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Preface

By the beginning of the 1990s I moved to Zaragoza to complete my technical education
in the University. There, I followed the course of celestial mechanics taught by S. Fer-
rer, whose lectures were based on a manuscript he was compiling under the close
supervision of A. Deprit. Regrettably, the manuscript was never concluded and sent
to print, but some parts of it were distributed to the course students like handouts.
That was my first contact with perturbation methods.

At those times Deprit visited regularly the University of Zaragoza, and I had the
opportunity of attending to different lectures and seminars given by him. In particu-
lar, his course on symbolic manipulation with algebra systems was unique. The im-
plementation of consistent simplification rules as well as the precise definition of the
mathematical properties to be assigned to the variety of symbols that supplement the
standard set of Keplerian elements, and infest common expressions of celestial me-
chanics, was central to the course. At the end it was the construction of the tables of
partial derivatives that were essential in the assembly of perturbation solutions when
expansions in the eccentricity are to be avoided.

But it was not until several years later that I paid true attention to perturbation
methods. In my periodic attendances to the AAS meetings I soon realized that approx-
imate mean-element solutions smartly obtained by astrodynamicists could be easily
extended and refined with the help of standard perturbation methods. Moreover, the
fact that Deprit’s perturbation algorithm by Lie transforms is readily implemented in
commercial computer algebra systems paved the way for achieving higher orders in a
perturbation approach. Most of my research since then has focused on astrodynamics
applications of perturbation methods, and this monograph is mainly the result of that
work.

An introductory chapter provides some context on perturbation methods, whose
use in the solution of astrodynamics problems is as old as the space era, yet reading
it is not essential. Part I deals with the fundamentals of the Lie transforms method in
the form in which it was lately explained by Deprit. My experience is that application
of the Lie transforms method to integrable cases is a good exercise that helps new-
comers in grasping the essence of what is being carried out. That is why two sample
applications to classical integrable problems are also provided in this part.

Part II is devoted to the Earth—artificial satellite problem, which, as customary, is
approached like a perturbed two-body problem. In the first chapter, the integration of
the Kepler problem follows the usual Hamiltonian reduction to action-angle variables,
which are the natural variables in which perturbed Keplerian motion is approached in
subsequent chapters. The important contribution of the second zonal harmonic to the
dynamics of close-Earth orbits is profusely discussed in the third chapter. The rest of
the chapters of Part I describe how gravitational and non-gravitational effects acting
on Earth orbiting satellites are treated by perturbations.

https://doi.org/10.1515/9783110668513-201
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Part III deals with applications of perturbation methods to specific cases of the
restricted three-body problem that are of interest in astrodynamics. After an initial
chapter recalling basic facts of this non-reducible model, three distinct applications
of the perturbation approach are proposed. First, the investigation of the dynamics
about planetary satellites is approached like a perturbed Keplerian problem in a ro-
tating frame. Due to the unstable dynamics that commonly affect science orbits about
planetary satellites, this application shows that, beyond the insights provided by the
mean-element dynamics, the process of mission design gets a significant benefit from
the use of the mean to osculating element transformation. The suitability of the Lie
transforms method for the automatic computation of higher orders of the perturba-
tion solution is clearly illustrated in the next chapter with the analytical computa-
tion of halo orbits. Finally, the last chapter shows the difficulties that may arise in
a perturbation approach when elliptic functions are involved in the process. While
this is not a flaw of the method in itself, it shows the convenience of finding effi-
cient procedures to automatically process special functions in a calculus of pertur-
bations.

Different persons and circumstances kept my interest in the perturbation ap-
proach alive along the years. My acquaintance with the Lie transforms method grew
thanks to many conversations with J. F. Palacian during his short summer visits to
Real Observatorio de la Armada the years 2008 through 2010, in which our techni-
cal discussions were usually ended in a chiringuito after a refreshing bath at one
of the splendid beaches of Cadiz or Chiclana de la Frontera. Later, the interest of
P. Gurfil in onboard orbit propagation under limited resources reawakened my own
interest in intermediary solutions of the artificial satellite problem, giving rise to
three fruitful visits to Technion’s Asher Space Research Institute, in Haifa, in the
course of the years 2011-2014. Frequent and vivid discussions with S. Ferrer about
Hamiltonian simplification procedures (and more), and with J.F. San-Juan on the
technicalities involved in the computation of higher orders of the artificial satellite
problem in closed form were always important stimuli in my research. The latter was
also of invaluable help in finding some of the few old references that are not yet
available in the collections so kindly compiled by the SAO/NASA Astrophysics Data
System.

Attention paid by the new generations of astrodynamicists to the potential of
semi-analytical propagation gave me the needed impetus to write these notes—whose
original motivation could be traced back to early conversations on the topic with
R. P. Russell. Interaction with R. Armellin and D. Hauteserres while developing soft-
ware for ESA and CNES, respectively, for the efficient semi-analytical propagation
of highly elliptical orbits, deserves particular mention. Also, the contact with young
(and not so young!) colleagues during the KePASSA meetings has been a source of
inspiration.

Lastly, the two PhD courses given in the Department of Aerospace Science and
Technology of Politecnico di Milano the years 2018 and 2020 by the kind invitation
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of C. Colombo (the last one via telecon due to the pandemic), together with the en-
couragement of M. Efroimsky, editor of the series De Gruyter Studies in Mathematical
Physics, were crucial to the completion of the product that is now in your hands, and
I hope that it will meet your expectations.
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1 Introduction

Before the advent of electronic computing machines, analytical solutions to the orbital
motion of celestial objects were the common source for computing the ephemerides
that are needed for scheduling astronomical observations. These approximate solu-
tions were generally computed by calculating the variations or perturbations of the
orbital motion with respect to a Keplerian ellipse or to other more sophisticated “inter-
mediary” orbit. With the beginning of the space era, the same methods were imported
to the realm of astrodynamics for predicting the motion of artificial satellites. How-
ever, the increasing accuracy of observations of both natural and artificial celestial
objects soon made analytical solutions become unpractical. Indeed, including more
and more perturbation effects in the theory in order to reach the precision required by
observations augmented severely the difficulties in obtaining the solution, on the one
hand, and made the analytical series representing the orbit expand unwieldy, on the
other, with the consequent growth of the computational burden needed to evaluate
the analytical solution.

With the irruption of electronic computers, numerical “special perturbations”
methods took clear advantage over the “general perturbations” provided by the an-
alytical approach. Still, the latter survived thanks to software progress in automatic
symbolic manipulation. In the end, the much faster rate of hardware advances with
respect to software development made the general perturbation methods to be dis-
placed from the original purpose of making accurate predictions. But in no way the
analytical approach became obsolete. New problems originating from the increasing
saturation of the Earth’s close space, as, for instance, the maintenance of space cat-
alogs comprising thousands or millions of objects for collision avoidance purposes,
can be efficiently carried out with analytical perturbation solutions. Their lower ac-
curacy yet much faster computation plays a complementary role to the high-fidelity
numerical integration that would be mandatory when a hazardous conjunction is
detected under the accuracy provided by the analytical prediction. In addition, the
analytical approach is useful in simplifying the dynamical model by removing non-
essential short-period effects, in this way easing the design and optimization of the
end-of-life disposal maneuvers that are required for compliance with current space
law. Moreover, efficient guidance and control algorithms for relative motion, which
are advantageously designed in mean elements, take great benefit of the accurate
analytical conversion between mean and osculating elements that can be achieved
with general perturbations.

Among the different general perturbation methods that make the computation
of (approximate) analytical solutions feasible, the advantages provided by the Lie
transforms method turn it into the standard of these days. It is systematic, specifi-
cally designed for automatic computation by machine, and versatile enough to deal
with different simplification procedures. In addition, this method avoids the drawback

https://doi.org/10.1515/9783110668513-001
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of other perturbation methods of relying on series reversion procedures. The method
of Lie transforms applies generally to perturbations of vectorial flows, but it is par-
ticularly efficient in the treatment of Hamiltonian perturbations, which are the most
common case in orbit propagation problems. Non-conservative effects, like the atmo-
spheric drag which drives the dynamics of the lower altitude satellites orbiting the
Earth, can always be incorporated into the Hamilton equations like generalized forces
in a final step of the simplification procedure.

For these reasons, the most common orbital perturbations affecting artificial satel-
lite missions are discussed in this monograph under the light of the method of Lie
transforms. In particular, the treatment of perturbations of the Keplerian motion orig-
inating from the non-homogeneous distribution of the mass of the Earth, as well as
lunisolar perturbations, is profusely discussed. Besides, solutions to the approxima-
tion of the circular restricted three-body problem provided by the Hill problem are
also discussed with full detail in three particular cases that are achievable by pertur-
bations and clearly illustrate the power of the Lie transforms method—as well as the
difficulties that may limit its application. Namely, the motion of a space probe about a
natural satellite perturbed by the gravitational pull of the mother planet, the motion
about the libration points, and the coorbital motion of the (massless) orbiter and the
smaller-mass primary around the primary of bigger mass are analytically solved by
perturbations.

1.1 Perturbed integrable problems

There are just a few dynamical models that can be solved analytically. Real-world
problems include a variety of effects that normally prevent, or at least complicate
to a significant extent, the achievement of analytical solutions. However, in many
cases the effects that frustrate integrability are small and one may reasonably expect
that actual solutions behave like basic integrable models that were slowly distorting
with time. Even though the time evolution of non-integrable problems may be unpre-
dictable (chaotic), the time scale in which chaos manifests is very long in perturbation
problems, at least in some regions of phase space, and hence, computing approximate
analytical solutions makes full sense.

Original efforts in the computation of perturbation solutions to the planetary mo-
tion fructified with Lagrange’s successful method of variation of parameters (see [42],
for instance) in which the solution to the Newtonian equations of motion can be ap-
proached by Picard iterations. However, expansions carried out in the iterative process
usually make the time explicit, producing the consequent deterioration of the solution
as time grows. The appearance of secular or mixed secular-periodic terms in the ex-
pansion of the variation equations may be avoided with the use of Lindstedt series
[459], in which case the method of undetermined coefficients is used to split the varia-
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tion equations into a chain of differential equations that are then solved sequentially
[516, 526].

Later efforts in solving perturbation problems resorted to Hamilton’s ideas of find-
ing integrals of a differential system by applying canonical transformations of vari-
ables, and gave rise to canonical perturbation methods [55, 144]. The perturbation
approach is now applied to the scalar Hamiltonian function, contrary to the varia-
tion equations, and the solution is found by the stepwise construction of such canon-
ical transformation that, up to some truncation order of the perturbation series, com-
pletely reduces the Hamiltonian to a function that only depends on the momenta con-
jugate to the canonical coordinates [30]. Finding the solution to the equations of mo-
tion (Hamilton equations) is trivial in the new variables, and the problem becomes
solved in the original variables when the transformation constructed in the procedure
is applied to this solution.!

The subsequent appearance of Poincaré’s méthodes nouvelles [558] produces a
breakthrough in the development of perturbation methods. In the Hamilton—-Jacobi
style, Poincaré derives the canonical transformation that solves the perturbation prob-
lem from a generating function in mixed variables. Poincaré’s method is not directly
applicable to degenerate perturbed Hamiltonians, a case in which Poincaré himself
suggested to add to the generating function arbitrary functions of the angle variables
[198, 407, 558]. In the latter case, variations of Poincaré’s perturbation method in-
troduced by von Zeipel [698] in his studies of the motion of minor planets, and later
applied by Brouwer [75] to the solution to the artificial satellite problem, achieved
such a great success that the modifications to Poincaré’s method for dealing with per-
turbed degenerate Hamiltonian problems are these days customarily known as either
the Brouwer—von Zeipel [667] or von Zeipel-Brouwer method [198].

The fact that Poincaré’s generating function is in mixed variables makes the use of
series reversion procedures necessary, and commonly complicates obtaining the so-
lution to higher than the first order of the perturbation approach. On the other hand,
infinitesimal contact transformations defined by Lie series [254, 458] can be derived
from a generator in an explicit manner, thus paving the way for the eventual appear-
ance of the method of Lie transforms. In the latter case, the canonical transformation
is obtained explicitly from a generator in non-mixed variables, in this way avoiding the
need of series reversion. Beyond the basic ideas in a seminal paper by Hori [303], the
Lie transform method was thoroughly developed by Deprit [151] as a technique specifi-
cally devised for computer implementation.? In Deprit’s conception, the method of Lie

1 Integrals found with this method do not exist in general, yet may survive in some non-resonant
regions [29, 353].

2 Theindependent algorithms of Hori and Deprit are, in fact, equivalent, as discussed by different au-
thors [91, 288, 486]. On the other hand, efficient alternatives to Deprit’s algorithm are commonly used
in other fields than astrodynamics and celestial mechanics, like plasma physics, optics, and molecular
dynamics [177, 178, 619]. Still, the different approaches are essentially equivalent [356].
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transforms enjoys a great generality encompassing a variety of applications [490]. In
particular, different Hamiltonian simplification procedures [166, 167] have been de-
vised based on Deprit’s perturbation algorithm [14, 133, 154, 169, 402, 602], which
furnish the method of Lie transforms with a much wider scope than the traditional
normalization of a Hamiltonian by the introduction of formal integrals [238]. More-
over, the original application of the method of Lie transforms to Hamiltonian pertur-
bations was very soon extended to generally deal with perturbations of vectorial flows
[282, 304, 333], or with mixed perturbation models [39].

Even though the latter invention of two new operations over power series—the
skew composition and the skew reversion of series—extended the functionalities of
Poincaré’s perturbation method to the same level of the method of Lie transforms
[174], the latter is generally accepted as the standard perturbation method of today
due to its great generality and the simplicity derived from a recursive algorithmic defi-
nition [491]. Because of that, the perturbation solutions in this monograph deal exclu-
sively with the method of Lie transforms. The mathematical foundations of the method
are these days rigorously described in different reports and textbooks [54, 93, 94, 491,
510, 627], and hence we only deal with the practical implementation of the method,
to which we devote the first part of the monograph. Thus, Chapter 2 presents the de-
scription of the fundamental algorithm and its application to conservative Hamilto-
nian perturbations. The case in which the perturbation Hamiltonian depends on time
can be equally approached by the simple expedient of moving to the extended phase
space [15, 558, 621], a case that is illustrated later in Chapter 8 with the treatment of
third-body perturbations. The method deals with formal series in the sense that con-
vergence issues are not discussed [239, 595], yet the appearance of small divisors in
the perturbation series is tackled in Chapter 7 in reference to tesseral resonances.

The essence of the method of Lie transforms is illustrated in Chapter 3, where it
is applied to the computation of approximate solutions of two integrable problems,
namely the mathematical pendulum and the triaxial free rigid body. These inte-
grable problems are approached like perturbations of simpler integrable problems:
the spherical rotor in the case of the pendulum (§3.1.2), and the uniaxial free rigid
body (§3.2.6) or the harmonic oscillator for the free rigid body (§3.2.7). The free rigid
body application serves also to show that, in spite of the reduction of a Hamiltonian
perturbation problem to its secular frequencies being naturally approached in the
action-angle variables of the integrable part, which is taken as the zeroth order of
the perturbation Hamiltonian, the procedure is expedited in some cases with the use
of other sets of canonical variables. Indeed, while Hamiltonian perturbation meth-
ods are naturally implemented within an action-angle variable framework, in which
averaging operations are customary [594], a good knowledge of the particular alge-
bra of the functions that comprise the perturbation Hamiltonian when formulated in
other set of canonical variables is of great help in the computation of the perturbation
solution. In particular, the use of complex variables is recognized to be advanta-
geous when dealing with perturbed harmonic motion [373, 399]. At the end, since
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the Hamiltonian reduction is unique [30] one can always recover the action-angle
variable formulation if found convenient.

Hamiltonian simplification algorithms based on Lie transforms are not discussed
in this first part. The point of view of these days is that they are simple particular-
izations of the general procedure based on the solution of the so-called homological
equation. Indeed, at each order of the Lie transform approach the user is endowed
with an ample freedom to choose the form of the new Hamiltonian term, as well as
the arbitrary integration “constant” that leaves undetermined the generating function
term [402, 408, 438, 440-442, 511, 593]. On the contrary, details of the implementa-
tion of the different simplification algorithms are supplied in the chapters where they
are first applied. In particular, the elimination of the parallax and the elimination of
the perigee are discussed in Chapter 6, while the relegation algorithm is introduced in
Chapter 7.

On the other hand, it is worth recalling that physical phenomena are measured
in observable variables (for instance, spherical coordinates), contrary to action-angle
variables. Therefore, having a detailed description of the transformation from the
usual observables to the action-angle variables in which the zeroth-order Hamilto-
nian term is solved becomes essential.? Because of that, the reduction of the integrable
Hamiltonian that defines the zeroth-order term of the perturbation Hamiltonian via
the Hamilton-Jacobi equation [199, 243] is thoroughly discussed in different chapters
of the monograph.

1.2 Artificial satellite theory

Departure from Keplerian motion of close-Earth satellites is mostly driven by the non-
centralities of the Earth’s gravitational potential, the main part of which is due to the
Earth’s oblateness. Disturbances produced by the second zonal harmonic, whose non-
dimensional coefficient is customarily noted J,, cause the precession of the orbital
plane on the equator, and induce a secular trend on the motion of the perigee, which
advances or regresses in the orbital plane depending on orbital inclination and gets
fixed at the critical inclination of 63.4 degrees. In consequence, Keplerian solutions
only are useful in forecasting short arcs of Earth’s satellite orbits under low accuracy
requirements. Even in the short times spent in the free-flight trajectory of a ballistic
missile, the Earth’s oblateness needs to be taken into account [678]. Therefore, early
efforts in making accurate predictions of the motion of Earth’s artificial satellites fo-
cused on the search for analytical solutions to the “main problem” of artificial satel-
lite theory, also called the J,-problem. Even though the J,-problem is not integrable
[102, 312], the time scale in which chaos manifests is only relevant for large values

3 Thisrule has exceptions and there are cases in which the observables are precisely the good solution
variables [644].
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of J, [70, 138]. On the contrary, in view of the smallness of the Earth’s J, coefficient,
which is of the order of one thousandth, the search for integrable approximations of
the main problem of artificial satellite theory makes full sense.

A wealth of analytical approximations to the main problem dynamics have been
proposed since the beginning of the space era. These solutions are grouped under
the general name of intermediary orbits, and commonly based on the separability of
the Hamilton-Jacobi equation of some modified version of the main problem Hamil-
tonian [6, 111, 154, 216, 217, 219, 225, 532, 620], yet non-canonical solutions also exist
[33, 326, 606]. While most intermediaries were constrained to mimic the main prob-
lem dynamics up to first-order effects of J,, remarkable exceptions were successful
in handling the whole effect of J, as well as some second-order effects of the geopo-
tential [5, 37, 38, 315, 466, 662—-666]. Still, intermediary solutions fail in predicting
the libration dynamics of the perigee in the vicinity of the critical inclination [218,
261, 301, 316, 555, 625], a fact that is sometimes attributed precisely to their sepa-
rability [119, 168, 406]. Because of that, and due to the increase of computational
power, classical intermediary solutions were soon abandoned in favor of the higher-
accuracy solutions obtained with perturbation theory [299]. On the other hand, the in-
terest in intermediary orbits is experiencing some revival these days for their applica-
tion to onboard short-term, orbit propagation under limited computational resources
[51, 259, 268, 269, 393, 475, 603]. Computing perturbations of a more meaningful inter-
mediary than the Kepler problem should provide more compact equations and seems
a desirable aim [7, 633, 689]. In this sense, the obtention of the action-angle variables
of Vinti’s oblate spheroidal intermediary seems a promising result [681, 688], yet the
higher complexity of the functions involved in the solution with respect to the simpler
Keplerian orbit might counterbalance the expected improvements to some extent.

Dealing with perturbed Keplerian motion is conveniently approached in orbital
elements, which disclose the existence of short- and long-period terms, as well as sec-
ular perturbations (see [341], for instance). Then, in the general framework provided
by perturbation methods [526], solutions of the problem of artificial satellite theory
are commonly decomposed into the mean-elements equations, which provide the or-
bit evolution, and the short-period corrections that are needed for ephemeris com-
putation. The transformation from mean to osculating variables given by the short-
period corrections is obtained analytically, whereas the mean-elements equations re-
main in the form of a reduced differential system. The latter is numerically integrated
with very long step sizes because it only depends on the lower frequencies of the mo-
tion [354, 453]. This semi-analytical integration scheme can cope with many differ-
ent perturbations of the pure Keplerian motion, and it is implemented in different or-
bit integration packages [81, 123, 355, 435, 478, 674, 692]. If, besides, the long-period
effects are removed from the mean-elements equations by means of a new transfor-
mation of variables, which is also computed analytically, one obtains the secular fre-
quencies of the motion. The latter are trivially integrated, thus providing the secular
terms that complete the solution in a pure analytical form [58, 75, 171, 360, 461, 599].
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Alternatively, both the short- and long-period terms can be removed at once, with a
sole transformation, yielding a single set of analytical corrections that may allow for
better code optimization [407]. Evaluation of analytical solutions computed in either
of these manners is straightforward and permits the implementation of very fast an ef-
ficient orbit propagators [114, 121, 298, 380, 590, 641]. However, it must be noted that
the validity of the analytical approach is limited to the case of motion far away enough
from inclination-related resonances, which require specific treatment [120, 222, 316,
330, 394].

A single general perturbation solution to the artificial satellite problem makes no
sense if higher-order effects need to be taken into account. On the contrary, specific
perturbation solutions must be computed depending on particular orbital regimes
in which different disturbing effects may dominate the dynamics. Indeed, below the
geosynchronous distance the non-centralities of the geopotential have the most im-
portant effect, which is clearly dominated by the J, harmonic. Conversely, the gravita-
tional pull of the moon is the most important perturbation above the geosynchronous
distance, followed by that of the sun. The solar radiation pressure yields higher-order
effects for usual satellites, yet they may become comparable to the J, effect at high
altitudes.

Alternatively to the reduction of the differential system by normalization, Picard’s
iterative approach is sometimes used to solve perturbed Keplerian motion in what is
customarily known as a numerical-analytical approach [4]. Namely, the variation of
parameters equations are solved analytically under the usual averaging assumption
that the parameters (orbital elements) remain constant in the right side of the varia-
tion equations. The validity of this analytical solution, which strongly relays on the
use of special functions, is limited to one anomalistic period, and hence initial condi-
tions must be numerically updated in steps of this size or shorter. Improvements are
found when solving the perturbation equations with respect to an intermediary orbit
in Eulerian elements, as opposite to the variations of Keplerian elements [244].

Perturbed Keplerian motion is efficiently approached in Delaunay action-angle
variables. Therefore, the second part of this monograph starts in Chapter 4 with the
solution of the Kepler problem via the Hamilton—Jacobi reduction to action-angle
variables, yet constrained to the case of bounded, elliptic motion. Besides, the main
problem dynamics is discussed to a considerably extent in Chapter 5. This chapter is
not only useful in understanding intermediary solutions, but it serves to prepare the
reader for the Hamiltonian simplification methods that will be thoroughly discussed
in following chapters of this part.

1.2.1 Significance of Lyapunov instability

Two particular application of the perturbation approach that are conveniently ap-
proached in the mean elements setting are the analysis of end-of-life disposal strate-
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gies [27, 28, 124] and the design of formation flying reconfiguration and station-
keeping maneuvers [16, 211]. The need of having available efficient equations for
carrying out the accurate transformation from osculating to mean elements and vice
versa [256], arises in both kinds of problems. Traditional methods for the computation
of the initialization constants of the perturbation solution base either on series rever-
sion or the more common root-finding procedures [90, 675]. On the contrary, the Lie
transforms method provides explicit expressions for the evaluation of both transfor-
mations, direct and inverse, in this way allowing for the instant accurate conversion
from osculating to mean or secular elements [212, 213].

Because of the Lyapunov instability that is inherent in Keplerian motion, it hap-
pens that the most sensitive element to be transformed is the osculating orbit semima-
jor axis, a fact that was clearly observed when checking the accuracy of Brouwer’s [75]
seminal solution against numerical integration [469]. Indeed, an error in the osculat-
ing to mean transformation of the semimajor axis directly translates into a comparable
error in the computation of the mean motion in mean variables, with the consequent
impact on the secular frequencies of the motion [63, 181, 393]. This fact makes it quite
desirable to achieve the transformation from osculating to mean elements, at least for
the semimajor axis, up to the same truncation order as the secular terms. On the con-
trary, an error in the opposite transformation, from mean to osculating elements, has
only periodic implications in the computation of ephemerides. Therefore, truncating
this last transformation to a lower order than that of the secular terms usually pro-
vides the required accuracy for most applications, and makes the evaluation of the
analytical solution much more efficient [269].

The way in which the accurate conversions from mean to osculating elements,
and vice versa, affect the precision of an analytical perturbation solution is illustrated
in §6.5 for a higher-order perturbation solution of the main problem.

1.2.2 Geopotential long-period effects in closed form

Traditional efforts in extending perturbation solutions to higher orders resorted to the
use of expansions of the elliptic motion in powers of the eccentricity [78, 171, 346, 374].
The literal calculation of these kinds of expansions motivated the development of the
first computerized procedures [172, 173, 289], which paved the way for the later appear-
ance of the so-called Poisson series processors [69, 83, 140, 236, 286, 323, 570]. How-
ever, these kinds of expansions cast the analytical solution in the form of long mul-
tivariate Fourier series, whose laborious evaluation discouraged practitioners from
the use perturbation solutions. Alternatively, the computation of the perturbation so-
lution in closed form yields a notable reduction in the size of the series to be evalu-
ated, on the one hand, and widens applicability of the solution to the case of high-
eccentricity orbits, on the other. However, reaching higher orders than that achieved
by Brouwer in his closed-form solution [75] finds real (yet solvable) difficulties in the
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indefinite integration of the equation of the center—a periodic but non-trigonometric
function—and related functions [8, 156, 363, 487, 536].

In the usual approach, in which the short-period terms are removed first, in the
style of Brouwer, these difficulties can be delayed to higher orders after an ad hoc
preprocessing of the original Hamiltonian using the elimination of the parallax sim-
plification technique [154]. Indeed, the elimination of the parallax strips the zonal
potential of non-essential effects and performs wonders in a higher-order normaliza-
tion in closed form [118, 119, 155]. The main features of the elimination of the parallax
canonical simplification are described in §6.2.1.

Alternatively, carrying out the normalization in the reverse order, by first elimi-
nating the long-period terms through the standard normalization of the total angular
momentum, notably simplifies the subsequent removal of short-period terms [408].
This latter approach does not deny the use of the elimination of the parallax as a pre-
liminary simplification, after which the elimination of the perigee [14, 440] is carried
out to reduce the Hamiltonian to a one-degree-of-freedom system depending only on
short-period terms. The result of both eliminations, which can be combined into a
single Lie transformation [593], is what is sometimes called the elimination of the lati-
tude [133, 166]. The consequent removal of the remaining short-period terms with the
standard Delaunay normalization [156] turns the conjugate momentum to the mean
anomaly into the third (formal) integral of the satellite problem, thus achieving the
complete Hamiltonian reduction. Full details of the reverse normalization are given in
8§6.4.

Regrettably, the equations of the canonical transformation that eliminates the
perigee are flawed with divisors involving the difference between % and the square of
the sine of the inclination. Therefore, it becomes singular at the critical direct (resp. in-
verse) inclination of ~ 63.4 deg (resp. 116.6 deg), and prevents convergence of the per-
turbation solution for inclinations close to that value. This singularity is essential to
the artificial satellite problem [120, 135] due to a resonance between the anomalistic
and draconitic frequencies of the orbiter [216, 394], and hence cannot be avoided with
a different choice of variables.

It deserves to be mentioned that, when just dealing with the solution in mean
elements, the removal of short-period terms in closed form commonly deprives the
mean-elements equations from some long-period terms, which, on the contrary, re-
main hidden in the transformation equations of the averaging. This fact may force the
orbit in mean elements to depart from the average evolution of the true orbit. While
this issue was clearly identified in classical closed-form averaging procedures [363], it
may remain hidden when the short-period averaging is carried out after the elimina-
tion of the parallax. In both cases, the situation is partially amended by the addition of
an adequate integration “constant” to the corresponding term of the generating func-
tion of the transformation [197, 437, 442, 488, 618]. This problem does not happen in
the computation of the secular terms, because all the periodic effects are removed in
that case. Issues related to getting the mean elements close to the average value of the
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osculating elements are further discussed in §6.7. We remark that this kind of problem
is only relevant for the propagation of the mean-elements orbit, and it has no effect in
a semi-analytical integration scheme, in which the periodic terms are recovered ana-
Iytically to get osculating elements.

1.2.3 Tesseral effects

The longitude-dependent terms of the gravitational potential expansion, tesseral and
sectoral harmonics, which are encompassed hereof under the name of tesseral har-
monics, in general just produce short-period variations of small amplitude on the mo-
tion of an artificial satellite. Among them, the more relevant effects are related to those
tesseral terms that are free from the argument of the latitude. These terms are some-
times denoted “m-daily” terms because their trigonometric arguments depend only
on integer values of the longitude of the node, and, therefore, repeat their values m
times a day [335].

Interactions between zonal and tesseral harmonics only produce short-period
variations that, besides, remain at higher orders of the perturbation solution [687].
On the contrary, interactions between different tesseral harmonics may produce secu-
lar and long-period variations in addition to the short-period variations. Nevertheless,
their amplitudes are very small and only modify the solution to a very minor extent
[489, 686].

Taking the effect of the tesseral harmonics into account notably complicates the
computation of the analytical perturbation solution in closed form. For this reason
tesseral harmonics perturbations are customarily approached after expanding the
gravitational potential in powers of the eccentricity [82, 341, 348, 563, 638, 685]. Still,
part of these tesseral terms can be previously simplified in closed form with the elim-
ination of the parallax preprocessing [117]. A notable exception is found in the case
of low Earth orbits, where the fact that the mean orbital motion and the Earth’s ro-
tation rate are of different orders of magnitude allows for the closed-form removal of
tesseral terms related to the mean anomaly in the usual form [220, 221, 439, 539, 541].
This approach is illustrated in §7.2.

Efforts in developing algorithms for the closed-form elimination of tesseral effects
in the general case led to the invention of the relegation algorithm [169, 538]. Applica-
tion of this algorithm for the closed-form elimination of tesseral terms in the artificial
satellite problem, the so-called “relegation of the node”, found some success in the
case of super-synchronous orbits [97, 591, 602]. However, the efficiency of the relega-
tion algorithm is more questionable in the case of sub-synchronous orbits. Indeed, due
to a hidden dependence on the eccentricity in the algorithm for the sub-synchronous
relegation [602], the relegation of tesseral effects rarely offers clear advantages when
compared with classical procedures for their elimination based on the traditional ex-
pansions in powers of the eccentricity [438]. Despite this shortcoming, it has been sug-
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gested that the dependence on the eccentricity of the sub-synchronous relegation can
be used to modify the classical relegation algorithm in order to obtain enhanced re-
sults in the elimination of tesseral terms of low-eccentricity orbits close to tesseral
resonances [441]. The classical relegation algorithm for the removal tesseral effects
in closed form is discussed in §7.4, where details on the particular version of the rel-
egation for low-eccentricity orbits are provided, and its efficiency is illustrated with
sample applications.

On the other hand, the short-period elimination of tesseral harmonics in closed
form can be exactly reduced to quadratures [471, 540]. However, the integrals to be
solved involve non-integer combinations of the true and mean anomalies and their
closed-form solution is not known. In consequence, one must resort to series repre-
sentations that involve either the eccentricity or the ratio of the Earth’s rotation rate to
the satellite’s mean motion in order to solve these integrals analytically, thus making
the procedure analogous to the relegation algorithm. Alternatively, these quadratures
can be solved numerically, yet they still rely in the series representation to compute the
integration constant of the generating function, which cannot be left arbitrary when
the integration is approached numerically. The exact reduction to quadratures of the
short-period elimination of tesseral effects is outlined in §7.3.

In addition to the short-period tesseral effects of small amplitude, which slightly
affect the precision of the ephemeris provided by the perturbation solution, orbital
configurations leading to tesseral resonance produce noticeable long-period effects
on the semimajor axis. Resonant effects due to tesseral harmonics become apparent
in orbital regimes in which the satellite advances Q nodal periods in the time in which
the Earth rotates P times relative to the precessing orbital plane, P and Q being mutu-
ally prime integers. That is, the tesseral resonance happens when the combined rate
of variation of the argument of the perigee and the mean anomaly is commensurable
with the combined rate of variation of the longitude of the node and the Earth’s rota-
tion rate. Therefore, tracing tesseral-resonant terms of the geopotential for particular
orbit regimes requires the explicit appearance of the mean anomaly, thus making it
unavoidable to resort to the usual expansions of elliptic motion.

Tesseral resonances bring significant perturbations on time scales of interest for
mission planning without constraint to the case of deep resonances [180]. After remov-
ing short-period terms from the tesseral Hamiltonian by perturbations, the resonant
combination is replaced by a single variable, the so-called longitude of the strobo-
scopic mean node, which defines the geographic position of the subsatellite point at
the time of intersection of the Earth’s equator by the satellite orbit.* Station-keeping
control strategies are properly developed in the pair given by the stroboscopic mean
node and the semimajor axis [183, 228, 334], the latter being the orbital element that
is primarily affected by the resonance phenomenon.

4 The nomenclature “stroboscopic mean node” has been attributed to Garfinkel [228].
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The analytical approach has been quite successful in the relevant problem of
geosynchronous satellites [18, 52, 53, 341, 509]. In that case, the resonant dynam-
ics is mainly driven by the J,, term, which is the longitude-dependent term associ-
ated with the ellipticity of the Earth’s equator. Isolated resonances enjoy the sim-
ple pendulum dynamics, which is an ideal case that can be integrated analytically
[18, 19, 222, 228, 331, 381]. However, when different resonances overlap, the problem
generally remains of two degrees of freedom and, except for special configurations
[434, 443, 612], it is customarily studied by the numerical integration of the long-
term equations, showing that chaos may arise [142, 145, 149, 186-188]. Still, attempts
to deal analytically with the case of non-isolated resonances using Bohlin’s theory
[55, 198] have also been carried out [507, 508, 572, 573].

The peculiarities of the perturbation approach when applied to resonant orbital
regimes is illustrated in §7.5. Because the important case of geosynchronous satellites,
which undergo the effects of the 1:1 tesseral resonance, is profusely discussed in the
literature [45, 509, 522, 531, 613], we rather deal with the case of orbits of traditional
constellations providing global navigation services, which are also significantly af-
fected by different tesseral resonances [108, 146, 580]. Thus, the orbital configuration
of Galileo operational satellites repeats after 17 orbits of the satellite, which is com-
mensurate with 10 rotations of the Earth. While the effects of this shallow 10 to 17
tesseral resonance are not too relevant due to the high altitude of Galileo satellites,
the operational orbits are also slightly affected by the 3 to 5 tesseral resonance, whose
effect can be much more important in the case of Galileo disposal orbits. Besides,
GLONASS satellites are in shallow 8 to 17 resonance, and the GPS constellation is in
deep 1 to 2 resonance. Thus, GPS satellites complete two nodal orbits while the Earth
completes one rotation. Due to this strong resonance all GPS satellites exhibit evident
long-period variations in the semimajor axis [601], with different resonant geopoten-
tial terms having observable effects [309]. In particular, the harmonic coefficients of
degree three and order two produce the main effects on GPS orbits. Still, perturbations
due to this tesseral resonance cannot be considered isolated, and the resonance over-
lapping of other tesseral harmonics must be taken into account. On the other hand,
due to the high altitudes in which global navigation satellite systems reside, low-order
truncations of the geopotential normally suffice for different applications [204]. In
consequence, the sample applications provided in §7.5 are limited to a geopotential
truncated to degree and order five.

1.2.4 Lunisolar perturbations

Depending on the orbital regime, lunisolar perturbations caused by the gravitational
pull of both the moon and the sun may also show important effects in the long-term dy-
namics of Earth orbits. When dealing analytically with gravitational perturbations of
a distant body, the third-body disturbing function is customarily expanded in the ratio
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of satellite’s radius and third body’s radius as an infinite series in Legendre polyno-
mials. For low Earth orbits lunisolar perturbations are small when compared with the
Earth’s oblateness disturbing effect, and can be modeled as second order of J, effects in
a perturbation approach. In that case, neglecting parallactic terms of the third-body
perturbation provides an acceptable modeling of the dynamics [128, 359, 450, 519].
However, parallactic effects due to the lunar attraction are clearly observable in high
Earth orbits, a fact that motivated the early incorporation of these kinds of terms into
the lunar disturbing potential [521].

Initial formulations of the lunar disturbing function referred the angular elements
of the moon to the equatorial plane of the Earth [340], with respect to which the in-
clination and longitude of the node of the moon orbital plane experience important
variations. Alternatively, the inclination of the moon orbit takes an almost constant
value of about 5° when referred to the ecliptic, whereas the longitude of the ascend-
ing node in that plane can be approximated by a linear function of time [80, 481].
Therefore, it is advantageous in some cases to refer the moon’s orbital elements to the
ecliptic [366, 367, 581].

Truncations of the lunar disturbing function up to the fourth degree in the par-
allactic ratio are considered acceptable up to the geosynchronous region [121, 640],
yet the fifth degree is also added when a more accurate modeling of the dynamics
is required [437, 488]. Still, higher-degree truncations may be needed when model-
ing high Earth orbits [337, 338, 436]. Available recurrence relations allow for the ex-
tension of the series expansion of the third-body disturbing function to any degree
[98, 230, 233, 348]. Typos and errors in these references that were pointed out in the
literature [382] included in turn additional typos and errors, which only were amended
recently for the more relevant formulas [101]. Analogous general derivations are pre-
sented in §8.1, in which we depart from tradition and rather rely on the vectorial ap-
proach in the apsidal frame [425].

In the presence of third-body perturbations, the removal by perturbation meth-
ods of short-period effects related to the mean anomaly of the satellite provides an ef-
ficient way of solving the problem semi-analytically. Formulas for the mean-elements
Hamiltonian as well as the generating function from which short-period corrections
are derived, are discussed in §8.2 for an arbitrary truncation of the third-body disturb-
ing function. Mean motion resonances between the artificial satellite and the moon
are of concern only in cislunar space, and they do not cause trouble in the case of
close Earth orbits. Hence, removing monthly effects, related to the mean anomaly of
the moon, and, in some cases, annual effects related to that of the sun, in addition
to short-period effects associated to the satellite’s mean anomaly, is common practice
to improve performance of the numerical propagations used in the investigation of
the long-term dynamics [122, 382, 437, 443, 617, 683]. The double-averaging procedure
that removes the mean anomaly of the third body is discussed in §8.3 based on the
particular characteristics of the orbits of the Galileo constellation.
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On the contrary, resonances between the mean motion of either the sun or the
moon and the rate of variation of other angular elements of the artificial satellite’s or-
bit are common in orbital regimes below the geostationary region [128, 305, 307, 308].
In particular, apsidal resonances occur when the secular motion of the line of apsides
is commensurable with the mean motion of the third body, and nodal resonances hap-
pen when the critical argument is the right ascension of the ascending node [64-66].
These resonances may induce important variations in the eccentricity of the satellite’s
orbit and are these days scrutinized as possible natural ways of speeding the satellite
de-orbiting up at the end of life [12, 108, 240, 580]. On the other hand, special config-
urations have been detected in which secular variations in the eccentricity and incli-
nation cancel out giving rise to the so-called balanced Earth satellite orbits [371, 372].
The latter are discussed in §8.5 from the perspective of the ecliptic frame formula-
tion.

1.2.5 Non-conservative perturbations

Perturbed two-body problems in which the perturbations involve the velocity ap-
peared first in connection to the solar system dynamics [556, 561, 568, 690]. Non-con-
servative perturbations may have appreciable effects on Earth satellite orbits [43, 344,
445, 496, 659, 677], but also in other different kinds of orbits [49, 86, 262, 383, 493, 596,
597]. In particular, the force exerted by solar radiation has great importance in the
(passive) dynamical evolution of objects with high area-to-mass ratio, like fragments
of thermal blankets that may detach from the satellite’s body or other similar objects
[25, 95, 107, 210, 460, 576, 639]. But it also provides an inexhaustible source of power
for the propulsion of space vehicles within the solar system that can be effectively
exploited with solar sails [226, 463, 470, 479, 634, 648] and allows for the operation of
novel satellite concepts like “smart dust” devices [32, 126, 484, 528, 699].

Effects of solar radiation pressure (SRP) were clearly identified like the origin of
discrepancies between observed perigee heights of the orbits of some of the first artifi-
cial satellites and corresponding predictions based on conservative force fields mod-
els [523, 545]. This fact led to subsequent theoretical efforts to understand and esti-
mate the long- and short-period effects induced by SRP on the dynamics of artificial
satellites [128, 520], which, under general assumptions, can be modeled like a poten-
tial function [306, 340], in this way making the SRP effect amenable to Hamiltonian
treatment. The modifications of the SRP acceleration resulting from the intermittent
eclipsing of satellites by the Earth were taken into account since the very beginning
[10, 85, 195, 361, 375, 605]. However, the effects of the Earth shadow, which repeat
with the orbital period, are customarily neglected in studies of the long-term behavior,
where long-period terms make the principal contribution to the orbit dynamics. Dis-
turbances produced by subtle phenomena such as penumbra transitions and albedo
effects have also received important attention in the literature [59, 584, 668-671].
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While the disturbing effects of SRP commonly average out in the long-term, some
orbital configurations lead to resonances between SRP and the motion of the line of
apsides, or the combined motion of this line and the line of nodes [76, 128, 306, 520].
These kinds of resonances produce long-period oscillations of the eccentricity that
may have significant amplitudes, and, similarly to the case of third-body resonances,
are explored these days as a possibility for accelerating de-orbiting of low Earth orbit
satellites at the end of their lifes [13].

The perturbed Keplerian dynamics induced by SRP can be represented by a time-
dependent three degrees of freedom Hamiltonian. However, the convenient formula-
tion in a rotating frame may be used to remove the time dependency from the Hamilto-
nian. Except for particular integrable cases, the problem is intractable in its general-
ity. Still, an important insight into the long-term behavior can be obtained through the
perturbation approach. After the usual removal of short-period terms from the Hamil-
tonian, the reduced two-degrees-of-freedom problem becomes integrable [105, 158,
159, 493, 495]. This fact furnishes the reduced model with an analogous category to
the zonal intermediaries of the main problem [224]. On the other hand, simple solu-
tions taking the oblateness disturbing effects into account in addition to SRP [494,
520] show that Earth’s artificial satellites can undergo dramatic orbital changes under
small variations of the initial conditions as well as the force parameters [125, 369, 370].
The perturbative treatment of SRP disturbances is presented in §9.1.

Another important non-conservative effect is the atmospheric drag, which may
cause important perturbations on the lower Earth orbits. Indeed, the dissipation of
orbital energy caused by the interaction of the upper atmosphere with the satellite,
yields a reduction of the semimajor axis and induces a circularization trend in the
orbit. These dissipative effects are noticeable on altitudes, say, below 2000 km and
become the dominant perturbation in reentry orbits. While atmospheric drag pertur-
bations are not derived from a disturbing function, their effects can still be added like
generalized forces to the Hamilton equations. They are also amenable to perturbation
treatment due to the previously mentioned extensions of the Lie transforms method
to vectorial flows [282, 304, 333].

The drag force is usually modeled as the product of the atmospheric density, the
square of the satellite’s velocity relative to the atmosphere, the reference surface area
of the satellite scaled by the satellite mass, and the “drag coefficient” Cp. The latter
depends on gas-surface interactions, which involve a variety of facets like the atmo-
spheric temperature and composition, or the satellite’s shape [501]. While accurate
determinations of the drag coefficient are important for precise orbit predictions [483],
taking a constant value Cp, = 2.2is still customary in long-term orbit prediction of stan-
dard satellites in low Earth orbits [129]. Indeed, due to the difficulties in modeling the
upper atmosphere accurately, the atmospheric density is a major source of error in pre-
dicting the drag force, a fact that may make efforts in improving the drag coefficient
superfluous [513].
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Pioneering perturbation solutions described the contraction of almost circular
satellite orbits under the disturbing effect of the atmospheric drag alone [131], but fol-
lowing approaches soon included the coupling between the drag and oblateness per-
turbations [79, 378], and removed previous limitations of the perturbation solution to
the case of small eccentricities [379].> Since then, a variety of analytical solutions of
perturbed Keplerian motion that include atmospheric drag effects have been proposed
[40, 148, 285, 475, 476].

On the other hand, it is often enough just to deal with averaged drag effects, which
are obtained after removing the mean anomaly from the drag equations [462]. This is
the common case of orbit propagators in which complex force models are integrated
semi-analytically. Besides, in view of the increasing complexity of atmospheric mod-
els, the averaging is most efficiently carried out by numerical quadrature. This last
case is the only one that is tackled in this monograph, and it is discussed in §9.2.

1.2.6 Action-angle and non-singular variables

The reduction of perturbed Keplerian motion is commonly carried out in Delaunay
canonical variables, which are the action-angle variables of the Kepler problem [144,
243, 395]. Still, it is well known that Delaunay variables suffer the same deficiencies
as their non-canonical counterpart: the Keplerian orbital elements. Indeed, Delaunay
variables are singular for circular orbits, a case in which the argument of the perigee
is not defined, and also in the case of equatorial orbits, where the longitude of the
node is not defined. However, these deficiencies of the Delaunay variables are easily
avoided by reformulating both the secular frequencies and the periodic corrections
of the perturbation solution in non-singular variables. Poincaré canonical variables
[468] or the set of equinoctial orbital elements [31, 72] are popular sets of non-singular
variables used in perturbation theory, yet other different options have been proposed
in the literature [294, 296, 647].

When low-inclination orbits are not of concern, a popular set of non-singular vari-
ables for zero eccentricity orbits based on the traditional set of Keplerian elements
includes the mean distance to the node (or mean argument of the latitude), and the
semi-equinoctial elements that materialize the eccentricity vector in the nodal frame
[130]. These non-singular variables are usually complemented with the longitude of
the node, the inclination, and the semimajor axis [132, 181]. In the Hamiltonian set-
ting, the two last are commonly replaced by the third component of the angular mo-
mentum vector and the Delaunay action, respectively. Still, this last set of variables
lacks canonical structure [171].

5 The solution of [79] was later amended in [658] using a technique developed in [196] for removing
spurious secular terms in dissipative systems.
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Another set of variables that is free from singularities in the case of circular orbits
is the canonical set of polar-nodal variables, yet the singularity remains for equatorial
orbits. Still, the trouble with small divisors only arises when the perturbation model
takes odd zonal harmonics into account. Alternative non-singular variables based on
the polar-nodal set have been proposed to avoid the poor convergence of the short-
period corrections for almost equatorial inclinations, either in the non-canonical [9]
or canonical modalities [121]. Furthermore, the use of polar-nodal variables reduces
dramatically the size of the perturbation series needed in the analytical approach,
in this way improving evaluation of the solution [317, 363]. Their use is then encour-
aged, and it has been suggested that the solution of almost equatorial orbits should
be treated separately. In this last case non-singular variables based on polar-nodal
variables admit radical simplifications [392, 395, 444)].

It deserves to be mentioned, however, that polar-nodal variables are not very use-
ful in the integration of the mean-element equations, and their utility in dealing with
analytical or semi-analytical solutions of perturbed Keplerian problems is usually con-
strained to the efficient evaluation of the periodic corrections. Moreover, polar-nodal
variables facilitate the reduction of perturbed Keplerian motion to quasi-Keplerian
systems [154]. This approach provides an efficient alternative to usual orbit predic-
tion procedures [259, 269, 393] that can also be used in the case of relative motion
applications [416].

In spite of the compact formulation and wider applicability of closed-form solu-
tions, the perturbation solution can be notably simplified in the case of orbits with
specific characteristics. This is, in particular, the case of low-eccentricity orbits, where
the closed form is efficiently replaced by short truncations of the usual expansions of
the elliptic motion to the lower orders of the eccentricity. In this way the evaluation of
the perturbation solution is made notably easier [181, 389, 637].

On the other hand, the use of vectorial elements in orbital problems, which can be
traced back to the early works of Stromgren [623] and Milankovitch [497], provides a
compact and elegant representation of the equations of motion, on the one hand, and
releases them from the dependence on a particular reference system, on the other. The
advantages of using Milankovitch’s selection of the eccentricity vector and angular
momentum vector like the vectorial elements in the treatment of very low-eccentricity
orbits were soon recognized [291], and attaching the name of Milankovitch to this set
of orbital parameters seems to have been popularized among some authors after [21].
While vectorial formulations increase the dimension of the differential system to in-
tegrate, this redundancy can be used to evaluate the quality of the numerical inte-
gration, in which, besides, the evaluation of trigonometric functions is reduced to a
minimum [290, 291]. The latter fact, together with the more symmetric form taken by
the equations of motion, makes the differential system simpler to program and faster
to evaluate, thus making the vectorial formulations quite appealing in the formulation
of efficient special perturbation schemes [152, 397, 518, 583, 636].
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The vectorial approach also shows real merits in the formulation of analytical per-
turbations. Indeed, after the seminal application by Musen [520] and subsequent ap-
plications by Allan [17, 20], the use of the vectorial approach in the propagation of
mean elements is experiencing a revival these days [112, 577, 676]. In particular, the
vectorial formulation has demonstrated high efficiency in the integration of the mean
vectorial elements of highly eccentric orbits under third-body perturbations [425].

Vectorial elements have been also useful to show that Keplerian Hamiltonians are
invariant with respect to the group of rotations in a four-dimensional Euclidean space
[512]. This fact becomes evident when the eccentricity and angular momentum vectors
are replaced by its sum and difference vectors (see §45 of [621]), which are customarily
known as Moser elements or Cartan coordinates [92, 202].° Since these two vectors en-
joy the same constant modulus, which is proportional to the orbit’s semimajor axis, an
orbit can be represented by a pair of points on the surface of a sphere, as illustrated in
§8.2.3. This characterization of Keplerian motion provides another utility of the vecto-
rial elements, like the visualization of a high number of orbits by a cloud of points. In
this way, for instance, the structure of subpopulations of debris orbits is readily made
apparent [629].

1.3 Non-Earth orbits and perturbed non-Keplerian orbits

The first artificial satellites missions were shortly followed by the launching of un-
manned lunar probes, as well as other interplanetary missions. While low Earth or-
bits are accurately represented by the perturbed Keplerian dynamics, the trajectories
of space probes go beyond the distance in which the Earth’s gravitational attraction is
dominant. Then, the orbits do no longer resemble distorted Keplerian ellipses about
the central body, and they need to be computed as particular solutions of a different
problem. More specifically, in different instances the orbit dynamics of artificial satel-
lites is better described in the more general frame of the three-body problem, in which
three point masses evolve only under the influence of their mutual gravitational at-
traction (see [646], for instance).

1.3.1 The restricted three-body problem

Contrary to the Kepler problem, the three-body problem cannot be completely reduced
by integrals [558], thus lacking a closed-form solution. Conversely, analytical solu-
tions to the three-body problem can be computed in the form of power series [626], yet

6 Analogous elements seem to have been customarily used by quantum physicists, and they are some-
times attributed to Jauch and Hill; cf. [120] p. 374.
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the poor convergence of these series makes them useless for computational purposes
[44]. Therefore, it is customary to explore the qualitative aspects of the three-body
problem dynamics by searching for particular solutions of the system, like singular
points, periodic orbits, and other invariant manifolds. In particular, when referring
the motion to the center of mass, the nine degrees of freedom of the three-body prob-
lem can be reduced to just three due to the existence of the energy integral as well as
the preservation of the linear and angular momentum vectors, which, in addition, are
combined with Jacobi’s elimination of the nodes [157, 321, 684].

On the other hand, the model provided by the three-body problem can be notably
simplified when dealing with spacecraft orbits. In that case the mass of the orbiter
is negligible when compared to the mass of most natural celestial bodies of interest.
Therefore, it does not produce observable effects in the motion of the two massive
bodies, the primaries, which then are assumed to evolve about their mutual center of
mass in the two-body problem approximation. When the motion of the primaries is
circular, the simplified problem is called the circular restricted three-body problem, or
CRTBP in short, which is conveniently formulated in a rotating frame with the rotation
rate of the primaries.

In spite of the radical simplifications introduced by the CRTBP approximation, a
general closed-form analytical solution is not known either. Well-known facts of the
dynamics of the CRTBP are that it accepts the Jacobi integral and enjoys five equilib-
rium solutions or libration points, three of them collinear with the primaries and the
other two equilateral to them. Besides, a wealth of periodic solutions are customarily
computed by numerical integration [84, 176, 278, 628]. In particular, periodic orbits
stemming from the libration points are shown to exist after linearization of the flow.
In the case of the collinear points, these kinds of solutions give rise to the planar and
vertical Lyapunov orbits. The analytical continuation of these infinitesimal orbits into
families of periodic orbits of the CRTBP for variations of the Jacobi constant reveals
the existence of new families of periodic orbits that bifurcate from them. Of special
relevance for their application to space mission design are the so-called halo orbits
[62, 191], which bifurcate out of the plane of the primaries from the family of planar
Lyapunov orbits.

In spite of the fact that the applications of perturbation theory in this monograph
do not deal with the CRTBP, but with the simpler Hill problem, we adhere to the tra-
dition of presenting the latter as a limiting case of the former. Hence, the standard
derivation of the CRTBP is first provided in §10.1.

1.3.2 Hill problem simplifications
When the massless body evolves closer to the central body than the distance between

the two point masses, the ratio of the two distances is less than one and the third-
body potential can be replaced by some truncation of its series expansion in Legendre
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polynomials. As long as this ratio is small the first terms of the expansion can be rep-
resentative of the dynamics. If, besides, the mass of the central body is much smaller
than the mass of the other primary, additional simplifications can be carried out that
give rise to the so-called Hill problem [292].

The simplifications of the CRTBP that lead to the Hill problem are described in
§10.2. It must be said, however, that Hill’s equations have greater generality than being
arefinement of the restricted three-body problem. Indeed, they can be independently
derived from the general three-body problem when two of the three involved masses
are much smaller than the mass of the heavier body [281, 616]. In that case, the two
lighter masses evolve about the heavier body basically in terms of two separate two-
body problems except when they are close enough to each other, so that their mutual
attraction becomes comparable to the differential attraction of the heavier body.

A remarkable feature of the Hill problem is that it does not depend on physical
parameters, a fact that is shown after scaling the equations of motion using suitable
units of length and time [628]. This useful characteristic provides a wide generality to
the Hill problem, which can be used to represent the dynamics of a small body under
the gravitational action of different pairs of bodies of the solar system. Specific as-
pects of a particular binary system are then manifested when recovering the physical
units. Hence the Hill problem is well suited to the study of a variety of astronomical
and astrodynamics problems, like, for instance, the investigation of satellite encoun-
ters [554], cf. [534, 642, 643, 645], the dynamics of coorbital motion [47, 524], or the
dynamics of relative spacecraft motion [71, 113, 336, 446]. It is also useful in the de-
scription of the spacecraft motion about planetary satellites [419, 430], as well as the
dynamics about asteroids [597]. On the other hand, this simple model may need to
be supplemented with other effects in addition to the mass-point attraction in order
to provide a more accurate model of the dynamics of particular problems. Thus, the
non-centralities of the gravitational potential of the smaller primary, and, in particu-
lar, those related to the ellipsoidal figure, are commonly taken into account in studies
of orbital dynamics close to planetary satellites [432, 585], while solar radiation pres-
sure effects may play an important role in the dynamics about asteroids [215]. Also,
the dynamical coupling produced by large structures, like space tethers, may have
relevant implications on the Hill problem dynamics [550, 551].

The global dynamics of the Hill problem must necessarily be investigated numeri-
cally. In particular, thorough computations of periodic and quasi-periodic orbits have
been carried out by various authors [275-277, 279, 492]. Besides, due to its interest for
space mission design, investigation of low-energy transit orbits [127] has received par-
ticular attention, and comprehensive studies of the stable and unstable manifolds as-
sociated to libration point orbits have been carried out in the investigation of the cen-
ter manifold of the collinear libration points [250, 477]. In addition, the construction
of periapsis Poincaré maps has been revealed to be a fruitful procedure in the char-
acterization of escaping and capture trajectories [579, 660]. Other detailed accounts
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on the Hill problem dynamics are given in different studies [611], in which the planar
case is described globally for energy values yielding bounded motion.

Alternatively, purely analytical approaches may provide useful information on the
Hill problem dynamics in some regions of phase space. In particular, three different
instances in which the Hill problem can be approached by perturbations are discussed
in this monograph; namely, the perturbed Keplerian motion about planetary satellites
(Chapter 11), the perturbed harmonic motion about the libration points (Chapter 12),
and the coorbital motion of the smaller-mass primary and the spacecraft (Chapter 13).

1.3.3 Motion about planetary satellites

Most natural satellites have masses that are notably smaller than the mass of their
mother planets, and, therefore, are well suited to the small-mass assumption of the
Hill problem, cf. Table 1 of [598]—the Sun—Mercury system being also naturally in-
cluded in this class of models. On the other hand, prospective mapping missions
about planetary satellites require low-altitude orbiters, whose semimajor axis is usu-
ally much shorter than the semimajor axis of the orbit of the natural satellite about
the mother planet, in this way fulfilling also the negligible parallax assumption of
the Hill problem. Then, the Hill problem dynamics fits well to the description of the
motion about planetary satellites. Besides, in those cases in which the orbiter evolves
clearly inside the Hill sphere, which is not always the case [694, 695], the Hill problem
Hamiltonian is naturally arranged in the form of perturbed Keplerian motion, and
hence it is a good candidate for the analytical approach [182, 343].

A low-order perturbation approach suffices for describing the major effects of the
long-term dynamics about planetary satellites. After removing first the mean anomaly
of the orbiter in §11.1.1, and then the argument of the node in the rotating frame in
§11.1.2, the reduced problem becomes integrable. The reduced dynamics is discussed
in §11.1.3 and shows the unstable character of high inclination circular orbits. It also
reveals the existence of librational motion of the eccentricity vector about stable ec-
centric orbits in what is known as the Lidov—Kozai resonance [48, 71, 364, 450].” Be-
yond the qualitative aspects of the planetary satellite dynamics, the accurate descrip-
tion of the solution may require one to achieve much higher orders of the perturbation
approach [357, 418, 419, 535, 652, 656], a procedure that is carried out in §11.2.

On the other hand, because of the usual proximity of a mapping orbiter to the
planetary satellite, the non-centralities of its gravitational field may cause clearly ob-
servable effects in the long-term dynamics. Therefore, these effects must be included

7 Arecent proposal suggests to enlarge the prefix to von Zeipel-Lidov—-Kozai to credit the much earlier
findings of Hugo von Zeipel on this topic [313, 697].
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as additional perturbations [365, 432, 452, 457, 592, 598, 650]. In particular, the oblate-
ness and dynamical ellipticity of the planetary satellite are commonly incorporated
into the perturbation model, yet the usual synchronous rotation of the satellite with
its orbital motion may allow for some simplifications. Still, because higher-order grav-
ity terms may have possible implications in the long-term dynamics [3], the latitudi-
nal asymmetry of the central body is sometimes included in the perturbation model
[389, 421, 547]. The modifications of the dynamics introduced by the ellipsoidal figure
of the natural satellite are discussed in §11.3.

A relevant application of the analytical solution is found in the computation of
long-lifetime science orbits, which is approached in §11.4. Indeed, due to the men-
tioned instability of almost circular high-inclination orbits induced by the planetary
perturbations, the eccentricity of the spacecraft orbit grows exponentially until the
orbiter impacts on the planetary satellite’s surface, if uncontrolled, in relatively short
times. Strategies for maximizing the lifetime of science orbits based on time-to-impact
analytical predictions [598] or the use of the stable/unstable manifold dynamics of
the averaged problem [547] give promising results. Moreover, beyond common lin-
earization procedures [548], the use of higher orders of the mean to osculating ele-
ments transformation provided by the Lie transform perturbation approach may help
in improving lifetimes in the mission design procedure [410, 411]. In addition, as il-
lustrated in §11.4.2, for the low eccentricities and high inclinations required for sci-
ence orbits, the whole sequence of transformations from mean to osculating elements
may be replaced by a single set of simplified non-singular transformation equations
[389].

1.3.4 Libration points orbits

Another region in which the Hill problem is amenable to perturbative treatment is in
the vicinities of the libration points, whose specific characteristics make them attrac-
tive for different space mission applications [11, 190, 249]. In particular, the normal-
ization approach is customarily used in removing the hyperbolic instability associated
with the saddle x center x center character of the libration points equilibria [246]. This
procedure reduces the restricted three-body problem dynamics to its center manifold,
which is of just two degrees of freedom and, therefore, can be explored with the usual
tools on non-linear dynamics, as the computation of Poincaré surfaces of section or
the numerical computation of invariant manifolds [250]. On the other hand, particu-
lar analytical solutions are known to exist either in the linearized or non-linearized
dynamics [515], and analytical approximations of the main existing periodic orbits
about the libration points have been computed eventually, based on Lindstedt series
or analogous expansions [191, 566, 693].

For energy values close enough to the energy of the libration points, the dynam-
ics of the center manifold can also be approached analytically by perturbations, as an
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alternative to the use of Poincaré surfaces of section, yet the dynamics is no longer
that of perturbed Keplerian motion. Indeed, the reduced Hamiltonian of the center
manifold takes the form of a planar perturbed harmonic oscillator that is in the quasi-
resonance condition. The following introduction of a detuning parameter [283] casts
the problem in the form of a perturbed elliptic oscillator. That is, we take an oscillator
in the 111 resonance condition for the unperturbed term, whereas the detuned terms
are moved to the disturbing function. That this class of resonant systems can be effi-
ciently approached using perturbation theory is a very well-known fact [198, 472]. In
particular, the short-period terms of the center manifold of the Hill problem Hamil-
tonian are conveniently disclosed when reformulated in Deprit’s Lissajous variables
[160]. Then the resonant normal form Hamiltonian is constructed by standard averag-
ing over the elliptic anomaly.

Splitting the reduction process into two different canonical transformations, the
reduction to the center manifold and the short-period elimination, with focus explic-
itly on the separation of long- and short-period effects of the perturbed motion, pro-
vides the insight usually wanted by astrodynamicists [396]. However, when higher
orders of the perturbation approach are required, the reduction of the problem to a
one-degree-of-freedom Hamiltonian by means of a single Lie transformation is com-
putationally more efficient [103, 238, 564]. Furthermore, when this single transforma-
tion is carried out in complex variables the normalization becomes a simple exercise
of polynomial algebra. The resulting expressions in the normalization process only
involve arithmetic operations, in this way making the evaluation of higher orders of
the analytical, perturbation solution very efficient [424]. This approach clearly illus-
trates the versatility of the Lie transforms method, and is the one that we choose for
the construction of the reduced Hamiltonian in §12.1.

The normalized Hamiltonian with the short-period effects removed is of one de-
gree of freedom. The reduced phase space, which is the sphere [134, 373], is conve-
niently described in Hopf coordinates [300]. Most strikingly, the equations of the re-
duced dynamics turn out to be a particular case of the equations of motion of a free gy-
rostat,® whose analytical integration has been investigated since the pioneering work
of Zhukovski [700] and Volterra [672] (see also [41]). This fact provides one more in-
stance of the analogies between orbital and rotational motions that have been recur-
rently mentioned in the literature [345].

On the other hand, while the complete description of the reduced dynamics on
the sphere is properly done in Hopf variables [163, 498], the use of Deprit’s Lissajous
variables provides immediate insight into the nature of particular solutions. Moreover,
the simple evaluation of the equilibria solutions in these variables at each value of
the elliptic anomaly between 0 and 27t allows for the straightforward reconstruction

8 This fact has been pointed out to the author by Alexander Burov, Dorodnitsyn Computing Centre of
the Russian Academy of Sciences, in private communication of November 2018.
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of their partner periodic orbits, whose period is easily computed from the Hamilton
equation for the variation of the elliptic anomaly [396]. These aspects of the reduced
dynamics are discussed in §12.2.

When higher orders of the perturbation approach are required, their computation
is customarily approached using floating-point arithmetic because of simplicity and
efficiency [171]. Still, this procedure may increase non-negligibly the numerical errors
due to the number representation in the computer. The propagation of the trunca-
tion errors can be studied with the help of interval arithmetic [100, 328]. Alternatively,
the use of complex variables provides a simple way of estimating the accumulation
of truncation errors at each order of the perturbation theory by tracking the residual
complex terms that remain in the normalized Hamiltonian after recovering the real
variables [424].

Alternatively, to mitigate the growth of the truncation errors associated with the
floating-point arithmetic, the perturbation solution is approached exactly using inte-
ger arithmetic. However, the increase in the size of the rational coefficients handled
with the perturbation order, which may become enormous at relatively moderate or-
ders [162], makes the computation of very high orders with integer arithmetics unprac-
tical. Still, the integer-arithmetic solution can be used as a benchmark with which to
compare the lower orders of the floating-point arithmetic solution, and to estimate
the highest order that may make sense for a floating-point solution [424]. To expedite
evaluation of the perturbation solution, the higher orders of the Lie transform method
computed in §12.3 to improve the accuracy of the analytical solution, have been ap-
proached in floating-point arithmetics.

1.3.5 Coorbital motion with low eccentricity

The Hill problem is also useful in describing the interaction of two small bodies orbit-
ing a massive one. Particular instances of the case in which both small bodies evolve
in almost circular orbits with the same semimajor axis give rise to the so-called quasi-
satellite orbits, also named distant retrograde orbits, in which the massless body
seems to evolve in orbit about the smaller primary. As far as this apparent motion oc-
curs out of the Hill sphere, it cannot be approached as a case of perturbed Keplerian
motion about the smaller primary.

Discussions of the possibility of this kind of relative motion in the solar system can
be traced back to the beginning of the twentieth century [319]. Since then, families
of retrograde periodic orbits have been computed numerically by different authors,
either for the Copenhagen problem (primaries with equal masses) [87, 273, 274, 624],
the case of Earth—Moon masses [68], or the pure Hill problem [275]. Brief reviews on the
topic can be consulted in [560, 608, 673], whereas different natural objects in quasi-
satellite orbits that have been identified in the solar system can be found in [205] and
the references therein.
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The strong stability characteristics of quasi-satellite orbits make them appealing
for different astrodynamics applications, like quarantine orbits [50, 376], surveillance
missions related to the protection of the Earth [622], or for “orbiting” about bodies of
non-negligible dimensions and very low mass, as is the case of Phobos [35, 352, 530].

Quasi-satellite orbits are customarily computed numerically like periodic solu-
tions of a restricted three-body problem [46, 235, 429, 456, 499]. Approximate ana-
lytical solutions to the coorbital motion have also been reported that are useful in
the qualitative description of the main facts of the quasi-satellite orbits’ dynamics
[47, 524]. While these rough analytical solutions can be improved when the problem
is approached by Hamiltonian perturbations [454], difficulties arising in the practical
implementation of the perturbation approach derived from the essential dependence
of the solution on special functions constrained the perturbation solution to the lower
orders.’ This fact led to the conclusion that the perturbation approach is just partially
successful [455], with a limited application to the description of the long-term orbital
behavior obtained from the numerical integration of the evolution equations [456]. It
was, perhaps, the untimely demise of Lidov which made the perturbation approach be
abandoned until recently. Still, new applications of the perturbation approach were,
again, limited to the orbit evolution, whose equations are obtained by numerically av-
eraging the higher frequencies of the motion [608]. Numerical averaging techniques
[184, 467, 635] present an alternative to effectively deal with the complications in the
analytical integration of special functions, but they also hinder the computation of
higher orders of the perturbation.

The arrangement of the Hill problem Hamiltonian in a form useful for the pertur-
bation approach to the quasi-satellite orbits problem is discussed in §13.1, yet limited
to the planar case. The Hamiltonian is split into the quadratic part, which is integrable,
and the non-linear term containing the interaction of the orbiter and the primary. Re-
formulation in epicyclic variables turns the quadratic terms into a completely reduced
Hamiltonian, which is immediately integrated to show that the orbiter moves in an el-
lipse whose center may evolve with linear motion along the direction orthogonal to
the line of the primaries. This linear trend can be removed by the proper selection of
initial conditions, thereby making place to purely periodic motion. When the interac-
tion of the smaller primary with the orbiter becomes significant, the linear motion of
the center of the ellipse may change into a slow oscillatory motion that gives rise to
the quasi-satellite configuration.

The perturbation approach proceeds by removing the phase of the orbiter in its
epicycle, an operation that is efficiently achieved by the method of Lie transforms.
Details of this procedure, including the computation of the short-period corrections,

9 The efficient treatment of special functions in a calculus of perturbation is a problem that seems to
have remained open since many years ago [36, 82, 83, 153].
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are given in §13.2. In this way, the planar case of the Hill problem is reduced to an inte-
grable one-degree-of-freedom Hamiltonian describing the motion of the center of the
reference ellipse (the “deferent” of the epicyclical motion). The nature of this solution
is discussed in §13.3, where, for the lower orders of the perturbation approach, it is
shown that the motion is made of harmonic oscillations and can be nicely expressed
in closed form [401]. Still, the validity of the closed-form solution is constrained to the
case of small amplitude librations of the deferent motion. Higher orders of the single-
averaged Hamiltonian prevent the closed-form solution, yet the long-term motion is
efficiently integrated semi-analytically with very long steps. Alternatively, analytical
solutions in the form of Lindstedt series extend the validity of the purely analytical
approach [398, 403].

As an option to the Lindstedt series approach, a new Lie transformation is carried
out in §13.4 to remove the phase of the deferent. In this way, the planar Hill problem
Hamiltonian is completely reduced, up to the truncation order of the perturbation ap-
proach, thus yielding a trivially integrable Hamiltonian. The evaluation of the secular
terms of the double-averaged solution is computationally undemanding, and it pro-
vides an instant way of exploring quasi-satellite orbit evolution. In addition, when
required, the computation of an ephemeris is straightforward by simply adding the
periodic corrections to the secular solution. These corrections are made of both long-
and short-period effects, and they are obtained analytically as a result of the perturba-
tion procedure. Moreover, the formal integrals of the secular solution can be used as
design parameters in the implementation of quasi-satellite orbits with specific char-
acteristics [404]. In particular, it is shown in §13.5 how commensurability between the
(secular) periods of the orbital and libration motions results in quasi-satellite orbits
of the planar Hill problem that are periodic on average, and approximately periodic in
the non-averaged dynamics. As customary in preliminary mission design procedures
[386, 387, 390], differential corrections can then be used to slightly modify the initial
conditions provided by the analytical solution in order to get an exact periodic orbit
of the non-averaged problem with the required characteristics.
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2 The method of Lie transforms

The solution to different problems of mechanics is made notably easier when discov-
ering a convenient set of variables that simplifies the mathematical formulation of
the problem. In Hamiltonian mechanics, this is the particular case in which we find
a transformation of canonical variables such that, in the new variables, the Hamilto-
nian is reduced to a normal form that is function of only the momenta. Being cyclic
all the coordinates, the problem is trivially integrated. In the new variables, the mo-
menta are integrals of the motion whereas their conjugate coordinates evolve linearly
with frequencies that formally depend on the momenta. The transformation is com-
monly found by the Hamilton—Jacobi method through a generating function in mixed
variables, old coordinates and new momenta [30]. This is in the same spirit as Hamilto-
nian perturbation methods: to find an infinitesimal contact transformation such that,
in the new variables, the perturbed integrable Hamiltonian takes a simpler form that
makes the integration of the Hamiltonian flow easier.

Beyond traditional perturbation approaches to particular problems, Poincaré pro-
posed a general algorithm that, in the style of the Hamilton—Jacobi approach, relies on
a generating function in mixed variables [558]. The construction of the perturbation
solution with Poincaré’s method is straightforward up to the first order of the pertur-
bation approach. But to overcome the difficulties that appear in the computation of
higher orders, which stem from the implicit form of the transformation, one must deal
with sophisticated operations on power series [174]. Alternatively, perturbation meth-
ods based on Lie transforms [151, 303] provide systematic algorithms to extend the per-
turbation solution to higher orders, which, besides, are easily implemented in modern
commercially available symbolic algebra systems. We only deal with the practical as-
pects that lead to the implementation of the latter, which is generally recognized as
the standard perturbation method of these days. Moreover, the following descriptions
are constrained to the case of conservative transformations and functions. The case in
which the time appears explicitly is approached analogously by the simple expedient
of turning to the extended phase space.

2.1 Lie transformation of a function

Let g be a vector of canonical coordinates g = (q;,95,...,q;), and let Q = (Q,Q,, ...,
Q) be their conjugate momenta. Let W = W(g; g, Q) be an analytical function of ¢
given by the Taylor series expansion

W= Z Wn+1 q.Q. 2.1)

n>0

https://doi.org/10.1515/9783110668513-002
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Then the solution to the differential system

dge _ow  dQ, _ aw

=, —*-_Z k=12..,1 2.2
de 0Q, de oqy ‘ : e

for the initial conditions

q(p,P,0)=p, Q(p,P,0)=P, (2.3)

defines an infinitesimal mapping ¢ : (p, P, €) — (q, Q) given by

q=4q/p.P,s), Q=Q(p,P,¢), (2.4)

where p = (p1,p,, - -.,b;) are canonical coordinates and P = (Py, P5, ..., P;) their conju-
gate momenta, which is known as the Lie transformation with generating function W.
Lie transformations are completely canonical transformations [151, 491] and their ex-
istence in a neighborhood of € = 0 is guaranteed by the basic theory of differential
equations.

Let F = F(q, Q, ) be an analytical function depending on the canonical set (g, Q),
as well as on the scalar small parameter €. F can be expanded as the Taylor series

d"F
de™ :‘_‘:0)

F= Z oy nO(qu)) Fn,0:

n>0

(2.5

where the convenience of using the double subindex notation F,, , for the total deriva-
tives of F with respect to the small parameter will become apparent soon.

The function F is reformulated in the (p, P) variables by replacing Eq. (2.4) into
Eq. (2.5). By direct replacement we obtain G = G(p, P, €) = ¢F in the form

= F(q(p,P,¢),Qp, P, ¢),€) Z (a.P,),Q(p,P,¢)), (2.6)
n>0
which is not a Taylor series. To obtain G in the form of a Taylor series, we would need
to expand and rearrange the right side of Eq. (2.6).
Rather than solving Eq. (2.2) to get the transformation (2.4), replace it in Eq. (2.6)
and carry out the consequent rearrangement, we will rely on basic operations on
power series to obtain directly G like the Taylor series

dn
G= Z G(pP) G—dn
n>0

2.7)

The direct computation of the coefficients G, in Eq. (2.7) is done by taking into
account that G = ¢F = F(q(p,P,¢),Q(p, P, ¢),¢) is a composite function, to which we
apply the chain rule. Thus, working in the (q, Q) variables,

dG dG ©oF (aF dg, OF ko>

G =—| , h — = —
17 de |0 where de oe oqy de +an de
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in which, since we are dealing with a Lie transformation, the total derivatives of g
and Q, with respect to the small parameter are replaced using Eq. (2.2). Hence,

dG _oF

&% + {F; W}, (2.8)

where

{Fswy =) (2.9)

k=1

! <aF oW  OF aw>
0qy 0Q  9Qy 9qy

stands for the Poisson bracket of F and W.

2.1.1 The fundamental recursion

The partial derivative of F with respect to the small parameter in Eq. (2.8) is readily
computed from (2.5),

oF en

g = z F Fn+1’0, (2.10)
n=0 "

On the contrary, the computation of the Poisson bracket of F and W is a little bit more

involved. First, we plug Egs. (2.1) and (2.5) into Eq. (2.9), to obtain

l

{F; W} = Z(Z & oF;

il
ic1%jso I aqk i>0

Ei aWi+1 gl a 8. aWi+l >
- — ). 211
Z i! an Z ]' an z i! qu ( )

At this point, we recall that the product of the power series s, = 3., ajej ands, =
Yiso bi€', is another power series p = 5,5, = .0 C,€", Whose coefficients are given
by the Cauchy product ¢, = Y,_o @y_mby,. Since we are dealing with Taylor series, the
coefficients of the series s,, s, and p are reorganized in the form a; = A;/j!, b; = B;/i!,
¢, = C,/nl. Therefore, the coefficient C, = n!c,, of the Cauchy product reads

LA B & (N
Cy=n ) M- ( )An_mBm.
= (n—-m)! m! go m

Computing the series products in Eq. (2.11) in this way, we readily obtain

n\( OFy_po OW, OFy im0 OW, 1
Foy ( )( n-m, m+l X m+ ))
{ b= ,;,;3 n! Z m oqx  0Qy 0Qx  9gy

where the term inside the parentheses is easily identified with a Poisson bracket after
exchanging the order of the summations. That is,

Fw =Y 5 Z( )P W) 2.12)

n=0
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Next, Egs. (2.10) and (2.12) are plugged into Eq. (2.8) to yield

dG e
— = —F ., 213
de ré) n~ ™l 2.13)
where
X o/n
Fpi=Fpapot z (m >{Fn—m,0; Wit (2.14)
m=0

So far, all the computations have been carried out in the original (q, Q) variables.
To compute the term G; = G,(p, P) it only remains to use Eq. (2.3) in order to evaluate
Eq. (2.13) in € = 0. That is,

Z Fu1(q,Q)le—o = Fo1(qlc=0, Qle=o) = Fo1(P, P),

e=0 n>0

1d£

where Fy; = F; o + {Fy0; W} from Eq. (2.14).
In summary: we started from Eq. (2.5) and arrived at Eq. (2.13), which equations
are formally equal except for the coefficients F) ; being replaced by F, ;. That is,

a6 d’Z nd¢ow-z Fr.1(q, Q).

de  de =n

Proceeding likewise with dG/de, which is again handled as a composite function,
straightforward computations show that the second derivative of G with respect to €
is

n

d’¢ d n
T L @0 =Y S0,

de?  de & =
in which
L /n
Fn,Z = Fn+l,1 + z (m> {Fn—m,]; Wm+1}'
m=0
Then an arbitrary derivative d"G/de" is computed by induction showing that,

starting from the gth derivative of G,

d?G e"
—= =2 Q.
ded r;) n ™

we obtain the (g + 1)th derivative,

dq+lG gn
—— =Y = Fupu(@,Q),
der™t Sl ngn (@ Q)
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in which
& /n
Fn,q+1 = Fn+1,q + Z (m) {Fn—m,q; Wm+1}- (2.15)
m=0

Once the total derivatives have been computed up to the desired order, it only
remains to evaluate them at € = 0, namely,

STI

diG
7 = ZO F Fn,q(‘]; Q)lg:O = F(),q(q|g:0) Q|g:0) = FO,q(.p, P);
n> '

ded

e=0

to get the Lie transformation of Eq. (2.5) in the form of the genuine Taylor series given
in Eq. (2.7).
2.1.2 Deprit’s triangle

Deprit’s fundamental recursion (2.15) is visualized in the form of a triangular table

FO,O FO,l FO,Z F0,3 F0,4
Fl,O Fl,l F1,2 F1,3

Fo Fy Fp (2.16)
F35 F34
Fuo

in which the computation of a given term only involves the preceding terms in the
diagonal passing through it, and those in the preceding columns above that diagonal.

For instance, the computation of F,, only involves the diagonal terms F;; and
F,, those above F; ;, namely F,, ;, and those above F, 5, namely F; ;, and F, 5. Indeed,
making n = 0, g = 1in Eq. (2.15) yields Fy, = F;; + {Fy; Wy}, where W, is known,
and Eq. (2.15) is used again for computing F,; (withn = 1and g = 0) and F,, (with
n=q =0). Thatis

1 1
Fi1=Fpo+ (O >{F1,05W1} + <1 >{Fo,0; Whl,
Foq =Fip + {Fo 03 Wi}

A final remark is in order. While the transformation of the analytical function F
given by Eq. (2.5) into the new variables has been achieved without solving the dif-
ferential system (2.2) that defines the Lie transformation, it obviously plays a funda-
mental role in the computation of the Taylor series expansion (2.7) since Eq. (2.2) has
certainly been used in the construction of Deprit’s recursion (2.15).
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2.1.3 The direct transformation

Note that given the generating function W, the transformation (2.4) can be computed
without need of solving the differential system (2.2). Indeed, the components of a vec-
torial function are scalar functions, to each of which the fundamental recursion (2.15)
can be applied independently.

Thus, denote by x = g; one of the canonical coordinates of q. It can be assumed
to be given formally by the Taylor series

Sn
X= ) —Xno(@ Q)

n>0 "°

where Xy, = X, and x, o vanish for n > 0. Then Eq. (2.15), in which the symbol F
is replaced by the symbol x of the coordinate, is repeatedly applied to compute the
terms

Xo1 = s Wi}
Xy = 6 W)}
Xoo = X117 + {Xo 3 Wi}
X1 = (W5} (2.17)

X1 = X1 + (X3 Wit + {xo 3 Wa}

Xoz = X1 + {Xo s Wi}

and so on. Recall that this sequence is computed in the (g, Q) variables, but, in the end,
the terms x, , must be evaluated at € = 0, in which case g(p, P, 0) = p, Q(p,P,0) = P.
That is, in the end, g is simply replaced by p, and Q by P, to give the transformation
equation

En
x= Y —Xon®:P)

n=0 "°°

where X, o(p, P) = p, is the corresponding coordinate to x = g; in the new variables.

Obviously, the same procedure can be applied to the other coordinates as well as
their conjugate momenta, in this way obtaining explicitly the direct Lie transformation
(2.4) in the form of the Taylor series

En gn
4= =qo..P), Q=) —Qo,(p.P) (2.18)
n=0 n n=0 n

where ggo = p, and Qy = P.
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2.1.4 Composition of Lie transformations

Lety : (s,S,€) — (p,P) be a new Lie transformation from the (p, P) variables to the
(s, S) ones. If

gn
V=2 “Vau®P) (219)
n=0 "
is the generating function of i, the transformation equations p = p(s,S,¢), P =
P(s, S, ) are now obtained from the solution of the new differential system

—-— ==, —=-=—, k=12,..,], 2.20
de 0Py de opy (2.20)
for the initial conditions p(s, S, 0) = s, S(s,S,0) = S.

We will check that the composition

q=4(p(s.S.¢€),P(s,S,¢).€) = q(s,S,¢),
Q=Q(p(s.S,¢),P(s,5.¢),¢) = Q(s, S, ¢),
of the Lie transformations ¢ and i is a new Lie transformation.

To do that we compute the total derivatives of g, = ¢@q; = q;(p,P,¢), and Q; =
©Q; = Qi (p, P, €) with respect to €. By direct application of the chain rule we obtain

! dp; dp;
dg, _ z<6<qu 9P, 9pax _;> . 6<qu, (2.21)
de S\ dp; de  OP; de o€
where the total derivatives of the (p, P) variables are taken from Eq. (2.20). Besides,
since the transformation g; = @g; is the solution of Egs. (2.2)-(2.3), it must yield the
identity when plugged into Eq. (2.2). That is,

dogi _ 99q _ o aw
de oe  ToQ’

Therefore, Eq. (2.21) turns into

%_i<a¢qka_V_a¢qka_V>+ ow

ow
= = W+ o—, 2.22
op; 30, P, aq, 30, {ogi. V} wan (2.22)

de &
in which the terms in the right side are functions of the (p, P) variables.

Moreover, due to the invariance of Poisson brackets with respect to completely
canonical transformations, we can evaluate the Poisson bracket in Eq. (2.22) either in
the (p, P) or in the (g, Q) variables; namely, {¢pq;,V} = {qk,fp_lV}. Therefore, we can
rewrite the whole rightmost side of Eq. (2.22) in terms of the (g, Q) variables. Namely,
oW o9’V ow _ au

(G VEH+ =

dgi _ _ L
9Q,  0Q  0Q. 0Q.

e (2.23)
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where
U=Uq,Qe)=W+g V. (2.24)

Proceeding analogously with the momenta Q, we readily obtain

do, __ou

= 2.2
de oqy (2.25)

In consequence, the solution of Egs. (2.23)-(2.25) for the initial conditions q(s,
S,0) =5, Q(s,S,0) = S, defines a Lie transformation ¢ : (s, S, €) — (q, Q), given by the
composition of ¢ and 1, which is obtained from the generating function ¢/ defined in
Eq. (2.24).

The formulation of the generating function V = V(p, P, ) in the (q, Q) variables
»™'V = V(p(q,Q,€), P(q, Q,€),¢), is readily obtained by a new application of the Lie
transforms method, and follows analogous steps as those shown in the next section.

2.1.5 The inverse transformation

The composition of the direct transformation ¢ : (p, P, €) — (g, Q) and the inverse one
¢ :(q,Q,€) — (p,P) obviously yields the identity. In this particular case, Eq. (2.24)
turnsinto W+(p*1V = O and the inverse transformation is obtained from the generating
function ¥V = —pW. That is,

vV =-W(q(p,P,¢),Q(p,P,¢),¢). (2.26)

Therefore, to compute the inverse transformation of Eq. (2.18), the first step is to
write Eq. (2.26) as an explicit function of (p, P) in the form of a Taylor series. This
is done by standard application of the fundamental recursion (2.15) to the function
R =-WI(q, Q,¢). That is, starting from

n
R(g,Q.¢) = ZO — Rnos
in which, by comparison with Eq. (2.1), R, o = -W,,;1(q, Q), we construct
en
R(p,P,¢) = n;) — Ro
Straightforward computations show that
Ro,o =-Wy,
Ryp =-W;,
Ry, = -W5; - (W Wik
Ros = -W; = 2Wss Wi} = {Ws Wik Wik,
Ros=-... .27
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Finally, we make V,,; = Ry ,(p, P) to get the generator of the inverse transformation
in the form of the Taylor series

gn
=D — Vun(p.P).
n=0
Once V = V(p, P) has been obtained, the computation of the inverse transforma-
tion

p=) %Po,n(‘l’ Q, P=) %Po,n(q, Q. (2.28)

n=0 " n>0 "

follows exactly the same steps as in the direct case §2.1.3 simply replacing W by V.

2.2 Deprit’s perturbations approach
Hamiltonian perturbation problems are generally stated in the form
H = 7‘[0 + D, (2.29)

where H,, is an integrable Hamiltonian and D is a disturbing function that only modi-
fies slightly the integrable Hamiltonian flow, thatis |D| « |[#,|at any time. The general
goal of the perturbation approach is to find a canonical transformation such that the
transformed Hamiltonian is simpler in the new variables than in the original form.
The simplification will depend on the problem at hand, yet the more common case
consists of making cyclic one of the variables which the new Hamiltonian depends
upon.

2.2.1 Hamiltonian simplification by Lie transforms

The Lie transforms method provides a general frame for the computation of Hamilto-
nian perturbation solutions. Indeed, Eq. (2.29) can be written in the form

m
H= Y Ho(@.Q) 230)
m>0 "
where Hy o = H, and ¢ is a small parameter that represents the smallness of the dis-
turbing function. In the more favorable case € would be a physical parameter, but in
general it will be a formal small parameter (¢ = 1) used to visualize some dynamical
conditions which would apply to the solutions of interest.
In particular Deprit’s perturbation approach provides the means for computing
the completely canonical Lie transformation

7 :(q,Q) — (b, P;e), (231
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leading to the desired simplification in the Hamiltonian (2.30). That is,

T:H =H(@p.P.e)Qp.P.e)e) = Y % Hom(D, P) 2.32)

m=0 "7

is “simpler” than Eq. (2.30) up to some truncation order O(e").

The Lie transformation (2.31) is derived from a generating function of the form of
Eg. (2.1), which is no longer assumed to be known in advance. On the contrary, the
coefficients W,,,; of the generating function must now be determined stepwise from
the simplification criterion used when approaching each particular problem.

Thus, replacing the generic function F by H in Deprit’s recursion (2.15), in which
we make n = g = 0, we obtain Hy; = {#Hg; Wi} + H1o. This equation is rearranged in
the form

{WI;HO,O} = 7:[0,1 - HO,I’ (233)

where #,, and H,; = H,, are known functions of the (g, Q) variables, as given in
Eq. (2.30), but both #,; and W, are undetermined by now. In the perturbation ap-
proach #; is chosen according to the simplification criterion. Finally, YW, must be
solved from the partial differential equation that is obtained after the evaluation of
the Poisson bracket on the left side of Eq. (2.33).

Once W, has been computed, the second order of Deprit’s recursion (2.15) yields

Hop = {Hos Wit + Hiy (2.34)
where, again from Eq. (2.15),
Hag = {Hoo Wab + {H10s Wi} + Hop. (2.35)
As before, after plugging Eq. (2.35) into Eq. (2.34), the latter is rearranged in the form
Wi Hoot = Hoa — Hoo (2.36)
in which #H,, , comprises all the terms that have become known hitherto. Namely,
Hoo = Hap + {Hyos Wit + {Hos Wik (2.37)

Again, the new Hamiltonian term #,, is chosen according to the simplification cri-
terion, and W, must be solved from the partial differential equation stemming from
Eq. (2.36).

Once the procedure has been extended up to the desired truncation order of the
perturbation approach, Eq. (2.32) is obtained in the new variables by simply replacing
q by p and Q by P in the terms of 7 ,.
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2.2.2 Example: Small oscillations of the simple pendulum

The simple pendulum is discussed in more detail in §3.1, from which we take the pen-
dulum Hamiltonian

1 1
H = 562 + 2w° sin® 59’ (2.38)

where 0 is the conjugate momentum to the angle 6 and w is a (dispensable) parameter.
In the case of small oscillations the angle with which the pendulum departs from the
verticalis 8 « 1, and hence sin’ %6 = %92 - 41—864 + ﬁm +---isreplaced into Eq. (2.38).
After rearrangement, Eq. (2.38) is written in the form

IR PR VS N U SV N PN
7—[—5(@ +w0)—aw9 +aw9 oo (2.39)

of the typical perturbation Hamiltonian (2.30) in which the small parameter is formal
(€ = 1), the zeroth-order term #, = 3(6° + w’6?) is a harmonic oscillator of frequency
w in the “Cartesian” coordinate 6 and conjugate momentum ©, and the perturbation
terms are H, o = —%wzel‘, Hyo = é(u266, ceee

First of all, we apply the harmonic transformation (¢, ®; w) — (0, ©) given by

0 = V2wdcosgp, 0=+20/wsing, (2.40)
which is canonical and converts Cartesian variables into harmonic variables. We ob-
tain

@’ 4 o 6
Hoo=wWD, Hig=-—sin"¢, H,p=-—-sin"0o,.... 241
0,0 1,0 3 ¢ 20 = 700 ¢ (2.41)

That is, the action @ is an integral of the unperturbed problem. If we extend this inte-
gral to the perturbed problem, then it will be trivially solved.

To do that, we apply the procedure described in §2.2.1 to find a canonical trans-
formation (¢p',®';¢€) — (¢, @) such that it transforms the Hamiltonian in harmonic
variables (¢, @) into the Hamiltonian

n _.m J
H(P(@, D's€), D¢, Dse)se) = Y Mo (D) + Y SHo(¢), @),

' £l
m=o0 "M j>n J:

in the new variables (¢, ®'). That is, after truncation to order n, the new Hamiltonian
will only depend on the momentum @', which, therefore, becomes a formal integral
of the perturbed problem.

The first step is to solve Eq. (2.33), in which H,; = H;, and

o

Wis Hool = Wi 0@} = w e
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Therefore, W, is solved from Eq. (2.33) by indefinite integration. That is,

1 1 .
Wy = P J [—ECDZ sin ¢ — Ho (P, @) |de, 42)

where sin® ¢ = 2—1;(3 — 4 cos 2¢ + cos 4¢). Choosing

1.5
H ,D) = —— @,
0,1(¢$, D) T
we remove the angle ¢ from the first-order term of the new Hamiltonian. In addition,
this choice converts the integrand of Eq. (2.42) in a purely periodic trigonometric func-

tion of ¢, which is trivially solved to give

2
W = %2%(8 sin 2¢ — sin 4¢p) + C;(D).

The role of the arbitrary functions of the type of C; is not discussed here, and we simply

make C; = 0.

Note that H,, is the average of #,; = —+®”sin* ¢ in the time in which the angle
¢ advances one period. That is, the new Hamiltonian term Ho; = (Ho;)4 has been
chosen by “averaging”.

Once W, is obtained we can proceed to the second order of the perturbation ap-
proach, in which, after evaluation of the Poisson bracket, Eq. (2.36) is also solved by

indefinite integration. Namely,
1 (, ~
Wa=+ J[H0,2(¢» D) - Ho,]de, (2.43)

where the computation of ?A-[O,z from Eq. (2.37) only involves the evaluation of Poisson
brackets. Straightforward computations yield

3

Hop = —%(15 —35¢c0s2¢ + 2cos 4¢ + 3 cos 6¢).

Then the choice

CDB

Hop = (Ho2lp = ~ 18w

removes the angle from the new Hamiltonian, as desired, and leaves the integrand of
Eq. (2.43) in the form of a purely periodic function of ¢, which is trivially integrated to
give

1 @

= %3(35 sin 2¢ —sin 4¢ —sin 6¢) + Cz(cD)

Once more, we make the trivial choice C, = 0.
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2.2 Deprit’s perturbations approach =— 41

Because we neglected higher orders of the perturbation in Eq. (2.41), we stop the
computations here. The transformed Hamiltonian is obtained by simply changing old
by new (prime) variables in the terms #, ,,, (m = 0, 1,2), yielding

H = wd'|1- %((D'/w) — (@ jw)’ + 0@ Jw)’ ]

256

whose Hamilton equations are trivially solved to give the secular terms of the solution

67-[

@' =df -
a¢>'

=y, (2.44)

1 cD/ @IZ
= ) ) (2.45)

¢ =0+ acD'T o+ (‘m—ﬁwz

where 7 denotes the time. That is, in the case of small oscillations, the simple pendu-
lum behaves, on average, like a harmonic oscillator that evolves with constant, per-
turbed frequency @ = w[1 - ((D Jw) — 3¢ ((D /w)z]

In order to obtain the solutlon in the original variables we need the direct trans-
formation, which is readily obtained from Eq. (2.17). For the angle ¢ we compute the
sequence

o1 =Wy} = % = ig(8 sin 2¢ — sin 4¢),

1 @
= D80 —5(35sin2¢ - sin4¢ — sin 6¢h),
01 0W;  9o; W,

g od oD 0p

oW
P11 ={p; Wy} = a

o2 = P11 +{Po s Wit = P11 +

1 @?

= 76030 @ — (1280 sin 2¢ + 124 sin 4¢p — 96 sin 6¢ + 5 sin 8¢h).

After replacing the original by prime variables, and up to the truncation order of the
perturbation approach, we obtain the direct transformation of the angle ¢:

o1 1 1 @2

= — —(8sin2¢’ —sin4 -

=9 + 55, (Bsin2e )+ 336080 &
x (1280sin2¢)’ + 124 sin4¢p’ — 96 sin 6¢’ + 5sin 8¢"). (2.46)

Analogously,

2
- 0y - B0 2—cost

_ @’ 3505 2¢) — 2cos 4¢ — 3 cos 6¢

w? 1920

CD3 85 — 150 C0S 2¢b + 6 COS 4¢p + 14 COS 64)

5760

ch,l = {@; WZ} =

Dy, =Dy +{ D3 Wi}t =
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42 =—— 2 The method of Lie transforms

which, after replacing the original by prime variables, lead to the direct transformation
of the action @:

! 1 (I), ! !
=0 1_4_8_(4C082¢ —cos4g')

11c1>’2

315760 o —-(85-150cos 2¢" + 6 cos 4¢p’ + 14 cos 6¢') |. (2.47)

The appearance of @' and ¢' on the right sides of Egs. (2.46) and (2.47) must be
replaced by corresponding expressions in Egs. (2.44) and (2.45), respectively, to ob-
tain the perturbation solution as a function of time and initial conditions. Further-
more, the inverse transformation is needed for the initialization of the constants ¢6 =
@' (Pg, @), @y = D' (¢, Dy), Which the secular solution depends upon. We recall that
the first- and second-order terms of the generating function of the inverse transforma-
tion are just the opposites of the corresponding terms of the direct generating function
when it is rewritten in the prime variables—a fact that is no longer true when higher
orders are taken into account, as checked in Eq. (2.27). Straightforward computations
yield the inverse transformation

oy 1@ e
o =¢ % w(8 sin 2¢) — sin 4¢)
1 1

@?
1240 sin 2 196 sin 4 24 sin 6 5sin 8
T2 46080 P ¢- ¢+ ¢- 2

O =d|1+ 4——(4c052¢—cos4¢))

2
%57%2(85+60c052¢ 6cos4¢p — 4cos6¢) |,

in which ¢ and @ arereplaced by the initial conditions ¢, and @, in order to obtain the
corresponding initial conditions in the prime variables that feed the secular solution
(2.44)-(2.45).

2.2.3 The homological equation

The procedure that led to Egs. (2.33) and (2.36) can be repeated to extend the pertur-
bation approach to any order. It is summarized in the so-called homological equation

£O(Wm) = ﬁo,m - HO,m’ (2.48)
in which the operator

Lo={ ;Hgol (2.49)
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is customarily known as the Lie derivative in the Hamiltonian flow #, ,. Remark that
the Lie derivative provides the time variation of a function along the Hamiltonian flow
stemming from 7, 4. This is the only case in which the time derivatives of the coordi-
nates and their conjugate momenta can be replaced by corresponding Hamilton equa-
tions of the integrable part # .

Terms H,,, in Eq. (2.48) are known from previous computations obtained after
successive evaluations of Deprit’s recursion (2.15), whereas particular choices of the
terms H,, ,, depend on the aim of the perturbation approach. Finally, W,, is obtained as
a particular solution of the partial differential equation (2.48), contrary to the general
or complete solution.

The selection of the terms %, ,, is arbitrary but only to some extent. Obviously, to
make the perturbation approach feasible, the homological equation must be solvable
for W,,. The conditions that make Eq. (2.48) solvable depend on the algebraic struc-
ture of the functions #,, , that are comprised by the original Hamiltonian (2.30). For
instance, because the terms #,, o in the example §2.2.2 are trigonometric polynomi-
als in ¢, the choice of the new Hamiltonian terms #,,, = (ﬁo,m)d,, m = 1,2, made
in Egs. (2.42) and (2.43), guaranteed that, in addition to obtaining a new Hamiltonian
that only depends on the action, the terms W,, of the generating function are solvable
and only depend on trigonometric terms. In this way, the solution of the homological
equation is obtained at any order within the algebra of trigonometric functions.

In more abstract terms, the Lie derivative in the Hamiltonian flow 7, , = w® maps
Fourier series of the form

F = ) [A;(®) cosj¢ + By(D) sin jp], (2.50)
j=0
into elements
oF
Lo : F(¢, D) - {F;wd} = wﬁ,

pertaining either to the kernel of the Lie derivative, which comprises such functions
F = Ay(®) that Ly(F) = O, or to the image of the Lie derivative, which is made of
such functions F = Z)'zl [4;(D) cosjo + B;(®) sinj¢] that L£y(F) = ijl [A;(qb) cosjo +
B/ (®)sinjg].

Applying this decomposition to terms #,, ,, entering the right side of the homo-
logical equation, then selecting #,,, in such a way that it cancels out all the terms of
ﬁo,m pertaining to the kernel, is what makes W, to pertain to the image, thus being
solvable—and this is exactly what we did in §2.2.2.

In general, it is a good strategy to identify the algebra of functions to which the
disturbing function of a particular problem pertains, and to choose the new Hamilto-
nian term in such a way that it cancels out all the terms on the right side of Eq. (2.48)
pertaining to the kernel of the Lie derivative of the given problem. This strategy, when
feasible, guarantees that the right side of the homological equation pertains to the
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44 — 2 The method of Lie transforms

image of the Lie derivative and, in consequence, the terms of the generating function
can be solved up to arbitrary order of the perturbation approach.

Finally, it must be noted that, in general, the solution of the homological equation
is not unique. Indeed, if the function C, pertains to the kernel of the Lie derivative,
then replacing W,,, by W,, + C, in Eq. (2.48) also satisfies the homological equation.
This fact was already illustrated in the example of §2.2.2 with the introduction of the
arbitrary integration constants C; and C,.
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3 Application to integrable problems

Solutions of integrable systems are fruitfully approached in action-angle variables by
solving the Hamilton—Jacobi equation [30, 199, 243]. Because this method involves the
determination of a generating function in mixed variables, the solution is commonly
obtained in the form of a mixed transformation. When this solution is achieved in
terms of elementary functions, the transformation to action-angle variables can be
obtained explicitly in closed form, as, for instance, in the case of the harmonic oscil-
lator [627]. However, when the solution relies on special functions, whose evaluation
depends on one or more parameters in addition to the function’s argument, the action-
angle variables approach may provide the closed-form solution in implicit form. While
this is not troublesome in the evaluation of the solution, which is readily done with the
help of root-finding procedures, the implicit form as well as the dependence on special
functions may deprive the analytical solution of physical clarity. On the other hand,
when dealing with a perturbed integrable motion the disturbing function is custom-
arily expressed in the action-angle variables of the integrable problem. This process
makes expanding the (implicit) transformation to action-angle variables as a Fourier
series in the argument of the special functions necessary. These kinds of expansions
are not at all trivial—yet these days one finds enormous assistance in computer algebra
systems—and obtaining them was regarded as a notable achievement [345, 587, 588].

When the closed-form solution involves elliptic functions, the normal way of pro-
ceeding is to replace them by their definitions in terms of Jacobi theta functions, which
in turn are replaced by their usual Fourier series expansion in trigonometric functions
of the elliptic argument, whose coefficients are powers of the elliptic nome [89, 175,
447, 465). This laborious procedure is further complicated when the modulus of the
elliptic function remains as an implicit function of the action-angle variables, a case
that requires its additional expansion followed by the series reversion, as it happens
with the simple pendulum case [413]. Needless to say that carrying out expansions
only makes sense when the closed-form solution depends on something that is small,
either a physical parameter or the maximum value achieved by some variables, in
this way making the power series to converge. But then the cumbersome procedure
of making the expansions and their subsequent reversions can be completely avoided
by directly approaching the solution of the integrable problem by perturbations.

In this chapter we provide two examples that illustrate the use of the Lie trans-
forms method in the direct computation of the explicit, expanded solution of inte-
grable problems whose closed-form solutions in action-angle variables depend on
special functions and remain implicit. The first case is the simple mathematical pen-
dulum, which is a problem of one degree of freedom, and is free from essential physi-
cal parameters. Since the traditional approach for the oscillatory regimen has already
been outlined in §2.2.2, we only discuss the rotation regime following the descriptions
in [413, 414]. The second example is the free rigid body, which is a system of two de-

https://doi.org/10.1515/9783110668513-003
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grees of freedom and depends essentially on physical parameters. This fact serves to
illustrate the perturbation approach in the case in which the small parameter is phys-
ical [200], and also to discuss the limitations of perturbation solutions when it relies
on a dynamical (formal) small parameter [391, 399].

3.1 The simple gravity pendulum

The simple gravity pendulum consists of a bob of mass m that is attached to one end
of a rod of length | and negligible mass, whose other end is fixed. It evolves under the
action of the local gravity acceleration g without friction, and it is one of the simplest
integrable models. The dynamical system is only of one degree of freedom, but the
nonlinear motion may evolve in different regimes, and one must resort to the use of
special functions to express its general solution in closed form [533]. In particular, the
solution involves the use of Jacobi elliptic functions, and the action-angle variables
can be obtained either by complete Hamiltonian reduction or directly by a canonical
transformation of the traditional solution [67]. A good brief account on the topic from
the point of view of Hamiltonian mechanics can be found in Appendix B of [198].

However elegant the closed-form solution in action-angle variables may be, it is
not practical in common applications because, in addition to depending on special
functions, it is obtained in implicit form. The expansion of the solution in action-angle
variables, while feasible, is not trivial at all [413]. On the contrary, when approached
by perturbations, the computation of the expansion of the explicit solution of the pen-
dulum in action-angle variables is straightforward and systematic [414].

The case of small oscillations about the stable equilibrium position is customarily
studied with linearized dynamics. Extending the solution further than the linear terms
by perturbations is well documented in the literature [209, 449, 552] and was already
briefly discussed in §2.2.2.

3.1.1 Hamiltonian reduction

The pendulum Hamiltonian represents the total energy = T+V. The potential energy
is V = mgh, where the height h = I(1 — cos 0) is measured with respect to the reference
level in which the pendulum reaches the vertical direction, and 6 is the angle with
respect to that direction. The kinetic energy is T = %82/1 , where I = ml? denotes the
moment of inertia, and the angular momentum O is the conjugate momentum to the
generalized coordinate 6.

A time scaling T = It yields

K=IH= %@2 + w2(1 - cos6), (3.1
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where w = I/g/l. Now, from Hamilton equations

o _ ok _ d—e——a—K——wzsinG
dr 90 —~ dr 06 ’

it is immediately derived the usual equation of the simple pendulum

o .

— +w°sinf =0, 3.2

= (3.2

where the parameter w can be further eliminated by a convenient choice of units.
Alternatively, for a given value of the energy K(6,,0,) = E, the trajectories in

phase space are directly obtained from Eq. (3.1) like

0 = +wV24cos0 -1+ E/w?, (3.3)

from which the phase space, the cylinder (6, ©), is readily represented without need of
integration. This is illustrated in Fig. 3.1, where the trajectories are traveled from left
to right for positive heights on the cylinder (6 > 0) and from right to left for negative
heights (0 < 0), and discloses the two different regimes that may exist depending on
the energy value. Namely, the rotation regime E > 2w?, in which Eq. (3.3) always take
real values, and the oscillation regime 0 < E < 2w?, where the motion of 6 is con-
strained to the interval in which Eq. (3.3) takes real values. In this last region, Fig. 3.1
shows the existence of a fixed point of the elliptic type at E = 0, corresponding to the
stable equilibrium of the pendulum in the downward position (8 = 0, 6 = 0).

O/lw

Figure 3.1: Phase space of the simple pendulum.

Oscillations and rotations are separated by the trajectory © = +2w cos %9 correspond-
ing to the energy E = 2w?; the dashed line in Fig. 3.1 tends asymptotically to © = 0,
6 = +m, which is a fixed point of the hyperbolic type on the surface of the cylinder that
corresponds to the unstable equilibrium of the pendulum in the upward position. The
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branches of this trajectory that depart from (resp. arrive at) the hyperbolic fixed point
are known as their unstable (resp. stable) manifolds.

As an alternative to the classical integration of Eq. (3.2), the solution of the sim-
ple pendulum can be computed by Hamiltonian reduction using the Hamilton-Jacobi
equation [413]. Thus, we look for a canonical transformation (8,0) — (8',0’) that
transforms the pendulum Hamiltonian (3.1) on a new Hamiltonian (8(8',0"), ©(¢’,
0')) = ¥(-,0') that is cyclic in the new coordinate 8’, whose integration is trivial:
0' =0y, 0 =6} + (0¥/00")r.

The required transformation,

, 0S oS
0 = 307 0= 30 34)
is derived from a generating function in mixed variables S = S(6, ©'), from which the
second equation is replaced into Eq. (3.1) to arrange the Hamilton-Jacobi equation
K(6,0S/08) = ¥(@') from which S must be solved [30]. In particular, replacing © =
0S/00 in Eq. (3.1), S is solved by indefinite integration,

S=12 J [¥(0') - 20 sin®(6/2)] "2 de. (3.5)

Plugging Eq. (3.5) into Eq. (3.4) yields

VW(O!) - 207 sin(0/2)
0 = V2[¥(0') - 207 sin’(8/2)]"*, 3.7)

in which the form of the new Hamiltonian W¥(0') remains undetermined, thus giving
rise to a whole family of transformations parameterized by ¥ [199].

3.1.2 Rotation regime. Solution in action-angle variables

The form of the solution of Eq. (3.6) depends on the dynamical regime in which the
pendulum evolves. In the rotation regime ¥(-, ®’) = E > 2w?, and the family of trans-
formations given by Egs. (3.7) and (3.6) is expressed in the form

0= 2% \V1- K2 sin, (.8)

_ k¥ i), (39)

!
0 w 00’

in which

Y= %9, k = w\2/¥(0) <1, (3.10)
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and F(y, k) = j (;/} (1-k? sin? a)’l/ 2dais the incomplete elliptic integral of the first kind
of amplitude ¥ and elliptic modulus k.

From the definition of the k in Eq. (3.10), the reduced Hamiltonian of the simple
pendulum is written in the standard form

2w?

= W > (311)

which allows one to parameterize the family of transformations by k rather than .
Indeed, from Eq. (3.11) we compute 0¥/00 = —4(w?/k>)dk/d@’, which is placed into
Eq. (3.9), to obtain

w dk

0 =42 %
12 do’

F(, K2). (3.12)

While any selection k = k(@) will produce the desired Hamiltonian reduction, it
is common to choose k in such a way that the new, prime variables remain of the same
nature as the original ones. In particular, the condition c_f) d@’ = 2, where the integral
is computed along a closed curve in 0, will turn ' = 6'(6, ©) into an angle [30]. That
is, Eq. (3.12) must fulfill the condition 8'(2m,0") — 6'(0,0’) = 271. Hence,

w dk

e

[F(m. k%) - F(0,K%)] = 2n.

From the properties of the elliptic functions, F(0, k?) = 0 and F(rt, k%) = 2K(k?), where
K(k?) denotes the complete elliptic integral of the first kind. Therefore,

dc @ K?

T == 3.13
de’ 4w K(k2) G.13)
which is plugged into Eq. (3.12) to obtain
' u 2
= L F(, k). 14
K(2) k) G.14)

On the other hand, because Eq. (3.13) is in separate variables we readily solve it to
obtain
dwg

e =
ik

(i), (3.15)
where E(k?) is the complete elliptic integral of the second kind.

For given (0, ©), k is obtained from Eq. (3.10) where ¥ = #(6, ©) = E. Therefore,
Egs. (3.14)—(3.15) provide explicitly the transformation to the action-angle variables in
which the pendulum Hamiltonian is completely reduced.

To obtain the transformation from action-angle variables to original variables we
must solve 6 = 21 from Eq. (3.14), which, jointly with Eq. (3.8), yields

0 =2am(u,k’), © =2(w/k)dn(u, k%), (3.16)
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where u = K(k2)9’/n, am denotes the Jacobi amplitude function, and dn stands for
the Jacobi delta amplitude. Evaluation of Eq. (3.16) requires the previous computation
of k = k(@) from the Eq. (3.15). For numerical evaluation purposes it is readily done
with the usual root-finding procedures. On the contrary, the implicit character of k in
Eq. (3.15) prevents the explicit representation of the completely reduced Hamiltonian
(3.11) in closed form as a function of the new momentum ©’.

The formal inversion of Eq. (3.15) to get k as an explicit function of ®’ is needed in
the solution of perturbed pendular motion. After expanding the right side of Eq. (3.15)
in powers of k < 1, we find

w 1.0 7,4 15 ¢ )
29 k(14 i Lk k),
o ( T3 T e Tmet T

which, setting € = (a)/G))2 < 1, is followed by a series reversion procedure, to obtain

5, 73 1614 )
k=2ve[1-e+2e?- L+ et +..-). 1
\/E< e+4e 46‘ + 646 + 3B.17)

Now, the expanded value k = k(®') can be replaced into both the standard Hamilto-
nian (3.11) and the transformation (3.16)—the latter having been preprocessed using
standard expansions of the Jacobi elliptic functions [175].

3.1.3 Expanded solution by Lie transforms

This involved procedure above is completely avoided by standard application of the
Lie transforms method. Thus, after neglecting the constant term w?, the Hamiltonian
(3.1) is rearranged in the form

K= %@2[1 - 2(w/©)* cos 8], (3.18)

which for values (w/0)? « % takes the form of a perturbation Hamiltonian. That is, the
simple pendulum in the rotation regime can be viewed as the spherical rotor K = %@2
perturbed by the local gravity [627]. In that case, we can use the Lie transforms method
to compute directly the explicit canonical transformation (8, 0) — (8',0’;¢) that, up
to some truncation order £", converts Eq. (3.18) into a new Hamiltonian depending
only on @',

To this aim, Eq. (3.18) is arranged in the form of the perturbation Hamiltonian
(2.30) with K replacing H. Namely, Ko = %@2, Kio=-c0s0, Ko =0form =2, and
the small parameter £ = w? has dimensions of angular momentum.

The Lie derivative (2.49) is £, = ©0/00. It immediately shows that its kernel is
made of functions that do not depend on 8, whereas the image of the Lie derivative is
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made of trigonometric polynomials of  whose coefficients are functions of the kernel.
Then the homological equation (2.48) is solved by indefinite integration,

1(,~
Wm = 6 J(Ko)m - Ko’m) d9 (3.19)

At first order, Ky, = K9 = — cos 8, which is purely periodic. Therefore, we choose
Ko1 = 0 and trivially integrate Eq. (3.19) to get W, = -07!sin §, where we ignored the
arbitrary integration constant. At second order, Eq. (2.37) yields Ky, = {Kyo; W} =
©72sin’ 6, where the terms of the kernel are easily identified by recalling that sin® 8 =
% - % cos 20. The choice Ky, = %@‘2 cancels the terms of the kernel in the integrand of
Eq. (3.19) out, which then becomes a function of the image. Then Eq. (3.19) is solved
to give W, = —%@‘3 sin 26. Finally, we fill Deprit’s triangle (2.16) by computing the
intermediate term Ky ; = %8’2 using Deprit’s recursion (2.15).

At third order, after successive applications of Eq. (2.15), we obtain

Koz = —%9"4(5 cos 6 + 3 cos 30),

which pertains to the image of the Lie derivative. In consequence, we choose Ky 3 = 0,
1

compute Wj = —ZG‘S (5sin 6 + 3 sin 36), from Eq. (3.19), and fill Deprit’s triangle with
the terms IC,; = 207* cos 6 and Kz = 0~ cos 6, which will be needed in following
orders.
Analogous computations yield
Kos = %@‘6, W, = -%@‘7(72 sin 26 + 5sin 46),
and so on. After reaching the desired order, the procedure ends writing the terms & ,,
in the new variables. In this way, we obtain the new, completely reduced Hamiltonian

W =Y 0™ /m)Ko ,(0") given by

woleg2fi le o0, 96, o(e¥) |, (3.20)
2 2 32 64

where the non-dimensional small parameter € = (w/0’ Y2 < 1, is used for brevity in-
stead of the dimensional one £ = w? of the perturbation approach. Comparison of
Eq. (3.20) with the one obtained from the direct expansion of the standard Hamil-
tonian (3.11), after replacing k by the right side of Eq. (3.17), will show that the two
expansions match term by term.

The direct transformation from prime to original variables is computed by stan-
dard application of Deprit’s recursion (2.15). Indeed, since the generating function is
known, replacing x by 6 in Eq. (2.17) and evaluating the resulting Poisson brackets, we
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find
001 = ©sin 6,
0, = 39 sin 26,
17y
90’2 = —%6_4 Sin 29,

0, = %8_6(13 sin 6 + sin 36),

6,, = %@*6(5 sin 6 + sin 36),
and so on. Then, after replacing original by prime variables, the transformation is ob-
tained in the form of a Taylor series 6 = Y., (e™/m!)6; ,,(6',0").

We carry out analogous computations for ©, and reorganize both transformations
in the form of Fourier series whose coefficients are truncated series in the small param-
eter. Using again the non-dimensional abbreviation € instead of the small parameter
€ = w?, we obtain

0=0+) z(e)esinjo', ©=0"Y Ze) cosjo, (3.21)
j=1 j=0

where the coefficients z; and Z) are given in Table 3.1. Like before, it can be checked
that the traditional expansion Eq. (3.16) matches Eq. (3.21) term by term.

Table 3.1: Coefficients in Eq. (3.21) up to O(e®); Zy = 1- 26> - 2 - £¢°.
j 1 2 3 4 5 6
11 .2 247 4 1 3 .2 707 4 1 9 2 1 3 2 1 1
Zj 1+ 56"+ 356€ 81t 16€ *2048¢ 8 T 192€ 256 T 256 € 1280 §144
3 .2 39 4 1 1.2 395 4 1 7 .2 1 5 .2 1 1
Zj 1+ qg€ + 55g€ 315 T 1025€ it e € 5t 8¢ 756 0%

Computation of the expansion of Egs. (3.14)—(3.15) by Lie transforms requires the pre-
liminary computation of the generating function of the inverse transformation vV =
-W(6(6',0"),8(0',0")), which is also obtained by Lie transforms in the form of a Tay-
lor series as described in §2.1.3.

3.2 The free rigid body

Another example of the suitability of the Lie transforms for approaching integrable
problems is the free rotation of a rigid body about a fixed point. External forces be-
ing absent, the linear momentum is conserved and the motion is conveniently de-
scribed by the rotation of the rigid body with respect to its center of mass O. Tradi-
tionally, the motion is decomposed into the rotation referred to the body (rotating)
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frame (O, by, b,, b;)—which is attached to the rigid body’s center of mass and defined
by the principal axis of the body—after which the attitude of the body in the space
(inertial) frame (O, s;, S, 3) is materialized by the Euler angles [243].

Due to the lack of external forces or torques the free rigid body conserves both the
angular momentum vector G = I w, where w is the angular velocity and I is the inertia
tensor, and the energy, which is limited to the kinetic one,

T:%arllw:%GJI_lG. (3.22)

Since they are independent, the free rigid body motion accepts one more integral than
the number of degrees of freedom, thus constraining the possible trajectories on the
surface of a torus and making the problem superintegrable [192].

3.2.1 Rotation in the body frame

In the body frame I is constant. If, besides, the body axes are chosen parallel to the
axes of principal inertia, then the products of inertia vanish and

A 0 O
I= 0O B O
0 0 C

where 0 < A < B < C are the principal moments of inertia, and A + B > C from the
definition of the inertia tensor.
For a given energy T = E > 0 constant, Eq. (3.22) constrains the possible solutions

to the surface
1,02 1,5 1., 1 5
EAaJ1 + Esz + 5(2(03 =—g/+

1

2
= E)
2053

1 5
gt
where (w;, w,, w3) and (gy, 8», 83) are the components of w and G, respectively, in the
body frame. This constraint takes the form of an ellipsoid of axes 2AE, 2BE, 2CE. Be-
cause |G| = Gis also constant, the motion is constrained to the sphere gl2 +g§ + g% =G?,
of radius G. The possible trajectories of the angular momentum vector in the body
frame are, therefore, given by the intersection of both surfaces [474], which is illus-
trated in Fig. 3.2 for a Moon-type body.

The instantaneous rotation in the body frame is obtained from Euler equations for
the variation of the angular momentum (dlw/dt), = (dlw/dt), + @ x I w. For the free
rigid body, we obtain

w,w W, = W3W, W3=-—
A Y 2 B V3% 3 C

In the particular case of mass distribution with spherical symmetry A = B = C, all
the solutions are equilibria. In the case A = B # C of axial symmetry with respect

d)l = - wla)2. (3.23)
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Figure 3.2: Trajectories of the angular momentum vector of a Moon-like free rigid body in the body
frame (A/C = 0.9994, B/C = 0.9996 [208]).

to the axis of maximum inertia (or short axis), ws is constant and w,, w, evolve with
harmonic motion. The case A + B = C of axial symmetry with respect to the axis of
minimum inertia (or long axis), is analogous to the previous one.

When A < B < C, simple inspection of Eq. (3.23) shows that free rotations around
the principal axes correspond to dynamical equilibria, whose stability character can
be guessed from Fig. 3.2. Thus, stable rotations around the axis of maximum inertia b
(w; = w, = 0) occur for the minimum energy

1., 1,
E;=-Cw" = —=G". 3.24
375 e (3.24)
Unstable rotations around the axis of intermediate inertia b, (w; = w5 = 0) occur for
the intermediate energy

1, 1 ,
E, = ~Bw® = —G>, 2
2= 5PY =58 (3.25)

and the range E; < E < E, defines a regime in which the angular momentum vector
rotates about the axis of maximum inertia. Finally, stable rotations around the axis of
minimum inertia b; (w, = w3 = 0) correspond to the maximum energy

1.5 1 5
E = -Aw? = —G, 3.26
1=8¢ =5, (3.26)

between which value and E, the angular momentum vector rotates about the axis of
minimum inertia. The different energy regimes are separated by the trajectory with
E = E, that links the unstable equilibria.

The general solution of Eq. (3.23) is obtained for the different energy regimes in
closed form in terms of Jacobi’s elliptic functions, and in terms of hyperbolic functions
in the case of the separatrix [377, 473].
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3.2.2 Attitude in the space frame

Once the rotation is solved in the body frame, it remains to relate the body and space
frames through the Euler angles (), 6, ¢) for precession, inclination and rotation, re-
spectively. They are illustrated in Fig. 3.3, in which the unit vector n = s;3 x b3/|ls; x bs|
defines the node of the body’s equatorial plane (b;, b,) over the space plane (s;, s,),
andm = s; x n.

Figure 3.3: Euler angles relating the body and space frames.

The desired relation between the components of w in the body (rotating) frame and
the derivatives of the Euler angles is obtained following the derivations in [682] (see
also [544]). Thus, let v be a vector whose components in the space (inertial) frame v, =
(&,1, ¢) are obtained from the corresponding ones in the body frame v, = (x,y,z) by a
rotation. Using matrix notation, (£,7,{)" = R (x,y,z)", where 7 denotes transposition,
and R = R3(-y) R{(-60) R3(—¢), where

cos sin O 1 0 0
Ry=( -sin cos 0 |, Ri=| O <cos sin |, (3.27)
0 0o 1 0 -sin cos

are the usual rotation matrices. Differentiation of the rotation yields (&,1,¢)" =
R(%,9,2)" + R(x,y,2)", where (£,7,{) are the components of the velocity vector in
the space frame, and (x,y,2) are those in the body frame. Hence, on account of R
being an orthogonal matrix,

'3 x X
n |=R|[ v |+RRl v |]|. (3.28)
¢ z z
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Alternatively, from the rule for differentiation of a vector in a moving frame,

Ccll_)t( =X+ WXX, (3.29)

where the dot over a vector means here derivation of the vector in the rotating frame,
we get the components in the space frame,

& X x 0 -w; w
n |=R y |+Q| vy , Q= w5 0 -w |- (3.30)
¢ z z -w, W 0]

From Egs. (3.28) and (3.30) we obtain Q = R*R, from which'

w,(t) = Psinfsing + Hcos p,
w,(t) = Psinfcos @ - fsin g,
w;(t) = Pcosf + ¢, (3.31)

which is readily solved in the derivatives of the angles to obtain

P = [w,(t) sin @ + w,(t) cos @] csc 6,
0 = w,(t) cos @ — w,(t) sin @,
¢ = ws(t) — P cos . (3.32)

The time solution of Eq. (3.32) involves the use of Jacobi theta functions [322, 571].

Note, however, that an interesting simplification arises when taking the plane per-
pendicular to the angular momentum vector as the inertial plane. Then G = Gs; and
the components of the angular momentum vector in the body frame are simply

(gl: g2>g3)T = (Awlr B(Uz, Cw3)T = RB(()D) Rl(e) (O: 0) G)T>

from which ¢ and 6 are solved without need of integration, whereas the following
integration of ) from Eq. (3.32) provides 1) in closed form as a function of the elliptic
integrals of the first and the third kinds [245]. Then, referring the solution to a different
fixed plane only involves additional rotations of fixed Euler angles, say (i, 6;, ¢,)-

3.2.3 Theinvariable plane
The plane perpendicular to the angular momentum vector is customarily called the

invariable plane, yet it will not remain fixed in the presence of torques. It provides a
natural link between the body frame and any fixed plane.

1 Customary arguments to justify the vectorial decomposition @ = 1) s; + 8 n+ ¢ b; have been pointed
out as erroneous in [448].
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Indeed, let m be a unit vector in the direction of the angular momentum vector,
G = Gm, and let I be a unit vector in the direction defined by the intersection of the
space plane and the invariable plane. Then (see Fig. 3.4 for reference), s; - m = cos I,
where 0 < I < m is the angle encompassed by s; and m reckoned counterclockwise
from s; (the inclination between the invariable and space planes). Besides, we have
s3 xm = Isinl, wherel = s, cosA + s,sind and O < A < 27t is the angle encompassed
by s; and I reckoned counterclockwise from s; —the precession angle of the invariable
plane on the space plane.

Figure 3.4: The invariable plane m as an intermediate reference.

Analogously, let i be a unit vector in the direction defined by the intersection of the
invariable plane and the equatorial plane of the body. Then m - b; = cos/, where
0 <J < mis the angle encompassed by m and b; reckoned counterclockwise from m—
the inclination between the invariable plane and the body’s equatorial plane. Besides,
mxb; = fisin], where it = b; cosv+ b, sinvand O < v < 27 is the angle encompassed
by i1 and b, reckoned counterclockwise from fi—the rotation angle of the body frame.
Finally, the precession angle of the equatorial plane on the invariable plane y is de-
fined from I - in = cos u, (m x 1) - n = sin u, where 0 < u < 27 is the angle encompassed
by l and i reckoned counterclockwise from .

Then the components of the vector v in the body frame v, and space frame v, are
related by the sequence of rotations v, = R3(v) Ry(J) R3(1) Ry (I) R3(A) v,. Alternatively,
Vs = R3(-A) Ry(-I) R3(—u) Ry(-]) R3(—v) v;,. That is, the body and space frames can be
related by five rotations based on two sets of Euler angles, say (¥;, 0y, 1, ¥, 85, ¢5),
such thatA = ¢;, 1 = 0, u = ¢y +,, ] = 0,, and v = ¢,. Needless to say that the
construction described above is purely geometric, and no assumption has been made
on the conservation of G.
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3.2.4 Hamiltonian formulation

Like in the case of the simple pendulum, an alternative to the classical integration is
given by the complete Hamiltonian reduction of the free rigid body Hamiltonian.

The first step is to compute the Lagrangian £ = £(¢, 6,1, @, §,1)). On account of
there not being potential for the torque-free rotation, the total energy is limited to the
kinetic component in Eq. (3.22). Hence, £ = %(A w; + Bw; + C w3), where the com-
ponents of the angular velocity in the body frame are those in Eq. (3.31). Because the
Lagrangian only involves homogeneous terms of the second degree in the generalized
velocities the Hamiltonian is the total energy [243]. Therefore, # = T = £.

Using Egs. (3.32) we find that the conjugate momenta to the Euler angles can be
written in the form

®=a—£.:=G~b3, @za—{::Gon, ‘P:a—),::G~s3. (3.33)

op 00 )
However, rather than constructing the Hamiltonian in Euler variables, it is advisable
to resort to the canonical set of Andoyer variables (A, u,v, A, M, N) given by the angles
A, u, and v, used in the description of the invariable plane, and the actions A = G cos I,
M = G,and N = G cos]J [24]. The canonical transformation from Euler variables to An-
doyer variables can be found, for instance, in [56]. Singularities of Andoyer variables
when I or J vanishes can be avoided using, for instance, the alternative sets proposed
in [206, 207, 287].
From Eq. (3.22) and on account of { = T for the free rigid body, we write

/1, 15 15
H= §<Zgl + §g2 + Eg3>’ (3.34)
where
&1 0 sinJsinv
g |=RsWMR(YJ)| 0 |=G| sinJcosv
83 G cosJ

Then, replacing G = M and J = arccos(N/M), the free rigid body Hamiltonian in An-
doyer variables is
Y T R RN N
H—2<Asm v+ 5 cos v>(M N)+2CN, (3.35)
where A, A, and p are ignorable variables. Therefore, M, A, and A are integrals of
the torque-free motion [150]. These integrals decouple the flow of the free rigid body,
whose reduced dynamics is obtained from the integration of the Hamilton equations
dv _oH < 1

. 2 1 2 1
3% - 3N ) sin“v + B cos”“ v C)N’ (3.36)
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v__on (1.1
dt  ov \A B
The time history of y is then obtained by indefinite integration.

The Hamiltonian (3.35) provides an elegant alternative to the geometric represen-
tation of the flow in Fig. 3.2. Thus, for a given energy manifold, say H(v, N;M) = E,

Eq. (3.35) can be solved for N to give
N = +\/QM, (3.38)

>(M2 - Nz) sinvcosv. (3.37)

where
(1/A)sin® v + (1/B) cos® v — 2E/M?
T (W/A)sin’v+ (1/B)cos?v—1/C
Phase curves (v, N) are then obtained by evaluation of Eq. (3.38) for different val-
ues of E, as illustrated in Fig. 3.5 for the same Moon-type body used in Fig. 3.2. Curves

in Fig. 3.5 correspond to scaled energy levels & = 2CE/G?, and are traversed right to
left for N > O and left to right for N < 0.

(3.39)

1.0F

10k ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 n/4 n/2 3rn/4 n 5n/4 3n/2 Tn/d 2nr

v

Figure 3.5: Phase space of the free rotation of a Moon-like body (after [150]).

When N = +M the variation of N in Eq. (3.37) vanishes, and the phase lines N/M = +1
of Fig. 3.2 correspond to permanent rotations about the axis of maximum inertia. Be-
sides, the configurationsv =0, N = 0,and v = %, N = 0, are equilibria of Egs. (3.36)—
(3.37). The former corresponds to a hyperbolic fixed point of Fig. 3.2 that yields perma-
nent rotations about the axis of intermediate inertia, whereas the latter corresponds
to an elliptic fixed point of the same figure that yields permanent rotations about the
axis of minimum inertia.

3.2.5 Closed-form solution by complete reduction

Like in the case of the simple pendulum, the integration of the torque-free motion can
be achieved by finding a canonical transformation (A, u,v, A, M,N) — (¢,8,h,L,G,H)
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that completely reduces Hamiltonian (3.35) to a function that, in the new variables,
depends only on momenta. In what follows, we closely adhere to the descriptions in
[412].

Because the conjugate pair (A, A) is ignorable in Eq. (3.35), we trivially take h = A,
H = A, and look for a transformation

ezg—i, g:g’—f}, M:Z—i, N:Z—i, (3.40)

derived from the generating function in mixed variables S = S(u,v,L, G), such that
H(-,v,M,N) =Y(-, -, L, G).

Because i is a cyclic variable, we choose the generating function in separate vari-
ables S = Gu + W(v, L, G), from which M = G in Eq. (3.40). Then the Hamilton-Jacobi

equation
1/sin’v  cos’v 5 oW\’ 1 /oW
is solved for W, yielding
W= GJ VQW,L,G)dv, (3.42)

where Q is the same as in Eq. (3.39), but now the total energy E is replaced by the
formal Hamiltonian Y(L, G). Namely

_ w4 sin’v + (1/B) cos’ v — 1/A

— , (3.43)
(1/A) sin“v + (1/B) cos?v - 1/C
in which we introduced the auxiliary variable of the moment-of-inertia type
1 2
~ = =Y(L,G). .
AT R (L,G) (3.44)

Note that A < A < C, as follows from Eqgs. (3.24) and (3.26).
Then, by applying the chain rule, the transformation in Eq. (3.40) is

10Y 1 10Y 1
Z—Eaz, g—H+EW+<E£—E>I, M—G, N—G\/a, (3.45)
in which
R(v)
I=C J —— _dv (3.46)
VA, L,G)
with the abbreviation
_ 1o _ ! . (347)

T CA(1/A) ~ 1-(C/A)sin?v — (C/B) cos?v
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The solutions of integrals (3.42) and (3.46) depend on the energy regime in which
the free rigid body evolves. We focus on the case of rotation around the axis of maxi-
mum inertia in which case v can take any value. Then the condition O < Q < 1 trans-
lates into B < A < C, as follows from Eq. (3.25) and the definition of A in Eq. (3.44). The
case of rotation around the axis of minimum inertia can be approached analogously
using Fukushima’s alternative to Andoyer variables [164, 206, 207].

The integration of Egs. (3.42) and (3.46) is made easier with the introduction of the
following auxiliary quantities: the non-dimensional parameter

1/A-1/B

yB-1c % (348)

f=

the non-dimensional function of the new momenta

_1/A-1/C

0, O 1, 4
= UA- 1/A> <m< (3.49)

m=pf,

and the angle i, defined unambiguously from

1+fsml,b . cosy

cosV = siny = ——, (3.50)
\/1+fsm \/1+fsinzl/)

from which

V1
dv=—— VT gy (3.51)
1+fsin“y
Then, replacing Eq. (3.50) into Egs. (3.43) and (3.47), after some rearrangement we
find
1 1 1

2 1t .2
Q—1+p(1 msin“y), R C(l/A—l/C)(1+f5m ¥),

which, jointly with Eq. (3.51), are plugged into Eq. (3.46) to give

7= £ 1+ )A+m/f)F@p|m). (3.52)

The integration of W is a little bit more involved. Thus, after replacing the auxiliary
variables into Eq. (3.42), we get

W =G\ + )1+ m/f) J f + mf sin”y dy,
(f + m)\1 - msin? (1+f31n )

which is rearranged by adding and subtracting m to the numerator of the integrand,
to give

W = G\ + N+ mif) [ I - IS, ¢|m>], (3.59)
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where I1(—f, |m) is the elliptic integral of the third kind of parameter m, amplitude i,
and characteristic —f.

The computation of the mixed canonical transformation given in Eq. (3.45) is then
completed. In fact, in view of Z and W depending on m, which in turn depends on
A = A(Y), it is a family of transformations parameterized by Y.

On the other hand, Y can be solved from Eq. (3.44) as a function of A, which in turn
is solved from Eq. (3.49) as a function of m. In this way, we get the standard Hamilto-
nian [587]

G? C-A f
Y=—(1-—-—"—) 3.54
2A< C f+m > (3.54)
which shows that the family of canonical transformations that achieve the complete
reduction of the Hamiltonian in Andoyer variables is, in fact, parameterized by m.
Moreover, to reflect that m = m(L, G) is non-dimensional, we make m = m(p), with
p = L/G. Hence, by application of the chain rule,

oY 9Yomdp GC-A f om

oL omopol 24 C (f+m)Pop’
aY_G<1_C—A f > oYomop 2Y 0Y

¢ Fem) mpac= 6 P 69

(3.55)

G A

which are plugged into Eq. (3.45) to give the family of transformations parameterized
by m = m(p) [199]. That is,

__f om
€= S A+ DA+ M FIm) =2, (3.57)
g=u+\1+HA+m/f) (3.58)

p f om\F@im)
(3 )
M =G, (3.59)
B 1 _ .2
N=G —1 - V1 - msin“ . (3.60)

Now, we particularize the transformation by requiring that both ¢ = ¢(v,m) and
g = g(u,v,m) be angles. That is, chdL’ = 2 when v advances by 27 or, equivalently, i
recedes by 2. Hence, £(y = 0) — £(y = 2r1) = 271, from which

om _ f +m)>*?n
P KmFaA+f)

On the other hand, the angle condition for g requires that it increases by 27 when its
partner angle u advances by 271, while remaining unaffected by a 27 increase of v [30].
When this condition is applied to Eq. (3.58), we get

p f om\Km) )
<m - zma)m ~TI(~flm) = 0. (3.62)

(3.61)
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The auxiliary variable p = L/G is solved after eliminating om/dp between Egs. (3.61)
and (3.62). We get

2 m
p=2ya+pax m/f)[n(—ﬂm) - k)|, (3.63)

which leaves m as implicit function of p.?

The transformation between Andoyer variables (1, v, M, N) and action-angle vari-
ables (¢, g, G, L) is thus completed. However, the reduced Hamiltonian Y must remain
implicit, in the standard form of Eq. (3.54) as far as m is an implicit function of L and G.
Still, the Hamilton equations are obtained by replacing Eq. (3.61) into Egs. (3.55) and
(3.56), which provide the numeric values of the constant, secular frequencies once m
has been computed.

In summary, given the Andoyer variables, the action-angle variables are explicitly
obtained from the following sequence. First, make G = M from Eq. (3.59), and compute
Y = H(v, N, M) from Eq. (3.35), A from Eq. (3.44), and m from Eq. (3.49). Then we solve
the inverse of Eq. (3.50) for 1, namely

V1+fsinv . cosv

oSy = ——, siny=———. (3.64)
\1+fsin®v \1+fsin®v
Next, plug Eq. (3.61) into Eq. (3.57) to compute
0=~ F(plm) (3.65)
~ 2K(m) ’ )

Plug Egs. (3.61) and (3.63) into Eq. (3.58) to compute

g = A+ N+ mif) [ HEQQT)F(‘”"") I, wlm)], (3.66)

and replace p = L/G into Eq. (3.63) to obtain

L= %xlu T+ m/f)[H(—flm) - %K(m)]. (3.67)

The mapping (¢,g,G,L) — (i, v, M, N) is given by an analogous sequence which
starts with M = G from Eq. (3.59). Then m is computed from Eq. (3.67) using a root-
finding procedure. Next, Eq. (3.65) is inverted to obtain

Y = am[-(2/m)K(m)¢|m)]. (3.68)

2 It can be checked that p is solution of both Eq. (3.61) and Eq. (3.62), so in this way we have obtained
p as an anti-derivative of integrals for which we still lack rules to solve.
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Finally, v is computed from Eq. (3.50), u is solved form Eq. (3.66), and N is obtained
from Eq. (3.60).

In order to apply the free rigid body solution to perturbed rigid body rotation, An-
doyer variables must be explicitly obtained in terms of the action-angle variables. This
requires, as a first step, one to solve formally m from the implicit equation (3.67). Like
in the case of the simple pendulum, solving m explicitly needs to make use of series
expansion and reversion procedures. One must note, however, that while in the case
of the pendulum expansion of Eq. (3.15) converges, as shown in Eq. (3.17), more care
must be taken when solving formally Eq. (3.67).

Indeed, recalling that p = m/f, from Eq. (3.49), standard expansions of the elliptic
integrals in Eq. (3.67) produce

L

1 1 1
&1 I\Tefp|1- 36 Pp + o (40 - 5f + 3

1
~ To37 (560 - 120f + 54f2 - 25F2)p> + O(p*) |,

whose convergence may be compromised for small f. The convergence limit p < 1
means that
A < A/C
C 2-A/C
which establishes a relation between physical and dynamical features of the torque-
free motion. In particular, the expansions will converge only in the gray region of
Fig. 3.6, defined by Eq. (3.69), whereas convergence fails between the border of that

region and the dashed diagonal that marks the limit A = A.

(3.69)

1.0+

0.8+

0.6

AlC

04+

0.2+

0.0
00 02 04 06 08 10
AlC

Figure 3.6: Convergence domain (gray region) of the expansion of Eq. (3.67).

The computation of the explicit transformation based on expansions of the closed-
form solution is awkward yet feasible [345, 347, 614]. Alternatively, we will show in
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§3.2.6 and §3.2.7 how the Lie transforms approach provides both the expanded Hamil-
tonian and the explicit transformation in a systematic way [200, 391, 399].

3.2.6 The case of low triaxiality

A simple rearrangement leaves Hamiltonian (3.35) in the form

M? g
H= f[l +asin”J(1 - Bcos2v)], (3.70)

where we recall that J = J(N, M) = arccos(N/M), and the new inertia parameters 0 < a
and 0 < B < 1, which are solved froma (1+ ) = C/A -1, a (1- ) = C/B -1, have clear
physical meaning. The limit case a = 0 corresponds to a rigid body with spherical mass
distribution (A = B = C), whereas the extreme values § = 0 and = 1 correspond
to axisymmetric oblate (B = A) and prolate mass distribution (B = C), respectively.
Therefore, the triaxiality coefficient,

1/C C B-A
BZE<Z_E>:B—A+2A(1—B/C)’ G.7)

provides a measure of how much the rigid body departs from axisymmetrical mass
distribution.

In those cases in which 8 is small, Eq. (3.70) can be viewed like the perturbation
Hamiltonian % = H, + B H,, in which

M? N? 1 5> 1/1 1\.,
- +af1-Z )| =—M2-Z(=—-2 N 72
Ho ZC[ +“< M2>] 2B 2<B* c) G.72)

is formally the same as an axisymmetric oblate body with intermediate moment of
inertia B* = C/(1 + a), and
2 2
Hy = —%a(l— %)cost (3.73)
is a perturbation. Therefore, the expanded solution of the Hamiltonian flow stemming
from Eq. (3.70) can be approached directly by perturbations based on Lie transforms.
We start from the usual perturbation Hamiltonian (2.30), in which € = 8 is a phys-
ical small parameter, H, q is given by Eq. (3.72), H,; o by Eq. (3.73), Hp = 0 form > 2,
a is a physical parameter, and M is an integral. Then we look for a Lie transformation
(v,N;B) — (v, N') derived from the generating function W = Zmzo(ﬁm /mMYW 1 (V,N),
such that, up to some truncation order 8™, it converts the Hamiltonian into a function
of only the new momenta N'.
Due to the particular form of the zeroth order Hamiltonian (3.72), the Lie derivative
(2.49) is Ly = —(a/C)NO/ov. Therefore, the homological equation (2.48) is solved by
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indefinite integration,

1 _
Win = “@ON J(Ho,m — Hom) dv. (3.74)

At first order ﬁ0,1 = H; 9, which is purely periodic in v, and, therefore, pertains to
the image of the Lie derivative. Hence, we choose H,; = 0 and compute

1
W = _ZNtZ sin 2v,

where we abbreviated t = tan] = VM?/N2 — 1. It is worth noting that, because t can
grow without bound, the perturbation approach will fail in such dynamical configu-
rations where the rotation may depart notably from the axis of maximum inertia.

At second order, the known terms given in Eq. (2.37) result in

Hoo = {Hy0. Wi} = (a/C)éN2t2(4 + % - £ cos 4v).

To cancel the terms in the integrand of Eq. (3.74) pertaining to the kernel of the Lie
derivative, we choose

—~ 1
Hoo = (Hoo)y = (a/C)gNztz(l} + tz),
and we solve the homological equation (3.74) to obtain
W, = —3—12Nt4 sin 4v.

Before going to the third order, we fill the first diagonal of Deprit’s triangle (2.16)
with the term #,;, which is solved from Eq. (2.34) and happens to be the same as
Ho>- The homological equation of the third order is then obtained by computing the
term 7, 3 form Deprit’s recursion (2.15). After evaluation of the computable Poisson
brackets at this step, the known terms as a result are found to be

—~ 1
Hos = —(a/C)iNztz[(BZ + 8t +5t*) cos 2v + 3t* cos 6v)].
Because 7703 is purely periodic in v, we choose #, 3 = 0 and compute
1 . .
W; = —aNtz[(BZ +8t% + 5t*) sin 2v + t* sin 6v],

from Eq. (3.74). Once W is known, the terms %, , and 7, are computed, using Deprit’s
recursion (2.15), in order to complete the second diagonal of Deprit’s triangle (2.16).
One further iteration of the perturbation approach yields

Hos = (a/C)%Nztz[élt +16t% + 8t + 5¢°

— 4(16 + 16t + 9t*)t* cos 4v — 5t° cos 8v],
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from which we choose
Hou = (a/C)%NZtZ(M +16t% + 8t" + 5¢°)

and compute

W, = —%Nt4 (16 + 16> + 9t*) sin 4v + gf’ sin8v |,
from Eq. (3.74). We stop here, which is the same order provided in the seminal paper
by Kinoshita [345], but the procedure is easily extended to the computation of higher
orders [200].
After truncation to O(8*), the new, completely reduced Hamiltonian is

4 m
K = HVW NNV, N = Y %Ho,m,

m=0

which, after changing original by prime variables in the computed #,, ,, terms, reads

2 12 2
:M _N_ 1_B__t(
2B*  2C 21 4

where now t = (N'/M)? - 1.

The direct transformation is computed from Eq. (2.17), changing x by v or N, and
using the computed terms of the generating function. Finally, after changing primes
by original variables in the terms v; ,,, Ny ,, the direct transformation is

ey

2 2 4 6
aent (64 +16t° + 8t +5t°) |,

4 ﬁ ﬁ
Z H v I) N=N+N' z _NOm(V N) (3.75)

whose first coefficients are given in Table 3.2. The inverse transformation is analo-
gously computed using the generating function V = -W(v(v',N'), N(v',N")). The first
four coefficients of Eq. (2.27) are listed in Table 3.3.

The method is obviously valid when additional perturbations are added to the
original Hamiltonian (3.70). The additional terms only need to be included in the per-
turbation arrangement in the place corresponding to the magnitude of its disturbing
effect [415].

3.2.7 Short-axis-mode rotation
When the free rigid body rotation happens in such a dynamical regime that the ro-

tation axis keeps close to the body’s short axis—the axis of maximum inertia—then
N = M and, therefore, sin’ J < 1. However, it must be noted that both the physical
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Table 3.2: Coefficients v, ,, (top) and Ny, (bottom) in Eq. (3.75).

01 22+ t%)sin2v
02" %(8 +8t% +t4)sin4v
03: m(BZ +16t2 + 14¢% + 11¢° )sin2v + m(z + 12 )(16 + 16t + t“)sm 6v

04 55 (3243267 + 16t + 141° + 3t%) sin 4v + 12128 + 2561% + 160t* + 32t° + %) sin 8v

1024

01 3t2cos2v
02" —%tz(l; +2t2 —t2 cos 4v)
03 o t°[(32+8t% +3t*) cos 2v + t* cos 6v]

04t —Tagt2[6(32 + 2417 +12t* + 5t°) — 1617 (4 + 2t* + t*) cos 4v — t° cos 8v]

Table 3.3: Coefficients of the generating function of the inverse transformation.

Vi =3N't?sin2v

Vy = SN't*sinayv!

V3 = L N't2[(64 + 24t% + 15t*) sin 2v' + 3t* sin6v']
37 128

Vi = 1oz N't*[8(64 + 96t + 55t*) sin 4v' + 31t* sin 8v']

parameter a and the dynamical quantity sin®J just scale Eq. (3.70). Indeed, because
M is constant, the Hamiltonian flow stemming from Eq. (3.70) is the same as the one
stemming from #* = sin® J(1 - B cos 2v), yet in a different time scale and with respect
to a different energy level. Hence, neither a nor sin’J are useful in providing a per-
turbation arrangement of the free rigid body Hamiltonian Still, by simply rewriting
sin ] in terms of the half angle, and recalling that sin’ 2(1 —cosj) = 2(1 - N/M),
we can write the free rigid body Hamiltonian (3.70) 111<e the perturbation Hamiltonian
H = Ho(N) + € H,(v, N), in which the small parameter ¢ is now formal (¢ = 1), the
zeroth order term is

2

Ho = M [1+(4a) sin ( )(1 Bcos Zv)] (3.76)

2C

and the perturbation is
M?
Hy = —2—(40() sin ( >(1 B cos2v). (3.77)

The fourth power to which sin % J is raised in Eq. (3.77) shows the smallness of H, com-
pared to H,.

While the term H,, the main problem of short-axis-mode (SAM) rotation [391], re-
mains integrable, at variance with the case of small triaxiality discussed in §3.2.6 the
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intermediary Hamiltonian %, is not reduced. Therefore, the customary complete re-
duction of the zeroth order term is carried out before approaching the solution by per-
turbations.

We note that Eq. (3.76) is formally analogous to Eq. (3.70), in which J is replaced by
J* = % Jand aby a* = 4a. But this subtle change fromJ to % J has removed the exponent
2 from the variable N, thus preventing the appearance of square roots in the solution
of the Hamilton-Jacobi equation and the consequent appearance of elliptic functions.
While the computation of the solution of the Hamilton—Jacobi equation is now notably
simpler than in the full problem [391], a more direct approach is as follows.

First of all, we recall that Andoyer variables are singular when J = 0, a case that
is close to the usual SAM rotation. Hence, it is customary to reformulate the problem
in nonsingular variables [287]. Thus, we start applying the canonical transformation
(u,v,M,N) — (g,0,G,0), given by

g=u+v, G=M, 6=-+2(M-N)sinv, ©=+2(M-N)cosv, (3.78)
which formally converts Eq. (3.76) into the Hamiltonian of a harmonic oscillator,

2 —
S P L@+ ute)], (3.79)

Ho =3¢ G

of frequency w = /(1 + 8)/(1 - B). Next, the standard transformation to harmonic vari-
ables (2.40), which we now write

© = V2wLcos?¢, 6= +2L/wsin¢, (3.80)
is applied to Eq. (3.79) to give

2
Ho = S_C +a(1 —ﬁ)ng, (3.81)
which completely reduces the Hamiltonian of the main problem of the SAM rotation
in the action-angle variables (¢, g, L, G); cf. [391].
By further applying the transformations (3.78) and (3.80) to the perturbation #,;
in Eq. (3.77), we obtain
G L/1 B . )
=—-lal-B)=wL |w=| = - — e ),
H,y [a( ﬁ)Ca) ]wG<2 1+Bsm
in which the coefficient L/G manifests the smallness of #; with respect to #,. The
Hamiltonian H = H(L) + € H,(¢, L) takes the form of a perturbed harmonic oscillator,
whose solution can be approached by Lie transforms following analogous steps to
those carried out in the example in §2.2.2.
However, to further illustrate the application of the Lie transform method rather
than the standard case in which the disturbing function is expanded as a Fourier se-
ries, we go back to Eq. (3.79) and, instead of using the harmonic transformation (3.80),
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we rewrite it in real (g, G) and complex variables (u, U) [399]. To do that, we apply the
canonical transformation

0=u-i0)V2w, ©=(U-iuVw/2, (3.82)
where i = V-1 denotes the imaginary unit. It yields
G? 2,
HO = i(l - EluU), (3.83)

in which we abbreviated k = a(1 + B)/w = a\/1 - 2.
On the other hand, consecutive application of the transformations (3.78) and (3.82)
to the perturbation term (3.77) yields

My = % (2207 - iB(3U - ul?)), (3.84)

which is a homogeneous polynomial of degree 4 in WU, Because ‘H, is free from g
and G, the integral G plays the role of a dynamical parameter, and the Lie derivative
(2.49) of the Hamiltonian flow (3.83) takes the form

Lo = G%i(U% - u%). (3.85)
For a generic monomial WUk, Eo(uj U4y = Gx/C)(k - j)iuj UX, which vanishes when
j = k. Therefore, the elements of the kernel of the Lie derivative (3.85) are the mono-
mials 1/ UX with j = k, whereas the image of the Lie derivative is made of monomials
WU with k # j.

The solution of the homological equation is then trivial in complex variables by
simply noting that each term of the image qj)kuj U, where g, denotes some numeric
coefficient, contributes a term pj’kqj,kuj U to the generating function, where

c i

Pjkx =
In consequence, the construction of the perturbation solution of a free rigid body in
SAM rotation becomes a simple exercise of polynomial algebra. Let us check this.
The perturbation Hamiltonian is H = Zmzo(sm [mY)H,, o(u, U), with a formal small
parameter € = 1, Ho o = H from Eq. (3.83), H,o = H, from Eq. (3.84), and H,, = O
for m > 2. At first order
o a 22 ap. 3 ap. 3
Hoq=Hio==uU - ——=iwlU+-——iulU-, 3.87
01— 70 7 5 4C 4C G.87)
where the first summand on the right side pertains to the kernel of the Lie derivative
(3.85), whereas the other two summands are members of the image. Then we select

a 7.2
=—uU.
Hoa 2Cu
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Next, the second summand on the right side of Eq. (3.87)—whose monomial WU has
exponents j = 3 and k = 1—is multiplied by p5; = iC/(2Gx), as follows from Eq. (3.86),
whereas the last summand is multiplied by p; 5 = -iC/(2Gx), to give

ap

' = 2x —(PU +ulP®).

At second order, we find

— B 5 LU a’p LU - ap .

H Rl 154 J 50
027 6ot Y T 260k 260k

where the last summand pertains to the kernel and the other two are elements of the
image. Then we choose

202
__aﬁ + 3713
oo =~56aM U

and solve the homological equation by adding the result of multiplying the first sum-
mand of ’}70’2 by p, 4, and the second summand by p,, ,. Using Eq. (3.86), we get

i a ﬂ 4
W, = - e 2(u U? +12U%).
It follows the computation of #,; to complete the corresponding diagonal of Deprit’s
triangle (2.16) before proceeding to the next order.
Straightforward computations, and the final replacement of the original variables
by the new ones, yield the completely reduced Hamiltonian

GZ[ U’ a u'l’

K= 1+xi b (B)(——l > ] (3.88)
2C n;O G

where by = -2, b; = 1, and the remaining b,, denote polynomials in the triaxiality

coefficient f3, the first of which are given in Table 3.4.

Table 3.4: Triaxiality polynomials in Eq. (3.88) [399].

b, =B’ be = 125 B2 (458" +354p2 + 128)

= 3p b; = ﬁ52(26554 +6508% +128)
by = 5B°(3B% +8) bg = 515387 (953B° + 14888B* + 17120B” + 2048)
bs = 5B°(57 + 4) by = 5155 B>(4075B° + 20212B* + 13104B% + 1024)

Needles to say that the desired Hamiltonian reduction has been effectively achieved by
the Lie transform process. Indeed, in spite of the new Hamiltonian (3.88) depending

EBSCChost - printed on 2/13/2023 11:02 PMvia . All use subject to https://ww.ebsco.confterns-of -use



72 —— 3 Application to integrable problems

on both complex variables, in addition to the integral G, it must be noted that K =
K(G, -iu'U"), where —iuU = L, as readily checked by applying to the complex variables
the inverse transformation of Eq. (3.82), namely

u=(30+wd) /2w, U=(@O +iwd)/ V2w,

followed by Eq. (3.80).

A caveat is in order in reference to the coefficient a/x = (1 - ﬁz)’l/ Zin Eq. (3.88),
which can make the Hamiltonian in new variables converge slowly in the case of al-
most prolate bodies (8 = 1). In such a critical case, carrying out a perturbation ap-
proach based on a physical parameter () < 1should be a better option. The choice
B = (1-p)/( + 3B), which plays the symmetric role of § in the case of rotations about
the axis of minimum inertia [295], may apply.

As regards the generating function, it is written in the form

W = B(u? + UHuU Z 1
o Ml kmG™

)™y, | (3.89)

where | m/n] denotes the integer division of the integers mand n, w; = %, wy = - %i and
the first few terms w,, are given in Table 3.5; cf. [399]. The relations U? +u? = 2iLsin 2¢,
U? —u? = 2Lcos2¢, U* + u* = 21% cos 4¢, and U® - u® = 2L° cos 6¢ are useful in the
translation of the generating function from complex to action-angle variables.

Table 3.5: Coefficients w,, in Eq. (3.89), cf. [399].

wy = —3(B% +2)uU + 2 Bi(U* - u?)

w, = 2(57B% +32)iull + ZB(9B% +20)(U” - u?)

ws = =5(343B% +2024B% + 480)u>U? - LB% (B + 2)(u” + U*) - 2 B(147B° + 100)iul(U” - u?)
We = —33(909B" +1588B% + 192)iu’U* + 2 B*(63B° + 44)i(u* + U*)

- 2B(91B" + 65367 + 200)ul/(U? - u?)
Wy = —5a02B(283B° + 186)i(U° — u®) + 2B (116B* + 917B + 308)ull(u* + U*)

+ 5025 B(1240678% + 272282p7 + 44800)iu’ U (U? - u?)

45 6 4 2 33
- 35(720B” + 8345B" + 6496B° + 448)u”U

The computation of the direct and inverse transformation equations is standard and
only requires the evaluation of Poisson brackets, as described in §2.1.3.

Finally, in the case in which both f and ¢ = 2sin? % J are small, the question of
which perturbation approach would be the most convenient emerges naturally. The
answer will obviously depend on the particular values taken by the triaxiality param-
eter and the inclination on the equatorial plane of the body with respect to the in-
variable plane. However, in common cases, the SAM perturbation approach provides
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a much more efficient procedure than the one based on a small triaxiality. This fact
is illustrated in Table 3.6, in which the physical small parameter § is computed from
Eq. (3.71), and J, is a bound for J [347].

Table 3.6: Inertia parameters and inclination angle for different solar system bodies. Adapted by

permission from Springer: [391].

Body [Ref.] A/C B/C B Jo o

Mars [143, 614] 0.994292 0.994981 0.0646 0.1" 0(10713)
Earth [208] 0.996720 0.996722 0.0003 1" 01071
Moon [208, 527] 0.999368 0.999601 0.2261 6.2" 0(10719)
Eros [615] 0.229427 0.963754 0.9779 55" 0(107%)
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theory
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4 The Kepler problem

The Kepler problem describes the relative motion of two point masses under their mu-
tual gravitational attraction. The three degrees of freedom of the Kepler problem are
reduced by the integrals derived from the conservation of the angular momentum vec-
tor, which defines the orbital plane and makes the problem integrable. Moreover, the
Kepler problem is a superintegrable Hamiltonian system [192] due to the additional in-
tegrals provided by the eccentricity vector.! Because of that, it can be reduced to a set
of five constant elements, which determine the nature of the orbit, and a single vari-
able that reckons the relative motion of one of the particles with respect to the other
from some initial epoch. Obviously, the orbital elements in any form are unavoidably
tied to the two fundamental vectors of the Kepler problem. In addition, the angular
momentum vector and the eccentricity vector are the basis of the apsidal frame, which
is fundamental in the vectorial formulation of perturbed Keplerian motion.

The elliptic case of the Keplerian motion is the basic integrable model in which
bounded orbital motion hinges on. When the reduction to elements is carried out
by the Hamilton-Jacobi method, it provides the action-angle variables in which per-
turbed Keplerian motion is naturally approached by perturbation methods [61, 358].
Therefore, the solution of the Hamilton-Jacobi equation of the Kepler Hamiltonian
and the following particularization of the transformation to the case of action-angle
variables are discussed in some detail, mostly following analogous descriptions in
[395] (see also [154, 171]). Alternative derivations of these variables rely on the use of
Lagrange brackets [1, 78] or on purely geometric considerations [189].

4.1 The orbital frame

Let (O, 1,j, k) be an inertial orthonormal frame, and let x be the position vector of a
particle with respect to the origin O, and x = dx/dt its velocity. The angular momen-
tum (per unit of mass) G = x x x defines the orbital plane, which is the instantaneous
plane orthogonal to G where the motion takes place.

Let G = |G| and define the unit vector n = G/G in the normal direction to the
orbital plane. Then n - k = cosI, where the angle O < I < m is the inclination of the
orbital plane with respect to the inertial (i, j) plane. The product k x n = € sin I defines
the unit vector € = i cos v +j sin v that materializes the direction of the ascending node
0 < v < 27 of the orbital plane on the inertial plane. The nodal frame is then defined
by the orthonormal frame (O, €, n x €, n).

Finally, let r = ||x||, and let u = x/r be a unit vector in the radial direction. Then the
orbital frame is defined by the radial, transversal and normal directions (O, u, nxu, n).

1 For historical considerations on the discovery of this vector and the different names attached to it,
the interested reader is referred to the erudite discussions in [241, 242].

https://doi.org/10.1515/9783110668513-004
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The components of the radial direction in the nodal frame u = €cos8 + (n x €) sin g
define the argument of the latitude 0 < 6 < 271, which is the polar angle in the orbital
plane.

The components of the position and velocity vectors in the orbital frame are

x =(r,0,0), Xx=(#r16,0). (4.0)
Hence,
G =ron, (4.2)
from which, replacing G = Gn, we obtain the fundamental relation
r’de = Gdt. (4.3)

On the other hand, if (x,y,z) and (x,y, 2) are the components of the position and
velocity vectors in the inertial frame, respectively, we obtain

x X ror
y v |=R(-v)Ri(-DR3(-6)( 0 r6 |. (4.4)
z z 0 0

4.2 Kepler Hamiltonian

Let us consider a system of two points of masses m; and m,, respectively, under the
only action of their mutual gravitational attraction. The conservation of linear mo-
mentum constrains the center of mass of the system to evolve with linear motion. Let
& =&, +ct, with &, and c constant, be the position of the center of mass in the inertial
frame, and let & ;= '3 +X;, j = 1,2, be the position of the particle of mass m;. Then, from
Newton’s gravitational law,

dzf' &’x; i gmm

] ] j 11772 :
m;,——= m,—= -1y —————(x; — x,), 1,2,
J de? i de? ( ) ||X1 —X2||3( ! 2) J

where G denotes the gravitational constant. Then the equation of motion of the relative
motion x = x, — Xy is

dzx_ u

dx__ H* 4.5
ez~ P (4.5)

where p = G(m; + m,) is the gravitational parameter. Note that Eq. (4.5) is singular for
x|l = 0.
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The right side of Eq. (4.5) is the opposite of the gradient of the potential energy
V=-u/x- x)l/ 2 which, jointly with the Kinetic energy (per unit of mass) T = %()’( -X),
defines the Lagrangian of the Kepler problem,

1. . U
e=T-V==2(x-%+ . 4.6
;X %) XX (4.6)
The conjugate momentum per unit of mass to the position vector is
x-%_% 7)
0x
from which
1 u
H=X-X-—, 4.8
2 VX - x (4.8)

which is a Hamiltonian of three degrees of freedom when the vectors are expressed by
their Cartesian coordinates x = (x,y,2), X = (X, Y, 2).

The Lagrangian (4.6) is written in polar coordinates using Eq. (4.1). We obtain £ =
%(fz + r292) + u/r, from which the conjugate momenta to r and 0 are, respectively,

oL . oL .
R=—2Z== 0 == =r0. .
5 ro (4.9)

That is, for the Kepler problem the conjugate momentum to r is the radial velocity,
and the conjugate momentum to 6 is the total angular momentum, as follows from
Eq. (4.2). Hence,

1 2
H = E<R2 + %) - ’7‘ (4.10)

where 6 is a cyclic variable and, in consequence, O is an integral of the Kepler problem.
That is, by the simple expedient of transforming Cartesian into polar variables one has
carried out a double reduction of the Kepler Hamiltonian, which in polar variables is
a Hamiltonian of one degree of freedom, H# = #(r, R), thus showing the integrability
of the Kepler problem.

If we now use Egs. (4.7) and (4.9) to replace velocities by momenta in Eq. (4.4), we
obtain

x X r R
y Y = R3(-v) Ry(-I) R3(-9) 0 O/r , (4.11)
z Z 0O O

from which it is readily checked that X - dx = Rdr + ©df + © cos I dv, where

N =0cosI, (4.12)
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is the third component of the angular momentum G - k in the particular case of Ke-
plerian motion. Therefore, the mapping (x,X) — (r,6,v,R,0,N) from Cartesian to
polar-nodal variables, sometimes called Hill [293] or Whittaker variables [679], defines
a canonical transformation of the Mathieu type [680].

We remark that the definition of the canonical transformation from Cartesian to
polar variables given by Egs. (4.11)—(4.12) does not involve the Kepler problem, and
hence is a purely geometrical definition. To the contrary, Eq. (4.9) is a particularization
for the Kepler problem. Therefore, the exact physical meaning of R and © will depend
on the specific problem in which these variables are used.

4.3 Hamilton—Jacobi reduction

The simple formulation of the Kepler Hamiltonian in polar variables has disclosed
three integrals of the problem: the total angular momentum © = G, the third com-
ponent of the angular momentum vector in the inertial frame N = ©cosI, and the
argument of the node v. That is, because

(G-i,G-j,G-k)" = Ry(-v) Ry(-1)(0,0,0)", (4.13)

these three integrals represent the conservation of the angular momentum vector G—
a case, in which Eq. (4.3) reduces to Kepler’s law of areas. Still, additional integrals
will be disclosed in a following integration of Eq. (4.10).

Like in the examples of Chapter 3, the Kepler problem is solved by complete Hamil-
tonian reduction of Eq. (4.10) using the Hamilton—Jacobi equation. That is, we look for
a canonical transformation (r,6,v,R,0,N) — (¢,8,h,L, G, H) such that it transforms
Eq. (4.10) into a function of only the new momenta. Because N, v, and 0 are ignor-
able variables in Eq. (4.10), we choose the generating function of the transformation
in separate variables S = vH + 6G + W(r, L, G).

Then the transformation equations

oS oS oS
N=—= H’ =— =40, =— =Y, 1
> C] % G, h i (4.14)
and
ow ow ow
E_E’ g=0+ 3G R—?, (4.15)

are plugged into Eq. (4.10) to form the Hamilton-Jacobi equation
2 2
1{ (oW G u
= =— — | - = =d(,G),
2[<ar>+r2] r (€.6)
which is solved for W to give W = Gj v Q(r; ©(L, G), G) dr, where the radicand Q > 0
is the quadratic form

1 ul ()
Qz—r—2+25;+2E. (416)
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The nontrivial part of the transformation is found by replacing W into Eq. (4.15).
We obtain

R=GVQ, (4.17)

and, after straightforward computations,

¢= %Il, g=0+ 2—211 + GI,, (4.18)
where the integrals
r S
I, = J 1% dr, I, = J 1% ds, s= %, (4.19)
To So

will be solved for the case of bounded motion O < rp < r <1, < 00, in which we choose
the lower integration limit ry = 1/s¢ = 1p.
First of all, we rearrange Eq. (4.16) in the form

o-(- )21

where, calling
p=G/u, a=p/(-20), (4.21)

from the properties of the roots of a quadratic equation we obtain

1 1

2 11 1
- ——=— (4.22)
'h Ip P Ipalp ap

Thatis, ry, = a1+ \1-p/a) > rp = a(1 - 1 - p/a), from which 0 < p < a. Besides,
Eq. (4.21) shows that bounded Keplerian motion is constrained to negative energies
(®<0).

If we further define

e=1\1l-p/a, 0<e<]l, (4.23)

from whichp/a=1- &2, the roots of Eq. (4.20) are written either in the form

ry=a(l+e), rp=a(l-e), (4.24)
or
1 1- 1 1
~oize o re (4.25)
Tp p p p
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Now, to solve Z; we make the change of variable
r=a(l-ecosu), (