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THE HERO OF THIS BOOK

Leonhard Euler (1707–1783), “analysis incarnate.” 1753 portrait by Jakob 
Emanuel Handmann. Image courtesy of the AIP Emilio Segrè Visual Archives.
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Other sciences seek to discover the laws that God has chosen; 
mathematicians seek to discover the laws that God has to obey.

—Raoul Bott (1923–2005), in an address to the Knesset as he 
accepted the Wolf Prize in Mathematics (2000)

Nahin.indb   ix 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nahin.indb   x 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Preface

Th is book is not a research monograph. Instead, it is an historical 
introduction to the nature of zeta-3 and related topics. By “histori-
cal,” I mean I will mention the names of the mathematicians associ-
ated with the mathematics we’ll discuss—I’ll even mention some 
biographical details here and there—and will do my very best to get 
right any dates cited.

Th e book has been written with the hope that, in particular, 
enthusiastic readers of mathematics at the level of high school 
AP-calculus (that is, budding mathematicians, mathematical 
physicists, and research engineers) will form the primary audience. 
Such readers will be able to understand nearly everything in 
this book (with some exceptions that I’ll mention next) and should 
then be well prepared for more advanced study of the zeta-3 
problem.

What are those exceptions I just mentioned? Th is is an important 
issue for me to be explicit about, and for you to understand. Most of 
the mathematics you’ll fi nd in this book will be accessible to an AP-
calculus student, but not all of it will be without some further study 
on your part. For example, there are places in the book where dou-
ble integrals occur, and in such places, I have simply assumed that 
you’ll get hold of a good calculus text and read up on multiple inte-
grals if you need to do so. (When you’ve gotten into the book as far 
as Chapter 3, you should then read Appendix 4.) If you are interested 
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xii Preface

enough in mathematics to be reading this Preface, I think you are the 
sort of person for whom doing that is not asking too much.

More broadly, the general approach of the book (written by an elec-
trical engineer, not a mathematician) is to keep the exposition intuitive 
and plausible, and so I have not provided detailed justifi cations for 
some of the mathematical deductions made, justifi cations that a math-
ematician might desire. Be assured, however, that such deductions can 
be justifi ed rigorously, using established (if advanced) mathematics.

To enhance the usefulness of the book for self-study, numerous 
challenge questions, at least one for nearly every section of the book, 
with complete solutions at the end, are included. Some are easy, 
others not so easy (but hints are provided to help get you started). 
Now, a natural question to ask at this point is: Am I (that is, are you) 
at a mathematical level to be able to read this book? In response to 
that, here are some tests of increasing diffi  culty that will answer that 
question.

First, there are a lot of summations in this book, and their evalua-
tions, while using only elementary mathematics, may require one or 
more insightful observations. For example, suppose we defi ne 

1 1 1 1
1 2 3( ) 1q

k k qh q , where q is any positive integer. As 
you’ll learn in Chapter 1, limq→∞h(q) = ∞. Now, consider the sum 

( )
1

h q
q qS . Do you see that S = ∞? Simply notice that h(q) ≥ 1 for all 

q ≥ 1. Th us, if we replace h(q) with 1 in the defi nition of S, we’ll obvi-
ously get a smaller sum and so 1

1q qS . But that sum blows up (you 
know, since I just told you this a few sentences ago). Getting 
S > ∞ is, of course, just an enthusiastic way of concluding S = ∞. Well, 
that wasn’t so hard, was it?

Okay, here’s the second test. What is the value of 
1 2
0 ?x x dx  If 

you can actually do this defi nite integral, well, that’s terrifi c. But that’s 
not the test. Even if you can’t do it, as before, if you can understand the 
following solution, then you are all set. Th e integral is the area under 
the curve (and above the x-axis) described by 2( ) , 0 1y x x x x . 
Th at is, by the curve y2 = x − x2, or x2 − x + y2 = 0 or, completing the 
square, by the curve 2 2 21 1

2 2( ) .( )x y  Th is is the equation of a circle 
with radius 1

2
, centered on the x-axis at 1

2x . Th e area bounded by that 
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Preface xiii

curve and the x-axis is, therefore, the area of the upper half of the cir-
cle. Th at is, 

1 2 21 1
0 2 2 8( )x x dx .

One troublesome thought you may be bothered by at this point 
is that these two tests could seem a bit contrived or “cooked up,” 
perhaps even to be a bit too mathematically academic. If you’re an 
engineer or a physicist, seeing mathematics in the service of physics 
might be more reassuring to you that the level of this book is relevant 
to real-world science. So, for a third test, to show you that with an 
AP-calculus background, you can understand some pretty sophisti-
cated mathematical analysis—certainly anything you’ll read in this 
book—consider the integral 1/2 3/20 ( )

a b
TT e

T
d , where T, a, and b are all 

positive constants (τ, in contrast, obviously varies from 0 to T). Th is 
certainly looks complicated (that’s code for awfully hard), but in fact 
it yields (and quickly, too) in the face of nothing but AP-calculus.

Why, you ask, is this an interesting calculation? It’s interesting 
because this integral appears at the end of a 1965 book by Richard 
Feynman (1918–1988) and Albert Hibbs (1924–2003), Quantum 
Mechanics and Path Integrals (Dover, 2010). Th at book discusses 
mathematical physics at the heart of the contributions to quantum 
electrodynamics that won Feynman a share of the 1965 Nobel Prize 
in physics.1 Doing the Feynman-Hibbs integral isn’t going to make 
you a quantum theory expert, but to become a quantum theory 
expert, you’ll have to be able to understand how to do the integral. 
And that is something an AP-calculus student can do. We’ll have to 
work out this integral for ourselves, as Feynman and Hibbs gave only 
the answer and no derivation. If you can track along through the 
following solution, then you are defi nitely all set to go forward with 
this book.

To start, for notational convenience (you’ll see why as we go 
along), let’s write τ, a, and b in terms of the constant T. Th at is, let’s 
defi ne the so-called scaling parameters x, α, and β to be such that 

1. Feynman was a professor of physics at the California Institute of Technology, 
and Hibbs was a former graduate student at Caltech who had done his PhD disserta-
tion under Feynman. I thank Anthony Zee, professor of physics at the University of 
California at Santa Barbara, who brought the Feynman-Hibbs integral to my attention.

Nahin.indb   xiii 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



τ = xT, a = αT, and b = βT. (Notice that α and β are constants, but 
since τ is a variable, then so, too, is x, with dτ = T dx.) Th e Feynman-
Hibbs integral then becomes cleaner looking:

11 1

1/2 3/2 2 1/2 3/20 0( ) ( ) ( )1

T T
T xT xT x xe e

Tdx T dx
T xT xT T x x

11

1/2 3/20

1
.

( )1

x xe
dx

T x x

(Note that since our integration variable is now x, not τ, the integra-
tion limits must be for x and so we changed the upper integration 
limit to 1 because x = 1 when τ = T.) Next, change variable to 

1
xy  (and so 2

dy
y

dx ) to write the Feynman-Hibbs integral as

1 1
1

1 11

1/2 3/2 1/22 1/21 1
2

2

1 1 1
.

( 1) ( 1)1 11

y y
y y

y y y ye dy e e
dy dy

yT y T T yy
yy y

Now change variable to u = y − 1, and so the Feynman-Hibbs integral 
becomes

11 1( 1)

1/2 1/20 0

( ) ( )

1/2 1/2 1/20 0 0

1 1

1 1
.

u uu uu

u u u
u u u

e e
du du

T u T u

e e e e e
du du du

T u T u T u

Next, change variable one last time to u = ω2 (and so du = 2ωdω). 
Th e Feynman-Hibbs integral then becomes

2
2 2

2
( )

0 0

2
2 .

e e e
d e d

T T

xiv Preface
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Th is last integral may look like all we’ve done is trade the Feynman-
Hibbs integral for a new but equally awful one, but that’s not so. In 
fact, in Appendix 2, I work out this last integral (using only AP-
calculus arguments) as an extension of the famous “probability 
integral” 

2
1

0 2
te dt , fi rst done 250 years ago (also using only 

AP-calculus level arguments), which we’ll use in Chapter 1 when we 
get to the gamma function. Specifi cally, in Appendix 2 you’ll fi nd the 
derivation of the formula

2
2 2

0

1
2

q
pt pqte dt e

p

where p and q are non-negative but otherwise arbitrary real con-
stants (this reduces to the probability integral for the case of p = 1 
and q = 0).

For our calculation, p = β = b
T   and  q = α = a

T , and so the Feynman-
Hibbs integral is 

2

2

2 2

1/2 3/20

1 1
( 2 ) ( )

,

2 1
2

a ba b
ab a b abT TTT T T TT

a ab b a b
T T

e e
d e e

bT bTT
T

e e
bT bT

which is the answer given by Feynman and Hibbs.
Well, that was a lot of pretty math—but is it right? We can greatly 

enhance our confi dence in this theoretical result by numerically 
evaluating the original integral for specifi c values of T, a, and b and 
comparing the result with what our formula says (we’ll do this sort of 
checking a lot throughout this book). For example, if a = b = 1 and 
T = 4, the theoretical answer reduces to 2e  = 0.3260246660866. 
Using modern integration soft ware commercially available for 

Preface xv
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personal computers (in this book, I use MATLAB), typing the 
single line2

integral(@(x)(exp(–1./(4–x)).*exp(–1./x))./
sqrt((x.^3).*(4–x)),0,4)

almost instantly returns the value 0.3260246660868 . . . , in excellent 
agreement with theory. (In this line, x plays the role of the original 
integration variable τ.)

For your penultimate test, let’s return to the h(q) function intro-
duced earlier. Th at summation function appears, in a remarkable 
way, in the evaluation of the integral 1 2 1

0 ln(1 ) ,qx x dx  where q is 
any positive integer. We start by making the observation that

2
2 1 1

,
2 2

q
q d x

x
dx q q

and so

21 12 1

0 0

1
1 ln(1 )

2 2
ln( )

q
q d x

x x dx x dx
dx q q

21

0

1
ln(1 ) .

2 2

qx
x d

q q

Th is observation is, I think, not an obvious one to make, although 
once seen, it is obviously true.3 Th e reason for doing this becomes 
clear once you recall the AP-calculus integration-by-parts formula

2. Th e format of the MATLAB command integral is straightforward: integrand, 
lower limit, upper limit. I show you this line of code not because I’m trying to turn 
you into a MATLAB coder, but simply as an example of how easy it is to use a com-
puter as an eff ective tool in what a relatively short time ago would have been consid-
ered to be a purely theoretical math problem.

3. I learned this little trick from a note sent to me by Cornel Ioan Vӑlean, the 
author of (Almost) Impossible Integrals, Sums, and Series (Springer, 2019).

xvi Preface

Nahin.indb   xvi 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



1 11
00 0

 ( )|  u dv uv v du

and make the associations u = ln(1 + x) (and so 1
1 xdu dx), and 

2 1
2 2( )qx

q qdv d  (and so 2 1
2 2

qx
q qv ). Th en

2 21 12 1 1
00 0

1 1 1
ln(1 ) ln(1 ) |

2 2 2 2 1

q q
q x x

x x dx x dx
q q q q x

21

0

1 1
.

2 1

qx
dx

q x

Now, as

2 3 41
1

1
x x x x

x

then

2
2 2 3 4

2 3 2 2 1 2 2 2 3

1
(1 )(1 )

1
(1 ) ( ).

q
q

q q q q

x
x x x x x

x
x x x x x x x

Th at is,

21
1

qx
x

 = [1 – (sum of all odd powers of x) + 
(sum of all even powers of x)]

2

2 1

    starting 
(     starting 
(

)
)q

q

sum of even powers of x with x
sum of odd powers of x with x

= 1 + (sum of even powers of x fr om x2 to x2q–2)

– (sum of odd powers of x fr om x1 to x2q–1)

Preface xvii
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22 3 4 2 2 2 1 1 1
1

1 1( ) .
qq q k k

k
x x x x x x x

So
21 12 1 1 1

0 0
1

1
ln(1 ) ( 1)

2

q
q k k

k

x x dx x dx
q

or, reversing the order of integration and summation (a step that is 
immediately justifi ed, since the sum has a fi nite number of terms), 
we have

2 21 2 1 1 1 1 1
00

1 1

2
1

1

1

0

1 1
ln(1 ) ( 1) ( 1) |

2 2

1 1 1 1 1 1 1 1 1
( 1) 1

2 2 2 3 4 5 2 1 2

1 1 1 1 1 1 1
1

2 3 5 2 1 2 4 2

1 1 1 1
1

2 3 2 1 2

q q k
q k k k

k k

q
k

k

x
x x dx x dx

q q k

q k q q q

q q q

q q
1 1 1 1 1 1 1 1
4 2 2 4 2 2 4 2

1 1 1 1 1 1 1 1 1
1 2

2 2 3 4 2 1 2 2 4 2

1 1 1
(2 ) 1

2 2

q q q

q q q q

h q
q q

and so, at last, we arrive at the very pretty

1 2 1

0

(2 ) ( )
ln(1 ) , 1.

2
q h q h q

x x dx q
q

We’ll run into more expressions (called Euler sums) that have 
forms similar to the right-hand side of this result when we get to 
Chapter 4. Th ere you’ll see that many of the Euler sums have values 
that are intimately related to zeta-3 (as the title proclaims, zeta-3 is 
the whole point of this book—but that’s getting a bit ahead of our-
selves). Th is is a pretty sophisticated analysis, but there is not a 
single step in it that isn’t part of AP-calculus, and if you can follow 

xviii Preface
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it, you pass this test. Just to convince you that the analysis we did is 
okay, suppose q = 3. Th en our result says

1 5

0

1 1 1 1 1 1 11 1
(6) (3) 1 1 1 12 3 4 5 6 2 3ln(1 )

6 6 6 4 5 6
1 30 24 20
6 120
74

0.102777 ,
720

h h
x x dx

while MATLAB says integral(@(x)(x.^5).*log(1+x),0,1) = 0.102777 
. . . , which is pretty good agreement.

As a fi nal comment on this calculation, notice that we have, as a 
by-product of doing an integral, derived the identity

1 1 1 1
1 (2 ) ( ).

2 3 4 2
h q h q

q

Th is result is famous in mathematics as the Botez-Catalan identity,4

and we derived it by direct algebraic manipulation. In the fi nal 
challenge question of this Preface, you’ll be asked to do it in a 
diff erent way.

Finally, here’s a test of what some analysts like to call “mathemati-
cal maturity” (that’s code for “able to follow a logical argument,” not 
just one of symbol pushing). Consider the infi nite sequence of positive 
integers defi ned by the recursion xk = xk−1 + xk−2, where x1 = x2 = 1. 
Th at is, consider the sequence 1,1,2,3,5,8,13,21, . . . , where each new 
integer is the sum of the previous two. (You might recognize this as 
the famous Fibonacci sequence, named aft er the 13th-century Italian 
mathematician Leonardo of Pisa, who wrote under the name of 
Fibonacci, a contraction of “fi lius Bonacci,” that is, “the son of 
[Guglielmo] Bonacci.”) Th e numbers in this sequence get pretty big, 

4. Aft er the Romanian mathematician and civil engineer Stefan Botez (1843–
1920) and the French mathematician Eugène Catalan (1814–1894).

Preface xix
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pretty fast (x50 = 12,586,269,025 ≈ 1.25 × 1010), but there is a simple 
upper bound on each of them: xk < 2k. Here’s how to show that, using 
the powerful analysis tool of induction. (Note that 250 ≈ 1.12 × 1015, and 
so our bound is pretty loose!)

First, we observe that the claim is certainly true for k = 1 and 
k = 2, as x1 = 1 < 21 = 2 and x2 = 1 < 22 = 4. We next show that if we 
assume the claim is true for k = n and k = n − 1, it then follows that 
the claim is true for k = n + 1. If we can do that, then since the claim 
is true for k = 1 and k = 2, it also must be true for k = 3. Since we then 
know it’s true for k = 2 and k = 3, it also must be true for k = 4. And 
so on, forever. Here are the details of showing this.

Our assumption that the claim is true for k = n and k = n − 1 
means that xn < 2n and xn−1 < 2n−1. Now, as xn+1 = xn + xn−1, it follows 
that xn+1 < 2n

 + 2n−1 = 2n + 2–12n = 2n
 

1
2(1 ) < 2n(2) = 2 n+1, and we are 

done. Th is analysis involves no advanced, sophisticated math, but it 
does require the “maturity” I mentioned earlier.

If all these tests make sense, then keep reading. But fi rst, try your 
hand at your fi rst three challenge questions: First, show that 

2 2 /4 0,ax bx b a
ae dx e a . Hint: Try completing the square, and 

recall the probability integral. Second, explain why 2

1 1
0

.
x x

dx
In fact, this is the a = 0, b = 1, special case of 1

( )( )
b
a x a b x

dx  for 
any non-negative values of b > a. See if you can explain that. And 
fi nally, see if you can establish the Botez-Catalan identity by induc-
tion. Hint: You’ll fi nd it helpful to notice that 1

1( 1) ( ) .qh q h q

xx Preface

Nahin.indb   xx 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 1

Euler’s Problem

1.1 Introducing Euler

Th e title of this book has been carefully craft ed to attract the interest 
of all those who love mathematics, which would seem to be an 
obvious thing to do for the author of a book like this one. However, 
the subtitle of this book seems likely to provoke controversy among 
professional mathematicians, which, at the other extreme, might 
seem to be a rather odd thing for an author to do. My primary 
goal is clear, I think, as everybody likes a good hunt involving puz-
zles, a fact that explains the attraction of mystery novels, adventure 
video games, and Indiana Jones movies like Raiders of the Lost 
Ark. Hardly anybody, I think, would quibble with that. But how, 
I can hear each mathematician on the planet grumbling as he/
she reads this, can I claim that the puzzle of zeta-3—I’ll tell you 
what that is, in just a bit—is the world’s most puzzling unsolved 
math problem? Aft er all, as each of my critics would emphatically 
state, even while (perhaps) vigorously pounding a desktop or 
thumping a fi nger into my chest, “it’s quite clear that the problem 
that’s holding my work up is the world’s most puzzling unsolved 
problem!”
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2 Chapter 1

My selection criteria for choosing which math problem is assigned 
the label as the most puzzling problem are quite simple: (1) the prob-
lem is (obviously!) unsolved; (2) people have been trying (and fail-
ing) for centuries to solve it; (3) it has at least some connection to the 
real world of physics and engineering; and most important of all, 
(4) despite (1), (2), and (3), a grammar school student who knows 
how to do elementary arithmetic can instantly understand the prob-
lem. Th e fi rst three criteria are satisfi ed by lots of really hard problems 
in math, but if it takes a degree in math to simply understand the 
question, then such problems clearly fail the fourth test (this elimi-
nates the famous problem of the Riemann hypothesis, about which 
I’ll say more in the next section). At the end of the next chapter, I’ll 
return to this issue, that of selecting the most puzzling math problem.1

But for now, let me set the stage for all that follows by introducing 
the personality most closely associated with the problem of zeta-3, 
the great (perhaps the greatest in history) mathematician, Leonhard 
Euler (1707–1783). Th e son of a rural Swiss pastor, Euler trained for 
the ministry at the University of Basel and at age 17, received a grad-
uate degree from the Faculty of Th eology. While a student at Basel, 
however, he also studied with the famous mathematician Johann 
Bernoulli (1667–1748), and despite his years-long immersion in reli-
gious thought, it was mathematics that captured his soul. Euler never 
lost his belief in God and in an aft erlife, but while he was in this world, 
it was mathematics that had his supreme devotion.

It seemed that there was nothing that could keep him from doing 
mathematics, not even blindness from a botched cataract operation. 

1. Until it was solved in 1995 by Andrew Wiles, perhaps Fermat’s Last Th eorem 
would be the problem that would have occurred to most people as the “world’s most 
puzzling math problem,” even though many professional mathematicians would have 
disagreed: for example, the great German mathematician Carl Friedrich Gauss 
(1777–1855), perhaps as great as Euler, refused to work on the Fermat problem, 
because he simply found it uninteresting. And, unlike the zeta-3 problem, the Fermat 
problem makes no appearance (as far as I know) in either science or engineering. 
Finally, the 1995 solution has been examined and understood by only a few world-
class mathematicians. Everybody else simply accepts their thumbs-up verdict that 
Wiles’ proof is correct (it’s certainly far beyond AP-calculus!).
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Euler’s Problem  3

(Can you imagine enduring, with no anesthetic, such an operation in 
the 18th century?) Euler had a marvelous memory (it was said he knew 
the thousands of lines in the Aeneid by heart) and so, for the last 17 years 
of his life aft er losing his vision, he simply did monstrously complicated 
calculations in his head and dictated the results to an aide. Many years 
aft er his death, the 19th-century French astronomer Dominique Arago 
said of him, “Euler calculated without apparent eff ort, as men breathe 
or as eagles sustain themselves in the wind.” By the time he died, he had 
written more brilliant mathematics than had any other mathematician 
in history, and that claim remains true to this day.

Here’s one of Euler’s accomplishments. Some of the great prob-
lems of mathematics involve the prime numbers, which since Euclid’s 
day (more than three centuries before Christ) have been known to 
be infi nite in number. Euclid’s proof of that is a gem, commonly 
taught in high school (see the box), and it wasn’t until 1737 that Euler 
found a second, totally diff erent (but equally beautiful) proof of the 
infi nity of the primes that I’ll show you later in this chapter. But what 
Euler wasn’t able to prove (and nobody else since has either) is if the 
twin primes are infi nite in number. With the lone exception of 2, all 
the primes are odd numbers, and two primes form a twin pair if they 
are consecutive odd numbers (3 and 5, or 17 and 19, for example). 
Mathematicians would be absolutely astounded if the twin primes 
are not infi nite in number, but there is still no proof of that.2

2. Th is just goes to show that there will never be an end to wonderful math 
problems, because, if in the (most unlikely) event that the twin primes are someday 
shown to be fi nite in number, the hunt would then immediately begin for the largest 
pair! In 1919, the Norwegian mathematician Viggo Brun (1885–1978) showed that 
the sum of the reciprocals of the twin primes is fi nite:

1 1 1 1 1 1 1 1
3 5 5 7 11 13 17 19( ) ( ) ( ) ( ) 1.90216 , a number called Brun’s 

constant. Th is small value does not, however, prove that there are a fi nite number of 
twin primes, but only that they thin out pretty fast. In 2013 the Chinese-born Amer-
ican mathematician Yitang Zhang showed (when at the University of New Hamp-
shire, just down the hall from my old offi  ce in Kingsbury Hall) that there is an infi nity 
of pairs of primes such that each pair is separated by no more than 70 million. In 2014 
that rather large gap was reduced to 246. If it could be reduced to 2 (or shown it 
couldn’t be so reduced), then the twin prime problem would be resolved.
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4 Chapter 1

Euclid proved the primes are infi nite in number by showing that a 
listing of any fi nite number n of primes must necessarily be incom-
plete, and so there must instead be an infi nite number of primes. 
Here’s how the logic goes. Let the n listed primes be labeled p1, p2, 
p3, . . . , pn. Th en, consider the number N = p1 p2 p3 . . . pn + 1, which 
is obviously not equal to any of the primes on the list. Now, N is 
either prime or it isn’t. If it is then we have directly found a prime 
not on the list. If, however, N is not a prime, that means it can be 
factored into a product of two (or more) primes. Equally obvious, 
however, is that p1 doesn’t divide N (because of that +1), and in 
fact none of the rest of the primes on the list divides N either, for 
the same reason. Th e immediate conclusion is that there must 
be at least two more primes that are not on the list. Since this 
argument holds for any listing of fi nite length, there must, in fact, 
be an infi nite number of primes. Done! You’re not going to fi nd 
many proofs in math more elegantly concise than that.

Th e problem of determining the size of the set of the twin primes 
is an unsolved problem that defi nitely fi ts most (if not all, as perhaps 
some extra explanation would be required for a grammar school stu-
dent3) of my selection criteria. So, why (you ask) doesn’t the twin 
prime problem deserve to have the label of being the most puzzling 
math problem? Well, maybe it does, but I’m making a judgment call 
here, with the following reason for why I’ve come down on the side 
of zeta-3. Th e twin prime problem appears to stand mostly alone, 
with few peripheral connections to the rest of math and science. In 
contrast, the zeta-3 problem is at the center of all sorts of other prob-
lems. (You’ll see some of them, starting in the next section when 
I’ll fi nally tell you what the zeta-3 problem is!) It’s this issue, of the 

3. For example, to understand the nature of the primes, it is necessary to fi rst 
study the so-called unique factorization theorem, which says that every integer can be 
factored into a product of primes in exactly one way. Th is is not terribly diffi  cult to 
show, but it is a step beyond mere arithmetic.
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Euler’s Problem  5

relative connectedness to the rest of math, that makes our ignorance 
of the nature of zeta-3 the more exasperating (hence, the more puz-
zling and mysterious) in comparison to the problem of the infi nity 
(or not) of the twin primes.

Challenge Problem 1.1.1: In a 1741 letter to a friend, Euler made 
the following claim:

1 1 102 2
2 13

, a claim that must have appeared to his friend to be 
like something he would have found in a book of magical incanta-
tions. Calculate each side of this “almost equality” out to several 
decimal places and so verify Euler’s claim. Hint: You may fi nd what 
today is called Euler’s identity to be of great help: eix = cos(x) + 
i sin(x), where 1i . You can fi nd an entire book on this identity 
in my Dr. Euler’s Fabulous Formula (Princeton University Press, 
2017), but you do not have to read that book to do this problem. 
Simply notice that ln(2 ) ln(2)2

ii ie e  (and similarly for 2− i). Th en 
apply Euler’s identity.

1.2 The Harmonic Series and the 
Riemann Zeta Function

As Euler entered the second half of his third decade, he was known 
to his local contemporaries as a talented mathematician, but to 
become a famous mathematician, it was necessary (as it is today) to 
be the fi rst to solve a really hard problem. Th ere are always numer-
ous such problems in mathematics, but in the 1730s, there was one 
that was particularly challenging, one that satisfi es all of my selec-
tion criteria. Th is was the problem of summing the infi nite series of 
the reciprocals of the squares of the positive integers. Th at is, the 
calculation of

(1.2.1) 2 2 2 21

1 1 1 1
1 ?

2 3 4k k

It’s important to understand what is really being asked for in 
(1.2.1). Th e numerical value of the sum is a calculation in arithmetic 
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6 Chapter 1

(but it’s not a trivial one, if one wants, for example, the fi rst 1,000 
correct digits), and almost from the very day the problem was fi rst 
posed, it was known that the value is about 1.6 or so. But that’s not 
what mathematicians wanted. Th ey wanted an exact symbolic expres-
sion involving integers (and roots of integers), simple functions (like 
the exponential, logarithmic, factorial, and trigonometric), and 
known constants like π and e. Th e simpler that expression, the bet-
ter, and in fact, Euler found such an expression in 1734. A little later 
I’ll show you his brilliant solution (and not to keep you in suspense, 
run π2/6 through your calculator). For now, my central point is that, 
from 1734 on, Euler was a superstar in mathematics whose fame 
extended from one end of Europe to the other. Th e origin of the 
problem in (1.2.1) played a big, continuing role in both Euler’s life 
and the zeta-3 problem (which I admit I still have yet to tell you 
about, but I will, soon!).

In the 14th century, a similar problem had bedeviled mathemati-
cians: summing the infi nite series of the reciprocals of the positive 
integers. Th at is, calculating

(1.2.2) 
1

1 1 1 1
1 ?

2 3 4k k

Th en, about 1350, the French mathematician and philosopher 
Nicole Oresme (c. 1320–1382) showed that the answer is infi nity! 
Th at is, as mathematicians put it, the sum in (1.2.2) diverges. 
Oresme’s claim, without exception, surprises (greatly!) students 
when they fi rst are told this, because the individual terms continu-
ally get smaller and smaller (indeed, they are approaching zero). It 
just seems impossible that, eventually, if you keep adding these ever-
decreasing terms, the so-called partial sum will exceed any value you 
wish. Th at is, no matter how large a number N that you name, there 
is a fi nite value for q such that

(1.2.3) 
1

1
( ) .

q

k
h q N

k
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Euler’s Problem  7

Th e symbol h is used in (1.2.3) because the sum of the reciprocals of 
the positive integers is called the harmonic series. Th e h(q) function 
will occur over and over in this book. Some of Euler’s most beautiful 
discoveries aft er 1734 involve h(q), and it continues to inspire 
researchers to this day.

Oresme’s proof of (1.2.3) is an elegant example of the power of 
mathematical reasoning, even at the high school level. One simply 
makes clever use of brackets to group the terms as follows:

1

1 1 1 1 1 1 1 1
1

2 3 4 5 6 7 8k k

followed by replacing each term in each pair of curly brackets with 
the last (smallest) term in that pair. Notice that this last term is always 
of the form 1

2m  where m is some integer (m = 1 in the fi rst pair, 
m = 2 in the second pair, m = 3 in third pair, and so on), and that 
there are 2m−1 terms in a bracket pair. Th e process gives a lower 
bound on the sum, and so we have

1

1 1 1 1 1 1 1 1 1 1 1
1 1 .

2 4 4 8 8 8 8 2 2 2k k

Th at is, the lower bound is 1 plus an infi nity of 1
2 ’s, which obviously 

gives a sum that “blows up” (diverges) to infi nity, just as claimed in 
the Preface:

(1.2.4) lim ( ) .q h q

Th e explanation for (1.2.3) and (1.2.4) is that while it is clearly 
necessary for the terms in an infi nite series in which every term is 
positive to continually decrease toward zero if the sum is to be 
fi nite (for the sum to converge, as mathematicians put it), a decrease 
alone is not a suffi  cient condition for a fi nite sum. Not only must 
the terms decrease toward zero, but that decrease has to be a 
suffi  ciently fast one. Th e terms of the harmonic series simply 
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8 Chapter 1

don’t go to zero fast enough. Almost fast enough, to be sure, but 
not quite fast enough, which results in the divergence of the 
harmonic series being astonishingly slow. For h(q) > 15, for exam-
ple, we must have q > 1.6 × 106 terms, while h(q) > 100 requires 
q > 1.5 × 1043 terms.

Once Oresme had solved the problem of summing the harmonic 
series, the question of summing the reciprocals squared stepped for-
ward, with its explicit statement attributed to the Italian Pietro Men-
goli (1625–1686) in 1644. And once Euler had solved that problem 
in 1734, you can surely understand the curiosity that drove mathe-
maticians to next turn their attention to summing the reciprocals 
cubed. To their dismay, they couldn’t do it. Even Euler couldn’t do 
it. And so, at last, we have the zeta-3 problem: What is

(1.2.5) 
3 3 3 31

1 1 1 1
1 ?

2 3 4k k

Th e numerical value is easily calculated to be 1.2020569 . . . but, 
unlike the sum of the reciprocals squared, there is no known simple 
symbolic expression. Th e search for such an expression is, today, an 
ongoing eff ort involving many of the best mathematicians in the 
world.

Th is search is not an idle one of mere curiosity, either, as the 
value of zeta-3 appears in physics (as you’ll see later) as well as in 
mathematics.

Th e pressure on modern academics to solve problems is, as it was 
in Euler’s day, enormous, and in fact, that pressure is relentless. 
Th at is, aft er solving a tough problem, the successful analyst 
certainly gets a pat on the back but then, almost immediately 
aft er, is asked “So, what are you going to do next?” Having a good 
answer to that question may be more a matter of professional 
pride for a tenured senior professor, but for a young untenured 
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Euler’s Problem  9

assistant professor, it is, quite literally, a matter of survival. Th e 
famous Hungarian mathematician Paul Erdӧs (1913–1996) wrote 
a little witticism that nicely sums up this situation:

A theorem a day
Means promotion and pay.
A theorem a year
And you’re out on your ear!

To that, in the spirit of this book, I would add these two lines:

But if your next theorem computes zeta-3
Th en acclaimed tenured full prof you’ll instantly be!

Erdӧs, who received the 1983 Wolf Prize, never held an academic 
position, but instead endlessly traveled the world, living tempo-
rarily with mathematician friends, then moving on to his next 
stop. At each stay, he and his host would write a joint paper (his 
co-authors numbered in the hundreds): his motto was “Another 
roof, another proof.”

Th e reason for the name zeta is that in 1737, Euler considered the 
general problem of summing the reciprocals of the sth power of the 
positive integers:

(1.2.6) 1

1 1 1 1
1 ,

2 3 4s s s sk k

which is today written (with the Greek letter zeta) as ζ(s), and so 
(1.2.1) is ζ(2) and (1.2.5) is ζ(3). Th at is, zeta(2) and zeta(3), pro-
nounced “zeta-2” and “zeta-3.” Euler took s to be a positive integer, 
subject only to the constraint that s > 1 to ensure convergence of 
(1.2.6) (s = 1 gives, of course, the divergent harmonic series). What 
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10 Chapter 1

makes the failure to solve the zeta-3 problem particularly puzzling 
is that not only did Euler solve the zeta-2 problem, but he also solved 
all of the zeta-2n problems. Th at is, he found symbolic expressions 
for the sum of the reciprocals of any even power of the integers. Th e 
fi rst few of these solutions are:

Zeta-2 = 
2

(2) ,
6

Zeta-4 = 
4

(4) ,
90

Zeta-6 = 
6

(6) ,
945

Zeta-8 = 
8

(8) ,
9,450

Zeta-10 = 
10

(10) .
93,555

Starting with ζ(3), however, not even one of the ζ(2n + 1) prob-
lems has been solved. Lots of results that dance around ζ(2n + 1) 
have been found since Euler—in 1979, for example, the French 
mathematician Roger Apéry (1916–1994) showed that, whatever 
ζ(3) is, it is irrational (which confi rmed what every mathematician 
since Euler has always believed, but having a proof is, of course, the 
Holy Grail of mathematics).4 A simple symbolic expression for ζ(3) 
remains as elusive today as it was for Euler.

4. Th e irrationality of zeta-2 wasn’t proven until 1796, decades aft er Euler calcu-
lated ζ(2), when the French mathematician Adrien-Marie Legendre (1752–1833) 
proved that π2 is irrational (the Swiss mathematician Johann Lambert (1728–1777) 
proved that π is irrational in 1761, but that does not prove that π2 is irrational). Can 
you think of an irrational number whose square is rational? Th is should take you, at 
most, two (big hint here) seconds!
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Euler’s Problem  11

In 1859 the German mathematician Bernhard Riemann (1826–1866) 
extended Euler’s ζ(s) to complex values of s (which, of course, 
includes the integers as special cases). Today, ζ(s) is called the 
Riemann zeta function, although its origin is with Euler. For highly 
technical reasons, beyond the level of this book, there are many 
important problems in mathematics (including the theory of 
primes) that are connected to what are called the zeros of ζ(s). Th at 
is, to the solutions of the equation ζ(s) = 0. All the even, negative 
integer values of s are zeros, but the situation for complex zeros is far 
from resolved. Aft er calculating just the fi rst three (!) complex zeros, 
Riemann conjectured, but was unable to prove (and nobody else 
since has, either), that all the infi nite number of complex zeros of 
ζ(s) are “very likely” of the form 1

2  1s b  for an infi nite number 
of values for b > 0. Th at is, what has become known as the Riemann 
hypothesis is that all of the complex zeros are on the vertical line 
(called the critical line) in the complex plane with its real part equal 
to 1

2 . (In Chapter 3, I’ll tell you a lot more about the critical line.) In 
1914 the English mathematician G. H. Hardy (1877–1947) proved 
that ζ(s) has an infi nite number of complex zeros on the critical line, 
but that does not prove that all the complex zeros are there. In 1989 
it was shown that at least two-fi ft hs of the complex zeros are on the 
critical line. Again, that does not prove that all the complex zeros are 
there. In 2011, 22 years later, that 40% value was increased to 
41.05%, a small increase for two decades of work that hints at just 
how diffi  cult a challenge the Riemann hypothesis is. Using high-
speed electronic computers, billions upon billions of the complex 
zeros have been calculated as the parameter b is steadily increased 
and, so far, every last one of them does indeed have a real part of 
exactly 1

2 . But that does not say anything about all of the complex 
zeros being on the critical line. If just one complex zero is ever 
found off  the critical line, then the Riemann hypothesis will be 
instantly swept into the wastebasket of history (and the discoverer 
of that rogue zero will become an instant superstar in the world 
of mathematics).
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12 Chapter 1

Euler’s results for ζ(2n) all have the form of

2(2 ) ,na
n

b

where a and b are positive integers. Th at is, for k an even integer, ζ(k) 
is a rational number, times pi to the kth power. Th is suggests that, 
for some integers a and b,

3(3)
a
b

but that suggestion has not been realized (nobody has ever found 
integers a and b that give the known numerical value of ζ(3)). In 1740 
Euler conjectured that, instead,

ζ(3) = Nπ3

where N somehow involves ln(2), but that hasn’t resulted in any 
progress, either.

Why ln(2)? Why not ln(17) or ln(3)? Perhaps because Euler 
had shown, before he solved the zeta-2 problem, that 

2    1
21

1 2
(2) {ln(2)}kk k

. Th is was helpful in calculating 
the numerical value of ζ(2) because this sum converges much 
more rapidly than does the original sum in the defi nition of 
ζ(2), and he knew the value of ln(2) to many decimal places. 
Th e Russian mathematician Andrei Markov (1856–1922) 
did the same for ζ(3) when he showed, in 1890, that 

323

2( !1 15 5
1 1

)1
( ) (22 )!2(3) ( 1) ( 1)k

k

k k
k kk

k
kk

, where ( )n
k  is the 

binomial coeffi  cient !
! !

n
n k k . I’ll show you the details of how Euler 

derived his fast-converging series expression for ζ(2) (it’s all just 
AP-calculus) in the next chapter. Markov’s analysis is, as you 
might suspect, just a bit more advanced.
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Another formula, one known to Euler (and which we’ll derive 
later), is particularly tantalizing:

3

3 3 3

1 1 1
1 .

3 5 7 32

Why the sum of the reciprocals of the odd integers cubed, with alter-
nating signs, has such a nice form, a form that matches that of ζ(2n), 
while ζ(3) seems not to, is an exasperating puzzle for mathemati-
cians. What worries many of today’s mathematicians is that if Eul-
er—a genius of the fi rst rank (if not even higher)—couldn’t solve for 
zeta-3, even aft er decades of trying, well, maybe there simply isn’t 
an exact symbolic expression. What a dreary thought! Why would 
the world be made that way? It seems so . . . inelegant. And yet, such 
things do happen. Th e ancient geometric construction problems of 
angle trisection, cube doubling, and circle squaring, for example, all 
stumped mathematicians for thousands of years until all were even-
tually proven to have (using only a straightedge and a compass) no 
solutions (see Appendix 1 for one way to sidestep this perhaps 
shocking conclusion).

Challenge Problem 1.2.1: Th e older brother of Euler’s mentor in 
Basel ( Johann Bernoulli) was Jacob Bernoulli (1654–1705), also a 
talented mathematician. He was highly skilled in summing infi nite 
series,5 but the problem of ζ(2) utterly defeated him. When Johann 
learned of his former student’s success, he wrote “If only my brother 
were alive!” Jacob did have his successes, however. For example, 
three interesting series he evaluated are:

5. Johann was fascinated by infi nite series, too. Th e mysterious integral 1
0

xx dx  was 
done by him in 1697, when he showed the answer is 2 3 4 5

1 1 1 1
2 3 4 5

1 0.7834 .
Th is result, called by Bernoulli his “series mirabili” (“marvelous series”)—as well as the 
perhaps even more intimidating 

2

2 3 4 5
1
0

1 1 1 1
3 5 7 9

1 0.8964 ,xx dx  or its 
“twin” 1

0
2 3 4 52 2 2 2

3 4 5 61 0.6585( ) ( ) ( ) ( )xx dx  —is derived in my Inside 
Interesting Integrals (2nd edition, Springer 2020, pp. 227–229).
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14 Chapter 1

2 3

1 1 1
2, 6, 26.

2 2 2k k kk k k

k k k

Can you discover a general way to sum series like these? If so, con-
fi rm Jacob’s results, and then do the next obvious sum: 4

1 2
?k

k
k

Hint: Try diff erentiating a certain geometric series.

1.3 Euler’s Constant, the Zeta Function, 
and Primes

In 1731 Euler made a curious observation. Writing the harmonic 
series, (1.2.3), we have

(1.3.1) 
1

1 1

1 1 1 1
( ) ( 1) .

q q

k k
h q h q

k k q q

If h(q) were a continuous function of q (which it isn’t, but just sup-
pose), then we could write

0

( ) ( )
lim .

q

dh h q h q q
dq q

Of course, we are stuck with Δq = 1, but suppose we ignore that and, 
using (1.3.1), we write

1
( ) ( 1)h q h q

q

and so

(1.3.2) 1dh
dq q

and argue that (1.3.2) gets “better and better” as q → ∞.
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Euler’s Problem  15

Th is is all very casual, of course, but in fact it is fairly typical of how 
Euler found inspiration. We then integrate (1.3.2) indefi nitely to get

h(q) = ln(q) + C

where C is the constant of indefi nite integration. Well, you ask, what 
is C? For Euler,

(1.3.3) C = limq→∞{h(q) – ln(q)}.

Now, as Oresme showed, h(q) blows up in (1.2.4) as q → ∞, but 
so does ln(q), and so (perhaps pondered Euler) might their diff er-
ence approach a fi nite limit? Th is is what in fact happens, and C (now 
usually written as the Greek gamma, γ) has become famous in math-
ematics as Euler’s constant. Aft er π and e, γ is perhaps the most 
important constant in mathematics. We can get an idea of the value 
of γ by simply plotting (1.3.3), and this is done in the semi-log plot 
of Figure 1.3.1 as q varies from 1 to 10,000. Th e plot is certainly not 
a proof that there is such a limit (maybe for physicists or engineers, 

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55
100 101 102

q

h(
q)

 –
 ln

(q
)

103 104

FIGURE 1.3.1.

Computer determination of Euler’s constant as a limit.
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16 Chapter 1

but not for rigorous mathematicians), but it does strongly suggest 
that γ ≈ 0.57.

To get our hands on the actual value of γ, we need an analytical 
expression, and here’s one possible way to do that, using the power 
series expansion for ln(1 + x), where x is in the interval −1 to 1. Th is 
expression was derived by the Danish mathematician Nikolaus Mer-
cator (1620–1687) in 1668, and we’ll do it here as follows. We start 
by observing that

(1.3.4) 2 3 41
1 ,

1
x x x x

x

which you can confi rm by either doing the long division or by doing 
the multiplication (1 + x)(1 − x + x2 − x3 + x4 − . . . ) and seeing that 
all the terms cancel except for the leading 1. Th en, integrating, 
(1.3.4) term-by-term yields

2 3 4 51 1 1 1 1
ln(1 )

1 2 3 4 5
dx x x x x x x K

x

where K is the constant of indefi nite integration. Setting x = 0 gives 
ln(1) = 0 = K and so

2 3 4 51 1 1 1
ln(1 )

2 3 4 5
x x x x x x

or, rearranging,

(1.3.5) 2 3 4 51 1 1 1
ln(1 ) .

2 3 4 5
x x x x x x

Now, successively substitute the values of x = 1, 1 1 1 1
2 3 4,  ,  , , q  into 

(1.3.5), which gives the following sequence of expressions:

1 1 1 1
1 ln(2)

2 3 4 5
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Euler’s Problem  17

2 3 4 5

2 3 4 5

2 3 4 5

1 3 1 1 1 1 1 1 1 1
ln

2 2 2 2 3 2 4 2 5 2
1 4 1 1 1 1 1 1 1 1

ln
3 3 2 3 3 3 4 3 5 3
1 5 1 1 1 1 1 1 1 1

ln
4 4 2 4 3 4 4 4 5 4

1 1
ln

q
q q 2 3 4 5

1 1 1 1 1 1 1 1
.

2 3 4 5q q q q

What do we do with all of these expressions? Th ere are a lot of things 
we could do, but let’s do the simplest thing and simply add them. On 
the left , we immediately get

1 1 1 1
1 ( ).

2 3 4
h q

q

Next, we’ll add the right-hand sides of the expressions in two 
steps. First, adding all the logarithmic terms gives us

3 4 5 1
ln(2) ln ln ln ln

2 3 4
ln(2) {ln(3) ln(2)} {ln(4) ln(3)}

 {ln(5) ln(4)} {ln( 1) ln( )} ln( 1),

q
q

q q q

because all the terms but the penultimate one cancel (as mathemati-
cians put it, the series telescopes). Next, adding the rest of the terms 
on the right-hand sides of the sequences of expressions together in 
the highly suggestive way they present themselves (in columns), we 
see that

2 2 2 2 3 3 3 3

4 4 4 4 5 5 5 5

1 1 1 1 1 1 1 1 1 1
( ) ln( 1) 1 1

2 2 3 4 3 2 3 4

1 1 1 1 1 1 1 1 1 1
1 1

4 2 3 4 5 2 3 4

h q q
q q

q q
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18 Chapter 1

or, from (1.3.3)—with its ln(q) term replaced with ln(q + 1), which 
hardly matters, since we are about to let q → ∞ anyway—we have 
(writing γ now, instead of C)

2 1

1 1
lim ( ) ln( 1

(
{ )

)
}

s

ss qq
h q q

s q

or, amazingly and seemingly out of nowhere,

(1.3.6) 
2

1
(

(
)

)
.

s

s
s

s

Th e intimate connection between Euler’s constant and the zeta 
function is on full display in (1.3.6) but, alas, the sum doesn’t con-
verge very rapidly.6 Still, using just the fi rst 10 terms gives γ ≈ 0.5338 
(using the fi rst 100 terms gives γ ≈ 0.5723), which is consistent with 
Figure 1.3.1. (Th e actual value is γ = 0.5772156649 . . . .) Th ere is still 
a lot of mystery to γ. Euler was able to correctly calculate the fi rst 
few digits (an impressive feat, in its own right), and electronic com-
puters have extended that out to millions of digits. Despite all that, 
however, it is still not known if γ is rational or not, although every 
mathematician in the Solar System would be astonished if it turned 
out to be rational. If it is rational, then it is known that the denomi-
nator integer b in γ = a/b would have to have hundreds of thousands 
of digits! As a practical matter, the fraction 228/395 correctly gives 
the fi rst six digits, which is almost certainly (as engineers like to put 
it) “good enough for government work.”

6. Th e ultimate convergence of (1.3.6) is, however, guaranteed by the following 
beautiful little theorem from fi rst-year calculus: an alternating series in which the 
successive terms continually decrease in magnitude toward zero always converges. 
Th e issue of the rapidity of the decrease no longer appears. Since (1.2.6) tells us that 
lims→∞ ζ(s) = 1, then from (1.3.6), we see that ( ) 0s

s  as s → ∞, and so the theorem’s 
requirements are satisfi ed. At the end of this chapter, I’ll show you a generalization 
of (1.3.6) that converges much faster.
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Euler’s Problem  19

Now, for just a moment, let me indulge in a little aside. If you plug 
x = 1 into the power series expansion for ln(1 + x) you get

1 1 1 1 1 1
ln(2) 1 .

2 3 4 5 6 7

Th at is, if we write the harmonic series with alternating signs as on 
the right-hand side, the sum now converges, just as footnote 6 
claims. Th ere is, however, a subtle, perplexing issue with the con-
vergence of the series: if we sum the terms in a diff erent order, we’ll 
get a diff erent sum. For example, suppose we start with the 1, then 
add the next two negative terms, then the fi rst skipped positive term, 
then the next two negative terms, then the next skipped positive 
term, and so on. Th us, we add the same terms that appear in the 
ln(2) expression, but now in the following order:

1 1 1 1 1 1 1 1 1 1 1 1
1 .

2 4 3 6 8 5 10 12 7 14 16 9

If we group these terms as

1 1 1 1 1 1 1 1 1 1 1
1

2 4 3 6 8 5 10 12 7 14 16

that gives

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

2 4 6 8 10 12 14 2 2 3 4 5 6 7

1
ln(2) ln(2).

2

In 1837 the German mathematician Gustav Dirichlet (1805–
1859) proved that for any rearrangement of a series to always con-
verge to the same value, the series must be what mathematicians call 
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20 Chapter 1

absolutely convergent. Th at is, the series must converge even if all its 
terms are taken as positive (and, as Oresme showed, that is not the 
case for the harmonic series, and that’s why we see this curious 
behavior). In 1854, Riemann observed that the terms of the har-
monic series with alternating signs can always be rearranged to con-
verge to any value, positive or negative, that you wish! (For a sketch 
on how to prove that, see the solution to Challenge Problem 1.3.1.)

In 1737 Euler did something with ζ(s) that, in some ways, might be 
even more astounding than is (1.3.6). What he did was show that there 
is an intimate connection between ζ(s), a continuous function of s, and 
the primes (which as integers are the very signature of discontinuity). 
To start, multiply through (1.2.6), the defi nition of ζ(s), by 1

2 s
 to get

(1.3.7) 
1 1 1 1 1 1 1

( ) ,
2 2 4 6 8 10 12s s s s s s ss

then subtract (1.3.7) from (1.2.6) to arrive at

(1.3.8) 
1 1 1 1 1

( ) ( ) 1 ( ) 1
2 2 3 5 7s s s s ss s s

1 1 1
.

9 11 20s s s

Now, multiply (1.3.8) by 1
3s  to get

(1.3.9) 
1 1 1 1 1 1

1 ( )
2 3 3 9 15 21s s s s s ss

and so, if we subtract (1.3.9) from (1.3.8), we have

(1.3.10) 
1 1 1 1 1

1 ( ) 1 ( ) 1 1 ( )
2 2 3 2 3s s s s ss s s

1 1 1
1 .

5 7 11s s s
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Euler’s Problem  21

Next, multiply (1.3.10) by 1
5s  to get . . . and on and on we go, and I’m 

sure you see the pattern. As we repeat this process over and over, 
multiplying through our last result by 1/ps, where p denotes succes-
sive primes, we relentlessly subtract out all the multiples of the 
primes. You may recognize what we’re doing here as essentially 
executing the famous method called Eratosthenes’ sieve, developed 
by the third century BC Greek mathematician Eratosthenes of 
Cyrene as the fundamental algorithmic procedure for fi nding all of 
the primes in the fi rst place.

If we imagine doing this multiply-and-subtract process for all 
primes, then when we are done (aft er an infi nity of such operations), 
we will have removed every term but the leading 1 on the 
right-hand side of (1.3.10) exactly once because of the unique 
factorization theorem (see note 3). Th us, using Π to denote a 
product, Euler arrived at

 

1
1 ( ) 1s

p prime

s
p

or, as it is more commonly written,

(1.3.11) 
1

 

1
( ) 1 ,sp prime
s

p

which is called the Eulerian product form of the zeta function.
In addition to simply being a beautiful expression as it stands, 

there are two astonishing implications hidden in (1.3.11). One was 
already known (the infi nity of the primes), while the other was new 
and totally unexpected. To see how Euler had found a new proof for 
the infi nity of the primes, simply notice that if we set s = 1, then ζ(1) 
is the divergent harmonic series. Th at is,

(1.3.12) 
1

 

1
1 .

p prime p
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22 Chapter 1

Now, since p ≥ 2, then every factor in the product is greater than 1, 
and so the product increases with each additional factor. To increase 
without bound (that is, to diverge), however, requires that there be 
an infi nite number of factors (that is, an infi nity of primes).

Th is is nice (it’s always good to have multiple proofs of a theorem), 
but it really can’t compare with the second, new result Euler extracted 
from (1.3.11): Th e sum of the reciprocals of just the primes, alone, 
diverges! It was, aft er all, a huge surprise when it was realized that the 
harmonic series, the sum of the reciprocals of all the positive integers, 
diverges, but to still have divergence even when just the primes are 
used seems completely and totally unbelievable. Here’s how Euler 
showed, despite that skepticism, that we nevertheless have to believe 
it. Taking the natural logarithm of (1.3.12), we have (because the log 
of a product is the sum of the logs, and because ln(∞) = ∞)

(1.3.13)  

1
ln 1 . 

p prime p

Next, looking back at (1.3.5), if we set 1
px  then

(1.3.14) 2 3 4 5

1 1 1 1 1 1 1 1 1 1
ln 1

2 3 4 5p p p p p p

and so (1.3.13) becomes

 

2 3 4 5
 

1 1 1 1 1 1 1 1 1
 

2 3 4 5p prime p p p p p

or

(1.3.15) 2 3   

1 1 1 1 1
2 3p prime p primep p p

4 5

1 1 1 1
.

4 5p p
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Euler’s Problem  23

In the second sum on the left , replace every term with a larger 
one and, in addition, include terms for every p (not just for p a 
prime). Th en it is certainly true that

2 3 4 5
 

1 1 1 1 1 1 1 1
2 3 4 5p prime p p p p

2 3 4 5
2

1 1 1 1

p p p p p
.

Th e expression in the curly brackets on the right is a geometric 
series, easily summed to give

2 3 4 5  2

1 1 1 1 1 1 1 1 1
2 3 4 5   1 p prime pp p p p p p

.

Th e sum on the right is easily evaluated, because it telescopes as

2 2

1 1 1 1 1 1
1

(   1  )   1  2 3 4p pp p p p

1 1 1
1

2 3 4

and so (1.3.15) becomes

 

 

1
something less than 1 

p prime p

or, just like that,

 

 

1

p prime p
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24 Chapter 1

and so the sum of the reciprocals of nothing but the primes, alone, 
diverges.

Th at is hard to believe, without a doubt, but it’s true. As you 
won’t be surprised to learn, the divergence is excruciatingly slow. 
We know from (1.3.3) that the harmonic series diverges logarithmi-
cally: that is, for large q, h(q) ≈ ln(q), where we ignore the “correc-
tion” term of γ, which becomes ever-less signifi cant as q increases. 
Th e log function is a slowly increasing function of its argument, and 
so the obvious question now is: What grows even more slowly than 
the log? I won’t prove it here, but an answer is the iterated-log, that 
is, the log of a log. Th e divergence of the sum of the reciprocals of 
the primes is as ln{ln(q)}. How good is this estimate? By actual cal-
culation, when the reciprocals of all the primes in the fi rst 1 million 
integers are added, the result is slightly less than 2.9. Th e iterated-log 
estimate gives us

ln{ln(106)} = ln{6ln(10)} = ln(13.815) = 2.6,

which is, in fact, actually not that far off  the mark.
Challenge Problem 1.3.1: Write the harmonic series with alternat-

ing signs as, fi rst, the sum of all the positive terms, added to the sum 
of all the negative terms. Th at is, as

1 1 1 1 1 1
1 .

3 5 7 2 4 6
A B

Explain why 1 1 1
3 5 71A  diverges to plus infi nity, while 

1 1 1
2 4 6B  diverges to minus infi nity. (Hint: With what 

you’ve read in the text, not much more actual math is needed 
to explain either of these divergences.) Can you use these two 
conclusions to justify Riemann’s observation that there is always 
some rearrangement of the terms in A and B that will result in 
the convergence of A + B to any value, negative or positive, that 
you wish?

Nahin.indb   24 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Euler’s Problem  25

1.4 Euler’s Gamma Function, the Refl ection 
Formula, and the Zeta Function

As 1729 turned to 1730, Euler started the development of what we 
today call the gamma function.7 Th is involves a study of the integral

(1.4.1)       1

0
( ) ,   0,x nn e x dx n

which has the wonderful property of extending the idea of the facto-
rial function from just the non-negative integers to all real numbers. 
Here’s how that works.

For n = 1, it is easy to calculate

(1.4.2)     
00

(1) { } | 1x xe dx e .

If you integrate by parts, (1.4.1) quickly becomes8

(1.4.3) Γ(n + 1) = nΓ(n)

and so, for n a positive integer, we immediately see the connection 
between Γ(n) and the factorial function:

Γ(2) = 1Γ(1) = 1(1) = 1!

Γ(3) = 2Γ(2) = 2(1!) = 2!

Γ(4) = 3Γ(3) = 3(2!) = 3!

and so on, all the way to

(1.4.4) Γ(n) = (n − 1)(n − 2)! = (n − 1)!

7. For an erudite presentation, see Philip J. Davis, “Leonhard Euler’s Integral: A 
Historical Profi le of the Gamma Function,” American Mathematical Monthly, Decem-
ber 1959, pp. 849–869.

8. In 0 0 0  { } |  udv uv v du, let u = e− x and dv = xn − 1 dx. Expression (1.4.3) is 
called the functional equation of the gamma function.
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26 Chapter 1

Notice, in particular, that setting n = 1 in (1.4.4) results in

Γ(1) = 0!

but (1.4.2) then tells us that

0! = 1

not 0, as most students initially think.9 To be really emphatic 
about this,

0! ≠ 0 (!!!!!)

In the integral defi nition of Γ(n), in (1.4.1), n does not have to be 
a positive integer. Indeed, it was the question of how to interpolate 
the factorial function (for example, 1

2( )!  ?) that motivated Euler to 
develop the integral defi nition in the fi rst place. We can also use 
(1.4.4) to extend n to all real n, including negative values, and so give 
meaning to objects as strange looking as 1

2( )! probably strikes you. 
Here’s how to do that.

First, a specifi c example. Setting 1
2n  in both (1.4.1) and (1.4.4), 

we have

(1.4.5) 
 

0

1   1
!

2 2

xe
dx

x

Next, change variable to x = t2, and so dx = 2t dt. Th us,

2
2

 
 

0 0

1 1
! 2   2 2

2 2

t
te

t dt e dt
t

9. A more direct way to arrive at this result is to write n! = n(n − 1)! and then set 
n = 1. Th us, 1! = 1(0!) = 0! Since 1! = 1 we have, again, 0! = 1.
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Euler’s Problem  27

and so

(1.4.6) 
1 1

! .
2 2

Who would have believed that 1
2( )! could mean anything, before 

Euler came along? Until Euler, nobody had even wondered about 
such a weird thing.10 (Th at last integral, 

2 
0

te dt , of course, needs 
some explaining; see Appendix 2 for a derivation.)

Now, let’s be more general. If, in (1.4.4), we replace n with 
1 − n on both sides of the expression, we obtain the interesting 
result

(1.4.7) Γ(1 – n) = (1 − n – 1)! = (–n)!

Since from (1.4.4) we have

nΓ(n) = n(n − 1)! = n!

then

(1.4.8) nΓ(n)Γ(1 − n) = (n!)(−n)!

Th at is, if we could evaluate the left -hand side of (1.4.8), we would 
then have a way to calculate (−n)! from the value of n!, for any 
n ≥ 0. An evaluation of nΓ(n)Γ(1 − n) can, in fact, be done by work-
ing directly with the integral defi nition of the gamma function, 
(1.4.1), but that approach has (for us, in this book) the drawback of 
using some mathematics that is just beyond AP-calculus.11 What I’ll 

10. See if you can calculate 1
2( )! right now. I’ll ask you to think about this again a 

little later in this section and, yet again, at the end of this section as a challenge question.
11. See my An Imaginary Tale: Th e Story of 1 (Princeton University Press, 

2016), pp. 182–184. Th at discussion concludes with an evaluation of the integral 
   1

0 1   
s

s
ds, which is done using complex function theory (contour integration), a topic 

developed in that book on its pp. 187–226.
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28 Chapter 1

show you next, instead, is a way to calculate (n!)(−n)! which neatly 
avoids that problem.

To start, let’s develop another of Euler’s beautiful discoveries, 
one that we’ll need in just a bit. Th is is his formulation of the sine 
function as an infi nite product:

(1.4.9) 
2

2 21
sin( ) 1

n

y
y y

n
.

Th is famous expression is normally established with some pretty 
sophisticated mathematics, but I’ll limit my comments here to a 
series of plausible assertions (but I think you’ll fi nd them pretty 
convincing). If we write sin(y) as a power series, that is, as

3 51 1
sin( )

3! 5!
y y y y ,

or, dividing through by y,

(1.4.10) 2 4sin( ) 1 1
1 ,

3! 5!
y

y y
y

then it doesn’t seem unreasonable to say (as, in fact, did Euler) that 
sin( )y

y
 is a polynomial of infi nite degree. Notice, in particular, that y 

appears in (1.4.10) raised only to ever-increasing even powers.
Now, fall back on your algebraic experience with polynomials of 

fi nite degree. If somebody told you she was thinking of a polynomial 
P(y) of degree s, with non-zero roots r1, r2, . . . , rs , then to within a 
scale factor of A you’d write that polynomial as the product

P(y) = A(y − r1)(y − r2) . . . (y − rs).

If we write each factor as y − rk = − (rk − y) and absorb the s minus 
signs into A, then

P(y) = A(r1 − y)(r2 − y) . . . (rs − y)
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or, factoring out r1, r2, . . . , rs,

1 2
1 2

( ) 1 1 1 .s
s

y y y
P y A r r r

r r r

Again, if we absorb the product r1 r2 . . . rs into A,

(1.4.11) 
1 2

( ) 1 1 1 .
s

y y y
P y A

r r r

We know the roots of sin(y) = 0 are y equal to any integer mul-
tiple of π. Th at is, the roots are y = 0, ±π, ±2π, ±3π, and so on, 
or equivalently, y2 = 0, π2, 22π2, 32π2, and so on. Th e situation for 
sin( )y

y  is the same, with the exception that y = 0 is not a root of 
sin( ) 0y

y
, because limy→0

sin( )y
y  = 1 by L’Hôpital’s rule. So, using 

(1.4.11) as a guide, it seems reasonable to jump from the fi nite 
to the infi nite (but, to be honest, this is not always legitimate!) 
and write

(1.4.12)  
2 2 2

2 2 2 2 2

sin( )
1 1 1 .

2 3
y y y y

A
y

Notice that (1.4.12) has y raised only to even powers of y, just as in 
(1.4.10). Since the left -hand side of (1.4.12) is 1 at y = 0, and the 
right-hand side is A, we have

2

2 2
1

sin( )
1

n

y y
y n

or

2

2 2
1

sin( ) 1 ,
n

y
y y

n
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which is (1.4.9). (See the following box for how the value for 
ζ (2) follows almost immediately from (1.4.9).)

From (1.4.9), and writing sin(y) as a power series, we have

2 2 2
3 5

2 2 2 2 2

1 1
1 1 1

3! 5! 2 3
y y y

y y y y

3
2 2 2 2 2

1 1 1
higher-order terms.

2 3
y y

Equating the coeffi  cients of the y3 term on each side,

2 2 2 2 2

1 1 1 1
3! 2 3

or,

2 2

2 2

1 1
1 (2).

3! 6 2 3

Done!

Okay, back to calculating (n!)(−n)!
Let’s initially assume n is a positive integer, and so

(1.4.13) n! = 1 . 2 . 3 .... (n – 1)n

and then we’ll manipulate (1.4.13)—using a method due to the 
German mathematician Karl Weierstrass (1815–1897)—until we get 
an expression that makes sense even when n is not an integer, or 
even positive. So, suppose α is another integer whose particular 
value doesn’t matter, because we are going to be taking the limit 
α → ∞. Multiplying (1.4.13) by 1, we have
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(   1  )(    2)(    3) (     )
! lim 1 2 3 ( 1) .

(   1  )(    2)(    3) (     )

n

n

n n n n
n n n

n n n n

Now, as α → ∞, it is safe to assume that, at some point, α will exceed 
n and so allow us to write

1 2 3 ( 1) (   1  )(    2) ( 1  )(    2) (     )
! lim

(   1  )(    2)(    3) (     )

! (   1  )(    2) (     )
lim .

(   1  )(    2)(    3) (     )

n

n

n

n

n n n n n
n

n n n n

n
n n n n

As α → ∞, for any fi nite value of n, we can (with vanishing error) 
replace the product (α + 1)(α + 2) . . . (α + n) with αn in the numer-
ator of the right-most curly brackets, and so we have

!
! lim

( 1)( 2)( 3) ( )

!
lim

 1  2 1    3 1    1   
1 2 3

n

n

n
n n n n

n n n n

!
lim

! 1    1    1    1   
1 2 3

n

n n n n

or

(1.4.14) 
! lim .

1    1    1    1   
1 2 3

n

n
n n n n

Next, write

ln( ) ln( )nn ne e
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and then recall (1.3.3), which defi nes Euler’s constant γ:

lim ( ) n( ){ l }h

where h(α) is defi ned in (1.2.3). Th at is, as α → ∞, we’ll write

   1

1 1 1 1
ln( ) 1

2 3k k

and so, as α → ∞,

(1.4.15) 
1 1 1

      1               
   2 3 32 .

n nnn n
n n ne e e e e e

Putting (1.4.15) into (1.4.14),

    32

! lim
1    1    1    1   

1 2 3

n nn
n ne e e e e

n
n n n n

or

(1.4.16) 
32

   ! lim .
1    1    1    1   

1 2 3

n nn
n

n e e e e
n e

n n n n

Replacing n with −n in (1.4.16), we have

(1.4.17) 

   
32

 ( )!   lim
1   1   1   1  

1 2 3

n nn
n

n e e e e
n e

n n n n

and so, if we multiply (1.4.16) and (1.4.17) together, we see lots of 
mutual annihilations that give us
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2 2 2 2

2 2 2 2

1 1 1 1
( !)( )!  lim

1   1   1   1  
1 2 3

n n
n n n n

or

(1.4.18) 
2

2   1

1
( !)( )! .

1   
k

n n
n
k

Does (1.4.18) look familiar? It should! If we rewrite (1.4.9) with 
a trivial change in the product index from n to k, we have

2 

2 2
   1

sin( ) 1
k

y
y y

k

and so, if we set y = nπ, we have

2 

2
   1

sin( ) 1
k

n
n n

k

or
2

2   1

sin( )
1 .

k

n n
k n

Th us, (1.4.18) becomes the beautiful

(1.4.19) ( !)( )! ,
sin( )

n
n n

n

which “makes sense,” even if n is not an integer.
We can use (1.4.19) to answer the question raised in note 

10— 1
2( )!  ?— using the result in (1.4.6) for the value of 1

2( )!  Th at 
is, with 1

2n , (1.4.19) says
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1 1
1 12 2! .

1 12 2   ! sin  
2 2

Th is is the value of 1
2( )! if the analysis leading up to (1.4.19) is cor-

rect. As note 10 hints, we’ll return one last time to the question of 
1
2( )! in a challenge problem at the end of this section, where I’ll ask 

you to confi rm this result by deriving it via a completely diff erent 
method.

Th e validity of (1.4.19) depends on the correctness in (1.4.9) of 
Euler’s infi nite product form of the sine function. Th ere is an imme-
diate prediction that follows from (1.4.9) that gives us confi dence in 
its truth (even though we/Euler derived it in a less than rigorous 
way). If we put 2y  in (1.4.9), we get

1 1 1
sin 1 1 1 1

2 2 4 16 36

1 1 1 1 1 1
1 1 1 1 1 1

2 2 2 4 4 6 6

1 3 3 5 5 7
2 2 2 4 4 6 6

.

Th at is,

1 3 3 5 5 7
1

2 2 2 4 4 6 6

or, as it is usually written,

2 2 4 4 6 6 2 2
,

2 1 3 3 5 5 7 (2   1  )(2   1  )
n n

n n
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which is a famous result due to the English mathematician John 
Wallis (1616–1703), who discovered it in 1655 by entirely diff erent 
means. Th e fact that (1.4.9) agrees with Wallis’ result is strong evi-
dence that Euler’s infi nite product is correct. We’ll use Wallis’ for-
mula in the next chapter to derive an important result concerning 
the zeta function.

Th ere is an elegant result tucked away in (1.4.8) and (1.4.19) that 
was discovered by Euler in 1771. Writing those two equations on a 
single line, we have

( ) (1 ) ( !)( )!
sin( )

n
n n n n n

n

and so, just like that (once we make the obvious cancellations of n’s 
in the fi rst and last terms), we have Euler’s famous refl ection formula 
for the gamma function:

(1.4.20) ( ) (1 ) .
sin( )

n n
n

(Do you see why the word refl ection is used in the name? Th ink 
about what 1 − n does as n increases through positive values.)

In 1859 Riemann showed that there is an intimate connection 
between the gamma and zeta functions. Here’s what he did. Start 
with the integral

   1

0
 nx se x dx

and then change variable to u = nx, where n is some (any) positive 
integer. Th at is, write

   1      1
   1  

0 0 0

s u s
nx s u

s

u du e u
e x dx e du

n n n

and so, from (1.4.1), the defi nition of the gamma function, we have
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(1.4.21) 
   1

0

( )
  .nx s

s

s
e x dx

n

Th en, summing (1.4.21) over all possible n,

(1.4.22)    1
1 1    10

( ) 1
  ( ) ( ) ( ).nx s

s sn n n

s
e x dx s s s

n n

If we assume that we can interchange the order of the summation 
and integration operations at the far left  of (1.4.22), then we 
have12

(1.4.23) 
   1

10
( ) ( ) .xs n

n
es s x dx

Th e summation in (1.4.23) is a geometric sum and easy to do:

 
  2  3

   1

1
  1 

nx x x x
x

n

e e e e
e

and (1.4.23) becomes Riemann’s famous integral formula:

(1.4.24)  
   1

0
( ) ( ).

  1 

s

x

x
dx s s

e

For s = 2, for example, (1.4.24) says

2 2

0
(2) (2) (1!)

  1  6 6x

x
dx

e

12. Reversing the order of integration and summation in an analysis is something 
most physicists and engineers do without hesitation. It is, however, not always legit-
imate. However, since no small creatures of the forest will be harmed by doing it here 
(and if we promise to toss our calculations into the trash if we get an obviously dumb 
answer), let’s throw all caution to the wind and do it anyway!
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and for s = 4,
3 4 4

0
(4) (4) (3!) .

  1  90 15x

x
dx

e

Th is last integral appears, for example, in the theory of blackbody 
radiation, and is therefore of great interest to physicists as well as to 
mathematicians.13

And, as one more example, for s = 3, we have

2

0
(3) (3) (2!) (3) 2 (3)

  1 x

x
dx

e

or

(1.4.25) 
2

0

1
(3) ,

2   1 x

x
dx

e

which expresses zeta-3 as an integral rather than a discrete sum. 
We’ll see more of such integral forms for zeta-3 in Chapter 2.

Challenge Problem 1.4.1: Using (1.4.19), we calculated 1 1
2 2( )!  . 

Redo this calculation as a direct evaluation of the defi ning integral 
for the gamma function. Th at is, set 3

2n  in (1.4.1) and (1.4.4), inte-
grate (1.4.4) by parts, and use (1.4.5)/(1.4.6). Do you get the same 
answer that (1.4.19) gave? Hint: You should!

Challenge Problem 1.4.2: Explain why | k! | is infi nity for k any 
negative integer.

1.5 Ramanujan’s Master Theorem

In this section, we’ll take a brief side trip to develop a beautiful “close 
cousin” to Riemann’s integral formula of (1.4.24), a formula that also 

13. See, for example, Richard Feynman, Lectures on Physics, vol. 1 (Addison-
Wesley, 1963), pp. 45–48.
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involves the gamma function. What we’ll do will strike the careful 
reader as, at best, perhaps odd, but powerful new mathematics is 
oft en fi rst developed by not being bound by “the rules.” Aft erward, 
more careful analyses can straighten out the kinks when writing it 
all up for publication.14 We start by defi ning the so-called forward 
shift  operator15 E as follows:

(1.5.1)  E{λ(n)} = λ(n + 1).

Th us,

E{λ(0)} = λ(1)

E{λ(1)} = E{E {λ(0)}} = E2{λ(0)} = λ(2)

E{λ(2)} = E{E {E {λ(0)}}} = E3{λ(0)} = λ(3)

and so on. In general,

14. A famous example of this is the eventual acceptance into legitimate 
mathematics of the impulse function, defi ned as , 0

0, 0( ) { x
xx , with the property 

( ) 1x dx . Th is function was used in the late 1920s by the English physicist Paul 
Dirac (1902–1984) to solve longstanding puzzling problems in quantum mechanics, 
even though mathematicians thought the impulse defi nition to be absurd (how could 
a function that is zero everywhere with the exception of one point nevertheless 
bound a unit area?). Th en, decades later, the French mathematician Laurent Schwartz 
(1915–2002) put δ (x) on a solid theoretical foundation, for which he received one of 
mathematics’ greatest prizes in 1950, the Fields Medal. (For his pioneering work, 
Dirac had earlier received the 1933 Nobel Prize in physics.)

15. Operators are highly useful concepts and are actually quite common in 
“higher math.” A study of diff erential equations, for example, quickly leads to the 
diff erential operator D, defi ned as { } d

dtD . Th e fact that operators can oft en be 
manipulated just as if they were numbers makes their use intuitive, and that feature 
will let us arrive at useful results through the use of only formal manipulations, rather 
than rigorous reasoning. (Th e word formal is a technical term for “symbol pushing,” 
an activity usually frowned upon by pure mathematicians, but not so much by engi-
neers and physicists.) I’ll say a bit more about the diff erential operator in the next 
chapter.
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(1.5.2) Ek {λ(0)} = λ(k).

Next, imagine that we have some function φ(x) with the power 
series expansion

(1.5.3) 
0

( 1)
( ) ( ) .

!

n
n

n
x n x

n

Th en, continuing in a formal way (see note 15 again), we write

(1.5.4) 1 1
00 0

1
.

!

n
s s n

n
x x dx x n x dx

n

Using (1.5.2), we replace λ(n) in (1.5.4) with En{λ(0)}, which we 
loosely write (by dropping the curly brackets) as Enλ(0). Continuing 
with our formal manipulations, then, we have

1 1
00 0

( 1)
( ) (0)

!

n
s s n n

n
x x dx x E x dx

n

1
00

( 1)
(0) ( ) .

!

n
s n

n
x Ex dx

n

Well, what can I say: Th ere is simply no denying that we’ve really 
played pretty fast-and-loose with the operator E in arriving at 
the last integral (in particular, notice how En goes from operating 
on λ(0) to operating on xn, while the λ(0) slides outside to the 
front of the integral—this is symbol pushing at its most arrogant). 
Take a deep breath, however, as there is still more of such doings 
to come!

Recalling the power series expansion of e− t

2 3
 

0

( 1)
1

2! 3! !

n
t n

n

t t
e t t

n

and writing t = Ex, then we formally have
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(1.5.5) 1 1

0 0
( ) (0) .s s Exx x dx x e dx

Treating E as a number, let’s now change variable to y = Ex. Th en

1
dx dy

E

and (1.5.5) becomes

(1.5.6) 
   1

1    1

0 0 0

1 (0)
( ) (0) .

s
s y s y

s

y
x x dx e dy y e dy

E E E

From (1.4.1), we see that the right-most integral in (1.5.6) is Γ(s) and 
so, continuing,

   1

0

(0)
( ) ( ) (0) ( ).s s

sx x dx s E s
E

Finally, recalling (1.5.2) with k = −s, we have

(1.5.7) 
1

0
( ) ( ) ( ),sx x dx s s

a result called Ramanujan’s Master Th eorem (or RMT), named aft er the 
Indian mathematician Srinivasa Ramanujan (1887–1920), who discov-
ered (1.5.7) sometime during the fi rst decade of the 20th century.16

16. For a brief historical discussion of the RMT, and of how it was very nearly 
discovered decades before Ramanujan (in 1874) by the English mathematician 
J. W. L. Glaisher (1848–1928), see V. H. Moll et al., “Ramanujan’s Master Th eorem,” 
Th e Ramanujan Journal, December 2012, pp. 103–120. For more on Ramanujan’s 
discovery of the RMT, see Bruce C. Berndt, “Th e Quarterly Reports of S. Ramanu-
jan,” American Mathematical Monthly, October 1983, pp. 505–516. In advanced math, 
the integral in (1.5.7) is called the Mellin transform of φ(x), aft er the Finnish mathe-
matician Robert Hjalmar Mellin (1854–1933). In computer science, the Mellin trans-
form is used in electronic image processing, an application that Mellin and 
Ramanujan couldn’t have even imagined in their wildest dreams.
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Th is development of (1.5.7) almost surely strikes you—as it 
should—as being pretty bizarre, akin to arriving at the correct state-
ment that 16 1

64 4  by simply canceling the two 6’s! I’ve purposely taken 
you through what most mathematicians would call an outrageous 
“derivation” for two reasons: (1) it closely resembles how Ramanujan 
himself did it (Euler would have loved it!), and (2) the result in (1.5.7) 
can be rigorously established using mathematics beyond AP-calculus 
(an approach I wish, however, to avoid in this book). You’ll be 
relieved to learn that when Ramanujan made his famous journey to 
England in 1914 to come under the tutelage of his hero, the great G. 
H. Hardy (events dramatically described in Robert Kanigel’s 1991 
book Th e Man Who Knew Infi nity), he learned both that his “deriva-
tion” was technically faulty as well as how to do it right.17

As an example of the RMT in action, suppose that

φ(x) = (1 + x)m.

By the binomial theorem,

2 3(   1  ) (   1  )(    2)
(1 ) 1 .

2! 3!
m m m m m m

x mx x x

If m = −a, where a > 0, then18

17. See, for example, G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Sug-
gested by His Life and Work (Chelsea, 1978), based on lectures given in 1936 by Hardy 
at Harvard University.

18. Th e binomial theorem, for m a positive integer, gives a fi nite number of terms 
and has been known since the French mathematician Blaise Pascal (1623–1662) dis-
covered it. Th e English mathematical physicist Isaac Newton (1642–1727) extended 
its use (without proof ) to rational m (and even negative m), for which the expansion 
has an infi nite number of terms. Th e proof of the theorem, for any m in general, 
wasn’t done until the Norwegian mathematician Niels Henrik Abel (1802–1829) did 
it in 1826.
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  2 3  (     1  )   (     1  )(      2)
(1 ) 1

2! 3!
a a a a a a

x ax x x

1 2 2 3 3( )(   1  ) ( )(   1  )(    2)
1 ( 1) ( 1) ( 1) .

1! 2! 3!
a a a a a a

x x x

We see that the general term is

( )(   1  )(    2) (       1  )
( 1)

!
n na a a a n

x
n

or, writing the numerator product in reverse order,

(       1  ) (    2)(   1  )( )
( 1)

!
(       1  ) (    2)(   1  )( )(   1  )!

  ( 1)
!    1  !

(       1  )! ( 1)
      

(   1  )! !
.

n n

n n

n
n

a n a a a
x

n
a n a a a a

x
n a

a n
x

a n

Th at is,

0

(       1  )! ( 1)
(1 )

(   1  )! !

n
a n

n

a n
x x

a n

or, using the gamma function notation of (1.4.4),

(1.5.8)  
0

(     ) ( 1)
(1 ) .

( ) !

n
a n

n

a n
x x

a n

Comparing the right-hand side of (1.5.8) with the right-hand side 
of (1.5.3), we see that

(     )
( )

( )
a n

n
a
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and so

(     )
( ) .

( )
a s

s
a

Th e RMT then gives us the very pretty result

(1.5.9) 
   1

 0

( ) (     )
,  0.

1 (   ) ( )

s

a

x s a s
dx a

x a

In particular, if we let a = 1 and s − 1 = − p (and so s = 1 − p), then

0 0

1 (1    ) ( )
1    (1    ) (1)

p

p

x p p
dx dx

x x x

or, remembering both the refl ection formula and that Γ(1) = 1, we 
arrive at the following interesting integral (which is generally devel-
oped in textbooks as the result of a contour integration in the com-
plex plane):19

(1.5.10) 0

1
 , 0 1.

(1    ) sin( )p dx p
x x p

Challenge Problem 1.5.1: Evaluate 
1   

px

x
e

e
dx. Hint: Make the 

appropriate change of variable, and then recall (1.5.10).

1.6 Integral Forms for the Harmonic 
Series and Euler’s Constant

As a prelude to developing integral forms for zeta-3 (which we’ll do 
in the next chapter), I’ll now show you how to develop similar inte-
gral forms for the harmonic series and Euler’s constant. To start, for 
q a non-negative integer, consider the integral

19. See, for example, my Inside Interesting Integrals, 2nd edition (Springer, 
2020), pp. 388–392.
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(1.6.1) 
1

0

1   (1    )
.

qx
dx

x

Changing variable to u = 1 − x (and so dx = −du), we have

1 0

0 1

2 3 11

0

1 2 3 1 2 3 1
00

1   (1    ) 1   
( )

1   
(1    )(1                  )

1   
1 1 1

(1                ) |
2 3

1 1 1
1 ( ),

2 3

q q

q

q q

x u
dx du

x u
u u u u u

du
u

u u u u du u u u u
q

h q
q

as written in (1.2.3). As an aside, notice that writing “for q a non-
negative integer” means q = 0 is possible. Th is creates an apparent 
puzzle when thinking of the h(q) series (which starts at q = 1), because 
the integral in (1.6.1) continues to make sense at q = 0 as it says h(0) 
= 0. Th is is a condition we’ll make great use of in Chapter 4, and I 
mention it now just to get you thinking about the q = 0 case.20

Returning to the integral in (1.6.1), which we now know is h(q), 
change the variable to u = qx (and so 1

qdx du). For the case of 
q ≥ 1 (we are eventually, in fact, going to let q → ∞),

0 0

1    1    1    1   
1

( )

q q

q q

u u
q q

h q du du
u q u
q

1

0 1

1    1    1    1   
q q

q

u u
q q

du du
u u

20. But perhaps there really isn’t a puzzle. From (1.2.3), we have 
1 1

1 ( 1)q
k k qh q , and so if q = 1, this says 1 = h(0) + 1 or, again, h(0) = 0.
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1 1

0 1 1 0 1

1    1      1    1    1      1   
1 

ln( ) .

q q q q

q q q

u u u u
q q q q

du du du du q du
u u u u u

So,

1

0 1

1    1      1   
( ) ln( ) .

q q

q

u u
q q

h q q du du
u u

Now let q → ∞ and then, recalling (1.3.3) and also that 
 lim (1 )q uu

q q e , we have21

(1.6.2) 
1

0 1

1   
.

u ue e
du du

u u

Th e result (1.6.2) probably strikes you as both beautiful and mys-
terious. But is that all it is? Th at is, is it just a pretty array of symbols 
asking only for our admiration, or can we actually do something with 
it? Th e answer is yes, (1.6.2) is most useful. To demonstrate that, 
consider the evaluation of the simple-looking integral

 

0
ln( ) ,xe x dx

a defi nite integral that, despite looking simple, would give all the 
usual AP-calculus integration techniques you’ve seen a real run for 
their money. (If you don’t believe that, try doing it right now.) With 
(1.6.2), however, you can do this integral as follows.

We begin by splitting the integral into two parts:

(1.6.3) 
1

0 0 1
ln( ) ln( ) ln( )x x xe x dx e x dx e x dx

21. See, for example, Eli Maor, e: Th e Story of a Number (Princeton University 
Press, 2015).
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and then observe that

  ( 1).x xd
e e

dx

(Th is works because the derivative of a constant (−1) is zero, but 
why, in particular, −1? Why not some other constant, which would 
(it would seem) work equally well? Th ink about this, and I’ll ask you 
again as a challenge problem at the end of this section.) Using this in 
the fi rst integral on the right in (1.6.3), we have

1 1

0 0
ln( ) ( 1) ln( ) .x xd

e x dx e x dx
dx

Integrating by parts,22 this becomes

(1.6.4) 
1 11

00 0

  1 
ln( ) {( 1)ln( )} |

x
x x e

e x dx e x dx
x

1

0

1     
.

xe
dx

x

Turning our attention now to the second integral on the right 
in (1.6.3), and again integrating by parts (with w = ln(x) and 
dz = e−x dx, and so 1

xdw dx  and z = −e−x), we have

(1.6.5)  11 1 1
ln( ) { ln( )}| .

x x
x x e e

e x dx e x dx dx
x x

Putting (1.6.4) and (1.6.5) into (1.6.3) gives us

1 1

0 0 1 0 1

1      1     
ln( )

x x u u
x e e e e

e x dx dx dx du du
x x u u

22. In the formula   ( )  w dz wz zdw, let w = ln(x) and ( 1)xd
dxdz e dx. Th en 

1
xdw dx and z = e−x − 1.
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and so, just like that—if we remember (1.6.2)—we see that

(1.6.6) 
0

ln( ) .xe x dx

We can test our theoretical result of (1.6.6) by doing a direct 
numerical evaluation of the integral. Th is is particularly easy to do 
in MATLAB, using that language’s integral command. Th e syntax is 
straightforward, with the arguments of integral being simply the 
integrand, and the upper and lower limits of integration. So, using 
MATLAB’s name for infi nity, inf, if we type

integral(@(x)exp(-x).*log(x),0,inf),

then MATLAB almost instantly returns the value −0.5772, and 
(1.6.6) is “confi rmed” (or, at least it is to the satisfaction of engineers 
and physicists).

To end this discussion on integral forms for Euler’s constant, let 
me show you something that you don’t usually fi nd in an AP-calculus 
course, but which is nonetheless within easy reach at that level. Sup-
pose x ≥ 0, and let {x} denote the fractional part of x. For example, 
{7.137} = 0.137 and {7} = 0. Notice that if x  is the integer part of x 
(and so 7.137  = 7), then x = x  + {x} and so {x} = x − x . Let’s now 
calculate the value of the integral

1

0

1
,  0.nx dx n

x

the existence of which should be obvious, because both xn and 
1{ }x  are each always between 0 and 1 over the entire interval of 

integration. Don’t let the fact that 1
x  as x → 0 distract you. While 

1
x  does indeed blow up as x nears the lower limit, 1{ }x  means just 
the fr actional part of 1

x  and that is, for any 1
x , always between 

0 and 1.
To start, change variable to 1

xy , and so
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2

1dy
dx x

or

2
2 ,

dy
dx x dy

y

which says

1 1 1

2    2    20 1
1

1 1
{

{ } { }
}

kn
n n nk

k

dy y y
x dx y dy dy

x y y y y

1 1

   2    2
1 1

       
,

k k

n nk k
k k

y y y k
dy dy

y y

where, in the last step, we use the fact that over the entire open 
interval k to k + 1, the integer part of y is fi xed at k. Th us,

(1.6.7) 
1 1 1

   1    21 10

1
.

k kn
n nk kk k

dy dy
x dx k

x y y

Th e two integrals on the right of (1.6.7) are each easy to do. In par-
ticular, if n ≠ 0,

1   1 1
   1

1 1 1 1 1
|

 
|

  1 ( )
k n k k

k kn n n nk

dy
y

y n ny n k k

( )
1 1 1

  1 n nn k k

and

1      1 1
   2    1    1

1 1 1 1
    1    1    1 

|
( ) ( )

k n k
kn n nk

dy
y

y n n k k

   1    1( )
1 1 1

.
  1    1 n nn k k
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Euler’s Problem  49

So, as long as n > 0 (I’ll ask you to treat the n = 0 case in Challenge 
Problem 1.6.2), we have

(1.6.8) 
1

10 (
1 1 1 1

  )1 
n

n nk
x dx

x n k k

   1    11

1 1 1
.

  1  (   )1 n nk
k

n k k

Th e fi rst sum on the right of (1.6.8) is, if we write it out term-by-
term,

1 1 1 1 1 1
,

1 2 2 3 3 4n n n n n n

which obviously telescopes to 1
1

1n
, and so (1.6.8) becomes

(1.6.9) 
1

   1    110

1 1 1 1 1
.

  1   (   1)
n

n nk
x dx k

x n n k k

Th e last sum in (1.6.8)/(1.6.9) is only just a bit more involved. Write

   1    1      11 1

   1

           1 1 1

( )

( )

( )

1 1 1
(   1  )   1 

1 1
  1    1 

1 1 1 1 1 1
1

  1    1  (   1 (   )  ) 1 

n n n nk k

n nk

n n n n nk k

k
k

k k k k

k
k k k

k k k k k k

and so (1.6.9) becomes

(1.6.10) 
1

   10

1 1 1 1 1
  )1   1 ( 

n
n nk

x dx
x n n k k

   1 1

1
.

 (   )1 nk k
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From before we know that

   1 (
1 1

1,
  1) n nk k k

and so (1.6.10) becomes

(1.6.11) 
1

   1 10

1 1 1 1 1
.

  1    1   ( )1 
n

nk
x dx

x n n n k

Since

   1     1    1    11

1 1 1 1
( 1) 1,

  1  2 3 4( )n n n nk
n

k

then

1

0

1 1 1 1
( 1) 1

  1    1 
nx dx n

x n n n

or

(1.6.12) 
1

0

1 1 (   1  )
,  0.

  1 
n n

x dx n
x n n

For n = 2, for example,

1 2

0

1 1 (3)
,

2 3
x dx

x

which is equal to 0.099314 . . . . If we numerically evaluate the inte-
gral in (1.6.12) for n = 2, we write the integrand as

2 1 1
x

x x
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Euler’s Problem  51

which is coded in MATLAB as23

(x. ^2).*(1./x − fl oor(1./x)).

Th us, a numerical value for the integral can be computed by 
MATLAB by typing

. . * ./ ./integral(@( x )( x ^ 2) (1 x floor(1 x )),0,1),

which returns a value of 0.099314 . . . , in pretty good agreement with 
(1.6.12).

To see the zeta function showing up in the answer to an integral 
as exotic as (1.6.12) no doubt may encourage you to think it’s that 
“exotic nature” that is the cause, but in fact, that’s not so. As an 
example to illustrate this, let’s do the far less dramatic integral

3 21

0

( )ln 1   
,

x
dx

x

which contains nothing as complicated as a fractional part. To start, 
make the change of variable u = x2 (du = 2xdx), and so

3 2 3 31 1 1

0 0 0

ln 1    ln 1    1 ln 1   
.

2
)

2
( ( ) ( )x u du u

dx du
x x x u

Next, with the second change of variable v = 1 − u (du = −dv), we have

3 2 3 31 0 1

0 1 0

ln 1    1 ln 1 ln
( ) .

2 1    2 1
( ) ( ) )

   
(x v v

dx dv dv
x v v

23. Th e fl oor command truncates, that is, rounds downward toward minus infi n-
ity, and so returns a value that is the greatest integer less than or equal to the argument. 
Th e classic round command, by contrast, returns the closest integer to the argument. 
For example, fl oor(7.6) = 7, while round(7.6) = 8.
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Th en, since
3

3 2 3 3
0

ln
ln 1 ln ,

( )
( ){ }

1   
( )n

n

v
v v v v v v

v

we arrive at

3 21 1 13 3
0 00 0 0

ln 1    1 1( )
( )ln )n

2
(l .

2
n n

n n

x
dx v v dv v v dv

x

At this point, we might seem to have merely exchanged our orig-
inal integral for another integral that is equally challenging. Th ere is, 
however, an elementary way to do that last integral (if a way not 
commonly taught as part of AP-calculus), with a result (see the fol-
lowing box)24 we’ll fi nd highly useful in Chapter 4:

(1.6.13) 
1 3

40

6
ln .

1
( )

( )
nv v dv

n

Th us,

3 2 41

4 40 10

ln 1    1  6 1
3 3 (4) ,

2 ( 1) 3
)

0
(

n k

x
dx

x n k

where I’ve used 4

90(4) , a result stated without proof in Section 
1.2 (we will derive it, using Fourier series, in Section 3.4). MATLAB 
agrees with this result, as

4

3.2469697 ,
30

while integral(@(x)((log(1-x.^2)).^3)./x,0,1) = −3.2469697 . . . .

24. Th e idea of evaluating an integral by diff erentiating it with respect to a 
parameter (in the integrand and/or in the limits) has become popularly known in 
recent years as “Feynman’s trick,” aft er the mathematical physicist Richard Feynman 
(whom you’ll recall from the discussion of the Feynman-Hibbs integral in the 
Preface). Th e trick was well known to mathematicians long before Feynman, 
however. You can read more on the trick, on Feynman, and on how his name became 
attached to the trick, in my book, Inside Interesting Integrals (Springer, 2020).
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We start with the integral I(n), defi ned as

11 1
00

1
( ) | .

1 1

n
n x

I n x dx
n n

In contrast, we can also write

1 1ln( ) ln( )

0 0
( ) .

nx n xI n e dx e dx

Now, assuming that if we diff erentiate with respect to the 
parameter n we can interchange the order of diff erentiation and 
integration (not always true, but it is here) then

1 1 1ln( ) ln( ) ln( )

0 0 0

1 1ln( )

0 0

ln( )
 

ln( ) ln( ) .
n

n x n x n x

x n

dI d d
e dx e dx x e dx

dn dn dn

x e dx x x dx

But since

2

1 1
,

  1 1( )
dI d
dn dn n n

we have

1 1

20 0

1
ln( ) ln( )

( )
.

1
n nx x dx v v dv J n

n

We now repeat this procedure, that is, we write

1 1ln( ) ln( )

0 0

1 1ln( ) 2

0 0

ln( ) ln( )

ln( ) ln( ) ( )ln .

nv n v

n v n

dJ d d
e v dv e v dv

dn dn dn

v e v dv v v dv
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But since

2 4 3

1 2( 1) 2
1 1( ) ( ) ( )1

dJ d n
dn dn n n n

then

1 2
30

2
ln (

(
).

1
( )

)
nv v dv K n

n

Now, if you repeat this procedure one last time (you should do 
this), you’ll quickly arrive at (1.6.13):

1 3
40

 
( )

(
6

n .
)

l
1

nv v dv
n

As a challenge, see if you can also derive (1.6.13) via integration 
by parts.

Challenge Problem 1.6.1: In evaluating the integral of (1.6.3), 
you’ll recall that we wrote ( 1)x xd

dxe e . Th is is true, but so is 
( 17)x xd

dxe e . What’s so special about that −1? Hint: Take a 
close look at the resulting integral in (1.6.4), and ask yourself if 
that integral would exist for any choice for the constant other 
than −1.

Challenge Problem 1.6.2: If we plug n = 0 into the right-hand side 
of (1.6.12), in an attempt to evaluate 1 1

0 { }x dx , we get the indetermi-
nate result ∞ − ∞, because ζ(1) is the divergent harmonic series. Th e 
integral, however, clearly does exist. So, what is it? A numerical esti-
mate can be computed by MATLAB by typing integral(@(x)(1./x 
− fl oor(1./x)),0,1), which returns the value 0.4228. From that, can 
you guess what the exact answer is? (Your guess might be helped by 
looking instead at 1 − 0.4228 = 0.5772.) Can you derive the exact 
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answer? Hint: Try plugging n = 0 into an earlier step of the deriva-
tion of (1.6.12), before the distinction between n = 0 and n > 0 
becomes important.

Challenge Problem 1.6.3: Evaluate the integral 
21 ln(1  )

0
} { x

x dx , and 
show that it is equal to 2ζ(3). Th is integral is encountered in the 
study of the magnetic moment of the electron and so is of great inter-
est to physicists.25 Hint: Change variable to 1 − x = e−t and then 
remember Riemann’s integral formula in (1.4.24).

1.7 Euler’s Constant and the Zeta Function 
Redux (and the Digamma Function, Too)

In this, the penultimate section of the chapter, I want to take advan-
tage of your new willingness to accept (I hope!) what I earlier called 
“symbol pushing” (in the discussion on Ramanujan’s Master Th eo-
rem). We’ll actually, in fact, be not quite so outrageous as we were 
with the RMT. To start, let me write the defi nition of the gamma 
function again:

(1.7.1)    1

0
( ) ,t xx e t dt

which is (1.4.1) with a (trivial) change in notation.26 Next, recalling 
from the very defi nition of the exponential that27

  lim 1 ,
n

t
n

t
e

n

25. Robert Karplus and Norman M. Kroll, “Fourth-Order Corrections in Quan-
tum Electrodynamics and the Magnetic Moment of the Electron,” Physical Review, 
September 15, 1949, pp. 846–847.

26. To get (1.7.1) from (1.4.1), simply replace every n in (1.4.1) with an x, and 
every original x in (1.4.1) with a t.

27. See, for example, Maor, e: Th e Story of a Number.
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we can write (1.7.1) in a form that might appear, at fi rst glance, to be 
a step backward (but isn’t, as you’ll soon see): If we defi ne

(1.7.2)    1

0
( , ) 1 ,

n
n x t

x n t dt
n

then

(1.7.3) ( ) lim ( , ).
n

x x n

If we now change variable to t
ny  (and so dt = n dy), we can write 

(1.7.2) as

1    1

0
( ), ( ) 1  x nx n ny y n dy

or

(1.7.4)    11

0
( , ) 1( )   .x x nx n n y y dy

If we next integrate by parts,28 we quickly get

   1    1

0

 1( )
1

( , ) 1   .x x nx n n y y dy
x

Since (1.7.4) says that

   1    1

0

 1( 1, 1 ( )) ( 1) 1   ,x x nx n n y y dy

28. Let u = (1 − y)n and dv = yx − 1 dy in 1 11
0 0 0  ( )|  udv uv v du.
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we have

1      1
   10

(   1  ,  1)
1  

( 1)
( )x n

x

x n
y y dy

n

and so

   1
   1

1 ( 1,  1)
( , )

( 1)
x

x

x n
x n n

x n

or

(1.7.5) 
   11

( , ) (   1  ,   1  ).
1

xn
x n x n

x n

To use the recurrence of (1.7.5), we need one more result. Putting 
n = 1 in (1.7.4) yields

1 1 1   1    1

0 0 0
( ,1) 1  ( )x x xx y y dy y dy y dy

     1 
1 1
0 0| |

  1 

x xy y
x x

1 1
  1 x x

and so

(1.7.6) 
1

( ,1) .
(   1  )

x
x x

Now, set n = 2 in (1.7.5). Th is gives

   11 2
( ,2) ( 1, 1)

1

x

x x
x
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where, from (1.7.6),

1
( 1, 1  ) .

(   1  )(    2)
x

x x

Th us,

(1.7.7)  
   11 2 1 1 (2)

( ,2) 2 .
1 (   1  )(    2) ( 1)( 2)

x
xx

x x x x x x

Next, set n = 3 in (1.7.5). Th is gives

   11 3
( , 3) ( 1, 2).

2

x

x x
x

From (1.7.7) we have

   21 2 1
( 1, 2)

  1  1 (    2)(    3)

x

x
x x x

and so

   1    21 3 1 2 1
( ,3)

2   1  1 (    2)(    3)

x x

x
x x x x

or

(1.7.8) 
1 (3)(2)

( , 3) 3 .
(   1  )(    2)(    3)

xx
x x x x

I’ll let you repeat this process a few more times if you need more 
convincing, but the general result is

!
( , ) .

(   1  )(    2) (     )
x n

x n n
x x x x n
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Th at is, using (1.7.3), the gamma function can be written as

(1.7.9) 
!

( ) lim
(   1  )(    2) (     )

x
n

n
x n

x x x x n

which, if you look at it for a while, is truly an amazing statement, one 
that can be found in a 1729 Euler letter (to the same friend men-
tioned in Challenge Problem 1.1). As amazing as (1.7.9) is, however, 
we are not done yet.

Applying some simple algebraic manipulations to (1.7.9) yields

!
( ) lim

(   1  ) 2   1  3   1    1 
2 3

x

n

n
x n

x x xx x n
n

!
lim

(   1  )   1    1    1  !
2 3

x

n

n
n

x x xx x n
n

and so

(1.7.10)  
1

( ) lim .
1   

x

n n

k

n
x

xx
k

Next, notice that since

  1    1  3 2
1

  1     2 2 1
n n n

n
n n n

1 1 1 1 1
1 1 1 1 1 ,

  1     2 2 1n n n

then

1 1 1 1 1
( 1) 1 1 1 1 1

  1     2 2 1

x x x x x
xn

n n n
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and so

(1.7.11) 1

1
( 1) 1 .

x
nx
k

n
k

Finally, since

lim 1,
(   1  )

x

n x

n
n

we can, with vanishing error, replace nx in (1.7.10) with (n + 1)x in 
(1.7.11) to get, in the limit as n → ∞,

(1.7.12) 
   1

   1

11   
( ) .

1   

x

k

k

kx
xx
k

Now, notice that

[ln{ ( )}] [ln{ !}],
d d

x x x
dx dx

where the right-hand side follows from (1.4.4), and since (1.7.12) says

   1

11   
( )

1   

x

k

kx x
x
k

then

   1

11   
[ln{ !}] ln

1   

x

k

d d kx
xdx dx
k
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or

1 1

1
[ln{ !}] ln 1 ln 1 .

k k

d d x
x x

dx dx k k

Th at is,

(1.7.13) 1 1

1
1

[ln{ !}] ln 1 .
1   

k k

d kx
xdx k
k

We can write (1.7.13) as

1

  1  1
[ln{ !}] lim ln

   kn

nd k
x

dx k x k

or, since

1

  1  2 3 4   1 
ln ln ln ln ln

1 2 3
n

k

k n
k n

2 3 4   1 
ln ln( 1),

1 2 3
n

n
n

then

1

1
[ln{ !}] lim ln( 1)  

   
n

kn

d
x n

dx x k

1 1

1 1 1
lim ln( 1)

   
n n

k kn
n

k k x k

1 1

1 1
lim ln( 1) .

(     )
n n

k kn
n x

k k x k
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Recalling the defi nition of Euler’s constant in (1.3.3), we arrive at

(1.7.14) 1

1
[ln{ !}] .

(     )k

d
x x

dx k x k

We now put (1.7.14) into a form involving the zeta function, as 
follows. Looking at just the last term on the right, we have

1 1 1
2

1 1 1
(     )   1    1 

k k k
x x x

x xk x k k k k
k k

2 3

21

1
1 , 1 1,

k

x x x
x x

k k k k

and so (1.7.14) becomes

(1.7.15) 
2

2 31 1
[ln{ !}]

k k

d x x
x

dx k k

3

41
, 1 1.

k

x
x

k

Th us, integrating indefi nitely, with K an arbitrary constant, results in

2 3 4

ln{ !} (2) (3) (4) .
2 3 4

x x x
x x K

For the case of x = 0, we have

ln{0!} = ln{1} = 0 = K

and so, at last (!),

(1.7.16) 
   2

( )
ln{ !} ( 1) ,   1 1,k k

k

k
x x x x

k

and we see that (1.7.16) reduces to our earlier result in (1.3.6) for the 
case of x = 1. While (1.3.6) is elegant, it has the fl aw of not converging 
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very quickly. With (1.7.16), however, we can have both elegance and 
good convergence (thus allowing for a much-improved estimate of γ).

To see what I mean, let’s set 1
2x . Th en, (1.7.16) says

   2

1 1 ( ) 1
ln ! ( 1)

2 2 2

k
k

k

k
k

and so, since 1 1
2 2( )! , we have

(1.7.17) 
   2

( ) 1
2 ( 1) ln .

2 2
k

kk

k
k

Because of the 2k factor in the denominators of the sum’s terms, we 
expect fast convergence. In fact, using just the fi rst 10 terms, we get 
γ ≈ 0.5772, whereas with (1.3.6), you’ll recall the fi rst 10 terms gave 
the far less accurate 0.5338. Th e fi rst 100 terms in our fast-converging 
series give γ = 0.577215664901533, with all but the last digit correct.

Now, one last development. Returning to (1.7.10), and fl ipping 
it upside down,29

(1.7.18)    1
1   

1
lim .

( )

n

k

n x

xx
k

x n

Writing

1 1 1
ln( )   1                               

ln( ) ln( ) 2 3 2 3x
x x x

x n x
x n x n n nn e e e e

29. Why fl ip Γ(x)? Γ(x) can take on infi nite values, because xΓ(x) = x! and |x!| = 
∞ for x a negative integer (recall Challenge Problem 1.4.2). Th ese infi nities become 
zeros of 1

( )x  and so, because Γ(x) itself is never zero, 1
( )x  is always fi nite. Th is has 

important implications in advanced applications.

Nahin.indb   63 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



64 Chapter 1

or, remembering (1.3.3), as n → ∞, we can replace the term in curly 
brackets with e− xγ, and so (1.7.18) becomes (as n → ∞)

   1

  /2 /3

1   
1
( )

k

x x x x

xx
k

x e e e e

or

(1.7.19) 
1

/1
1   

( )
.

k
x x kx

xe e
x k

Taking the logarithm of (1.7.19) results in

   1
ln{ ( )} ln( ) ln 1    ,

k

x x
x x x

k k

which, when diff erentiated, gives what is called the logarithmic 
derivative of Γ(x):

1

1
( ) 1 1
( ) 1   

k

x k
xx x k
k

or

(1.7.20) 
   1

( ) 1 1 1
.

( )    k

x
x x k k x

Th e logarithmic derivative of the gamma function is so important 
in advanced work that mathematicians have given it its own name 
and symbol: Th e digamma function is defi ned to be

(1.7.21) ( )
( ) ,

( )
x

x
x
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and it is interesting to note that, using (1.7.20), it is easy to show 
ψ(1) = −γ. Th at is, the logarithmic derivative of the gamma function 
(i.e., the digamma function) at x = 1 is the number “minus gamma.” 
Since Γ(1) = 0! =1, then Γ′(1) = −γ.

Recalling (1.4.3), we have

Γ(x + 1) = xΓ(x)

and so diff erentiation gives

Γ′(x + 1) = Γ(x) + xΓ′(x)

or, dividing through by Γ(x),

(1.7.22) ( 1) ( )
1 .

( ) ( )
x x

x
x x

But since

(   1  )
( )

x
x

x

we can write (1.7.22) as

( 1) ( )
1 ,

(   1  ) ( )
x x

x
x x
x

which reduces to

(1.7.23) 
( 1) 1 ( )

.
(   1  ) ( )

x x
x x x

Th at is, the functional equation of the logarithmic derivative of the 
gamma function is
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(1.7.24) 
1

( 1) ( ).x x
x

Starting with x = n (an arbitrary positive integer) in (1.7.24), we 
can write the following system of n equations:

1 1
( 1) ( ), ( ) ( 1),

  1 
n n n n

n n

1
( 1) ( 2), ,

   2
n n

n

1 1
(3) (2), (2) (1) 1 .

2 1

Successively substituting this chain of expressions, head into tail, 
we get

1 1 1 1
( 1) 1

  1     2 2
n

n n n

or

(1.7.25) 
   1

1
( 1) ,  1, 2, 3, ,

n

k
n n

k

which shows how the logarithmic derivative of the gamma function 
is connected to the harmonic series via Euler’s constant.

From Stirling’s asymptotic formula for x!, as x increases without 
bound, we have

(1.7.26) 
1

     2 ,! ~ 2
x xx x e

named aft er the Scottish mathematician James Stirling (1692–
1770)—although it is known that the French-born English mathe-
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matician Abraham de Moivre (1667–1754) knew an equivalent form 
at the same time (or even earlier)—who published it in 1730. Facto-
rials get very large very fast (my hand calculator gives up at 70!), and 
Stirling’s formula is quite useful in computing x! for large x. Th e 
formula is called asymptotic because, while the absolute error in the 
right-hand side of (1.7.26) in evaluating the left -hand side blows up 
as x → ∞, the relative error goes to zero as x → ∞ (that’s why ~ is used 
instead of =). Th at is,

1
     2

!
lim 1

2
x x x

x

x e

while

1
     2lim ! 2 .

x x
x x x e

For large x, then, since Γ(x + 1) = x!, we can write, with vanishing 
relative error,

1
     2(   1  ) 2

x xx x e

and so, taking logarithms,

1
ln{ (   1  )} ln( 2 )     ln( ) ,

2
x x x x

and then diff erentiating, we have

1 1
ln{ (   1  )} ( 1)     ln( ) 1

2
d

x x x x
dx x

1
1 ln( ) 1.

2
x

x
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Th at is,

1
lim ( 1) lim ln( )

2x x
x x

x

or, writing n instead of x,

(1.7.27) 
1

lim ( 1) lim ln( ) .
2n n

n n
n

Combining (1.7.25) and (1.7.27),

   1

1 1
lim ln( ) lim

2
n

kn n
n

n k

or

   1

1 1
lim lim ln( )

2
n

kn n
n

n k

or, as 1
2lim 0nn

, we have

   1

1
lim ln( ) ,

n

kn
n

k

which is, of course, (1.3.3).

In addition to being important in physics (see notes 13 and 25 
again), the zeta function makes a similarly remarkable appearance 
in computer science. Th e underlying theory of modern digital 
systems implementing data encryption relies on the extreme 
diffi  culty in factoring very large numbers, where “very large” 
means numbers that have several hundred digits to them. A 
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technical problem that soon arises in the theory of data encryp-
tion is that of determining whether a collection of positive 
integers is relatively prime. If each integer in the collection is 
factored into a product of primes (see note 3 again), then the 
integers are said to be relatively prime if there is no prime factor 
common to all the products. For example, 8 = (2)(2)(2), 9 = 
(3)(3), and 12 = (2)(2)(3) are relatively prime. Another way of 
expressing this is that the numbers are relatively prime if their 
greatest common divisor is 1. Now, suppose we select, at random, 
k integers from all the integers from 1 to n. It can then be shown 
that the probability that the k integers are relatively prime, in the 
limit as n → ∞, is equal to 1/ζ(k). For k = 2 and k = 3, these 
probabilities are 0.6079 and 0.8319, respectively, and these values 
are easily confi rmed with computer simulations. You can fi nd a 
discussion of how to do that in my book, How to Fall Slower Th an 
Gravity (Princeton University Press, 2018), pp. 137–146. Th is 
provides yet another illustration of the intimate connection 
between the zeta function and the primes.

Challenge Problem 1.7.1: Th e reason I set 1
2x  in (1.7.16) to get 

(1.7.17) is because we have an exact expression for 1
2( )! Setting x 

even smaller would improve the speed of convergence even more 
but, unfortunately, there are no other known exact expressions for 
x! for | x | ≤ 1. Th ere are, however, integrals we can evaluate for a 
given | x | ≤ 1 to get x! For example, your problem here is to show 
that  1

0( )! ,  0
nu

n e du n .
Challenge Problem 1.7.2: Confi rm the claim that ψ(1) = Γ′(1) = − γ 

(the value of the digamma function at x = 1 is negative gamma). Hint: 
Notice that the terms of the sum of (1.7.20) telescope when x = 1.

Challenge Problem 1.7.3: You’ll recall that in (1.6.6), we showed 
 

0 ln( )  xe x dx . Th e next step up in complexity is the integral 
  2

0 ln( ){ }xe x dx. You can fi nd this defi nite integral in any good math 
table, but see if you can derive   2 2

0 ln( ) (2){ }xe x dx . Hint: 
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Start with  
0( ) m xI m x e dx, and think about how to express I(m) 

as the second derivative of the gamma function. Th en, remember 
the digamma function.

Challenge Problem 1.7.4: Writing Γ(x + 1) = x!, we have from 
(1.7.16) that ( )

   2ln{ ( 1)} ( 1)k kk
k kx x x . Exponentiating 

the left -hand side gives us eln{Γ(x + 1)} = Γ(x + 1). Exponentiate 
the right-hand side of the equation, and then use the power 
series expansions of the resulting exponentials to fi nd the fi rst 
fi ve terms of the power series expansion for Γ(x + 1) about x = 0 
(the Taylor series). Hint: Confi rm that the fi rst three terms are 

22 21
2 6( 1) 1 ( )x x x , and then fi nd the coeffi  cients of the 

next two terms of the Taylor series, that is, the coeffi  cient of x3 and 
the coeffi  cient of x4.

Challenge Problem 1.7.5: Returning to Euler’s identity (see Chal-
lenge Problem 1.1.1 again), show that ii is real, a calculation fi rst 
done by Euler in 1746. Th at is, an imaginary number ( 1i ) raised 
to an imaginary power, despite sounding pretty complicated, 
can nonetheless be a real number. Hint: Write 2ii e  (because 

2
2 2cos( )  sin( ) 0 (1)ie i i i ).

1.8 Calculating ζ(3)

Right aft er stating the defi ning sum for ζ(3) in (1.2.5), I made the 
casual comment that the numerical value of zeta-3 “is easily calcu-
lated,” and then I zipped off  to a discussion of the zeta function. 
Well, as you perhaps have been wondering ever since (1.2.5), is the 
calculation of ζ(3) as simple as I made it out to be, that is, as being 
nothing but the evaluation of the terms in (1.2.5)? For a mathemati-
cian doing purely theoretical work, that probably is the case, but for 
engineers and physicists who need an actual number, the defi ning 
expression for ζ(3) is really not so helpful. In fact, using the fi rst 10 
terms of (1.2.5) gives a value of 1.19753 . . . , of which there is not even 
a single digit to the right of the decimal point that is correct! What is 
needed is an expression that converges to ζ(3) faster than the 1/n3

rate of (1.2.5). So, let me close this fi rst chapter by showing you a 
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way to achieve that, using a clever idea due to the German mathema-
tician Ernst Kummer (1810–1893).30

We start by establishing the claim

(1.8.1) 2

1 1
.

( 1) ( 1) 4n n n n

We do this by making the partial fraction expansion

(1.8.2) 
1

,
( 1) ( 1) 1 1

A B C
n n n n n n

where A, B, and C are constants. We can determine the value of 
A by multiplying through (1.8.2) by n − 1 and then setting n = 1. 
Th at is,

1 1 1
1 1 1 1

| | | .
( 1) 1 2n n n

n n
A B C A

n n n n

Similarly, for B we multiply through (1.8.2) by n and then set n = 0 
to get

0 0 0
1

| | | 1.
( 1)( 1) 1 1n n n

n n
A B C B

n n n n

And fi nally, for C we multiply through (1.8.2) by n + 1 and then set 
n = −1 to get

1 1 1
1 1 1 1

| | | .
( 1) 1 2n n n

n n
A B C C

n n n n

30. We have, of course, Markov’s series for ζ(3) that I gave you in the box at the 
end of Section 1.2. And it’s a very good series, too, as using just the fi rst 10 terms gives 
the estimate 1.202056900 . . . , which has the fi rst eight decimal digits correct. But 
that series is simply stated; what I want to do here is show you how to derive a simple 
yet fast-converging series for ζ(3).
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Th us,

1 1
1 1 1 1 2 12 2

( 1) ( 1) 1 1 2 1 1n n n n n n n n n

and so (1.8.1) becomes

2

1 1 2 1
2 1 1n n n n

or

(1.8.3) 
1 1 1 2 1 1 2 1 1 2 1

1 1
2 3 2 3 4 3 4 5 4 5 6

1 2 1
.

5 6 7

If you carefully examine the terms in the square brackets on the right 
of (1.8.3), you’ll see that they all self-cancel (the series telescopes) 
except for the 1

2  in the second pair of parentheses. So 1
4 , and 

(1.8.1) is established.
Now, continuing, let c be an arbitrary constant (arbitrary for 

now, but we’ll soon give it a quite specifi c value). We can then write

3 31 2

1 1
1

4n n

c
c

n n

32 2

1
1

( 1) ( 1)n n

c
n n n n

3

3 42 2

1 ( 1)
( )(

( 1)
1 1

( ) 1) 1)1 ( 1n n

c n n n cn
n n n n n n n

2

32

( 1
( )(

)( 1)
1 )

1 .
1n

n n cn
n n n
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Th at is,

(1.8.4) 
2 2

3 31 2 (
1 1 1

1 .
4 (1 1) )n n

n cn
c

n n n n

Now, in (1.8.4) set the up-to-now arbitrary constant c equal to −1. 
Th en,

3 31 2

1 1 1 1
(3) 1

4 4 1 1( )( )n nn n n n

or fi nally,

(1.8.5) 3 22 (
5 1

(3) ,
4 1)n n n

which converges as n−5, which is much faster than is the n−3 conver-
gence rate of (1.2.5).

As an example, using the fi rst 10 terms of (1.8.5) gives 1.20207 . . . , 
which has the fi rst four decimal digits correct, compared (you’ll 
recall) to no correct decimal digits for (1.2.5). If we extend our cal-
culations to include the fi rst 100 terms, then (1.2.5) gives a value of 
1.20200 . . . , which now has the fi rst four decimal digits correct, but 
including the fi rst 100 terms of (1.8.5) gives 1.202056905 . . . , which 
has the fi rst eight decimal digits correct. Using the same number of 
terms, the improvement in the rate of convergence of (1.8.5) over 
that of (1.2.5) is dramatic.

Challenge Problem 1.8.1: In a calculation fi rst done in 1879 by the 
French mathematician Eugène Lionnet (1805–1884), it was shown that 

3
31

1 2(4 ) 4
1 2 ln(2)n n n . Can you see how to do this? Hint: Start 
by making the partial fraction expansion 3 2

1 1
(4 ) 4 4 {(4 ) 1}n n n n

1
4 (4 1)(4 1) 4 4 1 4 1

CA B
n n n n n n , where A, B, and C are particular con-

stants (determine them, using the approach in the text for calculat-
ing the partial fraction expansion that speeded up the calculation 
of ζ(3)). Th en use (1.3.5). To give you confi dence in this claim, 
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the left-hand side evaluates (using the first 1,000 terms 
of the sum) as 1.03972075 . . . , which agrees pretty well with 
3
2 ln(2) 1.03972077  .

Challenge Problem 1.8.2: Calculate the value of 1
1 ( 1)( 2)( 3)n n n n n . 

Hint: Make a partial fraction expansion.
Challenge Problem 1.8.3: As a continuation of the last problem, 

see if you can make some headway with the general question: What 
is the value of 1

1 ( 1)( 2) ( )n n n n n p  for p any given positive integer? 
Th e partial fraction approach becomes increasingly messy as the 
number of factors in the denominator increases, and you might need 
to go down a diff erent path. Th is problem is suffi  ciently challenging 
that I think it deserves more than a brief discussion in the Solutions 
section, and so, instead, I’ll show you one way to attack this problem 
at the end of Chapter 2, aft er we have developed some additional 
technical results there. Th is is an interesting problem, because, with 
the result, additional series having increasingly faster rates of con-
vergence can be found for the calculation of ζ(3).
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CHAPTER 2

More Wizard 
Math and the Zeta 

Function ζ(s)

2.1 Euler’s Infi nite Series for ζ(2)

What’s your reaction to the claims that

(2.1.1) 1
1 1 1 1 1 1

2

(2.1.2)  1
1 2 3 4 5 6

4

(2.1.3)  2 2 2 2 21 2 3 4 5 6 0

(2.1.4)  3 3 3 3 3 1
1 2 3 4 5 6

8

and that other similar, seemingly divergent infi nite sums (involving 
ever-increasing powers) all have, against all “common sense,” 
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76 Chapter 2

defi nite fi nite values? Do you think that only a slightly unbalanced 
(okay, maybe a bit more than just slightly unbalanced) mind would 
make such claims? If so, you’d be wrong, as these series (and others, 
even stranger) appeared in papers authored by Euler (for an example 
of an even weirder Euler series than the ones I’ve listed, see Challenge 
Problem 2.1.1). Here’s how he reasoned for the above four series.

Starting with the polynomial

(2.1.5)  2 3 4 5 6
0

1
1

1
( )

   
P x x x x x x x

x

(the last equality is easily confi rmed by either cross-multiplying or 
by directly doing the long division), Euler set x = −1 in (2.1.5) to 
immediately arrive at (2.1.1):

1
1 1 1 1 1 1 ,

2

which does have (sort of ) a certain plausibility to it. Aft er all, as you 
proceed from left  to right on the left -hand side, computing the par-
tial sums as you go, you see those sums fl ip back and forth between 
1 and 0, and 1

2  is the average value. Th is series was, in fact, studied 
decades before Euler by the Italian mathematician Guido Grandi 
(1671–1742), who discussed it in a 1703 book.

Euler next calculated

(2.1.6) 1 0
1

.
1 

( ) ( )
 

d d
P x x P x x

dx dx x

Th at is, he wrote

(2.1.7)  2 3 4 5 6
22 3 4 5 6

(1    )
x

x x x x x x
x

and, by setting x = −1, he arrived at
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Wizard Math and the Zeta Function  77

1
1 2 3 4 5 6 .

4

Th is establishes the claim in (2.1.2). (Notice that setting x = 1 gives 
1 + 2 + 3 + 4 + 5 + . . . = ∞, a claim that everybody would certainly 
agree is true and that Euler found to be convincing evidence that the 
procedure is consistently okay.1) Th en he repeated the process, over 
and over. Th at is, he next wrote

(2.1.8) 2 1 2(1   
( )

)
( )

d d x
P x x P x x

dx dx x

and so on, from which the other claims quickly follow (with x = −1). 
I’m not going to continue with this thread of Euler’s analysis, as we’ll 
soon develop his results in a less audacious way.2

If these series seem “odd” to you, just imagine what must have 
been the reaction of a world-famous mathematician who, upon 
opening a letter from a stranger, read the claim

1
1 2 3 4 .

12

1. But suppose, you may already be wondering, that Euler had instead set x = 2 
in (2.1.5)? (Remember, all concerns over convergence are out the window!) Th en he 
would have arrived at the claim 1 + 2 + 4 + 8 + . . . = −1 which, term-by-term, is at 
least as large as the sum resulting from setting x = 1. Th at is, −1 > ∞, which may be a 
bit of a surprise. Nonetheless, that’s just what Euler concluded! (Euler could, indeed, 
be bold—to say the least.) You can read more on Euler’s reasoning and how he justi-
fi ed what he did, in Euler’s own words, in an English translation by E. J. Barbeau and 
P. J. Leah of his 1754/55 paper “On Divergent Series”: see Barbeau and Leah, “Euler’s 
1760 Paper on Divergent Series,” Historia Mathematica, May 1976, pp. 141–160 (the 
diff erence in dates is the diff erence between when Euler presented his fi ndings and 
when they were published). See also Morris Kline, “Euler and Infi nite Series,” Math-
ematics Magazine, November 1983, pp. 307–314.

2. If you are interested in the details of how Euler proceeded with these particu-
lar calculations, you can fi nd a nice discussion (with an occasional typographical 
error in the numbers, so be alert) in Raymond Ayoub, “Euler and the Zeta Function,” 
American Mathematical Monthly, December 1974, pp. 1067–1086.
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You’ll recall that Euler had declared, from (2.1.7), that the sum on 
the left  is infi nity, which makes sense. But 1

12 ? Th e sum of all the 
positive integers is a negative fr action? Th at’s simply crazy, right? And 
most people would have instantly chucked that letter into the trash, 
dismissing the writer (with either a curse or a sneer, or perhaps both) 
as a pathetic lunatic. But both the writer and the mathematician were 
unusual men, and so that was not the fate of the letter. Th e author 
was the soon-to-be-discovered Indian genius Ramanujan (recall Sec-
tion 1.5), and the mathematician was G. H. Hardy in En  gland. Writ-
ing to Hardy in January 1913, Ramanujan (then an obscure clerk in 
Madras) had sent what he thought to be some of his best discoveries, 
in an attempt to obtain Hardy’s support. It is a testament to Hardy’s 
genius that he quickly made sense of Ramanujan’s series.

What the clerk meant (but had expressed badly) is understood 
by writing the sum as

1 1 1 1
1 2 3 4

1 1 1 1
1 2 3 4

1 1 1 1

1 1 1 1
,

1 2 3 4

which is, formally, ζ(−1). As Hardy later discovered, at the time he 
wrote, Ramanujan had never even heard of the zeta function, but in 
some incredible way had nevertheless calculated the value of the 
zeta function ζ(s)—as defi ned in (1.2.6)—for s = −1. Of course, 
(1.2.6) doesn’t even converge for s ≤ 1, and so there is an immediate 
question about what ζ(−1) could mean,3 but we’ve been pretty fast 
and loose with divergent series so far, so let’s plunge boldly onward 
and see if we can make sense of ζ(−1).

In fact, Euler also could have calculated ζ(−1) before his death 
in 1783 as follows. We start with what is called the alternating zeta 
function:

3. To put your mind at ease, in a more advanced treatment than this book off ers, 
the introduction of a complex-valued s, and the technique of analytic continuation, 
does indeed bring ζ(−1) into the world of acceptable mathematics.
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(2.1.9) 
   1

   1

( 1) 1 1 1 1
( ) .

1 2 3 4

k

s s s s sk
s

k

(Th is is also called Dirichlet’s eta function.) Th e eta function is, obvi-
ously, quite similar to the zeta function, and indeed, there is a simple 
relationship between η(s) and ζ(s). Since

1 1 1 1
( )

1 2 3 4s s s ss

then

2 2 2 2
( )

2 2 4 6s s s ss

and so, by inspection, we have

(2.1.10)  1   2
( ) ( ) ( ) (1 2 ) ( ).

2
s

ss s s s

In particular, for s = −1,

2( 1) (1 2 ) ( 1) 3 ( 1)

or

1 1 1 1

1 1 1 1 1 1
( 1) ( 1)

3 3 1 2 3 4

or

1
( 1) 1 2 3 4 .

3
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80 Chapter 2

But the divergent series in the brackets is (2.1.2) and, as Euler 
showed (and so did we, earlier in this section), is “equal” to 1

4 , and 
so, just like that, we have Ramanujan’s result:

(2.1.11) 
1

( 1) .
12

Now this is, without a doubt, pretty fast-and-loose math! Keep read-
ing, however, and you’ll see that we’ll derive ζ(−1) in a far more 
satisfactory way later in the book (and we’ll get the same result).

Th e reason I show you all this here is simply to illustrate the no-
tricks-too-outlandish fashion in which Euler (and other similarly 
unrestrained mathematicians of his day) worked. In the rest of this 
section, you’ll see, in particular, how Euler’s devilishly clever mind 
derived the fast-convergence series for ζ(2) that I mentioned in the 
second box of Section 1.2, where I promised you an eventual deriva-
tion (and so here it is). Euler’s analysis that follows appeared in 1731, 
three years before he fi nally solved for the exact value of ζ(2).

Euler started with the elementary observation

ln(1 ) ,
1   
dx

x K
x

where K is the arbitrary constant of indefi nite integration. So,

2 3 2 3 41 1 1
ln(1 ) (1 )

2 3 4
x K x x x dx x x x x

or, since at x = 0 we have −ln(1) + K = 0 + K = 0, which means K = 
0, then

(2.1.12) 2 3 41 1 1
ln(1 ) .

2 3 4
x x x x x

From (2.1.12) it immediately follows that
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   1
2 3

   1

ln(1    ) 1 1 1
1 .

2 3 4

n

n

x x
x x x

x n

Th us,

   11 1 1    1
   1    10 0 0

ln(1    ) 1n
n

n n

x x
dx dx x dx

x n n

1
0 2

   1    1

1 1
|

n

n n

x
n n n

or

(2.1.13) 
1

0

ln(1    )
(2).

x
dx

x

Now, change variable to t = 1 − x (and so dx = −dt). Th en

0 1

1 0

ln( ) ln( )
(2) ( )

1    1   
t t

dt dt
t t

or, splitting the last integral into two parts (where x is an arbitrary 
value between 0 and 1),

(2.1.14) 
1

1 20

ln( ) ln( )
(2) .

1    1   
x

x

t t
dt dt I I

t t

Th e trick to arriving at Euler’s fast-converging series is to do the two 
integrals, I1 and I2, in diff erent ways (even though they are actually 
the same, with only their limits being diff erent). Let’s do I2 fi rst, by 
changing variable to u = 1 − t (and so dt = −du). Th us,

1 0 1

2 1 0

ln( ) ln(1    ) ln(1    )
( )

1   
x

x x

t u u
I dt du du

t u u
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82 Chapter 2

or, remembering our earlier result for ln(1    )x
x

 immediately following 
(2.1.12),

1 2 3
2 0

1 1 1
1

2 3 4
x

I u u u du

2 3 4
1   
02 3 4 |

2 3 4
xu u u

u

or

(2.1.15) 2 21

(1    )
.

n

n

x
I

n

For I1, Euler expanded the integrand in a power series to write

2 3
1 0 0

ln( )
ln( )[1 ] ,

1   
x xt

I dt t t t t dt
t

which he then evaluated using integration by parts. Th at is, letting 
u = ln(t) and 2 3[1 ]dv t t t dt

in

00 0
  ( )|   ,

x xxudv uv v du

he computed

1
 and so 

du dt
du

dt t t

and

2 3 41 1 1
,

2 3 4
v t t t t
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from which it follows that

2 3 4
1 00

ln( ) 1 1 1
ln( ) |

1    2 3 4
x xt

I dt t t t t t
t

2 3

0

1 1 1
1

2 3 4
x

t t t dt

2 3 4
2 3 4

02 2 2

1 1 1
ln( ) |

2 3 4 2 3 4
xt t t

x x x x x t

2 3 4
2   1

1 1 1
ln( ) .

2 3 4  

n

n

x
x x x x x

n

From (2.1.12) we have

2 3 41 1 1
ln(1 )

2 3 4
x x x x x

and so

(2.1.16)  1 2   10

ln( )
ln( ) ln(1 ) .

1     

nx

n

t x
I dt x x

t n

Combining (2.1.14), (2.1.15), and (2.1.16), we have

2 2   1 1

(1    )
(2) ln( )ln(1 ) .

n n

n n

x x
x x

n n

Euler’s fi nal step was to set 1
2x , which gives

2 2   1 1

1 1 1 1
(2) ln ln

2 2 2 2n nn nn n

or, fi nally,
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84 Chapter 2

(2.1.17) 2
   1 2   1

1
(2) {ln(2)} ,

2nn n

the series I gave you in Section 1.2 that converges much more rap-
idly than does the original defi ning series for ζ(2). Indeed, from 
(2.1.12), Euler knew that

2 3

   1

1 1 1 1 1 1 1
ln(2) ln 1 ,

2 2 2 2 3 2 2nn n

which, using just the fi rst 20 terms, gives

2{ln(2)} 0.480453 ,

and so the fi rst 20 terms of the sum in (2.1.17) generate a value of 
1.164481 . . . , giving an estimate for zeta-2 of ζ(2) = 1.644934 . . . , 
an estimate that compares very nicely with the exact value of 

2

6 1.644934 . Using the fi rst 20 terms of the original defi ning 
series for ζ(2), in contrast, gives 1.596163 . . . , which is not nearly as 
good an estimate.

Challenge Problem 2.1.1: See if you can “make sense” of the claim 
(made in the 1760 paper by Euler on divergent series mentioned in 
note 1) that the divergent series

0
( 1) ! 1 1 2 6 24 120 720k

k
S k

has a fi nite value. Hint: Since (1.4.1) says      1
0( ) x nn e x dx, and 

since Γ (n) = (n–1)! by (1.4.4), then start by writing 0! k xk x e dx  , 
and put this integral into the given summation for S. Estimate the 
numerical value of S to at least three decimal places.

Challenge Problem 2.1.2: In 1826 Abel (see note 18 in Chapter 1) 
proved a theorem that the French mathematician Siméon-Denis 
Poisson (1781–1840) then used to defi ne a summation method for 
the infi nite series S = u0 + u1 + u2 + u3 + . . . , even if S is divergent: 
fi nd a series T = u0 + u1x + u2x

2 + u3x
3 + . . . , sum it, calculate limx→1
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Wizard Math and the Zeta Function  85

T, and defi ne the result (called, despite Poisson’s role, the Abelian 
sum) to be the value of S. Can you use this idea to fi nd the Abelian 
sum value of S = 1 − 2 + 4 − 8 + 16 − 32 + . . . = ? (You may be amused 
to learn that Abel was always suspicious of divergent series, and he 
is famous in mathematics for the observation that “Divergent series 
are in general the work of the devil, and it is shameful to base any 
demonstration whatever on them.” Th e modern view of divergent 
series is a bit less harsh.)

Challenge Problem 2.1.3: Calculate the values of ζ(0), ζ(−2), 
ζ(−3), and ζ(1/2). Hint: For ζ(0), use the eta function and (2.1.1). 
For 1

2( ), think of using a computer.

2.2 The Beta Function and the Duplication Formula

We start by defi ning the beta function:

(2.2.1)  
1 1 1

0
( , ) 1  ( ) ,  0,     0,m nB m n x x dx m n

which is intimately related to the gamma function, as I’ll now show 
you. Th e pure mathematical defi nition of the gamma function was 
introduced in the previous chapter, but perhaps more on the his-
torical origin for the integral of (1.4.1) is now appropriate. Euler’s 
interest in the gamma function originated in the question of how to 
extend the factorial function from the case of just positive integer 
arguments to the more general case of any real argument. Th is is an 
example of what mathematicians call an interpolation problem, a 
type of problem that has occurred numerous times in mathematics. 
Two examples of it are found in the algebra of exponents and in 
fractional diff erentiation. Th e fi rst case is relatively easy (in hind-
sight). If n is a positive integer, then an is the product of a’s and so, 
for example, a3 = (a)(a)(a). It was understood that a0 = 1. But what 
could 

1
23a  mean? How do you multiply three and a half a’s together? 

Well, we of course know today how exponents work, and so 
1 1 1
2 2 23 3 3 3a a a a a a . Yes, this all looks obvious now, but it took 

the genius of Newton to make that so.
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Th e fractional diff erentiation interpolation problem is just a bit 
more complicated. Th e German mathematician Gottfried Wilhelm 
von Leibnitz (1646–1716) wrote Dn to denote the operation of dif-
ferentiating n successive times (see note 15 in Chapter 1). It is 
understood that D0 = 1 means don’t diff erentiate, and D–n denotes 
the inverse operation of integrating n successive times. Th at all seems 
pretty straightforward, assuming n is a non-negative integer, but 
what if 1

2n ? What could 
1
2D  mean? Th at question became impor-

tant to applied mathematicians when such situations began to be 
encountered in real physical problems.4

As this section illustrates, the gamma function lets us answer 
Euler’s interpolation question about the factorial function. What 
continues to make this interesting, today, is that it is known 
that there are many ways to define functions that give the 
correct values of x! for x a positive integer, but for non-integer 
values of x, these diff erent ways give quite diff erent values for x!, 
none of which agree with the values produced by the gamma func-
tion.5 So, what makes Euler’s integral formulation “the right way”? 
Astonishingly, this question wasn’t answered until as recently 
as 1922.

As the 19th century came to its end, the modern approach to 
function theory had already moved away from thinking of the equa-
tions satisfi ed by a function as the fundamental concept, and instead 
believed the geometrical structure of a function was its fundamental 
property. As Davis observes:

Th e desired condition was found in notions of convexity. A curve is convex 
if the following is true of it: take any two points on the curve and join them 
by a straight line; then the portion of the curve between the points lies 

4. For more on this, see my book, Oliver Heaviside: Th e Life, Work, and Times of 
an Electrical Genius of the Victorian Age (Th e Johns Hopkins University Press, 2002), 
in particular, Chapter 10, “Strange Mathematics,” pp. 217–240.

5. For more on such alternative functions, see Philip J. Davis, “Leonhard Euler’s 
Integral: A Historical Profi le of the Gamma Function,” American Mathematical 
Monthly, December 1959, pp. 849–869.

Nahin.indb   86 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Wizard Math and the Zeta Function  87

below the line [f(x) = x2, for example, defi nes a convex curve].6 A convex 
curve does not wiggle; it cannot look like a camel’s back. At the turn of the 
century, convexity was in the mathematical air. It was found to be intrinsic 
to many diverse phenomena. Over the period of a generation, it was sought 
out, it was generalized, it was abstracted, it was investigated for its own 
sake, it was applied. Called to attention by the work of H. Brunn in 1887 
and of H. Minkowski in 1903 on convex bodies and given an independent 
interest in 1906 by the work of J.L.W.V. Jensen, the idea of convexity spread 
and established itself in mean value theory, in potential theory, in topology, 
and most recently in game theory and linear programming.7 At the turn of 
the [20th] century then, an application of convexity to the gamma function 
would have been natural and in order.8

And that’s what happened in 1922.
Th at year it was shown that the gamma function is the only func-

tion that has all the properties of being positive for x > 0, being equal 
to 1 at x = 1, satisfying the functional equation Γ(x + 1) = xΓ(x), and 
being logarithmically convex. Th at last condition means that not only 
is Γ(x) convex but, in addition, ln{Γ(x)} is also convex.9 (You’ll 
recall, from the previous chapter, how ln{Γ(x)} arose, in a natural 
way, in the development of the digamma function.) Somehow, in the 
mid-1700s, Euler’s genius led him to the unique way to develop the 
logarithmically convex gamma function—150 years before mathe-
maticians began to think of such functions!

6. In most calculus textbooks, such a curve would be called concave upward (or 
convex downward). By contrast, ( )f x x  does not defi ne a convex curve.

7. Th e individuals Davis mentions are the German mathematicians Karl Her-
mann Brunn (1862–1939) and Einstein’s college math professor Hermann Minkowski 
(1864–1909), and the Dutch mathematician Johan Ludwig William Valdemar Jensen 
(1859–1925).

8. Davis, “Leonhard Euler’s Integral.”
9. An example of a logarithmically convex function is 

2

( ) xf x e . An example of 
a function that is convex but not logarithmically convex is f (x) = x2, as ln(x2) = 2ln(x): 
joining any two points on the curve of 2ln(x) results in a line that is below the function 
curve. (Sketch it and see!)
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Okay, now back to the beta function in (2.2.1). Changing the 
variable in (1.4.1) to x = y2 (and so dx = 2y dy), we have

2 22 2 2 1

0 0
( ) 2   2   .y n y nn e y y dy e y dy

We get another true equation if we replace n with m, and the dummy 
integration variable y with the dummy integration variable x, and so

(2.2.2) 2 2 1

0
( ) 2   .x mm e x dx

Th us,

2 2  2 1 2 1

0 0
( ) ( ) 4    x m y nm n e x dx e y dy

2   2(   ) 2 1 2 1

0 0
4   .x y m ne x y dx dy

Th is double integral looks pretty awful, but the trick that brings 
it to its knees is to switch from Cartesian coordinates to polar coor-
dinates (for a famous application of this trick, see Appendix 2). Th at 
is, we’ll write r2 = x2 + y2, where x = r cos(θ) and = r sin(θ), and so 
the diff erential area patch dxdy transforms10 to rdrdθ. When we inte-
grate the double integral over the region 0 ≤ x, y < ∞, we are inte-
grating over the entire fi rst quadrant of the plane, which is equivalent 
to integrating over the region 0 ≤ r < ∞, 20 . So,

2  2 1 2 12
0 0

( ) ( ) 4  cos({ } {)  sin( )}   r m nm n e r r rdrd

10. Th e general method for calculating how the diff erential area patch in a dou-
ble integral transforms under a change of variables requires the calculation of a deter-
minant that mathematicians call the Jacobian (aft er the Prussian mathematician Carl 
Jacobi (1804–1851)). Th is is typically discussed in an advanced calculus course (cer-
tainly it is beyond AP-calculus), and so here I am depending on your knowledge from 
high school trigonometry and geometry about how Cartesian and polar coordinates, 
in particular, are related.
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or

(2.2.3) 
2  2( ) 1

0
( ) ( ) 2 r m nm n e r dr 2 1 2 12

0
2 cos sin( ) ( ) .m n d

Let’s now examine, in turn, each of the integrals in square brackets 
on the right in (2.2.3).

First, if you compare

2  2( ) 1

0
2 r m ne r dr

to (2.2.2), you see that they are the same if we associate x  r and 
m  (m + n). Making those replacements, the fi rst square-bracket 
term in (2.2.3) becomes

2 2( ) 1

0
2 ( ).r m ne r dr m n

Th us,

(2.2.4)  2 1 2 12
0

( ) ( ) ( ) 2 co ( )s si ( )n .m nm n m n d

Next, returning to (2.2.1), the defi nition of the beta function, 
make the change of variable x = cos2(θ)(and so dx = −2 sin(θ) cos(θ) 
dθ), which says that 1 − x = sin2(θ). So,

 
1 1 1

0
( , ) 1 )  (m nB m n x x dx

0 2 2 2 2

2

( ) (2 cos sin sin cos) ( ) ( )m n d
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or

2 1 2 12
0

( ) (( , ) 2 cos s )in ,m nB m n d

which is the integral in the square brackets of (2.2.4). Th erefore,

Γ (m)Γ (n) = Γ (m + n) B(m, n)

or, rewriting, we have a very important result, one that ties the 
gamma and beta functions together:

(2.2.5) 
( ) ( )

( , ) .
(     )
m n

B m n
m n

Th ere is a famous result that we won’t need until later in the 
book, but we can derive it right now with the aid of the beta func-
tion. We start with (2.2.5),

( ) ( ) (   1  )!(   1  )!
( , ) ,

(     ) (     1  )!
m n m n

B m n
m n m n

from which it follows that

! !
( 1, 1) .

(     1  )!
m n

B m n
m n

So, writing m = n = z, we have

! !
( 1, 1) .

(2   1  )!
z z

B z z
z

From the defi nition of the beta function in (2.2.1), we have

1

0
( 1, ( )1) 1z zB z z x x dx
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and so

1

0

! !
1 .

(2   1  )!
( )z zz z

x x dx
z

Next, make the change of variable 1   
2

sx  (and so 1  
21 sx ) to get

1

1

! ! 1    1    1
(2   1  )! 2 2 2

z zz z s s
ds

z

2    1 21

1
2 (1 )  z zs ds

or, since the integrand is even,

2 1

0

  2! !
2 (1 )   .

(2   1  )!
z zz z

s ds
z

Make a second change of variable now, to u = s2 (and so 2
du

u
ds ), 

to arrive at

1
 2   2    1 1
2

1

0 0

! !
2 (1 ) 2 (1 )  

(2   1  )! 2
.z z z zz z du

u u u du
z u

Th e last integral is, from (2.2.1),

1 1(   1  ) ! !
1 2 2,  1

3 12         !
2 2

z z
B z

z z

and so, recalling from (1.4.6) that 1
2( )! , we have
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2    1 ! ! !
2 .

1(2   1  )!     !
2

zz z z
z z

Canceling a z! on each side, and then cross-multiplying, gives us

(2.2.6) 2    1 1
!     ! 2  (2   1  )!

2
zz z z

and since

1 1 1 2   1  1
    !       !   !

2 2 2 2 2
z

z z z z

and

(2z + 1)! = (2z + 1)(2z)!,

we can then alternatively write

(2.2.7) 2  1
!   ! 2  (2 )!

2
zz z z

(2.2.6) and (2.2.7) are variations on what mathematicians commonly 
call the Legendre duplication formula.11 We’ll use (2.2.7), in particu-
lar, when we derive what is called the functional equation of the zeta 
function.

Th e duplication formula is very useful for (among other things) 
calculating the factorial function of half-integer values. For example, 
to fi nd 1

25 !, set z = 6 in (2.2.7) to write

121
6! 5 ! 2 (12!)

2

11. Named aft er, as you no doubt suspect, Adrien-Marie Legendre (see note 4 
in Chapter 1), who discovered (2.2.6)/(2.2.7) in 1809.
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and so

12

1 12! (12)(11)(10)(9)(8)(7)
5 ! 287.885277 .

2 2 6! 4,096

While handy for carrying out this task, it’s worth noting that we 
could still do the calculation even if we didn’t have the duplication 
formula. Th at’s because we know (n + 1)! = (n + 1)n!. So, as an alter-
native way to calculate 1

2(5 )!, we set 1
24n  and write

1 1 1 11 1
5 ! 4 1 4 ! 4 !

2 2 2 2 2

and then, in the same way, continue by writing

1 1 1 9 1
4 ! 3 1 3 ! 3 !,

2 2 2 2 2

1 1 1 7 1
3 ! 2 1 2 ! 2 !,

2 2 2 2 2

1 1 1 5 1
2 ! 1 1 1 ! 1 !,

2 2 2 2 2

1 1 1 3 1
1 ! 1 ! !.

2 2 2 2 2

Since we know from the last chapter that 1 1
2 2( )! , then

1 11 9 7 5 3 1
5 ! !

2 2 2 2 2 2 2

10,395 1
287.885277 ,

32 2

just as we got from the duplication formula.
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Challenge Problem 2.2.1: Using the same approach just described, 
calculate the value of 1

2(  5 )! Hint: It’s not very large.

2.3 Euler Almost Computes ζ(3)

Just aft er the third box in Section 1.2, I promised you a derivation of 
yet another result originally due to Euler, a result that bears a super-
fi cial resemblance to ζ(3):

3

3 3 3

1 1 1
1 .

3 5 7 32

Where does this come from? It all started with a 1744 letter to a 
friend. In that letter, Euler claimed that

(2.3.1)  
    sin(2 ) sin(3 ) sin(4 ) sin(5 )

sin( )
2 2 3 4 5

t t t t t
t

   1

sin( )
,

n

nt
n

a claim we’ll establish in the next chapter through the use of Fourier 
series, a mathematical theory named aft er the French mathematical 
physicist Joseph Fourier (1768–1830). Of course, (2.3.1) can’t be 
true for arbitrary values of t (for t = 0, for example, the claim would 
be 2 0, which seems unlikely). It is true, however, for all t in the 
open interval 0 < t < 2π (open means the endpoint values of 0 and 2π 
are excluded). For now, we’ll just assume Euler was correct and that 
(2.3.1) is indeed true.

One point that may be puzzling you, however, is how did Euler 
come up with (2.3.1), decades before Fourier was born, and even 
more decades before Fourier’s masterpiece on Fourier series (Th e 
Analytical Th eory of Heat12) was published in 1822? Euler didn’t have 

12. Fourier’s book is all about how to solve the second-order partial diff erential 
equation that mathematical physicists call the heat equation, about which you can 
read much more in my book, Hot Molecules, Cold Electrons (Princeton University 
Press, 2020).
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the theory of Fourier series to work with—so just what did he do to 
get (2.3.1)? Th e answer is that he created a typical Eulerian conjur-
ing derivation seemingly out of thin air, in an analysis that is border-
line crazy—but it works! I won’t discuss it here, because the Fourier 
series derivation in the next chapter is the proper way to get (2.3.1), 
in a routine way.13

To get Euler’s “near-miss” of ζ(3), we start by integrating (2.3.1) 
over the interval 0 < t < x:

   10 0

    sin( )
.

2
x x

n

t nt
dt dt

n

Th at is,

2

0   1    10

1 1 cos( )
sin( ) |

2 4
x x

n n

x nt
x nt dt

n n n

21

1   cos( )
n

nx
n

or

2

2 2   1    1

1   cos( )
.

2 4 n n

x nx
x

n n

Th e fi rst sum on the right is, of course, ζ(2), and so we have

(2.3.2)  
2 2 2 2

2   1

 cos( ) 3    6    2
.

6 2 4 12n

nx x x x
x

n

Next, integrate (2.3.2) over the interval 0 < x < u:

2 2

2   10 0

 cos( ) 3    6    2
12

u u

n

nx x x
dx dx

n

13. But if you’re curious, you can fi nd Euler’s wild derivation in my book, 
Dr. Euler’s Fabulous Formula (Princeton University Press, 2006), pp. 134–136.
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or

3 2 2

02   1 0

1 
cos( ) |

12 4 6
u u

n

x x x
nx dx

n

and so

(2.3.3)  
3 2 2

02 3   1    1

1  sin( )  sin( )
| .

12 4 6
u

n n

nx nu u u u
n n n

If we set 2u , we have

3 3 3 3   1

 sin
1 1 12 1
3 5 7n

n

n
 

3 3 3 33
96 16 12 96

or

(2.3.4) 
3

3 3 3

1 1 1
1

3 5 7 32

which is the formula that opens this section. It’s unquestionably a 
beautiful formula, yes, but it isn’t ζ(3). At best, it’s ζ(3)’s third cousin. 
Your disappointment (and mine) in that is almost surely just a small 
fraction of what must have been Euler’s.

We can’t leave (2.3.4) without admitting that it is simply impos-
sible to resist the urge to calculate both sides of Euler’s “near-miss” 
formula. Th e right-hand side is

3

0.9689461462593 ,
32

while summing the fi rst 10,000 terms of the alternating series on the 
left  gives 0.9689461462593 . . . , and we see agreement out to an 
impressive 13 decimal places. Th is is, of course, not a mathematical 
proof by any means, but if the formula is wrong, then we’ve 

Nahin.indb   96 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Wizard Math and the Zeta Function  97

just witnessed an incredibly amazing coincidence of astonishing 
improbability.

Challenge Problem 2.3.1: Derive these two formulas:

2 2 2 2

1 1 1 1 1
(2)

2 4 6 8 4

and

2 2 2 2

1 1 1 1 1
1 (2).

2 3 4 5 2

2.4 Integral Forms of ζ(2) and ζ(3)

In this section, we’ll come at the zeta function in a diff erent way, 
using just integrals (no sums). In fact, I’ll show you two quite diff er-
ent such analyses, each relatively modern (from opposite ends of the 
20th century). My fi rst example begins by reminding you of a remark 
I made in Chapter 1 (Section 1.2), concerning the irrationality of 
ζ(3). As I stated there, in 1979, the French mathematician Roger 
Apéry showed that ζ(3) is irrational, a result rightfully considered to 
be a tremendous achievement.14 Th at’s because, before Apéry, every 
mathematician on the planet would probably have bet a week’s sal-
ary (or $100, whichever was smaller) that ζ(3) is indeed irrational—
but nobody could prove it. Th en, suddenly, Apéry did it, and 
justifi ably became famous (in the world of mathematics, anyway). 
Th en, that same year, the Dutch mathematician Frits Beukers 
(born 1953) published a much simpler proof, thus illustrating, 
like the four-minute mile, that once somebody does what up to 
then had been thought to be extraordinarily diffi  cult (if not simply 
impossible), then it’s more than likely that everybody will start 
doing it!15

14. R. Apéry, “Irrationalité de ζ(2) and ζ(3),” Astérisque, vol. 61, 1979, pp. 11–13.
15. F. Beukers, “A Note on the Irrationality of ζ(2) and ζ(3),” Bulletin of the 

London Mathematical Society, vol. 11, 1979, pp. 268–272.
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Beukers’ work was based on the perhaps benign-looking double 
integral

1 1

0 0
,

1   
dxdy

xy

which appears without explanation at the beginning of his paper. It is 
now, in fact, oft en called Beukers’ integral. Despite that, this double 
integral has a history that reaches back more than 70 years before Beu-
kers, to a high school math teacher. Th e story begins in 1908 when Paul 
Stäckel (1862–1919), a German university math professor, published 
a brief note, in which he observed that the above double integral over 
the unit square is equal to 2

1
1n n

, a sum known since 1734 when 
Euler showed it to have the value 2

6 . It must therefore be true that

21 1

0 0
.

1    6
dxdy

xy

Stäckel then asked for a direct evaluation of the double integral, that 
is, for an evaluation that avoids any reference to, and is independent 
of, Euler’s classic result. Stäckel died young, of a brain tumor, but he 
lived long enough to see his challenge answered.

Th at success came in 1913, when a German high school math 
teacher in Berlin, Franz Goldscheider (1852–1926), published an 
almost equally brief note in which he evaluated Stäckel’s double 
integral through the use of an enormously clever sequence of 
changes of variables. It was a tour de force derivation that Euler, a 
master himself of devilishly ingenious symbolic manipulations that 
appear to come from seemingly out of nowhere, would have loved.16

First, however, let’s quickly establish the equality of the double 
integral with the original infi nite series for ζ(2). As Stäckel wrote at 
the beginning of his note,

16. For those readers who want to check the accuracy of my reading of German, 
the notes of Stäckel and Goldscheider both appeared in Archiv der Mathematik und 
Physik, vol. 13, 1908, p. 362, and vol. 20, 1913, pp. 323–324, respectively.
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2 3 41
1 ( ) ( ) ( ) , 1 1.

1   
xy xy xy xy xy

xy

Th us,

1 1 1 1 2 2 3 3 4 4

0 0 0 0
{1 }

1   
dxdy

xy x y x y x y dxdy
xy

1 2 3 2 4 3 5 4 1
00

1 1 1 1
|

2 3 4 5
x x y x y x y x y dy

1 2 3 4

0

1 1 1 1
1

2 3 4 5
y y y y dy

2 3 4 5 1
0

1 1 1 1 1 1 1 1
|

2 2 3 3 4 4 5 5
y y y y y

2 2 2 2 2   1

1 1 1 1 1
1 (2).

2 3 4 5 n n

Now, starting with Stäckel’s integral (called P), Goldscheider 
introduced a second, similar double integral that he called Q:

(2.4.1) 
1 1

0 0 1   
dxdy

P
xy

and

(2.4.2) 
1 1

0 0
.

1   
dxdy

Q
xy

He then formed P − Q to get
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(2.4.3) 
1 1 1 1

2 20 0 0 0

1 1 2
.

1    1    1   
xy

P Q dxdy dxdy
xy xy x y

Changing variables to x2 = u and y2 = ν (and so 2
du

xdx  and 2
dv

ydy ), 
he arrived at

4
dudv

dxdy
xy

and so, since u and v also each vary from 0 to 1, (2.4.3) becomes

1 1

0 0

1 1
,

2 1    2
dudv

P Q P
uv

from which it quickly follows that

(2.4.4) P = 2Q.

Next, Goldscheider changed variable in P to u = −y (and so dy = 
−du, with u varying from 0 to −1 as y varies from 0 to 1) to get

1 1 1 0 1 0

0 0 0 1 0 1

( )
.

1    1    1   
dx du dxdu dxdy

P
xu xu xy

Th us, forming P + Q, he had

1 0 1 1 1 1

0 1 0 0 0 11    1    1   
dxdy dxdy dxdy

P Q
xy xy xy

or

(2.4.5) 
1 1

1 0
.

1   
dx

P Q dy
xy

He then made yet another change of variables, to 21
2 ( 1)u y x y , 

and so as y varies from −1 to 1 so does u. Since
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1 and so ,
1

du du
xy dy

dy xy

he therefore saw that (2.4.5) becomes

(2.4.6) 
1 1 1 1

2 2 21 0 1 0
.

(1    ) 1   2    
dx dx

P Q du du
xy xy x y

As unpromising as (2.4.6) might appear to be at fi rst glance 
(those y’s in the denominator of the integrand look troublesome), it 
actually isn’t a disaster. Th at’s because

2 2 21
1 2 1 2 ( 1)

2
ux x y x y x x 2 21   2    xy x y

and so (2.4.6) becomes

(2.4.7) 
1 1

21 0
.

1   2    
dx

P Q du
ux x

Well, you might say in response, (2.4.7) still doesn’t really look all 
that terrifi c, either.

Have faith! Goldscheider saved the day by pulling a fi nal change 
of variable out of his hat, with u = cos(φ) (and so du = −sin(φ)dφ). 
As u varies from −1 to 1, we see φ varying from π to 0, and so (2.4.7) 
becomes

(2.4.8) 
0 1

20

sin( )
1   2 cos( )   

dx
P Q d

x x

1

20 0

sin( )
.

1   2 cos( )   
dx

d
x x

We can avoid having (2.4.8) make us think we’ve driven over the 
edge of a cliff  by recalling the classic diff erentiation formula
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1
2

1
tan .

1   
( )

d ds
s

d s d

If we apply this formula to the case of

   cos( )
, ,

sin( )
x

s x

we have

1
2

   cos( ) 1 1
tan

sin( ) sin( )   cos( )1   
sin( )

d x
dx x

2

sin( )
.

1   2 cos( )   x x

Putting this into (2.4.8), we have

1 1

0 0

   cos( )
tan

sin( )
d x

P Q d dx
dx

1 1

0 0

   cos( )
tan

sin( )
x

d d

1    1
   00

   cos( )
tan |

sin( )
x
x

x
d

or

(2.4.9)  1 1

0

1   cos( ) cos( )
tan tan .

sin( ) sin( )
P Q d
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Th e integral in (2.4.9) may look like a tiger, but it’s actually a pus-
sycat. Th at’s because, fi rst of all,

1 1cos( ) 1
tan tan ,

sin( ) tan( ) 2

a result that follows by simply drawing an arbitrary right triangle and 
observing that the tangents of the triangle’s two acute angles are 
reciprocals of each other. If φ is one of those angles, then 2  is the 
other one. And second, aft er recalling a couple of identities from 
trigonometry, we have from a similar line of reasoning that

2

1 1
2 cos

1   cos( ) 2tan tan
sin( ) 2 sin cos

2 2

1 1
tan .

2 2tan
2

Th us, (2.4.9) becomes

2

0 0

1
.

2 2 2 2 4
P Q d d

Since P = 2Q from (2.4.4), it then immediately follows that 2

12Q
and so, just like that,

21 1

0 0
(2),

1    6
dxdy

P
xy
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and Professor Stäckel had the derivation he had requested fi ve years 
earlier.17

Goldscheider’s derivation evaluates P in a somewhat roundabout 
manner, in conjunction with a second double integral (Q). Decades 
later, the Greek-born American mathematician Tom Apostol (1923–
2016) discussed a markedly diff erent direct evaluation of Stäckel’s 
double integral P.18 Of this new approach, he wrote “Th is evaluation 
has been presented [by Apostol] for a number of years in elementary 
calculus courses [at Caltech] but does not seem to be recorded in the 
literature.” Apostol gives no details in his paper on how he came to 
know the analysis he describes, but the strong implication is that it 
was not original with him (and, so, we have yet another historical 
puzzle for math afi cionados to pursue).

To start Apostol’s analysis, we fi rst rotate the x, y coordinate axes 
in such a way as to transform the unit square (the region of integra-
tion for P) into a region (one that is still square) with more symme-
try about the axes. Just to remind you of the classic axes-rotation 
equations (which you can fi nd derived in any good high school book 
on analytic geometry), if a point has coordinates x, y in the original 
system, then a counterclockwise rotation of the axes through the 
angle α results in the following relationships between the coordi-
nates x′, y′ of the point in the new system and x, y:

x = x′ cos(α) − y′ sin(α), y = x′ sin(α) + y′ cos(α).

Using α = 45° (and writing u and v for x′ and y′, respectively, to 
use Apostol’s notation), we arrive at

(2.4.10) 
1 1    
2 2 2

u v
x u v

17. It is easy to show that 3

1 1 11
1 0 0 0 1   (3) dxdydz

n xyzn
, but a direct evaluation of 

this triple integral over the unit cube continues to elude all who have tried.
18. T. M. Apostol, “A Proof Th at Euler Missed: Evaluating ζ(2) the Easy Way,” 

Mathematical Intelligencer 1983 (no. 3), pp. 59–60.
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and

(2.4.11) 
1 1    

.
2 2 2

u v
y u v

Th e particular rotation angle of 45° puts the new horizontal axis (u) 
along the diagonal of the square region of integration, as shown in 
Figure 2.4.1. (Remember, we rotated the axes counterclockwise, 
and so the square appears rotated clockwise.)

Next, we write

(2.4.12) 
1 1 1 1 ,

0 0 0 0
,

1   1  
x ydAdxdy

xy xy

0

v

v = u

Region
a

Region
b

Region
c

Region
d

v = 2 – u��

2
1

��

2�� u

FIGURE 2.4.1.

Th e unit square aft er a 45° counterclockwise rotation of the axes.
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where the diff erential area patch in the x, y system is dAx,y = dxdy. 
Th e diff erential area patch in the u, v system is, by analogy, dAu,v = 
dudv. Since the value of the integral is independent of the coordinate 
system, and since (2.4.10) and (2.4.11) tell us that

2 2 2 2    2        
1 1 ,

2 2
u v u v

xy

then

(2.4.13) 
1 1 ,

2 20 0 rotated square 2        1  
2

u vdAdxdy
u vxy

2 2rotated square
2 .

2        
dudv
u v

Th is formulation of the problem is useful because of the symme-
try of the rotated square about the u-axis, as well as the fact that v 
appears as squared in the integrand. Th is means that the contribu-
tion to the integral from region a above the horizontal axis is equal 
to the contribution from region c below the horizontal axis, and 
similarly for the contributions of regions b and d. Th us,

1 1

0 0 1  
dxdy

xy 2 2 2 2region region 

1 1
2 2 2

2         2        
dudv dudv

u v u va b

      
1/ 2

2 20 0
4

2        
u dv

du
u v

2 2    

2 21/ 2 0
4 ,

2        
u dv

du
u v

where we imagine each double integral is the sum of the areas of an 
infi nite number of vertical strips, each of diff erential width du. Both 
of the fi nal two inner integrals (with respect to v) are easy to do.

Recalling the fundamental result
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1
2 20

1
tan ,

   
x dt x

a t a a

we then have

2 2 2 2 20 02         2     )  (  

u udv dv
u v u v

1

2 2

1
tan

2    2   

u

u u

and

2     2    

2 2 2 2 20 02         ( 2    )     

u udv dv
u v u v

1

2 2

1 2    
tan .

2    2   

u

u u

Th us,

1 1 1/ 2 1

2 20 0 0
4 tan

1   2    2   

dxdy u du
xy u u

2 1

2 21/ 2

2    
4 tan

2    2   

u du

u u

or

(2.4.14) 
1 1

1 20 0
,

1  
dxdy

I I
xy

where

(2.4.15) 
1/ 2 1

1 2 20
4 tan

2    2   

u du
I

u u

and
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(2.4.16) 
2 1

2 2 21/ 2

2    
4 tan .

2    2   

u du
I

u u

It turns out, fortunately, that I1 and I2 are also not diffi  cult to do.
For I1: Let 2 sin( )u  and so

22 cos( ) (2 1 si )ndu d
2 22   

2 1 2
2 2

u u
d d

or

2
.

2   

du
d

u

Also,

1 1

2 2

2 sin( )
tan tan

2    2  2 sin ( )

u

u

1 12 sin( )
tan tan tan( ) .

2 cos( )
{ }

So

1/ 2 1
1 2 20

4 tan
2    2   

u du
I

u u

2
/6 2 /6

00

1
4 4 | 2 .

2 6
d

For I2: Let 2 cos(2 )u  and so

( 2 )2 sin(2 )
du
d
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or

2
22 2 1 cos ) 2 2 1(2

2
u

du d d

or

2
2 .

2   

du
d

u

Also,

1 1

2 2

2     2     2 cos(2 )
tan tan

2    2 2 cos )2(

u

u

1

2

2(1  cos(2 ))
tan

2 1 ( ) cos 2

2
1 1

2

1   cos(2 ) 2 sin
tan tan

2 cos1   cos
( )
( )(2 )

1tan ta ) .}n({

So,

2 1
2 2 21/ 2

2    
4 tan

2    2   

u du
I

u u

2
0 2 /6

0/6

1
8 8 | 4 .

2 6
d

Th us, and fi nally,

2 2 2 21 1

0 0
2 4 6 (2).

1   6 6 6 6
dxdy

xy
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Following Beukers’ success with his proof of the irrationality of 
ζ(3) using the P integral of Stäckel and Goldscheider, a cottage 
industry in evaluating similar-looking integrals has developed. Here 
is an example: For n any positive integer, what is the value of

1 1

0 0

ln( )
 ?

1   

n nx y xy
dxdy

xy

Th is probably looks pretty scary, but it has the following beautiful 
solution.

We start by defi ning, for some parameter σ,

(2.4.17) 
     1 1 1 1

0 0 0 0

(( ) ( )
1    1   

)n nxy xy xy
I dxdy dxdy

xy xy

  ln( )   ln( )1 1 1 1

0 0 0 0

( ) ( )
1    1   

n xy n xyxy e xy e
dxdy dxdy

xy xy

from which it immediately follows that

(2.4.18) 
  ln( )1 1

0 0

( ) ln( )
,

1   

n xydI xy xy e
dxdy

d xy

assuming that the derivative of the integral is the integral of the 
derivative (of the integrand).19 If we set σ = 0, then (2.4.18) says

 1 1

0 0 0

( ) ln( )
| ,

1   

ndI xy xy
dxdy

d xy

19. Th e operations of integration and diff erentiation are both defi ned as limit 
operations, and so what we are assuming is that we can reverse the order of two limit 
operations. Th is is oft en okay, but it’s not always okay. A more careful analysis than 
I’m doing here would spend some time justifying doing the reversal.
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and so our plan of attack is now clear. We’ll fi rst calculate I(σ) as 
defi ned in (2.4.17), then we’ll diff erentiate the result with respect to 
σ, and fi nally we’ll set σ = 0.

Expanding the integrand of (2.4.17), we have

   
    2 2 3 3( )

( ) 1[ ]
1   

n
nxy

xy xy x y x y
xy

1 1 2 2n n n n n nx y x y x y 3 3n nx y

and so

   1 1

0 0

( )
1   

nxy
dxdy

xy
1 1 1 1 2 2

0 0
( )n n n n n nx y x y x y dx dy

1 1 2 1

0

1 1
1 2

n n n nx y x y
n n

3 2 1
0

1
|

3
n nx y dy

n

1 1 2

0

1 1 1
1 2 3

n n ny y y dy
n n n

1 21 1 1 1
1 1 2 2

n ny y
n n n n

3 1
0

1 1
|

3 3
ny

n n

2 2 2

1 1 1
.

(       1  ) (        2) (        3)n n n
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Th us,

2   1

1
( )

(         )k
I

n k

and so

4 3   1    1

2(         ) 1
2 ,

(         ) (         )k k

dI n k
d n k n k

which says

 1 1

0 3   10 0

( ) ln( ) 1
| 2

1    (     )

n

k

dI xy xy
dxdy

d xy n k

3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1
2

1 2 ( 1) ( 2) 1 2n n n n

3 3 3 3 3 3

1 1 1 1 1 1
2 (3) 2 2 (3).

1 2 1 2n n

So, for the cases of n = 1 and n = 2, for example,

1 1

0 0

ln( )
 2 2 (3)

1   
xy xy

dxdy
xy

and

2 21 1

0 0

ln( ) 1
 2 1

1    8
x y xy

dxdy
xy

29 3
2 (3) 2 (3) 2 (3).

4 2

In 1772 Euler came as close as he ever would to ζ(3) when he 
stated
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2/2

0

7
 ln{sin( )} (3) ln(2).

16 8
x x dx

Th e key to understanding how such a stunning equality could be 
discovered is Euler’s identity. Here’s how it goes. Defi ne the function 
S(y) as

2 3( ) 1 iy i y i y imyS y e e e e

where m is some fi nite integer. Th is looks like a geometric series and 
so, using the standard trick for summing such series, multiply 
through by the common factor eiy that connects any two adjacent 
terms. Th en,

2 3 (    1)( )iy iy i y i y imy i m ye S y e e e e e

and so

(    1)( ) ( ) 1.iy i m ye S y S y e

Solving for S(y),

1
 

( 1) ( 1) 2 2

2 2 2

 –1   –1       
( )

 –1  2 sin    2

yi m y ii m y i m y

iy y y y
i i i

e e e e
S y

ye ie e e

or

(2.4.19) 

1 1cos     sin   cos sin
2 2 2 2

( ) .
2 sin

2

y ym y i m y i
S y

yi

Nahin.indb   113 24/07/21   1:17 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



114 Chapter 2

Now, looking back at the original defi nition of S(y), we see that 
it can also be written as

(2.4.20)    1    1
( ) 1 cos( ) sin( ).

m m

n n
S y ny i ny

So, equating the imaginary parts of our two alternative expressions 
for S(y), (2.4.19) and (2.4.20), we have

   1

1cos   cos
2 2 sin( ).

2 sin 2 sin
2 2

m

n

ym y
ny

y y

At this point it is convenient to change variable to y = 2t, and so

   1

cos{(2 1) }
cot( ) 2 sin(2 ).

sin( )
m

n

m t
t nt

t

Th en, integrate this expression, term-by-term, from t = x to 2 t  , 
getting

2 2 2
   1

cos{(2 1) }
cot( ) 2 sin(2 ) .

sin( )
m

nx x x

m t
dt t dt nt dt

t

Th e integral on the right of the equality sign is easy to do:

22
0

cos(2 )
sin(2 ) |

2 x
nt

nt dt
n

cos( )   cos(2 ) cos(2 )   ( 1)
.

2 2

nn nx nx
n n
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Th e last integral on the left  of the equality sign is just as easy to do:

22 cot( ) [ln{sin( )}]| ln sin
2xx

t dt t

ln{sin( )} ln{sin( )}.x x

Th us,

(2.4.21) 2 cos{(2 1) }
ln{sin( )}

sin( )x

m t
dt x

t

   1    1

cos(2 ) ( 1)
.

n
m m

n n

nx
n n

Next, recall the power series expansion

2 3 4

ln(1 )
2 3 4

x x x
x x

and so, with x = 1, this says

   1

( 1)
ln(2) .

n

n n

So, if we let m → ∞ in (2.4.21), we have

2 cos{(2   1  ) }
lim ln{sin( )}

sin( )m x

m t
dt x

t    1

cos(2 )
ln(2).

n

nx
n
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Since the limit of the integral at the far left  is zero,20 we arrive at

(2.4.22)    1

cos(2 )
ln{sin( )} ln(2).

n

nx
x

n

Th e next step (one not particularly obvious, but remember that 
we are following in Euler’s footsteps!) is to fi rst multiply through 
(2.4.22) by x and then integrate from 0 to 2 . Th at is, let’s write

2 2
0 0

1

1
 ln{sin( )} cos(2 )

n

x x dx x nx dx
n

2
0

ln(2)  x dx

2
2

   1 0

1
cos(2 ) ln(2).

8n
x nx dx

n

To do the integral on the right, use integration by parts, with u = x 
and dv = cos(2nx) dx. I’ll let you fi ll in the details to show that

 

22
0

 

1
, if    is odd

 cos(2 ) 2  
0, if   is even.

n
x nx dx n

n

Th us,

(2.4.23) 
2

2
3   1,  odd0

1 1
 ln{sin( )} ln(2).

2 8n n
x x dx

n

20. Th is assertion follows from the almost intuitively obvious (“obvious” if you 
invoke the area interpretation of the integral) Riemann-Lebesgue lemma—aft er Rie-
mann, of course, and the French mathematician Henri Lebesgue (1875–1941)—
which says that if f(t) is absolutely integrable over the interval a to b, then 
lim ( )cos( ) lim ( )sin( ) 0b b

m a m af t mt dt f t mt dt . Physicists and engineers are 
typically okay with an “obvious” area interpretation of the lemma, but mathemati-
cians typically (and rightfully, I have to admit) call it borderline handwaving, and 
they want a more substantial justifi cation. If you feel that way, too, take a look at 
Georgi P. Tolstov, Fourier Series (Dover, 1976), pp. 70–71. We’ll briefl y revisit justify-
ing the lemma in the next chapter (see Challenge Problem 3.3.3).
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We are now almost done. All that’s left  to do is to note that

3 3 33 3 3 3
   1,  even

1 1 1 1 1 1 1
2 4 6 2 1 2 2 2 3n n n

3 3 3

1 1 1 1
8 1 2 3

3   1

1 1 1
(3).

8 8n n

And so, since

3 3
   1,  odd    1,  even

1 1
(3),

n n n nn n

we have

(2.4.24)  3 3   1,  odd    1,  even

1 1 1 7
(3) (3) (3) (3).

8 8n n n nn n

Th us, just as Euler declared, putting (2.4.24) into (2.4.23), we have

(2.4.25) 
2/2

0

7
 ln{sin( )} (3) ln(2).

16 8
x x dx

Alas, nobody—not even Euler—has been able to do the integral in 
(2.4.25).21

Challenge Problem 2.4.1: Calculate the value of 1 1

2 20 0
 ?

1   
dxdy

x y
 Hint: 

Th is is easy, if you think of using P and Q together.

21. To add some frustration (as if we actually need more) to this point, if we 
increase the upper limit to π, then it is well known that 2

0 2 ln{sin( )} ln(2)x x dx  . 
Are there no limits to how far the number gods will go to taunt us?
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Challenge Problem 2.4.2: Calculate the value of 
 ( )1 1

0 0 1     ?
nxy

xy dxdy
Hint: For n = 3, your answer should reduce to 27

6(2) ( ) .
Challenge Problem 2.4.3: Show that 1 1 1 3

0 0 0 1    4 (3)dxdydz
xyz

.

2.5 Zeta Near s = 1

We know that ζ(1) = ∞, because when s = 1, ζ(s) reduces to the 
divergent harmonic series. Th at is,

1lim ( ) .s s

An interesting calculation to perform is to determine how ζ(s) blows 
up as s approaches 1. Since the harmonic series diverges logarithmi-
cally, does that mean ζ(s) blows up logarithmically, too, as s → 1? No, 
and in fact, ζ(s) blows up faster than logarithmically as s → 1. Th is 
may seem paradoxical, but by the time we reach the end of this sec-
tion, it may not seem quite so puzzling.

Here’s our plan of attack. From (2.1.9) and (2.1.10) we can write

   1
1   

   1

( 1)
( ) (1 2 ) ( )

k
s

sk
s s

k

and so

(2.5.1) 
   1

1       1

1 ( 1)
( ) .

(1   2 )

k

s sk
s

k

We’ll then write s = 1 + ε and, fi nally, we’ll let ε → 0 and see what 
happens. Since 1 − s = −ε, then

 1        ln(2)ln( 2 )

1 1 1 1
.

(1   2 ) (1   2 ) 1   1   s ee

From the power series expansion of the exponential, we have
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2 2
ln(2) ln 2

1    1 1 ln(2)
2

( )
!

e

2 21
ln(2) ln 2

2
( )

± terms in higher powers of ε,

and as ε → 0 these additional terms become negligible compared to 
the fi rst two terms. So, with decreasing error as ε → 0, we have

ln(2) 1
1    ln(2) 1 ln(2) .

2
e

Th us, as ε → 0 (as s → 1),

1   

1 1
1(1   2 ) ln(2) 1    ln(2)
2

s

or

(2.5.2) 1   

1 1 1
1   ln(2) .

(1   2 ) ln(2) 2s

Next, let’s see what happens in the summation of (2.5.1) as s → 1. 
We have

1   ln( )ln( )

1 1 1 1 1
 s kkk k kk keke

1
{1    ln( )  }k k

or, as ε → 0 (s → 1), we see that
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1 1
[1 ln( )].s k

k k

Th us,

   1    1

   1    1

( 1) ( 1)
[1 ln( )]

k k

sk k
k

k k

   1    1

   1    1

( 1) ( 1)
ln( ).

k k

k k
k

k k

Recognizing the fi rst sum on the right as ln(2)—just plug x = 1 into 
the power series expansion of ln(1 + x)—we have, as ε → 0 (s → 1), that

(2.5.3) 
   1    1

1     1    1

( 1) ( 1)
ln(2) ln( ).

k k

k k
k

k k

If we plug (2.5.2) and (2.5.3) into (2.5.1), we see that

   1

   1

1 1 ( 1)
(1 ) 1   ln(2) ln(2) ln( )

ln(2) 2

k

k
k

k

   1

   1

1 1 ( 1)
  ln(2) ln( )

ln(2) 2

k

k
k

k

   1

   1

1 1 ( 1) 1
ln( ) ln(2)

ln(2) 2

k

k
k

k

+ terms of all powers of ε, from the fi rst.

Th us, as ε → 0,

(2.5.4) 
   1

   1

1 1 1 ( 1)
(1 ) ln(2) ln( ).

2 ln(2)

k

k
k

k
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Returning to s = 1 + ε and writing (−1)k + 1 = −(−1)k, (2.5.4) 
becomes (as s → 1)

 

   1

1 1 1 ( 1)
( ) ln(2) ln( )

  1  2 ln(2)

k

k
s k

s k

and so, as ln(1) = 0, then as s → 1, we have

(2.5.5) 
 

   2

1 1 1 ( 1)
( ) ln(2) ln( ).

  1  2 ln(2)

k

k
s k

s k

Whatever the value of the summation term at the far right of (2.5.5) 
may be, we know it is fi nite because of note 6 in Chapter 1 (because 
ln(k) grows more slowly than does k). Th at is, as s → 1,

1
( ) constant,

  1 
s

s

where the constant is given by

(2.5.6) 
 

   2

1 1 ( 1)
constant ln(2) ln( ).

2 ln(2)

k

k
k

k

If we numerically evaluate (2.5.6), using the fi rst 1 million terms of 
the sum, we get 0.5772 . . . , and it is very hard to resist the tempta-
tion to suspect that the constant is actually Euler’s constant, γ. Here’s 
how to prove that is, indeed, the case.

We start with the calculation of a simple integral: for n any posi-
tive integer,

 
    1

   1

1 1
|

s
s

ns sn n

x
dx x dx

x s sn
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and so

   1

1 1
.s sn

s dx
n x

Th us,

   1   1    1

1 1
( ) .s sn n n
s s dx

n x

Th at is, if we write

   1    1

1 1
lim ,

k

ks sn n
dx dx

x x

then

   1   1

1
( ) lim sk

k

n n
s s dx

x

or, since n doesn’t exceed k in the integral, we can stop the sum at 
n = k and so we arrive at

(2.5.7)    1   1

1
.( ) lim sn nk

k k
s s dx

x

Next, write out (2.5.7) term-by-term, in the form of a matrix of 
k − 1 rows, with each row corresponding to a value of n as n varies 
from 1 (the top row) to k − 1 (the bottom row; as when n = k, the 
associated integral is zero and so can be ignored):

2 3 4

1 2 3 1

3 4

2 3 1

4
   1   1

3 1

1

   

   
1

.     

       

         

k

k

k

k
kk k

sn n
k

k

k

dx
x
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Now, add all these terms vertically (that is, in columns, going left  to 
right), to get

2 3 4

   1    1    1    1   1 1 2 3

1 1 1 1
2 3

kk

s s s sn n
dx dx dx dx

x x x x

   11

1
( 1)  

k

sk
k dx

x

2 3 4

   1    1    1    11 2 3 1

1 2 3   1 
  .

k

s s s sk

k
dx dx dx dx

x x x x

Notice that the numerator of each integral equals the lower limit of 
that integral. Th at is, over the integration interval for each integral, 
the numerator is x  = x − {x} (you’ll recall we discussed this notation 
back in Section 1.6). Th us,

2 3

   1    1    1   1 1 2

1kk

s s sn n

x x
dx dx dx

x x x

4

   1    13 1
   

k

s sk

x x
dx dx

x x

   1    11 1

   { }k k

s s

x x x
dx dx

x x

and so, plugging this into (2.5.7) and letting k → ∞,

   1      11 1 1

   { }  { }
( ) .s s s

x x dx x
s s dx s s dx

x x x

Since

     1
 

1 1 1

1 1
| ,

    1  1      1 

s
s

s

dx x
x dx

x s s s

Nahin.indb   123 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



124 Chapter 2

then

(2.5.8)    11

 { }
( ) .

  1  s

s x
s s dx

s x

All that remains to do is the evaluation of the integral in (2.5.8) 
for the case of s = 1.

Th at is, let’s now calculate

21

 { }
 ?

x
dx

x

Th e following line of mathematics comes from recognizing that, 
over an integration interval from one integer to the next, the frac-
tional value of x (given by {x}) in that interval is given by x minus 
the lower limit. So,

2 3 4

2 2 2 21 1 2 3

 { }   1     2    3
lim
k

x x x x
dx dx dx dx

x x x x

21

  (   1  )k

k

x k
dx

x

2 3 4

2 211 2 22 3 1

       
lim lim 2 3 (   1  )   

k

kk k

k dx dx dx dx dx
k

x x x x x

2 3 4
1 1 2 3    1

1 1 1 1
lim ln | | 2 | 3 | ( 1) |k k

kk
x k

x x x x

1 1 1 1 1 1 1
lim ln( ) 1 2 3 ( 1)

2 2 3 3 4 1k
k k

k k

2  1  3   2 4   3    (   1  )
lim ln( ) 2 3 ( 1)

2 6 12 (   1  )k

k k
k k

k k
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1 1 1 1
lim ln( )

2 3 4k
k

k

1 1 1 1
lim ln( ) 1 1

2 3 4k
k

k

[lim ln( ) ( ],) 1
k

k h k

where h(k) is the partial sum of the fi rst k terms of the harmonic 
series. But since

lim ( )[ ],ln( )
k

h k k

then just like that, we have the value of our integral:

(2.5.9) 21

 { }
1 .

x
dx

x

Putting (2.5.9) into (2.5.8) we have, as s → 1,

( ) (1 )
  1    1 
s s

s s s s
s s

2 2        2    
  1    1 

s s s s s
s s

s s

or, as s → 1,

1
( ) ,

  1 
s

s

which, comparing to (2.5.5), says

   2

1 1 ( 1)
ln(2) ln( ).

2 ln(2)

k

k
k

k

Turning this around, we have the following interesting summation 
formula:
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(2.5.10) 
   2

( 1) 1
ln( ) ln(2) ln(2) .

2

k

k
k

k

Challenge Problem 2.5.1: As s → 1, (2.5.5) says that the zeta func-
tion blows up as 1

   1s , that is, hyperbolically and not logarithmically, 
even though as s →1, ζ(s) becomes the logarithmically divergent har-
monic series. Explain why this is not a confl ict.

2.6 Zeta Prime at s = 0

In Challenge Problem 2.1.3, you were asked to calculate the value of 
ζ(0). Th e solution at the back of the book shows it is not really a dif-
fi cult calculation (and if you haven’t done it yet, stop right now and 
do it, because—spoiler alert!—I’m going to use that value in this sec-
tion). Aft er calculating ζ(0), any curious analyst would then imme-
diately wonder about the value of the fi rst derivative of ζ(s) at s = 0. 
Th at is, what is ζ′(0) = ? In fact, mathematicians have long wondered 
about the higher-order derivatives of ζ(s), at s = 0, that are far beyond 
merely the fi rst.22 Th e derivatives are, aft er all, central to deriving the 
power series expansion of ζ(s) around s = 0 (the Taylor series, about 
which I’ll say more in Chapter 3).

To start our calculation of ζ′(0), we write, from (2.1.9) and 
(2.1.10),

(2.6.1) 
   1

1   
   1

( 1)
( ) (1 2 ) ( ).

k
s

sk
s s

k

(As the solution for ζ(0) in the back of the book shows, 1
2(0)  and  

1
2(0) .) Taking the logarithm of (2.6.1), we have

22. For how to fi nd the fi rst 18 (!) derivatives, see Tom M. Apostol, “Formulas 
for Higher Derivatives of the Riemann Zeta Function,” Mathematics of Computation, 
January 1985, pp. 223–232. (Th is is the same Apostol mentioned in Section 2.4, con-
cerning the calculation of ζ(2).) Apostol’s method for calculating ζ′(0), and then the 
next 17 derivatives, is far more sophisticated than what I’m showing you here.
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ln{η(s)} = ln{(1 – 21– s)} + ln{ζ(s)},

and so, diff erentiating with respect to s,

(2.6.2) 
1   

1   

( ) (1   2 ) ( )
.

( ) 1   2 ( )

s

s

s s
s s

Since

1   1    ln(2 ) (1    )ln(2) ln(2)  ln(2)  ln(2) ,2 2
ss s s se e e e e

we have

1      ln(2)   1   (1 2 ) 2{ ln(2)} 2 ln(2)2 2 ln(2)s s s se

and so (2.6.2) becomes

(2.6.3) 
1   

1   

( ) ( ) 2 ln(2)
.

( ) ( ) 1   2

s

s

s s
s s

Also,

   1
   1

   1    1

( 1) 1
( ) ( 1) .

k
k

s sk k
s

k k

Since

   ln( )    ln( )1 ss k s k
s k e e

k

then

  ln( )1 ln( )
ln( ) s k

s s

k
k e

k k
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and so

   1
   1

ln( )
( ) ( 1) .k

sk

k
s

k

Th us,

   1  
   1    1

(0) ( 1) ln( ) ( 1) ln( )k k
k k

k k

or, since ln(1) = 0, we can drop the k = 1 term and write

 
   2

(0) ( 1) ln( ) ln(2) ln(3) ln(4) ln(5) ln(6)k
k

k

2 4 6 8 2 2 4 4 6 6 8 8
ln ln ,

3 5 7 3 3 5 5 7 7

which, if you remember Wallis’ product from Section 1.4, says

(0) ln .
2

Now, since 1
2(0)  and 1

2(0) , then (2.6.3) becomes, at 
s = 0,

ln
2(0) 2 ln(2)

1 1 1   2 
2 2

or

(0) ln ln(2) ln 2 ln( 2 )
2 2
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and so, fi nally, we have our answer:

(2.6.4) 
1

(0) ln(2 ) 0.9189385332 .
2

As a fi nal comment on the derivatives of ζ(s) at s = 0, Ramanujan 
was the fi rst to calculate ζ″(0) = ζ (2)(0) (in one of his private note-
books written sometime aft er 1900), while Apostol’s results for 
ζ (n)(0) for n ≥ 3 were new. One interesting result in Apostol’s paper 
is that ζ (n)(0)/n! approaches −1 as n → ∞, and that the convergence 
is pretty rapid (for example, the fourth derivative of ζ(s) at s = 0 is 
ζ (4)(0) = −23.9971 . . . , while −4! = −24).

Challenge Problem 2.6.1: In this section we made a lot of use 
of Dirichlet’s eta function, η(s), defi ned in (2.1.9). In (1.4.24) 
we derived Riemann’s famous integral formula involving the 
gamma function and the zeta function:    1

0    1
( ) ( )s

x
x
e

dx s s . 
Show that η(s) appears in a similar integral formula: 

   1

0    1
( ) ( )s

x
x
e

dx s s .
Challenge Problem 2.6.2: You’ll recall from the second box in Sec-

tion 1.2 that the Riemann hypothesis says ζ(s) = 0 if 1
2s ib, 

where b > 0 is any of an infi nity of particular values. Show that 
this says, for each such value of b, 

   1( 1)
   1 cos{  ln( )} 0

k

k k
b k  and 

   1( 1)
   1 sin{  ln( )} 0

k

k k
b k . For example, the fi rst value of b (that is, 

the imaginary part of the fi rst complex zero of the zeta function) is 
b = 14.13472514173469379 . . .), and summing the fi rst 100 million 
terms of each sum, for that value of b, gives, respectively, 4.64×10−5

and −1.86 × 10−5. Not exactly zero, but pretty small (the k  in the 
denominators slows the convergence down). Hint: Use (2.6.1) and 
Euler’s identity.

Challenge Problem 2.6.3: As discussed in the second box of Sec-
tion 1.2, Hardy showed in 1914 that the zeta function has an infi nite 
number of zeros on the critical line. Show, in contrast, that the 
gamma function vanishes nowhere on the critical line. Hint: Th e 
refl ection formula for the gamma function is a good place to start, 
and Euler’s identity will prove useful, too.
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2.7 Interlude

Before we continue to the next chapter and plunge ever more deeply 
into the zeta function, let’s take a brief break. In this fi nal section of 
what I’ve called a “wizard math” chapter, I’ll revisit the issue of just 
why it is the calculation of zeta-3 that is the world’s “most puzzling” 
math problem, over all other possibilities. When I started writing, I 
must admit there was in my mind one other possible candidate prob-
lem that easily met three of my four selection criteria (I’ll say more, 
soon, about the fourth criterion it doesn’t satisfy): it certainly is an 
unsolved problem, people have been trying to solve it for centuries, 
and a grammar school student can easily understand it. And, as an 
added treat, Euler is again involved!

I’m speaking of the question of the infi nity (or not) of perfect 
numbers. A positive integer is called perfect if it is equal to the sum 
of its positive divisors, starting with 1 but not including itself. Th at’s 
it, and any youngster who is able to divide and add is technically 
equipped with everything she needs to attack this problem. Indeed, 
the fi rst four perfect numbers were known long ago to the ancient 
(circa A.D. 100) Greeks:

6 = 1 + 2+ 3; 28 = 1 + 2 + 4 + 7 + 14;

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248;

8,128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1,016+ 2,032 + 4,064.

Th e next (fi ft h) perfect number wasn’t discovered until many cen-
turies later, in 1461 (by an unknown scholar): 212(213 − 1) = 
33,550,336. It then took well over a century more, to 1603, for the 
Italian Pietro Cataldi (1548–1626) to fi nd the sixth and seventh per-
fect numbers:

216(217 – 1) = 8,589,869,056

and
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218(219 – 1) = 137,438,691,328.

You’ll notice two things about how I have written these last three 
perfect numbers. First, they are of the form 2p−1 (2p − 1), where both 
p and 2p − 1 are prime (in this case, 2p − 1 is called a Mersenne prime 
aft er the French monk Father Marin Mersenne (1588–1648)).23 Th e 
fact that any number with this form is perfect had been proven by 
Euclid in his Elements (4th century B.C.).24 Th at is, Euclid showed 
that a form of 2p−1 (2p − 1) with both p and 2p − 1 prime is suffi  cient 
to ensure the associated even number is perfect. It left  open 
the question of necessity: could there be even perfect number(s) 
with a diff erent form? Th e answer is no, because Euler proved (in 
a paper published decades aft er his death) that all even perfect 
numbers have this form.25 And that’s why, for my second point, I 
haven’t bothered to list all the divisors of these large perfect num-
bers, as there is no need to check their perfection by adding 
the divisors, because Euler proved they must add correctly. Euler 
himself found the eighth perfect number in 1772: 230(231 − 1) = 
2,305,843,008,139,952,128.

As you can see from just the fi rst eight perfect numbers, they get 
very big, pretty fast. Th is quickly motivates the question: Are there 
an infi nite number of perfect numbers? Nobody knows, and as I 
write (March 2021), powerful supercomputer searches have 
extended our knowledge of particular perfect numbers to a total of 
just 51. Th e largest is, as will be no surprise, really big (using the 
prime p = 82,589,933, 2p−1(2p − 1) generates a perfect number with 
49,724,095 digits!) Interestingly, all 51 known perfect numbers 

23. Not all numbers of the form 2p − 1 are prime if p is prime. Many early math-
ematicians erroneously believed that, but in 1536, the Greek mathematician Hudal-
richus Regius gave the counterexample 211 − 1 = 2,047 = (23)(89).

24. You can fi nd Euclid’s proof (it’s strictly high school algebra) in C. S. Ogilvy 
and J. T. Anderson, Excursions in Number Th eory (Dover, 1988), pp. 21–22.

25. For the fi rst four perfect numbers, notice that using the primes p = 2, 3, 5, 
and 7 gives 6 = 2(22 − 1), 28 = 22(23 − 1), 496 = 24(25 − 1), and 8,128 = 26(27 − 1). You 
can fi nd Euler’s proof in William Dunham, Euler, Th e Master of Us All (Mathematical 
Association of America, 1999), pp. 10–11.
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are even, and so another unanswered question asks: Is there at least 
one odd perfect number? In 2012 it was shown that if there is an odd 
perfect number, then it must be larger than 101500 and have at least 
101 prime factors (not necessarily distinct). I therefore think it safe 
to say that nobody is likely to discover an odd perfect number (if it 
exists) by random doodling! Th e math historian John Stillwell has 
written (in his 2010 book Mathematics and Its History, Springer, 
p. 40) that these “may be the oldest open problem[s] in mathemat-
ics.” They certainly sound like problems that should, you’d 
think, give the zeta-3 problem a good challenge for being declared 
the most puzzling. So why did I pass over perfect numbers in favor 
of ζ(3)?

It’s a judgment call, I’ll admit, but I’ll let the English mathemati-
cian Peter Barlow (1776–1862) answer for me. When he wrote of 
Euler’s eighth perfect number in his 1811 book Th eory of Numbers, 
he declared “It is the greatest that will ever be discovered, for, as they 
are merely curious without being useful [my emphasis], it is not likely 
that any person will attempt to fi nd one beyond it.”26 In that judg-
ment he was clearly in error, not being able to anticipate the irresist-
ible urge to employ the fantastic computational power of the 
electronic computers that would appear less than 140 years later. But 
his central point is still valid. With the discovery of each new, larger 
perfect number, all we have is a new, bigger number with no appar-
ent role to play in anything to do with science or engineering. Purists 
may rejoice—and I am certainly not one to sneer—but compare that 
situation to the muscular role of the zeta function in both mathemat-
ics and science (particularly physics).

26. Barlow’s book was published by J. Johnson of London (the quote is from 
p. 43). Th is rarity of the perfect numbers prompted the religious Mersenne to declare 
(in 1644, when only seven perfect numbers were known) “We see clearly . . . how 
rare are the Perfect Numbers and how right we are to compare them with perfect 
men.” Modern mathematicians, even if religious, are less inclined to attach such 
metaphysical commentary to their discoveries.
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One other famous problem that satisfi es all four of my selection 
criteria, but which I nonetheless decided to also be unsuitable for 
this book (because, in a way, it has been solved—sort of ) is the 
four-color planar map problem. First posed in 1852 by the English 
mathematician Augustus De Morgan (1806–1871), the problem 
asks for a proof of the theorem that four colors are necessary and 
suffi  cient to color all possible planar maps with the assurance that 
if two countries share a border, they can have diff erent colors. Th e 
theorem says, in other words, that there are planar maps for which 
three colors are not enough, and that it is impossible to draw a 
planar map that requires more than four colors. When told of this 
claim, even people who have no interest in mathematics can’t 
resist the urge to start sketching complicated maps to see whether 
they can draw one that needs more than four colors. (Do I see you 
looking for a pencil, a sheet of paper, and a box of crayons, right 
now?!) A proof remained elusive for a long time, even though the 
apparently more diffi  cult three-dimensional version for maps 
drawn on a torus (a donut surface) has been solved (seven colors 
are necessary and suffi  cient). Th en, in 1976, two mathematicians 
at the University of Illinois programmed a computer to systemati-
cally check all of the many hundreds of specifi c special cases to 
which they had reduced all possible planar maps (K. Appel and 
W. Haken, “Th e Four Color Proof Suffi  ces,” Mathematical Intel-
ligencer 1986 (no. 1), pp. 10–20). Most mathematicians today, 
even if they accept the conclusion that the theorem is correct, 
consider this approach by computer to be a concession to barba-
rism. Th e two programmers themselves told the story of the 
horrifi ed reaction of a mathematician friend who exclaimed, when 
informed about how they had solved the problem, “God would 
never permit the best proof of such a beautiful theorem to be so 
ugly!” So, for most mathematicians the four-color planar map 
theorem still waits to be given a proper proof. But even if so 
solved, the planar map theorem appears to lack (as do perfect 
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numbers) the applicability that the zeta function has to engineer-
ing and science. (Ken Appel (1932–2013) was chairman of the 
math department at the University of New Hampshire in the 
1990s, and I know he was quite proud of his computer proof.)

Challenge Problem 2.7.1: To keep my claim valid that every sec-
tion in this book has at least one challenge problem, here are three 
simple (but quite interesting) facts for you to prove concerning per-
fect numbers. (1) Suppose p and q are any two distinct, odd primes. 
Th at is, p ≠ q, and neither is equal to 2. Prove that the product pq 
cannot be perfect. Hint: First, notice that the only divisors of pq are 
1, p, and q, and then convince yourself that (p − 1)(q − 1) > 2. You’re 
now just one step away from your goal. (2) Also, prove that no inte-
ger power k of any prime p can be a perfect number. Hint: With 
n = pk, k ≥ 1, the divisors of n are 1, p, p2, p3, . . . , pk−1. (3) Finally, 
explain why no perfect square can be an even perfect number. Hint: 
Apply the Euclid-Euler result, that all even perfect numbers have the 
form 2p−1(2p − 1), where p is prime and so is 2p − 1.

ANALYSIS OF CHALLENGE PROBLEM 1.8.3

Th e answer is 1 1 1
1 ( 1)( 2) ( ) !n n n n n p p p , for p any positive integer. As 

the starting point for deriving this result, we return to the beta func-
tion integral discussed in (2.2.1) through (2.2.5):

1 1 1

0

( ) ( )
1 .

( )
( )m n m n

x x dx
m n

From this we can write, recalling (1.4.4) on how the gamma function 
works with positive integer arguments,

1 1

0

( ) ( 1) ( 1)! !
1

( 1) ( )!
( )m n m n m n

x x dx
m n m n
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! ! !
.

( )! ( 1)( 2) ( )
m n n

m m n m m m m n

However, from the binomial theorem, we have

1 11 1
00 0

( ) (1 ( 1))m n m k nn k
k

n
x x dx x x dx

k

1
1 1 1

0 00
0

( 1) ( 1)
n nk m k k m k
k k

n n
x dx x dx

k k

1
00 0

1
( 1) | ( 1) .

m k
n nk k
k k

n nx
k km k m k

Th us, equating our two expressions for 1 1
0 (1 )m nx x dx, we have

0

1 !
( 1) .

( 1)( 2) ( )
n k
k

n n
k m k m m m m n

Or, if we change notation (to agree with that of Challenge Problem 
1.8.3) by replacing m with n, and replacing each original n with a p, 
we have

0

1 !
( 1)

( 1)( 2) ( )
p k
k

p p
k n k n n n n p

and so

0

1 1 1
( 1) .

! ( 1)( 2) ( )
p k
k

p
kp n k n n n n p

Th en, summing over all n from 1 to infi nity, we have

(1)  
1 1 0

1 1 1
( 1) .

( 1)( 2) ( ) !
p k

n n k

p
kn n n n p p n k
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Now, recall the binomial coeffi  cient identity27

1 1
,

1
p p p
k k k

from which it immediately follows that

11 1 1 1
( 1) ( 1) ( 1) ( 1) ( 1) .

1 1
k k k k kp p p p p

k k k k k

Th us, the right-most sum in (1) is (2)

1
0 0 0

1 11 1 1
( 1) ( 1) ( 1) .

1
p p pk k k
k k k

p p p
k k kn k n k n k

In the right-most sum of (2), change the index to j = k − 1, so that 
the sum becomes

(3) 
1 1

1 0

1 11 1
( 1) ( 1)

1 1
p pj j
j j

p p
j jn j n j

where the initial value for j has been increased from −1 to 0 because 
1
1( ) 0p  (think, physically, about how many ways you can select −1 

books from p − 1 books). For the fi rst sum on the right of (2), we write

27. Th is identity can be easily confi rmed by expanding the binomial coeffi  cients 
and simplifying, but it has a simple physical interpretation, as well, that explains how 
one might have originally even thought of writing such an equality. Recall that ( )p

k  is 
the number of diff erent ways to select k objects from p distinct objects (k ≤ p) when 
the order of selection is unimportant. Imagine the objects as p diff erent books, 
around one of which you have tied a yellow ribbon. Aft er picking k books, the one 
with the ribbon is either not one of the selected books, or it is. If it’s not, then all the 
selected books came from the p − 1 books that don’t have the ribbon, for a total of 

1
  ( )p

k  ways. If, however, it is among the selected books, then the remaining k − 1 
selected books came from the p − 1 books that don’t have the ribbon, for a total of 

1
1( )p

k  ways. Since these two possibilities are both inclusive and mutually exclusive, the 
identity immediately follows.
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(4) 
1

0 0

1 11 1
( 1) ( 1)

p pk k
k k

p p
k kn k n k

where the fi nal value for k has been reduced from p to p − 1, because 
1( ) 0p

p  (again think, physically, about how many ways you can 
select p books from p − 1 books). Th us, using (3) and (4), (2) 
becomes

1

0 0

11 1
( 1) ( 1)

p pk k
k k

p p
k kn k n k

1

0

1 1
( 1)

1
p j
j

p
j n j

or

(5) 
1

0 0

11 1 1
( 1) ( 1) .

1
p pk k
k k

p p
k kn k n k n k

With this, (1) becomes

1

1
( 1)( 2) ( )n n n n n p

1

1 0

11 1 1
lim ( 1)

! 1
k

n k

p

s

s p
kp n k n k

1

0 1

11 1 1
( 1) lim .

! 1
p k
k ns

sp
kp n k n k
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138 Chapter 2

But, as

1

1 1
1

s

n n k n k

1 1 1 1 1 1
1 2 2 3 3 4k k k k k k

1 1
1s k s k

1 1
1 1k s k

then

1

1 1 1
lim

1 1ns

s

n k n k k

and so we arrive at

(6) 
1

1 0

11 1 1
( 1) .

( 1)( 2) ( ) ! 1
p k

n k

p
kn n n n p p k

Now, it is easily checked that28

1 1
1

p pk
k kp

28. Just observe that ( 1)!1
!( 1)!( ) pp

k k p k
 and that ! ( 1)!1 1

1 (1 )!( 1)! !( 1)!( )  p ppk k
kp p k p k k p k

 .
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and so (6) becomes

(7) 
1

1 0

1 1 1 1
( 1)

1( 1)( 2) ( ) ! 1
p k

n k

pk
kn n n n p p p k

1

0

1 1
( 1) .

1!
p k
k

p
kp p

In this last sum, change the index to j = k + 1, and so (7) becomes

1
1 1

1 1 1
( 1)

( 1)( 2) ( ) !
p j

n j

p
jn n n n p p p

1

1 1
( 1)

!
p j
j

p
jp p

0
0

1 1
( 1) ( 1)

0!
p j
j

p p
jp p 0

1 1
( 1) 1 .

!
p j
j

p
jp p

As the fi nal step, notice that

0
( 1) (1 1) 0

p j p
j

p
j

and so, at last (!),

1

1 1 1
.

( 1)( 2) ( ) !n n n n n p p p
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140 Chapter 2

We can numerically check this result (which does have a lot of bino-
mial combinatorial manipulations to it) to ease any concerns.29 If you 
did Challenge Problem 1.8.2 by a partial fraction expansion, you 
know the answer for p = 3 is 1

18 , which is indeed the value of 1 1
3 3! . To 

explore this numerically, we can easily program the original summa-
tion; the MATLAB code inverseprod.m (in the box) does the job. 
When run for p = 3, using the fi rst 1,000 terms of the sum, the code 
produced the value of 0.0555555 . . . , which is in pretty good agree-
ment with 1

18 = 0.0555555 . . . .  Th is agreement is a nice check on the 
correctness of the code. Our analysis says that the answer for p = 4 
is 1 1 1

4 4! 96 = 0.010416666 . . . ,=.  and the code produced a value of 
0.010416666 . . . , again in excellent agreement with theory.

%inverseprod.m
p=input(‘What is p?’)
s=0;
for n=1:1000
  prod=n;
  for loop=1:p
    prod=prod*(n+loop);
  end
  s=s+1/prod;
end
s

29. I’m thinking, in particular, of the “physics arguments” I made in claiming 
that ( ) 0a

b  for the two cases b > a and b < 0. Mathematicians, in particular, may be 
less willing to accept such arguments, and in fact, they do reject arguing ( ) 0a

b  for 
a < 0, a case that for an engineer looks at fi rst blush to also be zero (aft er all, how 
many ways can you choose b books from fewer than none?). To pursue this would 
take us too far afi eld from ζ(3), but you can fi nd more on how mathematicians handle 
this situation in my book, How to Fall Slower Th an Gravity (Princeton University 
Press, 2018), pp. 34–35, 200–202.
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CHAPTER 3

Periodic Functions, 
Fourier Series, and 
the Zeta Function

3.1 The Concept of a Function

In this opening section we’ll look just a bit deeper at a concept we’ve 
taken for granted so far. For a modern mathematician, a function f 
of a single independent variable t (oft en thought of as representing 
time), written as f(t), is a rule that assigns a value to f for each pos-
sible value of t. Mathematicians oft en express this by saying the rule 
maps t into f. Th e most common way of defi ning the mapping rule 
(that is, the function) is to write an analytical formula: for example, 
f(t)=t2. But that’s not the only possibility. One alternative is to simply 
write down a column of all possible values of t and then, next to each 
value in that column, write the associated value of f. Th is listing 
might well be infi nitely long, but that’s okay. We can certainly imag-
ine such a huge list, even if it would take a very long time (and a lot 
of paper) to actually write it down.
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142 Chapter 3

Th ere were analysts in the past who were not terribly enthusias-
tic about such a liberal view. Th e French mathematical physicist Jean 
le Rond d’Alembert (1717–1783), a contemporary of Euler, was of 
that persuasion, and he championed the strict interpretation that a 
function absolutely must be expressible via the usual symbols of 
mathematics. In contrast, Euler was far more liberal and was happy 
to call f(t) a function if you could simply draw the curve of f (t) versus 
t. Th at view does sound plausible (to engineers and physicists, any-
way), but there is a troublesome implication tucked away in it that 
is all too easy to overlook.

Saying that you’re “drawing a curve” implies that at almost every 
instant of drawing time, there is a direction to the motion of the 
tip of the pen or pencil making the drawing. Th at is, it is implicitly 
assumed that the curve has a tangent at nearly every one of its 
points, which means, in turn, that the curve (function) has a 
derivative at nearly every point. Th e “nearly” means there might be 
a fi nite number of points of exception. Th at’s because if a curve has 
a fi nite number of points at which the derivative fails to exist (for 
example, f(t) = | t |, which obviously fails to have a derivative (tan-
gent) at the single point t = 0, as shown in Figure 3.1.1), then we 
nevertheless can still draw it. Th en, in 1861, Riemann cooked up a 
continuous (this is a crucial point, as I’ll elaborate on in just a 
moment) function that he speculated would fail to have a derivative 
anywhere, even though he could write a simple analytical expression 
for it.

In (3.1.1) I’ve written Riemann’s function, and Figure 3.1.2 shows 
three partial sums of (3.1.1) plotted over the interval 0 ≤ t ≤ π, and 
you can see that as more terms are included, the curve does become 
increasingly “wild.” It certainly becomes easy to believe that, as the 
number of terms goes to infi nity, the curve really might fail to have 
a tangent anywhere. Th e true state of aff airs concerning the diff er-
entiability of (3.1.1) was, however, determined only in relatively 
recent times, and it turns out that Riemann was wrong: His function 
does have points at which the derivative exists, although it is true 
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Periodic Functions, Fourier Series, and ζ  143

that (3.1.1) is almost everywhere non-diff erentiable.1 (Th ose trying 
to prove the Riemann hypothesis should keep this partial failure of 
Riemann’s intuition in mind—he was a genius, yes, but he wasn’t 
infallible.)

(3.1.1) 
2

21

sin( )
( ) .

n

n t
f t

n

1. Joseph Gerver, “Th e Diff erentiability of the Riemann Function at Certain 
Rational Multiples of π,” American Journal of Mathematics, January 1970, pp. 33–55. 
An historical discussion of (3.1.1) is by E. Neuenschwander, “Riemann’s Example of 
a Continuous, ‘Nondiff erentiable’ Function,” Mathematical Intelligencer, March 1978, 
pp. 40–44. Th e concept of a non-diff erentiable curve has found its way from abstract 
mathematics into physics: In 1933 the mathematicians (American) Norbert Wiener 
(1894–1964), (English) Raymond Paley (1907–1933), and (Polish) Antoni Zygmund 
(1900–1992) showed that the typical continuous path of a particle executing Brown-
ian motion is everywhere non-diff erentiable.

0

f(t) = |t|

t

FIGURE 3.1.1.

At t = 0, the tangent to | t | has slope ±1, depending on whether t = 0 is 
approached through positive or negative values of t. Th is non-uniqueness of the 

slope at t = 0 means | t | has no derivative at that point.
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144 Chapter 3

Riemann’s creation is fun to ponder (with the medical term for 
the study of disease in mind, mathematicians somewhat gruesomely 
call it a pathological function), but it and functions “like it” simply 
don’t occur in “real life” and so, for engineers and physicists, Euler’s 
concept of a function as anything you can draw is suffi  cient for 
almost all applications. Mathematicians, of course, are not at all 
impressed with such an argument! (In 1872 Weierstrass—do you 
recall that he was the fellow who showed us how to go from n! in 
(1.4.13) to (n!)(–n)! in (1.4.19)?—fi nally did conjure up a continu-
ous, nowhere diff erentiable function.2) In 1899 the great French 
mathematician Henri Poincaré (1854–1912) correctly wrote of such 
bizarre objects like the functions of Riemann and Weierstrass that 
“A hundred years ago such a function would have been considered 
an outrage on common sense.”

2. Weierstrass’ function is discussed by E. Hairer and G. Wanner in their elegant 
Analysis by Its History (Springer, 1996), pp. 263–269.

1.4

1.2

1.0

0.8

0.6
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0.2
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–0.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x

FIGURE 3.1.2.

Th e partial sums of (3.1.1) for n = 1 (dashed), n = 3 (dotted), and 
n = 16 (solid) terms.
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Poincaré wrote that just fi ve years before the Swedish mathema-
tician Niels Fabian Helge von Koch (1870–1924) dreamed up yet 
another continuous two-dimensional function that, like Weierstrass’, 
is nowhere diff erentiable; it was a creation that would have done 
nothing to change Poincaré’s mind. Unlike the functions of Riemann 
and Weierstrass, however, where t (time) is the independent varia-
ble, von Koch imagined he had the spatial variables x and y of the 
plane available. And rather than the numerical values of the older 
functions, von Koch’s function value was the direction of a curve. 
What makes von Koch’s creation really interesting, however, is that 
it requires no knowledge of advanced math, like the trigonometric 
functions that the Riemann and Weierstrass functions use. A bright 
grammar school student can easily understand von Koch’s curve. (In 
1915 the Polish mathematician Waclaw Sierpiński (1882–1969) 
cooked up a similar function, one just slightly more complicated 
than von Koch’s.)

Von Koch’s curve starts with a single line segment of unit length 
and then replaces that line segment with four shorter ones. And then 
those four line segments are each replaced with four even shorter 
line segments, and so on, endlessly. If we call the result of the fi rst 
replacement operation iteration 1, then Figure 3.1.3 shows the fi rst 
four iterations, with each new iteration obviously more “crinkly” 
than the last one. It is easy to appreciate, I think, that if one iterates 
to infi nity, the curve becomes so crinkly that there is no direction to 
the curve at any point on the curve—and yet the curve is continuous 
everywhere (there are no gaps). Another bizarre property of the von 
Koch curve is that, as we endlessly iterate, the length of the curve 
increases without bound (see Challenge Problem 3.1.1), even 
though the crinkles, individually, become ever smaller. Th e increas-
ingly lengthy curve nevertheless remains entirely in the same fi nite 
region of the plane, as shown in Figure 3.1.3. So, aft er an infi nity of 
iterations, the von Koch curve can’t be drawn for two reasons: (1) it 
has no direction (tangent) anywhere, and (2) it is infi nitely long in a 
fi xed, fi nite region of space.

Periodic Functions, Fourier Series, and ζ  145
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146 Chapter 3

It is diffi  cult, aft er seeing how von Koch’s curve is generated, not 
to think of this posthumously published (1872) jingle by the 
British mathematician Augustus De Morgan, who, you’ll recall 
from Chapter 2, created the four-color planar map problem:

Big fl eas have little fl eas upon their backs to bite ’em,
And little fl eas have lesser fl eas, and so, ad infi nitum.
And the great fl eas, themselves, in turn, have greater fl eas to 

go on,
While these again have greater still, and greater still, and so on.

Could that little bit of doggerel have inspired von Koch? Well, 
who knows—maybe. In fact, however, if von Koch had read the 
poetry of the Irish writer Jonathan Swift  (1667–1745), he would 
have found that De Morgan had himself been anticipated by more 
than a century. In a 1733 poem Swift  observed how the great and 
not so great in the world of poetry interact:

0.4
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FIGURE 3.1.3.

Th e fi rst four iterations of the von Koch curve.

Nahin.indb   146 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



So, naturalists observe, a fl ea
Has smaller fl eas that on him prey;
And these have smaller still to bite ’em.
And so proceed ad infi nitum.
Th us every poet, in his kind
Is bit by him that comes behind.

It was De Morgan, however, who almost certainly did inspire the 
American mathematical physicist Lewis Richardson (1881–1953), 
who in 1922 penned this little rhyme:

Big whorls have little whorls
Th at feed on their velocity;
And little whorls have lesser whorls
And so on to viscosity.

Th e lesson here is clear—if you are looking for inspiration on how 
to solve a math problem, you might consider seeking it in a study 
of some aspect of Nature.

As a fi nal comment on the vast possibilities open for something 
to be called a function, recall that I have emphasized that Riemann’s 
and Weierstrass’ functions, like von Koch’s, are continuous. 
Th at demanding condition is what makes those particular functions 
so interesting. If, however, one doesn’t require continuity, then 
it is much easier to cook up functions that have no derivative any-
where. Consider, for example, “Dirichlet’s function,” dating from 
1829 (the same Dirichlet who gave his name to the eta function in 
(2.1.9)):

1, if    is rational
( )

0,  if    is   rational
t

f t
t not
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148 Chapter 3

which isn’t continuous anywhere. (Try making a sketch of this f(t) 
as t varies from 0 to 1. I’ll bet you can’t!) Here’s why.

Between any two rational numbers, no matter how close they 
are, there is another rational number (for example, their average 
value), and so between 0 and 1, there is an infi nite number of rational 
numbers. And yet, as the Russian-born German mathematician 
Georg Cantor (1845–1918) showed in 1874, the infi nity of the irra-
tionals is greater than that of the rationals!3 Th at is, we have two 
infi nite sets closely interwoven with each other. So closely, in fact, 
that it is impossible for continuity to exist. If a function f (t) is con-
tinuous at t, then a small deviation from t produces a small deviation 
in the value of the function. For Dirichlet’s function, however, all 
changes in the function value are 1 in magnitude (1 → 0 or 0 → 1), 
and any deviation in t, no matter how small, results in an infi nite 
number of such “not small” changes.

As you probably have gathered by now, the concept of a function 
is a deep one, and it has been the object of study by some of the 
greatest mathematicians. For our particular interest in this book, the 
zeta function, we are going to limit our study to a particular class of 
functions: those that are periodic with period T (terms to be defi ned 
in the next section). Such functions have been known since ancient 
times, but they started to come into their own in the 18th century, 
from the pens of such masters as Euler (who else!), the Swiss Daniel 
Bernoulli (1700–1782) who was the son of Euler’s mentor in Basel 
( Johann Bernoulli), and D’Alembert. And then, with the appear-
ance in 1822 of the enormously infl uential book Th e Analytical 
Th eory of Heat by the French mathematical physicist Joseph 
Fourier (look back at note 12 in Chapter 2), the use of infi nite series 
whose terms are sinusoidal functions with harmonically related fre-
quencies broke free from pure mathematics and entered the physical 

3. For a proof of this not-so-obvious claim (and a discussion of what is meant by 
saying “one infi nity is greater than another infi nity”), using only elementary argu-
ments from grammar school arithmetic (!), see my book, Th e Logician and the Engi-
neer (Princeton University Press, 2013), pp. 169–172.
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world.4 With physicists and engineers now in the picture, Fourier 
series expansions of periodic functions quickly became a tool that 
no mathematical analyst could be without.

Challenge Problem 3.1.1: How long is the von Koch curve aft er 
the nth iteration? (Hint: Using Figure 3.1.3 as a guide, calculate both 
the number of line segments in the curve aft er the nth iteration, 
and the length of each segment.) If the initial line segment (before 
we start iterating) has a length of 1 inch, how many iterations are 
required to arrive at a curve with a length that fi rst exceeds 1 light-
year? (Take the speed of light as 186,000 miles per second, and use 
365 days in a year.) How many line segments are in the curve aft er 
the nth iteration?

3.2 Periodic Functions and Their 
Fourier Series

Fourier’s name is today fi rmly attached to trigonometric series 
expansions of periodic functions. Th at is, functions that endlessly 
repeat. If T is the period of f(t), which means

(3.2.1) ( ) ( ),   ,f t f t T t

where T is a fi nite, positive constant, then we’ll assume that we can 
write

(3.2.2) 0 0 01

1
( ) { cos( ) sin( )},

2 k kk
f t a a k t b k t

where 2
0 T . Th e explanation for this relation is that the lowest 

frequency (k = 1) in a Fourier series is associated with the repetition 
period, T, of each cycle of the periodic function represented by the 
series. Th at lowest frequency is 1

0 Tf  (measured since 1960 in units 

4. Th e story of Fourier series in electrical engineering and thermal physics is told 
in my book Hot Molecules, Cold Electrons (Princeton University Press, 2020). See also 
my Transients for Electrical Engineers (Springer, 2018).
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150 Chapter 3

of “hertz”—named after the German mathematical physicist 
Heinrich Hertz (1857–1894)—which engineers and physicists used 
to call “cycles per second”), and so the fi rst sinusoidal terms in a 
Fourier series are a1cos(2 π f0t) and/or b1sin(2 π f0t). Th e 2π factor 
converts the frequency from hertz to radians per second. So, 

2
0 02 Tf , and subsequent terms in the series aft er the fi rst term 

have frequencies that are integer multiples of ω0, as expressed 
by (3.2.2).

We’ve already encountered a Fourier series in this book, of 
course: As I stated back in (2.3.1), in 1744 Euler declared that

(3.2.3) 1

    sin( ) sin(2 ) sin(3 )
sin( ) ,

2 2 3n

t nt t t
t

n

which he used to calculate a “cousin” of ζ(3). Th is series was prob-
ably the very fi rst Fourier series, although Euler didn’t call it that, 
since Fourier wouldn’t be born until 24 years later. Euler’s series 
gives the same value as    

2
t  does, for any t in the interval 0 < t < 2π. 

(You may be wondering how the left -hand side of (3.2.3) can be 
called periodic: We’ll use Fourier theory to derive (3.2.3) in the next 
section, and all will be explained there.)

Th ere are two important caveats about T that need to be appreci-
ated. First, T is the smallest possible value for which f(t) repeats 
(obviously, if f(t) starts to repeat every time t increases by T, it 
will be repeating for each increase of 2T, 3T, and so on). We’ll call 
the smallest repetition time the fundamental period. Second, 
demanding that T > 0 eliminates the mathematically trivial case of 
f(t) a constant being called a periodic function, because in that 
case, there is no smallest positive T such that f(t) = f(t + T): for 
every T > 0, there is yet a smaller T > 0 (for example, the T that is 
half the previous T). In direct language, a periodic function is a 
varying function that endlessly repeats itself, in both directions as 
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the independent variable (in our case here, t) goes off  to t = ±∞. 
Th is is the mathematician’s pure image of a periodic function, 
which means f(t) must have been “doing its thing” since t = − ∞. 
Th at means all the periodic functions so beloved by physicists and 
electrical engineers (like the sinusoidal voltages at the wall outlets 
of your home) are not truly periodic, because, at some time in the 
past, they simply didn’t yet exist (they had to be turned on). 
Before that turn-on instant, those voltages were zero, and so 
f(t) = f(t + T) for all t is just not possible in the physical world. 
Th is is a theoretical objection that is, however, routinely ignored 
by everyone—including mathematicians.

Th e best-known periodic functions are surely the sinusoidal 
functions: f(t)=sin(t) is periodic with period T=2π, as is g(t)=cos(t). 
It is interesting to note that

( ) sin( )
tan( )

( ) cos( )
f t t

t
g t t

is also periodic but with a quite diff erent period of π. Th is result is a 
hint that, when combining functions that are individually periodic, 
the result may have a surprise tucked inside. To illustrate what I 
mean, consider the following two questions as you read the rest of 
this section, and then I’ll ask you about them again as challenge 
questions.

(a) Suppose f1(t) and f2(t) are each periodic, with periods T1 and T2, 
respectively. Is it necessarily true that their sum is periodic? Th e 
answer is no. Can you think of a counterexample?

(b) Suppose the sum function in (a) is periodic with period T. Is it possible 
for T < min(T1,T2)? Th at is, can the sum of two periodic functions be 
periodic with a period less than either of the two original periods? Th e 
answer is yes. Can you think of a specifi c example?
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152 Chapter 3

Okay, back to Fourier series. If (3.2.2) is to be useful, we obvi-
ously have to know what the ak and bk coeffi  cients are (the so-called 
Fourier coeffi  cients), and that will be our very fi rst task here, the 
derivation of expressions for those coeffi  cients. (When we do that, 
you’ll see why that curious 1

2  in front of a0 is there.) So, imagine that 
we want to express f(t), over the symmetrical interval 2 2

T Tt , as 
a sum of trigonometric terms with frequencies that are multiples of 
ω0. Th at is, for a fi nite sum of N + 1 terms, we write

0 0 01

1
cos( ) sin( )( .)

2
N

N k kk
S t a a k t b k t

If we do this, the obvious question now is: What should the ak and 
bk coeffi  cients be to give the best approximation to f(t)?

To answer that question, we have to defi ne what is meant by 
“best.” Here’s one way to do that. Defi ne the integral

/2 2

  /2
[ ( )]( ) ,

T

NT
J f t S t dt

and then ask what the ak and bk coeffi  cients should be to minimize J. 
( J is called the integrated squared error of the trigonometric approx-
imation.) If we just calculated the integral of the error alone, without 
squaring it, we could conceivably get a small J even if there are big 
positive diff erences between f(t) and SN(t), over one or more inter-
vals of t, because they are canceled by big negative diff erences 
between f(t) and SN(t) over other intervals of t. Th at is, SN(t) could 
be greatly diff erent from f(t) for almost all values of t but still result 
in a small integrated error. By minimizing the integrated squared 
error, however, such cancellations can’t occur. For a squared error, 
a small J forces the series approximation SN(t) to stay close to f(t) for 
almost all values of t.

Now,

2
/2

0 0 01  /2

1
( ) cos( ) sin( ) ,

2
T N

k kkT
J f t a a k t b k t dt
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and we imagine that somehow we have determined the best values 
for all the a’s and all the b’s except for one fi nal a (or one fi nal b). For 
the sake of a specifi c demonstration, suppose it is an that remains to 
be determined, where n is in the interval 1 to N. From freshman 
calculus, then, we wish to determine an such that

0,1  .
n

dJ
n N

da

We’ll treat the n = 0 case (the value of a0) separately, later in this 
section.

Assuming that the derivative of the integral is the integral of the 
derivative,5 we have

/2
1

0 1 0 0 02
  /2

2 ( ) { cos( ) sin( )} cos( )
T

N
k k k

n T

dJ
f t a a k t b k t n t dt

da

and so, setting this equal to zero, we arrive at

/2

0/2
( )cos( )

T

T
f t n t dt

/2

0 0 0 01  /2

1
{ cos( ) sin( )} cos( ) .

2
T N

k kkT
a a k t b k t n t dt

But since

/2

0/2
cos( ) 0,

T

T
n t dt

and since

/2

0 0/2
sin( )cos( ) 0,

T

T
k t n t dt

5. Th is is not always true, but it is true for J. Th ere are also details about what 
mathematicians call uniform convergence concerning the J integral, which in the 
admittedly casual spirit of this book we’ll ignore.

Periodic Functions, Fourier Series, and ζ  153

Nahin.indb   153 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



154 Chapter 3

and since

/2

0 0/2
cos( )cos( ) 0 if ,

T

T
k t n t dt k n

and since

/2 2
0/2

( )cos ,
2

T

T

T
n t dt

then

/2

0/2
( )cos( )

2
T

nT

T
f t n t dt a

or

(3.2.4) 
/2

0/2

2
( )cos( ) , 1 .

T

n T
a f t n t dt n N

T

By the same argument,

(3.2.5) 
/2

0/2

2
( )sin( ) , 1 .

T

n T
b f t n t dt n N

T

Since we’ve made no special assumptions about n, then (3.2.4) and 
(3.2.5) hold for any n in the interval 1 ≤ n ≤ N. Notice that the Fou-
rier coeffi  cients have no dependence on N.

Now, what about a0 (the n = 0 coeffi  cient)? We have

/2

0 0 01
0   /2

1 1
2 ( ) { cos( ) sin( )} 0

2 2

T
N

k kk
T

dJ
f t a a k t b k t dt

da

and so

/2 /2

0 0
  /2   /2

1 1
( )

2 2

T T

T T

f t dt a dt Ta
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or

(3.2.6) 
/2

0 /2

2
( ) .

T

T
a f t dt

T

By including the 1
2  factor in front of a0 in (3.2.2), we have arrived at 

an expression for a0 that is correctly given by (3.2.4), the expression 
for an, 1 ≤ n ≤ N, even when we set n = 0 in (3.2.4), and that is why 
mathematicians write 1

02 a  instead of just a0. It’s a matter of elegance. 
(Th e physical signifi cance of 1

02 a  is the average value of f(t) over a 
period.)

Th ere is a powerful mathematical theorem that says, for the coeffi  -
cients we have just calculated, not only is J minimized, but also the inte-
grated squared error actually goes to zero as N → ∞ in SN, as long as f(t) 
has just a fi nite number of discontinuities in a period. Th at is a physical 
requirement that is certainly satisfi ed in any real-world problem.

Observe that a series will, in general, contain both sine and 
cosine terms. Th ere are, however, certain special (but highly useful) 
functions whose Fourier series have only sines (or only cosines). 
First, suppose f(t) is an even function over the interval 2 2

T Tt . 
Th at is, f(−t) = f(t). Th en the integrand in (3.2.4) is even (because 
cos(nω0t) is even) and, for functions, even times even is even, while 
the integrand in (3.2.5) is odd (because sin(nω0t) is odd) and, for 
functions, even times odd is odd. Th us, while an will in general be 
non-zero, all the bn coeffi  cients will vanish, and so the Fourier series 
for an even f(t) will have only cosine terms. In contrast, suppose f(t) 
is an odd function over the interval 2 2

T Tt . Th at is, f(−t) = −f(t). 
Now the opposite situation results and, while in general the bn will 
be non-zero, all the an coeffi  cients will vanish, and so the Fourier 
series for an odd f(t) will have only sine terms.6

6. It’s a curious fact that, while the conditions of evenness and oddness are quite 
restrictive, any function can always be written as the sum of an even function and an 
odd function. Th e proof is easy, direct, and convincing, as it’s a proof by construction 
(the best kind of all). First, whatever f(t) is, f(t) + f(−t) is even, and f(t) − f(−t) is odd. 
Th en simply observe that 1 1

2 2( ) [ ( ) ( )] [ ( ) ( )]f t f t f t f t f t  . Done!
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156 Chapter 3

When we evaluate the Fourier series of an f(t) defi ned on the 
interval 2 2

T Tt , the result will not equal ( )ˆf t  for a t̂  outside 
the interval 

2
T  to 

2
T . Th e series will indeed converge for that t̂ , but 

not to ( )ˆf t  but rather to the value of what is called the periodic exten-
sion of f(t) up and down the t-axis. Figure 3.2.1 shows the periodic 
extension (for T = 2π) of an even function (t2), and Figure 3.2.2 
shows the periodic extension (for T = 2π) of an odd function (t).

Challenge Problem 3.2.1: Take a look back at the two questions 
about periodic functions that I asked you (just aft er the last box) to 
think about. What have you concluded?

0 3ππ–π 5π 7π

FIGURE 3.2.1.

Th e periodic extension of an even function.

0 3ππ–π 5π

FIGURE 3.2.2.

Th e periodic extension of an odd function.
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3.3 Complex Fourier Series and 
Parseval’s Power Formula

To demonstrate the power of Fourier series, in this section I’ll take 
you through two detailed problems. Both will demonstrate the use 
of Euler’s identity in developing a complex form of Fourier series. 
To set you up for these calculations, it is convenient to do some pre-
liminary (but still pretty straightforward) analysis. Repeating 
(3.2.2),

0 0 01

1
( ) { cos( ) sin( )}

2 k kk
f t a a k t b k t

where ω0T = 2π. Using Euler’s identity (remember, 1i ), this 
becomes

0 0 0 0   

0 1

1        
( )

2 2 2

ik t ik t ik t ik t

k kk

e e e e
f t a a b

i

0 0 
0 1

1
.

2 2 2 2 2
ik t ik tk k k k

k

a b a b
a e e

i i

If we let the summation index run from minus to plus infi nity, then 
we can write a complex Fourier series as

(3.3.1) 0
0,( ) 2ik t

kk
f t c e T

where the ck are constants (in general, complex-valued constants).
Let’s next suppose that f(t) is a real-valued function. Since the 

conjugate of a real value is the real value, then

0 0
*

*) ) .( (ik t ik t
k kk k

f t c e f t c e

Periodic Functions, Fourier Series, and ζ  157

Nahin.indb   157 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



158 Chapter 3

Since the conjugate of a sum is the sum of the conjugates, and since 
the conjugate of a product is the product of the conjugates (you 
should confi rm these claims), then

(3.3.2) 0 0* ,ik t ik t
k kk k

c e c e

which tells us that, if f(t) is a real-valued function, then *
k kc c  (to 

see this, set the coeffi  cients of matching exponential terms on each 
side of (3.3.2) equal to each other). Notice, too, that for the case of 
k = 0 we have *

0 0c c , which says that, for any real-valued function 
f(t), we’ll have c0 always come out as real valued.

Now, for some (any) particular integer from minus to plus infi n-
ity (let’s say, n), multiply both sides of (3.3.1) by e−inω0t and integrate 
over a period, that is, over any interval of length T. Th en, with t′ an 
arbitrary (but fi xed) value of t,

0 0 0( )
t T t Tin t ik t in t

kkt t
f t e dt c e e dt

or

(3.3.3) 0 0  (     )
 

( ) .
t T t Tin t i k n t

kkt t
f t e dt c e dt

Th e integral on the right in (3.3.3) is easy to do, and we’ll do it in two 
steps. Once for k ≠ n, and then again for k = n. So, if k ≠ n we have

0
0

  (     )
(     )  

0

|
(     )

i k n tt T i k n t t T
tt

e
e dt

i k n

0 0  (     )     (     )

0

   
  (     )

i k n t T i k n te e
i k n

0 0  (     )   (     )

0

{
.

  )
}1 

(  

i k n t i k n Te e
i k n
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Since ω0T = 2π, since k − n is a non-zero integer, and since Euler’s 
identity tells us that 0  (     ) 1i k n Te , then the integral is zero for the 
k ≠ n case. For the k = n case, the integral becomes

0  { } | .
t T t T

tt
e dt t T

So, in summary,

(3.3.4) 0  (     ) 0, 
.

, 
i k n t

period

k n
e dt

T k n

Th us, (3.3.3) becomes

0( ) in t
nperiod

f t e dt c T

or, for all k, the Fourier coeffi  cients in (3.3.1) are given by (just 
replace n with k on both sides of the last integral)

(3.3.5) 0
0

1
( ) ,   2 .ik t

k period
c f t e dt T

T

Okay, that’s the end of the preliminary analysis I mentioned. Now, 
let’s use it to derive Euler’s Fourier series of (3.2.3).

We start by writing, as in (3.3.1), Euler’s function as

(3.3.6) 0

 

   
( ) 0 2 .,

2
ik t

kk

t
f t c e t

We’ll take one period to be T = 2π, and so the condition ω0T = 2π 
means that ω0 = 1. From (3.3.5), we have

2

0

1    
2 2

ikt
k

t
c e dt
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160 Chapter 3

or,

(3.3.7) 
2 2

0 0

1 1
.

4 4
ikt ikt

kc e dt te dt

Th e case of k = 0 is easy to do:

2 22 2 2 2
0 0 00 0

1 1 1 1 2 4
  ( )| |

4 4 4 4 2 4 8
t

c dt t dt t

and so

(3.3.8) 0 0.c

For the case of k ≠ 0, the fi rst integral in (3.3.7) is

    2  2 2
00

1 1 1 
| 0

4 4 4

ikt i k
ikt e e

e dt
ik i k

because e−i2πk = 1 for any integer k. Th us, our result for ck≠0

reduces to

2

0 0

1
.

4
ikt

kc te dt

Using integration by parts (or a good table of integrals) we fi nd, for 
any constant a ≠ 0, that

1
.

at
at e

te dt t
a a
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Setting a = −ik, we have

2 2
0 0 0

1 1
| |

4 4

ikt
ikt

k
e i i

c t e t
ik ik k k

2 2
4

iki i i
e

k k k

or, as e−ik2π = 1, we have

0 2 .
4 2k

i i i i
c

k k k k

Putting this last result and (3.3.8) into (3.3.6), with ω0 = 1, we have

  ,  0
,

   
0 2

2 2
ikt

k k

t i
e t

k

or, writing the summation out in pairs of terms (k = ±1,±2,±3, . . .), 
we arrive at

2 2 3 3               
2 2 1 2 3

it it i t i t i t i tt i e e e e e e

2 sin(2 ) 2 sin(3 ) sin(2 ) sin(3 )
2 sin( ) sin( )

2 2 3 2 3
i i t i t t t

i t t

which is Euler’s series from 1744. Notice, in particular, that if we set 

2t , Euler’s series reduces to

  1 1 1
1 ,

4 3 5 7

a famous result found (via other means) by the Scottish mathemati-
cian James Gregory (1638–1675) and the German mathematician 

Periodic Functions, Fourier Series, and ζ  161

Nahin.indb   161 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



162 Chapter 3

Leibniz. Th e series on the right is worthless (in a practical sense) for 
calculating π, because it converges so slowly, but there can be no 
denying it is a beautiful expression.7

Let me now do something you may have already been wondering 
about, ever since I fi rst wrote (2.3.1): What does a plot of Euler’s 
series actually look like? Th e claim is that it equals    

2
t  in the interval 

0 < t < 2π, but does it? Figure 3.3.1 shows two plots of Euler’s series, 
each with a diff erent number of terms, as t varies over three full peri-
ods. You can see the series does indeed appear to become an increas-
ingly better approximation to    

2
t  (a downward-sloping ramp), for 

0 < t < 2π, as the number of terms increases.8

7. It was discoveries like this (and the series for ln(2) in (1.3.5)) that inspired the 
German mathematician Leopold Kronecker (1823–1891) to declare “God made the 
integers, all else is the work of man.”

8. Th e wiggles in the middle of each period are due to the fi nite number of terms 
used, and they decrease in amplitude as the number of terms increases. Th e curious wig-
gles in the neighborhoods of the start and end of each period, however, have a diff erent 
story, one I won’t pursue here except to say those wiggles never disappear, even as the 
number of terms increases without bound. If you want to read more about that phenom-
enon, take a look at Dr. Euler (see note 13, Chapter 2), on that book’s pp. 171–173.

2

1

0

–1

–2
–10 –5 0 5 10 15

2

1

0

–1

–2
–10 –5 0 5 10 15

FIGURE 3.3.1.

Euler’s “fi rst Fourier series” with fi ve terms (top) and with 40 terms (bottom).
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To complete this section, here’s the second detailed analysis I 
promised you that demonstrates the use of the complex form of 
Fourier series, a demonstration that will provide us with yet another 
derivation of 

2

6(2) . We start by defi ning the energy (a term 
used by mathematicians, physicists, and engineers alike) of the real-
valued periodic function f(t), over a period, to be the integral

(3.3.9) 2 ( ) .
period

W f t dt

(Th e reason for calling W the energy of f(t) is that if f(t) is a periodic 
voltage drop across a 1-ohm resistor, then W is the electrical energy 
dissipated—as heat—by the resistor during one period. Alterna-
tively, if f(t) is a periodic current in a 1-ohm resistor then, again, W 
is the electrical energy dissipated as heat by the resistor during one 
period. If you’re not into electrical engineering or physics, ignore 
this business of f(t) being a voltage drop or a current and just take 
(3.3.9) as a defi nition.) If we substitute the complex Fourier series 
for f(t) into the energy integral, writing f 2(t) = f(t)f(t) and using a 
diff erent index of summation for each f (t), we get

0 0

   
im t in t

m nm nperiod
W c e c e dt

or

(3.3.10) 0  ( )
   

.i m n t
m nm n period

W c c e dt

Th is last integral is one we’ve already done, back in (3.3.4). Th at is, 
the integral is zero when m + n ≠ 0 and is T when m + n = 0 (when 
m = −n). So, remembering that for a real-valued f(t), c–k = c*k , we see 
that (3.3.10) reduces to

* 2

     

||k k k k k
k k k

W c c T T c c T c
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164 Chapter 3

or, remembering that c0 is real since f(t) is real,

(3.3.11) 2 2 2
0 1

1
2( ) | ,|period kk

W
f t dt c c

T T

a result called Parseval’s power formula.9 (Energy per unit time, the 
units of W

T , is power in physics lingo.)
As a spectacular example of the utility of complex Fourier series, 

here’s a derivation of a result we’ll use in the next section to calcu-
late ζ(2n) for n any positive integer. We start with f(t) = cos(αt), 
−π < t < π, where α is any real, non-integer (I’ll tell you, soon, why 
we impose this curious restriction). If we next imagine periodically 
extending f(t) over the entire t-axis, with period T = 2π (ω0 = 1), 
then we can write

(3.3.12) 
   

( ) ikt
kk

f t c e

where, as we carefully work our way through the detailed algebra, 
we have

1 1    
cos( )

2 2 2

i t i t
ikt ikt

k
e e

c t e dt e dt

(     ) (     )1
4

i k t i k te dt e dt

9. Aft er the French mathematician Marc-Antoine Parseval des Chenes (1755–
1836), who published his formula (in much diff erent form, in a non-Fourier series 
context) in 1799. Th ere is a most interesting conclusion that immediately follows 
from Parseval’s formula if we make the physically plausible assumption that f(t) has 
fi nite energy in a period. Since it is a necessary condition for the convergence of the 
sum on the right in (3.3.11) that the terms of the sum go to zero as k → ∞ (that is, 
limk→∞ck = 0), we see that as frequency increases, the amplitudes of the Fourier coef-
fi cients must approach zero. Th is almost sounds like the result of a physics experi-
ment, but it is purely mathematical in origin.
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(     ) (     )

 
1

4 (     ) (     )

i k t i k te e
i k i k

(     ) (     ) (   )   (     )1        
4        

i k i k i k i ke e e e
i k k

(     ) (     ) (     ) (     )

2 2

1            
4    

i k i k i k i ke e ke ke
i k

(     )   (     ) (     )   (     )

2 2

1            
4    

i k i k i k i ke e ke ke
i k

(     )   (     ) (     ) (     )

2 2

1 {     }   {     } 
4    

i k i k i k i ke e e e
i k

(     )   (     ) (     ) (     )

2 2

1  {   }   {   } 
4    

i k i k i k i kke ke ke ke
i k

 

2 2

1          ( ) (  
4    

)i ik ik i ik ike e e e e e
i k

 

2 2

1            
 

) )
4  

( (i ik ik i ik ikke e e ke e e
i k

2 2

1 2 cos( )    2 cos( )
4    

i ie k e k
i k

2 2

1 2 sin( )    2 sin( )
4    

i ike i k ke i k
i k
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166 Chapter 3

or, as sin(kπ) = 0 for all integer k,

 

2 2 2 2

2 cos( )(     ) 2 cos( )2 sin( )
4 (     ) 4 (     )

i i

k
k e e k i

c
i k i k

or, as cos(kπ) = (−1)k,

(3.3.13) 2 2

( 1) sin( )
.

(     )

k

kc
k

Substituting (3.3.13) into (3.3.12), we have

2 2   

( 1) sin( )
( ) cos( )

(     )

k
ikt

k
f t t e

k

or, if we write the k = 0 term separately,

2 2 1

sin( ) ( 1) sin( )
cos( ) { }

(     )

k
ikt ikt

k
t e e

k

2 2 1

sin( ) sin( ) ( 1)
2 cos( )

(     )

k

k
kt

k

or, at last,

(3.3.14)  2 2 1

sin( ) 1 ( 1)
cos( ) 2 cos( ) .

   

k

k
t kt

k

You should by now have seen why we excluded the case of α 
being an integer: If it were an integer, then when the summation 
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index reached that integer, the denominator of (3.3.14) would be 
zero and the sum would blow up. For any non-integer α we avoid 
that catastrophic event. We’ll return to (3.3.14) in the next section.

As a fi nal, dramatic illustration of the use of (3.3.11), suppose 
that f(t) = e−pt, 0 < t < T = 2π, p a non-negative but otherwise arbi-
trary constant, which defi nes a single period of a function extended 
over the entire t-axis. Th en, from (3.3.5), and observing that ω0 = 1,

(     )2 2 (     ) 2
00 0

1 1 1
|

2 2 2 (     )

p ik t
pt ikt p ik t

k
e

c e e dt e dt
p ik

(     )2 2 2 21 1    1 1    1   
2     2     2 (     )

p ik p ik pe e e e
p ik p ik p ik

because e−ik2π = 1 for all integer k. Th us,

2 2 2
2

02 2 2

(1    ) 1   
| ,

4    ( 2
|

)

p p

k
e e

c c
p k p

where the expression for c0 follows because 1 − e−2πp > 0 since p > 0. 
Th erefore, (3.3.11) says

22 2 22 2
2 2 210

1 1    (1    )
2

2 2 4  ( ) 

p p
pt

k

e e
e dt

p p k

or

(3.3.15)  
2 2

2 2 2 2 2 2 210

1 1 1 1
.

2 (1    ) 4 2    
pt

p k
e dt

e p p k

Th e integral on the left  in (3.3.15) is easy to do:
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168 Chapter 3

 2 4 2 22 2 2
00

1    (1    )(1    )
|

2 2 2

pt p p p
pt e e e e

e dt
p p p

and so (3.3.15) becomes

2

2 2 2 2 2 21

1    1 1 1
4 (1    ) 4 2    

p

p k

e
p e p p k

or

2
2

2 2 2 2 21

1 1    1
2

    4 (1    ) 4

p

pk

e
p k p e p

or, at last,

(3.3.16) 
2

2 2 2 21

1 1    1
.

    2 1    2

p

pk

e
p k p e p

You’ll notice that as p decreases toward zero, the left -hand side 
of (3.3.16) approaches the value of ζ(2). Th is suggests that

(3.3.17) 
2 2

0 2 2

1    1
lim (2) .

2 1    2 6

p

p p

e
p e p

Challenge Problem 3.3.1: Sum the series 2
1 1 1 1

   1 3 15 351 4k k
1

63 ? in two diff erent ways. Hint: For one way, set t = π and 
1
2  in (3.3.14). Can you think of a more direct analysis, one that 

doesn’t use the enormous power of Fourier theory?
Challenge Problem 3.3.2: Prove (3.3.17), that 

2

2
1   

0 2 1   
lim {( ) p

p
e

p p e
2

2
1

62
}

p
. Hint: Start by making a power series expansion of e−2πp

and retain the terms up to the one in p3.
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Challenge Problem 3.3.3: In note 20 of Chapter 2 I argued that 
the Riemann-Lebesgue lemma, which says that for any well-
behaved, physically reasonable f(t) defi ned over the interval a < t < b, 
we have lim ( )cos( ) lim ( )sin( ) 0b b

m a m af t mt dt f t mt dt , and 
that an area interpretation of the integrals makes the lemma plausi-
ble. Th en, in note 9 of this chapter, it is observed that the conver-
gence of the sum in (3.3.11) says that the Fourier coeffi  cients of a 
periodically extended f(t) must go to zero as frequency increases. 
Explain how the second note provides alternative support for the 
lemma.

3.4 Calculating ζ (2n) with Fourier Series

We ended the last section with the calculation of ζ(2) using Fourier 
series. Our calculation was, in fact, a special case of a more general 
analysis but, if we are willing to give up the generality, then ζ(2) can 
be directly (and quickly) calculated in just a few easy steps. Further-
more, this approach extends in an obvious way to the calculation of 
ζ(2n) for any n, not just for n = 1.

We start by defi ning

(3.4.1) f (t) = t2, – π ≤ t ≤ π,

and then periodically extending (3.4.1) over the entire t-axis. Th at 
is, we are now working with an even periodic function with period 
T = 2π (and so ω0 = 1). (Take a look back at Figure 3.2.1.) Because 
the extended function is even, we know its Fourier series will con-
tain only cosine terms, and so the Fourier coeffi  cients bN will vanish 
for all n. Th at is, we need only to calculate the coeffi  cients a0 and 
an ≠ 0, and then substitute the results into (3.2.2). So, from (3.2.6) 
we have

(3.4.2) 2 3 2
0  

1 1 1 2
|

3 3
.a t dt t

Periodic Functions, Fourier Series, and ζ  169

Nahin.indb   169 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



170 Chapter 3

Also, from (3.2.4) we have

2 2
0  2 3

1 1 sin( ) cos( ) s
cos

in( )
) 2 |( 2n

nt nt nt
a t t t

n n n
nt dt

or

(3.4.3)    0 2

4
cos( ).na n

n

Putting (3.4.2) and (3.4.3) into (3.2.2) gives us

(3.4.4) 2 2
2   1

1 cos( )cos( )
4  ,  .

3 n

n nt
t t

n

Be careful to particularly note that the limits on t include the end-
points of the interval −π to π, because the periodically extended 
function is everywhere continuous (take another look back at Figure 
3.2.1). Th is will prove, in our later discussions, to be of crucial 
signifi cance.

Now, for the quick conclusion to our calculations: Simply set 
t = π in (3.4.4). Th at gives

2

2 2
2 2 2cos1 1 1

   1    3
)

1
(

34 4n
n nn n

or

(3.4.5) 22
4 (2),

3

which instantly gives us 
2

6(2) .
Th at was certainly easy and, in fact, this approach works just 

as smoothly for ζ(4), ζ(6), ζ(8), and so on. For example, here’s the 
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calculation for ζ(4), and be sure to notice how every step mirrors 
what we did for ζ(2). We start by defi ning

(3.4.6) 4( ) ,   f t t t

and then periodically extend this over the entire t-axis. As before, 
the resulting periodic function is even, with period T = 2π (ω0 = 1), 
and everywhere continuous. And, as before, we need calculate only 
a0 and an ≠ 0. So,

(3.4.7) 
4 5 4

0  
1 1 1 2

|
5 5

.a t dt t

Also,

4
   0

1
cos( )na t nt dt

3 4 2

2 4 3

 

5

4 cos( ) 24 cos( ) sin( ) 12 sin( )
1

|
24 sin( )

t nt t nt t nt t nt
n n n n

nt
n

or

(3.4.8) 
2

   0 2 4

8 48
cos( ).na n

n n

Th us,

(3.4.9)  
2

4 4
2 4   1

1 8 48
cos( )cos( ),    .

5 n
t n nt t

n n

Setting t = π  in (3.4.9), we get
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172 Chapter 3

2 2
4 4 2

2 4   1    1

1 cos c( ) (
48

5
)os

8
n n

n n
n n

or

4 24
8 (2) 48 (4),

5

which becomes

2
2 4 2 44 48 (2)    8    

 5 6  5(4) .
48 48

Some easy arithmetic quickly gives us our answer:

(3.4.10) 
4

(4) .
90

Rather than doing a separate analysis for each ζ(2n), there is an 
elegant procedure for calculating all the ζ(2n) at once. Th e fi rst step 
is easy: just look up the power series expansion of cot(x) about 
x = 0 (the Taylor series, aft er the English mathematician Brook Taylor 
(1685–1731), who published in 1715 but had been anticipated by 
decades by James Gregory, who you’ll recall discovered a famous 
series for 

4
) in any good set of math tables, where you’ll fi nd10

3 5 71 1 1 2 1
cot( ) ,

3 45 945 4,725
x x x x x

x

10. Calculating the Taylor series of a function f(x) is a routine exercise in fresh-
man calculus, and I’ll let you look up the details in any good textbook if you need to 
refresh your memory. Purists will say that the Taylor series around x = 0 is better 
called a Maclaurin series (aft er the English mathematician Colin Maclaurin (1698–
1746), who published in 1742, but he too was anticipated in turn by James Stirling, 
who was mentioned earlier, just aft er (1.7.26)). What a tangled web history weaves 
for math historians!

Nahin.indb   172 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



which can be written as

(3.4.11)  2 4 6 81 1 2 1
1 cot( ) .

3 45 945 4,725
x x x x x x

We’ll return to (3.4.11) in just a few more steps.
But for now, look back at (3.3.14) and set t = π in it to get

2 2 1

sin( ) 1 ( 1)
cos( ) 2 cos( )

   

k

k
k

k

or, since cos(kπ) = (−1)k, and since (−1)k(−1)k = (−1)2k = 1, we have

2 2 2 2 2 1  1

cos( ) 1 1 1 1 2 1
cot( ) 2 .

sin( )        k kk k

So,

2 2 2 1

1 2
cot( )

( )    k k

and, if we make the obvious change of variable to x = απ, we have

2 2 2 1

1 2
cot( )

   k

x
x

x x k

and this gives us

2

2 2 2 1

2
1 cot( )

   k

x
x x

x k
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174 Chapter 3

or

(3.4.12) 
2

2 2 2 1

2
1 cot( ) .

     k

x
x x

k x

We can manipulate (3.4.12) just a bit more, as follows.

2

2 2 1
2

2 2

2 1
1 cot( )

  1     
k

x
x x

xk
k

2 2 4 6

2 2 2 2 4 4 6 6 1

2 1
1 ,

   k

x x x x
k k k k

which gives us

(3.4.13) 2 4
2 2 4 4 1  1

2 1 2 1
1 cot( )

       k k
x x x x

k k

6 8
6 6 8 8 1  1

2 1 2 1
  .

       k k
x x

k k

Our fi nal step is now another easy one: We simply equate the 
coeffi  cients of equal powers of x in (3.4.13) and (3.4.11). Th is gives

2

2 2 2 1  1

2 1 1 1
or (2)

    3     6k kk k

4

4 4 4 1  1

2 1 1 1
or (4)

    45     90k kk k

6

6 6 6 1  1

2 1 2 1
or (6)

    945     945k kk k

Nahin.indb   174 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



8

8 8 8 1  1

2 1 1 1
or (8)

    4,725     9,450k kk k

and so on.
Th e use of Fourier series has reduced the calculation of ζ(2n) to 

a cookbook algorithmic procedure, one that takes a problem once 
considered to be profoundly mysterious and turns it into a routine 
homework exercise in freshman calculus. So, is this the end of the 
book? Well, of course, you know the answer is no, and that’s because 
this use of Fourier series, alas, does not work for any of the ζ(2n + 
1), starting with ζ(3), as I’ll show you in the next section.

But before we do that, let me show you one more beautiful result 
that we can tease out of (3.4.13), a result that shows how all the zeta 
functions with positive, even integer arguments are intimately tied 
together. We start with a minor rewrite of (3.4.13), to defi ne the 
function p(x):

(3.4.14) 
2

1

1
cot( ) (2 ) ( ).

2 2

k

k

x x
x k p x

When you read of this approach in technical papers, the usual tale is 
that some unnamed person in the past one day noticed that p(x) 
satisfi es the diff erential equation11

(3.4.15) 2 21 1
{ ( )}

2
(

4
) ,

d
p x xp x x

dx

and if you are puzzled by the use of the word noticed, you should 
realize that is how math journals encourage authors to save printer’s 
ink and expensive page space (it’s left  up to the reader to fi ll in all the 
missing steps). Here’s what you do next, where I’ll ignore the issue 

11. Plugging 1
2 2( ) cot( )xp x x  into the left -hand side of (3.4.15) is a routine 

exercise in AP-calculus. You should, with little diffi  culty, be able to verify the claim 
that the result is, indeed, 21

4 x .
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176 Chapter 3

of how in the world anyone would just notice the diff erential equa-
tion of (3.4.15).

Using the power series form of p(x) in (3.4.15), we have

2 22 2 1
2

1 1

1
(2 ) (2 )

2 4

k j

k j

x d x
k j x

dx

or

2 2

1 1
(2 ) (2 )

k n

k n

x x
k n

2 2
2 11

(2 1) 1
(2 )

2 4
j

jj

j
x j x

or

(3.4.16) 
2 2

1 1
(2 ) (2 )

k n

k n

x x
k n

2
2

1

2 1 1
(2 .)

2 4

j

j

j x
j x

Th ere is a lot of information packed in (3.4.16).
Since (3.4.16) has to hold for all valid values of x, then we know 

the coeffi  cients of the individual powers of x on the left -hand side 
must equal the coeffi  cients of the same powers of x on the right-hand 
side. With that single observation, we can conclude the following. 
First, the two sums in curly brackets on the left  each start with an x2

term, and that means their product starts with an x4 term. So, the 
only way to get an x2 term to correspond with the x2 term on the 
right is from the lone j = 1 term of the third sum on the left . Th at is, 
it must be true that
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2
2

1
2 1 1

(2 )|
2 4

j

j
j x

j x

or

2

3 (2) 1
2 4

and so, at last,

2 22
(2)

12 6

and we are off  to a good start, as we have a result that is consistent 
with earlier calculations. We get something new, however, when we 
turn our attention to the terms beyond x2.

Our second observation is that since there are no terms beyond 
x2 on the right-hand side of (3.4.16), then the coeffi  cients of the 
terms on the left -hand side, in powers of x4 and higher, must all be 
equal to zero. So, suppose j = t, some fi xed integer (equal to or 
greater than 2 but otherwise arbitrary) in the third sum on the left  
of (3.4.16). Th at gives us a term in x2t. To cancel that term, we need 
to add all the terms produced by the product of the fi rst two sums 
such that 2k + 2n =2t. So, since k + n = t, then as k increases from 1, 
we must have n varying as t − k and so (3.4.16) becomes

2 2( ) 2
1

1

2 1
(2 ) (2{ }) (2 ) 0,

2

k t k t
t

k

x x x t
k t k t

where you’ll notice that the index k goes only up to t − 1 (ask yourself 
what would happen if k ≥ t).

So, making the obvious cancellations of the x’s and the π’s, we 
instantly have our result, the elegant identity
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(3.4.17) 1

1

2 1
(2 ) (2{ }) (2 ), 2

2
t

k

t
k t k t t

with 2

6(2) . If t = 2, for example, (3.4.17) says k = 1 (only), and 
we have

5
(2) (2) (4)

2

or

22 4 4
22 2 2

(4) 2 ,
5 5 6 180 90

( )

which, again, agrees with a known result. Th e identity of (3.4.17) 
shows that the value of the zeta function with any positive, even 
integer argument is determined by all the values of the zeta 
function with even arguments that come before (see Challenge 
Problem 3.4.2).

Challenge Problem 3.4.1: Starting with (3.4.10), show that 
4

4 4 4
71 1 1
7202 3 4

1 .
Hint: Use (2.1.9) and (2.1.10).
Challenge Problem 3.4.2: Use (3.4.17) to fi nd the exact expression 

for ζ(10).

3.5 How Fourier Series Fail to Compute ζ(3)

In an attempt to fi nd ζ(3) in the same way we found ζ(2) and ζ(4), we 
start by trying to simply mimic what we did in (3.4.1). Th at is, by 
writing

(3.5.1) 3 ,( ) .f t t t
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Th e periodic extension of this odd f(t) over the entire t-axis will then 
involve only sine terms. Th us, with T = 2π (and so ω0 = 1), we have 
an = 0 for all n, and so

1
( ) sin( )nn

f t b nt

where

/2 3

/2

2 1
( )sin( ) sin( )

T

n T
b f t nt dt t nt dt

T

2 3

2 4 3

1 3 6 6
sin( ) cos( ) |

t t t
nt nt

n n n n

3

3

1 12 2
cos( )n

n n

2

3

12 2
cos( )n

n n

and we arrive at

(3.5.2) 
2

3
31

12 2
cos( )sin( ), .

n
t n nt t

n n

If we set t = π in (3.5.2), we get π3 = 0, a dubious claim that 
is clearly not going to be of much help. You can confi rm for 
yourself that there is, in fact, no value to which we can set t equal to 
in (3.5.2) that will give us ζ(3). What happened? Suddenly the 
Fourier method that worked so well in the previous section for ζ(2) 
and ζ(4)—and, indeed, for all the ζ(2n)—has failed us for ζ(3).

You might wonder if the immediate explanation for this failure is 
that the Fourier series expansion of a discontinuous function con-
verges, at a discontinuity, to the average of the function values on 
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each side of the discontinuity. Our odd, periodically extended t3 is 
discontinuous at t = π (just like the periodic extension of the odd 
function t, shown in Figure 3.2.2), and you’ll notice that the average 
of π3 and −π3 is zero, which is indeed the value to which (3.5.2) con-
verges at t = π. Well then, you might go on to argue, the extension of 
an odd function is not a precise mimicking of what we did for the 
even t2 and t4; so, what if we make a periodic extension of t3 that is 
even (and so continuous) over the interval −π ≤ t ≤ π? Th at is, let’s 
calculate the Fourier series of the periodic extension of

(3.5.3) 
3

3

, 0
( ) .

,  0
t t

f t
t t

Th at should give us a Fourier series that does converge to π3 at t = π. 
Let’s try that.12

We still have T = 2π (and ω0 = 1), but now the Fourier series will 
have only cosine terms (bn = 0 for all n). Th at is,

0 1

1
( ) cos( ),

2 nn
f t a a nt

where

0 3 3 4 0 4
0 00

1 1 1 1 1
| |

4 4
a t dt t dt t t

4 4 3

.
4 4 2

12. What we are doing here is called, by physicists and engineers, experimenting 
(or, even more bluntly, messing around to see what happens), and despite the sanitized 
math you fi nd in textbooks and published journal papers, this is what mathematicians 
do, too, in the privacy of their offi  ces when struggling with a new problem.
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Also,

0 3 32
0

2

2 1
( )cos( ) cos( ) cos( ) .

T

Tna f t nt dt t nt dt t nt dt
T

In the fi rst integral in the square brackets, let u = −t (du = −dt) and so

0 3 3

0

1
cos( )( ) cos( )na u nu du t nt dt

3 3 3

0 0 0

1 2
cos( ) cos( ) cos( )u nu du t nt dt t nt dt

2 3

02 4 3

2 3 6 6
cos( ) sin( ) |

t t t
nt nt

n n n n

2

2 4 4

2 3 6 6
cos( )n

n n n

and we see we are dead in the water right here, as there is no 1/n3

term. Th at is, ζ(3) cannot possibly appear in the Fourier series for 
f(t) for any value of t.

Well, okay, we have to admit that this new attempt didn’t work so 
well, either. So let’s try messing around with something really diff er-
ent, this time with the Fourier series of an unbounded function. Maybe 
doing something that dramatically “off  the wall” will accomplish the 
job of calculating ζ(3). (Hope springs eternal!) If you look back at 
(2.4.22), you’ll see there that we (Euler) derived the expression

   1

cos(2 )
ln{sin( )} ln(2)

n

nx
x

n

or, if we write 2
tx ,

   1

cos( )
ln sin ln(2) ln 2 sin .

2 2 n

t t nt
n

Periodic Functions, Fourier Series, and ζ  181

Nahin.indb   181 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



182 Chapter 3

Th at is,

(3.5.4) 
   1

cos( )
ln 2 sin .

2n

nt t
n

If you look closely at (3.5.4), you’ll recognize that the left -hand 
side is a Fourier series,13 and so we see that we have almost instantly 
gotten our hands on the Fourier series for 2ln {2 sin( )}t  without per-
forming the usual computations. (We should actually write 

2ln {|2 sin |}t , where the absolute value signs prevent the argu-
ment of the log function from being negative, which would make the 
log function imaginary.) Th e period of the Fourier series on the left  
of (3.5.4) is clearly 2π, as shown in Figure 3.5.1, which also illustrates 
that we are dealing with an unbounded function (both sides of 
(3.5.4) obviously blow up when t is any integer multiple of 2π).

Th is result may remind you of Euler’s trigonometric series in 
(2.3.1) for    

2
t , in which all the cosines of (3.5.4) are replaced with 

sines. But, of course, what a diff erence it makes to simply shift  each 
of Euler’s sines into a cosine! Th e right-hand side of (3.5.4) does 

13. Another example of Euler encountering a Fourier series before Fourier!

0

π
π–3–π

FIGURE 3.5.1.

Th e periodic, unbounded function −ln | 2 sin ( t–2)|,–∞ < t < ∞, where t is the 
horizontal axis.
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indeed blow up if t is any integer multiple of 2π, as the trigonometric 
series becomes the harmonic series. Th e blow-up is a very slow one, 
of course, as you’ll recall that the harmonic series diverges only as 
the logarithm of the number of terms.

To get something involving ζ(3) out of (3.5.4), let’s integrate 
(3.5.4) over the interval

0 :t y

02 2   1    10

sin( ) sin( )
ln 2 sin | .

2
y y

n n

t nt ny
dt

n n

Th en, integrating again, now over the interval 0 ≤ y ≤ u,

03   10 0

cos( )
ln 2 sin |

2
u y u

n

t ny
dt dy

n

3 3   1    1

cos( ) 1
n n

nu
n n

3   1

cos( )
(3)

n

nu
n

or

(3.5.5) 
3   1 0 0

cos( )
(3) ln 2 sin .

2
u y

n

nu t
dt dy

n

Alas, there are no values for u and y such that (3.5.5) can be evaluated 
to give us ζ(3). Of course, setting u = 0 results in the double integral 
vanishing, and that gives us 3

1
   1(3) n n

, but that’s hardly breaking 
news. You knew that before you got out of bed this morning!
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184 Chapter 3

With our continuing failures here (and dozens more other fl ops 
that mathematicians have suff ered over the past 250 years), it’s hard 
to escape the feeling that God, when He made the World, intention-
ally (for whatever reason) threw a tightly buttoned cloak over the 
values of all the ζ(2n + 1), starting with ζ(3). Th e zeta-3 problem is, 
for mathematicians, like the massive rock the mythologically cursed 
Sisyphus is forever almost pushing up to the top of a hill, only to have 
it every single time slip from his grasp at the very last moment before 
success and so have to helplessly watch it roll back down to the bot-
tom of the hill. A feeling of increasing despair that rivals Sisyphus’ 
has haunted mathematicians through the now nearly three centuries 
since Euler calculated ζ(2n), and one can hear their quiet dread in 
these words, written aft er yet a diff erent attack than I’ve done here 
also failed to pull aside God’s Cloak: “but as usual [my emphasis] the 
value of Σ(1/n3) remains unrevealed.”14

Challenge Problem 3.5.1: Back in Section 3.3, I showed you how 
the Gregory/Leibniz series 1 1 1

4 3 5 71  comes out of (2.3.1) 
if we substitute 2t  into Euler’s trigonometric series. A much less 
well-known series that can also be generated from (2.3.1) is 

2 1 1 1 1 1
4 3 5 7 9 111 , which looks “sorta like” its better-

known cousin but with signs that alternate every two terms. (Euler 
attributed this series to Newton.) To convince you of the likely truth 
of this claim, note that 2

4 1.1107207  , while the sum of the fi rst 
1 million terms of the series is 1.1107202 . . . . Explain how to derive 
this series. Hint: Try setting 4t  in (2.3.1) and use the Gregory/
Leibniz series at the appropriate place in your analysis.

3.6 Fourier Transforms and Poisson Summation

In this section we’ll use Fourier theory to derive a result that will be 
central to the development (in the next section) of the functional 
equation of the zeta function. Th is preliminary result, called 

14. Ralph Palmer Agnew, Diff erential Equations (McGraw-Hill, 1960), p. 367. 
But see the hopeful words of the Comte de Buff on at the end of the Epilogue.
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Poisson’s summation formula, is not without some irony, as Poisson 
(mentioned in Challenge Problem 2.1.2) was one of the more severe 
critics of Fourier’s mathematics. To derive this preliminary result, 
however, requires that we fi rst derive a preliminary result for it. A 
second-order preliminary, if you will!

Fourier series are, as we’ve been extensively discussing, 
the mathematical description of a periodic function f (t)—but 
what if we have a function f (t), defi ned over −∞ < t < ∞, that is 
not periodic? Since such a function “uses up” the entire infi nite 
t-axis, we can’t employ our earlier trick of periodically extending 
f(t) to make a periodic function, because there is nowhere left  
on the t-axis to extend f(t) into. So, a Fourier series approach is out. 
But that doesn’t mean we have hit a brick wall, as there is yet a new 
trick we can unleash (the clever mind of Fourier was not easily 
stumped).

Here’s what we are going to do. Th ink of our non-periodic f(t) as 
being periodic with an infi nite period, and so it “really is” periodic, 
and we are simply observing, as t goes from minus infi nity to 
plus infi nity, the period we just happen to be living through. Is 
this a fi endishly clever idea, perhaps even an idea with a deep 
metaphysical signifi cance15 that mere mathematical minds might 
pursue with some caution? YES! Actually, it’s a full-blown outra-
geous idea (and so you can be sure that Euler would have instantly 
embraced it) and, in the spirit of this book, one that we also can’t 
resist.

Mathematically, this idea takes the complex Fourier series equa-
tions of (3.3.1) and (3.3.5), which I’ll rewrite here as

(3.6.1) 0
0 

( ) , 2ik t
kk

f t c e T

15. What was going on in the period before the “current” period? What will 
happen in the “next” period? Such questions, while interesting, aren’t mathematics, 
and I’ll leave them for the philosophers.
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186 Chapter 3

and

(3.6.2) 0
0

1
( ) ,   2ik t

k period
c f t e dt T

T

and explores what happens to them as T → ∞. Perhaps explore is too 
gentle a word—what I’ll do is play with these two Fourier series 
equations in a pretty casual, formal way (remember how we 
pushed symbols with unbounded enthusiasm back in Chapter 1 to 
get Ramanujan’s Master Th eorem?), with little (if any) regard 
to justifying the manipulations. But—and this is most important to 
appreciate—once we are done with all the symbol pushing, none 
of our superfi cial sloppiness will matter. Once we have the “mathe-
matical answer” to our immediate question (what happens as 
T → ∞?), we can forget how we got that “answer” and simply treat 
it as a defi nition. Indeed, there are books written by pure mathema-
ticians, in discussions of the T → ∞ issue, that take precisely the 
same approach that I’ll now show you, and so we are not in complete 
disgrace.

To start, make the obvious observation that kω0 in the exponent 
of the ck integral in (3.6.2) changes by ω0 as k increases from one 
integer value to the next. If we call this change Δω, then Δω = ω0. 
Now, since 2

0 T , then as T → ∞, we see Δω = ω0 → 0, and so we’ll 
write dω instead of Δω. Th at is, as T → ∞, the change in frequency 
becomes a diff erential change. Th us, to summarize,

0
2

lim lim lim .T T T d
T

In addition, it follows that, as 2, TT k kd . Since dω is 
infi nitesimally small, as k varies from −∞ to +∞, we should see kdω 
behave like a continuous variable, that is, like ω. So,

0lim .T k
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If you accept all this (or at least are willing to hang around for a 
while to see where this is going), we can rewrite (3.6.2), as T → ∞ 
(with the period symmetrical around t = 0), as

0 0
/2 /2

/2 /2

1 1 2
lim lim ( ) lim ( )

2
T Tik t ik t

k T TT T T
c f t e dt f t e dt

T T

0
/2

/2

1 2
lim ( )

2
T ik t

TT
f t e dt

T

or

0
1

lim ( ) .
2

ik t
T kc f t e dt d

Or, if we defi ne the last integral in the square brackets as the so-
called Fourier transform of f(t), written as F(ω), then we have

(3.6.3) 
1

lim ( )
2T kc F d

where

(3.6.4) ( ) ( ) .i tF f t e dt

Finally, to close the loop, let’s now insert (3.6.3) back into (3.6.1) 
to get

0 0
1 1

( ) ( ) ( ) .
2 2

ik t ik t
k k

f t F d e F e d
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188 Chapter 3

Now, as it stands, this last expression is a mixed bag of notation, 
since parts of it are for T → ∞ and other parts of it are written as if 
T were still fi nite. If we imagine T → ∞ all through the last expres-
sion, then the summation becomes an integral and we arrive at

(3.6.5) 
1

( ) ( ) .
2

i tf t F e d

Th ese last two equations, (3.6.4) and (3.6.5), form what is called 
the Fourier transform pair, written as f(t) ↔ F(ω), where the double-
headed arrow means that each side completely determines the other 
(to support this claim of unique, one-to-one correspondence 
between a function and its Fourier transform requires a proof, which 
I’ll let you pursue in a math book deeper than this one). Th is com-
pletes the second-order preliminary result I mentioned at the start. 
We are now ready for the fi rst-order preliminary result that we’ll 
use in the next section to derive the functional equation of the zeta 
function.

Suppose we have a function f(t) defi ned over the entire infi nite 
line −∞ < t < ∞. From this f(t) we then construct another function, 
g(t), defi ned as

(3.6.6) ( ) ( ).
k

g t f t k

From (3.6.6) we have

( 1) ( 1),
k

g t f t k

which, with a change in the summation index to n = k + 1, becomes

(3.6.7) ( 1) ( ) ( ).
n

g t f t n g t

Th at is, g(t) is periodic with period T = 1.
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Since g(t) is periodic, it can be written as a Fourier series with 
ω0 = 2π (since T = 1), and so from (3.6.1) and (3.6.2) we have

(3.6.8) 2( ) in t
nn

g t c e

where

12 2

0

1
( ) ( )in t in t

n kperiod
c g t e dt f t k e dt

T

or

(3.6.9) 
1 2

0
( ) .in t

n k
c f t k e dt

If we change variable in (3.6.9) to s = t + k (and so ds = dt), then

1 12 ( ) 2 2( ) ( )
k kin s k in s ink

n k kk k
c f s e ds f s e e ds

or, as n and k are both integers, then Euler’s identity says eink2π = 1 
and therefore

(3.6.10) 
1 2( ) .

k in s
n k k

c f s e ds

Finally, observing that

1
,

k

k k

we see that (3.6.10) becomes

(3.6.11) 2 2( ) ( ) ,in s in t
nc f s e ds f t e dt
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190 Chapter 3

where the dummy variable s has been replaced by the dummy 
variable t.

Now, look back at (3.6.4) and you’ll see that (3.6.11) is

(2 ).nc F n

Putting this into (3.6.8), and using (3.6.6), we arrive at

(3.6.12) 2( ) (2 ) ( ).in t
n k

g t F n e f t k

Th is is an identity in t and, for t = 0 in particular, (3.6.12) reduces to 
Poisson’s summation formula, derived in 1827:

(3.6.13) ( ) (2 ),
k n

f k F n

which connects a sum (not an integral) over a function, to a sum 
(not an integral) over the Fourier transform of that function. Th e 
expression in (3.6.13) might look boringly benign but that’s not so, 
as the penultimate calculation of this section (giving the result we’ll 
need in the next section for the functional equation of the zeta func-
tion) will now show you.

We start with the so-called Gaussian pulse function,16

(3.6.14) 
2

( ) ,  0,  ,tf t e t

which, from (3.6.4), has the Fourier transform

16. Th is function, because of its many nice mathematical properties, is a favorite 
of physicists and electrical engineers. Th at’s because if we think of t as time, the 
Gaussian pulse is a continuous, endlessly diff erentiable description of a quantity that 
is localized in time (around time t = 0); for example, the transmission of a pulse of 
energy.
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(3.6.15) 
2

( ) .t i tF e e dt

Doing the integral in (3.6.15) may appear to be an intimidating task, 
but there is a clever, elementary way to do it. If we make the assump-
tion that we can interchange the order of diff erentiation and integra-
tion (not always true, but it can be shown to be so here), then 
diff erentiating (3.6.15) with respect to ω gives

2 2

( )t i t t i tdF d d
e e dt e e dt

d d d
2

.t i ti te e dt

If we evaluate the last integral using integration by parts,17 we get

2 21
|

2
t i t t i tte e dt e e

2

2
t i ti e e dt

2

,
2

t i ti e e dt

because 
2

lim 0t i t
t e e . But this last integral is F(ω), and so 

(remembering that i2 = −1) we have a simple fi rst-order diff erential 
equation for F(ω):

( ) ( )
2 2

dF
i i F F

d

or, separating the variables F and ω,

(3.6.16) .
2

dF
d

F

17. In the classic formula from freshman calculus, ( )|udv uv vdu, let 
u = e−iωt and 

2tdv te dt . Th en du = −iωe−iωtdt and 
21

2
tv e .
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Writing ln(C) as the constant of indefi nite integration, (3.6.16) 
integrates by inspection to

2

ln ( ) ln( )
4

F C

or

2

4( .)F Ce

To determine C, notice that C = F(0), which from (3.6.15) says

2

.tC e dt

This integral is equal18 to , and so we have the Fourier 
transform pair

(3.6.17) 
2

2
4( ) ( ) .tf t e F e

Notice that (3.6.17) says a Gaussian pulse in the time domain has a 
Fourier transform that is also a Gaussian pulse in the frequency 
domain.

Using (3.6.17) in the Poisson summation formula of (3.6.13) 
gives us our prize, the wonderful identity

(3.6.18) 
2 2

2

,
n

k
k n

e e

18. In Appendix 2, it is shown that 
2

1
0 2

xe dx . Since the integrand is even, 
we immediately have 

2xe dx , and a change of variable to x t  gives 
2te dt .
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which we will fi nd invaluable in the next section, where I’ll show you 
how Riemann used (3.6.18) in a derivation of the functional equa-
tion of the zeta function.

Now, before we leave this section, let me end it by showing you 
a beautiful physical interpretation of the Fourier transform, just to 
convince you that all of our fancy math hasn’t left  the real world 
behind. You’ll recall from (3.3.9) that we defi ned the energy of a 
real-valued, periodic f(t) to be

2 ( ) .
period

W f t dt

(We talked in terms of energy per period, that is, power for a periodic 
function, because, obviously, the total energy over all time of any 
periodic, endlessly repeating function is infi nite.) For a non-peri-
odic, real-valued f(t) defi ned over all time (as we are considering 
here), the total energy can be fi nite, and we simply extend the energy 
defi nition in the obvious way to

2 ( .)W f t dt

We can write W in terms of the Fourier transform of f(t) as fol-
lows. F(ω) as written in (3.6.4) is, in general, complex, and its com-
plex conjugate is found (as with any complex quantity) by simply 
reversing the sign of every appearance of 1i  to give

* (( .) ) i tF f t e dt

Now, writing f 2(t) = f(t)f(t), we have

1
( ) ( ) ( ) ( )

2
i tW f t f t dt f t F e d dt

where (3.6.5) has been used to replace the second f(t) in f(t)f(t). If, 
as usual, we assume we can reverse the order of integration, then
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1
( ) ( )

2
i tW F f t e dt d

* 21 1
( ) | ( )| .

2 2
( )F F d F d

It is easy to show that | F(ω)|2 is an even function19 of ω, and so

2 2

0 0

1 1
2 | ( )| | ( )| .

2
W F d F d

Th e quantity 21 | ( )|F  is called the energy spectral density of f(t). 
Th e energy spectral density represents how the energy of f(t) is dis-
tributed over frequency, a result called Rayleigh’s energy theorem, 
aft er the English mathematical physicist John William Strutt (1842–
1919), better known as Lord Rayleigh (winner of the 1904 Nobel 
Prize in physics), who stated it in 1889. Rayleigh’s energy theorem 
is the non-periodic version of Parseval’s power formula in (3.3.11) 
for infi nite energy, periodic functions. In general,

(3.6.19) 2

1

21
| ( )|F d

is the energy of f(t) that is in the frequency interval ω1 < ω < ω2.
Challenge Problem 3.6.1: Th e identity in (3.6.18) is pretty amazing 

and, since we got it through what many might charitably call a “maze 
of manipulations,” you might be secretly wondering whether (3.6.18) 
is right. So, (a) confi rm that if α = π, then (3.6.18) immediately 
reduces to an obviously true identity. (b) As a more detailed check 
for the general case of α ≠ π, suppose we pick (for no special reason) 
α = 1. Th en (3.6.18) becomes the claim 

2 2 2k n
k ne e  or 

19. Since ( ) ( ) ,i tF f t e dt  then *( ) ( ) ( )i tF f t e dt F . Now, 
2 *(| ( )| ( ()) ( ) )F F F F F , which is obviously unchanged if we write −ω for 

each ω. Th at is, |F(ω)|2 is even.
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(as you should confi rm) 
2 2 2

1 11 2 (1 2 )k n
k ne e . Since the 

exponentials go to zero pretty fast as k and n increase, the numerical 
values of each side of this last expression should be closely approxi-
mated with the use of only the fi rst few terms. In fact, by direct 
numerical calculation, show that using just the fi rst three (!) terms in 
each sum gives numbers that don’t begin to disagree until the sixth 
decimal place.

Challenge Problem 3.6.2: If you look in any good book of math 
tables, in the section on defi nite integrals, you’ll fi nd the entry 

2

2
sin )

2
(

0
ax a

x
dx . Th is important integral occurs in numerous applica-

tions in physics (optics) and electrical engineering (communication 
and information theory). See if you can derive it. Hint: Start with 

1, 0 1
0,  otherwise( ) { tf t , and then use Rayleigh’s energy theorem.

Challenge Problem 3.6.3: In note 14 of Chapter 1, I told you about 
Dirac’s impulse function .  0

0,  0( ) { t
tt , with the property ( ) 1t dt  . 

An interesting question is: What is the energy of δ (t)? One might be 
tempted to say that it’s infi nite, because at t = 0 the function is infi -
nite. But one might be equally tempted to reject that, because δ (t) 
is non-zero only for a time interval of zero duration. You now know 
enough to resolve this puzzle, as outlined in the following three 
steps: (a) If φ(t) is a smoothly varying, always fi nite (but otherwise 
arbitrary) function, give a “justifi cation” for why ( ) ( )   (0)t t dt  . 
Hint: Don’t be afraid to think like a physicist or an engineer (in other 
words, two plus two is still four but otherwise be fearless). (b) Cal-
culate the Fourier transform of δ (t), using the result of (a). Hint: Let 

( ) i tt e . (c) Calculate the energy of δ (t), using the result of (b) 
and Rayleigh’s energy theorem.

3.7 The Functional Equation of 
the Zeta Function

Th is fi nal section of the chapter is all about the genius of Bernhard 
Riemann. I touched on him just a bit at the start of Chapter 1, and 
here I’ll elaborate on what I wrote there. He died far too young, of 
tuberculosis, at age 39, and yet though he was just reaching the full 
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power of his intellect when he departed this life, he left  mathematics 
with what professional mathematicians think is its greatest unsolved 
problem, a problem that has oft en been described as the ultimate 
Holy Grail of mathematics. It’s a problem so diffi  cult, and so mysteri-
ous, that many mathematicians have seriously entertained the pos-
sibility that it can’t be solved.

Well, you might ask, why isn’t this book about that problem, 
instead of being about zeta-3? Th e answer is that Riemann’s problem 
doesn’t satisfy all my selection criteria; in particular, a grammar 
school student is going to need a lot more than he/she has got to 
understand the question. So, the fi rst part of this section is my 
attempt to fi ll in that missing background. Th e zeta-3 problem is, 
however, closely linked to Riemann’s problem, because both involve 
the zeta function.

Riemann’s problem is the famous Riemann Hypothesis (RH), 
discussed in the second box of Section 1.2, a conjecture which has 
so far soundly defeated (since Riemann formulated it in 1859) all the 
eff orts of the greatest mathematical minds in the world (including 
Riemann’s) to either prove or disprove it. Forty years aft er its con-
jecture, and with no solution in sight, the great German mathemati-
cian David Hilbert (1862–1943) decided to add some incentive. In 
1900, at the Second International Congress of Mathematicians in 
Paris, he gave a famous talk titled “Mathematical Problems.” During 
that talk he discussed some problems that he felt represented poten-
tially fruitful directions for future research. Th e problems included, 
for example, determining the transcendental nature (or not) of 22 , 
resolving the issue of Fermat’s Last Th eorem (FLT), and resolving 
the RH, in decreasing order of diffi  culty (in Hilbert’s estimation).

All of Hilbert’s problems became famous overnight, and to solve 
one brought instant celebrity among fellow mathematicians. 
Hilbert’s own estimate of the diffi  culty of his problems was slightly 
askew, however, as the 22  issue was settled by 1930 (it is transcen-
dental), and Fermat’s Last Th eorem was laid to rest by the mid-
1990s. Th e RH, however, the presumed easiest of the three, has 
proven itself to be the toughest. Hilbert eventually came to appreci-
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ate this. A well-known story in mathematical lore says he once 
remarked that, if he awoke aft er sleeping for 500 years, the fi rst ques-
tion he would ask is: “Has the Riemann hypothesis been proven?” 
Th e answer is currently still no. A century aft er Hilbert’s famous talk 
in Paris, the Clay Mathematics Institute in Cambridge, MA, pro-
posed in 2000 seven so-called “Millennium Prize Problems,” with 
each to be worth a 1 million dollar award to its solver. Th e RH is one 
of those elite problems and, as I write in 2021, the 1 million dollars 
for its solution remains unclaimed.

Th e RH is important for more than just being famous for being 
unsolved; there are numerous theorems in mathematics, all of which 
mathematicians believe to be correct, that are based on the assumed 
truth of the RH. If the RH is someday shown to be false, the existing 
proofs of all those theorems collapse, and they will have to be revis-
ited and new proofs (hopefully) found.

Riemann began his study of the zeta function

   1

1 1 1
( ) 1

2 3s s sn
s

n

because of Euler’s connection of it to the primes in (1.3.11) 
(Riemann called it his “point of departure”), with the thought that 
studying ζ (s) would aid in his quest for a formula for π(x), defi ned to 
be the number of primes not greater than x. π(x) is a measure of how 
the primes are distributed among the integers. It should be obvious 
to you that π(1/2) = 0, that π(2) = 1, and that π(6) = 3, but perhaps 
it is not quite so obvious that π(1018) = 24,739,954,287,740,860. 
When Riemann started his studies of the distribution of the primes, 
one known approximation to π(x) was the so-called logarithmic inte-
gral, written as

2
li( ) ,

ln( )
x du

x
u

which is actually a pretty good approximation to π(x). For example,
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198 Chapter 3

(1,000) 168
0.94 ,

li(1,000) 178

(100,000) 9,592
0.99 ,

li(100,000) 9,630

(100,000,000) 5,761,455
0.999 ,

li(100,000,000) 5,762,209

(1,000,000,000) 50,847,478
0.9999 .

li(1,000,000,000) 50,849,235

In an 1849 letter, Gauss, who signed off  on Riemann’s 1851 doctoral 
dissertation with a glowing endorsement, claimed to have known of 
this behavior of li(x) since 1791 or 1792, when he was just 14. With 
what is known of Gauss’ genius, there is little doubt that is true.

Numerical calculations like those above immediately suggest the 
conjecture

( )
lim 1,

li( )x
x
x

which is a statement of what mathematicians call the prime number 
theorem. Although highly suggestive, such numerical calculations 
of course prove nothing, and in fact it wasn’t until 1896 that math-
ematical proofs of the prime number theorem were simultaneously 
and independently discovered by Charles-Joseph de la Vallée-
Poussin (1866–1962) in Belgium and Jacques Hadamard (1865–
1963) in France. Each man used very advanced techniques from 
complex variable function theory, applied to the zeta function. It 
was a similar quest (using the zeta function as well) that Riemann 
was on in 1859, years before either Vallée-Poussin or Hadamard had 
been born.

To start his work, Riemann immediately tackled a technical issue 
concerning the very defi nition of ζ (s), namely, the sum converges 
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only if s > 1. More generally, if we extend the s in Euler’s defi nition 
of the zeta function in (1.2.6) from being real to being complex 
(that is, if we write s = σ + it), then ζ (s) makes sense only if σ > 1. 
Riemann, however, wanted to be able to treat ζ (s) as defi ned every-
where in the complex plane or, as he put it, he wanted a formula for 
ζ (s) “which remains valid for all s.” Such a formula would give the 
same values for ζ (s) as does Euler’s defi nition (1.2.6) when σ > 1, but 
it would also give sensible values for ζ (s) even when σ < 1. Riemann 
was fabulously successful in discovering how to do that. He did it by 
discovering what is called the functional equation of the zeta func-
tion, and, just to anticipate things a bit, here it is (we’ll have derived 
it by the end of this section):

   1( ) 2(2 ) sin (1 ) (1 ).
2

s s
s s s

Riemann’s functional equation of the zeta function is considered 
to be one of the gems of mathematics. Here’s how it works. What we 
have is

   1( ) ( ) (1 ), ( ) 2(2 ) sin (1 ).
2

s s
s F s s F s s

F(s) is a well-defi ned function for all σ. So, if we have an s with 
σ > 1, we’ll use Euler’s formulation in (1.2.6) to compute ζ (s), but if 
σ < 0, we’ll use the functional equation (along with Euler’s formula-
tion in (1.2.6) to compute the factor ζ (1 − s) on the right-hand side of 
the functional equation, because the real part of 1 − s is > 1 if σ < 0).

Th ere is, of course, the remaining question of how to compute 
ζ (s) for the case of 0 < σ < 1, for which s is in the so-called critical 
strip (a vertical band with width 1 extending from −i∞ to +i∞). Th e 
functional equation doesn’t help us now, because if s is in the critical 
strip, then so is 1 − s. Th is is actually a problem we’ve already solved, 
however, as you can see by looking back at the solution to Challenge 
Problem 2.1.3, which uses the eta function
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200 Chapter 3

1
1

   1

( 1)
( ) [1 2 ] ( ).

k
s

sk
s s

k

So, for example, right in the middle of the critical strip, on the real 
axis, we have s = 1/2, and to repeat the Challenge Problem solution 
just a bit, we have

11 1 ( )
2

1/2   1

( 1) 1 1 1 1 1
1 2 .

2 1 2 3 4

k

k k

Th us,

1 1 1 1 1
1 .

2 1    2 2 3 4

If we keep the fi rst 1 million terms—a well-known theorem in fresh-
man calculus tells us that any alternating series (with monotonically 
decreasing terms approaching zero) always converges (look back at 
note 6 in Chapter 1), and the maximum error made in using just a 
fi nite number of terms in a partial sum is less than the fi rst term 
neglected—our error for a partial sum using 1 million terms should 
then be less than 10−3, and we get

1
1.46.

2

For Euler’s case of s purely real, the plots (generated by 
MATLAB’s zeta function) in Figure 3.7.1 show the general behavior 
of ζ (s). (Compare the calculated value of 1

2( ) with the lower-right 
plot.) For s > 1, ζ (s) smoothly decreases from +∞ toward 1 as s 
increases from 1, while for s < 0, ζ (s) oscillates, eventually heading 
off  to −∞ as s approaches 1 fr om below. Figure 3.7.1 indicates that 
ζ (0) = −0.5 (a result we discussed in the previous chapter), and later 

Nahin.indb   200 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



in this section, I’ll show you how to derive 1
2(0)  using the func-

tional equation. Figure 3.7.1 also shows that ζ′(0) < 0, a result we 
already know from our exact calculation of ζ′(0) in (2.6.4). Notice, 
too, that Figure 3.7.1 hints at ζ (s) = 0 for s a negative, even integer, 
another conclusion supported by the functional equation.

To make that last observation crystal clear, let’s write s = −2n, 
where n = 0, 1, 2, 3, . . . Th en the functional equation becomes

2 (2    1)( 2 ) 2 (1 2 )sin( ) (1 2 ) 0n nn n n n

because all of the factors on the right of the fi rst equality are fi nite 
for all n, including sin(nπ), which is, of course, zero for all integer n. 
We must exclude the case of n = 0, however, because then ζ (1 + 2n) 
= ζ (1) = ∞, and this infi nity is suffi  cient to overwhelm the zero 
value of sin(0). We know this because ζ (0) ≠ 0. When a value of 
s gives ζ (s) = 0 then we call that value of s a zero of the zeta 
function. Th us, all the even, negative integers are zeros of ζ (s), and 

6

4

2

0
1 2 3 4

0

–5

–10
–2 –1 0 1

0.0

–0.5

–1.0

–1.5
–0.5 0.0

ss

ss

ζ (s) vs. s ζ (s) vs. s

ζ (s) vs. s ζ (s) vs. s

0.5

0.01

0.00

–0.01

–0.02

–0.03
–8 –6 –2–4 0

FIGURE 3.7.1.

Th e zeta function for real s.
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202 Chapter 3

because they are so easy to compute, they are called the trivial zeros 
of ζ(s). Th ere are other zeros of ζ(s), however, which are not so easy 
to compute,20 and where they are in the complex plane is what the 
RH is all about.

Here is what Riemann correctly believed about the non-trivial 
zeros (even if he couldn’t prove all the following in 1859):

1. Th ey are infi nite in number.
2. All are complex (of the form s = σ + it, t ≠ 0).
3. All are in the critical strip (0 < σ < 1).
4. Th ey occur in pairs, symmetrically displaced around the vertical 

σ = 1/2 line (called the critical line), that is, if 1
2 it  is a zero for some 

t, then so is 1
2 it  for some ε in the interval 1

20 .
5. Th ey are symmetrical about the real axis (t = 0); that is, if σ + it is a zero, 

then so is σ − it (the zeros appear as conjugate pairs).

Th e RH is now easy to state: ε = 0. Th at is, all of the complex 
zeros are on the critical line and so have a real part exactly equal to 

1
2 . As Riemann conjectured, “it is very probable [my emphasis] 

that all the [complex zeros are on the critical line].” Since 1859, all 
who have tried to prove the RH have failed, including Riemann, who 
wrote: “Certainly one would wish [for a proof ]; I have meanwhile 
temporarily put aside the search for [a proof ] aft er some fl eeting 
futile attempts, as it appears unnecessary for [fi nding a formula for 
π(x)]” (see Edwards, Riemann’s Zeta Function).

Th ere does appear, at fi rst glance, to be quite substantial compu-
tational support for the truth of the RH. Ever since Riemann himself 

20. Th e methods used to compute the non-trivial zeros are far from obvious 
and are certainly beyond the level of this book. If you are interested in looking 
further into how such computations are done, I can recommend the following 
four books: (1) H. M. Edwards, Riemann’s Zeta Function (Academic Press, 1974); 
(2) E. C. Titchmarsh, Th e Th eory of the Riemann Zeta-Function, 2nd edition, revised 
by D. R. Heath-Brown (Oxford Science Publications, 1986); (3) Aleksandar Ivić, Th e 
Riemann Zeta-Function ( John Wiley & Sons, 1985); and (4) Peter Borwein et al., 
editors, Th e Riemann Hypothesis (Springer, 2008).
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hand computed the locations of the fi rst three complex zeros,21 with 
the aid of electronic computers, the past few decades have seen that 
accomplishment vastly surpassed. In 2004, the fi rst 1013 (yes, 10 tril-
lion!) zeros were shown to all be on the critical line. Since even a 
single zero off  the critical line, by even the smallest amount, is all 
that is needed to disprove the RH, this looks pretty impressive—but 
mathematicians are, frankly, not impressed. As Ivić wrote in his book 
(see note 20), “No doubt the numerical data will continue to accrue, 
but number theory is unfortunately one of the branches of mathe-
matics where numerical evidence does not count for much.”

21. Because of the symmetry properties of the complex zero locations, one only 
has to consider the case of t > 0. Th e value of t for a zero is called the height of the 
zero, and the zeros are ordered by increasing height. Th e fi rst six zeros are shown in 
Figure 3.7.2, where a zero occurs each place 1

2| ( )|it  touches the vertical t-axis. 
(Th e horizontal axis is the magnitude of 1

2( )it .) Th e heights of the fi rst six zeros 
are 14.134725, 21.022040, 25.010856, 30.424878, 32.935057, and 37.586176. In addi-
tion to the fi rst 1013 zeros, billions more zeros at heights as large as 1024 have also been 
confi rmed to all be on the critical line.

40

35

30

25

20

15

10

5

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Magnitude of ζ (1–2 + it)

t

FIGURE 3.7.2.

Th e fi rst six zeros of ζ (1–2  + it).
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204 Chapter 3

Th ere are, in fact, lots of historical examples in mathematics 
where initial, seemingly massive computational “evidence” has 
prompted conjectures that later proved to be false. A particularly 
famous example involves π(x) and li(x). For all values of x for which 
π(x) and li(x) are known, π(x) < li(x). Furthermore, the diff erence 
between the two increases as x increases and, for large x, the diff er-
ence is signifi cant; for x = 1018, for example, d(x) = li(x) − π(x) ≈ 
22,000,000. Based on this impressive numerical “evidence,” it was 
commonly believed, for a long time, that d(x) > 0 for all x. Gauss 
believed this (as did Riemann) all his life. But it’s not true.

In 1912, Hardy’s friend and collaborator J. E. Littlewood (1885–
1977) proved that there is some x for which d(x) < 0. Two years later, 
he extended his proof to show that as x continues to increase, the 
sign of d(x) fl ips back and forth endlessly. Th e value of x at which the 
fi rst change in sign of d(x) occurs is not known, only that it is very 
big. In 1933 Littlewood’s student, the South African Stanley Skewes 
(1899–1988), derived a stupendously huge upper bound on the 
value of that fi rst 

79 341010: 10
eex e . Th is has become famous in mathe-

matics as the fi rst Skewes number. In his derivation, Skewes assumed 
the truth of the RH, but in 1955 he dropped that assumption to cal-
culate a new upper bound for the fi rst x at which d(x) changes sign: 
Th is is the second Skewes number, equal to 

1,000101010 , and it is tremen-
dously larger than the fi rst one. (In 2000 the upper bound was 
reduced to “just” 1.39 × 10316.) All of these numbers are far beyond 
anything that can be numerically studied on a computer, and the 
trillions of complex zeros that have all been found on the critical line 
are minuscule in number in comparison. It is entirely possible that 
the fi rst complex zero off  the critical line (thus disproving the RH) 
may not occur until a vastly greater height is reached than has been 
examined so far.

Some mathematicians have been markedly less than enthusiastic 
about the RH. Littlewood, in particular, was quite blunt, writing “I 
believe [the RH] to be false. Th ere is no evidence for it. . . . One 
should not believe things for which there is no evidence. . . . I have 
discussed the matter with several people who know the problem in 
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relation to electronic calculation; they are all agreed that the chance 
of fi nding a zero off  the line in a lifetime’s calculation is millions to 
one against it. It looks then as if we may never know.”22 A slightly 
more muted (but perhaps not by much) position is that of the Amer-
ican mathematician H. M. Edwards (1936–2020), who wrote in his 
classic book on the zeta function (see his Riemann’s Zeta Function): 
“Riemann based his hypothesis on no insights . . . which are not 
available to us today . . . and that, on the contrary, had he known 
some of the facts which have since been discovered, he might well 
have been led to reconsider . . . unless some basic cause is operating 
which has eluded mathematicians for 110 years [160 years now, as I 
write in 2020], occasional [complex zeros] off  the [critical] line are 
altogether possible. . . . Riemann’s insight was stupendous, but it 
was not supernatural, and what seemed ‘probable’ to him in 1859 
might seem less so today.”

Okay, that’s a short history of the RH, but more to the point here, 
where does the functional equation of the zeta function come from? 
Th e derivation of the functional equation for ζ (s) that appears in 
Riemann’s famous 1859 paper uses the advanced math of complex 
function theory, which is just beyond the level of this book. So, what 
I’ll now show you is a diff erent derivation (but one also due to 
Riemann) that makes clever use of nothing but AP-calculus. We start 
with the integral

   1

0
,  1,  0,m axx e dx m a

and make the change of variable u = ax (and so dx = du/a). Th us,

   1
   1    1

0 0 0

1
      .

m
m ax u m u

m

u du
x e dx e u e du

a a a

22. From Littlewood’s essay, “Th e Riemann Hypothesis,” in I. J. Good, editor, 
Th e Scientist Speculates: An Anthology of Partly-Baked Ideas (Basic Books, 1962).
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206 Chapter 3

Th e right-most integral is, from (1.4.1), Γ(m), and so

(3.7.1)    1

0

( )
.m ax

m

m
x e dx

a

Now, if we let

1 1
1 1 that is,

2 2
m s m s

and

2 ,a n

then (3.7.1) becomes

(3.7.2) 2
1

     1
2

1 10    2 2 2

1 1   
2 2  .

( )

s n x

s s s

s s
x e dx

n n

Th en, summing (3.7.2) over all positive integer n, we have

2
1

     1
2

1   1    10  
2

1  
2 

s n x
n n s s

s
x e dx

n

or, reversing the order of summation and integration on the left ,

(3.7.3) 2
1

     1
2

   10
   

s n x
n

x e dx

1 1
       
2 2

   1

1 1 1
    ( ).

2 2
s s

sn
s s s

n
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At this point Riemann defi ned the function

(3.7.4) 
2

   1
) ,( n x

n
x e

and then used the identity23

(3.7.5) 
2 2  /

         
.

1n x n x
n n

e e
x

Th e left -hand side of (3.7.5) is (because n2 > 0 for n negative or 
positive) 2 21

         11n x n x
n ne e

2 2

   1    11 2ψ( ) 1n x n x
n ne e x . 

Th e right-hand side of (3.7.5) is (for the same reason)

2 /
     

1 1 1
2ψ 1 .n x

n
e

xx x

Th us,

1 1
2ψ( ) 1 2ψ 1x

xx

or, solving for ψ(x),

(3.7.6) 2

   1

1 1 1 1
ψ ) ψ

22
.( n x

n
x e

xx x

23. Recall that we derived the identity 2 2 2  /
       

k n
k ne e  in (3.6.18). 

If you write α = πx, then (3.7.5) immediately results.
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208 Chapter 3

Now, putting (3.7.4) into (3.7.3) gives us

1 1
1

2 2
0

1
  ( ) (

2
)

s s
s s x x dx

or, breaking the integral into two parts,

(3.7.7) 
1 1 1

1 11
2 2 2

0 1
( ) ( .

2
)

1
  ( )

s s s
s s x x dx x x dx

Using (3.7.6) in the fi rst integral on the right of (3.7.7), we have

1 1
  11

2 2
0

1 1 1 1 1
  ( )

2 22

s s
s s x dx

xx x

1
1

2
1

( )
s

x x dx

1
1

2
1 1 3

1      1
2 2

0 0

1
2

0

1
( )

1
.

1
22

s ss
dx x x dxd x

x
x x

x

Th e fi rst integral on the right is easy to do (for s > 1):

1 1 3 1
1   11 1 1

2 2 2 2
0 0 0

1 1 1 1
2 2 22

s s s
x dx x dx x dx

x

1 1 1
         

2 2 2
1 1
0 0

1 1 1 1
| |

1 1 1 1 12 2 2               
2 2 2 2 2

s s
x x

s s s

1 1 1 1 1
.

12   1    (   1  )   
2

s s s ss
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Th us,

(3.7.8) 
1 1 3 1

      11
2 2 2 2

0 1

1 1 1
  ( ) ( ) .

2 (   1  )
s s s

s s x dx x x dx
s s x

Next, in the fi rst integral on the right in (3.7.8), make the change 
of variable 1

xu  (and so 2
du
u

dx ). Th en

3 31 1
2 2 2 2

2

1 11 1
0 ( ) ( ) ( ){ }s s du

x u u
x dx u

1 1
2 2

1 1
2 2

1
1 1( ) ( )

s

s

u
u du x x dx

and therefore (3.7.8) becomes

(3.7.9) 
1 1 1 1

                 1
2 2 2 2

1

1 1
  ( ) ( ) .

2 (   1  )
s s s

s s x x x dx
s s

All we need do now is notice, as did Riemann, that the right-hand 
side of (3.7.9) is unchanged if we replace every occurrence of s with 
1 − s. Try it and see. But that means we can do the same thing on the 
left -hand side of (3.7.9), because, aft er all, (3.7.9) is an identity. Th at 
is, it must be true that

(3.7.10) 
1 1

   (1 )
2 21 1   

( ) (1 ).
2 2

s s s
s s s

We are now almost done, with just a few more routine steps 
to go.

Solving (3.7.10) for ζ (s), we have

(3.7.11) 1
2

1   
2( ) (1 ).

1  
2

s

s

s s
s
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210 Chapter 3

Now, recall (2.2.7), one of the forms of Legendre’s duplication 
formula:

1
 2 21

! ! 2 2 !
2

( )zz z z

or, expressed in gamma notation,

(3.7.12) 
1

 2 21
( 1) 2 (2 1).

2
zz z z

If we write 2z + 1 = 1 − s, then z = −s/2, and (3.7.12) becomes

1
21 1   

1 2 (1 ) 1
2 2 2 2 2

ss s s s
s

or

(3.7.13) 

1
21    2 (1    )

.
2 1   

2

ss s
s

From (1.4.20), the refl ection formula for the gamma function,

( ) (1 )
sin( )

m m
m

or, with 2
sm ,

1
2 2 sin

2

s s
s
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and this says that

(3.7.14) 
1 .

2 sin
2 2

s
s s

So, putting (3.7.14) into (3.7.13), we have

1
12  
21    2 (1    )

2 sin (1    )
2 2 2

sin
2 2

s
ss s s s

s

s s

or

(3.7.15) 
1
2

1   
2 2 sin (1    ).

2
2

s

s
s

s
s

Inserting (3.7.15) into (3.7.11), we arrive at

1 1
     

2 2( ) 2 sin (1    ) (1 )
2

s s s
s s s

and so, at last, we fi nally have our prize:

(3.7.16)    1( ) 2(2 ) sin (1    ) (1 ),
2

s s
s s s
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212 Chapter 3

which is the functional equation of the zeta function.
As a simple test of (3.7.16), suppose 1

2s . Th en

1
 
21 1 1

2(2 ) sin ,
2 4 2 2

which says, once we cancel the 1
2( ) on each side,24 that

2 1
1 sin .

4 22

Is this correct? Yes, because the right-hand side is

2 1
1.

2

So, (3.7.16) is consistent for 1
2s .

As an example of how (3.7.16) works, let’s use it to calculate 
ζ (−1). Th us, with s = −1,

2( 1) 2(2 ) sin (2) (2).
2

Since Γ(2) = 1, 2sin 1, and 2

6(2) , then

2

2
2 1

6 124
( 1) ( 1) ,

just as Ramanujan got (with far more by-guess-by-gosh-anything-
goes symbol pushing) in (2.1.11).

As a second illustration of (3.7.16) in action, I’ll use it next to 
calculate the value of ζ (0), which of course we already know from 

24. We know we can do this, because as we determined earlier by direct com-
putation, 1

2 1.46 0.
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Challenge Problem 2.1.3. If we do something as crude as just shove 
s = 0 into (3.7.16), we quickly see that we get nowhere:

   1(0) 2(2 ) sin(0) (1) (1)  ?,

because the zero of sin(0) and the infi nity of ζ (1) are at war with 
each other. Which one wins? To fi nd out, we’ll have to be a lot more 
subtle in our calculations. Strange as it may at fi rst seem, we’ll get 
our answer by studying the case of s = 1 (not s = 0), which I’ll simply 
ask you to take on faith as we start.

Looking back at (3.7.9), we have

1 1 1
             1
2 2 2

1 1 1       
2 2

1 1
( ) .

1 1    1   
2 2

s s

s s
s x x x dx

s s s s

If we let s → 1, then we see that the right-hand side does indeed blow 
up (as it should, because ζ (1) = ∞), strictly because of the fi rst term 
on the right, alone, since the integral term is obviously convergent.25

In fact, since 
11
22

( )1
1 2lim ( ) 1s

s s s , then ζ (s) blows up like 
1/(s − 1) as s → 1. Remember this point—it will prove to be the key to 
our solution. (You’ll recall we already know this, from our work in 
Section 2.5.)

Now, from (3.7.16) we have

   1

( )
(1 ) .

2(2 ) sin (1    )
2

s

s
s

s s

25. I use the word “obviously” because, over the entire interval of integration, 
the integrand is fi nite and goes to zero very fast as x → ∞. Indeed, the integrand 
vanishes even faster than exponentially as x → ∞, which you can show by using 
(3.7.4) to write 

2 4 9 2 3
1( ) n x x x x x x x

nx e e e e e e e , a 
geometric series easily summed to give  

1
   1

( ) ,  0xe
x x , which behaves like e−πx for 

x large. With s = 1 the integrand behaves (for x large) like 3/2 1/2

( )

   

xx e
x xx x

 for x large.
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214 Chapter 3

From the refl ection formula for the gamma function (1.4.20), 
we have

( ) 1   
sin( )

s s
s

and so

(1    ) ,
( )sin( )

s
s s

which says

1 1

( ) ( )sin( ) ( )
(1 ) .

2(2 ) sin   2 (2 ) sin
2 ( )sin( ) 2

s s

s s s s
s

s s
s s

Since 2 2sin( ) 2 cos( )sin( )s ss , we arrive at

(3.7.17) 
1

( )cos ( )
2(1 ) ,

(2 )  s

ss s
s

an alternative form of the functional equation for the zeta function. 
Th is is the form we’ll use to let s → 1, thus giving ζ (0) on the left .

So, from (3.7.17) we have

11 1 1

( )cos
(1)2lim 1 (0) lim limcos ( )

(2
(

)
)

  2ss s s

ss s
s

s s
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1

1
limcos ( )

2s

s
s

or

(3.7.18) 
1

cos
1 2(0) lim

  1 s

s

s

where I’ve used our earlier conclusion that ζ (s) behaves like 1
   1s

 as 
s → 1. Th e limit in (3.7.18) gives the indeterminate result 0

0 , and so 
we use L’Hôpital’s rule to compute

1 1

cos    sin
21 1 2 2(0) lim lim

1{   1  }
s s

d s s
ds

d s
ds

and, at last, we have our answer:

1
(0) .

2

Now, here’s a fi tting note on which to end this chapter on amaz-
ing mathematics: In 1749, more than a century before Riemann, 
Euler guessed (3.7.17)! As he wrote,26 “I shall hazard the following 
conjecture [and then follows the equivalent of (3.7.17)].” Riemann 
was the fi rst to prove the functional equation, yes, but Euler was the 
fi rst to know it.

26. See Raymond Ayoub, “Euler and the Zeta Function,” American Mathemati-
cal Monthly, December 1974, pp. 1067–1086.
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216 Chapter 3

Challenge Problem 3.7.1: If s = x + it, x > 1, fi nd expressions (as 
infi nite sums) for the real and imaginary parts of ζ(s). Use your 
expressions to calculate the value of ζ(2 + i). Hint: A look back at 
Challenge Problem 1.1.1 may be helpful.

Challenge Problem 3.7.2: Calculate the numerical value of 1
2( )

to at least four decimal places. Compare your answer to the lower-
right plot of Figure 3.7.1. Hint: Start with 1

2s  and then use the 
functional equation of the zeta function.
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CHAPTER 4

Euler Sums, the 
Harmonic Series, 

and the Zeta 
Function

4.1 Euler’s Original Sums

From Chapter 1 you’ll recall (1.2.3):

1

1 1 1 1
( ) 1  ,  1.

2 3
q

k
h q q

k q

In 1775 Euler arrived at the following two amazing expressions (now 
called Euler sums) involving h(q) and values of the zeta function:

(4.1.1) 21

( )
2 (3) 2.404113

q

h q
q

and
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218 Chapter 4

(4.1.2) 
4

31

( ) 5
(4) 1.352904 .

4 72q

h q
q

Are you surprised to see π 4 come out of the sum in (4.1.2)? Was Euler 
right? Well, he was, aft er all, Euler, and so it’s a lot better than an even 
bet he was right, but even Euler liked to check his work with numer-
ical confi rmation. Still, even for Euler, doing the sums in (4.1.1) and 
(4.1.2) for even a small number of terms must have been pretty 
grubby work, but today we can easily and quickly convince ourselves 
that (4.1.1) and (4.1.2) are “pretty likely” correct. I am speaking, 
of course, of directly computing those sums on an electronic 
computer.

Indeed, those are simple enough calculations, in principle, that 
they could be programmed on a hand-held calculator. Th e following 
box shows how to code (4.1.1) using just a couple of loops (the code 
euler1775.m is in MATLAB, but equivalent codes in other scientifi c 
programming languages would look quite similar). Th is is an engi-
neering approach that many mathematicians view with various 
degrees of regret, but let’s do it anyway.

Figure 4.1.1 shows a semi-log plot of the partial sums of (4.1.1)—
created by the last four lines of euler1775.m—using the fi rst 10 mil-
lion terms of (4.1.1). Th e 10-millionth partial sum is 2.404112, and 
so it certainly seems that (4.1.1) is plausible. A similar numerical 
evaluation of the sum of (4.1.2), shown in Figure 4.1.2, gives the 
value of the partial sum of the fi rst 10 million terms as 1.352904 (in 
euler1775.m simply change the line ending in /q^2; to /q^3;). Th is 
is in excellent agreement with the right-hand side of (4.1.2).

%euler1775.m
q=1;h(q)=1;
for q=2:10000000
    h(q)=h(q-1)+1/q;
end
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Euler Sums, Harmonic Series, and ζ 219

FIGURE 4.1.1.

Th e convergence of (4.1.1).

s(1)=1;
for q=2:10000000
    s(q)=s(q-1)+h(q)/q^2;
end
x=[1:1:10000000];
semilogx(x,s,’-k’)
xlabel(‘number of terms’)
ylabel(‘sum’)

Th e sums of (4.1.1) and (4.1.2) are the n = 2 and n = 3 special 
cases, respectively, of the following recursive formula discovered by 
Euler in 1775:

(4.1.3)  
2

1 1

( )
2 ( 2) ( 1) ( ) ( 1), 2.

n

nq k

h q
n n n k k n

q

Th e very next case (n = 4) of (4.1.3) gives (you should verify this)

2.5

2.0

1.5

1.0
100 102 104

Number of terms

Su
m

106 108

Nahin.indb   219 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



220 Chapter 4

(4.1.4) 41

( )
3 (5) (3) (2).

q

h q
q

We can numerically check (4.1.4) with the code euler1775.m by 
simply changing the line ending in /q^2; to /q^4;. Th e partial sum, 
using the fi rst 10 million terms of (4.1.4), is 1.1334789 . . . , while if 
we type 3*zeta(5)-zeta(3)*zeta(2) into MATLAB, we get the value 
1.1334789 . . . . I think it’s fair to say this is pretty good agreement.

Challenge Problem 4.1.1: If you plug n = 3 into Euler’s recursion 
formula (4.1.3), you get 

3

( ) 25 1
1 2 2(4) 2( )h q

q q
, an expression that 

doesn’t look like the right-hand side of (4.1.2). Despite that, show 
the two expressions are, in fact, equal.

4.2 The Algebra of Euler Sums

Th e computer calculations of the previous section greatly increase 
our enthusiasm for Euler’s (4.1.1) and (4.1.2), but how does one 
derive them in the fi rst place? Th ey are simply too bizarre to have 

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00
100 102 104

Number of terms

Su
m

106 108

FIGURE 4.1.2.

Th e convergence of (4.1.2).
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just been made up. Amazingly, both of Euler’s sums can be derived 
using math no more advanced than fi rst-year high school algebra (no 
calculus, with the exception of one step that I think you’ll accept as 
plausible—and then later in the book I’ll show you how to establish 
that step with freshman calculus). It’s all very clever algebra, to be 
sure, but nothing a bright teenager can’t follow. We start by writing 
f (n) as denoting some sequence of values that, as n → ∞, approaches 
a fi nite limit f(∞) = L. For example, if f(n) = 1/n, then L = 0.

Next, for integers M and q, where M ≥ q ≥ 1, we form the sum

(4.2.1) 
1
{ ( ) ( )} [{ (1) (2) (3) ( )}

M

n
f n f n q f f f f M

 { (1 ) (2 ) (3 ) ( )}].f q f q f q f M q

Th e fi rst q terms in the fi rst pair of curly brackets on the right of 
(4.2.1) survive the subtraction operation, but all the rest of the terms 
from f(1 + q) to f(M) are canceled by the same terms in the second 
pair of curly brackets. All of the remaining terms in the second pair 
of curly brackets, from f(M + 1) to f(M + q), remain. So, (4.2.1) 
becomes

(4.2.2)  
1 1 1
{ ( ) ( )} ( ) ( ).

M q q

n n n
f n f n q f n f M n

Th e algebraic discussion you’re reading here is due to the Indian 
Ankur Basu and the American Tom Apostol (whom you’ll recall 
from Sections 2.4 and 2.6), as published in their paper, “A New 
Method for Investigating Euler Sums,” Th e Ramanujan Journal, 
December 2000, pp. 397–419. Th is paper has a provocative 
footnote that appears at the bottom of the fi rst page: “Translated 
from a handwritten manuscript, revised, edited, and prepared for 
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222 Chapter 4

publication by the second author.” Th e “second author” was 
Apostol, a famous math professor at Caltech who died in 2016. 
Th e fi rst-named author, however, was an unknown, with his listed 
address being simply that of the private residence of a relative’s 
home in West Bengal, India. As I read that footnote, I instantly 
imagined a well-traveled envelope (plastered, I further imagined, 
with exotic mailing stamps) unexpectedly appearing one morning 
in Apostol’s mailbox in the math department at Caltech. Was this, 
as my perhaps now overheated imagination roared full-speed 
ahead, a reenactment of Ramanujan’s discovery, nearly a century 
earlier, by G. H. Hardy (look back at Section 1.5)? It’s too late to 
ask Apostol about that, or about his emotional state as he tore 
open that envelope and began to read its handwritten contents, 
but Basu (as I write in 2020) appears on the Web as affi  liated with 
the faculty of the Department of Industrial Economics and 
Management at the KTH Royal Institute of Technology in 
Stockholm, Sweden. I think there just has to be a romantic story 
about the origin of the Basu/Apostol paper, and perhaps Basu will 
one day tell that story.

If we now let M → ∞ we see that the fi rst sum on the right of (4.2.2) 
is unaff ected, while all the terms in the second sum are equal to 
f(∞) = L. Th at is, for f(n) = 1/n where L = 0, we have (aft er letting 
M → ∞)

(4.2.3) 
1 1
{ ( ) ( )} ( ),  1.

q

n n
f n f n q f n q

Now, temporarily put (4.2.3) aside (but not for long, as we’ll 
soon return to it) and turn your attention to the sum

(4.2.4) 1 { ( ) ( )},   1.n
n q

f n q f n q
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To study this sum, we’ll separate (4.2.4) into two cases: (1) where 
we’ll consider the terms with n < q, and (2) where we’ll consider the 
terms with n > q. (Th ere are, of course, no terms such that n = q 
because of the n ≠ q condition.) If f(n) is an odd sequence of values, 
which means −f(−n) = f(n), as is, for example, f(n) = 1/n, then for 
case (1) we have n − q < 0 for n = 1 to q − 1, and so

1 1 1

1 1 1
{ ( ) ( )} { ( ) ( )} ( ) ( ) .

q q q

n n n
f n q f n f q n f n f q n f n

Since q − n runs through the same values as does n, as n goes from 1 
to q − 1, we have, for case (1),

1 1

1 1
{ ( ) ( )} 2 ( )

q q

n n
f n q f n f n

or, if we run the summation index for the right-hand side sum up one 
additional value from q − 1 to q,

(4.2.5) 
1

1 1
{ ( ) ( )} 2 ( ) 2 ( ).

q q

n n
f n q f n f n f q

Th is takes care of case (1), n < q.
For case (2), we have n going from q + 1 to infi nity. Th at is, we 

are now looking at

1
( }.( ){ )

n q
f n q f n

Let’s defi ne a new summation index k = n − q, and so k goes from 1 
to infi nity, and our sum becomes, for case (2),

1
{ ( ) ( )}.

k
f k f k q

Euler Sums, Harmonic Series, and ζ 223
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224 Chapter 4

Since the symbol we use for the index is arbitrary, let’s go back to n 
and write our sum as

1
{ ( ) ( )}.

n
f n f n q

But we’ve already evaluated this sum, back in (4.2.3). So, for case (2) 
we can write

(4.2.6) 1 1
{ ( ) ( )} ( ).

q

n q n
f n q f n f n

Our results in (4.2.5) and (4.2.6) can be combined to give us the 
value of the sum in (4.2.4): For an odd f(n) such that limn→∞ f(n) = 0 
we have

1 1 1
{ ( ) ( )} 2 ( ) 2 ( ) ( )

q q
n n nn q

f n q f n f n f q f n

or

(4.2.7) 1 1
{ ( ) ( )} 2 ( ) ( ).

q
n nn q

f n q f n f q f n

Now we are ready to derive Euler’s two sums.
Explicitly writing f(n) = 1/n in (4.2.7), we have

1 1

1 1 1 1
2 .

q
n nn q n q n q n

Since

1 1
( )

q
n q n n n q
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and since (by defi nition)

1

1
( ),

q

n
h q

n

we have

1
2

( )
( )

n
n q

q
h q

n n q q

or, dividing through by q, this becomes

(4.2.8) 1 2

1 2 ( )
.

( )
n
n q

h q
n n q q q

Next, divide through (4.2.8) by q again and then sum over all 
q to get

1 3 21 1 1

1 1 ( )
2 .

( )
nq q qn q

h q
qn n q q q

Th e fi rst sum on the right is ζ(3), and so

(4.2.9) 121 1

( ) 1
2 (3) .

( )
nq q n q

h q
q qn n q

Euler’s sum in (4.1.1) is (4.2.9) if we can argue that the double sum 
is zero. Is it? Yes. Why? Th ink about this for a while, and then I’ll 
show you (in the box at the end of this section) a simple plausibility 
argument for why the double sum does indeed vanish.

Now, what about (4.1.2), Euler’s other sum? Looking back at 
(4.2.3), if we set f(n) = 1/n we get

1 1 1

1 1 1
( )

( )
q

n n n

q
h q

n n q n n n q
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226 Chapter 4

and so, dividing through by q,

(4.2.10) 
1

1 ( )
.

( )n

h q
n n q q

If we now impose the n ≠ q condition by deleting from the sum the 
n = q term (which is 1/2q2), we have, aft er also reducing the right-
hand side of (4.2.10) by 1/2q2,

(4.2.11) 1 2

1 ( ) 1
.

( ) 2
n
n q

h q
n n q q q

Next, subtract (4.2.11) from (4.2.8). Th at is, write

(4.2.12)  1 2 2

1 1 2 ( ) ( ) 1
( ) ( ) 2

n
n q

h q h q
n n q n n q q q q q

2 2 2

2 1 ( ) 5 ( )
2 2 .

2 2
h q h q

q q q q q

Since

2 2

1 1 2
,

( ) ( ) ( )
q

n n q n n q n n q

then (4.2.12) becomes

1 2 2 2

5 ( )
2 2 ,

( ) 2
n
n q

q h q
n n q q q

which, if we divide through by 2q2 and then sum over all q, becomes

(4.2.13) 1 2 2 4 31 1 1

1 5 ( )
.

( ) 4
nq q qn q

h q
nq n q q q
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Th e double sum in (4.2.13) vanishes for the same reason the double 
sum vanishes in (4.2.9), and we arrive at

(4.2.14) 
3 41 1

( ) 5 1 5
(4)

4 4q q

h q
q q

and so, just like that, we have Euler’s sum of (4.1.2).
To end this section, I claim that with even more simple algebra, 

we can derive a virtually endless sequence of similar expressions (all 
now called Euler sums). But I warn you: Once you get started doing 
this, it’s like eating peanuts—it’s really hard to stop! As an illustration 
of this claim, suppose we start with the sum

2

( 1)
mq

h q
q

and then change index to k = q − 1 (and so q = k + 1). Doing that 
allows us to write

2 1 1

( 1) ( )
.

( 1) ( 1)m m mq k q

h kh q h q
q k q

From this we can write

1 1 1 2

( ) ( ) ( ) ( 1)
( 1)m m m mq q q q

h q h q h q h q
q q q q

2 2 2

( ) ( 1) ( )    ( 1)
(1) (1) .m m mq q q

h q h q h q h q
h h

q q q

Now, as h(1) = 1, and since

1 1 1 1 1
( ) ( 1) 1 1 ,

2 2 1
h q h q

q q q

Euler Sums, Harmonic Series, and ζ 227

Nahin.indb   227 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



228 Chapter 4

we therefore have

11 1 2 2

1
( ) ( ) 1

1 1
( 1)m m m mq q q q

qh q h q
q q q q

or

(4.2.15)  11 1 1

( ) ( ) 1
( 1).

( 1)m m mq q q

h q h q
m

q q q

For example, suppose m = 1. Th en (4.2.15) becomes

1

( ) ( )
(2).

1q

h q h q
q q

Th at is, since

1 1 1
1 ( 1)q q q q

then

(4.2.16) 
1

( )
(2).

( 1)q

h q
q q

We can check (4.2.16) with euler1775.m by simply changing the 
line ending in /q^2; to /(q*(q+1));, and by also changing the 
line s(1)=1; to s(1)=1/2;. Th is produces a value for the 10-millionth 
partial sum of 1.644932 . . . , which compares pretty well with 

2

6(2) 1.644934  . And if m = 2 then (4.2.15) becomes

2 21

( ) ( )
(3).

( 1)q

h q h q
q q
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So

2 21 1

( ) ( )
(3)

( 1)q q

h q h q
q q

or, recalling (4.1.1),

21

( )
2 (3) (3)

( 1)q

h q
q

and so

(4.2.17) 
21

( )
(3).

( 1)q

h q
q

We can check (4.2.17) with euler1775.m by simply changing the line 
ending in /q^2; to /(q+1)^2; as well as changing the line s(1)=1; to 
s(1)=1/4;. Th is produces a value for the 10-millionth partial sum of 
1.202055 . . . , which compares pretty well with ζ (3) = 1.202056 . . . .

Euler sums can be exquisitely sensitive to seemingly minor 
changes. For example, what is

21

( )
?

( 2)q

h q
q

which looks similar to (4.2.17). As the following analysis shows, 
however, the answer is quite diff erent from ζ(3). We start with 
(4.2.17) and write

2 2 2 21 1 1 1

1( 1)( ) ( 1) 1
(3) .

( 1) ( 1) ( 1) ( 1)q q q q

h q qh q h q
q q q q q
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230 Chapter 4

For the sums on the right change index to q = k + 1 (k = q − 1). Th en

2 2 21 0 1

( 1) ( ) ( )
( 1) ( 2) ( 2)q k k

h q h k h k
q k k

because h(0) = 0, and also

2 21 0

1 1
.

( 1) ( 1)( 2)q kq q k k

Th us,

2 21 0

( ) 1
(3)

( 2) ( 1)( 2)k k

h k
k k k

and so

(4.2.18) 
2 21 0

( ) 1
(3) .

( 2) ( 1)( 2)q k

h q
q k k

We evaluate the sum on the right of (4.2.18) as follows. Change 
index to q = k + 2 (and so q − 1 = k + 1) which says

2 2 20 2 2

1 1 1 1
( 1)( 2) ( 1) ( 1)k q qk k q q q q q

22 2

1 1
( 1)q qq q q

22 1 2

1 1 1
1 (2) 1

( 1) ( 1)q q qq q q q q

2

1
(2) 1.

( 1)q q q
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Now,

2 2

1 1 1 1 1 1 1 1
1 1

( 1) 1 2 2 3 3 4q qq q q q

as the terms in the curly brackets telescope. So,

(4.2.19) 20

1
2 (2)

( 1)( 2)k k k

and thus, at last, putting (4.2.19) into (4.2.18), we have the answer 
to our question:

(4.2.20) 21

( )
(3) (2) 2.

( 2)q

h q
q

Typing zeta(3)+zeta(2)-2 into MATLAB returns a value of 
0.846990. . . . We can check this result with euler1775.m by simply 
changing the line ending in /q^2; to /(q+2)^2;, as well as changing 
the line s(1)=1; to s(1)=1/9;. Th is produces a value for the ten mil-
lionth partial sum of 0.846989. . . , which compares pretty well with 
ζ(3) + ζ(2) − 2.

Challenge Problem 4.2.1: Aft er looking at (4.2.17), it’s natural to 
next ask for the value of 3

( )
1 ( 1)

.h q
q q

 We can use euler1775.m to 
numerically estimate this sum by changing the line ending in /q^2; 
to /(q+1)^3;, as well as changing the line s(1)=1; to s(1)=1/8;. Th is 
produces a value for the 10-millionth partial sum of 0.2705808. . . , 
and you should check to see if this is consistent with your theoretical 
result. Hint: Start with (4.1.2) and remember the trick of writing 

1( ) ( 1) qh q h q . Also, it will be helpful to recall that 
4

90(4)  and 
that h(0) = 0.

Challenge Problem 4.2.2: Show that 1 ( )1
0 ln(1 ) h qq

qx x dx . 
Hint: Start by showing 0 1ln(1 )

x dt
tx , then put this into the orig-

inal integral (thus getting a double integral), and then reverse the 
order of integration. We’ll use the result in the fi nal section of this 
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232 Chapter 4

chapter. Special Note: When you reverse the order of integration, 
you’ll need to specify the limits of integration on x and t. To do that, 
you’ll fi nd it helpful to sketch the region of integration in the xt-
plane. Since x varies from 0 to 1, and t varies from 0 to x, that region 
is the interior of the shaded triangle shown in Figure 4.2.1. If we do 
the integration of the reversed double integral as horizontal strips 
then, as t varies from 0 to 1, x varies from t to 1.

Why does 1
11 ( ) 0nq qn n qn q

 in (4.2.9)? Let’s assume this double 
sum has a fi nite value S. (Since both n and q are to the second 
power in the denominator, it is at least plausible that the sum 
doesn’t diverge.) Now, think of the sum as a matrix of terms (I’ll 
tell you the value of each term in just a moment) made of an 
infi nity of rows, with each row having an infi nity of terms (or, 
alternatively, as an infi nity of columns, with each column having 
an infi nity of terms). Suppose q is our row index, and n is our 
column index (q = 1 is the top row, and n = 1 is the left  column). 
So, to start the summation, we set q = 1 and then let n run 
through all the terms in that row, that is, n runs from 2 to infi nity 

0

1

1

t

x

x = t

FIGURE 4.2.1.

Th e region of integration in the double integral.
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(not 1 to infi nity because of the n ≠ q constraint). Th e value of the 
terms in the fi rst row is given by 1 1

1 1
| |

( ) ( 1)q nqn n q n n
, where n is 

the column index. Th en we increase q by 1 to q = 2 and let n run 
through all the terms in the second row. Th e value of the terms in 
the second row is given by 2 2

1 1
| |

( ) 2 ( 2)q nqn n q n n . Repeat this 
process over and over and over. When fi nally done (what being 
“done” means in this doubly infi nite process has metaphysical 
issues to it that we’ll ignore!), we’ll have the sum S (assumed, 
remember, to be fi nite), given by

row index column index
column index row index

1
.

(row index)(column index)(column index row index)

Next, let’s do the double sum again, but now we’ll add the terms 
in our matrix in a diff erent order. Suppose that now q is the 
column index, and n is the row index. Th is will give us a sum of

row indexcolumn index
row index column index

1
(column index)(row index)(row index column index)

which is clearly the negative of the fi rst summation (look at the 
right-most factor in the denominator of each of the two double 
sums). Th at is, we get −S. So, S = −S, and we conclude that S = 0, 
because zero is the only fi nite number equal to its negative. In 
Appendix 3 we’ll show that S is indeed fi nite.

4.3 Euler’s Double Sums

A general class of sums that Euler studied is defi ned by1

(4.3.1) 
( )

( )
, 1 1

( ) 1
, ( ) .

a
qa

a b b aq k

h q
S h q

q k

1. Note that ( )( ) ( )a ah q h q . Th at is, 1 1
1 1{ }a

q q a
k k kk

.
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234 Chapter 4

If a = 1, then the special cases of b = 2 and b = 3 are (4.1.1) and 
(4.1.2), respectively. In the literature it is stated (without proof ) that 
these sums obey the identity2

(4.3.2) , , ( ) ( ) ( ), , 2.a b b aS S a b a b a b

In particular, if a = b, then (4.3.2) says

, , ,( ) ( ) ( ) 2a a a a a aS S a a a a S

and so

(4.3.3) 2
, ( )

1
{ (2 )}.

2a aS a a

Is (4.3.3) correct?
To quickly see if it is worth further time and eff ort to explore that 

question, one possible approach is to just numerically evaluate both 
sides of (4.3.3) for some particular values of a (using, let’s say, the 
values of q from one to 10 million). For example, if a = 2 then the 
right-hand side of (4.3.3) is

22 4 4 4
21 1 1

{ 2 (4)}
2 2 6 90 2 36 90

( )

47 7
(4) 1.89406 .

360 4

2. Philippe Flajolet and Bruno Salvy, “Euler Sums and Contour Integral 
Representations,” Experimental Mathematics, vol. 7 (no. 1), 1998, pp. 15–35.
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Th e left -hand side of (4.3.3) is

21

2 2 2 2 21 1

1
1 1 1 1

1
2 3

q

k

q q
k

q q q

and we’ll need a computer to estimate this expression (using q = 1 
to 10,000,000). Th e MATLAB code checksum.m in the next box 
does the job. When executed, checksum.m produced the estimate 
S2,2 = 1.89406 . . . , which is pretty close to the claimed theoretical 
value. I think, therefore, that most analysts would conclude that it is 
worth the eff ort to try to establish (4.3.3) for any integer a ≥ 2, not 
just for a = 2. Here’s how to do that.

%checksum.m
q=1;h(q)=1;
for q=2:10000000
   h(q)=h(q-1)+1/q^2;
end
S=0;
for q=1:10000000
   S=S+h(q)/q^2;
end
S

If we explicitly write out what Sa,a is, we get

1

, 1 1

1
1 1 1 1 1

1 2 3

q

ak

a a a a a a a aq q
kS

q q q

1

1 1 1 1 1 1 1
1 2 3 ( 1) ( 2)a a a a a a aq q q q q
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236 Chapter 4

1 1
( 1) ( 2)a aq q

1 1

1 1 1 1 1 1 1
1 2 3 ( 1) ( 2)a a a a a a aq qq q q q

1 1

1 1 1 1
( )

( 1) ( 2)a a a aq q
a

q q q q

1 1

1 1 1 1
( )

( 1) ( 2)a a a aq q
a

q q q q

2
1

1 1 1
( 1) ( 2)

( ) a a aq
a

q q q

2 2 2
1

1 1 1 1 1
2 2 ( 1) ( 2

( ) ( )
)

( ) a a aq
a a a

q q q

or

(4.3.4) 2 2
, 1

1 1 1 1 1
.

2 2 ( 1) ( 2)
( ) ( )a a a a aq

S a a
q q q

Now, concentrate on the terms on the right in the square brack-
ets of (4.3.4). Th at is, on

2
1

1 1 1 1
2 ( 1) (

( )
2)a a aq

a
q q q

1 1 1 1 1 1 1
2 1 2 3 1 2 3a a a a a a

1

1 1 1
.

( 1) 2( )a a aq q q q
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When the expressions in the fi rst two pairs of curly brackets are mul-
tiplied, we’ll get terms that are the squares of each term, plus all the 
cross-products of those terms as well. Th at is,

2
1

1 1 1 1
2 ( 1) (

( )
2)a a aq

a
q q q

2 2 2

1 1 1 1
cross-products

2 1 2 3a a a

1

1 1 1
( 1) ( 2)a a aq q q q

or

2
1

1 1 1 1
2 ( 1) (

( )
2)a a aq

a
q q q

1
(2 ) cross-products

2
a

1

1 1 1
.

( 1) ( 2)a a aq q q q

Th us

(4.3.5) 2
,

1 1 1
(2 ) cross-produ( c

2 2
) ts

2a aS a a

1

1 1 1
.

( 1) ( 2)a a aq q q q

To see what the cross-product terms are like, it’s helpful to work 
through a specifi c example. Suppose we have the product (A + B + C 
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238 Chapter 4

+ D)(A + B + C + D). If you multiply this out, you get {A2 + B2 + C 2

+ D2} + 2{AB + AC + AD + BC + BD +CD}. Th e fi rst curly brackets 
of the product are the squared terms, while the second curly brackets 
show that the cross-products are formed by multiplying each term in 
one of the original factors by each of the terms to its right, and then 
by 2. Applying this observation to our problem, we fi nd

1
cross-products

2 1

1 1 1
0,

1 ( 2)( )a a aq q q q

which reduces (4.3.5) to the claim of (4.3.3).
Challenge Problem 4.3.1: See if you can establish the identity 

ln(1 )
1 1( ) , 1 1q x

q xx h q x . Hint: Recalling (1.3.5) will be helpful.

4.4 Euler Sums after Euler

An interesting class of exotic Euler sums (that I don’t believe Euler 
himself ever actually investigated) has h2(q) in the numerator. For 
example, what is

2

1
?

( 1)
( )

q

h q
q q

We can answer this question as follows, starting by writing

(4.4.1) 
2 2 2

1 1 1

( ) ( ) (
.

( 1) 1
)

q q q

h q h q h q
q q q q

In the last sum on the right-hand side of (4.4.1), change the index to 
k = q + 1 (q = k − 1). Th en

2 2

1 2

( ) ( 1)
1q k

h q h k
q k

and so we have

Nahin.indb   238 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 2 2

1 1 2

( ) ( ) (
(

)1
1)q q q

h q h q h q
q q q q

2 2
2

1 1

( ) ( )
(0)

1
q q

h q h q
h

q q

or, as h(0) = 0,

(4.4.2) 
2 2 2

1 1

1( ) ( ) (
.

(
)

1)q q

h q h q h q
q q q

Now,

2 2 1 { ( ) ( 1)}{ ( ) ( 1( ) ( }) )h q h q h q h q h q h q

and, as

1 1 1
( ) ( 1) 1

2 3
h q h q

q
1 1 1 1

1
2 3 1q q

then (4.4.2) becomes

2

1 1

1 { ( ) ( 1)}

)
)

(
(

1q q

h q h q
h q q

q q q

or

(4.4.3) 
2

2 21 1 1

( 1)
.

)
(

(
)
1q q q

h qh q h q
q q q q

Since

1
( 1) ( )h q h q

q
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240 Chapter 4

we see that (4.4.3) becomes

2

2 2 31 1 1 1

( ) 1
( 1)

( )
q q q q

h qh q h q
q q q q q

or, recalling (4.1.1),

2

2 31 1 1

( ) 1
2 2{2 (3)}

( )
(3)

( 1)q q q

h q h q
q q q q

and so

(4.4.4) 
2

1
3 (3).

( 1)
( )

q

h q
q q

We can check (4.4.4) with a slightly modifi ed checksum.m, a 
code that I’ll call numsquared.m (see the following box). When run, 
numsquared.m produced the estimate for the sum’s value of 3.60613 
. . . , which compares nicely with the value of 3ζ(3) = 3.60617 . . . .

%numsquared.m
q=1;h(q)=1;
for q=2:10000000
   h(q)=h(q-1)+1/q;
end
for q=1:10000000
   n(q)=h(q)^2;
end
S=0;
for q=1:10000000
   S=S+n(q)/(q*(q+1));
end
S
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To end this chapter on a dramatic note, we’ll next do two really 
spectacular Euler sums. To start, I’ll show you that

2

21

17
(4),

4
( )

q

h q
q

a result that has an especially interesting backstory that I’ll tell you 
more about in the challenge problem that ends the book. Th e sum 
looks a lot like the sum in (4.4.4), but it’s pretty clear that 3ζ(3) is 
quite diff erent in form from 17

4 (4). Th e method I’m about to show 
you appeared3 in 2015, long aft er the answer had been found by 
other means, and so this is a nice example of how a math problem, 
even if solved, can still off er a ripe opportunity for fi nding a new 
solution. Th e analysis will be one of the longer treatments in the 
book, consisting of a sequence of seemingly unrelated calculations. 
Each of those calculations is not particularly diffi  cult—all are within 
the grasp of high school algebra (and of AP-calculus, if doing double 
integrals is acceptable), but taken together, the calculations are suf-
fi cient to suddenly solve our problem. So, we start.

Let a1, a2, a3, . . . and b1, b2, b3, . . . denote two sequences of arbi-
trary length of real numbers. If

01
, 0,

q
q kk

A a A

that is, if Aq is the sum of the fi rst q numbers in the a-sequence, then 
the claim is

(4.4.5) 1 11 1
,

q q
k k q q k k kk k

a b A b A b b

3. My discussion here is an elaboration of the analysis given by Cornel Ioan 
Vălean and Ovidiu Furdui in their paper, “Reviving the Quadratic Series of Au-
Yeung,” Journal of Classical Analysis, vol. 6 (no. 2), 2015, pp. 113–118. Th e reference 
to Au-Yeung will be explained in the challenge problem at the end of this chapter.
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242 Chapter 4

a result called Abel’s summation formula (see Challenge Problem 
2.1.2 for more on Abel). We can derive (4.4.5) as follows, starting 
with the observation

1 2 1 2 1 1( ) ( ) .k k k k ka a a a a a a A A

So

1 11 1 1 1
) .(

q q q q
k k k k k k k k kk k k k

a b A A b A b A b

Since A0 = 0, the last sum becomes

1 11 2

q q
k k k kk k

A b A b

and so

11 1 2
.

q q q
k k k k k kk k k

a b A b A b

In the last sum, let j = k − 1, and so

1 1
1 1 12 1 1

.
q q q

k k j j k kk j k
A b A b A b

Th us,

1
11 1 1

q q q
k k k k k kk k k

a b A b A b

or, as

1
1 1 11 1

q q
k k k k q qk k

A b A b A b

we have
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1 11 1 1
,

q q q
k k q q k k k kk k k

a b A b A b A b

which is (4.4.5).
Putting the Abel summation formula temporarily to the side (but 

don’t push it too far away, as we’ll be returning to it soon), let’s next 
do the integral

1 1 2

0
ln 1( ) ,qx x dx

which may remind you of the integral in Challenge Problem 4.2.2. 
We start our evaluation by observing that

(4.4.6) 2

0

ln(1 )
ln 1 2 .( )

1
x t

x dt
t

To see that this is so, change variable in the integral to u = 1 − t (and 
so dt = −du). Th en,

1 1

0 1 1

ln(1 ) ln( ) ln( )
2 2 ( ) 2

1
x x

x

t u u
dt du du

t u u

2 1 2
1( ) ( )

1
2 ln | ln 1

2 xu x

as claimed.
Inserting (4.4.6) into our original integral, we have

1 11 2 1

0 0 0

ln(1
( )

)
ln 1 2  

1
xq q t

x x dx x dt dx
t

1 1 1

0

ln(1 )
2

1
q

t

t
x dx dt

t

Euler Sums, Harmonic Series, and ζ 243

Nahin.indb   243 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 Chapter 4

where the order of integration has been reversed (an operation a 
mathematician would want to spend some time in justifying) and 
we’ve used the Special Note in Challenge Problem 4.2.2 to get the 
limits on the x-integration. Continuing,

1 11 2 1

0 0

ln(1 )
( )ln 1 2 |

1

q
q

t
t x

x x dx dt
t q

1

0

2 ln(1 )
(1 ) .

1
qt

t dt
q t

As shown in the solution to Challenge Problem 4.2.2,

2 11
1

1

q
qt

t t t
t

and so

(4.4.7)  
1 11 2 2 1

0 0

2
ln 1 (1 )ln(( 1 )) .q qx x dx t t t t dt

q

Now, recall what you showed (you did, didn’t you?) in Challenge 
Problem 4.2.2:

1 1

0

( )
ln(1 )n h n

t t dt
n

and we see that the right-hand side of (4.4.7) is the sum of numerous 
such integrals, one integral for each value of n as n runs through the 
integers 1 to q. Th us,

1 1 2

0

2 (1) (2) ( )
ln 1

1 2
( )q h h h q

x x dx
q q

or
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(4.4.8) 
1 1 2

10

2 ( )
l ( .)n 1

qq
k

h k
x x dx

q k

We can evaluate the sum in (4.4.8) using Abel’s summation for-
mula of (4.4.5). In that formula, set 1

k ka  and bk = h(k). Th en, as

1 1 1
1 ( )

2 3qA h q
q

1 1 1
1 ( )

2 3kA h k
k

and since

1
1 1 1

( ) ( 1) 1
2 3k kb b h k h k

k

1 1 1 1 1
1 ,

2 3 1 1k k k

we see that (4.4.5) becomes

1 1

( ) ( )
( ) ( 1)

1
q q

k k

h k h k
h q h q

k k

1

1( 1)   
1( ) ( 1)

1
q

k

h k
kh q h q

k

21 1

( 1) 1
( ) ( 1) .

1 ( 1)
q q

k k

h k
h q h q

k k

In the last two sums, change the index to j = k + 1, and so

1 1

21 2 2

( ) ( ) 1
( ) ( 1)

q q q

k j j

h k h j
h q h q

k j j
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1

( ) ( 1)
( ) ( 1) (1)

1
q

j

h j h q
h q h q h

j q

2 21

1 1
1

( 1)
q

j j q

or, as h(1) = 1, this becomes

(4.4.9) 1 1

( ) ( )
( ) ( 1)

q q

k j

h k h j
h q h q

k j

2 21

( 1) 1 1
.

1 ( 1)
q

j

h q
q j q

We can greatly simplify (4.4.9) by noticing that

21 ( )
( ) ( 1) ( ) ( ) .

1
(

1
)

h q
h q h q h q h q h q

q q

Using this in (4.4.9), it becomes

2
1 1

( ) ( ) ( ) ( 1
)

1
(

)
1

q q

k j

h k h q h j h q
h q

k q j q 2 21

1 1
( 1)

q

j j q

2
2 21 1

( ) 1 1 ( ) ( 1)
( 1)

(
1

)
q q

j j

h j h q h q
h q

j j q q

2
2 21 1

1
( ) 1 1 1

( 1) 1
( )

q q

j j

h j qh q
j j q q

or, as the last two terms cancel, we have

2
2 2 21 1

( ) ( ) 1 1 1
1 .

2 3
( )

q q

k j

h k h j
h q

k j q
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Noticing that

1 1

( ) ( )q q

k j

h k h j
k j

we arrive at

(4.4.10) 2
2 2 2 1

1 1
(

1 ( )
1 2 .

3
)

2
q

k

h k
h q

q k

Okay, I know this has been a long trek, and you are by now almost 
certainly wondering where in the heck we are going with all this, but 
hang in there for just a moment more. We are almost done!

Looking back at (4.4.8), we see that

1 1 2
10

(
( )

ln 1 2) ,
qq
k

h k
q x x dx

k

which, combined with (4.4.10), says

1 1 2 2
2 2 20

( ) (
1 1 1

ln 1 1 .
2 3

)qq x x dx h q
q

So, dividing through by q2 and then summing over all q, we have

(4.4.11) 
21 1 2

21 10

(1
ln

)
( )1q

q q

h q
x x dx

q q

2 2 2 21

1 1 1 1
1 .

2 3q q q

Th e right-most sum of (4.4.11) is one we did in the previous section 
(the a = 2 case of (4.3.3)); we found that sum to be 7

4 (4). So, revers-
ing the order of summation and integration on the left -hand side of 
(4.4.11), we have
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248 Chapter 4

1 21 2
21 10

( 7
ln 1 (4)

)
4

( )
q

q q

x h q
x dx

q q

or

(4.4.12) 
2 11 2

21 10

( )
( )

7
ln 1 (4).

4

q

q q

h q x
x dx

q q

To do the integral in (4.4.12), recall the result we derived imme-
diately aft er (2.1.12):

1
2 3 4

1

ln(1 ) 1 1 1 1
1 .

2 3 4 5

q

q

x x
x x x x

x q

Using this in (4.4.12), we arrive at

(4.4.13) 
2 31

21 0

( ) ( )ln 1 7
(4).

4q

h q x
dx

q x

Changing variable in the integral to y = 1 − x (dx = −dy), we have

3 3 31 0 1

0 1 0

ln 1 ln ln
( )

1
( ) ( ) (

1
)x y y

dx dy dy
x y y

1 13 2 3 3
00 0

( ){ }ln 1 ln ( ) k
k

y y y y dy y y dy

1 3
0 0

(ln )k
k

y y dy

where, once again, I’ve assumed we can reverse the order of summa-
tion and integration. Th e integral is easy to do4—in fact, we’ve already 
done it, back in (1.6.13):

4. Th is particular integral can also be easily done with three successive integra-
tions by parts, as hinted in the box near the end of Section 1.6. A generalization is 
also easy to do using the gamma function, an approach I won’t repeat here, as you 
can fi nd all the details in the second edition of my Inside Interesting Integrals, Springer 
2020, pp. 179, 228, and 467: 1

1 !
0 ( 1)

ln ( )( ) 1 n
m n n n

m
x x dx .
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1 3
40

( )
6

ln
( 1)

ky y dy
k

and so

31

4 4 4 400

ln 1 1 1 1 1
6 6 6 (4).

( 1) 1 2 3
( )

k

x
dx

x k

Th us, putting this into (4.4.13), we have

(4.4.14) 
2 4

21

7 17 17
6 (4) (4) (4) 4.59987

4 4 360
( )

q

h q
q

and we are—finally!—done. We can check (4.4.14) with 
numsquared.m by simply changing the line ending in /(q*(q+1)); 
to /q^2;. Th e code produces a value for the 10-millionth partial sum 
of the sum on the left -hand side of (4.4.14) of 4.59984 . . . , which is 
in pretty good agreement with our theoretical result.

For our fi nal example of Euler sum calculation, we’ll do some-
thing we haven’t done before—an alternating sum. Specifi cally, let’s 
calculate the value of

1
21

( )
( 1)  ?q

q

h q
q

Th is looks almost like the Euler sum (4.1.1) that opens this chapter, 
but with the diff erence that the terms alternate in sign. As in (4.1.1), 
we’ll fi nd ζ(3) appears in the result, but now with a new coeffi  cient. 
To do this sum, I’ll fi rst gather together some preliminary results 
we’ll need along the way. Th e fi rst one is particularly easy, as we’ve 
already done it.

If you look back once more at the box at the end of Section 1.6, 
you’ll see there that we derived the integral

Euler Sums, Harmonic Series, and ζ 249

Nahin.indb   249 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 Chapter 4

1 2
30

( )
2

ln
( 1)

nv v dv
n

and so (with a trivial change in notation)

(4.4.15) 
1 2

30

2
ln .

( 1
(

)
)ax x dx

a

Next, recall from (4.4.6) that

2

0

ln(1 )
ln 1 2 .( )

1
x t

x dt
t

From (2.1.12) we have

2 3 41 1 1
ln(1 )

2 3 4
x x x x x

and so

2 3 4

2

0

1 1 1               
2 3 4ln 1 2( )

1
x

t t t t
x dt

t

2 3 4 2 3 4

0

1 1 1
2         (1     )

2 3 4
x

t t t t t t t t dt

2 3 4 2 3 4 5

0

1 1 1 1 1 1
2                

2 3 4 2 3 4
x

t t t t t t t t

3 4 51 1
   
2 3

t t t dt

2 3 4

0

1 1 1 1 1 1
2 1 1 1

2 2 3 2 3 4
x

t t t t dt

Nahin.indb   250 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 3 4 5
0

1 1 1 1 11 1      1           1   1 2  3 2 3 422 |
2 3 4 5

xt t t t

2 3 4 5

1 1 1 1 11 1      1           1   1 2  3 2 3 422
2 3 4 5

x x x x

and so we arrive at

2 1
1

( )
ln 1 2 .

1
( ) q

q

h q
x x

q

Or, writing −x for x, and since (−1)q+1 = (−1)q−1,

(4.4.16) 2 1 1
1

( )
ln 1 2 ( 1) .)

1
( q q

q

h q
x x

q

For our fi nal preliminary calculation, we’ll need to know the 
value of the integral

21

0

( )ln 1   
 ?

x
dx

x

As the starting point in doing this integral, you should have no dif-
fi culty in convincing yourself of the truth of the algebraic identity

2 2 2
2 (     )    (     )    2

.
2

A B A B A
B

So, if we defi ne A = ln(1 − x) and B = ln(1 + x), it then immedi-
ately follows that

2 2 2
2 {ln(1   )   ln(1    )}    {ln(1   )   ln(1    )}    2 ln 1   

ln 1   
2

( )
( )

x x x x x
x
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252 Chapter 4

or if we divide through by x and integrate from 0 to 1,

(4.4.17) 
2 2 21 1

0 0

( ) (ln 1    1 ln 1   
2

)x x
dx dx

x x

2
21 1

0 0

1   ln
1 ln 1   1    .
2

( )
x

xx dx dx
x x

Now consider in turn each of the integrals on the right in (4.4.17).
For the fi rst integral, make the change of variable y = 1 − x2 (and 

so 2
dy

xdx ). Th en,

2 2 21 0 1

0 1 0

ln 1( ) ( )    ln
2

x y dy
dx

x x x

2 21 1

20 0

1 ln 1 ln
2 2 1   

( ) ( )y y
dy dy

x y

1 2 3 2

0

1 1
{1 }ln

2 2
( )y y y y dy

1    1 2
   10

( )lnk
k

y y dy

1    1 2
   1 0

( )
1

ln .
2

k
k

x x dx

Recalling (4.4.15), we have, on setting a = k − 1, that

2 21

310

( )ln 1    1 2
2 k

x
dx

x k

or

(4.4.18) 
2 21

0

( )ln 1   
(3).

x
dx

x

For the second integral on the right in (4.4.17), make the change 
of variable 1   

1   
x
xy  (and so 2

2
(1    )

dy
dx x

 or 
2(1    )

2
xdx dy). Now, 

notice that
2

2
2

1    4
1 1

1    (1    )
x x

y
x x
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and so

2
2

4
(1    ) .

1    
x

x
y

Th us,

2 2

4 2
2(1    ) (1    )

x x
dx dy dy

y y

and therefore

2
21 0

20 1

1   ln
ln 21   

(1   
( )

)

x
y xx dx dy

x x y

21

20

ln
2

1 
( )
 

y
dy

y

1 2 4 6 2

0
2 {1 }ln ( )y y y y dy

1 2(    1) 2
   10

(2 ln )k
k

y y dy

1 2(    1) 2
   1 0

(2 ln ) .k
k

x x dx

Again recalling (4.4.15), with a now set to 2(k − 1) = 2k − 2, 
we have

2

1

3 31 10

1   ln
2 11    2 4 .

(2   1  ) (2   1  )k k

x
x dx

x k k

Th is last sum, that of the reciprocals cubed of the odd positive 
integers, is equal to
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3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1
1 2 3 4 5 2 4 6

3 3 3 3

1 1 1 1
(3)

2 1 2 3

1
(3) (3).

8

Th at is,

31

1 7
(3)

(2   1  ) 8k k

and so

(4.4.19) 
2

1

0

1   ln
71    (3).
2

x
x dx

x

Finally, for the third, right-most integral in (4.4.17), I’ll let you 
verify that making the change of variable x = y2 quickly leads to 
the result

(4.4.20) 
21

0

ln 1   
(

)
3

(
2 ).

x
dx

x

With our results of (4.4.18), (4.4.19), and (4.4.20) in hand, we can 
now plug them into (4.4.17) to compute

21

0

ln 1    1 1 7
(3) (3) 2 (3)

2 2
( )

2
x

dx
x

and arrive at
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(4.4.21) 
21

0

( )ln 1    1
(3).

4
x

dx
x

Now we are all set to go in computing our alternating Euler sum!
Using (4.4.16) in (4.4.21), we have

1 1
11 11 

10 0

( )2 ( 1)
1 ( )1ζ(3) 2 ( 1)
4 1

q q
q

q q
q

h qx
h qq dx x dx

x q

1
1  1

01

( )
2 ( 1) |

1 1

q
q

q

h q x
q q

or

(4.4.22) 
1 

21

1 ( )
(3) 2 ( 1) .

4 ( 1)
q

q

h q
q

Next, change the index in (4.4.22) to k = q + 1 to get

2   2  
2 22 2

1( )   1 ( 1)
(3) 2 ( 1) 2 ( 1)

4
k k

k k

h kh k k
k k

or

2   2  
2 32 2

1 ( )  1
(3) 2 ( 1) ( 1) .

4
k k

k k

h k
k k

If we start the index in both sums from k = 1, this becomes

2   2  
2 31 1

1 ( )  1
(3) ( 1) (1) ( 1) 1 ,

8
k k

k k

h k
h

k k

which becomes, if we write q instead of k for the index (and because 
h(1) = 1 and (−1)k−2 = −(−1)k−1),
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256 Chapter 4

1  1 
2 31 1

1 ( )  1
(3) ( 1) ( 1) .

8
q q

q q

h q
q q

Th us,

(4.4.23) 1  1 
2 31 1

( )  1 1
( 1) ( 1) (3).

8
q q

q q

h q
q q

We’ve seen the sum on the right-hand side of (4.4.23) before, as 
the alternating zeta function in (2.1.9) and (2.1.10), where we 
showed that

1 1
1

1
( 1) (1 2 ) ( ).q s

sq
s

q

Th e alternating series in the sum of (4.4.23) is the s = 3 case (notice 
that (−1)q+1 = (−1)q−1) and so

1  2
31

1 3
( 1) (1 2 ) (3) (3).

4
q

q q

Using this in (4.4.23), we at last arrive at our answer:

(4.4.24) 1 
21

( )  3 1 5
( 1) (3) (3) (3) 0.75128 .

4 8 8
q

q

h q
q

We can check this theoretical result with a direct calculation of 
the alternating series, and this is done by the code alt1775.m, which 
is a simple variation of euler1775.m. As Figure 4.4.1 shows, using 
just the fi rst 100 terms, the series converges fairly rapidly, with the 
value of the 100th partial sum being 0.75102 . . . , in pretty good 
agreement with theory.
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%alt1775.m
q=1;h(q)=1;f=-1;
for q=2:100
   h(q)=h(q-1)+1/q;
end
s(1)=1;
for q=2:100
   s(q)=s(q-1)+f*h(q)/q^2;
   f=-f;
end
q=[1:1:100];
plot(q,s,’-k’)
xlabel(‘number of terms’)
ylabel(‘sum’)
s(100)
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FIGURE 4.4.1.

Th e convergence of the sum in (4.4.24).
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258 Chapter 4

Well, okay, maybe this is enough on Euler sums. I think you can 
now appreciate how these sorts of calculations really have no end. 
Th ere will never be a fi nal Euler sum and so no end to good home-
work problems for professors to assign to students eager to tackle 
ever more challenging calculations. Th ere is, however, an end to this 
book, and we have arrived at it. To celebrate that event, here’s a fi nal 
challenge problem for you to try your hand at.5

Th e Final Challenge: In a paper6 written by a father-son Canadian 
team of mathematicians, we read that in 1993, one of their under-
graduate students (Enrico Au-Yeung, who is now (2021) a professor 
of mathematics at DePaul University in Chicago) “conjectured on 
the basis of a computation of 500,000 terms that 

2

2

( 17)
1 4 (4)h q

q q
.” 

Th e elementary (if lengthy) analysis I took you through a while ago 
lay far in the future of 1993, and so the professors wrote that “our 
fi rst impulse was to perform a higher-order computation [out to 25 
digits, compared to the student’s mere 5 digits] to show [the claim] 
to be false.” To their surprise, however, the numbers checked, and 
so “now armed with the assurance7 [my emphasis] that the result was 
true, we were prepared to look for [a formal derivation].” Th ey were 
able to do that, too (but it wasn’t easy). However, they did include 
the following provocative comment: “We did not know at the time 
that P. J. De Doelder8 had established [two years earlier, in 1991] that 

2

2
11

1 4( 1)

( ) (4)h q
q q

 from which the [conjectured sum] is an immedi-
ate consequence.” (See the following box for a comment on deriving 
De Doelder’s expression.) Th e professors didn’t show how to do 
that, however, and so there’s your fi nal challenge: Derive Au-Yeung’s 

5. You can fi nd many more examples of Euler sum calculations, of much greater 
complexity than I’ve shown you here, in the book by Cornel Ioan Vălean, (Almost) 
Impossible Integrals, Sums, and Series (Springer, 2019).

6. David Borwein (born 1924) and Jonathan M. Borwein (1951–2016), “On an 
Intriguing Integral and Some Series Related to ζ(4),” Proceedings of the American 
Mathematical Society, April 1995, pp. 1191–1198.

7. And so here we see an example of how (some) mathematicians have moved 
into the camp of physicists and engineers in believing computer-based numerical 
checks, using large numbers of digits, may have real value in mathematical research.

8. Pieter J. De Doelder (1919–1994) was a Dutch mathematician.
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conjectured identity directly from De Doelder’s expression. Hint: 
Th is isn’t nearly as long as the analysis we did in the text!

Th e same year the Borwein and Borwein paper cited in this 
chapter appeared, they (and a colleague) wrote another paper 
that, in addition to deriving De Doelder’s 1991 expression, derived 
another expression much like De Doelder’s that involved ζ(3):

2
3 2

41

2 1 1
(6) (2) (4) 2 3

1 3 3 3
( )

( ) ( )
( )q

h q
q

and so

36 2 4 2 2

41

2
6

41

2 1 1
(3)

3 945 3 6 90 3 6 1

2 1 1
.

2,835 1,62

( )
( )

( )
( )0 648 1

q

q

h q
q

h q
q

(You can fi nd a derivation of this expression in Borwein, Borwein, 
and Girgensohn, “Explicit Evaluation of Euler Sums,” Proceedings 
of the Edinburgh Mathematical Society 38, 1995, pp. 277–294.) 
Executing an altered (in the obvious way) version of the MATLAB 
code numsquared.m, using the fi rst 10,000 terms of the sum, 
resulted in the estimate ζ(3) = 1.20205690317 . . . , which has the 
fi rst 10 decimal digits correct.
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Epilogue

Every time I make a discovery I suddenly become very happy and that 
lasts for a long while. Th e philosophers looking for the key to happiness 

should begin to study mathematics, and probably they would be very 
surprised to see how well-connected happiness and mathematics are.

—From a December 2018 e-mail sent to the author by a mathematician in Romania
1

How to end a book like this one, which deals with an unsolved prob-
lem that has stumped mathematicians for centuries? Th at question 
puzzled me from the very fi rst day I started to write, because it seems 
unfair to leave you without at least a hint as to what I think the pros-
pects for an eventual solution may be. Since the problem of ζ (3) 
defeated even the great Euler, you shouldn’t be surprised to read that 
my fi rst response is that it’s going to take a mind that surpasses that of 
Euler’s, a requirement not satisfi ed by even one of the numerous bril-
liant mathematicians who have pondered ζ (3) over the nearly two-
and-a-half centuries since his death. So, given that, how much more 
powerful than Euler’s brain will be the one to fi nally tell us what ζ (3) 
equals? If one is a pessimist, then the immediate answer is that it will 
take a “Chuck Norris” brain to solve for ζ (3), which is a pop-culture 
way of saying it will require a supernatural mentality (see the box).

1. Cornel Ioan Vălean, author of (Almost) Impossible Integrals, Sums, and Series 
(Springer, 2019).
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262 Epilogue

ALERT: Everything in this box is just for fun!

Chuck Norris (born 1940) is an American martial arts action 
movie actor famous for being super-tough, and that reputation 
has spawned an amusing “literary” genre called Chuck Norris math 
jokes. Here are some of the funnier ones:

“Chuck Norris is so tough that even though 1  is imaginary 
it’s still afraid of Chuck.”

“Chuck Norris is so fast that one day he counted by ones from 
one to infi nity—twice.”

“Chuck Norris can square the circle using only a pencil and his 
magnifi cent hand-eye coordination.”

“Dividing by zero is easy for Chuck Norris, which is why 
he can simultaneously solve the equations of parallel 
lines.”

“Chuck Norris doesn’t diff erentiate because he’s so tough he 
disintegrates everything.”

“Chuck Norris knows which is bigger, pi or pi with its digits 
reversed, because he once calculated the exact value of 
each.”

“Chuck Norris can draw a triangle with four sides—and 
nobody had better say he can’t!”

Well, you get the drift . Surely, goes this theory, Chuck Norris 
would fi nd the puzzle of ζ(3) to be mere child’s play, and if we 
could only get him to stop wasting his time beating up evil movie 
thugs, and to turn his attention to ζ(3), then he surely would, 
overnight, become the world’s most acclaimed mathematician. 
And, you have to admit, it would be great fun to hear scholarly 
mathematicians speak at math conferences in hushed, reverential 
voices on what would, without a doubt, become known as 
Chuckie’s number.
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Epilogue  263

If you’re an optimist, however, you’ll fi nd some solace in some 
famous words by the late Hungarian-American, Harvard-based math-
ematician Raoul Bott, who was quoted at the beginning of this book. 
To paraphrase Bott, when he was once asked how great mathematics 
is done, he replied that there are two tried-and-true approaches. Th e 
fi rst is the obvious one of just being smarter than everybody else. 
Th at, unfortunately, works only for a very small number of people (if 
you’re literal minded, just one person can be smarter than everybody 
else). Of course, all it will take to solve for ζ(3) is one person, so per-
haps that might work. Bott’s other way to success is to be single-
mindedly obsessed and simply plug away for however long it takes, 
even the rest of your life. Aft er all, if Euler hadn’t lost his eyesight 
and then simply run out of time, maybe he would have eventually 
found ζ(3). And don’t forget, aft er Euler fi nally calculated the exact 
value for ζ(2), mathematicians started fi nding easier derivations, 
some of which are understandable by high school AP-calculus stu-
dents. Maybe it will be the same with ζ(3). Maybe, in fact, somebody 
will fi nd one of the “easy” derivations for ζ(3) right off  the bat!

Bott didn’t come straight out and say it, but one way a “persist-
ent, high-energy” mind might look for ζ(3) is to simply guess it. I 
know that sounds pretty crude (because it is), but who cares? If by 
randomly combining lots of math’s well-known constants (π, e, 
ln(2), 3 , and so on), and using various functions (logarithmic, 
trigonometric, factorial, exponential, and so on), maybe by sheer 
luck you’ll stumble onto a combination that endlessly churns out the 
correct digits of 1.2020569. . . .2 You might feel better about this ad 
hoc approach by knowing that Euler wasn’t so snobby as to be above 
using it himself. Recognizing that ζ(2n) has the form of 2p n

q , where 
p and q are integers, Euler wondered if ζ(3) might equal 3p

q
 and so, 

2. As I bring the writing of this book to an end, the value of ζ(3) has been computed 
out to at least 1012 (yes, a trillion) digits. To learn more about how that was done, type 
“y-cruncher” into Google. You’ll be directed to numerous sites that will tell you all about 
the computer code called y-cruncher, which has also computed the digits of several other 
well-known constants (like Euler’s gamma) out to an equally fantastic number of digits. 
Indeed, it was gamma, γ, which looks (sort of ) like a y, that gave y-cruncher its name.
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using the numerical value of ζ(3), calculated 3

(3)
q
p  with the hope 

the result would off er a clue for what p and q might be.
Th is, in fact, didn’t result in much of anything, but my point is 

that even the great Euler couldn’t resist trying to reverse-engineer 
ζ(3). With the now easy availability of high-speed electronic com-
puters, perhaps a systematic evaluation of millions upon millions of 
diff erent combinations per second, using lots of math constants and 
functions, might lead to something. Or maybe not. I honestly don’t 
give it much hope, but who really knows without trying? And, if the 
guessing approach does work for you, please remember (when you 
follow in Bott’s footsteps and accept the Wolf Prize of 20??) where 
you got your inspiration!

Th e diffi  culty of the zeta-3 problem is the basis for this little 
amusement, one I would occasionally tell my own students: “Two 
cannibals are eating a badly cooked clown when one of them turns 
to the other, a frown on his face, and asks ‘Does this taste just a little 
bit funny to you?’” I would set the stage for this admittedly tasteless 
joke by telling the class I had heard it from a mathematician who had 
been driven a bit looney aft er 50 years of failing to solve the zeta-3 
problem. My students would either half-laugh or (more oft en) groan 
at that, but all agreed on one point—to repeat a joke that awful, one 
had to be just a bit unbalanced (a conclusion, I suspect, that was a 
message meant for me).

A modern unsolved problem that lends itself to computer study is 
the Collatz conjecture, made in 1937 by the German mathemati-
cian Lothar Collatz (1910–1990). While easily understandable by 
a grammar school student, it has stumped mathematicians ever 
since its appearance. Imagine a sequence of positive integers x1, 
x2, x3, . . . xk, xk+1, . . . , where

1

 if    is even,
2

3 1 if    is odd.

k
k

k

k k

x
x

x
x x
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Th e conjecture is that for x1 equal to any positive integer greater 
than 1, the sequence will eventually generate 1 (and then loop 
endlessly through 4,2,1,4,2,1, . . .). Figure E.1 shows a plot of the 
sequence for x1 = 97. Th ere is an enormous body of computer 
studies that all support the conjecture but, as with the Riemann 
hypothesis, those vast numerical results prove nothing.

In any case, to help you avoid the fate of my mathematician friend 
as you slog away on ζ(3), some words from the French mathemati-
cian Georges-Louis Leclerc (1707–1788), Comte de Buff on, might 
be good to keep in mind: “Never think that God’s delays are God’s 
denials. Hold on; hold fast; hold out. Patience is genius!” In other 
words, just because God made ζ(3) a very hard problem doesn’t 
mean He necessarily made it an impossible one. In particular, the 
failure of Euler to compute ζ(3) doesn’t mean all hope is lost, as 
Euler was not infallible.

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
0 20 40 60 80 120100

k

FIGURE E.1.

Th e Collatz sequence with starting value x1 = 97.
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As an example of that, in 1769 Euler observed x2 + y2 = w2 has 
integer solutions (32 + 42 = 52), while x3 + y3 = w3 does not (think of 
Fermat’s Last Th eorem), and yet x3 + y3 + z3 = w3 does (33 + 43 + 53 = 
63). On this rather thin evidence, Euler then conjectured that at least 
n nth powers are required to form a sum equal to an nth power. So, 
to have an all-integer solution for the n = 5 case, for example, Euler 
thought one needed to have at least fi ve integers on the left , that is, 
x5 + y5 + z5 + u5 + v5 = w5. In 1966, however, a computer search 
showed Euler’s conjecture to be false, with the discovery of the four-
integer counterexample 275 + 845 + 1105 + 1355 = 1445. Euler was fl eet 
of foot, yes, but every now and then he could still stub a toe.3 Did he 
somehow miss a crucial observation in his long hunt for ζ(3)?

So, here’s my parting word, particularly to all the younger read-
ers of this book, who, while perhaps not smarter than everybody 
else, are persistent. Start plugging! Your obvious reward will be 
fame, of course, but the even greater reward will be what the open-
ing quotation from my Romanian correspondent proclaimed. Th e 
Hungarian-born American mathematician Paul Halmos (1916–
2006) put the situation this way, in a 1990 interview: “What’s the 
best part of being a mathematician? I’m not a religious man, but it’s 
almost like being in touch with God when you’re thinking about 
mathematics. God is keeping secrets from us [think ζ(3)], and it’s fun 
to try to learn some of the secrets.”4

3. Th e year aft er he made his conjecture, Euler off ered the fi rst proof that there 
are no integer solutions to x3 + y3 = w3. (Fermat, himself, had already shown the same 
for x4 + y4 = w4.) Alas, there were some subtle diffi  culties with Euler’s proof that were 
later cleaned up by others. Euler’s basic idea was okay, but there were some missteps.

4. Don Albers, “In Touch with God: An Interview with Paul Halmos,” College 
Mathematics Journal, January 2004, pp. 2–14.
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Appendix 1
Solving the Impossible by Changing the Rules

“Th is is beautiful,” Rebus said to himself. He hadn’t just squared 
the circle, he’d created an unholy triangle out of it.

—Inspector John Rebus suddenly unravels the puzzles of a multiple 
murder investigation in Ian Rankin’s 1994 novel Mortal Causes

In this appendix I’ll elaborate, just a bit, on the nature of unambig-
uous mathematical questions that, despite being crystal clear in 
what they ask for, nevertheless have no solutions. I fi rst mentioned 
this issue at the end of Section 1.2, concerning the ζ (3) problem, 
with an intentionally cryptic remark about the impossibility of solv-
ing certain ancient geometric construction problems (trisecting an 
angle, squaring a circle, and doubling a cube), problems dating from 
centuries before Christ.

On the opening pages of his excellent book1 on these problems, 
the American mathematician Nicholas Kazarinoff  (1921–1991) 
included this insightful passage:

1. Nicholas Kazarinoff , Ruler and the Round: Classic Problems in Geometric Con-
structions (Dover, 2003), fi rst published in 1970. Th at book is written at the same level 
as this one (high school geometry and AP-calculus). You can fi nd more discussions 
on the history of these ancient construction problems in David S. Richeson, Tales of 
Impossibility: Th e 2000-Year Quest to Solve the Mathematical Problems of Antiquity 
(Princeton University Press, 2019).
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One must not confuse the impossibility of a geometric construction with 
an unsolved problem—or with the insolvability of a problem! Consider the 
following example: . . . construct a square whose side length is a whole 
number of units and whose area is two square units. Clearly, there exists no 
such square. . . . On the other hand, if we change our rules slightly and 
admit as candidates for solutions to our problem squares of any side length, 
then we can solve the problem affi  rmatively. (Given a straight line segment 
AB of unit length, we construct a second segment AC perpendicular to AB
at A and also of unit length. Th en BC is a side of a square of area 2. Th e 
length of BC is √—2, which is not a whole number.)

To follow up on Kazarinoff ’s words, consider the problem of 
squaring a circle (using straightedge and compass alone, construct 
a square with area equal to that of any given circle). Th is particular 
problem is so famous that it has entered into general use, even 
among non-mathematicians, as the metaphor (as in the quotation 
that opens this appendix) for achieving the impossible. To be quite 
specifi c, suppose the given circle has unit radius and so its area is π. 
Th e specifi c problem, then, is to construct a square with side length 

. Nobody, alas, could fi nd a way to do that, even aft er thousands 
of years of trying—and then, in 1882, the German mathematician 
Ferdinand Lindemann (1852–1939) fi nally discovered the reason 
behind that colossal failure: π is what is called a non-constructable 
number, which means that, given a line segment of unit length, it is 
impossible to construct (with just a straightedge and compass) a line 
segment of length π (you can fi nd more on Lindemann’s proof in 
Kazarinoff ’s book; see the fi rst note in this appendix). Th is instantly 
showed the impossibility of squaring a circle. Here’s why.

Suppose we have succeeded, somehow, in constructing a length 
. Th en, using a simple, high school construction that generates 

a length that is the square of any given length,2 we could construct 

2. Do you see how to construct a length x2 from a given length x (also given is 
the unit length, which simply sets the scale of the construction)? Th is question has 
nothing to do with ζ(3)—at least, I don’t think it does—but it would be cruel to leave 
you hanging, and so you’ll fi nd a solution in the box at the end of this appendix.
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Changing the Rules  269

the length π. But Lindemann proved that is simply not possible. So 
the initial supposition of having earlier constructed the length 
must be in error. Th at’s it!

Th e impossibility of squaring a circle is an actual impossibility, 
however, only if we are constrained to using the traditional construc-
tion tools of straightedge and compass. If we change the rules just a 
bit, then we can square a circle. Th e use of a straightedge means we 
can draw “curves” called straight lines, and the use of a compass 
means we can draw curves called circles. Let’s now suppose we have, 
in addition, a third instrument that draws the quadratrix curve, a 
mathematical creation dating from circa 450 B.C. To go into the 
details of the quadratrix, and the instrument that draws it (it is not 
diffi  cult to make), would take us too far afi eld from the theme of this 
book (see Kazarinoff ’s book, pp. 28 and 60–61, cited in the fi rst note 
of this appendix), but with it squaring a circle is now possible.

Well, does that hold out the tantalizing possibility that the ζ(3) 
problem could also be made to have a solution if we could, in some 
sense, somehow change the rules? When I wrote the fi rst draft  of 
this appendix, my answer was no, because for the square-a-circle 
problem, the rules were in the form of specifying the drawing instru-
ments we could use. Changing the rules in that case simply meant 
changing the allowed drawing instruments, and that is obviously 
physically possible to do. My initial thoughts on the same issue for 
the ζ(3) problem, however, were that the rules we would then be 
playing by are the very laws of mathematics, and how can we pos-
sibly change them? Like the proclamation in Ralph Waldo Emer-
son’s poem “Th e Past,” on the rigidity of history (“All is now secure 
and fast/Not the gods can shake the Past”), the rules of mathematics 
seem to be equally unalterable.

But aft er getting back the comments from the initial reviews of 
my proposal for this book, one of those comments in particular 
caught my eye. A reviewer (who, alas, elected to remain anonymous) 
wrote that perhaps the diffi  culty in expressing ζ(3) as a combination 
of certain numbers (the integers, π, e, and so on) is because our 
list of candidate numbers is missing one (or perhaps even more) 
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possibilities. Th at is, numbers that we simply haven’t yet discovered; 
for example, the zeros of some new function, like π is a zero of sin(x). 
Th at seemed to me to be something worth thinking about, as it holds 
out the hope that the solution to the puzzle of ζ(3) may suddenly 
appear one day from out of a seemingly distant area of mathematics.3

And doesn’t that strike you as something a tough and demanding 
(but ultimately non-malicious) Creator would do? Let’s keep our 
fi ngers crossed!

In Figure A1.1 you see the right triangle AOB, where the length of 
OA is the given unit length, and the length of OB (constructed 
perpendicular to OA at O) is the given x. In this construction we’ll 
assume that x > 1 (which is the case for x ), but the case of 

3. Th e idea of discovering a new number has long fascinated me, and long ago I 
wrote a short science fi ction story with that as the “catch.” Titled “Mathematical 
R&D,” it originally appeared in the IEEE Transactions on Aerospace and Electronic 
Systems, January 1979, pp. 179–180, and is reprinted in my book, Number-Crunching 
(Princeton University Press, 2011), pp. 302–304.

A

B

D

1 + x2��

x

α

yCE 0 1

1–2

FIGURE A1.1.

How to construct x2 from x > 1.
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Changing the Rules  271

x < 1 requires only a nearly trivial modifi cation that I’ll leave for 
you to think about. (Th e case of x = 1 is particularly trivial, since 
then x2 = x, and you are done before you start.) Th e length of the 
hypotenuse AB is (from Pythagoras) 21 x . Now, bisect the 
hypotenuse (creating D), and extend the perpendicular bisector to 
intersect the extension of OA at C; denote the length of OC by y.
 Denote the angle α (common to the right triangles AOB 
and ACD) as shown in the fi gure. Clearly, 

2
2

2

1 11 12cos( )
1 2(1 )1

x x
y yx

. 
Th us, 2(1 + y) = 1 + x2 = 2 + 2y, or x2 = 1 + 2y. So, using C as the 
center of a circle with radius y, draw that circle and call its intersec-
tion with the extension of OA point E. Th e length of ECOA is 1 + 
2y and so is the desired x2. (Now, do you see how this construction 
changes for the x < 1 case?)

One fi nal comment on impossibility in mathematics. Are we, 
today, living too late in the history of mathematics to enjoy a con-
temporaneous problem of impossibility? Th at is, is there nothing left  
for a modern mathematician to do in this area? Th e answer is a 
resounding NO, and I describe some examples of that in Appendix 
5, from the mathematical theory of computer science.
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Appendix 2
Evaluating 2

0

te dt  and 
2

2
 

0

q
pt

te dt

Th e value I of an integral certainly doesn’t depend on the shape of 
the particular squiggle of ink we use to denote the dummy variable 
of integration. Th at is, using t or x or y doesn’t matter:

2 2 2

0 0 0
.t x yI e dt e dx e dy

Now, consider the double integral

2 2 2 2 2

0 0 0 0

x y x ye e dy dx e dx e dy I

where we can justify moving the inner y-integral out of the double 
integral because that inner integrand has no x dependence. But there 
is nothing that says we couldn’t instead move the inner y-integral into 
the x-integral just as well. Th at is, we can also write I 2 as

2 2 2 2(     )

0 0 0 0
.x y x ye e dy dx e dxdy

Th at is,

2 22 (     )

0 0
.x yI e dxdy
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We physically interpret the I 2 integral as follows. Th e double inte-
gral’s region of integration is the entire fi rst quadrant of the xy-plane, 
with the physical signifi cance of dxdy being the diff erential area 
patch in Cartesian coordinates; see note 10 in Chapter 2. Now, the 
numerical value of the double integral, I2, certainly doesn’t depend 
on the particular coordinate system we happen to use. If we move to 
polar coordinates (r, θ), we have x = rcos(θ) and y = rsin(θ) and so 
x2 + y2 = r2, the diff erential area patch in polar coordinates, is given 
by rdrdθ, and to integrate over the entire fi rst quadrant, we use 0 ≤ r 
≤ ∞ and 20 . Since in either coordinate system, the double inte-
gral must come out to the same numerical value, we have

2 2/2 /22

0 0 0 0

r rI e rdrd e r d dr

2 2

00

1
|

2 2 2 4
r re rdr e

which says

2

0

1
,

2
tI e dt

a result used in the derivation of (1.4.6). Every engineer and physi-
cist, and certainly all mathematicians, should know this gem of 
analysis, the evaluation of an integral that occurs in countless scien-
tifi c applications and theoretical situations. Th e calculation of this 
integral is occasionally attributed to Gauss (see note 1 in Chapter 1), 
but Gauss himself always credited the French mathematician Pierre-
Simon Laplace (1749–1827) who, in fact, did it in 1774 during his 
early work in probability theory. It is, in fact, commonly called the 
probability integral. For an entirely diff erent (less physical, more 
mathematical) derivation, see my book, Hot Molecules, Cold Elec-
trons (Princeton University Press, 2020), pp. 185–187.

Now that we have a formula for the probability integral, we can 
extend it to the more general

274 Appendix 2
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2
2

   

0
,

q
pt

tI e dt

which reduces to the probability integral as the special case of p = 1 
and q = 0. Th is generalized result, you’ll recall, played a central role 
in doing the Feynman-Hibbs integral in the Preface. Here’s how to 
do the generalization with just AP-calculus.

To start, let me remind you of note 24 in Chapter 1, and of the 
box that ends Section 1.6. Th ere I showed you a simple form of 
Feynman’s trick of diff erentiating an integral with respect to a 
parameter in the integrand. We can use that idea here to do our new 
integral. We begin by changing variable to ( )du

p
u t p dt  and so

2 2
2 2     

20 0

1 1qp qp
u u

u udu
I e e du I

p p p

where

2
2

 

2 0
.

qp
u

uI e du

If we write k qp , then we have

2
2

2   

2 0
( )

k
u

uI k e du

and so, if we diff erentiate with respect to k and assume that we can 
reverse the order of diff erentiation and integration, we have

2
2

2   
2

20

2
.

( ) k
u

udI k k
e du

dk u

If we next change variable to k
uy  (and so 

2

dy k
du u

 , or 
2u

kdu dy ), then
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2 2

2 2 2
2   0 /2

2

1
2

k k
y k ydI u

k e dy
dk u k

or

2
2

2     
2

20
2 .2

k
y

ydI
e dy I

dk

Th at is,

2

2

2
dI

dk
I

or, with C some constant, we have (aft er indefi nite integration)

ln(I2) = –2k + ln(C)

or

2
2 ( ) .kI k Ce

We can determine C by noticing that I2(0) is the probability inte-
gral. Th at is,

2 ( )
1

0
2

I C

and we thus have

22
2

1 1
2

( .
2

) qpkI k e e
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Since

2
1

I I
p

we immediately have our answer:

2
2

      2

0

1
2

.
q

pt qptI e dt e
p

As a quick check, if q = p = 1, our formula says 
2 1

2 21
0 2

t
t

e dt e
22

0.11993777196806
e

, while MATLAB says integral(@(x)
exp(-x.^2-1./(x.^2)),0,inf) = 0.11993777196806 . . . , which is pretty 
good agreement. If you are willing to be fearless, and to let p and/or 
q be imaginary constants, then some really spectacular results can 
be derived from our formula.

For example, as early as 1743 Euler became interested in the two 
defi nite integrals, 2

0 cos( )t dt  and 2
0 sin( )t dt , in connection with 

the physics of a coiled spring. Aft er decades of eff ort, he fi nally (1781) 
evaluated both using his gamma function.1 Ironically, despite that 
success these two integrals are, today, called the Fresnel integrals, 
aft er the French scientist Augustin Jean Fresnel (1788–1827), who 
encountered them in an 1818 study of the illumination intensity of 
optical diff raction patterns. (Note that Euler had evaluated the 
Fresnel integrals years before Fresnel was born!)

To simultaneously evaluate these two integrals with our formula, 
let q = 0 and 1p i . Th en our formula becomes, using (appro-
priately enough) Euler’s identity,

2 2 2

0 0 0

1
cos( ) sin( ) .

2
ite dt t dt i t dt

i

1. Th e details of how Euler used the gamma function to do these two integrals 
are discussed in my Inside Interesting Integrals, 2nd edition (Springer, 2020), p. 348.
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But 2ii e  and so

2 2 4
0 0

2 4

1 1
cos( ) sin( )

2 2 2
i

i i
t dt i t dt e

e e

1 1 1 1
cos sin .

2 4 4 2 2 2 2 22 2
i i i

Equating real and imaginary parts, we then immediately have, just 
like that,

2 2

0 0

1
cos( ) sin( ) .

2 2
t dt t dt

I won’t go through the details here,2 but if you’re looking for 
other similar, equally amazing exercises, fi rst set p = i and q = −i in 
our formula and see if you can then show that

2 2
2 2 20 0

1 1 1
cos sin .

2 2
t dt t dt

t t e

If you can do that, then set p = q = i and see if you can show that

2
20

1
cos cos 2 and

2 4
t dt

t
2

20

1
sin sin 2 .

2 4
t dt

t

If using imaginary values for p and q leaves you just a bit nervous, 
you are not alone. As an historian of mathematics recently wrote,3

A curious feature of mathematical analysis in the years around 1800 was the 
use of complex variables to evaluate real defi nite integrals. Th e practice had 

2. You can fi nd them in my Inside Interesting Integrals, pp. 349–350, 487.
3. Jeremy Gray, Th e Real and the Complex: A History of Analysis in the Nineteenth 

Century (Springer, 2015), pp. 59–60.
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begun with Euler. . . . In his Mémoire on this topic that he presented in 1814 
[the French mathematician Augustin-Louis Cauchy (1789–1857)] com-
mented that many of the integrals had been evaluated for the fi rst time “by 
means of a kind of induction” based on “the passage from the real to the 
imaginary” and that no less a fi gure than Laplace had remarked that the 
method “however carefully employed, leaves something to be desired in 
the proofs of the results.” Cauchy accordingly set himself the task of fi nding 
a “direct and rigorous analysis” of this dubious passage.

Cauchy’s 1814 Mémoire was the prelude to his later (1825) mag-
nifi cent development of contour integration in the complex plane, 
about which you can read (in some detail) in my Inside Interesting 
Integrals, pp. 351–422. In advanced work on the mysteries of ζ(3), 
contour integrals abound, but such sophisticated doings are for 
another book.
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Appendix 3
Proof Th at 11

1
( )

nq n q qn n q
 Equals Zero

To establish the claim, we start with Figure A3.1, which shows the 
points with positive integer coordinates in the fi rst quadrant of the 
qn-plane. Each such point is associated with a term in the double 
sum, with the exception of those points on the diagonal line n = q 
(because of the n ≠ q condition). Th e shaded triangular region 
labeled Rn>q is the set of all points associated with the positive terms 
in the double sum, and the shaded triangular region labeled Rn<q is 
the set of all points associated with the negative terms in the double 
sum. It is clear, by both the symmetry of the two regions and by the 
general form of the terms, that the sums over Rn>q and Rn<q are neg-
atives of each other. Note, however, that at this point we cannot 
argue that these two individual sums add together to give zero. 
Th at’s because if each individual sum is infi nite, then their sum is 
∞ − ∞, which is indeterminate. We can conclude that the sum of our 
two individual sums is zero only if the individual sums are negatives 
and equal in fi nite magnitude (our assumption, you’ll recall, in the 
discussion in Section 4.2).

It will suffi  ce to show that the sum over Rn>q is fi nite. Since the 
terms of that double sum are all positive and continually decrease 
toward zero as n and q increase, we can use the so-called integral test 
from calculus, which says that if we treat q and n as continuous 
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variables, then 1
( )n qR qn n q dqdn  means that the double sum is 

also fi nite. So, that’s our problem here, the evaluation of the double 
integral

1 1

1 1 1
( ) ( )n qR q

dqdn dn dq
qn n q q n n q

where the limits on the q and n integrations are obvious from Figure 
A3.1. Since

1 1 1 1
( )n n q q n q n

then

21 1

1 1 1 1
.

n qR q
dqdn dn dq

qn n q q n q n

n

q

5

4

3

2

1

0 1 2 3 4 5

Positive
terms

Negative
terms

n = q
(Excluded items)

n = q – 1

n = q + 1

Rn > q

Rn < q

FIGURE A3.1.

Th e geometry of the double sum 11

1
( )

nq n q qn n q
.
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Proof Th at 11

1
( )

nq n q qn n q  Equals Zero  283

Now,

1 1 1

1 1
.

q q q

dn dn
dn

n q n n q n

For the fi rst integral on the right, change variable to u = n − q (and 
so du = dn). Th en

1

1 1 1 1

1 1 q

q q

du dn dn
dn

n q n u n n

1
1ln( )| ln( 1).qn q

Th us,

2 21 1

1 ln( 1) ln(2 )
( )n qR

q q
dqdn dq dq

qn n q q q

where the last integral and inequality follow because, over the entire 
interval of integration, it is clearly true that q + 1 ≤ 2q. So

21

1 ln(2) ln( )
( )n qR

q
dqdn dq

qn n q q

2 21 1

ln( )
ln(2) .

dq q
dq

q q

Since 2
1

1 1| 1dq
qq

, 2
ln( ) ln( ) 1

1 1and | 1q q
q qq

dq , then

1
 ln(2) 1

( )n qR
dqdn

qn n q

and we are done.
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Appendix 4
Double Integration Reversal Isn’t Always Legal

We know that the evaluation or even only the reduction of multiple 
integrals generally presents very considerable diffi  culties.

—Gustav Dirichlet (1839)

By the time you’ve gotten to the mid-point of this book, you will 
have encountered numerous occasions where, in a double integral, 
the order of the two integrations has been reversed. In none of those 
occasions was any justifi cation for the reversal provided. Instead, I 
simply argued that such reversals are usually okay, and so we just 
went ahead and did it to see what we got. Mathematicians are gen-
erally not amused by that, however, and so here I’ll try to partially 
atone for my sins of omission by admitting that

( , ) ( , )
b d b d

a c a c
f x y dxdy f x y dx dy

and

( , ) ( , )
d b d b

c a c a
f x y dydx f x y dy dx
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may not be equal, even though we appear to be integrating the same 
function over the same fi nite rectangular region.

To demonstrate this, consider the classic example of  
3(   )

( , ) x y

x y
f x y  integrated over the unit square. Invoking my usual 

“let’s just do it” argument, we’d write

1 1 1 1

3 30 0 0 0

       
.

(     ) (     )
x y x y

dx dy dy dx
x y x y

But au contraire! If we calculate the specifi c value of each side of this 
supposed equality, we’d fi nd (perhaps to our amazement) that while 
the two sides do indeed have defi nite values, those two values are 
not equal. Here are the details of such calculations.

For 3

1 1    
0 0 (     )
{ }x y

x y
dx dy , let t = x + y in the inner integral (where x is 

varying and y is held constant). Th en dx = dt, and 3 3

1 1       2
0 (     )

yx y t y
yx y t

dx dt

2 3

1    1   2y ydt dt
y yt t

y 2
1    1   1 1

2
( )| 2 ( )|y y

y yt t
y 2 2

1 1 1 1
1    (1    )

( ) [ ]y y y y
y  or, 

after a little simple algebra, this reduces to 2
1

(1    )y
. So 

3 2

1 1 1   
0 0 0(     ) (1    )
{ }x y dy

x y y
dx dy . Let t = 1 + y, and this integral becomes 

2

2 21 1 1
1 1 2 2( )| ( 1)dt

tt
. Th at is, 3

1 1     1
0 0 2(     )
{ }x y

x y
dx dy . If you 

repeat this business1 for 3

1 1    
0 0 (     )
{ }x y

x y
dy dx, you’ll get 1

2 . Do you think 
the reason for this lack of equality might be connected to the fact that 
the integrand blows up as we approach the lower left  corner (x = y = 
0) of the region of integration?

Maybe, but staying away from x = y = 0 doesn’t necessarily avoid 
the problem. Th at’s because if we change the region of integration 
to the infi nite region 1 ≤ x < ∞, 1 ≤ y < ∞, we’ll still experience a 
failure of equality. Th at is,

3 31 1 1 1

       
(     ) (     )

x y x y
dx dy dy dx

x y x y

even though the integrand is now well behaved (that is, is continu-
ous and fi nite) for all x and y. (Notice that the integrand, for both 

1. Even easier is simply to notice that 3 3

1 1 1 1
0 0 0 0( ) ( )
{ } { }x y y x

x y x y
dy dx dy dx which, 

by inspection, is the negative of the double integral we just did.
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Double Integration Reversal Isn’t Always Legal  287

regions of integration, changes sign as we move about in each 
region—could that, perhaps, have something to do with the inequal-
ity of the integrals?) I’ll let you fi ll in the details of showing the 
inequality (just mimic what we did for the fi nite region). Th ese two 
examples have not rigorously identifi ed the underlying require-
ments for a reversal of integration order to be valid, but instead only 
demonstrate that fi nding such requirements is an important (non-
trivial) task, a task I’ll leave for more advanced discussions in math 
books at a deeper level than is this one. Generally, however, if an 
integrand f (x, y) is an everywhere continuous, fi nite function in a 
fi nite region of integration, reversal of the order of integration will 
not get you into trouble.
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Appendix 5
Impossibility Results from Computer Science

Th is appendix is a continuation of the theme of Appendix 1, on 
mathematical problems that, despite clearly stating a well-formed 
question, have no solution. In Appendix 1 we discussed one such 
problem, an ancient problem from geometric construction, and 
here I’ll show you additional similar problems from the modern dis-
cipline of computer science.

Modern electronic digital computers are of such massive capabil-
ity that it is easy to suppose that there is no number-crunching prob-
lem that such machines couldn’t, if given suffi  cient time, grind their 
way through. Unfortunately, that is just not true, and it has been 
known to be false since the English mathematician Alan Turing 
(1912–1954) proved it in 1936.1 Turing arrived at his astonishing 
conclusion by the direct route of describing, in great detail, quite 
specifi c, particular computational problems that he showed are 
inherently unsolvable. His analyses hold true no matter how large 
the memory storage, or how fast the clock speed, of a computer may 

1. Turing was a towering fi gure in the early days of computer science, and he 
played a pivotal role in the breaking of the German Enigma code of World War II. He 
was also fascinated by the Riemann hypothesis (concerning where in the complex 
plane the zeros of the zeta function are located), and you can fi nd more on that in 
Andrew Hodges, Alan Turing: Th e Enigma (Simon and Schuster, 1983); and David 
Leavitt, Th e Man Who Knew Too Much: Alan Turing and the Invention of the Compu-
ter (W. W. Norton, 2006).
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be. Make both those numbers a thousand million billion trillion 
times greater than they are for the most powerful computer in exis-
tence today, and Turing’s problems continue to remain unsolvable. 
Even the eventual development of a quantum computer will not 
change this claim. I’ll start with discussions of two of Turing’s prob-
lems and end with some commentary on the question of the solva-
bility (or not) of the Riemann hypothesis concerning the location of 
the complex zeros of the zeta function.

As the fi rst example of what Turing did, consider this claim: 
Th ere are an infi nity of real numbers that are impossible to compute. 
On the face of it, this seems to be an outrageous statement, but it is, 
in fact, not at all diffi  cult to prove. Here’s how.

To start, let me make a few preliminary observations about the 
concept of infi nity. We all know it’s “big,” but that doesn’t even begin 
to get at the mathematics of what it means to say something is infi nite 
in size. Most people, when asked to give an example of an infi nite 
number of things, will probably reply “All the integers.” Th at’s cor-
rect, too, as the integers form what mathematicians call a countably 
infi nite set. Th at’s because we can literally count the integers, one, 
two, three, four, . . . , up to a billion, a trillion, and on and on and on. 
If you count off  one integer each second, then I can tell you precisely 
the instant in the future you’ll have counted up to any particular 
integer. Th e integers are infi nite in number, yes, but they can be 
counted.

Th is is probably not so surprising to you, but there are other 
countable infi nities that are surprising. For example, all the rational 
numbers (to be specifi c, the numbers from zero to one that are the 
ratios of integers) are a countable infi nity. Why is that a surprising 
statement? It’s a surprise, because unlike the integers, the rational 
numbers are dense. What a mathematician means by “dense” is that 
if you take any two rational numbers, no matter how close together 
they may be, there is another rational number between them (their 
average value). And so on, forever. Th ere is no minimum separation 
of rational numbers; no matter how small a non-zero separation you 
name, there are two rational numbers that are even closer. In con-
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Results from Computer Science  291

trast, the integers are not dense, because there is a minimum separa-
tion between consecutive integers—dare I say it?—of one.

Nevertheless, despite their denseness, the rational numbers still 
form a countable infi nity. Th is astonishing result, totally at odds with 
intuition (oft en called “common sense”) was discovered by Cantor 
in 1874. Many mathematicians of his day thought Cantor was crazy, 
but it was they (not him) who were wrong (although, ironically, 
Cantor did die in a mental institution).2 Cantor went on to show that 
the infi nite set of all real numbers from zero to one does not form a 
countable infi nity (for a proof of this, see my book, Th e Logician and 
the Engineer). Since there are just two categories of real numbers—
the rational numbers (which form a countable infi nity) and the irra-
tional numbers (like π and 2)—then we immediately know that the 
irrational numbers must be so numerous as to form an uncountable 
infi nity. With this conclusion, we can now prove the existence of 
Turing’s non-computable numbers.

We start by visualizing a computer (imagine it to be as massively 
powerful as you like) being programmed to compute numbers using 
various algorithmic procedures whose details are unimportant. Th e 
programming is done in any language you wish (actually, to under-
stand this argument, you really don’t even have to know a program-
ming language), with the only requirement being that the language 
uses a fi nite set of distinct symbols, for example, the 26 letters of the 
English alphabet, the 10 digits from 0 to 9, and a few additional spe-
cial symbols like >, <, =, ^, (,). We suppose each new program we 
write with these symbols computes a new number. Let’s now list all 
of these programs by symbol length.

Th at is, the fi rst program on our list will be one symbol long. Since 
there is more than one program of length one, we’ll list them in 
alphabetical order. Th en we’ll do the same for all programs of 
length two symbols, then three symbols, and so on. Th e number 
of programs of a given length is fi nite, since we have a fi nite set of 

2. For Cantor’s high school–level proof of the countable infi nity of the rational 
numbers, see my book, Th e Logician and the Engineer (Princeton University Press, 
2013), pp. 169–170.
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distinct symbols at our disposal. It should be clear that the resulting 
infi nitely long list of programs forms a countable infi nity. But there is 
an uncountable infi nity of real numbers, and so there must be an 
uncountable infi nity of numbers left  uncomputed, numbers we can’t 
compute, because there simply aren’t enough programs! It is impor-
tant to understand that this result does not preclude being able to 
compute all the numbers that have a fi nite number of digits, like the 
fi rst billion digits of ζ(3). Th ere are a fi nite number of billion-digit 
numbers from one to two, for example, and since a countable infi nity 
of programs is available, there would be no shortage of computational 
power. Turing’s result comes into play only when we talk of comput-
ing all the exact values of the uncountable infi nity of the real numbers.

Now, all this might strike you as being pretty academic and 
hugely abstract, as something far removed from the practical con-
cerns of programmers and the nitty-gritty real-world of computer 
science. So, how about this “real-world” problem that haunts the 
nightmares of every computer coder: writing a program that con-
tains the dreaded fl aw of accidentally plunging into the coding 
equivalent of a black hole—an infi nite loop. Th at is, writing a pro-
gram that sooner or later somehow gets stuck in a never-ending cir-
cular execution of code and so, short of there being a power failure, 
never fi nishes. Wouldn’t it be great to have a way to determine 
whether any program you had just written had (or didn’t have) this 
fl aw? Th is question, called appropriately enough, the halting prob-
lem, was examined by Turing, who showed that the halting problem 
has no solution. More precisely, imagine a computer program H that 
can (so you imagine), given as its inputs any computer program P 
and the input I to P, determine whether P when executing I will 
eventually halt (that is, not get trapped in an endless loop). Th is is 
illustrated in Figure A5.1.

Turing showed that the existence of H is impossible. Th at is, H is 
the computer science equivalent of a unicorn—you can certainly 
imagine it, yes, but it simply does not exist. Turing’s reasoning is 
pretty abstract, but in 1952 the American mathematician Martin 
Davis (born 1928) gave a beautiful analysis that later appeared in a 
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college textbook3 by the American mathematician Marvin Minsky 
(1927–2016). Th ere Minsky wrote: “Th e result of the simple but 
delicate argument [in the proof of the insolvability of the halting 
problem] is perhaps the most important conclusion in this book.” 
Davis’ proof of Turing’s result, as described in Minsky’s book, takes 
the form of three steps.

Step 1: Any program P is ultimately described to the computer 
executing H as a sequence of 1s and 0s (in what is called machine 
language). Th e same is true for the input I to P, that is, I is also a 
sequential string of 1s and 0s. So, suppose we pick I to be P, that is, 
we present as input to P the same sequence of 1s and 0s that are the 
machine language version of P. Minsky writes of this perhaps curi-
ous choice for I: “We need not concern ourselves with the question 
of why anyone would be interested in such introverted calculations; 
still, there is nothing absurd about the notion of a man contemplat-
ing [with his brain] a description of his own brain.” Th is choice for I 
does have some practical motivation that Minsky might have men-
tioned, however, because using P as its own input data automatically 
specifi es the I we are going to use for any given P.

Step 2: Once we have P as the program input to H, along with P 
itself as the input I to P, we arrive at the situation shown in Figure 
A5.2, which shows P as the “double input” to H. H decides whether 
P (with input P) either eventually halts or loops forever. You’ll 

3. Marvin Minsky, Computation: Finite and Infi nite Machines (Prentice-Hall, 
1967). Th e quotes in the text are from pp. 148, 149.

P

H Decision

“P eventually halts
with input I”

or

“P loops forever
with input I”I

FIGURE A5.1.

H decides if P, executing I, either eventually halts or gets trapped forever 
in an infi nite loop.
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notice that in Figure A5.2 we have introduced a bit of additional 
logic, logic that, once the halt/loop decision for P has been made, 
forces the fi nal operation to be a halt if H’s decision was “P loops,” 
or to be an infi nite loop if H’s decision was “P halts.” Th e presence 
of this extra logic is why everything inside the dashed box of Figure 
A5.2 is given a new name, X. Note that up to this point, we have not 
(yet) arrived at a paradoxical situation. But then comes . . .

Step 3: Th is last step is, as Minsky calls it, the “killer.” Let P in 
Figure A5.2 be X. Th at is, apply X to itself. Figure A5.2 then becomes 
Figure A5.3, where we see that if H decides that X halts, then X 
loops; while if H decides that X loops, then X halts. Either way, H 
(with certainty) makes the wrong decision about X.

Minsky concludes his discussion of the halting problem with 
these words: “We have only the deepest sympathy for those readers 
who have not encountered this type of simple yet mind-boggling 
argument before. It resembles the argument in ‘Russell’s paradox’ 
which forces us to discard arguments concerning the ‘class of all 

P H

X

Decision

Halt
Enter

infinite loop

No, P loops Yes, P haltsP, with
input P,
halts?

FIGURE A5.2.

Logic X.
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classes’—a notion whose absurdity is not otherwise particularly evi-
dent.” Minsky is referring to the English mathematician Bertrand 
Russell (1872–1970) and his famous puzzle of the village barber who 
shaves every man in the village who doesn’t shave himself. Th e puz-
zle occurs when we ask: Who shaves the barber? Th e puzzle dates 
from 1902, and so Turing was clearly aware of it long before 1936.

In fact, Russell was not the fi rst to see how a self-referencing 
condition can carry the seeds of its own destruction in the form of a 
derived self-contradiction. Th e earliest example of this is probably 
the ancient liar’s paradox dating from four centuries before Christ. 
Ask yourself, aft er reading “Th is statement is a lie,” whether it is true 
or not. It must be one or the other, right? Well, if it is a true state-
ment (that is, it’s a lie) then it’s not true. And if it is a lie (that is, it’s 
a true statement), then it’s not a lie.

Th e fact that the ancients thought of a paradoxical situation that 
foreshadowed, by thousands of years, the modern-day computer sci-
ence halting problem may make you think there is nothing left  for 
modern analysts to tackle concerning computational questions. Not 

X H

X

Decision

Halt
Enter

infinite loop

No, X loops Yes, X haltsX, with
input X,

halts?

FIGURE A5.3.

X (an enhanced H) makes the wrong decision about itself.
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so. As I mentioned near the start of this appendix, Turing was greatly 
interested in the Riemann hypothesis, about which one of his biog-
raphers wrote “So far . . . no one [has] been able to prove [the Rie-
mann hypothesis’s] unprovability.”4

To appreciate the challenge implicit in that statement, consider 
the following scene, in which we listen in on the conversation 
between two academic mathematicians as they enjoy a before-
dinner glass of sherry in the faculty club dining room. Professors 
Tweedle and Twombly have just come from the weekly aft ernoon 
computer science seminar, where they listened to a guest speaker 
describe her calculation of 100 million zeros of the Riemann zeta 
function in a region of the complex plane vastly beyond anything 
explored before. To hardly anyone’s surprise, every last one of those 
complex zeros was precisely on the critical line.

“I say, Twombly,” says Tweedle, “that was a nice piece of com-
puter programming by young Sweeny, but it really proves nothing at 
all. All it will take to disprove Riemann’s conjecture, that all of the 
infi nity of the zeta function’s complex zeros are on the critical line, 
is fi nding just one zero that isn’t. Now that’s the real prize.”

“You’re right, Tweedle,” replies Twombly, “although fi nding a 
theoretical proof that all the complex zeros are on the critical line, or 
perhaps not, would be just as good.”

“Yes, yes,” quickly agrees Tweedle, as he fi nishes off  his sherry 
and pours another, “the RH question is a devilish one, isn’t it? 
It’s either true or it isn’t, and glory to he or she who shows which 
it is.”

“Th ere is, however, one bright aspect to it, you know,” says 
Twombly. “Th e question of the RH is, at least, not one of those dam-
nable monsters that can be proven to be unsolvable.”

“Oh, how’s that, Twombly?” asks Tweedle, who is now on his 
third sherry.

4. See Leavitt, Th e Man Who Knew Too Much. Th e RH has proven to be such a 
diffi  cult problem that some mathematicians have wondered if maybe the continuing 
failure to either prove or disprove it is because it is unsolvable. Such a situation would 
remove the embarrassing possibility that humans are just not smart enough!
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“Well, look at it this way,” answers Twombly, who is wondering 
if Tweedle is going to be able to follow the logic, with all that sherry 
in him. “If the RH could be shown to be unsolvable, that would mean 
nobody could ever experimentally fi nd, using Sweeny’s computer 
approach, a complex zero off  the critical line, even by chance, no 
matter how long she looked. Not even if she could check zeros at the 
rate of 101010 each nanosecond. Th at’s because if Sweeny did fi nd 
such a rogue zero, then she would have proven the RH to be false, in 
contradiction with the initial premise there exists a proof that the 
question is unsolvable. But that would mean there is no zero off  the 
critical line and that would mean the RH had been solved by show-
ing it’s true. Th at’s a contradiction, too. Th e only way out of this 
quagmire is to conclude that no such unsolvability proof exists.”

“Umph,” grunts Tweedle, whose eyes appear to be looking in 
two diff erent directions. A full minute of silence follows, and 
Twombly starts to suspect that the brilliance of his argument has hit 
a brick wall in the form of Tweedle’s sherry-soaked brain. But he is 
wrong, as Tweedle suddenly (but carefully) puts his glass down and 
leans forward with a lopsided grin on his face.

“Well, Twombly,” a now quite mellow Tweedle says, “I’m not so 
sure about all that. Th ere are, aft er all, infi nitely many complex zeros 
to the zeta function, and so no matter how many of them you check 
each nanosecond, it would take you infi nite time to check them all. 
So, you see, you’d never be done with your calculations, and your 
contradictions don’t occur until you are done. So, sorry old man, but 
I think your pretty little argument is pretty much a pretty big fl op.”

“Okay, Tweedle,” grumbles Twombly, “maybe you’re right. Or 
maybe you’re not. Who knows? Anyway, here’s a real problem for us 
to consider: What do we order for dinner? I hear that the fi g-stuff ed 
eggplant drenched in aged, probiotic yogurt is damn good, but so 
too, I’m told, is the high-fi ber, fat-fried tofu burrito in a fermented 
snail sauce. What do you think?”

And with that we quickly tip-toe silently away, leaving the two 
old friends with a puzzle that makes the mystery of the RH seem, by 
comparison, utterly trivial.
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Challenge Problem Solutions

1st Challenge in Preface: 
22 ( )( ) b

aa x xax bxI e dx e dx  
2 22
2 24 4

(     )b b b
a a a

a x x

e dx
22 2
24 4

(   )b b ba a a
a x x

e e dx
2 2

4 2( )b b
a aa xe e dx . 

Let 2  b
au x  and so 

2 2
4
b

a auI e e du . Let s
a

u  and so 
2 22 2

4 42
0

b b
a as sds

a a
I e e e e ds

2 2
4 42 1

2  
b b

a a
aa

e e .

2nd Challenge in Preface: 2(     )(     )            

b bdx dx
a ax a b x xb x ab ax

 

2     (     )    
.b dx

a ab a b x x
 Notice that 

2 2 22(     )        2    
4 2 4

a b a b a ab bx  
22 (     )

4[ ( ) ]a bx x a b
2 2 2 22   2        2    

4 4( )a ab b a ab bx x a b
2( )ab a b x x . So, 

2(     ) 2   
4 2

(     )(     )    ( )a b a b

b bdx dx
a ax a b x x

 . Let 

   
2   a bu x  (and so du = dx). Th en    

2
    2(     ) 22

4
(     )(     )    

b a

a b
a b

b dx du
a x a b x u   

2
    2(     ) 22

4

b a

b a
b a

du

u

2
2 2

2 2  {  }

b a

b a b a

du
u

2
   

22

1
 |sin

b a

b ab a
u 1 1( )sin 1 s )in 1(

2 2( ) , independent of a and b as long as b > a ≥ 0.

3rd Challenge in Preface: Th e claim is obviously true for q = 1, 
as the left -hand side of the Botez-Catalan identity is 1 1

2 21  while 
the right-hand side is 1 1

2 2(2) (1) 1 1h h , too. Now, suppose 
the claim is true for q = k. That is, suppose that 

1 1 1 1
2 3 4 21 (2 ) ( )k h k h k . If we can show that it then fol-

lows that the claim is true for q = k + 1, then the claim is true for all 
k. By our assumption, we have (A) 1 1 1 1 1 1

2 3 4 2 2 1 2 21 k k k
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1 1
2 1 2 2(2 ) ( ) k kh k h k . Now, notice that {2( 1)} { 1}h k h k

{2 2} { 1}h k h k  1 1 1
2 1 2 2 1[ (2 ) ] [ ( ) ]k k kh k h k 1

2 1(2 ) ( ) kh k h k
1 1

2 2 1k k
1 1 1

2 1 2( 1) 1(2 ) ( ) k k kh k h k 1 1
2 1 2( 1)(2 ) ( ) k kh k h k  (2 )h k

1 1
2 1 2 2( ) k kh k , which is precisely the right-hand side of (A). So, 

h{2(k + 1)} − k{k + 1} must equal the left -hand side of (A). Th at is, 
1 1 1 1
2 3 4 2( 1){2( 1)} { 1} 1 kh k k k  and we are done.

Challenge Problem 1.1.1: Following the hint, 
   ln(2 ) ln(2 )2    2    

2 2

i ii i e e

 ln(2 )    ln(2 )   
2

i ie e cos{ln(2)}  sin{ln(2)} cos{ln(2)}  sin{ln(2)}
2 cos{ln(2)}i i  . It is a sim-

ple matter to numerically evaluate this, with the ready availability of 
electronic hand calculators (be sure, however, to set the calculator 
to its radian mode) to get cos{ln(2)} = 0.769238 . . . , while 
10
13 0.769230 . As Euler claimed, these two numbers are nearly 
equal, not diff ering until we get to the sixth decimal place.

Challenge Problem 1.2.1: Consider the geometric series 1 2

kx
kS

2 3 4

2 2 2 2
x x x x  . Th us, 2 3 4

2 2 2 2
x x x xS , and so 

2 2
x xS S  or 2

2–
21–

x
x

x xS . Diff erentiating with respect to –1

1 2
, k

k
dS x

kdxx k  , 
and so 1 1 2

| k
dS k

x kdx  . But 2 2
(2 )    ( 1) 2

2  –  (2  –  ) (2  –  )
{ } x xdS d x

dx dx x x x
, and so 1| 2dS

xdx  . 
Th at is, 1 2

2k
k

k . Diff erentiating again, 2 –2 2 –2 –2

2 1 1 12 2 2
( 1) k k k

k k k
d S x k x kx

k k kdx
k k

or 2 2

2 1 1 12 2
| k k

d S k k
x k kdx

. But 2

2 2 4 3
2[2(2 )( 1)]2 4

2  –  (2  –  ) (2  –  )( )
{ } xd S d

dxdx x x x
, and so 

2

2 1| 4d S
xdx . So 2

1 2
4 2k

k
k , or 2

1 2
6k

k
k . Now, diff erentiating once 

more, 
3 –3

3 1 2
( 1)( 2) k

k
d S x

kdx
k k k 3 –3 2 –3

1 12 2
3k k

k k
k x k x

k k

–3

1 2
2 k

k
kx

k , or 
3 3

3 1 1 2
| k

d S k
x kdx

2

1 12 2
3 2k k

k k
k k . But 23

3 3 6 4
4[3(2 ) 1 ]4 12

(2  –  ) (2  –
(

  ) (2  – )
)

 
{ } xd S d

dxdx x x x
 , 

and so 3

3 1| 12d S
xdx

. Th us, 3

1 2
12 3(6) 2(2) 26k

k
k . Finally, diff eren-

tiating yet again, 4 –4

4 1 2
( 1)( 2)( 3) k

k
d S x

kdx
k k k k 4 –4 3 –4

1 12 2
6k k

k k
k x k x

k k
2 –4

1 2
11 k

k
k x

k

–4

1 2
6 k

k
kx

k , or 4 4 3

4 1 1 12 2
| 6k k

d S k k
x k kdx

2

1 12 2
11 6k k

k k
k k . 

But 
4

4 1|d S
xdx

3

4 8 5
12(4)(2 ) 1 4812

(2  –  ) (2  –  ) (2  
)

–
(

  )
{ } xd

dx x x x
, and so 4

4 1| 48d S
xdx

. Th us, 
4

1 2
48 6(26) 11(6) 6(2) 150k

k
k . Notice that these derivations 

show, as a side benefi t, that Bernoulli’s sums will be integer valued 
for all non-negative integer values of n in 1 2

n

k
k

k , which I don’t think 
is a priori obvious. (Th e case of n = 0 can be directly summed to give 

1
1 2

1kk .) Note: It’s easy to write MATLAB code (see bersum.m 
in the following box) to numerically compute Bernoulli’s sums, and 
the theoretical values computed here are thereby confi rmed. (Th e 
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code is written as an endless loop, and to exit it requires the typing 
of a Control-C.) Just for fun, I ran the code for n = 5, and the code 
says 5

1 2
1,082k

k
k . If you’ve got some spare time on your hands, see 

if you can confi rm this value theoretically.

%bersum.m
n=input(‘What is n?’)
s=0;k=1;
while k>0
  s=s+(k^n)/(2^k)
  k=k+1;
end

Challenge Problem 1.3.1: 1 1 1
3 5 71A  diverges to plus infi n-

ity, because it contains as a subset the reciprocals of all the primes 
(except for the first one), which diverges. 1 1 1

2 4 6B
1 1 1 1
2 2 3 2(1 ) (1) diverges to minus infi nity, because 

ζ (1) = ∞. To arrange for the sum A + B to converge to any desired 
value N, follow this procedure. Start by adding the terms of A until 
the partial sum fi rst exceeds N. Th en switch to adding in the terms 
of B until the partial sum fi rst falls below N. Th en switch back to 
A until the partial sum again exceeds N. Th en switch back to B, 
and so on.

Challenge Problem 1.4.1: Setting 3
2n  in (1.4.1), we have 

1
23 1

02 2( )   ( )xe x dx ! by (1.4.4). Integrating by parts, with 
1
2u x

and xdv e dx , we have xv e  and 
1
2

1
2

1 1
2

2

du
dx

x
x  and so 1

2

1

2 x

du dx . 
Th us, 

1 1
2 2

0 0  ( )|x xe x dx x e 1 1
2 2

1
0 02

2
   x xe e

x x
dx dx 1 1

2 2( ) or, using 
(1.4.6), 1 1

2 2( )! .

Challenge Problem 1.4.2: For n any positive integer, n! is a fi nite 
(positive) integer. By (1.4.19) we have !sin( )( )! n

n nn , which blows 
up because sin(nπ) = 0. Th e direction of the blow-up depends on 
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whether n is approached from below or above, but in any case, the 
absolute value of (−n)! is infi nity for n any positive integer.

Challenge Problem 1.5.1: Let u = e−x (and so 1x
ue ). Th us, 

xdu
dx e u  or du

udx . Therefore, 
1

0

1    1
( )

1   
ppx

x
ue du

ue
u

dx

0 0   1 (1    )
( )

u
pu

p
du du

u u u u
, which is the integral in (1.5.10).

Challenge Problem 1.6.1: If we had made the substitution of 
( )x xd

dxe e C , we would have arrived at (1.6.4) with the integral 
1    
0

xC e
x dx , an integral that exists only if C = 1. Here’s how to see this. 

Th e integrand is 
2 3 4

2!  3! 4!   {1              }       1 1
x x xx C xC e C

x x x

2 3

2!  3! 4!
x x x  and 

so 
2 31 1       1

0 0 2!  3! 4!{ 1 }xC e C x x x
x xdx dx 2 3

2(2!) 3(3!){( 1)ln( ) x xC x x
4 1

0,4(4!) } |x  which in general blows up at the lower limit because of 
the log term. For the lone case of C = 1, however, the log term disap-
pears, and the integral is well behaved: 1 1    1 1 1

0 2(2!) 3(3!) 4(4!)1xe
x dx  , 

which clearly converges to a fi nite value (see note 6 in Chapter 1).

Challenge Problem 1.6.2: Following the hint, put n = 0 into 
(1.6.7) to get 2

1 1 11
0 1 1{ } k kdy dy

k k k kx y y
dx k . Now, 1    1ln( )|k dy k

k ky y
= ln( 1) ln( )k k and 2

1 1    1|k dy k
k ky

y 1 1 1 1 1
   1    1 (    1)[ ]k k k k k k . So 

1 1 1
0    1    1 (    1){ } lim ln( 1) ln( ){ [ ] }q

k kx k kq

qdx k k k

1
1    1 (    1)lim ln( 1) l{ [ ] }n( ) q

k k kq

q k k

lim ln(2) ln(1) [ln(3) ln(2)] [ln( 1{[ ] }) ln( )]
q

q q

1 1 1
2 3    1( )lim lim ln( 1)qq q

q 1 1 1
2 3    1lim (1 ) 1[ ]qq

lim ln( 1)[ ]( 1) 1
q

q h q lim { ( 1) ln([ 1)} 1 1] .
q

h q q

Challenge Problem 1.6.3: Following the hint, let 1 − x = e−t

and so tdx
dt e  or dx = e−tdt. Th us, 2 21 {ln(1 )} {ln( )}

0 0 1

t

t
tx e

x e
dx e dt

2

 
  2{ }

0 01 1

t

t t
tt e

e e
e dt t dt

2

0 1t
t

e
dt. Th is is the s = 3 case in (1.4.24), 

which says 2

0    1
(3) (3) 2! (3) 2 (3)x

x
e

dx .
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Challenge Problem 1.7.1:    1
0( ) t xx e t dt  and so 

1 11
0( ) nt

n e t dt
10
t

n
n

e

t
dt. Changing variable to t = un (dt = nun − 1 du), we have 

1
   11

0
( )

( )
nu

n
n n

ne
n

u
nu du 0

nun e du  or recalling that xΓ (x) = x!, we 
have 1 1 1

0( ) ( )
nu

n n ne du !

Challenge Problem 1.7.2: Setting x = 1 in (1.7.20)/(1.7.21) gives 
1 1

   1    1(1) 1 { }k k k . Since 1 1 1 1 1 1 1 1
   1    1 1 2 2 3 3 4{ } { } { } { }k k k

1, we immediately have ( )
   1( )(1) |x

xx .

Challenge Problem 1.7.3: Following the hint, write 
0( ) m xI m x e dx  ln( )

0
m x xe e dx . Th en  ln( )

0 ln( ) m x xdI
dm x e e dx , and so 

2

2
2  ln( )

0 l ( )n m x xd I
dm

x e e dx . Th us, 2

2
  2

0    0(ln |) x d I
mdm

e x dx . Notice that 
I(m) is the gamma function Γ(n) for n − 1 = m, that is, n = m + 1. So, 
I(m) = Γ(m + 1) and 2

2
  2

0    0(ln   { ( 1)}) |x d
mdm

e x dx m . Now, the 
digamma function says ( ) 1 1 1

   1    ( )[ ( )]d z
rdz z r r zz  and so, for 

(    1) (    1)
(    1)1, d m d m

d m dmz m 1 1 1
   1   1        1( 1)[ ( )]rm r r mm . Diff eren-

tiating again, 2

2
(    1) (    1)d Γ m dΓ m

dmdm
1 1 1

   1   1        1[ ( )]rm r r m 2
1

(    1)
  ( 1)[

m
m

2
1

   1 (        1)
]r r m
. So since Γ (1) = 1, (    1) 1 1

   0    1    1| (1)[ 1 ( )]d m
m rdm r r

1 1 1
2 2 31 1       1 1  and 

2

2
(    1)

   0| [ 1d m
mdm

1 1
   1    1( )]r r r 2

1
   1 (    1)

(1)[1 ]r r
2 1 1 1

2 2 3[(1   ) (     ) ] 2
1

2
1

2
21

3 2 2
1 1

2 3
1 22 2

6(2)   2
0 ln  ( )xe x dx.

Challenge Problem 1.7.4: Following the hint, 
( )

   2    ( 1)( 1)
kk k

k kx xx e
( )

   2 ( 1)   
kk k

k k xxe e
2 3 42 3 4

2! 3! 4![1 ]x x x x
(3)(2 ) (4 )32 4
32 4xx xe e e

2 3 42 3 4
2 6 24(1 )x x x x

22 4(2) 2
2

)
8
((1 )x x 3(3)

3(1 )x
24 2(4) (2)

4 2 2(1 ) 1 [ ]x x x
3 3(3) (2)

6 3 2[ ]x . Thus,
the coeffi  cient of x3 is 

3 2 3 2(3) 1 1 1
6 3 12 3 2 4[ ] [ (3) ]. In the 

same way, looking at all the possible ways to form terms in x4, we 
fi nd that the coeffi  cient of x4 is 4 2 22 (4) (2) (3)

24 8 4 4 3
( ) .

Challenge Problem 1.7.5: 
2

2 2 2
/2

1 1( ) 0.2078795i ii i
e e

i e e e  .

Challenge Problem 1.8.1: Following the hint, we have 1
4 (4 1)(4 1)n n n

4 4 1 4 1
CA B

n n n
. To fi nd A, multiply through by 4n and then set n = 0 

to get 1
0(4 1)(4 1) | 1nn nA . To fi nd B, multiply through by 4n − 1 and 
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then set 1
4n  to get 1

4

1 1
4 (4 1) 2|n n nB . To fi nd C, multiply through by 

4n + 1 and then set 1
4n  to get 1

4

1 1
4 (4 1) 2|n n nC . Th us, 1

4 (4 1)(4 1)n n n
1
21

4 4 1n n

1
2 1 1 1 1

4 1 2 4 1 4 1 2( )n n n n  and so 3
1

1 (4 ) 4n n n
1 1 1 1

12 4 1 4 1 4(n n n n
1 1 1

4 4 2 4 2 )n n n  where the (perhaps) non-obvious steps of writing 
1 1 1

2 4 4n n n  and of adding and subtracting 1
4 2n  have been done. 

Regrouping, 3
1 1 1 1 1 1

1 12 4 1 4 4 1 4 2(4 ) 4
( )n n n n n nn n

1 1 1
12 4 4 2( )n n n

1 1 1 1 1
12 4 1 4 4 1 4 2( )n n n n n

1 1 1
14 2 2 1( )n n n . Now, 1 1 1 1

1 4 1 4 4 1 4 2( )n n n n n

1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10( )  where on the right the fi rst pair of 

parentheses is for n = 1, the second pair is for n = 2, and so on. Th at 
is, 1 1 1 1

1 4 1 4 4 1 4 2( )n n n n n
1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 . From (1.3.5), 

with x = 1, we have 1 1 1 1
2 3 4 5ln(2) 1  and so 1 1 1

3 4 5

1 1
2 2ln(2) 1 ln(2) . Thus, 3

1 1 1 1 1 1
1 12 4 4 2 2 1(4 ) 4

ln(2) ( )n n n nn n
. 

Now, 1 1 1 1 1 1 1 1
1 2 2 1 2 3 4 5 6 7n n n

1 1 1 1 1 1
2 3 4 5 6 7 . 

From before, we have 1 1 1 1
2 3 4 5ln(2) 1  and so 1 1 1 1

2 3 4 5

1 ln(2) . So 3
1 1 1 1

1 2 4 4(4 ) 4
ln(2) [1 ln(2)]n n n

31
2 4 ln(2). Thus, 

3
31 1

1 2 4(4 ) 4
1 2 1 2[ ln(2)]n n n

3 3
2 21 1 ln(2) ln(2), as was to be 

shown.

Challenge Problem 1.8.2: Making the partial fraction expansion 
1

( 1)( 2)( 3)n n n n 1 2 3
CA B D

n n n n  and using the same procedure as in 
the text (and previous problem), we fi nd that 1

1 ( 1)( 2)( 3)n n n n n
1 1
2 21/6 1/6

1 1 2 3{ }n n n n n
3 31 1 1

16 1 2 3n n n n n
3 31 1

6 2 3 4[(1 )
3 3 3 3 3 31 1 1 1 1 1

2 3 4 5 3 4 5 6 4 5 6 7( ) ( ) ( ) 3 3 3 31 1 1 1
5 6 7 8 6 7 8 9( ) ( )

3 31 1
7 8 9 10( ) ], and you can see that the series telescopes, with 

only the fi rst term in the third pair of parentheses ( 1
3 ) surviving. So 

1 1
1 ( 1)( 2)( 3) 18n n n n n .

Challenge Problem 1.8.3: See the end of Chapter 2 for a detailed 
discussion.

Challenge Problem 2.1.1: Following the hint, we have 
0! k xk x e dx  , and so   0  0( 1)k k x

kS x e dx 0 0 1( )x k k
ke x dx

2 3
0 1{ }xe x x x dx 0 0 01    ( )| 1x x xe

x dx e dx e . Th us, S is 
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fi nite. Euler numerically evaluated1 0 1   
xe
x dx  using the trapezoidal 

rule to get a more precise value for S of about 0.59, and I used com-
puter soft ware (MATLAB) to get a value of 0.59634 . . . .

Challenge Problem 2.1.2: Following Poisson, write T(x) = 1 − 2x + 
4x2 − 8x3 + 16x4 − 32x5 + . . . or T(x) = 1 − (2x) + (2x)2 − (2x)3 + (2x)4

− (2x)5 + . . ., and so (2x)T(x) = (2x) − (2x)2 + (2x)3 − (2x)4 + 
(2x)5 − . . . . Th erefore, adding these two expressions, we have 
T(x) + (2x)T(x) = 1, or 1

1   2( ) xT x  and so 1 ( ) 1 2 4 8 1m 6li x T x
1
332 .

Challenge Problem 2.1.3: From the text, η(s) = (1 − 21 − s)ζ(s), and 
so setting s = 0, η(0) = (1 − 21)ζ(0) = − ζ(0). Since 0 0 0 0

1 1 1 1
1 2 3 4

(0)
1 1 1 1 , which is 1

2  by (2.1.1), then 1
2(0) . Setting s = −2, 

η(−2) = (1 − 23)ζ(−2) = −7ζ(−2), or 1
7( 2) ( 2). Since 

 2  2  2  2
1 1 1 1

1 2 3 4
( 2) 2 2 21 2 3 4 0 by (2.1.3), then 

ζ(−2) = 0. (Notice that this is consistent with the claim made in the 
fi rst box of Section 1.2, that all the even negative integers are zeros 
of the zeta function.) And setting s = −3, η(−3) = (1 − 24)ζ(−3) = 
−15ζ(−3), or 1

15( 3) ( 3). Since  3  3  3  3
1 1 1 1

1 2 3 4
( 3)

3 3 3 1
81 2 3 4  by (2.1.4), then 1 1 1

15 8 120( 3) ( ) . Finally, 
setting 1

2s , we have 
1
21 1 1 1

2 2 2( ) (1 2 ) ( ) (1 2 ) ( ). Since 
1

1/2
( 1)1

12( )
k

k k
1 1 1
2 3 4

1  , then 1 1 1 1 1
2 1 2 2 3 4

( ) [1 ] , 
which we know converges (by note 6 in Chapter 1). I evaluated this 
expression using the fi rst 1 million terms of the alternating series, 
which gives 1

2( ) 1.459147 . Th e same theorem that tells us the 
alternating series converges also says that the maximum error we 
make in using a fi nite number of terms is less than the fi rst term 
neglected, and so our estimate has an error with magnitude less than 

1 1
1 2 1,000,000

| ( )| 0.0025. In fact, the true value of 1
2( )  is −1.46035 . . . , 

and so our actual error is only about 0.0012.

1. For the details of Euler’s numerical computations, see E. J. Burbeau, “Euler 
Subdues a Very Obstreperous Series,” American Mathematical Monthly, May 1979, 
pp. 356–372.
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Challenge Problem 2.2.1: Using !( 1)! n
nn  and starting with 1

24n  , 
we have

1
2
1
2

( 4 )!1 2 1
2 9 24  ( 5 )! ( 4 )!,

1
2
1
2

( 3 )!1 2 1
2 7 23 ( 4 )! ( 3 )!,

1
2
1
2

( 2 )!1 2 1
2 5 22  ( 3 )! ( 2 )!,

1
2
1
2

( 1  )!1 2 1
2 3 21 ( 2 )! ( 1 )!,

1
2
1
2

( )!1 1
2 2 ( 1 )! 2 ! 2

where 1
2( )!  is our result from (1.4.6). Th us,

1 2 2 2 2
2 9 7 5 3( 5 )! ( )( )( )( )( 2 )

52
945 0.0600196 .

Challenge Problem 2.3.1: Starting with the defi ning series for ζ(2), 
we have 2 2 2 2 2 2

1 1 1 1 1 1
1 2 3 4 5 6

(2) 2 2 2 2 2 2
1 1 1 1 1 1

1 3 5 2 4 6
{ } { }

2 2 2
1 1 1

1 3 5
{ } 2 2 2

1 1 1
(2 1) (2 2) (2 3)

{ }
x x x 2 2 2 2 2 2

1 1 1 1 1 1 1
41 3 5 1 2 3

2 2 2
1 1 1 1

41 3 5
(2) and so 2 2 2

31 1 1
41 3 5

(2). Th us, looking 
back at the start of this chain, 2 2 2

3 1 1 1
4 2 4 6

(2) (2) { }, or 
2 2 2

1 1 1 1
42 4 6

(2) and we have our fi rst result. To get the second 
result, start with our earlier result 2 2 2

31 1 1
41 3 5

(2), which says 
that 2 2 2

32 2 2
21 3 5

(2). From this subtract 2 2 2 2 2
1 1 1 1 1

1 2 3 4 5
(2)

to get 2 2 2 2 2
1 1 1 1 1 1

21 2 3 4 5
(2), and we are done.

Challenge Problem 2.4.1: Recalling the defi nitions of P and Q, 
1 1
0 0 1   

dxdy
xyP  and 1 1

0 0 1   
dxdy

xyQ , we have 1 1 1 1
0 0 1    1   { }xy xyP Q dxdy

2 2

1 1
0 0 1   

2 dxdy
x y

. Since 2

6P  and 2

12Q , then 2 2 2

2 2

1 1 1
0 0 2 6 12 81   

( )dxdy
x y

.

Challenge Problem 2.4.2: We have 2 3
1 [1 ( ) ( )

n nx y n n
xy x y xy xy xy

4( ) ]xy  1 1 2 2n n n n n nx y x y x y 3 3 4 4n n n nx y x y  and so 
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1 1
0 0 1

n nx y
xy dxdy 1 1 1 1 2 2 3 3

0 0{ ( ) }n n n n n n n nx y x y x y x y dx dy

1 1 2 11 1
0 1 2( n n n n

n nx y x y 3 2 4 3 11 1
03 4 )|n n n n

n nx y x y dy
1 1 2 31 1 1 1
0 1 2 3 4( )n n n n

n n n ny y y y dy

1 21 1 1 1
1 1 2 2( n n

n n n ny y 3 11 1
03 3 )|n

n n y

2 2 2

1 1 1
( 1) ( 2) ( 3)n n n 2 2 2 2 2 2 2

1 1 1 1 1 1 1
1 2 3 ( 1) ( 2) ( 3)

{ } { }
n n n n

2 2 2 2
1 1 1 1

1 2 3
{ } (2)

n 2 2 2 2
1 1 1 1

1 2 3
{ }

n . If 2 2 2
1 1 1

1 2 3
3, (2) { }n

1 1
4 9(2) {1 } 9 4936 4

36 36 36 36(2) { } (2) , or 3 31 1 27
0 0 1 6(2) ( ) .x y

xy dxdy

Challenge Problem 2.4.3: Defi ne 1 1 1
0 0 0 1   

dxdydz
xyzP  and 1 1 1

0 0 0 1   
dxdydz

xyz . 
Th en 1 1 1 1 1

0 0 0 1    1   { }xyz xyzP Q dxdydz 2 2 2

1 1 1
0 0 0 1   

2 xyz
x y z

dxdydz. Let u = 
x2, v = y2, w = z2. Th en 8

dudvdw
xyzdxdydz  and 1 1 11 1

0 0 04 1    4
dudvdw

uvwP Q P, or 
3
4Q P. Now, recall from note 17 in Chapter 2 that P = ζ(3). Th at is, 

1 1 1 3
0 0 0 1    4 (3)dxdydz

xyzQ .

Challenge Problem 2.5.1: Th e two limiting operations are from dif-
ferent situations. When we say the harmonic series diverges loga-
rithmically, we mean that the partial sums of a fi nite number of terms 
increase as the logarithm of the number of terms used. When we say 
ζ(s) diverges hyperbolically as s → 1, we are speaking of the behavior 
of the total sum (of an infi nite number of terms) as s → 1.

Challenge Problem 2.6.1: From (2.1.9) we have 
1( 1)

1( )
n

sn n
s

and from (1.4.21) we have 1 ( )
0 s

nx s Г s
n

e x dx , and so 11 1
0( )s

nx s
Г sn

e x dx  . 
Thus, 

1( 1)
1( )

n

sn n
s 1 11

1( ) 0( 1)n nx s
nГ s e x dx , or ( ) ( )s Г s

1 0
1 1( 1)n nx s

n e x dx 1 1
0 1( 1)s n nx

nx e dx 1
0

sx Tdx ,  where 
1

1( 1)n nx
nT e  2 3x x xe e e . So 2 3x x xe T e e , which 

says that ( 1)x x xe T T e T e , or 1
1 1

x

x x
e

e e
T  and therefore 

1

0 1
( ) ( ) s

x
x
e

s s dx .

Challenge Problem 2.6.2: From (2.6.1) we have 
1

1
( 1)1

11 2
( )

k

s sk k
s  . 

Th us, 
1

1 1
2 2

( 1)1 1
12

1 2
( ) 0

k

ib ibk
k

ib . Clearly, 
1
21 2 ib  for any real value 
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of b, and so it must be that 
1

1
2

( 1)
1 0

k

ibk
k

. Now, by Euler’s identity 
ln( )

1
2

1
ibib k

ib
k e

k kk

ln( )1 ib k
k

e 1 [cos{ ln( )} sin{ ln( )}] 0
k

b k i b k . Th us, for 
each value of b such that 1

2( ) 0ib , it must be true that 
1( 1)

1 c {os ln( ) 0}
k

k k
b k  as well as 1( 1)

1 sin{ ln( )} 0
k

k k
b k .

Challenge Problem 2.6.3: From the refl ection formula for the gamma 
function, (1.4.20), we have sin( )( ) (1 ) nn n . On the critical line 

1
2 ( )n s ib, and so 1

2( ) ( )n ib  and 1
2(1 ) ( )n ib . Notice 

that this says that on the critical line, Γ(n) and Γ(1 − n) are a complex 
conjugate pair. Th at is, 21 1 1

2 2 2( ) ( ) | ( )|ib ib ib  and this equals 
1 1
2 2sin{( ) } |sin{( ) }|| |ib ib . Now, from Euler’s identity, 

1 1{( ) }   {( ) }
2 21

2 2sin{( ) }
i ib i ib

e e
iib

/2 /2    
2 2

i b i b b be e e e ie ie
i i

   
2 cosh( )b be e b . Since cosh(πb) is never neg-

ative for any real b, we can drop the absolute value sign and write 
1
2

cosh( )( )| bs ibs , which is never zero for any real b.

Challenge Problem 2.7.1: (1) For pq to be perfect, we require pq = 
1 + p + q. But since (p − 1)(q − 1) > 2 (because the smallest values 
that p and q can take on are 3 and 5), we have pq − q − p + 1 > 2 or 
pq > q + p + 1, which means pq is not perfect. (2) Following the hint, 
the divisors of pk are 1, p, p2, p3, . . . , pk−1. To be perfect, pk = 1 + p + 
p2 + p3 + . . . + pk−1 = S. Since

S = 1 + p + p2 + p3 + . . . + pk−1

then

pS = p + p2 + p3 + . . . + pk−1 + pk

and so S − pS = 1 − pk, or 1   
1 

kp
pS . Th us, we require 1   

1 

kpk
pp , or with 

just a bit of easy algebra, 12 kp
p , which is impossible for any prime 

p (for p ≥ 2, we have 2 − p ≤ 0 while 1 0kp
). (3) A perfect square has 

the form s2. An even perfect number has the form 2p−1(2p − 1), where 
2p − 1 is prime (cannot be factored). Th us, to be a perfect square, it 
must be true that s = 2p − 1 (thus s = 2p−1, too) and so, with a bit of 
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easy algebra, 2p = 2. But there is no integer p > 1 (which means no 
primes) where this is true.

Challenge Problem 3.1.1: By inspection of Figure 3.1.3, aft er n iter-
ations there are 4n line segments, each of length 1

3( )n. Th e total length 
of the von Koch curve is therefore 4

3( )n. Th e number of inches in a 
light-year is 12 × 5,280 × 186,000 × 365 × 24 × 60 × 60 = N = 3.7165 
× 1017. We require the fi rst value of n such that 4

3( )n N  and so 
4
3

ln( ) 40.456
0.28768ln( ) 140.627Nn  . Since n is an integer, n = 141 iterations. Th e 

number of line segments is 4141 = 7.77 × 1084, a number that is greater 
than the total number of elementary particles in the entire observ-
able universe.

Challenge Problem 3.2.1: (a) Each of cos(t) and cos( 2 )t  is indi-
vidually periodic: cos(t) has period 2π and cos( 2 )t  has period 2

2  . 
Th eir sum, however, is not periodic. Here’s why. Suppose there is a 
T such that cos( ) cos( 2 )t t  cos( ) cos{( ) 2}t T t T . For this 
to be true for all t, it must be true in particular for t = 0. Th is says
cos(0) cos(0) 2 cos( ) cos{ 2}T T . Now, the maximum value of 
the cosine function is 1, and this says cos( ) cos{ 2} 1T T . Th at is, 
there must be two (obviously diff erent) integers m and n such that 
T = 2πn and 2 2T m , which says that 2 2

2 2T m m
T n n , imply-

ing that 2  is rational. But it is well known that 2  is irrational. Th is 
contradiction means that our original assumption, that the sum is 
periodic, must be invalid. (b) For N any positive integer, defi ne the 
two periodic functions x1(t) and x2(t) as follows: 

1

1

 
sin(2 ), 0     

1 0,         1  
( ) N

N

N t t
tx t

and 
1

1

0, 0       
2 sin 2 ,         1( ) N

N

t
N t tx t . Th at is, x1(t) and x2(t) have the same period 

of 1, independent of N. Th eir sum is x1(t) + x2(t) = sin(2Nπt), 0 ≤ t < 
1, which is periodic with period T, where 2NπT = 2π. Th at is, 1

NT  . 
Th us, while x1(t) and x2(t) each have period 1 for any N, by picking 
N arbitrarily large, we can make the period of their sum as small as 
we wish!

Challenge Problem 3.3.1: Following the hint, with t = π and 1
2

in (3.3.14), we have 2sin( )
2cos( ) 21

4

( 1)
1    

2 cos([ )]
k

k k
k . Since 
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2cos( ) 0 , 2sin( ) 1, and cos(kπ) = (−1)k, then all this reduces to 
2

4
1 1 4

2 0k k
 or 2

1 1
1 21   4k k

. Alternatively, for a second, purely 
algebraic way to sum the series, write 2

1 1
1 1 (1 2 )(1 2 )1 4k k k kk

1 1 1
12 (1 2 ) (1 2 ){ }k k k

1 1 1 1 1 1
2 3 3 5 5 7[{ 1 } { } { } ] and then notice 

that all the terms but the fi rst “telescope” to immediately give a sum 
of 1 1

2 2[ 1] .

Challenge Problem 3.3.2: 2

2 2
1 1

2 1 2
( ) p

p
e

p e p

2 2 3 34 8
2 6
2 2 3 3 24 8
2 6

1 [1 2     ] 1
2 21 [1 2     ]

( )
p p

p p

p
p pp

. 
As p → 0 this becomes, with decreasing error, 

3 342 2
3

3 3 242 2
3

2 2 2   1
2 22 2  

( )
p

p

p p
p pp p

3 322 2
3

2 3 242
3

1    1 1
22 2  

( )
p

p

p p
p pp p

3 322 2
3

2 2 2 22
3

1     1 1
2 21    

( )
p

p

p p

p pp

3 322 2
3

2 2 22
3

1        1
2 1  

( ) 1
p

p

p p

p p

3 3 2 22 22 2
3 3

2 2 22
3

1        1     1
2 1  

( )
p p

p

p p p

p p

3 32 22 2 2
3 3

2 2 22
3

( )       1
2 1       

( )
p

p

p

p p

32 2 2
3 3

2 22
3

   
62(1        )

p

pp

as p → 0.

Challenge Problem 3.3.3: The Fourier coefficients are 
/22

/2 ( )cos( )T
m TTa f t mt dt and /22

/2 ( )sin( )T
m TTb f t mt dt. Th e convergence 

argument in note 9 of Chapter 3 says that lim lim 0m m mm
a b , which 

requires that the Fourier integrals vanish as m → ∞, and that is the 
Riemann-Lebesgue lemma.

Challenge Problem 3.4.1: From (2.1.9) and (2.1.10) we have 
1( 1) 1 1 1 1

1 1 2 3 4
( )

k

s s s s sk k
s 1(1 2 ) ( )s s , or with 4 4

1 1
2 3

4, 1s

4
1

4

4 43 77
8 90 720(1 2 ) (4) ( ) .

Challenge Problem 3.4.2: Setting t = 5 in (3.4.17), we have 
4 11

1 2(2 ) (10 2 ) (10)k k k  (2) (8) (4) (6) (6) (4) (8) (2)
2[ (2) (8) (4) (6)]
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6 8 4 6

6 9,450 90 9452[( )( ) ( )( )] 10 1 1 1 1
6 945 10 15[( )( ){ }2 ]

10 1 1 1 1 1
6 945 5 2 3[( )( )( ){ }]2

10 51 1 1
6 945 5 6[( )( )( )( )2 ] 10 1 1 1 11

6 945 3 2( )( ) ) (] 0)[ ( 1 . So 

10 2 1 1 1
11 6 945 3(10) [( )( )( )] 10 10

(99)(945) 93,555 .

Challenge Problem 3.5.1: Following the hint, putting 4t  into 
(2.3.1) gives 

3
4 2 4sin( ) sin( )3

2 8 4 2 3sin( )
5 6 7
4 4 4sin( ) sin( ) sin( )sin( )

4 5 6 7

9
4sin( )sin(2 )

8 9 ,

or 3 1 1 1 1
8 22 3 2 5 2

1 1 1 1 1
6 107 2 9 2 11 2

, or 

3 1 1 1 1
8 2 2 2 3 2 5 2

1 1 1 1 1
3 2 2 7 2 9 2 5 2 2 11 2

, or 

3 2 1 1 1 1
8 3 52 3 2

1 1 1 1 1
7 9 115 2

, or 

3 2 1 1 1 1 1
8 3 5 7 9 111 1 1 1

2 3 2 5 2
[ ], or 

3 2 1 1 1 1 1
8 3 5 7 9 111 1 1 1

3 52
[1 ] , or recalling the 

Gregory/Leibniz series, 3 2 1 1 1 1 1 1
8 3 5 7 9 11 42

1 ( ). Now, 
3 2 3 2 2 2 2

8 8 8 84 2
 and so 2 1 1 1 1 1

4 3 5 7 9 111 .

Challenge Problem 3.6.1: Starting with 2

11 2 k
k e

2 2

1(1 2 )n
n e  , 

then coding just the fi rst three terms of the left -hand side gives 
1.772636 . . . , while coding just the fi rst three terms of the right-hand 
side gives 1.772637 . . . . As claimed, we don’t see disagreement until 
the sixth decimal place.

Challenge Problem 3.6.2: Th e total energy of f(t) is 12
0) 1(f t dt dt  . 

So, if F(ω) is the Fourier transform of f(t), then 21
0 | ( )| 1F d . 

Now, ( ) ( ) i tF f t e dt 1 1
0 0|

i ti t e
ie dt 2 2 2

2

( )1
2

i i ii e e ee
i i

2
2

2

2 sin( )

2

i
i e

i
2

2

2

sin( )
i

e . So 2
2

2

sin( )*  ( )
i

eF  and 
2

2
2

2

sin* 2
)

(

(

)( ) | ( )|  ( )F F F  and so 
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2
2

2
2

( )sin1
0 ( )

  1,d  or 
2

2
2

2

( )sin
0 ( )

d . Now let 2 ax  (and so 2d adx ). 
Th en 2 2

2 2 2
sin ( ) sin ( )

0 02 2ax ax
a x ax

adx dx  or 2

2
sin )

2
(

0
ax a

x
dx .

Challenge Problem 3.6.3: (a) We need only consider what φ(t) is 
doing at t = 0, because for t ≠ 0, δ (t)φ(t) = 0. Suppose, then, we look 
at φ(t) in the interval −ε < t < ε, where ε > 0, and then imagine ε → 
0. Over that interval φ(t) starts at φ(−ε) and ends at φ(ε), but as t 
varies, we argue that φ(t) can’t vary by much, since φ(t) is given as 
“smoothly varying.” Th at is, φ(t) must remain pretty close to φ(0) 
over the entire integration interval as ε → 0. So ( ) ( )t t dt

0lim ( ) ( )t t dt 0lim ( ) (0)t dt 0(0)lim ( ) (0)t dt
as the unit area of δ(t) is all located at t = 0. Th is is fast-and-
loose math, yes, and I admit physicists and engineers are much 
happier with this sort of argument than are mathematicians.
(b) ( ) ( ) i tF t e dt 0| 1i t

te . (c) 21 1| ( )|F  and so 
1

0W d . That is, the Dirac impulse function is an 
infi nite energy function, even though it is identically zero except 
for one instant of time. Th e infi nite energy of the Dirac impulse 
is delivered in a single instant, so it’s one mighty blast—don’t get 
in its way!

Challenge Problem 3.7.1: 1 1
1 1( ) ( )s x itk kk k

s x it
ln( )

ln( )

1 1
1 1 1

it k

x it it xx k

e
k k kk k kk e

. Or using Euler’s identity, ( )x it
cos{ ln( )} sin{ ln( )}

1 1x x
t k t k

k kk k
i . Th ese two sums converge if x > 1, and 

each is easily coded. Using the fi rst 1 million terms of each sum (with 
x = 2 and t = 1), we get ζ(2 + i) = 1.150356 . . . − i 0.43753 . . . . As a 
check, the MATLAB function zeta calculates zeta(2 + i) = 1.150355 
. . . − i 0.43753 . . . , in excellent agreement.

Challenge Problem 3.7.2: Since 1
2( ) 2(2 ) sin( ) (1 ) (1 )s ss s s , 

then with 1
2s  we have 3

2 3 31
2 4 2 2( ) 2(2 ) sin( ) ( ) ( )

3 32 1
2 22 2 2

( ) ( ) ( ) 3 3
2 2( ) ( )

2
. From (1.4.3) and (1.4.6), Γ(n + 1) = 

nΓ(n), or with 31 1 1 1
2 2 2 2 2, ( ) ( )n  and so 

1
2 31

2 22
( ) ( )

3/2
31 1 1

14 2 4( ) k k . Th is is easy to code, and using the fi rst 1 mil-
lion terms of the series gives 1

2( ) 0.207727 , which is consistent 

Nahin.indb   312 24/07/21   1:18 AM

 EBSCOhost - printed on 2/10/2023 4:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Challenge Problem Solutions  313

with the lower-right plot of Figure 3.7.1. Indeed, MATLAB calcu-
lates .1

2zeta( ) 0 207886 .

Challenge Problem 4.1.1: 425 51
2 2 2 90((4) 2 ( ))

2 4 4 42 51
2 6 180 72 36( )

4 42
72 72

4 4

72 72 , as given in (4.1.2).

Challenge Problem 4.2.1: Following the hint, we start with Euler’s 
(4.1.2) and write 3

( )5
14 (4) h q

q q

1

3

( 1)   

1
qh q

q q 3 4
( 1) 1

1 1
h q

q qq q
. Since 

the last sum is ζ(4), we have 3

11
14 (4) h q

q q
. Now change the index 

to q − 1 = k (and so q = k + 1) to get 3
( )1

04 ( 1)
(4) h k

k k 3
( )

1 ( 1)
(0) h k

k k
h  . 

Since h(0) = 0, we instantly have our answer: 3
( ) 1

1 4( 1)
(4)h q

q q
. Since 

4

90(4) , we have 41
4 360(4) 0.27058 , which agrees pretty well 

with the numerical estimate produced by euler1775.m.

Challenge Problem 4.2.2: Following the hint, in 0 1

x dt
t  let u = 1 − t (and 

so dt = −du). Th en 1
0 11

x xdt du
t u

1 1
1 1ln( )| ln(1 )du

x xu u x , that is, 
0 1ln(1 )
x dt

tx . So 1 1
0 ln(1 )qx x dx 1

1
1
0 0{ }xq dt

tx dx 1 1 11
0 1 { }q

tt x dx dt , 
where I’ve used the remarks made in the Special Note of the problem 
statement. Now, since 1 1q

t x dx 1 11|q q qx t t
tq q q q , then 1 1

0 ln(1 )qx x dx
1 11
0 1

qt
q t dt . Since 2 31

1 (1 )(1 )q qt
t t t t t 2 3(1 )t t t

1 2( )q q qt t t 2 3 11 qt t t t , we have 1 1
0 ln(1 )qx x dx

1 2 3 11
0(1 )q

q t t t t dt 2 3 11
02 3( )|qt t t

q qt 1 1 1 1
2 3(1 )q q

( )h q
q .

Challenge Problem 4.3.1: Th e identity to be shown is equivalent to 
saying 1 (1 ( ) ln( )) 1q

q x x h q x . So expanding the left -hand side, 

1 (1 )q
q x x h q 1

1 1( ) ( )q q
q qx h q x h q 1

1 1 {( ) ( 1)q q
q qx h q x h q

1
1}q

1
1 1( ) ( 1)q q

q qx h q x h q 1

1 1
qx

q q 1lim { ( )N q
N q x h q 1

1
N q
q x

1

1 1( 1)} qx
q qh q . Now, 1 ( )N q

q x h q 2 3(1) (2) (3) ( ),Nxh x h x h x h N
and 1

1 ( 1)N q
q x h q 2 3 1(2) (3) ( ) ( 1)N Nx h x h x h N x h N . Th us, 

1
1 1( ) ( 1)N q N q

q qx h q x h q 1(1) ( 1)Nxh x h N , or as =1(1) 1, Σ ( ) N q
qh x h q

+1
=1 ( +1)N q

q x h q +1 ( +1)Nx x h N . Also, 1 2 3 4

1 1 2 3 4
qx x x x

q q . From 
(1.3.5), 2 3 4

2 3 4ln(1 ) x x xx x , or replacing x with ,x x
2 3 4

2 3 4ln(1 ) x x xx , and so 2 3 4

2 3 4 ln(1 )x x x x x  and we 
have 1

1 1 ln(1 )qx
q q x x . Th us 1 1 ( )( )q

q x x h q 1lim ( 1){ }N

N
x x h N
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314 Challenge Problem Solutions 

ln(1 )x x 1lim ( 1) ln(1 )N

N
x h N x . Now for −1 < x < 1,  

1lim ( 1) 0N
N x h N , and so as claimed, 1 (1 ( ) ln( )) 1q

q x x h q x  , 
or 1 ( )q

q x h q ln(1 )
1 , 1 1x

x x . Finally, as both sides of this identity 
obviously blow up at x = 1, we can formally extend −1 < x < 1 to 
−1 < x ≤ 1.

Final Challenge Problem: In De Doelder’s identity 
2

2
11

1 4( 1)
( ) (4)h q

q q  , 
change the index in the sum to k = q + 1 (q = k − 1). Th en 2

2
(

2
)1h k

k k
2 2

2
1( 0) )

1 1
({ }h k h

k k , or since h(0) = 0, we have 
2

21 ( 1)
( )h q

q q

2

2
1( 11

1 4
) (4)h q

q q  . 
Now, 2 21( )1 [ ( ) ]qh q h q 2

2 2 1(( ) )q q
h q h q . Th us, 

2

21 ( 1)
( )h q

q q

2

2

( )
1 {h q

q q

3 4
2 1 11

4( ) } (4)
q q

h q , and so 
2

2
( )

1
h q

q q 3 4
( )11 1

1 14 (4) 2 h q
q qq q

, or 
recalling Euler’s (4.1.2), we immediately have 

2

2
511( )

1 4 4(4) 2 (4)h q
q q

(4) 1011 17
4 4 4(4) (4) (4) (4), which was Au-Yeung’s 

conjecture.
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