𝜕ν
= (

1
A
−
1
B
)(M2 − N2) sin ν cos ν. (3.37)

The time history of μ is then obtained by indefinite integration.
The Hamiltonian (3.35) provides an elegant alternative to the geometric represen-

tation of the flow in Fig. 3.2. Thus, for a given energy manifold, say ℋ(ν,N ;M) = E,
Eq. (3.35) can be solved for N to give

N = ±√QM, (3.38)

where

Q = (1/A) sin
2 ν + (1/B) cos2 ν − 2E/M2

(1/A) sin2 ν + (1/B) cos2 ν − 1/C
. (3.39)

Phase curves (ν,N) are then obtained by evaluation of Eq. (3.38) for different val-
ues of E, as illustrated in Fig. 3.5 for the same Moon-type body used in Fig. 3.2. Curves
in Fig. 3.5 correspond to scaled energy levels ℰ = 2CE/G2, and are traversed right to
left for N > 0 and left to right for N < 0.

Figure 3.5: Phase space of the free rotation of a Moon-like body (after [150]).

When N = ±M the variation of N in Eq. (3.37) vanishes, and the phase lines N/M = ±1
of Fig. 3.2 correspond to permanent rotations about the axis of maximum inertia. Be-
sides, the configurations ν = 0, N = 0, and ν = π

2 , N = 0, are equilibria of Eqs. (3.36)–
(3.37). The former corresponds to a hyperbolic fixed point of Fig. 3.2 that yields perma-
nent rotations about the axis of intermediate inertia, whereas the latter corresponds
to an elliptic fixed point of the same figure that yields permanent rotations about the
axis of minimum inertia.

3.2.5 Closed-form solution by complete reduction

Like in the case of the simple pendulum, the integration of the torque-free motion can
be achieved by finding a canonical transformation (λ, μ, ν,Λ,M,N) 󳨃→ (ℓ, g, h, L,G,H)
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that completely reduces Hamiltonian (3.35) to a function that, in the new variables,
depends only on momenta. In what follows, we closely adhere to the descriptions in
[412].

Because the conjugate pair (λ,Λ) is ignorable in Eq. (3.35), we trivially take h = λ,
H = Λ, and look for a transformation

ℓ =
𝜕S
𝜕L
, g = 𝜕S

𝜕G
, M = 𝜕S

𝜕μ
, N = 𝜕S

𝜕ν
, (3.40)

derived from the generating function in mixed variables S = S(μ, ν, L,G), such that
ℋ(−, ν,M,N) = ϒ(−, −, L,G).

Because μ is a cyclic variable, we choose the generating function in separate vari-
ables S = Gμ +W(ν, L,G), from whichM = G in Eq. (3.40). Then the Hamilton–Jacobi
equation

1
2
(
sin2 ν
A
+
cos2 ν
B
)[G2 − (

𝜕W
𝜕ν
)
2
] +

1
2C
(
𝜕W
𝜕ν
)
2
= ϒ(L,G) (3.41)

is solved forW , yielding

W = G∫√Q(ν, L,G)dν, (3.42)

where Q is the same as in Eq. (3.39), but now the total energy E is replaced by the
formal Hamiltonian ϒ(L,G). Namely

Q = (1/A) sin
2 ν + (1/B) cos2 ν − 1/Δ

(1/A) sin2 ν + (1/B) cos2 ν − 1/C
, (3.43)

in which we introduced the auxiliary variable of the moment-of-inertia type

1
Δ
=

2
G2ϒ(L,G). (3.44)

Note that A < Δ < C, as follows from Eqs. (3.24) and (3.26).
Then, by applying the chain rule, the transformation in Eq. (3.40) is

ℓ =
1
G
𝜕ϒ
𝜕L

ℐ, g = μ + 1
G
W + ( 1

G
𝜕ϒ
𝜕G
−
1
Δ
)ℐ, M = G, N = G√Q, (3.45)

in which

ℐ = C ∫ R(ν)
√Q(ν, L,G)

dν, (3.46)

with the abbreviation

R = 1
C
𝜕Q
𝜕(1/Δ)
=

1
1 − (C/A) sin2 ν − (C/B) cos2 ν

. (3.47)
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The solutions of integrals (3.42) and (3.46) depend on the energy regime in which
the free rigid body evolves. We focus on the case of rotation around the axis of maxi-
mum inertia in which case ν can take any value. Then the condition 0 < Q < 1 trans-
lates into B < Δ < C, as follows from Eq. (3.25) and the definition of Δ in Eq. (3.44). The
case of rotation around the axis of minimum inertia can be approached analogously
using Fukushima’s alternative to Andoyer variables [164, 206, 207].

The integration of Eqs. (3.42) and (3.46) ismade easier with the introduction of the
following auxiliary quantities: the non-dimensional parameter

f = 1/A − 1/B
1/B − 1/C

> 0, (3.48)

the non-dimensional function of the new momenta

m = p f , p = 1/Δ − 1/C
1/A − 1/Δ

> 0, 0 < m < 1, (3.49)

and the angle ψ, defined unambiguously from

cos ν =
√1 + f sinψ

√1 + f sin2 ψ
, sin ν = cosψ

√1 + f sin2 ψ
, (3.50)

from which

dν = −
√1 + f

1 + f sin2 ψ
dψ. (3.51)

Then, replacing Eq. (3.50) into Eqs. (3.43) and (3.47), after some rearrangement we
find

Q = 1
1 + p
(1 −m sin2 ψ), R = − 1

C
1

(1/A − 1/C)
(1 + f sin2 ψ),

which, jointly with Eq. (3.51), are plugged into Eq. (3.46) to give

ℐ =
AC
C − A
√(1 + f )(1 +m/f ) F(ψ|m). (3.52)

The integrationofW is a little bitmore involved. Thus, after replacing the auxiliary
variables into Eq. (3.42), we get

W = G√(1 + f )(1 +m/f ) ∫ −f +mf sin2 ψ

(f +m)√1 −m sin2 ψ (1 + f sin2 ψ)
dψ,

which is rearranged by adding and subtracting m to the numerator of the integrand,
to give

W = G√(1 + f )(1 +m/f )[ m
f +m

F(ψ|m) − Π(−f ,ψ|m)], (3.53)
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where Π(−f ,ψ|m) is the elliptic integral of the third kind of parameterm, amplitudeψ,
and characteristic −f .

The computation of themixed canonical transformation given in Eq. (3.45) is then
completed. In fact, in view of ℐ and W depending on m, which in turn depends on
Δ = Δ(ϒ), it is a family of transformations parameterized by ϒ.

On the other hand, ϒ can be solved fromEq. (3.44) as a function of Δ, which in turn
is solved from Eq. (3.49) as a function ofm. In this way, we get the standard Hamilto-
nian [587]

ϒ = G
2

2A
(1 − C − A

C
f

f +m
), (3.54)

which shows that the family of canonical transformations that achieve the complete
reduction of the Hamiltonian in Andoyer variables is, in fact, parameterized bym.

Moreover, to reflect thatm = m(L,G) is non-dimensional, wemakem = m(ρ), with
ρ = L/G. Hence, by application of the chain rule,

𝜕ϒ
𝜕L
=
𝜕ϒ
𝜕m
𝜕m
𝜕ρ
𝜕ρ
𝜕L
=

G
2A

C − A
C

f
(f +m)2

𝜕m
𝜕ρ
, (3.55)

𝜕ϒ
𝜕G
=
G
A
(1 − C − A

C
f

f +m
) +
𝜕ϒ
𝜕m
𝜕m
𝜕ρ
𝜕ρ
𝜕G
=
2ϒ
G
− ρ𝜕ϒ
𝜕L
, (3.56)

which are plugged into Eq. (3.45) to give the family of transformations parameterized
bym = m(ρ) [199]. That is,

ℓ =
f

2(f +m)2
√(1 + f )(1 +m/f ) F(ψ|m)𝜕m

𝜕ρ
, (3.57)

g = μ + √(1 + f )(1 +m/f ) (3.58)

× [(m − ρ
2

f
f +m
𝜕m
𝜕ρ
)
F(ψ|m)
f +m
− Π(−f ,ψ|m)],

M = G, (3.59)

N = G 1
√1 +m/f

√1 −m sin2 ψ. (3.60)

Now, we particularize the transformation by requiring that both ℓ = ℓ(ν,m) and
g = g(μ, ν,m) be angles. That is, ∮dℓ = 2π when ν advances by 2π or, equivalently, ψ
recedes by 2π. Hence, ℓ(ψ = 0) − ℓ(ψ = 2π) = 2π, from which

𝜕m
𝜕ρ
= −
(f +m)3/2π

K(m)√f (1 + f )
. (3.61)

On the other hand, the angle condition for g requires that it increases by 2π when its
partner angle μ advances by 2π, while remaining unaffected by a 2π increase of ν [30].
When this condition is applied to Eq. (3.58), we get

(m − ρ
2

f
f +m
𝜕m
𝜕ρ
)
K(m)
f +m
− Π(−f |m) = 0. (3.62)
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The auxiliary variable ρ = L/G is solved after eliminating 𝜕m/𝜕ρ between Eqs. (3.61)
and (3.62). We get

ρ = 2
π
√(1 + f )(1 +m/f )[Π(−f |m) − m

f +m
K(m)], (3.63)

which leavesm as implicit function of ρ.2

The transformation between Andoyer variables (μ, ν,M,N) and action-angle vari-
ables (ℓ, g,G, L) is thus completed. However, the reduced Hamiltonian ϒ must remain
implicit, in the standard form of Eq. (3.54) as far asm is an implicit function of L andG.
Still, the Hamilton equations are obtained by replacing Eq. (3.61) into Eqs. (3.55) and
(3.56), which provide the numeric values of the constant, secular frequencies oncem
has been computed.

In summary, given the Andoyer variables, the action-angle variables are explicitly
obtained from the following sequence. First,makeG = M fromEq. (3.59), and compute
ϒ = ℋ(ν,N ,M) from Eq. (3.35), Δ from Eq. (3.44), andm from Eq. (3.49). Then we solve
the inverse of Eq. (3.50) for ψ, namely

cosψ =
√1 + f sin ν

√1 + f sin2 ν
, sinψ = cos ν

√1 + f sin2 ν
. (3.64)

Next, plug Eq. (3.61) into Eq. (3.57) to compute

ℓ = −
π

2K(m)
F(ψ|m). (3.65)

Plug Eqs. (3.61) and (3.63) into Eq. (3.58) to compute

g = μ + √(1 + f )(1 +m/f )[Π(−f |m)
K(m)

F(ψ|m) − Π(−f ,ψ|m)], (3.66)

and replace ρ = L/G into Eq. (3.63) to obtain

L = 2M
π
√(1 + f )(1 +m/f )[Π(−f |m) − m

f +m
K(m)]. (3.67)

The mapping (ℓ, g,G, L) 󳨃→ (μ, ν,M,N) is given by an analogous sequence which
starts with M = G from Eq. (3.59). Then m is computed from Eq. (3.67) using a root-
finding procedure. Next, Eq. (3.65) is inverted to obtain

ψ = am[−(2/π)K(m)ℓ|m]. (3.68)

2 It can be checked that ρ is solution of both Eq. (3.61) and Eq. (3.62), so in this way we have obtained
ρ as an anti-derivative of integrals for which we still lack rules to solve.
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Finally, ν is computed from Eq. (3.50), μ is solved form Eq. (3.66), and N is obtained
from Eq. (3.60).

In order to apply the free rigid body solution to perturbed rigid body rotation, An-
doyer variablesmust be explicitly obtained in terms of the action-angle variables. This
requires, as a first step, one to solve formallym from the implicit equation (3.67). Like
in the case of the simple pendulum, solving m explicitly needs to make use of series
expansion and reversion procedures. One must note, however, that while in the case
of the pendulum expansion of Eq. (3.15) converges, as shown in Eq. (3.17), more care
must be taken when solving formally Eq. (3.67).

Indeed, recalling that p = m/f , from Eq. (3.49), standard expansions of the elliptic
integrals in Eq. (3.67) produce

L
G
= 1 − 1

2
√1 + f p[1 − 1

8
(6 − f )p + 1

64
(40 − 8f + 3f 2)p2

−
1

1024
(560 − 120f + 54f 2 − 25f 3)p3 +𝒪(p4)],

whose convergence may be compromised for small f . The convergence limit p < 1
means that

A
C
<

Δ/C
2 − Δ/C

, (3.69)

which establishes a relation between physical and dynamical features of the torque-
free motion. In particular, the expansions will converge only in the gray region of
Fig. 3.6, defined by Eq. (3.69), whereas convergence fails between the border of that
region and the dashed diagonal that marks the limit Δ = A.

Figure 3.6: Convergence domain (gray region) of the expansion of Eq. (3.67).

The computation of the explicit transformation based on expansions of the closed-
form solution is awkward yet feasible [345, 347, 614]. Alternatively, we will show in
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§3.2.6 and §3.2.7 how the Lie transforms approach provides both the expanded Hamil-
tonian and the explicit transformation in a systematic way [200, 391, 399].

3.2.6 The case of low triaxiality

A simple rearrangement leaves Hamiltonian (3.35) in the form

ℋ =
M2

2C
[1 + α sin2 J(1 − β cos 2ν)], (3.70)

where we recall that J = J(N ,M) ≡ arccos(N/M), and the new inertia parameters 0 ≤ α
and 0 ≤ β ≤ 1, which are solved from α (1 + β) = C/A − 1, α (1 − β) = C/B − 1, have clear
physicalmeaning. The limit caseα = 0 corresponds to a rigid bodywith sphericalmass
distribution (A = B = C), whereas the extreme values β = 0 and β = 1 correspond
to axisymmetric oblate (B = A) and prolate mass distribution (B = C), respectively.
Therefore, the triaxiality coefficient,

β = 1
α
(
C
A
−
C
B
) =

B − A
B − A + 2A(1 − B/C)

, (3.71)

provides a measure of how much the rigid body departs from axisymmetrical mass
distribution.

In those cases in which β is small, Eq. (3.70) can be viewed like the perturbation
Hamiltonianℋ = ℋ0 + βℋ1, in which

ℋ0 =
M2

2C
[1 + α(1 − N

2

M2)] =
1

2B∗M2 −
1
2
(
1
B∗ − 1C)N2 (3.72)

is formally the same as an axisymmetric oblate body with intermediate moment of
inertia B∗ = C/(1 + α), and

ℋ1 = −
M2

2C
α(1 − N

2

M2) cos 2ν (3.73)

is a perturbation. Therefore, the expanded solution of the Hamiltonian flow stemming
from Eq. (3.70) can be approached directly by perturbations based on Lie transforms.

We start from the usual perturbation Hamiltonian (2.30), in which ε = β is a phys-
ical small parameter,ℋ0,0 is given by Eq. (3.72),ℋ1,0 by Eq. (3.73),ℋm,0 = 0 form ≥ 2,
α is a physical parameter, andM is an integral. Then we look for a Lie transformation
(ν,N ; β) 󳨃→ (ν󸀠,N 󸀠)derived from the generating function𝒲 = ∑m≥0(βm/m!)𝒲m+1(ν,N),
such that, up to some truncation order βm, it converts the Hamiltonian into a function
of only the new momenta N 󸀠.

Due to the particular formof the zeroth orderHamiltonian (3.72), the Lie derivative
(2.49) is ℒ0 = −(α/C)N𝜕/𝜕ν. Therefore, the homological equation (2.48) is solved by
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indefinite integration,

𝒲m = −
1
(α/C)N

∫(ℋ̃0,m −ℋ0,m)dν. (3.74)

At first order ℋ̃0,1 = ℋ1,0, which is purely periodic in ν, and, therefore, pertains to
the image of the Lie derivative. Hence, we chooseℋ0,1 = 0 and compute

𝒲1 = −
1
4
Nt2 sin 2ν,

where we abbreviated t ≡ tan J = √M2/N2 − 1. It is worth noting that, because t can
grow without bound, the perturbation approach will fail in such dynamical configu-
rations where the rotation may depart notably from the axis of maximum inertia.

At second order, the known terms given in Eq. (2.37) result in

ℋ̃0,2 = {ℋ1,0,W1} = (α/C)
1
8
N2t2(4 + t2 − t2 cos 4ν).

To cancel the terms in the integrand of Eq. (3.74) pertaining to the kernel of the Lie
derivative, we choose

ℋ0,2 = ⟨ℋ̃0,2⟩ν = (α/C) 18N2t2(4 + t2),

and we solve the homological equation (3.74) to obtain

𝒲2 = −
1
32
Nt4 sin 4ν.

Before going to the third order, we fill the first diagonal of Deprit’s triangle (2.16)
with the term ℋ1,1, which is solved from Eq. (2.34) and happens to be the same as
ℋ0,2. The homological equation of the third order is then obtained by computing the
term ℋ0,3 form Deprit’s recursion (2.15). After evaluation of the computable Poisson
brackets at this step, the known terms as a result are found to be

ℋ̃0,3 = −(α/C) 132N2t2[(32 + 8t2 + 5t4) cos 2ν + 3t4 cos 6ν)].

Because ℋ̃0,3 is purely periodic in ν, we chooseℋ0,3 = 0 and compute

𝒲3 = −
1
64

Nt2[(32 + 8t2 + 5t4) sin 2ν + t4 sin 6ν],

fromEq. (3.74).Once𝒲3 is known, the termsℋ1,2 andℋ2,1 are computed, usingDeprit’s
recursion (2.15), in order to complete the second diagonal of Deprit’s triangle (2.16).

One further iteration of the perturbation approach yields

ℋ̃0,4 = (α/C) 3128N2t2[64 + 16t2 + 8t4 + 5t6

− 4(16 + 16t2 + 9t4)t2 cos 4ν − 5t6 cos 8ν],
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from which we choose

ℋ0,4 = (α/C) 3128N2t2(64 + 16t2 + 8t4 + 5t6)

and compute

𝒲4 = −
3
128

Nt4[(16 + 16t2 + 9t4) sin 4ν + 5
8
t4 sin 8ν],

from Eq. (3.74). We stop here, which is the same order provided in the seminal paper
by Kinoshita [345], but the procedure is easily extended to the computation of higher
orders [200].

After truncation to𝒪(β4), the new, completely reduced Hamiltonian is

𝒦 = ℋ(ν(ν󸀠,N 󸀠),N(ν󸀠,N 󸀠)) ≡ 4
∑
m=0 βmm!ℋ0,m,

which, after changing original by prime variables in the computedℋ0,m terms, reads

𝒦 =
M2

2B∗ − N 󸀠 22C
α[1 − β

2

2!
1
4
t2(1 + t2) − β

4

4!
3
64

t2(64 + 16t2 + 8t4 + 5t6)],

where now t = √(N 󸀠/M)2 − 1.
The direct transformation is computed from Eq. (2.17), changing x by ν or N, and

using the computed terms of the generating function. Finally, after changing primes
by original variables in the terms ν0,m, N0,m, the direct transformation is

ν = ν󸀠 + 4
∑
m=1 βmm! ν0,m(ν󸀠,N 󸀠), N = N 󸀠 + N 󸀠 4

∑
m=1 βmm!N0,m(ν󸀠,N 󸀠), (3.75)

whose first coefficients are given in Table 3.2. The inverse transformation is analo-
gously computed using the generating function 𝒱 = −𝒲(ν(ν󸀠,N 󸀠),N(ν󸀠,N 󸀠)). The first
four coefficients of Eq. (2.27) are listed in Table 3.3.

The method is obviously valid when additional perturbations are added to the
original Hamiltonian (3.70). The additional terms only need to be included in the per-
turbation arrangement in the place corresponding to the magnitude of its disturbing
effect [415].

3.2.7 Short-axis-mode rotation

When the free rigid body rotation happens in such a dynamical regime that the ro-
tation axis keeps close to the body’s short axis—the axis of maximum inertia—then
N ≈ M and, therefore, sin2 J ≪ 1. However, it must be noted that both the physical
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Table 3.2: Coefficients ν0,m (top) and N0,m (bottom) in Eq. (3.75).

0,1 : 14 (2 + t2) sin 2ν
0,2 : 132 (8 + 8t2 + t4) sin 4ν
0,3 : 3

128 (32 + 16t2 + 14t4 + 11t6) sin 2ν + 1
128 (2 + t2)(16 + 16t2 + t4) sin 6ν

0,4 : 364 (32 + 32t2 + 16t4 + 14t6 + 3t8) sin 4ν + 3
1024 (128 + 256t2 + 160t4 + 32t6 + t8) sin 8ν

0,1 : 12 t2 cos 2ν
0,2 : − 18 t2(4 + 2t2 − t2 cos 4ν)
0,3 : 364 t2[(32 + 8t2 + 3t4) cos 2ν + t4 cos 6ν]
0,4 : − 3

128 t
2[6(32 + 24t2 + 12t4 + 5t6) − 16t2(4 + 2t2 + t4) cos 4ν − t6 cos 8ν]

Table 3.3: Coefficients of the generating function of the inverse transformation.

𝒱1 = 1
4N
󸀠t2 sin 2ν󸀠

𝒱2 = 1
32N
󸀠t4 sin 4ν󸀠

𝒱3 = 1
128N
󸀠t2[(64 + 24t2 + 15t4) sin 2ν󸀠 + 3t4 sin 6ν󸀠]

𝒱4 = 1
1024N

󸀠t4[8(64 + 96t2 + 55t4) sin 4ν󸀠 + 31t4 sin 8ν󸀠]
parameter α and the dynamical quantity sin2 J just scale Eq. (3.70). Indeed, because
M is constant, the Hamiltonian flow stemming from Eq. (3.70) is the same as the one
stemming fromℋ∗ = sin2 J(1 − β cos 2ν), yet in a different time scale and with respect
to a different energy level. Hence, neither α nor sin2 J are useful in providing a per-
turbation arrangement of the free rigid body Hamiltonian. Still, by simply rewriting
sin J in terms of the half angle, and recalling that sin2 1

2 J =
1
2 (1 − cos J) =

1
2 (1 − N/M),

we can write the free rigid body Hamiltonian (3.70) like the perturbation Hamiltonian
ℋ = ℋ0(N) + εℋ1(ν,N), in which the small parameter ε is now formal (ε ≡ 1), the
zeroth order term is

ℋ0 =
M2

2C
[1 + (4α) sin2( 1

2
J)(1 − β cos 2ν)], (3.76)

and the perturbation is

ℋ1 = −
M2

2C
(4α) sin4( 1

2
J)(1 − β cos 2ν). (3.77)

The fourth power to which sin 1
2 J is raised in Eq. (3.77) shows the smallness ofℋ1 com-

pared toℋ0.
While the termℋ0, themain problem of short-axis-mode (SAM) rotation [391], re-

mains integrable, at variance with the case of small triaxiality discussed in §3.2.6 the
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intermediary Hamiltonian ℋ0 is not reduced. Therefore, the customary complete re-
duction of the zeroth order term is carried out before approaching the solution by per-
turbations.

We note that Eq. (3.76) is formally analogous to Eq. (3.70), in which J is replaced by
J∗ = 1

2 J and α by α
∗ = 4α. But this subtle change from J to 1

2 J has removed the exponent
2 from the variable N, thus preventing the appearance of square roots in the solution
of the Hamilton–Jacobi equation and the consequent appearance of elliptic functions.
While the computation of the solution of theHamilton–Jacobi equation is nownotably
simpler than in the full problem [391], a more direct approach is as follows.

First of all, we recall that Andoyer variables are singular when J = 0, a case that
is close to the usual SAM rotation. Hence, it is customary to reformulate the problem
in nonsingular variables [287]. Thus, we start applying the canonical transformation
(μ, ν,M,N) 󳨃→ (g, θ,G,Θ), given by

g = μ + ν, G = M, θ = −√2(M − N) sin ν, Θ = √2(M − N) cos ν, (3.78)

which formally converts Eq. (3.76) into the Hamiltonian of a harmonic oscillator,

ℋ0 =
G2

2C
[1 + 1 − β

G
α 1
2
(Θ2 + ω2θ2)], (3.79)

of frequencyω = √(1 + β)/(1 − β). Next, the standard transformation to harmonic vari-
ables (2.40), which we now write

Θ = √2ωL cos ℓ, θ = √2L/ω sin ℓ, (3.80)

is applied to Eq. (3.79) to give

ℋ0 =
G2

2C
+ α(1 − β)G

C
ωL, (3.81)

which completely reduces the Hamiltonian of the main problem of the SAM rotation
in the action-angle variables (ℓ, g, L,G); cf. [391].

By further applying the transformations (3.78) and (3.80) to the perturbation ℋ1
in Eq. (3.77), we obtain

ℋ1 = −[α(1 − β)
G
C
ωL]ω L

G
(
1
2
−

β
1 + β

sin2 ℓ),

in which the coefficient L/G manifests the smallness of ℋ1 with respect to ℋ0. The
Hamiltonianℋ = ℋ0(L) + ϵℋ1(ℓ, L) takes the form of a perturbed harmonic oscillator,
whose solution can be approached by Lie transforms following analogous steps to
those carried out in the example in §2.2.2.

However, to further illustrate the application of the Lie transform method rather
than the standard case in which the disturbing function is expanded as a Fourier se-
ries, we go back to Eq. (3.79) and, instead of using the harmonic transformation (3.80),

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



70 | 3 Application to integrable problems

we rewrite it in real (g,G) and complex variables (u,U) [399]. To do that, we apply the
canonical transformation

θ = (u − iU)√2ω, Θ = (U − iu)√ω/2, (3.82)

where i ≡ √−1 denotes the imaginary unit. It yields

ℋ0 =
G2

2C
(1 − 2κ

G
iuU), (3.83)

in which we abbreviated κ = α(1 + β)/ω = α√1 − β2.
On theotherhand, consecutive applicationof the transformations (3.78) and (3.82)

to the perturbation term (3.77) yields

ℋ1 =
α
4C
[2u2U2 − iβ(u3U − uU3)], (3.84)

which is a homogeneous polynomial of degree 4 in ujUk . Because ℋ1 is free from g
and G, the integral G plays the role of a dynamical parameter, and the Lie derivative
(2.49) of the Hamiltonian flow (3.83) takes the form

ℒ0 = G
κ
C
i(U 𝜕
𝜕U
− u 𝜕
𝜕u
). (3.85)

For a generic monomial ujUk, ℒ0(ujUk) = G(κ/C)(k − j)iujUk, which vanishes when
j = k. Therefore, the elements of the kernel of the Lie derivative (3.85) are the mono-
mials ujUk with j = k, whereas the image of the Lie derivative is made of monomials
ujUk with k ̸= j.

The solution of the homological equation is then trivial in complex variables by
simply noting that each term of the image qj,kujUk, where qj,k denotes some numeric
coefficient, contributes a term pj,kqj,kujUk to the generating function, where

pj,k = C
Gκ

i
j − k
. (3.86)

In consequence, the construction of the perturbation solution of a free rigid body in
SAM rotation becomes a simple exercise of polynomial algebra. Let us check this.

The perturbation Hamiltonian isℋ = ∑m≥0(εm/m!)ℋm,0(u,U), with a formal small
parameter ε ≡ 1, ℋ0,0 = ℋ0 from Eq. (3.83), ℋ1,0 = ℋ1 from Eq. (3.84), and ℋm,0 = 0
form ≥ 2. At first order

ℋ̃0,1 = ℋ1,0 = α
2C

u2U2 −
αβ
4C

iu3U + αβ
4C

iuU3, (3.87)

where the first summand on the right side pertains to the kernel of the Lie derivative
(3.85), whereas the other two summands are members of the image. Then we select

ℋ0,1 = α
2C

u2U2.
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Next, the second summand on the right side of Eq. (3.87)—whose monomial ujUk has
exponents j = 3 and k = 1—is multiplied by p3,1 = iC/(2Gκ), as follows from Eq. (3.86),
whereas the last summand is multiplied by p1,3 = −iC/(2Gκ), to give

𝒲1 =
αβ
8Gκ
(u3U + uU3).

At second order, we find

ℋ̃0,2 = α2β
2GCκ

u2U4 −
α2β
2GCκ

u4U2 −
α2β2

2GCκ
iu3U3,

where the last summand pertains to the kernel and the other two are elements of the
image. Then we choose

ℋ0,2 = − α2β22GCκ
iu3U3

and solve the homological equation by adding the result of multiplying the first sum-
mand of ℋ̃0,2 by p2,4, and the second summand by p4,2. Using Eq. (3.86), we get

𝒲2 = −i
α2β
4G2κ2
(u4U2 + u2U4).

It follows the computation ofℋ1,1 to complete the corresponding diagonal of Deprit’s
triangle (2.16) before proceeding to the next order.

Straightforward computations, and the final replacement of the original variables
by the new ones, yield the completely reduced Hamiltonian

𝒦 =
G2

2C
[1 + κiu

󸀠U 󸀠
G
∑
m≥0 bm(β)(−ακ iu󸀠U 󸀠G )

m
], (3.88)

where b0 = −2, b1 = 1, and the remaining bm denote polynomials in the triaxiality
coefficient β, the first of which are given in Table 3.4.

Table 3.4: Triaxiality polynomials in Eq. (3.88) [399].

b2 = β2 b6 = 1
128β

2(45β4 + 354β2 + 128)
b3 = 5

8β
2 b7 = 9

1024β
2(265β4 + 650β2 + 128)

b4 = 3
32β

2(3β2 + 8) b8 = 5
8192β

2(953β6 + 14888β4 + 17120β2 + 2048)
b5 = 7

32β
2(5β2 + 4) b9 = 11

8192β
2(4075β6 + 20212β4 + 13104β2 + 1024)

Needles to say that the desiredHamiltonian reductionhas been effectively achieved by
the Lie transform process. Indeed, in spite of the new Hamiltonian (3.88) depending
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on both complex variables, in addition to the integral G, it must be noted that 𝒦 =
𝒦(G, −iu󸀠U 󸀠), where−iuU = L, as readily checked by applying to the complex variables
the inverse transformation of Eq. (3.82), namely

u = (iΘ + ωθ)/√2ω, U = (Θ + iωθ)/√2ω,

followed by Eq. (3.80).
A caveat is in order in reference to the coefficient α/κ = (1 − β2)−1/2 in Eq. (3.88),

which can make the Hamiltonian in new variables converge slowly in the case of al-
most prolate bodies (β ≈ 1). In such a critical case, carrying out a perturbation ap-
proach based on a physical parameter β̃(β) ≪ 1 should be a better option. The choice
β̃ = (1 − β)/(1 + 3β), which plays the symmetric role of β in the case of rotations about
the axis of minimum inertia [295], may apply.

As regards the generating function, it is written in the form

𝒲 = β(u2 + U2)uU ∑
m≥0 1

m!
αm

κmGm (uU)
⌊m/2⌋wm, (3.89)

where ⌊m/n⌋ denotes the integer division of the integersm and n,w1 =
1
8 ,w2 = −

1
4 i and

the first few termswn are given in Table 3.5; cf. [399]. The relationsU2 +u2 = 2iL sin 2ℓ,
U2 − u2 = 2L cos 2ℓ, U4 + u4 = 2L2 cos 4ℓ, and U6 − u6 = 2L3 cos 6ℓ are useful in the
translation of the generating function from complex to action-angle variables.

Table 3.5: Coefficients wm in Eq. (3.89), cf. [399].

w3 = − 38 (β2 + 2)uU + 5
64βi(U2 − u2)

w4 = 3
32 (57β2 + 32)iuU + 3

64β(9β2 + 20)(U2 − u2)
w5 = 1

32 (343β4 + 2024β2 + 480)u2U2 − 11
64β

2(β2 + 2)(u4 +U4) − 3
32β(147β2 + 100)iuU(U2 − u2)

w6 = − 1532 (909β4 + 1588β2 + 192)iu2U2 + 15
64β

2(63β2 + 44)i(u4 + U4)− 15
32β(91β4 + 653β2 + 200)uU(U2 − u2)

w7 = − 45
2048β

3(283β2 + 186)i(U6 − u6) + 45
64β

2(116β4 + 917β2 + 308)uU(u4 + U4)+ 45
2048β(124067β4 + 272282β2 + 44800)iu2U2(U2 − u2)− 45
32 (720β6 + 8345β4 + 6496β2 + 448)u3U3

The computation of the direct and inverse transformation equations is standard and
only requires the evaluation of Poisson brackets, as described in §2.1.3.

Finally, in the case in which both β and σ = 2 sin2 1
2 J are small, the question of

which perturbation approach would be the most convenient emerges naturally. The
answer will obviously depend on the particular values taken by the triaxiality param-
eter and the inclination on the equatorial plane of the body with respect to the in-
variable plane. However, in common cases, the SAM perturbation approach provides
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a much more efficient procedure than the one based on a small triaxiality. This fact
is illustrated in Table 3.6, in which the physical small parameter β is computed from
Eq. (3.71), and J0 is a bound for J [347].

Table 3.6: Inertia parameters and inclination angle for different solar system bodies. Adapted by
permission from Springer: [391].

Body [Ref.] A/C B/C β J0 σ

Mars [143, 614] 0.994292 0.994981 0.0646 0.1󸀠󸀠 𝒪(10−13)
Earth [208] 0.996720 0.996722 0.0003 1󸀠󸀠 𝒪(10−11)
Moon [208, 527] 0.999368 0.999601 0.2261 6.2󸀠󸀠 𝒪(10−10)
Eros [615] 0.229427 0.963754 0.9779 55󸀠󸀠 𝒪(10−8)
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4 The Kepler problem
The Kepler problem describes the relativemotion of two point masses under their mu-
tual gravitational attraction. The three degrees of freedom of the Kepler problem are
reduced by the integrals derived from the conservation of the angularmomentum vec-
tor, which defines the orbital plane and makes the problem integrable. Moreover, the
Kepler problem is a superintegrable Hamiltonian system [192] due to the additional in-
tegrals provided by the eccentricity vector.1 Because of that, it can be reduced to a set
of five constant elements, which determine the nature of the orbit, and a single vari-
able that reckons the relative motion of one of the particles with respect to the other
from some initial epoch. Obviously, the orbital elements in any form are unavoidably
tied to the two fundamental vectors of the Kepler problem. In addition, the angular
momentumvector and the eccentricity vector are the basis of the apsidal frame,which
is fundamental in the vectorial formulation of perturbed Keplerian motion.

The elliptic case of the Keplerian motion is the basic integrable model in which
bounded orbital motion hinges on. When the reduction to elements is carried out
by the Hamilton–Jacobi method, it provides the action-angle variables in which per-
turbed Keplerian motion is naturally approached by perturbation methods [61, 358].
Therefore, the solution of the Hamilton–Jacobi equation of the Kepler Hamiltonian
and the following particularization of the transformation to the case of action-angle
variables are discussed in some detail, mostly following analogous descriptions in
[395] (see also [154, 171]). Alternative derivations of these variables rely on the use of
Lagrange brackets [1, 78] or on purely geometric considerations [189].

4.1 The orbital frame

Let (O, i, j, k) be an inertial orthonormal frame, and let x be the position vector of a
particle with respect to the origin O, and ẋ = dx/dt its velocity. The angular momen-
tum (per unit of mass) G = x × ẋ defines the orbital plane, which is the instantaneous
plane orthogonal to G where the motion takes place.

Let G = ‖G‖ and define the unit vector n = G/G in the normal direction to the
orbital plane. Then n ⋅ k = cos I, where the angle 0 ≤ I ≤ π is the inclination of the
orbital plane with respect to the inertial (i, j) plane. The product k ×n = ℓ sin I defines
the unit vector ℓ = i cos ν+ j sin ν that materializes the direction of the ascending node
0 ≤ ν < 2π of the orbital plane on the inertial plane. The nodal frame is then defined
by the orthonormal frame (O, ℓ,n × ℓ,n).

Finally, let r = ‖x‖, and let u = x/r be a unit vector in the radial direction. Then the
orbital frame is defined by the radial, transversal and normal directions (O,u,n×u,n).

1 For historical considerations on the discovery of this vector and the different names attached to it,
the interested reader is referred to the erudite discussions in [241, 242].

https://doi.org/10.1515/9783110668513-004
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The components of the radial direction in the nodal frame u = ℓ cos θ + (n × ℓ) sin θ
define the argument of the latitude 0 ≤ θ < 2π, which is the polar angle in the orbital
plane.

The components of the position and velocity vectors in the orbital frame are

x = (r,0,0), ẋ = ( ̇r, rθ̇,0). (4.1)

Hence,

G = r2θ̇n, (4.2)

from which, replacing G = Gn, we obtain the fundamental relation

r2dθ = G dt. (4.3)

On the other hand, if (x, y, z) and (ẋ, ẏ, ̇z) are the components of the position and
velocity vectors in the inertial frame, respectively, we obtain

(
x ẋ
y ẏ
z ̇z
) = R3(−ν)R1(−I)R3(−θ) (

r ̇r
0 rθ̇
0 0
). (4.4)

4.2 Kepler Hamiltonian

Let us consider a system of two points of masses m1 and m2, respectively, under the
only action of their mutual gravitational attraction. The conservation of linear mo-
mentum constrains the center of mass of the system to evolve with linear motion. Let
ξ = ξ 0 +ct, with ξ 0 and c constant, be the position of the center of mass in the inertial
frame, and let ξ j = ξ +xj, j = 1, 2, be the position of the particle of massmj. Then, from
Newton’s gravitational law,

mj
d2ξ j
dt2
= mj

d2xj
dt2
= (−1)j 𝒢m1m2
‖x1 − x2‖3

(x1 − x2), j = 1, 2,

where𝒢 denotes the gravitational constant. Then the equationofmotionof the relative
motion x = x2 − x1 is

d2x
dt2
= −

μ
‖x‖3

x, (4.5)

where μ = 𝒢(m1 +m2) is the gravitational parameter. Note that Eq. (4.5) is singular for
‖x‖ = 0.
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The right side of Eq. (4.5) is the opposite of the gradient of the potential energy
V = −μ/(x ⋅ x)1/2, which, jointly with the kinetic energy (per unit of mass) T = 1

2 (ẋ ⋅ ẋ),
defines the Lagrangian of the Kepler problem,

L = T − V = 1
2
(ẋ ⋅ ẋ) + μ

√x ⋅ x
. (4.6)

The conjugate momentum per unit of mass to the position vector is

X = 𝜕L
𝜕ẋ
= ẋ, (4.7)

from which

ℋ =
1
2
X ⋅ X − μ

√x ⋅ x
, (4.8)

which is a Hamiltonian of three degrees of freedomwhen the vectors are expressed by
their Cartesian coordinates x = (x, y, z), X = (X,Y , Z).

The Lagrangian (4.6) is written in polar coordinates using Eq. (4.1). We obtain L =
1
2 ( ̇r

2 + r2θ̇2) + μ/r, from which the conjugate momenta to r and θ are, respectively,

R = 𝜕L
𝜕 ̇r
= ̇r, Θ = 𝜕L

𝜕θ̇
= r2θ̇. (4.9)

That is, for the Kepler problem the conjugate momentum to r is the radial velocity,
and the conjugate momentum to θ is the total angular momentum, as follows from
Eq. (4.2). Hence,

ℋ =
1
2
(R2 + Θ

2

r2
) −

μ
r
, (4.10)

where θ is a cyclic variable and, in consequence,Θ is an integral of theKepler problem.
That is, by the simple expedient of transforming Cartesian into polar variables one has
carried out a double reduction of the Kepler Hamiltonian, which in polar variables is
a Hamiltonian of one degree of freedom, ℋ = ℋ(r,R), thus showing the integrability
of the Kepler problem.

If we now use Eqs. (4.7) and (4.9) to replace velocities by momenta in Eq. (4.4), we
obtain

(
x X
y Y
z Z
) = R3(−ν)R1(−I)R3(−θ) (

r R
0 Θ/r
0 0

), (4.11)

from which it is readily checked that X ⋅ dx = Rdr + Θdθ + Θcos I dν, where

N = Θcos I , (4.12)
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is the third component of the angular momentum G ⋅ k in the particular case of Ke-
plerian motion. Therefore, the mapping (x,X) 󳨃→ (r, θ, ν,R,Θ,N) from Cartesian to
polar-nodal variables, sometimes calledHill [293] orWhittaker variables [679], defines
a canonical transformation of the Mathieu type [680].

We remark that the definition of the canonical transformation from Cartesian to
polar variables given by Eqs. (4.11)–(4.12) does not involve the Kepler problem, and
hence is a purely geometrical definition. To the contrary, Eq. (4.9) is a particularization
for the Kepler problem. Therefore, the exact physical meaning of R and Θ will depend
on the specific problem in which these variables are used.

4.3 Hamilton–Jacobi reduction

The simple formulation of the Kepler Hamiltonian in polar variables has disclosed
three integrals of the problem: the total angular momentum Θ = G, the third com-
ponent of the angular momentum vector in the inertial frame N = Θcos I, and the
argument of the node ν. That is, because

(G ⋅ i,G ⋅ j,G ⋅ k)τ = R3(−ν)R1(−I)(0,0,Θ)
τ, (4.13)

these three integrals represent the conservation of the angular momentum vector G—
a case, in which Eq. (4.3) reduces to Kepler’s law of areas. Still, additional integrals
will be disclosed in a following integration of Eq. (4.10).

Like in the examples of Chapter 3, theKepler problem is solvedby completeHamil-
tonian reduction of Eq. (4.10) using the Hamilton–Jacobi equation. That is, we look for
a canonical transformation (r, θ, ν,R,Θ,N) 󳨃→ (ℓ, g, h, L,G,H) such that it transforms
Eq. (4.10) into a function of only the new momenta. Because N, ν, and θ are ignor-
able variables in Eq. (4.10), we choose the generating function of the transformation
in separate variables S = νH + θG +W(r, L,G).

Then the transformation equations

N = 𝜕S
𝜕ν
= H , Θ = 𝜕S

𝜕θ
= G, h = 𝜕S

𝜕H
= ν, (4.14)

and

ℓ =
𝜕W
𝜕L
, g = θ + 𝜕W

𝜕G
, R = 𝜕W

𝜕r
, (4.15)

are plugged into Eq. (4.10) to form the Hamilton–Jacobi equation

1
2
[(
𝜕W
𝜕r
)
2
+
G2

r2
] −

μ
r
= Φ(L,G),

which is solved forW to giveW = G ∫√Q(r;Φ(L,G),G)dr, where the radicand Q ≥ 0
is the quadratic form

Q = − 1
r2
+ 2 μ

G2
1
r
+ 2 Φ

G2 . (4.16)
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The nontrivial part of the transformation is found by replacingW into Eq. (4.15).
We obtain

R = G√Q, (4.17)

and, after straightforward computations,

ℓ =
𝜕Φ
𝜕L

ℐ1, g = θ + 𝜕Φ
𝜕G

ℐ1 + Gℐ2, (4.18)

where the integrals

ℐ1 =
r

∫
r0

1
R(r)

dr, ℐ2 =
s

∫
s0

1
R(s)

ds, s = 1
r
, (4.19)

will be solved for the case of boundedmotion 0 < rP ≤ r ≤ rA < ∞, in whichwe choose
the lower integration limit r0 = 1/s0 = rP.

First of all, we rearrange Eq. (4.16) in the form

Q = ( 1
r
−

1
rA
)(

1
rP
−
1
r
), (4.20)

where, calling

p = G2/μ, a = μ/(−2Φ), (4.21)

from the properties of the roots of a quadratic equation we obtain

1
rA
+

1
rP
=
2
p
,

1
rA

1
rP
=

1
ap
. (4.22)

That is, rA = a(1 + √1 − p/a) ≥ rP = a(1 − √1 − p/a), from which 0 < p ≤ a. Besides,
Eq. (4.21) shows that bounded Keplerian motion is constrained to negative energies
(Φ < 0).

If we further define

e = √1 − p/a, 0 ≤ e < 1, (4.23)

from which p/a = 1 − e2, the roots of Eq. (4.20) are written either in the form

rA = a(1 + e), rP = a(1 − e), (4.24)

or

1
rA
=
1 − e
p
,

1
rP
=
1 + e
p
. (4.25)
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Now, to solve ℐ1 we make the change of variable

r = a(1 − e cos u), (4.26)

which must be inserted into Eq. (4.19) to obtain both R(r) and dr in terms of u. We
check in Eq. (4.24) that r(u = 0) = rP and r(u = π) = rA. Then plugging Eqs. (4.26) and
(4.24) into (4.20), which in turn is put into Eq. (4.17), we obtain

1
R
= √

a
μ
1 − e cos u
e sin u

. (4.27)

Replacing dr = ae sin udu and Eq. (4.27) in ℐ1 in Eq. (4.19) with the lower integration
limit u = 0, we readily obtain

ℐ1 = √
a3
μ
(u − e sin u). (4.28)

Analogous computations making the change of variable

1
r
=
1 + e cos f

p
(4.29)

and using Eq. (4.25), that is, r(f = 0) = rP and r(f = π) = rA, yield

R = G
p
e sin f . (4.30)

Then ds = d(1/r) = −(e/p) sin f df is computed from Eq. (4.29) and replaced, together
with Eq. (4.30), into Eq. (4.19), to obtain

ℐ2 = −
1
G
f ⇒ g = θ − f + 𝜕Φ

𝜕G
√a

3

μ
(u − e sin u). (4.31)

That is, Eq. (4.18) turns into

ℓ =
𝜕Φ
𝜕L
√a

3

μ
(u − e sin u), g = θ − f + 𝜕Φ

𝜕G
√a

3

μ
(u − e sin u), (4.32)

where we recall that a = a(Φ) and e = e(G,Φ), as given by their definitions in
Eqs. (4.21) and (4.23), respectively. Therefore, Eqs. (4.14), (4.17), and (4.32) define a
family of canonical transformations, parameterized by Φ = Φ(L,G).

On the other hand, using the definitions of a, p, and e in Eqs. (4.21)–(4.23), the
totally reduced Hamiltonian can be written in the standard form

Φ = − μ
2

2G2 (1 − e
2), (4.33)
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where, because e = e(L,G) is nondimensional, we take e = e(η) with

η = G/L. (4.34)

Then, by the chain rule,

𝜕Φ
𝜕L
=
𝜕Φ
𝜕e
𝜕e
𝜕η
𝜕η
𝜕L
= −

μ2

G3 eη
2 de
dη
,

𝜕Φ
𝜕G
=
μ2

G3 (1 − e
2) +
𝜕Φ
𝜕e
𝜕e
𝜕η
𝜕η
𝜕G
=
μ2

G3(1 − e
2 + eηde

dη
),

that are replaced in turn into Eq. (4.32), to give

ℓ = −
e

(1 − e2)3/2 η2 dedη (u − e sin u), (4.35)

g = θ − f + 1
(1 − e2)3/2(1 − e2 + eηdedη)(u − e sin u), (4.36)

which, jointly with Eqs. (4.14) and (4.30), now parameterize by e = e(η) the family of
transformations that reduce the Kepler Hamiltonian to the standard form (4.33).

4.4 Solution in Delaunay variables

Now,we impose the requirement that ℓ = ℓ(r)be an angle,wherewe recall that r = r(u)
and the auxiliary variable u is an angle. Therefore, the angle condition ∮dℓ = 2π
implies that ℓmust increase by 2π when r varies from r(u = 0) to r(u = 2π). When the
angle condition is applied to Eq. (4.35), we obtain

de
dη
= −
(1 − e2)3/2

eη2
, (4.37)

which is in separate variables and, hence, is solved by indefinite integration to give

e = √1 − η2 = √1 − (G/L)2. (4.38)

Alternatively, we could have applied the angle condition also to Eq. (4.36), and re-
place the derivative de/dη by Eq. (4.37) to obtain the solution (4.38) without need of
integration—like we did in §3.2.5 to compute Eq. (3.63).

After plugging Eq. (4.38) into Eqs. (4.35) and (4.36), we get

ℓ = u − e sin u, (4.39)
g = θ − f , (4.40)

the first of which is the famous Kepler equation.
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Therefore, the transformation to action-angle variables given by Eqs. (4.39),
(4.40), (4.14), and (4.30), completely reduces the Kepler Hamiltonian in polar-nodal
variables, given in Eq. (4.10), to

Φ = Φ(−, −, −, L, −, −) ≡ − 1
2
μ2/L2, (4.41)

whose Hamilton equations show that the only non-null frequency of the Kepler prob-
lem is

dℓ
dt
=
𝜕Φ
𝜕L
=
μ2

L3
. (4.42)

Then the solution of the Kepler problem in action-angle variables is simply

ℓ = ℓ0 + nt, g = g0, h = h0, L = L0, G = G0, H = H0, (4.43)

where

n = μ2/L3 (4.44)

is the usual abbreviation for the Keplerianmeanmotion. Note that a = L2/μ, as follows
from the definition of a in Eq. (4.21) and Eq. (4.41). Then, from Eq. (4.44),

L = na2. (4.45)

The solution (4.43) shows that both g and L are integrals of the Kepler problem in
addition to the previously computed G, H, and h.

The set (ℓ, g, h, L,G,H) of action-angle canonical variables is traditionally known
as Delaunay variables. Note the dynamical constraint |H| ≤ G ≤ L.

In spite of the Delaunay variables having been derived in the traditional way
from the Hamiltonian reduction of the Kepler problem (see Chapter VII of [631], for
instance), alternative derivations can be made based on the properties of Lagrange
brackets (cf. [78] Chapter XI, §4–§9), or directly from a generating function [154]. In
particular, the latter derivation unambiguously shows that the transformation from
polar variables to Delaunay canonical variables is a purely geometric operation. Thus,
for instance, while dℓ/dt = n = μ2/L3 in the case of Keplerian motion, this is no longer
true for perturbed Keplerian motion, in which the variation of ℓ must be obtained
from the corresponding Hamilton equation of the perturbed Keplerian Hamiltonian.

In the Keplerian case, the meaning of the Delaunay variables and the auxiliary
variables introduced in their computation is easily identified. Thus, besides the trivial
equivalence G = Θ, for the total angular momentum, H = N, for the third component
of the angular momentum vector, and h = ν for the argument of the node, the known
relations on the ellipse show that ℓ, u, and f , are themean, eccentric, and true anoma-
lies, respectively, and g is the argument of the periapsis [42, 582]. Hence, n is themean
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motion, and Eqs. (4.26) and (4.29) identify awith the semi-major axis of the ellipse, e
with the eccentricity, and pwith the conic parameter. Finally, L is called the Delaunay
action.

Delaunay variables are the canonical counterpart of the classic Keplerian ele-
ments

a = L
2

μ
, e = √1 − G

2

L2
, I = arccos H

G
, Ω = h, ω = g, M = ℓ, (4.46)

where Ω stands for the longitude of the ascending node, ω for the argument of the
periapsis, and M for the mean anomaly. As such, they are flawed with the same sin-
gularities. Thus, the eccentricity vanishes when G = L, a case in which the periapsis
is not defined. Besides, the case H = ±G implies that either I = 0 or I = π (equatorial
orbits), and the node is not defined.

The complete Hamiltonian reduction process obviously provides the same results
as the classical integrationof theNewtonian equations (4.5); cf. [42, 139]. Indeed, start-
ing from theNewtonian equations ofmotion, classical results demonstrate the conser-
vation of the angular momentum vector

G = x × ẋ, (4.47)

of the eccentricity vector

e = 1
μ
ẋ × G − x

r
, (4.48)

and of the energy

E = − μ
2a
. (4.49)

The first provides three integrals Ω, I and Θ, which are equivalent to those (Θ, ν = Ω,
and H = Θcos I) provided by the first Hamiltonian reduction from Cartesian to polar-
nodal variables carried out in §4.2, and which were explicitly written in Eq. (4.13). On
the other hand, in view of G ⋅ e = 0, the eccentricity vector integral found in the clas-
sical approach only provides two new independent integrals, which are given by its
components in the nodal frame (e cosω, e sin,ω,0). That is, e andω are constant. The
second Hamiltonian reduction, from polar-nodal to Delaunay variables, also shows
that g = ω is an integral, but, instead of e, it introduces the integral L, which essen-
tially shows the conservation of energy, as shown in Eq. (4.41). Conversely, the en-
ergy is a derived integral in the Newtonian approach E = E(e,G) ≡ 1

2μ(1 − e
2)/G2,

whereas in the Hamiltonian reduction process the derived integral is the eccentricity
e = e(G, L) ≡ √1 − G2/L2.

Finally, it is worth noting that Kepler laws are easily identified in the Hamilton–
Jacobi reduction process. The first one comes from the fact that the change of variable
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in Eq. (4.29) is the equation of a conic. The law of areas is given by the differential
relation (4.3) and the fact that G is constant in the Kepler problem. The third Kepler
law T2 ∝ a3 is derived by computing the orbital period T = 2π/n from Eq. (4.44), in
which L is replaced by √μa, as follows from the elimination of Φ between Eqs. (4.21)
and (4.41).

4.5 Useful relations for perturbed Keplerian motion

A series of relations that are of general application to perturbed Keplerian motion are
readily derived from the integrable case of Keplerian motion. In particular, the redun-
dant vectorial formulation of the perturbed Keplerian motion is of interest in the case
of third-body perturbations, both of gravitational and of nongravitational origin, as
will be shown in §8.2 and §9.1. Besides, since the Lie derivative constrains the varia-
tionof a given function to some integrableflow,wewill showhowstandarddifferential
relations between the different anomalies of the Keplerian motion help in solving the
homological equation of perturbed Keplerian motion in closed form.

4.5.1 The apsidal frame. Fundamental vectors

The angular momentum vector and the eccentricity vector are fundamental vectors of
the Keplerianmotion that are used to define the apsidal frame (O, ê, b̂,n), in which the
unit vector ê = e/e has the direction of the eccentricity vector (4.48), the unit vector
n = G/G has the direction of the angular momentum vector (4.47), and the unit vector
b̂ = n × ê completes an orthonormal frame. This frame is fixed, contrary to the orbital
frame introduced in §4.1, and hence is quite useful in isolating the contribution of
short-period effects. In particular,

r = (ê ⋅ r)ê + (b̂ ⋅ r)b̂ = (r cos f )ê + (r sin f )b̂. (4.50)

The apsidal frame is also useful in the description of perturbed Keplerianmotion,
a case in which it is no longer a fixed frame, but evolves slowly. Therefore, it is worth
to recall some basic properties of the Poisson brackets of the fundamental vectors G
and A = Le, both having dimensions of angular momentum, which the apsidal frame
is based upon. Namely, for 1 ≤ i, j ≤ 3,

{Gi;Gj} = {Ai;Aj} =
3
∑
k=1 εi,j,kGk , {Gi;Aj} = {Ai;Gj} =

3
∑
k=1 εi,j,kAk , (4.51)

where the Levi-Civita symbol εi,j,k is the signature of the permutation of the set (1, 2, 3).
That is, εi,j,k = 1 if the permutation is even, εi,j,k = −1 if the permutation is odd, and
εi,j,k = 0 otherwise.
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These properties are easily checked by direct computation of the Poisson brackets
in Delaunay variables using Eq. (4.13). That is,

(G1,G2,G3)
τ = R3(−h)R1(−I)(0,0,G)

τ. (4.52)

Analogously, the components of the eccentricity vector are

(A1,A2,A3)
τ = R3(−h)R1(−I)R3(−g)(Le,0,0)

τ. (4.53)

Linear combinations of these vectors are also useful in the description of per-
turbed Keplerian motion. In particular, calling

S = 1
2
(G + A), D = 1

2
(G − A), (4.54)

which have dimensions of angular momentum, we readily obtain from Eq. (4.51)

{Si; Sj} =
3
∑
k=1 εi,j,kSk , {Di;Dj} =

3
∑
k=1 εi,j,kDk , {Si;Dj} = 0. (4.55)

The vectors S and D, or scaled versions of them, are sometimes known as Moser el-
ements, and enjoy the property S ⋅ S = D ⋅ D = L2, which allows one to represent a
Keplerian orbit by a point on the surface of two spheres of radius L. Particular appli-
cations of these vectors will be presented in §8.2.3 and §9.1.5.

4.5.2 Variation equations in vectorial elements

Let us assume that the disturbing function of perturbed Keplerian motion is written
in terms of the fundamental vectors

ℋ = −
μ

2a(L)
+ 𝒫(G,A, ℓ, L),

where G = G(g, h,G,H) and A = A(g, h, L,G,H), from Eqs. (4.52) and (4.53), respec-
tively. Then, from the chain rule,

𝜕ℋ
𝜕ξ
=
𝜕𝒫
𝜕ξ
=

3
∑
j=1( 𝜕𝒫𝜕Gj

𝜕Gj

𝜕ξ
+
𝜕𝒫
𝜕Aj

𝜕Aj
𝜕ξ
), ξ ∈ (g, h,G,H),

from which we readily obtain, i = 1, 2, 3,

dAi
dt
= {Ai;𝒫} =

3
∑
j=1({Ai,Gj}

𝜕𝒫
𝜕Gj
+ {Ai,Aj}

𝜕𝒫
𝜕Aj
) −
𝜕Ai
𝜕L
𝜕𝒫
𝜕ℓ
,

dGi
dt
= {Gi;𝒫} =

3
∑
j=1({Gi,Gj}

𝜕𝒫
𝜕Gj
+ {Gi,Aj}

𝜕𝒫
𝜕Aj
),
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dℓ
dt
=
𝜕ℋ
𝜕L
+

3
∑
j=1 𝜕𝒫𝜕Ai 𝜕Ai𝜕L = n + 𝜕𝒫𝜕L + 1

Le2
3
∑
j=1 Ai 𝜕𝒫𝜕Ai ,

whereas the variation of L does not need to be integrated because L2 = A ⋅ A + G ⋅ G.
Now, using Eq. (4.51),

dAi
dt
=

3
∑
k=1Gk

3
∑
j=1 εi,j,k 𝜕𝒫𝜕Aj − 3

∑
k=1Ak 3
∑
j=1 εi,j,k 𝜕𝒫𝜕Gj

−
Ai
Le2
𝜕𝒫
𝜕ℓ
,

dGi
dt
=

3
∑
k=1Gk

3
∑
j=1 εi,j,k 𝜕𝒫𝜕Gj

+
3
∑
k=1Ak 3
∑
j=1 εi,j,k 𝜕𝒫𝜕Aj ,

and hence the variation equations are written in vectorial notation like

dG
dt
= −G × ∇G𝒫 − A × ∇A𝒫 , (4.56)

dA
dt
= −G × ∇A𝒫 − A × ∇G𝒫 −

1
Le2
𝜕𝒫
𝜕ℓ

A, (4.57)

dℓ
dt
= n + 𝜕𝒫
𝜕L
+

1
Le2

A ⋅ ∇A𝒫 . (4.58)

An alternative derivation is provided in [21].
When the long-term dynamics is investigated after removing the short-period

terms from the disturbing function 𝒫∗ = 𝒫∗(G,A, −, L), and L becomes a formal
integral. Then it is common to write the evolution equations in terms of the nondi-
mensional angular momentum

η = ηn = G/L, (4.59)

and the (nondimensional) eccentricity vector e = A/L. Thus,

dη
dt
= η × ∇η𝒬 + e × ∇e𝒬, (4.60)

de
dt
= e × ∇η𝒬 + η × ∇e𝒬, (4.61)

in which we replaced𝒬 = −(1/L)𝒫∗(η, e, −, L).
4.5.3 Differential relations and closed-form integration

By differentiation of both sides of Eq. (4.39), and using Eq. (4.26) we obtain the useful
differential relation

dℓ = (1 − cos u)du = (r/a)du (4.62)
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between the mean and eccentric anomalies. Analogously, computing dθ = df from
Eq. (4.40), dt = (1/n)dℓ from the first of Eq. (4.43), plugging these values into Eq. (4.3),
and taking into account that

G = na2η, (4.63)

as follows from Eqs. (4.34) and (4.45), we obtain the differential relation between the
mean and true anomalies,

dℓ = n
G
r2 df = r2

a2η
df . (4.64)

The differential relations (4.62) and (4.64) are crucial in the closed-form integra-
tion of the perturbed Keplerian problems that will be discussed in the following chap-
ters. Besides, the difference between the true and mean anomalies,

ϕ = f − ℓ, (4.65)

which is customary known as the equation of the center, is a purely periodic function
of the mean anomaly that plays a fundamental role in the closed-form integration of
perturbed Keplerian motion, as will be shown in the following chapters.

Finally, in view of Eq. (2.49), the Lie derivative when dealing with perturbed Kep-
lerianmotion, that is, the perturbation Hamiltonian (2.30) in whichℋ0,0 = Φ(L) is the
Keplerian in Eq. (4.41), is simply

ℒ0 =
𝜕ℋ0,0
𝜕L
𝜕
𝜕ℓ
=
μ2

L3
𝜕
𝜕ℓ
= n 𝜕
𝜕ℓ
. (4.66)

Therefore, the homological equation (2.48) turns into

n𝜕𝒲m
𝜕ℓ
= ℋ̃0,m −ℋ0,m, (4.67)

which is solved by indefinite integration,

𝒲m =
1
n
∫(ℋ̃0,m −ℋ0,m)dℓ. (4.68)

For perturbed Keplerian motion the disturbing function is commonly expressed
in terms of the true, rather than the mean anomaly. The latter can always be made
explicit from a usual expansion of the elliptic motion [78]. Nevertheless, the closed-
form integration of (4.68) is many times feasible in the perturbation approach, based
on the differential relations (4.62) and (4.64).

Alternative forms of the homological equation may be useful when the pertur-
bation approach is based on a normalization process in which the mean anomaly is
removed from the newHamiltonian. That is, 𝜕ℋ0,m/𝜕ℓ = 0. Thus, when the disturbing
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function is given in terms of the true anomaly, as will be the case of zonal perturba-
tions in Chapter 6, we use Eq. (4.64) to rewrite Eq. (4.68) in the form

𝒲m =
1
n
[−ℋ0,mℓ + ∫ ℋ̃0,m n

G
r2df],

which, after adding and subtracting the termℋ0,m to the integrand, is rearranged like

𝒲m =
1
n
ℋ0,mϕ + 1n ∫(ℋ̃0,m n

G
r2 −ℋ0,m)df , (4.69)

where the integrand is purely periodic in f . If, on the contrary, the perturbation is nat-
urally expressed in terms of the eccentric anomaly, as is the case of third-body pertur-
bations in Chapter 8, or radiation effects in §9.1, Eq. (4.62) is used to rewrite Eq. (4.68)
in the form

𝒲m =
1
n
[−ℋ0,mℓ + ∫ ℋ̃0,m r

a
du],

which, after adding and subtracting the term ℋ0,m to the integrand, and replacing
u − ℓ = e sin u from the Kepler equation (4.39), is rearranged like

𝒲m =
1
n
ℋ0,me sin u + 1n ∫(ℋ̃0,m r

a
−ℋ0,m)du, (4.70)

in which the integrand is purely periodic in u.
Note that using the differential relations of the Keplerian motion, or any other

relation, when dealing with perturbed Keplerian motion by Lie transforms is in no
way an approximation; it is exact. This is because, different from a total derivative,
the Lie derivative is constrained to the integrable flow, which in the case of perturbed
Keplerian motion is the Kepler problem.

4.5.4 Principal relations of the ellipse

Useful relations between the true anomaly f and the eccentric anomaly u come from
standard relations on the ellipse that are derived in textbooks (see [582] Section 4.5.4,
or [42] Section 4.3, for instance). In particular, we borrow the following directly from
Gauss’ principal relations i–xii in [227]. Thus (viii and ix),

r sin f = aη sin u, r cos f = a cos u − ae, (4.71)

with r taken from Eq. (4.26) in the computation of f , and from Eq. (4.29) in the compu-
tation of u. Besides, we have (v and vi)

√1 + e sin 1
2
u = √ r

a
sin 1

2
f , √1 − e cos 1

2
u = √ r

a
cos 1

2
f , (4.72)
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from which the useful relation is readily derived between the eccentric and true
anomalies (vii),

√1 − e tan 1
2
f = √1 + e tan 1

2
u. (4.73)

The numerical trouble thatmight happen to this equationwhen both tangents are
close to the value∞ is avoided using, for instance (x),

sin 1
2
(f − u) = √ 1

2
(1 − η)√(r/p) sin f = √ 1

2
(1 − η)√(a/r) sin u, (4.74)

which is also obtained from Eq. (4.72) replacing√2(1 − η) = √1 + e − √1 − e.
The latter is useful too in expressing the equation of the center in terms of the ec-

centric anomaly (resp. true anomaly) in closed form. Indeed, using the Kepler equa-
tion (4.39),

ϕ = f − ℓ = e sin u + 2 arcsin√
1
2 (1 − η)

1 − e cos u
sin u, (4.75)

which, while not listed among Gauss’ principal relations, was, in fact, used by Gauss
for computing the greatest equation of the center avoiding the customary expansions
in the eccentricity.

If Eq. (4.75) is rather expressed in terms of the true anomaly, then

ϕ = ση
1 + κ
+ 2 arcsin σ

√2(1 + η)(1 + κ)
, (4.76)

where σ and κ are the projections of the eccentricity vector in the orbital frame, as
given in Eq. (5.21). Then, if σ and κ are written in polar variables, like in Eq. (5.42), the
equation of the center is trivially expressed in polar variables.

The alternative relation to Eq. (4.74)

tan 1
2
(f − u) = e sin f

1 + η + e cos f
=

e sin u
1 + η − e cos u

, (4.77)

can be computed either from Eq. (4.74) or from direct trigonometric expansion of
tan 1

2 (f − u) and the help of Eq. (4.73) after elementary trigonometric manipulations
[73]. Then the alternative, equivalent formula to Eq. (4.75) is

ϕ = e sin u + 2 tan−1 e sin u
η + 1 − e cos u

, (4.78)

and to Eq. (4.76)

ϕ = ση
1 + κ
+ 2 tan−1 σ

1 + η + κ
. (4.79)
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5 The main problem of the artificial satellite
However useful Kepler’s laws were in the description of planetary motion, the mass
points assumption soon became insufficient, and some observable effects on the mo-
tion of the moon were attributed to the flattened figure of the Earth as early as in
Laplace’s work [260]. The potential derived from Newton laws needs then to be ap-
plied to amass distribution and is obtained from the integration of Laplace’s equation,
which gives rise to the expansion of the gravitational potential in spherical harmon-
ics. In the case of the Earth, the expansion is dominated by the zonal harmonic of the
second degree. For this reason, the truncation of the geopotential to this term alone is
customarily called themain problem of artificial satellite theory.

The main problem is a suitable model for illustrating the more relevant effects of
the dynamics of common low Earth orbits, like the secular precession of the line of
nodes and the steady motion of the line apsides. This simplified model was useful for
orbit prediction purposes at the beginning of the space era, where the geopotential
was not well known. This fact motivated the intensive search for integrable approxi-
mations to the main problem dynamics based on the separability of the Hamilton–
Jacobi equation, which are known as intermediary orbits [620]. Still, presently, the
main problem intermediaries are advocated as useful approximations for onboard,
short-term, orbit propagation purposes under limited computational resources, a case
in which reducing computational time and memory allocation may be of concern [51,
259, 268].

On the other hand, all the integrable approximations of the main problem, even
the more sophisticated ones [664], fail in describing the actual dynamics of critically
inclined orbits [119]. Alternatively, the intrinsic nature of the critical inclination res-
onance, which involves the librational dynamics of the argument of the perigee, is
clearly disclosed after removing the short-period effects using perturbation theory.

5.1 Geopotential Hamiltonian

Taking a reference framewith the origin at the center ofmass of the Earth, the x axis in
the direction of the Greenwich meridian, the z axis in the direction of the Earth’s rota-
tion axis, and the y axis completing a direct orthogonal frame, the usual expansion of
the geopotential in spherical harmonics is given in terms of the spherical coordinates
r, λ, and φ, standing for radius, longitude and latitude, respectively. Thus,

V = −μ
r
+ 𝒫(r,φ, λ), (5.1)

in which μ is the Earth’s gravitational parameter and

𝒫 = −
μ
r
∑
n≥2

Rn⊕
rn

n
∑
m=0
(Cn,m cosmλ + Sn,m sinmλ)Pn,m(sinφ), (5.2)

https://doi.org/10.1515/9783110668513-005
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where R⊕ is the Earth’s mean equatorial radius, Pn,m are associated Legendre polyno-
mials, and Cn,m and Sn,m are harmonic coefficients [341].

Recall the rule in Eq. (3.29) for differentiation of a vector in a rotating frame, and
assume that the Earth’s rotation rate ω⊕ takes place in the z axis direction. Then the
kinetic energy is

T = 1
2
dx
dt
⋅
dx
dt
=
1
2
(ẋ2 + ẏ2 + ̇z2) + ω⊕(xẏ − yẋ) +

1
2
ω2(x2 + y2),

and the conjugate momenta to the Cartesian coordinates are computed from the La-
grangian L = T − V like

X = 𝜕L
𝜕ẋ
= ẋ − ω⊕y, Y = 𝜕L

𝜕ẏ
= ẏ + ω⊕x, Z = 𝜕L

𝜕 ̇z
= ̇z,

which, as follows from Eq. (3.29), are the components of the velocity in the inertial
frame. Then the usual construction of the Hamiltonianℋ = X ⋅ ẋ − L yields

ℋ =
1
2
(X2 + Y2 + Z2) − ω⊕(xY − yX) + V . (5.3)

It happens for the Earth that C2,0 = 𝒪(10−3) whereas the other harmonic coeffi-
cients are 𝒪(C22,0) or higher. Therefore, the main disturbance of the Keplerian motion
affecting artificial satellites in the Earth’s close space is due to the first term of the
summation in Eq. (5.2). Then the motion in the simplified potential

V = −μ
r
−
μ
r
C2,0

R2⊕
r2
P2,0(sinφ) = −

μ
r
[1 + J2

R2⊕
r2

1
2
(1 − 3 sin2 φ)], (5.4)

in which J2 = −C2,0 > 0, is called themain problem of artificial satellite theory, or the J2
problem. Contrary to the Kepler problem the motion is no longer integrable [102, 312],
yet we can obtain a lot of information on the dynamics of this simple model. Note that
we can choose units of length and time such that R⊕ = 1 and μ = 1. Therefore, the
only essential physical parameter of the main problem is the oblateness coefficient J2.
However,we keep all the parameters explicit in the following derivations because they
provide immediate insight, on the one hand, and help in verifying the correctness of
analytical derivations by checking dimensions, on the other.

The main problem does not depend on the geocentric longitude, which makes
the body-fixed frame formulation unneeded. The Coriolis term −ω⊕(xY − yX) is then
removed from Eq. (5.3), in which the kinetic energy is T = 1

2X ⋅ X, and the right as-
cension of the ascending node ν = Ω = λ − ω⊕t becomes a cyclic variable. Therefore,
the third component of the angular momentum vector N is an integral of the main
problem, whose Hamiltonian is thus of just two degrees of freedom.
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5.2 Particular solutions

When the main problem Hamiltonian is written in Cartesian variables,

ℳ =
1
2
(X2 + Y2 + Z2) − μ

r
− J2

μ
r
R2⊕
r2
(
1
2
−
3
2
z2

r2
), (5.5)

where r = √x2 + y2 + z2, the corresponding Hamilton equations provide a simple and
efficient formulation for the numerical integration of the Hamiltonian flow. Thus,

d2x
dt2
= −x μ

r3
[1 + J2

R2⊕
r2

3
2
(1 − 5z

2

r2
)],

d2y
dt2
= −y μ

r3
[1 + J2

R2⊕
r2

3
2
(1 − 5z

2

r2
)],

d2z
dt2
= −z μ

r3
[1 + J2

R2⊕
r2

3
2
(3 − 5z

2

r2
)], (5.6)

which, in addition, shows the existence of equatorial orbits as well as rectilinear so-
lutions along the x, y, and z axes.

In particular, the manifold of equatorial orbits can be studied from the simplified
Hamiltonian obtained making z = 0 and Z = 0 in Eq. (5.5), which, besides, is written
in polar variables

ℳequatorial =
1
2
(R2 + Θ

2

r2
) −

μ
r
−
1
2
J2
μ
r
R2⊕
r2
, (5.7)

to show its radial, integrable character—whose analytical solution involves elliptic in-
tegrals and functions [141, 327]. In this particular manifold, dr/dt = 𝜕ℳequatorial/𝜕R =
R and dθ/dt = 𝜕ℳequatorial/𝜕Θ = Θ/r2. The latter shows that rectilinear solutionsΘ = 0
exist in the equatorial plane, whereas the former shows the existence of circular equa-
torial orbits.

On the other hand, the main problem Hamiltonian is written in polar variables
without constraint to the equatorial case replacing z/r = sin I sin θ, as obtained from
Eq. (4.11), into Eq. (5.5). That is,

ℳ =
1
2
(R2 + Θ

2

r2
) −

μ
r
− J2

μ
r
R2⊕
r2
(
1
2
−
3
2
sin2 I sin2 θ), (5.8)

where sin2 I = 1 −N2/Θ2. The cyclic character of ν in Eq. (5.8) shows that its conjugate
momentum N is an integral of the main problem.

The integral N decouples the Hamiltonian flow into the motion in the orbital
plane,

dr
dt
= R, (5.9)

dθ
dt
=
Θ
r2
+ J2

3μ
rΘ

R2⊕
r2
c2 sin2 θ, (5.10)
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dR
dt
=
Θ2

r3
−
μ
r2
[1 + J2

3
2
R2⊕
r2
(1 − 3s2 sin2 θ)], (5.11)

dΘ
dt
= −J2

3
2
μ
r
R2⊕
r2

s2 sin 2θ, (5.12)

where we use the abbreviations c = c(Θ,N) ≡ cos I and s = s(Θ,N) ≡ sin I, from the
motion of the orbital plane

dν
dt
= −

3
Θ
μ
r
R2⊕
r2
J2c sin

2 θ.

The latter is obtained by indefinite integration once the motion in the orbital plane
has been solved. Namely,

ν = ν0 − 3μR
2
⊕J2N ∫

sin2 θ(t)
Θ(t)2r(t)3

dt, (5.13)

whichalso shows that thenode remainsfixedwhenN = 0. That is,meridianplanes are
invariant manifolds of the main problem. Therefore, polar orbits can be investigated
from the simplified Hamiltonian

ℳmeridian =
1
2
(R2 + Θ

2

r2
) −

μ
r
− J2

μ
r
R2⊕
r2
(
1
2
−
3
2
sin2 θ). (5.14)

5.3 Secular effects

The integrable cases and invariantmanifolds of themain problem of AST discussed in
§5.2 exist for any value of J2. On the other hand, the value of the Earth’s J2 coefficient
is very small, what makes the main problem to be naturally viewed as a perturbation
of the Kepler problem, in which the elements are no longer constant but vary slowly.
This behavior is more clearly seen when using Delaunay variables.

The two first summands on the right side of Eq. (5.8) correspond to the Kepler
problem, whereas the last summand is the oblateness disturbing function. In Delau-
nay variables, the former takes the simple form of Eq. (4.41), while the latter is ob-
tained replacing θ using Eq. (4.40), r from Eq. (4.29), with p given in Eq. (4.21) and
e in Eq. (4.38), and recalling that c = H/G. However, the true anomaly f will remain
an implicit function of ℓ unless we resort to the known expansions of the elliptic mo-
tion. In addition, writing the eccentricity in terms of Delaunay variables introduces
square roots in the formulation. Moreover, Delaunay variables lack of the insight that
is provided by classical orbital elements and usual functions of them.

For the reasons above, the following expressions throughout this monographwill
be commonly written in terms of classical orbital elements, as well as in other usual
quantities like r or p, with the proviso that they are not to be taken as variables by
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themselves, but rather as functions of some set of canonical variables. Having avail-
able a supplementary table of partial derivatives of these functions with respect to the
canonical variables will be of definite help in carrying out the different computations
required in the perturbation approach. They are readily obtained from total and log-
arithmic derivatives like those in the first book of Gauss’ Theoria Motus [227]. Lists of
partial derivatives can be found in [272, 435, 436, 538]. The most common of them are
summarized in Table 5.1

Table 5.1: Partial derivatives of some orbital variables.

𝜕/𝜕ℓ 𝜕/𝜕L 𝜕/𝜕G

a 0 2/(na) 0
n 0 −3/a2 0
p 0 0 2η/(na)
e 0 η2/(na2e) −η/(na2e)
η 0 −η/(na2) 1/(na2)
c 0 0 −c/(na2η)
s 0 0 (c/s)c/(na2η)
u a/r ησ/(na2e2) −σ/(na2e2)
f (a/r)2η (κ + 2)σ/(na2e2) −(κ + 2)σ/(na2e2η)
r aσ/η η2[2e2(r/p) − κ]/(nae2) κη/(nae2)
R (a/r)2κan [(p/r)2 − e2]σ/(ae2η) −η3(a/r)2σ/(ae2η)
κ −(a/r)2ση [κη2 − (κ + 2)σ2]/(na2e2) −[κη2 − (κ + 2)σ2]/(na2e2η)
σ (a/r)2κη σ[η2 + (κ + 2)κ]/(na2e2) −σ[η2 + (κ + 2)κ]/(na2e2η)

Then we rewrite Eq. (5.8) in the compact, meaningful form

ℳ = −
μ
2a
−
1
4
J2
μ
r
R2⊕
r2
(2 − 3s2 + 3s2 cos 2θ), (5.15)

where we have the quantities a ≡ a(L), r ≡ r(ℓ, L,G), s ≡ s(G,H), and θ ≡ θ(ℓ, g, L,G),
when usingDelaunay canonical variables. The correspondingHamilton equations are

dℓ
dt
= n + nJ2

3
4
R2⊕
r2

p
r

1
η2e2
[2(2 + κ)σs2 sin 2θ

− (κ − κ2 − 2σ2)(2 − 3s2 + 3s2 cos 2θ)], (5.16)

dL
dt
= −LnJ2

a2

r2
R2⊕
r2

3
4η
[2p

r
s2 sin 2θ + (2 − 3s2 + 3s2 cos 2θ)σ], (5.17)

dg
dt
= nJ2

3
4
R2⊕
r2

p
r

1
η3e2
{2κ p

r
− 2(2 + κ)σs2 sin 2θ

− [3s2κ + (3 − 5c2)κ2 − 2c2σ2](1 − cos 2θ)}, (5.18)
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dG
dt
= −GnJ2

a
r
R2⊕
r2

3
2η

s2 sin 2θ, (5.19)

dh
dt
= −nJ2

3
2
R2⊕
r2

p
r
c
η3
(1 − cos 2θ), (5.20)

where we abbreviated

κ = e cos f , σ = e sin f , (5.21)

which are the projections of the eccentricity vector in the orbital frame.
As is obvious inEq. (5.16), themeanmotionn is no longer the variationof themean

anomaly ℓ. On the contrary, n = μ2/L(t)3 as follows from its definition in Eq. (4.44). On
the other hand, we must be aware of the appearance of the eccentricity in denomina-
tors of the variations of ℓ and g given by Eqs. (5.16) and (5.18), respectively. In conse-
quence, singularities could appear in the integration of almost circular orbits using
these equations. However, one may check that the variation of the mean argument
of the latitude F = ℓ + g, which is given by the sum of Eqs. (5.16) and (5.18), removes
the singularity. Therefore, alternative non-singular variables like the semi-equinoctial
variables used in §5.7.2 are customarily used in this case, whose variation equations
are readily obtained based on the chain rule, as we will do in §6.1.1 or §8.5.

Again, the integral H of the main problem decouples the motion of the node,
which is solved by indefinite integration once the reduced differential system given
by Eqs. (5.16)–(5.19), is solved.

5.3.1 Picard iterations

Because the differential system (5.16)–(5.19) is of first order, its solution can be ap-
proached by Picard iterations [565].We start the iterations from the Keplerian solution
and limit the procedure to a single iteration. Therefore, the validity of the solutionwill
be constrained to a small interval Δt = t1 − t0.

For instance, when the method is applied to the variation equation of h, namely
dh/dt = 𝜕ℳ/𝜕H, we obtain

h(t1) − h(t0) =
t1

∫
t0

𝜕ℳ
𝜕H

dt = 1
n
𝜕
𝜕H

ℓ(t1)

∫
ℓ(t0)

ℳdℓ.

We limit the time interval Δt to the case in which ℓ advances by 2π, which in the Kep-
lerian approximation is Δt = 2π/n. Then

Δh
Δt
=
𝜕
𝜕H
(

1
2π

ℓ0+2π

∫
ℓ0

ℳdℓ) = 𝜕⟨ℳ⟩ℓ
𝜕H
. (5.22)
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In the Keplerian motion assumption used for the first iteration of Picard method,
from Eq. (5.15) we obtain

⟨ℳ⟩ℓ = −
μ
2a
−

1
2π

2π

∫
0

J2
μ
2p

R2⊕
r2
(1 + e cos f )[1 − 3s2 sin2(f + ω)]dℓ,

which is integrated in closed form with the help of the differential relation (4.64). We
obtain

⟨ℳ⟩ℓ = −
μ
2a
+ J2

μ
p
R2⊕
p2

η3( 1
4
−
3
4
c2). (5.23)

When this expression is replaced in Eq. (5.22), taking into account that c = H/G is the
only function that depends on H, we readily find that in the time in which the mean
anomaly advances by 2π, the node evolves under the oblateness perturbation at an
average rate

dh
dt
=
Δh
Δt
= −

3
2
nJ2

R2⊕
p2

c. (5.24)

The trend shown in Eq. (5.24) produces the regression of the nodes of direct in-
clination orbits (c > 0), and the advance of the nodes of retrograde inclination orbits
(c < 0). Note that, beyond the approximate character of Eq. (5.24), the case c = 0 is
in agreement with the previously demonstrated fact from Eq. (5.13) that the nodes of
polar orbits remain fixed.

Proceeding analogously with the other Hamilton equations, we see that the aver-
age variation of L vanishes, which, from the first of Eq. (4.46), shows that, on average,
the orbit semimajor axis remains constant. Besides, the average variation of G also
vanishes, which, shows that, on average, the orbit remains with constant inclination
(because H is an integral of the main problem) and constant eccentricity (because L
remains constant on average).

On the other hand, the average variation of the mean anomaly,

dℓ
dt
=
𝜕⟨ℳ⟩ℓ
𝜕L
= n − 3

4
nJ2

R2⊕
p2

η(1 − 3c2), (5.25)

shows that those orbits of the main problem with such inclination that c = ±√1/3 (I ≈
54.7 deg for direct orbits) evolve, on average, with Keplerian mean motion.1 Finally,

dg
dt
=
𝜕⟨ℳ⟩ℓ
𝜕G
= −

3
4
nJ2

R2⊕
p2
(1 − 5c2), (5.26)

1 Remarkably, the popular GPS orbits are close to this configuration.
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whichvanisheswhen c = ±√1/5, thusuncoveringa “critical” inclination that “freezes”
the periapsis. That is, the periapsis of direct (resp. retrograde) orbits remains fixed, on
average, at the inclination I ≈ 63.4 deg (resp. I ≈ 116.6 deg). The periapsis of an orbit
closer to the equatorial plane than the critical cases advances, whereas the periapsis
of an orbit with inclination closer to polar regresses.

5.3.2 Inclination resonances

Orbits that, on average, remain with constant eccentricity and fixed argument of peri-
apsis are knownas “frozenorbits” andhavedifferent applications for artificial satellite
missions [60, 137, 543]. Due to the axial symmetry of the zonal harmonics potential, on
average, a satellite on a frozen orbit always reaches the same altitude over the Earth’s
surfacewhen the subsatellite point gets exactly the same latitude. In consequence, the
satellite periodically undergoes the same gravitational pull from the zonal harmonics,
which is precisely the description of a physical resonance.

From thedynamical point of view, the phenomenon is identifiedwith a one-to-one
commensurability between the draconitic period, the time between two consecutive
passages of the satellite through the ascending node, and the anomalistic period, in
which the satellite makes two consecutive perigee passages.

Indeed, on account of g = θ − f and, on average, the anomalies advance at the
same rate, Eq. (5.26) is solved for the inclination to obtain

cos2 I = 1
5
[1 + 4

3
p2

R2⊕
1
J2
(
nθ
nf
− 1)], (5.27)

where nθ = Δθ/(2π) and nf = Δf /(2π), showing that the one-to-one resonance certainly
occurs at the critical inclination. Other resonances Δθ/Δf = j/k, with k and j integers,
would produce different “critical” inclinations. However, the fact that the right side of
Eq. (5.27) must be between zero and one imposes the condition

1 + 3J2
R2⊕
p2
≥
Δf
Δθ
≥ 1 − 3

4
J2
R2⊕
p2
. (5.28)

Therefore, for the small value of the Earth’s J2 coefficient, other resonances than the
one-to-one resonance that occurs at the critical inclination will be very shallow, as
illustrated in Fig. 5.1 for direct inclination orbits when J2(R⊕/p)2 = 10−3; cf. [216, 394].

The accuracy of the results obtained in §5.3.1 is limited to effects of first order of J2,
because we limited the integration of the variation equations to the first iteration of
the Picardmethod, inwhich the Keplerian approximation is valid. In §5.5wewill show
that higher-order effects produce important qualitative variations in the long-term dy-
namics of themainproblem.Nevertheless, the first-order approximation that has been
carried out uncovers by itself important relevant effects of the perturbed Keplerian dy-
namics in the artificial satellite theory. Moreover, the effects of other harmonic terms
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Figure 5.1: Inclination resonances for the Earth, as given by Eqs. (5.27) and (5.28).

of the geopotential which are neglected in the main problem truncation may be com-
parable to the second-order effects induced by the second zonal harmonic. Their com-
bined effect will be discussed in Chapter 6.

5.4 Intermediaries

Beyond the averaged dynamics discussed in §5.3, there exist a wealth of integrable ap-
proximations to the main problem dynamics that preserve its secular behavior. These
are the so-called main problem intermediaries [154, 225, 532, 620]. The issue is easily
illustrated expanding Eq. (5.8) in the form

ℳ = 𝒦 + 𝒫Q + 𝒫r + 𝒫θ ,

where 𝒦 is the Keplerian (4.10) in polar variables,

𝒫Q = −J2
μ
r
R2⊕
r2

1
2
, 𝒫r = J2

μ
r
R2⊕
r2

3
4
s2, 𝒫θ = −J2

μ
r
R2⊕
r2

3
4
s2 cos 2θ.

Thefirst approximation to themainproblembeyond theKeplerianone is the equa-
torial main problem 𝒬 = 𝒦 + 𝒫Q, whose integrability was discussed in reference to
Hamiltonian (5.7). However, simple computations show that ⟨ℳ⟩ℓ ̸= ⟨𝒬⟩ℓ. That is, the
equatorial main problem differs from the full model in long-term effects, and hence is
not an acceptable intermediary. Still, equatorial circular orbits have been successfully
used as variation orbits in some studies [74].

On the other hand, the truncation 𝒞 = 𝒦+𝒫Q+𝒫r is also free from θ, yet it now car-
ries dependenceon inclination. SinceΘ is constant, theone-degree-of-freedomHamil-
tonian 𝒞 is integrable. At variancewith the equatorialmain problem, it can be checked
that now ⟨ℳ − 𝒞⟩ℓ = ⟨𝒫θ⟩ℓ = 0. Therefore

𝒞 =
1
2
(R2 + Θ

2

r2
) −

μ
r
− J2

μ
r
R2⊕
r2
(
1
2
−
3
4
s2) (5.29)
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is a good intermediary of the main problem Hamiltonian that admits a closed-form
solution in termsof elliptic functions [193, 416]. It is knownasCid’s radial intermediary
[111, 165].

5.4.1 Common intermediaries

Thus, “common” intermediary solutions of the main problem are obtained by ignor-
ing small effects of particular orbits, with the additional requirement that the ignored
effects are purely periodic. This simplification of the main problem dynamics must be
done skillfully in order to guarantee that the intermediary is integrable and still keeps
the secular behavior of the full problem [194].

For instance, if we multiply the last summand of Eq. (5.29) by the unity function

r
p
(1 + e cos f ) = 1, (5.30)

obtained from Eq. (4.29), then Cid’s radial intermediary takes the form

𝒞 =
1
2
(R2 + Θ

2

r2
) −

μ
r
− J2

μ
p
R2⊕
r2
(
1
2
−
3
4
s2) − J2

μ
p
R2⊕
r2
e cos f( 1

2
−
3
4
s2),

where it is easy to check that the last summand averages to zero in themean anomaly.
Therefore, the simpler radial Hamiltonian

𝒟 =
1
2
(R2 + Θ

2

r2
) −

μ
r
− J2

μ
p
R2⊕
r2
(
1
2
−
3
4
s2), (5.31)

is also a good intermediary—the “common” version of Deprit’s radial intermediary
[154]—that, while keeping all the secular terms of the main problem, accepts closed-
form integration in elementary functions. Indeed, from the definition of the orbit pa-
rameter in Eq. (4.21), we replace μ = Θ2/p in the last summand of Eq. (5.31), which is
further reorganized in the form

𝒟 =
1
2
(R2 + Θ̃

2

r2
) −

μ
r
, (5.32)

of a quasi-Keplerian system with “varied angular momentum”

Θ̃ = Θ√1 + 1
2
J2(R⊕/p)2(1 − 3c2), (5.33)

which is constant because N and Θ are integrals of 𝒟. Deprit’s radial intermediary
is integrated like the Kepler problem, therefore involving the solution of the Kepler
equation.
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Radial Hamiltonians are of one degree of freedom due to the cyclic character of θ.
Therefore, radial intermediaries are the simplest intermediaries of the main problem.
However, two-degrees-of-freedom intermediaries can be derived from the full main
problem Hamiltonian using similar simplification procedures to those used in the ra-
dial case. For instance, if wemultiply the whole disturbing function of the main prob-
lem Hamiltonian (5.8) by the unity function (5.30), we readily check that the term
− 12 J2(μ/p)(R⊕/r)

2(1− 3s2 sin2 θ)e cos f is purely periodic in the mean anomaly. Neglect-
ing this term we obtain Aksnes’ zonal intermediary [6],

𝒜 =
1
2
(R2 + Θ

2

r2
) −

μ
r
+ J2

μ
p
R2⊕
r2
(
3
2
s2 sin2 θ − 1

2
), (5.34)

which, in view of ⟨ℳ⟩ℓ = ⟨𝒜⟩ℓ, is also a good intermediary of the main problem that
is integrable in elliptic functions [6, 170].

Finally, it is worth noting that there are intermediary solutions of the zonal gravi-
tational potential, without constraint to themain problem,which retain some second-
order effects that include the full contribution of J2. More precisely, solutions of the
Laplace equation in oblate spheroidal coordinates derived by Vinti [662–666] admit
separability of the Hamilton–Jacobi equation for exact values of J2 and J3, and for a
value J4 = −J22 that is close to the actual J4 of the geopotential. As shown in [78], Vinti’s
problem is equivalent to the generalized problem of two fixed centers [5, 466]—the lat-
ter still remaining as the integrable kernel in the core of successful orbit propagation
programs [244].

5.4.2 Natural intermediaries

Replacing themain problemHamiltonian by a different systemobtained by neglecting
some effects is only justified by the results. Rather, we proceed analytically and look
for an infinitesimal contact transformation (r, θ, ν,R,Θ,N , ϵ) 󳨃→ (r󸀠, θ󸀠, ν󸀠,R󸀠,Θ󸀠,N 󸀠),
such that when applied to the main problem it yields a good intermediary in the new
variables up to first-order effects of J2. In this way the intermediary solution is more
effective than common intermediaries because it takes account of all themainproblem
effects, secular and periodic, up to the first order of J2. This kind of intermediary was
called natural by Deprit [154], who, in addition, showed that common intermediaries
in polar variables can be reset as natural intermediaries.

The naturalization of common intermediaries is achieved by standard application
of the Lie transforms method, in which the main problem is the original perturbation
Hamiltonian ℳ = ℋ0,0 + ϵℋ1,0, the intermediary is the new, simplified Hamiltonian
ℳ󸀠 = ℋ0,0 + ϵℋ0,1, and ϵ = J2 is a physical small parameter. Then we only need to
solve the first order of the homological equation (2.48).
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The solution is most easily obtained in Delaunay variables, in which the Lie
derivative is Eq. (4.66), and the homological equation is Eq. (4.67) with m = 1, in
which both ℋ̃0,1 ≡ ℋ1,0 andℋ0,1 are known.

The naturalization procedure is illustrated for Deprit’s radial intermediary, for
which we want to compute the infinitesimal contact transformation that, after ne-
glecting effects of order of J22 , converts the main problem Hamiltonian (5.8) into the
radial Hamiltonian (5.31). In Delaunay variables, the main problem takes the form of
Eq. (5.15). Therefore,

ℋ0,0 = −
μ
2a
, (5.35)

ℋ1,0 = −
μ
r
R2⊕
r2

1
2
[1 − 3s2 sin2(f + ω)], (5.36)

where a, r, s, f , and ω are functions of the Delaunay variables. The new Hamiltonian
is 𝒦 = ℋ0,0 + J2ℋ0,1 +𝒪(J22 ) in which, from Eq. (5.31),

ℋ0,1 = −
μ
p
R2⊕
r2
(
1
2
−
3
4
s2). (5.37)

The form of Eqs. (5.36) and (5.37) shows that the difference ℋ1,0 − ℋ0,1 that en-
ters the right side of Eq. (4.68), is made only of periodic terms of the true anomaly.
Therefore, we reformulate the Lie derivative (4.66) in terms of f using the differential
relation (4.64), to obtain

ℒ0 =
G
r2
𝜕
𝜕f
. (5.38)

In consequence, the homological equation (4.68) turns into

𝒲m = ∫(ℋ̃0,m −ℋ0,m)
r2

G
df . (5.39)

Then, fromEq. (4.21), we replace μ = G2/p into Eqs. (5.36) and (5.37), which in turn
are replaced into Eq. (5.39) to trivially yield

𝒲1 = −
1
8
G
R2⊕
p2
{(4 − 6s2)e sin f

+ s2[3e sin(f + 2ω) + 3 sin(2f + 2ω) + e sin(3f + 2ω)]}, (5.40)

or

𝒲1 = −
Θ
8
R2⊕
p2
[2σ(2 − 3s2 − s2 cos 2θ) + (3 + 4κ)s2 sin 2θ], (5.41)

in polar variables, in which s2 = 1−N2/Θ2, p = Θ2/μ, and the projections of the eccen-
tricity vector in the orbital frame, previously defined in Eq. (5.21), are now

σ = Rp
Θ
, κ = −1 + r

p
. (5.42)
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The transformation equations are limited to the first relation in Eq. (2.17) for the
current case. Then the direct transformation

ξ = ξ 󸀠 − 1
2
J2(R⊕/p)

2Δξ +𝒪(J22 ),

with ξ ∈ (r, θ, ν,R,Θ,N), is given by the first-order corrections,

Δr = p(1 − 3
2
s2 − 1

2
s2 cos 2θ), (5.43)

Δθ = [3
2
−
7
4
s2 + (2 − 3s2)κ] sin 2θ

− σ[5 − 6s2 + (1 − 2s2) cos 2θ], (5.44)

Δν = c[σ(3 + cos 2θ) − (3
2
+ 2κ) sin 2θ], (5.45)

ΔR = pΘ
r2

s2 sin 2θ, (5.46)

ΔΘ = −Θs2[(3
2
+ 2κ) cos 2θ + σ sin 2θ], (5.47)

ΔN = 0, (5.48)

in which all the entities are functions of the polar-nodal prime variables. Since the
transformation is limited to first-order effects, the same corrections Δξ apply to the
inverse transformation

ξ 󸀠 = ξ + 1
2
J2(R⊕/p)

2Δξ +𝒪(J22 ),

but now the right sides of Eqs. (5.43)–(5.48) must be evaluated in the original polar
variables.

The attentive reader will have noticed that in this particular case

ℋ0,1 ̸= ⟨ℋ1,0⟩ℓ ≡
μ
p
R2⊕
p2

η3 1
4
(3s2 − 2),

and, therefore,ℋ0,1 is not constrained to belong to the kernel of the Lie derivative. Still,
ℋ0,1 holds all the terms ofℋ1,0 pertaining to the kernel of the Lie derivative, and hence
⟨ℋ1,0⟩ℓ = ⟨ℋ0,1⟩ℓ. It is precisely because of that, that the integrand of Eq. (5.39) ismade
only of terms pertaining to the image of the Lie derivative, and hence the homological
equation was solved without difficulty.

The solution of the quasi-Keplerian Hamiltonian (5.32)–(5.33), which is now writ-
ten in prime variables, can be approached by a complete Hamiltonian reduction fol-
lowing exactly the same steps as carried out in §4.3 and §4.4 for the solution of the
Kepler problem [259]. Alternatively, this quasi-Keplerian Hamiltonian can be reduced
to a pure Keplerian system by means of a torsion transformation [154, 155].
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5.4.3 Torsions for quasi-Keplerian systems

The torsion (r󸀠, θ󸀠, ν󸀠,R󸀠,Θ󸀠,N 󸀠) 󳨃→ (r∗, θ∗, ν∗,R∗,Θ∗,N∗) is a canonical transformation

(r󸀠, θ󸀠, ν󸀠) = 𝜕T
𝜕(R󸀠,Θ󸀠,N 󸀠)

, (R∗,Θ∗,N∗) = 𝜕T
𝜕(r∗, θ∗, ν∗)

, (5.49)

derived from a generator in mixed variables,

T = T(r∗, θ∗, ν∗,R󸀠,Θ󸀠,N 󸀠) ≡ r∗R󸀠 +W(θ∗, ν∗,Θ󸀠,N 󸀠),

that modifies the angular variables while leaving untouched the radial ones.
Because the node is ignorable in Deprit’s radial intermediary we choose W =

ν∗N 󸀠 + W̃(θ∗,Θ󸀠,N 󸀠). Also, because we want to convert the function Θ̃ = Θ̃(Θ󸀠,N 󸀠)
in Eq. (5.32) into a single variable (the true angular momentum Θ∗ = Θ̃), we choose
W̃ = θ∗Θ̃(Θ󸀠,N 󸀠). Hence,

T = r∗R󸀠 + ν∗N 󸀠 + θ∗Θ̃(Θ󸀠,N 󸀠), (5.50)

in which Θ̃(Θ󸀠,N 󸀠)must be replaced by Eq. (5.33) written in the prime variables. Then
the torsion transformation Eq. (5.49) is

r󸀠 = r∗, (5.51)

θ󸀠 = θ∗ 𝜕Θ̃
𝜕Θ󸀠
= θ∗[ Θ̃

Θ󸀠
− ̃J2

Θ󸀠

Θ̃
(2 − 9c2)], (5.52)

ν󸀠 = ν∗ + θ∗ 𝜕Θ̃
𝜕N 󸀠
= ν∗ − 3c ̃J2

Θ󸀠

Θ̃
θ∗, (5.53)

R∗ = R󸀠, (5.54)

Θ∗ = Θ̃ = Θ󸀠√1 + ̃J2(1 − 3c2), (5.55)

N∗ = N 󸀠, (5.56)

in which we abbreviate ̃J2 = ̃J2(Θ󸀠) ≡
1
2 J2(R⊕/p)

2.
Note that the new, asterisk variables are easily solved from Eqs. (5.52) and (5.53)

as explicit functions of the old, prime variables. Conversely, the inverse transforma-
tion requires root-finding procedures to solve Θ󸀠 from Eq. (5.55), who therefore must
remain implicit. Alternatively, since the transformation only needs to be accurate to
the first order of J2, series expansions in powers of J2 can be made in order to make
both transformations explicit. That is, neglecting terms𝒪(J22 ) and higher, we obtain

Θ󸀠 = Θ∗[1 − 1
4
J2
R2⊕
p2
(1 − 3c2)],

in which, now, p = (Θ∗)2/μ and c = N∗/Θ∗.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



106 | 5 The main problem of the artificial satellite

The final Hamiltonian

T : 𝒟 = 1
2
(R∗2 + Θ

∗2

r∗2
) −

μ
r∗2
, (5.57)

is purely Keplerian in the chart (r∗, θ∗, ν∗,R∗,Θ∗,N∗), and hence is solved like in §4.4.
In summary, the corrections (5.43)–(5.48) remove non-essential periodic effects

from the main problem to find an integrable approximation—Deprit’s radial interme-
diary—that keeps all the main problem dynamics up to the first order of J2, without
restriction to the secular terms. In particular, essential periodic effects, which are re-
lated to the equation of the center, remain in the intermediary problem.

5.5 Discretization of the flow

Beyond the general behavior predicted by the secular terms discussed in §5.3, or the
intermediary solutions in §5.4, other facts of the main problem dynamics must be in-
vestigated through numerical explorations, which are local in nature. Still, because
the integral provided by the third component of the angular momentum vector de-
couples the motion, global facts of the reduced dynamics in the instantaneous orbital
plane can be obtained with the usual tools of non-linear dynamics, like Poincaré sur-
faces of section or the continuation of periodic orbits [449].

Indeed, Eqs. (5.9)–(5.12) define a two degrees of freedom, conservative flow in
which the integral N plays the role of a simple parameter. Then the dynamics in
the parametric plane (N , J2) can be discussed through propagations of different sets
(r0, θ0,R0,Θ0) of initial conditions. In particular, for given values of the parame-
ters, the trajectory in the orbital plane corresponding to a specific energy manifold
ℳ(r0, θ0,R0,Θ0) = E of the Hamiltonian (5.8) is implicitly defined as

F1(r, θ,R,Θ;E) ≡ℳ − E = 0. (5.58)

If we constrain ourselves to the case of boundedmotion, this three-dimensional curve
intersects the surface θ (mod 2π) = 0 at a given point (rk ,Rk) each time θ advances by
2π—the corresponding value of Θ = Θ(rk ,0,Rk ;E) been determined from Eq. (5.58).

In general, consecutive intersections, k = 1, 2, . . . , of the trajectorywith the surface
of section can occur at any place on the (r,R) plane, but for a 2π-periodic orbit theywill
always happen exactly at the same point—or at a discrete number n of fixed points
if the orbit were 2nπ-periodic. On the other hand, if the motion in the orbital plane
were integrable, then another integral, say 𝒥 = 𝒥 (r, θ,R,Θ), would exist in addition
to the Hamiltonian and independent of it. Then, for the same initial conditions as
those that determine the energymanifold Ewewill get𝒥 (r0, θ0,R0,Θ0) = J. Therefore,
the trajectory in the orbital plane will be also determined as an implicit function of J,
say

F2(r, θ,R,Θ; J) ≡ 𝒥 − J = 0. (5.59)
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Elimination of Θ between Eqs. (5.59) and (5.58) will give F3(r, θ,R;E, J) = 0, which
shows that points (rk ,Rk) on the surface of section will pertain to the curve implic-
itly determined by F3(rk ,0,Rk ;E, J) = 0. Conversely, identification of such curves in
the surface of section provide hints on integrability [280]. On the other hand, even
though the main problem does not accept the third integral 𝒥 these invariant curves
seem to exist in some regions of phase space, at least for the values of J2 of interest in
astrodynamics [70, 138].

It isworthmentioning that the intersectionwith the surface of section θ = 0occurs
in the ascending node of the orbit, when it crosses the equatorial plane in the upwards
direction. Analogously, intersections with the section θ = π occur in the descending
node of the orbit. That is, in both cases z = 0 and

rk = ρk = √x2k + y
2
k , Rk = Pk =

xk ẋk + yk ẏk
ρk
.

Therefore, the surface of section θ = 0 in polar variables is the same as the surface of
section z = 0 (Z > 0) in cylindrical variables (ρ, z, λ,P, Z,Λ), where λ is longitude and
its conjugatemomentum is Λ = N, which, since the seminal work of Hénon andHeiles
[280] are typical variables used in the representation of surfaces of section of problems
with axial symmetry [70, 138, 201, 310, 385]. In consequence, periodic orbits of the
main problem in the orbital plane map onto periodic orbits in the rotating meridian
plane of the satellite.

On the other hand, while periodic orbits in the orbital plane are not generally
periodic in three-dimensional space, a subset of them are certainly periodic. More
specifically, when the rate of variation of the node becomes commensurate with the
frequency of the periodic orbit in the orbital plane, the orbits become truly periodic
in three-dimensional space. Notably, this match occurs more easily when the mo-
tion is measured in a frame rotating with the Earth’s rotation rate, a case in which
three-dimensional periodic orbits repeat their ground trace on the surface of the Earth
[137, 386–388, 428, 604].

The discretization of the four-dimensional flow stemming from the main prob-
lemHamiltonian is carried out by numerically propagating Eqs. (5.9)–(5.12), which are
sampled each time θ advances by 2π, for different energymanifolds. The reduced flow
in the orbital plane is then visualized by means of an atlas of phase portraits, each
one corresponding to a different point of the parameter space (N , J2). An example is
presented in Fig. 5.2, where a sequence of phase portraits for different values of the
third component of the angular momentum vector is shown. We fixed J2 = 0.1 in order
to reduce the integration time needed to visualize long tracks of invariant curves in
the computed surfaces. Nevertheless, equivalent figures will be obtained from differ-
ent J2 values due to the scale invariance of the main problem [70]. Units of length and
time such that R⊕ = 1 and μ = 1 have been chosen, meaning that length is measured
in units of the equatorial radius and that one orbital period is traversed in roughly 2π
units of time. The energy is fixed to E = −0.5 in all cases, which would correspond
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Figure 5.2: Phase portraits (r, R) of the section θ (mod 2π) = 0 for J2 = 0.1, E = −0.5, and N = 0.45
(upper), 0.44 (center) and 0.43 (lower). Units of length such that R⊕ = 1 and time such that μ = 1.

to orbits with semimajor axes slightly longer than the equatorial radius of the oblate
body. This is done to enhance the effect of the perturbation on the massless body for
illustrative purposes, yet most elliptic orbits corresponding to this case would not be
realistic because of their early impact on the surface of the oblate body.

The upper plot of Fig. 5.2 corresponds to the value N = 0.45 in the units chosen,
and shows a fixed point of the elliptic type r ≈ 1.03, R = 0, corresponding to a stable,
circular orbit which is periodic in the (instantaneous) orbital plane. The radii with
which other orbits intersect the surface of section θ = 0 vary with time, and shows
the advance of the line of apsides, in agreement with the secular motion predicted by
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Eq. (5.26). The maximum (resp. minimum) value of r of orbits with rotating periap-
sis occurs when R = 0, that is, when the orbit intersects the section in the apoapsis
(resp. periapsis).

The surface of section in the center plot of Fig. 5.2, corresponds to N = 0.44, and
uncovers important changes in the dynamics. Thus, circular orbits, which now have a
slightly higher inclination than in the previous case, are represented by a fixed point
of the hyperbolic type with coordinates r ≈ 1.03, R = 0. Besides, two fixed points of
the elliptic type exist with r ≈ 1.85, R = 0, and r ≈ 0.97, R = 0. That is, a bifurcation
phenomenon happened in which the stability of the circular orbits turned into insta-
bility, and two stable elliptic orbits that are periodic in the orbital plane emerged from
the bifurcation. These eccentric periodic orbits intersect the surface of section θ = 0
when R = 0, and hence their lines of apsides lie on the equatorial plane. Besides, the
homoclinic trajectory stemming from the unstable equilibrium separates two regions
of librating perigee about the elliptic stable equilibria from the general advance of the
perigee outside these libration regions.

Finally, the surface of section corresponding toN = 0.43, in which the inclination
of the circular orbits is still higher, is presented in the lower plot of Fig. 5.2. Now, five
fixed points are clearly noticed in the figure. In particular, circular orbits come back
to stability in a new bifurcation phenomenon that produces two new unstable elliptic
periodic orbits r ≈ 1.02, R ≈ ±0.08. That is, each of them crosses the equator (θ = 0)
upwards and downwards at the same distance but opposite radial velocity, meaning
that the lines of apsides of these unstable periodic orbits lie in the direction θ = ± π2 .
Now, the perigees of elliptic orbits evolvewith retrogrademotion in the region of lower
eccentricities, the two regions of perigee libration remain, and the perigees of elliptic
orbits with higher eccentricity advance.

The qualitative dynamics remain the same when J2 is of the order of one thou-
sandth, but then the double bifurcation sequence happens within a very small vari-
ation of N in the close vicinity of the critical inclination. The libration region is very
thin in that case, and the eccentricity of librating-perigee orbits increases very fast for
decreasing values of N .

In summary, the true, numerically propagated dynamics of the main problem ex-
poses important qualitative differences with respect to the predicted behavior of inter-
mediary approximations, yet the differences are bounded to a narrow region in phase
space. Indeed, while integrable approximations obtained from separable Hamiltoni-
ans are able to detect the existence of orbits with constant eccentricity and fixed argu-
ment of the perigee close to the critical inclination, they predict that all of them have
the perigee frozen irrespective of their eccentricity. This is not the case, however, as
the direct integration of the problem has shown by means of the construction of the
Poincaré surfaces of section in Fig. 5.2. Indeed, second-order terms missed by the in-
termediaries limit radically the number of orbits exhibiting frozen perigee dynamics.
In Chapter 6, we will learn how other second-order effects of the geopotential may
further change this picture.
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5.6 The critical inclination

Beyond the first order of J2 secular effects computed analytically in §5.3, which miss
important features of the real main problem dynamics, we can take advantage of the
techniques described in Chapter 2 and apply perturbation theory by Lie transforms
to get a higher-order approximation of the main problem dynamics. In view of the
simplicity of the Lie derivative and the homological equation in Eqs. (4.66) and (4.67),
respectively, the perturbation solution will be approached in Delaunay variables.

To beginwith, wewrite Eq. (5.8) like the usual perturbationHamiltonian (2.30), in
whichℋ0,0 andℋ1,0 are givenbyEqs. (5.35) and (5.36), respectively,ℋm,0 = 0 form ≥ 2,
and ε = J2. Once more, we recall that the entities a, r, s, ω, and f are not variables in
themselves, but functions of some set of canonical variables,which in the current case
are the Delaunay variables.

5.6.1 First order

The procedure starts solving Eq. (4.68) for m = 1. The term ℋ̃0,1 is the same as ℋ1,0,
and the termℋ0,1 is chosen in such away that it cancels the terms ofℋ1,0 pertaining to
the kernel of the Lie derivative (4.66). These terms are easily identified after expanding
Eq. (5.36) like a Fourier series of themean anomaly [78, 171]. However, to avoid restric-
tions related to the size of the obtained series, or limitations of the solution to small
or moderate values of the eccentricity,ℋ0,1 is more suitably computed in closed form
of the eccentricity by direct averaging.

That is,ℋ0,1 = ⟨ℋ1,0⟩ℓ, where, on account of the Lie derivative being constrained
by definition to the Keplerian flow, we are free to use the differential relation (4.64) to
replace the mean anomaly by the true anomaly like the integration variable. In this
way, the averaging is readily solved in closed form of the eccentricity. Namely,

ℋ0,1 =
1
2π

2π

∫
0

ℋ1,0
r2

a2η
df = 1

4
μ
a
R2⊕
p2

η(3s2 − 2), (5.60)

which, as expected, is the same as the disturbing term of the secular Hamiltonian
(5.23), except for the coefficient J2 which is taken here as the small parameter of the
Lie transforms method.

By the same token, the homological equation becomes Eq. (4.69). Replacing
ℋ̃0,m = ℋ1,0 by Eq. (5.36) andℋ0,m = ℋ0,1 by (5.60), the first-order term of the generat-
ing function is readily solved, also in closed form of the eccentricity, to obtain

𝒲1 = −
1
8
G
R2⊕
p2
[(4 − 6s2)(ϕ + e sin f ) + 3es2 sin(f + 2ω)

+ 3s2 sin(2f + 2ω) + es2 sin(3f + 2ω)] + A1, (5.61)
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in which A1 is an arbitrary integration “constant” meeting the only condition of being
independent of the mean anomaly. That is, dA1/dℓ = 0 and A1 is a function of g, G,
and L when expressed in Delaunay variables. While the equation of the center ϕ is a
purely periodic function of themean anomaly, given in Eq. (4.65), the fact that it is not
a trigonometric function complicates its closed-form treatment in the computation of
higher orders of the perturbation solution, as we will see immediately.

For simplicity in the following computations, we choose here A1 = 0, in this way
keeping the number of terms of the generating function at a minimum. However, we
highlight that this selection of the arbitrary constant makes 𝒲1 to be made of both
long- and short-period terms. Indeed [342, 362, 631],

⟨sinmf ⟩ℓ = 0, ⟨cosmf ⟩ℓ = (−β)
m(1 +mη), (5.62)

where we used the usual definition

β = e
1 + η
= √

1 − η
1 + η
. (5.63)

Then Eq. (5.61) is readily averaged over the mean anomaly, to obtain [363]

⟨𝒲1⟩ℓ = A1 −
1
8
G
R2⊕
p2
(1 + 2η)β2s2 sin 2ω. (5.64)

Therefore, unless A1 be chosen so that the right side of Eq. (5.64) vanishes, 𝒲1 will
depend on hidden long-period terms of the order of e2 driven by the perigee dynamics.
This issue, which is a consequence of the closed-form integration and does not occur
when themean anomaly appears explicitly in theHamiltonian,will be tackled inmore
detail in §6.7.

5.6.2 Second order

At second order, the known terms ℋ̃0,2 of the homological equation are those of
Eq. (2.37), in whichℋ2,0 ≡ 0 in the current case. Hence,

ℋ̃0,2 = {ℋ1,0;𝒲1} + {ℋ0,1;𝒲1}, (5.65)

which bears terms of both the kernel and the image of the Lie derivative (4.66). The
former are canceled out of the homological equation (4.68) when choosing ℋ0,2 =
⟨ℋ̃0,2⟩ℓ.

After evaluating the Poisson brackets in Eq. (5.65), we identify three types of terms
of a different nature. Thus, ℋ̃0,2 = ℋ̃0,2,1 + ℋ̃0,2,2 + ℋ̃0,2,3, where

ℋ̃0,2,1 = −
9
8
μ
r
R4⊕
p4

p2

r2
s2(5s2 − 4)ϕ sin(2f + 2ω), (5.66)
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ℋ̃0,2,2 =
3
16

μ
p
R4⊕
p4

η3{−η(2 − 3s2)2 + s2(4 − 5s2)[3e cos(f + 2ω)

+ 3 cos(2f + 2ω) + e cos(3f + 2ω)]}, (5.67)

ℋ̃0,2,3 =
3
128

μ
p
R4⊕
p4

p2

r2
2
∑
j=0

3
∑
i=−3

q2j,is
2j cos[(2j + i)f + 2jg], (5.68)

with the coefficients q2j,i found in Table 5.2.

Table 5.2: Coefficients q2j,i in Eq. (5.68); q4,−3 = q4,3 = 0.

j i q2j,i

0 0 −16(4 − 9s2 + 5s4) − 2(8 − 8s2 − 5s4)e2

±1 −β[60 − 124s2 + 57s4 + (48 − 88s2 + 30s4)η + (2 − 3s2)2η2]
±2 −eβ[24 − 56s2 + 31s4 + (8 − 8s2 − 5s4)η]
±3 −e2(2 − 3s2)2β

1 −3 e2(−2 + 3s2)β
−2 4e2(14 − 15s2)
−1 β[3(38 − 37s2) + 12(8 − 7s2)η − 5(2 − 3s2)η2]
0 −8[4 − 9s2 − (2 − s2)e2]
1 −β[150 − 221s2 + 4(24 − 35s2)η + (2 − 3s2)η2]
2 −4eβ[22 − 31s2 + (10 − 13s2)η]
3 −5e2(2 − 3s2)β

2 −2 −5e2

−1 −6e
0 8 − 2e2

1 10e
2 3e2

After replacing the inverse of the radius in Eq. (5.66) using Eq. (4.29), we check that
ℋ̃0,2,1 depends on themean anomaly through terms of the formϕ sinmf , andϕ cosmf ,
m = 0, 1, . . . , 5, from which we must identify those pertaining to the kernel of the Lie
derivative (4.66). Formulas for the definite integration of these kinds of terms are given
in [487]. In particular,

⟨ϕ cosmf ⟩ℓ = 0, ⟨ϕ sinmf ⟩ℓ =
η
em

Qm(η), m ≥ 0, (5.69)

where the coefficientsQm related to terms stemming from Eq. (5.66) are detailed in Ta-
ble 5.3. Note that the apparent singularity for circular orbits is just virtual, as checked
whenQm is expanded in powers of the eccentricity. In the current case the expansions
are unnecessary because the troublesomedenominators cancel outwhen the different
integrals are grouped together.
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Table 5.3: From top to bottom, terms Q1, . . .Q5 in Eq. (5.69), cf. [437].

3
2 − η −

1
2η

2

−3 + 2η + 3η2 − 2η3 − 4η2 log 2η
1+η

9
2 − 3η − 4η

2 + 7η3 − 9
2η

4 + 16η2 log 2η
1+η

−6 + 4η − 2η2 − 16η3 + 28η4 − 8η5 − 8η2(η2 + 5) log 2η
1+η

15
2 − 5η +

131
6 η2 + 30η3 − 183

2 η4 + 149
3 η5 − 25

2 η
6 + 16η2(3η2 + 5) log 2η

1+η

Terms of ℋ̃0,2,2 are free from the radius. They only involve trigonometric factors of the
form cos(mf ± 2ω), withm integer, whose averaging over the mean anomaly is carried
out using Eq. (5.62).

Finally, the coefficient 1/r2 in ℋ̃0,2,3 makes its averaging elementary with the help
of the differential relation between the true and mean anomalies in Eq. (4.64).

After carrying out the required operations, we obtain

ℋ0,2 = −
μ
a
R4⊕
p4

3
64

η[5(8 − 16s2 + 7s4) + 4(2 − 3s2)2η

+ (5s4 + 8s2 − 8)η2 + 2(15s2 − 14)s2e2 cos 2ω], (5.70)

which reveals that the long-term dynamics of the main problem is driven by terms of
second order of J2 in the argument of the perigee. This important qualitative effect is
missed in the first-order secular Hamiltonian (5.23).

Becausewe only focus on the contribution of second-order effects of J2 to the long-
term dynamics, we do not deal here with the computation of second-order periodic
corrections, which is feasible in closed form, yet nontrivial [363, 407]. On the other
hand, the difficulty is easily overcome with the help of Hamiltonian simplification
techniques that will be thoroughly discussed in §6.2.1.

5.6.3 The reduced phase space. Frozen orbits

Once the termsℋ0,m of the newHamiltonian have beenwritten in the new, prime vari-
ables, after neglecting terms of𝒪(J32 ) and higher, we get the new Hamiltonian

ℳ̃ = ℳ̃(−, g󸀠, −, L󸀠,G󸀠,H󸀠) ≡ ℋ0,0 + J2ℋ0,1 +
1
2
J22ℋ0,2, (5.71)

withℋ0,1 andℋ0,2 givenbyEqs. (5.60), and (5.70), respectively,which is only of one de-
gree of freedom in (g󸀠,G󸀠). Then orbits of the reduced phase space can be represented
either by making g󸀠 explicit from ℳ̃ = E in Eq. (5.71), or with simple contour plots of
this reduced Hamiltonian [559, 600]. Moreover, for a given point (L󸀠,H󸀠) in the param-
eter space, the description of the reduced flow is simpler when discussed in terms of
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the non-dimensional Hamiltonian

ℳ∗ =
ℳ̃ −ℋ0,0
J2ℋ0,0

=
ℋ0,1
ℋ0,0
+
1
2
J2
ℋ0,2
ℋ0,0
, (5.72)

in which the energy has been displaced by a constant quantity and the time evolves
in the slow scale τ = J2ℋ0,0t, which has units of angular momentum.

A sample of the reduced phase space is presented in Fig. 5.3. Besides, for illustra-
tion purposes, L󸀠 has been chosen such that a = R⊕ in which case the effect of the
perturbation is magnified, although this choice would make orbits impact the surface
of the Earth save the circular case. Moreover, instead of depicting the total angular
momentum G󸀠 = G󸀠(g󸀠;H󸀠; L󸀠) we get more insight by representing the eccentricity
e = e(G󸀠; L󸀠) as a function of the dynamical parameter

γ = H󸀠/L󸀠, 0 ≤ γ ≤ η ≤ 1. (5.73)

Note that γ = η cos I. Therefore, γ coincides with the cosine of the inclination of circu-
lar orbits, a case in which G󸀠 = L󸀠.

Figure 5.3: Contour plots of the long-term main problem Hamiltonian (5.72) for L󸀠 = √μR⊕ and differ-
ent values H󸀠 = L󸀠γ. Fixed points are frozen orbits.
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Thus, the upper-left plot of Fig. 5.3 shows that for large enough values of γ the peri-
apsis of elliptic orbits rotates. When γ decreases to a certain value, two fixed points
of the elliptic type appear with abscissas ω = 0 and 180 deg (upper-right and lower-
left plots of Fig. 5.3). An additional small decrease of γ results in the appearance of
two new fixed points, now of the hyperbolic type, with abscissas ω = 90 and 270 deg
(lower-right plot of Fig. 5.3). In the latter plot, the horizontal dashed line displays the
value e = (1 − 5γ2)1/2, corresponding to the (mean) eccentricity of an eccentric or-
bit with the critical inclination I = arccos(5−1/2). Orbits below this line have higher
inclinations than the critical one, whereas orbits above this line have lower inclina-
tions.

While the behavior depicted in Fig. 5.3 is in general agreement with the real one
obtained by the discretization of the flow illustrated in Fig. 5.2, the cylindrical map
(g󸀠G󸀠) is not suitable for the correct representation of the flow because the argument
of the perigee is not defined for circular orbits. Therefore, the bifurcation process that
happens when the third component of the angular momentum vector varies is not
well perceived in Fig. 5.3. This flaw is normally amended by representing the flow of
low eccentricity orbits in the so-called semi-equinoctial variables [354], provided by
the projections of the eccentricity vector in the nodal frame

C = e cosω, S = e sinω, (5.74)

which are free from singularities in the case of circular orbits [130, 171, 355]. The
reduced Hamiltonian (5.71) is readily reformulated in these variables by replacing
e2 cos 2ω = C2 − S2, η = (1 − C2 − S2)1/2, and c = γ/η in Eq. (5.72). Corresponding
contour plots are presented in Fig. 5.4. Now, the two consecutive bifurcations of the
circular orbits, which are represented by the point at the origin, are clearly apparent.
Moreover, the contour plots in Fig. 5.4 are similar to the (J2-scaled) phase portraits in
Fig. 5.2, although contrary to the discretization process, here they are rendered almost
instantaneously because there is no need of carrying out any numerical integration.
The plot in the lower-right corner of Fig. 5.4 shows a dashed circle superimposed,
which corresponds to the value e = (1 − 5γ2)1/2 highlighted previously in Fig. 5.3.
Orbits inside this circle have higher inclinations than the critical one, whereas orbits
out of the circle have lower inclinations.

Lower values of γ than those in Fig. 5.4 make the eccentricity of the frozen orbits
to grow fast with almost constant inclination. Still, the region of perigee libration is
concentrated in a thin strip of eccentricities in which the perigee evolves at a slow rate
that only includes second order of J2 effects at the critical inclination; cf. Eq. (5.83) be-
low. In that case, the eccentricity-vector representation does not provide a clear figure,
which, on the contrary is better appreciated in the cylindrical map representation, as
illustrated in Fig. 5.5.
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Figure 5.4: Same as Fig. 5.3 in the eccentricity-vector representation.

Figure 5.5: Reduced phase space of the main problem for γ = cos 64.8∘.

5.6.4 Reduced dynamics on the sphere

In fact, the reduced phase space is neither the cylinder (g󸀠,G󸀠) nor the plane (C, S), but
a two-dimensional compact manifold [120, 135]. Disregarding the case of rectilinear
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orbits, which are not of interest for Earth artificial satellite applications, the flow is
properly represented with the non-dimensional coordinates2 [119, 411, 433]

χ1 = eηs cos g = √1 − η2√η2 − γ2 cos g,

χ2 = eηs sin g = √1 − η2√η2 − γ2 sin g,

χ3 = η
2 −

1
2
(1 + γ2), (5.75)

on the sphere of radius ρ = ρ(H/L󸀠) ≡ √χ21 + χ22 + χ
2
3 =

1
2 (1 − γ

2). The north pole of the
sphere χ1 = χ2 = 0, χ3 = ρ, implies η = 1 and, therefore, represents a circular orbit. Con-
versely, the south pole χ1 = χ2 = 0, χ3 = −ρ yields η2 = γ2, or G󸀠 = |H|, corresponding
to an equatorial elliptic orbit. Other points on the sphere represent families of ellipses
with different arguments of the node, whose eccentricity and pericenter evolution is
represented by a closed curve.

Noting that χ22 =
1
2η

2s2e2(1 − cos 2ω), and replacing s = √1 − (γ/η)2, Hamiltonian
(5.72) is conveniently written in the formℳ∗ =ℳ∗(χ2, η; γ). Namely,

ℳ∗ =
1
4η5
(η2 − 3γ2) + J2

3R2⊕
32a2
[χ22(η

2 − 15γ2) + ( 3
4
− η − 3

4
η2)η4

+ γ2( 11
2
+ 6η − 7

2
η2)η2 − γ4(65

4
+ 9η − 25

4
η2)] 1

η11
.

Then the differential equations of the flow on the sphere are

dχi
dτ
= {χi;ℳ

∗} = {χi; η}
𝜕ℳ∗

𝜕η
+ {χi; χ2}

𝜕ℳ∗

𝜕χ2
, i = 1, 2, 3, (5.76)

in which {χ1; η} = −χ2/L󸀠, {χ2; η} = χ1/L󸀠, {χ3; η} = 0, {χ1; χ2} = 2ηχ3/L󸀠, {χ3; χ2} =
−2ηχ1/L󸀠, and

𝜕ℳ∗

𝜕χ2
= J2

3R2⊕
16a2
(η2 − 15γ2)χ2

1
η11
, (5.77)

𝜕ℳ∗

𝜕η
=

3
4η6
(5γ2 − η2) − J2

9R2⊕
32a2η12

[(3η2 − 55γ2)χ22 +
7
4
η4 − 2η5 − 5

4
η6

+ γ2(33
2
η2 + 16η3 − 49

6
η4) − γ4(715

12
+ 30η − 75

4
η2)]. (5.78)

Particularization of Eq. (5.76) for these values yields

L󸀠 dχ1
dτ
= −χ2[
𝜕ℳ∗

𝜕η
− χ3J2

R2⊕
a2

3
8η10
(η2 − 15γ2)], (5.79)

2 Dimensional versions of these variables have been earlier proposed [120, 592].
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L󸀠 dχ2
dτ
= χ1
𝜕ℳ∗

𝜕η
, (5.80)

L󸀠
dχ3
dτ
= −χ1χ2J2

R2⊕
a2

3
8η10
(η2 − 15γ2), (5.81)

from which it is readily checked that χ1dχ1/dτ + χ2dχ2/dτ = −χ3dχ3/dτ, as it must be
from the constraint ρdρ = 0 derived from the constancy of the radius. Therefore, if two
of the differential equations are satisfied, then the other one is automatically satisfied.

Replacing χ1 = χ2 = 0 in Eqs. (5.79)–(5.81) shows that circular orbits are always
equilibria. Besides, the case χ2 = 0, χ1 ̸= 0, corresponds to equilibria with g󸀠 = 0,π, for
those values of η satisfying simultaneously the condition 𝜕ℳ∗/𝜕η = 0, derived from
Eq. (5.80). Thus, from Eq. (5.78),

32η6(η2 − 5γ2) = J2(R⊕/a)
2[15η6 + 24η5 + 7(14γ2 − 3)η4

− 192γ2η3 − 9γ2(25γ2 + 22)η2 + 360γ4η + 715γ4],

which is solved by the Newton–Raphson method starting from the critical inclination
η2 = 5γ2. The first iteration of the method yields

η = √5γ(1 − J2
R2⊕
a2

1 − 4γ2

50γ4
),

from which G󸀠 < √5H, showing that the bifurcation of the equilibria with g󸀠 = 0,π
happen from a circular orbit with an inclination slightly closer to the equator than the
critical inclination.

Analogously, the case χ1 = 0, χ2 ̸= 0, corresponds to equilibria with g󸀠 = ± π2 for
values of η that satisfy the condition

𝜕ℳ∗

𝜕η
= [η2 − 1

2
(1 + γ2)]J2

R2⊕
a2

3
8η10
(η2 − 15γ2),

derived from Eq. (5.79), where γ3 has been replaced from its definition in Eq. (5.75) and
the left side must be replaced by Eq. (5.78) with χ1 = 0. That is,

32η6(η2 − 5γ2) = J2(R⊕/a)
2[35η6 + 24η5 − 7(50γ2 + 7)η4

− 192γ2η3 + 63γ2(5γ2 + 6)η2 + 360γ4η + 55γ4],

which is solved for η by the Newton–Raphson method starting from the critical incli-
nation η2 = 5γ2. The first iteration of the method gives

η = √5γ(1 + J2
R2⊕
a2

9 − 35γ2

500γ4
),

from which G󸀠 > √5H, showing that the bifurcation of the equilibria at g󸀠 = ±π/2
happens from a circular orbit whose inclination is slightly closer to polar than the
critical inclination case.
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The stability character of the equilibria, which is guessed from the contour plots
in Fig. 5.4, can be computed from the usual linearization of the flow. However, the in-
corporation of additional effects to the perturbationmodel introduces drastic changes
in the stability, as will be shown in §6.1.3. Therefore, it is not discussed here. The in-
terested reader can find the required details in [120].

The reduced flow on the sphere is readily depicted with standard graphic tools,
by assigning colors to the different levels of the (reduced) Hamiltonian integral. Still,
refinements in the technique, such as the automatic selection of colors, may be re-
quired to ensure enough contrast around isolated but close singularities [116]. This
technique is sometimes dubbed “painting” Hamiltonians [270, 546]. An example of
this illustrative kind of portrait is presented in Fig. 5.6.

Figure 5.6: Painting the phase space of the main problem.

Finally, it is worth noting that, up to the truncation order, orbits that are frozen in the
mean-elements space correspond to orbits of the original space that are periodic in the
orbital plane. Indeed, as will be checked in §5.7.1, the short-period corrections needed
to recover the original variables take the same value each time the mean anomaly ad-
vances by 2π, thus meaning that, save for the argument of the node, the osculating
orbital elements of a frozen orbit are repeated periodically.

5.7 Semi-analytical integration

The convenience of removing short-period terms goes beyond the qualitative explo-
ration of the reduced flow and allows for the integration of themain problem in a very
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efficient semi-analytical way. Indeed, the Hamilton equations of the reduced Hamil-
tonian (5.71) are

dℓ󸀠

dt
= n + nJ2

R2⊕
p2

3
4
η(2 − 3s2) + nJ22

R4⊕
p4

3
128

η[15(8 − 16s2 + 7s4)

+ 16(2 − 3s2)2η − 5(8 − 8s2 − 5s4)η2

− (28 − 30s2)(3 − 5η2)s2 cos 2ω], (5.82)
dg󸀠

dt
= nJ2

R2⊕
p2

3
4
(4 − 5s2) + nJ22

R4⊕
p4

3
128

× [γ0,0 + γ0,1η + γ0,2η
2 + (γ1,0 + γ1,2η

2) cos 2ω], (5.83)
dh󸀠

dt
= −nJ2

R2⊕
p2

3
2
c − nJ22

R4⊕
p4

3
32
c[5(8 − 7s2)

+ 12(2 − 3s2)η − (4 + 5s2)η2 + 2(7 − 15s2)e2 cos 2ω], (5.84)
dG󸀠

dt
= G󸀠nJ22

R4⊕
p4

3
32
s2(14 − 15s2)e2 sin 2ω, (5.85)

where the inclination polynomials γi,j in Eq. (5.83) are given in Table 5.4, and the quan-
tities n, p, s, η, e, and ω, are functions of the prime variables.

Table 5.4: Inclination polynomials γi,j in Eq. (5.83).

γ0,0 = 440 − 860s2 + 385s4

γ0,1 = 192 − 528s2 + 360s4 γ1,0 = 56 − 372s2 + 330s4

γ0,2 = −56 + 36s2 + 45s4 γ1,2 = −56 + 316s2 − 270s4

Because Eqs. (5.82)–(5.85) are free from short-period effects, which are related to the
meananomaly, their numerical integrationproceedswith very large step sizes. At each
step of the numerical integration, the short-period effects are recovered by analytical
evaluation of the first-order corrections computed from Eq. (2.17). To the first order, we
get x = x󸀠 + J2x0,1 where x0,1 = {x;𝒲1}, and x denotes a particular variable. For direct
corrections x0,1 must be written in prime variables, whereas for the inverse transfor-
mation x󸀠 = x − J2x0,1 the corrections x0,1 must be written in original variables.

5.7.1 Short-period corrections in Delaunay variables

In the case of the Delaunay variables, 𝒲1 is replaced by Eq. (5.61). When we choose
A1 = 0 the corrections to the Delaunay variables are H0,1 = 0 and

ℓ0,1 = −
R2⊕
p2

η
32
[6(4

e
− e)(2 − 3s2) sin f + 12(2 − 3s2) sin 2f

+ 2e(2 − 3s2) sin 3f − 3es2 sin(−f + 2ω) − 18s2 sin 2ω
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− 3(5e + 4
e
)s2 sin(f + 2ω) − (e − 28

e
)s2 sin(3f + 2ω)

+ 18s2 sin(4f + 2ω) + 3es2 sin(5f + 2ω)], (5.86)

g0,1 =
R2⊕
p2

1
32
{24(4 − 5s2)ϕ + 6[4

e
(2 − 3s2) + e(14 − 17s2)] sin f

+ 12(2 − 3s2) sin 2f + 2e(2 − 3s2) sin 3f + 3es2 sin(f − 2ω)

− 18s2 sin 2ω − 3[4
e
s2 + e(8 − 15s2)] sin(f + 2ω)

− 12(2 − 5s2) sin(2f + 2ω) + [28
e
s2 − e(8 − 19s2)] sin(3f + 2ω)

+ 18s2 sin(4f + 2ω) + 3es2 sin(5f + 2ω)}, (5.87)

h0,1 = −
R2⊕
p2

c
4
[6(ϕ + e sin f ) − 3e sin(f + 2ω) − 3 sin(2f + 2ω)

− e sin(3f + 2ω)], (5.88)

L0,1 = L
1
4
R2⊕
p2

1
8η2
{(4 − 6s2)[2(5 − 3η2 − 2η3) + 3(4 + e2)e cos f

+ 6e2 cos 2f + e3 cos 3f ] + 3s2[e3 cos(−f + 2ω) + 6e2 cos 2ω
+ 3(4 + e2)e cos(f + 2ω) + 4(2 + 3e2) cos(2f + 2ω) + (4 + e2)
× 3e cos(3f + 2ω) + 6e2 cos(4f + 2ω) + e3 cos(5f + 2ω)]}, (5.89)

G0,1 = G
R2⊕
p2

s2

4
[3e cos(f + 2ω) + 3 cos(2f + 2ω) + e cos(3f + 2ω)]. (5.90)

The inverse corrections are given by Eqs. (5.86)–(5.90) too, but now the quantities in
the equations are functions of the original Delaunay variables.

Periodic corrections to the usual orbital elements are sometimes preferred. Be-
cause these elements are particular functions of the Delaunay variables, their oscu-
lating values are obtained from the mean Delaunay variables using Deprit’s recursion
(2.15), as described in §2.1. Thus, Φ0,1 = Φ1,0 + J2{Φ0,0;𝒲1} where Φ0,0 is replaced by
each orbital element written as a function of the Delaunay variables, and Φ1,0 = 0.
From Eq. (4.46), it is readily found that

{a;𝒲1} = 2
L0,1
L

a, {e;𝒲1} =
η2

e
(
L0,1
L
−
G0,1
G
), {I ;𝒲1} =

G0,1
G

c
s
,

whereas {Ω;𝒲1} = h0,1, {ω;𝒲1} = g0,1, {M;𝒲1} = ℓ0,1.

5.7.2 Short-period corrections in non-singular variables

Wenote that eccentricity appears in the denominators of Eqs. (5.86) and (5.87),making
the periodic corrections ℓ0,1 and g0,1 singular in the case of circular orbits. However,
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the singularity is of the virtual type [284] and is easily avoided by a simple change of
variables.

On theotherhand, the fact that ℓ0,1+g0,1 is free fromsingularitiesmakes customary
the use of the (non-canonical) non-singular variables for zero-eccentricity orbits given
by L, h, H, the mean longitude F = ℓ + g, and the semi-equinoctial variables defined
in Eq. (5.74). The needed first-order corrections are

F0,1 =
R2⊕
p2

1
32
{24(4 − 5s2)ϕ + 6β[22 − 29s2 + 4(4 − 5s2)η

+ (2 − 3s2)η2] sin f + 12eβ(2 − 3s2) sin 2f + 2e2β(2 − 3s2)

× sin 3f + 3e2βs2 sin(f − 2ω) − 18eβs2 sin 2ω − 3β[8 − 11s2

+ 4(2 − 5s2)η − 5s2η2] sin(f + 2ω) − 12(2 − 5s2) sin(2f + 2ω)

− β[8 − 47s2 + 4(2 − 5s2)η − s2η2] sin(3f + 2ω)

+ 18s2eβ sin(4f + 2ω) + 3s2e2β sin(5f + 2ω)},

C0,1 = −
R2⊕
p2

1
32
{24(4 − 5s2)eϕ sinω + 9e2(4 − 5s2) cos(f − ω)

− 2β[(20 − 21s2)(1 + η) + (8 − 12s2)η2] cosω

− 6[8 − 10s2 + (10 − 11s2)e2] cos(f + ω) − 36c2e cos(2f + ω)

− (8 − 7s2)e2 cos(3f + ω) + 3(4 − 13s2)e2 cos(f + 3ω)

+ 12(1 − 5s2)e cos(2f + 3ω) − 2[14s2 − (2 − 9s2)e2]

× cos(3f + 3ω) − 18s2e cos(4f + 3ω) − 3s2e2 cos(5f + 3ω)},

S0,1 =
R2⊕
p2

1
32
{24(4 − 5s2)eϕ cosω + 3e2(12 − 13s2) sin(f − ω)

+ 2β[(20 − 39s2)(1 + η) + 4(2 − 3s2)η2] sinω + 6[8 − 14s2

+ (6 − 9s2)e2] sin(f + ω) + 12(1 − 3s2)e sin(2f + ω) − 5s2e2

× sin(3f + ω) − 3(4 − 13s2)e2 sin(f + 3ω) − 12(1 − 5s2)e

× sin(2f + 3ω) + 2[14s2 − (2 − 9s2)e2] sin(3f + 3ω)

+ 18s2e sin(4f + 3ω) + 3s2e2 sin(5f + 3ω)}.

Note that series expansions aremandatory if wewant towrite explicitly the right sides
of these corrections in the non-singular variables F, C, and S.

Alternatively, non-singular first-order corrections to the polar canonical variables
can be derived after rewriting the generating function (5.61) in polar variables [317].
Thus,

𝒲1 = −Θ
1
8
R2⊕
p2
[(4 − 6s2)ϕ + 2σ(2 − 3s2 − s2 cos 2θ) + (3 + 4κ)s2 sin 2θ],
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in which the projections of the eccentricity vector in the orbital frame κ and σ are now
those in Eq. (5.42). We obtain N0,1 = 0 and

r0,1 = −
r
4
R2⊕
p2
(1 + κ)[(2 − 3s2)(1 + 2η

1 + κ
+

κ
1 + η
) − s2 cos 2θ],

θ0,1 =
1
8
R2⊕
p2
{6(4 − 5s2)ϕ − [6 − 7s2 + 2(4 − 6s2)κ] sin 2θ

+ [20 − 24s2 + (4 − 6s2)2 + κ
1 + η
+ (4 − 8s2) cos 2θ]σ},

ν0,1 = −
1
4
R2⊕
p2

c[6ϕ + 2σ(3 + cos 2θ) − (3 + 4κ) sin 2θ],

R0,1 =
1
4
R2⊕
p2

Θ
p
{(2 − 3s2)[η + (1 + κ)

2

1 + η
]σ − 2(1 + κ)2s2 sin 2θ},

Θ0,1 =
1
4
R2⊕
p2

Θs2[(3 + 4κ) cos 2θ + 2σ sin 2θ].
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6 Zonal perturbations
The main problem reveals the most relevant features of the artificial satellite prob-
lem, and shows the need of taking second-order effects of J2 into account to get a
correct description of qualitative aspects of the long-term dynamics. However, other
second-order effects of the geopotential have analogous importance to the terms fac-
tored by J22 , and, therefore, cannot be neglected in the description of the dynamics of
low-Earth orbits. This is the case of the zonal harmonics. More specifically, even zonal
harmonics drive secular effects whereas odd zonal harmonics introduce long-period
oscillations [130, 341]. This fact was well known, and the triplet papers by Garfinkel,
Kozai, and Brouwer in the acclaimedNovember 1959 issue of the Astronomical Journal
provided independent solutions that took the effects of the first few zonal harmonics
into account [75, 217, 360].

The effects of zonal harmonics of higher degree than the second are clearly ob-
served in the evolution of low-Earth orbits, and their inclusion in the propagation
model extends the time validity of orbit predictions. But beyond these quantitative
refinements, they also produce qualitative changes with respect to the main prob-
lem dynamics. In particular, they modify the frozen orbits’ geometry with respect to
the simpler J2 case, and, therefore, are mandatorily used in the preliminary design of
frozen orbits [119, 137, 400]. On the other hand, the effects of the coupling of J2 with
higher-degree zonal harmonics is very small and is customarily neglected in a pertur-
bation approach. In that case, most of the expanded expressions that are typical of
perturbation solutions based on the brute-force approach can be avoided. Indeed, up
to the order of J22 , one can take full benefit in the construction of the perturbation solu-
tion from different recursions in the literature [229, 431, 589], and, in particular, from
Kaula’s seminal recursions [341, 351, 417, 691]. The latter approach is discussed in the
reconstruction of Brouwer’s completely reduced Hamiltonian from the point of view
of the Lie transform approach.

The use of Hamiltonian simplification procedures is also discussed in the compu-
tation of second-order periodic corrections of Brouwer’s theory, yet these corrections
are dispensable in most cases—assumed, of course, that the constants of Brouwer’s
theory can be properly initializedwith a differentmethod [63]. It is shown in this chap-
ter too how the difficulties in the computation of higher orders of the analytical solu-
tion in closed form, which are inherent to Brouwer’s approach, are avoided when the
solution is computed by reverse normalization.

6.1 Zonal problem in mean elements

The disturbing zonal potential is obtained by makingm = 0 in Eq. (5.2). That is,

𝒫 =
μ
r
∑
n≥2

Rn⊕
rn

JnPn,0(sinφ), (6.1)

https://doi.org/10.1515/9783110668513-006
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where Jn = −Cn,0. Like in the main problem, the zonal potential does not depend on
the geocentric longitude, thus accepting the third component of the angular momen-
tum vector as an integral. Therefore, the zonal problem Hamiltonian is obtained by
replacing Eq. (6.1) into Eq. (5.3), from which the Coriolis term is removed.

The disturbing potential (6.1) is written in orbital elements following Kaula’s ap-
proach [339, 341]. That is,

𝒫 =
μ
a
(
a2

r2
η)∑

i≥2
JiVi, (6.2)

in which

Vi =
Ri⊕
pi
η

i
∑
j=0

ℱi,j(s)
i−1
∑
k=0
(
i − 1
k
)ek cosk f cos[(i − 2j)(f + ω) − iπ] (6.3)

and

ℱi,j =
min(j,i0)
∑
l=0

(−1)j−l−i0
22i−2l
(
2i − 2l
i
)(

i
l
)(

i − 2l
j − l
)si−2l, i ≥ 2l, j ≥ l, (6.4)

are particularizations for the zonal problem of Kaula inclination functions, whose ef-
ficient recursive evaluation has motivated a wealth of research as well as some con-
troversy [232, 251]. The symbol i0 in Eq. (6.4) and the parity correction iπ in Eq. (6.3)
adhere to the index notation convention in [400, 417]. Thus,

i⋆ = i mod 2, iπ =
1
2
πi⋆, im = ⌊

1
2
(i −m)⌋, (6.5)

where i,m, are integer numbers and ⌊x⌋ is the greatest integer ≤ x.
Different from the analogous equations in [341, 574], we left the factor (a/r)2η out

of the summation in Eq. (6.2) in preparation of a following closed-form integration
based on the differential relation between the true and mean anomalies in Eq. (4.64).

Next, the Hamiltonian of the zonal problem is written in the usual form of a per-
turbation Hamiltonian (2.30). That is,

ℋ = ∑
m≥0

ϵm

m!
ℋm,0, (6.6)

in which the small parameter is ϵ = J2,

ℋ0,0 = −
μ
2a
, (6.7)

ℋ1,0 =
μ
a
(
a2

r2
η)V2, (6.8)

ℋ2,0 = 2
μ
a
(
a2

r2
η)∑

i≥3

̃JiVi, (6.9)
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andℋm,0 = 0 form ≥ 3. The termsVi are given in Eq. (6.3) and ̃Ji = Ji/J22 are numeric co-
efficients of order one. As usual, orbital elements and related quantities are functions
of the Delaunay canonical variables.

Like we did in §5.6 with the main problem, the relevant effects of the dynamics of
the zonal problem are obtained by reducing the zonal Hamiltonian to a one-degree-of-
freedomHamiltonian in which the short-period effects have been removed up to some
truncation order. Because Eq. (6.6) remains as a perturbed Keplerian problem, the Lie
derivative and the homological equation are Eq. (4.66) and Eq. (4.68), respectively. In
addition, the termℋ1,0 is the same as Eq. (5.36) for the main problem. Therefore,ℋ0,1
is given by Eq. (5.60) and𝒲1 is given by Eq. (5.61).

At second order, the known terms of the homological equation are computed from
Eq. (2.37), and differ from those in Eq. (5.65) in the termℋ2,0 given by Eq. (6.9). There-
fore, terms of Eq. (6.9) pertaining to the kernel of the Lie derivative (4.66) must be
added to those previously computed in Eq. (5.70). These terms are computed in closed
form of the eccentricity using the differential relation (4.64). Namely,

⟨ℋ2,0⟩ℓ =
1
2π

2π

∫
0

ℋ2,0
r2

a2η
df = 2μ

a
∑
i≥3

̃Ji⟨Vi⟩f . (6.10)

Averaging Vi over the true anomaly is most easily achieved when Eq. (6.3) is ex-
panded as a Fourier series in f . Following [417], we first expand

cosk f cos(ιf + α) = cosk f cos ιf cos α − cosk f sin ιf sin α, (6.11)

where we abbreviate ι ≡ i − 2j, α = nω − iπ . Then we iterate

cosk f cos ιf = 1
2
[cos(ι + 1)f + cos(ι − 1)f ] cosk−1 f ,

cosk f sin ιf = 1
2
[sin(ι + 1)f + sin(ι − 1)f ] cosk−1 f ,

to obtain

cosk f cos(i − 2j)f = 1
2k

k
∑
l=0
(

k
k − l
) cos(i − 2j − k + 2l)f , (6.12)

cosk f sin(i − 2j)f = 1
2k

k
∑
l=0
(

k
k − l
) sin(i − 2j − k + 2l)f , (6.13)

fromwhich we note that terms in Eq. (6.12) such that i− 2j−k + 2l = 0 are the only ones
of Eq. (6.3) that are free from the true anomaly. They only occur when k − i, and hence
k + i, are even.

Then, replacing l = 1
2 (k − i) + j in Eq. (6.12), which in turn is plugged into Eq. (6.3),

we obtain

⟨Vi⟩f =
Ri⊕
pi
η
i−1
∑
j=1

ℱi,j(s)𝒢
∗
i,j(e) cos[(i − 2j)ω − iπ], (6.14)
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in which

𝒢∗i,j =
i−1
∑
k=0
(
i − 1
k
)(

k
k+i
2 − j
)
ek

2k
(6.15)

are particularizations of Kaula eccentricity functions for the zonal problemmultiplied
byη2i−1,which in turn are specific cases ofHansen’s coefficients [231, 234, 263, 557, 562,
631]. Therefore, Eq. (6.15) is written in Kaula’s efficient form,

𝒢∗i,j =
̃𝚥−1
∑
l=0
(
i − 1
q
)(

q
l
)
eq

2q
, q = 2l + i − 2 ̃𝚥, {

i ≥ 2j ⇒ ̃𝚥 = j,
i < 2j ⇒ ̃𝚥 = i − j.

(6.16)

In summary, up to the second order of J2, the mean-element Hamiltonian, with
short-period effects removed, is

ℋ = ℋ0,0 + ϵℋ0,1 +
1
2
ϵ2ℋ0,2, (6.17)

in whichℋ0,0 is the Keplerian (6.7),ℋ0,1 is the same of the main problem in Eq. (5.60),
ℋ0,2 is obtained adding Eqs. (5.70) and (6.10), and all the quantities in these expres-
sions are functions of the prime Delaunay variables.

The Hamiltonian (6.17) is partially normalized because, up to the truncation or-
der, it is cyclic in the mean anomaly ℓ󸀠 and, in consequence, the Delaunay action L󸀠

is a formal integral of the zonal problem in mean elements. Remarkably, the use of
Kaula’s recursions allows us to replace the expanded Hamiltonianℋ = 𝒬1,0 +

1
2ϵ𝒬2,0

in Appendix A of [119]—which was computed by brute force and fills two quarto-size
pages—by the compact expression, cf. [400, 417],

ℋ = J2
μ
a
∑
i≥2

̃Ji⟨Vi⟩f − J2
μ
a
R4⊕
p4

3η
128
[5(8 − 16s2 + 7s4) + 4(2 − 3s2)2η

− (8 − 8s2 − 5s4)η2 − 2(14 − 15s2)s2e2 cos 2ω], (6.18)

where μ/a = (G󸀠η/p)2, ⟨Vi⟩f is given in Eq. (6.14), and the summation starts now from
i = 2. Moreover, the zonal Hamiltonian in terms of mean elements, either given by
Eq. (6.17) or Eq. (6.18), is easily computed for any number of zonal harmonics using
Kaula’s recursions, without constraint to the J2–J9 model computed in [119].

6.1.1 Averaged flow

Equation (6.18) is a one-degree-of-freedom integrable Hamiltonian. SinceH = H0 and
L󸀠 = L󸀠0 due to the symmetries of the zonal problem and the averaging carried out,
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respectively, the motions of h󸀠 and ℓ󸀠 decouple from the reduced (g󸀠,G󸀠) system. That
is, dG󸀠/dt = −𝜕ℋ/𝜕g󸀠, dg󸀠/dt = 𝜕ℋ/𝜕G󸀠, from which

dG󸀠

dt
= G󸀠J2n

R4⊕
p4

3
32
(14 − 15s2)s2e2 sin 2ω − L󸀠n∑

i≥3

Ji
J2

𝜕⟨Vi⟩f
𝜕ω
, (6.19)

dg󸀠

dt
= n

R2⊕
p2

3
4
(4 − 5s2) + n∑

i≥3

Ji
J2
(
1 − 2i
η
⟨Vi⟩f −

η
e
𝜕⟨Vi⟩f
𝜕e
+
c2

sη
𝜕⟨Vi⟩f
𝜕s
)

+ n
R4⊕
p4

3J2
128
[γ0,0 + γ0,1η + γ0,2η

2 + (γ1,0 + γ1,2η
2) cos 2ω], (6.20)

where the inclination polynomials γi,j were previously given in Table 5.4, and

𝜕⟨Vi⟩f
𝜕ω
= −

Ri⊕
pi
η
i−1
∑
j=1
(i − 2j)ℱi,j𝒢

∗
i,j sin[(i − 2j)ω − iπ], (6.21)

𝜕⟨Vi⟩f
𝜕e
=
Ri⊕
pi
η
i−1
∑
j=1

ℱi,j
𝜕𝒢∗i,j
𝜕e

cos[(i − 2j)ω − iπ], (6.22)

𝜕⟨Vi⟩f
𝜕s
=
Ri⊕
pi
η
i−1
∑
j=1

𝜕ℱi,j

𝜕s
𝒢∗i,j cos[(i − 2j)ω − iπ]. (6.23)

Available recursion formulas expedite the computation of the partial derivatives of
Kaula’s inclination [232, 251] and eccentricity functions [231, 661]. For the lower ec-
centricities, simplifications in [128, 574, 604] can replace Eqs. (6.19) and (6.20).

Comparison of Eqs. (6.19) and (6.20) with Eqs. (5.83) and (5.85) shows the differ-
ences with respect to the main problem dynamics introduced by the Earth’s zonal
harmonics of higher degree. These additional terms permit one to foresee qualitative
changes of the reduced, long-term dynamics. Indeed, different from themain problem
alone, the condition dG󸀠/dt = 0 is no longer achieved, in general, when ω = 0,π. On
the contrary, the variation ofG󸀠 vanishes, on average, whenω = ± 12π, as checked from
Eq. (6.21), a case in which sin[(i − 2j)ω − iπ] turns into sin 2kω with k ∈ ℕ for i even,
and into cos(2k+ 1)ω in the odd case. For the argument of the perigee to remain frozen
Eq. (6.20) must vanish too. That is,

0 = 3
4
(4 − 5s2) +

R2⊕
p2

3J2
128
[γ0,0 − γ1,0 + γ0,1η + (γ0,2 − γ1,2)η

2]

+∑
i≥3

Ji
J2
Ri−2⊕
pi−2

i
∑
j=0
[(1 − 2i)ℱi,j𝒢

∗
i,j − ℱi,j

η2

e
𝜕𝒢∗i,j
𝜕e
+
c2

s
𝜕ℱi,j

𝜕s
𝒢∗i,j]

× cos π
2
(i ∓ i⋆ − 2j), (6.24)

where the cosine term evaluates to ±1 depending on the parity of the integer number
i ∓ i⋆ − 2j, in which the minus sign corresponds to the case ω = + π2 and the plus sign
to the opposite.
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Therefore, the eccentricity of a frozen orbit of the zonal problem with g󸀠 = ±π/2
is computed from the condition equation (6.24) using root-finding procedures to ob-
tain η. Previously, we must replace s = (1 − c2)1/2 and c = γ/η, where the dynamical
parameter γ = H󸀠/L󸀠 is the same as previously given in Eq. (5.73). Other equilibria of
the reduced dynamics that may exist with different arguments of the frozen perigee
are not discussed here.

From Eq. (6.15) we check that 𝜕𝒢∗i,j/𝜕e in Eq. (6.22) does not introduce divisions
by e, and from Eq. (6.4) that 𝜕ℱi,j/𝜕s in Eq. (6.23) does not introduce divisions by s.
However, these undesired divisors do appear in Eq. (6.20) for the variation of g󸀠.
Singularities related to circular orbits can be avoided using the nonsingular, semi-
equinoctial variables defined in Eq. (5.74). Thus,

dC
dt
= −

η
L󸀠
(
1
e
dG󸀠

dt
) cosω − (edg

󸀠

dt
) sinω,

dS
dt
= −

η
L󸀠
(
1
e
dG󸀠

dt
) sinω + (edg

󸀠

dt
) cosω,

which, in view of dG󸀠/dt = 𝒪(e), are free from the eccentricity in denominators. More-
over, when ω = ±π/2

dC
dt
= ∓(edg

dt
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ω=± π2
,

dS
dt
= ∓

η
L
(
1
e
dG
dt
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ω=± π2
≡ 0.

Therefore, the constraint equation for the frozen orbit geometry is obtained multiply-
ing the right side of Eq. (6.24) by the eccentricity, in this way removing the undesired
division by the eccentricity.

On the other hand, at difference from themain problem, the odd zonal harmonics
introduce singularities for equatorial orbits. If required, both kinds of singularities can
be removed using Poincaré nonsingular variables [468],

x1 = L, y1 = ℓ + g + h,

x2 = √2√L − G cos(g + h), y2 = −√2√L − G sin(g + h),

x3 = √2√G − H cos h, y3 = −√2√G − H sin h. (6.25)

6.1.2 Inclination–eccentricity diagrams of frozen orbits

Rather than looking at the frozen orbits constraint like a polynomial equation in G󸀠

for given values L󸀠,H󸀠 and g󸀠 = ± π2 , we can view Eq. (6.24) like the curve e = e(I) given
by the implicit equation

ω̇(e, I ;ω = ± 1
2
π, a) = 0. (6.26)

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



130 | 6 Zonal perturbations

Then, for givenmean semimajor axis a and frozen argument of the perigeeω = ± π2 , the
eccentricity of the frozen orbit is determined as a function of the inclination. There-
fore, inclination–eccentricity diagrams of frozen orbits with ω = ± π2 are depicted like
contour plots of Eq. (6.26) for given values of a. These kinds of diagrams help in locat-
ing frozen orbits and disclose the existence of different families of frozen orbits [119].
On the other hand, they provide the analytic analog to the families of periodic orbits
that are customarily computed in osculating variables using numerical continuation
methods, either in theorbital plane [385, 409, 423] or under themore strict conditionof
repeating their ground traces [387, 390, 428, 586]. Inclination–eccentricity diagrams
provide also an expedite way of exploring the sensitivity of the dynamics with respect
to different truncations of the gravitational potential [400].

An example is shown in Fig. 6.1 for the J2–J9 truncation of the geopotential. Curves
of retrograde-inclination orbits are reflections of the direct-inclination case and are
not presented. The semimajor axes have been chosen with the same value as the
Earth’s equatorial radius to enhance the effect of the perturbations for illustration
purposes, although most orbits would impact the surface of the Earth in that case.
Numerical values of the zonal harmonic coefficients were taken from the GRACE grav-
ity model [630].

Figure 6.1: Inclination–eccentricity diagram of frozen orbits with a = R⊕ (J2–J9 truncation). Full lines
refer to ω = 90∘ and dashed lines to ω = 270∘. Right: magnification in the vicinity of the critical
inclination [400].

The inclination–eccentricity diagram of frozen orbits in Fig. 6.1 illustrates the exis-
tence of low-eccentricity Earth frozen orbits in all the range of inclinations save for a
narrow region about the critical inclination. Frozen orbits still exist in this small area,
but their eccentricities may grow high. For a given semimajor axis (or L󸀠) the frozen
orbits are grouped in different families parameterized by the third component of the
angular momentum vector H. The first family starts with a very low-eccentricity orbit
in the equatorial plane (H = G󸀠) with the perigee frozen at ω = 90∘. Decreasing values
of H have the effect of increasing the inclination of the frozen orbits, which undergo

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.1 Zonal problem in mean elements | 131

small variations of the eccentricity. Eventually, the eccentricity grows high with al-
most fixed inclination, which happens close to the critical inclination value. We will
see later that the orbits of this family are stable. At a certain value H/L󸀠 ≈ cos 63.5∘,
which is marked with an arrow in the right plot of Fig. 6.1, two new families of frozen
orbits appear with the perigee frozen at ω = 270∘. They exist for decreasing values
of H, whose effect is to increase the eccentricity of the frozen orbits of one of the bi-
furcated families with almost fixed inclination, and to increase gradually the inclina-
tion of the frozen orbits of the other bifurcated family with decreasing values of the
eccentricity. Close to I ≈ 68∘, the orbits of the latter family have very low eccentrici-
ties, and, eventually, the frozen perigee turns to ω = 90∘. For decreasing values of H
the inclination of the frozen orbits continues to increase whereas their eccentricities
grow slightly with the perigee frozen at ω = 90∘. We will see later that the bifurcated
family of low-eccentricity frozen orbits is composed of stable orbits, whereas high-
eccentricity frozen orbits withω = 270∘ are unstable. We remark that we intentionally
avoided to talk about circular orbits because the perigee is not defined in this case and,
in consequence, they are excluded from the condition equation used in the construc-
tion of the inclination–eccentricity diagrams.

On the other hand, the characteristics of the curves of frozen orbits vary slightly
with the degree of the geopotential truncation. In particular, the inclination where
the frozen perigee flips by 180∘ may change by several degrees. This fact is illustrated
in Fig. 6.2, where inclination–eccentricity curves corresponding to different trunca-
tions of the zonal problem are superimposed in the same diagram. It is also shown
in the figure that high-inclination frozen orbits have similar low eccentricities irre-
spective of the degree of the model, which justifies the use of the simpler J2–J3 trun-
cation in the preliminary design of typical missions requiring high-inclination frozen
orbits [137, 258]. Therefore, the inexpensive construction of inclination–eccentricity
diagrams for different truncations of the zonal potential has been suggested as an al-
ternative criterion to assess the sensitivity of the propagation model for a particular
class of orbits [400].

Highly-eccentric non-impact frozen orbits make sense only for large semimajor
axis. They concentrate in the close proximity of the critical inclination for any trunca-
tion of the gravitational model, because second-order effects are further mitigated by
the magnitude of the coefficients (R⊕/a)m, which take small values when m > 2 and
a ≫ R⊕.

6.1.3 Local dynamics: eccentricity-vector diagrams

Relevant differences with respect to the reduced dynamics of the main problem dis-
cussed in §5.6.3 are also evident from eccentricity-vector diagrams. They are rendered
like contour plots of the mean-element Hamiltonian (6.18), which is readily reformu-
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Figure 6.2: Inclination–eccentricity diagram of non-impact frozen orbits (a = 1.1R⊕) with ω = 90∘ (full
lines) and ω = 270∘ (dashed); cf. [400].

lated in the semi-equinoctial C and S variables using the relations

ej cos jω = 1
2
[(C − iS)j + (C + iS)j], ej sin jω = 1

2
i[(C − iS)j − (C + iS)j],

with i = √−1 and j integer.
Thus, as shown in the first row of Fig. 6.3, the J2–J3 truncation of the zonal poten-

tial breaks the equatorial symmetry of the main problem. Still, the initial bifurcation
happens again close to the critical inclination with the change to instability of the
circular orbits, and the bifurcated stable eccentric frozen orbits have the perigee at 0
and π. However, the second bifurcation is of a different nature and now happens from
a low-eccentricity, unstable orbit with the perigee frozen at 90∘. This fact yields subtle
differences with respect to the J2 case in Fig. 5.4, and, contrary to it, we can find long
excursions of the eccentricity vector without completing circulatory behavior; while
the orbits may reach moderate eccentricities, they eventually approach closely to the
circular case. Inclusion of J4 changes radically the bifurcation geometry, as illustrated
in the sequence of plots in the second row of Fig. 6.3. In this case, all the bifurca-
tions happen from orbits with the perigee frozen at 270∘. Nevertheless, the perigees
of the unstable eccentric orbits that stem from the low-eccentricity unstable orbit at
the second bifurcation of the J2–J4 case migrate fast from the argument 270∘ towards
0∘ and 180∘, in the end yielding a picture similar to the main problem case rotated by
90∘.

Whenmore zonal harmonics are taken into account, the secondbifurcation froma
low-eccentricity orbit no longer exists, as shown in the third and fourth rows of Fig. 6.3
for the J2–J5 and J2–J7 truncations, respectively. Adding more zonal harmonics only
produces quantitative variations with respect to the phase portraits in the last row
of Fig. 6.3. The number of families of frozen orbits as well as their stability is thus in
agreement with the behavior anticipated in §6.1.2.
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Figure 6.3: Eccentricity-vector plots of low-Earth orbits (a = 1.1R⊕) for, from top to bottom, the J2–J3,
J2–J4, J2–J5, and J2–J7 truncations. Note the different scales. The dashed circle e = (1 − 5γ2)1/2 marks
the critical inclination.

6.2 Hamiltonian simplification

The computation of second-order short-period corrections requires the explicit com-
putation of the second-order term of the generating function from the second-order
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homological equation. The fact that the equation of the center does not accept a
closed-form primitive within the algebra of trigonometric functions [324] generated
some controversy around the closed-form solution of 𝒲2. Indeed, the indefinite in-
tegration of the equation of the center in closed form relies on the algebraic decom-
position of functions of the elliptic motion and the use of the dilogarithmic function
[536, 537], a procedure that complicates the perturbation approach. However, the
difficulty was only apparent, and it was derived from the particular programming
strategies used by researchers involved in the automatization of celestial mechanics
computations [171]. In fact, the difficulty had been easily sidestepped by researchers
relying on traditional hand computations [8, 363].

Indeed, the known second-order terms involving the equation of the center are
those in Eq. (5.66). If it is arranged in the form of a Fourier series,

ℋ̃0,2,1 = −
μ
2a

R4⊕
p4

9
8
(5s2 − 4)s2ϕ

5
∑
j=−1

q|j−2|e
|j−2| sin(jf + 2g),

where q0 = 3e2 + 2, q1 =
3
4 (e

2 + 4), q2 =
3
2 , and q3 =

1
4 , then ϕ shows alone for j = 0,

thus rendering apparent the difficulty. However, the alternative arrangement

ℋ̃0,2,1 = −
μ
2a

R4⊕
p4

9
8
(5s2 − 4)s2 p

2

r2
ϕ
η2

3
∑
j=1
(2 − j⋆)ej

⋆
sin(jf + 2g),

where j⋆ ≡ j mod 2 from the index notation convention in Eq. (6.5), shows that, in fact,
we only need to deal with the indefinite integration of functions of the mean anomaly
of the form (p/r)2ϕ sin(jf + α), which are readily integrated by parts [407].

That the terms containing the equation of the center arise in the generating func-
tion from the elimination of factors 1/r2, becomes clear from the identity ℒ0(ϕ/G) +
η3/p2 = 1/r2 [155, 156, 271]. That is the reasonwhy the generating function (5.40) of De-
prit’s radial intermediary in §5.4.2 is free from the equation of the center. In the process
of reducing the main problem Hamiltonian to a quasi-Keplerian system the term 1/r2

was not removed, thus keeping the essential short-period effects related to the equa-
tion of the center in the transformed Hamiltonian. Comparison of the first-order gen-
erating functions in Eqs. (5.61) and (5.40)makes this fact evident. Then there naturally
emerges the question of whether extending the computations in §5.4.2 to second order
may be beneficial in the elimination of short-period terms from the zonalHamiltonian.

6.2.1 Deprit’s elimination of the parallax

In the attempt to transform the zonal Hamiltonian into a quasi-Keplerian system, it
is essential that parallactic factors Rm⊕ /r

m in Eq. (6.1) with m > 2 be reduced to the
power m = 2. After removing other short-period terms, the desirable result would be
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to join the disturbing effect on the Keplerian motion of the remaining terms in R2⊕/r
2

with the total angular momentum in order to obtain a varied angular momentum—as
it was already done in Eqs. (5.32) and (5.33) of Deprit’s radial intermediary. While this
is not feasible, we will see that the procedure furnishes the perturbation approach
with notable simplifications.

The formal reduction of parallactic terms has already been achieved with the for-
mulation in Eq. (6.2). Indeed, the short-period terms involved in the parallactic factors
of the first-order Hamiltonian (6.8) have already been incorporated to V2, which, from
Eq. (6.3), reads

V2 = (R⊕/p)
2η[ℱ2,1 + (ℱ2,0 + ℱ2,2) cos(2f + 2ω)](1 + e cos f ),

where, from Eq. (6.4), ℱ2,0 = ℱ2,2 = −
3
8s

2, ℱ2,1 = −
1
2 +

3
4s

2. After carrying out the
pertinent trigonometric reductions, we obtain

V2 = −
1
8
R2⊕
p2

η{(4 − 6s2)(1 + e cos f ) + 3s2

× [e cos(f + 2ω) + 2 cos(2f + 2ω) + e cos(3f + 2ω)]}. (6.27)

Therefore, Eq. (6.8) turns into

ℋ1,0 = −
1
8
μ
p
R2⊕
r2
{(4 − 6s2)(1 + e cos f )

+ 3s2[e cos(f + 2ω) + 2 cos(2f + 2ω) + e cos(3f + 2ω)]},

fromwhich the newHamiltonian term is now chosen in such away that the only short-
period effects that remain are those related to the occurrence of 1/r2. That is to say, the
explicit appearance of the true anomaly is removed by choosing

ℋ0,1 =
μ
a
(
a2

r2
η)⟨V2⟩f , (6.28)

where, from Eq. (6.14), ⟨V2⟩f = (R⊕/p)2η[ℱ2,0𝒢
∗
2,0 cos 2ω + ℱ2,1𝒢

∗
2,1], in which, from

Eq. (6.16), 𝒢∗2,0 = 0 and 𝒢∗2,1 = 1. Hence,

⟨V2⟩f =
R2⊕
p2

η( 3
4
s2 − 1

2
) (6.29)

and

ℋ0,1 =
μ
p
R2⊕
r2
(
3
4
s2 − 1

2
), (6.30)

which is precisely the first-order term of Deprit’s radial intermediary in Eq. (5.37). In
consequence, up to an arbitrary integration “constant” that does not depend on ℓ, the
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first-order term of the generating function is obviously given by Eq. (5.40), which is
rewritten in the more compact form

𝒲1 =
G
8
R2⊕
p2
[(6s2 − 4)e sin f − s2

3
∑
j=1

3⌊(4−j)/2⌋e|j−2| sin(jf + 2ω)]. (6.31)

At secondorder, the known termson the right side of thehomological equation are
computed from Eq. (2.37). After evaluation of the involved Poisson brackets we obtain

ℋ̃0,2 =
μ
a
(
a
r
)
2
η[

R4⊕
p4

η
6
∑
j=0

2
∑
l=j1

qj,ls
|2l| cos(jf + 2lω) + 2∑

i≥3

̃JiVi], (6.32)

of which the needed coefficients qj,l ≡ qj,l(s, e) are presented in Table 6.1; cf. [417].
Recall that j1 = ⌊

1
2 (j − 1)⌋ according to the index notation convention in Eq. (6.5).

Table 6.1: Coefficients qj,l = qj,−l in Eq. (6.32).

j l = 0 l = 1 l = 2

0 q2,0 −
1
16 (21s

4 − 42s2 + 20) 3
64e

2(14 − 15s2) 0

1 − 1
32e(27s

4 − 108s2 + 64) 7
16e(11 − 12s

2) 0

2 3
64e

2(5s4 + 8s2 − 8) 3
16e

2(2 − s2) + 1
8 (20 − 21s

2) − 15
128e

2

3 3
16e(8s

2 − 5) − 9
64e

4 3
32e

2(13s2 − 10) 3
64 (4 − e

2)

5 15
64e

6 9
128e

2

In the same way as we did at the first order, the new Hamiltonian termℋ0,2 is chosen
to be composed of those terms of ℋ̃0,2 that are free from the explicit appearance of f
yet leave untouched the explicit appearance of 1/r2 in Eq. (6.32). That is, ℋ0,2 keeps
all the terms of ℋ̃0,2 pertaining to the kernel of the Lie derivative (4.66), which is now
better set in the form of Eq. (5.38), in addition to some additional terms pertaining
to its image. This choice is easily made by neglecting all coefficients qj,l in Eq. (6.32)
except those with j = 0. Namely,

ℋ0,2 =
μ
a
(
a2

r2
η)[

R4⊕
p4

η(q0,0 + 2q0,1s
2 cos 2ω) + 2∑

i≥3

̃Ji⟨Vi⟩f ], (6.33)

where terms ⟨Vi⟩f were already computed in Eq. (6.14).
The homological equation (5.39) is next solved form = 2. In view of Eqs. (6.32) and

(6.33), we obtain

𝒲2 = G
R4⊕
p4

6
∑
j=1

1
j

2
∑
l=j1

qj,ls
|2l| sin(jf + 2lω) + 2G∑

i≥3

̃JiW2,i, (6.34)
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where the integrand of

W2,i =
1
η
∫(Vi − ⟨Vi⟩f )df , i ≥ 3, (6.35)

is made only of periodic terms in f . Replacing Eqs. (6.3) and (6.14) into Eq. (6.35), we
obtain

W2,i =
Ri⊕
pi

i
∑
j=0

ℱi,j(s)
i−1
∑
k=0
(
i − 1
k
)ekℐi,j,k(f ,ω), (6.36)

where the integrals

ℐi,j,k = ∫{cos
k f cos[ι(f + ω) − iπ] −

1
2k
(
k
k+ι
2
) cos(ιω − iπ)}df , (6.37)

with ι = i − 2j, are purely periodic functions of f . Thus, Eq. (6.37) is integrated using
Eqs. (6.12) and (6.13) to give

ℐi,j,k =
1
2k

k
∑
l=0
l ̸=l∗
(
k
l
)

1
2(l − l∗)

sin[2(l − l∗)f + (i − 2j)ω − iπ], (6.38)

where the term l = l∗ ≡ j+ 12 (k − i) is absent from the summation because it is precisely
the one that has canceled out the term ⟨Vi⟩f in Eq. (6.37).

Regrettably, our initial plan of transforming the zonal problem into a quasi-
Keplerian system fails clamorously at the second order of the elimination of the par-
allax because the appearance of ω = g󸀠 in Eq. (6.33) prevents G󸀠 from becoming an
integral. However, the procedure is still successful because it radically simplifies the
zonal problem Hamiltonian by removing non-essential short-period terms. Moreover,
the elimination of the parallax can be carried out to any order of the Lie transforms
procedure avoiding the appearance of the equation of the center in the generating
function, and, in consequence, without leaving the algebra of trigonometric func-
tions [154, 442].

6.2.2 Delaunay normalization

Up to second-order effects, we obtained the simplified Hamiltonian after the elimina-
tion of the parallax 𝒦 = 𝒦0,0 + ϵ𝒦1,0 +

1
2ϵ

2𝒦2,0, in which 𝒦0,0 = ℋ0,0, 𝒦1,0 = ℋ0,1,
and 𝒦2,0 = ℋ0,2, are given in Eqs. (6.7), (6.28), and (6.33), respectively, where all the
quantities related to the elliptic motion are now assumed to be functions of the prime
Delaunay variables ℓ󸀠, g󸀠, L󸀠, G󸀠, and H󸀠 = H.
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Now, the elimination of the remaining short-period terms from the Hamiltonian is
straightforward by means of a Delaunay normalization [156]. At first order, we choose
𝒦0,1 = ⟨𝒦1,0⟩ℓ󸀠 , namely

𝒦0,1 =
1
2π

2π

∫
0

𝒦1,0 dℓ
󸀠 =

1
2π

2π

∫
0

𝒦1,0
r2

a2η
df = μ

a
⟨V2⟩f , (6.39)

where ⟨V2⟩f is given in Eq. (6.29). Because 𝒦0,1 = 𝒦1,0 = 𝒦0,1(a/r)2η, the integrand in
the homological equation (4.69) cancels out and the term 𝒱1 is trivially solved. Hence,

𝒱1 =
ϕ
n
𝒦0,1 = Lϕ⟨V2⟩f . (6.40)

The known terms at second order are computed from Eq. (2.37) with ℋ replaced
by 𝒦. We obtain

𝒦0,2 = −
μ
a
R4⊕
p4

1
16
η2(2 − 3s2)2[3 + a

2

r2
(1 + 2β cos f + eβ cos 2f )] + μ

a
R4⊕
p4

× (
a2

r2
η)η(q0,0 + 2q0,1s

2 cos 2ω) + 2μ
a
(
a2

r2
η)∑

i≥3

̃Ji⟨Vi⟩f . (6.41)

Then we choose 𝒦0,2 = ⟨𝒦0,2⟩ℓ󸀠 , which is averaged with the help of the differential
relation (4.64) to obtain

𝒦0,2 =
μ
a
R4⊕
p4

η[q0,0 −
1 + 3η
16
(3s2 − 2)2 + 2q0,1s

2 cos 2ω] + 2μ
a
∑
i≥3

̃Ji⟨Vi⟩f . (6.42)

That is, up to the second order of J2, the new Hamiltonian in mean elements, with
short-period effects removed, is

𝒬 = 𝒬0,0 + J2𝒬1,0 +
1
2
J22𝒬2,0, (6.43)

where 𝒬0,0 is the Keplerian (6.7) in double-prime variables, the term 𝒬1,0 = 𝒦0,1(G󸀠󸀠,
L󸀠󸀠;H) is given in Eq. (6.39), and𝒬2,0 = 𝒦0,2(g󸀠󸀠,G󸀠󸀠, L󸀠󸀠;H) is obtained from Eq. (6.42).

As expected, the partially normalized Hamiltonian (6.43) is formally the same as
the mean-element Hamiltonian in prime variables previously obtained in Eq. (6.17).
The benefit of the detour takenwith the preliminary elimination of the parallax is that
the computation of 𝒱2 from Eq. (4.69) is now straightforward, yielding

𝒱2 = ϕ[G
󸀠R

4
⊕
p4
(q0,0 + 2q0,1s

2 cos 2ω) − L
󸀠

η
⟨V2⟩

2
f + 2L

󸀠∑
i≥3

̃Ji⟨Vi⟩f ]

− G󸀠
R4⊕
p4

β
32
(2 − 3s2)2(4 sin f + e sin 2f ). (6.44)
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6.2.3 Short-period corrections

The first-order corrections of the elimination of the parallax are exactly the same as
those ofDeprit’s radial intermediary given in Eqs. (5.43)–(5.48). Aswewill discuss later
in §6.6, the most relevant second-order terms are those related to the initialization
of the constants of a perturbation theory, and, in particular, the computation of the
mean semimajor axis [469]. Then we limit ourselves here to the computation of the
periodic corrections of the inverse transformation up to second order in the case of
the Delaunay action L = √μa.

In the case of the elimination of the parallax, L󸀠 = L + J2L0,1 +
1
2 J

2
2L0,2, where, from

Eqs. (2.17) and (2.27), L0,1 = 𝜕𝒲1/𝜕ℓ, L0,2 = 𝜕𝒲2/𝜕ℓ − {L0,1;𝒲1}, with𝒲1 and𝒲2 given
by Eqs. (6.31) and (6.34), respectively. The partial derivatives with respect to the mean
anomaly are readily computed using the differential relation (4.64). Hence,

L0,1 =
1
8
L
R2⊕
r2

1
η2
[(4 − 6s2)e cos f + s2

3
∑
j=1

3⌊2−j/2⌋je|j−2| cos(jf + 2ω)],

from which

{L0,1;𝒲1} = L
R4⊕
p4

p2

r2
1
η4

2
∑
i=0

8
∑
j=0

2
∑
k=0

q2i,j,ks
2ie2k+j

⋆
cos[(2i + j − 4)f + 2iω], (6.45)

where j⋆ = j mod 2, from Eq. (6.5), and q2i,j,k are the inclination polynomials in Ta-
ble 6.2. Finally,

𝜕𝒲2
𝜕ℓ
= Ga

2

r2
η{

R4⊕
p4

6
∑
j=1

2
∑
l=j1

qj,ls
|2l| cos(jf + 2lω) + 2∑

i≥3

i
∑
j=0

i−1
∑
k=0

̃Ji
Ri⊕
pi

ℱi,j

× (
i − 1
k
)
ek

2k
k
∑
l=0
l ̸=l∗
(
k
l
) cos[2(l − l∗)f + (i − 2j)ω − iπ]},

where the coefficients qj,l are given in Table 6.1, and we recall from Eq. (6.38) that l∗ ≡
j + (k − i)/2.

As regards the Delaunay normalization, the generating function of the first order
is 𝒱1 =

1
4G
󸀠(R⊕/p)2(3s2 − 2)ϕ, as follows from Eqs. (6.40) and (6.29), from which

Eq. (2.17) yields the first-order corrections to the polar-nodal variables. Namely,
Θ0,1 = 0, N0,1 = 0, and

r0,1 = −
1
2
r(3s2 − 2)[2η + κ(1 + κ)/(1 + η)],

θ0,1 =
1
2
[3(5s2 − 4)ϕ + (3s2 − 2)(2 + κ)σ/(1 + η)],

ν0,1 = 3cϕ,

R0,1 =
1
2
(Θ/p)σ(3s2 − 2)[η + (1 + κ)2/(1 + η)],
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Table 6.2: Non-null coefficients q2i,j,k in Eq. (6.45).

(j, k) i = 0 i = 1 i = 2

0,2 q0,8,2 q2,8,2 q4,8,2
1,1 q0,7,1 q2,7,1 q4,7,1

2,1 q0,6,1
3
8 (1 − 3s

2) 177
128

2,2 q0,6,2
3
8 (5 − 6s

2) 3
32

3,0 q0,5,0
1
16 (5 − 21s

2) 117
64

3,1 q0,5,1
1
64 (214 − 267s

2) 9
8

4,0 1
32 (−3s

4 + 12s2 + 8) 7
8 (2 − 3s

2) 21
32

4,1 1
64 (261s

4 − 120s2 + 32) 1
4 (5 − 9s

2) 177
64

4,2 3
256 (101s

4 − 40s2 − 8) − 3
64 (31s

2 − 26) 69
256

5,0 1
64 (63s

4 − 12s2 + 32) − 3
16 (27s

2 − 19) 93
64

5,1 1
64 (207s

4 − 96s2 + 4) − 3
64 (9s

2 − 2) 3
2

6,1 3
128 (67s

4 − 32s2 + 16) − 38 (10s
2 − 7) 153

128

6,2 3
8 s

2(2s2 − 1) 3
8 (s

2 − 1) 9
32

7,1 3
32 (9s

4 − 6s2 + 2) − 2764 (3s
2 − 2) 27

64

8,2 3
512 (27s

4 − 24s2 + 8) − 9
128 (3s

2 − 2) 27
512

where the right sides are in double-prime variables for direct corrections, and in prime
variables for inverse corrections. Recall that the latter must be subtracted according
to Eq. (2.27).

Finally, we compute L󸀠󸀠 = L󸀠 + J2L󸀠0,1 +
1
2 J

2
2L
󸀠
0,2, in which L

󸀠
0,1 = 𝜕𝒱1/𝜕ℓ

󸀠, and L󸀠0,2 =
𝜕𝒱2/𝜕ℓ

󸀠 −{L󸀠0,1;𝒱1}, using the generating function terms given in Eqs. (6.40) and (6.44).
Once more, the partial derivatives with respect to the mean anomaly are computed
using the differential relation (4.64), to obtain

L󸀠0,1 =
1
4
L󸀠
R2⊕
p2

η(3s2 − 2)(a
2

r2
η − 1),

{L󸀠0,1;𝒱1} = −L
󸀠R

4
⊕

p4
(2 − 3s2)2 1

128η4
4
∑
j=0

Q󸀠j (e) cos jf ,

𝜕𝒱2
𝜕ℓ󸀠
= −L󸀠

R4⊕
p4

a2

r2
βη2

16
(2 − 3s2)2(2 cos f + e cos 2f ) + (a

2

r2
η − 1)

× L󸀠[η
R4⊕
p4
(q0,0 + 2q0,1s

2 cos 2ω) − 1
η
⟨V2⟩

2
f + 2∑

i≥3

̃Ji⟨Vi⟩f ],

in which the terms Q󸀠j are given in Table 6.3 and the q0,j in Table 6.1.
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Table 6.3: Coefficients Q󸀠 of the Delaunay transformation of L󸀠.

Q󸀠0 = 105 − 60η
2 − 18η3 + 3η4 + 2η5 Q󸀠3 = 12e(2 − η

2 − η3)

Q󸀠1 = 4β(42 + 42η − 5η
2 − 14η3 − 5η4) Q󸀠4 = (1 − η)

2(3 + 6η + 5η2 + 2η3)

Q󸀠2 = 4(21 − 16η
2 − 7η3 + η4 + η5)

6.3 Brouwer’s solution by complete reduction

As we already discussed in §6.1.1, the long-term Hamiltonian (6.43), or the one in
Eq. (6.17), is integrable. Still, it is not separable and, in the style of Brouwer [75], we
compute an additional Lie transformation in order to remove the long-period terms,
in this way obtaining a completely reduced Hamiltonian.

6.3.1 Secular terms

The removal of long-period terms from Eq. (6.43), which are related to the perigee
dynamics, will be achieved by a new Lie transformation to triple-prime variables.
Because the problem is now independent of ℓ󸀠󸀠, the generating function of the new
Lie transformation is also chosen independent of it, say 𝒰 = ∑m≥0(J

m
2 /m!)𝒰m+1 with

𝒰m+1 ≡ 𝒰m+1(−, g󸀠󸀠, −, L󸀠󸀠,G󸀠󸀠,H󸀠󸀠). As a consequence, it is immediately checked from
Eq. (4.66) that the Lie derivative ℒ0(𝒰m) always vanishes along the Keplerian flow
stemming from𝒬0,0. Therefore, the homological equation (4.67) becomes

0 = 𝒬0,m −𝒬0,m, (6.46)

and 𝒰m cannot be computed at the stepm.
However, since𝒬1,0 is already free from ω = g󸀠󸀠, there is no difficulty in choosing

𝒬0,1 = 𝒬1,0 at first order, and proceed to the second order leaving 𝒰1 undetermined.
At second order, after computing𝒬0,2 from Eq. (2.37), we rewrite Eq. (6.46) in the form
{𝒰1;𝒬1,0} =

1
2 (𝒬
∗
0,2 −𝒬0,2) with𝒬∗2,0 = 𝒬2,0. Analogously, at third order, from repeated

applications of Deprit’s fundamental recursion (2.15) we obtain {𝒰2;𝒬1,0} =
1
2 (𝒬
∗
0,3 −

𝒬0,3), in which𝒬∗0,3 = {𝒬0,2;𝒰1} + {𝒬1,1;𝒰1} + {𝒬2,0;𝒰1} +𝒬3,0.
In this way, we obtain the new homological equation

ℒ1(𝒰m−1) ≡ {𝒰m−1;𝒬1,0} =
1
m
(𝒬∗0,m −𝒬0,m), (6.47)

where𝒬∗0,m stands for the computable terms up to the stepm of the procedure, and

ℒ1(𝒰m−1) ≡
3
4
n
R2⊕
p2
(4 − 5s2)𝜕𝒰m−1

𝜕g󸀠󸀠
, (6.48)

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



142 | 6 Zonal perturbations

thus shifting by one the actual order of the perturbation approach with respect to the
order at which the generating function of the elimination of the periapsis can be de-
termined. Because the right hand of Eq. (6.47) is a trigonometric polynomial in g󸀠󸀠, the
kernel of the Lie operator ℒ1 is composed of terms that are free from g󸀠󸀠.1

Oncemore, the homological equation is conveniently solved by indefinite integra-
tion, yet, regrettably, the divisor Δ = 4−5s2 harms the transformation equations of the
long-period elimination and prevents one from application of the solution to orbits in
the close vicinity of the critical inclination. One way of avoiding computer overflow
during runtime when propagating critically-inclined orbits with analytical solutions
of this kind, is to replace the critical divisor Δ by the alternative form: 1/Δ = 0 when
Δ = 0, and 1/Δ = [1 − exp(−100Δ2)]/Δ otherwise, which provides the correct value out
of the critical inclination and never becomes singular [121, 299].2

Thus, at second order we obtain

𝒰1 =
2
3
p2

R2⊕
1

n(4 − 5s2)
∫(𝒬2,0 −𝒬0,2)dg

󸀠󸀠, (6.49)

where the new Hamiltonian term 𝒬0,2 is composed of those terms of 𝒬2,0 pertaining
to the kernel of ℒ1. That is,𝒬0,2 = ⟨𝒬2,0⟩ω. In view of Eq. (6.42), we obtain

𝒬0,2 =
μ
a
R4⊕
p4

η[q0,0 −
1 + 3η
16
(3s2 − 2)2] + 2μ

a
∑
k≥2

̃J2k⟨⟨V2k⟩f ⟩ω, (6.50)

in which the coefficient q0,0 is given in Table 6.1, and, from Eq. (6.14), we obtain

⟨⟨V2k⟩f ⟩ω = (R⊕/p)
2kηℱ2k,k(s)𝒢

∗
2k,k(e), (6.51)

where i⋆ = i mod 2, and i0 = ⌊
1
2 i⌋ from the index convention in Eq. (6.5), which shows

that only the even zonal harmonics—i = 2k, iπ = 0 in Eq. (6.14)—can have terms be-
longing to the kernel of the Lie derivative (6.48). In consequence, they are the only
terms of the potential contributing secular effects.

After expressing 𝒬0,i, i = 0, 1, 2 in triple-prime variables, up to 𝒪(J22 ), we obtain
the secular, completely reduced Hamiltonian

𝒮 = 𝒮(−, −, −, L󸀠󸀠󸀠,G󸀠󸀠󸀠,H󸀠󸀠󸀠) ≡ 𝒬0,0 + J2𝒬0,1 +
1
2
J22𝒬0,2,

whoseHamilton equations are trivially integrable. Indeed, themomenta are constant,
L󸀠󸀠󸀠 = L󸀠󸀠0 , G

󸀠󸀠󸀠 = G󸀠󸀠󸀠0 , H󸀠󸀠󸀠 = H0, whereas their conjugate angles evolve linearly with

1 An alternative, equivalent procedure is to reorganize the one-degree-of-freedom Hamiltonian (6.43)
in the form 𝒬 = 𝒬󸀠0,0 + J2𝒬

󸀠
1,0, in which 𝒬󸀠0,0 = 𝒬0,0 + J2𝒬1,0 and 𝒬󸀠1,0 =

1
2 J2𝒬2,0, with the same

assumption: that the generating function does not depend on ℓ.
2 This approach is attributed to R.H. Smith in [297].
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time,

ℓ󸀠󸀠󸀠 = ℓ󸀠󸀠󸀠0 +
𝜕𝒮
𝜕L󸀠󸀠󸀠

t, g󸀠󸀠󸀠 = g󸀠󸀠󸀠0 +
𝜕𝒮
𝜕G󸀠󸀠󸀠

t, h󸀠󸀠󸀠 = h󸀠󸀠󸀠0 +
𝜕𝒮
𝜕H󸀠󸀠󸀠

t,

with the constant, secular frequencies

𝜕𝒮
𝜕L󸀠󸀠󸀠
= n + nJ2

R2⊕
p2

3
4
η(2 − 3s2) + nJ22

R4⊕
p4

3
8
η

× [
5
16
η2(5s4 + 8s2 − 8) + η(2 − 3s2)2 + 15

16
(7s4 − 16s2 + 8)]

− nJ22∑
i≥3

̃Ji(1 − i
⋆)
Ri⊕
pi
ηℱi,i0[3𝒢

∗
i,i0 −

η2

e
𝜕𝒢∗i,i0
𝜕e
],

𝜕𝒮
𝜕G󸀠󸀠󸀠
= nJ2

R2⊕
p2

3
4
(4 − 5s2) + 3

128
nJ22

R4⊕
p4
[η2(45s4 + 36s2 − 56)

+ 24η(3s2 − 2)(5s2 − 4) + 5(77s4 − 172s2 + 88)] + nJ22∑
i≥3

̃Ji

× (1 − i⋆)
Ri⊕
pi
[(1 − 2i)ℱi,i0𝒢

∗
i,i0 +

c2

s
𝜕ℱi,i0
𝜕s

𝒢∗i,i0 − ℱi,i0
η2

e
𝜕𝒢∗i,i0
𝜕e
],

𝜕𝒮
𝜕H󸀠󸀠󸀠
= −nJ2

R2⊕
p2

3
2
c + nJ22

R4⊕
p4

3c
32
[η2(5s2 + 4) + 12η(3s2 − 2)

+ 5(7s2 − 8)] − nJ22∑
i≥3

̃Ji(1 − i
⋆)
Ri⊕
pi

c
s
𝜕ℱi,i0
𝜕s

𝒢∗i,i0 .

The osculating solution is obtained after applying the long-period corrections to the
secular terms, thus obtaining mean elements, which in turn must be modulated with
the short-period corrections computed in §6.2.3.

6.3.2 Long-period corrections

The integrand of Eq. (6.49) is composed of the periodic terms

𝒬2,0 − ⟨𝒬2,0⟩ω = 2
μ
a
R4⊕
p4

ηq0,1s
2 cos 2ω + 2μ

a
∑
i≥3

̃Ji(⟨Vi⟩f − ⟨⟨Vi⟩f ⟩ω),

in which the coefficient q0,1 is given in Table 6.1 and, from Eqs. (6.14) and (6.51),

⟨Vi⟩f − ⟨⟨Vi⟩f ⟩ω =
Ri⊕
pi
η

i−1
∑
j=0
j≠i/2

ℱi,j𝒢
∗
i,j cos[(i − 2j)ω − iπ].

Hence,

𝒰1 =
(4/3)G
4 − 5s2
[
R2⊕
p2

q0,1
2
s2 sin 2ω +∑

i≥3

̃Ji
Ri−2⊕
pi−2

i−1
∑
j=0
j ̸=i/2

ℱi,j𝒢
∗
i,j
sin[(i − 2j)ω − iπ]

i − 2j
]. (6.52)
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The transformation from secular to mean elements x󸀠󸀠 = x󸀠󸀠󸀠 + J2x󸀠󸀠0,1 + 𝒪(J
2
2 ), x ∈

(ℓ, g, h, L,G,H) is obtained as usual, computing the long-period corrections x󸀠󸀠0,1 from
the first row of Eq. (2.17). In particular, L󸀠󸀠0,1 = 0, H

󸀠󸀠
0,1 = 0, and

ℓ󸀠󸀠0,1 =
𝜕𝒰1
𝜕L󸀠󸀠
=

1
16

R2⊕
p2

η3 14 − 15s
2

4 − 5s2
s2 sin 2ω

+
4

3(4 − 5s2)
∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

ℱi,j
η3

e
𝜕𝒢∗i,j
𝜕e

sin[(i − 2j)ω − iπ]
i − 2j

,

g󸀠󸀠0,1 =
𝜕𝒰1
𝜕G󸀠󸀠
=

1
16

R2⊕
p2
[
112 − 408s2 + 520s4 − 225s6

2(4 − 5s2)2
e2 − 14 − 15s

2

4 − 5s2
s2]

× sin 2ω + 4
3(4 − 5s2)

∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

[
c2

s
𝜕ℱi,j

𝜕s
𝒢∗i,j − ℱi,j

η2

e
𝜕𝒢∗i,j
𝜕e

+ (
14 − 15s2

4 − 5s2
+ 4 − 2i)ℱi,j𝒢

∗
i,j]

sin[(i − 2j)ω − iπ]
i − 2j

,

h󸀠󸀠0,1 =
𝜕𝒰1
𝜕H
= −

1
16

R2⊕
p2

56 − 120s2 + 75s4

(4 − 5s2)2
ce2 sin 2ω − 4c

3(4 − 5s2)

× ∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

(
10ℱi,j

4 − 5s2
+
1
s
𝜕ℱi,j

𝜕s
)𝒢∗i,j

sin[(i − 2j)ω − iπ]
i − 2j

,

G󸀠󸀠0,1 = −
𝜕𝒰1
𝜕g󸀠󸀠
= −

4G󸀠󸀠

3(4 − 5s2)
[
R2⊕
p2

3
64

e2(14 − 15s2)s2 cos 2ω

+∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

ℱi,j𝒢
∗
i,j cos[(i − 2j)ω − iπ]],

where the entities on the right sides are functions of the secular (triple-prime) Delau-
nay variables. The inverse corrections, x󸀠󸀠󸀠 = x󸀠󸀠 − J2x󸀠󸀠0,1 + 𝒪(J

2
2 ), are computed analo-

gously expressing the quantities on the right sides of the long-period corrections x󸀠󸀠0,1
as functions of the double-prime Delaunay variables.

6.4 Reverse normalization. Long periods removed first

Alternatively to Brouwer’s approach to compute a completely reduced Hamiltonian
by sequentially eliminating the short- and long-period terms, one can reverse the se-
quence and removefirst the long-period terms. This approachmay seemunnatural, for
the Lie derivative (4.66) does not depend on the argument of the perigee. However, be-
cause the disturbing potential of the zonal problem (6.2) only depends on g through
θ = f + g, as clearly noticed from Eq. (6.3), a smart choice of the new Hamiltonian
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terms, as well as proper selection of the arbitrary integration constants in which the
generating function depends upon, allows the reverse approach not only to be feasi-
ble, but advantageous when one pursues a higher-order normalization of the zonal
Hamiltonian in closed form of the eccentricity [408].

6.4.1 Normalization of the total angular momentum

We start from the original zonal Hamiltonian (6.6). New termsℋ0,m are chosen in such
a way that not only they cancel out the terms of the homological equation pertaining
to the kernel of the Lie derivative, as is mandatory, but they also cancel the additional
terms, if any, that are not purely periodic on g. That is, 𝜕ℋ0,m/𝜕g = 0. In this way g is
made cyclic, up to the truncation order, and, in consequence,G is turned into a formal
integral of the new, partially normalized Hamiltonian.

Therefore, at first order, we choose ℋ0,1 to be composed of the terms of ℋ1,0 that
are free from g. Thus, from Eq. (6.8),

ℋ0,1 =
μ
a
(
a2

r2
η)⟨V2⟩g , (6.53)

where, on account of Eq. (6.27),

⟨V2⟩g =
R2⊕
p2

η 1
4
(3s2 − 2) +

R2⊕
p2

η 1
4
(3s2 − 2)e cos f . (6.54)

Comparison with Eq. (6.30) shows that the new Hamiltonian term (6.53) certainly
carries all the terms pertaining to the kernel of the Lie derivative. In particular, it is
composed of the same terms as the first-order Hamiltonian of the elimination of the
parallax in addition to one term of the image—the one factored by cos f .

The homological equation is then solved using Eq. (5.39), from which we readily
obtain

𝒲1 = −
1
8
G
R2⊕
p2

s2
3
∑
i=1

3⌊2−i/2⌋e|i−2| sin(if + 2ω) + C1. (6.55)

The first-order term of the generating function is now simpler than Eq. (6.31) although
it carries an additional, “constant” term C1 ≡ C1(g, L,G,H). Incidentally, except for
the term C1, Eq. (6.55) is precisely the generating function of Cid’s radial intermediary
(5.29); cf. [111, 154].

At second order ℒ0(𝒲2) = ℋ̃0,2 − ℋ0,2, in which the computable terms ℋ̃0,2 are
given in Eq. (2.37). Namely,

ℋ̃0,2 = ℋ2,0 + {ℋ1,0;𝒲1} + {ℋ0,1;𝒲1}, (6.56)
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where ℋ2,0 is given in Eq. (6.9) and the computation of the Poisson brackets now in-
volves the partial derivatives of the still unknown function C1.

We wantℋ0,2 to cancel the terms of ℋ̃0,2 that are free from g. As regardsℋ2,0, they
are simply

⟨ℋ2,0⟩g = 2
μ
a
(
a2

r2
η)∑

i≥3

̃Ji⟨Vi⟩g .

We readily check from Eq. (6.3) that odd terms ⟨V2i−1⟩g always vanish, and even terms
⟨V2i⟩g stem from the values of the summation index j = 1

2 i. Hence,

⟨ℋ2,0⟩g = 2
μ
a
(
a2

r2
η)∑

i≥2

̃J2i
R2i⊕
p2i

ηℱ2i,i

2i−1
∑
k=0
(
2i − 1
k
)ek cosk f . (6.57)

Still, ⟨ℋ2,0⟩g does not carry all the terms of the kernel contributed by ℋ2,0. To check
that, we compute

ℋ2,0 − ⟨ℋ2,0⟩g = 2nG
a2

r2
∑
i≥3

̃Ji(Vi − ⟨Vi⟩g), (6.58)

where Vi − ⟨Vi⟩g is obtained by simply avoiding the value j = 1
2 i. Then, making use of

the differential relation (4.64), we readily obtain

⟨ℋ2,0 − ⟨ℋ2,0⟩g⟩ℓ = ∑
i≥3

Ki, Ki = 2
μ
a
̃Ji⟨Vi − ⟨Vi⟩g⟩f ,

where, analogously to Eq. (6.14),

Ki = 2
μ
a
̃Ji
Ri⊕
pi
η

i
∑
j=1
j ̸=i/2

ℱi,j𝒢
∗
i,j cos[(i − 2j)ω − iπ], i ≥ 3. (6.59)

Terms Ki, of this type must be nullified in the homological equation with a proper
choice of the arbitrary function C1.

These kinds of offending terms also stem from the evaluation of the Poisson brack-
ets in Eq. (6.56). Indeed, after identifying the terms of {ℋ1,0;𝒲1} + {ℋ0,1;𝒲1} that are
free from g, which will be left in the new Hamiltonian, the remaining terms, which do
depend on g, take the form of a trigonometric polynomial in f factored by 1/r2. The
term of zeroth degree of this trigonometric polynomial takes the particular form

K2 = n
a2

r2
η[3

2
R2⊕
p2
(5s2 − 4)𝜕C1

𝜕g
− G

R4⊕
p4

3
32
(15s2 − 14)s2e2 cos 2g],

and must be canceled out to avoid the appearance of non-periodic terms in f in the
generating function.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.4 Reverse normalization. Long periods removed first | 147

All the offending terms Ki, i ≥ 2, are easily nullified by properly choosing

C1 =
4G

3(5s2 − 4)
∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j≠i/2

ℱi,j𝒢
∗
i,j
sin[(i − 2j)ω − iπ]

i − 2j

+ G
R2⊕
p2

1
32

15s2 − 14
5s2 − 4

s2e2 sin 2g. (6.60)

When we do that, the first-order term of the generating function in Eq. (6.55) becomes
completely defined, and the known terms ℋ̃0,2 in Eq. (6.56) can be recomputed. We
find {ℋ1,0;𝒲1} + {ℋ0,1;𝒲1} = ℋ̃0,2,K + ℋ̃0,2,I, where

ℋ̃0,2,I =
μ
p
R4⊕
p4

p2

r2
1
512

2
∑
i=1

4
∑
j=−1
(j + i0)Qi,js

2i cos[(j + i0)f + 2ig], (6.61)

i0 = ⌊
1
2 i⌋ from Eq. (6.5), and the coefficients Qi,j are given in Table 6.4. Then ℋ̃0,2,I is

composed only of terms pertaining to the image of the Lie derivative. On the other
hand,

ℋ̃0,2,K =
μ
p
R4⊕
p4

p2

r2
3
64

s2[8(4s2 − 3) + (23s2 − 16)e2] − μ
p
R4⊕
p4

p2

r2
s2

(5s2 − 4)2

×
3
512
{[(975s6 − 2250s4 + 1728s2 − 448)e2 − 4(5s2 − 4)(795s4

− 1198s2 + 448)]e cos f − 4e2(775s6 − 1710s4 + 1236s2 − 288)
× cos 2f + e3(825s6 − 1990s4 + 1616s2 − 448) cos 3f }, (6.62)

which is free from the argument of the periapsis, is composed of terms of both the
kernel and the image of the Lie derivative.

Table 6.4: Coefficients Qi,j in Eqs. (6.61) and (6.64).

j i = 1 i = 2

−1 12 84−188s2+105s4

4−5s2 e3 −3 208−430s2+225s4

(4−5s2)2 e3

0 0 −60 38−87s2+50s4

(4−5s2)2 e2

1 48 148−340s2+195s4

4−5s2 e − 24(14 − 15s2)e3 −4 122−135s2

4−5s2 e − 8 61−135s2+75s4

(4−5s2)2 e3

2 96(8 − 9s2) + 24 52−116s2+65s4

4−5s2 e2 24 − 12 23−25s2

4−5s2 e2

3 64(7 − 8s2)e − 4(2 − 3s2) 14−15s
2

4−5s2 e3 24e − 3 14−15s2

4−5s2 e3

4 12(6 − 7s2)e2 6e2

Then we can safely choose

ℋ0,2 = ⟨ℋ̃0,2⟩g = ℋ̃0,2,K + ⟨ℋ2,0⟩g , (6.63)
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from Eqs. (6.62) and (6.57), and solve ℒ0(𝒲2) = ℋ2,0 + ℋ̃0,2,I − ⟨ℋ2,0⟩g , in closed form
of the eccentricity, using Eq. (5.39). We obtain

𝒲2 =
1
n
∫ ℋ̃0,2,I

r2

a2η
df + 1

n
∫(ℋ2,0 − ⟨ℋ2,0⟩g −∑

i≥3
Ki)

r2

a2η
df ,

into which we plug Eqs. (6.61), (6.58), and (6.59), to obtain

𝒲2 = G
R4⊕
p4

1
512

2
∑
i=1

4
∑
j=−1

Qi,js
2i sin[(j + i0)f + 2ig]

+ 2G∑
i≥3

̃Ji
Ri⊕
pi

i
∑
j=0
j ̸=i/2

ℱi,j

i−1
∑
k=0
(
i − 1
k
)ek𝒥k + C2. (6.64)

The integrals 𝒥k = ∫ cosk f cos[(i − 2j)(f + g) − iπ]df are solved with the help of
Eqs. (6.11)–(6.13), to obtain

𝒥k =
1
2k

k
∑
l=0
(

k
k − l
)
sin[(i − 2j)θ − (k − 2l)f − iπ]

i − 2j − k + 2l
, (6.65)

but the integration “constant” C2 ≡ C2(g, L,G,H) will remain undetermined until the
next order of the perturbation approach. That is, like we did with C1, C2 will be deter-
mined by imposing the requirement that the third-order term of the generating func-
tion be free from secular or mixed terms in the true anomaly.

It is worth checking that the choices ℋ0,1 and ℋ0,2 we made in Eqs. (6.53) and
(6.63), respectively, are not the unique ones that satisfy the purpose of eliminating g
from the original Hamiltonian. Indeed, as checked in Eqs. (6.53) and (6.54), the term
⟨ℋ1,0⟩g still carries terms of the image of the Lie derivative that can be pruned away.
Thus, the alternative selection ofℋ0,1 in the form of Eq. (6.30), like in the elimination
of the parallax, also fulfills our requirements. In that case, the generating function is
obviously the one of the elimination of the parallax in Eq. (6.31), which has one more
trigonometric term than Eq. (6.55).

The second-order term of the new Hamiltonian can be analogously simplified. In
particular, as checked in Eq. (6.57), the term ⟨ℋ2,0⟩g still carries different terms of the
image of the Lie derivative that can be pruned away. Thus, we use Eq. (6.12) to write

cosk f = 1 − k
⋆

2k
(
k
k0
) +

1
2k−1

k1
∑
j=0
(

k
k − j
) cos(k − 2j)f , (6.66)

where k0 = ⌊
1
2k⌋, k1 = ⌊

1
2 (k−1)⌋ and k

⋆ = k mod 2, from Eq. (6.5). Then odd k values al-
ways kill the first term on the right side of Eq. (6.66), thus yielding trigonometric terms
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in f , which pertain to the image of the Lie derivative. On the contrary, after rearranging
the summation, even values k = 2n yield

cos2n f = 1
22n
(
2n
n
) +

1
22n−1

n
∑
j=1
(
2n
n − j
) cos 2jf , (6.67)

which always carries one term pertaining to the kernel. Therefore, ⟨ℋ2,0⟩g is replaced
by

⟨ℋ2,0⟩
󸀠
g = 2

μ
p
p2

r2
∑
i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i𝒢
∗
2i,i, (6.68)

where, from Eq. (6.16),

𝒢∗2i,i =
i−1
∑
j=0
(
2i − 1
2j
)(

2j
j
)
e2j

22j
. (6.69)

On the other hand, terms of ℋ̃0,2,K pertaining to the image of the Lie derivative can
be removed analogously, replacing Eq. (6.62) by

ℋ̃󸀠0,2,K = −
μ
p
R4⊕
p4

p2

r2
3
8
[3 − 4s2 + (2 − 23

8
s2)e2]s2.

The new selectionℋ0,2 = ℋ̃
󸀠
0,2,K + ⟨ℋ2,0⟩

󸀠
g , namely

ℋ0,2 =
μ
p
p2

r2
{2∑

i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i𝒢
∗
2i,i −

R4⊕
p4
[
9
8
−
3
2
s2 + ( 3

4
−
69
64

s2)e2]s2}, (6.70)

clearly fulfills the requisites of having eliminated the perigee while keeping all the
terms of the kernel of the Lie derivative, and is much simpler than Eq. (6.63).

The simplicity of Eq. (6.70) is not, of course, for free and it is handicapped with
a concomitant generating function much more involved than Eq. (6.64). Intermedi-
ate Hamiltonians between Eqs. (6.63) and (6.70) give rise to a whole family of radial
intermediaries. The radial character of these partially normalized Hamiltonians is im-
mediately seen when they are reformulated in polar variables replacing e cos f = p/r
and e = √κ2 + σ2, with κ and σ given in Eq. (5.42), and recalling that p = Θ2/μ.

6.4.2 Normalization of the semimajor axis

The short-period elimination after the periapsis has been removed becomes now a
quite simple operation. The short-periodHamiltonian𝒦 = 𝒦0,0+J2𝒦1,0+

1
2 J

2
2𝒦2,0 is com-

posed of the Keplerian𝒦0,0 = ℋ0,0, the first-order term𝒦1,0 = ℋ0,1 given by Eq. (6.53),

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



150 | 6 Zonal perturbations

and the second-order term 𝒦2,0 = ℋ0,2 given by Eq. (6.63). All the quantities are now
functions of the prime Delaunay variables.

Then, at first order, the homological equation (4.68) is solved by choosing

𝒦0,1 =
μ
p
η3
R2⊕
p2
(−

1
2
+
3
4
s2) (6.71)

and computing 𝒰1 = (1/n)𝒦0,1(ϕ + e sin f ).
At second order, the known terms 𝒦0,2 are given by Eq. (6.56), which in addition

to the term 𝒦2,0 needs the computation of the Poisson brackets,

{𝒦1,0;𝒰1} + {𝒦0,1;𝒰1} = −
3
16

R4⊕
p4

G2

p2
(2 − 3s2)2η4 − 3

64
R4⊕
p4

G2

r2
(2 − 3s2)2

× [2(4 + e2) + β(15 + 12η + η2) cos f
+ 2(3 − 2η − η2) cos 2f + βe2 cos 3f ]. (6.72)

The term𝒦0,2 is chosen by removing the short-period effects from𝒦0,2. That is,𝒦0,2 =
⟨{𝒦1,0;𝒰1}⟩ℓ + ⟨{𝒦0,1;𝒰1}⟩ℓ + ⟨ℋ̃0,2,K⟩ℓ + ⟨⟨ℋ2,0⟩g⟩ℓ. The averaging is once more carried
out in closed form of the eccentricity using the differential relation (4.64). Thus, from
Eq. (6.57),

⟨⟨ℋ2,0⟩g⟩ℓ = 2
μ
a
∑
i≥2

̃J2i
R2i⊕
p2i

ηℱ2i,i

2i−1
∑
k=0
(
2i − 1
k
)ek 1

2π

2π

∫
0

cosk f df ,

which, on account of Eqs. (6.66)–(6.67) and (6.16), yields

⟨⟨𝒦2,0⟩g⟩ℓ = 2
μ
a
η∑
i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i𝒢
∗
2i,i. (6.73)

Analogously, from Eqs. (6.62) and (6.72), we obtain

⟨ℋ̃0,2,K⟩ℓ =
μ
a
R4⊕
p4

3η
64

s2[8(4s2 − 3) + (23s2 − 16)e2], (6.74)

⟨{𝒦1,0 + 𝒦0,1;𝒰1}⟩ℓ = −
μ
a
R4⊕
p4

3η
32
(2 − 3s2)2(5 + 2η − η2). (6.75)

Hence,

𝒦0,2 = −
μ
a
R4⊕
p4

η 3
64
[5(7s4 − 16s2 + 8) + 4(3s2 − 2)2η

+ (5s4 + 8s2 − 8)η2] + 2μ
a
η∑
i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i𝒢
∗
2i,i, (6.76)

which, as expected, is the same completely reduced Hamiltonian term previously ob-
tained in Eq. (6.50).
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The homological equation (4.68) is then solved to give the second-order term of
the generating function,

𝒰2 =
1
n
(⟨ℋ̃0,2,K⟩ℓ + ⟨⟨ℋ2,0⟩g⟩ℓ + ⟨{𝒦1,0 + 𝒦0,1;𝒰1}⟩ℓ)ϕ

+
1
n
∫(ℋ̃0,2,K

r2

a2η
− ⟨ℋ̃0,2,K⟩ℓ)df

+
1
n
∫(⟨ℋ2,0⟩g

r2

a2η
− ⟨⟨ℋ2,0⟩g⟩ℓ)df

+
1
n
∫({𝒦1,0 + 𝒦0,1;𝒰1}

r2

a2η
− ⟨{𝒦1,0 + 𝒦0,1;𝒰1}⟩ℓ)df , (6.77)

which in view of Eqs. (6.62) and (6.74), (6.57) and (6.73), and (6.72) and (6.75), is inte-
grated without difficulty in closed form of the eccentricity.

6.4.3 Alfriend and Coffey’s elimination of the perigee

Rather than starting from a standard normalization of the total angular momentum,
Alfriend and Coffey took the approach of eliminating the perigee from the simplified
Hamiltonian obtained after the elimination of the parallax [14]. That is,

ℋ = ℋ0,0 + J2ℋ1,0 +
1
2
J22ℋ2,0 +𝒪(J

3
2 ),

whereℋ0,0 is the Keplerian,ℋ1,0 is given in Eq. (6.30), andℋ2,0 is given in Eq. (6.33).
Namely,

ℋ2,0 =
μ
p
p2

r2
[
R4⊕
p4
(q0,0 + 2q0,1s

2 cos 2ω)

+ 2∑
i≥3

̃Ji
Ri⊕
pi

i
∑
j=0

ℱi,j(s)𝒢
∗
i,j(e) cos[(i − 2j)ω − iπ]],

where q0,0 and q0,1 are given in Table 6.1.
Now,ℋ1,0 is already free from the argument of the periapsis. Therefore,ℋ0,1 = ℋ1,0

and 𝒲1 = C1. At second order, the computable terms ℋ̃0,2 in Eq. (2.37) that enter the
homological equation are ℋ̃0,2 = ℋ2,0 + 2{ℋ1,0;C1}, in which the evaluation of the
involved Poisson bracket yields

{ℋ1,0;C1} =
1
4
R2⊕
p2

G2

r2
(2 − 3s2)(2e sin f + e2 sin 2f ) 1

η3
𝜕C1
𝜕L

+
1
4
R2⊕
p2

G
r2
[3(4 − 5s2) + (2 − 3s2)( 2

e
cos f + cos 2f)]𝜕C1

𝜕g
.
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Alfriend and Coffee impose the condition that the new Hamiltonian be free from
long-period effects. In view ofC1 going to be a periodic function of g, the partial deriva-
tives 𝜕C1/𝜕L and 𝜕C1/𝜕g will be also periodic in g, and hence ⟨{ℋ1,0;C1}⟩g = 0. Then

ℋ0,2 = ⟨ℋ2,0⟩g =
μ
p
p2

r2
[
R4⊕
p4

q0,0 + 2∑
i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i(s)𝒢
∗
2i,i(e)], (6.78)

which is of similar complexity to that of Eq. (6.70). Then

ℋ̃0,2 −ℋ0,2 =
1
2
R2⊕
p2

G2

r2
(2 − 3s2)(2e sin f + e2 sin 2f ) 1

η3
𝜕C1
𝜕L

+
1
2
R2⊕
p2

G
r2
(2 − 3s2)( 2

e
cos f + cos 2f)𝜕C1

𝜕g

+
G
r2
R2⊕
p2

3
2
(4 − 5s2)𝜕C1

𝜕g
+ 2G

2

r2
R4⊕
p4

q0,1s
2 cos 2ω

+ 2G
2

r2
∑
i≥3

̃Ji
Ri⊕
pi

i
∑
j=0
j≠i/2

ℱi,j𝒢
∗
i,j cos[(i − 2j)ω − iπ], (6.79)

where the partial derivative of the integration constant with respect to g has been in-
tentionally split into two parts to show that the last three terms must mutually cancel
to prevent the appearance of offending secular terms in the generating function. The
canceling is effectively achieved with the choice

C1 = −
4G

3(4 − 5s2)
{
R2⊕
p2

3
64
(14 − 15s2)s2e2 sin 2ω

2

+∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

ℱi,j𝒢
∗
i,j
sin[(i − 2j)ω − iπ]

i − 2j
}. (6.80)

After replacing Eq. (6.80) into Eq. (6.79), the homological equation (5.39) is inte-
grated to give

𝒲2 =
R2⊕
p2

2 − 3s2

4
[(

4
e
sin f + sin 2f)𝜕C1

𝜕g
− (4e cos f + e2 cos 2f ) G

η3
𝜕C1
𝜕L
], (6.81)

in which

𝜕C1
𝜕g
= −

4G
3(4 − 5s2)

{
R2⊕
p2

3
64
(14 − 15s2)s2e2 cos 2ω

+∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

ℱi,j𝒢
∗
i,j cos[(i − 2j)ω − iπ]},
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𝜕C1
𝜕L
= −

4η
3(4 − 5s2)

{
R2⊕
p2

3
32
(14 − 15s2)s2η2 sin 2ω

2

+∑
i≥3

̃Ji
Ri−2⊕
pi−2

i
∑
j=0
j ̸=i/2

ℱi,j
η2

e
𝜕𝒢∗i,j
𝜕e

sin[(i − 2j)ω − iπ]
i − 2j

}.

The consequent elimination of short-period terms in a Delaunay normalization
follows the same steps as in §6.4.2, producing the same first-order Hamiltonian as the
one in Eq. (6.71); yet we have the simpler first-order generating function

𝒰1 =
1
n
𝒦0,1ϕ. (6.82)

At second order 𝒦0,2 is given in Eq. (2.37), and we choose the new Hamiltonian
term 𝒦0,2 = ⟨𝒦0,2⟩ℓ = ⟨𝒦2,0⟩ℓ + ⟨{𝒦1,0;𝒰1}⟩ℓ + ⟨{𝒦0,1;𝒰1}⟩ℓ, where

⟨{𝒦1,0;𝒰1}⟩ℓ + ⟨{𝒦0,1;𝒰1}⟩ℓ = −
μ
a
R4⊕
p4

η 1
16
(2 − 3s2)2(1 + 3η)

and

⟨𝒦2,0⟩ℓ = −
μ
a
R4⊕
p4

η
16
[20 − 42s2 + 21s4 + 3

4
(8 − 8s2 − 5s4)e2]

+ 2μ
a
η∑
i≥2

̃J2i
R2i⊕
p2i

ℱ2i,i(s)𝒢
∗
2i,i(e),

the addition of both terms providing the same 𝒦0,2 first obtained in Eq. (6.50), with
the standard Brouwer approach, and then in Eq. (6.76) without the need of resorting
to the elimination of the parallax simplification.

6.5 Higher orders of the perturbation solution. A test case

To illustrate how the use of canonical simplifications help to disentangle the com-
putations required in higher-order solutions, and how these higher orders refine the
accuracy of an analytical solution computed in Brouwer’s style, we focus now on the
J2 problem alone and extend Brouwer’s perturbation solution to higher orders. Due
to the particular value of the Earth’s J2 coefficient, working in standard floating-point
arithmetic [332] the analytical solution reaches the numerical precision at order five,
which means neglecting terms of 𝒪(10−18) and higher in the perturbation approach
[408]. To avoid long listings, we only present explicit expressions up to order three
for the generating function, from which the computation of the periodic corrections
only involves the evaluation of Poisson brackets, as described in §2.1.3. Still, since the
elimination of the perigee is affected by an offset between the orders with which the
Hamiltonian and the generating function are fully determined, we provide also ex-
plicit expressions of the fourth-order Hamiltonian terms of each transformation.
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6.5.1 Preliminary simplification. Elimination of the parallax

Thefirst twoorders alreadyhave been computed in §6.2.1. Instead of the physical small
parameter J2, we use now a formal small parameter ε and abbreviate, for convenience,

ϵ̃ ≡ − 1
4
C2,0

R2⊕
p2
, (6.83)

which is not constant as far as p = p(G) and g is not yet a cyclic variable. Thus,
Eq. (6.30) turns into

ℋ0,1 = ϵ̃
μ
r
p
r
(3s2 − 2), (6.84)

and Eq. (6.31) into

𝒲1 = Gϵ̃
1
∑
l=0

2l+1
∑
k=1

P1,l,k(s)e
k⋆s2l sin(kf + 2lω), (6.85)

where P1,0,1 = 3s2 − 2, P1,1,1 = P1,1,2 = −
3
2 , P1,1,3 = −

1
2 , and k

⋆ = k mod 2 from the index
convention in Eq. (6.5).

At second order, after neglecting higher-order zonal harmonics from Eq. (6.33) we
arrange the Hamiltonian in the general form

ℋ0,i = ϵ̃
i μ
r
p
r

i0
∑
j=0

i0−j
∑
k=0

e2k+2jρi,j,k(s)s
2j cos 2jω, (6.86)

with i0 = ⌊
1
2 i⌋ from the index convention in Eq. (6.5). The coefficients ρ2,j,k are provided

in Table 6.5, jointly with the inclination polynomials of previous and following orders.
Proceeding analogously, we rearrange Eq. (6.34) in the general form

𝒲i = Gϵ̃
i

i
∑
l=0

2l+i
∑

k=2l−i

i0
∑
j=0

Pi,l,k,j(s)e
2j+k∗s2l sin(kf + 2lω), (6.87)

where the inclination polynomials P2,l,k,j are given in Table 6.6.
At third order, Deprit’s recursion (2.15) yields the computable terms

ℋ̃0,3 = {ℋ0,1 + 2ℋ1,0,𝒲2} + {ℋ0,2 +ℋ1,1 +ℋ2,0,𝒲1} +ℋ3,0, (6.88)

where ℋ3,0 = 0 for the main problem. Terms 1/rm with m > 2 are rewritten using
the identity (5.30). Then, after expressing ℋ̃0,3 in the form of a Fourier series in f , we
choose the simplified Hamiltonian by removing the trigonometric terms that depend
explicitly on the true anomaly. The new Hamiltonian term is obtained from Eq. (6.86),
in which, now, i = 3, and the inclination polynomials ρ3,j,k are provided in Table 6.5;
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Table 6.5: Inclination polynomials ρi,j,k in Eq. (6.86) up to i = 4. Adapted by permission from
Springer [440].

1,0,0 : 3s2 − 2

2,0,0 : −21s4 + 42s2 − 20

2,0,1 :
3
4 (5s

4 + 8s2 − 8)

2,1,0 : −
3
2 (15s

2 − 14)

3,0,0 : 3(420s6 − 987s4 + 756s2 − 208)

3,0,1 :
3
4 (2715s

6 − 4542s4 + 2232s2 − 464)

3,1,0 : −
9
8 (285s

4 − 208s2 − 32)

4,0,0 : −6(9210s8 − 33366s6 + 43719s4 − 25212s2 + 5344)

4,0,1 :
3
16 (865425s

8 − 1315296s6 + 120048s4 + 510336s2 − 155008)

4,0,2 : −
27
64 (65985s

8 − 164400s6 + 125824s4 − 32960s2 + 3712)

4,1,0 : −
3
8 (786705s

6 − 1970794s4 + 1602800s2 − 432480)

4,1,1 : −
27
16 (5045s

6 − 3734s4 − 4464s2 + 2688)

4,2,0 :
27
32 (14235s

4 − 25280s2 + 11144)

Table 6.6: Non-zero coefficients P2,l,k,j in Eq. (6.87); P2,2,5,0 = P2,2,4,0.

0,1,0 : −
1
4 (27s

4 − 108s2 + 64) 1,2,0 : 20 − 21s2 1,4,1 :
3
8 (13s

2 − 10) 2,4,0 :
3
4

0,2,1 :
3
16 (5s

4 + 8s2 − 8) 1,2,1 : −
3
2 (s

2 − 2) 2,2,1 : −
15
16 2,4,1 : −

3
16

1,1,0 : −7(12s2 − 11) 1,3,0 : 8s2 − 5 2,3,0 : −
3
4 2,6,1 :

3
16

cf. [118, 440]. The homological equation (5.39) gives𝒲3 in the form of Eq. (6.87) with
i = 3, with the inclination polynomials P3,l,k,j provided in Table 6.7.

From Deprit’s recursion (2.15), the known terms at fourth order are

ℋ̃0,4 = {ℋ0,1 + 3ℋ1,0,𝒲3} + {ℋ0,2 + 2ℋ1,1 + 3ℋ2,0,𝒲2}

+ {ℋ0,3 +ℋ1,2 +ℋ2,1 +ℋ3,0,𝒲1} +ℋ4,0, (6.89)

in which ℋ4,0 = 0 for the J2-problem. After evaluation, the inverse powers of r with
exponents higher than 2 are reduced to 1/r2 using Eq. (5.30). Then the usual trigono-
metric reduction is carried out to cast ℋ̃0,4 in the form of a multivariate Fourier series
in the true anomaly and the argument of the periapsis, from which the new Hamilto-
nian term ℋ0,4 is chosen by removing from ℋ̃0,4 the terms that depend explicitly on
the true anomaly f . The result is also arranged in the general form of Eq. (6.86), with
corresponding coefficients on Table 6.5.

The procedure ends changing osculating by prime variables in the terms ℋ0,m.
However, we avoid the prime notation in what follows for brevity except when there
may be risk of confusion.
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Table 6.7: Non-zero coefficients P3,l,k,j in Eq. (6.87); P3,3,7,0 = P3,3,5,0.

0,1,0 :
1
8 (23523s

6 − 39174s4 + 20128s2 − 4416) 2,3,1 : −
3
32 (73s

2 − 126)

0,1,1 :
3
32 (3393s

6 − 6222s4 + 3328s2 − 736) 2,4,0 :
1
4 (276s

2 − 233)

0,2,1 :
1
8 (5790s

6 − 8549s4 + 3448s2 − 600) 2,4,1 :
1
16 (6704 − 6951s

2)

0,3,1 :
1
32 (543s

6 − 1018s4 + 608s2 − 160) 2,5,0 :
1
20 (4455s

2 − 3934)

1,−1,1 :
3
64 (6921s

4 − 12384s2 + 5408) 2,5,1 :
9

160 (175s
2 − 82)

1,1,0 :
1
16 (−74025s

4 + 111232s2 − 40992) 2,6,1 :
1
32 (3813s

2 − 3398)

1,1,1 :
3
64 (13043s

4 − 30208s2 + 16064) 2,7,1 :
9

224 (417s
2 − 374)

1,2,0 :
1
2 (−3069s

4 + 4976s2 − 1952) 3,3,1 : −
153
64

1,2,1 : −
3
4 (1833s

4 − 3326s2 + 1462) 3,4,1 : −
9
8

1,3,0 :
1
16 (−21289s

4 + 44928s2 − 21856) 3,5,0 :
135
16

1,3,1 :
3
64 (263s

4 + 224s2 − 288) 3,5,1 : −
27
64

1,4,1 :
1
8 (−2076s

4 + 5763s2 − 3208) 3,6,0 :
15
2

1,5,1 :
9

320 (435s
4 + 256s2 − 448) 3,6,1 :

51
8

2,1,1 :
3
32 (2427s

2 − 2354) 3,7,1 :
81
64

2,2,1 :
1
32 (31226 − 33783s

2) 3,8,1 :
207
64

2,3,0 : −2(699s2 − 652) 3,9,1 :
27
64

6.5.2 Partial normalization. Long-period elimination

Up to fourth order, the Hamiltonian after the elimination of the parallax is

𝒦 =
4
∑
i=0

εi

i!
𝒦i,0 (6.90)

where 𝒦0,0 is the Keplerian term, and, for i > 0 the Hamiltonian terms adopt the gen-
eral, compact form of Eq. (6.86). That is,𝒦i,0 = ℋ0,i in which, now, the quantities p, r,
e, s, and ω are functions of the prime Delaunay variables.

Next, the long-period terms are eliminated like in [14]. The two first orders of Al-
friend and Coffey’s elimination the perigee have already been computed in §6.4.3.
Thus, Eq. (6.84) remains unaltered while 𝒰1 ≡ C1 is obtained by dropping the contri-
bution of the zonal harmonics of higher degree from Eq. (6.80). In the new scale due
to the current use of a formal small parameter ε, opposite to the physical parameter J2,
we obtain

𝒰1 = Gϵ̃
15s2 − 14
8(5s2 − 4)

s2e2 sin 2ω. (6.91)

Analogously, from Eq. (6.78),

𝒦0,2 = ϵ̃
2 μ
r
p
r
[
3
4
e2(5s4 + 8s2 − 8) − 21s4 + 42s2 − 20], (6.92)
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and from Eq. (6.81), up to an integration constant,

𝒰2 = ϵ̃
2G 15s2 − 14

4(5s2 − 4)
(3s2 − 2)s2[4e sin(f + 2ω) + e2 sin(2f + 2ω)] + C2, (6.93)

where C2 ≡ C2(g, L,G,H) will be determined at the next order by imposing the neces-
sary conditions to get a generating function purely periodic in f .

The computable terms𝒦0,3 of the third order of the perturbation approach are the
same as those of Eq. (6.88), rewritten in 𝒦 instead of ℋ, in which the intermediate
term of Deprit’s triangle (2.16)𝒦1,1 = 𝒦0,2 − {𝒦0,1;𝒰1} needs to be computed first. Then,
after evaluation of the involved Poisson brackets and the consequent use of Eq. (5.30)
to reduce the exponents of the radius to only the case 1/r2, 𝒦0,3 is reformulated as a
Fourier series in f , fromwhich the newHamiltonian term𝒦0,3 is obtained by selecting
those terms that are free from both f and g.

In this process we need to evaluate the Poisson bracket {3𝒦1,0,𝒰2}, as follows from
Eq. (6.88). On account of 𝒦1,0 ≡ 𝒦1,0(ℓ, −, −, L,G,H) and C2 ≡ C2(−, g, −, L,G,H), the
Poisson bracket involves partial differentiation of the yet undetermined integration
“constant” C2, on which 𝒰2 depends upon, with respect to the Delaunay variables g
and L.

Once𝒦0,3 is computed, we proceed first by identifying the terms T3,l pertaining to
the kernel of the Lie derivative. That is, 𝜕T3,l/𝜕ℓ = 0. We find

3
∑
l=0

T3,l = ϵ̃
3G2

r2
2
∑
l=0

2−l
∑
j=0

γ3,j,l(s)e2j+2l

(5s2 − 4)j+2l0
s2l cos 2lω + 9ϵ̃ G

r2
𝜕C2
𝜕g
(5s2 − 4), (6.94)

where the inclination polynomials γ3,j,l are given in Table 6.8; cf. [440]. The term T3,0,
the first of the summation in Eq. (6.94), will be canceled of the homological equation
out by making the new Hamiltonian to have an analogous term. On the contrary, as
far as the new Hamiltonian must not depend on g, the other terms of the kernel of the
Lie derivative cannot be canceled with this artifact. Nevertheless, in view of C2 being
yet formal, these terms of the kernel are removed from the homological equation by
choosing C2 in such a way that T3,1 + T3,2 + T3,3(C2) = 0. Straightforward integration
yields

C2 = −ϵ̃
2G

2
∑
l=1

2−l
∑
j=0

γ3,j,l(s)
18l(5s2 − 4)j+2l−1

e2j+2ls2l sin 2lω, (6.95)

which resolves the arbitrariness in the definition of the second-order term of the gen-
erating function of the long-period elimination in Eq. (6.93).

Now, we can compute the partial derivatives of C2 involved in𝒦0,3, which is in this
way fully materialized, and solve the homological equation

𝒰i =
1
n
∫(𝒦0,i − 𝒦0,i)dℓ =

1
n
∫(𝒦0,i − 𝒦0,i)

r2

a2η
df , (6.96)
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Table 6.8: Inclination polynomials γi,j,l. Terms γi,0,0 = ρi,0,0 are in Table 6.5.

2,1,0:
3
4 (5s

4 + 8s2 − 8)

3,1,0:
3
8 (26475s

8 − 65880s6 + 58068s4 − 22496s2 + 3712)

3,2,0: −
9
16 s

2(15s2 − 14)(450s6 − 925s4 + 590s2 − 112)

3,0,1: −
27
4 (125s

4 − 207s2 + 88)

3,1,1:
9
16 (15s

2 − 14)(45s4 + 36s2 − 56)

3,0,2: −
9
16 (15s

2 − 14)2(15s2 − 13)

4,1,0:
3
16 (4298775s

10 − 9984900s8 + 5832072s6 + 2075520s4 − 2816384s2 + 620032)

4,2,0: −
9
64 (7601625s

12 − 29437800s10 + 44628520s8 − 33274368s6 + 12549504s4 − 2249728s2

+ 178176)

4,3,0:
9
8 s

2(15s2 − 14)(6750s10 − 10125s8 − 5670s6 + 17078s4 − 9576s2 + 1568)

4,0,1: −
3
8 (16407375s

10 − 68238100s8 + 112604400s6 − 92289344s4 + 37587200s2 − 6084096)

4,1,1:
3
8 (28676250s

12 − 126428625s10 + 227723100s8 − 213964120s6 + 110351824s4

− 29582080s2 + 3225600)

4,2,1: −
3
32 (15s

2 − 14)(2328750s12 − 8703375s10 + 13317150s8 − 10848180s6 + 5157560s4

− 1450624s2 + 200704)

4,0,2:
3
16 (1235250s

8 − 4334325s6 + 5686350s4 − 3304956s2 + 717728)

4,1,2:
3
32 (15s

2 − 14)2(1800s6 + 2655s4 − 8208s2 + 3928)

4,0,3: −
3
32 (15s

2 − 14)3(825s4 − 1445s2 + 634)

in which 𝒦0,3 = T3,0 takes the general form

𝒦0,i = ϵ̃
i μ
r
p
r

i−1
∑
j=0

γi,j,0(s)
(5s2 − 4)j

e2j, (6.97)

with i = 3 in the current case. We obtain

𝒰3 =
Gϵ̃3

(5s2 − 4)3
2
∑
j=0

2
∑
l=0

2l−1+2
∑

k=2l0−2
k ̸=0

Γ3,l,k,je
2j−k⋆s2l sin(kf + 2lω) + C3, (6.98)

with l−1 ≡ ⌊
1
2 (l+1)⌋ and l0 ≡ ⌊

1
2 l⌋ fromEq. (6.5), and the 18 non-zero inclination polyno-

mials Γ3,l,k,j are listed in Table 6.9. Once again, the integration constant C3 ≡ C3(g, L,G)
will remain undetermined until the next order.

At fourth order, the procedure starts again filling Deprit’s triangle (2.16) with the
computable terms𝒦1,2 = 𝒦0,3 − {𝒦0,2;𝒰1}, and𝒦2,1 = 𝒦1,2 − {𝒦1,0;𝒰2} − {𝒦1,1;𝒰1}, which
areneeded in the computationof𝒦0,4 fromEq. (6.89),whereℋ is replacedby𝒦. Again,
this process involvespartial differentiationofC3with respect to theDelaunayvariables
g and L. After reducing the inverse powers of the radius to coefficients 1/r2 with the
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Table 6.9: Non-zero inclination polynomials Γ3,l,k,j in Eq. (6.98). Γ3,0,2,1 = 1
4 Γ3,0,1,1, Γ3,1,−1,2 = 4Γ3,1,−2,2,

4Γ3,1,2,2 = Γ3,1,1,2, 16Γ3,1,4,1 = 2Γ3,1,3,1 = Γ3,1,2,0, and 30Γ3,2,4,2 = 5Γ3,2,3,2 = 3Γ3,2,2,1.

0,1,1 : −
1
16 s

4(3s2 − 2)(5s2 − 4)(15s2 − 14)2

0,1,2 : −
1
32 s

2(15s2 − 14)(6075s8 − 15960s6 + 14556s4 − 5104s2 + 448)

0,2,2 : −
1
64 s

2(15s2 − 14)(2925s8 − 7710s6 + 7064s4 − 2496s2 + 224)

1,−2,2 : −
3
64 (3s

2 − 2)(5s2 − 4)(15s2 − 14)(45s4 + 36s2 − 56)

1,1,1 :
3
2 (5s

2 − 4)2(3105s6 − 7251s4 + 5598s2 − 1424)

1,1,2 : −
9
16 (5s

2 − 4)(15s2 − 14)(85s6 − 22s4 − 96s2 + 48)

1,2,0 : 3(3s2 − 2)2(5s2 − 4)2(15s2 − 14)

1,2,1 :
3
8 (5s

2 − 4)2(1890s6 − 4317s4 + 3258s2 − 808)

2,1,2 : −
1
32 (15s

2 − 14)2(135s4 − 242s2 + 112)

2,2,1 : −
5
32 (3s

2 − 2)(5s2 − 4)(15s2 − 14)2

2,2,2 : −
1
32 (15s

2 − 14)2(30s4 − 55s2 + 26)

help of Eq. (5.30), and carrying out the usual trigonometric reduction, we identify five
terms of 𝒦0,4 pertaining to the kernel of the Lie derivative. Namely,

4
∑
l=0

T4,l = ϵ̃
4G2

r2
3
∑
l=0

3−l
∑
j=0

e2j+2lγ4,j,ls2l

(5s2 − 4)j+2l−1 cos 2lω + ϵ̃ Gr2 12(5s2 − 4)𝜕C3𝜕g ,
where the inclination polynomials γ4,j,l are also displayed in Table 6.8.

The term T4,0 of the summation does not depend on g and is easily nullified with
an equivalent term of the new Hamiltonian, which takes again the form of Eq. (6.97).
The remaining terms of the kernel are removed from the homological equation by
choosing C3 in such a way that T4,1 + T4,2 + T4,3 + T4,4(C3) = 0. We readily obtain

C3 = −ϵ̃
3G

3
∑
l=1

3−l
∑
j=0

γ4,j,l
24(5s2 − 4)j+1+2l−1 e2j+2ls2l sin 2lω. (6.99)

The procedure ends replacing prime by double-prime Delaunay variables in the
new Hamiltonian terms 𝒦0,i, i = 0, . . . , 4, which are free from long-period effects and
only depend on short-period effects through the coefficient 1/r2.

6.5.3 Complete Hamiltonian reduction. Short-period elimination

Because the argument of the perigee is cyclic in the Hamiltonian in double-prime vari-
ables, up to the truncation order, G󸀠󸀠 is constant and so it is p in Eq. (6.83). Therefore,
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ϵ̃ is constant in the double-prime variables and is taken hereafter as the small param-
eter of the perturbation approach. Then the Hamiltonian after the long-period elimi-
nation is written like 𝒬 = ∑4i=0(ϵ̃

i/i!)𝒬i,0, where 𝒬0,0 is the Keplerian term, and, from
Eq. (6.97),

𝒬i,0 =
μ
p
p2

r2
i−1
∑
j=0
(

e2

5s2 − 4
)
j
γi,j,0(s), i > 0,

where p, r, e, and s are now functions of the double-prime Delaunay variables, and
the inclination polynomials γi,j,0 were previously given in Tables 6.8 and 6.5 up to the
fourth order of J2.

The first order of the Delaunay normalization has already been computed, and is
obtained by rescaling Eq. (6.71), for the Hamiltonian, and Eq. (6.82) for the generating
function, taking into account that now we are using ϵ̃ as the small parameter of the
perturbation arrangement. Namely,

𝒬0,1 =
μ
p
η3(3s2 − 2), 𝒱1 = G(3s

2 − 2)ϕ. (6.100)

At second order, after reducing as usual the exponents of the inverse powers of r,
the computable terms yield

𝒬0,2 = −3
μ
p
(3s2 − 2)2η4 − μ

p
p2

r2
[6(s2 − 1)(5s2 − 4)

−
3
4
(5s4 + 8s2 − 8)e2 + β(3s2 − 2)2(2e cos f + e2 cos 2f )],

from which the new Hamiltonian is chosen by averaging short-period terms. Thus,
𝒬0,2 = ⟨𝒬0,2⟩ℓ. The averaging is carried out in closed form with the help of the differ-
ential relation (4.64), and is rearranged in the general form

𝒬0,i =
μ
p

η3

(5s2 − 4)i−1
2i−2
∑
j=0

ηjλi,j, (6.101)

where division by 5s2 − 4 does not happen in this particular case (i = 2) due to analo-
gous factors in the inclination polynomials λ2,j, as checked in Table 6.10; cf. [440]. As
expected, the term𝒬0,2 is the sameas𝒦0,2 in Eq. (6.76) after removing zonal harmonics
of higher degree than 2, and making a rescaling due to the different small parameter.

The homological equation takes the form of (4.69), whereℋ is replaced by𝒬 and
𝒲 by 𝒱, in which the integrand is purely periodic in f . Therefore, it is readily solved
in closed form of the eccentricity. At second order we obtain

𝒱2 = Gϕ
1
∑
j=0

Φ2,je
2j − Gβ(3s2 − 2)2

2
∑
j=1

Λ2,je
j sin jf ,

with Φ2,0 = 6(1 − s2)(5s2 − 4), Φ2,1 =
3
4 (5s

4 + 8s2 − 8), Λ2,1 = 2, and Λ2,2 =
1
2 .
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Table 6.10: Inclination polynomials λi,j in Eq. (6.101).

2,0: −
15
4 (7s

4 − 16s2 + 8)(5s2 − 4)

2,1: −3(3s2 − 2)2(5s2 − 4)

2,2: −
3
4 (5s

4 + 8s2 − 8)(5s2 − 4)

3,0:
45
16 (28700s

10 − 107205s8 + 158960s6 − 118492s4 + 45152s2 − 7168)

3,1:
135
4 (3s

2 − 2)(5s2 − 4)2(7s4 − 16s2 + 8)

3,2: −
9
8 (28675s

10 − 98005s8 + 130852s6 − 87164s4 + 30176s2 − 4608)

3,3:
45
4 (3s

2 − 2)(5s2 − 4)2(5s4 + 8s2 − 8)

3,4: −
9
16 s

2(15s2 − 14)(450s6 − 925s4 + 590s2 − 112)

4,0:
9
64 (27768125s

14 − 347238500s12 + 1247118600s10 − 2156830160s8 + 2074755680s6

− 1140109440s4 + 335476224s2 − 41000960)

4,1:
135
16 (5s

2 − 4)(362775s12 − 1629460s10 + 3049320s8 − 3064144s6 + 1755680s4

− 547072s2 + 72704)

4,2:
45
32 (6075125s

14 − 18069200s12 + 9483000s10 + 26897576s8 − 48702032s6 + 34262976s4

− 11442432s2 + 1499136)

4,3: −
45
8 (5s

2 − 4)(395775s12 − 1651940s10 + 2876216s8 − 2709296s6 + 1479456s4

− 450816s2 + 60416)

4,4:
45
64 (7246125s

14 − 32291700s12 + 57674440s10 − 51359984s8 + 22168224s6 − 2743168s4

− 914944s2 + 221184)

4,5: −
63
16 (5s

2 − 4)(79125s12 − 299100s10 + 432600s8 − 289840s6 + 78944s4 + 1280s2 − 3072)

4,6:
9
8 s

2(15s2 − 14)(6750s10 − 10125s8 − 5670s6 + 17078s4 − 9576s2 + 1568)

At third order, the computable terms𝒬0,3 are those in Eq. (6.88) withℋ replaced
by 𝒬. After the usual reduction to powers of 1/r2, we find terms that depend on the
equation of the center and terms that do not. The first are

Tϕ = −3
μ
p
(3s2 − 2)(5s4 + 8s2 − 8)p

2

r2
(2e sin f + e2 sin 2f )ϕ, (6.102)

where p2/r2 = (1 + e cos f )2 from Eq. (4.29). Then, after carrying out the usual trigono-
metric reduction, we find that these terms give rise to terms exactly of the same type
as those that were first found in §5.6.2. They are analogously averaged, to obtain

⟨Tϕ⟩ℓ =
μ
p
3
2
(3s2 − 2)(5s4 + 8s2 − 8)η3(2η3 + η2 − 3).

Among the remaining terms we find terms that are free from short-period effects
and terms with coefficients 1/r2. The former are directly incorporated into the new
Hamiltonian, and the latter are trivially averaged with the help of the differential re-
lation (4.64). The new Hamiltonian term 𝒬0,3 is then obtained by adding the partial
results and takes the general form of Eq. (6.101) with the coefficients λ3,j in Table 6.10.
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The integration of the homological equation (4.69) is standard except for the term
Tϕ in Eq. (6.102), which needs integration by parts. The final combination of the inte-
grals of the different types of terms yields the solution

𝒱3 =
Gϕ
(5s2 − 4)2

2
∑
j=0

−4j1
∑
k=0

Φ3,j,kη
kej cos jf

+ G(3s2 − 2)β2
4
∑
j=1

4−4j1
∑
k=0

Λ3,j,kη
k−1ej sin jf , (6.103)

with the inclination polynomials Φ3,j,k and Λ3,j,k of Table 6.11.

Table 6.11: Non-vanishing inclination polynomials Φ3,j,k (upper) and Λ3,j,k (lower) in Eq. (6.103).
Φ3,0,1 = 0, Φ3,2,0 =

1
4Φ3,1,0 = Φ3,0,3, Λ3,1,4 = 4Λ3,2,4 = −Λ3,1,3, and

4
11Λ3,2,0 = 8Λ3,4,0 = Λ3,3,0 =

1
3Λ3,1,0.

0,0 :
9
16 (146500s

10 − 538025s8 + 784240s6 − 574668s4 + 215520s2 − 33792)

0,2 : −
3
8 (109125s

10 − 372775s8 + 499020s6 − 332724s4 + 114080s2 − 16896)

0,3 :
3
2 (3s

2 − 2)(5s2 − 4)2(5s4 + 8s2 − 8)

0,4 : −
9
16 s

2(15s2 − 14)(450s6 − 925s4 + 590s2 − 112)

1,0 : −3(3s2 − 2)2 1,3 : −
9
2 (5s

4 + 8s2 − 8)

1,1 :
1
2 (189s

4 − 816s2 + 488) 2,1 :
1
4 (99s

4 − 348s2 + 200)

1,2 :
1
2 (153s

4 − 1032s2 + 656) 2,2 :
1
8 (207s

4 − 840s2 + 496)

At fourth order, the computable terms are those of Eq. (6.89), and need the previous
computationof the intermediate terms𝒬1,2 and𝒬2,1 fromDeprit’s triangle (2.16). Terms
of𝒬0,4 depending on the equation of the center are of the same types as those found
at third order and, therefore, are analogously integrated.

The new Hamiltonian term 𝒬0,4 = ⟨𝒬0,4⟩ℓ is also arranged in the general form of
Eq. (6.101) with corresponding inclination polynomials λ4,j in Table 6.10.

6.5.4 Secular frequencies

Thus, up to the truncation order, we have the completely reduced Hamiltonian

𝒮 = 𝒮(−, −, −, L󸀠󸀠󸀠,G󸀠󸀠󸀠,H󸀠󸀠󸀠) ≡ ∑
m≥0

ϵm

m!
𝒮m, (6.104)

in which the terms 𝒮m,m = 0, 1, . . . , are obtained from corresponding terms𝒬0,m after
changing double-prime by triple-prime variables, and we removed the tilde from the
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small parameter for brevity. The trivial integration of Hamilton equations yields the
analytical solution for the secular terms

ℓ󸀠󸀠󸀠 = ℓ󸀠󸀠󸀠0 + nMt, g󸀠󸀠󸀠 = g󸀠󸀠󸀠0 + nωt h󸀠󸀠󸀠 = h󸀠󸀠󸀠0 + nΩt,

where nM = 𝜕𝒮/𝜕L󸀠󸀠󸀠, nω = 𝜕𝒮/𝜕G󸀠󸀠󸀠, nΩ = 𝒮/𝜕H󸀠󸀠󸀠, L󸀠󸀠󸀠 = L󸀠󸀠󸀠0 , G󸀠󸀠󸀠 = G󸀠󸀠󸀠0 , H󸀠󸀠󸀠 = H󸀠󸀠󸀠0 ,
and the initialization constants (ℓ󸀠󸀠󸀠0 , g

󸀠󸀠󸀠
0 , h
󸀠󸀠󸀠
0 , L
󸀠󸀠󸀠
0 ,G
󸀠󸀠󸀠
0 ,H
󸀠󸀠󸀠
0 ) of the analytical theory are

computed fromcorresponding initial conditions after carryingout thedifferent inverse
transformations. Details on the particular form taken by the frequencies nM , nω, and
nΩ, can be found in [405].

On the other hand, as mentioned in §5.3, the singularities of Delaunay variables
may make the analytical perturbation solution unsuitable in different cases, and a
perturbation solution in a set of nonsingular variables may then be preferred. If that
is the case, we only need to reformulate the perturbation solution in the desired set of
variables without need of computing it from the original Hamiltonian written in the
non-singular variables [171, 468].

For instance, the non-canonical set of variables (F,C, S, h, L,H) discussed in §5.7.2,
avoids singularity issues related to low-eccentricity orbits, and is customarily used in
different applications. In these variables, the secular terms of the main problem are
given by H = H0, L = L0, and

F = F0 + nF t,
C = e cos(g0 + nωt) = C0 cos nωt − S0 sin nωt,
S = e sin(g0 + nωt) = S0 cos nωt + C0 sin nωt,
h = h0 + nΩt, (6.105)

where F0 = ℓ0 + g0, C0 = e cos g0, S0 = e sin g0, e = (1 − G2
0/L

2
0)

1/2, nF = nM + nω, and
the triple-prime notation has been omitted for simplicity.

After standard partial derivation, we arrange the secular frequencies in the com-
pact form

nF = n + n
m̃
∑
m=1

ϵm

(5s2 − 4)m
2m−1
∑
i=0

Ψm,i(s)η
i, (6.106)

nω = n
m̃
∑
m=1

ϵm

(5s2 − 4)m
2m−2
∑
i=0

ωm,i(s)η
i, (6.107)

nΩ = nc
m̃
∑
m=1

ϵm

(5s2 − 4)m
2m−2
∑
i=0

Ωm,i(s)η
i, (6.108)

where n = μ2/L30, from Eq. (4.44), and the inclination polynomials Ψm,i, ωm,i, and Ωm,i
are provided in Table 6.12 up to the third order of the perturbation approach. We re-
mark that divisors 5s2 − 4 cancel out for the two first orders, as checked in Table 6.12,
and only appear starting from the third order [408].
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Table 6.12: From top to bottom, inclination polynomials Ψi,j , ωi,j , and Ωi,j in Eqs. (6.106)–(6.108).
The coefficients ωi,0 are the same as Ψi,0 and are not shown. After [408].

1,0: −3(5s2 − 4)2

1,1: −3(3s2 − 2)(5s2 − 4)

2,0:
15
8 (5s

2 − 4)2(77s4 − 172s2 + 88)

2,1:
9
8 (5s

2 − 4)2(155s4 − 256s2 + 104)

2,2:
3
8 (5s

2 − 4)2(189s4 − 156s2 + 8)

2,3:
15
8 (5s

2 − 4)2(5s4 + 8s2 − 8)

3,0: −
15
32 (2439500s

12 − 11312175s10 + 21772080s8 − 22346500s6 + 12956400s4 − 4043136s2

+ 533248)

3,1: −
45
32 (5s

2 − 4)(62300s10 − 260365s8 + 431504s6 − 356508s4 + 147552s2 − 24576)

3,2:
3
16 (1835625s

12 − 7723875s10 + 13291500s8 − 12015300s6 + 6064176s4 − 1644928s2

+ 192256)

3,3:
15
16 (5s

2 − 4)(18175s10 − 85105s8 + 153172s6 − 136540s4 + 61408s2 − 11264)

3,4:
3
32 (213750s

12 −1441125s10 +3537000s8 −4313100s6 +2835280s4 −967808s2 +135424)

3,5:
21
32 s

2(5s2 − 4)(15s2 − 14)(450s6 − 925s4 + 590s2 − 112)

2,1: 9(3s2 − 2)(5s2 − 4)3

2,2:
3
8 (5s

2 − 4)2(45s4 + 36s2 − 56)

3,1: −
45
4 (5s

2 − 4)3(168s6 − 497s4 + 460s2 − 136)

3,2:
3
16 (2150625s

12 − 9409875s10 + 16968300s8 − 16218180s6 + 8729136s4 − 2535808s2

+ 315136)

3,3: −
15
4 (5s

2 − 4)3(105s6 + 39s4 − 228s2 + 104)

3,4:
3
32 (438750s

12 − 1771125s10 + 2865000s8 − 2345100s6 + 999760s4 − 199808s2 + 12544)

1,0: −6(5s2 − 4)

2,0:
15
2 (5s

2 − 4)2(7s2 − 8)

2,1: 18(3s2 − 2)(5s2 − 4)2

2,2:
3
2 (5s

2 − 4)2(5s2 + 4)

3,0: −
15
8 (215250s

10 − 823025s8 + 1255040s6 − 953760s4 + 361088s2 − 54464)

3,1: −
45
4 (5s

2 − 4)3(63s4 − 124s2 + 56)

3,2:
3
8 (430125s

10 − 1553550s8 + 2222340s6 − 1570224s4 + 546432s2 − 74624)

3,3: −
15
4 (5s

2 − 4)3(45s4 + 28s2 − 40)

3,4:
3
8 (50625s

10 − 168375s8 + 215900s6 − 130800s4 + 35840s2 − 3136)
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6.5.5 Sample application. The PRISMA orbit

We present a test of the analytical solution for a low-eccentricity orbit at 500 km of
altitude and in sun-synchronous configuration, in agreement with the mission req-
uisites of the PRISMA mission [553]. In particular, the following initial conditions in
Cartesian coordinates are chosen (km for position and km/s for velocity):

x0 = −4178.63775517221, ẋ0 = 5.84458519389825,
y0 = 1571.13919300305, ẏ0 = −0.579214366053911,
z0 = 5224.69084171088, ̇z0 = 4.85361424021968. (6.109)

For the gravitational model we take the values μ = 398600.4415 km3/s2, R⊕ =
6378.1363 km, and J2 = 0.001082634. The reference orbit is then computed by nu-
merical integration of the equations of motion in Cartesian coordinates in Eq. (5.6),
which is carried out in extended precision to guarantee that all the figures remaining
after truncation to double precision are exact.

The time history of the orbital elements is shown in the following figures for an
interval of 3 days, in which the satellite orbits the Earth about 45.6 times. As shown
in Fig. 6.4, the semimajor axis a experiences small oscillations of ∼ 10 km amplitude
with half the orbital period about its average value of ∼ 6880 km (left plot), while the
inclination of the orbital plane I ≈ 97.42 deg remains almost constant, with small
oscillations of less than 20 arc seconds of amplitude and the same period as the semi-
major axis (right plot).

Figure 6.4: Time histories of the semimajor axis (left plot) and inclination (right plot) of the true
PRISMA orbit. Abscissas are in days.

The behavior of the eccentricity e is quite similar, as shown in Fig. 6.5, with small pe-
riodic oscillations of variable amplitude with respect to its average value ∼ 2 × 103.
On the contrary, the instantaneous argument of the perigee ω undergoes notable os-
cillations of variable amplitude that may reach about 50 degree. These periodic os-
cillations modulate a linear decreasing trend of about 1 deg/day, which is colored in
white superimposed to the time history of the argument of the perigee. The right plot
of Fig. 6.5 shows the evolution of the eccentricity vector, where the arrow marks the
point corresponding to the initial conditions. The dashed circle in this last plot illus-
trates the long-period circulatorymotion of the average eccentricity vector, which is in
full agreement with the long-term behavior of high-inclination orbits previously dis-
cussed in §5.6.3.
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Figure 6.5: Eccentricity vector of the true PRISMA orbit along 3 days.

The right ascension of the ascending node of the PRISMA orbit grows almost linearly
at the Sun-synchronous rate ∼ 1 deg/day that is modulated with small periodic oscil-
lations of similar amplitude to those observed in the inclination. The same behavior
is observed in the mean distance to the node F = M + ω, yet its rate is notably faster,
by more than 15 orbits per day, and the amplitude of the periodic oscillations is about
3.6 arc minutes in this case.

The reference orbit is now compared with those provided by different truncations
of the analytical solution. To begin with, we illustrate the importance of making an
accurate initialization of the constants of the perturbation theory.

6.5.5.1 Initialization of the constants
First of all,we completely disregard theperiodic corrections and take the secular terms
of the analytical solution like if they where osculating elements. Then, transforming
the initial conditions in Eq. (6.109) into semi-equinoctial variables, we obtain

F0 = 0.8726646200250181, L0 = 52360.56175616003,

C0 = 0.9396928336552479 × 10−3, S0 = 0.3420158197412482 × 10−3,

h0 = 2.9349734000392003, H0 = −6762.329846647862, (6.110)

were F0 and h0 are given in radians, C0 and S0 are non-dimensional, and L0 and H0
have dimensions km2/s. Next, the secular frequencies of the motion are computed up
to the second order of J2 using Eqs. (6.106)–(6.108), to get

nF = 1.105341787346819 × 10
−3,

nω = −7.080920112885583 × 10
−7,

nΩ = 1.994353947362547 × 10
−7, (6.111)

in radians per second, producing an anomalistic period (from perigee to perigee) T =
2π/(nF − nω) = 94.68min. With these values, the evolution of the secular terms is
computed by simple evaluation of Eq. (6.105) at the desired output time t.
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The errors of the solution in triple-prime variables are depicted in Fig. 6.6, where,
in addition to the expected periodic errors (of the same amplitude as the periodic os-
cillations of the orbital elements of the true orbit), a general shift of the errors of any
orbital element from the zero average is apparent. On the other hand, as it is checked
by visual inspection of Fig. 6.6, the initial error is zero in all cases due to the use of the
same initial conditions both in the true, numerically integrated solution and in the
analytical propagation of the secular terms.

Figure 6.6: Errors of the secular solution when the initial conditions are not converted to secular
values. Abscissas are in days.

Moreover, in addition to the general shift form the zero average, the errors of F and
Ω undergo a secular drift which is evident in their time histories in Fig. 6.7. This is
mainly due to the inaccurate computation L󸀠󸀠󸀠 = L, which corrupts the accuracy of all
the secular frequencies, most notably of nM and, in consequence, nF . The latter pro-
duces an important linear growth of the error of themeandistance to thenode of about
2 deg/day that is predominant over the periodic perturbations since the beginning of
the propagation, as clearly observed in the upper plot of Fig. 6.7. The secular increase
of the errors of Ω is also evident in the lower plot of Fig. 6.7. However, on account of
nΩ being only𝒪(J2), its effect is less harmful than in the case of nF , which is𝒪(1), and
the errors of Ω grow only at a the small rate of about 3.5 as/day. Along the short prop-
agation interval shown in Fig. 6.7 the errors of Ω are dominated by the periodic terms,
but the secular component of the errors will prevail in longer intervals.

Both types of effects in the errors, the shift from the zero average and the secular
increase, are obvious consequences of the fact that, because the initial conditions
were not transformed into secular elements, we are actually comparing two different
orbits, and hence the secular terms do not reflect the average behavior of the true so-
lution. Because of that, the position predicted by the secular solution can differ from
the actual one in hundreds of kilometers after just one-day propagation. This is illus-
trated in Fig. 6.8, where the norm of the position error—root-sum-square (RSS) of the
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Figure 6.7: Errors of the secular propagation of F and Ω when the initial conditions are not converted
to secular values. Abscissas are in days.

Figure 6.8: Root-sum-square error of the Cartesian coordinates of the secular approximation with no
conversion of the initial conditions. Abscissas are in days.

difference between the position of the integrated exact equations (5.6) and the posi-
tion obtained from the analytical propagation of the secular terms with Eq. (6.105)—is
displayed.

The next step is to transform the osculating initial conditions in Eq. (6.110) consec-
utively to prime, double-prime, and triple-prime variables to obtain the correct values
of the constants (initial elements and frequencies) that initialize the secular solution.
That is, the inverse transformations of the elimination of the parallax, the elimination
of the perigee, and the Delaunay normalization, are applied sequentially, up to the
first order of J2, to obtain

F1 = 0.8716628560891988, L1 = 52366.94663215522,
C1 = 0.1841678296708005 × 10−2, S1 = 0.7152507807642872 × 10−3,
h1 = 2.935061847045128, H1 = H0, (6.112)

from which we compute the secular frequencies

nF = 1.104938198224251 × 10
−3,

nω = −7.075076094488982 × 10
−7,

nΩ = 1.992424728390034 × 10
−7. (6.113)

Relative differenceswith the values in Eqs. (6.110) and (6.111) are𝒪(J2). In this case also
we do not recover the periodic effects after the analytical propagation of the secular
terms, and just compare the secular propagation with the true orbit. Therefore, the
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periodic errors are expected to oscillate with the same amplitude as before. However,
the secular solution gets now much closer to the average values of the actual orbit.

The beneficial effect of transforming osculating variables into secular elements is
illustrated in Fig. 6.9 for the eccentricity vector. Now, the initial errors no longer van-
ish, as it correctly must happen because we are comparing osculating elements with
secular elements. The amplitude of the periodic errors remain similar in the two cases,
as expected. This behavior is also checked, of course, with the other orbital elements.
In addition, the secular components of the errors are now mostly eliminated. This is
illustrated for the right ascension of the ascending node and the mean longitude in
Fig. 6.10, where the errors of the secular propagation with and without conversion
from osculating to secular elements are superimposed. Again, we note that the am-
plitudes of the periodic components of the errors remain unaltered.

Figure 6.9: Errors of the eccentricity vector computed from the secular terms with (black curve), and
without conversion of the initial conditions (gray curve).

Figure 6.10: Errors of Ω and F with proper initialization (black curves), superimposed to analogous
graphics in Fig. 6.7 (gray curves). Abscissas are in days.

The radical improvements obtained in the secular propagation by the proper com-
putation of the secular frequencies is illustrated in Fig. 6.11, where the time history

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



170 | 6 Zonal perturbations

Figure 6.11: RSS errors when the initial conditions are properly initialized (black curve) superim-
posed to the results in Fig. 6.8 (gray curve). Abscissas are in days.

of the RSS errors of the Cartesian coordinates is superimposed to the previous case.
Now, the errors of the secular terms enjoy periodic nature, with amplitudes that re-
main bounded along the whole propagation interval to just a few km.

6.5.5.2 Accuracy of the periodic corrections
Once it has been illustrated the importance of properly transforming the osculating
initial conditions into triple-prime variables, we check that the periodic corrections
provide the expected accuracy from the truncation order of the perturbation solution.
The test consists in computing the initialization constants of the analytical solution
for different states of the true solution. If the theory were exact, every point along the
whole propagation interval would produce exactly the same constant values for each
of the three integrals of the secular problem L󸀠󸀠󸀠 and G󸀠󸀠󸀠, and H󸀠󸀠󸀠, as well as for the
secular frequencies nF , nω and nΩ. However, the perturbation solution only retains
the periodic corrections up to the truncation order of the small parameter—J2 in the
current case. Then it would be expected that the values of the formal integrals may
oscillate within the accuracy of the neglected terms.

For instance, if we use the printed expressions in §6.5, which are accurate up to
the third order of J2, we would expect oscillations of 𝒪(J42 ) ≈ 10

−12 relative to the val-
ues of the initialization constants. And this is exactly what we find, as illustrated with
Fig. 6.12, where the relative errors of L󸀠󸀠󸀠0 (ti) as computed with respect to their arith-
metic mean along the three-days interval are depicted in the upper plot. The lower
plot shows the relative errors of the secular values h󸀠󸀠󸀠0 (ti) with respect to their linear
fit h󸀠󸀠󸀠 = 2.93506 + 0.000717275t. Only the first three orbits of the three-days interval
are presented in the figure for clarity.

When the conversion from osculating to secular elements is applied to other el-
ements, like the classical Keplerian set, the accuracy obtained may be different from
that expected from the truncation order of the perturbation solution. This is due to the
error propagation through the operations needed to compute the desired variable as a
function of the Delaunay canonical variables. Thus, for instance, because Δa = 𝒪(ΔL),
as readily obtained from the first of Eq. (4.46), the accuracy in the computation of the
secular semi-major axis should be the same as expected from the truncation order of
the perturbation solution. On the contrary the propagation of the truncation errors
of G and L in the computation of the secular eccentricity from the second equation of
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Figure 6.12: Relative errors of the secular elements L󸀠󸀠󸀠0 (upper) and h󸀠󸀠󸀠0 (lower) when the inverse
corrections are accurate to𝒪(J32). Abscissas are in hours.

Eq. (4.46) would divide the error by the eccentricity value. In fact, this would be equiv-
alent to having computed directly the periodic corrections to the orbital elements us-
ing analogous equations to Eq. (2.17). For instance, the Poisson bracket {e,𝒲}, which
would be needed in the computation of the secular value of the eccentricity, involves
the computation 𝜕e/𝜕G = −η/(eL), showing themagnification of the eccentricity errors
for low-eccentricity orbits.

The improvements obtained in the computation of the secular terms for increas-
ing truncation orders of the perturbation solution is further illustrated in Fig. 6.13 for
the semimajor axis, where the errors obtained with the fourth- and fifth-order trunca-
tions of the periodic corrections are displayed together—the latter amounting to thou-
sandths of a micrometer for a PRISMA orbit and reaching the numerical accuracy of
the computer [408].

Figure 6.13: Relative errors of a(L󸀠󸀠󸀠0 ) when using the fourth- (gray line) and fifth-order truncation
(black dots) of the inverse transformation. Abscissas are in hours.

6.5.5.3 Long-term performance
Lastlyweassess theperformanceof the analytical solution in a long-termpropagation.
That is, after the proper initialization of the constants of the perturbation solution,
each time t = ti the secular terms are evaluated, they are sequentially corrected with
the direct periodic corrections of the Delaunay normalization, to get double-prime
variables, of the elimination of the perigee, to get prime variables, and of the elimina-
tion of the parallax, to finally get osculating variables. The latter are compared with
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the corresponding ephemeris of the reference orbit to get the RSS errors. The propaga-
tion interval encompasses one year, which amounts tomore than 5500 PRISMAorbits.
For comparison, we label the different solutions by (i:s:d), with i standing for the order
of the inverse transformation, s that of the secular terms, and d the order of the direct
transformation.

When the (1:2:1) solution is used—the first-order periodic correction and second-
order secular terms, like in Brouwer’s original case—theRSS errors caused by the trun-
cation of the secular terms dominate the propagation in the long term. They grow at a
linear rate of about half a km per day from the initial error of one meter, which is due
to the truncation to the first order of the periodic corrections, up to a RSS error of about
160 kmat the end of the propagation interval. Things improve notablywith the second
order of the inverse transformation—the (2:2:1) solution—in which case the upgraded
secular frequencies reduce the rate of the RSS errors to ∼ 1.1m/day. At the end of the
propagation, the error is now about half a km, showing once again the importance of
the accurate initialization of the constants of the analytical theory. The second order
of the direct transformation—the (2:2:2) solution—does not show improvements over
the (2:2:1) case in the long term due to the fast growth of the secular errors. On the
contrary, the solution is penalized with increased computational burden at each step
of the output.

Additional benefits are observedwhen the secular frequencies are computedup to
the third order—the (2:3:1) solution—which reduces the secular rate of the RSS errors
to∼ 14 cm/daywith a negligible increase of the computational burden because the im-
proved, third-order frequencies are evaluated just once. For the same reason, the solu-
tion is not penalized when initializing the constants with third-order corrections—the
(3:3:1) solution. In that case, the RSS errors grow at the slow rate of just a fewmm/day,
whose accumulation only reaches a couple of meters after one year. Since the direct
periodic corrections are still computed from the first-order truncation, the amplitude
of the periodic oscillations of the RSS errors of the (3:3:1) solution is of about one me-
ter, and hence the errors remain of similarmagnitude along the one-year propagation.
The (4:4:1) solution completely buries the secular trend of the RSS errors under the
periodic components, and they only start to show up when the second-order direct
corrections are taken into account—the (4:4:2) solution. The secular trend becomes
dominant again, yet at a tiny rate of just a few μm/day, when the direct corrections
are truncated at the third order—the (4:4:3) solution. The RSS errors remain bounded
at the micrometer level along the one-year interval with the (5:5:3) solution, in which
the constants of the analytical solution are initialized to the numerical precision of the
computer. Finally, we found that while some improvements are achieved beyond that
truncation of the direct periodic corrections, they are only apparent at the beginning
of the propagation and do not have observable effects in the long term. Figure 6.14
illustrates the improvements in accuracy achieved with different truncations of the
analytical perturbation solution. The plots are rendered in a logarithmic scale to en-
hance comparison.
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Figure 6.14: Root-sum-square error of different truncations of the main problem solution. Abscissas
are in days.

On the other hand, the size of the trigonometric series representing the periodic cor-
rections grows notably with the order of the perturbation approach. This means that
the evaluation time of the analytical solution grows correspondingly. In the current
test case, we found that the time spent in the evaluation of the third-order corrections
is one order of magnitude larger than in the evaluation of themuch simpler first-order
corrections.Wemust note, however, that the application of optimization strategies for
the evaluation of the periodic corrections [115, 272, 407], which has not been carried
out here, might bias the comparisons towards more benign figures.

6.6 Initialization issues. Breakwell and Vagners’ approach

It is worth to remark that a characteristic feature of perturbation solutions is that they
always leave in error, however small, the frequencies of the angle variables. For in-
stance, the mean anomalistic motion nM ≈ 1.1 × 10−3 rad/s of the PRISMA orbit dis-
cussed in §6.5.5, will unavoidably bear an error of ∼ 10−19 s−1 due to the number rep-
resentation in double-precision floating-point arithmetic [332]. In consequence, the
linear growth of the (secular) mean anomaly along the ≈ 3× 107 s that comprise a year
would yield an error of the order of 10−12 radians, which for the PRISMA semimajor
axis of 6878.137 km would produce a concomitant in-track error of several microme-
ters. These figures are in perfect agreement with the results obtained with the (5:5:3)
truncation of the analytical solution, and they grow accordingly for lower-order trun-
cations of the perturbation solution.

On theother hand, initializing the constants of the analytical solution fromagiven
truncation of the periodic corrections is inconsistent with the propagation of the sec-
ular terms obtained from a higher-order truncation. This was soon noticed in the case
of Brouwer’s (1:2:1) solution [75], and errors in the in-track direction that were unex-
pected from the second-order truncation of the secular termswere repeatedly reported
in the literature [57, 252, 469]. The difficulty, of course, disappears when the inverse
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periodic corrections are computed up to the same order as the secular terms. Alterna-
tively, since the most sensible constant to be initialized is the secular mean motion,
as already discussed in §1.2.1, different strategies were proposed to avoid the tiresome
computation of the generating function term up to the same order as the secular terms
[63, 90, 469, 675]. We only describe the smart, inexpensive procedure pointed out by
Breakwell and Vagners [63], which is specially useful in the computation of a second-
order solution to the artificial satellite problem when other perturbations in addition
to the oblateness are taken into account.

Thus, for given initial conditions (x0,X0) the energy of the corresponding orbit
is computed exactly from the original Hamiltonian E0 = ℋ(x0,X0). This value of the
energy differs from the value of the Hamiltonian in the triple-prime variables by a re-
mainder ℛ which is due to the truncation order of the secular Hamiltonian (6.104).
Namely,

E0 = −
μ2

2L󸀠 20
+

k
∑
m=1

ϵm

m!
𝒮m(L
󸀠󸀠󸀠
0 ,G
󸀠󸀠󸀠
0 ,H) +ℛ(ℓ

󸀠󸀠󸀠
0 , g
󸀠󸀠󸀠
0 , L
󸀠󸀠󸀠
0 ,G
󸀠󸀠󸀠
0 ,H), (6.114)

whereℛ = 𝒪(ϵk+1) when the transformation from original to primed variables is car-
ried out up to the order m = k. If this transformation is computed only to the order
m = k − 1, then, while the terms of the summation in Eq. (6.114) will not degrade the
order of the remainder, because they are multiplied by ϵm with m ≥ 1, the Keplerian
term certainly will. This fact can be used to improve the initial value of the Delaunay
action in the triple-prime variables by computing L̂0 from

μ2

2L̂20
= −E0 +

k
∑
m=1

ϵm

m!
𝒮0,m(L

󸀠󸀠󸀠
0 ,G
󸀠󸀠
0 ,H). (6.115)

After replacing L󸀠󸀠󸀠0 = L̂0 in Eq. (6.114) the remainder will certainly be 𝒪(ϵk+1). When
the constants of the analytical solution are initialized using the improved value L̂0, it
can be checked that solutions (k − 1:k:k − 1) enjoy comparable accuracy to the more
rigorous solutions (k:k:k − 1).

6.7 Centered elements

As mentioned in §5.6.1, when the perturbation solution is approached in closed form,
the generating function of the short-period elimination can bear long-period effects
related to the arbitrary integration constant that appears in its computation. If this
happens, the next order of theHamiltonian inmean elementswill be deprived of some
long-period terms. While this is irrelevant in a semi-analytical approach in which the
osculating elements are recovered at each step of the numerical integration by apply-
ing the short-period corrections, there aredifferent applications inwhich the evolution
of the mean elements is significative by itself. In those cases, it is important that the
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computed values of themean elements be as close as possible to the average values of
the osculating elements. To achieve that, the mean-element Hamiltonian must bear
all the long-period terms of the solution. That is, the first-order term of the generat-
ing function, which enters in the computations of the second-order term of the mean-
element Hamiltonian through Deprit’s recursion (2.15), must be completely free from
hidden long-period terms. Note that this condition is not sufficient when the pertur-
bation theory is extended to higher orders, a case in which additional considerations
must be made to obtain the desired “centered” elements [197, 488].

Hidden long-period terms are carried, in particular, by the first-order term of the
generating function of the elimination of the parallax in Eq. (6.31). Indeed, on account
of the equation of the center averaging to zero, we immediately find that the average
of𝒲1 in Eq. (6.31) or, equivalently, in Eq. (5.40) over the mean anomaly is exactly the
same as the average over the mean anomaly of the first term of the generating func-
tion of the removal of short-period effects in Eq. (5.61). Then we directly choose from
Eq. (5.64)

A1 =
1
8
G
R2⊕
p2
(1 + 2η)β2s2 sin 2ω, (6.116)

like the arbitrary “constant” that must be added to Eq. (6.31) in order to release 𝒲1
from hidden long-period terms. This additional term contributes 18 new trigonometric
terms to Eq. (6.32), all of which pertain to the image of the Lie derivative save for the
term

Δℋ0,2 =
μ
a
R4⊕
p4

a2

r2
3
16
(4 − 5s2)(1 + 2η)η2β2s2 cos 2ω, (6.117)

which pertains to the kernel of the Lie derivative. Itmust be added to Eq. (6.33) in order
to keep all the long-period effects in the simplified Hamiltonian after the elimination
of the parallax [442].

On the other hand, the first-order term of the generating function of the Delaunay
normalization is free from long-period terms, as readily checked in Eq. (6.40). There-
fore, the only new second-order Hamiltonian term is (6.117), which, after having aver-
aged over the mean anomaly,

Δ𝒦0,2 = ⟨Δℋ0,2⟩ℓ =
μ
a
R4⊕
p4

3
16
(4 − 5s2)(1 + 2η)ηβ2s2 cos 2ω, (6.118)

where all the entities are now functions of the double-prime Delaunay variables, is
directly added to Eq. (6.42).
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7 Tesseral perturbations
While secular and long-period perturbations are associated with the effects of zonal
harmonics, the effects of sectorial and tesseral harmonics are generally limited to
short-period perturbations of small amplitude. The time dependency introduced by
the tesseral harmonics into the Hamiltonian is customarily removed by the simple
expedient of moving to a rotating frame. However, the problem no longer enjoys sym-
metry with respect to the Earth’s rotation axis, and the number of degrees of freedom
is increased by one with respect to the zonal case. Still, for low-Earth orbits the Kep-
lerian remains as the zeroth order of the Hamiltonian, and hence tesseral effects are
easily removed in closed form of the eccentricity in this particular case [220]. On the
contrary, the homological equation becomes a partial differential equation for a gen-
eral orbit. Closed-form normalization is also feasible, yet it may require the use of nu-
merical averaging techniques [471, 540]. Alternatively, closed-form normalization of
the tesseral harmonics can be achieved by analytical relegation techniques [169, 538].
However, at least for sub-synchronous orbits, the relegation of tesseral harmonics ex-
hibits a dependency on the eccentricity [602] that may make the closed-form relega-
tion of tesseral terms vacuous. In that case, the standard normalization of tesseral
terms expanded in powers of the eccentricity is definitely simpler than computing a
higher order of the relegation algorithm and may well be also more effective [438].

On the other hand, tesseral terms can induce long-period effects in resonant con-
figurations inwhich themeanmotion of the satellite is commensuratewith the Earth’s
rotation rate. Then the tesseral potential needs to be unavoidably expanded in pow-
ers of the eccentricity to identify the resonant terms thatmust remain in the simplified
long-termHamiltonian. In that case, themean semimajor axis is no longer an integral,
and, on the contrary, undergoes long-period oscillations of moderate amplitude.

7.1 Tesseral potential in orbital elements

The disturbing part of the geopotential (5.2) is written in orbital elements like

𝒫 = −
μ
a
a2η
r2
∑
i≥2

i
∑
j=0

Vi,j(p, e, f ,ω, ν, I), (7.1)

where

Vi,j = η
Ri⊕
pi
(1 + e cos f )i−1

i
∑
k=0

ℱi,j,k(I)

× {Si,j sin[(i − 2k)f + ψi,j,k] + Ci,j cos[(i − 2k)f + ψi,j,k]}, (7.2)

with

ψi,j,k = (i − 2k)ω + jν − (i − j)π , (7.3)

https://doi.org/10.1515/9783110668513-007
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in which ν = Ω − ω⊕t is the longitude of the node in the rotating frame, (i − j)π =
π
2 [(i − j) mod 2], following the index convention in Eq. (6.5), and, as follows from the
original definition of Kaula inclination functions [341],

ℱi,j,k =
min(k,ij)

∑
l=0

j
∑
m=0

i
∑

q=min(i−j−2l+m,k−l)
( j
m
)(i − j − 2l +m

q
)

× ( j −m
k − l − q

)(−1)
q−ij

22i−2l
(2i − 2l)!

l!(i − l)!(i − j − 2l)!
cmsi−j−2l, (7.4)

with ij = ⌊
1
2 (i − j)⌋. We recall that c ≡ cos I, s ≡ sin I. Taking j = 0 in Eq. (7.4) we

recover the particularization in Eq. (6.4) for the zonal problem. The efficient evaluation
of the inclination functions as well as their derivatives can be achieved with different
procedures [251].

After replacing the binomial expansion of (1 + e cos f )i−1 in Eq. (7.2), and making
additional rearrangements using Eqs. (6.12) and (6.13), we obtain

Vi,j =
Ri⊕
pi
η

i
∑
k=0

ℱi,j,k(I)
i−1
∑
m=0
(i − 1
m
)e

m

2m
m
∑
l=0
(m
l
)

× [(Si,j cosψi,j,k − Ci,j sinψi,j,k) sin(i − 2k −m + 2l)f
+ (Ci,j cosψi,j,k + Si,j sinψi,j,k) cos(i − 2k −m + 2l)f ]. (7.5)

7.2 Low-Earth orbits. Garfinkel’s perturbation approach

The time dependency of the tesseral terms of the geopotential is masked in Eq. (7.3) by
the use of the longitude of the node in the rotating frame ν. This time dependency is
also avoided in Hamiltonian (5.3) when using a modified set of Delaunay variables in
which h = ν ≡ Ω −ω⊕t, whereas H = xY − yX = (μ/a)ηc/n still remains as te conjugate
momentum to h. Using these canonical variables and with the previous definition of
Vi,j in Eq. (7.5), the Hamiltonian (5.3) is written in the form

ℋ = −
μ
2a
−
μ
a
ω⊕
n
ηc − μ

a
a2η
r2
(V2,0 +

2
∑
j=1

V2,j +∑
i≥3

i
∑
j=0

Vi,j). (7.6)

The period of common low-Earth orbits is about an hour and a half, while the
Earth needs ≈ 24 hours to complete a rotation about its polar axis. In consequence,
ω⊕/n = 𝒪(J

1/2
2 ), whereas, for i > 2, Ci,j and Si,j are 𝒪(J22 ) or smaller. In this particular

case Eq. (7.6) can be rearranged as the usual perturbationHamiltonian (2.30) inwhich,
now, ε ∼ ω⊕/n ∼ J

1/2
2 is a formal, rather than a physical small parameter, and, cf. [220,

221, 539],

ℋ0,0 = −
μ
2a
, (7.7)
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ℋ1,0 = −Hω⊕, (7.8)

ℋ2,0 = −(2!)
μ
a
a2η
r2

V2,0, (7.9)

ℋ3,0 = 0, (7.10)

ℋ4,0 = −(4!)
μ
a
a2η
r2
(

2
∑
j=1

V2,j +∑
i≥3

i
∑
j=0

Vi,j), (7.11)

andℋm,0 = 0,m ≥ 5.

7.2.1 Elimination of the parallax of tesseral terms

As has been done with the zonal problem, non-essential short-period tesseral effects
are first removed using the elimination of the parallax simplification. Again, the Lie
derivative is given by Eq. (4.66), and the alternative expression in Eq. (5.38) will be
used when found convenient.

On account ofℋ1,0 being free from the mean anomaly, the first-order homological
equationℒ0(𝒲1) = ℋ1,0−ℋ0,1 is solved by choosingℋ0,1 = ℋ1,0 and𝒲1 = 0. At second
order ℒ0(𝒲2) = ℋ̃0,2 −ℋ0,2, where, from Eq. (2.37), ℋ̃0,2 = ℋ2,0. Then we chooseℋ0,2
such that it cancels the terms of Eq. (7.9) that do not depend explicitly on the true
anomaly. Namely,

ℋ0,2 = −(2!)
μ
a
a2η
r2
⟨V2,0⟩f . (7.12)

Because ⟨Vi,j⟩f terms are those with l = k + 1
2 (m − i) in Eq. (7.5), we obtain

⟨Vi,j⟩f =
Ri⊕
pi
η

i−1
∑
k=0

ℱi,j,k(I)𝒢
∗
i,k(e)(Ci,j cosψi,j,k + Si,j sinψi,j,k), (7.13)

where 𝒢∗i,k was defined in Eq. (6.15), from which

⟨V2,0⟩f = C2,0
R2⊕
p2

η( 3
4
s2 − 1

2
). (7.14)

As expected from the formal nature of the small parameter in the current approach,
this result differs from Eq. (6.29)—in the sameway as Eq. (7.12) differs from Eq. (6.30)—
in the coefficient C2,0. Like in the zonal case, the homological equation is solved from
(5.39), to give𝒲2 = −(2!)GW2,0, where integration of the terms

Wi,j =
1
η
∫(Vi,j − ⟨Vi,j⟩f )df ,
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is approached following analogous steps as we did when integrating Eq. (6.35). We
obtain

Wi,j =
Ri⊕
pi

i
∑
k=0

ℱi,j,k(I)
i−1
∑
m=0
(i − 1
m
)emℐi,j,k,m(f , ν,ω), (7.15)

where

ℐi,j,k,m =
1
2m

m
∑
l=0
l ̸=l∗

(m
l
)[(Ci,j sinψi,j,k − Si,j cosψi,j,k)

cos 2(l − l∗)f
2(l − l∗)

+ (Ci,j cosψi,j,k + Si,j sinψi,j,k)
sin 2(l − l∗)f
2(l − l∗)

]

and l∗ = k + 1
2 (m − i). It can be checked that ℐi,0,k,m matches ℐi,k,m in Eq. (6.38), as ex-

pected, save for the appearance of the harmonic coefficients Ci,0 due to the use of a
formal small parameter in the current approach.

In particular, we find that 𝒲2 is the same as 𝒲1 in Eq. (6.31), except for the fac-
torial 2 derived from the different perturbation arrangement, and the coefficient −C2,0
stemming from the use of a formal small parameter. That is,

𝒲2 = C2,0
G
4
R2⊕
p2
[(4 − 6s2)e sin f + s2

3
∑
i=1

3⌊2−i/2⌋e|i−2| sin(if + 2ω)], (7.16)

which is free from the longitude of the node in the rotating frame h. Next, we take
ℋ1,1 = ℋ0,2, fromDeprit’s recursion (2.15), and proceed to the third order of the pertur-
bation approach.

The known terms ℋ̃0,3 are those of Eq. (6.88), which, since 𝒲1 = 0, ℋ0,1 = ℋ1,0,
andℋ3,0 vanishes from its definition in Eq. (7.10), yields

ℋ̃0,3 = 3{ℋ1,0,𝒲2} = 3ω⊕
𝜕𝒲2
𝜕h
= 0.

Hence,ℋ0,3 = ℋ1,2 = ℋ2,1 = 0,𝒲3 = 0, and we proceed to the fourth order.
From Eq. (6.89), we obtain ℋ̃0,4 = 3{ℋ0,2 + ℋ2,0,𝒲2} + ℋ4,0, where the terms ob-

tained from the evaluation of the Poisson brackets are the same as those obtained in
the second order of §6.2.1 except for a scaling factor 4!/2! = 12 derived from the differ-
ent perturbation arrangement. Thus,

ℋ̃0,4 =
4!
2!
μ
a
a2η
r2
[C22,0

R4⊕
p4

η
6
∑
j=0

2
∑
l=j1

qj,ls
|2l| cos(jf + 2lω)

+ 2∑
i≥3

Vi,0 + 2∑
i≥2

i
∑
j=1

Vi,j], (7.17)
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where j1 = ⌊
1
2 (j − 1)⌋ from Eq. (6.5), and ℋ0,4 is chosen to be made of those terms of

ℋ̃0,4 that are free from the explicit appearance of f . That is,

ℋ0,4 =
4!
2!
μ
a
a2η
r2
[C22,0

R4⊕
p4

η(q0,0 + 2q0,1s
2 cos 2ω)

+ 2∑
i≥3
⟨Vi,0⟩f + 2∑

i≥2

i
∑
j=1
⟨Vi,j⟩f], (7.18)

thus adding the tesseral contribution to the equivalent term of the zonal problem in
Eq. (6.33). Next, from (5.39) we obtain

𝒲4 = 4!G(
C22,0
2!

R4⊕
p4

6
∑
j=1

2
∑
l=j1

qj,l
j
s|2l| sin(jf + 2lω) + ∑

i≥3
Wi,0 +∑

i≥2

i
∑
j=1

Wi,j),

whereWi,j is given by Eq. (7.15).
At fifth order, the only non-vanishing term obtained from Deprit’s recursion (2.15)

is

ℋ̃0,5 = 5{ℋ1,0,𝒲4} = 5ω⊕
𝜕𝒲4
𝜕h
= 5!ω⊕G∑

i≥2

i
∑
j=1

𝜕Wi,j

𝜕h
,

whose terms are all periodic in f , as follows from Eq. (7.15). Then we chooseℋ0,5 = 0.
As usual, the periodic corrections to obtain osculating elements from prime ele-

ments and vice versa are derived from the generating function using Eq. (2.17).

7.2.2 Delaunay normalization.m-daily terms

After the Hamiltonian simplification process we have𝒦 = ∑m≥0(ε
m/m!)𝒦m,0, in which

𝒦0,0 and 𝒦1,0 continue to be the Keplerian and Coriolis terms in Eqs. (7.7) and (7.8),
respectively,𝒦2,0 = ℋ0,2 is givenbyEq. (7.12),𝒦3,0 = 0,𝒦4,0 = ℋ0,4 is givenbyEq. (7.18),
and𝒦5,0 = 0. The quantities a, r, η . . . , in the new Hamiltonian terms are functions of
the prime Delaunay variables.

The removal of short-period terms still remaining in the simplified Hamiltonian𝒦
is readily achieved by means of the Delaunay normalization. At first order,

𝒦0,1 = 𝒦1,0 = −H
󸀠ω⊕, (7.19)

and 𝒰1 is chosen null like in the previous simplification. At second order 𝒦0,2 = 𝒦2,0,
from which we choose 𝒦0,2 = ⟨𝒦2,0⟩ℓ = −(2!)(μ/a)⟨V2,0⟩f . Namely,

𝒦0,2 = 2!
μ
a
(−C2,0)

R2⊕
p2

η( 3
4
s2 − 1

2
), (7.20)
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which is the same as Eq. (6.39) except for the 2 factorial, stemming from the different
arrangement of the perturbation Hamiltonian, and the explicit appearance of the har-
monic coefficient −C2,0 = J2 due to the current use of a formal small parameter. Then
we compute 𝒰2 from Eq. (4.69), which yields 𝒰2 = (ϕ/n)𝒦0,2, which is equivalent to
Eq. (6.40) by the same considerations as above.

At third order all the computable terms vanish, 𝒦0,3 = 0. Hence, 𝒦0,3 = 0 and
𝒰3 = 0.

At fourth order we obtain 𝒦0,4 = {𝒦2,0 + 𝒦0,2;𝒰2} + 𝒦4,0, where

{𝒦2,0 + 𝒦0,2;𝒰2} = C
2
2,0
4!
2!
μ
a
R4⊕
p4

η2

16
(2 − 3s2)2

× [3 + a
2

r2
(1 + 2β cos f + eβ cos 2f )] (7.21)

is the same as the corresponding term in Eq. (6.41) except for a scale factor. Then we
choose 𝒦0,4 = ⟨𝒦0,4⟩ℓ, to obtain

𝒦0,4 =
4!
2!
μ
a
C22,0

R4⊕
p4

η[q0,0 −
1 + 3η
16
(2 − 3s2)2 + 2q0,1s

2 cos 2ω]

+ 4!μ
a
∑
i≥3
⟨Vi,0⟩f + 4!

μ
a
∑
i≥2

i
∑
j=1
⟨Vi,j⟩f , (7.22)

which adds the tesseral perturbations to its equivalent term of the zonal problem in
Eq. (6.42). The homological equation is trivially solved to give 𝒰4 = (ϕ/n)𝒦0,4.

At fifth order, the computable terms are

𝒦0,5 = 5{𝒦1,0;𝒰4} = −5ω⊕{H
󸀠;𝒰4} = 5!

ω⊕
n

μ
a
ϕ∑

i≥2

i
∑
j=1

𝜕⟨Vi,j⟩f
𝜕h󸀠
,

which only depend on the mean anomaly through ϕ, and, therefore, are purely peri-
odic in ℓ. Hence, we choose 𝒦0,5 = 0 like we did in the previous simplification.

Up to the truncation order of the theory, the transformation equations frommean
to prime elements and vice versa are derived as usual from the generating function us-
ing Eq. (2.17). Alternative short-period corrections can be found, for instance, in [256]
for the classical set of orbital elements.

The procedure ends by replacing prime by double-prime variables in Eqs. (7.19),
(7.20), and (7.22), to get

𝒬 =
5
∑
m≥0

εm

m!
𝒦0,m +𝒪(J

3
2 ). (7.23)

Therefore, up to the second order of J2, the only difference between the Hamiltonian
(7.23) and the zonal problem Hamiltonian (6.43) in mean elements, arises from the
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terms contributed by the double summation in Eq. (7.22). On account of Eq. (7.13), these
additional periodic terms take the form

𝒫g󸀠󸀠 ,h󸀠󸀠 =
μ
a
η∑
i≥2

Ri⊕
pi

i
∑
j=1

i−1
∑
k=0

ℱi,j,k𝒢
∗
i,k(Ci,j cosψi,j,k + Si,j sinψi,j,k), (7.24)

where, because j ̸= 0, all the arguments ψi,j,k are related to the rotation of the Earth,
as checked in Eq. (7.3).

In particular, taking i = 2k in Eq. (7.3) we obtainψ2k,j,k = jν−(2k− j)π , which shows
that even-degree tesseral harmonics yield periodic terms that depend exclusively on
some integer multiple of the longitude of the node in the rotating frame. Moreover,
writing the eccentricity polynomials 𝒢∗i,k(e) defined in Eq. (6.15) in the more detailed
form

𝒢∗i even,k = (
0

i
2 − k
) +

i/2
∑
l=1
(i − 1
2l
)( 2l

l + i
2 − k
)e

2l

22l
,

𝒢∗i odd,k =
(i−1)/2
∑
l=1
( i − 1
2l − 1
)( 2l − 1

l + i−1
2 − k
)e

2l−1

22l−1
,

we immediately see that the only eccentricity polynomials having terms independent
of the eccentricity are those 𝒢∗2k,k . These terms cause the most relevant tesseral effects
on low-Earth orbits [339]. Namely,

𝒫g󸀠󸀠 ,h󸀠󸀠 =
μ
a
η∑
k≥1

R2k⊕
p2k

2k
∑
j=1

ℱ2k,j,k(C2k,j cosψ2k,j,k + S2k,j sinψ2k,j,k). (7.25)

For k = 1, j = 2, Kaula [341] talked about a semi-daily perturbationdue to the equatorial
ellipticity, and, by extension, other authors name these kinds of terms m-daily terms
[99, 335].

7.2.3 Elimination of the node. Long-term Hamiltonian

The tesseral Hamiltonian with short-period effects removed is still of two degrees of
freedom. However, since it is referred to the rotating frame, the longitude of the node
ν evolves much faster than the argument of the perigeeω, whose evolution will deter-
mine the long-termdynamics. Therefore, anewLie transformation is applied to further
reduce the Hamiltonian in double-prime variables by removing ν = h󸀠󸀠, up to the trun-
cation order. Thus, renaming𝒬m,0 = 𝒦0,m in Eq. (7.23), we start from the perturbation
Hamiltonian𝒬 = ∑m≥0(ε

m/m!)𝒬m,0.
Like when dealing with the removal of long-period terms in §6.3.1, the generating

function 𝒱 of the transformation that removes the node does not depend on the mean
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anomaly. Therefore, ℒ0(𝒱m) = 0 and the computation of 𝒱 is delayed by one order
from the computation of the new Hamiltonian. Since, besides, none of the terms𝒬m,0
depends on ν except 𝒬4,0, we take Q0,i = Qi,0 for i = 1, 2, 3, and 𝒱1 = 𝒱2 = 0. At fourth
order, we find that the computable terms are𝒬0,4 = 4{𝒬1,0,𝒱3} +𝒬4,0, and we choose
𝒬0,4 = ⟨𝒬4,0⟩h󸀠󸀠 . Thus,

𝒬0,4 = −
4!
2!
μ
a
C22,0

R4⊕
p4

η[q0,0 −
1 + 3η
16
(2 − 3s2)2 + 2q0,1s

2 cos 2ω]

+ 4!μ
a
∑
i≥3
⟨Vi,0⟩f , (7.26)

which, save for scaling factors, is the sameas the second-order term (6.42) of themean-
element Hamiltonian of the zonal problem—yet in different variables.

Then the homological equation ℒ0(𝒱4) ≡ 0 = 4{𝒬1,0,𝒱3} + 𝒬4,0 − 𝒬0,4 is solved
for 𝒱3, to obtain

𝒱3 =
1

4ω⊕
∫(𝒬0,4 −𝒬4,0)dh

󸀠󸀠 = − 3!
ω⊕/n

G
η
∑
i≥2

i
∑
j=1
∫⟨Vi,j⟩f dν,

which, from Eq. (7.13), yields

𝒱3 =
3!G
ω⊕/n
∑
i≥2

i
∑
j=1

Ri⊕
pi

i−1
∑
k=0

ℱi,j,k𝒢
∗
i,k(Si,j

cosψi,j,k

j
− Ci,j

sinψi,j,k

j
). (7.27)

The periodic corrections stemming from Eq. (7.27) are third-order corrections as far as
the divisor ω⊕/n ∼ ε and tesseral harmonic coefficients are𝒪(ε4).

At fifth order, the computable terms are𝒬0,5 = 5{𝒬1,0,𝒱4}+10{𝒬2,0,𝒱3}, and, anal-
ogously to the previous case, the fifth-order homological equation is solved for 𝒱4, to
yield

𝒱4 =
1

5ω⊕
∫(𝒬0,5 − 10{𝒬2,0,𝒱3})dh

󸀠󸀠,

where, because {𝒬2,0,𝒱3} only contributes periodic terms in h󸀠󸀠, we choose 𝒬0,5 =
⟨{𝒬2,0,𝒱3}⟩h󸀠󸀠 = 0.

The transformation equations of the elimination of the node are then computed
as usual from the formulas in §2.1.3.

7.3 Exact integration to the second order of J2
The assumption ω⊕/n = 𝒪(J1/22 ) does not apply in the general case. Garfinkel’s ap-
proach might still be used for sub-synchronous nonresonant motion, but it would
need to be extended to much higher orders, thus making the perturbation procedure
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impractical. Indeed, save for low-Earth orbits, the ratio ω⊕/n will be commonly 𝒪(1),
being exactly one at the geosynchronous regime. Then the zeroth-order Hamiltonian
cannot be taken in general as the Keplerian term alone, but the Keplerian in the rotat-
ing frame. That is, in Delaunay variables,

ℋ0,0 = −
μ2

2L2
− ω⊕H .

In consequence, the Lie derivative (2.49) is ℒ0 = n𝜕/𝜕ℓ − ω⊕𝜕/𝜕h, from which the ho-
mological equation (2.48) becomes

n𝜕𝒲m
𝜕ℓ
− ω⊕
𝜕𝒲m
𝜕h
= ℋ̃0,m −ℋ0,m, (7.28)

now involving the solution of partial differential equations, contrary to plain integrals.
In spite of the apparent simplicity of Eq. (7.28), the fact that the dependency of

the geopotential on the mean anomaly is not explicit, but implicit through the true
anomaly, complicates finding a closed-form solution to the homological equation.
Therefore, expansions of the elliptic motion are customarily carried out to make ex-
plicit the mean anomaly in the tesseral Hamiltonian. Once the mean anomaly shows
in the geopotential, the solution of Eq. (7.28) is straightforward, allowing for the elim-
ination of periodic terms related to tesseral harmonics [256, 489] without limitation to
the case of nonresonant motion [434].

On the other hand, the homological equation can be reduced to integrals [540].
Indeed, Eq. (7.28) is a first-order linear partial differential equation that, at least for a
perturbation solution that neglects third-order effects of J2 and higher, can be solved
by the method of characteristics [147, 565]. Moreover, up to𝒪(J22 ) there is no coupling
between zonal and tesseral harmonics, and the elimination of tesseral effects can be
approached separately in a preliminary step [121].

Thus, we write the geopotential Hamiltonianℋ = ℋ0,0 + εℋ1,0 +
1
2ε

2ℋ2,0, with the
small parameter formal, and

ℋ0,0 = −
μ
2a
− ω⊕H , (7.29)

ℋ1,0 = −
μ
a
a2η
r2

V2,0, (7.30)

ℋ2,0 = −2
μ
a
a2η
r2
(∑
i≥3

Vi,0 +∑
i≥2

i
∑
j=1

Vi,j), (7.31)

where the functions Vi,j are those previously defined in Eq. (7.5).
At the first order of the perturbation approach we left the Hamiltonian unaltered

by choosingℋ0,1 = ℋ1,0 and𝒲1 = 0. At second order, ℋ̃0,2 = ℋ2,0, and we remove the
tesseral effects by choosing ℋ0,2 = ⟨ℋ2,0⟩h. That is, the new Hamiltonian term limits
to the zonal harmonics contribution.
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In order to solve the homological equation (7.28) form = 2, we transform the par-
tial differential equation into the Lagrange–Charpit equations,

dh
−ω⊕
= dℓ

n
=

d𝒲2

−2nG(a/r)2∑i≥2∑
i
j=1 Vi,j
. (7.32)

We first solve the ordinary differential equation formed by the first two terms of
Eq. (7.32), ndh = −ω⊕dℓ, whose solution is given by the characteristic curves

h = h0 − (ω⊕/n)ℓ. (7.33)

Next, ν = h is replaced in Eq. (7.3) by the characteristic curves to obtain ψi,j,k = (i −
2k)ω + jh0 − j(ω⊕/n)ℓ − (i − j)π , and Eq. (7.5) is rearranged in the form

Vi,j =
Ri⊕
pi
η

i
∑
k=0

ℱi,j,k(I)
i−1
∑
m=0
(i − 1
m
)e

m

2m
m
∑
l=0
(m
l
)

× [Si,j sin(αi,j,k,l,m + βi,j,k) + Ci,j cos(αi,j,k,l,m + βi,j,k)],

in which αi,j,k,l,m = (i − 2k − m + 2l)f − j(ω⊕/n)ℓ is the only argument that depends on
the mean anomaly, whereas βi,j,k = (i − 2k)ω + jh0 − (i − j)π .

Finally,𝒲2 is solved from the last two terms of Eq. (7.32) by indefinite integration
along the characteristic curves. Replacing dℓ from Eq. (4.64), we obtain

𝒲2 = −2L∑
i≥2

i
∑
j=1

Ri⊕
pi
η

i
∑
k=0

ℱi,j,k(I)
i−1
∑
m=0
(i − 1
m
)e

m

2m
m
∑
l=0
(m
l
)

× {[Si,j cos βi,j,k − Ci,j sin βi,j,k] ∫ sin αi,j,k,l,mdf

+ [Si,j sin βi,j,k + Ci,j cos βi,j,k] ∫ cos αi,j,k,l,mdf}, (7.34)

where h0 is replaced in βi,j,k after having been solved from Eq. (7.33).
The periodic corrections Δx = 1

2 {x;𝒲2}, in which x denotes each of the Delau-
nay variables, are then obtained from Eq. (2.17). They also involve the integrals Isin =
∫ sin αi,j,k,l,mdf , Icos = ∫ cos αi,j,k,l,mdf , which depend simultaneously on the mean and
true anomalies, whose analytical solutions are not known to exist. Analytical approx-
imations to these integrals can be computed either making expansions of the inte-
grands in the eccentricity or integrating them by parts in the mean anomaly—the lat-
ter providing equivalent series to those given by the classical relegation of the node,
which requires a distinction between super-synchronous n/ω⊕ and sub-synchronous
cases (see [471] for details).

Alternatively, these integrals can be evaluated numerically to arbitrary precision
at the desired output point f = fp. Namely,

Icos(fp) = Icos(f0) +
fp

∫
f0

cos αi,j,k,l,m df ,
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and an analogous integration for the sine case. This last procedure avoids issues
related to series convergence, as well as the need for separating sub- and super-
synchronous cases [471]. Note, however, that, in spite of the lower limit, f0 being
arbitrary and not seeming to be of concern, in fact it is, because the computation
of the constants Isin(f0), Icos(f0) requires one in turn to know approximate analytical
solutions of Isin(f ) and Icos(f ).

7.4 Relegation of tesseral effects

Rather than solving exactly the homological equation at each stepm of the perturba-
tion approach, one might be satisfied with finding an approximation to𝒲m of𝒪(εm),
of the form

𝒲m = ∑
l≥0

δl𝒲m,l, (7.35)

where δ = n/ω⊕ < 1 for super-synchronous orbits, and δ = ω⊕/n < 1 for sub-
synchronous orbits—the synchronous case requiring specific treatment.

A rule for the selection of the maximum value of the index l is to choose

lmax = ⌊
log ε
log δ
⌋ − 1, (7.36)

so that δlmax+1 = 𝒪(ε) in agreement with the required approximation. Thus, for in-
stance, in the usual case ε = 𝒪(J2) = 𝒪(10−3), for an orbit with a = 10500 km we get
δ ≈ 1/8 and hence lmax = 2, whereas for a typical GPS orbit δ ≈ 1/2, thus requiring
eight terms in the summation (7.35).

In what follows, we focus on the case δ = ω⊕/n of sub-synchronous orbits, al-
though the same philosophy can be applied to the super-synchronous case.

7.4.1 Basic algorithm

Replacing Eq. (7.35) in the homological equation (7.28), we get

∑
l≥0

δl(n
𝜕𝒲m,l
𝜕ℓ
− ω⊕
𝜕𝒲m,l
𝜕h
) = ℋ̃0,m −ℋ0,m,

which is rearranged in the form

𝜕𝒲m,0
𝜕ℓ
− 1
n
(ℋ̃0,m −ℋ0,m) + ∑

l≥1
δl(
𝜕𝒲m,l
𝜕ℓ
−
𝜕𝒲m,l−1
𝜕h
) = 0, (7.37)
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and solved iteratively by equating equal powers of δ. Namely,

𝒲m,0 =
1
n
∫(ℋ̃0,m −ℋ0,m)dℓ, 𝒲m,l = ∫

𝜕𝒲m,l−1
𝜕h

dℓ (l > 0).

Note that this procedure cannot be used to properly deal with the terms 𝒫g,h in
Eq. (7.24), which, unless beingmoved to the newHamiltonian, would introducemixed
secular terms in the integration of the generating function. These terms are, nonethe-
less, easily removed in a following elimination of the node, as it was effectively done
in §7.2.3. Alternatively, terms 𝒲m of the generating function are often split into two
parts

𝒲m =𝒲
†
m + ∑

l≥0
δl𝒲∗m,l, (7.38)

where the dagger part is used to integrate the terms of 𝒫g,h without further iterations.
Now, replacing Eq. (7.38) into Eq. (7.28) yields

−ω⊕
𝜕𝒲†m
𝜕h
+ ∑
l≥0

δl(n
𝜕𝒲∗m,l
𝜕ℓ
− ω⊕
𝜕𝒲∗m,l
𝜕h
) = ℋ̃0,m −ℋ0,m,

and hence𝒲†m = (1/ω⊕) ∫𝒫g,h dh, whereas

𝒲∗m,0 =
1
n
∫(ℋ̃0,m −ℋ0,m − 𝒫g,h)dℓ, 𝒲∗m,l = ∫

𝜕𝒲m,l−1
𝜕h

dℓ (l > 0).

The closed-form integration of terms 𝒲∗m,l, l ≥ 0, is feasible following the proce-
dures described in [324], where it is shown that the general case reduces to the inte-
gration of three types of integrals, to be solved in the radius, in the true anomaly, and
in the eccentric anomaly, respectively.

7.4.2 Tesseral relegation with low eccentricity

Typically, terms𝒲∗m,l grow in size with each iteration lmaking the relegation process
unpractical for a relative low number of iterations. This fact limits practical appli-
cation of the sub-synchronous relegation algorithm to orbits relatively close to the
Earth’s surface, in which case δ ≪ 1. On the other hand, slight modifications of the
relegation algorithm allow one to extend its application to orbits with any semimajor
axis, yet constrained to the case of low eccentricities [438, 441].

First of all, the homological equation (7.28) is reformulated in terms of the true
anomaly, contrary to the mean one, making use of the differential relation (4.64),
in which the radius is further replaced using the conic equation (4.29). This turns
Eq. (7.28) into

(1 + e cos f )2 n
η3
𝜕𝒲m
𝜕f
− ω⊕
𝜕𝒲m
𝜕h
= ℋ̃0,m −ℋ0,m. (7.39)
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Now, we replace Eq. (7.35) by the analogous one,

𝒲m = ∑
l≥0

el𝒲m,l, (7.40)

and the maximum number of iterations is estimated again from Eq. (7.36) with δ re-
placed by e. Besides, without carrying out any expansion of the elliptic motion, we
rearrange the right side of Eq. (7.39) in the form

ℋ̃0,m −ℋ0,m = ∑
l≥0

elPm,l(f , g, h, L,G,H). (7.41)

Finally, both Eqs. (7.40) and (7.41) are plugged into Eq. (7.39), to obtain

∑
l≥0

elℒ∗0(𝒲m,l) = ∑
l≥0

elFl, (7.42)

in which

ℒ∗0 = n
𝜕
𝜕f
− η3ω⊕

𝜕
𝜕h
, (7.43)

F0 = η
3Pm,0, (7.44)

F1 = η
3Pm,1 − 2n cos f

𝜕𝒲m,0
𝜕f
, (7.45)

Fl = η
3Pm,l − 2n cos f

𝜕𝒲m,l−1
𝜕f
− n cos2f

𝜕𝒲m,l−2
𝜕f
, l > 1. (7.46)

Terms of the generating function are no longer obtained by indefinite integration,
but from the solution of a partial differential equation. Like in the case of exact inte-
gration in §7.3, we can solve Eq. (7.42) by the Lagrange–Charpit method, now along the
characteristic curves h = h0 − (ω⊕/n)η3f . On the other hand, as far as the terms on the
right side of the successive partial differential equations are of trigonometric nature,
the solution is readily obtained in view of

ℒ∗0[sin(if + jh + γ)] = (in − jη
3ω⊕) cos(if + jh + γ),

with i, j integers. Now, there is no need of special treatment of the terms 𝒫g󸀠󸀠 ,h󸀠󸀠 , given
in Eq. (7.24), because the procedure does not rely any longer on indefinite integration
in the mean anomaly, but on the solution of partial differential equations involving
both the true anomaly and the longitude of the node in the rotating frame. On the
other hand, the occurrence of divisors in − jη3ω⊕ in the generating function makes it
singular for resonances, i/j = η3ω⊕/n.
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7.4.3 Sample applications

To illustrate the importance of taking the effects of tesseral terms into account in the
perturbation solution, we provide two examples of satellites evolving under de per-
turbation of a 2 × 2 truncation of the geopotential.

The first example deals with a Galileo-type orbit, with orbit parameters a =
29600 km, e = 0.001, I = 56∘, Ω = 0, ω = 270∘, and f = 90∘. The reference orbit is
provided by the one-month propagation of these initial conditions in the full 2 × 2 po-
tential, which amounts to about 51 orbits. When it is compared with the propagation
of the same initial conditions in the model with the tesseral effects removed, that is,
the main problem, we found that the error of the semimajor axis reaches more than
40 meter, yet, as expected, the errors are of periodic nature, as shown in the top plot
of Fig. 7.1.

Figure 7.1: Galileo-type orbit (2 × 2 geopotential). Semimajor axis errors when ignoring tesseral
effects (top plot), and when they are relegated without (center plot) and with one iteration (bottom
plot). Abscissas label the number of orbits.

Periodic corrections derived from the application of the relegation algorithm without
iterations—which are applied both to the initial conditions (corrections obtained from
the inverse transformation) and to the ephemeris computed from the numerical prop-
agation of the simplified 2×0model (corrections obtained from the direct transforma-
tion)—reduce the amplitude of the errors to the centimeter level, as observed in the
center plot of Fig. 7.1, meaning a 99.5% improvement with respect to the maximum
amplitude of the errors in the previous case. One single iteration of the relegation al-
gorithm, which is applied again to both the inverse and the direct transformations,
further reduces the amplitude of the semimajor axis errors to just a fewmillimeters, as
displayed in the lower plot of Fig. 7.1. This means an additional 91% improvement rel-
ative to the maximum amplitude of the previous case. No relevant improvements are
observed with additional iterations of the relegation, which was, in fact, expected. In-
deed, replacing the 2×2 truncation of the geopotential by themain problemmeans ne-
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glecting the third order of J2 in the perturbation approach,which is consistentwith the
fact that the maximum amplitude of the semimajor axis’ error is ∼ 10−9 times smaller
than the semimajor axis’ value itself.

In the case of the eccentricity, even though the improvements are not so impres-
sive when the periodic corrections of the relegation are applied without iterations,
they still achieve 59.5% of the maximum amplitude with respect to the case with no
corrections (first and second from the upper plots of Fig. 7.2). Eccentricity errors no-
tably are reduced with a first iteration of the relegation (second from the lower plot
of Fig. 7.2), reaching a 99.4% improvement with respect to the case with no correc-
tions. Improvements in the eccentricity errors are still observed when using a second
iteration of the relegation algorithm, as shown in Fig. 7.2, but this is not the case of
other orbital elements for which no relevant improvements are appreciated after the
first iteration of the relegation. As mentioned in §6.5.5, this particular behavior of the
eccentricity is not in contradiction with the order of the perturbation approach, and
it is derived from the fact that the periodic corrections to the eccentricity involve the
computation of the Poisson bracket {e,𝒲}, which has the eccentricity as divisor. Then
the series (7.40) needs to be extended to one order higher than in the other cases. Also
because of this, the final improvement relative to the eccentricity value is of the order
of J32 /e.

Figure 7.2: Galileo-type orbit. From top to bottom, eccentricity errors when ignoring tesseral effects,
and when they are relegated without, with one, and with two iterations. Abscissas label the number
of orbits.

It is worth noting that a similar case happens to the inclination, whose periodic cor-
rections involve the computation of the Poisson bracket {I ,𝒲} that introduces the sine
of the inclination in denominators. However, in view of the high inclination of Galileo
orbits, the sine of the inclination is of the order of the unity in the current example,
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and, in consequence, the corresponding periodic corrections do not undergo any neg-
ative effect. Indeed, a single iteration of the relegation algorithm in the computation
of both the direct and the inverse corrections is enough to reduce the amplitude of the
inclination errors to just a few tens of microarcsecond. That is, the relative error is of
the order of 10−10, which is in agreement with the truncation order of the perturbation
theory.

On the other hand, since the relegation of tesseral effects has been computed only
to the first order of the perturbation model, which we recall is equivalent to the sec-
ond order of J2, there is an effective truncation of the perturbation solution to 𝒪(J22 )
that limits its accuracy. This truncation introduces a secular trend in the perturbation
solution and prevents the purely periodic nature of the errors. Indeed, as shown in
Fig. 7.3, a small secular drift is clearly observed in the evolution of the mean argument
of the latitude F = M+ω. This drift is reduced fromabout 1.3 arcseconds/orbital period
(∼ 185 meter per orbit in the in-track direction) when tesseral effects are ignored, to
∼ 3.7 milliarcsecond/orbital period (∼ half a meter per orbit in the in-track direction)
when the relegation is applied without iteration, to the very low rate of less than half
a milliarcsecond/orbital period (∼ 5 cm per orbit in the in-track direction) when one
iteration of the relegation is applied. This secular trend also corrupts the propagation
of the other orbital elements, but, due to its smallness, it is clearly exceeded by the
periodic errors and hence is not appreciated in the corresponding plots.

Figure 7.3: Galileo-type orbit. Mean argument of the latitude errors when ignoring tesseral effects
(upper plot), and when they are relegated without (center plot), and with one iteration (lower plot).
Abscissas label the number of orbits.

For the second example we choose the case that showed less error improvement in
[602], where the authors used a different version of the tesseral relegation algorithm.
Namely, a highly inclined and elliptic orbit with a = 18520 km, e = 0.35, I = 100∘,
which we complement, as before, with Ω = 0, ω = 270∘, and f = 90∘. Again, the ini-
tial conditions are propagated for one month, which amounts to about 103 orbits in
the current case due to the smaller semimajor axis. Because the eccentricity is now
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much larger than in the previous example, and in view of the relegation algorithm in
Eq. (7.42) being scaled by the eccentricity, improvements obtained by successive iter-
ations of the relegation are now expected to continue beyond the two iterations of the
previous example. More precisely, on account of e7 = 𝒪(J2) we would expect succes-
sive improvements in the periodic corrections up to the relegation order lmax = 6.

Inclusion of higher-order effects of the relegation is particularly important in the
conversion of the initial osculating elements into the variables resulting from the rel-
egation, which is carried out with the inverse transformation of the Lie transforms
procedure. More precisely, as discussed in §6.5.5 and §6.6, an inaccuracy in the con-
version of the initial semimajor axis results in a slightly incorrect mean motion that
causes an associated secular trend in the errors of the mean anomaly. This is illus-
trated in Fig. 7.4, in which we clearly observe how the relegation improves the pertur-
bation solution when reducing the inaccuracies in the inverse transformation using
an increasing number of iterations. Thus, the secular trend is about 2 arcseconds per
orbit when no corrections are made, which amounts to ∼ 160 meter per orbit in the
along-track direction (error curve with black dots in Fig. 7.4). The slope of the secu-
lar errors reduces gradually with the different number of iterations of the relegation,
until it becomes very small with the sixth iteration, in which the error is less than 1
arcsecond times orbital period, or about 80 cm per orbit in the along-track direction
(black dashed curve in Fig. 7.4). Of course, increasing the number of iterations of the
relegation algorithm in the computation of the periodic corrections of the direct trans-
formation also improves the propagation of the perturbation solution. However, this
increased accuracy only modifies the amplitude of the periodic components of the er-
rors and is less relevant in the long term.

Figure 7.4:Mean anomaly error of the perturbation solution. Test orbit with a = 18520 km, e = 0.35,
I = 100∘. Tesseral effects ignored (black dots), and when they are relegated without (gray dots), and
with two (black line), four (gray line), and six iterations (black dashed line). Abscissas are orbits.

On the other hand, asmentioned before, the secular errors derived from the early trun-
cation of the perturbation solution to the second order of J2 cannot be reduced unless
the whole perturbation approach is extended to higher orders of J2, irrespective of the
number of iterations that are carried out with the relegation algorithm in the compu-
tation of the generating function. However, the computation of higher orders would
lead to involved computations related to the coupling of zonal and tesseral harmonics
that would happen starting at the third order.
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An example of the improvements achieved with different iterations of the rele-
gation is presented in Fig. 7.5 for the semimajor axis. Despite errors improving slower
than in theGalileo case, due to the higher eccentricity of the orbit, two iterations of the
relegation are enough to get a 90% improvement in the errors of the semimajor axis.
Analogous rates of improvement are found in this particular example for the other or-
bital elements, which yield a 98% improvement in a, e, and iwhen the sixth iteration
of the relegation is compared to the case in which no tesseral direct corrections are
used.

Figure 7.5: Eccentric orbit. Semimajor axis errors of the relegation without (top) and with two (center)
and six iterations (bottom plot). Abscissas are orbital periods.

7.5 Tesseral resonances

Tesseral effects must be treated differently when the orbital period and the Earth’s
rotational period are commensurable. That is,

Q(ω⊕ −
dΩ
dt
) = P(dM

dt
+ dω

dt
), (7.47)

where P and Q are mutually prime integers. In that case, the subsatellite point will re-
peat its ground trace,1 in this way undergoing the same forces periodically in the typi-
cal resonance phenomenon. For exact resonances, the dynamics is essentially that of
the pendulum, producing long-term oscillations in the pair of variables related to the
semimajor axis and the longitude of the ascending node.When the commensurability
is only approximate, resonant effects superimpose to a secular rate in the longitude of
the ascending node [228].

1 In fact, since these rates are not constant, second derivatives should be taken into account. In par-
ticular, that of the mean anomaly [203].
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In particular, since the rate of variation of Ω andω is small, resonance effects will
be apparent when commensurabilities between the mean motion of the orbiter and
the rotation rate of the Earth take place—that is, whenω⊕Q ≈ nP. In that case, divisors
nP − ω⊕Q that may appear in the removal of short-period tesseral effects will prevent
convergence of the perturbation solution for orbits close to the resonant regime [77].
The fact that similar offendingdivisors donot occur in the exact tesseral normalization
discussed in §7.3 just means that a computer program based on it will not break in that
case, but the real behavior of a resonant orbit is in no way seized by that perturbation
solution. In fact, a trigonometric function whose argument involves a resonant com-
bination of themean anomaly and the longitude of the node in the rotating framewill
evolve slowly for orbits in the corresponding resonant regime. In that case, tesseral
resonant terms must remain in the mean-element Hamiltonian after the short-period
elimination—an operation that now gets a clear different meaning from the usual nor-
malization procedure based on the removal of the mean anomaly.

Still, the perturbation approach is useful in dealing with resonant orbits, as is
illustrated below for typical orbital regimes of global navigation satellite systems.

7.5.1 Resonant terms of the geopotential

To remove all the short-period effects from a tesseral perturbation Hamiltonian, it is
unavoidable to trace tesseral resonances in the mean anomaly. Then, instead of using
the closed-form expression of the disturbing function in Eq. (7.1) with theVi,j functions
given by Eq. (7.5), we rather resort to the classical expressions of Kaula [341] in which
trigonometric functions of the true anomaly are replaced by traditional expansions in
the mean anomaly [78, 557]. Thus,

rn

an
exp(imf ) =

∞
∑

k=−∞
Xm,n
k (e) exp(ikM),

where the Hansen coefficients Xm,n
k =

1
2π ∫

2π
0 (r/a)

n exp[i(mf − kM)]dM, are commonly
expressed in terms of Bessel functions, and are computed using efficient recursion in
the literature [231, 234, 562].

Then Eq. (7.1) is written explicitly in the mean anomaly like

𝒫 = −
μ
a
∑
i≥2

i
∑
j=0

Vi,j, (7.48)

where now

Vi,j =
Ri⊕
pi

i
∑
k=0

ℱi,j,k(I)
∞
∑

l=−∞
Gi,k,l(e)(Ci,j cosΨi,j,k,l + Si,j sinΨi,j,k,l), (7.49)
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in which, using the Delaunay angles ℓ = M, g = ω, h = Ω − ω⊕t,

Ψi,j,k,l = (i − 2k + l)ℓ + jh + (i − 2k)g − (i − j)π . (7.50)

Kaula eccentricity functions Gi,k,l = X−i−1,i−2ki−2k+l are computed as follows [231, 341,
631]. When l + i = 2k,

Gi,k,2k−i =
1

η2i−1
k∗−1
∑
j=0
( i − 1
2j + i − 2k∗

)(2j + i − 2k
∗

j
)(e

2
)
2j+i−2k∗

, (7.51)

in which k∗ = k if k ≤ i/2, and k∗ = i − k otherwise. When l + i ̸= 2k,

Gi,k,l =
2i(−β)|l|

(1 + η)i
∞
∑
j=0

Pi,k∗ ,l∗ ,jQi,k∗ ,l∗ ,jβ
2j,

with k∗ = k and l∗ = l if k ≤ i/2, and k∗ = i − k and l∗ = −l otherwise, and

Pi,k,l,j =
r
∑
m=0

1
m!
(2k − 2i
r −m
)[2k − i − l

2
(1 + η)]

m
,

Qi,k,l,j =
h
∑
m=0

1
m!
( −2k
h −m
)[ i + l − 2k

2
(1 + η)]

m
,

in which h = j and r = j + l if l > 0, and h = j − l and r = j otherwise.
The time derivative of Ψi,j,k,l is arranged in the form

dΨi,j,k,l

dt
= (i − 2k + l)(dℓ

dt
+ dg
dt
) + jdh

dt
− ldg

dt
,

which, in view of Eq. (7.47), shows that arguments Ψi,j,k,l with

l = ̃l ≡ (P/Q)j − i + 2k (7.52)

will evolve slowly when close to a Q:P-tesseral resonance. That is, terms Ψi,j,k, ̃l =
j[(P/Q)(ℓ + g) + h] − ̃lg − (i − j)π no longer contribute short-period effects in spite of the
term in square brackets depending on the fast angles ℓ and h.

The resonant term is combined to a single variable by means of the canonical
transformation (λ, γ, δ,Λ, Γ,Δ) 󳨃→ (ℓ, g, h, L,G,H) given by

λ = ℓ + g + Q
P
h, γ = g, δ = h Λ = L, Γ = G − L, Δ = H − Q

P
L, (7.53)

where λ differs from the mean longitude in a fraction 1 − Q/P of the argument of the
node, and −L ≤ Γ ≤ 0. That the transformation (7.53) is canonical is checked from the
differential form Λdλ + Δdδ + Γ dγ = Ldℓ + G dg + H dh [243]. Different alternatives to
Eq. (7.53) may, of course, be explored [325, 434].

Plugging the inverse transformation of Eq. (7.53) into Eq. (7.50) we obtain Ψi,j,k,l =
(i − 2k + l)λ + [j − (i − 2k + l)Q/P]δ − lγ − (i − j)π , which for Q:P-resonant coefficients in
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Eq. (7.52) yields

Ψi,j,k, ̃l = j(P/Q)λ − ̃lγ − (i − j)π . (7.54)

Therefore, tesseral resonant terms depend only on the longitude of the stroboscopic
node λ and the argument of the perigee γ.

The form of the critical arguments (7.54) suggests one to redefine the harmonic
coefficients like

Si,j = Ji,j sin(P/Q)jλi,j, Ci,j = Ji,j cos(P/Q)jλi,j,

which in the particular case P = Q agrees with previous definitions in the literature
[106, 341]. Hence, Eq. (7.49) is conveniently replaced by the alternative form

Vi,j =
Ri⊕
pi

i
∑
k=0

ℱi,j,k(I)
∞
∑

l=−∞
Gi,k,l(e)Ji,j cos[Ψi,j,k,l − (P/Q)jλi,j]. (7.55)

7.5.2 Short-period elimination

In the new P:Q-resonant variables, the perturbation Hamiltonian in Eqs. (7.29)–(7.31)
reads

ℋ0,0 = −
μ
2a
− ω⊕(Δ +

Q
P
Λ), (7.56)

ℋ1,0 = −
μ
a
V2,0, (7.57)

ℋ2,0 = −2
μ
a
(∑
i≥3

Vi,0 +∑
i≥2

i
∑
j=1

Vi,j), (7.58)

where now a = Λ2/μ, η = 1 − |Γ|/Λ, and c = [(Q/P)Λ + Δ]/(Λ − |Γ|).
The zeroth-order Hamiltonian (7.56) yields the Lie derivative

ℒ0 = { ,ℋ0,0} ≡ (n − ω⊕
Q
P
) 𝜕
𝜕λ
− ω⊕
𝜕
𝜕δ
. (7.59)

Then the homological equation in the new variables is the partial differential equation

(n − ω⊕
Q
P
)
𝜕𝒲m
𝜕λ
− ω⊕
𝜕𝒲m
𝜕δ
= ℋ̃0,m −ℋ0,m, (7.60)

in which the short-period elimination is achieved by selecting the new Hamiltonian
terms free from δ, that isℋ0,m = ⟨ℋ̃0,m⟩δ.

It is clear now that the terms

⟨Vi,j⟩δ =
Ri⊕
pi

i
∑
k=0

ℱi,j,k

∞
∑

l=−∞
Gi,k,lJi,j cosΨ

∗
i,j,k, ̃l, (7.61)
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with Ψ∗i,j,k, ̃l = j(P/Q)(λ− λi,j) −
̃lγ − (i− j)π , which are kept in the long-term Hamiltonian,

entail only long-period effects related to γ and λ. Note that Eq. (7.61) also applies to the
case of zonal terms, in which ⟨Vi,0⟩δ = ⟨Vi,0⟩ℓ as expected.

Therefore, at first order,

ℋ̃0,1 = ℋ1,0 = −C2,0
μ
a
R2⊕
p2

2
∑
k=0

ℱ2,0,k(I)
∞
∑

l=−∞
G2,k,l(e) cosΨ2,0,k,l,

in which

Ψ2,0,k,l = (2 − 2k + l)(λ −
Q
P
δ) − lγ. (7.62)

The new Hamiltonian term ℋ0,1 = ⟨ℋ̃0,1⟩δ is chosen using Eq. (7.61) with i = 2 and
j = 0. Since ̃l = 2k − 2, we get

ℋ0,1 = −
μ
a
⟨V2,0⟩δ = −C2,0

μ
a
R2⊕
p2

2
∑
k=0

ℱ2,0,k(I)G2,k,2k−2(e) cosΨ2,0,k,2k−2,

where Ψ2,0,0,−2 = 2γ, Ψ2,0,1,0 = 0, Ψ2,0,2,2 = −2γ, from Eq. (7.62); ℱ2,0,0 = ℱ2,0,2 = −
3
8s

2,
ℱ2,0,1 = −

1
2 +

3
4s

2, from Eq. (7.4); and G2,0,−2 = G2,2,2 = 0, G2,1,0 = 1/η3, from Eq. (7.51).
As expected,ℋ0,1 is exactly the same as given in Eq. (5.60), which is composed only of
secular terms.

Next, the first-order homological equation (7.60),

ℒ0(𝒲1) = −C2,0
μ
a
R2⊕
p2

2
∑
k=0

ℱ2,0,k

∞
∑

l=−∞
l ̸= ̃l

G2,k,l cosΨ2,0,k,l,

is readily solved in view of ℒ0(sinΨ2,0,k,l) = (2 − 2k + l)n cosΨ2,0,k,l, as obtained from
Eqs. (7.59) and (7.62). Therefore

𝒲1 = −C2,0L
R2⊕
p2

2
∑
k=0

ℱ2,0,k(I)
∞
∑

l=−∞
l≠ ̃l

G2,k,l(e)
sinΨ2,0,k,l
2 − 2k + l

. (7.63)

It is worth noting that there are no tesseral effects hitherto and, therefore, 𝒲1 is just
an expanded version of Eq. (5.61) in power series of the eccentricity, save for an inte-
gration constant. Indeed it is easy to check from Eqs. (7.63) and (7.62) that ⟨𝒲1⟩ℓ = 0,
whereas it was not at all the case of Eq. (5.61), as shown by Eq. (5.64).

At second order ℒ0(𝒲2) = ℋ̃0,2 − ℋ0,2, where the computable terms ℋ̃0,2 are the
usual ones given by Eq. (2.37). Because Poisson brackets are invariant with respect to
canonical transformations, they can be evaluated in themost convenient set of canon-
ical variables. In consequence,we resort to previously computed values in §5.6. In par-
ticular,𝒲1 is obtained by adding to Eq. (5.61) the integration constant A1 in Eq. (6.116)
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that guarantees that ⟨𝒲1⟩ℓ = 0, as happens with Eq. (7.63). As far as we are using here
a formal small parameter, both Eqs. (5.61) and (6.116) must be previously multiplied
by the oblateness coefficient C2,0.

Then, to the already known terms previously computed in Eqs. (5.66), (5.67), and
(5.68), whichmust now to bemultiplied by the physical small parameter C22,0, we need
to add the term ℋ2,0, given in Eq. (7.58), as well as the additional terms derived from
the non-null value of the integration constant A1. That is,

{ℋ1,0 +ℋ0,1;A1} = C
2
2,0

3
16

μ
p
R4⊕
p4
{η3s2(4 − 5s2)β2(1 + 2η) cos 2g + 1

16
p2

r2

×
2
∑
j=0

3
∑
i=−3

q󸀠2j,is
2j cos[(2j + i + j5)f + 2jg]}, (7.64)

where the coefficients q󸀠2j,i are given in Table 7.1, and j5 = ⌊
1
2 (j − 5)⌋ as follows from the

index convention in Eq. (6.5).

Table 7.1: Coefficients q󸀠2j,i in Eq. (7.64). q
󸀠
0,−3 = q

󸀠
0,3 = q

󸀠
4,−2 = 0.

j i q󸀠2j,i

0 −2 −5e2s4β3

−1 −24s4β2(1 − η)
0 −s2β3[16 + 23s2 + (48 − 66s2)η + (32 − 61s2)η2]
1 −8s2β2[4 + (8 − 15s2)η]
2 −2s2β[2(4 − s2) + (8 − 23s2)η − (16 − 31s2)η2]

1 −3 −2β3e2(2 − 3s2)
−2 −8(2 − 3s2)β2(1 − η)
−1 2β3[2 + s2 + 6(6 − 7s2)η + (26 − 31s2)η2]
0 16(4 − 5s2)β2(1 + 2η)
1 2β[42 − 59s2 + 2(6 − 7s2)η − (30 − 37s2)η2]
2 24(2 − 3s2)(1 − η)
3 6e(2 − 3s2)(1 − η)

2 −3 −e2β3

−1 β3(21 + 18η + η2)
0 40β2(2 + η)
1 3β(39 − 6η − 5η2)
2 72(1 − η)
3 15e(1 − η)

Next, we choose ℋ0,2 = ⟨ℋ̃0,2⟩δ = ⟨ℋ2,0⟩δ + ⟨{ℋ1,0 + ℋ0,1𝒲1}⟩δ, where the last term
is obtained by adding to Eq. (5.70), which must first be multiplied by C22,0, the part of
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Eq. (7.64) that is free from short-period effects. We finally find

ℋ0,2 = −2
μ
a
(∑
i≥3
⟨Vi,0⟩δ +∑

i≥2

i
∑
j=1
⟨Vi,j⟩δ) − C

2
2,0
μ
p
R4⊕
p4

3
64

η3 (7.65)

× {5(8 − 16s2 + 7s4) + 4(2 − 3s2)2η − (8 − 8s2 − 5s4)η2

+ 2[4(4 − 5s2)η2 − 5(6 − 7s2)(1 + η)2]β2s2 cos 2ω},

with the terms ⟨Vi,j⟩δ computed from Eq. (7.61).

7.5.3 The 2:1 resonance. GPS orbits

One notable instance of orbits in deep 2:1 tesseral resonance is the case of GPS orbits.
Since these orbits have high altitudes, we only deal with a gravitational model that is
truncated to the fifth degree and order. Besides, because of the low eccentricity of this
type of orbit, the expansions in the mean anomaly are truncated to the fourth power
of the eccentricity for perturbations of the first order of J2, and just to the second order
of the eccentricity in the case of effects of the second order of J2 [434].

The transformation Eq. (7.53) is nowparticularized for λ = ℓ+g+2h and Δ = H−2L.
The long-term Hamiltonian𝒦 = ℋ0,0 +ℋ0,1 +

1
2ℋ0,2, which is obtained from Eq. (5.60)

and (7.65) after writing everything in terms of the new variables, is rather written like
the perturbation of an intermediary [223],

𝒦 = ℐ2:1(−, −, λ,Δ, Γ,Λ) + e𝒫2:1(−, γ, λ,Δ, Γ,Λ). (7.66)

In particular, the GPS intermediary takes the form [434]

ℐ2:1 = −
μ
2a
− ω⊕(Δ + 2Λ) +

μ
2a

1
16

× {
R2⊕
a2

8J2,0P2,0X2,0 +
R3⊕
a3

60J3,2P3,2X3,2 sin(λ − λ3,2) −
3
2
R4⊕
a4

× [2J22,0(Q2,0 + Q2,2e
2 + Q2,4e

4) − J4,0P4,0X4,0 − 560J4,4P4,4X4,4

× cos 2(λ − λ4,4)] + 105
R5⊕
a5

J5,2P5,2X5,2 sin(λ − λ5,2)}, (7.67)

where Pi,j, Qi,j are the inclination polynomials on the left side of Table 7.2, and Xi,j are
the eccentricity polynomials on the right side of the same table, which also includes
the sectoral harmonic of degree and order five, whichwill be used in the next example
in §7.5.4.

Visual inspection of Eq. (7.67) clearly shows the relevance of the different resonant
terms of the intermediary ℐ2:1, in which the resonant harmonic coefficients J3,2, J4,4,
and J5,2, aremultiplied by numeric coefficients that are exceedingly greater than those
multiplying the zonal harmonic coefficients.
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Table 7.2: Inclination (left) and eccentricity polynomials (right) in Eq. (7.67). Adapted by permission
from Springer: [434].

P2,0 = 1 − 3c2 X2,0 = 1 +
3
2e

2 + 15
8 e

4

P3,2 = s(1 + c)(1 − 3c) X3,2 = 1 + 2e2

P4,0 = 3 − 30c2 + 35c4 X4,0 = 1 + 5e2

P4,4 = s2(1 + c)2 X4,4 = 1 + e2

P5,2 = s(1 + c)(1 − 3c − 9c2 + 15c3) X5,2 = 1 +
13
2 e

2

P5,5 = s2(1 + c)3 X5,5 = 1 −
3
2e

2

Q2,0 = 1 − 8c2 + 19c4

Q2,2 =
7
4 −

41
2 c

2 + 243
4 c4

Q2,4 =
13
8 − 36c

2 + 1027
8 c4

Asafirst approach,wemayneglect the eccentricity contribution in second-order terms
of the resonant Hamiltonian (7.66) for orbits with very low eccentricity. Thus, on the
one hand, save forX2,0, the eccentricity polynomials in Table 7.2 are simplified to unity.
On the other hand, the perturbation of the intermediary is neglected because it is mul-
tiplied by e. Hence,𝒦 ≈ ℐ2:1(λ,Λ; Γ,Δ), and the problem is reduced to a one-degree-of-
freedom Hamiltonian in the longitude of the stroboscopic node λ and its conjugate
momentum Λ, which only depends on the semimajor axis. Therefore, the reduced in-
tegrable flow can be visualized with simple contour plots of Eq. (7.67).

A sample visualization of the reduced flow in the (λ, a) plane is presented in
Fig. 7.6 for the values of the (dynamical) parameters Δ and Γ corresponding to a low-
eccentricity GPS-type orbit with mean elements a = 26560 km, e = 0.001, i = 55 deg.
The position that one of the GPS satellites would occupy is superimposed in Fig. 7.6 to
the contour plots of the intermediary. In particular, we used the initial conditions of
GPS-53 (E2) given in [26].

On the other hand, the eccentricity of actual GPS orbits can be close to one hun-
dredth and its effect cannot be neglected in general. Then the perturbation of the in-
termediary𝒫2:1must be taken into account, at least for those terms that do not depend
on e. Namely

𝒫2:1 =
μ
2a

3
4
{
R3⊕
a3

J3,0T3,0 sin γ +
5
4
R5⊕
a5

J5,0T5,0 sin γ

+
R2⊕
a2

J2,2[6T2,2,−1 cos(γ − λ + λ2,2) − T2,2,1 cos(γ + λ + λ2,2)]

+
R4⊕
a4

J4,2[
75
4
T4,2,−1 cos(γ − λ + λ4,2) −

5
2
T4,2,1 cos(γ + λ − λ4,2)]

− 630
R5⊕
a5

J5,4T5,4 sin(γ − 2λ + 2λ5,4)} +𝒪(e), (7.68)
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Figure 7.6: Sample phase space of the intermediary (7.67) with the position of a GPS satellite super-
imposed (black spot).

where the inclination polynomials Tj,k,l are given in Table 7.3. For the actual values of
the Earth’s harmonic coefficients, the most relevant effect on the perturbation is due
to the J2,2 term.

Table 7.3: Inclination polynomials in Eq. (7.68). Adapted by permission from Springer: [434].

T2,2,−1 = s2 T2,2,1 = (1 + c)2 T3,0 = (1 − 5c2)s
T4,2,−1 = s2(1 − 7c2) T4,2,1 = (1 + c)2(1 − 7c + 7c2)
T5,0 = (1 − 14c2 + 21c4)s T5,4 = s3(1 + c)(1 − 5c)

Now the GPS long-term Hamiltonian (7.66) remains of two degrees of freedom, yet the
integrationof itsHamilton equations evolveswith very long step sizes and is very effec-
tive. The short-period tesseral effects can be recovered analytically at each integration
step from the transformation equations of the short-period elimination. In fact, the nu-
merical integration fits quite well when superimposed to the contour plot of Fig. 7.6;
cf. [434]. Alternatively, the long-term dynamics can be explored with the usual tools
of non-linear dynamics such as Poincaré surfaces of section [187].

7.5.4 The 5:3 resonance. Galileo disposal orbits

Galileo operational satellites move in almost circular, 17 to 10 repeat groundtrack or-
bits at an altitude of about 23,222 km over the surface of the Earth and 56∘ of nominal
inclination.2 Due to the high altitude, tesseral resonance effects stemming from the

2 http://www.esa.int/Our_Activities/Navigation/Galileo
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repetition of the ground trace are insignificant, but this orbital regime is not so far
from the 5 to 3 commensurability with the Earth’s rotation period that may affect de-
funct satellites disposed a few hundred kilometers above the operational orbits.

Focusing on the 5:3-tesseral resonance, the stroboscopic canonical transforma-
tion (7.53) yields λ = ℓ+ g + (5/3)h and Δ = H − (5/3)L. Then the long-term Hamiltonian
is again rearranged in the form of a perturbed intermediary 𝒦 = ℐ5:3(−, −, λ,Δ, Γ,Λ) +
e𝒫5:3(−, γ, λ,Δ, Γ,Λ), where

ℐ5:3 = −
μ
2a
− ω⊕(Δ +

5
3
Λ) + μ

2a
{
R2⊕
a2

1
2
J2,0P2,0X2,0

− 3
32

R4⊕
a4
[2J22,0(Q2,0 + Q2,2e

2 + Q2,4e
4) − J4,0P4,0X4,0]

+ 4725
16

R5⊕
a5

J5,5P5,5X5,5 cos(λ + λ5,5)}, (7.69)

in which Pj,k, Qj,k, and Xj,k were previously given in Table 7.2.
The eccentricity of Galileo orbits is now much smaller than in the GPS case, and,

therefore, the disturbing effects of the perturbation 𝒫5:3 are no longer relevant, thus
yielding an integrable system.

The pendulum-type dynamics of 5:3-resonant orbits is illustrated in Fig. 7.7 for the
dynamical parameters Δ and Γ corresponding to a Galileo-type orbit (I = 56∘, e =
0.001) 400 kmabove thenominal constellation.Now, the oscillations of the semimajor
axis in the libration region reduce their maximum amplitude to about ±1.2 km, that
is, about one fifth of the case of the 1:2 resonance. For the latter, the amplitude of
the oscillations of the semimajor axis in the libration region can reach ∼ ±6 km, as
observed in Fig. 7.6.

Figure 7.7: Sample phase space of the intermediary (7.69) showing the 5 to 3 tesseral resonance
(I = 56∘, e = 0.001) [443].
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8 Lunisolar perturbations

Effects of the Moon and the Sun on close-Earth orbits are clearly observable and must
be taken into accountwhenmodeling their dynamics. The artificial satellite problem is
then set in the framework of the restricted n-body problem. However, in those cases in
which lunisolar effects are small compared to the gravitational attraction of the Earth,
the problem can still be cast in the form of perturbed Keplerian motion about the
Earth, and, therefore, be approached by Hamiltonian perturbations. To this aim, the
third-body disturbing function is customarily expanded in the ratio of the distances
from the central body to the satellite and to the perturber as an infinite series in Leg-
endre polynomials. Inmost cases, the disturbing function of the Sun can be truncated
to the first term of the series, yet the correct modeling of the lunar disturbing function
may need higher-order truncations in some orbital regimes.

On the other hand, because the coupling of third-body and geopotential perturba-
tions only yields higher-order effects, both perturbations are customarily treated sep-
arately. For third-body perturbations, the solution can be computed in closed form of
the eccentricity of the orbits of the satellite and the disturbing bodies. However, be-
cause the eccentricities of the orbits of both theMoon and the Sun relative to the Earth
are small, it is customary to simplify the perturbation series by making expansions in
the eccentricity of each third-body orbit.

Lunisolar perturbations make the Hamiltonian time-dependent because they
depend on the positions of these bodies, which need to be taken either from an
ephemeris database or from analytical ephemeris.1 However, dealing explicitly with
time is avoided in the construction of the perturbation solution by moving to the
extended phase space.

Lunisolar resonances are common and profuse, and hence motion under third-
body perturbations is preferably integrated semi-analytically. Out of resonances, in
addition to removing the mean anomaly of the satellite, removing the mean anoma-
lies of the Moon and the Sun by perturbations notably speeds the semi-analytical in-
tegration. A general picture of the perturbed dynamics can then be obtained from the
fast propagation of different trajectories.

8.1 The third-body potential

Under the assumption of point masses,m,m⊕, andm⋆, for the satellite, the Earth, and
a disturbing body, respectively, the acceleration of the satellite in an inertial frame is

1 Low-precision ephemerides, like those in [482] extracted from [109, 110], suffice for this purpose.

https://doi.org/10.1515/9783110668513-008
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given by Newton’s gravitational law,

d2ρ
dt2
= −𝒢m⊕

ρ − ρ⊕
‖ρ − ρ⊕‖3

− 𝒢m⋆
ρ − ρ⋆
‖ρ − ρ⋆‖3

, (8.1)

whereρ,ρ⊕, andρ⋆, are the position vectors of the satellite, the Earth, and the disturb-
ing body, respectively, and 𝒢 is the gravitational constant. Analogously, for the Earth

d2ρ⊕
dt2
= −𝒢m⋆

ρ⊕ − ρ⋆
‖ρ⊕ − ρ⋆‖3

− 𝒢m
ρ⊕ − ρ
‖ρ⊕ − ρ‖3

, (8.2)

and a similar equation applies for the acceleration of the disturbing body.
Denoting r = ρ − ρ⊕, r = ‖r‖, r⋆ = ρ⋆ − ρ⊕, r⋆ = ‖r⋆‖, and subtracting Eqs. (8.1)

and (8.2), we obtain

d2r
dt2
= −𝒢(m +m⊕)

r
r3
− 𝒢m⋆(

r − r⋆
‖r − r⋆‖3

+
r⋆
r3⋆
), (8.3)

which shows that the acceleration of the satellite relative to the Earth can be derived
from the potential 𝒱 = −μ/r + 𝒱⋆ in which

𝒱⋆ = −
μ⋆
r⋆
χ⋆(

r⋆
‖r − r⋆‖

−
r ⋅ r⋆
r2⋆
), (8.4)

where μ⋆ = 𝒢(m⋆ +m⊕), and χ⋆ = m⋆/(m⋆ +m⊕).

8.1.1 Expansion of the potential for a close-Earth satellite

For a close-Earth satellite r/r⋆ ≪ 1, and we write

‖r − r⋆‖ = r⋆√1 − 2(r/r⋆) cosψ⋆ + (r/r⋆)2,

where ψ⋆ is the angle encompassed by the directions from the Earth of the satellite
̂r = r/r and the disturbing body ̂r⋆ = r⋆/r⋆. That is,

cosψ⋆ = ̂r ⋅ ̂r⋆ =
xx⋆ + yy⋆ + zz⋆

rr⋆
. (8.5)

In that case, the right side of Eq. (8.4) is conveniently replaced by the Legendre poly-
nomial expansion,

𝒱⋆ = −χ⋆
n2⋆a

3
⋆

r⋆
∑
i≥2

ri

ri⋆
Pi(cosψ⋆), (8.6)

where the gravitational parameter of the third body is written in terms of the semima-
jor axis a⋆ and the mean motion n⋆ of its orbit relative to the Earth, and the Legen-
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dre polynomials Pi are given by the usual binomial expansion of Rodrigues’ formula
[314, 320, 569],

Pi(cosψ⋆) =
1
2i

i0
∑
l=0
(−1)l(i

l
)(

2i − 2l
i
) cosi−2l ψ⋆, (8.7)

where i0 = ⌊
1
2 i⌋ from Eq. (6.5). The term −μ⋆/r⋆ has been neglected in Eq. (8.6) because

it brings about a null contribution to the satellite acceleration in Eq. (8.3).
The reasoning used in deriving the disturbing potential Eq. (8.4) does not change

when addingmoremasses to the system. Therefore, the lunisolar disturbing potential
of a close-Earth satellite will be made of both 𝒱⊙ and 𝒱☾, each of which is given by
Eq. (8.4). For most applications, the Legendre polynomial expansion of the former
can be truncated to the second degree, but the latter may require one to take up to the
Legendre polynomial P6 into account in the case of orbits of common space telescopes
[436]. Besides, χ☾ = 1/82.28 whereas χ⊙ is taken the unity.

8.1.2 The disturbing potential in the apsidal frame

Short-period terms of the expanded third-body disturbing potential (8.6) are effec-
tively isolated when the direction of the massless body is given by its components
in the apsidal frame (O, ê, b̂,n) defined in §4.5.1. Because third-body perturbations are
conveniently handled in terms of the eccentric anomaly [158, 302, 342], we follow the
steps in [425] and rearrange Eq. (8.6) like

𝒱⋆ = −
μ
2a

χ⋆
n2⋆
n2

a3⋆
r3⋆

a
r
∑
i≥2

1
2i−1

ai−2

ri−2⋆
Vi, (8.8)

with

Vi =
i0
∑
l=0
(−1)l(i

l
)(

2i − 2l
i
)
r2l+1

a2l+1
(
r
a
cosψ⋆)

i−2l
. (8.9)

Analogously to the geopotential case, we left the coefficient a/r out of the summation
in Eq. (8.8) to ease closed-form integration, as will become evident later.

Now, Eq. (8.9) is written in the apsidal frame by first replacing Eq. (4.50) into
Eq. (8.5) and use the geometric relations (4.71) to obtain

r
a
cosψ⋆ = (ê ⋅ ̂r⋆)(cos u − e) + (b̂ ⋅ ̂r⋆)η sin u, (8.10)

from which, using the binomial expansion,

(
r
a
cosψ⋆)

i−2l
=

i−2l
∑
k=0
(
i − 2l
k
)(ê ⋅ ̂r⋆)

k(cos u − e)k

× (b̂ ⋅ ̂r⋆)
i−2l−kηi−2l−k sini−2l−k u, (8.11)
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where

(cos u − e)k =
k
∑
m=0
(
k
m
)(−1)mem cosk−m u. (8.12)

Next, from Eq. (4.26),

r2l+1

a2l+1
= (1 − e cos u)2l+1 =

2l+1
∑
j=0
(
2l + 1
j
)(−1)jej cosj u. (8.13)

Hence,

Vi =
i0
∑
l=0
(
i
l
)(

2i − 2l
i
)
2l+1
∑
j=0
(
2l + 1
j
)
i−2l
∑
k=0
(
i − 2l
k
)

k
∑
m=0
(
k
m
)ej+m(ê ⋅ ̂r⋆)

k

× (−1)j+l+mηi−2l−k(b̂ ⋅ ̂r⋆)
i−2l−k cosj+k−m u sini−2l−k u. (8.14)

8.2 Long-term motion. The extended phase space

The lunisolar perturbations Hamiltonian is ℋ = − 12 (μ/a) + 𝒱☾ + 𝒱⊙, in which solar
and lunar ephemerides are known functions of time. While Deprit’s perturbation al-
gorithmby Lie transforms also applies to time-dependent Hamiltonians [151], descrip-
tions in Chapter 2 were constrained to the case of conservative Hamiltonians. There-
fore, the time dependency is avoided using the homogeneous formalism [558, 621] by
introducing a new coordinate τ = t and conjugate momentum T = −ℋ + const, such
that, in the extended phase space (ℓ, g, h, τ, L,G,H ,T), the Hamiltonian

ℋ = −
μ
2a
+ T + 𝒱☾(ℓ, g, h, τ, L,G,H , −) + 𝒱⊙(ℓ, g, h, τ, L,G,H , −) (8.15)

is conservative.
The Hamiltonian (8.15) accepts the usual perturbation arrangement in Eq. (2.30),

inwhich the small parameter ε is formal and, because the disturbing effects of the Sun
and the Moon on close-Earth orbits are of the same order,

ℋ0,0 = −
μ
2a
, (8.16)

ℋ1,0 = T , (8.17)
ℋ2,0 = 2!(𝒱☾+ 𝒱⊙), (8.18)

and ℋm,0 = 0 for m ≥ 3. The third-body disturbing potentials are replaced by their
Legendre polynomials expansion in Eq. (8.6) with ⋆ ≡ ⊙ and ⋆ ≡ ☾, respectively.
The factorial 2 that scalesℋ2,0 has been prepended to compensate the corresponding
divisor in the Hamiltonian arrangement.
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Since ℋ0,0 continues to be the Keplerian, the Lie derivative remains Eq. (4.66).
However, Poisson brackets that eventually appear in the Lie transforms procedure
must be evaluated in the extended phase space to properly take the time dependency
into account. On the other hand, with the perturbation arrangement of Eqs. (8.16)–
(8.18), time-dependency issues are relegated to the third order of the perturbation ap-
proach. By now, we limit ourselves to this particular case and constrain the removal
of short-period effects from Hamiltonian (8.15) up to the second order of ε.

Thus, at the first order we choose ℋ0,1 = T and 𝒲1 = 0. At the second order the
known terms are ℋ̃0,2 = ℋ2,0. Then, from Eq. (8.18), we choose

ℋ0,2 = 2⟨𝒱☾⟩ℓ + 2⟨𝒱⊙⟩ℓ, (8.19)

and compute𝒲2 from the homological equation (4.68). Namely,

𝒲2 =
2
n
∫(𝒱☾− ⟨𝒱☾⟩ℓ)dℓ +

2
n
∫(𝒱⊙ − ⟨𝒱⊙⟩ℓ)dℓ. (8.20)

8.2.1 Short-period elimination by Lie transforms

The termℋ0,2 in Eq. (8.19) is computed in closed form with the help of the differential
relation (4.62). Namely, ⟨𝒱⋆⟩ℓ = ⟨𝒱⋆(r/a)⟩u, which now makes the reasons for having
left the term a/r out of the summation in Eq. (8.8) evident. We obtain

⟨𝒱⋆⟩ℓ = −χ⋆
μ
2a

n2⋆
n2

a3⋆
r3⋆
∑
i≥2

1
2i−1

ai−2

ri−2⋆
⟨Vi⟩u. (8.21)

To compute ⟨Vi⟩u, we convert the trigonometric functions of u into trigonometric
polynomials in u. From standard relations between exponentials and circular func-
tions [341], we obtain

cosj+k−m u sini−2l−k u = (−i)
i−k−2l

2i+j−m−2l
i−k−2l
∑
q=0

j+k−m
∑
t=0
(
i − k − 2l

q
)(−1)q

× (
j + k −m

t
)[cos 2(q̃ − q)u + i sin 2(q̃ − q)u],

(8.22)

where q̃ = 1
2 (i + j −m) − l − t. That all the terms of Eq. (8.22) are periodic save for those

in which q = q̃, which in turn requires i + j −m to be even, is now evident. Hence,

⟨Vi⟩u =
i0
∑
l=0
(
i
l
)(

2i − 2l
i
)
2l+1
∑
j=0
(
2l + 1
j
)
i−2l
∑
k=0
(
i − 2l
k
)

k
∑
m=0
(
k
m
)

× Ξi−2l−kj+k−m(−1)
j+l+mej+m(ê ⋅ ̂r⋆)

k(ηb̂ ⋅ ̂r⋆)
i−k−2l, (8.23)
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where the coefficient Ξi−2l−kj+k−m = ⟨cos
j+k−m u sini−2l−k u⟩u is obtained making q = q̃ in

the right side of Eq. (8.22). Note that i − k must be even to remove the imaginary unit.
Therefore, the calculation of Eq. (8.21) is completed, and the long-term Hamiltonian
is obtained after replacing original by prime variables in Eq. (8.19).

Thegenerating function (8.20) is nowcomputed fromEq. (4.70) either for the lunar
or for the solar perturbations. That is,𝒲2 = 2𝒲⊙ + 2𝒲☾, where

𝒲⋆ = −χ⋆L
n2⋆
n2

a3⋆
r3⋆
∑
i≥2

1
2i
ai−2

ri−2⋆
[⟨Vi⟩ue sin u + ∫(Vi − ⟨Vi⟩u)du]. (8.24)

The integrand Vi − ⟨Vi⟩u consists of purely periodic terms in u, which are obtained
from Eq. (8.14) by simply avoiding the value q = q̃ in the corresponding summation of
Eq. (8.22). Then the required integration is readily solved; cf. [425].

8.2.2 Averaged flow in vectorial elements

Due to the abundance of resonances between themeanmotions ofMoon and Sun, and
the rate of variation of the orbital elements of the satellite [128, 240], further simplifi-
cations of the third-body disturbing potential are not generally pursued. Rather, the
flow stemming from the mean-element Hamiltonian

𝒦 = 𝒦0,0 + 𝒦1,0 +
1
2
𝒦2,0, (8.25)

where𝒦0,0 = −μ/(2a) is now constant,𝒦1,0 = T, and𝒦2,0 = ℋ0,2 is given by Eqs. (8.19)
and (8.21) after rewritten in prime (mean) variables, is numerically integrated. At each
time of the numerical integration,which proceedswith long steps and is very efficient,
osculating elementsmay be recovered by evaluation of the analytical short-period cor-
rections derived in the usualway from the generating function𝒲 =𝒲☾+𝒲⊙ obtained
from Eq. (8.24).

When high orders of the Legendre polynomials expansion of the disturbing po-
tential are needed, the integration of the variations of the vectorial elements defining
the apsidal frame is specially efficient [425]. In particular, the variations of the mean
vectorial elements η = G/L󸀠 = ηn, e = eê, have been previously given in Eqs. (4.60)–
(4.61). In order to use them here, we only need to make 𝒬 ≡ −(1/L󸀠)⟨𝒱⋆⟩ℓ for each of
the disturbing bodies, using Eq. (8.21), and write ê and n in Eq. (8.23) in terms of the
nondimensional magnitudes e and η, respectively.

To do that, we replace

ej+m(ê ⋅ ̂r⋆)
k(ηb̂ ⋅ ̂r⋆)

i−k−2l = (e ⋅ e)
j+m−k

2 (e ⋅ ̂r⋆)
k[η2(b̂ ⋅ ̂r⋆)

2]
i−k
2 −l

in Eq. (8.23) and remove the dependence on the unit vector b̂ using the identity

‖ ̂r⋆‖
2 = (ê ⋅ ̂r⋆)

2 + (b̂ ⋅ ̂r⋆)
2 + (n ⋅ ̂r⋆)

2 = 1. (8.26)

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Long-term motion. The extended phase space | 209

Namely, η2(b̂ ⋅ ̂r⋆)2 = X − (ê ⋅ ̂r⋆)2, where X = X(e,η, ̂r⋆) ≡ 1− e2 + ξ 2 − ζ 2, with ξ = e ⋅ ̂r⋆,
ζ = η ⋅ ̂r⋆. After a new binomial expansion, we readily obtain

⟨Vi⟩u =
i0
∑
l=0
(
i
l
)(

2i − 2l
i
)
2l+1
∑
j=0
(
2l + 1
j
)
i−2l
∑
k=0
(
i − 2l
k
)

k
∑
m=0
(
k
m
)Ξi−2l−kj+k−m

×

i−k
2 −l

∑
s=0
(
i−k
2 − l
s
)(−1)j+l+m+sej+m−k−2sξ 2s+kX

i−k
2 −l−s, (8.27)

which only depends on e, and η, as desired, as well as on the disturbing body direc-
tion ̂r⋆. The first few terms ⟨Vi⟩u are displayed in Table 8.1.

Table 8.1: Some terms ⟨Vi⟩u, given by Eq. (8.27)—after [425].

⟨V2⟩u =1 − 3(2e2 − 5ξ2 + ζ2)

⟨V3⟩u =−
5
2 ξ[3(1 − 8

2) − 15ζ2 + 35ξ2]

⟨V4⟩u =
3
4 {3 − 20e

2 + 80e4 + 10[7(1 − 10e2)ξ2 − (3 − 10e2)ζ2] + 35(21ξ4 − 14ζ2ξ2 + ζ4)}

⟨V5⟩u =−
3
4 ξ{35(1 − 8e

2 + 40e4) + 490[(1 − 12e2)ξ2 − (1 − 4e2)ζ2] + 147(33ξ4 − 30ζ2ξ2 + 5ζ4)}

⟨V6⟩u =
1
4 {5(5 − 42e

2 + 168e4 − 560e6) + 105[3(3 − 28e2 + 168e4)ξ2 − (5 − 28e2 + 56e4)ζ2]
+ 315[(5 − 14e2)ζ4 − 18(3 − 14e2)ζ2ξ2 + 33(1 − 14e2)ξ4] + 231(429ξ6 − 495ζ2ξ4

+ 135ζ4ξ2 − 5ζ6)}

⟨V7⟩u =−
9
16 ξ{35(5 − 48e

2 + 224e4 − 896e6) + 105[11(3 − 32e2 + 224e4)ξ2 − 3(15 − 96e2

+ 224e4)ζ2] + 231[143(1 − 16e2)ξ4 − 110(3 − 16e2)ζ2ξ2 + 15(5 − 16e2)ζ4] + 429(715ξ6

− 1001ζ2ξ4 + 385ζ4ξ2 − 35ζ6)}

⟨V8⟩u =
5
64 {7(35 − 360e

2 + 1728e4 − 5376e6 + 16128e8) + 252[11(5 − 54e2 + 288e4 − 1344e6)ξ2

− (35 − 270e2 + 864e4 − 1344e6)ζ2] + 1386[143(1 − 12e2 + 96e4)ξ4 − 66(5 − 36e2

+ 96e4)ζ2ξ2 + (35 − 180e2 + 288e4)ζ4] + 12012[143(1 − 18e2)ξ6 + 33(5 − 18e2)ξ2ζ4

− 429(1 − 6e2)ξ4ζ2 − (7 − 18e2)ζ6] + 6435(2431ξ8 − 4004ζ2ξ6 + 2002ζ4ξ4 − 308ζ6ξ2

+ 7ζ8)}

The variation equations of the averaged flow, Eqs. (4.60)–(4.61), are then derived from
Eqs. (8.21) and (8.27) taking into account that

∇η(e ⋅ e) = 0, ∇η(e ⋅ ̂r⋆) = 0, ∇ηX = −2(η ⋅ ̂r⋆) ̂r⋆,

∇e(e ⋅ e) = 2e, ∇e(e ⋅ ̂r⋆) = ̂r⋆, ∇eX = −2e + 2(e ⋅ ̂r⋆) ̂r⋆.

We borrow from [425]

dη
dt
= nϵ⋆∑

i≥2

1
2i
ai−2

ri−2⋆
[γi(η × ̂r⋆) + ρi(e × ̂r⋆)], (8.28)

de
dt
= nϵ⋆∑

i≥2

1
2i
ai−2

ri−2⋆
[γi(e × ̂r⋆) + ρi(η × ̂r⋆) + 4ρi−1(η × e)], (8.29)
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in which ϵ⋆ = χ⋆(n⋆/n)2(a⋆/r⋆)3, and

βi =
i0
∑
l=0
(
i
l
)(

2i − 2l
i
)
2l+1
∑
j=0
(
2l + 1
j
)
i−2l
∑
k=0
(
i − 2l
k
)

k
∑
m=0
(
k
m
)Ξi−2l−kj+k−m

i−k
2 −l

∑
s=0
(
i−k
2 − l
s
)
ej+m−k−2sξ 2s+k−1

(−1)j+l+m+s
X

i−k
2 −l−s−1Bi,k,l,s (8.30)

represents γi whenBi,k,l,s ≡ ξζ (k+l+s−i), and ρi whenBi,k,l,s ≡ (k+2s)X+(i−k−2l−2s)ξ 2.
The complexity of Eq. (8.30) is only apparent, as shown by the first polynomials γi and
ρi listed in Table 8.2.

Table 8.2: Some polynomials ρi , γi , given by Eq. (8.30). Credit: [425], reproduced with permission
© ESO.

ρ1 = −3,

ρ2 = 30ξ ,

γ2 = −6ζ ,

ρ3 = −
15
2 [1 − 8e

2 + 5(7ξ2 − ζ2)],

γ3 = 75ξζ ,

ρ4 = 105[1 − 10e2 + 7(3ξ2 − ζ2)]ξ ,

γ4 = −15[3 − 10e2 + 7(7ξ2 − ζ2)]ζ ,

ρ5 = −
105
4 {1 − 8e

2 + 40e4 + 14[3(1 − 12e2)ξ2 − (1 − 4e2)ζ2] + 21(33ξ4 − 18ξ2ζ2 + ζ4)},

γ5 = 735(1 − 4e2 + 9ξ2 − 3ζ2)ξζ ,

ρ6 =
63
2 {5(3−28e

2 +168e4)+30[11(1−14e2)ξ2 −3(3−14e2)ζ2]+33(143ξ4 −110ξ2ζ2 +15ζ4)}ξ ,

γ6 = −
105
2 {5 − 28e

2 + 56e4 + 6[9(3 − 14e2)ξ2 − (5 − 14e2)ζ2] + 33(33ξ4 − 18ξ2ζ2 + ζ4)}ζ ,

ρ7 = −
315
16 {5−48e

2+224e4−896e6+9[11(3−32e2+224e4)ξ2−(15−96e2+224e4)ζ2]+33[143(1
− 16e2)ξ4 − 66(3 − 16e2)ξ2ζ2 + 3(5 − 16e2)ζ4] + 429(143ξ6 − 143ξ4ζ2 + 33ξ2ζ4 − ζ6)},

γ7 =
189
8 {15(15 − 96e

2 + 224e4) + 110[11(3 − 16e2)ξ2 − 3(5 − 16e2)ζ2] + 143(143ξ4 − 110ξ2ζ2

+ 15ζ4)}ξζ ,

ρ8 =
495
8 {7(5 − 54e

2 + 288e4 − 1344e6) + 77[13(1 − 12e2 + 96e4)ξ2 − 3(5 − 36e2 + 96e4)ζ2]
+1001[13(1−18e2)ξ4−26(1−6e2)ξ2ζ2+(5−18e2)ζ4]+715(221ξ6−273ξ4ζ2+91ξ2ζ4−7ζ6)}ξ ,

γ8 = −
315
8 {35 − 270e

2 + 864e4 − 1344e6 + 11[33(5 − 36e2 + 96e4)ξ2 − (35 − 180e2 + 288e4)ζ2]
+143[143(1−6e2)ξ4−22(5−18e2)ξ2ζ2+(7−18e2)ζ4]+715(143ξ6−143ξ4ζ2+33ξ2ζ4−ζ6)}ζ .

The use of vectorial elements increases the dimension of the differential system to be
numerically integrated from four to six. However, the improvements in the propaga-
tion with respect to traditional formulations based on angular elements are awesome
due to the fact that ρi and γi only involve arithmetic operations, contrary to trigono-
metric functions, which are evaluated by hardware [425]. The constraints e ⋅η = 0, and
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e ⋅e+η ⋅η = 1 can be used to integrate less variations, thus avoiding redundancy. Alter-
natively, these scalar relations are used to test the quality of the numerical integration
of the whole vectorial system [290].

Finally, it is worth mentioning that when the third-body disturbing potential is
truncated to the first term P2 of the Legendre polynomials expansion the variation of
e is scaled by the eccentricity, as shown by the fact that ρ2 = 30e ⋅ ̂r⋆ in Table 8.2.
In consequence the variation of the eccentricity vector vanishes for (mean) circular
orbits, a fact that was already noted in [128] (see also [575]). However, this particular
solution is illusory and ceases to exist as soon as P3 is taken into account [20], a fact
that is made clear by simple inspection of ρ3 in Table 8.2.

The mean-element propagation is completed with the integration of either a slow
time element or the mean anomaly. For the latter,

dℓ󸀠

dt
=
𝜕𝒦
𝜕L󸀠
= n + 𝜕⟨𝒱⋆⟩ℓ

𝜕L󸀠
, (8.31)

using Eqs. (8.21) and Eq. (8.27), we get

dℓ󸀠

dt
= n − nχ⋆

n2⋆
n2

a3⋆
r3⋆
∑
i≥2

1
2i
ai−2

ri−2⋆

i0
∑
l=0
(
i
l
)(

2i − 2l
i
)
2l+1
∑
j=0
(
2l + 1
j
)

×
i−2l
∑
k=0
(
i − 2l
k
)

k
∑
m=0
(
k
m
)Ξi−2l−kj+k−m

i−k
2 −l

∑
s=0
(
i−k
2 − l
s
)

ϒl,2s+ki,j+m

(−1)j+l+m+s
,

in which, denoting d = 1
2 (i − b) − c and t = a − b,

ϒb,ci,a = [ae
t−2 + (2i − 2d − a)et]Xd(e ⋅ ̂r⋆)

b + 2det−2Xd−1(e ⋅ ̂r⋆)
b+2.

To avoid troubles in the integration of this element in the case of circular orbits,
the integrationof ℓ󸀠 canbe replacedby the integrationof the variationof anonsingular
timing element like Ψ = ℓ + g + h [291].

8.2.3 Sample application. The case of high Earth orbits

In many cases, the integration of the mean-elements equations can be useful in itself
without need of computing the ephemeris, as is the case of the design of end-of-life
disposal strategies for compliancewith space law.We illustrate the performance of the
mean-element solution in the presence of strong lunisolar perturbations with a chal-
lenging example taken from [436]: The 100-years propagation of the orbit of Simbol-
X satellite, an abandoned project on an X-ray telescope [267]. The initial conditions
used both in the numerical integration of the mean-element equations and the prop-
agation of the non-averaged model (osculating elements) are a = 106247.136454 km,
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e = 0.75173, I = 5.2789 deg, Ω = 49.351 deg, and ω = −179.992 deg. For the aims of
such a kind of propagation the initial value of themean anomaly is irrelevant andwas
set to zero. The numerical propagation of an orbit with these characteristics—highly
eccentric and with an apogee radius that can reach half the Earth–Moon distance,
thus undergoing important perturbations from the Moon’s gravitational pull—is also
challenging, and the numerical reference to which to compare the mean-element re-
sults was integrated with a Störmer–Cowell method of order eight and a step size of
60 seconds, referred to July 1, 2014, at 20.7208333 h [267].

Results in Fig. 8.1 show the time history of the numerically integrated reference
superimposed to the mean-element solution. The latter was derived from a mean-
element model that takes up to P6 Legendre polynomial in the expansion of the lu-
nar disturbing potential while solar perturbations are truncated to the second degree.
Oblateness effects are also taken into account, yet limited to first-order effects of J2
[436].

Figure 8.1: Time history of Symbol-X orbit elements (after [436]). Gray line: semi-analytical propaga-
tion; dots: numerical reference. Abscissas are in years.

As shown in Fig. 8.1, the mean-element solution matches the numerical reference
at the precision of the graphics, in this way demonstrating that the mean-elements
model captures the main frequencies of the long-term dynamics. On the other hand,
the osculating semimajor axis experiences important variations, of hundreds of km,
as opposite to the constant value of the averaged one [436]. These large, irregular
variations are a consequence of the different lunisolar resonances undergone by
Simbol-X, which, due to its orbital period of 4 days, is also affected by a 7:1 mean-
motion resonance. However, this mean-motion resonance, which would prevent the
complete removal of themean anomaly that has been carried out in themean-element
Hamiltonian, only accumulates in much longer time intervals.

The evolution of Moser elements f = η + e and g = η − e on the unit sphere
are depicted in Fig. 8.2 for the same test orbit. Red curves correspond to the mean-
element solution and black ones to the reference orbit. Dashed arrows point to the
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Figure 8.2: Simbol-X: Moser elements f (left) and g (right) on the unit sphere.

starting point of the propagation. Semi-annual oscillations of small amplitude that
modulate the main path, which is governed by the Moon orbit dynamics, are due to
solar perturbations and are clearly noted in Fig. 8.2.

Tests in [435] for a variety of orbits showed that the numerical integration of the
mean-element equations performs between one and two orders of magnitude faster
than the direct numerical integration of the non-averaged model. Still, these figures
are not definitive andmay vary if the tolerance of the numerical integration is relaxed
or based on a different solver [23]. On the other hand, the version that propagates vec-
torial elements instead of the trigonometric functions used in [436] commonly reduces
the propagation time to less than one half the time needed by the latter, and it is par-
ticularly efficient in the case of highly eccentric orbits [425].

8.3 Third-body’s mean anomaly averaging

Lunisolar resonances may happen between the mean motion of the third body and
the rate of variation of the slow evolving angles of the satellite’s orbit [128]. Far away
from them, the mean-element Hamiltonian can be dramatically simplified by carry-
ing out a new Lie transformation that eliminates the periodic effects related to the
mean anomaly of the third body. In this way, the integration of the double-averaged,
long-term Hamiltonian by numerical methods is even much faster and efficient. This
procedure is described below, basing our assumptions on the orbital characteristics
of Galileo orbits, whose period is about 14 hours and, therefore are free from third-
body mean-motion resonances, and whose long-term dynamics was briefly discussed
in §7.5.4 for geopotential perturbations.
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We start from the Hamiltonian inmean elements (8.25), which is written in Delau-
nay variables using Eqs. (4.52) and (4.53), andmove to a further extended phase space
(ℓ󸀠, g󸀠, h󸀠, ℓ☾, θ⊙, t, L󸀠,G󸀠,H󸀠, L☾,Θ⊙,T), by introducing two arbitrary momenta L☾ and
Θ⊙ conjugated to the variables ℓ☾= n☾t and θ⊙ = n⊙t, respectively. The constantn☾rep-
resents themeanmotion of theMoon in its orbit about the Earth, and the constantn⊙ is
that of the Sun in its apparent orbit about the Earth. In the new extended phase space
the mean-element Hamiltonian is arranged in the usual perturbation form, in which

𝒦0,0 = −
μ
2a
+ n☾L☾+ n⊙Θ⊙, 𝒦1,0 = T , 𝒦2,0 = 2⟨𝒱☾⟩ℓ + 2⟨𝒱⊙⟩ℓ.

Therefore, the Lie derivative (2.49) is now ℒ0 = n𝜕/𝜕ℓ󸀠 + n☾𝜕/𝜕ℓ☾+ n⊙𝜕/𝜕θ⊙. However,
since the mean anomaly of the satellite has already been removed from the Hamil-
tonian, we can disregard partial differentiation with respect to ℓ󸀠. Moreover, as far
as there is no coupling between lunar and solar effects, the solution of the other two
partial differentials can be approached separately. In that case, the closed-form inte-
gration is achieved solving the homological equation (4.69) with the help of the true
anomaly of either the Sun or the Moon.

As a necessary preliminary step in the solution of the homological equation, the
third-body disturbing potential in mean elements given in Eq. (8.21) must be reformu-
lated by replacing the lunisolar ephemeris r⋆ in Eqs. (8.23) and (8.21), by correspond-
ing perturbations in the orbital elements of the third body.

8.3.1 Moon and Sun disturbing effects

At difference from the inclination with respect to the equator, the orbit of the Moon
maintains an almost constant inclination with respect to the ecliptic, a plane over
which the longitude of the Moon’s ascending node varies close to linearly. Therefore,
the ecliptic is conveniently used like an intermediate plane in the calculation of the
orbital elements of the Moon [366]. Thus,

(x☾, y☾, z☾)
τ = R1(−ε)R3(−N)R1(−J)R3(−θ☾) (r☾,0,0)

τ, (8.32)

where θ☾ = γ + f☾, with f☾ the true anomaly of the Moon and γ the argument of the
perigee of the Moon orbit referred to the ecliptic,N and J are the longitude of the node
and the inclination of the Moon’s orbit over the ecliptic, respectively, and ε ≈ 23.5 deg
is the obliquity of the ecliptic. TheMoon radius r☾ is alsowritten in terms of the orbital
elements like r☾ = a☾(1 − e2☾)/(1+ e☾cos f☾), with a☾and e☾denoting the semimajor
axis and eccentricity of the Moon’s orbit about the Earth, respectively.

The lunar disturbing potential is about χ☾(n☾/n)2 times smaller than the Keple-
rian, as checked in Eq. (8.21), and is of the order of one millionth for Galileo orbits.
Besides, the effect of each consecutive term of the Legendre polynomial expansion
of the lunar disturbing potential is, on average, a/r☾ times smaller than the preced-
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ing one, which is 29600/384400 ≈ 0.077 for Galileo orbits. In that case, effects of the
Legendre polynomial of degree three are, on average, multiplied by a/r☾ ≈ 0.08, and
those of P4 by a2/r2☾ ≈ 0.006. The latter is very small and, in consequence, we ne-
glect the disturbing effects on Galileo orbits of terms of degree four and higher in the
Legendre polynomial expansion of the Moon disturbing potential.

From this truncation model, the mean anomaly of the Moon is removed in closed
form resorting to the differential relation between the true andmean anomalies of the
Moon a2☾η☾dℓ☾ = r2☾df☾, which is analogous to Eq. (4.64). After the new averaging,
the part of the Moon’s long-term disturbing potential due to P2, denoted ⟨𝒱☾,2⟩ℓ,ℓ☾, is
arranged in the form

⟨𝒱☾,2⟩ℓ,ℓ☾ =
μ
a
χ☾

n2☾
n2

1
η3☾

1
∑
i=0

2
∑
j=−2

2
∑
k=−2

B2,i(e)Q2,i,j(I)

× ℰ2,j,k(ε)𝒥2,k(J) cos(2iω + jΩ + kN), (8.33)

in which B2,0 = 6 + 9e2, B2,1 = −15e2; the inclination polynomials Qi,j,l are listed in
Table 8.3; 𝒥2,0 = 1 − 3

2 sin
2 J, 𝒥2,±1 = sin 2J, 𝒥2,±2 = sin2 J, and the functions ℰ2,j,k

of the obliquity of the ecliptic are given in Table 8.4; cf. [436]. In the tables, upper
(resp. lower) signs in subindices match upper (resp. lower) signs in the corresponding
functions. Long-period terms due to P2 do not depend on the Moon’s argument of the
perigee γ, and ⟨𝒱☾,2⟩ℓ,ℓ☾ comprises only 38 different trigonometric terms.

Table 8.3: Inclination polynomials Q2,j,l and Q3,j,l.

l Q2,0,l Q2,1,l Q3,0,l Q3,1,l
0 1

48 (3c
2 − 1) − 1

16 s
2 − 15

128 (5c
2 − 1)s − 175128 s

3

±1 1
8 cs

1
8 (c ± 1)s − 15

512 (c ± 1)(15c
2 ∓ 10c − 1) − 525512 (c ± 1)s

2

±2 − 1
32 s

2 1
32 (c ± 1)

2 75
256 (c ± 1)(3c ∓ 1)s − 525256 (c ± 1)

2s

±3 75
512 (c ± 1)s

2 175
512 (c ± 1)

3

Table 8.4: Terms ℰ2,j,k = ℰ2,−j,−k in the obliquity of the ecliptic in Eq. (8.33).

k j = 0 j = −1 j = −2
0 1

2 (1 − 3 cos
2 ε) − 12 cos ε sin ε

1
2 sin

2 ε

±1 3
4 cos ε sin ε

1
8 (1 ± cos ε)(1 ∓ 2 cos ε) ± 14 (1 ± cos ε) sin ε

±2 − 38 sin
2 ε ± 18 (1 ± cos ε) sin ε

1
8 (1 ± cos ε)

2

Note that terms affected by the coefficient 𝒥2,0 are free from N, and may give rise to
quasi-secular terms of argument 2ω+Ω [66, 519]. In the case of Galileo orbits the period
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is of the order of several thousands of years, as readily checked from Eqs. (5.24) and
(5.26), thus contributing quasi-secular terms to the evolution of both the eccentricity
and the inclination [443].

Proceeding analogously with the disturbing terms contributed by P3, we obtain

⟨𝒱☾,3⟩ℓ,ℓ☾ =
μ
a
χ☾

n2☾
n2

a
a☾

e☾
η5☾

1
∑
i=0

B3,i(e)
3
∑
j=−3

Q3,i,j(I)
3
∑
k=−3

1
∑
l=0
(2l − 1)ℰ3,j,k(ε)

× 𝒥3,(2l−1)k(J) cos[(2i + 1)ω + jΩ + kN − (2l − 1)γ], (8.34)

with B3,0 = 4e + 3e3, B3,1 = e3, Q3,i,j are given in Table 8.3,

𝒥3,0 = −(1 − 5 cos
2 J) sin J,

𝒥3,±1 = ±(1 ∓ cos J)(1 ∓ 10 cos J − 15 cos
2 J),

𝒥3,±2 = −(1 ∓ cos J)(1 ± 3 cos J) sin J,
𝒥3,±3 = ±(1 ∓ cos J) sin

2 J,

and terms ℰ3,j,k in the obliquity of the ecliptic are given in Table 8.5. Now, all 196
trigonometric terms comprising Eq. (8.34) depend on the argument of the perigee of
the Moon’s orbit relative to the ecliptic γ, as well as on the argument of the perigee of
the satellite’s orbit with respect to the equator ω.

Table 8.5: Coefficients ℰ3,j,k = ℰ3,−j,−k in Eq. (8.34).

k j = 0 j = −1
0 3

16 (3 − 5 cos
2 ε) cos ε − 3

16 (1 − 5 cos
2 ε) sin ε

±1 3
64 (1 − 5 cos

2 ε) sin ε ± 1
64 (1 ± cos ε)(1 ± 10 cos ε − 15 cos

2 ε)

±2 15
32 cos ε sin

2 ε − 5
32 (1 ± cos ε)(1 ∓ 3 cos ε) sin ε

±3 15
64 sin

3 ε ± 1564 (1 ± cos ε) sin
2 ε

k j = −2 j = −3
0 − 3

16 cos ε sin
2 ε − 3

16 sin
3 ε

±1 − 1
64 (1 ± cos ε)(1 ∓ 3 cos ε) sin ε ± 3

64 (1 ± cos ε) sin
2 ε

±2 ∓ 1
32 (1 ± cos ε)

2(2 ∓ 3 cos ε) 3
32 (1 ± cos ε)

2 sin ε

±3 3
64 (1 ± cos ε)

2 sin ε ∓ 3
64 (1 ± cos ε)

3

The second averaging has made explicit the factor e⋆/η5⋆ in the contribution of P3. For
aGalileo orbit, e☾/η5☾ ≈ e☾ ∼ a/a☾,making the perturbation ofP3 of the sameorder as
P4, which has been neglected. Nevertheless, the double-averaged P3 holds theMoon’s
perigee dynamics, whereaswe checked that those terms of the double-averaged P4 de-
pending on γ aremultiplied by e2☾. Therefore, P3must not be neglected in correspond-
ing long-term propagations because it yields observable qualitative effects related to
the perigee dynamics of the Moon orbit.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.3 Third-body’s mean anomaly averaging | 217

The Cartesian coordinates of the Sun’s apparent orbit about the Earth are

(x⊙, y⊙, z⊙)
τ = R1(−ε)R3(−θ⊙) (r⊙,0,0)

τ, (8.35)

where θ⊙ is the Sun argument of the latitude. We neither find apsidal or nodal reso-
nances of Galileo orbits with the mean motion of the Sun, and annual oscillations of
the orbital elements are also removed in the study of long-term motion.

Now χ⊙ ≈ 1 in Eq. (8.21), showing that the disturbing potential of the Sun is
roughly (n⊙/n)2 times smaller than the Keplerian—again, of the order of one millionth
for Galileo orbits, yet smaller than in the case of the Moon. We only take the Legendre
polynomial of the second degree in the solar disturbing potential because P3 is scaled
by an additional reduction factor a/r⊙ ∼ 10−4.

Because Eq. (8.35) is equivalent to Eq. (8.32) with J = N = 0, we take advantage
of the previous computation of Eq. (8.33). Taking, besides, η3⊙ = 1 due to the small
eccentricity of the Sun’s apparent orbit about the Earth, we obtain

⟨𝒱⊙⟩ℓ,θ⊙ = μa n
2
⊙

n2
1
∑
i=0

B2,i(e)
2
∑
j=−2

Q2,i,j(I)ℰ2,j,0(ε) cos(2iω + jΩ), (8.36)

which is made only of eight different trigonometric terms. Quasi-secular trigonomet-
ric terms of argument 2ω + Ω, previously identified for Galileo orbits in the long-term
disturbing potential of the Moon, are now more clearly identified.

8.3.2 Additional simplifications. Long-term Hamiltonian

Due to the smallness of the inclination of the Moon orbit with respect to the ecliptic,
terms factored by sin2 J in Eq. (8.33) are less than 20 times smaller than those factored
by sin 2J and are further neglected in the investigation of the long-termdynamics. This
simplification reduces the range of variation of the summation index k from ±2 to ±1
andmakes𝒥2,0 ≈ 2 in Eq. (8.33). Conversely, terms factored by sin 2J, while also small,
are retained in ⟨𝒱☾,2⟩ℓ,ℓ☾ due to the important long-period effects related to the lunar
node, which would be removed if these terms were also neglected. Of the same order
as sin J is the eccentricity of the Moon, which is present in Eq. (8.33) only through the
factor η−3☾ = 1 +𝒪(e

2
☾) and is also neglected. Hence,

⟨𝒱☾,2⟩ℓ,ℓ☾ ≈
μ
a
χ☾

n2☾
n2

1
∑
i=0

B2,i
2
∑
j=−2

Q2,i,j

1
∑
k=−1

ℰ2,j,k𝒥2,k cos(2iω + jΩ + kN), (8.37)

which now comprises only 23 trigonometric terms.
Analogous simplifications are applied to Eq. (8.34), where, on account of the

small eccentricity of the orbit of the Moon, we also neglect terms involving the prod-
uct e☾sin J. Recalling that cos J = 1 − 𝒪(sin2 J), we immediately see that the only
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relevant Moon inclination function is 𝒥3,−1 ≈ 8. In consequence, the summation in k
in Eq. (8.34) is replaced by a single term, yielding

⟨𝒱☾,3⟩ℓ,ℓ☾ ≈
μ
a
χ☾

n2☾
n2

a
a☾

e☾
1
∑
i=0

B3,i(e)
3
∑
j=−3

Q3,i,j(I)
1
∑
l=0

8(1 − 2l)ℰ3,j,2l−1(ε)

× cos[(2i + 1)ω + jΩ + (2l − 1)(N + γ)], (8.38)

which consists only of 28 trigonometric terms.
The important contribution of the Earth’s oblateness must also be taken into ac-

count, at least for the first order of J2 as given in Eq. (5.60). The effects of higher-order
harmonics may be neglected for an orbit of the characteristics of Galileo except for
those of J3; cf. [183]. The latter is obtained from the last term of Eq. (6.42) particular-
ized for i = 3 using Eq. (6.14). Thus, the long-term dynamics of Galileo orbits can be
efficiently investigated with the radically simplified Hamiltonian

𝒦 = ℳ̃ +
μ
a
J3
R3⊕
p3

3
4
eη(5s2 − 4)s sinω + ⟨𝒱⊙⟩ℓ,θ⊙ + ⟨𝒱☾,2⟩ℓ,ℓ☾ + ⟨𝒱☾,3⟩ℓ,ℓ☾, (8.39)

in which ℳ̃ is formally equal to Eq. (5.71), the double-averaged disturbing potential of
the Sun ⟨𝒱⊙⟩ℓ,ℓ⊙ is taken from Eq. (8.36), and that of the Moon ⟨𝒱☾,2⟩ℓ,ℓ☾ + ⟨𝒱☾,3⟩ℓ,ℓ☾
from Eqs. (8.37) and (8.38). Recall that all the symbols are now functions of double-
prime Delaunay variables.

Note that, while most of the simplifications carried out would apply also to other
global navigation satellite orbits, the double-averagedHamiltonian (8.39)mayneed to
be complemented with tesseral resonant terms. In particular, as checked in Eq. (7.67),
Hamiltonian terms related to the J3,2 coefficient should be taken into account when
dealing with GPS orbits [183].

Due to the low eccentricity of Galileo orbits, Hamilton equations derived from
Eq. (8.39) should be reformulated in nonsingular variables, at least for the eccentric-
ity. The usual set defined by the semi-equinoctial variables given projections of the
eccentricity vector in the nodal frame C = e cos g, S = e sin g, previously defined in
Eq. (5.74), the mean argument of the latitude F = ℓ + g, and the Delaunay variables
L, h, and H, is adequate for the current case. Since the mean anomaly of the satellite
has been removed, L󸀠󸀠 is constant, and, for the investigation of the long-term orbit evo-
lution, it is enough to deal with the reduced system involving the variations of H, h,
C, and S, which, after properly having been formulated in the C and S variables, are
checked to be free from the eccentricity in denominators. They still may show trouble
for almost equatorial orbits, but this is not of concern for Galileo orbits.

The numerical integration of the double-averaged flow is very efficient and allows
for the fast explorationof the long-termbehavior ofGalileo orbits. For instance, Fig. 8.3
illustrates how the difference between the initial nodes of the orbiter and the Moon
may introduce evident changes on the dynamics; cf. [443].
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Figure 8.3: Galileo-type orbit evolution for N0 = γ0 = 0 and h0 = 60 (black), 150 (gray), 240 (gray,
dashed), and 330 deg (black, dashed curve).

8.4 Perturbations in the ecliptic frame

The orbit of an artificial satellite of the Earth under geopotential disturbances is natu-
rally described by referring the orbit’s ascending node and inclination to the equato-
rial plane. However, the effect of third-body perturbations is better understood when
referring both said orbital parameters to the orbital plane of the third-body orbit and,
in some cases, the analysis of the combined perturbations is simplified when referred
to this plane [364, 450, 502]—or to the Laplace plane [384, 632] when both effects are
comparable or the effects of additional bodies are taken into account [20, 578, 649].

Referring the coordinates of the satellite to other reference frame than the equato-
rial one does not complicate the orbital elements formulation, which is still given by
Eq. (4.4), and only means that the argument of the perigee as well as the inclination
and the longitude of the node have different values. On the contrary, when the coordi-
nates of the Moon are referred to the ecliptic rather than to the equator, we avoid the
final rotation R1(−ε) in Eq. (8.32), corresponding to the obliquity of the ecliptic, to give

(x☾, y☾, z☾)
τ = R3(−N)R1(−J)R3(−θ☾) (r☾,0,0)

τ. (8.40)

Therefore, the cosine of the elongationof the satellitewith respect to theMoonas given
by Eq. (8.5) will be simpler in the ecliptic frame formulation and, in consequence, the
disturbing potential of the Moon is expected to be notably simplified. Obviously, the
same happens to the coordinates of the Sun in Eq. (8.35), which when referred to the
ecliptic simply turn into

(x⊙, y⊙, z⊙)
τ = R3(−θ⊙) (r⊙,0,0)

τ. (8.41)

If besideswe assume that the Sun evolves in a circular orbit then r⊙ = a⊙, and θ⊙ grows
linearly with angular velocity n⊙.

The Cartesian coordinates of the satellite in the ecliptic frame are

(x, y, z)τ = R3(−h)R1(−i)R3(−ϑ) (r,0,0)
τ, (8.42)
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where ϑ = f +ωE,ωE is the argument of the perigee of the satellite referred to the eclip-
tic, i denotes orbit inclination with respect to the ecliptic, and h = ΩE is the ecliptic
longitude of the node.

The inclination of the orbit with respect to the equatorial plane I is easily obtained
in terms of the inclination with respect to the ecliptic i. Indeed, let n and b3 be unit
vectors in the direction perpendicular to the orbital plane and to the equator, respec-
tively; then, by direct computation, cos I = b3 ⋅ n. On the other hand, the components
of n in the equatorial frame can be computed using the ecliptic as an intermediate
plane. Thus, n = R1(−ε)R3(−ΩE)R1(−i) (0,0, 1)τ, and hence

cos I = cos ε cos i − sin ε sin i cosΩE . (8.43)

Analogously, calling s3 thedirectionorthogonal to the ecliptic, cos i = s3⋅n. Computing
the components of n in the ecliptic using the equator as an intermediate plane, n =
R1(ε)R3(−Ω)R1(−I) (0,0, 1)τ. Therefore,

cos i = cos ε cos I + sin ε sin I cosΩ. (8.44)

8.4.1 The disturbing potential

Weconstrain ourselves to distances atwhich the oblateness and the third-body luniso-
lar perturbations are comparable, say between 5 and 9 Earth radii. At these altitudes
long-period effects due to other zonal harmonics than J2 are clearly of high order and
we neglect them. In addition, for both Sun and Moon, we only take the P2 Legendre
polynomial into account in the expansion of the third-body disturbing potential.

We use the notation (ξ , η, ζ ) to distinguish equatorial coordinates from the ecliptic
ones (x, y, z) used in Eq. (8.42). They are related by a single rotation of amplitude given
by the obliquity of the ecliptic (ξ , η, ζ )τ = R1(−ε)(x, y, z)τ. The oblateness disturbing
potential is then obtained by neglecting the Keplerian term from Eq. (5.4), in which
sinφ = ζ /r. Straightforward computations yield

𝒱⊕ = −J2
μ
2r
R2⊕
r2
[1 − 3(z

r
cos ε + y

r
sin ε)

2
]. (8.45)

Hereafter, we may abbreviate sα ≡ sin α, cα ≡ cos α in the case of (almost) constant
angles or when they are functions of the momenta.

If we now replace (x, y, z) from Eq. (8.42), we obtain

𝒱⊕ =
μ
2a

J2
R2⊕
r2

a
r
1
8
{(6s2ε − 4)(2 − 3s

2
i + 3s

2
i cos 2ϑ) + 12cεsεsi[(1 − ci)

× cos(h − 2ϑ) + 2ci cos h − (1 + ci) cos(h + 2ϑ)] − 3s
2
ε[(1 − ci)

2

× cos(2h − 2ϑ) + 2s2i cos 2h + (1 + ci)
2 cos(2h + 2ϑ)]}, (8.46)
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thus adding four new periodic terms that carry the dependence on the node of the
orbit in the ecliptic frame, with respect to the equatorial formulation of the J2 disturb-
ing potential in Eq. (5.15). The customary expression of 𝒱⊕ in the equatorial plane is
recovered when making ε = 0 (and hence si = s, ϑ = θ) in Eq. (8.46).

The solar disturbing potential is obtained from Eq. (8.6) with ⋆ ≡ ⊙, in which
cosψ⊙ is computed by replacing Eqs. (8.42) and (8.41) in Eq. (8.5). Limited to the con-
tribution of P2, we obtain

𝒱⊙ = −
μ
2a

n2⊙
n2

r2

a2
1
8
[4 − 6s2i + 6s

2
i cos 2ϑ + 6s

2
i cos 2(h − θ⊙) + 3(1 − ci)

2

× cos 2(h − θ⊙ − ϑ) + 3(ci + 1)
2 cos 2(h − θ⊙ + ϑ)]. (8.47)

Proceeding analogously with the Moon (⋆ ≡ ☾), now using Eq. (8.40), we obtain

𝒱☾ = −
μ
2a

χ☾
n2☾
n2

r2

a2
a3☾
r3☾

1
8
{(2 − 6w2)(2 − 3s2i + 3s

2
i cos 2ϑ) + 6uv

× [(1 − ci)
2 sin(2h − 2ϑ) + 2s2i sin 2h + (1 + ci)

2 sin(2h + 2ϑ)]
+ 3(u2 − v2)[(1 − ci)

2 cos(2h − 2ϑ) + (1 + ci)
2 cos(2h + 2ϑ)

+ 2s2i cos 2h] − 12uwsi[(1 − ci) sin(h − 2ϑ) + 2ci sin h
− (1 + ci) sin(h + 2ϑ)] + 12vwsi[(1 − ci) cos(h − 2ϑ)
+ 2ci cos h − (1 + ci) cos(h + 2ϑ)]}, (8.48)

where, for brevity, the components of the Moon direction vector in the ecliptic frame
(u, v,w) = (x☾, y☾, z☾)/r☾, are not yet replaced.

8.4.2 Removing short-period effects

We use the Lie transforms method to find the transformation that removes the mean
anomaly of the orbiter ℓ. To avoid time-related issues, we move to an extended phase
space (ℓ, g, h, ℓ☾, γ,N , θ⊙, L,G,H , L☾,G☾,H☾,Θ⊙) inwhich the symbolsL☾,G☾, andH☾
stand for the conjugate momenta to the mean anomaly, argument of the perigee, and
longitude of the node of the Moon, respectively, which evolve with frequencies n☾,
nγ, and nN , respectively, while Θ⊙ is the conjugate momentum to the polar angle of
the Sun θ⊙, which evolves with frequency n⊙. Recall that g = ωE, and h = ΩE, are
referred to the ecliptic frame.

In the previous assumptions that oblateness and third-body perturbations are of
the same order, and using the extended phase space formulation to deal with the time
dependency of the lunisolar ephemeris, we set up the usual perturbationHamiltonian
(2.30) with a formal small parameter ϵ,

ℋ0,0 = −
μ
2a
, (8.49)
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ℋ1,0 = L☾n☾+ G☾nγ + H☾nN + Θ⊙n⊙, (8.50)
ℋ2,0 = 2!(𝒱⊕ + 𝒱☾+ 𝒱⊙), (8.51)

andℋm,0 = 0 form ≥ 3.
The homological equation (4.68) is solved in closed form of the eccentricity. This

is achieved with the help of the differential relation (4.64) between the mean and true
anomalies for geopotential perturbations, and using the differential relation (4.62) be-
tween the mean and eccentric anomalies for those related to third-body lunisolar per-
turbations.

Because ℋ̃0,1 = ℋ1,0 does not depend on ℓ, we choose ℋ0,1 = ℋ1,0, and 𝒲1 = 0.
At the second order ℋ0,2 = ⟨ℋ2,0⟩ℓ = 2!(⟨𝒱⊕⟩ℓ + ⟨𝒱☾⟩ℓ + ⟨𝒱⊙⟩ℓ), and the homological
equation splits into three different parts that are solved separately.

The part of ℋ0,2 corresponding to the Earth’s J2 disturbing potential becomes
⟨𝒱⊕⟩ℓ = ⟨𝒱⊕r2/(a2η)⟩f . That is,

⟨𝒱⊕⟩ℓ = −
μ
2a

J2
R2⊕
p2

η
4
[(2 − 3s2ε)(2 − 3s

2
i ) − 12sεcεsici cos h + 3s

2
εs

2
i cos 2h], (8.52)

which adds two new periodic terms with respect to the equatorial plane formulation
in Eq. (5.60)—from which it could have been directly derived replacing cos I from
Eq. (8.43). Corresponding short-period corrections are derived from the part𝒲⊕ of the
generating function𝒲 =𝒲⊕ +𝒲☾+𝒲⊙. From Eq. (4.69), we obtain

𝒲⊕ = LJ2
R2⊕
p2

8η
2
∑
k=−2
(−1)k[(f − ℓ)A2(e)Q2,0,k(i)ℰ2,k,0(ε) cos kh

+
1
∑
l=0

2l+1
∑
j=1

1
(−2)l

Aj(e)Q2,l,k(i)ℰ2,k,0(ε) sin(jf + 2lg + kh)],

where A1 = 3e, A2 = 3, A3 = e, the inclination polynomials Q2,l,k are formally the same
as those in Table 8.3, but now with the inclination referred to the ecliptic, and the
functions of the obliquity of the ecliptic ℰ2,k,0, are those of Table 8.4.

The part of the solar perturbation becomes ⟨𝒱⊙⟩ℓ = ⟨𝒱⊙(r/a)⟩u. Namely,

⟨𝒱⊙⟩ℓ = −
μ
a
n2⊙
n2

1
∑
l=0

bl(e)
1
∑
k=−1
(−1)k−lQ2,l,2k(i) cos[2k(h − θ⊙) + 2lg], (8.53)

with b0 = 6 + 9e2, b1 = 15e2, and inclination polynomials Q2,l,2k from Table 8.3. Now,
the number of periodic terms is reduced from 15 in the equatorial frame to just 4. From
Eq. (4.70) we obtain the solar part of the generating function

𝒲⊙ = L
n2⊙
n2

1
∑
l=0

3
∑
j=−3

1
∑
k=−1
(−1)kB2,l,j(e)Q2,l,2k(i) sin[ju + 2k(h − θ⊙) + 2lg], (8.54)
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with the eccentricity polynomials B2,l,j from Table 8.6, and the inclination polynomi-
als Q2,l,2k again from Table 8.3. The terms B2,l,0 are dispensable, yet they prevent the
appearance of hidden long-period terms in𝒲⊙.

Table 8.6: Eccentricity polynomials B2,l,j(e) in Eqs. (8.54) and (11.5).

l j = 0 j = ±1 j = ±2 j = ±3
0 6 + 9e2 ± 34e(8 − 3e

2) ∓ 94e
2 ± 14e

3

1 − 152 e
2η ∓ 154 e(1 ± η)

2 ± 34 (1 ± η)
2(3 ∓ 2η) ∓ 14e(1 ± η)

2

Finally, ⟨𝒱☾⟩ℓ = ⟨𝒱☾(r/a)⟩u produces

⟨𝒱☾⟩ℓ =
μ
2a

χ☾
n2☾
n2

a3☾
r3☾

1
16
{[(2 + 3e2)(1 − 3c2i ) − 15s

2
i e

2 cos 2g]

× (2 − 6w2) + 6uv[5e2(1 − ci)
2 sin(2g − 2h) − (4 + 6e2)s2i

× sin 2h − 5e2(1 + ci)
2 sin(2g + 2h)] + 3(v2 − u2)

× [5e2(1 − ci)
2 cos(2g − 2h) + (4 + 6e2)s2i cos 2h + 5e

2(1 + ci)
2

× cos(2g + 2h)] − 12uwsi[5e
2(1 − ci) sin(2g − h) − (4 + 6e

2)

× ci sin h + 5e
2(1 + ci) sin(2g + h)] − 12vw[(4 + 6e

2)ci cos h
+ 5e2(1 − ci) cos(2g − h) − 5e

2(1 + ci) cos(2g + h)]si}, (8.55)

which, as far as we keep the lunar ephemeris given by the direction vector ̂r☾ =
(u, v,w), remains with the same complexity as when using the equatorial frame for-
mulation. The lunar term of the generating function is obtained, once more, from the
homological equation in the form of Eq. (4.70). Namely,

𝒲☾ = L
n2☾
n2

χ☾
a3☾
r3☾

1
∑
l=0

3
∑
j=−3

2
∑
k=−2

B2,l,j(e)Q2,l,k(i)

× [C⋆2,k( ̂r☾) cos(ju + 2lg + kh) − S
⋆
2,k( ̂r☾) sin(ju + 2lg + kh)],

in which, in addition to the eccentricity and inclination polynomials given before, we
need the third-body direction polynomials C⋆2,0 = 0, C

⋆
2,±1 = ±uw, C

⋆
2,±2 = ±2u v, S

⋆
2,0 =

−1 + 3w2, S⋆2,±1 = −vw, S
⋆
2,±2 = u

2 − v2.
The amplitude of the periodic corrections of the transformation from original to

prime variables that removes the mean anomaly of the satellite from the Hamiltonian
is small, with oblateness, lunar, and solar terms multiplied by J2(R⊕/p)2, χ☾(n☾/n)2,
and (n⊙/n)2, respectively.

After neglecting higher orders, the new Hamiltonian

𝒦 = −
μ
2a
+ L󸀠☾n☾+ G

󸀠
☾nγ + H

󸀠
☾nN + Θ

󸀠
⊙n⊙ + ⟨𝒱⊕⟩ℓ + ⟨𝒱☾⟩ℓ + ⟨𝒱⊙⟩ℓ, (8.56)
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which is obtained by replacing old by new variables in Eqs. (8.52), (8.53), and (8.55),
is free from periodic effects related to the mean anomaly of the satellite. Therefore, L󸀠

(or the semimajor axis a = μ/L󸀠 2) is a formal integral that decouples the Hamiltonian
flow.

8.4.3 Removing monthly and annual effects

The new Hamiltonian (8.56) has one degree of freedom less than the original one,
but it still depends on two other angles as well as the time. However, as far as we are
interested in the evolution of the system in time scales of tens of years, we can carry
out a newLie transformation to double-prime variables such that, up to the truncation
order, the mean anomalies of the Sun and Moon are removed from the transformed
Hamiltonian.

Like in §8.3, we choose𝒦0,0 = −μ/(2a)+Θ󸀠⊙n⊙+L
󸀠
☾n☾, and hence the Lie derivative

(2.49) involves partial differentiation with respect to the mean anomaly of the Moon
and the polar angle of the Sun. Namely,ℒ0 = n☾𝜕/𝜕ℓ

󸀠
☾+n⊙𝜕/𝜕θ

󸀠
⊙. In consequence, the

first-order Hamiltonian term is 𝒦1,0 = G󸀠☾nγ + H
󸀠
☾nN . Because it is free from angles,

the first-order homological equation is trivially solved by choosing 𝒦0,1 = 𝒦1,0, and
assigning the null value to the first-order term of the generating function, 𝒰1 = 0.

The second-order term of the Hamiltonian is

𝒦2,0 = 2!(⟨𝒱⊕⟩ℓ + ⟨𝒱☾⟩ℓ + ⟨𝒱⊙⟩ℓ), (8.57)

where now the components of the Moon direction in Eq. (8.55) are written in terms of
the Moon orbital elements using Eq. (8.40). Since there is no coupling between lunar
and solar terms at second order, the homological equation can be solved separately
for each kind of perturbation.

For the Moon, we choose the new Hamiltonian term by averaging 𝒦2,0, or just
⟨𝒱☾⟩ℓ in Eq. (8.57), over the mean anomaly of the Moon. The averaging is achieved
in closed form of the eccentricity in the same way as we did in §8.3.1. We obtain

⟨𝒱☾⟩ℓ,ℓ☾ = −
μ
2a

n2☾
n2

χ☾
η3☾

1
32
{(4 − 6s2J )[(2 + 3e

2)(2 − 3s2i ) + 15e
2s2i cos 2g

󸀠]

+ 12cJsJsi[5e
2(1 − ci) cos(Δ − 2g

󸀠) + (4 + 6e2)ci cos Δ − 5e
2

× (1 + ci) cos(Δ + 2g)] + 3s
2
J [(4 + 6e

2)s2i cos 2Δ + 5(1 − ci)
2

× e2 cos(2Δ − 2g󸀠) + 5e2(1 + ci)
2 cos(2Δ + 2g󸀠)]}, (8.58)

where we abbreviate Δ = h󸀠 − N 󸀠 = ΩE − N 󸀠. Like with the equatorial frame formula-
tion, the argument of the perigee of the lunar orbit is removed in this process. Now, the
simplification is radical and the length of the series representing the lunar disturbing
potential is shortened from the 38 periodic terms in the equatorial frame formulation
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of Eq. (8.33) to just the eight explicitly shown in Eq. (8.58). That is, almost 80% of the
terms of the double-averaged lunar disturbing potential are removed by the expedient
of referring it to the ecliptic frame, and an analogous shortening applies to the simpli-
fications achieved when neglecting s2J ≡ sin

2 J. In this last case Eq. (8.58) is reduced to
only five trigonometric terms, compared to the 23 trigonometric terms that remain in
Eq. (8.37).

Corresponding periodic corrections, which are derived from the lunar generating
function term computed using Eq. (4.69), have notably larger amplitude than in the
previous Lie transformation that removed the mean anomaly of the satellite. Up to
𝒪(sJ), that is, neglecting terms𝒪(s2J ) and higher, among which those sJe☾and sJ(f☾−
ℓ☾) are also included, we obtain

𝒰2,☾ = Lχ☾
n☾
n

1
64
{15e2(1 − ci)

2 sin(2θ☾− 2Δ + 2g) + 6(2 + 3e
2)s2i

× sin(2θ☾− 2Δ) + 15e
2(1 + ci)

2 sin(2θ☾− 2Δ − 2g) + (f☾− ℓ☾)
× [(4 + 6e2)(4 − 6s2i ) + 60e

2s2i cos 2g] − 6sJsi[5e
2(1 − ci)

× sin(2θ☾− Δ + 2g) + (4 + 6e
2)ci sin(2θ☾− Δ) − 5e

2(1 + ci)
× sin(2θ☾− Δ − 2g)] + e☾(4 + 6e

2)[(4 − 6s2i ) sin f☾+ 3s
2
i

× sin(f☾+ 2γ − 2Δ) + s
2
i sin(3f☾+ 2γ − 2Δ)] + 5e☾e

2[6s2i
× sin(f☾+ 2g) + 3(1 − ci)

2 sin(f☾+ 2γ − 2Δ + 2g) + (1 − ci)
2

× sin(3f☾+ 2γ − 2Δ + 2g) + 6s
2
i sin(f☾− 2g) + 3(1 + ci)

2

× sin(f☾+ 2γ − 2Δ − 2g) + (1 + ci)
2 sin(3f☾+ 2γ − 2Δ − 2g)]},

where θ☾ = f☾ + γ and we removed primes for brevity. Note that the first two rows
accommodate the dominant terms of the lunar perturbation.

So two important benefits stem from the ecliptic frame formulation. Namely, the
dramatic reductionof thenumber of perturbation terms, and the realization thatMoon
disturbing effects depend on the difference between the longitude of the nodes of the
Moon and the satellite, and not on their particular values. Remarkably, trigonometric
terms of argument 2ω + Ω vanish when the node is referred to the ecliptic.

As regards solar perturbations, we only keep in the new Hamiltonian those terms
of Eq. (8.57) that are free from the Sun polar angle. That is, as follows from Eq. (8.53),

⟨𝒱⊙⟩ℓ,θ⊙ = − μ2a n
2
⊙

n2
1
8
[(2 + 3e2)(2 − 3s2i ) + 15e

2s2i cos 2g], (8.59)

which reduces the number of trigonometric terms from eight in Eq. (8.36) to just two
here. Periodic corrections related to solar perturbations are derived from the solar term
of the generating function, which is also obtained from Eq. (4.69),

𝒰2,⊙ = L
n⊙
n

3
64
[5e2(1 + ci)

2 sin(2θ⊙ − 2h − 2g)

+ (4 + 6e2)s2i sin(2θ⊙ − 2h) + 5e
2(1 − ci)

2 sin(2θ⊙ − 2h + 2g)],
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which is proportional to n⊙/n and yields periodic corrections of even larger amplitude
than those of the lunar case.

The remaining term ⟨𝒱⊕⟩ℓ of the Hamiltonian is not affected by the new transfor-
mation and remains formally the same as Eq. (8.52), yet in the new variables.

8.4.4 Elimination of the Moon’s longitude of the node

The new Hamiltonian 𝒯 = 𝒯 (g󸀠󸀠, h󸀠󸀠,N 󸀠󸀠,G󸀠󸀠,H󸀠󸀠,H󸀠󸀠☾), which is obtained after chang-
ing prime by double-prime variables in the terms𝒦0,i, i = 0, 1, 2, maintains the form of
a perturbation problem 𝒯 = 𝒯0,0 + ϵ𝒯1,0, with 𝒯0,0 = −μ/(2a) + Θ󸀠󸀠⊙n⊙ + L

󸀠󸀠
☾n☾ + H󸀠󸀠☾nN ,

and 𝒯1,0 = ⟨𝒱⊕⟩ℓ + ⟨𝒱☾⟩ℓ,ℓ☾ + ⟨𝒱⊙⟩ℓ,θ⊙ , yet it is still of three degrees of freedom.
Nevertheless, in time scales of several tens of years, it is meaningful to remove

the longitude of the node of the Moon, whose period is about 18.6 years, by a new Lie
transformation to triple-prime variables. Note that the validity of this new transforma-
tion will not apply to resonances with either the node or the perigee of the satellite,
which, besides, are assumed to evolve in a much longer scale.

The Lie derivative now includes a partial derivation with respect to N, which is
in fact the only variable with respect to which the homological equation needs to be
solved. At first order we choose 𝒯0,1 = ⟨𝒱⊕⟩ℓ + ⟨𝒱☾⟩ℓ,ℓ☾,N + ⟨𝒱⊙⟩ℓ,θ⊙ , where
⟨𝒱☾⟩ℓ,ℓ☾,N =

μ
2a

n2☾
n2

χ☾
η3☾
(3s2J − 2)

1
16
[(2 + 3e2)(2 − 3s2i ) + 15e

2s2i cos 2g], (8.60)

and compute the generating function

𝒮 = Lχ☾
n☾/n
nN/n☾

sJ
η3☾

3
128
{8cJsi[5e

2(1 − ci) sin(Δ − 2g) + (4 + 6e
2)ci

× sin Δ − 5e2(1 + ci) sin(Δ + 2g)] + sJ[5e
2(1 − ci)

2 sin(2Δ − 2g)
+ (4 + 6e2)s2i sin 2Δ + 5e

2(1 + ci)
2 sin(2Δ + 2g)]}.

Note that Eq. (8.60) is completely analogous to the double-averaged disturbing
potential of the Sun in Eq. (8.59). This is not a surprise and simply shows that, save
for the periodic corrections thatmaterialize the Lie transformation, removing thenode
of the Moon is equivalent to neglecting the small inclination of the Moon’s orbit over
the ecliptic in Eq. (8.40). Therefore, in the long term, the lunisolar disturbing potential
can be combined into a single third-body perturbation,

⟨𝒱⋆⟩ = −
μ
2a

n2⋆
n2

1
8
[(2 + 3e2)(2 − 3s2i ) + 15e

2s2i cos 2g], (8.61)

in which

n⋆ = n⊙√1 +
n2☾
n2⊙

χ☾
η3☾
(1 − 3

2
s2J) ≈ 1.8n⊙. (8.62)

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.5 Kudielka’s balanced orbits | 227

Since the extended phase space is no longer needed, we remove the terms L󸀠󸀠☾n☾,
H󸀠󸀠☾nN , and Θ

󸀠󸀠
⊙n⊙ from the final Hamiltonian. After changing double- by triple-prime

variables, it results in the two-degrees-of-freedom Hamiltonian

𝒬 = 𝒬(g󸀠󸀠󸀠, h󸀠󸀠󸀠,G󸀠󸀠󸀠,H󸀠󸀠󸀠) ≡ − μ
2a
+ ⟨𝒱⊕⟩ℓ + ⟨𝒱⋆⟩, (8.63)

with the oblateness perturbation ⟨𝒱⊕⟩ℓ and the third-body perturbation ⟨𝒱⋆⟩ given in
Eqs. (8.52) and (8.61), respectively.

8.5 Kudielka’s balanced orbits

While the Hamiltonian flow stemming from Eq. (8.63) still can be seen as made of
distorted ellipses, it is no longer a Hamiltonian perturbation problem. Indeed, the Ke-
plerian is just a constant term and we do not have an analogous term depending only
on momenta which a new Lie transformation could hinge on. Moving to a rotating
frame could give remedy to this situation [542]. However, we do not pursue this ap-
proach here, which is delayed to the third part of this monograph, and only try to get
some insight on the reduced problem by finding equilibria solutions of the flow in the
(g󸀠󸀠󸀠, h󸀠󸀠󸀠,G󸀠󸀠󸀠,H󸀠󸀠󸀠) reduced phase space.

Simplifying notation, we will do without the primes in what follows. Thus, after
neglecting constant terms and scaling Hamiltonian (8.63), we get the nondimensional
Hamiltonian

𝒬 = (2 + 3e2)(2 − 3s2i ) + 15e
2s2i cos 2g +

8
3
ρ2

η3
[3 cos2 I(h) − 1], (8.64)

where𝒬 = −8(n/n⋆)2 − 16𝒬/(a2n2⋆), cos I yields the dependence on h = ΩE from (8.43),
and

ρ = (3
2
J2)

1/2R⊕/a
n⋆/n
, (8.65)

withn⋆ given in Eq. (8.62). Theparameter ρ = ρ(a) is of order one for the range inwhich
Hamiltonian (8.64) is representative of the dynamics, and, as illustrated in Fig. 8.4, is
an indicator of the strength of the oblateness perturbation relative to the lunisolar
disturbing effect. The coefficient 32 is chosen trying to give the sameweight when ρ = 1
to oblateness and lunisolar perturbations for the different arguments of the node and
perigee as well as possible inclinations, on average. Still, different choices have been
done in the case of Earth orbits [372, 581]. Other choices could be more adequate in
third-body systems whose obliquity is different for that of the ecliptic [389].

The simple model in by Eq. (8.64) shows the existence of high-altitude and highly
inclined orbits with fixed node and perigee, on average, yielding orbits with frozen ec-
centricity when the right ascension of the ascending node is 0 or π. These “balanced”
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Figure 8.4: Ratio of oblateness lunisolar perturbations ρ = ρ(a) in Eq. (8.65).

orbits survivewithminor variations in the full, non-simplified dynamics [371]. Indeed,
to avoid the singularities of the Delaunay variables for circular orbits, we replace the
pair of Delaunay variables g,G by the semi-equinoctial elementsC, S. Thus, taking into
account that L is constant,

dC
dt
= −

η2

e
1
G
dG
dt

cosω − e sinωdg
dt
, (8.66)

dS
dt
= −

η2

e
1
G
dG
dt

sinω + e cosωdg
dt
, (8.67)

where the appearance of the eccentricity in denominators is canceled by correspond-
ing factors appearing in the mean variation of the total angular momentum.

Therefore, fromHamilton equations, and in the time scale t󸀠 = − 116n
2
⋆a

2t of Hamil-
tonian (8.64), we obtain

dh
dt󸀠
=

4
np2
{3η3ci(1 − C

2 + 4S2) + 2ρ2

× [(2 − 3s2ε)ci − 2
1 − 2c2i
si

cεsε cos h − s
2
εci cos 2h]}, (8.68)

dH
dt󸀠
= −16ρ

2

η3
sεsi(cεci − sεsi cos h) sin h, (8.69)

dC
dt󸀠
=

4S
np2
{3η3[3S2 − (3 − 5c2i )(1 − C

2)] + ρ2R}, (8.70)

dS
dt󸀠
= −

4C
np2
{3η3[2(1 − C2) + (3 − 5s2i )S

2] + ρ2R}, (8.71)

in which ci = H/(Lη), η = √1 − C2 − S2, and R = R(C, S, h,H) is

R = (1 − 3c2ε)(1 − 5c
2
i ) + 4cεsε

ci
si
(1 − 5s2i ) cos h + s

2
ε(3 − 5c

2
i ) cos 2h.
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Note that, except for Eq. (8.69), the variation equations are singular for ecliptic orbits.
This singularity is not essential and can be avoided using an alternative set of nonsin-
gular variables.

8.5.1 The manifold of circular orbits

When C = S = 0 Eqs. (8.70) and (8.71) vanish and, therefore, circular orbits form an
invariant manifold of Hamiltonian (8.64). Because of that, the Hamiltonian dynamics
of this particular manifold G = L can be obtainedmaking e = 0 and η = 1 in Eq. (8.64).
On that manifold,

C = 4 − 6s2i + 4ρ
2[(s2ε −

2
3
)(3s2i − 2) − 4sεcεsici cos h + s

2
εs

2
i cos 2h], (8.72)

which is a one-degree-of-freedomHamiltonian in the conjugate pair (h,H) depending
on the dynamical parameter G = L.

Greater insight is obtained when the flow is described in terms of the average in-
clination rather than H. Thus, in the time new scale t󸀠󸀠 = 16t󸀠/(na2) = −(n2⋆/n)t, the
reduced flow is obtained from the integration of the variations of i = arccos(H/G)
and h = ΩE . On account of di/dt󸀠󸀠 = −1/(Gsi)dH/dt󸀠󸀠, from the Hamilton equations of
Eq. (8.72), we obtain

di
dt󸀠󸀠
= ρ2(cεci − sεsi cosΩE)sε sinΩE , (8.73)

dΩE
dt󸀠󸀠
=
3
4
ci + ρ

2[c2εci − (cε
1 − 2c2i
si
+ sεci cosΩE)sε cosΩE], (8.74)

whose solution depends on special functions and, therefore, does not provide too
much insight on the dynamics. Therefore, rather than pursuing the general solution
of Eqs. (8.73)–(8.74) we search only for their equilibria.

Ignoring the case of ecliptic orbits, which cannot be studied in orbital elements,
it is found that the variation of the inclination with respect to the ecliptic vanishes in
three cases: ΩE = 0, ΩE = π, and cosΩE = − cot ε cot i. The inclination value required
to get an equilibrium is then obtained by imposing a null variation of the argument of
the node for each of these ΩE particular values.

Thus, replacing cosΩE = − cot ε cot i in the right side of Eq. (8.74), we find that
it vanishes for i = π

2 , which in turn requires that ΩE = ±
1
2π. Note that these partic-

ular values of the node and inclination are exactly the same as when referred to the
equator.

Also, replacing ΩE = 0 in the right side of Eq. (8.74), the equilibrium condition
becomes ρ2 = − 34 sin 2i/ sin(2ε + 2i), from which

i = 1
2
(− arctan 4ρ2 sin 2ε

3 + 4ρ2 cos 2ε
+ kπ), (8.75)
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with k integer. Analogously, ΩE = π results in ρ2 = 3
4 sin 2i/ sin(2ε − 2i), from which

i = 1
2
(arctan 4ρ2 sin 2ε

3 + 4ρ2 cos 2ε
+ kπ). (8.76)

An illustration of the evolution of the inclination of this equilibrium for the different
values of the ratio of oblateness lunisolar perturbations is depicted in Fig. 8.5. In the
limit ρ→∞, in which the oblateness perturbation dominates the dynamics, if ΩE = π
then i = ε (k mod 2 = 0), or i = π

2 + ε (k mod 2 = 1); if ΩE = 0, then i = π − ε
(k mod 2 = 0), or i = π

2 − ε (k mod 2 = 1). In the other limit ρ → 0, in which the third
body dominates, the inclination with respect to the ecliptic becomes polar in both
cases for k mod 2 = 1; for k mod 2 = 0, i = 0 when ΩE = π, and i = π when ΩE = 0.

Figure 8.5: Ecliptic inclination of the equilibria at ΩE = 0 (full line) and ΩE = π (dashed line) as a
function of the ratio of oblateness lunisolar perturbations ρ.

When referred to the equator the node has the same values as ΩE, but those of the
inclination are I = ε±i as follows fromEq. (8.43)—theplus sign (resp.minus) forΩE = 0
(resp. ΩE = π), thus yielding some kind of a double vertical-horizontal reflection of
Fig. 8.5.

On the other hand, the Hamiltonian flow is readily visualized without need of in-
tegrating Eqs. (8.73)–(8.74) by depicting contour plots of Eq. (8.72) for different values
C = constant. Again, instead of using the (h,H) representation, it is more descriptive
to display the flow in the (ΩE , i) plane, in which it is parameterized by ρ. An example
for ρ = 1 is presented in Fig. 8.6, where we observe four fixed points of the elliptic
type: two at ΩE = 90∘, 270∘, and i = 90∘, and the other two at ΩE = 0, i = 166.53∘,
and ΩE = 180∘, i = 13.47∘. Besides, we note two fixed points of the hyperbolic type at
ΩE = 0, i = 76.53∘, and ΩE = 180∘, i = 103.47∘, which are joined by heteroclinic con-
nections that separate rotation and libration regions. As observed in Fig. 8.6, orbits
in these libration regions, as well as circulation orbits close to the boundary, change
periodically from direct to retrograde inclinations and vice versa.
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Figure 8.6: Contour plot of the circular-orbit Hamiltonian (8.72) for a ≈ 6.7 Earth radius.

The stability character of the equilibria can be guessed from the graphic. Alternatively,
the stability can be computed analytically from the usual linearization of the flow.
Thus,

dδi
dt󸀠
= ρ2sε[sεsi + (cεci − 2sεsi cos h) cos h]δh

− ρ2sε(cεsi + sεci cos h) sin h δi,
dδh
dt󸀠
= {−

3si
4
− ρ2[sε(cε

ci
s2i
+ 2cεci − sεsi cos h) cos h + c

2
εsi]}δi

+ ρ2 sε
si
[cε(1 − 2c

2
i ) + 2sεcisi cos h] sin h δh.

Then, when ΩE = 90∘, i = 90∘ we get the characteristic matrix

(
−ρ2cεsε ρ2s2ε
− 34 − ρ

2c2ε ρ2cεsε
) (8.77)

whose eigenvalues ±i√32 ρ sin ε are purely imaginary, and, therefore, this equilibrium
is always stable on the invariant manifold of circular orbits. On the other hand, the
stability in the out-of-manifold direction is computed from the remaining variational
equations of C and S. In this case, we get the matrix

(
0 − 94 −

1
2ρ

2

− 32 +
1
2ρ

2 0
) , (8.78)

whose eigenvalues ± 12 (
9
2 +ρ

2)1/2(3−ρ2)1/2 are real if ρ < √3 ≈ 1.7, a case in which these
balanced orbits are unstable.
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Proceeding analogously, when ΩE = 0∘, we get the eigenvalues

±ρ
√sin ε cos(ε + i)

4 sin i
√4ρ2[sin(2ε + 3i) − 3 sin(2ε + i)] − 9 sin i + 3 sin 3i.

For Earth’s orbits, when i is given by Eq. (8.75) we find that the eigenvalues are purely
imaginary for any value of ρ when k = 0, whereas they are real if k = 1. On the other
hand, for ΩE = π, the eigenvalues are the same as above changing i by −i. Now, the
inclination with respect to the ecliptic is given by Eq. (8.76), a case in which we find
purely imaginary eigenvalues for k = 0 and real eigenvalues for k = 1, again, particu-
larized for the Earth case.

In both stable cases we always find stability also in the out-of-manifold direction.
On the contrary, in both unstable cases we find instability in the out-of-manifold di-
rection only when ρ is smaller than ρ ≈ 1.7.

8.5.2 The manifold of polar orbits orthogonal to the equinox

When H = 0 (i = 90∘) and h = ± π2 , their variations in Eqs. (8.68) and (8.69) identi-
cally vanish. Then the set of polar orbits orthogonal to the equinox constitute also an
invariant manifoldP = P(g,G) of Hamiltonian (8.64). That is,

P = −2 − 3e2 − 8ρ
2

3η3
+ 15e2 cos 2g. (8.79)

The flow on this manifold is obtained from the reduced system dg/dt󸀠 = 𝜕P/𝜕G,
dG/dt󸀠 = −𝜕P/𝜕g, which is better written in the non-canonical semi-equinoctial vari-
ables

dC
dt󸀠
= −

2ρ2 + 9η5

4η4
S, dS

dt󸀠
=
ρ2 − 3η5

2η4
C, (8.80)

where η = √1 − C2 − S2. It is easy to check that this invariant manifold accepts three
different equilibria; namely, circular orbits (C = S = 0), and elliptic orbits with ec-
centricity e = √1 − 3−2/5ρ4/5 (derived from the condition ρ2 = 3η5) and argument of
the perigee either 0 or π (derived from the condition S = 0). Thus, while circular or-
bits of this invariant manifold are always equilibria, the elliptic orbits with the line of
apsides on the ecliptic exist only when ρ < √3. The evolution of the eccentricity of
these balanced orbits with respect to the ratio of oblateness lunisolar perturbations is
illustrated in Fig. 8.7.

The stability of the equilibria is obtained from the linearization of the flow given
by Eq. (8.80). For elliptic orbits S = 0, C = e, ρ2 = 3η5, we obtain the characteristic
matrix

(
0 − 154 η

15
2 e

2η−1 0
) ,
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Figure 8.7: Eccentricity of balanced orbits in the plane orthogonal to the equinox as a function of the
ratio of oblateness lunisolar perturbations (ωE = 0, π).

whose eigenvalues are purely imaginary ± 15√8 i e, showing the stable character of the
eccentric orbits on this manifold.

On the other hand, the case of circular orbits (S = C = 0, η = 1) with ΩE = ±
π
2

is one of the particular solutions of the invariant manifold of circular orbits that was
already discussed in §8.5.1. The analysis carried out there applies here too with the
simple expedient of interchanging the roles of the in- and out-of-manifold directions.
Therefore, the eigenvalues are those of Eq. (8.78), which vanish when ρ = √3 and are
purely imaginary for higher values of ρ. This behavior shows that elliptic balanced or-
bits bifurcate fromcircular in a changeof stability of the latter, as illustrated in Fig. 8.8,
which has been depicted by direct evaluation of the Hamiltonian (8.79) without the
need of integrating the differential system (8.80).

Figure 8.8: Balanced orbits in the plane orthogonal to the equinox from ρ = 5
2 (left), ρ = √3 (center),

and ρ = 3
2 (right plot).

Finally, the eigenvalues of Eq. (8.77) show that circular orbits are always stable in the
out-of-manifold direction—contrary to the weak stability obtained when the analysis
is performed in the equatorial frame; cf. [372].
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8.5.3 Other equilibria

For Earth orbits, an additional equilibrium of Eqs. (8.68)–(8.71) occurs when the
perigee lies on the ecliptic (S = 0,C = e) in the direction of the equinox (ΩE = 0).
Then Eqs. (8.69) and (8.70) identically vanish, whereas Eq. (8.68) yields the condition
ρ2 = − 34η

5 sin 2i/ sin(2ε + 2i), which requires that either i < 90∘ and ε > 90∘, or i > 90∘

and ϵ < 90∘. This equation in turn is plugged into Eq. (8.71) to give the equilibrium
condition

0 = 2 sin 2i − sin 2ε − 12 sin(2i + 2ε) + 5 sin(4i + 2ε). (8.81)

To get this solution in the equatorial frame, like originally obtained in [372], we only
need to replace i = I − ε, as obtained from Eq. (8.44) when Ω = ΩE = 0. Both cases
are shown superimposed in Fig. 8.9 for 0 ≤ ε < π. For the Earth the obliquity of the
ecliptic is ε = 23.4, yielding i = 139.42∘ with respect to the ecliptic, and I = 94.55∘ with
respect to the equator.

Figure 8.9: Inclination of balanced orbits with respect to the ecliptic (gray line, ΩE = ωE = 0) and to
the equator (black-dashed line, Ω = ω = 0).

We do not find other balanced orbits for the Earth, yet they may be found for other
planets; cf. [372]. In general, the flowmust be integrated numerically fromEqs. (8.68)–
(8.71).
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9 Non-conservative effects
Some configurations of Earth’s satellites are clearly affected by non-conservative
effects that do not admit a Hamiltonian formulation. This is the case of the solar-
radiation pressure (SRP) and the atmospheric drag. However, in different instances,
the cannonball approximationmay be a reasonable assumptionwhen the aim is long-
term orbit prediction. This simplification allows one to derive the SRP acceleration
from a “potential” function withminor additional simplifications. Then the long-term
effects of SRP are approached like a case of Hamiltonian perturbations.

TheHamiltonian approach to SRPperturbations also serves to illustrate how time-
dependency issues can be avoided without need of moving to the extended phase
space by the simple expedient of formulating the problem in a synodic ecliptic frame.
It also shows that the vectorial formulation immediately discloses the integrability
of the SRP evolution equations, trivialize its achievement, and directly characterizes
the geometric nature of the motion [159, 480]. From the vectorial formulation and the
standard differentiation of a vector in a moving frame, setting the problem in the in-
ertial equatorial frame is straightforward. The latter includes the time dependency in
the long-term Hamiltonian, and is the usual formulation when the radiation pressure
is not the dominant perturbation.

On the contrary, the case of perturbations due to atmospheric drag, which are
quite relevant in the propagation of satellite orbits with low perigee altitudes, cannot
be approached in theHamiltonian setting.Nevertheless, perturbationmethods arenot
constrained to the case of Hamiltonian flows and widely apply to the case of vectorial
flows, the method of Lie transforms not being an exception [282, 304, 333]. Since a
detailed description of these methods falls outside the scope of this monograph, the
dissipative effects of the atmospheric drag are formulatedusing the classical approach
based on the Gauss variation equations [462]. The same solution would, of course, be
obtained if approached by vectorial Lie transforms up to first-order effects. These non-
Hamiltonian forces are treated like generalized forces in the usualmean-element orbit
propagators [436].

9.1 Solar-radiation pressure

Objects irradiated by the light energy of the Sun experience a pressure whose mag-
nitude is inversely proportional to the square of the distance to the Sun. Assuming
that there is no re-radiation from Earth, the perturbing acceleration caused by solar-
radiation pressure (SRP) is [506]

αsrp = −P⊙(A/m)(a⊙/d⊙)
2(e⊙ ⋅ n)[(1 − β)e⊙ + 2β(e⊙ ⋅ n)n],

where P⊙ is the solar-radiation pressure constant at one astronomical unit (AU), A/m
is the area-to-mass ratio of the spacecraft, d⊙ = ‖r⊙ − r‖ is the distance between the

https://doi.org/10.1515/9783110668513-009
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Sun and the irradiated object, a⊙ is the semi-major axis of the Sun’s apparent orbit
around Earth, e⊙ is the Sun direction from the satellite, n is the normal to the radiated
surface, and β is the index of reflection (0 < β < 1).

For common artificial satellites this effect is small, and can be treated as a per-
turbation of the Keplerian motion. Still, the SRP effect on objects with high area-to-
mass ratio may have great importance, to the extent of preventing the perturbation
approach.Weonly dealwith the first case, and approach the SRPproblembyLie trans-
forms.

9.1.1 The disturbing SRP “potential”

For the sake of orbit long-term prediction using perturbation methods, common ad-
ditional simplifications are that the solar flux is constant along the orbit of the satel-
lite, which allows one to replace d⊙ by the radius of the apparent orbit of the Sun
around the Earth r⊙, and that the parallax of the Sun is negligible, which allows one
to replace e⊙ by the Sun geocentric direction ̂r⊙ [361]. If, besides, we assume that the
solar panels remain oriented to the Sun or the satellite is a sphere (cannonball ap-
proximation), then e⊙ ≡ n, and hence αsrp = −Fsrp ̂r⊙, whose magnitude is Fsrp =
P⊙(A/m)(a⊙/r⊙)2(β + 1) > 0, which may further be taken as constant.

When these simplifications are allowed, in spite of SRP being a non-conservative
effect, the acceleration it produces can be derived from a scalar function like αsrp =
−∇r𝒮, where

𝒮 = Fsrp ̂r⊙ ⋅ r. (9.1)

Because 𝒮 plays the role of a potential, the perturbation treatment of SRP can be ap-
proached by canonical perturbation theory.

For Earth satellite orbits, SRP perturbations are customarily referred to the equa-
torial frame. However, as discussed in §8.4 and §8.5 for third-body perturbations, the
formulation is simpler and provides the highest insight when referred to the ecliptic,
like it was done in early studies related to zodiacal light [549].

9.1.2 Hamiltonian short-period reduction in the synodic frame

The perturbed Keplerian flow stemming from Eq. (9.1) is of three degrees of free-
dom and, due to the dependence of ̂r⊙ on the ecliptic longitude of the Sun λ⊙, time-
dependent. Nevertheless, the explicit appearance of time is removed when choosing
a synodic frame of reference rotating with the mean motion of the Sun n⊙, in which,
besides, the axis of abscissas is customarily aligned with the direction of radiation
pressure [104]. Thus, we deal with a perturbation Hamiltonian (2.30) in which ℋ0,0
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is the Keplerian, and, using Delaunay variables,ℋ1,0 = −n⊙H + 𝒮(ℓ, g, h, L,G,H). The
Coriolis term −n⊙H keeps the Hamiltonian structure of the dynamical model when
the longitude of the node in the synodic frame h = ΩE − λ⊙ is used. Now, g = ωE and
ci = H/G.

Like in §8.1.2, the short-period effects are better isolated in the apsidal frame
(O, ê, b̂,n) defined in §4.5.1, where we recall that n is the direction of the angular
momentum vector G = Gn, ê is the direction of the eccentricity vector e = eê, and
b̂ = n× ê. Therefore, replacing Eqs. (8.5) and (8.10) into Eq. (9.1), we write the disturb-
ing potential like

ℋ1,0 = −n⊙k⊙ ⋅ G + Fsrpa[(ê ⋅ ̂r⊙)(cos u − e) + (b̂ ⋅ ̂r⊙)η sin u], (9.2)

where k⊙ is the normal direction to the ecliptic. The components of G and e in the
synodic frame, when required, are computed using Eqs. (4.52) and (4.53), respectively,
where I is replaced by the inclination with respect to the ecliptic, and h is measured
in the synodic frame.

The short-period effects due to SRP are removed from the perturbation Hamilto-
nian by carrying out a Lie transformation to prime variables. The Lie derivative is,
once more, Eq. (4.66), and, like in the case of third-body perturbations, the homolog-
ical equation is (4.70).

The termℋ0,1 is chosen such that it cancels the terms pertaining to the kernel out
of Eq. (9.2). That is,ℋ0,1 = ⟨ℋ̃0,1⟩ℓ = ⟨ℋ1,0(r/a)⟩u, from which

ℋ0,1 = −n⊙(k⊙ ⋅ G) −
3
2
Fsrpa( ̂r⊙ ⋅ e). (9.3)

Then the homological equation is analogously solved to obtain

𝒲1 =
Fsrp
4

a
n
{[(4 − 2e2) sin u − e sin 2u]ê − η(4 cos u − e cos 2u)b̂} ⋅ ̂r⊙, (9.4)

with misprints in [159] amended, which is used in the computation of the first row of
Eq. (2.17) to obtain the short-period corrections of the transformation.

After truncation to first-order effects, the new Hamiltonian is obtained changing
original by prime variables in Eq. (9.3). Disregarding the constant Keplerian term, the
long-term Hamiltonian adopts the strikingly simple form

𝒦1 = −n⊙(L
󸀠η ⋅ k⊙) − nsrp(L

󸀠e ⋅ ̂r⊙), (9.5)

where we recall that η = ηn, from Eq. (4.59), and nsrp = nsrp(L󸀠) is the frequency

nsrp =
3
2
Fsrp

a
L󸀠
. (9.6)

The coefficients of the reduced Hamiltonian (9.5) are intrinsic physical magnitudes
representing the component of the angular momentum vector normal to the ecliptic,
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and the projection of the eccentricity vector (or the Laplace vector A = L󸀠e) in the
direction of the radiation source.

On account of ̂r⊙ ⋅ e = e(cos g󸀠 cos h󸀠 − ci sin g󸀠 sin h󸀠), from Eq. (4.53), k⊙ ⋅ η = ηci,
from Eq. (4.52), and L󸀠 is constant, the Hamiltonian (9.5) has two degrees of freedom.

9.1.3 Particular solutions

The Hamilton equations are reformulated like the variations of the semi-equinoctial
variables in Eq. (8.66),

dC
dt
=
nsrp
η
(1 − C2)ci sin h

󸀠,
dS
dt
=
nsrp
η
(η2 cos h󸀠 − CSci sin h

󸀠),

and, like we did in §8.5.1, the longitude of the node,

dh
dt
= −n⊙ +

nsrp
η

S sin h󸀠,

and the inclination

di
dt
=
nsrp
η

Csi sin h
󸀠,

which show that, on average, orbits initially lying on the plane orthogonal to the eclip-
tic (i = π

2 ), will remain in this plane when the initial node and perigee are equal
and take the value g󸀠 = h󸀠 = ± π2 (C = 0, S = e), and the eccentricity of the orbit is
e = e∗ ≡ n⊙/(n2⊙ + n

2
srp)

1/2.
On the other hand, the variation of the inclination vanishes for orbits initially rest-

ing on the ecliptic (i = 0,π), showing that, on average, planar, ecliptic orbits form an
invariant manifold of Hamiltonian (9.5), in which |H󸀠| = G󸀠 = Θ and ̂r⊙ ⋅ e = e cos θ.
Since (θ,Θ) are canonical conjugate variables, the dynamics on the coplanarmanifold
is derived from the one-degree-of-freedom Hamiltonian

𝒦E = −n⊙Θ − nsrpL
󸀠e cos θ, (9.7)

in which e = √1 − Θ2/L󸀠 2, whose Hamilton equations

dθ
dt
=
𝜕𝒦E
𝜕Θ
= −n⊙ + nsrp

η
e
cos θ, dΘ

dt
= −
𝜕𝒦E
𝜕θ
= −nsrpLe sin θ,

show that θ = 0, e = nsrp/(n2⊙ + n
2
srp)

1/2 is also an equilibrium of the averaged system.
Orbits of this manifold are readily obtained solving θ from Eq. (9.7),

cos θ = −
η + 𝒦∗E
(nsrp/n⊙)e

, 𝒦∗E =
𝒦E(θ0,Θ0)

L󸀠n⊙
.
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A sample phase space of Hamiltonian (9.7) scaled by L󸀠n⊙ is depicted in the left
plot of Fig. 9.1 for the particular case nsrp/n⊙ = tan π

6 [495]. The right plot provides
the typical eccentricity-vector diagram of the same case. Dashed lines highlight the
limit case for librational motion of the perigee. Between both dashed lines the perigee
circulates about the 360 deg, while outside both dashed lines the orbits reach the limit
eccentricity 1 before completing a cycle.

Figure 9.1: Contour plots𝒦E/(L󸀠n⊙) of the coplanar manifold for n⊙/nsrp = √3 (after [495]).

The general solution of the coplanar manifold is delayed to the next section, in which
the vectorial elements formulation of the variation equations will disclose that it is
solved from a linear differential system with constant coefficients.

9.1.4 General solution in vectorial elements

The flow stemming fromHamiltonian (9.5) is conveniently solved in vectorial elements
replacing 𝒬 = −𝒦1/L󸀠 into Eqs. (4.60)–(4.61). Thus, ∇η𝒬 = n⊙k⊙, ∇e𝒬 = nsrp ̂r⊙, and,
therefore,

dη
dt
= n⊙η × k⊙ + nsrpe × ̂r⊙, (9.8)

de
dt
= n⊙e × k⊙ + nsrpη × ̂r⊙, (9.9)

in which we identify two separate subsystems each of which is a linear differential
system with constant coefficients, of trivial solution. The first one is1

dη1
dt
= n⊙η2,

dη2
dt
= nsrpe3 − n⊙η1,

de3
dt
= −nsrpη2, (9.10)

1 The equivalent variables X = −η1, Y = −η2, Z = −e3 were used in [495].
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which deals essentially with themotion of the node of the orbital plane on the ecliptic
plane. The other differential subsystem,

de1
dt
= n⊙e2,

de2
dt
= nsrpη3 − n⊙e1,

dη3
dt
= −nsrpe2, (9.11)

concerns basically the motion of the perigee in the orbital plane.
Alternatively to the standard solution in exponentials, both subsystems can be

reduced by means of obvious integrals. Thus, by inspection of Eq. (9.10), we find

η1
dη1
dt
+ η2

dη2
dt
+ e3

de3
dt
= 0,

which constrains the flow to the surface of a sphere of radius ρ = √η21 + η22 + e
2
3. Also

by inspection of Eq. (9.10),

n⊙
de3
dt
+ nsrp

dη1
dt
= 0,

from which we obtain the integral χ = n⊙e3 + nsrpη1. The change of the physical pa-
rameters (n⊙, nsrp) 󳨃→ (q, γ)

q = (n2⊙ + n
2
srp)

1/2
, cos γ = n⊙/q, sin γ = nsrp/q, 0 ≤ γ ≤ π

2
,

is used to replace the integral χ by the scaled one ζ = χ/q. That is,

ζ = e3 cos γ + η1 sin γ.

Then, on account of ρ2 = (η1 cos γ − e3 sin γ)2 + η22 + ζ
2, the choice of rectangular coor-

dinates, x = η1 cos γ − e3 sin γ, y = η2, z = ζ , immediately shows that the flow is made
of parallels z = ζ = const. on the sphere.

On the other hand, the flow is naturally described in spherical coordinates
(ρ, λ,φ), from which x = ρ cosφ cos λ, y = ρ cosφ sin λ, z = ρ sinφ. Then differen-
tiation of x yields

dη1
dt

cos γ −
de3
dt

sin γ = −ρ cosφ sin λdλ
dt
= −ydλ

dt
.

If we now replace y = η2 and take the variations of η1 and e3 from Eq. (9.10), we finally
obtain dλ/dt = −q.

In summary, the flow stemming from the differential subsystem (9.10) evolves on
the sphere with constant elevation φ and constant rate of precession of the azimuth λ
given by minus the gyration frequency q.

The differential subsystem (9.11) is solved analogously. The obvious integrals are
now ρ∗ = √e21 + e22 + η

2
3, ζ
∗ = η3 cos γ + e1 sin γ, and an analysis similar to the pre-

vious case shows that the motion also takes place along parallels in the new sphere
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with minus the gyration frequency. This degeneracy of the frequencies to a common
value is brokenwhen second-order effects of the perturbation approach are taken into
account [480].

Note that the coplanar manifold previously discussed in §9.1.3 is here obtained
from Eq. (9.11) in the particular case in which the radius of the first sphere collapses
to zero (η1 = η2 = e3 = 0).

9.1.5 Complete Hamiltonian reduction in action-angle variables

While the averaged problem has been correctly integrated up to the first order in the
previous section, obtaining the action-angle variables of the solution might be conve-
nient if higher orders of the normalization are pursued. The action-angle variables of
Hamiltonian (9.5) are the Kramers–Deprit variables (ϕ,ψ,Φ,Ψ) [159, 368], which are
given by the equations

Φ = S3 cos γ + S1 sin γ, (9.12)

sinϕ = 2S2(L
2 − 4Φ2)

−1/2
, (9.13)

cosϕ = 2(S1 cos γ − S3 sin γ)(L
2 − 4Φ2)

−1/2
, (9.14)

Ψ = D3 cos γ − D1 sin γ, (9.15)

sinψ = 2D2(L
2 − 4Ψ2)

−1/2
, (9.16)

cosψ = 2(D1 cos γ + D3 sin γ)(L
2 − 4Ψ2)

−1/2
, (9.17)

whereSi,Di, i = 1, 2, 3, are the components of theMoser elementsdefined inEq. (4.54)—
which are written in Delaunay variables (g, h,G,H) using Eqs. (4.52) and (4.53). The
demonstration of the canonical character of this transformation can be found in [159].

Indeed, if we reformulate the reduced Hamiltonian (9.5) in the geometric vari-
ables, Si, Di,

𝒦1 = −q[(S3 + D3) cos γ + (S1 − D1) sin γ],

in which the components of the Moser elements are replaced using Eqs. (9.12) and
(9.15), we obtain

𝒦1 = −q(Φ +Ψ),

which only depends on the Kramers–Deprit actions, thereby disclosing the integrabil-
ity of the reduced problem. The corresponding Hamilton equations directly show that
the two angles evolve with the same gyration frequency −q.

The variables Si, Di, are readily solved from Eqs. (9.12)–(9.17), to obtain

S1 = Φsin γ + 1
2
(L2 − 4Φ2)

1/2 cosϕ cos γ,
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S2 =
1
2
(L2 − 4Φ2)

1/2 sinϕ,

S3 = Φcos γ − 1
2
(L2 − 4Φ2)

1/2 cosϕ sin γ,

D1 =
1
2
(L2 − 4Ψ2)

1/2 cosψ cos γ −Ψsin γ,

D2 =
1
2
(L2 − 4Ψ2)

1/2 sinψ,

D3 =
1
2
(L2 − 4Ψ2)

1/2 cosψ sin γ +Ψcos γ.

9.1.6 Short-period reduction in the equatorial frame

On the other hand, in most cases the SRP is just a second-order perturbation among
the different ones that affect artificial satellites. In that case, the removal of short-
period terms is customarily done in the equatorial frame, to be propagated semi-
analytically jointly with the other perturbations.

The synodic frame is a rotating frame with angular velocity n⊙k⊙. Therefore, the
variation equations in the equatorial (inertial) frame are obtained by simply adding to
the variation equations (9.8) and (9.9) the terms n⊙k⊙ × h and n⊙k⊙ × e, respectively,
stemming from the derivative of a vector in a rotating frame. Thus, using Eq. (3.29),

dh
dt
=
3aFsrp
2L󸀠

e × ̂r⊙,
de
dt
=
3aFsrp
2L󸀠

h × ̂r⊙, (9.18)

where nsrp has been replaced by its definition in Eq. (9.6). Recall that now the coordi-
nates of ̂r⊙ in the apsidal frame involve the explicit appearance of time through the
coordinates of the Sun. Namely,

̂r⊙ = R3(ω)R1(I)R3(Ω)R1(−ε)R3(−λ⊙)(1,0,0)
τ,

where ε is the obliquity of the ecliptic andwe neglected the ecliptic latitude of the Sun
because it is always less than 2 arcseconds [482].

Alternatively, the Hamilton equations are obtained directly from the averaged
Hamiltonian (9.3) after removing the Coriolis term. Namely,

ℋ0,1 = −
3
8
Fsrpae{2sεs[cos(ω − λ⊙) − cos(ω + λ⊙)] + (1 − cε)

× [(1 − c) cos(ω − Ω − λ⊙) + (1 + c) cos(ω + Ω + λ⊙)] + (1 + cε)
× [(1 + c) cos(ω + Ω − λ⊙) + (1 − c) cos(ω − Ω + λ⊙)]}, (9.19)

which now depends on time through the explicit appearance of the ecliptic longitude
of the Sun. From the latter, Kozai’s variations of the mean orbital elements [361] are
readily derived.
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Up to first-order effects, the transformation equations are derived from Eq. (2.17)
using Eq. (9.4), which remains unaltered in the equatorial frame. That is,

𝒲1 =
aFsrp
32n

2
∑
l=−2

1
∑
k=−1

1
∑
j=0

Bl(e)Qk(I)ℰj,k(ε) sin[lu + ω + kΩ + (2j − 1)λ⊙],

with the eccentricity polynomials B0 = 0, B±1 = ±2(1 ± η)2, and B±2 = ∓e(1 ± η),
the inclination polynomials Q0 = 2s and Q±1 = 1 ± c, and the obliquity polynomials
ℰ0,0 = −ℰ1,0 = sε and ℰ0,±1 = ℰ1,∓1 = 1 ± cε.

9.2 Atmospheric drag

The magnitude of the atmospheric drag force depends on the local density of the at-
mosphere ρ and the cross-sectional areaA of the spacecraft in the direction of motion.
The drag force per unit of massm is (see, for instance, [464, 506])

αdrag = −
1
2
ndv, nd = (A/m)Cdragρv > 0, (9.20)

where v is velocity relative to the atmosphere, v = ‖v‖, and Cdrag is the dimension-
less drag coefficient. For a typical satellite 1.5 ≤ Cdrag ≤ 3.0, yet the value may vary
when calculated for the different constituents of the thermosphere, which have dif-
ferent densities, and hence variants of Eq. (9.20) are sometimes used for increased
precision [214]. However, the complexity of accurately predicting the dependence of
the atmospheric behavior on the solar flux and geomagnetic activity,makes the efforts
in refining the drag coefficient value questionable for long-term predictions, for which
the use of Eq. (9.20) seems adequate. Existing tables of drag coefficients for different
simple shapes and range of temperatures [503] justify the use of the constant value
Cdrag = 2.2 for typical satellites in low-Earth orbit [129].

9.2.1 Atmospheric density

The drag force in Eq. (9.20) depends on time through the atmospheric density at the
satellite location ρ. The latter is a complex parameter that depends on the satellite
altitude, the solar flux, the Earth magnetism, the time of day, and the geocentric lon-
gitude and latitude of the spacecraft. It must be computed from some density model,
among which Roberts’ analytical formulation [567], adapted to the Jacchia 1971 model
[318], and theHarris–Priestermodel [265, 266] are popular ones.We only deal with the
Harris–Priester model, which neglects the explicit dependence of semi-annual and
seasonal latitude variations, but, after modifications in [464], it considers the diur-
nal density bulge and allows for reasonably accurate density computations. For the
computation of ρ we follow the descriptions in [464].
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The height of the satellite above the Earth’s reference ellipsoid h = r − ρ⊕ is first
computed, where ρ⊕ = R⊕(1 − f⊕)[1 − f⊕(2 − f⊕) cos2 φ]−1/2 depends on latitude φ and
Earth’s flattening f⊕ ≈ 1/300. The atmospheric density ρ(h) is then estimated from

ρ = ρm(h) + [ρM(h) − ρm(h)] cos
n(

1
2
Ψ), (9.21)

where ρm and ρM are the density coefficients at antapex and apex of the atmospheric
diurnal bulge, respectively, Ψ is the angle encompassed by the direction of the apex
of the diurnal bulge q and the satellite direction ̂r ≡ r/r, and the exponent n takes the
value 2 for low-inclination orbits, and 6 for polar orbits.

The Harris–Priester density model replaces the minimum and maximum density
values ρm(h) and ρM(h) in Eq. (9.21) by the interpolated values (x = m,M)

ρx(h) = ρx(hi) exp[
hi − h
hi − hi+1

log ρx(hi+1)
ρx(hi)
],

where hi ≤ h ≤ hi+1, and ρm(hi) and ρM(hi) are given in Table 9.1 [464]. Besides, the
apex of the diurnal bulge is assumed to happen two hours later than the local noon.
Thus,

cosn( 1
2
Ψ) = [ 1

2
(1 + cosΨ)]

n/2
= [

1
2
(1 + q ⋅ ̂r)]

n/2
,

where q is located about 30∘ east of the subsolar point—or delayed by 2 hours in
right ascension from the Sun’s direction, given by the its right ascension and dec-
lination (α⊙, δ⊙). Then replacing the coordinates of r from Eq. (4.4), with Ω ≡ ν,
q = R3(−α)R2(δ⊙)(1,0,0)τ, and α = α⊙ + 30∘, we obtain

q ⋅ ̂r = s sin δ⊙ sin θ +
1
2
(c − 1) cos δ⊙[sin α sin(θ − Ω) − cos α cos(θ − Ω)]

+
1
2
(c + 1) cos δ⊙[sin α sin(θ + Ω) + cos α cos(θ + Ω)]. (9.22)

9.2.2 Rotating atmosphere

As is customary, we assume that the atmosphere co-rotates with the Earth [506]. Then
the velocity relative to this rotating atmosphere, which is needed in the computation
of the drag acceleration in Eq. (9.20), is computed like the derivative of a vector in
a rotating frame (3.29). Then, assuming that the rotation takes place in the direction
orthogonal to the Earth’s equator,

v = dr
dt
− ω⊕k × r, (9.23)

where ω⊕ denotes the Earth’s rotation rate and k is the unit vector in the z direction.
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Table 9.1:Minimum and maximum density values ρ (g/km3) for an altitude 100 ≤ h ≤ 1000 km, and
mean solar activity (Harris–Priester model, from [464]).

h ρm ρM h ρm ρM h ρm ρM

100 497400.0 497400.0 270 34.30 61.82 580 0.1092 0.7997
110 111289.1 111289.1 280 26.97 50.95 600 0.08070 0.6390
120 24900.0 24900.0 290 21.39 42.26 620 0.06012 0.5123
130 8377.0 8710.0 300 17.08 35.26 640 0.04519 0.4121
140 3899.0 4059.0 320 10.99 25.11 660 0.03430 0.3325
150 2122.0 2215.0 340 7.214 18.19 680 0.02632 0.2691
160 1263.0 1344.0 360 4.824 13.37 700 0.02043 0.2185
170 800.8 875.8 380 3.274 9.955 720 0.01607 0.1779
180 528.3 601.0 400 2.249 7.492 740 0.01281 0.1452
190 361.7 429.7 420 1.558 5.684 760 0.01036 0.1190
200 255.7 316.2 440 1.091 4.355 780 0.008496 0.09776
210 183.9 239.6 460 0.7701 3.362 800 0.007069 0.08059
220 134.1 185.3 480 0.5474 2.612 840 0.004680 0.05741
230 99.49 145.5 500 0.3916 2.042 880 0.003200 0.04210
240 74.88 115.7 520 0.2819 1.605 920 0.002210 0.03130
250 57.09 93.08 540 0.2042 1.267 960 0.001560 0.02360
260 44.03 75.55 560 0.1488 1.005 1000 0.001150 0.01810

Then the components of v in the radial, normal, and binormal direction are obtained
by replacing k = R3(θ)R1(I)(0,0, 1)τ into Eq. (9.23). Using polar variables ̇r = R and
rθ̇ = Θ/r, and we get

v = (
R
Θ/r
0
)+ rω⊕(

0
− cos I

cos θ sin I
) = (

R
−rω⊕ cos I + Θ/r
rω⊕ sin I cos θ

), (9.24)

from which, replacing R = (Θ/p)e sin f , from Eq. (4.30), and Θ = √μp, from the first of
Eq. (4.21), we obtain

v = na
η
[1 + 2e cos f + e2 − 2η3ω⊕

n
c + r

2

a2
η2
ω2
⊕

n2
(1 − s2 sin2 θ)]

1/2
. (9.25)

9.2.3 Gauss equations of variation

Substitution of Eqs. (9.24) and (9.25) in Eq. (9.20) provides the radial, normal, and
binormal components of the drag acceleration αdrag, which are directly plugged into
Gauss planetary equations (see [42], for instance), to obtain

da
dt
= −and

1
η2
(
pR
Θ
e sin f + p

2

r2
−
ω⊕p2

Θ
c),

de
dt
= −

1
2
nd{

pR
Θ

sin f + (1 − ω⊕r
2

Θ
c)[(p

r
+ 1) cos f + e]},
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dI
dt
= −

1
2
nd

ω⊕r2

Θ
s cos2 θ,

dΩ
dt
= −

1
2
nd

ω⊕r2

Θ
sin θ cos θ,

dω
dt
= −

1
2
nd

1
e
[−

pR
Θ

cos f + (1 − ω⊕r
2

Θ
c)(p

r
+ 1) sin f] − cdΩ

dt
,

dM
dt
− n = ndη

r
p
pR
Θ
− η(dω

dt
+ cdΩ

dt
).

If required, the corresponding variations of the Delaunay variables are computed us-
ing the differential relations dℓ = dM, dg = dω, dh = dΩ, and

dL
L
=
1
2
da
a
,

dG
G
=
dL
L
−

e
η2

de, dH
H
=
dG
G
−
s
c
dI .

Then we replace p/r = 1 + e cos f and pR/Θ = e sin f , from Eqs. (4.29) and (4.30),
respectively, and Θ = na2η, from Eq. (4.63). Hence

da
dt
= −

a
η2
nd[(1 − δ)(1 + 2e cos f ) + e

2(1 − δc cos2 f )], (9.26)

de
dt
= −nd[(1 −

1
2
δc)e + (1 − δc − 1

2
δce cos f) cos f], (9.27)

dI
dt
= −

1
2
ndδs cos

2 θ, (9.28)

dΩ
dt
= −

1
2
ndδ sin θ cos θ, (9.29)

dω
dt
= −nd

1
e
sin f[1 − δc(1 + e

2
cos f)] − cdΩ

dt
, (9.30)

dM
dt
= n + nd e sin u − η(

dω
dt
+ cdΩ

dt
), (9.31)

in which we abbreviate δ = δ(f ) ≡ (ω⊕/n)(r/p)2η3. It is worth mentioning that
Eqs. (9.26)–(9.31) are in agreement with the corresponding equations in [462] ex-
cept for the last term in Eq. (9.30) which is missing in the equation for the variation of
the argument of the perigee given in [462].

Orbit contraction due to atmospheric drag effects is now easily observed for the
lower orbits, a case in which δ ≈ (ω⊕/n) ≪ 1 and can be neglected. In that case,
dI/dt = dΩ/dt = 0, and

da
dt
= −and

1
η2
(1 + 2e cos f + e2) = −and[1 + 2e cos f +𝒪(e

2)],

de
dt
= −nd(e + cos f ),

dF
dt
= n + nd(e sin u − β sin f ) = n +

1
2
nd[e sin f +𝒪(e

2)],

where F = M +ω, β = e/(1 + η)was previously defined in Eq. (5.63), and Eq. (4.71) was
used to express the eccentric anomaly in terms of the true one.
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9.2.4 Perturbation equations

The removal of short-period effects from the Gauss equations is made here in the fash-
ion of Kozai [360] up to first-order effects of the atmospheric drag perturbation.

Thus,we assume that the solution of Eqs. (9.26)–(9.31) takes the form ξi(t) = ξ 󸀠i (t)+
Δi(ξ 󸀠j (t)), i, j = 1, 2, . . . 6, where Δi ≡ Δξ

󸀠
i denotes the short-period terms of the solution

while ξ 󸀠i refers to the secular and long-period contributions. That is, since Δi(ξ 󸀠j ) is
purely periodic in the mean anomaly, ξ 󸀠i =

1
2π ∫

2π
0 ξi dM.

The Gauss equations are equally decomposed into

dξi
dt
=
dξ 󸀠i
dt
+
dΔi(ξ 󸀠j )
dt
, (9.32)

where the variations of the prime (mean) elements are computed by averaging the
right sides of Eqs. (9.26)–(9.31) over the mean anomaly. In particular, using the nota-
tion σ = e sin f , κ = e cos f introduced in Eq. (5.21),

da󸀠

dt
= −

a󸀠

η󸀠 2
1
2π

2π

∫
0

[(1 + κ󸀠)2(1 − δc󸀠) + σ󸀠 2]n󸀠d dM
󸀠, (9.33)

de󸀠

dt
= −

1
2π

1
e󸀠

2π

∫
0

[e󸀠 2 + κ󸀠 − δ󸀠c󸀠(κ󸀠 2 + κ󸀠 + 1
2
σ󸀠 2)]n󸀠d dM

󸀠, (9.34)

dI󸀠

dt
= −

1
2
s󸀠 1
2π

2π

∫
0

n󸀠dδ
󸀠 cos2 θ󸀠 dM󸀠, (9.35)

dΩ󸀠

dt
= −

1
2
1
2π

2π

∫
0

n󸀠dδ
󸀠 sin θ󸀠 cos θ󸀠 dM󸀠, (9.36)

dω󸀠

dt
= −c󸀠 dΩ

󸀠

dt
−

1
2πe󸀠 2

2π

∫
0

σ󸀠[1 − δ󸀠c󸀠(1 + 1
2
κ󸀠)]n󸀠d dM

󸀠, (9.37)

dM󸀠

dt
= n󸀠 + η󸀠

2πp󸀠

2π

∫
0

σ󸀠r󸀠n󸀠d dM
󸀠 − η󸀠(c󸀠 dΩ

󸀠

dt
+
dω󸀠

dt
), (9.38)

in which symbols with primes stand for functions of the prime (mean) orbital ele-
ments. As usual, alternative orbital elements can be used to avoid specific singular-
ities.

Since both the relative velocity with respect to the rotating atmosphere, v, and
the atmospheric density ρ are naturally expressed like functions of the true anomaly,
as shown by Eqs. (9.25) and (9.21)–(9.22), respectively, it happens that nd ≡ nd(f ), as
follows from the definition of nd in Eq. (9.20). Therefore, Eqs. (9.33)–(9.38) are rather
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integrated in f than inM ≡ ℓ using the differential relation (4.64). Besides, due to the
complicated representation of the atmospheric density, these quadratures are usually
evaluated numerically [184, 635, 674].

It is worth mentioning that the use of some intermediary solution of the main
problem, rather than the standard Keplerian solution, in the evaluation of the inte-
grals has been claimed to provide additional benefits by accounting for the “drag–
oblateness coupling”. Inparticular, since the atmospheric density depends essentially
on altitude, improvements are observed when using the osculating J2-perturbed orbit
in the computation of ρ [253, 674]. This is commonly donemodifying the Keplerian ra-
diuswith the correction r0,1 given in §5.7.2, sometimes called an Izsak correction [317].2

This improved value of the radius can also be applied to other elements than n󸀠d in the
evaluation of the quadratures by simply replacing κ = −1 + p/r, as given in Eq. (5.42).

The short-period corrections Δi(ξ 󸀠j ) are computed as follows. First, their variations
are solved from Eq. (9.32). Next, they are computed along the Keplerian flow, in which
dt = (1/n)dM, by indefinite integration

Δi(ξ
󸀠
j ) = ∫(

dξi
dt
−
dξ 󸀠i
dt
)dt, (9.39)

replacing the variations of ξi by the right sides of Eqs. (9.26)–(9.31), and those of ξ 󸀠i by
the right sides of Eqs. (9.33)–(9.38).

The right side of Eq. (9.39) involves both prime and non-prime elements. Never-
theless, as far as nd ≪ n, the difference between mean and osculating elements is
small and, up to first-order effects of ϵ = nd/n, the osculating orbital elements can
be taken as prime variables in the integration. There is an exception, however, which
occurs in the integration of the short-period corrections to the mean anomaly. In that
case, the first-order corrections cannot be neglected in the first summand of Eq. (9.31).
On the contrary, on account of n = √μ/a3, as derived from Eqs. (4.44) and (4.45),
n = n󸀠 +Δn󸀠 ≈ n󸀠(1− 32Δa

󸀠/a󸀠), whichmust be replaced in Eq. (9.31) in order to compute
the correction ΔM󸀠 from Eq. (9.39).

In summary,

Δξ = 1
n󸀠
∫(

dξ
dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ=ξ
󸀠

M=M󸀠
−
dξ 󸀠

dt
)dM󸀠, ξ ∈ (a, e, I ,Ω,ω),

ΔM = 1
n󸀠
∫(

dM
dt

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ξ=ξ
󸀠

M=M󸀠
−
dM󸀠

dt
)dM󸀠 − 3

2
∫
Δa󸀠

a󸀠
dM󸀠,

where Δa󸀠 must be replaced by the previously computed solution of the short-period
correction to a.

2 Short-period corrections to the radius due to oblateness perturbations were, in fact, first given by
Kozai [360].
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Alternatively, the approximation of Eqs. (9.26)–(9.31) bymeans of Fourier series in
the true anomaly in which the coefficients are computed numerically, allows for the
analogous construction of the short-period corrections bymeans of Fourier series. Full
details on this procedure can be found in [185, 253, 467].
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10 The Hill problem

The investigation of the three-body dynamicswas originallymotivated by effortsmade
in providing accurate descriptions of the motion of the Moon [260]. The restricted ap-
proximation, in which the mass of the Moon is negligible, can be traced back to the
lunar theories of Euler in 1772 [628]. Since then, the common trend in computing lunar
theories was approaching the motion of the Moon as a perturbed Keplerian problem.
Hill’s departure from the tradition by computing the Moon’s orbit as a variation of a
particular solution of the three-body problemnot only produced a breakthrough in the
computation of lunar theories, but also introduced the use of the Jacobian constant to
determine forbidden regions of motion of the massless body [292].

The Hill problem does not depend on essential physical parameters and, there-
fore, has wide applicability to different three-body systems beyond the Earth–Moon–
Sun system. This chapter briefly discusses the derivation of the Hill problem equa-
tions as well as relevant facts of the model. As previously mentioned in §1.3.2, the Hill
problem has much wider generality than being a mere limiting case of the restricted
problem of three bodies. However, for our aim of computing perturbation solutions,
we find it natural to adhere to the common practice of deriving the Hill problem from
the restricted three-body problem.

10.1 The circular restricted three-body problem

The “restricted” three-body problem, or RTBP, studies the motion of a particle of neg-
ligible mass under the gravitational attraction of two point-mass bodies, called pri-
maries, which are orbiting about their common center of mass under their mutual
gravitational interaction.

Let m1 and m2 be the masses of the primaries. In the restricted approximation
they evolve with Keplerian motion of constant angular momentum vector G. We take
the plane of motion of the primaries like the x–y plane, and the z axis in the direction
ofG. Then, fromNewton’s gravitational law, the acceleration of the third body is given
by

d2s
dt2
= −

𝒢m1
ρ3

ρ − 𝒢m2
r3

r, (10.1)

where s is the position vector of the massless body with respect to the origin in an
inertial or sidereal frame, ρ and r are the vectors joiningm1 andm2 with the massless
body, respectively, of moduli ρ = ‖ρ‖ and r = ‖r‖, and 𝒢 is the gravitational constant.
The acceleration is obtained like the gradient of the potential function,

U = 𝒢m1
ρ
+
𝒢m2
r
. (10.2)

https://doi.org/10.1515/9783110668513-010
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A sketch of the RTBP is depicted in Fig. 10.1, where, due to the preservation of the
total linear momentum, the origin of the reference system O is chosen at the center of
mass ofm1 andm2, andm󸀠 is the projection ofm in the orbital plane of the primaries.

Figure 10.1: Geometry of the restricted three-body problem.

10.1.1 Synodic frame. The Jacobi integral

The RTBP is conveniently formulated in a rotating or synodic frame in which the di-
rection of abscissas is defined by the vector d joining the primaries from m1 to m2,
of modulus d, and the direction of ordinates completes and orthogonal frame with d
and G. From Eq. (4.2), the velocity vector ω = ϑ̇G/‖G‖ = G/d2 has constant direction
due to the Keplerian motion of the primaries, and ϑ̇ = ‖G‖/d2 is the system rotation
rate.

Recalling from Eq. (3.29), the derivative of a vector in a moving frame, the deriva-
tive of s is

ds
dt
= s󸀠 +ω × s, (10.3)

where theprime symbolmeansdifferentiation in the rotating frame.We limit ourselves
to the case in which ω is constant. Then the orbit of the primaries is circular and the
problem is called circular RTBP, or CRTBP in short. In that case,

d2s
dt2
= s󸀠󸀠 + 2ω × s󸀠 +ω × (ω × s),

where s = r+m1d/(m1+m2), from the definition of the center ofmass, andd is constant
in the rotating frame. Hence,

d2s
dt2
= r󸀠󸀠 + 2ω × r󸀠 + m1

m1 +m2
ω × (ω × d) +ω × (ω × r). (10.4)

Then, equating the right sides of Eqs. (10.4) and (10.1), we obtain

r󸀠󸀠 + 2ω × r󸀠 = −ω × (ω × r) + m1ϑ̇2

m1 +m2
d − 𝒢m1

ρ3
ρ − 𝒢m2

r3
r, (10.5)
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both sides of which are to be multiplied in the scalar way by r󸀠. Recalling the triple
product r󸀠 ⋅ [ω × (ω × r)] = (r󸀠 ×ω) ⋅ (ω × r), we obtain

r󸀠 ⋅ r󸀠󸀠 = (ω × r) ⋅ (ω × r󸀠) + r󸀠 ⋅ (−𝒢m1
ρ3

ρ − 𝒢m2
r3

r + m1ϑ̇2

m1 +m2
d), (10.6)

which is readily integrated to give the Jacobi integral

(ω × r) ⋅ (ω × r) − 2V − r󸀠 ⋅ r󸀠 = C̃, (10.7)

where, replacing ρ = d + r,

V = − 𝒢m1
‖d + r‖

−
𝒢m2
‖r‖
−

m1ϑ̇2

m1 +m2
r ⋅ d, (10.8)

and C̃ is an arbitrary constant which is known as the Jacobi constant.

10.1.2 Hamiltonian formulation

Equation (10.5) can be derived from the Lagrangian

ℒ =
1
2
r󸀠 ⋅ r󸀠 + (ω × r) ⋅ r󸀠 + 1

2
(ω × r) ⋅ (ω × r) − V .

The conjugate momentum to r is R = 𝜕ℒ/𝜕r󸀠 = r󸀠 +ω × r, which, by comparison with
Eq. (10.3), is the velocity of the massless particle in the inertial frame. Then the usual
construction of the Hamiltonian,ℋ = R ⋅ r󸀠 − ℒ, yields

ℋ =
1
2
R ⋅ R − (ω × r) ⋅ R + V . (10.9)

Note thatℋ = − 12 C̃.
In view of Eq. (10.8), Hamiltonian (10.9) depends on the physical parameters 𝒢,

m1,m2, ϑ̇, and d. However, a simple nondimensionalization shows that not all of them
are essential. Indeed, the transformation to nondimensional variables r = dr∗, R =
ϑ̇dR∗, is canonical with multiplier α = 1/(ϑ̇d2), as checked from the differential form
R∗ ⋅ dr∗ = αR ⋅ dr [243]. When Eq. (10.9) is written in the nondimensional variables we
obtain ℋ(r(r∗,R∗),R(r∗,R∗)) = 𝒦(r∗,R∗)/α [684]. Straightforward operations yield
𝒦 = ϑ̇ℋ∗(r∗,R∗), with

ℋ∗ = 1
2
R∗ ⋅ R∗ − (k × r∗) ⋅ R∗ + V∗, (10.10)

in which k = ω/ϑ̇, and, taking into account that 𝒢(m1 +m2) = ϑ̇2d3 from the Keplerian
motion of the primaries. The scaled potential V∗ = V/(ϑ̇2d2) is

V∗ = − 1 − μ
‖i + r∗‖ − μ

‖r∗‖ − (1 − μ)r∗ ⋅ i, (10.11)
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where i = d/d, and μ = m2/(m1 + m2) stands for the nondimensional mass of the
smaller primary (0 < μ ≤ 1

2 ). Hence, 1 − μ = m1/(m1 +m2).
Therefore, in the new time scale t󸀠 = ϑ̇t, in which the period of the primaries’ orbit

is 2π, the flow of the CRTBP is derived from the nondimensional Hamiltonian (10.10)
that only depends on the physical nondimensional parameter μ. Namely,

dr∗
dt󸀠 = R∗ − k × r∗, dR∗

dt󸀠 = −k × R∗ − ∇r∗V∗. (10.12)

10.1.3 Surfaces and curves of zero velocity

The Jacobi integral (10.7) is also conveniently written in the nondimensional coordi-
nates, from which we solve the square of the nondimensional velocity in the rotating
frame v = ‖r󸀠‖/(dϑ̇). Denoting C = C̃/(dϑ̇)2, we obtain

v2 = (k × r∗) ⋅ (k × r∗) + 2V∗ − C, (10.13)

which for each value of C defines a zero-velocity surface

S(r∗;C) ≡ (k × r∗) ⋅ (k × r∗) + 2V∗ − C = 0. (10.14)

The surfaces of zero velocity define regions of allowed motion for a particle mov-
ing with a certain energy. Indeed, points on one side of the surface will make v2 > 0
in Eq. (10.13), whereas points on the other side of the surface would make v2 < 0,
which does not admit real solutions, thus precluding motion. An example of these
kinds of surfaces is illustrated in Fig. 10.2 for μ = 1

8 and C = 2.6, where the motion
only can happen in the region defined by the outside of the ring which is connected
with the interior of the two-sphere-type surface. The representation has been limited
to z = ±0.5 although the outer ring exists for any value of z.

Figure 10.2: Surface C = 2.6 of zero velocity of the CRTBP for μ = 1
8 .
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Intersections of different surfaces of zero velocity with the coordinate planes produce
zero-velocity curves, which are also used to show how the regions of allowed motion
evolve with corresponding values of C. This is illustrated in Fig. 10.3 where the evolu-
tion from three disconnected regions to two (the transition represented by the dotted
zero-velocity curve), and then to one (the transition represented by the black zero-
velocity curve) for decreasing values of C is observed. Note that the connection be-
tween the different regimes occurs always at critical points on the x–y plane.

Figure 10.3: Cuts of different surfaces of zero velocity of the CRTBP (μ = 1
8 , 0.5 < C < 5) with the

planes, left to right, x = 0, y = 0 and z = 0.
10.2 Hill’s simplifying assumptions

For all practical effects, the CRTBP is not integrable. Alternatively, a wealth of infor-
mation on the system’s behavior is obtained by computing those solutions that may
be predictable when time goes to infinity. These are equilibria, bounded regions, pe-
riodic orbits and other invariant manifolds of Eqs. (10.12). For instance, five equilibria
resting on the plane of the primaries, the so-called Lagrangian or libration points, are
guessed from Fig. 10.3. Details on particular solutions of the CRTBP can be found in
classical treatments, for instance [514, 517, 628], and we do not discuss them. On the
contrary, we focus on the specific case of motion always close to the smaller primary,
for which useful analytical approximations to the dynamics are obtained by perturba-
tions.

We take the smaller primary like the origin of the synodic frame, in which the
coordinates of the massless body are denoted r = (x, y, z). Then r = ‖r‖ and

ρ = ‖d + r‖ = √(d + x)2 + y2 + z2 = d√1 + 2ϵ(x/r) + ϵ2,

with ϵ = r/d < 1. Next, the inverse of ρ is expanded in powers of ϵ,

1
ρ
=
1
d
∑
i≥0 ϵiPi(−x/r) = 1d[1 − ϵ xr +∑i≥2 ϵiPi(−x/r)], (10.15)
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where the Pi are Legendre polynomials. Replacing Eq. (10.15) into Eq. (10.8), the po-
tential is written in the form

V = −𝒢m1
d
−
𝒢m2
r
− ϑ̇2d2(1 − μ)∑

i≥2 ϵiPi(−x/r), (10.16)

in which the term 𝒢m1/d can be ignored because it does not affect the dynamics of the
massless body.

When r/d = ϵ ≪ 1 Eq. (10.16) can be safely truncated to the lower orders. If, be-
sides, we constrain to the case in which μ is of the order of ϵ or higher, then

V = −𝒢m2
r
+
1
2
ϑ̇2(r2 − 3x2) +𝒪(ϵ3),

which, after replaced in Eq. (10.9) and neglecting higher orders, gives rise to the Hill
problem Hamiltonian

ℋ =
1
2
(X2 + Y2 + Z2) − ϑ̇(xY − yX) − 𝒢m2

r
+
1
2
ϑ̇2(r2 − 3x2). (10.17)

For instance, the distance between Saturn and Enceladus is d ≈ 238000 km. If
neglecting 𝒪(10−6) were acceptable, then in the Hill problem approximation of ne-
glecting 𝒪(ϵ3) we obtain ϵ ≤ 10−2, which roughly means dealing with orbits about
Enceladus with shorter semi-major axes than a = 10−2d = 2380 km—or about 9 times
Enceladus’ equatorial radius of 256 km. Besides, since the mass of Enceladus is about
2× 10−7 times the mass of Saturn, the Hill problemmodel fits quite well for describing
the dynamics of these types of orbits.

That Eq. (10.17) does not depend on essential physical parameters is shown, like
we did in §10.1.2, by choosing such units of length and time that ϑ̇ = 1 and 𝒢m2 = 1.
That is,

ℋ =
1
2
(X2 + Y2 + Z2) − (xY − yX) + 1

2
(r2 − 3x2) − 1/r, (10.18)

where, with abuse of notation, we used the same variables as in the previous case.
Therefore, application of the Hill problem to different systems becomes a simplermat-
ter, one of rescaling units of length and time. For instance, the gravitational parameter
of Enceladus is 𝒢m2 = 7.2095 km

3/s2 and the rotation rate of the Saturn–Enceladus
system is ϑ̇ = 5.30364× 10−5 s−1. Hence, the Hill problem units of length and time turn
out to be 1368.52 km and 18 855 s, respectively.

The Hill problem scaling is illustrated in Fig. 10.4, where the equatorial radii of
different bodies are presented in units of theHill problem togetherwith theHill radius,
to be defined later. Note that the small-mass assumption of the smaller primary of the
Hill problem may not apply to the Earth–Moon system, whereas the assumption of a
circular orbit of the primaries may not apply to the Sun–Mercury system [420].
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Figure 10.4: Equatorial radius of different bodies in the Hill problem scale.

On the other hand, physical dimensions may eventually be retained in what follows
for their insight, as well as the help they provide in checking dimensions throughout
the different analytical manipulations that are carried out.

In the Hill problem units, the zero-velocity surfaces are given by

3x2 − z2 + (2/r) − C = 0. (10.19)

A sample zero-velocity surface is presented in Fig. 10.5, while Fig. 10.6 shows a se-
quence of the allowed regions of motion obtained from the projections of the zero-
velocity surfaces in the (x, y)plane. The latter also shows the collinear librationpoints,
which will be discussed in §10.2.1.

Figure 10.5: Surface C = 4.24 of zero velocity of the Hill problem.
Zero-velocity curves also serve to illustrate the dimension scaling of the Hill prob-
lem. Thus, the (x, y) zero-velocity curve corresponding to the value of the Jacobi con-
stant of the equilibrium points, which determines the maximum size of the region of
bounded motion about the primary, is depicted in Fig. 10.7 with the equatorial pro-
jections of different celestial bodies superimposed. In particular, Fig. 10.7 shows that
regions of bounded motion about Phobos may not exist in the Hill problem approxi-
mation.
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Figure 10.6: Allowed regions of motion (white areas) of the Hill problem. Left to right: C = 4.5, 4.327,
and 4.2. Crosses mark the collinear equilibrium points.

Figure 10.7: Sizes in units of the Hill problem of Phobos (pale gray), Enceladus (gray), Europa (dark
gray), and the Moon (white disk). The dashed line is the zero-velocity curve C = 34/3 of the limit case
of bounded motion.

10.2.1 Equilibria. Hill’s sphere

The Hamiltonian flow stemming from Eq. (10.18) is given by the Hamilton equations

ẋ = X + y, (10.20)
ẏ = Y − x, (10.21)
̇z = Z, (10.22)

Ẋ = − x
r3
+ 2x + Y , (10.23)

Ẏ = − y
r3
− y − X, (10.24)

Ż = − z
r3
− z, (10.25)

where over dots denote time differentiation in the Hill problem units. As follows
from Eqs. (10.22) and (10.25), equilibria can occur only in the (x, y) plane. Besides,
Eqs. (10.20) and (10.21) vanish when X = −y and Y = x, respectively. For these values,
Eq. (10.24) becomes zero only when y = 0, which in turn requires that r3 = 1

3 to make
null Eq. (10.23). Therefore, the Hill problem only accepts two equilibria, which are
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collinear along the axis of abscissas with x = ±3−1/3. The value of the Jacobi constant
of the two symmetric equilibria is C = 34/3 ≈ 4.32675, as follows from evaluation of
Eq. (10.19).

Then the coordinates of the collinear libration points in the phase space of the
Hill problem are ±(rH,0,0,0, rH,0), where the distance

rH = 3
−1/3, (10.26)

is called the Hill sphere radius, or Hill radius in short, and determines the distance in
which the attraction of the central bodym2 dominates the dynamics.

The elliptic or hyperbolic character of the libration points is computed from the
linear variations (δx, δy, δz, δX, δY , δZ) obtained from Eqs. (10.20)–(10.25) after partic-
ularization for the collinear librationpoints. They show that the equations δ ̇z = δZ and
δŻ = −4δz decouple from the rest of the system. They are readily integrated to yield

δz = δz0 cos 2t +
1
2
δZ0 sin 2t,

δZ = δZ0 cos 2t − 2δz0 sin 2t, (10.27)

thus giving rise to small harmonic oscillations of frequency

ν = 2. (10.28)

Therefore, the z axis is a stable direction in all cases. More precisely, the projection of
the tangent flow in the (z, Z) plane is made of ellipses, so that, relative to this plane,
the collinear equilibria are of the “center” type.

It remains to integrate the reduced linear system with constant coefficients

(δẋ, δẏ, δẊ, δẎ)τ = 𝕄(δx, δy, δX, δY)τ, (10.29)

with

𝕄 =(

0 1 1 0
−1 0 0 1
8 0 0 1
0 −4 −1 0

), (10.30)

and τ denotes transposition. The general solution is made of a linear combination of
exponentials. Namely,

δi =
4
∑
j=1 Ai,j eλjt , (10.31)

where, for i = 1, . . . , 4, δi stands for δx, δy, δX, and δY , respectively, (Ai,j) is a 4×4matrix
of arbitrary coefficients, and the characteristic exponents λj are the eigenvalues of𝕄.
The latter are computed from the characteristic equation

Det(𝕄 − 𝕀4 λ) ≡ λ
4 − 2λ2 − 27 = 0, (10.32)
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which is biquadratic in λ. Therefore, the characteristic exponents will appear in op-
posite pairs. We find

λ1,2 = ±w i, w = (2√7 − 1)1/2, (10.33)

which are purely imaginary, thus giving rise to an elliptic direction—or a center-type
component. However,

λ3,4 = ±λ, λ = (2√7 + 1)1/2, (10.34)

are always real, thus giving rise to a hyperbolic direction—or a saddle-type com-
ponent. Hence, the instability of the collinear equilibria is said to be of the cen-
ter× center× saddle type.

10.2.2 Motion near the equilibrium points

The existence of periodic oscillations with small amplitude in the z-axis direction was
already shown in Eq. (10.27). We will see now that, in spite of the saddle component
on the collinear equilibria, particular instances of Eq. (10.31) give rise to small periodic
oscillations in the (x, y) plane [514].

First of all, we note that the arbitrary coefficients Ai,j in Eq. (10.31) are not com-
pletely independent; cf. [628]. Indeed, plugging Eq. (10.31) into both members of the
linearized equations (10.29), we find that

A1,j = −A2,jλj + A4,j,
A2,j = A1,jλj − A3,j,
A3,j = −A4,jλj − 4A2,j,
A4,j = A3,jλj − 8A1,j. (10.35)

The elimination of the arbitrary constants between them leads to the constraint equa-
tion λ4j − 2λ

2
j − 27 = 0, which is automatically fulfilled because it is the same as the

characteristic equation (10.32). Besides, solving the two first for A4,j and A3,j, which
are then put into the two last, we find

A2,j = αj A1,j, αj =
λ2j − 9
2λj
. (10.36)

Analogous computations demonstrate that all the arbitrary constants of the general
solution in Eq. (10.31) are expressed as functions of the four A1,j.

Therefore, we can kill the undesired effect of the two real eigenvalues λ3,4 by sim-
ply choosing such initial conditions that A1,3 = A1,4 = 0. The corresponding particular
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solution is a small ellipse in the (x, y) plane centered in the libration point. Indeed,
plugging λ1,2 = ±iw, into Eq. (10.31) we get

δx = δx0 coswτ − (δy0/α) sinwt, (10.37)
δy = αδx0 sinwτ + δy0 coswt, (10.38)

where the initial conditions are related to the arbitrary constants by

δx0 = A1,1 + A1,2, δy0 = i α(A1,2 − A1,1), (10.39)

and, from Eq. (10.36),

α = i α1 = −i α2 = −
9 + w2

2w
= −√2√7 + 5 ≈ −3.21. (10.40)

The corresponding solutions δX = δẋ − δy and δY = δẏ + δx, as derived from
Eqs. (10.20) and (10.21), respectively, are readily obtained after differentiation of
Eqs. (10.37) and (10.38).

In this way we have found two different types of periodic motion around the
collinear points: On the one hand, small vertical oscillations as given by Eq. (10.27)
will happen when the initial conditions (x0, y0, ẋ0, ẏ0) are chosen null. On the other
hand, small planar oscillations as given by Eqs. (10.37)–(10.38), and their correspond-
ing velocities, will exist when choosing the initial conditions z0 = ̇z0 = 0. Note
that the lack of commensurability between the vertical and planar frequencies given
by Eqs. (10.28) and (10.33), respectively, prevents three-dimensional periodic orbits
consisting of the combination of both infinitesimal motions.

10.2.3 Basic families of periodic orbits

We remark that the validity of the analytical solutions in Eqs. (10.27) and (10.37)–
(10.38) is limited to the case of small oscillations about the libration points because
they were obtained from the linearization of the flow. For larger displacements from
the libration points, the non-linearities of theHill problem render these solutions only
approximately periodic. However, true periodic solutions of Eqs. (10.20)–(10.25) exist,
and can be obtained by the computation of differential corrections to the initial con-
ditions and period. Besides, since the Hill problem is conservative, periodic orbits are
grouped in familieswhichmaybe computed for variations of the Jacobi constant using
standard differential corrections algorithms. Full details on the topic can be consulted
in specialized texts, as, for instance, [22, 449, 500, 609, 610].

Using this procedure, the families of the so-called Lyapunov planar and vertical
periodic orbits are readily computed [176]. As an example, the family of Lyapunov pla-
nar orbits for decreasing values of the Jacobi constant is shown inFig. 10.8. It is charac-
terized by the periodic orbits’ stability, which, in the linear approximation, is obtained

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



264 | 10 The Hill problem

from the eigenvalues of the state transition matrix at the end of one period. The six
eigenvalues occur in reciprocal pairs, as a consequence of the Hamiltonian charac-
ter, and one of the eigenvalues takes the trivial value 1 because we are dealing with
periodic orbits. Therefore, only two stability indices are needed, which are obtained
from the sum of the non-trivial reciprocal pairs. Since the orbits are planar, the “hori-
zontal” stability index bh in Fig. 10.8 is related to in-plane perturbations, whereas the
“vertical” stability index bv is related to perturbations in the out-of-plane direction.
When both stability indices are real numbers in the range (−2, 2) the corresponding
periodic orbit is stable, whereas any other case yields instability. Critical values ±2 of
one of these indices show possible bifurcation orbits from which new families of pe-
riodic orbits could emerge. Note that the stability indices are represented in Fig. 10.8
in an inverse hyperbolic sine scale.

Figure 10.8: Family of planar Lyapunov orbits of the Hill problem. Arrows point to the vertical bifurca-
tions at C ≈ 4, 1.2 and 0 [396].
For the horizontal index to be always much higher than 2, planar Lyapunov orbits of
the Hill problem are highly unstable. On the contrary, the vertical index takes critical
values in different occasions, which are pointed to with arrows in Fig. 10.8, and la-
belled 1, 2, and 3. At point 1, two symmetric three-dimensional halo orbits emerge in a
vertical bifurcation. At point 2, two new families of three-dimensional periodic orbits
emerge, which will end in an orbit of the family of Lyapunov vertical orbits, thus con-
stituting some kind of bridge between the two Lyapunov families. Both kind of orbits,
halo orbits and orbits of the bridge family, will be discussed from the point of view
of perturbation theory in Chapter 12. At point 3 a new bifurcation happens in which
three-dimensional periodic orbits bifurcate with period doubling. For additional de-
tails on periodic orbits of the Hill problem, as well as other invariant manifolds, the
reader is referred to [250].
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When the motion of the massless body takes place always inside Hill’s sphere, the
motion can be approached like a case of perturbed Keplerian motion. This is the case
of typical science missions about planetary satellites, which require spacecraft orbits
close to the surface of the satellite to take full advantage of the science instruments.
The ratio between the orbital periods of the spacecraft and the natural satellite then
becomes a small quantity that can be used for arranging theHill problemHamiltonian
like a perturbation Hamiltonian in power series of a formal small parameter. Then,
similarly to Garfinkel’s procedure in §7.2, the mean anomaly and the longitude of the
node in the rotating frame are stepwise eliminated from the three-degrees-of-freedom
Hamiltonian by Lie transforms. While lower orders of the perturbation solution suf-
fice for describing the qualitative features of the long-term dynamics in this particular
region of the Hill problem, higher orders may be needed in mission-designing proce-
dures for particular binary systems [419].

Third-body perturbations have the effect of destabilizing typical mapping orbits—
which require a high-inclination and low-eccentricity design—inwhat is known as the
Kozaimechanism [264, 311, 364, 365], also called the Lidov–Kozai resonance [450, 651].
The eccentricity–perigee dynamics is then crucial to the design of the nominal science
orbit, and common strategies form maximizing lifetimes are based on the natural dy-
namics of the Kozai mechanism. For this aim, the accurate computation of the mean
to osculating elements transformation becomes essential, yet simplified expressions
are allowed in different orbital configurations.

On the other hand, the non-central mass distribution of the attracting body may
have observable effects on the long-term dynamics, mitigating the instabilities that
affect science orbits to some extent. Because common planetary satellites are in syn-
chronous rotation with their orbital motion, the disturbing effect of the ellipsoidal fig-
ure of the central body is incorporated like a perturbation of the Hill problemHamilto-
nianwithout augmenting the number of degrees of freedom, andhence is analogously
approached by perturbations.

11.1 Perturbed Keplerian motion

The Hill problem Hamiltonian (10.17) can be written like ℋ = ℋK + ℋC + ℋ3b, where
ℋK =

1
2 (X

2 +Y2 +Z2) −𝒢m2/r is the Keplerian,ℋC = −ϑ̇(xY − yX) stands for the Coriolis
term, and ℋ3b =

1
2 ϑ̇

2(r2 − 3x2) accounts for third-body effects in the Hill problem ap-
proximation. Then, in those regions of phase space in which both the Coriolis effect
and the third-body perturbations are small when compared to the Keplerian attrac-
tion, the Hill problem can be approached as a case of a perturbed Keplerian motion.

In the case in whichℋ3b ≪ ℋC ≪ ℋK, one can take a formal small parameter that
roughly indicates the smallness of the time varying ratio ϵ ∼ ϑ̇/n. Then, using Eq. (4.4),

https://doi.org/10.1515/9783110668513-011
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the perturbation Hamiltonian (2.30) is arranged in the form

ℋ0,0 = −
μ
2a
, (11.1)

ℋ1,0 = −ϑ̇H = 2ℋ0,0
ϑ̇
n
cη, (11.2)

ℋ2,0 = ℋ0,0
ϑ̇2

n2
r2

a2
1
4
{2(2 − 3s2 + 3s2 cos 2θ) + 3[(1 − c)2 cos(2h − 2θ)

+ 2s2 cos 2h + (1 + c)2 cos(2h + 2θ)]}, (11.3)

in which a, n, c, η, r, θ = f +ω, and h = Ω − ϑ̇t are the usual functions of the Delaunay
canonical variables, and ℋm,0 = 0 if m ≥ 3. It is not a surprise to check that ℋ2,0 is
equivalent to twice Eq. (8.47) if replacing h by h− θ⊙; that is, when the latter is viewed
in a frame rotating with the mean motion of the sun.

The long-term evolution of the flow is then investigated by removing the short-
period terms from Eqs. (11.1)–(11.3) by perturbations based on Lie transforms. Due
to the rotating-frame formulation, the longitude of the node in the rotating frame h
evolves fast when compared with the slow motion of the argument of the periapsis.
In consequence, a double-averaging procedure is appropriate. That is, short-period
terms related to the mean anomaly are removed first by the usual Delaunay normal-
ization, which is followed by a second Lie transformation that removes periodic terms
related to h.

11.1.1 Short-period elimination

Thus, we apply the Lie transforms method to find the canonical transformation
(ℓ, g, h, L,G,H) 󳨃→ (ℓ󸀠, g󸀠, h󸀠, L󸀠,G󸀠,H󸀠, ϵ) such that, up to some truncation order, re-
moves the short-period effects from the Hill problem Hamiltonian in the prime vari-
ables. Since we are dealing with perturbed Keplerian motion, the Lie derivative is
the one in Eq. (4.66) and the homological equation is solved by indefinite integration
from Eq. (4.68), which is defined up to an arbitrary “constant” that will be used to
guarantee the purely periodic character of the generating function.

On account of the fact thatℋ1,0 does not depend on themean anomaly, we choose
ℋ0,1 = ℋ̃0,1 ≡ ℋ1,0, and𝒲1 = 0. Therefore, there are no short-period corrections of the
order of ∼ ϑ̇/n. At second order we obtain ℋ̃0,2 = ℋ2,0 from Eq. (2.37), and the new
Hamiltonian term is chosen by averagingℋ2,0 over the mean anomaly.

The averaging ismade in closed form of the eccentricity with the help of the differ-
ential relation Eq. (4.62) between the mean and eccentric anomalies. Namely, ℋ0,2 =
⟨ℋ2,0⟩ℓ = ⟨ℋ2,0(r/a)⟩u. We obtain

ℋ0,2 = −2!
μ
a
ϑ̇2

n2
1
∑
l=0

bl(e)
1
∑
k=−1
(−1)k−lQ2,l,2k(I) cos(2kh + 2lg), (11.4)
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which is twice Eq. (8.53). The term𝒲2 is then computed from Eq. (4.70), to obtain

𝒲2 = 2!L
ϑ̇2

n2
1
∑
l=0

1
∑
k=−1

3
∑
j=−3
(−1)kB2,l,j(e)Q2,l,2k(I) sin(ju + 2kh + 2lg), (11.5)

which is twice Eq. (8.54), where the eccentricity polynomials B2,l,j are given in Ta-
ble 8.6, and the inclination polynomials Q2,l,2k in Table 8.3. Derivation of short-period
corrections from Eq. (11.5), which are of the order of (ϑ̇/n)2, follows the standard se-
quence in Eq. (2.17).

After neglecting higher-order terms, we obtain the new Hamiltonian 𝒦 = 𝒦0,0 +
ϵ𝒦1,0 +

1
2ϵ

2𝒦2,0, in which the terms𝒦i,0 = ℋ0,i (i = 0, 1, 2) are obtained by replacing the
original by prime variables in Eqs. (11.1), (11.2), and (11.4), respectively.

11.1.2 Elimination of the node in the rotating frame

The single-averaged Hill problem Hamiltonian 𝒦 is still of two degrees of freedom.
In spite of different particular solutions having been reported in the literature [504,
505, 653, 655], as well as periodic orbits emanating from them [654], not unexpect-
edly, these known analytical solutions depend on special functions and do not pro-
vide much insight on the dynamics. On the other hand, the new Hamiltonian 𝒦 still
remains in the formof a perturbationHamiltonian, inwhich, due to the rotating-frame
formulation, the variable h is assumed to evolve faster than g. Therefore, the long-term
motion can be explored after a new Lie transformation to double-prime variables that
removes from the new Hamiltonian the periodic terms related to h󸀠󸀠.

Like in Brouwer’s elimination of the perigee in §6.3.1 or in the elimination of the
longitude of the node fromGarfinkel’s tesseral Hamiltonian in §7.2.3, the Lie derivative
(4.66) identically vanishes at each order, producing the shift between the orders by
which the new Hamiltonian terms and the generating function terms get determined.
The new homological equation becomes formally analogous to Eq. (6.47), where now

ℒ1 =
𝜕𝒦1,0
𝜕H󸀠
𝜕
𝜕h󸀠
= −ϑ̇ 𝜕
𝜕h󸀠
, (11.6)

and hence

𝒱m−1 =
1
mϑ̇
∫(𝒦0,m − 𝒦0,m)dh

󸀠. (11.7)

Then 𝒦0,1 = 𝒦1,0, and we select 𝒦0,2 = ⟨𝒦2,0⟩h󸀠 . The only term from Eq. (11.4) that
remains after averaging is the one with the summation index k = 0. In preparation of
the computations following in §11.2, we arrange it in the general form

𝒦0,m = −
μ
2a

ϑ̇m

nm
(cη)m

⋆
m0

∑
l=0

m0−l
∑
j=0

Q∗m,l,je
2j(es)2l cos 2lg, (11.8)
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where m0 = ⌊
1
2m⌋ and m⋆ = m mod 2, from the index convention in Eq. (6.5). For

m = 2, we obtain the new inclination polynomials Q∗2,0,0 =
1
2 (3c

2 − 1), Q∗2,0,1 =
3
2Q
∗
2,0,0,

and Q∗2,1,0 =
15
4 .

The term𝒱1 of the generating function is next computed fromEq. (11.7) withm = 2.
We arrange the result like

𝒱m = L
󸀠η(m−1)

⋆ ϑ̇m

nm
m󸀠

∑
l=−m󸀠

m󸀠

∑
k=1

m󸀠−l󸀠

∑
j=0

Q∗m,l,k,j(I)e
2(j+l󸀠)s2|l

󸀠−k| sin(2kh + 2lg), (11.9)

with l󸀠 = |l|, (m − 1)⋆ = (m − 1) mod 2, m󸀠 = m−1 = ⌊
1
2 (m + 1)⌋. At first order m = 1 and

Q∗1,±1,1,0 =
15
64 (c ± 1)

2, Q∗1,0,1,0 =
3
16 , and Q

∗
1,0,1,1 =

9
32 . The periodic corrections, which now

are of the first order of ϑ̇/n, are computed as usual from Eq. (2.17).
The double-averaging procedure ends replacing prime by double-prime variables

in the terms 𝒦0,i, i = 0, 1, 2, giving rise to the double-averaged Hamiltonian

𝒬 = −
μ
2a
{1 + 2 ϑ̇

n
cη − 1

4
ϑ̇2

n2
[(3e2 + 2)(3s2 − 2) − 15e2s2 cos 2g󸀠󸀠]}, (11.10)

inwhichboth ℓ󸀠󸀠 and h󸀠󸀠 are cyclic variables. Therefore,𝒬 is an integrable, one-degree-
of-freedomHamiltonian in (g󸀠󸀠,G󸀠󸀠), in which L󸀠󸀠 andH󸀠󸀠 are (formal) integrals. In par-
ticular, because H󸀠󸀠 = L󸀠󸀠√1 − e2 cos I, from Eq. (4.46), the constant value of the third
component of the angular momentum vector creates a coupling between the eccen-
tricity and the inclination. As shown in Fig. 11.1, this coupling leads, for given values
L󸀠󸀠 and H󸀠󸀠, an increase of the eccentricity to yield a corresponding decrease of the
inclination, and the highest eccentricities allowed for a given energy manifold𝒬 = E
of Eq. (11.10) correspond to orbits resting in the orbital plane of the primaries. A sym-
metric figure is obtained for the case of retrograde inclinations, whereas polar orbits
(H󸀠󸀠 = 0) remain polar. Like in Eq. (5.73), the dynamical parameters L󸀠󸀠 and H󸀠󸀠 in
Fig. 11.1 are combined into a single parameter γ = cη = H󸀠󸀠/L󸀠󸀠, which, on average, is
the cosine of the inclination of the circular orbit for that case.

11.1.3 Third-body critical inclination. The Lidov–Kozai resonance

Neglecting constant terms in Eq. (11.10) does not affect the (g󸀠󸀠,G󸀠󸀠) dynamics. Then
after scaling the time by − 116a

2ϑ̇2 we get the double-averaged Hamiltonian

𝒬∗ = 𝒬∗(g󸀠󸀠,G󸀠󸀠; γ) ≡ (2 + 3e2)(3c2 − 1) + 15e2(1 − c2) cos 2ω, (11.11)

where c = γ/η. The Hamiltonian (11.11) is formally equivalent to the solar perturbation
in Eq. (8.59), or to the combined lunisolar effects in Eq. (8.61), and can be integrated
in terms of special functions [349, 350, 364].
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Figure 11.1: Eccentricity–inclination coupling in the double-averaged Hill problem.

Alternatively, as we did in §5.6.3, more insight in the long-term dynamics can be ob-
tained from the graphic representation of the reduced phase space, which is done
without need of integration by depicting contour plots of Eq. (11.11) for different values
of γ. An example is shown in Fig. 11.2, where the reduced phase space is presented in
both the cylindrical (e,ω) representation and the planar eccentricity-vector represen-
tation. The situation found here is analogous to the bifurcation process that happens
in the vicinity of the critical inclination of the satellite problem, previously discussed
in §5.6. Indeed, circular orbits always remain circular, on average, and remain stable
for the lower inclinations, as illustrated in the left column of Fig. 11.2. Eventually, their
stability character changes to instability in a bifurcation process in which two stable
elliptic orbits emergewith frozen argument of the periapsis at 90 and 270 deg (plots in
the center columnof Fig. 11.2). However, the secondbifurcation from the circular orbits
that happens in the artificial satellite problem, with the consequent return to stabil-
ity (Fig. 5.4), does not occur now. Therefore, as shown in the plots in the right column
of Fig. 11.2, the eccentricity of the orbits in the libration regions about the eccentric
equilibria, as well as in the circulation region close to the separatrix, can vary by a
large amount, contrary to the artificial satellite problem, with the consequent large
variation of the inclination derived from the preservation of the third component of
the angular momentum vector.

This phenomenon, which is known as the Lidov–Kozai resonance1 [364, 450], has
received a lot of attention in dynamical astronomy [485, 525, 607], but it also has im-
portant implications in mission designing of space probes.

Beyond the insights provided by the contour plot representation, the proper dis-
cussion of the equilibria should be done in variables on a compact manifold as those
of Eq. (5.75). However, for the low eccentricities of science orbits about planetary satel-

1 A denomination that Vashkov’yak attributes to A. I. Neishtadt [651]. For a recent review on the topic
and contributions by other authors, most notably H. von Zeipel, see [313].
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Figure 11.2: Contour plots of the double-averaged Hill problem Hamiltonian (11.11) for different val-
ues of γ. Compare with Figs. 5.3 and 5.4.

lites, in practice it is enough to use the components of the eccentricity vector in the or-
bital plane (C, S) defined in Eq. (5.74). Their average variation was given in Eq. (8.66),
from which, replacing the Hamilton equations of the double-averaged Hamiltonian
(11.11), we obtain

dC
dt
= −12 S

L󸀠󸀠
(3η − 5γ2 1 − C

2

η3
), (11.12)

dS
dt
= −12 C

L󸀠󸀠
(2η + 5γ2 S

2

η3
), (11.13)

where η = η(C, S) ≡ √1 − C2 − S2.
The variation equations (11.12)–(11.13) show that circular orbits, C = S = 0, are

always equilibria of the double-averaged flow. Besides, it is simple to check that
Eq. (11.13) only vanishes when C = 0. Then the vanishing of Eq. (11.12) when S ̸= 0
yields another equilibrium solution,

C = 0, S = ±(1 − √5/3 |γ|)1/2. (11.14)

That is, if |γ| < √3/5 then frozen orbits with periapsis ω = ± π2 exist whose eccentricity
e = |S| is given by Eq. (11.14). In the limit γ = √3/5 these equilibria bifurcate from
circular orbits with Icircular = arccos√3/5 ≈ 39.23 deg, which is sometimes called the
third-body critical inclination.
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11.2 Higher-order dynamics

While the lower-order truncation of the perturbation solution used is useful in dis-
closing the main facts of the qualitative dynamics, and in particular the Lidov–Kozai
resonance, it establishes a symmetry of direct and retrograde orbits that is not part
of the Hill problem. On the other hand, neglecting short-period terms of the order
of (ϑ̇/n)3 and higher may be insufficient for making reasonably accurate predictions.
For instance, from the physical characteristics of the Sun–Mercury system, (ϑ̇/n)3 =
𝒪(10−10) for a grazing orbit about Mercury, so the second-order truncation of the per-
turbation solution seems accurate enough. On the contrary, (ϑ̇/n)3 = 𝒪(10−5) for graz-
ing orbits about the Galileanmoons,whereas in the case of Enceladus (ϑ̇/n)3 ≈ 5×10−4

only. The situation, of course, aggravates for higher altitudes of the orbits under inves-
tigation.

Higher orders of the perturbation approach provide more accurate predictions,
but they also reveal additional details on the Hill problem dynamics. In particular,
they show that the inclination at which the stability of the circular orbits changes
varies with the semimajor axis of the orbit. Besides, the curve where eccentric orbits
bifurcate from circular is no longer symmetric for direct and retrograde inclinations,
a fact that had been already checked with numerical methods in the case of Europa
[429].

11.2.1 Degeneracy at the third order

At third order, the known terms that enter the homological equation are those previ-
ously given in Eq. (6.88),which in the current case are limited to ℋ̃0,3 = 3{ℋ0,1;𝒲2}. Af-
ter evaluation of the Poisson bracket, the termℋ0,3 is chosen by averaging the known
terms over the mean anomaly. As before, the averaging is computed in closed form of
the eccentricity, yielding2

ℋ0,3 = ⟨ℋ̃0,3(r/a)⟩u = 0. (11.15)

The term𝒲3 is then computed from Eq. (4.70), to obtain

𝒲3 = L
ϑ̇3

n3
1
∑
l=0

1
∑
k=−1

4
∑
j=−4

B3,l,j(e)Q3,l,2k(I) sin(ju + 2kh + 2lg), (11.16)

where Q3,0,±2 = ±
1
64s

2, Q3,1,0 = 0, Q3,1,±2 = ∓
1
64 (c ± 1)

2, which are no longer the same as
the inclination polynomials of the equatorial frame formulation in Table 8.3, and the
eccentricity polynomials B3,l,j are given Table 11.1.

2 Because 𝒲2 is purely periodic in the mean anomaly, as checked from Eq. (11.5), the term ℋ0,3 is
different from the one in Eq. (A.4) of [418]. Similar differences appear in higher orders.
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Table 11.1: Eccentricity polynomials B3,l,j in Eq. (11.16).

j l = 0 l = 1

0 −9e2(3e2 − 16) −9e2(9η2 + 13)
±1 9e(3η2 + 13) ∓9e(η ± 1)(8η2 ± η + 13)
±2 −3e2(4η2 + 17) −3(η ± 1)2(8η2 ± 6η − 17)
±3 11e3 ±e(η ± 1)2(6η ∓ 11)
±4 − 34e

4 3
4e

2(η ± 1)2

Because 𝒦3,0 = ℋ0,3 = 0 the new Hamiltonian in prime variables is the same as the
second-order one, yet it is now accurate to 𝒪(ϑ̇3/n3). Therefore, we can compute a
third-order approach of the Lie transformation that eliminates the node.

We first compute the known terms 𝒦0,3 from Eq. (6.88) replacing ℋ by 𝒦. Then,
like in §11.1.2, the longitude of the node is removed from the homological equation
making 𝒦0,3 = ⟨𝒦0,3⟩h󸀠 . The term 𝒦0,3 takes the general form of Eq. (11.8) with m = 3
and Q∗3,0,0 =

27
16s

2, Q∗3,0,1 = −
27
32 (17s

2 − 50), and Q∗3,1,0 =
405
32 . The homological equation

(11.7) yields again Eq. (11.9) withm = 2 and Q∗2,±1,1,0 =
45
128 (c ± 1)

2(3c ∓ 2), Q∗2,0,1,0 = −
9
32c,

and Q∗2,0,1,1 =
153
64 c.

After neglecting constant terms, and scaling the double-averaged Hamiltonian
analogously to Eq. (11.11), we obtain

𝒬∗ = (2 + 3e2)(2 − 3s2) + 15e2s2 cos 2g󸀠󸀠

+
9
8
εγ[2s2 + (50 − 17s2)e2 + 15s2e2 cos 2g󸀠󸀠], (11.17)

where we abbreviated ε = ϑ̇/n. The coefficient γ = H󸀠󸀠/L󸀠󸀠 breaks the symmetry of di-
rect and retrograde inclination orbits introduced by the early truncation to the second
order, and the variation equations of the semi-equinoctial elements undergo concomi-
tant modifications of order ε with respect to Eqs. (11.12)–(11.13). That is,

dC
dt
= −12 S

L󸀠󸀠
[3η(1 − 9

8
γε) − 5γ2 1 − C

2

η3
(1 + 9

8
γε)], (11.18)

dS
dt
= −12 C

L󸀠󸀠
[2η(1 + 9

2
γε) + 5γ2 S

2

η3
(1 + 9

8
γε)]. (11.19)

While these modifications do not affect the existence of circular orbits, C = S = 0,
which continue to be equilibria of the double-averaged problem, they slightly change
the eccentricity of the eccentric equilibria. The latter still exist with the argument of
the periapsis frozen at g = ± π2 (or C = 0) for which Eq. (11.19) identically vanishes, and
Eq. (11.18) vanishes too when

e = (1 − |γ|√5
3
√
8 + 9γε
8 − 9γε
)
1/2
≈ [1 − |γ|√5

3
(1 + 9

8
εγ)]

1/2
. (11.20)
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In the limit e = 0, Eq. (11.20) gives the curves γ = γ(ε) along which circular or-
bits change their stability in a bifurcation process where the eccentric orbits emerge.
Instead of solving the cubic, it is simpler to give γ in the implicit form

0 = 3 − 5γ2 − 9
8
ε(3 + 5γ2)γ, (11.21)

which shows the bifurcation lines as perturbations of the lines 3−5γ2 = 0 of the third-
body critical inclination. For direct-inclination orbits (γ > 0) with g = ± π2 , the bifurca-
tion line starts from the critical direct inclination,which continuously increases for in-
creasing values of ε. The bifurcation from retrograde circular orbits (γ < 0) starts from
the critical retrograde inclination, and approaches the equator for increasing values
of ε. This curve ends in a retrograde equatorial orbit (γ = −1) when ε = 2/9 ≈ 0.22.

This order of approximation of the perturbation solution produces an additional
root for S = 0. This value makes Eq. (11.18) vanish identically, whereas Eq. (11.19) only
vanishes along the line γε = − 29 . The nature of this bifurcation is degenerate, and
orbits with the periapsis at either 0 or π and any eccentricity 0 < e < 1 become frozen
orbits along this line.

Bifurcation lines separate regions with different flows. They are illustrated in the
left plot of Fig. 11.3 for the third-order double-averaged Hamiltonian. The flow in re-
gions 1 and 3 is qualitatively the same as the flow in the left plot of Fig. 11.2, while the
flow in region 2 of Fig. 11.3 is qualitatively the same as the flow in the center and right
plots of Fig. 11.2. The right plot of Fig. 11.3 shows the (incorrect) flow provided by the
third-order truncation of the perturbation solution in region 4.

Figure 11.3: Left: Bifurcation lines of the third-order truncation of the Hill problem in the parameters
plane. Right: illusory flow in region 4 for ε = 0.25.

The degeneracy of the third-order truncation indicates that wemust proceed to higher
orders in the normalization procedure. In general, the computation of higher orders
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will solve the issue, yet one must be aware that progressing to higher orders is not
always a guarantee of success [168].

11.2.2 Fourth-order corrections

At fourth order, from the known terms in Eq. (6.89) we select ℋ0,4 by averaging ℋ̃0,4
over the mean anomaly. We arrange it in the general form

ℋ0,m = −
μ
2a

ϑ̇m

nm
ηm
⋆ m󸀠

∑
l=0

m󸀠

∑
k=−m󸀠

m0−l
∑
j=0

Qm,l,k,j(I)e
2j+2l cos(2kh + 2lg), (11.22)

where m⋆ = m mod 2 and m0 = ⌊
1
2m⌋, from Eq. (6.5), m󸀠 = m0 − m⋆, and the inclina-

tion polynomialsQ4,l,k,j are given in Table 11.2. The fourth-order term of the generating
function of the short-period elimination is then computed fromEq. (4.70), and is found
to comprise 119 trigonometric terms.

Table 11.2: Inclination polynomials Q4,l,k,j in Eq. (11.22).

0,0,0 : −
1
32 (189c

4 + 846c2 + 141) 0,0,1 :
27
32 (209c

4 + 190c2 + 377)

0,±1,0 :
9
16 s

2(7s2 − 34) 0,±1,1 : −
171
16 s

2(11s2 − 24)

0,±2,0 : −
63
64 s

4
0,±2,1 :

1881
64 s4

1,0,0 : −
27
32 s

2(195s2 − 278) 1,0,1 :
9
64 s

2(555s2 − 686)

1,±1,0 :
27
16 (c ± 1)

2(65c2 ∓ 65c + 37) 1,±1,1 : −
9
32 (c ± 1)

2(185c2 ∓ 185c + 79)

1,±2,0 :
1755
64 (c ± 1)

2s2 1,±2,1 : −
1665
128 (c ± 1)

2s2

2,0,0 :
5535
256 s

4
0,0,2 : −

189
256 (143c

4 + 170c2 + 239)

2,±1,0 :
1845
128 (c ± 1)

2s2 0,±1,2 :
63
128 s

2(143s2 − 342)

2,±2,0 :
1845
512 (c ± 1)

4
0,±2,2 : −

9009
512 s

4

Next, we change original variables by primes in Eq. (11.22) to compute 𝒦4,0 = ℋ0,4.
The known terms at this order of the elimination of the node 𝒦0,4 are those shown in
Eq. (6.89), in which we now changeℋ by𝒦. Then we select the newHamiltonian term
𝒦0,4 = ⟨𝒦0,4⟩h󸀠 . Once more, it takes the form of Eq. (11.8), withm = 4 and correspond-
ing inclination polynomials in Table 11.3. The homological equation (11.7) produces
𝒱3 in the form of Eq. (11.9) withm = 3 and the corresponding inclination polynomials
of Table 11.4.

After neglecting constant terms and scaling the refined double-averagedHamilto-
nian, we compute the equilibria from the Hamilton equations of the double-averaged
flow. The condition C = 0, e = |S| gives new values of the eccentric equilibria with the
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Table 11.3: Fourth- and fifth-order inclination polynomials Q∗m,l,j in Eq. (11.8).

l, j m = 4 m = 5

0,0
3
64 (9c

4 − 726c2 − 67) 15
1024 (351c

5 − 19666c2 − 30349)

0,1
27
32 (344c

4 + 253c2 + 329) 15
1024 (209763c

5 + 544816c2 + 397761)

0,2 − 27
512 (5407c

4 + 2794c2 + 2527) − 45
8192 (1155789c

5 + 845358c2 + 325853)

1,0
27
32 (345c

2 + 68) 45
1024 (70155c

2 + 104101)

1,1 − 9
128 (4035c

2 + 307) − 45
2048 (338805c

2 + 168689)

2,0
945
512 − 89322758192

Table 11.4: Third- and fourth-order inclination polynomials Q∗m,l,k,j in Eq. (11.9).

l, k, j m = 3 m = 4

±2,1,0 − 23854096 (c ± 1)
2 − 135

65536 (c ± 1)
2(26730c ∓ 9601)

±2,2,0
7065
32768 (c ± 1)

3 2025
131072 (c ± 1)

4(939c ∓ 140)

±1,1,0
27
512 (c ± 1)

2

× (310c2 ∓ 175c + 79)

15
16384 (c ± 1)

2

×(252639c3∓84861c2+118641c∓17939)

±1,1,1 − 9
1024 (c ± 1)

2

× (2125c2 ∓ 1315c + 563)
− 15
32768 (c ± 1)

2

×(986418c3∓737271c2+382002c±1361)

±1,2,0
405
2048 (c ± 1)

2 135
16384 (c ± 1)

2(387c ± 226)

±1,2,1
5445
8192 (c ± 1)

2 135
32768 (c ± 1)

2(13311c ∓ 1502)

0,1,0
9

256 (13c
2 − 57) − 3

4096 c(1539c
2 + 11197)

0,1,1
9

256 (904c
2 + 215) 3

8192 c(1269351c
2 + 546293)

0,1,2 − 9
2048 (8131c

2 + 1355) − 27
16384 c(481869c

2 + 81992)

0,2,0 − 261
2048

7047
8192 c

0,2,1
333
512

38151
8192 c

0,2,2
12627
16384

5342841
65536 c

periapsis at ± π2 , which, in the limit case e → 0, provide the new bifurcation line of
circular orbits

m−2
∑
j=0

Γj(γ)ε
j = 0, (11.23)

with Γ0 = 3−5γ2, Γ1 = −
9
8 (5γ

2+3)γ, and Γ2 = −
1
64 (2070γ

4−193γ2+783). The term Γ2 not
only introduces observable quantitative changes, but it also corrects the degeneracy of
the third-order truncation. Now, bifurcations from retrograde circular orbits exist for
all values of ε of interest, as shown in Fig. 11.4. Region 4 no longer exists and circular
direct orbits can remain stable for higher inclinations than retrograde ones.
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Figure 11.4: Bifurcation lines of circular orbits of the fourth-order truncation (full lines) superim-
posed to the analogous lines in Fig. 11.3 (dotted lines).

11.2.3 Higher-order refinements

Proceeding to higher orders of the Lie transforms method is standard, although the
solution of non-trivial integrals can appear in the procedure. Strategies like those de-
veloped in [2, 324] may be of definitive help in that case.

Thus, at fifth order we get the new, single-averaged Hamiltonian term in the gen-
eral form of Eq. (11.22) with m = 5 and the inclination polynomials of Table 11.5. It
is next written in the prime variables to obtain 𝒦5,0 = ℋ0,5. The Fourier series that
provides the fifth-order (purely periodic) term of the generating function is found to
comprise 132 trigonometric terms.

Table 11.5: Inclination polynomials Q5,l,k,j in Eq. (11.22).

0,0,0 : −
15
2 c(53c

2 + 44) 0,±1,0 : −
795
4 cs2 1,0,0 :

4545
4 cs2 1,0,1 : −

765
4 cs2

0,0,1 :
75
8 c(379c

2 + 555) 0,±1,1 :
28425
16 cs2 1,±1,0 :

1515
4 (c ± 1)

2(3c ∓ 2)

0,0,2 : −
225
8 c(45c2 + 58) 0,±1,2 : −

10125
16 cs2 1,±1,1 : −

255
4 (c ± 1)

2(3c ∓ 2)

The node is then removed after computing the known terms 𝒦0,5 from Deprit’s recur-
sion (2.15). The new, double-averaged Hamiltonian term𝒦0,5 = ⟨𝒦0,5⟩h󸀠 takes the form
of Eq. (11.8) with the inclination polynomials Q∗5,l,j given in Table 11.3. The homologi-
cal equation (11.7) is solved, again, in the form of Eq. (11.9), withm = 4 and the corre-
sponding inclination polynomials Q∗m,l,k,j of Table 11.4.

The bifurcation line from circular orbits is given by Eq. (11.23) with m = 5. The
new term Γ3 = −

1
1024γ(14243+ 104498γ

2 + 70155γ4) prevents the bifurcation of circular
retrograde inclination orbits to exist for moderate values of ε, and the degeneracy of
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equilibria with ω = 0,π occurs at the new bifurcation line

1
128

γ(8819γ2 + 14793)ε3 + 1
64
(1469γ2 + 1191)ε2 + 9γε + 2 = 0,

which is a refinement of the line 9γε+2 = 0 found at third order. The situation is again
amended at the next order, m = 6, for which this last bifurcation line ceases to exist,
and the bifurcation from circular orbits in Eq. (11.23) is complemented with the term

Γ4 = −
1

12288
(3086640γ6 + 4388089γ4 + 2133651γ2 + 102040).

Recall that the differences between the coefficients Γ3 and Γ4 from analogous ones in
[419] are a consequence of the purely periodic nature of the generating function of the
short-period elimination computed here.

The sixth-order terms of the single- and double-averaged Hamiltonians still ad-
here to the general form of Eqs. (11.22) and (11.8), respectively. The former comprises
58 terms and corresponding inclination polynomials are not provided to avoid long
listings. The terms Q∗6,l,j of the latter are provided in Table 11.6.

Table 11.6: Inclination polynomials Q∗6,l,j in Eq. (11.8).

0,0 : −
15

2048 (1737c
6 + 254540c4 + 1402545c2 + 268346)

0,1 :
15

2048 (9265131c
6 + 24834958c4 + 21356085c2 + 4723182)

0,2 : −
15

16384 (303051753c
6 + 346139368c4 + 190389621c2 + 23680002)

0,3 :
45

16384 (83046117c
6 + 47146752c4 + 24371729c2 + 4316018)

1,0 :
45

1024 (1543320c
4 + 1877096c2 + 685157)

1,1 : −
15

4096 (88656795c
4 + 59142109c2 − 838246)

1,2 :
45

16384 (103612815c
4 + 51973518c2 + 3613243)

2,0 : −
75

16384 (10323423c
2 − 351202)

2,1 :
135

16384 (7081485c
2 + 404026)

3,0 :
30290625
16384

The higher-order refinements of the perturbation solution further increase the maxi-
mum inclination of the region where circular direct-inclination orbits remain stable.
This is illustrated in Fig. 11.5, in which the bifurcation line of the sixth-order solution
(gray curve) is shown jointly with the fourth-order bifurcation line (dashed curve) and
the classical third-body critical inclination (dotted horizontal line). This fact would al-
low one to find an almost circular stable nominal orbit with I ≈ 60∘—contrary to the
39.23∘ limit of the classical result—for a prospective science orbit about Enceladuswith
a semimajor axis about twice the equatorial radius of Enceladus (of ∼ 256 km), which
would provide global coverage for the science mission [96, 585]. When expressed in
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Figure 11.5: Departure of the bifurcation lines of the sixth- (full line) and fourth-order solutions
(dashed) from the third-body critical inclination (dotted horizontal line). The vertical line marks 2
times the equatorial radius of Enceladus (after [419]).

units of the Hill problem, this semimajor axis is a ∼ 0.375, and is marked with a verti-
cal line in Fig. 11.5 to highlight how the sixth-order solution modifies the fourth-order
prediction by about 4 degrees.

Using the values in §10.2, we find that, for a science orbit about Enceladus with
a = 512 km, the approximation provided by the Hill problem neglects terms (a/d)3 =
𝒪(10−8). Besides, n = (𝒢m2/a3)1/2 ≈ 2 × 10−4s−1 and, since ϑ̇ = 5.3 × 10−5s−1, a sixth-
order perturbation solutionneglects𝒪(ϑ̇/n)7 = 𝒪(10−5), whichprovides an acceptable
approximation to the Hill problem dynamics.

11.3 The case of planetary satellites

While the dynamics of planetary satellites is generally well described by the Hill prob-
lem equations, typical science orbits evolve close to the surface of the planetary satel-
lite, thus making the mass-point approximation invalid. In this case the primary at
the origin is replaced in first approximation by a triaxial ellipsoid. In addition, plane-
tary satellites commonly orbit their mother planets in synchronous rotationwith their
mean motion, and the axial tilt is very small and can be neglected. When that is the
case, the perturbed Hill problem remains invariant in the rotating frame.

The Hill problem Hamiltonian (11.1)–(11.3) is then supplemented with addi-
tional terms that take the non-centralities of the gravitational potential into account
[365, 451]. Themore relevant terms of this perturbation are those related to the oblate-
ness and dynamical ellipticity, yet the influence of a possible latitudinal asymmetry is
sometimes considered [389, 421, 548]. On the other hand, most planetary satellites fit
to the hypothesis of hydrostatic equilibrium, which permits one to reduce the number
of physical parameters of the perturbation model taking C2,2 =

3
10 J2 and J3 = 0 [88].
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Assuming that the principal axis of inertia of the triaxial ellipsoid are alignedwith
the rotating frame, the part of disturbing potential due to the non-central gravitation
of the smaller mass body is obtained from Eq. (5.2),

V⊗ = −
μ
r
R2⊗
r2
[
1
2
J2(1 − 3

z2

r2
) + 3C2,2

x2 − y2

r2
],

where the subindex ⊗ is used to denote the planetary satellite. The Cartesian coordi-
nates are expressed in polar-nodal variables using Eq. (4.4) in which the angle ν is
replaced by the longitude of the node in the rotating frame h. That is,

V⊗ = −
1
4
μ
r
R2⊗
r2
{J2(2 − 3s

2 + 3s2 cos 2θ) + 3C2,2

× [(1 − c)2 cos(2h − 2θ) + 2s2 cos 2h + (1 + c)2 cos(2h + 2θ)]}

A common assumption is that the disturbing effects due to the ellipsoidal figure of
the natural satellite are of the same order as the planetary third-body perturbations.3

Therefore, the second-order term of the usual perturbation Hamiltonian (2.30) com-
prises both effects. Thus,ℋ0,0 andℋ1,0 are given by Eqs. (11.1) and (11.2), respectively,
while ℋ2,0 = ℋ2,0,Hill + ℋ2,0,⊗, with ℋ2,0,Hill given by Eq. (11.3), and, applying the hy-
drostatic equilibrium condition to the disturbing potential V⊗,

ℋ2,0,⊗ = ℋ0,0
ϑ̇2

n2
β2 a

3

r3
{2 − 3s2 + 3s2 cos 2θ + 9

10
[(1 − c)2 cos 2(h − θ)

+ 2s2 cos 2h + (1 + c)2 cos 2(h + θ)]}, (11.24)

where the function

β = J1/22
R⊗/a
ϑ̇/n

(11.25)

provides an indication on how the strength of the oblateness perturbation relative
to the third-body gravitational pull varies with the orbiter’s semimajor axis. When
expressed in Delaunay variables β depends only on the Delaunay action L, and its
derivative with respect to L can be written in the form 𝜕β/𝜕L = −5β/L.

Like in theHill problemalone, to study the long-termorbital behavior of planetary
satellites we eliminate the short-period effects by means of two consecutive Lie trans-
formations. The first one removes the short-period effects related to themean anomaly
of the orbiter, and the second the remaining periodic effects related to the longitude
of the node in the rotating frame.

3 This would not be the case of the science orbit about Enceladus discussed previously, where the
ellipsoidal figure perturbations would be of higher order than the third-body effects.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



280 | 11 Motion inside Hill’s sphere

11.3.1 Elimination of the mean anomaly

Like in the Hill problem alone in §11.1.1, we make ℋ0,1 = ℋ1,0,𝒲1 = 0 and, in conse-
quence, there are not short-period corrections of order ϑ̇/n.

At the second order the known terms are simply ℋ̃0,2 = ℋ2,0, from which the
term ℋ0,2 is chosen by averaging. That is, ℋ0,2 = ⟨ℋ2,0⟩ℓ ≡ ⟨ℋ2,0,Hill⟩ℓ + ⟨ℋ2,0,⊗⟩ℓ,
where the term ⟨ℋ2,0,Hill⟩ℓ has been computed in Eq. (11.4). The averaging ⟨ℋ2,0,⊗⟩ℓ =
⟨ℋ2,0,⊗ r/(a2η)⟩f is standard. We obtain

ℋ0,2,⊗ = ℋ0,0
ϑ̇2

n2
β2

η3
(2 − 3s2 + 9

5
s2 cos 2h). (11.26)

Now, making𝒲2 = 𝒲2,Hill +𝒲2,⊗ the homological equation Eq. (4.67) is decomposed
into two parts that are readily solved in closed formof the eccentricity using Eqs. (4.70)
and (4.69), respectively. The term𝒲2,Hill is the same as𝒲2 in Eq. (11.5), whereas

𝒲2,⊗ = −L
ϑ̇2

n2
β2

η3
{ϕ(1 − 3

2
s2 + 9

10
s2 cos 2h)

+
1
∑
l=0

1
∑
k=−1

2l+1
∑
j=0
[Ql,kBl,j sin(jf + 2kh + 2lg)]}, (11.27)

where Q1,±1 =
3
10 (c ± 1)

2, Q1,0 = s2, Q0,±1 =
9
20s

2, and Q0,0 =
1
2 (3c

2 − 1); and B0,1 = e,
B1,0 =

1
4 (2η + 1)(1 − η)/(1 + η), B1,1 =

3
4e, B1,2 =

3
4 , and B1,3 =

1
4e. Note that, different

from [389], the generating function is free from long-period terms. That is, ⟨𝒲2⟩ℓ = 0.
Besides, a slightly different arrangement of the summations from the one chosen in
[389] has been made for better efficiency.

At third order, the known termsof thehomological equation are ℋ̃0,3 = 3{ℋ1,0;𝒲2},
like in the Hill problem alone, from which the new Hamiltonian term ℋ0,3 =
⟨ℋ̃0,3⟩ℓ = 0 is computed. The vanishing of ℋ0,3 was in fact expected from the anal-
ogous result in Eq. (11.15) in view of the non-central gravity perturbations due to
the elipsoidal figure having been downgraded to the same order as the third-body
planetary perturbations.

Then, to the third order of the small parameter, the procedure ends by replacing
original by prime variables in the terms ℋ0,i, (i = 0, . . . , 2), of the new Hamiltonian.
After neglecting terms of 𝒪(ϑ̇4/n4) and higher, the partially reduced Hamiltonian in
prime variables is

𝒦 = 𝒦0,0 + 𝒦1,0 +
1
2
𝒦2,0 +

1
3!
𝒦3,0, (11.28)

where 𝒦0,0 is the Keplerian, 𝒦1,0 is the Coriolis term, 𝒦2,0 = ℋ0,2 is given by the sum
of Eqs. (11.4) and (11.26),𝒦3,0 = 0, and prime variables replace the original ones. From
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Hamilton equations, we note that the variation of H󸀠,

dH󸀠

dt
= −nL󸀠 3

16
ϑ̇2

n2
{2(2 + 3e2 + 12β

2

5η3
)s2 sin 2h󸀠

+ 5e2[(c + 1)2 sin(2g󸀠 + 2h󸀠) − (c − 1)2 sin(2g󸀠 − 2h󸀠)]},

vanishes in the case of polar orbits when h󸀠 = k π
2 , with k integer. Hence, polar orbits

either collinear with or orthogonal to the primaries’ line of apsides remain polar, on
average.

Up to the order of ϑ̇2/n2, the short-period corrections of the Lie transformation
from prime to original variables are computed following the sequence in Eq. (2.17).

11.3.2 Elimination of the longitude of the node

Like in §11.1.2, the formulation in the rotating frame makes h󸀠 evolve fast when com-
pared to the rate of variation of g󸀠. Therefore, we further remove from Hamiltonian
(11.28) the periodic terms related to the longitude of the node by means of a new Lie
transformation, from prime to double-prime variables, in which the Lie derivative and
the homological equation are given by Eqs. (11.6) and (11.7), respectively.

Thus,𝒦0,1 = 𝒦1,0while𝒱1 remains undetermined. At secondorder, the newHamil-
tonian term is chosen by averaging 𝒦0,2 = 𝒦2,0 over h󸀠. That is,

𝒦0,2 = −
μ
2a

ϑ̇2

n2
1
4
[(2 − 3s2)(2 + 3e2 + 4β

2

η3
) + 15e2s2 cos 2g󸀠],

which allows the computation to be made of 𝒱1 from Eq. (11.7). We obtain

𝒱1 =
3
64

L󸀠 ϑ̇
n
{2(2 + 3e2 + 12

5
β2

η3
)s2 sin 2h󸀠 + 5e2

×[(1 + c)2 sin(2g󸀠 + 2h󸀠) − (1 − c)2 sin(2g󸀠 − 2h󸀠)]}, (11.29)

and fill Deprit’s triangle computing the intermediate term 𝒦1,1 = 𝒦0,2 − {𝒦1,0,𝒱1}.
At third order, the known terms are 𝒦0,3 = {𝒦0,2 + 𝒦1,1 + 𝒦2,0,𝒱1}, from which we

choose 𝒦0,3 = ⟨𝒦0,3⟩h󸀠 . That is,

𝒦0,3 = −
μ
2a

ϑ̇3

n3
27
32
cη[2(2 + 3e2 + 6β

2

5η3
)
6β2

5η5
s2

+ 2s2 − (17s2 − 50)e2 + 15(1 + 6β
2

5η5
)s2e2 cos 2g󸀠],
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and hence, from Eq. (11.7),

𝒱2 = −G
󸀠 ϑ̇2

n2
15
128
{
4
5
[
3
2
(2 − 17e2) + (2 + 3e2 + 3β

2

2η3
)
24β2

5η5
]cs2 sin 2h󸀠

+ (1 − c)2[6 + 9c + (7 + 7c − 5c2)6β
2

5η5
]e2 sin(2g󸀠 − 2h󸀠)

+ (1 + c)2[6 − 9c + (7 − 7c − 5c2)6β
2

5η5
]e2 sin(2g󸀠 + 2h󸀠)}. (11.30)

From the latter, the derivation ofmedium-period corrections of𝒪(ϑ̇2/n2) is straightfor-
ward from Eq. (2.17).

Up to third order of ϑ̇/n, the procedure ends replacing prime by double-prime vari-
ables in the terms 𝒦0,i, i = 0, 1, 2, 3.

11.3.3 Reduced phase space in the parameters plane

The double-averaged Hamiltonian is of one degree of freedom in (g󸀠󸀠,G󸀠󸀠) in which
bothH󸀠󸀠 and L󸀠󸀠 = L󸀠 are formal integrals. To study the dynamics in the reduced phase
space we neglect the constant terms and scale the double-averaged Hamiltonian by
− 116a

2ϑ̇2, to get

ℋ = −(3s2 − 2)(2 + 3e2 + 4β
2

η3
) + 15[1 + ε9

8
γ(1 + 6β

2

5η5
)]s2e2 cos 2ω

+ ε9
8
γ[2s2 − (17s2 − 50)e2 + 2s2(2 + 3e2 + 6β

2

5η3
)
6β2

5η5
], (11.31)

where s2 = 1 − γ2/η2, e2 = 1 − η2, η = G󸀠󸀠/L󸀠󸀠, ε = ϑ̇/n(L󸀠󸀠), and γ = H󸀠󸀠/L󸀠󸀠. Therefore,
the reduced flow depends on three parameters, namely ε, γ, and β.

Disregarding the case of rectilinear orbits the reduced phase space is the sphere. A
detaileddiscussionof the reducedflow in the variables on the sphere given inEq. (5.75)
canbe found in [433, 592]. Here,we limit our discussions to themore relevant facts that
may affect the design of science orbits. Like in previous sections of this chapter,we rely
on the usual eccentricity-vector diagram representation. Analogously to Eqs. (11.12)–
(11.13), we obtain the variation equations,

dC
dt
= −3S

L
[12η − 20(1 − C2) γ

2

η3
+ 4(1 − 5 γ

2

η2
)
β2

η4
]

+
27
10

S
L
ε γ
η
{25(1 − C2) γ

2

η2
+ 15η2 + 12(4

5
−
γ2

η2
)
β4

η8

+ [2 + 123C2 − 27S2 − 5(2 + 33C2 − 9S2) γ
2

η2
]
β2

2η5
}, (11.32)
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dS
dt
= −3C

L
[8η + 20S2 γ

2

η3
− 4(1 − 5 γ

2

η2
)
β2

η4
]

−
27
10

C
L
ε γ
η
{25S2 γ

2

η3
+ 40η2 + 12(4

5
−
γ2

η2
)
β4

η8

+ [62 + 63C2 − 87S2 − 35(2 + 3C2 − 3S2) γ
2

η2
]
β2

2η5
}. (11.33)

On the other hand, as will be illustrated in §11.3.4, for the orbits of interest higher-
order terms only introduce quantitative variations with respect to the second order.
Then the discussion of the relative equilibria is made in the simpler approximation,
which is obtained after neglecting the terms factored by ε in Eqs. (11.32) and (11.33).
Still, the refinements provided by third-order terms of the long-term Hamiltonian
(11.31) definitely improve the computation of particular solutions, and will be taken
into account in §11.4.

Then, in the second-order approximation, the equilibria are computed from

0 = −3S
L
[12η − 20(1 − C2) γ

2

η3
+ 4(1 − 5 γ

2

η2
)
β2

η4
], (11.34)

0 = −3C
L
[8η + 20S2 γ

2

η3
− 4(1 − 5 γ

2

η2
)
β2

η4
]. (11.35)

In particular, circular orbits, C = S = 0, are immediately identified as equilibria of the
double-averaged phase space. Besides, the condition S = 0 makes Eq. (11.34) vanish
identically, and turns Eq. (11.35) into a polynomial equation in η,

2η7 − β2η2 + 5β2γ2 = 0, (11.36)

whose solution will provide the eccentricity of elliptic orbits with frozen perigee at
g = 0,π. Elliptic orbits also exist with frozen perigee at g = ± π2 , whose eccentricity is
given by the solution of the polynomial equation

3η7 − 5γ2η3 + β2η2 − 5β2γ2 = 0, (11.37)

which is obtained by making C = 0 in Eq. (11.34).
Bifurcations of these eccentric frozen orbits from circular orbits happen along the

lines obtained by making η→ 1 in Eqs. (11.37) and (11.36). We obtain

γ2 = 1
5
(1 + 2

1 + β2
), γ2 = 1

5
(1 − 2

β2
), (11.38)

which provide symmetric bifurcation lines γ = γ(β) for direct and retrograde inclina-
tions in the parameters (β, γ) plane. The latter shows the limit β ≥ √2 for the existence
of eccentric frozen orbits with g = 0,π, while the former yields the critical inclination
value of the Hill problem γ2 = 3

5 when β = 0. Both kinds of bifurcation lines tend to the
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value γ2 → 1
5 when β → ∞, corresponding to the critical inclination of the artificial

satellite problem discussed in §5.6.
Elimination of η between Eq. (11.36) and its partial derivative with respect to η,

namely 7η5 − β2 = 0, yields the line of double roots

γ = ±β2/5/77/10, (11.39)

in the parameters plane (β, γ), where new stable and unstable eccentric frozen orbits
appear in a saddle-node bifurcation with g = 0,π. Since γ2 ≤ 1, this line exists only for
0 ≤ β ≤ 77/4. However, after been plugged into Eq. (11.36), it only provides roots that
make dynamical sense, namely 0 < η ≤ 1, when β ≤ √7. For increasing values of γ, the
stable equilibria migrate along the lines g󸀠󸀠 = 0,π, towards the lower eccentricities,
whereas the unstable equilibrium do that along the same line to the higher eccentric-
ities. The latter always get the critical value 1 when γ = 0, whereas the former may
collapse to circular orbits if β ≥ √2. Besides, the eccentricity with which these bifur-
cated orbits stem reduces for increasing values of β until the lines given by the second
of Eq. (11.38) and Eq. (11.39) osculate at β = √7, where γ = 1/β or Icircular = 67.8∘, in
which case they become circular and saddle-node bifurcations no longer exist. This is
illustrated in Fig. 11.6 for different values of β, including the critical cases β = √2 and
β = √7.

Figure 11.6: Eccentric frozen orbits with g󸀠󸀠 = 0, π, from Eq. (11.36), stemming in a saddle-node
bifurcation from points marked “+” for β = 0.1, . . . √2, . . . √7.

The bifurcation lines described by Eqs. (11.38) and (11.39) are illustrated in Fig. 11.7, in
which the range of β is constrained to the region of interest. In the second-order ap-
proximation, retrograde inclinationorbits are symmetric to direct ones andarenot dis-
played. Typical representations of the reduced phase space by means of eccentricity-
vector diagrams in the different regions of the parameters plane (β, γ), with numbers
1, 2, 3, 4 in Fig. 11.7, are illustrated in Figs. 11.8 and 11.9.
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Figure 11.7: Bifurcation lines of circular (full lines) and eccentric orbits (dashed line) that determine
regions of the reduced phase with different number of equilibria. The vertical line marks the value
β = √7 where the dashed line ends.

Figure 11.8: Typical phase spaces in the regions shown in Fig. 11.7 when β < √2.

In region 1 circular orbits enjoy stability and are the only frozen orbits of interest (left
plots in the first row of Figs. 11.8 and 11.9). In region 2 the bifurcation line given by the
first equation of Eq. (11.38)—the lower full line in Fig. 11.7—has already been crossed,
and circular orbits became unstable while two new stable eccentric orbits exist with
the periapsis frozen at g = ± π2 that may enjoy moderate eccentricities (center and
right plots in the first row of Figs. 11.8 and 11.9). The eccentricities of the stable elliptic
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Figure 11.9: Typical phase spaces in the regions shown in Fig. 11.7 when β > √2.

frozen orbits growwhen the absolute value of the dynamical parameter γ = cos Icircular
diminishes, soon reaching high values.

In the region numbered 3 the saddle-node bifurcations have happened at the
crossing of the bifurcation line in Eq. (11.39)—the dashed line in Fig. 11.7. In addition
to the unstable circular orbits and the highly eccentric frozen orbits with g = ± π2 , two
stable eccentric orbits exist with the periapsis frozen at g = 0,π, as well as two unsta-
ble ones with higher eccentricities (left plots in the second row of Figs. 11.8, and 11.9).
Eventually, for some value Icircular the unstable circular orbits and the unstable eccen-
tric frozen orbits with ω = 0,π get the same energy, thus producing global changes
in the flow through a saddle connection; see [433]. The homoclinic passing through
the circular orbits changes from an 8-shaped trajectory, surrounding the eccentric
stable frozen orbits with periapses ω = ± π2 , into an∞-shaped trajectory, which sur-
rounds the eccentric stable frozen orbits with periapses ω = 0,π (center plots in the
second row of Figs. 11.8, and 11.9). For values β < √2 there are no more regions in
the parameters plane, so the flow remains qualitatively the same for higher values
of the inclination of the circular orbits, with the only quantitative effect of reducing
the eccentricity of the frozen orbits with ω = 0,π, and increasing the eccentricity of
the stable frozen orbits with ω = ± π2 (right plot in the second row of Fig. 11.8). On
the contrary, one more region exists in the parameter plane when β > √2. Indeed,
for increasing values of Icircular, the eccentric frozen orbits with ω = 0,π approach
the bifurcation line provided by the second equation of Eq. (11.38), which they reach
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eventually collapsing into a circular orbit in a pitchfork bifurcation. In consequence,
circular orbits are stable in region 4 (right plot in the second row of Fig. 11.9).

In summary, for small values of β the dynamics is mostly dominated by the plane-
tary perturbations, and the Lidov–Kozai resonance is the most relevant feature, anal-
ogously to the case of the Hill problem alone; cf. Fig. 11.2. On the contrary, for higher
values of β the non-centralities of the planetary satellite dominate, yielding analogous
dynamics to the main problem of the artificial satellite, in which high-inclination cir-
cular orbits are stable; cf. Fig. 5.5. Still, while bifurcations happen always fromcircular
orbits, like in the main problem, the sequence is not the same, as shown by simple in-
spection of Figs. 11.10 and 5.4.

Figure 11.10: Typical phase spaces in the regions of Fig. 11.7 when β > √7.

11.3.4 Third-order effects. The space of parameters

The symmetry of direct and retrograde inclination orbits is broken when the third or-
der of the perturbation theory is taken into account. Now, the equilibria are computed
from Eqs. (11.32)–(11.33), which show that circular orbits remain as equilibria, as well
as eccentric orbits with g = ± π2 , and g = 0,π. The bifurcation lines of the latter from
circular orbits are obtained making η → 1 in the corresponding equilibria equations.
We obtain

0 = 4(β2 + 3) − 20(β2 + 1)γ2

−
9
50

εγ[48β4 + 5β2 + 75 − 5(12β4 + 5β2 − 25)γ2], (11.40)

0 = 8 − 4β2 + 20β2γ2

+
9
50

εγ[48β4 + 155β2 + 200 − 5(12β2 + 35)β2γ2], (11.41)

which are modifications of order ϑ̇/n with respect to Eq. (11.38) involving cubic equa-
tions in γ. As regards the saddle-node bifurcation, the third-order refinement of the
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bifurcation line in Eq. (11.39) can be computed from the elimination of η between
Eq. (11.41) and its partial derivative with respect to η.

Now, the relative strength of third-body and non-central gravity perturbations
cannot be combined into a single parameter, and the bifurcation lines of frozen or-
bits turn into bifurcation surfaces 𝒮(γ, β, ϑ̇/n) = 0 [433]. For the orbits of interest in
mission designing about planetary satellites we do not find qualitative changes in the
flow. This is illustrated in Fig. 11.11, where the bifurcation surfaces of the third-order
theory are depicted in the range 0 < ϑ̇/n ≤ 0.1. As expected from the higher orders of
the Hill problem alone discussed in §11.2, the bifurcation surfaces bend towards the
higher inclinations for increasing values of ϑ̇/n.

Figure 11.11: Bifurcation surfaces of circular orbits 𝒮(γ,β, ϑ̇/n) = 0 (after [433]).

11.4 Application. Computation of the science orbit

Science missions around planetary satellites commonly require low-eccentricity or-
bits with low altitude and high inclination, which, from the previous discussion, are
unstable when the third-body perturbation dominates the dynamics—case β < √2.
This fact was illustrated in Fig. 11.8, in which low-eccentricity frozen orbits are shown
to be stable only for the lower inclinations (upper-left plot). Due to the unstable char-
acter of low-eccentricity frozen orbits with high inclinations, a small perturbation
would make the eccentricity of the science orbit grow fast, leading to the orbiter, if
uncontrolled, make impact on the surface of the planetary satellite in short times.

A common strategy for maximizing orbit lifetime with minimum control con-
sist in designing tours on the stable–unstable manifold of a reference frozen orbit
[547].4 An example is presented below for the physical characteristics of the Jovian

4 These kinds of tours were originally devised in the non-averaged restricted three-body problem dy-
namics [248]. In particular, they are efficiently designed based on the stable and unstable manifolds
associated to repeat ground-track orbits of the planetary-satellite problem [247, 427].
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moon Europa. Namely, μ = 3202.7 km3/s2, R⊗ = 1565 km, J2 = 4.355 × 10−4, and
ϑ̇ = 2.05 × 10−5 s−1; cf. [34].

Given a nominal frozen orbit with a = a0, e = e0, I = I0, ω = ω0, the procedure
starts by computing the dynamical parameters ε = ϑ̇/n0, where n0 = (μ/a30)

1/2 from
Eqs. (4.44) and (4.45), γ = (1 − e20)

1/2 cos I0, and β = β(a0) from Eq. (11.25). Next, the
valueℋ(e0,ω0; ε, β, γ) = E0, which is the “energy” of the unstable frozen orbit as well
as its associated stable and unstable manifolds, is evaluated from Eq. (11.31) with c =
γη. In particular, for a nominal circular frozen orbit,

E0 = (3γ
2 − 1)(2 + 4β2) + 9

4
εγ(1 − γ2)[1 + (2 + 6

5
β2)6

5
β2]. (11.42)

Then, for a maximum allowed eccentricity eM derived from the mission requirements,
the corresponding argument of the periapsis ωS of one of the two stable manifolds is
computed from Eq. (11.31) by solvingℋ(eM,ωS; ε, β, γ) = E0 forωS. In this way, starting
from the initial conditions corresponding to (a0, eM, I0,ωS) the natural dynamics will
drive the orbit over the stable manifold towards the nominal frozen orbit. The orbit
will remain on the unstable equilibrium position for some time, until it eventually
departs from the frozen orbit along one of its two unstable manifolds. A maneuver
is needed when the eccentricity reaches the value eM in order to come back to the
starting point of the tour.

For instance, for a nominal circular orbit 100 kmabove the surface of Europa (a0 =
1665 km), we compute n0 = 8.32984 × 10−4, from which β = 0.797034 and ε = ϑ̇/n0 =
0.0246103. If, besides, we choose γ = cos 85∘, Eq. (11.42) yields E0 = −4.4227. Themax-
imumeccentricity of non-impact orbits corresponds to a grazing perigee a0(1−e) = R⊗,
from which the conservative limit eimpact = 0.058 is used for estimating orbit lifetime.
Besides, we consider a maximum eccentricity eM = 0.01 acceptable in this example.

The reduced phase space of the double-averaged flow is illustrated with the
eccentricity-vector diagram of Fig. 11.12, in which the stable and unstable manifolds
of the circular frozen orbit are highlighted with a thick-dashed line in the left plot.
The right plot focus on the lower eccentricities, highlighting the eccentricity leading
to impact eimpact with a dotted big circle, and the prospective eccentricity limit for the
mission orbit eM with a black small circle.

Then the initial eccentricity is set to e0 = eM = 0.01 and the argument of the peri-
apsisωS is solved fromEq. (11.31) forℋ = E0, to getωS = 147.744∘. The longitude of the
node in the rotating frame and the mean anomaly are not part of the double-averaged
perturbed Hill problem and their initial values remain arbitrary. We choose both as
vanishing at the initial time. Then, we propagate the corresponding initial conditions
in the original, non-averaged flow. The left plot of Fig. 11.13 depicts the evolution of the
instantaneous eccentricity vector superimposed to the double-averaged flow. It shows
that the orbit first moves close to the stable manifold towards the lower eccentricities,
withinwhichproximity it remains for sometime. Eventually, the unstablemanifold dy-
namics makes that the eccentricity starts to increase, and it continuously grows until
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Figure 11.12: Averaged flow in the parameters plane a = 1665 km, Icircular = 85∘.

Figure 11.13: Eccentricity vector (left) and altitude (right) of the Europa orbit with a = 1665 km, I =
85∘, and h0 = 0.

the orbiter impacts the surface of Europa. The right plot of Fig. 11.13 shows that the im-
pact happens after ≈ 57 days, but the orbit only remains below the maximum allowed
eccentricity eM = 0.01 for about one month.

On the other hand, if we repeat the computations arbitrarily choosing the initial
longitude of the node h = π

2 instead of 0, then the orbit takes now a different tour
and evolves much closer to the stable manifold of the double-averaged dynamics, as
shown in the left plot of Fig. 11.14. The right plot of Fig. 11.14 presents the radius evo-
lution superimposed to the previous case, showing that orbit lifetime is extended up
to about three months, and the time between prospective maneuvers is now doubled.

However, the choice of the initial longitude of the node in the double-averaged
perturbed Hill problem model is arbitrary. The important lifetime differences stem
from the fact that we are using mean elements as if they were osculating. And in this
particular example the (disregarded) periodic corrections needed for converting the
double-prime argument of the periapsis—the more sensitive variable to travel the sta-
ble manifold of the frozen orbit—into the osculating one are certainly much smaller
when h󸀠󸀠 = π

2 than when h
󸀠󸀠 = 0. However, this might not be the general case.
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Figure 11.14: Same as Fig. 11.13 when h0 = π
2 . The height over the surface of Europa (in dark grey) is

superimposed to the case h0 = 0 (light gray).

In order to guarantee that an arbitrary choice of h󸀠󸀠 allows one to get as close as possi-
ble to the stablemanifold, thus yielding a reasonably long lifetime, the computation of
the transformation mean to osculating variables is mandatory in the computation of
the initial conditions. On the other hand, it is well known that an unstable equilibrium
obtained after a normalization process can be viewed only like some kind of “land-
mark above the epicenter of a zone of chaotic dislocations” [168]. In consequence,
even after recovering the periodic effects removed in the averaging, one rarely will be
close enough to a maximum-lifetime solution [547].

11.4.1 Mean to osculating transformation

The periodic corrections of the mean to osculating transformation are computed from
the usual sequence given in Eq. (2.17). First of all, we compute the transformation from
double-prime to prime variables. Denoting ξ any canonical or non-canonical variable,
it takes the form

ξ 󸀠 = ξ 󸀠󸀠 + (ϑ̇/n)Δξ 󸀠󸀠 + 1
2
(ϑ̇/n)2δξ 󸀠󸀠,

where (ϑ̇/n)Δξ 󸀠󸀠 = {ξ 󸀠󸀠,𝒱1}, (ϑ̇/n)2δξ 󸀠󸀠 = {ξ 󸀠󸀠;𝒱2} + {Δξ 󸀠󸀠,𝒱1}, and the terms 𝒱1 and 𝒱2 of
the generating function are given in Eqs. (11.29) and (11.30), respectively.

The corresponding first-order corrections to the classical orbital elements are
Δa󸀠󸀠 = 0, and

Δe󸀠󸀠 = 15
32
eη[(1 + c)2 cos(2g + 2h) − (1 − c)2 cos(2g − 2h)], (11.43)

ΔI󸀠󸀠 = 15
32

s
η
[(1 + c)e2 cos(2g + 2h) + (1 − c)e2 cos(2g − 2h)

+
2
5
(2 + 3e2 + 12β

2

5η3
) cos 2h], (11.44)
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Δh󸀠󸀠 = 15
32

1
η
[(1 − c)e2 sin(2g − 2h) + (1 + c)e2 sin(2g + 2h)

−
2
5
c(2 + 3e2 + 12β

2

5η3
) sin 2h], (11.45)

Δg󸀠󸀠 = 15
32η
{(c − 1)(c − η2) sin(2g − 2h) − (1 + c)(c + η2) sin(2g + 2h)

+
2
5
[3e2 + (5c2 − 3)(1 + 6β

2

5η3
)] sin 2h}, (11.46)

Δℓ󸀠󸀠 = 15
32
{(1 + e2)[(1 + c)2 sin(2g + 2h) − (1 − c)2 sin(2g − 2h)]

+
2
5
(7 + 3e2 + 42β

2

5η3
)s2 sin 2h}, (11.47)

where the double-prime notation is omitted for brevity in the right side of the equa-
tions. The second-order corrections are made of much longer series. However, these
higher-order corrections are not too relevant for mission-design purposes and we can
safely ignore them.

For its part, the transformation from prime to original variables takes the form
ξ = ξ 󸀠 + 1

2 (ϑ̇/n
󸀠)2δξ 󸀠, in which (ϑ̇/n󸀠)2δξ 󸀠 = {ξ 󸀠,𝒲2} and 𝒲2 is given in Eq. (11.27).

Now, in spite of these corrections being of second order, we cannot completely ne-
glect them. Indeed, the short-period correction to the argument of the periapsis, which
is a fundamental design parameter in our case, (ϑ̇/n󸀠)2δg󸀠 = {g󸀠,𝒲2} = 𝜕𝒲2/𝜕G󸀠 in-
volves differentiation of the eccentricity with respect to the total angular momentum
𝜕e/𝜕G = −η2/(eG). Therefore, the appearance of the eccentricity in denominatorsmag-
nifies the effect of the short-period correction to the argument of theperigee,which can
no longer be considered of higher order.

An analogous situation occurs with the short-period correction to the mean
anomaly, yet an accurate value of ℓ is not of worry for mission-design purposes.
Precisely because of that, the trigonometric terms of the series defining the short-
period corrections, whose arguments involve both the eccentric and true anomalies
and the argument of the periapsis and the longitude of the node in the rotating frame
can be radically abbreviated. Indeed, the mean anomaly is absent for the corrections
from double-prime to prime variables, so one can always assume that the initial value
ℓ󸀠󸀠 is chosen in such a way that ℓ󸀠 = 0, and, therefore, both the true and the eccentric
anomalies also vanish in the prime variables. In addition, because eM is relatively
small, the second-order correction δg󸀠 is further simplified by expanding it in powers
of the eccentricity. We obtain the manageable form

δg󸀠 =
1
∑
j=−1
∑
k≥0

Γk,j(β, γ)e
k−1 sin(2g󸀠 + 2jh󸀠), (11.48)

where, up to k = 1,

Γ0,±1 =
1
10
(3β2 − 10)(γ ± 1)2,
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Γ0,0 = (2 − β
2)(γ2 − 1),

Γ1,±1 =
3
80
(γ ± 1)[3β2(11γ ± 7) − 10(γ ± 2)],

Γ1,0 = −
3
8
[β2(11γ2 − 7) − 2γ2 + 4].

Needless to say that the appearance of divisions by the eccentricity makes the use
of Eq. (11.48) inadequate for the computation of short-period corrections of almost cir-
cular orbits. This is not the current case, however, in which, quite on the contrary, the
eccentricity is chosen to be non-negligible to initiate the tour over the stable manifold
of the circular frozen orbit. Nevertheless, if desired, computation of the corrections in
nonsingular variables is straightforward [389].

11.4.2 Mapping orbits

To be consequent with these truncations, analogous simplifications are carried out in
Eqs. (11.43)–(11.47) neglecting terms𝒪(e2), and thus making η = 1. Besides, Eq. (11.47)
can be completely ignored, as we already did with the correction δℓ󸀠, and the tests can
be constrained to the single case in which ℓ0 = 0. Moreover, on account of the high
inclinations of mapping orbits, in addition to the low eccentricities, we can assume
γ2 ∼ e ∼ ϑ̇/n and further simplify the periodic corrections to first-order effects. Also,
as we already did with the mean anomaly, we may fix the initial longitude of the node
in the rotating frame to some particular value. If we make this value zero, we obtain
the extremely simple first-order corrections [389]

ΔI = ϑ̇
n
3
8
(1 + 6

5
β2) sin I ,

Δg = − ϑ̇
n
[
15
8
cos I + ϑ̇/n

e
(2 − 4

5
β2)] sin 2g,

where quantities in the right sides are functions of the double-prime variables. That is,
a good set of initial conditions to travel the stable manifold of the (unstable) circular
frozen orbit is obtained directly from the double-averaged dynamics by choosing a =
a󸀠󸀠, e = e󸀠󸀠, I = I󸀠󸀠 + ΔI, g = g󸀠󸀠 + Δg, and h = ℓ = 0.

When we apply these corrections to the previous example with h = 0, we obtain
ΔI = 0.0162023 and Δg = 0.0851895. That is, we have a correction of about 1∘ to the
initial inclination and of almost 5∘ to the initial argument of the periapsis. When we
propagate the corrected initial conditions we find that, on average, the orbit moves
more closely to the stable manifold of the frozen orbit, extending lifetime to about five
months, in four of which the eccentricity remains within operational limits. This is
illustrated in Fig. 11.15, where the evolution of the radius is superimposed to the case
in which the periodic corrections are not applied.
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Figure 11.15: Lifetime improvement of the Europa orbiter after correcting the initial conditions of the
double-averaged flow with periodic terms.

Due to the unstable dynamics, nomajor improvements are expected froma refinement
of the periodic corrections taking the full expressions into account, yet theymay result
fromahigher-order computationof the long-termdynamics. On the other hand, longer
lifetimes can be obtained making minor adjustments to the initial mean eccentricity.
Indeed, simply choosing e󸀠󸀠0 = 0.0099, which yields changes inωS of the order of 10−7,
lifetime is extended for almost one additional month. Moreover, after a few trials, we
found that choosing amean eccentricity e = 0.0098738223 extends the orbit’s lifetime
to more than one year, in agreement with analogous results in [427] based on repeat
ground-track periodic orbit design.

The different trials made are summarized in Fig. 11.16, where numbers in the axis
of abscissas indicate time between prospective maneuvers in each particular case. We
remark that the final numerical refinement of the mean eccentricity is clearly differ-
ent from, and apparently more effective than, the final refinement of the osculating
argument of the periapsis advocated by other authors; cf. [547].

Figure 11.16: Altitude evolution of the Europa orbit with a = 1665 km under the different corrections
to the mean elements.
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12 Motion about the libration points
Periodic orbits about the librationpoints of theHill problemare known to exist beyond
the linearized dynamics discussed in §10.2.2 [515]. As an alternative to the numerical
approach outlined in §10.2.3, the nonlinear effects that determine the dynamics of the
main families of periodic orbits far from the equilibria can be approached analytically
byHamiltonianperturbations. Theperturbation solution in this chapter is constructed
by a chain of canonical transformations that reduces the Hill problemdynamics in the
vicinity of the libration points to a one-degree-of-freedom Hamiltonian [396, 424].

The sequence of canonical transformations starts by a translation of the origin
to the libration point, which sets the Hill problem Hamiltonian in a form amenable
to perturbation treatment. Next, a linear transformation decouples the zeroth-order
term of the Hamiltonian into a hyperbolic term and two harmonic oscillators of close
frequencies. The latter are conveniently rewritten in the form of a perturbed elliptic
oscillator after standard detuning [283].

The traditional way is then to carry out the reduction to the center manifold in
order to eliminate the hyperbolic components of the motion by means of a Lie trans-
formation. After that, the reduced dynamics can be approached, without constraint
to any energy level, with standard tools of nonlinear dynamics like the computation
of periodic orbits. Alternatively, for energy levels close enough to that of the libration
points, a final reduction of the Hill problem Hamiltonian to a one-degree-of-freedom
Hamiltonian can be achieved by an additional Lie transformation that removes the
short-period terms. On the other hand, the reduction to the center manifold and the
following removal of short-period terms can be combined into a single Lie transforma-
tion that is effectively approached in complex variables, whose practicality in dealing
with perturbed harmonic motion was already illustrated in §3.2.7.

Integral manifolds of the reduced dynamics turn out to be spheres, on which the
flow is advantageously described using the Hopf coordinates [300]. The equilibria of
the normalized Hamiltonian flow clearly reveal the main families of periodic orbits
originated from the libration points dynamics. Namely, we have the families of planar
and vertical Lyapunov orbits, the family of halo orbits, and the two-lane bridge of
periodic orbits that connects the families of planar and vertical Lyapunov orbits. The
use of Deprit’s Lissajous variables [160] thenmakes easier the analytical computation
of each of these particular orbits.

12.1 Perturbation solution

The known symmetries of theHill problemallowone to reduce the study of the dynam-
ics about the libration points to just one of them, say (rH,0,0), where the Hill radius
rH = 3−1/3 was previously defined in Eq. (10.26).

https://doi.org/10.1515/9783110668513-012
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To study the dynamics about the libration point, the origin is first translated to
(rH,0,0) making the transformation (x󸀠,X󸀠) 󳨃→ (x,X), with x = (x, y, z) and X =
(X,Y , Z), given by

x󸀠 = rH + x, y󸀠 = y, z󸀠 = z, X󸀠 = X, Y 󸀠 = Y + rH, Z󸀠 = Z. (12.1)

This transformation is canonical and turns Eq. (10.18) into the new Hamiltonianℋ󸀠 =
ℋ(x(x󸀠,X󸀠),X(x󸀠,X󸀠)) given by

ℋ󸀠 =
1
2
(X󸀠 2 + Y 󸀠 2 + Z󸀠 2) − (x󸀠Y 󸀠 − y󸀠X󸀠) + 1

2
(y󸀠 2 + z󸀠 2) − x󸀠 2 − x

󸀠

r2H
−
1
r
, (12.2)

where now r = [(x󸀠 + rH)2 + y󸀠 2 + z󸀠 2]1/2. That is,

r = rH√1 − 2(r󸀠/rH) cosψ + (r󸀠/rH)
2,

with cosψ = −x󸀠/r󸀠, and r󸀠 = √x󸀠 2 + y󸀠 2 + z󸀠 2 is the distance to themassless body from
the libration point.

When the ratio r󸀠/rH is small the inverse of the radius in Eq. (12.2) can be replaced
by the usual expansion in Legendre polynomials Pn(cosψ), yielding

ℋ󸀠 = ∑
n≥0

ϵn

n!
ℋn, (12.3)

where ϵ is a formal small parameter that indicates the magnitude of the ratio r󸀠/rH,
the zeroth-order term

ℋ0 =
1
2
(X󸀠 2 + Y 󸀠 2) − (x󸀠Y 󸀠 − X󸀠y󸀠) + 2(y󸀠 2 − 2x󸀠 2) + 1

2
(Z󸀠 2 + 4z󸀠 2), (12.4)

is integrable due to its quadratic character, and, for n ≥ 1, the perturbation terms

ℋn = −
1
rH
(
r󸀠

rH
)
n+2

Pn+2(cosψ) (12.5)

are homogeneous polynomials of degree n + 2, with monomials

Mκ = qκx
󸀠m1X󸀠m2y󸀠m3Y 󸀠m4z󸀠m5Z󸀠m6 , κ = (m1,m2,m3,m4,m5,m6), (12.6)

wheremi, i = 1, . . . 6, are positive integers and qκ are numeric coefficients.

12.1.1 The center manifold

The linearized dynamics about the libration points was already discussed in §10.2.1,
where it was shown that the motion in the z-axis direction decouples from the rest of
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the flow and is made of harmonic oscillations of frequency ν = 2, given by Eq. (10.27).
This behavior is now directly observed from Eq. (12.4), where the last summand
matches the Hamiltonian of a simple harmonic oscillator ℋO =

1
2 (Z

2 + ν2z2). The
reduced linear flow

(ẋ󸀠, ẏ󸀠, Ẋ󸀠, Ẏ 󸀠)τ = 𝕄(x󸀠, y󸀠,X󸀠,Y 󸀠)τ, (12.7)

with𝕄 given in Eq. (10.30) and τ denoting transposition, remains coupled and gives
rise to elliptic and hyperbolic components stemming from the characteristic expo-
nents in Eqs. (10.33) and (10.34), respectively.

On the other hand, the Hamiltonian in separate variables

𝒦0 = λx1X1 +
1
2
(Y2

1 + ω
2y21) +

1
2
(Z21 + ν

2z21 ), (12.8)

with λ, w, and ν, given by Eqs. (10.33), (10.34), and (10.28), respectively, enjoys the
same dynamical behavior in the subindex-1 variables as Eq. (12.4). Disregarding oscil-
lations in the z-axis direction, the flow stemming from Eq. (12.8) is

(

ẋ1
ẏ1
Ẋ1
Ẏ1

) =𝕄1(

x1
y1
X1
Y1

), with𝕄1 = (

λ 0 0 0
0 0 0 1
0 0 −λ 0
0 −ω2 0 0

). (12.9)

Then the question of whether a canonical transformation (x󸀠,X󸀠) → (x1,X1) exists
such that it transforms ℋ0 into 𝒦0 emerges naturally. The transformation certainly
exists and is linear

(x󸀠, y󸀠,X󸀠,Y 󸀠)τ = 𝔸(x1, y1,X1,Y1)
τ. (12.10)

The matrix of constant coefficients 𝔸 = 𝔸(ai,j) is solved from the linear system ob-
tained by replacing Eq. (12.10) and its time derivative into the right and left sides of
(12.7), respectively. Then Eq. (12.9) is in turn plugged into the left side of (12.7), to fi-
nally obtain 𝔸𝕄1 = 𝕄𝔸, which is an underdetermined linear system that gives rise
to a family of solutions depending on two parameters [424].

Different diagonalizing transformations may be used depending on the context
[161, 696], but the traditional computation of the matrix 𝔸 is based on the eigenvec-
tor decomposition of𝕄 [329]. When this decomposition is applied to Eq. (10.30), we
obtain

𝔸 =(

2λ/σ 0 −2λ/σ 2/υ
(λ2 − 9)/σ −(ω2 + 9)/υ (λ2 − 9)/σ 0
(λ2 + 9)/σ (9 − ω2)/υ (λ2 + 9)/σ 0
λ(λ2 − 7)/σ 0 λ(7 − λ2)/σ −(ω2 + 7)/υ

), (12.11)

with σ = 4√λ(2λ2 − 9), υ = 2√2(2ω2 + 9).
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As alreadydiscussed in §10.2.2, the removal of the hyperbolic direction is achieved
in the linearized dynamics by a simple choice of initial conditions. This is immediately
noted in Hamiltonian (12.8), which admits the integrals Jx = x1X1, Jy = Y2

1 + ω
2y21 , and

Jz = Z21 + ν
2z21 , defining corresponding invariant manifolds of the linearized motion

for given particular values of each integral. In particular the saddle component is re-
moved when the motion is constrained to the manifold Jx = 0, which, therefore, is of
the center × center type. Therefore, the manifold Jx = 0 is called the center manifold.

When the transformation defined by Eqs. (12.10)–(12.11) is applied to all the terms
of the perturbation Hamiltonian (12.3), we obtain

𝒦 = ∑
n≥0

ϵn

n!
𝒦n(x1,X1), (12.12)

in which Jx is no longer an integral. However, we will see that the existence of an inte-
gral encapsulating the unstable components of themotion, aswell as the concomitant
center manifold, can be extended to the nonlinear terms of the transformed Hamilto-
nian (12.12).

The procedure for extending the integral Jx to the nonlinear terms of Eq. (12.12) is
called the reduction to the centermanifold, and consists infindinga canonical transfor-
mation (x1,X1) 󳨃→ (x2,X2) that converts Eq. (12.12) into a normal form in the variables
with subindex 2, such that all the monomials (12.6) with m1 ̸= m2 are removed from
the Hamiltonian [237]; cf. [250].

The normalization is efficiently approached by Lie transforms and, after trunca-
tion to a certain order n = ñ, yields the normalized Hamiltonian

𝒦(x1(x2,X2),X1(x2,X2)) =
ñ
∑
n≥0

ϵn

n!
𝒦n(y2, z2,Y2, Z2; J

󸀠). (12.13)

That J󸀠 = x2X2 is a (formal) integral of the truncated Hamiltonian is checked from
dJ󸀠/dt = {J󸀠,𝒦} = 0. The Hamiltonian (12.13) is, then, in the required normal form,
and, therefore, can be particularized for the center manifold J󸀠 = 0.

12.1.2 Homological equation in complex variables

On the other hand, the structure of the center manifold is effectively obtained from a
normal form that captures both the hyperbolic dynamics normal to the center mani-
fold and the elliptic dynamics on the center manifold. Due to the polynomial nature
of the perturbation, the normalization is best addressed in complex variables

y1 =
v + iV
√2ω
, z1 =

w + iW
√2ν
, Y1 = √

ω
2
(V + iv), Z1 = √

ν
2
(W + iw), (12.14)
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by which we cast Eq. (12.18) into the form 𝒦0 = λuU + iωvV + iνwW , in which x1 = u,
X1 = U, whereas the perturbation terms remain as monomials of the type of Eq. (12.6)
also in the complex variables.

The Lie derivative (2.49) is

ℒ0 = λ(u
d
du
− U d

dU
) + iω(v d

dv
− V d

dV
) + iν(w d

dw
−W d

dW
), (12.15)

and to convert Hamiltonian (12.12) in complex variables into the normal form,wemust
remove the terms that donot pertain to the kernelℒ0(Mκ⋆ ) = 0.When theLie derivative
(12.15) is applied to the general monomial in Eq. (12.6) we obtain

ℒ0(Mκ) = [λ(m1 −m4) + iω(m2 −m5) + iν(m3 −m6)]Mκ ,

which shows that the kernel is characterized by those monomialsMκ⋆ such thatm1 =
m4, m2 = m5, and m3 = m6. In a Hamiltonian made of such kinds of monomials,
J = uU, L1 = ivV , and L2 = iwW , remain constant.

Then, for a term of the image of the Lie derivative Mκ ̸= Mκ⋆ , the homological
equation in complex variables is solved without need of integration by noting that

ℒ−10 (Mκ) =
Mκ

λ(m1 −m4) + iω(m2 −m5) + iν(m3 −m6)
. (12.16)

However, the transformation derived from a generating function obtained from
Eq. (12.16) is valid only for non-resonant motion. Small divisors that may occur in the
manifold J, in which m1 = m4, when (m2 − m5)/(m6 − m3) ≈ ν/ω will prevent con-
vergence of the perturbation solution close to resonances, a case that needs specific
treatment. Of particular interest is the 1:1 resonance, which begets relevant solutions
of the libration point dynamics and gives rise to the family of halo orbits. Rather than
using one solution for the non-resonant case and another one for the 1:1 resonance
[103], both cases are effectively encompassed in a single analytical solution [396, 564].

12.1.3 Detuning. The perturbed elliptic oscillator

To cope with the 1:1-resonant dynamics, the unperturbed frequency of the oscillations
in the z direction iswritten in the form ν = ω√1 − δ,where, on account of the particular
values of ν in Eq. (10.28) and ω in Eq. (10.33),

δ = 1
27
(23 − 8√7) ≈ 0.068,

is a “detuning” parameter [283, 657] whose value is about one tenth of the Hill radius
rH = 3−1/3.
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The frequency of the oscillations of the unperturbed problem in the z direction is
then detuned bymoving the term − 12δω

2z21 to the perturbation part. That is, Eq. (12.12)
is rearranged in the form

𝒦 = ∑
n≥0

ϵn

n!
𝒦∗n , (12.17)

in which the zeroth-order term is

𝒦∗0 = λx1X1 +
1
2
(Y2

1 + ω
2y21) +

1
2
(Z21 + ω

2z21 ), (12.18)

consisting of the Hamiltonian of an elliptic oscillator in 1:1 resonance in addition to
the hyperbolic part. The first-order term is𝒦∗1 = 𝒦1 −

1
2δω

2z21 , and the remaining terms
stay unaltered; that is 𝒦∗n = 𝒦n (n > 1).

The transformation to complex variables is next applied by particularizing
Eq. (12.14) to the case ν = ω. In this way, Eq. (12.18) turns into

𝒦∗0 = λuU + iω(vV + wW). (12.19)

Accordingly, the Lie derivative is

ℒ0 = λ(u
d
du
− U d

dU
) + iω(v d

dv
− V d

dV
+ w d

dw
−W d

dW
), (12.20)

from which

ℒ0(Mκ) = [λ(m1 −m4) + iω(m2 −m5 +m3 −m6)]Mκ (12.21)

shows that, now,monomialsMκ⋆ belonging to the kernel of the Lie derivative are char-
acterized by m1 = m4 and m2 + m3 = m5 + m6 =

1
2σ, where σ = m2 + m3 + m5 + m6

is even. The solution of the homological equation is simple analogously to Eq. (12.16),
which is replaced by

ℒ−10 (Mκ) =
Mκ

λ(m1 −m4) + iω(m2 −m5 +m3 −m6)
. (12.22)

In particular, the monomials uU, vV ,wW , vW , andwV belong to the kernel of the
Lie derivative (12.20). Moreover, becausem2 (resp.m6) is either smaller than, or equal
to, or greater thanm5 (resp.m3), for a term of the kernel we find
– m2 = m5: vm2wm3Vm5Wm6 = (vV)m2 (wW)m3

– m2 = m5 +m0: vm2wm3Vm5Wm6 = (vV)m5 (wW)m3 (vW)m0

– m5 = m2 +m0: vm2wm3Vm5Wm6 = (vV)m2 (wW)m6 (wV)m0

Therefore, the kernel of the Lie derivative (12.20) is generated precisely by these five
types of monomials [136, 160]. However, while terms J = uU of the kernel are easily
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identified with the conjugate momentum to the hyperbolic coordinate ψ = log√u/U,
the other four types ofmonomials in complex variables are not immediately identified
with momenta conjugated to some either explicit or ignorable canonical variable.

Thing are much clearer when using the canonical set of Deprit’s Lissajous vari-
ables (ℓ, g, L,G), defined by the transformation from Cartesian variables [160],

y = s cos(g + ℓ) − d cos(g − ℓ), (12.23)
z = s sin(g + ℓ) − d sin(g − ℓ), (12.24)
Y = −ω[s sin(g + ℓ) + d sin(g − ℓ)], (12.25)
Z = ω[s cos(g + ℓ) + d cos(g − ℓ)], (12.26)

where s ≡ s(L,G;ω) and d ≡ d(L,G;ω) are the state functions

s = √L + G
2ω
, d = √L − G

2ω
. (12.27)

At a given time, Deprit’s Lissajous variables characterize a pair of ellipses. The rela-
tions G = ωab, L = 1

2ω(a
2 + b2), define the semimajor a and semiminor axis |b| (resp.

ωa andω|b|) of an ellipse in the y, z plane (resp. Y , Z) centered at the origin. The angle
g defines the direction of the semiminor axis with respect to the y axis, whereas the
angle ℓmeasures the elliptic anomaly from the semiminor axis [160].

The transformation fromDeprit’s Lissajous variables to complex variables is read-
ily obtained from Eq. (12.14), with ν replaced by ω, and Eqs. (12.23)–(12.26). Hence,

v = √ 1
2
ω[(s − d) cos g + i(d + s) sin g](cos ℓ + i sin ℓ),

w = √ 1
2
ω[(s − d) sin g − i(d + s) cos g](cos ℓ + i sin ℓ),

iV = √ 1
2
ω[(s − d) cos g − i(d + s) sin g](cos ℓ − i sin ℓ),

iW = √ 1
2
ω[(s − d) sin g + i(d + s) cos g](cos ℓ − i sin ℓ),

from which we immediately check that the monomials vV , wW , vW , and wV are free
from the elliptic anomaly ℓ. In consequence, the kernel of the Lie derivative remains
of one degree of freedom in the pair of conjugate variables (g,G), whereas

J ≡ uU , L ≡ i(vV + wW), (12.28)

are the two integrals to be normalized by Lie transforms, and, after normalization,will
parameterize the reduced flow, as checked in Eq. (12.19).

Moreover, after normalization, for a given manifold L = constant, the reduced
(g,G) dynamics in the center manifold J = 0 takes place on a two-dimensional sphere
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[134, 373]. This fact is immediately disclosed when using the Hopf coordinates [300]

I1 =
1
2
i(wW − vV), I2 = −

1
2
i(vW + wV), I3 =

1
2
(vW − wV), (12.29)

which are linked by the constraint

I20 = I
2
1 + I

2
2 + I

2
3 =

1
4
L2. (12.30)

12.1.4 Hamiltonian normalization

Normalization in complex variables is achieved through a single Lie transformation
whose construction is straightforward because it only involves a polynomial algebra.
That is, after rewriting the detuned Hamiltonian (12.17) in complex variables using
Eqs. (12.14) with ν = ω, we obtain

𝒦 = ∑
n≥0

ϵn

n!
𝒦∗n,0(u, v,w,U ,V ,W). (12.31)

Then a Lie transformation (u, v,w,U ,V ,W) 󳨃→ (u󸀠, v󸀠,w󸀠,U 󸀠,V 󸀠,W 󸀠; ϵ) is constructed
based on the properties of the fundamental equation (12.21) to normalize the Hamil-
tonian (12.31) up to some truncation order. After normalization, the quantities J and L
in Eq. (12.28), which are now written in prime variables, become formal integrals.

Dropping the prime notation for brevity, the first few terms of the normalized
Hamiltonian

𝒩 = ∑
n≥0

ϵn

n!
𝒦∗0,n(v,w,V ,W ; J) (12.32)

are, cf. [424],

𝒦∗0,0 = iω(vV + wW),

𝒦∗0,1 = −
1
2
iωδwW ,

𝒦∗0,2 = −
1
4
iωδ2wW + rH[−iλω(

2994
4837

vV + 349ω
2 + 3737
9674

wW)J

−
4683ω2 + 7263

38696
J2 + 4683ω

2 + 2103
38696

v2V2 +
484ω2 − 193

4146
w2W2

−
23ω2 − 89

42
vVwW + 15235ω

2 − 41269
38696

(v2W2 + V2w2)],

𝒦∗0,3 = −
3
8
iδ3ωwW + δrH[i

331467ω2 − 2387193
13369468

λωJwW

−
109ω2 − 619

84
vVwW + 12286157ω

2 − 60125147
13369468

(v2W2 + V2w2)

+
515150ω2 − 1475408

1432443
w2W2].
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12.2 Reduced dynamics in the center manifold

The hyperbolic dynamics is removed by constraining the motion to the center mani-
fold J = 0. Besides, Eq. (12.32) is readily expressed in the Hopf variables based on the
relations wW = −i(I1 + I0), vV = i(I1 − I0), vW = iI2 + I3, and Vw = iI2 − I3, which are
readily obtained from Eqs. (12.29) and (12.30). The variation equations of the reduced
Hamiltonian flow are readily derived in the Hopf variables taking into account that
{I1, I2} = I3, {I2, I3} = I1, {I3, I1} = I2. Namely,

̇Ii =
dIi
dt
= {Ii;𝒩 } =

3
∑
j=1
{Ii; Ij}
𝜕𝒩
𝜕Ij
, i = 1, 2, 3.

Thus,𝒩0,0 = ωL is constant and, at the first order,

𝒩0,1 = −
1
4
δωL − 1

2
δωI1. (12.33)

Hence, ̇I1 = 0, ̇I2 =
1
2δωI3, ̇I3 = −

1
2δωI2, whose solution yields circular motion in the

(I2, I3) plane, of radius
1
2 (L

2 − 4I21 )
1/2 and frequency 1

2δω. That is, orbits of the reduced
dynamics transit parallel circles I1 = const. on the sphere, which reduce to stable equi-
libria at the poles I1 = ±

1
2L. As we will further detail in §12.2.3, these equilibria agree

with the small oscillations described in §10.2.2. However, the descriptions provided by
the linearized Hamiltonian (12.33) constrain to energy values very close to the energy
of the libration points.

At second order we find

𝒩0,2 = 2![
1
4
δ𝒩0,1 − k1L

2 + k2LI1 − k3(I
2
1 − I

2
2 ) + k4I

2
3], (12.34)

in which the numeric coefficients

k1 =
1
12
(1097 + 110641ω2)k0,

k2 =
2
3
(11713 + 497ω2)k0,

k3 = (841 − 79ω
2)k0,

k4 = −(329311 − 121801ω
2)k0,

with k0 = rH/154784 ≈ 4.5 × 10−6, are strictly positive irrational numbers (k1 ≈ 0.18,
k2 ≈ 0.041, k3 ≈ 0.002, k4 ≈ 0.87). After neglecting constant terms, the reduced flow
is derived from the non-trivial second-order Hamiltonian

ℐ = (k2L − ωδ
∗)I1 + k3(I

2
2 − I

2
1 ) + k4I

2
3 , (12.35)

where we abbreviated δ∗ = 1
2δ +

1
8δ

2 ≈ 0.03454. Strikingly, Eq. (12.35) is a particular
case of the Zhukovsky–Volterra Hamiltonian describing the motion of a free gyrostat
[41, 672, 700].
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12.2.1 Visualization of the reduced flow

The orbitsO(I1, I2, I3) on the sphere result from the intersection of the two-dimensional
surfaces materialized by the sphere (12.30) and the Hamiltonian (12.35), and can be
obtained without need of integrating the differential equations of the flow. Indeed,
for given values of the formal integral L and the “energy” ℐ = E, the orbit is obtained
like O(I1, L,E), by eliminating I3 (resp. I2) between Eqs. (12.30) and (12.35). We readily
obtain

I22 = −
(k3 + k4)I21 + (δ

∗ω − k2L)I1 + E −
1
4L

2k4
k4 − k3

,

I23 =
2k3I21 + (δ

∗ω − k2L)I1 + E −
1
4L

2k3
k4 − k3

,

where, for each pair (E, L), the value of I1 must be constrained to the subset of the
closed interval [− 12L,

1
2L] where both I2 and I3 take real values.

Figure 12.1 was constructed this way and illustrates the qualitative changes un-
dergone by the reduced flow for increasing values of the dynamical parameter L. For
clarity, the radius of the different spheres is normalized to 1. Thus, for small values of L
we find two fixed points of the elliptic type at I1 = ±

1
2L, and circulatory motion around

them (first row of Fig. 12.1). Increasing the value of L turns the fixed point (− 12L,0,0)
into hyperbolic in a bifurcation process in which two additional fixed points of the el-
liptic type appear in the meridian I2 = 0 (second row of Fig. 12.1). Further increasing
L displaces the elliptic points (I1,0, ±I3) towards the “north” and “south” poles of the
sphere (third row of Fig. 12.1). Eventually, the fixed point (− 12L,0,0) becomes elliptic
again in a new bifurcation process, in which two fixed points of the hyperbolic type
appear at the “equator” I3 = 0 of the sphere (fourth rowof Fig. 12.1). For still higher val-
ues of L these symmetric points (I1, ±I2,0)migrate along the equator until they finally
collapse at ( 12L,0,0) which then changes its type to hyperbolic (fifth row of Fig. 12.1).
No further qualitative changes of the reduced flow are observed for increasing values
of L.

12.2.2 Equilibria and bifurcations. Analytical computation

The flow stemming from Hamiltonian (12.35) is obtained from the integration of

̇I1 = −2(k4 − k3)I2I3, (12.36)
̇I2 = 2(k4 + k3)I1I3 + (δ

∗ω − k2L)I3, (12.37)
̇I3 = 4k3I1I2 − (δ

∗ω − k2L)I2. (12.38)

Remarkably, this differential system becomes analogous to the Euler equations for the
free rigid body rotation if L = L̃ = δ∗ω/k2, a case in which the closed-form solution is
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Figure 12.1: From top to bottom, opposite views (left/right col.) of the bifurcation sequence of the
Hamiltonian flow (12.35) for increasing values of L. Reprinted by permission from Springer [396].

obtained in terms of Jacobi elliptic functions. Rather than pursuing the general solu-
tion, we are satisfied with computing the equilibria previously visualized, as well as
the parameter values at which the bifurcations take place.
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The equilibria are in full agreement with what was anticipated by depicting the
flow. Indeed, that the points

E±1 = (±
1
2
L,0,0) (12.39)

are always equilibria results from the vanishing of Eqs. (12.36)–(12.38) when I2 =
I3 = 0. When I2 = 0 and I3 ̸= 0 Eqs. (12.36) and (12.38) identically vanish, but for
Eq. (12.37) to vanish it is required that

I1 = I1,halo ≡
k2L − δ∗ω
2(k3 + k4)

⇒ |I3| = I3,halo ≡
1
2
√L2 − 4I21,halo.

If L > δ∗ω/(k2 + k3 + k4) ≈ 0.0768606 then |I3| > 0 and the two symmetric equilibria

E±2 = (I1,halo,0, ±I3,halo), (12.40)

also exist. Finally, Eqs. (12.36) and (12.37) vanish identically when I3 = 0, but to make
null Eq. (12.38) when I2 ̸= 0 we need

I1 = I1,Bridge ≡
k2L − δ∗ω

4k3
⇒ |I2| = I2,Bridge ≡

1
2
√L2 − 4I21,Bridge,

which in turn requires that δ∗ω/(k2 + 2k3) < L < δ∗ω/(k2 − 2k3), a case in which also
exist the two symmetric equilibria

E±3 = (I1,Bridge, ±I2,Bridge,0). (12.41)

It is simple to check that the bifurcation at L = δ∗ω/(k2 + 2k3) originates from E−1,
whereas the bifurcation at L = δ∗ω/(k2 − 2k3) stems from E1.

The usual linearization of the flow in Eqs. (12.36)–(12.38) could be used to show
that the stability of the equilibria is in agreement with the elliptic or hyperbolic char-
acter of the fixed points visualized in the previous section.

12.2.3 Partner orbits of the equilibria in the center manifold

The equilibria of the reduced phase space correspond to particular orbits of the Hill
problemwhosedynamical characteristics are easily identifiedwith thehelp ofDeprit’s
Lissajous canonical variables. To do that, theHopf variables arewritten in terms of the
Lissajous variables defined in Eqs. (12.23)–(12.27). Namely,

I0 =
1
2
L, I1 = ωsd cos 2g, I2 = ωsd sin 2g, I3 =

1
2
G, (12.42)

which provide other evidence of the removal of short-period effects related to the el-
liptic anomaly ℓ carried out in the normalization process.
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Thus, in the case of the equilibria E±1 and E±3, given by Eqs. (12.39) and (12.41),
respectively, Eq. (12.42) shows that G = ωab = 0. That is, on average, either a or |b|,
the semi-axes of the Lissajous ellipse, vanishes, thus yielding rectilinear oscillations
on the center manifold. Because g = 0 for E1, the harmonic oscillations are in the
z1 direction, as follows from Eqs. (12.23)–(12.26). On the contrary, g = π

2 for E−1, and
the oscillations take place in the y1 direction. In the case of the two equilibria E±3,
the constant value g ̸= 0 is determined from the components I1 and I2 in Eq. (12.41),
and the oscillations take place on the (y1, z1) plane. Finally, in the case of E±2, given
in Eq. (12.40), because G ̸= 0 both semi-axes have nonzero values, thus yielding, on
average, elliptic motion on the center manifold. The elliptic oscillations take place
in the (y1, z1) plane, and the area of the ellipse πa|b| = π|G|/ω depends on the value
|G| = 2I3,halo.

To recover the original dynamics in Cartesian variables,weneedfirst to comeback
from the normalized to the subindex-1 variables, and then to use the linear transfor-
mation in Eq. (12.10). Then one finds that the equilibria of the reduced dynamics on
the sphere match the familiar periodic orbits of the Hill problem about the libration
points. Specifically, the Lyapunov planar orbits are the partners of the E−1 equilibria,
and the Lyapunov vertical orbits are the partners ofE1. The two branches of halo orbits
correspond to the E±2 equilibria, whereasE±3match the two-lane bridge of periodic or-
bits that link the Lyapunov planar orbits with the vertical ones.

Due to the truncation order of the perturbation approach, the analytical solution
will not provide exact periodic orbits of the Hill problem. However, the initial condi-
tions provided by the perturbation solution are readily improved with the help of a
differential-corrections algorithm to get the desired periodic orbit. Some of these algo-
rithms need to be fed with an approximation of the period T, which can be estimated
from the normalized variables from the rate of variation of the eccentric anomaly
dℓ/dt = 2π/T. After writing Eq. (12.35) in Deprit’s Lissajous variables using Eq. (12.42),
the latter is obtained from Hamilton equations. In particular, if we limit to first-order
effects, then𝒩 = ωL − 1

4δω(L + 2ωsd cos 2g), from which

dℓ
dt
= ω − 1

4
δω(1 + 1

√1 − G2/L2
cos 2g), (12.43)

where the needed values g,G, and L, are computed from Eq. (12.42) after replacing the
Hopf variables by the values taken at the corresponding equilibria.

For the second-order truncation of the analytical solution hitherto discussed this
procedure is successful only for energy values close to the energy of the libration point
equilibrium (small values of L), which, therefore, exclude the computation of halo
orbits as well as orbits of the bridge family. However, the validity of the perturbation
solution is extended with the straightforward computation of higher orders, as it was
already anticipated with the explicit presentation of the term𝒦∗0,3 of the Hamiltonian
(12.32).
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12.3 Higher orders

Extension of the Hamiltonian normalization in complex variables (12.31) to higher or-
ders is just a matter of mechanizing operations [424]. After reformulation in the Hopf
variables, the higher-order normalized Hamiltonian takes the form

ℐ = ωL + ∑
n≥1

1
n!
ℐn(I1, I2, I3; L). (12.44)

This normalized polynomial involves powers of the Hopf coordinates higher than 2,
and, therefore, the orbits of the reduced flow cannot be solved explicitly as was previ-
ously done in §12.2.1. Alternatively, the flow is efficiently visualized by depicting con-
tour plots of ℐ(I1, I2, I3; L) = E. In particular, the flow is rendered in real time with the
technique of painting Hamiltonians previously used in Fig. 5.6. This is illustrated in
Fig. 12.2 for a seventh-order truncation of Eq. (12.44).

Figure 12.2: Painting the phase space of the Hill problem about the libration points to show the
bifurcation of halo orbits from Lyapunov planar orbits (− 12 L,0,0).

On the other hand, in order to use the analytical solution for the computation of
libration-point orbits far away from the libration points, an accurate computation of
the different equilibria is required. The flow stemming from the Hamiltonian (12.44)
is now obtained from the differential system

̇I1 = I2I3 ∑
n≥0

F1,n(I1, I2, I3; L), (12.45)

̇I2 = I3 ∑
n≥0

F2,n(I1, I2, I3; L), (12.46)

̇I3 = I2 ∑
n≥0

F3,n(I1, I2, I3; L), (12.47)
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which still provides the same solutions as Eq. (12.39) for the Lyapunov orbits. Halo
orbits (I1,0, ±I3) also exist, but now the values I1 and hence I3 =

1
2√L

2 − 4I21 , as re-
sults from Eq. (12.30), are different from those in Eq. (12.40), and must be numerically
computed from the implicit equation in I1,

∑
n≥0

F2,n(I1,0, I3(I1; L); L) = 0, (12.48)

which makes Eq. (12.46) vanish. The value of L in which the halo orbits bifurcate from
the point (− 12L,0,0) is now given by the root∑n≥0 F2,n(

1
2L,0,0; L) = 0. Finally, the ana-

log equilibria (I1, ±I2,0) to those in Eq. (12.41) are computed by solving the implicit
equation in I2,

∑
n≥0

F3,n(I1, I2(I1; L),0; L) = 0, (12.49)

where, from Eq. (12.30), I2 =
1
2√L

2 − 4I21 . The bifurcation and termination points of
the two-lane bridge of periodic orbits linking planar and vertical Lyapunov orbits are
obtained from the computation of the roots of the implicit equation ∑n≥0 F3,n(

1
2L,0,

0; L) = 0.
The precision of the solution generally increases with the truncation order of the

perturbation theory.However, one should keep inmind the risks inherent to a futile es-
calation in accuracy. Indeed, if the computation of the perturbation solution is carried
out using integer arithmetic, the size of the integer numbers grows notably from one
order to the next one. For instance, at the 11th order of the perturbation approach we
found that the integer numbers to handle may involve more than 100 digits. This fact
makes memory allocation an issue that notably slows the computation of higher or-
ders, whose computational burden grows exponentially [424]. Computations are radi-
cally expeditedworking in real floating-point arithmetics, yet the propagation of trun-
cation errors due to the physical length of the computer’s registers must be carefully
traced in this case [100, 328]. In particular, the transformation from complex to real
variables produces some complex residuals, whose magnitude grows with the order
of the perturbation theory at a faster rate than the growing of the real terms. Because
this rate notably increases when the computations are extended beyond the order 15,
the 16th order is recommended as a practical limit of applicability of the perturbation
solution [424].

The construction of a higher-order analytical solution follows the steps outlined
above. That is, for the selected value of the dynamical parameter L—which is roughly
relatedwith the size of the orbit—the equilibrium in the reduced phase space of the de-
sired orbit (Lyapunov planar or vertical, halo, or pertaining to the bridge) is computed
first. It may require one to solve Eq. (12.48) for a halo orbit, or Eq. (12.49) in the case of
an orbit of the bridge. Then the corresponding Lissajous variables are computed and
translated into complex (prime) variables for a discrete number of values ℓ ∈ [0, 2π).
The (direct) Lie transformation of the normalization is then applied to recover the orig-
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inal dynamics in the subindex-1 variables. Finally, application of the linear transfor-
mation (12.10) will provide the original dynamics in Cartesian coordinates relative to
the libration point.

The accuracy of the analytical perturbation solution thus computed is assessed
by checking the periodicity Δ = max |ξi(T) − ξi(0)|, ξi ∈ (x, y, z,X,Y , Z), of the orbit ob-
tained by numerical propagation of one of the points provided by the analytical solu-
tion. This procedure is illustrated below with some examples for different truncations
of the higher-order solution, which we borrow from [424]. A systematic scan showing
the efficiency of the perturbation solution in an ample vicinity of the libration points
of the Hill problem can be found in [424].

12.3.1 Lyapunov orbits

Lyapunov orbits exist always for energies above that of the libration points. Low-order
truncations of the perturbation solution provide good approximations to the actual
dynamics of orbits of moderate amplitude, yet higher-order truncations are required
when the Lyapunov orbits grow in size.

Thus, for L = 0.01we found that the orbit predicted by the fourth-order truncation
matches its partner vertical Lyapunov orbit, but only at the precision of the graph-
ics, and the periodicity error is Δ ≈ 10−6 in Hill problem units. Periodicity improves
gradually with the truncation order of the perturbation solution, becoming smaller
than 10−10 at the 11th order. Analogous results are found for the Lyapunov planar or-
bit with L = 0.01, for which the 11th-order truncation yields Δ < 10−11. Errors slightly
improve when using higher-order truncations, yet the improvements become negligi-
ble beyond order 13 for both Lyapunov orbits.

As expected, higher-order truncations are needed when the Lyapunov orbits
evolve farther away from the libration points. Thus, for instance, when L = 0.2—that
is, more than one order of magnitude larger than in the previous example—a trunca-
tion order between seven and nine is needed for the analytical perturbation solution
to mimic the behavior of the actual orbit at the precision of the graphics. The accu-
racy of the 15th-order truncation of the analytical solution is Δ = 𝒪(10−6) in both
types of Lyapunov orbits, and no relevant improvements are found when extending
the perturbation solution to higher orders. Lyapunov orbits provided by the analyt-
ical solution for L = 0.2 are shown with gray dots in Fig. 12.3 superimposed to their
respective partner true periodic orbits (full lines). These plots are depicted in units of
the Hill problem, and the origin is the libration point.

12.3.2 Resonant orbits

The analytical perturbation solution predicts the bifurcation of halo orbits from Lya-
punov planar orbits when L = 0.0781869. On the other hand, because their size is
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Figure 12.3: Analytical vertical and planar Lyapunov orbits for L = 0.2 (dots) superimposed to their
partner, numerically integrated, periodic orbits (full lines).

large, we need higher-order truncations of the perturbation solution to mimic the ac-
tual dynamics. A sample resonant halo orbit for L = 0.2 is shown in the left plot of
Fig. 12.4. In this particular example, a ninth-order truncation of the analytical solu-
tion yields a periodicity error of the order of one thousandth. The quality of the an-
alytical solution gradually improves with higher-order truncations, yet we did not
find improvements beyond the 17th-order truncation, in which case the periodicity
is Δ = 𝒪(10−7).

Periodic orbits of the two-lane bridge linking both kinds of Lyapunov orbits only
exist for large values of L. Therefore, they may fall out of the range of validity of the
Legendre polynomials expansion carried out in Eq. (12.5). In spite of that, we have al-
ready shown that their existence is correctly predicted by the second-order truncation
of the reduced dynamics, yet their exactness notably varies depending on the trun-
cation used. For instance, while the 14th-order truncation finds the bifurcation from
a planar Lyapunov orbit at L = 0.834458, and the termination in a vertical Lyapunov
orbit at L = 1.0632, these values non-negligibly vary when using different approxima-
tions. We checked that the 14th-order truncation correctly predicts the existence of an
orbit of the bridge family for L = 0.9, as shown in the right plot of Fig. 12.4. Still, the
periodicity error is gross, Δ = 𝒪(10−2), and does not improvewith higher-order trunca-
tions. On the other hand, the initial conditions provided by the analytical solution are
amenable of being improved through differential corrections to converge to the true
periodic orbit.
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Figure 12.4: Resonant analytical orbits (gray dots) superimposed to their partner numerically inte-
grated periodic orbits (full lines). Left: halo orbit for L = 0.2. Right: orbit of the bridge family for
L = 0.9, in which the primary is depicted with a black spot. After [424].
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13 Quasi-satellite orbits
TheHill problemHamiltonian consists of quadratic terms except for the one represent-
ing the non-negligible interaction between the primary of smaller mass and the or-
biter, which otherwise will both evolve with pure Keplerian motion about the primary
of bigger mass. Because quadratic Hamiltonians give rise to linear dynamics, which is
integrable, when this last term is small the Hill problem admits a natural perturbation
arrangement in which the zeroth-order Hamiltonian comprises the quadratic terms
and the nonlinear interaction is taken like the perturbation. In particular, this per-
turbation Hamiltonian may be representative of the coorbital dynamics of the lighter
primary and the orbiter about the heavier primary.

As mentioned in the Introduction, conspicuous solutions of the coorbital motion
are the so-called quasi-satellite orbits, which exist out of the Hill sphere and are use-
ful in different astrodynamics applications. Because of that, a full description of the
computation of analytical perturbation solutions is provided here, yet limited to the
planar case. Like in previous chapters we hold formally the (superfluous) mass pa-
rameter and synodic rotation rate of the Hill problem due to the insight they provide
on the dynamics, but also because they permit the systematic check of dimensions as
an additional test to be applied to the analytical expressions obtained at each step of
the perturbation procedure.

On the one hand, the usefulness of perturbation solutions for mission designing
of artificial satellite missions is clearly illustrated in this chapter with the identifica-
tion of orbit design parameters that are derived from the formal integrals obtained
after the complete Hamiltonian reduction. On the other hand, the difficulties that may
be found in the computation of the average dynamics of restricted three-body models
are clearly manifested by the appearance of non-trivial integrals depending on spe-
cial functions. The latter not only make the closed-form solution difficult, but neither
admit a representation by fast-convergent series in this specific case.

13.1 Planar case. Epicyclic coordinates

In the planar case z = Z = 0, and the Hill problem Hamiltonian in Eq. (10.17) is now
arranged in the form

ℋ = ℋ0(x, y,X,Y ; ϑ̇) − μ/r, (13.1)

where r = √x2 + y2 and

ℋ0 =
1
2
(X + ϑ̇y)2 + 1

2
(Y − ϑ̇x)2 − 3

2
ϑ̇2x2. (13.2)

The Hamilton equations of ℋ0 give rise to a linear differential system, whose so-
lution is straightforward [47, 113]. Alternatively, the Hamiltonian flow stemming from

https://doi.org/10.1515/9783110668513-013
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Eq. (13.2) is readily integrated after performing the transformation from Cartesian to
epicyclic variables (x, y,X,Y) 󳨃→ (ϕ, q,Φ,Q; ϑ̇, k),1 given by

x = aξ + b sinϕ,
y = aη + a cosϕ,
X = −2Bη − B cosϕ,
Y = −Bξ − B sinϕ, (13.3)

where

a = 2b, b = (2Φ/ϑ̇)1/2, (13.4)

have units of length,

B = ϑ̇b = (2ϑ̇Φ)1/2, (13.5)

has units of length divided by time,

ξ = ξ (Q,Φ) ≡ 1
2k

Q
B
, η = η(q,Φ) ≡ k q

b
, (13.6)

are nondimensional versions of Q and q, respectively, and k is a scaling factor.
The first two equations of Eq. (13.3) assign to each point of the orbit (x, y) a refer-

ence ellipse (x − aξ )2/b2 + (y − aη)2/a2 = 1, where the ratio of semimajor axis a, which
is in the y-axis direction, to semiminor axis b is always 2. That is, the eccentricity of
the reference ellipse is e = √3/4. The coordinates of the center of the reference ellipse
are

xcenter = aξ =
1
kϑ̇

Q, ycenter = aη = 2kq, (13.7)

and the orbit is traveled clockwise. Similarly, the last two equations of Eq. (13.3) assign
to each point of the hodograph (X,Y) a circle (X + 2Bη)2 + (Y + Bξ )2 = B2, of radius B
centered at Xcenter = −2Bη = −2kϑ̇q, Ycenter = −Bξ = −

1
2Q/k. The hodograph is traveled

counterclockwise.
The transformationgivenbyEqs. (13.3)–(13.6) is canonical andyields the complete

reduction of Hamiltonian (13.2) in epicyclic variables. Namely,

ℋ0 = ℋ0(−, −,Φ,Q) ≡ ϑ̇Φ −
3
8
(Q/k)2, (13.8)

which discloses the ignorable character of ϕ and q, and hence reveals that Φ and Q
are the two needed independent integrals of the quadratic Hamiltonian (13.2).

1 Classically, the transformation to epicyclic variables is derived from the traditional solution of the
Hamilton–Jacobi equation of the quadratic Hamiltonian (13.2) [257, 336, 529].
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Theflowstemming fromℋ0 is obtained from the trivial integrationof theHamilton
equations. That is,

ϕ = ϕ0 + ϑ̇t, q = q0 −
3
4k2

Qt,

which show that the phase of the reference ellipse ϕ evolves periodically whereas
the coordinate of its center grows unbounded in the y-axis direction, as follows from
Eq. (13.7). Solving Eq. (13.3) for the epicyclic variables, the constant values of Φ and Q
are obtained from the initial conditions (x0, y0,X0,Y0), like

Φ = 1
2ϑ̇
[(X0 + ϑ̇y0)

2 + (2Y0 + ϑ̇x0)
2], Q = 2k(Y0 + ϑ̇x0).

Therefore, choosing such initial conditions that Y0 = −ϑ̇x0 makes Q = 0 and hence
yields periodic motion (a fixed ellipse for the orbit and a fixed circle for the hodo-
graph). Conversely, q, and hence η in Eq. (13.6), grows linearly when Q ̸= 0. That is,
initial conditions such that Y0 ̸= −ϑ̇x0 give rise to drifting ellipses in the y-axis direc-
tion with corresponding drifting hodographs in the X-axis direction, as follows from
Eq. (13.3).

However, perturbations of the integrable motion due to the gravitational attrac-
tion of the central body, which are given by the term −μ/r of Eq. (13.1), produce impor-
tant qualitative changes in the solutions. Indeed, for awide range of initial conditions,
the drift of the ellipse is turned into slow oscillations of its center about the origin. The
oscillatory behavior gives rise to the so-called quasi-satellite orbits, in which the or-
biter remains relatively close to the primary at the origin yet clearly out of the Hill
sphere of influence [46, 276, 524].

When the transformation to epicyclic variables (13.3) is applied to the radius, we
obtain

r = a√Δ2 + ξ sinϕ + 2η cosϕ + ξ 2 + η2, (13.9)

in which the term

Δ = √1 − 3
4
sin2 ϕ (13.10)

allows one to foresee the appearance of elliptic functions in the perturbation solution.
Finally, replacing Eqs. (13.8) and (13.9) into Eq. (13.1), we obtain the Hamiltonian

of the planar Hill problem in epicyclic variables. Namely,

ℋ = ϑ̇Φ(1 − 3ξ 2 − γ
√Δ2 + ξs + 2ηc + ξ 2 + η2

), (13.11)

in which we abbreviated c ≡ cosϕ and s ≡ sinϕ for the sake of conciseness, while the
nondimensional function γ ≡ γ(Φ) stands for

γ = μ
aϑ̇Φ
=
μϑ̇
B3
=

μϑ̇
(2ϑ̇Φ)3/2

. (13.12)
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For simplicity, we fix the scale factor of the transformation to epicyclic variables
to k = √3/4, which turns q = q0 − Qt for the unperturbed problem. Then we make
use of the Lie transforms method to compute a perturbation solution to the quasi-
satellite orbits problem by the complete Hamiltonian reduction of Eq. (13.11), up to
some truncation order. As usual, the reduction is split into the elimination of short-
period terms, which is carried out first, and the consequent removal of long-period
terms.

13.2 Elimination of short-period effects

First of all, Eq. (13.11) is arranged in the form of the usual perturbation Hamiltonian
(2.30), inwhich ϵ is a formal small parameter. Thenwecompute theLie transformation
(ϕ, q,Φ,Q) 󳨃→ (ϕ󸀠, q󸀠,Φ󸀠,Q󸀠; ϵ) that, up to some truncation order, makesϕ cyclic in the
transformed Hamiltonian in the prime variables.

Instead of choosing the quadraticHamiltonian (13.8) like the integrable part of the
perturbation Hamiltonian, we rather make the choiceℋ0,0 = ϑ̇Φ, which is a harmonic
oscillator of frequency ϑ̇, cf. §2.2.2, in this way implicitly assuming that the phase of
orbiter in the reference ellipse evolvesmuch faster than its center. Then the Lie deriva-
tive (2.49) is simplyℒ0 ≡ { ; ϑ̇Φ} = ϑ̇𝜕/𝜕ϕ, showing that the kernel of the Lie operator
is made of terms that are free from ϕ. The homological equation (2.48) is then solved
by indefinite integration

𝒲m =
1
ϑ̇
∫(ℋ̃0,m −ℋ0,m)dϕ. (13.13)

Currently lacking a strategy for computing the perturbation solution in closed
form, the perturbation term −μ/r, whose integration would require the use of sophis-
ticated special functions [47], is expanded under the assumptions that the third body
and the central gravitation exert perturbations of the same order [401]. These assump-
tions are materialized taking

η = 𝒪(ϵ), ξ = 𝒪(ϵ2), γ = 𝒪(ϵ4). (13.14)

Integration of terms related with the function Δ defined in Eq. (13.10) relies on the
use of special functions. This fact makes the identification of the kernel and image
of the Lie operator difficult, and the gradual coupling of the different orders of the
perturbation approach establishes de facto a limit up to which the elimination of the
fast angle ϕ can be carried out [401].

With the assumptions in Eq. (13.14), the perturbation terms of Eq. (13.11) areℋ1,0 =
ℋ2,0 = ℋ3,0 = 0,ℋ4,0 = 4!

1
2B

2(−3ξ 2 − γ/Δ), and, up to ϵ10,

ℋi,0 = i!
1
2
B2 γ

Δ2i−7
(cη)i

⋆
i2
∑
j=1

ti⋆+2j−2,i2−j(s)η
2j−2ξ i2−j, (13.15)
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where i⋆ = i mod 2 and i2 = ⌊
1
2 (i − 2)⌋, from Eq. (6.5), t1,0 = 1, and the remaining

coefficients tk,l are given in Table 13.1.

Table 13.1: Coefficients tk,l in Eq. (13.15).

2,0 :
9
8 s

2 − 1 0,3 : −
189
512 s

9 + 459
256 s

7 − 207
64 s

5 + 41
16 s

3 − 3
4 s

0,1 :
1
2 s −

3
8 s

3
2,2 :

297
64 s

8 − 4761
256 s

6 + 849
32 s

4 − 249
16 s

2 + 3

3,0 : 1 −
11
8 s

2
4,1 : −

7965
1024 s

7 + 6075
256 s

5 − 375
16 s

3 + 15
2 s

1,1 :
9
8 s

3 − 3
2 s 6,0 :

3309
1024 s

6 − 909
128 s

4 + 39
8 s

2 − 1

4,0 : −
227
128 s

4 + 11
4 s

2 − 1 1,2 :
27
16 s

6 − 171
32 s

4 + 21
4 s

2 − 3
2

2,1 :
153
64 s

5 − 87
16 s

3 + 3s 3,1 : −
285
64 s

5 + 155
16 s

3 − 5s

0,2 : −
27
64 s

6 + 45
32 s

4 − 3
2 s

2 + 1
2 5,0 :

303
128 s

4 − 13
4 s

2 + 1

13.2.1 Lower orders

On account of the Hamiltonian arrangement made, we trivially find ℋ0,1 = ℋ0,2 =
ℋ0,3 = 0, and hence 𝒲1 = 𝒲2 = 𝒲3 = 0. Besides, since ℋ̃0,i = ℋi,0 for i = 4, . . . , 7,
corresponding termsℋ0,i are chosen by simply averaging the termsℋi,0 of the original
Hamiltonian over ϕ. That is, at fourth order,

ℋ0,4 = ⟨ℋ̃0,4⟩ϕ = −4!
1
2
B2(3ξ 2 + γ 1

2π

2π

∫
0

1
Δ
dϕ) = −4!B2(3

2
ξ 2 + γK̃),

where we use the notation K̃ ≡ K(k2)/π. Analogously, we find

ℋ0,5 = 0, ℋ0,6 = 6!B
2 2
3
γ(Ẽ − K̃)η2, ℋ0,7 = 0,

where Ẽ ≡ E(k2)/π. Homologous terms of the generating function are then computed
from Eq. (13.13), to obtain

𝒲4 = 4!ΦγF
∗,

𝒲5 = 5!Φ
1
Δ
γηs,

𝒲6 = 6!Φγ{
2
3
[F∗ − E∗ − 1

Δ
(
1
Δ2
+ 1) 3

4
sc]η2 − 2 ξ

Δ
c},

𝒲7 = 7!Φ
2
3
γη[ η2

32Δ5
(21s5 − 70s3 + 48s) − ( 1

Δ3
− 8Ẽ)ξ],

where F∗ ≡ 2K̃ ϕ − F(ϕ | k2) and E∗ ≡ 2Ẽ ϕ − E(ϕ | k2) are periodic functions of ϕ
with period π. We remark that an integration constant has been added to the solution
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of Eq. (13.13) in order to guarantee that 𝒲 is free from short-period effects. Namely
⟨𝒲i⟩ϕ = 0, i = 4, . . . 7.

Short-period direct and inverse corrections vanish at the first three orders. At the
fourth,

ϕ0,4 = −4!
1
2
γF∗, q0,4 = 0, Φ0,4 = 4!Φγ(

1
Δ
− 2K̃), Q0,4 = 0.

At fifth order,

ϕ0,5 = −5!γ
η
Δ
s, q0,5 = 0, Φ0,5 = −5!Φγ

η
Δ3
c, Q0,5 = −5!B

k
2
γ
Δ
s,

while the sixth-order corrections are

ϕ0,6 = 6!γ{
c
Δ
[
3
4
(
1
Δ2
+ 1)η2s + 2ξ] + η2[E∗ − F∗]},

q0,6 = 6!b
γ
2k

1
Δ
cosϕ,

Φ0,6 = 6!Φγ{
4
3
η2(Ẽ − K̃) + 1

2Δ3
[(3 − 1

Δ2
)η2 − ξs]},

Q0,6 = 6!B
γ
2k
η[ 3

4Δ
(
1
Δ2
+ 1)cs + E∗ − F∗],

and, at seventh order,

ϕ0,7 = 7!γη[(
1
Δ3
− 8Ẽ)ξ + 1

9
s
Δ
(
3
Δ4
−

7
Δ2
− 14)η2],

q0,7 = −7!b
γ
6k

η( 1
Δ3
− 8Ẽ),

Φ0,7 = 7!Φ
γη
2Δ5
[
1
3
(
5
Δ2
− 11)η2 + 3ξs]c,

Q0,7 = 7!B
k
3
γ[( 1

Δ3
− 8Ẽ)ξ + 1

4
s
Δ
(
3
Δ4
−

7
Δ2
− 14)η2],

all of them to be evaluated using the prime variables. On the other hand 𝒱i = −𝒲i,
i = 4, . . . , 7, and the inverse corrections are just the opposite of the direct ones, which
now must be evaluated in the original variables.

13.2.2 Higher orders

The coupling of different Hamiltonian terms starts at the eight order, where ℋ̃0,8 =
35{ℋ0,4 +ℋ4,0,𝒲4} +ℋ8,0. The choiceℋ0,8 = ⟨ℋ̃0,8⟩ϕ produces

ℋ0,8 = 8!B
2γ[γ(1 − 2K̃2) +

1
9
(14Ẽ − 11K̃)η4 + K̃ − 4Ẽ

k2
ξ 2].
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Then, from Eq. (13.13),

𝒲8 = 8!Φ
2
3
γ{ 3

4
γ[(K̃ + 1

2Δ
)F∗ − P∗] + 1

12
(11F∗ − 14E∗)η4

+ (4E∗ − F∗)ξ 2 + 1
Δ
[
1
16
(
5
Δ6
−

8
Δ4
−
11
Δ2
− 14)η4s

+
1
2
(
3
Δ4
−

1
Δ2
− 8)η2ξ + ( 3

4Δ2
+ 3)ξ 2s]c},

where P∗ ≡ 2ϕ − Π( 34 ;ϕ |0) is periodic with period π. We remark that the equality

Π( 3
4
;ϕ |0) =

ϕ

∫
0

dψ
1 − 3

4 sin
2 ψ
= 2 arctan( 1

2
tanϕ),

is only true in the open interval ϕ ∈ (− π2 ,
π
2 ). Indeed, at ϕ =

π
2 (resp. ϕ = −

π
2 ) the in-

complete elliptic integral of the third kind evaluates to π (resp. −π). On the contrary,
the arc tangent function remains indeterminate at these values. Therefore, since ϕ
may grow unbounded, the use of the former should be preferred for evaluation pur-
poses, which, besides, avoids the demodulation that would be required if using the
arc tangent function.

The eighth-order terms of the direct corrections are

ϕ0,8 = 8!γ{γ[P
∗ −

1
4
(6K̃ + 1

Δ
)F∗] + 5

36
(14E∗ − 11F∗)η4

+ (F∗ − 4E∗)ξ 2 + 1
Δ
[
2
3
(8 + 1

Δ2
−

3
Δ4
)η2ξ − (3 + 3

4Δ2
)ξ 2s

+
5
48
(14 + 11

Δ2
+

8
Δ4
−

5
Δ6
)η4s]c},

q0,8 = 8!b
γ
k
{
4E∗ − F∗

3
ξ + c

4Δ
[(

1
Δ4
−

1
3Δ2
−
8
3
)η2 + ( 1

Δ2
+ 4)ξs]},

Φ0,8 = 8!Φγ{γ[1 −
1
2Δ2
+ K̃( 1

Δ
− 2K̃) − 3

8Δ3
F∗sc]

+
η4

9
[

1
8Δ5
(
35
Δ4
−
190
Δ2
+ 227) + 14Ẽ − 11K̃]

+ ξ 2[ 1
Δ3
(

1
2Δ2
− 1) + K̃ − 4Ẽ

k2
] +

η2ξ
4Δ5
(
5
Δ2
− 17)s},

Q0,8 = 8!B
k
9
γ{(14E∗ − 11F∗)η2 + 3

Δ
[ξ(8 + 1

Δ2
−

3
Δ4
)

+ η2(7
2
+

11
4Δ2
+

2
Δ4
−

5
4Δ6
)s]c}η,

which must be evaluated in the prime variables.
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While the eighth-order term of the inverse generating function is still the opposite
of the direct one, 𝒱8 = −𝒲8, the coupling with the fourth-order short-period correc-
tionshappens at this order,making that the inverse anddirect short-period corrections
are no longer the same. Still, the inverse corrections of q and Q are q̃0,8 = −q0,8 and
Q̃0,8 = −Q0,8, but ϕ̃0,8 and Φ̃0,8must be complementedwith additional terms. Namely,

ϕ̃0,8 = −ϕ0,8 + 8!γ
2(

1
2Δ
− Ẽ),

Φ̃0,8 = −Φ0,8 + 8!γ
2Φ[2K̃( 1

Δ
− K̃) − 1

8Δ2
(4 + 3

Δ
F∗sc)],

where the right sides of these equations are evaluated in original variables.
At ninth order, Deprit’s recursion (2.15) yields

ℋ̃0,9 = 56{ℋ0,4,𝒲5} + 70{ℋ4,0,𝒲5} + 56{ℋ5,0,𝒲4} +ℋ9,0,

from whichℋ0,9 = ⟨ℋ̃0,9⟩ϕ = 0. Next, from Eq. (13.13),

𝒲9 = 9!Φγ{
1
2Δ
(

7
36Δ8
−

17
18Δ6
+

11
20Δ4
+

11
15Δ2
+
22
15
)η5s + 2ηξ

2

3Δ

× (
3
4Δ4
−

1
Δ2
− 2)s + [ η

3

9Δ5
(
5
Δ2
− 19) − k log 8(Δ + kc)2]ξ

+
2
9
γη[ 1

Δ
(4K̃ − 7

8Δ
)s − F

∗

Δ3
c + 9

4
k log 1 − ks

1 + ks
]},

and hence

ϕ0,9 = 9!γ{
γη
Δ
[s( 11

8Δ
− 4K̃) + cF

∗

2Δ2
] +

ηξ 2

3Δ
(8 + 4

Δ2
−

3
Δ4
)s

+ ξ[k log 8(Δ + kc)2 + 5η3

18Δ5
(19 − 5

Δ2
)] +

5
4
kγη

× log( 1 + ks
1 − ks
) −

η5s
4Δ
(

7
6Δ8
−

17
3Δ6
+

33
10Δ4
+

22
5Δ2
+
44
5
)},

q0,9 = 9!
bγ
4k
{
η3

9Δ5
(
5
Δ2
− 19) + ηξs

3Δ
(
3
Δ4
−

4
Δ2
− 8) − k log 8(Δ + kc)2},

Φ0,9 = 9!Φγ{
3ξ
4Δ
[
5η3

9Δ6
(19 − 7

Δ2
)c − 2]s + γη

2Δ2
[(2 − 4K̃

Δ
+

1
Δ2
)c − F

∗

Δ

× (
k2

Δ2
− 2)s] + cη

Δ5
[(4 − 5

2Δ2
)ξ 2 − η4

8Δ2
(
7
Δ4
−

98
3Δ2
+
101
3
)]},

Q0,9 = 9!B
k
9
γ{ γ

2Δ
[s( 3

4Δ
− 2K̃) + cF

∗

2Δ2
] +

ξ 2s
3Δ
(2 − 3

4Δ4
+

1
Δ2
)

+
η2ξ
6Δ5
(19 − 5

Δ2
) +

k
4
γ log 1 + ks

1 − ks

−
η4s
2Δ
(

35
72Δ8
−

85
36Δ6
+

11
8Δ4
+

11
6Δ2
+
11
3
)}.
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Now, the first time for the perturbation arrangement chosen, 𝒱9 ̸= −𝒲9. More
precisely,

𝒱9 = −𝒲9 − 9!Φ
γ2η
18Δ
[(

2
Δ
− 4K̃)s + (1 + 3

4Δ2
s2)F∗c],

and the inverse short-period corrections are q̃0,9 = −q0,9 and

ϕ̃0,9 = −ϕ0,9 + 9!
γ2η
36Δ
[74( 1

Δ
− 2K̃)s + 1

Δ2
F∗c],

Φ̃0,9 = −Φ0,9 + 9!
Φγ2η
18Δ2
[(14 − 58

Δ
K̃ + 15

Δ2
)c + 11

Δ
(2 − 3

4Δ2
)F∗s],

Q̃0,9 = −Q0,9 + 9!B
11k
18Δ

γ2[( 1
Δ
− 2K̃)s + 1

2Δ2
F∗c],

whose right sides are evaluated in the original variables.

13.2.3 Additional Hamiltonian terms

At tenth order, Deprit’s recursion (2.15) leads to

ℋ̃0,10 = 84{ℋ0,4,𝒲6} + 126{ℋ4,0,𝒲6} + 126{ℋ5,0,𝒲5}

+ 126{ℋ0,6,𝒲4} + 84{ℋ6,0,𝒲4} +ℋ10,0,

from whichℋ0,10 is chosen by averaging. Standard computations yield

ℋ0,10 =
10!
3
B2η2γ[3γ + 8K̃(Ẽ − K̃)γ + 71Ẽ − 50K̃

27
η4 + (8K̃ − 20Ẽ)ξ 2].

The computation of the tenth-order term of the generating function addresses
the indefinite integration of the incomplete elliptical integrals of the first and second
kinds. Lacking a closed-form solution, we only apply the short-period corrections up
to the ninth order. However, for the particular Hamiltonian arrangement chosen, the
term𝒲10 does not play a role in the computation of the next three orders of Deprit’s
triangle and allows us to obtain the next three Hamiltonian terms [398],

ℋ0,11 = −
11!
4
B2γ2,

ℋ0,12 =
12!
2
B2γ{[4

3
+ 5(K̃ − K̃3 − Ẽ)]γ2 + 4

9
(K̃ − 16Ẽ)ξ 4

+
1
3
[(9 − 30K̃2 − 8Ẽ2 + 44ẼK̃)η4 + 8(3 + 2K̃2 − 8ẼK̃)ξ 2]γ

+
1
324
(644Ẽ − 425K̃)η8 − 10

27
(74Ẽ − 35K̃)η4ξ 2},

ℋ0,13 = −13!B
2γη{8γ

2

13
+

γ
36
[64Ẽ(K̃ − Ẽ) + 15]η + 2

3
(K̃ + 26Ẽ)ηξ 2}.
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13.2.4 Long-period Hamiltonian

Once ϕ is removed up to 𝒪(ϵ13), the new Hamiltonian terms are reformulated in the
prime variables. We obtain the new Hamiltonian

ℋ = ϑ̇Φ󸀠 − 1
2
(Q󸀠 2 + Ω2q󸀠 2) + 𝒫(−, q󸀠,Φ󸀠,Q󸀠), (13.16)

where Ω = Ω(Φ󸀠) is the libration frequency

Ω = ϑ̇√K̃ − Ẽ√γ, (13.17)

which is obtained replacingΦ byΦ󸀠 in the computation of γ from Eq. (13.12). Note that
Ω/ϑ̇ = 𝒪(ϵ2) due to the assumption γ = 𝒪(ϵ4) in Eq. (13.14).

The disturbing term 𝒫 of the Hamiltonian (13.16) is conveniently arranged in the
form

𝒫 = ϑ̇Φ󸀠
2
∑
i=0

2−i
∑
j=0

4−2i−2j
∑
n=0

pi,j,nγ
i+1ξ 2jη2n, (13.18)

where ξ and η are now obtained replacing q, Q, and Φ in Eq. (13.6) by q󸀠, Q󸀠, and Φ󸀠,
respectively. The numeric coefficients pi,j,n are listed in Table 13.2.

Table 13.2: Coefficients pi,j,n in Eq. (13.18) (after [403]).

0,0,0 : −2K̃ 0,1,2 : −
10
27 (74 ̃E − 35K̃)

0,0,1 : 0 0,2,0 :
4
9 (K̃ − 16 ̃E)

0,0,2 :
1
9 (14 ̃E − 11K̃) 1,0,0 :

1
2 − 2K̃

2

0,0,3 :
2
81 (71 ̃E − 50K̃) 1,0,1 :

7
6 +

16
9 (2 ̃E

2 − 3K̃2 + ̃EK̃)

0,0,4 :
1

324 (644 ̃E − 425K̃) 1,1,0 : 8 +
16
3 (K̃ − 4 ̃E)K̃

0,1,0 :
4
3 (K̃ − 4 ̃E) 1,0,2 : 3 −

2
3 (4 ̃E

2 + 15K̃2 − 22 ̃EK̃)

0,1,1 : 4(K̃ − 12 ̃E) 2,0,0 :
4
3 + 5(K̃ − K̃

3 − ̃E)

As a result of the averaging,ϕ󸀠 is ignorable in Eq. (13.16), and hence Φ󸀠 is a dynamical
parameter that remains constant along the motion. That is, on average, the motion of
the center of the reference ellipse decouples from the ϕ󸀠 motion.

13.3 The nature of the long-term solution

The most relevant qualitative aspects of the quasi-satellite orbits dynamics are pro-
vided by the first two terms in the right side of Eq. (13.16), which brings the Hamil-
tonian into the form of two coupled harmonic oscillators. Indeed, after neglecting 𝒫
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from Eq. (13.16), we get the simplified Hamiltonian

ℋ0 = ϑ̇Φ
󸀠 −

1
2
(Q󸀠 2 + Ω2q󸀠 2), (13.19)

which shows that the center of the reference ellipsemoveswith a simple harmonicmo-
tion of (constant) frequency Ωwith respect to the primary of lesser mass. On the other
hand, the phaseϕ󸀠 of the orbiter in the reference ellipse evolves with unperturbed fre-
quency ϑ̇, yet the dependence of Ω on Φ󸀠 has the effect of modulating this phase with
long-period variations due to the motion of the center of the reference ellipse.

The uncoupled motion of the center of the reference ellipse is readily solved after
applying the harmonic transformation, which we already used in Eq. (2.40). That is,
(q󸀠,Q󸀠) 󳨃→ (θ,Θ;Ω)

q󸀠 = √2Θ/Ωsin θ, Q󸀠 = √2ΩΘ cos θ, (13.20)

which turns Eq. (13.19) into ℋ0 = ϑ̇Φ󸀠 − Ω(Φ󸀠)Θ, thus showing that both Θ and Φ󸀠

are integrals of the simplified problem. The trivial integration of Hamilton equations
shows that, on average, the motion combines the linear evolution of the phase of the
center of the reference ellipse with respect to the origin θ = θ0−Ω(Φ󸀠)t, with the linear
evolution of the phase of the reference ellipseϕ󸀠 = ϕ󸀠0 + [ϑ̇ −ΘΩ(Φ

󸀠)]t, which grows at
a slightly modified rate with respect to the unperturbed motion. The initial phase and
the value of Θ are computed from the initial conditions q󸀠0 and Q󸀠0 using the inverse
transformation of Eq. (13.20). Namely,

Θ = 1
2Ω
(Q󸀠 2 + Ω2q󸀠 2), (13.21)

sin θ = Ωq󸀠

√Q󸀠 2 + Ω2q󸀠 2
, cos θ = Q󸀠

√Q󸀠 2 + Ω2q󸀠 2
. (13.22)

A higher-order approximation that is also solvable in closed form is obtained by
keeping explicit some additional terms of the long-term Hamiltonian (13.16). Indeed,
taking additional terms from Eq. (13.18), we write

ℋ = ϑ̇∗Φ󸀠 − f1[
1
2
(Q󸀠 2 + w2q󸀠 2) + β2w2q󸀠 4], (13.23)

in which ϑ̇∗ = ϑ̇(1 + ∑2i=0 pi,0,0γ
i+1) with the numeric coefficients pi,0,0 of Table 13.2,

whereas β and w are (constant) functions of Φ󸀠 defined by

β2 = ϑ̇
Φ󸀠

11K̃ − 14Ẽ
64(K̃ − Ẽ)

, w2 =
Ω2

f1
, with f1 = 1 +

4(10Ẽ − K̃)
9(K̃ − Ẽ)

Ω2

ϑ̇2
.

The reduced (q󸀠,Q󸀠) flow stemming fromHamiltonian (13.23) is immediately identified
with the motion of a Duffing oscillator without forcing term [179, 255, 491] in a time
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scale proportional to f1. However, the closed-form solution of the Duffing oscillator
involves Jacobi elliptic functions, thus not leading to the desired insight. Therefore,
Eq. (13.19) still provides amore enlightening integrable zeroth-orderHamiltonian than
Eq. (13.23).

On the other hand, the use of special functions can be avoided using the Lindst-
edt series approach [459, 516, 526], which, besides, allows for the inclusion of higher-
order effects of the long-period Hamiltonian (13.16). These kinds of solutions provide
results of comparable accuracy to the semi-analytical integration that is customar-
ily approached for the computation of quasi-satellite orbits with large librations [401,
403, 404, 456].

13.4 Complete Hamiltonian reduction

Alternatively to the Lindstedt series solution in [403], a higher-order perturbation so-
lution can be approached by computing a new Lie transformation that removes the
long-period terms from the mean-element Hamiltonian (13.16). In this way the new
Hamiltonian is completely reduced, up to some truncation order, and, therefore, is
trivially integrated.

When constraining to the order of ϵ10 used in the construction of the high-order
Lindstedt series solution obtained in [403], and removing the prime notation for
brevity, the mean-variable Hamiltonian (13.16) is

ℋ = ϑ̇Φ{1 − 3ξ 2 +
1
∑
i=0

1−i
∑
j=0

3−2i−2j
∑
n=0

p∗i,j,nγ
i+1ξ 2jη2n}, (13.24)

with coefficients p∗i,j,n = pi,j,n of Table 13.2 save for p
∗
0,0,1 = −

4
3 (4Ẽ − K̃).

13.4.1 Extended harmonic transformation

The transformation that removes the long-period terms from the mean-element
Hamiltonian (13.24) is more naturally approached in the harmonic variables given
in Eqs. (13.21) and (13.22). However, in view of Eqs. (13.17) and (13.12), the libration
frequency Ω is not a physical parameter but depends on Φ󸀠. Then the pair (ϕ,Φ)must
also be transformed to make the transformation canonical in the whole phase space.
This is achieved with the extended harmonic transformation

Ψ = Φ, (13.25)

ψ = ϕ + Γ
󸀠

2Γ
qQ, (13.26)

Θ = 1
2Γ
(Q2 + Γ2q2), (13.27)
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sin θ = Γq
√Q2 + Γ2q2

, cos θ = Q
√Q2 + Γ2q2

, (13.28)

in which Γ denotes an arbitrary function of Φ, and Γ󸀠 ≡ 𝜕Γ/𝜕Φ.
That the transformation given by Eqs. (13.25)–(13.28) is canonical is guaranteed

after checking that the differential form W ≡ Ψdψ + Θdθ − Qdq − Φdϕ is an exact
differential (see [243], for instance). Indeed, we readily check thatW ≡ d(Ψψ − Φϕ −
1
2Θsin 2θ). The inverse transformation is

Φ = Ψ, ϕ = ψ − 1
2
(Γ󸀠/Γ)Θsin 2θ, Q = √2ΘΓ cos θ, q = √2Θ/Γ sin θ,

where, because Φ = Ψ, now Γ ≡ Γ(Ψ) and Γ󸀠 ≡ 𝜕Γ/𝜕Ψ.
In the current case, Γ = Ω(Φ) is givenbyEq. (13.17). Therefore, Eq. (13.26) turns into

ψ = ϕ − 3
8qQ/Φ, whereas Eqs. (13.27)–(13.28) are now replaced by Eqs. (13.21)–(13.22).

Besides, the inverse transformation is replaced by

Φ = Ψ, ϕ = ψ + 3
8
(Θ/Ψ) sin 2θ, Q = √2ΘΩ cos θ, q = √2Θ/Ωsin θ. (13.29)

After applying the new transformation of variables to the long-term Hamiltonian
(13.24), it is rearranged in the form

ℋ = ϑ̇Ψ
2
∑
m=0

εm

m!
ℋm,0(θ,Θ;Ψ), (13.30)

where ε is a new formal small parameter, and the new Hamiltonian terms are

ℋ0,0 = 1 + κ2,0
Ω2

ϑ̇2
+ κ4,0

Ω4

ϑ̇4
+ κ6,0

Ω6

ϑ̇6
+ κ0,1

Θ
Ψ
,

ℋ1,0 = κ3,1
Ω3

ϑ̇3
Θ
Ψ
cos2 θ + σ3,1

Ω3

ϑ̇3
Θ
Ψ
sin2 θ + σ0,2

Θ2

Ψ2 sin
4 θ,

ℋ2,0 = κ2,2
Ω2

ϑ̇2
Θ2

Ψ2 sin
2 θ cos2 θ + σ−1,3

Θ3/Ψ3

Ω/ϑ̇
sin6 θ,

where Ω = Ω(Ψ) ≡ μ1/2(K̃ − Ẽ)1/2ϑ̇3/4(2Ψ)−3/4, from Eq. (13.12), and the numeric coeffi-
cients κ and σ are given in Table 13.3. The integrable term ℋ0,0 consists of the terms
of the Hamiltonian (13.30) that are free from θ, independently of their smallness. Be-
sides,ℋ1,0 andℋ2,0 are homogeneous under the assumption Θ/Ψ = 𝒪(Ω3/ϑ̇3), which
is the reason for the different arrangement from [404].

13.4.2 Secular Hamiltonian

A new Lie transformation (ψ, θ,Ψ,Θ) 󳨃→ (ψ󸀠, θ󸀠,Ψ󸀠,Θ󸀠; ε) from mean to secular vari-
ables is applied to remove the remaining long-period effects from Eq. (13.30). Because
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Table 13.3: Numeric coefficients in Hamiltonian (13.30).

κ2,0 = −
2K̃
K̃− ̃E κ4,0 =

1
2
1−4K̃2

(K̃− ̃E)2 κ6,0 =
4+15(K̃−K̃3− ̃E)

3(K̃− ̃E)3

κ0,1 = −1 κ3,1 =
4(K̃−4 ̃E)
9(K̃− ̃E) κ2,2 = 2

K̃−12 ̃E
K̃− ̃E

σ−1,3 =
71 ̃E−50K̃
48(K̃− ̃E) σ0,2 =

14 ̃E−11K̃
16(K̃− ̃E) σ3,1 =

21−32(K̃− ̃E)(3K̃+2 ̃E)
24(K̃− ̃E)2

ψ is a cyclic variable, Ψ is an integral of the mean-element Hamiltonian that is not
affected by the transformation. That is, Ψ󸀠 = Ψ, and, in consequence, Ω remains un-
altered. Besides, the Lie derivative can be simplified to just ℒ0 ≡ { ; −ΩΘ} = −Ω

𝜕
𝜕θ .

Then the homological equation (2.48) is solved by indefinite integration

𝒱m =
1
Ω
∫(ℋ0,m − ℋ̃0,m)dθ.

The standard application of the Lie transforms method, up to the second order
of ε, yields the secular Hamiltonian

ℋ = ℋ(−, −,Ψ󸀠,Θ󸀠) ≡ ϑ̇Ψ󸀠[1 −
3
∑
i=0
(
Θ󸀠/Ψ󸀠

Ω/ϑ̇
)
i 3−i
∑
j=0

hi,j(
Ω
ϑ̇
)
2j+2
], (13.31)

where the coefficients hi,k are given in Table 13.4. Note that h0,2 and h1,1 are different
from the corresponding values in [404] because of the slightly different Hamiltonian
arrangement made here.

Table 13.4: Coefficients hi,j (h0,3 = 0) in Eq. (13.31).

0,0 :
2K̃
K̃− ̃E 0,1 :

4K̃2−1
2(K̃− ̃E)2 0,2 :

15(K̃3−K̃+ ̃E)−4
3(K̃− ̃E)3

1,0 : 1 1,1 :
64(K̃− ̃E)(4K̃+5 ̃E)−63

144(K̃− ̃E)2 1,2 : −
1
2 (

4
9
K̃−4 ̃E
K̃− ̃E + h1,1)

2

2,0 :
3
4
11K̃−14 ̃E
32(K̃− ̃E) 2,1 :

42h2,0−61K̃2+137K̃ ̃E−58 ̃E2

48(K̃− ̃E)2 3,0 :
1829K̃2−3652K̃ ̃E+1364 ̃E2

49152(K̃− ̃E)2

The Hamiltonian (13.31) is completely reduced to a function of the new momenta Ψ󸀠

andΘ󸀠, which, therefore, are constant,whereasψ󸀠 and θ󸀠 grow linearlywith time. That
is,

ψ󸀠 = ψ󸀠0 + nψt, θ󸀠 = θ󸀠0 + nθt, (13.32)

where, on account of 𝜕Ω/𝜕Ψ󸀠 = −k2Ω/Ψ󸀠, the constant, secular frequencies nψ =
𝜕ℋ/𝜕Ψ󸀠 and nθ = 𝜕ℋ/𝜕Θ󸀠 are

nθ = −Ω
3
∑
i=1

i(Θ
󸀠/Ψ󸀠

Ω/ϑ̇
)
i−1 3−i
∑
j=0

hi,j(
Ω
ϑ̇
)
2j
, (13.33)
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nψ = ϑ̇[1 +
1
4

3
∑
i=0
(
Θ󸀠/Ψ󸀠

Ω/ϑ̇
)
i 3−i
∑
j=0
(2 + i + 6j)hi,j(

Ω
ϑ̇
)
2j+2
]. (13.34)

13.4.3 Long-period corrections

The generating function 𝒱 = −Θ󸀠∑j≥0(ε
j/j!)𝒱j+1 of the transformation to prime vari-

ables has been obtained up to the second order of ε. At first order,

𝒱1 = [√−
1
2
h1,2

Ω2

ϑ̇2
+
1
6
h2,0

Θ/Ψ
Ω/ϑ̇
(4 − cos 2θ)] sin 2θ,

from which we obtain the long-period corrections

ψ0,1 =
Θ
Ψ
[
1
24

h2,0
Θ/Ψ
Ω/ϑ̇
(4 − cos 2θ) + 3

2
χΩ

2

ϑ̇2
] sin 2θ

θ0,1 = −[
1
3
h2,0

Θ/Ψ
Ω/ϑ̇
(4 − cos 2θ) + χΩ

2

ϑ̇2
] sin 2θ

Θ0,1 = Θ[
1
3
h2,0

Θ/Ψ
Ω/ϑ̇
(4 cos 2θ − cos 4θ) + 2χΩ

2

ϑ̇2
cos 2θ],

with χ ≡ 2
9 (5K̃ − Ẽ)(K̃ − Ẽ)

−1− 7
32 (K̃− Ẽ)

−2. As usual, the rightmembers are evaluated in
prime variables for direct corrections, and in original variables for inverse corrections.

At second order,

𝒱2 = (ν2,2
Ω4

ϑ̇4
+ ν2,0

Θ2/Ψ2

Ω2/ϑ̇2
+ ν2,1

Θ
Ψ
Ω
ϑ̇
) sin 2θ

+ (ν4,1
Θ
Ψ
Ω
ϑ̇
+ ν4,0

Θ2/Ψ2

Ω2/ϑ̇2
) sin 4θ + ν6,0

Θ2/Ψ2

Ω2/ϑ̇2
sin 6θ,

with the numeric coefficients νi,j of Table 13.5. For our aims, second-order corrections
are only relevant in the computation of the secular constants of the theory. In conse-
quence, we only provide the inverse corrections. Namely,

ψ0,2 =
Θ
Ψ
κ1,6,0

Θ2/Ψ2

Ω2/ϑ̇2
sin 6θ + Θ

Ψ
(κ1,4,0

Θ2/Ψ2

Ω2/ϑ̇2
+ κ1,4,1

Θ
Ψ
Ω
ϑ̇
) sin 4θ

+
Θ
Ψ
(κ1,2,0

Θ2/Ψ2

Ω2/ϑ̇2
+ κ1,2,2

Ω4

ϑ̇4
+ κ1,2,1

Θ
Ψ
Ω
ϑ̇
) sin 2θ,

θ0,2 = (κ2,2,0
Θ2/Ψ2

Ω2/ϑ̇2
+ κ2,2,1

Θ
Ψ
Ω
ϑ̇
+ κ2,2,2

Ω4

ϑ̇4
) sin 2θ

+ (κ2,4,0
Θ2/Ψ2

Ω2/ϑ̇2
+ κ2,4,1

Θ
Ψ
Ω
ϑ̇
+ κ2,4,2

Ω4

ϑ̇4
) sin 4θ
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Table 13.5: Coefficients νi,j of the generating function term 𝒱2.

2,0 :
7K̃2+484K̃ ̃E−788 ̃E2

16384(K̃− ̃E)2 2,1 : h2,0
1449−64(K̃− ̃E)(107K̃+55 ̃E)

864( ̃E−K̃)2

4,0 : −
548 ̃E2−1012K̃ ̃E+437K̃2

16384(K̃− ̃E)2 4,1 : −
42h2,0+502 ̃E2−467K̃ ̃E−8K̃2

576(K̃− ̃E)2

6,0 :
1163K̃2−2860 ̃EK̃+1724 ̃E2

147456(K̃− ̃E)2 2,2 :
63−64(K̃− ̃E)(4K̃+5 ̃E)

144(K̃− ̃E)2 √−2h1,2

+ (κ2,6,1
Θ
Ψ
Ω
ϑ̇
+ κ2,6,0

Θ2/Ψ2

Ω2/ϑ̇2
) sin 6θ + κ2,8,0

Θ2/Ψ2

Ω2/ϑ̇2
sin 8θ,

Θ0,2 = Θ[κ3,0,0
Θ2/Ψ2

Ω2/ϑ̇2
+ κ3,0,2

Ω4

ϑ̇4
+ κ3,0,1

Θ
Ψ
Ω
ϑ̇

+ (κ3,2,2
Ω4

ϑ̇4
+ κ3,2,1

Θ
Ψ
Ω
ϑ̇
+ κ3,2,0

Θ2/Ψ2

Ω2/ϑ̇2
) cos 2θ

+ (κ3,4,1
Θ
Ψ
Ω
ϑ̇
+ κ3,4,0

Θ2/Ψ2

Ω2/ϑ̇2
) cos 4θ + κ3,6,0

Θ2/Ψ2

Ω2/ϑ̇2
cos 6θ],

which must be evaluated in original variables, and whose numeric coefficients κi,j,k
are given in Table 13.6.

Table 13.6: Coefficients κi,j,k of the inverse second-order long-period corrections.

1,6,0 : −
1724 ̃E2−2860 ̃EK̃+1163K̃2

294912( ̃E−K̃)2 1,2,2 :
[64( ̃E−K̃)(5 ̃E+4K̃)+63][64( ̃E−K̃)( ̃E+5K̃)+63]

6912( ̃E−K̃)4

1,4,0 :
548 ̃E2−1012 ̃EK̃+437K̃2

32768( ̃E−K̃)2 1,4,1 :
1218 ̃E2−893 ̃EK̃−202K̃2

768( ̃E−K̃)2 + 119(14 ̃E−11K̃)
16384( ̃E−K̃)3

1,2,0 :
788 ̃E2−484 ̃EK̃−7K̃2

32768( ̃E−K̃)2 1,2,1 : −(14 ̃E − 11K̃)
64( ̃E−K̃)(65 ̃E+129K̃)+1743

24576( ̃E−K̃)3

2,2,0 : −
1084 ̃E2−572 ̃EK̃−71K̃2

8192( ̃E−K̃)2 2,2,1 :
(14 ̃E−11K̃)
( ̃E−K̃)

64( ̃E−K̃)(109 ̃E+209K̃)+2835
36864( ̃E−K̃)2

2,4,0 : −
76 ̃E2−572 ̃EK̃+343K̃2

16384( ̃E−K̃)2 2,4,1 : −
64( ̃E−K̃)(530 ̃E2−118K̃2−349 ̃EK̃)+189(14 ̃E−11K̃)

18432( ̃E−K̃)3

2,4,2 :
(64( ̃E−K̃)( ̃E+5K̃)+63)2

82944( ̃E−K̃)4 2,2,2 : −[
4
9
5 ̃E−5K̃+9K̃
̃E−K̃ +

7
16( ̃E−K̃)2 ][

4
9
̃E−K̃+6K̃
̃E−K̃ +

7
16( ̃E−K̃)2 ]

2,6,0 : −
20 ̃E2+44 ̃EK̃−37K̃2

24576( ̃E−K̃)2 2,6,1 :
(14 ̃E−11K̃)(64( ̃E−K̃)( ̃E+5K̃)+63)

36864( ̃E−K̃)3

2,8,0 :
(14 ̃E−11K̃)2

65536( ̃E−K̃)2 3,6,0 : −
71 ̃E−50K̃
1536( ̃E−K̃)

3,4,0 :
548 ̃E2−1012 ̃EK̃+437K̃2

4096( ̃E−K̃)2 3,4,1 :
64( ̃E−K̃)(502 ̃E2−8K̃2−467 ̃EK̃)+63(14 ̃E−11K̃)

9216( ̃E−K̃)3

3,2,0 : −
122 ̃E2−286 ̃EK̃+137K̃2

1024( ̃E−K̃)2 3,2,1 : −(14 ̃E − 11K̃)
64( ̃E−K̃)(13 ̃E+23K̃)+315

4608( ̃E−K̃)3

3,0,0 :
17(14 ̃E−11K̃)2

8192( ̃E−K̃)2 3,0,1 : −(14 ̃E − 11K̃)
64( ̃E−K̃)( ̃E+5K̃)+63

1536( ̃E−K̃)3

3,0,2 :
(64( ̃E−K̃)( ̃E+5K̃)+63)2

20736( ̃E−K̃)4 3,2,2 :
[64( ̃E−K̃)(5 ̃E+4K̃)+63][64( ̃E−K̃)( ̃E+5K̃)+63]

10368( ̃E−K̃)4
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13.4.4 Orbit design parameters

The formal integrals Ψ󸀠 and Θ󸀠 are related to the dimension of the reference ellipse,
and to the amplitude of the oscillations of the center of this ellipse about the origin,
respectively. Therefore, these dynamical parameters provide control over the size of
the orbit and how close the orbiter can approach to the origin, and play an important
role like orbit design parameters [398, 456].

Indeed, when the two last equations of Eq. (13.29) are plugged into Eq. (13.7), the
coordinates of the center of the reference ellipse in the new variables become

xcenter =
1
k
Ω
ϑ̇
M cos(θ󸀠0 + nθt), (13.35)

ycenter = 2kM sin(θ󸀠0 + nθt), (13.36)

in which Θ󸀠, Ψ󸀠, and hence Ω ≡ Ω(Ψ󸀠) are constant. So it is the amplitude of the oscil-
lations

M = √2Θ󸀠/Ω, (13.37)

and the minimum distance with which the orbit will approach the primary of smaller
mass in the y-axis direction,

ymin = a − 2kM, (13.38)

which corresponds to the maximum elongation of ycenter in that direction, and this
happens each time that θ󸀠0 + nθt = (2m − 1)

π
2 , withm integer.

Then an analytical orbit with given semimajor axis of the reference ellipse a that
approaches the origin aminimumdistance ymin is computed as follows. First, compute
M = (a − ymin)/(2k) from Eq. (13.38). Next, compute Ψ󸀠 = Φ from Eq. (13.4), and Ω =
[ϑ̇(K̃ − Ẽ)/(Ψ󸀠a)]1/2, from Eqs. (13.17) and (13.12). Finally, from Eq. (13.37),

Θ󸀠 = 1
2
M2Ω. (13.39)

While the choice of the initial conditionsψ󸀠0 and θ
󸀠
0 is arbitrary, their careful selection

may help in the design of particular periodic orbits, as will be shown in brief.

13.4.5 Periodic orbits

The ratio R = R(Ψ󸀠,Θ󸀠) ≡ nψ/nθ computed from Eqs. (13.33) and (13.34) provides an-
other design parameter useful in periodic orbit design. Indeed, for rational values of
R the orbit will be periodic in the secular (ψ󸀠, θ󸀠,Ψ󸀠,Θ󸀠) variables. However, the peri-
odicity requirement will be generally in contradiction with the chosen values of a and
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ymin, whichwill result inR being real as opposite to rational. Nevertheless, the desired
periodicity will normally be achievedwithminormodifications of the parameters that
define a and ymin. Indeed, from Eq. (13.4) a = a(Ψ󸀠), and from Eqs. (13.39) and (13.38)
Θ = Θ(Ψ󸀠; ymin). Then, keeping R (rational) and ymin fixed, a new value of a is com-
puted by solving Ψ󸀠 from the implicit equation R(Ψ󸀠;Θ󸀠(Ψ󸀠; ymin)) − R = 0. The new
value of Ψ󸀠, which is readily obtained with a root-finding procedure, in turn provides
a new value of a that now yields the desired commensurability.

The periodicity of the orbit in the secular variables yields a concomitant periodic-
ity in the mean variables. This is due to the fact that the transformation from secular
to mean variables only depends on the secular variables, which have been made pe-
riodic by design. Analogously, the transformation from mean to osculating variables
only depends onmean elements, which, we have just seen, are periodic with the same
period of the secular solution. However, due to the unavoidable truncation of the ana-
lytical solution, the numerical propagation of the initial conditions of a periodic orbit
computed in such a way will produce an orbit of the planar Hill problem that is only
approximately periodic. Improvement of the initial conditions to obtain a true peri-
odic quasi-satellite orbit of the Hill problem with the desired characteristics will be
achieved, in general, with the standard computation of differential corrections, which
are efficiently integrated in Cartesian coordinates [422, 426].

It isworthmentioningalso that the arbitrariness in the selectionof the initial secu-
lar values ofψ󸀠 and θ󸀠may compromise the convergence of the differential corrections
procedure. This is the case of multiple periodic orbits with close tracks. Indeed, when
the initial conditions and period predicted by the perturbation solution are not close
enough to the desired periodic orbit, the differential correction algorithm will prob-
ably derail to a different, close, periodic orbit with stronger stability characteristics.
On the other hand, as will be illustrated in §13.5, one can take advantage of this fact
to compute 1:1-resonant periodic orbits in spite of them falling out of the convergence
domain of the analytical solution.

For instance, disregarding primes for brevity, if the chosen initial conditions are
ψ = 0 and θ = π/2, application of the transformations in Eq. (13.29) yields ϕ = ψ = 0,
Φ = Ψ = 1

8 ϑ̇a
2, q = √2Θ/Ω = 1

2k (a − ymin), Q = 0, from which η = ηmax = 1 − ymin/a,
ξ = 0, from Eq. (13.6). Then application of the transformation (13.3) would result in
the Cartesian variables x = 0, y = 2a − ymin, X = −3B + ϑ̇ymin, Y = 0, corresponding
to an exterior end of the quasi-satellite orbit (both for the orbit and the hodograph), a
region inwhich consecutive tracks of the solution get close to each other. This factmay
cause difficulty in the convergence of the differential corrections to the proper orbit.
The same happens when choosing the initial conditions ψ = π, θ = −π/2, which yield
x = 0, y = −2a + ymin, X = 3B − ϑ̇ymin, Y = 0. The initial conditions ψ = 0, θ = −π/2
or ψ = π, θ = π/2, yield interior ends of the solution x = 0, y = ±ymin, X = ±B ∓ ϑ̇ymin,
Y = 0, which experience exactly the same problems.

On the other hand, it commonly happens that two consecutive tracks of a quasi-
satellite orbit become more distant from each other along the y axis when the cen-
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ter of the corresponding reference ellipse is closer to the origin than in the exterior
or interior parts of the orbit. This fact makes the differential corrections algorithm
find more favorable conditions for the fast convergence to the desired periodic or-
bit when the initial conditions are chosen from a reference ellipse whose center is
close to the origin. As a rule, choosing ψ = 0, θ = 0, which correspond to the Carte-
sian variables of the planar Hill problem x = ξa, y = a, X = −B, Y = −ξB, where
ξ = (Ω/ϑ̇)(1−ymin/a)/(2k2) ≪ 1, will produce satisfactory results, yielding convergence
to the desired periodic orbit with the expected quadratic rate theoretically predicted
for differential correction algorithms.

Finally, it is worth noting that the applicability of the perturbation solution is re-
stricted by construction to the case of slow librations of the reference ellipse when
compared to the fast motion of the orbiter, Ω ≪ ϑ̇, hence excluding the useful case
of 1:1 periodic orbits. Still, the perturbation solution can be used in practice to find
this kind of strong resonant motion. Thus, for orbits with design parameters a = ymin
the amplitude of the librations will be very small, and, in consequence, consecutive
tracks of the orbit will be very close to each other in any place along the quasi-satellite
orbit. This fact, which will make it almost impossible for the differential corrections
algorithm to converge to the designed multiple-period periodic orbit, will usually let
it converge to the dominant, strongly stable, 1:1 resonant orbit. This practical use of
the analytical solution will be illustrated in the following examples.

13.5 Examples

To illustrate how the perturbation solution can be used in the design of quasi-satellite
orbits we provide two examples. The first one deals with the challenging problem of
quasi-satellite orbits with large amplitude libration. The second example shows how
the perturbation solution can be effectively used in the design of a classical distant
retrograde orbit under the 1:1 resonance condition.

13.5.1 Large amplitude libration

The parameters a = 9 and ymin = 2.5, in units of theHill problem, are chosen for the de-
sign of a quasi-satellite orbit with large amplitude libration. Then, from the sequence
described in §13.4.4, we obtain the approximate values: M = 3.75278, Ψ = 10.125,
Ω = 0.0574682, and Θ󸀠 = 0.404672. These values are set into Eqs. (13.33) and (13.34)
to obtain the secular frequencies nθ = −0.0734688, and nψ = 1.00971, respectively.
These frequencies are close to a 55:4 resonance but they are not exactly commensu-
rable, yielding the ratio R0 = 13.7434 between the libration period and orbital pe-
riod.
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To get an exact commensurability R = 14, the closest integer value to R0, we mod-
ify sequentially the initial value of Ψ using the secant method. That is,

Ψ = Ψn +
Ψn+1 −Ψn
Rn+1 − Rn

(R − Rn). (13.40)

After five iterations we found that the value Ψ = 10.412533967155952 produces the
desired commensurability to the computer’s numerical precision, corresponding to
a slightly longer semimajor axis of the reference ellipse, as computed from Eq. (13.4)
replacing Φ by Ψ, which is only 1.4% longer than the original value. The new libra-
tion frequency, which is about 2% slower than the original one, is computed from
Eq. (13.17).

Next the new value Θ󸀠 = 0.41188510904143977 is computed from Eq. (13.39), and
the new orbital and libration periods

TO =
2π
nψ
= 6.22511673870462, TL =

2π
|nθ|
= 87.1516343418646, (13.41)

are computed from the corresponding secular frequencies in Eqs. (13.34) and (13.33),
respectively. As expected, TL is now exactly 14 times longer than TO. For the improved
values, Eq. (13.32) produces a quasi-satellite orbit that is periodic after the libration
period.

TheCartesian coordinates of the 14:1-resonant quasi-satellite orbit,whichare com-
puted from Eqs. (13.29) and (13.3), are depicted in the left plot of Fig. 13.1. To show the
agreement of the computed orbit with the required design (a = 9.1269, ymin = 2.5)
we displaced the x axis from the origin to the value y = 2.5. The right plot of Fig. 13.1
shows the evolution of the center of the reference ellipse scaled by the semimajor axis
a—the nondimensional variables ξ and η in Eq. (13.7). Note that ξ and η are displayed
in different scales for visualization purposes.

The long-period corrections in §13.4.3 provide the orbit in mean elements, which
is also periodic with the same periodicity, and the short-period corrections also yield
a periodic quasi-satellite orbit of the perturbation solution in osculating elements. As
shown in the left plot of Fig. 13.2, the amplitude of the oscillations of the center of the
reference ellipse is shorter both in mean and osculating elements in the y-axis direc-
tion and slightly longer in the x-axis direction than the amplitude in secular variables.
Besides, this trajectory is much more involved in the osculating elements because it
is modulated by the orbital period due to the coupling with the phase of the ellipse.
The long-period corrections clearly modify also the orbit as shown in the right plot of
Fig. 13.2. The short-period corrections introduce corrections of lesser amplitude and
the orbit in osculating elements is not displayed.

On the other hand, due to the truncation of the perturbation solution, if we com-
pute initial conditions from the osculating elements obtained from the perturbation
solution, and propagate them in the original planar Hill problem equations, we do not
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Figure 13.1: Left: Secular periodic orbit after 14 revolutions. Right: trajectory of the guiding center of
the reference ellipse.

Figure 13.2: Left: Guiding center of the reference ellipse in osculating (black line), mean (gray curve)
and secular elements (dots). Right: mean-element orbit (black dashed line) superimposed to the
secular orbit in the left plot Fig. 13.1 (gray curve).
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find an exactly periodic orbit. However, as discussed in §13.4.5, these initial conditions
are readily improved bymeans of differential corrections to give a true periodic quasi-
satellite orbit of the planar Hill problem with similar characteristics to those aimed
by the design parameters. This is illustrated in Fig. 13.3, where the osculating solution
predicted analytically and the improved solution computed using differential correc-
tions are shown superimposed. We finally remark that convergence to a true periodic
orbit with the desired characteristics is usually feasible differentially correcting the
secular initial conditions and period. In this way, the need of conversion from secular
tomean and to osculating elements is avoided. In this last case, the new periodic orbit
may be slightly different from the one obtained from the osculating solution.

Figure 13.3: Improved, 14:1 periodic orbit and hodograph of the Hill problem (dots) superimposed to
the osculating analytical periodic solution (gray curves).

13.5.2 1:1 resonance

Again, we choose a = 9 but we fix the other orbit design parameter ymin = a, trying
to get minimum librations of the reference ellipse. The new choice yields the same
values as before except forM = 0 and Θ󸀠 = 0. For these particular values Eqs. (13.33)–
(13.34) take a simpler form, and turn the computation of the secular frequencies into
the abridged formulas

nθ = −Ω
2
∑
j=0

h1,j(
Ω
ϑ̇
)
2j
, nψ = ϑ̇[1 +

1
2

3
∑
j=0
(1 + 3j)h0,j(

Ω
ϑ̇
)
2j+2
]. (13.42)
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We obtain nθ = −0.0578611, nψ = 1.00763, and hence R0 = 17.4147. Then a refined
value Ψ = 9.805769504452774 is obtained by iteration of Eq. (13.40) with R = 17. Next,
Eq. (13.39) yields Θ󸀠 = 2.0067075011 × 10−4, and Eq. (13.41) TO = 6.233222965910465.
Finally, the secular, periodic orbit is computed using Eq. (13.32), which is evaluated
along the libration period TL = 17 × TO.

The propagation of initial conditions of this secular orbit in the original planar
Hill problem does not yield a true periodic orbit. On the other hand, we failed in im-
proving them with differential corrections to converge to a true periodic 17:1 resonant
orbit of the planar Hill problem, as expected from the close proximity of the different
tracks. However, as discussed in §13.4.5, when we require the differential corrections
algorithm to find a periodic orbit with the orbital period, contrary to the libration one,
the algorithm shows fast convergence to the desired 1:1-resonant orbit. The accuracy
of the analytical prediction is illustrated in Fig. 13.4, where the secular and numeric
orbits are shown superimposed—in the left plot for the orbit and in the right plot for
the center of the reference ellipse.

Figure 13.4: Left: secular periodic orbit after 17 revolutions (full line) superimposed to the true
1:1-periodic orbit (white dots). Right: corresponding trajectories for the center of the reference el-
lipse (dots represent the secular solution).

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography
[1] R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-Wesley 2nd edition, 1987.
[2] M. K.M. Ahmed. On the normalization of perturbed Keplerian systems. The Astronomical

Journal, 107:1900–1903, May 1994.
[3] J. Aiello. Numerical investigation of mapping orbits about Jupiter’s icy moons. In B. G.

Williams, L. A. D’Amario, K. C. Howell and F. R. Hoots, editors, Astrodynamics 2005, P.O. Box
28130, San Diego, California 92198, volume 123 of Advances in the Astronautical Sciences,
pages 1965–1980. American Astronautical Society, Univelt, Inc., 2006.

[4] É. L. Akim and Z. P. Vlasova. Model of the moon’s gravitational field based on the motion
of the artificial lunar satellites Luna-10, 12, 14, 19, and 22. Doklady Akademii Nauk SSSR,
235:38–41, July 1977.

[5] Ye. P. Aksenov, Ye. A. Grebenikov, and V. G. Demin. General solution of the problem of the
motion of an artificial satellite in the normal field of the earth’s attraction. Planetary and
Space Science, 9(8):491–498, August 1962.

[6] K. Aksnes. On the dynamical theory of a near-earth satellite, I. Astrophysica Norvegica,
10:69–77, August 1965.

[7] K. Aksnes. A Second-Order Artificial Satellite Theory Based on an Intermediate Orbit. The
Astronomical Journal, 75:1066, November 1970.

[8] K. Aksnes. A note on ‘The main problem of satellite theory for small eccentricities, by A.
Deprit and A. Rom, 1970’. Celestial Mechanics, 4(1):119–121, September 1971.

[9] K. Aksnes. On the Use of the Hill Variables in Artificial Satellite Theory. Astronomy and
Astrophysics, 17(1):70–75, February 1972.

[10] K. Aksnes. Short-period and long-period perturbations of a spherical satellite due to direct
solar radiation. Celestial Mechanics, 13:89–104, February 1976.

[11] E.M. Alessi, G. Gómez, and J. J. Masdemont. Leaving the moon by means of invariant
manifolds of libration point orbits. Communications in Nonlinear Science and Numerical
Simulation, 14(12):4153–4167, 2009.

[12] E.M. Alessi, G. Schettino, A. Rossi, and G. B. Valsecchi. Natural highways for end-of-life
solutions in the LEO region. Celestial Mechanics and Dynamical Astronomy, 130(5):34, May
2018.

[13] E.M. Alessi, G. Schettino, A. Rossi, and G. B. Valsecchi. Solar radiation pressure resonances
in Low Earth Orbits.Monthly Notices of the Royal Astronomical Society, 473(2):2407–2414,
January 2018.

[14] K. T. Alfriend and S. L. Coffey. Elimination of the perigee in the satellite problem. Celestial
Mechanics, 32(2):163–172, February 1984.

[15] K. T. Alfriend, R. Dasenbrock, H. Pickard, and A. Deprit. The extended phase space
formulation of the Vinti problem. Celestial Mechanics, 16(4):441–458, December 1977.

[16] K. T. Alfriend, S. R. Vadali, and H. Schaub. Formation Flying Satellites: Control by an
Astrodynamicist. Celestial Mechanics and Dynamical Astronomy, 81:57–62, 2001.

[17] R. R. Allan. Satellite orbit perturbations due to radiation pressure and luni-solar forces. The
Quarterly Journal of Mechanics and Applied Mathematics, 15(3):283–301, August 1962.

[18] R. R. Allan. Perturbations of a geostationary satellite by the longitude-dependent terms in the
Earth’s gravitational field. Planetary and Space Science, 11:1325–1334, November 1963.

[19] R. R. Allan. Resonance effects due to the longitude dependence of the gravitational field of a
rotating primary. Planetary and Space Science, 15:53–76, January 1967.

[20] R. R. Allan and G. E. Cook. The Long-Period Motion of the Plane of a Distant Circular Orbit.
Proceedings of the Royal Society of London Series A, 280:97–109, July 1964.

[21] R. R. Allan and G. N. Ward. Planetary equations in terms of vectorial elements. Proceedings of
the Cambridge Philosophical Society, 59(3):669, January 1963.

https://doi.org/10.1515/9783110668513-014

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



338 | Bibliography

[22] E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction, volume 13
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg, 1st
edition, 1990.

[23] D. Amato, C. Bombardelli, G. Baù, V. Morand, and A. J. Rosengren. Non-averaged regularized
formulations as an alternative to semi-analytical orbit propagation methods. Celestial
Mechanics and Dynamical Astronomy, 131(5):21, May 2019.

[24] M-H. Andoyer. Cours de mécanique céleste. Tome I. Gauthier-Villars et cie, Paris, 1923-26.
[25] L. Anselmo and C. Pardini. Orbital Evolution of Geosynchronous Objects with High

Area-To-Mass Ratios. In D. Danesy, editor, 4th European Conference on Space Debris, volume
587 of ESA Special Publication, pages 279–284, August 2005.

[26] L. Anselmo and C. Pardini. Dynamical evolution of high area-to-mass ratio debris released
into GPS orbits. Advances in Space Research, 43(10):1491–1508, 2009.

[27] R. Armellin and J. F. San-Juan. Optimal Earth’s reentry disposal of the Galileo constellation.
Advances in Space Research, 61:1097–1120, February 2018.

[28] R. Armellin, J. F. San-Juan, and M. Lara. End-of-life disposal of high elliptical orbit missions:
The case of INTEGRAL. Advances in Space Research, 56(3):479–493, 2015. Advances in
Asteroid and Space Debris Science and Technology, Part 1.

[29] V. I. Arnol’d. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic
motions under small perturbations of the Hamiltonian. Russian Mathematical Surveys,
18(5):9–36, October 1963.

[30] V. I. Arnol’d.Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2nd edition, 1989.

[31] J. L. Arsenault, K. C. Ford, and P. E. Koskela. Orbit determination using analytic partial
derivatives of perturbed motion. AIAA Journal, 8:4–12, 1970.

[32] J. A. Atchison and M. A. Peck. A passive, sun-pointing, millimeter-scale solar sail. Acta
Astronautica, 67:108–121, July 2010.

[33] M. El-S. Awad. Analytical solution to the perturbed J2 motion of Artificial Satellite in terms of
Euler parameters. Earth Moon and Planets, 69(1):1–12, January 1995.

[34] F. Bagenal, T. E. Dowling and W. B. McKinnon, editors. Jupiter: The Planet, Satellites and
Magnetosphere, pages xii, 732. Cambridge Planetary Science. Cambridge University Press,
Cambridge, United Kingdom, 2004.

[35] N. Baresi, L. Dell’Elce, J. Cardoso dos Santos, and Y. Kawakatsu. Long-term evolution of
mid-altitude quasi-satellite orbits. Nonlinear Dynamics, 99:2743–2763, January 2020.

[36] Y. V. Barkin. Unperturbed Chandler Motion and Perturbation Theory of the Rotation Motion of
Deformable Celestial Bodies. Astronomical and Astrophysical Transactions, 17(3):179–219,
1998.

[37] R. B. Barrar. Some remarks on the motion of a satellite of an oblate planet. The Astronomical
Journal, 66:11, February 1961.

[38] R. B. Barrar. Addendum to “Some remarks on the motion of a satellite of an oblate planet”.
The Astronomical Journal, 67:105, February 1962.

[39] R. Barrio and J. F. Palacián. Lie Transforms for Ordinary Differential Equations: Taking
Advantage of the Hamiltonian Form of Terms of the Perturbation. International Journal for
Numerical Methods in Engineering, 40:2289–2300, June 1997.

[40] R. Barrio and J. F. Palacián. High-order averaging of eccentric artificial satellites perturbed by
the Earth’s potential and air-drag terms. Proceedings of the Royal Society of London Series A,
459:1517–1534, June 2003.

[41] I. Basak. Explicit solution of the Zhukovski-Volterra gyrostat. Regular and Chaotic Dynamics,
14(2):223–236, April 2009.

[42] R. H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics. American
Institute of Aeronautics and Astronautics, Reston, VA, 1999.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 339

[43] V. V. Beletskii.Motion of an Artificial Satellite About Its Center of Mass. Mechanics of Space
Flight. Israel Program for Scientific Translations, S.Monson, Jerusalem, 1966. NASA TT F-429,
Translated from Russian by Z. Lerman.

[44] D. Belorizky. Application pratique des méthodes de M. Sundman à un cas particulier du
problème des trois corps. Bulletin Astronomique Belgrade, 6:417–434, 1930.

[45] S. Belyanin and P. Gurfil. Semianalytical study of geosynchronous orbits about a precessing
oblate earth under lunisolar gravitation and tesseral resonance. Journal of the Astronautical
Sciences, 57:517–543, March 2009.

[46] D. Benest. Effects of the Mass Ratio on the Existence of Retrograde Satellites in the Circular
Plane Restricted Problem. Astronomy and Astrophysics, 32:39, April 1974.

[47] D. Benest. Libration effects for retrograde satellites in the restricted three-body problem. I -
Circular plane Hill’s case. Celestial Mechanics, 13:203–215, March 1976.

[48] A. F. Bertachini de Almeida Prado. Third-Body Perturbation in Orbits Around Natural
Satellites. Journal of Guidance Control Dynamics, 26(1):33–40, January 2003.

[49] J. L. Bertaux and J. E. Blamont. Interpretation of Ogo 5 Lyman alpha measurements in the
upper geocorona. Journal of Geophysical Research, 78(1):80, March January 1973.

[50] C. Bezrouk and J. S. Parker. Long term evolution of distant retrograde orbits in the Earth-Moon
system. Astrophysics and Space Science, 362:176, September 2017.

[51] A. D. Biria and R. P. Russell. A satellite relative motion model including J2 and J3 via Vinti’s
intermediary. Celestial Mechanics and Dynamical Astronomy, 130:23, March 2018.

[52] L. Blitzer, E.M. Boughton, G. Kang, and R.M. Page. Effect of Ellipticity of the Equator on
24-Hour Nearly Circular Satellite Orbits. Journal of Geophysical Research, 67:329–335,
January 1962.

[53] L. Blitzer, G. Kang, and J. B. McGuire. The Perturbed Motion of 24-Hour Satellites Due to
Equatorial Ellipticity. Journal of Geophysical Research, 68:950–952, February 1963.

[54] D. Boccaletti and G. Pucacco. Theory of orbits. Volume 2: Perturbative and geometrical
methods. Astronomy and Astrophysics Library. Springer-Verlag, Berlin Heidelberg New York,
1st edition, 2002.

[55] K. Bohlin. Zur Frage der Convergenz der Reihenentwickelungen in der Störungstheorie.
Astronomische Nachrichten, 121:17, March 1889.

[56] F. Boigey. Une transformation canonique de Mathieu dans l’espace des phases du
mouvement d’un solide mobile autour d’un point fixe. Comptes rendus de l’Académie des
Sciences de Paris, Série A Sciences Mathématiques, 272:1115–1118, 1971.

[57] N. L. Bonavito, S. Watson, and H. Walden. An Accuracy and Speed Comparison of the Vinti and
Brouwer Orbit Prediction Methods. Technical Report NASA TN D-5203, Goddard Space Flight
Center, Greenbelt, Maryland, May 1969.

[58] V. R. Bond. An Analytical Singularity-Free Solution to the J2 Perturbation Problem. Technical
Report NASA-TM-58221; JSC-13128, NASA Johnson Space Center, July 1979.

[59] N. Borderies and P.-Y. Longaretti. A New Treatment of the Albedo Radiation Pressure in the
Case of a Uniform Albedo and of a Spherical Satellite. Celestial Mechanics and Dynamical
Astronomy, 49(1):69–98, March 1990.

[60] G. H. Born, J. L. Mitchell, and G. A. Heyler. Design of the GEOSAT Exact Repeat Mission. Johns
Hopkins APL Technical Digest, 8(2):260–266, 1987.

[61] M. Born. The Mechanics of the Atom. G. Bells and Sons, Ltd, London, 1927.
[62] J. V. Breakwell and J. V. Brown. The ‘halo’ family of 3-dimensional periodic orbits in the

earth-moon restricted 3-body problem. Celestial Mechanics, 20:389–404, November 1979.
[63] J. V. Breakwell and J. Vagners. On Error Bounds and Initialization in Satellite Orbit Theories.

Celestial Mechanics, 2:253–264, June 1970.
[64] S. Ł. Breiter. Lunisolar Apsidal Resonances at low Satellite Orbits. Celestial Mechanics and

Dynamical Astronomy, 74:253–274, August 1999.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



340 | Bibliography

[65] S. Ł. Breiter. Lunisolar Resonances Revisited. Celestial Mechanics and Dynamical Astronomy,
81(1–2):81–91, 2001.

[66] S. Ł. Breiter. On the coupling of lunisolar resonances for Earth satellite orbits. Celestial
Mechanics and Dynamical Astronomy, 80:1–20, July 2001.

[67] A. J. Brizard. Jacobi zeta function and action-angle coordinates for the pendulum.
Communications in Nonlinear Science and Numerical Simulations, 18:511–518, March 2013.

[68] R. A. Broucke. Periodic orbits in the restricted three-body problem with earth-moon masses.
NASA Technical Report 32-1168, Jet Propulsion Laboratory, Pasadena, February 1968.

[69] R. A. Broucke. How to Assemble a Keplerian Processor. Celestial Mechanics, 2:9–20, March
1970.

[70] R. A. Broucke. Numerical integration of periodic orbits in the main problem of artificial
satellite theory. Celestial Mechanics and Dynamical Astronomy, 58(2):99–123, February 1994.

[71] R. A. Broucke. Long-Term Third-Body Effects via Double Averaging. Journal of Guidance
Control Dynamics, 26(1):27–32, January 2003.

[72] R. A. Broucke and P. J. Cefola. On the Equinoctial Orbit Elements. Celestial Mechanics,
5(3):303–310, May 1972.

[73] R. A. Broucke and P. J. Cefola. A Note on the Relations between True and Eccentric Anomalies
in the Two-Body Problem. Celestial Mechanics, 7:388–389, April 1973.

[74] D. Brouwer. The motion of a particle with negligible mass under the gravitational attraction of
a spheroid. The Astronomical Journal, 51:223–231, February 1946.

[75] D. Brouwer. Solution of the problem of artificial satellite theory without drag. The
Astronomical Journal, 64:378–397, November 1959.

[76] D. Brouwer. Analytical study of resonance caused by solar radiation pressure. In M. Roy,
editor, Dynamics of Satellites/Dynamique des Satellites, IUTAM Symposia (International
Union of Theoretical and Applied Mechanics), pages 34–39. Springer, Berlin, Heidelberg,
1963.

[77] D. Brouwer. The problem of the Kirkwood gaps in the asteroid belt. The Astronomical Journal,
68:152–158, April 1963.

[78] D. Brouwer and G.M. Clemence.Methods of Celestial Mechanics. Academic Press, New York
and London, 1961.

[79] D. Brouwer and G.-I. Hori. Theoretical evaluation of atmospheric drag effects in the motion of
an artificial satellite. The Astronomical Journal, 66:193–225, June 1961.

[80] E.W. Brown. An introductory treatise on the lunar theory. The University Press, Cambridge,
1896.

[81] S. Bruinsma, P. Exertier, G. Métris, and J. Bardina. Semi-analytical theory of mean orbital
motion: A new tool for computing ephemerides. In T.-D. Guyenne, editor, Space Flight
Dynamics, volume 403 of ESA Special Publication, pages 289–294, August 1997.

[82] E. Brumberg and T. Fukushima. Expansions of elliptic motion based on elliptic function
theory. Celestial Mechanics and Dynamical Astronomy, 60:69–89, September 1994.

[83] V. A. Brumberg. Analytical Techniques of Celestial Mechanics. Springer-Verlag, Berlin
Heidelberg, 1st edition, 1995.

[84] A. D. Bruno. The restricted 3-body problem: Plane periodic orbits, volume 17 of De Gruyter
Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1994. English translation of
the original Russian edition (Nauka, Moscow, 1990).

[85] R.W. Bryant. The effect of solar radiation pressure on the motion of an artificial satellite. The
Astronomical Journal, 66:430, October 1961.

[86] J. A. Burns, P. L. Lamy, and S. Soter. Radiation forces on small particles in the solar system.
Icarus, 40(1):1–48, October 1979.

[87] C. Burrau and E. Strömgren. Numerische Untersuchungen über eine Klasse einfach
periodischer retrograder Bahnen im problème restreint. Astronomische Nachrichten,
202(12):185, March 1916.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 341

[88] M. Burša. Figure and Dynamic Parameters of Synchronously Orbiting Satellites in the Solar
System. Bulletin of the Astronomical Institutes of Czechoslovakia, 40:125–130, March 1989.

[89] P. F. Byrd and M. Friedman. Handbook of Elliptic Integrals for Engineers and Physicists.
Springer-Verlag, Berlin, Heidelberg and New York, 2nd edition, 1971.

[90] B. J. Cain. Determination of mean elements for Brouwer’s satellite theory. The Astronomical
Journal, 67:391, August 1962.

[91] J. A. Campbell and W.H. Jefferys. Equivalence of the Perturbation Theories of Hori and Deprit.
Celestial Mechanics, 2(4):467–473, 1970.

[92] É. Cartan. Leçons sur les invariants intégraux. A. Hermann & fils, Paris, 1922.
[93] J. R. Cary. Lie transforms and their use in Hamiltonian perturbation theory. Report LBL-6350,

Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley CA 94720, June 1978. Also: U.S.
Department of Energy Report DOE/ET-0074, January, 1979.

[94] J. R. Cary. Lie transform perturbation theory for Hamiltonian systems. Physics Reports,
79(2):129–159, 1981.

[95] D. Casanova, A. Petit, and A. Lemaître. Long-term evolution of space debris under the
J2 effect, the solar radiation pressure and the solar and lunar perturbations. Celestial
Mechanics and Dynamical Astronomy, 123(2):223–238, October 2015.

[96] S. Casotto, S. Padovan, R. P. Russell, and M. Lara. Detecting a Subsurface Ocean From
Periodic Orbits at Enceladus. In AGU Fall Meeting Abstracts, volume 2008, pages P23B–1366,
December 2008.

[97] M. Ceccaroni and J. D. Biggs. Analytic perturbative theories in highly inhomogeneous
gravitational fields. Icarus, 224:74–85, May 2013.

[98] P. J. Cefola and R. A. Broucke. On the formulation of the gravitational potential in terms of
equinoctial variables. In 13th Aerospace Sciences Meeting, Pasadena, California, pages 1–25.
American Institute of Aeronautics and Astronautics, USA, January 1975. AIAA Paper No. 75-9.

[99] P. J. Cefola and D. J. Fonte. Extension of the Naval Space Command Satellite Theory PPT2 to
Include a General Tesseral m-daily Model. In Paper AIAA 96-3606, Astrodynamics Conference,
San Diego, CA, pages 1–45. American Institute of Aeronautics and Astronautics, USA, July
1996.

[100] A. Celletti and L. Chierchia. Construction of analytic KAM surfaces and effective stability
bounds. Communications in Mathematical Physics, 118:119–161, March 1988.

[101] A. Celletti, C. Galeş, G. Pucacco, and A. J. Rosengren. Analytical development of the lunisolar
disturbing function and the critical inclination secular resonance. Celestial Mechanics and
Dynamical Astronomy, 127(3):259–283, March 2017.

[102] A. Celletti and P. Negrini. Non-integrability of the problem of motion around an oblate planet.
Celestial Mechanics and Dynamical Astronomy, 61(3):253–260, March 1995.

[103] A. Celletti, G. Pucacco, and D. Stella. Lissajous and Halo Orbits in the Restricted Three-Body
Problem. Journal of NonLinear Science, 25:343–370, April 2015.

[104] J.W. Chamberlain. Depletion of satellite atoms in a collisionless exosphere by radiation
pressure. Icarus, 39(2):286–294, August 1979.

[105] J.W. Chamberlain and J. Bishop. Radiation pressure dynamics in planetary exospheres. II -
Closed solutions for the evolution of orbital elements. Icarus, 106:419–427, December 1993.

[106] C. C. Chao. Applied orbit perturbation and maintenance. The Aerospace Press. American
Institute of Aeronautics and Astronautics, El Segundo, California, 1998.

[107] C. C. Chao. Analytical Investigation of GEO Debris with High Area-to-Mass Ratio (AIAA
2006-6514). In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21–24 August
2006, Keystone, Colorado, AIAA Meeting Paper, page 9, American Institute of Aeronautics
and Astronautics, August 2006.

[108] C. C. Chao and R. A. Gick. Long-term evolution of navigation satellite orbits:
GPS/GLONASS/GALILEO. Advances in Space Research, 34(5):1221–1226, 2004.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



342 | Bibliography

[109] J. Chapront and G. Francou. The lunar theory ELP revisited. Introduction of new planetary
perturbations. Astronomy and Astrophysics, 404:735–742, June 2003.

[110] M. Chapront-Touze and J. Chapront. ELP 2000-85 - A semi-analytical lunar ephemeris
adequate for historical times. Astronomy and Astrophysics, 190:342–352, January 1988.

[111] R. Cid and J. F. Lahulla. Perturbaciones de corto periodo en el movimiento de un satélite
artificial, en función de las variables de Hill. Publicaciones de la Revista de la Academia de
Ciencias de Zaragoza, 24:159–165, 1969.

[112] C. Circi, E. Condoleo, and E. Ortore. A vectorial approach to determine frozen orbital
conditions. Celestial Mechanics and Dynamical Astronomy, 128(2–3):361–382, June 2017.

[113] W. H. Clohessy and R. S. Wiltshire. Terminal Guidance System for Satellite Rendezvous.
Journal of the Aerospace Sciences, 27(9):653–658, September 1960.

[114] S. Coffey and K. T. Alfriend. An analytical orbit prediction program generator. Journal of
Guidance, Control and Dynamics, 7(5):575–581, 1984.

[115] S. Coffey and A. Deprit. Fast evaluation of Fourier series. Astronomy and Astrophysics,
81:310–315, January 1980.

[116] S. Coffey, A. Deprit, E. Deprit, and L. Healy. Painting the Phase Space Portrait of an Integrable
Dynamical System. Science, 247(4944):833–836, February 1990.

[117] S. L. Coffey and K. T. Alfriend. Short Period Elimination for the Tesseral Harmonics. In A. L.
Friedlander, P. J. Cefola, B. Kaufman, W. Williamson and G. T. Tseng, editors, Advances in the
Astronautical Sciences, P.O. Box 28130, San Diego, California 92198, volume 46 of AAS/AIAA
Astrodynamics Conference 1981, pages 87–101. American Astronautical Society, Univelt, Inc.,
1982.

[118] S. L. Coffey and A. Deprit. Third-Order Solution to the Main Problem in Satellite Theory.
Journal of Guidance, Control and Dynamics, 5(4):366–371, 1982.

[119] S. L. Coffey, A. Deprit, and E. Deprit. Frozen orbits for satellites close to an earth-like planet.
Celestial Mechanics and Dynamical Astronomy, 59(1):37–72, May 1994.

[120] S. L. Coffey, A. Deprit, and B. R. Miller. The critical inclination in artificial satellite theory.
Celestial Mechanics, 39(4):365–406, December 1986.

[121] S. L. Coffey, H. L. Neal, A.M. Segerman, and J. J. Travisano. An Analytic Orbit Propagation
Program for Satellite Catalog Maintenance. In K. T. Alfriend, I.M. Ross, A. K. Misra and C. F.
Peters, editors, AAS/AIAA Astrodynamics Conference 1995, P.O. Box 28130, San Diego,
California 92198, volume 90 of Advances in the Astronautical Sciences, pages 1869–1892.
American Astronautical Society, Univelt, Inc., 1996.

[122] S. K. Collins and P. J. Cefola. Double averaged third body model for prediction of
super-synchronous orbits over long time spans. In Paper AAS 79-135, American Astronautical
Society, June 1979.

[123] C. Colombo. Planetary Orbital Dynamics (PlanODyn) suite for long term propagation in
perturbed environment. In Proceedings of the 6th International Conference on Astrodynamics
Tools and Techniques, ICATT, pages 1–7. ESA, March 2016.

[124] C. Colombo, E.M. Alessi, W. van der Weg, S. Soldini, F. Letizia, M. Vetrisano, M. Vasile, A.
Rossi, and M. Landgraf. End-of-life disposal concepts for libration point orbit and highly
elliptical orbit missions. Acta Astronautica, 110:298–312, 2015. Dynamics and Control of
Space Systems.

[125] C. Colombo, C. Lücking, and C. R. McInnes. Orbital dynamics of high area-to-mass
ratio spacecraft with J2 and solar radiation pressure for novel Earth observation and
communication services. Acta Astronautica, 81(1):137–150, 2012.

[126] C. Colombo and C. R. McInnes. Orbital Dynamics of “Smart-Dust” Devices with Solar Radiation
Pressure and Drag. Journal of Guidance Control Dynamics, 34:1613–1631, November 2011.

[127] C. C. Conley. Low energy transit orbits in the restricted three-body problem. SIAM Journal on
Applied Mathematics, 16:732–746, 1968.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 343

[128] G. E. Cook. Luni-Solar Perturbations of the Orbit of an Earth Satellite. Geophysical Journal,
6:271–291, April 1962.

[129] G. E. Cook. Satellite drag coefficients. Planetary and Space Science, 13(10):929–946, October
1965.

[130] G. E. Cook. Perturbations of near-circular orbits by the Earth’s gravitational potential.
Planetary and Space Science, 14:433–444, May 1966.

[131] G. E. Cook, D. G. King-Hele, and D.M. C. Walker. The Contraction of Satellite Orbits Under the
Influence of Air Drag. I. With Spherically Symmetrical Atmosphere. Proceedings of the Royal
Society of London Series A, 257(1289):224–249, September 1960.

[132] R. A. Cook. The long-term behavior of near-circular orbits in a zonal gravity field (AAS 91-463).
In B. Kaufman, K. T. Alfriend, R. L. Roehrich and R. R. Dasenbrock, editors, Astrodynamics
1991, P.O. Box 28130, San Diego, California 92198, volume 76 of Advances in the Astronautical
Sciences, pages 2205–2221. American Astronautical Society, Univelt, Inc., 1992.

[133] V. T. Coppola and J. F. Palacián. Elimination of the latitude in artificial satellite theory. The
Journal of the Astronautical Sciences, 42:27–34, January 1994.

[134] R. Cushman. Geometry of the Bifurcations of the Normalized Reduced Henon-Heiles Family.
Proceedings of the Royal Society of London Series A, 382:361–371, August 1982.

[135] R. Cushman. Reduction, Brouwer’s Hamiltonian, and the critical inclination. Celestial
Mechanics, 31(4):401–429, December 1983.

[136] R. Cushman and D. L. Rod. Reduction of the semisimple 1:1 resonance. Physica D Nonlinear
Phenomena, 6(1):105–112, October 1982.

[137] E. Cutting, J. C. Frautnick, and G. H. Born. Orbit analysis for Seasat-A. The Journal of the
Astronautical Sciences, 26:315–342, December 1978.

[138] J.M. A. Danby. Motion of a Satellite of a Very Oblate Planet. The Astronomical Journal,
73(10):1031–1038, December 1968.

[139] J.M. A. Danby. Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond VA, 2nd
edition, 1992.

[140] J.M. A. Danby, A. Deprit, and A. R.M. Rom. The Symbolic Manipulation of Poisson Series.
Mathematical Note No. 432 D1-82-0481, Boeing Scientific Research Laboratories, Seattle,
Washington, 1965.

[141] Z. Dang, J. Luo, P. Shi, and H. Zhang. General Characteristics of the Motion on J2-Perturbed
Equatorial Orbits. Journal of Guidance Control Dynamics, 42(10):2319–2324, October 2019.

[142] J. Daquin, I. Gkolias, and A. J. Rosengren. Drift and Its Mediation in Terrestrial Orbits. Frontiers
in Applied Mathematics and Statistics, 4(35):1–17, 2018.

[143] V. Dehant, O. de Viron, O. Karatekin, and T. van Hoolst. Excitation of Mars polar motion.
Astronomy & Astrophysics, 446(1):345–355, 2006.

[144] C. E. Delaunay. La Théorie du Mouvement de la Lune, Premier volume, volume 28 ofMémoires
de l’Academie des Sciences de l’Institut Impérial de France. Mallet-Bachellier, Paris, 1860.

[145] F. Deleflie, P. Legendre, P. Exertier, and F. Barlier. Long term evolution of the Galileo
constellation due to gravitational forces. Advances in Space Research, 36:402–411, 2005.

[146] F. Deleflie, A. Rossi, C. Portmann, G. Métris, and F. Barlier. Semi-analytical investigations of
the long term evolution of the eccentricity of Galileo and GPS-like orbits. Advances in Space
Research, 47(5):811–821, March 2011.

[147] M. Delgado. Classroom Note: The Lagrange–Charpit Method. SIAM Review, 39(2):298–304,
January 1997.

[148] F. Delhaise. Analytical treatment of air drag and earth oblateness effects upon an artificial
satellite. Celestial Mechanics and Dynamical Astronomy, 52:85–103, March 1991.

[149] F. Delhaise and J. Henrard. The problem of critical inclination combined with a resonance in
mean motion in artificial satellite theory. Celestial Mechanics and Dynamical Astronomy,
55:261–280, March 1993.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



344 | Bibliography

[150] A. Deprit. Free Rotation of a Rigid Body Studied in the Phase Space. American Journal of
Physics, 35:424–428, 1967.

[151] A. Deprit. Canonical transformations depending on a small parameter. Celestial Mechanics,
1(1):12–30, 1969.

[152] A. Deprit. Ideal elements for perturbed Keplerian motions. Journal of Research of the National
Bureau of Standards, 79:1–15, 1975.

[153] A. Deprit. Celestial Mechanics: Never Say No To A Computer. Journal of Guidance Control
Dynamics, 4(5):577–581, September 1981.

[154] A. Deprit. The elimination of the parallax in satellite theory. Celestial Mechanics,
24(2):111–153, 1981.

[155] A. Deprit. The Main Problem in the Theory of Artificial Satellites to Order Four. Journal of
Guidance Control Dynamics, 4(2):201–206, March 1981.

[156] A. Deprit. Delaunay normalisations. Celestial Mechanics, 26:9–21, January 1982.
[157] A. Deprit. Elimination of the nodes in problems of N bodies. Celestial Mechanics, 30:181–195,

June 1983.
[158] A. Deprit. The reduction to the rotation for planar perturbed Keplerian systems. Celestial

Mechanics, 29:229–247, March 1983.
[159] A. Deprit. Dynamics of orbiting dust under radiation pressure. In A. Berger, editor, The

Big-Bang and Georges Lemaître, pages 151–180. Springer, Dordrecht, 1984.
[160] A. Deprit. The Lissajous transformation. I - Basics. Celestial Mechanics and Dynamical

Astronomy, 51:201–225, 1991.
[161] A. Deprit and A. Delie. Trojan orbits. I. d’Alembert Series at L4. Icarus, 4:242–266, July 1965.
[162] A. Deprit and E. Deprit. Massively Parallel Symbolic Computation. In Proceedings of the

ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC
’89, pages 308–316. ACM, New York, NY, USA, 1989.

[163] A. Deprit and A. Elipe. The Lissajous transformation. II - Normalization. Celestial Mechanics
and Dynamical Astronomy, 51:227–250, September 1991.

[164] A. Deprit and A. Elipe. Complete reduction of the Euler-Poinsot problem. The Journal of the
Astronautical Sciences, 41:603–628, October 1993.

[165] A. Deprit and S. Ferrer. Note on Cid’s Radial Intermediary and the Method of Averaging.
Celestial Mechanics, 40(3–4):335–343, 1987.

[166] A. Deprit and S. Ferrer. Simplifications in the theory of artificial satellites. The Journal of the
Astronautical Sciences, 37(4):451–463, December 1989.

[167] A. Deprit and B. Miller. Simplify or Perish. Celestial Mechanics, 45:189–200, 1989.
[168] A. Deprit and B. R. Miller. Normalization in the Face of Integrability. Annals of the New York

Academy of Sciences, 536(1):101–126, August 1988.
[169] A. Deprit, J. F. Palacián, and E. Deprit. The Relegation Algorithm. Celestial Mechanics and

Dynamical Astronomy, 79(3):157–182, 2001.
[170] A. Deprit and D. L. Richardson. Comments on Aksnes’ intermediary. Celestial Mechanics,

28(3):253–273, 1982.
[171] A. Deprit and A. Rom. The Main Problem of Artificial Satellite Theory for Small and Moderate

Eccentricities. Celestial Mechanics, 2(2):166–206, June 1970.
[172] A. Deprit and A. R.M. Rom. Computerized Expansions in Elliptic Motion. Mathematical Note

No. 504 D1-82-0601, Boeing Scientific Research Laboratories, Seattle, Washington, 1965.
[173] A. Deprit and A. R.M. Rom. Lindstedt’s Series on a Computer. The Astronomical Journal,

73:210–213, April 1968.
[174] E. Deprit and A. Deprit. Poincaré’s méthode nouvelle by skew composition. Celestial

Mechanics and Dynamical Astronomy, 74(3):175–197, July 1999.
[175] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.27 of

2020-06-15. F.W. J. Olver, A. B. Olde Daalhuis, D.W. Lozier, B. I. Schneider, R. F. Boisvert, C.W.
Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 345

[176] E. J. Doedel, R. C. Paffenroth, H. B. Keller, D. J. Dichmann, J. Galán-Vioque, and A.
Vanderbauwhede. Computation of Periodic Solutions of Conservative Systems with
Application to the 3-Body Problem. International Journal of Bifurcation and Chaos,
13:1353–1381, June 2003.

[177] A. J. Dragt. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics.
University of Maryland: http://www.physics.umd.edu/dsat/, 2019. Accessed: 2020-11-21.

[178] A. J. Dragt and J.M. Finn. Lie series and invariant functions for analytic symplectic maps.
Journal of Mathematical Physics, 17:2215–2227, December 1976.

[179] G. Duffing. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische
Bedeutung, volume 41/42 of Sammlung Vieweg. F. Vieweg & sohn, Braunschweig, 1918. In
German.

[180] P. Dunn. Geopotential resonance in a Landsat orbit. Bulletin Geodesique, 55(2):143–158, June
1981.

[181] M. C. Eckstein and F. Hechler. A reliable derivation of the perturbations due to any zonal
and tesseral harmonics of the geopotential for nearly-circular satellite orbits. Scientific
Report ESRO SR-13, European Space Research Organisation, Darmstadt, Federal Republic
of Germany, June 1970.

[182] M. C. Eckstein, Y. Y. Shi, and J. Kevorkian. Satellite motion for arbitrary eccentricity and
inclination around the smaller primary in the restricted three-body problem. The Astronomical
Journal, 71:248–263, May 1966.

[183] T. A. Ely. Eccentricity Impact on East-West Stationkeeping for Global Positioning System Class
Orbits. Journal of Guidance Control Dynamics, 25:352–357, March 2002.

[184] T. A. Ely. Mean Element Propagations Using Numerical Averaging. The Journal of the
Astronautical Sciences, 61(3):275–304, September 2014.

[185] T. A. Ely. Transforming Mean and Osculating Elements Using Numerical Methods. The Journal
of the Astronautical Sciences, 62(1):21–43, March 2015.

[186] T. A. Ely and K. C. Howell. Long-term evolution of artificial satellite orbits due to resonant
tesseral harmonics. The Journal of the Astronautical Sciences, 44:167–190, April 1996.

[187] T. A. Ely and K. C. Howell. Dynamics of artificial satellite orbits with tesseral resonances
including the effects of luni-solar perturbations. Dynamics and Stability of Systems,
12(4):243–269, 1997.

[188] T. A. Ely and K. C. Howell. East-west stationkeeping of satellite orbits with resonant tesseral
harmonics. Acta Astronautica, 46:1–15, February 2000.

[189] D. Eui Chang and J. E. Marsden. Geometric Derivation of the Delaunay Variables and
Geometric Phases. Celestial Mechanics and Dynamical Astronomy, 86(2):185–208, June
2003.

[190] R.W. Farquhar. The control and use of libration-point satellites. Technical Report R-346,
Goddard Space Flight Center, Greenbelt, Maryland September 1970.

[191] R.W. Farquhar and A. A. Kamel. Quasi-Periodic Orbits about the Translunar Libration Point.
Celestial Mechanics, 7:458–473, June 1973.

[192] F. Fassò. Superintegrable hamiltonian systems: Geometry and perturbations. Acta
Applicandae Mathematica, 87(1):93–121, May 2005.

[193] J.M. Ferrandiz. Linearization in special cases of perturbed Keplerian motions. Celestial
Mechanics, 39:23–31, May 1986.

[194] J.M. Ferrándiz and L. Floría. Towards a systematic definition of intermediaries in the theory
of artificial satellites. Bulletin of the Astronomical Institutes of Czechoslovakia, 42:401–407,
November 1991.

[195] S. Ferraz Mello. Analytical Study of the Earth’s Shadowing Effects on Satellite Orbits. Celestial
Mechanics, 5:80–101, January 1972.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



346 | Bibliography

[196] S. Ferraz-Mello. Elimination of secular terms generated by the coupling of perturbations.
Celestial Mechanics, 25:293–296, November 1981.

[197] S. Ferraz-Mello. Do Average Hamiltonians Exist? Celestial Mechanics and Dynamical
Astronomy, 73:243–248, January 1999.

[198] S. Ferraz-Mello. Canonical Perturbation Theories – Degenerate Systems and Resonance,
volume 345 of Astrophysics and Space Science Library. Springer, New York, January 2007.

[199] S. Ferrer and M. Lara. Families of Canonical Transformations by Hamilton-Jacobi-Poincaré
Equation. Application to Rotational and Orbital Motion. Journal of Geometric Mechanics,
2(3):223–241, 2010.

[200] S. Ferrer and M. Lara. Integration of the Rotation of an Earth-like Body as a Perturbed
Spherical Rotor. The Astronomical Journal, 139(5):1899–1908, 2010.

[201] S. Ferrer, M. Lara, J. F. Palacián, J. F. San Juan, A. Viartola, and P. Yanguas. The Hénon and
Heiles Problem in Three Dimensions: I. Periodic Orbits Near the Origin. International Journal
of Bifurcation and Chaos, 8:1199–1213, June 1998.

[202] S. Ferrer and B. R. Miller. Coordinates for Perturbed Keplerian Systems with Axial Symmetry.
Celestial Mechanics and Dynamical Astronomy, 53(1):3–10, March 1992.

[203] M. P. Francis, G. S. Gedeon, and B. C. Douglas. Perturbations of repeating groundtrack
satellites by tesseral harmonics in the gravitational potential. AIAA Journal, 4:1281–1286,
July 1966.

[204] L. Froideval and B. Schutz. Long arc analysis of GPS orbits (AAS 06-142). In S. R. Vadali, L. A.
Cangahuala, P.W. Schumacher Jr. and J. J. Guzman, editors, Spaceflight Mechanics 2006,
P.O. Box 28130, San Diego, California 92198, volume 124 of Advances in the Astronautical
Sciences, pages 653–664. American Astronautical Society, Univelt, Inc., 2006.

[205] C. de la Fuente Marcos and R. de la Fuente Marcos. Asteroid 2014 OL339: yet another
Earth quasi-satellite.Monthly Notices of the Royal Astronomical Society, 445:2985–2994,
December 2014.

[206] T. Fukushima. New Canonical Variables for Orbital and Rotational Motions. In H. Kinoshita and
H. Nakai, editors, 25th Symposium on Celestial Mechanics, pages 100–122, 1992.

[207] T. Fukushima. New canonical variables for orbital and rotational motions. Celestial Mechanics
and Dynamical Astronomy, 60:57–68, September 1994.

[208] T. Fukushima. Efficient integration of torque-free rotation by energy scaling method. In A.
Brzeziński, N. Capitaine and B. Kolaczek, editors, Proceedings of the Journées Systèmes
de Référence Spatio-Temporels 2005, pages 101–104. Space Research Centre PAS, Warsaw,
Poland, October 2006.

[209] L. P. Fulcher and B. F. Davis. Theoretical and experimental study of the motion of the simple
pendulum. American Journal of Physics, 44:51–55, January 1976.

[210] F. Gachet, A. Celletti, G. Pucacco, and C. Efthymiopoulos. Geostationary secular dynamics
revisited: application to high area-to-mass ratio objects. Celestial Mechanics and Dynamical
Astronomy, 128:149–181, June 2017.

[211] G. Gaias, J.-S. Ardaens, and O. Montenbruck. Model of J2 perturbed satellite relative
motion with time-varying differential drag. Celestial Mechanics and Dynamical Astronomy,
123:411–433, December 2015.

[212] G. Gaias, C. Colombo, and M. Lara. Analytical Framework for Precise Relative Motion in Low
Earth Orbits. Journal of Guidance Control Dynamics, 43(5):915–927, March 2020.

[213] G. Gaias, M. Lara, and C. Colombo. Accurate Osculating/Mean Orbital Elements Conversions
for Spaceborne Formation Flying. In Proceedings of the 27th International Symposium on
Space Flight Dynamics, Melbourne, Australia, pages 1–14. ISSFD, February 2019.

[214] E.M. Gaposchkin. Calculation of satellite drag coefficients. NASA STI/Recon Technical Report
N, MIT Lincoln Laboratory, Lexinton, Massachusetts July 1994.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 347

[215] D. García Yárnoz, D. J. Scheeres, and C. R. McInnes. On the “a” and “g” families of orbits
in the Hill problem with solar radiation pressure and their application to asteroid orbiters.
Celestial Mechanics and Dynamical Astronomy, 121:365–384, April 2015.

[216] B. Garfinkel. On the motion of a satellite of an oblate planet. The Astronomical Journal,
63(1257):88–96, March 1958.

[217] B. Garfinkel. The orbit of a satellite of an oblate planet. The Astronomical Journal,
64(9):353–367, November 1959.

[218] B. Garfinkel. On the motion of a satellite in the vicinity of the critical inclination. The
Astronomical Journal, 65:624–627, December 1960.

[219] B. Garfinkel. An improved theory of motion of an artificial satellite. The Astronomical Journal,
69(3):223–229, April 1964.

[220] B. Garfinkel. Tesseral harmonic perturbations of an artificial satellite. The Astronomical
Journal, 70:784–786, December 1965.

[221] B. Garfinkel. The disturbing function for an artificial satellite. The Astronomical Journal,
70:699–704, November 1965.

[222] B. Garfinkel. Formal solution in the problem of small divisors. The Astronomical Journal,
71(8):657–669, October 1966.

[223] B. Garfinkel. A Theory of Libration. Celestial Mechanics, 13(2):229–246, March 1976.
[224] B. Garfinkel. Comments on ‘About an unsuspected integrable problem’ by F. Mignard and M.

Henon. Celestial Mechanics, 35(4):343–344, April 1985.
[225] B. Garfinkel and K. Aksnes. Spherical Coordinate Intermediaries for an Artificial Satellite. The

Astronomical Journal, 75(1):85–91, February 1970.
[226] R. L. Garwin. Solar sailing: a practical method of propulsion within the Solar System. Jet

Propulsion, 28:188–190, 1958.
[227] C. F. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientiun.

Frid. Perthes et I.H. Besser, Hamburg, 1809. Reprint: Cambridge University Press, 2001.
English translation by C.H. Davis, Boston, 1857, reprinted by Dover Publications, 1963.

[228] G. S. Gedeon. Tesseral Resonance Effects on Satellite Orbits. Celestial Mechanics, 1:167–189,
June 1969.

[229] G. E. O. Giacaglia. The influence of high-order zonal harmonics on the motion of an artificial
satellite without drag. The Astronomical Journal, 69:303–308, May 1964.

[230] G. E. O. Giacaglia. Lunar Perturbations of Artificial Satellites of the Earth. Celestial Mechanics,
9:239–267, April 1974.

[231] G. E. O. Giacaglia. A note on Hansen’s coefficients in satellite theory. Celestial Mechanics,
14:515–523, December 1976.

[232] G. E. O. Giacaglia. A note on the inclination functions of satellite theory. Celestial Mechanics,
13:503–509, June 1976.

[233] G. E. O. Giacaglia. Transformations of spherical harmonics and applications to geodesy and
satellite theory. Studia Geophysica et Geodaetica, 24:1–11, March 1980.

[234] G. E. O. Giacaglia. Hansen Coefficients and Generalized Spherical Harmonics. Publications of
the Astronomical Society of Japan, 39:171–178, 1987.

[235] P. J. S. Gil and J. Schwartz. Simulations of Quasi-Satellite Orbits Around Phobos. Journal of
Guidance Control Dynamics, 33:901–914, May 2010.

[236] A. Giorgilli. A computer program for integrals of motion. Computer Physics Communications,
16:331–343, 1979.

[237] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, and C. Simó. Effective stability for a
Hamiltonian system near an elliptic equilibrium point, with an application to the restricted
three body problem. Journal of Differential Equations, 77:167–198, 1989.

[238] A. Giorgilli and L. Galgani. Formal integrals for an autonomous Hamiltonian system near an
equilibrium point. Celestial Mechanics, 17:267–280, April 1978.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



348 | Bibliography

[239] A. Giorgilli and L. Galgani. Rigorous estimates for the series expansions of Hamiltonian
perturbation theory. Celestial Mechanics, 37:95–112, 1985.

[240] I. Gkolias, J. Daquin, F. Gachet, and A. J. Rosengren. From Order to Chaos in Earth Satellite
Orbits. The Astronomical Journal, 152(5):119, November 2016.

[241] H. Goldstein. Prehistory of the “Runge-Lenz” vector. American Journal of Physics,
43(8):737–738, August 1975.

[242] H. Goldstein. More on the prehistory of the Laplace or Runge-Lenz vector. American Journal of
Physics, 44(11):1123–1124, November 1976.

[243] H. Goldstein, C. P. Poole, and J. L. Safko. Classical Mechanics. Addison-Wesley, New York, 3rd
edition, 2001.

[244] A. R. Golikov. THEONA—a numerical-analytical theory of motion of artificial satellites of
celestial bodies. Cosmic Research, 50(6):449–458, November 2012.

[245] V. V. Golubev. Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed
Point. Israel Program for Scientific Translations. S.Monson, Jerusalem, 1960.

[246] G. Gómez, A. Jorba, J. Masdemont, and C. Simó. Study Refinement of Semi-Analytical Halo
Orbit Theory. Technical Report Contract 8625/89/D/MD(SC), European Space Operations
Center, Robert-Bosch-Strasse 5, 64293 Darmstadt, Germany, 1991.

[247] G. Gómez, M. Lara, and R. Russell. A dynamical systems approach to the design of the
science orbit around Europa. In Paper ISTS 2006-d-02, 19th International Symposium on
Space Flight Dynamics, Kanazawa, Japan, June 4–11, 2006, pages 1–6. ISSFD, February 2006.

[248] G. Gómez, J. Llibre, R. Martínez, and C. Simó. Dynamics and Mission Design Near Libration
Points. Vol. I Fundamentals: The Case of Collinear Libration Points, volume 2 ofWorld
Scientific Monograph Series in Mathematics. World Scientific, Singapore, 2001.

[249] G. Gómez, M.W. Lo, and J. J. Masdemont. Libration Point Orbits and Applications. World
Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore 596224, 2003.

[250] G. Gómez, M. Marcote, and J.M. Mondelo. The invariant manifold structure of the spatial
Hill’s problem. Dynamical Systems, 20(1):115–147, 2005.

[251] R. H. Gooding and C. A. Wagner. On the inclination functions and a rapid stable procedure for
their evaluation together with derivatives. Celestial Mechanics and Dynamical Astronomy,
101:247–272, July 2008.

[252] R. A. Gordon, G. D. Mistretta, and J. S. Watson. A Comparison of Classical Analytic Theories for
the Motion of Artificial Satellites. Journal of Guidance Control Dynamics, 2(3):184–189, May
1979.

[253] A. J. Green. Orbit determination and prediction processes for low altitude satellites. PhD
thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77
Massachusetts Ave, Cambridge, MA February 1980.

[254] W. Gröbner. Die Lie-Reihen und Ihre Anwendungen, volume 3 ofMathematische
Monographien. Deutscher Verlag der Wissenschaften, Berlin, 1960.

[255] J. Guckenheimer and P. J. Holmes. Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1983.

[256] J. R. Guinn. Periodic gravitational perturbations for conversion between osculating and
mean orbit elements (AAS 91-430). In B. Kaufman, K. T. Alfriend, R. L. Roehrich and R. R.
Dasenbrock, editors, AAS/AIAA Astrodynamics Conference 1991, P.O. Box 28130, San Diego,
California 92198, volume 76 of Advances in the Astronautical Sciences, pages 1–25. American
Astronautical Society, Univelt, Inc., 1991.

[257] P. Gurfil and N. J. Kasdin. Canonical modelling of coorbital motion in Hill’s problem using
epicyclic orbital elements. Astronomy and Astrophysics, 409:1135–1140, October 2003.

[258] P. Gurfil and M. Lara. Motion near frozen orbits as a means for mitigating satellite relative
drift. Celestial Mechanics and Dynamical Astronomy, 116(3):213–227, July 2013.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 349

[259] P. Gurfil and M. Lara. Satellite onboard orbit propagation using Deprit’s radial intermediary.
Celestial Mechanics and Dynamical Astronomy, 120(2):217–232, October 2014.

[260] M. C. Gutzwiller. Moon-Earth-Sun: The oldest three-body problem. Reviews of Modern
Physics, 70(2):589–639, April 1998.

[261] Y. Hagihara. Libration of an Earth Satellite with Critical Inclination. Smithsonian Contributions
to Astrophysics, 5(5):39–51, 1961.

[262] D. P. Hamilton and A. V. Krivov. Circumplanetary Dust Dynamics: Effects of Solar Gravity,
Radiation Pressure, Planetary Oblateness, and Electromagnetism. Icarus, 123(2):503–523,
October 1996.

[263] P. A. Hansen. Expansions of the product of a power of the radius vector with the sinus
or cosinus of a multiple of the true anomaly in terms of series containing the sinuses or
cosinuses of the multiples of the true, eccentric or mean anomaly. Abhandlungen der
Koniglich Sachsischen Gesellschaft der Wissenschaften, 2(3):183–281, 1855. English
translation by J. C. Van der Ha, ESA/ESOC, Darmstadt, Germany, 1977.

[264] R. S. Harrington. Dynamical evolution of triple stars. Astronomical Journal, 73:190–194, April
1968.

[265] I. Harris and W. Priester. Theoretical Models for the Solar-Cycle Variation of the Upper
Atmosphere. Journal of Geophysical Research, 67(12):4585–4591, November 1962.

[266] I. Harris and W. Priester. Time-Dependent Structure of the Upper Atmosphere. Journal of
Atmospheric Sciences, 19:286–301, July 1962.

[267] D. Hautesserres. Extrapolation long terme de l’orbite du satellite SimbolX par la methode
de Gragg-Bulirsch-Stoer (GBS). Technical Report DCT/SB/OR/2009-2474, Centre National
d’Études Spatiales, 18, avenue Edouard Belin – 31401 Toulouse Cedex 9, France, January
2009.

[268] D. Hautesserres and M. Lara. A fast and efficient algorithm for onboard LEO intermediary
propagation. In Proceedings of the 6th International Conference on Astrodynamics Tools and
Techniques, ICATT ESA, 2016.

[269] D. Hautesserres and M. Lara. Intermediary LEO propagation including higher order zonal
harmonics. Celestial Mechanics and Dynamical Astronomy, 127:505–526, April 2017.

[270] L. Healy and E. Deprit. Paint by number: Uncovering phase flows of an integrable dynamical
system. Computers in Physics, 5(5):491–496, 1991.

[271] L.M. Healy. The Main Problem in Satellite Theory Revisited. Celestial Mechanics and
Dynamical Astronomy, 76(2):79–120, 2000.

[272] L.M. Healy and J. J. Travisano. Automatic rendering of astrodynamics expressions for efficient
evaluation. Journal of the Astronautical Sciences, 46(1):65–81, 1998.

[273] M. Hénon. Exploration numérique du problème restreint. I. Masses égales ; orbites
périodiques. Annales d’Astrophysique, February 28:499–511, 1965.

[274] M. Hénon. Exploration numérique du problème restreint. II. Masses égales, stabilité des
orbites périodiques. Annales d’Astrophysique, 28:992–1007, February 1965.

[275] M. Hénon. Numerical Exploration of the Restricted Problem, V. Hill’s Case: Periodic Orbits and
their Stability. Astronomy and Astrophysics, 1:223–238, February 1969.

[276] M. Hénon. Numerical exploration of the restricted problem. VI. Hill’s case: Non-periodic
orbits. Astronomy and Astrophysics, 9:24–36, November 1970.

[277] M. Hénon. Vertical Stability of Periodic Orbits in the Restricted Problem. II. Hill’s Case.
Astronomy and Astrophysics, 30:317–321, January 1974.

[278] M. Hénon. Generating Families in the Restricted Three-Body Problem, volume 52 of Lecture
Notes in Physics Monographs. Springer-Verlag, Berlin, Heidelberg, 1st edition, 1997.

[279] M. Hénon. New Families of Periodic Orbits in Hill’s Problem of Three Bodies. Celestial
Mechanics and Dynamical Astronomy, 85:223–246, March 2003.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



350 | Bibliography

[280] M. Hénon and C. Heiles. The applicability of the third integral of motion: Some numerical
experiments. The Astronomical Journal, 69:73–79, February 1964.

[281] M. Hénon and J.-M. Petit. Series expansion for encounter-type solutions of Hill’s problem.
Celestial Mechanics, 38:67–100, January 1986.

[282] J. Henrard. On a perturbation theory using Lie transforms. Celestial Mechanics, 3:107–120,
March 1970.

[283] J. Henrard. Periodic Orbits Emanating from a Resonant Equilibrium. Celestial Mechanics,
1:437–466, September 1970.

[284] J. Henrard. Virtual singularities in the artificial satellite theory. Celestial Mechanics,
10(4):437–449, December 1974.

[285] J. Henrard. Analytical drag theory of an artificial satellite with small eccentricity In K. B.
Bhatnagar, editor, Space Dynamics and Celestial Mechanics. Proceedings of the International
Workshop held in Delhi, India, 14–16 November 1985, volume 127 of Astrophysics and
Space Science Library, pages 261–272. D. Reidel Publishing Company, P.O. Box 17, 3300 AA
Dordrecht, Holland, 1986.

[286] J. Henrard. A survey of Poisson series processors. Celestial Mechanics, 45:245–253, March
1988.

[287] J. Henrard and M. Moons. Hamiltonian Theory of the Libration of the Moon. In V. G. Szebehely,
editor, Dynamics of planets and satellites and theories of their motion, volume 72 of
Astrophysics and Space Science Library, pages 125–135. Proceedings of the International
Astronomical Union colloquium no. 41. D. Reidel Publishing Company, Dordrecht:
Holland/Boston: U.S.A., 1978.

[288] J. Henrard and J. Roels. Equivalence for Lie Transforms. Celestial Mechanics, 10:497–512,
December 1974.

[289] P. Herget and P. Musen. The calculation of literal expansions. The Astronomical Journal,
64:11–19, February 1959.

[290] S. Herrick. A modification of the “Variation of Constants” method for special perturbations.
Publications of the Astronomical Society of the Pacific, 60:321–323, October 1948.

[291] S. Herrick. Icarus and the variation of parameters. The Astronomical Journal, 58:156–164,
August 1953.

[292] G.W. Hill. Researches in the Lunar Theory. American Journal of Mathematics, 1:5–26, 1878.
[293] G.W. Hill. Motion of a system of material points under the action of gravitation. The

Astronomical Journal, 27:171–182, April 1913.
[294] G. Hintz. Survey of Orbit Element Sets. Journal of Guidance, Control, and Dynamics,

31(3):785–790, May-June 2008.
[295] D. L. Hitzl and J. V. Breakwell. Resonant and non-resonant gravity-gradient perturbations of a

tumbling tri-axial satellite. Celestial Mechanics, 3:346–383, September 1971.
[296] F. R. Hoots. Reformulation of the Brouwer geopotential theory for improved computational

efficiency. Celestial Mechanics, 24(2):367–375, August 1981.
[297] F. R. Hoots and R. G. France. An analytic satellite theory using gravity and a dynamic

atmosphere. Celestial Mechanics, 40:1–18, 1987.
[298] F. R. Hoots and R. L. Roehrich. Models for Propagation of the NORAD Element Sets. Project

SPACETRACK, Rept. 3, U.S. Air Force Aerospace Defense Command, Colorado Springs, CO,
December 1980.

[299] F. R. Hoots, P.W. Schumacher Jr., and R. A. Glover. History of Analytical Orbit Modeling in the
U. S. Space Surveillance System. Journal of Guidance, Control, and Dynamics, 27(5):174–185,
March 2004.

[300] H. Hopf. Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche.
Mathematische Annalen, 104:637–665, 1931.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 351

[301] G.-I. Hori. The motion of an artificial satellite in the vicinity of the critical inclination. The
Astronomical Journal, 65:291–300, June 1960.

[302] G.-I. Hori. A new approach to the solution of the main problem of the lunar theory. The
Astronomical Journal, 68:125–146, April 1963.

[303] G.-I. Hori. Theory of General Perturbation with Unspecified Canonical Variables. Publications
of the Astronomical Society of Japan, 18(4):287–296, 1966.

[304] G.-I. Hori. Theory of General Perturbations for Non-Canonical Systems. Publications of the
Astronomical Society of Japan, 23:567–587, 1971.

[305] M. E. Hough. Sun-synchronous orbits near critical inclination. Celestial Mechanics,
25(2):137–157, October 1981.

[306] S. Hughes. Satellite orbits perturbed by direct solar radiation pressure - General expansion of
the disturbing function. Planetary and Space Science, 25:809–815, September 1977.

[307] S. Hughes. Earth satellite orbits with resonant lunisolar perturbations. I. Resonances
dependent only on inclination. Proceedings of the Royal Society of London Series A,
372:243–264, August 1749. 1980.

[308] S. Hughes. Earth satellite orbits with resonant lunisolar perturbations. II - Some resonances
dependent on the semi-major axis, eccentricity and inclination. Proceedings of the Royal
Society of London Series A, 375:379–396, March 1981.

[309] D. Ineichen, G. Beutler, and U. Hugentobler. Sensitivity of GPS and GLONASS orbits with
respect to resonant geopotential parameters. Journal of Geodesy, 77(7):478–486, October
2003.

[310] K. A. Innanen and F. C. House. The Existence of the Third Integral for a Family of High-Velocity
Stars. Astrophysics and Space Science, 7:139–150, April 1970.

[311] K. A. Innanen, J. Q. Zheng, S. Mikkola, and M. J. Valtonen. The Kozai Mechanism and the
Stability of Planetary Orbits in Binary Star Systems. Astronomical Journal, 113:1915–1919,
May 1997.

[312] M. Irigoyen and C. Simó. Non integrability of the J2 problem. Celestial Mechanics and
Dynamical Astronomy, 55(3):281–287, March 1993.

[313] T. Ito and K. Ohtsuka. The Lidov-Kozai Oscillation and Hugo von Zeipel.Monographs on
Environment, Earth and Planets, 7(1):1–113, November 2019.

[314] J. Ivory. On the Figure Requisite to Maintain the Equilibrium of a Homogeneous Fluid Mass
That Revolves Upon an Axis. Philosophical Transactions of the Royal Society of London, Series
I, 114:85–150, January 1824.

[315] I. G. Izsak. A Theory of Satellite Motion about an Oblate Planet. I. A Second-Order Solution
of Vinti’s Dynamical Problem. SAO Special Report, 52, November 1960. Reprinted in:
Smithsonian Contributions to Astrophysics, vol. 6, 1963, pp. 81–107.

[316] I. G. Izsak. On the Critical Inclination in Satellite Theory. SAO Special Report, 90, March 1962.
[317] I. G. Izsak. A note on perturbation theory. The Astronomical Journal, 68(8):559–561, October

1963.
[318] L. G. Jacchia. Revised Static Models of the Thermosphere and Exosphere with Empirical

Temperature Profiles. SAO Special Report, 332, May 1971.
[319] J. Jackson. Retrograde satellite orbits.Monthly Notices of the Royal Astronomical Society,

74:62–82, December 1913.
[320] C. G. J. Jacobi. Ueber eine besondere Gattung algebraischer Functionen, die aus der

Entwicklung der Function (1 − 2xz + z2)1/2 entstehen. Journal für die reine und angewandte
Mathematik (Crelles Journal), 1827(2):223–226, January 1827.

[321] C. G. J. Jacobi. Sur l’élimination des noeuds dans le problème des trois corps. Astronomische
Nachrichten, 20:81–98, December 1842.

[322] C. G. J. Jacobi. Sur la rotation d’un corps. Comptes Rendus de l’Académie des Sciences,
24:97–106, 1849.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



352 | Bibliography

[323] W. H. Jefferys. A FORTRAN-based list processor for Poisson series. Celestial Mechanics,
2(4):474–480, December 1970.

[324] W. H. Jefferys. Automated Closed Form Integration of Formulas in Elliptic Motion. Celestial
Mechanics, 3:390–394, September 1971.

[325] W. H. Jefferys. New treatment of the critical argument in resonance problems. The
Astronomical Journal, 81:132–134, February 1976.

[326] D. J. Jezewski. A noncanonical analytic solution to the J2 perturbed two-body problem.
Celestial Mechanics, 30(4):343–361, August 1983.

[327] D. J. Jezewski. An analytic solution for the J2 perturbed equatorial orbit. Celestial Mechanics,
30(4):363–371, August 1983.

[328] À. Jorba. A methodology for the numerical computation of normal forms, centre manifolds and
first integrals of Hamiltonian systems. Experimental Mathematics, 8(2):155–195, 1999.

[329] À. Jorba and J. J. Masdemont. Dynamics in the center manifold of the collinear points of the
restricted three body problem. Physica D Nonlinear Phenomena, 132:189–213, July 1999.

[330] A. H. Jupp. The problem of the critical inclination revisited. Celestial Mechanics,
11(3):361–378, May 1975.

[331] A. H. Jupp. The critical inclination problem - 30 years of progress. Celestial Mechanics,
43(1–4):127–138, 1988.

[332] W. Kahan. Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point
Arithmetic. Technical report, Electrical Engineering and Computer Science, University of
California, Berkeley, CA, October 1997.

[333] A. A. Kamel. Perturbation Method in the Theory of Nonlinear Oscillations. Celestial
Mechanics, 3:90–106, March 1970.

[334] A. A. Kamel, D. Ekman, and R. Tibbitts. East-West Stationkeeping Requirements of nearly
Synchronous Satellites Due to Earth’s Triaxiality and Luni-Solar Effects. Celestial Mechanics,
8:129–148, August 1973.

[335] J-P. R. Kaniecki. Short periodic variations in the first-order semianalytical satellite theory.
Master thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, 77 Massachusetts Ave, Cambridge, MA, September 1979.

[336] N. J. Kasdin, P. Gurfil, and E. Kolemen. Canonical Modelling of Relative Spacecraft Motion
Via Epicyclic Orbital Elements. Celestial Mechanics and Dynamical Astronomy, 92:337–370,
August 2005.

[337] B. Kaufman. First order semianalytic satellite theory with recovery of the short period terms
due to third body and zonal perturbations. Acta Astronautica, 8(5–6):611–623, 1981.

[338] B. Kaufman and R. Dasenbrock. Higher Order Theory for Long-Term Behavior of Earth and
Lunar Orbiters. Technical Report AD-754 738, Naval Research Laboratory, Washington, D.C.,
Mathematics and Information Sciences Division, December 1972.

[339] W.M. Kaula. Analysis of Gravitational and Geometric Aspects of Geodetic Utilization of
Satellites. Geophysical Journal, 5:104–133, July 1961.

[340] W.M. Kaula. Development of the lunar and solar disturbing functions for a close satellite. The
Astronomical Journal, 67:300–303, June 1962.

[341] W.M. Kaula. Theory of satellite geodesy. Applications of satellites to geodesy. Blaisdell,
Waltham, Massachusetts, 1966. Reprint: Dover, Mineola, New York, 2000.

[342] T. S. Kelly. A note on first-order normalizations of perturbed Keplerian systems. Celestial
Mechanics and Dynamical Astronomy, 46:19–25, March 1989.

[343] J. Kevorkian. Uniformly valid asymptotic representation for all times of the motion of
a satellite in the vicinity of the smaller body in the restricted three-body problem. The
Astronomical Journal, 67:204–211, May 1962.

[344] D. King-Hele. Theory of Satellite Orbits in an Atmosphere. Butterworths Mathematical Texts.
Butterworths, London, 1964.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 353

[345] H. Kinoshita. First-Order Perturbations of the Two Finite Body Problem. Publications of the
Astronomical Society of Japan, 24:423–457, July 1972.

[346] H. Kinoshita. Third-Order Solution of an Artificial-Satellite Theory. SAO Special Report, 379,
July 1977.

[347] H. Kinoshita. Analytical expansions of torque-free motions for short and long axis modes.
Celestial Mechanics and Dynamical Astronomy, 53(4):365–375, December 1992.

[348] H. Kinoshita, G. Hori, and H. Nakai. Modified Jacobi polynomial and its application to
expansions of disturbing functions. Annals of the Tokyo Astronomical Observatory, 14:14–35,
January 1974.

[349] H. Kinoshita and H. Nakai. Analytical Solution of the Kozai Resonance and its Application.
Celestial Mechanics and Dynamical Astronomy, 75(2):125–147, October 1999.

[350] H. Kinoshita and H. Nakai. General solution of the Kozai mechanism. Celestial Mechanics and
Dynamical Astronomy, 98(1):67–74, May 2007.

[351] Z. Knežević and A. Milani. Orbit maintenance of a lunar polar orbiter. Planetary and Space
Science, 46(11–12):1605–1611, December 1998.

[352] A. Y. Kogan. Distant satellite orbits in the restricted circular three-body problem. Cosmic
Research, 26:705–710, May 1989.

[353] N. A. Kolmogorov. On the conservation of quasi-periodic motions for a small change in the
Hamiltonian function. Doklady Akademii Nauk SSSR, 98:527–530, 1954. (in Russian).

[354] A. S. Konopliv. A Perturbation Method and Some Applications. Celestial Mechanics and
Dynamical Astronomy, 47:305–320, 1990.

[355] A. S. Konopliv. A Third Order of J2 Solution with a Transformed Time. Interoffice Memorandum
IOF 314.3 - 970, Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109, USA,
March 1991.

[356] P.-V. Koseleff. Comparison Between Deprit and Dragt-Finn Perturbation Methods. Celestial
Mechanics and Dynamical Astronomy, 58:17–36, January 1994.

[357] J. Kovalevsky. Sur la théorie du mouvement d’un satellite à fortes inclinaison et excentricité.
In G. I. Kontopoulos, editor, The Theory of Orbits in the Solar System and in Stellar Systems,
volume 25 of IAU Symposium, pages 326–344, January 1966.

[358] J. Kovalevsky. Introduction to celestial mechanics, volume 7 of Astrophysics and Space
Science Library. Springer Netherlands, Dordrecht, Holland, 1967.

[359] Y. Kozai. On the Effects of the Sun and the Moon upon the Motion of a Close Earth Satellite.
SAO Special Report, 22, March 1959.

[360] Y. Kozai. The motion of a close earth satellite. The Astronomical Journal, 64:367–377,
November 1959.

[361] Y. Kozai. Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite. SAO
Special Report, 56:25–34, January 1961.

[362] Y. Kozai. Mean values of cosine functions in elliptic motion. The Astronomical Journal,
67:311–312, June 1962.

[363] Y. Kozai. Second-order solution of artificial satellite theory without air drag. The Astronomical
Journal, 67:446–461, September 1962.

[364] Y. Kozai. Secular perturbations of asteroids with high inclination and eccentricity. The
Astronomical Journal, 67:591–598, November 1962.

[365] Y. Kozai. Motion of a Lunar Orbiter. Publications of the Astronomical Society of Japan,
15:301–312, 1963.

[366] Y. Kozai. Lunisolar Perturbations with Short Periods. SAO Special Report, 235, December
1966.

[367] Y. Kozai. A New Method to Compute Lunisolar Perturbations in Satellite Motions. SAO Special
Report, 349, February 1973.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



354 | Bibliography

[368] H. A. Kramers. Über den Einfluß eines elektrischen Feldes auf die Feinstruktur der
Wasserstofflinien. Zeitschrift für Physik, 3(4):199–223, July 1920.

[369] A. V. Krivov and J. Getino. Orbital evolution of high-altitude balloon satellites. Astronomy and
Astrophysics, 318:308–314, February 1997.

[370] A. V. Krivov, L. L. Sokolov, and V. V. Dikarev. Dynamics of Mars-Orbitting Dust: Effects of
Light Pressure and Planetary Oblateness. Celestial Mechanics and Dynamical Astronomy,
63:313–339, January 1996.

[371] V.W. Kudielka. Balanced Earth Satellite Orbits. Celestial Mechanics and Dynamical
Astronomy, 60(4):455–470, December 1994.

[372] V.W. Kudielka. Equilibria Bifurcations of Satellite Orbits. In R. Dvorak and J. Henrard, editors,
The Dynamical Behaviour of our Planetary System, page 243–255, 1997.

[373] M. Kummer. On resonant non linearly coupled oscillators with two equal frequencies.
Communications in Mathematical Physics, 48:53–79, February 1976. Erratum:
Communications in Mathematical Physics 60:192, 1978.

[374] A. L. Kutuzov. Application of symbolic computer operations for solving the main problem in
the theory of satellite motion. Soviet Astronomy Letters, 1:42–44, February 1975.

[375] P. Lála and L. Sehnal. The Earth’s shadowing effects in the short-periodic perturbations
of satellite orbits. Bulletin of the Astronomical Institutes of Czechoslovakia, 20:327–330,
January 1969.

[376] T. Lam and G. J. Whiffen. Exploration of Distant Retrograde Orbits Around Europa (AAS 05-110).
In D. A. Vallado, M. J. Gabor and P. N. Desai, editors, AAS/AIAA Spaceflight Mechanics Meeting
2005, P.O. Box 28130, San Diego, California 92198, Jan. 23–27, 2005, volume 120 of Advances
in the Astronautical Sciences, pages 135–153. American Astronautical Society, Univelt, Inc.,
2005.

[377] L. D. Landau and E.M. Lifshitz.Mechanics. Butterworth-Heinemann, Oxford, UK, and
Burlington, MA, USA, 3rd edition, 1976.

[378] M. H. Lane. The development of an artificial satellite theory using a power-law atmospheric
density representation. In Proceedings of the 2nd Aerospace Sciences Meeting, pages 1–16.
American Institute of Aeronautics and Astronautics, January 1965.

[379] M. H. Lane and K. Cranford. An improved analytical drag theory for the artificial satellite
problem. In AIAA/AAS Astrodynamics Conference, Princeton, New Jersey, pages 1–12.
American Institute of Aeronautics and Astronautics, USA, August 1989. AIAA Paper
No. 69-925.

[380] M. H. Lane and F. R. Hoots. General perturbations theories derived from the 1965 Lane
drag theory. Special Astrodynamic Report SPACETRACK REPORT NO. 2, Aerospace Defense
Command, US Air Force, Peterson AFB, CO, 80914, December 1979.

[381] M. T. Lane. An Analytical Treatment of Resonance Effects on Satellite Orbits. Celestial
Mechanics, 42:3–38, March 1987.

[382] M. T. Lane. On Analytic Modeling of Lunar Perturbations of Artificial Satellites of the Earth.
Celestial Mechanics and Dynamical Astronomy, 46(4):287–305, December 1989.

[383] D. Lantukh, R. P. Russell, and S. Broschart. Heliotropic orbits at oblate asteroids: balancing
solar radiation pressure and J2 perturbations. Celestial Mechanics and Dynamical Astronomy,
121:171–190, February 2015.

[384] P. S. Laplace. Traité de Mécanique Céleste, volume 4. Chez Courcier, Paris, 1805. Livre viii,
§37.

[385] M. Lara. On numerical continuation of families of periodic orbits in a parametric potential.
Mechanics Research Communications, 23(3):291–298, 1996.

[386] M. Lara. SADSaM: A Software Assistant for Designing SAtellite Missions. Technical Report
DTS/MPI/MS/MN/99-053, Centre National d’Études Spatiales, 18, avenue Edouard Belin -
31401 Toulouse Cedex 9, France, May 1999.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 355

[387] M. Lara. Searching for Repeating Ground Track Orbits: A Systematic Approach. The Journal of
the Astronautical Sciences, 47(3–4):177–188, 1999.

[388] M. Lara. Repeat Ground Track Orbits of the Earth Tesseral Problem as Bifurcations of
the Equatorial Family of Periodic Orbits. Celestial Mechanics and Dynamical Astronomy,
86(2):143–162, June 2003.

[389] M. Lara. Simplified Equations for Computing Science Orbits Around Planetary Satellites.
Journal of Guidance Control Dynamics, 31(1):172–181, January 2008.

[390] M. Lara. Design of long-lifetime lunar orbits: A hybrid approach. Acta Astronautica,
69(3–4):186–199, August 2011.

[391] M. Lara. Short-axis-mode rotation of a free rigid body by perturbation series. Celestial
Mechanics and Dynamical Astronomy, 118(3):221–234, 2014.

[392] M. Lara. Efficient Formulation of the Periodic Corrections in Brouwer’s Gravity Solution.
Mathematical Problems in Engineering, 2015:980652, 2015.

[393] M. Lara. LEO intermediary propagation as a feasible alternative to Brouwer’s gravity solution.
Advances in Space Research, 56(3):367–376, August 2015.

[394] M. Lara. On inclination resonances in Artificial Satellite Theory. Acta Astronautica,
110:239–246, May 2015.

[395] M. Lara. Analytical and Semianalytical Propagation of Space Orbits: The Role of Polar-Nodal
Variables. In G. Gómez and J. J. Masdemont, editors, Astrodynamics Network AstroNet-II: The
Final Conference, volume 44 of Astrophysics and Space Science Proceedings, pages 151–166.
Springer, Cham, 2016.

[396] M. Lara. A Hopf variables view on the libration points dynamics. Celestial Mechanics and
Dynamical Astronomy, 129(3):285–306, November 2017.

[397] M. Lara. Note on the ideal frame formulation. Celestial Mechanics and Dynamical Astronomy,
129:137–151, September 2017.

[398] M. Lara. A fast an efficient algorithm for the computation of distant retrograde orbits. In G.
Ortega et al., editors, Proceedings of the 7th International Conference on Astrodynamics Tools
and Techniques, ICATT, pages 1–10. ESA, November 2018.

[399] M. Lara. Complex variables approach to the short-axis-mode rotation of a rigid body. Applied
Mathematics and Nonlinear Sciences, 3(2):537–552, 2018.

[400] M. Lara. Exploring Sensitivity of Orbital Dynamics with Respect to Model Truncation: The
Frozen Orbits Approach. In M. Vasile, E. Minisci, L. Summerer and P. McGinty, editors,
Stardust Final Conference, volume 52 of Astrophysics and Space Science Proceedings, pages
69–83. Springer, Cham, 2018.

[401] M. Lara. Nonlinear librations of distant retrograde orbits: a perturbative approach—the Hill
problem case. Nonlinear Dynamics, 93(4):2019–2038, April 2018.

[402] M. Lara. A new radial, natural, higher-order intermediary of the main problem four decades
after the elimination of the parallax. Celestial Mechanics and Dynamical Astronomy,
131(9):42, September 2019.

[403] M. Lara. Design of distant retrograde orbits based on a higher order analytical solution. Acta
Astronautica, 161:562–578, August 2019.

[404] M. Lara. Design of quasi-satellite orbits: Analytical alternatives. In Proceedings of the 27th
International Symposium on Space Flight Dynamics, Melbourne, Australia, pages 1–12. ISSFD,
February 2019.

[405] M. Lara. Review of analytical solutions for low earth orbit propagation and study of the
precision improvement in the conversion of osculating to mean elements. Technical Report
CM 2019/SER0023, Universidad de La Rioja, Logroño, La Rioja, September 2019.

[406] M. Lara. A perturbation solution to Vinti’s dynamical problem. Romanian Journal of Technical
Sciences – Applied Mechanics, 65(3):163–180, 2020.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



356 | Bibliography

[407] M. Lara. Brouwer’s satellite solution redux. arXiv, eprint 2009.10665 [math.DS]:1–20,
September 2020.

[408] M. Lara. Solution to the main problem of the artificial satellite by reverse normalization.
Nonlinear Dynamics, 101(2):1501–1524, August 2020.

[409] M. Lara, A. Deprit, and A. Elipe. Numerical Continuation of Families of Frozen Orbits in the
Zonal Problem of Artificial Satellite Theory. Celestial Mechanics and Dynamical Astronomy,
62(2):167–181, 1995.

[410] M. Lara and S. Ferrer. Computing Long Lifetime Orbits for the Europa Observation Mission.
In International Symposium on Space Technology and Science, ISTS 2006, P.O. Box 28130,
San Diego, California 92198, USA, volume 19 of International Symposium on Space Flight
Dynamics, pages 1983–2002, 2006. ISTS.

[411] M. Lara and S. Ferrer. Computing long-lifetime science orbits around natural satellites.
Discrete and Continuous Dynamical Systems, Series S, 1(2):293–302, 2008.

[412] M. Lara and S. Ferrer. Closed form perturbation solution of a fast rotating triaxial satellite
under gravity-gradient torque. Cosmic Research, 51(4):289–303, July 2013.

[413] M. Lara and S. Ferrer. Expanding the simple pendulum’s rotation solution in action-angle
variables. European Journal of Physics, 36(5):055040, September 2015.

[414] M. Lara and S. Ferrer. Expanding the simple pendulum’s rotation solution in action-angle
variables. ArXiv e-prints, eprint 1503.03358 [nlin.SI], March 2015.

[415] M. Lara, T. Fukushima, and S. Ferrer. Ceres’ rotation solution under the gravitational torque of
the Sun.Monthly Notices of the Royal Astronomical Society, 415(1):461–469, July 2011.

[416] M. Lara and P. Gurfil. Integrable approximation of J2-perturbed relative orbits. Celestial
Mechanics and Dynamical Astronomy, 114(3):229–254, November 2012.

[417] M. Lara, R. López, I. Pérez, and J. F. San-Juan. Exploring the long-term dynamics of perturbed
Keplerian motion in high degree potential fields. Communications in Nonlinear Science and
Numerical Simulation, 82:105053, 2020.

[418] M. Lara and J. F. Palacián. Hill Problem Analytical Theory to the Order Four: Application to
the Computation of Frozen Orbits around Planetary Satellites.Mathematical Problems in
Engineering, 2009(Article ID, 753653:1–18, 2009.

[419] M. Lara, J. F. Palacián, and R. P. Russell. Mission design through averaging of perturbed
Keplerian systems: the paradigm of an Enceladus orbiter. Celestial Mechanics and Dynamical
Astronomy, 108(1):1–22, 2010.

[420] M. Lara, J. F. Palacián, P. Yanguas, and C. Corral. Long-Term Behavior of a Mercury Orbiter
Perturbed by the Elliptic Motion of the Sun (AAS 08-236). In J. H. Seago, B. Neta, T. J. Eller and
F. J. Pelletier, editors, Spaceflight Mechanics 2008, P.O. Box 28130, San Diego, California
92198, USA, volume 130 of Advances in the Astronautical Sciences, pages 1937–1951.
American Astronautical Society, Univelt, Inc., 2008.

[421] M. Lara, J. F. Palacián, P. Yanguas, and C. Corral. Analytical theory for spacecraft motion about
Mercury. Acta Astronautica, 66(7–8):1022–1038, April 2010.

[422] M. Lara and J. Peláez. On the numerical continuation of periodic orbits. An intrinsic,
3-dimensional, differential, predictor-corrector algorithm. Astronomy and Astrophysics,
389:692–701, July 2002.

[423] M. Lara, J. Peláez, and H. Urrutxua. Modifying the atlas of low lunar orbits using inert tethers.
Acta Astronautica, 79:52–60, October 2012.

[424] M. Lara, I. Pérez, and R. López. Higher Order Approximation to the Hill Problem Dynamics
about the Libration Points. Communications in Nonlinear Science and Numerical Simulation,
59:612–628, June 2018.

[425] M. Lara, A. J. Rosengren, and E. Fantino. Non-singular recursion formulas for third-body
perturbations in mean vectorial elements. Astronomy and Astrophysics, 634:A61, February
2020.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 357

[426] M. Lara and R. P. Russell. On the family “g” of the restricted three-body problem.Monografías
de la Real Academia de Ciencias de Zaragoza, 30:51–66, 2006.

[427] M. Lara and R. P. Russell. Computation of a Science Orbit About Europa. Journal of Guidance,
Control, and Dynamics, 30(1):259–263, 2007.

[428] M. Lara and R. P. Russell. Fast Design of Repeat Ground Track Orbits in High-Fidelity
Geopotentials. The Journal of the Astronautical Sciences, 56(3):311–324, 2008.

[429] M. Lara, R. P. Russell, and B. F. Villac. Classification of the Distant Stability Regions at Europa.
Journal of Guidance Control Dynamics, 30:409–418, March 2007.

[430] M. Lara, R. P. Russell, and B. F. Villac. Fast estimation of stable regions in real models.
Meccanica, 42(5):511–515, October 2007.

[431] M. Lara, B. de Saedeleer, and S. Ferrer. Preliminary design of low lunar orbits. In Proceedings
of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, pages 1–15.
ISSFD, October 2009.

[432] M. Lara and J. F. San-Juan. Dynamic Behavior of an Orbiter Around Europa. Journal of
Guidance, Control and Dynamics, 28(2):291–297, March-April 2005.

[433] M. Lara, J. F. San-Juan, and S. Ferrer. Secular motion around synchronously orbiting planetary
satellites. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(4):043101, 2005.

[434] M. Lara, J. F. San-Juan, Z. J. Folcik, and P. J. Cefola. Deep Resonant GPS-Dynamics Due to the
Geopotential. The Journal of the Astronautical Sciences, 58(4):661–676, October 2011.

[435] M. Lara, J. F. San-Juan, and D. Hautesserres. Semi-analytical propagator of high eccentricity
orbits. Technical Report R-S15/BS-0005-024, Centre National d’Études Spatiales, 18, avenue
Edouard Belin - 31401 Toulouse Cedex 9, France, January 2016.

[436] M. Lara, J. F. San-Juan, and D. Hautesserres. HEOSAT: a mean elements orbit propagator
program for highly elliptical orbits. CEAS Space Journal, 10:3–23, March 2018.

[437] M. Lara, J. F. San-Juan, L.M. López, and P. J. Cefola. On the third-body perturbations of
high-altitude orbits. Celestial Mechanics and Dynamical Astronomy, 113:435–452, August
2012.

[438] M. Lara, J. F. San-Juan, and L.M. López-Ochoa. Averaging Tesseral Effects: Closed Form
Relegation versus Expansions of Elliptic Motion.Mathematical Problems in Engineering,
2013:570127, 2013.

[439] M. Lara, J. F. San-Juan, and L.M. López-Ochoa. Precise analytical computation of
frozen-eccentricity, low Earth orbits in a tesseral potential,Mathematical Problems in
Engineering, 2013:191384, 2013.

[440] M. Lara, J. F. San-Juan, and L.M. López-Ochoa. Delaunay variables approach to the
elimination of the perigee in Artificial Satellite Theory. Celestial Mechanics and Dynamical
Astronomy, 120(1):39–56, September 2014.

[441] M. Lara, J. F. San-Juan, and L.M. López-Ochoa. Efficient semi-analytic integration of GNSS
orbits under tesseral effects. Acta Astronautica, 102(0):355–366, 2014.

[442] M. Lara, J. F. San-Juan, and L.M. López-Ochoa. Proper Averaging Via Parallax Elimination (AAS
13-722). In S. B. Broschart, J. D. Turner, K. C. Howell and F. R. Hoots, editors, Astrodynamics
2013, P.O. Box 28130, San Diego, California 92198, USA, January 2014, volume 150 of
Advances in the Astronautical Sciences, pages 315–331. American Astronautical Society,
Univelt, Inc., 2014.

[443] M. Lara, J. F. San-Juan, L.M. López-Ochoa, and P. J. Cefola. Long-term evolution of Galileo
operational orbits by canonical perturbation theory. Acta Astronautica, 94(2):646–655, 2014.

[444] M. Lara, R. Vilhena de Moraes, D.M. Sanchez, and A. F. Bertachini de Almeida Prado. Efficient
computation of short-period analytical corrections due to third-body effects (AAS 15-295).
In R. Furfaro, S. Casotto, A. Trask and S. Zimmer, editors, AAS/AIAA Spaceflight Mechanics
Meeting 2015, P.O. Box 28130, San Diego, California 92198, USA, volume 155 of Advances in
the Astronautical Sciences, pages 437–455. American Astronautical Society, Univelt, Inc.,
2015.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



358 | Bibliography

[445] W. Larson and J. R. Wertz, editors. In Space Mission Analysis and Design, volume 2 of Space
Technology Library, Springer Netherlands, Dordrecht, Holland, 1st edition, 1991.

[446] D. F. Lawden. Fundamentals of space navigation. Journal of the British Interplanetary Society,
13(2):87–101, March 1954.

[447] D. F. Lawden. Elliptic Functions and Applications, volume 80 of Applied Mathematical
Sciences. Springer-Verlag, New York, 1st edition, 1989.

[448] C. Leubner. Correcting a widespread error concerning the angular velocity of a rotating rigid
body. American Journal of Physics, 49:232–234, March 1981.

[449] A. Lichtenberg and M. Lieberman. Regular and Chaotic Dynamics, volume 38 of Applied
Mathematical Sciences. Springer-Verlag, New York, 2nd edition, 1992.

[450] M. L. Lidov. The evolution of orbits of artificial satellites of planets under the action of
gravitational perturbations of external bodies. Planetary and Space Science, 9:719–759,
October 1962.

[451] M. L. Lidov. On the approximated analysis of the orbit evolution of artificial satellites. In M.
Roy, editor, Dynamics of Satellites/Dynamique des Satellites, volume 62 of IAU Symposium,
pages 168–179. Springer, Berlin, Heidelberg, 1963.

[452] M. L. Lidov. Integrable cases of satellite problem with the third body and the oblate planet. In
Y. Kozai, editor, Stability of the Solar System and of Small Stellar Systems, volume 62 of IAU
Symposium, pages 117–124, 1974.

[453] M. L. Lidov. Semianalytical methods for calculating satellite motion. TRUDY Institut
Teoreticheskoi Astronomii, Akademiia Nauk SSSR, 17:54–61, 1978. In Russian.

[454] M. L. Lidov and M. A. Vashkov’yak. Perturbation theory and analysis of the evolution of
quasi-satellite orbits in the restricted three-body problem. Cosmic Research, 31:187–207,
September 1993.

[455] M. L. Lidov and M. A. Vashkov’yak. On quasi-satellite orbits for experiments on refinement of
the gravitation constant. Astronomy Letters, 20:188–198, March 1994.

[456] M. L. Lidov and M. A. Vashkov’yak. On quasi-satellite orbits in a restricted elliptic three-body
problem. Astronomy Letters, 20:676–690, September 1994.

[457] M. L. Lidov and M. V. Yarskaya. Integrable Cases in the Problem of the Evolution of a Satellite
Orbit under the Joint Effect of an Outside Body and of the Noncentrality of the Planetary Field.
Cosmic Research, 12:139–152, March 1974.

[458] S. Lie. Theorie der Transformationsgruppen I.Mathematische Annalen, 16:441–528, 1880.
[459] A. Lindstedt. Über die allgemeine Form der Integrale des Dreikörperproblems. Astronomische

Nachrichten, 105:97, April 1883.
[460] J. C. Liou and J. K. Weaver. Orbital Dynamics of High Area-To-Mass Ratio Debris and Their

Distribution in the Geosynchronous Region. In D. Danesy, editor, 4th European Conference
on Space Debris, volume 587 of ESA Special Publication, pages 285–290, August 2005.

[461] J. J. F. Liu. Satellite motion about an oblate earth. AIAA Journal, 12:1511–1516, January 1974.
[462] J. J. F. Liu and R. L. Alford. Semianalytic Theory for a Close-Earth Artificial Satellite. Journal of

Guidance Control Dynamics, 4:576, September 1981.
[463] H. S. London. Some Exact Solutions of the Equations of Motion of a Solar Sail With Constant

Sail Setting. ARS Journal, 30(2):198–200, 1960.
[464] A. C. Long, J. O. Cappellari, C. E. Velez, and A. J. Fluchs. Goddard Trajectory Determination

System (GTDS). Mathematical Theory. Revision I. Technical Report FDD/552-89/001, National
Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD., July
1989.

[465] D.W. Lozier. NIST Digital Library of Mathematical Functions. Annals of Mathematics and
Artificial Intelligence, 38(1–3):105–119, May 2003.

[466] L. G. Lukyanov, N. V. Emeljanov, and G. I. Shirmin. Generalized Problem of Two Fixed Centers
or the Darboux-Gredeaks Problem. Cosmic Research, 43(3):186–191, May 2005.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 359

[467] D. Lutzky and C. Uphoff. Short-periodic variations and second-order numerical averaging.
In AIAA, 13th Aerospace Sciences Meeting, January 20–22, 1975, volume 11 of Aerospace
Sciences Meeting, pages 31–38, American Institute of Aeronautics and Astronautics, Reston,
VA, January 1975. AIAA Paper 75-11.

[468] R. H. Lyddane. Small eccentricities or inclinations in the Brouwer theory of the artificial
satellite. Astronomical Journal, 68(8):555–558, October 1963.

[469] R. H. Lyddane and C. J. Cohen. Numerical comparison between Brouwer’s theory and
solution by Cowell’s method for the orbit of an artificial satellite. The Astronomical Journal,
67:176–177, April 1962.

[470] M. Macdonald and C. R. McInnes. Solar sail science mission applications and advancement.
Advances in Space Research, 48(11):1702–1716, December 2011.

[471] B. Mahajan, S. R. Vadali, and K. T. Alfriend. Exact Delaunay normalization of the perturbed
Keplerian Hamiltonian with tesseral harmonics. Celestial Mechanics and Dynamical
Astronomy, 130:25, March 2018.

[472] A. Marchesiello and G. Pucacco. Bifurcation Sequences in the Symmetric 1:1 Hamiltonian
Resonance. International Journal of Bifurcation and Chaos, 26:1630011, 2016.

[473] L. Markley and J. Crassidis. Fundamentals of Spacecraft Attitude Determination and Control,
volume 33 of Space Technology Library. Springer-Verlag, New York, 2014.

[474] J. E. Marsden and T. Ratiu. Introduction to Mechanics and Symmetry, volume 17 of Texts in
Applied Mathematics. Springer-Verlag, New York, 2nd edition, 1999.

[475] V. Martinusi, L. Dell’Elce, and G. Kerschen. Analytic propagation of near-circular satellite
orbits in the atmosphere of an oblate planet. Celestial Mechanics and Dynamical Astronomy,
123(1):85–103, September 2015.

[476] V. Martinusi, L. Dell’Elce, and G. Kerschen. First-order analytic propagation of satellites in the
exponential atmosphere of an oblate planet. Celestial Mechanics and Dynamical Astronomy,
127:451–476, April 2017.

[477] J. J. Masdemont. High-order expansions of invariant manifolds of libration point orbits with
applications to mission design. Dynamical Systems, 20(1):59–113, 2005.

[478] W. D. McClain. A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory
Based on the Generalized Method of Averaging, Volume 1: The Generalized Method of
Averaging Applied to the Artificial Satellite Problem. NASA CR-156782. NASA, Greenbelt,
Maryland, 2nd edition, 1977. Provided by the NASA Technical Reports Server (NTRS).

[479] C. R. McInnes. Solar sailing. Technology, dynamics and mission applications. Astronomy and
Planetary Sciences. Springer, London (UK), 1st edition, 1999.

[480] J-C. van der Meer and R. H. Cushman. Orbiting dust under radiation pressure. In H. B. Doebner
and J. D. Hennig, editors, Proceedings of the XVth International Conference on Differential
Geometric Methods in Theoretical Physics, Clausthal-Zellerfeld, Germany, 1986, pages
403–414. World Scientific, Singapore, 1987.

[481] J. Meeus.Mathematical astronomy morsels. Willmann-Bell, Richmond, VA, 1997.
[482] J. Meeus. Astronomical algorithms. Willmann-Bell, Richmond, VA, 2nd edition, 1998.
[483] P.M. Mehta, A. Walker, E. Lawrence, R. Linares, D. Higdon, and J. Koller. Modeling satellite

drag coefficients with response surfaces. Advances in Space Research, 54(8):1590–1607,
October 2014.

[484] G. Mengali and A. A. Quarta. Heliocentric trajectory analysis of Sun-pointing smart dust with
electrochromic control. Advances in Space Research, 57:991–1001, February 2016.

[485] D. Merritt. Dynamics and Evolution of Galactic Nuclei. Princeton Series in Astrophysics.
Princeton University Press, Princeton, New Jersey, 08540.

[486] W. A. Mersman. Explicit recursive algorithms for the construction of equivalent canonical
transformations. Celestial Mechanics, 3:384–389, September 1971.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



360 | Bibliography

[487] G. Metris. Mean values of particular functions in the elliptic motion. Celestial Mechanics and
Dynamical Astronomy, 52:79–84, March 1991.

[488] G. Métris and P. Exertier. Semi-analytical theory of the mean orbital motion. Astronomy and
Astrophysics, 294:278–286, February 1995.

[489] G. Metris, P. Exertier, Y. Boudon, and F. Barlier. Long period variations of the motion of a
satellite due to non-resonant tesseral harmonics of a gravity potential. Celestial Mechanics
and Dynamical Astronomy, 57:175–188, October 1993.

[490] K. R. Meyer. Lie Transform Tutorial – II. In K. R. Meyer and D. S. Schmidt, editors, Computer
Aided Proofs in Analysis, volume 28 of The IMA Volumes in Mathematics and Its Applications.
Springer, New York, NY, 1991.

[491] K. R. Meyer, G. R. Hall, and D. Offin. Introduction to Hamiltonian Dynamical Systems and
the N-Body Problem, volume 90 of Applied Mathematical Sciences. Springer, New York, 2nd
edition, 2009.

[492] M. Michalodimitrakis. Hill’s problem - Families of three-dimensional periodic orbits. I.
Astrophysics and Space Science, 68:253–268, March 1980.

[493] F. Mignard. Radiation pressure and dust particle dynamics. Icarus, 49(3):347–366, March
1982.

[494] F. Mignard. Effects of radiation forces on dust particles in planetary rings. In R. Greenberg and
A. Brahic, editors, IAU Colloq. 75: Planetary Rings, pages 333–366, 1984.

[495] F. Mignard and M. Hénon. About an Unsuspected Integrable Problem. Celestial Mechanics,
33(3):239–250, July 1984.

[496] A. Milani, A.M. Nobili, and P. Farinella. Non-gravitational perturbations and satellite geodesy.
Adam Hilger Ltd., Bristol, UK, 1987.

[497] M. Milankovitch. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem.
Mechanics of Space Flight. Königlich Serbische Akademie, Belgrade, 1941. English
translation: Canon of Insolation and the Ice-age Problem. Israel Program for Scientific
Translations, Jerusalem, 1969.

[498] B. R. Miller. The Lissajous transformation. III - Parametric bifurcations. Celestial Mechanics
and Dynamical Astronomy, 51:251–270, September 1991.

[499] X. Ming and X. Shijie. Exploration of distant retrograde orbits around Moon. Acta
Astronautica, 65:853–860, September 2009.

[500] H. D. Mittelmann. A Pseudo-Arclength Continuation Method for Nonlinear Eigenvalue
Problems. SIAM Journal on Numerical Analysis, 23(5):1007–1016, October 1986.

[501] K. Moe and M.M. Moe. Gas surface interactions and satellite drag coefficients. Planetary and
Space Science, 53(8):793–801, July 2005.

[502] M.M. Moe. Solar-Lunar Perturbations of the Orbit of an Earth Satellite. ARS Journal,
30(5):485–487, 1960.

[503] M.M. Moe, S. D. Wallace, and K. Moe. Recommended drag coefficients for aeronomic
satellites. Geophysical Monograph Series, 87:349–356, 1995.

[504] N. D. Moiseev. On some simplified models of celestial mechanics based on the restricted
circular three-body problem. 1, The plane circular problem. Publications of the Sternberg
State Astronomical Institute, 15(1):75–99, January 1945. In Russian.

[505] N. D. Moiseev. On some simplified models of celestial mechanics based on the restricted
circular three-body problem. 2, Averaged versions of the bounded spatial circular problem.
Publications of the Sternberg State Astronomical Institute, 15(1):100–117, January 1945. In
Russian.

[506] O. Montenbruck and E. Gill. Satellite Orbits. Models, Methods and Applications. Physics and
Astronomy. Springer-Verlag, Berlin, Heidelberg, New York, 2001.

[507] P. Moore. A resonance problem of two degrees of freedom. Celestial Mechanics, 30:31–47,
May 1983.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 361

[508] P. Moore. A problem of libration with two degrees of freedom. Celestial Mechanics, 33:49–69,
May 1984.

[509] B. Morando. Orbites de Résonance des Satellites de 24 H. Bulletin Astronomique, 24:47–67,
1963.

[510] A. Morbidelli.Modern Celestial Mechanics: Aspects of Solar System Dynamics. Advances in
Astronomy and Astrophysics. Taylor & Francis, London, 2002.

[511] J. A. Morrison. Generalized Method of Averaging and the Von Zeipel Method. In R. L.
Duncombe and V. G. Szebehely, editors,Methods in Astrodynamics and Celestial Mechanics,
volume 17 of Progress in Astronautics and Rocketry, pages 117–138. Elsevier, 1966.

[512] J. Moser. Regularization of Kepler’s problem and the averaging method on a manifold.
Communications in Pure Applied Mathematics, 23:609–636, January 1970.

[513] D. Mostaza Prieto, B. P. Graziano, and P. C. E. Roberts. Spacecraft drag modelling. Progress in
Aerospace Sciences, 64:56–65, January 2014.

[514] F. R. Moulton. An Introduction to Celestial Mechanics. The MacMillan Company, New York, 2nd
edition, 1914. Also, Dover Books on Astronomy, Dover Publications Inc., 1984.

[515] F. R. Moulton, D. Buchanan, T. Buck, F. L. Griffin, W. R. Longley, and W.D. MacMillan. Periodic
orbits, volume 161. Publications of the Carnegie Institution of Washington, Washington, D. C.,
1920.

[516] J. A. Murdock. Perturbations: Theory and Methods, volume 27 of Classics in Applied
Mathematics. SIAM–Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[517] C. D. Murray and S. F. Dermott. Solar system dynamics. Cambridge University Press, New York,
1999.

[518] P. Musen. Special perturbations of the vectorial elements. The Astronomical Journal,
59:262–267, August 1954.

[519] P. Musen. Contributions to the theory of satellite orbits. In H. K. Bijl, editor, Space Research,
pages 434–447. North-Holland, New York, 1960.

[520] P. Musen. The Influence of the Solar Radiation Pressure on the Motion of an Artificial Satellite.
Journal of Geophysical Research, 65:1391–1396, May 1960.

[521] P. Musen, A. Bailie, and E. Upton. Development of the Lunar and Solar Perturbations in the
Motion of an Artificial Satellite. NASA Special Publication, 54:24, 1965. First published:
NASA-TN-D-494, 1961.

[522] P. Musen and A. E. Bailie. On the Motion of a 24-Hour Satellite. Journal of Geophysical
Research, 67(3):1123–1132, March 1962.

[523] P. Musen, R. Bryant, and A. Bailie. Perturbations in Perigee Height of Vanguard I. Science,
131:935–936, March 1960.

[524] F. Namouni. Secular Interactions of Coorbiting Objects. Icarus, 137:293–314, February 1999.
[525] S. Naoz. The Eccentric Kozai-Lidov Effect and Its Applications. Annual Reviews of Astronomy

and Astrophysics, 54:441–489, September 2016.
[526] A. H. Nayfeh. Perturbation Methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,

Germany, 2004.
[527] X. X. Newhall and J. G. Williams. Estimation of the Lunar Physical Librations. Celestial

Mechanics and Dynamical Astronomy, 66(1):21–30, March 1996.
[528] L. Niccolai, M. Bassetto, A. A. Quarta, and G. Mengali. A review of Smart Dust architecture,

dynamics, and mission applications. Progress in Aerospace Sciences, 106:1–14, April 2019.
[529] M. Nicoli. First Order Analytical Solution for Distant Retrograde Orbits in the Circular

Restricted Three-Body Problem. Master thesis, School of Industrial and Information
Engineering, Department of Aerospace Sciences and Technologies, Politecnico di Milano,
Via La Masa 34, 20156 Milano, Italy, April 2019.

[530] J. Oberst, K. Willner, and K. Wickhusen. DePhine – The Deimos and Phobos Interior Explorer
– A Proposal to ESA’s Cosmic Vision Program. In European Planetary Science Congress,
EPSC2017–539, September 2017.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



362 | Bibliography

[531] P. Oberti. The main problem of geosynchronous satellite theory around an equilibrium
position. Astronomy and Astrophysics, 284:281–284, April 1994.

[532] P. Oberti. A simple intermediary orbit for the J2 problem. Astronomy & Astrophysics,
437:333–338, July 2005.

[533] K. Ochs. A comprehensive analytical solution of the nonlinear pendulum. European Journal of
Physics, 32:479–490, March 2011.

[534] E. J. Öpik. Interplanetary encounters: close-range gravitational interactions. Developments in
solar system and space science. Elsevier, Amsterdam, 1976.

[535] A. A. Orlov. Second-order short-period solar perturbations in the motion of the satellites of
planets. Byulleten’ Instituta Teoreticheskoj Astronomii (Leningrad), 12:302–309, January
1970.

[536] C. Osácar and J. F. Palacián. Decomposition of functions for elliptical orbits. Celestial
Mechanics and Dynamical Astronomy, 60(2):207–223, October 1994.

[537] C. Osácar, J. F. Palacián, and M. Palacios. Numerical Evaluation of the Dilogarithm of Complex
Argument. Celestial Mechanics and Dynamical Astronomy, 62:93–98, May 1995.

[538] J. F. Palacián. Teoría del satélite artificial: armónicos teserales y su relegación mediante
simplificaciones algebraicas. PhD thesis, Dept. Física de la Tierra y el Cosmos, Universidad
de Zaragoza, Pedro Cerbuna 12, Zaragoza, Spain, May 1992.

[539] J. F. Palacián. An Analytical Solution for Artificial Satellites at Low Altitudes. In K. Kurzyńska,
F. Barlier, P. K. Seidelmann and I. Wytrzyszczak, editors, Dynamics and Astrometry of Natural
and Artificial Celestial Bodies, Proceedings of the Conference on Astrometry and Celestial
Mechanics held in Poznań, Poland, September 13–17, 1993, pages 365–370. Astronomical
Observatory of A. Mickiewicz University, Poznan, Poland, 1994.

[540] J. F. Palacián. Normal forms for perturbed Keplerian systems. Journal of Differential Equations,
180(2):471–519, 2002.

[541] J. F. Palacián, J. F. San-Juan, and P. Yanguas. Analytical Theory for the Spot Satellite. In K. C.
Howell, D. A. Cicci, J. E. Cochran Jr. and T. S. Kelso, editors, AAS/AIAA Spaceflight Mechanics
Meeting 1997, P.O. Box 28130, San Diego, California 92198, USA, volume 95 of Advances in
the Astronautical Sciences, pages 375–382. American Astronautical Society, Univelt, Inc.,
1997.

[542] J. F. Palacián, J. Vanegas, and P. Yanguas. Compact normalisations in the elliptic restricted
three body problem. Astrophysics and Space Science, 362:215, November 2017.

[543] M. E. Parke, R. H. Stewart, D. L. Farless, and D. E. Cartwright. On the choice of orbits for an
altimetric satellite to study ocean circulation and tides. Journal of Geophysical Research:
Oceans, 92(C11):11693–11707, 1987.

[544] D. L. Parker. An Analytic Derivation of the Relationship between the Angular Velocity Vector
and the Euler Angles and their Time Derivatives. American Journal of Physics, 37(9):925–927,
1969.

[545] R.W. Parkinson, H.M. Jones, and I. I. Shapiro. Effects of Solar Radiation Pressure on Earth
Satellite Orbits. Science, 131(3404):920–921, 1960.

[546] P. Pascua, J. L. Rubio, A. Viartola, and S. Ferrer. Visualizing relative equilibria and bifurcations
by painting Hamiltonians on personal computers. International Journal of Bifurcation and
Chaos, 06(08):1411–1424, 1996.

[547] M. E. Paskowitz and D. J. Scheeres. Design of Science Orbits About Planetary Satellites:
Application to Europa. Journal of Guidance Control Dynamics, 29:1147–1158, September
2006.

[548] M. E. Paskowitz and D. J. Scheeres. Control of Science Orbits About Planetary Satellites.
Journal of Guidance Control Dynamics, 32(1):223–231, 2009.

[549] S. J. Peale. Dust belt of the Earth. Journal of Geophysical Research, 71(3):911–933, February
1966.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 363

[550] J. Peláez and M. Lara. Dynamics of fast-rotating tethered satellites.Monografías de la Real
Academia de Ciencias de Zaragoza, 32:75–83, 2009.

[551] J. Peláez, M. Lara, C. Bombardelli, F. R. Lucas, M. Sanjurjo-Rivo, D. Curreli, E. C. Lorenzini,
and D. J. Scheeres. Periodic Orbits of a Hill-Tether Problem Originated from Collinear Points.
Journal of guidance, control, and dynamics, 35(1):222–233, 2012.

[552] I. C. Percival and D. Richards. Introduction to Dynamics. Cambridge University Press,
Cambridge, UK, January 1983.

[553] S. Persson, B. Jacobsson, and E. Gill. PRISMA – Demonstration Mission for Advanced
Rendezvous and Formation Flying Technologies and Sensors (paper IAC-05-B56B07). In
Proceedings of the 56th International Astronautical Congress (IAC), October 17–21 2005,
Fukuoka, Japan, pages 1–10. International Astronautical Federation, IAF, October 2005.

[554] J.-M. Petit and M. Hénon. Satellite encounters. Icarus, 66:536–555, June 1986.
[555] C.M. Petty and J. V. Breakwell. Satellite orbits about a planet with rotational symmetry.

Journal of the Franklin Institute, 270(4):259–282, 1960.
[556] H. C. Plummer. On the Possible Effects of Radiation on the Motion of Comets, with special

reference to Encke’s Comet.Monthly Notices of the Royal Astronomical Society, 65:229–238,
January 1905.

[557] H. C. K. Plummer. An introductory treatise on dynamical astronomy. Cambridge, University
press, 1918.

[558] H. Poincaré. Les méthodes nouvelles de la mécanique céleste. Paris, Gauthier-Villars et fils,
1892-1899.

[559] H. Poincaré. Sur les planètes du type d’Hécube. Bulletin Astronomique, Serie I, 19:289–310,
January 1902.

[560] A. Pousse, P. Robutel, and A. Vienne. On the co-orbital motion in the planar restricted
three-body problem: the quasi-satellite motion revisited. Celestial Mechanics and Dynamical
Astronomy, 128:383–407, August 2017.

[561] J. H. Poynting. Radiation in the Solar System: its Effect on Temperature and its Pressure
on Small Bodies. Philosophical Transactions A, 202:525–552, June 1903. Also, Collected
Scientific Papers, Cambridge, 1920, pp. 304–330.

[562] R. J. Proulx and W.D. McClain. Series representations and rational approximations for Hansen
coefficients. Journal of Guidance Control Dynamics, 11:313–319, July 1988.

[563] R. J. Proulx, W. D. McClain, L.W. Early, and P. J. Cefola. A theory for the short-periodic motion
due to the tesseral harmonic gravity field. In AAS/AIAA, Astrodynamics Specialist Conference.
American Astronautical Society, August 1981.

[564] G. Pucacco. Structure of the centre manifold of the L1, L2 collinear libration points in the
restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 131(10):44,
September 2019.

[565] P. Puig Adam. Curso teórico práctico de ecuaciones diferenciales aplicado a la Física y
Técnica. Nuevas Gráficas, S.A., Madrid, 10th edition, 1967. In Spanish.

[566] D. L. Richardson. Analytic construction of periodic orbits about the collinear points. Celestial
Mechanics, 22:241–253, October 1980.

[567] C. E. Roberts Jr.. An Analytic Model for Upper Atmosphere Densities Based Upon Jacchia’s
1970 Models. Celestial Mechanics, 4(3–4):368–377, December 1971.

[568] H. P. Robertson. Dynamical Effects of Radiation in the Solar System.Monthly Notices of the
Royal Astronomical Society, 97:423–437, April 1937.

[569] O. Rodrigues. Mémoire sur l’attraction des sphéroïdes. Correspondence Sur l’École Impériale
Polytechnique, 3(3):361–385, January 1816. Thesis for the Faculty of Science of the University
of Paris.

[570] A. Rom. Mechanized Algebraic Operations (MAO). Celestial Mechanics, 1:301–319, September
1970.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



364 | Bibliography

[571] M. Romano. Concise form of the dynamic and kinematic solutions of the Euler-Poinsot
problem (IAA-AAS-DyCoSS1-01-05 – AAS 12-304). In A. D. Guerman, P.M. Bainum and J.-M.
Contant, editors, Dynamics and Control of Space Systems DyCoSS’2012, P.O. Box 28130, San
Diego, California 92198, volume 145 of Advances in the Astronautical Sciences, pages 55–68.
American Astronautical Society, Univelt, Inc., 2012.

[572] B. A. Romanowicz. On The Tesseral-Harmonics Resonance Problem in Artificial-Satellite
Theory. SAO Special Report, 365, March 1975.

[573] B. A. Romanowicz. On the Tesseral-Harmonics Resonance Problem in Artificial-Satellite
Theory. Part II. SAO Special Report, 373, March 1976.

[574] G.W. Rosborough and C. Ocampo. Influence of Higher Degree Zonals on the Frozen Orbit
Geometry (AAS 91-428). In B. Kaufman, K. T. Alfriend, R. L. Roehrich and R. R. Dasenbrock,
editors, Astrodynamics 1991, P.O. Box 28130, San Diego, California 92198, volume 76 of
Advances in the Astronautical Sciences, pages 1291–1304. American Astronautical Society,
Univelt, Inc., 1992.

[575] A. J. Rosengren, H. Namazyfard, and G. E. O. Giacaglia. Effects of higher-order multipoles
of the lunar disturbing potential on elongated orbits in cislunar space. European Physical
Journal Special Topics, 229(8):1545–1555, May 2020.

[576] A. J. Rosengren and D. J. Scheeres. Long-term dynamics of high area-to-mass ratio objects in
high-Earth orbit. Advances in Space Research, 52(8):1545–1560, October 2013.

[577] A. J. Rosengren and D. J. Scheeres. On the Milankovitch orbital elements for perturbed
Keplerian motion. Celestial Mechanics and Dynamical Astronomy, 118:197–220, March 2014.

[578] A. J. Rosengren, D. J. Scheeres, and J.W. McMahon. The classical Laplace plane as a stable
disposal orbit for geostationary satellites. Advances in Space Research, 53(8):1219–1228,
April 2014.

[579] S. D. Ross and D. J. Scheeres. Multiple Gravity Assists, Capture, and Escape in the Restricted
Three-Body Problem. SIAM Journal on Applied Dynamical Systems, 6(3):576–596, January
2007.

[580] A. Rossi. Resonant dynamics of Medium Earth Orbits: space debris issues. Celestial
Mechanics and Dynamical Astronomy, 100(4):267–286, April 2008.

[581] A. E. Roy. Luni-Solar Perturbations of an Earth Satellite. Astrophysics and Space Science,
4:375–386, August 1969.

[582] A. E. Roy. Orbital motion. Institute of Physics Publishing, Bristol (UK), 4th edition, 2005.
[583] A. E. Roy and P. E. Moran. Studies in the Application of Recurrence Relations to Special

Perturbation Methods. III. Non-Singular Differential Equations for Special Perturbations.
Celestial Mechanics, 7:236–255, February 1973.

[584] D. P. Rubincam and N. S. Weiss. Earth Albedo and the Orbit of LAGEOS. Celestial Mechanics,
38(3):233–296, March 1986.

[585] R. P. Russell and M. Lara. On the design of an Enceladus science orbit. Acta Astronautica,
65(1–2):27–39, 2009.

[586] R. P. Russell and M. Lara. Long-Lifetime Lunar Repeat Ground Track Orbits. Journal of
Guidance, Control, and Dynamics, 30(4):982–993, July-August 2007.

[587] Yu. A. Sadov. The Action-Angles Variables in the Euler-Poinsot Problem. PMM-Journal of
Applied Mathematics and Mechanics, 34(5):922–925, 1970.

[588] Yu. A. Sadov. The Action-Angles Variables in the Euler-Poinsot Problem. Preprint No. 22 KIAM
Russian Academy of Sciences Moscow (in Russian), 1970.

[589] B. de Saedeleer. Complete Zonal Problem of the Artificial Satellite: Generic Compact Analytic
First Order in Closed Form. Celestial Mechanics and Dynamical Astronomy, 91:239–268,
March 2005.

[590] J. F. San-Juan. ATESAT: Automatization of theories and ephemeris in the artificial satellite
problem. Technical Report CT/TI/MS/MN/94-250, Centre National d’Études Spatiales, 18,
avenue Edouard Belin - 31401 Toulouse Cedex 9, France, May 1994.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 365

[591] J. F. San-Juan, A. Abad, M. Lara, and D. J. Scheeres. First-Order Analytical Solution for
Spacecraft Motion About (433) Eros. Journal of Guidance Control Dynamics, 27:290–293,
March 2004.

[592] J. F. San-Juan, M. Lara, and S. Ferrer. Phase Space Structure Around Oblate Planetary
Satellites. Journal of Guidance Control Dynamics, 29:113–120, January 2006.

[593] J. F. San-Juan, D. Ortigosa, L.M. López-Ochoa, and R. López. Deprit’s Elimination of the
Parallax Revisited. The Journal of the Astronautical Sciences, 60:137–148, June 2015.

[594] J. A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in Nonlinear Dynamical
Systems, volume 59 of Applied Mathematical Sciences. Springer, New York, 2nd edition,
2007.

[595] M. Sansottera and M. Ceccaroni. Rigorous estimates for the relegation algorithm. Celestial
Mechanics and Dynamical Astronomy, 127:1–18, January 2017.

[596] D. J. Scheeres. Satellite Dynamics about small bodies: Averaged Solar Radiation Pressure
Effects. The Journal of the Astronautical Sciences, 41(1):25–46, 1999.

[597] D. J. Scheeres. Orbital Motion in Strongly Perturbed Environments. Astronautical Engineering.
Springer-Verlag, Berlin, 2012.

[598] D. J. Scheeres, M. D. Guman, and B. F. Villac. Stability Analysis of Planetary Satellite Orbiters:
Application to the Europa Orbiter. Journal of Guidance Control Dynamics, 24(4):778–787, July
2001.

[599] G. Scheifele and O. Graf. Analytical satellite theories based on a new set of canonical
elements. InMechanics and Control of Flight Conference, pages 1–20. American Institute
of Aeronautics and Astronautics, Reston, Virigina, February 1974.

[600] J. Schubart. Long-Period Effects in Nearly Commensurable Cases of the Restricted Three-Body
Problem. SAO Special Report, 149, April 1964.

[601] B. Schutz and D. Craig. GPS orbit evolution – 1998-2000 (Paper AIAA-2000-4237). In
Astrodynamics Specialist Conference, pages 1–11, 2000.

[602] A.M. Segerman and S. L. Coffey. An analytical theory for tesseral gravitational harmonics.
Celestial Mechanics and Dynamical Astronomy, 76(3):139–156, 2001.

[603] H. Sellamuthu and R. K. Sharma. Hybrid Orbit Propagator for Small Spacecraft Using
Kustaanheimo–Stiefel Elements. Journal of Spacecraft and Rockets, 55:1282–1288,
September 2018.

[604] B. E. Shapiro. Phase Plane Analysis and Observed Frozen Orbit for the Topex/ Poseidon
Mission. In P.M. Bainum, G. L. May, Y. Ohkami, K. Uesugi, Q. Faren and L. Furong, editors,
6th AAS/JRS/CSA Symposium, International Space Conference of Pacific-Basin Societies,
Strengthening Cooperation in the 21st Century, P.O. Box 28130, San Diego, California 92198,
volume 91 of Advances in the Astronautical Sciences, pages 853–872. American Astronautical
Society, Univelt, Inc., 1996.

[605] I. I. Shapiro. The prediction of satellite orbits. In M. Roy, editor, Dynamics of
Satellites/Dynamique des Satellites, pages 257–312. Springer, Berlin, Heidelberg, 1963.

[606] R. K. Sharma. Analytical integration of K-S element equations with J2 for short-term orbit
predictions. Planetary and Space Science, 45(11):1481–1486, November 1997.

[607] I. I. Shevchenko. The Lidov-Kozai Effect – Applications in Exoplanet Research and Dynamical
Astronomy, volume 441 of Astrophysics and Space Science Library. Springer, Cham,
Switzerland, 2017.

[608] V. V. Sidorenko, A. I. Neishtadt, A. V. Artemyev, and L.M. Zelenyi. Quasi-satellite orbits in
the general context of dynamics in the 1:1 mean motion resonance: perturbative treatment.
Celestial Mechanics and Dynamical Astronomy, 120:131–162, October 2014.

[609] C. L. Siegel and J. Moser. Lectures on celestial mechanics. Classics in Mathematics.
Springer-Verlag, Berlin Heidelberg, 1st edition, 1971. Reprint of the 1971 Edition (Grundlehren
der mathematischen Wissenschaften, Vol. 187), translated by C. I. Kalme.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



366 | Bibliography

[610] C. Simo. On the Analytical and Numerical Approximation of Invariant Manifolds. In D. Benest
and C. Froeschle, editors,Modern Methods in Celestial Mechanics, page 285, January 1990.

[611] C. Simó and T. J. Stuchi. Central stable/unstable manifolds and the destruction of KAM tori in
the planar Hill problem. Physica D Nonlinear Phenomena, 140:1–32, June 2000.

[612] A. S. Sochilina. On the motion of a satellite in resonance with its rotating planet. Celestial
Mechanics, 26:337–352, April 1982.

[613] E.M. Soop. Handbook of Geostationary Orbits, volume 3 of Space Technology Library.
Springer, Netherlands, 1st edition, 1994.

[614] J. Souchay, M. Folgueira, and S. Bouquillon. Effects of the Triaxiality on the Rotation
of Celestial Bodies: Application to the Earth, Mars and Eros. Earth Moon and Planets,
93(2):107–144, October 2003.

[615] J. Souchay, H. Kinoshita, H. Nakai, and S. Roux. A precise modeling of Eros 433 rotation.
Icarus, 166(2):285–296, October 2003.

[616] F. Spirig and J. Waldvogel. The Three-Body ProblemWith Two Small Masses: A
Singular-Perturbation Approach to the Problem of Saturn’s Coorbiting Satellites. In V. G.
Szebehely, editor, Stability of the Solar System and Its Minor Natural and Artificial Bodies,
volume 154 of NATO Advanced Science Institutes (ASI) Series C, pages 53–63. Springer
Netherlands, Dordrecht, January 1985.

[617] R. Sridharan andW. P. Seniw. An intermediate-averaged theory for high altitude orbits.
Technical Note 1979-25, MIT Lincoln Laboratory, Lexington, MA 02173, June 1979.

[618] D. Steichen. An averaging method to study the motion of lunar artificial satellites II:
Averaging and Applications. Celestial Mechanics and Dynamical Astronomy, 68(3):225–247,
July 1998.

[619] S. Steinberg. Lie series, Lie transformations, and their applications. In J. Sánchez Mondragón
and K. B. Wolf, editors, Lie Methods in Optics, volume 250 of Lecture Notes in Physics, page
45. Springer-Verlag, Berlin, 1986.

[620] T. E. Sterne. The gravitational orbit of a satellite of an oblate planet. The Astronomical Journal,
63:28–40, January 1958.

[621] E. L. Stiefel and G. Scheifele. Linear and Regular Celestial Mechanics, volume 174 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin Heidelberg, 1st
edition, 1971.

[622] M. Stramacchia, C. Colombo, and F. Bernelli-Zazzera. Distant Retrograde Orbits for
space-based Near Earth Objects detection. Advances in Space Research, 58:967–988,
September 2016.

[623] B. Strömgren. Formeln zur genaeherten Stoerungsrechnung in Bahnelementen. Angewandt
auf die Planeten 633 Zelima, 956 [1921 IW], 979 Ilsewa, 1035 Amata und 1049 [1925RB].
Publikationer og mindre Meddeler fra Kobenhavns Observatorium, 65:1–26, January 1929.

[624] E. Strömgren. Connaisance actuelle des orbites dans le problème des trois corps. Bulletin
Astronomique, 9:87–130, January 1933.

[625] R. A. Struble. The geometry of the orbits of artificial satellites. Archive for Rational Mechanics
and Analysis, 7(1):87–104, January 1961.

[626] K. F. Sundman. Mémoire sur le problème des trois corps. Acta Mathematica, 36(1):105–179,
December 1913.

[627] G. J. Sussman and J. Wisdom. Structure and interpretation of classical mechanics. MIT Press,
Cambridge, Massachusetts, 1st edition, 2001.

[628] V. Szebehely. Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press Inc.,
New York and London, 1967.

[629] J. L. Tabor and J. D. Vedder. Long-Term Evolution of Uncontrolled Geosynchronous Orbits:
Orbital Debris Implications. The Journal of the Astronautical Sciences, 40(3):407–418,
July-September 1992.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 367

[630] B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel,
R. Pastor, T. Pekker, S. Poole, and F. Wang. GGM02 An improved Earth gravity field model from
GRACE. Journal of Geodesy, 79:467–478, November 2005.

[631] F. Tisserand. Traité de mécanique céleste. Tome I: Perturbations des planètes d’aprés
la méthode de la variation des constantes arbitraries. Gauthier-Villars et fils, Quai des
Grands-Augustins, 55, Paris, 1889.

[632] F. Tisserand. Traité de mécanique céleste. Tome IV: Théories des satellites de Jupiter et de
Saturne. Perturbations des petit planetes. Gauthier-Villars et fils, Quai des Grands-Augustins,
55, Paris, 1896. Chapter vi.

[633] F. Tong and L-d. Wu. Perturbation equations of the elements of Vinti’s intermediate orbit.
Chinese Astronomy and Astrophysics, 5:282–294, September 1981.

[634] T. C. Tsu. Interplanetary Travel by Solar Sail. ARS Journal, 29(6):422–427, 1959.
[635] C. Uphoff. Numerical averaging in orbit prediction. AIAA Journal, 11:1512–1516, 1973.
[636] H. Urrutxua, M. Sanjurjo-Rivo, and J. Peláez. DROMO propagator revisited. Celestial

Mechanics and Dynamical Astronomy, 124:1–31, January 2016.
[637] B. A. Ustinov. Motion of Satellites in Small-Eccentricity Orbits in the Noncentral Gravitational

Field of the Earth. Cosmic Research, 5:159–168, March 1967.
[638] J. Vagners. Modified long-period behavior due to tesseral harmonics. AIAA Journal,

6(7):1229–1234, July 1968.
[639] S. Valk, A. Lemaître, and L. Anselmo. Analytical and semi-analytical investigations of

geosynchronous space debris with high area-to-mass ratios. Advances in Space Research,
41:1077–1090, 2008.

[640] S. Valk, A. Lemaître, and F. Deleflie. Semi-analytical theory of mean orbital motion for
geosynchronous space debris under gravitational influence. Advances in Space Research,
43(7):1070–1082, April 2009.

[641] D. A. Vallado, P. Crawford, R. Hujsak, and T. S. Kelso. Revisiting Spacetrack Report #3 (AIAA
2006-6753). In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, USA, August
2006, Guidance, Navigation, and Control and Co-located Conferences, pages 1–88. American
Institute of Aeronautics and Astronautics, 2006.

[642] G. B. Valsecchi. In Geometric Conditions for Quasi-Collisions in Öpik’s Theory, volume 682,
pages 145–158. Springer, Berlin, Heidelberg, 2006.

[643] G. B. Valsecchi, E.M. Alessi, and A. Rossi. An analytical solution for the swing-by problem.
Celestial Mechanics and Dynamical Astronomy, 123(2):151–166, October 2015.

[644] G. B. Valsecchi, T. J. Jopek, and C. Froeschlé. Meteoroid stream identification: a new approach
- I. Theory.Monthly Notices of the Royal Astronomical Society, 304:743–750, April 1999.

[645] G. B. Valsecchi, A. Milani, G. F. Gronchi, and S. R. Chesley. Resonant returns to close
approaches: Analytical theory. Astronomy and Astrophysics, 408:1179–1196, September
2003.

[646] M. Valtonen and H. Karttunen. The Three-Body Problem. Cambridge University Press,
Cambridge, UK, 2006.

[647] J. C. van der Ha. Non-singular and non-conventional orbit perturbation equations. Zeitschrift
für Flugwissenschaften und Weltraumforschung, 9:217–224, August 1985.

[648] J. C. van der Ha and V. J. Modi. Long-term evaluation of three-dimensional heliocentric solar
sail trajectories with arbitrary fixed sail setting. Celestial Mechanics, 19:113–138, February
1979.

[649] M. A. Vashkov’yak. Stability of Circular Satellite Orbits for Combined Action of Perturbations
from an External Body and from the Noncentrality of the Planetary Gravitational Field. Cosmic
Research, 12:757–769, November 1974.

[650] M. A. Vashkov’yak. On the special particular solutions of a double-averaged Hill’s problem
with allowance for flattening of the central planet. Astronomy Letters, 22:207–216, March
1996.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



368 | Bibliography

[651] M. A. Vashkov’Yak. On the development of M.L. Lidov’s techniques on the evolution of
satellite orbits. In Celestial Mechanics, volume 8 of IAA Transactions, pages 174–177, 2002.

[652] M. A. Vashkov’Yak. A Numerical-Analytical Method for Studying the Orbital Evolution of
Distant Planetary Satellites. Astronomy Letters, 31(1):64–72, January 2005.

[653] M. A. Vashkov’Yak. Particular Solutions of the Singly Averaged Hill Problem. Astronomy
Letters, 31(7):487–493, July 2005.

[654] M. A. Vashkov’Yak. Periodic solutions of the singly averaged Hill problem. Astronomy Letters,
32(10):707–715, October 2006.

[655] M. A. Vashkov’yak and N.M. Teslenko. On the Stability of Particular Solutions of the Singly
Averaged Hill Problem. Astronomy Letters, 31(12):844–852, December 2005.

[656] M. A. Vashkov’yak and N.M. Teslenko. Refined model for the evolution of distant satellite
orbits. Astronomy Letters, 35(12):850–865, December 2009. Erratum: Astronomy Letters,
36(4):307, April 2010.

[657] F. Verhulst. Discrete Symmetric Dynamical Systems at the Main Resonances with Applications
to Axi-Symmetric Galaxies. Philosophical Transactions of the Royal Society of London Series
A, 290(1375):435–465, January 1979.

[658] R. Vilhena de Moraes. Combined solar radiation pressure and drag effects on the orbits of
artificial satellites. Celestial Mechanics, 25:281–292, May November 1981.

[659] R. Vilhena de Moraes. Non-gravitational disturbing forces. Advances in Space Research, 14,
May 1994.

[660] B. F. Villac and D. J. Scheeres. Escaping Trajectories in the Hill Three-Body Problem and
Applications. Journal of Guidance Control Dynamics, 26:224–232, March 2003.

[661] N. X. Vinh. Recurrence Formulae for the Hansen’s Developments. Celestial Mechanics,
2:64–76, March 1970.

[662] J. P. Vinti. New Method of Solution for Unretarded Satellite Orbits. Journal of Research of the
National Bureau of Standards, 62B(2):105–162, October–December 1959.

[663] J. P. Vinti. Theory of an Accurate Intermediary Orbit for Satellite Astronomy. Journal of
Research of the National Bureau of Standards, 65B(3):169–201, July–September 1961.

[664] J. P. Vinti. Inclusion of the third zonal harmonic in an accurate reference orbit of an
artificial satellite. Journal of Research of the National Bureau of Standards, 70B(1):17–46,
January–March 1966.

[665] J. P. Vinti. Invariant Properties of the Spheroidal Potential of an Oblate Planet. Journal of
Research of the National Bureau of Standards, 70B(1):1–16, January–March 1966.

[666] J. P. Vinti. Improvement of the Spheroidal Method for Artificial Satellites. Astronomical
Journal, 74:25–34, February 1969.

[667] J. P. Vinti. In G. J. Der and N. L. Bonavito, editors, Orbital and Celestial Mechanics, volume
177 of Progress in Astronautics and Aeronautics. American Institute of Aeronautics and
Astronautics, Reston, Virginia, 1998.

[668] D. Vokrouhlicky, P. Farinella, and F. Mignard. Solar radiation pressure perturbations for Earth
satellites. 1: A complete theory including penumbra transitions. Astronomy and Astrophysics,
280:295–312, December 1993.

[669] D. Vokrouhlicky, P. Farinella, and F. Mignard. Solar radiation pressure perturbations for Earth
satellites II. An approximate method to model penumbra transitions and their long-term
orbital effects on LAGEOS. Astronomy and Astrophysics, 285:333–343, May 1994.

[670] D. Vokrouhlicky, P. Farinella, and F. Mignard. Solar radiation pressure perturbations for
Earth satellites. III. Global atmospheric phenomena and the albedo effect. Astronomy and
Astrophysics, 290:324–334, October 1994.

[671] D. Vokrouhlicky and L. Sehnal. On some aspects of the albedo effect application to the ERS-1
satellite. Celestial Mechanics and Dynamical Astronomy, 56(3):471–490, July 1993.

[672] V. Volterra. Sur la théorie des variations des latitudes. Acta Mathematica, 22:201–357, 1899.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 369

[673] G. Voyatzis and K. I. Antoniadou. On quasi-satellite periodic motion in asteroid and planetary
dynamics. Celestial Mechanics and Dynamical Astronomy, 130(9):59, September 2018.

[674] C. A. Wagner, B. C. Douglas, and R. G. Williamson. The ROAD program. Technical Report
NASA-TM-X-70676, Goddard Space Flight Center, Greenbelt, Maryland, January 1974.

[675] H. G. Walter. Conversion of osculating orbital elements into mean elements. The Astronomical
Journal, 72:994–997, October 1967.

[676] Y. Wang and P. Gurfil. Dynamical modeling and lifetime analysis of geostationary transfer
orbits. Acta Astronautica, 128:262–276, November 2016.

[677] J. R. Wertz, editor. In Spacecraft Attitude Determination and Control, volume 73 of
Astrophysics and Space Science Library. Springer Netherlands, Dordrecht, Holland, 1st
edition, 1978.

[678] A. D. Wheelon. Free Flight of a Ballistic Missile. ARS Journal, 29(12):915–926, December 1959.
[679] E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies.

Cambridge University Press, Cambridge, UK, 1st edition, February 1904.
[680] E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies.

Cambridge University Press, Cambridge, UK, 2nd edition, February 1917.
[681] W. E. Wiesel. Numerical Solution to Vinti’s Problem. Journal of Guidance Control Dynamics,

38(9):1757–1764, September 2015.
[682] J.M. Wilkes. Rotations as solutions of a matrix differential equation. American Journal of

Physics, 46(6):685–687, 1978.
[683] R. R. Williams and J. Lorell. The Theory of Long-Term Behavior of Artificial Satellite Orbits Due

to Third-Body Perturbations. Report NASA TR-32-916, Jet Propulsion Laboratory, Pasadena,
CA, February 1966.

[684] A. Wintner. The analytical foundations of celestial mechanics, volume 5 of Princeton
Mathematical Series. Princeton University Press, Princeton, N. J., 1947.

[685] E. Wnuk. Tesseral Harmonic Perturbations for High Order and Degree Harmonics. Celestial
Mechanics, 44:179–191, March 1988.

[686] E. Wnuk and T. Jopek. Satellite orbit calculations using geopotential coefficients up to high
degree and order. Advances in Space Research, 14(5):35–42, May 1994.

[687] E. Wnuk and S. Ł. Breiter. The motion of natural and artificial satellites in Mars gravity field.
Advances in Space Research, 11(6):183–188, 1991.

[688] S. Wright. Orbit Determination Using Vinti’s Solution. PhD thesis, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio, September 2016.

[689] L-d. Wu and F. Tong. A third-order solution of Vinti’s problem with explicit expressions for the
poisson brackets. Chinese Astronomy and Astrophysics, 5:192–201, June 1981.

[690] S. P. Wyatt and F. L. Whipple. The Poynting-Robertson effect on meteor orbits. The
Astrophysical Journal, 111:134–141, January 1950.

[691] H. Yan, S. R. Vadali, and K. T. Alfriend. A Recursive Formulation of the Satellite Perturbed
Relative Motion Problem. In AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA,
pages 1–14, August 2014.

[692] V. Yurasov. Universal Semianalytic Satellite Motion Propagation Method. In Proceedings of
the U.S. – Russian Second Space Surveillance Workshop, pages 198–211. Adam Mickiewicz
University, Poznan, July 1996.

[693] C. Zagouras and V. V. Markellos. Three-dimensional periodic solutions around equilibrium
points in Hill’s problem. Celestial Mechanics, 35:257–267, March 1985.

[694] M. Zamaro and J. D. Biggs. Natural motion around the Martian moon Phobos: the dynamical
substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity
harmonics. Celestial Mechanics and Dynamical Astronomy, 122(3):263–302, July 2015.

[695] M. Zamaro and J. D. Biggs. Identification of new orbits to enable future mission opportunities
for the human exploration of the Martian moon Phobos. Acta Astronautica, 119:160–182,
February 2016.

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



370 | Bibliography

[696] T. de Zeeuw and D. Merritt. Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation.
The Astrophysical Journal, 267:571–595, April 1983.

[697] H. von Zeipel. Sur l’application des séries de M. Lindstedt à l’étude du mouvement des
comètes périodiques. Astronomische Nachrichten, 183(22):345, March 1910.

[698] H. von Zeipel. Research on the Motion of Minor Planets. NASA TT F-9445, 1965. (NASA
Translation of: Recherches sur le mouvement des petites planètes, Arkiv för matematik,
astronomi och fysik, vol. 11, 1916, vol. 12, 1917, vol. 13, 1918).

[699] Y. Zhao, P. Gurfil, and S. Zhang. Long-Term Orbital Dynamics of Smart Dust. Journal of
Spacecraft and Rockets, 55:125–142, January 2018.

[700] N. Y. Zhukovsky. On the motion of a rigid body having cavities filled with a homogeneous
liquid drop. Russian Journal of the Physical Chemical Society, 17:31–152, 1885. Also, Collected
Works, vol. 1, Moscow-Leningrad: Gostekhisdat, 1949 (in Russian).

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index
angular momentum vector 17, 18, 53, 54, 56, 57,

77, 80, 86, 93, 106, 107, 115, 125, 130, 237,
253, 268

area-to-mass ratio 14, 235, 236
artificial satellite theory 5–7, 9, 10, 99, 174,

203, 269
–main problem 5–8, 15, 92–95, 97–103, 106,

107, 109, 110, 114, 119, 124–129, 131, 132,
134, 153, 154, 163, 189, 248, 287

– tesseral effects 176, 182, 184, 186, 189, 191,
193, 197

– zonal problem 125–127, 129, 131, 134, 137,
144, 145, 176–178, 180, 181, 183

atmospheric density 15, 243, 244, 247, 248
atmospheric drag 2, 243, 246

balanced satellite orbits 14, 227, 228, 231–234
bifurcation 109, 115, 118, 131, 132, 233, 264,

269, 271, 273, 275–277, 283, 287,
304–306, 310

–degenerate 273, 277
– line 273, 275–277, 283–288
–pitchfork 287
– saddle-node 284, 286, 287
– surface 288
binomial expansion 177, 205, 209
Bohlin, K. 12
Brouwer, D. 3, 8, 9, 124, 141, 153, 173, 267

cannonball approximation 235, 236
canonical transformation 3, 23, 30, 37, 39, 46,

48, 50, 59, 62, 69, 70, 80, 82, 105, 197,
241, 295–298, 314, 324, 325

center manifold 20, 22, 23, 296, 298, 301, 303,
307

– reduction 23, 295, 298
centered elements 174, 175
chaos 2, 5, 12, 291
characteristic exponents 261, 262, 297
closed form 10, 11, 50, 86, 89, 110, 111, 113, 125,

134, 148, 151, 160, 176, 184, 187, 194, 205,
214, 215, 280, 321

–analytical solution 18, 19, 26, 45, 46, 56, 64,
101, 304, 323, 324

–averaging 9, 98, 110, 126, 150, 160, 207, 224,
266

–perturbation solution 8, 10, 17, 124, 145, 174,
203

contour plots 113, 115, 119, 130, 131, 200, 230,
269, 308

Coriolis term 93, 125, 180, 237, 242, 265, 280
critical inclination
–artificial satellite theory 5, 6, 9, 92, 99, 109,

115, 118, 130–132, 142, 269, 284
– third body 270, 273, 277, 283

Deprit, A. 3, 102
– fundamental recursion 31, 33, 34, 36, 38, 43,

51, 66, 121, 141, 154, 155, 175, 179, 180,
276, 320, 321

–perturbation algorithm 4, 37, 206
– radial intermediary 101, 103, 105, 106, 134,

135, 139
– triangle 33, 51, 66, 71, 157, 158, 162, 281, 321
detuning 23, 295, 299, 300, 302
differential relation
–eccentric anomaly 88, 89, 207, 222, 266
– true anomaly 89, 98, 103, 110, 113, 125, 126,

138–140, 146, 150, 160, 161, 187, 215, 222,
248

disposal orbit 1, 8, 12, 202, 211
disturbing function, potential 15, 37, 43, 45,

87–90
–ellipsoidal figure 279
–Hill problem 23
–oblateness 95, 102, 220, 222
– solar radiation pressure 236, 237
– tesseral problem 176, 194
– third body 12, 13, 203, 205, 206, 208, 211,

214, 220
– lunar 13, 203, 212, 214, 215, 219, 224
– solar 203, 217, 221

– zonal problem 125
double-averaged flow 218, 270, 273, 274, 289,

290, 293
drag coefficient 15, 243
drag-oblateness coupling 248
Duffing oscillator 323, 324

Earth’s flattening 244
eccentricity polynomials 182, 199, 200, 223,

243, 267, 271

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



372 | Index

eccentricity vector 16–18, 21, 77, 85, 86, 97,
103, 115, 123, 132, 165, 169, 211, 218, 237,
238, 270, 289

eccentricity-vector diagram 131, 239, 269, 282,
284, 289

ecliptic 13, 214, 216, 217, 219, 220, 222, 234,
237, 240

–obliquity 214–216, 219, 220, 222, 227, 234,
242

ecliptic orbits 229
elimination of the latitude 9
elimination of the node 182, 183, 187, 267, 272,

274
elimination of the parallax 5, 9, 10, 134,

137–139, 145, 148, 151, 153, 156, 168, 171,
175, 178

elimination of the perigee 5, 9, 151–153, 156,
168, 171

elliptic oscillator 295, 300, 307
–perturbed 23, 299
equation of the center 9, 89, 91, 106, 111, 134,

137, 161, 162, 175
equatorial plane 13, 219–222
equinox 232–234
Euler, L. 253
–angles 53, 55, 57, 58
–equations 53, 304

fixed point 106, 109
–elliptic 47, 59, 108, 109, 115, 230, 304, 306
–hyperbolic 47, 48, 59, 109, 115, 230, 304, 306
frame
–apsidal 13, 77, 86, 205, 208, 237, 242
–body 53, 55–58
–ecliptic 219–221, 225, 235, 236
–equatorial 219, 220, 222–224, 233–236, 242,

243
– inertial 77, 78, 80, 203, 235, 253, 255
–nodal 16, 77, 78, 85, 115, 218
–orbital 77, 78, 86, 97, 103, 123
– rotating 15, 19, 21, 93, 107, 176, 177, 182, 184,

242, 254, 256, 266, 267, 278, 281
– sidereal 253
– space 53, 55, 57
– synodic 235–237, 242, 254, 257
free rigid body 4, 45, 52, 53, 58, 61, 64, 68, 70,

304
– short-axis-mode rotation, main problem 68
– triaxial 4

–uniaxial 4, 53, 54, 65
frozen orbits 99, 109, 119, 124
–Hill problem 269, 270, 272, 273
–main problem 114, 115
–planetary satellites 283–286, 288–290, 293
– zonal problem 129–132

Galileo orbits 12, 13, 189, 190, 193, 201, 202,
213–218

Garfinkel, B. 11, 124, 183, 265
– tesseral Hamiltonian 177, 267
Gauss, C. F.
– principal relations 90, 91, 96
– variation equations 235, 245, 247
GPS orbits 199, 200, 218
gravitational potential 5, 10, 21, 92, 130, 196,

278
–dynamical ellipticity 12, 22, 278
–geopotential 6, 8, 11, 12, 92, 100, 102, 109,

124, 130, 131, 165, 177, 184, 189, 194, 199,
201, 205

–oblateness 5, 15, 22, 93, 153, 174, 198, 218,
278

– tesseral harmonics 10, 12, 176, 182
–m-daily terms 10, 182

– zonal harmonics 5, 9, 10, 17, 92, 99, 102, 124,
125, 128, 130–132, 142, 160, 176, 184

gyration frequency 240, 241

Hamilton equations 3, 15, 43, 63, 84, 94, 313,
315, 323

– free rigid body 58
–Galileo orbits 218
–GPS orbits 201
–Hill problem 260
–double averaged 270, 274

–Kepler problem 84
–Kudielka’s high Earth orbits 228
– circular orbits 229

– libration points orbits 307
–main problem 96, 98
–double averaged 163
– single averaged 120

–pendulum 47
– small oscillations 41

–planetary satellites 281
– solar radiation pressure 238, 242
–ecliptic orbits 238
–Kramers–Deprit action-angles 241

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index | 373

–zonal problem 142
Hamilton–Jacobi 3, 5–7, 29, 45, 48, 60, 69, 77,

80, 85, 92, 102
–generating function 29, 45, 48, 60, 80
Hamilton-Jacobi 314
Hamiltonian
– completely reduced, secular 3, 25, 69, 71,

142, 144, 150, 162, 174, 325, 326
–normalized 23, 24, 295, 298, 302, 308
– radial 101–103
– standard 49–51, 62, 63, 82
– time dependent 4, 176, 203, 206, 235
Hamiltonian reduction 4, 5, 29, 46, 48, 49, 58,

60, 62, 69, 71, 80, 84, 85, 104, 313, 314,
316

Hamiltonian simplification 2, 4, 5, 7, 102, 124,
137, 151, 153, 175, 180

Hansen coefficients 127, 194
harmonic oscillator 4, 39, 41, 45, 69, 261, 295,

297, 307, 316, 322
–perturbed 23, 69
harmonic transformation 39, 323
–extended 324
Harris–Priester density model 243, 244
heteroclinic connections 230
Hill problem 2, 19–24, 253, 258–261, 263–266,

271, 278–280, 283, 287, 288, 295, 306,
310, 313

–double-averaged 268, 272–274
–Hill radius 258, 261, 295
–Hill sphere 21, 24, 260, 265, 313, 315
–perturbed 278
–double-averaged 282, 289, 290

–planar 21, 25, 26, 313, 315, 330–332, 334, 335
– single-averaged 26, 267
–units 258–260, 278, 310, 331
homoclinic 109, 286
homological equation 5, 42–44, 51, 66, 70, 71,

86, 104, 110, 111, 134, 145, 146, 151, 152,
155, 157

– complex variables 298, 299
–Deprit radial intermediary 136, 178
–elimination of the node 183, 267, 272, 274,

276, 281
–elimination of the parallax 178
–elimination of the perigee 141, 142
–elliptic oscillator 300
–extended phase space 214, 224, 226
–harmonic oscillator 316, 326

–Kepler problem 89, 102, 103, 110, 126, 136,
138, 141, 150, 159, 160, 162, 181, 207, 222,
223, 237, 266, 280

– tesseral problem 176, 184–187
– tesseral resonance 196, 197
–uniaxial body 65
Hori, G.-i. 3
hydrostatic equilibrium 278, 279

imaginary unit 208
inclination polynomials 120, 128, 139, 154, 155,

157–160, 162, 163, 199, 201, 215, 222, 223,
243, 267, 268, 271, 274–277

inclination–eccentricity diagrams 130, 131
inertia
– long axis 54, 59, 61, 72
–parameter 65
–principal axes 53, 279
–principal moments 53
–products 53
– short axis 54, 59, 61, 66, 67
– tensor 53
– triaxiality coefficient 65, 68, 71–73
infinitesimal contact transformation 3, 29, 102,

103
infinitesimal mapping 30
integral 3, 18, 19, 29, 53, 106, 107, 298, 301,

314, 323
– formal 4, 9, 26, 88
–artificial satellite 224
–Hill problem 268
– libration points orbits 298, 302, 304
–main problem 170
–pendulum 39
–planetary satellites 282
–quasi-satellite orbits 313, 326, 329
– zonal problem 127, 145

– free rigid body 58, 65, 70, 72
–Hamiltonian 119
–Kepler problem 77, 79, 80, 84, 85
–main problem 93, 94, 97, 98, 106
–pendulum 39
– radial intermediary 101
– solar radiation pressure 240
– zonal problem 125
intermediary orbits 1, 6, 7, 92, 100–102, 106,

109, 199, 248
–Aksness, zonal 102
–Cid, radial 101, 145

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



374 | Index

– common 101, 102
–Galileo disposal orbit 202
–GPS, 2:1 resonance 199, 200
–natural 102
– radial 102, 149
–Vinti, oblate spheroidal 6, 102
– zonal 15, 102
invariable plane 56–58, 72
Izsak correction 248

Jacobi, C. G. J.
– constant 19, 253, 255, 259, 261, 263
–elimination of the nodes 19
–elliptic functions 46, 50, 54, 305, 324
– integral 19, 255, 256
– theta functions 45, 56

Kaula, W.M. 124, 125, 127, 182, 194
–eccentricity functions 127, 128, 195
– inclination functions 125, 128, 177
Kepler equation 83, 90, 91, 101
Kepler problem 6, 7, 16, 18, 77, 79, 80, 84, 86,

90, 95, 101, 104
Kozai, Y. 124, 242, 247, 248

Lagrange–Charpit equations 185, 188
– characteristic curves 185, 188
Lagrangian
–CRTBP 255
– free rigid body 58
–geopotential 93
–Kepler problem 79
Lagrangian points 257
Laplace, P.-S. 92
–equation 92, 102
–plane 219
– vector 238
Levi-Civita symbol 86
libration frequency 322, 324, 332
libration points 2, 19–22, 257, 259, 261, 263,

295, 296, 299, 303, 307, 308, 310
Lidov, M. L. 25
Lidov-Kozai resonance 21, 265, 268, 269, 271,

287
Lie derivative 43, 86, 90, 110, 226
–elimination of the node 281
–elliptic oscillator 300
–harmonic oscillator 316, 326
– complex variables 70, 299

– image 43, 44, 50, 51, 66, 70, 71, 104, 111, 136,
145, 147–149, 175, 299, 316

–Keplerian motion 89, 103, 110, 126, 141, 144,
145, 178, 207, 237, 266, 267

– rotating frame 184
–kernel 43, 44, 50, 51, 66, 70, 71, 104, 111, 112,

126, 136, 142, 145–147, 149, 157, 159, 175,
299–301, 316

–perigee removal 141, 142
– spherical rotor
–pendulum 50
–uniaxial body 65

– tesseral resonance 196
– third body perturbation 214, 224
Lie transformation 9, 22, 23, 26, 29–31, 33, 37,

38, 141, 153, 181, 182, 213, 224–226, 237,
266, 279, 281, 295, 302, 316, 324, 325

–direct 34, 41, 42, 52, 67, 72, 104, 120, 140,
144, 171, 172, 189, 191, 192, 201, 281, 291,
292, 309

– inverse 8, 36, 37, 42, 52, 67, 104, 120, 121,
139, 140, 144, 163, 168–170, 172, 174, 189,
191, 192, 327

Lie transforms 1–5, 8, 15, 22, 23, 25, 29, 37, 45,
50, 52, 65, 69, 90, 102, 110, 124, 141, 192,
206, 207, 221, 227, 235, 236, 265, 266,
276, 298, 301, 316, 326

–generating function 3, 13, 30, 34, 38, 42, 44,
65, 72, 134, 137, 141, 151, 157, 187, 188,
208, 327

– integration constant 5, 9, 11, 51, 111, 135,
145, 146, 148, 152, 157, 158, 174, 175, 197,
198, 266, 317

– inverse 36, 37, 42, 67, 320
long-lifetime orbits 22, 291
long-period corrections 26
–quasi-satellite orbits 327, 332
– zonal problem 143, 144
long-period elimination 9
–quasi-satellite orbits 316, 324
– tesseral 182
– zonal problem 141, 142, 156, 157, 160
long-term dynamics 12–15, 25, 88
–Galileo orbits 213, 217, 218
–GPS orbits 201
–Hill problem 265–267
–main problem 113, 124
–planetary satellites 21, 22, 265, 279, 294
–PRISMA orbit 165

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index | 375

–Symbol-X 212
– tesseral 182
– zonal problem 128
long-term Hamiltonian 141, 176, 197, 199, 201,

202, 208, 213, 235, 237, 283, 323–325
Lyapunov instability 7, 8

manifold 116
–energy 59, 106, 107, 268
– invariant 95, 257, 264, 295, 298
– circular orbits 229, 231, 233
–ecliptic orbits 238, 239, 241
– equator 94
–meridian 95
–polar orbits 232

– stable, unstable 20, 22, 48, 288–291, 293
Mathieu transformation 80
mean element
– solution 212
mean elements 1, 7, 9, 127, 131, 138, 143, 174,

175, 183
–equations 6, 9, 17, 211, 213
–Hamiltonian 13, 208, 212–214, 326
– solution 211, 212
mean to osculating transformation 6, 8, 22,

265, 291
Milankovitch, M. 17
mixed secular terms 2, 148, 187
motion
– coorbital 2, 20, 21, 24, 25, 313
–elliptic 7, 8, 11, 17
–harmonic 4, 21, 26, 54, 295, 323
– integrable 315
–Keplerian 2, 5, 8, 18, 81, 84, 86, 98, 99,

253–255, 313
– librational 21
–perturbed Keplerian 6, 7, 15–18, 21, 23, 84,

86, 87, 89, 90
–artificial satellite 93, 135, 203, 236
–Hill problem 265, 266

– relative 1, 17, 20, 24, 77, 78

Newton gravitational law 78, 204, 253
normalization 4, 7, 22, 23, 89, 151, 176, 194,

273, 291, 298, 301, 302, 306, 308, 309
–Delaunay 9, 138, 139, 153, 160, 168, 171, 175,

180, 266
– reverse 9, 124, 144, 145
– tesseral effects, exact 11, 176, 183, 194

numerical averaging 16, 176, 248

orbital plane 5, 11, 77, 78, 94, 95, 106, 107, 165,
220, 240, 270

–primaries 254, 268
– third-body 219
osculating to mean transformation 8

painting Hamiltonians 119, 308
parallactic terms 13, 134, 135
pendulum 4, 12, 39, 41, 45–50, 58, 59, 64, 193,

202
periodic orbits 19, 24–26, 106, 295, 315
–bifurcation 264
–bridge family 264, 295, 307, 309, 311
–differential corrections 263, 307, 330, 331,

334, 335
– families 263, 295
–Halo 19, 264, 295, 299, 307, 309–311
–Hill problem 20, 263, 264, 307
– single averaged 267

– libration points 22, 295, 307
– infinitesimal 19, 263

– Lyapunov 295, 309–311
–planar 19, 263, 264, 307, 310
– vertical 19, 263, 264, 307, 310

–orbital plane 107–109, 119, 130
–quasi-satellite 329–331, 334, 335
– repeat ground trace 107, 130, 294
– rotating meridian plane 107
– stability 263
–eigenvalues 264
– indices 264

perturbation Hamiltonian 4, 5
– free rigid body 65
–Garfinkel, tesseral 177, 181, 182
–Hill problem 265–267
–Kudielka’s case 221
– libration points orbits 298
– lunisolar perturbations 214
–main problem 102, 110
–pendulum 50
–planetary satellites orbits 279
–quasi-satellite orbits 313, 316
–SAM rotation 68, 70
– solar radiation pressure 236, 237
– tesseral resonances 196
– zonal problem 125

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



376 | Index

perturbation solution 1, 2, 4, 7, 8, 11, 16, 17, 29,
37, 46, 173, 194, 253, 313

–Hill problem 265, 271, 273, 277, 278
– initialization 8, 42, 139, 163, 166, 168,

170–173
–Breakwell and Vagners’ approach 173, 174

– libration points orbits 23, 24, 295, 307–311
–main problem 8, 111
–pendulum, small oscillations 42
–quasi-satellite orbits 25, 313, 315, 316, 324,

330–332
–SAM rotation 70
– tesseral, exact 184
– tesseral relegation 189, 191, 192
– zonal problem 124, 163, 165, 166, 170–174
perturbations
–atmospheric drag 15, 16, 235, 247
–ellipsoidal figure 20, 22, 265, 279, 280, 288
–geopotential 2, 7, 213, 219, 222
– lunisolar 2, 7, 12, 13, 203, 211, 220, 222, 227,

230, 232, 268
–oblateness 16, 98, 212, 220, 227, 230, 232,

279
–planetary 22, 279, 280, 287
– solar radiation pressure 7, 14, 15, 20, 235,

236, 242
– tesseral 181
– third body 4, 13, 86, 203, 205, 219, 265, 279,

288
phase portraits 107, 115, 132
phase space 21, 47, 59, 107, 109, 239, 261, 324
–extended 4, 29, 203, 206, 207, 214, 221, 227,

235
– reduced 23, 113, 114, 116, 227, 269, 282–284,

289, 306, 309
Picard iterations 2, 7, 97, 99
planetary satellites 20–22, 265, 270, 278, 279,

287, 288
Poincaré, H.
–perturbation method 3, 4, 29
–mixed generating function 3, 29

– surface of section 22, 23, 106–109, 201
primary 19, 253–259, 278, 313
PRISMA orbit 165, 166, 171–173

quasi-Keplerian system 17, 101, 104, 134, 137
quasi-satellite orbits 24–26, 313, 315, 316, 322,

324, 330–332, 334

– reference ellipse 314–316, 322, 323, 329, 331,
332, 334, 335

quasi-secular terms 215–217

reduced dynamics, flow 282, 295, 303, 304,
307, 308, 311

relegation algorithm 5, 10, 11, 176
– low-eccentricity orbits 11, 187, 189–193
– relegation of the node 10, 185, 191
– sub-synchronous relegation 10, 11, 176, 187
resonances
–harmonic oscillations 23, 299, 331
– inclination 99
– lunisolar 14, 203, 212, 213
–apsidal, nodal 14, 217

–mean motion 13, 212, 213
– solar radiation pressure 15
– tesseral 4, 11, 12, 176, 193–195, 199, 201, 202,

218
Rodrigues’ formula 205
rotating atmosphere 244

saddle connection 286
secular
– effects 142
– frequency 4, 6, 8, 143, 162, 163, 166–168,

170, 172, 331, 332, 334
– terms 2, 6, 8, 9, 26, 41, 101, 106, 143, 163,

166–168, 170–174, 197, 247
semi-analytical integration 6, 10, 13, 16, 203,

242
separatrix 269
series 1, 8, 17, 173, 224, 292
–expansion 10, 11, 13, 17, 45, 64, 89, 91, 95,

122, 184, 185, 194, 203
– formal 4
– Fourier 8, 43, 45, 52, 69, 110, 126, 134, 154,

155, 157, 249, 276
– Legendre polynomials 13, 20, 93, 203–206,

208, 211, 212, 214, 215, 220, 258, 296, 311
– Lindstedt 2, 22, 26, 324
–power 4, 10, 18, 19, 29, 30, 45, 105, 112, 176,

185, 197, 199, 292, 313
–product 31
– reversion 2, 3, 8, 45, 50, 64
– skew composition, reversion 4
– Taylor 29–31, 33, 34, 37, 52

–processors 8

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index | 377

short-period corrections 6, 13, 25, 26
–atmospheric drag 248, 249
–ecliptic frame 222
–Hill problem 266, 267
–main problem 104, 119, 122
–planetary satellites 280, 281, 292, 293
–quasi-satellite orbits 318, 320, 321, 332
– solar radiation pressure 237
– tesseral 180, 181
– third body 208
– zonal problem 133, 139, 143, 174
short-period elimination 1, 9, 15
–Hill problem 266, 274, 277
– libration points orbits 295
–quasi-satellite orbits 316
– solar radiation pressure 242
– tesseral 180, 194, 196, 201
– third body 207
– zonal problem 134, 149, 153, 174
short-period Hamiltonian 149
small divisors 4, 9, 194, 299
small parameter 31, 37, 50–52, 110, 160, 163,

170
– formal 37, 39, 46, 68, 70, 154, 156, 177–179,

181, 184, 198, 206, 221, 265, 280, 316
–physical 37, 46, 65, 73, 102, 125, 154, 156,

177, 198
spherical rotor 4, 50
stability indices 264
stroboscopic node 11, 196, 200
stroboscopic transformation 195, 199, 202
superintegrable 53, 77
Symbol-X orbit 211, 212

three-body problem 18–20, 253
– restricted 253, 254, 288, 313
– restricted, circular 2, 19, 20, 22, 25, 253, 254,

256, 257
torsion transformation 104, 105
–generating function 105
triaxial ellipsoid 278

variables
–action-angle 4–7, 16, 45, 46, 48, 49, 63, 64,

69, 72, 77, 84, 241
–Andoyer 58, 61–64, 69
– canonical 4, 29, 30, 34, 96, 110, 177, 197, 238

–Cartan coordinates 18
–Cartesian 39, 79, 80, 85, 93, 94, 165, 170,

279, 301, 307, 310, 314, 330–332
– complex 4, 23, 24, 70, 72, 295, 298–302,

308, 309
– cyclic, ignorable 37, 48, 58, 60, 79, 80, 93,

94, 102, 127, 145, 154, 159, 268, 314, 316,
322, 326

– cylindrical 107
–Delaunay 7, 16, 83–85, 87, 95, 96, 103, 110,

111, 120, 121, 126, 127, 137, 144, 150,
156–160, 163, 170, 175, 177, 180, 184, 185,
214, 218, 228, 237, 241, 246, 266, 279

–Deprit’s Lissajous 23, 295, 301, 306, 307, 309
–epicyclic 25, 313–316
–equinoctial 16
–harmonic 39, 69, 324
–Hopf coordinates 23, 295, 302, 303, 306–308
–Kramers–Deprit 241
–Moser elements 18, 87, 212, 241
–non-canonical 16, 163
–nonsingular 16, 17, 69, 97, 122, 163, 218, 229,

293
–oblate spheroidal 102
–on the sphere, Deprit 117, 282
–orbital elements 6, 13, 16, 85, 95, 125, 126,

165, 176, 181, 208, 214, 229, 247
–P:Q-resonant 195, 196
–Poincaré 16, 129
–polar 17, 79, 80, 84, 85, 91, 94, 102–104, 107,

122, 139, 149, 245, 279
– semi-equinoctial 16, 97, 115, 122, 129, 132,

166, 218, 228, 232, 238, 272
– spherical 5, 92
– vectorial elements 17, 18, 77, 87, 210, 213,

235, 239
variation equations 2, 3, 7, 88, 97, 99, 209,

229, 239, 242, 270, 272, 282, 303
variation of parameters 2, 7
vectorial flow 88, 208, 209

Zeipel, H. von 3
zero velocity
– curve 256, 257, 259
– surface 256, 257, 259
Zhukovsky–Volterra Hamiltonian 303

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use



De Gruyter Studies in Mathematical Physics

Volume 14 – 2nd Edition
Oleg N. Kirillov
Nonconservative Stability Problems of Modern Physics, 2021
ISBN: 978-3-11-065377-9, e-ISBN (PDF): 978-3-11-065540-7,
e-ISBN (EPUB) 978-3-11-065386-1

Volume 5 – 2nd Edition
Victor K. Andreev, Yuri A. Gaponenko, Olga N. Goncharova, Vladislav V. Pukhnachev
Mathematical Models of Convection, 2020
ISBN: 978-3-11-065378-6, e-ISBN (PDF): 978-3-11-065546-9,
e-ISBN (EPUB) 978-3-11-065394-6

Volume 24 – 2nd Edition
Igor Olegovich Cherednikov, Tom Mertens, Frederik Van der Veken
Wilson Lines in Quantum Field Theory, 2020
ISBN: 978-3-11-065092-1, e-ISBN (PDF): 978-3-11-065169-0,
e-ISBN (EPUB) 978-3-11-065103-4

Volume 3 – 2nd Edition
Sergei Yu. Pilyugin
Spaces of Dynamical Systems, 2019
ISBN: 978-3-11-064446-3, e-ISBN (PDF): 978-3-11-065716,
e-ISBN (EPUB) 978-3-11-065399-1

Volume 53
Vladimir K. Dobrev
Invariant Differential Operators: Volume 4: AdS/CFT, (Super-)Virasoro, Affine
(Super-)Algebras, 2019
ISBN 978-3-11-060968-4, e-ISBN (PDF) 978-3-11-061140-3,
e-ISBN (EPUB) 978-3-11-060971-4

Volume 52
Alexey V. Borisov, Ivan S. Mamaev
Rigid Body Dynamics, 2018
ISBN 978-3-11-054279-0, e-ISBN (PDF) 978-3-11-054444-2,
e-ISBN (EPUB) 978-3-11-054297-4

www.degruyter.com

 EBSCOhost - printed on 2/13/2023 11:02 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Preface
	Contents
	1 Introduction
	Part I: Hamiltonian perturbations by Lie transforms
	2 The method of Lie transforms
	3 Application to integrable problems
	Part II: Perturbed elliptic motion: Artificial satellite theory
	4 The Kepler problem
	5 The main problem of the artificial satellite
	6 Zonal perturbations
	7 Tesseral perturbations
	8 Lunisolar perturbations
	9 Non-conservative effects
	Part III: Relative motion and perturbed non-Keplerian motion
	10 The Hill problem
	11 Motion inside Hill’s sphere
	12 Motion about the libration points
	13 Quasi-satellite orbits
	Bibliography
	Index

