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CHAPTER ONE 

INTRODUCTION   

 

 

 

Over the past 60 years, the field of Quantum Optics has seen 

technological developments in various attempts to develop sources emitting 

a single-photon per radiation mode, as well as corresponding photodetectors 

for resolving very low numbers of photons (e.g., Hepp et al. [1]; Lodahl et 
al. [2]).   

Quantum Optics (e.g., Garrison and Chiao [3]) is predicated on the 

superposition and entanglement of apparently single-photon number states. 

The processing of such quantum states by means of beam splitters is 

supposed to enhance the performance and sensitivity of various information 

assessing operations. The theoretical model is based on the mixed quantum 

states of an ensemble of measurements, which provides time-independent 

distributions for the numerical evaluation of probability amplitudes 

associated with alternative propagation pathways of one single-photon. 

The detection and measurement of correlated photons and their degrees 

of freedom constitute the experimental demonstration of concepts in 

Quantum Optics. The three stages of generation, propagation, and detection 

impact, in various ways, on the properties of measured outcomes.    

An early application of Quantum Optics occurred in the experiments 

intended to prove quantum nonlocality by generating a pair of polarised, 

highly correlated (or entangled) photons, with an optically nonlinear crystal 

(e.g., Garrison and Chiao [3]). One photon is sent in one direction and the 

other in the opposite direction. Remote and independent measurements 

would appear to be correlated, leading to the concept of quantum 

nonlocality. Surprisingly, though, the same correlation function can be 

derived without entanglement, by using single and independent quantum 

polarisation states, or qubits (Vatarescu [4-5]).  

In an article published in August 2014 by Tipler [6] and titled “The 

quantum nonlocality does not exist”, the author detailed physical arguments 

for the statistical nature of the experimental results contradicting the concept 

of quantum nonlocality. While initiating the analysis with ensemble 

entangled states, Tipler points out that quantum wave functions need not 

collapse into a specific state upon measurement. Rather, the overall wave 
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function continues to evolve and branches out into one of four possible 

options, thereby generating an ensemble distribution of measured values.  

A recent article in the Physical Review A authored by R. B. Griffiths 

[7], appears to be the first editorial exception to the uncompromising 

protection of the concept of quantum nonlocality. Additional analyses 

disproving the physical validity of the concept of quantum nonlocality have 

been published recently in other journals, e.g. (Boughn [8]; Khrennikov [9]; 

Kupczynski [10]). 

It is noteworthy that a large body of analytic rebuttals of the concept of 

quantum nonlocality has been continually ignored in tens of articles which 

are published every year on this subject. These continual omissions, in the 

legacy journals of professional literature, of challenging and physically 

meaningful interpretations of the experimental results can only be an 

indication of the resistance organised by vested interests. As yet, not one 

single article has reported any evidence – at the level of pure quantum states 

of a single measurement – of a correlated or entangled collapse of the 

quantum wave function at one location as a result of a measurement carried 

out at another remote location. The global, mixed quantum states which are 

claimed to generate those quantum correlations are distributions of 

ensemble measurement possessing no dependence of the time and location 

of the measured observables.   Despite the physical impossibility of a photon 

to maintain its polarisation state or even survive propagation through a 

dielectric medium because of the quantum Rayleigh scattering (Louisell 

[11]; Marcuse [12]), the concept of quantum nonlocality is still believed to 

provide an untapped resource for some future applications.        

Additionally, in 2015, experimental results presented by Qian et al. [13] 

in the classical regime of large numbers of photons, found strong 

correlations, known as concurrences, between variables of polarised light. 

These results broadened the concept of correlation between observable 

values of quantum variables, raising questions about the quantum signature 

of such correlations. 

These analytic and experimental results prompted this author to 

scrutinise the physical processes and interactions involved in the 

experimental setups, and which have continually been ignored and 

overlooked in major professional journals. Although detrimental to 

scientific development, the editorial policy of many journals would aim to 

preserve the status quo of physical understanding. 

Another application of Quantum Optics has to do with the combination 

of a single-photon source, a beam splitter and simultaneous detections with 

two separate photodetectors. This combination is commonly described by 
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means of a time-independent mixed state of correlation measurements 

(Garrison and Chiao [3]; Mandel [14]). 

However, a few questions have been overlooked: 1) How can a single-

single propagate in a straight line in a homogenous dielectric medium given 

the multitude of electric dipoles it encounters? 2) How can a probability 

amplitude, instead of an optical field associated with a photon throughout 

its propagation, trigger or activate a photodetector? 3) How can a single-

photon state of an ensemble of measurements, at a given time, interfere with 

another state that is physically absent at the same time?  4) How can the 

physical duration of a monochromatic photon be described mathematically 

by a polychromatic Fourier wave packet of the ensemble of measurements, 

given that only one Fourier spectral line would be measured at any given 

time?   

Technological advances in material fabrication for integrated photonic 

devices and circuits will need to be matched by improved physical 

understandings of light-matter interactions. These will facilitate the design 

and operations of functional devices such as phase-sensitive amplifications 

of photons, sub-Poissonian sources of photons, low-power phase-sensitive 

switches and modulators, etc. and will have the potential to open up new 

applications in optical communication relying on easy to control quantum 

interactions.  

The tenets of Quantum Optics consist of single photons propagating in 

a straight line in a dielectric medium, the interference patterns of probability 

amplitudes based on ensemble-evaluated mixed states of photons, and the 

use of beam splitters as entangling devices. Nevertheless, any probability 

amplitude of a quantum event should be evaluated from wave functions that 

reflect the physical reality. Discarding temporal information – which 

becomes a lack of information – about the propagation pathway of a single 

photon does not create a physical effect; it can only mask or obscure the 

existence of physical interactions.  

This book adopts a physical approach. As photons propagate through a 

dielectric medium, the quantum Rayleigh spontaneous emission replaces 

entangled photons with independent ones in homogeneous dielectric media 

where single photons cannot propagate in a straight line. Pure quantum 

states of wavefronts of independent groups of photons deliver the intrinsic 

field profile associated with a photonic wavefront and the correct 

expectation values for its number of photons, its complex optical field, and 

phase quadratures. The spatial distribution of a photon, both longitudinally 

and laterally, is found from the quantised Maxwell equations in the context 

of a Wigner-type monochromatic time-varying spectral component.  These 

photonic properties enable a direct analysis of various beam splitters and 
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interferometric filters, leading to generalized expressions for the correlation 

functions characterizing counting of coincident numbers of photons for the 

fourth-order field interference. 

1.1 A Historical Perspective 

The need to detect and analyse very week optical signals from distant 

stars led in the 1950s to the method of intensity interferometry in a bid to 

overcome the sensitivities associated with optical fields’ interference. The 

Hanbury Brown and Twiss experiment [15] of 1956 with a mercury arc 

lamp as the optical source of radiation, measured “correlation between 

photons in coherent light rays”. In that experiment, the light was produced 

by many different atoms, and one spontaneously emitted photon would have 

been slightly amplified on its way out. Thus, some photons might arrive in 

pairs at the half-silvered mirror (or beam splitter), which may explain the 

results showing a correlation between pairs of photon counts in terms of 

statistical distributions of bosons (Purcell [16]). 

In 1961, Fano developed a theory of two-photon interference involving 

two emitting atoms and two photo-detecting atoms [17]. Employing generic 

transition or interaction matrix elements, the theory leads to ”… a cosine 

function of both space and time” of the joint one-photon absorption by each 

of the two detectors.  

The next stage of the theoretical development in 1963, saw Glauber 

specify the probability amplitude of photon detection in terms of the 

annihilation operator and input quantum states [18-19]. Given that the 

photon creation operator and the annihilation operator are the adjoint of 

each other, the detection probability became identical to the expectation 

value of the number operator. This enabled the use of number states defined 

as the eigenstates of the free-space Hamiltonian operator of optical fields. 

An equivalence with classical optical fields was derived in the form of an 

ensemble eigenstate of the annihilation operator, and which became known 

as the coherent states of light. While the removal of one photon may not 

have any consequence for a very large number of photons as is the case in 

the classical regime, in the quantum regime of a few photons per radiation 

mode, ironically, the coherent state is impractical; additionally, the coherent 

states fail to deliver the eigenvalues of phase quadratures (Carruthers and 

Nieto [20]).   

The Glauber theory of photon detection and correlation (or coherence) 

is based on ensemble distributions of photons However, the corresponding 

quantum states lack information about time-dependent, instantaneous 

measurements or interactions which require the use of pure quantum states 
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that are allowed to be time-dependent. This shortcoming of quantum 

evaluations was pointed out by Mandel and Wolf in 1965 [21, Section 7.3] 

where one finds the following statement:  

“We have already shown in Sec. 3.2 that a description of ordinary 

interference effects may readily be given in terms of the quantized field, and 

that it follows the classical treatment fairly closely. It might therefore be 

thought that the transient superposition effects discussed in the last two 

sections can also be described quantum mechanically, in a closely parallel 

manner. However, here we come up against the basic feature that quantum 

mechanics is always concerned with expectation values of observables, 

whereas the calculation of expectation values was deliberately avoided in 

the simple treatment leading to Eqs. (7.6) and (7.10).” 

This shortcoming of the quantum approach was ignored in the 

developments of following decades. This book aims to rectify this 

deficiency, prompted by the very fact that experimental results are measured 

one value at a time, and the final resultant distribution of the ensemble of 

measurements is time-independent once the experiment is complete.   

Equally, the Glauber theory would have properties of instantaneous 

photons determined by the ensemble distribution to which they belong. For 

the number states, the photons would have no optical field, while for the 

coherent states the optical field arises from the overall superposition of a 

very large, if not infinite, number of photons. Yet, photons interact with 

dipoles and are detected at a given location and a particular time. 

Another branch of Quantum Optics was initiated in 1965 by Jaynes and 

Cummings with an article analysing the interactions between single photons 

and atoms placed in resonant cavities [22]. In this case the photonic state is 

time-dependent, consisting of two consecutive number states.   

Over the next two decades, 1965 to 1985, laser sources were used to 

prove interference between independent radiation modes of various 

numbers of photons. A review of possible single-photon interference 

patterns was presented by Walls in 1977, and space and time overlaps were 

included [23]. As the photon is the lowest amount of indivisible energy 

carried by an electromagnetic field, it can only be detected at one of two 

photodetectors located in the two alternative pathways. By contrast, the 

ensemble distribution of measurements would attach a non-zero value to 

both possibilities of the transition matrix evaluated with a pathway-

entangled state of one photon.  It is this discrepancy between the single 

measurement and the overall distributions that gives rise to a mathematical 

single-photon interference pattern in the context of a large number of 

measurements. The corresponding experimental results seemingly 

supporting quantum interference of probability amplitudes, are interpreted 
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on the basis of there being only one photon emitted by the optical source for 

each measurement.  

In a 1986 article (Grangier et al. [24]), an optical source based on 

Calcium atoms was reported to yield an anti-correlation parameter as low 

as 0.18 which the authors classified as practically a single-photon source. 

The apparent quantum interference patterns of probability amplitudes 

obtained with a Mach-Zehnder configuration containing two beam splitters 

are interpreted as a clear evidence of single-photon interference. However, 

as one single photon would be scattered randomly in a quantum Rayleigh 

interaction with electric dipoles in the dielectric medium of the beam 

splitter, the possibility does exist that the interference was, in fact, created 

by the 18% of the groups of photons emitted spontaneously and slightly 

amplified on their way out, and which split at the first beam splitter and 

recombined at the second one, on their way to the same photodetector.     

Over the next 15 years, to the turn of the century, optically nonlinear 

parametric crystals occupied centre stage as the most practical source of 

allegedly single photons. Pairs of spontaneously emitted photons are 

generated simultaneously by the interaction of an optical pump with 

nonlinear crystals. The optical frequencies and wavevectors of the two 

emitted photons obey conservation laws resulting in a high degree of 

correlation between the same degrees of freedom, and known as 

entanglement of photon states.  From a physical perspective, measuring one 

photon’s characteristic values would indicate the pair photon’s values of 

frequency, wavevector, and, given the anisotropic polarisation or 

birefringence of the crystal, the polarisation of the other photon. 

Although the optical pump pulses exciting the nonlinear crystals have 

relatively low levels of power, parametric amplification cannot be prevented 

resulting in a few, rather than one, photons per temporally discrete group. 

Therefore, the experimental results presented in the 1999 review article by 

Mandel [14] can be explained without quantum interference of probability 

amplitudes, and, in so doing, taking the counterintuitive element out of the 

picture [25]. This is, particularly, the case for the Hong-Ou-Mandel dip 

associated with a reduced counting of photon coincidences between the 

output modes of a beam splitter mixing two input synchronised and identical 

streams of single photons.   

Similarly, the claim of remotely collapsing a wave function is highly 

questionable (Fuwa et al. [26]). A single photon propagating through a 

beam splitter would be deflected from its planned pathway by quantum 

Rayleigh scattering.  Furthermore, the maximum likelihood method of 

numerically reconstructing a quantum state from raw data “aims to find, 

among the variety of all possible density matrices, the one that maximizes 
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the probability of obtaining the given experimental data set and is physically 

plausible” (Lvovsky and Raymer [27]). From the experimental point of 

view, the observer B’s “photoreceivers do not have to be efficient, and he 

can post-select on finding his system in a particular subspace” [26]. The 

maximum likelihood method of reconstruction requires a target state, and 

the sign parameter s is delivered from observer A for the reconstruction of 

the quantum state by observer B. Therefore, the reconstruction is not 

independent. Indeed, the quantum Rayleigh scattering would deflect any 

single-photon crossing the beam splitter, and bearing in mind the slight 

parametric amplification inside the source, the two observers share the same 

photon phase from the same group of photons split at the beam splitters. 

There was no direct link at the level of a pure quantum state of a single 

measurement between the two observers, if only, because with only one 

photon in the experimental setup at any given time, only one detector can 

be triggered, whether or not the photon is entangled.  Additional 

experiments (Ringbauer et al. [28, p. 4]) attempting to identify a cause and 

effect for quantum nonlocality between remote photodetectors found that “a 

direct causal influence from one outcome to the other can therefore not 

explain quantum correlations “. 

This century, the next stage in the quest for practical single-photon 

sources involved semiconductor quantum dots placed inside dielectric 

micro-cavities (e.g., Hepp et al. [1]; Lodahl et al. [2]); Senellart et al. [29]). 

It is pointed out in [30] that a quantum dot “emits a cascade of photons and 

a single photon is obtained only through spectral filtering of one emission 

line”.  High-finesse optical cavities incorporated in a measurement setup 

distort the temporally regular sequence of single photons because of 

multiple internal reflections. The emerging stream may contain groups of a 

few temporally overlapping photons, e.g. five, which may be unevenly split 

by a beam splitter and reduced in number through quantum Rayleigh 

spontaneous emission, so as to generate no coincidence for a zero delay-

time, in a Hanbury Brown and Twiss measurement.  Obviously, the beam 

splitter can precede the interference filter, in which case quantum Rayleigh 

stimulated emission can cause two photons from different radiation modes 

to interact with the same dipole so that one of the photons is coupled into 

the other radiation mode.  

A quantum dot placed in a high finesse micro-cavity of a few- 

wavelengths long and excited with a picosecond pulse, can emit a photon 

spontaneously and be re-excited within the duration of the same pulse. If 

the photon was reflected towards the quantum dot, stimulated emission may 

occur due to the small dimensions of the micro-cavity. This will result in 

two, or more, photons leaving the emitter simultaneously, as well as a 
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reduced lifetime of the excited state of the quantum dot, manifesting itself 

as a higher decay rate overshadowing the Purcell effect.  

The conventional description of a photon as an ensemble wave packet 

composed of Fourier components - which can only exist individually one at 

a time - leads to counterintuitive explanations. A physically meaningful 

description of a photon can be identified as a monochromatic Wigner-type 

spectral component which varies with time. Furthermore, any photon-dipole 

interactions occurring during the propagation is completely ignored in the 

professional literature, with the propagation phase being attached to the 

optical field operator, as the number states carry no optical field. 

Equally, in the professional literature, an interference term for a single-

photon is provided, mathematically, by creating a pathway-entangled 

quantum wave function for the photon’s propagation (Garrison and Chiao  

[3]; Walls [23]). Thus, a mysterious quantum effect appears as a result of an 

ensemble distribution, even though each individual measurement described 

by a pure quantum state, i.e., only one component of the ensemble, fails to 

generate that particular effect.  This contradiction leads to the question of 

whether or not the optical source emits only one photon. Additionally, rather 

puzzlingly, the operations of beam splitters and interference filters are 

modelled in terms of continuous waves, ignoring the temporally discrete 

nature of the stream of photons.  

The probability amplitude approach to photonic quantum interference 

leads to physical contradictions and counterintuitive conclusions which are 

held up as evidence of non-classical features. These are, however eliminated 

and physically explained by identifying the intrinsic field of photonic 

wavefronts, as explained throughout this book. 

1.2 An Outline of This Book 

Four major elements underpin the purpose of this book.  The first two 

elements are linked to the presence, in a homogeneous dielectric medium, 

of the quantum Rayleigh conversion of photons. As a result, one photon 

cannot propagate in a straight line and, initially, entangled photons are 

annihilated and replaced with independent photons.  The other two elements 

arise from employing a time-dependent pure quantum state to deliver the 

measured values of photonic degrees of freedom.  As a consequence, the 

quantization of the optical field is derived without any equivalence to 

quantum harmonic oscillators, and the photon is identified as an energy 

excitation characterised by a Wigner-type or mixed time-frequency 

representation of a monochromatic signal pulse.  
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With a view to identifying and probing a possible boundary between the 

quantum and classical regimes of optics, Chapter 2 of this book headlined 

“The Quantum Rayleigh Coupling of Optical Waves” describes the 

functional roles of the quantum Rayleigh emissions of photons and the 

resultant classical manifestations.   

The conventional interpretation assigns no optical field to photon 

number states which are the number eigenstates of the electromagnetic field. 

Any propagation effect is attached to the field operators and the absorption 

of a particle-like photon requires a transition between two consecutive 

number states. An optical field, known as a coherent state, is generated by 

an infinite superposition of number states under the condition of an 

ensemble eigenstate of the annihilation operator.  Nevertheless, a photonic 

wavefront interacts with electric dipoles instantaneously, and the need arises 

for an intrinsic and instantaneous optical field for any number of photons, 

regardless of the overall distribution of the optical beam. A physical solution 

to this problem is presented in Chapter 3 which identifies dynamic and 

coherent number states under the headline of “The Intrinsic Optical Field of 

Photons”    

“Photonic quantum noise reduction” can be implemented by means of 

parametric processes. Their scrutiny reveals common features such as phase 

dependent gain coefficients accompanied by a phase pulling effect as 

described in Chapter 4. These physical mechanisms can generate sub-

Poissonian distributions of photons through a saturation-like effect and 

using only integrated photonic circuits. 

In Chapter 5, “The Quantum Regime Operation of Dielectric Devices” 

is analysed in the light of evidence that emerged from the previous chapters, 

leading to different physical processes for various types of beam splitters, 

and to the temporal role that interferometric filters play in altering the 

original time sequence of a beam of single photons. As a consequence, 

individual measurements reveal the physical processes involved in creating 

interference patterns and are represented by pure quantum states which are 

dependent on the position and time of the measurements. The ensemble 

statistical distribution ensues from repeated measurements. 

“Photonic coincidences and correlations“ is the headline of Chapter 6 

which identifies temporal and spatial properties and aspects of an individual 

measurement, as well as photon-dipole interactions by means of the pure 

dynamic and coherent number states derived in Chapter 3. The use of pure, 

dynamic and coherent quantum states enables us to demystify the quantum 

nonlocality alleged to create coincidences between two separate 

photocurrents generated by mixing single photons across a beam splitter. 
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“Quantum Rayleigh Annihilation of Entangled Photons” of Chapter 7 

specifies the Hamiltonian of interaction between the electric dipoles in a 

dielectric medium and the optical field of photons propagating through that 

medium. As a result, one single photon is absorbed and spontaneously 

emitted in a random direction with a random state of polarisation. Yet, the 

remote correlations between these individual photons lead to the same 

correlation functions producing the same Bell-type outcomes as the 

absorbed entangled photons.  The statistical character of the “quantum 

nonlocality” outcomes is reinforced by the possibility of obtaining the same 

correlations with two separate sources placed in the vicinity of the 

respective photodetectors.  

In Chapter 8, recent experimental and theoretical developments are 

explained in the context of this textbook’s formalism, pointing to a blurred 

boundary between quantum and classical regimes, which is borne out by the 

analyses of the previous chapters. A paradigm shift in the interpretation of 

experimental outcomes of Quantum Optics is highly necessary, being based 

on the following physical processes and elements: 

1. The quantum Rayleigh spontaneous and stimulated emissions; 

2. The unavoidable parametric amplification of spontaneous emission, 

and the formation of groups of monochromatic photons in a high 

finesse cavity incorporating a quantum dot; 

3. Self-contained quantisation of the optical field without any harmonic 

oscillators leading to the dynamic and coherent number states; 

4. The intrinsic optical field of photons and their localised spatial 

distributions; 

5. The description of instantaneous and localised photon-dipole 

interactions by means of pure, dynamic and coherent number states; 

6. The quantum evolution and predictions being described by the 

Ehrenfest theorem, for any level of optical field excitation, to 

evaluate the expectation value of an operator in the context of a given 

set of pure wavefunctions. 

7. Identifying quantum phenomena at the level of single events and 

measurements with a space- and time-dependence, leading to 

quantum locality and realism.  

       

Overall, there are no quantum optic “miracles” once the physically 

present effects are correctly identified. 
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1.3 Remarks 

The smooth transition from the quantum regime of one or a few photons 

to the classical one of a large number of photons is due to the adequate 

choice of a wavefunction in the form of the pure, dynamic and coherent 
number states derived in Chapter 3. These states deliver the correct number 

of photons carried by a radiation mode, its field amplitude and phase 

quadratures. The equations of motion for the evolution of these variables 

are derived in Chapter 3 and applied in the following Chapters for any levels 

of mode excitation and photon-dipole interactions. 

Measurements of instantaneous wave fronts are described by dynamic 

and coherent number states which erase any quantum-classical boundary. 

While the intrinsic optical field of photons is critical for time-correlations 

at the level of one or a few photons, its importance could still be significant 

at high levels of photon numbers for a monochromatic group of photons as 

the optical field does not have a Fourier spectrum but is represented by a 

mixed time-frequency structure of the form S ( , t). That is, the 

monochromatic spectral component exhibits a time-varying amplitude 

which is not related to an optical Fourier spectrum corresponding to time-

independent spectral components. 

Entangled photons are scattered by the quantum Rayleigh spontaneous 

emission but remote correlations of measured states of polarisations are still 

reproduced by single and independent photons.  

The quantum Rayleigh photon-dipole interaction may involve two 

photons colliding at a dipole, with a possible outcome being the transfer of 

the excitation from one radiation mode to the other. This process may take 

place inside the dielectric medium of an interference filter or beam splitter, 

thereby creating groups of monochromatic photons from initially 

independent photons bouncing back and forth inside a resonant cavity. This 

quantum Rayleigh coupling of photons may explain the Hong-Ou-Mandel 

dip as one photon carried by one radiation mode may be captured by another 

photon associated with a second radiation mode inside a cavity.  

Equally, a remote wavefunction state preparation through a detection of 

one of the entangled photons is practically impossible because the 

photodetector’s excitation is triggered by an energy level of its structure 

rather than a quadrature state of a quantum harmonic oscillator.     
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CHAPTER TWO 

THE QUANTUM RAYLEIGH COUPLING  

OF OPTICAL WAVES 
 

 

 

Most activities in Quantum Optics aim to generate and manipulate one 

photon per radiation mode. It is assumed that once generated, a single 

photon will propagate unimpeded through a dielectric medium despite 

encountering a large number of electric dipoles. However, as a result of 

photon-dipole interactions, the process of quantum Rayleigh scatterings or 

emissions comes into play involving the absorption of one photon and the 

spontaneous emission of another photon of the same energy or frequency. 

At the photodetection stage, the temporally discrete electronic signals are 

assumed to be triggered by one single photon despite the possibility of a few 

photons arriving simultaneously and triggering a similar signal.  

From a physical perspective, in dielectric devices such as optical fibres 

and integrated optic waveguides, beam splitters, interference filters, 

polarisation controllers, etc., a single photon cannot propagate in a straight 

line, thereby raising significant questions about the validity of the 

conventional model or interpretation of Quantum Optics experimental 

outcomes. 

Despite having been well documented before the 1980s, the quantum 

Rayleigh spontaneous and stimulate emissions were totally ignored in any 

explanation of optical mode coupling devices such as directional waveguide 

couplers. Two optical beams of the same frequency but different wave 

vectors propagating through a homogeneous dielectric medium can 

exchange photons with each other and/or undergo mutually induced phase 

shifts as a result of stimulated Rayleigh emission underpinning the coupling 

term of the Poynting theorem. Quadrature fields of the same optical wave 

exchange power as they propagate through a homogeneous and linear 

dielectric medium. Consequently, coupling of photons between two optical 

waveguides takes place in the shared cladding region. 

The widely used coupled-mode theory describing optical power 

coupling between two adjacent waveguides – introduced in the 1960s – 

relies on a perturbation of the cladding as a physical mechanism. However, 
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the gradient of the perturbed dielectric constant gives rise to a randomly 

scattering term in the comprehensive wave equation. This approach is 

inconsistent with directional coupling of photons and leads to physically 

impossible outcomes raising questions about the validity of its application 

as in recently published articles in the IEEE J. Quantum Electron., vol. 54, 

2018 (no. 1, article 6300206, and no. 2, article 6800207). 

A physically meaningful and correct identification of processes 

underpinning the description of propagation and coupling of photons in 

dielectric media is crucial in order to open up new practical ways of 

designing, fabricating, and operating integrated photonic devices. The 

quantum Rayleigh conversion of photons (QRCP), provides a meaningful 

explanation for the operation of the optical directional couplers, in contrast 

to the perturbation approach based on the fictional splitting of the dielectric 

constant  (x, y, z) = b +   into a uniform background b and a perturbation 

  (x, y, z)  which is supposed to generate a coupling polarisation    P  = 

   E induced by an overlapping optical field.  No explanation has been 

provided, at least in this context, as to how the optical field can discriminate, 

physically, between the total local value of the optical susceptibility and the 

added perturbation to the refractive index, as opposed to the mathematical 

splitting of the permittivity.   

2.1 Coupled-Wave Interactions in a Homogeneous 
Dielectric Medium 

Optical parametric processes are well established for the second- and 

third- order susceptibilities (Shen [1]; Boyd [2]) and are characterized by 

conservation of the total energy of photons before and after the 

interactions.  The parametric gain displays a strong dependence on the 

relative phase between the pump and signal waves. A quantum feature of a 

parametric process of photon conversion is the amplification of 

spontaneously emitted photons to generate another optical wave (Vatarescu 

[3]; Inoue and Mukai [4-5]). These interactions can take place in both 

homogeneous and inhomogeneous dielectric media. 

 Similarly, an optically linear parametric (OLP) interaction consists of 

an electric dipole absorbing one photon and emitting one photon of the same 

frequency or energy, e.g. the elastic or Rayleigh scatterings (Marcuse [6]; 

Louisell [7]). The corresponding Hamiltonian of interaction and the 

Heisenberg equation of motion for the photon annihilation and creation 

operators are presented below in this Chapter.   

 This quantum process is localized, can take place in both homogeneous 

and inhomogeneous dielectric media, and is described macroscopically, or 
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classically, by means of the interaction term included in the Poynting 

theorem of the flow of energy. The resultant combination of in-quadrature 

waves is similar to the quadrature states of light (Mandel and Wolf [8], Ch. 

21) exchanging photons through parametric interactions. 

 The classical Rayleigh scattering which is attributed to local 

perturbations or fluctuations in the dielectric constant is linked to optical 

power losses in optical fibers.  

Quantum electronically, an oscillating electric dipole polarisation can be 

the source of spontaneous and stimulated emissions of photons [6-7]. 

Consequently, coupling of photons between two arbitrary waves interacting 

simultaneously with the same dielectric medium can take place with one 

beam of photons exciting the electric dipole polarisation and the other beam 

de-exciting the dipoles and gaining power through stimulated emission. The 

direction of coupling will depend on the relative phase between the waves. 

These physical processes require that Maxwell’s curl H equation of each 

wave be driven by the total electric dipole polarisation available in the 

medium. 

A practical device based on optical power coupling is the two-

waveguide optical directional coupler.  The conventional electromagnetic 

coupled- mode theory, e.g., (Huang [9]; Yishen,et al. [10]; Huang and  Mu 

[11]; Marcatili [12])  links the optical power coupling between two single-

mode waveguides to the perturbation of the permittivity of the optical 

waveguide cladding and the unperturbed evanescent modal fields that 

existed in the absence of the second waveguide. But the tail end of these 

fields no longer exists physically, having been disturbed by the introduction 

of the other waveguide. In reference [12], two sets of wave equations are 

mixed up to generate an “interaction” between the guided modes of the 

individual waveguides. One set of equations involves the normal, even and 

odd, modes of the coupler and the other set involves the modes of the 

individual waveguides. But no physical effect underpins this mathematical 

technique. Equally, the incoming guided mode of one waveguide is instantly 
converted, at the input to the coupler, into a superposition of the normal 

modes. But no explanation is provided as to how the propagation constant 

of the incoming photons is converted into the propagation constants of the 

normal modes. 

 Additionally, the approach based on the normal modes [9], [12] of the 

two-waveguide structure fails to explain how the incoming guided wave is 

converted instantly, at the input, into the orthogonal even and odd modes or 

why the same converting process does not occur between the two single 

mode waveguides in the cladding region they share. Equally, a group of 
photons cannot simultaneously cross from one waveguide into the other 
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while propagating in the same normal mode without converting the 

propagation constant.  Furthermore, the comprehensive wave equations 

incorporating the gradient of the dielectric constant would cause the tail end 

of the evanescent field of one waveguide to be scattered by the existence of 

the second waveguide. 

It is the effect of stimulated emission which is capable of causing 

photons to propagate with the same wave vector as the stimulating field [6-

7] instead of being spontaneously emitted or classically scattered. The gain 

providing stimulated emission is always the source of spontaneous 

emission. The spontaneous emission, which is a feature of the quantum 

wave-dipole interactions, is dependent on the optical susceptibility and the 

level of the optical pump and is distinct from the zero-point fluctuations of 

the electromagnetic field, as presented below in this Chapter. 

The phase-dependent parametric gain in optical fibers for the third-order 

susceptibility involving four-photon mixing interactions was analyzed [3] 

and demonstrated experimentally [4-5]. Conceptually, the following 

analysis adapts reference [3] to an optically linear medium. 

In this Chapter, a physically meaningful framework is developed – 

Section 2.1.1 – for the optically linear parametric (OLP) coupling of 

photons by making it consistent with the quantum effects of spontaneous 

and stimulated emissions associated with the linear parametric gain. The 

optical wave propagates forwards through stimulated emission as a result of 

the optimal phase-dependent gain.  This propagation involves a cascade of 

photonic conversions between quadrature waves in dielectric media, 

emerging from the Poynting theorem of the flow of energy. The refractive 

index results from local exchanges of energy between the optical field and 

the electric dipole polarisation.  

 In the case of an optical directional coupler – Section 2.1.2 – composed 

of two waveguides, the extinction of the wave launched into one waveguide 

gives rise to in-quadrature waves, one in each waveguide. The related 

coupling coefficients are determined from the total value of the local 

susceptibility at every point in space where any two waves overlap. No 

approximations are made in the derivation of results and no assumptions are 

needed. Previous experimental results are reassessed and physical aspects 

of optically linear parametric interactions (OLP) are outlined.  

2.1.1 Inter-quadrature Coupling through Optically  
Linear Parametric Interactions 

An optical collimated beam, or a travelling radiation mode, 

characterized by a field amplitude Eo, an initial phase , an angular 
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frequency , a wave vector k and a field polarisation unit , is represented, 

at time t and distance r = (x, y, z) from origin, by the relations: 

 

 ,                                                       2.1  

 

  , ,  1                                                                           2.1  

 

P 0.5                                                                                2.1  

                              

The field distribution E  is given in terms of the peak amplitude Eo and the 

spatial distribution f (x, y, z) which has units of m -1 and is normalized across 

any (x, y)-plane in eq. (2.1b) so that P(z) represents the total average power 

crossing that surface.  Additionally, o is the permittivity of free space, n is 

the refractive index of the medium, and c is the speed of light in vacuum.  

The dipole polarisations involved in the interaction are linear, i.e.     

P   = o  E 
 where (x, y, z) is the susceptibility of the medium, and in terms of the 

photon frequency notation,  

P ( ) = o  (  ; )  E ( ) 

indicating a parametric dipole polarisation with one photon being absorbed 

and one photon being emitted, both having the same energy [1-2].      

The conventional approach in electromagnetic theory is to insert the 

total field Etot = E1 + E2 in the Maxwell equations and then select terms of 

identical indices on both sides. This approach, however, leads to two 

difficulties: 1) the need to single out one wave by using an orthogonality 

condition; and 2) it disregards the quantum process of two optical waves of 

the same frequency but different wave vectors interacting with each other 

in an optically linear dielectric medium (as described below). As any wave 

propagating through the dielectric medium will interact with every electric 

dipole polarisation P oscillating at the same frequency, the Maxwell curl H 

equation (Ampère’s law) needs to be driven by the total electric dipole 

polarisation or the macroscopic dipole polarisation, leading to an additional 

term:  

 

  
 
  

 
                                                         2.2  

 

And a similar equation applies, with the indices interchanged, for the 

magnetic field H2.    

  As the optical beam crosses an (x, y) - plane interface from free-space 

into a dielectric material, the wave equations for its electric E1 and magnetic 
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H1 fields describing its propagation are derived from the Maxwell equations 

(Orfanidis [13, Ch. 14]) as 

 

                                          2.3a  

 
                                   2.3  

                                                                      

where ko =   / c ,   / o = n 2 = 1 + is the dielectric constant, and the time 

derivative operator was replaced with   E, (or H) /  t = i  E, (or H). The 

polarisation density P1 was included on the left-hand side of eqs. (2.3) and 

a second source polarisation P2 was added in the curl H Maxwell equation 

in order to point out the various quantum operations that these polarisations 

carry out simultaneously. Equivalent equations apply to E2 with the indices 

interchanged.  

The initial direction of propagation of the refracted wave from the 

boundary between the free-space and the medium is determined from 

Snell’s law which is indicative of the conservation of wave momentum in 

the (x, y) - plane. The refracted wave is generated by a boundary layer of 

source terms incorporating the gradient  and E1 in eqs. (2.3). Inside the 

medium, for   0, scattering of the optical wave takes place – see the right-

hand side of eqs. (2.3) – unless the field propagates along an optical 

waveguide, satisfying the boundary conditions for a guided mode.  The 

polarisation P2 can radiate into mode k1 and a mutual interaction emerges 

from the Poynting theorem. 

The differential, local and temporal, Poynting theorem [13, Ch. 1] of the 

optical flow of energy has the following form, with the asterisk denoting the 

complex conjugate of the variable: 

 

    
                                 2.4  

     
where       is the Poynting vector parallel to the wave vector 

, and the vectors k , E and H are perpendicular to each other for the same 

radiation mode. We align k1 to be parallel to the z-axis in a bulk medium. 

The constitutive relations are: D =  E and   B = μ H.   Making use of the 

identity 1/ c 2 = o μo and, for a radiation field   E 2 =  μ H 2 , we obtain from 

the real part of eq. (2.4) the longitudinal rate of change of the optical 

intensity Ej
2 at a point (x, y, z), and from the entire complex equation, the 

rate of change of the field E(kj) = Ej exp ( i ) of eq.(2.1a) after setting                  

E j =  E o j  fj (x, y, z), with  j  = 1 or 2 : 
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 2                                                                            2.5  

 
  

 
                          2.5  

 
 

 
                                      2.5  

 
 

 
                                                                                   2.5  

 

                                                                     2.5   

   

where  = ko    / (2 n) is the local coupling coefficient,  = ko n  

is the wavevector, with   being a unit vector in the z-direction, and 21 is 

the phase difference between the two fields. Similar equations to (2.5) hold 

for  with the indices interchanged. 

The refractive index n in eq. (2.5b) arises from the first two terms on the 

right-hand side of eq. (2.4) and is the result of local and instantaneous 

exchanges of energy between the optical field and the dielectric medium.  It 

corresponds to the self-coupling term with P1 from D1 = E1 + P1 replacing 

P2 in eq. (2.4) and setting  = 0 in eqs. (2.5). The second term on the right-

hand side of eq. (2.5b) emerges from the last term of eq. (2.4), indicating a 

possible phase shift brought about by a mutual interaction between the 

optical waves E2 and E1.  

As indicated by the last term of eq. (2.4) or by eq. (2.5a), for E1  0, 

coupling of power can take place in a homogeneous medium, i.e. where           

 = 0. This effect is not identified by the wave equations (2.3). For a real 

value , the coupling term in eq. (2.4) conserves the number and energy of 

the photons involved in the process of stimulated emission. A non-vanishing 

stimulating field of a particular radiation mode k1 is obtained from 

spontaneous emission or scattering of the incoming wave, e.g. elastic or 

Rayleigh scatterings. An expression evaluating the amount of spontaneous 

emission is outlined at the end of this Chapter. 

The maximum parametric gain is found from eqs. (2.5) to occur in the 

same direction as that of the pump wave E2 , i.e.  k1 = k2 , and for  =  / 2. 

Groups of photons spontaneously emitted by P2 and identified as E1 will 

have their arbitrary phase changed rapidly by the interaction as pointed out 

by eq. (2.5c), and the relative phase will become locked at   =  / 2. As a 
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result, an optical field E1 will appear and the outgoing field will consist of 

an amplitude modulation, taking the form: 

 

            

 

                                  z     z                      2.6  

 

 

  c   z     

 

                                       z                                    2.6  

  

which has the appearance of a phase modulation. The real part of Eout reveals 

two quadrature waves [8] exchanging power as they propagate alongside 

each other in the z- direction, i.e. k  r  kz  z . Each quadrature field rotates 

in the (x, y) plane with its amplitude varying periodically. 

2.1.2 The operation of optical waveguide directional couplers 

Bearing in mind the physical elements of the quantum Rayleigh 

emissions as outlined in Section 2.1.1 above, and relying on the quadrature 

states derived in the previous Section, we turn our attention to the case of 

an optical directional coupler composed of two single-mode waveguides. 

After identifying the waveguides by the letters a and b, we define the 

normalized fields e = E / Eo  ( where  Eo
2 corresponds to the normalizing 

input power ) as  

 

e a                                            2.7                         

 

e b                                             2.7                         

                                                                                         

where the subscripts p and q correspond, respectively, to the initial 

quadrature phases of   =  0 and  /2, and amplitudes    and  . 

A mathematical solution to eqs. (2.5) can be derived by means of elliptic 

functions for the total field phasors of ea and eb as defined in eqs. (2.1) but 

its complexity obscures physical features of the optically linear parametric 

interactions. Such characteristics are outlined in the remainder of this 

Section. 

As the waves propagate along a directional coupler – illustrated in cross-

section in Fig. 2.1 – changes in the evanescent fields spread across the entire 
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modal field through the boundary conditions. For an input launched into one 

of the waveguides, the generated in-quadrature wave appears in both 

waveguides – see Fig. 2.2 – from amplified spontaneously emitted photons 

captured by each modal field. The evanescent fields of the two waveguides 

overlap in the cladding region they share – see Fig. 2.1 - bringing about 

coupling interactions between the two modal fields through the quantum 

Rayleigh field-dipole effects.  

The tail of the evanescent field of either waveguide is scattered by the 

gradient of the local dielectric constant created by the core-cladding 

boundary of the other waveguide, as indicated by the source terms of the 

wave equations (2.3) containing . This scattering will lead to a loss factor 

being added to eqs. (2.4) and (2.5) and the scattered photons could become 

seed photons to be amplified in the other waveguide.   

n3n1 n2

Fig. 2.1 The Rayleigh induced coupling of photons takes place in the cladding            

between the two waveguides with refractive index n 3     

 

  p a                                  qa 

 
                                        q b                                                              p b  

Fig. 2.2 A diagram of the longitudinal stages of the comprehensive coupling effects 

between the two waveguides of a directional coupler. 

 

These effects are illustrated in (Marcatili et al. [14, Fig. 1(c)]; Syms and 

Peall [15]) where the measured optical power is coupled into the output 

waveguide through the cladding region, predominantly from the wave 

emerging from the terminated input waveguide. A small fraction of power 

associated with the evanescent tail of the input guided wave may directly 

excite the outgoing modal core field. These interactions are also present in 

Fig. 1(a) and (b) of [14] where two coupling stages can be identified: the 

conventional two-waveguide coupler and the coupling between the mode of 

the waveguide continuing to the output and the optical field propagating 

alongside the waveguide and originating from the terminated waveguide. 

The exchange of power between any two modal fields is evaluated from 

eq. (2.4) integrated over the (x, y) - plane. Eqs. (2.5) are modified by 

substituting P1/2 from eq. (2.1c) for the fields E, by replacing k with the 

propagation constant    and   with this coupling coefficient: 
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 , ,  , ,  , ,                                    2.8                          

 

where   is the total coupling coefficient across the (x, y) – plane, f1 

and f2 being the modal field spatial distributions in the cladding. This 

coupling coefficient is similar to the butt-overlap coefficient measured in 

[14-15], it is always symmetric, i.e.  , and its numerical 

evaluation requires the normalization of eq. (1b). This is in contrast to the 

coefficients of [9] where the normalized modes carry an amplitude 

corresponding to one unit of power (1W) for the tail of the evanescent field 

which was physically scattered by the introduction of the other waveguide. 

If a third wave is present, then each wave will interact with the other 

two, adding corresponding terms to the power and phase variations.   

 For   1 = 2 , and   =   /2 or (   /2), the coupling of power from P1 

to P2 or from P2 to P1, respectively, continues until complete depletion of 

the pump – see eqs. (2.5). For other values,  shifts towards   /2 for                   

P1 < P2 and towards  /2 for P2 < P1 . When  = 1  2  0 and initially  

=  /2, a substantial amplification of spontaneously emitted photons can 

occur as the relative phase  is pulled back towards    /2  by the strength 

of  the optically linear parametric term   =   /    in eq. 

(2.5c) . 

For initially  = 0, and with large values of  dominating the rate of 

change of the relative phase shift, power is coupled from P1 to P2 for   > 

0 and from P2 to P1 for  < 0.  The condition of  >>   will lead to the 

appearance of side lobes in the coupling profile when   does not cover an 

entire (0, 2 ) interval, leaving  in place residual coupled power – (see Fig. 

2 of [14]). Starting with  = 0, P1   P2 and   0,  the rate of change of  

is asymmetric between   > 0 and   < 0, with the interaction term  adding 

varying values.   

With reference to eqs. (2.7), an optical pump pa launched into waveguide 

a of the directional coupler will generate and amplify spontaneously emitted 

photons as they propagate in both waveguides a and b but with different 

coupling coefficients, giving rise to fields qa and qb in-quadrature with the 

pump pa – see Fig. 2.2. Initially, power will flow from the input pa  into qa 

and qb, resulting in Pa > Pb. The next stage of longitudinal power coupling 

will have power from qa transferred into pb. This will lead to the appearance 

of a fourth wave in-quadrature with qb and two quadratures phase shifted 

from the input pump pa.  

An instructive case of optical power being launched into both 

waveguides leads to couplings between in-quadrature waves (  =   / 2) 

and phase shifts resulting from interactions between in-phase waves (  = 0), 

e.g.: 
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where the subscripts p and q identify the two quadratures in each waveguide 

a and b. The other rate equations can be formulated by adjusting the 

subscripts. Despite the strong coupling coefficient, the net transfer of power 

is the difference between the simultaneous cross-coupling processes. 

Additionally, the intra-waveguide exchange of power between the 

quadrature waves may reduce the magnitude of the cross-coupling terms. 

This physically meaningful interpretation contrast with the mathematical 

techniques of references [16 -17]. 

2. 2 Phase-Sensitive Amplification of Optical Power 

An optically linear parametric (OLP) interaction (Vatarescu [18]) 

consists of an electric dipole absorbing one photon and emitting one photon 

of the same frequency or energy, e.g. the elastic or Rayleigh scatterings 

associated with the Quantum Rayleigh conversion of photons (QRCP). This 

quantum process is localized, can take place in both homogeneous and 

inhomogeneous dielectric media, and is described classically, or 

macroscopically, by means of the interaction term included in the Poynting 

theorem of the flow of energy presented in equation (2.4) above. These 

physical processes require that Maxwell’s curl H equation of each wave be 

driven by the total electric dipole polarisation available in the medium. The 

coupling term P2  E1
* between one wave E1

* and the dipole polarisation 

induced – through the linear susceptibility – by a second wave P2 =  E2 , 
and included in the equation of motion of the complex Poynting vector 

equation, would correspond to stimulated emission initiated by the 
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spontaneous emission or another co-propagating wave of the same 

frequency [18]. 

The QRCP can couple photons between two optical waves propagating 

simultaneously through a homogeneous medium, i. e., for which   = 0. 

Two optical waves of the same frequency, co-propagating through an 

optically linear and homogeneous dielectric medium, can exchange photons 

and undergo mutually induced phase-shifts providing the possibility for a 

variety of low-power integrated photonic devices such as phase-dependent 

amplification polarisation-dependent amplification, optical directional 

couplers, X-junctions, Y-junctions, polarisation rotation with spontaneous 

emission, etc.   

2.2.1 Equations of motion for interacting optical  
waves in a dielectric medium 

A physically meaningful coupled-wave formalism has been developed 

in the context of quantum Rayleigh coupling of photons for the operation of 

optical directional and counter-directional couplers, and other devices, in 

optically linear media as suggested in (Vatarescu [18-20]), for both 

homogeneous and inhomogeneous dielectric configurations. The resultant 

rate equations for the exchange of optical power Pj =   Nj (j = 1 or 2) or 

the corresponding numbers of photons Nj between two interacting 

wavefronts and their corresponding phases  j , are derived from equations 

(2.5) above, and have the following forms  [18-20]: 

 

                                                                                               2.10a  

  

/

sin                                                                          2.10  

             

  

/ /

                                 2.10c  

 

  

/

                                                                     2.10d  

                                 

 
2 

                                                         2.10e  

 

                                                               2.10  
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where the gain coefficient g includes a phase dependence and the coupling 

coefficient  is affected by the three-dimensional polarisation states of the 

two waves, that is,  e1 and e2 . The phase difference between the two waves 

is  2 1,   being the propagation constant and  z / t =  v p  is the phase velocity.   

In eq. (2.10 e), ko and n specify the free-space wave vector and the effective 

refractive index, respectively. It should be noted that eqs. (2.10) describe 

the physically meaningful process of quantum Rayleigh conversion of 

photons [18-20]. The coupling coefficient of eq. (2.10e) indicates that the 

entire local value of the optically linear susceptibility  (1) is involved in the 

coupling process inside the dielectric medium at any point where the two 

spatial distributions f1 and f2 overlap, each having units of m –1, and the field 

squared f 2  being normalized to a dimensionless unit over the cross-section 

area. This is in contrast to the physically impossible coupling between two 

optical waveguides apparently induced by a perturbation of the dielectric 

constant  in the cladding which leads, physically, to random, classical 

Rayleigh scattering [21]. Once again, it is worthwhile reiterating that a 

correct identification of physical processes will enable improved design and 

operation of photonic devices. 

2.2.2 Applications of the optically linear parametric interactions 

As an application the optical power coupling of eqs. (2.10) underpinned 

by the physical process of quantum Rayleigh conversion of photons, we 

consider the optical directional coupler depicted in Fig. 2.1 as a cross-

section of two waveguides of core indices n1 and n2 separated by a cladding 

of refractive index n3. It is the overlap of modal fields in the cladding that 

brings about the exchange of optical power, with the coupling coefficient 

being proportional to the optically linear susceptibility he gain 

coefficient is phase- and polarisation- sensitive enabling selective 

amplification. Overall, it is possible to control the properties of a signal 

wave by adjusting the input values of a low-power pump wave because of 

the strong value of the optically linear susceptibility . The relative phase 

(or phase-mismatch) can be controlled by adjusting the power ratio between 

the pump and the signal waves. Equations (2.10c-d) indicate the existence 

of a built-in mechanism for phase-matching between a strong pump and a 

weak signal through the parametrically induced phase shift. For converging 

or diverging Y-junctions, the coupling coefficient would have polarisation 

vectors projected onto each other.  

By using the same optical frequency for an entire photonic circuit made 

up of dielectric waveguides, it should be possible to reduce the complexity 

associated with multiple waves and types of materials. Additionally, 
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electro-optic waveguides provide connections between the electrical signals 

and optical ones.  

The case of a refractive index grating incorporated into a waveguide as 

depicted in Fig. 2.3, would be of particular interest in order to couple power 

between two waves of different propagation constants, either co – 

propagating or counter-propagating. The susceptibility (or the refractive 

index   n 2 =  / o = 1 + ) becomes periodic   

                                 

                                                                                   2.11  

                                 

leading to a z-dependent coupling coefficient  (z). The local coupling gain 

is maximized in eq. (2.10b) above, for the longitudinal overlap between           

  (z) and sin 21. For a sinusoidal variation of amplitude o and period , 

the perturbation of the susceptibility is 

 

  
2  

                                                                             2.12  

 

and the gain difference  g between the two halves of one periodic length 

, and coupling direction over each half of , i.e.  ± g, is proportional to  

 

   ,
2  

                                       2.13  

 

resulting in the phase- matching condition  

 

   
2  

                                                                                     2.14  

 

between the periodicity of  and the relative phase  =    z +  . A 

rectangular periodic perturbation of the susceptibility – see Fig. 2.3 – results 

in step-by-step amplification as the coupling in the first half of the period 

, from one wave to the other is stronger than the opposite coupling over 

the second half of the period where   = 0. We point out that the coupling 

coefficient varies with distance and is not the Fourier transform of the 

refractive index modulation function as suggested in [22, 23].  

 

 EBSCOhost - printed on 2/13/2023 9:24 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 

 

28

n (z) 

   

 

                                                 z 
 

Fig. 2.3 The longitudinally varying coupling coefficient  (z) for an index grating. 

 

Another interesting application of equation (2.10) involves the optically 

linear parametric phase-pulling effect which shifts the phase of a weak 

signal towards a (– /2) difference from that of strong pumps – see equations 

(2.10c-d). As a result, two optical waves co-propagating through a dielectric 

medium will have their photons transfer from one wave to the other 

depending on the relative phase between the two waves. This process, 

repeatedly, will eliminate optical waves whose phases diverge substantially 

from the phase of the surviving wave which will dominate the output and 

preserve the coherence of the optical beam despite light-matter interactions. 

2.3 Physical Aspects of Optically Linear  
Parametric Interactions 

If the optical coupler is capable of supporting two composite symmetric 

and anti-symmetric eigenmodes [9], [12] – which satisfy the necessary 

electromagnetic boundary conditions – their superposition cannot replace 

the incoming wave at the input because, physically, the photons have to 

undergo a change of wave vectors and momenta through the mediation of a 

radiating electric dipole polarisation. These eigenmodes could also take part 

in the coupling interactions. The coupled-mode theory [9–12] does not 

provide any explanation as to how a group of photons can, simultaneously, 

cross from one waveguide into the other as well as propagating in each of 

the eigenmodes of the composite two-waveguide structure, with different 

propagation constants. 

A common analytical expression for optical field coupling between two 

modes can be seen in (Xu et al. [24, eqs. (1–3)]), where the analytical 

solution reveals a quadrature wave as a result of a phase-mismatch between 

the modes and which would persist even if the coupling coefficient 

vanishes.  Furthermore, that set of equations disregards the power (or 

amplitude) – phase interplay which is evident in eqs. (2.10) above and 
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typical of parametric interactions [3-4], [25-26]. It is the phase shift  

induced by the optically linear parametric interactions which enables the 

amplification of spontaneously emitted photons up to a certain level of 

power by countering the phase-mismatch effect of a large . The optically 

linear parametric term of  can also modify the coupling length by adding 

to or subtracting from . 

The coupling coefficient of eq. (2.8) is symmetric and includes all three 

vectorial components of the optical modes existent in the common cladding, 

which is not the case in references [9–12]. In this Chapter, the coupled-wave 

equations have been derived without resorting to a mode orthogonality 

relation and they apply to any two optical waves, e.g., guided, unguided, or 

partially guided. The conservation of energy in eq. (2.4-5) leads to coupled 

wave equations with longitudinally varying coefficients multiplying the 

optical fields. 

For backward stimulated Rayleigh scattering (Zhu et al. [27]), the 

approach presented in this analysis should be adjusted for counter-

propagating waves [25-26], with the relative phase between the forward 

propagating pump and the photons spontaneously emitted at location l being 

 =  z –  (l – z) + . Up to a certain level of power, backward 

amplification can take place subject to the conditions of d dz = 0 and          

  <  < 0.  

In the following chapters, these properties of wave coupling 

mechanisms will be adopted for photon coupling processes.  

2.4 Quantum Aspects of Quantum Rayleigh  
Coupling of Photons 

This Section presents some preliminary aspects of the quantum Rayleigh 

processes that will be applied and further expanded upon in following 

Chapters.  

2.4.1 Evaluation of the spontaneously emitted power  

An estimate of the optical power of the parametric spontaneous emission 

Psp is made from the product of the photon energy and the transition rate of 

pump photons being converted into spontaneous photons by the electric 

dipole polarisation. The derivation follows the analysis by Tang [28], 

adjusted for SI or MKSA units and linear dipole polarisations; the result, as 

expected, corresponds to the quantum Rayleigh emission rates, proportional 

to the fourth power of the frequency.  It is based on the Fermi Golden Rule 

involving the transition matrix element between number states, and the 
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density of radiation modes in an infinite medium [6-7]. The resultant 

formula is  

 

 
  

 
                                                                              2.15  

  

where h is Planck's constant,  is the wavelength, and  is the solid angle, 

centred on the fibre's axis into which photons are emitted and are likely to 

be captured by the guided mode. This solid angle has the geometrical shape 

of a cone and its apex half-angle is  

= arccos / kcore ) = arccos (neff / ncore ) 

so that 2  ,   kcore  and ncore  being, respectively,  the wavenumber 

and the refractive index of the core, and neff being the effective index of the 

mode. For = 1.55 x  m, = 2 x sr, and  z =  m, one 

calculates Psp =  2 x   Ppump . 

While necessary as a source of photons to be amplified, the 

spontaneously emitted Rayleigh radiation may be difficult to isolate from 

other interactions which were measured in [27].  

2.4.2 Equations of motion of field operators 

Quantum mechanically [6-8], the Hamiltonian of interaction int for 

stimulated emission involving an electric dipole and two optical fields of 

the same frequency but different wave vectors takes the form:  

 

                                                                          2.16                            

                                    

where â and â† represent the annihilation and creation operators of the two 

fields. The reduced Planck constant and the linear susceptibility are, 

respectively, denoted by  and .  

The Heisenberg equation of motion for â1 leads to 

 

     ,                                                             2.17  

 

This simple relation indicates that quantum mechanically (optically) 

coupling of photons can take place in a homogeneous dielectric medium, 

i.e. where the susceptibility  is constant. This effect is easily linked to the 

quantum Rayleigh emission of spontaneous and stimulated photons [6-7]. 

The corresponding macroscopic density of the electric dipole polarisation  
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P = o (E1 + E2) will drive the curl H Maxwell equation for each optical 

wave. This effect cannot be derived classically and its quantum nature is 

emphasized in the Introduction to this Chapter. 

2.5 Conclusions 

This Chapter outlines a photonic beam conversion and coupling 

formalism based on the Poynting theorem of the flow of energy in a 

dielectric medium, in conjunction with the quantum Rayleigh effects of 

spontaneous and stimulated emissions from oscillating electric dipoles. The 

linear parametric gain couples photons from a pump wave into an in-

quadrature wave by amplifying the initial spontaneously emitted photons or 

other available seed photons. Two optical waves of the same frequency 

interact with each other if they share the same linear dielectric medium. The 

coupling coefficient involves the total value of the local susceptibility where 

any two waves overlap in space and time, and all three vectorial components 

are treated equally. 

Despite being presented in tens of textbooks and hundreds of published 

papers over half a century, the perturbation-based coupled-mode theory 

does not involve a physically meaningful process of stimulated emission 

which could be controlled in order to develop new photonic devices and 

applications. In contrast, the couple-wave analysis emerging from the 

quantum Rayleigh conversion of photons has the potential to operate with 

low levels of pump powers and delivers phase-sensitive and polarisation- 

sensitive gain coefficients.    
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CHAPTER THREE 

THE INTRINSIC OPTICAL FIELD OF PHOTONS 

 

 

 

The quantum environment of very small levels of energy and spatial and 

temporal dimensions is described by means of operators and 

wavefunctions.   These orthogonal and normalised wavefunctions solve the 

Schrödinger equation, being eigenfunctions of the unperturbed Hamiltonian 

representing a quantum system. They provide the probability of a quantum 

event appearing at a particular location and specific time, as well as 

delivering expectation values for observable operators. The mathematical 

construct is defined as a Hilbert space within which any combination of the 

eigenstates with arbitrary weighting coefficients will always lie. The 

eigenfunctions are normalised and orthogonal to each other as well as 

satisfying inner products. The operators correspond to physical variable, 

while the Hilbert space will provide numerical values for characteristic 

properties – also known as degrees of freedom of each operator – of the 

quantum objects or systems. 

In the context of photonic systems involving properties of optical 

entities such as photonic beams propagating through and interacting with 

dielectric media, two types of quantum states can be identified. The first 

type consists of time-dependent pure states that deliver - upon a single 

measurement – one value out of a set of possible eigenvalues corresponding 

to the observable operator. Because of various perturbations such as 

intervening photon-dipole interactions, temperature fluctuations, 

surrounding electric field disturbances, etc., even for identical input 

conditions, an output distribution of values will arise. The second type of 

quantum states is known as mixed states which, additionally, describe 

classical distributions of ensemble of measurements taking place in 

different locations and/ or occurring at different times.   

The amount of energy carried by a steady-stream radiation mode is given 

by an integer number of the smallest indivisible amount of energy labelled 

as a photon. The corresponding pure quantum state of a single measurement 

of energy is, accordingly, named a number state (or a Fock state). However, 

such number states always have a vanishing optical field, which is 
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physically impossible. To overcome this deficiency, the stream of photons 

needs to be represented by two consecutive number states.  

For physically realistic, temporarily fluctuating number of photons, an 

ensemble of time-dependent single measurements will give rise to an overall 

output distribution of value probabilities. One such ensemble having a 

Poissonian distribution of probabilities over the number states is defined as 

a coherent state. However, by their mathematical definition, coherent states 

are not impacted by a loss of photons, while a process of amplification 

breaks down their structure, rendering them unsuitable for photon - dipole 

interactions. 

An apparent isomorphism between quantum harmonic oscillators and 

optical fields would connect the position operator of the oscillator to a 

quadrature component of the field by means of a rather complicated 

transformation between bases of eigenstates. Yet, the optical field is not 

composed of oscillators. 

This Chapter develops a physically meaningful formalism for the 

quantum description of optical fields and their interactions with matter. No 

equivalence or isomorphism with quantum harmonic oscillators is invoked 

in the derivation of dynamic and coherent number states. 

3.1 Instantaneous Measurements of Photonic Beam Fronts 

Optical sources of sub-Poissonian radiation (Davidovich [1]) would 

enhance the detection resolution of optical signals by virtue of reduced 

fluctuations in their number of photons and, possibly, better defined phases 

and states of polarization. A broad range of applications can be envisaged 

from optical sensing of environmental variables to improved signal-to-noise 

ratio in optical communications (Kikuchi [2]) provided controllable and 

highly-efficient sources could be developed. 

It is commonly assumed that the sub-Poissonian distribution of photons 

is a quantum property of light because it requires a quasi-distribution for its 

description [1] in terms of coherent states of light (CSL). However, CSLs 

do not specify instantaneous properties of photonic wavefronts which are 

required for localized interactions between optical waves simultaneously 

propagating through the same dielectric medium. Yet, by identifying a 

physically meaningful quantum wavefunction (Vatarescu [3]), sub-

Poissonian distributions can be generated with any number of photons for 

any overall distribution, by means of the optically linear parametric (OLP) 

amplification of photons in the “classical” regime (Vatarescu [4-6]).  

In the context of parametric amplification of photons by a factor of G, 

for unsaturated gain, the expectation value | | 2 of the number of photons 
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corresponding to a coherent state of light |  will become G | | 2, but, 

physically, the photon distribution will develop gaps between any two 

consecutive number states as G n – G (n –1) = G. Thus, the coherent state 

is destroyed and replaced, mathematically, by a mixed state of quasi-

distributions of coherent states [1]. As a result, rather complicated and 

roundabout procedures are needed to, apparently, specify the number of 

photons in terms of quasi-probabilities of coherent states which are, 

themselves, expressed as a superposition of number states.   

A criterion for generating sub-Poissonian distributions of photons 

through differential amplification of photons was outlined in [4] involving 

the phase-dependent gain coefficient. However, in order to design and 

control such sources, a physical model for amplification of any photon 

distribution and level of number states needs to be developed beyond the 

identification of the phase-dependent gain coefficient (Vatarescu [4-7]) 

accompanied by a parametric phase-pulling effect which shifts the phase of 

a weak signal towards a (–  ) / 2 difference from that of strong pumps. 
Photon coupling processes involve the instantaneous values of the 

wavefronts interacting simultaneously at a point in space within a dielectric 

medium [4 -7].   

A photonic wavefront carries a number of photons across a plane hosting 

dipoles and its duration will be determined by the response time of the 

photon-dipole interaction. A simple and practical photonic quantum state      

|  n  is needed which is capable of delivering the instantaneous number of 

photons of an optical, or photonic, wavefront, and the associated phase 

regardless of the overall photon distribution of the beam, so that                        

  n | â† (or â) |  n   0 for the annihilation and creation operators, â and 

â†, respectively. Such a state vector is readily identifiable in the derivation 

below, from the two-component Hamiltonian of the optical field in free-

space. The dynamic number states defined for a given number of photons 

as |  n (t) = (| n(t)  + | n(t)  1 ) / 2 1/2 can deliver a non-vanishing 

expectation value for the field operators. This will enable direct calculations 

of the wavefront number of photons and phase shifts stemming from 

interactions with dielectric media. This is in contrast to the quadrature 

eigenstates of   x | â† + â | x   0 used in quantum tomography (Breitenbach 

et al.[8]; Lvovsky and Raymer [9]) which invoke, by analogy, the eigen-

functions | x  of the coordinate, or position, operator of a mass particle 

harmonic oscillator. Nevertheless, the strength of the optical field is 

determined by the instantaneous number of photons (Glauber and 

Lewenstein [10]) without any connection to the position of a harmonically 

moving mass particle. The spatial field profile of a group of photons is also 

derived below. 
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A long series of intensity measurements [8-9] of the instantaneous 
number of photons carried by the wavefronts reaching the detection surface 

will provide a probability distribution for the ensemble of the number states 

of the wavefronts forming the optical beam. Upon detection [8], a photonic 

wavefront delivers (or collapses into) a particular number state whose 

values of number of photons, phase, wave vector, state of polarization, etc. 

would be stochastic. The sequence of optical wavefronts of the beam will 

form an ensemble of photonic systems composed of an ergodic distribution, 

i.e., within a long enough duration, the characteristics of the wavefronts are 

reproduced. These measured instantaneous values will build up probability 

distributions from which the ensemble expectation values and variances can 

be calculated. Nevertheless, it should be pointed out that the localized 

measurement method of quantum tomography [8 - 9] does not deal with 

photon couplings or interactions in a dielectric medium. 

Similarly, the definition of the phase eigenstates (Pegg and Barnett [11]) 

leads to a rather problematic aspect as pointed out in [11]: “We note that a 

phase state is not a physical state because the expectation value of the 

photon number diverges as s  . ” [11, Sec. IV, p. 1668].   

Identifying photons with levels of energy of the electromagnetic field 

and without any analogy to the quantum harmonic oscillator, the 

longitudinal and lateral profiles of the intrinsic field of photons is obtained 

in this Chapter from the corresponding electromagnetic vector potential.  

The optical field of a dynamic and coherent number state – derived 

below from its equation of motion – will enable direct prediction and control 

of the output distribution of photons, for further signal processing and 

interactions, of both magnitudes and phases of the instantaneous wavefront 

values for any overall distribution.  Phase information will be obtained from 

the quadrature phase operators, and the physical spatial profile of the field 

of one single photon or a group of photons associated with a wave or beam 

front will be evaluated by combining the expectation value of the intrinsic 

field with the Maxwell equations. Additional properties of the dynamic and 

coherent number states of light are discussed in this Chapter. The 

advantages of the dynamic and coherent states in characterizing sub-

Poissonian distributions of photons are outlined. 

3.2 Pure and Mixed Quantum States 

The field of Quantum Optics employs the postulates and notations of 

Quantum Mechanics but it also requires specific features resulting from the 

propagation of electromagnetic radiation and its interactions with various 

dynamic electrons and their environments of atoms and molecules.  The 
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quantum optic operators are derived from the quantization of the 

electromagnetic field while the state vectors are conventionally formed by 

means of superpositions of the eigenstates of the Hamiltonian of the free 

field. 

The measurements of optical waves would deliver various properties of 

the optical beam such as the instantaneous intensity, phase, polarisation, 

frequency, etc. Overall distributions will be obtained for a large number of 

repeated wavefront measurements. By contrast, it is a common approach to 

represent a quantum state by means of only an overall distribution of values 

(Garrison and Chiao [12]) such as the coherent state, even though each 

measurement provides an instantaneous eigenvalue of the observable 

operator being investigated.    

A pure state delivers one single measurement (Breitenbach et al. [8]; 

Fano [13]) whereas a mixed state describes the statistical distribution of an 

ensemble of measurements (Fano [13]).  A photonic beam front carries a 

number of photons across a plane hosting dipoles and its duration will be 

determined by the response time of the photon-dipole interaction.  

With the energy eigenstates – in the Dirac notation – denoted by   , 

a pure state |  ,  takes the form of a coherent superposition and is a 

solution of the the Schrödinger equation driven by a space and time 

dependent Hamiltonian   ,  , with the common expressions (Garrison 

and Chiao [12]; Steck [14]): 

 

 |  ,     ,                                                                     3.1  

   

   
  

|  ,   ,  |  ,                                                   3.1  

 

where the coefficients of expansion   ,   are space r and time t 
dependent, satisfying the condition     , 1. The orthogonality 

and normalisation conditions are given by   |   . The pure state is 

associated with a maximum amount of information and, initially, identically 

prepared input sates. The overall distribution of measured values describing 

a mixed quantum state  |  ,   incorporates the statistical distribution of 

output measurements for specific input states, in the form (Garrison and 

Chiao [12]; Steck [14]): 

 

|  ,      |  ,                       3.2  
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with the initial distribution  of the pure states  |  ,  , satisfying 

  1 .  

A commonly used operator for various predictions is the state density 

operator defined as an outer product of quantum states (Garrison and Chiao 

[12]; Steck [14]): 

 

  |  ,   ,  |     , |     |   

 

                                                  ,   ,    |    |             3.3  

 

where the last term indicates whether or not a coherent outcome is possible. 

When the interference term on the second line of eq. (3.3) vanishes, the 

density operator corresponds to a mixed state.  The time-dependent 

expectation value    of an observable operator   is evaluated by 

calculating the inner product between the Hermitian conjugate state and the 

operator-modified state vector, i.e, these relations: 

 

     ,  |  |  ,    

                                ,     ,                                       3.4  

 

      ,     

 

                                              ,   ,  |  |               3.4  

 

The detection process is represented by a projection operator                 

  |    | which leaves the quantum object in an output state 
|  ,  associated with the measuring apparatus, i.e., 

 

 |  ,      ,  |  ,    ,                             3.5  

 

 By attaching position and time coordinates to the projection operator, we 

identify the location of the measuring apparatus and the time of a particular 

type of measurement taking place therein (R. B. Griffiths [15]).  

A composite system of two quantum objects will be described in a 

Hilbert space  spanned by the tensor product of the individual Hilbert 

spaces, i.e.,   leading to a composite quantum state 

(Garrison and Chiao [12]; Steck [14]):  
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|  ,  |  ,   |  ,  

 

                                ,   ,                                3.6  

 

where the subscripts i and j correspond to the Hilbert spaces A and B, 

respectively. The relations of (3.4) requires space and time overlaps 

between the two Hilbert spaces. 

Another case of combined Hilbert spaces arises when one quantum 

object is characterised, for example, by two variables and corresponding 

operators leading to   , where the subscripts indicate the 

two degrees of freedom. In this case, in eq. (3.6), the subscripts i and j 
correspond to the Hilbert spaces 1 and 2, respectively.  It should be 

emphasized that spatial and temporal overlaps are required for the 

interference or cross term to make a contribution in the expressions of 

equations (3.3), (3.5), and (3.6). This is in contrast to the concept of global 

functions of a mixed state of an ensemble of distributions that carry neither 

space nor time dependence, and which are claimed to generate nonlocal 

quantum effects. 

3.3 Field Quantisation without Quantum  
Harmonic Oscillators 

A field quantisation should be derived without invoking an equivalence 

with quantum harmonic oscillators, if only because there are no oscillators 

carried by an optical wave. 

As the number of photons and related field amplitude and phase carried 

by a photonic beam or wave front may change as a result of the quantum 

Rayleigh conversion of photons presented in Chapter 2, the equations of 

motions for the corresponding expectation values will be evaluated with the 

Ehrenfest theorem (Steck [14]; D. J. Griffiths [16]). To this end, a pure 

quantum state is needed, capable of delivering correct values for the 

instantaneous number of photons, the optical field amplitude and the phase 

quadratures. 

Photons and their instantaneous properties are detected and measured as 

a sequence of wavefront energy number states | n  (Breitenbach et al. [8]) 

which make up a pure quantum state vector  

 
|  ,     , n                                                                    3.7  

 

regardless of the overall distribution to which the photons belong [8-9]. The 

overall quantum probability of occupation of an eigenstate is given by the 
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normalized distribution of photons – crossing a surface at location r –with 

the time-varying coefficients | |   satisfying the condition   | |  1, 

and based on the orthogonality  n | m  =   n m . The detection of photons 

occurs as a result of their optical field exchanging energy with electrons of 

the atomic structure of the detector, similarly to the Jaynes - Cummings 

model ([12]; [14]) for the quantized dipole-photon exchange of energy. The 

detection, or any other interaction process, is meant to “collapse” the 

photonic quantum state into an instantaneous eigenvalue of a number 

operator regardless of the ensemble distribution to which it belongs, e.g., a 

coherent state or any arbitrary distribution.   

3.3.1 Optical fields of dynamic and coherent number states 

Based on the formalism presented by Glauber and Lewenstein [10] and 

Blow et al. [17], the magnitude of the Poynting vector, i.e. the flux of energy 

E  (or number of  photons /s )  carried by an optical wavefront of frequency  

 and crossing a plane surface at position  z  is given in terms of the 

electromagnetic field  magnitudes E and B by  the equalities: 

 

E    E  2  c 2  B  2  =  0.5     (a a*  +  a* a )                       3.8  

                                             

with  a  =  (  /  ) 1 / 2   (  E + i c B ) and its complex conjugate  being  a* .  
From this relation, one defines the annihilation and creation operators as: 

 

                                                                                    3.9  

 

                                                                                  3.9  

 

with  and  indicating the permittivity of the medium and the reduced 

Planck constant, respectively. The constant c is the speed of light in vacuum. 

The free-space Hamiltonian   is explicitly written as [10]: 

   

                                                                                                3.10  

                                                                                             
0.5                                                                             3.10  

 

where  is the symmetric and complete number operator and its 

eigenstates are the number states | n . The two terms of eq. (3.10) would 
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have different eigenvalues. Based on experimental results indicating that 

one photon is an indivisible amount of energy, we seek a wave function           

|  n     which will deliver the number of photons n from the equalities: 

 

  n   n   =  n                                                                        (3.11a) 

 
                                                                        

  n  â†  â   n   +    n  â  â†    n  =  2 n                             (3.11b)    

                                 

so that, from Eqs. (3.10) the number states | n  are eigenfunctions, with 

different eigenvalues, of both of the product operator terms: 

 

 n  â†  â  n    =   n                                                                       (3.12a) 

 

 n 1  â  â† n 1  = n ;  or   n  â  â†  n    =  n + 1                 (3.12b)                  

 

Thus, in the basis of number states, the commutator [â, â†] = 1 is obtained 

as a result of the quantization rather than leading to it. This does not affect 

the choice of the superposition wave function   n  and related expectation 

values: 

 

  n    = (  n  +   n  1  ) / 2 1/2                                                    (3.13a) 

 

  n  â† â   n   =  0.5 ( n + n 1 ) = n – 0.5                               (3.13b) 

 

  n  â  â†   n   =  0.5 ( n + n 1 ) = n + 0.5                               (3.13c) 

                                                  

  n    n   =   0.5 x 2 n  = n                                                    (3.13d)                         

 

which is the number of photons per time or the photonic flux of its beam 

front. 

This relation satisfies the conditions of eqs. (3.11) and implies two 

opposite processes which can be interpreted as shifting a number state up or 

down by one photon which is the smallest indivisible amount of energy of 

an optical field. Their illustration can be seen in Fig. 3.1. Experimentally, 

from the photoelectric effect, the optical fields consist of an integer number 

of the lowest indivisible amount of energy, i.e. photons. However, for the 

lowest state of   n = 1, the expectation value would be half a photon because 

the lower bound (Carruthers and Nieto [18]) leads to (  0  â† ) ( â 0 ) = 0. 

For physical reasons, one photon will be ascribed to the first non-zero 

eigenvalue.  Nevertheless, an alternative derivation presented in the  
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n | | n  

â â† â† â

n 1| |n 1

 
Fig. 3.1. An illustration of the dynamic and coherent two-component number states.  

Note that:  n | â†  =  n 1/2  n 1|  and  n 1| â   =  n 1/2   n | .  

 

Appendix to this Chapter confirms the validity of this approach. 

The field operators â and its adjoint â† connect two consecutive number 

states, and consequently, a superposition of | n 1  and | n  should give rise 

to a non-zero optical field for the following state vector: 

 

|  n t     c 1 t   | n     c 2 t   | n  1                                         3.14a                              

                                               

|  n     | n     | n  1   / 2  1/2                                                       3.14b  

 

with the normalization of   | c 1 | 2  | c 2 | 2 = 1. For reasons that will become 

clear below, these states of eqs. (3.14) will be identified as dynamic and 

coherent number states. 

Analogously to the derivation [14] of coherent states of light |  , the 

non-Hermiticity of the photon annihilation and creation operators allows for 

complex classical numbers (c –numbers) to be delivered when these 

operators act on number states. Applying â and â† to | n  returns a complex            

c – number    

 

s n  | s n | exp  i  n                                                                       (3.15) 

 

which will become the complex amplitude of the state, so that: 

 

â | n     =    | n 1                                                                          (3.16a) 

 

â† | n  1     =     | n                                                                         (3.16b) 

 

Recalling that â and â† are adjoint operators of each other, they interchange 

roles when acting on the Hermitian conjugate (or bra) wave functions, so 

that: 
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 n 1|  â   =     n |                                                                         (3.17a) 

 

 n  | â†      =      n  1 |                                                                 (3.17b) 

 

The condition of the number states being eigenstates of the number operator  

 = â† â   requires that | | 2 = n.  The symmetric Hamiltonian of (3.10) 

suggests the two-component state vector of eq. (3.14) as depicted in Fig. 

3.1. This Hamiltonian carries out two simultaneous operations: one as a 

two-step number operator  

 

 n | â† â | n  =  n | â† | n  1    =  n | n                                (3.18) 

 

and the second operation as a one-step transition operator between two 

consecutive number states, each operator acting on the state vector next to 

it (or the left-hand operators acting on the Hermitian conjugate wave 

functions  n | , the result being: 

 

 n | â†  â | n   =      n 1 | n 1     = | | 2 = n                          (3.19a) 

                      

 n 1| â  â† | n 1   =     n | n    = | | 2  = n                            (3.19b) 

  

In the Heisenberg picture or the interaction picture, and using the retarded 

phase      / , the propagating photon field operators take the 

form [10]: 

 

 , ,     , ,                                         3.21  

 

 , ,    , ,                                        3.21  

 

where the spatial distribution f (x, y, z) is a solution of the Helmholtz wave 

equation [10], and  denotes the polarisation of the radiation mode.  The 

observable quantity of the expectation value of the quadrature field operator  

 = â + â†   is found by combining eqs. (3.14 -21) to yield: 

                                                                                                                                                 

    |  |          

                                            0.5           n /             3.22  

 

            n /             3.22  

 

reproducing the c - number    corresponding to the “classical” optical 
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field with a time-varying number of photons n (t) and related phase  (t). 
An alternative derivation of the quadrature field is presented in the 

Appendix below. 

The correct expectation values can also be found for the phase 

quadrature operators (Carruthers and Nieto [18]). These are defined in terms 

of the field operators and the conventional number operator   = â† â, 
having the form, for n > 0: 

 

 /   /                                                                   (3.23a) 

 

  /   /                                                              (3.23b) 

 

which will provide information about the phase associated with the dynamic 

number states. With the photon number operator   returning the number 

of photons in the basis of number states i.e.,   | n  =  n | n  ,  any operator 

function  f ( ) can be expanded in a  power series and replaced in terms of 

the number of photons, as follows (Garrison and Chiao [12]):  

 

     ;         | n   F n | n ;                and 

 
/   | n   n /   | n  

 

where d p are expansion coefficients. For the particular case of the zero-

photon state |0 , the product operator needs to be inverted [18] by 

substituting   â â† = â† â + 1 into the power series expansion of â f ( )  to 

obtain f ( + 1) â. The corresponding expressions of the expectation values 

are: 

 

  n    n      cos  t    j                                                      3.24a  

                                                              
  n   n      sin  t    j                                                        3.24b  

 

These relations of the field and phase quadratures apply to any number of 

photons spanning the entire range from the quantum regime of a few 

photons to the large number of photons characteristic of classical optical 

waves. Consequently, the quantum state of eqs. (3.14) of dynamic and 

coherent number states make a smooth transition between the quantum and 

classical regimes. These variables will be measured by the method of 

balanced homodyne detection [9].  
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The dynamic and coherent number states identified in eqs. (3.14) 

possess an optical field which can be compared with the classical field. 

Consequences of these properties are discussed in the following Section. 

3.3.2 The equations of motion of the optically  
linear parametric interactions 

As an optical beam propagates through a dielectric medium, the 

magnitude and phase of the expectation value sn may be modified by the 

simultaneous presence of another beam of photons of the same frequency. 

This effect is described by the Ehrenfest theorem [14]; [16]:   

 

     |  |    |   ,  |                 3.25   

 

indicating that the expectation value of the optical field is modified by its 

commutator with the Hamiltonian of interaction    .    

Having identified a quantum wave function capable of delivering the 

instantaneous magnitude and phase of an optical field, we can now apply 

the formalism of [4-5] to the propagation along an optical waveguide 

directional coupler by employing the following composite photonic 

quantum state function  for two optical waves identified by their 

waveguide   n, j   ( j = 1 or 2), their Hamiltonian of interaction   , and 

the equation of motion derived from (3.25): 

 

     n, 1     n, 2                                                                           3.26a  

                                                            

                                                                   3.26   

 

                                                                                                 3.26  

                                                              

where the real part of the first-order susceptibility of the dielectric medium 

  includes the coefficient square linking the photon annihilation or 

creation operators and the electric field operator in eqs. (3.9). The 

Hamiltonian    is derived from the interaction term  of the 

Poynting vector in eq. (2.4).  

The resultant equation of motion describing the mutual interaction is 

derived by substituting into eq. (3.25) the relations of (3.26), yielding: 
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  |  |       |   |                                              3.27  

 

This interaction will modify the complex field amplitude  ,    ( j = 1, 2)   of 

two co-propagating and overlapping optical beams of the same frequency, 

identifiable by their respective optical waveguides  ( j = 1, 2). From. (3.22a) 

we have for the expectation values of the optical fields 

 

 |  |  0.5        ,                                                       3.28                          

 

After converting to number of photons, i.e., | , |2 = N j and corresponding 

phases  j , the equation of motion (3.27) provides the rates  of change  of   

N j   and   j   as follows: 

 

 
                                                                                              3.29  

 

   

/

                                                                       3.29  

                                                                                                      

 
   

/

 

/

                  3.29  

 

 
      

/

                                                                3.29  

  

 

 
1

v
 
2 

                                                   3.29  

 

 

                                                                  3.29  

 

where the gain coefficient   includes an overall coupling coefficient  and 

depends on the polarization states e1 and e2 of the photons. The phase 

difference between the two waves is   2 1  ,   being the propagation constant 

and   z / t =  v p  is the phase velocity.  In (3.29e), k o and n specify the free-

space wavevector and the effective refractive index, respectively. It should 

be noted that equations (3.29) are identical to the classical ones of Chapter 
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2 describing the physically meaningful process of quantum Rayleigh 

conversion of photons [6]. The quantum   is related to the classical 

susceptibility by the coefficient of eq. (3.9) between the electric field 

operator and the creation operator. The coupling coefficient of Eq. (3.29e) 

indicates that the entire local value of the optically linear susceptibility (1) 
is involved in the coupling process in the dielectric medium at any point 

where the two spatial distributions f 1 and  f2  overlap, each having units of 

m –1, and the squares f 2 are normalized to a dimensionless unit over the 

cross-section area. This is in contrast to the physically impossible coupling 

between two optical waveguides apparently induced by a perturbation of the 

dielectric constant in the cladding.  

Any two dynamic and coherent number states of (3.26a) co-propagating 

through a dielectric medium will couple photons from one state to the other 

depending on the relative phase between the two waves. This process, 

repeatedly, will eliminate optical waves whose phases diverge substantially 

from the phase of the surviving wave which will dominate the output of a 

lasing cavity.  

Two groups of photons propagating simultaneously across the same 

dielectric medium would exchange photons, parametrically, with each other 

through the real part of the susceptibility – see (3.29) above – which is 

indicative of a beam splitter composed of a fibre-optic directional coupler.  

3.4 The Spatial Field Profile of Photons  

The instantaneous longitudinal and lateral field distributions of photons 

passing through an infinitesimal volume located at position r will be 

evaluated by combining the expectation value of the field operator and its 

definition in terms of the vector potential of the electromagnetic field. 

3.4.1 The longitudinal distribution of photonic fields 

We evaluate the intrinsic longitudinal field profile of a group of photons, 

or its coherence length, by using the wave function |  n  from (3.14b).  

Two equations can be identified for the expectation values of â, or the 

corresponding c - numbers, by combining (3.9a) and (3.22), leading to: 

 

   n | â |  n    =  b      + i s                                                    (3.30a)     
                                                                      

   n | â |  n    =  q                                                             (3.30b)                         

 

 EBSCOhost - printed on 2/13/2023 9:24 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Intrinsic Optical Field of Photons 

 

 

49

where q  = 0.5  n1 / 2  , b =  (  /  ) 1 / 2     and , s =  (   c /  ) 1 / 2  . We point out 

that both quadratures of the field are represented in the phasor notation of 

(3.30).   Eq.  (3.30a) is obtained from (3.9a) and can be expressed in terms 

of the c – numbers E =    and B =   .  Recalling the relations [17] 

between the vector potential  A (z , t )  and the fields  as: 

 

  
 

  
                                                                       3.31  

 

in the Cartesian frame of coordinates (x, y, z), the vectors have the notation, 

in the plane wave approximation: A = (A, 0, 0); E = (E, 0, 0); B = (0, B, 0) 

and the wave vector is k = (i k x , i k y ,  ) for a beam propagating in the          

z – direction in an optical waveguide. The complex amplitude of the vector 

potential is represented by   

 

 ,    ,                                                           3.32  

 

where the lateral profile of the guided mode is given by f (x, y) and the 

propagation constant by  = 2  n eff  / . The second term of the curl operation  

 f (x, y) x = (  f /  z) y  f /  y) z  does not lead to wave propagation  

and does not affect measurements in a plane  perpendicular to the  z - 

coordinate. The lateral field distribution is derived in the following sub-

section. 

Relating p to a moving source of photons would suggest a relative 

distance    = z  zo with zo being the instantaneous location of the photons, 

with the localization given by a Dirac delta function  (z  zo), resulting in 

this differential equation after substituting (3.31) and (3.32) into (3.30) to 

derive:  

 

 
                                                                      3.33  

 
where  
 
 =  b  / s   i  / c) (1 + i n eff ), and  

 
i q / s = i 0.5 (n  /  ) 1/2 .   

 

Setting   Ap (z) = g (z)  exp (–  z)   and  inserting into the differential equation 

(3.33) leads to:  d g =   exp (  z )   ( z  zo) d z .  With g =  exp (  zo), and 

for reasons of physical symmetry, the longitudinal distribution of the 
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Fig. 3.2 Partially overlapping photon fields. 

 

magnitude of the vector potential associated with photons of a wavefront is 

found to be: 

 

    | |                                                                  3.34  

 

The vector potential’s decay constant is inversely proportional to the 

wavelength  through  Re  = 2  / . Thus, the local optical field includes 

contributions from photons in the vicinity of  zo , as illustrated in Fig. 3. 2.  

The normalised longitudinal optical field profile fph of one photon of 

wavelength , crossing point zo , is obtained from (3.34) as: 

 

   
2  | |

                                                    3.35  

 

which has the form of a Wigner spectral component S ( , t), that is, a time-

varying spectral component [19] – as opposed to a time-constant amplitude 

and phase of a Fourier spectrum – crossing a surface perpendicular to the 

wavevector of propagation. The exponential decay of the spatio-temporal 

profile is identical to that obtained by Fourier transforming a fully populated 

transmission line of an interference filter [9]. 

3.4.2 The lateral distribution of photonic fields 

The transversality condition [10] for a radiation field  E   â + â†  

and the dielectric constant , is given by the divergence of the displacement 

vector:  

 

    0                                                                                              3.36  

 

In cylindrical coordinates, the differential equation and its solution in the 

plane perpendicular to the wavevector are: 
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   0                                                                                           3.37  

 

     
  

                                                                                        3.37b  

 

;  
  

                                                                                               3.37  

 

where ro is the reference position coordinate at the peak of E, and r is the 

distance from the this position. This lateral distribution of the photonic field 

;   may explain the two-slit Young interference, as the broad lateral field 

splits at the slits and recombines behind them. 

3.5 Coherence of Dynamic Number States 

The Heisenberg uncertainty principle [16] has to do with the joint 

statistical distribution of the measured values of two variables 

corresponding to repeated measurements of identically prepared systems [8-

9], and applies to the simultaneous measurements of two dynamic variables 

whose quantum operators do not commute in a given set of state wave 

functions, the variables being incompatible observables.  

The principle of uncertainty does not preclude the existence of well-

defined numerical values for either variable [16]. Limited information about 

one variable is associated with a variance in the measured values, with more 

information being available about the other variable. Measurements yield 

precise instantaneous values – within the constraints of the equipment – by 

“collapsing” the system’s wave function into a specific value [16]. A 

quantum "spread" implies that measurements on identically prepared 

systems do not return identical results because of system-related 

fluctuations such as spontaneous emission, time-varying losses, temperature 

variations, background radiation, etc. 
One should not confuse prediction with measurements. It is the 

measured values that come into play when plotting the joint distribution of 

two observable physical variables.  A measurement of only one variable will 

still have its own variance of values but it is not subject to the Heisenberg 

uncertainty principle, because the physical system is not disturbed by the 

measurement of another variable. One can easily measure a well-defined 

eigenvalue of an operator [16] at a given time.  

In free space, the degree of coherence of an optical monochromatic wave 

would be characterized by the statistical phase variance of the ergodic 

evolution of the wavefront phases. Their measured statistical distribution – 
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if detected in conjunction with another observable physical quantity or 

variable – will be subject to the Heisenberg uncertainty principle 

characterizing statistical measurements of ensembles. However, each 

instantaneous wave front has, possibly, a time-varying, and – as a result of 

interacting with the dielectric medium which collapses the wave function – 

a well-defined phase which will be involved in the optically linear 

parametric interactions in a dielectric medium [3 -6].  

Two dynamic number states – derived in the previous Section 3.3 – co-

propagating through a dielectric medium will couple photons from one state 

to the other depending on the relative phase between the two waves. This 

process, repeatedly, will eliminate optical waves whose phases diverge 

substantially from the phase of the surviving wave which will dominate the 

output of a lasing cavity.  

3.6 Sub-Poissonian Distribution of Photons 

The statistical properties of a stochastic and ergodic optical beam will 

unfold in time upon detection at a point in space. Intensity measurements 

absorb photons leaving nothing for phase-measurements. Splitting a beam 

in two and measuring quadrature phase values of  cos  and sin  will leave 

nothing for intensity measurements. A stable reference beam is needed for 

all types of measurements. Its fluctuations, in fact, may be mistaken for 

proof of the uncertainty principle. 

The interaction between a steady-state pump beam and a signal beam 

inside a dielectric medium can bring about a change in the initial Poisson 

distribution of signal photons leading, possibly, to a narrower sub-Poisson 

variance [1]. Such a distribution is commonly described and characterized 

in terms of mixtures of coherent states spanning the continuous phase-space 

by converting the field operators into complex eigenvalues of the 

mathematically generated coherent states of the various quasi-probabilities 

[1], [12],14]. 

The nature of the measurement would determine the type of quantum 

state used to model the experimental measurement. For light-matter 

interaction which require an optical field, the dynamic and coherent number 

states developed above would be required. In contrast, for statistical 

description of an overall distribution of measurements, the conventional 

number (or Fock) states will be more practical.  

Two radiation modes carrying n and m photons, represented by the 

dynamic and coherent number states of Section 3.3, and propagating 

simultaneously across the same dielectric medium would exchange photons, 

parametrically, with each other through the real part of the susceptibility –
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see eqs. (3.29) above – with the possibility of creating the n + m number 

state. 

A criterion for generating sub-Poissonian distributions of photons 

through differential amplification of photons was outlined in [4] involving 

the phase-dependent gain coefficient, and this sub-Section presents a 

straightforward description of such photon distributions. 

With the evolution of an optical wavefront being described by Eqs. 

(3.29), the number state is identified by the number of photons emerging 

from a parametric interaction, i.e., n = N1, so that the overall statistical 

distribution of the beam is given by the elements  n n of the density matrix 

of the mixed state. 

For the “input” and “output” corresponding to one photon interaction, 

the probability coefficients of eq. (3.7) take on the values:  
 

One lost photon: input     c n  = 1 ;   c n - 1  =  0   ;  

                           output    c n  = 0 ;   c n - 1  =  1   ; 

 

One gained photon:  input      c n  = 0  ;  c n - 1   = 1   ;  

                                 output     c n  = 1  ;  c n - 1  =  0   ;    

 

so that, the orthogonality of the number states can be used to specify clearly 

the pure state and mixed states of light, which is not the case with the 

coherent states of light which lack orthogonality.  

At the detection stage, it is convenient to use the photon number states 

[8] as they provide a state density matrix  m n . The photon number variance 

in the basis of number states is calculated from: 

 

 n                  

 

                                                       n    n                    3.38  

 

For a pure number state of the wavefront  n  n  =  n m  ,  leading to the 

well-known result  of     m m  = 1 and  (  n) 2  = 0.   For the mixed state of 

the beam  n n  < 1 and the variance broadens as more states are occupied.  

For a sub-Poissonian distribution, the reference Poissonian state will have 

the same mean number of photons, and the variance difference is given by  

 

 n   n    n                                               3.39   

 

where  (P)
n n  is the Poissonian distribution for which  (  n) 2  (P)  =  n . 
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In this way, the spread is determined by the difference between the density 

matrix elements, and no quasi-probabilities are needed as in ref. [1]. 

The relative relation of Eq. (3.39) stems from the fact that the number 

states are eigen-functions of the photon number operator, which is not the 

case for the coherent states of light as they are destroyed by the creation 

operator. This shortcoming of the coherent states of light was handled by 

re-arranging the order of the field operators [1], [12], 14] leading to three 

types of quasi-probabilities on the complex phase-space of the eigenvalues 

. 

Additionally, deficiencies of the formalism based on the Bogoliubov 

solution [12] for the parametric amplification are detailed in [4-5]. This 

physically impossible solution for the optical field operators was used in the 

Wigner quasi-probability (WQP) [12], [14] to distort the circular 

distribution of a coherent state into an elliptic distribution – on the phase-

space of eigenvalues  of the coherent states – for noise squeezing. But, the 

WQP itself distorts the point-like distribution of a pure coherent state in the 

context of the P quasi-probability. By contrast, a physically meaningful 

process of photonic coupling between two quadratures of an optical field 

was identified in [6, Eq. (5)], brought about by the quantum Rayleigh 

stimulated emission amplifying one quadrature while attenuating the other 

one. 

3.7 Conclusions 

Field quantization without quantum harmonic oscillators leads to the 

intrinsic field of photons. As a consequence, a quantum product state of 

photons requires both space and time overlaps.  

A time-varying number of monochromatic photons are described by the 

classical mixed time-frequency representation of signals. 

Based on the physical process of photon detection triggered by the 

optical field, quantum two-component number states are identified. These 

states deliver through their equation of motion a non-vanishing expectation 

values for the field operators and the phase quadratures. Additionally, the 

longitudinal and lateral profiles of a group of photons have been derived. 

The possibility of evaluating directly, without the need for quasi-

probabilities, the evolution of an optical wavefront regardless of the photon 

statistics of the overall beam, will facilitate the design and operation of 

functional integrated photonic circuits and devices.   
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Appendix -Alternative derivation of the  
dynamic and coherent number states 

The expansion coefficients cj (t) in eq. (3.14a) with  j = n and  n 1,  will 

change as a result of a transition between the states  | n  1   and | n    as 

determined by the Schrödinger equation of motion driven by a free 

background Hamiltonian   of eq. (3.10 ) , so that:   

 

  
  

|  ,   ,   |  ,                                         3.1  

 

Since an operator remains unchanged in the Schrödinger picture, the rate 

of change for the expectation value in the Schrödinger picture contains only 

a commutative term between the operator and the Hamiltonian: 

                                                                                                                                           

    |  |                      

                                |  ,  |                                       3.2  

 

The commutative relations involving the field Hamiltonian in free space are: 

 

[ â,   ]  =   â   ;   and     [ â†,  ]  =    â†                           A 3.3                        

                                             

The expectation value of the quadrature operator (â + â† ) for the wave 

function of eq. (3.14a),  is given, at time t , by 

 

  n ( t ) ( â  +  â† )   n ( t )   = 

 

         =                         A 3.4  

 

We note that the last equality contains two complex conjugate terms and 

define: 

  

     ( t )  =                                                                    A 3.5                            

 

to obtain from eq. (A 3.4) 

 

  n ( t )  â  n  ( t )   =    ( t )  s n                                             A 3.6     

 

The solution for (t) is found from the equation of motion derived by 

combining eqs.  (A 3.2 - 3.3) and (A 3.5 -3.6), leading to: 
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                                                                                     3.7  

 

                                                                                 3.7  

 

From the condition | c n t  |2  |c n - 1 t  |2 = 1, one estimates the peak value 

of  o  = 0.5, and  eq. (A 3.6) becomes: 

 

    |  |     0.5         n /                3.8  

                                                                                   

delivering, along with its complex conjugate from eq. (A 3.4) above, an 

instantaneous expectation value for an optical field of any level of photon 

number, and associated phase, regardless of the overall beam distribution, 

and corresponding to a classical field representation.  

The conventional expectation number of photons for the dynamic state 

 n (t)  of eq. (A 3.6) is found to be:  

 

  n (t)  â† â  n (t)   =  n   | | 2                                           A 3.9                           

 

The factor |  2  = 0.5  balances out the “half-photon” noise. 
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CHAPTER FOUR 

PHOTONIC QUANTUM NOISE REDUCTION  

 

 

 

Optical interferometric measurements will benefit from using optical 

sources possessing reduced temporal fluctuations in their intensities and 

phase variations. These fluctuations are commonly associated with the 

Heisenberg uncertainty principle and referred to as quantum noise, 

involving canonically conjugate operators of observable, physical variables 

or quantities. The possibility of reducing the quantum noise variance of one 

observed variable below the Poissonian level while increasing it for its 

conjugate pair variable, constitutes the main approach to noise squeezing 

(Schnabel [1]; Andersen et al. [2]).  

However, both optically linear and nonlinear parametric interactions 

provide physical mechanisms for operating or acting to separately limit the 

fluctuations in the number of photons and their phases. In Chapter 2, optical 

power was found to couple between the quadrature components of an 

optical wave through the quantum Rayleigh conversation of photons, as a 

wave propagates in a dielectric medium. 

Small scale integration of photonic devices holds the prospect of 

overcoming speed limits associated with back and forth conversions 

between the electrical and optical domains for signal processing and 

transmission. Integrated photonic platforms (Thylén and Wosinski [3]; 

Zhang et al. [4]; Hendrickson et al. [5]) will contain their own low power 

optical sources which will be used for on-chip signal processing. 

However, the low levels of power rule out any significant nonlinear effects 

for (2) and (3), the second and third order susceptibilities. For instance, a 

recently reported phase-sensitive amplifier (Li et al. [6]) operating on (3) in 

semiconductor materials can only deliver output signal powers of less than 

31 dBm for input pump powers of  1 dBm .  

In Chapter 2 above, the process of optically linear inter-quadrature 

coupling of power was pointed out and in Chapter 3 the quantization of the 

optical field, without invoking harmonic oscillators, led to the 

disappearance of the physically impossible half-photon noise. This Chapter 

presents a phase-sensitive gain coefficient which evolves throughout the 

propagation across a second-order optically nonlinear crystal, and in doing 
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so can bring about different levels of power between quadrature states. It is 

the intrinsic phase-shifting effect of a parametric coupling of photons that 

underpins the noise squeezing rather than a superposition of optical field 

operators. 

4.1 Parametric Processes for Quantum Noise Reduction 

Two specific parametric processes (Vatarescu [7-10]) have the potential 

to operate as integral parts of a photonic integrated circuit (PIC) with a high 

degree of photonic conversion (> 90%), as they require low pump powers 

(< 10 mW) and very short interaction lengths.  

Parametric amplification and phase shifts can be performed with first-

order susceptibility quantum Rayleigh emissions [7] in the form of optically 

linear parametric (OLP) effects and the corresponding electro-optic 

susceptibility-based conversion of photons in the form of electro-optic 

parametric (EOP) processes [10], both of which require low optical pump 

powers and short interactions lengths of a few microns for OLP interactions 

and a few centimetres for EOP devices. These interactions can be highly 

efficient and require only a pair of a pump and a signal optical waves, and 

functional devices can be fabricated with well-established technologies 

(Yamazaki et al. [11]). 

As parametric processes of photonic conversions constitute a major 

mechanism for generating nonclassical states of light [1-2], any new 

insights into such interactions should be of particular interest in the design 

and operation of functional devices. Quantum optic noise reduction and 

phase-sensitive amplification will benefit an optical transmission system 

throughout the entire link and, in particular, at the receiver and detection 

stages of operation (Kikuchi [12]). Quantum noise stems from fluctuations 

in the distribution of numbers of photons and/or the distribution of 

associated phases of the optical fields [12], and include: the background (or 

vacuum) fluctuations of any electromagnetic field of radiation, the 

spontaneous emission of photons by an excited electric dipole polarization, 

the Poisson distribution as a function of time, of the number of photons in a 

coherent beam of light, fluctuations in the state of polarization, etc. 

Experimentally, given the very low efficiency of parametric conversion 

of photons carried out by (2)  and (3) - based materials, the undepleted pump 

approximation becomes a critical aspect of the interaction, along with the 

phase-matching condition. Theoretically, photonic noise reduction through 

variance squeezing – below the standard quantum limit (SQL) of an optical 

coherent state (Davidovich [13]) – is implemented by simultaneous 

amplification of a field quadrature of phase  (defined by adding two output 
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fields or phasor modes) and attenuation of the corresponding conjugate 

quadrature  + /2. This leads to the definition of a virtual photon 

annihilation operator (Yuen [14]; Henry and Glotzer [15]) which is the 

superposition of various levels of a photon annihilation operator a and a 

photon creation operator a*. This type of quadrature noise squeezing 

requires a two-photon output per interaction [14] and it is linked to the 

Bogoliubov transformation for boson particles.  For example, the output 

annihilation operator of the signal mode as is given as a superposition of the 

input operators weighted by c – number functions, i. e., 

 

a s (z) = c1 (z) a s (0) + i e i  p   c 2 (z) a*i (0)                                           (4.1) 

 

where the subscripts denote signal (s) and idler (i) waves, and p identifies 

the pump phase(s) of the interaction term. This expression is based on the 

approximation of the undepleted pump which is treated classically by 

ignoring its operators, resulting in a gain coefficient go which is not allowed 

to vary at all, leading to many significant properties being discarded as a 

result of the linearization of the rate equations.  

While the cross-coupling between a*i  and as  arises from the parametric 

conversion of photons, the self-coupling term has no physical origin being 

a mathematical artefact as a result of the conventional solution containing, 

simultaneously, an amplifying ( + go  =    and an attenuating (  go ) 

exponential factors defined by the product of a susceptibility and the pump 

power Pp. Commonly used functions are:  c1 (z ) = cosh (go z)  and c2 (z) = 

sinh (go z ) for a phase-matching condition (Louisell et al. [16]). But no 

explanation has ever been provided as to how the same parametric process 

can, physically, amplify and attenuate simultaneously the signal wave. 

Indeed, a formal integration of Eq. (22) of [16] yields:  

 

as (z) as (0) = i e i  p  go  a*i (z) dz                                                    (4.2) 

 

indicating that c1 = 1 for any conditions and remaining unchanged 

throughout the propagation. Whether the input signal operator is amplified 

or attenuated at a particular point z in the dielectric medium will depend on 

the local value of the relative phase between the pump(s) and, the signal and 

idler waves. This is not the case with the Bogoliubov-type solution which 

has a phase-independent gain coefficient go.  

Furthermore, if the classical pump amplitude, in the driving term of the 

formal integral in eq. (4.2) is replaced by its quantum optic representation, 

i.e., cp ap , then the driving force ap a*i  on the right-hand side of that eq. 

(4.2) would oscillate at an angular frequency  – ( p – i ) – s indicating 
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that only as is changed without any appearance of a positive frequency 

creation operator as* as suggested by the Bogoliubov transformation. 

Additional physical deficiencies of the Bogoliubov solution are outlined in 

the Appendix A below. 

Consequently, an approximation-free and fully quantum optic 

formalism for parametric processes is needed, and it is developed in this 

Chapter   based on the concepts outlined in (Vatarescu[8-9]). The parametric 

amplification consists of stimulated emission of photons which adopt the 

same characteristics as the stimulating beam. The direction of photon 

coupling, e.g., for the three photon–mixing interactions between the pump’s 

frequency and the down-converted frequencies of the signal and idler 

waves, depends on the phase difference between the three waves. This 

process is also accompanied by spontaneously emitted photons which have 

arbitrary phases and states of polarization – (see Inoue and Mukai [17]) for 

the equivalent case of four-wave mixing). The spontaneous emission 

provides the seed photons to be amplified in the absence, at the input, of 

another stimulating optical wave. 

The critical role of the parametrically engendered phases has been 

demonstrated experimentally [17]. A physically meaningful phase sensitive 

(PS) gain coefficient was identified in (Vatarescu [18]) along with its 

spectral bandwidth.  

This Chapter involves no approximations and presents in Section 4.2, a 

fully quantum optic derivation of the parametric equations of motion 

describing the evolution of the complex c - number functions of the photon 

annihilation and creation operators, based on the concepts outlined in 

Chapter 3. Section 4.3 presents a generalized phase-dependent (PD) gain 

coefficient for parametric interactions, and a physically meaningful 

explanation for the generation from spontaneous emission of an idler wave 

phase-conjugated to the signal, and quadrature waves for maximal 

amplification and attenuation. Applications are outlined in Section 4.4, 

followed by a discussion, in Section 4.5, of new features emerging from a 

fully quantum optic approach to parametric amplification.  

4.2 Quantum Optic Second-Order  
Parametric Equations of Motion 

Quantum optically, in the Heisenberg picture, the evolution of a physical 

process is described by relevant varying operators while the initial state 

wave functions are kept unchanged. A varying operator itself is the product 

of a basic operator and a c - number complex function whose values are 

determined by the Heisenberg equations of motion. (Glauber and 
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Lewenstein [19]; Anderson et al. [20]). The initial conditions are 

determined by the expectation values of the basic operator. The c-number 

functions for coherent states of light are the eigenvalues  (alpha) numbers, 

and combinations of them can be measured experimentally (Townsend and 

Loudon [21]). 

The phase dependence of the parametric gain coefficient and the related 

phase pulling effect – presented in (Vatarescu  [8-9]) for the classical fields 

– can also be derived quantum optically by means of the Ehrenfest theorem 

presented in Chapter 3, including the annihilation and creation operators of 

all the optical fields (signal, idler and pump)- involved in the interactions. 

For a second-order nonlinearity, or a (2)–based interaction, the 

frequencies are related by the equality: 1 + 2 = 3 , the pump being 

identified with 3 . Quantum mechanically, e.g., [19-20], the Hamiltonian 

of interaction  which describes the exchange of photons by stimulated 

emission, has the expression:  

 

,                                                          4.3  

 

where the reduced Planck constant and the relevant susceptibility are, 

respectively, denoted by  and , the latter including the constant of 

proportionality relating the Hamiltonian expressed in terms of the electric 

field operators to the Hamiltonian  associated with photon annihilation 

and creation operators,   and  , of the  j field  ( j  = 1, 2, 3), as defined 

in equation (3.9).     

The equations of motion for the expectation values are found from the 

Ehrenfest theorem presented in Section 3.3.2. The composite wave function 

of the three interacting waves or photonic beams is: 

 
| ,   ,  ,  ,  ,  ,  ,                              4.4      

 

Analogously to the linear wave interactions of Section 3.3.2, one obtains the 

following coupled wave equation of motion: 

 

                                                                                        4.5   

 

After converting to number of photons, i.e., | , |2 = N j  and corresponding 

phases  j , the equation of motion (4.5) provides the rates  of change  of   N 

j   and   j   as follows: 
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where the gain coefficient   includes an overall coupling coefficient    

that depends on the polarization states of the photons through the tensorial 

structure of the classical nonlinear susceptibility  (3). The phase difference 

(or the relative phase) between the three waves is  ,  being the 

propagation constant and z / t = vp is the phase velocity.  In (4.6e), ko;1 and 

 EBSCOhost - printed on 2/13/2023 9:24 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 

 

 

64

n specify the free-space wavevector and the effective refractive index, 

respectively, while f identifies the field distribution. 

The condition for optimal amplification is found from eqs. (4.6), for           

 = 0, to be  /2 of eq. (4.6 j). 
The mixing of three photons of different frequencies can lead to 

quadrature-dependent coupling of photons, with one pump photon splitting 

into a signal photon of the same quadrature state (p), and the idler photon 

coupled into the second quadrature state (q). As a consequence of the 

relative phase being /2 in the phase -dependent coefficient of eq. (4.6b), 

i.e., p p s   q i =   /2, these quadrature waves will be amplified, 

whereas those shifted by /2 will be de-amplified. This is a much weaker 

version of the optically linear parametric exchange of power between 

quadrature waves of the same frequency identified in Chapter 2.  

4.3 Phase-dependent Gain Coefficients  
and Phase-pulling Effects 

An input-output transfer function for the expectation values of the signal 

or idler powers P 1; 2 can be found by recalling the relation between the flux 

of photons N and the optical power of a beam (Blow et al. [22]), i.e.,                   

P =   N. This will unify the classical and quantum optic rate equations. 

A formal integration of eq. (4.6a) will define a gain factor G1; 2 (z, ) and 

an output number of photons N1; 2 (z), that are: 

 

;  , ;  ,                                                           4.7  

 

;  , ;  ,  ;  0,                                                           4.7  

 

The phase - dependence of the parametric conversion of photons is 

determined by the gain coefficient g of eq. (4.6b) through the relative phase 

  of  eqs. (4.6c and 4.6d).  Signal and idler waves photons will be absorbed 

by the pump for 0 <  < , and will be amplified for   <  < 0.  The 

minimum level of input optical power corresponds to the spontaneous 

emission. 

The power ratio r 1;2 z  of eq. (4.6h) also plays the role of a saturation 

factor, reducing the gain coefficient for higher input levels of  N1; 2.  A higher 

power ratio r 1;2 z  leads to a higher gain coefficient g but also speeds   

towards  /2. This is a parametric phase pulling effect which, for N pump >> 
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N signal/idler, can overcome a phase-mismatch induced by   0 as explained 

in the next paragraph. 

The parametric phase pulling (PPP) effect undergone by the signal wave 

emerges from the rate of change of 1 which dominates the shift in the 

relative phase   in  eq. (4.6c) for N 3 > N2 >> N1.  This is illustrated in    

                

/2 A

± 0

B

 /2

 
Fig. 4.1.   The role of the parametric phase pulling effect for    N3 > N2 >> N1 ,  

in shifting     towards    /2,    for any input signal phasor. 

 

Fig. 4.1. From eq. (4.6c), for  /2 <  <  /2, the relative phase will rotate 

clockwise on the phasor circle (in the negative direction) towards  /2, and 

for  /2 <  < 3  /2, it will rotate in the positive direction as   cos  > 0. 

This field phasor rotation suggests the possibility of reducing phase 

fluctuations as the relative phase, if dominated by the ratio r 1  of eq. (4.6h), 

is shifting towards the optimal phase of  /2, regardless of the initial phase 

value. Therefore, parametric amplification of single photons is unavoidable. 

In the process, the gain coefficient g1 increases in value and becomes 

locked-in at the optimal value of  resulting in a phase-matched interaction. 

For a vanishing total phase mismatch, with N3 > N2 >> N1 and 

spontaneous emission initiating one sideband wave N1 , its phase  1  change  

will dominate the shift  of the relative phase to bring about   =  /2 =            
 3 (0) –  2 (0)   1 at the output.  By adjusting the initial pump phases          

 3 0), a conjugate phase  2 =   1 (0) can be obtained. 

From eqs. (4.6) we find that by setting  3 (0) = 0, the propagating 

quadrature waves of    1; 2 = ±  / 4 and  1; 2 =  ±  /4 are, respectively, 

amplified (+) and attenuated ( ), being separated by  rad. Their nonlinearly 

induced phases are obtained from eq. (4.6g). Other input phases are pulled 

towards these values by the parametric phase-pulling effect of the last term 
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of eq. (4.6c). The parametric phase-pulling effect will shift the arbitrary 

phases of photons towards a common value, thereby reducing the level of 

phase-noise as demonstrated experimentally in (Lundström et al. [23]). 

A particular case that will be of interest in the following Chapters deals 

with the amplification of spontaneously emitted photons. This process will 

be initiated with N3 >> N2 = N1 = 1 and arbitrary phases.  

4.4 Simultaneous Amplification of a Signal  
and Sub-Poissonian Distributions of Photons 

We have identified in previous sections of this Chapter the parametric 

phase-dependent gain coefficient and the related parametric phase-pulling 

effect as fundamental mechanisms underpinning two-photon output per 

interaction for  (2) ( and  (3)) parametric processes for any level of optical 

powers and conditions. In this Section, we consider the possibility of 

generating sub-Poissonian distributions of photons with the assistance of 

optically linear parametric (OLP) [6] and electro-optic parametric (EOP) [7] 

interactions which involve only one-photon output per interaction – with 

one-photon input – although the EOP conversion requires one microwave 

photon.  The rate equations for these processes are similar, both having a 

phase-dependent gain coefficient and the related phase-pulling effect, and 

are derived by setting the appropriate electric dipole operators.  

Let us consider a strong optical pump of angular frequency o in the 

form of a conventional coherent state of light which is characterized by an 

 eigenvalue possessing a large average number of photons ‹N› = No and a 

narrow phase-dispersion (Carruthers and M. Nieto [24, Sec. 8a]) centred on 

its average value o. Although the optical pump is commonly considered to 

remain undepleted, its temporal waveform N(t) displays photon number 

fluctuations which should fall within the Poisson distribution, with a 

quantum noise standard deviation of  No. A simple method for reducing the 

fluctuations of a strong pump would have its beam split into two equal parts 

and each part launched into one branch of an optical time-delay ( ) 

interferometric filter, so that, at the output, the number of photons will be 

proportional to Nout = 0.5 [N (t)  N (t  ) 2 N (t) N (t   ) cos ( o )]. 

The cosine term can be eliminated by adjusting the time delay so that           

cos ( o ) = 0, leading to a Fourier transform of the superposition of two 

replicas of the photon number waveform, and their spectral power                       

S (f ) cos2 (  f ) being shaped by a filter profile which will attenuate high 

electrical frequencies or photon-number sinusoidal waves associated which 

sharp rises and falls in the photon number fluctuations. 
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4.4.1. Optically linear parametric directional couplers 

An optical directional coupler (ODC) composed of two parallel and 

identical optical waveguides can operate as a phase-sensitive (PS) amplifier 

when the signal power launched into one waveguide is much smaller than 

the pump power propagating in the other waveguide. This operation would 

be described by the coupled photon equations of Chapter 3 indicating that 

the phase-sensitive gain coefficient gs of a signal is inversely proportional 

to the square root of the signal’s number of photons, i.e.  Ns, thereby 

reducing the level of fluctuations in the output number of photons by 

enhancing the gain for the smaller number of photons. As a result, a sub-

Poissonian distribution of photons is generated through the saturation-like 

amplification which is the consequence of the stimulating field being 

different from the pumping field. 

The possibility of generating a sub-Poissonian distribution of photons 

through signal-dependent differential gain can be assessed by imposing the 

condition that the input range [0.7 No ; 1.4 No ] of the number of signal 

photons Ns (0) – covering most of a Poissonian distribution of average No – 

is reduced to the interval of the standard deviation, i.e., [ No (L)  No (L); 

No (L) +  No (L)] at the output after an interaction length L. 

An estimate of the reduced range can be assessed by inserting the gain 

coefficient from eqs. (3.29) into the eqs. (4.7) to obtain the equality    

           

N s, j (L) = N s, j (0) × G s, j (L)  

 

(with input j = 1 for 0.7 No and j = 2 for 1.4 No ) and, requiring N p >> N s, j 
to find from the ratio μj = Ns, j / No   the expressions: 

 

 0   ,                                    4.8   

  

 

 0   ,                           4.8   

 

where  

 

 
 

 

2 0.5  

 /
                                                           4.8   
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is the gain derivative evaluated at Ns = No (z) from eq. (3.29) for maximal 

gain, and having used the linear relation  

 

g s, j (z)  g o (z)  g ‘o (z)  (N s, j  No (z) ) , 

 

i. e., a truncated power series expansion of g s (Ns). The design parameters 

include the coupling coefficient between the waveguides [7], the pump 

number of photons Np, and the length of interaction L. An attempt to reduce 

ln μj  to a target value close to zero may require more than one amplifying 

stage.   

As an additional application, the gain coefficient can rotate the state of 

polarisation of an optical beam through differential amplification of the x–

polarised and y –polarised components if the optical powers are not equal, 

with the pump being polarised at an angle of 45o relative to the axes.  

For low levels of signal powers, the phase-pulling effect of eqs. (3.29c) 

and (3.29d), illustrated in Fig. 4.1, brings all signal phases towards the 

optimal value of their relative phase of  =   / 2 for maximum 

amplification, thereby reducing phase fluctuations. Thus, photons with a 

broad range of phases have their phases brought together by the phase-

pulling effect, resulting in a coherent beam of photons. As an application, a 

binary phase-encoded signal { /2, /2} can be converted into an 

amplitude binary {“1”, “0”} with a phase-sensitive optical directional 

coupler amplifier.   

Another saturation-like mechanism which further increases the gain for 

weaker signals is the phase dependence of the gain coefficient. The phase-

pulling effect tends to equalise the levels of powers – or corresponding 

numbers of photons – between the pump power and the signal and idler 

powers   particularly so for an input phase difference of  p   s = m  

(where m = 0, ± 1, ± 2,… an integer). A weaker signal will reach the 

maximum gain condition faster than a stronger signal as indicated by eqs. 

(4.6).  

The phase-sensitive optical directional coupler device can support only 

degenerate frequency amplification, i.e., ( pump = signal) but one optical 

directional coupler will amplify any wavelength of a wavelength division 

multiplexed signal provided a suitable pump frequency comb is available. 

Non-degenerate frequencies amplification can be delivered by electro-optic 

parametric (EOP) waveguides as outlined in the next section.   
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4.4.2 Electro-optic converters 

The parametric amplification of a signal whose frequency is different 

from that of an available pump can be implemented with an appropriately 

designed electro-optic modulator. The electro-optic parametric (EOP) 

interaction [10] provides external control of the phase-sensitive 

amplification through the phase of the microwave modulating signal. 

An electro-optic phase-sensitive amplifier (EO-PSA) will consist of an 

electro-optic waveguide with electrodes designed for travelling microwave 

modulating signals. By adjusting the phases of the microwave field and of 

the optical pump wave, a frequency downshifted input signal can be 

amplified or attenuated [10] as illustrated in Fig. 4.2.  An optical pump with 

a narrow spectral bandwidth can amplify and filter out a similarly narrow  

 

E ( s)

 

s = p m p  
 

Fig. 4.2 Electro-optic parametric amplification filtering out a narrow  

band of the signal spectrum through frequency downshifting  

of pump photons ( p) by a modulating frequency  m .
 

signal bandwidth through the electro-optic parametric process of frequency 

translation [10], (Riaziat et al. [24]). The frequency downshifting p –  m 

=  s would be easy to implement because it generates microwave photons, 

requiring only a limited level of input microwave power. Broadband 

amplification with EOP devices is possible by operating multiple optical 

pump waves. 

The equations of motion for OLP and EOP interactions involve only two 

optical waves [6 -7] and can be reformulated similarly to the optically linear 

parametric conversion of photons – see Appendix B below – having the 

form:  

 
                                                                                   4.9
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;   ;                                                                             4.9

;  
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                                                                              4.9  

 
  

                             4.9  

                                                                                                      

 

                                           4.9  

                                        

                                                                                                

;  ; 0   ;                                        4.9  

                                                        
 

1

v
 

; 

2 
  ;                                                   4.9  

 

where a loss factor  is included in eq. (4.9a)), and the modulating 

microwave field Em, phase and frequency m are identified by the subscript 

m.  Additionally, a = b m 
.   

The phase-sensitive gain coefficient of eqs. (4.9) will reduce amplitude 

fluctuations, while the parametric phase-pulling effect will narrow the range 

of phase variations carried by the signal – see Fig. 4.1.  

       A distinction is made between time-domain quadrature states of light, 

i.e., cos (  t) and in (  t), and space-domain or propagation (longitudinally 

varying) quadrature states which will exhibit maximum or minimum gain 

for   b a = ±  /2  or no gain for   b a =  0 or  ± , as seen from eq. (4.9b). 

 The propagation quadrature states evolve as a result of parametric phase 

shifts as specified in eqs. ((4.9d) and (4.9f). For a phase-matching condition, 

 = 0, they will tend towards the maximum gain, while for a phase 

mismatch   0 they will depend on the interaction length as well. 

4.5 Physical Aspects of Phase-sensitive Gain Coefficients 

The conventional method of experimental noise reduction through the 

interference between a signal and its phase-conjugate replica, e.g., [21], 

(Levenson et al. [25-26]) relies on parametric conversions of photons in (2) 

and (3)-based materials. These techniques, however, constitute only a 

particular case of a broader picture of parametric processes. 
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The approximated mathematical solution reproduced in Appendix A 

below – eqs. (A4.1-2) – is inconsistent with the rigorous and physically 

meaningful solution published in 1962 in (Armstrong et al. [27]) – and 

expanded in 2013 in (Marhic [28]) – and which was largely overlooked 

because of its complexities involving elliptic functions. Nevertheless, its 

physical features can be extracted from the interlinked rate equations of 

motion for the powers and phases of the optical waves involved in the 

parametric processes as presented in (Vatarescu [7-10], [18]). As a result, 

one identifies, both classically and quantum optically, a phase-dependent 

gain coefficient and a related phase-pulling effect. The rigorous solution 

rules out simultaneous amplification and attenuation of the signal and idler 

waves as indicated in eqs. (A4.1-2) of Appendix A below. 

Equally, an approximation-free and fully quantum optic analysis of 

parametric processes – presented in this Chapter– reveals that the 

conversion of photons involves a parametric gain which depends on the 

relative phase between the pump waves and, the signal and idler waves and 

is inversely proportional to the square root of its power, as well as 

identifying a parametric phase-pulling effect, for any levels of optical 

powers.    

The parametric phase-pulling effect is capable of countering a phase-

mismatch condition and tends to equalize the levels of power among the 

waves taking part in the mixing of photons. Amplitude noise reduction is 

achievable for any levels of signal power as the gain coefficient displays a 

saturation-like property. The same characteristic is also exhibited by the 

related parametric phase-pulling effect.  

The similarities between optically linear parametric and electro-optic 

parametric processes, on the one hand, and the three- or four-photon mixing 

interactions, on the other hand, are evident as all these processes belong to 

the same group of physical phenomena whereby the optical fields drive the 

atomic electrons into oscillation with no absorption of energy between 

resonant energy states.  

The mathematical technique of linearizing – on the basis of assumptions 

and approximations [29] – the parametric nonlinear coupled wave equations 

brings about a loss of physical properties and the appearance of physical 

inconsistencies as pointed out in the Introduction to this Chapter and the 

Appendix A below. The differential equations derived under the condition 

of undepleted pump approximation do not include the variation of the 

conversion-related phase, or the possibility of power coupling reversal 

which is a major feature of parametric processes.  

Possible operations of carrying out phase-sensitive amplification at low 

levels of optical power and over short interaction lengths may benefit from 
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the versatility offered by parametric processes involving only two optical 

waves. Functional operations can be implemented at low levels of pump 

power and over short distances of a few wavelengths for optically linear 

parametric interactions and centimetres for electro-optic parametric 

interactions.  

Equally, a combination of optically linear parametric and electro-optic 

parametric devices will also involve only two interacting optical waves with 

the electro-optic parametric effect providing direct interfacing between the 

electrical and optical domains through the electro-optic effect of a suitable 

crystal interleaved with silica waveguides. 

For applications in the following Chapters, we emphasize that the 

parametric amplification of a spontaneously emitted photon is unavoidable 

and that the propagation, in a dielectric material, of one photon per radiation 

mode is directionally random involving absorption and spontaneous re-

emission.  

4.6 Conclusions 

A physical analysis of parametric processes reveals a common feature 

of phase dependent gain coefficients accompanied by a phase pulling effect. 

Phase-sensitive amplification can be achieved at low levels of optical power 

and over short interaction lengths by means of optically linear and electro-

optic parametric conversions of photons.  With only two optical waves 

needed for signal processing, e.g., amplification, noise reduction, filtering, 

etc., the electro-optic parametric–based devices will have the advantage of 

direct external control for different signal and pump frequencies. 

These physical mechanisms can generate sub-Poissonian distributions 

of photons through a saturation-like effect and using only integrated 

photonic circuits. 

Appendix A - The deficiencies of  
the Bogoliubov-type solutions 

The evolution of the operators is given by the following equations of 

motion for a phase-matched nonlinear interaction [25]: 

 a s, i (z) =  cosh( go z) a s, i (0) + i e i p r  
 sinh (go z)  a* i, s (0)         A 4.1   

 
 a s, i (z) = 0.5 go [a s, i (0) + i e i p a* i, s (0)] e go z   

                          0.5 go [ a s, i (0)  i e i p a* i, s (0)] e  go z              A 4.2  
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These expressions of the optical field operators and their rates of change – 

eq. (A 4.2) – also apply to the corresponding classical optical fields [21], 

[25 - 26], [29] where the complex amplitudes of the signal and idler waves 

are denoted by as and ai , respectively, with the asterisk indicating complex 

conjugation and z being the longitudinal distance of propagation. The 

reference phase p is (the sum of) the pump phase(s). The gain coefficient 

is given by go = (2m+1)Pp
m for a small signal, and phase-matching 

conditions, with  and Pp corresponding, respectively, to the nonlinear 

coefficient and the pump power for (2) , the second-order susceptibility                  

(m = ½ ), and (3) , the third-order susceptibility (m =1). 

The self-coupling term go as (0) of the rate equation eq. (A4.2) above, 

would be generated by an electric dipole polarization oscillating at the 

angular frequency  pump +  s instead of   pump  i   which is required for 

an exchange of photons of s in a second-order nonlinearity. Such a dipole 

frequency  pump +  s cannot couple photons into the signal.  

Classically, for a zero-input idler wave, i.e., ai (0) = 0, the signal seems 

unaffected by the cross-coupling or interaction term. Equally, quantum 

optically, the expectation values of eqs. (A4.1-2) contain the creation 

operator a* which, in the context of coherent states of light  ,  results  in 

the complex conjugate value * of the eigenvalue of the annihilation 

operator. Consequently, the zero-photon state with  = 0 cannot trigger a 

parametric conversion of photons in eq. (A4.2). This will be role of the 

spontaneous emission [7].  

As the same number of stimulated photons is gained, or lost, by both the 

signal and the idler waves through stimulated emission, e.g. [7 - 9], the rate 

of power change should incorporate the product of all the optical powers 

taking part in the parametric conversion, i.e., 

 

 ,
                                                        4.3  

where P s, i =  A s, i  2, A being the corresponding field amplitude,   (z) the 

relative phase between the pump(s), and the signal and idler waves 

including the photonic conversion-induced phases [14], [20-21]. Eq.  (A4.3) 

requires a non-zero input for both the signal and the idler waves in order for 

the conversion of photons to be initiated. The minimum input power will 

correspond to the spontaneous emission which depends on the strength of 

the electric dipole [7] and is distinct from the background (or vacuum) 

fluctuations which are much weaker and independent of the parametric 

process.  
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Appendix B – The Quantum Regime  
of Electro-optic Modulation 

The analysis of one optical wave of frequency  co-propagating 

through an electro-optic waveguide alongside a microwave of frequency , 

will results in both frequency-upshifted and downshifted sidebands. These 

sidebands are generated through amplification of spontaneously emitted 

photons, and the derivation of Section 4.2 can be readily adapted to this 

case. 

The corresponding Hamiltonian of interaction between adjacent 

sidebands n 1 and n takes the form:  

 

,                                           4.1  

 

The subscript m identifies the microwave photon annihilation and creation 

operators, and the first term in the brackets corresponds to an up-shifted 

optical frequency, while the Hermitian conjugate term indicates the down-

shifting of the optical frequency.   

An upshifted sideband denoted by an integer n = 1, 2, 3...gains photons 

from the (n 1)-th sideband and loses photons to the next (n 1)-th sideband. 

The frequencies are related by the equality:   n ±  =  n ± 1. A downshifted 

sideband denoted by a negative integer n  1, 2, 3...gains photons from 

the  ( n 1)-th sideband and loses photons to the next ( n 1)-th sideband.  

The equations of motion for the expectation values of the number of 

photons are found from the Ehrenfest theorem presented in Section 3.3.2. 

The composite wave function of the three interacting waves or photonic 

beams is: 

 
| ,     ,   ,   ,                             4.2     

 

Analogously to the linear wave interactions of Section 3.3.2, one obtains the 

following coupled wave equation of motion for the number of photons N 
and corresponding phases  of the optical sidebands [10], similarly to eq. 

(4.6): 

 

 
      ,  
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1

v
 

; 

2 
  ;     

 

where  n
   is the nonlinear coupling coefficient determined by the spatial 

overlap of the three field distributions f s.  
The optimal relative phase for both upshifting and downshifting cases is 

 ±  –  / 2. After converting the number of photons into the optical field 

magnitude E ± n =  p N ± n using eq. (3.28), the rate of change for both the 

upper and the lower sidebands of the optical field is found as: 

 

2                                                           4.5  

 

2
1

                                                                   4.5   

 

after defining a modulation index s, and its derivative s , in the 

approximation of an undepleted pump and microwave power for any 

sideband, i.e., so long as photons are shifted away from the input pump 

wave. And for a continuous wave input, i.e., n=0, the pump loses power to 

both first order sidebands: 

 

2   2                                             4.6  
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The rate equations (B4.5) and (B4.6) provide, in the undepleted pump 

approximation, the evolution of the sideband fields E ± n , and their initial 

phase quadratures are found from the optimal phase for the amplification of 

the spontaneous emission: 

,   
2

                                           4.7

For  = 0 or , the modulating tone corresponds to  ± cos (  t),  and for 

  /2 or  /2, to  +/  sin (  t). The solutions to eqs. (B4.5) and (B4.6) 

lead to the Bessel functions of the first kind, i.e. E ± n = Jn (s), through the 

equality:  

 

                                        4.8                      

 

where  ± n  = {0,  /2 , ±  ,  /2 }. The initial quadrature phase  ± n   is 

determined from the condition for optimal amplification of spontaneous 

emission of eq. (B4.7)) after setting  0 .  A superposition of fields  ± n 

multiplied by the corresponding sinusoidal tone reproduces the 

mathematical expansions in terms of Bessel functions of a phase modulated 

wave by the corresponding time single tone, i.e., exp(± i s cos (  t)) and                       

exp(± i s sin (  t)). 
The undepleted pump approximation can be somewhat relaxed because 

of the phase-mismatch compensation brought about by the parametric phase 

shifts in eq. (B 4.4).  The approximation sin  1 holds at low levels of 

converted power because    z is partially offset by the nonlinearly induced 

, for a strong and undepleted pump. The phase mismatch function                  

sinc ( z ) is obtained from eq. (B4.5b) if the parametric phases are ignored, 

that is,    z  >>  and initially  ±     z /2 .   
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CHAPTER FIVE 

THE QUANTUM REGIME OPERATION  

OF DIELECTRIC DEVICES  

 

 

 

The common approach in Quantum Optics (Garrison and Chiao [1]) for 

the prediction and explanation of experimental outcomes employs global 

quantum states which describe the distribution of a large ensemble of 

measurements. These quantum states, or wavefunctions associated with the 

state density operator, are independent of the position and time of each of 

the many measurements.  

In this way, the explanation of the measured outcomes appears to 

confirm the concept of quantum nonlocality leading to the assumption of 

quantum interference between probability amplitudes which are complex 

values. It is suggested that a lack of information about the propagation 

pathway of one photon at any given time, between the source and the 

photodetector, underpins the quantum interference.  

Nevertheless, one single photon entering a dielectric device such as a 

beam splitter or an optical fibre, will be deflected from its straight-line 

propagation by the quantum Rayleigh scattering.  

Additionally, the spatial distribution of one photon is assumed to be 

generated by a superposition of Fourier components of a wave packet of 

which only one single component can exist at any given time.  As a result, 

mysterious and counter-intuitive quantum processes are alleged to come 

about. 

Single-photon sources (SPSs) would be a crucial component of quantum 

optic schemes for the processing and transmission of data or information 

(Hepp et al. [2]); (. Lodahl et al. [3]). The performance of SPSs is assessed 

by means of intensity correlation with a Hanbury Brown and Twiss (HBT) 

measurement, and two-photon coherence properties are specified with a 

Hong-Ou-Mandel (HOM) setup. Nevertheless, it is the rather questionable 

definition of a single photon per radiation mode that gives rise to the optical 

illusion of single photon interference. A typical experiment (Schneider and 

LaPuma [4]) is set up based on “… a figure of merit, the average photon 

occupancy, defined as the incident photon rate in photons per second times 
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the transit time (length divided by the speed of light) of the interferometer. 

For our nine-orders of magnitude attenuation, the average photon 

occupancy in the interferometer is approximately 10-2 photons.” However, 

it is the number of photons present in the same group that is physically 

meaningful rather than disparate photons reaching the photodetector at 

different times. 

The physical process of two optical waves interfering with each other –

at the detection stage – can enhance or diminish the photon-dipole 

interaction of photon absorption. 

In a 1999 review paper Mandel [5] wrote: “…about the quantum state 

of a system: in an experiment the state reflects not what is actually known 

about the system, but rather what is knowable, in principle, with the help of 

auxiliary measurements that do not disturb the original experiment. By 

focusing on what is knowable in principle, and treating what is known as 

largely irrelevant, one completely avoids the anthropomorphism and any 

reference to consciousness that some physicists have tried to inject into 

quantum mechanics. “[5, p. S279].  Therefore, in line with the concept of 

knowable elements of the experimental configuration suggested by Mandel, 

this Chapter identifies a range of physical processes that impact 

significantly on the experimental outcomes and their interpretations.  

In the quantum regime of one photon per radiation mode and only one 

mode being present at any given time at the photodetector, the photon-

photon interference cannot take place and it is replaced, mathematically, by 

probability amplitude-based interference. Yet, the photodetection is induced 

by the intrinsic fields of photons for each individual measurement included 

in the overall distribution, and the photonic intrinsic fields were derived in 

Chapter 3. Additionally, the unavoidable parametric amplification of 

spontaneously emitted photons was identified in Chapter 4.  

Recent developments in the integration of photonic devices for quantum 

information processing [2-3] are characterized by their capability to 

generate two-photon destructive interference for temporally overlapping–

but spatially separate – indistinguishable photons, which is commonly 

known as the Hong-Ou-Mandel (HOM) dip [1]. The reduction in the 

counting rate of coincident detection of photons at two spatially separated 

photodetectors is explained by opposite sign amplitudes for the probabilities 

of detecting each photon pair after having been reflected or transmitted by 

a beam splitter.  Yet, with only one pair of photons present in the 

experimental setup, at any given time, the two types of detection cannot take 

place simultaneously.  

This Chapter deals with the quantum regime operation of dielectric 

devices which are commonly used in various experiments such as beam 
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splitters of various configurations, interference filters, and “single” photon 

sources. 

5.1 The Role of the Rayleigh Quantum Scattering 

The core element of the photonic coincidence measurements is a 

symmetric beam splitter (BS) which provides two alternative pathways – A 

and B – for one single photon of number state 1  entering the beam splitter 

to reach a photodetector. When the two branches are brought jointly to the 

same detecting area, the emerging state describing an ensemble distribution 

would be (Walls [6]): 

 

 out = (  1 A  0  B +  0  A  1  B ) / 2 
½                                      5.1  

 
giving rise to a mathematical, non-vanishing interference term, in the form 

of  

 

 â†
A  â 

B  = Tr (  â†
A  â 

B )  0                                                            5.2a  

 

out    â†
A  â 

B    out = ( A 0  B 0  ) ( 0  A  0  B) = 1                     5.2b  

 

where the density matrix operator is      out out   , and the photon 

creation and annihilation operators are, respectively, â†
  and  â 

  of the two 

propagating modes. “The observed intensity pattern results from the 

interference of the probability amplitudes of a single-photon to take either 

of two possible paths” (Walls [6]). However, some physical contradictions 

arise: As â†
A and â 

B operate simultaneously on mutually exclusive states, 

1 A  0  B and  0  A 1  B, the operator â 
B, acting to the right, absorbs a 

photon, while a second photon needs to be absorbed by â†
A as it acts to the 

left. Therefore, the two photons are associated with the mixed state of the 

ensemble of measurements, but they reach the beam splitter and the 

photodetector at separate times.   

Any probability amplitude of a quantum event should be evaluated from 

wavefunctions that reflect the physical reality. Discarding temporal 

information – which becomes a lack of information – about the propagation 

pathway of a single photon does not create a physical effect; it can only 

mask or obscure the existence of physical interactions.  

One such overlooked process is the quantum Rayleigh spontaneous 

emission (QRSE) in a dielectric medium, which scatters and replaces 

photons and entangled photons with independent ones (Vatarescu [7]).  
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Fig.  5.1 The HBT detection setup (b = 0). The HOM setup (b  0); BS  

beam splitter; C C coincidence counting of photons; PD photodetector;  

IF interferometric    filter. 

 

A single photon cannot propagate in a straight line because of the QRSE. 

Only a group of monochromatic photons propagating together can maintain 

their line of propagation and properties because the absorbed photon may 

be recaptured through stimulated emission by the other photons in the 

group.  

A beam splitter does not conserve the number of photons passing 

through it because of the QRSE. For example, three photons entering 

through one input port of the beam splitter (BS) are split at the dividing 

dielectric interface with two photons being reflected and one transmitted to 

the output ports of the BS. The latter photon will most likely be scattered 

randomly by QRSE and will not emerge from the second output port. As a 

result, the HBT measurement will indicate no coincidence for zero-time 

delay even though a few photons were initially impinging onto the beam 

splitter. 

5.1.1. The pure quantum state of individual measurements 

In the case of an HBT measurement with a stream of single photons 

launched into one of two inputs a or b of a lossless cubic prism beam splitter 

(BS), illustrated in Fig. 5.1, the outgoing annihilation operators from ports 

c and d are conventionally given by [1]:     

 

  â c r  â a    and    â d t  â a ,                                                         5.3a  
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 or  

 

  â c  t  â b    and    â d r  â b ,                                                         5.3b  

 

with the reflection and transmission coefficients | r | 2 = | t | 2 = 0.5 and a 

relative phase of  r  t  = ± /2. With an input state   in , the ensemble 

probability P of each HBT detector recording a single photon is [1]:  

 

  in = |1  a | 0  b                                                                                  5.4a  

 

P = in   |  â†
j
  â j  |  in  = | r | 2  = | t | 2 =  0.5                                   5.4b  

 

where j = c or d. If the two output states are combined to interfere at one 

photodetector, then the joint detection probability is given by: 

 

 Pjoint = in  | (â†
c
  + â†

d
 ) (â c + â d ) |  in = | r  t | 2                            5.5  

 
and the interference term is 2 | r | | t | cos r t   0.  The relative phase 

condition is arbitrarily chosen – without any physical mechanism being 

identified – in order to comply with the quantum interference postulate of 

adding the complex probability amplitudes for alternative quantum 

trajectories. If the BS is replaced with a symmetric optical waveguide Y-

junction, then physically there would be no phase difference and the 

probability would exceed unity. 

Another type of operator transformation by the BS has been suggested          

(Kuhn and Ljunggren [8]; Reiserer and Rempe [9]) with an output of 

 

â c  r â a   and        â d  t â a                                                          5.6a  

 
â c t â a      and        â d r â a                                                           5.6b  

 

For r  t  0.5, the probability of one photon detection over the ensemble 

becomes for the first option Pjoint = 0, which is physically impossible. 

  Probabilities of a quantum event, such as photo-detection of a photon, 

are determined from a large ensemble of measurements carried out on 

identically prepared systems. Photonic ensembles for an HBT configuration 

will be described by a time-independent mixed state  

 

|   |1  |0  |0  |1                                                                    5.7  
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where the two ensemble distribution probabilities satisfy: p  + p    = 1. For 

this state, the interference term may be non-zero [3]. 

By contrast, a single HBT measurement will be represented by a time-

dependent pure quantum state 

 

|     |1  |0    |0  |1                                         5.8    

 

with |  t  | 2  |  t  | 2   1 , and the two mutually exclusive options, for 

one measurement, are: 

 

|  t  |  1   and   |  t  |  0                                                                 5.9a  

 

or 

 

|  t  |  0    and   |  t  |   1                                                        5.9b  

 

Each HBT measurement indicates, at any given time, the existence of a 

photon in one of two branches and the absence of a joint interference term. 

These inconsistencies are eliminated in this Chapter with a field-based 

approach, as the pure state describes the physical reality. The intrinsic fields 

of photons were presented in Chapter 3.   

5.1.2. The Hong-Ou-Mandel experiments   

Following Mandel [5],  

“Let us consider the quantum state    of the photon pair emerging from 

the beam splitter (BS). With two photons impinging on the BS from opposite 

sides there are really only three possibilities for the light leaving BS: (a) one 

photon emerges from each of the outputs 1 and 2; (b) two photons emerge 

from output 1 and none emerges from output 2; (c) two photons emerge from 

output 2 and none emerges from output 1. The quantum state of the beam-

splitter output is actually a linear superposition of all three possibilities in 

the form  

         |R |2 – | T | 2   1  1  1  2  

 

                     2 i R T |2  2  1  0  2   0  1  2  2                        
                                                                                                        

 where R and T are the complex beam-splitter reflectivity and 

transmissivity.”  

But, the possibility of other physical processes is ignored. 
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The assumptions made in relation to an optical beam splitter – operating 

in the quantum regime – would have the total number of photons entering 

the beam splitter input ports equal the number of photons emerging from 

the two output ports, leading to a unitary transformation for the input-output 

relation [1] of the field operators and a  ± /2 phase difference between the 

coefficients R and T.  

However, the quantum Rayleigh conversion of photons presented in 

previous Chapters may give rise to additional output states, such as:                        

0 1 0 2, 1 1 0 2, and 0 1 1 2 as photons are absorbed and spontaneously 

re-emitted, randomly, and, most likely, not in the direction of interest. The 

Hamiltonian of interaction between the electric dipoles and the optical field 

is [7]:  

 

                                                                                 5.10                          

 

where  is the electric dipole operator raising the atomic electron from one 

level to the next, and  is the photon annihilation operator, with   its 

conjugate operator, the photon creation operator.  The optically linear 

susceptibility (1) is included in the spatial coupling coefficient .   

The absorption of one photon through quantum Rayleigh conversion 

leads to the disappearance of an entangled state, that is:  

 

 (  0  1  0  2  +   1  1  1  2 )  =   0  1  1  2 

 

which is a product state. A similar annihilation occurs for the second photon. 

Alternatively, the dipole-field interaction of absorption projects the state 

onto the zero-photon state: 

1  0   1  1 1 2 =   1  2 

 resulting in one single photon surviving as soon as the entangled pair was 

created in a parametric spontaneously down-converted emission in an 

optically nonlinear crystal.  Additionally, unless two state functions or 

relevant operators overlap in the space-time of their configuration, i. e.            

f 1(r, t)  0 and f 2 (r, t)  0, their product will be zero, preventing any 

interference.  

In a nonlinear crystal pumped, e.g., with a continuous wave (cw) and for 

frequency down-converted photons of angular frequencies satisfying                    

s + i = p , the gain-providing medium generating the spontaneous 

emission, will also amplify the initially single photons of the signal and the 

idler, particularly so in the direction of wavevector matching conditions. As 

a result, the commonly assumed one single photon output does not, in 

reality, physically happen. At least several photons will be associated with 
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each individual and discrete electronic “click”. The gain coefficient of such 

amplification and the relative phase change are found from eqs. (4.6) to be: 

;   ;                                                                            5.11  

 

  
                                                                5.11  

 

after setting N1 = N2 << N3 and recalling the phase pulling effect that will 

lead to  =   /2. 

Based on the analysis of (Glauber and Lewenstein [10]), with the Fresnel 

formulas for the optical reflection and transmission coefficients 

corresponding to probability amplitudes of the two events, the photonic 

conservation would apply only to one interface between two dielectric 

media. As additional internal reflections inside the glass plate of a beam 

splitter – see Fig. 5.2 – would take place, the assumption of photon number 

conservation is questionable. Furthermore, because of the quantum 

Rayleigh conversion or coupling of photons occurring inside a dielectric 

medium (Vatarescu [11]), one single photon can only be re-emitted 

spontaneously in a random direction, preventing a straight-line propagation.  

Only a group of photons propagating together can maintain their direction 

of propagation and characteristics through stimulated emission induced by 

the other photons which are not temporarily absorbed and re-emitted.   

We can apply the Fresnel formulas if a pure state vector, or 

wavefunction, can be identified for the optical field – measured 

instantaneously – of the time-varying photonic wavefront, i.e., its amplitude 

in terms of the flux of photons and its phase. Such a function was developed 

in Chapter 3, taking the form of  

 

|  n  = ( | n  + | n 1 ) /  2 

  

and delivering, classically compatible, c - number values for observable 

expectation values (Vatarescu [12]).  

A pure state corresponds to one single measurement (Breitenbach et al. 
[13]: (Fano [14]) whereas a mixed state describes the statistical distribution 

of an ensemble of measurements [14].  A photonic wavefront carries a 

number of photons across a plane hosting dipoles and its duration will be 

determined by the response time of the photon-dipole interaction [13].  

The physical process of quantum Rayleigh conversion of photons 

(QRCP) is associated with the real part of the first-order optical 

susceptibility and involves a group of electric dipoles interacting 

simultaneously with two photonic wavefronts carrying an arbitrary number 
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of photons across a plane over a short time  t  0. The excited dipoles will 

emit either spontaneously or stimulatedly, depending on the circumstances. 

The spontaneous emission will affect the operation of dielectric interface-

based beam splitters, while the stimulated emission will be active in a fibre-

optic beam splitter configured as an optical directional coupler. 

A mixed state of one-photon excitation as presented by Smith and 

Raymer [15, p. 8] is commonly used to describe the extent of a photon in 

space and time, but this is physically impractical for the description of the 

dipole-photon interactions because the photon wave packet |1 j,  describes 

a spectral superposition of temporally separate “single” photons associated 

with an output-measured spatial- and temporal-localized packet distribution 

which is time-independent. “An example is the deterministic generation of 

a single photon from an atom in a cavity-QED system. If the packet is 

dispersed spectrally by a prism and detected by an array of photon counters, 

only one counter will click, although which one clicks will be random. Such 

a state is expressed as 

 

|1 j,   =  (k) |1 k,  / 2  

 

where |1 j,  is a state with a single excitation having particular 

monochromatic wave vector-polarization state labelled by the pair (k, ). 

We see that the function (k) fully specifies the state.” [15, p. 8]. This 

state is of no utility for evaluating the optical field involved in a dipole-

photon interaction as the expectation values vanish, i.e., j ,  1| â |1  j ,  = 0. 

For the single-photon wave packet, only one radiation mode is taking part 

in the detection or photon coupling processes. Yet, as derived in Chapter 3, 

an intrinsic photonic field distribution is carried by each (interacting) photon 

without any dependence on the measured statistical distribution of the 

ensemble of the mixed state. 

The intrinsic field of one photon is neither an infinite plane wave, nor a 

wave packet (Mandel [5]) composed of an overall distribution of 

propagation wavevectors measured at the output as suggested in (Smith and 

Raymer [15]). Physically meaningful longitudinal and transverse 

distributions were derived in Chapter 3 based on the intrinsic field of 

photons.  

The spectral expansion of the global function of the single photon mixed 

state in the case of a product state of two parametrically down-converted 

photons is equally physically questionable (Walborn et al. [16]; Schneeloch 

and Howell [17]). Once again, a global superposition of single photons –

emitted one at a time – in the form of a mixed state containing contributions 
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from temporally and spatially separate measurements is a mathematical 

construct without any physical justification, leading to impossible and 

counterintuitive theoretical conclusions.   

The interactions associated with quantum Rayleigh conversions of 

photons require a wavefunction capable of delivering transient or 

instantaneous expectation values for a pure state. These elements will 

underpin the analysis of various types of beam splitters, and interference 

filters in the following Sections.  

5.2 Interference Patterns between Dynamic  
and Coherent Number States  

Another useful effect is the interference between two waves reaching a 

photodetector. In the context of this analysis, one obtains that, in so far as localized 

and instantaneous detection of photons of two dynamic and coherent number states 

is concerned, the photocurrent Iph generated by the interference output of a balanced 

homodyne detector is calculated by combining the expectation values of the 

quadrature field operators   given in equality (3.22) of Chapter 3 to obtain:                           

 

       

 

                                                         2                5.12  

                            

with the constant of proportionality K corresponding to the quantum efficiency of 

photon-to-electron conversion. The phases are defined by  j   j  t     j
  z   j   for 

j =1 or 2.This approach of making use of initially evaluated expectation values links 

the quantum regime to the classical one (Mandel and Wolf [18]). After time-

averaging over a large number of optical frequency periods, namely, with the 

averaging time interval T satisfying   2  /  j << T << 2  / |  1  2 | we find that 

cos 2 (  )    1/ 2 and  cos (  1 +  2 )   = 0, as well as  sin    = 0, to retrieve the 

conventional interference pattern: 

 

2
  

                                 2                     5.13

        

2
   1                          5.13  
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1

   
/

/

                                                                     5.13

2 
  ;       

 

  
               5.13  

 

                                                                           5.13  

 

where  specifies the polarisation of the group of photons, and the 

definition of  follows from the longitudinal profile of photons derived in 

eq. (3.35). Equality (5.13b) will be applied to two-detector correlations in the 

following Section.  Thus, the formalism of Chapter 3 based on the intrinsic field of 

photons leads to eqs. (5.13) enabling a smooth transition between the quantum and 

classical regimes for any level of optical power and any related phase. The question 

of measured variances induced by system fluctuations will be addressed later in this 

Chapter. 

5.3 The Beam Splitter  

The quantum regime of photonic interference would involve only one 

photon per radiation mode (Mandel [5]). Yet, one single photon propagating 

by itself, in a dielectric medium, will not follow a straight line inside a 

dielectric medium because of the quantum Rayleigh spontaneous emission. 

Only a group of monochromatic photons propagating together can maintain 

a straight line of propagation as a photon absorbed by an electric dipole will 

be immediately recaptured through stimulated emission by the other 

photons in the group.  

The appearance of temporarily discrete groups of photons in the process 

of parametric down-conversion is due to the unavoidable amplification of 

spontaneously emitted photons, particularly so, in the phase-matching 

direction. Such optical signals are best described by means of the mixed 

time-frequency (or Wigner-type) spectrum (Cohen [19]), with the frequency 

amplitude itself being a function of time, i. e., S ( , t) specifying, in other 

words, a time-varying number of monochromatic photons being carried 

simultaneously by a photonic wavefront. 

The analytic elements derived in the previous Sections will be applied 

hereafter. These elements include the wavefunctions of the dynamic and 

coherent number states which deliver the correct expectation values for the 

number of photons carried by a photonic wavefront and its associated 

complex amplitude, as derived in Chapter 3, eqs. (3.22). Equally, the optical 
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field profile of a group of photons is shown in eqs. (3.34) and (3.37) to be 

independent of the type of source that emitted them. 

Given a photonic optical field, the Fresnel coefficients of reflection and 

transmission can be interpreted as probability amplitudes for the respective 

effects at a dielectric boundary [10]. At least three types of beam splitters 

can be identified: the glass plate of Fig. 5.2, the cubic prism of Fig 5.4, and 

the optical waveguide directional coupler composed of optical fibres 

(Agnesi et al. [20]; Semenenko et al. [21). Their operations involve the 

quantum Rayleigh spontaneous and stimulated emissions.    

5.3.1 The glass plate beam splitters and the HOM dip  

For a plate beam splitter sketched in Fig. 5.2, the primary reflected and 

transmitted optical fields will lead to the transformation: 

 

                                                                           5.14  

 

                                                                  5.14  

 

where the subscripts of the reflection r and transmission coefficients t 

indicate the boundary interface, with the first subscript corresponding to the 

incoming direction of the photons.  

To illustrate an application of this approach, two groups of photons 

generated as the signal (s) and idler (i) waves in a parametric down-

conversion are impinging, from opposite sides, onto a glass plate operating 

as an optical beam splitter which is placed in the xy plane - see Fig.5.2. With 

the upper boundary used as the synchronization place for the two groups, 

i.e.  = 0, the output field operators are:      

                                 

                                                                                       5.15  

 

                                                                                          5.15    

 

with reflection (r) and transmission (t  coefficients identified by the type of 

photons. The relative phases of these photonic wave fronts are:  

  

 s r  t,          s (t)                                                       5.16a  

 i t   t              i (t)                                                                          5.16b  

 s t  t               s (t)                                                                        5.16c  

 i r  t,               i ( t)  2                                                          5.16d  
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where the random phases of the spontaneously emitted photons are denoted 

by   (t) and  is the phase added during one transit propagation between 

the boundaries of the beam splitter and a ( ) phase shift is due to the 

upwards reflection from a higher refractive index. 

 

 a c

n o                                          

n 1      n 1 > n 0            
    n o  

    b                      d  
Fig. 5.2 A typical glass plate beam splitter. Photons arrive simultaneously 

at the upper dielectric boundary. 

 

 PD1             

                                  BS2                             
M

                                              PD2

d PS

BS1 c

a              M 

           b                                                          

C C

 
Fig. 5.3 Correlation setup for two intensities generated at two separate 

photodetectors with a Mach-Zehnder configuration. BS beam splitter; M mirror; 

PS phase shifter; PD photodetector; CC coincidence counting of photons. 

 

Moving the beam splitter in the vertical direction will bring about a time 

delay ±  between the two wavefronts reaching the same photodetector – see 

Fig. 5.1. The number of photons N j (t) detected by photodetector j =1; 2 is 
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evaluated from the interference pattern of the instantaneously measured flux 

of photons presented above in eqs. (5.13):  

 

2
  

                                    2              5.17  

 

where the phases are given by (5.16 a-d), e. g., s1 (t) =  s r (t, ) and 

  i 1 (t) =  i t (t, ).  The inline letter t denotes time.    
The correlation function    for the coincidence counting of photons 

is specified by the following averaging relations, with reference to Fig. 5.1: 

  

                                                                       5.18  

 

    
1

   
/

/

                             5.18  

 cos   cos    

                        
1

 cos   cos    
/

/

                          5.18

The coincidence counting of photons for the transient interference patterns 

of the two separate photodetector intensities, over the coincidence time 

interval T (a few ns) is derived, after denoting the total number of photons 

reaching each photodetector as No j = N j s + Nj i , to be: 

 

  1                                                5.19

 

 
2 

                                                                                           5.19  

 

 

 

  
                                                           5.19

for photodetector j = 1 or 2, and the normalised overlap integral j involves 

the longitudinal profile  of eq. (3.35) specifying the optical field 
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distribution of one photon as a mixed time-frequency distribution [19], to 

be compared to the conventional approach of a Fourier transform of a 

spectral distribution of an ensemble whose constituent elements arrive one 

at any given time. This latter mathematical superposition is physically 

impossible.    

With the phase difference  for the intensity correlation given by  

 

    s r   i t   s t   i r   i  s   5.20  

 

there are two statistical possibilities for the random phases  s and  i of 

the spontaneously emitted photons. These two random phases can 

interchange values without affecting the result, and the cosine term                     

0.5 cos  of the expansion of the cosine products  

 

cos ( ) cos ( ) = 0.5 [cos (  + ) + cos ( )] 

 

should be counted twice when calculating, “classically”, the correlation 

function C12 ( ) of eq. (5.18).  

From (5.20),   for  = 0, and with equal numbers of photons in the 

interfering waves, so that,  1  =  2  = 1,  we find from (5.18) a vanishing 

correlation C12 (0) = 0, which corresponds to the Hong-Ou-Mandel (HOM) 

dip (Hong et al. [22]; Ou and Mandel [23]).  

Therefore, there is no need for entangled photons – apparently created 

by the beam splitter – which transcend time and space to have their 

probability amplitudes somehow interfere in order to explain the 

coincidence counting of photons by two separate photodetectors. The only 

requirement is that the two groups of photons are split between the two 

detectors and are synchronized at a chosen interface. 

Other combinations of the relative phases  are possible by setting up a 

Mach-Zehnder interferometer configuration with two identical 50:50 beam 

splitters as sketched in Fig. 5.3, placing one at the input and the other at the 

output of the interferometer (Halder et al. [24]). Basically, there are four 

waves or groups of photons reaching each of the two photodetectors. We 

will denote them as s1 for the unmodulated signal wave and s2 for the 

modulated signal wave, and as i1 for the unmodulated idler wave and i2 for 

the modulated idler wave.  

Next, we choose, for degenerate frequencies of the signal and idler 

waves, the interference term cos     s1  s2  from one of the 

detectors and the cos     i1  i 2  term from the other, and recall  
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     c                                           

n o

a n 1   d

n 2  

n o     

                    b       
Fig. 5.4 A typical cubic prism beam splitter.  Photons arrive simultaneously at the 

diagonal boundary interface. n 2 > n 1 > n 0  

 

that the parametric phase-pulling effect (see Sections 4.2 and 4.3) leads to 

the condition for optimal amplification, given by eq. (4.6 j) as  

 s    i     p    / 2 

for any initial phases of weak waves, with the coherent phase of the pump 

photons given by p.  Taking all this in consideration in eqs. (5.17) leads to 

the statistical average value of the fourth-order in the field, numerical 

interference:  

 

  2    5.21                          

which oscillates with the pump frequency (Halder et al. [24]). Similar 

expectation values may be derived for any combination of any two 

interference patterns, one from each photodetector, e.g. ([24]; Kim et al. 
[25-26]). It is noteworthy that the phases of the spontaneously emitted 

photons do not appear in the conventional quantum descriptions of two-

photon beats, e.g. [22-26], but they are critical in introducing a factor of 2 

to the statistical average because of the two possible options of obtaining 

the phase condition of maximal amplification, i.e.,   s   i    p   / 2.  

5.3.2 The cubic prism beam splitter 

For a cubic beam splitter made up of two butting prisms of different 

refractive indexes as sketched in Fig. 5.4, the field transformation becomes: 

 

                                                           5.22  
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                                                              5.22  

The subscript 0 indicates free space, and subscripts 1 and 2 refer to the 

refractive index of each of the two prisms. 

In the case of the cubic prism beam splitter, any two external surfaces 

can form a resonant cavity through reflection or transmission at the diagonal 

interface. The output states will be affected by photons temporarily trapped 

inside the beam splitter, leading to the possibility of additional quantum 

states, as well as quantum Rayleigh coupling of photons as described in 

Chapter 3.   

5.3.3 The fibre-optic beam splitter 

The longitudinal optical field profile of a group of monochromatic 

photons was derived in Chapter 3 and has the form of a Wigner spectral 

component S ( , t), that is, a time-varying spectral component [19] – as 

opposed to a time-constant amplitude and phase of a Fourier spectrum – 

crossing a surface perpendicular to the wavevector of propagation. 

For the optical directional coupler, the evolution of the photons is 

governed by eqs. (3.29) with the possibility of one waveguide capturing 

most of the photons resulting in an asymmetric output. The coupling 

coefficient  will have to take into consideration the temporarily discrete 

nature of the groups of photons by including the longitudinal field profile            

f ph z  next to the transverse spatial field f, that is: 

 

 
1

v 2 
                                        5.23  

           

  ;                       5.23

 

This spatio-temporal overlap is characteristic of the quantum regime of 

discrete groups of photons. The phase-dependent coupling of photons of 

eqs. (3.29) is critical in the operation of the optical fibre beam splitters by 

creating, with the adjustable phase difference, an asymmetric output [25-

26].  Future integration of photonic components will replace the optical fibre 

splitter with integrated waveguides.  
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5.4 The Interference Filter 

Experimental configurations for two-photon quantum beats, e.g. [22-

26], employ interference filters in order to control the “coherence length of 

the photon”.  

The extent of the correlation fringes is determined by the coherence 

length of the photons, which can be shaped by an interference filter, 

apparently operating on the output spectral distribution  (  1,  2) of the 

ensemble of photons generated by an active source over a long time, such 

as the spontaneous parametric down-conversion mechanism [16-17].  

However, from a physical perspective, a Fourier transform – or a 

superposition of spectral components – necessitates the simultaneous 

presence of the entire range of spectral components. But this is not the case 

when only one photon, at any given time, crosses an interference filter. A 

single monochromatic photon propagating through a Fabry-Perot type filter, 

or a Bragg refractive index grating in a waveguide, will be delayed 

randomly by repeated internal reflections and will acquire an integer 

multiple of a bias phase or time-delay. The higher the internal reflectivity 

of the cavity, the longer some photons may bounce back and forth inside the 

cavity resulting in a “longer photon” output, which is interpreted as a longer 

coherence length. Such optical signals are best described by means of the 

mixed time-frequency (or Wigner-type) spectrum, e.g. [19] with the 

frequency amplitude itself being a function of time S ( , t) specifying, in 

other words, a time-varying number of monochromatic photons being 

carried by different photonic wavefronts. The time-stretching of the 

photonic group will be equivalent to pulse expansion for a narrower Fourier 

spectrum.  

Thus, a group of photons entering, simultaneously, a resonant cavity of 

an interference filter, will exit at different times as the higher the internal 

reflectivity, the longer the time that some photons will bounce back and 

forth inside the cavity. This process will cause the initially bunched photons 

to spread out in time and give rise to a longer coherence length for photon 

coincidence counting (Halder et al. [27]). The wavefunction describing this 

output would take the form: 

                                                                                                        

| ,   ,     | ,                       5.24

 

where the times tm specify the existence of a group of n photons at location 

r . The pure state of a photonic wavefront is monochromatic and time-

dependent as detailed in Chapter 3, whereas the overall mixed state of the 

 EBSCOhost - printed on 2/13/2023 9:24 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 

 

98

ensemble is multi-chromatic and time-independent (e.g. the bi-photon 

wavefunction [25-26]).  

The temporal profile of the optical field carried by a photon or any 

instantaneous photonic wavefront should be determined from a pure 

quantum state wavefunction because it should be unaffected by the spectral 

distribution of an ensemble of measurements. However, for interference to 

take place, at least two coefficients cn (n > 0) have to be non-zero in eq. 

(5.24). 

5.5 The Distorted Outputs of Single-Photon Sources 

Inside a resonant (micro-)cavity, the photon can bounce back and forth 

many times (Reiserer and Rempe [9]). With the quality of the resonator 

being characterized by its finesse , the average number of bounces is given 

by  / .  As a result, groups of initially single photons can emerge from the 

resonator as each photon of a regular input sequence would undergo 

different numbers of reflections.  

It is pointed out by (Senellart et al. [28]) that a quantum dot “emits a 

cascade of photons and a single photon is obtained only through spectral 
filtering of one emission line”. “Bright sources have been obtained using 

micropillar cavities where the optical field is confined vertically by two 

distributed Bragg mirrors (DBR) and laterally by the high refractive index 

contrast. The mode volume is of the order of few 3 (wavelength)3 and the 

quality factor can reach values of a few 105.” In micro-cavities, a 

spontaneously emitted photon can be reflected from DBR gratings and 

return to stimulate the emission of another photon – thereby creating a small 

group of identical photons – even for several picoseconds-long exciting 

pulses. 

A quantum dot (QD) placed in a high finesse micro-cavity of a few 

wavelengths long and excited with a picosecond pulse, can emit a photon 

spontaneously and be re-excited within the duration of the same pulse. If 

the photon was reflected towards the QD, stimulated emission may occur 

due to the small dimensions of the micro-cavity. This will result in two, or 

more, photons leaving the emitter simultaneously in a group, as well as a 

reduced lifetime of the excited state of the QD, manifesting itself as a higher 

decay rate overshadowing the Purcell effect.  

“Resonators with small mode volume and high-quality factors (Q-

factors) enhance the light–matter coupling.” (R. Trivedi et al. [29]). 

However, a high Q-factor indicates a build-up of energy inside the cavity, 

i.e., a large number of photons do not leave the cavity after being emitted 

and reaching the output facet for the first time. The early photons emitted 
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by a QD embedded in a resonant cavity of a dielectric structure of 

distributed Bragg reflectors (DBRs), may be reflected towards the excited 

quantum dot and be amplified, thereby giving rise to time-varying spectral 

or intensity distributions which emerges from the “single-photon source” in 

the form of discrete pulses. 

 

The lifetime of the QD excited state for spontaneous emission inside a 

micro-cavity can be reduced by stimulated emission induced by resonant 

photons bouncing back and forth inside the cavity. As a result, temporarily 

discrete groups of monochromatic photons will build up and be partially 

emitted. These, however, will be mistaken for spontaneously emitted single 

photons because of the photodetector’s inability to resolve the number of 

photons. 

Equally, the quantum Rayleigh stimulated emission in a dielectric 

medium – described in Chapter 2 and 3 – can coalesce two 

counterpropagating photons into one group by having one photon excite a 

dipole, with the other photon capturing the absorbed photon into its 

radiation mode through stimulated emission.     

High-finesse optical cavities incorporated in an HBT measurement setup 

distort the temporally regular sequence of single photons because of 

multiple internal reflections. The emerging stream may contain groups of a 

few overlapping photons, e.g. five, which may be unevenly split by a beam 

splitter and reduced in number through quantum Rayleigh spontaneous 

emission, so as to generate no coincidence for a zero time-delay in an HBT 

measurement.   

For atoms inside cavities with highly reflective mirrors, the emission 

rate of discrete photons is much lower than the laser pump rate, e.g., 3.6 

MHz versus 80 MHz (Loredo et al. [30]). This can be explained by the 

synchronisation condition between the pumping time-interval tpump and the 

average exit time-interval of photons tphoton group , which may be related by 

the following equality 

                                              5.25

where  ex   is the life time of the excited state that decays through stimulated 

emission. The integers m and p correspond to the respective number of 

intervals for synchronisation.  

A monochromatic pulse-like field profile, derived in Chapter 3, is 

represented by a mixed time-frequency structure [19]. A spectral or 

interference filter may delay the photon’s exit from the output facet by 
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repeated internal reflections, thereby spreading out the exit times of photons 

from an input group.    

A sequence of groups of photons (pulses containing a low number of 

monochromatic photons) temporarily separated, can be transformed into a 

quasi-continuous stream (or wave) of photons by means of interference 

filters.  A high internal reflectivity will retain, repeatedly, more photons 

inside the cavity than those exiting, for additional round-trip propagations, 

which will spread out the initial monochromatic pulse. The higher the 

number of photons inside a dielectric cavity hosting a quantum dot, the more 

likely it is that the quantum Rayleigh coupling interactions will create larger 

groups of photons, even for counter - propagating photons. As a result, the 

triggered clicks at the detector will count a lower number of photon groups 

rather than individual photons.  

When another group of photons enters the interference filter of the DBR, 

the relative phase will determine the direction of photon- coupling through 

the phase-dependent quantum Rayleigh conversion of photons (QRCP). As 

a result, an output continuous wave beam is generated which can serve as 

an unmodulated or reference wave for interference. 

5.6 Conclusions 

The probability amplitude approach to photonic quantum interference 

leads to physical contradictions which are eliminated by using the intrinsic 

field of photons. The role of the quantum Rayleigh scattering of photons 

rules out single-photon propagation in a straight-line, raising serious doubts 

about the conventional interpretation of HOM experiments. These are 

explained physically, in a meaningful manner, by using the intrinsic fields 

of photons derived from the dynamic and coherent number states. Various 

types of beam splitters are analysed in this way.  

The operation commonly used for extending the coherence length of 

photons by means of interference filters is explained in the context of 

multiple internal reflections of groups of monochromatic photons whose 

exit times are stretched over a period of time. These photons can also 

stimulated additional emission generating multi-photon discrete pulses.   
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The excitation levels of an electromagnetic field were identified in 

Chapter 3 as the number of photons carried by an optical wavefront. In the 

quantum regime, a radiation mode carries one or, at most, a few photons at 

any given time. However, only a multi-photon excitation can maintain a 

straight-line propagation inside a dielectric medium where the quantum 

Rayleigh spontaneous emission may gradually reduce the number of 

photons with the possibility of having only one photon, or none, exit in the 

desired direction. Equally, the stimulated Rayleigh emission will preserve 

the physical properties of the monochromatic photons in the group. 

Probability distributions are determined from an ensemble of 

measurements, but each non-zero measured value requires the presence of 

a photon. It is the photonic field that triggers the photodetector, and 

consequently, the interference pattern of probability amplitudes is 

underpinned by the intrinsic fields of photons. Therefore, the primary role 

is played, at the level of a single and individual measurement, by the 

intrinsic optical field of photons described in Chapter 3 rather than the 

probability amplitude which is the consequence of the field-dipole 

interactions involving an ensemble of measurements. 

One type of experiments would have one pair of photons generated 

simultaneously by the same physical process – but detected separately with 

two photodetectors – interact with another similar pair of photons. As a 

result, pairs of photons generated at different times as well as detected at 

different times, would cancel each other out in the context of an ensemble 

of measurements, subject to some synchronisation conditions. This process 

involving no memory mechanism would transcend time, thereby creating a 

quantum “miracle” of nonlocality between detection coincidences of 

photons. This corresponds to the well-known Hong-Ou-Mandel dip. 

This Chapter points out the physical flaws of such claims and provides 

physically meaningful explanations for the experimental outcomes 

involving radiation modes propagating through a dielectric medium such as 
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a beam splitter. Classical interference (Mandel and Wolf [1, Sec. 7.3]) can 

describe transient effects, whereas quantum optics is supposed to deliver 

expectation values of an ensemble of identically prepared systems. Yet, 

each measurement can be associated with a pure quantum state and the 

ensemble will be linked to a mixed state. 

The analysis of this Chapter draws on findings of previous Chapters:      

1) The quantum Rayleigh scattering of photons of Chapter 3;  2) The spatial 

profile of the intrinsic optical field of photons of Chapter 3 and its 

applications to beam splitters in Chapter 5; and, 3) The unavoidable 

parametric amplification of spontaneously emitted photons of Chapter 4, as 

well as the coalescing of initially single photons into groups of photons 

through the process of quantum Rayleigh stimulated emission of photons, 

presented in Chapter 3.  

6.1 Deficiencies of the Ensemble Quantum State 

A major discrepancy between the use of a global wavefunction to predict 

quantum probabilities, on the one hand, and the physical reality of each 

individual measurement which may be time- and space- dependent, on the 

other hand, would lead one to draw counterintuitive conclusions about the 

interpretation of those outcomes. An ensemble state appears to create 

interaction between non-overlapping states of single or individual 

measurements. But this interpretation arises from the lack of any spatial 

and/or temporal dependence of the ensemble distribution at the output of a 

long series of measurements. 

Even in the case of “single photon” interference of probability 

amplitudes, two photons are required because the two optical field operators 

act on mutually exclusive photonic states, as explained in Section 5.1, eqs. 

(5.2).    

The number or Fock states cannot interact with a dielectric medium 

because they do not deliver an optical field. Additionally, the coherent state 

is an ensemble-based distribution and cannot describe an instantaneous 

interaction which depends on the local number of photons and their local 

phase. Yet, these two categories of photonic states are widely used for their 

simplicity leading to erroneous and counterintuitive conclusions. 

A particular case is the experimental configuration of a two-input and 

two-output beam splitter with two photodetectors measuring the discrete 

emerging photonic signals to determine coincidences between the electronic 

clicks and correlations – within a small-time interval – associated with those 

detections.  This is illustrated in Fig. 6.1 where two input modes lead to two 

output combined modes.   
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Fig.  6.1 The HBT detection setup (b = 0). The HOM setup (b  0);  

BS beam splitter; C C coincidence counting of photon; PD photodetector;  

IF interferometric filter. 

 

According to Mandel [2]: 
 

“The quantum state of the beam-splitter output is actually a linear 

superposition of all three possibilities in the form  

   = (| R|2 – | T |2) 1  1 1  2 + 2 i (| R T |2 [  2  1  0  2 +  0  1  2  2 ] 

where R and T are the complex beam-splitter reflectivity and transmissivity.”  
 

While this statement is mathematically possible for an ensemble of 

measurements, from a physical perspective, at the level of one individual 

measurement this is impossible. The states | R |2 1 1 1 2 and | T |2 1 1 1 2 

cannot cancel each other out because they do not exist simultaneously as 

only two photons are supposed to be present throughout the measurement 

at any given time. 

As the field operators propagate through the dielectric beam splitter, the 

Rayleigh Hamiltonian of interaction  between the electric dipoles and the 

optical field comes into play in the form of (Glauber and Lewenstein [3]):  

                                                                                  6.1             

where   is the electric dipole operator raising the atomic electron from one 

level to another, and  is the photon annihilation operator, with   its 

Hermitian conjugate operator, the photon creation operator.  The optically 

linear susceptibility  (1) is included in the coupling coefficient .   
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Once again, we emphasise that the absorption of one photon through 

quantum Rayleigh conversion – involving  of eq. (6.1) – leads to the 

disappearance of an entangled state, that is:  

 (  0  1  0  2  +   1  1  1  2 )  =   0  1  1  2                                 6.2  

which is a product state. A similar annihilation occurs for the second photon. 

Alternatively, the dipole-field interaction of absorption projects the state 

onto the zero-photon state:  

1  0      1  1  1  2  =   1  2                                                             6.3    

 resulting in one single photon surviving as soon as the entangled pair was 

created in a parametrically spontaneous down- converted emission in an 

optically nonlinear crystal.  

The probability Pr over an ensemble of measurements, of joint or 

simultaneous detections by the two photodetectors in Fig. 6.1, in the time 

interval {t, t +  t} has the expression (Mandel [2]): 

 

Pr  ,   ,  ,    ,  ,      

                                                                                                                              6.4  

 

for two detectors located at r p (p =1, 2) and timed at tp , with the integration 

interval  t 0 tending to zero.. 

For two sources j = 1; 2 of spontaneous parametric down conversion, the 

composite two-photon state was given for an ensemble of measurements as 

(Mandel [2]): 

     

                                                                                   6.5  

 

| 
 | 0 |0 | 1  |1

 

                                                                    6.6  

 

where the number state of the pump is given by | N p .   

However, a single measurement of spontaneous emission into mode k 

will start with c0 = 1 and c1 = 0, and deliver either co = 0 and c1 = 1 for a 

successful transition, or co = 1 and c1 = 0 for no emission into the mode 

being measured.  

The expectation value c1   of the ensemble of measurements is derived 

from the formal integration of the Schrödinger wave equation to first order:  
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 |  ,   |  , 0     ,    |  , 0             6.7   

 

or by solving the perturbation differential equation. The perturbation of 

expansion coefficients describes a sequential generation of photonic states.    

 

 c          0   c                                         6.8  

 

The Hamiltonian of interaction generating two photons from a pump photon 

through the second-order nonlinear susceptibility (2) has the formal 

structure:  

                                 6.9  

where f j (x, y, z) for j = p, s, i is the respective spatial distribution of the 

related optical fields which should be evaluated from the intrinsic optical 

fields of photons of Chapter 3, as opposed to solutions of the Helmholtz 

equations (Glauber and Lewenstein [3]). The conservation of energy 

requires that the angular frequencies fulfil the equality  p =  s +  i  and 

the wave vectors are linked by the relation  k p = k s + k i  for optimal 

parametric amplification, although for spontaneous emission the electron 

involved in the dipole-photon interaction can contribute to the momentum 

conservation by moving inside its local potential of the surrounding atoms 

or molecule, and re-emit spontaneously in any arbitrary direction 

compatible with the emission pattern of an electric dipole. 

For such sources, a global wavefunction    labelled as a biphoton 

state of the signal and idler photons, was suggested for one single photon 

per radiation mode, which is space and time independent (Garrison and 

Chiao [4]): 

 

      ,  , ,   1  1                 6.10  

                           

The quantum description or representation of a single photon as a time-

independent and k-dependent distribution of wavefunctions F (k, ) creates 

an analogy with the classical structure of an optical pulse and a lateral wave 

front.  

However, from eq. (3.6) we have for any two arbitrary indices i and j 
the wavefunction 

|  ,        ,   ,                                       3.6  
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describing individual measurements. The composite wavefunction should 

have its product terms overlap in both time and space for a non-vanishing 

product, namely, at the same location r and the same time t both ci and cj are 

non-zero. With the signal and idler waves entering the beam splitter through 

different ports a and b (see Fig. 6.1), the input state is not represented 

physically by a product state. Rather, a superposition of states such as the 

following 

 
|  ,  ,     ,                                  6.11  

  

is indicative of the physical reality, with the states   given by the 

dynamic and coherent number states |  n  =  ( | n   +  | n  1  ) / 2 1/2 derived 

in Section 3. 

A meaningful physical description is provided by the dynamic and 

coherent number states, taking also into consideration the unavoidable 

parametric amplification and the related phase-pulling effect. These effects 

will easily explain the “Striking, remarkable, and bizarre phenomena… of 

two-photon quantum interference, i.e. coincident photon counting at two 

separate photo-detectors” (Garrison and Chiao, Sections 10.2.1 – 10.2.3 of 

[4]). Nonetheless, those interpretations failed to consider the quantum 

Rayleigh scattering in a homogenous medium which has been extensively 

explained in previous Chapters and is illustrated in Fig. 6.2. 

Additional views of quantum miracles associated with the two-photon 

experiments [2] have been expressed by Walmsley [5], namely: 
 

“The experiment consisted of sending two elementary particles of light 

photons, onto opposite sides of a piece of glass that had been coated with a 

thin film to give it a reflectivity of 50% (see the figure). They observed that 

the two photons always left by the same side at the output, though it was not 

possible to determine beforehand which side that would be.” 

 

“The HOM phenomenon is a beautiful manifestation of the interference of a 

quantum field; in this case, the bosonic field associated with photons.”  

 

“In their paper, Hong, Ou, and Mandel (HOM) emphasized the role of 

distinguishing information in determining the extent to which interference 
occurred, arguing that the mere presence of such information, whether 

measured or not, would abrogate the “bunching” effect.” 

 

This foregoing interpretation appears to make a virtue out of a lack of 

information about the system being observed. And it fails to even mention,   
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One photon

A group of

monochromatic

photons

 (1)

 
 

Fig.  6.2 The quantum Rayleigh scattering of a single photon in a homogeneous 

dielectric medium versus the propagation of a group of photons. 
 

let alone consider, the role of the quantum Rayleigh scattering inside a 

dielectric medium.   

The following statement made by Mandel [2] was meant to support the 

‘mysteries’ of quantum optics, but it can also be adopted to rebut and 

disprove them. That statement reads [2]: 
 

“In an experiment the state reflects not what is actually known about the 

system, but rather what is knowable, in principle, with the help of auxiliary 

measurements that do not disturb the original experiment. By focusing on 

what is knowable in principle, and treating what is known as largely 

irrelevant, one completely avoids the anthropomorphism and any reference 

to consciousness that some physicists have tried to inject into quantum 

mechanics.” 

   

Indeed, many physically meaningful quantum processes and effects 

were ignored or overlooked in search of miraculous quantum phenomena.  

In the following Section, these apparently time- and space- transcending 

phenomena will be explained by invoking well established physical 

interactions and processes which have been detailed in previous Chapters 

of this book. 

6.2 The Pure State of Single Measurements 

With reference to Fig.6.3, for two signal (s) beams and two idler (i) 
beams waves, the field operators were defined, after a beam splitter brings 

them jointly to a photodetector, as (Mandel [2]): 
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Fig.  6.3 The configuration for signal-signal interference with the idler i1 bypassing 

the nonlinear crystal NL2 for interference with i 2.  PM phase modulator. 

 

 

                                                                  6.12  

 

                                                                       6.12  

 

In a nonlinear crystal pumped with a large number of photons Np and for 

frequency down-converted photons satisfying the condition of   s +  i = 

 p, the gain-providing medium which generates the spontaneous emission, 

will also amplify the initially single photons, particularly so in the direction 

of wavevector matching conditions, even for a limited space-time overlap. 

Thus, the commonly assumed one single photon output does not physically 

happen. At least several photons will be associated with each individual and 

discrete electronic “click”. A phase-pulling effect for each pair of photons, 

leading to the correlation of phases -see eq. (4.6 j): 
   

2
                                                                                     6.13  

also occurs as identified in Sections 4.2-3. So long as groups of photons 

coming out of the two nonlinear crystals reach the same photodetector 

simultaneously, a transient interference pattern occurs. Intensity first-order 

and second-order effects may appear provided phase correlations are 

generated as in eq. (6.13).   

 

6.2.1 The second-order interference 

 Various options are possible when combining the signal and idler 

outputs of two nonlinear crystals pumped by the same laser output, as 

illustrated in Fig. 6.3. As in reference [1], we first consider the signal-signal 

interference between outputs s1 and s2, drawing upon the analytic results of 

Chapters 3, 4 and 5.  
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 The instantaneous photocurrent Iph  generated by the two signal beams 

of photons possessing parallel polarisations and impinging onto the same 

detecting area was presented in Section 5.2 as:  

2
   

                                  2                        6.14  

The statistical average of the interference term in eq. (6.14) vanishes when 

integrated over one cycle {0, 2 } because   

,     

Alternatively, for a static configuration sketched in Fig. 6.3, the only time-

varying phase arises from the spontaneous emission of single photons which 

are amplified with a phase-pulling effect – see eq. (4.6 j) – leading to  

   
2

                                                                             6.15  

   
2

                                                                             6.15  

Using these identities, we find:  

                                                      6.16  

and integrating the random distribution of idlers’ phases over the range           

      2  a vanishing average of the interference term in eq.  

(6.14) above is obtained for sampled values of the photocurrent in the 

context of photon counting. 

Another possibility for a vanishing correlation of eq. (6.14) is to have 

the two optical fields reach one of the photodetectors in anti-phase, i.e. with 

a -phase difference so that Es1  Es2 = 0 for equal number of photons, 

causing the two optical fields to cancel each other out. This is, in fact, the 

operation of the glass plate beam splitter and is applicable to “classical” 

waves. 

By setting up the configuration of Fig. 6.4 where the idler beam i1 is 

strong enough because of the unavoidable amplification in NL1, and is 

injected alongside the pump p2 into the nonlinear crystal NL2 to cause a fast  
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Fig. 6.4 The configuration for signal-signal interference with the idler i 1 

propagating through the nonlinear crystal NL2 alongside pump p 2.   

PM phase modulator. 

 

phase shift of the spontaneously emitted signal photons in NL2 with very 

little of its own change, one finds from eqs. (4.6) and (6.15) that: 

                                                                                        6.17  

                                                               6.17  

with   being the phase shift acquired by the beam i1 as it propagates 

between the two nonlinear crystals through the phase shifter PM. Upon 

substitution into eq. (6.16), we thus find that the second-order interference 

of the two beams of signal photons depicted in Fig. 6.4 varies as the pump 

phase difference is changed. The two signal beams have their phases 

correlated through the seeding of the second nonlinear crystal by the idler 

i1.  

6.2.2 The fourth-order interference 

The case of the fourth-order interference was shown in Chapter 5, eq. 

(5.18) to correspond to a correlation of intensities: 

   ,  ,                                                              6.18  

 

Identifying the two photocurrents of the two photodetectors, j = 1 or 2, 

reached by the signal beams (is ) and the idler beams  (ii) , we have from eqs. 

(5.18) and (5.19), the correlation function for an ensemble average of the 

case illustrated in Fig. 6.3 as:  
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                                                             cos                         6.19  

                                         6.19  

where eq. (6.19b) is derived from eq. (6.13). As  from eq. 

(6.17), the fourth-order interference of eq. (6.19a) varies with the difference 

between the pump phases resulting from the phase relation of eq. (6.15) 

induced by the parametric amplification of weak numbers of photons, such 

as signal and idler spontaneous emissions. Additionally, as the two 

spontaneous phases  and  can be interchanged in eq. (6.13) or (6.15) 

without affecting the numerical value of the interference pattern, a factor of 

2 multiplies the statistical average to obtain eq. (6.19a).  

In both the second-order and fourth order-order interference patterns of 

discrete groups of photons, the statistical interference fringes are determined 

by the phase-pulling effect associated with the unavoidable parametric 

amplification of spontaneously emitted photons. The question of whether or 

not the observer has any information about the source of photons or their 

paths from the source to the photodetector is irrelevant as, at least, two 

photons arriving from different directions are needed to create the 

interference pattern, even in the case of “quantum” interference.      

The statement made by Mandel in [2] that “After all, the signal photons              

s1 and s2 are emitted spontaneously and the spontaneous emissions are not 

really disturbed at all by the act of blocking i1” is physically incorrect 

because the seed idler wave i1 does combine with pump p2 to generate s2 

photons whose phase is correlated to that of s1 through the optimal phase of 

eq. (6.13) for optimal amplification, as explained in Chapter 4. From Fig. 

6.4 we see that for a phase shift   induced by a modulator placed in the 

path of beam i1 before crystal NL2, a corresponding modulation of the 

interference pattern between s1 and s2 will emerge as indicated by the phase 

of eq.(6.19b). When this intensity of the interference of the signal beams is 

electronically multiplied by the intensity of the second idler wave, a 

correlation of the two separate photocurrents is recorded for properly 

synchronised arrivals of photons, and the correlation carries the modulation 

of the signals’ pattern.  

Another configuration known as the Franson interferometer replaces the 

two nonlinear sources pumped by the same laser light with one source but 

both the signal and the idler beams  propagating in different directions  

are split into two partial beams by means of two separate Mach-Zehnder 

interferometers placed in their propagation paths from the source to their 

respective photodetector. The analysis of the coincidence counting of 

photons between the signal intensity and the idler intensity follows the same 

steps as in the case of Fig. 6.3. Once again, the unavoidable parametric 
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amplification is responsible for the propagation of a group of several 

photons per radiation mode that are needed for the photonic group to survive 

the transition though a dielectric medium. The initial group of photons splits 

into two sub-groups at the inputs to the Mach-Zehnder interferometers, and 

recombine at the outputs giving rise to two separate intensities which 

originated in the spontaneous emission of parametric down-conversion. 

The two-path configuration may also be implemented by utilizing a 

electro-optic birefringent crystal with two orthogonal eigenstates of linear 

polarisations. Discrete groups of photons are generated through the 

unavoidable parametric amplification of a spontaneously emitted photon, or 

as a cluster of photons exiting an interferometric filter at the same time after 

bouncing back and forth for different periods of time. These discrete groups 

of photons which are mistaken for one photon per radiation mode, will each 

have their linear polarisation aligned with one of the eigenstates of the static 

modulator as well as the states of the beam splitter. A polarisation beam 

splitter, through quantum Rayleigh spontaneous emission, creates 

polarisation eigenstates and directs orthogonally polarised photons to 

separate photodetectors. When a varying voltage is applied to the electro-

optic modulator that brings about a change in the optical path lengths, the 

beam polarisation is rotated by 45  relative to the crystal’s polarisation 

eigenmodes. As a result, the polarisation beam splitter will direct projected 

photons from both initial eigenstates to both photodetectors, mixing the 

beams and creating temporal interference patterns in each photodetector so 

that, over an ensemble of measurements, their correlated photocurrents will 

build up and be averaged.  

Therefore, the Franson interferometer is no more mysterious than the 

HOM dip. Both are easily explained once is it realised that only groups of 

photons can overcome the Rayleigh scattering and propagate in a straight 

line in a dielectric medium.     

6.2.3 The probability amplitude as a consequence  
of optical field detection 

The second- and fourth-order, in the optical field, interferences are 

determined by the relation linking the spontaneous phases of the photons 

emitted parametrically in the nonlinear crystal as opposed to the assumption 

of a lack of knowledge about the propagation pathway between the source 

and the photodetector. 

The concept of a relationship between interference and 

indistinguishability of optical pathways of the photons involved in the 

interference is a consequence that arises from the optical interference of 
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optical fields, which, in turn, leads to measured probabilities and associated 

probability amplitudes. 

As pointed out by Mandel [2], the field operators propagate from the 

source to the photodetectors which are located far apart by comparison with 

the dimensions of the intrinsic fields of photons derived in Chapter 3. 

Consequently, the two detection processes described by the expectation 

value of the fourth-order interference as given in the Dirac notation [2]:  

Pr ,   ,  ,    ,  ,     6.20  

would vanish because , 0  and , 0  and the space 

integral of the expectation value is non-zero only when the two Hilbert 

spaces of the measurements overlap (Griffiths [6]). This can be prevented 

by factorizing the product of the optical fields according to their positions, 

namely: 

 

Pr ,   ,   ,   

                       ,   ,            6.21  

 

This expression (6.21) of probability products indicates that probability 

correlation should follow the “classical” interpretation of joint correlations 

by means of products of localised probabilities Prs and Pri, rather than a 

global joint detection which defies time and space disconnections.    

As the energy of an electromagnetic wave is split equally between the 

electric and magnetic field, and with only the electric field interacting with 

electric dipoles, the number of photons detected with a fully efficient 

photodetector, is averaged over one cycle: 

  0.5                                                                      6.22  

Interference with another optical wave may enhance or diminish the 

ensemble probability Pr of detection 

Pr  
1

2
 1                            6.23  

after using eqs. (5.13). The ensemble average is represented by angled 

brackets, and each measurement delivers a unity value for the absorption of 

one or more photons.  

An optical wavefront carrying simultaneously N photons can be 

decomposed into multiple partial wavefronts, each carrying one or several 

 EBSCOhost - printed on 2/13/2023 9:24 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Six 

 

116

photons. Partial wavefronts are generated by splitting the incoming 

wavefront, and they can be recombined at the output. The interference 

pattern is determined by the spatial distribution of the wave functions                  

fj (r, t), while the “filling-up” of an interference pattern depends on how 

many photons are available over a given time interval. 

A common interpretation would have one single photon per radiation 

mode being part of an ensemble of events so that every possible quantum 

propagation path will be activated statistically, but each event follows only 

one option. The interference pattern of spatially propagating waves f j (r, t) 
provides the probability distribution of an ensemble of photons which arrive 

sequentially in time, giving rise to the quantum “miracle” of interference of 

probability amplitudes. But since one single photon cannot propagate in a 

straight-line across a dielectric medium, this interpretation of multipath 

interference is questionable from a physical perspective. Once again, only a 

group of monochromatic photons can deliver the measured interference 

patterns as they can overcome the Rayleigh scattering through stimulated 

emission. 

The mathematical treatment of classical interference of optical waves is 

carried over to the concept of interference of quantum probability 

amplitudes. However, time-independent ensemble probabilities contain 

elements of physical realisations which occurred at different times or 

locations. Attempts to link two temporarily or spatially separate photons, 

underlying two events, bring about the miracle of quantum nonlocality in 

time or space involving entangled number states which, by themselves, do 

not carry an optical field, and are, therefore, misrepresenting the physical 

reality.  

The modelling of quantum interference by using Fourier transforms [2], 

[4] between the temporal profile of discrete photons and the spectral 

distribution  ,  , ,   of the nonlinear crystal outputs implies the 

existence of simultaneous and spectrally distributed photons coming out of 

an interference filter, undermining the assumption that only one photon per 

radiation mode is present at any given time inside the experimental setup. 

Groups of photons are created even by a weakly pumped nonlinear crystal 

through the unavoidable amplification of a spontaneously emitted photon.  

Groups of monochromatic photons are generated through stimulated 

emission even in the case of one atom trapped inside a high finesse resonant 

cavity. As a result of a very large number of internal reflections of the same 

photon, the synchronisation condition of eq. (5.25) applies between the 

excited atom and the group of photons bouncing back and forth inside the 

cavity, and partially exiting the cavity as groups of photons (Reiserer and 

Rempe [7]).    
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6.4 Correlations of the Balanced Homodyne Detection 

The experimental setup for measuring the amplitude or any phase 

component of an optical radiation mode is illustrated in Fig. 6.5. The 

configuration is very similar to that for the HBT or HOM measurements, 

but is employed to deliver a statistical distribution of raw data for a weak 

signal which is mixed at the beam splitter with a strong reference wave in 

order to generate interference terms with opposite signs at the two 

photodetectors. The subtraction of the two photocurrents  I = I1 I2 is 

proportional to the interference value of the two optical beams.   

The instantaneous photocurrent generated by detector j =1 or 2 is  

 

 
2

      

                             2  ;          6.24  

The current difference, with the number of photons of the local oscillator 

LO and the signal given, respectively, by   and  has the form: 

 

   
2

    

                        2             6.25  

where  .  The reflectivity and transmissivity are, 

respectively, denoted by R and T. The ensemble average of the reflectivity 

R  and the transmissivity T  coefficients may be set equal, but for each 

individual, single photon measurement their absolute values can be             
R 1 and T 0, and R 0 and T 1, because one photon is indivisible.  An 

odd number of signal or local oscillator photons will split unevenly, that is: 

2m +1 = m + 1 + m. As a result, the first term of the current difference in eq. 

(6.25) involving transmitted and reflected photons may not, physically, 

vanish even though, mathematically, R = T = 0.5. 

For = 0, the only contribution to the temporal fluctuations  I  would 

come from the local oscillator     which should not be taken as 

the expectation value of a coherent beam. The LO fluctuations are split 

unequally by the beam splitter, so that the current difference I still 

recreates the noise statistics of the local oscillator. 

The additional noise contribution from the interference term of eq.  
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Fig.  6.5 The setup for a balanced homodyne detector.   BS beam splitter; I 1  I 2 

difference of photocurrents PD photodetector; IF interferometric filter. 

 
(6.25) adds significantly to the sides of the measured distributions (Lvovsky 

and Raymer [8]) which are averaged over sig (t) for a given LO. Defining 

   LO  sig (t), the interference term adds to the positive side of the 

measured quadrature variable X for   / 2 <   <  / 2, and to its negative 

side for  /2 <   < 3 / 4, giving rise to a lateral peak of noise on either 

side of the statistical distribution of the quadrature X [8]. 

6.4.1 Continuous-variable optical quantum states 

Having identified a physically meaningful explanation for the operation 

of the balanced homodyne detection of photons, we proceed now to point 

out a few physical processes missing from the 2009 review on “Continuous-

variable optical quantum-state tomography” (Lvovsky and Raymer [8]).  

We base our quest for a physically meaningful reality on the first 

paragraph of the review which reads:  

 
“A quantum state is what one knows about a physical system. The known 

information is codified in a state vector  | , or in a density operator  , in 

a way that enables the observer to make the best possible statistical 

predictions about any future interactions (including measurements involving 

the system). [ 8, p. 299]. 

 

As mentioned in previous Chapters a few times already, the use of a 

global quantum state which is time- and space-independent has led in many 
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cases to physically impossible conclusions which were, nonetheless, taken 

as the “miracles” of quantum optics and quantum mechanics.  This 

approach would seem rather puzzling when reading another paragraph 

from the 2009 review under scrutiny:    
 

“Quantum-information applications require measurement of optical modes 

that are localized in time. Homodyning has to be performed in the time 

domain: difference photocurrent is observed in real time and integrated over 

the desired temporal mode to obtain a single value of a field quadrature. 

Repeated measurements produce a quantum probability distribution 

associated with this quadrature”. [8, p. 310]. 

In other words, even though information about the quantum system can 

be obtained from each individual measurement, the predictions of expected 

values of dynamic variables are based on global quantum states which 

discard a great deal of information. 

The following paragraph is highly indicative of the shortcomings 

associated with an approach or formalism that deliberately overlooks 

physical elements and aspects of experimental setups. This paragraph 

reads:  
 

“In order to prepare a heralded photon, a parametric down-conversion (PDC) 

setup is pumped relatively weakly so it generates, on average, much less 

than a single photon pair per laser pulse (or the inverse PDC bandwidth). 

The two generated photons are separated into two emission channels 

according to their propagation direction, wavelength, and/or polarization. 

Detection of a photon in one of the emission channels (labeled trigger or 

idler) causes the state of the photon pair to collapse, projecting the quantum 

state in the remaining (signal) channel into a single-photon state.”  [8, p. 

311]. 

As derived and explained in Chapter 4, the parametric amplification is 

unavoidable and is accompanied by a phase-pulling effect which leads to 

the optimal condition for amplification. The alleged collapse of the state of 

the pair of photons, upon detection of one of them, into a single-photon 

state of the photon assumes that a single photon per radiation mode can 

propagate across a medium, in a straight-line to the desired photodetector. 

As explained in previous Chapters, this assumption is ruled out by the 

existence of the quantum Rayleigh scattering in dielectric media such as 

optical fibres which are mentioned in the following paragraph:   
  

 “Controlling the spatial mode of the signal photon is simplified if a single-

mode optical fiber is used as an optical filter instead of a pinhole 

arrangement. Such a filter automatically selects a pure spatial mode in the 
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trigger channel, which transforms to a spatially pure signal photon. It is also 

advantageous in terms of the pair production rate.”  [8, p. 312] 

The following two paragraphs describe a biphoton state and their 

alleged miraculous nonlocal influence on each other despite being 

separated and far apart beyond any spatial overlap of their physical extents.    
 

“The biphoton is a complex entangled state with many parameters 

(spectrum, direction, polarization, etc.)  of the two photons highly correlated, 

“ [8, p. 311] 

“Pulsed single photons were prepared by conditional measurements on a 

biphoton state generated via parametric down-conversion in the weak 

pumping regime. Narrow spatiotemporal filtering of the trigger photon was 

used as outlined in Sec. IV.B. The field state in the signal channel was 

characterized by means of optical homodyne tomography. “[8, p. 317] 

While a pair of spontaneously emitted photons in a parametric down-

conversion process does possess corelated values of various degrees of 

freedom, or parameters of the biphoton state, their correlations result from 

their common past and origin, having nothing to do with a collapse of the 

biphoton through a conditional measurement.   

The global state involving the presence of one photon at any given time 

– but which, by means of the Dirac notation, appears to bring together two 

photons reaching the detectors at different time – plays a critical role in the 

conventional interpretation of quantum optics:   

“A dual-rail qubit, described by the state  

| dual-rail   =  |1A, 0B     |0A, 1B ,                            (62) 

is generated when a single photon |1 , incident upon a beam splitter with 

transmission 2 and reflectivity 2, entangles itself with the vacuum state |0  

present in the other beam splitter input. “ [8, p.318] 

Once again, a single photon cannot propagate through a dielectric 

medium such a beam splitter in a straight line because of the quantum 

Rayleigh scattering. Furthermore, despite a lack of experimental evidence 

at the level of an individual event being measured to yield the claimed 

results, it is suggested that, at the level of an ensemble distribution, the 

following statements identify accurately physical phenomena:   
  

“Phase-dependent quadrature correlations are a consequence of the 

entangled nature of the state |  qubit .“ [8, p.318] 
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“By performing a homodyne measurement on her part of the entangled state 

(62) and detecting a particular quadrature value Q A at the local oscillator 

phase , Alice projects the entangled resource (62) onto a quadrature 

eigenstate Q  A |,  
 

|  B   = Q  A  ,  A |      

 

           =  Q  A,  A | 1A  | 0B    Q  A,  A | 0A  | 1B ,  

 

which is just a coherent superposition of the single photon and vacuum 

states, i.e., a single-rail optical qubit. By choosing her LO phase  A and post-

selecting a particular value of Q A, Alice can control the coefficients in the 

superposition, i.e., remotely prepare any arbitrary state within the single-rail 

qubit subspace.”  [8, p. 319]. 

 

The quadrature projection state Q  A | corresponds to the harmonic 

oscillator, which is an arbitrary choice on the part of the observer as there 

are no harmonic oscillators being carried by the optical electromagnetic 

filed. The local photodetector projects, or reduces, the state to one of the 

eigenstates it measures, i.e. the detection of one photon  see eq. (3.5) for 

measurement-related projection of states. Thus, this type of projection is not 

physically possible.    

Additionally, the spatial profile of photons was derived in Chapter 3, in 

eqs (3.35) and (3.37b) having the structure of a Wigner-type or time-varying 

single spectral component providing a physically meaningful explanation 

for synchronised interference and coincidence counting of photons as 

opposed to the assumption that a single photon state is made up of a 

wavepacket of Fourier components as suggested in this paragraph: 
 

“If it is known a priori that only one photon elementary excitation of the 

field exists in a certain space-time volume, it is sensible to ask what is the 

temporal-spatial wavepacket mode that describes this photon. This task is 

close to that of finding the wave function of the photon treated as a massless 

particle. This notion is known to be controversial [see Smith and Raymer 

(2007) for a review]. However, if one restricts attention to the photon’s 

transverse degrees of freedom in the paraxial approximation, the subtleties 

that arise can be circumvented. “ [8, p. 323]. 

There are, in fact, no difficulties in so far as the longitudinal and lateral 

spatial distributions of a photon are concerned as these can be easily derived 

by means of the dynamic and coherent number states as explained in 

Chapter 3. In other words, unlike the spurious assumptions of time-

independence underlying a global quantum state, a time-varying number of 

photons N ( , t) for a given monochromatic frequency, as derived in 
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Chapter 3 from the dynamic and coherent number states, is a physically 

meaningful description of one photon or any number of photons possessing 

a spatial distribution of the optical field about its propagating peak, in both 

the longitudinal and lateral dimensions. 

The question of “Remote state preparation using the nonlocal single-

photon state” is rather problematic.  The claim [8] of remotely collapsing a 

wave function is highly questionable. A single photon propagating through 

a beam splitter would be deflected from its planned pathway by quantum 

Rayleigh scattering. Furthermore, the maximum likelihood method of 

numerically reconstructing a quantum state from raw data “aims to find, 

among the variety of all possible density matrices, the one that maximizes 

the probability of obtaining the given experimental data set and is physically 

plausible” (Lvovsky and Raymer [8]). From the experimental point of view, 

the observer B’s “photoreceivers do not have to be efficient, and he can 

post-select on finding his system in a particular subspace” [8]. The 

maximum likelihood method of reconstruction requires a target state, and 

the sign parameter s is delivered from observer A for the reconstruction of 

the quantum state by observer B. Therefore, the reconstruction is not 

independent. Indeed, the quantum Rayleigh scattering would deflect any 

single-photon crossing the beam splitter, and bearing in mind the slight 

parametric amplification inside the source, the two observers share the same 

photon phase from the same group of photons split at the beam splitters. 

There was no direct link at the level of a pure quantum state of a single 

measurement between the two observers, if only, because with only one 

photon in the experimental setup at any given time, only one detector can 

be triggered, whether or not the photon states are, mathematically, 

entangled. Consequently, the raw data measured (Fuwa et al. [9]) requires 

a great deal of numerical manipulation before it appears to produce a 

statistical correlation without any correlation being identified at the level of 

individual measurements.  

6.4.2 The “miracle” of quantum imaging 

Another example of the shortcomings of the global, and space- and time-

independent ensemble quantum state is provided by the rather questionable 

explanation for the concept of “Induced coherence without induced 

emission” (Wang et al. [10]). 

An imaging technique based on single-photon interference and not 

requiring coincidence detection was presented by Lemos et al. [11]. The 

experimental configuration is identical to Fig. 6.4 but with the idler beam        

i1 passing through a transparent object before reaching the second nonlinear 
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crystal NL2. The experimental results are interpreted by suggesting that 

“Induced coherence without induced emission” (Wang et al. [10]) can be 

masterminded between two independent sources of entangled pairs of 

photons of degenerate frequencies  s   i , so that “quantum mechanical 

interference between these two possible ways of reaching the detectors” 

takes place (Horne et al. [12]).  
 

 “The intensity image (non-constant transmittance) is due to transverse 

position-dependent which-source information carried by the undetected 

idler photons. The phase image is of a different nature: it is due to the fact 

that the position-dependent phase shift on the idler photons in path d is 

actually passed to the signal” [11].  

 

These published articles claim that (Wiseman, and Mølmer [13])   

“there was no induced emission in their experiment, as the down-

conversion rates were so low that the probability of both crystals producing 

a down-converted pair was negligible “. 

 It is recognized that “the phase sum of the signal and idler is locked to 

the pump phase“, but the underlying physical mechanism remains elusive 

in those explanations, and that the condition applies only in the classical 

regime of, at least, many photons. Yet, this relation from eq. (4.6 j) 
 

   
2

    

 

which holds for any number of photons spontaneously emitted and 

parametrically amplified, has been derived in Chapter 4, for the quantum 

dynamic and coherent numbers states identified in Chapter 3. As explained 

in Section 6.2.2. the interference pattern between the two signal beams as a 

result of the modulation of the seed idler beam is the result of the relative 

phase:  

 

                                          6.19  

 

after inserting  

 

                                                                                        6.17  

 

Further scrutiny applied to the second-order conversion of photons 

presented in Chapter 4 and based on the dynamic and coherent number 

states of light analysed in chapter 3, clearly and directly indicates that the 
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parametric amplification of photons gives rise to the mechanism of phase-

pulling effect leading to the optimal amplification of both the signal and 

idler photons. Indeed, if enough optical pump power is available to generate 

spontaneously emitted photons, then the same excited medium will 

unavoidable amplify the spontaneous emissions. Therefore, the physically 

meaningful explanation for the first-order interference presented in Section 

6.2 above is based on interference of intrinsic fields of photons that emerge 

from the crystal as groups of photons which are separated into smaller 

groups by beam splitters and recombine to interfere at the output. As already 

pointed out in Section 6.2, the idler wave from the first nonlinear crystal 

seeds the idler wave in the second nonlinear crystal, thereby providing the 

induced stimulated transmission even for low levels of pump powers.  

The existence of the amplification stage is demonstrated by the fact that 

the correlation between the wave vectors, i.e. k p = k s + k i   holds for the 

photons exiting the bulk crystal. This is physical evidence that only a group 

of monochromatic photons can propagate in a straight line in a dielectric 

medium. If only one photon per radiation mode was propagating inside the 

crystal, whether entangled with another photon or not, the quantum 

Rayleigh spontaneous emission would have scattered it. As the pump power 

into the second nonlinear crystal NL2 is increased, the more photons are 

added to each group, with the emission rate determined by the incoming 

beam i2. The first spontaneously emitted photons become amplified and 

deplete the parametric gain available in the second NL2, with the rate of 

emission being determined by the seed beams of idler photons. 

6.5 Conclusions 

The formalism of interference of probability amplitudes is based on 

mathematical operations acting on global quantum states which are time- 

and space-independent. This formalism involves transitions between 

number states which are present at different times. By contrast, the 

physically meaningful approach presented in this book identifies temporal 

and spatial properties, and aspects of an individual measurement, as well as 

photon-dipole interactions by means of the pure dynamic and coherent 

number states.  

The “miraculous” outcomes of photon countings and correlations are 

physically and meaningfully explained by taking into consideration the 

nonlinear mechanism of parametric spontaneous emission of pairs of 

photons and their unavoidable parametric amplification. This process is 

accompanied by a phase-pulling effect leading to optimal conditions for 
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amplification even for weak pumps, which creates correlations between two 

interacting nonlinear crystal pumped by the same laser light.     

In the situation of two separate photons colliding inside a dielectric 

medium such as a beam splitter, an interferometric filter, a polarising 

crystal, an optical fibre, etc. the quantum Rayleigh coupling of photons 

described in Chapter 3 could produce a group of two photons that will 

propagate together, at least initially.  

Furthermore, given the indivisibility of one photon, the questions that 

have never been answered by the global approach to quantum optics are: 1. 

How can a single photon be filtered by an interferometric spectral filter 

which requires the simultaneous presence of many partial optical waves? 

and 2) How can a single photon have its state of polarisation varied by an 

electro-optic modulator as two perpendicular optical fields need to be 

differentially modulated?   
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CHAPTER SEVEN 

QUANTUM RAYLEIGH ANNIHILATION  

OF ENTANGLED PHOTONS 

 

 

 

The interpretation of published experimental results intended to prove 

the existence of a quantum phenomenon of non-locality involving photonic 

entangled states did not take into consideration the existence of the quantum 

Rayleigh conversion of photons in dielectric media. This phenomenon leads 

to the existence of high levels of correlations between two independent 

photonic and linearly polarised quantum states generated after the entangled 

photons have been absorbed through the quantum Rayleigh conversion. 

Both pure and mixed individual states of polarisation result in expressions 

normally associated with entangled photonic states, providing support for 

the view that the physical concept of quantum non-locality is highly 

questionable.  

In an opinion article written by Aspect [1] and published at the end of 

2015, the question of quantum non-locality is all but settled on the basis of 

three experimental reports published earlier in the year apparently providing 

evidence of strong correlations between the two subsystem photonic 

components of entangled states.  

For some particular reason though, as already pointed out in previous 

chapters of this textbook, over a period of more than three decades of 

experimental contributions apparently supporting the concept of quantum 

nonlocality, the quantum Rayleigh scattering or spontaneous emission 

taking place inside dielectric media (Vatarescu [2]) has been ignored or 

overlooked. Any experiment incorporating dielectric components such as 

beam splitters, optical fibres, interference filters, dichroic mirrors, etc. will 

involve quantum Rayleigh scattering. The quantum Rayleigh spontaneous 

emission (QRSE) in a dielectric medium replaces entangled photons with 

independent ones (Vatarescu [2]). A single photon cannot propagate in a 

straight line because of the QRSE. Only a group of monochromatic photons 

propagating together as a group, can maintain their line of propagation and 

properties because an absorbed photon may be recaptured through 

stimulated emission by the other photons in the group. 
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Additionally, a periodic stream of single photons is distorted statistically 

by optical cavities because of multiple internal reflections of various 

durations for different photons so that groups of photons may emerge from 

interferometric filters in addition to individual ones - see Chapter 5 above.  

These effects will require a reassessment of the interpretations of the 

experimental results outlined by Aspect [1]. Two of the experiments 

(Giustina et al. [3]; Shalm et al. [4]) use optically nonlinear crystals which, 

as explained in Chapter 4, unavoidably amplify the spontaneously emitted 

photons generated through spontaneous, parametric down-conversion. 

Consequently, the polarisation properties of the initial photons are delivered 

to the detection stage by a group of photons. This fact enables the random 

polarisation modulation before the detection. The third experiment (Hensen, 

et al. [5]) uses single atoms as the source of photons but a dichroic mirror 

is placed at the output of the emitting source so that photons may be 

propagating back and forth inside the dielectric structure to coalesce, 

through the process of quantum Rayleigh coupling of photons described in 

Chapter 3, into groups of photons that will continue their propagation to the 

photodetector as a cluster of photons.   

The relatively strong correlations between the detected states of 

polarizations of the two space-time separated photons [1] were considered 

to be a clear indication of an instantaneous collapse into an eigenstate of the 

wave function describing the two apparently entangled photons and, as a 

result, it was concluded that a non-local mechanism - of a yet unknown 

origin and nature - brings about a mutual influence between the two distant 

measurements. Overall, it is argued that those correlations disprove beyond 

any doubt the paradox pointed out by Einstein, Podolsky and Rosen (EPR), 

while complying with the uncertainty principle for each subsystem which 

would not allow simultaneous sharp values for two incompatible variables 

linked to the Pauli spin operators which do not commute.  However, the role 

of the wave functions in the evaluation of the uncertainty relation is 

disregarded even though the derivation of the uncertainty principle (D. 

Griffiths [6]) is initiated with a given set of wave functions.  

The measured events of correlated pairs of photons are “extremely rare” 

[1], with typical values of “slightly more than one event-ready signal per 

hour”. Nevertheless, the interpretation of the experimental results by Aspect 

[1] failed to take into account the role played by the quantum Rayleigh 

conversion of photons (Louisell [7]; Marcuse [8]) in their propagation 

through the dielectric media of optical fibres, beam splitters, polarization 

rotating devices and other dielectric elements comprising the experimental 

setups. While the classical Rayleigh scattering induced by perturbations of 

the refractive index is the major loss factor in optical fibres (Wang et al. 
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[9]), the quantum Rayleigh conversion of photons has been practically 

ignored although documented in early textbooks. Recently, however, the 

quantum Rayleigh conversion of photons has been identified as the physical 

process underpinning the forward propagation of an optical wave through a 

dielectric medium (Vatarescu [10]), as well as a practical way of 

implementing phase-sensitive amplification in the linear regime (Vatarescu 

[11-12]).   

In the case of only one photon propagating through a dielectric medium, 

the only process occurring is that of absorption of the photon by an 

oscillating dipole and spontaneous emission of one photon, which 

corresponds to the quantum Rayleigh spontaneous emission of photons 

(QRSE). The QRSE would bring about various time-delays causing a 

photon to change direction, back and forth, inside an optical fibre or change 

its polarization state in any dielectric device such as optical fibres, beam 

splitters, crystal polarizers, etc.   

From a physical perspective, the correlation between the polarisation 

measurements at the two distant stations can be easily explained by a 

combination of the quantum Rayleigh spontaneous emission and the 

molecular structures of polarisation-dependent components such as 

polarisation beam splitters, polarisation filters, birefringent crystal plates, 

etc. As the two measurement stations have similar, if not identical, device 

configurations, photons will keep propagating in their respective forward 

directions if they are repeatedly captured by the eigenmodes of a specific 

component; to a certain degree this mechanism mimics a quantum Zeno 

effect (Griffiths [6]) or a protective measurement preventing a quantum 

state from changing (Piacentini et al. [13]).   

 The physical concept of quantum nonlocality is inextricably linked to 

the existence of entangled states of pairs of photons (Edamatsu [14]; 

Garrison and Chiao [15]), These two photons are generated simultaneously 

by the same parametric conversion of one pump photon into two new 

photons commonly labelled signal and idler. Another alleged process for 

creating entangled photons would be a beam splitter across which two 

initially independent photons propagate from different input directions.   

The prevailing criterion – allegedly proving the phenomenon of 

quantum nonlocality or remote influence between two sets of measurements 

performed on degrees of freedom of pairs of entangled photons – has the 

form of an inequality involving combinations of values of a correlation 

function and is commonly known as the Clauser-Horne-Shimony-Holt 

(CHSH) [16] scenario.  In this context (Zeilinger [17]), it is claimed that:  
 

“It is this very independence of a measurement result on one side from what 

may be done on the other side, as assumed by EPR, which is at variance with 
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quantum mechanics. Indeed, this assumption implies that certain 

combinations of expectation values have definite bounds. The mathematical 

expression of that bound is called Bell’s inequality, of which many variants 

exist” (Zeilinger [17]). 

 

Unfortunately, both analytical (Tipler [18]) and experimental results 

(Qian et al. [19]; Gonzales [20]) can do away with the quantum miracle of 

nonlocality. A statistical approach based on conditional and joint or 

simultaneous detections of two similar and spatially separate sets of binary 

data results in the same correlation function as for the entangled states 

(Tipler [18]).  

Experimentally, the violation of CHSH-Bell inequality has been found 

to occur for classical variables which are mathematically “entangled”, that 

is, they appear as sum of products which cannot be separated into a product 

of a sum of states.  As outlined by Eberly et al. [21]: 
 

“In any event, the definition of entanglement is simply inseparability of 

sums of product states that exist in different vector spaces.” 

 

“We should keep in mind that entanglement is a vector space property, 

present in any theory with a vector-space framework. Thus, there is no 

distinction between quantum and classical entanglements, as such. The 

important differences between the quantum and classical theories of light 

do allow quantum entanglements to be exhibited in a wider variety of ways, 

but of course these are never observed unless detection capability makes 

individual photons experimentally distinguishable.” [21] 

 

This Chapter analyses the propagation of entangled photons through a 

dielectric medium and the physical process of quantum Rayleigh scattering 

of photons through spontaneous emission which is bound to affect the 

propagation of the single photons originating from the same source and 

forming the components of entangled states (Edamatsu [14]). As outlined in 

Section 7.1, the initially entangled state of photons is destroyed in a 

quantum Rayleigh interaction through electric dipole excitation which is 

followed by spontaneous emission. The correlation functions – evaluated in 

Section 7.2 – are associated with the two spontaneously and separately 

emitted qubits of photons and deliver the same degree of high correlations 

for pure and independent states as for entangled states. Variable outcomes 

for mixed states have the potential to exceed the lower bound of the Bell 

inequalities. Additionally, each term of the commutative relations between 

the relevant Pauli operators in the context of the individual and separated 

photonic state vectors will vanish leading to the possibility of simultaneous 

measurements and the absence of an EPR paradox. The implications of 
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replacing the physically eliminated entangled states of photons with 

individual and independent qubits are discussed in Section 7.3, and support 

the view objecting to the existence of quantum nonlocality. Extensive 

references are identified in support of local realism.  

7.1 Spontaneous Emission and Polarisation Rotation 

A mathematically entangled polarization state of a pair of photons is 

conventionally generated by means of spontaneous parametric down-

conversion of photons [(Edamatsu [14]). For type-I nonlinear crystals, the 

emerging two photons possess the same state of polarisation, HH or VV, 

while for a type-II nonlinear crystal, the pair photons have perpendicular 

states of polarisation, HV or VH, which are explicitly written in terms of 

horizontal and vertical states as:   

   

   I   =  1H  s  1H  i +  1V  s  1V  i                                                  7.1a  

 

  II   =  1H  s  1V  i +  1V  s  1H  i                                                   7.1b  

 

where the subscripts s and i identify the signal and idler photons, 

respectively. 

When acted upon with the absorption operator of the quantum Rayleigh 

Hamiltonian of eq (6.1), these states become product states because the 

empty, zero-photon state does not possess any property, i.e., 

 

    I   =   0  s  1H  i +  0  s  1V  i   =   0  (  1H  i +  1V  i  )        7.2a  

 

    II  =   0  s  1V  i +  0  s  1H  i  =   0  (  1H  i +  1V  i  )         7.2b   

 

Once again, as explained in Chapter 4, in a nonlinear crystal pumped, 

e.g., with a continuous wave (p) and for frequency down-converted photons 

of frequncies s + i = p , the gain-providing medium which generates the 

spontaneous emission, will also amplify the initially single photons, 

particularly so in the direction of wavevector matching conditions, even for 

limited space-time overlap. A phase-pulling effect leading to  s   i   p 
+ /2 also occurs. Thus, the commonly assumed one single photon output 

does not physically happen. At least several photons will be associated with 

each individual and discrete electronic “click”. Only a group of 

monochromatic photons propagating together can overcome the quantum 

Rayleigh scattering by recapturing the absorbed photon through stimulating 

emission. Nonetheless, it is possible for only one photon to survive the 
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propagation across a dielectric medium of the polarisation filter and reach 

the photodetector.  

The probability of emitting a photon with momentum k and polarization 

μ is related to the decay rate  s [1/s] of the excited dipole inside a dielectric 

medium, and was evaluated as (Glauber and Lewenstein [22]): 

 

 ,  ,    
9  /

 2 1    
 

  

4 
                                         7.3  

 

with d denoting the electric dipole moment which is excited by an optical 

field of the same polarisation, e k μ being the polarization unit vector of the 

emitted photon, which is perpendicular to the direction of propagation k, 
and μ identifies one of the two perpendicular polarisations. In a dielectric 

material of constant  the decay rate is modified, but its angular distribution 

is the same as in free space. 

The angular distribution of an accumulated number of spontaneously 

emitted photons N s p z,  e  m   over a distance z ,  is predicated on  eq. 

(7.3), leading to:   

 

N s p  z,  e  m   N s p  z   cos   e  m  2                                                                                             ( 7.4)                                    

 

with  e  m  the emission angle between the dipole d  and the polarization unit 

vector e k μ  of the photons and  N s p  z  is calculated as in Chapter 2, 

(Appendix). Spontaneously emitted photons with ±  e  m  polarisation angles 

relative to the pump polarization ep , will be amplified through  the optically 

linear parametric gain coefficient presented in Chapters 2 and 3. This 

amplification  includes a polarisation dependence in the factor  e p • e k μ  , 

bringing about a correlation between the state of polarisation and its number 

of amplified photons as found in (Qian et al. [19]).  

For e k μ • x = cos  e  m  and  x • y = 0 , a non-vanishing value along the   

y –polarisation is obtained by blocking off either      or      polarised 

photons as, for a large number of photons, the y –polarised photons cancel 

each other out. This corresponds to the use of a polarisation filter for the 

polarisation paradox which “rotates” photons from x to y. 
The generic eigenstates of polarisation associated with spontaneous 

emission through quantum Rayleigh conversion of photons on the two-

dimensional Hilbert space  will take the form of single and independent 

qubits  (  e  m)     identified as: 

 

  e  m     cos   e  m   x    sin   e  m   y                                          7.5                         
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These state vectors with polarization angles  e  m  in the range  

  

  / 2    e  m     /2  

 

will describe any possible polarisation perpendicular to the direction of 

propagation of the spontaneous emission and will be of practical interest in 

the next Section. Thus, incoming photons initially polarised in the x –

direction will reappear with an angle  – rotated polarisation, thereby 

enabling them to pass through a    – rotated polarisation analyser. 

It should be emphasised that the quantum state of eq. (7.5) is a mixed 

state on the two-dimensional Hilbert space  or a space- and time-

independent global state describing an ensemble of measurements. The 

shortcomings of such global states were identified in previous Chapters as 

omitting the physical features associated with single and individual 

measurements describing the physical reality.  

Using an alternative notation that is clearer for further analysis, the 

spontaneously emitted photon will have an arbitrary state of polarization 

 

    s  cos s   1x  s    sin s   1y  s                                                        7.6  

 

 where  s   indicates the angle of polarization in the plane perpendicular to 

the direction of propagation, and which is unrelated to the other photon of 

the initially entangled state. 

7.2 Quantum Correlation Functions  

As a photon enters a birefringent crystal and interacts with electric 

dipoles, the photon needs to be re-emitted into a polarization eigenstate so 

it can propagate in the same forward direction to reach the intended 

photodetector. If each of the individual photons of the initial pair is re-

emitted into their original state of polarisation and reaches its respective 

detector within the designated time interval for a coincidence count to be 

registered, then this physical process can be mistaken for the physically 

impossible case of the entangled photons having survived their propagation 

through the dielectric media without interacting with electric dipoles. 

Nevertheless, as photons acquire a phase shift as a result of their 

propagation, the probability of no dipole-photon interactions taking place 

even for a short distance of millimetres, is nil.     
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7.2.1. Pure states of polarization  

Although the conventional definition of the correlation function – see 

Eq.13 of Brunner et al. [23] – involves the same state of polarization 

reaching the two separate detectors, in the case of quantum Rayleigh 

spontaneous emission additional correlations can be defined between 

different states of polarization – possibly boosting the detection counts – for 

two different angles   and   , relative to the x – axis of reference.  

Correlation functions  Ec  for a quantum behaviour are defined [23] as 

the expectation value of the tensor product of two measurement operators 

for a set of initial state vectors which are projected onto the measurement 

Hilbert space   in the expression  

 

   |     |  | |                     7.7  

 

The second line of eq. (6) indicates that the projected states |    lie in 

the measurement space of  which identifies the comparison of measured 

values with a localized measurement [18]. 

The polarisation eigenstates of the measured photons, rotated by an 

angle j from the reference or generic states x  and y  are denoted as  

 

x  j       cos   j   x    sin   j  y                                                    7.8a           
 

y  j   sin   j   x   cos   j  y                                                   7.8b  

 

and the quantum operator measuring polarisation properties of the photons 

is the projector   

 

    x  j     x  j    y  j    y  j   

             2  2                                                            7.9

 

where                               x   y    y   x  

is the real part of the two-dimensional Pauli transition operator, flipping 

the photon between the two generic eigenstates, and  

 x   x   y   y  

corresponds to the Pauli projection operator for the difference between the 

generic eigenstates. Using the identities of the operators: 

 

         x   =  y  ;        y   =  x  ;                                        7.10    
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          x   =  x  ;        y     y   

              

             = x   x   y   y  

 

we obtain from eq. (7.9) for the correlation operator: 

 

  2  2               7.11

By inserting Eq. (7.11)), along with the equalities   

  |                                                        7.12  

 

 | |     |  /2  

 

                              /2 sin                7.12   

 

into eq. (7.7), we evaluate the correlation function as 

 

 2  2     

or 

 2                                                       7.13                        

For  , this expression of the correlation function for single and 

independent qubits of the same state of polarization reaching both detectors, 

is identical to the expression for photonic entangled Bell states [15] (Ch.19), 
reaching the two detectors. Equally, eq. (7.13) evaluates the correlation for 

the orthogonal detections, /2, of two different states of photon 

polarizations. With adjustable settings of the detecting polarisation filters, 

i.e.  and , any values of the correlation functions can be obtained for 

corresponding values of the incoming photon polarisation angles, i.e., 

 and .   

7.2.2 The Heisenberg uncertainty of predicted values 

The expectation values of the operator products  are found to vanish 

for pure states of eq. (7.5), i.e.,    

| | 0                                                                            7.14                          

| | 0                                                                            7.14    
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because   |  | /2 . As a result, each term of the 

resulting commutative relation vanishes and we obtain  

|   ,  | 0                                                                    7.15                           

for the lowest limit of uncertainty involving the two Pauli operators. The 

eigenstates of  are superpositions of the eigenvectors of  on the two-

dimensional Hilbert space  and simultaneous measurements of well-defined 

values are possible as their product operator   flips the eigenstates |  and  

| /2   onto each other. Thus, the output value is indicative of the input one, 

and each term of the commutator vanishes for the wave functions |  of eq. 

(7.5) or eq. (7.6). Consequently, the simultaneous measurement of the two operators 

in the context of the single and independent qubit wave functions is capable of 

identifying the incoming state as well as the measured one.   

The detection of photons having a polarisation direction e k μ which is not 

aligned with the polarisation filter e f   will occur due to the probability of a 

dipole excitation being proportional to the scalar product e f  • e k μ  [7] .  For 

photons to propagate in the same forward direction in a uniaxial crystal they 

need to be recaptured after spontaneous emission by the electric dipoles 

which are aligned with the principal axes of the crystal.             

A relation can be derived between the correlation function of the 

measurements ,  2  and the overlap probability             
 ,  |   |  |   

before the measurements of two independent photons having polarization 

angles of  and . As in [15, Ch.19] this relation is 
 , 2  , 1 

indicating that entangled states of photons do not possess any particular 

properties regarding quantum correlations associated with detections at two 

remote locations. 

7.2.3 Mixed states of polarization 

The overall correlation for one step of spontaneous emission will be found by 

adding up probability-weighted correlation functions of eq. (7.13) as the ensemble 

of polarisations states generated over a time interval corresponds to a mixed 

quantum state described by the density matrix elements 

 

 |   |  

 

where m, n = x, y. A possible probability density can be identified from eq. (7.4) 

above, that is, 
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0.5 
 

 

for generating the state  |  over the range   {– /2, /2}. This leads 

to a higher probability for the interval {– /4, /4} than for the intervals               

{– /2, – /4} and { /4, /2}.   

The correlation function for the mixed state of an ensemble is evaluated 

similarly to eq. (7.13) after using the transformation  

 

|   |  

 

in eq. (7.7) to obtain:                 
 

2     

       2     

                                                                  1         7.16      

 

where the first term reproduces the result for identical and independent 

qubits, i.e.,  ,  with   being Dirac’s delta function. The second term 

of (7.16) depends on the polarization state distribution of the mixed state, 

providing the possibility of controlling the level of correlation with various 

distributions of polarizations.    

7.3 Physical Aspects of Simultaneous  
Measurements of Independent Photons 

Since the same correlation functions of eq. (7.13) are derived for 

independent and single qubits generated through quantum Rayleigh 

spontaneous emission of photons – from initially entangled polarised 

photons – as for the initially entangled photons [15], it follows that the 

violations of any type of relevant Bell inequalities will also take place in the 

same way. The CHSH-Bell inequality consists of a linear combination of 

binary correlation values at four settings of the joint and simultaneous 

measurements involving, mathematically, entangled states of photons. A 

measurement performed on one photon of a jointly emitted pair would, 

through an unspecified mechanism, impact on an immediate measurement 

carried out on the second photon. Yet, the nature of this remote interaction 
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has never been specified if only because a Hamiltonian of interaction cannot 

be identified (R. B. Griffiths [24]). A projection operator does not act as a 

Hamiltonian of interaction in the Schrödinger wave equation.  

By contrast, the correlations derived in this Chapter result from similar, 

if not identical, distributions of polarisation states as opposed to what is 

conceptually believed to be a non-local quantum effect. These correlations 

do not require the existence of entangled states of photons. 

Once the same correlation functions are derived using only states of 

polarisations emitted spontaneously by the quantum Rayleigh conversion of 

photons, no other physical processes are required to explain the 

experimental results.  

Furthermore, spatially separated Hilbert spaces rule out quantum 

nonlocality (R. B. Griffiths [24]). The wavefunction collapse, or more 

accurately reduction, provides a mathematical tool for calculating 

conditional probabilities involving no remote influence by one 

measurement over the other. 

Statistical scrutiny of experimental outcomes satisfying Bell-type 

inequalities leads to explanations based on conditional probabilities for joint 

or simultaneous detections of random sets of binary values which are 

spatially separated. These probabilities do not require any nonlocal 

interactions, and the CHSH-Bell inequality can be derived from various 

considerations fully compatible with local realism (Boughn [25]; 

Khrennikov [26]; Kupczynski [27]). 

7.4 Quantum Local Realism 

Let us now consider a few characteristics associated with local realism 

[6] of quantum measurements in the context of quantum Rayleigh 

conversion of photons:   

1. Locality of measurements is supported by the use of single and 

independent photonic qubits emitted separately by quantum Rayleigh 

spontaneous emission, to explain the experimental results of apparently 

enhanced correlations of outcomes. 

2. Randomness of experimental parameters stems from the quantum 

Rayleigh spontaneous emission that generates the projection from the 

polarization state  x  of the input photons to the rotated polarization 

state        cos     x      sin     y  . 

3. Realism of values carried by the detected photons is indicated by the 

physical effect of the measuring operators on the detected photons in the 

quantum states   of eq. (7.5) or eq. (7.6), for which the two 

commutator terms of the two Pauli operators of eqs. (7.14-15) vanish 
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independently of each other. Thus, a physically meaningful 

identification of wavefunctions will enable simultaneous measurements 

of well-defined values by recognising the operator-induced change of 

state upon measurement. 

The common view [6] holds that “the measurement of one component 

of the entangled state collapses the total wave function into a certain value 

which, in turn, affects instantaneously the second measured value.” 

Nonlocality is associated with the instantaneous collapse of the wave 

function. The “remarkable” correlation is revealed by a comparison of the 

two lists of measured data compiled at the two detection points, as ethereal 

influences are said to be associated with the collapse of the wave function 

upon measurement. Yet, the experimental results can be explained without 

entangled states of photons which are destroyed by propagating through a 

dielectric medium and replaced by independent qubits of photon 

polarisation. 

The presentation of Garrison and Chiao [15, Ch.19] describes the 

Einstein, Podolsky and Rosen (EPR) view suggesting that there is no such 

thing as an uncaused random event, and the characteristic randomness of 

the quantum world originates at the very beginning of each macroscopic 

event.  By contrast, the conventional view [1] would have a quantum 

description in which the state vector evolves in a perfectly deterministic way 

from its initial value, and randomness enters only at the time of 

measurements. The quantum Rayleigh spontaneous emission is, in fact, a 

random process at the generating stage followed by evolution described by 

the Schrödinger equation, thereby supporting the EPR view. 

It is emphasized in [19] that  

“Bell violation has less to do with quantum theory than previously thought, 

but everything to do with entanglement.”  

Actually, there is no need for entangled states to measure strong correlations 

of polarisations between spontaneously emitted photons detected far apart 

from each other or non-locally.  As derived in the foregoing Section 7.2.1, 

the same correlation function is found for single and independent qubits as 

was for entangled qubits.  

It is claimed in [23] that  

“… the violation of Bell inequalities can be seen as a detector of 

entanglement that is robust to any experimental imperfection: as long as a 

violation is observed, we have the guarantee, independently of any 

implementation details, that the two systems are entangled.”  
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Yet, this is not the case with single and independent qubits which can 

reproduce the same results. 

For the entangled state of two polarised photons shown in the inset of [1, 

(Fig. 1)], quantum mechanics predicts that the polarisation measurements 

performed at the two distant stations will be strongly correlated [1]. But the 

same prediction also applies to two independent, single qubits which are 

generated through quantum Rayleigh spontaneous emission from initially 

identical photons propagating in different directions through dielectric 

media such as optical fibres.   

Additionally, the article by Ringbauer et al. [28]  

“…rules out outcome-dependent causal models without additional 

assumptions in any scenario with more than two settings. A direct causal 

influence from one outcome to the other can therefore not explain quantum 

correlations.” 

The analysis presented in this Chapter is based on physically meaningful 

interactions of quantum Rayleigh conversion of photons and supports Tipler 

[18] in his statement that: 

“There is no mystery. There is no quantum nonlocality”. 

It is the physical process that gives rise to a wave function.  The opposite 

approach of relying on mathematical complexities to conjure up physical 

processes is bound to generate “‘quantum mysteries”. 

As for the quantum key distribution between the two measuring units 

(Ursin et al. [29]), it is determined by the local distribution of the mixed 

state of spontaneously emitted photons – see Section 7.2.3 above – and the 

measurement setup of the dielectric devices involved in the polarisation 

filtering with its eigenstates capturing the projected single qubits.  However, 

errors will appear because of the statistical nature of the correlations 

between polarised photons.  

7.5 The Deficiencies of the Concept  
of Quantum Nonlocality 

As is often the case with the advocates of quantum nonlocality, a 

recently published review (Paneru et al. [30]) omits every rebuttal of the 

concept of quantum nonlocality despite a multitude of experimental and 

analytic results.  
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One such review that completely ignores any possibility of quantum 

nonlocality being physically impossible has been presented by Paneru et al. 
[30]. This Section outlines the deficiencies of many of their statements. 

We begin with this statement: 

“…entanglement is the fundamental feature of quantum physics between 

two (or more) systems and the consequences drawn from the obtained 

correlations do not apply to any classical system, i.e. classical correlations 

cannot lead to the same conclusions as quantum entanglement. While 

analogies might be seen in the mathematical formulation, the possibility of 

spatial separation, which is the key aspect of entanglement, does not hold 

for the classical counterpart.” (Paneru et al. [30]).  

This paragraph implies that entangled photons can influence each other 

regardless of how far apart from each other they propagate. This statement 

does not identify any Hamiltonian of interaction between non-overlapping 

Hilbert spaces as pointed out by R.B. Griffiths [24].  It is rather puzzling 

that the quantum process of Rayleigh scattering through spontaneous 

emission has been totally ignored, as already emphasised in early Chapters 

of this textbook.  

The next quotation is: 

“Numerous experiments performed on multiparticle entangled states, such 

as the Hong-Ou-Mandel effect [50], the Franson interferometer [51], etc., 

have exhibited correlations that do not have any classical counterparts, thus 

showing entanglement to be purely a quantum effect.” (Paneru et al. [30]). 

This statement fails to explain the difference between an ensemble of 

measurements described by a global wavefunction which is time- and space-

independent and the measurement of a single and independent event. As a 

consequence, the measurement appears to transcend space and time in the 

mathematical formulation. The conventional model would have a 

superposition of photons that reach the same photodetector at separate times, 

and/or photons that reach separate photodetectors at the same time. Yet, the 

intrinsic optical field of photons as derived in Chapter 3 from quantum 

consideration cannot extend beyond a few wavelengths for one photon. 

Additionally, experimentally used optical sources cannot prevent 

amplification of spontaneously emitted photon, and processing dielectric 

devices – such as interferometric filters – distort the stream of single 

photons by multiple internal reflections of various durations, as explained 

in previous Chapters. Physically meaningful explanations for the 

experiments listed in the quotation have been presented in previous 

Chapters of this textbook.  
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The following statement has to do with the well-known Heisenberg 

principle of uncertainty: 

“In quantum mechanics, two physical quantities represented by 

noncommuting observables cannot be measured simultaneously with 

arbitrary precision. Whenever we measure one observable, we influence the 

state in such a way that the measurement outcomes for the other observable 

is disturbed.” (Paneru et al. [30]). 

Yet, an appropriate choice of quantum states to describe the physical reality 

of the interaction enables the vanishing of each of the two terms of the 

calculated commutator relation, as demonstrated in Section 7.2.2 above. 

An understanding of the transformation or transition brought about by 

measuring operators will enable the observer to identify the input quantum 

state and the causal effects involved in the measurement operation.  

Additional statements read: 

“There is another fundamental issue of nonlocality pertaining to entangled 

states: the idea that measurements performed in spatially separated locations 

can affect each other.” (Paneru et al. [30]).  

“Bell later showed that a local-realistic description of entangled states is 

inconsistent with quantum mechanics, effectively ruling out the local hidden 

variables description of entangled states.” (Paneru et al. [30]).  

“In his seminal paper [24], John Bell proved that any theoretical prediction 

for measurement outcomes fulfilling the ideas of locality and realism is 

upper bounded for a given set of measurements (the so-called Bell 

inequality). He also showed that quantum mechanics allows for the 

possibility to exceed this bound proving that quantum correlations cannot be 

obtained from any local realistic hidden variable theories with the form 

described by Eq. (12). Since the time of his paper, numerous experiments 

have been performed that attest to the correctness of quantum mechanics and 

falsified the assumption of local hidden variables [29–33, 73], most recently 

even loophole-free [28, 74, 75]. Contrary to the EPR assumption, nature 

does seem to allow the measurement of one particle to affect the “reality” of 

the other.” (Paneru et al. [30]). 

These beliefs have already been disproved by clearly identified flaws in the 

interpretations of experimental outcomes as explained in references [18-21] 

and [24-27]. The quantum Rayleigh spontaneous emission that scatters 

entangled photons – as explained in this Chapter 7 – is totally absent from 

the review article of Paneru et al. [30].        

Additional quotations from Paneru et al. [30]: 
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“For a source that produces photons with perfectly correlated polarizations 

in any direction, the initial two-photon state is an entangled state which is 

written as, 

| i   = ( | H A | H B    | V A |V B ) /  2                    (14) 

where |H  and |V  refer to the horizontal and vertical polarization 

respectively.” (Paneru et al. [30]). 

These entangled photons are described by means of global functions which 

carry no space- and time- dependence. Therefore, no physical reality of the 

evolution of the two photons moving apart from each other to their 

respective remote photodetectors, is indicated by the wavefunction | i  

suggested in the conventional model. These omissions are bound to lead to 

counter-intuitive physical pictures. The quantum Rayleigh scattering 

transforms the entangled states mentioned in the quotation into the 

polarisation states of eq. (7.6), as explained in eqs. (7.2) and (7.3). 

Additionally, two local measurements carried out at a distance from each 

other, with identical optical sources generating the same states of 

polarization and with randomly rotated polarization filters, will result in the 

same correlation function as for "entangled" photons (see Section 7.2.1 

above) which, while generated together, propagate separately to distant 

detectors. For a quantum interaction to take place, as required by a 

wavefunction "collapse", a Hamiltonian of interaction is needed, but no 

such Hamiltonian has been identified in the professional literature despite 

decades of experimental results. And since the Hilbert spaces describing the 

states of the two separated photons are carried away from each other and no 

longer overlap, any element of the transition matrix will vanish (Griffiths 

[24]).  

 The correlation function for two photons A and B of the state                      

| |H  |H |V  |V / 2  measured with two polarization filter 

operators    and   is expanded from eq. (7.7) as [24]: 

 

  |      |   H|   |H   H|   |H  /2  

       H|   |H   V|   |V  /2  

        V|   |V    H|   |H  /2  

                                V|   |V    V|   |V  /2                

 

where   ,  j = A or B, and the rotation angle of polarization  is 

set relative to a measurement basis of eigenstates in the Hilbert space of           

 A   B. Each of the four terms of this correlation function is 
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measured simultaneously at the two spatially separated photodetectors, and 

no interaction between the two measurement locations is necessary or can 

be identified. It is at this stage of analysis that the projection by    of the 

incoming states onto the measurement Hilbert space for comparison 

purposes, is mistaken for a nonlocal interaction. The overall, or aggregate, 

statistical ensembles of the two sets of data are allocated to four distinct 

groups of possible combinations reminiscent of the statistical branches of 

the “multiverse” approach [18].  

The use of a global wavefunction which is time- and space- independent 

is the root cause of confusion because it can be applied to any quantum 

events regardless of their time and space of their existence. After all, the 

Schrödinger wave equation is space and time-dependent.  

The concept of non-contextuality is mentioned in (Paneru et al. [30]): 

“…non-contextuality, i.e. the notion that the measurement of a physical 

quantity is independent of the measurement of any other commuting 

physical quantities, or the “context” of the measurement, seemed like a valid 

assumption in quantum mechanics. However, Bell and Kochen-Specker 

(BKS) [84–86] separately proved that it is impossible for the commuting 

observables to have pre-existing values independent of the context of the 

measurement.” (Paneru et al. [30]). 

This interpretation has been disproved recently by R.B. Griffiths [24] who 

considered the sequence of operations performed in order to obtain a 

specific reading of the eigenvalues. Moreover, as already mentioned and 

explained in Section 7.2.2, the choice of a suitable quantum state that 

reflects the physical reality enables the Pauli operators to be measured 

together and for the input values to be assessed from the impact caused by 

the measuring operators and the measuring apparatus.    

In relation to the beam splitter output, Paneru et al. [30] state: 

“The two photons are clearly entangled with each other after passing through 

the beamsplitter. Note that this is the famous Hong-Ou-Mandel (HOM) 

interference for two identical photons passing through a beamsplitter [50]. 

One crucial point to be made here is that the entangled state is created by the 

physical action of the beamsplitter on both of these photons.” [30] 

However, one photon per input radiation mode is, practically certain, to be 

scattered by the quantum Rayleigh spontaneous emission inside the 

dielectric medium of the beam splitter. The review of (Paneru et al. [30] 

fails to explain how the quantum Rayleigh scattering can be avoided. 

Alternative physical processes have been identified in this textbook leading 
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to individual photons coalescing into groups of monochromatic photons, 

and in so doing they manage to overcome the quantum Rayleigh scattering. 

A final quotation reads (Paneru et al. [30]:  

“All contradictions to classical concepts and mind-boggling questions arose 

upon considering the particle nature of light, i.e. when using single photons. 

Hence, it is misleading to challenge fundamental concepts using states of 

light that are fully described by the electromagnetic wave picture and 

Maxwell’s equations. Therefore, we suggest that the term entanglement 

should only be used in connection to quantum experiments with single or 

multiple particles, and in particular for the cases involving non-locality as it 

was originally suggested by Schrödinger”. (Paneru et al. [30] 

However, as already derived in Chapters 3 and 4, single photons 

spontaneously emitted will be amplified by the same medium and multi-

photon states described by means of dynamic and coherent number states 

will carry the initial photon’s features and properties without the need to 

invoke the “miracle” of entanglement. 

We shall turn our attention now to a 2014 review by Shadbolt et al. [31] 

describing the testing of fundamentals of quantum mechanics with 

experimental outcomes involving photonic systems. The review emphasises 

that:   

“Experiments with light at the single-photon level have historically been at 

the forefront of fundamental tests of quantum theory and the current 

developments in photonic technologies enable the exploration of new 

directions.” (Shadbolt et al. [31]) 

“…single photons have played a pivotal role in tests of wave–particle duality” 

(Shadbolt et al. [31])  

As already mentioned in foregoing comments on reference [30], this review 

article (Shadbolt et al. [31]) does not explain how a single photon 

overcomes the quantum Rayleigh spontaneous emission to propagate in a 

straight line across a dielectric component of the experimental configuration 

which contains several such elements. These are depicted in its Figure 3 

(Shadbolt et al. [31]): crossed polarisers, polarising beam splitters, paired 

nonlinear BiBO crystals, half-wave plates, interference filters, and single-

mode fibres. Nor does the review article (Shadbolt et al. [31]) explain how 

a single photon at any given time can be filtered by means of an interference 

which operates by creating a simultaneous superposition of many partial 

waves at its output. Additionally, the unavoidable parametric amplification 

of spontaneously emitted photons is completely ignored. Nevertheless, as 

already mentioned, the experimental results can be easily explained without 
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resorting to any quantum “miracles” arising from the global wavefunction 

of an ensemble of measurements of alleged single photon events.  

Another quotation from Shadbolt et al. [31] reads:  
 

"The CHSH version of Bell’s inequality sets an upper bound on the strength 

of correlations”. (Shadbolt et al. [31]) 

 

“The implications of rigorously violating this inequality have a profound 

effect on our intuition of how the Universe works, for it suggests that the 

two particles are instantaneously communicating with one another, even 

though they are far apart.” (Shadbolt et al. [31])  

Once again, the CHSH version of Bell’s inequality can also be violated for 

classically linked variables [19-21]. The experimental outcomes can be 

easily explained [2], [18], [24-27] without invoking quantum nonlocality. 

7.6 Conclusions 

Quantum Rayleigh conversions of photons in dielectric media provide a 

physically meaningful explanation for experimental results of statistical and 

“nonlocal” quantum correlations supposedly associated with entangled 

states of photons. Single and independent qubits replace the annihilated 

entangled states and provide identical correlation functions between two 

sets of polarisation-related measurements carried out far apart from each 

other. This physically meaningful analysis rules out the existence of 

photonic-based quantum nonlocality processes and raises significant doubts 

about the concept of quantum nonlocality which has been repeatedly 

disproved by means of various and differing approaches.  

The statistical character of the “quantum nonlocality” outcomes is 

actually reinforced by the 2018 worldwide series of simultaneous 

experiments presented in reference [32]. Those results indicate that the 

elimination of loopholes does not impact on the statistical correlations of 

the simultaneous and remote detections of separate photons which carry 

corelated values of their degrees of freedom as a consequence of their past 

involvement in a common interaction.   
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CHAPTER EIGHT 

THE PHYSICAL REALITY OF QUANTUM OPTICS  

 

 

 

Over the past three decades, the research field of Quantum Optics has 

benefited greatly from the technological developments of various types of 

optical sources and processing devices. The predominant activities in 

Quantum Optics revolve around the generation and manipulation of one 

photon per radiation mode, otherwise known as single photon generation 

and processing of associated quantum information in the form of various 

degrees of freedom such as the optical frequency, state of polarisation, 

coherence length, etc. using devices for phase modulation, spectral filtering, 

etc. 

It is common practice in Quantum Optics to adopt the same formalism 

for optical processing as for “classical “optics (Jacques et al. [1], p. 4).  

“As is well known from quantum optics [31], all optical phenomena like 

interference, diffraction and propagation, can be calculated using the 

classical theory of light even in the single-photon regime.” (Jacques et al. 
[1], p. 4). 

Even though this statement is apparently based on a widespread practice 

(Jacques et al. [2]; Gerry and Knight [3]) it has never been proved to be 

valid. This idea may have stemmed from the similarity between the 

statistical distributions of a global, mixed quantum state and that of an 

optical beam carrying a large number of photons which can be divided 

among a large number of pathways.  If classical techniques were applicable 

in the quantum regime, then a group of photons would be involved as likely 

as a single photon. For example, in the case of interference filters, it was 

shown in Sections 5.4 and 5.5 that these filters introduce random time-

delays through repeated reflections or bounces of photons inside a resonant 

cavity rather than being spectrum-shaping devices. 

Moreover, the following approach espoused by Glauber [4] underpins 

the conventional, but problematic, model of Quantum Optics:  
 

“The things that interfere in quantum mechanics are not particles. They are 

probability amplitudes for certain events. It is the fact that probability 
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amplitudes add up like complex numbers that is responsible for all quantum 

mechanical interferences. When the event in question represents the 

detection of one single photon, one can easily slide into the statement that 

the photon interferes with itself. When one deals, on the other hand, with 

two-photon states, one still encounters many species of interference effects, 

but it would generate intolerable confusion to interpret these as photons 

interfering with one another. It is not difficult, for example, by means based 

on nonlinear optics, to construct situations in which interference takes place 

between an amplitude for a state with a single blue photon and an amplitude 

for another state with two red photons. Quantum mechanics allows such 

interferences and a great many other varieties as well, but no one could 

sensibly speak of photon as interfering with themselves or any others in that 

sort of context.”  [3] 

 

The nature of the descriptive states of photons is not specified, e.g., pure 

states for individual measurements which are time-dependent, or mixed 

states of the ensemble of measurements which describe a statistical 

distribution of measurements that is time-independent. Furthermore, the 

probability amplitudes can only be linked to ensemble distributions; yet, 

each and every single measurement is activated by the intrinsic field of 

photons interacting with electric dipoles of the detecting device. The 

probability amplitude is a consequence of a detection process preceding any 

mathematical description of the overall statistical distribution of 

measurements.   

8.1 Processes for Physical Quantum Interference  

Probability of events requires an ensemble of measurements in order to 

calculate a distribution of probabilities. The physical reality can only be 

identified at the level of individual events of the ensemble. The global 

wavefunction which is space- and time- independent is physically 

unrealistic, at least, in the context of propagating radiation modes which 

carry energy from one location to another.  

A theory based on global quantum states discards spatial and temporal 

information, leading to counterintuitive interpretations. The flaws of this 

approach are compounded by the omission of quantum processes impacting 

on photons propagating through dielectric media. The location and time of 

a quantum even should be reflected in the wavefunction.    

As already derived in Chapter 3, photons correspond to levels of energy 

of an electromagnetic field. A major property of photons is their intrinsic 

optical field which was derived in Chapter 3 to have longitudinal and 

transverse spatial field distributions – see eqs. (3.34) and (3.37). These field 

distributions of photons – obtained from the combination of the dynamic 
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and coherent number states and the Maxwell equations – specify the 

location and limited spread of the level of the optical field excitation. The 

photon may behave like a particle which carries an optical field but it is this 

field that will interfere with another photonic field. 

For example, the quantum state of one photon having two optional 

pathways A and B from the source to a photodetector has the form 

 

 ,  ,    |1  |0  ,    |0  |1                       8.1  

 

where the coefficients  and  identify the time t of the particular event 

at the location r of the photodetector. Bearing in mind that the zero-photon 

state  |0  does not trigger an electronic signal, the measured events are: 

 

,  0                                                             8.2

,  0                                                             8.2

Elsewhere the two coefficients, physically, vanish. This would correspond 

to a pure state for which the probability amplitudes of detection are: 

 

A ,    0 |   0 |   |  ,  ,                        8.3

B ,    0 |   0 |   |  ,  ,                        8.3

The probability P of the two events occurring is: 

 

P |A ,    B ,   | | ,   | | ,   |

 

                      ,    ,    ,    ,              8.4

The interference term of eq. (8.4) will make a contribution only if the two 

events of one photon detection take place simultaneously at the same 

location, i. e.,  r 1   r 2 and t 1  t 2 . Two photons overlapping in space and 

time are required for an interference pattern to appear. This is determined 

or created at the level of one single, individual event by its detection 

measurement. Each photon would follow a different pathway from the 

source to the photodetector, but reaching the same photodetector within 

their durations of the optical fields that the photons carry. The intrinsic 

optical fields of the two photons – as derived in Chapter 3 – will interfere 

with each other provided they overlap. The condition of “which way” is 

irrelevant in the physical context of pure quantum states describing one 
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single measurement because, as pointed out in eqs. (5.2), two photons are 

needed for interference processes to occur, even in the quantum regime.   

Unless two photons are present simultaneously for an interference 

pattern to appear, the interference associated with the time-independent 

global state would create a quantum magic of transcending the temporal 

separation between the two events. One cannot distinguish optical pathways 

if there are at least two populated radiation modes, each carrying one 

photon, converging onto the same detection area.  A zero-photon state is not 

measurable as it does not trigger a response; thus, an “interference” between 

quantum states is, in fact, an interference between their corresponding 

numbers of photons.  

The absence of photons, such as the zero-photon state, does not create 

an interference pattern because the mathematical probability of detecting 

ono photon, assisted or hindered by the presence of another photon, arises 

from the physical processes of photon-dipole interactions. The cause of any 

interference pattern is the physical presence of photons at the detection area, 

in a simultaneous manner. This is, in fact, compatible with the need for both 

space and time overlaps of the respective Hilbert spaces describing the two 

photonic systems (Griffiths [5]).      

A theory based on global quantum states discards spatial and temporal 

information, leading to counterintuitive interpretations. The flaws of this 

approach are compounded by the omission of quantum processes impacting 

on photons propagating through dielectric media. The location and time of 

a quantum even should be reflected in the wavefunction. So long as no 

experimental result can be demonstrated at the level of one single and 

individual measurement whereby one measurement – displaced in space and 

time from another measurement – affects the second measurement, the case 

for quantum nonlocality, whether spatial or temporal, cannot be 

substantiated. 

 8.2 The Question of Single Photon Sources  

Quantum optically, the role of single photon sources is believed to be 

critical in the discovery of quantum features which are expected to open up 

new applications. One such source employs nonlinear crystals and its 

operation is based on the second-order spontaneous, parametric down-

conversion of one pump photon being split into two photons, and the other 

source relies on quantum dots or single atoms embedded in a host material. 

The parametric down-conversion of photons is modelled as the 

spontaneous emission of a pair of (signal and idler) photons which are 

believed to escape parametric amplification and remain entangled in their 
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properties. This model of generating single photons, for some reason, fails 

to take into account the presence of the parametric gain beyond the stage of 

spontaneous emission. As the parametric amplification of photons is driven 

by the same parameters as the spontaneous emission – see Chapter 4 – the 

amplification is unavoidable resulting in more than one photon per radiation 

mode exiting the crystal. Consequently, the claim that such devices can 

operate as one-photon sources is not justified. It may still be possible for 

only one photon to reach the photodetector because of the scattering induced 

by the quantum Rayleigh spontaneous emission in the intervening devices.  

The existence of the quantum Rayleigh spontaneous and stimulated 

emissions in a dielectric medium involving the photon-dipole interactions, 

as explained in Chapters 3, 4 and 5, can be overcome if the initial input 

contains a group of photons for the stimulated emission to recapture the 

absorbed photon. 

Correlations of values of degrees of freedom established at the source of 

radiation when combined with post-selection of data after the 

measurements, are mistaken for a quantum collapse of the wavefunction or 

quantum state.  

8.2.1 The spontaneous parametric down-conversion of photons 

To exemplify the formalism presented in this textbook, let us consider 

the experimental results presented by Kolenderski et al. [6]. In this report, 

a type -II crystal is used for spontaneous parametric down conversion to 

generate signal and idler photons orthogonally polarised. Remote 

correlation measurements between heralding idler photons and polarisation-

dependent laterally displaced signal photons give rise to Airy-like 

diffraction patterns brought about by the diffraction from the spot-like 

aperture of the collimated beams of polarised signal photons. For each 

polarisation state of the triggering idler photons, one diffraction pattern 

appears. The two laterally separate photonic beams emerging from locations 

sH and sV pass through the same polarisation filter, set at 45°, to reach an 

array of one-line photodetectors. Although sharing the same polarisation 

state, the two laterally displaced beams give rise to separate Airy-like 

diffraction patterns, so that the number of photons N counted at location x 

along the line of photodetectors is 

 

  | , |  | , |            8.5   

 

where the diffraction pattern at location x of the array is described by the 

function   ,   , and the absence of an interference term is due 
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to the lack of a temporal overlap between two consecutive photons reaching 

the detectors. The coefficients cos t  and sin t  are determined by the            

t  – rotated  polarisation of the triggering photons, relative to the V eigen-

polarisation of the beam splitter of the triggering branch. The idler photons, 

in the first stage of t   0, activate triggering detectors D1 and D2 with 

polarisation V and H, respectively. In the second stage of the experiment, 

the polarisation of the idler photons is rotated and some H-polarised photons 

may trigger D1 and some V-polarised photons may trigger D2. The two 

signal patterns may overlap horizontally if a polarising filter is placed in the 

path of the idler photons before the polarisation beam splitter, so that, for a 

group of photons exiting the nonlinear crystal, both polarisation states can 

trigger the correlated measurement of signal diffractions. As the linear 

polarisation filter is rotated, the ratio of the photons coupled into the 

orthogonal polarisations of the triggering detectors varies. As a result, the 

weighted superposition of the two diffraction patterns which may overlap 

on their common side will change giving rise to a common peak which was 

interpreted as follows: 
 

“By post-selecting on a particular point in the interference pattern, it is 

possible to prepare the idler photon in a specific polarization state. Such a 

flexible remote state preparation could be very helpful in photonic quantum 

information processing.” (Kolenderski et al. [6]) 

 

However, as that state is selected – rather than created – as a result of the 

measurement at the signal’s detection, the properties of the idler photons 

along with those of the signal photons were determined at the original 

source of the nonlinear crystal. Consequently, entangled photons are not 

needed to explain the correlated results. 

Another typical application of spontaneous parametric down-conversion 

of photons is the interference of temporally distinguishable photons. The 

Hong-Ou-Mandel dip would result from the destructive interference of two 

pairs of photons represented by a global, mixed quantum state and detected 

at different times by two sperate photodetectors. As an alternative, the case 

of time-resolved two-photon quantum interference would also have the field 

operators of photon annihilation and creation split into two by a beam 

splitter, leading to each photon of a pair being detected twice by the same 

operator which is now located at both detecting stations. (Legero et al. [7]). 

These assumptions are physically unsubstantiated, prompting 

counterintuitive conclusions.  

The interpretation of time-resolved quantum interference experiments 

(Orre et al. [8]) ignores the quantum Rayleigh spontaneous emission which 

prevents a single photon from propagating in a straight line in a dielectric 
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medium. This interpretation also disregards the random phase of the 

parametrically generated spontaneous photons and their unavoidable 

parametric amplification resulting in, at least, several photons per spectral 

radiation mode, and the related parametric phase-pulling effect (see 

Chapters 3, 5, and 6). Each coincidence measurement by the two separate 

photodetectors (Orre et al. [8]) involves the same photonic intrinsic fields 

exiting the optical fibre leading the photons from the fibre chirped Bragg 

grating to the Y-junction directing the photons to the two detectors. The 

time-resolved interference patterns shared by the photodetectors arises from 

the intrinsic optical field carried by each photon. The role of the chirped 

Bragg grating is to spread out, in time, each group of monochromatic 

photons as a photon can be scattered by any electric dipole and reflected 

from any location in the grating filter, randomly in any direction.  

The fourth-order numerical or electronic interference patterns arising 

from the product of the two intensities-induced photocurrents (Orre et al. 
[8]) involve the conventionally known signal-idler (s i) pairs of photons of 

the first delayed group with the corresponding pairs of photons from the 

secondary delayed groups emerging from the Bragg grating. The relative 

phase for the second-order interference are: 

 

,     

 

where j =1 or 2 identifies the time-delay stage j , and the random phases of 

the spontaneous emissions are denoted by ; . The phase difference of 

the intensities’ correlation function (see Section 5.3.1) is given by  

 

,   ,     

 

in line with the treatment of the Hong-Ou-Mandel interference patterns for 

nondegenerate frequencies. The case for the sum of frequencies is treated 

similarly to the analysis of Section 5.3.1 for the output of the Mach-Zehnder 

configuration sketched in Fig.5.3.  

By ignoring well established physical processes, one may be led to 

believe in the “magic” of quantum optics to transcend time and space in 

having two photons influencing each other despite reaching the same 

detector at different time, or arriving at two separate photodetectors at the 

same time.  

As a matter of physical understanding, quantum effects and processes 

are best described by pure quantum states representing one single 

measurement. The aggregate of these measured values will build up a 

statistical distribution for the expansion of the mixed quantum state which 
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by its definition disregards properties and phenomena associated with 

instantaneous events.  

8.2.2 The quantum dot sources of photons 

 Another type of device that can serve as single-photon sources is based 

on the quantum dots or single atoms, but their location in a high finesse 

resonator cavity has the potential to retain the emitted photons inside the 

cavity for a large number of excitation periods leading, as a consequence, 

to an amplification of the first photon which turns into a group of 

monochromatic photons whose optical filed is described by the longitudinal 

and lateral spatial distributions found in Chapter 3. Once again, the claim 

that only single photons emerge from these devices is not substantiated as 

explained in Sections 5.4 and 5.5 of this textbook.  

Additionally, if single photons reach an interference filter or a beam 

splitter such as in references [1] and [2], the photons may not exit after their 

first transition across the device and may be reflected. In this way, any two 

photons – from different radiation modes – reaching the same dipole 

simultaneously may transfer energy to each other depending on their 

relative phase, as explained in Chapter 3 for the quantum Rayleigh coupling 

of photons between two radiation modes described by means of the dynamic 

and coherent number states. As a result, the two photons will appear in the 

same radiation mode, which explain, without any quantum mystery, the 

original result of the Hong-Ou-Mandel interference dip or the polarisation-

dependent interference patterns of [2].    

As an example, consider the experimental setup of Loredo et al. [9]. 

Groups of photons are formed inside the micro-cavity, as well as inside the 

cubic polarisation beam splitters. Equally, the input phase-difference to the 

fibre directional coupler operating as a beam splitter, will determine the 

direction of photon coupling and the levels of output numbers of photons in 

the two radiation modes as the gain coefficient of the quantum Rayleigh 

stimulated emission is phase-sensitive as well as dependent on the ratio of 

photons in the two interacting modes – see Chapter 3. The more photons 

there are in each radiation mode, the lower the degree of coupling at the 

output will be – see Chapter 3.  

Another shortcoming of the global quantum mixed states which are 

independent of time and space can be found in the article by Loredo et al. 
[9]. Therein it is claimed that the visibility of the ensemble interference is 

determined by the probability of the zero-photon number state. This is 

physically questionable because the zero-photon number state does not 

deliver an intrinsic optical field that would interact with the detector. The 
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zero-photon state is needed to generate an annihilation transition from the 

one-photon state, but the expectation value should be evaluated with the 

same quantum state as explained in Chapter 3 for the dynamic and coherent 

number states.   

The global wavefunction is interpreted as producing aggregate or 

cumulative outcomes which are, in fact, descriptive of “classical” 

circumstances where the statistical outcome is obtained in one measuring 

step.  The interpretation by Loredo et al. [9] relies on the following 

assumptions: 
 

“The pure states of photon-number superpositions… are in the form  |  

  | 0   | 1    and form  |    | 0   | 1   

… where p0 + p1 =1,  p 0,1 are the vacuum and one-photon populations and 

 is the relative phase between the states.”  (Loredo et al. [9], p.804) 

 

However, at the level of one single measurement, there is supposed to be 

only one photon present throughout the experimental setup, or none at all. 

The absence of any time dependence of the input states would be at odds 

with the time-synchronisation for the overlapping of photonic wavepackets.  

Therefore, the coefficients of expansion should be:  

 

|    | 0  | 1                                                                           8.6  

 

with c = 1 or 0. The role of the zero-photon sate | 0  is to deliver a non-zero 

value for the absorption-induced transition. A physically meaningful 

explanation for the experimental results of Loredo et al. [9] is provided by 

the formalism developed in Chapters 3, 5 and 6 involving the intrinsic 

optical fields of photons in the context of one single event described by the 

pure quantum state of the dynamic and coherent number states.  

It is the intrinsic fields of photons that interact with the detector to create 

an interference pattern, and probability amplitudes are evaluated 

mathematically afterwards. An additional quotation from Loredo et al. [9] 

reads: 
 

“That is, if states are pure in the photon-number basis, their interference 

leads to oscillations measured at the output of the interferometer device, with 

a visibility amplitude equal to the vacuum population p0.  

 

  The previous example describes the idealized case of pure states – instances 

non-existing in the physical world. To account for impurity in the photon-

number basis, we consider that each light wavepacket impinging on the 

beamsplitter is described by a density matrix.” (Loredo et al. [9], p.804) 
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This interpretation is rather questionable because the physical reality is 

determined at the level of each individual measurement. Physical 

interactions require time and space overlaps between the quantum states and 

operators (Griffiths [5]).  

The equivalence between a global, mixed quantum state and a classical 

optical beam is hidden in the Dirac notation. The mixed state  

 

  |    |1                                                                              8.7

 

describes a superposition of modes j, each carrying one photon with a 

spectral distribution , but with only one mode populated at any given 

time. Mathematically, this mixed state delivers upon absorption a time-

independent spectral distribution  

 

0 |  |                                                        8.8  

 

which can be treated like the spectral distribution    of a classical 

optical beam, in which case all radiation modes carry photons at the same 

time. 

8.3 The Case for a Paradigm Shift 

The conventional interpretation of quantum optic experiments is 

predicated on one photon per radiation mode, the unimpeded propagation 

of this photon through a dielectric medium, and the use of global and 

entangled quantum states to create interference patterns between two 

photons separated in time and space.     

The multitude of omissions and unphysical assumptions associated with 

the theory of Quantum Optics raise justifiable doubts about its validity. A 

major omission is the absence of the quantum Rayleigh spontaneous and 

stimulated emissions which involves photons propagating across dielectric 

devices. The quantum Rayleigh scattering replaces entangled photons with 

independent ones, and the stimulated emission requires the local values of 

the number of photons and related phase to be described locally by a pure 

quantum state. Similarly, the unavoidable parametric amplification of 

spontaneously emitted photons is disregarded, as is the time delay caused 

by multiple reflections of photons inside a high finesse (micro-) cavity. 

Overall, these well documented physical processes distort substantially any 

initial stream of periodic single photons.  

By contrast, a smooth transition from the quantum regime of one or a 

few photons to the classical one of a large number of photons is possible 
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due to the adequate choice of a wavefunction in the form of the pure, 

dynamic and coherent states – see eq. (3.14) – derived in Chapter 3. These 

states deliver the correct number of photons carried by a radiation mode as 

well as its field amplitude and phase quadratures. The rate equations for the 

evolution of these variables were derived in Chapter 3 and applied in the 

following Chapters for any level of mode excitation and photon-dipole 

interactions, both optically linear and nonlinear. 

Measurements of instantaneous wave fronts are described by pure, 

dynamic and coherent number states which erase any quantum-classical 

boundary. While the intrinsic optical field of photons is very critical for 

time-correlation at the level of one or few photons, its importance could still 

be significant at high levels of photon numbers for a monochromatic group 

of photons as the optical field does not have a Fourier spectrum but is 

represented by a mixed time-frequency structure (Cohen [10]) of the form     

S ( , t). That is, the monochromatic spectral component exhibits a time-

varying amplitude – corresponding to a time-varying number of 

monochromatic photons – which is not related to a time-independent optical 

Fourier spectrum. 

Entangled photons are scattered by the quantum Rayleigh spontaneous 

emission but the same remote correlation of measured states of polarisations 

are still reproduced by single and independent photons.  

The quantum Rayleigh photon-dipole interaction may involve two 

photons colliding at a dipole, with a possible outcome being the transfer of 

the excitation from one radiation mode to the other, providing a physically 

meaningful explanation for the “miracle” of the HOM dip. This process may 

take place inside the dielectric medium of an interference filter or beam 

splitter, thereby creating groups of monochromatic photons from initially 

independent photons bouncing back and forth inside a resonant cavity.   

Equally, a remote wavefunction state preparation through a detection of 

one of the entangled photons is practically impossible because the 

photodetector’s excitation is triggered by an energy level of its structure 

rather than a quadrature state of a quantum harmonic oscillator.    

Consequently, a paradigm shift in the interpretation of experimental 

outcomes of Quantum Optics is highly necessary, being based on the 

following physical processes and elements: 

1. The quantum Rayleigh spontaneous and stimulated emissions; 

2. The unavoidable parametric amplification of spontaneous emission, 

and the formation of groups of monochromatic photons in a high 

finesse cavity incorporating a quantum dot; 

3. Self-contained quantisation of the optical field without any harmonic 

oscillators leading to the dynamic and coherent number states; 
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4. The intrinsic optical field of photons and their localised spatial 

distributions; 

5. The description of instantaneous and localised photon-dipole 

interactions by means of pure, dynamic and coherent number states; 

6. The quantum evolution and predictions being described by the 

Ehrenfest theorem, for any level of optical field excitation, to 

evaluate the expectation value of an operator in the context of a given 

set of pure wavefunctions. 

7. Identifying quantum phenomena at the level of single events and 

measurements with a space- and time-dependence, leading to 

quantum locality and realism.  

       

Overall, there are no quantum optic “miracles” once the physically 

present effects are correctly identified. 

 

8.4 Conclusions 

Over the past few decades the modelling used in Quantum Optics was 

based on global quantum states which possess no time- or space-dependence 

leading to the belief of quantum miracles of interactions between photons 

separated by large intervals of time and space. These “miracles” seemed to 

be supported by single-photon sources which are placed inside experimental 

configurations containing resonant cavities and dielectric devices. The 

operations of these components result in a variety of methods for increasing 

the number of photons through parametric amplification and/or quantum 

Rayleigh coupling of photons.  

Therefore, the physical reality of Quantum Optics rules out single-photon 

interference operations and is characterised by a smooth transition from the 

quantum regime to the classical one.   
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