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Foreword

The enigmatic problem of “perpetuummobile” has attracted a lot of attention over the
years, starting already in the Middle Ages. Indeed, perpetual motion implies a lack
of energy dissipation which is a very unusual situation in science. Two key cases of
nondissipating motion on a macroscopic scale are well known:
– the flow of electrical current in superconductors and
– the propagation of light (and other electromagnetic waves as well) in vacuum.

If a current is induced in a superconducting ring that is meters or kilometers in size,
it circulates there forever. When we enjoy the romantic glimmer of a distant star in
the night, the light from it has arrived after traveling for billions of years, a nice ex-
perimental proof of dissipation-free propagation. An important difference here is that
the first system deals with current in condensed matter, the second one with the prop-
agation of electromagnetic fields in vacuum. In the first case, the energy dissipation
is forbidden by the existence of the coherent quantum state of the condensate of the
charged Cooper pairs carrying the current, while in the second case there is not too
much to interact with for the light propagating in vacuum, as prescribed by the clas-
sicalMaxwell’s equations.

Whereas propagating light interacts with matter or gravitational waves and rep-
resents the basis for optical devices and experiments, the frictionless flow of supercur-
rent interferes with nanosize objects in the superconductor such as tunnel barriers,
surfaces, interfaces, or the so-called fluxons or vortices, quantized magnetic flux of
extremely small magnitude Φ0 = h/2e ≈ 2.06 × 10−15 Wb, that are induced by an
applied current, a magnetic field, or thermal fluctuations. On the one hand, an ap-
propriate nanotechnology is required tomaster fluxon behavior – for instance through
designing appropriate pinning potentials to localize the fluxons (vortices) – and re-
tain the frictionless supercurrent that is necessary for a number of superconducting
applications. This forms one of the main objectives of fluxonics. On the other hand,
it offers a wide range of options for improved or even novel fluxonic concepts, espe-
cially since the necessary tools for “nanoengineering” superconducting materials are
readily available nowadays.

Generally, the superconducting condensate is described by the “order parameter”
that obeys the Ginzburg–Landau (GL) equations (Nobel Prize in Physics, 2003). The
boundary conditions for these, strongly influencing the solutions, are imposed at the
physical sample boundaries, thus implying that the properties of confined fluxons can
be tailored by applying specific surface configurations. This creates a unique oppor-
tunity for the “quantum design” of the physical properties of the confined condensates
and fluxons through the application of specially defined nanomodulated boundary
conditions, which can be additionally tuned using, for instance, magnetic templates,
electrical fields, or even optical signals. The imposed nanomodulation can therefore
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XIV | Foreword

lead to the practical implementation of the confined fluxon patterns possessing the
specific properties needed for applications in fluxonics ranging from passive and ac-
tive elements to qubits for quantum computing.

It is the intention of this book to highlight and discuss the state-of-the-art and
recent progress in this field, as well as to highlight current problems with “Supercon-
ductors at the Nanoscale”. This includes:
– the visualization and understanding of fluxons (vortices) and their interaction on

the nanoscale, in nanostructured superconductors, as well as in novel types of
superconductors;

– progress in controlling static fluxon configurations as well as the dynamic proper-
ties (up to THz frequencies) of fluxons in nanoscale superconductors;

– the behavior of different types of fluxons (Abrikosov vortices, kinematic vortices,
and Josephsonvortices) inmesoscopic, nanostructured, and/or layered supercon-
ductors;

– the impact of the combination of superconductors with other materials, like fer-
romagnetic layers, on the nanoscale, and;

– progress in nanoscale superconducting electronics such as SQUIDs, THz emitters,
or photonic detectors.

For a better general understanding, the topic of superconductivity is introduced in an
extended Tutorial that provides a brief history and a scientific overview of the physics
of superconductivity.

Victor V. Moshchalkov Roger Wördenweber

Acknowledgment: This book is based upon work from COST Action “Nanoscale Su-
perconductivity:Novel Functionalities throughOptimizedConfinementof Condensate
and Fields” (NanoSC – COST Action MP1201), supported by COST (European Cooper-
ation in Science and Technology).

COST (European Cooperation in Science and Technology) is a pan-
European intergovernmental framework. Its mission is to enable
break-through scientific and technological developments leading to
new concepts and products and thereby contribute to strengthening

Europe’s research and innovation capacities. It allows researchers, engineers, and scholars to jointly
develop their own ideas and take new initiatives across all fields of science and technology, while
promoting multi- and interdisciplinary approaches. COST aims at fostering a better integration of less
research intensive countries to the knowledge hubs of the European Research Area. The COST As-
sociation, an International not-for-profit Association under Belgian Law, integrates all management,
governing, and administrative functions necessary for the operation of the framework. The COST As-
sociation has currently 36 Member Countries. www.cost.eu
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Roger Wördenweber and Johan Vanacken
Tutorial on nanostructured superconductors

1 Introduction
Superconductivity represents an extraordinary phenomenon. In the superconducting
state the material not only exhibits no electric resistance to an applied DC current, it
shows also unique properties in magnetic fields that can be used for a large variety
of applications ranging from energy production and management, medical diagnos-
tics, to sensor and information technology. For a long time the application of super-
conductivity was hampered by its low transition temperature Tc that required cooling
down to liquid He temperature at 4.2K. As a consequence, superconductive solutions
were considered and developed in the past only if classical solutions were not feasi-
ble. This was (and still is) the case for medical applications like magnetic resonance
imaging (MRI) or electroencephalography, particle accelerators, and special detectors
(e.g., bolometers or highly sensitive magnetic field detectors).

With the discovery of the so-called high-Tc materials with Tc values of 90K and
higher (see Figure 1), this situation has changed. Now it was possible to attain the su-
perconducting state with much cheaper cooling by liquid nitrogen. However, it soon
turned out that the new superconductors (i) have a very complex crystallographic
structure, (ii) are highly anisotropic (2D superconductivity), and (iii) possess super-
conducting parameters that allow even smallest inhomogeneities to reduce or even
destroy the superconductivity locally.

As a result, it is essential to analyze, understand and, if possible, optimize su-
perconductors at the nanoscale. This includes among others a detailed study of the
nanostructure of these superconductors, the resulting ‘nanophysics’, and the impact
of nanostructures introduced by nanopatterning on the superconducting properties.
This book represents a detailed report on this activity that was performed in the
framework of a European project, the COST Action MP1201 ‘Nanoscale Superconduc-
tivity (NanoSC), Novel Functionalities through Optimized Confinement of Condensate
and Fields’.

2 A brief history of superconductivity
In 1908, Kamerlingh Onnes [1] succeeded in the liquefaction of helium with a boil-
ing point of 4.2K at atmospheric pressure. Since the boiling point can be reduced by
pressure reduction, he was now able to extend the experimentally available tempera-

DOI 10.1515/9783110456806-001, © 2017 Roger Wördenweber, published by De Gruyter. This work
is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
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2 | Roger Wördenweber and Johan Vanacken

ture range towards absolute zero. Using this opportunity, he started an investigation
of the electric resistance of metals. At that time, it was known that electrons are re-
sponsible for charge transport. However, different ideas about the mechanism of the
electric conduction and the resulting temperature dependence of the resistance were
discussed:
1. At low temperature the crystal lattice ‘freezes’ and the electrons are not scattered

any longer. As a consequence the resistance of all metals would approach zero
with decreasing temperature (Dewar, 1904).

2. Similar to option 1, however due to impurities in the lattice, the resistance would
approach a finite limiting value (Matthiesen, 1864).

3. In contrast to option 1 and 2, the electrons could be ‘frozen’ (i.e., bound to their
respective atoms) at low temperature. Consequently, the resistance would pass
through aminimum and approach infinity at very low temperatures (Lord Kelvin,
1902).

Initially, Kamerlingh Onnes studied platinum and gold samples, which he could ob-
tain already with high purity. He found that the experiment agreed with the second
option. At zero temperature the electric resistance of these samples saturated at a fi-
nite limiting value, the so-called residual resistance, that depended upon the purity
of the samples. The purer the samples, the smaller the residual resistance. However,
Kamerlingh Onnes expected that, ideally, pure platinum or gold should have a van-
ishingly small resistance (first option).

In order to test this hypothesis, Kamerlingh Onnes decided to study mercury, the
onlymetal that at that time could behighly purified viamultiple distillation processes.
He expected that the resistance of pure mercury would hardly be measurable at 4.2K
and that it would gradually approach zero resistance at even lower temperatures. The
initial experiments seemed to confirm these concepts, i.e., below 4.2K the resistance
of mercury became immeasurably small (see Figure 1). However, he soon recognized
that the observed effect could not be identified with the expected decrease of resis-
tance. The resistance change resembled more a resistance jump within a few hun-
dredths of a Kelvin than a continuous decrease (see Figure 1). Therefore, Kamerlingh
Onnes stated that ‘At this point (slightly below 4.2K) . . . Mercury had passed into a
new state, which on account of its extraordinary electrical properties may be called the
superconductive state’ [2]. The new phenomenon was discovered and named super-
conductivity.

Meanwhile we know that superconductivity represents a widespread phenom-
enon. Many elements of the periodic system are superconductors (with Nb represent-
ing the element with the highest Tc of about 9.2K) and thousands of superconducting
compounds have been discovered in the meantime ranging frommetallic compounds
and oxides, to organic molecules (see Figure 1).

For the first 75 years, superconductivity represented a low-temperature phe-
nomenon with the highest Tc of about 23.2K in the A15 compound Nb3Ge. In 1986
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Fig. 1: Superconductivity of mercury (copy of the original figure from Kamerlingh Onnes [image in the
figure]) and the evolution of the superconducting transition temperature Tc with time.

this changed, when Bednorz and Müller discovered superconductivity with a Tc in
the range of 30K in the copper-oxide system Ba-La-Cu-O [3]. This immediately started
a ‘rush’ for new superconductors with even higher Tc‘s. Already in 1987, transition
temperatures above 80Kwere observed in the Y-Ba-Cu-O system [4]. During this time,
new results more often were reported in press conferences than in scientific jour-
nals, the media carefully reported on these developments since superconductivity at
temperatures above the boiling point of liquid nitrogen (T = 77K) suggested many
possible technical applications for this phenomenon.

Today, a large number of different Cu-O based (cuprate) superconductors with
high transition temperatures are known, the so called ‘high-Tc superconductors’.
The most studied high-Tc cuprates are YBa2Cu3O7 (YBCO), their rare earth counter-
parts ReBa2Cu3O7 (with Re = Sc, Ce, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu), and
Bi2Sr2CaCu2O8 (BSCCO or Bi2212) with transition temperatures slightly above 90K.
The record Tc value is presently that of HgBa2Ca2Cu3O8, with a Tc of 135K or 164K
at atmospheric pressure or a pressure of 30GPa, respectively.

Surprisingly, only in 2000 superconductivity with a Tc of 39K was detected in
MgB2, even though this compound represents a ‘classical’ metallic superconductor
and had already been commercially available for a long time [5]. In 2008 supercon-
ductivity was detected in quite exotic compounds, the so-called iron pnictides [6]. In
analogy to the copper oxide layers in the cuprates, in these material FeAs layers form
the basic building block for the superconductivity. Compositions like LaFeAsO1−xFx,
Ba1−xKxFe2As2, or ReFeAsO1−x (with Re = Sm, Nd, Pr, Ce, La) show impressive Tc‘s
up to 55K. Finally, a large number of organicmolecules also become superconducting
at low temperature. Already in 1979 K. Bechgaard synthesized the first organic super-
conductor, (TMTSF)2PF6, with a Tc of 1.1K at a pressure of 6.5 kbar. The correspond-
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ingmaterial classwas later named after him.Nowadays, transition temperatures of up
to 33K (2007, alkali-doped fullerene RbCs2C60) have been achieved. Organic super-
conductors are of special interest since they can form quasi-2D or even quasi-1D struc-
tures like Fabre or Bechgaard salts (e.g., κ-BEDT-TTF2X or λ-BETS2X compounds), or
graphite intercalation compounds.

This brief survey of superconductivity demonstrates that there has been a tremen-
dous improvement of the transition temperature in the past years, which, however, is
accompanied by a higher complexity and anisotropy of thematerial. The analysis, un-
derstanding, and optimization of the superconductivity in these materials clearly has
to happen at the nanoscale.

3 Specific properties of superconductors

Themost prominent property of the superconducting state is definitely the disappear-
ance of the DC electric resistance (see Figure 1). The superconductor becomes an ideal
conductor.

However, just as important is the behavior of the superconductor in magnetic
fields. In 1933 Meissner and Ochsenfeld discovered that an externally applied mag-
netic field can be expelled from the interior of a superconductor (Figure 2), i.e., the
superconductor can also act as an ideal diamagnet [28]. This can nicely be demon-
strated in levitation experiments and represents the basis for levitation applications
of superconductivity like levitation trains or magnetic bearings (Figure 2). Generally,
the Meissner–Ochsenfeld effect is very surprising, since according to the induction
law an ideal conductor is expected to preserve an interior constant magnetic field but
not expel it. As will be shown later in this tutorial (Section 4.3), the behavior of a su-
perconductor in a magnetic field is far more complex. It represents one of the major
themes of this book.

4 Theoretical understanding

4.1 Microscopic approach of Bardeen, Cooper, and Schrieffer

The explanation for the unusual behavior of superconductors came with the BCS the-
ory that was introduced by Bardeen, Cooper, and Schrieffer in 1957 [7]. They recog-
nized that at the transition to the superconducting state, electrons (fermions) pairwise
condense to a bosonic state, in which they form a coherent matter wave with a well-
defined quantum-mechanic phase, the so-called Bose–Einstein condensate (the lat-
ter explains the Josephson effect that is introduced in the next section). They assumed
that the interaction of the electrons ismediated by vibrations of the crystal lattice, i.e.,
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Fig. 2: (a) H-T phase diagram showing how a magnetic field interacts with a superconductor. In the
normal state at high temperatures, a magnetic field simply penetrates the material. In the super-
conducting state below Tc, the perfect diamagnetism (blue arrows) will assure that the magnetic
induction B = 0 inside the superconductor. However, even if the material is cooled in an applied
magnetic field (red arrows), the superconductor expels the applied field. Both effects are manifes-
tations of the Meissner–Ochsenfeld effect, that, among others, can be used for the levitation of a
superconductor in a magnetic field. The latter is illustrated by: (b) laboratory demonstration using
a liquid nitrogen cooled high-Tc superconductor and a magnet, (c) a ‘toy train’ of the IFW Dresden
equipped with a superconducting pellet, hovering above a magnetic track, and (d) Toyota/Lexus us-
ing the same technology to make “back-to-the-future” real. (e) Because of pinning (see later), it is
even possible to make a tram “levitate” along a building or upside down as shown by this model at
the KU Leuven.

phonons. The resulting electron pairs are called Cooper pairs. In most cases, the spins
of the two electrons align antiparallel (spin singlets) and the angular momentum of
the pair is zero (s-wave).

The Cooper pairs behave differently from single electrons which are fermions and
have to obey the Pauli exclusion principle. In contrast, Cooper pairs are bosons. They
condense into a single energy level which is slightly lower (a few meV, see Table 1)
than the energy level of the normal state. Therefore an energy gap 2∆ separates the
unpaired electrons (the so-called quasiparticles) from the Cooper pairs (Figure 3a).
The energy gap automatically explains (i) the DC zero-resistance of the superconduc-
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Table 1: Critical temperature Tc and zero temperature values of the energy gap ∆, Ginzburg–Landau
coherence length ξGL, and critical fields Bc (for type-I superconductors) and Bc2 (for type-II su-
perconductors). Since the values vary in the literature, they should be taken as a guide only. For
anisotropic superconductors, the subscripts (ab) and (c) refer to in-plane and out-of-plane proper-
ties, respectively. The subscript ‘max’ indicates the maximum reported value.

Material Tc (K) ∆ (meV) ξGL (nm) λL (nm) Bc, Bc2 (T)

Al 1.2 0.17 1600 34 0.01 (Bc)
Pb 7.2 1.38 51–83 32–39 0.08 (Bc)
Nb 9.2 1.45 40 32–44 0.2 (Bc)
NbN 13–16 2.4–3.2 4 250 16
Nb3Sn 18 3.3 4 80 24
Nb3Ge 23.2 3.9–4.2 3–4 80 38
NbTi 9.6 1.1–1.4 4 60 16
YBa2Cu3O7 92 15–25

(max, ab)
1.6 (ab)
0.3 (c)

150 (ab)
800 (c)

240 (ab)
110 (c)

Bi2Sr2CaCu2O8 94 15–25
(max, ab)

2 (ab)
0.1 (c)

200–300 (ab)
> 15000 (c)

> 60 (ab)
> 250 (c)

Bi2Sr2Ca2Cu3O10 110 25–35
(max, ab)

2.9 (ab)
0.1 (c)

150 (ab)
> 1000 (c)

40 (ab)
> 250 (c)

MgB2 40 1.8–7.5 10 (ab)
2 (c)

110 (ab)
280 (c)

15–20 (ab)
3 (c)

Ba0.6K0.4Fe2As3 38 4–12 1.5 (ab)
c > 5 (c)

190 (ab)
0.9 (c)

70–235 (ab)
100–140 (c)

NdO0.82F0.18FeAs 50 37 3.7 (ab)
0.9 (c)

190 (ab)c
> 6000 (c)

62–70 (ab)
300 (c)

tor and (ii) the transition temperature, criticalfield, and other phenomena that restrict
the superconducting regime, since it always requires an energy (thermal energy, mag-
netic field, current, or irradiation) of at least 2∆ to break a Cooper pair.

The BCS theory provides a number of valuable predictions. For instance, these
include the temperature dependence of the energy gap (Figure 3c), the value of the
energy gap at zero-temperature [9]:

∆ (0K) = 1.764kBTc , (1)

and thedependenceof the superconducting transition temperature Tc on the electron-
phonon interaction V and the Debye frequency ωD which, in the simplest form, is
given by [7]

kBT = 1.13ℎωDe−1/N(EF)V , (2)

with kB representing theBoltzmannconstant andN(EF ) the electronic density of states
at the Fermi level. In the past, the latter equation suggested a possibility to optimize
the transition temperature.
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Fig. 3: (a) Schematic of the density of states at the superconducting energy gap, the shaded regime
indicates the occupied states; (b) experimental verification obtained via scanning tunneling mi-
croscopy on various superconductors (see also Chapter 1), and (c) energy gap as function of re-
duced temperature according to the BCS theory (solid line) and for BCS-type superconductors (data
from [8]). In (b) the data are normalized with respect to the energy gap ∆ and, for better visibility,
they are shifted with respect to the ordinate (gray dotted line represents zero conductance). Al and
NbSe2 show the ‘classic’ BCS behavior (for Al a BCS fit is added, dashed line), whereas MgB2 repre-
sents a more complex superconductor with among others two energy gaps. For details of the tunnel
spectroscopy and related topics refer to Chapter 1.

Many superconductors represent BCS-type superconductors (see Figure 3c) and even
for the ‘non-BCS-type superconductors’ the general principles of the BCS theory are
still valid. Nevertheless, we know now that the superconducting state can be much
more complicated. This is especially the case for the much more complex new super-
conductors, like the high-Tc cuprates, MgB2 (see Figure 3), pnictides, or even organic
superconductors. Not only does Cooper pairing not really involve individual electrons
pairing to form ‘quasibosons’, holes can also condensate to Cooper pairs, and d-wave
superconductivity, p-wave superconductivity, multiband superconductivity, and cou-
pling mechanisms other than phonon-mediated electron-electron interaction have to
be taken into consideration to explain superconductivity in themore andmore ‘exotic’
compounds. The careful analysis of the band structure of these materials is therefore
a vital tool to understand these superconductors. A detailed discussion of this topic is
given in Chapter 1.

4.2 Thermodynamic approach of Ginzburg and Landau

In contrast to the microscopic approach of the BCS theory, Ginzburg and Landau
proposed a macroscopic description of superconductivity using universal thermody-
namic arguments [10]. Their phenomenological theory was essentially correct when
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they presented it in 1950 (i.e., prior to the BCS theory), however they assumed a charge
q = e of the superconducting charge carrier. With the appearance of the BCS theory,
this charge was then replaced by the charge of the Cooper pair, q = 2e. Later, in 1959,
Gor’kov demonstrated that the Ginsburg–Landau theory can be derived from the BCS
theory [11].

Based on Landau’s previously thermodynamic description of 2nd order phase
transitions, Ginzburg and Landau argued that the free energy F of a superconductor
near the superconducting transition can be expressed in terms of a complex order
parameter ψ, which is zero in the normal state and nonzero in the superconduct-
ing state. Furthermore, ψ is related to the density of the superconducting charge ns.
Assuming that |ψ| is small, the free energy can be expressed by

F − Fn = α|ψ|2 + β
2
|ψ|4 + 1

2m

(ℎ
i
∇ − 2eA)ψ

2 + |B|2
2μo

, (3)

with the parameters Fn representing the free energy in the normal phase, the phe-
nomenological parameters α and β, m and 2e the effective mass and charge of the
Cooper pair, and A and B the magnetic vector potential and magnetic field, respec-
tively. Minimizing the free energy with respect to variations in the order parameter
and the vector potential yields the important Ginzburg–Landau equations

αψ + β|ψ|2ψ + 1
2m

(ℎ
i
∇ − 2eA)2

ψ = 0 ,

j = 1
μo

(∇ × B) = 2e
m Re{ψ ∗ (ℎ

i ∇ + 2eA)ψ} ,
(4)

where j denotes the electric current density and Re the real part. The first equation
resembles the time-independent Schrödinger equation except for the nonlinear term.
It determines the order parameter ψ, whereas the second equation provides the su-
perconducting current.

The Ginzburg–Landau equations predict two important characteristic lengths in a
superconductor, the coherence length ξGL and the penetration depth λ. The coherence
length

ξGL = √ ℎ
2m|α| (5)

characterizes the thermodynamic fluctuations in the superconducting phase. It is for
instance manifested at a superconductor surface where the density ns of Cooper pairs
vanishes exponentially with a length scale of ξGL (Figure 4). Obviously, this parameter
is temperature dependent. Moreover, it is correlated to the so-called BCS coherence
length ξo = ℎvF/kBTc which characterizes the distance over which the two electrons
forming a Cooper pair are correlated. Here vF denotes the Fermi velocity.

The second parameter, the London penetration length λ, was already introduced
by theLondonbrothers in 1935 [29]. Expressed in termsof theGinzburg–Landaumodel
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Fig. 4: Exponential decrease of the magnetic field and
increase of the Cooper pair density at the surface of a su-
perconductor define the London penetration depth λ and
the Ginzburg–Landau coherence length ξGL.

it is given by

λ = √ m
4μoe2ψ2

o
, (6)

where ψo is the equilibrium value of the order parameter in the absence of an elec-
tromagnetic field. The penetration depth sets the length scale according to which an
external magnetic field decays exponentially inside the superconductor.

Finally, Ginzburg and Landau defined another parameter, the Ginzburg–Landau
parameter κ = λ/ξGL, which plays an important role in the classification of supercon-
ductors with respect to their behavior in an applied magnetic field.

4.3 Type-I and type-II superconductors

The behavior of a superconductor in a magnetic field depends on two energy contri-
butions: (i) the energy EB that is necessary to expel the magnetic field from the su-
perconductor and (ii) the energy EC that is gained by the condensation of the Cooper
pairs. Inside the superconductor both energies compensate each other, i.e., −EB =
EC = B2c,th/2μo with the thermodynamic critical field Bc,th. However, at a S/N inter-
face (superconductor to normal conductor interface) both energies are modified (see
Figure 4), the magnetic field is not completely expelled and the Cooper-pair density
is reduced. Therefore, the modification of these energies at a S/N interface with an
area A is given by ∆EB = AλB2c,th/2μo and ∆EC = AξGLB2c,th/2μo, respectively. As a
consequence we obtain an energy contribution of a S/N interface of

∆EC − ∆EB = (ξGL − λ) AB2c,th/2μo , (7)

which is positive for ξGL > λ or negative for ξGL < λ. These different possibilities auto-
matically give rise to different behaviors of the superconductor in an applied field. In
one case S/N interfaces are energetically favored, in the other case not.

Exact calculations by Abrikosov in 1957 [12] predicted this behavior. He classified
two types of superconductors according to their Ginzburg–Landau parameter. These
superconductors are:
– Type-I for κ < 1/√2: Because of the positive energy necessary for the formation of

S/N interfaces, these superconductors expel an applied magnetic field (except for
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Fig. 5: Schematic sketches of the behavior of type-I and type-II superconductors in an applied mag-
netic field (top), magnetization in the superconducting state below Tc starting with ideal diamag-
netism (Meissner phase with the magnetic susceptibility χ = −1) followed by different types of field
penetration (middle), and the resulting phase diagram with the Meissner state (B = 0), mixed state,
and normal state separated by the different critical fields (bottom).

a thin layer at the surface) up to the critical field Hc = Hc,th. This is the Meissner–
Ochsenfeld effect.

– Type-II for κ > 1/√2: These superconductors show a more complex behavior in
an applied magnetic field. Only up to a first critical field Hc1 is magnetic flux ex-
pelled. Above Hc1 flux penetrates the superconductor since the formation of S/N
interfaces are energetically favored. This phase is called the mixed state or Shub-
nikov phase. Nevertheless, superconductivity persists up to an upper critical field
Hc2.

These different behaviors are shown in Figure 5.
In type-I superconductors the Meissner–Ochsenfeld effect takes place for fields

below the critical field Hc. Above Hc thematerial becomes normal conducting (similar
to the transition at Tc) and the magnetic field completely penetrates the superconduc-
tor, i.e.,M = 0.

In contrast, type-II superconductors show a quite different behavior in amagnetic
field:
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(i) The Meissner–Ochsenfeld effect (B = 0) is only present below the lower critical
field Hc1.

(ii) For higher fields, flux starts to penetrate the superconductor. However, supercon-
ductivity persists up the upper critical fieldHc2 and themagnetization is still finite
(M < 0). The upper critical field is typically much larger than the critical field Hc
or Hc,th (see Table 1). This is one of the reasons why type-II superconductors are
more suitable for technical applications.

(iii) Moreover, since (∆EC − ∆EB) < 0 the superconductor tries to form as many N/S
surfaces as possible. Therefore, the flux penetrates in the form of magnetic flux
lines that contain the smallest possible amount of magnetic flux, the magnetic
flux quantum Φo = h/2e = 2.07 ⋅ 10−15 Wb. These flux lines (or fluxons) are
quantum mechanical objects. They possess a normal conducting core of the size
2ξGL, the magnetic field penetrating this normal core is surrounded by a super-
conducting current (see Figure 6). Because of this screening current these objects
are also called vortices or Abrikosov vortices, taking into account their discoverer
Abrikosov [12].

(iv) Finally, the arrangement, shape,mobility, andmotion of these vortices are all eas-
ily affected by a large number of interactions and energies. The major contribu-
tions to be considered are:
a. Vortices-vortex interaction: This interaction is repulsive. This can easily be un-

derstood by considering the interaction of the screening current of a vortex
with the magnetic field of adjacent vortices. Already in 1957 Abrikosov pre-
dicted that the flux-lines would form a regular lattice. In an isotropic super-
conductor, thiswouldbe the closest 2Dpacking, i.e., a hexagonal or triangular
lattice [12].
The first experimental proof of a periodic structure of themagnetic field in the
mixed phase was obtained in 1964 using neutron diffraction which demon-
strated the basic periodic structure of the magnetic field [13]. Real images
of the Abrikosov vortex lattice were first observed in 1966 by Essmann and
Trauble using a magnetic decoration technique [14].
However, small deviations and inhomogeneities, like anisotropic structural
or superconductingproperties or geometrical restrictions of the superconduc-
tor, can easily modify the structure of the (hexagonal) vortex lattice.

b. Driving forces: There are a number of forces and energies that can act as a
driving force for the motion of vortices in a superconductor. Major candidates
are the Lorentz force FL = J × Φo caused by any applied current, thermal
energy, and gradients in temperature ormagnetic field. Themotion of vortices
causes dissipation in the superconductor.

c. Pinning force: Fortunately, vortices can be ‘immobilized’ at defects in the ma-
terial. This is called flux pinning or pinning.
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Fig. 6: Sketches of (left) a flux line with the radial distribution of the magnetic field H, the Cooper
pair density ns, and the circulating supercurrent Js, and (right) the hexagonal flux line lattice with
lattice parameter ao and arrows indicating the impact of an applied current on a flux line lattice
leading to the Lorentz force FL.

The complex interplay of the different interactions leads to the volume pinning force
and, finally, to the critical current density that defines the dissipation-free current
regime for type-II superconductors. Since its understanding, especially in the novel,
highly complex superconductors aswell as in nanostructured and artificiallymodified
systems, represents a major topic of this book, we will briefly sketch the main aspects
of this part of vortex matter.

4.4 Flux pinning and summation theory

In order to retain a dissipation-free DC current flow or reduce the voltage noise due
to vortex motion, the flux lines have to be pinned by defects. The pinning force of the
defects compensates the driving force up to a critical value. In the case of the Lorentz
force FL this defines the maximum dissipation-free current density, i.e., the critical
current density Jc given by

Fc = −FL = B × Jc , (8)

where Fc represents the volume pinning force which is obtained via summation of the
elementary pinning forces fp [15]. The elementary pinning force describes the individ-
ual interaction between a single vortex and a single inhomogeneity or defect in the
superconducting material. It arises from the local modification of the superconductor
by the defect that results in a local reduction of the energy associated with the vortex.

Possible defects can be classified according to their:
– Elementary coupling mechanism, such as magnetic interaction or core interac-

tion: The magnetic interaction is essentially determined by the field gradient in
the superconductor (i.e., the penetration length λ), whereas the core interaction
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arises from the interaction of locally perturbed superconducting properties with
the variation of the superconducting order parameter (i.e., the coherence length
ξ ). Since in technical type-II superconductors with large Ginzburg–Landau pa-
rameters κ the penetration length is much larger than the coherence length, core
interactions are usuallymore effective pinning sides. There exist twopredominant
mechanisms of core pinning, which are δTc and δκ pinning.Whereas δTc pinning
is, for instance, caused by spatial variations in the Cooper-pair density, elasticity,
or pairing interaction, δκ pinning is predominantly caused by variations of the
electronic mean free path.

– Sizeor shape: In order to contribute to the summationof individual pinning forces,
the effective pinning site should be of the order of the local gradient. This implies
that the pinning site should be smaller than ξ or λ for core pinning or magnetic
interaction, respectively. Extended defects like surfaces, extended holes (e.g., so
called antidots) or cones typically trap flux lines or evenmultiple flux quanta, i.e.,
quantized magnetic flux Φ = nΦo.

– Origin: Real superconductor materials always contain natural defects such as va-
cancies, precipitates, dislocation loops, stacking faults, or grain boundaries that
contribute to the volume pinning. In most cases, several different types of natu-
ral pinning defects exist. However, one can also introduce artificial pinning de-
fects. Typical candidates for thin film applications are irradiation defects or spe-
cially patterned defects like moats or channels [16] or small holes (so-called an-
tidots) [17, 18]. Artificial pinning sites, their preparation and impact on various
superconducting properties represents an important topic of this book (see Chap-
ters 6 and 7).

As indicated above, the mechanism of flux pinning and, thus, the critical current den-
sity in real type-II superconductors is determined by (i) the interaction between indi-
vidual vortices (VV interaction), (ii) the interaction between individual pinning centers
and vortices fp, (iii) the driving force (e.g., Lorentz force caused by an applied current,
a field or temperature gradient or even a finite temperature), and (iv) the homogeneity
of the superconductingmaterial in terms of the amplitude and length scale of the vari-
ation of the superconducting properties. Therefore, a number of problems have to be
solved in order to understand the range of effects caused by vortex motion in type-II
superconductors [15]:
– First, the dominant class or classes of defects, which are responsible for the pin-

ning, have to be determined and their elementary pinning forces fp have to be
computed.

– Second, the ‘response’ of the vortex lattice to the individual pin-vortex interac-
tions has to be determined. For a small driving force (static vortex lattice) and
small pinning forces, this can be for instance an elastic response described by the
elastic matrix [19], plastic deformations, or instabilities [20]. The different mech-
anisms are comparable to the reaction of solids upon internal stresses. As long

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 | Roger Wördenweber and Johan Vanacken

as the strain is small the vortex lattice can reach its equilibrium position with re-
spect to the pin distribution without plastic shear taking place in the lattice. In
the case of larger strains plastic shear will create a significant number of defects
in the vortex lattice. The deformation of the vortex lattice can be described by the
displacement field. It can be two-dimensional (transversal displacement) [20] or
three-dimensional [21].

– Third, the summation of the effects of many pins, usually at random position,
leads to the prediction of the volume pinning force Fp that takes into account the
elementary vortex interaction, the distribution and density of pinning sites, and
the kind of deformation in the vortex lattice. Note that Fp is not automatically
identical to the force Fc = JcB, which is defined by the onset of vortex motion.
The summationproblem canbe solved in some ideal ormodel systems. In the eas-
iest case every pinning center is able to exert its maximumpinning force fp on the
vortex lattice, and the net volume pinning force Fp would be given by the direct
summation, i.e., Fc = Fp = ∑ (fp/V). This case is usually only observed in systems
where individual flux lines are trapped by pinning sites, which is for instance the
case for extremely small fields or superconductors with artificial defects. In all
other cases the evaluation of the volume pinning force is more complex and re-
quires summation in the formalism of the collective pinning theory [22].

– Finally, it is themechanismof fluxmotion that determines the onset of dissipation
and, therefore, the technically relevant critical current density Jc × B = Fc with
Fc ≤ Fp, which is determined in the experiment. The volume critical force Fc can
differ strongly from the volume pinning force Fp, which is evaluated for the case
of elastic deformations. It depends upon (a) the relation between vortex-vortex
and vortex-pin interactions and (b) the homogeneity of the superconductor on a
length scale larger than the coherence length [23–26]. This automatically leads to
two different mechanisms of vortex dynamics.
Pin breaking: If the differences between depinning forces of neighboring vortices
are small compared to the vortex-vortex interaction, the complete vortex lattice
will be pinned or depinned. This situation is referred to as pin breaking. The vol-
ume pinning is given by the statistical summation of the elementary interactions
in the correlation volume Vc = LcR2c according to the collective pinning theory
introduced by Larkin and Ovchinnikov [22]

Fc = Fp = √n ⋅ ⟨f 2p⟩
Vc

= √W (0)
Vc

, (9)

with n denoting the density of pinning sites, W(0) representing the pinning pa-
rameter, and Lc and Rc the correlation lengths perpendicular and parallel to the
magnetic field direction, respectively. The resulting field dependence is given in
Figure 7. Up to a givenfield the elastic deformation of the vortex lattice is sustained
and the field dependence of the volume pinning force is nicely described by the
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Fig. 7: The critical current is typically determined via resistive measurements (a) using a voltage cri-
terion (typically 1 μV/cm) or magnetic measurements (b) for which the pinning manifests itself by
a hysteretic behavior. According to the Bean critical state model the difference ∆M in the magnetic
measurement is proportional to the critical current density [27]. The resulting field dependence of
the normalized volume pinning force is shown in (c) for a weak pinning amorphous Nb4Ge thin film
(FP(b = 0.7) typically of the order of 105–106 N/m3 at 2.2 K) [20] and a strong-pinning NbN thin
film (Fc(b = 0.7) typically of the order of 108–109 N/m3 at 4.2 K) [24] demonstrating pin-breaking
according to the 2D collective pinning theory (dashed line) and the flux line shear mechanism (solid
line), respectively. Finally, tunneling and thermal activation leads to the phase diagram (d) with a
Meissner state (no vortices), a vortex solid with flux creep, and a vortex liquid with thermally acti-
vated flux flow (TAFF). The latter regime is more prominent for high-Tc materials.

equation above. At high fields close to Bc2, plastic deformations in the flux-line
lattice set in leading to an increase of the pinning force with respect to the pre-
dictions of the collective pinning theory. The so-called peak effect at high fields
(see Figure 7) is a characteristic feature of the collective pinning behavior in weak
pinning materials.
Flux-line shear mechanisms: When the local pinning force strongly varies over
length scales comparable to or larger than the vortex-vortex distance, vortices or
bunches of vortices will start to move independently as soon as the driving force
exceeds the flow stress of the vortex lattice. In this so-called flux-line shear mech-
anism, Fc is determined by the vortex-vortex interaction, it is not given by the
volume pinning force Fp of the weak or strong pinning areas, respectively. Gener-
ally Fc should range between these two quantities, i.e., Fp,strong > Fc > Fp,weak. As
a result, the volume pinning force is determined by the plastic shear properties
of the vortex lattice, since areas that are weakly pinned shear away from strongly
pinned regimes. The resulting volume pinning force is given by [23–26]

Fc = G ⋅ c66 ∝ B2c2
w b (1 − b)2 , (10)
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with c66 representing the shear modulus of the vortex lattice, G a geometrical fac-
tor that accounts for the orientation of the flux-flow channels with respect to the
driving force, and b = B/Bc2 the reduced applied magnetic field. The typical field
dependence obtained for strong pinning superconductors is shown in Figure 7.
It is characterized by a broad peak at low field around B ≈ Bc2/3. The flux-line
shearmechanism is usually encountered in strong-pinning systems, whereas only
weak-pinning superconductors show collective pinning behavior.
The field dependencies for pin breaking and flux-line shear given in Equa-
tions (9)–(10) and in Figure 7 refer to the ideal case of very homogeneous systems
and low temperatures. Samples with a distribution of pinning properties or su-
perconducting properties show deviations from these ideal behaviors. Moreover,
up to now we did not take into account the impact of other energies on the vortex
motion. Especially for the high-Tc superconductors the impact of thermal energy
has to be considered.

4.5 Flux creep and thermally assisted flux low

Although it was already discussed before, with the discovery of superconductivity it
became evident that vortex motion for current densities J < Jc = Fc/B has to be con-
sidered. Invoking a washboard-like pinning potential, individual vortices can tunnel
(even at T = 0) or hop (e.g., thermally activated) from one potential well to the next
one. This leads to twodifferent behaviorswhichare, for instance, visible in the current-
voltage characteristic (Figure 7a) and the phase diagram (Figure 7d).

FluxCreep:Tunnelingof vorticeswasalreadypredicted in 1962anddescribed later
in the Kim-Anderson model for flux creep [30]. In this model, the tunneling rate of
vortices is given by R = ν0 exp (−U/kT) where ν0 is the attempt frequency (10−8–
10−11 s−1) and U the effective pinning potential (typically 10–1000K). As a conse-
quence an electric field is present already for J < Jc:

E = Blν0 exp(− U
kT (1 − J

Jc
)) , (11)

with l representing the average hopping distance. The resulting current-voltage char-
acteristic shows a shallow increase of the electric field below Jc (Figure 7a), the techni-
cally relevant critical current is therefore smaller than Jc. Nevertheless, the flux creep
regime in the mixed state represents a vortex solid state (Figure 7d).

Thermally Assisted Flux Flow: At elevated temperatures the impact of the thermal
energy kT cannot be neglected. As a result, vortices cannot only tunnel, they can also
hop from one well in the pinning potential to the next one. This hopping can occur
in or even against the direction of the Lorentzian force. The resulting electric field is
larger than the field generated by the tunneling of vortices, it is described in the so-
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called thermally assisted flux flow model (TAFF) by [31]

E = 2Blν0 exp(− U
kT) sinh(( U

kT)(1 − J
Jc

)) , and

E (J → 0) = J ⋅ (2Blν0 U
JckT

) ≡ J ⋅ ρTAFF . (12)

As a result, flux motion leads to dissipation starting at zero current (Figure 7a) in the
‘TAFF’ regime of the mixed state, which therefore is called a vortex liquid state (Fig-
ure 7d). The vortex liquid state is separated from the vortex solid state by the so-called
irreversibility line.

4.6 Josephson effects

Finally, we introduce one of the most intriguing effects in superconductivity, the
Josephson effects named after their discoverer [32]. They are not only ideal manifes-
tations of the macroscopic quantum-phenomenon of superconductivity, they also
provide the basis for extremely sensitive devices that have revolutionized electromag-
netic measurements. In general, the behavior of a tunneling junction (NIN, NIS, or
SIS with N, I, and S denoting a normal metal, insulator, and superconductor, respec-
tively) represent quantum-mechanical objects. Depending on the charge carriers, two
different tunnel processes can be distinguished:
(i) Tunneling of so-called quasiparticles (electrons or holes) was discovered by Gi-

aever in 1960 [33]. In the case of superconductor tunnel junctions (SIS or NIS), the
quasiparticle tunneling represents an ideal tool to determine the energy gap (see
Figure 8, and Chapter 1).

(ii) For the case of SIS junctions, additionally Cooper pairs can tunnel from one su-
perconductor to the other. In contrast to the quasiparticle tunneling, where the
tunneling is driven by a voltage difference between both conductors, the Cooper-
pair tunneling is driven by the phase difference between the two superconductors.
Since the phase difference can be constant (e.g., due to an appliedmagnetic field)
or varying in time (due to a voltage difference between the superconductors) there
exist two different effects, i.e., the DC Josephson effect and the AC Josephson ef-
fect, respectively [32].

Since the Josephson effects describe the behavior of superconductor tunnel junctions,
wewill briefly sketch thephysics of tunneling ingeneral before introducing the special
effect of the tunneling of Cooper pairs.
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4.6.1 Quasiparticle Tunneling

Tunneling through a barrier is only possible for quantum-mechanical particles, i.e.,
light particles like electrons. It can be described by the Schrödinger equation using
the appropriate boundary conditions.

NIN tunnel junction: In NIN junctions, the tunneling current of the charge carriers
(fermions) at a given voltage V and temperature is simply proportional to the tunnel-
ing probability Tn, the number of occupied states D(E) ⋅ f(E) of the normal conduc-
tor N1, and the number of unoccupied states D(E + eV) ⋅ (1 − f(E + eV)) of the second
normal conductor N2, into which the charge carriers tunnel. Here D and f represent
the density of states and the Fermi–Dirac distribution, respectively. Via integration
over the complete energy range and considering tunneling events in both directions,
we obtain the resulting total tunneling current

IN1IN2 = 2πeℎ |Tn|2 ∞∫
−∞

DN1 (E)DN2 (E + eV) (f (E) − f (E + eV))dE
≈ 2πeℎ |Tn|2DN1 (EF)DN2 (EF) eV ≡ GN1IN2V ≡ 1

RN1IN2

V . (13)

For the NIN junction the resulting current-voltage characteristic is simply ohmic (Fig-
ure 8a), i.e., I ∝ V with a proportionality factor given by the conductance GNIN or the
inverse resistance 1/RNIN.

NIS tunnel junction: Because of the energy gap 2∆ of the superconductor, the case
of the NIS junction is a bit more complex (Figure 8b). Around the energy gap, the den-
sity of states of the normal charge carriers (fermions which due to their particle-like
behavior are called quasiparticles) in a superconductor is given by:

DS (E) = DN (EF) E√E2 − ∆2
for |E| ≥ ∆

= 0 for |E| < ∆ ,
(14)

with EF := 0. In analogy to the NIN junction the NIS tunnel current is given by:

INIS = 2πeℎ |Tn|2 +∞∫
−∞; for |E|>∆

DN (E)DS (E + eV) (f (E) − f (E + eV))dE
≈ GNIN

e

∞∫
−∞

|E|√|E2 − ∆2| (f (E) − f (E + eV)) dE . (15)

For zero temperature and assuming a constant (i.e., energy independent) density of
states around the Fermi level, this simplifies to:

INIS = 0 for |eV| < ∆ ≪ EF

= GNIN
e

√| (eV)2 − ∆2| for |eV| ≥ ∆ ≪ EF .
(16)
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Fig. 8: Schematic diagrams of the current voltage characteristic (top) and density of states at the
Fermi level (bottom) of a NIN (a), NIS (b), SIS (c) junction showing the tunneling events of the differ-
ent contributions of the Fermi current (NIN), quasiparticles (NIS and SIS), and Cooper pairs (SIS). The
insets show close-ups of the different tunnel events.

The resulting current voltage characteristics are shown in Figure 8b. For zero temper-
ature, the onset of current occurs at eV = ∆(T = 0), at higher voltages the charac-
teristic asymptotically approaches a linear behavior defined by the conductivity GNIN.
With increasing temperature the energy gap decreases (see also Figure 3a) and ther-
mal activation leads to tunneling of the quasiparticles also for voltages eV < ∆(T). As
a result the characteristics recorded at finite temperature are smeared out as indicated
in Figure 8b. Nevertheless, the highly nonlinear behavior allows one to determine the
energy gap ∆(T) as discussed in Chapter 1.

SIS tunnel junction: In principle, the SIS junction can be treated in an analogous
way. The quasiparticle tunneling is given by:

IS1 IS2 = 2πeℎ |Tn|2 +∞∫
−∞;for|E|>max{∆1 ,∆2}

DS1 (E)DS2 (E + eV) (f (E) − f (E + eV))dE
≈ GN1IN2

e

∞∫
−∞

|E|√|E2 − ∆21|
|E|√| (E + eV)2 − ∆22| (f (E) − f (E + eV))dE . (17)

However, the evaluation is quite complex, even for T = 0K. Nevertheless, the current
voltage characteristic can be obtained by considering a simple graphical representa-
tion of the density of states as sketched in Figure 8c.
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4.6.2 Cooper Pair Tunneling

Up to now,weonly considered the tunneling of the quasiparticles. However, already in
1962 Josephson predicted [32] that (i) Cooper pairsmight also participate in the tunnel-
ing process and (ii) that due to the macroscopic quantum state of the superconductor
this might result in some spectacular effects. Only one year later in 1963, the predic-
tions were experimentally verified [34].

Since the tunneling of Cooper pairs is driven by the phase difference between the
two superconductors and not by a voltage difference as in the case of quasiparticle
tunneling, it is already present for V = 0. In general, Cooper pairs in a superconduc-
tor are quantum mechanical objects. They can be described by the time-dependent
Schrödinger equation iℎ∂Ψ/∂t = EΨ with the wave function Ψ = |Ψ|eiϕ, the phase φ,
and the superconducting condensate density ns = |Ψ|2. With a tunneling frequency T
of the Cooper pairs, an applied voltage V between the two superconductors S1 and S2,
the charge of the Cooper pairs q = 2e, and a definition of the zero-energy reference
EF := 0, the basic set of equations which describe the tunneling of the Cooper pairs is
given by

iℎ∂Ψ1
∂t = ℎTΨ2 − eVΨ1

iℎ∂Ψ2
∂t = ℎTΨ1 + eVΨ2 .

(18)

Equation (18) shows that the condensate density ns = |Ψ|2 in S1 is increased by the
tunneling of Cooper pairs from S2, and vice-versa. Furthermore, the difference in
energy between S1 and S2 is given by (2e)V, which for mathematical reasons is sym-
metrized over the two superconductors. Assuming identical superconductors (i.e.,
ns ≈ ns(S1) ≈ ns(S2)), Equation (18) leads to expressions for the phase difference
between the two superconductors and the superconducting tunneling current J

∂ (ϕ2 − ϕ1)
∂t

= −2eℎ V or: ∆ϕ = ϕ2 − ϕ1 = −2eℎ Vt + const. , (19)

with 2 eV/ℎ = ω representing an angular frequency, and

J (t) = ∂ns (S1)
∂t

= −∂ns (S2)
∂t

= Tns sin (∆ϕ) = J0 sin (γ0 − ωt) . (20)

These two expressions automatically lead to the two different Josephson effects.
DC Josephson effect: For zero-voltage, the tunneling current is simply determined

by the phase difference between the two superconductors:

J = J0 sin (∆ϕ) . (21)

Since V = 0, this phase difference is constant in time. However, it can be modified by
an applied magnetic flux in the junction. As a result, the tunneling current varies in
a sinusoidal way upon the applied magnetic field. This effect is, for instance, used
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in extremely sensitive magnetic field sensors, superconducting quantum interference
devices (SQUID). A detailed report on recent developments on NanoSQUIDs is given
in Chapter 11.

AC Josephson effect: For voltages V ̸= 0, the phase varies in time and we automat-
ically obtain an AC tunneling current with a voltage-dependent frequency:

fJ = 2e
h V . (22)

The maximum voltage that can be applied to the tunnel junction is given by Vmax =
∆/(2e). Therefore, the maximum frequency that can be generated by the Josephson
junctions is fJ,max = ∆/h. For Al, Nb, and BSCCO, with gaps of 0.17meV, 1.45meV,
and ∼ 25meV (see Table 1), the maximum frequencies are 82GHz, 700GHz, and
12THz, respectively. This demonstrates that the AC Josephson effect represents a rela-
tively easy way to generate or detect GHz and even THz frequencies. In the latter case,
an AC signal would directly be converted to a voltage signal.

This principle became even more attractive with the discovery of the intrinsic
Josephson effect in the highly anisotropic high-Tc superconductors in 1992 [35]. Be-
cause of the high anisotropy and short coherence length compared to the lattice spac-
ing between the superconductingCuOplanes inBi2Sr2CaCu2O8, the 2D superconduct-
ing layers are seemingly intrinsically separated by an ‘insulating layer’. In this way
they form stacks of natural (i.e., intrinsic) SIS junctions. In the meantime, the intrin-
sic Josephson effect has been observed in a number of other systems. Since these SIS
stacks form naturally and since the AC Josephson current density is potentially very
high, these systems are very promising candidates for various GHz to THz applica-
tions. Recent developments in this field are reviewed in Chapter 12.

5 Application of superconductivity

In the previous sections, we introduced the basic aspects of the quantummechanical
phenomenon called superconductivity. We demonstrated that the macroscopic quan-
tum state of the Cooper pairs results in:
(i) perfect conductivity resulting in zero-resistance ρ = 0 at dc current and a very

small microwave surface resistance at high frequencies;
(ii) perfect diamagnetism (Meissner–Ochsenfeld effect);
(iii) quantization of magnetic flux resulting in the formation of single-quanta (or mul-

tiquanta) vortices that interact with each other and with defects in the supercon-
ductor, and;

(iv) phase correlation of the charge-carrier wave function which in weak-link struc-
tures leads to the Josephson effects.
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Fig. 9: ‘Tomorrows Superconducting World’ shows where we already benefit from superconductivity
or could benefit from it in the future.

These extraordinary properties mean that superconductivity offers a high potential
for improvement of existing applications or even novel applications in various fields.
Existing, relatively well-established applications are (Figure 9):
– Medical care: A number of diagnostic superconductor applications are well es-

tablished in medical care. Magnetic resonance imaging (MRI) is widely used for
visualizing organs and structures inside the human body. Similarly, magnetoen-
cephalography (MEG) is used for analysis of the brain and brain activities. Other
applications are feasible, e.g., magnetocardiography (MCG) measuring the mag-
netic activity of the heart could become the counterpart to electrocardiography
(ECG).

– Information technology, electronics, and sensors: Superconductivity bears the
potential to improve quite a number of technologies. For instance, supercon-
ducting filters, antennas, and mixers can improve the performance of the data
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transmission and data handling of base stations for cell phones. Even complex
ultrafast electronics, the so-called ‘software radio’ is being considered for the
improvement of data handling in devices like base stations.
The extrememagnetic field sensitivity of the so-called Superconducting Quantum
Interference Device (SQUIDs) is used for various kinds of highly sensitive sensors
(e.g., magnetometers, amplifiers, current meters, and particle detectors). Super-
conducting bolometers are well established in radio astronomy. They could also
become attractive for other bolometric applications.
Finally, complex circuits basedon Josephsonarrays couldbeused for various elec-
tronic applications ranging from standards (e.g., voltage standards) and logic de-
vices, to quantum computing (e.g., Rapid Single Flux Quantum Logic, RSFQ).

– Environment, energy, industrial use, and transportation: Themajority of applica-
tions in this field is based on the use of superconducting cables. On the one hand,
superconducting cables can be used in power lines leading to a significant re-
duction of the losses. On the other hand, wound into coils they can be used in
high-field magnets or electric motors and generators. The superconducting billet
heater represents an example for the use of superconducting magnets for indus-
trial application. Superconducting motors or generators benefit from their large
power density, which could be used to enhance the power or reduce the volume
and mass of the device. This would be very attractive for larger engines or gener-
ators, like ship’s engines, hydro or wind turbines.

– Research: Last but not least, superconductor applications are well established in
various fields of contemporary research. Outstanding examples are particle accel-
erators and fusion reactors. However, high-field magnets, imaging technologies
(e.g., nuclear resonance imaging), or superconducting sensors (e.g., SQUIDs or
bolometers) are also successfully used in many laboratories.

6 Superconductors at the nanoscale
The list above (see also Figure 9) demonstrates that there are quite a number of
well-established applications of superconductivity. However, there are even more
less-established or potential applications that either benefit from the use of super-
conductivity or are only feasible due to superconductivity. In order to develop the full
potential of superconductors, it is essential to analyze, understand, engineer, and
optimize them at the nanoscale. There are a number of very important questions and
problems that are worth examining in this context (see also Figure 10):
– Improvement of superconductors, critical parameters: The critical parameters

Tc, Bc2, and Jc define the operating regime. The enhancement of these critical
parameters is one aim of superconductor research. The search for systems with
higher transition temperatures, if possible even ‘room temperature superconduc-
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tivity’, is definitely the research that attracts the most publicity. Nevertheless, it
depends on the kind of application and which of the critical parameters repre-
sents a restriction and should be increased (typically, Jc and Bc2 for high-field ap-
plications, Jc for low-field applications). Whereas Tc and Bc2 represent material-
specific parameters, Jc depends on the defects (type, density, arrangement) in
the superconductor. Thus, in the first case, research on new superconductors is
required. In the latter case, the role of pinning sites (i.e., type of defect, defect
density and distribution) has to be analyzed, understood, and optimized. The
introduction of pinning sites can be affected by the preparation process of the
superconductor. However, they can also be introduced artificially after or during
growth. In both cases this requires manipulation of the material on the scale of
the coherence length, i.e., at the nanoscale.

– Vortex matter and fluxonics: The vortices and vortex lattice are not only quan-
tum mechanical objects, they are also ideal nano-objects. Vortices possess a nor-
mal core of ∼ 2ξ . As indicated above, pinning sites of nanometer size are re-
quired for optimized pinning of these vortices. However, the lattice parameter is
also of nanometer size. Moreover, it can be varied over a large range by varying
the applied field. An undistorted hexagonal vortex lattice has a lattice parameter
ao = 1.15(Φo/B)1/2, i.e., ao varies from166nmto53nm to17nm for 100mT, 1 T,
and 10T, respectively. Regular arrays of pinning sites (natural or artificial) can be
used to achieve commensurability or matching between the vortex lattice and the
pinning array. Moreover, subtle arrangements of pinning defects can be used for
novel fluxonic concepts (e.g., flux guidance, vortex ratchets, vortex transistors)
or improvement of existing device concepts (e.g., noise reduction in SQUIDs, fre-
quency tuning of filters and antennae).

– Josephson physics: The secondobviousnano-objects are tunnel junctions leading
to the Josephson effects. The fabrication of the nanosized barrier between the two
superconductors is highly demanding, especially if several (two junctions per dc
SQUID, thousands for complex electronic circuits like voltage standards or RSFQ)
identical tunnel junctions are required. Moreover, due to the miniaturization of
electronics and sensors the fabrication of the individual device components re-
quire a reliable and reproducible preparation at the nanoscale.

– Anisotropy, 2D structure of high-Tc materials: Most applications still operate at
4K, which requires liquid-He cooling or quite expensive cryocooling. The dis-
covery of the high-Tc superconductors opened the temperature window for less-
expensive operation using liquid nitrogen at 77K or simpler cryocoolers. How-
ever, the enhancement of Tc has been achieved by a higher complexity of the
superconductor, a 2D layered structure, and an extremely small coherence length
(e.g., YBa2Cu3O7 with ξab ≈ 1.6 nm and ξc ≈ 0.3). Thus, the 2D nature and the
small coherence length generally require additional engineering of these complex
materials at the nanoscale.
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Fig. 10: Some of the strategies in the research on ‘Superconductors at the Nanoscale’ that are dis-
cussed in this book. (a) Chemical deposition of high-Tc films as an example for the development
of improved or novel preparation technologies, for instance, for HTS coated conductors (see Chap-
ter 6), (b) improvement of critical properties of existing superconductors and search and under-
standing of novel superconductors, (c) analysis and visualization of nanophysics in superconduc-
tors (here: microscopy on a single vortex) (see Chapter 1), (d) analysis of interactions and collective
phenomena on the nanoscale, (here: coexistence of single and multiquanta vortices) (see Chap-
ters 4 and 5), (e) development of novel concepts to manipulate superconducting properties at the
nanoscale (here: fluxonic concept for vortex manipulation via nanoscale patterning) (see Chapter 7),
(f) examination of the physics in superconductors at extremely small scales (here: granularity, su-
perconductivity, Josephson behavior in nanosize superconducting islands) (see Chapter 3), (g) novel
nanosize applications (here: NanoSQUID on a tip) (see Chapters 9–15), and (h) complex devices
composed of nanosize components (here: SQUID-based microsusceptometer) (see Chapters 11–15).

– Combination of superconductors and nonsuperconductors: In the end, the su-
perconductor has to be connected to the ‘outer world’, i.e., to nonsuperconduct-
ing materials. Moreover, the combination with nonsuperconducting material
might provide novel and interesting properties. This is, for instance, the case for
superconductor-ferromagnetic hybrid systems. In all cases, the small supercon-
ductor coherence length requires an understanding and optimization of the inter-
face between the superconductor and the nonsuperconductor at the nanometer
scale.

It is the aim of this book to provide an overview of the state of research and novel
approaches for the questions and problems that are addressed above. It comprises an
up-to-date view on the research and a contemporary perspective on ‘Superconductors
at the Nanoscale’.
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1 Imaging vortices in superconductors: from the
atomic scale to macroscopic distances

Abstract: The Scanning Tunneling Microscope (STM) was used at cryogenic temper-
atures soon after its invention in the early 1980s. However, it has only been a few
years since its full potential for studying superconductors has been developed. Here
we provide an introduction to cryogenic STM applied to superconductors and the su-
perconducting vortex lattice. We review STM basics, explaining how we measure the
superconducting density of states by atomic-scale tunneling.We also discussAndreev
and Josephson features in tunneling conductance and the direct visualization of ther-
mally inducedvortexdepinning, vortexmotionandvortexmelting. Finally,wediscuss
how to analyze large-scale vortex images, explaining calculations of angular and po-
sitional correlation functions and the displacement correlator, and show how these
characterize the degree of disorder in the vortex lattice.

Keywords: Scanning probe microscopy, Tunneling spectroscopy, vortex physics, su-
perconductivity.

1.1 Introduction

Tunneling spectroscopy is useful to the study of superconductors because it directly
provides the superconducting density of states. In junctions formed by two supercon-
ductors, Tunneling spectroscopy also shows the coupling of the Cooper pair wave-
functions through the Josephson effect. During the 1960s and 1970s, many Tunneling
spectroscopy experiments were performed. These used layers of an insulating mate-
rial to form a tunnel barrier for electron transport between the two electrodes. The
experiments were often quite conclusive, providing strong experimental support for
the Bardeen Cooper and Schrieffer (BCS) theory through the measurement of the su-
perconducting gap and of the electron-phonon pairing interaction in many different
materials (see for example [1]).

The invention of the ScanningTunnelingMicroscope (STM)by [2] opened the door
to tunneling experiments at atomic level, having vacuumas the tunnel barrier. The su-
perconducting tunneling conductance was first measured using an STM by [3] in the
technologically important material Nb3Sn. Subsequent tunneling conductance mea-
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surements using STMwere done in the cuprates by [4] and [5]. With an STM, one can
also perform scanning tunneling spectroscopy and obtainmaps of the tunneling con-
ductance as a function of the position with atomic resolution. This makes the STM
at low temperatures the only instrument able to map the superconducting density of
stateswith a spatial resolution far below the superconducting coherence length ξ . The
Abrikosov vortex lattice was first observed using an STM by [6], with a spatial resolu-
tion that exceeded considerably all other vortex visualization techniques.

The key constructive element of the STM is the piezoelectric ceramic, which lit-
erally plays the role of a finger touching the nanoworld. In fact, when the STM was
invented, people immediately realized the potential of the idea behind it, developing
a whole set of new methods to probe matter at the nanoscale by tracing other probes
as a function of the position, as for example the force between a tip and the sample.
Very soon after the invention of the STM, [7] developed the atomic force microscope,
which is todaywidelyused inphysics, chemistry andbiology.Differentprobesmeasur-
ing magnetic fields at the surface were also developed, in particular with more recent
advances in nanometric fabrication. Detailed images of vortex lattices have been ob-
tained using magnetic force microscopy, scanning SQUID microscopy, and scanning
Hall microscopy. These efforts are reviewed in [8, 9] and [10].

Fig. 1.1: Superconducting vortex in 2H-NbSe2 imaged using STM at length scales of the order of
several hundred nm (bottom) and at atomic scale (top). The figures show maps of the zero bias con-
ductance acquired at 0.1 K and 0.03 T. There is a strong spatial variation of the superconducting
density of states at all length scales, including at atomic distances. Figure adapted from Ref.[11].
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As so often, opening a new window into smaller length scales provides informa-
tion that could not have been anticipated previously. For example, the features in the
superconducting density of states at length scales well below the superconducting
coherence length ξ shown in Figure 1.1. This does not conform with the conventional
view of superconductivity being homogeneous below ξ .

In this tutorial we explain the main concepts needed to design and understand
this and other STM experiments in superconductors. We start by introducing the dif-
ferences between macroscopic and atomic size tunneling and the role of the distance
between tip and sample in normal and superconducting phases. We then discuss the
results obtained frommaps of the superconducting properties as a function of the po-
sition at different length scales, ranging from subnanometer to micrometer scales.

We focus mostly on work performed by our group.We also mention work by other
groups whenever needed to explain concepts. But we do not aim at providing a com-
plete reference list. For this, we refer to the reviews by [12, 13] and [14].

1.1.1 Formalisms to treat atomic size tunneling

One of the reasons for the success of STM is that the requirements to obtain atomic res-
olution on a surface are not as stringent as onemay think a priori. One needs of course
an atomically flat surface. But the tip can be totally blunt at nm length scales, mostly
because the tunneling current depends exponentially as a function of the distance be-
tween both tunneling elements. Thus, the tunneling current decreases exponentially
and only the outermost tip’s atom provides a sizeable tunneling current.

Furthermore, the vacuum tunneling problem can be understood in simple terms
for most purposes. Tunneling experiments are based on the quantum mechanical
overlap between tip and sample’s electronicwavefunctions, which is in general nearly
impossible to calculate accurately. The nature of the tip’s atom involved in tunneling
is not known, it may be an atom of the tip’s material (often Pt or Au) but it might well
also be an atom picked up from the surface during the scanning process. Even less
is known about what kind of electronic orbitals couple together. It turns out that, for
most practical processes, the details of the quantum mechanical overlap between tip
and sample’s electronic wavefunctions do not matter. [15] found that the resulting
tunneling current at zero bias voltage and zero temperature is simply proportional to
the Fermi level local density of states of the sample at the position of the tip. They
used a perturbative treatment of the tunneling current, valid when the overlap be-
tween wavefunctions is small, or, for practical purposes, when the tip is sufficiently
far apart. Their treatment is based on Bardeen’s transfer Hamiltonian formalism and
requires knowing the shape of the tip and sample wavefunctions. [16] and [17] assume
an s-wave tip wavefunction and find that the STM experiment provides a spatial map
of the electronic density of states at an energy fixed by the bias voltage. The current

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



32 | 1 Atomic Size STS of Vortices

versus bias voltage can be written as

I(V) ∝ ∫NS(E)NT(E − eV) (f(E) − f(E − eV)) dE (1.1)

where NS(E) is the sample’s density of states, NT(E) is the tip’s density of states and
f(E) the Fermi function. The derivative of I(V) is the convolution of NT(E)NS(E) with
the derivative of the Fermi function. The tunnelingmatrix elements are part of the pro-
portionality factor. Their energy and spatial dependence are oftenneglected, although
generally this is not true. The energy scale for the superconducting gap is typically
far below the energy scales of localized states within the junction and of the energy
rangewhere the density of states of the tip NT(E) varies. Therefore, for most purposes,
the tunneling conductance maps NS(E) of superconductors with enough accuracy at
atomic scale.

1.1.2 Electronic scattering and Fermi wavelength

Most superconductors are good metals. Tunneling into an atomically flat metal can
also be understood as tunneling into a Fermi sea of free electrons, or a Fermi liquid in
the presence of interactions. Actually, this is a classical problem of STM. In practically
all discussions about STM imaging, there is a dichotomybetween tunneling into local-
ized atomic orbitals and tunneling into the Fermi sea of free (or interacting) electrons.
Both points of view lead to radically different images (Figure 1.2a,b and c). Tunneling
into atomic orbitals provides the atomic positions at the surface. Tunneling into the
Fermi sea, by contrast, provides flat images often with no atomic resolution. In ex-
change, disturbances to the Fermi sea in the form of defects, step edges or impurities
appear as wave-like patterns, whose periodicity is given by the Fermi wavelength λF.
The STMcanbe used to trace these patterns as a function of the energy and tomeasure
the dispersion relation for occupied and empty electronic states.

An isolated charge in a free electron system is screened away by changes in the
local electron density. This is described in the simplest waywithin the Thomas–Fermi
approximation. Taking into account Blochwavefunctions leads to Friedel oscillations,
which quite often provide the actual answer of a free electron system to an impurity
(see for example the book of [18]). Ideally, scanning over a free electron gas with a
metallic tip provides flat and featureless images, because the electronic density of the
sample is independent of the position. Close to a scattering center, such as an impurity
or a step edge, Friedel oscillations produce variations in the local electronic density
at the surface. These oscillations are detected in an STMand their energy dependence
provides the corresponding dispersion relation. Surfaces of simple metals such as Au
or Ag have been extensively studied for example by [19], [20] and [21]. Defects having
a preferred orientation, such as step edges or structured impurities (e.g., dimers or
chains), provide patterns with higher densities of states along certain directions. The
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Fig. 1.2: In (a) and (b) we show a schematic view of different tip wavefunctions, eventually leading
to different corrugations in the STM images. The sample is represented by the light gray rectangle
and the outgoing atomic wavefunctions by the dark orbital-like features. The tip is represented by
the dark gray triangle. The wavefunction of the atom at the tip apex is shown in black. The dashed
line gives the signal sent to the feedback loop that maintains a constant current between tip and
sample. The corresponding periodicity provides the atomic lattice. In (c) we schematically discuss
the situation found in metals with strongly delocalized electron wavefunctions. The bulk electron
wavefunctions are scattered at the surface at step edges, leading to oscillations in the density of
states (dark structures on top of the sample’s surface) with a wavelength of λF. Scanning the tip over
the surface then provides periodic structures with wavelength λF.

energydependence thengives the electronic dispersion relationalong thesedirections
only. If impurities or defects are point-like, the conductance images provide directly
the reciprocal state shape of the electronic dispersion relation (see for example [22]).

In Figure 1.3a we present cartoon pictures of possible patterns observed at the
surface. On the top left panel of Figure 1.3a we show a circular pattern created by a
point-like impurity in a system with a circular Fermi surface. In the top right panel we
show the pattern formed by a step edge located in the middle of the panel (x = 0) in
a system with a spherical Fermi surface. In the bottom left panel we show patterns by
two perpendicular step edges. In the bottom right panel we show the pattern obtained
by a point-like impurity in a system with a square Fermi surface with sides along the
x- and y-axis of the figure. In Figure 1.3b we represent the dispersion relation of a
hole band. The energy dependence of the surface patterns for the case of a spherical
Fermi surface are shown in the bottom panels in reciprocal space. There are circular
features with higher intensity at the wavevectors given by the dispersion relation at
E = eV, where e is the electron charge and V the applied bias voltage. The size of the
k-space feature decreaseswith increasing energy in a hole band, and the opposite can
be expected for an electron band.
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Fig. 1.3: In (a) we represent schematically the expected local density of states in real space at the
surface of metals with a defect or impurity in 2D color maps. The value of the density of states is
given by the color scale (white being the highest). We show four different cases in (a), a point-like
impurity (upper left panel), a linear defect (upper right panel), two perpendicular linear defects
(lower left panel) and a strongly anisotropic, square fold, Fermi surface (lower right panel). In (b) we
represent (thicker line) schematically a dispersion relation in the top panel and the reciprocal space
patterns expected for varying energies in the bottom panels.

The intensity of the observed modulations is given by the imaginary part of the Green
function, which in turn includes the bare electron dispersion relationmodified by cor-
relations. Kinks in the band structure, van Hove singularities or places with strong
electron-phonon scattering provide modified intensities at the relevant energies. This
can be dramatic in some systems, such as the cuprate superconductors, where most
of the scattering comes from a set of wavevectors connecting parts of the Fermi sur-
face with an enhanced electronic density of states (see for example [23] or [12]), or in
the pnictide superconductors, where the nematic electronic properties provide pre-
ferred scattering along certain directions (see for a review [13]). Conversely, knowing
in advance the band structure and character of the impurity can be useful to locate an
impurity embedded in the material, as shown by [24].

1.1.3 Tunneling with multiple conductance channels

A magnetic impurity embedded in a metal often produces a Kondo effect at low tem-
peratures. The Kondo mechanism quenches the spin of the impurity by producing a
singlet state with an electronic cloud surrounding the impurity (see for example the
book of [18]). Therefore, tunneling into a Kondo impurity occurs in two channels in
parallel, one into the free electron cloud and another one into the localized magnetic
state of the impurity. The two tunneling conductance channels interfere. The result is
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a tunneling density of states that can be described by a Fano lineshape (see [25]). The
density of states is a dip in the case of dominant tunneling into the bound state, or a
peak in the case of dominant tunneling into the free electron cloud, as schematically
shown in Figure 1.4. The Fano anomaly occurs around single magnetic impurities. It
has been studied by [26] andmore recently in experiments with isolated molecules on
metal surfaces by [27]. The Fano anomaly has been also observed in electronic systems
having multiple bands crossing the Fermi level with very different effective masses,
such as heavy fermions (see for example [28–30] or [31]).

Fig. 1.4: In (a) we show a cartoon picture of the density of states of a band structure consisting of
heavy (black) and light (light gray) bands in the sample (left side of the junction). Tunneling occurs
from the tip (right side of the junction) which has a simple one band density of states. Eventually,
tunneling can occur into each of the bands separately, in which case, there will be interference be-
tween tunneling into localized states and into the continuum. The result is a Fano anomaly, shown in
(b). For this scheme, we use an energy width of the localized states of Γ = 5 meV and E0 = 0 meV.
The relative strength of tunneling into the resonant state is given by q. For large q, tunneling is into
the resonant state, providing a near-Lorentzian shaped tunneling conductance. For low q, the phase
shift due to tunneling into the resonant state produces destructive interference and a dip.

1.1.4 From tunneling into contact: Normal phase

When a normal metal tip is moved from tunneling distance to the sample, the wave-
functions overlap. Upon increasing the connection among both electrodes, there
comes a point where the wavelike nature of transport is totally lost. Then, the conduc-
tance is given by Sharvin’s formula which provides the tunneling conductance when
transport is in the ballistic regime. Transport is classical, but the contact radius a is
far below the electronic mean free path. In between, there is an interesting regime,
where the conductance occurs just through a single atom. [32] showed that the chem-
ical nature of the contacting atom determines the precise value of the conductance,
which is amultiple of the quantum of conductance σ0 = 2e2

h , with e being the electron
charge and h Planck’s constant (see for example [33] or [34]).
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1.1.5 From tunneling into contact: Superconducting phase

Let us consider the situation where two electrodes made of the same superconduct-
ingmaterial are slowly moved into contact at zero temperature. When both electrodes
are separated in the tunneling regime, single quasiparticle tunneling is possible only
for applied voltages larger than two times the superconducting gap of the electrodes
(i.e., eV > 2∆, see Figure 1.5a). For voltages below 2∆, Andreev reflection provides a
conduction mechanism. It involves multiple crossings of the tunneling barrier, as we
discuss below. Thus, the Andreev current is further exponentially suppressed with re-
spect to the usual quasiparticle tunneling. The Andreev current is found using Bogoli-
ubov equations, which are the equivalent of the Schrödinger equation for electrons in
normal metals for superconductors (see for example the book by [35]).

In an S-S junction, the Andreev conduction mechanism implies multiple reflec-
tions through the junction. For eV < 2∆, electron-like excitations of electrode 1 cannot
enter into thegap regionof electrode 2 as a single quasiparticle. However,we canfinda
hole-like quasiparticle with opposite wavevector and spin in the same electrode. This
produces a Cooper pair in electrode 2 and a current with 2e flows through the junc-
tion (Figure 1.5b). The hole-like quasiparticle is reflected into electrode 1 within the
region of occupied electron-like states of electrode 1. This was first discussed by Blon-
der, Tinkham and Klapwijk (BTK) in experiments in macroscopic N-S junctions ([36]).
The appendix of that paper shows the procedure needed to obtain the current-voltage

Fig. 1.5: In this image we show the behavior of a typical superconductor-superconductor junction
when tip and sample are sufficiently close to show in-gap conductance. In (a) we show a single
particle tunneling process for bias voltages above 2∆. In (b) we show in-gap conductance due to a
process crossing the tunneling barrier twice through Andreev reflection. In (c) we show the process
crossing the tunneling barrier three times.
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characteristics of N-S junctions for any tunneling barrier. An extension of the BTK for-
malism to superconductor-superconductor (S-S) junctions was later made by [37].

A more detailed analysis of the S-S situation takes into account all quasiparticle
bound states. The formalism developed by [38, 39] leads to results that reproduce
exactly the experimental observations in junctions involving a controlled amount of
conduction channels. In Figure 1.5c we show schematically an example of multiple
Andreev reflection processes. For eV < 2∆ multiple Andreev reflections occur in
both electrodes 1 and 2. The smaller eV is compared to ∆, the larger is the number of
Andreev reflections needed to obtain an Andreev current. For example, in the cases
shown in Figure 1.5 we obtain one single quasiparticle transmitted in case (a), two
in (b) – in the form of a Cooper pair, and three in (c) – in the form of a Cooper pair
and an excited quasiparticle. For a current to flow from one junction to the other, the
transmission probability must be multiplied at each barrier crossing. For a junction
with transmission τ, the processes shown in Figure 1.5(b) and (c) have transmissions
τ2 and τ3, respectively. Thus, unless τ is close to one, the contribution of Andreev
reflection processes to the tunneling current is small. For a typical STMmeasurement
in tunneling regime, with tunneling resistance of 10MΩ, the transmission is about
10−3 (τ = (1/σ0×10MΩ)−1). It is thus difficult to observe Andreev reflection processes
in the tunneling limit, although it is not impossible by measuring carefully enough
and at short tip-sample distances, as discussed by [40].

With the STMwe can control tip to sample distance, from high resistance tunnel-
ing conditions down to atomic contact between the electrodes (tip and sample). As
the tip is moved towards the sample, the transmission through the tunnel barrier τ
increases. In Figure 1.6 we present a series of current-voltage and conductance curves
(I − V and dI/dV − V) obtained when a Pb tip is moved towards a Pb sample. Similar
results have been discussed by [34, 41]. We observe features in the curves for V < 2∆
when the resistance of the junction is decreased towards contact. Atomic contact is
reached when the transmission equals a single quantum channel with spin degen-
eracy, τ = 1, that is, when the resistance approaches the inverse of the quantum of
conductance 1/σ0 = RQ = h/2e2 = 12.9 kΩ.

For a single quantumchannel, eachvalue of the transmission τ is uniquely locked
to a single current versus bias voltage curve. Thus, from the experimental curves we
can obtain, with high precision, the number of quantum channels and their transmis-
sion τi, as first shown by [32].

The conductance curves shown in Figure 1.6 also present a feature at zero bias.
This feature is the signature of the Josephson effect due to Cooper pair tunneling be-
tween both electrodes. [42] calculated the critical current of the Josephson junction
IC in a short constriction at zero temperature and found IC = (πσN∆)/2e, where σN is
the conductance of the junction in the normal state. Its value for quantum contacts
with a small number of conducting channels was calculated by [43]. Available exper-
iments provide TC values smaller than expected in calculations that usually do not
take into account the actual properties of the junction, namely thermal broadening,
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Fig. 1.6: Typical experimental results obtained using a superconducting tip and sample of the same
material (Pb). In (a) we show the normalized current versus bias voltage curves. The inset shows the
behavior close to zero bias, which clearly shows the Josephson effect. In the main figure, A, B and C
provide sets of curves for different resistances of the junction (large contact, atomic size contact and
tunneling, respectively). In (b) we show the tunneling conductance within the superconducting gap.
In (c) we show the tunneling conductance in the three regimes A, B and C.

capacitance to ground and high frequency shunt. For instance, the Josephson current
decreases considerablywhen the thermal energy kBT is above the Josephson coupling
energy EJ. EJ is given by EJ = ∆h/(8e2RN), where RN is the junction’s resistance and
∆ the superconducting gap. When RN is higher than 1MΩ, EJ is of the order of an mK
in most superconductors. If EJ ≈ kBT, the superconducting phase dynamics are dom-
inated by thermal fluctuations and the Josephson current appears as a reduced peak
centered at small finite voltage instead of a sharp zero bias feature. [44] could reduce
phase slippage by increasing damping through resistors and capacitors located close
to a break junction. However, this is difficult to implement in an STM set-upwhere the
prime requirement is imaging. [45] recently analyzed electromagnetic coupling of the
Josephson junction to high-frequency electromagnetic modes of the tip. This provides
relevant clues to better understand the Josephson signal in an STM. More recent work
by [46] uses a high Tc superconductor to increase the value of the critical current, com-
bined with a method allowing us to measure the topography at high bias voltage and
at the same time the Josephson signal in the I-V curves at much smaller bias voltages.

In summary, the tunneling conductance curves obtained using superconducting
tips provide significant advantages in studying both superconducting and normal
samples. In the tunneling regime, the conductance curves are considerably sharp-
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ened at the bias voltage of the superconducting gap of the tip. For superconducting
samples, there are additional features located at the bias voltage corresponding to the
gap difference at finite temperatures. This improves measurements of the gap of the
sample versus temperature. Coming closer to the contact regime, it is also possible to
study Andreev reflection and the Josephson current as a function of the position.

1.2 Mapping the superconducting condensate at the length
scales of the coherence length and below

1.2.1 Gap structure and atomic size tunneling

The tunneling conductance maps of a conventional s-wave superconductor are ex-
pected to be essentially featureless at zero magnetic field, because the superconduct-
ing gap is spatially homogeneous in the absence of vortices, currents or pair-breaking
centers. However, STM experiments in many superconductors show tunneling con-
ductance maps with atomic-scale features in the superconducting density of states.

To explain this we need to remember that atomic orbitals of tip and sample cou-
ple to provide the tunneling conductance in an STM. The tunneling matrix elements
depend on the energy and vary with the atomic termination. If the superconducting
gap varies strongly over the Fermi surface, the local variations in the tunneling ma-
trix elements canmodify the contribution of different parts of the Fermi surface to the
tunneling density of states N(E).

Afirst attempt to account for atomic-scale changes in the superconducting density
of states of 2H-NbSe2 was made by [11]. The Ansatz was a simple anisotropic super-
conducting gap and a spatially anisotropic tip. The anisotropic superconducting gap
is found by using a tight-binding description of the electronic properties of 2H-NbSe2
that captures a fewbasic properties of thismaterial, such as a hexagonal Fermi surface
with two sheets, one at the center of the Brillouin zone (Γ) and the other at the corners
K and K’ (Figure 1.7[a]). Only the Nb atomic orbitals are taken into account. Although
the surface consists of Se atoms, it is expected that the main anisotropic features are
related to theNb atomic d orbitals. The considered orbitals are dxy anddx2−y2 that form
two four-fold shapes rotated by 45°, as shown in Figure 1.7b. The anisotropy of the tip
is modeled by an ellipse (Figure 1.7b). The angle between the long axis of the ellipse
and the line joining the center of the ellipse and the atomic positions is θ0.

When varying the position of the tip over the sample, θ0 varies, resulting in an
atomic size modulation of the density of states. The resulting density of states (Fig-
ure 1.7c) depends on the angle θ0. The corresponding spatialmodulationhas a six-fold
symmetry and is located in k-space at the atomic positions. The experiment indeed
shows tunneling conductancemapswithatomic size variationsmainly at thebias volt-
ages where the gap anisotropy produces a finite tunneling conductance. Thus, the en-
ergy dependence of the peaks of the Fourier transformof the conductancemaps shows
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Fig. 1.7: In (a) we show a strongly simplified model for the Fermi surface of 2H-NbSe2. In (b) we show
main d-like atomic orbitals on the surface. The ellipse represents an anisotropically shaped tip, with
a long axis turned by an angle θ0 from the surface atomic lattice. In (c) we show the obtained local
density of states as a function of the angle θ0. In (d) we show the bias voltage dependence of the
size of the six vortex lattice Bragg peaks from the Fourier transform of the tunneling conductance
maps.

a maximum at these bias voltages. When comparing this variation (Figure 1.7[d]) with
the results of the model (Figure 1.7[c]), we see that these qualitatively coincide – the
largest spatial variation is found at the smaller gap edge.

A spatially anisotropic tip was also considered by [47]. These authors find that the
tunneling conductance maps can show atomic size modulations revealing the spatial
anisotropy of the electronic properties of the sample, such as those caused by elec-
tronic nematic order. They find that such modulations might disappear in the topo-
graphic maps. In the topographic maps, the feedback signal required to maintain a
constant tunneling current over the surface is shown. That is, topographic maps pro-
vide maps of a quantity related to some extent to the current I at the bias voltage V.
I is the conductance integrated from the Fermi level up to E = eV. Spatially varying
features in the density of states that show some dependence on energy can be consid-
erably reduced by the integration.
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More recently, density functional theory calculations by [48] provide local densi-
ties of states that vary spatially at atomic size. The authors find that the decay of the
tunneling current I with distance strongly varies depending on the contribution to I
from different parts of the Fermi surface.

Present efforts aim at obtaining the connection between density functional calcu-
lations and variations in the contributions to the superconducting tunneling conduc-
tance.

1.2.2 Gap structure from Fermi sea oscillations

The scattering intensity of surfaceoscillations is alsomodifiedby the superconducting
gap opening (Figure 1.8). The intensity can follow, in principle, the superconducting
density of states, i.e., it increases at the gap edge and disappears within the supercon-
ducting gap. Tracing the oscillations with energy and momentum thus directly pro-
vides the reciprocal space structure of the superconducting gap. This has been done in
several systems, including simple s-wave superconductors for example in Pb by [49],
cuprates by [50] and heavy fermions by [51].

1.2.3 Gap structure and vortex shape

A vortex is a singularity at which the superconducting order parameter vanishes only
at a single point in the plane perpendicular to the magnetic field. A vortex spans the
reciprocal space gap structure into the real space, because the shape of the vortex
depends on the size of the superconducting gap along the angular directions in the
plane perpendicular to the magnetic field. In Figure 1.9, we schematically present one

Fig. 1.8: In (a) we show schematically a hole band above (dashed line) and below (solid line) the su-
perconducting transition temperature Tc. In (b) we show the Fourier transform of scattering surface
waves on point impurities. Within the superconducting gap, scattering vanishes. At the quasiparti-
cle peaks, the scattering wavevectors are spread and the intensity increased.
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Fig. 1.9: In (a) we show a cartoon picture of the spatial variation of the superconducting order pa-
rameter as a function of the position in a vortex core (line). Andreev levels are marked as horizontal
dashed lines. In (b) we show a cartoon of possible vortex core shapes. For materials with, from left
to right, electronic properties with square, hexagonal and circular symmetry. The gray scale rep-
resents the conductance, with σmax the conductance at the vortex core and σmin the conductance
outside the core.

particularly useful way to understand vortex cores. The Andreev reflection process oc-
curs at any N-S interface. Inside a vortex, there is no “true” normal phase, just a point
where the superconducting order parameter vanishes. However, the spatial variation
of the superconducting order parameter allows the creation of Andreev states inside
the vortex core (Figure 1.9). [52] first discussed these Andreev states. They form be-
cause of multiple Andreev reflections, in a similar way as the resonant states formed
at an S-S junction discussed above. The circular symmetry of the vortex problemgives,
however, a different distribution of theses states as a function of the position and the
energy. [52] found that they are located at energies separated by ∆2

EF where ∆ is the su-
perconducting gap and EF the Fermi energy. Measurements by [53] showed the energy
levels as peaks in the density of states at the vortex core center. When going out of the
vortex core, these peaks are shifted towards higher values, as expected by theory. The
order of magnitude of the lowest lying level can be obtained by a simple zero point
energy argument. One finds that ϵ0 ≈ ℏ∆

2mℏvFξ ≈ ∆
2kFξ , with vF the Fermi velocity and kF

the Fermi wavevector. We can then use the BCS relation ξ = ℏvF
π∆ to find ϵ0 ≈ ∆2

2EF .
In the presence of small amounts of scattering by impurities or defects, the vortex

core states are notwell defined and the density of states becomes featureless inside the
vortex core. For not too large scattering, the density of states can be linked to the spa-
tial dependence of the superconducting order parameter through a relation first found
by de Gennes. Recently, this was used to find the spatial dependence of the order pa-
rameter in the vortex core. As shown by [54], the result is that the spatial variation of
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the order parameter within a vortex is universal and does not depend on the particu-
lar properties of the material. This holds for two-band superconductors, in particular
when interband scattering is strong.

1.3 Mapping the superconducting condensate at large scales

Vortex matter is the generally accepted denomination for the ensemble of quantized
flux lines that forms in many superconductors when submitted to external magnetic
fields. The existence of this matter was predicted theoretically by [55], which showed
that flux lines distribute forming a lattice. Ten years later this lattice was visualized in
magnetic decoration experiments by [56]. The first experiments showing large-scale
vortex imaging by STMwere made by [53] and showed a great deal of information on
the structure and behavior of the vortex lattice. From these pioneering experiments,
STM has evolved a lot. Now, the larger data acquisition rate and the development of
new analysis methods has significantly increased the possibilities of this tool. Present
day STM’s can acquire topographic and conductance images of micrometric size in
time scales ranging between a few seconds and minutes, with enough resolution to
identify individual vortices. The challenge is now to push the working playground of
the STM/S to the extreme conditions of high magnetic fields and very low tempera-
tures.

Large-scale imaging in STM/S opens the door to study dynamic phenomena, like
vortex melting and vortex creep, and to make quantitative statements about them by
viewing individual behavior within the lattice or calculating statistically relevant cor-
relation functions.

1.3.1 Techniques sensing the local magnetic field

The first large-scale vortex imagingwas performed using techniques thatmeasure the
local magnetic field. As mentioned in the introduction, there are several reviews cov-
ering scanning probe techniques of the local magnetic field. Magnetic decoration and
Lorentz microscopy are additional tools that have been widely used to study super-
conductors. Magnetic decoration consists of spreading magnetic particles on the sur-
face of a superconductor subject to a small magnetic field and then viewing the posi-
tions of these particles using a scanning electron microscope (see for example [56, 57]
or [58]). Lorentz microscopy uses the phase information of an electron wave trans-
mitted through magnetic fields. It was developed by [59] to observe flux lines and dy-
namics of vortices in superconductors under magnetic fields. When a superconduct-
ing thin film under a magnetic field is slightly tilted from a normal incident electron
beam (that is, a beam from a Transmission Electron Microscope), electrons passing
through vortices in the film are deflected by themagnetic fields of the vortices. By sim-
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ply defocusing the electronmicroscope image, the resulting pattern of the intensity of
transmitted electrons shows vortices as circular spots of bright and dark contrast fea-
tures. The time resolution is limited by the properties of the scanning electron beam.
This tool was first used to study vortex dynamics by direct visualization.

When increasing themagnetic field, themagnetic overlap between vortices is usu-
ally very large. The intervortex distance a is given by a ≈ 50

√H
nm,withH in T. Thus, for

fields of 100 Gauss, the intervortex distance is 500nm. The penetration depth inmany
type II superconductors is of the order of this value or larger, so thatmagnetic imaging
techniques usually lose their ability to view isolated vortices above a few hundreds of
Gauss.

1.3.2 Introduction to the vortex lattice with STM

It is useful to start by making a comparison between atomic scale and vortex lat-
tice measurements. In Figure 1.10a and b we show STM images of two isostructural
dichalcogenides 2H-NbSe2 and 2H-NbS2. The atomic lattice observed by STM in these
compounds is the chalcogen (Se or S) atomic lattice. These compounds consist of two
NbSe2 (or NbS2) blocks separated by a van der Waals gap. The largest inter atomic
distances occur between two layers of triangular chalcogen sublattices. The sample is
prepared by exfoliation, which occurs at the van der Waals gap, so that the surface
consists of the triangular chalcogen atomic lattices. In addition to the atomic lattices
an atomic superstructure appears for 2H-NbSe2 due to a charge density wave (insets
in the right panels of Figure 1.10). This kind of additional modulation is a sort of a
“trompe l’oeil” (or optical illusion) added to the atomic modulation in STM images. A
trained eye can detect even weak modulations in STM images.

At the vortex center, we observe a strong zero bias peak in the tunneling conduc-
tance (left panels of Figure 1.10a and b). Its evolution with bias voltage when leaving
the center of the vortex is similar in both compounds and follows the expected behav-
ior for the Caroli de Gennes and Matricon states discussed above. The vortex core has
a hexagonal shape in 2H-NbSe2 due to the influence of the charge density wave in the
in-plane shape of the superconducting gap.

Note that the observed differences in the shape of the vortices appear in the in-
dividual vortices but not in the lattices. Both are hexagonal, following the standard
theoretical prediction, and both are oriented with the crystalline lattice.

We should note that these anisotropic dichalcogenides are easily exfoliable in situ
at low temperatures. This has many advantages for STM, because the surface comes
out clean and usually free of defects. Unfortunately, this is not always the case. To
study superconductors with STM one needs high quality samples and in addition ad-
equate sample surface handling and preparation methods. Sometimes, the surface
can be stable under ambient conditions as for example in the work by [60] or [61], but
this is not generally true.
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Fig. 1.10: In the left panels we show the tunneling conductance versus bias voltage when leaving
the vortex center and in the rest of the panels we show vortex lattice images taken at different bias
voltages. In (a) we show results in 2H-NbSe2 and in (b) results in the isostructural 2H-NbS2 at 0.1 K
and 0.15 T. The bias voltage is marked for each image. In the insets of the right panels we show
topographic images made in each compound. The color code is adjusted to provide the value of the
conductance in each image and in the left panels, red is for vortex center and the other curves are
taken roughly equidistantly until reaching the intervortex superconducting density of states. Arrows
in the left panels mark the position of the Caroli de Gennes Matricon levels in each position. Image
adapted from [62].

The investigation of vortex matter with STM/S in cuprate superconductors has
been a challenge for several groups over the last decades (see the review of [12]). How-
ever, the lack of high quality single crystals was an important drawback for success in
many cases. Today, it seems that this problem has been solved and there are groups
thathaveaccess to excellent quality samples of thesematerials. It hasbeenargued that
the small coherence length enhances the negative effects of surface structural defects,
impurities and contamination. However, these difficulties have been overcome by sev-
eral groups and nearly the whole panoply of atomic-scale measurements, including
Fermi surface, impurity-induced pair breaking, vortex core imaging and Josephson
imaging has been made (see for instance work by [23, 46, 50, 63] and reviews by [12]
and [14]). Vortex cores are particularly small. Moreover, vortex core states produce
tunneling conductance curves quite similar to the tunneling conductance in between
vortices. Thus, it remains very difficult to see vortices and to do large-scale vortex lat-
tice maps in cuprates. Vortex cores usually provide features of larger sizes in other su-
perconductors, often with larger coherence lengths, such as the nickel borocarbides,
the iron-based superconductors or in thin films. These studies have been reviewed for
example in [14] and [13].
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1.3.3 Vortex lattice melting

Vortex lattice melting has been much discussed in cuprates, because their Tc is high
and the Levanyuk–Ginzburg LGi parameter large. LGi is the ratio between the super-
conducting condensation energy and the critical temperature (see [64] and [65]). In
high Tc superconductors, this ratio approaches one (contrasting values of the order
of 10−5–10−6 in usual low Tc superconductors), so that these materials are very sen-
sitive to thermal fluctuations. As reviewed for example by [66], [67] or [68], in a large
region of their temperature-magnetic field phase diagram, thermal energy becomes
larger than elastic or pinning energies, producing thermally induced vortex motion.
The formation of a vortex liquid suppresses the zero resistance state that makes su-
perconductors so attractive for technological applications. That is why much effort
has been invested to understand vortex lattice behavior across the melting transition
through macroscopic transport and thermodynamic properties.

STM provides insight into the microscopic mechanism behind the formation of
a vortex liquid through direct imaging. [69] imaged the melting transition of a two-
dimensional (2D) vortex lattice in an amorphous superconducting thin film, showing
a continuous three-step processwith intermediate phases appearing before the forma-
tion of the isotropic vortex liquid. The observed behavior can beunderstoodwithin the
scenario described by the 2D melting theory developed by [70, 71], [72] and [73] (BK-
TNHY theory). The vortex images show the solid, hexatic and liquid phases expected
within 2D melting. In addition, there is another intermediate phase characterized by
the presence of smectic-like one-dimensional (1D) vortex arrangements that coexists
with the hexatic phase just before the isotropic liquid is formed. Calculations of the
vortex lattice melting in 2D superconductors (see [74]) also show such linear vortex
arrangements.

STM images of isotropic vortex liquid do not give any spatial contrast and instead
show a homogeneous value for the conductance as a function of the position, because
thermally induced vortex motion is much faster than the scanning rate of the STM.
Images of the liquid are featureless and are difficult to distinguish from images of
the normal phase. As shown in Figure 1.11, to identify the isotropic liquid, authors
compare the temperature dependence of the spatially averaged normalized conduc-
tance at zero bias with the amplitude of the Bragg peaks in the Fourier transform of
the tunneling conductance maps. Before the formation of the isotropic vortex liquid,
vortex positions are identified in the conductance maps as usual, by tracing the zero
bias conductance as a function of the position. The corresponding Fourier transform
shows Bragg peaks with nonzero amplitude. With increasing temperature, the nor-
malized conductance at zero bias outside vortex cores continuously increases due to
thermal broadening. As a consequence, the spatially averaged conductance value in-
creases while the Fourier amplitude of the Bragg peaks decreases. In the isotropic liq-
uid phase, conductance maps show no contrast at all giving zero Fourier amplitude.
Still, we find a superconducting signal in the tunneling data (upper right panel in Fig-
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Fig. 1.11: Main panel shows the temperature dependence of the spatially average tunneling con-
ductance at zero bias (black circles) and the amplitude of Bragg peaks appearing in the Fourier
transforms of vortex images (empty circles). Vertical dashed arrows show the position where the
formation of isotropic vortex liquid (Tmelting) and normal state (Tc) occurs. Upper left panels show a
vortex image before the formation of the isotropic vortex liquid at 1.2 K and the corresponding tun-
neling conductance found inside (black) and outside (gray) vortex cores. Right upper panels show a
conductance map obtained in the isotropic liquid phase at 3 K and the tunneling conductance curve
observed over the whose area.

ure 1.11). The isotropic liquid is then identified as the temperature rangewhere the zero
bias conductance is below the value of the normal phase but the Fourier amplitude in
the conductance maps is zero at the position of the vortex lattice Bragg peaks.

Of relevance is also the direct visualization of vortex de pinning. [69] showed that,
when increasing temperature in a vortex lattice distorted at 0.1K due to pinning, the
lattice becomes more ordered well below the melting temperature. Thermally acti-
vated vortex motion is thus important to understand the behavior of the vortex lattice
in a large part of the phase diagram.

1.3.4 Vortex lattice creep

Distorted vortex lattices at 0.1K show, however, practically no thermal motion. At
such low temperatures, two orders of magnitude below Tc, the balance between elas-
tic energy and pinning determines the static and dynamic behavior of the vortex lat-
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tice. STM directly visualizes this competition, and can be used to identify elastic and
plastic vortex motion. To produce vortex motion, a Bean critical state can be gener-
ated in a zero field cooled sample (magnetic field is applied at low temperatures). One
can then produce vortex motion by subsequently changing the magnetic field in very
small steps.

In a pioneeringwork, [75], unveiled the dynamical behavior of the lattice in irradi-
ated and pristine samples of 2H-NbSe2. This work wasmade at 4.2K, so that tempera-
ture still played an enormous role. However, some features relevant to the competition
between pinning and elastic energies were identified. In irradiated samples, the dis-
ordered lattice has a few vortices that are strongly pinned to the defects produced by
irradiation.When changing the magnetic field, vortex motion sets in. Pinned vortices
remain static, but the vortices in-between them flow, highlighting plastic deforma-
tion of the lattice. The deformation is anisotropic, following the local orientation of
the vortex lattice. By contrast, pristine samples of 2H-NbSe2 show much more con-
tinuous changes of vortex positions. The lattice moves along the direction of one of
it’s main axes. There is a periodic modulation in the longitudinal velocity with a fre-
quency corresponding to the time needed to travel a distance equal to the intervortex
distance a0 (Figure 1.12). This is the so-called washboard frequency. It shows that the
periodic vortex lattice is driven through randomly disordered pinning centers, see [77].

More recently, similar experiments were made in a 2D vortex lattice in an amor-
phous superconducting thin film at 100mK (see [76]). In this work the pinning dis-
order was provided by variations in the sample’s thickness which produce changes
in vortex energy per unit length. The pinning centers were not point like, but modu-

Fig. 1.12: a) (Figure adapted from [75]) Longitudinal velocity of the vortices shown in the upper right
panel. The velocity oscillates as a function of time with period a0. Data are taken in a pristine 2H-
NbSe2 single crystalline sample. b) Magnetic field versus accumulated distance of 12 vortex trajecto-
ries in an amorphous W-based thin film, data from [76]. The lower bottom inset shows the distance
dependence of the pinning force fp = JcB, where Jc is the critical current density. Authors distinguish
two types of vortex motion: modulated vortex motion (shading in blue) where vortices travel small
distances following paths modulated with lattice periodicity and small vortex avalanches (shading
in red) consisting of collective large jumps producing vortex rearrangements.
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lations of the thickness along disordered, meander-like lines. The hexagonal lattices
were slightly distorted and oriented in such a way as to conform to the immediate
surrounding of linear pinning centers. Vortices close to linear pinning centers moved
along them. Vortices in between pinning centers moved in bundles. The motion was
well defined. Individual vortex trajectories showed that vortices travel small distances
while the bundle becomes gradually distorted. Here, the vortex paths are modulated
with the lattice periodicity due to a washboard potential, similar to the case of pris-
tine 2H-NbSe2 discussed above. Motion continued until the lattice got very distorted.
The accumulated stress was then suddenly released through large collective jumps,
which produced rearrangements of the vortex positions and gave a more ordered vor-
tex lattice. Authors identified two different processes. A continuous periodic motion
in which stress is accumulated at each step of the magnetic field, distorting the lattice
within the hexagonal bundles. And plastic motion through small vortex avalanches
that release stress.

1.3.5 Commensurate to incommensurate transitions in nanostructured
superconductors

A particular case of vortex pinning occurs in the presence of periodic pinning centers.
This kind of pinning is relevant when the intervortex distance a0 is of the same order
as the period of the pinning landscape d. The vortex lattice is commensurate to the pe-
riodic structure when a vortex lattice parameter is an integer multiple of the period of
the pinning landscape. In this situation the lattice is generally ordered and free from
topological defects. Conversely, the lattice is incommensurate to the periodic pinning
centers when no lattice parameter is an integer multiple of the periodic pinning land-
scape. Thismight occur when both lattices are rotated to each other by an angle that is
not related to the main symmetry properties of each lattice (that is, 180° for the linear
array and 60° for the hexagonal vortex lattice). Incommensurate lattices are generally
disordered. The amount of disorder depends on the strength of the periodic pinning
potential. When the pinning potential is strong, groups of dislocations form along the
linear features, separated by d. In weak pinning potentials, the disorder might be dis-
tributed over the whole vortex lattice. Commensurate to incommensurate transitions
appear when a0 is changed by varying the magnetic field. These considerations are
generic to any combination of an elastic periodic lattice embedded in a periodic pin-
ning potential and have been analyzed in totally different fields, such as colloids and
optical lattices.

Over the last decades, a number of experimental and theoretical works have stud-
ied the response of the vortex lattice in the presence of periodic nanostructures with
periodic arrangements of different symmetries, square or triangular. Nanostructures
with different features such as holes or dots and shapes such as triangles, squares,
hexagons or circles have been analyzed (see e.g., [79]). One-dimensional (1D) linear
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Fig. 1.13: (a) STM topography of a 1 × 1.2 μm2 area of the nanostructured thin film. Red dashed lines
indicate the 1D modulation and inset shows the height profile along the blue dashed line. (b) Two
main configurations of the hexagonal vortex lattice to the 1D linear potential. The angle defined be-
tween one main axis of the vortex lattice and the direction of the 1D linear nanostructure θ changes
from 0° (right panel) to 30° (left panel). These provide, respectively, d = ma0 and d = n√(3)a0/2
with m, n integers, d the period of the 1D modulation and a0 the intervortex distance. The figure
shows the m = 1 (right) and n = 1 (left) cases. (c) Vortex lattice images taken in the area shown
in (a) showing commensurate configurations of the vortex lattice to the 1D surface modulation with
n = 1 at 0.05 T (left) and m = 5 at 0.25 T (right). Blue lines are the Delaunay triangulation. (d) Mag-
netic field dependence of θ at fields below 0.5 T. The vortex lattice oscillates between main com-
mensurate configurations shown in (b) with θ = 0° and θ = 30°. Figures adapted from [78].

modulations have been comparatively less studied. These are among the most inter-
esting cases because it is easy to control the orientation of the vortex lattice and the
ratio between the intervortex distance and the period of the potential. [80] define the
commensurability ratio p as p = d/a0, and the relative orientation between them,
given by the angle θ. Both parameters govern the coupling strength between the vor-
tex lattice and the 1D modulation.

So far it has remained very difficult to image vortex lattices in periodic pinning
potentials, because surface quality and corrugation modified the pinning landscape
away from the nanostructured geometries. [78] succeeded in creating a vortex lattice
in a well-defined 1D potential. The vortex lattice was imaged as a function of the mag-
netic field using STM. There are no additional pinning centers in their amorphous
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superconducting thin film. The sample is grown using the focus ion beam (FIB) de-
position technique and the 1D potential is provided by a smooth surface corrugation
created by the FIB during the fabrication process. The surface corrugation is below
1% of the total sample thickness and has a period of 400nm (Figure 1.13a). Authors
of this work find that the smooth 1D modulation of the thickness (red dotted lines in
Figure 1.13) acts as an effective pinning center in the low-field region (H < 0.4 T =
0.06Hc2) where the commensurability ratio p is below 5. Between 0.01 T and 0.4 T,
the orientation of the vortex lattice with respect to the linear surface modulation, θ,
changes as a function of the field. The lattice rotates between two configurations at
θ = 0° and θ = 30° that correspond, respectively, to matching conditions of the lattice
to the linear pinning potential given by d = n√3a0/2 and d = ma0, with n and m
being integers. A sketch of the configurations for m = n = 1 is shown in Figure 1.13b.
In the vortex lattice images authors identify, at some particular fields, vortex configu-
rations that clearly fulfil the matching conditions of the lattice to the periodic surface
landscape. For example, at 0.05 T the lattice is oriented parallel to the 1D modula-
tion with the intervortex distance satisfying d = n√3a0/2 for n = 2 (green hexagon
in Figure 1.13c, left panel). Whereas, at 0.25 T, θ = 30° with d = ma0 for m = 4
(yellow hexagons in Figure 1.13c, right panel). The discrete changes between the two
stable low-energy configurations at θ = 0° and θ = 30° are observed at the lowest
fields. In Figure 1.13c we show the magnetic field dependence of the relative orien-
tation between the lattice and the 1D potential given by the angle θ. Above 0.05 T,
the lattice does not re-orient sharply but its orientation oscillates smoothly. At higher
fields, above 0.4 T, the pinning due to the surface corrugation becomes negligible, be-
cause a0 becomes much smaller than d, a0 ≪ d and the elastic energy of the lattice
dominates the pinning potential.

1.3.6 Order-disorder transition

Very often, at high magnetic fields and/or high temperatures, close to the Hc2 line,
the vortex lattice disorders. The order-disorder transition is connected to the soften-
ing of the vortex lattice. The magnetic field becomes nearly homogeneous, so that
the strength of the intervortex interaction (which is of magnetic origin, see for exam-
ple [35]) decreases close to the Hc2 line. Then, the pinning strength overcomes the
vortex-vortex repulsive interaction and vortices adapt their position to the disordered
arrangement of pinning centers. A complete description of the order-disorder transi-
tion requires visualizing a large number of vortices at high magnetic fields, an ideal
playground for STM.

An important tool to quantify the degree of disorder in the vortex lattice is the
Delaunay triangulation (left panel in Figure 1.14a). It provides the bonds joining first
neighbors giving for each vortex its coordination number. In a perfect hexagonal lat-
tice, all vortices have six first neighbors, i.e., they all have a coordination number
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equal to 6. Vortices with a coordination number different from 6 are defects of the per-
fect hexagonal vortex lattice. The most common defects are isolated 5-fold or 7-fold
vortices, called disclinations, and bound pairs of them, called dislocations. A quanti-
tative description of the disorder in the vortex lattice can be found by calculating the
translational and orientational correlations functions, GK(r) and G6(r) (right panels
in Figure 1.14a). These quantify the distance dependence of the weakening of, respec-
tively, translational and orientational correlations in the vortex positions. GK(r) and
G6(r), are defined from the translational and orientational order parameters, ΨK(r)

Fig. 1.14: (a) Left panel shows Delaunay triangulation of a vortex lattice image taken at 1.2 T in the
region shown in Figure 1.13a. Right panel shows positional and orientational correlation functions,
GK (r) and G6(r). Red lines are fits to power law decays. (b) Actual vortex positions obtained from
(a) (magenta) and the calculated perfect hexagonal lattice (blue). The perfect hexagonal lattice has
been rotated and translated to minimize the average mean square deviation with respect to the
measured vortex lattice (see text for details). The gray scale corresponds to the spatial variations of
the relative displacement between them, u(r). This changes according to the histogram shown in
the top right panel of (b). Bottom right panel of (b) shows the relative displacement correlator B(r).
Red and dark lines are fits as described in the text.
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and Ψ6(r), as
GK(r) =< ΨK(r)Ψ∗

K (0) >= 1
6

6∑
l

1
n(r) n(r)∑

i,j
ΨKl (ri)Ψ∗

Kl
(rj) , (1.2)

ΨKl (ri) = eiKlri , (1.3)

G6(r) =< Ψ6(r)Ψ∗
6 (0) >= 1

n(r) n(r)∑
i,j

Ψ6(ri)Ψ∗
6 (rj) , (1.4)

Ψ6(ri) = 1
niN

niN∑
k
ei6θ(rik) , (1.5)

where r is the distance of any lattice site to the origin, n(r) is the number of vortex pairs
separated by a distance r, niN is the number of the nearest neighbors of the vortex i
as given by the Delaunay triangulation, Kl stands for each of the six main reciprocal
lattice vectors and θ(rik) is the angle of the nearest-neighbors bond between vortices i
and j with respect to the reference axis. The six main reciprocal lattice vectors K are
given by the position of the Bragg peaks in the Fourier transforms of the vortex lattice
images.

The envelope of GK(r) and G6(r) for a perfect hexagonal lattice is equal to 1 and
independent of the distance. The presence of defects in the lattice, such as disloca-
tions or disclinations, produces a decay with r. Slow decay following a power-law de-
pendence evidences quasi-long range order. Fast exponential decaying correlations
evidence short range order.

The relative displacement correlator B(r) is defined as B(r) = ⟨[u(r) − u(0)]2⟩/2.
u(r) = r − rp is the displacement of each vortex at r relative to its position in the
perfect lattice rp. Within a Gaussian disorder potential, B(r) is related to GK(r) by
B(r) = e−K2B(r)/2.

To calculate B(r) requires generation of a perfect hexagonal lattice. This is com-
pared to the real vortex arrangements so that deviation between them given by⟨|u(r)|2⟩ is minimized with respect to translation and rotation to obtain the best
match between the two arrangements. Figure 1.14b (right panel) shows the real vortex
positions (magenta) and the calculated perfect hexagonal lattice that minimized de-
viations with respect to them (blue) for the vortex lattice image shown in Figure 1.14a.
The positions for the perfect lattice obtained after minimization are used to compute
the histograms and maps of the relative displacement, u(r), shown, respectively, in
the right panel and as the color code in the map shown in the left panel. The relative
displacement correlator B(r) is shown in the bottom inset in Figure 1.14b. The distance
dependence of B(r) is used to distinguish among different possible crossover effects
when increasing distance. Generally speaking, at short distances we find the random
manifold regime with B(r) ∼ r−2ν. Here vortices explore many minima in the energy
landscape but dono compete against eachother, i.e., each vortex sees an independent
random potential. At larger distances the vortex periodicity starts to play a role, and
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Fig. 1.15: (a) Vortex lattice images obtained in an amorphous superconducting thin film at 0.1 K.
Vortices with five and seven nearest neighbors are identified by green and orange points. Disloca-
tions formed by five and seven nearest neighbor pairs of vortices are identified by black triangles,
pairs of dislocations by black rectangles and isolated disclinations by black circles. Figure adapted
from Ref.[78]. (b) Vortex lattice images obtained in LiFeAs at 1.5 K. Vortices with five nearest neigh-
bors are marked by blue triangles, with seven nearest neighbors by red squares and others by green
stars. Figure adapted from [81]. c) Vortex lattice images obtained in Co0.012NbSe2 at 1.8 K. Triangles
are vortices with five nearest neighbors and squares with seven. Figure adapted from [82].

B(r) grows more slowly following a logarithmic dependence in the so-called asymp-
totic regime. The exponents characterizing the dependence of B(r) in the different
regimes depend on the type of disorder and the dimensionality of the vortex lattice.

The work of [78] characterizes the order-disorder transition in detail for a 2D vor-
tex lattice. The disorder potential is not due to pinning centers, but to scale-invariant
quasi-random potential from the correlations resulting from an incommensurate ar-
rangement of the vortex lattice and the 1D modulation.
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Figure 1.15a shows three representative vortex lattice images obtained across the
transition. The ordered vortex lattice at low fields becomes gradually disorderedwhen
increasing the magnetic field. Authors find that the transition occurs in two steps and
determine the critical exponents from the distance dependence of correlation func-
tions directly obtained from the vortex positions. Uncorrelated long-range disorder
produced by the linear surface corrugation drives the transition. For the first time, the
local disorder potential and the disorder in the vortex lattice have both been identified
separately using STM imaging.

The order-disorder transition has been also observed in crystalline superconduc-
tors. The origin for the disorder potential could not be determined and is probably pin-
ning by randomly distributed impurities or defects. Figure 1.15b and c show triangu-
lated vortex lattices as a function of magnetic field in, respectively, LiFeAs by [81] and
Co0.012NbSe2 by [82]. In LiFeAs, disorder in the latticemight be produced bynative de-
fects in the crystalline structurewhen the lattice softens close toHc2. In Co0.012NbSe2,
disorder in the vortex lattice images is correlated with macroscopic magnetization
measurements.

1.4 Conclusions

The STM is useful to understand relevant concepts of condensed matter physics by
making vivid and visual images. It is a looking glass into a landscape that provides in-
sight by showing electronic behavior at length scales from atomic to the macroscopic
regime. Incrementing the amount of data points in images is one of the key issues to
obtain such an insight. Another one, providing access to electronic behavior, is to do
microscopy in a controlled very low-temperature environment.
We have shortly reviewed how to obtain atomic-scale information about the super-
conducting gap by using atomic-scale spectroscopy and spectroscopy on electronic
wavefunctions scattered by defects.We have then shown the results obtained at scales
of the order of the superconducting coherence length, highlighting the appearance of
localized states inside vortex cores. Finally, we have addressed the features of the vor-
tex lattice up to micron length scales and have given techniques needed to analyze
large-scale images of vortex matter.

We consider that one relevant challenge is now to control, in situ, the electronic
properties of the sample. For example, to be able to tune a superconductor through
a quantum phase transition by measuring as a function of the magnetic field or by
applying a gate voltage – and explore the multiple length scales expected in there.

Another relevant challenge is to obtain real-time visualization of ultrafast pro-
cesses. This can be seen as quite far fetched today. We believe however that it might
be possible to design pump-probe like STM experiments for low temperatures. Such
experiments can provide real-time imaging of vortex motion or electronic relaxation.
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2 Probing vortex dynamics on a single vortex level
by scanning ac-susceptibility microscopy

Abstract: The low-frequency response of type II superconductors to electromagnetic
excitations is the result of two contributions: the Meissner currents and the dynam-
ics of quantum units of magnetic flux, known as vortices. These vortices are three-
dimensional elastic entities, interacting repulsively, and typically immersed in an en-
vironment of randomly distributed pinning centers. Despite the continuous progress
made during the last decades, our current understanding of the complex dynamic
behavior of vortex ensembles relies on observables involving a statistical average
over a large number of vortices. Global measurements, such as the widespread ac-
susceptibility technique, rely on introducing certain assumptions concerning the
average vortex motion thus losing the details of individuals. Recently, scanning sus-
ceptibility microscopy (SSM) has emerged as a promising technique to unveil the
magnetic field dynamics at local scales. This chapter is aimed at presenting a peda-
gogical and rather intuitive introduction to the SSM technique for uninitiated readers,
including concrete illustrations of current applications and possible extensions.

2.1 General introduction to ac susceptibility

The hallmark of type II superconductors submitted to sufficiently strong magnetic
fields is the presence of quantized magnetic flux lines encircled by a rotating conden-
sate of paired electrons. The motion of these fluxons produces heat which destroys
the perfect conductivity of the system. Consequently, in a world where energy dis-
sipation has become a top priority problem, properly mastering the motion of flux-
ons will certainly boost the technologically desirable properties of superconductors.
Hence, understanding, improving and optimizing the mechanisms to prevent the mo-
tion of fluxons has been regarded, throughout the years, as a timely and relevant re-
search problem for fundamental science and applications. A proven successful way
to achieve this goal consists of introducing a rich diversity of pinning centers and to
develop new methods to evaluate their efficiency.

The ac-susceptibility technique, uses a small alternating magnetic field to shake
the flux line lattice back and forth while recording the superconductor’s in-phase and
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out-of-phasemagnetic response. It remains among themost popular, inexpensive and
powerful experimental methods used to determine the efficiency of pinning sites [1].
The disadvantage of such an experimental method can be attributed to the fact that
the recorded signal represents an average over millions of flux lines each of which is
trapped in different pinning potentials and subjected to different environments. As
a consequence, this global technique is not suited to provide information about the
local pinning potential that each flux line might experience. It can merely provide
ensemble-averaged information indirectly deduced from the measured integrated ac
magnetic response by invoking the numerous theoretical studies on vortex dynamics
available today.

The above-stated limitations of the conventional ac-susceptibility technique,
namely its inability to resolve the ac response of a single vortex and the indirect rela-
tion between the vortex dynamics and the integrated response, has provided a drive to
develop alternative methods aiming to directly probe the ac properties of a supercon-
ductor with single vortex resolution. In this chapter we discuss a recently introduced
scanning probe technique, scanning ac-susceptibility microscopy (SSM), which re-
veals, with unprecedented resolution, the motion and dissipation of individual units
of flux quanta driven by an applied ac magnetic field or current [2]. The local dissi-
pation can be inferred from the phase lag between the vortex motion and the driving
force induced by an oscillatory magnetic field, whereas the amplitude of the oscilla-
tory vortex motion provides us with information about the shape of the local potential
that each fluxon experiences. This method has permitted us to reveal the contribution
of pinning-driven (thermally activated) dissipative vortex motion [3], to demonstrate
the nondissipative nature of the Meissner as well as the dissipative vortex state at
microscopic scale [3] and finally, to obtain a detailed cartography of the distribution
and intensity of the pinning landscape [2, 4]. This technique not only shed new light
on unraveling the basic mechanisms of vortex dissipation with unmatched resolu-
tion, but it permitted one to validate the theoretical models introduced to explain
the measured integrated ac vortex responses in ac-susceptibility experiments [5]. We
show that the technique can be readily implemented in a scanning Hall probe mi-
croscopy set-up suited for low magnetic field experiments [2–5] and also extended to
a scanning tunneling microscopy [6] or a scanning SQUID microscopy apparatus [7]
thus achieving the utmost resolution.

2.1.1 AC response of a damped harmonic oscillator

In general, whenever a dissipative system is subjected to a periodic excitation, e.g., a
crystal exposed to electromagnetic radiation or a driven damped harmonic oscillator,
the periodic force will perform work to drive the system through subsequent dissipa-
tive cycles. The dissipative or frictional component of the system, related to a non-
conservative force, will induce a phase shift between the response and the external
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drive, giving rise to hysteresis. For example, the imaginary part of the relative per-
mittivity is closely related to the absorption coefficient of a material [8] or similarly,
a phase lag appears in the motion of a damped harmonic oscillator [9]. This close
connection between dissipation of energy and the out-of-phase component of the sys-
tem’s response is used in spectroscopicmeasurements to gain information concerning
the nature and efficiency of the dissipation processes. Likewise, we will use this spec-
troscopic approach to investigate the response of a superconductor to an applied ac
magnetic field.

We start with the description of the linear response of a classical system, a driven
damped harmonic oscillator, in order to illustrate the above-mentioned connection
between dissipation and the appearance of a phase lag between the drive and the
response. This simple classical system has its merit not only because of its pedagog-
ical aspect, but also since it can be used to describe the linear response of a variety
of physical systems in nature. For instance, we can consider the absorption of light
as the interaction of the electromagnetic field with an oscillating dipole. Finally, the
response of vortices and screening currents in a type II superconductor to an ac mag-
netic field excitation can be mapped onto this simple classical system. This motivates
us to briefly review some of the basic properties of this system. Using Newton’s equa-
tion for a forced damped harmonic oscillator (Figure 2.1) the following general force
balance equation of motion can be obtained:

ẍ(t) + 2ζω0 ẋ(t) + ω2
0x(t) = F(t)/m (2.1)

Here x(t) is the displacement of the oscillator from equilibrium and ω0 = √k/m is
the natural frequency of the oscillator, with spring constant k, mass m and ζ is the
damping ratio. The latter determines the behavior of the system and is given by:

ζ = c/2√mk (2.2)

Fig. 2.1: Schematic presentation describing the linear response of a driven damped harmonic os-
cillator. The (small) periodic driving force, F(t), provides the excitation mechanism of a system con-
sisting of a mass-spring system and a damping pot with c the viscous damping coefficient. The re-
sponse (the displacement), x(t), is also a periodic function in time. In general a phase lag, θ exists
between the drive and the response.
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with c the viscous damping coefficient. For a monochromatic oscillating driving
source:

F(t) = F0 cos(ωt) (2.3)

the general solution of the differential Equation (2.1), consists of the sum of the ho-
mogeneous solution and a particular solution. However, the homogeneous solution is
transient, whereas the particular one describes the steady state solution. The steady
state solution depends only on the driving amplitude F0, the driving frequency ω and
the dynamical properties of the system. In the case of a linear system the response,
x(t), is completely described by the complex transfer function, χ(ω) = χ(ω) + iχ(ω)
and the excitation. For the driven damped harmonic oscillator the explicit form of this
transfer function is:

χ(ω) = 1
1 − ω2

ω2
0
+ 2iζ ω

ω0

(2.4)

and the exact steady state solution is given by:

x(t) = F0
k |χ(ω)| cos(ωt + θ(ω)) with (2.5)

|χ(ω)| = 1

√(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0

and tan θ(ω) = arg(χ(ω)) = −2ζωω0(ω2
0 − ω2) (2.6)

This solution to the equation of motion shows that the driven oscillator has an
oscillation period dictated by the driving frequency ω. The phase and amplitude rela-
tive to the drive are determined by the detuning from the natural resonance frequency,
as shown in Figure 2.2a. It is clear that the amplitude of x(t) reaches a maximum for
driving frequencies in the vicinity of the natural frequency ω0 of the oscillator. Fur-
thermore, the phase shift θ between x(t) and the drive is always negative, meaning
that x(t) lags behind the drive and passes through −π/2 at precisely ω0.

Fig. 2.2: Lineshapes of a driven damped harmonic oscillator for the case ζ = 0.1. (a) The frequency
dependence of the normalized modulus of the transfer function and the phase lag. (b) The frequency
dependence of the normalized in-phase and out-of-phase components of the transfer function.
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For later purposes we rewrite the solution in yet another way, as having an in-
phase component and an out-of-phase component,

x(t) = F0
k

(χ(ω) cos(ωt) − χ(ω) sin(ωt)) (2.7)

χ = (ω2
0 − ω2)

ω2
0 [(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0
] and χ = −2ζωω0

ω2
0 [(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0
] (2.8)

where the in-phase and out-of-phase component are proportional to χ(ω) and χ(ω).
In order to understand the physical meaning of these components, let us consider the
Q-factor of the system, which is defined as 2π times the mean energy stored in the
system, divided by the work done per cycle [9],

Q = 2π Energy stored
Energy dissipated

= [− (ω2
0 + ω2)

2(ω2
0 − ω2)] χ

χ
(2.9)

Apart from the frequency-dependent prefactor between square brackets, it is clear that
the rate of energy dissipation is proportional to the out-of-phase component χ(ω),
whereas the stored energy in the system is proportional to the in-phase component
χ(ω). This becomes more evident when calculating the rate at which the external
drive performs work, i.e., the power that is eventually dissipated as heat in the vis-
cous fluid:

dW
dt = F(t) ̇x(t) (2.10)

Since in steady state, both the drive F(t) and the velocity ẋ(t) are periodic functions of
time with the same period, it is convenient to define the average power dissipated in
one period,

Wq = T∫
0

dtF(t) ̇x(t) = −πF20χ(ω) (2.11)

thus making a clear connection between the rate of energy dissipation and the out-of-
phase component χ(ω). The in-phase response is related to the mean stored energy
in the system, which is given by the sum of the average kinetic and potential energy
in the system,

⟨E⟩ = 1
2m ⟨(dx/dt)2⟩ + 1

2mω2 ⟨x2⟩ = [ (ω2
0 + ω2)

2(ω2
0 − ω2)] F20

2 χ(ω) (2.12)

confirming the relation between the in-phase response and the stored energy. More-
over, both response functions, χ(ω) and χ(ω) are mathematically connected via the
Kramers–Kronig relations. However, in order to obtain one component from the other,
it is necessary to know the whole frequency dependence of the latter. In the following
we will see that the above results, describing the linear response of a driven damped
harmonic oscillator, can bemapped to a superconducting system driven by a weak ac
magnetic field.
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2.1.2 AC response of a superconductor

In order to obtain the ac response of a type II superconductor, we need to follow a sim-
ilar approach as that for the damped harmonic oscillator with the objective to deduce
the transfer function corresponding to the superconducting system.

2.1.2.1 Basic ingredients determining the ac response of a superconductor
We can already anticipate that the transfer function will involve two distinct but in-
tertwined mechanisms, namely the screening currents and the vortex lattice. In the
present case, the excitation is given by an external ac magnetic field whereas the re-
sponse function characterizes the diffusion of this field into the superconducting ma-
terial. In normal metals, in first approximation, this magnetic diffusivity is inversely
proportional to the electrical conductivity of thematerial. Similar to Drude’s approach
to determine the conductivity of a normal metal, we can derive an expression for the
conductivity of a superconductor from microscopic arguments. This is achieved by
describing the response of the entities reacting to the electromagnetic field excitation
(the Cooper pairs and the vortices).

Screening current. Let us start by describing the contribution of the screen-
ing currents to the conductivity. In a first approximation one can use the simplified
model introduced by the London brothers. Inspired by the two fluid model of super-
fluid 4He, they assumed that free electrons in a superconductor can be divided into
two groups: superconducting electrons (i.e., participating in Cooper pairs) flowing
without losses and with density, ns, and normal electrons (i.e., quasiparticles) with
density, nn, which are able to scatter and then to contribute with finite resistivity. The
relative amount of these two types of carriers depends on the temperature. With the
total density of free electrons conserved, n = ns + nn, ns = 0 and nn = n for T > Tc,
while at T = 0, ns = n and nn = 0. The normal electrons have a finite scattering
time, τn, whereas the superconducting electrons would move without dissipation,
corresponding to τs = ∞. Following Drude’s approach, it can be shown that the real
and imaginary components of the ac conductivity for both groups of carriers are given
by,

ℜe(σ(ω)) = πnse2

2m
δ(ω) + nne2τn

m
(2.13)

ℑm(σ(ω)) = nse2

mω (2.14)

with δ(ω) the Dirac delta function. Here we assumed that the frequencies are low
enough so thatωτn ≪ 1,which is a good approximation as this derivation is only valid
for frequencies below the superconducting energy gap. It is clear that the normal elec-
tron fluid always provides a finite dissipation for all nonzero frequencies. However,
this contribution becomes only appreciable for frequencies approaching the super-
conducting gap ∼ 100GHz for Pb, above which the ac response of a superconductor
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equals the one of a normal metal. For the low-frequency range, neglecting the vortex
contribution, the screening current contribution can be considered purely inductive
and, as such, dissipationless. This implies that the current is always out-of-phasewith
the applied or induced electric field¹. Moreover, in this case the magnetic field can
penetrate the superconductor only over a characteristic distance corresponding to the
frequency-independent London penetration depth, λL (Figure 2.3):

λL = √ 2m
μ0nse2

(2.15)

Vortex response. As anticipated, also the vortices contribute to the conductivity
of the superconductor and, as such, it will have an impact on the screening efficiency
of a time-varyingmagnetic field. This effect can be derived by describing the response
of a vortex in a type II superconductor to an induced or applied current. However, be-
forewedig into the equation ofmotion for a vortex, let us pose the questionwhy vortex
motion contributes to the conductivity of a type II superconductor? A pioneering ex-
periment by Giaever [10], provided solid evidence that a voltage drop arises along a
type II superconductor as a direct consequence of the motion of Abrikosov vortices. If
a vortex moves with velocity v, with a direction of motion perpendicular to a current
drive, it induces an electric field of magnitude,

E = B × v (2.16)

parallel to the current drive. As such, in the presence of moving vortices, an electric
field appears at the core of the vortices and acts over the quasiparticles leading to a
resistive contribution. In the simplest approximation one can consider a vortex as a
rigid entity and describe the dynamics using a particle-like equation of motion [11],

FI = FVV + FL + Fdrag + FP + FM + FTh (2.17)

Let us discuss the different terms appearing in this phenomenological force-balance
equation.

The inertial term is equal to FI = m∗ ̈ri, where m∗ is the mass of a vortex per unit
length, which is only effective in nature as a vortex cannot exist outside a supercon-
ductor. The displacement field of the i-th vortex is denoted by ri. There are several
mechanismsproposed to contribute to the effective vortexmass per unit length [12, 13].
In general, it is accepted that the vortex mass amounts to several thousands of elec-
tron masses and represents only a small contribution, which can be neglected for the
frequencies used in SSM.

1 Here the current corresponds to velocity and its in-phase component (proportional to the real part
of ac conductivity) is related to dissipation, while its out-of-phase component (proportional to the
imaginary part of ac conductivity) is related to the stored energy.
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The vortex–vortex interaction denoted by FVV, describes the interaction with
neighboring vortices through the potential energy U. The strength of the repulsive
force between two vortices is given by:

fij(rij) = −∂Uij(rij)
∂rij

= ϕ2
0

2πμ0λ3
K1 ( rijλ ) (2.18)

With K1 the modified bessel function of the second kind and rij = ri − rj. From the
expression for the supercurrent density, one can write the force exerted by the i-th
vortex on the j-th vortex as:

fij = Ji(rj) × ϕ0j (2.19)

where ϕ0j is a vector of absolute value equal to the flux quantum and with a direction
parallel to the flux density of the vortex j. This expression resembles the structure
of a ‘Lorentz’ force density and corresponds to a repulsive (attractive) interaction in
the case where both vortices have the same (opposite) polarity. The interaction en-
ergy of the i-th vortex with the rest of the vortices is additive and can be calculated as
FiVV = −∑N

j ̸=i fij. Note that for a thin film the interaction is of long range whereas in
bulk superconductors the vortex–vortex interaction is short range.

We can generalize the above result for the force on the i-th vortex due to screening
or transport currents as,

fi = J(ri) × ϕ0j (2.20)

where J is the total supercurrent density at the location of the core of the vortex under
consideration. Note that both forces, FL and FVV , are not a ‘Lorentz force’ in the usual
sense, i.e., qv × B, and therefore the name is somewhat confusing².

The viscous damping force can be written as Fdrag = −η ̇ri, where η describes
the viscosity experienced by the vortex when moving through the superconducting
medium. The ultimate mechanism for the damping coefficient η is still a contro-
versial issue. The most popular explanation is the model proposed by Bardeen and
Stephen [15] where η is related to ordinary resistive processes in the core of a vortex
due to the electric field needed to maintain a cycloidal motion of electrons during
vortex motion [15]. Other mechanisms have been suggested even before the Bardeen–
Stephen theory, for instance Tinkham has shown that dissipation comparable to that
observed in experiments could be explained if the order parameter could adjust to the
time-varying field configurations induced by a moving vortex only in a finite relax-
ation time [16]. Another approach has been proposed by Clem and is associated with
the local temperature gradients in the vicinity of the normal-like regions produced
due to a difference in entropy between the leading edge and the trailing edge when

2 Indeed if youwould just translate qv and B into J and ϕ0 respectively, one will find that J×ϕ0 is the
force acting on the current, and therefore, the driving force on the vortex should be ϕ0 × J, which has
the opposite direction. A more detailed discussion can be found in Reference [14], where the driving
force is derived from kinetic energy considerations.
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a vortex is moving [17]. As stated by Tinkham [18], it is not entirely clear to what ex-
tent all these various mechanisms are additive contributions or they simply represent
alternative views of the same physics. As pointed out by Suhl [12], the ratio η/m∗,
which in the case of free flux flow describes the initial time necessary to reach steady
state motion, is of the order of picoseconds. Therefore, the dynamics of vortices at low
enough frequencies can be safely described by neglecting the vortex mass.

The pinning force FP takes into account the fact that the motion of vortices can be
reduced or eliminated by providing pinning centers that trap the vortex by exerting a
pinning force per unit length on the vortices. The pinning centers can be grouped into
two types. On the one hand, we find intrinsic pinning, caused by impurities, naturally
occurring crystal defects such as lattice imperfections, grain- and twin boundaries,
typically distributed randomly and whose strength is controlled by the growing con-
ditions of the superconducting material. On the other hand, we have artificially man-
ufactured pinning centers resulting from the technological possibility to introduce
deliberately pinning centers with required shape, size, and distribution by means of
lithographical techniques. These artificial pinning centers such as holes, blind holes
or magnetic dots with magnetic moment in- and out-of-plane have received a lot of
attention lately, both theoretically and experimentally [19].

The Magnus force is a hydrodynamic action experienced by a vortex moving in a
fluid, FM = αϕ0 × ̇ri, where α is the Magnus force coefficient. This force results in a
component of the vortex velocity parallel to the drive current, whichwill lead to a Hall
voltage. Inmost cases and for small vortex velocities, this force canbe ignored asmost
experimental data indicate that the Hall angle is very small.

Thermal fluctuations, relevant at high temperatures or low frequencies, allows
vortices to diffuse out of their pinning potential well and wander some distance
around. To model this effect one supplements the equation of motion with a random
force which is assumed to be Gaussian white noise with zero mean, in analogy to an
earlier work by Fulde [20].

2.1.2.2 Impact of vortex motion on the penetration depth
In a next step, let us look to a concrete example inwhichwe can calculate the response
of the vortex lattice to an oscillatory excitation and explore its impact on the penetra-
tion depth of the superconductor. Analytical solutions for the equation ofmotion (2.17)
exist for certain limiting cases [21–23]. For example, let us assume that the vortices are
all driven by an identical weak periodic force due to an induced or applied ac current,
Fac(t) = F0 cos(ωt) while neglecting thermal excitations, inertial and Magnus effects.
In this case the, one-dimensional, equation of motion reduces to:

0 = FVV + FL + Fdrag + FP (2.21)

Sincewe consider onlyweak excitations, the local potential that each vortex expe-
riences due to a combination of randomdisorder, neighboring vortices or boundaries,
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can be approximated by a harmonic potential with spring constant ⟨αL⟩. As such,
FP + FVV = − ⟨αL⟩ x (2.22)

⟨αL⟩ which is known as the Labusch constant representing a statistical average over
all restoring forces the vortex ensemble experiences. In the case of artificial pinning
arrays, after a field-cooling exactly at the first matching field where there is one vortex
per pinning site, all restoring forces are supposed to be similar and ⟨αL⟩ can be taken
as a constant. However, in these artificial pinning arrays for a zero-field-cooling condi-
tion or for a small detuning from the matching field a coexistence of different types of
vortices, each experiencing a different ⟨αL⟩, will take place. For example, pinned vor-
tices by an antidot lattice will experience a completely different restoring force than
interstitial vortices caged by the pinned ones [24]. In the linear response regime, the
steady state solution of this, simplified, equation of motion is given by:

x(t) = |χ(ω)| cos(ωt + ϕ(ω)) (2.23)

with χ(ω) = ϕ0J−iηω + ⟨αL⟩ and ϕ(ω) = − tan−1 ( ωη⟨αL⟩) (2.24)

For low frequencies, ω ≪ ωL ≡ ⟨αL⟩/η, the restoring force dominates the mo-
tion over the viscous drag force which can then be neglected. Here we introduced the
pinning frequency ωL, which is typically of the order of 10MHz [25]. In this case, only
the elastic interaction with the pinning centers has to be considered and the motion
consists of a reversible harmonic motion perfectly in phase with the driving force,

χ(ω) = ϕ0J⟨αL⟩ (2.25)

This is the so-called Campbell regime [26]. Using the relation E = ẋ(t) × B, where we
use B = nϕ tomake the step from a single particlemodel to the whole sample’ average
response, this leads to an imaginary contribution to the ac resistivity due to ac vortex
dynamics:

ρC = nϕ0ω⟨αL⟩ (2.26)

Together with the screening current contribution, Equation (2.13), we obtain a
purely imaginary conductivity,

σC(ω) = (ωμ0λ2L + ωμ0λ2C)−1 i , with λC = √ ϕ0B⟨αL⟩ μ0 (2.27)

where we have defined the Campbell penetration depth, λC, as a real and frequency
independent parameter. As such, in this low-frequency regime, the ac vortex dynam-
ics alters effectively the inductive properties of the superconductor as compared to the
ideal case where only the screening currents contribute. In general, the ac vortex dy-
namics can also change the resistive properties of the superconductor, as we will see
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later. The total ac penetration depth is given by:

λ2ac = λ2L + λ2C (2.28)

where λac is the skin depth or effective ac-penetration depth, which is larger than the
London penetration depth. The response is still purely inductive which resembles the
ideal Meissner response. For weak pinning and considering the applied ac and dc
magnetic fields perpendicular to the sample surface, the Campbell penetration depth
can be written as λC = (c11/⟨αL⟩)1/2, where c11 is the compressional modulus of the
vortex lattice. By this, it is clear that the ac field penetration is carried by reversible
vortex oscillations near the equilibrium positions. For very strong pinning, i.e., when⟨αL⟩ → ∞, the vortices are immobile under external field changes and the supercon-
ductor behaves as if it were in the Meissner state, in this case the ac penetration depth
reduces to the London one (see Figure 2.3).

In the opposite limit of high frequencies ω ≫ ωL, the viscous drag force domi-
nates the response and we can neglect the restoring force all together. The motion is
just like in a normal metal, i.e. a motion damped by a viscous force,

χ(ω) = ϕ0J
η

i
ω (2.29)

Thismotion is completely out-of-phase with respect to the driving force. The resulting
ac resistivity contribution due to the ac vortex dynamics is identical to the so-called
flux flow (FF) resistivity, frequency independent but dependent on the field:

ρac(ω) = Bϕ0
η = ρFF = σ−1FF (2.30)

Fig. 2.3: Schematic representation of the low-frequency ac penetration depth, λac compared to the
well-known London penetration of a dc magnetic field, λL. If the vortex contribution is neglected, the
ac penetration length λac ∼ λL. In the Campbell regime, incorporating an in-phase motion of vortices
due to the elastic interaction between vortices and pinning centers, two different limits of the ac
penetration length can be found: (i) For rigidly pinned vortices λac ∼ λL, whereas for weak pinning
λac = √λ2

L + λ2
C. Here, λC = (c11/⟨αL⟩)1/2, where c11 is the compressional modulus of the vortex

lattice and ⟨αL⟩ is the Labusch constant representing a statistical average over all restoring forces
the vortex ensemble experiences.
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It is clear that in this regime the ac vortex dynamics alters the conductivity of the su-
perconductor by a pure resistive contribution. For the ac magnetic field penetration,
the superconductor will behave identically to a normal metal with a field-dependent
and frequency-dependent skin depth.

Amore complete description of the vortex’ linear response has been discussed by
Coffey and Clem, who derived an expression for the ac resistivity by solving the equa-
tion of motion (2.17) taking into account, in addition to the previous dynamic modes,
also vortexmotion due to thermal fluctuations [21].Within the linear response approx-
imation, the motion due to thermal fluctuations can be described by the following
equation of motion,

ẋ ∼ exp(−U/kBT) (2.31)

meaning the vortices move with a linear average vortex velocity proportional to a
Boltzmann factor, where U describes an effective activation energy related to the
strength of the intrinsic pinning landscape. Because of the activated nature of this
type of flux motion, one speaks of thermally assisted flux flow (TAFF). The resulting
ac resistivity contribution due to TAFF is similar to the case of FF, purely resistive,

ρ(ω) = ρTAFF ∼ exp(−U/kBT) = σ−1TAFF (2.32)

Rigourously, for the whole superconductor containing vortices and screening cur-
rents one has to add all the different contributions. A general solution to the equation
of motion taking into account all the above-described contributions is given by Equa-
tion (2.23) [21, 22], with

χ(ω) = − [ − ⟨αL(r)⟩
1 − i/ωτ1 + iωη]−1 and ϕ(ω) = arg χ(ω) (2.33)

here τ1 = ( η⟨αL(r)⟩) I20 [ U
2kBT

]
where I0(x) is the modified Bessel function, which closely resembles an exponential
for large argument x and I0(0) = 1. The time scale τ1 is a characteristic relaxation
time below which thermally activated hopping of vortices becomes important. For
conventional superconductors the associated characteristic frequency is of the order
of 1/τ1 < 10Hz and is proportional to the ratio of the effective activation energy char-
acterizing the intrinsic pinning, U and the thermal energy, kBT. For high-Tc supercon-
ductors the effect of TAFF can be very pronounced. This resulting motion, describing
the linear response of a vortex to an ac drive, is a combination of in-phase (reversible
motion) andout-of-phase (dissipativemotion) components andwill beprobeddirectly
with scanning susceptibility microscopy. At low temperatures, thermal fluctuations
canbe neglected, meaning thatU ≫ kBT andhence τ1 diverges. Under this condition,
the equation of motion reduces to the previous discussed cases in both limits of high
and low frequencies. Moreover for high temperatures and low frequencies, f < 1/τ1,
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the TAFF regime is recovered. This description of the vortex response, taking into ac-
count all the above mechanisms, results, in general, in a complex ac resistivity.

As a last remark we would like to note that the simplified model used here to de-
scribe the ac dynamics, considering a vortex as a particle-like object has of course its
limitations, as it ignores the internal structure of the vortices and their elastic nature.
It is expected to fail for high vortex velocities where more realistic approaches such as
time-dependent Ginzburg–Landau theory become necessary. Moreover, in the above
we considered only the linear response, which is valid for small disturbances from
equilibrium. Once the applied ac-field amplitude becomes sufficiently high, it is able
to introduce vortex displacements much larger than the pinning site size and the sys-
tem will be in a regime of strong nonlinear response. In this regime Ohm’s law will no
longer be valid and, in general, the conductivitywill become a function of the induced
or applied current.

2.1.2.3 Macroscopic response of a superconductor
We are now in a position to discuss the integrated magnetic response of a supercon-
ductor upon the application of an external alternating magnetic field

hac(t) = hac cos(ωt) (2.34)

known as global ac-susceptibility measurements [1].
When a type II superconductor is excited by an alternating external magnetic

field, hac(t), it is then expected that the average sample response³, the magnetic in-
duction averaged over the sample volume, ⟨B⟩(t), is also periodic, with the same pe-
riod as the appliedmagnetic field T = 2π/ω (see Figure 2.4). Here the average denoted
by ⟨. . .⟩ is taken over the whole sample volume. The distorted periodic wave form can
be expressed as a Fourier series expansion.

⟨B⟩(ω, t) = μ0hac
∞∑
n=1

[⟨μn⟩ cos(nωt) + ⟨μn ⟩ sin(nωt)] (2.35)

Here ⟨μn⟩ and ⟨μn ⟩ are the real and imaginary part of the n-th Fourier component
and μ0 is the permeability of vacuum. In a first approximation, assuming an ac drive
sufficiently small, we obtain the linear response,

⟨B⟩ ≈ μ0hac[⟨μ1⟩ cos(ωt) + ⟨μ1 ⟩ sin(ωt)] (2.36)

In this regime, the response is fully determined by the Fourier components ⟨μ1⟩ and
3 In principle, the response of the sample alone is the magnetization, ⟨M⟩(t), related to the magnetic
induction, ⟨B⟩(t), and the applied field, ⟨ha⟩(t) as, ⟨M⟩(t) = ⟨B⟩(t)

μ0 −⟨ha⟩(t). As such, themagnetization
doesnot include the contributionof thedrive, ⟨ha⟩(t). As in our experimentsweprobedirectly the local
induction rather than the magnetization, we will describe the response in these terms.
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Fig. 2.4: Schematic presentation of a superconductor excited by a small monochromatic oscillatory
magnetic field, hac(t). The periodic drive, hac(t), provides the excitation mechanism of a type II su-
perconductor. The sample response, ⟨B⟩(t), will also vary periodically in time, however a phase lag,
θ may exist between the drive and the response.

⟨μ1 ⟩which can be considered as the real and imaginary part of the so-called complex
relative permeability⁴, ⟨μ1⟩ = ⟨μ1⟩ + i⟨μ1 ⟩. The real part describes the in-phase re-
sponse of the magnetic induction to the external magnetic ac field and is related to
the macroscopic shielding abilities or the inductive properties. On order to see this,
we calculate the time average of the magnetic energy supplied by an alternating field
per unit volume into the sample [1],

Wa = 1
T

T∫
0

hac(t)⟨B⟩(ω, t)dt = ⟨μ1⟩B2a
2μ0

(2.37)

where Ba = μ0hac. When no sample is present, the magnetic field energy stored is
equal toW0 = B2

a
2μ0 . The difference,

δW = Wa − W0 = (⟨μ1⟩ − 1) B2a2μ0
(2.38)

reflects the ac response of the sample. As such, ⟨μ1⟩ describes whether the material
increases or decreases the amount of stored energy per unit volume. A diamagnetic
behavior of the investigated sample, 0 < ⟨μ1⟩ < 1, leads to a reduction of themagnetic
energy stored per unit volume as compared to a situation when no sample is present,
this is reflected in a negative value of δW. Thus, in the case of a ideal superconductor
in theMeissner state, we expect ⟨μ1⟩ = 0. A paramagnetic response, ⟨μ1⟩ > 1, leads to
an increase of the magnetic field energy as compared to the situation when no sample
is present.

4 As ⟨M⟩(t) = ⟨B⟩(t)
μ0 − ⟨hac⟩(t), the first term in a Fourier series expansion of ⟨M⟩(t), will have Fourier

component ⟨χ1⟩ = ⟨μ1⟩ − 1 and ⟨χ1 ⟩ = ⟨μ1 ⟩, which can be considered as the real and imaginary part
of the complex ac susceptibility ⟨χ⟩ = ⟨χ1⟩+ i⟨χ1 ⟩, respectively. In terms of themagnetization, ⟨M⟩(t),
the response of the sample alone is considered.
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The imaginary part describes the out-of-phase response of the magnetic induc-
tion, arising, as in the case of a driven damped harmonic oscillator, necessarily from
dissipative ac losses within the superconductor. To see this connection, we calculate
the energy converted into heat during one cycle of the applied ac magnetic field [1]:

Wq = 1
μ0

T∫
0

(hac(t)d⟨B⟩(ω, t)dt ) dt

= T∫
0

(hac(t)d⟨M⟩(ω, t)) = π 1
μ20

B2a⟨μ1 ⟩ (2.39)

and a direct relation exists between the dissipated energy and the complex part of
the permeability ⟨μ1 ⟩. Notice that the second equality in Equation (2.39), is just the
area of a magnetization hysteresis loop. AsWq is always positive, ⟨μ1 ⟩ > 0. In general
terms one can say that ⟨μ1 ⟩measures magnetic irreversibility or the resistive reaction
to ac fields, whereas ⟨μ1⟩ is related to the inductive properties of the sample. Note
that all of the above considerations are in one-to-one correspondence with the case
of a harmonic oscillator, where the displacement plays the role of the magnetization
and the driving force plays the role of the applied ac magnetic field.

In standard ac-susceptibility measurements, one excites the sample with an ac
magnetic field, hac, and detects the macroscopic response, ⟨B⟩(t), inductively by a
pick-up coil. Using a phase-locked technique one can obtain directly ⟨μ1⟩ and ⟨μ1 ⟩
or higher Fourier components [1]. The dependencies of these two response functions
upon changing the thermodynamic variables or the ac excitation parameters, provide
very valuable information concerning the pinning efficiency and reveal the finger-
prints of the particular ac dynamic phases the vortex lattice exhibits [27–29]. Since
the recorded signal represents an average over all present flux lines and screening
currents in the sample, the link with the microscopic ac response is indirect. Pioneer-
ing theoretical works [22, 23, 26] contributed substantially to link this global response
to the microscopic vortex dynamics and/or the ac field penetration.

2.1.2.4 Microscopic response of a superconductor
The above-described variation of the average response, ⟨B⟩(t), of a type II supercon-
ductor is produced at the microscopic level by the vortices, the induced screening cur-
rents and/or the external field itself. In Figure 2.5 the reaction at the end of a 500 μm
long superconducting Pb ribbon to a magnetic field variation is probed by making
snapshots of the z-component of the local induction, Bz(x, y), as measured at ev-
ery pixel (x, y) by scanning Hall probe microscopy. The Pb ribbon is 9 μm wide and
50nm thick and the magnetic history consists of a field cooling procedure in a field of
hdc = 0.13mT at T = 7K (see Figure 2.5b). The prepared state contains two vortices
whose positions are indicated by red dots. In addition, a clear enhancement of the lo-
cal field is observed at the border of the Pb ribbon due to demagnetizing effects. Two
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Fig. 2.5: The reaction at the end of a 9 μm wide superconducting Pb ribbon to a magnetic field vari-
ation is shown by making snapshots of the z-component of the local induction, Bz(x, y), as mea-
sured by SHPM. The borders of the Pb ribbon are indicated by the dashed white line. The Pb ribbon
is prepared by a field cooling procedure in a field of hdc = 0.13 mT to T = 7 K (b). Two snapshots
of Bz(x, y) are shown at hdc = 0.23 mT (c) and hdc = 0.03 mT (a) obtained upon increasing and
decreasing the field with 0.1 mT after preparing the ribbon as described. In (d), the average cross
section is shown for the different field configurations, as obtained by averaging the cross sections
in the rectangular area indicated by the black dashed line in (b).

snapshots of Bz(x, y) are shown at hdc = 0.23mT (Figure 2.5c) and hdc = 0.03mT (Fig-
ure 2.5a), obtained upon increasing and decreasing the magnetic field by 0.1mT. The
following observations can be made when the Pb ribbon undergoes a field variation
of 0.1mT:
– When we increase or decrease the field by 0.1mT, additional screening currents

will be induced in the superconducting Pb ribbon as indicated by the long black
arrows in Figure 2.5a and c. The magnetic field they generate will contribute to
the local induction, Bz(x, y), at the edge of the ribbon. This explains the observed
field enhancement and reduction at the edge of the Pb ribbon, respectively. This
field enhancement is also observed in the prepared state (see Figure 2.5b) and is
determined by a geometrical demagnetizing factor, identical for every magnetic
field amplitude as long as the penetration depth remains constant.
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– The induced screening currentswill producea Lorentz forceon thevortices,which
will displace them from their initial equilibrium position in the prepared state.
The initial vortex position at hdc = 0.13mT is indicated by the red dots in every
snapshot. The short black arrows in Figure 2.5a and c show a displacement of the
vortices as compared to the positions of the vortices in the prepared state. Both ob-
servations are clearly visible in the derived average cross sections for every field
amplitude (shown in Figure 2.5d). In this particular sample the dynamics of a vor-
tex is a combination of (i) the local driving force due to the screening currents and
(ii) the presence of random disorder in the material. Nevertheless, it is impossible
to obtain the exact shape of the potential below the resolution of SHPM. In order
to do so we have to use scanning probe microscopy tools with higher resolution
(e.g., scanning tunneling microscopy [6] or SQUID on a tip [7]).

The point wewant to make clear with the above ‘snapshot movie’, is that the variation
of the magnetic induction, Bz(x, y, t), at the microscopic scale or at every pixel of our
scan area, appears to be a reproducible back and forth motion with the same period
as the applied magnetic field, whether one looks at the variation of the field due to
vortices deep in the sample volume or due to the screening currents at the edge. This is
not surprising as the average response, ⟨B⟩(t), is just a superposition of the individual
microscopic contributions. Once again, Bz(x, y, t) can be expressed as a Fourier series
expansion and if we consider only the linear response we obtain,

Bz(x, y, t) ≈ μ0hac [μ1(x, y) cos(ωt) + μ1 (x, y) sin(ωt)] (2.40)

Similar as in the macroscopic case, the observation and the study of these response
functions or Fourier components and their dependencies upon variations of tempera-
ture, driving parameters, etc., will provide us with information concerning the vortex
dynamics. As discussed before, it is possible to track the integrated response over the
whole sample volume bymacroscopic ac-susceptibility experiments. In that case, the
connection between themeasured response, ⟨μ1⟩ and ⟨μ1 ⟩ and themicroscopicmod-
els is indirect. In contrast to that, a measurement of μ1(x, y) and μ1 (x, y), completely
characterizing the linear variation of the local induction, will provide us with direct
information about the microscopic response, without the need to invoke theoretical
models to explain the measured responses.

2.2 Scanning susceptibility measurements

2.2.1 Scanning ac-susceptibility microscopy

Scanning ac-susceptibilitymicroscopy (SSM), schematically presented in Figure 2.6, is
a phase-sensitive variant of the scanning Hall probemicroscopy technique. It enables
us to measure directly, with single vortex resolution, the two Fourier components,
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μ1(x, y) and μ1 (x, y) and, in principle, all higher harmonics. In SSM, the sample is ex-
citedwith anexternal acmagnetic field, hac(t) = hac cos(ωt), appliedperpendicular to
the sample surface by a copper coil. The Hall voltage, VH(x, y, t), measured locally by
a Hall microprobe is picked up by a lock-in amplifier. The excitation signal for the ex-
ternal applied ac field, feeds a phase-locked loop that extracts the in-phase, V

1(x, y),
and out-of-phase components, V

1 (x, y), of VH(x, y, t). In the first approximation these
are, respectively, proportional to the in-phase, B

z(x, y) and out-of-phase, B
z (x, y), ac

components of the local magnetic induction, Bz(x, y, t), coarse grained by the size of
the cross, which are directly related to the real and imaginary part of the local relative
permeability, μ1(x, y) = μ1(x, y) − iμ1 (x, y), through the definition [30]:

μ1(x, y) = B
z(x, y)
μ0hac

μ1 (x, y) = B
z (x, y)
μ0hac

(2.41)

As a result, SSM provides a tool to spatially map these two Fourier components. The
mapping of Bz(x, y, t) was obtained using a modified low-temperature SHPM from
Nanomagnetics Instruments. As the SHPM technique used to map Bz(x, y, t) has sin-
gle vortex resolution, SSM likewise allows one to probe the ac response of a supercon-
ductor at this scale. In all the experiments, the collinear dc and ac external magnetic
fields are always applied perpendicular to the sample surface. Just as in the global
ac-susceptibility technique, one can again relate, by making a similar analysis, the

Fig. 2.6: (a) Schematic overview of the scanning susceptibility microscopy setup. A superconduct-
ing sample is placed in a dc magnetic field, H, generated by a superconducting coil surrounding a
collinear copper coil generating an ac field hac(t). The time-averaged magnetic field profile due to
the present vortices and the screening currents is schematically shown by the black lines. The mag-
nifying glass provides a closer look at the induced ac vortex motion. When the drive is small, the ac
magnetic field induces a periodic force on the vortices, shaking them back and forth. A Hall sensor
picks up locally the associated time-dependent Hall voltage, VHall. (b) A lock-in amplifier, provided
with both hac(t) as a reference and VHall, allows one to extract both the in-phase, B

z(x, y), and the
out-of-phase, B

z (x, y), components of the local magnetic response.
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in-phase component, μ1(x, y), to the local inductive response, while the out-of-phase
component, μ1 (x, y), is related to microscopic ac losses.

2.2.2 SSM on a superconducting strip, response of individual vortices

In the following section, we will, as a proof of concept, use SSM to analyze the ac re-
sponse of the Pb ribbon discussed before. The interpretation of the measured local
response functions μ1(x, y) and μ1 (x, y) and the analysis of their dependencies upon
varying thermodynamic variables (temperature, dcmagnetic field) or the drive ampli-
tude will be discussed. As the signal picked up by the Hall probe contains different
contributions, arising from the screening currents, the vortex signals and the external
field itself, the measured local linear ac response is also determined by all contribut-
ing factors. This particular sample design allows us to map the spatial dependence
of the linear response to hac(t), covering the whole width of the sample in a single
scanning area, including the Meissner response at the sample border and the vortex
motion deeper into the ribbon volume.

2.2.2.1 Temperature dependence of the macroscopic ac response
Before we discuss in detail the response in the whole scan area, let us first discuss
the temperature variation of μ1(x, y) and μ1 (x, y) picked up by the Hall cross located∼ 1 μm above the center of a zero-field cooled (ZFC) 7 μm wide Pb ribbon, see Fig-
ure 2.7. An ac amplitude of 0.1mT and a frequency of f = 77.123Hz are used for this
measurement. This dependence is identical to the temperature dependence observed
in macroscopic ac-susceptibility experiments. It is clear that the Pb ribbon exhibits a
superconducting transition at Tc = 7.20K. For temperatures below Tc a diamagnetic
response is observed, 0 < μ1(x, y) < 1, meaning the ribbon screens out the applied
field. Above Tc, μ1(x, y) ≈ 1, meaning the ac magnetic field penetrates completely
as expected for this low frequency for a normal metal. μ1 (x, y) is initially zero, goes
through a maximum, and reduces to a zero value near Tc.

Figure 2.8a shows an SHPM image of a vortex distribution prepared by a field cool
(FC) in H = 0.13mT and at T = 6.7K. After preparing the state, a SHPM image is ob-
tained while an external field with hac = 0.1mT and f = 77.123Hz, is continuously
applied. The scan speed is chosenproperly, 1 μm/s, to ensure that the integration time
at every pixel (125ms) is much larger than the period of the applied ac field (13ms).
As one image has 128 by 128 pixels, the time for a single scan takes 73 minutes. The
resulting vortex distribution obtained by performing a FC experiment, corresponds to
a frozen vortex structure nucleated close to Tc [31]. The FC process forces vortices to
nucleate at the strongest pinning sites and results in a nonsymmetrical vortex distri-
bution. The external ac field shows up as an additional monochromatic noise in the
SHPM images getting more pronounced for temperatures close to Tc. However, for all
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Fig. 2.7: In-phase (χ’) and out-of-phase (χ”) ac signal picked up by the Hall cross located at the cen-
ter of a 7 μm stripe, using an ac amplitude of 0.1 mT and a frequency of f = 77.5 Hz.

investigated temperatures the average vortex positions do not change, indicating that
for hac = 0.1mT the resulting average vortex response is limited to displacements
below the experimental spatial resolution.

2.2.2.2 Probing the ac response with single vortex resolution
Figure 2.8b shows a representative set of simultaneously acquired SSM images of
μ1(x, y) (left column) and μ1 (x, y) (right column), respectively describing the induc-
tive and dissipative response, when the temperature is decreased progressively from
T = 6.7K to T = 7K.

Local inductive response.A first straightforward observation is that at the edges
of the scan area, meaning relatively far away from the Pb ribbon, the local induction
is equal to the applied acmagnetic field hac(t) as μ1 (x, y) = 0 and μ1(x, y) = 1. A clear
paramagnetic response, μ1(x, y) > 1, is visible at the edge of the Pb ribbon, where
the response is dominated by the induced screening currents. This enhancement of
the external ac field is caused by a strong demagnetizing effect resulting from the thin
film sample geometry [32]. Upon entering the volume of the ribbon, we observe an
increasing diamagnetic response as hac(t) gets shielded by the screening currents. At
the center of the Pb ribbon, a maximum diamagnetic response due to the screening
current of μ1(x, y) = 0.27 at T = 6.7K is reached, indicating an incomplete field
expulsion.
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Fig. 2.8: (a) Scanning Hall probe microscopy image of the local induction, Bz(x, y), acquired dur-
ing shaking with an external applied ac field of amplitude, hac = 0.1 mT, and with frequency,
f = 77.123 Hz at a temperature of T = 6.7 K. The initial vortex distribution is obtained by performing
a field cool in an external applied dc magnetic field, H = 0.13 mT. The white dashed line indicates
the border of the Pb ribbon.(b) Simultaneously acquired maps of the real part of the relative per-
meability, μ

1(left column) and the imaginary part of the relative permeability, μ
1 (right column), for

different temperatures:(top to bottom) T = 6.7 K, 6.9 K and 7.0 K.

Within the ribbon volume the induced screening currents, j(t), will periodically
shake the vortices, with a force: fL(t) = j(t) ×ϕ0. The ac dynamics of the vortices will
crucially depend on the thermodynamic parameters of the superconducting system
and the properties of the drive. As shown in Figure 2.8b, the fingerprint of their mo-
tion in the SSM images, consists of two distinct unidirectional spots of opposite polar-
ity surrounding the equilibrium vortex position. The inductive response can be easily
interpreted. An area exhibiting a signal exceeding the ac response of the screening
currents, μ1(x, y) > μ1(x, y)s , corresponds to a vortex, carrying an intrinsic positive
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local induction, moving in-phase with hac(t) within this area. A region exhibiting a
signal lower than the ac response of the screening currents, μ1(x, y) < μ1(x, y)s, in
some cases resulting even in a local negative permeability, μ1(x, y) < 0, indicates that
bz(x, y, t) increases (decreases) upon decreasing (increasing) instantaneous hac(t),
corresponding to a vortex moving in anti-phase with hac(t) within this area. A simi-
lar unique local negative μ1(x, y) response, but on a substantially larger spatial scale,
has been observed in the ac dynamics of flux droplets in the presence of a geometrical
barrier [30].

From general considerations, neglecting the demagnetizing field, an overall in-
tegrated response between zero and one is expected for ⟨μ1⟩. Note however, that the
meaningof the complexpermeability as amacroscopic thermodynamic variable is lost
in this local limit. Upon integrating the local signal over the whole scan area the ex-
pectednon-negative response for ⟨μ1⟩and ⟨μ1 ⟩ is recovered. This connectionbetween⟨μ1⟩ as the integrand of the ‘local’ permeability, μ1(x, y), which is directly related to
the microscopic vortex dynamics, is used in theoretical models to explain the finger-
prints of different dynamical vortex lattice regimes in measurements of the global ac-
susceptibility and can be studied now directly by SSM. Furthermore, the particular
depth and shape of the local pinning potential that each vortex experiences has a pro-
found effect on the ac dynamics, i.e., at T = 6.9K only one of the two vortices present
in our scan area is shaking.

Local dissipative response. An important observation in Figure 2.8b is that the
shielding currents do not show any contributing signal in μ1 (x, y) for all tempera-
tures, indicating that they are, within our experimental resolution, perfectly in-phase
with the ac excitation and therefore they are nondissipative. In sharp contrast to the
screening currents’ response, the vortices do leave a fingerprint in μ1 (x, y) for suf-
ficiently high temperatures. As such, the oscillating magnetic stray field produced
by an harmonic motion of the vortices exhibits an out-of-phase component. The out-
of-phase response disappears for T < 6.8K, here the ac response of the vortices is
weak and, within the experimental resolution, perfectly in-phase. An illustration of
all forces working on a single vortex inside the Pb ribbon is shown in Figure 2.9. In
this case the parabolic caging potential is the result of the interplay between the vor-
tex and the screening currents, while the additional roughness is induced by sample
inhomogeneity. The presence of thesemodulations at length scalesmuch smaller than
the distance traveled in this experiment (≈ 500nm) has been observed in later exper-
iments using different high-resolution scanning probe techniques [6, 7]. The solution
of the resulting equation of motion is given by Equation (2.33) and directly shows that
the out-of-phase component in the linear response can be induced by two different
dissipative mechanisms: viscous damping or thermal fluctuations.

This viscous damping process has a typical short characteristic time of the order
of τp = η/αL ≤ 0.1 μs [25]. For the applied low driving frequency, f = 77.123Hz, the
restoring force dominates over the viscous drag force, as ω ≪ 1/τp and this term can
be neglected. The term i/ωτ1 in Equation (2.33) is related to thermally activated vortex
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Fig. 2.9: Schematic representation of the forces working on a single vortex in the Pb ribbon at time
t1 as described by Equation (2.17). In this picture αL determines the potential well of a single vor-
tex, no longer a statistical average, and is the result of the interplay between the vortex and the
screening current. Urough is an additional finer structure in the effective potential induced by sam-
ple inhomogeneity. In case thermal excitations (FTh ) are comparable to Urough , thermal relaxation
following the classical idea of Anderson and Kim [35], becomes important.

hopping across an effective activation barrier, following the classic ideas of Anderson
and Kim [35] and results from thermal excitations. This activated hopping process is
typically associated with longer characteristic time scales [36]. Under certain condi-
tions it is expected to contribute substantially in our low-frequency SSM experiment.

It is interesting to make here a small parenthesis to discuss the linear response of
this vortex system. If we neglect the viscous damping force at low driving frequency,
we can rewrite Equation (2.33) in the following way,

x(t) = F0|χ(ω)| cos(ωt + θ(ω)) with χ(ω) = ( 1
αL

− i
ωτ1αL

) (2.42)

Here x(t) is the vortex position and the complex number χ(ω) describes the response
of the vortex system. As in Section 2.1.1, we can parameterize the solution by the am-
plitude and the phase of χ(ω) as:

|χ(ω)| = 1
αL

√1 + 1(ωτ1)2 and tan θ(ω) = 1
ωτ1

(2.43)

In both expressions for the amplitude and the phase lag, the term ωτ1 appears explic-
itly. For a fixed characteristic time τ1 the deviation from pure reversible motion arises
when ωτ1 approaches 1. It implies that the driving frequency approaches the charac-
teristic time for thermally activated motion and the vortex motion will be dominated
by this process. As a result, a phase lag appears between drive and vortex displace-
ment. When the driving frequency is much larger, ωτ1 ≫ 1, but still small enough
to neglect viscous damping, ωτp ≪ 1, the motion reduces to Campbell’s reversible
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vortex motion. In this frequency regime thermally activated motion will contribute
negligibly to the motion properties of a vortex. The situation where ωτ1 < 1 can not
be described within a linear response, as in this case, the response is strongly non-
linear [22] and the above equations do not apply. In the reversible Campbell regime
a one-to-one correspondence exists between a vortex and a driven damped harmonic
oscillator as discussed in Section 2.1.1, within the limits ω ≪ ω0 and ω ≪ (k/η).

Before we continue with the interpretation of the measured temperature depen-
dence of the vortex response, we show explicitly that the measured phase with SSM
corresponds to the phase-lag in Equation (2.43). We denote by Bv

z(xi , yi , t) the mag-
netic induction carried by a single vortex, shaking back and forth around its equilib-
rium position, ri0. We assume that the vortex is driven by a small ac excitation in a
way that ri = (xi , yi) oscillates about ri0. In this situation, we can expand Bv

z(xi , yi , t)
in a Taylor series around ri0. Without loss of generality, we can choose the x-axis par-
allel to the applied drive. We further assume that the vortex displacement is parallel
to the force, which is valid for a linear response in isotropic media. In this case, vortex
motion is restricted to the x-direction and the expansion can be performed in powers
of δxi = xi − xi0:

Bv
z(x − xi(t)) = ∞∑

p=0

1
p!

∂pBv
z

∂xpi
|xi0δxpi (2.44)

= Bv−dc
z (x) − ∂Bv−dc

z
∂x

δxi + 1
2
∂2Bv−dc

z
∂x2

δx2i + O (δx3i ) (2.45)

With Bv−dc
z (x) the magnetic field distribution of the vortex without being excited. No-

tice that the change of sign of the odd terms of the expansion due to changing xi by
x in the derivatives. If we assume that the vortex displacement can be expressed as
δxi = |χ(ω)| cos(ωt + θ(ω)), as in Equation (2.42), we obtain for the in-phase and out-
of-phase response,

B
z
v = 1

T ∫ dt cos(ωt)Bz(x, y, t) = −|χ(ω)|∂Bv−dc
z
∂x cos(θ(ω)) (2.46)

B
z
v = 1

T ∫ dt sin(ωt)Bz(x, y, t) = |χ(ω)|∂Bv−dc
z
∂x

sin(θ(ω)) (2.47)

Note that in the case of a diluted vortex distribution, Bv−dc
z expands over distances

of the order of the penetration depth. This scale exceeds, in the linear regime, typical
vortex displacements andhence one can safely keep the leading order terms. These re-

sults lead to the conclusion that themeasuredmodulus SSM signal,√(B
z
v)2 + (B

z
v)2,

is directly related to the amplitude of vortex motion, with a proportionality constant
given by the gradient of Bv−dc

z in the direction of the driving force. Furthermore, the
measured phase angle corresponds directly to the phase lag between the vortex mo-
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tion and the Lorentz drive.

|χ(ω)| = (∂Bv−dc
z
∂x )−1 √(B

z
v)2 + (B

z
v)2 (2.48)

tan(θ(ω)) = −B
z
v

B
z
v (2.49)

With these parameters the dependence on the probe position cancel out and should
be homogeneous, apart from the places where ∂Bv−dc

z /∂x = 0.
Let us use the above considerations to interpret the temperature dependence of

the out-of-phase component of the vortex response. At low temperatures, when U(j) ≫
kBT and thermally activated flux motion can be neglected, τ1 diverges exponentially
and the ac response, x(t) = αLfL(t), is a pure reversible harmonicmotion as described
by Campbell and Evetts [26]. This behavior explains the absence of a response in the
SSM images of μr (x, y) for T < 6.8K, while a response is still visible in μr(x, y). As the
temperature rises, the thermal activation energy decreases and 1/ωτ1 becomes ap-
preciable, meaning thermally activated vortex jumps betweenmetastable states come
into play and contribute substantially to the vortexmotion. This explains the observed
out-of-phase component for T > 6.8K. Figure 2.10 shows a zoom-in of the ac response
of a single vortex for T = 6.9K and the corresponding spatial dependence of the
calculated phase, where we use a cutoff for | μr(x, y) |< 0.15 to limit the divergence
of the arctangent function and we subtracted the contribution of the screening cur-
rents in μr(x, y). As shown in Figure 2.10c, the obtained phase shift is θ = −0.5 rad.
From Equation (2.43), the phase shift between the response and the drive is given by
θ = − arctan(1/τ1ω). As τp ≤ 0.1 μs, we obtain a lower limit for the effective activation
barrier height of U(j) ≥ 8.50 × 10−3 eV ∼ 14.3kBT, similar to typical average effective
barrier heights found in the literature by macroscopic measurements [37].

Fig. 2.10: (a) Scanning susceptibility microscopy image of the real part of the relative permeability,
μ

r for a single vortex upon shaking with an external ac magnetic field of amplitude, hac = 0.1 mT,
and frequency f = 77.123 Hz at a temperature of T = 6.9 K. The initial vortex distribution is obtained
by performing a field cool in an external applied dc magnetic field, H = 0.13 mT. (b) Simultaneously
acquired map of the imaginary part of the relative permeability, μ

r . (c) Calculated spatial depen-
dence of the negative phase angle.
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The temperature dependence of the phase shift shows a maximum at T = 6.85K.
Optimal energy dissipation is expected when the driving frequency matches the char-
acteristic frequency of our vortex system, i.e., when the resonant absorption condi-
tion, ωτ1 = 1, is fulfilled. As the driving frequency is fixed, we approach or detune
from the resonant absorption condition by changing τ1 with temperature. The non-
monotonic temperature dependence of the phase shift reflects the nontrivial temper-
ature dependencies of the different factors contributing in τ1.

2.2.3 Examples of application of the SSM technique

In the previous sections we have shown concrete examples illustrating the power of
the SSM technique for tracking the motion of individual vortices and to understand
the dissipative mechanism involved during their displacement. Now we will present,
in a rather conciseway, further applications of the technique to a variety of interesting
superconducting materials.

2.2.3.1 Imaging the dynamics of vortices and antivortices induced
by magnetic microdisks

The microscopic static and dynamic behavior of vortex–antivortex pairs sponta-
neously induced by Co/Pt micromagnets with out-of-planemagnetic moment in close
proximity to a superconducting Pb film has been investigated via SSM by Kramer and
co-workers in Reference [38]. Images of the obtained results are shown in Figure 2.11.
Panel (a) corresponds to the static image obtained at zero field and with the disks
fully magnetized (red spots). The presence of seven antivortices, three at the center
and four at the rims of the scanning area can be distinguished as dark blue spots.
This vortex configuration is then excited with a small ac field (hac = 0.02mT) and the
oscillation of each individual vortex is recorded by the SSM as shown in panel (b). It
can be seen that two of the central antivortices strongly oscillate whereas no motion
is detected for any vortex sitting on top of the magnetic disks. In panel (c) the two
panels, (a) and (b), have been superimposed to better identify those vortices able to
move. It is worth emphasizing that the SSM technique is able to detect only periodic
motion between two points and therefore, the lack of signal associated with the rest
of the antivortices can be either because they remain pinned or due to a nonperiodic
trajectory during the ac excitation. By increasing the amplitude of the ac excitation
(hac = 0.06mT) eventually it is possible to shake the much more strongly pinned vor-
tices on top of the disks. This is shown in panels (d) to (f), corresponding to a lower
magnetic moment with only one antivortex present at the left side of the scanning
area. In this case SSM has permitted us, for the first time, to unveil the difference in
mobility between both vortex species.
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Fig. 2.11: Probing the mobility of vortex–antivortex pairs. Panels (a) and (d) show scanning Hall mi-
croscopy images at H = 0 mT and T = 6.9 K for two different magnetic moments of the disks. The
dashed circles highlight the position of the induced antivortices. Panels (b) and (e) show SSM im-
ages for an excitation field hac = 0.02 mT and hac = 0.06 mT, respectively, and a frequency of 77 Hz.
Panels (c) and (f) show a superposition of panels (a) and (b), and (d) and (e), respectively, in order to
identify the vortices susceptible to the excitation.

2.2.3.2 Closer look at the low-frequency ac flux penetration in superconductors
with periodic pinning array

Two vortex species are not limited to superconductor/ferromagnet systems as in the
example above. This dichotomy of vortex families is also found in superconductors
with periodic arrays of holes (antidots) where vortices pinned by the holes experience
amuch stronger cagingpotential than interstitial vortices sitting inbetweenholes [39].
In a recent work, Souza Silva and co-workers used the SSM technique to investigate
the response of a nanostructured Pb superconductor having a square lattice of anti-
dots [5]. Figure 2.12 shows the ac response obtained on these nanostructures at a dc
magnetic field of 1.5H1, with H1 being the magnetic field value at which the density
of vortices and holes coincides. As a guide to the eye the antidot position is marked
by a white dot whereas the white line represents the sample edge. Pinned and inter-
stitial vortices (marked by dashed circles) can be observed in the dc flux distribution
(as shown in Figure 2.12a). The in-phase component shown in Figure 2.12b and c re-
veals the enhancedmobility of these interstitial vortices with single vortex resolution.
Moreover, the authors showed that pinning by material defects in this sample, as well
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Fig. 2.12: SSM images showing the ac response (mapped in a region near the sample edge) to an
excitation with amplitude hac = 0.016 mT at T = 6.7 K. Panel (a) shows the dc (time-average) flux
distributions. The in-phase and out-of-phase components of the total ac response are mapped in
panel (b). The in-phase vortex response, defined as the difference between the in-phase and the
Meissner responses, is shown in panel (c). In all images, the white dots and the white line show
schematically the position of the square antidots and the sample edge, respectively. The dashed
circles highlight the position of selected interstitial vortices.

as thermal activation processes, dominate the low-frequency linear response even at
temperatures very close to Tc, where quenched disorder is typically neglected.

2.2.3.3 Imaging the dynamical ordering in NbSe2
Raes and co-workers used SSM to investigate the vortex dynamic in NbSe2, one of the
most extensively studied type II superconductors [4]. In that work, the authors ex-
plored the local ac dynamics of a disordered vortex state and provided direct evidence
of dynamical healingof topological defects as theac excitationamplitude is increased.
Figure 2.13a reveals a highly disordered vortex lattice via a SHPM image of the local in-
duction at 6.8K and a dcmagnetic field of 1.0Oe. Panels (b) and (c) are acquiredmaps
of the in-phase response, bv(x, y), with increasing amplitude of the ac drive. Interest-
ingly, these SSM images revealed two very different behaviors of the individual vortex
response: uncorrelateddynamics (Figure 2.13b)where vortices shakeatdifferentdirec-
tions with different amplitudes, and correlated dynamics (Figure 2.13c), where, upon
the healing of defects, the directions of motion of all vortices align and they respond
almost in unison. The authors confronted the observedmicroscopic dynamicswith the
extensively used phenomenological microscopicmodels of vortex motion proposed to
explain the macroscopic response and show that the approximations made in these
mean-field models, which furnishes information about the microscopic parameters
averaged over the whole vortex ensemble, represent a simplified picture of the much
richer ac dynamics.
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Fig. 2.13: Panel (a) shows a SHPM image of the local induction, bz(x, y), acquired at T = 6.8 K and a
dc magnetic field H = 1.0 Oe while shaking with an amplitude hac = 0.3 Oe. Acquired maps of the
in-phase, b

v(x, y) response with increasing amplitude hac = of 0.6 (b) and 2 (c) Oe, which indicates
the ac-driven ordering of the vortex lattice and its dynamics. To unify the color map scale, b

v(x, y) is
normalized by 1 ×10−3hac (in Gaussian units).

2.3 Conclusion and outlook

Most of the emphasis of this chapter has been devoted to present a rather simple and
intuitivepicturedescribing the local ac-susceptibility responseof type II superconduc-
tors at spatial scales of a few times the magnetic penetration depth. We have shown
that the SSM is an emerging powerful technique allowing us to build up a cartogra-
phy of individual vortex motion which in turn can be used to deduce the local pinning
landscape or the inhomogeneous current distribution. The out-of-phase component
of themagnetic response teaches us about the dissipativemechanism involved during
vortex motion and remains zero in the case of a reversible response, as that produced
by Meissner currents.

Although we have presented the technique as an extension of a scanning Hall mi-
croscopy set up, it has been recently shown that it can be used to resolve the magnetic
field at smaller scales by using a SQUID on a tip device [7]. Furthermore, the SSM can
be adapted into a scanning tunneling microscope in order to analyze the oscillation
of individual vortices at scales of the coherence length [6]. Examples of application
beyond type II superconductors are the motion of normal domains in a type I super-
conductor by Ge and co-workers [40] and the shaking of bubble domains in a ferro-
magnetic garnet by De Feo and Marchevsky [41].

Among the interesting aspects that could be further explored in the future to ren-
der the technique still more powerful we identify the possibility to shake vortices with
an applied current or shake magnetic domain with an oscillatory spin-polarized cur-
rent, rather than with an external ac magnetic field. In addition, the generation of
higher harmonics or the excitation with asymmetric wave forms may appear as ap-
pealing research lines to undertake. It is also possible to envisage combining excita-
tion and sensing on the same probe head, or separate them in two heads to measure
the propagation of local excitations or as away to investigate the conductivity ofmate-
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rials in a contactlessway. In any case,we are convinced that SSMas a dynamic sensing
tool has a bright future ahead, a fact that will be judged by the scientific community
and the parallel progress of alternative techniques.
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Tristan Cren, Christophe Brun, and Dimitri Roditchev
3 STM studies of vortex cores in strongly confined
nanoscale superconductors

Abstract: Vortices in superconductors are defined by two characteristic length scales,
the penetration depth and the coherence length. In this chapter, we address the case
where the penetration depth is much larger than the size of the superconducting sam-
ples and for which there is almost no screening of the magnetic field. In this limit, the
image of vortices as bundles of flux is no longer correct and the confinement effects are
governed by the coherence length, which corresponds to the size of the vortex core
in which the order parameter vanishes. We thus address the problem of the vortex
phases in strongly confined superconductors where the lateral size is a few times the
coherence length. The natural probe at this scale is scanning tunneling microscopy/
spectroscopy which have allowed us – since the pioneering work of Hess et al. – to
visualize both the vortex core and the supercurrent density at the nanometer scale.
Using a combined experimental and theoretical approach we show that the vortex
phases are governed by the competition between the loss of condensation energy in
the vortex core and the kinetic energy of the vortex and Meissner currents. In a first
part we describe some extreme confinement effects observed recently in nanoscale
two-dimensional superconductors. We start with the case of a system so small that
it can only accept a single vortex. Then we discuss some recent scanning tunnel-
ing spectroscopy experiments that revealed novel ultradense arrangements of single
Abrikosov vortices characterized by an intervortex distance up to 3 times shorter than
the bulk critical one. At yet stronger confinement, we show that giant vortices, corre-
sponding to the merging of several vortices into a single one, are indeed observed and
their structure is discussed. In a second part, we demonstrate that vortices also exist
inside Josephson junctions formed by two neighboring superconductors coupled by
a metallic link. We discuss the analogy and difference between the recently observed
Josephson proximity vortices and the usual Abrikosov vortices.

3.1 Introduction: Vortices in strongly confined superconductors

Confinement effects occur as soon as one of the dimensions of a superconducting sam-
ple becomes comparable to one of its characteristic length scales, ξ and λ. The pur-
pose of this chapter is to explore the vortex confinement in superconducting islands
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with lateral dimension D comparable to the coherence length, ξ ∼ D, for which the
magnetic penetration depth is much greater than the lateral dimension λ ≫ D. In this
limit, we will show that the well-forged image of vortices as magnetic flux tubes is
totally irrelevant. Paradoxically, this makes the understanding of confinement phe-
nomena easier because we can completely neglect the spatial variation of the mag-
netic field induced by the circulation of supercurrents. To understand the limits that
wewill explore onemust first recall some basic notions of bulk superconductors using
the Ginzburg–Landau approach [25]. We will show how low dimensionality, in thick-
ness or in lateral dimension, induces new behaviors that are difficult to grasp with the
bulk superconductor concepts. Once equipped with the right tools, we will address
some issues that naturally come tomindwhenone looks at the confined vortices:what
will happen when the size of a superconductor becomes comparable or even smaller
than one (or two!) of its characteristic lengths?Whichproperties of bulk superconduc-
tors remain in strong confinement regime? Which new phenomena appear? Heading
towards the nanoscale we will witness the emergence of new behaviors.

In this chapter, we will describe the mechanisms at work for vortex interaction
and confinement phenomena in nanosystems. The most important message we in-
tend to convey is that nanosuperconductors are within a limit where minimizing the
kinetic energy of the currents in the system plays a fundamental role in the organi-
zation of vortices. In particular, the competition between the Meissner currents, gen-
erated by the magnetic field, and the vortex currents results in oscillatory behaviors
that bear some similarities with the Little–Parks effect of the critical temperature as
a function of the magnetic field in superconducting rings [38]. In 1965, D. Saint James
[51] calculated that the critical field of a superconducting cylinder should be strongly
modulated as a function of its diameter when it reaches dimensions comparable with
a few ξ . In the same vein, in 1966 Fink & Presson [22, 23] calculated that the free
energy of a nanocylinder should be modulated by the magnetic field due to partial
compensation between Meissner currents and vortex currents. More recently, the ex-
ploration of Ginzburg–Landau equations in different geometries motivated by exper-
imental work on mesoscopic superconductors [10, 24, 39] showed that particular vor-
tex configurations, that do not exist in volume, could be favored by size or geometry
effects [8, 20, 53]. For instance, confinement could in principle stabilize some fivefold
vortex configurations which in principle cannot exist in bulk superconductors (Fig-
ure 3.1a). More surprisingly, it was predicted that stable vortex-antivortex configura-
tions could be stabilized in some triangular-shaped samples [13]. This prediction was
recently confirmed by Bogoliubov-de Gennes calculations for square shaped samples
[63]. Finally, one of the main challenges in the study of vortex confinement came from
the prediction of the existence of giant vortices [8, 20, 22, 23, 40, 52, 53]. Numerical
simulations predicted that, in the extreme confinement regime, several vortices could
merge, forming giant vortices characterized by a 4π, 6π, 8π . . . winding of the phase
instead of 2π for Abrikosov vortices (Figure 3.1b).
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Fig. 3.1: (a) Ginzburg–Landau simulation of vortex confinement in disks of radius R = 4ξ [53]. A pen-
tagonal configuration is stabilized, while in volume such a configuration is excluded. (b) Ginzburg–
Landau calculations of the magnetic field distribution for a square sample [8]. Depending on the
field the system is in a configuration with a vorticity L = 2 for H/Hc2 = 0.42 (a), H/Hc2 =0.52 (b), and
H/Hc2 = 0.62 (c). The system is in a configuration with a vorticity L = 3 for H/Hc2 = 0.62 (d),
H/Hc2 = 0.72 (e), H/Hc2 = 0.82 (f). For a given vorticity the system changes from a multivortex to
a giant vortex configuration. Between (a) and (b) and between (d) and (e) one can observe how the
vortices move closer to each other under the effect of the pressure of the Meissner currents when
the field increases.

In addition to vortices in superconductors, one might also look for vortices in nor-
mal metals! As strange as it seems, proximity Josephson vortices living in the normal
part of superconducting-normal-superconducting junctions (S–N–S) were recently
predicted by Cuevas&Bergeret [9, 17]. The existence of Josephson vortices has been
proposed since the 1960s to explain the critical current modulations of large Joseph-
son junctions in a magnetic field [14, 61], but these vortices were supposed to have
no core, at least in the S–I–S Josephson junction. Bergeret &Cuevas predicted that in
fact in large S–N–S junctions, Josephson vortices could be very similar to Abrikosov
vortices with a normal core surrounded by a minigap. This new type of object could
be of great interest for the realization of highly integrated quantum electronics de-
vices. Indeed, if instead of normal metals one exploited topological insulator surface
states for the normal link of S–N–S junctions, then proximity vortices could exhibit
Majorana bound states which are key ingredients for quantum computing.

In this chapter, we will explore a wide range of vortex confinement starting from
the extreme case of an island that can accept only one vortex in which the effects of
a supercurrent on the phase diagram are obvious. Then we will address the case of
slightly larger systems that can accept several vortices but where strong confinement
effects are still present. We will show that under certain strong confinement condi-
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tions several vortices can be pushed to merge so as to form giant vortex states. Then
we will describe some recent experiments on the generation of proximity vortices in
nanoscale S–N–S Josephson junctions.

3.2 Theoretical approach of vortices confined in systems much
smaller than the penetration depth

3.2.1 Characteristic length scales

In samples with characteristic dimensions D much smaller than the London penetra-
tion depth D ≪ λL (see Figure 3.2) the magnetic field almost completely penetrates
the sample and is substantially equal to the applied field in the absence of the sam-
ple. To get an idea of the orders of magnitude, consider a thin plate of thickness a
placed in a magnetic field μ0H0 parallel to the surface of the plate. When the thick-
ness of the plate is much smaller than the penetration depth, a ≪ λL, the expression
of the field at the center is B (z = 0) ≈ μ0H0 [1 − (a/2λL)2]. Thus, for a thin plate with
a = 0.1λL, the magnetic field in the center is B = 0.9975μ0H0, i.e., only 0.25% less
than the applied field. In the following, we will therefore overlook the field induced
by the currents flowing in the samples and only consider the applied field (see Fig-
ure 3.2). Another major consequence is that the energy of expulsion of the magnetic
field,whichusually plays a very important role in bulk superconductors, can be totally
neglected,whichwillmake theunderstandingof the phenomena easier. However, this
limit is quite frequently a source of misunderstanding for those accustomed with in-
tuitive images forged from the bulk case. Therefore, we will briefly present below a
theoretical development for the changes that are seen with this limit in comparison to
the usual case where the magnetic response generally cannot be overlooked.

In addition to the penetration depth, a second length scale plays a fundamental
role in superconductors; this is of course the coherence length, ξ . InGinzburg–Landau
theory it is expressed as ξGL = √ ℎ2

8m |α| . In Bardeen–Cooper–Schrieffer (BCS) theory
that length takes amore intuitive form given by ξBCS = ℎvF/π∆. This coherence length
defines the characteristic length scale over which the order parameter can vary. For
instance, the order parameter, which vanishes in the vortex center, is restored over a
typical distance ξ of its core.

The characteristic lengths λ and ξ are not intangible constants of materials but
depend on both temperature and disorder. The disorder decreases the effective value
of ξ but increases that of λ, so that any type I superconductor becomes type II when
the mean free path of electrons is sufficiently affected by the disorder. In the diffusive
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Fig. 3.2: Schematic picture highlighting the difference between a superconducting disk with diam-
eter D > λ in which the magnetic field is screened on the edge by Meissner currents and in which
Abrikosov vortices behaves like flux bundles. The flux lines in blue show that the magnetic field is
strongly affected by the response of the sample. In the opposite limit, for samples much smaller
than the penetration depth D ≪ λ, the flux lines are not affected by the response of the sample that
is completely negligible, and the magnetic field is practically equal to the applied magnetic field. In
this limit, the vortices can no longer be considered to be flux bundles.

limit, that is to say when l ≪ ξ0, the effective lengths are given by [19]:

ξ (T, l) ≈ 0.85√lξ0 (T)
λ (T, l) ≈ 0.64λ0√ ξ0 (T)

l

Where ξ0 and λ0 are the coherence and penetration length in the absence of disor-
der. Note that even in the absence of disorder, type I superconductors become type II
in sufficiently thin layers. Indeed, within the limit of a thin sample h ≪ λ, the effective
penetration length l can increase dramatically. The London length must be replaced
by the Pearl length Λ [47]:

Λ (T, l) ≈ λ2 (T, l)
h

Superconducting films of a few nanometers thickness are thus in the Pearl limit
because λ is generally of the order of a few hundred nanometers. Specifically, for the
samples studied below , the Pearl length Λ reaches several tens of microns, while the
lateral dimensions of the systems are of the order of a few hundred nanometers. The
limit D ≪ Λ is thus extremely well justified.

3.2.2 Vortex states in small superconductors

In type II superconductors, at thermodynamic equilibrium, vortices enter the sample
beyond the first critical field Hc1. The number of vortices increases with the magnetic
field until the second critical field Hc2 = ϕ0

2πμ0ξ2 where a normal state is reachedwithin
the sample because the vortex cores overlap. In 1963, St. James and de Gennes [50]
showed that the superconducting state could exist beyond Hc2 near an interface with
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Fig. 3.3: Left: Vortices in a bulk type II superconductor with a diameter D ≫ λ. For a low density of
vortices there exists a region on the edge of the sample where the field is screened over a distance λ
from the edge and from the vortices. In this region it is possible to find a contour (dashed line) over
which the supercurrent velocity cancels. The flux of the magnetic field inside this contour is nΦ0,
where n is the number of vortices within the contour. Right: a bulk superconductor in a magnetic
field H such as Hc2 < H < Hc3. In the inner sample vortices overlap and form a normal state region
(in blue) while superconductivity is still present on the edge over a rim of thickness ξ (in gray).

an insulating medium to a third critical field Hc3 = 1, 695Hc2. This surface supercon-
ductivity extends over a thickness of the order of ξ at the edge of the sample as shown
in Figure 3.3. Similar phenomena appear in confined superconductors, but the critical
fields involved are different. In particular, the first critical field μ0Hc1 = ϕ0

4πλ2 ln (λ/ξ)
clearly implies the penetration depth: if we neglect the logarithmic term we see that
the first critical field is the one that generates a flux quantum in a disk of diameter 2λ.
In a sample with diameter D ≪ λ such a critical field has hardly anymeaning; the first
critical field, that is to say the field at which the first vortex penetrates, will be directly
dictated by the diameter of the sample rather than λ. The second critical field, mean-
while, will be difficult to define in samples of diameter D ∼ ξ because at this level
there are no clear differences between bulk superconductivity and surface supercon-
ductivity. However the Hc3 terminal field, where the entire sample becomes normal,
remains well defined experimentally, its value will be modulated by the sample size
and will greatly deviate from the values obtained in volume.

The generally widespread image of an isolated vortex in a superconductor is that
of a tube of magnetic field carrying a flux quantum ϕ0 (Figure 3.3). An isolated vor-
tex acts like a current swirl around a normal core with supercurrents decreasing as
j ∝ 1

r Exp (−r/λ) for r ≫ ξ . This naive picture in terms of the flux bundle is causing
much confusion in the interpretation of confinement phenomena in superconducting
nanosystems. For a better understanding of the phenomena associated with confined
vortices it is best to return to the most basic possible definition of a vortex. Quantum
condensates, whether Bose–Einstein condensates of cold atoms or superfluid helium,
admit all vortices when the condensates are put in rotation. In these neutral conden-
sates, vortices are defined as singularities in the phase field of the order parameter. As
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the wave function has to be single-valued, the circulation of the gradient of the phase
around a vortex must be amultiple of 2π. In the case of an Abrikosov vortex the phase
turns by 2π around the vortex core; we deduce that, very close to the core, the phase
gradient is ∇φ (r) = 1/r. This 1/r dependence indeed appears in the formula for the
current flowing around the vortex in bulk samples j ∝ 1

r Exp (−r/λ), however there is
an additional dependence Exp (−r/λ) which comes from the fact that the vortex cur-
rents generate a magnetic screening field which decays exponentially over a distance
λ. These two contributions are better seen in the general expression for the current
1
4m

( ℎ
i ∇ − 2eA (r))ψ (r)2 where the term 1/r comes from the phase gradient, while

the screening term in Exp (−r/λ) is due to the magnetic field generated by the vortex
currents and is expressed by the vector potential term. In confined superconductors
with D ≪ λ diameter, it is clear that the exponential dependence will be negligible.
This is simply due to the fact that the samples are not large enough for vortex cur-
rents to generate a magnetic flux equal to ϕ0. Given the size of the samples for which
confinement effects occur, we can consider that the circulating vortex currents do not
alter the applied magnetic field, as seen in the Meissner phase (Figure 3.2). This lack
of effective screening leads us to consider that the structure of vortices in strongly
confined superconductors resembles that of vortices in neutral condensates, such as
superfluid helium or Bose and Fermi condensates of cold atoms, which are associated
with no flux quantum but instead with a singularity in the phase field [1, 62, 64].

3.2.3 Fluxoid

If we consider an isolated vortex in a superconducting disk of diameter D ≪ λ in the
absence of an applied magnetic field (Figure 3.4d), as might be the case for a vortex
pinned on a defect, we find an interesting situation which may seem disconcerting at
first glance. Indeed, as the diameter of the sample is much lower than the penetration
depth, themagnetic field generated by the vortex currents is clearly insufficient to gen-
erate a flux quantum, or the commonly accepted vision of a vortex as a quantized flux
tube. . . To understand the essence of the problemwemust now introduce the concept
of fluxoid, whichwillmake the usual association of a vortex to a flux quantum clearer.
A good comprehension of this point is essential to understanding the mechanisms at
work in nanosuperconductors.

Themagnetic field flux ΦS through a surface S is directly linked to the circulation
of the vector potential on a contour δS:

ΦS = �
S

B ⋅ d2S = �
S

[∇ × A (r)] ⋅ d2S = ∮
∂S

A (r) ⋅ dl
Using the expression of the supercurrent which connects the superfluid velocity,

thegradient of thephaseand thevector potential: j (r) = e
m

ψ (r)2 [ℎ∇φ (r) − 2eA (r)] =
2enSvS, there is a relationship between the flux of themagnetic field, the supercurrent
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density vector and the phase gradient:

L = 1
2π ∮

δS

∇φ (r) ⋅ dl = ΦS/Φ0 − 2m
h ∮

δS

vS (r) ⋅ dl
This relationship defines the fluxoid L, also called the winding number of the

phase. The phase should rotate by amultiple of 2π over the closed contour δS so as to
keep the order parameter single-valued. Thus, the fluxoid Lmust necessarily be an in-
teger. In the case of an isolated vortex in a bulk sample we can find a contour around
which the current is canceled. This requires taking a contour passing at a distance
much greater than λ of the vortex (Figure 3.3). Here, the current is canceled and the
circulation of the superfluid velocity is zero. For an Abrikosov vortex, the phase ro-
tates by 2π, i.e., the fluxoid is L = 1. We conclude that the magnetic field flux through
the surface S surrounding the vortex is equal to a flux quantum: ΦS = Φ0. From this
comes the usual image of the vortex as amagnetic tube carrying a flux quantum. If we
now return to the case of a vortex confined in zero field in a sample of diameter D ≪ λ
(Figure 3.4), we see immediately that the previous arguments no longer apply. This
is because the circulation of the superfluid velocity does not vanish for any contour
within the sample; in this casewe cannot directly link themagnetic flux to the fluxoid.
Thus, we can have an interesting case where the magnetic flux through the sample is
almost zero (D ≪ λ) while the fluxoid is L = 1. The fluxoid in this case comes from
the circulation of the superfluid velocity L ≈ − 2m

h ∮δS vS (r) ⋅ dl. For a hint of what
is happening here, one can consider a circle of radius r for the δS circuit. It follows
that mvsr = Lℎ, which is none other than the quantization of angular momentum:
a vortex of vorticity L confined in a nanodisk behaves like a 2D artificial atom with a
wave function of angular momentum L. As we know from atomic physics the radial
part of the wave function is directly related to the angular momentum; in the case of a
vortex the consequence of this simple picture is that for a vortex or a giant vortex with
L = 1, 2, 3. . . , the radial dependence of the order parameter close to the core is rL as
will be shown later.

3.2.4 Zero-current line: Meissner versus vortex currents

Aswe can see, there is noneed to have a quantumof flux in the system tohave a vortex.
However, in many situations, the notion of a flux quantum can be useful, even in the
limit D ≪ λ. This is particularly the case for a vortex in a cylinder in the presence of a
magnetic field as described on Figure 3.4d. This figure describes the typical casewhere
the Meissner currents induced by the magnetic field exceed the vortex currents at the
edge of the cylinder. In a cylinder subjected to a perpendicular field B, the supercur-
rent velocity is given by vθ = e

2mr (ϕ0 − πr2B). For πr2B < ϕ0, the current rotates in
the clockwise direction as the vortex currents are dominant, while for πr2B > ϕ0 the
current rotates in the opposite direction because the Meissner currents are dominant.
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The velocity changes its sign when the flux πr2B is becomes equal to the flux quan-
tum ϕ0. The explanation is simple, there is a zero-current line located at r = √ϕ0/πB
where Meissner currents and vortex currents compensate perfectly. Applying the flux-
oid formula on the zero-current contour we find L = ϕ/ϕ0. Thus, for a vortex with a
quantum of fluxoid there is exactly one flux quantum within the zero-current line. By
contrast, the total flux of the field through the island ϕtotal = πD2B will be greater
than a flux quantum and has no reason to be quantified except for some accidental
values of B.

3.2.5 Kinetic energy balance: Meissner state

The competitionbetweenMeissner currents andvortex currents plays anessential role
in the energy balance of the vortex configurations. In superconductors with D ≪ λ
the penetration of vortices aims primarily at minimizing the total kinetic energy of
the currents. For simplicity consider a disk as shown in Figure 3.4. In the absence of
the vortex, only Meissner screening currents circulatewith the following dependence:
j (r) = − e2

m nsBr. As j ∝ B, the currents increase linearly with the applied magnetic
field; it follows a quadratic increase in the total kinetic energy (Figures 3.4a and 3.5e).
Beyond a certain field the kinetic energy could exceed the condensation energy and
theMeissner state become less stable than the normal state. However, before this hap-
pens, when the field induces currents near the critical current, the superfluid density
begins to collapse and the gap closes when the system reaches the normal state as
shown in Figures 3.4b and 3.5a. It is clearly seen in Figure 3.5e, in the case L = 0,
that the kinetic energy begins to grow quadratically before falling and tending to 0
when the superfluid density collapses. This evolution is clearlymanifested on the con-
densation energy (see Figure 3.5f), which is directly related to the superfluid density.
At low field the condensation energy is practically unaffected, the superfluid density
is almost the same as in zero field, while in a strong field the condensation energy
tends to 0 as the gap closes. The sample thus eventually reaches the normal state
when the total energy of the superconducting state reaches that of the normal state
∆E = Esupra − Enormal = 0 (case L = 0 in Figure 3.5g).

3.2.6 Kinetic energy balance: Vortex state

When the field is increased, rather than switching from Meissner to normal state the
system can accept one or several vortices, as shown on Figure 3.5b–d. The vortex cur-
rents partially compensate the Meissner current so as to minimize the total kinetic
energy. The more the field increases the more the system accepts vortices until finally
the normal state is reached.
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Fig. 3.4: (a) A disk in Meissner state in a small magnetic field. The current increases linearly with
radius up to the edges, the order parameter is almost constant everywhere. (b) Meissner state close
to the critical field: the currents flowing on the edge reach the critical velocity which reduces the
order parameter and therefore the current density. (c) To minimize the effect of currents and remain
superconducting beyond the critical field of the Meissner phase, the system accepts a vortex whose
currents partially compensate Meissner currents. A line of zero current is formed in the disk; the flux
of the magnetic field across the region bounded by the zero-current line is equal to a flux quantum.
(d) A pinned vortex at zero field, no zero-current line present in the disk, the total magnetic flux
through the sample is much less than a quantum of flux.
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Fig. 3.5: (a–d) Modulus of the order parameter as a function of radius for a superconducting disk
(R = 60 nm and ξ = 25 nm) as a function of the applied magnetic field for a vorticity L = 0 (a),
L = 1 (b), L = 2 (c) and L = 3 (d). (e) Kinetic energy as a function of magnetic field to L = 0−3, the
corresponding condensation energy is shown in (f), and the total free energy in (g).

As shown in Figure 3.5g, beyond a certain magnetic field, solutions with vortices
becomemore stable than the Meissner state. The case of a single vortex is particularly
enlightening for illustrating the delicate relationship between Meissner and vortex
currents. But before analyzing the effect of currents, let us first recall the structure
of an Abrikosov vortex core. Figure 3.5b shows that the order parameter linearly can-
cels in the vortex core: ψ (r) ∝ r. The vanishing of the order parameter in the vortex
core induces a loss of condensation energy. In a macroscopic sample the cost of a vor-
tex core is μ = πξ2 hϵcond = πξ2 hN (0) ∆2/2, where h is the sample thickness and
ϵcond = N (0) ∆2/2 is the condensation energy per volume unit. This shows that the
core can be seen as a thick tube of height h and radius ξ in which the energy of con-
densation is zero. This image, though simple, is very useful in practice to estimate
orders of magnitude.

To understand themechanisms that govern the penetration of vortices in confined
superconductors onemust examine in detail the dependence of the kinetic energy and
condensation energy as a function of applied magnetic field for different vortex con-
figurations. For the case of a single vortex with L = 1, located at the sample center,
the kinetic energy has twomaximaand a localminimum, as shown in Figure 3.5e. This
shape with two humps illustrates the mechanisms involved, as we now describe. The
local minimum is due to the partial compensation between the vortex and Meissner
currents (see Figure 3.4c). Themaximumobserved at a strongfield is of the sameorigin
as the peak observed for L = 0. There is an excess ofMeissner current at the edge of the
island that induces the destruction of the order parameter beyond a certain field, so
there is an optimum between the increase of the superfluid velocity and the reduction
of the order parameter. The destructive effect of the order parameter by Meissner cur-
rents can be seen on the profile of ψwhich decreases close to the edge (gray curve for
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B = 0.6 T in Figure 3.5b). The first maximum is due to the vortex contribution and is
also very well seen on the profile of ψ near r = 0 (black curve B = 0 T in Figure 3.5b).
It is clear that the order parameter near the vortex core ismore strongly affected at zero
field than at higher fields (dashed black curve B = 0.4 T and gray curve B = 0.6 T).
This is because the vortex currents, not compensated by the Meissner currents, cause
a marked decrease of the order parameter.

3.2.7 Kinetic energy balance: Giant vortex state

In the case L = 2 and L = 3 we see that no vortex state can be stabilized at zero-field.
This comes from the intensity of the vortex currents: the superfluid velocity is given by
vθ = hL

2mr in zero field, thus the kinetic energy of an isolated vortex increases quadrat-
ically with L (if ψ constant). This kinetic energy goes hand in hand with a significant
loss of condensation energy due to the fact that the vortex core radial dependence of
the wave function changes dramatically with L : ψ (r) ∝ rL. The rL dependence was
predicted by D. St. James [52], it is clearly seen in Figure 3.5b–d.

In these Ginzburg–Landau calculations we looked for solutions with cylindrical
symmetry, but for L = 2 and L = 3 we could find a solution in the form of two or
three Abrikosov vortices with each L = 1 confined in the sample. This can be done by
using more advanced calculations such as time-dependent Ginzburg–Landau equa-
tions. However, for the choice of parameters of Figure 3.5we should still stabilize giant
vortices. Understanding why a double vortex ismore stable than two single vortices in
this case is not easy. In the followingwegive someclues tounderstandwhat could lead
several vortices tomerge into a giant vortex. When a current flows in a superconductor
the quasiparticle energy is modified by the Doppler effect: Ek = √ϵ2k + ∆2 +ℎk ⋅vs [19],
which provokes a widening of the gap. In practice this Doppler broadening effect is
used for measuring the local superfluid velocity in tunneling experiments [7, 35]. Ask ≃ kF, we see that if a quasiparticle of momentum k circulates in the opposite direc-
tion to the supercurrent its energy is decreased. Its energy can even becomenegative if
the superfluid velocity vs becomesgreater than the critical value vd = ∆/kF; thismeans
that the Cooper pairs becomes energetically unfavorable beyond a certain critical de-
pairing current. Note that at a distance ξ from a vortex core the superfluid velocity is
given by vs = ℎ

2mξ = π∆
2kF = π

2 vd. Thus, it is understandable that the gap starts to close
at a distance of the order of ξ the vortex core because the supercurrent exceeds the
critical velocity. If one now considers a giant vortex with L > 1, the superfluid velocity
being proportional to L, vs (r) = ℎL

2mr , the critical velocity is reached at a distance of
about Lξ of a giant vortex. Thus, it is expected that these objects appear as normal
tubes of radius Lξ and area L2πξ2 instead of πξ2 for an Abrikosov vortex. The cost in
terms of condensation energy is in L2 while the cost of L single vortices is just in L.
A double vortex costs twice as much condensation energy as two single vortices, so
multivortex configurations are more stable than giant vortices in large samples. How-
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ever, in a strongly confined superconductor, the generation of two separated vortices
has a significant additional kinetic energy cost. Having two separated vortices in a
disk indeed means that the Meissner currents flowing near the edges will be strongly
affected by the presence of these vortices. Some current lines will be trapped between
the sample edge and the vortices, as if they were circulating in a constriction. The cur-
rent conservation requires that the speed of the superfluid in the constriction becomes
very high, causing a high cost (quadratic) in kinetic energy. It is as if the Meissner cur-
rents exerted a pressure on the vortices that forces them to go towards the center of
the sample. These forces can become so strong that the vortices eventually merge into
a giant vortex. In the following, we give some direct illustrations of this pressure effect
by showing experiments where the Meissner currents provoke a strong confinement
effect which, in some cases, will lead to the formation of giant vortex states.

3.3 STM/STS studies of vortices in nanosystems

3.3.1 Vortex core imaging by STM/STS

Vortices in superconductors are not only magnetic objects – flux bundles – but rather
have a lot in common with the vortices observed in neutral condensate such as su-
perfluid helium. It is therefore necessary to have a probe that allows investigating the
vortex which doesn’t rely directly on the magnetic field they produce. In fact, it is pos-
sible to do vortex imaging by probing the electronic structure in their cores. Caroli,
Matricon and de Gennes indeed showed that the vortices behave like potential wells
in which quasiparticles of energy located in the gap ∆ are confined within a length
scale of the order of the coherence length [11]. The first observation of the vortex cores
wasperformedbyHess et al. in 1989, using scanning tunneling spectroscopy [29]. They
showed that vortex cores in 2H-NbSe2 are manifested by a peak in the local density of
states (LDOS) around the Fermi level as predicted by Caroli, Matricon and de Gennes.
In the case of superconductors in diffusive limit (mean free path l much shorter than
ξ ), the conductance peak in the vortex cores disappears and instead a simple normal
state is recovered as shown by Renner et al. in 2H-NbSe2 doped with tantalum [48].
The superconducting nanostructures elaborated for confinement studies are in the
dirty limit (or diffusive limit) thus their vortex cores will be characterized by a normal
state signature [15, 16, 43, 56].

There are several ways to address the problem of vortex confinement in nanoscale
superconductors by scanning tunneling spectroscopy that can rely either on ex situ
fabricated nanodevices or on in situ self-organized grown nanostructures. In all cases
some important constraints have to be fulfilled. First, one must use a semiconductor
substrate with a forbidden electronic band. Indeed, a metallic substrate in contact
with the superconducting nanoislands would alter or even destroy superconductivity
by the inverse proximity effect. However, tunneling microscopy requires conductive
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substrates in the voltage range used for the tunneling spectroscopy, that is to say, a
few millivolts. Unfortunately, at low temperature, the semiconductors are generally
insulators for such voltage windows. The solution to this problem is to use substrates
that are insulating in volume but which present ametallic surface state that allows for
the evacuation of the current to external macroscopic electrodes.

3.3.2 STM studies on ex situ nanolithographed samples

Using nanostructured samples elaborated ex situ by electronic lithography is quite
interesting if one wants to probe samples with regular shapes: disks, squares, tri-
angles. . . with well-defined lateral size and thickness. Such a route is appropriate
for checking some predictions like the coexistence of vortex and antivortex induced
by confinement in particular geometries for instance [13, 63]. The problem with this
method is that ex situ prepared samples generally have a very bad surface quality that
strongly alters the quality of the STM/STS experiments. Most of the superconducting
materials used for lithographed samples oxidize in air and thus one has to place a
capping layer to protect the surface or to use particularmaterials that are less prone to
surface contamination. Moreover, the samples prepared by nanolithography are gen-
erally not single crystalline and contain a lot of defects at the nanoscalewhich leads to
some pinning of vortices. Inmany cases the vortex configurations are governed by the
local pinning more than by confinement effects. However, progress with this lithogra-
phy route is expected soon. For instance, quite recently a clever technique was devel-
oped that allows the imaging of vortex configurations in well-defined nanostructures
fabricated ex situwith the help of electronic lithography [56]. Themethod relies on su-
perconducting MoGe films that are deposited on a nanostructured SiO2 sample. The
nanostructures are defined byunderlyingGenanostructures on top ofwhich theMoGe
is deposited as can be seen in Figure 3.6a. With this method one obtains some MoGe
squares on top of Ge mesas that are weakly coupled laterally to a conductive MoGe
film that enables scanning tunneling experiments to be done. As the samples are pre-
pared ex situ in a clean room their surface has to be protected from contamination by
a thin Au film. As can be seen in Figure 3.6b the surface is quite rough, the topography
exhibits a granularity that may behave as a pinning potential for vortices. However,
nice regular vortex configurations with threefold and fourfold symmetry can be ob-
tained that match quite well the theoretical predictions for vortex configurations in
clean samples. A shell effect is also obtained when five vortices are confined in the
square: four vortices form a square while the fifth one sits in the middle of the square.
These results are quite encouraging andwemay expect some rapid progress. However,
Timmermans et al. [56] showed that there is still someweak pinning present due to the
granular nature of the films. It seems quite unlikely that very clean samples could be
obtained by the lithography route. For very clean samples another route has to be ex-
plored that relies on in situ growth of nanostructures as described in the following.
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Fig. 3.6: Confinement of vortices in MoGe nanosquares. (a) Structure of the sample made of an
MoGe film grown on a nanopatterned sample of Ge/SiO2. The MoGe film is covered by gold in or-
der to protect it from oxidation. (b) The topography of an MoGe square shows a rough surface with a
granular structure. (c) Topography of a square and the corresponding conductance map at zero bias
in different magnetic fields showing different configurations of vortices as a function of increasing
magnetic field (up) and decreasing magnetic field (down) [56].

3.3.3 A model system for confinement studies: Pb/Si(111)

One of the most promising options for studying vortex confinement at nanoscale
relies on the self-organized growth of nanostructures that generally allows for pure
monocrystals exempt from defects and with an atomically clean surface. Among all
the possibilities the system constituted by Pb nanoislands grown on Si(111) is cer-
tainly one of the best choices. Indeed, the Pb/Si(111) system has been extensively
studied in surface science and a lot is known about the growth of Pb islands of vari-
ous lateral size and thickness. Pb growth on Si (111) follows the Stranski–Krastanov
mode, which results in the completion of a Pbwetting layer (1–2monolayers) followed
by the growth of nanoscale atomically flat Pb crystals [4, 30, 59]. For a deposition
at room temperature without annealing, the wetting layer is amorphous and has all
the characteristics of a bad metal with a low mean free path: it presents a very strong
Altshuler–Aronov Coulomb correction of the density of states at the Fermi level [5, 54].
However, the wetting layer is sufficiently conductive to drain the charges injected by
the STM, thereby allowing tunnel spectroscopy measurements to be made in good
conditions.

The choice of Pb/Si(111) has been very successful for the study of confined vor-
tices for several reasons. The first is that it is possible to obtain very flat and very pure
monocrystals, several nanometers high and several hundred nanometers wide (see
Figure 3.7). These dimensions are well suited to measurements by STM and are per-
fect to adjust the confinement effects. Indeed, by varying the growth conditions, we
managed to develop different types of islandswith adjustable thicknesses, widths and
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Fig. 3.7: Different types of islands of Pb/Si(111). (a) STM image 2.0 × 2.0 μm2 showing (111)-oriented
2D Pb islands with irregular edges and crowns obtained by depositing 5 monolayers of Pb at 290 K
with a poorly outgassed Pb source. (b) STM image 1.2 × 1.2 μm2 showing flat and faceted islands
obtained by depositing 3.5 monolayers at 260 K with a cleaner Pb source.

shapes. This allowedus to explore extremeconfinement regimes, for example a regime
where only one vortex can penetrate, or weak confinement regimes, where many vor-
tices can penetrate. Figure 3.7 shows a number of very different forms of islandswhich
we have grown by varying the growth conditions in a more or less controlled way, one
of the crucial parameters is the purity of the lead source which evolves with the num-
ber of evaporations. As shown in Figure 3.7a, it is possible to obtain flat Pb islands
oriented along the (111) direction that are elongated along the steps of the substrate
and of irregular shape (little faceted edges, crowns, holes). This type of islands were
obtained with a new source of lead or an almost empty one. The fact that the islands
are only slightly faceted indicates that the diffusion of lead has slowed, which sug-
gests the presence of impurities. With a Pb source that has been purified after many
cycles of evaporation one obtains flat and well-facetted truncated-cuboctahedral is-
lands oriented along (111) as shown in Figure 3.7b.

3.3.4 Ultimate confinement: The single vortex box

Using superconductingPb islandswith adjustable sizes grown in situ, low-temperature
STM/STS experiments on the magnetic phase diagram of the nanoislands in different
confinement regimes can be performed. To begin with wewill tackle themost extreme
case of all: an island that can accept at most one vortex (Figures 3.8 and 3.9) [16, 43].
The island shown in Figure 3.8a has a hexagonal shape with a diameter D ≈ 110nm
and a thickness h ≈ 5.5 nm, and it has a slight hollow in the center. The coherence
length in this island is ξeff ≈ 45nm, corresponding to D ≈ 2, 5ξ , which should lead
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to a strong vortex confinement. The effective London penetration depth is estimated
to be λeff ≈ 150nm which is comparable to the diameter. But, as we have seen in the
theoretical part, when the thickness is much smaller than λ, which is the case here,
the penetration depth is given by the Pearl length Λ = λ2/h. So the typical distance of
screening of the magnetic field should be Λ ≈ 4000nm, about 40 times the diameter!
Under these conditions, the magnetic field will fully penetrate the sample, and we
can consider, to a good approximation, that the magnetic field is equal to the applied
field.

The phase diagram of this island was studied in various ways to obtain the most
information possible about its response in a magnetic field. In the first method we
mapped conductance by measuring the tunnel conductance at a temperature of 4.2K
(Figure 3.8b) at any point of the island for different applied magnetic fields. This
yielded maps of the zero-bias conductance (ZBC) which reflect the supercurrent dis-
tribution in the sample in the Meissner phase (Figure 3.8d,e). As explained in the
theoretical part the supercurrents produce a Doppler effect which causes a broaden-
ing of the BCS coherence peaks at the gap edge [7, 35]. At 4.2K or T ≈ 0.65Tc, because
of the thermal broadening of 3.5 kT for the tunneling in S–I–N geometry, the Doppler
effect is manifested by an increase in conductance at zero voltage while the density of
states at the Fermi level remains zero, as long as the gapless regime is not achieved,
as seen below.

Meissner state
Themaps of Figure 3.8d,e were measured at 89mT and 178mT, in these fields no vor-
tex is present in the island and the spatial variations in the conductance are only due
to the depairing effect ofMeissner currents. At a low field of 89mT, the conductance is
only weekly affected by the supercurrents, the blue color in the figure indicates a very
low conductance similar to that in zero-field. When the field is doubled to 178mT, the
conductancemap turns red at the edge of the island indicating that the gap is strongly
affected by the Meissner currents. As shown in Figure 3.8c, the current is stronger at
the edge and vanishes at the center. However, we see that at the center of the island
the tunnel conductance is yellow-green, whichmeans that the gap is already quite af-
fected in the center of the island, while here the supercurrent is null. This effect, as
P.G. de Gennes had anticipated, is related to the fact that the local density of states in
a superconductor is sensitive to what is happening in a neighborhood of typical size ξ
around the measuring point; the coherence length is the typical distance over which
the order parameter and the superconducting state density vary. With the radius of
the island R ≈ 1, 2ξ , the center of the island is located at a distance of about ξ from
the edge and therefore the local density of states at the center is strongly affected by
the currents flowing on the edge. It is this nonlocal effect that limits the spatial resolu-
tion of the STM for imaging supercurrents. Despite this inherent limitation, it is clear
that the conductance is higher at the edge than in the center, as expected because the
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Fig. 3.8: (a) Image of a Pb island 110 nm in diameter and 5.5 nm thick at the edge. (b) Tunnel spec-
trum at zero field, measured at 4.2 K, showing the conductance at zero-bias ZBC which is used for
plotting the conductance maps (d) and (e). (c) Profile of supercurrents in the Meissner phase. (d) Im-
age of the ZBC at 89 mT, showing a slight increase in conductance along the island under the ef-
fect of supercurrents. Image (e) shows that at 178 mT the supercurrents flowing at the edge (in red)
greatly affect the superconducting gap [16].

Meissner currents are stronger at the edge of the island. In normalized units (1.0 for the
normal state) the conductance at zero voltage at the edge is about 0.5 (red) compared
with 0.25 measured at zero-field. The zero-bias conductance (ZBC) is doubled due to
the applied field andwould quickly reach that of the normal state for a slightly higher
field. As shown in Figure 3.9f, the evolution of the ZBC as a function of the field at the
edge follows a quadratic dependence that recalls the kinetic energy of supercurrents
(see Figures 3.5e–g) in the Meissner phase.

Single Vortex state
Beyond a certain magnetic field, the superfluid at the edge will exceed the critical ve-
locity thus the order parameter will collapse and the sample will pass into the normal
state or accept a vortex, if the sample is large enough. Here beyond μ0H0 = 240mT
the conductance in the center of the island is equal to that of the normal state (no
gap), this means that above H0 = 240mT a vortex core is present (see Figure 3.9a,d,f).
At field H0, where the vortex penetrates the magnetic field flux through the island is
ϕ = 1, 22ϕ0. One might naively think that the first vortex would penetrate as soon
as a flux quantum passes through the sample, or even before because, by analogy
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with the Little–Parks effect [38], one might think that the first vortex appears when
ϕ = ϕ0/2. In fact, the vortices tend to penetrate with a certain delay in nanosystems
due to the presence of a vortex core which causes a loss of condensation energy of the
order of πξ2 h∆2/2, where h is the thickness. A vortex will thus penetrate if the loss of
condensation energy is offset by the gain in kinetic energy, hence the delay.

The phase with one vortex shows a kind of re-entrant superconductivity which
manifests itself in the form of a dip in the tunnel conductance at the edge of the island
as a function of magnetic field (Figure 3.9e), with a minimum at μ0Hmin = 320mT.
This oscillation effect of the gap is also evident via the dependence of the ZBC as a
function of the field at the center of the island (Figure 3.9f). This effect is related to
the interference between the Meissner and vortex currents [16]. As we have seen in
the theoretical part, in the presence of a vortex the superfluid velocity at a distance
r from the center is given by vθ = e

2mr (ϕ0 − πr2B), where the vortex contribution in
1/r partially compensates the Meissner currents which are proportional to r. When
the vortex enters the sample, the magnetic field flux is ϕ = 1, 22ϕ0. As this is more
than a flux quantum, there should be a zero-current line inside the sample through
which passes just a flux quantum (see Figure 3.4c). Assuming a cylindrical geometry
it is found that the zero-current line lies on a circle of diameter D0 = 100nm, a little
smaller than the diameter D = 110nm of the island. Thus, the zero current line is
very close to the edge. At a field μ0Hmin = 320mT (see Figure 3.9f) the zero-current
line is on a circle of diameter Dmin = 87nm. As can be seen, increasing the magnetic
field also increases the Meissner currents, pushing the zero-current line toward the
center. At a given optimumfield a compensation is achieved between theMeissner and
vortices’ currents, which results in the minimum conductance Hmin. Contrary to what
would be observed for a Little–Parks ring [38], the minimum conductance obtained
at Hmin is significantly higher than the conductance at zero-field. This is due to the
“proximity” effect of the vortex core which provokes a gapless superconductivity and
also to the fact that the Meissner and vortex currents do not perfectly compensate.

Kinetic energy balance
Beyond the field Hmin, the Meissner currents dominate in the kinetic energy balance
and the energy starts to grow quadratically (but offset by the conductance atHmin) un-
til the normal state is achieved at the terminal critical field μ0Hc = 460mT. At Hc the
total flux of themagnetic field through the island isϕ = 2, 32ϕ0. Onemight think that
for such a flux the system should have accepted a second vortex before transiting to
the normal state, but it is not so. The delay between the number of vortices present in
the island and the magnetic flux is in fact quite common. Intuitively, we can see that
accepting a second vortex for ϕ = 2, 32ϕ0 would result in the formation of a zero-
current line very close to the edge, meaning that the kinetic energy would be domi-
nated by the vortex contribution. In this case the additional condensation energy cost
due to the second vortex core will not be compensated by the gain in kinetic energy.
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Fig. 3.9: (a) Tunneling spectra measured at the center of the island (point C on image c) depending
on the applied field. The spectra are shown in red in the Meissner phase and blue after the penetra-
tion of a vortex. (b) Spectra measured at the edge of the island (point E on image c) depending on
the applied field. (d) and (e) Evolution of the dI/dV tunneling spectra at the sample center (d) and
edge (e) with the magnetic field. dI/dV scale extends from 0 to 1.5 as in (a) and (b). (f) Zero-voltage
ZBC conductance depending on the field at the center (C) and the edge (E). The images g–h–i are
calculated with Usadel equations and reproduce the observations d–e–f [16].

In a bulk superconductor the critical field is given by μ0Hc2 = ϕ0
2πξ2 , for ξ = 45nm

the critical field would be μ0Hc2 = 150mT, as compared to the 460mT critical field
of the island. This clearly illustrates that nanostructuration has the effect of multiply-
ing the critical field by more than 3 for a given coherence length! However, as a bulk
superconductor presents a surface superconductivity until Hc3 = 1, 695Hc2, the third
critical field in bulk would be μ0Hc3 = 0.25 T, which remains well below the critical
field of the island. This amplification effect of the critical field is entirely consistent
with what was expected as early as in 1965 by D. Saint James [51].

Usadel simulations
It is possible to reproduce all the effects described above by simulating the systemwith
Usadel equations [57] in cylindrical geometry. Self-consistent calculations are shown
in Figure 3.9g–i. The agreement with experiment is relatively conclusive and validates
thephysical descriptiongivenabove. The simulationsweremadeby taking Tc = 6.5K,
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ξBulk = 80nm, ℎωD = 7.4meV, the only parameter left free being the mean free path.
The numerical simulations lead to l = 11nm, which corresponds to twice the thick-
ness of the island. This relationship between the mean free path and the thickness
was noticed by several teams working on Pb islands on Si(111) [15, 16, 42, 43, 45]. The
fact that the mean free path is generally twice the thickness of the islands suggests
that the interface between the island and the substrate is very diffusive. With such a
mean free path the effective coherence length is ξ = 45nmasmentioned above, which
corresponds to what was determined by studying vortex core profiles [16].

3.3.5 Confinement effect of supercurrents and surface superconductivity

After considering the limiting case of an island that cannot accept more than one vor-
tex, we will consider the case of a larger island that can contain a dozen vortices. As a
first approximation, in a sufficiently large island that accepts many vortices, the crit-
ical field should approach the third critical field Hc3 = 1.695 ϕ0

2πμ0ξ2 . The maximum
number of vortices in an island of diameterD should roughlymatch thenumber of flux
quantums through the sample at Hc3, hence the expected maximum number of vor-
tices is Nmax ≈ μ0πD2Hc3

4ϕ0
= 1.695 D2

8ξ2 . The coherence length depends on the mean free
path as ξ = 0.85√ξ0l. As experiments have shown that themean free path is generally
about twice the thickness h of the islands in Pb/Si(111), we get that themaximumnum-
ber of vortices according to the diameter and the thickness is typically Nmax ≈ D2

8ξ0h .
Thus, if one wants to reduce the confinement, one can increase the diameter, which
is pretty obvious, or reduce the thickness, which is quite counterintuitive.

For an island 250nm wide and 3nm thick as the one shown in Figure 3.10, tak-
ing ξ0 = ξBulkTcBulk/Tc = 113nm, and a mean free path l = 2h = 6nm, we obtain
an effective coherence length ξ = 21nm. For these dimensions one should obtain a
maximumnumber of vortices Nmax = 11. As seen in Figure 3.10, many vortices can en-
ter, but it is difficult to say exactly how many, because beyond four it is too difficult to
distinguish individual vortices due to vortex core overlap. However, it appears that at
island edges, on a width of the order of ξ , a thin rim remains clearly superconducting
(red-orange). This recalls the surface superconductivity predicted by Saint-James and
de Gennes [50]. While inside the island the vortices induce a normal state, the edge
is still superconducting. It is as if there was a vortex confinement effect forcing them
to go to the center of the island. By comparing the conductance maps at 300mT and
350mT, we clearly see that when increasing the magnetic field a group of three vor-
tices get much closer to the center of the island. This effect is again related to the com-
petition between the vortex currents andMeissner currents: when increasing the field,
the zero-current line which surrounds the three vortices is pushed inward, exerting a
kind of compressive force on the vortex. It is precisely that pressure force induced by
Meissner currents that can push so hard on the vortices that beyond a certain thresh-
old several vorticeswill eventually merge. In the caseof the island in Figure 3.10,when
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Fig. 3.10: Left: STM image of an island of a well-faceted Pb/Si(111). Right: zero-bias conductance
maps as a function of the magnetic fields showing different vortex configurations; superconductivity
appears in red, while the normal state appears in blue. The measured area is indicated by the dotted
lines in the left image.

increasing the field beyond 400mT, the system does not form a giant vortex because
instead a fourth vortex penetrates. However, it is quite obvious that by choosing an
island with a slightly smaller diameter, in which the confinement effects should be
stronger, it should be possible to cause several vortices to merge into a giant vortex.

3.3.6 Imaging of giant vortex cores

First attempts to evidence giant vortex states
Several attempts to evidence giant vortex stateswere conducted either bymagnetome-
trymeasurements [20, 24] or bymultitunnel junctionmeasurements [32]. Thesemeth-
ods probe if some magnetic transitions take place that could be interpreted as the
merger of several vortices into a giant vortex, but donot allowdirect imaging. Inpartic-
ular Moshchalkov et al. predicted that upon field cooling certain small superconduc-
tors could show a paramagnetic response instead of a diamagnetic one, the so-called
paramagnetic Meissner effect, attributable to the presence of a giant vortex [40]. An-
other approach based onmagnetic imaging via the Bitter decorationmethod, showed
the formation of dense clusters of vortices in samples subject to strong vortex pinning
[26]. The authors interpreted these results as the possible existence of giant vortices,
however a dense configuration of individual vortices is indistinguishable from a gi-
ant vortex because the spatial resolution of magnetic probes is limited to scales of the
order of λ, which is insufficient to observe a phenomenon that happens at the scale
of ξ in a type II superconductor. We will show in this section that the direct imaging
of vortex cores by scanning tunneling microscopy permits us to reveal without any
ambiguity the existence of giant vortices in strong type II nanoscale superconductors.

As noted previously the Meissner currents flowing at the edge of nanoislands
cause a strong confinement effect on the vortices. According to Ginzburg–Landau cal-
culations [8, 20, 22, 23, 40, 52, 53] it is expected that this pressure effect provokes the
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Fig. 3.11: Left: Combined STM topographic/spectroscopic image of Pb islands seven atomic layers
thick and a few hundred nanometers in diameter in a field of 0.8 T. The color corresponds to the
amount of states in the gap, as shown in the adjacent spectra. Under the effect of the magnetic field
the superconductivity (in red) is gradually destroyed, vortices (blue) appear in the islands. The small
island admits a single vortex, the medium island admits two vortices and the biggest one shows
a large normal area in the center of the island which could be a dense cluster of several vortices.
In the center, the tunnel conductance spectra show the density of states on the small island as a
function of the applied magnetic field. Right panel: conductance maps as a function of the applied
magnetic field from 0 T to 1.8 T [15].

merger of several vortices into a giant vortex (see Figure 3.1b). To observe this effect
the lateral dimensions should be of the order of several times the size of a vortex core
(D ∼ 5ξ in Figure 3.1b) so that the island can only accept a few vortices.

Pb/Si(111) strongly confined islands
In the experiment shown in Figure 3.11, three islands were measured together so as to
optimize the chances of finding an ideal configuration, but also to compare different
confinement regimes under the same experimental conditions. We will show that the
smallest island of the three displays some giant vortex states with L = 2 and L = 3.

The principle of this experiment is shown in the left panel of Figure 3.11. Tunnel
conductance spectra were measured for various magnetic fields for each point of the
sample. As the experimentwas conducted at 300mK the spectroscopic resolutionwas
excellent, but consequently it was no longer possible to image the effect of the Meiss-
ner currents in the zero-bias conductance maps because up to a field of 0.4 T the con-
ductance remained zero at the Fermi level (see spectra in Figure 3.11). To image the
effect of Meissner currents the spectroscopic maps were created by plotting the area
in the gap (gapped area). The colored lines in the spectra give the correspondence be-
tween the color on the maps and the spectra. With this method it was possible to map
very satisfactorily the distribution of Meissner currents as can be seen on the maps
made at 0.2 T and 0.4 T (maps in Figure 3.11, right panel).
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Fig. 3.12: Middle panel: conductance image of Nouf island of Figure 3.11 based on the field in the
Meissner phase (0.2 T), the phase with one vortex (0.6 T), the phase with a giant L = 2 vortex (1.0 T),
the phase with a giant L = 3 vortex (1.4 T) and the normal state at 1.8 T. Bottom panel: conduc-
tance as a function of the field along the section of the island shown in dashed lines. We distinguish
conductance jumps that indicate the successive entry of three vortices. Top panel: a simple vortex
profile L = 1, double giant vortex profile L = 2 and triple giant vortex profile L = 3, with an adjust-
ment, shown in red, which is described in the text [15].

Meissner current depairing effect
In a field of 0.2 T the edge of the islands appears in a red-orange color which indicates
the presence of strongMeissner currents. The largest of the islands, Nif, is the most af-
fected, as expected given that the superfluid velocity increases with radius: vθ ∝ rB.
In a field of 0.4 T the Meissner currents in the large island would have exceeded the
critical velocity if the island had not accepted a vortex. By contrast, the other two is-
lands are still in theMeissner phase but it is clearly visible at the edge of the Naf island
that the gap is almost closed (yellow-green) and therefore, for a slightly higher field
such as 0.6 T, this island would be forced to accept a vortex in order to compensate
the strong currents at the edge by counterpropagating vortex currents.

Strongly confined multivortex state
In a field of 0.6 T, the Nif island already admits two vortices, being wider than the
others. These vortices are extremely close together, their distance is d = 33nm, con-
sidering the estimated coherence length ξ = 30nm it leads to d = 1.1ξ . Such an
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intervortex distance is very small compared to the intervortex distance at the critical
field in a bulk sample, dBulk = 2.8ξ . This clearly shows that the very high pressure
induced by the Meissner currents pushes the vortices closer together than achievable
distances in bulk samples. So one could hope that for highermagnetic fields, 0.8 Tand
1.0 T, the Nif island would eventually accept a giant vortex. In the map of Figure 3.11
a large area in the normal state surrounded by a superconducting rim is observed,
which could suggest a giant vortex, though a more detailed study described in [15]
seems instead to point toward a dense vortex configuration forming a state close to
surface superconductivity.

Giant vortex state
The brightest giant vortex signatures were actually obtained in the smallest island
Nouf. On the detailed maps shown in Figure 3.12, for magnetic fields of 0.6 T, 1 T and
1.4 T, one can distinguish a round object in the center of the island, which can eas-
ily be attributed to a vortex. We see that this object appears to be wider when the field
increases. To obtainmore information on the structure of the vortex, we acquired spec-
tra on a section through the island (black dotted line on the map at 0.2 T). The zero-
voltage conductance as a function of field along this section is shown in the bottom
of Figure 3.12. One can distinguish several regimes separated by discontinuities in the
conductance, starting with the Meissner phase (L = 0), followed by the penetration
of a single vortex (L = 1), then according to the conductance jump a second vortex
penetrates a little before 1.0 T (L = 2) and finally a third vortex seems to penetrate at
1.3 T (L = 3). However, one can only distinguish a single vortex in the map at 1.0 T
where one should see two vortices; and at 1.4 T where we expect three vortices a sin-
gle round object appears in the map. To better understand what type of object it could
be one can focus on a cut of the ZBC through these vortices as shown in the top curves
of Figure 3.12. It appears that the vortex cuts for L = 1, L = 2 and L = 3 are very
different. The first is entirely consistent with that of an Abrikosov vortex with a linear
dependence of the conductance in the core (except in the center, r ≪ ξ , where we
find a parabolic profile). The case L = 2 is very different because it instead shows a
parabolic shape and the case L = 3 is even more flared. These three conductance pro-

files were adjusted by the empirical curve ZBC (r) ∝ 1 − ( r
√Lξeff

)L with a single fitting
parameter for the three curves (red curves in Figure 3.12) [15]. The adjustment shows a
rL dependence of the conductance, which is in good agreement with the dependence
rL of the order parameter predicted by Saint-James in 1969 [52]. However, we must re-
main cautious as there is no direct link between the tunnel conductance and the order
parameter. Further calculations with Usadel formalism should be conducted to con-
firm that the structures we observed are consistent with the theory for a giant vortex
with vorticity L = 2 and L = 3.
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3.4 Proximity Josephson vortices

3.4.1 Proximity effect

When a normal metal (N) and a superconductor (S) are put in contact their electronic
properties near their interface are changed by the proximity effect. The spreading of
Cooper pairs in the normalmetal induces some superconducting correlations in it that
manifest by an induced gap in the density of states and the ability to pass an electric
current without dissipation through the normalmetal. Very recently, the proximity ef-
fect has attracted attention from the surface physics community. It has indeed been
demonstrated that in situ elaboration of superconducting nanostructures combined
with tunneling microscopy/spectroscopy allows the proximity effect to be studied at
a very high spatial resolution, providing new insight into this fundamental quantum
phenomenon. In the following, after a few general explanations on the proximity ef-
fect, we will show some recent advances in this subject that have been established
by the study of nanoscale superconducting-normal-superconducting Josephson junc-
tions. We will show that with the help of the proximity effect it is possible to generate
proximity Josephson vortices in a normal metal.

We will focus primarily on the proximity effect between a superconductor and a
diffusive metal. One of the main signatures of the proximity effect is manifested by
a change of the local density of states (LDOS) which can be directly measured at the
nanoscale using scanning tunneling spectroscopy. The first tunneling measurements
of the proximity effect begun in the 1960s using planar tunnel junctions formed by
thin oxide barriers. These measures evidenced some spectral properties related to the
proximity effect, but they could not probe the spatial aspects of the phenomenon. In
the 1990s, Guéron et al. [27] were able tomake nanotunnel junctions along a wire con-
nected to a normal superconductor and tomeasure the local DOS at different distances
from the SN interface; this was the first spatially resolved experimental study of the
proximity effect. To improve the spatial resolution of tunneling experiments, different
groups have used scanning tunneling microscopy/spectroscopy [21, 36, 41, 58, 60].
The first studies focused on ex situ fabricated nanostructures that posed serious tech-
nical problems for STM/STS,mainly due to surface contamination. Thus, the first spa-
tially resolved STM experiments of the proximity effect [58] have been carried out on
Nb-Au hybrid systems in order to profit from the chemical stability of Au in air. Here
we will show how this experimental limitation was recently overcome by borrowing
the methods of surface physics to develop hybrid superconducting nanostructures by
self-organization under an ultrahigh vacuum. When developing hybrid structures in
the same ultrahigh vacuum environment as the STM, the effect of surface pollution is
greatly minimized. This helped researchers to probe the in situ proximity effect by STS
experiments with high spatial and energy resolution [12, 33, 49, 54, 55]. In the follow-
ing, we describe some recent experiments on hybrid SNS systems grown in situ which
solved the longstanding problem of the internal structure of Josephson vortices.
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3.4.2 Andreev reflection

In the modern view of the proximity effect, which emerged in the 1990s [34, 46], this
phenomenon is closely linked to the notion of the Andreev reflection [6]. The Andreev
reflection is a process in which an electron coming from N with an energy E (mea-
sured from the Fermi energy) is converted into a reflected hole of energy −E, thereby
transferring a zero-energy Cooper pair to the electrode S. Alternatively, theAndreev re-
flection can be seen as the process by which a Cooper pair passes into N and becomes
an electron pair, the two electrons being in states equivalent by time-reversal. This
process governs the transfer of charge in an SN junction for energies below the super-
conducting gap of the S electrode, which are the relevant energies for the proximity
effect. The two electronic states equivalent by time-reversal involved in the Andreev
reflection diffuse into the normal metal and preserve their coherence over a distance
LE = √ℎDN/E [28]. This length comes from the following process: because the dif-
ference in energy between the electron and hole states is 2E, the relative amplitude
of these two states becomes out-of-phase by a factor exp (−2iEt/ℎ) as the pair prop-
agates through the normal metal, where t is the time elapsed since the pair left the
superconductor. A phase shift of order 1 is obtained for t ≈ ℎ/E. For such time the
electrons diffuse over a distance of the order of LE = √DNt = √ℎDN/E, where DN
is the diffusion constant in the normal metal. Thus, LE = √ℎDN/E is the coherence
length, i.e., the length over which the pair correlations decrease in the normal metal
for the characteristic energy E. Therefore, the coherent propagation in N of two states
with energy |E| = ∆ will expand on a scale of characteristic length ξN = √ℎDN/∆, the
normal coherence length. To conclude this discussion, we introduce another relevant
energy scale in diffusive metals, namely the Thouless energy ETh = ℎDN/L2. To this
end, we consider an SNS junction where the normal region has a length L. From our
discussion above, it is clear that, at a given energy E, the superconducting correlations
will extend through the wire as long as L < LE, or equivalently, as long as E < ETh. In
other words, at a given distance L, only electrons having energies below the Thouless
energy still present pair correlations.

3.4.3 Proximity effect in diffusive SNS junctions

In the normal part N of a diffusive SNS junction we expect to see some very peculiar
features induced in the LDOS by the proximity effect. Figure 3.13a shows some cal-
culations, with Usadel Theory, of the spatial variation of the LDOS in the case of an
N bridge of length L = 4ξ (where ξN = √ℎDN/∆), connected to the S electrodes by
perfect interfaces at both ends. As shown in Figure 3.13a, the most notable feature
is the appearance of a minigap ∆g < ∆, which remains constant along the N region.
This minigap gradually decreases as the length of the N bridge increases, as seen in
Figure 3.13b. In the long junction limit, L > ξN (or ETh < ∆), the minigap for fully
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Fig. 3.13: (a) LDOS within the portion N of an SNS junction of a diffusive N bridge of length L = 4ξ
calculated in the framework of Usadel theory. Note the appearance of a constant width minigap
through N. (b) LDOS in the middle of an SNS junction as a function of energy for different lengths of
the wire N, L = 0 − 5ξ [18].

transparent interfaces is simply given by ∆g ≈ 3, 1ETh. The appearance of a minigap
in the junctions is a neat signature showing that some superconducting correlations
propagate through the N bridge. As a consequence, the junction will be able to carry
a supercurrent throughout the N part, and the SNS junctions will thus behave as a
Josephson junction.

Using the system Pb/Si(111) it was possible to create local nanoscale Josephson
junctions. They were obtained by adjusting the growth conditions so as to get islands
sufficiently close to each other in order to form lateral SNS junctions with a normal
part of width L comparable to a few ξN. As explained above the Pb/Si(111) system is
characterizedby thegrowthof flatPb islands after the completionof a Pbwetting layer.
The amorphous Pbwetting layer behaves as aweak link between two superconducting
reservoirs formed by the adjacent islands. This geometry is similar to the SNS case
discussed above. The geometry (Figure 3.14) allows experimental study of theminigap
predicted in the N part of a S–N–S Josephson junction (Fig. 13a, b).

Figure 3.14 shows the case of two close superconducting Pb islands coupled to-
gether via the amorphous Pb wetting layer which is a strongly correlated diffusive
metal. The SNS system is manifested by strong superconducting correlations induced
in the N part as the zero-bias conductancemap of Figure 3.14b shows. Clearly, a super-
conducting link forms between the two islands that appears as a zero-conductance
region around the Fermi level (in brown). This zero conductance in the N part of the
SNS junction is due to the presence of a minigap as shown in Figure 3.14c. The spa-
tial dependency of the conductance spectra across the junction shows that in the N
part there is a minigap of constant width of about 0.15meV. By contrast, the super-
conducting islands located on either side of the N bridge present a much larger BCS
gap of about 1.1meV. This experiment thus provides a spatial representation of su-
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Fig. 3.14: (a) STM topography image showing two superconducting Pb islands (in white) separated
by about 50 nm and connected via a normal amorphous Pb wetting layer (brown). (b) Zero-bias con-
ductance image in color superposed on the topography in 3D showing the formation of a Joseph-
son link (brown) in the SNS junction. (c) Cut of the LDOS through the SNS junction. A minigap of
0.15 meV appearing in blue is visible in the N region (0 to 43 nm), while the superconducting elec-
trodes have a larger BCS gap of 1.1 meV.

perconducting correlations in a Josephson junction which is entirely consistent with
what Usadel theory predicts for the SNS geometry in diffusive limit.

3.4.4 Josephson vortices in S−N−S junctions

As some superconducting correlations are induced in the N part of an SNS Joseph-
son junction, one could expect that the metallic region will acquire some properties
of superconductors. For instance, such an SNS junction can sustain supercurrents
that flow through the N bridge. Another salient feature of superconductors is their
response to a magnetic field and in particular the formation of Abrikosov vortices in
type II superconductors. Then, a question that naturally arises is if the N part of an
SNS junction will also accept vortices and if yes, what structure will they have? It is
well known that the critical current of large Josephson junctions ismodulatedwith the
magnetic field and follows a Fraunhofer pattern [14, 61]. This modulation was inter-
preted asbeingattributable to thepenetrationof Josephsonvortices into the junctions.
In order to gain some insight into the nature of these vortices, Cuevas&Bergeret per-
formed somecalculationsof theLDOSof anSNS junction in thepresenceof amagnetic
field with the help of the quasiclassical Usadel formalism [9, 17]. On the basis of the
Cuevas& Bergeret model, Figure 3.15a shows how the LDOS at the Fermi level varies
spatially within an SNS junction for length L = 4ξ and widthW = 4L and a magnetic
flux ϕ = μ0HLW = 2ϕ0 through the N part. The first thing to notice is that, as ex-
pected, the LDOS is strongly modulated by the magnetic field. In particular, it seems
that in the middle of the junction (x = L/2) there are areas where the superconducting
proximity effect is completely suppressed (point C inFigure 3.15a). Asdemonstratedby
Cuevas& Bergeret, this is the signature of the appearance of a Josephson vortex in the
middle of the normal wire. They exhibit real vortex cores in which the superconduct-
ing correlations are suppressed, similarly to the suppression of the superconducting
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Fig. 3.15: Josephson vortex cores: local density
of states and generating principle by currents.
(a) LDOS at the Fermi level calculated by the Us-
adel approach for an SNS junction (L = 72 nm,
W = 288 nm) subjected to a magnetic field of
200 mT. Note the appearance of two Josephson
vortices. (b) Josephson vortices generated in an
SNS junction by the presence of current in the
S electrodes but in the absence of a magnetic
field.(c) As previously, but with the current in a
single superconducting electrode [49].

order parameter in Abrikosov vortex cores. These cores, where the LDOS is the one
of normal state, are separated by regions where the minigap appears and where the
spectrum is similar to the one observed in the absence of a magnetic field (point E in
Figure 3.15a).

As shown in the next section, Josephson vortices are induced by a shear of the
gauge invariant phase difference between the two superconducting electrodes. The
magnetic field helps to generate such a shear, but it is not necessary. In fact, a super-
current in the superconducting electrodes also generates a gradient of phase of the
order parameter. If two currents flow in opposite directions, as shown in Figure 3.15b,
some Josephson vortices will form in the junction under the shearing effect of the
phase difference. If the current passes only through one of the two electrodes there
are still some Josephson vortices in the junction, but they move close to the electrode
where a supercurrent is flowing. Hence, it might be possible to generate proximity vor-
tices without a magnetic field.

3.4.5 Imaging of Josephson proximity vortices

To verify the existence and ultimately determine the basic properties of the proximity
Josephson vortices, we used a network of superconducting Pb islands connected by
the Pbwetting layer (Figure 3.16) [49]. Eachpair of islands forms an SNS junction; sev-
eral of these SNS junctions are shown in Figure 3.16. These junctions were character-
ized by STM/STS in the absence and in the presence of a magnetic field. Figure 3.16a
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shows a conductance map at zero bias in the absence of a magnetic field. It can be
seen clearly that: (i) the Pb islands are superconductors (they have zero conductance
at V = 0mV due to the superconducting gap), (ii) the superconductivity is induced
in the regions between the neighboring islands (lower conductance at zero voltage),
and (iii) the remote area of the islands is in the normal state (the conductance is much
higher and corresponds to the conductance of the wetting layer in the normal state).

Figure 3.16c shows conductance spectra acquired at three different locations (A,
B and C) in the SNS junction named J1, see Figure 3.16a. As can be seen, the spec-
tra are very similar and they all have a minigap, in agreement with the results dis-
cussed in the previous section. The situation changes when an external magnetic field
is applied perpendicularly to the plane of the wetting layer. Figure 3.16b shows a zero-
bias conductance of the sample acquired at 60mT. Thismap shows the appearance of
Abrikosov vortices in the Pb islands, but, more importantly, the tunnel conductance

Fig. 3.16: Imaging of proximity Josephson vortices. (a) Zero-bias conductance image in zero field.
The proximity effect appears as a blue halo around the superconducting lead islands. SNS Joseph-
son junctions are formed in between the islands (dark blue). (b) In the presence of a 60 mT field,
the proximity effect becomes spatially modulated in the SNS junctions, especially in the J1 junction
which accepts a Josephson vortex in its center. (c) Conductance spectra showing a homogeneous
minigap in three locations (A, B, C) of the junction J1 in zero field.(d) Spectra taken at the same lo-
cation as in (c) in a field of 60 mT, the spectra measured in A and C are unchanged while spectrum B
shows a LDOS representative of normal state, this is the signature of a proximity vortex core [49].
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Fig. 3.17: Josephson vortex penetration at 0, 120 and 180 mT. Zero-bias conductance maps in color
superimposed on 3D topography showing the superconducting gapped area in red and normal in
dark blue. The measurement area corresponds to the gray rectangle in Figure 3.16. From left to right
the field rises from 0 mT to 120 mT and 180 mT. We see a first vortex in the two junctions at 120 mT
and then two vortices in each junction at 180 mT.

inside the N regions of the SNS junctions is spatially modulated along the transverse
direction. This effect is particularly clear in the junction J1. We now analyze the con-
ductance spectra acquired in the three areas A, B and C that are shown in Figure 3.16d.
While spectra A and C show a proximity minigap very similar to the one acquired in
zero magnetic field, spectrum B does not show any sign of a proximity effect; rather it
reflects the spectrum of the wetting layer in the normal state. Note here that the nor-
mal state spectrum exhibits a small depletion at the Fermi level that has nothing to
do with a minigap, it is in fact an Altshuler–Aronov zero-bias anomaly due to strong
Coulombian correlations in the strongly diffusivewetting layer [5, 37]. Themodulation
of theminigap observed inside the SNS junctions is precisely the signature of the prox-
imity Josephson vortices, as described in the previous section. The disappearance of
the minigap is the signature of the presence of a vortex core there [49].

The proximity Josephson vortices canbe seenmore clearly in a zoom-in of the four
islands forming the junctions J2, J3, J4 as indicated by the gray square in Figure 3.16b.
To see the connection between the structure of the SNS junctions and the Josephson
vortices we represented the conductance in color superimposed on the 3D topography
as shown in Figure 3.17. This figure shows the junctions in three different magnetic
fields: 0 T, 120mT and 180mT. The red color corresponds to zero conductance, i.e., a
superconducting gap, while the blue-green color corresponds to a high conductance,
that of the normal state. Josephson links appear clearly in zero field as zero conduc-
tance regions. In the presence of a magnetic field one can see that Abrikosov vortices
appear in the islands and that Josephson vortices also appear in the junctions. The
junctions J2 and J3 both admit a vortex at 120mT, while by increasing the magnetic
field at 180mT both junctions admit two vortices. In Figure 3.17 we can see that the
minigap disappeared in the center of junction J2 at 120mT but it reappears at 180mT.
This behavior is expected due to the penetration of additional Josephson vortices in
the junction.
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3.4.6 Interpretation of the vortex structure

Shear of the phase difference
The structure of the Josephson vortex and the corresponding modulation of the local
DOS are easy to understand within the limits of a wide junction (W ≫ L). In this case,
as we will show below, the role of the magnetic field is to change the superconducting
phase difference ϕ between the two adjacent S electrodes. More importantly, we can
show that, within that limit, the vortex cores located in the middle of the N junction
form a linear array. The vortex cores appear at points such as ϕ = π, ±3π, ±5π where
the minigap disappears due to an interference effect [36]. In addition, the minigap is
fully recovered when ϕ is a multiple of 2π. Since the magnetic field induces a shear of
the gauge invariant phase difference a series of Josephson vortices forms in the junc-
tion (see Figures 3.15 and 3.18).

Simulations with an extended Ginzburg–Landau Model
In order to show that a shearing effect of the phase difference causes Josephson
vortices, we conducted phenomenological simulations, using a model based on the
Ginzburg–Landau approach, to simulate the experimentally observed vortex config-
urations. The model reproduces the observations very accurately, as shown in Fig-
ures 3.19c and 3.20. Note that the model uses no adjustable parameter which makes
the agreement between the model and the experiments quite robust. The purpose of
these simulations is to illustrate that the Josephson vortices are induced by quantum
interferences between the condensates of each superconducting island. Specifically,
they show that the structure and position of the Josephson vortices are entirely de-
termined by the phase portrait of the superconducting order parameter at the edges
of the islands to which are added two constraints: minimizing the kinetic energy of
supercurrents and current conservation (current flow into an island is zero).

The basic idea of the model is to calculate the Ginzburg–Landau order parameter
in the Pb islands, taking into account their complex shapes and depletions to repro-
duce the observed Abrikosov vortex configurations. In these calculations the islands

Fig. 3.18: Schematic diagram of a Josephson vortex. When the phase difference across the junction
is (2n + 1) π the minigap is destroyed by an interference effect. This gives rise to the formation of
a vortex core in the center of the junction. The superconducting phase turns by 2π around the core;
this is associated with a flow of supercurrent around the vortex.
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are totally disjoint and uncoupled, but all calculations are done with the symmetri-
cal gauge A = 1

2B × r, where r is placed in the center of the image. This gives rel-
atively complex phase portraits as seen in Figure 3.19b. In this model the observed
Josephson vortex configurations can be reproduced by considering only interferences
of superconducting evanescent waves taking into account an invariant phase differ-
ence φ∗ = φ (r2) − φ (r1) − 2e

ℎ ∫r2
r1
Adl, where φ (ri) are the local phases of the order

parameter on both sides of the island at positions ri. The general idea is that for two
opposite edges with φ∗ equal to 0, ±2π, ±4π, ±6π,. . . the superconducting correla-
tions induced by nearby islands are in phase and result in constructive interference
that result in a proximity minigap (see Figure 3.18). In contrast, in places where φ∗

is equal to ±π, ±3π, ±5π,. . . superconducting correlations interfere destructively, and
the proximity gap is destroyed,which gives rise to Josephson vortex cores (Figure 3.18).

The implementation of the model is as follows. Once the phase portrait of each
island is known, one considers evanescent waves over a distance ξN starting from
each point ri located on islands. These phenomenological evanescent waves repre-
sent the superconducting correlations in the proximity area. Each partial correlation
contributes to the amplitude of the superconducting correlationmap ϕ (r). All partial
waves interfere in r according to their relative amplitude and gauge invariant phase
difference:

ϕ (r) ∝ ∑
i
∫
Ci

e−
|r−ri |
2ξ eiφ∗(r,ri)dl

whereφ∗ (r, ri) = φ (ri)+ 2e
ℎ ∫riri Adl. The phaseφ (ri) is taken on the edge of the island

i. The local magnitude of ϕ (r) correlations is thus given by the sum of the evanescent
waves on Ci circuits around each island indexed by i. It should be noted that each
phase portrait φ (ri) is defined up to an arbitrary offset αi : φ (ri) = φGL (ri) + αi.

Since in this model the phase of each island edge is set to an arbitrary global
phase, one has to determine (N− 1) phase differences for N islands. Tomake themodel
fully self-consistent, the phases were fixed so as to cancel the currents in-between the
islands (Figure 3.19c, d) which generally gives two possibilities. To distinguish these
two possibilities the model opts for the phase that minimizes the kinetic energy of su-
percurrents in the junction (Figure 3.19e). The comparison between this model with-
out any adjustable parameter and the experiments is very good as can be seen in Fig-
ure 3.20.

Proximity versus Abrikosov vortices
Proximity Josephson vortices are not perfectly identical to Abrikosov vortices for sev-
eral reasons. For example, Abrikosov vortex cores are generally round (when they
do not overlap too much) and their radius is given by the coherence length ξ , while
Josephson vortices may have shapes and sizes depending on the geometry of the
junction. For a very long junction (L ≫ ξ ) Josephson vortices should be extremely
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Fig. 3.19: Simulation method of Josephson vortex cores. (a) Module of Ginzburg–Landau order pa-
rameter of the islands in a 60 mT field. (b) Phase portrait of the order parameter. (c) Calculated su-
perconducting correlations reproducing the experimental configuration of Figure 3.16b. (d) The cur-
rent flow between two islands as a function of the global phase difference (for each junction the flow
is calculated through the segments shown in (c)). (e) Kinetic energy of supercurrents as a function of
the global phase difference [49].

elongated. Moreover, Josephson vortices form a line in the middle of junctions while
Abrikosov vortices form a 2D network. Finally, in the cases we studied, the Ginzburg–
Landau simulations clearly show that we can calculate the phase portrait for separate
islands regardless of the back-effect of the junctions and reach an excellent agreement
with the measurements. This means that superconducting correlations in the wetting
layer do not influence the phase portrait in the islands, but only set the overall phase
difference between the islands. Thus, the Josephson vortices are totally constrained
by what happens in the S electrodes and do not seem able to exert a back-action on is-
lands other than to adjust an overall phase difference; they are sort of passive objects.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 | 3 STM studies of vortex cores in strongly confined nanoscale superconductors

Fig. 3.20: (a) and (b): Conductance maps at the Fermi level at 120 mT and 180 mT showing the ap-
pearance of multiple Josephson vortices. The images in (c) and (d) are numerical simulations of
the spatial variations of superconducting correlations; the Abrikosov and Josephson vortex config-
urations are calculated with the fully self-consistent model described in the text. A good general
agreement is observed [49].

Finally, the Josephson vortices havemanydifferent properties fromAbrikosov vortices
making them unique quantum objects, not to mention the fact that they appear in a
nonsuperconducting material!

3.5 Conclusion

In this chapter we explored different kinds of vortex confinement in nanoscale su-
perconductors. We have shown that in the limit of samples with a lateral size much
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shorter than the penetration depth the vortices could no longer be considered flux
bundles but instead they have to be seen as a singularity in the phase field, as is the
case for other superfluids such as superfluid helium or quantum condensates of cold
atoms. In this limit, the vortex physics can be understood as a competition between
the kinetic energy, which depends on both vortex and Meissner currents, and the loss
of condensation energy associated with the formation of vortex cores. We explored a
strong confinement regimewhere the coherence length, which gives the typical size of
the vortex core, was comparable to the size of the system. In this limit, we found that
the vortices are strongly confined by Meissner currents. We showed that in strongly
confined systems, because of the pressure induced by Meissner currents, several vor-
tices could merge to form a giant vortex state. In addition to this new type of vortex,
we showed that a normal metal could also exhibit vortex cores due to the proximity
effect. The proximity Josephson vortices observed inside SNS junctions are induced by
a shear in the relative phase of the two superconducting electrodes. A magnetic field
was used to generate the phase shear, but a supercurrent in the superconducting elec-
trodes could also generate a phase gradient. Hence, it might be possible to generate
proximity vortices without a magnetic field. This could be a good trick for elaborating
nanoscale quantum-electronic devices based on vortex manipulation. For instance,
proximity vortices induced in surface states of topological insulators should exhibit
a Majorana zero energy bound state in their vortex core. It would then be possible to
braid the Majorana vortex core states by applying some current in the nearby S elec-
trodes and pave the way towards quantum computing.
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E. Babaev, J. Carlström, M. Silaev, and J.M. Speight
4 Type-1.5 superconductivity

4.1 Introduction

In the simplest case, a superconductor is described by a single complex order parame-
ter field. The corresponding field theory has two fundamental length scales, the mag-
netic field penetration depth λ and the characteristic length scale associated with the
order parameter, the coherence length ξ . Their ratio κ determines the response of a su-
perconductor to an external field, sorting them into two categories as follows: type-1
when κ < 1/√2 and type-2when κ > 1/√2. This theory has a critical point at κ = 1/√2
(the Bogomol’nyi point). However, in general, a superconducting state breaks multi-
ple symmetries and is described by a multicomponent theory, characterized by sev-
eral different coherence lengths ξi. As a result, there can appear a state where ξ1 ≤
ξ2. . . < √2λ < ξn ≤ . . .ξm, that has no counterpart in the single-component case.
This state was recently termed “type-1.5” superconductivity. Breakdown of the type-
1/type-2 dichotomy is rather generic near a phase transition between superconducting
states with different symmetries. Examples include the transitions between U(1) and
U(1) ×U(1) states or between U(1) and U(1) × Z2 states. The latter case is realized, for
example, in systems that feature transition between s++/s+− and s+ is states, because
the s+ is state spontaneously breaks time-reversal symmetry.Moreover, certainmulti-
band superconductors that break only a single symmetry are nonetheless described
bymultiband Ginzburg–Landau theory. The extra fundamental length scales have
many physical consequences. In particular, in these regimes vortices can attract one
another at long range but repel at shorter ranges. Such a system can form vortex clus-
ters in lowmagnetic fields.Vortex clustering in the type-1.5 regime gives rise to many
physical effects, ranging from macroscopic phase separation in domains of different
broken symmetries, to unusual phase transitions and transport properties.

Type-1 superconductors expel weak magnetic fields, while strong fields give rise
to macroscopic phase separation in the form of domains of Meissner and normal
states [1, 2]. The response of type-2 superconductors is the following [3]: below some
critical value Hc1, the field is expelled. Above this value a superconductor forms a
lattice or a liquid of vortices which carry magnetic flux through the system. Only at
a higher second critical value, Hc2 is superconductivity destroyed. These different
responses are the consequences of the form of the vortex interaction in these systems,
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134 | 4 Type-1.5 superconductivity

the energy cost of a boundary between superconducting and normal states and the
thermodynamic stability of vortex excitations. In a type-2 superconductor the energy
cost of a boundary between the normal and the superconducting state is negative,
while the interaction between vortices is repulsive [3]. This leads to the formation of
stable vortex lattices and liquids. In type-1 superconductors the situation is the oppo-
site; the vortex interaction is attractive (thus making them unstable against collapse
into one large “giant” vortex), while the boundary energy between normal and super-
conducting states is positive. The ‘ordinary’ Ginzburg–Landau model has a critical
regimewhere vortices do not interact [4, 5]. The critical value of κ in themost common
GL (Ginzburg–Landau) model parameterization corresponds to κ = 1/√2 (often the
factor√2 is absorbed into the definition of coherence length in which case the critical
coupling is κ = 1). The noninteracting regime, which is frequently called the “Bogo-
mol’nyi limit” is a property of the Ginzburg–Landau model where, at κ = 1/√2, the
core-core attractive interaction between vortices exactly cancels the current-current
repulsive interaction [4, 5]. However, in a realistic condensed matter system, even in
the limit κ = 1/√2, there will always be leftover intervortex interactions, appearing
beyond the GL field-theoretic description, from underlying microscopic physics. The
form of that interaction potential is determined not by the fundamental length scales
of the GL theory but by nonuniversal microscopic physics, and it can indeed be non-
monotonic [6]. These microscopic corrections are extremely small. However, they are
relevant in a very narrow window of parameters near κ ≈ 1/√2, where intervortex
forces in GL theory are also very small. By contrast in multicomponent theories type-1
and type-2 regimes are not in general separated by a Bogomol’nyi point.

The Ginzburg–Landau free energy functional for amulticomponent superconduc-
tor has the form

F = 1
2 ∑

i
(Dψi)(Dψi)∗ + V(ψi) + 1

2 (∇ × A)2 , (4.1)

where ψi are complex superconducting components, D = ∇ + ieA, and ψi = |ψi|eiθi ,
a = 1, 2, and V(ψi) stands for effective potential. We consider a general form of the
potential terms but the simplest gradient terms. In general however Equation (4.1) can
be augmented with mixed (with respect to the components ψi) gradient terms, e.g.,
Re[Dα=x,y,zψiDβ=x,y,zψj]. (For more details on the effects of these terms see [7].)

The multiple superconducting components can have various origins. First of all
they can arise in (i) superconducting states which break multiple symmetries. Such
systems are described by several order parameters in the sense of Landau’s theory of
phase transitions, and have different coherence lengths associated with them. Multi-
ple broken symmetries are present even in the simplest generalization of the s-wave
superconducting states: the s+ is superconducting state [8, 9], which breaks U(1)×Z2
symmetry [10]. Likewise, multiple broken symmetries are present in non-s-wave su-
perconductors. Another example ismixtures of independently conserved condensates
such asmodels for the theoretically discussed superconductivity inmetallic hydrogen
and hydrogen-rich alloys [11, 12]. There, ψi represents electronic and protonic Cooper
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pairs or deuteronic condensates. A similar situation was discussed in certain models
of nuclear superconductors in the interior of neutron stars, where ψi represent pro-
tonic and Σ− hyperonic condensates [13, 14].

Another class of multicomponent superconductors is (ii) systems which are de-
scribed bymulticomponent Ginzburg–Landau field theories that do not originate inmul-
tiple broken symmetries. The most common examples are multiband superconduc-
tors [15–17]. In this case, ψi represent superconducting components belonging to dif-
ferent bands. Since a priori there are no symmetry constraints preventing interband
Cooper pair tunneling the theory contains generic terms which describe intercompo-
nent Josephson coupling, η

2 (ψiψ∗
j + ψiψ∗

j ). These terms explicitly break symmetry.
Here the number of components ψi is not dictated by the broken symmetry pattern.
Multicomponent GL expansions can be justified when, for example, SU(N) or [U(1)]N
symmetry is softly explicitly broken down to U(1) [18]. Recently, rigorous mathemati-
cal work has been done on the justification of multicomponent Ginzburg–Landau ex-
pansions [19]. Some generalizations of type-1.5 concepts for the case of p-wave pairing
in multiband systems were discussed in [20].

4.1.1 Type-1.5 superconductivity

Multicomponent systems allow a type of superconductivity that is distinct from type-1
and type-2 [7, 10, 18, 21–26]. It emerges from the following circumstances: Multicom-
ponent GL models have several fundamental scales, namely the magnetic field pene-
tration depth λ andmultiple coherence lengths (characteristic scales of the variations
of the density fields) ξi, which render the model impossible to parameterize in terms
of a single dimensionless parameter κ, thus making the type-1/type-2 dichotomy in-
sufficient for classifying and describing these systems. Rather, in a wide range of pa-
rameters, there is a separate superconducting regime with some coherence lengths
that are larger and some that are smaller than the magnetic field penetration length
ξ1/√2 < ξ2/√2 < . . . < λ < ξM/√2 < . . . < ξN/√2. In that regime a situation is
possible where vortices exhibit long-range attraction (attributable to overlap of “outer
cores”) and short-range repulsion (driven by current-current and electromagnetic in-
teraction) and form vortex clusters coexisting with domains of the two-component
Meissner state [21]. The first experimental works [25, 26] proposed that this state is re-
alized in the two-bandmaterialMgB2. Moshchalkov et al. termed this regime “type-1.5
superconductivity” [25]. Recently, experimental works proposed that this state is real-
ized in Sr2RuO4 [27, 28] and LaPt3Si [29, 30]. A prediction of a (narrow) region of the
type-1.5 state was made for certain interface superconductors [31]. Also it was pointed
out that a generic type-1.5 regime should form in certain iron-based superconductors
near transitions from s to s+ is pairing states [10]. Type-1.5 superconductivity has been
discussed in the context of the quantum Hall effect [32] and neutron stars [33]. For
other recent works on this and related subjects see e.g., [20, 34–43].
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H HHc HcHc1 Hc2

-M -M

HHcHc1 Hc2

-M
Type-1.5Type-1 Type-2

Fig. 4.1: A schematic picture of magnetization curves of type-1, type-2 and type-1.5 superconduc-
tors. The magnetization jump at Hc1 is one of the features of the type-1.5 regime. However, it is not
a state-defining property since a jump can be caused by a number of other reasons (microscopic
corrections, anisotropies etc) in ordinary type-2 superconductors.

In these systems, one cannot straightforwardly use the usual one-dimensional
argument concerning the energy of the superconductor-to-normal state boundary to
classify the magnetic response. First of all, the energy per vortex in such a case de-
pends on whether a vortex is placed in a cluster or not. Formation of a single isolated
vortex might be energetically unfavorable, while formation of vortex clusters can be
favorable, because in a cluster (where vortices are placed in aminimumof the interac-
tion potential), the energy per flux quantum is smaller than that for an isolated vortex.
Besides the energy of a vortex in a cluster, there appears an additional characteristic
associated with the energy of the boundary of a cluster. In other words for systems
with inhomogeneous vortex states there are many different interfaces, some of which
have positive and some negative free energy.

We summarize the basic properties of type-1, type-2 and type-1.5 regimes in Ta-
ble 4.1.

4.2 The two-band Ginzburg–Landau model with arbitrary
interband interactions. Definition of the coherence lengths
and type-1.5 regime

4.2.1 Free energy functional

Realization of the type-1.5 regime requires at least two superconducting components.
In this section we study the type-1.5 regime using the following two-component
Ginzburg–Landau (TCGL) free energy functional.

F = 1
2 (Dψ1)(Dψ1)∗ + 1

2 (Dψ2)(Dψ2)∗ − νRe{(Dψ1)(Dψ2)∗} + 1
2 (∇ × A)2 + Fp (4.2)

Here D = ∇ + ieA, and ψi = |ψi|eiθi , i = 1, 2, represent two superconducting com-
ponents. While, in general, two components can have different critical temperatures,
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Table 4.1: Basic characteristics of bulk clean superconductors in type-1, type-2 and type-1.5 regimes.
Here the most common units are used in which the value of the GL parameter which separates type-
1 and type-2 regimes in a single-component theory is κc = 1/√2. Magnetization curves in these
regimes are shown in Figure 4.1

Single-
component type-1

Single-
component type-2

Multi-component type-1.5

Characteristic
lengths scales

Penetration
length λ & co-
herence length ξ
( λ

ξ < 1
√2

)

Penetration
length λ & co-
herence length ξ
( λ

ξ > 1
√2

)

Multiple characteristic density vari-
ations length scales ξi, and pene-
tration length λ, the nonmonotonic
vortex interaction occurs in these
systems in a large range of parame-
ters when ξ1 ≤ ξ2 ≤ . . . < √2λ <
ξM ≤ . . . ≤ ξN

Intervortex
interaction

Attractive Repulsive Attractive at long range and repul-
sive at short range

Energy of su-
perconducting/
normal state
boundary

Positive Negative Under quite general conditions neg-
ative energy of superconductor/
normal interface inside a vortex clus-
ter but positive energy of the vortex
cluster’s boundary

The magnetic
field required to
form a vortex

Larger than the
thermodynamical
critical magnetic
field

Smaller than the
thermodynamical
critical magnetic
field

In different cases either (i) smaller
than the thermodynamical critical
magnetic field or (ii) larger than
the critical magnetic field for single
vortex but smaller than the critical
magnetic field for a vortex cluster of
a certain critical size

Phases in ex-
ternal magnetic
field

(i) Meissner state
at low fields,
(ii) Macroscopi-
cally large normal
domains at ele-
vated fields. First-
order phase tran-
sition between
superconducting
(Meissner) and
normal states

(i) Meissner state
at low fields,
(ii) vortex lattices/
liquids at larger
fields. Second-
order phase tran-
sitions between
Meissner and
vortex states and
between vortex
and normal states
at the level of
mean-field theory.

(i) Meissner state at low fields,
(ii) Macroscopic phase separation
into vortex clusters coexisting with
Meissner domains at intermediate
fields, (iii) Vortex lattices/liquids
at larger fields. Vortices form via a
first-order phase transition. The tran-
sition from vortex states to normal
state is second order.

Energy E(N)
of N-quantum
axially sym-
metric vortex
solutions

E(N)
N < E(N−1)

N−1
for all N. Vortices
collapse onto a
single N-quantum
mega-vortex

E(N)
N > E(N−1)

N−1 for
all N. N-quantum
vortex decays
into N infinitely
separated single-
quantum vortices

There is a characteristic number Nc
such that E(N)

N < E(N−1)
N−1 for N < Nc,

while E(N)
N > E(N−1)

N−1 for N > Nc. N-
quantum vortices decay into vortex
clusters.
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in the simplest case, the two-band superconductor breaks only U(1) symmetry. Then
Equation (4.2) can be obtained as an expansion of the free energy in small gaps and
small gradients [17, 18, 44–47]. Such an expansion should not be confused with the
simplest expansion in a single small parameter τ = (1 − T/Tc) that yields only one or-
der parameter for a U(1) system and neglects the second coherence length. The mul-
tiparameter expansions that are not based on symmetry are justified under certain
conditions [18, 47]. Indeed the existence of two bands in a superconductor by itself is
not a sufficient condition for a superconductor to be described by a model like (4.2),
with two well-defined coherence lengths. For discussion of the applicability condi-
tions of the theory (4.2) for two-band U(1) systems see [18, 23]. Note that, in a gen-
eral two-band expansion, the terms corresponding to one component can be larger
than terms contributed by another component. However, as will be clear below, for
the discussion of typology of superconductors, the relevant parameters are charac-
teristic length scales associated with the exponential laws at which field components
restore their ground state values away from a perturbation such as a vortex core (i.e.,
the coherence lengths). Indeed a component with smaller amplitude can give rise to a
longer coherence length that is important for intervortex interaction, and should not be
discarded based merely on the smallness of amplitude |ψi|. In principle, for the com-
ponent with larger amplitude, one can keep higher power terms in the GL expansion
such as |ψi|6, etc. These terms lead to some corrections to the two coherence lengths,
while not affecting the overall form of intervortex forces. Typically these terms can be
neglected. This can be seen from the comparison of vortex solutions in the GL formal-
ism and in a microscopic model without GL expansion [18].

We begin with the most general analysis by considering the case where Fp can
contain an arbitrary collection of nongradient terms, or arbitrary power represent-
ing various inter- and intraband interactions. Belowwe show how three characteristic
length scales are defined in this two-component model (two associated with density
variations and the London magnetic field penetration length).

The only vortex solutions of the model (4.2) which have finite energy per unit
length are the integer N-flux quantum vortices which have the following phase wind-
ings along a contour l around the vortex core: ∮l ∇θ1 = 2πN,∮l ∇θ2 = 2πN, which
can be denoted as (N, N). Vortices with differing phase windings (N,M) carry a frac-
tional multiple of the magnetic flux quantum and have energy divergent with the sys-
tem size [48], which, under usual conditions, makes them irrelevant for the physics of
magnetic response.

In what follows, we investigate only the integer flux vortex solutions, which are
the energetically cheapest objects to produce by means of an external field in a bulk
superconductor. Note that since this object is essentially a bound state of two vortices,
it in general will have two different co-centered cores.
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4.3 Coherence lengths and intervortex forces at long range in
multiband superconductors

In this section we give a criterion for attractive or repulsive force between well-
separated vortices in system (4.2) and show how it can be determined purely by
analyzing Fp and how three fundamental length scales can be defined in the model
(4.2) following [7, 22, 49]. We also discuss the condition for nonmonotonic intervor-
tex forces. Below we will analyze system (4.2) in the case ν = 0 but for an arbitrary
effective potential. Detailed discussion of the effects of mixed gradient terms can be
found in [7]. By gauge invariance, Fp may depend only on |ψ1|, |ψ2| and δ = θ1 − θ2.
We consider the regime when Fp has a global minimum at some point other than the
one with |ψi| = 0, namely at (|ψ1|, |ψ2|, δ) = (u1, u2, 0) where u1 > 0 and u2 ≥ 0 (for
discussion of phase-separated regimes see [42]). Then themodel has a trivial solution,
ψ1 = u1, ψ2 = u2, A = 0, (i.e., the ground state). Here we are interested in models
that support axially symmetric single-vortex solutions of the form

ψi = fi(r)eiθ , (A1, A2) = a(r)
r (− sin θ, cos θ) (4.3)

where f1, f2, a are real profile functions with boundary behavior fi(0) = a(0) = 0,
fi(∞) = ui, a(∞) = −1/e. No explicit expressions for fi , a are known, but, by ana-
lyzing the system of differential equations they satisfy, one can construct asymptotic
expansions for them at large r, see [7, 22].

At large r from the vortex in the model (4.2) the system recovers (up to exponen-
tially small corrections) the ground state. In fact, the long-range field behavior of a
vortex solution canbe identifiedwith a solution of the linearization of themodel about
the ground state, in the presence of appropriate point sources at the vortex positions.
This idea is explained in detail for single component GL theory in [50]. A common
feature of topological solitons (vortices being a particular example) is that the forces
they exert on one another coincide asymptotically (at large separation) with those be-
tween the corresponding point-like perturbations (point sources) interacting via the
linearized field theory [51]. For (4.2), the linearizationhas one vector (A) and three real
scalar (ϵ1 = |ψ1|−u1, ϵ2 = |ψ2|−u2 and δ) degrees of freedom. The isolated vortex so-
lutions have, by definition within the ansatz we use, δ ≡ 0 everywhere. Note that the
GL system may also possess nonaxially symmetric solutions, such as vortex clusters,
and for these there is no reason why δ should vanish everywhere and in fact it does
not [24]. However, below we first consider long-range intervortex forces within lin-
ear approximation where these effects are neglected. In this case, for a single vortex,
we can use an axially symmetric ansatz. Hence we have no source for δ, so we can set
δ = 0 in the linearization, which becomes

Flin = 1
2 |∇ϵ1|2 + 1

2 |∇ϵ2|2 + 1
2 (ϵ1

ϵ2
) ⋅H(ϵ1

ϵ2
)+ 1

2 (∂1A2 − ∂2A1)2 + 1
2 e

2 (u21 + u22) |A|2 .
(4.4)
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Here,H is the Hessian matrix of Fp(|ψ1|, |ψ2|, 0) about (u1, u2), that is,
Hij = ∂2Fp

∂|ψi |∂|ψj|
(u1 ,u2,0) . (4.5)

Note that, in Flin, the vector potential field A decouples from the scalar fields ψi. This
mode mediates a repulsive force between vortices (originating in current-current and
magnetic interaction) with decay length which is the London magnetic field penetra-
tion length λ = 1/μA, where μA is the mass of the field, that is,

μA = e√u21 + u22 . (4.6)

By contrast, the scalar fields ϵ1, ϵ2 are, in general, coupled (i.e., the symmetric
matrixH has off-diagonal terms). To remove the cross-terms one should find a proper
linear combination of the fields that correspond to normal modes of the system. To
this end we make a linear redefinition of fields, expanding (ϵ1, ϵ2)T with respect to
the orthonormal basis for ℝ2 formed by the eigenvectors v1, v2 ofH,

(ϵ1, ϵ2)T = χ1v1 + χ2v2 . (4.7)

The corresponding eigenvalues μ21, μ
2
2 are necessarily real (sinceH is symmetric) and

positive (since (u1, u2) is a minimum of Fp), and hence

Flin = 1
2

2∑
a=1

(|∇χi|2 + μ2i χ
2
i ) + 1

2
(∂1A2 − ∂2A1)2 + 1

2
e (u21 + u22) |A|2 . (4.8)

The scalar fields χ1, χ2 describe linear combinations of the original density fields. The
new fields recover ground state values at different characteristic length scales. The
characteristic length scales are nothing but coherence lengths which are given by the
inverse of μi

ξ1 ≡ 1/μ1 , ξ2 ≡ 1/μ2 (4.9)

respectively. Note that here and below we absorb a factor 1/√2 in the definition of co-
herence length. Each of these fields defines a vortex core of some characteristic size
thatmediate an attractive force between vortices at long range. In terms of the normal-
mode fields χ1, χ2 and A, the composite point source which must be introduced into
Flin to produce field configurations identical to those of the vortex asymptotics is

κ1 = q1δ(x) , κ2 = q2δ(x) , j = m(∂2, −∂1)δ(x) , (4.10)

where κ1 is the source for χ1, κ2 the source of χ2, j the source for A, δ(x) denotes the
two-dimensional Dirac delta function and q1, q2 and m are unknown real constants
which can, in principle, be determined numerically by a careful analysis of the vor-
tex asymptotics. Physically, a vortex, as seen from a long distance can be thought of
as a point particle carrying two different types of scalar monopole charge, q1, q2, in-
ducing fields of mass μ1, μ2 respectively, and a magnetic dipole moment m oriented
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orthogonal to the x1x2 plane, inducing a massive vector field of mass μA ≡ (√2λ)−1.
The interaction energy experienced by a pair of point particles carrying these sources,
held distance r apart, is easily computed in linear field theory. For example, two scalar
monopoles of charge q inducing fields of mass μ held at positions y and ỹ inℝ2 expe-
rience interaction energy

Eint = − ∫
ℝ2

κχ̃ = − ∫
ℝ2

qδ(x − y) q
2π K0(μ|y − ỹ|) = − q2

2π K0(μ|y − ỹ|) (4.11)

where κ is the source for the monopole at y, χ̃ is the scalar field induced by the
monopole at ỹ [50] and K0 denotes the modified Bessel’s function of the second kind.
The interaction energy for a pair of magnetic dipoles may be computed similarly. In
the case of our two-component GL model, the total long-range intervortex interaction
energy has three terms, corresponding to the three sources in the composite point
source (4.10), and turns out to be

Eint = m2

2π K0(μAr) − q21
2π K0(μ1r) − q22

2π K0(μ2r) . (4.12)

Note that, the first term in this formula, which originates in magnetic and current-
current interaction, is repulsive, while the other two are associated with core-core
interactions of two kinds of cores and are attractive. The linearized theory does not
contain information about the prefactors q1, q2 and m. However, they can be deter-
mined numerically from the full nonlinear GL theory. At very large r, Eint(r) is domi-
nated by whichever term corresponds to the smallest of the three masses, μA, μ1, μ2,
so to determine whether vortices attract at long range, it is enough to compute just
these masses. The generalization to the case with a larger number of components is
straightforward: additional coherence lengths give additional contributions to attrac-
tive interaction in the form − q2i

2π K0(μir). Generalizations to multiple repulsive length
scales in layered systems or caused by stray fields were discussed in [38]. In thin films,
intervortex interaction acquires also 1/r repulsion at long range due to the magnetic
field outside the sample, similarly to the single-component case [52].

Consider the case where the long-range interaction is attractive due to ξ1 > λ > ξ2
being the largest length scale of the problem. For the existence of short-range repulsive
but long-range attractive interaction it is required that m2 is sufficiently large. This
criterion is equivalent to the condition that the system has a solution with negative
free energy interfaces in external fields [7, 22, 49]. Indeed when the interface energy is
always positive, the system exhibits type-1 behavior: i.e., tends to form a single vortex
with high winding number. If there are interfaces with negative energy in the external
field, the system tends to maximize these interfaces. In the type-1.5 regime the system
forms vortex clusters, where it maximizes the number of vortex cores inside the vortex
clusters. At the same time the systemminimizes the interface of the cluster itself (that
costs positive energy).
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To summarize, the nature of intervortex forces at large separation in the model
under consideration, can be determined purely by analyzing Fp: one finds the ground
state (u1, u2) and the Hessian H of Fp about (u1, u2). From this one computes the
mass of the vector field A, μA = e√u21 + u22 (i.e., the inverse of the magnetic field pene-
tration length), and themasses μ1, μ2 of the scalar normal modes (i.e., the inverses of
the coherence lengths), these masses being the square roots of the eigenvalues ofH. If
either (or both) of μ1, μ2 are less than μA, then the dominant interaction at long range
is attractive (i.e., the vortex core extends beyond the area where the magnetic field is
localized), while if μA is less than both μ1 and μ2, the dominant interaction at long
range is repulsive. The special feature of the two-componentmodel is that the vortices
whose core extends beyond the magnetic field penetration length are thermodynam-
ically stable in a range of parameters and, moreover, one can have a repulsive force
between the vortices at shorter distances where the system has thermodynamically
stable vortex solutions [7, 22, 49]. It is important to stress that length scales μ−11 , μ−12
are not directly associated with the individual condensates ψ1, ψ2. Rather they are
associated with the normal modes χ1, χ2, defined as [7, 22]

χ1 = (|ψ1| − u1) cosΘ − (|ψ2| − u2) sinΘ , χ2 = −(|ψ1| − u1) sinΘ − (|ψ2| − u2) cosΘ .
(4.13)

These may be thought of as rotated (in field space) versions of ϵ1 = |ψ1| − u1, ϵ2 =|ψ2|−u2. Themixing angle, that is, the angle between the χ and ϵ axes, is Θ, where the
eigenvector v1 ofH is (cosΘ, sinΘ)T. This, again, can be determined directly fromH.

Note also that the shorter of the length scales μ−11 , μ−12 , although being a funda-
mental length scale of the theory, can be masked in a density profile of a vortex so-
lution by nonlinear effects. This, for example certainly happens if μ−11 ≪ μA ≡ λ−1

(see short discussion in Ref. [22]). Also note that in general the minimum of the inter-
action potential will not be located at the London penetration length, because it will
in general also be affected by nonlinearities. From this discussion it follows that, in
general, one cannot drop the subdominant component based on comparison of the
ground state values of the amplitudes of |ψi | in the GL expansion. Namely, the long-
range interaction can be determined by a mode with smaller amplitude. The formal
justification of the multiband GL expansion can be found in [18].

4.4 Critical coupling (Bogomol’nyi point)

In single-component superconductors, the type-1 and type-2 regimes are separated by
aBogomol’nyi point κ = 1 (note that abovewe absorbed the factor 1/√2 into the def-
inition of coherence length). At that point, vortices do not interact, the free energy of
normal-to-superconductor interfaces is zero andwehaveHc1 = Hc2 = Hc [5, 51, 53, 54].
This regime is referred to as the “critical point” because of the saturation of the Bogo-
mol’nyi inequality [5, 51, 53–56]. Thenecessary, but not sufficient, conditions for a crit-
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ical point is lack of intervortex forces at long range within the linear approximation.
To that end, all modes excited in a vortex solutionmust have equalmasses μi and am-
plitudes. FromEquation (4.12) it is obvious that for amulticomponent superconductor
it requires fine tuning and, in general, type-1 and type-2 regimes are not separated by
a critical point. Furthermore, from the section on microscopic theory below, it is clear
that in general μ1 and μ2 (as functions of the system’s parameters) do not cross but
form an avoided crossing. Thus, in the two-component case the Bogomol’nyi critical
point is a zero-measure parameter set which requires special symmetry of the model.
Such fine tuning for a composite vortex can be achieved in a U(1) × U(1) system with
a potential that is symmetric with respect to both components

Fp = −α|ψ1|2 + β
2 |ψ1|2 − α|ψ2|2 + β

2 |ψ2|2 (4.14)

For a standard form of gradient terms, this potential gives equal coherence
lengths. The Bogomol’nyi point is realized when ξ1 = ξ2 = λ. Just like in a single-
component system, vortices donot interact in this regime. In single-component super-
conductors with κ ≈ 1, a substantial literature was devoted to intervortex interactions
that appear beyond Ginzburg–Landau field theory in microscopic theory [6, 57, 58].
As follows from the microscopic theory of multiband systems [23], these effects are in
general negligible for the type-1.5 regime. The microscopic theory [23] confirms that
the physics behind the vortex interaction in the type-1.5 regime is dominated by the
same mechanism as in the GL model: density-density interaction caused by a large
“outer core” due to a disparity in coherence lengths.

4.5 Microscopic theory of type-1.5 superconductivity in U(1)
multiband case

In this section we briefly outline microscopic theory of type-1.5 superconductivity in
the particular case of multiband superconductors that break only U(1) symmetry. In
this case existence of multiple coherence lengths does not follow from symmetry and
has to be justified. A reader who is interested in more general cases of higher symme-
try breaking as well as the general properties of the type-1.5 state can skip this discus-
sion and proceed directly to the next section. Existence of multiple superconducting
bands is not a necessary condition for appearance of multiple coherence lengths [23].
The appearance of multiple coherence lengths and a type-1.5 regime in multiband-
band superconductors was described using microscopic theory at all temperatures,
without relying on GL expansions in [23]. We refer a reader, interested in a full micro-
scopic theory that does not rely on GL expansion to that work, while here we focus on
microscopic justification of GL expansion.

As discussed above, inmultiband systems, in general multicomponent GL expan-
sions are not based on symmetry. Therefore, obviously it cannot be obtained as an
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expansion in a single small parameter τ = 1 − T/Tc. Instead such expansions are jus-
tifiedwhen the systemhasmultiple small parameterswhich are not symmetry-related.
In the simplest case these are multiple small gaps in different bands, small gradients,
and small interband coupling constants. A single-parameter-τ expansion emerges as
a single-component reduction of the model in the τ → 0 limit for a system that breaks
only U(1) symmetry [18].

In this sectionwe focuson the two-bandcase and consider themicroscopic deriva-
tion of the two-component GL model (TCGL):

F = ∑
j=1,2

(aj|∆j|2 + bj
2

|∆j|4 + Kj|D∆j |2)
− γ (∆1∆∗2 + ∆2∆∗1) + B2

8π
(4.15)

where D = ∇+ iA, A and B are the vector potential andmagnetic field and ∆1,2 are the
gap functions in two different bands.

4.5.1 Microscopic Ginzburg–Landau expansion for U(1) two-band system

To verify applicability of TCGL theory we consider the microscopic model of a clean
superconductor with two overlapping bands at the Fermi level [18, 23]. Within quasi-
classical approximation the band parameters characterizing the two different cylin-
drical sheets of the Fermi surface are the Fermi velocities VFj and the partial densities
of states (DOS) νj, labeled by the band index j = 1, 2.

It is convenient to normalize the energies to the critical temperature Tc and length
to r0 = ℏVF1/Tc. The vector potential is normalized by ϕ0/(2πr0), the current den-
sity normalized by cϕ0/(8π2r30) and therefore the magnetic field is measured in units
ϕ0/(2πr20) where ϕ0 = πℏc/e is the magnetic flux quantum. In these units the Eilen-
berger equations for quasiclassical propagators take the form

vFjnpDfj + 2ωnfj − 2∆jgj = 0 ,
vFjnpD∗f+j − 2ωnf+j + 2∆∗j gj = 0 .

(4.16)

Here vFj = VFj/VF1, ωn = (2n + 1)πT are Matsubara frequencies, the vector np =(cos θp, sin θp) parameterizes the position on 2D cylindrical Fermi surfaces. The
quasiclassical Green’s functions in each band obey the normalization condition
g2j + fj f+j = 1.

The self-consistency equation for the gaps is

∆i = T
Nd∑
n=0

2π∫
0

λijfjdθp . (4.17)

The coupling matrix λij satisfies the symmetry relations n1λ12 = n2λ21 where ni are
the partial densities of states normalized so that n1 + n2 = 1. The vector potential
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satisfies the Maxwell equation ∇ × ∇ × A = j where the current is

j = −T ∑
j=1,2

σj
Nd∑
n=0

Im
2π∫
0

npgjdθp . (4.18)

The parameters σj are given by σj = 4πρnjvFj and

ρ = (2e/c)2(r0VF1)2ν0 .
Here we briefly outline the derivation of the TCGL functional (4.15) from the

microscopic equations following [23]. First we find the solutions of the Eilenberger
equations (4.16) in the form of the expansion by the gap functions amplitudes |∆1,2|
and their gradients |(npD)∆1,2|. Then these solutions are substituted to the self-
consistency equation (4.17). Using this procedure we find the solutions of Equations
(4.16) in the form:

fj = ∆j
ωn

− |∆j|2∆j
2ω3

n
− vFj
2ω2

n
(npD)∆j + v2Fj

4ω3
n
(npD)(npD)∆j , (4.19)

and f+j (np) = f∗j (−np). Note that this GL expansion is based on neglecting the higher
order terms in powers of |∆| and |(npD)∆|. Indeed this approximation naturally fails
in a number of cases. The regimes when it can be justified were determined in the
work [18] by a direct comparison to the full microscopic model. Let us determine mi-
croscopic coefficients in the GL expansion. Substituting to the self-consistency equa-
tions (4.17) and integrating by θp we obtain

∆1 = (λ11∆1 + λ12∆2)G + (λ11GL1 + λ12GL2) (4.20)
∆2 = (λ21∆1 + λ22∆2)G + (λ21GL1 + λ22GL2) (4.21)

where

G = 2
Nd∑
n=0

πT
ωn

; X = ∑
n=0

πT
ω3
n

(4.22)

GLj = X( v2Fj
4 D2∆j − |∆j |2∆j) (4.23)

Expressing GLi from the equations above we obtain

n1GL1 = n1 ( λ22
DetΛ̂

− G) ∆1 − λJn1n2
DetΛ̂

∆2 (4.24)

n2GL2 = n2 ( λ11
DetΛ̂

− G) ∆2 − λJn1n2
DetΛ̂

∆1 (4.25)
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The system of two coupled GL Equations (4.24) can be obtained minimizing the free
energy provided the coefficients in Equation (4.15) are given by

ai = ρni(λ̃ii + ln T − Gc)
γ = ρn1n2λJ/DetΛ̂
bi = ρniX/T2
Ki = v2Fibi/4

(4.26)

where λJ = λ21/n1 = λ12/n2. Note that the expression for Ki in Ref. [18] has an extra
coefficient ρ. The temperature is normalized to Tc. Here X = 7ζ(3)/(8π2) ≈ 0.11,
λ̄ij = λ−1ij and Gc = G(Tc) is determined by the minimal positive eigenvalue of the
inverse coupling matrix λ̂−1:

Gc = Trλ − √Trλ2 − 4Detλ
2Detλ .

We have used the expression G(T) = G(Tc) − ln T. Near the critical temperature ln T ≈−τ and we obtain
ai = αi(T − Ti) (4.27)
αi = niλJ (4.28)
Ti = (1 + Gc − λ̃ii) . (4.29)

In the above procedure of GL expansion leading to system (4.24) we assumed both
the eigenvalues of the coupling matrix λ̂ are positive.

4.5.2 Temperature dependence of coherence lengths

Coherence lengths are given by the inverse masses of linear modes. First we investi-
gate the asymptotic behavior of the superconducting gaps formulated in terms of the
linear modes of the density fields both in TCGL andmicroscopic theories described in
the previous section. To find the linear modes we follow the procedure described in
Section 4.3 using the GL model with expansion coefficients (4.26). Let us set K1 = K2
which can be accomplished by rescaling the fields ∆1,2. Then the corresponding Hes-
sianmatrix (4.5) can be diagonalized with the k-independent rotation introducing the
normal modes χβ = Uβi(∆i − ∆i0)where β = L, H and i = 1, 2. The rotation matrix Û is
characterized by the mixing angle [7, 23] as follows:

Û = ( cos θL sin θL− sin θH cos θH
) (4.30)

Note that in accordance with the results of section (4.3) the TCGL theory yields identi-
cal values of two mixing angles θL = θH = Θ. However, in general, outside the region
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(a)

(c)

(b)

(d)

Fig. 4.2: (a) and (b) Comparison of field masses (inverse coherence lengths) given by full micro-
scopic (solid lines), and microscopically derived TCGL (dotted) theories. The microscopic parameters
are λ11 = 0.5, λ22 = 0.426 and λ12 = λ21 = 0.01; 0.1 for (a,b) respectively. The yellow shaded
region above the dashed-dotted line shows the continuum of length scales determined by branch-
cut contributions which are specific to the microscopic theory and are not captured by the TCGL
description. (c,d) Comparison of mixing angle behavior given by the exact microscopic (red lines)
and microscopically derived TCGL theories (blue line). Note that the larger coherence length has a
maximum as a function of temperature deep below Tc near the crossover to the regime when the
weak band superconductivity is induced by an interband proximity effect (the corresponding inverse
quantity μL has a minimum). This nonmonotonic coherence length behavior is more pronounced
at weak interband coupling and disappears at strong interband coupling [23]. A multiband system
with weak interband interaction can easily fall into the type-1.5 regime near that crossover tempera-
ture. Panels (b) and (d) show how the TCGL theory starts to deviate from microscopic theory at lower
temperatures when interband coupling is increased. Parameters are the same as on panels (a,b)
respectively.

where GL expansion is accurate, the exact microscopic calculation yields deviations
θH ̸= θL. This is discussed in Ref. [18].

The fields χL,H corresponding to the linear combinations of ∆1,2 vary at distinct
lengths: ξH = 1/μH and ξL = 1/μL. They constitute coherence lengths of the TCGL
theory (4.15) and characterize the asymptotic relaxation of the linear combinations of
the fields ∆1,2, the linear combinations are represented by the composite fields χL,H.

With the help of Equations (4.26) for GL coefficients obtained from microscopic
theory we can study the temperature dependencies of the coherence lengths char-

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



148 | 4 Type-1.5 superconductivity

acterizing the asymptotic relaxation of the gap fields. Since the system in question
breaks only one symmetry, then at critical temperature only one coherence length can
diverge while the second coherence should stay finite. Infinitesimally close to critical
temperature T = Tc − 0 the divergent coherence length has the following standard
mean-field behavior ξL = 1/μL ∼ 1/τ1/2, where τ = 1 − T/Tc. The contribution of
another linear mode in the theory sets the scale which is proportional to ξH = 1/μH
and remains finite even at T = Tc. But the amplitude of this mode rapidly vanishes
in the region T = Tc − 0. Similar behavior can be derived directly in a full micro-
scopic calculation [18]. In Figure 4.2a, b the temperature dependence ofmasses μL,H is
plotted comparing the results of the full microscopic [23] andmicroscopically derived
TCGL theories [18]. It is shown for the cases of weak and strong interband coupling
in Figure 4.2c, d. We have found that TCGL theory describes the lowest characteristic
mass μL(T) with a very good accuracy near Tc (compare the blue and red curves in
Figure 4.2a, b). Remarkably, when interband coupling is relatively weak (Figure 4.2c)
the “light” mode is quite well described by TCGL also at low temperatures down to
T = 0.5Tc aroundwhich the weak band crosses over from active to passive (proximity-
induced) superconductivity. Indeed the τ parameter is large in that case. Nonetheless,
if the interband coupling is small one does have a small parameter to implement a GL
expansion for one of the components. Namely, one can still expand, e.g., in the powers
of the weak gap |∆2|/πT ≪ 1. Conversely, for the “heavy” mode we naturally obtain
some discrepancies even relatively close to Tc, although TCGL theory gives a quali-
tatively correct picture for this mode when the interband coupling is not too strong.
More substantial discrepancies between TCGL and microscopic theories appear only
at lower temperatures or at stronger interband coupling (Figure 4.2d) where the mi-
croscopic response function has only one pole, while TCGL theory generically has two
poles. Note that these expected deviations concern shorter range physics and do not
directly affect long-range intervortex forces. In the type-1.5 regime long-range attrac-
tive forces are governed by core-core interaction whose range is set by the larger co-
herence length (lighter mode). The long-range attractive forces here are similar to the
long-range forces in type-1 superconductors, while short-range forces are similar to
those in type-2 superconductors. These interactions are obviously principally differ-
ent from microscopic-physics-dominated intervortex forces in superconductors near
the Bogomol’nyi point. Most clearly that can be distinguished within the microscopic
theory [23].

The microscopic two-band GL expansion discussed in this section has a straight-
forward generalization to N-component expansions in N-band U(1) models [47], as
well as tomore complicated states suchas s+ is that breakmultiple symmetries [9, 47].
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4.6 Systems with generic breakdown of type-1/type-2 dichotomy

The simplest situationwhere the type-1/type-2dichotomygenerically doesnothold are
superconducting systems that exhibit a phase transition from the U(1) to U(1) × U(1)
state (or similar transitions between the states with broken higher symmetries), such
as the theoretically discussed superconducting states of liquid metallic hydrogen or
deuterium [11], or models involving mixture of protonic and Σ− hyperonic conden-
sates in neutron stars [13]. Indeed at such a transition the magnetic field penetration
length remains finite but there is a divergent coherence length due to the breakdown
of additional symmetry (if the phase transition is continuous). Also the mode associ-
ated with the divergent coherence length looses its amplitude at the phase transition.
Therefore, near this transition one of the coherence lengths is the largest length scale
of the problem and the system can only be either a type-1 or type-1.5 superconductor.
A similar situation was discussed in the context of interface superconductors [31].

In away similar, but more subtle, situation takes place at the transition from the s
to s+ is state [10]. The s+ is superconductor breaks additional Z2 symmetry and there
is a corresponding diverging coherence length in the problem. An important generic
aspect of the s + is superconducting states is that the density excitations are coupled
with the phase difference excitations in the linear theory [10]. One of the mixed phase-
difference-densitymodes gives rise to a divergent coherence length at that phase tran-
sition. Thus, such a system can be either type-1 or type-1.5 near the transition from the
s to s + is state.

4.7 Structure of vortex clusters in the type-1.5 regime in a
two-component superconductor

In this section, following Ref. [24], we consider in more detail the full nonlinear prob-
lem in two-component Ginzburg–Landau models, with and without Josephson cou-
pling ηwhich directly couples the two condensates (for treatment of other kinds of in-
terband coupling see [7], formicroscopic derivation of the coefficients see Section 4.5).
When η = 0 the condensates are coupled electromagnetically. When there is nonzero
interband Josephson coupling, the phase difference is associatedwith amassivemode
with mass√η(u21 + u22)/u1u2.
F = 1

2 ∑
i=1,2

[|(∇ + ieA)ψi |2 + (2αi + βi|ψi |2) |ψi |2] + 1
2 (∇ ×A)2 − η|ψ1||ψ2| cos(θ2 − θ1)

(4.31)
Since the Ginzburg–Landau model is nonlinear, in general intervortex interac-

tions arenonpairwise.Nonpairwise interactions are important at shorter rangeswhere
the linearized theory, considered above, does not in general apply. Below we discuss
the importance of complicated nonpairwise forces between superconducting vortices
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arising in certain cases in multicomponent systems [24, 42, 43]. These nonpairwise
forces in certain situations have important consequences for vortex cluster formation
in the type-1.5 regime.

Figures 4.3 and 4.4 show numerical solutions for N-vortex bound states in several
regimes (for technical details see Appendix of [24]). The commonaspect of the regimes
shown on these figures is that the density of one of the components is depleted in the
vortex cluster and has its current mostly concentrated on the boundary of the vortex
cluster (i.e., has a “type-1”-like behavior). At the same time, the second component
forms a distinct vortex lattice inside the vortex cluster (i.e., has a “type-2”-like behav-
ior).

When stray fields are taken into account in thin films, they give repulsive intervor-
tex interaction at very long distances, while vortices can retain attractive interaction
at intermediate length scales. That gives rise to various hierarchical structures such
as lattices of vortex clusters or vortex stripes [38, 59]. The study of dynamics demon-
strated that such vortex systems can form a vortex glass phase [60]. This is in contrast

Fig. 4.3: Ground state of Nv = 9 flux quanta in a U(1) × U(1) type-1.5 superconductor (i.e., η = 0).
The parameters of the potential being here (α1, β1) = (−1.00, 1.00) and (α2, β2) = (−0.60, 1.00),
while the electric charge is e = 1.48 (in these units the electric charge value parameterizes the
London penetration length). The displayed physical quantities are (a) the magnetic flux density, (b)
(resp. c) is the density of the first (resp. second) condensate |ψ1,2|2. (d) (resp. e) shows the norm of
the supercurrent in the first (resp. second) component. Panel (f) is Im(ψ∗

1 ψ2) ≡ |ψ1||ψ2| sin(θ2 − θ1)
being nonzero when there appears to be a difference between the phase of the two condensates.
The solution shows that clearly there is a vortex interaction-induced phase-difference gradient that
contributes to nonpairwise intervortex forces. Parameters are chosen so that the second component
has a type-1-like behavior while the first one tends to form well-separated vortices. The density
of the second band is depleted in the vortex cluster and its current is mostly concentrated on the
boundary of the cluster (see Ref. [24]).

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.8 Macroscopic separation in domains of different broken symmetries | 151

Fig. 4.4: Elongated ground state cluster of 18 vortices in a superconductor with two active bands.
Parameters of the interacting potential are (α1, β1) = (−1.00, 1.00), (α2, β2) = (−0.0625, 0.25)
while the interband coupling is η = 0.5. The electric charge, parameterizing the penetration depth
of the magnetic field, is e = 1.30 so that the well in the nonmonotonic interacting potential is
very small. In this case there is visible admixture of the current of the second component in vortices
inside the cluster, though its current is predominantly concentrated on the boundary of the cluster.

to type-2 superconductors where a vortex glass can appear only in the presence of vor-
tex pinning and not in clean samples.

4.8 Macroscopic separation in domains of different broken
symmetries in type-1.5 superconducting state

As discussed above, a system with nonmonotonic intervortex interaction potentials
allows a state with macroscopic phase separation in vortex droplets and Meissner do-
mains. In type-1.5 superconductors this state can also represent a phase separation
into domains of states with different broken symmetries. In this section we will give
two different examples of how such behavior can arise.

Note that in multicomponent superconductors some symmetries are global (i.e.,
associatedwith the degrees of freedomdecoupled from the vector potential) and some
are local, i.e., associated with the degrees of freedom coupled to the vector potential.
As is well known, in the latter case the concept of spontaneous symmetry breakdown
is not defined the same way as in a system with global symmetry. However below, for
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brevity we will not be making terminological distinctions between local and global
symmetries (detailed discussion of these aspects can be found in e.g., [48]).

4.8.1 Macroscopic phase separation into U(1) × U(1) and U(1) domains in the
type-1.5 regime

Consider a superconductor with broken U(1) × U(1) symmetry, i.e., a collection of in-
dependently conserved condensates with no intercomponent Josephson coupling. As
discussed above, in the vortex cluster state, in the interior of a vortex droplet, the su-
perconducting component which has vortices with larger cores is more depleted. In
the U(1) × U(1) system the vortices with phase windings in different condensates are
bound electromagnetically, resulting in an asymptotically logarithmic interaction po-
tentialwith aprefactor proportional to |ψ1 |2|ψ2|2/(|ψ1|2+|ψ2|2) [48], and evenweaker
interaction strength at shorter separations.

Consider now a macroscopically large vortex domain. Even if the second compo-
nent there is not completely depleted, its density is suppressed and, as a consequence
the binding energy between vortices with different phase windings (∆θ1 = 2π, ∆θ2 =
0) and (∆θ1 = 0, ∆θ2 = 2π), can be arbitrarily small. Moreover, the vortex ordering
energy in the component withmore depleted density is small aswell. As a result, even
a tiny thermal fluctuation can drive a vortex sublattice melting transition [11, 61] in a
large vortex cluster. In that case the fractional vortices in the weaker component tear
themselves off the fractional vortices in the strong component and form a disordered
state. Note that vortex sublattice melting is associated with the phase transition from
U(1) × U(1) to U(1) broken symmetries [11, 61]. Thus, a macroscopically large vortex
cluster can realize a domain of U(1) phase (associated with the superconducting state
of the strong component) immersed in a vortexless U(1)×U(1)Meissner state domain.
If the magnetic field is increased, the systemwill go from the vortex cluster state (with
coexisting U(1) × U(1) and U(1) domains) to a U(1) vortex state.
4.8.2 Macroscopic phase separation in U(1) and U(1) × Z2 domains in three-band

type-1.5 superconductors

In this subsection we discuss an example of vortex clusters in three-band supercon-
ductors that locally break an additional Z2 symmetry forming “phase-frustrated”
states. Such superconductors also allow the coexistence of domains with different
broken symmetries in the ground state. The minimal GL free energy functional to
model a three-band superconductor is

F = 1
2 (∇×A)2+ ∑

i=1,2,3

1
2 |Dψi|2+αi|ψi |2+12βi|ψi |4+ ∑

i=1,2,3
∑
j>i

ηij|ψi ||ψj| cos(φij). (4.32)
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Here the phase differences between two condensates are denoted φij = θj − θi. Mi-
croscopic derivations of such models describing s + is superconducting states can be
found in [9, 47].

Systems with more than two Josephson-coupled bands can exhibit phase frustra-
tion [8–10, 62, 63]. For ηij < 0, a given Josephson interaction energy term isminimal for
zero phase difference (we then refer to the coupling as “phase-locking”), while when
ηij > 0 it is minimal for a phase difference equal to π (we then refer to the coupling as
“phase-antilocking”). Two-component systems with bilinear Josephson coupling are
symmetric with respect to the sign change ηij → −ηij as the phase difference changes
by a factor π, for the system to recover the same interaction. However, in systems with
more than two bands there is generally no such symmetry. For example, if a three-
band system has η > 0 for all Josephson interactions, then these terms cannot be
simultaneously minimized, as this would correspond to all possible phase differences
being equal to π.

The ground state values of the fields |ψi| and φij of system (4.32) are found by
minimizing the potential energy

∑
i
{αi|ψi|2 + 1

2
βi|ψi |4} + ∑

j>i
ηij|ψi||ψj| cos(φij) . (4.33)

This can however not be done analytically in general, though certain properties can
be derived from qualitative arguments. In terms of the sign of the η’s, there are four
principal situations:

Case Sign of η12, η13, η23 Ground state phases

1 − − − φ1 = φ2 = φ3
2 − − + Frustrated
3 − + + φ1 = φ2 = φ3 + π
4 + + + Frustrated

Case (2) can result in several ground states. If |η23| ≪ |η12|, |η13|, then the phase
differences are generally φij = 0. Conversely, if |η12|, |η13| ≪ |η23| then φ23 = π and
φ12 is either 0 or π. However, in certain parameter ranges the resulting state is in fact
a “compromise” where φij is not an integer multiple of π.

Case (4) is in fact equivalent to (2) (mapping between these scenarios is trivial).
The wide range of resulting ground states can be seen in Figure 4.5. As η12 is scaled,
ground state phases change from (−π, π, 0) to the limit where one band is depleted
and the remaining phases are (−π/2, π/2).
An important property of the potential energy (4.33) is that if any of the phase dif-
ferences φij is not an integer multiple of π, then the ground state possesses an addi-
tional discrete Z2 degeneracy. For example, for a system with αi = −1, βi = 1 and
ηij = 1, two possible ground states exist and are given by φ12 = 2π/3, φ13 = −2π/3
or φ12 = −2π/3, φ13 = 2π/3. Thus in this case, the broken symmetry is U(1) × Z2, as
opposed to U(1). As a result, like any other system with Z2 degeneracy, the theory al-
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Fig. 4.5: Ground state phases of the three components as a function of η12 (here θ3 = 0 fixes the
gauge). The GL parameters are αi = 1, βi = 1, η13 = η23 = 3. For intermediate values of η12 the
ground state exhibits discrete degeneracy (symmetry is U(1) × Z2 rather than U(1)) since the energy
is invariant under the sign change θ2 → −θ2, θ3 → −θ3. For large η12 we obtain θ2 − θ3 = π
implying that |ψ3| = 0 and so there is a second transition from U(1) × Z2 to U(1) and only two
bands at the point d). Here, the phases were computed in a system with only passive bands, though
systems with active bands exhibit the same qualitative properties except for the transition to U(1)
and two bands only (i.e., active bands have nonzero density in the ground state).

lows an additional set of topological excitations: domainwalls interpolating between
the two inequivalent ground states as well as more complicated topological excita-
tions [64–66]. Generalizations to frustrated systems with larger numbers of compo-
nents was discussed in [67].

There is a divergent coherence length at the critical point where the system un-
dergoes the U(1) × Z2 → U(1) phase transition (which is the transition from an s + is
to an s state). The nature of this divergent length-scale is revealed by calculation of
the normal modes. Specifically, generating a set of differential equations from Equa-
tion (4.32) and linearizing these close to the ground state, gives a mass-matrix whose
eigenbasis is also an orthonormal basis of small perturbations to the ground state [10].
In systems that break only U(1) symmetry, these modes are segregated with respect to
phase and amplitude so that small perturbations to the phase and amplitude sectors
decay independently of each other. Small perturbations to the amplitude thus haveno
implications for the phase difference sector, and vice versa. In contrast, in the region
where Z2 symmetry is broken the modes are generally mixed in this kind of model. In
this case a perturbation to the amplitude sector necessarily implies a perturbation to
the phase sector as well and vice versa.

The immediate implication of this is that in the region with broken Z2-symmetry,
there are five rather than three coherence lengths that describe amplitude perturba-
tions. If the phase transition is second order one of these coherence lengths diverges
as we approach the transition point where Z2-symmetry is restored. Thus, vortices in
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this region produce a perturbation to the amplitude that recovers with a coherence
length that is divergent. Since the magnetic field penetration depth is finite near that
transition the system can be either type-1 or type-1.5 with attractive intervortex inter-
action [10].

In iron-based superconductors a dome of s+ is state is expected to form as a func-
tion of doping [9]. Away from the transition point, iron-based materials appear to be
type-2. Also the amplitude of the mode with divergent coherence length vanishes at
the Z2 phase transitions. Thus, there should be a range of doping and temperatures
in the proximity of the critical point where the type-1.5 superconductivity is generic.
The general case of N-component frustrated superconductors is less studied, however
certainly in case of a larger number of components there are more possibilities for the
appearance of normal modes with low or zero masses leading to type-1.5 regimes [67].

4.8.3 Nonlinear effects and long-range intervortex interaction
in s + is superconductors

The ground state of a phase-frustrated superconductor is in many cases nontrivial,
with phase differences being compromises between the various interaction terms. In-
serting vortices in such a system can shift the balance between different competing
couplings, since vortices can in general have different effects on the different bands.
In particular, since the core sizes of vortices are not generally the same in all bands,
vortex matter typically depletes some components more than others and thus can al-
ter the preferred values of the phase difference. So the minimal potential energy in-
side a vortex lattice or cluster may correspond to a different set of phase differences
than in the vortex-free ground state. In particular even in s-wave systems vortices can
create “bubbles” of Z2 order parameter around themselves. Examples are shown in
Figures 4.6 and 4.7.

The vortex structure near the Z2 phase transition has crucial physical conse-
quences for the phase diagram of the system beyond mean-field approximation,
leading to re-entrant phase transitions [68].

In the vicinity of Z2 phase transition, besides the appearance of the type-1.5
regime, the system has a number of other unusual properties such as anomalous
vortex viscosity [69] and distinct anomalous thermoelectric effects [70, 71].

4.9 Fluctuation effects in type-1.5 systems

In single-component Ginzburg–Landau models, the order of the superconducting
transition in zero applied magnetic field in three dimensions depends on the ra-
tio of magnetic field penetration length and coherence length. Halperin, Lubensky
and Ma established that in extreme type-1 superconductors the gauge field fluctua-
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Fig. 4.6: Interacting vortex clusters with internally broken Z2 symmetry in a frustrated three-
band superconductor. The snapshot represents a slowly evolving (quasistationary) state of the
weakly interacting well-separated clusters. In this numerical computation, each of the clusters
has with a good accuracy converged to a physical solution of GL equations, but the snapshot is
taken during the slow evolution driven by the weak long-range intercluster interaction. The snap-
shot demonstrates the existence of long-range field variations associated with the soft mode.
This produces long-range weak intervortex forces. Displayed quantities are: (a) Magnetic field,
(b–d) |ψ1|2, |ψ2|2, |ψ3|2, (e) |ψ1||ψ2| sin φ12, (f) |ψ1||ψ3| sin φ13), (g) |ψ1||ψ3| sin φ23). The GL pa-
rameters are α1 = −3, β1 = 3, α2 = −3, β2 = 3, α3 = 2, β3 = 0.5, η12 = 2.25, η13 = −3.7. The
parameter set was chosen so that it lies in the regime where the ground state symmetry of the sys-
tem without vortices is U(1), but is close to the U(1) × Z2 region. Because of the disparity in vortex
core size the effective interaction strengths η̃ij are depleted to different extents. As a consequence,
a vortex cluster produces a bubble of state with broken U(1) × Z2 symmetry.

tions make the superconducting phase transition first order [72, 73]. In the opposite
limit of extreme type-2 systems, Dasgupta and Halperin [74] demonstrated that the
superconducting transition is second order in single-component systems and has
the universality class of the inverted-3DXY model. The nature of the superconduct-
ing phase transition in this limit is the proliferation of vortex-loop excitations. The
inverted-3DXY universality class can be demonstrated by duality mapping [56, 74–76].
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Fig. 4.7: Interacting vortex clusters with broken internal Z2 symmetry in a frustrated three-band
superconductor. Panel (a) displays the magnetic field B. Panels (b) and (c) respectively display
sin φ12 and sin φ13, the third phase difference can obviously be obtained from these two. Second
line, shows the densities of the different condensates |ψ1|2 (d), |ψ2|2 (e), |ψ3|2 (f). The third line
displays the supercurrent densities associated with each condensate |J1| (g), |J2| (h), |J3| (i). The pa-
rameter set here is the same as in Figure 4.6. Here the difference compared to the previous picture,
is that the sine of the phase differences is represented ‘unweighted’ by the densities in contrast to
Figure 4.6, clearly indicating that vortices create an area with broken Z2 symmetry. Panel (c) now
makes clear that the inner cluster is in a defined state φ13 ≈ π/2 (whose opposite state would have
been −π/2). Panel (b) gives a visualization of the long-range interaction between the clusters.

The value of the Ginzburg–Landau parameter κ = λ/ξ at which the phase transi-
tion changes from second to first order is difficult to establish. Early numerical works
suggested that the tricritical point does not coincide with the Bogomol’nyi critical
point [77]. The largest Monte Carlo simulations performed at this time [78, 79] claim
that the tricritical κtri = (0.76 ± 0.04) is slightly smaller than the critical κc = 1,
which, in our units, separates the type-1 regimewith thermodynamically unstable vor-
tices and the type-2 regime with thermodynamically stable vortices. In these works it
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is claimed that even in the weakly type-1 regime where the vortex interaction is purely
attractive and vortices are not thermodynamically stable, the phase transition can be
continuous. This raises the question about the nature of the phase transition in the
type-1.5 regime where by contrast vortices have long-range attractive interaction but
are thermodynamically stable. The problemwas investigated in the effective j-current
model [80] where thermally excited vortices are modeled by directed loops with long-
rangeattractive, short-range repulsive interaction similar to the long-range interaction
between vortices in the GL model. The results indicate that the zero-field supercon-
ducting phase transition in type-1.5 materials can be first order [80]. This is in contrast
to ordinary single-component GL theory which always has a continuous phase tran-
sition in the inverted 3d XY universality class in the parameter regime where vortices
are thermodynamically stable. For the s+ is type-1.5 systems, it was found that fluctua-
tions canmodify themean-field phase diagramsquantitatively, resulting in re-entrant
phase transitions where Z2 symmetry is broken by heating [68].

4.10 Misconceptions

In this section we clarify misconceptions about coherence lengths and type-1.5 be-
havior in some recent literature on one subclass of multicomponent superconductors:
U(1)multiband materials. An erroneous argument was advanced in [81, 82] that near
Tc these superconductors have degenerate coherence lengths. Using this incorrect
derivation by Kogan and Schmalian, many further papers appeared that reach vari-
ous incorrect conclusions about the phase diagram and properties of these materials,
for example [83–87].

Consider a two component Ginzburg–Landau model with Josephson coupling,
governed by a pair of coupled partial differential equations

a1∆1 + b1|∆1|2∆1 − γ∆2 − K1Π2∆1 = 0 (4.34)
a2∆2 + b2|∆2|2∆2 − γ∆1 − K2Π2∆2 = 0 (4.35)

whereΠ = ∇−iA. Kogan and Schmalianhave argued that such a system cannot exhibit
so-called type-1.5 superconductivity because close to Tc, suchmodels inevitably have
two degenerate coherence lengths in two bands, not two distinct coherence lengths as
the type-1.5 regime requires. They assumed that GL functionals can only be obtained
by expansion in a single small parameter τ = (1−T/Tc). The conclusion on coherence
lengths they reached by claiming that system (4.34), (4.35) is actually equivalent, for
small τ = (1 − T/Tc), to the alternative system−ατ∆1 + β1|∆1|2∆1 − KΠ2∆1 = 0 (4.36)−ατ∆2 + β2|∆2|2∆2 − KΠ2∆2 = 0 . (4.37)

Here α, βi , K are constants that depend in a knownway on the parameters ai , bi , Ki , γ
in (4.34), (4.35). It is not hard to see that this claim is nonsensical. First of all it nei-
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ther physically nor mathematically makes sense that the GL expansion can be done in
only one small parameter τ = (1 − T/Tc). Multiband expansions are expansions car-
ried in several small parameters. The limiting expression that Kogan and Schmalian
obtain when τ → 0 is obviously incorrect. It suffices, for example, to note that in the
absence of a gauge field, A = 0, system (4.36), (4.37) supports the solution with an ax-
ially symmetric vortex in ∆1, and constant ∆2 = √ατ/β2. Clearly, this is not a solution
of (4.34), (4.35), even approximately for small τ. This is symptomatic of a fundamental
problem with (4.36), (4.37): this system has no direct coupling between the conden-
sates ∆1, ∆2, while such coupling is a fundamental property of (4.34), (4.35). Remark-
ably, Kogan and Schmalian actually state that ∆1(r) = ∆2(r) but seem unaware that
it directly contradicts their equations. In particular the absence of coupling between
∆1, ∆2, obviously directly contradicts their claim that for all solutions ∆1(r) = ∆2(r),
near Tc. This and other claims, such as the phase locking in [81], should follow from
mathematical equations. It is not enough to simply assert behavior, particularly when
the underlying model of the system contradicts one’s assertions.

The claimed equivalence between (4.34), (4.35) and (4.36), (4.37) is mathemati-
cally nonsensical. It is a trivial andwell-known fact that anexpansion in a single small
parameter τ = (1 − T/Tc) yields a single GL equation (see e.g., [18, 88, 89]). However,
the authors of [81, 82] did not even recover that well-known result in the τ → 0 limit.
A comment on this was written in [18, 89]. Moreover, as was pointed out in [18, 89] if
taken at face value, (4.36), (4.37) imply results in direct contradiction of the Landau
theory of phase transitions. In the originalmodel (4.34), (4.35) the Josephson term is a
singular perturbation that breaks symmetry down to U(1). The model has three mas-
sive modes: two coherence lengths and the Josephson length. In the limit τ → 0 there
can be only one divergent length scale, while the other length scales stay finite at Tc.
In the U(1) two-band system the gaps in the vortex solution have a similar profile near
Tc or at strong coupling because there is a subdominant with much shorter coherence
length and small amplitude that is associatedwith a certain linear combination of the
fields. This can be demonstrated by explicit calculation [18, 23, 89] and this is the rea-
son why similar gap profiles should be observed in experiment on such systems [87].
In contrast, Kogan and Schmalian’s system gives the opposite behavior: three inde-
pendently divergent length scales in the limit τ → 0, since (4.36), (4.37) are coupled
by the vector potential only, the mass of the Leggett mode also would vanish.

It is interesting to follow Kogan and Schmalian’s derivation of (4.36), (4.37), to
identify exactly where the error occurs. They first solve (4.34) to find ∆2 in terms of ∆1
and its derivatives

∆2 = 1
γ
(a1∆1 + b1|∆1|2∆1 − K1Π2∆1) (4.38)

then use this to eliminate ∆2 from (4.35), yielding a fourth-order PDE for ∆1 alone,

a1∆1 + b1|∆1|2∆1 + ⋅ ⋅ ⋅ + K
1Π

4∆1 = 0 (4.39)
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whose coefficients, a1, b

1, . . . , K


1 depend in a known way on ai , bi , Ki , γ. Of course,

system (4.38), (4.39) is exactly equivalent to (4.34), (4.35). They then note that indeed
the same procedure works with the roles of ∆1 and ∆2 reversed: solve (4.35) for ∆1 in
terms of ∆2, and eliminate ∆1 from (4.34). This yields the system

∆1 = 1
γ (a2∆2 + b2|∆2|2∆2 − K2Π2∆2) (4.40)

a2∆2 + b2|∆2|2∆2 + ⋅ ⋅ ⋅ + K
2Π

4∆2 = 0 (4.41)

which, like (4.38), (4.39), is equivalent to (4.34), (4.35). They then perform two proce-
dures. First they truncate (4.39) and (4.41) to second order, by making assumptions
about which terms dominate at small τ. This yields equations (4.36) and (4.37). If
executed properly the assumption of one small parameter should yield a single GL
equation and one cannot deduce any information about the second mode and sec-
ond coherence length. Second, andmore important, they completely forget about the
equations (4.38), (4.40), as though these relations no longer hold.What results is a sys-
tem of equations, (4.36), (4.37), whichhave absolutely no relationshipwith the original
system (4.34), (4.35).

In summary, system (4.36), (4.37) tells us precisely nothing about the behavior of
the solutions of (4.34), (4.35) or behavior of two coherence lengths or relative behavior
of the gaps near Tc.

The paper [84], develops an elaboration of (4.36), (4.37), in which the fields ∆j are
claimed to be expanded in a power series in τ = 1 − T/Tc

∆j = ∆(0)j + ∆(1)j + ⋅ ⋅ ⋅ (4.42)

where ∆(0)j is the term of order τ 1
2 and ∆(1)j is the term of order τ 3

2 (note that the results
are inconsistent by symmetry in different order in τ and also the two-band GL expan-
sion is not a τ-based expansion and cannot be carried in a single small parameter in
general). Since the procedure is based on Kogan and Schmalian’s construction, the
above criticism applies equally to these works. Although the analysis is incorrect for
multiband superconductors, as shown above, let us take their final system of equa-
tions at face value and analyze it purely from a mathematical viewpoint.

The system obtained is (they consider only the case where there is no gauge field
and absorb K into a choice of units).

−∇2∆(0)j + α∆(0)j + βj∆(0)j
3 = 0 , (4.43)

−∇2∆(1)j + (α + 3βj∆(0)j
2)∆(1)j = fj (4.44)

where fj is a polynomial expression in ∆(0)j and its derivatives (up to fourth order).
The first thing to note is that this is not a fourth-order system of PDEs: ∆(0)j is already
fixed by solving a second-order PDE (4.43), and given this, one solves another second-
order PDE for ∆(1)j . The second thing to note is that (4.44) can be economically and
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instructively written
Lj∆(1)j = fj (4.45)

where Lj is the (formally) self-adjoint linear operator obtained by linearizing (4.43)
about its solution ∆(0)j . Now, a linear PDE of this form will have a solution if and only
if fj is L2 orthogonal to the kernel of the operator Lj, that is,

∫
ℝ3

fjkd3x = 0 for all k such that Ljk = 0 . (4.46)

While this condition holds automatically if the kernel is trivial (the only solution of
Ljk = 0 is k = 0), in the current context, this is highly unlikely, as we now argue.

Given a solution ∆(0)j of (4.43), one would expect it to lie in a finite dimensional
family of solutions, obtained, for example, by translating and rotating the given solu-
tion. But for every one-parameter family of solutions ∆(0)j (t)of (4.43), there is a function
in the kernel of Lj, namely

k = ∂t∆(0)j (t)|t=0 . (4.47)

To see this, just substitute ∆(0)j (t) into (4.43) and differentiate with respect to the pa-
rameter t, using the fact that each ∆(0)j (t) solves (4.43).

Hence, generically the right hand side fj of (4.44) must satisfy a large number of
nontrivial integral constraints, or else the system has no solution. Furthermore, if fj
does satisfy the constraints, the solution ∆(1)j is generically not unique, since one can
add to it any k in the kernel of Lj.

It should also be emphasized that, since (4.43), (4.44) is derived from (4.36), (4.37),
it, also, has nomathematical relationship to the original system (4.34), (4.35) nor with
themicroscopic theory of two-band superconductors. It is also physicallymeaningless
in general to justify two-band field theories by expansion in a single small parame-
ter τ. Also, in contrast to false claims in [83] it contradicts other standard schemes
of Ginzburg–Landau expansion in systems with different pairing channels [90] and
basic symmetry-based aspects of the theory of second-order phase transitions. The
conclusion of independent divergence of coherence lengths, that contradicts basic
principles of the theory of the phase transitions, leads to the construction of incor-
rect phase diagrams in [86], and the erroneous claim that there necessarily appears
a Bogomol’nyi point near Tc. The necessary condition for a Bogomol’nyi point in this
kind of theory is to generate masses of the normal modes. As discussed above the de-
generate coherence length is a direct consequence of the mathematical error in Kogan
and Schmalian’s calculations. In real two-band superconductors, the masses of nor-
mal modes as functions of interband coupling or temperature never cross but rather
form avoided crossing [18, 23, 89], unless there is a special symmetry of the model.
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4.11 Conclusion

We briefly outlined the basic concepts and gave a brief account of some of the works
on type-1.5 superconductivity that takes place in multicomponent systems. In gen-
eral, a superconducting state is characterized by multiple coherence lengths ξi, (i =
1, . . .,M) arising from multiple broken symmetries or multiple bands. The type-1.5
state is the regime where some of the coherence lengths are larger and some smaller
than the magnetic field penetration length: ξ1 ≤ ξ2. . . < λ < ξN ≤ . . . ≤ ξN (here
we absorbed the factor 1/√2 into the definition of coherence lengths). Among various
unconventional properties that the system acquires in this regime is nonmonotonic
intervortex interaction potential. In that state vortices can have long-range attractive,
short-range repulsive interaction leading to a macroscopic phase separation into do-
mainsofMeissner and vortex states in an applied external field. This phase separation
can also be accompanied by different broken symmetries in vortex clusters andMeiss-
ner domains. This regime leads to unconventional magnetic, thermal and transport
properties.
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interactions

Abstract: In superconductors, the interaction between vortices as a function of the
distance between them can be either monotonic or nonmonotonic mainly due to the
special characteristic parameter lengths, i.e., the penetration depth and coherence
length. In traditional type-II superconductors with purely repulsive vortex-vortex in-
teractions, a triangular vortex lattice is formed, which is also known as the Abrikosov
vortex lattice. In superconductors with competing vortex-vortex interactions, such
as type-I, low-κ and type-1.5 superconductors, much more complex vortex patterns
can be formed. Because of the analogy to other systems with modulated phases, the
study of vortex matter has attracted a lot of interest. In this chapter, we present recent
progress in this field concerning direct visualization of these vortex patterns with
scanning Hall probe microscopy.

5.1 Introduction

Interaction is explained as a kind of action that occurs as two or more objects have
an effect upon one another. While in some cases the interaction is simply monotonic,
i.e., purely “repulsive” or “attractive”, in most cases its nature is a combination of
several complex contributions which can even be competing. The latter widely exists
in nature and strongly affects the main characteristics of many systems.

In natural sciences, many systems have been found to exhibit complex interac-
tions among different phases. To name a few [1], we mention the ferrofluid system,
reaction-diffusion in chemical mixtures, convection of a fluid with a temperature gra-
dient and superconducting systems. All these systems present variousmodulated pat-
terns due to complex interactions. The study of these systems, especially at the micro-
scopic level, can give us a lot of information about the relevant mechanisms. It can
also help us to better understand themacroscopic properties which, in the future, can
result in different applications. Among all these systems, the superconducting system
is an ideal candidate since different kinds of superconductors show different complex
vortex patterns. In type-II superconductors, the Abrikosov vortex lattice with trian-
gular arrangement of vortices forms due to the purely repulsive interaction between
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166 | 5 Vortex patterns in superconductors with competing vortex-vortex interactions

them, while in type-I superconductors, vortex interaction becomes long-range repul-
sive and short-range attractive, thus leading to the formation of the intermediate state.
The interactions between vortices can also be long-range attractive and short-range re-
pulsive as revealed in low-κ superconductors [2] and the recently discovered type-1.5
superconductors [3, 4], both of which display intricate vortex patterns with coexis-
tence of a large Meissner area, vortex stripes and clusters.

Comparedwith other systems, it is quite convenient tomanipulate the parameters
related to the vortex interaction in superconductors, like the magnetic field and tem-
perature. One can also introduce other interactions to the system, e.g., by adding arti-
ficially fabricated pinning centers [5], amplifying confinement effects in mesoscopic-
and nanosuperconductors [6], combining two superconducting condensates with dif-
ferent characteristic lengths (λ, penetration depth; ξ , coherence length) in bilayer
structures [7], and so on.

Motivated by the recent progress, in this chapter we present the scanning Hall
probemicroscopy (SHPM) results for the intricate vortex patterns and related phenom-
ena in a few selected superconducting systems with different competing vortex-vortex
(v–v) interactions.

The chapter is organized as follows. In Section 5.2, we introduce the background
to the classificationof superconductors. Section 5.3 describes the experimental frame-
work used to visualize the vortex patterns in different types of superconductors. Sec-
tions 5.4 and 5.5 present the experimental results on vortex patterns as well as their
dynamical behaviors. Finally, Section 5.6 presents the conclusions.

5.2 Classification of superconductors

5.2.1 Single-component superconductors

Superconductivity is a thermodynamic equilibriumphase, indicating that the electron
gas condensed in a novel macroscopic quantum state below the critical temperature
Tc has a lower free energy than the electron gas in a normal metal. When a supercon-
ductor is placed in a magnetic field, the exclusion of the magnetic field will increase
its free energy. This means that the Meissner effect can only survive a finite applied
magnetic field, since the increase of free energy with increasing magnetic field will
compensate for the drop in free energy associated with condensation of the electron
gas. At the thermodynamic field Hc the two effects balance each other, while above Hc
a transition from superconductivity to the normal state will occur. It has been found
that the reaction of superconductors to the presence of a magnetic field strongly de-
pends onmaterial properties, i.e., the characteristic lengths. Regardless of the sample
shape, some superconductors exhibit only partial flux expulsion while others show
full Meissner state. To study the difference, we need to consider the energy cost per
unit interfacial area when a superconductor/normal interface is formed. This energy
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cost has the order of [8]:
∆G ∼ μ0

2 (ξH2
c − λH2

a ) (5.1)

where Ha is the applied magnetic field. This energy determines different thermody-
namic equilibrium states, leading to the classification of various superconductors.
Detailed calculations based on the Ginzburg–Landau (GL) equations show that the
critical value of κ = λ/ξ that separates different superconductors is 1/√2. For type-I
superconductors with κ < 1/√2, the interface energy is positive, while for type-II su-
perconductors with κ > 1/√2, it becomes negative. However, the equations are based
on Landau’s second-order phase transition theory. Strictly speaking, it only works fine
at Tc. While well below Tc, corrections must be introduced. In the 1960s, it was found
that the corrections modify the interaction potential at large distances which leads to
a new kind of superconductor, called type-II/1, that exists in a very narrow κ range.
In order to distinguish from type-II/1, the traditional type-II superconductor is called
type-II/2.

Each kind of superconductor exhibits a characteristic behavior in the presence of
a magnetic field. For a type-I superconductor, the Meissner state is observed up to Hc
since the energy cost of letting themagnetic field penetrate the superconductor is pos-
itive. AboveHc, the normal state is restored for thewholematerial. Figure 5.1a presents
the typicalM(H) (magnetization versus field) curve for a type-I superconductor with-
out a demagnetization effect (e.g., for an infinitely long cylinder with H parallel to the
cylinder axis). However, in reality, any sample has a demagnetization effect, and the
magnetic field at the edges of the sample is enhanced by a factor of Ha/(1−N), where
N is the demagnetization factor. As a result, the magnetic field can penetrate from
these areas even when the external field is smaller than Hc. Therefore, an interme-
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Fig. 5.1: (a)–(c) Representative M(H) curves for type-I, type-II/1 and type-II/2 superconductors with-
out (a)–(c) and with (d)–(f) a demagnetization effect.
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diate state with coexistence of superconducting regions and normal states is formed.
The typical magnetization curve is shown in Figure 5.1d. In type-I superconductors,
two contributions to the v-v interaction are present: 1) the attractive interaction aris-
ing from positive interface energy; 2) the repulsive magnetic interaction between the
stray field of normal domains. This competition between the vortex interactions leads
to the formation of an intermediate state with flux tubes, stripes and so on.

For type-II/2 superconductors with ξ ≪ λ, the Meissner state can only be main-
tained below a lower critical field Hc1, above which the superconducting/normal in-
terface energy becomes negative, and the magnetic field will penetrate the sample
in the form of single quantum vortices (to maximize the S/N interface area), forming
what is called a mixed state (MS). With a further increase of the field, the normal state
will be restored at an upper critical field Hc2, if we are to ignore the surface (or Hc3)
superconductivity effect. The v-v interaction in type-II superconductor is purely re-
pulsive. This means that, for a given flux density, vortices will try to maximize the dis-
tance between each other, leading to the formation of a triangular lattice, also known
as the Abrikosov vortex lattice. The typical magnetization curves for a type-II super-
conductor with and without a demagnetization effect are shown in Figure 5.1c and f,
respectively.

With κ in a narrow range close to 1/√2, type-II/1 superconductors exhibit both
type-I and type-II behaviors on the magnetization curve [2, 9–12]. As shown by Fig-
ure 5.1b, the superconductor experiences a first-order transition atHc1 from theMeiss-
ner state to a mixed state and then progressively transits to the normal state at Hc2.
Accompanying the first-order transition, a magnetization jump is clearly observed at
Hc1. Thefluxpatterns for low-κ superconductorswith ademagnetization factorN were
also studied by the Bitter decoration technique. It was found that in the field range(1−N)Hc1 < Ha < Ht, clusters with triangular vortex lattices coexist with Meissner ar-
eas. This new state is now known as the intermediate mixed state (IMS). With further
increasing of the field up to Ht all Meissner areas are filled with triangular vortex lat-
tices that behave like a traditional type-II superconductor (Figure 5.1e). The formation
of IMS is due to the long-range attractive and short-range repulsive v-v interaction. The
first theoretical study of an attractive vortex interaction was done by Eilenberger and
Buttner [13]. They solved rigorously the Gorkov equations for the vortex by asymptotic
expansions for large values of distance r, and obtained oscillations in the magnetic
field distributions at low temperatureswhen κwasdecreased belowa critical value 1.7,
which might result in an attractive interaction between vortices. Later, a similar field
reversal was also observed by Dichtel [14] and Halbritter [15] from a nonlocal approx-
imation. However, Leung and Jacobs [16, 17] have shown that the oscillatory behavior
of the vector potential disappears when considering a term related to the surface bar-
rier which was neglected in the last mentioned works. Finally, the vortex attractions
were analyzed in detail fromEilenberger’s reformulation of the Gorkov equations, and
Jacobs and Hubert concluded that microscopic corrections can indeed lead to vortex
attraction at long distances in low κ superconductors [16, 17].
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Fig. 5.2: κ–T phase diagram for different kinds of single component (single gap) superconductors
with the demagnetization factor of N. (a)–(d) MT phase diagram for superconductors with various κ
indicated.

In Figure 5.2 we summarized the MT phase diagram for the above-mentioned su-
perconductors with various κ.

5.2.2 Type-1.5 superconductors

The three types of superconductors introduced in Section 5.2.1 are all based on one
component (single gap) superconductors. In superconductors with two or more gaps,
the interactions between vortices and the appropriate theory to describe them be-
comes even more complex. In 2005, Babaev et al. proposed the “semi-Meissner state”
inmultiband superconductorswhere each condensatehas its characteristic coherence
length, ξ1, ξ2. . . [3]. When some of them are larger and the rest are smaller than the
penetration depth, e.g., ξ1/√2 < λ < ξ2/√2 in a two-band superconductor, vortices
can have long-range attractive (due to overlap of outer cores) and short-range repul-
sive interaction (current-current and electromagnetic interaction). As a result, these
superconductors exhibit a first-order transition from the Meissner state into the semi-
Meissner state, a mixture of the Meissner state and vortex clusters.
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In 2009, Moshchalkov et al. found that the two characteristic lengths of the π and
σ bands inMgB2 material fulfill the requirement for the nucleation of a semi-Meissner
state [4]. By using Bitter decoration they reported the observation of such a semi-
Meissner state with a mixture of vortex clusters, stripes and large areas of Meissner
state. For the first time, this new state was termed a type-1.5 superconductor. Later on,
the disordered state was also observed by scanning Hall probe microscopy [18] and
scanning SQUID microscopy measurements [19]. Recently, type-1.5 superconductivity
was reported in another two-band superconductor Sr2RuO4 [20, 21]. Highly nontrivial
vortex patterns, similar to type-1.5 superconductivity, have been predicted for a type-
1/type-II bilayer system [22, 23]. Possible type-1.5 superconductivity is also suggested
for other two-band and multiband superconductors, such as the large family of Fe-
based superconductors [24–26] and Lu2Fe3Si5 [27].

Although type-1.5 superconductivity has similar vortex interactions and phase di-
agrams to type-II/1 superconductors, themechanismsbehind them are quite different.
Moreover, the GL parameter κ in type-1.5 superconductors can reach a value far away
from the dual point 1/√2, e.g., κ ∼ 5 for MgB2 [28].

Besides the situation in MgB2, theorists suggest that the definition of type-1.5 su-
perconductivity should be extended to more general cases. Babaev et al. reported that
type-1.5 behavior can arise via the proximity effect between one superconducting and
one normal band, even when this interband effect is very small [29]. Self-organization
into stripe phases is also suggested in a two-dimensional assembly of particles with
two isotropic repulsive interactions [30, 31]. This may also work for vortices in multi-
band superconductors with ξ1,2.../√2 < λ. Indeed, experimental study on a dirty
MgB2 film, where the GL parameter for both bands is much bigger than 1/√2, has
shown very inhomogeneous distribution of vortices [32]. More experiments need to be
done to further understand this effect.

5.3 Experimental

In this chapter, the vortex patterns are mainly imaged by using scanning Hall probe
microscopy (SHPM). The working principle of the SHPM technique is based on the
incorporation of a submicron-sized GaAs/AlGaAs heterostructure Hall sensor into a
scanning probe technique [33]. The advantage of using a semiconductor heterostruc-
ture is that it has a very low carrier density. It is known that when a current-carrying
conductor is placed in a perpendicularmagnetic field, a transverse voltage VH will ap-
pear due to the Lorentz force acting on the charge carriers. This effect is known as the
Hall effect which was first discovered by the American physicist Edwin Herbert Hall
in 1879 [34]. For a simple metal plate, VH has the following expression:

VH = − IB
n3dte

= −μIB
σt

(5.2)
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where I is the current flowing through the plate, B is the external magnetic field, n3d
is the carrier density, t is the plate thickness, e is the electron charge, μ is the car-
rier mobility and σ is the carrier conductivity. While scanning over a sample surface
with magnetic modulation, the sensor picks up the perpendicular component of the
localmagnetic field Bz(r) and produces a Hall voltage directly proportional to the field
strength. In this way, a magnetic image of the sample can be mapped.

Besides mapping the magnetic field distribution, the SHPM has been modified to
measure the local ac susceptibility of the superconductor under an ac magnetic field.
This is implemented by separating the in-phase, V

1, and out-of-phase components,
V
2 of VH with a lock-in amplifier. These components are proportional to the in-phase

and out-of-phase ac components of the local magnetic induction. This technique is
named scanning ac-susceptibilitymicroscopy (SacSM)withwhichwe are able to study
the vortex dynamics at the micrometer scale.

In summary, the major advantage of the SHPM technique is that it is noninvasive,
which is importantwhen themagnetic features of the sample should not be disturbed,
like in the case of unpinned vortices in superconductors. Furthermore, it has a very
high sensitivity, it gives fast, direct and quantitative information about the local mag-
netic field and the technique is applicable in externally applied magnetic fields and
in a wide temperature range.

5.4 Type-I superconductor with long-range repulsive and
short-range attractive v-v interaction

To study the flux patterns in type-I superconductors, a thick lead film with lateral di-
mensions of 1 × 1cm2 and a thickness d = 5 μm is used. The sample was grown us-
ing an e-beam evaporation system. A 10nm Ge layer was deposited on top to protect
the Pb surface from oxidation. There is no obvious difference among the edges of the
sample, therefore, the penetration of the flux is considered to be the same. The super-
conducting critical temperature is Tc = 7.05K, as determined by the ac-susceptibility
at zero appliedmagnetic field. All the experiments have been performedwith the field
applied perpendicular to the sample surface.

5.4.1 Flux patterns of the intermediate state

From the phase diagram in Figure 5.2, the intermediate state can be reached in two
different ways, flux penetration and flux expulsion. The former is realized through
sweepingup themagnetic field after the samplewas cooleddown (T < Tc) in zeromag-
netic field (ZFC; zero-field-cooled). The latter is done by imaging flux patterns when
sweeping down the magnetic field, after the sample was field-cooled (FC) to a given
fixed temperature close to Tc(H).
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Fig. 5.3: Typical SHPM images of type-I Pb film obtained at different increasing magnetic fields af-
ter ZFC at 6.9 K: (a) 2 Oe, (b) 2.6 Oe, (c) 4.2 Oe, (d) 7.6 Oe, (e) 12 Oe, (f) 16 Oe. Blue and red areas
correspond to superconducting and normal state, respectively.

Figure 5.3a–f shows the flux patterns of the intermediate state obtained with the
SHPM during flux penetration at 6.9K. At low fields, the sample is in the Meissner
state with no flux observed in the scanning area (Figure 5.3a). When a certain mag-
netic field (≈ 2Oe at 6.9K) is reached, magnetic flux begins to penetrate the sample,
forming flux tubes with a circular shape (Figure 5.3b). At first, the observed flux tubes
have similar radii and vorticity as shown in Figure 5.3c; butwith further increase of the
field, the density of the flux tubes increases and they start to lose the circular shape,
characteristic of lower densities. The tubes also exhibit a broader distribution of sizes
and vorticities as shown in Figure 5.3d. When the magnetic field reaches a certain
threshold (≈ 12Oe at 6.9K), the tubes are very close to each other, the N/S positive
surface energy takes over and flux tubes start to merge to form stripe-like normal do-
mains resulting in a state with coexistence of flux tubes and stripes (Figure 5.3e). As
shown in Figure 5.3f, once it becomes favorable for the system to form stripes, they
thrive as the magnetic field increases, resulting in the formation of longer stripes that
eventually merge to formwider normal domains that cover the whole superconductor
upon reaching Hc(T) (≈ 25Oe at 6.9K).
Figure 5.4a–d shows the flux patterns of the intermediate state obtained with the
SHPM during flux expulsion at 6.9K. Figure 5.4a presents an SHPM image taken at
20Oe and 6.9K close to Hc, and normal regions surround small superconducting
regions. As we decrease the magnetic field, in contrast to the case of flux penetration,
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Fig. 5.4: SHPM images measured at 6.9 K after FC and then progressively decreased field from
(a) 20 Oe to (b) 11.8 Oe, (c) 5.6 Oe, (d) 4.6 Oe and (e) remnant field. The symbols in (e) show the
positions of flux tubes after various FC processes at T = 6.9 K and H = 1.1 Oe (circles); 1.9 Oe (trian-
gles); 4.9 Oe (squares); 5.4 Oe (diamonds). Blue and red areas correspond to superconducting and
normal state, respectively. (f) Local induction B as a function of the applied magnetic field Happ for
images in Figure 5.3a–f (squares) and Figure 5.4 a–e (circles).

the stripe-like normal domains nucleate first (Figure 5.4b) and they last to signif-
icantly lower fields (Figure 5.4c), as compared to the flux penetration experiment
(Figure 5.3e). As we keep on decreasing the magnetic field, part of the stripes breaks
down into flux tubes until only flux tubes remain (Figure 5.4d). Finally, Figure 5.4e
shows the flux pattern when the magnetic field has been decreased to zero, and it is
worth noticing that, due to the pinning present in our sample, we do not recover the
Meissner state.

Figure 5.4f shows the hysteresis in local induction B as a function of the applied
magnetic field Happ for images in Figure 5.4a–f (squares) and Figure 5.4a–e (circles).
It is clear that, for flux penetration, even at 62.5Φ0 (Figure 5.3d), flux patterns remain
in tubular state. However, for flux expulsion, the flux patterns change from stripe to
tubular state for a magnetic flux value around 52Φ0 (Figure 5.4c). In order to identify
the most relevant pinning centers we performed at the same sample area a series of
repeated FC processes at various fields and temperatures. We observed that each time
the flux tubes nucleate around the same areas (we have labeled such areas in Fig-
ure 5.4e). Therefore, these positions should contain dominant pinning centers which
could be produced by defects in the film formed during sample growth.
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5.4.2 Topological hysteresis

As shown in the previous subsection, the fluxpatterns of the intermediate statemainly
contain three topological states: 1) flux tubes; 2) flux stripes; 3) coexistence of flux
tubes and stripes. By continuously imaging the flux patterns with SHPM at different
temperatures and magnetic fields, the topological phase diagram of the flux patterns
for the intermediate state can be constructed.

For the flux penetration process after ZFC, the intermediate state can be divided
into three regions with different flux structures: Meissner state (no flux); Flux tube
state; Stripe state. However, when accessing the flux expulsion process by performing
field-cooling, the phase boundaries (dashed lines) are shifted to lower fields, and only
flux stripe and flux tube states are observed. As follows from Figure 5.5, the so-called
“topological hysteresis” exists in our sample [35], which has been reported previously
formost of the type-Imaterialswith the presence of pinning or geometrical barriers. In
that regard, our sample is a thick film of type-I lead superconductor, therefore surface
barriers and /or intrinsic pinning centers (arising due to sample growth conditions)
should play an important role. We also mention that in a type-I superconductor with-
out a geometric barrier, such as (hemi)spheres and cones, flux tubes dominate the
intermediate field region [35]. The topological hysteresis is also found to be the ori-
gin of magnetic hysteresis in type-I superconductors. However, some questions still
remain open for topological hysteresis. What is the dominating factor behind stripe
structures? Why does such a large overlapped region for flux tubes and stripes exist?
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Fig. 5.5: Topological flux pattern phase diagram for flux penetration (a) and flux expulsion (b) of a
type-I superconducting film. The green dashed line in (a) is the same phase boundary between flux
stripes and flux tubes as seen in (b), showing topological hysteresis. The shaded area in (a) indi-
cates a region where either flux tubes or stripes can form.
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A theoretical estimate made by Goren and Tinkham showed that the tubular state and
stripe state have approximately the same energy [36]. This means that the equilibrium
superconducting state in an intermediate state can be easily affected by various fac-
tors such as the presence of pinning centers and differences in sample geometry. We
will further introduce the dynamical behaviors and try to answer the above questions
in Section 5.4.4.

5.4.3 Quantization of fluxoids in the intermediate state

Following the single-valuedness of the order parameter, the amount of flux over any
closed path in a superconductor must be quantized, with flux quantum ϕ0 = h/2e =
2.067mTμm2. In type-II and type-1.5 superconductors each fluxoid contains one sin-
gle flux quantum Φ0, while in type-I superconductors the normal domains, since flux
is quantized, contain multiple Φ0. As shown in Section 5.4.1, all the flux patterns in
the intermediate state are formed by individual or combined flux tubes. Therefore,
flux tubes can be considered as the basic block for the formation of the intermediate
state. It is of great fundamental interest and importance to answer the following ques-
tions: first, how do the flux tubes interact with each other? It is natural to expect that
the interaction (merging or annihilating) between two flux tubes must also happen
through quantized flux. However, it has never been confirmed experimentally. Theo-
retical results have revealed that the nucleation and interaction of flux domains under
an applied current are both occurring via the nucleation of individual flux quanta [37].

Therefore, this gives rise to a second question, is it possible to have stable flux
domainswith a single flux quantum in the intermediate state of a type-I superconduc-
tor? In the 1960s, theoretical work had shown that, in thin-enough type-I supercon-
ductor films with perpendicular magnetic field, the transition from superconducting
to normal state can be type-II like [38, 39], and a triangular vortex lattice may favor a
more energetically stable state [40]. Various experimental results have also confirmed
such a prediction [41, 42]. The critical thickness, dc, below which single vortices can
exist, varies with the material [43, 44] (e.g., dc ∼ 200nm for Pb; ∼ 110nm for In).
Very recently, the single flux quantum vortices have been suggested to exist in meso-
scopic type-I materials with strong confinement effects [45]. Engbarth et al. reported
the observation ofΦ0 vortices in a 1D type-I Pb nanowire through local magnetization
measurements [46]. However, in macroscopic samples, Φ0 fluxoids have never been
observed neither experimentally nor reported theoretically. Is it possible to stabilize
single-quantum vortices in the intermediate state of a macroscopic type-I supercon-
ductor? If not, what would be the minimumpossible flux for the intermediate state? It
is believed that, due to the connection to the sample edges, the expulsion of lamellae
in the intermediate state is continuous, while upon zero-field-cooling (ZFC) the flux
penetration will be broken up by the geometrical energy barrier, which isolates the
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flux tubes from the sample edges through a diamagnetic band [47]. The continuous
expulsion of flux provides a possible way to control the vorticity of flux tubes.

To fit the fluxoid magnetic field, a monopole model is often used if the constraint(r2 + z20) ≫ λab is satisfied [48–53], where r is the distance from the fluxoid center, z0
is the height of the Hall probe to the sample surface and λ is the penetration depth.
The magnetic field perpendicular to the sample surface Bz(r, z0) is expressed as:

Bz(r, z0) = Φ
2π

z0 + λ[r2 + (z0 + λ)2]3/2 (5.3)

where Φ is the total flux bounded in a fluxoid. According to Ref. [54], the accuracy of
the model can be enhanced by averaging over an area representative of the Hall probe
active area to account for the convolution of the field over the probe. The integration
of Equation (5.3) over a square active area of size s and divided by the area s2 gives the
following result:

B(x, y, z0) = Φ
2πs2

y+ s
2∫

y− s
2

dy
x+ s

2∫
x− s

2

dx Z[x2 + y2 + Z2]3/2 (5.4)

where Z = z0+λab. For our SHPM, aHall probewith anactive area of s2 = 0.4×0.4 μm2

is used.
Figure 5.6a shows a typical SHPM image of the flux tube state observed after FC at H =
7Oe and T = 4.2K. Seven fluxoids with different sizes are observed in the scanned
area. Cross sections (filled symbols) of fluxoid I and II along the solid white lines in
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Fig. 5.6: (a) SHPM image obtained after FC at H = 7 Oe and T = 4.2 K for a type-I lead film. The
dashed circles show the area chosen for integration. (b) 2D fit (solid lines) to the data (filled sym-
bols) from cross sections of the flux tubes as shown by the white lines in the SHPM image of Fig-
ure 5.6a. The fits give (I) Z = 1.237 μm and Φ = 5.8 ± 0.2 h/2e and (II) Z = 1.266 μm and
Φ = 11.9 ± 0.2 h/2e. The open symbols show the cross sections of a vortex and an antivortex
observed in a reference NbSe2 single crystal.
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Figure 5.6a are demonstrated in Figure 5.6b. The best fitting using Equation (5.4) gives
(I) Z = 1.237 μm, Φ = 5.8 ± 0.2 h/2e and (II) Z = 1.266 μm, Φ = 11.9 ± 0.2 h/2e,
respectively. For comparison, in Figure 5.6b, the cross sections of a vortex and an an-
tivortex observed in a reference NbSe2 single crystal at T = 4.2K is shown. The fitting
gives an averageΦ = 0.95±0.2 h/2e. By introducing an effective flux quantum [55] to
compensate the loss of magnetic flux due to a straymagnetic field, the vorticity of flux
tubes is also confirmed by integrating the magnetic signal of the flux tube in a limited
area, for example, as indicated in Figure 5.6a by the dashed circle. The integration
results in very consistent values with the monopole model fitting.

With the monopole model introduced above, we are able to quantify the fluxoids
in the intermediate state. In the following,we consider the tubular state observed from
two approaches: flux penetration and flux expulsion.

5.4.3.1 Flux penetration
In Figure 5.7 we show the observed flux tubes induced through the flux penetration
process after ZFC to 6.9K. Below H = 2Oe, the sample remains in the Meissner state.
At H = 2.6Oe, the first flux tube is observed in the scanned area (Figure 5.7a). With
increasing field, more and more flux tubes penetrate the scanned area (Figure 5.7a–
d), and eventually they will merge and start forming stripes [56]. The minimum flux
tube observed at T = 6.9K, as shown by the dashed circles, contains four flux quanta
(Lmin = 4). Looking at the temperature dependence of Lmin, we have observed that
Lmin increases with decreasing temperature as shown in Figure 5.7e. These obser-
vations are in agreement with the impeded flux penetration scenario. According to
Refs.[47] and [37], the penetration of magnetic flux in the intermediate state of a type-I
superconductor is impeded. This implies that the vortices will first accumulate at the
sample border to form flux tubes, once the flux tubes contain a large enough amount
of magnetic flux as to overcome the surface barrier, they will burst into the sample
interior pushed by the Meissner currents. Therefore, our data give an indirect evi-
dence for the impeded flux penetration. As observed, at lower temperatures, due to
an increase of the surface energy barrier, theminimumflux tube is expected to contain
multiple flux quanta to overcome the energy barrier. Figure 5.7e shows the penetration
field Hp as a function of temperature. It is clear that with decreasing temperature, the
penetration field increases due to the enhanced surface energy barrier. Therefore, the
minimum fluxoid also increases. We notice that the flux tubes may contain a slightly
different number of flux quanta; this is probably due to the presence of small edge
imperfections which yield slightly different energy barriers.
Experimentally, no single quantum vortex has been observed through flux penetra-
tion, but it cannot be ruled out at high temperatures, especially close to the normal-
intermediate transition. This is a process that still needs further investigation.
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Fig. 5.7: SHPM images taken after first performing ZFC to 6.9 K and subsequently increasing the
magnetic field to: (a) 2.6 Oe; (b) 2.8 Oe; (c) 3 Oe; (d) 3.4 Oe. The minimum flux tube observed con-
tains four flux quanta as shown by the dashed circles with the vorticity indicated beside it. (e) Pene-
tration field Hp (circles) and the vorticity of minimum fluxoid (squares) as a function of temperature.

5.4.3.2 Flux expulsion
Figure 5.8 shows the SHPM imagesmeasured at 6.5K after FC under variousmagnetic
fields. Above H = 0.2Oe, the fluxoid, indicated by the dashed circle, nucleates in the
scanned area. The vorticity of the fluxoid, shown by the number near the circle, is de-
termined from both fitting and integration. Figure 5.8k shows the result of integration
for the flux tube observed at different cooling fields. Below H = 0.2Oe, no fluxoid is
formed. A single flux quantum is observed in the field range of 0.2 Oe ⩽ H < 0.4Oe.
With increasing cooling field, the vorticity increases up to L = 7 at H = 0.95Oe. In
Figure 5.8l we show cross sections of seven singly quantized fluxoids. The fit by the
monopole model yields Φ = 0.96 h/2e as shown by the solid line.

The observation of a single flux quantum in such a macroscopic sample is quite
surprising. In the intermediate state of type-I superconductors, the energy of singly
quantized vortices is larger than the energy of multiply quantized flux tubes, which
favors an unstable state if it is composed of Φ0 fluxoids. It should be noted that the
single flux quantum observed here has to be stabilized by a differentmechanism from
those considered in Ref. [45] and [46], where the formation of individual vortices is
due to the strong geometrical confinement, and individual vortices are observed in
both flux penetration and expulsion processes for the type-I nanowires [46]. Inmacro-
scopic type-I superconductors, the intermediate state is a result of the competition
between the magnetic energy that favors the formation of small normal domains and
the positive surface energy that tends to form large domains. It has been argued that
in mesoscopic type-I samples a third interaction, provided by the confinement effect
of the sample boundaries, is responsible for the stabilization of single-quantum flux-
oids [45]. However, in our film (with lateral dimension 1 × 1 cm and d = 5 μm), the

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.4 Type-I superconductor with repulsive and attractive v-v interaction | 179

-6 -3 0 3 6 9
-1

0

1

2

3

 

 

 data
 fit with 
Φ=0.96 h/2e

B z
 (G

au
ss

)

Scan (μm)

6.5 K

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5
6
7
8

 
 

Φ
s
/Φ

0

Cooling field (Oe)

12
.7

 G
au

ss

1 1 1 3 3

4 4 6 6 7

4 μm

(a) (b) (c) (d) (e)

(f)

(k) (l)

(g) (h) (i) (j)

Fig. 5.8: SHPM images observed after FC to 6.5 K at various magnetic fields: (a) 0.25 Oe; (b) 0.3 Oe;
(c) 0.35 Oe; (d) 0.4 Oe; (e) 0.5 Oe; (f) 0.6 Oe; (g) 0.65; (h) 0.75 Oe; (i) 0.9 Oe; (j) 1.2 Oe. The dashed
white circles show the positions of the fluxoids with the numbers on top indicating their vorticity.
(k) Normalized smallest vortex flux Φs as a function of applied field. The solid line is a guide to the
eyes. (l) Cross sections of five fluxoids observed below 0.4 Oe. The best fit(solid line) gives Φ =
0.96 h/2e.

geometrical confinement effect on the flux tubes has to be very weak. We argue that
the stabilization of singly quantized fluxoids in a macroscopic type-I superconductor
is possible due to the extra interaction introduced in the system by a weak collective
pinning landscape, playing a similar role as the extra interaction introduced inmeso-
scopic samples due to geometry confinement [57, 58].

5.4.4 Dynamics of flux patterns

To study the stability and dynamics of vortex states, many different setups have
been used, such as magnetic force microscopy [59], scanning superconducting quan-
tum interference device (SQUID) microscopy [60] and scanning ac-susceptibility mi-
croscopy [61–63]. Compared with other techniques, the ac-susceptibility technique
has the advantage of measuring the vortex dynamics at a higher flux density in a
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relatively large area. By applying an ac field with various amplitudes, the SSM allows
one to shake the flux lines periodically by the Lorentz force raised by the induced
currents, while at the same time one can directly image the equilibrium flux patterns
and record locally the in-phase and out-of-phase magnetic response.

From the phase diagram in Figure 5.5a, we see that the flux tube state observed
after flux penetration is divided into two parts by the phase boundary H

s of flux ex-
pulsion. Different vortex dynamics are expected for the two regions. In the following
discussion, the tubular state between Hp and H‘

s is defined as the low-density flux
tube phase (LDFTP), while the region between H‘

s and Hs is called the high-density
flux tube phase (HDFTP).

5.4.4.1 Low-density flux tube phase
Figure 5.9a shows the SHPM images of a LDFTP taken at H = 6Oe after performing
a ZFC down to 6.9K. The initial flux pattern (Figure 5.9a) is metastable, and the posi-
tion of flux tubes keep on evolving over time (up to 2 hours).When applying an ac field
with the amplitude hac = 0.5Oe and frequency f = 25.123Hz, the pattern changes
(Figure 5.9b) to incorporate a new flux distribution where tubes oscillate around their
newly defined equilibrium positions (marked as dots in Figure 5.9b). The right panel
of Figure 5.9b shows the in-phase SSM image, it is clearly seen that around each equi-
librium position a red (to the left of the equilibrium position) and a blue (to the right
of the equilibrium position) spot is observed. Where a red spot appears it means that
a flux tube has moved into that spot upon increasing hac, while where a blue spot ap-
pears it means that a flux tube has moved out of that position upon increasing hac. It
is expected that the more the flux tube is displaced from its equilibrium position the
more intense is the in-phase signal.

0.6  7.1 G 0.6  7.1 G μ<0 μ>00
(a) (b)

ZFC, 6.9 K hac=0.5 Oe In-phase

4 μm

Fig. 5.9: (a) SHPM image measured at H = 6 Oe after ZFC to 6.9 K. (b) Dc and in-phase images taken
at H = 6 Oe and hac = 0.5 Oe. Dots indicate the average position of flux tubes in the dc image. The
arrows show the oscillation direction for the flux tubes.
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The resulting oscillatory movement (depicted by the arrows) bears a close resem-
blance to the Campbell oscillatory behavior of a vortex lattice in the mixed state of
a type-II/2 superconductor [62]. After switching the ac field off, the vortex pattern
freezes in the new equilibrium position, shown by Figure 5.9b, which, in turn, does
not demonstrate any variation over time or even when applying further shaking with
hac = 0.5Oe. Only when a higher hac or Hdc is applied, do the flux tubes have enough
energy to overcome their pinning potentials. A similar response was first observed
by Goren and Tinkham when applying a driving current through a stripe of a type-
I superconducting indium film [36]. Notice that by superimposing an ac field to the
LDFTP the flux tubes gain enough mobility to quickly reach an equilibrium position
which otherwise takes a long time to approach. The increase inmobility observed due
to the superposition of an ac field has been previously reported for a type-I supercon-
ductor [64] and has a strong similarity to themixed state of a type-II/2 superconductor
under the action of an ac field [65].

Typically in type-II/2 superconductors each vortex carries only one flux quan-
tum [66] and they experiencea repulsive vortex-vortex interaction,while the flux tubes
in a type-I superconductor are composed of a multiple integer number of flux quanta
and they demonstrate a short-range attractive interaction and a long-range weak re-
pulsive interaction. Hence, it is natural to expect different dynamics in these systems.
However, in the LDFTP a similar dynamical behavior between flux tubes and vortices
in the mixed state of type-II/2 superconductors is obtained, where the vortices oscil-
late around their pinning potentials under a low ac field and jump from one to another
at high enough ac fields [62]. Also notice that the flux tubes in the LDFTP have sim-
ilar diameters, and the fitting with the monopole model gives a vorticity of L ≈ 7Φ0
for each flux tube. This indicates that all flux tubes contain a similar number of flux
quanta, suggesting that the initial change of the observed tubular pattern (Figure 5.9b)
is not due to the split of the original flux tubes but rather due to the rearrangement
of the flux lattice. Moreover, as will be further discussed, the increase in stability of
the resulting tubular patterns that occurs after applying the ac field is the result of a
dynamical process that allows the flux tubes to be trapped by the randomly located
pinning centers.

5.4.4.2 High-density flux tube phase
Figure 5.10a shows a pattern of flux tubes in the dashed area of the phase diagram in
Figure 5.5a. If applying a small hac, the in-phase SSM image (Figure 5.10b lower panel)
shows that the flux tubes oscillate around their equilibrium positions. It should be
noted that here the flux tubes are inhomogeneous in size (and magnetic field inten-
sity) and some of them are not round but present in an elliptical shape, still their dy-
namical behavior under a gentle ac-shake is similar to that obtained in the LDFTP.
Nevertheless, in the HDFTP the hac needed to set the flux into motion is lower than
that in the LDFTP due to the stronger interaction among the flux tubes which adapts
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thewhole flux pattern better to available pinning centers. It is therefore suggested that
the increase in the interaction between flux tubes is the origin of the stability observed
in the HDFTPduring the flux penetration experiments. A similar effect is also reported
in the peak effect regime of type-II superconductors, which is ascribed to the collective
pinning due to the softening of the elastic moduli of the vortex lattice [67].

By increasing the ac field, the vortex pattern starts to change, part of the flux
tubes combine and then they stabilize again (Figure 5.10c), indicating that the “dither
force” is still not strong enough to totally overcome collective interactions. When fur-
ther increasing the “dither force” up to a critical value (hac = 0.3Oe for this dc field
and temperature), the dragging force applied to the flux tubes overcomes the equilib-
rium interaction among them and the flux tubes move by splitting and recombining
as shown in Figure 5.10d. No stable vortex pattern can be observed. After switching
the ac field off the vortex pattern has reconfigured into a coexistence state of stripes
and flux tubes (Figure 5.10e). To verify that the observed flux pattern reconfiguration
results from a dynamical effect and not because of increasing the flux by applying the
ac field (Hdc + hac), the SHPM images were measured at 6.9K after ZFC and then pro-
gressively increasing the external fieldHdc from10Oe to 10.5Oe. Only minor changes
in the vortex patterns are seen even at 10.5Oe, thus supporting the suggestion that
the reorganization of flux observed by applying an ac field in the HDFTP reflects an
intrinsic dynamical behavior.

When further shaking the stripe pattern with a higher ac field, the stripes may
rearrange into another form.However, they never break into flux tubes [68]. This looks
quite natural because the tubular flux pattern is constrained by the collective pinning
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hac=0.1 Oe hac=0.2 Oe hac=0.3 OeZFC at 6.9 K

Hdc=10 Oe

7.
9 

G
4.

1

μ<0

μ>0

0

4 μm
In-phase  In-phase  In-phase

ac field off

Fig. 5.10: (a) High-density flux tube state obtained at Hdc = 10 Oe after ZFC to 6.9 K. SHPM (up-
per panel) and SSM (lower panel) images obtained at various oscillating fields: (b) hac = 0.1 Oe,
(c) hac = 0.2 Oe and (d) hac = 0.3 Oe. The arrows show the oscillating direction of the flux tubes.
(e) SHPM image taken after switching off the ac field.
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Pinning sites derived from FC and different LDFTS after shaking:

4 Oe+0.5Oe
4 Oe+1.0 Oe

6 Oe+1.0 Oe4 Oe+1.2 Oe
6 Oe+ 0.5 Oe

Hdc +  hac

FC at 4.2 K

(a) (b) (c)

ZFC, Hdc= 10 Oe FC, Hdc= 10 Oe ZFC (10 Oe)+ hac

4 μm

Fig. 5.11: Vortex patterns obtained at 6.9 K with Hdc = 10 Oe after performing: (a) ZFC; (b) FC; (c)
after shaking the vortex pattern of ZFC. The dots indicate the randomly distributed pinning centers
derived from the equilibrium patterns of a low-density flux tube state. The squares show the posi-
tions of flux tubes derived from FC at 4.2 K.

to a lot of metastable states whichmay have a higher free energy than the equilibrium
state. Since the free energy difference between the tubular state and the stripe state is
quite small [69], after increasing the static field the tubular pattern has enough time to
adapt to another metastable tubular state in order to compensate the energy increase
due to the increased field (a superheated tubular state). However, when applying an ac
field, the tubular pattern cannot follow the rate of change of the magnetic field, i.e.,
before it reaches another metastable tubular pattern, the field changes again. Then
all the patterns are gradually pushed into a state with a much higher energy which is
unstable. After switching the ac field off, all the flux domains reorganize down to the
most energetically favorable state, which for this field and temperature is the stripe
pattern as previously shown by the flux expulsion experiments.

5.4.4.3 Stability of various flux states
The dynamical rearrangement of the flux domains and the FC experiments suggests
that above a certain field, which is temperature dependent, the stripe pattern favors a
lower energy state compared to the flux tubes. This is totally in contrast to the case in a
pinning-free sample, where the tubular pattern represents the topological equilibrium
state [69] for allmagnetic fields. Tounveil themechanismbehind the rearrangementof
fluxdomains, Figure 5.11 presents the vortex patterns obtained at the sameparameters
(6.9K, 10Oe) after different approaches: (a) ZFC; (b) FC; (c) ZFC + hac. The intrinsic
pinning potentials are also shown by the dots and the squares. The dots are derived
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from the equilibrium patterns of the LDFTP after shaking with various ac fields (e.g.,
Figure 5.9c), while the squares indicate the positions of pinned flux tubes after FCs at
T = 4.2K. The overlap of the pinning centers, obtained from different runs further
proves the claim that after gently shaking with an hac all the flux tubes stabilize at the
pinning centers.

From Figure 5.11a, it is seen that the flux tubes are randomly distributed after a
ZFC, with only a few of them sitting at the pinning centers (40%) which favors the
picture of a superheated flux tube state stabilized by their collective interaction. How-
ever, when expelling flux out of the sample by performing field-cooling, the stripe-like
normal domains nucleate with 87% of pinning potentials occupied by the normal do-
mains (Figure 5.11b). This ensures a more stable state compared to that of flux pene-
tration (Figure 5.11a). Also in Figure 5.11c, the reconfigured flux tube state forms after
shaking pattern Figure 5.11a with an hac = 0.3Oe as formerly discussed. It is found
that 92% of the pinning sites are well occupied by the normal domains, which shows
the effect similar to the FC process. Note that performing the same experiments at dif-
ferent locations gives consistent results although the pinning distribution varies from
scanning areas. This is reminiscent of the recent report on the inverse melting of the
vortex lattice in high Tc superconductors [70], where by applying a big enough ac field,
magnetic hysteresis disappears. Therefore, a reduction or even the disappearance of
hysteresis is also expected in a macroscopic M-H loop with the ac field on.

5.5 Type-II/1 superconductor with short-range repulsive and
long-range attractive v-v interaction

Although discovered more than half a century ago, type-II/1 superconductors are the
least known ones among all kinds of superconductors. Early research based on Bitter
decoration has revealed that the vortex pattern is composed of large areas of Meiss-
ner state and vortex clusters. However, detailed studies of the transition from type-
II/1 to type-II/2 or type-I, with single-vortex resolution, have rarely been performed.
This might be due to the lack of type-II/1 superconductors and the proper technique
to probe them. In this section, we introduce the study of vortex pattern evolution in a
type-II/1 superconductor simply by changing the temperature.

5.5.1 Vortex phase diagram

The sample used in the study is a ZrB12 single crystal with a κ in the range of 0.8–
1.12 [71, 72]. Hence, from the κ–T phase diagram, a phase transition from type-II/1 to
type-II/2 is expected by varying the temperature. Figure 5.12e presents the virginM(H)
curves at various temperatures. It is clear that below Hc1 the sample is in the Meiss-
ner state. At Hc1 the M(H) curves exhibit an abrupt jump ∆M and the magnetic field
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penetrates the sample to form the intermediate mixed state. When the magnetic field
reaches H∗, another discontinuity appears, then M gradually decreases to 0 at Hc2.
With increasing temperature, the magnetization jump ∆M is suppressed and the tra-
ditional type-II/2 behavior dominates [73]. This can better be seen from Figure 5.12b
where ∆M follows a linear dependence with temperature as indicated by the solid
line, and above T∗ = 0.97 ± 0.01Tc, ∆M decreases to zero, indicating that the re-
pulsive interaction prevails. The observed behavior is very similar to another type-II/1
superconductor Nb [74]. The phase diagram deduced from the above is shown in Fig-
ure 5.12c. Three magnetic phases are observed, with the IMS only occupying a narrow
area in the phase diagram. However, it should be noted that, due to the existence of
a surface barrier and random pinning produced by the quenched disorder, the vortex
patterns nucleated above Hc1 can still be observed even when entering the Meissner
state by, for example, performing a field-cooling (FC) process.

5.5.2 Vortex pattern evolution

The evolution of the vortex patterns for an FC regime under amagnetic field of 4.73Oe
is shown in Figure 5.13. The bright red spots represent vortices, while the intervortex
superconducting state is displayed as dark areas. At 5.82K the Abrikosov vortex lat-
tice is well formed indicating the sample is in the traditional type-II/2 regime. Note
that the triangular vortex lattice is distorted, due to the existence of quenched disor-

Fig. 5.12: (a) Magnetization curve for ZrB12 at various temperatures. The dashed line marks the
position of Hc, above which type-II behavior dominates. (b) The magnetization jump at Hc1 as
a function of reduced temperature. By extrapolating the linear dependence, ∆M disappears at
T∗ = 0.97 ± 0.01Tc. (c) H–T phase diagram showing different regimes of vortex phases, where
the type-II/1 (IMS) regime only occupies a narrow area.
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der. In some other areas with less defects, a well-ordered triangular lattice is formed
at high temperatures. With decreasing temperature, the vortex lattice becomes more
and more disordered as a result of the increase of the attractive interactions among
vortices. At intermediate temperatures, a square lattice is energetically favorable as
shown by the white circles at 5.67K and 5.6K. This is also supported by the vortex
pattern evolution as a function of time. The results are presented in Figure 5.14. After
first cooling down to 5.7K, part of the vortices still remain in the triangular lattice,
as highlighted by the symbols. After waiting for 5 minutes, the triangular vortex lat-
tice rearranges to a square lattice and stabilizes (as displayed in Figure 5.14b,which is
measured 5 minutes after Figure 5.14a). This provides direct evidence that the square
lattice is energetically more stable than the triangular lattice when the vortex attrac-
tion appears. A square lattice has also been suggested for another low-κmaterial (Nb)
from neutron diffraction measurements [75]. At even lower temperatures, vortices fi-
nally form vortex chains and clusters, as indicated by the open symbols and dashed
oval, respectively, in Figure 5.13a. This order-disorder transition can be reversed by
warming up the sample across the phase boundaries as presented in Figure 5.13b.

The formation of vortex chains is quite interesting. A similar phenomenon has
been observed in many physical systems with competing interactions. For example,
in the transition from the vortex solid to the vortex liquid phase, the thermal fluctu-

5.4 K5.82 K 5.60 K 5.1 K5.75 K 5.67 K

5.60 K 5.82 K5.40 K 5.67 K 5.75 K5.20 K
(a)

(b)

4 μm

Fig. 5.13: Vortex pattern evolution with cycling temperature after FC at H = 4.73 Oe. (a) SHPM im-
ages observed with decreasing temperature. The bright red spots represent vortices. A distorted
triangular vortex lattice is observed at 5.82 K as highlighted by the symbols. With decreasing tem-
perature, vortices tend to form a square lattice, as indicated by the white squares, and then trans-
form to a disordered state with vortex chains (open symbols) and clusters (dashed oval) as can be
seen at 5.4 K and 5.1 K. (b) When cycling the temperature back, a disorder-to-order transition of the
vortex arrangement is recovered.
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t =0 t =5 min t =10 min

4 μm

(a) (b) (c)

Fig. 5.14: Formation of square lattice. (a) SHPM image measured after FC to 5.7 K at H = 1.5 Oe. Part
of the vortices still remain in the triangular lattice as indicated by the open symbols. SHPM images
taken (b) five minutes and (c) ten minutes after (a). The vortices rearrange into a square lattice.
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Fig. 5.15: (a) Statistics of the nearest-neighbor distances for the vortex patterns at various tempera-
tures. (b) Nearest-neighbor distance at the peak position as a function of temperature. The shaded
area indicates the peak distribution width, which increases with decreasing temperature. The
dashed and dotted lines correspond to the nearest-neighbor distance for a triangular and square
lattice, respectively.

ations overcome the vortex repulsive interaction and a linear vortex arrangement ap-
pears [76]. Here, the competition arises from the short-range repulsive and long-range
attractive interactions. A close resemblance has also been found compared to the vor-
tex patterns in the type-1.5 superconductor MgB2, where vortex stripes and clusters
are formed under the competition of long-range attraction and short-range repulsion
between vortices due to the two-band effect [3, 4, 18, 77].

The distribution of the first-neighbor distances dv-v for a large vortex pattern is
calculated for both the ordered and disordered state and is plotted in Figure 5.15a. The
vortex distribution for the ordered state can be fitted by a Gaussian formwith themax-
imum around 2.47muupm, which is consistent with the value (∼ 2.5muupm) from
the triangular vortex lattice at the same field by using d2v-v = 2ϕ0/√3B. In contrast,
the disordered state shows a much broader distribution with additional peaks being
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2 μm
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0.48 Oe 0.52 Oe 0.56 Oe 0.6 Oe 0.64 Oe

Fig. 5.16: SHPM images observed after FC with progressively increasing magnetic fields, showing
the formation of a vortex cluster. The diamonds indicate the location of the pinned core vortices,
while the circles indicate the positions of fringe vortices attracted to the pinned ones.

observed. The distances corresponding to the observed vortex distribution peaks are
displayed in Figure 5.15b. It is seen that, with decreasing temperature, the minimum
dv-v value at the peaks decreases while the peak distribution width (shown by the
shaded area) increases. These results provide direct evidence for the attractive inter-
actions between vortices at low temperatures.

5.5.3 Vortex clusters in the IMS

Another important feature of the IMS is the formation of vortex clusters, which have
been observed all over the IMS in ZrB12. However, there is no ordering of the clus-
ters. Figure 5.16 presents the formation process of a typical vortex cluster. The vortices
are shown by using different symbols: 1) Core vortices by the diamonds. These are
the vortices located close to the pinning centers. After each field-cooling, they always
prefer to nucleate around the same locations. These vortices form the cluster cores. 2)
Fringe vortices marked by the open circles. These vortices nucleate around the core
vortices at high temperatures and subsequently are pushed to them by the appear-
ance of attractive interaction when cooling down to the type-II/1 regime. Fringe vor-
tices (circles) tend to form the triangular arrangement with core vortices (diamonds),
forming the periphery of the clusters. In this scenario, the vortex clusters can still
be regarded as a distorted Abrikosov vortex lattice. Notice, however, that the first-
neighbor distance inside the cluster remains constant as the field is increased, with
a value of 1.9muupm. In the IMS of clean low-κ superconductors, Meissner areas
appear surrounded by mixed-state areas presenting a triangular vortex lattice with
constant vortex-vortex separation. The same trend is found within the vortex clusters
although they are highly disordered due to the presence of weak pinning in the sam-
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ple. Additionally, it should be noted that no giant vortices are formed in the vortex
cluster, suggesting that the repulsive force dominates at short distances and in this
temperature range.

5.6 Conclusions and outlook

To summarize, the feasibility of introducing and manipulating the interactions make
superconductors (type-I and type-II/1) a perfect platform to study modulated systems.
The study of vortex matter in different superconducting systems will definitely pro-
mote new research of similar modulated systems. This opens new possibilities not
only within the superconducting community but also for researchers working in other
areas like astrophysics, ferrofluids, liquid crystals and so on. Lastly, we would like to
give an outlook on future work:
1. So far, the study of type-I superconductors is mainly performed on plain films and

singe crystals, where pinning centers are randomly distributed in the materials
during the sample preparation. Further work on samples with artificial periodic
pinning arrays would definitely add new richness to the system. For instance, in
a type-I superconductor with periodic pinning centers, one might be able to sta-
bilize Φ0, 2Φ0, 3Φ0. . . vortex lattices under certain parameters. The matching
effect observed in type-II superconductors might also be dramatically changed.

2. It would be interesting to study a superconductor with κ slightly smaller than
1/√2. Since in this region, a transition from the type-II/1 to type-I phasewill occur
with varying temperature and the related vortex interactions become totally op-
posite (from long-range attractive and short-range repulsive to long-range repul-
sive and short-range attractive). Such a measurement has never been done so far,
and a lot remains unclear. To facilitate this, films of type-I superconductor with
various thickness could be perfect candidates. In superconducting films with the
thickness d comparable or smaller than the bulk penetration depth (λ), the effec-
tive Ginzburg–Landau parameter κeff will mainly be determined by the effective
penetration depth κeff = Λ/ξ = λ2/dξ . Therefore, κeff can be easily manipulated
by changing thickness of the film. Such study will eventually bridge type-I and
traditional type-II superconductors.

3. The recently discovered type-1.5 superconductivity in two andmultigap supercon-
ductors provides a new way to study vortex competitions, especially in supercon-
ductor heterostructures.
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superconducting films

Abstract: Artificial manipulation and control of vortex dynamics in YBa2Cu3O7
(YBCO) films have always been a complex issue, especially since high thermal ex-
citations but also strong vortex pinning capabilities coexist in this material. Thus,
artificial nanofabrication strategies able to generate competing effects with intrinsic
microstructural defects need to be achieved. Lithography tools are widely used to cre-
ate model systems with controlled pinning potentials in superconductors. However,
these techniques easily disturb the optimal oxygen film doping in YBCO films and
consequently the overall performances degrades.
We have optimized the use of two different high-resolution nanolithography ap-
proaches, Focused Ion Beam Milling and Electron Beam Lithography, to artificially
and locally modify the pinning landscape of YBCO films grown by chemical solution
deposition (CSD). Three different nanofabricated systems will be discussed, which
resulted in ideal structures to manipulate vortex dynamics in CSD-YBCO thin films
with strong intrinsic pinning centers. In particular, we observed artificial granular-
ity effects, nanowall pinning, and positive and negative rectification effects. We will
report on our understanding of all these effects and potential expectations.

6.1 Introduction

YBa2Cu3O7−d (YBCO) is⁴ the technologically most relevant high-temperature super-
conductor, highly explored for practical applications [1–6]. The achievement of artifi-
cial pinning centers (APC) in YBCOfilms is ofmajor concernwhen pinning forces need
to be optimized, in coated conductors (long-length epitaxial YBCO films on buffered
flexible metallic substrates), or when they need to be exploited for electronic appli-
cations, requiring flux quanta manipulation. However, flux pinning in cuprate super-
conductors requires control of the defect structure on a nanometric scale and this is
a cumbersome problem. The primary concern is to develop efficient techniques for
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tailoring the intrinsic microstructure of the material, which will strongly depend on
the growth technique. Different routes have been used towards the preparation of
high-quality YBCO films and coated conductors, based on both physical and chemi-
calmethodologies [7–14]. The Chemical Solution Deposition (CSD) techniques appear
as an alternative to expensive vacuum-based physical technologies and targets next-
generation YBCO film applications. This chapter will focus on the progress achieved
in the nanofabrication of artificial pinning centers in YBCO films grown by CSD.

6.2 Chemical solution deposition (CSD)

Chemical SolutionDeposition (CSD) technologyhasbecomeoneof themost appealing
alternatives towards affordable production of long-lengthhigh-temperature supercon-
ducting tapes because it is a flexible, scalable and low-cost process. TheCSDapproach
has been applied to the preparationof thin films of functional oxides inmanydifferent
fields [15, 16], however its use to obtain epitaxial films has been less explored [17]. The
field ofHTS superconductorshasbeen thedriving force in this case [18]. Themost cum-
bersome issue to achieve high-performance coated conductors (CC) has been to find
a suitable methodology to grow epitaxial YBCO thin films and nanocomposites based
on CSD on flexible metal substrates, and here, the greatest progress has been made
based on the use of metal-trifluoroacetates (M-TFA) as metal-organic precursors [19–
22]. The main advantage of these precursors is that they decompose in intermediate
nanometric Cu and Y oxides and BaF2 phases, thus avoiding the formation of BaCO3
whose decomposition is cumbersome [23]. Chemical Solution Deposition is based on
four processing steps schematically shown in Figure 6.1 and described in the follow-
ing. For an extended version see [18, 20, 21].

6.2.1 Precursor solution

The first step is the preparation of the precursor solution using metal-organic pre-
cursors (mostly metal-carboxilate salts) containing the required cations to form the
desired compound (Y, Ba, and Cu for the case of YBCO). In the pure TFA route, triflu-
oroacetate salt precursors of Y-TFA (Y(CF3COO)3), Ba-TFA (Y(CF3COO)2), and Cu-TFA
(Cu(CF3COO)2) aremixed in a stoichiometric ratio and dissolved in adequate solvents
(methanol in most cases). The solubility, stability, and homogeneity of the solution
will mainly depend on the specific salt, the metal ion concentration, the solvents, and
possible additives used [18, 24].

The rheological parameters of the final precursor solution (concentration, viscos-
ity, drying rate, surface tension, wettability, etc.) must be adapted to the selected de-
position technique, allowing one to achieve a close control of the film thickness and
final properties of the deposited film.
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(I) Precursor Solution

Y-TFA

Ba-TFA Cu-TFA

solvent

(II) Solution Deposition

(II) Pyrolysis (IV) Growth and oxygenation

(a) (b) 

(d) (c) 

5 µm

Fig. 6.1: Schematic representation of the four processing steps for Chemical Solution Deposition
(CSD) growth of YBCO. (I) Precursor solution preparation. (II) Solution deposition by (a) spin coating,
(b) dip coating, (c) slot-die coating, and (d) ink-jet printing. (III) Pyrolysis to obtain amorphous and
nanocrystalline intermediate phases. (IV) Growth and oxygenation to achieve highly epitaxial films.

6.2.2 Solution deposition

The second step is the deposition of the coating solution onto the substrate. This is
mainly performed by spin coating at laboratory scale, or dip coating, slot-die coating,
and ink-jet printing, at industrial scale.

Spin-coating is a widespread deposition technique that consists of dropping a
small amount of solution onto the center of a rotating substrate. The film thickness
and homogeneity, mainly depends on the spinning parameters: rotation speed, accel-
eration, time, and also onmore complex parameters such as environmental humidity
and substrate temperature.

Dip coating is based on the immersion of the substrate in a liquid bath and the
formation of a liquid film on withdrawal of the substrate from the coating fluid. The
main parameters in the dip-coating process are the immersion, the dwell time that
the substrate remains fully immersed andmotionless, and the withdrawal speed. The
faster the film is removed from the bath, the thicker is the final coating.
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In the slot-die coating process a precise measure of liquid is supplied onto the
substrate and dispersed at a controlled rate while a coating die is precisely moved
relative to the substrate. The wet film quality and thickness is controlled by the flow
rate, coating width, and speed.

In the case of ink-jet printing, the concept for film deposition involves the pre-
cise positioning of very small volumes of fluid (1–100 picoliters) on a substrate. In this
case understanding of the main physical processes that operate during ink-jet print-
ing: generation of droplets, positioning, interaction of dropletswith the substrate, and
drying is key to achieving the desired deposited films [25, 26].

6.2.3 Pyrolysis

After a film drying process, the organic matter of the deposited films is decomposed.
This is called the pyrolysis process. Typically, this involves thermal treatments up to ∼
300–400 °C, typically in humid oxidizing atmospheres, in standard tubular furnaces.
Water vapor in the gas flow prevents Cu-TFA sublimation via hydrostabilization [18].

The pyrolysis time, temperature, heating rates, and oxygen partial pressure must
be optimized according to the kinetics of the precursor decomposition.

The main difficulty in achieving homogeneous pyrolyzed films arises from the
strong film shrinkage occurringduring the pyrolysis process. In this process, the stress
relief must be slow enough to avoid film inhomogeneities such as buckling or macro-
cracks. In the particular case of the TFA route the pyrolysis reaction is:

Y(CF3COO)3 + 2Ba(CF3COO)2 + 3Cu(CF3COO)2 + H2O + O2→ CuO + Ba2−xYxF2+x + Y2O3 + volatile phases . (6.1)

The pyrolysis process leaves the film as a mixture of amorphous and nanocrys-
talline intermediate phases, which should maintain homogeneity and integrity at the
nanoscale.

6.2.4 Growth and oxygenation

The final step in the CSD TFA-route process is the crystallization of the film into the
desired oxide phase following the reaction:

3
2CuO + Ba2−xYxF2+y + 1

4Y2O3
+ yH2O → 1

2YBa2Cu3O7−δ
+ 2yHF . (6.2)

In this step the pyrolyzed film is heated at high temperature (T ∼ 700–800 °C),
and the nucleation, growth, and densification of the YBCO layer is produced in a hu-
mid atmosphere-controlled tubular furnace to decompose the fluorinated compounds
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and enable YBCO formation. CSD-YBCO films grow following a Volmer–Weber 3D is-
land mode where initial nuclei are stabilized, then they coarsen, coalescence, and
finally grain boundaries need to be healed to obtain a dense film. For the control of
these nucleation and growth processes of the YBCO film, a proper selection of the oxy-
gen partial pressure (PO2)-temperature region of the phase diagram ismandatory, but
also water partial pressure, gas flow, and heating rate are very relevant parameters in-
fluencing both processes in different manners [18]. After the adjustment of all these
parameters, epitaxial YBCO films with a c-axis perpendicular to the substrate plane
are obtained. The growth conditions are highly dependent on the substrate surface
quality and the lattice mismatch and therefore they must be adjusted for each coated
conductor architecture [6]. After growth, the film must be oxygenated to reach the fi-
nal superconducting orthorhombic structure. Once optimal growth and oxygenation
conditions are attained, epitaxial thin films of very high quality can be produced with
Jc = 3−5MA/cm2 at self-field and 77K in thicknesses of 200–500nm. Larger film
thicknesses needed to achieve higher critical currents are mostly achieved through
the use of multideposited layers [27].

The ultimate superconducting performance of the YBCO films will strongly de-
pend on the natural nanoscale defect structure formed during CSD processing [28]. It
is well known that natural defects, such as dislocations, vacancies, intergrowths, or
twin boundaries (TBs) can act as effective pinning centers and are the source of high
critical currents in YBCO films [18, 29].

6.3 Artificial pinning centers in CSD-YBCO films

Tailoring the vortex pinning landscape in YBCO films is presently one of the major
challenges because of its relevance to applications requiring manipulation of flux
quanta or enhanced critical currents. However, artificial control of the pinning sce-
nario in YBCO films is a complex issue, especially because of their high thermal
excitations and their already strong intrinsic pinning capabilities due to the presence
of many natural defects. Thus, artificial nanofabrication strategies able to generate
competing pinning sites with an intrinsic nanoscale defect structure need to be used.

Different routes have been developed to introduce effective artificial pinning cen-
ters (APC) in CSD-YBCOfilms, going from scalable processes where randomly oriented
second-phase nanoparticles have been spontaneously segregated into the YBCO ma-
trix, to designed model systems with ordered nanostructures.

In the first approach, we modify the precursor solution by introducing spe-
cific amounts of particular metal-organic salts (Zr-, Hf-, Ta-carboxilates) which form
nanocomposite filmswith secondary nanophases (BaZrO3, BaHfO3, Ba2YTaO6) spon-
taneously segregated within the YBCO matrix during growth. It has been demon-
strated that the presence of these randomly oriented nanoparticles induces the for-
mation of a large density of stacking faults that produce strong lattice distortions in

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



200 | 6 Vortex Dynamics in Nanofabricated CSD High-Temperature Superconducting Films

1µm

5 µm

200

100

0

nm
(a) (b) 

(c) (d) 

Fig. 6.2: SEM pictures of several CSD-YBCO bridges patterned with different structures. (a) Circular
antidots, (b) blind trenches, (c) triangular antidots. (d) AFM image of the pattern with triangular
antidots shown in (c).

the YBCO matrix, which act as very efficient strong isotropic pinning centers [10, 30].
YBCO films with BaZrO3 (BZO) nanoparticles, for example, have shown enhanced
pinning forces (75GN/m2 and 600GN/m2 at 3 T, 65K and 9T, 10K, respectively) [4],
more than five times larger than standard films grown by the same process [10]. Re-
cently, a more advanced strategy where preformed nanoparticles are stabilized in the
YBCO precursor solutions, from which the nanocomposite films are grown, has also
been developed [31]. The idea behind this is to have greater control of nanoparticles
size.

These types of artificial defects are distributed arbitrarily in the superconducting
nanocomposite filmandunderstandingvortexphysics in these systems is alwaysmore
complicated. A different strategy can be followed, based on designed model systems
with ordered nanostructures that enable one to properly engineer the pinning land-
scape, where vortex dynamic behavior can be better controlled andmanipulated [32].

In this chapter we will report on this latter approach, aiming to study differ-
ent model superconducting systems with APC. We will use different nanofabrication
strategies, based onhigh-resolution lithography techniques, able to locallymodify the
superconductingmaterial at nanometric scale, inducing pinning sites with controlled
parameters (distribution, density, shape, and size). Antidots completely perforating
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the YBCO layer, blind antidots and trenches are the different nanostructures that
we have fabricated, by using Focused Ion Beam (FIB) milling and Electron Beam
Lithography (EBL). This has resulted in several new physical phenomena that will be
discussed in the following section. Figure 6.2 show several examples of CSD-YBCO
films patterned with these APCs.

6.3.1 Electron beam lithography

Electron Beam Lithography (EBL) consists of the electron irradiation of a surface that
is coveredwitha resist sensitive to electrons. This high-resolution lithographic process
is able to create submicronic structures in thepolymeric layer irradiatedwitha focused
electron beam. Figure 6.3 shows the three different steps required to pattern a film
by EBL: Exposure of the electron sensitive material, development of the resist, and
pattern transfer to the film. Each individual step, with a great number of parameters
that must be optimized, contribute to the final resolution of the pattern.

The first step starts with the preparation of a resist layer on top of the film by spin
coating. For positive polymer resists, usually polymethyl methacrylate (PMMA), the
polymer irradiated area canbe eliminatedwith a development process. Theused poly-
mer and spinparameterswill determine thefinal resist thickness. After thedeposition,
the resist layer is soft-baked on a hot plate and the film is then ready for irradiation.
It is important to remark that the exposed area cannot be observed once the resist is
deposited so a good sample alignment is necessary before exposure.

The exposure procedure strongly determines the final resolution of the patterned
structures. This process comprises several points: pattern design and sample align-
ment, optimization of the electron beamparameters (working distance, spot size, volt-
age, focus), calibration of the write field (working area that will be exposed), dose
(amount of electrons per unit area that the resist receives), and beam speed.

The right dose value to obtain good patterned features in the resist layer depends
on the resist sensitivity, thickness, and development conditions. The development
process consists of sample immersion in a developer solution to remove the irrigated

e– exposure Resist development Film etching

Fig. 6.3: Schematic representation of the different steps in the Electron Beam Lithography process.
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resist and obtain the desired pattern. This process must also be optimized to avoid
under- or over-developed features.

Finally, the pattern is transferred to the film bymeans of wet or dry etching, using
the resist as a mask. In this process the etching parameters are critical to obtaining a
fine reproduction of the desired structures on the film. The etching depth canbe tuned
to transfer the pattern to the whole film thickness or to just mill a part of the film.

The different studies presented in this work were performed with a field emission
SEM QUANTA FEI 200 FEG-ESEM. In all cases we deposited a ∼ 100nm thick positive
PMMA resist, prebaked at 180 °C over 60 s. For the irradiationwe changed the voltage
from 10kV to 30 kV and adjusted all beam parameters for the best patterning con-
ditions. The YBCO films were wet etched with a diluted solution of orthophosphoric
acid.

6.3.2 Focused ion beam lithography

In the case of Focused Ion Beam (FIB) lithography, the irradiating ions are heavy
enough to directly etch the YBCO film, without the need of any mask. With this tech-
nique, Gallium ions are focused and accelerated to the sample surface, by using
electrostatic lenses and coils. The high energy of these ions produces direct milling of
the material at the nanoscale (Figure 6.4).

Gallium is currently themost commonly used ion source for FIB instruments since
it is metallic, has a low melting temperature, low volatility, and low vapor pressure,
offering excellent mechanical, electrical and vacuum properties. Moreover, the atom
is large enough to mill heavy elements.

One of the main advantages of FIB lithography is that it enables direct process-
ing at the nanometer scale with the possibility to image the sample while doing the
irradiation. Dual-beam (FIB/SEM) systems offer the option to monitor the ion beam
milling with SEM imaging, without damaging the sample. However, in direct milling,
secondary effects occur around the irradiated areas, which could modify film proper-
ties. Effects can include implantation of Ga+ ions in the YBCO matrix, redeposition of
small amounts of sputtered material, or sample amorphization (see Figure 6.4). The
secondary effects can be minimized by reducing the milling rate.

An accurate optimization of the FIB milling parameters has to be performed in
order to obtain high-resolution patterns, whilstminimizing sample damageduring the
milling process. Themost relevant factors are beam voltage, current, dose (number of
ions per unit area), and milling rate.

In this work we used a Carl Zeiss Crossbeam 1560 XB system, with an SEM and a
FIB column, combining the applications of the focused ion beam with imaging per-
formance.We used a constant beam voltage of 30 kV with variable beam currents (be-
tween 5–200pA), depending on the milling rate.
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Fig. 6.4: Schematic representation of Focused Ion Beam etching.

6.4 Manipulating vortex dynamics in YBCO films with APC

6.4.1 Physical characterization techniques

The aim of this section is to elucidate the effect of different artificial pinning cen-
ters, generated by EBL and FIB, on the vortex lattice in CSD-YBCO thin films. This is
achieved through measurements of the transport critical current density with temper-
ature and magnetic field. Moreover, the interaction vortex-defect will be explored by
means of magnetic decoration at low magnetic fields.

Transport measurements
Transportmeasurements, where current is applied through a superconducting sample
while the voltage across it is measured, are a direct and reliable way to study vortex
pinning and dynamics. With this technique we are able to define current tracks in
the desired positions of the YBCO film, which combined with the nanofabricated APC
techniques, allow us to analyze and compare the effect of different pinning centers in
the same sample. Allmeasurements presented herewere performed in a QuantumDe-
sign Physical Properties Measurement System (PPMS) using a four-point bridge con-
figuration with silver contacts with a contact resistance lower than 10−6Ωcm2. Mea-
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Fig. 6.5: Magnetic field dependence of Jc at temperatures shown for a standard YBCO film. Different
colors indicate regions determined by (I) single vortex pinning, (II) collective vortex pinning, (III)
irreversibility line approach. Arrows indicate the characteristic field H∗.

surements were performed over a range of temperatures from 5 to 77K and magnetic
fields of up to 9 T applied perpendicular to the c-axis.

Figure 6.5 shows the magnetic field dependence of the critical current density,
Jc(H), obtained for a standard CSD-YBCO thin film at different temperatures. Notice
that it is possible to distinguish three different regimes in the Jc(H) log-log diagram [33,
34]. The first regime is at low magnetic field and corresponds to the single vortex pin-
ning regime, where each vortex is individually pinned to a defect, thus Jc is field-
independent. In the intermediate regime, above the characteristic field H∗, the den-
sity of vortices becomes greater than the density of defects and interactions between
them become important. This region is described by collective vortex pinning inter-
actions that are described by a power law Jc ∼ H−α, where α depends on the type of
interaction. In the third regime at high fields, Jc decays strongly since it approaches
the irreversibility line. Thus, depending on the applied magnetic field and tempera-
ture, different vortex motion regimes can be studied and the corresponding effects of
different APC can be analyzed.

Bitter decoration
Bitter decoration is a visualization technique that allows one to provide a direct illus-
tration of the vortex lattice in a superconductor. With this procedure we are able to
study the interaction of vortices with the nanostructures defined in the YBCO films.

A Bitter decoration experiment of a superconducting specimen consists of the
evaporation of tiny ferromagnetic clusters on the sample surface when this is in the
superconducting state, so that the ferromagnetic clusters get attracted to the vortex
positions. The sample is placed in an evaporation chamber with controlled pressure,
temperature, and magnetic field. The critical conditions for optimal deposition are
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defined by the amount of ferromagnetic material evaporated, the source-to-specimen
distance, the helium vapor pressure (which strongly defines the size of the ferromag-
netic clusters), and the magnetic field modulation within the sample. In order to en-
sure large field modulations in the sample, the applied magnetic field must be rather
small [35, 36].

After decoration, the sample is warmed up and the vortex positions, marked by
the attracted ferromagnetic clusters, are imaged by SEM. One of the main advantages
of this technique is that it allows the observation of vortices in large areas in the same
experiment and thus, interaction between vortices and defects located at different re-
gions of the sample can be studied.

A standard approach used to characterize ordering of the vortex lattice distribu-
tion from a decorated image is the so-calledDelaunay triangulation. For a set of points
(vortex positions) in 2D, a Delaunay triangulation of these points ensures the circum-
circle associated with each triangle contains no other point in its interior. By using
this triangulation, each vortex site is connected to its nearest neighbors by segments,
thus providing information of vortex coordination. Moreover, additional information
to quantify the lattice ordering is provided by the vortex density (ρ) autocorrelation
function, which gives the crosscorrelation of the 2D vortex distribution with itself, as
a function of small displacements from the original position [37].

G(r) = ⟨ρ (R) ρ (R + r)⟩R . (6.3)

This function presents an absolute maximum in the center of the image (perfect
autocorrelation) and indicates other maxima when by image displacement other vor-
tices overlap the original vortex positions. For vortex lattices with specific symmetry,
this study clearly identifies the mentioned symmetry.

In this work, we used a homemade decoration system [37, 38] with an Fe filament,
in a chamber with variable He pressure (down to 30mtorr), a fixed temperature of∼ 4.2K, and a controllable external field (from 0 to 10mT) to study different systems.

Figure 6.6a and b show an SEM image of a YBCO single crystal, grown with very
few defects, decorated at 1.6mT and 6.6mT, respectively, and the associated Delau-
nay triangulations and autocorrelation functions. Green and red points in the triangu-
lation correspond to vortex coordination equal or different to six, respectively.

At lowmagnetic field values (1.6mT), the sample remains at the single vortex pin-
ning regime (Region I in Figure 6.5), in which vortex-defect interaction prevails over
vortex-vortex interaction and thus a disordered vortex lattice, without any detected
symmetry, is obtained. At higher applied fields (6.6mT), vortex dynamics are domi-
nated by collective pinning effects and a great majority of regions with six-fold orien-
tation order are observed. The autocorrelation function in this case indicates a clear
hexagonal symmetry, characteristic of the ordered Abrikosov lattice.

A completely different situation arises, if the decoration is performed in a CSD-
YBCO thin film with a large amount of intrinsic defects. In this case, no ordering or
symmetry at all is observed even at the highest magnetic field values measured (Fig-
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Fig. 6.6: SEM images showing the Bitter decoration of a YBCO single crystal at (a) 1.6 mT and
(b) 6.6 mT at 4.2 K with the associated Delaunay triangulation and autocorrelation function. White
spots in the SEM image mark the attracted ferromagnetic clusters.

ure 6.7), since for this range of fields the system stays in the single vortex pinning
regime due to the strong vortex-defect interaction.
Thus, very efficient artificial pinning sites must be introduced in these films to over-
come the already existing natural defects if one wants to study the modifications of
vortex dynamics by artificially modeled pinning potentials.

Fig. 6.7: SEM images showing the Bitter decoration of a CSD-YBCO thin film at 5 mT and 4.2 K with
the associated Delaunay triangulation and autocorrelation function. White spots in the SEM image
mark the attracted ferromagnetic clusters.
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6.4.2 Artificially ordered pinning center arrays

In the following section, we will discuss several nanofabricated systems, prepared by
both electron beam lithography and focused ion beam lithography, and some physical
phenomena that we have gathered from them.

YBCO films with nanodots
The first studied system is a CSD-YBCO film patterned with circular antidots com-
pletely perforating the whole film thickness. Different squared lattices of antidots with
a period of 2 μm were obtained by FIB lithography. Figure 6.8 shows SEM pictures of
two YBCO films patterned with lattices of different antidot diameter (0.2 and 0.5 μm).

Transport critical current versus magnetic field (Jc versus H) measurements were
performed in order to determine the effect of the two antidot arrays in the different
vortex pinning regimes described in Figure 6.5. The Jc(H) curves measured at 77K
for a reference sample and the two bridges patterned with antidots are shown in Fig-
ure 6.9a. The first observation is that in all cases the self-field critical current density,
Jsfc , calculated with the full bridge cross section, is reduced with the antidot pattern-
ing. This decrease in Jsfc is much higher than that expected according to the reduction
in the effective cross-sectional area, due to the presence of the antidots. The value of
Jsfc has been reduced 70% and 90% for the antidot array with a diameter of 0.2 μm
and 0.5 μm, respectively, while the reduction in cross section is 10% and 25%, respec-
tively. The value of Tc is much less affected with reductions of less than 5K observed
in all cases. Thus, during the antidot milling we are not damaging the complete YBCO
layer but just producing an amorphization of the material in the area surrounding the
antidots (see Figure 6.4), probably associated to an overmilling of the sample or to the

1μm1μm
(a) (b) 

2Rgrain

Fig. 6.8: SEM images of CSC-YBCO bridges with square patterns of circular antidots, completely
perforating the film thickness, with a diameter of (a) 0.2 μm and (b) 0.5 μm. Dashed lines show an
effective grain determined by the antidot pattern.
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Fig. 6.9: (a) Magnetic field dependence of the critical current density measured at 77 K for a ref-
erence film and two bridges patterned with antidots. (b) Jc(H) curves shown in (a) normalized to
self-field Jc.

use of a too-high current beam (30 pA in both cases). This exemplifies the care that
needs to be taken with these types of nanofabrication technique.

Despite the observed reduction in self-field critical current density, the presence
of the antidot lattice clearly modifies the magnetic field dependence of the sample.
By comparing the Jc(H) curves, normalized to self-field, (Figure 6.9[b]) we observe
that the presence of antidots changes the pinning landscape, producing a smoother
Jc magnetic field dependence in the patterned bridges. However, because of the large
decrease in Jsfc no effective pinning enhancement is detected at any field.Wewill see in
the following section that by strongly limiting the damageof the regionsnext to the an-
tidots, Jsfc reduction is avoided and effective pinning enhancements are induced with
this nanofabrication technique.

Themost relevant characteristic observed in these systems is that the Jc(H) curves
show a marked hysteresis depending on the direction of the field sweep. This is illus-
trated in Figure 6.10 where we have plotted the Jc field dependence measured by de-
creasing the magnetic field from 0.1 T to −0.1 T and increasing it back to 0.1 T (see
dashed arrows in the figure), for a track with antidots (Figure 6.10a) and a reference
track (Figure 6.10[b]), at different temperatures.

While no hysteresis at all is observed for the reference track at any temperature, a
substantial hysteretic behavior appears in the patterned track as the temperature is re-
duced. This behavior appears similar to that inductively measured in granular YBCO-
coated conductors [39, 40] and artificial multigranular YBCO films [41], which are ex-
plained on the basis of reverse field components induced by the trapped current loops
generated in inhomogeneous films. The patterned antidots, completely perforating
the film thickness, emulate the current flow restricting behavior of grain boundaries
thus producing a square network of artificial grains with an effective radius, Rgrain,
determined by the antidot distance (see Figure 6.8a).When performing the Jc(H)mea-
surements shown in Figure 6.10a, return magnetic fields (Hreturn) appear at the edges
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Fig. 6.10: Critical current density, normalized to self-field, versus applied magnetic field for (a) a
CSD-YBCO bridge patterned with circular antidots and (b) a reference bridge, measured with a de-
creasing and increasing field at different temperatures. Dashed arrows show the field sweep direc-
tion and solid arrows show the calculated returned field at each temperature (see text for details).

of the artificial grains, coming from trapped current loops at each grain,whichwill re-
duce the localmagnetic fieldwithin thefilm (Hlocal = H−Hreturn). Hence, themaximum
critical current density peakmeasured at Hlocal = 0 appears shifted at H ∼ Hreturn. We
have evaluated the value of Hreturn generated by the artificial grains patterned in the
film shown in Figure 6.10(a), using the model described in [39, 40], and considering
that two grains are contributing at each point of the current percolative path.

Hreturn = 2Jcxt , (6.4)

where t is the sample thickness and x is a dimensionless factor numerically calculated
depending on the ratio Rgrain/t. Solid arrows in Figure 6.10a show the values of Hreturn
obtained at 77K, 65K, and 50K, which are in agreement with the peak shift observed
for Jc(H) at each temperature.

Besides the use of these structures as a systematic approach to investigating gran-
ularity effects in YBCO thin films, they are nice systems to model engineered high-
temperature hybrid materials, in which superconducting ferromagnetic interactions
could be analyzed. Such studies are performed by filling the nanodots with magnetic
cobalt rods [42].

Nanowalls
In light of the feasibility of antidot lattices to modify the pinning landscape of YBCO
films, in this section we will investigate the capability of this strategy to effectively in-
crease the critical current density, just perforating part of the total sample thickness,
trying to avoid the strong Jsfc reduction observed in the case of antidots fully perforat-
ing the layer (see Figure 6.11).
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To do so, we patterned YBCO films, bymeans of FIB, with blind trenches and anti-
dotsusinga slow-enoughmilling rate toproperly define the desired structureswithout
damaging the surrounding area.

Theaim is to tune thedepth, shape, anddimensionof theartificiallymillednanos-
tructures to tailor the pinning capabilities of the YBCO films, defining the limits of
maximum reduced cross section leading to a total pinning enhancement. The current
beam and the milling time used during the FIB irradiation are crucial parameters to
ensureminimum, or nonexistent, damage to the film, thus allowing fine control of the
milled cross section and the associated self-field Jc reduction. These two parameters
have been properly optimized and in all cases we used beam currents of the order of
5–20 pA, thus lower than 30 pA, which was recognized as being too high in the previ-
ous section.

Figure 6.12a shows the ratio of Jc, calculated considering the full sample cross
section, before and after patterning, for samples with different nanostructures. The
value of Sred corresponds to the percentage of cross-sectional area etched with the
patterning.

Sred (%) = 100 santidotstotal
, (6.5)

where santidot is the maximum area of blind antidots perpendicular to the current flow
(red area schematically shown in Figure 6.11) and stotal the cross-sectional area of the
unpatterned bridge.

(b)
5 µm

J

H

santidot
stotal

J

H

santidot
stotal

(a)
5 µm

Fig. 6.11: SEM images of CSC-YBCO bridges patterned with blind (a) triangular antidots and
(b) trenches. Schematic drawings show the cross section of patterned bridges. Red area corre-
sponds to the area occupied by blind antidots (santidot) and stotal is the total cross section of the
unpatterned bridge.
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Fig. 6.12: (a) Ratio of self-field critical current density at 77 K after and before patterning as a func-
tion of Sred (defined in the text), for CSC-YBCO bridges with triangular blind antidots (triangles),
trenches (square), and circular antidots fully perforating the film (circles). Dashed lines are a guide
for the eyes. (b) Jc versus magnetic field H measured at 77 K for a pristine CSD-YBCO bridge (open
symbols) and the same bridge nanostructured with longitudinal trenches (closed symbols). Lines
are fits to the power law collective pinning region.

Wehave included in thegraph thebridgespatternedwith triangular blindantidots
(triangles), blind trenches (square), and the ones patterned with circular nanodots
completely perforating the film thickness, described in the previous section (circles).

This data clearly evidences that the sample damage induced during milling is
clearly diminished in the case of blind antidots which show a much smaller Jc reduc-
tion for similar Sred values. A linear dependence between the Jc ratio and Sred can be
established in both cases although for samples patterned down to the substrate the
self-field reduction is much higher. Figure 6.12b shows the Jc field dependence mea-
sured for a YBCO bridge with parallel blind trenches (shown in Figure 6.11b), before
and after the patterning. As observed in the case of the systemwith small circular nan-
odots (open circles in Figure 6.9) the power law decay of Jc is softened (α is reduced)
when we introduce the nanostructures. However, whereas in the case of the antidots
Jsfc is strongly reduced after themilling Jsfc nanost./Jsfc ref. = 0.30, amuch smaller decrease
is generated with the blind trenches Jsfc nanost./Jsfc ref. = 0.83 which produces an effec-
tive enhancement of the pinning force at intermediate fields. Thus, the key point to
maximize the pinning performance is determined by the balance of two opposing ef-
fects: (1) the softening of the Jc power law decay determined by the ratio αnanostr./αref.,
and (2) the decrease of the self-field Jc given by Jsfc nanost./Jsfc ref.. While (2) depends on
the reduction of cross section perpendicular to the current flow, Sred (Figure 6.12a),
the α value can be correlated with the length of milled nanowalls projected along
the current direction (perpendicular to the pinning force), xnanowall. Figure 6.13a il-
lustrates the linear dependence of αnanostr./αref. with xnanowall, clearly evidencing that
nanowalls are themain parameter controlling the observed α reduction. The improve-
ment in the pinning performance due to the presence of nanowalls can be better ob-
served in Figure 6.13b, where the variation of the maximum pinning force, due to the
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Fig. 6.13: (a) Ratio of α parameter and (b) variation of the maximum pinning force at 77 K versus
xnanowall (defined in the text) for different nanostructured bridges. Triangular and square symbols
correspond to samples with blind triangular antidots and linear trenches, respectively. Dashed lines
are a guide for the eyes.

patterning, is plotted versus xnanowall. A positive pinning force enhancement, as large
as 70%–80%, is obtained if (1) and (2) are compensated.

Further evidence that nanowalls are acting as very effective pinning sites comes
from Bitter decoration experiments. Figures 6.14 and 6.15 show Bitter decoration im-
ages of two different systems with blind nanostructures.

In the first case, a reference bridge and a bridge half-covered with blind trenches,
fabricated by FIB, decorated at 1.6mT, are shown.While no ordering at all is obtained
in the reference bridge, a clear periodicity on the vortex position is induced by the
nanofabricated trenches as observed in the longitudinal fringes appearing at the au-
tocorrelation function. This periodicity is associated to the vortex lattice interaction
with the trenches that tends to pin the vortices along them.

In the example shown in Figure 6.15, we analyze the vortex distribution in a sys-
tem with a triangular blind antidot, fabricated by EBL and decorated at 3.3mT. In
order to be able to evaluate enough density of vortices along the antidot walls we
have written a larger antidot than the ones patterned on studied bridges. The auto-
correlation function has been evaluated in two areas near the walls and inside the
antidot. The ordering of vortices along the nanowalls, observed in the autocorrelation
images evidences that, as observed from the transport measurements, the main pa-
rameter controlling vortex pinning in blind milled nanostructures are the nanowalls.
This nanowall pining has been associated to a reduction of the order parameter near
the nanowalls by localized deoxygenation or amorphization of the YBCO structure,
induced by the nanofabrication technique, acting as a barrier for vortex motion [43].

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.4 Manipulating vortex dynamics in YBCO films with APC | 213

10 µm

10 µm

(a)

(b)

Fig. 6.14: SEM images showing the Bitter decoration at 1.6 mT and 4.2 K of a CSD-YBCO (a) reference
bridge and (b) bridge half-covered with blind trenches, with the associated vortex positions and
autocorrelation functions.

Fig. 6.15: SEM image showing the Bitter decoration at 3.3 mT and 4.2 K of a CSD-YBCO film pat-
terned with a triangular blind antidot with the vortex positions determined at different regions of
the film and the associated autocorrelation functions.
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Ratchets
In the previous section we demonstrated that by means of blind antidot patterning
we are able to generate artificial defects (nanowalls) acting as strong pinning sites,
being stronger than intrinsic pinning. Here we will exploit this process in order to cre-
ate and study ratchet pinning potentials in high-temperature superconductors. Recti-
fied motion of particles under an asymmetric potential (ratchet effect) is important to
providing deeper understanding of several microscopic ratchet systems and they are
potentially useful for many novel electronic and molecular devices such as rectifiers,
pumps, switches, or transistors [44, 45].

In general, ratchet systemsbased on superconductingmaterials (controlled trans-
port of magnetic flux quanta) are focused on the study of vortex dynamics determined
by the motion of a few interacting particles, since the ratchet effect disappears at high
magnetic fields [46]. The use of high-temperature thin films, with a very rich H-T vor-
tex phase diagram, enables us to study systems containing many particles and their
collective interaction.

Asymmetric pinning centers are generated on the bridges by patterning arrays
with different size, depth, and distribution of triangular blind antidots via Focus Ion
Beam (FIB) and Electron Beam Lithography (EBL). We will first explore two different
artificial lattices with ordered arrays of symmetric and asymmetric blind antidots. Fig-
ure 6.16 shows SEM pictures of a 250nm CSD-YBCO film patterned with lattices of tri-
angular (asymmetric) anddiamond (symmetric) antidots,with a lateral size of 0.8 μm,
depth of 80nm, and spaced out 2.4 μm. The effect of the antidot symmetry in the vor-
tex dynamics has been evaluated bymeasuring the critical current density under pos-
itive, J+c and negative, J−c , applied dc current, at a given magnetic field, for the two
systems. By inverting the sign of the current we are inverting the sign of the driving
Lorentz force (J × B) and thus the vortex motion direction (see Figure 6.17a).

Positive and negative branches of the J-E curves measured for a track with trian-
gles and diamonds, at 65K and 20mT, are plotted in Figure 6.17(b). While the curves
obtained for the bridgewith symmetric pinningpotentials are independent of the driv-
ing force sign, a clear hard vortex moving direction, detected as a Jc enhancement,
is found in the track with asymmetric antidots. The correlation between the antidot
geometry with the experimental J-E curves obtained allows us to work out that dissi-
pation is determined by motion of external vortices (located outside the antidots). At
positive applied current, external vortices encounter very similar pinning potentials;
tilted nanowalls in both triangular and diamond antidots, and hence very similar J-
E curves are measured. By inverting the direction of the current, external vortices in
the system with triangles must flow against perpendicular nanowalls, which require
a larger driving force than the one necessary to overcome the tilted edges (see Fig-
ure 6.17a).

Figure 6.17c shows the field dependence of the critical current density rectification
∆Jc = [J+c − J−c ] obtained at 65K for the track with diamond and triangular antidots.
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Fig. 6.16: (a) SEM images of two CSC-YBCO bridges patterned with blind diamond (top) and triangu-
lar (bottom) antidots. (b) Schematic drawing showing the cross section of bridges patterned with
triangular antidots. Red area corresponds to the area occupied by blind antidots (santidot) and sto-
tal is the total cross section of the unpatterned bridge.
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Fig. 6.17: (a) Schematic drawing of external vortex motion under positive and negative current for a
sample patterned with diamond and triangular antidots. (b) Positive (closed symbols) and negative
(open symbols) branches of J-E curves measured for a track with triangles (triangles) and diamonds
(diamonds), at 65 K and 20 mT. For a direct comparison J+ and J− are shown in the same quadrant.
The line shows the electric field criteria chosen to determine Jc. (c) Magnetic field dependence of
the critical current density rectification ∆Jc = [J+c − J−c ] obtained at 65 K for a bridge with triangular
(triangles) and diamond (diamonds) blind antidots.
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As observed in Figure 6.17(b) for 20mT, no difference between J+c and J−c at any value
of the magnetic field is found for the bridge with diamonds while a clear asymmetric
response of Jc with the current direction is detected for the bridge with asymmetric
pinning potential (triangles).

Figure 6.18a shows ∆Jc obtained as a function of the magnetic field for three sam-
ples with different triangular arrays of blind antidots. In all cases the antidots were
patterned 70nm deep and we changed their lateral size and spacing. We plot the ∆Jc
normalized to self-field Jc such that we are able to compare net rectification effects
in systems with different Jc values. The vortex ratchet effect is clearly observed in all
patterned films confirming the existence of an asymmetric pinning potential induced
by the presence of blind triangles. It is important to remark however, that both the
polarity and the amplitude of the rectified effect strongly depend on the geometry of
the patterns. While for sample #1 the direction of the current that drives vortices along
the hard moving direction is J−c , as in the ratchet system shown in Figure 6.17, the op-
posite occurs in samples #2 and #3. Thus, depending on the pattern geometry ratchet
systems show negative rectification with J−c > J+c (∆Jc < 0) or positive rectification
with J+c < J−c (∆Jc < 0). Moreover, not only the polarity but also the maximum rectified
critical current density, ∆Jmaxc /Jsfc , depend on the antidot pattern.
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Fig. 6.18: (a) Normalized rectification of Jc at 77 K as a function of the magnetic field for samples
with different patterned triangular antidot lattices showing positive (#2 and #3) and negative (#1)
rectification. (b) Maximum value normalized rectification as a function of the S∗

red parameter for
different systems at 77 K (circles), 65 K (squares), and 50 K (diamonds). Inset shows schematic
drawings of vortex motion in a system with positive (top) and negative (bottom) rectification when
positive current and magnetic field are applied.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.5 General conclusions | 217

Figure 6.18b displays the strength and sign of the rectified vortex motion, deter-
mined by ∆Jmaxc /Jsfc at positivemagnetic fields, for several systems containing different
arrays of triangles at various temperatures. The ∆Jmaxc /Jsfc values obtained can been
correlated with a dimensionless parameter, S∗red, that considers the maximumarea re-
duction of the current cross section in each system and the asymmetry introduced by
the triangular shape as:

S∗red (%) = 100 santidotstotal
cos (θ) , (6.6)

where santidot is the maximumarea of blind antidots perpendicular to the current flow
(red area inFigure 6.16b), stotal the cross-sectional area of theunpatternedbridge, and
θ the angle between the tilted edges of the triangle and the driving force direction.

Depending on the cross section of the ratchet system, quantified by S∗red, systems
with negative or positive rectification can be found which is in agreement with initial
dissipation from external (located outside the antidots) or internal (located within the
antidots) vortices, respectively (see schematic drawings in Figure 6.18b). This picture
was corroborated by numerical simulations performed in bridges with different anti-
dot sizes which confirmed that maximumdissipative areas are located either below or
outside the antidots depending on the final cross section of patterned bridges [47].

In conclusion, we have demonstrated geometrically controlled rectified vortex
motion effects in YBCO films patterned with asymmetric triangular blind antidots.
In these systems, both the steepness and sign of the ratchet potential can be tailored
with the geometry (size, depth, anddistribution) of the patterned triangles. All ratchet
devices present rectified motion up to high fields allowing one to study rectification
effects in different vortex dynamic regimes within the H-T phase diagram. In partic-
ular, different dissipation mechanisms have been identified for ratchets with positive
and negative rectification, depending on the nature of vortices initiating the dissi-
pation [47]. Thus, using a system based on a high-temperature superconductor we
provide a useful toolbox for studying transport of multiple particles at the nanoscale.

6.5 General conclusions

We demonstrated the potentiality of Focused Ion Beam and Electron Beam Lithog-
raphy techniques to manipulate the vortex pinning landscape of high-quality CSD-
YBCO thin films. CSD appears to be a low-cost, versatile, and scalable growth process
for the preparation of high critical current YBCO films with a high density of intrin-
sic pinning sites. We used efficient high-resolution lithography tools to tailor the par-
ticular intrinsic microstructure of CSD-YBCO films, generating several model systems
for vortex pinning studies. Full and blind antidots with different geometry have been
patterned in several YBCO bridges, allowing one to study different physical phenom-
ena in high-temperature superconducting films, which show a very rich H-T vortex
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phase diagram. The interaction of the patterned structures with vortices have been
explored within the single vortex pinning and collective regimes by using transport
measurements and Bitter decoration images. Unique and interesting effects, such us
artificial granularity, nanowall pinning, and rectification effects have been generated
and deeply revised in this chapter.
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Roger Wördenweber
7 Artificial pinning sites and their applications

Abstract: In this chapter we demonstrate, that vortex matter in superconducting films
and devices is not only an interesting topic for basic research but plays a substantial
role in most existing applications of superconductivity and for the development of
novel concepts like fluxonic devices. It will be shown, that especially vortex manip-
ulation like pinning, trapping or guidance of vortices represents a useful tool to im-
prove the properties of superconducting devices, analyze and understand novel and
interesting physical properties, and to develop new concepts for superconductor ap-
plications. Various concepts for vortexmanipulationvia artificial defects are sketched.
The advantage of the use of micro- and nanopatterns (especially, antidots) for guiding
and trapping of vortices is discussed and their use in existing and novel applications
is sketched.

7.1 Introduction

With only a few exceptions, the electronic properties of type-II superconductors and
the performance of superconducting devices are predominantly determined by the
action of magnetic flux, i.e., the motion of magnetic flux lines (vortices). As described
in the tutorial (Sections 4.3–4.5) magnetic flux penetrates the superconductor in the
formofflux lines (vortices) that contain the smallest possible amountofmagnetic flux,
themagnetic flux quantumΦo = h/2e = 2.07 ⋅ 10−15 Wb. Themotion of these vortices
automatically leads to a local modification of the electric field, phase, and magnetic
flux. Typical scenarios of this effect are illustrated in Figure 7.1 and listed below:
(i) An applied current induces a Lorentz force FL = J × Φo that acts on the vortices

and is counteracted by the pinning force generated by defects in the material. Up
to a critical current density Jc the flux-line lattice is pinned and the superconduct-
ing current flowswithout dissipation. Above Jc vortices start tomove and generate
an electric field (see Figure 7.1). Actually, flux creep and thermally assisted or ac-
tivated flux flow (TAFF) can lead to flux motion and thus electric fields already
for J < Jc. Nevertheless, for all applications that are based on the dissipation-free
DC current of the superconductor, the improvement of the pinning force is one of
the major issues. In many cases it is even more important to improve Jc, than to
enhance the superconducting transition temperature Tc or the upper critical field
Bc2.

(ii) The motion of individual vortices typically leads to a degradation of the perfor-
mance of superconducting electronic devices. This is illustrated in the second row
of figures in Figure 7.1 for the case of a superconductingmagnetometer, the SQUID
(superconducting quantum interference device) . The motion of a single vortex

DOI 10.1515/9783110456806-008, © 2017 Roger Wördenweber, published by De Gruyter. This work
is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
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Fig. 7.1: Schematic sketches of the different scenarios of the impact of vortex motion on techno-
logical superconducting and superconducting devices. (i) (Top row, from left to right) The nonlin-
ear current-voltage characteristic demonstrates the onset of flux flow at the critical current density
Jc, flux creep TAFF can lead to losses even below Jc. The resulting temperature-field-current phase
diagram defines the superconducting regime of loss-free current transport. In order to enhance
the critical parameters (especially Jc) preparation technologies have to be optimized or new tech-
nologies have to be developed. (ii) (Middle row, from left to right) Single vortex jumps lead to noise
(telegraph noise), the motion of many vortices results in 1/f noise that exceeds the noise floor (e.g.,
thermal noise) in superconducting devices. As a consequence the performance of the devices is re-
duced. (iii) (Bottom row, from left to right) Vortex motion can also be used to switch between differ-
ent states or generate a signal. This is the basic concept of flux motion-based devices, the so-called
fluxonic devices.

leads to a telegraph-type noise in the sensor. The action of many vortices creates
the typical 1/f noise in these sensors. Similar effects are known for other types of
superconducting electronics. For instance in passive devices (e.g., filters) or ac-
tive devices (e.g., rapid single-flux quantum logic, RSFQ) vortex motion leads to a
reduction of the power-handling capability or enhances the bit error rate, respec-
tively.

(iii) In contrast to the previous examples, the motion of the vortices can also be used
for magnetic field or signal management (ranging from flux guides, flux focusers,
ratchets, filters) or data handling (RSFQ-type devices). This direction is generally
called fluxonics.
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All three scenarios lead to one solution, the systematic manipulation of vorticeswhich
includes the pinning and/or the guided motion of vortices. This manipulation of vor-
ticesmight be achieved bynaturally growndefects. However, it is evident thatartificial
defects present not only a crucial alternative to natural pinning sites; in quite a num-
ber of concepts they are absolutely necessary to achieve the desired goal (e.g., in the
case of fluxonic devices).

In the following sections, I will briefly introduce different types of artificial de-
fects, basic aspects of their pinning interaction, the different possible types of flux
motion between well-separated pinning sites, and the basic demonstration of vortex-
pin interaction and vortex guidance, before we move to aspects of artificial pinning
sites in different applications like SQUIDs, passive devices, or fluxonics.

7.2 Artificial pinning sites

There exist a large number of artificial pinning sites. In principle, any kind of modifi-
cation of the superconducting material has an impact on the flux pinning potential of
the superconductor. The question is whether the impact is large enough and suitable
for the envisioned experiment or application. For the right choice of defect type the
consideration of different possible classifications of artificial pinning sites is helpful:
– Pinning interactionandpinning strength: There exist twoessentially different types

of pinning interactions, which are the magnetic interaction and the core interac-
tion (see Tutorial, Section 4.4). Themagnetic interaction is essentially determined
by the magnetic field gradient in the superconductor (characterized by the pene-
tration length λ),whereas the core interactionarises from the interactionof locally
distorted superconducting properties with the variation of the superconducting
order parameter (characterized by the coherence length ξ ). Furthermore, trapping
of quantized flux nΦo can be achieved by extended voids or holes. Predictions ex-
ist of the individual pinning strength for a number of defect types.

– Size: The typical size of a pinning site based on core interaction (e.g., δκ or δTc
pinning, the alternative magnetic interaction is not considered here, see Tutorial,
Section 4.4) should be comparable to the size of the normal core of the vortex
which is equivalent to the coherence length ξ . Since the coherence length of most
superconductors of interest is of the order of 1–4nm (exceptions are Nb and Pb
with 40nm and 51–83nm, respectively, see Table 1 of the Tutorial) the pinning
sites have to be extremely small. Nevertheless, larger defects can also affect flux
lines. In this case, pinning canbe provided for instance by the boundary of the de-
fect or themechanical strain field generated by the defect. Alternatively, extended
defects can trap quantized flux Φ = nΦo in the form of individual flux quanta Φo
(e.g., for partially etchedholes, so-calledblindholes) ormultiquanta vorticeswith
different vorticity n (e.g., for holes, so-called antidots). The use of antidots is of
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special interest for guidance and trapping of flux and will be the major type of
artificial defect to be considered throughout this review.

– Orientation and dimension: The ‘classical’ pinning site is a point defect, which
can be considered to be a 0D pinning site. 1D pinning sites can be generated for
instance by irradiation, whereas typical 2D pinning sites are represented by all
types of surfaces including the surfaces of the sample itself, surfaces of extended
defects, interfaces, and even modulations of the superconductivity in highly
anisotropic superconductors. The latter leads to so-called intrinsic pinning for in-
stance observed in ceramic high-Tc materials. Extended 3D defects should rather
be considered to trap flux (see above). Evidently, for the 1D and 2D pinning sites
the orientation of the defect plays an important role. The pinning force of the
defect is largest for a perfect alignment of flux and defect (e.g., magnetic lock-in
effect).
Connectivity: Connected superconducting areas with locally tailored electrical
properties (mainly ‘channels for vortex motion’) are used mainly for vortex guid-
ance. Nonsimply connected micro- or nanostructures will cause a long-range
electronic or magnetic interaction between vortex and artificial structure. Gener-
ally, the flux pinning and flux transport is different for both arrangements.

– Preparation: There exist a large variety of preparation methods for artificial de-
fects. During the formation of the superconducting material, deviations from the
stoichiometry, doping, or addition of other phases or nanoparticles automatically
create defects which are usually statistically distributed. These in situ methods
are used, for instance, for the improvement of the critical current density in large-
scale applications like the fabrication of superconducting cables and coated con-
ductors.However, after preparationof thematerial, defects canalsobe introduced
by many ex situ techniques. Irradiationwith energetic particles (ions, protons, α-
particles, or even electrons) will introduce defects in the material. The nature of
the defect depends on the type of irradiation, the particle energy and dose, and
the superconducting material itself. For instance, heavy-ion irradiation can pro-
duce columnar tracks or implantation of the ion depending on the energy of the
ion. Irradiation techniques ([1], and references cited within) can be used to gener-
ate statistically distributed pinning sites or patterned pinning structures if masks
or focused beam lines are used. However, the best option to position and arrange
artificial defects is given by patterning technologies. Via lithography and etching,
nano- or microstructures can be generated in the superconducting layer, the sub-
strate (carrier of the layer) beforedeposition, or in additional layers (e.g.,magnetic
films) that couple to the superconductor. These structures will affect the pinning
and motion of vortices in the superconductor.

– Reconfigurability: Typically, pinning sites are not reconfigurable. This also holds
for artificial defects. Nevertheless, there have been attempts to produce reconfig-
urable defects for instance using soft magnetic dots (with switchable magnetiza-
tion), ferroelectric top layers (with reconfigurable polarization), or locally recon-
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Fig. 7.2: SEM images of artificial defects ranging from BaZrO3 nanoparticles, antidots, or heavy-ion
patterned channels in YBa2Cu3O7−δ thin films [4–8] to patterned channels in NbN/NbGe bilayer
[2, 3, 9].

figurable stoichiometry (e.g., local modification of the oxygen content in ceramic
high-Tc superconductors).

From this list, it is obvious that one canand should choose the respective type of defect
according to the needs of the experiment or the application. Nevertheless, a number
of particularly interesting patterns and defect types are briefly described below.

Artificial channels: The most obvious concept to provide a controlled vortex mo-
tion (the so-called guided vortex motion) is given by the patterning of narrow chan-
nels into superconducting material. This can be done by etching channel structures
into a single layer leading to modification of the pinning force due to thickness varia-
tion, local modification of the superconducting properties (for instance via heavy-ion
lithography or antidots), or by combining two layers of superconductingmaterial with
different pinning properties.
Combination of weak and strong pinning material: An intriguing example of easy vor-
tex flow channels consists of a weak-pinning bottom layer (e.g., amorphous NbGe)
combined with a strong-pinning top layer (e.g., NbN), into which the small channels
are etched (see Figure 7.2) [2, 3]. Since the pinning force in the channel is extremely
weak, the vortices in the channels predominantly experience vortex-vortex interac-
tion with the row of the strongly pinned vortices at the edge of the channel within the
NbN. The commensurability between the vortex lattice with a field-dependent lattice
parameter ao = bo(ϕo/B)1/2 and the channel size leads to periodic oscillations of the
volume pinning force. Vortices move within the channels if the total driving force on
the vortices in the channel exceeds the shear forces at the channel edges.

However, rather more complex channel patterns can be used. An example of a
ratchet system using the same system (weak-pinning a-NbGe in combination with
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a strong-pinning and patterned NbN top-layer) is shown in Figure 7.1 [10]. Using an
asymmetric, ‘fyke-like’ pattern, the vortex motion is not only guided, it can be recti-
fied and, thus, create a fluxonic ratchet.

Similar structures are possible for high-Tc films. However, for these materials it
turns out to be better to locally modify the superconducting properties and create
channels in high-Tc films, for instance by using heavy-ion lithography or antidots.

Heavy-ion lithography: Ion irradiation of HTS (high-temperature superconduct-
ing) films offers a unique possibility to create a wide range of different defects and
to tailor the electrical and superconducting properties [1]. Depending on the species
of ions used during the irradiation, their energy and fluence, nanoscale columnar pin-
ning centers can be created that locally enhance or diminish the pinning properties.
Whereas the irradiationwith relatively low fluence of high-energy heavy ions leads to
an enhancement of the critical current due to the strong vortex pinning at columnar
defects, relatively high fluence leads to a reduction of the critical properties. Thus, the
superconducting properties canbe controlled andmodulated locally. The preparation
of artificial channels for flux motion has been demonstrated for this technology [7].

Dotsandantidots: In contrast to simply connected structures, dots andholes (anti-
dots) offer a number of advantages for themanipulation of vortices: (i) dots or antidots
of various size, properties, and shapes can be used or even combined, (ii) they can be
positioned more or less at wish, even quite complex arrangements are possible, (iii)
they can be used as pinning (single-flux quanta) or trapping (multiflux quanta) sites
as well as for the guidance of flux, and (iv) the motion of flux between dots or antidots
can be examined and used.

In contrast to other pinning defects, which have to be of the order of the size of
the superconducting coherence length ξ , antidots with sizes much larger than ξ will
trap magnetic flux very effectively [4]. The advances in lithography techniques and
the possible use of antidots in applications (e.g., SQUIDs [11, 12], vortex diodes [13–15],
microwave devices [16–18]) have led to a renewed interest in the research of supercon-
ducting films containing antidots or antidot lattices. Antidots have been successfully
prepared in films of conventional superconductors (typically weak-pinning Pb, V, or
a-WGe thin films, Pb/Gemultilayers, Pb/Cubilayers, or Nb foils) [19–29] aswell asHTS
material (YBCO:YBa2Cu3O7−d) [4–6, 11, 12, 30]. Intensive studieshavebeenperformed
of
(i) commensurability effects (matching effects) between the antidot lattice and vor-

tex lattice;
(ii) multiquanta formation in the antidots;
(iii) guided motion along rows of antidots;
(iv) visualization of vortex motion, and;
(v) implementation of antidots in cryoelectronic devices.

Because of their unique properties, I will concentrate in this chapter on the role of
antidots and their options and prospects for the manipulation of vortices. Neverthe-
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less, most concepts can easily be used for the understanding of other types of artificial
defects and their use in devices.

7.3 Vortex manipulation via antidots

In this section, basic aspects of vortex manipulation via antidots are given, includ-
ing vortex-antidot interaction, multiquanta vortex formation, commensurability or
matching effects, differentmodes of vortex motion between antidots, and vortex guid-
ance.

7.3.1 Vortex-antidot interaction and multiquanta vortices

The elementary vortex-pin interaction was already introduced in the tutorial (Sec-
tion 4.4). However, in contrast to the classical pinning defects, antidots represent ex-
tended (≫ ξ ) and ‘hollow’ defects. They act more like a container for quantized flux
Φ = nΦo. Moreover, although obviously Tc is zero inside the antidot, the vortex-
antidot interaction differs from the classical δTc interaction.

The interaction energy between a vortex and a small insulating cylindrical cavity
(analogue to an antidot) has been calculated using the London approximation [14] and
an alternative approach using the analogy between a vortex close to an antidot and a
charge line in an infinite dielectric close to a cylindrical cavity of different dielectric
permittivity [15]. Later, the calculations were extended to arbitrarily large cavities [31].
It is demonstrated that the interaction energy is identical to the one between a vor-
tex and the straight edge of a superconductor (Bean–Livingston barrier [32]) when the
radius of the antidot goes to infinity. Although the precise form of the interaction po-
tential between a vortex and a cylindrical antidot is slightly different in these studies
[14, 15, 31], the main conclusions are identical.

On the basis of a series expansion of Bessel functions Ko of the second kind, the
free energy of a vortex at a radial distance r from an antidot with radius ro is given by
[14, 15]

F (r) = Φ2
o

4πμoλ2
[Ko ( ξλ) + n2Ko ( roλ ) + 2nKo ( rλ) + ln(1 − r2o

r2
)] , (7.1)

for ξ < (r, ro) ≪ λ and n representing the number of flux quanta that are already
trapped in the antidot. The elementary vortex-antidot interaction is then given by the
derivative, fVA = −∂F/∂r.

The vortex-antidot interaction depends upon the magnetic flux Φ = nΦo trapped
in the antidot (see Figure 7.3). The interaction between a vortex and an ‘empty’ antidot
is attractive for all vortex-antidot distances. As soon as one flux quantum is trapped in
theantidot, the interactionpotential changes anda surfacebarrier emerges at the edge
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of the antidot. The height of the barrier increases with increasing number of trapped
flux quanta. This automatically defines a saturation number ns. For n ≥ ns the in-
teraction becomes repulsive, no additional flux can be trapped by the antidot. The
saturation number depends upon the size of the antidot. For small antidots (single
antidot with ro ≪ λ) the saturation number can be approximated by [14]

ns ≅ ro
2ξ (T) , (7.2)

the pinning force per unit length depends on the radial distance between vortex and
antidot and has a maximum value close to the antidot edge

fp,max ≈ Φ2
0

4√2πμoλ2ξ (1 − n
ns

) , (7.3)

i.e., the maximum vortex-antidot interaction decreases with increasing occupation
number and becomes zero for n = ns.

Generally, the saturation number depends upon temperature, i.e., it increases
with decreasing temperature. Furthermore, a consequence of a saturation number
ns > 1 is the formation of so-called multiquanta vortices. An experimental proof of
the existence of multiquanta vortices is given in Figure 7.3. It shows the magneto-optic
image of a YBCO film with antidots with a diameter of 2 μm exposed to a 1T exter-
nal field. After removal of the external field the antidots trap a field of approx. 280Φo
which agrees with the theoretical prediction (Equation (7.2)).

7.3.1.1 Matching or commensurability effect
The matching or commensurability effect represents an ideal tool to demonstrate the
interaction between a regular (typically hexagonal) vortex lattice and a regular de-
fect lattice. Furthermore, it provides a first approach to improve the flux pinning for
discrete magnetic fields (matching fields).

Since the vortex lattice parameter ao depends on the applied field (ao = 1.15 ×(Φo/B)1/2 or ao = (Φo/B)1/2, for a hexagonal or square lattice, respectively) it can be
varied and, thus, ‘matched’ for discrete magnetic fields to a regular lattice of defects.
For these so-calledmatchingfields,maxima in thefluxpinningoccur.Matchingeffects
are typically demonstrated via measurements of the critical current, resistance, or ac-
susceptibility of a film structure patterned with a periodic array of artificial defects,
e.g., square and triangular arrays of sub-μm antidots [4, 6, 19, 27, 34].

While periodic pinning arrays show these enhanced pinning properties for a few
discrete field values, at which the vortex density and defect density are integer multi-
ples of each other, quasiperiodic arrays represent a valuable alternative, as they have
manymore built-in periodicities towhich the vortex lattice canbe approximately com-
mensurate [35–37]. This leads to broadened maxima of the pinning efficiency and to
a reduced sensitivity of the sample properties to magnetic field variations. Therefore,
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Fig. 7.3: Free energy of a vortex as a function of the radial distance from an antidot for different occu-
pation numbers n of the antidot (λ = 600 nm, κ = 50, and ro = 200 nm), (inset) sketch of a vortex
interacting with a cylindrical cavity formed by an antidot with radius ro, and (b) reconstruction of the
trapped magnetic flux distribution obtained from a magneto-optic image that was recorded at 7 K in
zero-field after applying a field of 1 T [33]. The local field shows clear maxima at the position of the
antidots (triangular lattice, dAA = 10 μm, ro ≈ 1 μm). The scale for the height of the peaks is given in
numbers of trapped flux quanta.

quasiperiodic arrays of artificial defects represent a first option to improve flux pin-
ning over a larger field range.

Matching effects can also be demonstrated via noise measurements. Since this
automatically leads us to an important aspect of the use of strategically positioned ar-
tificial defects (see Section 7.4.2) an example of this demonstration is briefly described
in the following.

In this experiment [38] a periodic array of artificial defects (YBCO film with a
square lattice of antidots) is mounted in flip-chip configuration on a YBCO bicrys-
tal rf-SQUID (see sketch in Figure 7.4a). Typical low-frequency noise spectra of this
arrangement are given in Figure 7.4a. As expected, the lowest flux noise is recorded
for zero magnetic field. At nonzero field, the low-frequency noise strongly depends
upon the exact value of the applied magnetic field. In contrast to the standard field
dependence SΦ ∝ B, it varies nonmonotonically and over several orders of magni-
tude in noise level. For example, the noise at fields of 750nT or 900nT is more than
2 orders of magnitude larger than for the matching fields M1 and M2 (828nT and
845nT, respectively) at which the noise level of the zero-field spectrum is recorded.
The matching fields and matching configurations are illustrated in Figure 7.4b. Actu-
ally, although the array of antidots can reduce the noise for the matching fields, it can
also enhance the noise for nonmatching conditions.
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Later we will see that in many cases a ‘strategic’ arrangement of artificial defects
is necessary to optimize the benefit from artificial defects in superconducting devices.

7.3.2 Guided vortex motion

Probably even more important than flux trapping is the guidance of vortices by ar-
tificial defects. Guided motion has been demonstrated in conventional weak-pinning
superconductors [2, 3, 9] andHTS thin films [7] using channels prepared via patterning
or heavy-ion irradiation (see also Figure 7.2). However, an intriguing andmore flexible
method of vortex guidance is provided by special arrangements of antidots, i.e., rows
of antidots [33, 39].

A first basic explanation of the angular dependence of the guidance of vortices
via rows of antidots is given by the n-channel model [6]. The sketch in Figure 7.5 il-
lustrates the angular dependence of the Hall voltage VHall predicted in a simplified
1-channel model, in which the flux is expected to drift only along rows of antidots.

Fig. 7.4: (a) Low-frequency noise spectra of a bicrystal rf-SQUID (sketch) with a square antidot lat-
tice on top of the grain boundary of the washer for different magnetic fields [38]. M1 and M2 label
two matching conditions (see sketch in [b]). The inset (a) shows a sketch of the experimental ar-
rangement. A YBCO film with square antidot lattice (dAA=5 μm) is mounted in flip-chip configuration
on top of the grain boundary of a bicrystal rf-SQUID. One of the main axes of the antidot lattice is
oriented parallel to the grain boundary. The matching fields Mi (i = 1, 2) in the field range 450 to
900 nT are given in (b). They are calculated for different vortex configurations (see schematic sketch
for i = 1−3 in [b]) that match the square antidot array with a periodicity of 5 μm. For details, espe-
cially about the different matching conditions, see [38].
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Fig. 7.5: Angular dependence of the Hall resistance (solid symbols) and 1-channel approximation
(dashed line). The sketch illustrates the angular dependence of the Hall signal according to the n-
channel model [6], the image shows an experimental demonstration of the guidance of vortices for
rows of antidotes arranged at an angle γ = −9° with respect to the Lorentz force obtained via laser
scanning microscopy [40].

The orientation of the rows is given by the angle γ. The component of the Lorentz
force, which compels vortices to move along the antidot rows (i.e., guided motion), is
Fguid = FL cos γ, where FL is the modulus of the Lorentz force: FL = |FL|. The compo-
nents parallel and perpendicular to the applied current are

Fx,guid = Fguid ⋅ sin γ = FL ⋅ cos γ ⋅ sin γ
Fy,guid = Fguid ⋅ cos γ = FL ⋅ cos2 γ , (7.4)

with Fx,guid and Fy,guid contributing to theHall and longitudinal voltage signal, respec-
tively. The experimentally determined angular dependence of the Hall voltage roughly
obeys the simple relation VHall ∝ FL cos γ sin γ obtained in this ‘1- channel model’ [6].
Actually, it has to be considered, that vortices can also move with some probability
between antidots of neighboring rows. These additional channels of vortex motion
become important for large angles γ [40] leading to a more general expression

VH ∝ ∑
i
Pi(γ)FL cos γ sin γ , (7.5)

where the summation is performed over all possible channels of vortex motion, and
Pi(γ) is the angle-dependent probability of the motion along the i-th channel.

In order to obtain a more detailed insight into the guidance of vortices via rows
of antidots, resistive 6-probe dc measurements can be performed on superconduct-
ing films equipped with rows of antidots that simultaneously record the longitudinal
voltage signal and the Hall signal [6, 30]. Figure 7.6 shows schematically the typical
sample design that is suitable for simultaneous recording of the longitudinal voltage
and the Hall voltage.
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The longitudinal voltage (contacts Vx) represents the standard parameter to char-
acterize the critical properties of a superconducting stripline. In the normal regime,
it represents the normal state resistivity, whereas in the superconducting regime it is
generated by the component of vortex motion along the Lorentz force. In the latter
case, the longitudinal voltage is a measure of the flux transfer across the stripline that
is collected between the longitudinal voltage contacts labeled Vx (integral signal). It
characterizes the average velocity component ⟨vy⟩ of vortices in the stripline. In con-
trast, in the superconducting regime the Hall signal characterizes the complementary
velocity component ⟨vx⟩ of vortices. It represents a more local analysis of the vortex
motion that is restricted to the vicinity of the contact pair (Hall contacts Vy in Fig-
ure 7.6).

High-Tc materials typically reveal the, so-called, anomalous Hall effect (AHE),
i.e., a sign inversion of the Hall signal below Tc [41–50]. A typical example is given
in Figure 7.6a. The AHE is caused by vortex motion. Close to Tc when pinning is very
weak, the impact of the Magnus force on the moving vortex leads to an additional
component of the vortex motion perpendicular to the Lorentz force (i.e., parallel to
the current) [50]. The resulting AHE competes with the guidance of vortices by rows of
antidots (guided motion [GM]). Depending on the orientation of the rows of antidots,
the AHE is suppressed or enhanced. This is sketched and demonstrated for different
experiments in Figure 7.6b–d.

If the directions of the Magnus force and the GM coincide (γ < 0°) a negative
Hall signal is expected for both effects. This is demonstrated for YBCO films equipped
with rows of antidots that are tilted with an angle γ = −35° (Figure 7.6b) [6]. However,
we can clearly distinguish the impact of the AHE and the GM. At Tc superconductiv-
ity sets in and vortices are formed. However, vortex pining is small compared to the
thermal activation of the vortices, the superconductor is in the reversible regime. As
a consequence there is no guidance of the vortices. Thus, the vortices will follow the
Lorentz force and the Magnus force and show the typical AHE. If the temperature is
reduced further, pinning sets in. The ‘background’ pinning due to defects in the su-
perconductor will reduce the effect of the Magnus force, i.e., the AHE will vanish (see
also Figure 7.6a). However, at the same time the pinning interaction of the antidots
starts to guide the vortices. As a result a second decrease of the Hall resistance with
decreasing temperature is visible (Figure 7.6.b).

If the directions of the Magnus force and the GM are opposite (γ > 0°) we can even
observe switching effects, i.e., the collective motion of vortices switches from the AHE
to the GM direction. This is shown for two experiments in Figure 7.6c and d. In the first
case (Figure 7.6c) current-voltage characteristics (IVC) are recorded at temperatures
close to Tc. However, instead of the longitudinal voltage, the Hall voltage is recorded.
An inversion of the sign indicates the inversion of the direction of the motion of the
vortices from antiparallel to parallel to the applied current. Above the critical current
the voltage increases (GM). If the current is increased further, the guidance vanishes
and the Hall signal becomes negative (AHE).
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Fig. 7.6: Demonstration of guided vortex motion via Hall measurements. (a) The Hall resistance for
an unpatterned YBCO film shows the typical anomalous Hall effect (AHE), i.e., the sign inversion at
temperatures just below Tc; (b) because of the tilted rows of antidots the guided motion (GM) en-
hances the AHE and extends the regime of negative Hall resistance to low temperatures [6]; (c) in
case of a tilt angle opposing the direction of the AHE a sign inversion is visible for the current de-
pendence of the Hall voltage for temperatures close to Tc, i.e., the direction of collective flux flow
changes from GM (small current) to AHE (large current); (d) another demonstration of the change of
the direction from AHE to GM is given by the longitudinal current which generates a constant flux
flow perpendicular to the current (i.e., a constant absolute Hall voltage, here |VHall| = 100 μV).
A detailed description of the experimental details is given in the text, the sketches in the figures
illustrate the arrangement of the experiment (Vx and Vy mark the longitudinal and Hall contacts,
respectively, 1 and 2 are the current contacts), the orientation of the rows of antidots γ, and forces
[30].

In the last example (Figure 7.6d) we again observe the switching from the AHE at
high temperature to the GM at low temperature. In this experiment, the Hall voltage
(absolute value) has been kept constant (|VHall| = 0.1mV). The explanation of the
switching, which is visible in the hysteretic change from a negative to a positive Hall
voltage as well as in the hysteretic change of the applied current, is similar to the one
given for the experiment shown in Figure 7.6b above. For more details see [30].

Generally, guidance of vortices via antidot arrangements is now well established.
However, it depends in a complicated way on the relation (amplitude and direction)
of the different forces and potentials acting on the vortices. Themajor forces to be con-
sidered are the ‘background’ pinning force of the superconductor, the vortex-antidot
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interaction, driving forces (e.g., Lorentz force), Magnus force, and thermal activation.
Some of these interactions depend on temperature, others on their orientation di-
rection. This can lead to switching of the direction of vortex motion as a function of
temperature (see Figure 7.6d), current density (see Figure 7.6c), or orientation of anti-
dot arrangement (see Figure 7.6). As a consequence, guidance of vortices strongly de-
pends upon temperature, driving force, and geometrical arrangement of the antidots.
If additionally anisotropic pinning potentials are introduced (e.g., via asymmetrically
shaped antidots) preferentially directed vortex motion canbe induced leading tomore
complex concepts of for instance ratchets, vortex diodes, or vortex filters.

7.3.3 Vortices at high velocity

Studies of vortex matter are predominantly focused on the limit of small driving forces
and small frequencies, i.e., the onset of vortex dynamics in the limit of small vortex
velocities. However, a number of superconductor applications like coated conductors,
fault-current limiters, or microwave devices operate at high power levels or high fre-
quencies and, therefore, potentially in the regime of high vortex velocities. This sce-
nario also applies for the guided vortex motion in a superconductor equipped with an
array of antidots if flux is expected to shuttle between closely spaced antidots at high
frequencies. For example, in case of an antidot spacing of 1 μm a ‘classical’ Abrikosov
vortex would have to travel with a velocity of 2 km/s in order to oscillate between both
antidots at a frequency of 1GHz. In these cases, nonequilibrium effects are expected
to occur in the superconductor.

In principle three different approaches to this scenario are feasible:
(i) With increasing vortex velocity the classical Abrikosov vortices gradually start to

deform. Nevertheless, they can be treated as ‘ballistic vortices’ with slightly mod-
ified properties.

(ii) At a characteristic velocity, the so-called critical velocity, the vortices abruptly
change their properties [51]. This high-velocity range is often associated with a
different vortex state, the so-called kinematic vortices.

(iii) Finally, similar to the vortex motion in nano- or microbridges, the flux transport
could take place in the form of phase slip [52, 53]. As a consequence flux transport
at much higher velocities and, thus, frequencies would be possible. Moreover, a
Josephson-type behavior should be visible.

Pulsed measurements of the current-voltage characteristics (IVC) on classical super-
conductors [54, 55] aswell as HTSmaterial [56–58] demonstrate, that scenario (i) does
not apply. At a critical voltage, the IVC changes abruptly (see Figure 7.7). Depend-
ing on the type of measurement, the voltage switches in an S-like shape (for voltage-
controlled IVCs) or jump-like (for current-controlled IVCs) from the nonlinear region
of the Abrikosov flux flow below V∗ to a linear regime that resembles the normal state
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Fig. 7.7: Inelastic scattering rate (a) and resulting critical vortex velocity (b) as a function of tem-
perature for YBCO films obtained from IVC measurements via rapid current ramps (open symbols)
[56] and current pulses (solid symbols) [58], respectively. The inset shows a schematic drawing of a
voltage-controlled and current-controlled IVC measured up to voltages V > V∗.

resistance. This behavior has beenpredicted by Larkin andOvchinnikov [51]. Recently,
simulations using time-dependent Ginzburg–Landau theory showed similar IVCs for
the high-velocity vortex dynamics in mesoscopic superconductors [59].

Critical velocity
On the basis of Eliashberg’s ideas on nonequilibrium effects in superconductors,
Larkin and Ovchinnikov predicted that a nonequilibrium distribution and relaxation
rate of the normal charge carriers (treated as quasiparticles) develops during the mo-
tion of vortices at high velocities [51]. As a result, they expected a discontinuity in the
current-voltage characteristic (IVC).
According to the Larkin and Ovchinnikov theory, the viscous damping coefficient at a
vortex velocity v is given by [51]

η (v) = η (0) [1 + ( v
v∗ )2]−1 , (7.6)

with a critical vortex velocity v∗

v∗ = [[
D ⋅ √14ς (3)

πτin
⋅ √1 − T

Tc
]]

1
2

, (7.7)

τin denoting the inelastic quasiparticle scattering time, ζ(x) theRiemannZeta-function,
D = vF lo/3 the quasiparticle diffusion coefficient, vF the Fermi velocity, and lo the
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electron mean free path. According to this theory, a nonlinear IVC is expected for a
critical electric field E∗ = v∗B [51]

J = E
ρff

{(1 + ( E
E∗)2)−1 + γ ⋅ (1 − T

Tc
) 1

2 } + Jc , (7.8)

with γ ≈ 1. This behavior (see Figure 7.7) is observed for conventional superconductors
[54, 55] as well as for high-Tc thin films [56–58]. It appears for instance when the cur-
rent limit is exceeded in superconducting resistive fault-current limiters. In this case
the limiter shows an extremely sharp and sudden voltage peak at the critical electric
field E∗ during the quench of the superconductor at high power [60].

Phase slip
Thepredictions of Larkin andOvchinnikov [51] refer to extended superconducting sys-
tems. The situation changes if vortices move in a mesoscopic system. It is known that
flux transport across a narrow superconducting stripline can occur in the form of a
phase slip [52, 53]. In this case the phase of the order parameter may periodically
slip by 2π, virtually in a single point. In such a point, the so-called phase-slip center
(PSC), themagnitude of the order parameter oscillates between zero and itsmaximum
value. In close similarity to weak links and Josephson junctions, the phase-slippage
frequency is given by the Josephson relation [52, 61]. Originally it was assumed, that
phase slip can only occur in wires with a width smaller than the coherence length ξ .
However, it has been demonstrated that a behavior similar to PSCs may occur also in
much wider superconducting striplines. With increasing width of the wire, the PSC
may expand to a phase-slip line (PSL), even up to widths much larger than the char-
acteristic length scales ξ or λ [62–64].

In contrast to the PSC, the oscillation of the order parameter may not necessarily
be uniform along the PSL, it may occur in the form of propagating waves carrying
the order parameter singularities across the sample. Such waves have been named
kinematic vortices. They were first predicted in numerical simulations using the 2D
time-dependent Ginzburg–Landau equations [65]; the experimental evidence for the
existence of kinematic vortices is among others reported in [64]. As such, PSLs can be
viewedasdynamically created Josephson junctions inhomogeneous superconducting
films. Therefore, the preservation of the macroscopic quantum interference between
the two parts of the superconductor defined by the slip line represents a fingerprint of
the phase-slip mechanism. However, its demonstration for instance via Shapiro steps
under microwave irradiation is not trivial.

Besides their superconducting properties, the maximum vortex velocities, which
differ by orders of magnitude for the different types of vortices, is of importance for
experimental techniques and potential applications. The smallest velocity is observed
for classical Abrikosov vortices with a typical maximum speed given by the critical
velocity of v∗ ≈ 103 m/s [56–58]. For v > v∗ the normal core of the Abrikosov vortex
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collapses. The velocity of kinematic vortices has been estimated to be of the order of
105 m/s [64]. The highest velocity is attainable for Josephson vortices, i.e., vortices
without a normal core. Their characteristic velocity is of the order of 107 m/s. A simple
explanation of the order and large difference of the different vortex velocities is given
by the presence or absence of the normal core and the fact that kinematic vortices have
similarities with both Abrikosov and Josephson vortices.

7.4 Artificial pinning sites in superconducting electronic devices

In this section examples of active devices and passivemicrowave deviceswill be given
that illustrate the role that vortices play in superconducting devices starting with a
brief motivation that demonstrates why vortices and vortex motion have to be consid-
ered for nearly all superconducting devices.

7.4.1 Flux penetration in superconducting electronic devices

The electronic properties of superconducting devices are usually strongly determined
or affected by the presence or motion of vortices. Most superconducting devices will
(or have to) operate in magnetic fields strong enough to create large densities of vor-
tices within the device. Generally flux penetrates the superconductor for magnetic
fields B > Bc1, with the lower critical field Bc1. However, the demagnetization effect
will lead to a considerable enhancement of the magnetic field at the edge of a super-
conductor sample. Moreover, calculations of the Gibb’s free energy for vortices in thin-
film devices, approximating the sample geometry by a rectangular cross-section with
film thickness d (parallel to themagnetic field direction)much smaller than the lateral
dimension w, indicate [66] that the first tunneling of single vortices (e.g., via thermal
activated penetration) through the geometrical barrier at the edge of the superconduc-
tor is expected to occur already at extremely small fields

BT = d
2w

Bc1 , (7.9)

followed by a collective penetration of vortices that takes place at the penetration field

BP = √ d
wBc1 . (7.10)

These predictions are valid for superconducting devices and patterns if w ≫ d > λ. As
a consequence, superconducting films, which represent themajor component of most
superconducting devices, are usually strongly penetrated by magnetic flux lines (see
Figure 7.8b).

The presences of vortices or their motion will lead to dissipative processes, flux
noise, or local modification of the superconducting properties in these devices which,
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Fig. 7.8: (a) Critical field Bc1, tunneling field BT, and penetration field BP as a function of the reduced
width calculated for typical YBCO films at 77 K. Typical regimes for cryogenic applications are indi-
cated. (b) Comparison of the magnetic-field sensitivity of conventional and superconducting field
sensors (right), level of magnetic-field noise (middle), and field sensitivity required for various appli-
cations (left).

inmost applications,means that theperformanceof thedevice is diminished. Because
of the large anisotropy, the small coherence length and, last but not least, the elevated
temperature at which the ceramic superconductors will be operated, these effects are
more severe for HTS materials. Ways to avoid the impact of vortices are:
– operation in perfectly shielded environments;
– reduction of the structures to sizes that do not allow for vortex formation, or;
– ‘manipulation’ of vortex matter.

Since the first two options are in most cases (extremely) costly and/or usually techni-
cally difficult or impossible, the manipulation of vortex matter appears to be an ideal
solution of this problem. This is one of the motivations for scientific studies on vor-
texmanipulation in superconductingfilms. Furthermore, themanipulation of vortices
is also of interest for the development of (novel) fluxonic concepts. In the following,
I will sketch possible routes to improve existing superconducting devices and show
concepts for possible novel devices that are based on the manipulation of vortices via
artificial pinning sites.
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7.4.2 Strategically positioned antidots in Josephson-junction-based devices

Noise reduction in SQUIDs
Superconducting quantum interference devices (SQUIDs) represent the most sensi-
tive sensors of magnetic flux or other physical quantities (e.g., currents) that can be
transformed into magnetic flux. They are for instance used for nondestructive testing
(NDE), geomagnetic applications, biomagnetic or medical applications (e.g., magne-
toencephalography). Typicalmagnetic signals for the different applications are shown
in Figure 7.8. It demonstrates that the magnetic fields that have to be recorded are
much smaller (in some cases orders of magnitude smaller) than the magnetic field of
other sources like urban noise or even the earth. Therefore it is obvious, thatmagnetic
flux which doesn’t stem from the measured object has to considered.

A detailed introduction of the working principle and applications of SQUIDs is
given in the tutorial and chap. 11 of this book and will not be repeated here. In prin-
ciple, the SQUID is a deceptively simple device, consisting of (see also Figure 7.1) a
superconducting loop with one (rf-SQUID) or two (dc-SQUID) Josephson junctions,
respectively. Magnetic flux threading the superconducting loop leads to a phase dif-
ference ∆φ across the Josephson junction which is correlated with the superconduct-
ing tunnel current Ic = Io ⋅ sin (∆ϕ) = Io ⋅ sin (πΦ/Φo) via the 1st Josephson equation
(Equation (21) of the tutorial). By reading out the tunnel current (or controlling the
tunnel current in a so-called flux-lock-loop), it becomes the most sensitive fluxmeter
known with a resolution better than 10−6Φo.

Generally, the sensitivity of SQUIDs is limited by the frequency-dependent noise
level of the device. In addition to the contribution of the electronics (usually white
noise), in active superconducting devices two different sources are considered to be
responsible for the noise. These are the contribution of the active part of the device,
whichusually consists of one ormore Josephson junctions, and the noise coming from
the passive component, the superconducting thin film (washer, flux focuser, or flux
transformer, dependingon theapplication). Thenoisemechanisms in Josephson junc-
tions are well understood [67], and a reduction of this noise contribution via simple
electronic means has been successfully demonstrated [68]. The passive component
(e.g., the superconducting film of the loop, washer, or flux transformer) contributes
strongly to the low-frequency noise due to vortex motion in the superconducting film.
A nice illustration of this contribution is given by the so-called telegraph noise that
occurs when a vortex hops between two pinning sites (see Figure 7.1). In the case of
the statistical motion of many vortices (incoherent superposition of many thermally
activated microscopic fluctuators), a scaling of the spectral noise density SΦ with fre-
quencies f and the applied magnetic field B is expected

√SΦ (f, B) ∝ Bn

f m , (7.11)

with n = m = 0.5. This so-called 1/f noise spectrum is actually evidence for a dis-
tribution of activation energies for the vortex hopping [69]. Typical examples of the
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Fig. 7.9: (a) Spectral noise density for different magnetic fields measured in a HTS step-edge type
rf-SQUID [11]. The lines idealize the different noise contributions, i.e., the field-dependent 1/f low-
frequency noise and the field- and frequency-independent white noise. The schematic drawing
sketches the geometry of rf-SQUIDs and the problem of a moving vortex in the washer. (b) Mag-
netic field dependencies of the integral noise (0.5 and 10 Hz) of a step-edge and bicrystal Josephson
junction according to [11]. The dotted lines represent the theoretical field dependence of the low-
frequency noise according to Equation (7.11).

spectral noise density and field dependencies of the 1/f integral noise of rf-SQUIDs
designed for NDE applications are given in Figure 7.9. The 1/f low-frequency noise in-
creaseswithmagnetic field in agreement with Equation (7.11), whereas thewhite noise
at high frequencies is more or less field-independent.

In Section 7.3.1.1 it was demonstrated that the low-frequency noise in SQUIDs can
be manipulated via antidots. However, it can be seen in Figure 7.4 and it is evident
from theoretical considerations, that regular arrays of antidots lead to noise reduction
only at discrete values of the magnetic field (at matching fields) whereas in case of
noncommensurability between the vortex and antidot lattice even an increase of the
low-frequency noise is observed. Therefore it is better to use only a few, ‘strategically
positioned’ antidots in the superconducting device, which trap only those vortices
that attribute strongly to the low-frequency noise (e.g., vortices close to the SQUID
hole) and leave the vortex lattice free to arrange itself within the device. Thus, the
important issue is to allocate those strategic positions.

An experimental demonstration for noise reduction via strategically positioned
antidots is shown in Figure 7.10 [11, 12, 38]. Since the largest impact of vortex motion
upon the SQUIDs flux noise is expected for vortex motion at a position close to the
SQUID hole and close to the Josephson junction, two antidots are positioned on ei-
ther side of the Josephson junction of an rf-SQUID (see SEM image in Figure 7.10). The
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Fig. 7.10: Spectral noise density at 1 Hz (1/f noise) as a function of the magnetic field for field-
cooled measurements for the same rf-SQUID without (open symbols) and with two strategically
positioned antidots (closed symbols). The inset shows an SEM image of the Josephson junction and
the two antidots (1.5 μm in diameter). The lines symbolize the white noise and the field dependence
according to Equation (7.11).

resulting modification of the noise properties is determined in field-cooled (FC) ex-
periments on the same SQUID without and with antidots. In these experiments, the
SQUID is cooled from the normal to the superconducting state in an applied field B
oriented normal to the film surface. A comparison of the spectral noise density in the
low-frequency regime (1/f noise) shows, that at low fields (B < Bon) the spectral noise
density is field independent, whereas at higher fields (B > Bon) the spectral noise den-
sities increase linearly with increasing field according to the theoretical expectation
SΦ ∝ B. However, the transition from field-independent to field-dependent spectral
noise density is significantly increased from Bon ≈ 8 μT for the measurement without
antidots to Bon ≈ 40 μT for the configuration with antidots. The increase of the onset
field Bon by the arrangement of only two strategically positioned antidots is definitely
significant. Moreover, it might even be sufficient for a number of SQUID applications
in an unshielded environment since the magnetic fields of urban noise and the earth
field are typically of the order or smaller than 50 μT (see Figure 7.8b).

Abrikosov-vortex based active devices
We can invert the effect demonstrated above and utilize the impact of trapped vortices
on the signal of a Josephson-type device for superconducting digital devices. Gener-
ally, Abrikosov vortices represent extremely small magnetic bits Φo that can be ma-
nipulated for instance by short current pulses and can be detected in different ways
by Josephson-type concepts.
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A very nice proof of this concept is given in [70] where an Abrikosov-vortex-based
random access memory (AVRAM) cell is demonstrated, in which a single vortex is
used as an information bit. The basic principle and the operation is illustrated in
Figure 7.11. The AVRAM simply consists of a superconducting line with an antidot
and a Josephson-based detector. Vortices are trapped in the antidot and readout via
a Josephson detector. The latter could for instance be a Josephson spin-valve or, as
sketched in Figure 7.11, a simple Josephson junction. By applying a small background
field (the optimum value depends on the geometry of the device and is typically of
the order of Oe for devices of a few μm extension) the vorticity of the field trapped by
the antidot can be changed by small current pulses between −Φo, 0, and +Φo. The
magnetic field couples into the Josephson junction and changes the phase and, thus,
the Josephson current J = J0 sin (∆ϕ). This change of the Josephson current can easily
be detected (see Figure 7.11). This device operates in a similar way to a classical rapid
single-flux quantum device (RSFQ). The use of Abrikosov vortices instead of Joseph-
son vortices (in the case of RSFQ) on the one hand simplifies the device, on the other
hand it might restrict the operation regime especially with respect to high-frequency
applications.Nevertheless, it represents a relatively simple, scalable, low-energy, and,
fortunately, nonvolatile digital device.

7.4.3 Antidots in microwave devices

Another interesting example represents the use of antidots in superconducting mi-
crowave circuitry devices. These have attracted increasing interest during the last few
years. In particular, coplanar microwave resonators are used in various fields ranging
from circuit quantum electrodynamics, quantum information processing, and kinetic
inductance particle detection. In all cases high-quality factors QL = fo/∆f and low-
energy losses are essential to these resonators. In somecases, thesedeviceshave toop-
erate in (moderate) magnetic fields. In these cases vortices and their motion strongly
affect the performance of the device. An obvious solution is given by the use of artifi-
cial pinning sites, especially antidots.

The basic components of microwave devices are impedance-matched striplines.
The microwave current is strongly peaked at the edge of the conductor. For example,
the current densities in the central conductor of a coplanar microwave device can be
approximated by [71]:

Jrf (x) = I
w ⋅ K ( wa ) ⋅

{{{{{{{{{{{{{{{

[(1 − (2xw )2) ⋅ (1 − (2xa )2)]−1/2 for |x| ≤ w
2 − λ[(1 − ( wa )2) ⋅ λ

w ]−1/2 w
2 − λ ≤ |x| ≤ w

2− [(( aw )2 − 1) ⋅ λ
w ]−1/2 a

2 ≤ |x| ≤ a
2 − λ− [((2xw )2 − 1) ⋅ ((2xa )2 − 1)]−1/2 |x| ≥ a

2 + λ
(7.12)

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.4 Artificial pinning sites in superconducting electronic devices | 243

Fig. 7.11: Demonstration of write and erase operations for an Abrikosov-vortex-based random access
memory (AVRAM) using a ‘strategically’ positioned antidot according to [70]. The sketch shows the
device consisting of a Nb-based stripline equipped with two Josephson junctions (dashed white
line) and an antidot that is centrally positioned between the Josephson junctions. The device is
operated in a moderate field (typically of the order of Oe, depending on the demagnetization factor
of the layout). Via sufficiently large current pulses (lower figures) the vorticity of the antidot can be
switched between −1, 0, and 1 (i.e., −Φo, 0, and +Φo). The resulting resistance (measured between
voltage contacts 1 or 2 applying an ac current with an amplitude larger than the critical current of
the junction but much smaller than the pulse current used for write and erase) shows the resulting
vortex state (upper figures) for the different switching options.

with w representing the width of the stripline, a the distance between the ground
planes, and K the complete elliptical integral of the first kind. A sketch of the cross-
section of the structure and the resulting microwave current distribution is given in
Figure 7.12a. Since vortices will penetrate at the edge of the superconducting stripline,
themicrowave losses are strongly affectedbyanymodificationof the appliedmagnetic
field (see sketches in Figure 7.12b).

This is demonstrated by comparing field-cooled (FC) and zero-field-cooled (ZFC)
measurements of the power-handling capability of microwave resonators that are ex-
posed to small magnetic fields (Figure 7.12c) [16]. In FC experiments the resonator is
cooled to the superconducting state in the applied magnetic field (i.e., the vortex dis-
tribution is expected to be homogeneous), whereas in ZFC experiments the resonator
is cooled to the superconducting state in zero-field and only then the magnetic field
is applied in the superconducting state. In the latter case, vortices have to penetrate
from the edge of the superconductor, leading to an inhomogeneous distribution of vor-
tices. Thus, the expected vortex distribution is different for FC and ZFC experiments
(see sketches in Figure 7.12c).
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Fig. 7.12: Schematic drawing of (a) the microwave current distribution Jrf in coplanar superconduct-
ing lines according to Equation (7.12) and (b) the microwave current and magnetic field distribution
at the edge of a superconducting stripline. (c) Field dependence of the power-handling capability of
a coplanar YBCO resonator for field-cooled (FC) and zero-field-cooled (ZFC) experiments at different
temperatures [16]. The power handling is characterized by the degradation of the loaded quality
factor QL = fo/∆Tf , i.e., Pmax is defined by the condition QL(Pmax) = 0.8QL(Po). The sketches in
(c) indicate the different vortex distribution in field-cooled and zero-field-cooled experiments and
the microwave current distribution in the central conductor of the coplanar microwave resonator.
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Fig. 7.13: Loaded quality factor at the fundamental mode for a 60 μm wide coplanar Nb-based res-
onator with (solid symbols) and without (open symbols) antidots at 4.2 K for field-cooled (circles)
and zero-field-cooled (squares), data adopted from [18]. In this case the central line of the resonator
is completely covered with a quasihexagonal array of antidots of submicrometer antidot size and an
antidot density of approx. 1.65 μm−2.
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The first attempts to improve the performance of HTS microwave resonators ex-
posed to a magnetically unshielded environment via antidots were published in [16,
72]. A systematic study of the impact of antidots followed for Nb-basedmicrowave res-
onators [17, 18]. The main results of these experiments on HTS and Nb resonators are
illustrated in Figure 7.13 and listed below:
(i) The performance of the resonator operating in an applied magnetic field of up

to a few mT can be improved by antidots. This holds for the quality factor (see
Figure 7.13) and the frequency stability of the resonator.

(ii) The improvement is large for FC experiments where we expect a homogeneous
distribution of the vortices in the stripline. For ZFC experiments this effect ismuch
smaller. The reason is that vortices or antivortices are concentrated at the edge of
the stripline for increasing field or decreasing field, respectively (see sketches in
Figure 7.12) [16]. Since this is the area of large microwave current, this leads to a
strong decrease of the performance and a reduced impact of the antidots.

(iii) The kink in the field dependence of the quality factor (see inset in Figure 7.13)
reveals an interesting effect that is connected to the penetration of the flux into
the center of the stripline. It actually allows one to tune the performance of the
resonator by appropriate field sweeps [16].

The demonstrated results are very encouraging. In the first experiments the position of
the antidots was optimized but the antidots were still quite large [16, 17, 72], whereas
in the later experiments the size of the antidots was minimized [18]. Further improve-
mentmight be possible if both the size of the antidots canbe reduced even further and
the position of the perforation can be optimized.

7.4.4 Concepts for fluxonic devices

In the previous sections, strategies to improve existing superconducting devices by
manipulating vortices were introduced. However, the field of vortex manipulation by
micro- or nanostructures in superconducting films is much more colorful. Different
feasible concepts are indicated in Figure 7.14. For instance, vortices might be gener-
ated, guided and trapped by slits, or small and large antidots, respectively. By appro-
priate magnetic field variations or using the current curls created by a slit at opposing
edges of a stripline, even vortices and antivortices can be created and manipulated.
The operation of some of these components has been demonstrated for low-Tc films
(e.g., Nb, Pb, or Al films) or their impact upon magnetic flux has been visualized by
magneto-optic experiments [74, 74]. An interesting option is suggested by the use of
asymmetric antidots that could lead to a directed vortex motion, the so-called ratchet
effect.

Generally, ratchets are formed from spatially asymmetric confining potentials.
They can rectify oscillatory driving forces and generate directed motion. Ratchet
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Fig. 7.14: Sketch of different nano- and microstructure components for vortex manipulation in HTS
films that might lead to novel fluxonic applications. Vortices and antivortices (vortices with inverted
field component) can be generated by curls in the dc or microwave current caused by slits at oppo-
site edges of a stripline, the ‘generators’ for vortex formation. Guidance, trapping, and annihilation
are achieved by antidots of different size. Annihilation of vortices would be possible in the case of
guidance of a vortex and an antivortex towards the same trapping site, the ‘reservoir’.

scenarios were already considered by Feynman in his lecture notes in 1963 [75] and
are related to earlier problems in thermodynamics studied by Smoluchowski in 1912
[76]. Ratchets represent a major component of particle transport in nanoscale sys-
tems, both in solid-state systems and in biology. Ratchets in biological systems (e.g.,
biomolecular motors) can be found in nature, including the kinesin and dynein pro-
teins that provide transport functionswithin the cell [77]. Ratchets canbeproduced by
biomolecular engineering, e.g., a molecular walker constructed from strands of DNA
[78] and controlled motion of kinesin-drivenmicrotubules along lithographically pat-
terned tracks have been demonstrated recently [79]. Advances in nanofabrication
made it feasible to develop and investigate ratchets formed from solid-state systems
involving electronic devices or microfluidics. Such devices can be used (i) as analog
systems for modeling biomolecular motors, (ii) to understand novel particle trans-
port at the nanoscale or (iii) to develop new devices for application. One advantage
of solid-state nanofabrication is the possibility to tailor the ratchet potential and to
control driving parameters, temperature, or other process parameters. Implementa-
tions of ratchets in electronic devices have been demonstrated recently, e.g., the use
of asymmetric structures of electrostatic gates above a 2D electron gas [80] and arrays
of Josephson junctions with asymmetric critical currents [81].

Vortices in superconductors form an ideal system for exploring ratchet phenom-
ena. The control of vortex dynamics via micro- or nanostructures allows for the tailor-
ing of vortex-confining potentials. One approach for controlling and rectifying vortex
motion in superconductors involves the use of arrays of antidots. Vortex ratchet ef-
fects obtained by various arrangements of antidots have recently been demonstrated
for low-Tc films [82–85] and high-Tc films [6]. The asymmetric pinning potential is
achieved by asymmetrically shaped antidots, combinations of antidots of different
sizes, the asymmetric arrangement of symmetric antidots or even mixing of dc and
ac currents, respectively.

Figure 7.15 showsanexampleof aHTS ratchet that also illustrates thepotential use
of ratchets in microwave applications. The design of the device (Figure 7.15a) is simi-
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Fig. 7.15: Demonstration of the ratchet effect in HTS microwave devices. Schematic drawing of a
YBCO ratchet based on rows of triangularly shaped antidots (inset) and contour plot of the change
of the dc voltage signal ∆Vlongitudinal = Vlongitudinal(−10 dBm) − Vlongitudinal(−50 dBm) as a func-
tion of temperature and applied microwave frequency. The microwave current is applied via ports
1 and 2, the vortices are rectified by rows of triangular antidots and the dc longitudinal is recorded
at contacts V. The change of the rectified longitudinal voltage signal due to the microwave power
demonstrates rectified vortex motion for temperatures close to Tc (high vortex mobility) and up to
frequencies of about 10 GHz.

lar to the design used for the demonstration of guided vortex motion (see Figure 7.6),
except for the fact, that asymmetric (here, triangular shaped) antidots are used. The
tiltingof thedirectionof antidot rowswith respect to theLorentz force allows for simul-
taneous measurements of a longitudinal and Hall signal in the case of guided vortex
motion. In the case of the rectification of the vortexmotion (ratchet effect) amicrowave
driving current would be transformed into a directional motion of vortices and, thus,
a dc voltage at the Hall and longitudinal voltage pads. Figure 7.15b shows a contour
plot of the dc voltage (only the longitudinal voltage is shown) obtained in a typical
experiment. In order to improve the resolution of themeasurement, a reference signal
taken at low microwave power (−50dBm) is subtracted from the signal recorded at
large microwave power (−10dBm).

The experiment demonstrates that HTS vortex ratchets can operate, although in a
restricted temperature regime close to Tc and a frequency regime up to about 10GHz.
An obvious restriction of the operation regime is imposed by the limited microwave
powerused in the experiment. Close to Tc , thepinning force is small andvorticesmove
easily. At lower temperatures, the pinning force and viscosity increase and, as a conse-
quence, largermicrowavepower is needed tomove vortices between the antidots. This
restricts the temperature regime for operation to temperatures close to Tc. Neverthe-
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less, the temperature regime is still quite large compared to the operation regimes of
low-Tc films,where ratchet effects are typically present in the range 0.995 < T/Tc < 1.
Whether the frequency limit (approx. 10GHz) is a fundamental limit for the motion
of Abrikosov vortices in HTS devices has not been clarified to date. Experiments per-
formed at larger microwave power or using smaller antidot spacings might prove this
in the future.

The principle of the vortex ratchet is one of the most interesting components for
basic analysis and maybe also in the future for application of vortex manipulation in
superconducting films and devices. Its operation has been demonstrated. They might
be used as a converter (microwave-to-dc), filters, or as a component in more complex
microwave devices that could offer interesting and novel properties.

7.5 Conclusions

Vortex matter in superconducting films and devices is not only an interesting topic
for basic research but plays a substantial role in the applications of superconductivity
in general. In most electronic applications, magnetic flux will penetrate the super-
conductor. Magnetic flux and flux motion affect the performance of superconducting
devices. For instance, the reduction of the sensitivity in SQUIDsor the power-handling
capability in microwave devices, or the increase of the error rate in logic devices is a
consequence of the presence of flux and flux motion in these devices. Guidance and
trapping of vortices can reduce or even prevent this effect.

Moreover, vortex manipulation is not only a useful tool to avoid degradation of su-
perconducting device properties, it can also be used to analyze and understand novel
and interesting physical properties and to develop new concepts for superconductor
applications. Various concepts for vortex manipulation are sketched. The advantage
of the use of micro- and nanopatterns (especially, antidots) for guiding and trapping
of vortices is discussed and experimental evidence of vortex guidance and vortex trap-
ping by various arrangements of antidots is given.

Thus, the vortex state ofmatter appears to be very important in applications of su-
perconductivity and requires further investigation. A better understandingwill clearly
lead to an improvement of the performance of superconductor components, such as
reducednoise, better power-handling capability, or improved reliability. Furthermore,
it promises deeper insight into the basic physics of vortices and vortex matter, espe-
cially at high frequencies. The use of different experimental techniques in combina-
tion with micro- or even nanopatterning of high-Tc superconducting film might pave
the way towards strategic manipulation of vortices and, thus, a route towards inter-
esting and innovative fluxonic effects and device concepts.
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Enrico Silva, Nicola Pompeo, and Oleksandr V. Dobrovolskiy
8 Vortices at microwave frequencies

Abstract: The behavior of vortices at microwave frequencies is an extremely useful
source of information on the microscopic parameters that enter the description of the
vortex dynamics. This feature has acquired particular relevance since the discovery of
unusual superconductors, such as cuprates. Microwave investigation then extended
its field of application to many families of superconductors, including the artificially
nanostructured materials. It is then important to understand the basics of the physics
of vortices moving at high frequency, as well as to understand what information the
experiments can yield (and what they can not). The aim of this Chapter is to introduce
the readers to the physics of vortices under a microwave electromagnetic field, and to
guide them to an understanding of the experiment, also by means of the illustration
of some relevant results.

Keywords: vortices, microwave frequency, pinning

8.1 Introduction

When dealing with vortices in a microwave electromagnetic (henceforth, e.m.) field,
one necessarily deals with vortex dynamics. Thus, the focus is on the e.m. response
of moving vortices. Microwave frequencies, broadly in the range 1 ÷ 100GHz, corre-
spond to a wavelength in vacuum of several cm. Then, in most cases the detected sig-
nal in experiments comes from the average motion of a very large amount of vortices
(n = B/Φ0 per unit area). This aspect immediately brings a common feature to many
of the existing models for microwave vortex motion: the models are usually based
upon a single-vortex equation of motion, which contains some phenomenological pa-
rameters. On the basis of the equation of motion, a response function is derived (the
complex resistivity, or conductivity, or surface impedance). From the experiments one
deduces the averaged phenomenological parameters. Then, a connectionwith themi-
croscopic theory is attained at the level of the parameters. While exceptions exist and
more complex models have been developed, in this Chapter we will describe the mi-
crowave response of moving vortices in this restricted (but most common) meaning.

In the previous Chapters 3, 5, and 9 the reader was introduced to the vortex dy-
namics, in particular from the point of view of the motion of vortices under the effect
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254 | 8 Vortices at microwave frequencies

of a steadydc currentdensity J. Thevortex is subjected to the so-called “ Lorentz force”
(per vortex unit length):¹

fL = J × Φ0 (8.1)

When the current density exceeds the critical current density, the vortices move with
average velocity v. The overall motion of all vortices constituting the flux density B,
gives rise to the electric field:

E = B × v (8.2)

and hence to a finite dissipation, since in general J ⋅ E ̸= 0. Natural and artificial de-
fects act as pinning centers for vortices, and can stop the motion. When the pinning
recall becomes irrelevant (due, e.g., to a sufficiently large J or to large thermal activa-
tion), vortices are completely free to move in a steady motion, reaching the so-called
flux-flow regime. In this regime, the environment exerts a force that can be written as
a viscous drag [1], so that fenv = −ηv. This relation defines the phenomenological pa-
rameter η, the so-called vortex viscosity or viscous drag coefficient. This is one of the
key parameters in the description of the vortex motion.

Pinning is the second important process that has to be considered. The overall
pinning effect can be described in terms of a local pinning potential U(r, B). Vortices
tend to occupy the pinning potential minimaofU; any displacements from these equi-
librium positions give rise to a restoring force on the vortex. Thus, there exists an ele-
mentary pinning force (per unit length) on the vortex:

fp = −∇U ≃ −kpu (8.3)

where u is the displacement of the vortex from the equilibriumposition, and the latter
approximate equality holds in the limit of small displacement² and it defines the pin-
ning constant (or Labusch parameter) kp. It should be mentioned that, in anisotropic
superconductors, the e.m. problem is much more complicated, since the vortex dis-
placement u (or the velocity v = u̇) are not necessarily parallel to the forces [3].Wewill
not address this issue explicitly, the reader is referred to the specific literature [3, 4].

Finally, the thermal activation can be treated by formally adding a thermal
stochastic force, fth to the Lorentz force. One then has the equation of motion for
a single vortex:

mü = fL + fth − ηu̇ − kpu (8.4)

wherewe haveneglected theHall terms. An extended discussion on the validity of this
approximation can be found in [5].

1 The force per unit length should not be confused with the pinning force Fp used in the treatment of
pinning, which is a force per unit volume. The latter is introduced when the elementary pinning forces
(per unit length) fp are summed (Chapter 5), which is conceptually analogous to the passage from the
single-vortex equation (8.1) to the electric field equation (8.2).
2 For recent results on the applicability of the elastic approximation, see [2].
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The explicit models that are used to describe flux flow, pinning, and thermal ac-
tivation define the final framework that will be used to analyze the experiments. A
complete review of the various models is well beyond the scope of this introductory
Chapter, but it is nevertheless useful to introduce some remarks.

The vortex viscosity η is the parameter that characterizes the free vortex flow. The
microscopic origin of ηwasfirst addressed by Bardeen and Stephen (BS) [6] for s-wave
conventional superconductors, in the following framework: the power dissipated per
vortex unit length,W = fenv ⋅v = ηv2, is transferred to normal currents, flowing inside
vortex cores (modeled as fully normal cylinders with radius ∼ ξ ) and closing outside.
These currents give a Joule dissipated power ∼ v2Φ2

0/2πξ2ρn (ρn is the normal state
resistivity), whence:³

η = Φ0Bc2
ρn

(8.5)

The BS model is valid for dirty s-wave superconductors. The clean [9] and the gen-
eral [10, 11] case calculations take into account the full spectrum of the quasiparti-
cle bound states. It is interesting to note that, by combining the general case calcula-
tion [10] to the reinstatement of the Hall term in the flux-flow motion [5], one has in a
very wide range of regimes:

η = nqpπℏωcτqp (8.6)

whereωc is the cyclotron angular frequency atHc2, and τqp and nqp are the quasiparti-
cle relaxation time and concentration in the vortex, respectively. Thus, Equation (8.6)
is a good general approximation for η, and Equation (8.5) a practical and often used
rule of thumb for the order of magnitude of η. We mention that in cuprates (as well
as in any superconductors with lines of nodes in the gap) this picture may complicate
severely, and additional temperature and field dependences may show up in η [12–
14]. It is apparent that η is the vortex parameter most closely linked to the microscopic
properties of quasiparticles.

The role of vortex mass is a longstanding and much debated issue that has not
found a commonly accepted solution yet. Most estimates [15–18] give a negligible con-
tribution of the inertial term to the overall response, and in the following we will ne-
glect the vortexmass for themicrowave frequency rangewe are interested in (however,
some relevance of the inertial term at or above THz frequencies cannot be ruled out).⁴

The treatment of the pinning in terms of a simple elastic recall can be at first
considered exceedingly simplified. In many superconductors, and in particular in

3 Note that most microscopic models develop the calculations for η in the low-frequency limit. While
in conventional superconductors and in optimally doped YBa2Cu3O7−δ there is no evidence for any
frequency dependence of η in the microwave range [7], in underdoped YBa2Cu3O6.52 this hypothesis
has been experimentally questioned [8].
4 In addition, one has to recall that at frequencies higher than the gap breakdown frequency, super-
conductivity is destroyed. The gap breakdown frequency ωB = 2∆(0)/ℏ is of the order of 100GHz for
a superconductor with a transition temperature of Tc ≃ 10K.
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cuprates, various phases of the vortex matter can exhibit extremely different vortex
pinning. For example, the elasticity of the Abrikosov lattice makes few pinning cen-
ters very effective in blocking the motion of the whole lattice, while in the vortex
liquid phase vortices can only be individually pinned. Pinning is also affected by the
flux line tension: a rigid flux line can be pinned by a single pinning center, but (at the
other extreme) pancake vortices need to be individually pinned on each distinct layer.
In most cases, however, this complexity can be “hidden” into the field and tempera-
ture dependencies of appropriate parameters. In particular, at microwave frequencies
one encounters the favorable circumstance that the average displacement of the vor-
tex from the equilibrium position in typical experiments is of the order of 0.1 nm or
less [19]. In this case, the vortex system can be treated in the local, single-vortex limit,
and a single-vortex, mean-field approach is acceptable.

The thermal activation can be treated in a large variety of models. In the specific
field of the ac electrodynamics, the most common approaches have been developed
by Coffey and Clem (CC) [20] and Brandt [21]. CC exploited the mathematical proper-
ties of a uniform sinusoidal pinning potential. Brandt assumed a phenomenological
thermally relaxing pinning constant kp,th = kp exp−t/τ. In both cases, a vortex charac-
teristic relaxation time was obtained:

τCC = τp
I20(u) − 1
I1(u)I0(u) (8.7)

for the CC model, where I0,1 are modified Bessel functions, u = U0/2KBT, and U0 is
the height of the sinusoidal pinning potential, while for the Brandt model:

τB = τpeU0/KBT (8.8)

where U0 is the single pinning well height. In both cases, one defines:

τp = η
kp

= 1
ωp

= 2π
fp

(8.9)

where the last two equalities define the extremely important vortex parameter, namely
the depinning (angular) frequency (also named “pinning frequency”).

Putting together all the approximationsmadeup to now, we conclude this Section
with the equation of motion that is the starting point for the microwave response of
vortices in superconductors. It reads:

ηu̇ + kpu = J × Φ0 + fth (8.10)

We stress again that the model described up to now:
– is derived from a single-vortex equation of motion, so that the effect of vortex-

vortex interactions must be introduced in an effective fashion in the parameters;
– is obtained in the very small displacement approximation (with respect to pin-pin

distance), that holds at sufficiently high frequencies;
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– does not contain the Cooper pair or quasiparticle dynamics entirely, so that it is
not expected to hold at very high frequency (as a rule of thumb, approaching in-
frared) or very close to the critical temperature or field;

– is a linear response model: nonlinearities must be treated in a different way.⁵

8.2 Vortex motion complex resistivity

Once the equation of motion for the (single) vortex is obtained, Equation (8.10), it is
possible to derive the response function in terms of the electric field arising from the
application of an ac current density, that is in the form E = ρvJ, where ρv(T, H, f) is the
vortex motion complex resistivity. In so doing, since we deal with the appliedmagnetic
field H while the vortex response is determined by the flux density B, we assume to
be in the London limit (that is, not extremely close to Hc1), so that B ≃ μ0H.

It is instructive to discuss the result first with no thermal forces (no thermal activa-
tion, no creep). Thismodelwas developed early byGittlemanandRosenblum (GR) [25]
and it is still very successful (with the appropriate redefinition of the vortex parame-
ters). Assuming harmonic current, Jeiωt in Equation (8.10) with fth = 0, solving for the
harmonic vortex velocity veiωt,multiplying by n to add the contribution of all vortices,
cross-multiplying by Φ0 and using Equation (8.2), one finally finds:

ρv,GR = Φ0B
η + kp

iω

= Φ0B
η

1
1 − i kpηω

= ρff
1

1 − iωp
ω

(8.11)

where the last equality contains explicitly thedepinning frequency (seeEquation (8.9))
fp = ωp/2π and the flux-flow resistivity:

ρff = Φ0B
η

≃ ρn
B
Bc2

(8.12)

Here, the last approximate equality derives from the application of the BS model for
η, and it is not required for Equation (8.11) to hold.

Even this simple model highlights several of the powerful features of the mi-
crowave experiments. First, there exists at least a characteristic frequency (or, which
is the same, a characteristic time scale) in the motion of vortices: below the depinning
frequency, ω ≪ ωp, the response is purely inductive. This regime is also called the
“Campbell regime” [26], characterized by the “Campbell resistivity” ρC, and one has:

ρv,GR(ω ≪ ωp) ≃ iρC = iωΦ0B
kp

(8.13)

5 An extension of the CCmodel to nonlinear response, nonzero Hall coefficient, directional and asym-
metric washboard pinning potential, and to the presence of a superimposed dc current has been given
by Shklovskij et al. [22–24].
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Second, at sufficiently high frequency, ω ≫ ωp, one has the free flux-flow regime,
where ρv ≃ ρff. We note that in this case it becomes possible to measure the flux flow
of vortices in the linear regime: this has to be contrasted by typical experiments in dc,
where a current larger than the critical (depinning) current must be applied (Chap-
ter 5). Thus, while in dc the flux-flow resistivity is measured in the strongly nonlinear
regime, at microwave frequencies it is possible to obtain the same quantity in the lin-
ear regime, thus avoiding the serious experimental complications when a large cur-
rent has to be passed in the superconducting sample.

It is quite clear that a measurement of the complex response (real and imaginary
parts) provides at the same time the Campbell and flux-flow resistivities, once the sim-
ple GR model is assumed. In this case, a very relevant experimental parameter is the
so-called r parameter, defined empirically as:

r = ℑ(ρv)ℜ(ρv) = ωp
ω

(8.14)

where the last equality holds until the GRmodel, Equation (8.11), holds. The r parame-
ter has been used for a long time [27, 28] to determine the regime of the vortex motion.

This simplemodelhasbeenvery successful in the interpretationof thedata in low-
Tc superconductors. In particular, the frequency dependence of the microwave power
absorbed by vortices in flat PbIn and NbTa sheets at radio andmicrowave frequencies
at fixed magnetic field and temperature was found to exhibit the expected crossover
at fp from the weak dissipation at low frequencies to the strong dissipation at high
frequencies [25], as reported in Figure 8.1.

More recent studies in metallic, low-Tc superconductors have explored the de-
pendence of the depinning frequency fp on the temperature and the magnetic field.
It must be stressed that fp(H, T) = kp/η contains both the fundamental, intrinsic
parameters contained in η (Equations (8.5), (8.6)) and the sample-specific pinning

0

0.5

1

10-4 10-2 100 102 104

PbIn  T=1.7 K
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P
/P

p

Fig. 8.1: Normalized dissipated power in type-II superconductors at H = 1
2 Hc2 as a function of the

measuring frequency normalized to fp (replotted from [25], fp = 3.9, 5.1, 15 MHz) and fit by Equa-
tion (8.11) (real part). Note that the normalization simplifies out ρff.
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Fig. 8.2: Left: Dependence of fp on the magnetic field value for a series of Nb films. Adapted with
permission from [30]. Right: Film thickness dependence of fp, extrapolated at T = 0, H = 0, for a
series of Nb films: [32], ⧫ [31], �[30], ◼ [33, 34]. Straight line is a guide for the eye.

properties represented by kp. Thus, a unified model for the field and temperature de-
pendences of fp is quite unfeasible, and one has to rely on phenomenological or em-
pirical laws. In general, fp is a decreasing function of the temperature, with a weak
temperature dependence not too close to Tc; fp can often be approximated as fp(T) =
fp(0)[1 − (T/Tc)4] [29]. As a function of H, the empiric expression fp(H) = fp(0)[1 −(H/Hc2)2] [30] was found to fit the data. In addition, it appears that in thin films a
thickness dependence arises in fp: an extensive series of microwave experiments with
Nb films [30–34] suggests that fp(H → 0, T → 0) follows the phenomenological law
fp ∝ 1/d, where d is the film thickness. These dependences are presented in Fig-
ure 8.2.

The neglected thermal activation term corresponds to the flux-creep phenomena
that are enhanced inHigh-Temperature Superconductors (HTSC) due to the high oper-
ating temperatures and small coherence volume. It is thenmandatory to also consider
the thermal activation. It has been shown that, despite the specific mechanism that is
invoked to solve Equation (8.10), the result can be written in a generalized form as [5]:

ρv = ρv1 + iρv2 = Φ0B
η

χ + iω/ω0
1 + iω/ω0

(8.15)

where ρv1 and ρv2 are the real and imaginary part of the vortex-motion complex resis-
tivity, and now flux creep enters via both the creep factor χ(T, H) and the new charac-
teristic frequency, ω0 ̸= ωp. The specific relations between the activation energy U,
the creep factor χ, and ω0 and ωp depend on the model chosen for the treatment
of the thermal effects. As an example, in the Brandt model (Equation (8.8)) one has
ω0 = τ−1p + τ−1B , showing immediately that two characteristic times exist: the depin-
ning time and the thermal vortex relaxation time. Figure 8.3 reports the frequency
dependence of the calculated real and imaginary parts of ρv for finite creep. Compari-
son with the zero-creep limit (GRmodel, Equation (8.11)) reveals the main differences.
First, the peak in ρ2 is reduced by a factor 1−χ. Second, at low frequency ρ1 ̸= 0. About
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Fig. 8.3: Frequency dependence of the full vortex motion complex resistivity, for finite creep χ = 0.2.
At ω0, ρ1 reaches half of its maximum, and ρ2 has the peak. Several relevant values are reported in
the figure. Note that, because of creep effects, in the limit of zero frequency ρ1 ̸= 0. Inset: same as
in the main panel, but replotted with linear abscissa.

the low-frequency limit, one should note that themodel is likely to break down: at low
frequencies the vortex displacement increases, the single-vortex approximation is no
longer applicable and vortex-vortex effects become dominant. In fact, a low-frequency
crossover toward vortex-glass dynamics has been observed in wideband (45MHz–
50GHz) experiments in YBa2Cu3O7−δ [35]. However, the high-frequency limit keeps
the value ρff, irrespective of thermally activated phenomena.

In experiments, one often relies on the microwave response measured at a single
frequency. In this case, while Equation (8.11) can be inverted to directly obtain η and
kp (or fp), Equation (8.15) contains the additional creep parameter χ and the problem
is underconstrained. However, it is possible to exploit several mathematical and phys-
ical properties, in order to obtain useful estimates for the vortex parameters. It can be
shown that, irrespective of the model adopted, in Equation (8.15) one always has [5]:

χ < χM = 1 + 2r2 − 2r√1 + r2 (8.16)

ηGR
1 + χM

2 < η < ηGR (8.17)

where ηGR is obtained through the GR model, and r is experimental (Equation (8.14)).
Thus, it is always possible to have an estimate of the maximum value of the creep fac-
tor, χM, compatible with the data (upper limit for χ), and of the maximumuncertainty
on η. A refined analysis in statistical terms shows that η obtained from the GR model
is close to the most probable value. For what concerns kp, the estimate of the uncer-
tainty is model-dependent. In particular, within the Brandt model the GR estimate is
again close to the real value. In any case, the data allow one to determine χM, and
then it is possible to have a measure of the uncertainties on the vortex parameters. It
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is clear that with multifrequency or swept-frequency measurements, one can directly
apply Equation (8.15) and obtain all the vortex parameters.

8.3 High-frequency vortex dynamics in thin films

The response up to now described by Equations (8.11) or (8.15) takes into account a
uniform current density J, due to their origin as a single-vortex response. However, in
real experiments it is important to ascertain the relation with the measured response
function. We consider the general case of an e.m. field incident on a flat interface be-
tween a generic medium and a (super)conductor. The response is given by the surface
impedance [36, 37] Zs = E||/H||, where E|| and H|| are the tangential components of
the electric and magnetic field, respectively. In the case of a bulk sample (thick with
respect to the fields penetration depth) in the local limit, this quantity can be written
in the two equivalent forms:

Zs = iωμ0 λ̃ = √iωμ0ρ (8.18)

where λ̃ is an appropriate complex screening length and the complex resistivity
ρ = iωμ0 λ̃2. The complex resistivity ρ (or equivalently λ̃ or Zs) of a superconductor
in the mixed state includes contributions from the moving vortex lattice, e.g., Equa-
tion (8.15), and from the superfluid and quasiparticle dynamics. A general treatment
of the coupled dynamics in the linear response regime [20] yields:

λ̃ = ( λ2 − (i/2)δ2v
1 + 2iλ2/δ2nf)

1/2
(8.19)

where, in addition to the usual London penetration depth λ, we defined the normal
fluid skin depth δnf = (2/μ0ωσnf)1/2 and the vortex penetration depth defined as δv =(2ρv/μ0ω)1/2.

It is important to note that Equation (8.19) plays the role of a master equation,
since various models can be invoked for the quantities λ, σnf and ρv, thus allowing it
to be applied in verywide ranges ofmagnetic induction B, temperature T, and angular
frequency ω.

While the combinationof Equation (8.18)withEquations (8.19) and (8.15)may sug-
gest that the number of parameters is exceedingly largewith respect to themeasurable
quantities, it can be shown that in various circumstances the resulting expression is
very tractable. We consider specifically the case of thin superconducting films. Let us
consider a superconducting film, of thickness d, deposited onto a dielectric substrate.
It has been shown [38, 39] that, when d ≲ λ, δ, the surface resistance takes the approx-
imate form Zs = Rs + iXs ≃ iωμ0 λ̃2/d, reflecting the physical fact that the e.m. field
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penetrates the sample almost uniformly.⁶ In this case, since δnf ≫ λ apart very close
to Tc, and λ has a very weak dependence on the magnetic field, for the field variation
of the surface impedance in thin films one has:

∆Zs(H) = Zs(H) − Zs(0) = ∆X + i∆Y ≃ ρv
d = ρv1 + iρv2

d (8.20)

Then, measurements in thin films are a very practical playground to directly obtain
the vortex motion resistivity, and then the vortex parameters.

We finally mention that, by exploiting further the property δnf ≫ λ, even in bulk
samples (e.g., single crystals) one can show that the superfluid/quasiparticle and vor-
tex motion contributions are approximately additive, and then ∆Zs(H) ≃ √iωμ0ρv.
Although not as simple as Equation (8.20), this property allows one to extract the vor-
tex parameters from measurements in bulk samples relatively easily [7].

8.4 Measurement techniques

In a typical setup, the superconducting sample is placed in some kind of device, con-
nected to the external instrument with one or two ports. One measures in principle
the forward S21(f) complex transmission coefficient, or the complex reflection coeffi-
cient S11(f), or both (Figure 8.4a). Changes in Sij yield the changes in the properties
of the device, and ultimately in the surface impedance of the superconductor under
scrutiny. As a broad classification, the measurements can be performedwith resonant
or nonresonant systems.

Fig. 8.4: (a) Sketch of a generic two-port device, containing the superconducting sample under in-
vestigation; (b) a typical dielectric resonator setup; (c) a typical Corbino disk setup.

Nonresonant methods are based on the measurements of the power reflected from, or
transmitted through, the superconducting sample. Transmission-type measurements
are not widely used in the microwave range due to low sensitivity and the need for
complicated analytical modeling. Reflection-type measurements are more common.
Previous nonresonant methods relied on the placement of a thin film sample in a

6 Substrate effects can appearwhen the substrate impedance attains particular values, and caremust
be taken in this case [40].
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metallic waveguide, perpendicular to the axis of the waveguide. In this case the fre-
quency span is limited by the waveguide cutoff, and is usually of a few GHz. In recent
years, the wideband Corbino disk method has been developed following pioneering
work at the University of Maryland [41]. The thin superconducting film terminates a
coaxial cable, and the complex reflection coefficient S11(f, T, H) ismeasured (one-port
measurement, Figure 8.4c). Despite a very complex and delicate calibration [42] and
reduced sensitivity, the method can yield the microwave resistivity over one to three
decades in frequency, and then it is a reliable method to directly assess the applica-
bility of a relaxational dynamic class of models, represented by Equation (8.15) and
Figure 8.3.

Resonantmethods rely oneither theperturbationof anexternal resonator, suchas
a metal cavity [43] or a dielectric resonator [44, 45] (Figure 8.4b), or on the patterning
of a planar resonator on the superconductor. The surface impedance is related to the
quality factor Q and the resonant frequency fres of the device. Field changes in the
resonator parameters yield the field changes of the surface impedance as:

∆Z(H) = G {[ 1
Q(H) − 1

Q(0) ] − i2 [ fres(H) − fres(0)
fres(0) ]} (8.21)

where G is a calculated geometrical factor. Note that in thin films (Equation (8.20))
one directly gets the vortex resistivity from the resonator parameters. Additional cali-
bration is needed to obtain the absolute surface resistance. As a resonating technique,
it has high inherent sensitivity, but is only single- or discrete-frequency.

Cavity/dielectric resonators are usually excited on the lowest order transverse
electric TE or magnetic TM modes. When used in the surface perturbation technique
(a planar superconducting sample replaces partially or entirely one of the walls of the
resonator), they allow one to perform precisemeasurements of the surface impedance
with sufficiently large samples. Small-sized samples in the form of platelets or single
crystals can be studied by the volume-perturbation technique, where the sample is
placed in the volume of the resonator.

Planar resonators such as microstrip [46] and coplanar [47] resonators are widely
used for superconductor surface impedance measurements in the presence of a mag-
netic field and for the study of nonlinear effects due to the high microwave currents
(that is, ac magnetic fields) that can be reached in the sample. Since the resonator is
directly patterned on the superconducting film, this is a destructive technique. They
present quite large Q factors, of the order 104, which allow one to perform accurate
measurements. However, a possible issue in the interpretation of the data comes from
the fact that the effects of the sample boundaries play a role in the overall Q, and less-
than-perfect lithography may severely affect the overall response.

In some cases, the resonator is simply tuned at the resonant frequency, and only
the power reflected (or transmitted) at the resonance is measured. This simpler tech-
nique gives no access to the imaginary part of the resistivity or surface impedance,
but may prove effective for measurements of the surface resistance (real part of the
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response). As an example, the measurements in Figure 8.1 were obtained in this fash-
ion.

A related quantity which can be probed in microwave measurements with a two-
port device is the forward transmission coefficient S21(f). Its absolute value is a mea-
sure of the ratio of microwavepower at port 2 to that at port 1 and, hence, it allows one
to directly access the insertion loss at microwave frequencies in the superconductor
under study. This type of broadband microwave measurement will be exemplified in
Section 8.7.

8.5 Microwave vortex response in S/F/S heterostructures

We begin our series of examples of the microwave response of vortices in nanostruc-
tured superconductors by considering the progressive change in the vortex param-
eters in superconductor/ferromagnet/superconductor (S/F/S) heterostructures with
increasing thickness of the ferromagnetic layer. Such heterostructures are of promi-
nent fundamental interest for the competition between superconducting and ferro-
magnetic ordering (Chapters 13, 15), but applications can be envisaged (Chapter 14).
In this example, we are interested mainly in an illustration of the broad features that
can be observed by the study of the vortex dynamics at microwave frequencies. We
consider heterostructures with an F layer (in our case, a Pd and Ni alloy of nominal
composition Pd0.84Ni0.16) of thickness dF = 1, 2, 8, 9 nm, sandwiched between two
superconducting Nb layers of nominal thickness dS = 15nm [48, 49]. Pure Nb sam-
ples of total thickness d = 20nm and 30nm serve as references. Measurements were
performed by both the Corbino disk and dielectric resonator (8GHz) techniques. Fig-
ure 8.5 reports typical Corbino disk measurements in different samples, and some
of the relevant vortex parameters. In this case, we discuss the flux-flow regime in
terms of the flux-flow resistivity ρff, since it is a directly obtained parameter, see Equa-
tion (8.15), and it can also be evaluated by simple inspection of the ρv1(f), since it is
the asymptotic plateau.

Figure 8.5a–c reports some sample curves for ρv1(f) [31]. An important message
comes from the raw data: the relaxational dynamics (Equation (8.15)) holds in these
systems, so it is meaningful to proceed further in the analysis of the data. This is not
trivial, in particular when an exotic system like S/F/S is scrutinized. Continuous lines
represent fits with ρv1 from Equation (8.15); from the fits, one obtains the normalized
ρff/ρn, the creep factor χ, and the characteristic frequency ω0/2π. Figure 8.5d reports
the flux-flow resistivity in the sample with dF = 1nm, at T = 3.58K and as a function
of the field (each data point is the result of a frequency sweep, and a fit of the obtained
ρv1(f)). It is immediately seen that the simple BS expression, Equation (8.12) (dashed
line), is not a satisfactorydescriptionof thedata. Then, onemust resort tomore sophis-
ticated theories. Within the time-dependent Ginzburg–Landau framework, the flux-
flow resistivity has been calculated in the entire field range up to Hc2. The expression
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Fig. 8.5: (a)–(c) Corbino disk measurements ρv1(f)/ρn in different S/F/S heterostructures. H is ap-
plied perpendicular to the F and S layers. Inset: sketch of the heterostructure and orientation of
the magnetic field; continuous lines are fits with Equation (8.15). (d) Normalized flux-flow resistiv-
ity ρff/ρn as a function of the applied field at fixed temperature, in the sample with dF = 1 (open
circles); continuous line: TDGL theory with α = 0.4, dashed line: Bardeen–Stephen expression,
ρff = Φ0B/η, with field-independent η. (e) dF dependence of the normalized plateau resistivity,
ρplateau ∼ ρff [50], and the expected values for the Bardeen–Stephen model, Equation (8.12), and
the TDGL theory, Equation (8.22). Flux-flow resistivity in excess of the Bardeen–Stephen model is
clearly observed as a consequence of increasing dF. The red continuous line is a guide to the eye.
dF = 0 represents a Nb sample, 30 nm thick. (f) dF dependence of the depinning frequency, fp (red
diamonds), and of the creep factor χ (open circles), from [32]. Lines are guides to the eye. Since both
quantities depend upon the London penetration depth, this is a clear indication that λ increases
with dF (see text).
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reads [51]:
ρff = ρn

1
1 + (μ0Hc2 − B)/αB (8.22)

where α ≈ 0.4 has been calculated in [52] (the BS model is recovered with α = 1). This
model (continuous line in Figure 8.5d) nicely fits the data. However, additional phe-
nomena arise in the flux-flow resistivity with increasing dF. In Figure 8.5e we report
the plateau resistivity of the normalized curves ρv1(f)/ρn, that is an experimentalmea-
sure of ρff, as a function of dF and at the same reduced temperature T/Tc ≃0.86 and
reduced field H/Hc2 ≃0.5 [50]. It is immediately seen that, when the effect of the fer-
romagnetic layer becomes appreciable, the flux-flow resistivity increases and exceeds
the Bardeen–Stephen value. This is an intriguing result: keeping in mind that, as an
approximate relation, ρff ∼ 1/nqp, 1/τqp, this is a clear indication that the increase
of the thickness of the F layer brings a shortening of the quasiparticle lifetime, or a
reduction of their concentration, or both.

Turning the attention to the pinning properties, we report in Figure 8.5f the creep
factor χ, and the depinning frequency fp (derived from ω0 and χ) as a function of
dF [32]. The increase of the ferromagnetic thickness dF determines an increase of the
creep factor, and a decrease of the depinning frequency. In fact, both quantities are re-
lated to the condensation energy. In particular, for core pinning, one can estimate [11]
1
2 kpξ

2 ≈ cp 12μ0H
2
c ξ2 (cp ∼ 1). Recalling that H2

c ≈ Hc1Hc2, and Hc1 ≃ Φ0/4πλ2,
andmaking use of the BS expression for η as a very crude approximation, in this very
simplifiedmodel one has fp ∝ λ−2. Thus, themeasurements of the vortex motion here
presented are an indication that the ferromagnetic layer is responsible for the increase
of the London penetration depth or, which is the same, for the decrease of the super-
fluid.

Thus,measurements of the vortex response undermicrowavefields can give infor-
mation on both the underlying superfluid and quasiparticle states, and their changes
with nanosize geometrical changes such as the thickness of the F layer in S/F/S het-
erostructures.

8.6 Microwave vortex response in YBa2Cu3O7−δ with nanorods

The study of the microwave vortex response is a powerful tool also in connection to
the optimization of materials for power applications. In this field, it is now assessed
that second-phase nanoprecipitates determine very strong pinning centers (Chap-
ter 3). Interestingly, in thin YBa2Cu3O7−δ films grown by Pulsed Laser Deposition,
BaZrO3 second phases often self-assemble in the shape of elongated defects, thread-
ing entirely or partially the thin film approximately parallel to the c-axis, producing
so-called “ nanorods” due to their diameter of a few nm. This peculiar shape makes
such nanorods very similar, in their effects, to columnar defects, and they produce a
large increase of the in-field critical current density, and of the volume pinning force.
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Since, as has been described above, microwaves are capable of simultaneously inves-
tigating both pinning and quasiparticle states, such YBa2Cu3O7−δ/BaZrO3 systems
are certainly of interest as illustrative examples of nanoengineered superconductors
of applicative significance.

The example that we illustrate here is taken frommeasurements of themicrowave
complex resistivity by means of the dielectric resonator technique at the very high
operating frequency f ∼ 47GHz. We concentrate on a series of samples with differ-
ent molar concentration of BaZrO3: 0, 2.5, 5, and 7% [53]. In Figure 8.6a–e we show
sample measurements of the thin film vortex surface impedance ρv(H)/d in a sam-
ple of YBa2Cu3O7−δ/BaZrO3 at 5% mol at T = 80K, illustrating the different vortex
parameters as they can be extracted using the constraints described in Section 8.2.
Panel (a) reports the raw data for ρv(H)/d as a function of the applied field, along
the c-axis. Panel (b) reports the field dependence of r (Equation (8.14)), and panel (c)
reports the field dependence of the maximum creep factor (the upper limit) χM (Equa-
tion (8.16)). We recall that r is a proxy for fp ≃ rf , where f ≃ 47.5GHz is the measuring
frequency. Then, the results of Figure 8.6b indicate that the addition of nanorods has
increased the depinning frequency up to the very high value fp ≃ 65GHz at low fields,
as opposed to reported values in the range ∼ 10−20GHz [11]. Consistently, panel (c)
shows that the creep factor never exceeds 0.1, so that creep is a relatively unlikely
phenomenon even at the high T = 80K of these measurements. Panel (d) reports
the flux-flow resistivity as derived from the data in (a). Here, it is instructive to re-
port the maximum information that can be gained from the data. Using the proce-
dure depicted in Section 8.2, and extensively discussed in [5], we plot the GR value
(thick black line), the maximum ρff compatible with the data, originating from Equa-
tion (8.17) (thin black line), the interval where we expect to find ρff with 90% proba-
bility (shaded area), and finally the expected value ⟨ρff⟩, red open symbols. From this
discussion, it is reassuring that the GR estimate is a very good approximation of the
expected value for ρff. Panel (e) reports the derived pinning constant kp; the discus-
sion is analogous to the discussion of ρff, with the additional remark that a specific
model needs to be adopted to derive the uncertainty-related values. In this case, we
have adopted the Brandt model.

Thus, the addition of nanorods increases significantly the pinning strength, and
this effect is visible at microwave frequencies: this is not trivial, because microwaves
probe the very short-range dynamics (very small vortex oscillations), so these results
imply that not only is the pinning potential induced by the nanorods deep (small χM),
but also that it is very steep (large kp, the elastic recall constant). It is then interesting
to study the dependence of the various vortex parameters with the BaZrO3 concentra-
tion. This is exemplified in Panels (f)–(h), where it is shown that the pinning-related
parameters, r and kp, increase significantlywith BaZrO3 [54, 55].Wemention that also
η changes, althoughbya smaller factor. Thismay suggest that thenanorodshave some
effect on the quasiparticle properties.
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Fig. 8.6: (a)–(e) Vortex motion complex resistivity versus the applied field in a YBa2Cu3O7−δ /BaZrO3
sample at 80 K, with the field along the c-axis. (a) Raw data. (b) r Parameter; since the measuring
frequency is f = 47.5 GHz, r ≃ fp/f > 1 indicates a very strong pinning. (c) Maximum creep factor
(upper limit). (d) Flux-flow resistivity and refined analysis: thick black line, GR estimate; thin black
line, maximum value compatible with the data; shaded gray band: 90% confidence band [5]; red
empty symbols: average value. As can be seen, the GR value is a good measure when creep is small.
(e) Pinning constant kp. Black symbols and shaded area, same meaning as in (d), blue empty sym-
bols: average values. Again, the GR estimate is a good measure. (f)–(h) Dependence of the vortex
parameters with the BaZrO3 concentration, showing increasing pinning with BaZrO3, and a possible
dependence of η. (i) Demonstration of the directional pinning of BaZrO3 nanorods: the angle θ be-
tween H and the c-axis is varied: the r parameter, a proxy for fp, is larger along the nanorods (θ = 0)
than when the field is along the CuO planes.
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Finally, we demonstrate the strong directionality of the nanorods-induced vortex
pinning. Measurements of the vortex resistivity were taken at fixed field and tempera-
ture, by varying the angle θwith the c-axis, where the nanorods align. In pinning-free,
ideal YBa2Cu3O7−δ we expect an increase of the pinning strength (e.g., the r param-
eter or fp) approaching θ = 90° [11], where intrinsic pinning by the ab-planes is ef-
fective. The measurements of r reported in Figure 8.6i do indeed show a peak at this
angle, but the peak is taken over by a broad, higher peak in r with θ = 0°, that is with
the field aligned with the nanorods [4, 56]. Following the above discussion of kp, the
present microwave measurements show evidence that the BaZrO3 nanorods induce
very deep and steep pinning wells along the nanorods themselves.

Summarizing the last two Sections, we have shown by using examples how the
microwave investigation can unveil a full variety of phenomena in the vortex motion
in nanostructured superconductors. We will conclude this short survey by presenting
the behavior of the vortex matter when subjected to a dc current superimposed to the
microwave field.

8.7 Microwave vortex response in Nb films with nanogroove
arrays

The depinning frequency fp can be tuned not only by the thermodynamic quantities
T and H, but also by the experimental parameters such as the pinning strength and
the dc current density J. Namely, the fabrication of periodic pinning sites in super-
conductors allows one to increase fp, whereas fp can be reduced by superimposing a
dc bias onto the microwave stimulus. Already the first experiments on the microwave
power absorbed by vortices revealed that the depinning frequency fp is higher in su-
perconductors with strong pinning [25]. Accordingly, microwave losses due to motion
of vortices can be minimized by confining them by strategically positioned pinning
sites, see also Chapter 7. In residual ambient fields, energy losses in superconducting
planar resonators due to a small number of vortices, caught while cooling through
the superconducting transition, can be reduced by trapping them within a slot pat-
terned into the resonator [46]. For larger fields, antidots fabricated along the conduc-
tors’ edges allow one to increase the quality factor of niobium stripline resonators [57].
For circuit elements with awidth greater than 100 μm, patterning of the entire surface
of the superconductor with periodic arrays of pinning sites turned out to be most effi-
cient [33, 34, 58–61], see Figure 8.7a for the typical geometry.

At the same time, the effective pinning intensity can be reduced under the ac-
tion of a dc bias superimposed onto the microwave stimulus [63, 64]. When the vortex
lattice geometrically matches the periodic pinning landscape, the vortex-vortex inter-
action is effectively canceled [65], the microwave power absorbed by vortices exhibits
a minimum [33, 60, 61], and the dynamics of the entire vortex ensemble can be re-
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Fig. 8.7: (a) Experimental geometry [62]: Samples S and A are 40 nm- and 70 nm-thick 150×500 μm2

Nb microstrips with nanogroove arrays. The zero-bias depinning frequencies of samples S and A,
fp,ZB = fp(Jdc = 0), amount to fp,ZB = 5.72 GHz and fp,ZB = 3.02 GHz, respectively. (b) Insertion
losses due to vortices in sample A under magnetic field reversal [33]. (c) Tailoring discrete insertion
loss levels [34] by a serial connection of samples S and A for an ac frequency 3.02 GHz and an ac
amplitude I = 50 mA corresponding to J = 0.48 MA/cm2 ≃ J+d = 0.52 MA/cm2 for sample A and
J = 0.83 MA/cm2 ≃ Jd = 0.75 MA/cm2 for sample S, see also Figure 8.8. The time t is in units of the
period of the quasistatic ac current with 1/tf = 3 Hz. (d), (e) Reduction of the depinning frequency
upon increasing the dc density as deduced from the microwave power absorption data [33]. The ex-
perimental data for the positive (∙) and the negative (◻) dc polarity are approximated by fits (solid
lines) of the general form fp(J)/fp,ZB = [1 − (J/Jd)k/l]m/n , with the exponents k, l, m, n as indicated.
The data in panels (c–e) are acquired at the fundamental matching field H = 7.2 mT at T ≈ 0.3Tc.
The red and blue curves (symbols) in panels (c)–(e) correspond to the positive and negative dc polar-
ity, respectively. Reproduced with permission from [33, 34].

garded as that of the single average vortex in the average pinning potential. This is
exemplified in Figure 8.7b where the microwave insertion loss is at a minimum for the
lattice parameter a△ = (2Φ0/H√3)1/2 and the matching condition a△ = 2a/√3 in
a washboard nanolandscape with period a = 500nm at the fundamental matching
field H = 7.2mT, as sketched in the inset. In particular, this validates single-vortex

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



8.7 Microwave vortex response in Nb films with nanogroove arrays | 271

models [5, 20, 22–25, 64, 66, 67] for analyzing the vortex dynamics at microwave fre-
quencies.

A coherent vortex dynamic leads to the appearance of quantum interference ef-
fects (Shapiro steps) in the current-voltage curves (CVC) of the samples, each time one
or a multiple of the hopping distance of the vortex rows during one half ac cycle co-
incides with the nanostructure period [68]. Shapiro steps were first observed in the
CVC of microwave-excited Josephson junctions [69], as considered in Chapters 10, 11,
and 12, and they were extensively studied in superconductors with a moving vortex
lattice [68, 70–76]. Shapiro steps are inherent to the force-velocity characteristics of
systems described in terms of a particle moving in a periodic potential under com-
bined dc and ac stimuli [77–80]. Because of the coherent motion of Abrikosov vor-
tices further effects emerge in the vortex dynamics under combined dc andmicrowave
drives [33, 34], some of which are outlined next.

The reduction of the depinning frequency upon increasing the dc value can be
understood as a consequence of the effective lowering of the pinning potential well
due to its tilt by the dc bias, as exemplified for two nanopatterned Nb films S and
A in Figure 8.7d and e. This scenario is most visual for a washboard pinning poten-
tial, whose symmetric (S) and asymmetric (A) representatives are shown in the insets
to Figure 8.8a and b, respectively. The simple form of these potentials allows for an
exact analytical description [22–24] of the resistive response and the absorbed mi-
crowave power in superconductors as functions of the driven parameters, thus pro-
viding the basis for Abrikosov fluxonics in washboard nanolandscapes [81]. Namely,
the mechanistic consideration [22–24] of a vortex as a particle suggests that during
an ac semiperiod, while the pinning potential well is broadening due to its tilt under
the action of the dc bias, with increasing frequency f the vortex no longer has time(∼ 1/f) to reach the areas where the pinning forces dominate and, hence, the dissipa-
tive response is stronger already at lower frequencies compared to the zero-bias case.
The same mechanistic scenario can explain the difference in the reduction of the de-
pinning frequencies for the positive and the negative dc biases in Figure 8.7e, caused
by the different groove slope steepnesses in sample A [24]. This is reinforced by the
study of the dc depinning current density, Jd, on the same samples. In fact, the groove
asymmetry causes a difference in the depinning current densities J+d and J−d for the
positive and negative branches of the CVC for sample A in Figure 8.8b. This is in con-
trast to the CVC of sample S where J+d = J−d ≡ Jd, Figure 8.8a. Therefore, while both
samples exhibit a microwave cut-off filter behavior [33], the cut-off frequency of sam-
ple A, which is determined by fp, can be tuned not only by the dc value but also by its
polarity. At microwave frequencies this effect is complementary to the low-frequency
vortex ratchet effect [82] introduced in Chapter 7.

The dependence of the depinning frequency on the nanopattern type and the dc
bias value allows one to use superconducting planar transmission lines with differ-
ent nanopatterns for tailoring discrete microwave loss levels [34]. When one applies a
quasistatic ac current I ≡ I(t) = I sinωt with f ≡ 1/tf = 3Hz, ω = 2πf , to samples S
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Fig. 8.8: (a), (b) CVCs of Nb films S and A with the quasistatic ac amplitudes corresponding to the
different dynamic regimes shown by the horizontal arrows. (c), (d) Tilts of the washboard potentials
sketched for the ac amplitudes (1)–(3) in the CVCs corresponding to panels (a) and (b), respectively.
The left and right halves of panels (c) and (d) correspond to the negative and positive current polar-
ity, respectively. Reproduced with permission from [34].

and A connected in series, a sine-to-triangular and a sine-to-rectangular pulse shape
conversion [34] is observed depending upon which of operating regimes (1), (2), and
(3) is chosen in their CVC, refer to Figure 8.8. These regimes correspond to the cases
when the vortex is shaken within one and the same well (1), when the vortex runs on
the tilted washboard (3), and the nonlinear transient regime (2) when one of the bar-
riers vanishes. For definiteness, when the ac amplitude is chosen so that regime (2)
is realized for each of samples S and A connected in series, the cumulative insertion
loss in Figure 8.7c is characterized by three different levels, whereby the intermediate
level is achieved in consequence of the combination of the lossy state of microstrip S
and the low-lossy state of microstrip A. Therefore, the combination of differently pat-
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terned superconducting transmission lines allows one to use them as building blocks
for fluxonic metamaterial with discrete insertion loss levels.

8.8 Conclusion

The study of the vortex dynamics at microwave frequencies is an interesting research
subject hosting a rich fundamental physics and promising perspectives for supercon-
ducting microwave applications. Because of the relatively high frequency range, it is
possible to measure several important vortex parameters in the linear regime, such
as the flux-flow resistivity (or vortex viscosity), the pinning constant, the depinning
frequency, and the creep factor. This powerful technique proves to be particularly use-
ful when one investigates the effects of artificial nanostructuring of superconductors,
since the different behaviors induced by the nanostructure emerges clearlywhen com-
pared to pristine or plain samples. The superposition of a dc and ac current allows one
to dynamically tailor the response of nanostructured materials, and in perspective to
develop dynamically tunable devices for operation in the microwave range.
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N. Gol’tsman, and Roman Sobolewski
9 Physics and operation of superconducting
single-photon devices

Abstract: The chapter reviews the main aspects of the physics of operation and per-
formance of superconducting single-photon detectors (SSPDs) based on, mostly NbN,
nanostripe meander-type structures and operated well below the superconductor
transition temperature. We present theoretical models developed to describe the pho-
toresponse of superconducting nanostripes, as well as discuss mechanisms of SSPD
generation of both photon-detection signals and dark counts. We also outline a stan-
dard SSPD fabrication process and discuss basic experimental techniques of SSPD
characterization, focusing on the demonstration of its single-photon sensitivity and
detection efficiency, as well as on measurements of the timing jitter. Finally, we give
an outlook of future research directions and a quick overview of the vast area of SSPD
applications.

9.1 Introduction: what is a superconducting single-photon
detector

The concept of a superconducting single-photon detector (SSPD), also known as su-
perconducting nanowire single-photon detector (SNSPD),¹ was first introduced and
experimentally demonstrated in 2001 in [1], while the first model of SSPD operation
was presented in [2]. A SSPD is essentially a superconducting nanostripe with a thick-
ness of several nanometers (typically≈ 4nm)andawidthon theorder of 100–250nm.
In practical devices, the nanostripe, initially patterned as a simple straight line (Fig-
ure 9.1a) [3] is typically a few-mm-long meander of square [4, 5] or circular shape [6]
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(see Figure 9.1b and c, respectively) with a total area of approx. 100 μm2. In the liter-
ature one sees special meander shapes such as a spiral for better optical coupling [7]
(Figure 9.1d), or even parallel connections of many nanostripes which increase de-
tector output signal and lower kinetic inductance [8] (Figure 9.1e). All SSPDs are fab-
ricated on optically transparent dielectric substrates with epitaxial quality surfaces,
such as, e.g., Al2O3, MgO, or SiO2-on-Si wafers.

Originally, the effect of single-photon detection was observed in NbN [3], and
up to date practical detectors are mostly fabricated from this material [9]. However,
the effect itself has been demonstrated using many other materials, such as Nb [10],
NbTiN [11, 12], MoRe [13], TaN [14], MgB2 [15], and amorphous silicides WSi [16] and
MoSi [17], and these latter materials have also been used to produce practical devices.

Unlike well-known traditional superconducting bolometers, including the single-
photon resolving transition-edge sensor (TES), SSPDs are operated at temperatures
well below the critical temperature of a given superconductor and are biased with a
transport current very close to the nanostripe critical current IC at a given tempera-
ture. Later on we shall give a more accurate definition of the SSPD IC value, but, for
the moment we will treat it as the maximum current that be can carried by the SSPD
nanostripe, while remaining in the superconducting state. The basic mechanism of
the SSPD photoresponse is that absorption of a photon by a nanostripe suppresses or
destroys its superconductivity in a local region that is smaller, but comparable to the
stripewidth. This area is traditionally called a “hot spot”. After hot-spot formation the
stripe can no longer carry the supercurrent bias and locally switches to the resistive
state, leading to a transient voltage signal that is detected as a photon count.

The above model provides a good, qualitative description of SSPD operation,
however, a more in-depth analysis of the physical mechanisms involved is needed. A
complete description of the SSPD photoresponse requires full understanding of the
process of photon energy transfer to the superconducting condensate via a hot-spot
formation mechanism that includes analysis of the kinetics of coupled systems con-
sisting of Cooper pairs, quasiparticles, and phonons. Subsequent appearance of a
resistive state in a 2-dimensional (2D) nanostripe is, in turn, a result of the interplay
between the electric field and quasiparticles, as well as topological excitations like
vortices. Finally, in practical devices, one has to deal with so-called dark or unwanted
counts, i.e., spontaneous voltage transients occurring in a current-biased SSPD even
in a device completely isolated/shielded from any external, optical radiation. Mecha-
nisms responsible for dark counts range from fluctuations of the Cooper-pair density,
through thermal or quantum activation of magnetic vortices, to excitation of phase-
slip centers. Phase slips (2π phase change associated with dissipation of a single flux
quantum) are spontaneous topological excitations, characteristic for 1D supercon-
ducting nanowires, as described in [18, 19], thus in practical, NbN SSPDs with 2D
nanostripes can be neglected and the prevailing mechanism is thermal unbinding of
vortex-antivortex pairs [20, 21] with the Cooper-pair density fluctuations contributing
only at bias currents very close to IC [20]. In 2D superconducting materials below the
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Fig. 9.1: Different configurations of SSPD: (a) single straight stripe between two contacts (a
“nanobridge”) [3]; (b) early example of the most frequently used meander-shaped stripe covering
a rectangular area [4] (for a recent design see Figure 9.8); (c) meander-shaped line covering a circu-
lar area which is optimal for coupling to single-mode optical fibers [6]; (d) polarization-insensitive
spiral-shaped stripe [7]; (e) multiple stripes connected in parallel providing lower kinetic inductance
and faster device operation [8].

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



282 | 9 Physics and operation of superconducting single-photon devices

Berezinsky–Kosterlitz-Thouless (BKT) transition the formed vortex-antivortex pairs
are characterized by a certain binding energy. However, thermal fluctuations that
exceed this energy can unbind the vortex pairs leading to appearance of a normal-
conducting domain and generation of a voltage-pulse across the SSPD. It is interest-
ing to note that using a ferromagnet/superconductor nanobilayer, e.g., NiCu/NbN,
as a nanostripe material leads to substantial reduction of the dark-count rate. The
enhancement of pinning in NbN/NiCu bilayers increases binding energy of vortex-
antivortex pairs and the dominant mechanism of the observed dark-count transients
becomes excitation of single vortices (vortex hopping) near the edge of the 2D nanos-
tripe [21].

Our chapter is focused on the physical aspects of the SSPD photoresponse with
the aim of providing a detailed description of both the operation and performance
of SSPDs. However, we want to stress here that these devices have already been
widely used as detectors for high-performance photon-counting applications, espe-
cially for the near-infrared (IR) wavelength range, including the standard commu-
nications wavelengths. SSPDs have been very successfully implemented for several
applications, ranging from optical debug and testing of very large-scale integrated cir-
cuits [22], through characterization of single-photon emitters, to registration of single
photons in ultrafast quantum communication systems and quantum cryptography.
Detailed information on SSPD applications can be found in [23].

The structure of the chapter is as follows. The next section describes operation
principles of the SSPD and presents existing models of both the photon detection and
dark counts. Section 9.3 reviews the most popular methods for SSPD fabrication and
characterization,and, finally, Section 9.4gives conclusions, aswell as some directions
for future research.

9.2 Operational principles of SSPDs

9.2.1 Photoresponse of superconducting nanostripes

Physical process of single-photon detection by a current-carrying superconducting
nanostripe could be qualitatively described as follows: a single photon with an en-
ergy of approx. 0.6 eV or larger (corresponding wavelength of about 2 μm or shorter)
is absorbed by an electron in one place along a superconducting nanostripe that, as
a result, is instantaneously excited far above the Fermi energy EF. In quasiparticle
language, a Cooper pair is broken and high-energy electron-like and hole-like quasi-
particle excitations are created. Next, because of electron-electron (e–e) and electron-
phonon (e–ph) interactions this high-energy electron relaxes via excitation of lower
energy nonequilibrium electrons and phonons. We stress that in conventional, metal-
lic superconductors, such as, e.g., NbN, the Cooper pair bonding energy, i.e., the su-
perconducting energy gap ∆, is in the range of 1–2meV, much smaller than the in-
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cident photon energy, and the photoresponse (electron energy relaxation) process
is practically the same for either normal or superconducting materials, as long as
the average energy of nonequilibrium electrons/quasiparticles is larger than several
∆ [24, 25].

Let us now discuss clean or pure materials, where at energies smaller than the
Debye energy ΩD, the e–e relaxation rate 1/τe−e is much smaller than 1/τe−ph. Under
suchconditions, relaxation is dominatedby the e–phprocess, andwithinpicoseconds
(less than one picosecond for materials with ΩD ∼ 30meV∼ 350K) practically all ini-
tial photon energy is transferred from the quasiparticle to the phonon subsystem [24,
25], so nonequilibrium phonons, in turn, can re-excite nonequilibrium quasiparticles
and/or break Cooper pairs. In the absence of escape of nonequilibrium phonons from
the stripe to the substrate, within the hot spot, phonon and electron subsystems are
thermalized with some characteristic thermalization time τth. At t > τth both subsys-
tems reach the common, quasi-nonequilibrium temperature Tneq > Tbath, where Tbath
is the bath temperature of our sample. In other words, at a time on the order of τth
from the initial excitation, the number of quasiparticles reaches its maximum value
which corresponds to the maximumsuppression of ∆within the hot-spot region. If we
include diffusion of nonequilibrium quasiparticles out of the center of the hot spot,
its size will grow during the thermalization process. The latter leads to a lower value
of Tneq, or, equivalently, to a smaller number of quasiparticles per unit volume of the
hot spot.

Taking the above considerations into account, we can estimate the incident pho-
ton energy needed to create a hot spot with a fully suppressed (nonsuperconducting)
center and radius Rspot= Lth = (Dτth)1/2 (where D is a diffusion coefficient) as

Ephoton = dπL2th(N(0)∆2/2 + π2N(0)(kBTc)2/3(1 + Cph(Tc)/Ce(Tc)/2)) , (9.1)

where d is nanostripe thickness, N(0) is the density of states of quasiparticles per spin
at the Fermi energy, and Cph(Tc) and Ce(Tc) are the heat capacities of phonons and
quasiparticles, respectively, at T = Tc. Since we have assumed a nonsuperconducting
hot-spot center (∆ = 0), both quasiparticles and phonons reach the same temperature
Tneq = Tc. In Equation (9.1), the first term in the brackets corresponds to the energy
of the superconducting condensate, while the second and third ones are related to
the energy of quasiparticle and phonon subsystems, respectively. Equation (9.1) was
derived using a spherical Fermi surface and the Debye model for phonons. For typ-
ical parameters of the NbN detector: N(0) = 25.5 nm−3eV−1, kBTc = 0.86meV, ∆ =
1.76kBTc = 1.51meV, Cph(Tc)/Ce(Tc) = 1.2 (at Tc = 10K), d = 4nm, D = 0.5 cm2s−1,
and assuming that τth ≈ 7ps, we find Ephoton = 0.57 eV which corresponds to the
wavelength λ = 2200nm. Thus, photons with energies of at least 1.14 eV would create
normal spots with a large enough diameter, since the condition Tneq = Tc is fulfilled
only at 2Rspot > 2Lth, as could be seen from Equation (9.1). Conversely, photons with
smaller energies by the time t = τth would not be able to create a completely normal
spot, instead the spot would have a radius Rspot = Lth with a partially suppressed ∆.
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Equation (9.1) and the associated physical picture are based on the energy con-
servation law and the photon’s energy down-conversion process [24–26]. The excited
electron energy relaxation process has been presented using kinetic equations, as-
suming, as we stressed before, the pure metal condition with 1/τe−e ≪ 1/τe−ph at
ε < ΩD, and for a spatially uniform case [for such materials, one may expect that
τth ∼ τe−ph(Tc)].

We need to admit here that all superconductingmaterials that have demonstrated
an ability to detect single photons are, actually ‘dirty’ metals with a very short mean
path and fast e–e relaxation, i.e., 1/τe−e ≫ 1/τe−p in awide energy interval. Thus, one
may expect that in this case τth ∼ τe−e(Tc) is much shorter than τe−ph(Tc) – the τth
relaxation time characteristic for the pure material case.

Let us nowdiscuss hownarrow a superconducting nanostripe needs to be in order
to successfully record an incident photon. If ∆ were actually zero inside the hot spot
and, simultaneously, the stripe width w were less than or equal to the hot-spot size,
the detection process would be very simple, since absorption of a photon would turn
a cross-section of the stripe resistive and for any bias current a voltage signal could
be detected. In reality, however, neither of the above cases is typically satisfied. An
estimated hot-spot size for NbNupon absorption of an optical photon is 2Lth ≈ 50nm;
thus, is a factor 2-to-4 smaller than w of routinely fabricated SSPDs. The latter is due
to the fact that stripes narrower than 80–100nm are very difficult to be reproducibly
fabricated, if they need to be very uniform over the length of ~ 0.5mm, as is needed
for 10×10 μm2 meander structures. Independently, complete suppression of ∆ inside
an NbN hot spot is, according to our discussion in connection with Equation (9.1),
impossible to achieve in the case of IR photons with λ greater than 1.1 μm.

Nevertheless, we know very well, based on the countless experiments that single
IR photons are efficiently counted using 100-nm and wider nanostripes. The only re-
quirement is that one needs to bias the stripe with a sufficiently large supercurrent
IB. When the hot spot appears across the nanostripe, its IC reduces from IstripeC down
to IspotC < IstripeC . Therefore, if IB is in the range IspotC < IB < IstripeC , the superconduct-
ing nanostripe switches to a resistive state after absorption of the photon. Then, due
to a large Joule heating, the resistive domain grows in time, eventually resulting in a
large, easily detectible voltage drop across the device. Note that the presence of a hot
spot with fully suppressed ∆ provides IspotC = 0 only when w ≤ 2Lth. If w > 2Lth, the
resistive state appears at a finite IB that could be estimated as

IspotC = IstripeC (1 − 2Rspot/w) , (9.2)

assuming that the hot-spot presence simply reduces the effective width of a supercon-
ducting stripe and the current in the stripe is uniformly distributed.

If one takes into consideration a current redistribution effectwithin a nanostripe –
well known for superconducting stripes with ‘obstacles’ [27] – the superconducting
state can be destroyed in such case when a local current near the hot spot exceeds
the value of the de-pairing current Idep, i.e., the maximum current that can flow in a
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superconductor without dissipation, and the expression for IspotC can bewritten as [28]

IspotC = Idep[1 − (2Rspot/w)2]/[1 + Rspot/(Rspot + ξ)] , (9.3)

where ξ is the superconducting coherence length. Physically, the situation resembles
current redistribution in a normal, metallic stripe with inclusion of a local, fully in-
sulating spot. In both cases, the current density distribution is inhomogeneous with
a local maximum near the spot. Equation (9.3) was obtained with the help of a so-
lution of the Laplace equation for the phase of the superconducting order parame-
ter, in analogy to the electrostatic potential in a problem with the current flowing in
a normal-metal stripe with an insulating inclusion. Above Idep the superconducting
state becomes unfavorable because the kinetic energy of Cooper pairs exceeds their
coupling energy. In a real stripe, IstripeC is always smaller than Idep due to the presence
of stripe defects, nonuniformities, or fluctuations.

In the above considerations, we have assumed that inside the hot spot ∆ = 0,
but, in fact, photon detection is possible even if photon absorption creates a hot spot
with partially suppressed ∆. Again the situation is similar to the case of a metallic
stripe with a localized (significantly smaller than the stripe width w) inclusion that is
not fully insulating, but a highly resistive region. This case also leads to an extra cur-
rent concentration on the sides of the inclusion. This effect is, however, significantly
smaller as compared to the case of a completely insulating inclusion. In the case of a
superconducting stripe, the above situation leads to an enhanced value of IspotC . At the
same time creation of such a weakly superconducting region requires smaller photon
energy, because electrons and phonons do not have to be heated up to Tc and ∆ re-
mains nonzero. Using a step-like spatial dependence of ∆ one may find the following

Fig. 9.2: Schematic representation of a chain of events leading to the SSPD photon-detection event
in the case of a superconducting material with either (a) Ce ≫ Cp or (b) Ce ≪ Cp.
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expression:

IspotC = Idep[1−(2Rspot/w)2(1−γ2)/(1+γ2)]/{1+Rspot(1−γ2)/[(Rspot+ξ)(1+γ2)]}, (9.4)

where γ = ∆in/∆out is equal to the ratio of ∆’s inside and outside of the hot spot, re-
spectively [28].

We stress that Equations (9.3) and (9.4) were derived under the assumption that a
hot spot was located at the center of the superconducting nanostripe. However, this
may not be the case and in practice it turns out that IspotC is dependent on the hot-
spot position within the nanostripe. Calculations in [28, 29] show that IspotC reaches its
minimum or maximum value depending on whether the hot spot either touches the
edgeof a stripeor is located at the stripe center, respectively. This result originates from
adifferent current flowaround thehot spot and it, obviously, has a direct consequence
for SSPD performance. For example, it means that there is a finite interval of biasing
currents where the SSPD intrinsic detection efficiency² (IDE) changes from 0 to unity,
and this is an intrinsic characteristic of a given, practical device [29].

The main features of the SSPD photoresponse mechanism discussed above are
summarized in Figure 9.2. Briefly, a photon with the energy ℏω creates a pair of quasi-
particles (one electron-like and one hole-like) that due to the e–e and e–ph interac-
tions and diffusion lead to a “cloud” of low-energy quasiparticles and phonons form-
ing at time τth a local hot spot with either suppressed or destroyed ∆. Formation of a
hot spot forces the bias supercurrent flow around it. Figure 9.2a corresponds to a sit-
uation where Ce(TC) is large compared to the phonon Cp(TC) value and most of the
photon energy is transferred to quasiparticles. Conversely, Figure 9.2b represents the
opposite limit, i.e., Cp ≫ Ce, in which the number of created quasiparticles is smaller
due to a larger energy transfer to the phonon system. As a result, in the second case,
the size of the hot spot (its diameter 2Rspot) and suppression of ∆ are smaller, which
leads to a larger value of IspotC (see Equation (9.4)) and at fixed IB it provides a smaller
IDE value, as compared to Figure 9.2a.

We want to emphasize that due to the absence in the literature of a rigorous de-
scription of a superconductingnanostripe in the photo-inducednonequilibrium state,
based on the kinetic equations with incorporation of quasiparticle diffusion, Equa-
tions (9.1), (9.3), and (9.4) have to be regarded only as a qualitative estimation. In
addition to our approach, there are also various phenomenological models that re-
late the size of a hot spot to the incident photon energy and the corresponding IspotC

2 Intrinsic detection efficiency (IDE) is a probability of detection event normalized to the number of
absorbed photons. IDE is often called quantum efficiency (QE). If IDE = 1 every absorbed photon pro-
duces a measurable detection event although the ratio of absorbed photons to incident photons may
still be well below unity depending on the absorption of themeandering nanostripe. In the latter case,
we can talk about detection efficiency (DE), i.e., probability of detection event normalized to the num-
ber of incident photons. When a system of photon delivery to the detector is included, e.g., fiber cou-
pling, DE becomes a system detection efficiency (SDE).
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value [2, 30–34].Many of these works are actually based on the Rothwarf–Taylor equa-
tions [35] that deal with the number of nonequilibrium quasiparticles and phonons
created in a superconductor by photon absorption. Part of the incident photon energy
that is transferred to nonequilibrium phonons is usually described by a parameter
η < 1 and time τth has meaning as a phenomenological parameter, related to τe−e.
Some of these models even predict that partial suppression of ∆ inside the hot spot
leads to an increase of IspotC in comparison with the same hot spot but with fully sup-
pressed ∆. Unfortunately, none of these models, including our approach, can predict,
e.g., what superconducting material would be the optimal as an active nanostripe el-
ement; thus, they are phenomenological in nature and can only explain/model the
experimentally observed SSPD performance.

9.2.2 SSPDs in an external magnetic field

It turns out that the presence of the magnetic field H can shed a new light on the
physics of the nanostripe photoresponse mechanism. The main reason is that a weak
magnetic field, while it does not create any vortices in a superconducting stripe, can
modify current distribution across the stripe due to screening currents. Current phe-
nomenological models of SSPD operation are based on the assumption that an ab-
sorbed photon creates a hot spotwith a diameter that is smaller [2, 28–34] or equal [36]
to width w of the stripe. The hot-spot region that extends over the entire w of the stripe
canbe considered as aweak link and application of the external magnetic field should
decrease IspotC . The latter suggests that, if the above model is correct, the value of IDE
measured at a given IB should shift to lower currents with increasing H. Calculations
performed in the case when the hot-spot size was smaller than w resulted in a com-
plicated dependence of IDE on both IB and H [37]. It has been found that in high-
quality NbN devices characterized by the IDE value not far from unity there is a cer-
tain bias level Icross, at which for IB > Icross IDE decreases in the magnetic field, while
for IB < Icross the IDE increases as shown in Figure 9.3. The effect is, apparently, asso-
ciated with the fact that the value of IspotC depends in this case on a hot-spot position
along the stripe width and it has been experimentally observed in [38]. In addition,
theoretical modeling was able to explain an intriguing observation that the applied
magnetic field has a more pronounced impact on SSPDs operating at long (IR) wave-
lengths [37, 39, 40]. According to [37], a photon with larger energy creates a hot spot
large enough with a strongly suppressed ∆ that is able to pin vortices and because of
that, the IspotC becomes less sensitive to relatively weak magnetic fields. The latter can
be seen in Figure 9.3, where hot spots of different radiuses correspond to absorption
of photons with different energies.

SSPD models and experiments that include magnetic field also help to clarify
the impact of stripe bends on photon detection in meander-type detectors. In an ex-
periment with an SSPD that, contrary to conventional meander geometry, contains a
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Fig. 9.3: SSPD IDE dependence on the bias current normalized to the depairing current at different
magnetic field values [37]. (a) Hot spot model calculations with the radius Rspot = 5ξ . The inset
shows the same case but with Rspot = 2.5ξ . (b) Experimental results for an NbN SSPD operated at
three different wavelengths (photon energies). Curves corresponding to the strongest fields can be
broken before reaching the expected crossover current due to the critical current limitation, see the
inset.

quadratic Archimedean spiral, i.e., a structure that has bends with only one curva-
ture, it has been observed that IDE depends not only on the H value, but also on its
sign/direction [41]. The effect was clearly visible in devices operating at IDE ≪ 1, and
for photons with relatively large wavelengths. The latter indicates that such photons,
apparently, cannot effectively pin the vortices. Apparently, depending on its direction,
H induces near the inner corner of the bend screening currents that either enhance or
prevent vortex entry into the stripe and this way it influences the IDE value.

Finally, we comment on the role of vortices in SSPD operation. It is well known
that current-biased superconducting stripes with w’s greater than several coherence
lengths can be transferred into the resistance state due to the penetration andmotion
of Abrikosov vortices. The vortices are created inevitably as soon as their entrance
into the stripe becomes energetically favorable, i.e., when the energy barrier for vor-
tex entry becomes zero. This barrier, however, decreaseswith the increase of the stripe
transport current, because the current tends to move vortices across the stripe via a
Lorentz force. The value of the current at which the barrier is equal to zero is, by defini-
tion, the stripe IB = IC and, quantitatively, the IC density equals the de-pairing current
density for a defect-free stripe. When IC becomes suppressed during hot-spot forma-
tion, the vortices enter into the stripe and start moving, producing resistance and, as
a result, a measurable voltage pulse.
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9.2.3 Origin of dark counts in SSPDs

The vortex energy barrier, mentioned at the end of the previous section, can be over-
come and vortices can enter into the stripe even when IB < IC with the help of thermal
or quantum fluctuations Physically, this means that there exists a finite probability of
a vortex entry and subsequent formation of a resistive state evenwhen there is no inci-
dentphotonabsorption. For a biasedSSPD, sucha vortex-induced resistive state leads,
of course, to a voltage transient that is essentially identical in terms of its width and
amplitude topulsesproducedbyphotonabsorption, but it appears stochastically even
when the detector is completely shielded [10, 42]. These stochastically generated volt-
age pulses are commonly knownas, so-called, false or dark counts and, in general, are
an inherent feature of any photon-counting devices. We need to stress, however, that
contrary to semiconducting photon counters, such as avalanchephoto diodes (APDs),
where dark counts, such as after-pulsing, are directly related to the highly nonlinear,
threshold-type operation mechanism, in SSPDs, dark or spurious counts are a result
of superconducting fluctuations in a 2D nanostripe.

Figure 9.4 presents an example of the dependence of both photon- (Figure 9.4a)
and dark counts (Figure 9.4b) on the normalized bias current for the same, meander-
type SSPD operated at two different temperatures. The photon-count rate, or, equiva-
lently, the device DE is clearly enhanced at very low temperatures and for high-quality
devices (as in this example) tends to saturate as IB approaches IC. Conversely, the
dark-count rate decreases exponentially with the decrease of the bias and becomes
negligible at very low temperatures [43]. Thus, in SSPDs, the dark counts can be eas-
ily controlled and set practically to zero if the operating temperature is low enough, or
one keeps I below a certain threshold. At the same time the detector performance in
terms of DE does not suffer and can, actually be enhanced (see in Figure 9.4 the SSPD
operation at 2K versus 4.2K at the same wavelength/photon energy).

Fig. 9.4: (a) Detection efficiency, or, equivalently, life-photon count rate as a function of the normal-
ized bias current IB/IC, measured for an SSPD operated at 4.2 K and 2 K and illuminated with pho-
tons of different wavelengths. (b) Dark count rate of the same device measured at 2 K and 4.2 [47].
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Theoretical descriptions of dark counts have been discussed in a number of pa-
pers, including [44–46] and, as we have mentioned before (see Section 9.1), mecha-
nisms responsible for dark counts range from fluctuations of the Cooper-pair density,
through thermal or quantum activation of magnetic vortices, to excitation of phase-
slip centers. We have also stressed that in practical SSPDs containing 2D nanostripes
and operated under normal conditions (IB not too close to IC), the dominant mech-
anism is vortex-related fluctuations. An intriguing question is whether these fluctua-
tions are in nature classical thermal fluctuations or quantumones. A number of works
in the literature have attempted to identify experimentally the nature of dark counts
and, in our opinion, themost consistent approachwas presented in a very recent work
by Murphy et al. [48]. In this work, the authors extracted dark-count rates from the
distribution of switching current probabilities when the SSPD was in current-setting
mode and biased by a steadily increasing IB. Such a measurement has been repeated
many times and in each case, when the SSPD switched to the resistive state, a corre-
sponding IB valuewas recorded.As a result, oneobtains adistributionof the switching
currents as a function of the bias. Analyzing this distribution, it has been possible to
extract both the true IC, i.e., the current at which the fluctuation energy barrier that
produces the resistive state is zero, as well as the dependence of the fluctuation rate
on the current. The resulting dependence is exponential-like and one can parameter-
ize its slope in a logarithmic scale by some temperature T∗ that should be equal to the
temperature of the film if the fluctuationswere strictly thermal. A quantitative analysis
of the experimental data was done within the Kurkijarvi–Garg model [49] and it was
found that above a certain temperature Tq, of the order of 2K, the slope has almost a
linear dependence, increasing as 1/T. The latter is expected for thermal fluctuations,
however, below Tq the slope ceased increasing and became constant. Since IC itself
has no abnormality at Tq, one can conclude that the plateau effect is not related to
the saturation of the electron temperature, but it is, actually, a strong indication that
below Tq fluctuations are not thermal, but quantum in nature. In our case, for a 2D
stripe, one should expect the Abrikosov vortices to tunnel across the film. An intrigu-
ing feature is that above some other temperature Tm > Tq, the probability slope starts
to increase again,which canbe attributed tomultiple vortices jumping across the film.
The idea is that in the case of low IB, heat dissipated during a single vortex crossing
is not enough to trigger the transition to the resistive state, and at least two or more
vortices crossing our 2D stripe at the same place and time are required to trigger the re-
sistive transition. Of course, in the case of at least two simultaneous vortex transitions,
the probability of generating a voltage transient is decreased. Figure 9.5 presents the
graphs representing the distribution function of standard deviation dependence on
temperature, depicting its slope change (Figure 9.5a), as well as the so-called escape
temperature Tes dependence on the temperature (Figure 9.5b). Tes is the temperature
that arises while fitting a statistical distribution of switching currents by thermal fluc-
tuations. One can see in Figure 9.5b that Tes saturates below Tq and starts to decrease
above Tm.
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Fig. 9.5: (a) Standard deviations of switching current IC distributions measured at different temper-
atures. One can see saturation at low temperatures (below the temperature denoted as Tq) which is
a manifestation of macroscopic quantum tunneling. The multiple vortex jumps occur when T > Tm.
(b) The so-called escape temperature Tes, the temperature that arises while fitting the statistical
distribution of switching currents by thermal fluctuations at temperature Tes, versus natural tem-
perature for three studied samples. One can see that Tes saturates below Tq and starts to decrease
above Tm [48].

9.2.4 Production of SSPD output voltage pulses

We have already explained how absorption of a photon results in appearance of a re-
sistance in a current-carrying superconducting nanostripe. Now let us focus on the
voltage pulse that is produced as the outcome of this event. A typical voltage pulse,
recorded by the readout circuit of the NbN SSPD is presented in Figure 9.6. One can
note that the pulse has a strongly asymmetric shape with a fast rising edge, followed
by a slow decay part. The rising part of the pulse reflects the appearance of the resis-
tive state in a nanostripe that starts at the moment when IspotC falls below IB, and the
normal component of the current appears. Normal current dissipates power via Joule
heating of the stripe; thus, the length of the resistive section of the stripe grows pro-
gressively and the total resistance increases. However, in a voltage source bias case,
the increase of the resistance causes the decrease of the bias current, reducing Joule
heating. Thus, the resistive regiondoesnot grow infinitely but reaches somemaximum
size when the Joule heating flux equals heat dissipation into the SSPD substrate. Cor-
respondingly, the voltage photoresponse pulse reaches its peak value when the stripe
resistance approaches the impedance of the readout line. Afterwards, the stripe starts
to cool down and its resistive region collapses.

As we can see in Figure 9.6, the voltage pulse decay is much longer than the pulse
rise time. For practical, meander-type SSPDs, the origin of this long decay is, actually,
not the dynamics of the resistive state collapse, but is due to a very large value of the
kinetic inductance Lk of our ultra long and narrow superconducting nanostripe. In
superconductors, Lk is ameasure of the “inertia” of the superconducting, Cooper-pair
condensate, so in the SSPD nanostripe, after the resistive state collapse the supercur-
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Fig. 9.6: Time-resolved photoresponse of a
fiber-coupled, 100-μm2 area SSPD (dotted line)
and the simulated signal (solid line) based on
the calculated 420-nH value of the SSPD kinetic
inductance. The negative dip of the pulse is due
to the limited 0.05−4 GHz bandwidth of the out-
put power amplifier. The amplifier bandwidth
was included in the simulations. [50]

rent is recovered with a characteristic time τLR = Lk/RL, where RL is the impedance
of an external readout circuitry (typically 50 Ω). For example, for an SSPD meander
with a nanostripe of the length of ~0.5mm (approx. 100 μm2 detector area), width of
100nm, and square resistance Rsq of about 500Ω, the voltage transient decay time is
about 10 ns, and Lk, extracted by fitting the falling edge of the pulse by a single expo-
nential function, is as large as ~500nH. The latter value is, actually, in good agreement
with the one expected for a dirty superconducting film Lsq = ℏRsq/(e∆).

For simulation purposes, the rise time of the SSPD output pulse τh can be ex-
pressed analogously to τLR, by replacing RL with the resistance Rh of the stripe resis-
tive region. One needs to remember, however, that Rh changes with time and because
of that the front part of the pulse cannot be fitted by a simple exponential dependence.
Moreover, Rh increases with the increase of the length L of the detector, because the
larger L corresponds to the larger Lk, and, subsequently, it leads to a larger size of
the normal domain (larger Rh). Experimentally, nonlinear dependence of rise time
τh(L) ∼ Lk/Rh(L) was observed for NbN-based detectors, and calculations made in
the framework of the two-temperature model reasonably coincided with an experi-
ment [51]. These calculations give maximal Rh of order 0.5 kΩ for a meander with the
length L = 500 μm. Thus, the value of Rh corresponded to the length of a nanostripe
resistive segment on the order of its width.

The pulse fall time limits the time-domain performance of the SSPD, setting the
dead time–the timing parameter important for any photon-counting application.
Roughly speaking, it is a period of time after registration of a photon that is needed
for the detector to restore its initial state. Although all energy relaxation processes in
SSPD evolve on a picosecond time scale, in practical devices the speed of operation is
limited by its Lk. One can use the photoresponse pulse duration (practically coincides
with its fall time) as a good estimation of the dead time, its accurate quantitative
definition requires a better understanding of the processes taking place after photon
absorption. A deep insight into this problem was given in [16] and its supplementary
materials.
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It is important to note that dead time is related not only to the pulse decay time,
but also depends on the SSPD DE and IB. Figure 9.7 schematically illustrates the time
evolution of IB andDE after the photon-detection event. When the photon is detected/
absorbed the hot spot is formed and, for a short period of time, the SSPD switches into
the resistive state (Figure 9.7a). During this time a voltage signal appears whereas for
a voltage-biased device, the current drops rapidly (Figure 9.7b and c). Nominal DE
of the device is, of course, in this phase very low: since IB is low, the SSPD cannot
detect a new photon. This is the origin of detector dead time. As time moves on, the
voltage transient drops to zero, the superconducting state is recovered, and IB returns
to its nominal value, as is shown in Figure 9.7b and c. In addition, Figure 9.7d shows
the time evolution of DE and, simultaneously, compares the behavior of two detectors
with different DE(IB) (see Figure 9.7d inset) dependences: a “good” onewith a fast rise

Fig. 9.7: Schematic illustration of the origin of SSPD dead time and its relation to the dependence
of DE on IB, when the device is biased by the voltage source. (a) When a photon is absorbed, a hot
spot is formed and the nanostripe becomes resistive for a short period of time. During this time we
observe the fast-rising front edge of the photon count voltage pulse (b). Simultaneously, IB rapidly
drops as shown in (c), since its portion has been diverted into the load circuit. The characteristic
time of the above processes is τh = Lk/Rh. When the stripe resistive region cools down and super-
conductivity is being restored, the voltage drops (b) and, simultaneously, IB increases (c) to its
initial value, both with the characteristic time τfront = Lk/RL. The actual dead time is controlled by
the dependence of DE on IB. Panel (d) schematically shows recovery of QE for two different SSPDs
with different DE (IB) dependences (inset): the “good” device (red dashed) and the “bad” one (solid
black). The “good” device has higher QE at lower bias currents; thus, its DE recovers faster and the
corresponding dead time is shorter.
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ofDEwith current and a “bad” onewith a slow rise of DEwith current. Naturally, since
for the “good” detector DE recovers faster, it will be able to detect photons even if its
IB had not reached its steady value. Thus, such a detector will exhibit a shorter dead
time.

The above discussion clearly shows that the main limiting factor of SSPD photon-
counting speed is Lk. Since the increase of either the nanostripe w or d is not a practi-
cal option due to the resulting sharp reduction of the device DE and the meander size
is typically determined by the detector application, i.e., an optical spot size, the good
solution is to divide the entire nanostripe into several, small-meander sections con-
nected in parallel [8]. Lk of a meander divided into N parallel sections is reduced N2

compared to the single meander. Thus, such segmentation allows one to reduce the
dead time to a value of the order 100ps that is limited not by τLR but by the relaxation
time of the resistance state [52].

9.3 Methods of experimental investigation
and characterization of SSPDs

9.3.1 SSPD fabrication

SSPDs are typically fabricated from ultrathin superconducting films by traditional
methods of electron-beam lithography and reactive ion etching (RIE). In most cases,
the films are produced by DC reactive magnetron sputtering on heated substrates, as
in the case of NbN, Nb, and NbTiN. Silicide films, such as WSi and MoSi, are usually
deposited by co-sputtering from two targets [17, 53].

As an example of the NbN SSPD fabrication process, we are going to follow the
procedure presented in Reference [54]. An NbN film was sputtered on a precleaned
sapphire or silicon wafer from a metallic Nb target in the Ar + N2 gas mixture with
partial pressures of 5 × 10−3 mbar and 10−4 mbar for Ar and N2, respectively. Dur-
ing deposition the substrate was kept at 900°C and the film thickness which typically
ranged from 3.5nm to 10nm was determined based on the deposition time and the
precalibrateddeposition rate. In thenext step, 100-nm-thickAualignmentmarkswere
produced by standard optical lithography using a AZ1512 photoresist. We also used a
5-nm-thick Ti transitional layer for better adhesion of the gold. Both Ti and Au layers
were deposited by resistive evaporation at room temperature. Meanders with, typi-
cally, 100-to-250nm-wide nanostripes were defined by e-beam lithography in posi-
tive, PMMA (Poly[methyl methacrylate]) 950K electron resist, using the toluene-to-
isopropanol 1 : 10 mixture as a developer. The choice of the 80-nm thickness of the
PMMA 950K resist, ensured a reliable protection of the superconducting film during
the RIE process, while at the same time, such a thin resist allowed us to reliably fab-
ricate stripes as narrow as 80nm. The RIE process itself was performed in SF6 gas. In
this approach, NbN was removed from the regions of the exposed resist, so the mini-
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mal width of the superconducting stripe did not depend directly on the electron beam
diameter, but was mainly determined by scattering in the photoresist. Finally, the de-
vice contact pads were fabricated in the same manner as the above-mentioned align-
ment marks. The contact pads formed a shorted end of a coplanar waveguide used to
deliver the detector photoresponse pulse to the read-out circuitry. For a process-flow
schematics, see Table II in Reference [54].

Our best, meander-type detectors covered the area of either 10 × 10 or 4 × 4 μm2

with a filling factor (the ratio of the area occupied by the superconductingmeander to
the device nominal area) up to 0.5. The patterned, 3.5-nm-thick nanostripes exhibited
TC’s of above 10.7K and JC’s on the order of 6–7 × 106 A/cm2 at 4.2K, essentially un-
suppressed as compared to the plain film values. The above properties of the ultrathin
NbNfilms, combinedwith the very high reproducibility of even10×10 μm2 meanders,
were the main advantage of using the RIE process rather than the earlier developed
lift-off method. Figure 9.8 presents a completed SSPD structure at the end of a copla-
nar waveguide fabricated using the above procedure and a detailed scanning electron
microscope (SEM) image of one of the meanders.

Fig. 9.8: Topology of SSPD contact pads form-
ing a coplanar waveguide and an SEM im-
age of the meander (NbN is black). The NbN
nanostripe is ~70-nm wide (see inset in the
SEM imagine), ~0.5-mm long, and covers a
10 μm × 10 μm area. [55]

9.3.2 Experimental characterization of SSPDs

A typical experimental setup for SSPD investigation and characterization is presented
in Figure 9.9. There are several methods available for SSPD cooling, but the simplest
one is to mount a device on a dipstick and immerse it directly in liquid helium in a
standard storage Dewar. This method provides a very stable 4.2K temperature and
using, e.g., a 50-liter container, can assure at least one month of interrupted detector
operation. For the most advanced applications, such as, e.g., virtually dark-count-free
operation, an SSPD should be cooled to below 2K (preferably to the 1.6−1.7K range),
which can be achieved by helium vapor evacuation in a dedicated optical cryostat, or
one can use a specially designed cryoinsert for a standard storage container [9, 56].
Such an insert has a small capillary at its bottom that limits the rate of liquid helium
intake into the sample chamber; in this way the helium pressure can be lowered only
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Fig. 9.9: Schematic setup of an SSPD experimental configuration.

inside the insert chamber, leading to a local temperature reduction. Another option,
strongly favored in commercial applications and “turn-key” systems, is to implement
a multistage cryorefrigerator with an optical access.

For photon-counting operation, an SSPD is typically DC-biased using a low-noise
voltage source through a GHz-bandwidth bias-tee. The bias-tee allows for simultane-
ous DC biasing and a collection of ns-long voltage pulses generated as a result of pho-
ton absorption. The output pulses are next amplified and fed to read-out electronics.
Typically, a room-temperature amplifierwith a gain of 50dB andbandwidth of 10MHz
to 2GHz is enough to produce 100–500mV pulses suitable for triggering most types
of either photon counters or specialized, computer counting boards. In special appli-
cations, an SSPD is directly, in helium, connected to a cryogenic HEMT (High Electron
Mobility Transistor) amplifier. In this configuration, the device is intended to operate
as a photon-number-resolving sensor [58], or to study the origin of dark counts [59].

9.3.3 Demonstration of SSPD single-photon sensitivity and its detection efficiency

There are two basic approaches to demonstrate the single-photon response of a de-
tector. The first is based on the splitting of the light emitted by a single-photon source
into two beams and feeding them simultaneously to two identical SSPDs. Assuming
that we have a pulsed source, obviously, in such an experiment only one detector can
‘click’ at a time, i.e., the rate of joint ‘clicks’must be zero. Thismethod unambiguously
demonstrates that the detector is capable of registering single photons only when the
source is truly a single-photon emitter. Otherwise there is some probability of two-, or
even multiphoton events, resulting in coinciding clicks of the detectors, limiting ap-
plicability of the above approach. The second method which is based on an analysis
of the statistics of the detector clicks is, actually, much more popular. In this case, we

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



9.3 Methods of experimental investigation and characterization of SSPDs | 297

need only one detector and can determine the minimal number of photons simulta-
neously incident on the detector that are required to trigger its positive response.

Classical light sources, such as lasers, light-emission diodes, etc., have a Poisson
distribution of the number n of photons per pulse of the emitted radiation:

P(n) = mn exp(−m)/n! (9.5)

where m is the mean number of photons per pulse. If m ≪ 1, Equation (9.5) reduces
to

P(n) = mn/n! (9.6)

Thus, under the ultraweak-incident-light illumination condition, if a single photon
(n = 1) is sufficient to trigger a tested detector, its response, following Equation (9.6),
is simply proportional to the mean number of photons per pulse (P(1) = m), or, in
other words, to the mean power of the incoming light. Analogously, if the detector can
be triggered only by pairs of photons (n = 2), its count rate will be proportional to
the square of the mean incoming power (P(2) = (m/2)2). For triple-photon events, the
count rate is proportional to the cube of incoming power, etc.We see that based on the
photon statistics of the source, by analyzing the slope (in the log-log scale) of the num-
ber of detector clicks versus the average light illumination power (in the ultraweak
regime, where m ≪ 1), we get direct information on the detector photon-counting ca-
pability, i.e., the actual number of photons required to trigger a detector response. This
way one can prove that a given detector under test is a real single-photon counter. Fig-
ure 9.10 illustrates the above behavior for the very first published SSPD [1]. It plots the
number of detector counts per second (left axis), or, equivalently, the probability (right
axis) that the detector can produce an output voltage pulse, both as a function of the
average number of photons per pulse, incident on the device area.We note that for the
same detector, but biased at two different levels, for IB = 0.92IC and for very low pho-
ton fluxes, experimental data (open squares) show the linear decrease of the detection
probability (P = m, as predicted by Equation (9.6)) for almost four orders of magni-
tude, clearly demonstrating the single-photon detection. At the same time, when this
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Fig. 9.10: Number of counts per second (left
axis) recorded by the NbN SSPD and, equiva-
lently, probability of the photon capture (right
axis) versus the average number of photons per
pulse incident upon the device, measured for
two different bias current levels. The solid lines
correspond to the theoretical prediction of
Equation (9.6). The incident photon wavelength
was 810 nm. [1]
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device is operated under the same illumination conditions, but biasedwith IB = 0.8IC,
experimental data points (closed squares) follow a quadratic dependence of detection
probability, showing the two-photondetection.As expected, for two-photoneventsDE
is significantly lower than for the single-photon detection. We also observe saturation
of both dependences at high-incident photon fluxes, where probability is essentially
one (all incident photons are recorded). Conversely, for ultrasmall fluxes, since the ex-
periment was performed in an optically unshielded environment, single-photon-level
dependence saturates at the level of 0.4 s−1 counts, which can be regarded as the pho-
ton background of our laboratory. In the two-photon-level dependence, saturation is
not observed, since the probability of two uncorrelated, stray photons hitting the de-
vice within its response duration is negligibly small.

In the above experiment, DE is defined as the ratio of photon counts Ncounts of the
detector to the number of incident photons Nphotons (see also a Footnote 2). Ncounts
can be directly measured by a frequency or pulse counter such as, e.g., Keysight
53131A, whereas the number of photons incident on the device is usually determined
from power measurements. To achieve proper accuracy powermeasurements are per-
formed at high photon fluxes (too high for single-photon counting) and then the beam
is drastically attenuated by a bank of precisely calibrated optical attenuators and fed
to the SSPD under test. In this case Nphotons is determined as follows:

Nphotons = P/(αℏω) (9.7)

where P is measured power, α is attenuation, and ℏω is photon energy. More details
on sources of errors in QE measurements can be found in [16].

As has been stressed in Section 9.2.1, the SSPD’s ability to detect incident single
photons depends very strongly on their energy, i.e., ability to form a large enough hot
spot to trigger the detector’s nanostripe, or, at least, its segment, into the transient re-
sistive state. Thus, for a given detector, biased at a fixed IB, wemay or may not be able
to observe a single-photon detection mechanism, depending on the energy of the in-
coming photons. The latter is very well illustrated in Figure 9.11 from [5] which shows
that depending on the wavelength, i.e., energy, of the incident photons, the same de-
tector, biased at a fixed IB, can perform as either a single- or multiphoton detector. We
can clearly see that, although, for a very low number of photons per pulse incident on
the SSPD we observe in Figure 9.11 a single-photon detection regime (n = 1) for each
studied wavelength, only for 405-nm radiation, the presence of at least one photon
in the optical pulse is always sufficient to trigger the detector response. At the same
time, near-infrared photons (λ = 810nm and λ = 1550nm), apparently, generate
hot spots too small to ensure efficient single-photon SSPD operation, leading to en-
hanced probability of multiphoton detection with the increase of photon flux. Finally,
for λ = 1550nm radiation, SSPDmultiphoton detection (n ≥ 2) dominates.
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Fig. 9.11: Probability of photon counting ver-
sus the incident photon radiation flux for a
10 × 10 μm2, 10-nm-thick SSPD at 405-nm
(squares), 810 nm (circles), and 1550-nm (tri-
angles) wavelengths. The bias current was
I/IC = 0.8 and temperature was 4.2 K. The solid
lines illustrate the slope exponents n = 1 and
n = 2 [5].

9.3.4 Measurements of SSPD timing jitter

Timing jitter essentially defines the accuracy of photon arrival time resolution. For
the jitter measurement one can use an experimental setup similar to the one shown
in Figure 9.9 with a femtosecond, pulsed laser as a source with the oscilloscope be-
ing triggered using an electrical synchronization signal from the laser. Themoment of
time at which the SSPD photoresponse appears has some uncertainty since the pho-
toresponse may sometimes appear earlier or later than the nominal arrival time of the
femtosecondpulse. To characterize such anuncertainty quantitatively onemay record
the time distribution of the detection events. For this purpose, it is convenient to use
the histogram-building feature of an oscilloscope to plot the time shift distribution
of the rising edge of the response pulse as shown in Figure 9.12. The screenshot pre-
sented here was taken for a 1 μm-long nanostripe, characterized by a negligible Lk,
and this is why the measured SSPD photoresponse signal has only 150-ps width at
half-maximum. The corresponding width of the histogram of the rising edge arrival
time (top part of the screen) represents timing jitter and is only 35 ps. In this case, the
jitter measured by the oscilloscope is the whole system jitter τtotal comprised of the jit-
ter of the electronics τel and the intrinsic jitter of the SSPD τSSPD and can be expressed
as follows:

τ2total = τ2el + τ2SSPD . (9.8)

Thus, the 35-ps value of the jitter presented in Figure 9.12 is the upper limit of our
device.

Another method of jitter measurement is a traditional start-stop technique, often
used in quantum optics experiments. In this case photoresponse pulses from either
one or two identical SSPDs are fed to “start” and “stop” ports of a Time Correlated
Single-Photon Counting (TCSPC) board. In the one-detector setup, an electrical trig-
ger from a femtosecond laser is used as “start” and output from the SSPD is used as
“stop”. When the two-detector setup is used, the optical beam of the laser is split into
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Fig. 9.12: Screenshot from a digital oscilloscope with
a photoresponse pulse of a 1 μm-long SSPD with the
histogram of the rising edge at the top of the screen.
As a result of a very short length of the nanostripe, the
Lk is negligible.

two parts and feeds two equal SSPDs. The photon-detection pulses from one SSPD are
fed to the “start” channel of the TCSPC board and the output from a second SSPD is
connected to the “stop” channel. The jitter measured this way is again the system jit-
ter and is expressed, as before, by Equation (9.8). As before, measuring the SSPD jitter
one should take into account the actual electrical noise of a given photon-counting
system, e.g., amplifiers and the fact that reduction of IB leads to an increase of the
jitter due to limited amplifier gain [62].

It is worth noting that the physical nature of the timing jitter in SSPDs is not fully
understood, although itmust be related to the dynamics of the hot-spot formation and
resulting occurrence of the resistive state, as indicated in [63]. Typically, in larger area,
meander-type SSPDs, the reported values of the jitter are below 100 ps which is much
better than in the case of any competing devices. Finally, it has been very recently
reported [62] that proper optimization of the SSPD enables one to achieve a record-
breaking 17.8 ps jitter, even in a commercial system.

9.3.5 Coupling of incoming light to SSPD as a method
to increase system detection efficiency

To obtain the highest possible DE value, one needs, besides having an SSPD with a
very high probability that the absorbed photon is counted, also to assure that all in-
cident photons will be delivered to the nanostripe of the detector. This requirement is
known as the problem of coupling SSPD to the incoming radiation. It is a nontrivial
task and several approaches have been developed to reach coupling efficiency close
to unity. The problem though is that electrodynamic parameters of the SSPD nanos-
tripe that is responsible for light absorption are fixed by the requirement of maximum
DE and turn out to be relatively far from optimal for good coupling. The width of the
nanostripe is of order 100nm or less, thus, it is much narrower than the incident light
wavelength, leading to a creeping effect. The simplest approach and the one most
often used is to flood the whole active area of the detector with light. In free-space
systems, one needs to place the meander at the focal spot of the lens, while in the
fiber-coupled configuration, the detector nanostripe has to be aligned against the fiber
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core. Because the meander separation width is typically of order of the nanostripe it-
self (meander fill factor f ≈ 1/2), for the incoming wave the detector is seen just as a
continuous film with a total size much larger than the incident radiation wavelength.
The absorption coefficient A of the superconducting film on a dielectric substrate is
determined by its impedance Z at the optical frequency normalized to the impedance
of free space Z0 = 377Ω and the substrate index of refraction, and it is given by [1,
Equation (1)]. Conversely, if our SSPD is fiber-coupled, we can consider that the refrac-
tive indexes of themedia both in front of and behind the film are roughly the same and
equal to n (good approximation for a detector coupled to a standard optical fiber and
fabricated on Al2O3 or SiO2 substrates), then the formula for A reads as

A = 4nRe(Z0/Z)/|2n + Z0/Z|2 . (9.9)

An impedance of disordered metal films with a thickness of order several nm, as used
for SSPD fabrication, is of order of 300–600 Ω, roughly corresponding to the surface
resistance of a given filmmeasured just above TC (the order of magnitude is the same
for a dc current as well as for frequencies corresponding to near IR). Actually, a pat-
terned film can have substantially higher impedance for meanders with low f factors,
and its impedance also depends on whether meander stripes have parallel or perpen-
dicular orientation with respect to the polarization vector of the incoming wave [7].
For a typical case of an NbN meander fabricated on sapphire, with f = 1/2 and with
4-nm-thick strips perpendicularly oriented to the light polarization, Z canbe assumed
to be of the order of 500 Ω, leading to A ≈ 0.35. The latter means that the resulting DE
of this detector will not be greater than 35%, which is indeed the limitation for stan-
dard SSPDs. Simply, the rest of the incident photons are either transmitted or reflected
by the metallic nanostripe.

Because the thickness of the superconducting nanostripe cannot be made greater
(and hence Z cannot be made smaller) without a drastic decrease of IDE, the only
way to overcome this limitation is to change the impedance of the space surround-
ing the stripe. Several approaches exist to accomplish this. The first is to incorporate
an SSPD into a resonator-like structure by adding a quarter-wavelength layer and a
mirror behind the meander. Such an approach has already been published in the lit-
erature and it results in an increase of the absorption coefficient up to 0.9 at the target
wavelength [16]. Another approach is to fabricate periodic or aperiodic coupling struc-
tures with specially engineered refractive indices or impedances, in analogy to optical
antennas.

Finally, one can replace the plane wave normally arriving at the strip with an
evanescent mode of the wave that propagates in an optical waveguide (Figure 9.13).
In this case, an optical waveguide is fabricated directly on top of the superconducting
nanostripe, so the evanescent field outside the waveguide is absorbed by the stripe. If
the interaction distance is long enough, the absorptionwill be close to unity. Actually,
a waveguide-coupled SSPDhas been demonstrated to havemore than 0.99 absorption
and the resulting SDE = 95% [64]. Themain limitation of this approach is that the inci-
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Fig. 9.13: Waveguide-integrated SSPD.

dent light either from free space or a fibermust be efficiently coupled to thewaveguide.
However, this would not be the case if a waveguide-coupled SSPD was part of an in-
tegrated photonic circuit, with the optical signal emitted directly into the waveguide.
Hence, the waveguide-coupled SSPD is a very promising detector for integrated on-
chip photonics devices – especially quantum computation hardware, which typically
requires near-unity detection efficiency.

9.4 Conclusion and future research directions

This chapter focused on fundamental properties of practical SSPDs and presented the
basic physicalmodels of their operation. Since its discovery in 2001 [1], very extensive
research has been published, covering both the theoretical and experimental aspects
of SSPD operation, and, as we have demonstrated here, there is a quite good under-
standing of the physical mechanisms behind SSPD photoresponse dynamics, as well
as of the origin of dark counts. However, future studies of detector operation are still
needed to gain deeper understanding. The most demanding problem is the develop-
ment of a complete, quantitative theory that could use material parameters such as
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mean path length, Tc, ΩD, EF, ∆, N(0) and, subsequently, be able to predict whether
a superconducting stripe with given dimensions (thickness and width) and geometry
(e.g., single stripe or meander structure) is capable of detecting a single photon and if
yes, in what spectral range of the incident radiation for the maximized current bias.
This theory should include both e–e and e–ph interactions, diffusion of quasiparti-
cles, and the equation for ∆.

From the experimental point of view, it would be interesting to know in detail
the dependence of IDE on IB in weakmagnetic fields and how it changes for detectors
made fromdifferent superconductors, including ferromagnet-superconductor nanobi-
layers [65, 66]. Existing results [36, 39] for NbN and MoSi detectors show that the hot
spot in practical devices always has a size that is significantly smaller than the nom-
inal width of the stripe. It would be interesting to perform similar experiments with
WSi-, NbC-, NbTiN- or TaN-based SSPDs and, hopefully, clarify the question about the
actual size of the hot spot in nanostripes fabricated from these materials and how it
relates to the stripe width.

Extension of the SSPD single-photon operation to mid- or even far-infrared radia-
tion is another great challenge. This requires, on the one hand, the above-mentioned
input from theory to choose an appropriate material, and, on the other hand, signifi-
cantly improved fabrication technology, resulting in very highly uniform nanostripes
with a width that is as narrow as possible.

In this chapter we do not discuss any specific SSPD applications, however, SSPDs
are currently the device-of-choice for most advanced, high-performance applications,
and have demonstrated excellent properties in many areas in both classical and
quantum optics. The most advanced implementations are in optical time-domain
reflectometry [67], laser ranging (LiDAR) [68], space-to-ground quantum communica-
tions [69, 70], quantum dot photonics [71, 72], quantum key distribution [73], as well
as in experiments with indistinguishable and entangled photon pairs [74, 75], and,
finally, there is rapidly growing interest for using SSPDs in life sciences [76].

One of the most urgent problems in all the above-mentioned fields is the develop-
ment of highly efficient couplers for light feed from optical sources and/or fibers into
the SSPD, aswell as an SSPDarray design for imaging systems. Inmany imaging spec-
troscopy applications, using single-photon detector arrays, would drastically improve
system performance, by providing unique, detailed information on very weak photon
sources. For current SSPD array systems, the main problem is, unfortunately, a rela-
tively low yield of good devices that significantly limits the number of active array ele-
ments, as well as the lack of fast read-out of any given array pixel, especially for large
arrays. One of the most promising solutions here could be the direct integration (in a
cryogenic environment) of the SSPD array with a superconducting read-out process-
ing circuit. A good example is the recent demonstration of successful SSPD integration
with the Josephson-junction-based, rapid single flux quantum (RSFQ) logic [77].
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10 Josephson and charging effect in mesoscopic

superconducting devices

10.1 Introduction and historical background

In this chapter we consider Josephson junctions at the submicron and nanoscale.
Much progress has been made since the pioneering work on nanoscale point-contact
junctions. The modern era of Josephson devices has been strongly influenced by the
combined continuous progress in material science and nanotechnologies. Both have
strongly influenced the development of superconducting devices based on the Joseph-
son effect at three fundamental levels: basic physics, device and circuit innovation,
and materials science and process development. Advances in nanotechnologies ap-
plied to superconductivity frequently offer solutions to relevantmaterial science prob-
lems, for example scaling barriers and interfaces, and handling prebuilt barriers for
instance in nanowires (NWs) and flakes of graphene or of a topological insulator. Hy-
brid junctions are an obvious consequence of the combined progress of material sci-
ence and nanotechnology.

The story behind the Josephson effect [1] is marked by the use of special materials
and techniques at some keymoments. At the very beginning, thermal cycling stability
problems for lead alloy-based junctions were definitely overcome by the use of rigid
superconductors such as Nb [2, 3]. Replacement of Nb oxide barriers by artificial bar-
riers was key in the development of Nb technology. Al was revealed as the perfect so-
lution forming a natural, self-limiting, high-quality, insulating oxide [4]. The impact
of high critical temperature superconductors (HTS) was also impressive for Joseph-
son device development activities [5, 6]. Most of the unconventional materials since
HTS have benefited from the notions and techniques developed to build HTS Joseph-
son junctions and to handle their complexity as much as possible. This obviously
includes innovative methods for building barriers in intrinsically nonhomogeneous
materials. Meanwhile (in the 1990s), the advent of mesoscopic physics was chang-
ing some conceptual paradigmsalso in superconductivity, andmore importantly nan-
otechnologies started offering new experimental tools to build completely new fami-
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lies of devices. These techniques applied to Josephson junctions becamemore mature
only later. Progress in material science means new materials and new superconduc-
tors, and novel abilities to build interfaces and for precise control of heterostructural
growth. Also tunnel junction barriers are now designed and fabricated with unprece-
dented precision, opening the route to better performingdevices even for technologies
based on well-established low critical temperature superconductors (LTS).

In conclusion, we have never had so many different families of superconduct-
ing materials and so many different types of Josephson junctions as today, with so
many fundamental open questions on their nature. Here we focus on specific aspects
of the nanoscale junctions, directing the reader looking for amore detailed account of
Josephson phenomenology to the traditional textbooks [2, 3] and extensive reviews [5,
6].

10.2 Brief introductory notes on the Josephson effect: main
equations, scaling energies and quantum implications

Most of the common ways of placing a barrier between superconducting electrodes
are shown in Figure 10.1, and will be discussed in the following. Josephson coupling
can also take place at grain boundaries (GBs) [5, 6]. Josephson predicted the existence
of tunnel currents carried by Cooper pairs between two superconductors S and S’ sep-
arated by a thin (typically less than 1nm) insulating layer I [1] (see Figure 10.1a) [1–3].

The two basic Josephson equations originally derived for an S-I-S’ junction are:

Is = Ic sin(ϕ) . (10.1)

ϕ̇ = 2 eV/ℏ (10.2)

whereϕ = ϕ1−ϕ2 is thephasedifferencebetween the two superconducting electrodes
ϕ1 and ϕ2, and e and ℏ are the electron charge and the Planck constant, respectively.
Ic is the maximum critical current. The microscopic derivation can be found in [1–3].
We have the Josephson effect as long as the macroscopic wave functions of the two
electrodes overlap in the barrier region.

Coulomb Ec = e2/(2C) and Josephson EJ = ΦoIc/(2π) energies will be associated
with each junction,with thefluxquantumΦo = h/(2e). Quantum Josephson junctions
(JJs) with either a well-defined charge or phase variable will depend on the relative
magnitude of Ec and EJ (phase for EJ ≫ Ec, charge for EJ ≪ Ec, respectively) [2, 3].

The Josephson effect is also observed in junctions with more transmissive bar-
riers (normal metal (N), semiconductors (Sm), ferromagnets (F), . . . ). The resulting
S − N(Sm, F) − S structure will exhibit the Josephson effect for barrier thickness (L) of
the order of the coherence length in the barrier,which is for ametal ξN = (ℏDn/kBT)1/2
(T is the temperature, kB is theBoltzmannconstant andDn = vF l/3 is thenormalmetal
diffusion constant, where vF is the Fermi velocity and l the electron mean free path,
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Fig. 10.1: a) Window-type geometry for a sandwich junction with insulating or normal metal bar-
rier. The normal metal can be replaced by a semiconductor or a ferromagnetic layer. (b) Coplanar
variable-thickness bridge; the barrier is grown before the deposition of the superconductor. Part of
the superconducting layer is then removed to separate the two electrodes. (c) Two superconduct-
ing electrodes, grown on an insulating substrate, can be connected thorough a thin layer deposited
on the top. The barrier can be a flake of graphene or of a topological insulator (d), or a nanowire
(e), which in the suspended configuration can be deposited on the superconductor. In this case a
trench separating the two electrodes has been previously drilled. In all these configurations one of
the critical parameters is the distance between the electrodes L, which needs to be of the order of
the coherence length in N, ξN. In (f) an edge-type variable-thickness bridge is shown. The barrier is
deposited on the edge of the superconductor that has been suitably etched and treated. This config-
uration is particularly advantageous for the realization of submicron junctions and for devices based
on anisotropic superconductors such as HTS, exploiting coherence in the a–b planes. In (g) a sketch
of the layout typically used for intrinsic junctions is shown. A focussed ion beam can give a special
shape to the variable-thickness bridge and oblige the current to pass through a narrow channel per-
pendicular to the substrate. For HTS this is intended to force the current to pass through a selected
number of planes.

respectively). Apart from a dramatic change in resistance (Rn), a first obvious conse-
quence of replacing an I with an N as a barrier is a change in the effective capacitance.
New physical “processes” take place on different scaling lengths and energies, and
can dominate over tunnel effects. These have been traditionally expressed in terms
of the proximity effect (PE), the mutual influence of a superconducting layer in con-
tact with a normal metal or a semiconducting or ferromagnetic layer, and in the last
20 years more andmore commonly, in terms of Andreev reflection (AR) [7], the micro-
scopic process inwhich a dissipative electrical current is converted at an S/N interface
into a dissipationless supercurrent. Themutual influence between S andN is also con-
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trolled by the nature of the interface and by the boundary conditions, which involve
the respective ξN,S and the thickness of the N and S layers [8, 9].

Other classical ways to form a Josephson junction exploit the concept of a tip me-
chanically approaching a bulk superconductor (point contact) and the more recent
atomic contacts [10], or the creation of a microrestriction in a superconducting thin
film [2, 3]. In this last case the Josephson effect only takes place for L < 3.5ξ indepen-
dently of the widthW [8]. Phenomena associated with phase slips (W < ξ ) or with the
motion of Abrikosov vortices (W > ξ ) will take place for L > 3.5ξ [8].

More transmissive barriers require amore general expression of the current-phase
relation:

Is(ϕ) = ∑
n≥1

(In sin(nϕ) + Jn cos(nϕ)) . (10.3)

The d.c. Josephson equation (10.1) represents the particular case of this general ex-
pression. The In contribution depends on the barrier transparency D as a Dn power
lawand corresponds to the n-multiple reflection process. The Jn vanish if time-reversal
symmetry is not broken [11].

Deviations from sin(ϕ) behavior are acquiring more and more importance not
only because of d-wave HTS and superconductor-ferromagnet-superconductor (SFS)
JJs but also for all unconventional junctions [8, 9]. The Is(ϕ) relation is a characteristic
Josephson “code” and is the input to definemost junction parameters commonlymea-
sured in experiments. We refer for a detailed treatment and for all original references
again to reviews [8, 9].

The dependence of Ic on the magnetic field is another well-defined code, widely
described in textbooks [2, 3], where several anomalous behaviors have been investi-
gated in detail. A simple example of how the magnetic response can be modified in
a nanoscale hybrid junction is shown in Figure 10.2. In diffusive S–N–S junctions the
Fraunhofer pattern transforms in a monotonic decay when the width of the normal
wire W is smaller than the magnetic length ξH = √Φo/H, where H is the externally
applied magnetic field, as shown in Figure 10.2 [12]. This behavior is intimately re-
lated to the appearance of a linear array of vortices in the middle of the normal wire,
the properties of which are very similar to those in the mixed state of a type II su-
perconductor [12]. Edge states in wide coplanar nanojunctions (where the barrier is
typically a flake of graphene or of a topological insulator) tend to transform the re-
sponse in a superconducting quantum interference device (SQUID)-like pattern. HTS
0-π corner junctions offer another characteristic reference pattern with two symmet-
ric maxima at finite H [13, 14]. When increasing the number of 0-π facets, symmetric
maxima move to higher H and a number of small Ic oscillations proportional to the
number of facets appear [15]. If the order parameters were to comprise an imaginary
s-wave admixture, the pattern for the arrays would display distinct asymmetries, es-
pecially for low fields. A series of anomalous behaviors has been carefully classified
and correlated to grain boundarymorphology and intrinsic phase variation [5, 6]. Flux
focusing effects can also play a relevant role and change the periodicity between two
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Fig. 10.2: Schematic dependence of Ic on the magnetic field for diffusive S–N–S junctions: Ic(H)
strongly depend on the barrier dimensions. In the inset a sketch of the junction is shown with its
dimensions (partly adapted from [12]).

minima of the magnetic pattern [16, 17]. In the thin limit approximation, for instance,
the effective area of the Josephson junction scales as the square ofW (∝ 1/W2) rather
than as the usual∝ 1/(W(2λ+ L) dependence [17]. A prevailing second harmonic can
also induce a dramatic change in the flux periodicity as occurring in HTS 0-π/4 grain
boundary junctions [18, 19] and spin filter junctions [20, 21].

10.2.1 Josephson effect from quasiparticle Andreev-bound states

Andreev reflection (AR) is the scattering mechanism describing how an electron ex-
citation slightly above the Fermi level in a normal metal is reflected at the interface
as a hole excitation slightly below the Fermi level [7]. The missing charge of 2e is re-
moved as a Cooper pair. This is a branch-crossing process that converts electrons into
holes and vice versa, and therefore changes the net charge in the excitation distri-
bution. The reflected hole (or electron) has a shift in phase compared to the incom-
ing electron (or hole) wave-function: ϕhole = ϕelect + ϕsuperc + arccos(E/∆) (ϕelect =
ϕhole − ϕsuperc + arccos(E/∆)), where ∆ and ϕsuperc are the gap value and the super-
conducting phase of S, respectively. The macroscopic phase of S and the microscopic
phase of the quasiparticles are therefore mixed through AR. To provide an intuitive
idea of the effects related to AR, the Andreev-reflected holes act as a parallel con-
duction channel to the initial electron current, thus doubling the normal state con-
ductance of the S/N interface for applied voltages less than the superconducting gap
eV < ∆ [22]. Blonder, Tinkham and Klapwijk [22] (BTK) introduced the dimension-
less parameter Z, proportional to the potential barrier at the interface, to describe the
barrier transparency.
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The Landauer conductance expression has been extended to the case of an S–N
interface through scattering matrix theory [23]:

GNS = 2e2

πℏ N∑
n=1

D2
n(2 − Dn)2 (10.4)

Here the Dn’s are the transmission eigenvalues of the disordered normal part. The
difference in the behavior of the transmission eigenvalues Dn will lead to different
mesoscopic behaviors of tunnel junctions andmetallicweak links.While in the former
case many small Dn’s are relevant, in the latter most Dn’s are close to zero or unity.
This expression is valid at zero voltage and zero magnetic field. Application of either a
voltage or amagnetic field reduces the contact resistance of theNS junction by a factor
of two.

A very interesting property of the Andreev reflection in a S1–N–S2 structure is
that the electron obtains an extra phase of ϕ1 − ϕ2 + π in each period. The Joseph-
son effect can be reformulated in terms of this property and of quasiparticle bound
states. The spectrum of the elementary excitations of an N layer in contact with S on
both sides is quantized for E < ∆. In particular the expression of the bound state en-
ergy in a S–N–S one-dimensional system, in the short junction limit L ≪ ξN, is [24]:
E = ±∆√1 − D ⋅ sin2(ϕ/2), where D is the average transmission probability. There is
a general relation between the current through the Andreev state and the phase dis-
persion of the energy of the Andreev state, Is = (2e/ℏ)dE/dϕ. This equation can be
derived directly from the Bogoliubov-deGennes equation or deduced from the ther-
modynamical equation by using a microscopic expression for the junction free en-
ergy [9, 23, 25]. The total supercurrent is given by a summation over the contributions
of the current-carrying states which all depend on the phase difference between the
two superconductors. These notions are used to calculate the junction properties in
the different layouts at the nanoscale.

Something special happenswithAndreev reflection for graphene/superconductor
(G/S) interfaces, because of the unusual electronic properties of the charge carriers
in graphene (no Fermi surface at zero doping and conical band structure) [25]. Dif-
ferently from the usual case, where the electron and hole both lie in the conduction
band, at a G/S interface specular AR occurs if an electron in the conduction band is
converted into a hole in the valence band. In undoped graphene, when EF = 0, An-
dreev reflection is interband at all excitation energies. This has obvious consequences
for the Josephson coupling [25].

Junctions with graphene barriers fall within the emerging category of hybrid de-
vices, also in the sense that the barrier is not a thin film but an exfoliated flake. Hybrid
in this context may also be interpreted as prebuilt components of the junctions, pro-
ducedvia different techniques andmechanically assembled in the last stageof fabrica-
tion. S-NW-S junctions have for instance beenproposed as host and sensor of phenom-
ena associated with the presence of Majorana fermions [26–29]. Majorana fermions
enable the tunneling of single electrons (with a larger probability D1/2). The switch
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from 2e to e as the unit of transferred charge between the superconductors amounts
to a doubling of the fundamental periodicity of the Josephson energy, from E ∝ cos
ϕ to E ∝ cos (ϕ/2) [28, 29]. In contrast to ordinary Josephson currents, this contribu-
tion reflects tunneling of half of a Cooper pair across the junction. Such a fractional
Josephson effect was later established in other systems supporting Majorana modes
and in direct junctions between p-wave superconductors.

10.2.2 I-V characteristics and phase dynamics,
the Resistively Shunted Junction Model

I-V curves are the first imprinting of the nature of the junction. We briefly summarize
some standard arguments based on the Resistively and Capacitively Shunted Junction
(RCSJ) model, first introduced by McCumber and Stewart [30, 31] to classify some of
the I-V curves more commonly observed in experiments. For greater detail we refer
the reader to traditional textbooks and reviews [2, 3]. Representing the displacement
current by a capacitor (C) and the sum of the quasiparticle and insulator leakage cur-
rent by a resistance R, we can devise an equivalent circuit for the junction (see Fig-
ure 10.4a):

I + IN = Ic sin(ϕ) + V/R + CdV/dt (10.5)

The noise source IN is associated with its shunt resistance. A wide variety of I-V char-
acteristics can be described through an opportune choice of the parameters. We can
thereforepass froma regimewhere capacitanceplays amarginal role andnohysteretic
behavior is present (see Figure 10.3a) to a tunnel-like behavior with high values of the
capacitance, characterized by a hysteretic behavior and by the presence of switching
currents (see Figure 10.3b).

This behavior is characteristic of tunnel junctions, and hysteresis is directly as-
sociated with the dielectric nature of the barrier and its capacitance (underdamped
regime). The switch from the superconducting (S) to the normal state resistive (N)
branch follows a distinctive distribution, a direct consequence of fundamental fluctu-
ation processes influenced by dissipation (see Subsection 10.2.2.1). Hysteresis can be
incomplete with finite retrapping currents depending on dissipation (see for example
Figure 10.3c), with qualitatively different leakage currents, and the possible presence
of subgap step structures. Indications on the damping of the junctions are obtained
from the resistance, which may depend on the voltage (Figure 10.3c) and on the fre-
quency [32, 33]. The reference value Rn is the normal state value at voltages much
higher than the gap value. Let us indicate with ∆sw the voltage value appearing in the
junction after the switch from the S branch to the N state. ∆sw does not necessarily cor-
respond to the sum of the gap values of the electrodes as in the ideal tunnel case, be-
cause of a less ideal barrier generating additional competing transport mechanisms.
A series of other anomalies can appear in the I-V curves such as for instance the pres-
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Fig. 10.3: I-V curves of overdamped (a) and underdamped (b) junctions. The (b) behavior is charac-
teristic of tunnel junctions, and hysteresis is directly associated with the dielectric nature of the
barrier and its capacitance. The switch from the S to the N branch follows a peculiar distribution
indicated in (b) (see the text and Subsection 10.2.2.1). (c) Hysteresis can be incomplete with finite
retrapping currents depending on dissipation and accompanied by voltage-dependent leakage cur-
rents. (d) For moderately damped junctions (phase diffusion regime) a low-voltage state appears
before the switch to the normal state (inset of d, note the voltage scale). The current dependence of
the voltage in the diffusion state prior to switching is directly related to the shape of the dissipation
barrier (see the text).

Fig. 10.4: (a) Equivalent circuit of a real Josephson junction with a current bias; (b) and (c) wash-
board potential for different values of the bias current.
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ence of the excess current Iex. Iex is defined as the current axis intercept obtained by
extrapolating the linear part of the I-V characteristics for large voltages [3, 34].

Neglecting the noise term and setting V = ℏ/2e ⋅ (∂ϕ/∂t) in Equation (10.5), we
obtain:

I = Φo
2π C

∂2ϕ
∂t2

+ Φo
2π

1
R
∂ϕ
∂t + Ic sin(ϕ) (10.6)

which can be expressed as:

(Φo
2π )2

C ∂
2ϕ
∂t2

+ (Φo
2π )2 1

R
∂ϕ
∂t + ∂

∂ϕU = 0 (10.7)

where
U = −Φo/(2π)(Ic cos(ϕ) + Iϕ) . (10.8)

Considerable insights into the nonlinear dynamics of the junction can be gained by
realizing that this equation describes the motion of a ball moving on the tilted wash-
board potential U [30, 31]. The term involving C represents themass of the particle, the
1/R term represents the damping of the motion, and the average tilt of the washboard
is proportional to I. Damping is however strongly influenced by the environment, i.e.,
the circuitry connected to the junction and some aspects will be discussed in the next
section.

For values of I < Ic, the particle is confined to one of the potential wells, where it
oscillates back and forth at the plasma frequency ωp = (2πIc/Φ0C)1/2(1 − (I/Ic)2)1/4
(see Figure 10.4b), which can also be seen as the electrical resonance of the junc-
tion capacitance, C, with the mechanical Josephson inductance of the junction, LJ =
Φo/(2πIc). In this case the average voltage across the junction is zero. When the cur-
rent I exceeds Ic, the particle rolls down the washboard (see Figure 10.4c); in this case
a voltage appears across the junction.

The McCumber–Stewart damping parameter βc = 2πIcR2C/Φo determines the
amount of damping [2, 3]. The strength of the friction is also commonly expressed
through the junction quality factor Q = ωpRC = (βc)1/2. While ωp does not depend
on the size of the junctions, Q decreases with the area of the junction, since the effec-
tive resistance R is mostly dominated by the high-frequency impedance of the circuit
the junction is embedded into (see Subsection 10.2.2.1). Junctions are underdamped,
with hysteretic I-V curves, and hence latching for βc > 1. For βc < 1 they are over-
damped, with nonhysteretic I-V, and nonlatching. For hysteretic junctions the nature
of the switch from the superconducting to the resistive branch requires more refined
analysis, as demonstrated by measurements of the switching current distributions,
commonly used for the demonstration ofmacroscopic quantumphenomena (see Sub-
section 10.2.2.1).
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10.2.2.1 Phase dynamics from thermal activation
to macroscopic quantum tunneling

A closer inspection of the washboard potential allows one to understand basicmacro-
scopic quantum phenomena [35], which are relevant to establishing how the junc-
tion is coupled to the environment. These studies are relevant for the development of
qubits. All fundamental concepts from the notion of tunneling processes in the wash-
board potential to the real measurement of the switching current distribution (SCD),
and the study of the behavior of its first and second momenta (the mean I and the
width σ) are illustrated in the “flowchart” of the SCD measurements in Figure 10.5.
Two distinct typical examples of SCDs are given in Figure 10.5b and e as a function of
the temperature T. The widths σ are finally reported as a function of T (Figure 10.5c
and f). These two cases summarize different phase dynamics processes, which are the
main target of this chapter and are represented in Figure 10.5d and g, respectively.

When ramping the bias current I, the tilt of the energy potential increases and the
height ∆U(I) = 4√2/3 ⋅ EJ(1 − I/Ic)3/2 of the energy barrier between consecutive wells
decreases (see Figure 10.5d). Because of effects of thermal fluctuations and quantum
tunneling the junctionmay switch to the finite voltage state for values of I < Ic. The rel-
ative weight of these two escape processes depends on the temperature of the system.
For kBT ≫ ℏωp, the escape process is dominated by Thermal Activation (TA) (black
dashed line in Figure 10.5d) with a rate [36]:

ΓT(I) = aT
ωp(I)
2π

exp(−∆U(I)
kBT

) , (10.9)

where aT ≃ 4 [(1 + QkBT/1.8∆U)1/2 + 1]−2 is a prefactor of the order of one. At
low enough temperatures the escape is dominated by Macroscopic Quantum Tunnel-
ing (MQT) (blue dashed curve in Figure 10.5d) with a rate [37]:

Γq(I) = aq
ωp(I)
2π exp [−7.2∆U(I)ℏωp

(1 + 0.87
Q )] (10.10)

with aq = 864π∆U/ℏωp. Once the phase particle overcomes the barrier by fluctua-
tions, it keeps running, provided that the damping is below some critical value. The
escape from this metastable state corresponds to the appearance of a finite voltage
across the junction and the particle runs down the washboard potential with a damp-
ing Q−1. The transition to the running state (see Figure 10.5d) only occurs if the kinetic
energy gained by the phase particle running down the tilted washboard potential is
not all dissipated, but enough energy remains to carry the phase over the next barrier.
This occurs if the junction is in the underdamped regime (Q ≫ 1) [32, 38].

In the moderately damped regime (1 < Q < 5), which commonly occurs in junc-
tions of reduced dimensions with small values of Ic, following an escape event the
particle may travel down the potential for a few wells and then be retrapped in one of
the followingminima of the potential (Figure 10.5g) [33]. The analytical expression for
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Fig. 10.5: The SCDs are reported as a function of temperature in (b) and (e). They are extracted from
hysteretic I-V curves as shown in (a). The different temperature evolutions of the SCDs translate in
characteristic dependence of the widths σ of the distributions, as reported in (c) and (f), respec-
tively. (d) The particle/phase overcomes the barrier by Thermal Activation (TA) or by Macroscopic
Quantum Tunneling (MQT), then it rolls in the running state. Tcr signals the crossover between the
TA and the MQT regimes and is tuned by the magnetic field (see text for details). (g) Retrapping pro-
cesses may occur for intermediate levels of dissipation determining a phase diffusion (PD) regime.
T∗ separates TA from PD.

the retrapping rate is given by:

Γr(I) = ωp
I − Ir
Ic

( EJ
2πkBT

)1/2
exp[− EJQ2

2kBT
( I − Ir

Ic
)2] (10.11)

where Ir = 4Ic/πQ is the retrapping current in absence of thermal fluctuations [30].
At low bias the process of escape and retrapping may occur multiple times generating
diffusion of the phase (Figure 10.5g) until an increase of the tilt of the potential, due
to a change in the bias current, raises the velocity of the particle and the transition to
the running state occurs. This is known as the Phase Diffusion (PD) regime [33]. The
measured distribution of the switching probability P(I) is used to compute the escape
rate out of the zero-voltage state as a function of the bias current [39]:

Γ(I) = 1
∆I

dI
dt ln( ∑i≥I P(I)∑i≥I+∆I P(I)) (10.12)

where dI/dt is the current ramp rate and ∆I is the channel width of the analog-to-
digital converter. In an underdamped junction (Q > 10) [38], below a crossover tem-
perature Tcr the escape process is due to MQT, marked by a temperature-indepen-
dent σ, while above Tcr the process of escape is due to TA above the potential bar-
rier, with a distinctive increase of σ with temperature as T2/3, see Figure 10.5c. The
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crossover temperature Tcr between the thermal and quantum regimes is given by:
Tcr = (ℏωp/2πkB) {(1 + 1/4Q2)1/2 − 1/2Q}. A tuning of Tcr is a powerful in situ knob
to prove MQT. This is commonly realized by applying a magnetic field H which modi-
fies Ic and as a consequence the plasma frequency ωp, thus tuning Tcr. In Figure 10.5c
the red curve with a reduced Tcr shows variations induced by H on σ.

A detailed experimental protocol has been established to prove the quantum be-
havior of the phase φ across a JJ and its crossover to the thermal regime [32, 38], used
inmost later experiments. The relevant parameters of the junction and the dissipation
level have been determined in situ in the thermal regime frommeasurements of reso-
nant activation in the presence of microwaves. Such method still represents the most
powerful way to characterize the dissipation level in the underdamped regime. Com-
plex impedance seen by the junction at microwave frequencies because of the bias
circuitry, ultimately determines the overall dissipation measured in the experiments.

In moderately damped junctions [33] a transition from the TA to PD regime occurs
at a crossover temperature T∗ > Tcr. T∗ corresponds to a distinctive change in the
sign of the temperature derivative of σ, with dσ/dT > 0 for T < T∗ and dσ/dT < 0 for
T > T∗, see Figure 10.5f.

The extension of the basic RCSJ equation (10.7) to include current fluctuations,
through a white noise driving force ξ(t) (Langevin equation):

φ̈ + φ̇/Q + dU/dφ = ξ(t) (10.13)

allows a quantitative treatment also of the PD regime. In this equation the time is nor-
malized to 1/ωp, the plasma frequency at zero bias current. The white noise driving
force ξ(t) is such that: ⟨ξ(t)⟩ = 0; ⟨ξ(t), ξ(t)⟩ = √kBT/QEJδ(t − t). In a more general
approach, the damping parameter Q has a frequency dependence better responding
to the need of including external shunting impedance [32]. A phase diagram can be
built on the basis of EJ and Q through Monte Carlo simulations. It explains how the
transition from the TA to PD regime is controlled by Ic and by the shunting C of the
JJ, and how a direct crossover from PD to MQT can take place for moderately damped
JJs [40–42]. The considerations above can be extended to a more complicated tilted
washboard potential U, where effects related to the presence of a second harmonic in
the Is(ϕ) are taken into account. For large values of the second harmonic component
the potential has the shape of a double well profile (for details see [42–44]). This is of
more interest for instance for HTS [43] and ferromagnetic JJs [21, 44].

In nanoscale junctions cross sections and hence capacitance are small. As a con-
sequence phase fluctuations are basically no longer regulated by the junction itself,
but by the circuit in which it is embedded. Thus, Josephson phenomena in such junc-
tions strongly depend on the environment. The effective capacitance can for instance
incorporate some stray capacitive effect of the leads close to the junction. In other
words, in a small unshunted current-biased junction connected to a resistive and ca-
pacitive (RC) impedance, the process of switching from a phase diffusion branch to
a voltage branch is not dominated by thermal activation over the usual washboard
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potential barrier (or quantum tunneling through this barrier) occurring in large area
junctions. It is rather due to thermal activation above amore complex dissipation bar-
rier for which an expression can be found in the large friction limit [45].

Phase diffusion phenomena may even appear in I-V curves [46–49] (see Fig-
ure 10.3d). Low Ic values lead to small EJ values, which turn out to be comparable
with Ec. When Ec is comparable to EJ, it is necessary to go beyond the common ap-
proximation used up to now, and the Josephson junction is described by the more
general HamiltonianH [48],

H = −4Ec ∂2

∂ϕ2 − EJ cosϕ (10.14)

The value of the ratio x = Ec/EJ is a measure of how strongly the charging energy acts
in delocalizing the phase, and is related to the width δϕ of the phase wave function.
An important consequence of phase delocalization is the existence at very low temper-
atures of a regime of phase diffusion in which the representative point moves steadily
down the tilted-washboard potential in the above-mentioned diffusive motion, with-
out escaping and jumping up to the gap voltage. Such amotion gives rise to ameasur-
able finite slope in the superconducting branch [33, 46–49]. A frequency-dependent
damping explains the coexistence of hysteresis and phase diffusion.

10.3 Why scale junctions to the ‘nanoscale’? From fabrication to
general properties and main parameters

There are several motivations to scale junctions to the submicron and possibly to the
nanoscale. In some cases new functionalities and phenomena can arise, for instance
mesoscopic and low-dimensional effects.

In other cases this is motivated by the need of reaching well-defined values of the
junction parameters. It might be the only way to avoid too large values of Ic or too
small values of Rn to match the circuit environment [50]. Reducing the junction size
changes the range of junction parameters. Ic decreases while Rn increases, but scal-
ing ultimately depends on barrier uniformity. The total capacitance of the Josephson
junctions depends not only on the junction area and barrier material, but also on the
immediate surroundings of the junction, which adds parasitic capacitance. Especially
in the case of extremely small junction areas this parasitic capacitance can dominate
the total capacitance. Submicron dimensions are also the strategy to increase clock
frequency and integration density for superconducting digital electronic circuits. So,
e.g., at a current density Jc of 100 kA/cm2 the junction area has to be in the range
of 0.1 μm2 compared to 10 μm2 at 1 kA/cm2. Scaling to submicron or smaller scales
is also important for special applications in metrology, qubits or single charge tun-
neling devices. The first submicron S-I-S-type tunnel junctions were prepared by an
aluminum shadow evaporation technique [50, 51]. Several modified processes were
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developed in order to fabricate JJswith submicron tunneling areas, includingHTS. The
chemical-mechanical polishing (CMP) technique [50, 52] was an important contribu-
tion to solving the isolation problem and to strongly improving the quality of wiring
connections by minimizing the step heights in circuits with a large number of layers.
Keeping in mind that IcL ≈ Φo [53] and it is hard to fabricate a loop with a low in-
ductance, Ic should not exceed a few tens to a few hundreds μA (at the same time
the Josephson coupling energy, i.e., Ic, should surpass the thermal noise energy). To
fulfill this demand, junctions with submicron size are required. Submicron size lines
and junctionsmaybe of advantage inHTS components and circuits. To scale junctions
to the submicron range for HTS JJs is particularly important to better isolate specific
transport channels and mechanisms. The various transport modes are averaged out
by impurities of variable size, by faceting and by local inhomogeneities. The scaling
of junctions to the deep submicron is a great chance to improve yield, homogeneity
and reproducibility of the junctions, and to have access to the intrinsic properties of
HTS JJswith a series of potential advantages. A GB is inhomogeneous in several length
scales and some disturbing defects may be avoided by using small dimensions.

In other cases junctions exist only at the nanoscale, when for instance the barrier
is a nanowire or a flake of graphene or topological insulator.

10.3.1 Fabrication

Electron beam lithography is the key towards the realization of submicron and
nanoscale junctions. It will drive choices for all technologies which cooperate to
fabricate the devices, from lift-off to the materials used for the masks, and so on. Fab-
rication procedures for the realization of nano-SQUIDs, of single-electron transistors
(SETs) and even of the more challenging Cooper pair box used for the realization of
qubits [54–56] are well consolidated on some materials and for some processing. It is
obvious that every nanoscale device is the magic result of a series of nanotechnolog-
ical processes which will respond differently to the various materials and depend on
the layout of the device, thus generating a proliferation of specific recipes.

Another type of tool is the Focussed Ion Beam (FIB). This is used to remove part of
the material and takes advantage of the small size of the beam and of the possibility
to orient the beam to pattern a large variety of bridges and junctions. It is used for
instance for HTS intrinsic Josephson junctions (see Figure 10.1g and Chapter 12).

10.3.2 Hybrid coplanar structures: from 2d-gas to graphene and topological
insulator barriers

When we use the term superconducting hybrid device, we traditionally mean a co-
planar structure upon which a barrier with special functions, such as for instance
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a semiconductor (Sm), was deposited and treated prior to the patterning of the su-
perconducting banks. This junction configuration avoids the extremely challenging
critical step of Sm deposition on the superconducting film, and better exploits the ca-
pability of growing multilayered Sm heterostructures with high control of the doping
level of each single layer. Among the semiconductors, InxGa1−xAs and especially InAs
are the most used because they favor more transparent rather than Schottky barri-
ers [57]. In S-Sm-S systems, interface effects and boundary conditions will eventually
tune the superconductingproximity effect and the capability of transferring coherence
from the electrodes to the barrier [2]. The induced coherence length in the semicon-
ducting barrier ξsm depends on the carrier density through the diffusion constant and
can be tuned, for instance, through a gate voltage for a high transmittance S-Sm inter-
face [2, 57, 58]. These barriers are commonly schematized as two-dimensional electron
gas (2DEG) systems and can be tuned through the gate from the weak localization to
the strongly localized regime. The values of Ic and Rn can be adjusted in a wide range
which covers about three orders of magnitude by applying 20 V [58]. The gate voltage
strongly modifies I-V curves and the amplitude of the hysteresis. One of the ultimate
targets for this type of device with an Sm barrier has always been the challenging re-
alization of a superconducting Josephson field-effect transistor (Jo-FET) [59].

Of recent conception are all layouts employing flakes of graphene and topologi-
cal insulators (TI) [60–66] (see Figure 10.1d), and nanotubes [67, 68] and nanowires
(InAs, Ge, . . . ) [70–73] (see Figure 10.1e) as barriers. The ability to handle flakes and
nanowires combined with the possibility of nanopatterning has paved the way to the
realization of these new families of hybrid Josephson junctions. Epitaxial HgTe layers
for instance may readily be turned into a topological insulator by inducing strain in
the material [64]. In contrast to Bi compounds, such materials exhibit no bulk con-
ductance. These junctions do not have any immediate impact on applications in su-
perconducting electronics, but are of relevance because they allow us to explore new
types of interfaces with possibly unique properties and potentials. The use of these
junctions as potential ‘sources and sensors’ of Majorana fermions (MF) and topologi-
cal states of matter [26–29] is the most fashionable and recent example. If one thinks
of the first generation of point contact junctions [2] or of HTS junctions using a single
crystal as a counter-electrode [13], one has the idea of how pioneering structures can
be very important to promote further developments in specific directions.

In the standard configuration a nanowire (NW) or a flake is placed on a substrate.
The sample is then suitably patterned to define through e-beam lithography the re-
gions where superconducting electrodes will be deposited. The surface of the NW or
of the flake is gently polished through ion milling or a more drastic chemical etching,
a key step for an acceptable barrier transparency. Superconducting contacts accord-
ing to current technical limits are typically not closer than 60–100nm for nanowires
and for flakes depending on the specific material, its actual microstructure and gran-
ularity, and technological handling. Different layouts and materials have been used
and some of them are collected in Table 10.1. The table is instructive because it gives a
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survey on the employed materials, and of the typical values of Ic and IcRn. The range
of parameters of the junctions are quite enlarged in hybrid junctions because of Sm.
Carrier density can changebyorders ofmagnitude,mesoscopic effects becomeubiqui-
tous, Thouless energy andnew relevant disorder scales for quantum transport become
active terms of comparison (see the references of Table 10.1). Ic values for NW-based
junctions never exceed a few μA, and typically range from tens to hundreds of nA.
The radius of the NWs “typically ranges” from 50 to 100nm, while a typical length
is about 1 μm. It is not straightforward to estimate Jc because of possible nonuniform
distribution of the current at the cross section. This can be even more significant in
two-dimensional barriers, which are typically a few microns wide. Here edge current
effects and preferential current paths may play a quite relevant role, because of the
intrinsic nature of the material in a confined geometry.

In NW-based JJs modulation of Ic is not commonly observed as a function of the
magnetic field H, because the small cross section of the NW would require too high
values of H to enclose a flux quantum, thus destroying superconductivity in the LTS
electrodes (typically Al). Theoretical Ic(H) have been calculated as a function of the
size of the barrier as shown for instance in Figure 10.2 [12]. Fraunhofer patterns have
been measured in graphene- and TI-flake barriers (see for instance [61, 63, 65]). Here
deviations may be due to anomalous current distribution along the barrier, screening
currents in the banks confining flux, and possible generation of vortex entities [69].
Shapiro steps have been observed with expected power dependence [70]. The trans-
port parameters of the NW- and flake-barriers combined with the magnitude of Ic and
with the dependence of Ic on the electrode distance (barrier length L), suggest formost
cases diffusive transport.

Electrodynamics of these junctions is poorly understood because of difficulties in
modeling effective capacitance and dissipation of the junctions. Here heating effects
may have more dramatic effects because of the lower dimensionality of the system.
Hysteresis in I-V curves is controlled by heating nonequilibrium modes rather than a
consequence of the capacitanceassociatedwith the dielectric nature of the barrier [74,
75]. This can be reasonably inferred from the lack of general consistency of the set of
electrodynamical parameters describing the junction [75]. Ic can be relatively low, but
Jc can be high.

An alternative design to those described above, has been proposed and realized
forHTS [76] andalso testedonAl [73, 77]. It can inprinciple be extended to allmaterials
whose deposition conditions of multilayer structures are delicate. The InAs NW is sus-
pended over the superconducting banks, over a trench, typically a few micron wide
and about 100–200nm long, and is finally electrically connected to the electrodes.
Theproposed layout circumvents the compatibility problems stemming from thepecu-
liar growth condition requirements of HTS and its coupling with device-quality semi-
conductors. In fact, the integration of Sm and HTS components takes place at room
temperature after suitable surface treatments assembling prebuilt blocks. The ability
to connect HTS banks with InAs NWs implies that several technological issues have
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Table 10.1: Properties of different types of nanoscale hybrid Josephson junctions. Some more com-
plete sets of data on junctions with barriers of NWs (TI) can be found in [77, Table 1] ([65]), respec-
tively. In most cases Al stands for a bilayer Ti/Al where Ti guarantees a better electrical contact. Data
from [78] are taken at Vgate = 35 V

Type of junction L (nm) Ic (nA)(at T, mK) IcRn (μV) References

Nb/InAs(NW)/Nb ≈ 140 110 (400) 50 [79]
Nb/InN(NW)/Nb ≈ 100 5000(800) 450 [72]
Al/InAs(NW)/Al from 100 to 450 135 (40) 2–60 [70]
Al/InAs(NW)/Al 140 60 (300) 11 [77]
Al/GeSi/Al ≈ 100 120(60) 200 [71]

Al/Graphene/Al ≈ 400 35 (30) 120 [60]
Al/Graphene/Al ≈ 400 500 (60) 50 [61]
MoRe/Graphene/MoRe ≈ 1500 120 (50) 50 [78]

Al/Carbon NT/Al ≈ 470 3 (30) 20 [67]
Al/Carbon NT/Al ≈ 200 0.06 (35) [68]

Nb/Bi2Te3/Nb ≈ 50 (W = 500 nm) 25 000 (260) 50 (shunted) [63]
Al/Bi2Se3/Al ≈ 300–400 228–1670 (300) 10 (shunted) [65]
Nb/HgTe/Nb ≈ 200 3800 (25) 200 [80]

been solved and is the basis for further advances [77]. In particular a) trenches of min-
imum size of the order of 100–150nm can be successfully created in a very repro-
ducible way without a severe degradation of the properties of YBCO, which is always
protected by a thin Au layer in all fabrication steps (the contact between HTS and InAs
always needs a thin ‘inert’ layer of Au of thickness of the order of 10–20nm to reduce
interface contamination); b) an InAs NW can be in situ polished through passivation
etchingwithout severe damage to the superconducting YBCO thin film, c) submicrom-
eter rectangular areas can be patterned on InAs NWs suspended on YBCO banks, thus
defining the areas for contacts [77]. Further progress on NWpositioning is expected in
the coming years.

10.3.3 Submicron HTS Josephson junctions, energy scales and mesoscopic effects

Looking at the large amount of data available in the literature, the apparent contrast
of several results, or the fact that some predicted phenomena derived from well-
established effects have not yet been clearly detected or only intermittently (such as
the second harmonic component, time-reversal symmetry breaking, all derived from
d-wave order parameter symmetry [6]), the only reasonable explanation is to assume
that several different tunneling and diffusive processes are active in the transport,
but only the morphology of the barrier and of the GB will discriminate the role of
each transport mechanism. The microstructure acts as a filter determining additional

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



326 | 10 Josephson and charging effect in mesoscopic superconducting devices

constraints on the various transport modes, and nanostructures may help to isolate
the various contributions.

The first studies on bicrystal submicron JJs gave encouraging results such as the
reduction of decoherence, the presence of the second harmonic component or of
Andreev-bound states [6]. As already mentioned above recently submicron biepitax-
ial junctions have been realized down to about a few hundreds nm by using both
e-beam lithography and C and Ti masking [81]. Yield and reproducibility have been
improved at this width scale, junctions exhibit a more uniform barrier and d-wave-
induced effects are even more controlled [81]. The low dissipation of the junctions
and a much reduced number of facets have also emerged as characteristic features.
These achievements pave the way to the ultimate target, i.e., a reproducible, single-
facet junction a few hundreds nanometers wide. This classical controllable top-down
approach is accompanied by some types of bottom-up technique [82]. The complex
growth process may determine self-assembled nanochannels of variable dimensions,
ranging typically from 20 to 200nm. These nanocontacts can be considered self-
protected as far as they are enclosed in macroscopic impurities. Even if this very last
technique is not ideal on the long range for applications, since it needs an additional
critical step to locate the nanobridges and etch the HTS thin film, it can be really
helpful to understand the ultimate limit of junction performances and to understand
the transport mechanisms. These channels may be the origin of mesoscopic effects
with a characteristic Thouless energy of the order of 1meV [83]. The idea to use the
self-protected GB growing in between impurities has been pursued in [82] by using
standard e-beam techniques combined with FIB. By using the competition between
the superconducting YBCO and the insulating Y2BaCuO5 phases during film growth,
nanometer-sized GB junctions of the order of 100nm were formed in the insulating
Y2BaCuO5 matrix. FIB has also been used to produce nano-SQUIDs employing bicrys-
tal junctions of widths down to 80nm [84]. One of the next steps to be understood
is whether the scale of 100nm (coming out from the different experiments discussed
above) is representative of the intrinsic nature of HTS or not. A matrix of filaments
of smaller size, related to the nature of HTS rather than to the macroscopic artifacts
formed during the build-up of the GB, could result for instance from intrinsic stripes
or from regions where strong correlations are not uniformly distributed along the GB.

Biepitaxial submicron junctions have shown improved uniformity [49, 81]. Most
submicron junctions apparently fall in the moderately damped regime without any
excess current. It has been found ∆sw ≈ IcRn up to about 4mV [81], with Ic less than
a few μA. Ic can be reproducibly controlled down to a few nA with a minimum EJ
comparable with the estimated Ec [49]. Evidence for frequency-dependent damping
of these devices has been given.

This work follows the observation of MQT for biepitaxial junctions with a lobe
of the order parameter facing a node, thus in the presence of low-energy quasiparti-
cles [43], and studies of the phase dynamics in the moderately damped regime [41,
75, 85]. MQT, TA and PD, see Subsection 10.2.2.1, along with the transitions from one
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to another regime have been investigated as a function of Q and EJ. Tcr from TA to
MQT has been found within the temperature range from 50 to 110mK, with ωP of the
order of 10GHz and a Q factor ranging from 30 in the underdamped regime [43, 86]
to about 1 in the moderately damped regime [41, 85]. Capacitance values range from
60 fF (in JJs based on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) substrate) to about 1 pF (in
STO-based JJs). In general, values of specific capacitance of off-axis biepitaxial junc-
tions on STO substrates are about 5 × 10−4 Fcm−2, one order of magnitude larger than
those found for LSAT-based junctions [81], thus demonstrating some control on shunt
parasitic capacitance.

Single-electron transistors with tunneling resistances in the range from 200kΩ to
25MΩ and charging energies Ec in the range 20−200 μeV have been fabricated using
biepitaxial junctions [87]. The YBCO island area is defined by thewidth of the STOwire
and the GB nanojunctions, with the electrodes patterned perpendicular to the seed
layer. The energy required to add an extra electron depends on the parity (odd/even)
of the excess electrons on the island and increases with magnetic field [87] (see Sec-
tion 10.4).

Novel insights into nonequilibrium effects in high-Jc JJs have been made possi-
ble by a comparative study [75, 85]. The lack of self-consistency of the set of junction
parameters used to fit experimental data in Nb [88] and Al [74] LTS JJs with high Jc
(Jc > 104 − 105A/cm2) has already raised the question whether conventional tunnel
junction circuit models can fully describe high-Jc JJs. The amplitude of the hystere-
sis in I-V curves is for instance not consistent with the estimated value of the capaci-
tance [75]. The same behavior is frequently observed in HTS JJs. The study of the fluc-
tuations of Ic through SCD has demonstrated that, above some threshold specific of
the type of junction, standard Josephson coherence cannot be sustained because too
much current is flowing through the specific cross section. Hysteresis is substantially
governed by heating nonequilibrium modes which strongly influence I-V curves and
drive fluctuationmechanisms [75]. This has a profound influence on the evaluation of
dissipation, of Q and of ωp. A self-consistent set of parameters is able to account to a
large extent for the phase dynamics of a HTS JJ, the shape of I-V curves and all their
basic features, in complete analogy to what was firmly established in LTS JJs [75].

10.4 Charging effects in ultrasmall junctions

10.4.1 Introduction to single-electron tunneling and parity effect

The Single-Electron Transistor (SET) consists of a normal conducting or superconduct-
ing island connected to two electrodes (source and drain) through two tunnel junc-
tions (see Figure 10.6). A gate electrode is capacitively coupled to the island. If the is-
land and the electrodes are made of a normal metal the total charge is well quantized
when the resistances Rj1, Rj2 of the tunnel junctions are much larger than the quan-
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tum resistance, RQ = h/4e2 ≃ 6.5 kΩ, and the charging energy, Ec = e2/2CΣ ≫ kBT,
with kBT defining the thermal energy. Here e is the electron charge and CΣ is the total
capacitanceof the island defined as the sumof the junction capacitances (Cj1 and Cj2)
and gate capacitance (Cg) (see Figure 10.6). If these conditions are realized electrons
tunnel one by one on the island and a gate voltage can vary the charge on it.

The electrostatic energy stored in the capacitances of the junctions and in the gate
capacitance is given by the simple expression U(n) = Ec(n − ng)2 with ng = CgVg/e
the normalized induced charge, and Vg is the applied potential to the gate electrode.
At small source-drain voltages (Vsd ≪ Ec/e) a source-drain current flows only when
two neighboring parabolas cross at half-integer induced gate charge values (see red
dots in Figure 10.7[a]). At all other gate values charge transport is forbidden since the
energy needed to tunnel on or off the island is larger than the supplied bias voltage.
As a consequence the current through source and drain Isd in a normal island SET is
e-periodic as a function of the gate voltage (see Figure 10.7a, b).

In a mesoscopic island made of a conventional superconductor, instead, the free
energy required to add one electron to an island with an even number of excess elec-
trons is enhancedwith respect to the odd case because of the presence of a condensate
of Cooper pairs and of an energy gap in the excitation spectrum. At very low tempera-
tures the even-odd free-energy difference of the island with an isotropic gap ∆ can be
written as

F(T) = ∆ − kBT ln (Neff(T)) , (10.15)

where Neff represents the number of quasiparticle states within the thermal energy
kBT above the gap in the island volume. The resulting energy bands for a SET with a
superconducting island including also the even-odd free energy difference is shown in
Figure 10.7(c). Here all the odd parabolas are shifted by F in energy with respect to the
even parabolas. Therefore, a finite F results in a 2e periodicmodulation (parity effect)
of Isd as a function of the gate-induced charge (Figure 10.7d). One can determine F
from the measured Isd as a function of the normalized gate charge [87].

For a conventional superconductor, F decreases with increasing temperature of
the island [89] or by independently decreasing the energy gap ∆, for example, by ap-
plying an external magnetic field [90] (see Equation (10.15)).

island source drain 

Vg 

Cg 

+Vsd/2-Vsd/2

Rj1 Cj1 Rj2 Cj2 

Fig. 10.6: Circuit diagram of a single-electron
transistor. The crosses represent the Joseph-
son tunnel junctions characterized by a junc-
tion capacitance Cj and resistance Rj. The
source-drain current Isd through the single-
electron transistor is a function of the source-
drain voltage Vsd and gate voltage Vg, which is
applied through the gate capacitor Cg.
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Fig. 10.7: (a) Normalized electrostatic energy as a function of the normalized gate charge ng for a
SET with a normal island. The different parabolas correspond to the number n of added electrons
to the island (thin line: odd number n, thick line: even number n). As the gate voltage is changed
the energy in the system is minimized by single-electron tunneling events onto and off the island to
follow the lowest available parabola. (b) Source-drain current as a function of ng at a source-drain
voltage slightly above zero for a normal metal island. (c) Sum of the normalized electrostatic energy
and even-odd energy difference F as a function of ng for a SET with a superconducting island. Here
every odd parabola (thin line) is lifted by the value of F . (d) Source-drain current as a function of ng
at a source-drain bias slightly above 2∆ for a superconducting island. Note that the periodicity of
the curve is 2e instead of e as for the normal metal island.

A SET is therefore a very powerful tool that allows one to directly measure two
characteristic energies in a mesoscopic island: 1) the thermodynamically defined free
energy difference F between even and odd number of electrons on the island, by the
detection of the parity effect (bulk property of the island), 2) the island superconduc-
tive gap, by the current voltage characteristics of the transistor as a function of the
gate voltage (surface property of the island). While the detection of a gapped surface
density of states is straightforward, i.e., by measuring the current voltage characteris-
tic [87], the observation of a gapped bulk density of states through the measurement
of F is an extremely challenging task. This is even the case for low critical temperature
superconductors (LTSs).

From extensive studies of the parity effect in LTS SETs themechanismspreventing
the observation of an even-odd free energy difference in a fully gapped superconduct-
ing island may be classified as follows:
1. overheating of the SET island;
2. quasiparticle poisoning, i.e., nonequilibrium quasiparticles whose origin is still

under debate;
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3. very long quasiparticle relaxation times;
4. charge noise (which is limiting the energy resolution of the transistor).

Overall the observation of an island free energy difference F is an extremely difficult
task because it involves material-related aspects and specifics of the measurement set
up (such as high-frequency filtering of the measurement lines). Moreover, the pres-
ence of any quasiparticle state at the Fermi energy of the islandwould prevent the ob-
servation of the parity effect. It is therefore not surprising that it has been previously
observed only in Al nanoislands [89] and never, for example, in Nb. Indeed compara-
tive studies of Al and Nb SETs suggested that the elusiveness of parity effects is related
to the material properties, in particular the formation of a surface oxide layer under
ambient conditions [91, 92]. While Al tends to form a few nanometer-thick insulating
oxide layer, niobium is prone to oxidize forming metallic NbOx compounds. This pro-
cess then leads to localizedmetallic states in the island,which prevents parity control.

The measurement of an odd-even free energy for unconventional superconduc-
tors and/or more complex metal superconductors used for hybrid devices can have
groundbreaking implications because of the thermodynamical nature of the single-
electron tunneling phenomenon probing the lowest energy state of the island. Very
recently the parity effect has been observed in more complex superconductors like an
NbTiN island coupled to Al electrodes [93]. The NbTiN compound forms transparent
contacts with spin-orbit coupled semiconductor nanowires [27], and has become a
preferred superconductor to investigate topological superconductivity and Majorana
bound states. The observation of long lifetimes for the parity effect in such a supercon-
ductor, exceeding the order of magnitude of the required gate time for the manipula-
tion and braiding of Majorana fermions [94] has strong implications for topological
quantum computing.

10.4.2 Unconventional parity effect in dx2−y2 superconductors

A few years ago the parity effect was also observed in YBCO dx2−y2 superconductors.
This was quite unexpected, since in cuprate superconductors the presence of nodes,
together with effects due to disorder and scattering, results in a finite quasiparticle
density of states even at zero energy [95]. Therefore there should be no gain in en-
ergy by the recombination of unpaired electrons as instead happens for conventional
superconductors. Instead it came rather as a surprise the observation of a parity ef-
fect in a (103) YBCO island separated by the (001) YBCO oriented electrodes by grain
boundary junctions (see Figure 10.8).

The explanation of this experimental result requires a fully gapped superconduc-
tivity which can be achieved, in cuprate superconductors, by considering an addi-
tional imaginary subdominant order parameter of the type is, or idxy, which allows
one to recover a full gap and therefore a parity-dependent free energy. Surprisingly,
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Fig. 10.8: (a) AFM image of a YBCO SET. (b) Source-drain current as a function of the normalized in-
duced charge at zero applied magnetic field. (c) Source-drain current as a function of the normalized
induced charge of an externally applied field of 2 T. The 2e periodicity clearly demonstrates the oc-
currence of a fully developed superconducting gap. For comparison see Figure 10.7d.

the parity effect increases with magnetic field rather than being reduced as for con-
ventional superconductors (from Equation (10.15) a reduction of ∆ due to a magnetic
field would reduce the value of F). This unconventional parity effect is a peculiar fea-
ture of a YBCO island and certainly needs more study to be properly understood. It
may be possibly related to an imaginary order parameter, which lowers the energy of
the ground state of the system, predicted to appear in the presence of a local charge
density wave order (CDW) [96]. CDW has been demonstrated in all cuprate families
both hole [97] and electron [98] doped. This local order is enhanced in underdoped
HTS systems, like the (103) island forming the SET, and in the presence of a magnetic
field. It is therefore possible that the associated imaginary superconducting order pa-
rameter also increases with an applied magnetic field B giving higher values of F in
the field. This experiment gives an account of how a SET transistor can be considered
a very powerful spectroscopic tool at the nanoscale allowing us to obtain an energy
resolution orders of magnitude better than any other technique [87]. It has been fun-
damental to detect the appearance of a full superconductive gap in an underdoped
YBCO island and may be instrumental in studying evolution in a magnetic field of
the superconducting ground state in YBCO nanodots with different dopings and size.
These studies could be instrumental to obtaining clear answers about the hierarchy
of different competing/cooperating local orders in HTS cuprates, possibly helping us
to uncover the microscopic origin of HTS.
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10.5 Conclusions

We have revisited some key concepts and some of the most recent advances in the
physics of Josephson junctions. Progress in material science and nanotechnology has
allowed us to enlarge the ‘parameter space’ of the Josephson junctions to unprece-
dented values and control. The continuous progress inwell-established LTS JJs consol-
idates expectations for a series of applications, while unconventional junctions keep
opening up novel interesting problems.
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Maria José Martínez-Pérez and Dieter Koelle
11 NanoSQUIDs: Basics & recent advances

Abstract: Superconducting Quantum Interference Devices (SQUIDs) are one of the
most popular devices in superconducting electronics. They combine the Josephson
effect with the quantization of magnetic flux in superconductors. This gives rise to
one of the most beautiful manifestations of macroscopic quantum coherence in the
solid state. In addition, SQUIDs are extremely sensitive sensors allowing us to trans-
duce magnetic flux into measurable electric signals. As a consequence, any physical
observable that can be converted into magnetic flux, e.g., current, magnetization,
magnetic field or position, becomes easily accessible to SQUID sensors. In the late
1980s it became clear that downsizing the dimensions of SQUIDs to the nanometric
scale would encompass an enormous increase of their sensitivity to localized tiny
magnetic signals. Indeed, nanoSQUIDs opened the way to the investigation of, e.g.,
individual magnetic nanoparticles or surface magnetic states with unprecedented
sensitivities. The purpose of this chapter is to present a detailed survey of micro-
scopic and nanoscopic SQUID sensors. We will start by discussing the principle of
operation of SQUIDs, placing the emphasis on their application as ultrasensitive de-
tectors for small localized magnetic signals. We will continue by reviewing a number
of existing devices based on different kinds of Josephson junctions and materials, fo-
cusing on their advantages and drawbacks. The last sections are left for applications
of nanoSQUIDs in the fields of scanning SQUID microscopy and magnetic particle
characterization, placing special stress on the investigation of individual magnetic
nanoparticles.

11.1 Introduction

The superconducting quantum interference device (SQUID) consists of a supercon-
ducting ring intersected by one (rf SQUID) or two (dc SQUID) Josephson junctions (JJs).
SQUIDs constitute, still at present, the most sensitive sensors for magnetic flux in the
solid state [1, 2]. For more than 50 years, a plethora of devices exploiting this property
have been envisioned, fabricated and used in many fields of applications [3]. These
devices include voltmeters, current amplifiers, metrology standards, motion sensors
andmagnetometers. One of the key applications of SQUIDs is inmagnetometry. Here,
a superconducting input circuit (flux transformer) picks up the magnetic flux den-
sity B, captured by superconducting pick-up loops of some mm2 or cm2 area, and the
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induced current is then (typically inductively) coupled to a SQUID. The figure of merit
of SQUIDmagnetometers is the field resolution√SB = √SΦ/Aeff, which can reach val-
ues down to about 1fT/√Hz. Here, SΦ is the spectral density of flux noise of the SQUID
and Aeff is the effective area of the magnetometer.

To ensure good coupling from an input circuit to a SQUID, typically thin filmmul-
titurn input coils are integrated on top of a washer-type SQUID loop. Typical thin
film washer SQUIDs have lateral outer dimensions of several 100 μm, the inner hole
size is several tens of μm and the lateral size of the Josephson junctions is several
μm. Such devices are fabricated by conventional thin film technology, including mi-
cropatterning by photolithography. With the development of a mature junction tech-
nology, based on sandwich-type Nb/Al-AlOx/Nb junctions in the 1980s [4], Nb-based
dc SQUIDs became the most commonly used type of devices for various applications.
At the same time, first attempts were started to further miniaturize the lateral dimen-
sions of SQUIDs, including the Josephson junctions [5]. This was made possible by
advances in nanolithography [6] and was motivated by the development of the the-
ory for thermal noise in the dc SQUID [7], which showed that the energy resolution
ε = SΦ/(2L) of dc SQUIDs can be improved by reducing the SQUID loop inductance L
and junction capacitance C, to eventually reach and explore quantum-limited resolu-
tion of such devices [8]. These developments have triggered the realization of minia-
turized dc SQUIDs for the investigating of small magnetic particles and for imaging
of magnetic field distributions by scanning SQUID microscopy to combine high sen-
sitivity to magnetic flux with high spatial resolution. In 1984, Ketchen et al. [9] pre-
sented the first SQUID microsusceptometer devoted to detecting the tiny signal pro-
duced by micron-sized magnetic objects, and in 1983 Rogers and Bermon developed
the first system to produce 2-dimensional scans of magnetic flux structures in super-
conductors [10]. Both developments were pushed further in the 1990s. Wernsdorfer
et al. [11, 12] used micron-sized SQUIDs to perform experiments on the magnetization
reversal of nanometric particles, which were placed directly on top of the SQUIDs. At
the same time, scanningSQUIDmicroscopeswithminiaturizedSQUIDsand/or pickup
loop structures have been developed, at that time with a focus on studies of pair-
ing symmetry in high-transition-temperature (high-Tc) cuprate superconductors [13].
Since then much effort has been dedicated to the further miniaturization of SQUID
devices and to the optimization of their noise characteristics [14].

Studies on the properties of small spin systems, such as magnetic nanoparti-
cles (MNPs) and single molecule magnets (SMMs), have fueled the development
of new magnetic sensors for single-particle detection and imaging with improved
performance. Many of the recent advances in this field include the development of
magneto-optical techniques based on nitrogen vacancy centers in diamond [15, 16]
or the use of carbon nanotubes (CNTs) as spin detectors [17]. Alternatively, miniature
magnetometers, based on either microHall bars [18] or micro- and nanoSQUIDs, pro-
vide direct measurement of the stray magnetic fields generated by the particle under
study, making the interpretation of the results much more direct and simple. While
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their sensitivity deteriorates rapidly when Hall sensors are reduced to the submicron
size, miniaturized SQUID-based sensors can theoretically reach quantum-limited
resolution.

In this chapter, we give an overview on some basics of nanoSQUIDs¹ and recent
advances in the field. After a brief description of some SQUIDbasics in Section 11.2, we
will review in Section 11.3 important design considerations for optimizing nanoSQUID
performance and the state of the art in fabrication and performance of nanoSQUIDs
based on low-Tc and high-Tc superconductors, with emphasis on the various types
of Josephson junctions used. Subsequently, we will review important applications
of nanoSQUIDs, divided into two sections: Section 11.4 gives an overview on appli-
cations of nanoSQUIDs for magnetic particle detection, and Section 11.5 addresses
nanoSQUIDs for scanning SQUID microscopy. We will conclude with a short Sec-
tion 11.6, which gives a summary and outlook.

11.2 SQUIDs: Some basic considerations

The working principle of a SQUID is based on two fundamental phenomena in super-
conductors, the fluxoid quantization and the Josephson effect. The fluxoid quantiza-
tion arises from the quantum nature of superconductivity, as the macroscopic wave
function describing the whole ensemble of Cooper pairs shall not interfere destruc-
tively. This leads to the quantization of the magnetic flux Φ threading a supercon-
ducting loop [19], in units of the magnetic flux quantumΦ0 = h/2e ≈ 2.07×10−15 Vs.

The Josephson effect [20, 21] results from the overlap of the macroscopic wave
functions between two superconducting electrodes at a weak link forming the Joseph-
son junction (JJ). The supercurrent Is through the weak link and the voltage drop U
across it satisfy the Josephson relations

Is(t) = I0 sin δ(t) (a) U(t) = Φ0
2π δ̇ (b) , (11.1)

with the gauge-invariant phase difference δ between the macroscopic wave func-
tions of both superconductors and the maximum attainable supercurrent I0; the
dot refers to the time derivative. The simple sinusoidal current-phase relation (CPR),
Equation (11.1a), is found for many kinds of JJs. However, some JJ types exhibit a
nonsinusoidal CPR, which can even be multivalued [22].

1 The term nanoSQUID denotes strongly miniaturized thin film SQUIDswith lateral dimensions in the
submicrometer range. However, some devices described here and also various statements made also
refer to slightly larger structures, which sometimes are denoted asmicroSQUIDs. Throughout the text,
we do not make this discrimination.
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11.2.1 Resistively and capacitively shunted junction model

A very useful approach to describe the phase dynamics of a JJ is the resistively and
capacitively shunted junction (RCSJ) model [23–25]. Within this model, the current
flow is split into three parallel channels (Figure 11.1a): (i) a supercurrent Is (Equa-
tion [11.1a]), (ii) a dissipative quasiparticle current Iqp = U/R across an ohmic resistor
R and (iii) a displacement current Id = C ∂U/∂t across the junction capacitance C. A
finite temperature T is included as a thermal current noise source IN from the resistor.
With Kirchhoff’s law and Equation (11.1b), one obtains the equation of motion for the
phase difference δ

I + IN = I0 sin δ + Φ0
2πR δ̇ + Φ0C

2π δ̈ . (11.2)

This is equivalent to the equation of motion of a point-like particle moving in a tilted
washboard potential (Figure 11.1b)

UJ = EJ(1 − cos δ) − (i + iN)δ , (11.3)

with normalized currents i = I/I0, iN = IN/I0 and the Josephson coupling energy
EJ = I0Φ0/(2π). In this analogy, the mass, friction coefficient, driving force (tilting the
potential) and velocity correspond to C, 1/R, I and U, respectively. Hysteresis in the
current voltage characteristics (IVC), i.e. bias current I versus time-averaged voltage
V = ⟨U⟩, can be understood as a consequence of the particle’s inertia: the dissipative
state ⟨δ̇⟩ ∝ V ̸= 0 is achieved once the metastable minima of the washboard potential
disappear at I ≥ I0. If I is decreased from I > I0, the particle becomes retrapped at
Ir < I0, leading to a hysteretic IVC. This behavior can be quantified by the Stewart–
McCumber parameter

βC ≡ 2π
Φ0

I0R2C . (11.4)

In order to obtain a nonhysteretic IVC, βC must be kept below ∼ 1. This can be
e.g., achieved by means of an additional shunt resistor, parallel to the JJ.

R I0 IN U

I

C

0 1 2

UJ

/2

2EJ
i=

1

1/2

IsIqpId

0

(b)(a)

Fig. 11.1: RCSJ model: (a) Equivalent circuit. (b) Tilted washboard potential for different normalized
bias currents i.
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11.2.2 dc SQUID basics

The dc SQUID [26] is a superconducting loop (with inductance L) intersected by two
JJs (Figure 11.2a). With an externally applied magnetic flux Φ through the loop, the
fluxoid quantization links the phase differences δ1 and δ2 of the two JJs to the total
flux in the SQUID ΦT = Φ + LJ via

δ1 − δ2 + 2πn = 2π
Φ0

(Φ + LJ) . (11.5)

Here, J is the current circulating in the SQUID loop and n is an integer [28]. Defining
the screening parameter as

βL ≡ 2LI0
Φ0

, (11.6)

one finds in the limit βL ≪ 1 a negligible contribution of LJ to ΦT in Equation (11.5),
and by assuming for simplicity identical values for I0 in the two JJs, the maximum
supercurrent (critical current) Ic of the SQUID can be easily obtained as

Ic = 2I0
cos(πΦΦ0

) . (11.7)

The pronounced Ic(Φ) dependence (Figure 11.2b for βL ≪ 1) can be used to probe
tiny changes in applied magnetic flux. No general analytical expression for Ic(Φ) can
be obtained when a finite βL and hence a finite L is included, unless restrictions are
imposed to some of the important SQUID parameters [25, 27]. An increasing βL leads
to a monotonic decrease of the critical current modulation ∆Ic/2I0 (Figure 11.2(b,c)).
This effect allows to estimate L from the measured Ic(Φ).

We note that the inductance L = Lg + Lk has two contributions [28]: The geo-
metric inductance Lg relates the induced flux LgJ to the current J circulating in the
SQUID loop. The kinetic inductance Lk is due to the kinetic energy of J and can often
be neglected. However, it becomes significant when the width and/or thickness of the
SQUID ring are comparable to or smaller than the London penetration depth λL.
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Fig. 11.2: The dc SQUID: (a) Schematic view. (b) Critical current versus applied magnetic flux for
different βL and (c) Ic modulation versus βL, both calculated for T = 0 and identical JJs.
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Fig. 11.3: Rms flux noise of Nb thin film SQUIDs with Nb/Al-AlOx/Nb JJs. (a) √SΦ(f) at 4.2 K and 13 mK
(after Martínez-Pérez et al. [34]). (b) High-frequency (white) noise, measured at different tempera-
tures on different sensors. The white noise depends on T as expected from theory (SΦ ∝ T ) down to
∼ 100 mK when it saturates.

For most applications, the dc SQUID is operated in the dissipative state as a flux-
to-voltage transducer. In this case, the SQUID is current-biased slightly above Ic, lead-
ing to a Φ0-periodic modulation of V(Φ), which is often sinusoidal. This mode of op-
eration requires nonhysteretic IVCs, i.e., βC ≲ 1. An applied flux signal δΦ causes
then a change δV in SQUID voltage, which for small enough signals is given by δV =(∂V/∂Φ) δΦ. Usually, the working point (with respect to bias current I and applied
bias flux) is chosen such that the slope of the V(Φ) curve is maximum, which is de-
noted as the transfer function VΦ = (∂V/∂Φ)max.

The sensitivity of the SQUID in the voltage state is limited by voltage fluctuations,
which are quantified by the spectral density of voltage noise power SV . This is con-
verted into an equivalent spectral density of flux noise power SΦ = SV/V2

Φ or the rms
flux noise√SΦ with units Φ0/√Hz (Figure 11.3a).

At low frequency f , excess noise scaling typically as SΦ ∝ 1/f (1/f noise) shows
up. Major sources are critical current fluctuations in the JJs and thermally activated
hopping of Abrikosov vortices in the superconducting film, which is particularly
strong in SQUIDs based on the high-Tc cuprate superconductors [29]. Moreover, 1/f
noise has also been ascribed to flux noise arising from fluctuating spins at the in-
terfaces of the devices [30]. This is supported by the observation of a paramagnetic
signal following a Curie-like T-dependence [31–33]. However, a complete description
of 1/f noise is still missing.
At higher frequencies, SΦ becomes independent of f . This white noise SΦ,w is mainly
due to Johnson–Nyquist noise associated with dissipative quasiparticle currents in
the JJs or shunt resistors. Within a Langevin approach, the thermal noise is described
by two independent fluctuation terms in the coupled equations of motion for the two
RCSJ-type JJs. Numerical simulations yield SΦ,w versus βL, βC and the noise parameter

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.2 SQUIDs: Some basic considerations | 345

Γ ≡ kBT/EJ = 2πkBT/(I0Φ0) [25, 29]. One finds
SΦ ≈ 4(1 + βL)Φ0kBTL

I0R
for βC ≲ 1, βL > 0.4 and ΓβL < 0.1 . (11.8)

For βL ≲ 0.4, SΦ increases again with decreasing βL. Typically, SQUIDs are designed
to give βL ≈ 1, for which Equation (11.8) reduces to SΦ ≈ 16kBTL2/R [7]. This linear
scaling SΦ ∝ T, however, saturates in the sub-Kelvin range (Figure 11.3b) due to the
hot-electron effect stemming from limited electron-phonon interaction at low T [35].
We note that √SΦ ∝ L (for fixed βL ≈ 1), meaning that small loop inductances yield
lowerwhitefluxnoise levels. Other sources ofwhite noise are shot andquantumnoise,
lying usually below the Johnson–Nyquist term. For the case βL = 1, the former is given
by SΦ ≈ hL [7], whereas the latter arises from zero point quantum fluctuations giving
SΦ ≈ hL/π [8].
11.2.3 SQUID readout

11.2.3.1 Flux-locked loop
The periodic response of the SQUID to magnetic flux can be linearized to obtain a
larger dynamic range. This can be achieved by operation in the flux locked loop (FLL)
mode [36]. Here, the SQUID is (typically current) biased at an optimumworking point
and behaves as a null-detector of magnetic flux. A small variation δΦ of the exter-
nal flux changes the SQUID output (typically a voltage change δV). This small devi-
ation from the working point is amplified, integrated, and fed back to the SQUID via
a current through a feedback resistor Rf and coil, which is inductively coupled to the
SQUID. The output voltage across Rf is then proportional to the flux signal δΦ. The
dynamic response in FLL mode is limited by the slew rate, i.e., the speed at which the
feedback circuit can compensate for rapid flux changes at the input. Under optimum
conditions, the bandwidth of the FLL is only limited by propagation delays between
the room-temperature feedback electronics and the SQUID; a typical distance of 1m
yields ∼ 20MHz.

11.2.3.2 Voltage readout
The most simple SQUID readout uses current-biased operation in the dissipative
state; asmentioned above, the IVCs should be nonhysteretic in this case. As the trans-
fer function VΦ is typically small (several 10−100 μV/Φ0), the voltage noise at the
output can easily be dominated by room-temperature amplifier noise. To circum-
vent this problem, one can use a flux modulation scheme [36]. Here, the SQUID is
flux-modulated by an ac signal (amplitude Φ0/4, frequency fm ∼ 100kHz), and the
resulting ac voltage across the SQUID is amplified with a (cold) step-up transformer
to increase the SQUID signal and noise. The modulated SQUID response is further
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amplified at room temperature and lock-in detected. Suitable electronics achieve a
bandwidth of up to 100 kHz.

In a different approach, one can increase VΦ by additional positive feedback
(APF), which distorts the V(Φ) characteristics and increases VΦ at the positive slope.
This enables simple direct readout of the SQUID signal [36]. Alternatively, a low-noise
SQUID or serial SQUID array (SSA) amplifier can be used to amplify the SQUID voltage
at low T in a two-stage readout configuration.

11.2.3.3 Critical current readout & threshold detection
For SQUIDs with hysteretic IVCs one can exploit the Ic(Φ)modulation directly. In this
case one ramps the bias current until the SQUID switches to the dissipative state, pro-
ducinga voltagedrop.At this point the current is switchedoff, and Ic is calculated from
the duration of the ramp [37]. This technique can also be used with a FLL scheme [37–
39]. Sensitivity is limited by the accuracy in determining Ic, which is described by the
escape of a particle from a potential minimum. Such a process can be thermally acti-
vated or quantumdriven and is strongly influenced by electronic noise. Hence, a large
number of switching events is needed to obtain sufficient statistics.

Tominimize Joule heating, the SQUID canbe operated as a threshold sensor. Here,
the SQUID is current-biased very close to the switching point. If the magnetic flux
threading the loop changes abruptly, the SQUID is triggered to the dissipative state
and a voltage drop will be measured [37].

Both techniques were applied to magnetization reversal measurements on MNPs
in sweepingmagnetic fieldsH [37]. Formeasurements up to largeH, applied along any
direction, the measurement procedure is divided into three steps. First, H is applied
to saturate the particle’s magnetization along any direction. Second, H is swept along
the opposite direction to a valueHtest and back to zero. To checkwhether this reversed
the particle’s magnetization, an in-plane field sweep is done as a third step. If the par-
ticle’s magnetization reversal is (not) detected in the third step one can conclude that
Htest was above (below) the switching field Hsw. These steps can be repeated several
times to determine Hsw precisely. Note that the second step can be performed above
Tc of the SQUID. Rather than tracing out full M(H) loops, this technique can be used
to trace out the dependence of Hsw on the field direction and temperature [40].

11.2.3.4 Dispersive read out
So far, we discussed SQUID operation in the voltage state or close to it. Such schemes
entail dissipation of Joule power that might affect the state of the magnetic system
under study. An elegant way to circumvent this problem is the operation of the SQUID
as a flux-dependent resonator; this has also the advantage of increasing enormously
the bandwidth up to ∼ 100MHz [41, 42]. The SQUID is always in the superconducting
state and acts as a flux-dependent inductance connected in parallel to a capacitor.
The resonance frequency of the circuit depends on the total flux threading the SQUID
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loop. This can be read out by conventional microwave reflectometry giving a direct
flux-to-reflected phase conversion. The devices are operated in the linear regime, i.e.,
using low-power driving signals. To determine the spectral density of flux noise, the
overall voltage noise of the circuit is estimated and scaledwith the transduction factor
dV/dΦ. The noise performance can be boosted considerably by taking advantage of
the CPRnonlinearity, i.e., operating the nanoSQUIDas a parametric amplifier. For this
purpose, the driving power is increased so that the resonance peak is distorted, giving
a much sharper dependence of the reflected phase on Φ.

11.3 nanoSQUIDs: Design, fabrication & performance

NanoSQUIDs are developed for detecting small spin systems, such as MNPs or SMMs,
or for high-resolution imaging of magnetic field structures by SQUID microscopy. For
such applications, the figure of merit is the spin sensitivity, which can be boosted
down to the level of a single electron spin. The use of strongly miniaturized SQUID
loops and JJs is based on the following ideas:∙ Strongly localized magnetic field sources (e.g., MNPs) are placed in close vicinity

to the SQUID, instead of using pickup coils (Figure 11.4a) which degrade the over-
all coupling. A single SQUID loop (Figure 11.4b) canbe used to detect themagnetic
moment μ of anMNP, or gradiometric configurations (Figure 11.4[c,d]) enablemea-
surements of the magnetic ac susceptibility χac.∙ The coupling of the stray field from local field sources to the nearby SQUID can
be improved by reducing the cross section (width and thickness) of the supercon-
ducting thin film forming the SQUID loop (see Section 11.3.1).∙ The sensitivity of the SQUID to magnetic flux (magnetic flux noise in the ther-
mal white noise limit) can be improved by reducing the loop inductance, i.e., by
shrinking the lateral size of the SQUID loop (see Section 11.3.1).∙ For magnetization reversal measurements on MNPs, an external field Bext is ap-
plied ideally exactly in the plane of the SQUID loop to switch the MNP’s magne-
tization (see Section 11.4.2), albeit without coupling flux directly to the loop. By
reducing the dimensions of the JJs and the loop, the nanoSQUID can bemade less
sensitive to Bext for small misalignment of Bext.∙ Reducing the loop size together with the SQUID-to-sample distance can signifi-
cantly boost the spatial resolution for scanning SQUID microscopy applications
(see Section 11.5).

11.3.1 nanoSQUIDs: Design considerations

The ability of a nanoSQUID to resolve tiny signals from themagneticmoments of small
spin systems depends (i) on the intrinsic flux noise SΦ of the SQUID and (ii) on the
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Fig. 11.4: Layouts of various SQUID sensors. (a) SQUID magnetometer based on gradiometric pickup
coils coupled inductively (via mutual inductance M) to a SQUID. (b)-(d) NanoSQUIDs without inter-
mediate pick-up coils; the stray field created by an MNP with magnetic moment μ is directly sensed
by the SQUID loop. Magnetization measurements can be performed by applying an external mag-
netic field Bext in the nanoloop plane (b). The frequency-dependent magnetic ac susceptibility χac
can be sensed by using series (c) or parallel (d) planar gradiometers; a homogeneous ac excitation
magnetic field Bac is applied perpendicular to the gradiometer’s plane through on-chip excitation
coils.

amount of flux Φ which a particle with magnetic moment μ couples to the SQUID
loop. The latter can be quantified by the coupling factor ϕμ ≡ Φ/μ, with μ ≡ |μ|.
As a result, one can define the spin sensitivity √Sμ = √SΦ/ϕμ, with units μB/√Hz;
μB is the Bohr magneton. √Sμ expresses the minimum magnetic moment that can
be resolved per unit bandwidth. Hence, optimizing nanoSQUID performance requires
one to minimize SΦ while maximizing ϕμ .

As mentioned in Section 11.2.2, SΦ has typically a low-frequency 1/f -like contri-
bution and a thermal white noise part SΦ,w. The 1/f contribution is hard to optimize
by design. However, SΦ,w depends on geometrical parameters through the loop induc-
tance L, but also on junction parameters such as I0, R and C. The SΦ(L) dependence
(Equation [11.8]) implies that SΦ can be improved by decreasing L via the loop dimen-
sions, while considering the constraints on βC and βL, which will affect the choice of
junction parameters. Such an optimization procedure can be tested experimentally by
performing flux noise measurements of the SQUIDs.

The optimization of the coupling factor ϕμ = Φ/μ is more difficult. It is defined as
themagnetic fluxΦ coupled to the SQUID loop by the magnetic dipole field of a point-
like particle, divided by its magnetic moment μ. The magnitude of ϕμ depends on
SQUID geometry, particle position rμ (relative to the SQUID) and orientation êμ = μ/μ
of its magnetic moment. This quantity is not directly accessible by experiments, and
one has to rely on estimates, analytic approximations or numerical calculations for
determining ϕμ and optimizing it.
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To the best of our knowledge, Ketchen et al. [43] were the first to give an estimate
of ϕμ. For a magnetic dipole at the center of an infinitely thin loop with radius a, with
êμ along the loop normal

ϕμ = μ0
2a = (re/a) ⋅ (Φ0/μB) ≈ (2.8 μm/a) ⋅ (nΦ0/μB) (11.9)

was found.² The r.h.s. of Equation (11.9) is obtained with the definition of the classical
electron radius re = μ0e2

4πme
, Φ0 = h

2e and μB = eh
4πme

, which yields μB
Φ0

= 2re
μ0 .

The coupling improves if the particle ismoved close to the loop’s banks [44]. How-
ever, a quantitative estimate of ϕμ is more difficult in this near-field regime [45], as
the cross section of the SQUID banks and the flux focusing effect caused by the super-
conductor must be taken into account. The calculation of ϕμ requires calculating the
magnetic field distribution at the position of the SQUID, originating from a magnetic
moment μ at position rμ, and from this the magnetic flux coupled to the SQUID. This
problem can be simplified by exploiting the fact that sources and fields can be inter-
changed, i.e., one evaluates the magnetic field BJ(rμ), created by a circulating super-
current J through the SQUID loop, at the position rμ of the magnetic dipole. With the
normalized quantity bJ = BJ/J, which does not depend on J, one finds [44, 46]

ϕμ(rμ , êμ) = êμ ⋅ bJ(rμ) . (11.10)

This allows us to calculate ϕμ for any position and orientation of the magnetic dipole
in 3D space once bJ is known.³

The normalized field bJ has to be determined from the spatial distribution of the
supercurrent density js circulating in the SQUID loop, which depends only on the
SQUID geometry and on λL. This has been done for various types of nanoSQUIDs by
numerically solving the London equations [46–52]. Numerical simulations of ϕμ re-
veal that the coupling can be increased in the near-field regime if the magnetic dipole
is placed as close as possible on top of a constriction in the SQUID loop, which is as
thin and narrow as possible [52]. Typical ϕμ = 10−20nΦ0/μB have been obtained
for magnetic dipoles at 10nm distance from a constriction (∼ 100−200nm wide and
thick) in YBa2Cu3O7 (YBCO) nanoSQUIDs.⁴ Simulation results for two types of Nb

2 ϕμ = 2π/a in cgs units, as derived by Ketchen et al. [43]. The spin sensitivity Sn in [43] relates to our
definition as Sn = √Sμ/μB, i.e., Sn has the units of number of spins (of moment μB) per√Hz.
3 The current J through an infinitely thin wire, forming a loop with radius a in the x–y plane and
centered at the origin, induces a fieldBJ = μ0J/(2a)⋅ êz , at the center of the loop.Hence, for amagnetic
dipole placed at the origin rμ = 0 and pointing in z-direction, êμ = êz , Equation (11.10) yields ϕμ =
êz ⋅ BJ(rμ)/J = μ0/(2a), i.e., the same result as derived by Ketchen et al. [43].
4 ϕμ depends significantly on the loopwidth, thickness d and λL. For example for a dipole centered at
a circular SQUID loop with inner radius a = 500nm, outer radius R = 2 μm, and d = λL = 100nm one
finds ϕμ = 3.5 nΦ0/μB, i.e., a factor 1.6 smaller ϕμ as obtained from Ref. [43] (with R = a = 500nm);
ϕμ decreases further with decreasing ratio d/λL.
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Fig. 11.5: Calculated coupling factor ϕμ versus position of a magnetic dipole pointing in x-direction
on top of Nb nanoSQUIDs. Main graphs show contour plots ϕμ(x, z) for (a) a magnetometer and
(b) a gradiometer. Nb structures are indicated by black rectangles; dashed lines indicate position
of linescans ϕμ(x) (above [a]) and ϕμ(z) (right graphs). Insets show scanning electron microscopy
(SEM) images. Reprinted with permission from Nagel et al. [47]. Copyright (2011), AIP Publishing LLC.

nanoSQUIDs (Figure 11.5) show that the dipole has to approach the SQUID surface
closely to reach values above a few nΦ0/μB (see ϕμ(z) linescans in the right graphs in
Figure 11.5). The ϕμ(x) linescans (top graph in Figure 11.5) show that the coupling is
maximum right above the loop structures [47].

Measurements on spatially extendedmagnetic systems, suchas aNi nanotube [48]
or a Fe nanowire [50], were found to be consistent with the numerical approach de-
scribedabove. Thiswasdoneby comparing themeasuredfluxcoupled tonanoSQUIDs
from fully saturated tubes or wires with the calculated flux signals, obtained by in-
tegrating ϕμ over the finite volume of the sample. First measurements on the SQUID
response as a function of the position of a magnetic sample have been reported ear-
lier. In those experiments, small SQUID sensors were coupled to a ferromagnetic Fe
tip, which was scanned over the sensor’s surface while recording the SQUID output
in open-loop configuration [53].

The optimization of the spin sensitivity in the thermal white noise limit requires
knowledge of the dependence of ϕμ and SΦ,w on SQUID geometry, as this affects both
the SQUID inductance and the coupling. A detailed investigation of this problem was
done for YBCO nanoSQUIDs [52] (see Section 11.3.3). This study shows that it is essen-
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tial to consider the increase in kinetic inductance Lk when the thickness and width of
the loop is reduced to a length scale comparable to or even smaller than λL. Hence,
to improve the Sμ one has to find a compromise between improved coupling and de-
terioration of flux noise (via an increased Lk) upon shrinking the cross section of the
SQUID loop.

11.3.2 nanoSQUIDs based on metallic superconductors

11.3.2.1 Sandwich-type SIS junctions
The SIS junction technology (S: superconductor, I: thin insulating barrier), typically
producing JJs in an Nb/Al-AlOx/Nb trilayer geometry, is the most commonly used ap-
proach to fabricate conventional SQUID-based devices. This technology is highly de-
veloped and reproducible, yielding high-quality JJs with controllable critical current
densities jc from ∼ 0.1 up to a few kA/cm2 at 4.2 K. However, a major disadvantage is
the low jc, which results in too small values for the critical current if submicron JJs are
used. As a consequence, even if the SQUID loops are miniaturized, the operation of
micron-sized JJs in large magnetic fields is only possible with careful alignment of the
field perpendicular to the junction plane, as an in-plane field in the 1–10mT range can
easily suppress the critical current due to the Fraunhofer-likemodulation of Ic(B). Fre-
quently used window-type JJs come with a large parasitic capacitance due to the large
area of surrounding superconducting layers. A commonly used approach is therefore
to use normal metal layers to shunt these junctions, for lowering βC to yield nonhys-
teretic IVCs, albeit at the cost of also lowering the characteristic voltage Vc = I0R. The
absence of hysteresis offers the advantage to operate the SQUID as a flux-to-voltage
converter, using conventional readout techniques.

As a key advantage, the SIS technology offers a well-developed multilayer pro-
cess, allowing for the realization of more complex designs, as compared to a single
layer technology. This allows for the fabrication of superconducting on-chip input cir-
cuits such as coupling transformers, susceptometers or advanced gradiometers. This
approach has been taken very successfully to realize miniaturized structures for ap-
plications in magnetic particle measurements and scanning SQUID microscopy, al-
though those did not really involve SQUIDs with (lateral outer) dimensions in the sub-
micrometer range.

The first SQUID device designed to measure magnetic signals from MNPs was
based on micrometric Nb/NbOx/Pb edge junctions, which were connected in parallel
to two oppositely wound loops to form amicrosusceptometer [9]. The white flux noise
at 4.2 K was 0.84 μΦ0/√Hz. This susceptometer was operated in a dilution refrigera-
tor, and the output signal was measured in open-loop configuration and amplified by
an rf SQUID preamplifier. Magnetic susceptibility measurements performed with this
systemwill be reviewed in Section 11.4.3. Very similar devices based onNb/Al-AlOx/Nb
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JJs with √SΦ = 0.8 μΦ0/√Hz at 4K and 0.25 μΦ0/√Hz below 0.5 K were adapted to
use in scanning SQUID microscopes [54, 55]; see Section 11.5.

Broad-band SQUID microsusceptometers have been realized by locally modify-
ing SQUID current sensors based on Nb/Al-AlOx/Nb JJ technology. Those sensors [56]
come in two types: (i) high-input inductance (∼ 1 μH) sensors incorporate an interme-
diate transformer loop with gradiometric design; (ii) low-input inductance (2 nH) de-
viceswithout intermediate loop; here the input signal is directly coupled to the SQUID
via four single-turn gradiometric coils connected in parallel. These SQUIDs are non-
hysteretic down to sub-K temperatures with √SΦ,w = 800nΦ0/√Hz at T = 4.2K.
Modification of these sensors was done by FIB milling and FIB-induced deposition
(FIBID) of superconductingmaterial withW(CO)6 as the precursor gas [34, 57]. This al-
lowed converting the intermediate transformer loop into a susceptometer inductively
coupled to the SQUID (Figure 11.4a). By modifying the gradiometric microSQUID it-
self it is possible to directly couple an MNP to the SQUID loop [33] (Figure 11.4d).
Later, SQUID-based microsusceptometers with improved reflection symmetry were
produced [58, 59]. The sensitivity was boosted by defining a nanoloop (450nm inner
diameter, 250nm linewidth) by FIB milling in one of the pickup coils (Figure 11.6).
These sensors offer an extremely wide bandwidth (1mHz–1MHz) and can be operated
at T = 0.013–5K for the investigation of microscopic crystals of SMMs and magnetic
proteins; such measurements will be reviewed in Section 11.4.3.

Submicrometric Nb/AlOx/Nb JJs in a cross-type design were recently used for fab-
ricating miniaturized SQUIDs [60]. The key advantage of cross-type JJs over conven-
tional window-type JJs is the elimination of the parasitic capacitance surrounding the
JJ, which becomes increasingly important upon reducing the JJ size. At T = 4.2K,
0.8×0.8 μm2 JJs show nonhysteretic IVCs, if they are shunted with a AuPd layer. Sen-
sors are also produced with an integrated Nbmodulation coil. Square-shaped washer
SQUIDs with minimum inner size of 0.5 μm have an inductance of a few pH. SQUIDs
operated in liquidHe and read out with a low-noise SQUID preamplifier yield√SΦ,w =
66nΦ0/√Hz [61].

Fig. 11.6: SEM image of a SQUID microsusceptometer with a nanoloop patterned in the pickup coil
(inset). Images courtesy of J. Sesé.
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11.3.2.2 Sandwich-type SNS junctions
SNS junctions (N: normal conductor) offer the advantage of large critical current den-
sities ≳ 105 A/cm2 at 4.2 K and nonhysteretic IVCs, albeit at the cost of somewhat re-
duced I0R values. Hence, this type of JJs is verywell suited for fabricatingnanoSQUIDs
with junction size in the deep submicron range.

In an Nb/HfTi/Nb trilayer process, originally developed for Josephson arbitrary
waveform synthesizers [62], JJs with 200×200nm2 area or even below are obtained by
e-beam lithography and chemical-mechanical polishing, producing nanoSQUIDs [47,
51] with 24 nm thick HfTi barriers; the latter can be varied to modify jc. As for the
SIS JJ technology, the fabrication process offers much flexibility for realizing com-
plex designs. Both series- and parallel-gradiometers and single SQUID loops were re-
alized [47, 51, 63]. Devices were patterned in a washer- or microstrip-type geometry,
with the loop plane parallel or perpendicular to the junction’s (substrate) plane, re-
spectively. A key advantage of the microstrip-type geometry (Figure 11.7) is the pos-
sibility to realize very small loop areas, defined by the thickness of the insulating
interlayer between the top and bottom Nb lines times the lateral separation of the
two JJs. This results in very small SQUID inductances, typically a few pH. Moreover, a
magnetic field applied in the plane of the SQUID loop can be perpendicular to the JJ
(and substrate) plane; in this way the field-induced suppression of Ic can be avoided.
It has been shown that magnetic fields up to 0.5 T can be applied while degrading
only marginally the performance [51]. On-chip flux biasing is easily possible for op-
eration in FLL. White flux noise ∼ 110nΦ0/√Hz has been obtained. On the basis of
numerical solutions of the London equations for ϕμ, this yields a spin sensitivity of
just ∼ 10 μB/√Hz for a magnetic dipole 10 nm away from the SQUID loop. Magneti-
zation measurements on magnetic nanotubes have been performed successfully and
will be summarized in Section 11.4.2.

By combining three mutually orthogonal nanoSQUID loops, a 3-axis vector mag-
netometer has been realized very recently [64]. Here, the idea is to distinguish the
three components of the vector magnetic moment μ of an MNP placed at a specific
position, and subjected to an applied magnetic field along z-direction for magneti-
zation reversal measurements. The layout of the device is shown in Figure 11.8. Two
microstrip-type Nb nanoSQUIDs SQx and SQy, as described above, with perpendicu-

Fig. 11.7: Layout of Nb/HfTi/Nb nanoSQUID in
microstrip geometry. Arrows indicate flow of
bias current I, modulation current Imod and di-
rection of external field B. Inset shows SEM
image with JJs (200 × 200 nm2) indicated
by dashed squares. SEM image courtesy of
B. Müller.
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Fig. 11.8: SEM image of a 3-axis vector mag-
netometer, consisting of two orthogonal
nanoSQUIDs (SQx , SQy ) and an orthogonal
gradiometric nanoSQUID (SQz ). Black dotted
squares indicate positions of Josephson junc-
tions.

lar loops are sensitive to fields in x- and y-direction, respectively. A third SQUID, SQz

has a gradiometric layout, in order to strongly reduce its sensitivity to the applied ho-
mogeneous magnetic field. Simultaneous operation of all three nanoSQUIDs in such
devices in FLL has been demonstrated at 4.2 K in fields up to 50mT, with a flux noise
S1/2Φ,w ≲ 250nΦ0/√Hz. By numerical simulations of the coupling factor, it has been
demonstrated that for an MNP placed in the center of the left loop of the gradiome-
ter (cf. Figure 11.8), the three orthogonal components of the magnetic moment of the
MNP can be detected with a relative error flux below 10%. Such a device can provide
important information on the magnetic anisotropy of a single MNP.
Submicrometer nanoSQUIDshave recently also been fabricatedbased onSNIS JJs [65].
Starting from an Nb/Al-AlOx/Nb trilayer, a three-dimensional SQUID loop (0.2 μm2)
was nanopatterned by FIBmilling and anodization (Figure 11.9). The resulting JJs have
an area of approximately 0.3× 0.3 μm2 and are intrinsically shunted by the relatively
thick (80 nm) Al layer, yielding nonhysteretic IVCs. The smallness of the SQUID loop
leads to L = 7pH. Measurements at 4.2 K yield√SΦ,w ∼ 0.68 μΦ0/√Hz.
11.3.2.3 Constriction junctions
Josephson coupling can also occur in superconducting constrictions (Dayem bridges
[66]) with size similar to or smaller than the coherence length ξ(T) [22]. The IVCs of

Fig. 11.9: SEM image of a 3-dimensional
nanoSQUID fabricated using FIB sculpting
and all Nb technology. The flux capture area
of the nanosensor is 1 × 0.2 μm2, and the two
Josephson tunnel junctions have an area of
about 0.3×0.3 μm2. The inset is a sketch of the
device, showing the current paths through the
device. Reprinted with permission from Granata
et al. [65]. Copyright [2013], AIP Publishing LLC.
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such constriction-type Josephson junctions (cJJs) are often hysteretic, due to the heat
dissipated above Ic. Short-enough cJJs show a sinusoidal CPR. However, a significant
deviation occurs if the constriction length is larger than ξ , which can even lead tomul-
tivalued CPRs. Hence, optimization of SQUID performance based on an RCSJ analysis
is difficult, and hysteretic IVCs prevents conventional SQUID operation with current
bias. Still, nonhysteretic IVCs can be achieved by operation close enough to Tc, where
Ic is reduced, or by adding ametallic overlayer as a resistive shunt. Another drawback
is the large kinetic inductance Lkin of the constriction, that can dominate the total
SQUID inductance L and prevent improving the flux noise by shrinking the loop size.
Conversely, cJJ-based nanoSQUIDs in a simple planar configuration can be fabricated
relatively easily from thin film superconductors, e.g., Al, Nb or Pb, through one-step
electron-beam (e-beam) or FIB nanopatterning. Moreover, the use of nanometric-thick
films and the smallness of the constrictionmakes these SQUIDs quite insensitive to in-
planemagnetic fields and yields large coupling factors if MNPs are placed close to the
constriction (Figure 11.10a). The small size of cJJs is a key advantage for fabricating
nanoSQUIDs with high spin sensitivity.
First thin-film Nb dc SQUIDs based on cJJs with linewidths down to 30 nm, pat-
terned by e-beam lithography, were reported in 1980 [5]. Despite their large L =
150pH, miniaturized SQUIDs, with loop size ∼1 μm2, exhibited low flux noise∼ 370nΦ0/√Hz at 4.2 K. During the 1990s, the use of cJJ nanoSQUIDs for the in-
vestigation of small magnetic systems was pioneered byWernsdorfer et al. [11, 12, 37].
Figure 11.10(b) shows examples of such devices, which were patterned by e-beam
lithography from Nb and Al films [67]. Typical geometric parameters were 1 μm2

inner loop area, 200 nm minimum linewidth and 30 nm film thickness. The size of
the constrictions (∼ 30nm wide, ∼ 300nm long) was significantly larger than ξ for
Nb. This lead to a highly nonideal CPR [22, 68] and hence nonideal Ic(Φ) depen-
dence with strongly suppressed Ic modulation depth for Nb cJJ SQUIDs. Furthermore,
Lkin of the constrictions can be a few 100 pH, dominating the overall inductance of

Fig. 11.10: cJJ-based nanoSQUIDs. (a) Schematic view with an MNP (magnetic moment μ) close to
one constriction where coupling is maximum. (b) SEM images of Nb microSQUID with Ni wire on top
(left) and Nb nanoSQUID (right), drawn to scale in left graph. Graph (b) Reproduced with permission
from [37]. All rights reserved © IOP Publishing (2009).
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the devices [68]. Impressively large magnetic fields could be applied parallel to the
nanoSQUID loops up to 0.5 T for Al and 1 T for Nb. From the measured critical current
noise, the flux noise was calculated as ∼ 40 μΦ0/√Hz for Al and ∼ 100 μΦ0/√Hz
for Nb [67]. Because of the hysteretic IVCs these nanoSQUIDs were operated in Ic
readout mode or as threshold detectors (see Section 11.2.3.3). These sensors allowed
the greatest realization of true magnetizationmeasurements (Section 11.4.3) andwere
also implemented into probe tips to perform scanning SQUID microscopy [67, 69].

For similar Nb cJJ-basednanoSQUIDs (30 nm thick, ∼ 200nm inner loop size, cJJs
down to 280 nm long and 120 nmwide) switching current distributionsweremeasured
from 4.2 down to 2.8 K [70]. A detailed analysis of the noise performance for Ic readout
revealed a flux sensitivity of a few mΦ0, which was shown to arise from thermally in-
duced Ic fluctuations in the nanobridges. More recently, hysteretic nanoSQUIDsmade
of Al-Nb-W layers (2.5 μm inner loop size; 40nm wide, 180 nm long cJJs) could be
operated with oscillating current-bias and lock-in read-out at T < 1.5K [71]. In this
configuration Ic is considerably reduced due to the inverse proximity effect of W on
Nb.

Nanometric Nb SQUIDs (50 nm thick, down to 150 nm inner hole size) were also
fabricated by FIB milling to produce cJJs (80 nm wide, 150 nm long) [72]. It was ob-
served that Ga implantation depth can reach values of 30 nm, suppressing the super-
conducting properties of Nb. At T = 4.2K, devices with relatively small Ic < 25 μA
showed nonhysteretic IVCs and could be operated in a conventional current-bias
mode, yielding√SΦ,w ∼ 1.5 μΦ0/√Hz.

A possible way to approach the sinusoidal CPR of ideal point contacts is the use of
variable thickness nanobridges. Here, the thicker superconducting banks can serve as
phase reservoirs, while the variation in the superconducting order parameter should
be confined to the thin part of the bridges [73]. cJJ-basednanoSQUIDswere realized by
local anodization of ultrathin (3−6.5 nm-thick)Nbfilmsusing a voltage-biased atomic
force microscope (AFM) tip [74]. This technique produced constrictions (30 − 100nm
wide and200−1000nm long) and variable thickness nanobridges by further reducing
the constriction thickness down to a fewnm (within a∼ 15nm long section). The latter
exhibited ∆Ic/Ic twice as large as the former, indicating an improved CPR.

Vijay et al. [75] produced Al nanoSQUIDs based on cJJs (8 nm thick, 30 nm wide)
with variable length (l = 75 − 400nm). The cJJs were either connected to supercon-
ducting banks of the same thickness (“2D devices”) or to much thicker (80 nm) banks
(“3D devices”). For 3D devices with l ≤ 150nm ≈ 4ξ , the measured Ic(Φ) curves in-
dicate a CPR which is close to the one for an ideal short metallic weak link. Both 2D
and 3D devices were fully operative up to in-plane magnetic fields of 60mT [76]. Such
nanoSQUIDs were operated with dispersive readout (see Section 11.2.3.4) yielding im-
pressive flux noise values of 30nΦ0/√Hz for a 20MHz bandwidth [42].

Variable thickness bridges have recently also been realized by connecting sus-
pendedAlnanobridges (25 nm thick, 233 nm long, 60nmwide) toNb(30 nm)/Al(25 nm)
bilayer banks to form ananoSQUID (2.5 μm-in-diameter loop)[77]. These devices have
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the advantage of using cJJs from a material (Al) with relatively large ξ , while main-
taining relatively high Tc and critical magnetic field in the superconducting banks
forming the SQUID loop.

Thermal hysteresis in the IVCs of cJJs can be suppressed by covering the devices
with a normal metallic layer, which provides resistive shunting and acts as a heat
sink. cJJ-based nanoSQUIDs from 20nm-thick Nb films covered by 25 nm-thick Au
have been patterned by e-beam lithography to realize 200 nm inner loop size and con-
striction widths in the range 70 − 200nm, yielding L ∼ 15pH [78]. The Au layer pre-
vented hysteresis in the IVCs at temperatures above 1 K, allowing conventional SQUID
readout in thevoltage state, yielding√SΦ,w ∼ 5 μΦ0/√Hzat 4.2 K, increasingbyabout
15%when operating in amagnetic field of 2mT [79]. Field operation up to few 100mT
was improved by reducing the hole size down to 100 nm and the largest linewidths
down to 250 nm [80]. Preliminary experiments were performed on ferritin nanoparti-
cles attached to the cJJs [81]. However, the magnitude of the flux change observed in
some cases (up to 440 μΦ0) was larger than the expected one for a ferritin NP located
at optimum position (up to 100 μΦ0).

Low-noise nanoSQUIDs from an Nb/amorphousW bilayer (200 and 150 nm thick,
respectively) have been produced by FIB milling [82]. The SQUID loop (370 nm in-
ner diameter) was intersected by two nanobridges (65 nm wide and 60 − 80nm long)
which showed nonhysteretic IVCs at 5−9K. Readout in the voltage state gave√SΦ,w =
200nΦ0/√Hz at 6.8 K. Recently, the samegroup extended the operation temperatures
down to < 1K by using superconducting Ti films, inversely proximized by Au layers to
reduce Tc [83]. These SQUIDs (with 40 nmwide and 120 nm long constrictions) exhib-
ited no hysteresis within 60mK < T < 600mK and had√SΦ,w = 1.1 μΦ0/√Hz. These
devices allowed the detection of the magnetic signal produced by a 150 nm diameter
FePt nanobead having 107 μB at 8 K in fields up to 10mT [84].

As mentioned earlier, cJJ-based nanoSQUIDs can be operated in strong magnetic
fields applied in the plane of the loop, which is limited by the upper critical field of
the superconductors. The use of very thin superconducting layers can increase the ef-
fective critical field. Following this idea, 3 − 5nm-thick cJJ Nb nanoSQUIDs were fab-
ricated, supporting in-plane fields up to 10 T. These sensors proved to be well suited
for measuring magnetization curves of microcrystals of Mn12 SMMs [85]. However,
their large kinetic inductances lead to large fluxnoise (∼ 100 μΦ0/√Hz).More promis-
ing is the use of materials with larger upper critical fields, such as boron-doped dia-
mond [86]. Micrometric SQUIDs based on 100 nm-wide constrictions in 300 nm thick
films were demonstrated to operate up to impressive fields of 4 T applied along any
direction. These devices were, however, hysteretic due to heat dissipation. Flux sensi-
tivity was determined from the critical current uncertainty giving 40 μΦ0/√Hz.

Finally, we note that the smallest nanoSQUIDs realized so far, which also include
cJJs, are the SQUIDs-on-tip (SOTs) [87, 88]. These devices will be discussed in more
detail in Section 11.5.
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Fig. 11.11: (a) SEM image of a SQUID sensor consisting of a proximized highly doped InAs nanowire
enclosed within a V ring (after Spathis et al. [92]). (b) Scheme of a SQUIPT. The inset shows an SEM
image of the SQUIPT core; a normal metal probe is tunnel-connected to a proximized Cu island en-
closed within an Al ring. SEM images courtesy of F. Giazotto and S. D’Ambrosio.

11.3.2.4 Proximized structures
Anormalmetal in good contact between superconducting electrodes acquires someof
their properties due to the proximity effect, inducing amini-gap in the density of states
of the normal metal. Andreev pairs can propagate along relatively long distances at
low T, carrying information on the macroscopic phase of the superconductor. In the
long (short)-junction regime, when the Thouless energy of the metal is larger (smaller)
than the superconducting energy gap, the junction properties will be governed by the
normal metal (superconductor).

The first dc SQUID built with long proximized JJs was based on a CNT intersecting
an Al ring [89]. A gate-modulated supercurrent was demonstrated and flux-induced
modulation of the critical current (few nA)was observed atmK temperatures. The goal
was to exploit the small cross section of the CNT (∼ 1nm2) to provide optimum cou-
pling formolecular nanomagnets attached to it. An experimental proof-of-principle of
such a CNT-based magnetometer is, however, still missing. A micrometric dc SQUID
with graphene proximized junctions (50 nm long, 4 μm wide) was also reported [90].
Flux-induced Ic modulation was observed, however, no noise performance of the de-
vice was reported.

Micrometric dc SQUIDs containing normal metal bridges as weak links have also
been reported. Nb/Au/Nb and Al/Au/Al-based devices showed IVCs with pronounced
hysteresis, due toheatdissipated in thenormalmetal after switching [91]. SQUIDswith
shorter Cu nanowires (280–370nm long, 60–150nm wide, 20 nm thick) enclosed in
a V ring were nonhysteretic. NanoSQUIDs based on proximized InAs nanowires (∼
90nm diameter, 20 or 50nm long) were also reported [92] with JJs in the intermediate
length regime (Figure 11.11a).

A different kind of interferometer consists of a superconducting loop interrupted
by a normal metal island. A magnetic field applied to the loop varies the phase dif-
ference across the normal metal wire, allowing flux-modulation of the minigap. This
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behavior canbeprobedbyanelectrode tunnel coupled to thenormalmetal island (Fig-
ure 11.11b), providing a flux-modulated electric response similar to conventional dc
SQUIDs. This device received the name Superconducting Quantum Interference Prox-
imity Transistor (SQUIPT), for being the magnetic analog to the semiconductor field-
effect transistor. SQUIPTs were pioneered by Giazotto et al. [93] using Al loops and Cu
wires (∼ 1.5 μm long, ∼ 240nm wide). These magnetometers were further improved
by reducing the length of the normal metal island down to the short-junction limit,
leading to a much larger mini-gap opening. By choosing proper dimensions of the
normal metal island, such sensors do not exhibit any hysteresis down to mK tempera-
tures [94, 95] and canbe voltage- or current-biased, providing impressive values of VΦ
of a few mV/Φ0. SQUIPTs are in their early stage of development [96], still showing a
very narrow temperature range of operation limited to sub-Kelvin. On the other hand,
they exhibit record low dissipation power of just ∼ 100 fW (Ic ∼ pA, Vout ∼ 100mV)
and should achieve flux noise levels of just a few nΦ0/√Hz. The latter has not been
determined experimentally yet due to limitations from the voltage noise of the room-
temperature amplifiers.

11.3.3 NanoSQUIDs based on cuprate superconductors

High-Tc cuprate superconductors such as YBCO have very small and anisotropic val-
ues of ξ , reaching ∼ 1nm for the a–b plane and a minute ∼ 0.1 nm for the c-axis,
making the fabrication of cJJs extremely challenging. Still, the fabrication of YBCO
cJJs with 50nm × 50nm cross section and 100 − 200nm length has been reported
recently [97]. These JJs exhibit large Ic of a few mA at 300mK. NanoSQUIDs based on
this technologywere fabricated andpreliminarymeasurements showed lowfluxnoise√SΦ,w = 700nΦ0/√Hz at 8K.

Probably the most mature JJs from cuprate superconductors are based on Joseph-
son coupling across grain boundaries (GBs). Grain boundary junctions (GBJs) can
be fabricated, e.g., by epitaxial growth of cuprate superconductors on bicrystal sub-
strates or biepitaxial seed layers [98–100]. Although micrometric SQUIDs based on
GBJs have been produced [29], the miniaturization of high-quality GBJs is challeng-
ing, because of degradation of thematerial due to oxygen loss during nanopatterning.
Conversely, NanoSQUIDs made of high-Tc GBJs are very attractive due to their large
critical current densities (∼ 105 A/cm2 at 4.2 K) and huge upper critical fields (several
tens of T).

YBCOGBJ nanoSQUIDswere fabricatedby FIBmilling [46, 49, 50]. Devices consist
of 50 − 300nm thick YBCO epitaxially grown on bicrystal SrTiO3 substrates (24° mis-
orientation angle) and covered by typically 60nm thick Au serving as a resistive shunt
and to protect the YBCOduring FIBmilling. Typical inner hole size is 200−500nmand
GBJs are 100 − 300nm wide (Figure 11.12a). Devices are nonhysteretic and work from< 1K up to ∼ 80K. Large magnetic fields can be applied perpendicular to the GBJs in
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the substrate plane, without severe degradation of the Ic modulation for fields up to
3 T [49]. Via a modulation current Imod through a constriction (down to ∼ 50nmwide)
in the loop, the devices can be flux-biased at their optimum working point, without
exceeding the critical current, i.e., the constriction is not acting as a weak link. The
constriction is also the position of optimum coupling of an MNP to the SQUID.

Numerical simulations based on London equations for variable SQUID geometry
provided expressions for L and ϕμ (via Equation [11.10]) for a magnetic dipole 10 nm
above the constriction, as a function of all relevant geometric parameters. Together
with RCSJ model predictions for SΦ,w at 4.2 K, an optimization study for the spin sen-
sitivity has been performed. An optimum film thickness dopt = 120nm was found
(for λL = 250nm). For smaller d, the increasing contribution of Lkin to the flux noise
dominates over the improvement in coupling. For optimum βL ∼ 0.5 and d = dopt, the
spin sensitivity decreasesmonotonicallywith decreasing constriction length lc (which
fixes the optimum constriction width wc). For lc and wc of several tens of nm, an opti-
mum spin sensitivity of a few μB/√Hz was predicted in the white noise limit [52].

For an optimized device with small inductance L ∼ 4pH (d = 120nm, lc =
190nm, wc = 85nm), direct readout measurements of the magnetic flux noise at
4.2 K gave 50nΦ0/√Hz at 7MHz (close to the intrinsic thermal noise floor), which
is amongst the lowest values reported for dc SQUIDs so far (Figure 11.12b). With a
calculated coupling factor ϕμ = 13nΦ0/μB, this device yields a spin sensitivity of
3.7 μB/√Hz at 7MHz and 4.2 K [50]. Because of the extremely low white noise level,
1/f -like excess noise dominates the noise spectrumwithin the entire bandwidth of the
readout electronics. Bias reversal can only partially eliminate this excess noise, which
deserves further investigation.

Fig. 11.12: YBCO nanoSQUID. (a) SEM image of SQUID loop (400 × 300 nm2), intersected by 130 nm
wide GBJs; the GB is indicated by the vertical dashed line. The loop contains a 90 nm wide constric-
tion for flux biasing and optimum coupling. (b) Rms flux noise of optimized YBCO SQUID, measured
in open-loop mode. Dashed line is a fit to the measured spectrum; horizontal line indicates fitted
white noise. (After Schwarz et al. [49, 50])
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Finally, an encouraging step towards the controlled formation and further minia-
turization of high-Tc JJs has been made recently by [101]. For this purpose a 0.5-nm-
diameter He+-beam was used to fabricate ∼ 1nm-narrow ion-irradiated barriers on
4 μm wide and 30 nm thick YBCO bridges. The key point is the smallness of the ion
beam diameter, which allows the introduction of point-like defects. By varying the ir-
radiation dose between 1014–1018 He+/cm2 the authors showed the successful real-
ization of JJs exhibiting SNS-like or tunnel-like behavior. This technique has been ap-
plied to the fabrication of SQUID devices [102], but their downsizing to the nanoscale
still needs to be realized.

11.4 nanoSQUIDs for magnetic particle detection

Originally, nanoSQUIDs were conceived for the investigation of individual MNPs and
SMMs. These systems are of key technological importance with applications ranging
from electronics, including hard discs,magnetic randomaccessmemories, giantmag-
neto resistance devices, and spin valves, through on-chip adiabatic magnetic cool-
ers, and up to biotechnology applications including enhanced imaging of tissues and
organs, virus-detecting magnetic resonance imaging, and cancer therapy (see, e.g.,
Ref. [103]). Moreover, magnetic molecules appear as an attractive playground to study
quantum phenomena [104] and could eventually find application in emerging fields
of quantum science such as solid-state quantum information technologies [105] and
molecular spintronics [106].

In this section we will review, as an important application of nanoSQUIDs, the
investigation of small magnetic particles. We will first address challenges and ap-
proaches regarding positioning of MNPs close to the SQUIDs and then discuss mea-
surements of magnetization reversal and of ac susceptibility of MNPs.

11.4.1 Nanoparticle positioning

The manipulation and positioning of MNPs close to the nanoSQUIDs is particularly
important since themagnetic signal coupled to any formofmagnetometer strongly de-
pends on the particle location with respect to the sensor. Although conceptually very
simple, this problem has hampered the realization of true single-particle magnetic
measurements so far. Many strategies have been developed to improve the control on
the positioning of MNPs or SMMs on specific areas of nanoSQUID sensors.

11.4.1.1 In situ nanoparticle growth
In an early approach, called the drop-castingmethod, small droplets with suspended
MNPs were deposited on a substrate containing many nanoSQUIDs. After solvent
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Fig. 11.13: SEM images of (a) Co nanoparticle deposited by FEBID on the constriction of a YBCO
nanoSQUID and (b) nanodot deposited by FIBID on a SiNi cantilever above an Nb nanoloop. Parti-
cles are highlighted by dashed circles. SEM images courtesy of J. Sesé.

evaporation some of the MNPs happened to occupy positions of maximum cou-
pling. This method was successfully applied to investigate 15–30nm individual Co
MNPs [107]. In a similar approach, MNPs based on Co, Fe or Ni were sputtered using
low-energy cluster beam deposition techniques onto substrates containing a large
amount of microSQUIDs [108]. Alternatively, MNP and Nb deposition was realized
simultaneously to embed nanometric clusters into the superconducting films, which
were subsequently patterned to form nano- or microSQUIDs [109]. The drawback of
these techniques is the lack of precise control of the MNP positions relative to the
SQUIDs, which requires the use and characterization of many tens or even hundreds
of SQUIDs.

Improved nanometric control over the particle position can be achieved by nano-
lithography methods. This has been used to define Co, Ni, TbFe3 and Co81Zr9Mo8Ni2
MNPs with smallest dimension of 100 × 50 × 8nm3 [11]. Alternatively, focused e-
beam induced deposition (FEBID) of high-purity cobalt (from a precursor gas, e.g.,
Co2(CO)8 [110]) allows the definition of much smaller particles (down to ∼ 10nm)
and arbitrary shape located at precise positionswith nanometric resolution. This tech-
niquehasbeen successfully applied to the integrationof amorphousConanodots onto
YBCO nanoSQUIDs (Figure 11.13a) [111].

11.4.1.2 Scanning probe-based techniques
A scanning probe, e.g., the tip of an AFM, can be used for precise manipulation of
the position of an MNP. AFM imaging in noncontact mode is first used to locate MNPs
dispersed over a surface Then, using contact mode, the tip is used to literally “push”
the MNP to the desired position [112, 113]. This technique was applied to improve the
coupling between a nanoSQUID and Fe3O4 NPs (15 nm diameter) deposited via the
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drop-casting method [37]. Micro- and nanomanipulators installed inside SEMs have
also been used for this purpose. For instance, a sharpened carbon fiber mounted on
a micromanipulator in an SEM has been used to pick up a ∼ 0.15 μm diameter single
FePt particle and deposit it onto a nanoSQUID [84].

Alternatively, larger carriers that are more easily visible and manipulated can be
used to manipulate the position of MNPs. For example, microscopic SiNi cantilevers
containing the MNP of interest can be moved using a micromanipulator [114] (Fig-
ure 11.13b). In particular, CNTs appear as promising tools for this purpose. SMMs have
indeed been successfully grafted over or encapsulated inside CNTs, which were later
used to infer their magnetic properties [17]. Similarly, an Fe nanowire encapsulated
in a CNT has been mounted by micromanipulators on top of YBCO nanoSQUIDs for
magnetization reversal measurements (see Section 11.4.2) [50].

Another promising approach is dip pen nanolithography (DPN). Here, an AFM tip
is first coated with a solution containing MNPs and then brought into contact with a
surface at the desired location. Capillarity transport of the MNPs from the tip to the
surface via a water meniscus enables the successful deposition of small collections
of molecules in submicrometer dimensions [115]. Bellido et al. [116] showed that this
technique can be applied to the deposition of dot-like features containing monolayer
arrangements of ferritin-basedmolecules ontomicroSQUID sensors (Figure 11.14a) for
magnetic susceptibility measurements [117] (Section 11.4.3). The number of MNPs de-
posited per dot can be controlled (via the concentration of the ferritin solution and dot
size) from several hundred proteins down to individual ones [116]. Recently, DPN has
also been applied to the deposition of dot-like features containing just 3−5molecular
layers of Mn12 andDy2 SMMs onto the active areas ofmicroSQUID-based susceptome-
ters, enabling the detection of their magnetic susceptibility [118, 119] (Figure 11.14b).
Recently, individual magnetic nanotubes, attached to an ultrasoft cantilever were
brought in close vicinity to a nanoSQUID at low T [48, 120, 121]. This technique
allowed the authors to investigate magnetization reversal of the nanotubes by com-
bining torque and SQUID magnetometry (see Section 11.4.2).

We note that scanning SQUID microscopy could also be applied to the study of
MNPs deposited randomly on surfaces [122]. This would provide an elegant way of lo-
catingmagnetic systems close enough to the sensor and would also enable in situ ref-
erence measurements. However, their use for the investigation of magnetic molecules
or nanoparticles arranged on surfaces is still in waiting.

11.4.1.3 Techniques based on chemical functionalization
The above-mentioned techniques canbe further improved by chemically functionaliz-
ing the sensor’s surface or the MNPs or both of them [123]. This usually provides high-
quality monolayers or even individual magnetic molecules at specific positions. For
instance, Mn12 SMMs could be successfully grafted on Au, the preferred substrate for
chemical binding, by introducing thiol groups in the clusters [124]. In a further step,
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Fig. 11.14: (a) Ferritin nanodots (dashed circles) deposited by DPN on top of the pickup coil of a
SQUID-based microsusceptometer. Each dot contains 104 proteins approximately arranged as a
monolayer. Scheme of the DPN nanopatterning technique; a conventional AFM probe delivers dot-
like features containing monolayer arrangements of ferritin over the surface (after Martínez-Pérez
et al. [117]). (b) Optical microscope image taken during the DPN patterning process showing the AFM
probe over a microsusceptometer’s pickup coil. The blow-up shows an AFM image of the resulting
sample containing five molecular layers of Dy2 SMMs. Images courtesy of F. Luis.

suchMn12 molecules could be individually isolated by a combination ofmolecule and
Au substrate functionalization [125].

This technique has also been applied to the deposition of ferritin-based MNPs
onto Au-shunted nanoSQUIDs [126]. For this purpose, a 200 × 200nm2 window
was opened through e-beam lithography onto a PMMA layer deposited on top of the
nanoSQUID. This window was then covered with organic linkers that were later used
to attach the ferritin MNPs. The success of this process was finally determined by
AFM, showing evidence that a few proteins were attached.

11.4.2 Magnetization measurements

NanoSQUIDs can be applied to study the reversal of magnetizationM of MNPs placed
nearby. For this purpose an external magnetic field Bext is swept while recording
changes in the magnetic moment μ of the sample coupled as a change of magnetic
flux to the SQUID (Figure 11.4b). Usually,M(Bext) is hysteretic, due to an energy barrier
created by magnetic anisotropy. Such hysteresis loops reveal information on the re-
versal mechanisms, e.g., domainwall nucleation and propagation or the formation of
topological magnetic states like vortices, coherent rotation, or quantum tunneling of
magnetization. Depending on the particle’s anisotropy, this requires the application
of relatively large Bext, a difficult task when dealing with superconducting materi-
als. Measurements are usually done by careful alignment of Bext with respect to the
nanoSQUID, to minimize the magnetic flux coupled to the loop and the JJs by Bext
directly. The maximum Bext will be limited by the upper critical field of the super-
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Fig. 11.15: (a) Sketch of combined torque and nanoSQUID magnetometry on a Ni nanotube. (b,c)
Simultaneously measured hysteresis loops (b) ΦNN(H), (c) ∆f(H). Arrows indicate H sweep direction.
Dashed lines indicate discontinuities appearing in both ΦNN(H) and ∆f(H). (After [48] and [120])

conducting material, e.g., ∼ 1T for Nb films, unless ultrathin films are used, which
however increases significantly Lk and hence the flux noise (see Section 11.3.2.3).

The greatest amount of dc magnetization studies performed on individual MNPs
was provided by the pioneering work of Wernsdorfer and co-workers. They were
able to measure magnetization curves of a number of MNPs made of Ni, Co, TbFe3
and Co81Zr9Mo8Ni2 with sizes down to 100 × 50 × 8nm2. Furthermore, they suc-
ceeded in measuring the dc magnetization of the smallest MNPs ever detected to
date. These are 3 nm diameter crystalline Co MNPs (103 μB each) directly embedded
into the Nb film forming the nanoSQUID [40]. The detected magnetization switch-
ing process was attributed to an individual MNP located precisely at the cJJ, where
the coupling factor is maximized. These studies also enabled the determination of
the 2nd and 4th order anisotropy terms in the magnetic anisotropy of the Co MNPs.
Additionally, many exciting phenomena were studied with this technique. These in-
clude, e.g., the observation of Stoner–Wohlfarth and Néel–Brown type of thermally
assisted magnetization reversal in individual Co clusters (25 nm, 106 μB) [107] or the
observation ofmacroscopic quantum tunneling ofmagnetization in BaFeCoTiO single
particles (10−20nm, 105 μB) [127]. Magnetization reversal triggered by rf field pulses
on a 20 nm diameter Co NP was also reported [128] and, recently, the effects of the
antiferromagnetic-ferromagnetic exchange bias between a Co nanocluster and a CoO
layer were revealed [129]. Micrometric SMM crystals were also investigated with an
array containing four microSQUIDs [130]. These experiments allowed observing the
modulation of the small (10−7 K) tunnel splitting in Fe8 molecular clusters under the
application of a transverse magnetic field [131].
Magnetization reversal mechanisms in single Ni and permalloy nanotubeswere inves-
tigated using Nb/HfTi/Nb-based nanoSQUIDs [48, 120, 121]. Experiments were per-
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formed at 4.2 K with Bext = μ0H applied along the nanotube axis (z-axis), with the
SQUID loop in the x–z plane. The nanoSQUID was mounted on an x-y-z stage be-
low the bottom end of the nanotube which is affixed to an ultrasoft Si cantilever (Fig-
ure 11.15a). The nanotube was positioned to maximize the flux ΦNN coupled to the
nanoSQUID. While recording the SQUID output operated in FLL, simultaneously the
magnetic torque exerted on the nanotube was detected, by recording the frequency
shift ∆f on the cantilever resonance frequency as a function of H. Measurements on
a Ni nanotube showed discontinuities at the same values of H that were ascribed to
switching of themagnetization along the nanotube (Figure 11.15b). These experiments
provided, on the one hand, the magnetic field stray produced by the nanotube’s end
and, on the other, the volume magnetization, giving evidence for the formation of a
magnetic vortex-like configuration in the nanotube. Measurements on an individual
permalloy nanotube evidenced the nucleation of magnetic vortices at the nanotube’s
end before propagating through its whole length, leading to the complete switching
of the magnetization. Furthermore, it has been shown that a thin exchange-coupled
antiferromagnetic native-oxide layer on the nanotube modifies the magnetization re-
versal process at low temperatures [121].

YBCO nanoSQUIDs were used for the investigation of magnetization reversal in a
Fenanowire grown insideaCNTattachedon topof theSQUID [50] (Figure 11.16a).Mag-
netizationmeasurements were performed at 4.2 K in FLL by continuously sweeping H
in the plane of the SQUID loop, along the Fe wire axis. Rectangular shaped hysteresis
loops (Figure 11.16b) indicate a single domain state for the nanowire. The magnitude
of the switching field suggests that magnetization reversal takes place non-uniformly,
e.g., by curling. These results agree very well with previous measurements on an in-
dividual nanowire using a micro-Hall bar [18], albeit with a significantly improved
signal-to-noise ratio. Similarly, YBCO nanoSQUIDs were used to detect the magneti-
zation reversal of individual Co MNPs with magnetic moments (1−30) × 106 μB at dif-
ferent temperatures ranging from 300mK up to 80K. These studies allowed the iden-
tification of two different reversal mechanisms which depend on the dimensions and
shape of the Co particles. The different reversal mechanisms are linked to the stabi-
lization two different magnetic states, i.e., the (quasi) single domain and the vortex
state [111].

11.4.3 Susceptibility measurements

Even more demanding, nanoSQUIDs can also be used to quantify the response of an
MNP to an oscillating magnetic field Bac = B0 cos(ωt), i.e., its frequency-dependent
magnetic susceptibility χac = χre + iχim, where χre is the part going in-phase with Bac
and χim is the out-of-phase part. These quantities bear much information on the dy-
namic behavior of spins and the relaxation processes to thermal equilibrium, the in-
teraction between spins, and the ensuingmagnetic phase transitions. Thesemeasure-
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Fig. 11.16: (a) SEM image of Fe nanowire encapsulated in a CNT on top of a YBCO nanoSQUID. (b) Hys-
teresis loop Φ(H) of the Fe nanowire, detected by the SQUID. Left axis corresponds to magnetization
signal M; the literature value for the saturation magnetization Ms = 1710 kA/m of Fe is indicated as
dashed lines. (after Schwarz et al. [50])

ments can be performed using SQUID-based susceptometers, usually in a gradiomet-
ric design to be insensitive to homogeneous external magnetic fields, but sensitive to
the imbalanceproducedbyanMNP located inoneof the coils (Figure 11.4[c,d]). χre and
χim are directly accessible by applying a homogeneous Bac via on-chip excitation coils
and lock-in detecting the nanoSQUID output. Alternatively,√SΦ can be measured, as
it is directly related to χim through the fluctuation-dissipation theorem [132]. The de-
tection of χac demands high sensitivity, as the net oscillating polarization induced in
the sample is, by far, smaller than the total saturation magnetization. At best, broad-
band frequency measurements must be performed which also provide an easy way to
filter out the 1/f noise of the SQUIDs, therefore improving the effective sensitivity of
the sensor. Frequencies are usually restricted to ∼ 1MHz, mainly limited by the room-
temperature amplifiers and the FLL circuit.

One of the most controversial observations of quantum coherence in nanoscopic
magnets was realized using the SQUID-based microsusceptometer developed by
Ketchen et al. [9]. This device allowed the detection of the magnetic susceptibility
of small spin populations of natural horse-spleen ferritin [133]. For a sample with
just 4 × 104 proteins (∼ 200 μB/protein), a resonance peak in both the out-of-phase
component of χac and √SΦ has been observed and was attributed to the zero-field
splitting energy [133, 134]. This is the energy separating the two nondegenerated
low-energy quantum states, i.e., the (anti-)symmetric combination of the classical
states corresponding to magnetization pointing (down) up. This interpretation and
the magnitude of this zero-field splitting (900 kHz) is still an object of debate.

MNPs artificially grown inside ferritin were also studied using a SQUID-basedmi-
crosusceptometer [117]. The magnetic core with diameter of just a few nm was com-
posed of antiferromagnetic CoO leading to a tiny magnetic moment of ∼ 10 μB per
protein. Monolayer arrangements of ferritin MNPs (total amount ∼ 107 proteins) were
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deposited byDPNdirectly onto the SQUID,maximizing the coupling between the sam-
ples and the sensor’s pickup coils [116] (see Section 11.4.1.2). Using Bac ∼ 0.1mT, these
experiments showed that ferritin-based MNPs arranged on surfaces retain their prop-
erties, still exhibiting superparamagnetic blocking of themagnetic susceptibility (Fig-
ure 11.17a). Furthermore, these results allowed one to determine experimentally the
spin sensitivity. This was done by determining the coupling, i.e., the measured flux
signal coupled to the microsusceptometer divided by the total magnetic moment of
the particle, whichwas located at an optimum position on top of the field coil or close
to the edge of the pickup-loop. Together with the measured flux noise of the SQUID,
this yielded S1/2μ ∼ 300 μB/√Hz. Additionally, a large amount of measurements on
SMMmicron-sized crystals or powder at very low T were reported (Figure 11.17b). The
large bandwidth of these susceptometers (1mHz–1MHz) enabled, e.g., the investiga-
tion of the relationship between quantum tunneling and spin-phonon interaction and
to point out novel and reliablemolecular candidates for quantum computing and low-
temperature magnetic refrigerants (e.g., Refs. [33, 135–137]).

Microsusceptometers were also used to detect the ac magnetic susceptibility of
just ∼ 9× 107 Mn12 SMMs arranged as dot-like features containing 3–5 molecular lay-
ers [118]. Measurements showed an evident decrease of the magnetic relaxation time
compared to that observed in crystalline Mn12. This phenomenon was attributed to
structural modifications of the surface-arranged molecules leading to an effective de-
crease of their activation energy. These sensors have also been applied to the investi-
gation of quantum spin dynamics of Fe4 SMMs grafted onto graphene flakes [138].
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Fig. 11.17: Magnetic susceptibility χ measured with SQUID-based microsusceptometers. (a) Ferritin
monolayer dots and bulk sample: χre(T) obtained at three different frequencies. The superpara-
magnetic blocking of the susceptibility is visible below 50 mK in both cases (after Martínez-Pérez
et al. [117]). (b) HoW10 SMM crystal: χre(f) (left) and χim(f) (right) measured at different T .

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



11.5 nanoSQUIDs for scanning SQUID microscopy | 369

11.5 nanoSQUIDs for scanning SQUID microscopy

In scanning SQUID microscopy (SSM) the high sensitivity of SQUIDs to magnetic flux
is combined with high spatial resolution by scanning a sample under investigation
relative to a miniaturized SQUID sensor, or vice versa. A variety of SSM systems was
developed in the 1990s and refined since then. Thosewerebasedonboth,metallic low-
Tc andhigh-Tc cuprate superconductors, although themajority ofwork focusedon the
low-Tc devices. For a review on the developments of SSM in the 1990s see Ref. [139].

Obviously, miniaturized SQUID structures can significantly improve the spatial
resolution and sensitivity to local magnetic field sources. A key issue is the require-
ment to approach the surface of the samples under investigation to a distance which
is of the order of or even smaller than the SQUID size or pickup loop, in order to gain in
spatial resolution by shrinking the lateral dimensions of the structures. Several strate-
gies for improving the spatial resolution in SSM have been followed, which can be
divided into three approaches. The two conventional approaches, developed in the
1990s use SQUID structures on planar substrates. One is based on the sensing of local
fields by aminiaturized pickup loop, coupled to a SQUID sensor; the other is based on
using miniaturized SQUID loops to which local magnetic signals are coupled directly
(Section 11.5.1). A very recently developed third approachuses theSQUID-on-tip (SOT),
i.e., a SQUID deposited directly on top of a nanotip (Section 11.5.2).

11.5.1 SQUID microscopes using devices on planar substrates

SQUID microscopes developed at IMB research by Kirtley et al. [140] are based on
Nb/Al-AlOx/Nb technology. The sensors are based on a single SQUID loop with an
integrated pickup loop [43]. The pickup loops have diameters down to ∼ 4 μm and
are connected via well-shielded superconducting thin film leads to the SQUID loop
at typically ∼ 1mm distance on the same chip [141]. This technology has also been
used to realize a miniature vector magnetometer for SSM by using three SQUIDs with
orthogonal pickup loops on a single chip [142]. As a key advantage, the IBM designs
are based on the very mature Nb multilayer SIS technology, including patterning by
photolithography, that allows e.g., using the HYPRES⁵ process for sensor fabrication.
Moreover, this allows integration of field coils around the pickup loop for susceptibil-
ity measurements and inductive coupling of modulation coils to the SQUID loop for
separate flux modulation of the SQUID, i.e., without disturbing the signals to be de-
tected by the pickup loop. The Si substrate is polished to form a corner, typically at a
distance dcorner of a few tens of μm away from the center of the pickup loop. SQUIDmi-
croscopes based on such sensors use amechanical lever for scanning. The SQUID chip
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is mounted on a cantilever with a small inclination angle α to the plane of the sample.
The vertical pickup-loop to sample distance is then given by dcorner sin α [140]. If the
SQUID is well thermally linked to the liquid He bath for operation at 4.2 K, the sample
mounted in vacuum can be heated to above ∼ 100K [143].

The most important application of the IBM microscope was the pioneering work
on the order parameter symmetry of cuprate superconductors. Just to mention a few
examples, this includes key experiments for providing clear evidence of dx2−y2-wave
pairing in the cuprates by imaging fractional vortices along YBCO GBJs [144], the for-
mation of half-integer flux quanta in cuprate tricrystals [145] and inNb/cuprate hybrid
Josephson junctions, forming zigzag-type JJs or huge arrays of π-rings [146]. For more
applications, see the review [13].

Very similar devices, also based on Nb multilayer technology, have been devel-
oped and used for SSM by the Stanford group of Moler and co-workers [54, 55]. On the
basis of the original microsusceptometer design of Ketchen et al. [43], these devices
contain two oppositely wound pickup coils, to cancel homogeneous applied fields.
Sensors with ∼ 4 μm pickup-loop diameter achieved √SΦ = 0.8 μΦ0/√Hz at 4 K and
0.25 μΦ0/√Hzbelow0.5 K [55, 147]. The sensor’s substratewas cut by polishing, lead-
ing to dcorner ∼ 25 μ. A capacitive approach control was used to monitor the probe-to-
sample distance. These microsusceptometers were largely improved by using a ter-
raced cantilever obtained through a multilayer lithography process. In this way the
pickup loop stands above the rest of the structure lying at just 300 nm above the sam-
ple surface. Additionally, the pickup loop diameters were reduced down to 600nm
using focused ion beam (FIB) milling [147]. On the basis of these SQUID sensors, the
Stanford group has developed a SQUID microscope operating at temperatures down
to 20mK in a dilution refrigerator[148].

The SSM system of the Stanford group has been very successfully applied to a
variety of interesting systems. Just to give a few examples, this includes the study of
edge currents in topological insulators [149], surface magnetic states [150] and twin
walls [151] at the LaAlO3/SrTiO3 interface, or unpaired spins in metals [32].

As an alternative approach, the group of Hasselbach and co-workers at Institut
Néel, Grenoble developed anSSMbased onminiaturizedNb andAl SQUIDs loopswith
constriction JJs [67], very similar to the ones of the Wernsdorfer group [37]. This ap-
proach allows for a relatively simple single-layer fabrication process with prospects of
strong miniaturization. To achieve at the same time small probe-to-sample distances,
the sensor’s substrate was cut using a dicing machine and a mesa was defined by
means of reactive ion etching so that the distance between the SQUID and apex of the
mesa (‘tip’) was only 2−3 μm. With an inclination angle α ∼ 5°, this gives a smallest
vertical distance to a sample surface of ∼ 0.26 μm. The SSM setup is combined with
force microscopy, based on the use of a mechanically excited quartz tuning fork and
operates in a dilution refrigerator, achieving minimum SQUID and sample tempera-
tures of 0.45K [69]. Very recently, in a modified setup with 40mK base temperature, a
SQUID-to-sample distance of 420 nm has been demonstrated [152].
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Fig. 11.18: SQUID-on-tip (SOT): (a) schematic of a sharp quartz pipette with superconducting leads,
connecting to the SOT at the bottom end; inset shows magnified view. (b) SEM image of an Nb SOT
having a diameter of 238 nm. Reprinted by permission from Macmillan Publishers Ltd: Nature Nan-
otechnology [88], copyright (2013).

The SSM system of the Grenoble group has been applied to the investigation of
basic properties of superconductors. This includes, e.g., studies on the direct obser-
vation of the localized superconducting state around holes in perforated Al films [153]
or on the Meissner–Ochsenfeld effect and absence of the Meissner state in the ferro-
magnetic superconductor UCoGe [154].

11.5.2 SQUID-on-tip (SOT) microscope

An important breakthrough in the field of nanoSQUIDs applied to SSM was achieved
recently with the implementation of the SQUID-on-tip (SOT) by the Zeldov group at
the Weizman Institute of Science [87, 88]. This device is based on the deposition of
a nanoSQUID directly on the apex of a sharp quartz pipette (Figure 11.18). The fact
that the nanoSQUID is located on a sharp tip reduces the possible minimum probe-
to-sample distances to below 100 nm, boosting enormously the spatial resolution of
the microscope. Al, Nb and Pb nanoSQUIDs based on Dayem bridges are shadow-
evaporated in a three-angle process, without requiring any lithography or milling
steps. For this purpose, a quartz pipette is first pulled to form a sharp hollow tip with
40 − 300 nm inner diameter. By means of a laser diode parallel to the tip, the latter is
aligned pointing down towards the source which defines the 0° position. Then a thin
layer (< 10nm) of superconducting material is deposited, followed by two thicker
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leads (> 25nm) deposited at ±100°. The resulting weak links formed at the tip apex
between these two leads constitute two Dayem bridges. Special care must be taken
for fabricating the Nb and Pb sensors. The former require the previous deposition of
a thin AlOx buffer layer to prevent contamination from the quartz tip. A dedicated
ultra-high vacuum e-beam evaporation system was used for depositing Nb from a
point source. Conversely, the so far most sensitive Pb sensors require the use of a He
cooling system for the tips during deposition to prevent the formation of islands due
to the large surface mobility of these atoms at higher temperatures. This procedure
lead to the smallest nanoSQUIDs fabricated so far, with effective nanoloop diameters
down to 50 nm. The resulting inductance of the loop reaches values below 10 pH,
dominated by the kinetic inductance of the thin superconducting layer. Although
these nanoSQUIDs exhibit hysteretic IVCs, operation with voltage-bias and reading
out the resulting current signal with an SSA enables the detection of the intrinsic
flux noise of the devices. The SOTs can be operated in large magnetic fields up to∼ 1T (limited by the upper critical fields of the superconducting materials). So far,
flux biasing to maintain the optimumworking point during continuous external field
sweep is not possible. By adjusting the external magnetic field to values that yield
large transfer functions, these devices exhibit extraordinary low flux noise levels
down to 50nΦ0/√Hz for the Pb SOTs [88]. The latter varies, depending on the biasing
external magnetic field. For a magnetic dipole located at the center of the loop with
orientation perpendicular to the loop plane (assuming an infinitely narrow width
of the loop, i.e., the approximation used by Ketchen et al. [43]), this translates into
a spin sensitivity of 0.38 μB/√Hz, i.e., the best spin sensitivity reported so far for a
nanoSQUID.

A device capable of distinguishing in-plane and out-of-plane magnetic signals
was also reported [155]. This is achieved byusing a pipette with θ-shaped cross section
to form a three JJ SQUID (3JSOT). This tip is later milled by FIB leading to a V-shaped
apexwith twoobliquenanoloops connected inparallel. Bymeasuring thedependence
of the maximum critical current on the externally applied in-plane and out-of-plane
magnetic fields Ic(H‖ , H⊥), it is possible to determine all the geometrical and electric
parameters of the device. Field components can be decoupled by biasing the 3JSOT at
specific fields (H‖, H⊥) inwhich Ic depends strongly on one of the twoorthogonal com-
ponents of the magnetic field while being insensitive to the other. As a drawback, this
device is not capable of distinguishing both in-plane and out-of-plane components
of the magnetic flux simultaneously, but only when operated at different flux biasing
points.

For SSM, a system operating in a 3He system with 300mK base temperature has
beendeveloped,with the SOT glued on a quartz tuning fork, to operate the systemalso
in a magnetic force microscopy mode. This allows scanning (using piezo-scanners) at
extremely small tip-to-sample distances of only a few nm [156]. A spatial resolution
below 120 nm was demonstrated by imaging vortices in Nb thin films with a 117 nm-
diameter Pb SOT [88].
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The SOT-SSM system has been successfully applied to the study of vortex tra-
jectories in superconducting thin films, allowing the investigation of the influence
of the pining force landscape [157]. More recently, this tool was used to observe
nanoscopic magnetic structures such as ferromagnetic metallic nanoislands at the
LaMnO3/SrTiO3 interface [158] or magnetic nanodomains in magnetic topological
insulators [159].

11.6 Summary and outlook

Significant progress in thin film fabrication and patterning technologies has enabled
the development of strongly miniaturized dc SQUIDs with loop sizes on the microm-
eter scale (microSQUIDs) or even with submicrometer dimensions (nanoSQUIDs), or
SQUIDs coupled to miniaturized pickup loops. Such devices are based on a variety of
Josephson junctions, intersecting the SQUID loop, many of them also on the submi-
crometer scale. As a key advantage of such strongly miniaturized SQUID structures,
they can offer significantly reduced flux noise, down to the level of a few tens of
nΦ0/√Hz, corresponding to spin sensitivities around 1μB/√Hz and improved spatial
resolution for scanning SQUID microscopy. Hence, strongly miniaturized SQUIDs are
very promising detectors for investigating tiny and strongly localized magnetic sig-
nals produced, e.g., bymagnetic nanoparticles or for high-resolution scanning SQUID
microscopy. Very recent advances, including the demonstration of single spin sensi-
tivity and a breakthrough in spatial resolution of scanning SQUID microscopy open
up promising perspectives for applications in nanoscale magnetism of condensed
matter systems.
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Reinhold Kleiner and Huabing Wang
12 Bi2Sr2CaCu2O8 intrinsic Josephson junction

stacks as emitters of terahertz radiation

12.1 Introduction

One of the interesting properties of Josephson junctions is their ability to emit elec-
tromagnetic radiation, with emission frequencies fe that are tunable via the voltage
drop VJ across the junction. More precisely, the emission frequency obeys the rela-
tion fe = VJ/Φ0, where Φ0 = h/2e is the flux quantum and Φ−1

0 = 483.6GHz/mV.
In principle, fe can reach values of up to 2∆/h, where ∆ is the energy gap of the su-
perconductor. For higher frequencies quasiparticle excitations in the superconducting
electrodes of the Josephson junctions damp the Josephson oscillations and the asso-
ciated emission of electromagnetic waves. For example, for niobium the gap limit is
about 750GHz and Nb-based Josephson junctions have indeed been operated as lo-
cal oscillators up to such frequencies [1]. In general, however, single Josephson junc-
tions are not very good oscillators. The output power is low (often nanowatts or less)
and the linewidth of radiation is large. Also, the impedance of typical junctions is
very low and hard to match to an environment. These problems can be solved at least
in principle by using arrays of phase-synchronized Josephson junctions [2–5]. Planar
arrays of Nb-based Josephson junctions have been synchronized to have an output
power of about 65 μW at frequencies around 134GHz and about 2 μW at 320GHz [5]. A
particularly interesting system are so-called intrinsic Josephson junctions (IJJs) which
naturally form in some of the strongly anisotropic and layered cuprate superconduc-
tors [6]. In Bi2Sr2CaCu2O8 (Bi-2212) such an IJJ has a thickness of 1.5 nm and a single
crystal of, say, 1 μm thickness can be viewed as a vertical stack of ∼ 700 IJJs. IJJs have
been shown to have low damping, which is important for high-frequency generation.
Thanks to the large energy gap of cupratesweakly damped Josephson oscillations are,
at least in principle, possible at frequencies up to the 10 THz range. Particularly the
frequency regime between 0.5 THz and a few THz is very interesting, because there is
still a lack of compact solid state sources for electromagnetic radiation [7, 8]. In the
decade after the discovery of the intrinsic Josephson effect stackswith a number of IJJs
typically ranging from 1 to some 10 have been investigated, with lateral sizes ranging
from ∼ 50 μm down to the sub-μm range. High-frequency properties as well as micro-
scopic questions like the degree of coherence in interlayer transport or the formation
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of vortex structures were the main scientific targets. For reviews on these activities,
see [9–11]. In view of THz emission for this type of structure an in-phase oscillation
of the Josephson currents across all junctions in a stack is hard, if not impossible to
achieve. The situation changed in 2007 when the observation of coherent (sub)THz
emission in IJJ stacks was reported [12]. Here, stacks with lateral sizes on the 100 μm
scale have been used, with a total number of junctions of about 700. This finding trig-
gered a large amount of experimental and theoretical activities and a lot of progress
has been made. While in [12] the maximum integrated emission power was around
0.5 μW and the maximum emission frequency was around 0.8 THz, in recent works
the emission power of single IJJ stacks increased to the 100 μW range and the max-
imum emission frequencies to more than 2 THz. Reviews on the early stages of this
research are [11, 13]. A more recent one is [14].

The remainder of this chapter is organized as follows. In Sections 12.2 and 12.3
we introduce some general concepts of the intrinsic Josephson effect and some the-
oretical considerations. These sections are mainly based on results obtained for the
“small” stacks. The final Section 12.4 addresses properties of the “large” stacks, in-
cluding electromagnetic and thermal properties.

12.2 General properties of intrinsic Josephson junctions

In Bi-2212, CuO2 double layers of a total thickness of about ds = 0.3 nm are separated
by SrO and BiO layers, cf. Figure 12.1a. Cooper pairing is restricted to the CuO2 layers.
Thebasic picture for the intrinsic Josephsoneffect arises from thenotion that for c-axis
transport between adjacent CuO2 layers the SrO and BiO sheets form a tunnel barrier
for both quasiparticle and Cooper pair transport. A suitable patterned Bi-2212 single
crystal naturally formsa stackof IJJs, eachhavinga thickness s = 1.5 nm. It has turned
out that the current voltage characteristics (IVCs) of such junctions are tunneling-like
and strongly hysteretic. This is shown in Figure 12.1b for a single IJJ patterned from a
Bi2Sr2Ca2Cu3O10 (Bi-2223) thin film [17]. As a result, the c-axis IVCs of a stack of many
IJJs have a relatively complex structure arising from the bistability of the IVCs of indi-
vidual junctions in a certain current range. Figure 12.1c shows an early measurement
of an IVC, as measured for a (30 μm)2 wide and 1 μm thick single crystal [16]. The
crystal quality was not perfect so that different IJJs in the stack had slightly different
properties. Ramping up the bias current from zero all IJJs are in their zero-voltage state
up to I ≈ 12mA,when some of the junctions switch to their resistive states. By ramping
up and down the bias current repeatedly a large amount of branches can be traced out
differing by the number of junctions in the resistive state. In Figure 12.1c one observes
six branches that are approximately equally spaced. Here, between one and six IJJs
have switched to their resistive state while the other IJJs are still in the zero voltage
state. One also notes some nearby branches where the total number of IJJs in the re-
sistive state is the same but realized by different individual IJJs. Another example of
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Fig. 12.1: (a) Superposition of the Bi-2212 crystal structure and the model underlying the intrinsic
Josephson effect. Superconducting and insulating layers are indicated by, respectively, gray and
white sheets. (b) IVC of a single IJJ patterned from a Bi-2223 thin film (after [15]). (c) Section of an
IVC as measured for a 30 μm2 large Bi-2212 single crystal (after [16]). (d) IVC of a 43-junction stack
patterned as a 2 × 2 μm2 wide mesa structure on top of a Bi-2212 single crystal.

a 43 junction stack is shown in Figure 12.1d. This stack was patterned as a 2 × 2 μm2

wide mesa structure on top of a Bi-2212 single crystal.
Besides the Bi-based cuprates (Bi-2212, Bi-2223, Bi-2201) [6, 17, 18] many other

layered superconductors exhibit an intrinsic Josephson effect. This includes in the
cuprate family Tl- and Hg-based compounds [16, 19, 20], strongly underdoped
YBa2Cu3O7−x [21], electron-doped cuprates [22] and also the ruthenocuprates [23].
There are also organic compounds like κ-(BEDT−TTF)2Cu(NCS)2 [24] andmembers of
the iron pnictide family [25].

Although IJJ stacks have been fabricated from thin films [17, 20, 21, 26], Bi-2212 sin-
gle crystals remain the workhorse for most investigations and applications. Reliable
fabrication techniques to pattern suitably sized and contacted IJJ stacks have been
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Fig. 12.2: Z-shaped all-superconducting Bi-
2212 structure patterned by focused ion beam
milling from a Bi-2212 single crystal. The center
of the Z-shaped part forms the active IJJ stack.
After [21].

developed. While in early experiments the ab-faces of small-sized crystals have been
simply covered with gold and contacted with Au rods, in subsequent experiments
mesa structures, patterned on top of single crystals and contacted by Au or Ag layers,
havebeenused for investigations. This technique is stillwidelyused.Also, focused ion
beam techniques have been applied for patterning Z-shaped structures from the inte-
rior of single crystals or thin films [21], cf. Figure 12.2. A special patterning technique
for Bi-2212 single crystal arises from the fact that these crystals can be cleaved easily,
allowing for a double-sided fabricationmethod [28]. Here, a single crystal is mounted
to a first substrate andpatterned from the top. Then a second substrate is glued on this
patterned surface, the first substrate is removed and a second patterning step is used
to structure the surface which in the first step was glued to substrate 1. The various
steps and a resulting array of stacks embedded in a planar bow-tie antenna are shown
in Figure 12.3. In a similar fashion it is also possible to create a stand-alone Bi-2212
stack which is embedded between Au layers [29].

In the IVC of Figure 12.1c typically a maximum voltage around 12mV per IJJ could
be obtained which, according to the Josephson relations, corresponds to an oscilla-
tion frequency of about 6 THz. Depending on the doping state of the crystal and on
the compound used this maximum voltage per junction can even be higher, reach-
ing values of the order of 30mV, corresponding to a Josephson frequency of 15 THz.
The smallest voltages that can be applied before the switch-back to the zero-voltage
state occurs are of the order of 0.5mV (250GHz). Thus, a suitably patterned stack of
IJJs can at least in principle act as a broadly tunable source for THz radiation. Indeed,
indirect evidence has been found that inside the stack the Josephson oscillations can
excite phonons [26, 30, 31]. The interaction of the Josephson system and the phonons
leads to subgap-structures on the IVCs visible in Figure 12.4. Some of the structures
are marked Vm

n in the graph, the lower index indicating the branch number and the
upper number indexing the subgap structure on a given branch of the IVC. It in fact
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Fig. 12.3: Series array of 64 all-superconducting IJJ stacks, patterned using the double-sided fabrica-
tion method [27].

turns out that the subgap features onbranchnumbers> 1 are just replicas of the struc-
tures on the first branch, theirmultiplicity explainable by the number of combinations
that are allowed to have the n resistive IJJs on one of the voltage states created by the
sub-branches. More importantly, the structures were visible up to 7.9mV (3.8 THz) on
the first branch of the Bi-2212 IVC, and up to 9.7mV (4.7 THz) for a Tl-2223 sample.
Thus, the subgap features demonstrate that at least up to these frequencies there are
significant ac electric fields in the stack. As a new feature compared to Figure 12.1,
Figure 12.4a shows that for large currents and for high branch numbers the IVC ex-
hibits back-bending. The effect is due to Joule heating and the facts that (i) the Bi-2212
c-axis resistance increases with decreasing bath temperature and (ii) the thermal con-
ductivity is low. Qualitatively, with increasing input power the mesa heats up and its
resistance decreases. At some input power the voltage across the stack reaches amax-
imum and then decreases with increasing current. A quantitative description will be
given in Section 12.4. Herewe onlymention that one faces a temperature rise of several
Kelvin per mWof input power, the precise value depending on details of the geometry
used. The existence of Josephson oscillations in the THz range has also been shown
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Fig. 12.4: Subgap structures on the IVC of a Bi-2212
stack appearing via coupling of the ac Josephson os-
cillations to phonons. (a) shows the full-scale IVC (not
all branches traced out), (b) and (c) are zooms for ex-
panded current and voltage scales. From [26].

in absorption when applying external radiation to an IJJ stack. For frequencies in the
THz regime Shapiro steps from intrinsic junction stacks have been observed by Rother
et al. [33, 34] by irradiating amesa structure incorporated into a bow-tie or logarithmic
periodic antenna with a far infrared laser. In these early experiments the power cou-
pled into the system was relatively low; still, however, the first Shapiro step could be
detected up to about 2.5 THz. By using the double-sided fabrication technique Wang
et al. [27, 28, 32] integrated an IJJ stack with a superconducting antenna structure,
as shown in Figure 12.5. The figure also shows the response of the 17-junction mesa
to a 1.6 THz far infrared field. Large Shapiro steps appear on all resistive branches of
the current voltage characteristic. Shapiro steps under 760GHz irradiation have also
been detected for the 64-stack array shown in Figure 12.3, and for even larger arrays
consisting of up to 256 stacks containing in total more than 11000 IJJs in series [27].

Fig. 12.5: Bi2Sr2CaCu2O8 single crystal patterned into a 17-junction mesa structure integrated with
a bow-tie antenna structure (left) together with a current voltage characteristic at 6 K under far in-
frared irradiation at 1.6 THz (from [32]).
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In [28] it has also been shown that, when irradiating the sample both with 760GHz
and an 18GHz microwave field, up to the 90th harmonic of the microwave frequency
can be generated by the IJJ stack and mixed with the THz field down to a difference
frequency of around 1.5 GHz, which was detected off-chip. These measurements show
that, at least in principle, IJJ stacks can act both as THz detectors and high-frequency
mixers.

In terms of emission experiments a number of early experiments were done at fre-
quencies between a fewGHz and 120 GHz, see e.g., [16, 35, 36]. Bae et al. [37] integrated
oscillator anddetector stacks on the same chip and found evidence for high-frequency
emission up to 1 THz. Using an integrated superconducting heterodyne receiver Batov
et al. [38] detected radiation at 0.5 THz from a 3 μm wide Bi-2212 mesa integrated in a
bow tie antenna. The mesa consisted of about 100 IJJs. The maximum emitted power
was estimated to be of the order of 0.5 pW. This emission frequency, to our knowl-
edge, is the highest which has been detected off-chip from “small” mesa structures.
Further off-chip THz emission measurements were done on stacks consisting of 700
or more IJJs with lateral sizes on the 100 μm scale. This will be addressed in detail in
Section 12.4, after having introduced some theoretical concepts.

12.3 Theoretical concepts

In the previous section we did not consider in-plane degrees of freedom of IJJ stacks.
For example, in sufficiently large conventional Josephson junctions fluxons (Joseph-
son vortices) can be present and contribute to the electrodynamics of the junction. In
so-called fluxonoscillators, as used in the niobium-based superconducting integrated
receiver operating up to about 750GHz [1], fluxons are created by an external magnetic
field and accelerated by the applied bias current. Themovingfluxons can excite stand-
ing electromagnetic waves (cavity resonances, also named Fiskemodes) in the tunnel
barrier. Comparatively strong and narrowband emission is obtained under these res-
onant conditions. The electrodynamics of long Josephson junctions is described by
the sine-Gordon equation [39]. Sakai, Bodin and Pedersen extended this equation to
vertically stacked Josephson junctions [40]. In the model, coupling between junctions
occurs through currents flowing along the superconducting layers which are shared
by adjacent junctions. This inductive coupling becomes effective when the thickness
ds of the superconducting layers inside the stack is smaller than the London pene-
tration depth. For the case of IJJ stacks the in-plane London penetration depth λab ∼
150–300nm, thus λab ≫ ds. In the followingwe introduce themain ideas of themodel
following the notation of [41]. The geometry of N stacked long Josephson junctions is
shown in Figure 12.6. N + 1 superconducting layers of thickness ds are separated by
insulating layers of thickness di. Superconducting layers are labeled from 0 to N, in-
sulating layers from 0 to N − 1. An external magnetic field B (or flux Φext) is oriented
along y parallel to the layers. A bias current with homogeneous density jext is injected
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Fig. 12.6: Geometry of a stack of N long IJJs
(after [41]).

into layer 0 and is extracted from layer N. The (in-plane) London penetration depth
into each superconducting layer is λL. The length of the stack perpendicular to the
magnetic field (along x) is L; all junction properties are assumed to be constant along
y. The nth IJJ junction is formed by the superconducting layers n − 1 and n and the
insulating layer in between. The current density across this junction is given by

jz,n = jc sin γn + σcEz,n + εε0 Ėz,n (12.1)

The first term on the right hand side represents the Josephson current density with
critical current density jc (assumed to be the same for all layers) and the gauge invari-
ant phase difference γn = φn − φn−1 − (2π/Φ0) ∫n

n−1 Azdz; n denotes the phase of the
order parameter in the nth superconducting layer. Az is the z-component of the vec-
tor potential and the dot denotes the derivative with respect to time. The second and
third term on the right hand side of Equation (12.1) represent the (linearized) quasipar-
ticle current, with c-axis conductivity σc and the displacement current, with dielectric
constant ε. With the use of the second Josephson relation, γ̇n = (2π/Φ0)Ez,ndi, also in-
troducing normalized time τ = (2πjcρcdi/Φ0)t and electrical field ez = Ez/(jcρc), with
ρc = σ−1c , Equation (12.1) may be rewritten as

jz,n
jc

= sin γn + γ̇n + βc γ̈n (12.2)

with the McCumber parameter βc = 2πjcρ2c εε0di/Φ0. The density of the supercurrent
flowing along the nth superconducting layer is denoted jx,n. Assuming the amplitude
of the order parameter in the superconducting layers to be constant the phase gradient
in each layer along x is given by ∂ϕn/∂x = 2π(Ax,n + μ0λ2L jx,n)/Φ0. Integration of the
phase gradient along the contour shown in Figure 12.6 yields

dγn
dx = 2π

Φ0
( d
dx ∮

C

Ads + μ0λ2L(jx,n − jx,n−1)) (12.3)

Assuming a London magnetic field decay inside the nth superconducting layer

Bn(z) = Bn + Bn+1
2

cosh(z/λL)
cosh(ds/2λL) + Bn−1 − Bn

2
sinh(z/λL)
sinh(ds/2λL) (12.4)

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



12.3 Theoretical concepts | 391

where Bn denotes the field in the nth insulating layer one finds with the use of
Maxwell’s equations

d2γn
dx2

= 1
λ2m

jz,n − jext
jc

+ 1
λ2k

2jz,n − jz,n+1 − jz,n−1
jc

(12.5)

where the lengths λm and λk are given by λm = [(Φ0/(2πjcteff)]0.5 and λk = [Φ0deff/(2πjcλ2L)]0.5, with teff = di + 2λL tanh(ds/2λL) and deff = λL sinh(ds/2λL). By com-
bining the diagonal elements on the right hand side of Equation (12.5) one may
further introduce the Josephson length λJ via λ−2J = λ−2m + 2λ−2k . If in addition in-
plane quasiparticle currents, with resistivity ρab, are taken into account, a term(sds/λ2k)(ρc/ρab)d2 γ̇n/dx2, with s = di + ds should be added to the left hand side
of Equation (12.5). In the limit ds, di ≪ λL, teff and deff reduce to teff = s and deff = ds.
For the inner- and outermost junctions the terms jz,n−1 and jz,n+1, respectively, have
to be replaced by jext. If no currents leave the stack at its left and right edges, from
Equation (12.3) the boundary condition

dγn(x = 0)
dx = dγn(x = L)

dx = 2π
Φ0

Bextteff (12.6)

can be derived. Here, self-fields due to circulating currents have been neglected.
Equations (12.5) and (12.2) form the coupled sine-Gordon equations. They can also

be derived from the Lawrence–Doniach free energy for layered superconductors. This
approachhas been takenby several authors [42, 43]. Apart fromdifferent notations the
various models also differ by the boundary conditions particularly in the z-direction.
In Equations (12.5) it is demanded that the current outside the stack is given by the
applied current, i.e., one considers a free standing IJJ stack. For these boundary con-
ditions, generally, there will be fluctuating electric fields along x in the outermost
electrodes. Alternatively, one may assume that the in-plane electric field is zero at
the boundary [43–45], which is equivalent to treating the outermost CuO2 layers as
a ground.

ForN = 1Equations (12.5) and (12.2) reduce to the standard sine-Gordon equation,
containing λJ as the only relevant length scale. For stacked junctions λk appears as an
additional scale. For a critical current density of 200A/cm2, a typical value for IJJs,
and λab = 0.26 μm one finds λm = 295 μm, λk = 0.76 μm and λJ = 1.07 μm. For
an IJJ stack with lateral dimension below 1 μm the coupling between adjacent IJJs is
small and the stack forms in essence a series array of independent junctions. For larger
lateral sizes of the stack the scale λk matters as soon as jz,n and jz,n±1 are different,
in other words, as soon as there is a gradient along z in the in-plane currents. In the
absence of such gradients even stackswith a lateral size of 300 μm could behave as an
array of independent short junctions. However, in general there will be the formation
of circulating currents and the junctions in the stack become coupled.

Let us give us an example for the simulated collective fluxon dynamics in a 10 μm
long 20-junction stack. Figure 12.7 displays the IVC for zero applied magnetic field.
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(a) (b)

Fig. 12.7: Calculated IVC of a 20-junction stack in zero magnetic field showing 20 linear resistive
branches and a variety of resonant structures and zero field steps, indicated by arrows (a). The low-
voltage region is enlarged in (b) (after [41]).

Multiple branching still occurs, consistent with the experimental observation. There
are also fine structures which in the simulation are due to different dynamic fluxon
configurations. Figure 12.8 shows two snapshots of the Josephson currents in the stack
for I = 0.55 Ic. There are fluxons (antifluxons) in the stack, the center of which is
marked by closed (open) circles. The fluxons and antifluxons are aligned in vertical
rowsmoving inopposite direction. At t = 0most vortices are located in theodd-labeled
junctions whereas, after reflection at the edges fluxons move in the even-labeled junc-
tions. A similar switching by one junction occurs when the vortex/antivortex columns
collide in the middle of the stack. The second snapshot is in fact taken after a half
period of this periodic dynamics. Further, all junctions are in a nonzero-voltage state,
and thefluxonmotion in the inner junctions4 to 17 is synchronous, as canbe seen from
the fact that the dc voltage across these junctions is identical. At the vortex collision
points, which for the locked IJJs always occurs at the same x coordinate, the amplitude
of the electric fields in the barrier layers of the various IJJs is at its maximum, in other
words the antinode of a standing wave develops at these locations. Thus, the electric
field, on top of an offset, indeed exhibits a well-developed standingwave pattern with
three half-waves along x and one half-wave along z (the corresponding snapshots are
not shown explicitly here). It further turns out that some of the IJJs can be in the zero-
voltage state, never containing fluxons, without significantly disturbing the pattern
shown in Figure 12.8. This explains why the multiple branching can be obtained for
the IVCs of IJJ stacks despite complex internal dynamics.

The state described above is an example of a fluxon state involving the excitation
of a collective resonance using the whole stack as a cavity. There is in fact a variety of
different collective cavity modes [46, 47]. For the boundary conditions used above the
electric field for these modes in 3D for a rectangular N junction stack of length L and
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Fig. 12.8: Two snapshots of supercurrent distribution for i = I/Ic = 0.55, cf. Figure 12.7, together with
the dc voltage across each junction (right). Fluxon centers are marked by closed circles, centers of
antifluxons by open circles. Fluxon motion is towards the left edge, antifluxons move towards the
right edge (after [41]).

widthW have a component

Ez,n(x, y) = E0 cos(ωqkxky t) sin ( πnq
N + 1) cos(πkxxL ) cos(πkyyW ) (12.7)

with some amplitude E0 and integers kx and ky counting the number of half-waves
along x and y, respectively. The integer q runs from 1 to N. The frequencies ωqkxky are
given by

ω2
qkxky = ω2

pl√1 − (I/Ic)2 + c2q [(πkxL )2 + (πkyW )2] (12.8)

where ωpl = (2πteff jc/Φ0εε0)0.5 is the Josephson plasma frequency. The velocities cq
are given by

cq = ωplλJ√1 − 2 ̄s cos[πq/(N + 1)] (12.9)

̄s = (λJ/λk)2 denotes the coupling parameter [40]. For q = 1 all junctions oscillate in-
phase, which is apparently the most interesting situation for THz emission. For large
values of N the mode velocity c1 can be very high, reaching values of the order of
c/√ε, with the vacuum speed of light c. We briefly note here that the expression for cq
changes when using different boundary conditions along z. For example, for a mesa
structure onemay consider the base crystal as a ground. Then, on the right hand sides
of Equations (12.7) and (12.9) the factor (N + 1) should be replaced by (2N + 1) and q
by 2q − 1. If in-plane electric fields vanish on both outermost faces of the stack in
Equation (12.7) the sine function should be replaced by a cosine and (N + 1) by N.
Here, the value q = 0 becomes an allowed solution.

The excitation of the in-phase cavity mode by Josephson vortices has been stud-
ied in detail by Koshelev [44, 48] and by Lin and Hu [45, 49]. It turned out that the
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Josephson phases along the different junctions can contain a term of π phase kinks
and antikinks arranged periodically in the z-direction, with integer m. These π phase
kinks effectively excite the various cavity modes. These can also be efficiently excited
by fluxon lattices created by applying high magnetic fields oriented parallel to the
layers [46]. This type of excitation is analogous to the mechanism used in the fluxon
oscillator of the superconducting integrated receiver.

In experiments using small-sized IJJ stacks with N < 100, there was no clear evi-
dence for resonant modes in zero applied field. Collective Fiske modes were observed
in strong magnetic fields [37, 50–52] and perhaps also under microwave radiation [53,
54], with mode velocities that were consistent with theoretical considerations. How-
ever, dominantly the modes with large values of q – i.e., modes where the IJJs in the
stack oscillate dominantly out-of-phase and produce very little radiation – were ex-
cited. The situation is opposite for very large stacks consisting of hundreds of IJJs.
Here, the in-phase modes turn out to be the most stable. The corresponding experi-
ments will be addressed in Section 12.4.

We conclude this section by noting that the inductive coupling is not the only pos-
sible interaction between adjacent IJJs. The thickness of the superconducting layers is
in fact comparable or even smaller than the Debye screening length which can be es-
timated to be of the order of 2–3 Å for Bi-2212. One of the effects that can occur is that
there are local charges in the superconducting layers felt by adjacent junctions. As a
consequence the second Josephson relation is modified and the time evolution of the
phase of the nth junction depends not only on the electric field across this junction but
also on the electric field across its neighbors. This type of coupling has been pointed
out by Koyama and Tachiki [55] and has been studied later on in a number of publica-
tions [56–60]. Second, there can be an imbalance between electron-like and hole-like
quasiparticle excitations again affecting the system dynamics. A detailed description
of the charging effects including also effects of branch imbalance has been given by
several authors [61–63]. The charge coupling affects the dynamics of the IJJ stack near
the lower end of a given branch of the IVC (i.e., near the return current). The impact of
charge coupling on coherent THz emission, as obtained for the large IJJ stacks, is not
fully clarified yet but seems to be less important than inductive coupling.

12.4 Coherent THz radiation from large intrinsic Josephson
junction stacks

In 2007 Ozyuzer et al. reported THz emission from IJJ stacks where the junctions in
the stack oscillated in-phase [12]. The stacks were patterned as mesa structures on
top of Bi-2212 single crystals. With a length of more than 300 μm, widths of several
10 μm and a thickness of about 1 μm, corresponding to ∼700 IJJs these stacks were
much larger than the stacks studied previously. Experiments were performed in zero
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magnetic field. This result was unexpected since such large stacks were expected to
heat up to temperatures well above Tc. Figure 12.9 shows (a,b) the geometry and (c,d)
selected results. The IVC (Figure 12.9c, right scale; only the return branch with all IJJs
in the resistive state is shown), measured at a bath temperature Tbath = 25K indeed
exhibits the strong back-bending which is due to overheating. Some numbers for the
average stack temperature, as estimated from the temperature dependence of the out-
of-plane resistivity, are indicated. For a current of 25mA the estimated temperature is
85 K, at an input power of about 25mW. This overheating of about 60K is strong but
in fact much less than the numbers found for small mesas (sometimes exceeding 20K
per mW). Polarized THz emission was detected in the lower current range where Joule
heating is modest. The maximum detected radiation power (Figure 12.9c, left scale)
was about 10 nWwhich, extrapolated to4π, amounted to about0.5 μW, at frequencies
up to 0.85 THz and for bath temperatures up to 50K. Further, it was found that the
emission frequency scaled with the width of the stack, cf. Figure 12.9d, indicating that
a cavity resonance oscillating along the width is important for synchronization. The
cavity resonance is indicated schematically in Figure 12.9a.

Reference [12] triggered a large mount of theoretical and experimental investiga-
tions; more than 100 publications have appeared by now. Below we can only mention
a few results.

Figure 12.10 shows results of an investigation of large IJJ mesas using low-tem-
perature scanning laser microscopy (LTSLM) [64]. In LTSLM a blanked laser beam is
scanned across the sample surface while the sample is biased at some current I. At
the position (xL, yL) of the beam the temperature of the sample locally rises by a few
K and, as a result, temperature-dependent quantities like the junction resistance or
the critical current density change. These changes lead to a variation ∆V(xL, yL) of the
voltage across the stackwhich serves as the contrast for an LTSLM image. For IJJ stacks
LTSLM revealed two different features. In LTSLM image B of Figure 12.10 there are two
stripelike features separated by a low-contrast region. With increasing input power
the left stripe moves towards the left edge of the stack. This feature has been identi-
fied at the edge of a “hot spot”, separating a region which is heated to temperatures
well above Tc and a region which is still superconducting. The appearance of a hot
spot has been confirmed by thermoluminescence measurements [65–67]. According
to these measurements the maximum temperature in the hot spot can exceed 150 K.
In the “cold” part of the stack in the LTSLM data of Figure 12.10 additional stripes ap-
pear, having a lower contrast ∆V than the signal associated with the hot-spot edges.
These signals can in fact be attributed to standing electromagnetic waves, themaxima
(in |∆V|) marking the antinodes of the cavity resonances [64, 68, 69]. The importance
of geometric resonances has been stressed in several papers, see. e.g., [70, 71].

Further, by varying the bath temperature Tbath the voltage across the IJJ stacks can
be varied over a significant range, allowing us to test whether or not the observed THz
emission arises from the Josephson effect. So far all experiments indeed show that the
Josephson frequency-voltage relation is fulfilled.
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Fig. 12.9: THz emission from large Bi-2212 mesas. (a) Schematic of mesa. (b) SEM image. (c) Radia-
tion power (left) and IVC (right). (d) Fourier spectra of emitted radiation for mesas of different width.
Inset shows dependence of radiation frequency on reciprocal width. In (c) “parallel” and “perpen-
dicular” refer to the orientation of the parallel-plate filter, having a cutoff-frequency fc = 452 GHz.
From [12].

Shortly after the discovery of in-phase THz radiationalso the angle dependence of
the emitted radiation power has beenmeasured [72]. It turned out that for rectangular
mesas the emission power is relatively large in the c-direction and has its maximumat
a tilt of about 30° from the c-axis. The emission power is very low in the direction par-
allel to the base crystal. This indicates that the IJJ stack cannot simply be considered
as a source of electric dipole radiation. Magnetic components also play an important
role; in addition the base crystal seems not to favor THz emission.

There has been some debate whether the hot spot just coexists with the super-
conducting areas [66] or has a direct effect on THz radiation. Evidence for the latter
scenario comes from high-resolution measurements of the linewidth ∆fe of THz radi-
ation [73]. For the investigated mesas, in the absence of a hot spot, ∆fe was 0.5 GHz or
higher, i.e., one observes a ratio fe/∆fe typically well below 1000. In the presence of
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Fig. 12.10: IVC and LTSLM data of a 30×330 μm2

large Bi-2212 mesa at Tbath = 50 K. Red solid
arrows in the IVC denote switching processes,
black arrows indicate bias points where LTSLM
images A–K have been taken. After [64].

a hot spot, ∆fe was as low as 23MHz at fe = 0.6 THz, i.e., fe/∆fe ≈ 3 ⋅ 104. Further,
∆fe was found to decrease with increasing bath temperature. By contrast, if phase
synchronization of the IJJs in the mesas were only mediated by cavity resonances one
would expect fe/∆fe to be proportional to the quality factor of the cavity mode which
should decrease with increasing temperature (either bath temperature or actual tem-
perature in the stack).

The experimental observations introduced so far – the interaction of Josephson
currents and cavity modes, the appearance of a hot spot, the unusual dependence
of the linewidth of radiation on temperature in the presence of the hot spot and the
angle dependence of radiation– have been addressed in numerous theoretical works.
In parallel there were significant experimental efforts to improve the performance of
the IJJ emitters in terms of emission power, maximum emission frequency, tunability
and thermal handling. Let us start with some theoretical concepts and then turn to
experimental efforts.

A number of works, based on inductively coupled sine-Gordon equations, ad-
dressed the mechanisms to excite collective cavity resonances in the stack [44, 45,
48, 49, 74–76]. To excite suchmodes it is favorable to have some initial modulation of
the Josephson current and the ac electric field that are commensurate with the cav-
ity mode to be excited. It was found that vertically stacked ±π kinks in the Joseph-
son phase differences can form, couple effectively to cavity modes and synchronize
ac Josephson oscillations. Three examples for π-phase kink states are shown in Fig-
ure 12.11. THz emission properties were also calculated in simulations based on sine-
Gordon type models and the radiation patterns observed experimentally have been
partially reproduced [74, 75, 77, 78]. It was pointed out that in-plane dissipation, often
neglected in simulations, can play an important role in achieving in-phase synchro-
nization [79].
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Fig. 12.11: Typical π-phase kink states (static contribution to the Josephson phase differences γ(x))
forming in IJJ stacks (four adjacent IJJs are shown). From [45].

A second line of theoretical investigations addressed hot spot formation on the basis
of heat diffusion equations, taking into account only quasiparticle currents [80–82].
Very good agreement with experimental data was achieved, reproducing the typical
back-bending of the IVCs and hot spot formation, respectively. The latter occurs in the
back-bending regime and is due to the specific temperature dependence of the Bi-2212
c-axis resistivity.When, due to some fluctuation, the temperature in a part of the stack
increases, the local c-axis resistivity decreases, leading to an increase in the applied
current density and also the local heat production. The cycle continues until equilib-
rium is reached. The effect is in fact not specific to IJJ stacks but has been observed
for many conducting systems [83]. A very early work on this phenomenon has been
presented in the context of semiconductors [84].

The next step for theory was to combine electromagnetic and thermal properties
of the IJJ stacks. In [80] the hot spot wasmodeled as a 2D array of resistors and capaci-
tors whichwas coupled to a serial array of pointlike Josephson junctions representing
the cold part of the stack. It was observed that the currents through the hot spot area
can phase-lock the Josephson junction array. In [85] THz radiation from IJJ stacks was
modeled in 3D introducing the hot spot as a predefined region of reduced Josephson
critical current density. A three-step approach to fully combine Josephson dynamics
and thermal physics was given in Refs. [86–88]. In a first step the mesa was replaced
by two parallel columns of electrically coupled pointlike Josephson junctions which
were also coupled to a thermal bath. The N = 700 junctions were grouped to M seg-
ments, each containing G = N/M IJJs assumed to be identical. The parameters of the
model (Josephson critical current, resistance) depend on the local temperature which
in turn is calculated by the heat diffusion equation containing the Joule heat produc-
tion as the input from the electrical circuit. Within this model it was possible to inves-
tigate IVCs, reproduce the formation of hot spots (one of the chains of junctions at a
temperature above Tc) and also the linewidth of THz radiation as a function of Tbath.
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Fig. 12.12: Normalized power density ⟨q‖(x, y)⟩ (in units of 400 W/cm3) dissipated by in-plane cur-
rents, averaged over time and z, for five values of normalized bias current I/Ic0 (upper left numbers);
values for qmax at bottom left. The gray square in (a) indicates the position of the bond wire attached
to the mesa and included in the thermal part of the equations. Regions enclosed by the black line
are at T ≥ Tc. From [88].

Currents through thehot areas provided phase-lock between the junctions thatwere in
the superconducting state. The experimentally observed decrease of ∆fe with increas-
ing bath temperature was reproduced and attributed to a competition between the
ability of the system to phase-lock (increasing with increasing temperature) and the
destructive effects of thermal fluctuations and the relative spread in junction param-
eters (also growing with increasing bath temperature). In a second and third step the
approach of [86] was extended to 1D-coupled sine-Gordon equations [87] and finally
to full 3D simulations [88]. These simulations quantitatively reproduced the formation
of hot spots and the appearance of cavity modes. Figure 12.12 shows, for Tbath = 20K,
averaged distributions of the power density ⟨q‖(x, y)⟩ dissipated by in-plane currents
for five values of I/Ic0 = 0.65 (a) to 0.1 (e). Averaging is over time and the c-direction in
the mesa. This type of plot is used to visualize resonance patterns, with nodes (antin-
odes) appearing at the minima (maxima) of ⟨q‖(x, y)⟩. The left (right) graphs are at
high (low) bias where a hot spot is present (absent). In (a) and (e) the modulations
along x are due to a cavity mode oscillating along x (a (0, n) mode, with n = 2 and
3, respectively). In (c) a cavity mode oscillating along y is excited (a (1, 0)mode). The
spatial variations in (b) and (d) have a more complicated mixed structure. The (1, 0)
mode is the one proposed in [12] for phase synchronization. The 3D simulations in
fact revealed that, by applying a small magnetic field parallel to the long side of the
stack, this mode can be stabilized over a wide range of bias currents and bath temper-
atures. The prediction was also tested experimentally, resulting in an increase of the
THz emission power of up to a factor of 2.7 [88].

We return to experimental investigations. Besidesmesa structures, a variety of dif-
ferent structures have been realized, including all-superconducting Z-type stacks [89]
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Fig. 12.13: IVCs and THz emission characteristics of a parallel array of mesas patterned on the same
base crystal. Left: Characteristics of three of the mesas when biased separately at Tbath = 55 K.
Right: Total radiation power versus bias voltage across mesa (e) for simultaneous bias of some
mesas. From [99].

and stand-alone stacks embedded between Au layers [71, 90–93]. The emission power
obtained from the stand-alone stacks is often much higher than the one from mesas,
reaching values of up to 80 μW [90, 93–95]. Cooling has been improved further by
sandwiching the stand-alone stacks between substrates with high thermal conductiv-
ity. In first attempts maximum emission frequencies near 1.05 THz were obtained [92,
96]. Recently this valuewas improved tomore than 1.6 THz for rectangular stand-alone
stacks [93, 97] and to 2.4 THz for disk-shaped stand-alone stacks [98].

The stacks investigated in [93, 97, 98] partially consisted of more than 2000 IJJs.
It seems unlikely that this number can be increased significantly, say to more than
10 000 IJJs. A way to further increase the output power is to use arrays of stacks.
Benseman et al. [99] investigated a set of six 400×60 μm2 large 500-junction mesas
fabricated on the same base crystal. Adjacent mesas were separated by 60 μm. The
left graph of Figure 12.13 shows IVCs and the THz emission power for three individ-
ual mesas. The maximum power was of the order of 120 μW. When biasing some of
the mesas simultaneously, after optimizing the response, an output power of about
0.6mW was achieved at an emission frequency of 0.51 THz. This, up to now, is the
record value and has not yet been reproduced, underlining the difficulty to actually
achieve phase synchronization between different mesas.

Both for single stacks and for arrays of stacks tunability is an issue. By changing
Tbath and the bias current the emission frequency can be varied over a wide range.
However, the emissionpower Pe maynot always be at its optimum. For instance, in the
high-bias regime the position of the hot spot strongly affects Pe. However, the problem
can be overcome by using stand-alone stacks contacted by three electrodes [100]. One
terminal is used as a collective ground while the other two, contacting the stack from
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Fig. 12.14: Reflection imaging at 0.44 THz of
different coins using a Bi-2212 IJJ mesa as os-
cillator. (a) Photographs of the US quarter coin
and the Japanese 5-yen coin. (b) Reflection im-
ages of both coins. From [103].
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Fig. 12.15: Setup combining a Bi-2212 intrinsic junction stack emitter and a YBCO grain boundary
junction detector. Upper graphs show the schematics of (a) the Bi-2212 emitter, (b) the detector
based on a YBa2Cu3O7 grain boundary (GB) Josephson junction and (c) the detector and emitter
mounted on hyper-hemispheric Si lenses. The lower graphs show the IVC (a) and the THz emission
signal (b) of the Bi-2212 emitter, and (c) IVCs of the detector junction with and without irradiation
from the emitter. Insets compare both IVCs of the detector with simulations. From [90].

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



402 | 12 Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks

its right and left side, allow one to vary the current injection profile. With this method
both the hot-spot position and Pe can be varied reproducibly. The hot spot can also
be manipulated by using a laser beam [101, 102]. However, this procedure may be too
sophisticated at least for some applications.

Using Bi-2212 stacks some potential applications have been demonstrated. Tsuji-
moto et al. [104] used a 400 × 62 × 1.9 μm3 large mesa structure as an oscillator to
perform absorption imaging at frequencies around 0.5–0.6 THz of Japanese coins and
a razor blade placed inside paper envelopes. Kashiwagi et al. extended this technique
to reflection imaging [103] and computed tomography imaging [105]. Two reflection
images of coins are shown in Figure 12.14. An et al. [90] demonstrated an all-high Tc
emitter-receiver setup using a Bi-2212 stack as emitter and a YBa2Cu3O7 grain bound-
ary junction integrated into a logarithmic-periodic antenna as the receiver. The setup
and some data are shown in Figure 12.15. Under 0.52 THz irradiation generated by the
emitter the detector junction exhibited clear Shapiro steps, allowing, e.g., one to ana-
lyze the emission frequency and power received from the Bi-2212 emitter. Further, Bi-
2212 stacks have been operated in a miniaturized and battery-driven setup operating
in liquid nitrogen [106].

These examples may show that in the past years significant progress has been
made in the development of Bi-2212-based THz oscillators. However, one should em-
phasize that still many tasks need to be solved. The numbers given above for emission
power, emission frequency, linewidth of radiation etc., are for the best samples and
nobody has succeeded yet in combining them in one and the same device. Also, im-
proving reproducibility is an issue. These are tasks to be solved in the near future.
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13 Interference phenomena in

superconductor–ferromagnet hybrids

Abstract: The mismatch of Fermi surfaces for electrons with up and down spin ori-
entation in ferromagnets leads to the oscillatory behavior of the Cooper pairs wave-
function. In the ballistic regime the Cooper pair phase accumulation depends on
its trajectory and the exchange field along the trajectory. The critical current of the
superconductor–ferromagnet–superconductor (SFS) Josephson junction results from
the phase interference from different trajectories. We demonstrate how such an inter-
ference may produce a long-range singlet proximity effect. The additional spin–orbit
interaction provides amechanism for nonconventional Josephson junction formation,
which may have an arbitrary phase difference in the ground state. As expected, scat-
tering on the impurities weakens the interference effects. However, in the mesoscopic
systems their presence may lead to new qualitative and observable effects.

13.1 Introduction

V. L. Ginzburg was the first to point out the antagonistic character of magnetism and
superconductivity [1], by studying the orbital mechanism of interaction (via a vector
potential A) between them. Later it became clear that the singlet superconductivity is
primarily destroyed by the exchange field h of the ferromagnet, making their coexis-
tence impossible in bulk materials. This paramagneticmechanism [2] is ineffective for
the triplet Cooper pairs and now we know of four triplet ferromagnetic superconduc-
torsUGe2,URhGe,URhGe andUIr [3]. Anoverwhelmingmajority of superconductors
are singlet ones and the interplay between magnetism and superconductivity is only
possible in the superconductor–ferromagnet (SF) hybrid structures near the SF inter-
face. During the last fifteen years an important progress has been achieved in experi-
mental and theoretical studies of SF hybrids and a lot of interesting new phenomena
was revealed (as reviews see [4–7]).

In the case of the proximity effect between superconductor and normal metal (N),
the correlated electrons (Cooper pairs) penetrate into the normal metal at a meso-
scopic length scale preserving their superconducting correlations and providing the
superconducting current flow through SNS weak links [8]. The use of a ferromagnet
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410 | 13 Interference phenomena in superconductor–ferromagnet hybrids

as a normal metal opens a way to manipulate the spin structure of the propagating
Cooper pair. Both the internal magnetic field and exchange interaction in the ferro-
magnet lift a degeneracy with respect to spin orientation of the electrons. This leads
to different de Broglie wavelengths of electrons at the Fermi surface for spin-up and
spin-down orientation and produces a modulation of the Cooper pair wavefunction
while propagating along the ferromagnet [4], similar to the Fulde–Ferrell–Larkin–
Ovchinnikov state [9, 10]. As a result, an oscillatory damping of the superconducting
wavefunction is known to appear when the ferromagnetic ordering occurs in a normal
metal link connecting two S electrodes. This phenomenon provides the basis for the
π-junction realization [11–13].

Considering the quantum mechanics of quasiparticle excitations this destructive
effect of the exchange field can be viewed as a consequence of a phase difference
γ ∼ L/ξh = 2Lh/ℏvF gained between the electron- and hole-like parts of the total
wavefunction at the path of the length L [14, 15]. Here ξh = ℏvF/2 h is a characteristic
length determined by the exchange field (vF is the Fermi velocity). Both in the clean
and dirty limits the measurable quantities should be calculated as superpositions of
fast oscillating contributions eiγ from different trajectories and, thus, rapidly vanish
with the increasing distance from the SF boundary.

As a result of this interference the critical current of SFS junction in the ballistic
regime oscillates and decays with the thickness of the ferromagnetic layer df

Ic ∼ sin ( 2df
ξh )( 2df

ξh ) . (13.1)

The oscillatory behavior of the superconducting order parameter in ferromagnets
produces the commensurability effects between the period of the order parameter os-
cillation (which is of the order of ξh) and the thickness of a F layer [16]. This results in
the striking nonmonotonic superconducting transition temperature dependence on
the F layer thickness in SF multilayers and bilayers [17].

In the diffusive regime the lengths of the trajectories increase dramatically and the
decay of the superconducting correlation becomes exponential (and thusmuch faster)
with a “dirty limit” characteristic length ξf = √Df

h , where the diffusion coefficient in
the F layer Df = 1

3 vF l is determined by the electron mean free path l. This is related
to the averaging of the fast oscillating contributions eiγ for many random trajectories
created by scattering.

In the case of an inhomogeneous (noncollinear) exchange field distribution the
so-called odd-frequency triplet pairing component in the anomalous Green functions
is generated [5], which provides themechanism for the long range proximity phenom-
ena. The resulting dramatic increase in the range of superconducting correlations has
been confirmed by the experiments on SFS Josephson junctions with a composite F
layer containing a region with the noncollinear magnetic moments [18, 19].
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In thepresent chapterwedemonstrate that other possiblemechanismsgenerating
the long-range proximity effect exist due to the quantum interference phenomena. In
Section 13.2 we study the Josephson junctions with composite F layer comprising the
noncollinear regions in the ballistic regime. The interface between the noncollinear
magnetic domains produces the magnetic scattering with the flip of the spins of the
Cooper pair electrons. Therefore, the phases accumulated in different domains may
have opposite signs and compensate each other. This phenomenon gives rise to the
long-range Josephson current revealed by the first or second harmonics [20, 21] and
opens a way to a simple control of the critical current of SFS junctions.

Another type of interference is provided by the nanowires, where the spin–orbit
interaction competes with the orbital and exchange interactions and gives rise to the
novel type of the Josephson “φ-junction” (with an arbitrary phase difference at the
ground state) [22]. The physics of these interference phenomena is considered in Sec-
tion 13.3.

Finally in Section 13.4 we consider the mesoscopic SFS structures and analyze in
depth the averaging procedure in the presence of the potential scattering. It happens
that the standard Usadel approach overlooks the mesoscopic sample-to-sample fluc-
tuations of the Josephson current which are in fact long-range. Indeed, the destructive
interference cannot play such a dramatic role when we calculate root-mean-square
values due to partial phase gain compensation in squared quantities. This circum-
stance naturally explains the puzzling observation of the long-range SF proximity ef-
fect in the experiments [23–25], where no traces of a noncollinear magnetization were
reported.

13.2 Josephson current through the composite ferromagnetic
layer

The goal of this section is to show that the interference phenomena provide a pos-
sibility to cancel the particle–hole phase difference for a large group of quasiclassi-
cal trajectories due to either spatial or momentum dependence of the exchange field.
Such a set of trajectories provides a long-range contribution to the Josephson current
through a ferromagnetic system. We consider two generic examples which illustrate
the above scenario of a long-range proximity effect: (i) Josephson transport through
a pair of ferromagnetic layers with a stepwise exchange field distribution; (ii) Joseph-
son transport through a nanowire with a specular electron reflection at the surface
and exchange field varying with the changing quasiparticle momentum.
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Josephson transport through a ferromagnetic bilayer

Let us start from the simplest model illustrating the origin of the quasiparticle inter-
ference suppression: Josephson junction containing two ferromagnetic layers of thick-
nesses d1 and d2, respectively (see Figure 13.1). Here we consider the limit of the short
junction d1 + d2 ≪ ξs, where ξs is the superconducting coherence length. The ex-
change fields h1 and h2 in the layers are rotated at the angle α. For the sake of sim-
plicitywe assumehere the superconducting gap (exchangefield) to vanish inside (out-
side) the F layer. The current–phase relation in the clean limit is known to be easily
defined by the spectrum of the subgap Andreev states

ϵ = ±∆0 cos (φ + γ
2 ) , (13.2)

where ∆0 is the temperature-dependent superconducting gap, φ is the Josephson
phase difference, and γ = γσ(nF) is the spin-dependent phase shift between the
electron- and hole-like parts of the total wavefunction along the quasiclassical trajec-
tory defined by the vector nF. Summing up over all trajectories we find the current–
phase relation in the form:

I = 1
s0

∫ ds∫ dnF [j(φ + γ) + j(φ − γ)] (nF , n) , (13.3)

where s−10 = kF/2π (s−10 = (kF/2π)2) for 2D (3D) junctions, n is the unit vector normal
to the surface of the superconducting electrode, the integral ∫ . . . ds is taken over the
junction cross-section, and

j(φ) = e∆0
2ℏ sin φ

2 tanh(∆0 cos(φ/2)
2T ) = ∑

n≥1

jn
2 sin(nφ) . (13.4)

is the current–phase relation for the junction of the same geometry and zero exchange
field. The coefficients jn in the above Fourier expansion read:

jn = 2eT
πℏ ∞∑

m=0

2π∫
0

dχ sin χ sin(nχ)
μm + cos χ

, (13.5)

where μm = 2π2T2(2m + 1)2/∆20 + 1.

Fig. 13.1: Josephson junction containing two ferromagnetic layers. Lin-
ear quasiparticle trajectory is shown by the dashed line.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



13.2 Josephson current through the composite ferromagnetic layer | 413

To find the phase gain γ for a certain of quasiclassical trajectory passing through
the point R we should consider the Andreev-type equations:− iℏvF τ̂z∂s ĝ + h(R + snF) σ̂ĝ + (13.6)

( 0 ∆(R + snF)
∆∗(R + snF) 0

) ĝ = ϵĝ ,

where s is the coordinate along the trajectory, ∆ is the gap function, ĝ = (u, v), u
and v are the electron- and hole-like parts of the quasiparticle wavefunction, and τ̂ =(τx , τy , τz) is a vector of Pauli matrices in the electron–hole space. To find the phase
γ induced by an arbitrary inhomogeneous exchange field h(r) we introduce a unitary
transform (see also [15])

̂f = (fufv) = Ŝ ĝ Ŝ = (Ŝu 0
0 Ŝv

) , (13.7)

with Ŝu,v = αu,v + iβu,v σ̂ and exclude, thus, the exchange field term from the above
equations inside the F layer. For this purpose we should solve the following set of
equations ℏvF∂sαu,v = ∓hβu,v , ℏvF∂sβu,v = ±αu,vh ± [h, βu,v] , (13.8)

with the boundary conditions

αu,v(0) = 1, βu,v(0) = 0 ,

at the left superconducting electrode (at s = sL). The operator modifying the order
parameter in the right half–space takes the form:

ŜuŜ+v = αuαv + (βuβv) + iσ̂ (αvβu − αuβv + [βu , βv]) , (13.9)

where the values αu,v and βuv should be taken at the right superconducting electrode
(at s = sR). Choosing an appropriate direction of the spin quantization axis in the
above expression (i.e., along the vector αvβu − αuβv + [βu, βv]) we find the final ex-
pression for an additional order parameter phase γ induced by the exchange field:

eiγ = αuαv + (βuβv) ± i αvβu − αuβv + [βu , βv] . (13.10)

The phase γ can be conveniently determined from the Eilenberger-type equations
if we introduce the singlet and triplet parts of the anomalous quasiclassical Green
function f = fs + ft σ̂ according to the expressions

fs = cos γ = αuαv + (βuβv) (13.11)
ft = i (αuβv − αvβu + [βu , βv]) . (13.12)

Using Equations (13.8) we find the linearized Eilenberger equations written for zero
Matsubara frequencies − iℏvF∂sfs + 2hft = 0 , (13.13)− iℏvF∂sft + 2fsh = 0 . (13.14)
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So, the phase gain γ along the trajectory in SFS constriction is determined by the sin-
glet part of the anomalous quasiclassical Green function fs(s = sR) = cos γ taken at
the right superconducting electrode.

Finally, the current–phase relation reads:

I = ∑
n
In = ∑

n
an sin nφ

⟨(n, nF ) cos nγ⟩⟨(n, nF)⟩ , (13.15)

where n is the unit vector normal to the junction plane, nF is the unit vector along the
trajectory, and

an = jnN = jn
1
s0

∫ ds∫ dnF(nF , n) ,
are the coefficients of the Fourier expansion for the current–phase relation ISNS(φ)
for zero exchange field, i.e., for superconductor–normal metal junction of the same
geometry. The angular brackets denote the averaging over different quasiclassical tra-
jectories. The first two coefficients in this expansion take the form:

an = 4eTℏ N(−1)n−1 ∞∑
m=0

(μm − √μ2m − 1)n , n = 1, 2 , (13.16)

where μm = 2π2T2(2m+1)2/∆20+1, ∆0 is the temperature-dependent superconducting
gap, N = s−10 ∫ ds ∫ dnF(nF , n), and the integral ∫ . . . ds is taken over the junction
cross-section. The factor N is determined by the number of transverse modes in the
junction: N ∼ S/s0, where S is the junction cross-section area.

Solving the above Eilenberger-type equations for the particular bilayer geometry
we find:

cos γ = cos2 α
2
cos( d1 + d2

ξh cos θ
) + sin2 α

2
cos( d1 − d2

ξh cos θ
) , (13.17)

(a) (b)

Fig. 13.2: The examples of the closed electron (straight lines) and hole (dashed lines) trajectories for
the Andreev reflection which have no phase accumulation. For such trajectories averaging over the
angles does not lead to destructive interference. The vertical arrows indicate the spin direction for
each part of the trajectory. (a) Possible trajectory which provides the phase compensation for equal
thicknesses d1 = d2 and give rise to the long-range first harmonic of the current–phase relation.
(b) Possible trajectory which provides the phase compensation for arbitrary thicknesses of the F1
and F2 layers and gives rise to the long-range second harmonic of the current–phase relation.
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where cos θ = (n, nF). This expression allows us to write the first harmonic in the
current–phase relation in the form:

I1 = [cos2 α
2 Ic1 (d1 + d2

ξh
) + sin2 α

2 Ic1 (d1 − d2
ξh

)] sinφ , (13.18)

where Ic1(d/ξh) is the critical current of the first harmonic in a SFS junction with a
homogeneous exchange field h. The interference effects discussed in the introduction
result in the power decay of the critical current Ic1 vs the F layer thickness d: Ic1 ∝
d−1/2 for a 2D junction [27] and Ic1 ∝ d−1 for a 3D junction [11]. Taking the symmetric
case d1 = d2 (see Figure 13.2a) we immediately get a long-range contribution to the
Josephson current

δIc1 = sin2 α
2 Ic1 (0) sinφ , (13.19)

which does not decay with the increasing distance between the S electrodes. It is im-
portant to note that this contribution does not vanish for an arbitrary nonzero angle
between the magnetic moments in the F layers.

Long-range behavior can be observed for a second harmonic in the current–phase
relation as well. Indeed, calculating the average ⟨(n, nF) cos 2γ⟩we find a nonvanish-
ing long-range supercurrent contribution even for d1 ̸= d2 (see Figure 13.2b):

δIc2 = a2 sin2 α
2

sin 2φ . (13.20)

Note, that the emergenceof a long-rangeproximity effect for highharmonics in Joseph-
son relation is in a good agreement with recent theoretical findings in [28, 29] (see
Figure 13.2b and the similar figure in [28]).

The long range proximity via controlled magnetic scattering

As we have noted the short range of the proximity effect in the ferromagnets is due to
the Cooper pairs phase accumulation over its trajectory. The Josephson junction with
two noncollinear ferromagnetic layers, considered above provides the mechanism to
avoid this. Another way to compensate such phase accumulation is to introduce the
magnetic scatterer at themiddle of the path of the Cooper pair [21]. Indeed the spin-flip
scattering changes the spin arrangement of a pair: if initially the pair have a nonzero

Fig. 13.3: SFS Josephson junction containing three ferromag-
netic layers (domains) with a stepwise profile of the exchange
field. Linear quasiparticle trajectory is shown by the dashed
line.
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total momentum ℏq = ℏk↑ − ℏk↓ (|q| ∼ 1/ξh) then after the spins flip the new total
momentum of the Cooper pair ℏq is reversed ℏq = −ℏq. Let us consider the Joseph-
son transport through a ballistic SFS junction containing three ferromagnetic layers
(domains) with a stepwise profile of the exchange field

h(z) = {{{
hx0, in domains d1, d3
h (x0 cos α + y0 sin α) , in domain d2 ,

(13.21)

where α is the angle of the exchange field rotation in the central domain d2 (see Fig-
ure 13.3). At a symmetric position of the scatterer (d1 ≃ d3) the total phase gain γ ∼(d1−d3)/ξh for a singlet Cooper pair shouldbe cancelledout and the long-range singlet
superconducting proximity in SFS link becomes possible. So the introduction of the
additional noncollinear ferromagnetic layer may strongly increase the critical current
of SFS junction!

To calculate the current–phase relation for the junction Figure 13.3 we may start
with a general formula (13.15) and calculate the phase gain γ(θ) along a trajectory s =
s nF (see Figure 13.3), which is cos γ = fs(sR).

To consider the Josephson transport through ferromagnetic layer with an arbi-
trary noncollinear distribution of the magnetizations M and the exchange field h it
is convenient to utilize the transfer matrix formalism [21]. For this, we need to solve
Equations (13.13) and (13.14) for the case when the quantization axis is taken arbitrar-
ily in the ferromagnetic layer of a thickness di = zi − zi−1. We assume that a qua-
siclassical trajectory s is characterized by a given angle θ with respect to the z-axis
and exchange field h = h (x0 cos αi + y0 sin αi) lie in the plane (x, y), as shown in Fig-
ure 13.3. The triplet part ft consists of two nonzero components and can be written as
ft = ftxx0 + ftyy0. Defining the transfer matrix T̂αi (di , θ) that relates the components
of the Green function ̂f (s) = {fs(s), ftx(s), fty(s)} at the left (s = si−1 = zi−1/ cos θ) and
right (s = si = zi/ cos θ) boundaries of the F layer,̂f (si) = T̂αi (di , θ) ̂f (si−1) , (13.22)

we get the following expression:

T̂αi (di , θ) =
( cos(qsdi ) −i cos αi sin(qsdi ) −i sin αi sin(qsdi )−i cos αi sin(qsdi ) sin2 αi + cos2 αi cos(qsdi ) sin αi cos αi (cos(qsdi ) − 1)−i sin αi sin(qsdi ) sin αi cos α (cos(qsdi ) − 1) cos2 αi + sin2 αi cos(qsdi ) ) ,

(13.23)

where q ≡ 1/ξh = 2h/ℏvF and sdi = di/ cos θ.
Solving Equations (13.13) and (13.14) by the transfer matrix method for the step-

wise profile of the exchange field (13.21), the anomalous quasiclassical Green func-
tion ̂f (sR) = {fs(sR), ftx(sR), fty(sR)} at the right superconducting electrode (s = sR =
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d/ cos θ) can be easily expressed via the boundary conditions ̂f (0) = (1, 0, 0) at the
left superconducting electrode (s = 0) as follows:̂f (sR) = T̂0(d3, θ) T̂α(d2, θ) T̂0(d1, θ) ̂f (0) , (13.24)

where d = d1 + d2 + d3 is the total thickness of the ferromagnetic barrier, and the
transfer matrix T̂α(di , θ) is determined by the expression (13.23). As a result:

cos γ = cos δ2 cos(δ1 + δ3) − cos α sin δ2 sin(δ1 + δ3) (13.25)− sin2 α sin δ1 sin δ3(1 − cos δ2) , (13.26)

where cos θ = (n, nF) and δi = di/ξh cos θ (i = 1, 2, 3). Averaging the expression
(13.25) over the trajectory direction θ and neglecting the terms proportional to ξh/d ≪
1, which decrease just as for the case of homogeneous ballistic 3D SFS junction, one
arrives at the following long-range (LR) contribution:

(cos γ)LR = −12 sin2 α(1 − cos δ2) cos 2δz , (13.27)

where δz = z0/ξh cos θ and z0 = (d1 − d3)/2 is the shift of the central domain with
respect to the weak link center.

For a thin central domain d2 ≪ ξh in the center (z0 = 0) one can easily estimate
from (13.27) the critical current of the SFS junction

max{ILR} ≈ I0
2 sin2 α (d2ξh )2

ln ξh
d2

, (13.28)

where I0 = (eTcN/8ℏ) (∆/Tc)2 is the critical current of the SNS junction for zero ex-
change field (γ = 0). Figure 13.4a shows the dependence of the maximal Josephson
current ILRc = a1TLR

1 on the thickness d2 of the 90o domain (α = π/2) for differ-
ent positions of the domain with respect to the weak link center. The amplitude of
ILR oscillates with varying the thickness of the central domain d2, and has the first
maximum at d2 ≃ 2.5ξh. Naturally, when the central domain disappears (d2 → 0),
the long-range effect vanishes. We see that the long-range critical current reaches the
maximum at α = π/2 and grows with the increase of d2 up to d2 ∼ ξh. The numerical
calculations show that it is maximum for d2 ≃ 2.5 ξh and may reach ∼ 0.7I0.

Figure 13.4b shows the dependences of the maximal Josephson current Ic on the
position of the central domain z0 for different values of the rotation angle α. We may
see that the critical current is quite sensitive to the position of the central domain and
the first zero of I1 occurs already at z0 ≃ 0.5ξh.

The transfer matrix formalism can be easily generalized for a layered ferromag-
netic barrier with an arbitrary noncollinear distribution of the exchange field and
qualitatively the long range singlet proximity effect occurs to be quite robust [21]. In
contrast to the widely discussed triplet long-range proximity effect where the thin lat-
eral F-layers are needed [30], here the required geometry is somewhere complimentary
with the thin central layer.
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The interesting property of the discussed system is that it provides a directmecha-
nism of the coupling between supercurrent andmagnetic moment, similar to the situ-
ation discussed in [31]. Since the long-range critical current ILRc depends on the profile
of the magnetization, the superconducting current acts as a direct driving force on
the magnetic moment and can change its orientation. Inversely, the precession of the
magnetic moment shall modulate the critical current.

Josephson current through a ferromagnetic wire

We now consider a more complicated example of the interference phase suppression
in a ferromagnetic wire where the quasiclassical trajectories of electrons and holes
experience multiple specular reflections from the wire surface (see Figure 13.5a). The
particular geometry shown in Figure 13.5a can be considered as a rough model for
experiments on Co nanowires [25]. For simplicity we restrict ourselves to the case of a
short 2D junction with L ≪ ξs.
Taking into account the spin–orbit interaction inside the ferromagnet we obtain the
exchange part of the effective Hamiltonian for the band electrons depending on the

(a)

(b)

Fig. 13.4: (a) The dependence of ILR
c on

the thickness d2 of the 90o domain
(α = π/2) for different values of the
shift of the domain z0: z0 = 0 (solid
line); z0 = ξh (dashed line); z0 = 3ξh
(dash-dotted line). Dotted line shows
the value of Ic = max{I1} in absence
of domain d2. (b) The dependence
of maximal Josephson current ILR

c on
the shift of the central domain z0 for
different values of the d2: d2 = ξh
(dashed line); d2 = 2ξh (solid line);
d2 = 4ξh (dash-dotted line). We
have set T = 0.9Tc; d = 50ξh [ I0 =
(eTcN/8ℏ) (∆/Tc)2 ].
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(a) (b)

Fig. 13.5: Josephson transport through a nanowire in the overlap (a) and edge (b) geometries. The
quasiparticle trajectories are shown by the dashed lines.

quasimomentum (k) orientation [32]:

Ĥex = ∑
ij
βij(k)h0i σj = h(k)σ̂ ,

where h0 is a pseudovector determined by the ferromagnetic moment. Assuming the
absence of the system anisotropy described by a polar vector wefind the simplest form
of the resulting exchange field: h = h0 + βsok−2F (h0, k)k, where βso is a constant deter-
mined by the spin–orbit interaction, and kF is the Fermi momentum.

The exchange field along the quasiparticle trajectory experiencing the reflection
at thewire surface should change its direction. Thus,we obtain the problemdescribed
by Equations (13.13), (13.14) with a periodic exchange field along the trajectory charac-
terized by a given angle θ and a certain starting point at the superconductor surface.
The same equations for each trajectory can be of course derived for a periodic domain
structure. Let us consider first the problem of calculating the band spectrum ϵ(k) in
the field h varying with the period 2D/ sin θ:

− iℏvF∂sfs + 2hft = ϵ(k)fs , (13.29)− iℏvF∂sft + 2fsh = ϵ(k)ft . (13.30)

The solution can be written in the Bloch form:

( fsft ) = eiks ( fskftk) ,

where fsk(s+2D/ sin θ) = fsk(s) and ftk(s+2D/ sin θ) = ftk(s). Provided that this solu-
tion corresponds to the energy branch ϵσ(k) another solution (f∗s , −f ∗t ) correspond-
ing to the energy −ϵσ(k) exists. The latter solution corresponds also to the energy
ϵσ̃(−k) and, thus, we obtain the following symmetry property of the band spectrum:
ϵσ̃(−k) = −ϵσ(k), where the indices σ and σ̃ denote different branch numbers. The full
set of energy branches can be split in such pairs provided the number of branches is
even. For an odd number of branches there is always one branchwhich does not have
a partner. For this branch we obtain ϵσ(−k) = −ϵσ(k) and, thus, this spectrum branch
crosses the zero energy level at k = 0: ϵσ(0) = 0. The corresponding phase gain γ
appears to vanish for trajectories containing an integer number of periods shown in
Figure 13.5a and, therefore, the solution with k = 0 and ϵ = 0 provides a long-range
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contribution to the supercurrent. Note that this zero energy state is somewhat similar
to the Majorana midgap state (see [33, 34] for review).

We choose the field h0 to be directed along the wire axis x and obtain the
exchange field in the form: h = x0hx + y0hy(s), where hx(θ) ≃ h0 is constant
along the trajectory and hy(s) is a periodic function with zero average. In the in-
terval −D/ sin θ < s < D/ sin θ the hy field component is defined by the expression
hy = βsoh0 sin θ cos θ sign s. Introducing the Fourier expansions

hy = ∑
q
Hqeiqs, Hq = −ih̃2 sin θDq ,

fs,tx,ty = eiks ∑
q
Fs,x,y(k + q)eiqs ,

we rewrite Equations (13.29) and (13.30) in the form:

(ℏvF(k + q) − ϵ)Fs(k + q) + 2hxFx(k + q)+ 2 ∑̃
q
Hq−q̃Fy(k + q̃) = 0 , (13.31)

(ℏvF(k + q) − ϵ)Fx(k + q) + 2hxFs(k + q) = 0 , (13.32)(ℏvF(k + q) − ϵ)Fy(k + q)+ 2 ∑̃
q
Hq−q̃Fs(k + q̃) = 0 . (13.33)

Here q, q̃ = qm = π(2m + 1) sin θ/D, m is an integer, and h̃ = βsoh0 sin θ cos θ.
To get the solution for a small periodic field hy we use a perturbative approach

similar to the nearly free electron approximation in the band theory of solids and re-
strict the number of interacting Fourier harmonics in the expansions. For this pur-
pose it is instructive to consider the limit of zero periodic potential hy and separate
three solutions: (i) the solution (Fs , Fx , Fy) = (0, 0, 1)δq−p corresponding to the en-
ergy ϵ0 = ℏvF(k + p) (ii) the solution (Fs , Fx, Fy) = (1, 1, 0)δq−p+

corresponding to
the energy ϵ+ = ℏvF(k + p+) + 2hx, and (iii) the solution (Fs , Fx , Fy) = (1, −1, 0)δq−p−

corresponding to the energy ϵ− = ℏvF(k + p−) − 2hx. Here p and p± are arbitrary re-
ciprocal lattice vectors. The above modes should strongly interact provided that the
resonant condition ϵ0 = ϵ+ = ϵ− is fulfilled. Such resonance is possible when the
value 2hx/ℏvF equals a certain reciprocal lattice vector qm. Close to such Bragg-type
resonance we see that the dominant harmonics correspond to the following choice
of reciprocal lattice vectors: p = 0, p± = ∓qm . Writing the solution as a superpo-
sition of these three harmonics we find renormalized spectral branches ϵ0 = ℏvFk,
ϵ± = ℏvFk ± √(ℏvFqm − 2hx)2 + 8|Hqm |2 and relative eigenfunctions. Applying now
the boundary conditions at s = 0 for the superposition of the above eigenfunctions
we find the amplitude of the singlet component corresponding to the energy branch
ϵ0 and k = 0:

fsm = 8|Hqm |2 cos(qms)(ℏvFqm − 2hx)2 + 8|Hqm |2 .
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At the surface of a right superconducting electrode we should take the coordinate s to
be equal to the integer number of periods. We also need to sum up the above resonant
expressions over all Fourier harmonics of the periodic potential:

fs(s = sR) = ∞∑
m=0

8|Hqm |2(ℏvFqm − 2hx)2 + 8|Hqm |2 .

The precision of such resonant-type expression has also been confirmed by the nu-
merical solution of Equations (13.29) and (13.30), carried out using the transfer matrix
method. Note, that we omit here the contribution from the solutions corresponding
to the branches ϵ±: these functions correspond to a nonzero quasimomentum and,
thus, should gain a finite phase factor along the trajectory length. During averaging
over different trajectories this phase factor causes the suppression of the resulting su-
percurrent contribution with the increase of the wire length L.

The starting point of the trajectory varies in the interval ∆x = 2D/ tan θ and, as a
consequence, the long-range first harmonic in current–phase relation takes the form:

I1 = a1 sinφ
π/2∫
0

dθ cos θfs(sR) .
Assumingnarrow resonancesweapproximate themby thedelta-functions andobtain:

I1 = a1 sinφ∑
m

√2πℏvF h̃(θm)
h2xD

sin2 θm ,

where sin θm = 2hxD/πℏvF(2m+1). In the limitD ≫ ℏvF/2hx one can replace the sum
over m by the integral:

I1 ≃ a1√2 π/2∫
0

dθ h̃(θ)
hx(θ) cos θ sinφ ≃ a1

√2
3

βs0 sinφ .

Certainly, the above long-range effect in the first harmonic is rather sensitive to
the system geometry and possible disorder. Taking, e.g., the system sketched in Fig-
ure 13.5bwewill not obtain the full cancellation of the phase γ because the trajectories
in this case do not contain integer number of exchange field modulation periods. The
breakdown of the exchange field periodicity due to nonspecular quasiparticle reflec-
tion at the wire surface mixes the solutions with ϵ = 0 and different quasimomenta k
and, thus, should also prevent the full cancellation of the phase γ. However, similarly
to the case of the bilayer we expect the long-range effect to be still possible for higher
harmonics. We apply the above perturbative procedure for the calculation of the full
fs function for the geometry shown in Figure 13.5b.

The second harmonic in the current–phase relation reads

I2 = a2 sin 2φ
π/2∫
0

dθ cos θ ( 2⟨f 2s (sR)⟩y0 − 1 ) , (13.34)
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where ⟨. . .⟩y0 = (1/D) ∫D
0 . . . dy0 denotes averaging over the starting point of the tra-

jectory y0 (see Figure 13.5b). Keeping only the terms linear in the small |Hqm | amplitude
we get the following expression for the long-range part of the second harmonic I2:

I2 = a2 sin 2φ∑
m

√2πℏvF h̃(θm)
h2xD

sin2 θm ≃ a2
√2
3 βs0 sin 2φ .

We emphasize that the second harmonic of the Josephson current in both examples
described above is negative because of the condition a2 < 0.

Note that the absence of the decay of the single-channel critical current was
pointed out in [35] as a possible source of the long-range proximity effect in Co
nanowires. However the averaging of the phase gain for different modes strongly
decreases the critical current. In contrast the results presented in this section demon-
strate that in the ballistic regime the spin-orbit interaction generates the noncollinear
exchange field which produces the long-range Josephson current. This conclusion
is always true for the second harmonic in the current–phase relation and for some
geometries it may be also valid for the first harmonic. Therefore our findings provide a
natural explanation of the recent experiments with Co nanowire [25]. To discriminate
between two proposed mechanisms of the long-range effect, the studies of higher
harmonics in Josephson current–phase relations could be of major importance. Also
it should be interesting to verify with experiment the predicted simple angular depen-
dence (13.19) of the critical current in SFS junctions with composite interlayer.

13.3 Interference phenomena in nanowires

The systems with a few conductive channels reveal unusual interference phenomena
arising from the interplay between the spin–orbit, Zeeman and orbital interactions.
The experimental realization of such systems is based, e.g., on the localized electronic
states appearing at the surface of topological insulators [36], at the edges of graphene
nanoribbons [37], and InAs, InSb andBi nanowires [38–41]. The physics of the Joseph-
son transport through these states appears to be extremely rich since they combine
several unique properties which are not available simultaneously in conventional SFS
junctions: (i) large Fermi wavelength λF ∼ 50nm, whichmakes the transport through
the edge states nearly one-dimensional [42]; (ii) large g-factor ∼ 102 for certain di-
rections of magnetic field H [43], which makes the effect of the Zeeman spin-splitting
significant even without the ferromagnetic order; (iii) strong Rashba spin–orbit cou-
pling with the energy comparable with the Fermi energy [44, 45].

In this section we discuss two main effects arising in such Josephson systems:
multiperiodicmagnetic oscillations of the critical current Ic [22, 46] and the formation
of the φ0-junction with the arbitrary phase difference φ0 in the ground state [22, 31].
The oscillations of Ic originate from the interplay between the orbital and Zeeman in-
teractions of electrons with the magnetic field. The Zeeman interaction produces the
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Fig. 13.6: A model Josephson junction with a
two-channel nanowire in external magnetic
field.

spatial oscillation of the Cooper pair wavefunction at the scale ℏvF/gμBH (similar to
the ones in SF structures [4]) which result in the magnetic oscillations of the critical
current with the period ℏvF/gμBL, where L is the channel length. If there are several
edge states in the system the orbital effect gives rise to the quantum mechanical in-
terference between Cooper pairs propagating along any two different channels. As
a result, the critical current oscillates with the periods Φ0/Sij, where Sij is the area
enclosed by the i-th and j-th interfering paths projected on the plane perpendicu-
lar to the magnetic field. Finally, the combination of spin–orbit and Zeeman inter-
actions for the special orientations of the magnetic field breaks the inversion sym-
metry in the direction along the conductive channel. As a result, the usual symmetry
relation Ic(−φ) = −Ic(φ) (φ is the Josephson phase difference) becomes violated and
the current–phase relation takes the form I = Ic sin (φ − φ0), where the spontaneous
phase φ0 is determined by the magnetic field.

Belowwe compare two different approaches based on the Bogoliubov–de Gennes
(BdG) and Ginzburg–Landau equations, which are convenient for the description of
the Josephson transport through the edge states.

13.3.1 Bogoliubov–de Gennes approach

Let us consider a Josephson system containing only two conductive channels, which
model the edge states localized, e.g., at the surface of a single nanowire. The geometry
of the system is shown in Figure 13.6. A nanowire (NW) is placed on top of the insulat-
ing substrate and put in contact with two superconducting leads S1 and S2 with the
gap functions ∆se−iφ/2 and ∆seiφ/2, respectively. We choose the origin of the Carte-
sian coordinate system at the middle of the wire. The x-axis is taken along the NW
and the y-axis is chosen in the direction perpendicular to the substrate surface. The
current–phase relation of the Josephson junction is defined by the dependence of the
quasiparticle excitation energies ε on the Josephson phase φ (we put ℏ = 1) [47]:

I (φ) = −2e ∑
ε∈(0;∞)

∂ε
∂φ

tanh ( ε
2T

) , (13.35)

where ε should be found from the BdG equations

( Ĥ ∆̂
∆̂† −Ĥ†)(u

v
) = ε(u

v
) . (13.36)
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The electron- and hole-like parts of the quasiparticle wavefunction u and v are multi-
component: u = (u1↑, u2↑ , u1↓, u2↓) and v = (v1↑ , v2↑ , v1↓, v2↓), where thefirst indices
enumerate the conductive channels and arrows indicate the z-axis spin projections. In
Equation (13.36) ∆̂ is the superconducting proximity induced gap and Ĥ is the single-
electron 4 × 4-matrix Hamiltonian of the isolated wire, which for zero magnetic field
takes the form

Ĥ = [ξ (p̂) − μ + αp̂σ̂z] ⊗ ̂I + V̂(x) . (13.37)

Here p̂ = −i∂x is themomentum along the x-axis, ξ (p) is the electron energy in the iso-
lated wire, μ is the chemical potential, the term αp̂σ̂z describes the Rashba spin–orbit
coupling due to the broken inversion symmetry in the y-direction [48, 49], ̂I is a 2 × 2
unitmatrix in the channel subspace, and the potential V̂(x) describes the scattering at
the S/nanowire interfaces. Applying the magnetic field we should include the Zeeman
term gμBHσ̂z into (13.37) and replace p̂ with (p̂ + |e|Ax/c), where Ax(y) = −Hy.

Our strategy is to find the quasiclassical solutions of Equation (13.36) inside the
nanowire where both ∆̂ and V̂ are zero and then to match the solutions at the ends
of the wire using phenomenological scattering matrices. As a first step we derive the
quasiclassical version of Equation (13.36) inside the wire. Taking, e.g., the functions
u1↑ and u2↑ one can separate the fast oscillating exponential factor: un↑ = ũ±n↑e

±ip±
Fx,

where the Fermi momenta p+F and p
−
F for p > 0 and p < 0 are different in the presence

of the spin–orbit coupling. Then from the BdG equation (13.36) with ∆̂ = 0, V̂ = 0 and
H = 0 we find:

[ξ (p±F) − μ ± αp±F] ũ±n↑ ∓ i [ξ  (p±F) ± α] ∂xũ±n↑ = εũ±n↑ , (13.38)

where ξ  (p) ≡ ∂ξ/∂p. The Fermi momenta are defined by the equations ξ (p±F) = μ ∓
αp±F. Assuming α to be small we find p±F ≈ [1 ∓ α/ξ  (p0F)] p0F with ξ (p0F) = μ and
obtain: ∓ iv±F∂xũ

±
n↑ = εũ±n↑ . (13.39)

The derivation of equations for u±n↓, v
±
n↑ and v±n↓ is straightforward. Using the expan-

sion ξ  (p±F) = ξ  (p0F) ∓ αp0Fξ  (p0F) /ξ  (p0F), we find the Fermi velocities:

v±F = ξ  (p0F) ± α [1 − p0Fξ
 (p0F) /ξ  (p0F)] . (13.40)

Clearly the spin–orbit coupling results in the difference between the Fermi velocities
v+F and v

−
F of quasiparticleswith oppositemomenta. This renormalization (13.40) is ab-

sent only for exactly quadratic spectrum. It is the difference between v+F and v
−
F which

is responsible for the φ0-junction formation (see [31] and discussion below). Note that
another possibility to get the φ0-junction even for quadratic electron spectrum is to
consider nonballistic two-dimensional quasiparticle motion [50, 51].

Introducing the 4-component envelope wavefunctions

w±
σ(x) = (√v±F ũ

±
1σ,√v±F ũ

±
2σ,√v∓F ṽ

∓
1−σ ,√v∓F ṽ

∓
2−σ) (13.41)
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andneglecting the spinflip at thewire endswecanwrite thematching conditions, e.g.,
for w±

↑ : w
±
↑ (±L/2) = T̂±w±

↑ (∓L/2), and w∓
↑ (±L/2) = Q̂±w±

↑ (±L/2), where L is the wire
length, the unitary matrices T̂± and Q̂± describe the quasiparticle transmission along
the wire and both normal and Andreev scattering at the wire ends. The solvability
condition det [Q̂− T̂−Q̂+ T̂+ − 1̂] = 0 [47, 52] for the above matching equations defines
the quasiparticle energy spectrum ε. Replacing α and g by −α and −g one finds ε for
the opposite spin component.

The general form of the matrices T̂± and Q̂± is

T̂± = ( eip±
FLM̂± 0̂
0̂ e−ip∓

FLM̂∓ ) , Q̂± = ( R̂±
e Â∓

h
Â±
e R̂∓

h
) . (13.42)

The 2 × 2 matrices M̂± are defined from the solution of Equation (13.39) under the
assumption of different g-factors g1 and g2 in different channels:

M̂±
nl = exp [iq±L ∓ (−1)niπϕ/2] δnl , (13.43)

where ϕ = HLD/Φ0 is the dimensionless magnetic flux (the channels pass along
the plane y = ±D/2), q± = (ε − gnμBH) /v±F and δnl is the Kronecker-delta. The phe-
nomenological 2 × 2matrices R̂±

e(h) and Â
±
e(h) describe the normal and Andreev reflec-

tion from the S leads, respectively. The unitarity condition requires these matrices to
satisfy the relations R̂±

j R̂
±†
j + Â∓

k Â
∓†
k = 1̂ and R̂±

j Â
±†
j + Â∓

k R̂
∓†
k = 0̂, where j, k ∈ {e, h}

and j ̸= k.
For simplicitywe restrict ourselves to the casewhen the quasiparticles experience

full Andreev reflection in each channel separately. We assume that such Andreev re-
flection is caused by the superconducting gap ∆n induced in the n-th channel due
to the proximity effect to the S leads. In the case when the S leads cover the ending
parts of the nanowire the asymmetry in the relative position between the channels
and the superconductor can result in ∆1 ̸= ∆2. The specific values for ∆n strongly
depend on the microscopical properties of S/nanowire interfaces and hereinafter we
consider ∆n to be phenomenological parameters [53–56]. The above assumption of full
Andreev reflection means that the size ds of the induced gap regions (see Figure 13.6)
well exceeds the relevant coherence length. In this limiting case the normal scatter-
ing vanish (R̂±

e = R̂±
h = 0̂) while the Andreev scattering is described by the matrices(Â±

e )nl = δnl exp [∓iφ/2 − i arccos(ε/∆n)]. Note that for high tunneling rates between
the S leads and the conductive channels the quasiparticles reveal Andreev reflection
inside the bulk S leads. In our model this situation corresponds to ∆1 = ∆2 = ∆s (∆s is
the gap in the S leads).

In the short junction limit (εL/v±F ≪ 1) only the subgap Andreev states contribute
to the Josephson current. Taking into account all spin projections we obtain four pos-
itive subgap energy levels

ε = ∆n cos [φ/2 − (−1)nπϕ/2 ± gnμBHL/v±F] , (13.44)
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(a)

(c)

(b)

Fig. 13.7: The critical current Ic versus the magnetic field H. We choose T = 0.1 K, ∆1 = 7.5 K,
∆2 = 1 K, vF = 3 ⋅ 105 m/s, L = 2 μm and (a) D = 15 nm and (b)–(c) D = 50 nm. We also take
(a) g1 = g2 = 1.5; (b) g1 = 0 and g2 = 10; (c) g1 = 1 and g2 = 10.

where n enumerates the channels. For large temperatures T ≫ ∆n the current–phase
relation (13.35) takes the form

I = ∑
n=1,2

In sin [φ + βnH + (−1)nπϕ] cos (γnH) . (13.45)

Here In = |e| ∆2n/4 T is the critical current of the n-th channel at H = 0, the flux
ϕ produces the SQUID-like oscillations of Ic, the cosine term depending on the
constants γn = gnμBL (1/v+F + 1/v−F) describes the oscillatory behavior of Ic due to
the Zeeman interaction similar to the one in SFS structures [4]. The term βnH =
gnμBLH (1/v+F − 1/v−F) describes the φ0-junction formation due to the spin–orbit cou-
pling [31]. The critical current corresponding to (13.45) reads

I2c = I21 cos
2 (γ1H)+ I22 cos2 (γ2H)+2I1I2 cos (γ1H) cos (γ2H) cos [2πϕ + (β1 − β2)H] .

(13.46)
Interestingly if g1 ̸= g2 the spin–orbit coupling influences the period of the SQUID-like
orbital oscillations in Ic(H), i.e., renormalizes the effective quantization area enclosed
by the channels: Seff = LD + Φ0(β1 − β2)/2π.

Remarkably, themodel described in this section allows to reproducemost features
of the complicatedmagnetic oscillation of the critical current experimentally obtained
for the Josephson transport through the Bi nanowire. Choosing the parameters rele-
vant to the experimental situation in [46] we obtain a variety of Ic(H) dependencies
shown in Figure 13.7. These dependencies reproduce not only multiperiodic oscilla-
tions due to the interplay of the orbital and Zeeman interactions observed in [46] but
also asymmetry in the form of the upper and lower envelopes. In Figure 13.7a–b one
can clearly see two periods of oscillations: δHorb = Φ0/Seff and δHZeem = 2π/γ1 =
2π/γ2. The slow drift of the average current in Figure 13.7d should be considered in
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fact as a fragment of the large-period oscillations caused by the difference between γ1
and γ2.

13.3.2 Ginzburg–Landau approach

At temperatures close to Tc it is natural to expect that the system behavior can be
described by the Ginzburg–Landau model modified to include the Zeeman and spin–
orbit interactions. First, we consider the simplest case when there is only one conduc-
tive channel of the length L connecting the superconducting leads of the Josephson
junction. We again assume that the magnetic field H = Hẑ is perpendicular to the
channel and the sample edge breaks the inversion symmetry in the y-direction which
results in strong spin–orbit coupling of the Rashba type. Then at temperatures close
to the superconducting transition temperature Tc the expansion of the free energy F
up to the terms ∼ O(Ψ2) has the form [57, 58]

F = ∫{a |Ψ |2 + γ D̂xΨ
2 + β D̂2

xΨ
2 − νH [Ψ (D̂xΨ)∗ + Ψ∗ (D̂xΨ)]} dx , (13.47)

where Ψ is the superconducting order parameter in the conductive channel, a(x) ∼[T − Tc(x)] and inside the channel a > 0, D̂x = −i∂x + 2πAx/Φ0 (Ax = −Hy is the
vector potential) and the constant ν ∼ gα describes the strength of the spin–orbit
coupling. In (13.47) the constant γ is determined by the Zeeman interaction and as a
result the profileΨ(x) inside the channel strongly depends on the ratio between H and
the field HL corresponding to the tricritical Lifshitz point. For H < HL one has γ > 0
and Ψ monotonically decays from the superconducting leads towards the center of
the channel. In contrast, when H > HL (above the Lifshitz point) γ becomes negative
giving rise to the damped oscillatory behavior of the Cooper pair wavefunction due to
the formation of the FFLO state [4]. In the latter case one should take into account the
higher order gradient term with β > 0 in (13.47) which provides an additional length-
scale ξf = 2√β/ |γ| characterizing the period of the gap function oscillation.

To calculate the Josephson current–phase relation we assume that: (i) the spin–
orbit coupling is weak and can be treated perturbatively; (ii) L ≫ √ξ2 + ξf ξ where
ξ = √|γ|/a; (iii) inside the S leads the Zeeman interaction is negligible; (iv) the conduc-
tivity of the S leads well exceeds the one in the wire so the inverse proximity effect can
be neglected; (v) the interfaces between the channel and the superconducting leads
are absolutely transparent for electrons. The latter assumption results in the continu-
ity of the order parameter at the interfaces x = ±L/2 so thatΨ (±L/2) = ∆ exp (±iφ/2),
where ∆ and φ are the absolute value and phase of the gap function in the supercon-
ductors.

Varying the free energy∫ Fdxwith respect toΨ∗ andAx andexcluding the effect of
the vector potential (which is constant along thewire) by introducing the new function
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ψ(x) = Ψ(x) exp {−2πiAxx/Φ0} we obtain the equations
aψ − ∂x (γ∂xψ) + ∂2x (β∂2xψ) + iH [∂x (νψ) + ν∂xψ] = 0 (13.48)

and the expression for the superconducting current

j = 4c
Φ0

{ℑ [γψ∗∂xψ + β (∂2xψ∂xψ∗ − ψ∗∂3xψ)] − νH ψ2} , (13.49)

where Φ0 = πℏc/ |e| is the superconducting flux quantum.
Equations (13.48) should be supplemented by four boundary conditions. The first

two conditions reflects the continuity of the order parameter at the ends of the chan-
nel x = ±L/2: ψ (±L/2) = ∆ exp (±iφ̃/2), where φ̃ = φ/2 + 2πAxL/Φ0 is the gauge-
invariant phase difference between the superconductors. The second pair of condi-
tions can be obtained by the integration of Equation (13.48) over a small region near
the interfaces. Neglecting the Zeeman interaction inside the superconductors and the
inverse proximity effect one obtains that −γ∂xψ + β∂3xψ + iνHψx=±L/2 = 0.

The solution of Equation (13.48) strongly depends on the system parameters. The
simplest situation is realizedwhen themagnetic field is well below the tricritical point
so that the coefficient γ is positive and not small. In this case the term∝ β in the free
energy (13.47) is small and can be neglected. Then the solution of Equation (13.48)
takes the form ψ(x) = A+ exp(q+x) + A− exp(q−x), where q± = iνH

γ ± √ a
γ − ν2H2

γ2 are
the roots of the characteristic equation a − γq2 + 2iνHq = 0. Note that the absence of
the intrinsic superconductivity in the channels requires a > ac = ν2H2/γ. Taking into
account the continuity of the order parameter at x = ±L/2 one finds the constants A±
and, thus, the superconducting current (13.49). To make the results more transparent
we will focus only on the long junction limit (L√(a − ac)/γ ≫ 1). In this case each
exponent in the function ψ(x) is localized near the corresponding superconducting
lead and can be considered independently from another one. From the boundary con-
ditions we find A± = ∆ exp (±iφ̃/2 ∓ q±L/2) and substitute the resulting profile ψ(x)
into Equation (13.49). Assuming the spin–orbit coupling to be small we treat only cor-
rection ∝ ν in the wavevectors q and neglect the effect of the spin–orbit coupling in
the exponential prefactors. Then the current–phase relation takes the form

j(φ̃) = jc sin (φ̃ − φ0) , (13.50)

where jc = (4c/Φ0)γ∆2√(a − ac)/γ exp (−√(a − ac)γL) is the critical current andφ0 =
νHL/γ.

The current–phase relation (13.50) implies that the minimum of the junction en-
ergy E ∝ −jc cos(φ̃−φ0) corresponds to the nonzero phase difference φ̃ = φ0, which is
determined by the spin–orbit coupling and the magnetic field. In contrast with the π-
junctions where the transitions between 0 and π states occur as a phase jump accom-
panied by the vanishing of the critical current, here φ0 as a function of H is changing
continuously and the critical current remains nonzero.
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Now we turn to the more interesting situation when the magnetic field is close
to the tricritical point and in (13.47) the coefficient γ is small (the solution of the
Ginzburg–Landau equation exactly at the tricritical point is considered in [59]). In
this case the solution of Equation (13.48) inside the channel is the sum of 4 exponents
of the form exp(qx) with q satisfying the equation a − γq2 + βq4 + 2iνHq = 0. If the
spin–orbit coupling constant ν ≪ 1 this equation canbe solved perturbatively. Taking
q = q0+q1, where qn ∝ νn, in the zeroth order we get q20 = 2 sign(γ)

ξ2f
(1+ iμ√ξ2f /ξ2 − 1),

where ξ = √|γ|/a and μ = ±1. One sees that if the magnetic field is well below the
tricritical point so that ξ > ξf the wavevector q0 is real. This situation is qualita-
tively equivalent to the case described above. However when ξ < ξf the imaginary
component of q0 appears and the order parameter reveals spatial oscillations. These
oscillations result in a series of transitions between the 0- and π-states which are
revealed through vanishing of the critical current. Note that for γ < 0 the absence of
the intrinsic superconductivity in the channel requires ξ < ξf (otherwise ψ(x) would
be an oscillating function whose amplitude does not depend on the distance from the
superconducting lead).

Let us analyze the case ξ < ξf for arbitrary sign of γ. Introducing the values k± =
ξ−1f √ξf /ξ ± 1 we obtain the following solutions for q0:

q0 = {{{
λ (k− − iμk+) for γ < 0,
λ (k+ + iμk−) for γ > 0,

(13.51)

where λ = ±1. Then in the first order of the perturbation theory we find q1 = μs, where
s = −νH sign(γ)/ (4βk+k−).

Let us first treat the case γ < 0 in detail (for γ > 0 one has to replace k− → k+ and
k+ → −k− in the final answers). For simplicity we assume the junction to be long so
that k−L ≫ 1. In this case one may consider the superconducting nuclei with λ = −1
(localizednear the left endof the channel) and theoneswith λ = +1 (localizednear the
right end) independently. Taking into account the boundary conditions at x = ±L/2
and neglecting the effect of the spin–orbit coupling in the exponential prefactors we
find:

ψ(x) = ∆
2

∑
λ,μ=±1

(1 + iμ k
−

k+) eiλφ̃/2+[λ(k−−iμk+)+μs](x−λL/2) . (13.52)

Substituting (13.52) into (13.49) and accounting for the effect of the spin–orbit coupling
only inside the arguments of exponents we again obtain the current–phase relation of
the form (13.50), where sinφ0 = cosh(sL) sin χ/√sin2 χ + sinh2(sL),

jc = 32√2cβ∆2k−(ξf ξ)3/2Φ0k+
e−k−L√sin2 χ + sinh2(sL) , (13.53)

and cos(χ − k+L) = k+ (ξf − 2ξ) √ξ/(2ξf ).
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Fig. 13.8: The dependencies of the critical current
jc as a function of the applied magnetic field H.
The critical current is scaled by the value jc0 =
32√2cγ3/2

0 ∆2/Φ0√β. Different curves correspond
to different values of the parameter ̃ν = νHtr/4γ0 de-
scribing the strength of the spin–orbit coupling. We
take 2√β/γ0 = 1 and √γ0/a = 0.5.

Interestingly, the spin–orbit coupling not only causes the φ0-junction formation
but also affects the critical current. Indeed, for long junctions with L ∼ s−1 the term
sinh2(sL) can result in the increase in Ic with the increasing H. Obviously this effect
canbe suppressed because of damping of the superconductivity inside the S leads due
to the magnetic field. However for the Pb films and LaAlO3/SrTiO3 heterostructures
with strong spin–orbit coupling in rather small magnetic fields the increasing depen-
dencies Tc(H)were observed [60]. In this case as follows from (13.53) the dependencies
Ic(H) should reveal the increasing trend due to the spin–orbit coupling. Note also that
the Zeeman interaction causes the sign change of the coefficient γ near the tricritical
point, which results in the nonmonotonic dependencies of the critical current as a
function of H. Expanding γ = γ0 (1 − H/Htr) (here Htr is the field corresponding to the
Lifshitz point) one obtains the dependencies jc(H) shown in Figure 13.8. One sees that
if there is no spin–orbit coupling the critical current turns to zero at the points of the
transition between 0- and π-states while in the presence of the spin–orbit coupling
Ic stays finite. Note also that if there are several conductive channels the dependen-
cies Ic(H) reveal the usual Fraunhofer oscillation which was described in detail in
Section 13.3.1. The origin of these oscillations is the difference in the vector potential
entering the gauge invariant phase φ̃ for different channels.

13.4 Mesoscopic fluctuations

The existing experiments [23–25, 61] demonstrating the anomalously slow decay of
superconducting correlations in ferromagnets in the absence of a noncollinear mag-
netization and with the questionable strength of the spin–orbit effects force theoreti-
cians to look for other possible sources of the suppression of the interference of ran-
dom quasiparticle trajectories. Motivated by the above discrepancy between the ex-
periment and theory we reexamine the standard Usadel-type model and search for its
possible shortcomings which can reveal themselves in the estimates of the length of
decay of superconducting correlations in a dirty ferromagnet. One of the most impor-
tant assumptions which form the basis of the Usadel theory is that we operate with
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the ensemble-averaged Green functions neglecting, thus, possible fluctuations of the
measurable quantities due to the random distribution of impurities [62–64]. In the
case of the dirty ferromagnet this assumption is crucial to obtain the exponential de-
cay of the anomalous Green function at the length ξf . Indeed, the motion of quasi-
particles in a ferromagnetic metal occurs along the randomquasiclassical trajectories
which experience sharp turns at the impurity positions. As it has been noted in the in-
troduction, the exchange field is responsible for the relative phase γ gained between
the electronic and hole parts of the quasiparticle wavefunction along these trajecto-
ries. Averaging the Green functionswe average in fact the exponential phase factor eiγ

with the random phase γ depending on the trajectory length obtaining naturally an
exponentially decaying quantity ∝ e−x/ξf , where x is the distance from the SF inter-
face. This destructive interference cannot play such a dramatic role whenwe calculate
root-mean-square (rms) values due to a partial phase gain compensation in squared
quantities. Considering, e.g., the supercurrent I of the SFS Josephson junction we can
introduce the rms value of the current as follows: δI = √⟨I2⟩ − ⟨I⟩2. The compensa-
tion of the phase factor γ can occur only for correlated random trajectories passing at
the distance not exceeding the Fermi wavelength λF = 2π/kF. This restriction causes
the reduction of the δI value by a factor of √N, where N is the number of transport
channels in the junction. Finally, we obtain δI/⟨I⟩ ∼ ed/ξf /√N, where d is the dis-
tance between the S electrodes [65]. The number of channels can be of course pretty
large: N ∼ kFL for two dimensional and N ∼ (kFL)2 for three dimensional junctions
with the transverse dimension L. Nevertheless the current fluctuations can strongly
exceed the average value at large distances d well above the coherence length ξf .
In this sense these fluctuations are giant compared to the ones in superconductor–
normal metal–superconductor (SNS) junctions where the value δI ∼ e∆0/ℏ for short
junctions with d ≪ ξs [47] is known to be determined by the universal conductance
fluctuations [66, 67] or even smaller for long junctions with d ≫ ξs [68]. Here ∆0 is
the gap in the bulk superconductor and ξs is the superconducting coherence length.
Experimentally, in each particular sample we can expect to measure a random crit-
ical current value which should exhibit giant sample-to-sample fluctuations. Thus,
in a given experiment one can easily obtain the critical current well above the limit
imposed by the Usadel theory which can give us only the average current value. The
above arguments and standard Landauer relation between the normal junction resis-
tance R and the N number make it possible to guess a simple estimate for the fluctu-
ating critical current:

δI ∼ ∆0/√ℏR . (13.54)

Note that this inverse square root dependence differs strongly from the standard rela-
tion Ic ∼ ∆0/(eR) for the SNS junction. Our further calculations nicely confirm the
above δI estimate and, thus, the observation of this unusual relation between the
supercurrent and normal junction resistance could provide a verification of the long
range proximity mechanism caused by mesoscopic fluctuations. The ensemble aver-
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aging laying in the basis of the derivation of the Usadel equations from the quasi-
classical Eilenberger theory overlooks the above fluctuation effects emerging atmeso-
scopic scales. These fluctuation effects reveal themselves even in the quasiclassical
limit λF → 0 when we can neglect the corrections found in [63, 64] which vanish in
this limit corresponding to a large junction conductance.

We proceedwith a detailed consideration of the critical current fluctuations in the
SFS junction and for this purposewe use an approachbased on the averaging over the
random quasiparticle trajectories passing in the field of point scatterers (see [69] for
review). For each random trajectory inside the F layer one can consider the 1D prob-
lem for propagating electrons and holes experiencing Andreev reflection at the point
where the trajectory touches the left or right S electrode. We start from the case d ≪ ξs
and assume the superconducting gap (exchange field) to vanish inside (outside) the
F layer. Thus, we neglect the so-called inverse proximity effect, i.e., the mutual influ-
ence of the order parameters at the interface. The current–phase relation for the short
junction limit can be defined only from the spectra of the subgap Andreev states at
the trajectories ending at both the left and right S electrodes ϵ = ±∆0 cos ((φ ± γ)/2)
neglecting the contributions from the states above the gap. Here φ is the phase dif-
ference between the S electrodes, and ±γ is the spin-dependent phase shift between
the electron- and hole-like parts of the total wavefunction along the quasiclassical
trajectory Γ12. Each trajectory Γ can touch each of the S electrodes only once other-
wise part of the trajectory Γ touching the same electrode two times can be considered
separately and the corresponding spectrum does not depend on the phase difference
φ. Certainly, there exist trajectories of the length exceeding ξs with the quasiparticle
spectrum consisting of several subgap branches but the probability to get such tra-
jectories vanishes for short junctions. According to the procedure suggested in [20]
the phase shift γ can be determined from Equations (13.13) and (13.14) which formally
coincide with the Eilenberger-type equations written for the singlet and triplet parts
of the anomalous quasiclassical Green function f = fsing + ft σ̂ and zero Matsubara
frequencies.

Theboundary conditions at the left electrode read: fsing(s = sL) = 1, ft(s = sL) = 0.
The function fsing(s = sR) = cos γ taken at the right S electrode determines the phase
gain γ along the trajectory. Let us emphasize here that contrary to the standard con-
sideration the Eilenberger-like equations in our approach are written along a random
trajectorywithmany sharp turns and therefore they donot contain the impurity terms.

Summing up over all trajectories Γ we find the current–phase relation:

I = ∑
Γ

(j(φ + γ) + j(φ − γ)) (nF , nL) , (13.55)

where j(χ) is defined by Equation (13.4). The vectors nL and nF are the unit vectors
normal to the left electrode surface and parallel to the trajectory direction, respec-
tively. The vector nF parametrizes random quasiparticle trajectories outcoming from
the left electrode. The random phase γ depends on the whole path between the elec-
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trodes and not just on the distance between the starting and ending points of the
trajectory. Taking for simplicity the case of a homogeneous exchange field we find
γ = 2h(sR − sL)/ℏvF = Ωt, where t is the time of flight of electron along the trajectory
and Ω = 2h/ℏ.

Our next step is the averaging of the above Josephson current expression over the
random timeof flight t. For this purposeweneed to introduce the distribution function
describing the probability density w(r2 , r1, t) to get the trajectory starting at a certain
point r1 at the left electrode at the time t1 = 0 and touching the right electrode at
an arbitrary point r2 at the time t2 = t. In the diffusion limit this probability density
is almost independent on the quasiparticle velocity direction at the electrodes and
satisfies the diffusion equation:

∂
∂t w = D ∂2

∂r22
w + δ(r2 − r1)δ(t) . (13.56)

Here we assume the elastic mean free path ℓ to be less than all the relevant length
scales so that, in particular, one takes ℓ ≪ ξf . The boundary condition should be de-
fined from the fact that the trajectory which touches the S electrodes do not contribute
to the total probability density anymore. An obvious reason is that the corresponding
electron moving along the trajectory experiences in this case the full Andreev reflec-
tion. Thus, at the surfaces of both S electrodes we should put w = 0. Choosing r1,2 at
the left and right electrodes, respectively, we find the probability distribution P(t) for
the first-passage time between two electrodes:

P(t) = − ∫
SR

D (nR
∂
∂rR

)w(rR , rL , t)dsR , (13.57)

where the integral is taken over the surface of the right electrode and nR is the unit vec-
tor normal to this surface. The value P(t) gives the probability of the trajectory starting
at the point rL at t1 = 0 to leave the junction in the time interval from t to t + dt. The
average current can be written as follows:

⟨I⟩ = ∑
n≥1

Njn sin nφ⟨cos nγ⟩ , (13.58)

where ⟨cos nγ⟩ = Re ∫∞
0 e−inΩtP(t)dt = ReP(nΩ). We assume here the surfaces of

S electrodes to be flat and obtain a one-dimensional problem along the coordinate
x perpendicular to these surfaces. Introducing the function W(x, t) satisfying the 1D
diffusion equation DW

xx − inΩW = 0 with the boundary conditions DW(x = 0) = ℓ
andW(x = d) = 0 one can find P(nΩ) = DW

x(x = d, nΩ).
Substituting the solution of the above diffusion equation into the current we ob-

tain: ⟨I⟩ = Re ∑
n≥1

Njn sin nφ
ℓ√in
ξf

1
sinh [√ind/ξf ] . (13.59)

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



434 | 13 Interference phenomena in superconductor–ferromagnet hybrids

One can see that this expression reproduces the result of the Usadel theory only for
the first harmonic I1 ∝ sinφ in the current–phase relation [35]. The length Ln of the
exponential decay of higher harmonics In ∝ sin nφ appears to exceed the appropriate
length in the Usadel-type calculation:we obtain here Ln = ξf /√n instead of Ln = ξf /n.
This result indicates an obvious increase of the range of superconducting correlations
due to mesoscopic fluctuations and originates from the incorrect calculation of the
ensemble averages of the product of the anomalous Green functions in the ferromag-
net within the Usadel theory. This failure of the Usadel-type consideration is caused
by the appearance of the random interference phase γ and occurs only in the nonlin-
ear regime of rather strong superconducting correlations. Indeed, considering, e.g.,
the value ⟨cos 2γ⟩ in the above derivation we calculate the average ⟨|fsing|2 − |ft|2⟩
which definitely differs from the product of averages ⟨fsing⟩⟨f∗sing⟩ − ⟨ft⟩⟨f∗t ⟩. Note that
the above approach describes the fluctuation contributions which do not vanish in
the limit λF → 0 and can, thus, exceed the corrections found previously in [64]. Our
contributions are caused by the quantum interference effects associated with a much
larger wavelength ℏvF/h of the quasiparticle wavefunction envelope.

To find the rms value of the supercurrent we evaluate now the expression

⟨I2⟩ = ∑
Γ,Γ̃,n,m

jnjmAnm(nF , nL)(ñF , ñL) sin nφ sinmφ , (13.60)

whereAnm = ⟨cos nΩt cosmΩ ̃t⟩. The calculation of the above double sumcanbedone
similar to the calculation of the conductance R−1 = G(d, ℓ) in a dirty wire above Tc.
Assuming the normal layer thickness to be rather large (d ≫ ξf ) and omitting the
averages of the fast oscillating phase factors (which should give the short-range terms
decaying at the length ξf ) we get

⟨I2⟩ ≃ (G(d̃, ℓ̃)/4G0) ∑
n≥1

j2n sin2 nφ , (13.61)

where G0 = e2/πℏ, d̃ = Ωd/kFvF and ℓ̃ = Ωℓ/kFvF. Taking the Drude-type conduc-
tance G/G0 = Nℓ/d for a disordered wire of the length d we find the estimate

√⟨I2⟩ − ⟨I⟩2 ∼ √Nℓ
d √∑

n≥1
j2n sin2 nφ . (13.62)

The deviations from the Drude result arise naturally from the so-called interfer-
ence or localization corrections to the conductance [69]. Perturbatively, they can be
estimated as terms arising from the paths with self-crossings in the above double sum
over the trajectories. According to the Thouless criterion [70] the localization effects
in a disordered wire are small provided the effective number Nℓ/d of the conduct-
ing modes is large. Thus, one can expect our Drude-type estimate to hold in the case
Nℓ/d ≫ 1. In the opposite limit the wire conductance in Equation (13.61) and, thus,
the rms value of the critical current decay exponentially at the length Nℓ.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



13.4 Mesoscopic fluctuations | 435

Comparing the rms value with the average current taken in the same limit d ≫ ξf
we find

δI/⟨I⟩ ∼ √ ξ2f
Nℓd exp( d

ξf√2) . (13.63)

This expression for current fluctuations definitely cannot be obtained within the av-
eraged Usadel theory and results from the partial cancelation of the interference con-
tributions in the product of the anomalous Green functions. Note that turning to the
limit d ≪ ξf , i.e., to the case of the SNS junction our consideration should give a
vanishing δI value since we disregarded the quantum interference of random semi-
classical trajectories responsible for standard mesoscopic fluctuations [47]. The effect
of these fluctuations on the critical current through the SNS junction is similar to the
phenomenon of universal conductance fluctuations and gives the value δI ∼ e∆/ℏ
proportional to the single-mode contribution to the supercurrent. Despite the small
factor N−1/2 in Equation (13.63) the current fluctuations for d ≫ ξf appear to be gi-
ant compared to the current average value which decays exponentially at the small
distance ξf . The rms value can well exceed the Josephson current quantum e∆/ℏ in
SNS junctions [47]. It is also important to note that contrary to the average current the
fluctuating contributions to higher harmonics of the current–phase relation are not
suppressed exponentially compared to the first harmonic. This strong anharmonicity
probably relates to the experimental data on the large second harmonics in SFS junc-
tions [13, 71]. Certainly, in realistic junctions the above assumption of the full Andreev
reflection at the SF boundaries canbe brokendue to the effect of the interface potential
barriers which certainly suppress the higher current harmonics. Still the main effect,
namely, the partial compensation of the phases γ in the rms values should exist even
in the presence of the barriers though, of course, the above procedure of averaging
over the random trajectories should be modified.

The rms value decays with the increase of the distance between the S electrodes,
however, this decay follows only the inverse square root law instead of the exponen-
tial decay of the average current. Taking the distance d larger than ξs we can no longer
use, of course, the short junction approximation. However, one can easily see that
the above long-range behavior of the critical current fluctuations holds even in this
regime at least for the first harmonic in the current–phase relation. Indeed, the crit-
ical current in this limit is determined by the singlet component of the anomalous
Green function∑Γ fsingΓ = ∑Γ cos γΓ . The average current, therefore, decays exponen-
tially as ⟨I⟩ ∝ (ℓN/ξf )e−d/ξf√2 while the rms average becomes long-range because of
the partial phase compensation at close trajectories: ⟨(δI)2⟩ ∝ ⟨f 2sing⟩ ∝ Nℓ/d. Thus,
the above calculations confirm the estimate (13.54) both for short and long junctions.
Certainly, further increase in the distance d will give us the exponential decay of the
supercurrent but at the distances exceeding the normalmetal coherence length√D/T.
It is interesting to note that taking, e.g., the gap ∆0 ∼ Tc ∼ 3−4K and the resistance
R ∼ 10−100Ω from the experiment [25] on Co nanowires withW electrodes and using
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the Equation (13.54) we get the value δI ∼ 1 μA, which is only an order of magnitude
less that the critical current observed in [25]. The remaining discrepancy is probably
caused by the overestimating of the wire resistance in Equation (13.54) due to the pres-
ence of contact resistances in the system.

Finally, we briefly comment on the effect of mesoscopic fluctuation on the local
density of states (LDOS) at the Fermi level. In the ballistic system for straight linear
trajectories one can easily obtain an appropriate Eilenberger-type expression for this
quantity as a sumof contributions fromdifferent quasiclassicalpaths. This expression
can be simplified applying the normalization condition for quasiclassical Green func-
tions and taking the perturbation expansion in powers of the f function (see, e.g., [72]
for convenient notations). Generalizing this expressions for the trajectories experienc-
ing many sharp turns one can get: δν/νF ∝ −N−1 ∑Γ(|fsing|2 − |ft |2), where νF is the
normal metal LDOS. The ensemble average of this value certainly decays exponen-
tially ⟨δν/νF⟩ ∝ −⟨cos 2γ⟩ ∝ −(ℓ/ξf )e−d/ξf cos(d/ξf + π/4) with the increase in the
distance d from the S electrode. The fluctuating LDOS contains a long-range contribu-
tion similar to the one calculated above for the critical current:√⟨(δν/νF)2⟩ ∝ √ℓ/dN.
This nonexponential behavior of the fluctuating superconducting contribution to the
LDOS could be measured by a local conductance probe at different points of a ferro-
magnetic nanowire placed in contact with a superconductor providing, thus, a possi-
ble explanation of the long-range proximity effect observed in [23, 24, 61, 73, 74].

The direct observation of the giant sample-to-sample fluctuations assumes the
measurements of the critical current or LDOS on different junctions. It would bemuch
more convenient to find the way to change the interference phases γ i n a given sam-
ple andmeasure the junction “fingerprints” in analogy to the observation of universal
conductance fluctuations vs applied magnetic field [75]. Indeed, such type of experi-
ment in the SFS junctions may become possible provided we apply the magnetic field
which can affect the domain structure in the ferromagnetic layer without producing
noncollinear magnetic regions to avoid the admixture of the long-range triplet corre-
lations. Note finally, that the mesoscopic fluctuations considered in our work should
bemost easily observed in the experiments with the ferromagnetic wires because their
relative contribution decayswith the increase of the number of transport modes in the
junction.

13.5 Conclusion

To sumup, in this chapterwehave shown that the spin splitting of the electronic Fermi
surfaces due to the exchange field and/or the spin–orbit coupling gives rise to very
rich interference physics. The most dramatic consequences of such interference ap-
pear in Josephson junctions with a ferromagnetic weak link.When propagating inside
the ferromagnetic material the electrons gain a phase which is determined mainly by
the interplay between the two length scales: the period of the FFLO oscillations and
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the length of the electron trajectory. The constructive interference among the certain
trajectories significantly enhance the proximity effect andmodifies the current–phase
relation of the SFS/ Josephson junctions. Moreover, the spin-dependent renormaliza-
tion of the electron Fermi velocity due to the spin–orbit coupling results in the appear-
ance of the spontaneous ground state Josephson phase φ0 which can be effectively
controlled by the magnetic or exchange field. Surprisingly, even in the presence of
strong disorder the quantum interference affects the properties of the Josephson sys-
tems due to the mesoscopic fluctuations. The resulting renormalization of the Joseph-
son current–phase relation can explain the experimental data showing the anoma-
lously slow decay of superconducting correlations in ferromagnets.

Note that in all sections of this chapterwe discussmainly the effects caused by the
superconducting correlations with zero spin projection Sz on the exchange field direc-
tion. However if the ferromagnet contains several domainswith the noncollinearmag-
netic moments the triplet correlations with Sz = ±1 appear. Such correlations are not
sensitive to the exchange field and penetrate the ferromagnets over the long distances
giving rise to the so-called long-range triplet proximity effect [5]. The presence of the
long-range triplet correlations gives rise to a series of unusual phenomena controlled
by the quantum interference such as triplet spin–valve effect in S/F1/F2 and F1/S/F2
systems [76, 77] and the long-range Josephson effect in S/F1/F/F2/S junctions [30].
Also the effect of the triplet correlations on the electron interference plays the crucial
role in the fast growing field of the superconducting spintronics which involves the
spin degree of freedom into the functionality of electronic devices [7].

Thus, the interference phenomena described in this chapter show the richness of
the proximity effect physics in superconductor/ferromagnet hybrids and provide de-
sign guidelines for the next generation of tunable elements found in cryogenic com-
putational electronics.
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Jacob Linder and Sol H. Jacobsen
14 Spin-orbit interactions, spin currents, and

magnetization dynamics in
superconductor/ferromagnet hybrids

Abstract: Superconductors can enhance central effects in spintronics such as magne-
toresistance and spin injection and even create conceptually new types of phenomena
that have no counterpart in nonsuperconducting systems. Much like the key role that
has been played bymagnetic inhomogeneities in superconducting systems, recent de-
velopments suggest that spin-orbit coupling can play a similarly important part in
superconducting spintronics. Here, we discuss how spin-polarized Cooper pairs can
emerge from conventional s-wave BCS superconductors by utilizing hybrid structures
with spin-orbit coupling and also highlight some recent developments in the field of
nonequilibrium spin transport in superconductors. We will primarily discuss recent
findings in our research group which demonstrate how spin-orbit coupling leads to
novel phenomena such as spin-valve functionality with a single homogeneous ferro-
magnet and symmetry-protected proximity effects.Wewill also briefly cover results on
magnetization dynamics, spin supercurrents, the consequences of domain wall mo-
tion in Josephson junctions, and how spin-transfer torques are affected by the pres-
ence of superconducting correlations.

Keywords: Superconductor, spintronics, spin-orbit coupling, magnetization dynam-
ics, domain walls, heterostructures, proximity effects

14.1 Spin-orbit coupling from inversion symmetry breaking: novel
phenomena in SF structures

Creating and manipulating spin flow is the central feature of superconducting spin-
tronics [1]. In the presence of magnetically inhomogeneous structures, includingmul-
tilayers or ferromagnets with intrinsic textures such as domain walls, spin-polarized
Cooper pairs emerge [2–6] which carry both charge and spin supercurrents [7–11]. It
has been shown experimentally [12–14] that a dissipationless charge current can flow
through strong ferromagnets over distances that far exceed the penetration depth of
conventional superconducting order into magnetic materials. This occurs precisely
due to the creation of triplet Cooper pairs which are spin-polarized and insensitive
to the pair-breaking Zeeman field. Triplet Cooper pairs were very recently experimen-
tally observed spectroscopically inside a conventional superconductor [15, 16] and in
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the form of a paramagneticMeissner effect [17]. It has been realized that intrinsic spin-
orbit coupling arising frombroken inversion symmetry offers an alternative avenue for
obtaining the long-range (LR) triplet component [18, 19]. In that case the appearance
of the LR component depends on the relative direction of the axis of broken inver-
sion symmetry and the magnetization vector, with the LR triplet defined as having its
spin alignedwith themagnetization. This is in contrast to the short-ranged (SR) triplet
componentwhichhas its spin perpendicular to the field, and is thus vulnerable to pair
breaking just like conventional singlet Cooper pairs.

It would be impossible to comprehensively reviewall the activity in superconduct-
ing spintronics within this book chapter. Thus, we emphasize that this chapter is not
intended as a review of past and ongoing activity in the field. Instead, wewill primarily
discuss some specific results on spin transport in superconductors obtained recently
in our research group. The reader is assumed to have basic knowledge about the su-
perconductingproximity effect in superconductor/ferromagnet (SF) hybrid structures.
For a more detailed introduction to the underlying theory in this field, we refer to the
chapter by A. Buzdin in this book and the review articles [20, 21].

14.1.1 From singlet to triplet Cooper pairs

Spin mixing and spin rotation
We start by briefly reviewing the establishedmechanismwhich allows us to pass from
spinless S = 0, Sz = 0 singlet Cooper pairs to spin-polarized S = 1, Sz = ±1 triplet
Cooper pairs, following the presentation of [1]. This occurs via a two-step procedure
based on the concepts of spin mixing and spin rotation [22]. The wavefunction for a
spin-singlet Cooper pair can be represented as:

ψ0(k) = √1
2
(|↑, k⟩ |↓, −k⟩− |↓, k⟩ |↑, −k⟩) (14.1)

where the prefactor is due to normalization.Here, we have ignored for brevity the sym-
metrization with respect to k which is not essential to demonstrate the spin-mixing
process – it is easily reinstated by letting ψ0(k) → ψ0(k) + ψ0(−k) so that the total
wavefunction is invariant under k → (−k). When the electrons of a Cooper pair scat-
ter at a magnetic interface (such as in a superconductor/ferromagnet bilayer), they
experience not only a shift in momentum but also a spin-dependent shift νσ, σ =↑, ↓,
in the phase of the wavefunction. This is a result of the Zeeman field that splits ma-
jority and minority spin carriers. Such a spin-dependent phase shift may be written
as: |↑, k⟩ → eiν↑ |↑, −k⟩, |↓, k⟩ → eiν↓ |↓, −k⟩ . (14.2)

Applying this to ψ0 results in a new wavefunction which is a linear combination
of a spin-singlet and Sz = 0 spin-triplet wavefunction ΨSR ≡ √1/2(|↑, k⟩|↓, −k⟩+|↓, k⟩ |↑, −k⟩). The singlet and triplet parts of the wavefunction are weighted by
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cos ∆ν and sin ∆ν, respectively. Here, ∆ν ≡ ν↑ − ν↓. If there are no spin-dependent
phase shifts (∆ν = 0), the triplet component is absent. The next step is to create the
equal-spin triplet components Sz = ±1 which are insensitive to the pair-breaking ef-
fect of a Zeeman field as the spins of the electrons in the Cooper pair are aligned with
each other. Such long-ranged triplet correlations ΨLR ≡|↑, k⟩ |↑, −k⟩ (or |↓, k⟩ |↓, −k⟩)
can emerge by rotating or flipping one of the spins in the Sz = 0 triplet component. A
spatially varying magnetization serves as a source for spin rotation. This can be seen
by letting the quantization axis be aligned with the local magnetization direction:
consider an Sz = 0 triplet state in a part of the system where the magnetization, and
thus the quantization axis, is along the z-direction. However, in a part of the system
where the magnetization points in the x-direction, the same Sz = 0 triplet state would
look like a combination of the equal-spin pairing states Sz = ±1 from theperspective of
the new quantization axis. Yet another way to view this is in terms of spin-flip scatter-
ing. Assume that there exists two magnetic regions where the magnetizations are not
aligned. In that case, the second region acts as a spin-flip potential relative to the first
region and enables processes such as |↑, k⟩ →|↓, k⟩ and vice versa. Such processes
are in fact always present for instance in a scenario where local inhomogeneities of
the magnetic moment exist near an interface. The combination of spin mixing and
spin rotation processes then illustrate how the spin-singlet s-wave component of a
conventional superconductor may be converted into a long-range spin-triplet compo-
nent that is able to penetrate a long distance even into extreme environments such as
half-metallic ferromagnets which are fully spin polarized.

Spin-orbit coupling: precession and relaxation
The above picture represents the traditionally established view that magnetic inho-
mogeneities are a necessary prerequisite in order to generate long-ranged spin-triplet
superconducting correlations in ferromagnetic structures. However, recent develop-
ments [18, 23] have shown that there exists an alternative. If a superconducting ma-
terial lacks an inversion center (either due to its crystal structure or due to the geom-
etry of the setup) antisymmetric spin-orbit coupling such as Rashba type [24] will be
present. This leads to a mixing of excitations from the two spin bands in such a man-
ner that spin is no longer a conserved quantity. Instead, the long-lived excitations of
the system now belong to pseudospin bands that are momentum-dependent combi-
nations of the original spin species. As a consequence, the superconducting pairing
state in noncentrosymmetric superconductors will intrinsically be a mixture of sin-
glet and triplet pairing [25]. When pairing occurs between the quasiparticle excita-
tions of a simple Hamiltonian H featuring antisymmetric spin-orbit coupling such as
H = εk + gk ⋅ σ, where εk is the normal-state dispersion, σ is the Pauli matrix vector,
and gk = −g−k is a vector characterizing the spin-orbit coupling, the triplet part of the
superconductivity can be described by the relation d(k) ‖ g(k). The notation . . . is
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used for 2 × 2 matrices. We have defined:

d(k) ≡ [(∆↓↓(k) − ∆↑↑(k))/2, −i(∆↑↑(k) + ∆↓↓(k))/2, ∆↑↓(k)] . (14.3)

This is the triplet d-vector [26] which is intimately linked to the spin of the Cooper pair
state ⟨σ⟩ ∝ id(k) × d(k)∗. Besides its use for noncentrosymmetric superconductors,
the d-vector formalism is also suitable to describe the proximity-induced triplet corre-
lations in superconductor-ferromagnet structures. In this case, the anomalousGreen’s
functions fσσ play the role of the gaps ∆σσ(k) above. One may define a “proximity”
triplet vector f . The proximity effect between a noncentrosymmetric superconductor
and a homogeneous ferromagnet will thus produce both SR and LR triplet supercon-
ductivity inside the ferromagnetic region [23].

The generation of LR spin triplets via spin-orbit coupling andhomogeneous ferro-
magnetism has also been analyzed in terms of an analogy between, on the one hand,
D’yakonov–Perel [27] spin relaxation and precession of spins in nonsuperconducting
systems and, on the other hand, in diffusive systems with antisymmetric spin-orbit
coupling in contact with conventional s-wave superconductors (see [18, 19] for details
on this argument). In particular, one may compare the quasiclassical Usadel equa-
tion [28], which determines the superconducting pairing correlations quantified by
the anomalous Green’s function f in the presence of such spin-orbit interactions, with
the spin diffusion equation for normal state systems, which determines the spin den-
sity S. The comparison demonstrates that the spin-orbit interaction affects the com-
ponents of f and S in the same way,meaning that the samemechanismwhich causes
rotation of spin in diffusive normal metals can rotate the SR Cooper pairs to LR ones.

14.1.2 Spin-valve functionality with a single ferromagnet

An interesting consequence of the mechanism discussed in the previous section is
that it should be possible to control the critical temperature Tc of a superconductor
via the magnetization direction of one single ferromagnetic layer, which is not pos-
sible in the absence of SO coupling. In conventional SF structures, Tc is in fact inde-
pendent of the magnetization orientation of the F layer (as long as the orbital effect
of the stray field is neglected). By using a spin-valve setup such as FSF [29–33], it has
been demonstrated that the relative magnetization configuration between ferromag-
netic layers will tune Tc. In contrast, in the presence of SO coupling such a spin-valve
effect canbeobtainedwitha singlehomogeneous ferromagnet: by rotating themagne-
tization 90degrees, Tc goes fromamaximumto aminimum.The fact that only a single
ferromagnet is required to achieve this is of practical significance since it potentially
reduces the complexity associatedwith controlling the relativemagnetization orienta-
tion in multilayered hybrid structures. Following [34], we now demonstrate precisely
how this occurs.
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The type of antisymmetric SO coupling (linear in momentum) we will consider
here can be described by an SU(2) field A (a vector with 2×2 matrices as components)
whose mathematical form is determined by the material properties and the experi-
mental geometry. Such an SO coupling in solids can originate from a lack of inversion
symmetry in the crystal structure and can be of both Rashba and Dresselhaus type,
depending on the point group symmetry of the crystal [24, 35–37]. It is also known
that structural inversion asymmetry due to surfaces, either in the form of interfaces
with other materials or with vacuum, can give rise to antisymmetric SO coupling of
the Rashba type. In thin-film hybrids, the Hamiltonian for Rashba spin splitting is ex-
pressed by the cross product of the Pauli vector σ with the momentum k,

HR = − α
m (σ × k) ⋅ ẑ , (14.4)

where α is called the Rashba coefficient, and ẑ denotes the axis along which inversion
symmetry is broken. The Dresselhaus SO coupling is known to occur when the crys-
tal structure lacks an inversion center, such as in zinc blende structures. For a two-
dimensional (2D) electron gas (quantumwell) confined in the ẑ-direction the Dressel-
haus splitting becomes (to first order ⟨kz⟩ = 0)

HD = β
m (σyky − σxkx) , (14.5)

where β is the Dresselhaus coefficient. A potential 2D electron gas candidate would
be gallium arsenide, but the form (14.5) is a useful approximation for any 3D thin film
with strong confinement in one direction. Combining both interactions, we obtain the
Hamiltonian for a general Rashba–Dresselhaus SO coupling HRD = kx

m (ασy − βσx) −
ky
m (ασx − βσy). We can rewrite this by expressing the SO coupling as a background
SU(2) field, i.e., an object with both a vector structure in geometric space and a 2 × 2
matrix structure in spin space:

HRD ≡ −k ⋅ A/m . (14.6)

It follows that A = (βσx−ασy , ασx−βσy, 0) for the above example. Moreover, it is con-
venient to introduce a new notation for describing Rashba–Dresselhaus couplings,
which allows us to distinguish between the physical effects that derive from the mag-
nitude of the coupling and those that derive fromwhich type of SO coupling we have:
α ≡ −a sin χ, β ≡ a cos χ, where we will refer to a as the SO strength, and χ as the SO
angle. We see that χ = 0 corresponds to a pure Dresselhaus coupling, while χ = ±π/2
results in a pure Rashba coupling.

The effect of spin-orbit coupling on Tc in SF bilayers was recently determined
in [34] using quasiclassical theory and here we discuss some of the main findings.
We set the material parameters to N0λ = 0.2 for the superconductor (which is a stan-
dard choice for BCS superconductors), the exchange field h = 10∆0 for the ferromag-
net, and the interface parameter ζ = 3 (the ratio of the interface and bulk resistance)
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Fig. 14.1: Plot of the normalized critical temperature Tc/Tcs of an SF bilayer as a function of the ex-
change field orientation characterized by the in-plane angle θ, with LS/ξS = 0.55, LF/ξS = 0.2, and
a ξS = 2. The gray dashed line corresponds to χ = 0, the gray dashed line with dots is χ = −π/4,
whereas the black full line with dots is χ = +π/4. The figure is adapted from [34].

for both materials. In Figure 14.1 the change in Tc upon varying the direction of the
exchange field h ∼ cos θx̂ + sin θŷ in the xy-plane is shown. Interestingly, the criti-
cal temperature has extrema at |χ| = |θ| = π/4, where the extremum is a maximum
if θ and χ have the same sign, and a minimum if they have opposite signs. For the
choice of junction parameters chosen in Figure 14.1, this effect results in a large dif-
ference between the minimal and maximal critical temperature of nearly 60% as the
magnetization direction is varied. The dependence of Tc on the magnetization orien-
tation and the type of SO coupling can be explained from the linearized Usadel equa-
tions [34]. For certain angles θ, the SO coupling is able to rotate the Sz = 0 Cooper
pairs into Sz = ±1 pairs and thus open an additional “leakage” channel in the prox-
imity effect which in turn changes Tc. We will consider the properties of the linearized
Usadel equations with SO coupling for a related nanowire Josephson junction in the
next subsection. The variation of Tc upon changing the magnetization angle θ in the
present case of an SF bilayer turns out to be strongest in the case where the Rashba
and Dresselhaus magnitudes are similar. For either pure Rashba or pure Dresselhaus
coupling, Tc is only affected when the magnetization acquires an out-of-plane com-
ponent: pure in-plane rotations of h do not affect Tc in this scenario. The change in Tc
is typically much smaller for pure Rashba coupling with an out-of-plane component
of the magnetization compared with equal Rashba and Dresselhaus coupling.
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14.1.3 Pure triplet proximity effect protected via parity symmetry

Phase-sensitive density of states in Josephson junctions
The superconducting proximity effect is a phase-coherent phenomenon that can be
probed in e.g., Josephson junctions where the density of states (DOS) depends sen-
sitively [38] on the superconducting phase difference ϕ. Le Sueur et al. [39] reported
measurements for Josephson junctionswith a normalmetal (SNS) thatwere consistent
with the prediction [40] that the DOS changes from a finite minigap due to the super-
conducting correlations (ϕ = 0), with the minigap reducing as the phase difference is
increased, to that of a normal metal at ϕ = π. This can be understood intuitively, as
the proximity effect should be suppressed when the order parameter in each super-
conductor is equal in magnitude but opposite in sign, resulting in superconducting
correlations “averaging” to zero.

Remarkably, when SO coupling is present in a magnetic Josephson junction, the
opposite effect takes place as recently shown in [41]. The SO coupling in the junction
instead gives rise to a giant, triplet-induced proximity effect at ϕ = π. This is shown
in Figure 14.2, where the junction is oriented along the z-direction and the choice of
SO coupling vector is aligned perpendicular to the interfaces (Az ̸= 0) rather than
as below Equation (14.6). For concreteness and to give more transparent analytical
results, we set A = (0, 0, ασx − ασy). This choice corresponds e.g., to pure Rashba-
type coupling with broken inversion symmetry perpendicularly to a nanowire.

The physical origin of the giant proximity effect is that SO coupling forces the
triplet Cooper pairs to have the opposite parity symmetry compared to the singlet pairs
with respect to the center of the junction. As will be shown below, when ϕ = π the sin-
glet correlations are antisymmetric across the junction whereas the triplets are sym-
metric. Thismeans that the proximity effect survives even in the center of the junction
and is solely due to LR Cooper pairs. In other words, the experimentally tunable phase
difference may be utilized to remove the spin singlets and keep only triplets even with
a homogeneous exchange field. Previous attempts to separate spin-polarized Cooper
pairs from the singlet component have requiredmagnetic inhomogeneities, which can
be experimentally challenging to control. Thus, the inclusion of SO coupling repre-
sents a significant step forward in this direction. Moreover, since this prediction is
based solely on symmetry and that its spectroscopic fingerprint is virtually indepen-
dent of where the local density of states is measured in the system, it should be very
robust.

Let us first briefly consider the behavior of the proximity effect in an SFS junction
without SO coupling as a function of the phase difference. In this case the quasiclas-
sical Usadel equation [28] in the linearized regime reads

DF∂2z f± + 2iε± f± = 0 , (14.7)

where DF is the diffusion constant in the ferromagnet, ε± = ϵ ± hz and f± = ft ± fs
for energy ϵ, magnetization exchange field h, and singlet and Sz = 0 triplet anoma-
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Fig. 14.2: The proximity effect in a standard SNS Josephson junction (a) results in a minigap that
closes as the phase difference ϕ increases between the superconductors. The proximity effect in
the SFS junction with intrinsic SO coupling (b) results in a giant zero-bias peak in the density of
states when ϕ = π. (c) Left figure: The local density of states D(ϵ) at z = LF/2 for different values
of the phase difference ϕ between the superconductors of an SFS junction with spin-orbit coupling
A = (0, 0, ασx − ασy), setting the exchange field h = 10∆ŷ and the spin-orbit coupling magnitude
α = 0.4/LF. The giant triplet proximity effect at ϕ = π manifests as a large peak in D(ϵ) at ϵ = 0.
Right figures: A comparison with the standard SNS and SFS junctions without SO coupling is shown.
(d) The local density of states D(ε = 0) at z = LF/2 for a π-biased SFS junction with spin-orbit
coupling as a function of magnetization exchange field h = h∆ŷ and strength of spin-orbit coupling
αLF. In all cases, the axis of broken inversion symmetry producing the spin-orbit coupling is taken
to be perpendicular to the extension of the junction, i.e., for a nanowire setup. Figure is adapted
from [41].

lous Green’s functions fs and ft, respectively. The Usadel equation describes the diffu-
sion of the condensate into the adjacentmaterial, and the corresponding Kupriyanov–
Lukichev boundary conditions [42] at the superconducting interfaces take the form
ζLF∂zf± = ∓fBCSeiϕL at z = 0 and ζLF∂zf± = ±fBCSeiϕR at z = LF, where fBCS is the bulk
Bardeen–Cooper–Schrieffer [43] anomalous Green’s function in the superconductors,
LF is the length of the ferromagnet, and ζ is the interface parameter. ϕL and ϕR de-
note the respective superconductingphases. The solution in themiddle of the junction
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reads:
f± = ±fBCS cos(k±L/2)

ζLi sin(k±L) (eiϕR + eiϕL) , (14.8)

where k± = √2iε±/DF is the wavenumber. It follows that when the phase difference
ϕ = ϕL − ϕR = π, the superconducting proximity effect vanishes since f± = 0. This
holds for all energies and regardless of whether h = 0 or h ̸= 0. As this takes place
at ϕ = π both in SNS and SFS junctions, one might be tempted to conclude that this
is a robust phenomenon. However, we now proceed to show that in the presence of
spin-orbit interactions, this is no longer the case.

Symmetry-protected triplet proximity effect
To demonstrate the symmetry-protected triplet proximity effect, we follow [41] closely.
This effect can be established solely on symmetry arguments, making it independent
of the specific junction parameters employed in an experiment. To see this, wewill an-
alyze below the Usadel equation in the weak proximity effect limit when SO coupling
is present – its Ricatti-parametrized form valid for an arbitrarily large proximity effect
was derived in [34]. The nonvanishing triplet proximity effect in π-biased Josephson
junctions survives even if one includes modest components of the SO coupling field{Ax , Ay} ̸= 0. The origin and main features of the giant triplet proximity effect can
be identified analytically by considering the low-energy regime ε = 0 and setting the
exchange field to h = hẑ. The linearized coupled Usadel equations then read:

(∂2z − 4α2)fσσ + 4σα(1 − σi)∂zft − 4iσα2f−σ,−σ = 0 ,
DF∂2z fs + 2ihz ft = 0 ,

DF∂2z ft + 2ihz fs − 8DFα2ft+2DFα(1 − i)∂zf↓↓ − 2DFα(1 + i)∂zf↑↑ = 0 .

(14.9)

with σ =↑, ↓. At zero phase difference between the superconductors, the anomalous
Green’s function fs for the singlet Cooper pairs is a symmetric function with respect to
the middle of the junction. This can be seen from the general form of the solution of
fs and the boundary conditions, and is equivalent to what happens for conventional
SNS and SFS junctions. When the phase difference is equal to π, however, fs (and
thus necessarily its second derivative) is antisymmetric. When the SO coupling has a
component in the junction direction it necessarily introduces a first-order derivative
term. If we perform the operation z → (−z) on Equation (14.9), this means that the
function subject to the first-order differential must have the opposite symmetry of the
other terms, provided that it is not constant. We can now see explicitly what this en-
tails: the functions f↑↑ and f↓↓ must be symmetric around the middle of the junction
at ϕ = π, and it is clear that a nonzero component of the anomalous Green’s function
will remain at zero energy even in the π-biased junctionwhile the singlet component is
exactly equal to zero. The density of states at the Fermi level becomes in the linearized
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regime:
D(0) = 1 − |fs(0)|2/2 + |ft(0)|2/2 + |f↑↑(0)|2/4 + |f↓↓(0)|2/4 , (14.10)

and thus an experimental signature of this effect would be an enhanced zero-energy
density of states due to the triplets.

In Figure 14.2c we provide the spectroscopic profile upon varying the phase differ-
ence between the superconductors in an SFS junction with SO coupling, which high-
lights the emergence of a zero-energy peak in the density of states at ϕ = π. We have
here chosen an in-plane exchange field h = 10∆ŷ for ease of experimental applica-
tion, a bulk superconducting coherence length ξS = 30nm and SO coupling strength
α = 0.4/LF, i.e., normalized to the ferromagnet length LF, here chosen to be 15nm
such that the relevant quantity LF/ξS = 0.5. Similar behavior is observed for most of
the other choices of exchange field orientation and SO coupling strength. A compar-
ison with the standard SNS and SFS junctions without SO coupling is provided and
the giant proximity effect at ϕ = π is clearly seen to be related to the presence of SO
coupling. Since the singlet component fs vanishes when ϕ = π, the remaining fea-
tures are entirely due to the triplets and in this case due to the LR triplet component.
As a consequence, the result serves as a way to fully isolate the triplet correlations
regardless of the junction parameters in π-biased Josephson junctions. We note that
quantitatively, even when h ≫ ∆, the proximity effect and resulting enhancement of
the density of states displayed here is very large (∼ 26%)when compared with experi-
ments measuring the same quantity for superconductor-ferromagnet hybrids without
SO coupling [44, 45], where the deviation from the normal state is around 1%.

Although the analytical proof given above shows how 100% triplet Cooper pairs
are present in the middle of the junction, numerical simulations of the full proximity
effect equations show that this effect in fact turns out tobe virtually independent of the
distance from the superconducting interfaces: the spectroscopic peakoriginating from
the presence of spin-polarized Cooper pairs persists all the way up to the interfaces
and hardly changes throughout the junction [41]. Moreover, the spatial dependence
remains unaltered even for asymmetric junctions where one interface is up to twice as
transparent as the other (a ratio of barrier parameters ζ1/ζ2 = 2). This indicates that
the predicted effect should be very robust. In Figure 14.2we plot the dependence of the
density of states of the π-biased junction on the magnitude h of the exchange field h =
h∆ŷ and the SO coupling αLF, which is highly nonmonotonic in α. As the field strength
increases, a more narrow spectrum of SO coupling will generate a giant peak at zero
energy, with the optimal SO coupling decreasing slightly for higher field strengths.
Nevertheless, regardless of the values of h and α, a pure triplet state is induced in the
low-energy regime at ϕ = π.
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14.2 Controlling spin flow with superconductors

It is interesting to note that spin transport in superconductors [46–48] actually pre-
dated spin transport experiments innonsuperconductingmaterials [49]. This research
field has recently emerged as a potential avenue for enhancing and discovering new
phenomena in spintronics. Preliminary results are indeed encouraging, with experi-
ments demonstrating infinitemagnetoresistance in superconducting spin-valves [50],
strongly enhanced quasiparticle spin lifetimes [51], spin relaxation lengths [52], spin
Hall effects [53], and thermoelectric currents [54] compared to nonsuperconducting
structures.

14.2.1 Spin supercurrents

With regard to utilizing superconductors for spintronics purposes, the possibility of
creating spin supercurrents (flowing without dissipation) in ferromagnetic materi-
als [12] has earned the triplet Cooper pairs much attention. It is known that in the
presence of inhomogeneous magnetic order, e.g., intrinsically textured ferromagnets
likeHo [14, 55], ormultilayers with several ferromagnets [13], triplet supercurrents can
arise. This happens even when using conventional s-wave superconductors which
feature spinless Cooper pairs (we refer the reader to the chapter by M. Blamire in this
book for amuchmore detailed discussion on spin supercurrents froman experimental
perspective). However, it can be difficult to experimentally control the magnetization
direction of each of the individual layers when using large multilayered structures as
in [13] to create the dissipationless spin flow. Several works have studied how triplet
supercurrents can emerge in various types of structures including both weakly and
strongly polarized ferromagnets (see e.g., [7–9, 56–59]). At the same time, it would
be of interest if one could generate a spin supercurrent flowing in a normal (nonmag-
netic) metal by using a minimal amount of magnetic elements. The reason is that this
would potentially simplify the manner in which external control may be exerted on
the spin supercurrent and its properties. Below, we show an example of how this can
occur based on the findings of [60] where it was shown that a spin supercurrent can
flow through a normal metal carried by odd-frequency triplet Cooper pairs.

A schematic of the model heterostructure used for demonstrating the spin super-
current flow is shown in Figure 14.3. Themathematical framework takes the quasiclas-
sical theory of superconductivity [21, 61] in the diffusive limit, where the central object
of interest is the Green’s matrix function ǧ which is an 8×8matrix in Keldysh–Nambu
space. It is defined in terms of the retarded (R), advanced (A), and Keldysh (K) part

of the Green’s function: ǧ = (gR gK

0 gA
). In equilibrium, it is sufficient to consider the
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retarded part gR ≡ g, which may be parametrized and normalized as [62]:

g = (N(1 + γγ̃) 2Nγ−2Ñγ̃ −Ñ(1 + γ̃γ)) , g2 = 1 . (14.11)

Here, N = (1 − γγ̃)−1 and the ̃. . . operation means complex conjugation and reversal
of quasiparticle energy. The Ricatti matrices {γ, γ̃} are 2×2 matrices in spin space and
the Green’s function g satisfies the Usadel equation [28]:

D∂x(g∂xg) + i[ερ3, g] = 0 . (14.12)

Above, D is the diffusion coefficient of the normalmetal, ρ3 = diag(1, −1), and ε is the
quasiparticle energymeasured relative theFermi level. In order to account for themag-
netic insulators at the interfaces shown in Figure 14.3, one uses the spin-dependent
boundary conditions discussed in [63] and recently generalized to arbitrarily strong
polarization in [64]. The most important effect of the magnetic insulators is the spin-
dependent phase shifts experienced by quasiparticles as they scatter at the interface,

Fig. 14.3: A Josephson junction with magnetic insulators (MIs) inserted between the superconduc-
tors and the normal metal. The magnetic moments of the MIs on the left and right side of the junc-
tion, mL and mR, may be misaligned and an applied superconducting phase difference across the
junction drives both a charge and spin supercurrent. (a–d) Plot of the spin and charge supercurrents
in the system where ξS = 30 nm and a normalized temperature T/Tc = 0.02. The interface param-
eters are set to be equal, Gφ = 3 and ζ = 2, and the phase difference θ = π/2. In (a), we have
set d = 20 nm, ϕ = 0. In (b), we have d = 5 nm and ϕ = π/4, and in (c), we have d = 20 nm and
ϕ = π/4. The components of the spin supercurrents are mirror images of each other in (b) and (c) be-
cause of the choice of magnetic configuration of the insulators, ϕ = π/4. The charge supercurrent
is independent of ϕ, but changes sign when going from α = 0 to α = π, signalling a 0-π transition.
The normalization constant of the charge current is I0 = N0eDA/4 while for the spin currents it is
I0 = N0ℏDA/8. The contour plot in the bottom panel (d) is the charge supercurrent in the θ-α plane
using d = 20 nm, displaying a 0-π transition around α ≃ 0.2π (the dark green region corresponds to
the π-phase). Figure is adapted from [60].
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which are described by a parameter Gφ. The superconducting regions on the left and
right side of the junction are denoted gL and gR, and assumed to act as bulk reservoirs
such that

γ
j
= iσys/(1 + 1c)eiθj , γ̃

j
= −iσys/(1 + 1c)e−iθj , (14.13)

with j = {L, R}. We have introduced s = sinhΘ, c = coshΘ, with Θ = atanh(∆0/ε),
where ∆0 is the magnitude of the superconducting order parameter. The supercon-
ducting phase difference across the junction is defined as θ ≡ θR − θL (note that we
here use θ for the phase difference instead ofϕ as before, sinceϕ in the present system
characterizes the magnetization orientation of the interfaces, i.e., in the xy-plane).
Moreover, the angle α in this case denotes the misalignment between the two mag-
netic moments. For a metal of length d, the boundary conditions read 2dζLg∂xg =[gL, g] + iGL

φ[ML , g] at x = 0 and a similar one applies at x = d, where ζj = RB,j/RN
is the ratio between the normal-state barrier resistance on side j and the resistance
of the normal metal. The matrix Mj describes the orientation of the magnetization
of the magnetic insulator on side j. Experimentally, one would expect that the mag-
netic insulators will have exchange fields lying in the plane perpendicular to the tun-
neling direction due to shape anisotropy. The right interface magnetization is set to
MR = diag(σz , σz) whereas the left interface is allowed to have an arbitrary orienta-
tion, i.e.,ML = cos αdiag(σz, σz)+sinϕ sin αdiag(σy , −σy)+cosϕ sin αdiag(σx, σx). A
detailed analysis of how nonideal effects such as spin-flip scattering due to magnetic
impurities and spin-orbit impurity scattering influence the charge and spin supercur-
rent was reported in [60].

We proceed to discuss how the charge and spin supercurrents in the system are in-
fluenced by the presence of the ferromagnetic insulators. In the quasiclassical frame-
work, one finds:

IQ = N0eDA
4

∞∫
−∞

dεTr{ρ3(ǧ∂xǧ)K}, IνS = N0ℏDA
8

∞∫
−∞

dεTr{ρ3τν(ǧ∂xǧ)K} . (14.14)

We have introduced N0 as the density of states at the Fermi level in the normal state,
e is the electric charge, ℏ is the reduced Planck constant, and A is the interfacial con-
tact area. We also define the bulk superconducting coherence length ξS = √D/∆0. In
the weak proximity effect regime, it is possible to compute an analytical expression
for the supercurrents [60]. The charge supercurrent reads:

IQ = (IQ,0 + IQ,1 cos αGL
φGR

φ) sin θ , (14.15)

where IQ,0 and IQ,1 are lengthy expressions that depend on junction parameters such
as thewidth d, misalignment angle α, temperature T, and the interface transparencies
ζL/R. The charge supercurrent is thus independent of which orientation the magnetic
moments have in the xy-plane, ϕ. We see that the presence of magnetic insulators
coupled to the superconductors introduces a cos α-dependence on the supercurrent,
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which tunes its overall magnitude and also can change the quantum ground state
of the junction from 0 to π when IQ,1 cos αGL

φGR
φ = −IQ,0. Thus, 0-π transitions may

occur by changing α. As seen in Figure 14.3d, the charge supercurrent changes sign
at α ≃ 0.2π corresponding to the 0-π crossover, demonstrating that this is a robust
feature in the full proximity effect regime.

It turns out that there exists not only a superflow of charge in the system, but also
of spin. The spin supercurrent is polarized in the directionmL ×mR. For our setup, it
means that while IzS = 0, one has:

IxS = GL
φGR

φ sinϕ sin α(IS,0 + IS,1 cos θ) . (14.16)

It follows that the spin supercurrent vanishes if one only has one magnetic insulator,
in which case GL

φ or GR
φ is zero. Moreover, it is proportional to sin α, which shows that

it is also absent in the parallel (P) or antiparallel (AP) alignment (α = 0, π). For other
angles α, however, it is present. The coefficients {IS,0, IS,1} are purely real and vanish
when ∆ = 0, demonstrating that this spin supercurrent originates from the presence
of superconductivity. There exists a simple relation between the components of the
spin supercurrent in the xy-plane, IxS

IyS
= − sin ϕ

cosϕ . This spin supercurrent has several
interesting features. Firstly, it is conserved throughout the normal metal just like the
charge current. Secondly, it is long-ranged as it flows through a normal metal without
any exchangefieldwhichhas a pair-breaking effect onCooper pairs. Thirdly, it has one
component that is independent of the superconducting phase difference θ. The other
component goes like cos θ, meaning that the total spin supercurrent satisfies IxS(θ) =
IxS(−θ). Note that a pure spin current is invariant under time-reversal symmetry, θ →(−θ), unlike a charge supercurrent which changes sign under the same operation.

14.2.2 Enhanced spin lifetimes and relaxation lengths in superconductors

Whereas the first studies of spin imbalance in superconducting spin-valves assumed
that the spin lifetime in the superconducting state τs wasunaltered comparedwith the
normal state τn, experiments have since then demonstrated strongly enhanced quasi-
particle spin lifetimes in the superconductors. Yang et al. [51] reported spin lifetimes
in superconducting Al that exceeded their normal state values by a factor of 106. They
inferred this bymeasuring a tunnelmagnetoresistance due to spin imbalance thatwas
consistentwith precisely such a large spin lifetime. The spin-charge separation,which
we will discuss in more detail below, and reduced spin-orbit scattering rate near the
gap edge for quasiparticles in a superconductor leads to increased spin lifetimes com-
pared to the normal state due to their movement slowing down for E ≃ ∆ (we use E for
the quasiparticle energy here to more easily distinguish it from the normal-state band
dispersion εk). A key aspect of the work by Yang et al. was that the enhancement of
the spin lifetime in the superconductor relative to the normal state increases greatly
when taking into account impurity spin-orbit scattering [51]. When doing so, the rela-
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tive spin susceptibility χS/χN remains finite as T → 0. A treatment without spin-orbit
effects, in contrast, provides a considerably smaller increase of the spin lifetime in the
superconducting state [65].

Quasiparticles in a superconductor can be described by 4 × 1 spinors in particle-
hole and spin space. These excitations are in general mixtures of electron- and hole-
states, but are typically characterized as being electron- or hole-like depending on the
limiting value of the wavefunction for energies E ≫ ∆. An electron-like quasiparticle
with spin-↑ can be expressed as ψ = [u, 0, 0, v]Teiqex, where u = √ 1

2 [1 + √E2 − ∆2/E]
and v = √ 1

2 [1 − √E2 − ∆2/E]. For E ≫ ∆, u → 1, and v → 0. The wavenumber of

an electron-like excitation reads qe = √2m(μ + √E2 − ∆2) for a simple parabolical
normal-state dispersion relation εq = q2/2m∗ wherem∗ is the effectivemass. In order
to obtain information about the spin and charge content of these excitations, let us
introduce the operators:

Ŝ = ℏ
2 (σ 0

0 −σ∗) , Q̂ = −|e| (1 0
0 −1) , (14.17)

where |e| is the magnitude of the electron charge and σ is a vector with the Pauli spin
matrices. Calculating the expectation values for spin and charge using the wavefunc-
tion ψ above produces:

⟨Ŝ⟩ = (ℏ/2)ẑ, ⟨Q̂⟩ = −|e|√E2 − ∆2/E . (14.18)

Wesee thatwhile the spinof quasiparticles is independent of their energy, the effective
charge significantly depends on the excitation energy E: in particular, it vanishes near
the gap edge E → ∆. This is the crucial property of the excitations which leads to spin-
charge separation and longer spin lifetimes in superconductors. The group velocity
vg = ∂E

∂k = k
m∗

εk−μ
E of the excitation E = √(εk − μ)2 + ∆2 is also reduced at the gap edge

since E → ∆ requires (εk − μ) → 0. This causes scattering to occur less frequently so
that the lifetime increases.

When it comes to spin-current injection into superconducting spin-valves hosting
ferromagnet leads, the spin imbalance in the superconductor dependson themagneti-
zation configuration. We follow here the argument presented in [66]: let τs be the spin
relaxation time inside the superconductor while τt and τE are the time between two
tunneling events and the energy relaxation time for quasiparticles, respectively. If one
assumes that τE < τs < τt, thephysical scenario is that electrons tunnel into the super-
conductor from a ferromagnetic lead, keeping their spin orientation whilst there but
energetically relaxing into the equilibrium (Fermi) distribution function before leav-
ing the superconductor. When the superconductor has a smaller thickness than the
spin diffusion length, the spin-↑ and spin-↓ distribution functions for quasiparticles
will be spatially uniform and described by the Fermi function f(E), albeit with shifted
chemical potentials. This shift depends on whether the magnetization configuration
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of the spin-valve is parallel or antiparallel. In the P alignment, the spin conductances
Gσ are equal at both interfaces due to the symmetry of the setup. Consequently, there
is no net shift δμ in the chemical potential for the spin species σ and thus no spin
accumulation in the superconductor. This changes if the alignment is changed to AP:
the different density of states for spin-↑ and spin-↓ at the two interfaces produces im-
balanced spin currents and yields a net shift in the chemical potential for spins σ in-
side the superconductor. This is expressed mathematically as f↑(E) = f0(E − δμ) and
f↓(E) = f0(E+ δμ). By considering the self-consistency equation for the superconduct-
ing order parameter

1 = gN0

ωD∫
0

dεE−1(1 − f↑ − f↓) , (14.19)

one observes that the spin-discriminating shift in chemical potential plays the same
role as a Zeeman splitting μBH originating from an external field H. This is known
to cause a first-order phase transition at the Clogston–Chandrasekhar [67, 68] field
μBH = ∆0/√2. Here, ε is the normal-state band energy, g is the pairing potential caus-
ing superconductivity, N0 is the normal-state density of states at the Fermi level, μB is
the Bohr magneton, while ωD is the cut-off frequency for the bosons composing the
superconducting glue.

Using a different setup from Yang et al., by employing an intrinsic Zeeman split-
ting in the superconducting region via in-plane magnetic fields, Quay et al. [52]
demonstrated experimentally a nearly chargeless spin imbalance in superconducting
Al using a spin-valve setup with Co as the ferromagnetic material. Measuring the non-
local resistance due to diffusion of the spin imbalance signal yielded very different
timescales for spin and charge relaxation: 25 ns versus 3 ps. Moreover, their results in-
dicated a strongly enhanced spin lifetime in the superconducting state. A key reason
for the strong spin accumulationwhen the tunneling from an F electrode matched the
gap edge for one of the spin carriers was the intrinsic spin splitting of the density of
states. Similar conclusions were also reported by Hübler et al. [69].

The field of nonequilibrium spin transport in superconductors has very recently
seen two additional pivotal discoveries, namely the observation of a giant spin Hall
effect in a superconductor [53] and large thermoelectric currents in a Pauli-limited
superconductor [54]. It deserves special mention that the change in spin-relaxation
length λsf in the superconducting state compared to the normal state as one decreases
the temperature below Tc does depend on the origin of the spin-flip processes. For
spin-orbit scattering via impurities, λsf is the same both above and below Tc [65]. In
contrast, Poli et al. [70] observed a reduction of λsf by roughly an order of magnitude
in the superconducting state. This was explained in terms of spin-flip scattering orig-
inating from magnetic impurities [71]. The value of the spin-relaxation length was
obtained by nonlocal resistance measurements that detected the diffusion of the spin
imbalance originating from the spin injection point. Finally, we also note that spin ab-
sorption by superconductors with strong spin-orbit coupling has been demonstrated
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by Wakamura et al. [72], where the observed spin relaxation time was much larger in
the superconducting state of Nb than in its normal state.

It is clear that spin transport in superconductors offers several key advantages
compared to nonsuperconducting structures and we speculate that some of the most
important advances in the field of superconducting spintronics in the upcoming years
will be done precisely in the realm of nonequilibrium spin flow in superconducting
hybrid structures.

14.3 Magnetization dynamics and spin torques
in superconductors

By now, long-range triplet supercurrents propagating a distance ≫ ξF (with ξF being
the ferromagnetic coherence length) through strong or even half-metallic ferromag-
nets have been demonstrated by several groups. However, the fact that these currents
are spin-polarized is only inferred indirectly through these measurements via their
long range. Itwould be very interesting to obtainmore direct proof of themost interest-
ing quality of such triplet currents – their spin. In conventional spintronics, spin cur-
rents are responsible for phenomena such as spin-transfer torque and magnetization
switching. Observing these central effects induced via triplet supercurrents would di-
rectly prove their spin-polarized nature and represent a considerable advance toward
possible cryogenic applications. The study of magnetization dynamics in supercon-
ducting structures is at an early stage, especially from the experimental side (although
progress has recently beenmade [73]), whichmeans that there remainsmuch exciting
work to be done in this particular area of superconducting spintronics.

14.3.1 Domain wall motion in superconducting structures

Magnetic domain wall motion is a major research topic in spintronics as it provides
an innovative way of transmitting and storing information in a nonvolatile manner.
In [74], it was shown that domain wall motion in superconducting hybrid structures
can control whether or not the system resides in a dissipationless state by actually
switching on or off superconductivity. Enhancing supercurrents through the creation
of triplet Cooper pairs by utilizingmagnetic domainwalls was experimentally demon-
strated in [75]. To model a domain wall, one minimizes the free energy functional for
a ferromagnet by including the exchange stiffness and anisotropy:

F = ∫dx[A(∂xM)2/2 − KeasyM2
z + KhardM2

x ] . (14.20)

A is the exchange stiffness and Keasy and Khard are the anisotropy energies associ-
ated with the easy and hard axes of the magnetization, M. The result [76] is M(x) =
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M0[0, sin θ(x), cos θ(x)] where the parameter θ(x) determines the spatial profile of
the domain wall: θ(x) = 2 arctan{exp[(x − X)/λ]}, with λ = √A/Keasy being the do-
mainwall width. Themotion of the domainwall is described by the time-dependence
of its center-coordinate X = X(t). Inserting this magnetization profile into the equa-
tions of motion for the Green’s function (for instance the Usadel [28] equation in the
diffusive limit) enables us to calculate the supercurrent response of the system. In
the ballistic regime, one makes use of the microscopic Bogoliubov–de Gennes (BdG)
technique [98]. Determining the self-consistent ground state of the SFS system re-
quires a calculation of the free energy, F, whereafter the supercurrent can be found
by: jx = 2e(∂F/∂ϕ)/ℏ, where ϕ is again the superconducting phase difference.

Inorder tohighlight the interesting consequences of domainwallmotion in super-
conducting junctions, Linder andHalterman [74] begin by demonstrating the possibil-
ity of 0-π transitions triggered solely by the position of the wall. In Figure 14.4(a) and
(b) the critical current in the diffusive regime of transport is shown. Two different pa-
rameter sets have been used for the sake of showing that this effect does not just occur
for special, finely tuned parameters. The domain wall position in the ferromagnet is
denoted by X. In all plots, the transition is clearly seen. Figure 14.4 shows that the
domain wall movement is able to induce 0-π transitions for strong exchange fields.
In fact, one should expect to see 0-π oscillations induced by even smaller increments
of the domain wall position X as the exchange field is raised, precisely as seen when
comparing Figure 14.4a and b.We underline that the calculation is done for a scenario
where the system has relaxed to equilibriumwith the domainwall at position X in the
junction. Computing the supercurrent value versus X then corresponds to performing
multiple measurements of the current (yet within one single sample) with the domain
wall at rest in different positions. We later comment on how this can be accomplished
experimentally. It would be of great interest to perform a real-time calculation of the
domain wall propagation through the Josephson junction (although this is a rather
complex problem).

What is the physical origin of the influence of the domain wall on the supercon-
ducting state? This may bemost easily understood by first considering a limiting case
of a thin domainwall in the ballistic limit. In this case, the ferromagnetic region canbe
viewed as an effective bilayer of two oppositely aligned ferromagnets. Now, whether
the ground state is 0 or π is determined by the total phase shift accumulated as an
Andreev bound state carrying the supercurrent propagates through the ferromagnet.
This phase shift dependsonboth the lengthof the systemand, importantly, the texture
of the magnetization. For a system comprised of two ferromagnets with antiparallel
alignment, the phase shift is partially canceled by the two layers. In fact,when the two
domains have exactly the same width, one would expect the system to be practically
equivalent to an SNS system resulting in a 0-phase [78]. In contrast, if the layers are
allowed to have different thicknesses, the phase shift pickedup by the Andreev bound
state will allow for a π-state to be sustained as long as h and/or L are sufficiently large
to generate a π-phase difference as the bound state makes a full round-trip between
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Fig. 14.4: Left panels: In a ferromagnetic layer of width L, a domain wall is present and separates
two conventional s-wave superconductors. Inducing domain wall motion to a new position triggers
a change in the quantum ground state of the junction: a 0-π transition. Moreover, transporting the
domain wall changes the critical temperature Tc and may even reduce it to zero (middle figure), de-
stroying completely the superconducting order. The domain wall can be manipulated via an electric
current, external field, or spin-wave excitations and moved to specific locations by artificially tai-
lored pinning sites e.g., via geometrical notches in the sample. Right panel: Critical current for two
different parameter sets are shown in: (a) h/∆ = 8, λ/L = 0.05, L/ξ = 1.5 and (b) h/∆ = 30,
λ/L = 0.1, L/ξ = 1. We have used an interface parameter ζ = 4 (relatively low interface transparency
and a temperature T/Tc = 0.1. (c) Turning superconductivity on or off: Critical temperature for an SFS
junction as a function of domain wall position for several different exchange fields (see legend). It is
assumed here that λ/L = 0.02, dS = 0.95ξ , L/ξ = 1, and ZB = 0. (d) Critical temperature versus
domain wall position for an S/F bilayer. The same parameter values that were used in (c) have been
used apart from the superconductor width which was set to dS = ξ . Figure is adapted from [74].

the superconducting regions. Based on this picture, we are in a position to understand
why moving the domain wall will induce 0-π transitions. The net phase shift experi-
enced by the Andreev bound state as it propagates between the superconductors is
determined by the position of the domain wall. When the domain wall has a finite
width, the analogy to a bilayer breaks down since spin rotation takes place and amag-
netization component perpendicular to the easy axis exists close to the domain wall
center. It was verified in [74] that the domain wall position still determines whether
the junction is in a 0- or π-state in the case where the domain wall extends over a
large part of the junction. The position of the domain wall can also be used to con-
trol Tc, both in a Josephson junction setup and a bilayer (here shown in Figure 14.4c
and d for the ballistic limit), when the superconductor thickness is of order ξS. Con-
necting with the experimental arena, we note that weak exchange fields of order a
few ∆ (corresponding to ∼ 5meV) have been reported in weak PdNi ferromagnetic al-
loys [77]. Moreover, the bulk superconducting coherence length can exceed 100nm in
dirty bulk superconductors such as Al. The parameter sets used in Figure 14.4 are thus
accessible experimentally.
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It has been theoretically shown that spin-triplet superconducting correlations can
inducemagnetization dynamics and spin-transfer torques [79–83], and onemayby ex-
tension expect that domain wall motion in a Josephson junction can be induced by a
supercurrent-induced spin-transfer torque as well. The required current densities to
move domain walls are typically of order 104–105 A/cm2, which compare well with
the critical current density attainable in SFS junctions [84]. Once domain wall mo-
tion has been induced, artificially tailored pinning sites may be used to control where
the motion terminates. In turn, this induces a new ground-state configuration. This is
done experimentally by e.g., making geometrical notches at the desired locations of
the ferromagnet [85]. Regarding candidate materials for observation of the predicted
effects, onewould need two standard s-wave superconductors, such as Nb or Al, and a
magnetic region supporting a domain wall with a width of order 5−10nm. Suchmag-
netic textures are known to occur in thin magnetic films Pt/Co/AIOx, PtI(Co/Pt)n, and(Co/Ni)n (see e.g., [86]). It might also be possible to use standard ferromagnets such
as Fe, Co, Ni, and their alloys that typically feature domain walls which are several
tens and up to a hundred nanometers, if one is able to reduce the wall thickness by
reinforcing shape anisotropy in magnetic nanowires [87]. It is clear that domain wall
motion would necessitate a nonequilibrium supercurrent setup.

14.3.2 Magnetization switching and φ0-states in Josephson junctions

Several theoretical works have demonstrated that triplet supercurrents can indeed in-
duce spin-transfer torque switching [79, 80] and magnetization dynamics in the su-
perconducting state [81, 83, 88–90]. Furthermore, the influence of superconductivity
on spin-pumping effects have been theoretically investigated both in Josephson junc-
tions [91] and in SF bilayers [92]. The prediction of features such as φ0-states, which
have a single but arbitrary ground state can provide direct coupling between the su-
percurrent and themagneticmoment in the interstitial junctionmaterial [93], and sug-
gests many resources for spintronic manipulation.

Wehereprovideanexampleof howmagnetizationdynamics for a Josephson junc-
tion can be computed, considering an interstitial ferromagnetic trilayer. The geometry
is chosen so that the structure is positioned along the y-axis with interfaces that lie
in the x–z-plane. Let y = 0 be the interface between the left superconducting layer
and its proximate ferromagnet. Assuming large superconducting reservoirs with size
d ≫ ξS, these layers are characterized by their bulk superconducting gap ∆ and the
macroscopic phase difference across the junction, ϕ = ϕR − ϕL. In order to capture
the magnetization dynamics, we allow for an arbitrary direction of the magnetization
in the free layer and fix the orientation in the two hard magnetic layers to the z- and
x-axis, respectively. The three ferromagnetic layers j ∈ {1, 2, 3} are described by their
thickness Lj and themagnitudes of their exchange field hj . The role of the interface re-
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sistance is captured via an effective dimensionless parameter Z (see the seminal BTK-
paper [94]).

The rich physics involving supercurrent-induced magnetization reversal and the
appearance of a φ0-ground state are both intimately linked to chiral spin symmetry
breaking by the magnetization vectorsMj [95, 96]. This is quantified by a finite value
of the chirality vector:

χ = M1 ⋅ (M2 × M3) . (14.21)

Once χ ̸= 0, spin chirality symmetry is broken. It was argued in [97] that when this
happens, it induces an asymmetry between tunneling probabilities for left- and right-
ward motion at the interfaces even at zero phase difference. Because of this asymme-
try, a finite supercurrent can flow even at ϕ = 0. The starting point for the computa-
tionof the supercurrent-induceddomainwallmotion is themean-fieldBogoliubov–de
Gennes equations [98] describing quasiparticle propagation in these structures. The
free layermagnetization is allowed to take arbitrarydirections. This enables a study of
the supercurrent-induced dynamics of the magnetic order parameter of this layer. The
Andreev levels ε responsible for the supercurrent in the short-junction regime L ≪ ξ
will depend on the junction geometry, the U(1) superconducting phase gradient, and
the magnetization texture. When these are specified, the free energy F and the charge
supercurrent I are obtained via [99]:

F(ϕ) = −1β ∑
j
ln(1 + e−βεj), I(ϕ) = 2eℏ ∑

i
f(εi)∂εi∂ϕ , (14.22)

where f(ε) is the Fermi–Dirac distribution function and β = 1/kBT. There exists an
interesting co-dependence between the superconducting phase difference ϕ and the
noncollinearity of the magnetization vectors when it comes to determining the su-
percurrent I and the equilibrium magnetic torque τ, which was first noted in [79].
Considering for simplicity two monodomain ferromagnets with magnetizations that
are aligned with a relative angle θ between each other. In this system, it follows from
I = 2e

ℏ
∂F
∂ϕ and τ = ∂F

∂θ that:
∂I
∂θ = 2eℏ ∂τ

∂ϕ . (14.23)

Despite its compact form, the above equation contains a powerful result: if the su-
percurrent responds to a change in the magnetization orientation θ, then the torque
exerted on the magnetic order parameters is also sensitive to a change in the phase
difference ϕ. This is a basic principle enabling supercurrent-induced magnetization
dynamics in inhomogeneous SFS junctions. An important point worth emphasizing
is that a long-ranged triplet current does not induce magnetization dynamics in the
layer it is propagating in. The reason is simply that such a current is spin-polarized
along the magnetization direction and hence acts with no torque on the magnetic or-
der parameter. Instead, as recently shown in [100], there is a unique interference ef-
fect between long- and short-ranged Cooper pairs that give rise to different types of
superconductivity-induced magnetic torques.
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Once the free energy of the system is obtained from the Andreev levels, one can
derive the effective field Heff which couples to the magnetization:

Heff = − 1V ∂F
∂M . (14.24)

The supercurrent-induced magnetization dynamics in the free layer is determined by
solving the Landau–Lifshitz-Gilbert (LLG) equation [101]:

∂M
∂t

= −ζM × Heff + αM × ∂M
∂t

, (14.25)

where ζ is the gyromagnetic ratio and α is the Gilbert damping constant. So long as the
effectivefield is not completely alignedwith themagnetization, itwill exert a torqueon
it. Note that we are here considering a monodomain model for the soft ferromagnetic
layer, meaning that there exists no contribution from the spin stiffness term ∼ ∂2My

∂y2 .
However, we do include the influence of magnetic anisotropy via additional terms±KjM2

j , j ∈ {x, y, z} in the free energy where Kj are the anisotropy densities and the ±
sign determines the hard and easy axes of magnetization.

A generally valid expression for the Andreev bound-state (ABS) spectrum in the
system under consideration does not have an analytically manageable form. How-
ever, physical insight can be obtained in experimentally relevant limiting cases. For
instance, in the quasiclassical limit of a rather weak ferromagnet h/μ ≪ 1, one finds:

ε± = ∆0√1 −A cosϕ +BZ3(hy/h) sinϕ − C ± √D(ϕ) , (14.26)

where the coefficients A,B, C are independent of the phase difference ϕ. Instead,
they are functions of the system parameters such as length L, barrier Z, and exchange
field h. It should be noted that Equation (14.26) is valid for arbitrary interface trans-
parency Z. Interestingly, it follows from the above properties of the Andreev level [83]
that there will be a finite supercurrent at zero phase difference: the system is in a φ0-
state. Very recently, the first experimental evidence for such a Josephson junctionwas
put forth [97]. Note that the Andreev levels satisfy in general ε(ϕ) ̸= ε(−ϕ).

The existence of an anomalous current at zero phase difference is seen to require
two criteria to be fulfilled: 1) the presence of scattering barriers and 2) hy ̸= 0 in the free
F layer. The absence of either of these causes the supercurrent to revert to conventional
behavior. In the short-junction regime where the Andreev bound states constitute the
dominant contribution to the current (compared to the continuum current), barriers
at both ferromagnetic interfaces are needed to produce the anomalous current: with
either Z1 or Z2 set to zero, the sinϕ term in Equation (14.26) is absent. The fact that the
anomalous supercurrent only appears when hy ̸= 0 indicates that the presence of an
explicitly broken chiral spin symmetry is necessary. Interestingly, the direction of the
current is actually controlled by the specific chirality, i.e., the sign of hy. The ABS en-
ergies, the corresponding supercurrent, and the free energy for the trilayer Josephson
junction are shown in Figure 14.5.
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Having considered the equilibrium properties of the magnetically textured tri-
layer Josephson junction, we now look at the magnetization dynamics, for which the
LLG equation (14.25) is solved numerically. The main ingredient which makes this
possible is the effective field, which accounts for both the anisotropy terms and the
ABS energies. This particular approach is valid when the magnetization dynamics are
sufficiently slow compared to the rate at which the system relaxes to an equilibrium
state [102]. For the simulations shown in Figure 14.5, we set β1 = β2 = π/3, ∆ = 10−22 J,
μ0 = 10−6 H/m, |M0| = 105 A/m, and theGilbert dampingparameter is set to α = 0.02.
In each case, the LLG equation is solved numerically and the stable state that arises
when t → ∞ and how it depends on the superconducting phase difference is identi-
fied. The initial condition for themagnetization of the free layer is taken to be along its
easy anisotropy axis. Firstly, consider the case with anisotropy along the ŷ-direction
shown in Figure 14.5. The stable state (t → ∞) for each of the magnetization compo-
nents and the effect of varying the anisotropy strength K is shown in (a), (b), and (c)
of the bottom figure. The combined effect of exchange field andwidth of the ferromag-
netic layer β3 ∝ hL is shown in (d), (e), and (f), and the interface barrier transparency
Z is shown in (g), (h), and (i). Several features can be noted. Whereas the qualitative
behavior of the mx (right panel, left column) and mz (right panel, right column) com-
ponents are equivalent, displaying a symmetry around ϕ = π, the my (right panel,
middle column) component behaves differently. For some parameter regimes, we ob-
serve very fast oscillations in the value of the stable state as a function of the supercon-
ducting phase difference. The reason for this can be traced back to a relation between
the magnetization dynamics and the presence of an anomalous supercurrent in the
system, and is discussed in detail in [83].

14.3.3 Spin-transfer torques tunable via the superconducting phase

The phenomenon of spin-transfer torques is generating much interest in spintronics
since they involve the coupling between itinerant carriers (electrons or magnons) and
collective magnetic order parameters and has found use in both magnetic random
access memories and oscillator circuits [103, 104]. Spin-transfer torques result from
the transfer of spin angular momentum from the (spin) current to the magnetic order
parameter. While several works have considered spin transport and torques in het-
erostructures combining conventional s-wave superconductors with magnetic mate-
rials, much less is known about of how spin-transfer torques are manifested in mate-
rials which simultaneously display superconductivity and magnetism. This occurs in
so-called ferromagnetic superconductors: uranium-based heavy-fermion compounds
where superconductivity appears inside the magnetic part of the phase diagram. In
these systems, it was shown in [105] that the spin-transfer torques depend on the
phase of the superconducting pairing correlations. This can be utilized as an addi-
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Fig. 14.5: Top figure. (a,d): ABS energies and (b,e): free energy of the system versus superconduct-
ing phase difference. (c,f) Supercurrent-phase relation for the trilayered SFFFS structure. In all plots,
β1 = β2 = π/3. In (a,b,c), Z = 2 and the effect of different values of β3 is shown. For (d,e,f),
β3 = 15π/100 and the effect of a varying barrier potential Z is shown. Bottom figure. Stable mag-
netization state for t → ∞ when m3(t = 0) ‖ ̂y. The components of the magnetization are given
in the left (mx ), middle (my ), and right (mz) columns. For all panels, β1 = β2 = π/3. For (a,b,c):
β3 = 5π/100, Z = 0.5, and the effect of different values of the anisotropy constant K is illustrated.
For (d,e,f): Z = 0.5, K = 105, and the effect of altering the β3 parameter is shown. For (g,h,i):
β3 = 25π/100, K = 105, and the effect of different values of the barrier transparency Z is shown. K
is given in units of J/m3. Figure is adapted from [83].

tional way of controlling and detecting spin transport and magnetization dynamics
and we now discuss the underlying principles for this effect.

To model the coexistence of bulk superconductivity and ferromagnetism, as ex-
perimentally verified in UGe2 [106], URhGe [107], and UCoGe [108], we consider only
equal spin-pairing triplet superconductivity: singlet pairing would not be able to
survive the large Zeeman fields of order 70meV in UGe2 [106]. We first demonstrate
that the out-of-equilibrium spin transfer in ferromagnetic superconductors is qual-
itatively different from what happens in conventional ferromagnets. Normally, the
spin-transfer torque exerted on the magnetic order parameter is equal to the loss of
transverse spin current inside the ferromagnet. This absorption takes place over a
small distance from the interface region, typically of order a few Fermiwavelengths in
strong ferromagnets where the exchange field makes up a considerable fraction of the
Fermi level. In ferromagnetic superconductors, however, wefind that the spin-transfer
torque does not equal the loss of quasiparticle spin current. The reason for this may
be understood by analyzing the spin continuity equation. We start by introducing the
spin density S and the Hamiltonian H:

S = 1
2ψ

† (σ 0
0 −σ∗)ψ, H = (H0 ∆

∆∗ −H∗
0
) , (14.27)

where ℏ = 1 and H0 = −∇2/(2m) − μ − h ⋅ σ, ∆ = diag(∆↑ , ∆↓). Here, h is the exchange
field, σ is a vector of Pauli matrices, and ∆σ, σ =↑, ↓ are the superconducting order pa-
rameters for majority and minority spin carriers. The Hamiltonian (14.27) determines
the rate of change of the spin density:

∂tS + ∂iJ iS = Ssuper + τSTT , (14.28)

where we have defined

J iS = 1
2m Im{ψ†

1σ∂iψ1 + ψ†
2σ

∗∂iψ2} ,
Ssuper = −Im{ψ†

2∆
∗σψ1 − ψ†

1∆σ
∗ψ2} ,

τSTT = ψ†
1[σ × h]ψ1 − ψ†

2[σ∗ × h]ψ2

(14.29)
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and ψ1 and ψ2 are electron- and hole-like 2 × 1 spinors constituting the total wave-
function, i.e., ψ = (ψ1, ψ2)T.

The rate of change of the spin-density terms entering the spin-continuity equa-
tion of Equation (14.28) are the quasiparticle spin-current tensor JS (superscript i in-
dicating its spatial components in Equation (14.28)), the spin supercurrent carried by
the condensate Ssuper, and the spin-transfer torque exerted on the ferromagnetic or-
der parameter τSTT. The spin-transfer torque has a simple interpretation in the case of
stationary transport in a normal metal-ferromagnet system: it is the loss of the trans-
verse component of the spin current, ∂iJ iS = τSTT since deep inside the ferromagnet
only spins aligned with the local magnetization axis can exist. The total torque is∫ τSTT = JS(F) − JS(N) where JS(N) is the spin current at the N-F interface and JS(F)
is the spin current in the bulk of the ferromagnet. In metallic ferromagnets which
are in good electric contact with normal metals, the incoherence between the spin-up
and spin-down states within the ferromagnet results in the transverse components of
JS(F) vanishing at length scales larger than the transverse decoherence length. Thus,∫ τSTT = m × [m × JS(N)], which is well known [104].

In the present superconducting case, the situation becomes more complex. Since
the components of the wavefunction ψ1 and ψ2 contain contributions from electron-
and hole-like quasiparticles, Equation (14.28) shows that the torque is directly modi-
fied by superconducting correlations. In turn, these correlations are determined by the
coherence factors and depend explicitly on the superconducting U(1) phases associ-
ated with each of the order parameters ∆σ = |∆σ|eiϕσ in p-wave ferromagnetic super-
conductors. Consequently, the spin-transfer torque is sensitive to the superconduct-
ing phase. This should be viewed in contrast to e.g., the charge conductance which
is insensitive to the U(1) phase. The origin of this effect is that the torque acquires a
contribution from interference terms of the propagation of electron- and hole-like ex-
citations. Since these excitations have different U(1) superconducting phases due to
the spin-resolved condensate, the torque will depend explicitly on the internal phase
difference between the two spin condensates. This was analytically verified by direct
computation in [105]. It is important to note that since part of the spin current is car-
ried by the condensate via Ssuper, the loss of the quasiparticle spin current is not fully
compensated by the torque τSTT exerted on the ferromagnetic order parameter.

It follows from the above discussion that the spin-transfer torque is qualitatively
different in ferromagnetic superconductors as compared to ferromagnets, because of
the presence of particle-hole interference of the quasiparticle waves which is unique
in the superconducting state: it vanishes when ∆σ → 0. More specifically, the injected
spin current causes transmission of both electron-like and hole-like quasiparticles
into the superconductor with weight denoted u and v, respectively. The interference
between two electron-like waves (or two hole-like waves) gives rise to the usual spin-
transfer torque oscillating on the length scale λh. In addition, however, there are ex-
tra terms compared to the nonsuperconducting case proportional to u∗v which repre-
sent particle-hole interference. This also gives rise to a different length scale than the
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one relevant for conventional spin-transfer torque since hole-like waves have oppo-
site momentum relative to their group velocity. Consequently, they interfere with the
electron-likewaves in away that cancels out the exchange-field dependence on the os-
cillation length. A unique aspect of the spin-transfer torque acting on a ferromagnetic
superconductor is that the torque itself might be able to rotate the superconducting or-
der parameter [109] due to the coupling between it and the local magnetization. The
latter, having a spin-triplet symmetry, is characterized by the so-called dk-vector for-
malism [26]. For a sufficiently large torque acting on the magnetic order parameter,
one could expect the superconducting order parameter to start rotating in spin space
aswell due to the coupling ⟨S⟩⋅M between the spins of the Cooper pairs ⟨S⟩ ∝ idk×d∗

k
and the magnetizationM.

The fact that the spin-transfer torque depends on the difference ϕ = ϕ↑ − ϕ↓
between the spontaneously broken U(1) phases of the superconducting order param-
eters ∆σ may be understood as follows. For longitudinally polarized spin currents, the
spin supercurrent is carriedby the condensate with phaseϕ↑ and the condensate with
phase ϕ↓ separately (no superposition occurs). This changes when a transverse spin
current is injected as in the present case, with a spin polarization at an angle θ with
respect to the magnetic order parameter. This corresponds to a noncollinear superpo-
sition of quasiparticles from the two spin branches of the condensate. Consequently,
the phase difference appears in the expression for the spin-transfer torque, offering a
possible experimental probe for the relative phase difference ϕ.

Acknowledgment: We would like to thank in particular K. Halterman, J. A. Ouassou,
I. Gomperud, I. Kulagina, J. Robinson, A. Di Bernardo, M. Blamire, A. Pal, N. Banerjee,
M. Eschrig, and V. Risinggård for fruitful collaboration and helpful discussions on the
topics presented herein.

Bibliography

[1] Linder J, Robinson JWA. Superconducting spintronics. Nat. Phys. 11:307, 2015.
[2] Bergeret FS, Volkov AF, Efetov KB. Long-Range Proximity Effects in Superconductor-

Ferromagnet Structures. Phys. Rev. Lett. 86:4096, 2001.
[3] Buzdin AI. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys.

77:935, 2005.
[4] Bergeret FS, Volkov AF, Efetov KB. Odd triplet superconductivity and related phenomena in

superconductor-ferromagnet structures. Rev. Mod. Phys. 77:1321, 2005.
[5] Eschrig M. Spin-polarized supercurrents for spintronics: a review of current progress. Rep.

Prog. Phys. 78:10, 2015.
[6] Blamire MG, Robinson JWA. The interface between superconductivity and magnetism: under-

standing and device prospects. J. Phys. Cond. Mat. 26:45, 2014.
[7] Grein R, Eschrig M, Metalidis G, Schön G. Spin-Dependent Cooper Pair Phase and Pure Spin

Supercurrents in Strongly Polarized Ferromagnets. Phys. Rev. Lett. 102:227005, 2009.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



468 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

[8] Alidoust M, Linder J, Rashedi G, Yokoyama T, Sudbø A. Spin-polarized Josephson current in
superconductor/ferromagnet/superconductor junctions with inhomogeneous magnetization.
Phys. Rev. B 81:014512, 2010.

[9] Shomali Z, Zareyan M, Belzig W. Spin supercurrent in Josephson contacts with noncollinear
ferromagnets. New J. Phys. 13:083033, 2011.

[10] Moor A, Volkov A, Efetov KB. Nematic versus ferromagnetic spin filtering of triplet Cooper
pairs in superconducting spintronics. Phys. Rev. B 92:180506(R), 2015.

[11] Halterman K, Valls OT, Wu C-T. Charge and spin currents in ferromagnetic Josephson junctions.
Phys. Rev. B 92:174516, 2015.

[12] Keizer RS, Goennenwein STB, Klapwijk TM, Miao G, Xiao G, Gupta A. A spin triplet supercur-
rent through the half-metallic ferromagnet CrO2. Nature 439:825–827, 2006.

[13] Khaire ST, Khasawneh M, Pratt WP Jr, Birge NO. Observation of spin-triplet superconductivity
in Co-based Josephson junctions. Phys. Rev. Lett. 104:137002, 2010.

[14] Robinson JWA, Witt JDS, Blamire MG. Controlled injection of spin-triplet supercurrents into a
strong ferromagnet. Science 329:59–61, 2010.

[15] Di Bernardo A, Diesch S, Gu, Y., Linder J, Divitini G, Ducato C, Scheer E, Blamire MG, Robin-
son JWA. Signature of Magnetic-Dependent Gapless Odd frequency States at Superconductor/
Ferromagnet Interfaces. Nat. Commun. 6:8053, 2015.

[16] Kalcheim Y, Millo O, Di Bernardo A, Pal A, Robinson JWA. Inverse proximity effect at
superconductor-ferromagnet interfaces: Evidence for induced triplet pairing in the super-
conductor. Phys. Rev. B 92:060501(R), 2015.

[17] Di Bernardo A, Salman Z, Wang XL, Amado M, Egilmez M, Flokstra MG, Suter A, Lee SL,
Zhao JH, Prokscha T, Morenzoni E, Blamire MG, Linder J, Robinson JWA. Intrinsic Paramag-
netic Meissner Effect Due to s-Wave Odd-Frequency Superconductivity. Phys. Rev. X 5:041021,
2015.

[18] Bergeret FS, Tokatly IV. Singlet-triplet conversion and the long-range proximity effect in
superconductor-ferromagnet structures with generic spin dependent fields. Phys. Rev. Lett.
110:117003, 2013.

[19] Bergeret FS, Tokatly IV. Spin-orbit coupling as a source of long-range triplet proximity effect in
superconductor-ferromagnet hybrid structures. Phys. Rev. B 89:134517, 2014.

[20] Rammer J, Smith H. Quantum field-theoretical methods in transport theory of metals. Rev.
Mod. Phys. 58:323, 1986.

[21] Belzig W, Wilhelm FK, Bruder C, Schön G, & Zaikin AD. Quasiclassical Green’s function ap-
proach to mesoscopic superconductivity. Superlattice. Microst. 25:1251, 1999.

[22] Eschrig M, Kopu J, Cuevas JC, Schön G. Theory of Half-Metal/Superconductor Heterostruc-
tures. Phys. Rev. Lett. 90:137003, 2003.

[23] Annunziata G, Manske D, Linder J. Proximity effect with noncentrosymmetric superconductors.
Phys. Rev. B 86:174514, 2012.

[24] Rashba E. Fiz. Tverd. Tela (Leningrad) 2:1224, 1960 [Properties of semiconductors with an
extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular
to the plane of the loop. Sov. Phys. Solid State 2:1109, 1960].

[25] Gor’kov LP, Rashba EI. Superconducting 2D System with Lifted Spin Degeneracy: Mixed
Singlet-Triplet State. Phys. Rev. Lett. 87:037004, 2001.

[26] Leggett AK. A theoretical description of the new phases of liquid He3. Rev. Mod. Phys. 47:331,
1975.

[27] D’yakonov MI, Perel VI, Spin Orientation of Electrons Associated with the Interband Ab-
sorption of Light in Semiconductors. Sov. Phys. JETP 33:1053, 1971; D’yakonov MI, Perel VI.
Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35:459, 1971.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 469

[28] Usadel K. Generalized Diffusion Equation for Superconducting Alloys. Phys. Rev. Lett. 25:507,
1970.

[29] Gu JY, You C-Y, Jiang JS, Pearson J, Bazaliy YaB, Bader SD. Magnetization-Orientation Depen-
dence of the Superconducting Transition Temperature in the Ferromagnet-Superconductor-
Ferromagnet System: CuNi/Nb/CuNi. Phys. Rev. Lett. 89:267001, 2002.

[30] Moraru I, Pratt WP Jr, Birge N. Magnetization-Dependent Tc Shift in Ferromagnet/
Superconductor/Ferromagnet Trilayers with a Strong Ferromagnet. Phys. Rev. Lett.
96:037004, 2006.

[31] Zhu J, Krivorotov IN, Halterman K, Valls OT. Angular Dependence of the Superconducting Tran-
sition Temperature in Ferromagnet-Superconductor-Ferromagnet Trilayers. Phys. Rev. Lett.
105:207002, 2010.

[32] Leksin PV, Garif’yanov NN, Garifullin IA, Fominov YaV, Schumann J, Krupskaya Y, Kataev V,
Schmidt OG, Büchner B. Evidence for Triplet Superconductivity in a Superconductor-
Ferromagnet Spin Valve. Phys. Rev. Lett. 109:057005, 2012.

[33] Banerjee N, Smiet CB, Smits RGJ, Ozaeta A, Bergeret FS, Blamire MG, Robinson JWA. Evidence
for spin selectivity of triplet pairs in superconducting spin valves. Nature Commun. 5:3048,
2014.

[34] Jacobsen SH, Ouassou JA, Linder J. Critical temperature and tunneling spectroscopy of
superconductor-ferromagnet hybrids with intrinsic Rashba–Dresselhaus spin-orbit coupling.
Phys. Rev. B 92:024510, 2015.

[35] Dresselhaus G. Spin-Orbit Coupling Effects in Zinc Blende Structures. Phys. Rev. 100:580,
1955.

[36] Bauer E, Sigrist M. Non-Centrosymmetric Superconductors: Introduction and overview.
Springer, 2012.

[37] Samokhin KV. Spin–orbit coupling and semiclassical electron dynamics in noncentrosymmet-
ric metals. Ann. Phys. 324:2385, 2009.

[38] Hammer JC, Cuevas JC, Bergeret FS, Belzig W. Density of states and supercurrent in diffusive
SNS junctions: Roles of nonideal interfaces and spin-flip scattering. Phys. Rev. B 76:064514,
2007.

[39] Le Sueur H, Joyez P, Pothier H, Urbina C, Esteve D. Phase Controlled Superconducting Proxim-
ity Effect Probed by Tunneling Spectroscopy. Phys. Rev. Lett. 100:197002, 2008.

[40] Zhou F, Charlat P, Pannetier B. Density of States in Superconductor-Normal Metal-
Superconductor Junctions. J. Low Temp. Phys. 110:841, 1998.

[41] Jacobsen SH, Linder J. Giant triplet proximity effect in π-biased Josephson Junctions with spin-
orbit coupling. Phys. Rev. B 92:024501, 2015.

[42] Kupriyanov MY, Lukichev VF. Influence of boundary transparency on the critical current of
“dirty” SS’S structures. Sov. Phys. JETP 67:1163, 1988.

[43] Bardeen J, Cooper LN, Schrieffer JR. Theory of Superconductivity. Phys. Rev. 108:1175, 1957.
[44] Kontos T, Aprili M, Lesueur J, Grison X, Inhomogeneous Superconductivity Induced in a Fer-

romagnet by Proximity Effect. Phys. Rev. Lett. 86:304, 2001; Ryazanov VV, Oboznov VA, Ru-
sanov AYu, Veretennikov AV, Golubov AA, Aarts J. Coupling of Two Superconductors through a
Ferromagnet: Evidence for a π Junction. Phys. Rev. Lett. 86:2427, 2001.

[45] SanGiorgio P, Reymond S, Beasley MR, Kwon JH, Char K. Anomalous Double Peak Structure in
Superconductor/Ferromagnet Tunneling Density of States. Phys. Rev. Lett. 100:237002, 2008.

[46] Tedrow PM, Meservey R. Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett.
26:192–195, 1971.

[47] Tedrow PM, Meservey R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and
Gd. Phys. Rev. B 7:318–326, 1973.

[48] Tedrow PM, Meservey R. Spin-polarized electron tunneling. Phys. Rep. 238:173–243, 1994.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



470 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

[49] Johnson M, Silsbee RH. Interfacial charge-spin coupling: Injection and detection of spin mag-
netization in metals. Phys. Rev. Lett. 55:1790–1793, 1985.

[50] Li B, Roschewsky N, Assaf BA, Eich M, Epstein-Martin M, Heiman D, Münzenberg M, Mood-
era JS. Superconducting spin switch with infinite magnetoresistance induced by an internal
exchange field. Phys. Rev. Lett. 110:097001, 2013.

[51] Yang H, Yang S-H, Takahashi S, Maekawa S, Parkin SSP. Extremely long quasiparticle spin life-
times in superconducting aluminium using MgO tunnel spin injectors. Nature Mater. 9:586–
593, 2010.

[52] Quay CHL, Chevallier D, Bena C, Aprili M. Spin imbalance and spin-charge separation in a
mesoscopic superconductor. Nature Phys. 9:84–88, 2013.

[53] Wakamura T, Omori Y, Niimi Y, Takahashi S, Fujimaki A, Maekawa S, Otani Y. Quasiparticle-
mediated spin Hall effect in a superconductor. Nature Materials 14:675–678, 2015.

[54] Kolenda S, Wolf MJ, Beckmann D. Observation of thermoelectric currents in high-field
superconductor-ferromagnet tunnel junctions. Phys. Rev. Lett. 116:097001, 2016.

[55] Sprungmann D, Westerholt K, Zabel H, Weides M, Kohlstedt H. Evidence for triplet supercon-
ductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl.
Phys. Rev. B 82:060505(R), 2010.

[56] Houzet M, Buzdin AI. Long range triplet Josephson effect through a ferromagnetic trilayer.
Phys. Rev. B 76:060504(R), 2007.

[57] Trifunovic L. Long-Range Superharmonic Josephson Current. Phys. Rev. Lett. 107:047001,
2011.

[58] Fogelstrom M. Josephson currents through spin-active interfaces. Phys. Rev. B 62:11812,
2000.

[59] Bobkova IV, Bobkov AM. Long-Range Proximity Effect for Opposite-Spin Pairs in
Superconductor-Ferromagnet Heterostructures Under Nonequilibrium Quasiparticle Distri-
bution. Phys. Rev. Lett. 108:197002, 2012.

[60] Gomperud I, Linder J. Spin supercurrent and phase-tunable triplet Cooper pairs via magnetic
insulators. Phys. Rev. B 92:035416, 2015.

[61] Chandrasekhar V. An introduction to the quasiclassical theory of superconductivity for diffu-
sive proximity-coupled systems. In: Bennemann K, Ketterson J (eds). The Physics of Supercon-
ductors, Vol II., Springer, 2004.

[62] Schopohl N, Maki K. Quasiparticle spectrum around a vortex line in a d-wave superconductor.
Phys. Rev. B. 52:490, 1995; Schopohl, N. arXiv:cond-mat/9804064.

[63] Cottet A, Huertas-Hernando D, Belzig W, Nazarov YV. Spin-dependent boundary conditions for
isotropic superconducting Green’s functions. Phys. Rev. B 80:184511, 2009.

[64] Eschrig M, Cottet A, Belzig W, Linder J. General boundary conditions for quasiclassical theory
of superconductivity in the diffusive limit: application to strongly spin-polarized systems.
New J. Phys. 17:083037, 2015.

[65] Yamashita T, Takahashi S, Imamura H, Maekawa S. Spin transport and relaxation in supercon-
ductors. Phys. Rev. B 65:172509, 2002.

[66] Takahashi S, Imamura H, Maekawa S. Spin Imbalance and Magnetoresistance in Ferromag-
net/Superconductor/Ferromagnet Double Tunnel Junctions. Phys. Rev. Lett. 82:3911, 1999.

[67] Clogston M. Upper Limit for the Critical Field in Hard Superconductors. Phys. Rev. Lett. 9:266,
1962.

[68] Chandrasekhar BS. A note on the maximum critical field of high-field superconductors. Appl.
Phys. Lett. 1:7, 1962.

[69] Hübler F, Wolf MJ, Beckmann D, v. Löhneysen H. Long-range spin-polarized quasiparti-
cle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett.
109:207001, 2012.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography | 471

[70] Poli N, Morten JP, Urech M, Brataas A, Haviland DB, Korenivski V. Spin injection and relaxation
in a mesoscopic superconductor. Phys. Rev. Lett. 100:136601, 2008.

[71] Morten JP, Brataas A, Belzig W. Spin transport in diffusive superconductors. Phys. Rev. B
70:212508, 2004.

[72] Wakamura T, Hasegawa N, Ohnishi K, Niimi Y, Otani Y. Spin Injection into a Superconductor
with Strong Spin-Orbit Coupling. Phys. Rev. Lett. 112:036602, 2014.

[73] Baek B, Rippard WH, Pufall MR, Benz SP, Russek SE, Rogalla H, Dresselhaus PD. Spin-Transfer
Torque Switching in Nanopillar Superconducting-Magnetic Hybrid Josephson Junctions. Phys.
Rev. Applied 3:011001, 2015.

[74] Linder J, Halterman K. Superconducting spintronics with magnetic domain walls. Phys. Rev. B
90:104502, 2014.

[75] Robinson JWA, Chiodi F, Halasz GB, Egilmez M, Blamire MG. Supercurrent enhancement in
Bloch domain walls. Scientific Reports 2:699, 2012.

[76] Schryer NL, Walker LR. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl.
Phys. 45:5406, 1974.

[77] Kontos T, Aprili M, Lesueur J, Grison X, Dumoulin L. Superconducting Proximity Effect at the
Paramagnetic-Ferromagnetic Transition. Phys. Rev. Lett. 93:137001, 2004.

[78] Blanter YaM, Hekking FWJ. Supercurrent in long SFFS junctions with antiparallel domain con-
figuration. Phys. Rev. B 69:024525, 2004.

[79] Waintal X, Brouwer PW. Magnetic exchange interaction induced by a Josephson current. Phys.
Rev. B 65:054407, 2002.

[80] Zhao E, Sauls JA. Theory of Nonequilibrium Spin Transport and Spin Transfer Torque in
Superconducting-Ferromagnetic Nanostructures. Phys. Rev. B 78:174511, 2008.

[81] Linder J, Yokoyama T. Supercurrent-induced magnetization dynamics. Phys. Rev. B 83:012501,
2011.

[82] Sacramento PD, Fernandes Silva LC, Nunes GS, Araujo MAN, Vieira VR, Supercurrent-induced
domain wall motion. Phys. Rev. B 83:054403, 2011; Sacramento PD, Araujo MAN. Spin torque
on magnetic domain walls exerted by supercurrents, Eur. Phys. J. B 76:251, 2010.

[83] Kulagina I, Linder J. Spin Supercurrent, Magnetization Dynamics, and ϕ-State in Spin-Textured
Josephson Junctions. Phys. Rev. B 90:054504, 2014.

[84] Oboznov VA, Bol’ginov VV, Feofanov AK, Ryazanov VV, Buzdin AI. Thickness Dependence of
the Josephson Ground States of Superconductor-Ferromagnet-Superconductor Junctions.
Phys. Rev. Lett. 96:197003, 2006.

[85] Himeno A, Ono T, Nasu S, Shigeto K, Mibu K, Shinjo T. Dynamics of a magnetic domain wall in
magnetic wires with an artificial neck. J. Appl. Phys. 93:8430, 2003.

[86] Boulle O, Malinowski G, Kläui M. Current-induced domain wall motion in nanoscale ferromag-
netic elements. Mater. Sci. Eng., R 72:159, 2011.

[87] Ebels U, Radulescu A, Henry Y, Piraux L, Ounadjela K. Spin Accumulation and Domain Wall
Magnetoresistance in 35 nm Co Wires. Phys. Rev. Lett. 84:983, 2000.

[88] Konschelle F, Buzdin A. Magnetic Moment Manipulation by a Josephson Current. Phys. Rev.
Lett. 102:017001, 2009.

[89] Teber S, Holmqvist C. Fogelstrom. Transport and magnetization dynamics in a superconduc-
tor/single-molecule magnet/superconductor junction. Phys. Rev. B 81:174503, 2010.

[90] Holmqvist C, Teber S. and Fogelstrom. Nonequilibrium effects in a Josephson junction coupled
to a precessing spin. Phys. Rev. B 83:104521, 2011.

[91] Houzet M. Ferromagnetic Josephson Junction with Precessing Magnetization. Phys. Rev. Lett.
101:057009, 2008.

[92] Yokoyama T, Tserkovnyak Y. Tuning odd triplet superconductivity by spin pumping. Phys. Rev.
B 80:104416, 2009.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



472 | 14 Spin-orbit interactions, spin currents, and magnetization dynamics

[93] Buzdin A. Direct Coupling Between Magnetism and Superconducting Current in the Josephson
φ0 Junction. Phys. Rev. Lett. 101:107005, 2008.

[94] Blonder GE, Tinkham M, Klapwijk TM. Transition from metallic to tunneling regimes in super-
conducting microconstrictions: Excess current, charge imbalance, and supercurrent conver-
sion. Phys. Rev. B 25:4515, 1982.

[95] Asano Y, Sawa Y, Tanaka Y, Golubov AA. Odd-frequency pairs and Josephson current through a
strong ferromagnet. Phys. Rev. B 76:224525, 2007.

[96] Margaris I, Paltoglou V, Flytzanis N. Zero phase difference supercurrent in ferromagnetic
Josephson junctions. J. Phys.: Condens. Matter 22:445701, 2010.

[97] Szombati DB, Nadj-Perge S, Car D, Plissard SR, Bakkers EPAM, Kouwenhoven LP. Josephson
φ0-junction in nanowire quantum dots. Nature Physics 12:568, 2016.

[98] deGennes PG. Superconductivity Of Metals And Alloys. Westview Press, 1999.
[99] Beenakker CWJ, Universal limit of critical-current fluctuations in mesoscopic Josephson

junctions. Phys. Rev. Lett. 67:3836, 1991; Beenakker CWJ, van Houten H. Josephson current
through a superconducting quantum point contact shorter than the coherence length. ibid.
66:3056, 1991.

[100] Jacobsen SH, Kulagina I, Linder J. Controlling superconducting spin flow with spin-flip immu-
nity using a single homogeneous ferromagnet. Sci. Rep. 6:23926, 2016.

[101] Landau LD, Lifshitz E, On the theory of the dispersion of magnetic permeability in ferromag-
netic bodies. Phys. Z. Sowjetunion 8:153, 1935; Gilbert TL. A phenomenological theory of
damping in ferromagnetic materials. IEEE Trans. Magn. 40:3443, 2004.

[102] Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI. Nonlocal magnetization dynamics in ferro-
magnetic heterostructures. Rev. Mod. Phys. 77:1375, 2005.

[103] Slonczewski JC, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.
159:L1, 1996; Berger L. Emission of spin waves by a magnetic multilayer traversed by a cur-
rent. Phys. Rev. B 54:9353, 1996.

[104] Ralph DC, Stiles MD, Spin transfer torques. J. Magn. Magn. Mat. 320:1190, 2008; Brataas A,
Kent AD, Ohno H. Current-induced torques in magnetic materials. Nature Mater. 11:372, 2012.

[105] Linder J, Brataas A, Shomali Z, Zareyan M. Spin-Transfer and Exchange Torques in Ferromag-
netic Superconductors. Phys. Rev. Lett. 109:237206, 2012.

[106] Saxena SS, Agarwal P, Ahilan K, Grosche FM, Haselwimmer RKW, Steiner MJ, Pugh E,
Walker IR, Julian SR, Monthoux P, Lonzarich GG, Huxley A, Sheikin I, Braithwaite D, Flouquet J.
Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature (Lon-
don) 406:587, 2000.

[107] Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison JP, Lhotel E, Paulsen C. Coex-
istence of superconductivity and ferromagnetism in URhGe. Nature (London) 413:613, 2001.

[108] Huy NT, Gasparini A, de Nijs DE, Huang Y, Klaasse JCP, Gortenmulder T, de Visser A, Hamann A,
Görlach T, v. Löhneysen H. Superconductivity on the Border of Weak Itinerant Ferromagnetism
in UCoGe. Phys. Rev. Lett. 99:067006, 2007.

[109] Brataas A, Tserkovnyak Y. Spin and Charge Pumping by Ferromagnetic-Superconductor Order
Parameters. Phys. Rev. Lett. 93:087201, 2004.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Mark Giffard Blamire
15 Superconductor/ferromagnet hybrids

Abstract: Superconductivity and magnetism have very different underlying order pa-
rameters and so it is to be expected that the two phenomena can combine only over
very short lengthscales. However, at nanometer lengthscales a rich range of phenom-
ena have been predicted, many of which have now been experimentally observed. In
this chapter, the range of such phenomena is reviewed, together with a forward view
of potential applications.

15.1 Introduction

Conventional superconductivity is mediated by the formation of Cooper pairs of elec-
trons. These singlet pairs consist of electrons with antiparallel spins so that a super-
current carries a charge but cannot carry a net spin. The pairing process is driven by
a condensation energy which lowers the overall electron energy; this energy per elec-
tron is in the meV range for most superconductors and so much smaller than the typi-
cal exchange energies associatedwithmagnetism (eV range per electron). Thismeans
that magnetic impurities, even isolated magnetic ions, strongly suppress supercon-
ductivity via a tendency to align electron spins and so break Cooper pairs.

Despite this, it is possible to create hybrid materials and devices in which super-
conductivity and magnetism can co-exist and, indeed, can cooperate to create novel
behavior. However, the lengthscales over which the cooperation can exist are fre-
quently very short (nanometers) meaning that sophisticated heterostructure growth
processes are required to create structures in which this can be studied. For this rea-
son, much of the early study of hybrid systems was theoretical and only in the past
couple of decades has it become possible to perform detailed experimental studies of
this behavior.

Rather than present a chronological perspective of this development, this chapter
will explain the underlying factors which determine the interaction between super-
conductivity and magnetism and demonstrate ways in which these can be exploited
to create interesting and potentially exploitable devices.

The primary coupling mechanisms between a ferromagnet and a superconductor
involve magnetic fields – either real or virtual exchange fields within the materials
themselves. The former is relatively simple andwell understood: the critical field (Hc)
of a (Type I) superconductor is reached when the Zeeman energy associated with the
switch from antiparallel to parallel alignment of the electrons within the Cooper pair
is equal to the condensation energy. Because of the formation of Abrikosov vortices

Mark Giffard Blamire, Department of Materials Science, University of Cambridge, UK

DOI 10.1515/9783110456806-016, © 2017 M.G. Blamire, published by De Gruyter. This work is li-
censed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

 EBSCOhost - printed on 2/13/2023 7:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



474 | 15 Superconductor/ferromagnet hybrids

which screen a proportion of a Type II superconductor from an external field, the up-
per critical field (Hc2) of thesematerials canbemuch larger but, even then, laboratory-
scale fields μ0H of the order of 10 T will strongly suppress superconductivity in most
materials apart from those specifically developed for high-field performance. As well
as any field externally applied, stray magnetic fields can also be generated in hybrid
structures through sample geometry (for examplemagnetic nanoparticles or the edges
of patterned magnetic films), film roughness, and the presence of domain walls or
vortices in the magnetic layers [1]. Several mechanisms have been proposed by which
magnetic hybrid structures can be used to enhance vortex pinning and so increase the
critical current density; these are discussed in Section 15.5. Although it may be possi-
ble to exploit such stray fields, for example by generating fixed local magnetic fields
using patterned magnetic layers on a superconductor and so changing the overall de-
pendence of the superconducting properties on applied field [2], in most experiments
care is taken to minimize them so that intrinsic effects can be studied in isolation.

The internal exchange field within a ferromagnet can be considerably larger than
any field that could be externally applied and hence the effective suppression of su-
perconductivity is very strong. The simplest experimental geometry to study this is a
superconductor / ferromagnet (S/F) bilayer. If the ferromagnet is metallic there are ac-
tually two effects at work: the first is the conventional proximity effect which occurs
at any superconductor / normalmetal (S/N) interface and the second is the additional
pair-breaking interaction of the exchange field experienced when the pairs enter the
ferromagnet.

At very short length-scales, the interaction between Cooper pairs and exchange
fields can be understood in terms of a loss of phase coherence between the elec-
trons. Where other scattering effects are comparatively weak – for example in the
clean limit – the phase of the pair wavefunction can oscillate while remaining finite.
The phase can therefore be reversed and so create a so-called π-state, which can be
experimentally observed in several types of experiment.

The effects introduced above represent the standard response of singlet pairs to
fields and are discussed further in Section 15.2. More complex behavior can be ob-
served if the ferromagnet, instead of being homogeneous, contains noncolinear ele-
ments. Here a spin-mixing effect can be generated that results in triplet pairing where
it is possible for a pair (strictly, a pair correlation because there is no condensation en-
ergy) to be formed of spin-aligned electrons. Such pairs have a net spin and so can po-
tentially enable a supercurrent to carry a spin; this is discussed further in Section 15.4.

The proximity effect within a bilayer can be eliminated if the ferromagnet is in-
sulating; the electrons then experience an effective exchange field within the super-
conductor as a consequence of scattering from the spin-active interface with the fer-
romagnet [3]. In addition to a direct pair-breaking effect, a field within a supercon-
ductor (whether real or virtual) leads to the splitting of the quasiparticle density of
states (DoS) which can be experimentally measured. This is discussed in more detail
in Section 15.3.
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The aim of this chapter is to give an overview of the range of effects possible and
their potential applications. There are a number of more specialist reviews covering
aspects of the material presented here [1, 4–8] and the reader is referred to these for
further information.

15.2 Singlet proximity coupling

The standard S/N proximity effect can be understood in terms of the dilution of the
pairs intrinsic to the superconductor by the unpaired electrons in the normal metal.
Thus, for a superconductor thinner than the coherence length, as the thickness of the
normal metal is increased, the critical temperature (Tc) progressively decreases to-
wards zero. For thicker superconductors, there are pairs that do not interact with the
normal metal and so the bulk Tc is maintained; this is illustrated schematically in
Figure 15.1.

This suppression of Tc is enhanced in the case of an S/F bilayer. Here, the ex-
change field within the ferromagnet decreases the amplitude of the pair potential
in the ferromagnet much faster than for the equivalent normal metal, meaning that
for, a given thickness, the S/F Tc is lower than that for an S/N bilayer. Superimposed
on this suppression, there is the potential for the Larkin–Ovchinnikov–Ferrell–Fulde
(LOFF) [9, 10] phase oscillation effect discussed in the introduction. This can give rise
to a weak oscillation of Tc as a function of ferromagnet thickness [11], although little
more than the appearance of a nonmonotonic suppression is usually observed exper-
imentally (Figure 15.1).

If a second ferromagnetic layer is added – to create either a F/S/F (Figure 15.2) or
S/F/F‘ superconducting spin valve – a rather more dramatic effect can be observed. In

Fig. 15.1: Left: schematic dependence of the normalized critical temperature on the superconductor
thickness for superconductor / normal metal (S/N) and superconductor / ferromagnet (S/F) bilayers.
Right: schematic dependence of the normalized critical temperature on the nonsuperconductor
thickness for superconductor / normal metal (S/N) and superconductor / ferromagnet (S/F) bilayers.
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Fig. 15.2: The two magnetic states of a superconducting spin valve. Left, antiparallel, superconduct-
ing state and, right, parallel nonsuperconducting state.

the original predictions for the behavior of such devices [12, 13], which predated their
experimental realization, the antiparallel (AP) magnetic alignment of the two F lay-
ers should cancel the phase oscillation effect meaning that the Tc for this alignment
should always be higher than the parallel (P) state in which the effects add and so in
principle it should be possible to switch between a zero resistance, superconducting
state and the normal state (infinite magnetoresistance). In practice, the effects seen in
spin valves containing standard transition-metal ferromagnets are rather weak (typi-
cally the change in Tc (∆Tc) is only a few mK [14–16]). The primary reason for this is
the direct pair-breaking effect of the exchange field within the ferromagnets acting in
conjunction with standard scattering and proximity effects in them which are present
regardless of the layers’ relative alignment.

Several systems have recently shown considerably larger values of ∆Tc. The first
of these involves epitaxial films of the rare-earth ferromagnets Ho and Dy. As-cooled
through their Curie temperatures, Ho and Dy thin films show an antiferromagnetic
spin spiral structure, but this can be irreversibly converted into a linear ferromagnetic
state by the action of moderatemagnetic fields [17, 18]. Such devices then show super-
conducting spin-valve behavior with ∆Tc ~ 0.5 K [19] together with infinite resistance.
The underlying reason for these large values is currently unclear, but it may be linked
to a resistance or density of statesmismatch between the superconductor (Nb) and the
rare earth so that the devices have a functional similarity to the ferromagnetic insula-
tor devices discussed in Section 15.3. Even larger values of ∆Tc have been reported in
devices that generate triplet pairing as discussed in Section 15.4.

The decay and LOFF oscillations can be detected much more strongly, and the
induced phase difference measured directly, in proximity-coupled S/F/S or S/F/I/S
Josephson junctions. Such devices were first created using weak ferromagnetic alloys
as the barrier which enabled thicker layers to be grown [20, 21], but since then all the
transition-metal ferromagnets have been used so that the underlying theories can be
fully probed [22–24]. As with superconducting spin valves, the LOFF oscillations are
superimposed on a general decay associated with scattering, but this can be mini-
mized more effectively in S/F/S junctions through the use of materials which can ap-
proach the clean limit [23]. The most striking experimental outcome is the measure-
ment of multiple oscillations of the critical current (Ic) as a function of barrier thick-
ness [23, 24]; these arise as a result of the phase shifts acquired by the pairs under
the exchange field of the ferromagnet which translate directly to a periodic switching
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Fig. 15.3: The two magnetic states of a spin-
valve Josephson junction. Left: parallel, illus-
trating the flux injection into the junction which
generates a corresponding phase difference;
right: antiparallel, illustrating the cancelation
of the net flux.

of the ground-state phase difference of the junction between zero and π. It is possi-
ble to measure this phase shift directly using a phase-sensitive circuit [25] and junc-
tions maintaining a π phase-shift can be directly applied in quantum bit (qubit) struc-
tures [26].

As with superconducting spin valves, a barrier consisting of two ferromagnetic
layers has the potential to cancel the LOFF-induced phase-shifts. Such spin-valve
Josephson junctions [27] were first demonstrated before detailed tests of the under-
lying theories had been performed, but nevertheless showed large changes in the
critical current (∆Ic). Somewhat later, it was appreciated that two effects contribute
to ∆Ic in such devices: in addition to the phase-shift discussed above, the magnetic
flux associated with the barrier magnetization also depends strongly on the magnetic
alignment of the spin-valve barrier [28] and so directly controls Ic through the stan-
dard Josephson relation (Figure 15.3). By designing devices in which the two effects
can act in conjunction it has been possible to create spin-valve Josephson junctions
that can act as cryogenic memory elements [29, 30].

15.3 Exchange fields and DoS splitting in superconductors

Thepioneering experiment ofMeservey and Tedrowdemonstrated that the quasiparti-
cle DoS in ultra-thin Al could be significantly split by an appliedmagnetic field [31]. As
illustrated in Figure 15.4, this splitting enables selective tunneling from the exchange-
split bands of a ferromagnet in an S/I/F tunnel junction and thus provides a direct
method of measuring the tunneling spin polarization of ferromagnets [32]. These ex-
periments were extended to measuring the properties of Al in contact with the fer-
romagnetic insulator EuS in F I/S/I/N junctions [3, 33]. Here it was shown that the Al
presented a strong exchange splitting of the quasiparticle density of states even at low
applied fields. The effective exchange field responsible for the splitting is believed to
be acquired during scattering at the S/FI interface but, as with a physical field, can
also lead to a direct suppression of superconductivity via spin-orbit scattering. Al is
therefore the material on whichmost experiments have been performed, but splitting
has also been observed in NbN [34] and Ga [35].
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Fig. 15.4: Zeeman splitting of the superconductor
quasiparticle density of states (upper row) and the
corresponding conductance vs voltage characteristics
(lower row), in the case of a standard tunnel barrier
(left column) and a ferromagnetic insulator tunnel
barrier (right column). In the ferromagnetic insulator
case, the spin filtering of the tunnel barrier eliminates
tunneling from one of the spin-split bands of the su-
perconductor.

As well as providing a means of detecting the splitting, exchange-split S/I/N tun-
nel junctions can also be configured to inject spin-polarized quasiparticle currents
into the superconductor [36]. This is illustrated schematically in Figure 15.4: align-
ment of the spin-split DoSwith the N electrode Fermi energy results in a strongly spin-
selective tunneling which can be controlled via the junction bias voltage.

Certain ferromagnetic insulators, such as EuS [37] and GdN [38] can also be grown
as tunnel barriers which means that the tunneling DoS of one or both superconduct-
ing electrodes is directly split by the exchange field from the barrier. In this case the
conductance spectra are also affected by the spin-filtering effect of the tunnel barrier,
which presents a different barrier height for the two electron spin directions and gen-
erally leads to large intrinsic spin polarization [39]. Thus, although four conductance
peaks should arise from the spin-splitting of the quasiparticle DoS of both electrodes,
in the case of a strongly spin-polarizing barrier, only the two corresponding to the al-
lowed tunneling spin are observed [34] (Figure 15.4).

S/FI/S junctions can also show a Josephson supercurrent [38]. Singlet pair tunnel-
ing should be strongly suppressed by a spin-filtering barrier [40] and the presence of
a finite critical current even for very high spin-filter efficiencies suggests the potential
role of triplet pairs in the tunneling process. Although the theories for suchdevices are
still being developed, evidence for unconventional superconductivity which is prob-
ably linked to triplet pairing comes from a pure 2nd harmonic in the current-phase
relation of such devices [41].

The exchange splitting within FI/S/FI ferromagnetic insulator superconducting
spin valves is responsible formuch larger values of ∆Tc than so farmeasured inmetal-
lic devices. The underlying reason is simply that the proximity effect which strongly
suppresses superconductivity regardless of themagnetic configuration inmetallic de-
vices is absent in ferromagnetic insulator structures. Indeed the basic concept, pro-
posed by de Gennes in 1966 [42] is largely valid in explaining the behavior so that the
critical temperature depends on the net exchange field in the superconductor which,
for superconductor thicknesses less than the coherence length, is effectively canceled
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in the AP configuration. EuS/Al/EuS [43] and GdN/Nb/GdN spin valves both show ∆Tc
~ 1K in combination with infinite magnetoresistance (i.e., full switching between su-
perconducting and normal states at fixed temperature) extending over a significant
temperature range.

15.4 Triplet pairing in hybrid systems

Various modes of triplet pairing in superconductors are theoretically possible. Intrin-
sic triplet pairing superconductors, such as Sr2RuO4 [44] are very rare, and because
of their even-frequency p-wavenature, are highly susceptible to defects. The potential
for odd-frequency s-wave triplet pairing in superconductor ferromagnet hybrid sys-
tems was first proposed in 2001 [45] in the form of a proximity effect mediated by an
inhomogeneousmagnetic interfacewhich could “mix” the singlet pairs into the super-
conductor in the various triplet combinations. The formation of spin-aligned triplet
pairs as part of this process gives the potential for a long-range proximity effect in a
(homogeneous) ferromagnet attached to the mixer layer.

A landmark experiment in 2006 provided the first evidence that this process was
possible [46]; here an S/F/S junctionwas created in which the barrier was CrO2, a ma-
terial generally accepted to be intrinsically half-metallic – i.e., a ferromagnetic mate-
rial in which there is a band gap in the density of states for one spin direction [47].
Although this first experiment provided no information about the nature of the mix-
ing interface between the NbTiN superconductor and the CrO2, a singlet pair cannot
exist in a half-metallic material because only electrons of one spin sign are present
at the Fermi energy; the supercurrent that was measured therefore had to consist of
spin-aligned pairs.

More direct confirmation of the underlying theories were provided by a series of
experiments in which engineered artificial spin-mixer layers were inserted at the S/F
interfaces. These were Nb/Ho/Co/Ho/Nb junctions in which the spin-spiral antifer-
romagnetism of the Ho provides an intrinsically inhomogeneous interface [48], and
Nb/PdNi/Co/PdNi/Nb structures in which the thin interfacial PdNi layers could be
noncollinear with the thick Co barrier structure [49]; Finally, it was shown that the
MgO/CrO2 interface could be deliberately engineered to increase the critical current
of junctions [50]. A series of further experiments have demonstrated that the misori-
entation angle of the F’mixer layers in S/F’/F/F’/Sdevices changes the induced triplet
critical current in quantitative agreement with theory [51, 52].

A triplet supercurrent, provided it contains unequal numbers of up-up and down-
down spin-aligned pairs should therefore carry a dissipation-less spin current. This
has to be the case if the barrier is half-metallic, but so far no experiment based on
conventional ferromagnets has been able to determine directly the induced spin po-
larization of the supercurrent. Despite this, the discovery of a controllable triplet state
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has raised serious prospects for a superconducting version of spin electronics or “su-
perspintronics”. The potential applications are discussed further in Section 15.6.

Evidence for triplet pairing has also been obtained from passive proximity effect
spin-valve structures. The generic structures explored in such experiments are S/F’/F
or F/M/S/M/F heterostructures (where M is an intrinsic spin-mixing interface). An
S/F’/F structure in the P or AP configuration should not enable any singlet-triplet con-
version at the interface and so the critical temperature is determined by a combination
of the singlet proximity effect and exchange-field driven pair-breaking as discussed in
Section 15.2. Singlet pair propagation is suppressed by the polarization of the Fermi
surface in the F layer, and is obviously zero if a half-metal is used. If the F’ and F layers
are not collinear, triplet pairs should be generated at the interface and such pairs (at
least those parallel to the majority states at the F layer Fermi energy) should be able
to enter the F layer and should be immune from LOFF dephasing and pair-breaking
effects. Thus, the proximity effect should be stronger than the collinear case and the
Tc correspondingly lower. This effect has been observed experimentally in both con-
ventional ferromagnetic spin valves [53, 54], and in CrO2-based spin valves for which
very large values of ∆Tc were observed because of the effective blocking of conven-
tional proximity coupling in the collinear configuration [55].

The F/M/S/M/F structure is a development of the standard superconducting spin
valve discussed in Section 15.2 for which P alignment should give a lower Tc. Identical
structures, but with Ho spin-mixer layers inserted at the interface gave the opposite
effect – i.e., the AP state had the lowest Tc [56]. This can be understood in terms of the
creation of both up-up and down-down triplet pairs at both interfaces; if the F layers
are AP then each pair direction is parallel to the magnetization direction of one of the
F layers and so can induce a strong proximity coupling. In contrast, for P alignment,
one spin sign is prevented from entering either F layer and thus weakening the prox-
imity effect and raising the Tc in accordance with the experimental results. Since this
model is dependent on the conventional ferromagnetic layer being spin selective, this
result also provides indirect evidence that the polarization of the triplet pairs can be
controlled by the magnetic state of a device.

15.5 Abrikosov vortex pinning in hybrid systems

Conventional vortex pinning processes depend on the samplemicrostructure to break
the translation invariance of the superconducting properties. Such processes can
be broadly separated into those mediated by the condensation energy (“vortex core
pinning”) and by the disruption of the vortex screening currents (“magnetic pin-
ning”) [57]. The former is generated by nonsuperconducting, ideally insulating, in-
clusions or voids within the superconducting matrix; the pinning energy is then the
difference between the core of the vortex passing through the superconductingmatrix
(where the condensation energy is lost within the core) and passing through the pin-
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ning center (in which there is no loss of condensation energy). The latter, magnetic
pinning, is mediated by extended defects, such as grain boundaries, which disrupt
the flow of the screening currents surrounding a vortex, thus altering the total en-
ergy. An optimized combination of these effects is used to create high critical current
conductors such as Nb3Sn.

A range of experiments have been performed to try to demonstrate that magnetic
inclusions can provide more effective pinning, particularly in high Tc materials in
which pinning effects associated with microstructural defects are ineffective because
of thedirect suppressionof the superconductivity inherent inmaterialswith very short
coherence lengths. A number of model experimental systems have been explored,
such as Hg/Fe [58] and Nb/Gd [59] in which the insolubility of the magnetic species in
the superconductingmatrix can generate a dispersion of ferromagnetic nanoparticles.

The simplest model for the interaction between a magnetic particle and a vor-
tex assumes that the magnetization of the particle is constant [58] and this gener-
ates an interaction force via the induced changes in the circulating screening currents
surrounding the particle and vortex as their separation changes. Thus, this is an en-
hanced version of the conventional magnetic pinning discussed above and requires
that the particle spacing is larger than the magnetic penetration depth, otherwise the
pinning energy associated with an assembly of particles averages to zero. The large
penetration depths of technological superconductors means that this effect is likely
to be relevant only at the lowest fields.

The behavior is more complex if the ferromagnetic particles are magnetically soft
enough to respond to the fields associated with vortices. Various models for pinning
in these circumstances have been proposed. Two examples are: one which is based
on hysteresis losses in the particles as vortices pass over them seems to adequately
explain experimental data fromNb/Gd nanocomposites [59]; a second is based on the
effective capturing of flux by extended high susceptibility defects which effectively
lowers the mobile flux within a vortex hence reducing the Lorentz forces acting on
it – in other words decreasing the driving force for displacement from conventional
pinning centers rather than directly increasing the pinning force [60].

15.6 Potential applications

Conventional spintronics emerged from the discovery of giant magnetoresistance
(GMR) in the 1980s. It rapidly achieved enormous technological success in the data
storage field: initially as ameans of improvingmagnetic field sensors for reading data
from hard discs and more recently as the data storage element in magnetic random
accessmemory (MRAM). More broadly, spintronics has been promoted as an eventual
low-power replacement for charge-based semiconductor (CMOS) logic in which infor-
mation is carried by spin currents and controlled and sensed by magnetic elements
within a circuit [61].
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An idea of the potential energy savings that can be gained by taking theminimum
energy required for switching amagnetic element (for example the free layer in amag-
netic tunnel junction) as the anisotropy energy barrier required to prevent thermally
activated reversal: for memory applications this is typically taken to be 50kBT, where
kB is Boltzmann’s constant and T is the operating temperature. At 4K this corresponds
to only 3 × 10−21 J and so is orders of magnitude below the single bit write energy for
currently used random accessmemories. Even though this argument ignores dynamic
effects it is clear that the low switching energy of a magnetic memory element has the
potential to massively lower energy consumption in computing systems. Such oper-
ations can be most directly achieved via spin-transfer torque (STT) in which a spin
current can switch a ferromagnetic element [62]. However, the intrinsic inefficiency of
STT means that large charge currents, with correspondingly large ohmic losses, are
required for switching and have so far eliminated the potential gains over semicon-
ductor electronics.

Combining superconductivity with spintronics within superspintronics [63, 64]
brings in phenomena that do not exist in the normal state, such as quantum coher-
ence and spin-polarized supercurrents, potentially enablingmuch lower energy spin-
transfer and magnetic switching. Indeed, preliminary steps have already been taken
to develop superspintronic technology: the cryogenic memory elements discussed in
Section 15.2 have already been shown to switch between P andAP states via STT, albeit
still with large current densities which take the device into the normal state [30].

The potential for superconducting spin currents has already been discussed in
Section 15.4 and there is the possibility for such currents to be able to modify the mag-
netic state of an element. In addition, although the pair condensate in a singlet super-
conductor has zero net spin, this is not necessarily true for the population of quasi-
particle excitations (see Section 15.3). Indeed, there are circumstances in which the
quasiparticle spin-decay length in the superconducting state is much longer than in
thenormal state anda very large effective spinpolarization canbe induced evenbyun-
polarized current injection [36] and quasiparticle spin currents canbe detected via the
inverse spin Hall effect [65]. However, in the superconducting state any quasiparticle
spin currents must be diffusive and independent of the (zero-spin) charge supercur-
rent meaning that many of the familiar concepts of conventional spintronics such as
giant magnetoresistance do not have a direct quasiparticle spin equivalent.
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