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Preface

The main goal of this book is to study the critical case of the homogenization of
reaction-diffusion equations on periodical domains (or particles) where the nature of
the reaction term changes in the homogenized effective equation. This fact has been
linked by some authors to the surprising properties of nanocomposites (some of the
so-called meta-materials). We give more details of this connection in the Introduc-
tion. This explains the title of the book. However, beyond the Introduction we take
a fundamentally mathematical approach, and we do not provide too many specifics
on the applications since our main goal is to present here the rigorous proof of the
associate convergence results and the characterization of the new reaction terms.

This book essentially collects several researches by the authors (sometimes jointly
with other colleagues) on the homogenization of nonlinear reaction-diffusion prob-
lems (mainly of elliptic or parabolic type) in the so-called “critical scale” in which an
“anomalous” (or strange) termarises in thehomogenizedproblem. In some sense, this
is a research-level book written after the papers are published. So, this book gives the
authors the opportunity (and duty) to explain the reasoning behind the arguments,
but removes the burden to do all the details (since they can be found in the papers
which are mentioned in the list of references). We include also some new results not
present in the literature (we provide a list in Section 1.7).

Certainly, this book is not any introduction to homogenization: there is a long list
of very good texts written with this purpose, such as we will mention in the Introduc-
tion. Some common facts of our exposition are (i) to go beyond the important restric-
tion about the shape of the “particles” Gε, (ii) to extend the results for a nonlinear
diffusion operator (such as the p-Laplacian operator) and (iii) to offer a common root
to different types of boundary conditions on 𝜕Gε instead of presenting different proofs
for the cases of conditions known under the names of Dirichlet, Neumann, Robin,
Signorini, etc., conditions. This is done in the context ofmaximal monotone graphs σ
of ℝ2.

Parts of this book (which grew from the Doctoral Thesis, in 2017, of the second au-
thor at the Complutense University of Madrid, UCM) have been the subject of various
courses by the authors: a 10-hour doctoral course (by the third author) at the UCM, in
November 2015; a 20-hour mini-course, developed by the second author, at the “Mod-
elingWeek” congress at theUCM in June 2017; anda 20-hourMaster course at theUCM,
by the third author in 2019 and 2020.

We thank many people for their maintained collaboration: first of all our coau-
thors Carlos Conca, Delfina Gómez, Willi Jäger, Amable Liñán, Miguel Lobo, Maria
Neuss-Radu,MariaEugeniaPérez,AlexanderV. Podol’skii, Evariste Sánchez-Palencia,
Claudia Timofte andMaria N. Zubova (we never forget the important influence of Haïm
Brezis, Jacques-Louis Lions and Olga A. Oleinik on the authors). Special thanks are
given to Alexander V. Podol’skii, Claudia Timofte and Maria Zubova for their very

https://doi.org/10.1515/9783110648997-201
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careful reading of the manuscript. We also thank Vicentiu Radulescu and the staff of
De Gruyter for the encouragements received to write this book.

We would like to acknowledge the funding received from different sources: the
projects from the Spanish government MTM2017-85449-P (P. I. J. I. Díaz) and PGC2018-
098440-B-I00 (P. I. J. L. Vázquez) and a project from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program
(grant agreement No. 883363) (P. I. J. A. Carrillo de la Plata).
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Notation

Asymptotic comparison
Let aε and bε be two positive sequences. We denote:
aε ∼ bε There exists limε→0 aε/bε ∈ (0, +∞).
aε ≃ bε There exists limε→0 aε/bε = 1.
aε ≪ bε There exists limε→0 aε/bε = 0.
aε ≲ bε Either aε ≪ bε or aε ∼ bε.

In the case p = n we sometimes need to force this notation slightly, but we will make
careful note of this (see Remarks 4.1 and 5.1 and Section 6.1).

Problem parameters
n Dimension of the ambient space. Usually n ≥ 3 unless otherwise specified.
aε Scaling parameter of the particles. We always assume that aε ≤ ε and that

there exists a limit of aε/ε. In the literature this value is usually aε = C0εα but
we take here a more general approach.

a⋆ε Critical value of aε. Its value depends on each concrete problem under con-
sideration.

β(ε) Coefficient for the Neumann boundary condition. Some authors use the pre-
cise value β(ε) = ε−γ.

β⋆(ε) Critical value of β(ε). Coincides with |Sε|−1 with the notation below.
𝒜0,ℬ0 Parameters describing the strange term in the homogenized problem for

balls. Their values depend on the relation between aε, β(ε) and their critical
values. They also depend on the geometric setting. For the case of particles
over the whole domain see Section 4.7.1.

Geometric sets
Ω Domain for the PDE. Smooth open bounded set of ℝn.
Ωε Exterior part to the set of particles (chemical reactor). It may represent also a

perforated domain.
𝜕Ω Boundary of Ω.
Ω Closure of the set Ω. The overline notation will be dropped in integration do-

mains andmeasureswhen the n-dimensional Lebesguemeasure of 𝜕Ωvanishes.
Y Open unit cube (− 12 ,

1
2 )
n.

A+ For a generic set A ⊂ ℝn, A+ = {(x1, ⋅ ⋅ ⋅ , xn) ∈ A : xn > 0}. Similarly for A−.
A0 For a generic set A ⊂ ℝn, A0 = {(x1, ⋅ ⋅ ⋅ , xn) ∈ A : xn = 0}.
G0 Shape of the model particle. Typically 0 ∈ G0 and G0 ⊂ Y (for the cases of parti-

cles over the whole domain or on an interior manifold). In the case of particles
on a part of the boundary G0 ⊂ Y ∩ ℝn−1 × {0}.

https://doi.org/10.1515/9783110648997-202
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X | Notation

ϒε The set of indexes j ∈ ℤn wherewe place particles.WhenG0 is n-dimensional we
request that εj + εY ⊂ Ω (case of particles over the whole domain), while when
G0 is (n− 1)-dimensional (case of particles on a part of the boundary) we request
εj + εY+ ⊂ Ω.

Sε Boundary of the set of n-dimensional particles over which the nonlinear bound-
ary condition is set. In the case of particles over a part of the boundary Sε denotes
the own set of (n − 1)-dimensional particles.

Functional spaces
C∞c (Ω) Set of functions φ : Ω → ℝ with infinitely many derivatives and compact

support inside Ω.
Lp The Lebesgue space of functions such that the p-th power of their absolute

value is integrable. When p = ∞ the functions are bounded a.e.
W 1,p Usual Sobolev space of functions in Lp with gradient in Lp.
W 1,p

0 (Ω) Closure of C∞c (Ω) inW
1,p(Ω) when Ω is bounded.

W 1,p(Ω, Γ) Closure inW 1,p(Ω) of the set of functions C∞(Ω) that vanish in a neighbor-
hood of Γ when Ω is bounded and Γ ⊂ 𝜕Ω.

Operators
| ⋅ | Throughout this text we will be quite loose with the notation | ⋅ |. For num-

bers, it indicates absolute value; for vectors, norms; for sets the Hausdorff in
k-dimensions which is finite (k = n or n− 1); for finite sets, its cardinality. This
will not lead to confusion.

s+ = max{s,0} for a real number s.
s− = (−s)+ for a real number s.
Pε Extension operator from W 1,p(Ωε) → W 1,p(Ω). It will also operate from

W 1,p(Ωε, 𝜕Ω) → W 1,p
0 (Ω).

ν Exterior unit vector to 𝜕Ω. The corresponding set Ω will be clear from the con-
text; when there can be doubts, we will note it by νΩ.

Δp p-Laplace operator: Δpu = div(|∇u|p−2∇u).
𝜕νp Given a function φ we define 𝜕νpφ = |∇φ|

p−2∇φ ⋅ ν.
dx Volume form for n-dimensional integrals in variable x. Same for dy.
dSx Surface form for (n − 1)-dimensional integrals. Same for dSy.
p-cap Capacity of a set in terms of the operator Δp. See Remark 3.11.
λG0

The 2-cap(G0).
ℋs s-dimensional Hausdorff measure.

Functions
σ Nonlinear reaction function. It could be amultivaluedmaximal monotone graph

of ℝ2. Generally non-decreasing, unless otherwise specified.
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Notation | XI

ℋ Reaction function appearing in the homogenized equation for the critical case. It
is usually obtained from another function denoted by H.

Φ Convex function of which σ is its subdifferential, i. e., σ = 𝜕Φ. Usually Φ(0) = 0
and Φ ≥ 0.

κ̂ Auxiliary function used in the definition of the capacity. See Remark 3.11.
Jε The energy function associated with the boundary value problem on Ωε. Defined

in (2.4).
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1 Introduction and modeling

1.1 Motivation

This book deals with the mathematical homogenization process applied to some
reaction-diffusion models. More specifically, we will fix our attention to the delicate
point of how a mathematical model in the “microscopic” scale may induce the justifi-
cation of a quite different “macroscopic model.” One first intuitive idea of this curious
different modeling arises in the study of cases in which the reaction takes place only
on the boundary of many “microscopic particles,” as for instance

{{{
{{{
{

−Δpuε = f (x) in Ωε = Ω \ Gε,

𝜕νpuε + β(ε)σ(uε) = β(ε)g
ε(x) on Sε,

uε = 0 on 𝜕Ω

(1.1)

(and, in one of the cases, with a small modification on a part of the boundary condi-
tion on 𝜕Ω; see problem (1.6) below), where the details on the domain Gε, the internal
boundary Sε and the rest of data f , β, σ and g will be presented later. The diffusion is
modeled here by the quasilinear operator Δpuε ≡ div(|∇uε|p−2∇uε) with p > 1. Note
that p = 2 corresponds to the usual linear Laplacian diffusion operator. This kind of
problems mainly arises in the study of chemical reactive flows through the exterior of
a domain containing periodically distributed reactive solid grains (or reactive parti-
cles).

Particulate filters arise in many applications (as, for instance, in the exhaust pu-
rification systems of Diesel and gasoline vehicles). The samemodel also applies when
the chemical fluid reacts on walls of a porous medium (which we assume periodically
distributed) so that the flows take place on the holes of the solid porous medium. It is
the so-called adsorption phenomenon: the adhesion of atoms, ions or molecules from
a gas, liquid or dissolved solid to a surface. This process differs from absorption, in
which a fluid is dissolved by or permeates a liquid or solid, respectively. For some pre-
sentations of the chemical aspects involved in the model (and also for some mathe-
matical and historical backgrounds)we refer to a series of workswhichwe collect here
in alphabetical order: [12, 14, 23, 104, 102, 150, 165, 166, 167, 179, 203, 205, 211, 171]
and [263], among others. We point out that the case p ̸= 2 corresponds to a simpli-
fication of the modeling when the flow is turbulent and also when the fluid is non-
Newtonian (see, e. g., [102]). Moreover, as is well known, this nonlinear diffusion op-
erator appears also in many other contexts and is one of the best examples of quasi-
linear operators leading to a formulation in terms of nonlinear monotone operators
(see, e. g., [192, 47, 92]). Here, the “normal derivative” must be understood as 𝜕νpuε =
|∇uε|p−2∇uε ⋅ ν, where ν is an outward unit normal vector on the boundary of the par-
ticles Sε ⊂ 𝜕Ωε.

https://doi.org/10.1515/9783110648997-001
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2 | 1 Introduction and modeling

The function σ in (1.1) is assumed to be given: mainly σ is a monotone continuous
function such that σ(0) = 0 as it corresponds to the so-called Freundlich kinetics

σ(v) = [v+]
r , where v+ = max{v,0}, 0 < r ≤ 1

(in this framework v represents a concentration and thus v ≥ 0). The exponent r is
called the order of the reaction. In some applications the limit case (r = 0) is of great
relevance and itsmathematical treatment is carried out in terms of themaximalmono-
tone graph of ℝ2 (see [48]) given by σ(s) = 0 if s < 0 and σ(s) = 1 if s > 0, σ(0) = [0, 1].

To exemplify, let us assume that the particles are spread over the whole domain.
A first “surprise” arises when it is shown (first formally by the “two-scale asymptotic
method” and then rigorously in suitable functional spaces and using, as a fundamen-
tal tool, the notion of weak convergence) that we can take a limit in some rigorous
sense such that

uε “ 󳨀→ ” u

as ε → 0and this “limit”u(x) satisfies a global reaction-diffusion inwhich the reaction
takes place on the whole domain Ω.

In the first cases studied in the literature, the particles were “not too small” with
respect to their repetition. In that setting, the diffusion operator could bemodified but
the same kind of chemical kinetics σ modeled the “macroscopic reaction term”

{
−div(Aeff∇u) + βeff1 σ(u) = f + βeff2 g in Ω,
u = 0 on 𝜕Ω.

Besides the occurrence of the global reaction term (from adsorption to absorption non-
linear terms), the differentmacroscopic (or effective) diffusion operator, Aeff, allows to
justify some non-isotropic propagation phenomena. When the scale of the particles is
“too small” with respect to the repetition, then they are too small to be meaningful in
the limit and we have

{
−Δpu = f in Ω,
u = 0 on 𝜕Ω.

There exists a critical scale of the size of the particles with respect to their distance
that separates the two behaviors above. If the particles have this precise scaling that
separates the behaviors above, we have a “new surprise.” The constitutive law of the
homogenized virtual reaction term does not coincide with the one of the adsorption
constitutive law σ and it is possible to show that the global equation satisfied by “the
limit” u(x) now involves the presence of an anomalous or strange termℋ(u)

{
−Δpu +ℋ(u) = f in Ω,
u = 0 on 𝜕Ω.
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1.1 Motivation | 3

This effect of the relation between size and distance giving rise to a different reaction
behavior is typical of many processes in nanotechnology.

Newmaterials, in particular the so-called “mechanical meta-materials,” are built
as artificial structures which have mechanical properties defined by their geometric
structure rather than their chemical composition. They can be seen as a counterpart
to the rather well-known family of “optical meta-materials.” These materials can be
designed to have properties outside the scope found in nature. In the context of this
book, the choice of such a critical size scale can be identified as an improved homog-
enization.

Note that in this critical scale with respect to the repetition the diffusion does not
suffer any important modification (in contrast to the abovementioned case) since the
particles are “too small” to affect the diffusion. The critical scale in which such new
behavior arises and the correct identification of the strange termℋ(u), and its connec-
tion with the microscopic law given by σ, are the main subjects which are object of
study in this book.

Moreover, as an indication of a potential important success of the nanoscale ap-
proach to building new materials with better structural properties than the materials
existing in nature, we will show in this book that the presence of this new strange
reaction termℋ(u) “improves” the process, leading, for instance, to a better chemical
effectiveness and preventing the formation of the so-called dead cores. Wewill discuss
this below in Sections 4.9.3, 4.9.4, 5.7 an 6.6 and Appendices A and C.

In the rest of this long Introduction we will make clear the notations of the book,
we will precise the data and assumptions required for the occurrence of the strange
terms andwewill give the keys to the proofs of themain results. We also provide some
historical and bibliographic notes (see Sections 1.4 and 1.6).

The case of σ being non-monotone also arises in the applications. This is the case,
for instance, for the so-called Langmuir–Hinshelwood kinetics in which

σ(v) = λ[v+]
m δ + 1
δ + [v+]m+k

, for some λ, δ, k,m > 0, δ small, and for any v ≥ 0

(see [14]), or the case, arising in enzyme kinetics, in which

σ(v) = λ [v+]
m

δ + [v+]m+k
, for some λ, δ, k,m > 0, δ small, and for any v ≥ 0

(see [21]). The case in which σ is non-monotone and singular,

σ(v) = [v+]
−k , k ∈ (0, 1),

considered in [96], is also interesting. The case in which σ is non-monotone and pos-
sibly discontinuous was treated in [189] and [7].
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4 | 1 Introduction and modeling

1.2 Open domain with solid particles

The aim of this text is the study of a nonlinear reaction-diffusion problem on the ex-
terior of a set of periodically placed particles over a domain Ω ⊂ ℝn (bounded and
regular, for simplicity) where the reaction takes place over a periodical part of the
boundary and the diffusion is of p-Laplace type, introduced above (see (1.1)). For a
small parameter ε > 0, the particles (or holes) will be the translation at distance ε > 0
of a characteristic shape G0 scaled by a parameter aε ≤ ε. This particle will be either
n-dimensional and placed periodically in the interior of Ω or (n − 1)-dimensional and
placed over an internal manifold or on the boundary.

In the appendices at the end of this volume we give some insights into different
related problems.

1.2.1 The cases with n-dimensional particles G0

Let the shape of an elementary inclusion (in our setting a particle, but it applies also
to the case of a hole) represented by a domain G0 be an open set such that G0 ⊂ Y =
(− 12 ,

1
2 )
n. In most of the main cases we will assume G0 is homeomorphic to a ball (i. e.,

there exists an invertible continuous map Ψ : U → V between open sets of ℝn, U
and V , whereG0 ⊂ U and V contains the open ball of radius one, Ψ(G0) is the ball and
Ψ−1 is continuous).

In this setting, we define

Gε = ⋃
j∈ϒε

(εj + aεG0), Sε = ⋃
j∈ϒε

(εj + aε𝜕G0),

where ϒε ⊂ ℤn indexes the set of points where we will place particles. We furthermore
request that

ϒε ⊂ {j ∈ ℤ
n : εj + εY ⊂ Ω}.

With this choice we guarantee that Gε ⊂ Ω and Sε ∩ 𝜕Ω = 0. Thus, the Dirichlet bound-
ary condition in (1.1) is taken on all 𝜕Ω. We will sometimes consider that

aε = C0ε
α.

The difference in scale can be appreciated in Figure 1.1.

Remark 1.1. In the case of small particles aε ≪ εwewill sometimes take G0 = B1. This
is a small abuse of notation since G0 ̸⊂ Y . This is not a problem since in this setting
aε ≪ ε, and hence aεG0 ⊂ εY for ε small.

Two families of boundary data gε are usually considered:
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1.2 Open domain with solid particles | 5

Figure 1.1: The reference cell Y and the scalings by ε and aε = εα , for α > 1. Note that, for α > 1, εαG0
(for a general particle shaped as G0) becomes smaller relative to εY , which scales as the repetition.
In some first examples G0 will be a ball B1(0) (see Remark 1.1).

1. The first case is the one in which the external source in the boundary reaction
depends on the macroscopic scale

gε(x) = g(x),

for g : Ω→ ℝ being in an adequate Sobolev space.
2. The second case considers the reaction with the same periodicity as the particle

gε(x) = g(x − εj
aε
), x ∈ 𝜕(εj + aεG0), j ∈ ϒε, (1.2)

where g needs only be defined on 𝜕G0 and be integrable. We will usually assume
that g ∈ Lp

󸀠
(𝜕G0) with p󸀠 = p/(p − 1).

A way to write both these behaviors in only one expression is

gε(x) = gst(x) + gper(
x − εj
aε
). (1.3)

Remark 1.2. Even thoughwe takeG0 as a single connected particle, much of the work
could be extended to G0 with a finite number of connected components (each one
diffeomorphic to a ball). This case is very relevant in applications to, for example,
chemical engineering. An interesting problem we will not discuss here corresponds
to the situation in which G0 is composed of several types of components (see [174]).
The case where the particle at each εj is picked from a finite set of particle shapes Aj

was studied in [206] for the case of two different big particles with different regular
kinetics functions σ and in [225] for the case of critical particles and p = n = 2 under
the assumption that all |𝜕Aj| coincide, i. e., the particles are isoperimetric (see also
Remark 4.23).
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6 | 1 Introduction and modeling

Remark 1.3. In some occasions we will also consider the Signorini problem, also
known as the boundary obstacle problem,

{{{{{{{{{
{{{{{{{{{
{

−Δpuε = f in Ωε,

( 𝜕uε𝜕νp + β(ε)σ(uε) − β(ε)g
ε)uε = 0 on Sε,

uε ≥ 0 on Sε,
𝜕uε
𝜕νp
+ β(ε)σ(uε) ≥ β(ε)gε on Sε,

uε = 0 on 𝜕Ω.

Let us now properly introduce the three types of geometries which are usually
considered, depending onϒε (i. e., where the particles are placed and thus the internal
boundary conditions on Sε).

1.2.1.1 Particles over the whole domain
This is the setting which originally attracted most attention and interest from the
mathematical community. This can be easily seen by the amount of work over the
years. In fact, once this case is mastered, the remaining cases can be attacked very
much in a similar fashion. The general strategy of the book will consist in giving the
precise results and techniques for this case and proving the equivalent results for the
other two cases.

In this case, we consider

ϒε = {j ∈ ℤ
n : εj + εY ⊂ Ω}.

ThenΩε appears as in Figure 1.2. Note that in this setting the number of particles scales
like

|ϒε| ≃ ε
−n|Ω|.

The proof of this fact is simple. Due to the choice of ϒε

|Ω| − εn|ϒε| = |Ω| −
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋃
j∈ϒε

(εj + εY)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Ω \ ⋃

j∈ϒε

(εj + εY)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

Note that the last set is contained in the set

Ω \ ⋃
j∈ϒε

(εj + εY) ⊂ ⋃
j∈ℤn

(εj+εY)∩𝜕Ω ̸=0

(εj + εY).

Since 𝜕Ω is a smooth manifold, the latter set has n-dimensional measure converging
to zero (take, for example, a tubular neighborhood).
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1.2 Open domain with solid particles | 7

Figure 1.2: The set Ωε in the case of solid particles over the whole domain. The adjacent particles are
at distance of the order of ε.

Remark 1.4. As indicated in the list of notations, we will use the notation | ⋅ | for many
purposes. Here, |ϒε| denotes the cardinality of the finite set ϒε, whereas |Ω| denotes
the Lebesgue measure of Ω.

Remark 1.5. Many variants of problem (1.1) are relevant in the applications and
present interesting mathematical results in their treatment. This is the case, for in-
stance, when the particles (over the whole domain) are assumed to be permeable.
In that case, we must assume that there is an internal reaction inside the particles,
instead just on their boundaries. In fact, the modeling leads now to a transmission
problem with an unknown flux on the boundary of each particle:

{{{{{{{{
{{{{{{{{
{

−DfΔuε = f in Ωε,

−DpΔvε + ασ(vε) = 0 in Gε,

uε = vε, and Df
𝜕uε
𝜕ν = Dp

𝜕vε
𝜕ν on Sε,

uε = 0 on 𝜕Ω,

whereGε is the set of all particles, andwith the diffusion coefficientsDf andDp usually
quite different. The homogenization of this problem was already considered in [86]
and [84]. A dynamic boundary transmission condition was considered in [85]. The
treatment of the critical size for some related problems was made in [32] and [136].
The techniques presented in our book can be adapted to this framework.

1.2.1.2 Particles over a manifold splitting the domain
Quite often in the applications (for instance in adsorption processes in chemical en-
gineering) the reactant medium is located merely on some kind of grill (or perforated
surface); see, e. g., the nice presentation on the modeling made in [150].

As in the previous problem, there is a useful duality and the same formulation
applies to a set of isolated particles which are periodically located over an internal
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8 | 1 Introduction and modeling

surface in the chemical reactor. It corresponds to the so-called fluidized bed reactor
used for many industrial applications. In this type of reactor, a fluid (gas or liquid) is
passed through a solid granular material (usually a catalyst possibly shaped as tiny
spheres).

Other problems of a radically different nature also lead (after some simplifica-
tions) to quite similar formulations. It is the case, for instance, of some problems
in elasticity associated to lattice type structures such as honeycombs and reinforced
structures (see, e. g., [214, 83] and the references therein).

We will place the particles only over a manifold, which for simplicity we assume
to be Ω ∩ {xn = 0} (see Figure 1.3). Let us introduce some notation. For any arbitrary
set ω ⊂ ℝn we denote

ω+ = {x ∈ ω : xn > 0}, ω− = {x ∈ ω : xn < 0} and ω0 = {x ∈ ω : xn = 0}. (1.4)

In this case, we assume that Ω+ and Ω− are both non-empty and take

ϒε = {j ∈ ℤ
n−1 × {0} : εj + εY ⊂ Ω}.

Unlike in the previous case, in this setting the number of particles scales like

|ϒε| ∼ ε
n−1ℋn−1(Ω0),

whereℋn−1 denotes the (n − 1)-Hausdorff measure. Here, the equivalent to (1.3) is

gε(x) = gst(x) + gper(
x − εj
aε
), x ∈ εj + aε𝜕G0 for some j ∈ ϒε. (1.5)

Figure 1.3: The set Ωε in the case of solid particles over a manifold. The adjacent particles are at
distance of the order of ε.
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1.2.2 The case of (n − 1)-dimensional particles contained in 𝜕Ω
The third type ofmodel problemwewill consider in this book is, in some sense, related
with the above model problem with particles over a manifold but with the important
difference that this manifold is located on a part of the boundary of the domain Ω.
In this context, the particles are contained in 𝜕Ω and hence are (n − 1)-dimensional.
Problems of this nature arise in many different contexts, as for instance in chemical
engineering (see [179]), elasticity (see, e. g., [214]), nanocomposites (see, e. g., [264])
and reverse osmosis (see, e. g., [115] and the many references therein).

In this last setting, which we present for the sake of completion, the particles will
be contained in the boundary, and hence they are (n− 1)-dimensional (see Figure 1.4).
For simplicity, we consider that the part of the boundary with particles is

(𝜕Ω)0 = {x ∈ 𝜕Ω : xn = 0}.

We therefore assume that G0 ⊂ Y ∩ ℝn−1 × {0}. In this case we assume that (Ωε)
− = 0

and define

Gε = 0, Sε = ⋃
j∈ϒε

(εj + aεG0),

where

ϒε = {j ∈ ℤ
n−1 × {0} : (εj + εY)0 ⊂ (𝜕Ω)0 and (εj + εY)+ ⊂ Ω}.

Note that, in contrast to the twoprecedent cases, Sε is not the boundary of the particles
but the own set of (n − 1)-dimensional particles. We have

𝜕Ωε = (𝜕Ω)
+ ∪ [(𝜕Ω)0 \ Sε] ∪ Sε.

Figure 1.4: The set Ωε in the case of solid particles over the boundary. The adjacent particles are
(n − 1)-dimensional and are at distance of the order of ε.
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10 | 1 Introduction and modeling

The problem we will consider is the following:

{{{{{{
{{{{{{
{

−Δpuε = f in Ωε,

uε = 0 on (𝜕Ω)+,
𝜕νpuε + β(ε)σ(uε) = g

ε on Sε,
𝜕νpuε = 0 on (𝜕Ω)0 \ Sε.

(1.6)

Note that it is different from the problem in which on (𝜕Ω)0 \Sε we ask for the Dirichlet
boundary condition

uε = 0 on (𝜕Ω)0 \ Sε.

1.3 Homogenized problem: effective reaction-diffusion behavior

The aim of the homogenization process is to study the function u such that the solu-
tions of (1.1), uε, converge, uε → u, in some sense as ε → 0. The idea is that there
exists an effective reaction-diffusion behavior given by a modification of the parame-
ters and nonlinearity, such that u0 is a solution of a limit problem, which depends on
the geometry. The different nature of these three problems gives rise to three different
behaviors of the limit.

1.3.1 Solid particles over the whole domain

The complete discussion of this case can be found in Chapter 4. We summarize the
result here. First, let us indicate that it is easy to compute that

|Sε| = |ϒε|a
n−1
ε |𝜕G0| ≃ ε

−nan−1ε |𝜕G0||Ω|.

To illustrate the different behavior, let gε be given by (1.3). For some reasons that we
will explain below, we assume that β(ε) ≲ 1/|Sε|. In this case the effective problem is
given by

{
−div aeff(∇u) + βeff1 σeff(u) = f + βeff2 geff in Ω,
u0 = 0 on 𝜕Ω.

In this setting, the so-called effective diffusion coefficient aeff : ℝn → ℝ has a
simple form in some cases given by

aeff(ξ ) = {
Aeffξ aε ∼ ε and p = 2,
|ξ |p−2ξ aε ≪ ε and p ∈ (1,∞).
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1.3 Homogenized problem: effective reaction-diffusion behavior | 11

When aε ≪ ε, the diffusion operator −Δp is not altered. For aε ∼ ε, aeff is obtained
by solving an auxiliary problem, known as cell problem, which will be discussed in
Section 4.4. When p = 2, the linearity is preserved, so we only need to recover the
form of the matrix Aeff. This allows to classify two types of cases:
1. Big particles:aε ∼ ε. There is an effective-diffusionmatrix depending on the shape

of the particles, and the nonlinearity stays the same.
2. Small particles: aε ≪ ε. This different effective diffusion is not present.

In this book we are mostly interested in the possible change of the nature of the non-
linear reaction term. We will show that there exists a critical size a⋆ε that differentiates
three regimes:

σeff(x, s) =
{{{{
{{{{
{

σ(s) a⋆ε ≪ aε ≲ ε and aε ≤ ε,

ℋ(x, s) aε ∼ a⋆ε ,

0 aε ≪ a⋆ε .

(1.7)

This functionℋ(x, s) is, in general, different from the original reaction σ and depends
on the scaling of β(ε) (as we will explain below). It is the so-called “strange term” of
critical-scale homogenization (a terminology popularized by [80, 81] and preserved
by many authors).

We give some historical notes in Section 1.6. This is the reason why this critical
case is “anomalous,” as point out in the title of the book. The determination of this
function ℋ is one the main difficulties we will face in this book. When G0 is a ball it
is given by (4.16)–(4.17), where for G0 general it is given by (4.32) and the notations in
Section 3.1.5.3.

In this setting, we will show that

a⋆ε =

{{{{{
{{{{{
{

ε
n

n−p p ∈ (1, n),

εe−αε
− n
n−1 p = n for any α > 0,

0 p > n.

The last case is a short-handnotation to indicate that for p > n there is no critical scale.
The case p = n needs to be understood in the sense of Remark 4.1. In Chapter 4 we will
show how this critical scale is deduced.

Finally, let us look at the influence of the rest of the terms on the homogenized
equation. We define

β0 = lim
ε→0

β(ε)
1/|Sε|
∈ [0, +∞).

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



12 | 1 Introduction and modeling

We will show in Chapter 4 that then we have

βeff1 =

{{{{{
{{{{{
{

β0
|Ω||Y\G0|

aε ∼ ε,

β0
|Ω| a⋆ε ≪ aε ≪ ε,

1 aε ≲ a⋆ε ,

βeff2 = {
βeff1 aε ≫ a⋆ε ,
0 aε ∼ a⋆ε

(1.8)

and

geff(x) = gst(x) +
1
|𝜕G0|
∫
𝜕G0

gper(y)dy. (1.9)

The fact that βeff2 = 0 when aε ∼ a
⋆
ε happens (as we will see below) because g

ε is “writ-
ten into” the strange term ℋ. In the supercritical range aε ≪ a⋆ε , we always assume
that gε = 0, so we give no information of βeff2 . A classification of the different values of
the function H(u) when β(ε) = ε−γ and aε = C0εα is presented in Section 4.8.

As mentioned before, the critical scale for β is

β⋆(ε) = |Sε|
−1,

and then the resulting homogenized equation can be classified according to Ta-
ble 1.1.

Table 1.1: Homogenized equation in the different ranges when σ−1(0) = 0 and gε = 0. When aε ∼ a⋆ε ,
the case β(ε) ≪ β⋆(ε) behaves like the one with homogeneous Neumann conditions (i. e., σ = 0)
and β(ε) ≫ β⋆(ε) behaves like the case of homogeneous Dirichlet conditions.

aε ∼ ε a⋆ε ≪ aε ≪ ε aε ∼ a⋆ε aε ≪ a⋆ε

β(ε) ≪ β⋆(ε) −div(aeff(∇u)) = f −Δpu = f −Δpu = f −Δpu = f

β(ε) ∼ β⋆(ε) −div(aeff(∇u)) + βeffσ(u) = f −Δpu + βeffσ(u) = f −Δpu +ℋ(u) = f −Δpu = f

β(ε) ≫ β⋆(ε) u = 0 u = 0 −Δpu +𝒜0|u|p−2u = f −Δpu = f

1.3.2 Particles over a manifold

In this case, the limit satisfies the homogenized equation

{{{{{{{
{{{{{{{
{

−Δpu = f Ω+ ∪ Ω−,

u = 0 𝜕Ω,

[u]Ω0 = 0,

[|∇u|p−2 𝜕u𝜕xn ]Ω0 = βeff1 σeff(x, u) − βeff2 geff Ω ∩ {xn = 0},
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1.3 Homogenized problem: effective reaction-diffusion behavior | 13

where

[f ]Ω0 (x) = lim
h→0
(f (x + hen) − f (x − hen)).

The description of the effective values ofℋ, (1.8) and (1.9) are more or less preserved.
The values of a⋆ε and β(ε)

⋆ have to be adapted to this case.We have different constants

βeff1 =
{
{
{

β0
|Ω0| a⋆ε ≪ aε ≲ ε,
1 aε ≲ a⋆ε ,

βeff2 = {
βeff1 aε ≫ a⋆ε ,
0 aε ∼ a⋆ε .

Wewill discuss the precise values of the effective parameters below. A table similar to
Table 1.1 can be drafted, written for the conditions on Ω0 = Ω ∩ {xn = 0}. The detailed
results can be found in Chapter 5. The results are summarized in Table 1.2.

Table 1.2: Homogenized boundary condition on the interior manifold Ω0 in the different ranges when
σ−1(0) = 0 and gε = 0. When [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0, then simply −Δpu = f in the whole domain Ω.

a⋆ε ≪ aε ≲ ε aε ∼ a⋆ε aε ≪ a⋆ε

β(ε) ≪ β⋆(ε) [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0 [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0 [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0

β(ε) ∼ β⋆(ε) [|∇u|p−2 𝜕u𝜕xn ]Ω0 = β
effσ(u) [|∇u|p−2 𝜕u𝜕xn ]Ω0 = ℋ(u) [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0

β(ε) ≫ β⋆(ε) u = 0 [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 𝒜0|u|p−2u [|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0

1.3.3 Particles over the boundary

In this case we recover

{{{
{{{
{

−Δpu = f Ω ⊂ {xn > 0},
u = 0 𝜕Ω \ {xn = 0},
𝜕νpu + β

eff
1 σeff(u) = βeff2 geff 𝜕Ω ∩ {xn = 0}.

We will also discuss the explicit values of these effective parameters below, with

geff(x) = gst(x) +
1
|G0|
∫
G0

gper(y)dy (1.10)

and

βeff1 =
{
{
{

β0
|(𝜕Ω)0| a⋆ε ≪ aε ≲ ε,
1 aε ≲ a⋆ε ,

βeff2 = {
βeff1 aε ≫ a⋆ε ,
0 aε ∼ a⋆ε .

We refer the reader to Chapter 6 for the results. The results are summarized in Table 1.3.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 | 1 Introduction and modeling

Table 1.3: Homogenized boundary condition on Ω0 ⊂ 𝜕Ω when in the different ranges when
σ−1(0) = 0 and gε = 0. When aε ∼ a⋆ε , the case β(ε) ≪ β⋆(ε) behaves like the one with homoge-
neous Neumann conditions (i. e., σ = 0) and β(ε) ≫ β⋆(ε) behaves like if we start with homoge-
neous Dirichlet conditions on 𝜕Ω ∩ {xn = 0}.

a⋆ε ≪ aε ≲ ε aε ∼ a⋆ε aε ≪ a⋆ε
β(ε) ≪ β⋆(ε) 𝜕νpu = 0 𝜕νpu = 0 𝜕νpu = 0

β(ε) ∼ β⋆(ε) 𝜕νpu + β
effσ(u) = 0 𝜕νpu +ℋ(u) = 0 𝜕νpu = 0

β(ε) ≫ β⋆(ε) u = 0 𝜕νpu +𝒜0|u|p−2u 𝜕νpu = 0

1.4 Different homogenization techniques

Here we will briefly present some of the most relevant methodologies applied in ho-
mogenization for the types of problems mentioned above. Most of them have been
applied to our problem, as we will see later.

1.4.1 The multiple-scales method

One of the possibilities (and, in fact, a pioneering method, see [242]) in dealing with
identifying the limit consists of considering an expansion knownasasymptotic expan-
sion of the solutions. In the case aε = εwe can formally imagine that our solution is of
the form

uε(x) = u(x) + εu1(x,
x
ε
) + ε2u2(x,

x
ε
) + ⋅ ⋅ ⋅ (1.11)

and derive the behavior from there. Thismethod, which is now known as themultiple-
scales method, is still very much in use (see, e. g., [104, 126, 57] among many others).
In this direction we recommend the famous books [31, 239, 77, 214] (a more detailed
list of references can be found in Section 1.6).

This kind of argument works in two steps. Take for example the simple case of

{
−div(A( xε )∇uε) = f Ω,
uε = 0 𝜕Ω,

where A is Y -periodic. First, a formal deduction of the good approximation can be
made and a later rigorous proof can be given. In particular, we can use repeatedly the
computation that if v = v(x, y), then

𝜕
𝜕xi
[v(x, x

ε
)] =
𝜕v
𝜕xi
(x, x

ε
) +

1
ε
𝜕v
𝜕yi
(x, x

ε
).
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Substituting (1.11) into −div(A( xε )uε) = f and gathering terms, one can recover that
there is a natural choice

u1(x,
x
ε
) = ̂ξ(x

ε
) ⋅ ∇u, u2(x,

x
ε
) = θ̂ : D2u, ⋅ ⋅ ⋅ ,

where the equations for u0, ̂ξ and θ̂ can be found explicitly and the remaining terms
are formally of higher order (as in the usual Taylor expansion). The second part of this
kind of arguments is to estimate the convergence, as a typical result for this problem
is that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
uε(x) − (u(x) + ε ̂ξ(

x
ε
) ⋅ ∇u + ε2θ̂ : D2u)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩H1(Ω)
→ 0, as aε → 0.

The details of similar examples can be found, e. g., in [239, Chapter 5], [76, Chapter 7].
Furthermore, one can find some rates of this convergence.

Naturally, the situation becomes more complicated when aε ≪ ε (for the applica-
tion of this formal expansion, see, e. g., [150]). We will not apply this technique in this
book.

1.4.2 The Γ-convergence method

This method was introduced by De Giorgi [98] and later developed in [97, 92, 266]
(among many other authors). The essential idea behind the Γ-convergence method
is to study the problem in its energy variational formulation and the conditions un-
der which convergence of the energies implies convergence of their minimizers, i. e.,
of the solutions of the elliptic problems. Here we present some results extracted from
[92].

Definition 1.6. Let X be a topological space. The Γ-lower limit and Γ-upper limit of a
sequence (Fn) of functions X → [−∞,∞] are defined as follows:

(Γ − lim inf
n→+∞

Fn)(x) = sup
U∈𝒩 (x)

lim inf
n→+∞

inf
y∈U

Fn(y),

(Γ − lim sup
n→+∞

Fn)(x) = sup
U∈𝒩 (x)

lim sup
n→+∞

inf
y∈U

Fn(y),

where 𝒩 (x) = {U ⊂ X, U open : x ∈ U}. If there exists F : X → [−∞, +∞] such that
F = Γ − lim infn→+∞ Fn = Γ − lim supn→+∞ Fn, then we say that Fn Γ-converges to F,
and we denote it as

F = Γ − lim
n→+∞

Fn.

For the sake of convenience, in this section we will denote

F󸀠 = Γ − lim inf
n→+∞

Fn,

F󸀠󸀠 = Γ − lim sup
n→+∞

Fn.
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The results that make this technique interesting for us are the following.

Theorem 1.7. Suppose that (Fn) are equi-coercive in X. Then F󸀠 and F󸀠󸀠 are coercive and

inf
x∈X

F󸀠(x) = lim inf
n→+∞

inf
x∈X

Fn(x).

Proposition 1.8. Let xn be a minimizer of Fn in X and assume that xn → x in X. Then

F󸀠(x) = lim inf
n→∞

Fn(xn), F󸀠󸀠(x) = lim sup
n→∞

Fn(xn).

In the context of homogenizationwe aremainly interested in the behavior of func-
tionals

Fε(u,A) = {
∫A f (

x
ε , u(x),Du(x))dx u ∈ W 1,p(A),

+∞ otherwise,

where p > 1. The main result of this method is the following. Let

f0(ξ ) = inf
v∈W 1,p

per(Y)
∫
Y

f (y, v(y), ξ + Dv(y))dy.

Then, under some mild assumptions on f , for every sequence εn → 0, we have that
Fεn Γ-converges to F0, the functional defined by

F0(u,A) = {
∫A f0(Du)dx u ∈ W 1,p(A),
+∞ otherwise.

The characterization of this function f0 allows to recover the homogenized limit of
problems. We refer the reader to [92] for complete details in this direction.

Thismethodwas applied to our cases of interest presented above,with somemod-
ification, by Kaizu [178] and Goncharenko [162].

1.4.3 The two-scale convergence method

The two-scalemethodwas introducedbyNguetseng [210] and later developedby some
authors, amongstwhichwehighlight thework ofAllaire [5, 6] (see also the survey [267]
and its many references). The central definition of this method is the following.

Definition 1.9. Let (vε) be a sequence in L2(Ω). We say that the sequence vε two-scale
converges to a function v0 ∈ L2(Ω × Y) if, for any function ψ = ψ(x, y) ∈ 𝒟(Ω; 𝒞∞per(Y))
(i. e., functions which are smooth in x, y, have compact domain in Ω and are periodic
in y) one has

lim
ε→0
∫
Ω

vε(x)ψ(x,
x
ε
)dx = 1
|Y |
∫
Ω

∫
Y

v0(x, y)ψ(x, y)dx dy.
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1.4 Different homogenization techniques | 17

By taking ψ = ψ(x) in the previous definition it is immediate to see that

vε ⇀ V0 =
1
|Y |
∫
Y

v0(⋅, y)dy,

weakly in L2(Ω). The key point of this theory is to study the convergence of functions
of the typeψ(x, xε ) and then apply them suitably to theweak formulation. Thismethod
has also been applied for the homogenization of general Hamiltonians (see, e. g., [29]
and the references therein).

1.4.4 Tartar’s method of oscillating test functions

This method (initially called “energy method”) is due to Tartar (see [254, 255, 256,
209]). The general idea behind it is to consider the appropriate weak formulation and
select suitable test functions φε with properties that, in the limit, reveal a weak for-
mulation of the homogeneous problem.

Unfortunately, there is not any specific rule to choose the oscillating test func-
tions and thus it must be built for each particular problem under consideration. Many
references will be indicated in Section 1.6.

This is the general method applied to obtain the results of this book. As we shall
see, it is not a straightforward recipe, and the choice of test function and their analy-
sis can become a very hard task. Many detailed examples will be given in the follow-
ing chapters. Perhaps the simplest presentation corresponds to the case considered
in Section 4.6, but, without any doubt, the more interesting (and harder) application
corresponds to the critical cases studied in Section 4.7.

A difficulty that arises with this method in domains with particles or holes is the
need of a common functional space, since uε ∈ Lp(Ωε). This leads to the construc-
tion of extension operators Pε : W 1,p(Ωε) → W 1,p(Ω), which will be discussed in Sec-
tion 3.1.1.

1.4.5 The periodical unfolding method

The periodical unfolding method was introduced by Cioranescu, Damlamian and
Griso in [73, 75] (see the monograph [74]). It consists on transforming the solution to a
fixed domain Ω × Y . The case of particles (or holes) was considered in [72, 71, 59]. See
also [78].

Let us present the reasoning in domains with particles (or holes). The idea is to
decompose every point in Ω as a sum

x = [x]Y + {x}Y ,
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18 | 1 Introduction and modeling

where [x]Y is the unique element in ℤn such that x − [x]Y ∈ [0, 1)n. That is, we have
that [⋅]Y is constant over Y j

ε. We define the operator

𝒯ε,δ : φ ∈ L
2(Ω) 󳨃→ 𝒯ε,δ(φ) ∈ L

p(Ω × ℝn)

as

𝒯ε,δ(φ)(x, z) = {
φ(ε[ xε ]Y + εδz) (x, z) ∈ Ω̂ε ×

1
δY ,

0 otherwise,

where

Ω̂ε = interior( ⋃
ξ∈ℤn :

ε(ξ+Y)⊂Ω

ε(ξ + Y)).

Note that 𝒯ε,δ(φ)(x, z) is piecewise constant in x. The boundary of Gj
ε corresponds to

Ω̂ε × 𝜕G0.
The great advantage of this approach is that it removes the need to construct

extension operators. Therefore, it allows to consider non-smooth shapes of G0. This
method has shown very good results, and the properties of 𝒯ε,δ(uε) are well under-
stood, at least in the non-critical cases.

1.5 Structure of the proofs and main ideas: oscillating test
functions

The structure of the proofs below will follow a general scheme which we have found
to be a winning strategy. In order to fix ideas in this introduction, let us focus on the
case p = 2.

1.5.1 Showing the solutions uε have a limit

Since uε are functions defined over the sets Ωε it is immediate to find how to formalize
the intuition of why uε → u.

Uniform boundedness
The natural energy spaces for existence and uniqueness of solutions are the Sobolev
spaces:

W 1,p(Ωε, 𝜕Ω) = {u ∈ 𝒞∞(Ωε) : u vanishes on a neighborhood of 𝜕Ω}
W 1,p(Ωε)
.
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1.5 Structure of the proofs and main ideas: oscillating test functions | 19

Checking uniform boundedness in these spaces

‖∇uε‖Lp(Ωε) ≤ C,

where C does not depend on ε, is relatively standard in most cases.

Finding a common space: extension to Ω
Since we want the convergence to occur in some functional space, we need to find
a common ground. When G0 is (n − 1)-dimensional this is not needed. The classical
approach to solve this problem is to construct extension operators

Pε : W
1,p(Ωε, 𝜕Ω) → W 1,p

0 (Ω),

which are uniformly continuous with the norms above:

∫
Ω

|∇Pεu|
p dx ≤ C ∫

Ωε

|∇u|p dx, ∀u ∈ W 1,p(Ωε, 𝜕Ω),

for some C not depending on ε.

Compactness
Using both facts above, it is immediate that there exists uniform boundedness in
W 1,p

0 (Ω):

‖Pεuε‖W 1,p
0 (Ω)
≤ C.

Therefore, by well-known weak compactness results (since 1 < p < +∞), there exists
a limit

Pεuε ⇀ u inW 1,p
0 (Ω).

1.5.2 Characterizing an effective equation

We pass to the limit in the weak formulation of the problem to detect the weak formu-
lation for the effective (homogenized) problem. For simplicity, let us assume p = 2.

Effective diffusion
In order to have “convergence” of the gradient in some space, we can either study
∇Pεuε or introduce

∇̃uε = {
∇uε Ωε,

0 Ω \ Ωε.
(1.12)
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The latter has the advantage that

∫
Ωε

∇uε∇φdx = ∫
Ω

∇̃uε∇φdx,

so it is sufficient to take weak limits. Note that it is unlikely that ∇̃uε coincides with
∇Pεuε. Since

‖∇̃uε‖L2(Ω) = ‖∇uε‖L2(Ωε) ≤ C,

it has a limit

∇̃uε ⇀ ξ0 in L2(Ω).

Then, the diffusion term can be rewritten

∫
Ωε

∇uε∇φdx → ∫
Ω

ξ0∇φdx.

Therefore, if we are able to deal adequately with the other terms, the diffusion term in
the effective problem is −div(ξ0).

Since

|Ωε| →
{{{
{{{
{

θ|Ω| aε ∼ ε, aε ≤ ε
and the particles are over the whole domain,

|Ω| aε ≪ ε,

for some θ < 1, the extension by 0 given by (1.12) only produces an effect if the holes
are large: aε ∼ ε. We will show

ξ0 =
{{{
{{{
{

aeff(∇u) aε ∼ ε, aε ≤ ε
and the particles are over the whole domain,

∇u otherwise.

This characterization is the main difficulty studied in Section 4.4.

Detecting the critical cases
The idea is to first study the integral 1

|Sε |
∫Sε . A good approach is to study the trace in-

equality. This is one of the main focuses of Chapter 3. Assume that g is a smooth func-
tion. Typically a value a⋆ε appears such that the behavior is as follows: for a smooth
function g

1
|Sε|
∫
Sε

g dS = ρε + Cε ∫
Tε

g dx,
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where Tε is made up of ε-scaled balls and ρε → 0 for a⋆ε ≪ aε ≲ ε. Some auxiliary
functionsmε are usually used in this task, allowing to pass the integral from Sε to Tε.
This allows us to determine the critical value a⋆ε .

Thus, we will recover

1
|Sε|
∫
Sε

g dS →

{{{{{
{{{{{
{

1
|Ω| ∫Ω g dx if the particles are over the whole domain,
1
|Ω0| ∫Ω0 g dx if the particles are centered in Ω0,

1
|(𝜕Ω)0| ∫(𝜕Ω)0 g dS if the particles are in (𝜕Ω)0,

when a⋆ε ≪ aε ≲ ε. (1.13)

We recall the notation ⋅0 is introduced in (1.4). This drives the effective reaction
term. In the case aε ≪ a⋆ε we will be able to remove the reaction term with smart test
functions that vanish on Sε (see, for example, Section 4.6 below).

1.5.3 Study of the critical case: the appearance of the strange term

This is the trickiest case. We apply Tartar’s method of oscillating test functions, again
for the case p = 2. The choice of these functions will be rather involved.

Weak formulation
For simplicity, let us study the case (1.1). First, we write our problem in a weak formu-
lation (which will be justified later), of the form (for any good test function v)

∫
Ωε

∇v∇(v − uε)dx + β(ε) ∫
Sε

(σ(v) − gε)(v − uε)dS ≥ ∫
Ωε

f (v − uε)dx. (1.14)

If σ is amaximalmonotone graph this requires some refinementwhichwewill discuss
in Section 2.2.

Choice of oscillating test functions
Then, we select as test function vε = v − Wε(x; v), where v is a generic test function
for the homogenized problem andWε is a sequence of functions converging weakly to
0 with special properties. The aim of this term is to control the singular term β(ε) ∫Sε .
Note that we can write

∫
Ωε

∇vε∇(vε − uε)dx = ∫
Ωε

∇v∇(v − uε)dx − ∫
Ωε

∇v∇Wε dx

− ∫
Ωε

∇Wε∇(v −Wε − uε)dx.
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In the case p ̸= 2, we will have a similar result with some additional error terms (see
Lemma 4.38). The first term has a clear limit, and it yields the diffusion term of the
effective equation. The second integral usually vanishes in the limit due to the con-
struction ofWε. The functionWε is chosen with the properties that

{
{
{

ΔWε = 0 x ∈ ⋃j∈ϒε (εj +
ε
4B1 \ aεG0),

Wε = 0 x ∉ ⋃j∈ϒε (εj +
ε
4B1).

We will add more requirements below. With this choice, the last integral becomes

∫
Ωε

∇Wε∇(v −Wε − uε)dx = ∫
Sε

(𝜕νWε)(v −Wε − uε)dSx + ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

(𝜕νWε)(v − uε)dSx .

The normal derivative on Sε, (𝜕νWε)|Sε is chosen so that we have a cancelation of the
integral in Sε of (1.14). The other normal derivative, (𝜕νWε)|εj+ ε4 𝜕B1 , with the averaging
limit (1.13), yields the so-called strange term, which we have denotedℋ.

Let us focus on the simpler case in which gε = 0 and G0 = B1 (even though this is
not contained in Y , see Remark 1.1). On each ball εj + ε

4B1 we can pick

Wε(x; v) = H(v(x))wε(x − εj)

(for a suitable wε as explained below) and we get

∫
Sε

(𝜕νWε)(v −Wε − uε)dSx = ∑
j∈ϒε

∫
εj+aε𝜕G0

(𝜕νwε(x − εj))H(v)(v − H(v)wε(x − εj) − uε)dSx .

The proof is made simpler by assuming that wε = 1 on 𝜕G0. With the conditions we
already set onWε we arrive at the capacity type problem,which plays a very important
role to this purpose,

{{{{{
{{{{{
{

Δwε = 0 x ∈ ε
4B1 \ aεG0,

wε = 1 aε𝜕G0,

wε = 0
ε
4𝜕B1.

Since we are assuming that G0 is a ball this solution is radially symmetric and explicit
(see Section 3.1.5). Hence,Wε = 1 on Sε and we have

∫
Sε

(𝜕νWε)(v −Wε − uε)dSx = Bε ∫
Sε

H(v)(v − H(v) − uε)dSx ,

where Bε = 𝜕νwε|aε𝜕G0
. To get the cancelation of integrals in Sε we want that

Bε ∫
Sε

H(v)(v − H(v) − uε)dSx ≃ β(ε) ∫
Sε

σ(vε)(vε − uε)dSx

= β(ε) ∫
Sε

σ(v − H(v))(v − H(v) − uε)dSx .
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This cancelation is obtained if H is taken such that for every s ∈ ℝ

(lim
ε→0

Bε
β(ε)
)H(s) = σ(s − H(s)). (1.15)

We point out that the above limit is related with another constant ℬ0, which will be
introduced later (see Remark 4.31). In Section 4.7.1.1, we will show that this functional
equation has a single solution H. On the other hand,

− ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

(𝜕νWε)(v − uε)dSx = Aε ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

H(v)(v − uε)dSx ,

where Aε = −𝜕νwε| ε4 𝜕B1 . Since these integrals are now over non-critical balls, we prove
through the averaging result described above that

Aε ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

H(v)(v − uε)dSx → 𝒜0 ∫
Ω

H(v)(v − u)dx.

The constant𝒜0 is relatedwith the capacity, aswewill explain later (see Remark 4.31).
Joining this information, as ε → 0, we will show that (for any good test function v)

∫
Ω

∇v∇(v − u)dx +𝒜0 ∫
Ω

H(v)(v − u)dx ≥ ∫
Ω

f (v − u)dx.

This is how we have that the new reaction term is given by ℋ(u) = 𝒜0H(u), with H
satisfying (1.15). It is, in general, different from σ. Moreover, there are some subcases
which arise according to the different values of β(ε) (see Table 1.1 below). We will ob-
tain many properties of H later. As a first property, note that taking a derivative in s in
(1.15) we recover the estimate

H󸀠(s) = σ󸀠(s − H(s))
(limε→0

Bε
β(ε) ) + σ

󸀠(s − H(s))
∈ [0, 1].

This function H is always non-decreasing and Lipschitz continuous, and there exists
a universal bound of H󸀠.

When G0 is not a ball, then the choice ofWε is more involved. We will get back to
this in Section 3.1.5.3.

1.6 A literature review

First, we want to point out the classical references [31, 239] and some more modern
presentations in [76] and [256]. Most of the classical papers in homogenization refer
to lecture notes by Luc Tartar [254], but they can be difficult to access. Those notes
apparently led to [209].
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Before indicating, in a detailed form, many of the papers in the literature deal-
ing with homogenization processes giving rise to some strange terms, perhaps, it is
a good place to make mention of a general (long but surely far to be complete) list
of books, by chronological order, dealing with homogenization methods (we will not
collect here any of the many books dealing with proceedings of international con-
ferences on homogenization). Very few fields of mathematics have exhibited such an
intensive development in so few years. Among the pioneering books we could men-
tion [39, 201] (which already presents the phenomenon of the appearance of strange
terms), [184, 31, 239, 194, 18, 15, 135, 214, 238, 175, 212, 248] (already considering the
occurrence of strange terms), [213, 165, 222, 82, 76, 4, 207, 63, 201] (enlarged English
version of [202]) and [67, 204, 256, 264, 179, 74, 33]. See also [44].

We point out that the occurrence of a strange term for a critical scale is discussed
in detail at least in the books [201, 248, 67, 74] and [33].

In the rest of this section we will refer to some specific references dealing with the
three types of problems mentioned in Section 1.3 giving unity to this book.

1.6.1 Particles over the whole domain

Big particles aε ∼ ε
In the case p = 2 the presence of an effective diffusion has been known since the 1970s
(see [242, 241, 19, 17, 31]). It is not difficult to recover via asymptotic expansion. A very
nice presentation can be found in [76]. The addition of boundary conditions on the
holes (which is independent of the effective diffusion, as we will see below) appears
in the linear setting [83] (Dirichlet boundary condition) and [77] (linear σ), later for
the obstacle problem in [89] and in the semilinear setting [84]. In [206] the case of two
different big particles with different regular kinetics functions σ was considered. The
case aε ∼ ε, p ̸= 2 and σ = 0 was studied in [128] (see also the references therein).

Subcritical particles a⋆ε ≪ aε ≪ ε
In this setting the work has been long but incremental:
– p = 2. First the homogeneous Neumann case was studied [87], followed by the

linear reaction in [218]. The case of σ nonlinear was first studied by Goncharenko
in [162] for dimension 3. This paper is quite singular since it is the first known
appearance of a functional equation for the effective reaction H for the critical
scale. Later this work was extended by [270, 268, 173]. The reader may find the
obstacle problem in [89]. We also refer the reader to previous work by Kaizu [178,
177].

– p ∈ (2, n). This range was covered in [226] and [245], and later for Signorini type
problems in [106].

– p ∈ (1, 2). This range was developed in [228].
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– p ∈ (1, n). A unified approach for the whole range was presented in [110].
– p = n. This case was studied in [158].
– p > n. The range without critical scale was developed in [114].

Critical particles aε ∼ a⋆ε
That is the more interesting case.
– p = 2. As a first result in the literaturewe find [169], for the case of Dirichlet bound-

ary conditions (see also [168] and [170]). The case of the obstacle problem was
treated in [16]. Hruslov’s work on the Dirichlet boundary conditions was later im-
proved in the famous papers [80, 81] (see the English translation in [79]), which
introduced the notion of “strange term.” At the same time [218] studied σ linear,
and [162] studied σ nonlinear and N = 3. This is the first case where a functional
equation for the strange term appears. This equation, which only holds true for
balls, reads

H(s) = Cσ(s − H(s)), ∀s ∈ ℝ. (1.16)

Wewill discuss later the value of the constant. Further improvement of the dimen-
sion and the nature of the boundary conditions when G0 is a ball can be found in
[270, 172, 268]. The obstacle problem was studied in [89].
Again, we point out parallel work of Kaizu [178, 177] in this direction. He gives no
characterization of the term H.
The case of G0 not a ball was studied in [116]. The surprising result is that there is
no equation (1.16), but rather H is recovered from a capacity type problem. It was
later generalized in [269] to include dependence on x of σ and gε as (1.2).

– The case p ∈ (2, n) was discussed in [245].
– The case p ∈ (1, n)was discussed in [112, 111]. A result for Dirichlet boundary con-

ditions for systems can be found in [11], with a proof based on Γ-convergence.
– The case p = n can be found in [229].

Supercritical case aε ≪ a⋆ε
As we will see, it is not difficult to show that in this case the reaction term vanishes
(see (1.13)).

The results for this case appear usually alongside one of the previous cases, but
it is not worth showing the original proof. The case p = 2 can be found in [268], and
here we extend the same philosophy for p ∈ (1, n).

1.6.2 Particles over a manifold

The case of particles along a manifold is possibly the least studied case. In this direc-
tion we refer to [54, 156, 151, 161, 159, 160, 195, 196, 273, 157] for further references.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



26 | 1 Introduction and modeling

[273] studies variational inequalities for the biharmonic operator; [54, 159, 160,
195, 196] consider the Laplace operator and linear problems; [54] contains an extra
advection term related with the flow velocity; [156, 151] consider variational inequali-
ties for the Laplace operator for certain β(ε) and aε; [196] considers a boundary value
problem for the p-Laplacian for the another particular case. In [157] the authors deal
with the p-Laplace case with the Signorini boundary condition and all aε and β(ε).

1.6.3 Particles over the boundary

This kind of problem was first studied in [240, 95, 215]. In the subcritical setting we
have the work of Chechkin [64] that deals with linear σ. In [143, 213] the authors deal
with Dirichlet boundary conditions, in the critical and non-critical settings.

The reader will find results in the subcritical setting and p = 2 in [65] (where there
is a complete asymptotic expansion, see also [25]), [141] (for the parabolic case and σ
linear), [66] (where σ(x, u) = a(x)u) and [223] (Signorini boundary condition), [132]
(general elliptic operator in a finite planar strip perforated by small holes along a
curve).

In the critical setting, some relevant works are [272] (Signorini problem for p = 2
and n = 3), [106, 115] (where p = 2 ≤ n and G0 is a ball), [231] (p = 2 < n and G0 a
general shape) and [230] (the case p = n forG0 a ball). The case of dynamical boundary
conditions can be found in [107].

The eigenvalue problem in n = 2 for Dirichlet and Neumann boundary conditions
was studied in [144, 40, 43]. In [246] the case of transport terms is considered. Similar
results with the Steklov boundary condition can be found in [145, 68, 70]. The elas-
ticity equation was studied in [197, 55, 198, 198]. For the case where the particles are
replaced by strips on a cylinder we refer to [41, 42].

1.7 Novelties

As already mentioned, besides providing a unified approach to this subject, which as
pointed out above is spread across a vast literature, we will provide in this book some
new results which are not (to the best of our knowledge) available elsewhere. We list
now some of the main novelties of our book:
– We write aε and β(ε) in all the cases, removing the usual structural restrictions.
– We give an intuition of the appearance of the critical scale, when p < n.
– In Chapter 1we give a very detailed but clear overview of the approaches to the dif-

ferent cases and provide the most complete literature review of the subject avail-
able in any of the papers.

– In Chapter 2 we give a very detailed introduction to the inequality formulations
that were used in the papers by some authors.
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– In Chapter 3 we detect the critical value τε of the estimate in Lemma 3.6 in the dif-
ferent cases p < n, p = n, p = n and each geometrical setting, which allows us to
precisely write the scales aε such that the averaging lemmas from Sε to the corre-
sponding set hold. When this lemma fails, we find the critical scale. We provide
new estimates and properties on the strange term and on the auxiliary function
ŵ when G0 is not a ball, showing that there is a uniform Lipschitz continuity con-
stant linked to the capacity on G0. We show, for the first time in the literature,
that as the nonlinearity approaches the maximal monotone graph for the Dirich-
let boundary condition, the respective strange term converges. Finally, we explain
the connection between the case of n-dimensional particles and (n − 1)-particles.
In each of three settings, we provide details on the uniform trace theorems and
averaging lemmas which are difficult to find in the papers.

– In Chapter 4 we give a very detailed explanation of how the strange term appears
and why it has its particular form. We provide a uniform presentation of the av-
eraging in Theorem 4.5, where the right-hand is given in all situations according
to the relation between p and n. Usually, in the previous literature, only one case
is presented isolated from other possibilities. We also point out that the smilingly
surprising coefficients in the equation have a very natural explanation related to
the p-capacity. We also prove a new convergence result when the data are in L1.

– In Chapter 5 we provide a detailed explanation of the relation between the weak
and strong formulations of the term of “jump across a manifold.”

– In Chapter 6 we point out the behavior in the case aε ∼ a⋆ε and β(ε) ≫ β⋆(ε) we
recover in the limit of the behavior of the Dirichlet case, as in the rest of the cases
for σ. We also point out that a Dirichlet boundary condition, in the critical case,
passes to be (after the homogenization limit) a Robin type boundary condition.

– In Appendix A we show how the elliptic results translate directly to the parabolic
case. This represents, as it is common in parabolic problems, a decoupling be-
tween the time and spatial variables.

– In Appendix Bwe providemany new details on the problemwith dynamic bound-
ary condition. We provide new estimates on the strange term for critical-size ho-
mogenization.

– In Appendix C, on random particles, we provide a new application of the main
result for the Signorini type boundary condition at the critical scale, showing that
for negative functions f the homogenized solution becomes negative in some suit-
able regions of the domain.
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2 Preliminary results and comments
The internal core philosophy of this text is that a unified approach can be given to the
treatment of different types of conditions on the boundaries of the particles applying
maximal monotone graphs (which are described below). However, the treatment of
such operators is difficult in the framework of the homogenization procedure. Thus,
we will only provide a complete proof of the homogenization in the most general set-
ting with respect to σ for the simplest case with respect to the shape of the particles.
For the rest of the cases we will show that the homogenization result is true when σ
is smooth (or even Hölder continuous) and that the rigorous passage to the limit and
the strange term are well defined and nice for the general shape case.

In order to give the most general setting, let us recall some classical results from
the literature. As general references for elliptic partial differential equations (PDEs),
we refer the reader to the textbooks [45, 138, 148].

2.1 Maximal monotone graphs. A common roof

In some contexts (when, for instance, p = 2), it is desirable to formulate the nonlinear
Robin type condition

𝜕uε
𝜕ν
+ β(ε)σ(uε) = 0 on Sε, (2.1a)

where ν is the unitary outward vector to Sε, in a general framework which also in-
cludes, as particular cases, other types of boundary conditions as, for instance, the
Dirichlet boundary condition

uε = 0 on Sε, (2.1b)

or even the case of Signorini type boundary condition (also known as boundary ob-
stacle problem) with a given non-decreasing function σ0,

{{{
{{{
{

uε ≥ 0 on Sε,
𝜕νpuε + β(ε)σ0(uε) ≥ 0 on Sε,
uε(𝜕νpuε + β(ε)σ0(uε)) = 0 on Sε.

(2.1c)

There is a unified presentation of such a goal leading to the respective weak formula-
tions (even for the general case p > 1). The idea is to use the framework of maximal
monotone operators (see, for instance, [47, 48, 192, 56] and themore recent exposition
made in [22]).

Remark 2.1. Later we will be able to add a term gε to the right-hand side of these con-
ditions (see, e. g., Theorem 2.13).

https://doi.org/10.1515/9783110648997-002
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Definition 2.2. Let X be a Banach space and A : X → 𝒫(X󸀠) (as usual, 𝒫(X󸀠) denotes
the set of all the subsets of X󸀠). We say that A is a monotone operator if, for all x, x̂ ∈ X,

⟨x − x̂, ξ − ̂ξ ⟩X×X󸀠 ≥ 0 ∀ξ ∈ A(x), ̂ξ ∈ A(x̂).
We define the domain of A as dom(A) = {x ∈ X : A(x) ̸= 0}. Here 0 is the empty set. We
say that A is a maximal monotone operator if there is no other monotone operator Ã
such that dom(A) ⊂ dom(Ã) and A(x) ⊂ Ã(x) for all x ∈ X.

Examples 2.3. Some examples of monotone operators A = σ, when X = ℝ, are:
1. Any continuous non-decreasing functions σ : ℝ → ℝ.
2. Let σ : ℝ → ℝ be discontinuous and let (xn)n be its set of discontinuity points.

Then, the function

σ̃(x) = {
σ(x) x ∈ ℝ \ {xn : n ∈ ℕ},
[σ(x−n ), σ(x+n )] x = xn for some n ∈ ℕ

is amaximalmonotoneoperator. In this framework,maximalmonotoneoperators
in ℝ can be seen as maximal monotone graphs of ℝ2, and vice versa.

3. The Dirichlet boundary condition (2.1b) can bewritten in terms ofmaximalmono-
tone operators as (2.1a) with

σD(x) =
{{{
{{{
{

0 x < 0,
ℝ x = 0,
0 x > 0.

(2.2)

We call this graph the maximal monotone graph associated with the homoge-
neous Dirichlet boundary condition.

4. The Signorini boundary condition (2.1c) can be written formally as (2.1a) with

σ(x) =
{{{
{{{
{

0 x < 0,
(−∞,0] x = 0,
σ0(x) x > 0.

(2.3)

Note also that if σ : ℝ → ℝ is a continuous non-decreasing function and sublin-
ear |σ(u)| ≤ C(1 + |u|), then its associated Nemytskii operator, which maps u ∈ L2(Ω)
to σ(u) ∈ L2(Ω), is a maximal monotone operator in X = L2(Ω). To be absolutely cor-
rect, when σ is multivaluedwe shouldwrite the above nonlinear Robin type boundary
condition as

−
𝜕uε
𝜕ν
∈ β(ε)σ(uε) on Sε.

Nevertheless, for the sake of simplicity (and as an abuse of the notation) we will avoid
suchunusual expression. Of course,when σ fails to be continuous, the use ofmaximal
monotone operators escapes the usual framework of classical solutions of PDEs.
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Another advantage of maximal monotone operators is the simplicity to define
their inverses. For σ : ℝ → 𝒫(ℝ), we define its inverse in the sense of maximal mono-
tone operators as the map σ−1 : ℝ → 𝒫(ℝ) given by

σ−1(s) = {x ∈ ℝ : s ∈ σ(x)}.
It is a trivial exercise to show that σ−1 is also a maximal monotone operator.

Subdifferentials
Using maximal monotone graphs introduces some degree of delicateness in the treat-
ment of the equations. The good thing is that the variational theory can still be ap-
plied. The main idea of the variational formulation is that the energy functional is
typically convex, and thus it admits a minimizer. This philosophy is preserved also
when the boundary condition involves a maximal monotone graph. This is already
a well-known theory which was developed in many articles and books (see, e. g.,
[47, 48, 133, 134, 22]).

Let us see the connection. The main idea is that a smooth function is non-
decreasing if and only if its primitive is convex. Hence, an easy way to construct a
maximal monotone graph is by using a convex function. Instead of the usual deriva-
tive we need to generalize it by introducing a possibly multivalued concept of gener-
alized derivative.

Definition 2.4. Let Ψ : X → (−∞, +∞] be convex and lower semicontinuous. Let
Dom(Ψ) = {u ∈ X : Ψ(u) < +∞}. We define its subdifferential, 𝜕Ψ, at x ∈ X as

𝜕Ψ(x) = {ξ ∈ X󸀠 : ⟨ξ , y − x⟩ ≤ Ψ(y) −Ψ(x), ∀y ∈ X}.
It is well known (see, e. g., [134, 22]) that if Ψ : ℝ → (−∞, +∞] is convex, then 𝜕Ψ

is amaximalmonotone graph, and vice versa, if σ : ℝ → 𝒫(ℝ) is amaximalmonotone
operator, then there exists a convex function Ψ : ℝ → (−∞, +∞] such that σ = 𝜕Ψ.
Since Ψ is convex it is lower continuous and bounded below, hence up to translation
we can always assume that Ψ ≥ 0. We will keep this assumption for the remainder of
the book (except in some few cases dealing with non-monotone functions σ).

Example 2.5.
1. For a reaction of order r, σ(v) = [v+]r, we have Ψ(v) = [v+]r+1r+1 .
2. For a reaction of zero order Ψ(v) = [v+].
3. For the graph of Dirichlet boundary conditions Ψ(0) = 0 and Ψ(v) = +∞ if v ̸= 0.
4. For the Signorini boundary conditions Ψ(v) = +∞ if v ≤ 0 and Ψ(v) = ∫v0 σ0(s)ds

if v > 0.

Remark 2.6. The term gε can be introduced as an x-dependence in σ by considering
σ̃(x, u) = σ(u) − g(x). In this setting σ̃(x, ⋅) is an m.m. g. for every x fixed, and we can
construct Ψ̃(x, u) = Φ(u) − g(x)u convex for each x fixed (see, e. g., [134, 22]).
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Remark 2.7. Sincewe always assume that σ(0) ∋ 0, its primitiveΨwill always be such
that Ψ(0) = 0 and Ψ ≥ 0.

2.2 Variational formulation of the problems

Thus, if σ = 𝜕Ψ, all the different boundary conditions listed above allow a common
variational formulation given by the minimization of the energy functional

Jε(uε) =
1
p
∫
Ωε

|∇uε|
p dx + β(ε) ∫

Sε

Ψ(uε)dS − ∫
Ωε

fuε dx − β(ε) ∫
Sε

gεuε dS. (2.4)

More details on the regularity on the external datawill be given later (see Theorem 2.13
below). Actually, to be more correct, we have to work with

J̃ε(uε) = {
Jε(uε) if uε ∈ W 1,p(Ωε, 𝜕Ω) and uε(x) ∈ dom(Ψ) for a. e. x ∈ Sε,
+∞ otherwise.

This energy functional is convex. When the particles are contained on 𝜕Ω see Re-
mark 2.8.

Remark 2.8. In the case of particles in the interior of Ω (either on the whole space or
on a manifold), we minimize over the energy space X = W 1,p(Ωε, 𝜕Ω). However in the
case of particles on the boundary we work on the energy space X = W 1,p(Ω, (𝜕Ω)+)
and J̃(uε) is suitably modified. Note that there is a trace operator T : X → Lp(Sε) in the
cases of particles on thewhole domain and on an interiormanifold (see, e. g., [45]). By
a usual abuse of the notation, we are identifying T(u)with u. For the case of particles
on the boundary the good trace operator is operating from X into Lp(Gε).

The equivalence between the weak and the variational formulation will be re-
called later.

Lemma 2.9 ([134]). Let X be a reflexive Banach space, let J : X → (−∞, +∞] be a con-
vex functional and let A = 𝜕J : X → 𝒫(X󸀠) be its subdifferential. Then the following
conditions are equivalent:
(a) u is a minimizer of J;
(b) u ∈ dom(A) and 0 ∈ Au.

If either holds, then:
(c) For every v ∈ dom(A) and ξ ∈ Av

⟨ξ , v − u⟩ ≥ 0. (2.5)

Furthermore, assume that J is Gâteaux-differentiable on X and A is continuous on X.
Then condition (c) is also equivalent to condition (a).
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Remark 2.10. Naturally, if there is uniqueness of u satisfying (c), then conditions (a)–
(c) are also equivalent.

Remark 2.11. When p = 2, one should not confuse condition (c)with the – very similar
– formulation in Stampacchia’s theorem (see, e. g., [45, Theorem 5.6]). For a bilinear
form a and a linear function G the Stampacchia formulation is

a(u, v − u) ≥ G(v − u),

for all v in the correspondent space, whereas in formulation (c) we have a(v, v − u). In
the nonlinear setting we point also to the work by Brézis and Sibony [51].

2.2.1 Formulation as variational inequalities

FromLemma2.9wefind someequivalent expressions of theweak solutionof our prob-
lems (see expression (a) below) which are called variational inequalities. Some other
equivalent expressions, which will be very useful later, are given in the next proposi-
tion. These formulations are particularly useful in the treatment of quasilinear equa-
tions and also when σ is a multivalued maximal monotone graph.

Proposition 2.12. Let p > 1, σ = 𝜕Ψ, and let uε be a minimizer of Jε over the energy
space:
– X = W 1,p(Ωε, 𝜕Ω) for the case of particles in the interior of Ω;
– X = W 1,p(Ω, (𝜕Ω)+) for the case of particles on the boundary.
Then, uε satisfies the following three characterizations:
(a) For all v ∈ W 1,p(Ωε, 𝜕Ω) (respectively v ∈ W 1,p(Ω, (𝜕Ω)+))

∫
Ωε

|∇uε|
p−2∇uε ⋅ ∇(v − uε)dx + β(ε) ∫

Sε

(Ψ(v) −Ψ(uε))dS

≥ ∫
Ωε

f (v − uε)dx + β(ε) ∫
Sε

gε(v − uε)dS. (2.6)

(b) For v ∈ W 1,∞(Ωε, 𝜕Ω) (respectively v ∈ W 1,∞(Ω, (𝜕Ω)+)) and any ξ ∈ L1(Sε) such
that ξ (x) ∈ σ(v(x)) for a. e. x ∈ Sε

∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx + β(ε) ∫
Sε

ξ (v − uε)dS

≥ ∫
Ωε

f (v − uε)dx + β(ε) ∫
Sε

gε(v − uε)dS. (2.7)
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(c) For all v ∈ W 1,p(Ωε, 𝜕Ω) (respectively v ∈ W 1,p(Ω, (𝜕Ω)+))
∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx + β(ε) ∫
Sε

(Ψ(v) −Ψ(uε))dS

≥ ∫
Ωε

f (v − uε)dx + β(ε) ∫
Sε

gε(v − uε)dS. (2.8)

Proof. Let us prove first (2.8). Consider the map x ∈ ℝn 󳨃→ |x|p ∈ ℝ. It is a convex map
with derivative D|x|p = p|x|p−2x. Hence, for a, b ∈ ℝn we have

|a|p − |b|p ≥ p|b|p−2b ⋅ (a − b).
Hence

|b|p − |a|p ≤ p|b|p−2b ⋅ (b − a).
Considering b = ∇v and a = ∇uε we have

|∇v|p − |∇uε|
p ≤ p|∇v|p−2∇v ⋅ ∇(v − uε).

Taking into account this fact and that uε is a minimizer of Jε we have

0 ≤ Jε(v) − Jε(uε)

=
1
p
∫
Ωε

(|∇v|p − |∇uε|
p)dx + β(ε) ∫

Sε

(Ψ(v) −Ψ(uε))dS

− ∫
Ωε

f (v − uε)dx − β(ε) ∫
Sε

gε(v − uε)dS

≤ ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx + β(ε) ∫
Sε

(Ψ(v) −Ψ(uε))dS

− ∫
Ωε

f (v − uε)dx − β(ε) ∫
Sε

gε(v − uε)dS.

Thus, we have obtained (2.8).
Let us assume that uε is a minimizer of Jε. Considering characterization Lem-

ma 2.9(c) we have

∫
Ωε

|∇v|p−2∇(v−uε) ⋅∇(v−uε)dx+β(ε) ∫
Sε

ξ (v−uε)dS ≥ ∫
Ωε

f (v−uε)dx+β(ε) ∫
Sε

gε(v−uε)dS,

for some ξ such that ξ (x) ∈ σ(v(x)) a. e. in Sε. Since Ψ is convex and σ = 𝜕Ψwe have

Ψ(v) −Ψ(uε) ≥ ξ (v − uε).

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.2 Variational formulation of the problems | 35

Hence, (2.7) is proved. In order to prove (2.6), we can repeat the same argument from
the usualweak formulation. Equation (2.7) can be obtained by considering the Brézis–
Sibony characterization of the weak formulation of (1.1) (see Lemma 1.1 of [51] or The-
orem 2.2 of Chapter 2 in [192]).

2.2.2 Existence and uniqueness of solutions

The aim of this section is to prove the following.

Theorem 2.13. Let ε > 0, p > 1, f ∈ Lp
󸀠
(Ωε) and gε ∈ Lp

󸀠
(Sε). Then, there exists a unique

u ∈ W 1,p(Ωε, 𝜕Ω) (respectively in W 1,p(Ω, (𝜕Ω)+)) satisfying (2.8).
To prove the existence of solutions we can use convex analysis to show the exis-

tence of minimizers of Jε (see, e. g., [133, 134, 22]), or by applying an abstract result in
a very general framework. To state in its broadest generality we introduce (as in [46])
the following definition.

Definition 2.14. LetV be a reflexive Banach space.We say thatA : V → V 󸀠 is a pseudo-
monotone operator if it is bounded and it has the following property: if uj ⇀ u in V
and

lim sup
j→+∞ ⟨A(uj), uj − u⟩ ≤ 0,

then, for all v ∈ X,

lim inf
j→+∞ ⟨A(uj), uj − v⟩ ≥ ⟨A(u), u − v⟩.

We can now recall the following well-known result.

Theorem ([46], also Theorem 8.5 in [192]). Let A : V → V 󸀠 be a pseudo-monotone op-
erator and let φ be a proper convex function lower semicontinuous such that

{
there exist v0 such that φ(v0) < ∞ and(Au,u−v0)+φ(u)‖u‖ →∞, as ‖u‖ → ∞.

Then, for f ∈ V 󸀠, there exists a solution of the problem
(A(u) − f , v − u) + φ(v) − φ(u) ≥ 0, ∀v ∈ V .

In this setting A is simply given by the p-Laplacian, and the hypotheses are easily
checked. The uniqueness of solutions is a consequence of the strict monotonicity of
the operator A + 𝜕Ψ (see, e. g., [192, 58]). For the case of smooth nonlinear terms we
refer the reader to themonographs [186, 185]. We point out that some other comments
and references on the existence and uniqueness of solutions will be presented later
when dealing with non-monotone functions σ(s) (Section 2.6.2), when considering L1

data (Section 4.9.1) and when dealing with the spectral problem (Section 4.9.6).
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2.3 The critical scaling of the reaction constant β

The scaling constant β(ε) is relevant to determine the reaction term in the effective
problem. Although the different problems under consideration are rather different,
they all include in their energy a term coming from the reaction of the form

β(ε) ∫
Sε

Φ(uε)dS,

for different choices of the function Φ. The more favorable case in the study of this
term arises when the integrand is constant, and then

β(ε) ∫
Sε

dS = β(ε)|Sε|.

In order for this kindof term to scale properly,we introduce thedefinitionof the critical
scaling

β⋆(ε) = |Sε|−1.
We have

β⋆(ε) ∫
Sε

dS = 1
|Sε|
∫
Sε

dS,

so this is the usual average operator. For functions g ∈ 𝒞(Ω), it is clear that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
|Sε|
∫
Sε

g dS
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖g‖∞.

Hence, up a to a subsequence, there is a limit of β⋆(ε) ∫Sε g dS. Thus
β(ε) ∫

Sε

g dS = β(ε)
β⋆(ε) 1
|Sε|
∫
Sε

g dS → lim
ε→0 β(ε)

β⋆(ε) limε→0 1
|Sε|
∫
Sε

g dS.

This is why the scaling constant

β0 = lim
ε→0 β(ε)

β⋆(ε)
is relevant. If β0 = 0, the only possibility in the limit (as ε → 0) is to lose the reaction
term in the homogenized equation.

We will see that if β⋆(ε) ≪ β(ε) (i. e., β0 = +∞) and σ󸀠 > 0, then the reaction term
is dominant, and in the limit we have no diffusion. This last case spoils the narrative,
and we will only discuss it in Section 4.8. The relevant case we will be interested in is
β ∼ β⋆ (i. e., β0 ∈ (0, +∞)).
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Remark 2.15. Note that with this choice, we have

β⋆(ε) = |Sε|−1 = |ϒε|−1|aε𝜕G0|
−1.

The last measure will scale like the dimension of |𝜕G0|.

This choice of β⋆(ε) has a significant advantage. Since we are now averaging, the
embeddings of Lr(Sε) in Ls(Sε) are uniform in ε.

Lemma 2.16. Let 1 < r < s. Then,

(β⋆(ε) ∫
Sε

|u|r dS)
1
r

≤ (β⋆(ε) ∫
Sε

|u|s dS)
1
s

.

Proof. The proof is a simple application of Hölder’s theorem for q = s
r . We have

∫
Sε

|u|r dS ≤ (∫
Sε

|u|s dS)
r
s

(∫
Sε

1
s
s−r dS) s−rs = |Sε| s−rs (∫

Sε

|u|s dS)
r
s

= β⋆(ε)− s−rs (∫
Sε

|u|s dS)
r
s

.

2.4 Uniform approximation results

The case of σ ∈ 𝒞(ℝ), non-decreasing and σ(0) = 0 and the case β(ε)β∗(ε)−1 → 0 can
be treated thanks to some uniform approximation arguments. Assume for themoment
(we will prove it later) that there exists C > 0 independent of ε such that

β⋆(ε) ∫
Sε

|u|p dx ≤ C ∫
Ωε

|∇u|p dx, ∀u ∈ W 1,p(Ωε, 𝜕Ω). (2.9)

Let uε and ūε be, respectively, the solution of our problem with kinetic functions σ
and σ̄. Using them as test functions in the weak formulation of our problem we get

∫
Ωε

(|∇uε|
p−2∇uε − |∇ūε|p−2∇ūε) ⋅ ∇(uε − ūε)dx + β(ε) ∫

Sε

(σ(uε) − σ̄(ūε))(uε − ūε)dS = 0.

Adding, subtracting and using the monotonicity of σ we recover

∫
Ωε

(|∇uε|
p−2∇uε − |∇ūε|p−2∇ūε) ⋅ ∇(uε − ūε)dx

= −β(ε) ∫
Sε

(σ(uε) − σ̄(ūε))(uε − ūε)dS
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= −β(ε) ∫
Sε

(σ(uε) − σ(ūε))(uε − ūε)dS

+ β(ε) ∫
Sε

(σ(ūε) − σ̄(ūε))(uε − ūε)dS

≤ β(ε) ∫
Sε

(σ(ūε) − σ̄(ūε))(uε − ūε)dS.

Thus

∫
Ωε

(|∇uε|
p−2∇uε − |∇ūε|p−2∇ūε) ⋅ ∇(uε − ūε)dx ≤ β(ε)‖σ − σ̄‖∞ ∫

Sε

|uε − ūε|dS.

Using Lemma 2.16 we have

∫
Ω

(|∇uε|
p−2∇uε−|∇ūε|p−2∇ūε)⋅∇(uε−ūε)dx ≤ β(ε)β⋆(ε)−1‖σ−σ̄‖∞(β⋆(ε) ∫

Sε

|uε−ūε|
p dS)

1
p

.

Case p ≥ 2
When p ≥ 2 due to (|b|p−2b − |a|p−2a) ⋅ (b − a) ≥ 22−p|b − a|p (see [102, Lemma 4.10] or
[190, Formula (I) in Chapter 10]) and (2.9) we recover

‖uε − ūε‖
p−1
W 1,p(Ωε) ≤ Cβ(ε)β⋆(ε)−1‖σ − σ̄‖∞. (2.10)

Case 1 < p < 2
In this setting we only have (see the abovementioned references) the weaker inequal-
ity

(|b|p−2b − |a|p−2a) ⋅ (b − a) ≥ (p − 1)|b − a|2(1 + |a|2 + |b|2) p−22 .
We recover

(p − 1) ∫
Ωε

|∇uε − ∇ūε|
2(1 + |∇uε|

2 + |∇ūε|
2)

p−2
2 dx

≤ Cβ(ε)β⋆(ε)−1‖σ − σ̄‖∞(‖∇uε‖Lp(Ωε) + ‖∇ūε‖Lp(Ωε)). (2.11)

2.5 The range β(ε) ≁ β⋆(ε)

We present an intuitive argument of what happens in this case. The rigorous details
must be analyzed for each case (see, e. g., Section 4.8). The philosophy is that when
β(ε) ≪ β⋆(ε), the reaction vanishes in the limit. This is shown by taking σ̄ = 0. Since
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β(ε)β⋆(ε)−1 → 0, we show that uε and ūε share a limit. This is in contrast to the above-
mentioned case; when β(ε) ≫ β⋆(ε) and aε ≫ a⋆ε , we will show that the reaction
term is dominant and we simply end with σ(u) = 0. The critical case, as usual, is spe-
cial.

2.6 Comments

The aim of the general theory is usually to cover all types of boundary conditions, and
hence we aim to use maximal monotone operators. However, when we do not work
in the most general setting in order to simplify the presentation, or due to technical
difficulties, we usually assume that σ is Lipschitz continuous.We provide below some
tricks that allow a direct extension of results from smooth σ to broader classes of func-
tions.

2.6.1 Uniformly continuous σ

Consider a sequence of well-behaved functions σδ that converges to σ. The main idea
is to show that the solutions associated to σδ, say uε,δ, approximate uniformly the one
with σ, i. e.,

‖uε − uε,δ‖X ≤ C‖σ − σδ‖∞, (2.12)

in some functional space X. As ε → 0, Pεuε,δ ⇀ uδ inW 1,p(Ω), where uδ is the solution
of the corresponding limit problemwithσδ asnonlinear kinetics. Furthermore,Pεuε ⇀
u inW 1,p(Ω), and the uniform continuous dependence holds in the limit

‖u − uδ‖X ≤ C‖σ − σδ‖∞. (2.13)

It is easy to show that as δ → 0, we have uδ ⇀ û inW 1,p(Ω), the solution of the corre-
sponding limit equation. Taking limits as δ → 0 in (2.13), we deduce that u = û.

In order tomake a selection of the right-hand side of (2.12)wefirst provide a lemma
which is quite similar to the Yosida approximation of a given maximal monotone op-
erator (see [48]).

Lemma 2.17. Let σ be non-decreasing, uniformly continuous such that σ(0) = 0. Then,
there exists σδ Lipschitz (furthermore, piecewise linear), non-decreasing and such that
σδ(0) = 0 and

sup
x∈ℝ |σ(x) − σδ(x)| < δ.

Proof. Since σ is uniformly continuous, for δ > 0 fixed, let γ be small enough so that
if |x − y| < γ, then |σ(x) − σ(y)| < δ. Let σδ be the piecewise linear interpolation of the
values of σ in kγ/2 for k ∈ ℤ. The conclusion holds.
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Recovering (2.12) usually passes by sharp embeddings of the spaces Lp(Sε) in
Lq(Sε), and applying the equation. For an example in terms of the interior problemwe
refer the reader to [110, Lemma 9].

2.6.2 Non-monotone σ

There are some relevant cases in the applications in which σ is non-monotone. This
is the case, for instance, of the Langmuir–Hinshelwood kinetics and other examples
mentioned in the Introduction. Let us show that there exists a small value k1 > 0
such that if σ󸀠 ≥ −k1, the theory still works. The existence of solutions when σ is non-
monotone was already shown in [52] (and the papers cited in Section 1.1). Here wewill
make only some considerations concerning the convergence of suitable approxima-
tions and consider only the case p = 2. First, for aε ≳ a⋆ε , as we will show later, there
exists a finite trace constant (see Lemma 4.2 for the case of particles over the whole
domain)

C0 = sup
0<ε<1 sup

v∈H1(Ωε ,𝜕Ω)
v ̸=0

β∗(ε) ∫Sε |v|2 dS
∫Ωε
|∇v|2 dx

.

If β(ε) ∼ β⋆(ε), then we take
k1 <

1
C0

inf
ε<1 β∗(ε)β(ε)

.

Therefore, if aε ≳ a⋆ε , β(ε) ∼ β⋆(ε) and σ󸀠 ≥ −k1, the following statements hold:
– ∫Ωε

|∇v|2 + β(ε) ∫Sε σ(v)v ≥ C ∫Ωε
|∇v|2 for some C > 0.

– The operator with the boundary condition is monotone. In particular, for each
f ∈ L2(Ω) there is a unique uε ∈ H1(Ωε, 𝜕Ω) that satisfies

∫
Ωε

∇uε∇φdx + β(ε) ∫
Sε

σ(uε)φdS = ∫
Ω

fφdx, (2.14)

for all φ ∈ H1(Ωε, 𝜕Ω). Furthermore, by using the mean value theorem for σ, it
holds that

∫
Ωε

∇v∇(v − uε)dx + β(ε) ∫
Sε

σ(v)(v − uε)dS − ∫
Ωε

f (v − uε)dx

= ∫
Ωε

|∇(v − uε)|
2 dx + β(ε) ∫

Sε

(σ(v) − σ(uε))(v − uε)dS

= ∫
Ωε

|∇(v − uε)|
2 dx + β(ε) ∫

Sε

σ󸀠(ηε(x))|v − uε|2 dS
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≥ ∫
Ωε

|∇(v − uε)|
2 dx − k1

β(ε)
β⋆(ε)β⋆(ε) ∫

Sε

|v − uε|
2 dS

≥ 0,

where ηε(x) is a function coming from themean value theorem. Thus, the convergence
result to the solution of the corresponding homogenized problem in this setting can
be recovered uniformly from the theory for the case σ󸀠 ≥ 0.
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3 Estimates over one periodicity cell

As pointed out in Section 1.5.2, we need to characterize the limits as ε → 0 of the type
∫Sε g. Since Sε is made up of disconnected elements, we can work with the integral in
each one of them. Up to translation, Sε is given as the repetition of aε𝜕G0. The parti-
cles we study can be n-dimensional (Sections 1.2.1.1 and 1.2.1.2) or (n− 1)-dimensional
(Section 1.2.2), and these situations need to be treated separately. This chapter is of a
very technical nature but, as we will see later, it supplies very fine and useful results
which will be crucial for the delicate proofs presented in Chapter 4 to 6.

3.1 Case of n-dimensional particles

Let us consider the cell εY \ aεG0 as seen in Figure 1.1. The aim of this section is to
show:
1. There exists an extension operator Pε that is able to “fill in” the particles (or holes)

with suitable information, in a way that does not increase significantly the W 1,p

norm.
2. There exist some uniform Poincaré inequalities for the spacesW 1,p(Ωε, 𝜕Ω).
3. There are suitable estimates on the trace operator over aε𝜕G0, of the type

∫
aε𝜕G0

|u|p dS ≤ C1(ε) ∫
εY\aεG0

|u|p dx + C2(ε) ∫
εY\aεG0

|∇u|p dx. (3.1)

4. In order to obtain the limit of the reaction term, when a⋆ε ≪ aε ≲ ε, we want to be
able to write

∫
aε𝜕G0

g dS = με ∫
εY\aεG0

g dx + ρε (3.2)

for suitable values of με (which should converge to a constant) and of ρε (which
should converge to 0). Later we will need a proper scaling, β(ε) ∼ β⋆(ε), as men-
tioned in Section 2.3.

5. The situation for the critical caseaε ∼ a⋆ε ismore difficult andweneed to introduce
some special auxiliary functions which later will allow the interplay between dif-
fusion and reaction terms in the weak formulation.We provide some estimates on
them in this chapter.

Remark 3.1. Note that in inequality (3.1) we have written εY \ aεG0 instead of εY \
aεG0, for simplicity. We will do this in integrals and Lebesgue measures, since the
n-dimensional measure of 𝜕G0 is 0.

https://doi.org/10.1515/9783110648997-003
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3.1.1 Extension operators

For this sectionwe follow the approach in [217]. LetA ⊂ B.We say thatP is an extension
operator if P : F(A) = {f : A → ℝ} → F(B) and has the property that P(f )|A = f . Let
p > 1. We will say that a family of linear extension operators

Pε : W
1,p(Ωε) → W 1,p(Ω) (3.3)

is uniformly bounded if there exists a constant C > 0, independent of ε, such that

‖Pεu‖W 1,p(Ω) ≤ C‖u‖W 1,p(Ωε) ∀u ∈ W
1,p(Ωε). (3.4)

Note that, since there are no particles tangent to the boundary, we also have

Pε : W
1,p(Ωε, 𝜕Ω) → W 1,p

0 (Ω).

We will prove that this mapping has also a uniform constant in the gradient norm,
i. e.,

󵄩󵄩󵄩󵄩∇(Pεu)
󵄩󵄩󵄩󵄩Lp(Ω) ≤ C‖∇u‖Lp(Ωε), ∀u ∈ W

1,p(Ωε, 𝜕Ω), (3.5)

where C > 0 also does not depend on ε, and this will yield a uniformPoincaré inequal-
ity (see Theorem 3.4 below). A family of operators with this property, for 1 ≤ p < +∞,
was constructed in [228]. The aim of this section is to prove the following lemma.

Lemma 3.2. Let G0 ∈ 𝒞
0,1 such that G0 ⊂ Y. Then in either of the settings of Section 1.2.1

there exists a uniformly bounded family of linear extension operators (3.3) such that (3.4)
and (3.5) hold.

The idea is to apply the following theorem.

Theorem (Theorem 7.25 in [148]). LetΩ be a Ck−1,1 domain inℝn, k ≥ 1. Then (i) 𝒞∞(Ω̄)
is dense in Wk,p(Ω), 1 ≤ p < +∞, and (ii) for any open set Ω󸀠 ⊃⊃ Ω there exists a linear
extension operator E : Wk,p(Ω) → Wk,p

0 (Ω
󸀠) such that Eu = u in Ω and

‖Eu‖Wk,p(Ω󸀠) ≤ C‖u‖Wk,p(Ω),
where C = C(k,Ω,Ω󸀠).

Remark 3.3. Going back to the construction in [148], we can check that the extension
of the constant function 1 is the function 1, i. e., E(1) = 1.

Proof of Lemma 3.2. We consider a large ball B such that Y ⋐ B and the linear exten-
sion operator

E : W 1,p(Y \ G0) → W 1,p(B)
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such that

‖Eu‖W 1,p(B) ≤ C0‖u‖W 1,p(Y\G0)
.

Let us scale it down by aε as

Eεu(x) = E[u(aε⋅)](
x
aε
).

In other words, we construct

Eε : W
1,p(aεY \ aεG0) → W 1,p(Y \ G0)

E
→ W 1,p(B) → W 1,p(aεB).

Note that rather than εY \ aεG0 we are considering the aε-rescale of Y . By a simple
change in variable we observe that

‖Eεu‖W 1,p(aεB) ≤ C1‖u‖W 1,p(aεY\aεG0)
.

Thus we can define

Pεu(x) = {
Eε[u(⋅ − εj)](x + εj) x ∈ εj + aεY for some j ∈ ϒε,
u(x) otherwise.

We have

‖∇Pεu‖
p
W 1,p(Ω) = ‖u‖pW 1,p(Ω\⋃j∈ϒε (εj+aεY)) + ∑j∈ϒε

󵄩󵄩󵄩󵄩Eε[u(⋅ − εj)]
󵄩󵄩󵄩󵄩
p
W 1,p(aεY)

≤ ‖u‖pW 1,p(Ωε)
+ C1 ∑

j∈ϒε

󵄩󵄩󵄩󵄩u(⋅ − εj)
󵄩󵄩󵄩󵄩
p
W 1,p(aεY\aεG0)

= ‖u‖pW 1,p(Ωε)
+ C1 ∑

j∈ϒε

‖u‖p
W 1,p(εj+aεY\aεG0)

≤ (1 + C1)‖u‖
p
W 1,p(Ωε)
.

Since the extension operator is such that E(1) = 1, one can recover (3.5). For a
given function u, let C0 = ∫Y\G0

u(y)dy. Then, E(u−C0) = E(u)−C0. Using the Poincaré–
Wirtinger inequality forW 1,p(Y \ G0) (see, e. g., [138]) we have

󵄩󵄩󵄩󵄩∇E(u)
󵄩󵄩󵄩󵄩Lp(Y) =

󵄩󵄩󵄩󵄩∇E(u − C0)
󵄩󵄩󵄩󵄩Lp(Y) ≤

󵄩󵄩󵄩󵄩E(u − C0)
󵄩󵄩󵄩󵄩W 1,p(Y) ≤ C‖u − C0‖W 1,p(Y\G0)

≤ C(‖u − C0‖Lp(Y\G0)
+ 󵄩󵄩󵄩󵄩∇(u − C0)

󵄩󵄩󵄩󵄩Lp(Y\G0)
)

≤ C‖∇u‖Lp(Y\G0)
.

As above, through scaling one recovers the result. This completes the proof.
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3.1.2 Uniform Poincaré inequality on Ωε

Given a bounded domain Ω, the existence of a positive Poincaré constant Cp,Ω such
that

‖v‖Lp(Ω) ≤ Cp,Ω‖∇v‖Lp(Ω), ∀v ∈ W
1,p
0 (Ω)

is well known. However, it is not trivial to show that all domains Ωε have a common
constant for ε > 0 small. The following result is very often used in the literature but it
is seldom stated.

Theorem 3.4. Let p > 1. Under the assumptions of Section 1.2.1, we have

‖u‖Lp(Ωε) ≤ C‖∇u‖Lp(Ωε) ∀u ∈ W
1,p(Ωε, 𝜕Ω) and ε > 0,

where C does not depend on ε.

Proof. We apply only Lemma 3.2 and the Poincaré inequality in Ω. First, we use the
fact that Pεu = u in Ωε. Thus

‖u‖Lp(Ωε) = ‖Pεu‖Lp(Ωε) ≤ ‖Pεu‖Lp(Ω) ≤ Cp,Ω‖∇Pεu‖Lp(Ω).

We complete the proof by using (3.5), where the constant is also uniform in ε.

Remark 3.5. Wecanuse a similar argument to prove thatwehave auniformPoincaré–
Wirtinger inequality in a cell, i. e.,

‖v − v‖Lp(εY\aεG0)
≤ Cε‖∇v‖Lp(εY\aεG0)

,

where v = 1
|εY\aεG0|

∫εY\aεG0
v(x)dx and C does not depend on ε.

3.1.3 Sharp trace estimates on aε𝜕G0 in εY \ aεG0

As result of well-known trace inequalities (see, e. g., [138]), we know that

∫
aε𝜕G0

|u|p dS ≤ Cε( ∫
εY\aεG0

|u|p dx + ∫
εY\aεG0

|∇u|p dx),

for some positive constant Cε. In the following pageswe present a sharp trace estimate
with constants depending explicitly on ε. This analysis unifies some different cases
with respect to p and n, and is quite similar to that of [87, Lemma 2.1], but includes
also the cases p ̸= 2.
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Lemma 3.6. Let G0 be smooth, u ∈ W 1,p(εY \aεG0), p > 1, and assume that aε ≤ ε. Then

∫
aε𝜕G0

|u|p dS ≤ Can−1ε (ε
−n ∫

εY\aεG0

|u|p dx + τε ∫
εY\aεG0

|∇u|p dx),

where

τε ∼
{{{
{{{
{

ap−nε p < n,
(ln 2ε

aε
)p−1 p = n,

εp−n p > n,

(3.6)

and C is a constant independent of ε and u.

Proof. For simplicity, we take an extension of u outside of εY such that

∫
ℝn\aεG0

|u|p dx ≤ C ∫
εY\aεG0

|u|p dx, ∫
ℝn\aεG0

|∇u|p dx ≤ C ∫
εY\aεG0

|∇u|p dx.

As for the extension, this can be done with a constant that is uniform in ε, as follows.
Since Y and G0 are good enough, there exists an extension operator from T : W 1,p(Y \
G0) → W 1,p(ℝn \ G0). We define this extension by

u(x) = {
T[u|εY\aεG0

(ε⋅)](x/ε) x ∈ ℝn \ εG0,

u(x) x ∈ εG0 \ aεG0.

First, let us take R > 0 such that G0 ⊂ BR. We check that

|||v|||p = ∫
𝜕BR

|v|p dSy + ∫
BR\G0

|∇v|p dy

is an equivalent norm ofW 1,p(BR \ G0) (this is a version of Friedrich’s inequality). Let
us prove that C1‖v‖W 1,p(BR\G0)

≤ |||v||| ≤ C2‖v‖W 1,p(BR\G0)
with C1,C2 > 0 and finite. The

existence of C2 follows from the continuity of the trace. Let C1 = inf |||v|||/‖v‖W 1,p(BR\G0)
and take a minimizing sequence vn such that ‖vn‖W 1,p(BR\G0)

= 1. Up to a subsequence
vn converges to some v weakly inW 1,p(BR \ G0), Lp(𝜕G0) and strongly in Lp(BR \ G0). If
C1 = 0, then the gradients converge to zero and v is constant 1/|BR \ G0| but, due the
weak lower semicontinuity, also ∫𝜕G0

|v|p dS ≤ 0. Hence C1 > 0.
Hence, the continuity of the trace is stated as

∫
𝜕G0

|v|p dSy ≤ C( ∫
𝜕BR

|v|p dSy + ∫
BR\G0

|∇v|p dy). (3.7)
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Taking a function u ∈ W 1,p(aεBR \ aεG0) and v(y) = u(aεy) we scale these integrals to
deduce

∫
aε𝜕G0

|u|p dSx ≤ C( ∫
aε𝜕BR

|u|p dSx + a
p−1
ε ∫

aεBR\aεG0

|∇u|p dx).

Thus, it suffices to prove the estimate for aεBR. Through the extension toℝn \aεG0
we can use εBR instead of εY . We will work in spherical coordinates with a radius ρ
and letting θ ∈ ℝn−1 denote a parametrization of the 𝜕B1. We will denote by Θ the set
of these parameters. The Jacobian can be written as ρn−1J(θ). Let us write u in polar
coordinates as χ(ρ, θ) = u(x). Then, as in [87],

∫
aε𝜕BR

|u|p dS = an−1ε Rn−1 ∫
𝜕B1

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
pJ(θ)dθ. (3.8)

We write, for any ρ > aεR and θ ∈ Θ,

χ(aεR, θ) = χ(ρ, θ) −
ρ

∫
aεR

𝜕χ
𝜕t
(t, θ)dt.

For p > 1, due to the convexity of the p-power

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
p ≤ 2p−1󵄨󵄨󵄨󵄨χ(ρ, θ)

󵄨󵄨󵄨󵄨
p + 2p−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ρ

∫
aεR

𝜕χ
𝜕t
(t, θ)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

.

On the other hand,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ρ

∫
aεR

𝜕χ
𝜕t
(t, θ)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ρ

∫
aεR

𝜕χ
𝜕t
(t, θ)t

n−1
p t−

n−1
p dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p

≤ (
ρ

∫
aεR

t−
n−1
p−1 dt)p−1( ρ

∫
aεR

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕χ
𝜕t
(t, θ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
tn−1 dt).

We get

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
p ≤ 2p−1󵄨󵄨󵄨󵄨χ(ρ, θ)

󵄨󵄨󵄨󵄨
p + 2p−1τε(

εR

∫
aεR

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕χ
𝜕t
(t, θ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
tn−1 dt), (3.9)

where we define

τε = (
ε

∫
aεR

t−
n−1
p−1 dt)p−1.
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A simple integration shows that τε satisfies (3.6). Multiplying (3.9) by ρn−1J and inte-
grating over BεR \ BaεR yields

∫
𝜕B1

εR

∫
aεR

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
pρn−1J(θ)dρdθ

≤ 2p−1 ∫
𝜕B1

εR

∫
aεR

󵄨󵄨󵄨󵄨χ(ρ, θ)
󵄨󵄨󵄨󵄨
pρn−1J dρdθ + 2p−1 ∫

𝜕B1

εR

∫
aεR

τε(
ρ

∫
aεR

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕χ
𝜕t
(t, θ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
tn−1 dt)ρn−1J dρdθ

≤ 2p−1 ∫
𝜕B1

εR

∫
aεR

󵄨󵄨󵄨󵄨χ(ρ, θ)
󵄨󵄨󵄨󵄨
pρn−1J dρdθ + 2p−1τετ2,ε ∫

𝜕B1

(
εR

∫
aεR

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕χ
𝜕t
(t, θ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
tn−1 dt)J dρdθ,

where

τ2,ε =
εR

∫
aεR

ρn−1 dρ ≤ Cεn.

Note that |𝜕χ/𝜕t| ≤ |∇u|. On the other hand,

∫
𝜕B1

εR

∫
aεR

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
pρn−1J(θ)dρdθ = ( ∫

𝜕B1

󵄨󵄨󵄨󵄨χ(aεR, θ)
󵄨󵄨󵄨󵄨
pJ(θ)dθ)τ2,ε.

Going back to (3.8) we have

∫
aε𝜕BR

|u|p dS ≤ an−1ε 2p−1(τ−12,ε ∫
εBR\aεBR

|u|p dx + τε ∫
εBR\aεBR

|∇u|p dx).

Since it is easy to check thatan−1ε τε ≲ ap−1ε in eachof the caseswe recover the result.

Remark 3.7. It is not surprising that W 1,n(Ω) for Ω ⊂ ℝn behaves differently. For ex-
ample, the family of radial solutions of Δnu = 0 in ℝn includes ln |x|, whereas for any
other values of p radial solutions are of power type.

Remark 3.8. The denominator 2 in the case p = n is included so that we can safely
pick aε = ε.

Remark 3.9. In the literature, it is generally assumed that G0 is star-shaped. With the
addition inequality (3.7) it is sufficient that it holds for balls. This simplifies the as-
sumptions on G0 and the computations.

3.1.4 Auxiliary oscillating functions in the subcritical range a⋆ε ≪ aε ≲ ε
Our control on the integral on Sε is based first on the scaled trace lemma and on pass-
ing to volumetric integrals as ε → 0. Our hope is to show something of the form (3.2).
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This will play a crucial role in the proof of the “from surface to volume averaging con-
vergence theorems” (see Theorem 4.5 and Theorem 4.11 below). This conversion can
be made by studying a specific functionmε ∈ W 1,p(Yε) such that, for any test function
φ ∈ W 1,p(Yε), where Yε = εY \ aεG0,

∫
𝜕(aεG0)

φdS = με ∫
εY\aεG0

φdx + ∫
εY\aεG0

|∇mε|
p−2∇mε∇φdx. (3.10)

This is actually the weak formulation of a PDEwith suitable boundary conditions that
defines a unique mε. Let us define the function mε(x) as the unique Yε-periodic func-
tion built through the solution of the boundary value problem (see, e. g., [82])

{{{
{{{
{

Δpmε = με x ∈ εY \ aεG0,

𝜕νpmε = 1 x ∈ aε𝜕G0,

𝜕νpmε = 0 x ∈ ε𝜕Y ,
∫

εY\aεG0

mε(x)dx = 0,

where με is a positive constant defined so as to satisfy the compatibility condition

με =
ε−nan−1ε |𝜕G0|

1 − (aεε−1)n|G0|
, (3.11)

which is obtained by taking φ = 1 as test function. Note that necessarily mε(x) must
change sign in Yε. The reason for the periodicity condition is that we will later con-
struct an Yε-periodic function over Ωε by translating these functions, i. e.,

Mε(x) = mε(x − εj), x ∈ εj + εY for some j ∈ ϒε. (3.12)

Note that the different repetition in the case of particles over the whole domain and
only the boundary yield differentMε, whereasmε is the same.

When we want to study the limit of oscillating functions, for example

∫
Sε

gε(x)φ(x)dSx , where gε(x) = g(x − εj
aε
) if x ∈ εj + 𝜕(aεG0),

for a given g ∈ L1(𝜕G0), we can define

{{{
{{{
{

Δpmg,ε = μg,ε x ∈ εY \ aεG0,

𝜕νpmg,ε = g(⋅/aε) x ∈ aε𝜕G0,

𝜕νpmg,ε = 0 x ∈ ε𝜕Y ,
∫

εY\aεG0

mg,ε(x)dx = 0,

where μg,ε is a constant defined so as to satisfy the compatibility condition

μg,ε =
ε−nan−1ε

1 − (aεε−1)n|G0|
∫
𝜕G0

g(s)dS.
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3.1.4.1 Estimates formε
We will use the following fact.

Proposition 3.10. Let p > 1. Then

‖∇mε‖Lp(εY\aεG0) ≤ C

{{{{{
{{{{{
{

a
n
p
ε p < n,
aε(ln

2ε
aε
)
1
n p = n,

a
n−1
p−1
ε ε

p−n
p(p−1) p > n.

Proof. Let, as before, Yε = εY \ aεG0. Setting in (3.10) φ = mε, from the definition of
mε(x), applying Lemma 3.6 and the Poincaré–Wirtinger inequality (see Remark 3.5),
we obtain

‖∇mε‖
p2
Lp(Yε)
≤ (
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

aε𝜕G0

mε dS
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ |με|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Yε

mε dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)
p

≤ ( ∫
aε𝜕G0

|mε|dS + με × 0)
p

≤ (( ∫
aε𝜕G0

1p
󸀠
dS)

1
p󸀠
( ∫
aε𝜕G0

|mε|
p dS)

1
p

)
p

≤ ( ∫
aε𝜕G0

1 dS)
p−1
‖mε‖

p
Lp(aε𝜕G0)

≤ C1a
(n−1)(p−1)
ε ‖mε‖

p
Lp(aε𝜕G0)

≤

≤ C2a
(n−1)(p−1)
ε an−1ε (ε

−n‖mε‖
p
Lp(Yε)
+ τε‖∇mε‖

p
Lp(Yε)
)

≤ C3a
p(n−1)
ε (ε−n+p + τε)‖∇mε‖

p
Lp(Yε)
, (3.13)

where τε is given by (3.6). Therefore

‖∇mε‖
p−1
Lp(Yε)
≤ Can−1ε (ε

−n+p + τε)
1
p .

Now we can use the definition of τε and the conclusion follows.

3.1.4.2 Estimates formg,ε
Similarly to the arguments used in (3.13) we have

‖∇mg,ε‖Lp(εY\aεG0)
≤

{{{{
{{{{
{

Ca
n
p
ε p < n,

Caε(ln
2ε
aε
)
1
n p = n,

Ca
n−1
p−1
ε ε

p−n
p(p−1) p > n,

where C depends only on ‖g‖Lp󸀠 (𝜕G0)
, p and n.
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3.1.5 Auxiliary functions in the critical case aε ∼ a⋆ε : capacity problems
As we discussed in Section 1.5.3, in the critical case the situation is more involved: we
cannot simplywork on the integral of Sε, but go deeper into the complete expression of
the notion of weak solution of the problem. To this aimwe need to understand sharply
the behavior of the solutions of some capacity type problems. The fine estimates on
the respective solutions which we will obtain now will play a crucial role in the proof
of themainhomogenization convergence results in the next chapter (see Theorem4.36
and Theorem 4.44).

3.1.5.1 When G0 is a ball and 1 < p < n
Let us fixG0 = B1 (we refer the reader to Remark 1.1). The simplest example of this kind
of problems is

{{{
{{{
{

Δpwε = 0
ε
4B1 \ (aεG0),

wε = 1 𝜕(aεG0),

wε = 0 𝜕( ε4B1).
(3.14)

The idea behind this auxiliary problem is to allow to trade the integral over aεG0 for
one over ε

4B1, for which we can apply the subcritical theory. In particular, for wε we
have

∫
ε
4B1\aεG0

|∇wε|
p−2∇wε∇φdx = ∫

𝜕( ε4B1)

φ𝜕νpwε dS + ∫
𝜕aεG0

φ𝜕νpwε dS.

The explicit solution for problem (3.14) is known:

wε(x) =
|x|−

n−p
p−1 − (ε/4)− n−pp−1

a
− n−pp−1
ε − (ε/4)

− n−pp−1 , aε ≤ |x| ≤
ε
4
. (3.15)

We can simply compute its gradient as

d
dr
wε(r) = −

n − p
p − 1

r−
n−p
p−1 −1

a
− n−pp−1
ε − (ε/4)

− n−pp−1 = −
n − p
p − 1

a
n−p
p−1
ε r−

n−p
p−1 −1

1 − ( ε4aε )
− n−pp−1

≃ −
n − p
p − 1

a
n−p
p−1
ε r

1−n
p−1 .

We have the precise integrability exponent, and if q > n(p−1)
n−1 , then

∫
ε
4B1\aεG0

󵄨󵄨󵄨󵄨∇wε(x)
󵄨󵄨󵄨󵄨
q dx ∼

ε
4

∫
aε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dwε
dr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

q
rn−1dr ∼ an−qε . (3.16)
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Since this is a radially symmetric function, 𝜕νpwε is a constant in either boundary with
values

𝜕νpwε| ε4 𝜕B1 ≃ −(
n − p
p − 1
)
p−1

an−pε (ε/4)
1−n,

𝜕νpwε|aε𝜕G0
≃ (

n − p
p − 1
)
p−1

a1−pε .

(3.17)

These estimates will play a crucial role in the proof of the important Lemma 4.38.
Note that through a change of scale ŵε(y) = wε(aεy) this new function is the solu-

tion of

{{{
{{{
{

Δpŵε = 0
ε
4aε

B1 \ G0,

ŵε = 1 𝜕G0,

ŵε = 0 𝜕( ε4aε B1).

Asymptotically, ε/aε → +∞, so these functions converge to the solution of

{{{
{{{
{

Δpŵ = 0 ℝn \ G0,

ŵ = 1 𝜕G0,

ŵ → 0 as |y| → +∞,
(3.18)

when G0 = B1, and we have

ŵ(y) = |y|−
n−p
p−1 . (3.19)

Note that for p = 2 we get the usual Newtonian potential of fundamental relevance
in mechanics and electrostatic studies. The values of the normal derivative are linked
directly to scaling properties of ŵ.

Remark 3.11. When p ∈ (1, n), this function ŵ is usually called κ̂, and we will use this
notation when G0 is not a ball. This p-potential is systematically studied in [200]. It
will often appear in our computations, so we state the PDE

{{{
{{{
{

Δpκ̂ = 0 ℝn \ G0,

κ̂ = 1 𝜕G0,

κ̂ → 0 as |y| → +∞.
(3.20)

The function κ̂ is often used to compute the p-capacity of G0, even when G0 is not a
ball. One defines

p-cap(G0) = inf{∫
ℝn

|∇w|p dx : w ∈ C∞c (ℝ
n),w ≥ 1 in G0}.
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TheEuler–Lagrange equation for this functional is precisely (3.18) and κ̂ is the function
for which the infimum is attained. Hence, integrating by parts

p-cap(G0) = ∫

ℝn\G0

|∇κ̂|p dx = − ∫
ℝn\G0

div(|∇κ̂|p−2∇κ̂)κ̂ dx

+ ∫
𝜕G0

𝜕νp κ̂ dS = ∫
𝜕G0

𝜕νp κ̂ dS. (3.21)

We will use the notation

λG0
= 2-cap(G0). (3.22)

Remark 3.12. When G0 = BR and p ∈ (1, n), due to the explicit solution (3.19) (scaled
if needed) we recover that

p-cap(BR) = (
n − p
p − 1
)
p−1
|𝜕B1|R

n−p.

Alternatively, ŵε is used to compute the relative p-capacity of G0 in
ε
4aε

B1. The limit as
ε → 0 is the above value.

3.1.5.2 When G0 is a ball and p = n
In this setting, we still want to study problem (3.14). It was shown in [229] that the
explicit solution is given by

wε(x) =
ln 4|x|

ε

ln 4aε
ε

. (3.23)

Due to the properties of ln, this solution is quite similar to the solution (3.15) but re-
placing the power by a logarithm. We have

𝜕νnwε|𝜕 ε4B1 ≃ −(
4

ε ln ε
4aε

)
n−1
,

𝜕νnwε|𝜕aεG0
≃ (

1
aε ln

ε
4aε

)
n−1
.

Since aε ≪ ε we have ln ε
4aε
> 0 for ε small.

Remark 3.13. When p = n, the solution of the n-harmonic problem is of logarithmic
type and the behavior of wε becomes logarithmic. We see in Remark 3.12 that n = p is
a special case. In fact, for p ∈ (1, n] we can define the relative p-capacity for two open
sets such that A ⊂ B as

p-capB(A) = inf{∫
B

|∇w|p dx : w ∈ W 1,p
0 (B) and w ≥ 1 in A}.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.1 Case of n-dimensional particles | 55

The Euler–Lagrange equation for this problem is

{{{
{{{
{

−Δpw = 0 B \ A,
w = 1 𝜕A,
w = 0 𝜕B.

(3.24)

The relative p-capacity for two concentric balls is well known (see [142]). First, note
that as in (3.14) and (3.23) the solution of problem (3.24) is given by

w(x) = K(|x|) − K(R)
K(r) − K(R)

, K(r) =
{
{
{

p−1
n−p |𝜕B1|

− 1
p−1 r n−p

p−1 p < n,

−|𝜕B1|
− 1
p−1 ln r p = n.

Thus

p-capBR (Br) = (K(r) − K(R))
1−p.

When p < nwe can let R→ +∞ and we recover the usual p-cap. However, when p = n
we have

p-capBR (Br) = |𝜕B1|(ln
R
r
)
1−n
,

so the behavior is more delicate (if we simply let R → ∞ we arrive at 0). This is the
reason why when p < n we recover the p-capacity directly, and hypothesis on aε will
be simply stated in terms of aε/a⋆ε , and when p = n the ln aε/a

⋆
ε is involved.

3.1.5.3 When G0 is not a ball and p = 2
There have beenmany attempts to extend the above theory for G0 a ball to the general
case. However, since the solution of (3.14) could not be found explicitly, the problem
remained open for a long time. The novel approach in [116] came from looking for ŵ
instead of wε. In fact, the replacement for ŵmust now be linked to the corresponding
nonlinearity. In the case of G0 a ball, if we want to use a test function v for the homog-
enized problem, as shown in detail in Section 4.7.1, we will need to correct it by taking
the associated oscillating test functions

vε(x) = v(x) − H(v(x))wε(x − εj)

on each cell.WhenG0 is not a ball wewould like to replaceH(v(x))wε(x−εj) by a single
function wσ,ε(x − εj; v(x)) (see the proof of Theorem 4.44).

Assume that gε = 0 and p = 2. As we will show, the good way to go is by con-
structing a function ŵσ = ŵσ(y, s) for s ∈ ℝ and y ∈ ℝn where, for each s ∈ ℝ, ŵσ(⋅, s)
solves

{{{
{{{
{

Δŵσ = 0, ℝn \ G0,

𝜕νŵσ = C0σ(s − ŵσ) 𝜕G0,

ŵσ → 0 as |y| → +∞,
(3.25)
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where

C0 = limε→0 aεβ(ε). (3.26)

Since p = 2 and we work with critical-size particles over the whole domain aεβ(ε) ∼
aεεna1−nε = a

2−n
ε εn ∼ 1. As we will see below (see Theorem 4.36 and Theorem 4.44), this

function ŵσ is chosen so that we have the correct cancelations of integrals in Sε such
as will be indicated in Remark 4.40.

With this choice, we will show that the effective reactive term ℋ (to be defined
later) is retrieved from the function Ĥσ defined, for s ∈ ℝ, in the following way:

Ĥσ(s) = ∫
𝜕G0

𝜕νŵσ(y, s)dSy . (3.27)

Remark 3.14. When G0 = B1, if we go back to ŵ(y) = |y|2−n, the solution of (3.18) for
p = 2, it is easy to see that ŵσ(y, s) = H(s)ŵ(y), if we consider H(s) that solves (1.16)
written with precise constants as

(n − 2)H(s) = C0σ(s − H(s)).

This is none other than the equation for the “strange term” that appears when G0 is a
ball (see Section 4.7.1). In particular,

Ĥσ(s) = ∫
𝜕G0

(n − 2)H(s)dSy = (n − 2)|𝜕B1|H(s).

This constant is later assimilated to recover the effective reactionℋ.

Remark 3.15. When σ = σ(x, s) and gε(x) is given by (1.3), then we should take ŵσ =
ŵσ(x, y, s), for x ∈ Ω and s ∈ ℝ fixed, as the solution of

{{{
{{{
{

Δŵσ = 0 y ∈ ℝn \ G0,

𝜕νŵσ = C0σ(x, s − ŵσ) − C0gst(x) − C0gper(y) y ∈ 𝜕G0,

ŵσ → 0 as |y| → +∞,
(3.28)

and then we define

Ĥσ(x, s) = ∫
𝜕G0

𝜕νŵσ(x, y, s)dSy .

The estimates for this new function ŵσ, and its rescaled counterparts, are notoriously
more difficult to obtain.

Remark 3.16. In [108] (see also [271]) the authors study boundary conditions of type
𝜕νuε + bε(x)uε = 0. This requires an additional modification in the boundary value
for ŵ, but we will not discuss it here.
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Remark 3.17. When p ̸= 2, and when gε is of type (1.3), we would look at the auxiliary
problem

{{{
{{{
{

Δpŵσ = 0 y ∈ ℝn \ G0,

𝜕νpŵσ = C0σ(s − ŵσ) − C0gst(x) − C0gper(y) y ∈ 𝜕G0,

ŵσ → 0 as |y| → +∞.

Due to the scaling of 𝜕νp , we would take C0 = limε→0 ap−1ε β(ε) (see Remark 3.22 below)
and then we can define

Ĥσ(x, s) = ∫
𝜕G0

𝜕νpŵσ(x, y, s)dSy .

We expect this function to have similar nice properties to the case p = 2. However,
obtaining approximation estimates like (3.38) below for the corresponding problem is
possible, but it is a difficult task. We leave this as an open problem.

Some useful properties
Let us get some estimates of ŵσ and Ĥσ when gε = 0. To have some pointwise estimate,
let us look at

κ̂σ(y, s) =
𝜕ŵσ
𝜕s
(y, s).

It is a solution of

{{{
{{{
{

Δκ̂σ = 0 ℝn \ G0,

𝜕νκ̂σ = C0σ󸀠(s − ŵσ)(1 − κ̂σ) 𝜕G0,

κ̂σ → 0 as |y| → +∞.
(3.29)

To get a bound, define κ̂ as the unique solution of (3.20) with p = 2. Note that we have
already seen this boundary value problem when G0 is a ball in (3.18). Then

{{{
{{{
{

Δ(κ̂ − κ̂σ) = 0 ℝn \ G0,

𝜕ν(κ̂ − κ̂σ) + C0σ󸀠(s − ŵσ)(κ̂ − κ̂σ) = 𝜕νκ̂ 𝜕G0,

κ̂ − κ̂σ → 0 as |y| → +∞.
(3.30)

Since σ󸀠 ≥ 0 and 𝜕νκ̂ ≥ 0 at 𝜕G0, it is not hard to see that

0 ≤ κ̂σ =
𝜕ŵσ
𝜕s
≤ κ̂.

Hence,

0 ≤ ŵσ(y, s) ≤ κ̂(y)s, ∀s ≥ 0,
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the converse for s < 0 and, in general

󵄨󵄨󵄨󵄨ŵσ(y, s)
󵄨󵄨󵄨󵄨 ≤ κ̂(y)|s|, ∀s ∈ ℝ. (3.31)

Note that, since κ̂ is a harmonic function, it cannot achieve interior extrema, so

0 ≤ κ̂ ≤ 1.

On the other hand, by the comparison principle

κ̂(y) ≤ K0
|y|n−2
,

where K0 = max𝜕G0
|y|n−2.

Since ŵσ is harmonic, so is its partial derivative, and we have 𝜕ŵσ/𝜕yi = ∇ŵσ ⋅ ei =
div(ŵσei). Thus, by the mean value property (see, e. g., [148]), letting R < dist(y,G0)
we get

𝜕ŵσ
𝜕yi
(x) = 1
|BR|
∫

BR(x)

𝜕ŵσ
𝜕yi
(y󸀠)dy󸀠 = 1

|BR|
∫
𝜕BR(x)

ŵσ(y
󸀠)ei ⋅ ν dSy󸀠 .

Hence
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕ŵσ
𝜕yi
(y)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ CR−1(|x| − R)2−n, ∀R < dist(y,G0). (3.32)

We also have

0 ≤ Ĥ󸀠σ(s) = ∫
𝜕G0

𝜕νκ̂σ dSy = ∫
𝜕G0

κ̂𝜕νκ̂σ dSy

= ∫
ℝn\G0

∇κ̂∇κ̂σdy = ∫
𝜕G0

κ̂σ𝜕νκ̂ dSy

≤ ∫
𝜕G0

𝜕νκ̂ dSy .

This gives us a universal bound of Ĥ󸀠σ depending only on G0, but not on σ:

0 ≤ Ĥ󸀠σ(s) ≤ λG0
= ∫
𝜕G0

𝜕νκ̂ dSy . (3.33)

The value of λG0
is precisely the so-called 2-capacity of G0 (see Remark 3.11) and it is

quite relevant in many applications.

Remark 3.18. Even if we consider gε ̸= 0 and ŵσ(x, y, s) the solution of (3.28), when
we take the derivative in swe still recover (3.29). So (3.33) is universal also in gε (where
the derivative is taken with respect to s). We can guarantee Ĥ(x, s) ≤ H(x,0) + sλG0

.
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Lastly, we will get an energy estimate. Assume that s ≥ 0. By the maximum prin-
ciple, we have that ŵσ , 𝜕νŵσ ≥ 0 in 𝜕G0. Taking ŵσ as a test function in the weak
formulation of (3.25) we have

∫
ℝn\G0

|∇ŵσ |
2 dx = ∫

𝜕G0

ŵσ𝜕νŵσ dS ≤ sĤσ(s). (3.34)

This holds true also for s < 0, since ŵσ , 𝜕νŵσ < 0 in 𝜕G0.

Remark 3.19. Recalling Remark 3.11 we have that λG0
comes from the 2-capacity. In

particular

λB1 = (n − 2)|𝜕B1|.

Remark 3.20. Let us compare ŵσ1 and ŵσ2 for two different continuous functions σ.
The difference solves

{{{{{{{{{
{{{{{{{{{
{

Δ(ŵσ1 − ŵσ2 ) = 0 ℝn \ G0,

𝜕ν(ŵσ1 − ŵσ2 ) − C0(σ1(s − ŵσ1 ) − C0σ1(s − ŵσ2 ))

= C0(σ1(s − ŵσ2 ) − σ2(s − ŵσ2 ))

≤ C0‖σ1 − σ2‖L∞(−s,s) 𝜕G0,

ŵσ1 − ŵσ2 → 0 |y| → ∞.

Hence, if σm → σ uniformly over compacts, then ŵσm (s, ⋅) → ŵσ(s, ⋅) a. e. in x, for each
s > 0.

Let us see what happens in the extreme case inwhich σ approaches amultivalued
graph.

Remark 3.21. Consider themaximal monotone graph associated to the homogeneous
Dirichlet boundary condition, σD, given by (2.2). Let us construct a sequence of func-
tions σ such that (at least intuitively) σm → σD. Going back to (3.30) we have the esti-
mate

∫
ℝn\G0

󵄨󵄨󵄨󵄨∇(κ̂ − κ̂σ)
󵄨󵄨󵄨󵄨
2 dx + ∫

𝜕G0

C0σ
󸀠
m(s − ŵσm )(κ̂ − κ̂σ)

2 dS ≤ C ∫
𝜕G0

|𝜕νκ̂|
2 dS.

Take, form ∈ ℕ, σm(t) = mt. Then,

m ∫
𝜕G0

(κ̂ − κ̂σm (s, y))
2 dSy ≤ C.

Then, as m → +∞, we have κ̂σm (s, ⋅) → κ̂ in L2(𝜕G0) (uniformly in s). Since they are
harmonic functions such that they coincide at infinity,wehave that κ̂σm (s, ⋅) → κ̂ inℝn\
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G0 and so ŵσ(s, ⋅) → sκ̂(⋅). Let R > 0 be such that G0 ⊂ BR. The pointwise convergence
together with (3.31) and (3.34) ensures that ŵσ(s, ⋅) ⇀ sκ̂(⋅)weakly inH1(BR \G0). Thus,
taking a smooth function η such that η = 1 in G0 and η = 0 in ℝn \ BR we have

Ĥσm (s) = ∫
𝜕G0

η(y)𝜕νŵσm (s, y)dSy = ∫
BR\G0

∇η(y)∇ŵσm (s, y)dy

→ s ∫
BR\G0

∇η(y)∇κ̂(y)dy = s ∫
𝜕G0

η𝜕νκ̂(y)dSy = λG0
s.

Hence, we recover that

ĤσD (s) = λG0
s,

i. e., the strange term associated to the Dirichlet boundary condition is a linear func-
tion of the unknown. The fact that the Dirichlet condition on the particles leads to a
linear effective diffusion (related to the capacity) was one of the main results in [79],
where the terminology strange term originated. Different authors put as coefficient
a measure μ but we know now that at least under the abovementioned conditions
μ = λG0

. Note that ĤσD becomes an extremal case of the universal bound (3.33), so the
bound is sharp.

A similar argument can be applied to recover the intuition that, whenwedealwith
the Signorini boundary condition, we have

Ĥσ(s) → {
Ĥσ0 (s) s ≥ 0,
λG0

s s < 0,
as σ → graph of Signorini condition =

{{{
{{{
{

σ0(s) s ≥ 0,
(−∞,0] s = 0,
0 s < 0.

This behavior has been proved in many papers (see, for instance, the references given
in Appendix C).

Approximation
Since we have now started from the function ŵ, but wish to apply rescaled and cut-off
functions of type wε, we need to introduce several approximation results. They were
developed in [116]. We move on to defining

ŵσ,ε(x) = ŵσ(
x
aε
).

Remark 3.22. Note that due to the scaling we get 𝜕νŵσ,ε = C0a−1ε σ(s− ŵσ,ε). This is the
reason for the scaling C0 ≃ aεβ(ε).
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Finally, we take wσ,ε as the solution of

{{{
{{{
{

Δwσ,ε = 0
ε
4B1 \ aεG0,

𝜕νwσ,ε = C0a−1ε σ(s − wσ,ε) aε𝜕G0,

wσ,ε = 0
ε
4𝜕B1.

(3.35)

The following result improves some estimates given in [116] and it uses the inde-
pendence with respect to σ󸀠.

Lemma 3.23. We have the following properties:
(a) If s ≥ 0, then wσ,ε ≤ ŵσ,ε (and conversely if s ≤ 0).
(b) We have

|wσ,ε − ŵσ,ε| ≤ max
|y|= ε

4aε

󵄨󵄨󵄨󵄨ŵσ(y, s)
󵄨󵄨󵄨󵄨 ≤ C|s|ε

2. (3.36)

(c) If s ≥ 0, then

0 ≤ −𝜕ν(ŵσ,ε − wσ,ε) ≤ C0a
−1
ε σ(s), on 𝜕G0, (3.37)

and the converse inequality holds for s ≤ 0.
(d) We have the estimate

∫
ε
4B1\(aεG0)

󵄨󵄨󵄨󵄨∇wσ,ε(x, s) − ∇ŵσ,ε(x, s)
󵄨󵄨󵄨󵄨
2 dx ≤ C|s|2εn+2, (3.38)

where C does not depend on σ in any of the previous estimates.

Proof. Let s ≥ 0 and ε > 0 be fixed. We have that v = ŵσ,ε − wσ,ε solves

{{{
{{{
{

Δv = 0 ε
4B1 \ aεG0,

𝜕νv = C0a−1ε σ(s − ŵσ,ε) − C0a−1ε σ(s − wσ,ε) aε𝜕G0,

v = ŵσ,ε
ε
4𝜕B1.

Thus, the weak formulation is

∫
ε
4B1\aεG0

∇v∇φdx + C0a
−1
ε ∫

aε𝜕G0

(σ(s − wσ,ε) − σ(s − ŵσ,ε))φdSx = ∫
ε
4 𝜕B1

φ𝜕νv dSx ,

for any test function φ ∈ H1( ε4B1 \ aεG0). Take φ = v−. On the one hand (σ(s − wσ,ε) −
σ(s − ŵσ,ε))v− ≥ 0 by the monotonicity of σ. On the other hand, on ε

4𝜕B1, we have
φ = (ŵσ,ε)− = 0. Thus

∫
ε
4B1\aεG0

|∇v−|
2 dx ≤ 0.

That means v ≥ 0 or, equivalently, wσ,ε ≤ ŵσ,ε.
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For the pointwise estimates, let us replace σ by σm(s) = σ(s) +
s
m form ∈ ℕ, which

is strictly increasing. Let vm = ŵε,σm − wε,σm . Thus, it follows that on aε𝜕G0,

𝜕νvm = C0a
−1
ε σm(s − ŵε,σm ) − C0a

−1
ε σm(s − wε,σm ) ≤ 0.

Furthermore, assume that 𝜕νvm(x) = 0 for some x ∈ aε𝜕G0. Then σm(s − ŵε,σm (x, s)) =
σm(s − wε,σm (x, s)) and, since σm is strictly increasing, we recover vm = 0. Hence, at
each point of the boundary 𝜕νvm(x) > 0 or vm = 0. Hence, the global maximum of vm
cannot happen in aε𝜕G0. Since vm is harmonic it achieves itsmaximumon ε

4𝜕B1. Since
the value there is explicit, we recover (3.36). Hence 0 ≤ wε,σm ≤ ŵε,σm ≤ s, sowe recover
(3.37). We can pass to the limit as m → ∞ applying Remark 3.20 and the equivalent
argument for wσ,m.

Finally, by Green’s formula

∫
ε
4B1\aεG0

|∇v|2 dx ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
4 𝜕B1

ŵσ,ε𝜕νv dSx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
4B1\

ε
8B1

∇ŵσ,ε∇v dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
8 𝜕B1

ŵσ,ε𝜕νv dSx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
4 𝜕B1

(𝜕νŵσ,ε)v dSx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
8 𝜕B1

(𝜕νŵσ,ε)v dSx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
ε
8 𝜕B1

ŵσ,ε𝜕νv dSx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

The first two terms can be controlled by (3.32) and (3.36). First, since |x| = ε
4 , |y| =

ε
4aε

for ε small enough, R = |y|/2 < dist(y,G0). Then (3.32) becomes

󵄨󵄨󵄨󵄨𝜕νŵσ,ε(x)
󵄨󵄨󵄨󵄨 ≤ a
−1
ε |∇yŵσ | ≤ Ca

−1
ε |s||y|

1−n = C|s|
an−2ε
εn−1
≤ C|s|ε.

We have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ε
4 𝜕B1

(𝜕νŵσ,ε)v dSx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C|s|2εn+2,

and the same in ε
8𝜕B1.

For the last integral, we repeat the proof of (3.32). Take x such that |x| = ε
8 . For

ε > 0 we have that taking R = ε
16 ≤

ε
4 − |x| < dist(x,G0),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕v
𝜕xi
(x)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ CR−1‖v‖∞ ≤ C|s|ε.

Using the explicit bound of ŵσ,ε and (3.36) we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ε
8 𝜕B1

ŵσ,ε𝜕νv dSx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C|s|2εn+2.
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3.2 Case of (n − 1)-dimensional particles
For (n − 1)-dimensional particles we do not need an extension operator, since uε is
also defined on Sε. Thus, some of the computations in the n-dimensional case are not
needed.

3.2.1 Trace estimates on aεG0 in εY+
Let 0 ∈ G0 ⊂ Y0 be an (n − 1)-manifold, u ∈ W 1,p(εY+), p > 1, and assume that aε ≤ ε.
Then

∫
aεG0

|u|p dx ≤ Can−1ε (ε
−n ∫

εY+ |u|
p dx + τε ∫

εY+ |∇u|
p dx), (3.39)

where again τε is givenby (3.6). Toprove this result,weproceed similarly to Section 3.1.
Using the trace theorem inW 1,p(B+R) and equivalence of norms, we know that

∫
G0

|v|p dSy ≤ C( ∫
(𝜕BR)+
|v|p dSy + ∫

B+R
|∇v|p dy), ∀v ∈ W 1,p(B+R).

Scaling this, we recover that

∫
aεG0

|u|p dSx ≤ C( ∫
aε(𝜕BR)+
|u|p dSx + a

p−1
ε ∫

aε(BR)+
|∇u|p dx).

Now we can apply the same argument as in Lemma 3.6.

Remark 3.24. This last estimate says that sinceG0 is an (n−1)-manifold (even though it
is not the boundary of an open set), the trace estimates are the same as for thosewhich
actually are boundaries. This should not be surprising, if one thinks on continuous
deformations.

3.2.2 Auxiliary functions in the subcritical case

We need to introduce some auxiliary functions similar to the ones defined in Sec-
tion 3.1.4. Here, we do only the computations formg,ε:

{{{
{{{
{

Δpmg,ε = με x ∈ εY+,
𝜕νpmg,ε = g(x/aε) x ∈ aεG0,

𝜕νpmg,ε = 0 x ∈ 𝜕(εY+) \ aεG0,

∫
εY+ mg,ε(x)dx = 0. (3.40)
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In this setting

με =
󵄨󵄨󵄨󵄨εY
+󵄨󵄨󵄨󵄨
−1 ∫

aεG0

g(x/aε)dSx =
an−1ε
εn/2
∫
G0

g(y)dSy .

As above, we have the following.

Lemma 3.25. Let p > 1 and aε ≤ ε. Then, if mg,ε is the solution of (3.40), we have

‖∇mg,ε‖Lp(εY+) ≤ C
{{{{{{
{{{{{{
{

a
n
p
ε p < n,

aε(ln
2ε
aε
)
1
n p = n,

a
n−1
p−1
ε ε

p−n
p(p−1) p > n,

where C depends only on ‖g‖Lp󸀠 (G0)
.

Proof. From the definition ofmg,ε(x), applying Lemma 3.6 we obtain

‖∇mg,ε‖
p2
Lp(εY+) ≤ (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∫

aεG0

mg,ε𝜕νpmg,ε dS
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ |με|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
εY+ mg,ε dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)
p

≤ ( ∫
aεG0

|mg,ε𝜕νpmg,ε|dS + |με| × 0)
p

≤ (( ∫
aεG0

󵄨󵄨󵄨󵄨g(x/aε)
󵄨󵄨󵄨󵄨
p󸀠 dS) 1

p󸀠
( ∫
aεG0

|mg,ε|
p dS)

1
p

)
p

≤ a(n−1)(p−1)ε ‖g‖p
Lp󸀠 (G0)
‖mg,ε‖

p
Lp(aεG0)

≤ C1a
(n−1)(p−1)
ε ‖g‖p

Lp󸀠 (G0)
‖mg,ε‖

p
Lp(aεG0)
≤

≤C2a
(n−1)(p−1)
ε an−1ε ‖g‖

p
Lp󸀠 (G0)
(ε−n‖mg,ε‖

p
Lp(εY+) + τε‖∇mg,ε‖

p
Lp(εY+))

≤ C3a
p(n−1)
ε ‖g‖p

Lp󸀠 (G0)
(ε−n+p + τε)‖∇mg,ε‖

p
Lp(εY+),

where τε is given by (3.6). Therefore

‖∇mg,ε‖
p−1
Lp(εY+) ≤ Can−1ε (ε

−n+p + τε)
1
p ‖g‖Lp󸀠 (G0)

.

Now we can use the estimates on τε and the conclusion holds.
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3.2.3 Auxiliary functions in the critical case

3.2.3.1 When G0 is not a ball and p = 2 < n
Similarly to the case of n-dimensional particles, we define ŵσ(y, s) by

{{{{{{
{{{{{{
{

Δŵσ = 0 y ∈ (ℝn)+,
𝜕νŵσ = C0σ(s − ŵσ) y ∈ G0,

𝜕νŵσ = 0 y ∈ (ℝn)0 \ G0,

ŵσ → 0 as |y| → ∞.

Recall that in this setting ν = −en. The effective reaction is related to the function

Ĥσ(s) = ∫
G0

𝜕νŵ(y, s)dSy .

Exactly as we did in Section 3.1.5.3 we can introduce the auxiliary problem

{{{{{{
{{{{{{
{

Δκ̂ = 0 y ∈ (ℝn)+,
κ̂ = 1 y ∈ G0,

𝜕νκ̂ = 0 y ∈ (ℝn)0 \ G0,

κ̂ → 0 as |y| → ∞,

and define

λG0
= ∫
G0

𝜕νκ̂(y)dSy .

We have

0 ≤ 𝜕ŵ
𝜕s
(y, s) ≤ κ̂(y)s, 0 ≤ Ĥ󸀠σ(y) ≤ λG0

.

3.2.3.2 When G0 is a ball and p = n
In this setting G0 = B01 (again, recall Remark 1.1). The good choice in this setting, to
operate as before, is to take qε as the solution of

{{{{{{{
{{{{{{{
{

−Δpqε = 0
ε
4B
+
1 ,

qε = 0
ε
4 (𝜕B1)

+,

qε = 1 aεG0,

𝜕νpqε = 0
ε
4B

0
1 \ aεG0.
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There is no explicit expression for qε. Hence, we change it slightly by the new problem

{{{{{{{
{{{{{{{
{

−Δpwε = 0
ε
4B
+
1 \ aεB+1 ,

wε = 0
ε
4 (𝜕B1)

+,

wε = 1 aε(𝜕B1)+,

𝜕νpwε = 0
ε
4B

0
1 \ aεB

0
1 .

By using the symmetrical extension w(x1, . . . , xn−1, xn) = w(x1, . . . , xn−1, −xn), it is easy
to see that it is enough to solve

{{{{
{{{{
{

−Δpwε = 0
ε
4B1 \ aεB1,

wε = 0
ε
4𝜕B1,

wε = 1 aε𝜕B1.

This is the same auxiliary function as in the previous setting: wε is given by (3.23),
which we extend into aεB1 by 1 (due to the explicit expression, it is easy to see that the
extension lies inW 1,p( ε4B

+
1 )). It is not hard to check the following lemma.

Lemma 3.26. Let p = n. Then

∫
ε
4B
+
1

󵄨󵄨󵄨󵄨∇(wε − qε)
󵄨󵄨󵄨󵄨
n dx ≤ C(ln ε

4aε
)
−n
. (3.41)

We proceed similarly to [106], where the result can be found for p = 2.

Proof. First, since wε − qε = 0 on
ε
4 (𝜕B1)

+ and aεG0, using it as a test function in both
equations we have

∫
ε
4B
+
1

|∇qε|
p−2∇qε∇(wε − qε)dx = 0,

∫
ε
4B
+
1 \aεB

+
1

|∇wε|
p−2∇wε∇(wε − qε)dx = ∫

aε(𝜕B1)+
𝜕νpwε(wε − qε)dSx

(note that in aεB+1 we have wε = 1, so its gradient vanishes). Therefore,

∫
ε
4B
+
1

(|∇wε|
p−2∇wε − |∇qε|

p−2∇qε)∇(wε − qε)dx = ∫
aε(𝜕B1)+
𝜕νpwε(wε − qε)dSx .

On the other hand,

∫
aε(𝜕B1)+
𝜕νpwε(wε − qε)dSx ≤ |𝜕νpwε| ∫

aε(𝜕B1)+
|wε − qε|dSx .
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Since wε is radial, we can find the explicit estimate

|𝜕νpwε|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨aε𝜕B1
∼ (aε ln

ε
4aε
)
1−n
.

Take v(y) = wε(aεy) − qε(aεy) defined in ε
4aε

B+1 and v = 0 on ( ε4aε 𝜕B1)
+. For ε small

enough we can use the trace theorem,W 1,r(B+2 \ B
+
1 ) → L1(𝜕Ω), and we have

∫
(𝜕B1)+
󵄨󵄨󵄨󵄨v(y)
󵄨󵄨󵄨󵄨dSy ≤ C( ∫

B+2 \B+1
󵄨󵄨󵄨󵄨∇v(y)
󵄨󵄨󵄨󵄨
p dy)

1
p

≤ C( ∫
( ε
4aε

B+1 )
󵄨󵄨󵄨󵄨∇v(y)
󵄨󵄨󵄨󵄨
p dy)

1
p

.

Scaling this down,

a1−nε ∫
aε(𝜕B1)+
|wε − qε|dSx ≤ C( ∫

ε
4B
+
1

󵄨󵄨󵄨󵄨∇(wε − qε)
󵄨󵄨󵄨󵄨
p dx)

1
p

.

Hence

∫
ε
4B
+
1

󵄨󵄨󵄨󵄨∇(wε − qε)
󵄨󵄨󵄨󵄨
p dx ≤ C ∫

ε
4B
+
1

(|∇wε|
p−2∇wε − |∇qε|

p−2∇qε)∇(wε − qε)dx

≤ C(ln ε
4aε
)
1−n
( ∫

ε
4B
+
1

󵄨󵄨󵄨󵄨∇(wε − qε)
󵄨󵄨󵄨󵄨
p dx)

1
p

,

and we recover the result.
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4 Particles over the whole domain

In this chapter we study

{{{
{{{
{

−Δpuε = f (x) in Ωε = Ω \ Gε,

𝜕νpuε + β(ε)σ(uε) = β(ε)g
ε(x) on Sε,

uε = 0 on 𝜕Ω,

(1.1)

in the geometry presented in Section 1.2.1.1. To avoid repetition, we will not specify
the setting in each result but we recall the equivalent formulations to the definition of
weak solutions presented in Section 2.2. Going back to Remark 2.15 we have

β⋆(ε) ≃ εna1−nε |Ω|
−1|𝜕G0|

−1. (4.1)

Throughout this entire chapter the critical scaling will be

a⋆ε =
{{{
{{{
{

ε
n

n−p if 1 < p < n,

εe−Mε− n
n−1 for anyM > 0 if p = n,

0 p > n,

where p is, as usual, the exponent of the diffusion operator in (1.1). Below we will
explain why this is the correct value.

Remark 4.1. Note that the special case p = n does not only have a critical scale, but
a whole family of them indexed by a parameterM. Thus, we must update slightly the
notation used in Section 1.3 for this case:

aε ∼ a
⋆
ε ⇐⇒ lim

ε→0
ε−1(ln ε

4aε
)

1−n
n

∈ (0,∞),

aε ≪ a⋆ε ⇐⇒ lim
ε→0

ε−1(ln ε
4aε
)

1−n
n

= 0,

and the corresponding for≫, i. e., the criterion is not on the limit of aε directly, but on
the one of ε−1(ln ε

4aε
)
1−n
n .

4.1 On the existence of a critical scale

Throughout this text, there exist four ranges of aε, as mentioned in the Introduction
(see, e. g., Table 1.1). The first big distinction, aε ∼ ε or aε ≪ ε, is natural since

|Ω \ Gε| = |ϒε||εY \ aεG0| ≃ |Ω|ε
−n|εY \ aεG0|.

https://doi.org/10.1515/9783110648997-004
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Here we have used the fact that |ϒε| ≃ |Ω|ε−n (see Section 1.2.1.1). If aε = ε, then |εY \
aεG0| = εn|Y \G0|, while if aε ≪ ε, then |εY \ aεG0| ≃ εn|Y |. This clearly affects most of
the estimates. Furthermore, take a function v defined inℝn (later it will be chosen for
suitable purposes in order to get good test functions) and let vε be defined periodically
by

vε(x) =
{
{
{

v( x−εjaε
) x ∈ ε(j + Y) for some j ∈ ϒε,

0 otherwise.

Then we have

∫
Ω

vε(x)dx = |ϒε| ∫
εY

v(x/aε)dx = |ϒε|a
n
ε ∫

ε
aε
Y

v(y)dy.

If aε = ε, then

∫
Ω

vε(x)dx → |Ω| ∫
Y

v(y)dy.

However, if aε ≪ ε and v ∈ L1(ℝn), we have

∫
Ω

vε(x)dx ∼ ε
−nanε ∫
ℝn

v(y)dy → 0.

This will be very useful, especially for the supercritical case aε ≪ a⋆ε .
The second distinction in the ranges of aε is related to the existence of a criti-

cal value a⋆ε , coming from the scaling of the p-Laplace operator and its energy. For
p ∈ (1, n), assume that v is compactly supported and ∇v ∈ Lp(ℝn). If we compute the
p-Laplace energy when aε ≪ ε we have

∫
Ω

|∇vε|
p dx = |ϒε|a

n−p
ε ∫
ℝn

󵄨󵄨󵄨󵄨∇v(y)
󵄨󵄨󵄨󵄨
p dy ∼ ε−nan−pε . (4.2)

The critical value, a⋆ε , is taken such that the asymptotic expansion of the correspond-
ing p-Laplacian satisfies ε−n(a⋆ε )

n−p ∼ 1. When p > n, the classical Sobolev embedding
W 1,p(Ω) → 𝒞(Ω) suggests there is no critical scale (see [114]), and we can always com-
pute Riemann style sums. The different cases are presented in Table 1.1 and theirmath-
ematical justification is the main goal of this chapter. As expected, the case aε ∼ a⋆ε is
by far the more difficult case. The case p = n will be treated separately.

Below we give a rigorous justification of these intuitive estimates.
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4.2 Integrals over Sε

4.2.1 Improved global trace inequality

By applying Lemma 3.6 in each particle we deduce the following.

Lemma 4.2. We have

β⋆(ε) ∫
Sε

|u|p dS ≤ C(∫
Ωε

|u|p dx + εnτε ∫
Ωε

|∇u|p dx),

where τε is given by (3.6).

Proof. From a direct computation, using Lemma 3.6 it follows that

β⋆(ε) ∫
Sε

|u|p dSx =
1
|Sε|
∑
j∈ϒε

∫
εj+aε𝜕G0

|u|p dSx

≤
C

|ϒε||aε𝜕G0|
an−1ε ∑

j∈ϒε

(ε−n ∫
εj+εY\aεG0

|u|p dx + τε ∫
εj+εY\aεG0

|∇u|p dx)

≤ C(∫
Ωε

|u|p + εnτε ∫
Ωε

|∇u|p),

since |ϒε| ≥ cε−n and |aε𝜕G0| = an−1ε |𝜕G0|.

Note that if τε is given by (3.6), then

εnτε ∼
{{{
{{{
{

εnap−nε p < n,
εn ln( 2εaε )

p−1 p = n,
εp p > n.

Thus, this coefficient is bounded (or tends to 0) if aε ∼ a⋆ε (respectively a
⋆
ε ≪ aε ≤ ε).

This is the first time that we are able to detect the critical scale.

Corollary 4.3. Let p > 1 and aε ≳ a⋆ε . Then, there exists C independent of ε such that

β⋆(ε) ∫
Sε

|u|p dS ≤ C(∫
Ωε

|u|p dx + ∫
Ωε

|∇u|p dx).

Remark 4.4. Due to Lemma 2.16, Corollary 4.3 and Theorem 3.4, if aε ≳ a⋆ε , we have

β⋆(ε) ∫
Sε

|uε|dS ≤ (β
⋆(ε) ∫

Sε

|uε|
p dS)

1
p

≤ C(∫
Ωε

|∇uε|
p)

1
p

dx.

This is precisely (2.9). This is very useful to pass to the limit after approximating func-
tion σ.
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4.2.2 Limit of the integral over Sε of convergent sequences in the subcritical case

The aim of this section is to show the important “from surface to volume averaging
convergence principle.” It says that if aε ≫ a⋆ε , then the limit of the average over the set
of boundaries of all the particles gives, in the limit, an average over the whole space.
This gives amathematical justification to the first “surprise” mentioned in Section 1.1.

Theorem 4.5. Assume that a⋆ε ≪ aε ≤ ε and that there exists the limit of aε/ε. Then, for
any sequence vε ∈ W 1,p(Ω) with ‖∇vε‖Lp(Ω) bounded and such that vε → v in Lp(Ω), we
have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
|Sε|
∫
Sε

vε dS −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ R(ε) +

{{{{
{{{{
{

Ca
p−n
p

ε ε
n
p p < n,

Cε(ln 2ε
aε
)
n−1
n p = n,

Cε p > n,

(4.3)

where R(ε) → 0 as ε → 0.

Recall that β⋆(ε) = |Sε|−1. The second term in (4.3) is the reason why critical scales
appear in the homogenization process for p ≤ n and none can appear when p > n.
Note that the critical scale is precisely the one in which this term becomes a constant.
Beyond that value, the second term in (4.3) does not tend to zero. This result is sharp,
in the sense that we will show that in the complementary range the behavior of the
homogenization problem changes.

Remark 4.6. The assumption that there exists a limit of aε/ε is always made through-
out the text, and will not be repeated.

Remark 4.7. This kind of averaging lemmas are usually written in the literature with
some dangling constants, which can make the reading rather tricky (see, e. g., [213,
113, 269]). As a mater of fact, later, in the proof of Theorem 4.36 below, we will apply
Theorem 4.5 in the case of particles at the critical scale but on an artificial bigger sur-
face set covering the set of particles, so that the corresponding passing to the limit is
well guaranteed even in this case.

First, let us give an auxiliary result which probably is well known in the literature
but we were unable to find a published proof of it. The most similar result we found
was Theorem 2.6 of [76] but the statement is not entirely equivalent.

Lemma 4.8. Let aε ≤ ε. Then,

χΩε
⇀ lim

ε→0
󵄨󵄨󵄨󵄨Y \ (aεε

−1G0)
󵄨󵄨󵄨󵄨

weakly-⋆ in L∞(Ω).

Note that when the particles are small (aε ≪ ε), then the convergence is strong in
Lp, as we will prove in Lemma 4.26.
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Proof. Let us first characterize the candidate to be a limit. If v ∈ C1(Ω) we can check
easily that

∫
Ω

vχΩε
dx = ∫

Ωε

v(x)dx = ∫
Ω

v(x)dx − ∑
j∈ϒε

∫
εj+aεG0

v(x)dx.

Now we compute, taking a Taylor expansion,

∑
j∈ϒε

∫
εj+aεG0

v(x)dx = ∑
j∈ϒε

∫
εj+aεG0

(v(εj) + ∇v(ηε(x)) ⋅ (x − εj))dx

= anεε
−n|G0| ∑

j∈ϒε

εnv(εj) + ∑
j∈ϒε

∫
εj+aεG0

∇v(ηε(x)) ⋅ (x − εj)dx.

Since we are assuming that v is smooth, ∇v is bounded and the second integral tends
to 0. The first integral converges as a Riemann sum to

lim
ε→0
∑
j∈ϒε

∫
εj+aεG0

v(x)dx = (lim
ε→0

anεε
−n|G0|) ∫

Ω

v(x)dx.

We point out that for any a0 ∈ (0, 1), we have 1 − an0|G0| = |Y \ a0G0|. Hence,

lim
ε→0
∫
Ω

vχΩε
dx = ∫

Ω

v(x)dx − lim
ε→0

anεε
−n|G0| ∫

Ω

v(x)dx = (lim
ε→0
󵄨󵄨󵄨󵄨Y \ (aεε

−1G0)
󵄨󵄨󵄨󵄨) ∫

Ω

v(x)dx.

Let us consider the constant function F1 = limε→0 |Y \ (aεε−1G0)|, and show it is the
weak-⋆ limit inL∞(Ω). Since χΩε

is bounded inL∞(Ω), there exists aweak-⋆ convergent
subsequence. Let F2 ∈ L∞(Ω) be its limit. This means precisely that

lim
ε→0
∫
Ω

vχΩε
dx = ∫

Ω

vF2 dx, ∀v ∈ L
1(Ω).

Due to the inclusion C1(Ω) ⊂ L1(Ω), joining this information with the first step

∫
Ω

(F1 − F2)v dx = 0, ∀v ∈ C
1(Ω).

Since F1 − F2 ∈ L∞(Ω), we deduce by density that F1 = F2. Since every weak-⋆ conver-
gent subsequence has the same limit, the whole sequence converges.

Proof of Theorem 4.5. We recall the definitions of με and Mε given by (3.11) and (3.12)
from Section 3.1.4. Note that, by (3.11),

με =
ε−nan−1ε |𝜕G0|

1 − (aεε−1)n|G0|
≃
|Sε|
|Ω|

1
|Y \ (aεε−1G0)|

.
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For the sake of simplicity, in this proof we use the notation Y j
ε = εj + εY \ aεG0. With

this notation, takingMε given by (3.12) and applying (3.10),

∫
Sε

vε dS = ∑
j∈ϒε

∫

Y j
ε

|∇Mε|
p−2∇Mε∇vε dx + ∑

j∈ϒε

με ∫
Y j
ε

vε dx.

Therefore
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
|Sε|
∫
Sε

vε dS −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
|Sε|
∑
j∈ϒε

∫

Y j
ε

|∇Mε|
p−2∇Mε∇vε dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
με
|Sε|
∑
j∈ϒε

∫

Y j
ε

vε dx −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

where we used the product of weak and strong convergences. Using Hölder’s inequal-
ity

∑
j∈ϒε

∫

Y j
ε

|∇Mε|
p−1|∇vε|dx ≤ ‖∇Mε‖

p−1
Lp(⋃j∈ϒε Y j

ε)
‖∇vε‖Lp(Ωε).

Due to Proposition 3.10 and the estimate on the number of particles we recover that

|Sε|
−1‖∇Mε‖

p−1
Lp(⋃j∈ϒε Y j

ε)
= |Sε|
−1|ϒε|

p−1
p ‖∇mε‖

p−1
Lp(εY\aεG0)

≤

{{{{
{{{{
{

Ca
p−n
p

ε ε
n
p p < n,

Cε ln( 2εaε )
n−1
n p = n,

Cε p > n.

For the last term, which we can denote as R(ε), we write
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
με
|Sε|
∑
j∈ϒε

∫

Y j
ε

vε dx −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

με
|Sε|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
j∈ϒε

∫

Y j
ε

vε dx − ∫
Ωε

vε dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
με
|Sε|
∫
Ωε

vε dx −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

where

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
j∈ϒε

∫

Y j
ε

vε dx − ∫
Ωε

vε dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖vε‖Lp(Ω)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Ω \ ⋃

j∈ϒε

(εj + εY)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p−1
p

and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
με
|Sε|
∫
Ωε

vε dx −
1
|Ω|
∫
Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (

με
|Sε|
−

1
|Ω|

1
|Y \ (aεε−1G0)|

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

vε dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1
|Ω|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

vε
χΩε

|Y \ (aεε−1G0)|
dx − ∫

Ω

v dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.
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Due to the estimate on με, Lemma 4.8 and the strong Lp-convergence of vε, we have
R(ε) → 0 and the result is proved.

Remark 4.9. The right-hand side of (4.3) is rather significant. As will see immediately,
the fact that this right hand goes to 0 as ε → 0 is a sufficient condition for the integrals
to behave nicely in the limit, and thus we will see later that we are in the subcritical
case. A priori, these estimates need not be sharp. It is only in combination with the
analysis of the case aε ∼ a⋆ε that we know it is.

Remark 4.10. If aε = C0εα, then the result implies that

ε−(α(n−1)−n) ∫
Sε

vε dS → Cn−10 |𝜕G0| ∫
Ω

v dx,

as ε → 0 if α < n
n−p . This is how the result appears in most of the previous literature

(see also Remark 4.23).

4.2.3 Limit of the integral over Sε of oscillating sequences

When we have an oscillating function gε constructed through a function g, a naive
analysis suggests

∑
j∈ϒε

∫

𝜕Gj
ε

g(x − εj
aε
)φ(x)dS = ∑

j∈ϒε

∫

𝜕Gj
ε

g(x − εj
aε
)(φ(εj) + ∇φ(ηε(x)) ⋅ (x − εj))dS

≃ ∑
j∈ϒε

∫

𝜕Gj
ε

g(x − εj
aε
)φ(εj)dS = ∑

j∈ϒε

an−1ε φ(εj) ∫
𝜕G0

g(y)dS,

and hence, since |Sε|−1 ≃
εna1−nε
|Ω||𝜕G0|

, we have

1
|Sε|
∫
Sε

gεφdS ≃ 1
|𝜕G0|
∫
𝜕G0

g(y) 1
|Ω|
∑
j∈ϒε

εnφ(εj)dS

→
1
|𝜕G0|
∫
𝜕G0

g(y)dS 1
|Ω|
∫
Ω

φdx.

The rigorous proof of this result passes by applying the functions mg,ε introduced in
Section 3.1.4.

Theorem 4.11. Assume that a⋆ε ≪ aε ≤ ε and g ∈ Lp
󸀠
(𝜕G0). Then, for any sequence

vε ∈ W 1,p(Ωε) with ‖∇vε‖Lp(Ωε) bounded and such that vε → v in Lp(Ω) we have

β⋆(ε) ∑
j∈ϒε

∫
εj+aε𝜕G0

g(x − εj
aε
)vε(x)dS →

1
|𝜕G0|
∫
𝜕G0

g(y)dS 1
|Ω|
∫
Ω

v(x)dx. (4.4)

This result was first proved in [77] when aε ∼ ε and for vε a constant sequence.
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Remark 4.12. We always write integrals in their averaged form, so that there are no
confusing constants.

4.3 A priori estimates for uε
The aim of this section is to prove the following proposition.

Proposition 4.13. Let p > 1 and let uε be the minimizer of Jε given by (2.4) and Theo-
rem 2.13. Then:
1. If gε = 0, then

‖∇uε‖
p−1
Lp(Ωε)
≤ C‖f ‖Lp󸀠 (Ωε)

.

2. If gε ̸= 0 and aε ≳ a⋆ε , we have

‖∇uε‖
p−1
Lp(Ωε)
≤ C(‖f ‖Lp󸀠 (Ωε)

+ β(ε)β⋆(ε)−1( 1
|Sε|
∫
Sε

󵄨󵄨󵄨󵄨g
ε󵄨󵄨󵄨󵄨
p󸀠 dSx)

1
p󸀠
).

Proof. For the first estimate we use uε as a test function in the Euler–Lagrange weak
formulation. Applying that σ is monotone we deduce

∫
Ωε

|∇uε|
p dx ≤ ∫

Ωε

fuε dx + β(ε) ∫
Sε

gεuε dS.

Due to Hölder’s inequality we have

∫
Ωε

|∇uε|
p dx ≤ ‖f ‖Lp󸀠 (Ωε)

‖uε‖Lp(Ωε) + β(ε)β
⋆(ε)−1(β⋆(ε) ∫

Sε

󵄨󵄨󵄨󵄨g
ε󵄨󵄨󵄨󵄨
p󸀠 dSx)

1
p󸀠
(β⋆(ε) ∫

Sε

|u|p dSx)
1
p

.

When gε = 0 the result follows directly from Theorem 3.4. When gε ̸= 0 we use Re-
mark 4.4.

We can also prove a result in terms of the energy. Here we follow the proof in [111].

Proposition 4.14. Let p > 1 and let uε be the minimizer of Jε given by (2.4) and thus
satisfying the variational inequality (2.6). Then:
1. If gε = 0, then

β(ε)󵄩󵄩󵄩󵄩Ψ(uε)
󵄩󵄩󵄩󵄩L1(Sε) ≤ C‖f ‖

p󸀠
Lp󸀠 (Ωε)
.

2. If gε ̸= 0 and aε ≳ a⋆ε , we have

β(ε)󵄩󵄩󵄩󵄩Ψ(uε)
󵄩󵄩󵄩󵄩L1(Sε) ≤ C(‖f ‖Lp󸀠 (Ωε)

+ β(ε)β⋆(ε)−1( 1
|Sε|
∫
Sε

󵄨󵄨󵄨󵄨g
ε󵄨󵄨󵄨󵄨
p󸀠 dSx)

1
p󸀠
)
p󸀠
.

Recall in the previous result that Ψ denotes a convex function such that σ = 𝜕Ψ.
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Proof. Since uε is the minimizer, we always have that Jε(uε) ≤ Jε(0) = 0 (see Re-
mark 2.7). We have

1
p
∫
Ωε

|∇uε|
p dx + β(ε) ∫

Sε

Ψ(uε)dS ≤ ∫
Ωε

fuε dx + β(ε) ∫
Sε

gεuε dS.

Going back to the proof of Proposition 4.13 we recover

∫
Ωε

fuε dx ≤ C‖f ‖Lp󸀠 (Ωε)
‖∇uε‖Lp(Ωε) ≤ C‖f ‖Lp󸀠 (Ωε)

‖f ‖
1

p−1
Lp󸀠 (Ωε)
= C‖f ‖p

󸀠
Lp󸀠 (Ωε)
.

We can repeat the same argument when gε ̸= 0 and aε ≳ a⋆ε .

4.4 Big particles aε = ε
In this setting, with the correct scaling of β, we get an effective problem of the form

{
−div aeff(∇u) + βeffσ(u) = f + βeffgeff Ω,
u = 0 𝜕Ω,

where

βeff = β0

|Ω||Y \ G0|
(4.5)

and geff is given by (1.9). We present the complete details in the case p = 2, and we
only make some comments on the generalization when p ̸= 2. The precise nature of
aeff is involved and is described below.

4.4.1 The linear case p = 2

To illustrate, in a very simple example, how some of the ideas work, let us go back
to one of the earliest results in homogenization. The idea behind the following exam-
ple is a G-convergence argument (owed to Spagnolo [249]). A modern presentation of
further details of the proof can be found in [76].

Example 4.15. Let a : ℝ → ℝ be a [0, 1]-periodic function such that 0 < α ≤ a ≤ β,
f ∈ L2(0, 1) and aε(x) = a( xε ). We consider the one-dimensional problem

{
− ddx (a

ε duε
dx ) = f x ∈ (0, 1),

uε(0) = uε(1) = 0.

By multiplying by uε and integrating, the sequence uε is bounded in H1
0(0, 1), and

therefore

uε ⇀ u
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in H1
0(0, 1), and by the same argument

aε duε
dx
= ξε ⇀ ξ0

is convergent in H1(0, 1) (since f ∈ L2) and in the limit

{
− ddx (ξ

0) = f x ∈ (0, 1),
u(0) = u(1) = 0,

holds. It is easy to show (see Lemma4.18 below) that if h ∈ L2(0, 1), then h( ⋅ε ) ⇀ ∫
1
0 hdx

in L2(0, 1). Hence, up to a subsequence,

duε
dx
=

1
aε
ξ ε ⇀

1

∫
0

1
a(x)

dx ⋅ ξ0

in L2(0, 1). Hence ξ0 = 1
∫
1
0

1
a(x) dx du

dx and thus u satisfies

{{
{{
{

− ddx (
1

∫
1
0

1
a(x) dx du

dx ) = f x ∈ (0, 1),

u(0) = u(1) = 0.

The term a0 =
1

∫
1
0

1
a(x) dx is sometimes known as the effective diffusion coefficient. This

concludes this example. Applying the Γ-convergencemethoddescribed in Section 3.1.1
we can obtain the same result as in Example 4.15 in a way that can be generalized to
higher dimensions.

The focus of this work is the problem of oscillating coefficients

Lεuε = f , Lεv = div(B(x
ε
)∇v),

where B = (bij) is a matrix, bij = bji ∈ L∞([0, 1]n) and they are extended by periodicity.
This models the behavior of a periodical two-phase composite (a material formed by
the inclusion of twomaterials with different properties). This work is, no doubt, based
on previous results, for example by Spagnolo (see, e. g., [249]) on the limit problems
of −div(Bkuk) as Bk → B∞.

In this setting β⋆(ε) ∼ ε. Let us introduce the cell problem for i = 1, . . . , n

{{{
{{{
{

−Δχi = 0 Y \ G0,

∇χi ⋅ ν = −ei ⋅ ν 𝜕G0,

χi is Y − periodic,
(4.6)
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where ei is the i-th vector of the standard Euclidean basis. It is easy to see that χi are
bounded. We define the effective diffusion coefficients as

aeffij = δij +
1
|Y \ G0|

∫
Y\G0

𝜕χj
𝜕yi

dy. (4.7)

It is a well-known fact (see, e. g., [30]) that the matrix Aeff = (aeffi,j ) is symmetric and
positive-definite. This special problem works best if aε = ε.

Theorem 4.16. Let f ∈ L2(Ω), σ ∈ C(ℝ) monotone non-decreasing with σ(0) = 0 such
that one of the following holds:
1. The growth of the derivative of σ is controlled by

󵄨󵄨󵄨󵄨σ
󸀠(s)󵄨󵄨󵄨󵄨 ≤ C(1 + |s|

q), for some 0 ≤ q < n
n − 2
. (4.8)

2. The growth of σ is controlled by

󵄨󵄨󵄨󵄨σ(s)
󵄨󵄨󵄨󵄨 ≤ C(1 + |s|

q), for some 0 ≤ q < n
n − 2
. (4.9)

Let uε be the minimizer of Jε in this setting, assume aε = ε and let

β0 = lim
ε→0

β(ε)
β⋆(ε)
.

We distinguish two cases:
(a) If β(ε) ≲ β⋆(ε) (i. e., β0 ∈ [0,∞)) and gε is given by (1.3), with gst ∈ H1(Ω), gper ∈

L2(𝜕G0), then Pεuε ⇀ u weakly in H1
0(Ω), where u is the energy solution of

{
−div(Aeff∇u) + βeffσ(u) = f + βeffgeff in Ω,
u = 0, on 𝜕Ω,

βeff = β0
|Ω||Y\G0|

and geff is given by (1.9).
(b) If β0 = +∞ and gε = 0, then up to a subsequence Pεuε ⇀ u where σ(u) = 0.

Remark 4.17. In [84] the authors consider β(ε) = aε. Since in this setting β⋆(ε) ≃
ε
|Ω||𝜕G0|

we recover β0 = a|Ω||𝜕G0| and βeff = a
|𝜕G0|
|Y\G0|

as the authors do.

We begin with a lemma that is only relevant for big particles. The proof can be
found in [76, Theorem 2.6] (we recall that |Y | = 1 in our setting).

Lemma 4.18 (Limit of ε periodic functions). Let g be Y-periodic and Lp(Y) for p ∈
(1,∞). Then

g( ⋅
ε
) ⇀ ∫

Y

g(y)dy weakly in Lp(Ω).
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Intuition of the result. Let gε(x) = g(
x
ε ). First we check that the sequence is bounded.

We compute

∫
Ω

󵄨󵄨󵄨󵄨gε(x)
󵄨󵄨󵄨󵄨
p dx = ∑

j∈ℤn
∫

(εj+εY)∩Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
g(x − εj

ε
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

p
dx

≤ 󵄨󵄨󵄨󵄨{j ∈ ℤ
n : (εj + εY) ∩ Ω ̸= 0}󵄨󵄨󵄨󵄨ε

n ∫
Y

󵄨󵄨󵄨󵄨g(y)
󵄨󵄨󵄨󵄨
p dy.

Since Ω is contained in a large ball, |{j ∈ ℤn : (εj + εY) ∩ Ω ̸= 0}| ≤ Cε−n and hence
this quantity is uniformly bounded. Thus, up to a subsequence gε has a weak limit in
Lp(Ω). Let us call the limit g0. Let φ ∈ C∞c (Ω). First, we split

∫
Ω

gε(x)φ(x)dx = ∑
j∈ϒε

∫
εj+εY

gε(x)φ(x)dx + ∫
Ω\⋃j∈ϒε εj+εY

gε(x)φ(x)dx.

The second term tends to zero, since the measure of the integration domain tends to
zero. For the first term, we expand φ on every εj,

∑
j∈ϒε

∫
εj+εY

gε(x)φ(x)dx = ∑
j∈ϒε

εnφ(εj) ∫
Y

g(y)dy + ∑
j∈ϒε

∫
εj+εY

g(x/ε)∇φ(ηε(x)) ⋅ (x − εj)dx.

Again, the second term tends to zero, and we recover the result from the Riemann
sum.

Remark 4.19. A similar argument can be made in L1(Ω) using the uniform integrabil-
ity.

Remark 4.20. We will only prove the case of (4.8). The proof in the other case is very
similar, passing to the inequality formulation (2.6). See [84] for the details. Actually,
since the hypothesis is applied for Ψ, we could assume that σ is multivalued but sat-
isfying the growth assumption. The result for Signorini can also be obtained by mod-
ifications of the argument [89].

Proof of Theorem 4.16 (b). First, due to the a priori estimates and properties of the ex-
tension operator, we know that Pεuε ⇀ u in H1

0(Ω). Pick v ∈ C
∞
c (Ω). We write

β(ε)−1β⋆(ε) ∫
Ωε

∇uε ⋅ ∇v dx + β
⋆(ε) ∫

Sε

σ(uε)v dS = β(ε)
−1β⋆(ε) ∫

Ωε

fv dx.

Since, from the assumption on σ, we deduce that σ(Puε) is bounded inW 1,r(Ω)with r =
2n

q(n−2)+n and thus σ(Puε) → σ(u) strongly in Lr(Ω) (thanks to the Lebesgue dominated
theorem since Puε → u strongly in L2(Ω)) we can apply Theorem 4.5 and we have

β⋆(ε) ∫
Sε

σ(uε)v dS →
1
|Ω|
∫
Ω

σ(u)v dx.
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The other integrals are bounded, and as we pass to the limit we recover

∫
Ω

σ(u)v dx = 0.

Thus σ(u) = 0.

Proof of Theorem 4.16 (a). We follow the scheme of the proof in [84] considering the
case in which σ is so smooth that (4.8). We have (for any good test function v)

∫
Ωε

∇uε ⋅ ∇v dx + β(ε) ∫
Sε

σ(uε)v dS = ∫
Ωε

fv dx + β(ε) ∫
Sε

gv dS. (4.10)

Again, due to the a priori estimates and properties of the extension operator, we know
that Pεuε ⇀ u in H1

0(Ω). The sequence

ξε(x) = ∇̃uε(x) = {
∇uε(x) x ∈ Ωε,

0 otherwise,

is bounded in L2(Ω), and hence it has a weak limit ξ eff. Thus, for any good test func-
tion v

∫
Ωε

∇uε ⋅ ∇v dx = ∫
Ω

ξε ⋅ ∇v dx → ∫
Ω

ξ eff∇v dx.

Since σ(uε) is uniformly bounded in W 1,r(Ω) with r = 2n
q(n−2)+n , for any v ∈ C

∞
c (Ω) we

have by Theorem 4.5

β(ε) ∫
Sε

σ(uε)v dS 󳨀→
β0

|Ω|
∫
Ω

σ(u)v dx, β(ε) ∫
Sε

gst(x)v dS 󳨀→
β0

|Ω|
∫
Ω

gstv dx.

Due to Theorem 4.11 we have

β(ε) ∫
Sε

gper(
x − εj
aε
)v(x)dS 󳨀→ β0

|Ω||𝜕G0|
∫
𝜕G0

gper(y)dS∫
Ω

v(x)dx.

Lastly, due to Lemma 4.8 we have

∫
Ωε

fv dx = ∫
Ω

χΩε
fv dx 󳨀→ |Y \ G0| ∫

Ω

fv dx.

Thus u is a solution of

∫
Ω

ξ eff ⋅ ∇v dx + β
0

|Ω|
∫
Ω

σ(u)v dx = |Y \ G0| ∫
Ω

fv dx + β
0

|Ω|
∫
Ω

geffv dx.
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This is to say

−div ξ eff + β
0

|Ω|
σ(u) = |Y \ G0|f +

β0

|Ω|
geff.

As a last step, we need to characterize ξ eff. This is the peculiarity of the case of big par-
ticles. Let us recover one component of ξ effi for i = 1, . . . , n. Consider the test function

vi,ε(x) = ε(χi(
x
ε
) +

xi
ε
),

where χi is given by (4.6). By extending χi into G0 to produce an H1(Y) ∩ L∞(Y) func-
tion χi, we can construct

vi,ε(x) = εχi(
x
ε
) + xi,

which are uniformly bounded in H1(Ω). Furthermore, the first term tends to zero in
L∞(Ω) so

vi,ε → xi weakly in H1(Ω) and strongly in L2(Ω).

Consider the extension by zero of its gradient inside the particles

𝜕̃vi,ε
𝜕xj
(x) = 𝜕̃χi
𝜕yj
(
x
ε
) + δijχY\G0

(
x
ε
), ∀x ∈ ⋃

k∈ϒε

Yk
ε .

The measure of the remainder set of points of Ω tends to zero. Due to Lemma 4.18

𝜕̃vi,ε
𝜕xj
⇀ ∫

Y

(
𝜕̃χi
𝜕yj
(y) + δijχY\G0

(y))dy = ∫
Y\G0

𝜕χi
𝜕yj
(y)dy + δij|Y \ G0| = |Y \ G0| a

eff
ij ,

weakly in L2(Ω), where aeffij is given by (4.7). Hence

∇̃vi,ε ⇀ |Y \ G0|(a
eff
i1 , . . . , a

eff
in ) = |Y \ G0|a

eff
i ,

weakly in L2(Ω)n. Due to the definition of the cell problem

{
−Δvi,ε = 0 in Ωε,

∇vi,ε ⋅ ν = 0 on Sε,

and we do not care what happens on 𝜕Ω. Fix φ ∈ C∞c (Ω). Using φuε as a test function
in the weak formulation of the problem for vi,ε we recover

∫
Ωε

∇vi,ε ⋅ ∇(φuε)dx = 0. (4.11)
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Using φvi,ε as a test function in (4.10)

∫
Ωε

∇uε ⋅ ∇(vi,εφ)dx + β(ε) ∫
Sε

σ(uε)vi,εφdS = ∫
Ωε

fvi,εφdx + β(ε) ∫
Sε

gεvi,εφdS.

Note that, similarly to above,

β(ε) ∫
Sε

(σ(uε) − g
ε)vi,εφdS = εβ(ε) ∫

Sε

(σ(uε(x)) − g
ε(x))χi(

x
ε
)φ(x)dS

+ β(ε) ∫
Sε

(σ(uε(x)) − g
ε(x))xiφ(x)dS

→
β0

|Ω|
∫
Ω

(σ(u(x)) − g(x))xiφ(x)dx,

∫
Ωε

fvi,εφdx → |Y \ G0| ∫
Ω

fxiφdx.

To study the gradient we have, applying (4.11),

∫
Ωε

∇uε ⋅ ∇(vi,εφ)dx = ∫
Ωε

vi,ε∇uε ⋅ ∇φdx + ∫
Ωε

φ∇uε ⋅ ∇vi,ε dx

= ∫
Ωε

vi,ε∇uε ⋅ ∇φdx − ∫
Ωε

uε∇φ ⋅ ∇vi,ε dx

= ∫
Ω

v̄i,ε ξ̃ε ⋅ ∇φdx − ∫
Ω

uε∇φ ⋅ ∇̃vi,ε dx

→ ∫
Ω

xiξ
eff ⋅ ∇φdx − |Y \ G0| ∫

Ω

u∇φ ⋅ aeffi dx.

We recover that

div(xiξ
eff − |Y \ G0|ua

eff
i ) +

β0

|Ω|
σ(u)xi = |Y \ G0|fxi +

β0

|Ω|
geffxi.

Since aeffi is constant div(uaeffi ) = a
eff
i ⋅ ∇u. On the other hand, div(xiξ

eff) = xi div ξ eff +
ξ eff ⋅ ∇xi = xi div ξ eff + ξ effi . Thus

ξ effi = |Y \ G0|a
eff
i ⋅ ∇u.

Joining this information

ξ eff = |Y \ G0|A
eff∇u.
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4.4.2 The nonlinear case p ≠ 2

In this setting it was shown in [128], for the case σ = 0 and gε(x) = gper(
x−εj
aε
), that an

effective nonlinear diffusion still exists. Repeating the argument above for ξ eff, in this
setting we take the limit of |∇ξε|p−2∇ξε and this converges to some vector ξ eff. Using
the techniques in [128], one can characterize ξ eff = aeff(∇u) by means of the effective
diffusion aeff : ℝn → ℝn. For ξ ∈ ℝn, we take v as the solution of

{
{
{

∫Y\G0
|∇v|p−2∇v ⋅ ∇φdy = 0 for all φ ∈ W 1,p(Y \ G0),Y -periodic,

v − ξ ⋅ y is Y -periodic

and define

aeff(ξ ) = 1
|Y \ G0|

∫
Y\G0

|∇v|p−2∇v dy.

In [128] the authors prove that the homogenized nonlinear diffusion aeff(ξ ) is again a
(p − 1)-homogeneous function of ξ . Note that the involved formulation matches the
linear setting. It seems an easy task to extend the results of [128] to the case σ ̸= 0, as
presented above.

4.5 Subcritical cases a⋆ε ≪ aε ≪ ε and p > 1

This is possibly the simplest case of relevance due to the combination of Theorem 4.5
and the fact that the set of all the particles vanishes in measure as ε → 0

|Ω \ Ωε| = |ϒε||aεG0| ∼ ε
−nanε |Ω||G0| → 0. (4.12)

This fact will allow us to skip now the difficulty concerning the computation of the
effective diffusion. The aim of this subsectionwill be to prove the following result con-
cerning the case of a regular function σ (we refer the reader to Section 1.6.1 for some
references concerning other choices of σ).

Theorem 4.21. Let p ∈ (1,∞), f ∈ Lp
󸀠
(Ω), gε ∈ W 1,∞(Ω), a⋆ε ≪ aε ≪ ε, σ󸀠 ∈ L∞loc(ℝ)

non-decreasing such that σ(0) = 0 and let

β0 = lim
ε→0

β(ε)β⋆(ε)−1.

We distinguish two cases, depending on the value of β0:
(a) If β0 < +∞ and gε is given by (1.3)with gst ∈ W 1,∞(Ω), gper ∈ Lp

󸀠
(𝜕Ω), then Pεuε ⇀ u

in W 1,p
0 (Ω), where u is the unique solution of

{
−Δpu + βeffσ(u) = f + βeffgeff Ω,
u = 0 𝜕Ω,

(4.13)

βeff = β0/|Ω| and geff given by (1.9).
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(b) If β0 = +∞, gε = 0 and |σ(t)| ≤ C(1 + |t|
p
p−1 ), then, up to a subsequence, Pεuε ⇀ u in

W 1,p
0 (Ω) with u such that

σ(u) = 0

a. e. in Ω. In particular, if σ is strictly increasing, then u = 0.

Remark 4.22. Note that when β(ε) ≪ β⋆(ε) we have βeff = 0 and the reaction terms
coming from the Robin boundary condition vanish. However, if β(ε) ≫ β⋆(ε), then
they dominate the rest (in this subcritical case and also in the case of big particles).

Remark 4.23. When aε = C0εα with α ∈ (1, n
n−p ) and β(ε) = εn−α(n−1) ∼ β⋆(ε), then

applying (4.1) we have

βeff = |𝜕G0|C
n−1
0 .

This is the result that one typically finds in the literature (see, e. g., [177]). Note that
this fact explains the existence of several homogenization results in the literature con-
cerning the case of several isoperimetric shapes for G0 mentioned in Remark 1.2.

Remark 4.24. It is not difficult to check that the conclusion of Theorem 4.21 remains
valid for the case in which σ is not autonomous, i. e., when replacing σ(u) by σ(x, u)
with σ(x,0) = 0. A special case which was considered in the previous literature con-
cerns the case p = 2 and σ(x, u) = V(x)u (the existence and uniqueness of solutions is
guaranteed if, for instance,V ∈ H1(Ω) andV ≥ 0, but muchmore general “potentials”
can be also considered). In that case, the homogenized equation for the subcritical
case becomes the linear equation

−Δu + βeffV(x)u = f ,

and thus several authors say that we get the (stationary) Schrödinger equation.

Remark 4.25. In [270] the authors prove the strong convergence in the case p = 2 and
β0 ∈ (0,∞), i. e., ‖∇(uε − u)‖L2(Ωε) → 0. Due to the properties of Pε, this implies that
Pεuε → u strongly inH1

0(Ω). The proof is long and involved, and we will not reproduce
it here. As a matter of fact, we will prove later a related result (see Section 4.7.1.4) for
the case of the critical scale.

We state a lemma that is a direct consequence of (4.12) and that improves the cor-
responding result given in Lemma 4.8 concerning this special case.

Lemma 4.26. Let aε ≪ ε. Then χΩε
→ 1 strongly in Lq(Ω) for any q ∈ [1,∞).

Proof. We have

‖χΩε
− 1‖qLq(Ω) = ∫

Ω

|χΩε
− 1|q dx = |Ω \ Ωε| = |ϒε||aεG0| → 0.
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Proof of Theorem 4.21 (a). The a priori estimate from Proposition 4.13 guarantees that
there is a limit of Pεuε. Our aim is to pass to the limit in formulation (2.7). Consider a
test function v ∈ W 1,∞

0 (Ω). Then σ(v) ∈ W 1,∞
0 (Ω). Thus σ(v)(v − P

εuε) ⇀ σ(v)(v − u)
weakly inW 1,p

0 (Ω).
Let β(ε) ≲ β⋆(ε). We study the different terms. First

∫
Ωε

f (v − uε)dx = ∫
Ω

f (v − uε)χΩε
dx.

Since f ∈ Lp
󸀠
(Ω), v−Pεuε ⇀ v−u in Lq(Ω) (for some q > pdue to the Sobolev embedding

theorem) and χΩε
→ 1 strongly in L

qp󸀠
qp󸀠−1 (Ω), we have

∫
Ωε

f (v − uε)dx → ∫
Ω

f (v − u)dx.

Now, concerning the diffusion term we have

∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx = ∫
Ω

|∇v|p−2∇v ⋅ ∇(v − Pεuε)χΩε
dx.

Since |∇v|p−2∇v ∈ L∞(Ω), ∇(v − Pεuε) ⇀ ∇(v − u) in Lp(Ω) and χΩε
→ 1, strongly in

L
p
p−1 (Ω) we can pass to the limit

∫
Ωε

|∇v|p−2∇v ⋅ (v − uε)dx → ∫
Ω

|∇v|p−2∇v ⋅ (v − u)dx.

Finally, the passing to the limit in the more relevant term, associated to the reaction
term, is now quite easy through Theorems 4.5 and 4.11 since

β(ε) ∫
Sε

(σ(v) − gε)(v − uε)dS →
β0

|Ω|
∫
Ω

(σ(v) − geff)(v − u)dx,

and we recover

∫
Ω

|∇v|p−2∇v ⋅ (v − u)dx + β
0

|Ω|
∫
Ω

σ(v)(v − u)dx ≥ ∫
Ω

f (v − u)dx + β
0

|Ω|
∫
Ω

geff(v − u)dx,

which is equivalent to the weak definition of solution of the problem (4.13).

Proof of Theorem 4.21 (b). The case β(ε) ≫ β⋆(ε) can be studied as above. In the weak
formulation we get

β⋆(ε)β(ε)−1 ∫
Ωε

|∇v|p∇v ⋅ ∇(v −uε)dx +β
⋆(ε) ∫

Sε

σ(v)(v −uε)dS ≥ β
⋆(ε)β(ε)−1 ∫

Ωε

f (v −uε)dx,
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for any v ∈ W 1,p(Ωε, 𝜕Ω). Arguing as above the integrals over Ωε are bounded, and
since they are multiplied by a vanishing coefficient these terms vanish in the limit.
Due to Theorem 4.5

∫
Ω

σ(v)(v − u)dx ≥ 0.

We now take vk = ρk ∗ u + λφ, where ρk are convolution kernels and 0 ≤ φ ∈ C∞c (Ω).
First, vk → u + λφ strongly in Lp(Ω). Due to boundedness and a. e. convergence,
σ(vk) ⇀ σ(u + λφ) weakly in Lp

󸀠
(Ω). Thus

∫
Ω

σ(u + λφ)λφdx ≥ 0.

As λ → 0+ we recover

∫
Ω

σ(u)φdx ≥ 0.

As λ → 0− we recover

∫
Ω

σ(u)φdx ≤ 0.

Thus σ(u) = 0.

Remark 4.27. Note that we only need σ to be locally Lipschitz, since we use σ(v) and v
is assumed to be bounded. Finally a natural question iswhether the nonlinearity com-
mutes with the extension so as to use work intuitively with Pεσ(uε). Assume aε ≪ ε.
Let σ be uniformly Lipschitz and let uε be a bounded sequence inW 1,p(Ωε, 𝜕Ω). Then,
up to a subsequence,

Pεσ(uε) − σ(P
εuε) → 0 strongly in Lp(Ω).

Note that, up to a subsequence, Pεσ(uε) − σ(Pεuε) is strongly convergent in Lp(Ω),
and they are only different in Ω \ Ωε, a set whose measure tends to zero. Hence, the
limit is characterized, and the whole sequence converges.

4.6 Supercritical case aε ≪ a⋆ε and p ∈ (1, n)

As mentioned before this case is not very relevant. The proof is very simple. Here we
present briefly a proof similar to that in [268], there for the case p = 2. We do not cover
the case p = n, since it is a little more delicate.
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Theorem 4.28. Let 1 < p < n, aε ≪ a⋆ε , any sequence β(ε) > 0, σ continuous non-
decreasing such that σ(0) = 0 and let us consider uε the solution of (1.1), where f ∈
Lp
󸀠
(Ω) and gε = 0. Then, Pεuε ⇀ u in W 1,p

0 (Ω), where u is the unique solution of

{
−Δpu = f Ω,
u = 0 𝜕Ω.

(4.14)

Proof. Due to the a priori estimate in Proposition 4.13 we have, up to a subsequence,
Pεuε ⇀ u inW 1,p

0 (Ω). Let

K0 = max
y∈G0
|y|.

Consider a radial function ψ̄ : ℝn → [0, 1] such that

ψ̄(y) = {
0 if |y| ≥ 2K0,
1 if |y| ≤ K0,

|∇ψ̄| ≤ K,

and let

ψε(x) = ∑
j∈ϒε

ψ̄(x − εj
aε
).

It is clear that ψε = 1 in εj + aεG0 and 0 in 𝜕Ω. As mentioned in Section 4.1, we can
apply the scaling (4.2) and thus

∫
Ω

󵄨󵄨󵄨󵄨∇ψε(x)
󵄨󵄨󵄨󵄨
p dx ≤ |ϒε|a

n−p
ε ∫

Y

󵄨󵄨󵄨󵄨∇ψ(y)
󵄨󵄨󵄨󵄨
p dy ∼ ε−nan−pε = (

aε
a⋆ε
)
n−p

ε−n(a⋆ε )
n−p → 0.

Note that this is not true for p = n. Let φ ∈ W 1,p
0 (Ω). Taking φε = φ(1 − ψε) as a test

function we have that φε → φ inW 1,p
0 (Ω) and moreover

∫
Ωε

|∇φε|
p−2∇φε∇(φε − uε)dx + β(ε) ∫

Sε

σ(φε)(φε − u)dS ≥ ∫
Ωε

f (φε − uε)dx.

Since φε = 0 in Sε and σ(0) = 0, the integral on Sε is always zero. Due to the strong
convergence, Lemma 4.26 and the considerations on the gradient made in Section 4.1,
we have

∫
Ω

|∇φ|p−2∇φ ⋅ (φ − u)dx ≥ ∫
Ω

f (φ − u)dx.

This limit is the weak formulation of (4.14), which admits a unique solution, so the
whole sequence Pεuε converges to the desired function.
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Remark 4.29. As it is clearly seen in the above proof, the information of the homog-
enized weak formulation is revealed by the choice of a specific sequence of test func-
tions. The auxiliary function ψε oscillates, by construction, with the repetition of the
particles. This is precisely why this method is known as oscillating test functions. This
oscillating character of the test functions is also present in the arguments used for
other scales of aε but in a more implicit way.

4.7 Critical case aε ∼ a⋆ε : the anomalous (or strange) nonlinear
term

In the following sections we will present the results obtained by the authors in the
critical caseswhich formpart of themain core of this book. As amatter of fact, we have
structured this book by putting firstly a series of basic (and technical) results just to
get now a clearer proof of the main results, which, as previously said, are exceptional
among the possible scales of the particles.

The aim of this section is to show that the limit of Pεuε is u, the unique solution of

{
−Δpu +ℋ(x, u) = f Ω,
u = 0 𝜕Ω.

(4.15)

The functionℋ is typically different from σ in this setting.

4.7.1 Case of G0 a ball, p ∈ (1, n) and gε = g

Again we assume that G0 = B1 (we refer the reader, once again, to Remark 1.1). If gε =
g ∈ W 1,∞(Ω) for any ε, then

ℋ(x, s) = 𝒜0
󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
p−2H(x, s) (4.16)

and H is at each point x the solution of the functional equation

ℬ0
󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
p−2H(x, s) ∈ σ(s − H(x, s)) − g(x), (4.17)

where

𝒜0 = (
n − p
p − 1
)
p−1
|𝜕B1| limε→0(a

n−p
ε ε−n), ℬ0 = (

n − p
p − 1
)
p−1

lim
ε→0

a1−pε
β(ε)
.

Remark 4.30. Note that a1−pε /β(ε) ∼ a
1−p
ε an−1ε ε−n ∼ an−pε ε−n. This tends to a constant if

aε ∼ a⋆ε .

Remark 4.31. When aε = C0ε
n

n−p we recover the well-known value 𝒜0 =
( n−pp−1 )

p−1|𝜕B1|C
n−p
0 . If we also take β(ε) = ε

n
n−p (p−1), we recover ℬ0 = (

n−p
p−1 )

p−1C1−p0 (see,
e. g., [112]).
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Remark 4.32. The appearance of the strange formula for 𝒜0 is not fortuitous. As we
will see later (see Lemma 4.38) it comes from the normal derivative of the auxiliary
function wε in aε𝜕G0, and therefore it is related to the p-cap of G0 as mentioned in
Remark 3.11. This will play a fundamental role in the stochastic framework presented
in Appendix C.

4.7.1.1 Properties of the strange term
Proposition 4.33. Let σ be a maximal monotone graph such that σ(0) = 0 and let g be
pointwise defined. Then:
(a) For every x, there exists exactly one value H(x, s) ∈ ℝ such that (4.17) holds. If g(x) =

0, then H(x, s) = H(s) and H(0) = 0.
(b) We have that H is non-decreasing in s and

󵄨󵄨󵄨󵄨H(x, s) − H(x, t)
󵄨󵄨󵄨󵄨 ≤ |s − t|.

(c) If g(x) = 0 and σ is differentiable, then

𝜕H
𝜕s
(s) = σ󸀠(s − H(s))

σ󸀠(s − H(s)) + ℬ0|H(s)|p−2
∈ [0, 1]. (4.18)

(d) When σ is a maximal monotone graph of ℝ2 and g = 0, then H is given through the
inverse of the composition of two maximal monotone graphs:

H = (I + σ−1 ∘ Θn,p)
−1 where Θn,p(s) = ℬ0|s|

p−2s.

Sketch of proof. First, let us understand the case where σ is a continuous function de-
fined for every s ∈ ℝ; Θn,p is a strictly increasing function and Θn,p(±∞) = ±∞. For
every s fixed we define the function

Φs(h) = Θn,p(h) − σ(s − h),

which is also strictly increasing in h. Furthermore, since

Φs(±∞) = Θn,p(±∞) − σ(s ∓∞) = Θn,p(±∞) − σ(∓∞) = ±∞,

we have a bijectionΦs : ℝ → ℝ. Hence, for every x and s there exists a unique solution
of (4.17) and it is given by

H(x, s) = Φ−1s (−g(x)).

We have that Φ−1s (0) = 0. Hence H(x,0) = 0 (and ℋ(x,0) = 0) if and only if g(x) = 0.
This requires some care when dealing withℋ(x, s).

When σ is amaximalmonotone graph, thenΦs is amaximalmonotone graph, but
since it is strictly increasing, its inverse is a pointwise function andwehave the explicit
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expression of the statement. We recall that the inverse of a maximal monotone graph
ofℝ2 is also a maximal monotone graph. Moreover, σ−1 ∘ Θn,p is a maximal monotone
graph and thus (I + σ−1 ∘ Θn,p)

−1 is an injective real application.
If σ is a non-decreasing differentiable function, we can take a derivative in s in

(4.17) to recover

ℬ0
󵄨󵄨󵄨󵄨H(s)
󵄨󵄨󵄨󵄨
p−2 𝜕H
𝜕s
(s) = σ󸀠(s − H(s))(1 − 𝜕H

𝜕s
(s)).

Hence, we recover (4.18). Hence, when σ is differentiable, H is non-decreasing and
Lipschitz of constant atmost 1. By approximation, we recover Proposition 4.33 (b).

Naturally, if g is defined a. e., then so is H. But this is good enough for our the-
ory. We conclude collecting different examples, which have been studied in separate
scenarios.

Examples 4.34. Some explicit examples of H can be found if we assume that g = 0.
(a) No reaction. If σ ≡ 0, then H ≡ 0.
(b) Dirichlet boundary conditions. Since Dom σD = {0}, equation (4.17) is only de-

fined if s − H(s) = 0 and so H(s) = s. Thus, the strange term results:

ℋ(s) = 𝒜0|s|
p−2s.

This is the unusual behavior proved for p = 2 byHruslov [169] and Cioranescu and
Murat [80, 81, 79].

(c) Signorini boundary conditions.A relevant case in the applications corresponds
to the Signorini type boundary condition (2.1c), which can be written with the
maximal monotone operator (2.3), given by

ℋ(s) = {
𝒜0|H0(s)|p−2H0(s) s ≥ 0,
𝒜0|s|p−2s s < 0,

where

ℬ0
󵄨󵄨󵄨󵄨H0(s)
󵄨󵄨󵄨󵄨
p−2H0(s) = σ0(s − H0(s)), s > 0.

Hence,ℋ coincides with the one from the Dirichlet condition if s < 0 andwith the
one from σ0 if s ≥ 0. This result was obtained previously in [89] (if p = 2) and [173]
(if p ̸= 2) by ad hoc techniques. Once the theory for maximal monotone operators
is applied, it can be found as a corollary.

A comment of the behavior of u when f is very negative in a small region can be
found in Proposition C.2.
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Remark 4.35. As in Remark 4.24, we can also consider the case in which we replace
σ(u) by σ(x, u)with σ(x,0) = 0. For instance, for the special case of p = 2 and σ(x, u) =
V(x)u (with V ∈ H1(Ω) and V ≥ 0) in the critical case we also get a (stationary)
Schrödinger linear equation

−Δu +𝒜0Ṽ(x)u = f ,

but nowwith an effective potential which does not coincidewith the original potential
V(x) since it is given by the bounded function

Ṽ(x) = V(x)
V(x) + ℬ0

(see, e. g., [271]).

4.7.1.2 Proof of the homogenization result
Theorem 4.36. Let p ∈ (1, n), G0 = B1, aε ∼ a⋆ε , β(ε) ∼ β

⋆(ε), gε = g ∈ W 1,∞(Ω) for
any ε, σ a maximal monotone graph. Then Pεuε ⇀ u in W 1,p

0 (Ω), where u is the unique
solution of (4.15) with the reaction termℋ given by (4.16)–(4.17).

Coming back to the function wε constructed in Section 3.1.5.1 we seek to apply
oscillating test functions of the form vε = v−hWε, where v is a test function of the limit
problem, h is a function correcting the amplitude of the oscillating functionwhichwill
be chosen later and

Wε(x) =
{{{
{{{
{

wε(x − εj) aε < |x − εj| <
ε
4 for some j ∈ ϒε,

1 |x − εj| ≤ aε for some j ∈ ϒε,
0 otherwise.

Note that this is awell-defined construction, since for each x there is atmost one j ∈ ϒε
such that x ∈ εj + εY (i. e., |x − εj| < ε).

The function h will be, in fact, of the form h(x) = H(x, v(x)), where the function
H(x, s) will be chosen through equation (4.17). Since vε is a valid test function for the
weak formulation (2.8) we start by writing that

∫
Ωε

|∇vε|
p−2∇vε ⋅ ∇(vε −uε)dx + β(ε) ∫

Sε

(Ψ(vε) −Ψ(uε) − g(vε −uε))dS − ∫
Ωε

f (vε −uε)dx ≥ 0.

(4.19)

Remark 4.37. In the critical case, the integral onSε has tobe controlledbyan interplay
with the diffusion term. This is the second surprising fact indicated in the Introduction
of the book (Section 1.1) and it does not happen in the sub- or supercritical regimes. It
is a special phenomenon arising only in the critical case.
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A useful decomposition of the diffusion balance term was given in [111] in terms
of the following lemma.

Lemma 4.38. Let 1 < p < n and let uε ∈ W 1,p(Ωε, 𝜕Ω) be a sequence of functions with
uniformboundednorm, let v ∈ 𝒞∞c (Ω), h ∈ W

1,∞(Ω)and let vε = v−hWε be the oscillating
test function correcting the test function v of the homogenized problem. Then

∫
Ωε

|∇vε|
p−2∇vε ⋅ ∇(vε − uε)dx = I1,ε + I2,ε + I3,ε + R(ε), (4.20)

where R(ε) → 0 as ε → 0 and

I1,ε = ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx, (4.21)

I2,ε = −Bε ∫
Sε

|h|p−2h(v − h − uε)dS, (4.22)

I3,ε = Aε ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

|h|p−2h(v − uε)dS, (4.23)

with the constants given by

Aε ≃ (
n − p
p − 1
)
p−1

an−pε (ε/4)
1−n, Bε ≃ (

n − p
p − 1
)
p−1

a1−pε .

Wewill give the proof of this lemmabelow, after a set of important considerations.

Remark 4.39. Note that since we are in the critical range aε ∼ ε
n

n−p , Aε ∼ an−pε ε1−n ∼ ε,
whereas

β⋆(ε) ∼ |Sε|
−1 ∼ εn(a⋆ε )

1−n ∼ (a∗ε )
n−p(a⋆ε )

1−n ∼ (a⋆ε )
1−p.

Hence Bε ∼ β⋆(ε).

Remark 4.40. This is, perhaps, themost important remark of this book. There is a nice
way to have an intuition for how (4.17) (the equation that characterizes H) appears.
It is a formal synthesis which, in our opinion, is absent in most of the papers dealing
with homogenization to the critical scale and the occurrence of strange terms. Assume
for a second that σ is smooth and we look at the variational inequality (2.8), which is
equivalent to the weak formulation of the problem (1.1)

∫
Ωε

|∇vε|
p−2∇vε ⋅ ∇(vε − uε)dx + β(ε) ∫

Sε

(σ(vε) − g)(vε − uε)dS − ∫
Ωε

f (vε − uε)dx ≥ 0,

for any oscillating test function of the form vε = v−hWε. We have two integrals over Sε,
namely I2,ε and the one with the reaction term. Hence, if we manage to have

Bε ∫
Sε

|h|p−2h(v − h − uε)dS ≃ β(ε) ∫
Sε

(σ(vε) − g)(vε − uε)dS,
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then we cancel out the terms related to the critically scaled Sε. On the other hand,
we can compute the limit of I3,ε by applying the “from surface to volume averaging
convergence principle” given in Theorem 4.5 to the surface

Ŝε = ⋃
j∈ϒε

(εj + ε
4
𝜕B1).

Thus, if we force the equality to hold pointwise, sinceWε = 1 on Sε, we would like to
have

Bε
β(ε)
|h|p−2h ≃ σ(vε) − g = σ(v − h) − g.

This is the reason why we take h = H(v), where H solves pointwise equation (4.17).
Our proofs for general σ come from developing this idea in terms of subdifferentials.

Proof of Theorem 4.36. As usual, we know that uε is bounded in W 1,p(Ωε, 𝜕Ω), and
hence up to a subsequence, Pεuε ⇀ u inW 1,p

0 (Ω). The term I1,ε tends to the term cor-
responding to −Δp in the effective variational inequality formulation. Note that since
aε ≪ ε and Pεuε ⇀ u inW 1,p

0 (Ω) we can compute

lim
ε→0

I1,ε = ∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx.

As mentioned in Remark 4.40, the term (4.22) will interplay with the term on Sε on
the weak formulation, where I3,ε yields the effective reaction term in the homoge-
nized equation. Since the weak formulation is given, equivalently, by the variational
inequality, we could kill the terms on Sε if we show that

lim sup
ε→0
(I2,ε + β(ε) ∫

Sε

(Ψ(vε) −Ψ(uε) − g(vε − uε)))dS ≤ 0.

First, note that, since the integral is controlled and due to the definition ofℬ0, we have

I2,ε = −ℬ0β(ε) ∫
Sε

|h|p−2h(v − h − uε)dS + R(ε),

where R(ε) → 0. Due to the choice of vε and gε we have, sinceWε = 1 on Sε,

Ψ(vε) −Ψ(uε) − g(vε − uε) = Ψ(v − h) −Ψ(uε) − g(x)(v − h − uε).

Hence, we would want to have

Ψ(v − h) −Ψ(uε) − g(x)(v − h − uε) ≤ ℬ0|h|
p−2h(v − h − uε). (4.24)
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Here is where the magic of convex analysis comes into play. This kind of inequality is
reminiscent of the properties of the subdifferential of a convex function

Ψ(x, s) −Ψ(x, t) ≤ ξ (s − t), ∀ξ ∈ 𝜕Ψ(x, s) (4.25)

for a general function Ψ(x, ⋅) assumed to be convex for every x, and where 𝜕Ψ denotes
its subdifferential. This is what we get whenwe assume that σ is a maximal monotone
graph. Taking

Ψ(x, s) = Ψ(s) − g(x)s,

in terms of its subdifferential we have 𝜕sΨ(x, s) = σ(s) − g(x). If h = H(x, v), where H is
the pointwise solution of (4.17), we recover (4.24) by taking in (4.25)

s = v(x) − h(x), t = uε(x), ξ = ℬ0|h|
p−2h = ℬ0

󵄨󵄨󵄨󵄨H(., v)
󵄨󵄨󵄨󵄨
p−2H(., v) ∈ 𝜕Ψ(t, s).

To compute the limit of I3,ε we apply the important “from surface to volume averaging
convergence principle” given in Theorem 4.5 to the surface

Ŝε = ⋃
j∈ϒε

(εj + ε
4
𝜕B1).

We have that |Ŝε| ≃
|Ω||𝜕B1|
4n−1 ε−1, so by Theorem 4.5 and the definition of 𝒜0 we get the

effective reaction balance term

lim
ε→0

I3,ε = 𝒜0 ∫
Ω

󵄨󵄨󵄨󵄨H(x, v)
󵄨󵄨󵄨󵄨
p−2H(x, v)(v − u)dx.

We compute now the limit of the last term of the variational inequality associated to
f . Due to (3.16), for q > n(p−1)

n−1 it is a direct computation to check that

∫
Ω

|∇Wε|
q dx ∼ |ϒε| ∫

ε
4B1

󵄨󵄨󵄨󵄨∇wε(x)
󵄨󵄨󵄨󵄨
q dx ∼ ε−nan−qε ∼ a

p−q
ε (4.26)

(since aε ∼ a⋆ε ). Hence, due to the Sobolev embedding inequalities we get

Wε → 0
{
{
{

strongly inW 1,q
0 (Ω) if 1 ≤ q < p,

weakly inW 1,p
0 (Ω).

(4.27)

The second statement may not seem obvious. However, inW 1,p the norm is bounded,
and hence there must exist a weak limit. This limit must coincide with theW 1,q limits
for q < p, and therefore it must be 0. Hence, by compactness, vε → v in Lp(Ω) and
since aε ≪ ε, by Lemma 4.8 we have

lim
ε→0
∫
Ωε

f (vε − uε)dx = ∫
Ω

f (v − u)dx.
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Joining all the information above,

0 ≤ lim inf
ε→0
(∫
Ωε

|∇vε|
p−2∇vε ⋅ (vε − uε)dx

+ β(ε) ∫
Sε

(Ψ(vε) −Ψ(uε) − g(vε − uε))dS − ∫
Ωε

f (vε − uε)dx)

≤ lim inf
ε→0
(I1,ε + I2,ε + I3,ε + β(ε) ∫

Sε

(Ψ(vε) −Ψ(uε) − g(vε − uε))dS − ∫
Ωε

f (vε − uε)dx)

≤ lim inf
ε→0
(I1,ε + I3,ε − ∫

Ωε

f (vε − uε)dx)

= ∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx +𝒜0 ∫
Ω

󵄨󵄨󵄨󵄨H(x, v)
󵄨󵄨󵄨󵄨
p−2H(x, v)(v − u)dx − ∫

Ω

f (v − u)dx.

(4.28)

This concludes the proof.

4.7.1.3 Proof of Lemma 4.38
The proof of Lemma 4.38 is fairly technical and depends on the case of whether p < 2
or p ≥ 2. A first result in which it is followed by a presentation similar to the one in this
book was the paper [268] relative to the case p = 2. The case p ∈ (2, n) was analyzed
in [245]. The case p ∈ (1, 2) was analyzed in [113]. We refer the reader to [190] for some
techniques associated to the p-Laplace operator.

Let us present first the case p = 2, which is quite simple, and then the general
setting p > 1. We have

∫
Ωε

∇vε ⋅ ∇(vε − uε)dx = J1,ε − J2,ε,

where

J1,ε = ∫
Ωε

∇v ⋅ ∇(v − hWε − uε)dx,

J2,ε = ∫
Ωε

∇(hWε) ⋅ ∇(v − hWε − uε)dx.

Moreover, due to the estimate (4.26)

J1,ε =I1,ε − ∫
Ωε

∇v ⋅ ∇(hWε)dx = I1,ε + R(ε).

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.7 Critical case aε ∼ a⋆ε : the anomalous (or strange) nonlinear term | 97

On the other hand, using Green’s formula, the fact thatWε satisfies problem (3.14) and
the estimates onWε given in Section 3.1.5.1 we have

J2,ε = ∫
Ωε

Wε∇h ⋅ ∇(v − hWε − uε)dx + ∫
Ωε

h∇Wε ⋅ ∇(v − hWε − uε)dx

= R(ε) − ∫
Ωε

(∇Wε ⋅ ∇h)(v − hWε − uε)dx

+ ∑
j∈ϒε

∫
𝜕(εj+ ε4B1)

𝜕νw
j
εh(v − uε)dS

+ ∑
j∈ϒε

∫
𝜕(εj+aεG0)

𝜕νw
j
εh(v − h − uε)dS,

where 𝜕ν is the usual normal derivative. Using the estimates on the gradient and nor-
mal derivatives ofWε given in Section 3.1.5.1 (see (3.17)) we have

J2,ε = R(ε) + Aε ∑
j∈ϒε

∫
𝜕(εj+ ε4B1)

h(v − uε)dS − Bε ∫
Sε

h(v − h − uε)dS.

This completes the proof for p = 2.
To consider the case of p ̸= 2 we need the following auxiliary result.

Lemma 4.41. Let p > 1, aε ∼ a⋆ε , n ≥ 3, v ∈ W
1,∞
0 (Ω) and let φε ∈ W

1,p
0 (Ω) be uniformly

bounded. Let also ηε ∈ W 1,p(Ω) be such that ‖∇ηε‖Lq(Ω) → 0, for all q ∈ [1, p), as ε → 0.
Then

∫
Ωε

󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2∇(v − ηε) ⋅ ∇φε dx

= ∫
Ωε

|∇v|p−2∇v ⋅ ∇φε dx − ∫
Ωε

|∇ηε|
p−2∇ηε ⋅ ∇φε dx + R(ε),

where R(ε) → 0.

We split the proof in the cases p ∈ (1, 2), (2, 3] and (3, +∞). We recall two not too
difficult technical lemmas dealing with the different values of p [113] (see also [190]).

Lemma 4.42. Let p ∈ (1, 2). Then there exists a positive constant C = C(p) such that the
inequality

󵄨󵄨󵄨󵄨|a − b|
p−2(a − b) − (|a|p−2a − |b|p−2b)󵄨󵄨󵄨󵄨 ≤ C(|a||b|)

p−1
2 (4.29)

is valid for all a,b ∈ ℝn.

Lemma 4.43. Let p > 3. Then, for all a, b ≥ 0 we have

(a + b)p−2 − bp−2 ≤ (p − 2)a(a + b)p−3.
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Proof of Lemma 4.41. Case p ∈ (1, 2). By Lemma 4.42, by applying Hölder’s inequality,
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

(󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2∇(v − ηε) ⋅ ∇φε − (|∇v|

p−2∇v − |∇ηε|
p−2∇ηε) ⋅ ∇φε)dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C ∫
Ωε

|∇v|
p−1
2 |∇ηε|

p−1
2 |∇φε|dx

≤ K‖∇v‖
p−1
2
∞ ‖∇ηε‖

p−1
2

L
p+1
2 (Ωε)
‖∇φε‖L p+1

2 (Ωε)
,

since 1 < (p + 1)/2 < p. This proves the result.
Case p ∈ [2, 3]. When p ≥ 2 we write

∫
Ωε

󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2∇(v − ηε) ⋅ ∇φε dx

= ∫
Ωε

|∇v|p−2∇v ⋅ ∇φε dx − ∫
Ωε

|∇ηε|
p−2∇ηε ⋅ ∇φε dx

+ ∫
Ωε

(󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2 − |∇v|p−2)∇v ⋅ ∇φε dx

− ∫
Ωε

(󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2 − |∇ηε|

p−2)∇ηε ⋅ ∇φε dx. (4.30)

Hence, R(ε) is given by the last two terms. For the first term, in the case p ∈ [2, 3],
through Minkowski’s inequality, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

(󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2 − |∇v|p−2)∇v ⋅ ∇φε dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
Ωε

((|∇v| + |∇ηε|)
p−2 − |∇v|p−2)|∇v||∇φε|dx

≤ ∫
Ωε

|∇ηε|
p−2|∇v||∇φε|dx

≤ ‖∇v‖L∞(∫
Ωε

|∇ηε|
(p−2)q dx)

1
q

(∫
Ωε

|∇φε|
q
q−1 dx) q−1q .

It suffices to pick any q such that (p − 2)q < p and q
q−1 ≤ p. Thus, any q ∈ [

p
p−1 ,

p
p−2 ) is

valid. A similar argument works for the last term in (4.30).
Case p > 3.We look again at the remainder terms in (4.30) and use Lemma 4.43. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

(󵄨󵄨󵄨󵄨∇(v − ηε)
󵄨󵄨󵄨󵄨
p−2 − |∇v|p−2)∇v ⋅ ∇φε dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
Ωε

((|∇v| + |∇ηε|)
p−2 − |∇v|p−2)|∇v||∇φε|dx
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≤ C ∫
Ωε

|∇ηε|(|∇v| + |∇ηε|)
p−3|∇φε|dx

≤ C ∫
Ωε

(|∇ηε| + |∇ηε|
p−2)|∇φε|dx

≤ C(∫
Ωε

|∇ηε|
q1 dx)

1
q1
(∫
Ωε

|∇φε|
q1
q1−1 dx)

q1−1
q1
+

+ C(∫
Ωε

|∇ηε|
(p−2)q2 dx)

1
q2
(∫
Ωε

|∇φε|
q2
q2−1 dx)

q2−1
q2
.

Again, we get a large set of possible choices for q1, q2. The last term in (4.30) behaves
similarly.

The splittingLemma4.38 (forp ̸= 2) follows as adirect consequence of this lemma.

Proof of Lemma 4.38 (for p ̸= 2). Since vε = v − hWε, by Lemma 4.41, we have

∫
Ωε

|∇vε|
p−2∇vε ⋅ ∇(vε − uε)dx = J1,ε − J2,ε + R(ε),

where

J1,ε = ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − hWε − uε)dx,

J2,ε = ∫
Ωε

󵄨󵄨󵄨󵄨∇(hWε)
󵄨󵄨󵄨󵄨
p−2∇(hWε) ⋅ ∇(v − hWε − uε)dx.

Moreover, due to (4.26)

J1,ε =I1,ε − ∫
Ωε

|∇v|p−2∇v ⋅ ∇(hWε)dx + R(ε) = I1,ε + R(ε).

On the other hand, similarly to the case p = 2,

J2,ε = ∫
Ωε

|h∇Wε|
p−2h∇Wε ⋅ ∇(v − hWε − uε)dx + R(ε)

= R(ε) + ∑
j∈ϒε

∫
𝜕(εj+ ε4B1)

󵄨󵄨󵄨󵄨∇w
j
ε
󵄨󵄨󵄨󵄨
p−2𝜕νw

j
ε|h|

p−2h(v − uε)dS

+ ∑
j∈ϒε

∫
𝜕(εj+aεG0)

󵄨󵄨󵄨󵄨∇w
j
ε
󵄨󵄨󵄨󵄨
p−2𝜕νw

j
ε|h|

p−2h(v − h − uε)dS.
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From the explicit estimates given in Section 3.1.5.1 we have

J2,ε = R(ε) + Aε ∑
j∈ϒε

∫
𝜕(εj+ ε4B1)

|h|p−2h(v − uε)dS − Bε ∫
Sε

|h|p−2h(v − h − uε)dS.

This completes the proof.

4.7.1.4 Strong convergence with correctors when gε = 0
By using similar arguments to the ones of the above section, it seems possible to prove
the strong convergence with a corrector when we assume some additional regularity
on u as, for instance, u ∈ W 1,∞(Ω). At least for the case p = 2 we can prove that

󵄩󵄩󵄩󵄩uε + H(u)Wε − u
󵄩󵄩󵄩󵄩W 1,p(Ωε ,𝜕Ω) → 0 (4.31)

as ε → 0. Using that Wε converges strongly to 0 in W 1,q for q < p we also deduce
immediately that

‖u − uε‖W 1,q(Ωε ,𝜕Ω) → 0, for q < p.

This result canbe found forp = 2 in [270] andσ Lipschitz continuous, and theSignorini
problem in [173]. Let us give an idea of the proof (for p = 2). The proof in the case p ̸= 2
is not present in the literature, to the best of our knowledge. However, we expect it
should follow from not too different ideas from the case p = 2.

The weak formulation for uε is given by

∫
Ωε

∇uε∇φdx + β(ε) ∫
Sε

σ(uε)φdS = ∫
Ωε

fφdx.

Let us defineUε = u−H(u)Wε. Plugging it back on theweak formulation of the problem
for uε we have

∫
Ωε

∇Uε∇φdx + β(ε) ∫
Sε

σ(Uε)φdS = ∫
Ωε

∇u∇φdx − ∫
Ωε

∇(H(u)Wε)∇φdx

+ β(ε) ∫
Sε

σ(u − H(u))φdS.

Wemust take into account that

∫
Ωε

∇u∇φdx = ∫
Ω

fφdx −𝒜0 ∫
Ω

H(u)φdx − ∫
Ω\Ωε

∇u∇φdx.
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Hence, if we assume the additional regularity u ∈ W 1,∞(Ω), we have

∫
Ωε

∇(Uε − uε)∇φdx + β(ε) ∫
Sε

(σ(Uε) − σ(uε))φdS

= ∫
Ω\Ωε

fφdx −𝒜0 ∫
Ω

H(u)φdx − ∫
Ω\Ωε

∇u∇φdx

− ∫
Ωε

∇(H(u)Wε)∇φdx + β(ε)ℬ0 ∫
Sε

H(u)φdS.

Now the aim is to take φ = Uε − uε and show that the right-hand side tends to zero.
One looks for similar cancelations as in the above result and with the advantage that
Pεuε − u andWε tend weakly to 0 inH1

0(Ω). As before, the case p ̸= 2 is more technical,
but follows the same philosophy. We refer the reader to [270, 113] for the details. We
point out that the regularity uε ∈ W 1,∞(Ωε) was shown in [50], for p = 2, when σ is a
maximalmonotone graphand f ∈ L∞(Ω). The regularityu ∈ W 1,∞(Ω),when f ∈ L∞(Ω)
and p = 2, is well known since functionH is Lipschitz continuous (see, e. g., [186]) and
even underweaker assumptions on f (see [49]). Then itmakes sense to ask if the above
convergence, in fact, takes place also inW 1,∞(Ω)when u ∈ W 1,∞(Ω): as far a we know,
this is an open problem.

4.7.2 Case of G0 a ball, p = n and gε = g

This setting was first considered in [229]. The main arguments are as above, but re-
placing now wε by the value given in Section 3.1.5.2. Again, we assume that G0 = B1
and gε = g ∈ W 1,∞(Ω). We recover the homogenized problem (4.15), where

ℋ(x, s) = 𝒜0
󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
p−2H(x, s)

and H is at each point (x, s) the solution of the functional equation

ℬ0
󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
n−2H(x, s) ∈ σ(s − H(x, s)) − g(x),

where

𝒜0 = |𝜕B1| limε→0 ε
−n(ln ε

4aε
)
1−n
, ℬ0 = limε→0(β(ε)aε ln

ε
4aε
)
1−n
.

Going back to Remark 4.1, we observe that the parameter α of the family of critical
scales appears when substituting the assumption on aε in𝒜0 and ℬ0.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



102 | 4 Particles over the whole domain

4.7.3 Case of G0 not a ball, p = 2 < n

First, let us look at the case gε = 0. The first paper in this setting is [116] for σ Hölder
continuous.

Theorem 4.44. Assume aε ∼ a⋆ε , β(ε) ∼ β
⋆(ε), f ∈ L2(Ω), gε = 0 and σ Hölder contin-

uous for some α ≤ 1. Then, Pεuε ⇀ u in H1
0(Ω), where u is the unique solution of the

homogenized problem (4.15) with

ℋ(x, s) = 𝒜0Ĥσ(s), where𝒜0 = limε→0
an−2ε
εn

(4.32)

and Ĥσ is given by (3.27).

Wewill use the auxiliary functions and notation given in Section 3.1.5.3. We recall
that as proved in Section 3.1.5.3, 0 ≤ Ĥ󸀠σ(s) ≤ λG0

. This constant λG0
depends only onG0

and, even though we will assume that σ is a smooth function, there is a natural way
to extend the results to maximal monotone graphs, as pointed out in Remarks 3.20
and 3.21. This intuition matches nicely with the explicit results when G0 = B1 given in
Section 4.7.1.1.

We can proceed similarly in the case of a ball, with some additional constructions.
For v ∈ C∞(Ω) we define, for x ∈ Ωε,

Wσ,ε(x; v) = {
wσ,ε(x − εj, v(εj)) x − εj ∈ ε

4B1 \ (aεG0) for some j ∈ ϒε,
0 otherwise,

(4.33)

wherewσ,ε is the solution of (3.35). As above, this is well defined since there is at most
one j ∈ ϒε so that x ∈ εj + εY .

As with the previous case, it is not hard to prove thatWε,σ is bounded inW 1,p(Ωε,
𝜕Ω). Furthermore, by extending wσ,ε into the particle by preserving the gradient, we
can see that there is an extension W̃σ,ε bounded inW

1,p
0 (Ω). Arguing as in Section 4.1,

it is not difficult to see that

W̃σ,ε(⋅; v) ⇀ 0 inW 1,p
0 (Ω).

Note that, unlike before, we cannot define the function inside the particles. The oscil-
lating test function is now of the form

vε(x) = v(x) −Wσ,ε(x; v).

In this setting, we need the following adapted version of Lemma 4.38 (the proof is
left as an exercise for the reader).
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Lemma 4.45. Let uε ∈ H1(Ωε, 𝜕Ω) be a sequence with uniformly bounded norm, v ∈
𝒞∞c (Ω), vε(x) = v(x) −Wσ,ε(x; v). Then

∫
Ωε

∇vε ⋅ ∇(vε − uε)dx = I1,ε + I2,ε + I3,ε + R(ε),

where R(ε) → 0 and

I1,ε = ∫
Ωε

∇v ⋅ ∇(v − uε)dx,

I2,ε = − ∑
j∈ϒε

∫
𝜕(εj+aεG0)

(vε(x) − uε(x))𝜕νwσ,ε(x − εj; v(εj))dSx ,

I3,ε = − ∑
j∈ϒε

∫
𝜕(εj+ ε4B1)

(v(x) − uε(x))𝜕νwσ,ε(x − εj; v(εj))dS.

Going back to (4.40), this splitting shows how we arrive at a formulation of prob-
lem (3.25).

Let us study I2,ε. From our choice (3.35) we have

I2,ε = −C0a
−1
ε ∑

j∈ϒε

∫
𝜕(εj+aεG0)

(v(x) −Wσ,ε(x) − uε(x))σ(v(εj) −Wσ,ε(x))dSx .

Therefore, we recover

I2,ε + β(ε) ∫
Sε

σ(v −Wσ,ε)(vε − uε)dSx

= ∑
j∈ϒε

∫
𝜕(εj+aεG0)

(vε(x) − uε(x))(β(ε)σ(v(x) −Wσ,ε(x)) − C0a
−1
ε σ(v(εj) −Wσ,ε(x)))dSx .

When σ is smooth, it is easy to show that it tends to zero due to our choice of C0 and
by taking Taylor expansions.

With this lemma,we can almost repeat the computationsmade in (4.28) except for
the cancelation of I2,ε. The term I1,ε is as for the case of balls. For the term I3,ε we need
an adapted version of Theorem 4.11. By taking into account (3.38) and an argument
similar to Theorem 4.11 we recover that if φε ⇀ φ weakly in H1

0(Ω) and v ∈ C∞(Ω),
then

I3,ε = − ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

φε(x)𝜕νwσ,ε(x − εj; v(εj))dSx 󳨀→ (limε→0
aε
a⋆ε
)
n−2
∫
Ω

φ(x)Ĥσ(v(x))dx.

(4.34)
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Let us explain this limit. For a fixed v smooth, we construct the operator on H1(Ω)

με(φ) = − ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

φ(x)𝜕νwσ,ε(x − εj; v(εj))dSx .

For a function φ ∈ C1(Ω̄)

∫
εj+ ε4 𝜕B1

φ(x)𝜕νwσ,ε(x − εj; v(εj))dSx ≃ −φ(εj) ∫
ε
4 𝜕B1

𝜕νwσ,ε(x; v(εj))dSx .

Since Δwσ,ε = 0, we have

0 = ∫
ε
4 𝜕B1\aεG0

Δwσ,ε dx = ∫
ε
4 𝜕B1

𝜕νwσ,ε dSx + ∫
aε𝜕G0

𝜕νwσ,ε dSx . (4.35)

Hence

− ∫
εj+ ε4 𝜕B1

φ(x)𝜕νwσ,ε(x − εj;φ(εj))dSx ≃ φ(εj) ∫
aε𝜕G0

𝜕νwσ,ε dSx .

Now, we note that due to (3.37)

∫
aε𝜕G0

𝜕νwσ,ε(x; v(εj))dSx ≃ ∫
aε𝜕G0

𝜕νŵσ,ε(x; v(εj))dSx

= an−2ε ∫
𝜕G0

𝜕νŵσ(y; v(εj))dSy

= an−2ε Ĥσ(v(εj)).

Thus

με(φ) ≃
an−2ε
εn
∑
j∈ϒε

εnφ(εj)Ĥσ(v(εj)).

We recover the limit by Riemann sums. Hence, if the operator has a limit, this limit
is

μ(φ) = lim
ε→0

an−2ε
εn
∫
Ω

φ(x)Ĥσ(v(x))dx.

The proof that με is strongly convergent (which is needed to show the convergence
of με(φε) where φε converges weakly), and the rigorous proof of (4.34), is as fol-
lows:
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1. One proves that

− ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

φε(x)𝜕νŵσ,ε(x − εj; v(εj))dSx 󳨀→ (limε→0
an−2ε
εn
)∫
Ω

φ(x)Ĥσ(v(x))dx.

Note the difference with (4.34). This is done by defining functions similar to mg,ε
and noting that, since Δŵσ,ε = 0, similarly to (4.35), we have

− ∫
ε
4 𝜕B1

𝜕νŵσ,ε(y; s)dSy = a
n−2
ε Ĥσ(s).

2. We prove that

∑
j∈ϒε

∫
εj+ ε4 𝜕B1

φε(x)(𝜕νwσ,ε(x − εj; v(εj)) − 𝜕νŵσ,ε(x − εj; v(εj)))dSx 󳨀→ 0.

This is done by integrating by parts and applying the estimates in Lemma 3.23.We
have

∫
εj+ ε4 𝜕B1

φε(x)(𝜕νwσ,ε(x − εj; s) − 𝜕νŵσ,ε(x − εj; s))dSx

= ∫
ε
4B1\aεG0

∇φε(x + εj)∇(wσ,ε(x; s) − ŵσ,ε(x; s))dx

− ∫
aε𝜕G0

φε(x + εj)(𝜕νwσ,ε(x; s) − 𝜕νŵσ,ε(x; s))dSx .

The first term is controlled via the H1 estimate. For the second term we use that

∫
aε𝜕G0

φε(x + εj)(𝜕νwσ,ε(x; s) − 𝜕νŵσ,ε(x; s))dSx

= C0 ∫
aε𝜕G0

φε(x + εj)(σ(s − wσ,ε(x; s)) − σ(s − ŵσ,ε(x; s)))dSx .

Now, we can use the regularity of σ and the estimate in L2(aε𝜕G0) for the differ-
ence. It seems that this in the only point in the proof where the regularity of σ
is applied, since all relevant estimates on Lemma 3.23 are independent of σ. We
point the reader to [116] for the full details and finish the section with some com-
ments.

When gε is as in (1.2) andσ depends on x, the authors in [269] use the test functions
mentioned inRemark 3.15 to recover similar results. Likewise, the case gε(x) = g(x) can
be treated where in (4.32) we recoverℋ depending also on x.
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Remark 4.46. The study of the case when σ is a general monotone graph is possible
although involved. It would require revising the estimates presented for wε,σ and a
sharp analysis of the term I2,ε.

Remark 4.47. The study of this problem when p ∈ (1, n) should follow similarly to the
case G0 = B1 with the additions above. However, it has not been done yet due to the
difficulty of obtaining estimates for ŵε,σ equivalent to (3.38).

4.7.4 Case of G0 not a ball, 1 < p ≤ n and gε ≠ 0

To be best of our knowledge, the results for this problem do not exist in the literature.
However, we expect the effective homogenized equation to be

{
−Δpu +ℋ(x, u) = f Ω,
u = 0 𝜕Ω,

where, with the notations of Remark 3.17 (which allow gε to be of the general class
(1.3)), we would have

ℋ(x, s) = 𝒜0Ĥσ(x, s),

for some 𝒜0. As already mentioned in Remark 3.17, there are important severe tech-
nical difficulties to overcome due to the quasilinear behavior of the p-Laplacian (spe-
cially if p < 2), but we expect the program to be similar to the remaining cases.

4.8 The case β ≁ β⋆

Now let us justify the different homogenized results in this framework mentioned in
Table 1.1.

The case aε ≪ a⋆ε is not relevant, since the reaction term never appears as proved
in Theorem 4.28 for gε = 0, and the behavior is independent of β(ε). We simply point
out that if β(ε) ≲ β⋆(ε), the solution has the same limit as σ = 0.

For subcritical scales we already showed in Theorem 4.16 and Theorem 4.21 that
when β(ε) ≪ β⋆(ε), then the problem has the same limit as the homogeneous Neu-
mann case (i. e., corresponding to σ = 0), and when β(ε) ≫ β⋆(ε) and gε = 0, we have
σ(u) = 0 in the limit, i. e., the reaction term becomes dominant.

We can give some additional information on the case a⋆ε ≪ aε ≤ ε, by recalling
Section 2.4. Due to Remark 4.4, we can compare the solutions for two kinetics σ and σ̄.
The computation in Section 2.4 is rigorous in this case if aε ≳ a⋆ε , and hence we have
(2.10) if p ≥ 2 and (2.11) if 1 < p ≤ 2. Hence, the case β(ε) ≪ β⋆(ε) behaves like σ = 0,
i. e., the homogeneous Neumann boundary condition on the particles.
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The behavior of β(ε) ≫ β⋆(ε) and aε ∼ a⋆ε is interesting. When G0 is a ball, let us
look at (4.17). We note that if β(ε) ≫ β⋆(ε), then ℬ0 becomes 0 (while the rest of the
argument works) and we recover the equation

−σ(s − H(x, s)) = g(x).

For σ strictly increasing

H(s) = s − σ−1(−g(x)).

If g(x) = 0 simply H(s) = s. This is the same behavior as when σ = σD corresponding
theDirichlet boundary (given by (2.2)).Wehave thatℋ is, as for theDirichlet boundary
condition,

ℋ(s) = 𝒜0|s|
p−2s.

If, on the other hand, we look at the auxiliary problem (3.25) (corresponding to
gε = 0), with C0 given by (3.26), so it would be C0 = +∞. Changing it to the left-hand
side, the auxiliary problem becomes

{{{
{{{
{

Δŵσ = 0 ℝn \ G0,

0 = σ(s − ŵσ) 𝜕G0,

ŵσ → 0 as |y| → +∞.

In other words, if σ is strictly increasing,

{{{
{{{
{

Δŵσ = 0 ℝn \ G0,

ŵσ = s 𝜕G0,

ŵσ → 0 as |y| → +∞,

so ŵσ(s, y) = sκ̂(y) and hence

H(s) = sλG0
.

Again, we have recovered the same reaction homogenized term as the one associated
to the case of Dirichlet boundary conditions.

Although for different problems, the similar cases in Tables 1.2 and 1.3 are recov-
ered by similar procedures.

In the previous literature for p < n, many authors considered the special choices

aε = C0ε
α, β(ε) = ε−γ . (4.36)

Under this framework, thedifferent resultinghomogenized equations canbe classified
according to the different cases indicated in Figure 4.1
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Figure 4.1: Representation of Table 1.1 with the choices (4.36). Note that α = 1 corresponds to big
particles, whereas α = n

n−p corresponds to a⋆ε . Regions I and IV correspond to β(ε) ≫ β⋆(ε), II
and V to β(ε) ∼ β⋆(ε) and III and VI to β(ε) ≪ β⋆(ε). Region VII is the supercritical case of small
particles. The line for α = 1 is also split in three regions by line II, but we do not number them for
the sake of simplicity. Note also that for the critical case, α = n

n−p , there are three different cases of
homogenized equations according to the values of β(ε) = ε−γ , as in Table 1.1.

4.9 Further comments

4.9.1 L1 data

In many applications the data f and gε are less regular than usual and it is impossible
to get the solutionuε of the problem (1.1) in the energy spaceW 1,p(Ωε, 𝜕Ω). Hereweonly
will consider the case of particles of critical scale over the whole domain and p = 2,
but the results can be extended tomany other formulations. So, in this subsection, we
consider the problem

{{{
{{{
{

−Δuε = f (x) x ∈ Ωε,

𝜕νuε + β(ε)σ(uε) = β(ε)gε(x) x ∈ Sε,
uε = 0 𝜕Ω,

(4.37)

under the assumptions

σ is a maximal monotone graph of ℝ2, 0 ∈ σ(0), (4.38)

f ∈ L1(Ω), (4.39)

gϵ ∈ L1(Sε). (4.40)

We start by considering the basic theory of the existence anduniqueness of aweak
solution as a first step to the homogenization process. We will need now some further
results beyond the exposition made in Chapter 2 for the usual case considered in the
book in which f ∈ L2(Ω) and gϵ ∈ L2(Sε).
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One possibility to carry out the homogenization process is in the framework of
the so-called renormalized solutions; see [38, 208, 53, 147] and, especially, [127], in
which the case of big particles (with a more complex linear diffusion operator) was
considered under the assumption that σ is a continuous increasing function such that
σ(0) = 0. Nevertheless, in this section we will follow a different approach in order
to obtain the convergence of the direct sequence of solutions uε and not only on the
sequence of its truncations. It is well known that, at least under some additional as-
sumptions, there is some equivalence between renormalized solutions, entropy so-
lutions (see [27, 247]) and L1-weak solutions ([131]), but here we will make a direct
presentation for weak solutions.

Following the pioneering and fundamental work [52] and similar to Chapter 2,
given amaximal monotone graph ofℝ2, σ, we define the following notion of solution.

Definition 4.48. We say that uε ∈ W 1,1(Ωε, 𝜕Ω) is a weak solution of problem (4.37) if
there exists bε ∈ L1(Sε), with bε(x) ∈ σ(uε(x)) on Sε such that

∫
Ωε

∇uε∇φdx + β(ε) ∫
Sε

bεφdS = ∫
Ωε

fφdx + β(ε) ∫
Sε

gεφdS, ∀φ ∈ W 1,∞(Ωε, 𝜕Ω). (4.41)

Sincewehavemixed type boundary conditions in problem (4.37) on 𝜕Ωε (of Dirich-
let type on 𝜕Ωand of Robin type on Sε), the corresponding result given in [48, Theorem
22] does not apply directly to our framework. In fact, in this paper it is assumed that
the diffusion equation contains a positive absorption term (i. e., the equation is of the
type −Δuε + auε = f (x), with a > 0). This is crucial in some parts of their arguments.
Nevertheless, instead of this fact, we will use here the property that there is a part of
the boundary of Ωε in which we have a Dirichlet condition (since otherwise it must be
assumed some additional conditions on f and gε; see [28]).

We point out that the paper [52] was the object of many generalizations and that
some of them are valid also for the quasilinear case p ̸= 2 (see, e. g., [26, 188]). For
homogenization purposes we will need some uniform estimates which are given in
the following result and which look new in the literature.

Theorem 4.49. Assume (4.38) on σ and let f and gε satisfy (4.39) and (4.40), respec-
tively. Then, there exists a unique weak solution uε ∈ W 1,q(Ωε, 𝜕Ω), with 1 ≤ q <

n
n−1 ,

of problem (4.37). Moreover, if ûε ∈ W 1,q(Ωε, 𝜕Ω) is a solution (4.37) corresponding so-
lution to different data f̂ and ĝε that satisfy (4.39) and (4.40), and b̂ε ∈ L1(Sε) with
b̂ε(x) ∈ σ(ûε(x)) on Sε, we have

β(ε)‖bε − b̂ε‖L1(Sε) ≤ ‖f − f̂ ‖L1(Ωε) + β(ε)‖gε − ĝε‖L1(Sε) (4.42)

and for any 1 ≤ q < n
n−1 , there exists a constant C (depending only onΩ and q) such that

󵄩󵄩󵄩󵄩∇(uε − ûε)
󵄩󵄩󵄩󵄩Lq(Ωε)
≤ C(‖f − f̂ ‖L1(Ωε) + β(ε)‖gε − ĝε‖L1(Sε)). (4.43)
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Since we will adapt to our setting some of the results of [52] and its generalization
made in [28] we will give only a sketch of the proof, except when proving that the
constant C > 0, appearing in (4.43), is independent of ε. The proof is a consequence
of several ingredients. A basic fact is the L1-treatment of the linear Laplace problem
with mixed boundary conditions

{{{
{{{
{

−Δv = f x ∈ Ωε,

𝜕νv = g x ∈ Sε,
v = 0 𝜕Ω,

(4.44)

for f ∈ L1(Ωε) and g ∈ L1(Sε). We say that v ∈ W 1,1(Ωε, 𝜕Ω) is an L1-weak solution of
(4.44) if

∫
Ωε

∇v∇φdx = ∫
Ωε

fφdx + ∫
Sε

gφdS, ∀φ ∈ W 1,∞(Ωε, 𝜕Ω). (4.45)

When f , g are smooth, existence is classical as presented in Chapter 2. Existence and
uniqueness with L1 are a consequence of the following continuous dependence esti-
mate.

Lemma 4.50. Assume f ∈ L1(Ω) and g ∈ L1(Sε) and let v be a weak solution of (4.44).
Then, for any 1 ≤ q < n

n−1 , there exists a constant C (depending only on Ω and q) such
that

‖v‖W 1,q(Ωε) ≤ C(‖f ‖L1(Ω) + ‖g‖L1(Sε)). (4.46)

Proof. We study the cases q ∈ (1, nn−1 ). The case q = 1 follows any of these cases by
applying Hölder’s inequality

‖∇v‖L1(Ωε) ≤ |Ωε|
q−1
q ‖∇v‖Lq(Ωε) ≤ |Ω|

q−1
q ‖∇v‖Lq(Ωε).

Let r = q󸀠 = q
q−1 ∈ (n,∞). We will prove that, for h0, . . . , hn ∈ Lr(Ωε), we have

∫
Ωε

(h0v +
n
∑
i=1

hi
𝜕v
𝜕xi
)dx ≤ C(‖f ‖L1(Ωε) + ‖g‖L1(Sε))

n
∑
i=0
‖hi‖Lr(Ωε), (4.47)

for all r > n, with C > 0 depending only on Ω and q. We can use this estimate; we take
h0 = |v|q−2v, hi = |∇v|q−2

𝜕v
𝜕xi

and we recover

∫
Ωε

(|v|q + |∇v|q)dx

≤ C(‖f ‖L1(Ωε) + ‖g‖L1(Sε))((∫
Ωε

|v|q dx)
q−1
q

+
n
∑
i=1
(∫
Ωε

|∇v|
q−2
q−1 q󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕v𝜕xi
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

q
q−1

dx)
q−1
q

)

≤ C(‖f ‖L1(Ωε) + ‖g‖L1(Sε))((∫
Ωε

|v|q dx)
q−1
q

+ (∫
Ωε

|∇v|q dx)
q−1
q

).
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Hence, by simple manipulation (4.47) implies (4.46) without adding any dependence
on ε.

To prove (4.47) we will construct some auxiliary functions. By density, it suffices
to prove (4.47) for h0, . . . , hn ∈ C∞c (Ωε). Fix one of these (n + 1)-tuples and define h =
h0 − ∑

n
i=1
𝜕hi
𝜕xi
. Let φε be the solution of the associate linear problem

{{{
{{{
{

−Δφε = h(x) x ∈ Ωε,

𝜕νφε = 0 x ∈ Sε,
φε = 0 𝜕Ω.

Following the proof of [164, Lemma 7.3] we can deduce the estimate

‖φε‖L∞(Ωε) ≤ C(Ωε)
n
∑
i=0
‖hi‖Lr(Ωε). (4.48)

The argument consists of takingφ(x) = max{v(x)−k,0}, for k ≥ 0, as test function and
iterating the inequality obtained through the weak formulation. A careful revision of
the proof of [164, Lemma 7.3] allows to see that

C(Ωε) = ĈnΨn(|Ωε|),

where Ĉn is a universal constant (only depending on r and n) and Ψn(s) is a strictly in-
creasing function of s (depending also on r and n). Indeed, the estimate of the proof of
Lemma 7.3 of [164] only depends on the Sobolev inequality constant and the Lebesgue
measure of the domain. According to [252] we know that such a constant depends in-
creasingly on the measure of the set where it is applied. Thus, in our special case we
have

C(Ωε) ≤ C = ĈnΨn(|Ω|). (4.49)

Let us use this estimate to prove (4.47). Usingφε as a test function in the equation of v,

∫
Ωε

∇v∇φε dx = ∫
Ωε

fφε dx + ∫
Sε

gφε dS.

On the other hand, using v as a test function in the problem for φε we have

∫
Ωε

∇v∇φε dx = ∫
Ωε

v(h0 −
n
∑
i=1

𝜕hi
𝜕xi
)dx = ∫

Ωε

h0v dx +
n
∑
i=1
∫
Ωε

hi
𝜕v
𝜕xi

dx,

since h0, . . . , hn are compactly supported. Joining the last two equations,

∫
Ωε

h0v +
n
∑
i=1
∫
Ωε

hi
𝜕v
𝜕xi

dx = ∫
Ωε

fφε dx + ∫
Sε

gφε dS.

Using (4.48) we deduce (4.47) and hence obtain the result.
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Remark 4.51. Let τv denote the trace of v ∈ W 1,1(Ωε, 𝜕Ω) inL1(Sε). LetM be the operator
in L1(Ωε) × L1(Sε) with the graph

{[(v,w), (f , g)] : (v, f , g) ∈ W 1,1(Ωε, 𝜕Ω) × L1(Ωε) × L1(Sε),
w = τv and v is solution of (4.44)}.

Then,M is a linear, single-valued and densely defined operator in L1(Ωε)×L1(Sε). This
is proved by an argument which consists in regularizing (f , g) and passing to the limit
(see [28]). In fact, the above arguments prove that operatorM is m-accretive in L1(Ω) ×
L1(Sε) (i. e., (I +λM)−1 is an everywhere defined non-expansive self-mapping of L1(Ω)×
L1(Sε) for λ > 0).

Remark 4.52. If P is the projection of L1(Ωε) × L1(Sε) onto L1(Ωε) the estimate (4.46)
proves that

P(I +M)−1 : L1(Ωε) × L
1(Sε) → W 1,q(Ωε, 𝜕Ω),

boundedly for 1 ≤ q < n
n−1 . ThusM has a compact resolvent. In particular (f , g) ∈ R(M)

if and only if (f , g) is orthogonal to the null space of the adjointM∗ ofM. Note that if
(u, z) is in the null space of the adjointM∗, we have z = τu and

{{{
{{{
{

−Δu = 0 x ∈ Ωε,

𝜕νu = 0 x ∈ Sε,
u = 0 𝜕Ω.

(4.50)

Then, by the Friedrich inequality we get that u = 0 and then z = 0. Note that for pure
Neumann boundary conditions this null space is much bigger (it contains to (a,0) for
any constant a) and this is the reason to ask for some supplementary conditions to the
data (f , g) in that case (see [28]).

Proof of Theorem 4.49. The strategy consists in several steps.
(i) We approximate f and gε by a sequence fλ and gελ of bounded data fλ ∈ L∞(Ω)
and gελ ∈ L

∞(Sε) converging to f in L1(Ω) and to gε ∈ L1(Sε), respectively, and we
solve the corresponding problem (4.37) with σ replaced by its Yosida approximation
σλ = (I − (I + λσ)−1)/λ, or even better, we solve the approximate problem

{{{
{{{
{

−Δu = fλ(x) x ∈ Ωε,

𝜕νu + β(ε)σλ(u) = β(ε)gελ(x) x ∈ Sε,
u = 0 𝜕Ω,

(4.51)

with λ > 0. Thus we obtain a unique solution uε,λ ∈ H1(Ωε, 𝜕Ω) ∩ L∞(Ω) as indicated
in Chapter 2.
Step (ii) consists in proving that we can pass to the limit in L1 as λ ↓ 0. This is an easy
variation of Theorem B’ of [28]. It was shown there that as λ ↓ 0, the sequences {uε,λ}
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and {σλ(uε,λ)} converge to limits {uε} and {bε} in L1(Ωε) and L1(Sε), respectively, with
bε(x) ∈ σ(uε(x)) on Sε, and that uε is a solution of (4.37).

Estimate (4.42)was essentially proved in [28, PropositionE]. Adifferent alternative
proof consists in substituting the expressions as weak solutions for uε,λ and ûε,λ and
takingφ = ϕ(uε,λ− ûε,λ) as test function, whereϕ ∈ C1(ℝ),ϕ non-decreasing,ϕ(0) = 0.
Then

∫
Ωε

ϕ󸀠(uε,λ − ûε,λ)
󵄨󵄨󵄨󵄨∇(uε,λ − ûε,λ)

󵄨󵄨󵄨󵄨
2 dx + β(ε) ∫

Sε

(σλ(uε,λ) − σλ(ûε,λ))ϕ(uε,λ − ûε,λ)dS

≤ ∫
Ωε

(fλ − f̂λ)ϕ(uε,λ − ûε,λ)dx + β(ε) ∫
Sε

(gελ − ĝ
ε
λ)ϕ(uε,λ − ûε,λ)dS.

The first term is positive, so it can be dropped. As ϕ approximates the sign function,
we recover

β(ε) ∫
Sε

󵄨󵄨󵄨󵄨σλ(uε,λ) − σλ(ûε,λ)
󵄨󵄨󵄨󵄨dS ≤ ∫

Ωε

|fλ − f̂λ|dx + β(ε) ∫
Sε

󵄨󵄨󵄨󵄨g
ε
λ − ĝ

ε
λ
󵄨󵄨󵄨󵄨dS.

Here we have used that σλ is non-decreasing and σ(0) = 0. Then, as λ ↘ 0, we get the
estimate (4.42). In order to prove (4.43) (which was absent in [28]) we point out that
vε = uε − ûε satisfies

{{{
{{{
{

−Δvε = f − f̂ x ∈ Ωε,

𝜕νvε = β(ε)[(gε − ĝε) − (bε − b̂ε)] x ∈ Sε,
wε = 0 𝜕Ω.

(4.52)

Then, it suffices to apply estimate (4.46), the triangular inequality, and then estimate
(4.42) to arrive at (4.43)with the constant (C+1),C givenby (4.49) and thus independent
of ε.

Now we are in conditions to state and prove a convergence result, as ε → 0. Al-
though many different possibilities are allowed, here we will consider only the case
of balls at the critical space making arise a strange term, as an alternative to Theo-
rem 4.36.

Theorem 4.53. Let aε ∼ a∗ε , G0 a ball, β(ε) ∼ β∗(ε), f ∈ L1(Ω), gε ∈ W 1,∞(Ω) and let σ be
a maximal monotone graph such that 0 ∈ σ(0). Let uε ∈ W 1,q(Ωε, 𝜕Ω), with 1 ≤ q <

n
n−1 ,

be the unique weak solution of problem (4.37). Then

Pεuε ⇀ u in W 1,q
0 (Ω), with 1 ≤ q < n

n − 1
, (4.53)

as ε → 0, where u is the unique weak solution of the homogenized problem

{
−Δu +ℋ(x, u) = f Ω,
u = 0 𝜕Ω,

(4.54)

withℋ(x, u) given by (4.16) and (4.17).
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Proof. By Theorem 4.49 and the existence of the extension operators presented in
Chapter 2 we have

Pεuε ⇀ u inW 1,q
0 (Ω),

as ε → 0, for some u ∈ W 1,q
0 (Ω), for any 1 ≤ q <

n
n−1 . Moreover, as in the proof of

Theorem 4.49, we approximate f by a sequence of functions fk ∈ L∞(Ω) such that

fk → f in L1(Ω),

as k → +∞. We construct the auxiliary solutions uε,k of problem (4.37) with (fk , g) as
external data. Due to Theorem 4.36, we have

Pεuε,k ⇀ uk in H1
0(Ω),

as ε → 0, where uk is the unique solution of (4.54) with fk as external datum. Then, by
the estimate (4.43) we get

󵄩󵄩󵄩󵄩∇(uε,k − uε)
󵄩󵄩󵄩󵄩Lq(Ωε)
≤ C‖fk − f ‖L1(Ω),

for all k ∈ ℕ, ε > 0 and 1 ≤ q < n
n−1 . This estimate is preserved in the limit due to weak

convergence and, hence, uk → u inW 1,q
0 (Ω), and thusℋ(x, uk) → ℋ(x, u) in L1(Ω), as

k → +∞, since H is uniformly Lipschitz. From the equivalent very weak formulation
(see, e. g., [124]) of problem (4.54) with fk as external datum, we have

∫
Ω

(−ukΔφ +ℋ(x, uk)φ)dx = ∫
Ω

fkφdx ∀φ ∈ W2,∞(Ω) ∩W 1,∞
0 (Ω).

Passing to the limit, we deduce that

∫
Ω

(−uΔφ +ℋ(x, u)φ)dx = ∫
Ω

fφdx ∀φ ∈ W2,∞(Ω) ∩W 1,∞
0 (Ω),

and hence u is a very weak solution of problem (4.54) with f as external datum. Since
u ∈ W 1,q

0 (Ω), u is also a weak solution of (4.54).

Remark 4.54. Many generalizations of the above theorem seem possible but they will
be the object of a separated work.

4.9.2 Additional properties of the strange term

It is useful to have some uniform approximation of function H being characterized
in terms of the primitive maximal monotone graph σ (in the spirit of Lemma 2.17 it
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can always be applied since H is also a maximal monotone graph). For a maximal
monotone graph σ we will denote

σ0(r) = sr , such that sr ∈ σ(r) and ‖sr‖ = inf
s∈σ(r)
‖s‖.

This element sr is unique since σ(r) is a closed convex set (see [48]).

Proposition 4.55. Let G0 be a ball and let g ∈ W 1,∞(Ω). Let σm and σ bemaximalmono-
tone graphs such that D(σ−1) ⊂ D(σ−1m ) ⊂ D(σ−1) for any m = 0, 1, 2, ... Assume that

for any r ∈ D(σ−1) the exists sm ∈ σ
−1
m (r) such that sm → (σ

−1)0(r). (4.55)

Then, for any r ∈ D(σ−1) and for any fixed x ∈ Ω, the sequence Hm(x, r) (associated to
σm) given by (4.17) converges uniformly to H(x, r) (associated to σ) as m→∞.

We shall need the following auxiliary result.

Lemma 4.56 (Proposition 2.8 of [48]). Let Am and A be maximal monotone operators
on a Hilbert space X such that D(A) ⊂ D(Am) ⊂ D(A) for any m = 0, 1, 2, . . .. Assume that

for any r ∈ D(A) ∃sm ∈ Am(r) such that sm → A0(r). (4.56)

Then, for any r ∈ D(A) the function (I + cAm)−1(r) → (I + cAm)−1(r) uniformly for any c
in a bounded set of [0, +∞).

Proof. From formula (4.17) we have

H(x, s) + σ−1(Θn,p(H(x, s)) + g(x)) ∋ s,

and thus we get the characterization

H(x, ⋅) = (I + σ−1(Θn,p(⋅) + g(x))
−1, where Θn,p(r) = ℬ0|r|

p−2r. (4.57)

The result will be a direct application of the above lemma once we prove that, for any
fixed x ∈ Ω (note that g is continuous on Ω and can be extended to Ω), the opera-
tor r 󳨃→ σ−1(Θn,p(r) + g(x)) is a maximal monotone operator Ax (depending of the pa-
rameter x ∈ Ω) and that the approximation of σm implies a good approximation of Ax.
Obviously, for any fixed x ∈ Ω, the operator

r 󳨃→ Φ(x, r) = Θn,p(r) + g(x) (4.58)

is also a maximal monotone operator in ℝ and its inverse is given by

Φ−1(x, s) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
s − g(x)

ℬ0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1(p−1)
sign(s − g(x)).
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Thenwedefine theoperatorAx = (Φ−1(x, .)∘σ)−1 = σ−1∘Φ(x, .) (withD(Ax) = R(Φ−1(x, .)∘
σ)), which is the inverse of the maximal monotone operator

A−1x = Φ
−1(x, .) ∘ σ, with D(A−1x ) = D(σ).

Moreover, since Φ−1(x, .) is single-valued, the principal section of Ax is given by

A0x = (σ
−1)0 ∘Φ(x, .)

(recall that the value of the principal section of a maximal operator A(s), for any s ∈
D(A), is given by the element of minimum norm in the closed and convex set A(s); see
[48]). Finally, if r ∈ D(Ax), defining Ax,m = σ−1m ∘Φ(x, .), with σm satisfying (4.55), then
for any r ∈ D(Ax) we have that the element ŝx,m = Φ(x, sm) satisfies ŝx,m ∈ Ax,m(r) and
ŝm,x → A0x (s), so that the assumptions of the above lemma are fulfilled and we get, for
any fixed x ∈ Ω,

Hm(x, r) = (I + σ
−1
m ∘Φ(x, .))

−1(r) → H(x, r) = (I + σ−1 ∘Φ(x, .))−1(r), uniformly.

An important consequence of the above result arises when we approximate both
maximal monotone graphs σ and σ−1 by their (Lipschitz) Yosida approximation. We
recall that if σ = 𝜕ψ, the Yosida approximation associated to the convex function ψ is
given by

σm = 𝜕ψm, where ψm(s) = min
r∈ℝ
{

1
2m
|r − s|2 + ψ(r)}.

Weknow (see Propositions 2.6 and 2.11 of [48]) thatψm ∈ W2,∞(ℝ) and |ψ󸀠m(s)| ↑ |σ
0(s)|

for any s ∈ ℝ. Moreover, it is also well known that

σ−1 = 𝜕ψ∗,

where ψ∗ is the Fenchel–Moreau convex conjugate of ψ defined by

ψ∗(r) = sup
s∈ℝ
{rs − ψ(s)}

(see [48] page 41). In addition, it is known that at least if ψ is “weakly coercive” in the
sense that

∀rn such that supn
ψ(rn) < +∞ then sup

n
|rn| < +∞, (4.59)

then the Yosida approximations of σ−1 are given by the conjugate (ψm)
∗ of the Yosida

approximations ψm of σ (see, e. g., [15]). As a matter of fact, since (ψ)∗∗ = ψ and
(ψm)
∗∗ = ψm we have that if ψ∗ is “weakly coercive,” i. e.,

∀rn such that supn
ψ∗(rn) < +∞ then sup

n
|rn| < +∞, (4.60)

then the Yosida approximations of σ are given by the conjugates of the Yosida approx-
imations of σ−1. Then we arrive at the following result.
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Corollary 4.57. Let σ = 𝜕ψbe amaximalmonotone graph ofℝ2 and let σm be the Yosida
approximations of σ. Assume that either (4.59) or (4.60) holds. Let G0 be a ball and
g ∈ W 1,∞(Ω). Define Hm(x, s) = (I + [(ψm)

∗]󸀠(Φ(x, .)))−1(s) with Φ(x, .) given by (4.58).
Then, for any r ∈ R(σ) and for any fixed x ∈ Ωwe have that Hm(x, r) → H(x, r) uniformly
as m→ 0.

Remark 4.58. It is very easy to check that if σ is the maximal monotone graph asso-
ciated to reactions of order k ≥ 0, mentioned in Section 1.1, then at least one of the
assumptions, (4.59) or (4.60), is satisfied. In fact it also holds for any maximal mono-
tone graph which is given by a Hölder continuous non-decreasing function and for
any graph with a bounded range (as, for instance, the Heaviside function). We also
mention that this is not the case of the special maximal monotone graph associated
to the Signorini boundary conditions, but there are other ad hoc methods to study
the approximations of the conjugate convex functions in this case (see, e. g., the last
chapter of the monograph [16]).

4.9.3 Homogenization of the effectiveness factor

A relevant parameter in chemical engineering is the so-called effectiveness factor,
which indicates the fraction of a chemical reaction taking place. This is given by in-
tegrating the reaction term, in either the heterogeneous media or the homogenized
setting

1
|Sε|
∫
Sε

σ(uε)dS,
1
|Ω|
∫
Ω

σ(u)dx.

Since the main interest of the effective equation is to give approximate information of
the real-life problem in the heterogeneous setting, it is relevant to ask whether

1
|Sε|
∫
Sε

σ(uε)dS →
1
|Ω|
∫
Ω

σ(u)dx as ε → 0. (4.61)

As we know, we can only expect this kind of behavior in the subcritical regime.
When σ is smooth, this result is just a form of our averaging lemmas. In more general
settings, this result have also been proved. We refer the reader to [84, 110] for results
in this direction.

In [119, 118] the authors study the effectiveness of the homogenized problem with
respect to the shape of G0. For a⋆ε ≪ aε ≪ ε the reaction term is proportional to
|𝜕G0|σ(u) and this is the only effect of G0 on the equation. The higher is |𝜕G0|, the
faster is the reaction, and the lower is u, the lower is the effectiveness. When aε ∼ ε
the effective diffusion appears. Amongst the convex shapes ofG0 of fixed volume, they
found there are maximizers of the effectiveness.
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4.9.4 Pointwise comparison of critical and non-critical problems

Since we do not have a natural definition of effectiveness in the critical case, the claim
that this critical scale is “more effective” than the non-critical ones – a claim that is
often made in the nanotechnology community – is difficult to test. However, we know
that for the non-critical cases the effectiveness is increasing with the value of the re-
spective solutions (since the function σ is assumed to be increasing). Thus, it is in-
teresting to study whether we can find a pointwise comparison of the solutions corre-
sponding to critical and non-critical homogenized problems.

Let us give a concise example, which is amodification of those presented in [109].
Assume we are placing particles over the whole domain of radius aε = εα and we
would like to pick α such that the concentration is higher (or lower). Let us assumewe
are also able to pick the scaling coefficient β(ε) = εγ with adequate γ (in this setting
γ = n − α(n − 1)). For simplicity we assume that p = 2 and G0 = B1.

First, let us consider the case of gε = 0
If α ∈ (1, n

n−2 ) we recover the homogenized PDE

−Δunc + |𝜕B1|σ(unc) = f .

Note that this is independent of α. If α = n
n−2 , then the homogenized equation becomes

−Δuc + (n − 2)|𝜕B1|H(uc) = f ,

where

(n − 2)H(s) = σ(s − H(s)).

As we have already shown, H(0) = 0 and H󸀠 ≥ 0. Both problems are completed with
the boundary condition u = 0 on 𝜕Ω (although this could be generalized). Since we
are dealing with chemical reactions we assume that the functions are non-negative
unc, uc ≥ 0 (this is natural if they represent concentrations). Then, by applying that
0 ≤ H(uc) ≤ uc we have

−Δ(uc − unc) + |𝜕B1|(σ(uc) − σ(unc)) = |𝜕B1|(σ(uc) − (n − 2)H(uc))

= |𝜕B1|(σ(uc) − σ(uc − H(uc)))

≥ 0,

due to the monotonicity of σ. Hence, we get

uc ≥ unc in Ω.
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Non-homogeneous exterior Dirichlet boundary condition
In the setting of chemical engineering it is common to assume that on the “walls” of
Ω we have a constant high concentration and one may pose the problem

{{{
{{{
{

ΔUε = f Ωε,

𝜕νUε + β(ε)σ(Uε) = 0 Sε,
Uε = 1 𝜕Ω,

where again we assume f ≥ 0. By the change in variable uε = 1 − Uε we get

{{{
{{{
{

Δuε = −f Ωε,

𝜕νuε + β(ε)(σ(1) − σ(1 − uε)) = β(ε)σ(1) Sε,
uε = 0 𝜕Ω.

Letting σ(s) = σ̄(1)−σ̄(1−s)we recover a problem in our usual formulation in this book.
Note that σ(0) = σ̄(0) = 0 and σ(1) = σ̄(1). By the comparison principle 0 ≤ uε ≤ 1,
when α ∈ (1, n

n−2 ) we recover the homogenized PDE

−Δunc + |𝜕B1|(σ(1) − σ(1 − unc)) = −f + |𝜕B1|σ(1),

or, equivalently, for Unc = 1 − unc,

−ΔUnc + |𝜕B1|σ(Unc) = f .

If α = n
n−2 , then the homogenized equation is

−Δuc + (n − 2)|𝜕B1|H(uc) = −f ,

where

(n − 2)H(s) = (σ(1) − σ(1 − (s − H(s)))) − σ(1) = −σ(1 − (s − H(s))).

Thus

−ΔUc + (n − 2)|𝜕B1|H(Uc) = f ,

where (n − 2)H = σ(s − H) is exactly the same characterization as for the case of a
homogeneous Dirichlet boundary condition. It is easy to see, by contradiction, that
H ≤ 0 in [0, 1]. Repeating the above argument, we arrive at the comparison

Uc ≥ Unc in Ω.

In the chemical engineering framework, this is read in terms of the concentration as
the important conclusion that the critical case leads to a “better” reaction than the
non-critical cases.
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Remark 4.59. This kind of behavior has been shown in some experimental works in
heterogeneous nanocatalysis; see references to the use of gold nanoparticles, for in-
stance, in [244] and in the survey [220].

Remark 4.60. It was shown in [109] (see also [102]) that, in the case of chemical reac-
tions of order less than one (σ(s) = csk with k ∈ (0, 1)) and big particles, the homoge-
nized problem (in terms ofUnc) may generate a “dead core region”whereUnc = 0. This
is very negative from the point of view of the chemical reaction. In contrast to that, for
this same kinetics (reaction of order k < 1) the use of critical-size particles leads to an
improved result since it can be proved that for the equation with the strange term no
dead core region can be formed (see [102]).

4.9.5 Homogenization and optimal control

Many different formulations involving an optimal control associated to problem (1.1)
can be considered. For instance we can assume a distributed control v(x)

{{{
{{{
{

−Δpuε = f (x) + v(x) x ∈ Ωε,

𝜕νpuε + β(ε)σ(x, uε) = β(ε)g
ε(x) x ∈ Sε,

uε = 0 𝜕Ω

(4.62)

and search for the minimization of the energy

Jε(v) =
1
p
‖∇uε‖

p
Lp(Ωε)
+
Λ
2
‖v‖2L2(Ωε)

,

for some weight constant Λ > 0. The assumption most often taken in the literature on
this optimal control problemwasp = 2. The existence of an optimal control, for any ε >
0, is a well-known result since a long time ago [191]. The associated homogenization
problem was first considered in [181, 182, 237, 234] for Dirichlet boundary conditions
on the boundary of the particles, for Neumann boundary conditions in [182] and for
Signorini boundary conditions in [250]. The passing to the limit, as ε → 0, in the case
of a critical scale was analyzed in [234, 250]. Note that this requires some stronger
convergence results since wemust pass to the limit in the energies and not only in the
own solutions uε.

The extension to nonlinear Robin conditions is the main goal of the paper [123]
(where the case of particles on a manifold is also considered). A remarkable corollary
in the frameworkof the applications in catalysis (in chemical engineering),whendeal-
ing with particles of critical size, is that in order to control the homogenized chemical
reaction (for instance, trying to maximize the effectiveness when we write w = 1 − u,
i. e., with w = 1 on the boundary of the chemical reactor Ω, as mentioned in Sec-
tion 4.9.3) we can do that by controlling themicroproblems (1.1) with a cost functional
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Jε which is independent of the own concentrationwε and only depends on its gradient
∇vε. We point out that other connections between homogenization and control theory
will be mentioned in Appendix A, in the framework of parabolic problems and the
so-called controllability property for the homogenized equation.

4.9.6 Convergence of spectra

A very interesting problem which has received much attention in the literature con-
cerns the homogenization of linear and semilinear eigenvalue problems. So, we assume
p = 2 and for a given maximal graph σ(x, u), we consider the eigenvalue problem

{{
{{
{

−Δuε = λεuε in Ωε,
uε = 0 on 𝜕Ω,
𝜕uε
𝜕ν + β(ε)σ(x, uε) ∋ 0 for x ∈ Sε.

(4.63)

A special case which was intensively considered concerns the linear non-autono-
mous eigenvalue problem in which

σ(x, u) = a(x)u,

where a ≡ a(x) is a strictly positive continuously differentiable function of the variable
x ∈ Ω.

In the linear case, for each ε > 0, problem (4.63) is a standard spectral problem in
the couple of spaces H1(Ωε, 𝜕Ω) ⊂ L2(Ωε), with a discrete spectrum. Let us denote

λε1 ≤ λ
ε
2 ≤ ⋅ ⋅ ⋅ ≤ λ

ε
k ≤ ⋅ ⋅ ⋅ < ∞,

the sequence of eigenvalues repeated according to their multiplicities, and let {uεk}
∞
k=1

be the set of associated eigenfunctions (which we know form an orthonormal basis
in L2(Ωε)). Some pioneering convergence results were given in [199, 235, 261] (see also
[221] including also a stochastic formulation). A very general result (containing an
abstract formulation) from the spectral perturbation theory proving the convergence
for eigenvalues and the corresponding eigenfunctions of spectral problems was given
in Lemma 1.6, Chapter III, of [214]. Of course, the formulation of the final homogenized
eigenvalue problem depends on β(ε), aε and n, but, in general, it corresponds to a
linear eigenvalue problem of the type

{
−div(Aeff∇u) + βeff(x)u = λu in Ω,
u = 0 on 𝜕Ω

(see, e. g., [236]). For someother spectral convergence results concerningparticles ona
manifold or on part of the boundary (problemswhichwill be considered in Chapters 5
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and 6), see [160, 155]. See also [219] for the non-periodic case, [216] for the case of the
bi-Laplacian operator and [154] for the case of cylinders instead of particles.

When σ(x, u) is nonlinear, problem (4.63) becomes a bifurcating problem and the
existence of a family of solutions uε, for each ε > 0, requires different tools (see refer-
ences in [176, 122]). Once again, the final homogenized eigenvalue problem depends
on β(ε), aε, n and σ(x, u), but it can always be formulated in terms of a nonlinear eigen-
value problem of the type

{
−div(Aeff∇u)+ℋ(x, u) ∋ λu in Ω,
u = 0 on 𝜕Ω,

(4.64)

for some suitablemaximalmonotone graphℋ(x, u) (which in the critical case becomes
a non-decreasing Lipschitz function). The convergence theorem for the special case
of big particles and σ(x, u) = |u|k−1u with k ∈ [0, n/(n − 2)) was given in [176]. It seems
possible to extend such results to the case of particles of critical size, arriving then
to a eigenvalue problem with a strange term ℋ(x, u), different from σ(x, u). This sub-
ject is object of study by some of the authors. For instance, it is well known (see, e. g.,
[122, 100, 121]) that ifℋ(x, u) = cσ(x, u) = c|u|k−1u, with k ∈ (0, 1), the nodal solutions
uλ of (4.64) are unstable for any value of the parameter λ > 0 leading to the existence
of solution. This is in contrast to the case corresponding to the critical scale since then
ℋ(x, u) becomes a Lipschitz continuous increasing function and the linearization prin-
ciple ([121]) allows to show the existence of stable stationary solutions uλ, for some
λ > 0.

Finally, we mention that there is also active research on the homogenization con-
vergence for the case inwhich the expression of the eigenvalue is placed in the bound-
ary condition on Sε (and not in the partial differential equation). This corresponds to
the so-called Steklov problem; see, e. g., theworks (on some linear problems) [224, 69],
and the references therein.
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5 Particles over an interior manifold
In this chapterwewill provehow to get thehomogenizedproblem for the case inwhich
the particles are placed on an interior manifold of Ω. We will tackle the geometry pre-
sented in Section 1.2.1.2. We point out that in this setting

|Sε| = |ϒε||aε𝜕G0| ≃ ε
1−n|Ω0|an−1ε |𝜕G0|,

where we recall, going back to (1.4), that Ω0 = {xn = 0} ∩ Ω and hence it is an
(n − 1)-dimensional manifold. In this setting the critical scale is given by

a⋆ε =
{{{{
{{{{
{

ε
n−1
n−p if p < n,

εe−
α2
ε for any α > 0 if p = n,

0 p > n.

Remark 5.1. When p = n we point out that the notion aε ∼ a⋆ε must be taken through
ln as we mentioned in Remark 4.1, i. e.,

aε ∼ a
⋆
ε ⇐⇒ lim

ε→0
(ε ln ε

4aε
)
−1
= C,

aε ≪ a⋆ε ⇐⇒ lim
ε→0
(ε ln ε

4aε
)
−1
= 0,

and the corresponding criterion for≫.

In order to obtain the homogenized equation, first, we need to understand the
limit of the integrals over Sε. For a very smooth function g we have

1
|Sε|
∫
Sε

g(x)dS =
εn−1a1−nε
|Ω0||𝜕G0|

∑
j∈ϒε

∫
εj+aε𝜕G0

g(x)dS

=
εn−1a1−nε
|Ω0||𝜕G0|

∑
j∈ϒε

∫
aεG0

g(x + εj)dS

≃
εn−1

|Ω0|
∑

j=(j1 ,...,jn−1 ,0)
εj+εY

+
⊂Ω

g(εj)

→
1
|Ω0|
∫
Ω0

g(x)dS.

Hence, similarly to the case of particles over thewhole domain,we can expect to arrive
at the weak formulation, for any given good test function v,

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx + βeff1 ∫
Ω0

σeff(v)(v − u)dS ≥ ∫
Ω

f (v − u)dx + βeff2 ∫
Ω0

g(v − u)dS.

https://doi.org/10.1515/9783110648997-005
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124 | 5 Particles over an interior manifold

This formulation with an integral over an interior manifold is quite uncommon, al-
though not completely surprising. It represents, in some sense, a variation (or discon-
tinuity) of the flux. Before we consider the homogenization results, let us give a sense
to this new term.

5.1 Jumps over an interface

In order to characterize the weak formulation associated with this new term in Ω0

we look at what this means in pointwise terms. Let us assume that u is smooth in Ω+

and Ω− (defined in (1.4)) and that for some function G : Ω0 → ℝwe have (for any good
test function v)

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx + ∫
Ω0

G(v − u)dS ≥ ∫
Ω

f (v − u)dx.

Using v = u + λφ, where φ ∈ C∞c (Ω), and letting λ → 0± we have

∫
Ω

|∇u|p−2∇u ⋅ ∇φdx + ∫
Ω0

GφdS = ∫
Ω

fφdx.

Applying the divergence theorem in Ω+ we have

∫
Ω+
|∇u|p−2∇u ⋅ ∇φdx − ∫

Ω0

φ|∇u|p−2∇u ⋅ νΩ+ dS = − ∫
Ω+

φΔpudx.

The exterior normal vector is νΩ+ = −en on Ω0, and we have

− ∫
Ω0

|∇u|p−2∇u ⋅ νΩ+φdS = ∫
Ω0

|∇u|p−2 𝜕u
𝜕xn

φdS.

Since there will be a jump in the gradient, let us denote

|∇+u(x)|
p−2 𝜕u
𝜕x+n
(x) = lim

h→0+
|∇u(x + hen)|

p−2 𝜕u
𝜕xn
(x + hen).

Repeating the process in Ω−, where now νΩ− = en, we have

∫
Ω−
|∇u|p−2∇u ⋅ ∇φdx − ∫

Ω0

|∇−u|
p−2 𝜕u
𝜕x−n

φdS = − ∫
Ω−

φΔpudx.

Joining the terms from Ω+ and Ω− we recover

∫
Ω

|∇u|p−2∇u ⋅ ∇φdx + ∫
Ω0

(|∇+u|
p−2 𝜕u
𝜕x+n
− |∇−u|

p−2 𝜕u
𝜕x−n
)φdS = −∫

Ω

φΔpudx.
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5.2 Existence of a critical scale | 125

We introduce the notation for the jump of a general function v across Ω0 by

[v]Ω0 (x) = lim
h→0+
(v(x + hen) − v(x − hen)).

Matching the boundary and interior terms we deduce, since φ is arbitrary, that

{
−Δpu = f in Ω+ ∪ Ω−,
[|∇u|p−2 𝜕u𝜕xn ]Ω0 = G on Ω0.

Since we look for solutions u ∈ W 1,p(Ω), in particular they are in W 1,q(Ω) for some
q ∈ (1, n) (see [139, Theorem 4.19]). Hence, there is a representative of u (i. e., a choice
of the a. e. class) that is continuous except for a set ω of q-cap(ω) = 0. In particular,
ℋs(ω) = 0 for s > n − q. Hence jump [u]Ω0 = 0 except in ω ∩Ω0, andℋn−1(ω ∩Ω0) = 0.
The exterior boundary condition on 𝜕Ω comes from the functional dependence u ∈
W 1,p

0 (Ω).

5.2 Existence of a critical scale

As we did in the previous case, we can discover the critical scale through the scaling.
In this setting, the perturbations are only included along the interior manifold. Let v
be defined on ℝn compactly supported, and take

vε(x) = {
v( x−εjaε
) x ∈ εj + εY for some j ∈ ϒε,

0 otherwise.

Note that due to the construction of ϒε, we have that vε(x) = 0 if |xn| > ε. If aε ≪ ε, we
have

∫
Ω

|∇vε(x)|
p dx = |ϒε|a

n−p
ε ∫

ε
aε
Y

|∇v(y)|p dy ∼ ε1−nan−pε ∫
ε
aε
Y

|∇v(y)|p dy. (5.1)

Hence, this integral changes its limit behavior when ε1−nan−pε ∼ 1. The case p = n is
always special.

Unlike when particles are spread over the whole domain, in this setting we do not
have that the scale of big particles, aε ∼ ε, has any significant additional behavior.

5.3 Integrals over Sε

5.3.1 Trace theorem

By applying Lemma 3.6 in each particle and with some additional arguments with
respect to the ones presented in Section 4.2.1 we deduce the following.
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126 | 5 Particles over an interior manifold

Lemma 5.2. For all u ∈ W 1,p(Ωε) we have

β⋆(ε) ∫
Sε

|u|p dS ≤ C(∫
Ωε

|u|p dx + εn−1τε ∫
Ωε

|∇u|p dx).

Sketch of proof. Repeating the argument in Lemma 4.2 we obtain

β⋆(ε) ∫
Sε

|u|p dS ≤ C(ε−1 ∫
Ωε∩{|xn|<ε}

|u|p dx + εn−1τε ∫
Ωε∩{|xn|<ε}

|∇u|p dx),

due to the fact that |ϒε| ∼ ε1−n instead of ε−n, and the special location of the particles.
Since we do not want to use higher order derivatives, we estimate

∫
Ωε∩{|xn|<ε}

|∇u|p dx ≤ ∫
Ωε

|∇u|p dx.

For the first term, we work a little roughly through the extension v = Pεu (although
more direct arguments are possible). We have

∫
Ωε∩{|xn|<ε}

|u|p dx ≤ ∫
Ω∩{|xn|<ε}

|v|p dx.

Formally, since

v(x + hen) = v(x) +
h

∫
0

𝜕v
𝜕xn
(x + sen)ds,

it is not hard to compute

∫
Ω∩{|xn|<ε}

|v|p dx ≤ Cε(∫
Ω0

|v(x)|p dS + ∫
Ω∩{|xn|<ε}

|∇v(x)|p dx)

≤ Cε(∫
Ω

|v(x)|p dx + ∫
Ω∩{|xn|<ε}

|∇v(x)|p dx),

where we used for the last step the trace theorem W 1,p(Ω+) → Lp(Ω0). We conclude
the proof by using the continuity of the extension operator.

Note that in this setting

εn−1τε ∼
{{{
{{{
{

εn−1ap−nε p < n,
εn−1 ln( 2εaε )

p−1 p = n,
εp−1 p > n.

This is bounded (or tends to 0) if a⋆ε ≲ aε ≤ ε. Like in Section 4.2.1 we see the presence
of the critical scale.
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5.4 A priori estimates for uε | 127

Remark 5.3. Note that in the above expression we have εn−1τε instead of εnτε given in
Section 4.2.1, due to the different scaling of |ϒε|.

Lemma 5.4. Let p > 1 and aε ≳ a⋆ε . Then, there exists C independent of ε such that, for
any u ∈ W 1,p(Ωε),

β⋆(ε) ∫
Sε

|u|p dS ≤ C(∫
Ωε

|u|p dx + ∫
Ωε

|∇u|p dx).

5.3.2 Limit of integrals over Sε

Now we work with Mε and Mg,ε defined with the new ϒε but the same mε and mg,ε
defined in Chapter 3. Working exactly as in the previous chapter, we deduce

χΩε
⇀ 1 weak − ⋆ in L∞(Ω), (5.2)

even when aε = ε. The volumetric integrals do not detect the perturbations on a man-
ifold.

Theorem 5.5. Assume that a⋆ε ≪ aε ≪ ε or aε = ε. Let vε ∈ W 1,p(Ωε) be a sequence with
‖∇vε‖Lp(Ωε) bounded and such that vε → v in Lp(Ω0). Then we have

1
|Sε|
∫
Sε

vε dS →
1
|Ω0|
∫
Ω0

v dx. (5.3)

The only improvement needed in the proof is to remind that the trace operator
W 1,p(Ω) → Lp(Ω0) is compact (see, e. g., [35]). Similarlywehave the following theorem.

Theorem 5.6. Assume that a⋆ε ≪ aε ≤ ε and g ∈ Lp
󸀠
(𝜕G0). Then, for any sequence

vε ∈ W 1,p(Ωε) with ‖∇vε‖Lp(Ωε) bounded and such that Pεvε → v in Lp(Ω0), we have

β⋆(ε) ∑
j∈ϒε

∫
εj+aε𝜕G0

g(x − εj
aε
)vε(x)dS →

1
|𝜕G0|
∫
𝜕G0

g(y)dS 1
|Ω0|
∫
Ω0

v(x)dx. (5.4)

5.4 A priori estimates for uε
Following exactly the same proof as in Section 4.3 (but applying Lemma 5.4) we have
the following proposition.

Proposition 5.7. Let p > 1 and let uε be the minimizer of Jε defined in Section 2.2. Then:
1. If gε = 0, then

‖∇uε‖
p−1
Lp(Ωε)
≤ C‖f ε‖Lp󸀠 (Ωε)

. (5.5)

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 | 5 Particles over an interior manifold

2. If gε ̸= 0 and aε ≳ a⋆ε , we have

‖∇uε‖
p−1
Lp(Ωε)
≤ C(‖f ε‖Lp󸀠 (Ωε)

+ β(ε)β⋆(ε)−1( 1
|Sε|
∫
Sε

|gε|p
󸀠
dS)

1
p󸀠

). (5.6)

5.5 Subcritical particles a⋆ε ≪ aε ≤ ε
Using similar test functions, we write the usual weak formulation (for any good test
function v)

∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx + β(ε) ∫
Ωε

(σ(v) − gε)(v − uε)dS ≥ ∫
Ω

f (v − uε)dx.

Assume that gε(x) is given by (1.3), where gst ∈ W 1,∞(Ω) and gper ∈ Lp
󸀠
(𝜕G0). Taking

into account the a priori estimates, we know that Pεuε ⇀ u inW 1,p(Ωε, 𝜕Ω). Let

β0 = lim
ε→0

β(ε)|Sε|.

By taking into account Section 5.3.2 we can pass to the limit, at least when σ is smooth
(and by approximation for other regularities as in Chapter 4), and deduce

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx + β0

|Ω0|
∫
Ω0

σ(v)(v − u)dS ≥ ∫
Ω

f (v − u)dx + β0

|Ω0|
∫
Ω0

geff(v − u)dx,

where

geff(x) = gper(x) +
1
|𝜕G0|
∫
𝜕G0

gper(y)dS.

As we have shown above, this is the weak formulation of

{{{
{{{
{

−Δpu = f in Ω+ ∪ Ω−,
[|∇u|p−2 𝜕u𝜕xn ]Ω0 = βeff(σ(u) − geff) on Ω0,

u = 0 𝜕Ω,

where βeff = β0/|Ω0|.

5.6 Supercritical particles aε ≪ a⋆ε
In this setting, consider again a radial function ψ̄ : ℝn → [0, 1] such that

ψ̄(y) = {
0 if |y| ≥ 2K0,
1 if |y| ≤ K0,

|∇ψ̄| ≤ K,
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5.7 Critical-size particles aε ∼ a⋆ε | 129

and let

ψε(x) = ∑
j∈ϒε

ψ̄(x − εj
aε
).

It is clear that ψε = 1 in εj + aεG0 and 0 in 𝜕Ω. Moreover, due to (5.1)

∫
Ω

|∇ψε(x)|
p dx ≲ ( aε

a⋆ε
)
n−p

ε1−n(a⋆ε )
n−p → 0.

Takingφε = φ(1−ψε) → φ inW 1,p
0 (Ω) as a test function we again recover that if g

ε = 0,
then the limit is

{{{
{{{
{

−Δpu = f in Ω,
[|∇u|p−2 𝜕u𝜕xn ]Ω0 = 0 on Ω0,

u = 0 𝜕Ω.

5.7 Critical-size particles aε ∼ a⋆ε
As in the previous setting, we can use either the adequate corrector functionsWε (and
deal with G0 = B1 and with σ a maximal monotone graph) or Wσ,ε (and deal with a
general G0 but for σ regular). For the sake of simplicity, we take the first case: G0 = B1,
1 < p < n and gper = 0, which is sufficiently illustrative. We leave to the reader to make
the general extension. We can repeat the argument in (4.28) to recover

{{{
{{{
{

−Δpu = f Ω+ ∪ Ω−,
[|∇u|p−2 𝜕u𝜕xn ]Ω0 = ℋ(x, u) Ω0,

u = 0 𝜕Ω,

(5.7)

where

ℋ(x, s) = 𝒜0|H(x, s)|
p−2H(x, s) (5.8)

at each point x ∈ Ω, H(x, ⋅) is the solution of the functional equation

ℬ0|H(x, s)|
p−2H(x, s) ∈ σ(s − H(x, s)) − gst(x) (5.9)

and

𝒜0 = (
n − p
p − 1
)
p−1
|𝜕B1| limε→0(a

n−p
ε ε1−n),

ℬ0 = (
n − p
p − 1
)
p−1

lim
ε→0

a1−pε
β(ε)
.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



130 | 5 Particles over an interior manifold

Let us give the intuition of the proof in this setting. Taking Wε corresponding to
the new ϒε (but with the same wε as before), we still obtain the equivalent result to
Lemma 4.38. Letting vε = v − hWε we get

∫
Ωε

|∇vε|
p−2∇vε ⋅ ∇(vε − uε)dx = I1,ε + I2,ε + I3,ε + R(ε),

where

I1,ε = ∫
Ωε

|∇v|p−2∇v ⋅ ∇(v − uε)dx, (5.10)

I2,ε = −Bε ∫
Sε

|h|p−2h(v − h − uε)dS, (5.11)

I3,ε = Aε ∑
j∈ϒε

∫
εj+ ε4 𝜕B1

|h|p−2h(v − uε)dS, (5.12)

and the constants are given by

Aε ≃ (
n − p
p − 1
)
p−1

an−pε (ε/4)
1−n, Bε ≃ (

n − p
p − 1
)
p−1

a1−pε .

The values of Aε and Bε are precisely as before when written in this way, but scaling
with the changes of aε. In this setting, letting

Ŝε = ⋃
j∈ϒε

(εj + ε
4
𝜕B1),

we recover

|Ŝε| = |ϒε|(
ε
4
)
n−1
|𝜕B1| ≃

|Ω0||𝜕B1|
4n−1
.

Due to the critical scale we also get Aε ∼ 1. On the other hand,

|Sε| = |ϒε|a
n−1
ε |𝜕G0| ∼ ε

1−nan−1ε ∼ a
p−1
ε .

Thus

𝒜0 = limε→0
Aε|Ŝε|
|Ω0|
= lim

ε→0
(
n − p
p − 1
)
p−1

an−pε (ε/4)
1−nε1−n(ε/4)n−1|𝜕B1|

= (
n − p
p − 1
)
p−1
|𝜕B1| limε→0(a

n−p
ε ε1−n)

and

ℬ0 = limε→0
Bε
β(ε)
= (

n − p
p − 1
)
p−1

lim
ε→0

a1−pε
β(ε)
.
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Remark 5.8. When gε ̸= 0, G0 is not a ball or p = n, we make the adequate modifica-
tions to the test functionwε as in the previous setting. Restrictions of σwillmake some
estimatesmoremanageable, but are philosophically not needed in order to recover the
estimates.

5.8 Some remarks

Remark 5.9. In the special case of Signorini boundary conditions with gε = 0 (which
corresponds to the case of themaximalmonotone graph σ given by (2.3)), the solution
of the variational inequality converges at the critical scale to the solution of problem
(5.7)with the corresponding Lipschitz increasing functionℋ given by Example 4.34 (c)
that was shown in [157] by a refined version of the technique of proof presented in this
chapter.

Remark 5.10. There are several cases mentioned in Table 1.2 which merit some com-
ments. For instance, we can see there that in some of the homogenized limits the so-
lution must vanish on the manifold. In some others the manifold does not play any
significant role since there is no jump on the gradients over such manifold. Moreover,
in the critical case there is a subcase in which the strange term is clearly different
from σ, and another subcase in which the jump of the gradients is proportional to the
value of u if p = 2 independently of the value of function σ.

Remark 5.11. The case inwhichG0 is not a ball was considered in [233]. The technique
of proof has some common points with the proof presented in Section 4.7.3 but some
important adaptations are needed.

In terms of the homogenized problem, in the subcritical or critical case (problem
(5.7)), it seems complicated to prove directly a comparison principle for two different
limit kineticsℋ and ℋ̂ (which we assume for simplicity to be non-increasing continu-
ous functions such thatℋ(0) = ℋ̂(0) = 0), which are well ordered in the sense that

ℋ(r) ≤ ℋ̂(r̂) for any r ≤ r̂. (5.13)

Some comparison results of this nature arewell known for the case of nonlinear Robin
type boundary conditions (see, e. g., [49] and [103]). The main difficulty in our case
comes from the fact that the transmission condition, on the manifold, depends of the
unknown value of the corresponding solution (let us say u and û). Nevertheless, the
homogenization process supplies an argument to get such type of comparison results,
which, in particular, allows to conclude that the “change of velocity” across the man-
ifold is smaller in the case of a critical scale.

Corollary 5.12. Let u and û be the solutions of the problems (5.7) corresponding to in-
creasing functionsℋ and ℋ̂ satisfying (5.13) with the same rest of the data. Then u ≤ û
on Ω.
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132 | 5 Particles over an interior manifold

Proof. By using the fact thatℋ(r) = (I + σ−1 ∘Θn,p)
−1(r) (see Proposition 4.33 d), where

we assumed some constants equal to one) we assume that

σ(r) ≤ σ̂(r̂) for any r ≤ r̂. (5.14)

Then, for any given ε > 0, let uε and ûε be the solutions of the problems corresponding
to the respective problems with particles on the manifold and increasing functions σ
and σ̂. Then, by the results of [49] we conclude that uε(x) ≤ ûε(x) on Ωε and by the
convergence in Lp(Ω) of their extensions as ε → 0 (given in Section 5.7) we get that u ≤
û on Ω.

Remark 5.13. There are some special three-dimensional problems (n = 3) in which
the periodicity of the reactant objects is bidimensional and thus the critical scale (for
semilinear problems p = 2, for instance) is the onewhich curiously corresponds in this
chapter to p = n (although this balance is not true in this framework). This happens,
for instance, in the homogenization of reactive thin tubes. We refer the reader to [153,
154, 152].
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6 Particles over a part of the boundary
Let us study now the geometrical setting presented in Section 1.2.2. We recall that, in
contrast to the two precedent chapters, Sε is not the boundary of the particles but the
own set of (n − 1)-dimensional particles. Going back to Remark 2.15 we have

|Sε| = |ϒε||aεG0| ≃
󵄨󵄨󵄨󵄨(𝜕Ω)

0󵄨󵄨󵄨󵄨|G0|ε
1−nan−1ε .

Since the particles are now contained in the boundary of Ωε = Ω we do not need any
extension operator. The critical scale a⋆ε is as in Chapter 5.

6.1 Existence of a critical scale

This case works very similarly to Sections 4.1 and 5.2 with only few modifications. Let
v defined on ℝn compactly supported and take

vε(x) = {
v( x−εjaε
) x ∈ εj + εY+ for some j ∈ ϒε,

0 otherwise.

Note that due to the construction of ϒε, we have vε(x) = 0 if xn > ε. If aε ≪ ε we have

∫
Ω

󵄨󵄨󵄨󵄨∇vε(x)
󵄨󵄨󵄨󵄨
p dx = |ϒε|a

n−p
ε ∫

εY+

󵄨󵄨󵄨󵄨∇v(x)
󵄨󵄨󵄨󵄨
p dx ∼ ε1−nan−pε ∫

ε
aε
Y+

󵄨󵄨󵄨󵄨∇v(y)
󵄨󵄨󵄨󵄨
p dy. (6.1)

Hence, this integral changes its limit behavior when ε1−nan−pε ∼ 1. The case p = n is
always special.

6.2 Integrals over Sε

First, we can prove a trace estimate: if aε ≤ ε, then

β⋆(ε) ∫
Sε

|u|p dS ≤ C(∫
Ω

|u|p dx + εn−1τε ∫
Ω

|∇u|p dx), (6.2)

where τε is given by (3.6). This follows directly from (3.39) by applying a similar argu-
ment to that of Lemma 5.2. Again, εn−1τε is bounded if a⋆ε ≲ aε ≤ ε.

Similarly to the previous cases, taking the functions mg,ε given by Section 3.2.2
one recovers the following result.

Theorem 6.1. Assume that a⋆ε ≪ aε ≤ ε and let g ∈ Lp
󸀠
(G0). Then, for any sequence

vε ∈ W 1,p(Ω) with ‖∇vε‖Lp(Ω) bounded and such that vε → v in Lp(Ω) we have

1
|Sε|
∑
j∈ϒε

∫
εj+aεG0

g(x − εj
aε
)vε(x)dS 󳨀→

1
|G0|
∫
G0

g(y)dS 1
|(𝜕Ω)0|

∫
(𝜕Ω)0

v(x)dS. (6.3)

https://doi.org/10.1515/9783110648997-006

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 | 6 Particles over a part of the boundary

From this, we obtain the following corollary.

Corollary 6.2. Assume that a⋆ε ≪ aε ≤ ε. Then, for any sequence vε ∈ W 1,p(Ω) with
‖∇vε‖Lp(Ω) bounded and such that vε → v in Lp(Ω) we have

1
|Sε|
∫
Sε

vε dS 󳨀→
1
|(𝜕Ω)0|

∫
(𝜕Ω)0

v(x)dS. (6.4)

6.3 A priori estimates

As in the previous cases, using (6.2) we can prove the following proposition.

Proposition 6.3. Let p > 1 and let uε be the minimizer of Jε given in Section 2.2 (see
Remark 2.8). Then:
1. If gε = 0, we have

‖∇uε‖
p−1
Lp(Ω) ≤ C‖f ‖Lp󸀠 (Ω). (6.5)

2. If gε ̸= 0 and aε ≳ a⋆ε , we have

‖∇uε‖
p−1
Lp(Ω) ≤ C(‖f ‖Lp󸀠 (Ω) + β(ε)β

⋆(ε)−1( 1
|Sε|
∫
Sε

󵄨󵄨󵄨󵄨g
ε󵄨󵄨󵄨󵄨
p󸀠 dS)

1
p󸀠

). (6.6)

6.4 Subcritical particles a⋆ε ≪ aε ≤ ε
In this setting, it can be proved that the homogenized problem is

{{{
{{{
{

−Δpu = f in Ω,
u = 0 on (𝜕Ω)+,
𝜕νpu + β

effσ(u) = βeffgeff(x) on (𝜕Ω)0,
(6.7)

where βeff = β0/|(𝜕Ω)0| and, if gε is given by (1.5), where gst ∈ W 1,∞(Ω) and gper ∈
Lp
󸀠
(G0), then we have that the effective term geff is given by (1.10). As in Chapter 4, we

assume that σ is smooth but the results can be extended to more general classes of σ.
We start by writing the weak formulation of the problem: for suitable test func-

tions v we have

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − uε)dx + β(ε) ∫
Sε

(σ(v) − gε(x))(v − uε)dS ≥ ∫
Ω

f (v − uε)dx.

Using Theorem 6.1 and Corollary 6.2 we have

β⋆(ε) ∫
Sε

(σ(v)−gε(x))(v−uε)dS 󳨀→
1
|(𝜕Ω)0|

∫
(𝜕Ω)0

(σ(v(x))−gst(x)−
1
|G0|
∫
G0

gper(y)dS)dS.
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Since uε has a limit u in Lp(Ω), we recover (for any good test function v)

∫
Ω

|∇v|p−2∇v ⋅ ∇(v − u)dx + β0

|(𝜕Ω)0|
∫
(𝜕Ω)0

(σ(v(x)) − gst(x) −
1
|G0|
∫
G0

gper(y)dS)dS

≥ ∫
Ω

f (v − u)dx.

This is the weak formulation of the proposed homogenized problem.

6.5 Supercritical particles with 1 < p < n
We take again K0 = maxy∈G0

|y| and a radial function ψ̄ : ℝn → [0, 1] such that

ψ̄(y) = {
0 if |y| ≥ 2K0,
1 if |y| ≤ K0,

|∇ψ̄| ≤ K, (6.8)

and we let

ψε(x) = ∑
j∈ϒε

ψ̄(x − εj
aε
). (6.9)

Thus, due to (6.1)

∫
Ω

󵄨󵄨󵄨󵄨∇ψε(x)
󵄨󵄨󵄨󵄨
p dx ≲ ε1−nan−pε → 0.

Using vε = v(1 − ψε) as a test function, we have that vε → v strongly in W 1,p(Ω) and
vε = 0 in Sε. Thus, if we assume that gε = 0, the homogenized problem is

{{{
{{{
{

−Δpu = f in Ω,
u = 0 on (𝜕Ω)+,
𝜕νpu = 0 on (𝜕Ω)0.

(6.10)

6.6 Critical-size particles

6.6.1 Case of p = 2 < n when G0 is not a ball

The procedure is very much like in the case of particles over a manifold, and we have

{{{
{{{
{

−Δu = f Ω,
𝜕νu +ℋ(s, u) = 0 (𝜕Ω)0,
u = 0 (𝜕Ω)+,

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



136 | 6 Particles over a part of the boundary

where

ℋ(x, s) = Cn−20 Ĥσ(x, s),

for

C0 = limε→0 aεβ(ε),

and Ĥσ is defined in Section 3.2.3.1. We recall again that we have a universal bound
0 ≤ Ĥ󸀠σ ≤ λG0

depending only on G0. The details, which are very similar to the ones
already presented, can be found in [115] for the special case of the Signorini boundary
condition.

Remark 6.4. The case of critical-size particles aε ∼ a⋆ε and β(ε) ≫ β⋆(ε) is specially il-
lustrative of the strange boundary condition satisfied by the homogenized solution. As
indicated in Table 1.3, if we assume, for instance, that in the starting problemwe have
Dirichlet conditions on Sε, then after the homogenization process, we find that the
limit function satisfies a linear Robin boundary condition on the part of the boundary
given by (𝜕Ω)0, if for instance p = 2.

6.6.2 Case of p = n when G0 = B01
In this setting wework only in the case gε = g, as usual forG0 a ball, andwe can prove
that

{{{
{{{
{

−Δnu = f Ω,
u = 0 (𝜕Ω)+,
𝜕νnu +ℋ(x, u) = 0 Ω0,

where

ℋ(x, s) = 𝒜0
󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
n−2H(x, s), ℬ0

󵄨󵄨󵄨󵄨H(x, s)
󵄨󵄨󵄨󵄨
n−2H(x, s) = σ(s − H(x, s)) − g(x),

and, with β0 = limε→0 β(ε)|Sε| < ∞,

𝒜0 =
󵄨󵄨󵄨󵄨(𝜕B1)

+󵄨󵄨󵄨󵄨 limε→0(ε ln
ε
4aε
)
1−n
, ℬ0 =

|(𝜕B1)+|
|G0|

lim
ε→0

β(ε)−1(aε ln
ε
4aε
)
1−n
.

The argument is slightly different from the previous case. We present here a gen-
eralization of the argument in [106], where the case n = 2 was considered. The details
can be found in [230].

Remark 6.5. In [106], G0 = (−ℓ0, ℓ0) (for us ℓ0 = 1) and aε = C0εe
−α2
ε , so𝒜0 = π/α2 and

β(ε) = e
α2
ε , so ℬ0 =

π
2C0α2

.
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The correct oscillating test function is

vε = v − hQε,

where Qε is given by

Qε(x) = {
qε(x − εj) x ∈ (εj + εB+1 ) for some j ∈ ϒε,
0 otherwise,

and qε is as defined in Section 3.2.3.2. Since we want to apply an argument similar to
(4.38), we need to show that Qε tends weakly to zero. We could probably do this di-
rectly. However, as wementioned in Section 3.2.3.2, we estimate this function through
the auxiliary function

Wε(x) =
{{{
{{{
{

wε(x − εj) x ∈ (εj + ε
4B
+
1 \ aεB

+
1 ) for some j ∈ ϒε,

1 x ∈ (εj + aεB+1 ) for some j ∈ ϒε,
0 otherwise.

From (3.41) we deduce that

∫
Ω

󵄨󵄨󵄨󵄨∇(Qε −Wε)
󵄨󵄨󵄨󵄨
n dx = |ϒε| ∫

ε
4B
+
1

󵄨󵄨󵄨󵄨∇(wε − qε)
󵄨󵄨󵄨󵄨
n dx ≤ Cε(ε ln ε

4aε
)
−n
→ 0,

due to the critical scale. SinceWε converges weakly to 0 inW 1,n(Ω), so does Qε.

Remark 6.6. This methodology fails when p < n because this convergence fails to be
strong.

Wewould like to repeat an argument as in Theorem4.36.Using vε as a test function
we would like to recover something similar to Lemma 4.38:

∫
Ω

|∇vε|
n−2∇vε ⋅ ∇(vε − uε)dx = I1,ε + I2,ε + I3,ε + R(ε), (6.11)

where R(ε) → 0 and

I1,ε = ∫
Ω

|∇v|n−2∇v ⋅ ∇(v − uε)dx, (6.12)

I2,ε = −∫
Sε

𝜕νnQε|h|
p−2h(v − h − uε)dS, (6.13)

I3,ε = − ∑
j∈ϒε

∫
εj+ ε4 (𝜕B1)

+

𝜕νpQε|h|
n−2h(v − uε)dS. (6.14)
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The only problem arising when applying such a program of proof is that we do not
know the explicit value of 𝜕νpqε as we do with wε. For convenience, let us define

Ŝε = ⋃
j∈ϒε

(εj + ε
4
(𝜕B1)
+).

Note that |Ŝε| = |ϒε||
ε
4 (𝜕B1)

+| ≃ 41−n|(𝜕Ω)0||(𝜕B1)+|.
First, one needs to show that we can find some balance between I2,ε and I3,ε by the

corresponding term forWε and this new term can cancel out in the limit of the reaction
term. Due to the strong convergence of Qε −Wε we can write

−(I2,ε + I3,ε) = ∑
j∈ϒε

∫
εj+ ε4B

+
1

|∇Qε|
n−2∇Qε∇(|h|

n−2h(v − hQε − uε))dx

= R(ε) + ∑
j∈ϒε

∫
εj+ ε4B

+
1

|∇Wε|
n−2∇Wε∇(|h|

n−2h(v − hWε − uε))dx

= R(ε) + ∑
j∈ϒε

∫
εj+ ε4B

+
1 \aεB

+
1

|∇Wε|
n−2∇Wε∇(|h|

n−2h(v − hWε − uε))dx

= R(ε) + ∫
S̃ε

𝜕νnWε|h|
n−2h(v − h − uε)dS

+ ∫

Ŝε

𝜕νnWε|h|
n−2h(v − uε)dS

= R(ε) − (J2,ε + J3,ε).

Since we have the explicit value of 𝜕νpWε, the rest of the work is easier. Recovering the
explicit values from Section 3.1.5.2 we have

J3,ε = (
4

ε ln ε
4aε

)
n−1
∫

Ŝε

|h|n−2h(v − uε)dS

󳨀→ lim
ε→0
((

4
ε ln ε

4aε

)
n−1
|Ŝε|)

1
|(𝜕Ω)0|

∫
(𝜕Ω)0

|h|n−2h(v − h − u)dS

= 󵄨󵄨󵄨󵄨(𝜕B1)
+󵄨󵄨󵄨󵄨 limε→0(ε ln

ε
4aε
)
1−n
∫
(𝜕Ω)0

|h|n−2h(v − h − u)dS,

where we recover𝒜0. On the other hand,

J2,ε = (
1

aε ln
ε
4aε

)
n−1
∑
j∈ϒε

∫
εj+aε(𝜕B1)+

|h|p−2h(v − h − uε)dS.
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With this construction we can show that if hε is a bounded sequence in W 1,n(Ω), we
have the following result (which improves a similar lemma in [230]).

Lemma 6.7. Let hε ∈ W 1,n(Ω, (𝜕Ω)+) be a bounded sequence. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

|ϒε||aε(𝜕B1)+|
∑
j∈ϒε

∫
εj+aε(𝜕B1)+

hε dS −
1
|Sε|
∫
Sε

hε dS
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(aεε

−1)n−1ε1/n(1 + ‖∇hε‖
n
Ln(Ω)) → 0.

Proof. To be able to apply a balance of this integral with the one on Sε, we construct
a function θ:

{{{
{{{
{

Δnθ = 0 in B+1 ,
𝜕νnθ =

1
|(𝜕B1)+|

(on 𝜕B1)+,
𝜕νnθ = −

1
|G0|

on G0 = B01 ,
θε(x) = εθ(

x − εj
aε
) when x ∈ εj + aεB

+
1 .

We have the scaling 𝜕νnθε = (εa
−1
ε )

n−1𝜕νnθ. Thus

1
|ϒε||aε(𝜕B1)+|

∑
j∈ϒε

∫
εj+aε(𝜕B1)+

hε dS −
1
|Sε|
∫
Sε

hε dS

=
εn−1

|ϒε|
∑
j∈ϒε

∫
εj+aεB+1

|∇θε|
n−2∇θε∇hε dx.

In each of these balls, we have two estimates. On the one hand,

∫
εj+aεB+1

|∇xθε|
n dx ≤ Cεn.

On the other hand, applying Young’s inequality

∫
εj+aεB+1

|∇θε|
n−2∇θε∇hε dx ≤ C(δ

−n
1 ∫

εj+aεB+1

|∇xθε|
n dx + δn/(n−1)1 ∫

εj+aεB+1

|∇xhε|
n dx),

where δ1 is an arbitrary positive number. Going back to the sum, we get the bound

∑
j∈ϒε

∫
εj+aεB+1

|∇θε|
n−2∇θε∇hε dx ≤ C(δ

−n
1 εn|ϒε| + δ

n/(n−1)
1 ∫

B+1

|∇hε|
n dx).

We now take δ1 = ε(n−1)/n
2
to recover the desired result.

Thus, we only need to identify the right constant. To compute the constant ℬ0 we
write

−J2,ε ≃ (
1

aε ln
ε
4aε

)
n−1 |ϒε||aε(𝜕B1)+|
|Sε|β(ε)

β(ε) ∫
Sε

hε dS.
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Hence, we take h = H(x, v), where H solves

ℬ0
󵄨󵄨󵄨󵄨H(s)
󵄨󵄨󵄨󵄨
n−2H(s) = σ(s − H(s)) − g(x)

and

ℬ0 = limε→0(
1

aε ln
ε
4aε

)
n−1 |ϒε||aε(𝜕B1)+|
|Sε|β(ε)

.

6.7 Further comments

Remark 6.8. Many variants are possible: we refer the reader to the list of papers men-
tioned in Section 1.6.3.

Remark 6.9. The case of σ a general maximal monotone graph, when G0 is not a ball,
remains for us an open problem. The results of [115] in which σ is the Signorini max-
imal monotone graph seem to indicate that a positive answer could be obtained in
a more general setting but some new argument are needed to pass to the limit after
regularizing σ.

Remark 6.10. For a possible connection between the results of this chapter and the
homogenization for fractional operators we refer the reader to Section 6.3 of [115].
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A Comments on the parabolic case
All the results of this book concerning the three elliptic problems presented in Sec-
tion 1.3 admit a corresponding version in the framework of parabolic equations. As
a matter of fact, the application of homogenization techniques to evolution prob-
lems were present already in the pioneering papers and books on the subject (see,
e. g., among many others [242, 31, 239, 175, 256]) and for the case of the occurrence of
strange terms [201, 202] and especially [162], the first paper in which the occurrence
of a strange term was proved for nonlinear Robin type boundary conditions (see also
[34, 67, 163, 74]). Concerning the parabolic problem associated to the p-Laplacian
operator we mention the paper [227].

The aim of this appendix is merely to present some few comments on the adap-
tation of the results of previous chapters, in particular Chapter 4, to the following
parabolic problem dealing with particles over the whole spatial domain Ω:

{{{{{{{
{{{{{{{
{

𝜕uε
𝜕t − Δpuε = f (0,T) × Ωε,
𝜕uε
𝜕νp
+ β(ε)σ(uε) = β(ε)gε (0,T) × Sε,

uε = 0 (0,T) × 𝜕Ω,
u(0, ⋅) = u0 Ωε.

(A.1)

This problem can be treated very similarly to the elliptic one, at least under good in-
tegrability of f , gε and uε. For strong solutions, the weak formulation of (A.1) leads to
the formulation

T

∫
0

∫
Ωε

𝜕uε
𝜕t

φdx dt +
T

∫
0

∫
Ωε

|∇uε|
p−2∇uε∇φdx dt

+ β(ε)
T

∫
0

∫
Sε

(σ(uε) − g
ε)φdS dt =

T

∫
0

∫
Ωε

fφdx dt, (A.2)

for all φ smooth, where

uε ∈ L
∞(0,T ;W 1,p(Ωε, 𝜕Ω)) and 𝜕uε

𝜕t
∈ L2((0,T) × Ωε). (A.3)

Wewill only develophere the variational theory, but an extension to L1 data is possible
as in Chapter 4.

A priori estimates
Gradient estimates on parabolic problems are usually harder to prove than their el-
liptic counterparts. From some variation of the regularity results for subdifferential
operators (see, e. g., Theorem 3.6 of [48]), or through Galerkin approximation we can

https://doi.org/10.1515/9783110648997-007
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prove that

‖𝜕tuε‖L2((0,T)×Ωε) + sup
t∈[0,T]
‖∇uε‖Lp(Ωε) ≤ C,

whereC depends only on ‖u0‖W 1,p
0 (Ω)

, ‖f ‖L2((0,T)×Ωε) and β(ε)β(ε)
−1‖gε‖L∞(0,T :Lp󸀠 (Sε)∩L2(Sε)).

Extension operator
This can be easily generalized from the theory for stationary functions since the ex-
tension is spatial and has no relation with time. We construct

Pε : L
p(0,T ;W 1,p(Ωε, 𝜕Ω)) 󳨀→ Lp(0,T ;W 1,p

0 (Ω))

by extending for almost any t fixed. Since this operator is linear and purely spatial and
does not interact with the time variable, it preserves the estimates of the time deriva-
tives. Therefore, there is a limit of the extension Pεuε up to a subsequence such that

Pεuε ⇀ u weakly in Lp(0,T ;W 1,p
0 (Ω)),

Pεuε → u strongly in Lp((0,T) × Ω),
𝜕
𝜕t
(Pεuε) ⇀

𝜕u
𝜕t

weakly in L2((0,T) × Ω).

(A.4)

A.1 A weak formulation in terms of a variational inequality
As in the elliptic case, passing to the limit in the weak formulation directly is not pos-
sible due to the weak convergences. It is much better to find a suitable weaker formu-
lation.

Lemma A.1. Let uε satisfy (A.2), (A.3). Then it satisfies

T

∫
0

∫
Ωε

𝜕v
𝜕t
(v − uε)dx dt +

T

∫
0

∫
Ωε

|∇v|p−2∇v∇(v − uε)dx dt + β(ε)
T

∫
0

∫
Sε

(σ(v) − gε)(v − uε)dS dt

≥
T

∫
0

∫
Ωε

f (v − uε)dx dt −
1
2
∫
Ωε

(uε(0, x) − v(0, x))
2 dx, (A.5)

for all v ∈ C1c([0,T] × Ω).

Proof. Assume that uε is a weak solution and as usual take φ = v − uε. We have

T

∫
0

∫
Ωε

𝜕uε
𝜕t
(v − uε)dx dt +

T

∫
0

∫
Ωε

|∇uε|
p−2∇uε∇(v − uε)dx dt

+ β(ε)
T

∫
0

∫
Sε

(σ(uε) − g
ε)(v − uε)dS dt =

T

∫
0

∫
Ωε

f (v − uε)dx dt.

 EBSCOhost - printed on 2/10/2023 3:37 PM via . All use subject to https://www.ebsco.com/terms-of-use



A.1 A weak formulation in terms of a variational inequality | 143

By monotonicity arguments that we used already in the elliptic setting, we know that
T

∫
0

∫
Ωε

|∇uε|
p−2∇uε(v − uε)dx dt + β(ε)

T

∫
0

∫
Sε

(σ(uε) − g
ε)(v − uε)dS dt

≤
T

∫
0

∫
Ωε

|∇v|p−2∇v(v − uε)dx dt + β(ε)
T

∫
0

∫
Sε

(σ(v) − gε)(v − uε)dS dt.

Let us look at the “new” term coming from the time derivative. We write
T

∫
0

∫
Ωε

𝜕uε
𝜕t
(v − uε)dx dt =

T

∫
0

∫
Ωε

𝜕(uε − v)
𝜕t
(v − uε)dx dt +

T

∫
0

∫
Ωε

𝜕v
𝜕t
(v − uε)dx dt

= −
1
2

T

∫
0

d
dt
∫
Ωε

(uε − v)
2 dx dt +

T

∫
0

∫
Ωε

𝜕v
𝜕t
(v − uε)dx dt

= −
1
2
(∫
Ωε

(uε(T , x) − v(T , x))
2 dx − ∫

Ωε

(uε(0, x) − v(0, x))
2)dx

+
T

∫
0

∫
Ωε

𝜕v
𝜕t
(v − uε)dx dt

≤
1
2
∫
Ωε

(uε(0, x) − v(0, x))
2 dx +

T

∫
0

∫
Ωε

𝜕v
𝜕t
(v − uε)dx dt.

Joining these computations, we recover (A.5).
Conversely, assume that uε is time differentiable and that it satisfies (A.5). Take φ

smooth, λ ∈ ℝ and v = uε + λφ. We get

λ
T

∫
0

∫
Ωε

𝜕(uε + λφ)
𝜕t

φdx dt + λ
T

∫
0

∫
Ωε

|∇(uε + λφ)|
p−2∇(uε + λφ)∇φdx dt

+ β(ε)λ
T

∫
0

∫
Sε

(σ(uε + λφ) − g
ε)φdS dt ≥ λ

T

∫
0

∫
Ωε

fφdx dt − λ
2

2
∫
Ωε

φ(0, x)2 dx.

Assuming that λ > 0, dividing by λ and passing to the limit as λ → 0+ we get
T

∫
0

∫
Ωε

𝜕uε
𝜕t

φdx dt +
T

∫
0

∫
Ωε

|∇uε|
p−2∇uε∇φdx dt

+ β(ε)
T

∫
0

∫
Sε

(σ(uε) − g
ε)φdS dt ≥

T

∫
0

∫
Ωε

fφdx dt.

When λ → 0− we recover the converse inequality and the proof is complete.
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A.2 Small subcritical particles a⋆ε ≪ aε ≪ ε

When the particles are subcritical we go back to our averaging results Theorems 4.5
and 4.11. Due to (A.4), we recover that, when σ is smooth and β(ε) ∼ β⋆(ε),

T

∫
0

∫
Ω

𝜕v
𝜕t
(v − u)dx dt +

T

∫
0

∫
Ω

|∇v|p−2∇v∇(v − u)dx dt + βeff
T

∫
0

∫
Ω

(σ(v) − geff)(v − u)dS dt

≥
T

∫
0

∫
Ω

f (v − u)dx dt − 1
2
∫
Ω

(u(0, x) − v(0, x))2 dx.

This is the weak formulation of

{{{
{{{
{

𝜕u
𝜕t − Δpu + β

effσ(uε) = f + βeffgeff (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω,
u = u0 t = 0,

where the effective elements are those in Section 4.5. Of course, in the case of big parti-
cles on thewhole domain the diffusion operatormust bemodified in the homogenized
problem (see, e. g., [84] for the case p = 2 and σ a non-decreasing function as in Sec-
tion 4.4).

A.3 Supercritical particles aε ≪ a⋆ε and p ∈ (1, n)

Just like in Section 4.6 we can take the same spatial test function vε(t, x) = v(t, x)(1 −
ψε(x)) to “remove” the boundary term and get, if gε = 0 and β(ε) ∼ β⋆(ε), in the limit,

{{{
{{{
{

𝜕u
𝜕t − Δpu = f (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω,
u = u0 t = 0.

A.4 Critical-size particles aε ∼ a⋆ε
We can still take same oscillating test functions vε(t, x) = v(t, x)−Wσ,ε(x; v(t, ⋅)) andwe
get in all the assumptions in Chapter 4 that u is the unique solution of

{{{
{{{
{

𝜕u
𝜕t − Δpu +ℋ(x, u) = f (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω,
u = u0 t = 0,

whereℋ(x, u) is given by (4.16)–(4.17) whenG0 is a ball and p < n (see [227]), andwhen
G0 is not a ball through the auxiliary function wσ .
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Remark A.2. We point out that the elliptic problem (1.1) can be regarded also as the
stationary problem associated to doubly nonlinear parabolic problems in which the
equation is of the form

𝜕
𝜕t
γ(uε) − Δpuε = f ,

where γ is a non-decreasing continuous function (or, more in general, a maximal
monotonegraphofℝ2) considered intensively bymanyauthors in the last 50years (see
references, e. g., in [105] and [262]). The homogenization of the case of the one-phase
Stefan problem, and p = 2, was carried out in [94]. For the case γ(s) = |s|1/m sign(s)
and p = 2 see [104]. The homogenization of this problem can be also treated with
the abstract results of Section 3.9.2 of [16] on the convergence of the associated semi-
groups. The study of the free boundary of the obtained homogenization problem, at
the critical scale, can be comparedwith the different behavior of solutions of the prob-
lems before homogenizing, leading to some improvements, as in Chapter 4. Note that
now the comparison techniques are more delicate (see, e. g., [262]) but some energy
methods can be also applied (see [13]).

A.5 A remark on controllability

Oncewe know the convergence of parabolic problems of the type (A.1) to its respective
homogenized parabolic problem (as, e. g., the problem in Section A.4), according to
the size of the particles aε, many different questions related to the controllability of
both problems were investigated in the literature. For instance, in terms of problem
(A.1), the so-called “approximate controllability” property of the parabolic problem
assumes that one of the data v is variable in a subset of the data (the set of admissible
controls, for instance the boundary data on Sε),

{{{{{{{
{{{{{{{
{

𝜕uε
𝜕t −Δpuε= f (0,T) × Ωε,
𝜕uε
𝜕νp
+ β(ε)σ(uε) = β(ε)vεχ(0,T)×Sωε (0,T) × Sε,

uε = 0 (0,T) × 𝜕Ω,
uε(x,0) = u0(x) Ωε,

(A.6)

and the question is to search if, given a “target state” uε,T , which represents a possible
value of the solution (the “observation of the state,” for instance the value on Ω of uε
at t = T), and an arbitrary δ > 0, we are able to find a control vε such that

‖uε(T ; vε) − uε,T‖L2(Ωε) ≤ δ. (A.7)

When δ = 0 this property is called “exact controllability” and requires to assume the
“target state” uε,T in a small subset of L2(Ωε) due to the regularizing effects appearing
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in parabolic problems. On the other hand, in practice it can be difficult to act on the
whole domain Sε and so it is convenient to assume that the support of the control vε
can be reduced to a “small” subset Sωε of Sε. Most of the available results on approxi-
mate controllability are reduced to the case p = 2 and deal with semilinear parabolic
equations and Dirichlet (or Neumann) boundary conditions (see [193, 140, 125]). The
controllability of problem (A.6), i. e., for the case of nonlinear Robin boundary condi-
tions, was proved in Section 3.2 of [120] when σ is assumed to be sublinear at infinity,
i. e.,

󵄨󵄨󵄨󵄨σ(s)
󵄨󵄨󵄨󵄨 ≤ C(1 + |s|) for |s| > M, for someM > 0.

A real-life application of the above controllability problem is the following: con-
sider a polluted sand filter occupying some domain Ω (with a fixed flow rate of pollu-
tant). We add a suitable chemical reactant with concentration vε (a control) on parts
of the surface of the particles. Let uε(T ; vε) be the resulting concentration of the pol-
lutant at time T > 0. The problem is to find the concentration of reagent vε to control
the contaminant in a desired way throughout the whole region Ωε at this time.

A natural question is to know if the sequence of good controls {vε} converges, by
an homogenization process, to some global control function v ∈ L2(Ω) allowing to
prove the approximate controllability for the homogenized problem. For instance, in
the case of a critical scale, the control problem would be of the type

{{
{{
{

𝜕u
𝜕t −Δpuε +ℋ(x, u) = f + vχ(0,T)×ω (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω,
u(x,0) = u0(x) Ω,

(A.8)

for some subregion ω ⊂ Ω and with a desired state uT = limε→0 uε,T . A favorable an-
swer to the above question was obtained in [1] for big particles aε = ε (and thus, es-
sentially, withℋ(x, u) = Cσ(u) and σ sublinear at infinity) and p = 2. Several different
authors produced previously some related results (always for p = 2) for some variants
of the above setting (see [130, 129, 90, 91, 180, 88]). We point out that for semilinear
parabolic problems as (A.8) it was shown in [99] that ifℋ(x, u) is superlinear at infinity
(i. e., |ℋ(x, u)| ≥ C(1 + |s|r) for |s| > M, for some r > 1 andM > 0), then an obstruction
phenomenon arises and the parabolic problemdoes not satisfy, in general, the approx-
imate controllability property. In consequence, this shows that the result of [1] is op-
timal in the sense that if we consider big particles aε = ε and σ superlinear at infinity,
then the sequence of controls {vε} cannot be convergent to a useful control for the limit
problem (since in this caseℋ(x, u) = Cσ(u), with σ superlinear at infinity). Neverthe-
less, the answer may be entirely different if aε corresponds to the critical scale since
nowℋ(x, u) is globally Lipschitz continuous and no obstruction phenomenon occurs.
This could be of interest in the framework of application to climate models (see, e. g.,
[99] and [101]). The extension of the above situation to the case p ̸= 2 remains an open
problem.
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B Dynamic boundary condition
In contrast to the previous appendix, a much less studied variant of our problem, al-
though very relevant in the applications (see the references below), is the case of the
so-called dynamic boundary conditions

{{{{{{
{{{{{{
{

−Δpuε = f (0,T) × Ωε,

β(ε) 𝜕uε𝜕t +
𝜕uε
𝜕νp
+ β(ε)σ(uε) = β(ε)gε (0,T) × Sε,

uε = 0 (0,T) × 𝜕Ω,
u(0, ⋅) = u0 Sε.

(B.1)

A quite complete list of references dealing with nonlinear problems with dynamic
boundary conditions, starting already in 1901, can be found, e. g., in the survey ar-
ticles [24] and [20]. The PDE is sometimes an elliptic equation (and thus there is a
great contrast between a stationary interior law and a dynamic boundary condition).
Nevertheless, the dynamic boundary conditionmay coexistwith a parabolic equation.
In the context of reaction-diffusion equations, dynamical boundary conditions have
been rigorously derived in [149] and [146].

The main goal of this section is to present only some comments on the homog-
enization arguments to this peculiar type of problems and, more specifically, how
to identify the homogenized problem, containing some strange term, in the case of
critical-size particles. For more details we refer the reader to the papers on this sub-
ject which will be indicated below for each one of the cases which can be presented
according the different size of the particles.

In this setting, it can be shown that, under sufficient regularity of the data, we
have

uε ∈ L
∞(0,T ;W 1,p(Ωε, 𝜕Ω)) and 𝜕uε

𝜕t
∈ L2((0,T) × Sε). (B.2)

We will only deal here with the case of particles over the whole domain. We leave to
the reader to adapt the details in the other geometrical settings. We repeat, briefly, the
basic preliminaries. For some homogenization results when the dynamic boundary
condition holds on the boundary of particles placed on an interior manifold see [274].

A priori estimates
In this setting the estimates are even a little bit more difficult than in the parabolic
setting. There is still a unique weak solution and if β(ε) ∼ β⋆(ε) it satisfies

β⋆(ε)‖𝜕tuε‖L2((0,T)×Sε) + sup
t∈[0,T]
‖∇uε‖Lp(Ωε) ≤ C.

The argument passes, as for the parabolic problem, by the abstract theory of subdif-
ferential operators or by Galerkin approximation. We refer the reader to [117] for p = 2
and [232] and [10] for the case p ̸= 2.

https://doi.org/10.1515/9783110648997-008
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148 | B Dynamic boundary condition

Extension operator
The extension operator we have constructed for the parabolic problem is also valid in
this setting and we still recover

Pεuε ⇀ u weakly in Lp(0,T ;W 1,p
0 (Ω)),

Pεuε → u strongly in Lp((0,T) × Ω).
(B.3)

Formulation as a variational inequality
Repeating the arguments in Appendix A for the parabolic problem, the inequality for-
mulation is

T

∫
0

∫
Ωε

|∇v|p−2∇v∇(v − uε)dx dt + β(ε)
T

∫
0

∫
Sε

(
𝜕v
𝜕t
+ σ(v) − gε)(v − uε)dS dt

≥
T

∫
0

∫
Ωε

f (v − uε)dx dt −
β(ε)
2
∫
Sε

(u0(x) − v(0, x))
2 dx. (B.4)

B.1 Small subcritical particles a⋆ε ≪ aε ≪ ε

Since the weak formulation contains no troublesome terms when σ is smooth, we can
pass to the limit in each term to recover

{{{
{{{
{

βeff 𝜕u𝜕t − Δpu + β
effσ(u) = f + βeffgeff (0,T) × Ω,

u = 0 (0,T) × 𝜕Ω,
u = u0 t = 0,

where u0 ∈ L2(Ω) and the effective elements are those in Chapter 4.
Of course, as in the case of small particles, the case of big particles (aε = ε) re-

quires to modify the diffusion operator in a similar way as indicated in Section 4.4.
That was done in [258, 259, 8, 10, 9] (see also the case of random particles in [265]).

B.2 Supercritical particles aε ≪ a⋆ε
This situation is more delicate. We present only the case where σ is smooth, gε = 0,
β(ε) ∼ β⋆(ε) and u0 = 0. Then, we take vε(t, x) = v(t, x)(1 − ψε(x)), which still vanishes
in Sε, and we show the homogenized problem is

{
−Δpu = f (t, x) (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω.

There is no time derivative in the limit problem, and the solution has the regularity in
time dictated by f . The initial data are lost.
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B.3 Critical particles a⋆ε ∼ aε and G0 = B1
This is, as usual, the most surprising and interesting case. The surprise for dynamical
boundary conditions is the appearance of a memory term. This was first noted in the
linear setting in [117]. For a result on the convergence in the nonlinear setting see [232],
but we only want to give here the structure of the proof. We will do only the case gε =
g ∈ W 1,∞(Ω), but the details can be adapted to the general setting.

As in Section 4.7 take vε(t, x) = v(t, x) − h(t, x)Wε(x). We still want to have h = H(v)
being the solution of a certain equation. Going back to Remark 4.40, in order to get the
suitable cancelation of the integrals over (0,T) × Sε, we now get

Bε
β(ε)
|h|p−2h ≃ 𝜕vε

𝜕t
+ σ(vε) − g =

𝜕v
𝜕t
−
𝜕h
𝜕t
+ σ(v − h) − g

(where Bε is given in Lemma 4.38). This shows that the functional equation that ap-
peared in the elliptic setting is now replaced by a pointwise ordinary differential equa-
tion (ODE). This ODE needs an initial condition. We now go the integral in Sε on the
right-hand side of (B.4). If we want vε to cancel the integral given for x ∈ Sε at t = 0 we
need to request

0 = u0(x) − vε(0, x) = u0(x) − v(0, x) + h(0, x).

But this is a valid choice for h. For a given v smooth enough and every x fixed we take
h(t, x) = Hv(t, x) as the unique solution of

{
𝜕Hv
𝜕t =
𝜕v
𝜕t − ℬ0|Hv|

p−2Hv + σ(v − Hv) − g t ∈ (0,T),
Hv(0, x) = v(0, x) − u0(x).

(B.5)

Note that the existence and uniqueness of solution of (B.5) hold even if σ is a maximal
monotone graph. With this choice of Hv, which does not depend on ε and is regular if
v and g are smooth, we can pass to the limit as in Section 4.7.1 to recover

T

∫
0

∫
Ω

|∇v|p−2∇v∇(v − u)dx dt +𝒜0

T

∫
0

∫
Ω

|Hv|
p−2Hv(v − u)dx dt ≥

T

∫
0

∫
Ω

f (v − u)dx dt.

To recover the equation again we must take v = u + λφ. We will deal in Remark B.4
with the fact that the equation forHu+λφ requires

𝜕u
𝜕t . We will show that by a change in

variable, we can avoid this difficulty. The continuous dependence of (B.5) (which we
prove in the general setting for p = 2 in Lemma B.10) and the usual trick of passing
λ → 0± show that this is the weak formulation of

{
−Δpu +𝒜0|Hu|

p−2Hu = f (0,T) × Ω,
u = 0 (0,T) × 𝜕Ω,

(B.6a)
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coupled with the pointwise ODE that, for every x ∈ Ω, is given as the solution of

{
𝜕Hu
𝜕t + ℬ0|Hu|

p−2Hu =
𝜕u
𝜕t + σ(u − Hu) − g (0,T) × Ω,

Hu(0, x) = u(0, x) − u0(x) t = 0.
(B.6b)

Remark B.1. This term Hu behaves as a memory term for the equation of u. Note that
for p = 2 and σ linear this problem becomes a linear ODE that can be solved explicitly
(see [117]).

Remark B.2. It is very interesting to point out that u(0, x) is not necessarily u0(x), but
rather the solution of the elliptic PDE

{
−Δpu(0, x) +𝒜0|u(0, x) − u0(x)|p−2(u(0, x) − u0(x)) = f (0, x) Ω,
u = 0 𝜕Ω.

Thus, u(0, x) is a strange initial datum. Even if u0(x) = 0, the solution of the homoge-
nized problem is not u(0, x) = 0 unless f (0, x) = 0.

Existence of a solution of (B.6a), (B.6b) comes from our proof on the convergence
of the limit. When p = 2 and σ is linear the ODE can be explicitly solved (see [117]). In
order to show that (B.6) has a unique solution, we show that the strange term

ℋ[u] = 𝒜0|Hu|
p−2Hu

is monotone in the following sense.

Lemma B.3. Let u, u : [0,∞) → ℝ be smooth functions. Let Hu and Hu be the solutions
of (B.6a), (B.6b) corresponding to u and u and, finally,ℋ[u] = 𝒜0|Hu|

p−2Hu andℋ[u] =
𝒜0|Hu|

p−2Hu. Then

T

∫
0

(ℋ[u] −ℋ[u])(u − u)dt ≥ 0. (B.7)

Proof. This property comes from a direct computation. We write

T

∫
0

(ℋ[u] −ℋ[u])(u − u)dt

= 𝒜0

T

∫
0

(|Hu|
p−2Hu − |Hu|

p−2Hu)(u − Hu − (u − Hu))dt

+𝒜0

T

∫
0

(|Hu|
p−2Hu − |Hu|

p−2Hu)(Hu − Hu)dt
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≥
T

∫
0

(
𝜕(u − Hu − (u − Hu))

𝜕t
+ σ(u − Hu) − σ(u − Hu))(u − Hu − (u − Hu))dt

≥
T

∫
0

(
𝜕(u − Hu − (u − Hu))

𝜕t
)(u − Hu − (u − Hu))dt

=
1
2
(u − Hu − (u − Hu))

2|T0

≥ −
1
2
(u(0) − Hu(0) − u(0) − Hu(0))

2 = 0.

This completes the proof.

With this property, given two solutions u and u of (B.6a), (B.6b), we use u − u as a
test function in the weak formulation of (B.6a) and recover

T

∫
0

∫
Ω

(|∇u|p−2∇u − |∇u|p−2∇u) ⋅ ∇(u − u)dx dt

≤
T

∫
0

∫
Ω

(|∇u|p−2∇u − |∇u|p−2∇u) ⋅ ∇(u − u)dx dt +
T

∫
0

∫
Ω

(ℋ[u] −ℋ[u])(u − u)dx dt = 0.

This guarantees that ∇u = ∇u in (0,T) ×Ω. Since u, u = 0 on the boundary, we recover
that u = u.

In Lemma B.10 below, we show for p = 2 the continuous dependence of H with
respect to u, even when G0 is not a ball. We do not present here the proof for p ̸= 2,
which can be found in [232].

Remark B.4. Note that in (B.6b) the equation contains a 𝜕u𝜕t that could be hard to locate
in a functional space. One could take Hu = u − Hu which has as equation

{
𝜕Hu
𝜕t + σ(Hu) = ℬ0|u − Hu|

p−2(u − Hu) + g (0,T) × Ω,
Hu = u0 t = 0.

This problem no longer depends on 𝜕u𝜕t . The continuous dependence can be proved in
this setting.

Remark B.5. If we consider mixed time derivatives in both Ωε and Sε, we can write in
general the parabolic problem

{{{{{{{{{
{{{{{{{{{
{

a 𝜕uε𝜕t − Δpuε = f (0,T) × Ωε,

bβ(ε) 𝜕uε𝜕t +
𝜕uε
𝜕νp
+ β(ε)σ(uε) = β(ε)gε (0,T) × Sε,

uε = 0 (0,T) × 𝜕Ω,
a u(0, ⋅) = a u0 Ωε,

b u(0, ⋅) = b u0 Sε,
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for a, b ≥ 0. Then the limit problem becomes

{{{{{{{{{
{{{{{{{{{
{

a 𝜕u𝜕t − Δpu +𝒜0|Hu|
p−2Hu = f (0,T) × Ω,

b 𝜕Hu
𝜕t + ℬ0|Hu|

p−2Hu = b
𝜕u
𝜕t + σ(u − Hu) − g (0,T) × Ω,

u = 0 (0,T) × 𝜕Ω,
a u(0, x) = a u0(x) Ω,
bHu(0, x) = b(u(0, x) − u0(x)) Ω.

The values a and b are added to the initial condition so that they become trivial when
a or b vanishes. If a > 0, then the last condition is just bHu = 0. However, if a = 0
we can recover our strange initial datum, pointed out above. Due to amisprint, in [117,
equation (1.5)], the initial condition for Hu is written exclusively bHu = 0. However,
in that paper σ(u) = λu and the correct explicit value of Hu is provided [117, equation
(2.10)] as well as the equation for u when α = 0 is written at the mentioned paper.

B.4 Critical particles a⋆ε ∼ aε when p = 2 and general G0

Repeating the argument in Section 4.7.3 we must pick our function ŵσ so that we get a
cancelation of the already famous term I2,ε from Lemma 4.45. Now, instead of a single
value s ∈ ℝ, we must be able to input a time-dependent function ϕ : [0,∞) → ℝ.
Using a similar argument as before, we recover that the auxiliary function ŵ(t, y; x,ϕ)
should solve, for each x ∈ Ω,

{{{{{{
{{{{{{
{

Δŵσ = 0 (0,∞) × ℝn \ G0,

C0
𝜕ŵσ
𝜕t +
𝜕ŵσ
𝜕ν = C0

dϕ
dt + C0σ(ϕ − ŵσ) − C0g(x) (0,∞) × 𝜕G0,

ŵσ → 0 as |y| → +∞ and t > 0,
ŵσ(t,0) = ϕ(0) − u0 at t = 0,

(B.8)

and

H[x,ϕ](t) = ∫
𝜕G0

𝜕νŵσ(t, y; x,ϕ)dSy .

In the homogenized equation we have

{
−Δu(t, x) + A0H[x, u(⋅, x)](t) = f (0,∞) × Ω,
u = 0 (0,∞) × 𝜕Ω.

The initial data are, as above, encoded in H.

Remark B.6. Note that when G0 = B1, then ŵσ(t, y; x,ϕ) = Hϕ(t, x)ŵ(y) = Hϕ(t, x)κ̂(y),
where κ̂ is given by (3.20).
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Again, to proveuniqueness of solutionof thehomogenizedproblem, it is sufficient
to prove H is a monotone operator. We state the following lemma.

Lemma B.7. Let ϕ,ϕ ∈ C1([0, +∞)). Then, for each x fixed

T

∫
0

(H[x,ϕ] − H[x,ϕ])(ϕ − ϕ)dt ≥ 0.

Proof. For the sake of conveniencewith respect to the length of the proof, let us denote
w = ŵσ[ϕ] and w = ŵσ[ϕ]. We have

T

∫
0

(H[ϕ] − H[ϕ])(ϕ − ϕ)dt =
T

∫
0

∫
𝜕G0

𝜕ν(w − w)(ϕ − ϕ)dS dt

=
T

∫
0

∫
𝜕G0

𝜕ν(w − w)(ϕ − w − (ϕ − w))dS dt

+
T

∫
0

∫
𝜕G0

𝜕ν(w − w)(w − w)dS dt

= C0

T

∫
0

∫
𝜕G0

(
𝜕(ϕ − w − (ϕ − w))

𝜕t
)(ϕ − w − (ϕ − w))dS dt

+ C0

T

∫
0

∫
𝜕G0

(σ(ϕ − w) − σ(ϕ − w))(ϕ − w − (ϕ − w))dS dt

+
T

∫
0

∫
ℝn\𝜕G0

|∇(w − w)|2 dS dt

≥ 0,

as we did in Lemma B.3.

The continuity of H is proved similarly to previous cases.

Remark B.8. As above, if one does notwish to use time derivatives so that the operator
canbe applied to functionswhich are justL2(0,T ; L2(𝜕G0)), then the change in variable
wσ = ϕκ̂ − ŵσ is the solution of

{{{{{{
{{{{{{
{

Δwσ = 0 (0,∞) × ℝn \ G0,

C0
𝜕wσ
𝜕t +
𝜕wσ
𝜕ν + C0σ(wσ) = ϕ

𝜕κ̂
𝜕ν + C0g (0,∞) × 𝜕G0,

wσ → 0 as |y| → +∞ and t > 0,
wσ = u0 at t = 0.
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Note that

H[x,ϕ](t) = ∫
𝜕G0

(ϕ𝜕νκ̂ − 𝜕νwσ)dS = ϕ(t)λG0
− ∫
𝜕G0

𝜕νwσ(t, y; x,ϕ)dSy . (B.9)

Similarly as we did toH, it is not too difficult to show the continuous dependence.
First, we do this in terms of wσ .

Lemma B.9. We have

T

∫
0

∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dS dt ≤ λG0

T

∫
0

|ϕ − ϕ̄|2 dt.

Proof. We check that

∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx = ∫

ℝn\G0

∇(wσ[ϕ] − wσ[ϕ])∇(wσ[ϕ] − wσ[ϕ])dx

= ∫
𝜕G0

(wσ[ϕ] − wσ[ϕ])𝜕ν(wσ[ϕ] − wσ[ϕ])dS

= −
C0
2
∫
𝜕G0

𝜕
𝜕t
(wσ[ϕ] − wσ[ϕ])

2 dS

− C0 ∫
𝜕G0

(σ(wσ[ϕ]) − σ(wσ[ϕ]))(wσ[ϕ] − wσ[ϕ])dS

+ ∫
𝜕G0

(ϕ − ϕ̄)(wσ[ϕ] − wσ[ϕ])𝜕νκ̂ dS.

Integrating in [0,T],

T

∫
0

∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx dt ≤

T

∫
0

∫
𝜕G0

(ϕ − ϕ̄)(wσ[ϕ] − wσ[ϕ])𝜕νκ̂ dS dt.

Note that

∫
𝜕G0

(ϕ − ϕ̄)(wσ[ϕ] − wσ[ϕ])𝜕νκ̂ dS = (ϕ − ϕ) ∫
ℝn\G0

∇(wσ[ϕ] − wσ[ϕ])∇κ̂ dx

≤ |ϕ − ϕ|( ∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx)

1
2

( ∫
ℝn\G0

|∇κ̂|2 dx)
1
2

≤
1
2
∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx + 1

2
|ϕ − ϕ|2 ∫

ℝn\G0

|∇κ̂|2 dx.
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Therefore, we have

T

∫
0

∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx dt ≤ ∫

ℝn\G0

|∇κ̂|2 dx
T

∫
0

|ϕ − ϕ̄|2 dt.

Lastly, we point out that this constant is precisely the capacity (3.21).

This allows us to recover the continuous dependence of H.

Lemma B.10. We have

T

∫
0

|H[ϕ] − H[ϕ]|2 dt ≤ 2λ2G0

T

∫
0

|ϕ − ϕ|2 dt.

Proof. We recall first that (B.9). Now

∫
𝜕G0

𝜕ν(wσ[ϕ] − wσ[ϕ])dS = ∫
𝜕G0

κ̃𝜕ν(wσ[ϕ] − wσ[ϕ])dS

= ∫
ℝn\G0

∇κ̃∇(wσ[ϕ] − wσ[ϕ])dx

≤ λ
1
2
G0
( ∫
ℝn\G0

|∇(wσ[ϕ] − wσ[ϕ])|
2 dx)

1
2

.

Taking power 2 and integrating we recover the result.

Remark B.11. It is likely that the 2 in the previous estimate can be avoided through
sharper analysis.
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C Critical-size particles with a stochastic
perturbation

This is a research subject which is currently being very active. Such as we have indi-
cated before, there are many mathematical books on periodic homogenization, and
some of them already consider a stochastic framework (see, e. g., [31, 175]), develop-
ing pioneering works by Papanicolaou, Varadhan, Kozlov, Yurinskij and others in the
1970s. Nevertheless new methods and many different applications are presently be-
ing proposed for a large array of models (see, e. g., [37, 67, 33, 137, 243, 257] and [260],
among many other references).

In this appendix we will follow a concrete approach (the assumption of “station-
ary and ergodic” random media) which was initiated by Dal Maso and Modica [93]
(in their paper they acknowledge a suggestion from L. Russo). More specifically we
will illustrate the occurrence of a strange term, for the critical size of the particles, in
the context of stochastic homogenization applied to obstacle type problems according
mainly to the papers by Caffarelli and Mellet [60] (obstacle problem for p = 2) and by
Tang [253] (obstacle problem with p ̸= 2). See also [61].

We start by introducing a different notation with respect to the rest of the book:
here the spatial domain is denoted by D and not Ω, since this symbol is traditionally
used in the context of probability to denote a probability space (Ω,ℱ ,𝒫) which we
assume given in this appendix. Here, for each ω ∈ Ω and ε > 0, the set of random
particles is denoted byGε(ω), so that it defines its complementary setDε(ω) = D\Gε(ω)
where the diffusion-reaction process takes place.

The technique introduced by Caffarelli-Mellet for p = 2 allows us to work with

Gε(ω) = (⋃
j∈ℤn

Gε,j(ω)) ∩ D. (C.1)

In the theory introduced by Caffarelli–Mellet the particles are still essentially period-
ically placed, since they assume

Gε,j(ω) ⊂ Baε (εj),

where aε ∼ a⋆ε . For consistency with our previous notation we take

ϒε = {j ∈ ℤ
n : Gε,j(ω) ∩ D ̸= 0}.

The key assumption in passing to the limit is that the particles have similar capacities,

cap(Gε,j(ω)) = ε
nγ(j,ω).

Recall the definition of the important notion of capacity given in Remark 3.11.

https://doi.org/10.1515/9783110648997-009
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The process γ : ℤn × Ω → [0, +∞), a process that relates these capacities, needs
to be bounded,

0 < γ ≤ γ(j,ω) ≤ γ, (C.2)

such that there exists a family of measure-preserving transformations τj : Ω → Ω
satisfying

γ(j + j󸀠,ω) = γ(j, τj󸀠 (ω)), ∀j, j󸀠 ∈ ℤn and ω ∈ Ω (C.3)

and such that if A ⊂ Ω and

τj(A) = A for all j ∈ ℤn, then P(A) ∈ {0, 1}. (C.4)

The approach by Tang [253] for p ∈ (1, n] is geometrically more modest and as-
sumes (C.1) where only

Gε,j(ω) = Baε(j,ω)(εj). (C.5)

Hence, the position εj and shape (a ball) are prescribed, but the radius of this ball is
stochastic. Still, the assumption is

p-cap(Gε,j(ω)) = ε
nγ(j,ω), (C.6)

such that conditions (C.2)–(C.4) hold. For p = n we recall Remark 3.13, and by
n-capacity we mean the relative n-capacity with respect to B1. Note that the capacity
of a ball can be explicitly computed and given by a monotone function F as

aε(j,ω) = F(ε
nγ(j,ω)). (C.7)

Solving explicitly, this assumption means that aε ∼ a⋆ε .
We will describe the results for the following model problem (given 1 < p ≤ n and

ω ∈ Ω):

{{{
{{{
{

−Δpuε = f (x) x ∈ Dε(ω),
𝜕νpuε + β(ε)σ(uε) = 0 x ∈ Sε(ω),
uε = 0 𝜕Dε(ω) \ Sε(ω),

(C.8)

where σ is themaximalmonotone graph ofℝ2 associated to the Signorini microscopic
boundary conditions,

σ(r) =
{{{
{{{
{

0 if r > 0,
[0, +∞) if r = 0,
0 if r < 0.

Note that now, in this special case, the value of β(ε) is irrelevant. Nevertheless we
keep this formulation to maintain the coherence with the formulation maintained in
previous chapters of this book. Of course this is not the case when σ is a continuous
function (see, especially, [183], where the case of a Lipschitz function σ and p = 2 was
considered by following a different technique).
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C.1 Some comments on the ergodicity hypothesis

Let us stress the fact that the assumption (C.6) is not directly made on the shape of the
particles but on their capacity. In this sense, the shape of the particles is left unspeci-
fied and may change with ε [60]. Note also that (C.6) implies that the diameters of the
particles decrease faster than ε, which implies that the capacities of neighboring sets
separate at the limit, and we can recover

p-cap(⋃
j∈ϒε

Gε,j(ω)) ∼ ∑
j∈ϒε

p-cap(Gε,j(ω)) = ε
n ∑
j∈ϒε

γ(j,ω). (C.9)

Since the particles are spread over the whole domain we conclude that |ϒε| ∼ ε−n.
Note that the process γ can be understood as a dynamical system over the set of

indexes ℤn (instead of the real interval [0, +∞), as is usual in ODEs; see [175]). In this
sense, theword “stationary” simplymeans that the random variable defined by γ(j, .) :
Ω→ [0, +∞) is independent of j ∈ ℤn (i. e., for all a ∈ [0, +∞), P({ω ∈ Ω : γ(j, .) > a} is
independent of j ∈ ℤn). This condition is themost general extension of the periodicity
assumption made in the precedent chapters.

The ergodicity part (ifA ⊂ Ω and τj(A) = A for all j ∈ ℤn, then P(A) = 1 or P(A) = 0)
means that the translation-invariant subsets of Ω have either full or zero measure [2].

We refer the reader to the presentationsmade in [257, 3] and [33] for some basic ex-
amples such as the random checkerboard and the Poisson cloud. Moreover, it is easy to
see that a deterministic periodic location of particles of the same shape (as in previous
chapters of this book) can be associated to a family ofmeasure-preserving transforma-
tions satisfying the stationary and ergodic assumptions (see, e. g., Example 8.1 of [33]).
It is also convenient to recall the Birkhoff theorem [36]. Define the spatial average of
any given function f ∈ L1loc(ℝ

n) by

⟨f ⟩x = lim
ρ→∞

1
ρn|K|
∫
ρK

f (x)dx,

with K any arbitrary compact set of ℝn. Consider now f (x,ω) = f̃ (γ(x)ω), with f̃ ∈
L1(Ω,P), a stationary random field, with γ(x) a group of measure-preserving transfor-
mations. Then if γ is ergodic, the spatial average is the same as the average over Ω (the
expectation), i. e.,

⟨f̃ (γ(x)ω)⟩x = E[f̃ ],

for almost all ω ∈ Ω and, in particular, it does not depend on the realization ω.

C.2 Convergence results

The result in [60] and [253] states the following. Let uε(x,ω) be the minimizer of the
energy functional
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J(v) = 1
p
∫
D

|∇v|p−2 dx − ∫
D

fv dx, (C.10)

in the convex set

K(ε,ω) = {v ∈ W 1,p
0 (D) : v ≥ 0 in Gε(ω)}.

Then,

uε(⋅,ω) ⇀ u inW 1,p
0 (D) almost surely in ω ∈ Ω,

where u ∈ W 1,p
0 (D) is the minimizer of the energy functional

Jeff(v) = 1
p
∫
D

|∇v|p−2 dx + ∫
D

α0
p
(v−)

p dx − ∫
D

fv dx,

for some α0 > 0. In other words, the effective equation for the obstacle problem in-
cludes a strange term of the form

ℋ(s) = 𝒜0(s−)
p−1.

This reproduces the behavior of the periodical case (see Example 4.34 (c)) with 𝒜0 a
constant related to the capacity (see Remark 4.31).

C.3 Auxiliary test function

The key point of the argument is based on the construction of an adequate auxiliary
function like those in Sections 3.1.5 and 4.7. However, instead of taking one function
wε and reproducing it by periodicity, they tackleWε directly.

Lemma C.1 ([60, 253]). Assume that Gε(ω) satisfies the hypothesis above. Then, there
exist a positive real number α0 and a function Wε(x,ω) such that, for a. s. ω ∈ Ω,

{{{
{{{
{

−ΔpWε = α0 in Dε(ω),
Wε(x,ω) = 1 in Gε(ω),
Wε(x,ω) = 0 on 𝜕Dε(ω) \ Gε(ω),

with

Wε(.,ω) ⇀ 0 weakly in W 1,p
0 (D(ω)), as ε → 0.

Moreover, Wε satisfies the following properties:
(a) for any ϕ ∈ 𝒟(D) and 0 < q < p,

lim
ε→0
∫
D

|∇wε|
qϕdx = 0;
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(b) for any ϕ ∈ 𝒟(D),

lim
ε→0
∫
D

|∇wε|
pϕdx = α0 ∫

D

ϕdx;

(c) for any sequence {vε(.,ω)} in W
1,p
0 (D)with the property vε ⇀ v weakly inW 1,p

0 (D), as
ε → 0 and vε = 0 on Gε(ω), and for any ϕ ∈ 𝒟(D), we have

lim
ε→0
∫
D

|∇wε|
p−2∇Wε ⋅ ∇vεϕdx = −α0 ∫

D

vϕdx.

The choice of the value α0 is strongly related to the computation (C.9). We refer
the reader to either text for the details.

C.4 Structure of the proof

The structure of the proof is based on some uniform estimates, for eachω. Thus, there
must exist a weak limit (which could, in principle, depend onω). The characterization
of the limit is done by a Γ-convergence type argument similar to [80, 81, 79].

The first step is proving that letting u be the weak limit of uε, we have

Jeff(u) ≤ lim inf
ε→0

J(uε).

For p = 2 in [60] the authors use [81, Proposition 3.1], whereas for p ̸= 2 the proof in
[253] is direct. Using the corrector term the authors prove that for smooth test func-
tions v, we have

lim
ε→0

J(v + v−Wε) = J
eff(v).

The argument is completed by mixing these two limits:

Jeff(u) ≤ lim inf
ε→0

J(uε) ≤ lim inf
ε→0

J(v + v−Wε) = J
eff(v).

Thus,u is theminimizer of Jeff. Since thisminimizationproblemdoesnot dependonω,
neither does the limit ω.

C.5 Final comments

As shownabovewehaveananomalous homogenizationwith thepresenceof a “strange
term” (σ0(u−)p−1) under the critical size assumption (C.7). Note that what is happening
here is that the limit u of functions uε(.,ω), which are non-negative over big subregions
ofD(ω) (to bemore precise, on the unionGε(ω) ofmany small balls), may become neg-
ative on a region ofDwhere f (x) is very negative.More precisely, we have the following
proposition.
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Proposition C.2. Let f ∈ L2(Ω) such that the unique solution of (C.8) is such that u ∈
L∞(Ω). Let δ > 0 and assume that the set Ωf ,Λ := {x ∈ Ω : f (x) ≤ Λ < 0} is not empty for
some

Λ < −α0δ
p−1. (C.11)

Then u(x) ≤ −δ for a. e. x ∈ Ωf ,Λ such that d(x, 𝜕Ωf ,Λ) ≥ R with

R = (
‖u‖L∞(Ω) + δ

C
)

p−1
p

, C = (p − 1)(α0δ
p−1 − Λ)

1
p−1

pN
1

p−1 . (C.12)

Proof. Given x0 ∈ Ωf ,Λ we will use the local barrier function

u(x; x0) = C|x − x0|
p
p−1 − δ,

with C > 0 to be chosen later. We have (see, e. g., Remark 2.7 of [102])

−Δpu = −C
p−1 p(p−1)N
(p − 1)(p−1)

.

Thus

−Δpu + H(u) = −Δpu − σ0|r|
p−2r− ≥ −C

p−1 p(p−1)N
(p − 1)(p−1)

− α0δ
p−1 ≥ Λ ≥ f (x) on Ωf ,Λ,

if we assume C given by (C.12), thanks to the assumption (C.11). Then, if BR(x0) ⊂ Ωf ,Λ
we get that u(x; x0) will be a local supersolution assumed that

CR
p
p−1 − δ ≥ ‖u‖L∞(Ω).

This is satisfied once we take R given by (C.12). Then, by the comparison principle we
get

u(x) ≤ C|x − x0|
p
p−1 − δ a. e. on BR(x0), (C.13)

which implies the result (note that if u ∈ C0(BR(x0)) we get from (C.13) that u(x0) ≤
−δ).

Remark C.3. The above proposition (which seems to have been unadvertised before
in the literature) represents a mathematical rigorous proof of behaviors compara-
ble to the experiments made for some new materials as the so-called “mechanical
meta-materials”: some artificial structures with mechanical properties defined by
their structure rather than their composition. They can be seen as a counterpart to the
rather well-known family of “optical meta-materials.” Their mechanical properties
can be designed to have values which cannot be found in nature (see, e. g., the survey
paper [251]). For a rigorous mathematical approach to “optical meta-materials” see,
e. g., [187].
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Remark C.4. As mentioned in Chapter 6, the homogenization for particles on the
boundary is related to the homogenization of equations given by suitable fractional
operators. In the case of random particles it was considered by Caffarelli andMellet in
[62]. They prove that if the fractional operator is (−Δ)s, with s ∈ (0, 1], then the critical
exponent is now n

n−2s .
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