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Authors’ introduction
This book is based, in large part, on lectures delivered over a number of years at the
Physics Department of the Ural Federal University.

Themain goal pursuedby the authors inwriting this book is to set forth systematic
and consistent principles of non-equilibrium thermodynamics and physical kinetics
in the form primarily available to both students and undergraduates who begin their
study of theoretical physics and postgraduates and experienced research scientists
working in a new field of study.

First of all, we point out principles that have guided us in selecting appropriate
material. Physical kinetics or the theory of transport phenomena is a very broad and
rapidly developing subject area of physics. On this subject matter, there are a suffi-
cient number of educational papers as well as monographic studies, which discuss
various aspects of the kinetic theory. However, most publications are expected to be
understood by a reader who has a substantial scientific background rather than by
third year students.

Therefore, there is an acute shortage of literature for “beginners” where a natural
balance between general postulates of the theory and simple examples of the prac-
tical implementation would be observed. Another guiding approach in writing the
present book consists in the authors’ attempting to avoid as far as possible such turns
of speech as “obviously” and “it is easy to show”. It is no secret that cumbersome,
time-consuming calculations are very often hidden behind these words.

The authors were trying to write the text in such a manner that those phrases
should acquire their original meaning. Perhaps, the authors did not always succeed
in doing so. Finally, also the authors have done their best to present different tech-
niques to describe non-equilibrium systems and construct schemes of the theory of
transport phenomena but they would not like to focus on the problem of a calculation
of the kinetic coefficients for various model systems. This approach allows one to il-
lustrate contemporary directions of non-equilibrium statistical mechanics which are
now developed along with “classical” sections of kinetics.

The present book can be divided into four parts.
The first one is devoted tomethods, describing both non-equilibrium systems and

phenomenological non-equilibrium thermodynamics.
The second part covers the substantiation and application of the kinetic equation

method in non-equilibrium statistical mechanics. Here, the kinetic equation for elec-
trons and phonons in conducting crystals is considered as an example.

The third part discusses the linear response theory of a system to an external me-
chanical perturbation.

The fourth part, which can be called “modern methods of non-equilibrium sta-
tistical mechanics”, contains the presentation of the method of the non-equilibrium
statistical operator and the basic kinetic equation (“master equation”).

It is worth dwelling on the contents in more detail.

https://doi.org/10.1515/9783110727197-201

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



VI | Authors’ introduction

Chapter 1 deals with the principles of constructing thermodynamically non-
equilibrium systems of electrons in conducting crystals in a linear approximation
of external forces. Also, the generalized kinetic coefficients and the Onsager symme-
try relations were analyzed. This chapter acquaints the reader with a classification
of the kinetic effects in the conducting crystals. Besides, here one can find not only
methods of describing thermodynamics of highly non-equilibrium systems and their
aufbau principle, but also the formation of dissipative structures in such systems.
In addition, this chapter deals with extremely important issues of non-equilibrium
statistical mechanics concerning orbital, structural, and asymptotic stability of a
solution of equations, describing the dynamics of non-equilibrium parameters.

Chapter 2 considers the behavior of a Brownian particle under the influence of
random forces. Here, we have derived the Fokker–Planck equation describing the dy-
namics of a single Brownian particle, and the reader can become familiar with a solu-
tion of this mathematical equation. This simple example of the above equation shows
how one can introduce a detail-omitting (due to a time-averaging) description of the
dynamics of non-equilibrium systems.

Chapter 3 is devoted to the method of kinetic equations in non-equilibrium sta-
tistical mechanics. Based on the chain of the Bogolubov equations for s-particle dis-
tribution functions, the substantiation of the quasi-classical kinetic equations is pre-
sented in this section. Examples of the kinetic equations are the Vlasov equation and
the Boltzmann equation, which are here formulated. Also, this chapter reviews differ-
ent methods for solving the Boltzmann equation.

Chapter 4 presents the kinetic equation for electrons and phonons in conduct-
ing crystals within the relaxation time approximation. This part of the book draws
special attention to the procedure for calculating the kinetic coefficients, describing
the thermoelectric, thermomagnetic, and galvanomagnetic phenomena inmetals and
semiconductors and the effect of electron dragging by phonons.

The description of the method of the linear response of a non-equilibrium system
to an external mechanical disturbance constitutes the contents of Chapter 5. Here, the
authors apply both the method of Green’s functions and the mass operator method
for calculating the kinetic coefficients. Chapter 5 deals with the computation of high-
frequencymagnetic susceptibility of an electron gas as well as electrical conductivity,
including conductivity in a quantizing magnetic field on the basis of this procedure.

Chapter 6 examines themethod of the non-equilibrium statistical operator (NSO).
The equations of motion can be obtainedwith this method both for a non-equilibrium
distribution and for equations of motion concerning effective parameters (similar to
the Chapman–Enskog equations). Furthermore, the NSO-method can be regarded as a
quantum-statistical method of constructing thermodynamics of non-equilibrium sys-
tems. The book discusses only principles of the construction of the non-equilibrium
thermodynamics with the NSO andmethods of deriving the balance equations for the
parameters for the describe the non-equilibrium distribution. In this chapter of the
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Authors’ introduction | VII

scientific monograph, a diligent reader can trace the process of the derivation of lin-
ear relaxation equations that allow one to find the spectrum of collective excitations
in the non-equilibrium system. The chapter sets forth in detail the Mori projection op-
erator method to construct the equations of motion for hydrodynamic quasi-integrals.
Also, it should be noted that the authors present the description of this technique to
calculate transport coefficients.

The second edition of the book contains a new chapter devoted to the physi-
cal foundations of spintronics. This term originated in the early 1990s and currently
stands for an interdisciplinary field that incorporates science and technology. The
key of the chapter is the in-depth study and active use of the spin degrees of freedom
of electrons in solid-state systems. Interest in research in this field largely concerns
storing and transmitting information through the spin of an electron, apart from its
charge, as an active element. Electron-spin-based units can, in a great measure, dis-
lodge or supplement various conventional microelectronic devices, including ones
for quantum computing and quantum information transfer. The main advantage of
spin electronics against traditional techniques is to record and store a unit of infor-
mation with less energy. This is because the change in the orientation of the electron
spin is not associated with the electron motion and inevitable Joule losses during this
process.

The transfer of mechanical and magnetic moments in magnetic metals and semi-
conductors being brought about not only by mobile electrons but also by magnons
(spin waves), it is natural that spintronics also involves magnonics, a branch of spin-
tronics that investigates the physical properties of magnetic micro- and nanostruc-
tures, the properties of propagating spin waves, as well as the possibility of utiliz-
ing spin waves to build the hardware components relying on new physical principles;
this is required for processing, transmitting and storing information. In a broad sense,
spintronics can also include solid-state optoelectronics and the creation and design of
nano-electronic devices using spin degrees of freedom. Thus, over the past 20 years,
spintronics has become one of themost important trends in the development of solid-
state physics andmicroelectronics.Microelectronic spin-transport-baseddevices such
as spin valves, magnetoresistive memory cells, and spin transistors have been devel-
oped and successfully applied. These instruments have made it possible to enhance
the density of information recording on magnetic storage media, the speed of read-
ing and writing into magnetic memory cells with random access, and to reduce heat
release.

It is quite obvious that there is no possibility to cover all aspects of this rapidly
burgeoning field of physical electronics in such a small-scope chapter. Therefore, it
would be reasonable to dwell upon only such main points of the spin transport kinet-
ics as the nature of a spin current, spin accumulation, giant magnetoresistance, and
the spin Hall effect. The issues discussed in the chapter deals with only a small part of
the problems of spintronics. However, they are fundamental for this science and allow
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VIII | Authors’ introduction

one to understand the principles of operation of most of the known devices for spin
microelectronics.

It should also be underscored that the chapter can also be regarded as a useful
application of the theoretical approaches developed in Chapters 1–6 to solve applied
problems of physical kinetics.

Chapters 8 and 9 focus on the response of a highly non-equilibrium system to a
weak mechanical perturbation and master equation approach, respectively. As an ex-
ample, in both cases, the authors suggested a procedure for calculating the static elec-
trical conductivity of highly non-equilibrium system. The material presented in these
chapters goes beyond the classic courses of physical kinetics, but the book demon-
strates potential “growth points” of the theory of kinetic phenomena.

In each chapter, one can find examples represented in the form of problems to
illustrate the theoretical statements under consideration. Most of them are offered to
students either for a solitary effort or for assignments to be submitted during exami-
nation sessions. In spite of understanding that the examples for solving specific prob-
lems of physical kinetics are extremely useful for practical learning, the authors did
not think it necessary to include into the bookmost of those problems to avoid increas-
ing the book volume.

We should note that many of the issues discussed on pages of this book are ex-
tremely complex and not always taken into account with necessary degree of rigor.
Nevertheless, the authors tried as far as possible to discuss applicability conditions
for certain approximations completely enough and consistently, and note those “pit-
falls” that can be encountered in practical implementation of the above methods.

It is worth saying a few words about references to literature resources. Owing to
the nature of thematerial the authors did not seek to provide a linkwith original scien-
tific papers or give an exhaustive bibliography on the issues at hand. Therefore, only
those paperswhich, on the one hand, are readily available, on the other hand, contain
enough information about the themes in question, are presented in the references.

All compilers of the book hope that this book will allow both students and grad-
uate students to adequately get acquainted with “kitchen” methods of the contempo-
rary theory of transport phenomena and prepare them for independent scientificwork
in the field of the quantum-statistical theory of transport phenomena.

In preparing the second edition of this book, the authors have corrected the typos
noticed.

The authors are grateful to Yu. G. Gorelykh for the translation of the first and sec-
ond editions of the book into English.
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1 Phenomenological thermodynamics of irreversible
processes

1.1 Main postulates of non-equilibrium thermodynamics

1.1.1 Thermodynamic description of equilibrium and non-equilibrium systems

The thermodynamic description of a many-particle system in equilibrium thermody-
namics is based on an assumption that there are few macroscopic parameters, char-
acterizing the system as awhole. The number of those parameters should be sufficient
to precisely determine a state of the system. Averaged physical quantities such as the
average energy or averagemomentum of the particles forming the system, the compo-
nents of the electric polarization and magnetic induction per unit volume are usually
chosen as those parameters to characterize the system.

There are two interrelated approaches to describing the thermodynamic system:
the state equation method and the method of thermodynamic potentials. In the case,
for example, of an ideal gas, a set of thermodynamical equations can be written as

TdS = dE + pdV ,
E = CvT ,

pV = νRT . (1.1)

The first equation (1.1) is the fundamental equation of thermodynamics. Here S is for
the entropy, T is for the temperature, E is for the internal energy, p is for the pressure,
V is for the volume of an ideal gas.

The second equation is known as a calorific equation of state of an ideal gas and
determines a relationship between internal energy, volume and temperature. The
third equation of the set (1.1) is so-called the thermal equation of state and allows
for finding the gas pressure p as a function of volume, and temperature; ν being the
number of moles of an ideal gas.

The set of equations (1.1) contains three equations and five unknowns (S, E, V ,
p,T). As is known [1, 2], the state of a system in equilibrium thermodynamics is defined
by external parameters and temperature. For an ideal gas, it suffices to specify only
one external parameter—the volume. Thus, in this case, the simplest case, having two
parameters (temperature and volume, for example), with the help of (1.1) one can find
all quantities, characterizing an ideal gas.

To describe a more complex one-phase thermodynamic system whose state is de-
fined by n external parameters x1, x2, . . . , xn and temperature, equations (1.1) should
be modified. This modification reduces simply to the fact that it is necessary to take
into account the work of the system in the course of change of all the generalized ther-
modynamic coordinates x1, x2, . . . , xn, but not only volume. Also, to close the set of

https://doi.org/10.1515/9783110727197-001
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2 | 1 Phenomenological thermodynamics of irreversible processes

equations it is necessary to write down n thermal equations of state, expressing the
relationship between the generalized thermodynamic forces Fi with the generalized
thermodynamic coordinates and temperature:

TdS = dE +
n
∑
i=1

Fi dxi,

E = E(x1, x2, . . . , xn,T),
Fi = Fi(x1, x2, . . . , xn,T), i = 1, 2, . . . , n. (1.2)

The thermal equations of state and caloric one must be found experimentally or ob-
tained within the limits of statistical mechanics through a model-based analysis.

Another alternative method for an analytical description of a many-particle sys-
tem in equilibrium thermodynamics is associated with themethod of thermodynamic
potentials (functions of state) [3]. In this case, one of the possible functions of state
should be found by using the methods of equilibrium statistical mechanics.

It can be claimed that, if at least one of the thermodynamic potentials is defined
as a function of its natural variables, the thermodynamic properties of the systems
are determined completely. This is accounted for by the fact that all thermodynamic
quantities characterizing this system can be obtained as partial derivatives of the ther-
modynamic potential. It is free energy Φ that is usually used as a function of temper-
ature T, volume V and the number of particles Ni of i-th sort for the analysis of multi-
component systems with a constant number of particles:

dΦ = −SdT − pdV +
k
∑
i=1

ζidNi. (1.3)

The Gibbs thermodynamic potential G is also suitable as a function of temperature,
pressure and the number of particles:

dG = −SdT + Vdp +
k
∑
i=1

ζidNi. (1.4)

In equations (1.3), (1.4), the quantity ζi is the chemical potential of particles of i-th sort.
Thus, in equilibrium thermodynamics, there exist quite simple universalmethods

for an analytical description of themany-particle systems. Special attention should be
paid to the fact that equations (1.1)–(1.4) allow one to analyze, in turn, the thermody-
namics of quasi-steady state processes.

To explain the above, let us consider a simple system consisting of a gas in a cylin-
drical vessel with the characteristic size l the upper base of which is amovable piston.
The pressure inside the vessel is changed as the pistonmoves. The time of soundwave
propagation τp ≃ l/vs, where vs is the velocity of sound in a gas may be taken as the
characteristic time of establishing the equilibrium pressure. Therefore, if

dp
dt

τp ≪ Δp,
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where Δp is an acceptable accuracy of the pressure measurement, one may assume
that the pressure will be the same (equilibrium) throughout the system while the pis-
ton is moving.

Also, processes of establishing the equilibrium values of the othermacro parame-
ters should be analyzed because it is not clear beforehandwhich of them is the slowest
(limiting).

In any case, one can always find conditions of thermodynamic description appli-
cability for the phenomena in amany-particle system. If these conditions are not met,
processes proceeding in such a systemwhen the equilibrium is established should be
analyzed in more detail.

1.1.2 Local equilibrium principle

The natural step in this direction is to generalize results of equilibrium thermodynam-
ics in respect of non-equilibrium case by introducing the concept of local-equilibrium.
As was noted above, thermodynamic parameters are, in substance, physical quan-
tities which characterize a many-particle system. If we average the physical quanti-
ties over the portion of the system which consists of rather small, but at the same
time, macroscopic areas, then we also get macroscopic parameters. However, values
of these parameters depend both on time and on a position of the selected volume (co-
ordinates). As to the time dependence, it is two-fold. On the one hand, it is caused by
natural fluctuation of the physical quantities in sufficiently small volumes. The time
scale of these fluctuations is comparable to an atomic time scale.

On the other hand, the time dependence of the local averages has a distinctly dif-
ferent scale and is associated with more slow relaxation processes in a macroscopic
system. The characteristic time scale of these changes is close in order of magnitude
to τp ≃ l/vs ≃ 10−5 s. Performing the additional time-averaging of the local macro
parameters, one can eliminate the fluctuating component, leaving only the part that
describes a slow change in these parameters due to relaxation processes.

Thus, for a non-equilibrium system, one can introduce local-equilibrium ther-
modynamic parameters, which will characterize some small enough volume of a
macroscopic system. These parameters depend on coordinates and time. The local-
equilibrium parameters can be considered as a continuous function of coordinates
and time subject to changing the parameters slightly as the transition from one phys-
ical small volume to another happens.

At first glance, the condition of quasi-equilibrium does not impose significant
constraints on applicability of the thermodynamic approach to describing non-
equilibrium phenomena, since volume over which the averaging is produced can
be made arbitrarily small. In fact, that is not the case.

To see this, consider a sample of the semiconducting material or metal, placed in
the field of a temperature gradient. If a subsystem of conduction electrons is selected
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4 | 1 Phenomenological thermodynamics of irreversible processes

as the thermodynamic system, in this case, the electron mean free path l defines the
characteristic spatial scale to determine physically small volume over which the aver-
aging is produced. The passage to the local-equilibrium description is possible, if the
following inequality is valid:


l
T
dT
dx


≪ 1.

This inequality ensures the condition of a small temperature change along the mean
free path of electrons.

In this chapter basic postulates of thermodynamics of irreversible processes to be
applied to the system of conduction electrons in a metal or semiconductor explain
the deviation of the system from its equilibrium state caused by action of an external
electrical field and a temperature gradient.

1.1.3 Entropy balance equation and conservation laws

Assuming that the use of the local-equilibrium approach is fair, we can write down
the fundamental equation of the thermodynamics for a physically small volume of a
system:

dE( ⃗r, t) = T( ⃗r) dS( ⃗r, t) + [ζ ( ⃗r) + eφ( ⃗r)] dn( ⃗r, t), (1.5)

where E( ⃗r, t), S( ⃗r, t), n( ⃗r, t) is for the internal energy density, entropy, and the num-
ber of particles of the system at the point with coordinate ⃗r at the moment of time t,
respectively. T( ⃗r), ζ ( ⃗r) is for the local temperature and chemical potential of electron
system; φ( ⃗r) is for the potential of electrostatic field; e is for the electron charge.

We find an expression for the entropy production dS( ⃗r, t)/dt, supposing that the
local-equilibrium state of the system under study is stationary:

dS( ⃗r, t)
dt
=

1
T( ⃗r)

dE( ⃗r, t)
dt
−
ζ ( ⃗r) + eφ( ⃗r)

T( ⃗r)
dn( ⃗r, t)
dt
. (1.6)

The particle number density n( ⃗r, t) and density of the internal energy E( ⃗r, t)meet the
conservation laws, which have the form of the equations of continuity:

dn( ⃗r, t)
dt
+ div ⃗Jn = 0,

dE( ⃗r, t)
dt
+ div ⃗JE = 0, (1.7)

where ⃗Jn, ⃗JE is for flux density of the particles and energy flux, respectively.
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Problem 1.1. Obtain the first equation of continuity (1.7), using the definition of the
particle number density:

n( ⃗r, t) =
n
∑
i=1

δ( ⃗r − ⃗ri(t)),

where ⃗ri(t) is the coordinate of the i-th particle.

Solution. Consider a change in the number of particles in the small volume v, inside
which the conditions of local equilibrium are fulfilled. Then

∫ dvdn(
⃗r, t)

dt
= ∫ dv

n
∑
i=1

d
d ⃗ri

δ( ⃗r − ⃗ri(t))
d ⃗ri
dt

= −∫ dv
n
∑
i=1

d
d ⃗r
δ( ⃗r − ⃗ri(t))v⃗i = −∫ dv div ⃗Jn. (1.8)

In writing the last expression we have used the definition of the flux density of the
particles:

⃗Jn = ∫ dv
n
∑
i=1

v⃗iδ( ⃗r − ⃗ri(t)). (1.9)

Thus, the particle number density really satisfies the continuity equation

dn( ⃗r, t)
dt
+ div ⃗Jn = 0.

The second equation of continuity (1.7) is derived by analogy.

Let us return to the transformation of equation (1.6) for the entropy production.
Substituting the continuity equation (1.7) into the equation for the entropy produc-
tion (1.6) and performing simple transformations we can obtain two equivalent repre-
sentations:

dQ
dt
= −div ⃗JQ + ⃗Jε⃗, (1.10)

dS
dt
= −div ⃗JS − ⃗JQ

∇⃗T
T2
+ ⃗J ε⃗

T
, (1.11)

where the heat flux ⃗JQ and the entropy flow ⃗JS are determined by the relations

⃗JQ = ⃗JE − (
1
e
ζ + φ) ⃗J, (1.12)

⃗JS =
⃗JQ
T
, ⃗J = e ⃗Jn. (1.13)

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



6 | 1 Phenomenological thermodynamics of irreversible processes

For reduction, in formulas (1.10), (1.11) we have introduced the variable ε⃗, which has
the meaning of the electrochemical gradient:

ε⃗ = −∇⃗(φ + 1
e
ζ). (1.14)

Throughout the book, we will omit the dependence of thermodynamic functions on
coordinates and time where it does not cause confusion. Equation (1.10) is the law of
conservation of heat. This fact becomes especially obvious in case of integrating both
sides of equation (1.10) over small closed volume. Then, using theOstrogradski–Gauss
theorem, one can reveal that the change in an amount of heat per unit time inside a
closed volume equals the volumetric heat generation minus the heat transferred per
unit time across a surface bounding the volume. Similarly, it makes sense to speak of
equation (1.11) which is a key for non-equilibrium thermodynamics (similar to master
equation of thermodynamics for thermodynamics systems) as a local entropy balance
equation.

A distinctive feature of the thermodynamics of irreversible processes is the ap-
pearance of the thermodynamic fluxes ⃗JS, ⃗J, ⃗JQ, which, in our case, are caused by the
external thermal thermodynamic forces (∇⃗T, ε⃗). For this reason, equations (1.10), (1.11)
are not closed. Indeed, even if we assume that the thermodynamic forces ε⃗/T and
∇⃗T/T2 are external parameters and defined, all the same, equation (1.11) still contains
three the unknown thermodynamic quantities (S, ⃗JQ, ⃗J). We remind that a similar situ-
ation exists in equilibrium thermodynamics where the fundamental equation of ther-
modynamics requires adding the thermal equations of state together with a caloric
one to close the set of equations. As was already mentioned, these equations can-
not be obtained in the context of the thermodynamics, but must be determined either
within the statistical molecular-kinetic theory or empirically.

In non-equilibrium case, the equations of the type (1.10), (1.11) should also be
supplemented by equations relating the thermodynamic fluxes and thermodynamic
forces. Moreover, by in complete analogy with the case of equilibrium, these equa-
tions can be found by generalizing the experimental data or obtained by means of
methods of non-equilibrium statistical mechanics.

To close equation (1.11), it is necessary to expand the thermodynamic fluxes into a
series in the thermodynamic forces. Assuming that the non-equilibrium state is weak,
we should restrict ourselves to linear terms of the expansion. As a result of this, one
obtains two vector equations:

⃗J = σ̂ε⃗ − β̂∇⃗T ,
⃗JQ = ̂χε⃗ − κ̂∇⃗T , (1.15)

which define a linear relationship between the thermodynamic fluxes and thermody-
namic forces. The zeroth terms in the expansion with respect to the thermodynamic
forces in equations (1.15) are absent because if there are no thermodynamic forces,
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1.1 Main postulates of non-equilibrium thermodynamics | 7

then there are no fluxes. σ̂, β̂, ̂χ, κ̂, which are the proportionality coefficients, are re-
ferred to as transport coefficients or kinetic coefficients. In our case of the linear rela-
tionship, they are tensors of a second rank. Kinetic coefficients as parameters of the
phenomenological theory of transport phenomena should be determined within the
microscopic theory of transport phenomena, therefore the large part of the present
book is devoted to setting forth the methods of this theory.

1.1.4 Generalized flows and generalized thermodynamic forces

In previous paragraphs we have formulated basic ideas of thermodynamics of irre-
versible processes and introduced the basic equation (1.11) of irreversible process ther-
modynamics which is based on the local equilibrium principle and equation (1.15),
relating the thermodynamic fluxes and thermodynamic forces.

Having analyzed the above expressions we can easily note that there is certain
arbitrariness in choosing the thermodynamic fluxes and thermodynamic forces. As
far as there is no possibility of getting rid of this arbitrariness completely within the
framework of phenomenological non-equilibrium thermodynamics, it is necessary to
do a number of significant clarifications in the case of a linear relationship between
fluxes and thermodynamic forces (Onsager, 1931).

Consider a systemwhose equilibrium state is defined by a set of macroparameters
a1, a2, . . . , an, b1, b2, . . . , bm. Assume that the parameters ai are even ones with respect
to time reversion operation ( ⃗r → ⃗r, p⃗ → −p⃗, ⃗s → − ⃗s, where p⃗, ⃗s are the vectors of
momentum and spin, respectively), variables bi being odd parameters relative to this
operation. Let us suppose that, in the equilibrium state, the system is characterized
by equilibrium values of the a0i and b0i parameters. Now we introduce small devia-
tions of the non-equilibrium parameters from the equilibrium ones: αi = ai − a0i , and
βi = bi−b0i , and expand the expression for the system entropy into a series in small de-
viations of themacroparameters αi and βi. Taking into account the entropy invariance
in respect of time reversion operation and leaving only the first terms in expansion for
entropy of the non-equilibrium system S, we can obtain the following equation:

S = S0 − 1
2

n
∑
i,k=1

Aikαiαk −
1
2

m
∑
i,k=1

Bikβiβk , (1.16)

where S0 is the entropy of the equilibrium system, Aik and Bik is for some symmetric
matrices of the positive-definite coefficients:

Aik = −
d2S

dαidαk

αi=0βj=0
, Bjl = −

d2S
dβjdβl

αi=0βj=0
,

i = 1, 2 . . . , n,
j = 1, 2, . . . ,m.

Positive definiteness of the matrices Aik, Bjl follows from the extremality of entropy in
an equilibrium state (entropy is a concave upward function of its parameters α and β,
and has a maximum at the point α = β = 0).
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8 | 1 Phenomenological thermodynamics of irreversible processes

Now, one can determine the generalized thermodynamic forcesXα
i andX

β
i and the

generalized thermodynamic fluxes Iαi and I
β
i by the following relations:

Xα
i =

dS
dαi
= −

n
∑
k=1

Aikαk , Xβ
i =

dS
dβi
= −

m
∑
k=1

Bikβk , (1.17)

Iαi =
dαi
dt
, Iβi =

dβi
dt
. (1.18)

In virtue of the definition of the expressions (1.17), (1.18), provided that the time rever-
sion operation takes place, we have Xα

i → Xα
i , X

β
i → −X

β
i , I

α
i → −I

α
i , I

β
i → Iβi .

Consider the generalized fluxes Iαi and Iβi . Having assumed that the parameters
αi(t) and βi(t) introduced characterize the non-equilibrium state of the system com-
pletely, it becomes obvious that the generalized fluxes Iαi and I

β
i also are functions of

these parameters:

Iλi = I
λ
i ({αk}, {βl}), λ = α, β,

where {αk} and {βl} is for complete sets of αk and βl parameters.
Then, having expanded the fluxes in the powers of αi and βj up to linear terms, we

can express them via deviations of the thermodynamic parameters from the state of
equilibrium:

Iαi =
n
∑
k=1

λ(αα)ik αk +
m
∑
k=1

λ(αβ)ik βk ,

Iβi =
n
∑
k=1

λ(βα)ik αk +
m
∑
k=1

λ(ββ)ik βk . (1.19)

Using the definition of the thermodynamic forces (1.17), we can express the parame-
ters αk and βk in formula (1.19) via the thermodynamic forces Xα

i and Xβ
i , since this

operation can be reduced to solving a system of linear algebraic equations. Thus, un-
der assumptions made about the weak non-equilibrium it is always possible to write
down linear relations between the generalized thermodynamic fluxes Iγi , and general-
ized thermodynamic forces Xδ

k , introducing the generalized kinetic coefficients L(γδ)ik :

Iαi =
n
∑
k=1

L(αα)ik Xα
k +

m
∑
k=1

L(αβ)ik Xβ
k ,

Iβi =
n
∑
k=1

L(βα)ik Xα
k +

m
∑
k=1

L(ββ)ik Xβ
k . (1.20)

Definitions (1.17), (1.18) allowone to obtain auseful expression for entropyproduction.
Indeed, if there is no entropy flow through the boundary of a volume, the differentia-
tion over time of the expression (1.16) for the system’s entropy gives a simple relation
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1.1 Main postulates of non-equilibrium thermodynamics | 9

provided that we use the definitions of the thermodynamic fluxes (1.18) and thermo-
dynamic forces (1.17)

dS
dt
=∑

i,λ
Iλi X

λ
i . (1.21)

Thermodynamic fluxes and thermodynamic forces, satisfying the relation (1.21), are
often called conjugate fluxes and forces.

1.1.5 Generalized transport coefficients and the Onsager symmetry relations

The L(γδ)ik coefficients of a linear relationship between generalized thermodynamic
fluxes and generalized thermodynamic forces are often referred to as the Onsager
coefficients. In phenomenological non-equilibrium thermodynamics an explicit form
of these coefficients is not disclosed. Their physical meaning and an explicit expres-
sion for different systems can only be found in the context of the molecular-kinetic
theory. We draw the reader’s attention to the fact that in the framework of linear
non-equilibrium thermodynamics, the Onsager coefficients are calculated by aver-
aging over an equilibrium state of the system. Therefore, the dissipation process of
large-scale equilibrium fluctuations should be described by using the same factors.
This facilitates the analysis of properties of transport coefficients because during the
analysis of fluctuations in the equilibrium system one can use properties arising from
its symmetry.

The symmetry properties of the L(γδ)ik coefficients were first determined by On-
sager [4]. We give these symmetry relations in the presence of an external magnetic
field H⃗ without proof it will be represented later (see Chapter 5):

L(λγ)ik (H⃗) = ελεγL
(γλ)
ki (−H⃗),

λ = α, β, γ = α, β, εα = 1, εβ = −1. (1.22)

Furthermore, we can make sure that the Onsager symmetry relations (1.22) are really
valid if the kinetic coefficients are well-defined.

As an example of an application of equations (1.22), we ascertain the symmetry
relations for the kinetic coefficients involved in equation (1.15). In the given case, the
thermodynamic forces ε⃗ and ∇⃗T are even in respect of time reversion operation, ⃗J and
⃗JQ fluxes are odd ones, and therefore, one should take λ = γ = α in equation (1.22).
Then, after the denotation Lααik = Lik instead of (1.22), the new equation reads

Lik(H⃗) = Lki(−H⃗). (1.23)

Formula (1.15) contains two vector flows, so the set of equations (1.20) for this case can
be written down as follows:

⃗I1 = L11X⃗1 + L12X⃗2,
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10 | 1 Phenomenological thermodynamics of irreversible processes

⃗I2 = L21X⃗1 + L22X⃗2. (1.24)

In the expression (1.24) the Lij coefficients are tensors of a second rank.
Let us determine generalized fluxes and generalized thermodynamic forces in

such a way that the ratio (1.21) for entropy production should coincide with the ex-
pression (1.11) provided that there is no entropy flow through the surface, that bounds
the volume. Comparing (1.11) and (1.21), one should take the following system of
definitions:

⃗I1 = ⃗J, ⃗I2 = ⃗JQ, X⃗1 =
ε⃗
T
, X⃗2 = −

∇⃗T
T2
. (1.25)

Obviously, the generalized fluxes and generalized thermodynamic forces can be de-
termined in another way, since the expression for entropy production (1.21) contains
only binary combinations of the generalized fluxes and generalized forces. Once the
generalized fluxes and generalized thermodynamic forces are found, using the rela-
tions (1.21), (1.24), we can calculate the Onsager coefficients:

L11 = σ̂T , L12 = β̂T
2, L21 = ̂χT , L22 = κ̂T

2. (1.26)

In the isotropic case, when the kinetic coefficients are scalar quantities, the undoubt-
edly important relation χ = βT follows from the relations (1.26). For anisotropic sys-
tems, by introducing additional tensor indices for the kinetic coefficients:

Lik11 = σikT , Lik12 = βikT
2,

Lik21 = χikT , Lik22 = κikT
2, i, k = x, y, z, (1.27)

basing on the formula (1.22) we can obtain the following corollaries of the symmetry
principle of the Onsager kinetic coefficients:

σik(H⃗) = σki(−H⃗), βik(H⃗) = βki(−H⃗), χik(H⃗) = χki(−H⃗),

κik(H) = κki(−H⃗), χik(H⃗) = Tβki(−H⃗). (1.28)

Other applications of the symmetry principle of the Onsager kinetic coefficients can
be found in the book written by Gurov. This book has small volume, but is of splendid
style [5].

1.1.6 Variational principles in linear non-equilibrium thermodynamics

Basic laws of irreversible process thermodynamics were established by generalizing
the results of equilibrium thermodynamics and phenomenological transport laws
such as Fourier’s law, which relates the heat flux and the temperature gradient. These
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1.1 Main postulates of non-equilibrium thermodynamics | 11

phenomenological laws allow one to determine the kinetic coefficients and equa-
tions of interrelationship of thermodynamic fluxes and thermodynamic forces. Along
with the inductive method, there is another, path-deductive one, when equations of
non-equilibrium thermodynamics are derived from some variational principle, just
as it is done in mechanics or electrodynamics. For the sake of better understanding
the essence of the variational principles, we list again the basic postulates of linear
Onsager’s thermodynamics.
1. A linear relationship between generalized thermodynamic forces and generalized

fluxes is

Ii =∑
k
LikXk .

2. The Onsager symmetry relations (reciprocity) have the form

Lik = Lki,

if only odd fluxes take place in respect of the time reversion operation, amagnetic
field being absent.

3. If there is no entropy flux through a surface, the system’s entropy production is de-
termined by the positive-definite symmetric quadratic form of generalized forces:

Ṡ =∑
i
XiIi =∑

i,k
LikXiXk ≥ 0.

Onsager was the first to show that the relations listed in points 1–3 can be derived from
some variational principle. We determine the dissipative function:

φ(X,X) = 1
2
∑
i,k
LikXiXk , (1.29)

which as well as the entropy production is a measure of the intensity of irreversible
processes occurring in a system. Next we write down the expression for entropy pro-
duction at fixed external fluxes in the form of the binary combination of the general-
ized fluxes and generalized thermodynamic forces Ṡ(I ,X) = ∑i XiIi. And we determine
the functional L(I ,X) by the relation

L(I ,X) = Ṡ(I ,X) − φ(X,X). (1.30)

According to Onsager, the functional (1.30) has maximum for a process really occur-
ring in a system as compared with other processes that have the same fluxes I, but
different conjugate forces X:

δ(Ṡ(I ,X) − φ(X,X)) = δ(∑
i
IiXi −

1
2
∑
i,k
LikXiXk) =∑

i
(Ii −∑

k
LikXk)δXi. (1.31)
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In deriving the second part of (1.31), the symmetry property of kinetic coefficients has
been used. If the generalized forces Xi acting actually provide an extremum of the
functional L(I ,X) for the specified generalized fluxes Ii, the variation (1.31) should be
equal to nought. Because the variations δXi are arbitrary, the linear relationship be-
tween generalized fluxes and generalized thermodynamic forces immediately follows
from the second part of formula (1.31):

Ii =∑
k
LikXk .

Thus, the symmetry principle (reciprocity) of the kinetic coefficients allows formulat-
ing the variational principle to derive linear equations of interrelationship between
generalized fluxes and generalized thermodynamics forces.

1.1.7 Minimum entropy production principle for weakly non-equilibrium steady
states

There are other formulations of the variational principle. A more detailed discussion
of this issue can be found in monographs [6, 7]. Let us consider the formulation of
the variational principle for steady-state systems, when thermodynamic fluxes are
constant. In practical terms, this important special case is realized in open non-
equilibrium systems.Which physical quantity has the extreme properties under these
conditions? An answer to this question is provided by Prigogine’s variational princi-
ple: a stationaryweakly non-equilibrium state of an open systemwhere an irreversible
process proceeds is characterized by minimum entropy production under specified
external conditions that impede to an attainment of the equilibrium.

As an instance of the application of the Prigogine’s variational principle, we con-
sider the process of transferring both heat andmatter between two phases when there
is a difference in temperatures between them. Let I1 be the heat flux and I2 be the flow
of matter, X1 and X2 are the corresponding thermodynamic forces conjugate to these
fluxes. Entropy production for this system can be mathematically presented as a pos-
itive definite quadratic form. Taking into account the Onsager reciprocity relations,
one obtains

Ṡ = L11X
2
1 + 2L12X1X2 + L22X

2
2 . (1.32)

Formally, considering the extremality conditions and varying the entropy produc-
tion (1.32) in the thermodynamic forces X1 and X2, we can write down two equations:

dṠ
dX1

X2
δX1 = I1δX1 = 2(L11X1 + L12X2)δX1 = 0, (1.33)

dṠ
dX2

X1
δX2 = I2δX2 = 2(L22X2 + L12X1)δX2 = 0. (1.34)
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Equality to zero in the expression (1.33) is satisfied if the system is under conditions
where the force X2 is controllable. Then, by virtue of arbitrariness of the variation δX1,
the formula (1.33) implies that the flux of I1 = dṠ/dX1 = 0. Similarly, if it is possible to
realize the condition when the force X1 is controllable, then the flux I2 will be equal
to zero, which follows from equation (1.34). The thermodynamic force conjugated to
the heat flux I1, is X1 ∼ ∇T. Obviously, the condition of the temperature gradient con-
stancy is quite easy to implement. The thermodynamical forceX2 is proportional to the
gradient of the chemical potential X2 ∼ ∇ζ and the condition of the chemical potential
constancy under the variation of entropy production in force X1, most likely, is unreal-
istic. In this situation, from Prigogine’s principle of minimum entropy production we
can see that the heat flux I1 ̸= 0 and the flow of matter I2 = 0. The state found corre-
sponds exactly to a minimum of entropy production (1.32), since this extreme point is
a minimum for the function of two variables:

Ṡ = L11X
2
1 + 2L12X1X2 + L22X

2
2

if the following condition is valid:

L11L22 − L
2
12 > 0.

This condition coincideswith the quadratic formpositivity condition (1.32) and, there-
fore, it is fulfilled automatically.

Prigogine’s principle of minimum entropy production can be generalized for the
case ofN independent forces, when k of them remain constant due to any external fac-
tors. Moreover, the minimum entropy production principle provides equality to zero
of N − k fluxes and constancy of k fluxes (fluxes corresponding to non-fixed forces
disappear). If none of the forces is fixed, then all fluxes will be equal to zero and the
system is still in the equilibrium state.

The principle of minimum entropy production in steady states allows for mak-
ing a conclusion about stability of weakly non-equilibrium stationary states. After a
while, the system’s steady state with minimum entropy production will be set under
the influence of time-independent external forces. When a sufficiently small change
in the system state is the result of fluctuations of some parameter characterizing its
non-equilibrium state, in the system there arise processes leading to restoration of
the stationary non-equilibrium state. In other words, fluctuations occurring in a sys-
tem are dissipated not disturbing the stationary non-equilibrium state of this system.
It is thought that themechanisms of the system’s response to fluctuations inmacropa-
rameters as well as the action of external forces are identical. Then, if the system at
the non-equilibrium steady state experiences the action of an external force, there
take place processes that tend toweaken (or even to compensate) this imposed change
(the principle of Le Chatelier–Braun). It is natural to assume, for this reason, that the
steady state of the weakly non-equilibrium system is stable.
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1.2 On the application of the Onsager theory

1.2.1 Thermoelectric phenomena. The Peltier, Seebeck, Thomson effects and their
relationship

There are a large number of different effects that occur in the presence of a magnetic
field, electric current, and temperature gradient. These effects can be ascertained un-
der various measurement conditions, at different combinations of the thermal and
the electric current. It suffices to say that only in a transverse magnetic field there
exist theoretically about 560 different effects [8]. We discuss only some fundamental
kinetic phenomena for analyzing properties of solids.

Let us consider the kinetic effects in an isotropic conductor, when there is only
an external electric field and a temperature gradient. The set of equations (1.15) to be
rewritten in such away that the electric current density ⃗J and the temperature gradient
∇⃗T, which are under control in the experiment, may appear in the right-hand side of
the phenomenological equations

ε⃗ = ρ̂ ⃗J + α̂∇⃗T , ⃗JQ = Π̂ ⃗J − ̂κ̃∇⃗T , (1.35)

ρ̂ = σ̂−1, α̂ = σ̂−1β̂, Π̂ = ̂χσ̂−1, ̂κ̃ = κ̂ − ̂χα̂. (1.36)

In writing the phenomenological transport equations (1.35) the new transport coeffi-
cients have been introduced: the electrical resistivity ρ̂, the Seebeck coefficient (the
coefficient of differential thermopower) α̂, the Peltier coefficient Π̂, and the coefficient
of thermal conductivity ̂κ̃. The physical interpretation of these coefficients and also the
conditions under which they can be experimentally determined are discussed below.

The Peltier effect
Let ⃗J be the electric current flowing through a sample and a temperature gradient be
equal to zero. As it follows from the second equation of (1.35), this causes the heat flux
⃗JQ = Π̂ ⃗J in the sample. In any homogeneous material, this heat flux is impossible to
detect, but when the current is made to flow through the conductive circuit of twoma-
terials with different coefficients Π̂1 and Π̂2, then in addition to the Joule heat, some
amount of the Peltier heat Q is released or absorbed (depending on the current direc-
tion) at the points of contact of two dissimilar conductors with different values of the
Peltier coefficients:

Q = (Π̂1 − Π̂2)tSk . (1.37)

The release of the Peltier heat at the junction of the two materials with the Peltier
coefficients Π̂1 and Π̂2 being different in value bears the name of the Peltier effect. As
follows from formula (1.37) the amount of the Peltier heat is directly proportional to
both the contact area Sk and the time t, during which the electric current is passed
through the circuit.
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The Peltier effect can be qualitatively explained in terms of a scheme of the band
model of the conductor near the contact (Figure 1.1). Consider the case when there is
a contact between a metal and an electronic semiconductor in which free electrons
obey the Maxwell–Boltzmann statistics.

Figure 1.1: Scheme of the band structure in semiconductor–metal contact.

A condition for the equilibrium of the electron gas would be the equality of the chem-
ical potentials in both materials. Since the chemical potential lies below the bottom
of the conduction band in the non-degenerate semiconductor, the conductivity elec-
trons in the semiconductor have a higher energy level than the Fermi energy, as in the
metal their energy is equal to the Fermi energy. Therefore, the passage of each electron
from the semiconductor into the metal in the contact region is characterized by the
release of additional energy. This electron transfer from the metal to the semiconduc-
tor is accompanied by overcoming the potential barrier and only electrons possessing
sufficient kinetic energy are able to surmount it.

This process leads to a decrease in the number of high-speed electrons in the con-
tact region. Thermal equilibrium, in this case, becomes broken, and its recovery re-
quires a heat delivery, consequently, the contact region will be cooled. The Peltier ef-
fect is the underlying technology that permits one to construct various types of refrig-
erators which are widely used for cooling electronic devices, including PC processors.

The Seebeck effect
Now, we assume that ⃗J = 0, and ∇⃗T ̸= 0. In this case, from the first equation (1.35),
after recalling the definition of the electrochemical potential gradient

ε⃗ = E⃗ − 1
e
∇⃗ζ ,
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the thermopower can be written in the form

E⃗( ⃗r) = 1
e
∇⃗ζ ( ⃗r) + α̂∇⃗T . (1.38)

The essence of the phenomenon of the thermopower or the Seebeck effect consists in
the fact that in an electric circuit that is characterized by a series connection of con-
ductors there arises an electromotive power (thermopower), provided that the junc-
tions of the circuit conductors are sustained at different temperatures. In the simplest
case, if such a circuit consists of two conductors, it is called a thermoelement or ther-
mocouple. The α̂ coefficient, which virtually determines the thermopower value with
temperature difference in 1 K between the junctions, bears the name of the differential
thermopower coefficient or the Seebeck coefficient.

Consider a thermocouple composed of isotropic samples of metal and semicon-
ductor with the αm and αs Seebeck coefficients, respectively. Such a thermocouple is
schematically shown in Figure 1.2.

Figure 1.2: The Seebeck effect measurement scheme.

We find the potential difference between points C and D at the scheme in Figure 1.2,
via using formula (1.38); as a result we obtain

VCD =
D

∫
C

E⃗( ⃗r) d ⃗r =
D

∫
C

α( ⃗r)∇⃗T d ⃗r + 1
e

D

∫
C

∇⃗ζ d ⃗r. (1.39)

The second integral on the right-hand side of formula (1.39) does not contribute, since
the points C andD are assumed to be in the isothermal cross-sectionwith the chemical
potential ζ being the same.

Passing from integration over coordinates to integration over temperature in the
second term of (1.39), after the following obvious transformations VCD acquires the
form

VCD =
T2

∫
T1

(αs(T) − αm(T)) dT ≃ (αs − αm)(T2 − T1). (1.40)
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The second equality in the formula (1.40) is written for the case, when a temperature
dependence of both αs and αm in the temperature range fromT1 toT2 can be neglected.

As follows from formula (1.40), it is impossible to experimentally find the coeffi-
cient of thedifferential thermopower for one of thematerials, since thepotential differ-
ence measured is determined by the difference of simultaneously both of the Seebeck
coefficients for materials forming the thermocouple. However, one can select a ther-
mocouplewith sufficient accuracy for practical purposes so that one of the coefficients
(αs) be much larger than the other (αm). Indeed, as will be shown in the next chapters
if temperatures are rather low, then αm/αs ≃ kBT/ζm ≈ 10−2 (kB is for the Boltzmann
constant, ζm is for the Fermi energy of electrons in the metal). In this case, the value
of the Seebeck coefficient can be found for any semiconducting material with good
accuracy. Greater accuracy can be achieved only within a low temperature range by
using a thermocouple when the material of one of the arms of the thermocouple is
in a superconducting state (differential thermopower is zero in the superconducting
state).

The Thomson effect
TheThomsonphenomenon is that, if an electrical current is passed throughahomoge-
neous conductor, the current-carrying conductor with a temperature gradient applied
along it, releases heat called the Thomson heat Q in addition to the Joule heat. The
Thomson heat is proportional to both the electric current density and the tempera-
ture gradient:

Q = −σT ⃗J∇⃗Tt, (1.41)

where σT is the Thomson coefficient.
We express the coefficient σT via the kinetic coefficients that enter the phe-

nomenological transport equations (1.35). Consider equation (1.10), expressing the
balance of heat, and insert into it the expressions for the electrochemical potential
gradient ε⃗ and heat flux density ⃗JQ. After simple transformations we obtain the fol-
lowing formula:

dQ
dt
= div( ̂κ̃∇⃗T) + ⃗Jρ̂ ⃗J + ⃗J(α̂ − dΠ̂

dT
)∇⃗T . (1.42)

In deriving this equation we have used an assumption of the constancy of the charge
flux density ⃗J along the sample and taken into account that the Peltier coefficient de-
pends on the coordinates only in terms of temperature: Π̂( ⃗r) = Π̂(T( ⃗r)). Then,

div(Π̂ ⃗J) = ⃗J dΠ̂
dT
∇⃗T .

The first summand on the right-hand side of equation (1.42) determines the heat flux
through a surface of the volume of the conductor due to the phenomenon of heat con-
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duction. The coefficient ̂κ̃ has the meaning of the heat conduction of an electron sys-
tem. The second summand describes the volumetric generation of Joule heat as the
coefficient ρ̂ has meaning of the electrical resistivity. The third summand describes
the release of the Thomson heat, therefore

σ̂T = −(α̂ −
dΠ̂
dT
). (1.43)

The expressions (1.28), (1.36) imply a simple relationship between the Π̂ and α̂ trans-
port coefficients: Π̂ = α̂T. Substituting this result into the expression (1.43), we have
another definition of the Thomson coefficient:

σ̂T = T
dα̂
dT
. (1.44)

It is easy to understand the physical cause of the Thomson effect in terms of a pictorial
presentation about motion of conduction electrons in the sample with a temperature
gradient. Figure 1.3 shows two isothermal cross-sections of the sample marked with
numbers 1 and 2. The gradient-depicting filling of the rectangle schematically repre-
sents the temperature gradient. Let us suppose that in the cross-section 1 of the sample
the temperatureT1 is higher than the temperatureT2 in the cross-section 2, andmotion
of electrons coincides with the direction of the arrow.

Figure 1.3: Scheme illustrating the essence of the Thomson effect.

Weassume that the distance between the cross-sections 1 and 2 is comparablewith the
free path of electrons in the sample and when moving between these cross-sections,
electrons do not experience collisions with the lattice. Electrons in the cross-section
1 were in a thermal equilibrium state with the lattice and by going over to the cross-
section 2 they are turned into carriers of the excess kinetic energy. Thermalizing they
give away the excess energy to their surroundings in the cross-section 2. It is this en-
ergy that is released in the form of Thomson heat. To heat the middle of the current-
carrying sample is the easiest way to observe the Thomson effect. In this case, the
temperature difference at the edges of the conductor can be easily discerned.

The Peltier effect, the Thomson effect, and the Seebeck effect are closely related
between themselves. Therefore, the dependence between differential thermoelectric
power and temperature allows one to find both the Peltier coefficient and the Thom-
son coefficient. At the same time, the expression (1.44) allows one to determine the
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dependence α(T), if the values of the Thomson coefficient are known over the wide
temperature range. Indeed, upon integrating (1.44) one obtains

α(T) =
T

∫
0

σT (T)
T

dT . (1.45)

The above case is difficult enough to implement in practice due to complex problems
in high-precision measurement of the Thomson effect.

Concluding this brief review of thermoelectric effects, consider an example of ap-
plication of the Onsager reciprocal relations as far as an analysis of thermoelectric
phenomena is concerned.

Problem 1.2. Generalized thermodynamic fluxes and generalized thermodynamic
forces can be determined in different ways. If there is only an electric field and a tem-
perature gradient, entropy production (without regard to the flux through a surface),
as is known, is determined by formula (1.11):

dS
dt
= − ⃗JQ
∇⃗T
T2
+ ⃗J ε⃗

T
.

Therefore, two generalized fluxes can be written as

I1 = ε⃗, I2 = ⃗JQ.

And their conjugate generalized thermodynamic forces are calculated with formulas:

X1 =
⃗J
T
, X2 = −

∇⃗T
T2
.

In spite of determining in such a way, the generalized forces and generalized fluxes
can still be calculated by the relations (1.21).

Expressing the generalized kinetic coefficients Lij via tensor quantities involved
in equation (1.35), using the above determination of the generalized fluxes and gener-
alized thermodynamic forces, we establish, also, an interrelationship of the tensors Π̂
and α̂, via employment of the Onsager relation of reciprocity.

Solution. We write down the transport equations in two ways either using the gen-
eralized fluxes and forces being defined in the statement of problem or using formu-
las (1.35). As a result, we obtain

ε⃗ = L11
⃗J
T
+ L12(−

∇⃗T
T2
),

⃗JQ = L21
⃗J
T
+ L22(−

∇⃗T
T2
), (1.46)

ε⃗ = ρ̂ ⃗J + α̂∇⃗T , ⃗JQ = Π̂ ⃗J − ̂κ̃∇⃗T . (1.47)
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Upon comparing the expressions (1.46) and (1.47), it is easy to find the values of the Lij
coefficients:

L11 = ρ̂T , L12 = −α̂T
2,

L21 = Π̂T , L22 = ̂κ̃T
2. (1.48)

To establish the relationship between the Peltier tensors and differential thermoelec-
tric power, we use the Onsager reciprocity relations. As far as the thermodynamic
flux I1, in given case, is even term with respect to time-reversal operation and the flux
I2 is odd, the symmetry relations in accordance with formula (1.22) give the equality
L12 = −L21, whence it follows that the desired interrelation takes the form: Π̂ = α̂T.

1.2.2 Effects in an external magnetic field

The generation of an external magnetic field leads to the appearance of additional
anisotropy of crystal properties. Indeed, let a medium before switching the external
field be isotropic. However, when the external field is present, the system becomes
anisotropic and a direction of the anisotropy coincides with that of the external mag-
netic field (axisZ). Themotion of a charged particle along themagnetic field is a quasi-
free motion, whereas charged particles with non-zero velocity experience an action of
the Lorentz force in a plane perpendicular to the axis Z.

All directions remain equivalent in the plane perpendicular to H⃗. Frenkel sug-
gested calling such an anisotropy: gyrotropy. Physical properties in such a gyrotropic
medium are unchanged under the rotation of the coordinate system around the axis Z
to an arbitrary angle. Hence it follows that all the kinetic coefficients should be in-
variant with respect to this transformation. From these considerations, one finds, for
example, the following equality for the electrical resistivity tensor:

ρik = αilαkmρlm = ρik , (1.49)

where ρik– value of the electrical resistivity tensor after transformation of the coor-
dinate system rotation around the axis Z to an arbitrary angle; αil is for matrix that
defines this transformation.

The invariance requirement for the electrical resistivity tensor with respect to the
transformation of rotations around the axis Z to an arbitrary angle (1.49) is reduced to
the fact that the structure of this tensor must have the form:

ρik =(
ρxx ρxy 0
−ρxy ρxx 0
0 0 ρzz

) . (1.50)

Obviously, the tensor structure for other kinetic coefficients in the magnetic field will
be exactly the same.
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We rewrite the set of equations (1.35) for the case when H⃗ ̸= 0 by considering the
tensor structure of the kinetic coefficients (1.50):

εx = ρxxJx + ρxyJy + αxx∇xT + αxy∇yT , (1.51)
εy = −ρxyJx + ρxxJy − αxy∇xT + αxx∇yT , (1.52)
εz = ρzzJz + αzz∇zT . (1.53)
JQx = ΠxxJx + ΠxyJy − κ̃xx∇xT − κ̃xy∇yT , (1.54)
JQy = −ΠxyJx + ΠxxJy + κ̃xy∇xT − κ̃xx∇yT , (1.55)

JQz = ΠzzJz − κ̃zz∇zT . (1.56)

Using the set of equations of phenomenological transport phenomena (1.51)–(1.56),
we may proceed to discuss the principal phenomena in a magnetic field.

Effects in a longitudinal magnetic field
As follows from formulas (1.53), (1.56), the magnetic field does not lead to additional
effects, if a temperature gradient and an electric field are directed along the axis Z. In
reality, the magnetic field can alter longitudinal components of the electrical resistiv-
ity, differential thermopower, and electronic thermoconductivity. In semiconductors,
nature of these effects is usually associatedwith the influence of themagnetic field on
the state of scatterers, which determine the relaxation both momentum and energy of
current carriers. Longitudinal effects may occur also in metals with a complex struc-
ture of the Fermi surface, where they are used for studying its structure. In any case,
interpretation of these effects is beyond the frame of the introductory course in trans-
port phenomena, and further the effects in a longitudinal field will not be considered.

Galvanomagnetic phenomena. The Hall effect
One can distinguish isothermal and adiabatic effects depending on experimental con-
ditions. If an investigated sample is placed in a heat bath, the effect is called the
isothermal, but if this sample is placed in an insulated environment, the effect is said
to be adiabatic. It would be expedient to start the consideration of isothermal phe-
nomena with the Hall effect.

The Hall effect consists in the appearance of the electric field Ey if the following
conditions aremet: the passage of the electric current Jx through an electrical conduc-
tor and equality to zero of temperature gradients in it (assuming that the magnetic
fieldH is applied along the axis Z). The typical observation geometry of the Hall effect
is shown in Figure 1.4.

The Hall effect is usually characterized by the Hall constant R. On the basis of
equation (1.52), provided that Jy = 0, ∇xT = 0, ∇yT = 0, we have

R =
εy
JxH
=

Ey
JxH
=
−ρxy
H
. (1.57)
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Figure 1.4: Scheme to observe the Hall effect. Potential difference occurs between the front and rear
walls of the sample.

It would seem that the nature of the Hall potential difference is quite obvious: the pas-
sage of an electric current through a conductor along the X-axis induces the Lorentz
force acting on the electrons along the Y -axis. Therefore, an excess negative charge is
generated on the rear wall of the sample, with an excess positive charge arising on the
front wall of that (see Figure 1.4). Such an elementary reasoning does not stand up to
scrutiny because the velocity components vx of all electrons directed along the X-axis
are assumed to be the same. If the speeds of all electrons are identical, a charge con-
centration gradient leads to the production of the electric field, which entirely com-
pensates an action of the magnetic component of the Lorentz force.

In fact, electrons are distributed in velocities, therefore, the total compensation
of the Lorentz force by the Hall field is not observed, i. e. high-speed electrons move
to the rear wall of the sample, whereas slow-speed ones head on towards the front
wall (see Figure 1.4). This is easily seen by considering the distribution of the current
carries over their velocities in the interpretation of galvanomagnetic phenomena. For
example, the change of the electrical resistance in a magnetic field or the adiabatic
Ettingshausen effect just would be equal to zero, unless one does not consider the
velocity electron distribution.We recall that the Ettingshausen effect is the creation of
a temperature gradient ∇⃗yT between two points of a wire when an electric current, Jx,
flows through this conductor.

Change of electrical resistance in a magnetic field
As was mentioned above, the electrical resistance change in a magnetic field can be
explained only by considering the velocity distribution of electrons. In this case, the
magnetic component of the Lorentz force is compensated by an action of the Hall po-
tential difference only for electrons, having a certain average speed. High-speed and
slow-speed electronsmove in circular segments of the Larmor orbits between two scat-
tering events. This invariably leads to a decrease in their mean free path along the
direction of the electric field. For this reason, one should expect increasing electrical
resistance in the magnetic field.
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The change of the transversal resistance is usually characterized by the relation-
ship

△ρxx
ρxx
=
ρxx(H) − ρxx(0)

ρxx(0)
. (1.58)

Adiabatic galvanomagnetic phenomena. The Ettingshausen effect
Let us proceed to the consideration of adiabatic galvanomagnetic phenomena. If
Jx ̸= 0, Jy = 0, JQy = 0, ∇xT = 0, equation (1.55) implies creation of a tempera-
ture gradient in the Y -direction when passing an electric current along axis X. This
phenomenon is referred to as the Ettingshausen effect and characterized by the coef-
ficient P:

P = −
∇yT
HJx
=

Πxy

Hκ̃xx
. (1.59)

The temperature difference between the front and rear walls (see Figure 1.4) of the
sample is caused by the fact that high-speed electrons (“hot” electrons) are deflected
to the rear wall of the conductor, whereas slow-speed electrons, which have a velocity
of motion lesser than some average velocity, are drawn to the front wall of this con-
ductor. It should be emphasized that the magnetic component of the Lorentz force for
the average velocity of the electrons is compensated by the Hall field. Thermalizing,
high-speed electrons give away their excess energy to the lattice thereby increasing
temperature of the sample face. On the contrary, slow-speed electrons, in virtue of the
energy relaxation processes, absorb part of the energy from the lattice, which results
in that the temperature of the front wall of the sample decreases. Thus, the tempera-
ture difference between the two opposite faces of the sample is generated.

The Hall effect measured under adiabatic conditions
If conditions of the adiabatic insulation (JQy = 0) are met along axis Y and only the
component of the current Jx, is non-zero, then putting also that∇xT = 0,we can obtain
the following relation from equations (1.55) and (1.52):

∇yT = −
ΠxyJx
κ̃xx
; (1.60)

εy = −(ρxy +
αxxΠxy

κ̃xx
)Jx . (1.61)

Having determined the Hall coefficient measured under the adiabatic conditions by
simple ratio Rad = εy/JxH, one can proceed to:

Rad = −
1
H
(ρxy +

αxxΠxy

κ̃xx
). (1.62)
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The difference between the isothermal and adiabatic Hall effects comes about due to
a temperature gradient arising in the Y -direction under adiabatic conditions. Due to
the presence of the Seebeck effect this temperature gradient produces an additional
thermoelectric field in this direction.

The Nernst effect
TheNernst effect is theproductionof a temperature gradient alongX-axiswithoutheat
flux along it. This effect is measured under the following conditions: Jx ̸= 0, Jy = 0,
JQx = 0, ∇yT = 0. In this case, from equation (1.54) the Nernst coefficient B is

B = ∇xT
Jx
=
Πxx
κ̃xx
. (1.63)

It should be noted that the Nernst effect is also possible in the absence of an external
magnetic field. Amagnetic field only changes the coefficient B. The physical nature of
the Nernst effect is quite simple: the passage of electric current through a sample is
accompanied by a heat flux (see formula (1.35)). This leads to the heating of one and
cooling of the other end of the sample in conditions of the adiabatic insulation in the
direction of the axis X. The temperature difference at the ends of the sample grows up
as long as the heat flux, which arises due to the presence of the temperature gradient,
is compensated by heat flux associated with the Peltier phenomenon.

When measuring the Nernst effect another situation is possible, namely, when
instead of the condition∇yT = 0 the condition JQy = 0 is satisfied (the adiabatic Nernst
effect). In this case, equations (1.54), (1.55) enable obtaining the relation

Bad =
∇xT
Jx
=
Πxx κ̃xx + Πxyκ̃xy

κ̃2xx + κ̃2xy
. (1.64)

Transverse resistivity under adiabatic conditions
Let there be fulfilled the conditions as Jx ̸= 0, Jy = 0, JQy = 0, ∇xT = 0. Define the
component of the resistivity tensor in adiabatic conditions of measurement ρxx, by
the condition ρxxad = εx/Jx. Then, using equations (1.51), (1.60), we have

ρxxad = ρxx −
αxyΠxy

κ̃xx
. (1.65)

The second term on the right-hand side of formula (1.65) is caused by the thermomag-
netic transversal Nernst–Ettingshausen effect, leading to an additional electric field
in the X-direction in the presence of a temperature gradient in the Y -direction.

Thermomagnetic phenomena. The transverse Nernst–Ettingshausen effect
Thermomagnetic phenomena occur in the presence of a temperature gradient along
one of the axes of a sample and can be detected under both isothermal and adiabatic
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conditions. It is worth emphasizing that under isothermal conditions the rest faces
of the sample are in contact with a thermostat, whereas under adiabatic conditions
they are in conditions of adiabatic insulation. In this case, heat flux along different
directions is zero. We start the consideration with the isothermal transverse Nernst–
Ettingshausen effect.

The transverse Nernst–Ettingshausen effect consists in the appearance of a trans-
verse potential difference in the Y -direction in the presence of the temperature gradi-
ent ∇xT in the X-direction. Let the conditions be Jx = 0, Jy = 0, ∇yT = 0. Then, using
equation (1.52), we can express the quantity εy as

εy = −αxy∇xT . (1.66)

Typically, the transverse Nernst–Ettingshausen effect is characterized by the coeffi-
cient QNE = αxy/H.

It is of interest todiscuss indetail the causes of theNernst–Ettingshauseneffect, as
well as factors, defining a sign of the effect. Let us consider the n-type semiconductor
sample along which a constant temperature gradient∇xT is sustained and amagnetic
field is applied along the axis Z.

The free time of electrons between collisions, as it will be shown in Chapter 4,
depends on the velocity (energy) of the electrons. This time may either increase or de-
crease with increasing energy of the electrons depending on what kind of scattering
mechanism determines the electron momentum relaxation time. If we consider some
cross-section of the sample in the direction perpendicular to the X-axis, then the pro-
jection of the thermal velocity on the X-axis for electrons moving towards the cold
end of the sample will be higher than the projection of the thermal velocity for elec-
trons traveling in opposite direction. For this reason, these electronswill be differently
deflected by an external magnetic field. Consequently, in the Y -direction there arises
a non-zero electric current. This results in an excess charge that creates the electric
field Ey. The sign of the effect depends on some factors that can be illustrated by the
following simple model [8].

We suppose that the sample (conductor) contains two groups of electrons: elec-
trons in amount of n1 moving from the cold towards the hot end of the sample, have a
velocity v1x and electrons in amount of n2 moving in opposite direction have a velocity
v2x (v2x > v1x). All the electrons move only along X-axis, in the absence of the exter-
nal magnetic field, with the following ratio to be obligatorily fulfilled in the stationary
state:

n1v1x = n2v2x . (1.67)

When placing the conductor into a magnetic field there arises the charge flux in the
Y -direction:

Jy = e(n1v1y − n2v2y) = (n1v1xtgφ1 − n2v2xtgφ2), (1.68)
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whereφ1 = ω0τ1,φ2 = ω0τ2 – angles characterizing the velocity vector change of elec-
trons between two successive collisions, or the Hall angles for slow-speed and high-
speed groups of electrons; ω0 is for frequency of the Larmor precession in a magnetic
field, τ1 and τ2 – the times of covering the free path for electrons with the velocities v1
and v2.

Each of the parametersφ1 = ω0τ1,φ2 = ω0τ2 in a non-quantizingmagnetic field is
much less than unity and, therefore, tgφ1 ≃ φ1, tgφ2 ≃ φ2. Leaving in equation (1.68)
only terms of first order in the small parameter ω0τ, instead of (1.68) one finds the
simple equation

Jy = en1v1xω0(τ1 − τ2), (1.69)

which implies that the sign of the transverse Nernst–Ettingshausen effect depends
on an increase or a decrease in the relaxation time τ with increasing the electron en-
ergy. Thus,whenvarying temperature, the change in signof theNernst–Ettingshausen
effect indicates that the mechanism of the electron momentum relaxation has been
modified. The qualitative conclusions based on the formula (1.69) are valid and con-
firmed completely in the calculation of the quantity QNE on grounds of the solution of
the kinetic equation.

The longitudinal Nernst–Ettingshausen effect
The longitudinal Nernst–Ettingshausen effect is a change of the thermoelectric power
under an external magnetic field. Let the following conditions be met: ∇xT ̸= 0,
∇yT = 0, Jx = Jy = 0. In this case from equation (1.51) we can obtain

εx = αxx(H)∇xT . (1.70)

It is of interest to elucidate on what kind of factors the sign of the change of the differ-
ential thermopower in a magnetic field depends at all. We examine the same conduc-
tor model, used for the analysis of the transverse Nernst–Ettingshausen effect. When
generating an external magnetic field the components of velocities v1x and v2x are
changed and instead of balance equation (1.67) in stationary conditions, one canwrite
down the following formulas:

n1v1x(H) = n

2v2x(H),

v1x(H) = v1x cosω0τ1, v2x(H) = v2x cosω0τ2, (1.71)

where n1 and n2 is for the number of electrons with velocities v1x(H) and v2x(H), re-
spectively.

In expanding cosω0τ in a series in formula (1.71) and retaining the first non-
vanishing terms in small parameter ω0τ, with taking into account the ratio (1.67), we
have

n1
n2
=
n1
n2
(1 +

ω2
0
2
(τ21 − τ

2
2)). (1.72)
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When generating the magnetic field, the number of electrons n1 at the cold end of
the conductor will increase and the change of thermoelectric power will be positive,
if the relaxation time turns out to be high for slow-speed electrons. And vice versa
the effect will be negative, if the electron relaxation time increases with growth of the
velocity v⃗.

The Maggi–Righi–Leduc effect
TheMaggi–Righi–Leduc effect consists in changes in thermal conductivity while plac-
ing a conductor in amagnetic field. The effect is determinedby the conditions∇xT ̸= 0,
∇yT = 0, Jx = Jy = 0. Taking into account the above conditions and equation (1.54) we
obtain the following equality:

κ̃xx(H) = −
JQx
∇xT
. (1.73)

A physical reason for the electronic component change of the thermal conductivity is
actually the same as in the case of the change of the transverse electrical resistivity, a
decrease in the length projection of the electron free path in a magnetic field on the
direction of a temperature gradient.

Adiabatic thermomagnetic effects
All of the above-mentioned isothermal effects have their adiabatic analogs measured
under conditions: Jx = Jy = 0, JQy = 0, ∇xT ̸= 0. The expressions for finding coeffi-
cients that generally characterize the adiabatic transverse and longitudinal Nernst–
Ettingshausen effects and the adiabatic Maggi–Righi–Leduc effect are

QNEad =
1
H
(αxy −

αxx κ̃xy
κ̃xx
), (1.74)

αxx ad = αxx +
αxyκ̃xy
κ̃xx
, (1.75)

κ̃xx ad = κ̃xx +
κ̃2xy
κ̃xx
. (1.76)

The difference between the isothermal and the adiabatic effects is that in adiabatic
insulation conditions there arises an additional temperature gradient, directed along
the Y -axis and acting as a new thermodynamic force. The temperature gradient leads
to the potential difference in the Y -direction in the transverse Nernst–Ettingshausen
effect and determines the appearance of the second terms on the right-hand sides of
formulas (1.75), (1.76). The appearance of the temperature gradient in the Y -direction
is due to the Righi–Leduc effect.
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Indeed, taking into consideration the conditions in which the above adiabatic
thermomagnetic phenomena are detected, equation (1.55) logically implies the equal-
ity below

∇yT =
κ̃xy
κ̃xx
∇xT . (1.77)

Typically, this effect is characterized by the Righi–Leduc coefficient

SRL =
∇yT
H∇xT
.

Based on this definition, it follows from (1.77) that the Righi–Leduc coefficient can be
expressed via components of the tensor of heat conduction

SRL =
κ̃xy
Hκ̃xx
. (1.78)

After substituting the formulas (1.77) into (1.51), (1.52), (1.54), the previously given ex-
pressions (1.74)–(1.76) can easily be obtained for the coefficients, characterizing the
thermomagnetic phenomena in the adiabatic conditions of measurement.

In conclusion of this paragraph we establish some relationships between the ki-
netic coefficients determined in the theory of the above effects. The most obvious is
the fact that all adiabatic effects find expression via kinetic coefficients that are deter-
mined upon isothermal conditions. Indeed,

Rad = R − αxxP, (1.79)

ρxx ad = ρxx − H
2QNEP, (1.80)

QNEad = QNE − αxxSRL, (1.81)

αxx ad = αxx + H
2QNESRL, (1.82)

κ̃xx ad = κ̃xx(1 + H
2S2RL). (1.83)

To derive additional relations between the kinetic coefficients, it is necessary to
make use of the ratio Π̂ = α̂T which follows from the Onsager reciprocity principle, a
number of additional equations of interrelationship:

Bκ̃xx = Tαxx , (1.84)

Pκ̃xx = TQNE, (1.85)

Badκ̃xx ad = Tαxx ad. (1.86)

There are also other relations that do not follow from the general principles of linear
non-equilibrium thermodynamics but are a corollary of the model used.
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1.3 Self-organization in highly non-equilibrium systems

1.3.1 Non-equilibrium dissipative structures

The development of physics, chemistry, and biology during the last century allowed
accumulating a sufficiently large number of examples of highly non-equilibrium sys-
tems, in which the non-equilibrium state is a source for the order establishment. As
far back as 1901 a phenomenon, which came later to be known as the formation of
Benard cells, was experimentally discovered. This phenomenon may serve as a clas-
sic example of the peculiar structure of convective motion in fluid in the presence of a
temperature gradient, directed along the field of gravitational forces. Another exam-
ple of a non-equilibrium system through generation of electromagnetic oscillations
when passing a direct current in the Gunn diodes. The main distinguishing feature
of the systems demonstrating the self-organization is that there appear ordered struc-
tures that were absent in the equilibrium state. The formation of the above structures
takes place due to energy transferred from outside. Such structures can be sustained
only at the expense of the inflowof energy ormatter and, therefore, it would be natural
enough to call them dissipative structures. For instance, a large city or even terrestrial
civilization as a whole can serve as an example of dissipative structures.

Self-organization is characterized by creating spatial, temporal or spatial-tempo-
ral structures. Obviously, the self-organization is possible if there is a cooperative be-
havior in such systems whose different parts interact. All this served as a basis to sep-
arate out self-organization phenomena occurring in highly non-equilibrium systems
into a special science, which the German physicist Haken called synergetics (from the
Greek word synergeia means joint action or cooperation).

The special literature [9, 10, 11, 12] enables one to find both multiple examples
of other systems with dissipative structures, as well as existing methods to describe
them.

One should make a distinction between the mechanism of formation of dissipa-
tive structures and the mechanism of formation of equilibrium structures. Namely,
the principle of an entropy increase works for isolated equilibrium systems, andmax-
imumentropy corresponds to a steady equilibrium state. The principle ofminimal free
energy is observed for equilibrium systems that are in contact with thermostat (elec-
tric or magnetic domains may serve as examples). Therefore, in the given case there is
a possibility of creating the spatial structures whose appearance does not contradict
to the principles of equilibrium thermodynamics.

Approachesbasedon theprinciples of equilibrium thermodynamics inno case are
applicable to dissipative structures. For example, the appearance of convective dissi-
pative structures of Benard should be considered as the demonstration of convective
instability of a liquid. From this point of view, natural convection in the liquid exists
as sufficiently weak fluctuations, which are not coordinated at low values of a tem-
perature gradient but they damp out over periods less than the time required for the
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coordination of these fluctuations. When the temperature gradient exceeds a certain
critical threshold there takes place a bifurcation, which in result leads to convective
motion in the system. The term bifurcation is derived from Latin “bifurcus”. Bifurcus
means “split in two parts” and refers to qualitative changes in behavior of a system
upon changing of some governing parameter.

1.3.2 The Glansdorff–Prigogine universal evolution criterion

As was noted above, different variational principles can be formulated for linear non-
equilibrium processes. For example, it can be mentioned the Onsager’s principle of
least dissipation of energy. This postulate claims that the functional (1.30) is maxi-
mum while varying in the generalized forces under constant flow conditions. As for
the systems being under stationary conditions, Prigogine’s variational principle can
be formulated. According to the Prigogine principle, aweakly non-equilibrium state of
an open system in which an irreversible process takes place, is characterized by min-
imum entropy production under given external conditions that impede the achieve-
ment of equilibrium. These principles show a rather heuristic character and do not
permit a researcher to describe any system, but they make it possible to elucidate
whether a constructed theory contradicts some general tenets or principles.

When considering nonlinear effects, it is assumed that the entropy production
can still be written as a sum of products of fluxes and their conjugate thermodynamic
forces:

Ṡ = ∫∑
i
IiXi dv. (1.87)

Moreover, it is usually assumed that generalized kinetic coefficients can be deter-
mined by relations (1.24), but for nonlinear systems they should be calculated when
the system is in a non-equilibrium state and, therefore, these coefficients are to be a
function of generalized thermodynamic forces. As far as the kinetic coefficients prove
to be a function of the generalized forces in the nonlinear case, a direct application of
the variational principle of Onsager or Prigogine for such systems is inappropriate be-
cause neither the functional (1.30), nor the entropy production (1.32) possess extreme
properties.

The time derivative of the entropy production (1.87) can be divided into a the part
that is due to changes in flow and the part that is due to the change of thermodynamic
forces in time:

dṠ
dt
= ∫∑

i

dIi
dt

Xi dv + ∫∑
i
Ii
dXi
dt

dv. (1.88)

Thebehavior of thefirst summand in formulas (1.88) is non-single-valued,whereas the
second summand satisfies the inequality of a general nature known in the literature
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as theGlansdorff–Prigogine evolutionprinciple. According to this principle, processes
withfixedboundary conditions in anynon-equilibriumsystemoccur in suchamanner
that the entropy production change rate caused by changes in thermodynamic forces
decreases with time:

dX Ṡ
dt
= ∫∑

i
Ii
dXi
dt

dv ≤ 0. (1.89)

The Glansdorff–Prigogine evolution criterion (1.89) is referred to as the Universal Cri-
terion of Evolution, because situations for which the inequality (1.89) is violated have
not yet been revealed.

Problem 1.3. Check the validity of the Glansdorff–Prigogine evolution criterion (1.89)
for the thermal conductivity with a fixed value of the temperature gradient at the
boundary of a sample.

Solution. In the case of heat conduction there is a single generalized flow

I1 = ⃗JQ

and its conjugate thermodynamic force

X1 = ∇⃗
1
T
.

We write down the expression (1.89) in more detail with respect to the above case:

dX Ṡ
dt
= ∫ ⃗JQ

d
dt
∇⃗
1
T
dv. (1.90)

Let us transform the term under the integral sign in the right side of the expres-
sion (1.90) to obtain

⃗JQ
d
dt
∇⃗
1
T
= div(JQ

d
dt

1
T
) − (

d
dt

1
T
)div ⃗JQ.

Insert this result into expression (1.90). Converting a volume integral into a surface
integral, we have

dX Ṡ
dt
= ∮

S

⃗JQ
d
dt

1
T
dS⃗ − ∫

V

(
d
dt

1
T
)div ⃗JQ dv. (1.91)

As far as the temperature at the boundary of the sample is assumed to be fixed, then
the surface integral on the right-hand side of formula (1.91) vanishes. This condition
may be fulfilled in open systems, when the non-equilibrium system in question is sur-
rounded by external bodies. To transform the volume integral on the right-hand side
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of formula (1.91), we use the heat balance equation (1.10), writing it in relation to the
previously mentioned conditions as

dρ0CvT
dt
= −div ⃗JQ,

where ρ0 is for the sample density, Cv is for the sample specific heat.
After simple transformations one obtains the following expression:

dX Ṡ
dt
= −∫

V

ρ0Cv
T2
(
dT
dt
)
2
dv ≤ 0. (1.92)

Here, the equality sign corresponds to the steady state. After calculating we have
shown that the entropy production change rate due to changes in the external forces
in the strongly non-equilibrium system in which there is heat transfer, is negative.

1.3.3 Ways of describing strongly non-equilibrium systems

Similar to how equations of equilibrium thermodynamics are constructed within the
framework of equilibrium statistical theory it would be desirable to construct equa-
tions that describe a behavior of highly non-equilibrium systems directly from the first
principles. When solving this problem it is then natural to pose a question of whether
the behavior of such systems is irreversible. How can equations that describe a non-
equilibrium system be obtained, basing on, for example, the dynamic equations of
Newton that are reversible in time? Until recently, it seemed impossible within the
current paradigm to overcome a deep disparity between the completely determinate
mechanical and the statistical description. However, as far back Poincaré in his works
expressed ideas of deterministic chaos that have allowed one to bridge the gap. In the
second half of the last century, Kolmogorov, Arnold, Sinai, Zaslavsky, and other sci-
entists have developed an elegant theory that formulates conditions under which a
dynamic description of the system becomes meaningless, and therefore, to describe
such systems, the statistical approach is needed.

Theapproachbasedon the concept of dynamic chaos is veryuseful inunderstand-
ing the principles of non-equilibrium statistical mechanics, and we will discuss these
ideas at the end of the section devoted to self-organization in highly non-equilibrium
systems. It has to be admitted, however, that the approach is not appropriate in solving
particular problems of dynamics of highly non-equilibrium systems.

At the end of the last century, the rapid growth of the number of papers concern-
ing the self-organization theory was mainly associated with the emergence of a new
direction inmathematics, which has originated at the junction of two disciplines such
as topology and theory of differential equations (mathematical analysis). Both these
disciplines have merged into a single profound theory owing to works of the French
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mathematician Thom. Thanks to him, the efforts of predecessors Whitney (topology)
and Poincaré, Lyapunov, Andronov (qualitative theory of differential equations) be-
came integrated. The English mathematician Zeeman was responsible for coining the
term “catastrophe theory” for this new branch of mathematics.

The sonorous name of this theory generated a huge number of speculations of
mystic nature which have nothing to do with mathematics or physics. Actually, it is
believed that the catastrophe is a sudden shift in behavior caused by small changes in
external conditions. In most cases of interest for applications in physics, there takes
place a qualitative restructuring (bifurcation) of the character of the solutions of dif-
ferential equations provided that one of the control parameters is changed gradu-
ally.

The essence of the new approach, which determines its practical significance lies
in the fact that, as was noted by Poincaré, there is very often no necessity to obtain
a complete solution of complex nonlinear differential equations. Therefore, it is suffi-
cient to know information about only the qualitative behavior of solutions. The com-
plete solution, even be it obtained with great effort, would only complicate the behav-
ior analysis of such systems.

After the above remarks one may raise the question of how we should describe
highly non-equilibrium systems capable of self-organization. It is clear that means
of mechanics is not appropriate to describe these systems, since the mechanical de-
scriptionwith coordinates and velocities of particlesmaking up the systems is too fine
structured. Therefore, such a description of the systems typical of cooperative behav-
ior proves to be too complex. However, the thermodynamic approach, as was previ-
ously mentioned, is also unacceptable to describe these systems.

For this reason, in most cases it is accepted that one describe highly non-equi-
librium systems with self-organization via establishing evolution of a chosen set of
macroscopic variables provided that some dynamic motion equations for them have
been already previously found. Strictly speaking, this procedure omits the most com-
plex step of derivation of the equations describing the evolution of the highly non-
equilibrium systems from first principles of non-equilibrium statistical classical me-
chanics, replacing the step mentioned by semi-phenomenological derivation of ap-
propriate dynamical equations.

If a system is spatially uniform, it should be described by first-order differential
equations with respect to time. Equations of higher order can be always reduced to a
set of first-order equations. After finding the set of equations the approach based on
the catastrophe theory is used for a qualitative of the character of its solutions.

Consider for example, the derivation of equations of the Lotka–Volterra predator–
prey model describing the size of predator population (tuna) and that of a victim (sar-
dines) which are constituted into a single food chain. This model was proposed by
Volterra in 1920. Mathematical equations found by him coincided with Lotka’s equa-
tions for describing a hypothetical reaction scheme with the formation of an interme-
diate unstable state. This system is referred to as the Lotka–Volterra “predator–prey”
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model. At present, all papers where self-organization theory is discussed include this
model.

Let n1 be the number of “herbivores” in the population; n2 be the number of
“predators”. Then the population dynamics of “predators” and “herbivores” is deter-
mined by the equations

ṅ1 = γ1n1 − βn1n2,
ṅ2 = βn1n2 − γ2n2. (1.93)

According to equations (1.93) the reproduction rate of “herbivores” is proportional to
the number n1 and depends on the constant γ1, regulating the reproduction rate. On
the other hand, the population reduction rate is proportional to the number of the
“predators” and the number of “victims” where β is a certain constant. The “preda-
tor” population increase rate depends on the product of n2 n1, defined both by the
number of “predator” zooids and by the presence of food. The “predator” extinction
rate depends on their number and is determined by the constant γ2.

It is typical of (1.93) that, the system (1.93) is nonlinear. The time dependence n1(t)
is shown in Figure 1.5. The population n2 has a similar periodic time dependence with
some shift relative that of n1 along the time scale.

Figure 1.5: Periodic fluctuations in population n1 in the “predator–prey” problem: n1(0) = 60,
n2(0) = 20; parameters γ1 = 0.3712, β = 0.0097, γ2 = 0.3952.

Instead of studying the time dependence we can plot a phase pattern of the system. In
the case of the “predator–prey”model thephase space is the coordinate planewith the
axes of n1 and n2. Any point in phase space corresponds to each state of the systemand
amultiplicity of points, reflecting the state of the system at different moments of time,
represents the phase pattern. Figure 1.6 depicts the phase pattern of the “predator–
prey” problem.
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Figure 1.6: Phase pattern of the “predator–prey” problem (model parameters are the same as in
Figure 1.5).

The phase pattern is a closed curve that resembles a circumference. Such a form of
the curve indicates the existence of almost periodic oscillations in a “predator–prey”
model. The phase pattern analysis is a very common technique for studying systems
with self-organization.

Summarizing the above results, we will describe a highly non-equilibrium state
with a set of variables q1( ⃗r, t), q2( ⃗r, t) . . ., qn( ⃗r, t), which are dependent on the coordi-
nates and time. Quantities q1, q2, . . . , qn in aggregate determine the system state vector
q⃗ or the point in phase space which univalently characterizes the system’s state in the
phase space.

The time dependence of the quantities q1(t), q2(t), . . . , qn(t) defines evolution of
the system in time. However, it is sufficiently difficult to plot a phase pattern of the
system for three or more dynamical variables. In this case, the behavior of the system
can be studied by cutting the phase space by a plane and plotting the points where
the trajectory intercepts this plane.

Methods for obtaining information about qualitative behavior of solutions of non-
linear sets of equations will be considered in more detail in the next paragraphs.

1.3.4 Stability of states of highly non-equilibrium systems

Let us assume that a highly non-equilibrium system is described by a set of macropa-
rameters q1(t), q2(t), . . . , qn(t), for which one can write the set of differential equations

dqi
dt
= fi(q1(t), q2(t), . . . , qn(t),B); i = 1, 2, . . . , n, (1.94)

where B is for some parameters that define the external and internal conditions.
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The functions fi are assumed to be differentiable. As can be seen from the expres-
sion (1.94), the right-hand side of equations do not contain an explicit time depen-
dence. Such differential equations are commonly referred to as autonomous.

In virtue of the theorem on the existence and uniqueness of solution, through
each point in the phase space there passes a unique trajectory. This means that phase
trajectories never intersect.

Qualitative analysis of solutions usually begins with searching for the stationary
points that satisfy the equations which are below:

dqi
dt
= 0; fi(q1, q2, . . . , qn,B) = 0; i = 1, 2, . . . , n. (1.95)

Fixed points of phase space correspond to stationary states. If the functions fi(q1, q2,
. . . , qn,B) are nonlinear, there may exist a lot of solutions satisfying to the equations

fi(q1, q2, . . . , qn,B) = 0, i = 1, 2, . . . , n.

Then the question arises: which of possible states will the system be in? This problem
largely is physical rather than mathematical. Each real physical system has fluctua-
tions of the parameters. Let a set of parameters qsi , i = 1, 2, . . . , n defines some station-
ary special point, and a set of the equations qi(t) = qsi + δqi defines a state that arises
as a result of fluctuations near the steady state. If the stationary point is stable, the
system located in such a state is not sensitive to small fluctuations. Conversely, if the
stationary point is unstable, the fluctuations will grow and the system finally leaves
the stationary point.

The issue of stability of stationary states admits many interpretations. Consider
several different notions of stability.

Asymptotic stability stands for that the state is stable. Moreover, we can always
find ε > 0 such that, if the inequality

q⃗
s − q⃗0
 < ε

is fulfilled, then

lim
t→∞
q⃗
s − q⃗(q⃗0)

 = 0. (1.96)

In the above formula the quantity q⃗0 is somepoint in the vicinity of the stationary state
in which the systemwas at an initial timemoment. If the stationary point is asymptot-
ically stable, it means that all systems, whose phase points are located in a neighbor-
hood of the stationary point, will be in this stationary point after a lapse of time. That
is why asymptotically stable states are referred to as attractors, but stationary points
satisfying the condition (1.96) are attractive. The multiplicity of the points attracted to
q⃗s is called the domain of attraction for a given solution.

All thermodynamic equilibrium states which are not critical points are asymptot-
ically stable.
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1.3.5 The Lyapunov global stability criterion

A stationary singular point q⃗s is stable, if in the vicinity D of this point it is feaseble
to construct some positive (negative) definite function V(q1, q2, . . . , qn) such that its
derivative dV/dt is a non-positive (non-negative) definite one in the entire domain D.
Stability is asymptotic if the signs of V and dV/dt are opposite to each other.

In essence, the Lyapunov theorem generalizes the method of potentials for sys-
tems which have no potential. The importance of this theorem is that, if one succeeds
in constructing such a function, it is not necessary to solve equations of motion when
considering the stability problem but only the following functions need to be investi-
gated:

V(q1, q2, . . . , qn) and dV
dt
=

n
∑
i=1

dV
dqi

fi(q1, q2, . . . , qn), (1.97)

because q̇i = fi(q1, q2, . . . , qn) follows from equations (1.94).
The practical significance of this theorem is not great, since the theorem is not

constructive and does not lead to an understanding of how to plot up such a function.
There are, however, several simple examples. At the beginning,we consider a function
which describes an entropy behavior depending on generalized coordinates when the
system is deflected from an equilibrium state. It follows from the maximum entropy
condition that the deviation of entropy from its equilibrium value is δS ≤ 0. On the
other hand, the entropy production is Ṡ ≥ 0 in an isolated system. Thus, the entropy S
is a Lyapunov function for the isolated system near thermodynamic equilibrium, and
an equilibrium state is asymptotically stable (attractor).

Another exampleof theLyapunov function canbe found in linearnon-equilibrium
thermodynamics. Here, entropy production plays the role of the Lyapunov function:

Ṡ =∑
i
IiXi ≥ 0,

dṠ
dt
≤ 0. (1.98)

The Lyapunov function can be also introduced for systems that are far from equilib-
rium. This is particularly evident for the systems in which the flows are stationary. In
this case, the entropy production can play again the role of the Lyapunov function:

Ṡ =∑
i
IiXi ≥ 0,

dX Ṡ
dt
=
dṠ
dt
= ∫∑

i
Ii
dXi
dt

dv ≤ 0. (1.99)

The paper by Kaiser [13] presents the proof of Lyapunov’s theorem for some special
cases.

There are other stability criteria which can be formulated for solving differential
equations.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



38 | 1 Phenomenological thermodynamics of irreversible processes

The solution q⃗(t) of the set of dynamical equations (1.94) is called stable (accord-
ing to Lyapunov) if there exists the quantity η = η(t0, ε) for any t0 and ε > 0 such that,
if the inequality

q⃗(t0) − q⃗
(t0)
 < η,

is fulfilled, then we have the inequality

q⃗(t) − q⃗
(t) < ε at t ≥ t0. (1.100)

If the condition

q⃗(t) − q⃗
(t)→ 0

holds at t → ∞, the solution is asymptotically stable. We can give a simple inter-
pretation of the condition (1.100). A solution (or motion) is a Lyapunov stable one if
all solutions (motions) that were in the immediate vicinity of this solution in the ini-
tial time remain close enough to it. A solution (motion) is asymptotically stable if all
contiguous solutions asymptotically converge to it. The Lyapunov stability imposes
rigid constraints on the nature of the solution, because the closeness of trajectories is
needed for all t.

A notion of the orbital stability is less rigorous andmore useful when considering
limit cycles and chaotic trajectories. In the case of orbital stability trajectories initially
very close to one another can be separated at all other moments in time. Here, a more
benign condition replaces the condition (1.100): aminimumdistance between the tra-
jectories must be less than some value beforehand specified:

q⃗(t) − q⃗
(t) < ε if t ≥ t0, t

 ≥ t0. (1.101)

A concept of the orbital stability is based on the claim that, if there are two closely
adjacent circular trajectories, then the phase points of systems initially close to each
other canmutually strongly diverge after a sufficiently long interval of time, for exam-
ple, due to different periods of rotation. In this case, the solution is not stable in the
sense of Lyapunov, but is said to be orbitally stable (Figure 1.7).

In many physically interesting cases, it can be seen that the right-hand side of the
dynamical equations (1.94) depends on some set of the parameters B. Let bk be one of
these parameters. If the solution changes by the value |δq⃗| ≃ δbk, while changing the
parameter bk by the value δbk, then such a solution is referred to as structurally stable.
When values of the parameter bk are changed weakly and the phase pattern exhibits
some quantitative differences, these values are called ordinary. If small changes in
parameter bk result in qualitative changes of the trajectories, then the values of bk are
called critical values or bifurcation points. The bifurcation points play an important
role in structure formation in irreversible processes.
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Figure 1.7: To the concept of orbital stability: two phase points q(t0) and q(t0), close to each other
at an initial moment of time, strongly diverge by time t, but a minimum distance between orbits
(shown by an arrow) has remained small.

A complete structural stability analysis of dynamical systems can be performed only
in cases of one or two degrees of freedom. To date, only gradient systems with an ar-
bitrary number of degrees of freedom have been investigated, for which the dynamic
equations of motion are written as follows:

dqi
dt
= −

d
dqi

V(q1(t), q2(t), . . . , qn(t),B), i = 1, 2, . . . , n. (1.102)

Studies by the famous French mathematician Thom who made many efforts to pop-
ularize the catastrophe theory were just devoted to structural stability of dynamical
systems described by equations (1.102).

1.3.6 Dynamical systems with one degree of freedom

Consider a systemwhose dynamics is described by a single variable q(t), which obeys
the equation of motion:

dq
dt
= f (q), (1.103)

where f (q) is for some function of the dynamical variable q (system is autonomous, so
the right-hand side of equation (1.103) is explicitly independent of time).

In this case, the phase space is a line, and stationary points are determined from
solving the equation f (q) = 0.

Having startedoff itsmotionout of anon-stationary state, a systemcannot achieve
a steady state over a finite time interval by the uniqueness theorem. Otherwise in vi-
olation regardless of the above theorem, equation (1.103) would have two solutions:
q(t) and a steady-state solution qs. Therefore, the system can only asymptotically ap-
proach the stationary state if this state is stable. In order to investigate stability of the
system near the stationary state points, we expand the function f (q) into a series in
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the vicinity of these stationarypoints by restricting ourselves to thefirst non-vanishing
term.

There are only three possible situations shown in Figure 1.8 for a one-dimensional
system and therefore, for the stationary points qs1 and qs2 one may restrict oneself to
the linear terms on the right-hand side of (1.103) while expanding f (q). Then, for devi-
ations of x(t) = q(t) − qs the following linearized equations can be obtained:

dx(t)
dt
= f (qs) + f (qs)x(t) + ⋅ ⋅ ⋅ . (1.104)

Taking into account f (qs) = 0 and introducing the notation f (qs) = p, one obtains

dx(t)
dt
= px(t); x(t) = x(0)ept , (1.105)

where x(0) is the deviation of the system from a stationary state at the time moment
t = 0.

Figure 1.8: Possible types of stationary points for a dynamical system with one degree of freedom.

It follows from the expression (1.105) that, if the condition df /dq = p < 0 is met for
a stationary point, then such a point is asymptotically stable (point qs1 in Figure 1.8).
But if df /dq = p > 0, then any small deviation of the quantity q from the stationary
value qs will growwith increasing time and the systemwill leave the neighborhood of
the stationary point (point qs2).

Another case shown in Figure 1.8 (stationary point qs3) also corresponds to an un-
stable node. It is not hard to verify that the last case is valid, if we make an expansion
of f (q) to a second term in power of the deviation x(t) = q(t) − qs in the neighborhood
of this point. As a result, we have the equation

dx(t)
dt
= ax2(t), a = 1

2
f (qs). (1.106)

The solution of equation (1.106) can be written in the form

x(t) = 1
1/x(0) − at

. (1.107)
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Therefore, if x(0) < 0, it follows from formula (1.107) that the point qs3 is stable, and if
x(0) > 0, the stationary point qs3 is unstable. This stationary point should be classified
as unstable if we determine stability in the sense of Lyapunov, namely, according to
(1.96).

1.3.7 Dynamical systems with two degrees freedom

Wenowpass on to a qualitative analysis of the autonomous systemwith twodegrees of
freedomnear the stationary points.We suppose that the systemdynamics is described
by two variables q1 and q2 whose dependence is determined by the equations

dq1
dt
= f1(q1, q2),

dq2
dt
= f2(q1, q2). (1.108)

In the special case, equations (1.108) can coincidewith a set of theHamilton equations
describing, for example, dynamics of a one-dimensional nonlinear oscillator. Then,
it makes sense to consider the variable q1 as a generalized coordinate, and q2, as a
generalized momentum.

Stationary points of the system (1.108) are determined from the equations

f1(q1, q2) = 0, f2(q1, q2) = 0,

and the behavior of the phase trajectory can be described by the equation
dq2
dq1
=
f2(q1, q2)
f1(q1, q2)

. (1.109)

Equation (1.109) allows one to find the slope of the tangent to the trajectory in each
given point of the phase space and plot the phase pattern based on these points. The
direction of the phase point’s motion can be found from the set of equations (1.108).

The detailed examination of stability is performed in the same way as in the one-
dimensional case, i. e. via linearization of the equations of motion (1.108) in small de-
viations of the dynamic variables from their stationary values. Let us introduce new
dynamic variables x1(t) = q1(t) − qs1 and x2(t) = q2(t) − qs2. After linearizing equa-
tion (1.108) with respect to x1 and x2, we obtain the following expressions:

dx1(t)
dt
= a11x1(t) + a12x2(t),

dx2(t)
dt
= a21x1(t) + a22x2(t). (1.110)

Elements of the matrix

aij =
dfi(q1, q2)

dqj

q=qs

are calculated for a stationary point and, therefore, are constant values.
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To solve the set of the equations we use the substitution of Euler,

x1(t) = Ae
pt , x2(t) = Be

pt .

The result is a system of homogeneous linear equations for determining the constants
A and B. The condition of consistency of this system implies the equality of its deter-
minant to zero,



a11 − p a12
a21 a22 − p


= 0.

Expanding thedeterminant, oneobtains the characteristic equationof a secondpower
in p:

p2 − (a11 + a22)p + a11a22 − a12a21 = 0. (1.111)

In the general case, equation (1.111) has two complex conjugate roots:

p12 =
T
2
±
1
2
√T2 − 4Δ,

T = a11 + a22, Δ = a11a22 − a12a21. (1.112)

Let √T2 − 4Δ ̸= 0 and the roots p1 and p2 of the characteristic equation (1.111) be dif-
ferent. Then the general solution of the system of equations (1.110) is a superposition
of possible partial solutions and it can be written as

x1(t) = A1e
p1t + A2e

p2t ,

x2(t) = A1K1e
p1t + A2K2e

p2t . (1.113)

The A1 and A2 constants are determined by initial conditions, and the constants K1
and K2 are roots of the equation

a12K
2 + (a11 − a22)K − a21 = 0.

The last equation can be easily obtained if one assumes that B = AK.
The type of a stationary point depends on the roots (1.112) of the characteristic

equation (1.111). All in all, there exist six types of stationary points corresponding to
six variants. For two-dimensional systems, a schematic representation of the phase
patterns is shown in Figure 1.9.

Let us consider these six variants.
(a) T2 − 4Δ > 0, Δ > 0, T < 0. In this case, the roots p1 and p2 are real negative

numbers. The system performs aperiodic damped motion, approaching the equi-
librium position. Such a stationary point is called an asymptotic stable node.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



1.3 Self-organization in highly non-equilibrium systems | 43

Figure 1.9: The main types of stationary points for a dynamical system with two degrees of freedom:
(a) is for the asymptotically stable node; (b) is for the asymptotically unstable node; (c) is for the
asymptotically stable focus; (d) is for the asymptotically unstable focus; (e) is for the a stationary
point of center type; (f) is for the saddle stationary point.

(b) T2 − 4Δ > 0, Δ > 0, T > 0. In this case, the roots p1 and p2 are real positive
numbers. The stationary point is unstable. For any fluctuations, leading to the
phase point shift from the stationary state, perturbation grows and the system
leaves theneighborhoodof this point (aperiodic self-excitation). Such a stationary
point is called asymptotic unstable node.

(c) T2 − 4Δ < 0, T < 0. In this case, the roots p1 and p2 are complex numbers with
negative real part. The system performs damped oscillations asymptotically ap-
proaching the stationary point. The phase pattern of such a system looks like a
converging spiral. Such a stationary point is called a stable focus.

(d) T2 − 4Δ < 0, T > 0. In this case, the roots p1 and p2 are complex numbers with
positive real part. The system demonstrates oscillations that grow in amplitude
(self-excitation). The phase pattern of such a system resembles a diverging spiral.
Such a stationary point is called an unstable focus.

(e) Δ > 0, T = 0. In this case, the roots p1 and p2 are purely imaginary values. The sys-
tem performs undamped oscillations near a stationary point. The phase pattern
represents a closed curve. Such a stationary point is called a center. A singular
point center is stable in the sense of Lyapunov but is not asymptotically stable.

(f) T2 − 4Δ > 0, Δ < 0. In this case, the roots p1 and p2 are real numbers of opposite
sense. Trajectories of the phase point are hyperbolic curves divided by separatri-
ces (straight lines in Figure 1.9(f)). Such a stationary point is called a saddle point.
Since at t → ∞ the phase trajectories go to infinity, the saddle point is an unsta-
ble stationary point. Such systems are characterized by the presence of two states
(a trigger type system). The above classification is based on the assumption that
there are two different solutions of the characteristic equation (1.111). Such points
are referred to as points of the general position.
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There may well be situations when Δ = 0. Such special points are called multiple
points. Behavioral analysis of the phase trajectories in the vicinity of multiple spe-
cial points may turn out to be sufficiently complicated, but fortunately, this case need
not be analyzed, because “a small perturbation” (the system parameter change) is
the cause of decomposition of the multiple singular points into two or more singular
points of general position.

Problem 1.4. For the above Lotka–Volterra “predator–prey” model we have

ṅ1 = γ1n1 − βn1n2,
ṅ2 = βn1n2 − γ2n2, (1.114)

with the numerical values of parameters γ1 = 0.3712, β = 0.0097, γ2 = 0.3952. It is nec-
essary to: determine the stationary values of populations ns1, n

s
2; find a solution of the

characteristic equation for the linearized model; determine types of stationary points
in this model; find a solution of the set of the linearized equations motion for small
initial deviations of the population numbers from the stationary values; determine
the phase point’s motion in the neighborhood of the stationary points; ascertain if the
types of the stationary points in this model are dependent on the numerical values of
the parameters.

Solution. Stationary values of the populations can be found from the equations

γ1n1 − βn1n2 = 0,
βn1n2 − γ2n2 = 0.

This set of equations has two solutions. The first solution is obviously: ns1 = 0, n
s
2 = 0.

The second stationary point corresponds to values: ns1 = γ2/β = 40.7423; n
s
2 = γ1/β =

38.2680. Consider first the behavior of the system near the second stationary point.
We introduce new dynamical variables such as x1(t) = n1(t)−ns1 and x2(t) = n2(t)−

ns2. By linearizing equation (1.114) with respect to x1 and x2, we get

ẋ1 = (γ1 − βn
s
2)x1 − βn

s
1x2,

ẋ2 = βn
s
2x1 − (γ2 − βn

s
1)x2. (1.115)

Comparing the expressions (1.115) and (1.110), it is easy to see that in given case we
havea11 = a22 = 0,a12 = −βns1 = −γ2,a21 = βn

s
2 = γ1,T = 0, Δ = a11a22−a12a21 = γ1γ2 > 0.

So, both roots of the characteristic equation are purely imaginary and the sta-
tionary point is a stable center. The phase trajectory of the linearized set of equa-
tions (1.115) presents a circular curve whose center is a stationary point. The phase
trajectory of the original system (1.114) will also resemble a circumference in the case
of small deviations (see Figure 1.6).

Using the general solution (1.113), we write down a parametric equation of trajec-
tories in the vicinity of this stationary point. In the case under consideration the roots
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are p1,2 = ±iω, ω = √γ1γ2, K1,2 = ±i√a21/a12 = ±i√γ1/γ2. In general case the constants
A1 and A2 are complex quantities, and therefore, they can be presented in the form
A1 = a1 + ib1, A2 = a2 + ib2.

Substituting the results obtained into the formula for the general solution of the
system (1.113) and separating out the real part, we have the parametric equation tra-
jectory:

x1(t) = (a1 + a2) cosωt + (b2 − b1) sinωt,

√γ2/γ1x2(t) = −(a1 + a2) sinωt + (b2 − b1) cosωt. (1.116)

By changing the scale along the axis x2, we will introduce a new variable x∗2 (t) =
√γ2/γ1x2(t). The constants (a1 + a2), and b2 − b1 are determined by the initial con-
ditions: (a1 + a2) = x1(0), b2 − b1 = x∗2 (0). Now it is easy to verify that, the condition is
met:

(x1(t))
2 + (x∗2 (t))

2 = (x1(0))
2 + (x∗2 (0))

2,

if we raise both sides of each equation of (1.116) to the secondpower and sumup. Thus,
we see that the equation of trajectory of the phase point is a circumference.

Now we can pass on to the behavior analysis of the system near the stationary
point ns1 = 0, n

s
2 = 0. In this case, a set of the linearized equations has the form

ẋ1(t) = γ1x1(t),
ẋ2(t) = −γ2x2(t). (1.117)

Therefore, a11 = γ1, a22 = −γ2, a12 = a21 = 0, Δ = −γ1γ2 < 0, and in accordance with
the above classification, this fixed point is an unstable saddle point. The phase pat-
tern of the system in the vicinity of this stationary point for different initial conditions
is shown in Figure 1.10 and in the particular case the coordinate axes x1 and x2 are
separatrices.

From the above analysis, it follows that the types of stationary points for the
Lotka–Volterra model do not depend on the particular numerical model parameters.
Thus, either an unstable saddle or a stable center will be observed in the system
depending on selection of initial conditions.

To analyze the behavior of solutions of dynamic equations in the vicinity of the
stationary point in the systems with an arbitrary number of degrees of freedom the
samemethod of the motion equation linearization is used. We suppose that a station-
ary point has the coordinates qsi , i = 1, . . . , n. Then, introducing the deviation of the
dynamical coordinates from the stationary values of xi(t) = qi(t) − qsi , instead of the
initial dynamical equations (1.94) we obtain a set of equations for the deviations of
coordinates from stationary values in which we retain only terms up to second order
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Figure 1.10: Phase pattern of the linearized system (1.114) in the vicinity of the stationary point
ns1 = 0, n

s
2 = 0: (a) x1(0) = 5, x2(0) = 5; (b) x1(0) = 5, x2(0) = −5; (c) x1(0) = −5, x2(0) = 5;

(d) x1(0) = −5, x2(0) = −5.

with respect to xi(t) = qi(t) − qsi :

dxi(t)
dt
=

n
∑
j=1

aijxj(t) + f
(2)
i (x1(t), x2(t), . . . , xn(t)), (1.118)

where f (2)i is the function that contains the deviations xi(t) at least in the secondpower.
The terms of the second order and over in the expression (1.118) being neglected,

the dynamics of the deviations xi(t) = qi(t)−qsi is determined by solving a set of linear
equations. The technique for solving such equations in two variables was discussed
earlier. The roots of the characteristic equation are still determined by the equation

det |aij − pδij| = 0.

In this case, the following assertions are valid:
1. If all roots of the characteristic equation have negative real parts, the stationary

point xi = 0 is stable regardless of the type of the function f
(2)
i .

2. If at least one of the roots of the characteristic equation has a positive real part,
the stationary point is unstable regardless of the type of the function f (2)i .

3. If there are no roots with positive real parts, but there are only purely imaginary
roots, then stability of the stationary point depends on the function f (2)i .

More detailed information about modern methods and problems of the dynamic de-
scription of nonlinear systems is presented in the lectures of Kuznetsov [14] that have
been read for student-physicists at the Saratov State University. A large number of
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books of Russian and foreign authors on the issues covered here can be found in the
electronic library, located on the site http://www.scintific.narod.ru/nlib/.

1.3.8 Dynamic chaos

The main purpose of excursion into the field of nonlinear dynamics is to explain how
time-reversible dynamic equations, in particularly the Hamilton equations, can de-
scribe the irreversible behavior of real systems. Is there a probability of the irreversible
behavior in the dynamic equations? Or should this idea be brought in from outside?

The development of the dynamical theory in the second half of the last century
resulted in the remarkable fact that consists in the discovery of dynamic chaos. At first
glance, chaos appears to be incompatible with the definition of a dynamical system
whose state is unmistakably determined at any moment of time in accordance with
the initial state.

In fact, there is no contradiction here because a hypersensitivity to initial condi-
tions of the systems demonstrating chaos takes place. An arbitrarily small change in
the initial conditions leads to a finite change in the system’s state after a sufficiently
long period of time. For this reason, in spite of the fact that the system still remains
dynamic, it is impossible to forecast dynamics of its development accurately.

Edward Lorentz, an American meteorologist became the first to discover chaotic
mode in systems of a few degrees of freedom when studying convective fluid motion
in the experiments of Benard. He has succeeded in converting a set of hydrodynamic
equations for density, velocity, and temperature of volume of a fluid to a set of three
relatively simple equations for variables x, y, and z. Properties of the fluid under the
experimental conditions are given in the Lorenz model with three parameters σ, r,
and b:

ẋ = −σ(x − y),
ẏ = −xz + rx − y,
̇z = xy − bz. (1.119)

Consider the qualitative behavior of solutions of this set of equations without dis-
cussing the physical interpretation of the dynamical variables and input parameters.
A more detailed derivation of the Lorenz equations can be found in the book men-
tioned earlier, written by Kuznetsov [14].

The qualitative behavior exhibited by solutions turns out to be dependent on the
parameter r. If the condition 0 < r < 1 is met, then there is a stable node at the origin.
If the condition r > 1 is fulfilled, the attractor loses its stability and there appear two
stationary points:

x1,2 = ±√b(r − 1), y1,2 = ±√b(r − 1), z1,2 = r − 1.
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They characterize stationary convection of shafts of a fluid with opposite directions
of rotation. The phase pattern of the system near one of these points is shown in Fig-
ure 1.11(a). It is worth emphasizing that the phase trajectory behaves in a strangeman-
ner at r > rcr . This phase trajectory approaches one of the stationary points, makes a
few loops and goes to another fixed point. The phase portrait of such a system for the
values of the parameters σ = 10, b = 2.666, r = 26.7 is depicted in Figure 1.11(b).
The number of loops around each node in each series is different, unpredictable, and
depends on exact data of initial conditions.

Figure 1.11: Phase pattern of the system (1.119) for the parameters: σ = 10, b = 2.666; (a) is for a
stable focus at r = 10; (b) is for a strange attractor at r = 26.7.

Another remarkable feature of this system proved to be a contraction of volume in
phase space over time and formation of a strange attractor. The phenomenon is ac-
counted for by the fact that any classical system which obeys the Hamilton equations
is conservative. This means that, if we take a small volume element dΩ0 of the phase
space of the system containing some number of phase points at an initial time, the
phase points in the process of evolution will have been in some volume dΩt = dΩ0 by
time t. This statement is well known in classical mechanics as Liouville’s theorem.

Conservative systems present a sufficiently narrow class of dynamical systems.
Most dynamical systems, describing real processes, are non-conservative and do not
preserve phase volume. The system of Lorenz equations (1.119) has a direct bearing to
such systems.

Let us consider a small element of phase volume of the system (1.119). The element
is equal to the product of small changes of coordinates Ω = xyz. We find the
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relative rate of change of the volume

1
xΔyΔz

d
dt
(ΔxΔyΔz) = 1

ΔxΔyΔz
(ΔẋΔyΔz + ΔxΔẏΔz + ΔxΔyΔ ̇z)

=
Δẋ
Δx
+
Δẏ
Δy
+
Δ ̇z
Δz
. (1.120)

The above formula shows that the relative rate of change of the phase volume is de-
termined by divergence of a velocity field of phase points.

In general, summarizing the result (1.120) wemay write down a simple formula to
determine the rate of change of the relative phase-space volume over time:

1
Ω
dΩ
dt
=∑

i

dẋi
dxi
= div v⃗, (1.121)

where xi, i = 1, 2, . . . , n is the set of the dynamic variables describing the system, v⃗ is
the velocity vector of phase points in phase space.

If the system is conservative, the equality div v⃗ = 0 is realized. A dynamical system
is referred to as dissipative if the condition div v⃗ < 0 is met.

For the system of the Lorenz equations a velocity vector of phase points is deter-
mined by right-hand sides of each equation (1.119):

vx = −σ(x − y); vy = −xz + rx − y; vz = xy − bz,

but this vector has the divergence div v⃗ = −σ − 1 − b. Since σ and b are positive quan-
tities, then, solving the equation

1
Ω
dΩ
dt
=∑

i

dẋi
dxi
= −σ − 1 − b,

one obtains

Ωt = Ω0e
−(σ+1+b)t . (1.122)

It follows that all the phase points are concentrated at some volume which contracts
to zero over time. Actually, this means that the phase flow in the three-dimensional
Lorenz model generates a set of points whose dimension is less than three (the Haus-
dorff dimension of this attractor proves to be fractional and equals to 2.06). One of
the signs which makes the attractor strange is the fractional dimension of the set of
the points to which trajectories are attracted. We will discuss later how the Hausdorff
dimension of the attractor can be determined empirically.

Nomatter howclose the phase points have been spaced initially, they become sep-
arated from each other by a finite distance for a certain time interval. This is another
feature of the strange attractor. In other words, there is a hypersensitive dependence
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to the initial conditions. It implies that the dynamic description of this system is im-
possible. In essence, the emergence of dynamic chaos is one of the prerequisites to go
over to a statistical description. It is important to note that dynamic chaos is an intrin-
sic property of systems themselves. This property is not associated with an external
factors effect. The emergence of dynamic chaos in the problem of convective motion
in a fluid is not something exceptional. Firstly, there are enoughmany other problems
of nonlinear dynamicswhich are reduced to the Lorenzmodel, in particular a problem
of the transition of a single-mode laser into a lasing regime. Secondly, dynamic chaos
arises also in simple Hamiltonian systems, for example in a system, modeled by two
interacting nonlinear oscillators of Eno–Eyeless [14].

Thus, the concept of entropy S may be introduced for systems demonstrating dy-
namic chaos. In fact, entropy is a measure of the incompleteness of knowledge about
the system’s state:

S ∼ −
n
∑
i=1

Pi lnPi,

wherePi is the realization probability of the i-th state. If there is complete determinate-
ness and the probability of finding the system in a state is equal to 1, the entropy is zero
and maximum under conditions of a complete indeterminateness when all states are
equiprobable.

As far back as 1954 Kolmogorov and Sinai have introduced the concept of entropy
for dynamical systems. Let the dynamics be described by a set of differential equa-
tions. Let us define a distance d(t) between two phase points in the phase space by
the relation

d(t) = x⃗1(t) − x⃗2(t)
.

The Kolmogorov–Sinai entropy SKS for dynamic systems can be defined by the rela-
tion:

SKS = lim
d(0)→0
t→∞

1
t
ln[ d(t)

d(0)
]. (1.123)

It follows from this definition that, if phase points have been spaced close to each
other initially and stand next close each other at the following moments of time or if
the distance between these points increases, but not exponentially, then SKS = 0. If
dynamic chaos is realized and the condition

d(t) ≃ d(0)eλt (1.124)

is met, where λ > 0, then the Kolmogorov–Sinai entropy takes a positive value. It is
important to note that the Kolmogorov–Sinai entropy is a dimensional quantity that is
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proportional to the rate of information loss about the system. In principle, the inverse
magnitude 1/SKS determines time of chaotizationwhen the dynamic description of the
system becomes meaningless.

How can the probability of the appearance of a strange attractor be determined
in accordance with the form of the dynamic equations? It is easy enough to answer
this question, if we can manage to establish the connection of the indicator λ in
equation (1.124) with eigenvalues of the characteristic equation of the linearized sys-
tem (1.118). In the general case, one can always construct a normal coordinate system
for which the matrix aij in equation (1.118) is diagonal. The real parts of the character-
istic equation det |aij − pδij| = 0 and λi = Re pi are referred to as Lyapunov exponents.
Obviously, the number of different roots of this equation coincides with the dimen-
sion of the matrix. Thus, the range of eigenvalues of aij determines also the range of
characteristic values of the Lyapunov exponents.

The geometric meaning of the Lyapunov exponents can be easily understood.
Let us imagine some small spherical region of characteristic radius ε0 and filled with
phase points in the normal coordinate space. In the course of time each phase point
will move along its trajectory and the spherical region will be deformed. Then, if the
values of λ1, λ2, and λ3 of the Lyapunov exponents are known for this system, the full
sphere will be turned into an ellipsoid with semi-axes l1, l2, and l3 after a time t from
the beginning of evolution. The semi-axes are

l1 = ε0e
λ1t , l2 = ε0e

λ2t , l3 = ε0e
λ3t .

In the given case concerningattractors, theLyapunovexponents possess the following
important properties.

Firstly, the sum of Lyapunov exponents is equal to the divergence of flow of the
velocities of the phase points:

k
∑
i
λi =

k
∑
i

dẋi
dxi
.

Therefore, the sum of the Lyapunov exponents for a dissipative system is always neg-
ative, and for a conservative system is zero.

Secondly, an attractor, different from a fixed point or node, must have at least one
Lyapunov exponent equal to zero. This Lyapunov exponent characterizes the motion
along a direction of no contraction of the phase points.

Consider a two-dimensional case. Here, if both Lyapunov exponents are negative,
the contraction of the phase points in a node occurs. But if there is a limit cycle, this
means that the phase points are concentrated in a confined region of the phase space.
Such a situation takes place only when the average distance between them does not
suffer a change, which in its turn implies the vanishing of one of the Lyapunov expo-
nents. The book [14] reviews a more rigorous evidence of this statement.
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For a one-dimensional system only singular points can be as attractors, if the
condition λ < 0 is valid. Consequently, strange attractors are not possible in one-
dimensional systemsbecausehere the phase points converge into a cluster rather than
diverge. Two-dimensional systemshave two types of attractors: stable fixedpoints and
limit cycles. If both Lyapunov exponents λ1 and λ2 are negative, the phase points are
contracted into a node. If one of the Lyapunov exponents is negative and another is
equal to zero, the appearance of another type of attractors take place, namely, a limit
cycle. No other attractors are in general possible when we address two-dimensional
systems.

In three-dimensional systems, different combinations of signs for the Lyapunov
exponents are possible:
1. {−,−,−} – an attractive node;
2. {0,−,−} – a limit cycle;
3. {0,0,−} – a two-dimensional torus;
4. {+,0,−} – a strange attractor.

Note that the sequence order of the signs does notmatter, as combinations of the char-
acters that differ only by order are identical. Let us drawattention to the fact that in the
three-dimensional and more than three-dimensional systems strange attractors can
also occur. In this case, the initial volume filled by phase points at an initial moment
of time is stretched in one direction, compressed in the other direction, and remains
unchanged along the third one.

The appearance of strange attractors is one of the possible mechanisms of gen-
erating chaotic dynamics. In the next sections of this chapter we will get acquainted
with other scenarios of chaotic behavior of dynamic systems.

1.3.9 Dynamic chaos in one-dimensional mappings

Up until now we have had to deal with dynamical systems whose evolution is deter-
mined by differential equations of motion. There is another possibility to describe dy-
namics of a system by using finite difference equations. In this case a time step is as-
sumed to be some finite value. It is easy to arrive at a finite-difference equation by
analyzing the relation between coordinates of a phase point at successive passage of
it through a Poincaré section. Consider only one particular and rather simple case of
one-dimensional phase space when its mapping is given by the recurrence relation

xn+1 = f (xn), (1.125)

where f (x) = rx(1 − x) is a function dependent on of a single parameter r.
A mapping defined by the recurrence relation (1.125) is referred to as the logistic

mapping. Even this simple case is very useful for understanding the challenges faced

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



1.3 Self-organization in highly non-equilibrium systems | 53

when studying dynamic chaos. The mapping defined by (1.125) transforms points of
the segment [0, 1] into points of the segment [0, r/4]. Therefore, if the condition r ≤ 4
is met, then all points of the mapping lie on the segment [0, 1].

The function f (x), obviously has a maximum equal to r/4 in point x = 1/2. Sta-
tionary points of the mapping can be found from the following condition xc = f (xc).
Substituting the explicit expression of the function, one obtains the equation for de-
termining the stationary values of xc:

x2c − xc +
1
r
xc = 0.

This implies that there are two stationary points xc = 0 and xc = 1−1/r. Since 0 ≤ x ≤ 1,
there is a stationary point xc = 0 for r < 1. At the point r = 1 there occurs bifurcation,
and there appear two stationary solutions:

x(1)c = 0, x(2)c = 1 −
1
r
.

Let us determine which of the stationary points is stable for r > 1. For this, it is neces-
sary to define a small deviation of the dynamic variable △xn from a stationary value
and linearize the recurrence relation (1.125) in the vicinity of the stationary point. The
result is the recurrent relation for small deviations from steady-state values:

Δxn+1 = r(1 − 2xc)Δxn. (1.126)

If the value of |r(1−2xc)| < 1, then the sequence (1.126) converges to a stationary point,
and if it is greater than 1, then it leaves the vicinity of xc. It follows that, if r > 1, the
stationary point x(1)c = 0 is unstable and the stationary point x

(2)
c is stable. It is worth

noticing that the stability testing of the stationary point reduces to the calculation of
the derivative function f at the stationary point:

f
(x)x=xc =

r(1 − 2xc)
 < 1.

If the absolute value of the derivative of the function at the stationary point is less
than 1, then such a stationary point is stable.

Figure 1.12 shows a so-called bifurcation diagram in which the numerical values
of the stationary points xc are plotted along the Y axis depending on the parameter r.
The first bifurcation, as it has been already indicated, occurs at the point r = 1. The
second bifurcation occurs at the point r = 3 (see Figure 1.12). There are two stable
stationary solutions for 3 < r < 1 +√6 that satisfy the equations

x(1)c = rx
(2)
c (1 − x

(2)
c ),

x(2)c = rx
(1)
c (1 − x

(1)
c ). (1.127)

A solution of this set of equations can be easily obtained numerically by using, for
example, a package of symbolic andnumerical computations inMaple. The stationary
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Figure 1.12: Bifurcation diagram of the logistic mapping: coordinates of the stationary points are
plotted along the Y axis; the parameter r is displayed on the horizontal axis.

points x = 0 and x = 1 − 1/r for r > 3 are unstable and therefore they are not depicted
in Figure 1.12.

The next doubling bifurcation occurs at the point r = 1 + √6 ≃ 3.45. The double-
stable cycle at this point is replaced by a fourfold stable cycle:

x(1)c = rx
(2)
c (1 − x

(2)
c ),

x(2)c = rx
(3)
c (1 − x

(3)
c ),

x(3)c = rx
(4)
c (1 − x

(4)
c ),

x(4)c = rx
(1)
c (1 − x

(1)
c ). (1.128)

The dynamics of the logistic mapping for r = 3.46 is represented in Figure 1.13 by the
Lamerey diagram. The straight line y = x and the function describing the right-hand
side of the logistic mapping y = rx(1 − x) for r = 3.46 are shown. Suppose that the
value y ≃ 0.4 has been obtained at some iteration step. This value is marked by the
character 1 in Figure 1.13.

Let us find graphically the value of x = y, which should be inserted into the func-
tion y = rx(1 − x) at the next iteration step. To do this, we draw a horizontal line to
intersect with the line y = x. If we draw a vertical line from this point to intersect the
curve y = rx(1 − x), we will get the value y ≃ 0.8 at the next iteration step. Continu-
ing this construction further, one obtains four stationary solutions marked with the
numbers 1, 2, 3, 4 in Figure 1.13. These solutions will be repeated in sequence.

As r is further increased, the period doubling bifurcations will be repeated up to
the value r = r∞ ≃ 3.5699, at which there arises an attractive (stable) cycle to be an
infinitely large period as all cycles with periods of 2m,m = 1, 2, . . . , become unstable.
The dynamics becomes irregular at values r∞ < r < 4 and aperiodic trajectories take
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Figure 1.13: Formation of the fourfold cycle of the logistics mapping for r = 3.46.

place which cannot be reduced to cycles and in the same time at r = 4 dynamic chaos
appears in the system.

At r = 4 themapping xn+1 = 4xn(1−xn) has an exact solution that can be presented
as follows:

xn = sin
2(πΘn) =

1
2
(1 − cos(2πΘn)), Θn = 2

nΘ0. (1.129)

Thus, an initial angle is multiplied by two for sequential mappings. Measuring angles
in radians, it would be advisable to restrict oneself to considering the initial angles in
the interval 0 ≤ Θ0 ≤ 1. Then the initial angle can be represented via a binary system
of calculations:

Θ0 = 0 +
a1
2
+
a2
4
+
a3
8
+ ⋅ ⋅ ⋅ =

∞
∑
ν=0

aν2
−ν , (1.130)

where the coefficients aν are equal to zero or unity. Such a representation of the initial
angle allows one to see that the sequential mappings can be obtained from the initial
mapping by shifting the decimal just one position to the right. For example, having
defined an arbitrary angle Θ0 = 0.10100110 . . ., one obtains the sequence of iterations
Θ1 = 1.0100110 . . ., Θ2 = 10.100110 . . ., Θ3 = 101.00110 . . .. It is obvious that this se-
quence can be continued infinitely. Each new value of xn is determined by valid digit
which stands in the next place of the initial value Θ0. By virtue of the periodicity of
solutions of (1.129) the integer part of the value Θn does not contribute and therefore
it can be dropped.

If an origin point is set up arbitrarily and values of significant digits are random,
then a phase point will visit the neighborhood of any point of the interval [0, 1] count-
less times. Essentially, this statement is equivalent to the statement of system ergod-
icity. Chapter 3 focuses at an ergodicity condition of systems in more detail.
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Such systems whose behavior is completely determined by an initial value (code)
may provide clues to understanding how the genetic codeworks. The number of speci-
fied significant digits is responsible for the number of time periods, forwhich behavior
of a system can be predefined. If an error in the nth place of the binary number was
equal to ε = 1/2n, the system completely “forgets” its initial state after n temporal cy-
cles and demonstrates a random behavior.

This phenomenon is observed by in numerical experiment. It is clear that the so-
lution of (1.129) is cyclic at some initial angles, e. g. Θ0 = 1/3, Θ0 = 1/5, Θ0 = 1/9. In
particular, there is a cycle with a period of 2 as the value of xn periodically takes either
the value of xn ≃ 0.345, or the value xn ≃ 0.905 when Θ0 = 1/5. But, when setting the
angle, the error quite rapidly accumulates and information about the initial angle is
completely lost after some number of iterations. The number of iterations depends on
the accuracy of initial conditions (Figure 1.14).

Figure 1.14: Emergence of chaos in the mapping (1.129) for the initial angle Θ0 = 1/5: (a) is for initial
state is given with an accuracy of 8–9 decimal places; (b) is for initial state is given with an accuracy
of 19–20 decimal places.

Concluding the brief acquaintance with the peculiarities of the one-dimensional lo-
gistic mapping, we should mention how a dimension of the point set of this mapping
can be determined. All the more so, as it has been already mentioned above, exactly
the same difficulty arises while analyzing the dimension of strange attractors in other
problems. Here, we confine ourselves to a qualitative discussion of the problem. More
detailed information is presented in the book by Schuster [16].

To determine the dimension of a set of imaging points that result from successive
bifurcations of doubling the period 2m, m → ∞ is the most simple. It turns out that
the set is self-similar, possessing a fractal structure. Besides, the dimension of this set
is not equal to 1 and represents by itself a fractional value, of 0.543 [16].
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Self-similar fractal multitudes are well known in mathematics. Among them the
simplest multitude is a set of Cantor. The procedure of constructing the Cantor set
begins by taking a line segment of unit length and repeatedly deleting themiddle third
of each line segment. The first three steps are depicted in Figure 1.15. The Sierpinski
carpet is a two-dimensional generalization of the Cantor set. The Sierpinski sponge
can serve as a case in point typical of three-dimensional space [14, 16].

Figure 1.15: Construction of the Cantor set: crosshatched segments of the straight lines are dis-
carded (fraction above implies the length of the segments deleted from the straight line).

Let us find the length l of the removed part of the unit segment while constructing the
Cantor set. Using the formula for the sum of a geometric progression, one obtains

l = 1
3
+
2
9
+

4
27
+ ⋅ ⋅ ⋅ =

1
2

∞
∑
k=1
(
2
3
)
k
=
1
2

a1
1 − q
=

1/3
1 − 2/3
= 1,

where a1 = 2/3 is for the first summand of the geometric progression, q = 2/3 the
denominator of the progression.

As far as the length of the removed part is equal to 1, the dimension of the Can-
tor set must not be an integer. The following procedure allows one to determine the
dimension of a fractal set in the case of a phase space. Let A be a set of states in an
n-dimensional phase space. LetN(ε) be the number of the n-dimensional cubes of side
ε needed to completely cover the set so that these cubes should contain all points of
this set. We count these cubes. Then, the dimension d(A) of the set A of phase points
can be determined by the formula

d(A) = lim
ε→0
(
lnN(ε)
ln(1/ε)
). (1.131)

It is easy to show that formula (1.131) gives correct results for the regular sets with
dimension 1, 2 or 3. Consider a one-dimensional set of points that is a straight line of
unit length. Then, N(ε) = 1/ε segments of the length ε are needed to cover all points
of this segment. Applying the formula (1.131), one obtains d = 1.

Similarly, one can easily find out that this formula gives the correct results in
two-and three-dimensional cases. To calculate the dimension of the Cantor set, the
formula (1.131) should be applied. In this case, the set is covered by intervals whose
lengths are equal to (1/3)m,m = 1, 2, 3, . . . and the number of the intervals for covering
the set is respectively equal to 2, 4, 8, . . .. Therefore, in the case of the Cantor set the
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following holds: ε = (1/3)m, N(ε) = N(m) = 2m. The application of the formula (1.131)
to the Cantor set yields

d = lim
m→∞
(
m ln 2
m ln 3
) ≃ 0, 631.

Proceeding similarly, one can determine also a dimension of other fractal sets.
To determine on the basis of formula (1.131) the dimension of a set such as a

strange attractor, numerical experiments may be used. To do this, we count the num-
ber N(ε) hypercubes with side length ε that contain the phase points and of the are
required to cover the phase space. Then, the procedure for counting the cubes is re-
peated for different cube sizes. Each side of the cubes can be diminished, for example,
by factor of two, four, eight, etc. The results obtained should be presented graphically
by plotting the values of ln(1/ε) and lnN(ε) along the X axis and Y axis, respectively.
If the graph formed by plotting the points admit an approximation via a straight line,
the tangent of the angle made by the straight line and the X-axis will be approxi-
mately equal to the dimension of the set of the points of this attractor. Naturally, all
the calculations must be automated.

Concluding this chapter, it should be emphasized once more that irreversible be-
havior and self-organization by no means are an alternative to the dynamic descrip-
tion. These phenomena are inherent in full to those dynamical systems, in which
dynamic chaos is realized. Dynamic chaos in dissipative systems is associated with
strong instability of nonlinear dynamical systems. Besides, dynamic chaos is proba-
ble in systems with few degrees of freedom. As to systems with dynamic chaos, a set
of points in phase space has a fractal structure. Until now it is not clear how this fact
should be considered in a statistical description of properties of non-equilibrium sys-
tems.

The beginning of Chapter 3 is devoted to emergence of dynamic chaos in Hamil-
tonian systems and to noninvertible behavior of quantum systems. Recent results in
research on chaotic behavior of quantum systems can be found in the monograph by
Stockman [15].

1.4 Problems to Chapter 1

1.1. The plasma discharge is generated in an electron-ion system with a character-
istic length of ≈ 1 cm. Temperature estimates of the plasma give values of 104 K.
The electron energy relaxation is determined by electron-ion collisions. The or-
der of magnitude of the relaxation time is τ = 10−11 s. Can we regard the elec-
tronic system as being locally equilibriumunder such conditions? To obtain the
correct result, one should assume that the velocity of electrons is defined by
their average kinetic energy.
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1.2. Determine both the temperature gradient and the cooling rate causing the vi-
olation of the local equilibrium principle for electrons in creating a metal film
from the melt. One should assume that the mean free path of the electrons at
the Fermi surface is 10−5 cm, the velocity being 108 cm/s, and the melting point
is 103 K.

1.3. Derive a continuity equation for energy density using the definition of the latter
for a system consisting of n particles

E( ⃗r, t) =
n
∑
i=1

mv2i
2

δ( ⃗r − ⃗ri(t)).

Giveadefinition for the energyflowdensity (ananalogueof the expression (1.9)).
1.4. The set of n independent macroscopic parameters α1, α2, . . . , αn defines the

weakly non-equilibrium state of an adiabatic isolated system. Construct a gen-
eral expression for entropy production in such a system to express it through
generalized fluxes and generalized thermodynamic forces.

1.5. There are two free-external-environment subsystems having the energy-related
and the particle interchange. The energy of the first subsystem is E01 + α, the
second one is E02 − α; E

0
1 , E

0
2 are energies of the first and second subsystems in

steady state, respectively, α is the parameter characterizing the deviation from
equilibrium. Similarly, the number of particles of the first subsystem is equal to
n01 + β, and the second one – n

0
2 − β; β being a non-equilibrium parameter.

Prove that entropy production of the whole system can be written in terms of
small deviations from equilibrium as

dS
dt
= (

1
T1
−

1
T2
)
dα
dt
− (

ζ1
T1
−
ζ2
T2
)
dβ
dt
,

where T1, T2; ζ1, ζ2 is for temperatures and chemical potentials of the first and
second subsystems, respectively.

1.6. Using the relation (1.20) prove that theOnsager reciprocal relations are a special
case of the more general relations

𝜕Ii
𝜕Xk
=
𝜕Ik
𝜕Xi
.

1.7. In a thermodynamic system the generalized forces X1,X2, . . . ,Xm are kept con-
stant due to external influences, and the rest of them Xm+1,Xm+2, . . . ,Xn are not
controlled.
Prove using the Prigogine minimum entropy production principle that in this
case, the generalized fluxes Im+1, Im+2, . . . , In thermodynamically conjugate to
the uncontrolled generalized forces are equal to zero.

1.8. Describe an experiment that allows heat generated by the Joule effect and heat
generated by the Thomson effect to be measured.
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1.9. Electrical oscillations in a circuit containing active elements are described by a
set of the Van der Pol equations

dU
dt
= U ; dU 

dt
= −γ(1 − U2)U  − U ,

where γ is a parameter that takes both positive and negative values.
Applying the linearization method for equations of motion in respect to small
parameter deviations from a steady state (see the expressions (1.110)–(1.113)),
analyze stability of the Van der Pol system and find all possible types of station-
ary points.

1.10. It is well known that the Sierpinski carpet is a generalization of the Cantor set
in two dimensions. This fractal set is the result of the following procedure: a
square is divided into nine smaller equal squares and the central piece is re-
moved for the first iteration; then the remaining eight squares are each divided
into nine equal squares again, and the middle square is again ejected for the
second iteration. This procedure is repeated.
Depict the first two steps of the construction of the above set on a sheet of paper.
Prove using the definition of (1.131) that the fractal dimension of the Serpinski
carpet is equal to ≈ 1.893.
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2 Brownian motion

2.1 The Langevin equation for a Brownian particle

2.1.1 Nature of motion of a Brownian particle. Random forces

Chaotic motion of small solid particles with characteristic size R of the order of the
wavelength of visible light suspended in a fluid is referred to as Brownianmotion. This
phenomenon was discovered by Robert Brown in 1827, when he observed chaotic mo-
tion of particles of pollen in a drop of water through a microscope.

In 1905 Einstein developed a quantitative theory of Brownian motion. Shortly af-
ter Einstein’s paper on Brownian motion, in 1908 Langevin derived a simple enough
phenomenological equation, using the concept of random forces acting on a Brown-
ianparticle. This equation allows one to reproduce the results foundbyEinstein. Since
the concept of random forces has gained widespread acceptance in non-equilibrium
statistical mechanics, it would be expedient to start consideration of a Brownian mo-
tion model with a derivation of Langevin’s equations.

Let us assume that a Brownian particle has mass m and is a spherically symmet-
ric particle with a characteristic size R. In this case, according to Stokes’ law a fric-
tion force F⃗fr = −γ ⋅ v⃗ acts on such a particle moving with velocity v⃗ in a liquid. Here
γ = 6 ⋅ π ⋅ R ⋅ η, η is the shear viscosity coefficient. However, a force should not be
overlooked caused by elastic collisions between molecules of the fluid and the par-
ticle. As far as the fluid is assumed to be homogeneous and isotropic, the resultant
force of these elastic collisions can be related only with random fluctuations in their
number. In other words, both magnitude and direction of this force f (t) are random
time-dependent variables.

As far as the medium is isotropic but the particle is spherically symmetric, it suf-
fices to consider one-dimensionalmotion alongX-axis. If we remainwithin the frame-
work of classical mechanics, we can write down the equation of motion:

m ⋅ ẍ + γ ⋅ ẋ = f (t). (2.1)

In writing equation (2.1) it should be taken into account the fact that the resistance
force is oriented in a direction opposite to the velocity. This equation is called the
Langevin equation that involves a source of random forces on the right-hand side.

It is easy to obtain a formal solution of Langevin’s equation. From the standpoint
of the theory of differential equations, equation (2.1) is an inhomogeneous first-order
linear equation relating to the velocity vx = ẋ. The solution of this equation is the
superposition of a general solution of the homogeneous equation and a particular
solution of the inhomogeneous equation:

vx(t) = vx(0)e
−γ/mt +

1
m

t

∫
0

e−γ/m(t−t1)f (t1) dt1. (2.2)

https://doi.org/10.1515/9783110727197-002
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Naturally, the formal solution of the expression (2.2) does not give any new results as
long as the function f (t) is unknown. To take a step further it is necessary to explore
the properties of the functions f (t).

The Langevin source is a random function of time. Therefore, if we choose a suf-
ficiently long time interval T, the average value of this force will be zero:

⟨f (t)⟩ = 1
T

T

∫
0

f (t1) dt1 = 0.

There are at least two time scales in this task. One of them is related to an interaction
time of a single molecule with a Brownian particle. This characteristic time τ0 can be
estimated as the ratio of the radius of action of intermolecular forces r0 ∼ 10−8 cm to
the thermal velocity of molecules vt ∼ 105 cm/s:

τ0 ≃
r0
vt
≃

10−8 cm
105 cm/s

≃ 10−13 s.

Another characteristic time is associated with the velocity relaxation time of a Brown-
ian particle in a liquid. From formula (2.2) it follows that, if there are no random forces,
the particle velocity

vx(t) = vx(0)e
−γ/mt

relaxes with the relaxation frequency 1/τ ≃ γ/m; τ ≃ m/γ.
After plugging the typical values of quantities which, for example, Jean Perrin ob-

tained in his experiments into the above expression, but namely: R ≃ 10−7m, m ≃
10−17 kg, viscosity of water η ≃ 10−3 kg/m s, γ = 6πRη ≃ 2 ⋅ 10−9 kg/s, one gets magni-
tude that is significantly greater than τ0: τ ≃ 10−8 s. Therefore, the equations of mo-
tion (2.1) need to be averaged over a time interval τ when considering the motion of a
Brownian particle over periods greater than τ, without taking into account individual
collision events.

Let us consider a behavior of a random force when such averaging is required
to apply. Obviously, the average value of this force ⟨f (t)⟩ at time interval τ is zero.
However, the vanishing average does not give a complete description of the random
variable. No less important characteristic is a correlation of values of this quantity at
different times. To describe an interrelation the values of the random force, taken at
different moments of time, we use the pair correlation function Kf (t1, t2), which can be
defined as follows:

Kf (t1, t2) = ⟨f (t1)f (t2)⟩ − ⟨f (t1)⟩⟨f (t2)⟩
≡ ⟨(f (t1) − ⟨f (t1)⟩)(f (t2) − ⟨f (t2)⟩)⟩. (2.3)

It is obvious that in virtue of the homogeneity of time, the pair correlation func-
tion (2.3) depends only on the difference of time arguments t1−t2:Kf (t1, t2) = Kf (t1−t2).
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In the given case the averages of the random force are equal to zero: ⟨f (t1)⟩ =
⟨f (t2)⟩ = 0. Therefore we can believe that

Kf (t1, t2) = ⟨f (t)f (0)⟩,

where t = t1 − t2.
Based on the fact that there are two very different time scales in this problem, we

may attempt simulating the behavior of the correlation function Kf (t1, t2) = ⟨f (t1 −
t2)f (0)⟩. As far as the duration of each collision event has the order of τ0, the random
forces f (t1) and f (t2) are correlated only in the case when t = t1 − t2 ≤ τ0. When ap-
proximating the temporal behavior in the roughest manner, the correlation function
is thought to be constant and equal to some variable C, if |t| ≤ τ0, and equal to zero if
|t| ≥ τ0:

Kf (t,0) = {
C |t| ≤ τ0,
0 |t| ≥ τ0.

(2.4)

The temporal behavior of the random force f (t) is schematically shown in Figure 2.1(a),
and the graph for the time-dependent correlation function Kf (t,0) given by equa-
tion (2.4) is depicted in Figure 2.1(b).

Figure 2.1: Temporal behavior of the random function f (t) (a) and the correlation function Kf (t ,0) (b).

Since the length of time interval τ0 can be considered as very small in the rough time
scale τ, then, simplifying the formula (2.4), we can accept that the random forces cor-
relate only when their arguments are the same:

Kf (t1 − t2) = Cδ(t1 − t2). (2.5)

Nowwe can pass on to the Fourier representation of Kf (ω) for the correlation function
of random forces:

Kf (ω) =
∞

∫
−∞

Kf (t)e
iωt dt = C

∞

∫
−∞

δ(t)eiωt dt = C. (2.6)
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The quantity Kf (ω) is often referred to as spectral density of the correlation function
of random forces. From formula (2.6) it follows that Kf (ω) = C and it does not depend
on the frequency. A random process whose a spectral density of the pair correlation
functiondoes not dependon frequency, is calledwhite noise.White noise gets its name
from white light in which the spectral density is the same for all frequencies.

From formula (2.6) it follows that the constant C determines the spectral intensity
of the random force. The intensity can be expressed via the average square of the ve-
locity fluctuations. It has already been indicated that the average value of the random
force is zero at t > τ. Therefore, by averaging equation (2.2) over the time interval t ∼ τ,
one obtains

⟨vx(t)⟩ = vx(0)e
−t/τ,

1
τ
=

γ
m
.

This implies that the velocity fluctuation is completely determined by random force:

vx(t) − ⟨vx(t)⟩ =
1
m

t

∫
0

e−γ/m(t−t1)f (t1) dt1. (2.7)

Let us define the quantity that would be of the mean square velocity fluctuations:

Dv(t) = ⟨(vx(t) − vx(t))
2⟩. (2.8)

To simplify this formula we have used the notation ⟨vx(t)⟩ ≡ vx(t). Substituting the
expression (2.7) for the velocity fluctuations into formula (2.8), one obtains

Dv(t) =
1
m2

t

∫
0

t

∫
0

e−(t−t1)/τe−(t−t2)/τKf (t1 − t2) dt1 dt2. (2.9)

Given that Kf (t1 − t2) = Cδ(t1 − t2), we perform the temporal integration over the argu-
ment t2 in the expression (2.9):

Dv(t) =
C
m2

t

∫
0

e−2(t−t1)/τ dt1 =
C
m2 e
−2t/τ

t

∫
0

e2t1/τ dt1 =
Cτ
2m2 (1 − e

−2t/τ). (2.10)

The expression (2.10) defines the square of velocity of a chaotically moving Brownian
particle:

Dv(t) = Kv(t, t) = ⟨(vx(t) − vx(t))
2⟩ =

Cτ
2m2 (1 − e

−2t/τ).

This fact can be used to determine the constant C. The estimation of the magnitude of
the spectral intensity of the random force C is obtainedwhen applying the theorem on
the uniform distribution of energy over degrees of freedom of the chaotic motion. The
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energy equal to kBT/2 corresponds to one-degree of freedom, where kB is the Boltz-
mann constant, T is the absolute temperature. Therefore, for times t ≫ τ, we have

m
2
⟨(vx(t) − vx(t))

2⟩ =
Cτ
4m
=
kBT
2
.

This yields a simple estimate for the quantity C:

C = 2kBTm
τ
≡ 2kBTγ.

Now the final form of an expression for the pair correlation function of random forces
appears as

Kf (t1 − t2) = 2kBTγδ(t1 − t2), Kf (ω) = 2kBTγ. (2.11)

Equation (2.11) is well known in the literature as one of existing formulations of the
fluctuation-dissipation theorem that relates the fluctuations of random forces in an
equilibrium state with parameters, characterizing the irreversible processes. For ex-
ample, the parameter γ determines a momentum relaxation frequency of a Brownian
particle in a fluid.

The quantity (2.8) found above stands for the pair correlation function of velocity
fluctuations of a Brownian particle which are taken at the same time: Dv(t) = Kv(t, t).
One can generalize this result and determine the correlation function of fluctuations
of velocity component, taken in different moments of time:

Kv(t1, t2) = ⟨(v(t1) − v(t1))(v(t2) − v(t2))⟩. (2.12)

Problem 2.1. Using the expression (2.12), it is necessary to determine the temporal
behavior of the pair correlation function of the velocity components of a Brownian
particle.

Solution. We use the expression (2.7) for velocity fluctuations of a Brownian particle
and plug it into (2.12). As a result of this operation, we have succeeded in expressing
the correlation function of velocity components via the correlator of random forces
Kf (t1, t2):

Kv(t1, t2) =
1
m2

t1

∫
0

dt
t2

∫
0

dte−(t1−t)/τe−(t2−t
)/τ⟨f (t)f (t)⟩. (2.13)

Now we apply the fluctuation–dissipation theorem (2.11) according to which
⟨f (t)f (t) = Kf (t − t) = 2kBTγδ(t − t). Substituting this result into the expression (2.13)
and integrating over t, one gets

Kv(t1, t2) =
2kBTγ
m2 e−(t1+t2)/τ

t1

∫
0

dte2t/τ = kBTτγ
m2 e−(t2−t1)/τ(1 − e−2t1/τ). (2.14)
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Given that the mean square of the thermal velocity of a Brownian particle is equal to
v2 = kBT/m, and the inverse relaxation time of the speed is 1/τ = γ/m, the expres-
sion (2.14) can be significantly simplified:

Kv(t1, t2) = v2e
−(t2−t1)/τ(1 − e−2t1/τ). (2.15)

It is easy to see that, if t1 = t2 = t, then one can obtain the desired result (2.10).

2.1.2 Displacement of a Brownian particle

The displacement of a Brownian particle is easily determined by integrating the ex-
pression (2.2) for velocity:

x(t) − x(0) = vx(0)
t

∫
0

dt1e
−γ/mt1 +

1
m

t

∫
0

dt1

t1

∫
0

dt2e
−γ/m(t1−t2)f (t2). (2.16)

Let us find themean displacement of a Brownian particle located initially at the origin
after the moment of time t. Carrying out the averaging of the both sides of the expres-
sion (2.16) and taking into account the fact that the average value of the random force
is zero f (t2) = 0, we find

x(t) = x(0) + vx(0)τ(1 − e
−t/τ); τ = m

γ
. (2.17)

The formula (2.17) implies that if t ≪ τ then x(t) = x(0) + vx(0)t. This means that the
displacement of a Brownian particle at t ≪ τ also obey the laws of classical dynamics.

Now let us calculate the variance of the displacement of a Brownian particle
Dx(t) = ⟨(x(t) − x(t))2⟩. Having changed the order of integration over the variables t1
and t2, we simplify the double integral on the right-hand side of the formula (2.16).
Bearing in mind the expression (2.17), as a result, we get

x(t) − x(0) = vx(0)τ(1 − e
−t/τ) +

1
m

t

∫
0

dt2f (t2)
t

∫
t2

dt1e
−(t1−t2)/τ. (2.18)

The integral over the variable t1 on the right-hand side of the expression (2.18) is esti-
mated easily enough. The result is a simple formula for the displacement fluctuation:

x(t) − x(t) = τ
m

t

∫
0

dt2f (t2)(1 − e
−(t−t2)/τ). (2.19)

Substituting the last result in the displacement variance formula for a Brownian par-
ticle, one obtains

Dx(t) = ⟨(x(t) − x(t))
2⟩ =

τ2

m2

t

∫
0

dt1

t

∫
0

dt2Kf (t1 − t2)(1 − e
−(t−t1)/τ)(1 − e−(t−t2)/τ). (2.20)
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Taking into consideration the δ-shaped nature of the source of random forces

Kf (t1 − t2) ∼ δ(t1 − t2),

we can now perform the integration over the variables t1 and t2. This yields an easily
interpretable formula for the displacement variance of a Brownian particle:

Dx(t) = ⟨(x(t) − x(t))
2⟩ =

2kBTτ
m
(t − 2τ(1 − e−t/τ) + τ

2
(1 − e−2t/τ)). (2.21)

From this expression it follows that Dx = 0 within the limit of small times t/τ ≪ 1
up to quadratic terms over a small parameter. Moreover, this formula implies a linear
growth in variance as a function of time when t ≫ τ:

Dx(t) =
2kBTτ
m
(t − 3

2
τ).

It is largely simple to verify experimentally the formulae for variance displacement
of a Brownian particle calculated with respect to the initial coordinate x0 rather than
the average displacement x(t). Therefore, it is necessary to convert the variance for-
mula (2.21) to a variance formula where the deviation is computed from the initial
coordinate x0. The formula of this conversion can be easily obtained singlehandedly:

⟨(x(t) − x0)
2⟩ = ⟨(x(t) − x(t))2⟩ + (x(t) − x0)

2.

Given that x(t) − x0 can be found from the expression (2.17); one obtains the Langevin
formula for the variance of the displacement of a Brownian particle:

⟨(x(t) − x0)
2⟩ = ⟨(x(t) − x(t))2⟩ + (v0τ)

2(1 − e−t/τ)2. (2.22)

Consider a behavior of the displacement variance over periods much less and much
longer than the characteristic time of the momentum relaxation τ of a Brownian par-
ticle. Within limits of short periods t ≪ τ, the variance is Dx(t) = 0 up to quadratic
terms in the parameter t/τ. Therefore, expanding the second term on the right-hand
side of the expression (2.22) over the small parameter t/τ, we have

⟨(x(t) − x0)
2⟩ ≃ v20t

2,
t
τ
≪ 1. (2.23)

At the limit t/τ ≫ 1 the second term on the right-hand side of the expression (2.22) can
be neglected and we obtain Einstein’s formula for the variance of the displacement of
a Brownian particle with respect to the initial position:

⟨(x(t) − x0)
2⟩ ≃

2kBTτ
m

t, t
τ
≫ 1. (2.24)
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The above results concerning the temporal behavior of both the variance of the veloc-
ity and of the variance of the displacement of a Brownian particle with respect to x0
are represented in Figure 2.2.

Figure 2.2: Temporal behavior of the velocity variance (a) and the displacement variance ⟨(x(t)−x0)2⟩
(b) of a Brownian particle.

The velocity variance is measured in units of kBT/m, and the displacement variance is
measured in units of kBT/mτ2. Figure 2.2(a) shows the velocity relaxation of Brownian
particles to the Maxwellian distribution. It is seen that the Maxwell velocity distribu-
tion occurs when transferring from the mechanical description to a description in the
rough time scale for the time t ∼ τ/2 and the particle “forgets” its the initial velocity v0.
At the same time the displacement of a Brownian particle continues to keep the fea-
tures of the mechanical behavior, as far as the displacement variance of a Brownian
particle is proportional to t2 when t ≪ τ. See (2.23).

Figure 2.2(b) shows with a dotted line the behavior of the displacement variance
at t ≪ τ. The straight line corresponds to the behavior of the displacement variance
when t ≫ τ. The lower curve corresponds to the displacement variance, calculated in
accordance with the Langevin formula (2.22) under the assumption that v20 = kBT/m
is valid.

Concluding the brief discussion of Brownianmotion theory, formulated by Lange-
vin, one should be once again focused on principal issues.

Firstly, the concise description has become possible due to the presence of two
time scales in this problem. Instead of calculating the coordinates and velocities of
a Brownian particle exactly, we have restricted ourselves to computing the averaged
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characteristics or moments of the distribution for two limiting cases when τ0 ≪ t ≪ τ
and t ≫ τ. In the first case traces of mechanical motion are retained partially and the
particle travels as if by inertia at a speed of v0. Expanding over the parameter t/τ in
formula (2.10) and substituting the value of constant C, we obtain for the first limiting
case:

⟨(vx(t) − vx(t))
2⟩ ≃

2kBT
m

t
τ
,

⟨(x(t) − x0)
2⟩ ≃ v20t

2, τ0 ≪ t ≪ τ . (2.25)

But when t ≫ τ, traces of the dynamic description are lost completely and Brownian
motion can be treated as a diffusion process:

⟨(vx(t) − vx(t))
2⟩ ≃

kBT
m
,

⟨(x(t) − x0)
2⟩ ≃

2kBT
γ

t, t ≫ τ . (2.26)

We have restricted ourselves to calculating the moments of the second order (vari-
ance), but at least there is a possibility in principle of calculating the moments of
higher order [6, 17]. Herewith, it is worthwhile noticing that only even moments are
non-zero: the fourth, sixth, etc.

Secondly, in the problem of Brownian motion the temporal averaging along the
phase trajectory was used. But to determine amplitude of spectral intensity of the ran-
dom force (constant C) the ergodic hypothesis on equality of temporal and phase av-
erages is required to apply. The next chapter discusses the ergodic hypothesis in more
detail. As a result, the spectral intensity of the random force proved to be dependent
on equilibrium temperature.

Finally, a passage to the description in the rough timeline proved to be possible
only because a Brownian particle sufficiently fast “forgets” its the initial speed for the
time t ∼ τ/2. When considered over such a period, the dynamic description is not only
impossible, but meaningless because motion becomes chaotic. Over periods t ≫ τ,
evolution of the motion of Brownian particles does not obey equations of mechanics
and the process is referred to as aMarkov process, that is, the system state in a given
moment does not depend on the prehistory of this system.

2.2 The Fokker–Planck equation for a Brownian particle

2.2.1 Derivation of the Fokker–Planck equation

Consider the evolution of an ideal gas of Brownian particles, using an approach based
on the application of the statistical distribution function. The analysis will be carried
out in rough temporal scale, assuming the condition t ≫ τ is met. As shown above,
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the momentum of a Brownian particle is thermalized during this time and the mean
value of impulse coincides with the average heat impulse for the time interval ∼ τ. For
this reason, there is no point maintain dependence of the distribution function on the
momentum. Therefore, we assume that the distribution density ρ( ⃗r, t) depends only
on the coordinates ⃗r and time t. Naturally the density must be normalized to 1:

∫ ρ( ⃗r, t) d ⃗r = 1. (2.27)

As far as Brownian particles obey the particle number conservation law, and then the
distribution function must satisfy the continuity equation:

dρ
dt
+ div (ρv⃗) = 0, (2.28)

where v⃗ is the velocity of the Brownian particles.
Staying within the framework of the semi-phenomenological description, we rep-

resent the particle flux, which is consists of two parts:

v⃗ = u⃗0 + u⃗ran.

The first part of the flux u⃗0 is associated with the presence of external forces acting on
the particles, and it can be called a regular part of this flux. In writing the Langevin
equation (2.1), we assumed that a Brownian particle experiences a resistance force
F⃗fr = −γv⃗.

Now, by arguing in a similar way, we assume that, if a Brownian particle is in the
field of external forces F⃗fr = −�⃗�U with a potential U, these external forces will cause
motion of the particle with the velocity:

u⃗0 = F⃗fr/γ = −�⃗�U/γ.

This result is not a corollary of mechanical but of hydrodynamic laws of motion.
The second part of the flux, associated with the random walk, has nature of the

diffusion process. In the phenomenological theory diffusion is described by Fick’s law.
This law holds that the particle flux density ⃗Jran = ρv⃗ran is proportional to the gradient
of the particle number density or to the concentration gradient. Then, applying the
distribution density function, the Fick law can be written as

ρu⃗ran = −D�⃗�ρ,

where D is the phenomenological diffusion coefficient.
Taking into consideration these two results, we find the expression for the total

flux of Brownian particles:

ρv⃗ = −(ρ
γ
�⃗�U + D�⃗�ρ). (2.29)
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Indeed, the quantitiesD and γ in the expression (2.29) for the particle flux are not inde-
pendent phenomenological coefficients. There is a simple relationship between them
and it can be easy ascertained. In equilibrium, the total flux (2.29) is zero. Therefore,
equation (2.29) for the equilibrium state of the system can be regarded as an equation
to determine the equilibriumdistribution ρ. Equation components for ascertaining the
equilibrium distribution ρ can be written as

d ln ρ
dxα
= −

1
γD

dU
dxα
; α = 1, 2, 3. (2.30)

The variables in this equation are separated, so the solution may be written immedi-
ately:

ρ( ⃗r) = const exp{−U(
⃗r)

γD
}. (2.31)

However, if the particles are in the field with the potentialU( ⃗r), the equilibrium distri-
bution of these particles will have the form

ρ( ⃗r) = const exp{−U(
⃗r)

kBT
}. (2.32)

Comparing the expressions (2.31) and (2.32), we find an expression for the diffusion
coefficient D:

D = kBT
γ
, γ = 6πRη,

where η is the shear viscosity coefficient; R is the radius of a Brownian particle.
Now we can return to the continuity equation (2.28). Substitution of the flux den-

sity of particles in the form of (2.29) in the above equation yields the Fokker–Planck
equation for the density distribution of Brownian particles:

dρ
dt
−
1
γ
div(ρ gradU) − kBT

γ
ρ = 0, (2.33)

where  is for the Laplace operator. Equation (2.33) allows one to find the distribu-
tion function of Brownian particles ρ( ⃗r, t), if initial and boundary conditions are set
for this equation. Interpreting it, this equation describes the relaxation of the non-
equilibriumdistributionρ( ⃗r, t)with respect to the equilibriumBoltzmanndistribution,
defined by (2.31).

2.2.2 The solution of the Fokker–Planck equation

Consider a simple case, allowing, on the one hand simply to solve the Fokker–Planck
equation, on the other hand to obtain a Brownian particlemotion picture, correspond-
ing to the limit t ≫ τ in the Langevin equation.
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Let the potential of external forces beU = 0 and a system is assumed to be infinite
and spatially homogeneous. In this case, it is sufficient to analyze theone-dimensional
distribution ρ(x, t). We suppose that a Brownian particle at the initial time was at the
point with coordinate x = 0, and the distribution function density was described by
the delta-function ρ(x,0) = δ(x). Then the further dynamics of the distribution will
obey the Fokker–Planck equation:

dρ
dt
=
kBT
γ

d2ρ
dx2
. (2.34)

In addition to the initial condition ρ(x,0) = δ(x), the solution of equation (2.34) must
also satisfy both the normalization condition (2.27) and the distribution density trend
condition to zero at an infinite distance from the starting point:

lim
x→±∞

ρ(x, t) = 0.

To solve equation (2.34) we define the Fourier transform of the distribution density
ρp(t) by the ratio

ρ(x, t) = 1
2π

∞

∫
−∞

ρp(t)e
ipx dp (2.35)

and we write down equation (2.34) for the Fourier transform ρp(t):

dρp(t)
dt
+
kBT
γ

p2ρp(t) = 0, ρp(0) = 1. (2.36)

In equation (2.34) all coefficients are constants and the variables are separated. There-
fore, taking into account the initial condition ρp(0) = 1, we can write down the solu-
tion:

ρp(t) = exp(−
kBT
γ

p2t). (2.37)

To find the distribution function in coordinate presentation, we should substitute the
result found in the determination (2.35):

ρ(x, t) = 1
2π

∞

∫
−∞

e−kBT/γp
2teipx dp. (2.38)

If we perform the integration over p in this formula, one obtains a Gaussian distribu-
tion:

ρ(x, t) = 1
√4πkBT/γt

exp(− x2

4kBT/γt
). (2.39)
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The procedure for estimating such a sort integrals will be discussed later (see Prob-
lem 2.2).

If we now take into account the fact that the Gaussian distribution (normal distri-
bution) is determined by two parameters such as the average value of x and variance
Dx and has the form

f (x) = 1
√2πDx

exp(− (x − x)
2

2Dx
),

then in comparison to formula (2.39) the average value of x for the distribution (2.39)
is equal to zero and the variance takes the following form:

Dx(t) =
2kBT
γ

t.

The above quantity of Dx coincides with the result (2.26), found from the Langevin
equation. The same result may be obtained by calculating the second moment of dis-
tribution:

Dx(t) = ⟨(x − x)
2⟩ =
∞

∫
−∞

(x − x)2ρ(x, t) dx.

It is interesting to analyze how the distribution (2.39) evolves with increase time t.
Graphs of the distribution density function (2.39) for four values of the parameter t/τ
are illustrated in Figure 2.3.

Figure 2.3: Distribution density (2.39) for different values of the parameter t/τ; the quantity x is mea-
sured in units of v0τ.
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It is seen that with increase time t the evolution of the distribution is reduced to the
broadening of the distribution. It becomes less concentrated, and the probability of
finding a Brownian particle far enough away from the starting point increases.

Problem 2.2. Consider the calculation of the integral appearing in Fourier transform
of a normal distribution (2.38). We set up the problem as follows: find the characteris-
tic function of the standard normal distribution:

f (x) = 1
√2π

exp(−x
2

2
).

It is worth noticing that the Fourier transform f (p) of this distribution is referred
to as characteristic function:

f (p) = 1
√2π

∞

∫
−∞

eipx exp(−x
2

2
) dx. (2.40)

Solution. To find the integral in the definition of the Fourier transform of a normal
distribution, we preliminarily estimate the Poisson integral:

IP =
∞

∫
0

e−x
2
dx.

The simplest and most elegant way of finding the Poisson integral is a reduction of it
to the computation of a certain integral in polar coordinates over quadrant area:

I2P =
∞

∫
0

e−x
2
dx
∞

∫
0

e−y
2
dy = lim

R→∞

R

∫
0

R

∫
0

e−x
2−y2 dx dy.

The last integral can be regarded as an integral over the circle area with radius R,
located in the first quadrant of a coordinate plane. While transferring to the polar co-
ordinate system x = r cosφ, y = r sinφ, this integral can easily be taken:

I2P = lim
R→∞

π/2

∫
0

dφ
R

∫
0

re−r
2
dr = π

4
.

It follows that

IP =
∞

∫
0

e−x
2
dx =
√π
2
.

But a similar integral has the following form:
∞

∫
−∞

exp(−(Ax)2) dx =
√π
A
. (2.41)
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To calculate the integral (2.40) we will try to lead it to the form of (2.41) with the aid of
the replacement of variables, having written the power of exponent −x2/2 + ipx in the
subintegral function of the expression (2.40) as

−(Ax − B)2 + C.

Comparing these two expressions, we find that A = 1/√2, B = ip/√2, C = −p2/2. Using
the result (2.41), we have

f (p) = 1
√2π

∞

∫
−∞

exp(−x2 + ipx) dx = exp(−p
2

2
). (2.42)

Thus, the characteristic function of the standard normal distribution has been found.
The above-described method has been also used to evaluate the integral (2.38).

This concludes our brief introduction to the methods of a description of a Brown-
ian particle motion. A more detailed discussion and examples for solving many prob-
lems concerning motion of a Brownian particle can be found in a book written by
I. A. Kvasnikov [17].

In the next chapter we will return to a justification and an application of the
Fokker–Planck equation as far as kinetic equations are concerned.

Concluding the chapter, let us summarize. The problem of motion of a Brownian
particle is one of simple tasks of physical kinetics. It allows pictorially seeing how the
roughing of a description of the dynamic system can occur. An accurate description of
a Brownian particlemotion in terms of the equations of classicalmechanics is not only
impossible but also meaningless, because the system forgets its initial momentum af-
ter a sufficiently small interval time. The further movement of this system resembles
a diffusion process rather than mechanical movement. We discuss the reason for this
phenomenon in detail in Chapter 1 in relation to the dynamics of dissipative systems.
The natural question arises of how the roughing of the description of the dynamic sys-
tems can occur if they obey dynamic Hamilton equations. Therefore, at the beginning
of the next chapter conditions under which a system cannot be described in terms of
the dynamic equations of motion will be analyzed. Consequently, for this reason it is
a statistical description of such a system that is required.

2.3 Problems to Chapter 2

2.1. Write down the Langevin equation for a harmonic oscillator in the field of a ran-
dom force f (t). Calculate the average value of the displacement and averagemo-
mentum of the harmonic oscillator in the field of the random forces.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



76 | 2 Brownian motion

2.2. Applying the rule of “decoupling” for the correlation of random forces that sat-
isfy the condition ⟨f (ti)⟩ = 0:

cKf (t1, t2, t3, t4) = ⟨f (t1)f (t2)⟩ ⋅ ⟨f (t3)f (t4)⟩
+ ⟨f (t1)f (t3)⟩ ⋅ ⟨f (t2)f (t4)⟩ + ⟨f (t1)f (t4)⟩ ⋅ ⟨f (t2)f (t3)⟩.

Prove that the fourth moment of the velocity fluctuation of a Brownian particle
relates the particle velocity dispersion Dv(t) by the simple relation

⟨vx(t) − vx(t)⟩
4 = 3Dv(t),

which holds for all variables with a Gaussian distribution.
2.3. Using the Langevin equation, derive equations of motion for the kinetic and the

average kinetic energies of a Brownian particle.
2.4. Making use of the solution of the previous problem, define the temporal depen-

dence of the average kinetic energy of a Brownian particle to hold for any arbi-
trary time point.

2.5. Solve the Fokker–Planck equation for a Brownian particle in a gravitational po-
tential field U(x) = mgx, where x is a coordinate, m is mass of the particle, g
being the acceleration of gravity provided that the Brownian particle distribu-
tion function has originally the form ρ(0, x) = δ(x). To clarify how the distribu-
tion changes over time, plot the sequence of the distributions for different time
points (see Figure 2.3). The problems can be reduced to the case in the absence
of a potential field by introducing the new variable ξ :

x = ξ − mg
γ
t.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



3 Kinetic equations in non-equilibrium statistical
mechanics

3.1 Description of non-equilibrium systems in statistical
mechanics

3.1.1 Integrable and nonintegrable dynamical systems

Unfortunately, insufficient attention is given to non-integrable systems within a uni-
versity course of lectures on classical mechanics. Such a situation requires a short
excursion into mechanics of classical systems.

As is known, a set of Hamilton dynamic equations,

𝜕H
𝜕pi
= q̇i,
𝜕H
𝜕qi
= −ṗi, i = 1, 2 . . .N , (3.1)

is referred to as completely integrable if there exists a canonical transformation of
the variables qi, pi that results in transferring from the generalized coordinates qi and
generalized momenta pi to the variables Ji, αi (action-angle) in terms of which the set
of equations (3.1) may be written [18]

𝜕H
𝜕Ji
= α̇i,
𝜕H
𝜕αi
= 0, i = 1, 2 . . .N . (3.2)

In equations (3.1) and (3.2)H is Hamilton’s function. The special role of such variables
as action-angle is that the Hamiltonian in these variables depends only on integrals
of motion Ji and does not depend on the angles αi. Obviously, if these variables are
found, the set of equations (3.2) is easily integrated:

Ji = Ji(0), αi = αi(0) + ωit, ωi =
𝜕H
𝜕Ji
, i = 1, 2 . . .N . (3.3)

For this reason, the main problem of mechanics is to find an appropriate canonical
transformation, leading a system to the form of (3.2). Moreover, individual intuitive
notions concerning behavior mechanical systems also have to do with exceptionally
integrable systems.

Meanwhile, the number of systems which are integrable is not great. Integrable
systems certainly include a system with one degree of freedom. It is true, there are a
few particular cases when systems with two- or three degrees of freedom can be re-
duced to a systemwith one degree of freedom, consequently to be also integrable. For
example, systems consisting of non-interacting particles or a set of harmonic oscilla-
tors, reacting on each other according to a harmonic law, may be regarded as systems
with two- or three degrees of freedom. The above list of integrable systems has fin-
ished. All other systems are non-integrable, and their behavior may be very different

https://doi.org/10.1515/9783110727197-003

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use
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from the familiar integrable systems. Strictly speaking, such terms as determinate-
ness, possibility of a dynamic description and time reversibility are referred to only
integrable systems.

Combination of two harmonic oscillators interacting among each other according
to a law that is not harmonical is the simplest system to address the difference in the
behavior of integrable and nonintegrable systems. Such a system is described by the
Hamiltonian of Eno–Eyless [12]:

H = 1
2m
(p21 + p

2
2) +

mω2
1q

2
1

2
+
mω2

2q
2
2

2
+ V(q21q2 −

1
3
q32), (3.4)

where p1, p2 are the momenta and q1, q2 the coordinates, and ω1, ω2 the eigen fre-
quencies of the first and second oscillators, respectively. Moreover, all particles are
assumed to have the same mass. If the parameter V in equation (3.4) is zero, we get
an integrable set of equations of motion. But if the same parameter V ̸= 0, the set of
equations is non-integrable and its solution can be obtained only by making use of
numerical techniques for integrating the system of differential equations.

Before passing to the direct analysis of dynamics of the system with Hamilto-
nian (3.4), we recall the reader some important results of classical mechanics, relating
to Hamiltonian systems (see [19]).

We now define the mechanical system state at given moment of time by the posi-
tion of the phase point in the phase space 6N of variables qi, pi, i = 1, 2, . . . , 3N . In this
case, the system evolution can be represented graphically with the aid of trajectory of
the phase point in the phase space.

Consider a small region A of the phase space. The dynamics equations of the
Hamiltonian (3.1) give aone-parameter groupof transformationsof thephase spaceGt .
These transformations shift the phase point (q⃗(0), p⃗(0)) in the new location (q⃗(t), p⃗(t)).
Such a transformation is commonly referred to as phase flow and it results in moving
the phase points belonging to region A to some region At at moment of time t, where
GtA = At .

As for conservative systems, due to Liouville’s theorem [19] a phase flowpreserves
phase volume. In other words, volume of the region A is equal to the volume of At .
Based on this theorem, Poincaré formulated a statement which at first glance is para-
doxical. If the phase point of a system is in arbitrary small region of the phase spaceU,
itmay be in this areaU asmuch as desired times in the process of evolution. This state-
ment known as the Poincaré recurrence theorem, in essence holds that any system in
the course of evolution must return to the original state after some time. The proof of
the Poincaré theorem can be easily obtained.

Consider images of the phase region U at regular intervals of time τ, i. e., at mo-
ments of time t, t+τ, t+2τ, . . . , t+nτ. The phase flowwill transform the regionU at time
t+nτ in the regionGt+nτU = Un. As far as the volumes of the regionsU t ,U1,U2, . . . ,Un,
according to Liouville’s theorem, are equal, sooner or later the volumes of Un and Um
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will overlap, provided that the phase system volume is not equal to infinity. Figure 3.1
schematically shows the evolution of the phase regionU and the overlapping of these
areas at somemoment of time. The images ofU arising during the evolutionmay have
a different form, but preserve their volume.

Figure 3.1: The proof of Poincaré’s theorem: evolution of a small region of phase space; the partial
overlapping of regions 1 and 9 is shown.

Despite the apparent clash of the Poincaré theorem and common sense, there can be
several different explanations concerning the paradox about return of a mechanical
system in initial state. One of possible explanations is reduced simply to estimate the
time of return. Given that a huge number of possible states are equal to the order of
6N! and also the change velocity of the phase variables is finite; it is easy to obtain an
estimate of the return time for amacroscopic systemwhich exceeds greatly the lifetime
of the Galaxy. This explanation was historically the first, but as we will see later, there
are other reasons when the Poincaré recurrence theorem is not valid for the systems
observed.

3.1.2 The evolution of dynamical systems in phase space

Let us now return again to the matter about behavior of integrable and nonintegrable
systems and consider it from the standpoint of the evolution of a small region in the
system’s phase space. It should be distinguished three typical scenarios of the evolu-
tion of the small vicinity of the phase point. It should be noted that sometimes we are
going to talk about a small neighborhood of the phase space as a phase point in the
phase space.

In the first case, the phase trajectory is a closed line and the system undergoes
a periodic motion. A combination of two noninteracting harmonic oscillators with a
multiple ratio of eigenfrequencies ω1 and ω2 may serve as a case of point of such a
system.

Hamiltonian of the system can be obtained if it is assumed that V = 0 in the
expression (3.4), and frequencies ratio is equal to some rational number. Figure 3.2(a)
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Figure 3.2: The phase portrait of the system (3.4): (a) the case of non-ergodic system, the phase
trajectory does not cover the torus; (b) the phase portrait of an ergodic system in the Poincaré cross-
section ω2

1 = 65, ω
2
2 = 4.

shows the surface of constant energy of this system, which is a torus in the space of
the variables p2, q1, q2. In addition, the phase trajectory is a closed line, wound on the
torus.

Dynamical description is possible for such a system, but statistical description
is inappropriate. The system behavior information can be obtained by observing the
appearance of phase points in the Poincaré cross-section. One of planes of the phase
space, for example q1 = 0 may serve as a case in point of such a cross-section (Fig-
ure 3.2(b)). If the frequencies are commensurable, then one obtains a discrete set of
points in the Poincaré cross-section. But if the frequencies are incommensurable, the
set of points where the phase curve “pierces” the plane q1 = 0, will be represented as
an ellipse.

Now we consider the case when the ratio of the frequencies of oscillators cannot
be reduced to a rational number because the variables (ω1 and ω2 are incommensu-
rable). In this case, the phase trajectory is not a closed line, which covers the torus
completely. It is this circumstance that allows one to introduce a statistical descrip-
tion of the system.

Let us define the function ρ(p, q) setting density of probability to find a phase
point of system in an infinitesimal element of volume dpdq in the neighborhood point,
whose position in the phase space is defined by a set of values p, q. To do this, in the
phase space of the system we separate out the volume element dp, dq and will record
the time-fraction τ, in the course of that the phase point is inside the volume dpdq. To
simplify the notations, the quantity ensemble pi, qi, i = 1, 2, . . . ,N is needed to replace
by the letters p and q, respectively. It is obvious that the ratio limit takes the following
form:

lim
t→∞

τ
t
= ρ(p, q)dpdq, (3.5)
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where t is the time of observation of the system. This time defines a probability for
detecting the phase point within the volume dpdq. From the probability density defi-
nition it follows that the probability is normalized to unity:

∫
Ω

ρ(p, q) dp dq = 1. (3.6)

In the expression (3.6), the integration is performed over the isoenergetic surface Ω
H(p, q) = const. In the future, such a quantity ρ(p, q)may be called the statistical op-
erator of the system.

If the statistical operator ρ(p, q) is already known, the average value of any phys-
ical variable f (p, q) can be found as the mathematical expectation of the quantity
f (p, q):

⟨f (p, q)⟩ = ∫
Ω

f (p, q)ρ(p, q) dp dq, (3.7)

where the integration is performed over an available region of the phase space of the
system, i. e. over the constant-energy surface. If the system has K integrals of motion
besides the energy, the dimension of the hypersurface over which integration is per-
formed will be equal to 6N − K − 1.

The average value of the quantity f (p(t), q(t)) can be also obtained by averaging
of this quantity over time:

f = lim
T→∞

1
T

T

∫
0

f (p(t), q(t)) dt. (3.8)

The quantity found by averaging in accordance with formula (3.7), ⟨f (p, q)⟩, can be
called the statistical average, the quantity f , calculated by formula (3.8) being the dy-
namic average.

It is necessary to emphasize that the statistical mechanics of equilibrium systems
is based on a very rough simplification of formula (3.7) for the average over a phase
space. The cornerstone of statistical mechanics of Gibbs is the hypothesis that holds
for the quantity ρ(p, q) = const, if p and q belong to constant-energy surface Ω. Rea-
sonsunderlying sucha roughapproximation arehidden in thepeculiarity of dynamics
of Hamiltonian systems. Therefore, this matter will not be treated until later.

It is usually assumed that the statistical and dynamic averages are equal. Given
that the quantity ρ(p, q) is constant on isoenergetic surface and also the normalization
condition (3.6) is valid, we have

⟨f (p, q)⟩ = f =
∫Ω f (p, q) dp dq
∫Ω dp dq

. (3.9)
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This statement is referred to as ergodic hypothesis. In truth, its validity defies strict
proof; however, a corollary of the ergodic hypothesis is a possibility to arrange a ther-
modynamic description of equilibrium systems, which is in agreement well with ex-
periment.

So, if a dynamic system is designed in such a way that a phase trajectory cov-
ers a whole constant-energy surface in the course of evolution for a sufficiently long
time, then it is possible to statistically describe the system using the statistical oper-
ator ρ(p, q). A significant simplification of description arises when it is assumed that
ρ(p, q) = const throughout the hypersurface of constant energy.

Let us pass on to another possible situation whenω1 = ω2 and V = 1 in the Hamil-
tonian (3.4). Then the Hamiltonian equations of motion are not to be integrable and
the phase trajectory behavior changes completely. Now an isoenergetic surface of the
system is not a torus in the phase space. The phase trajectory of the systemobtained as
a result of numerical integration of themotion equations is illustrated in Figure 3.3(a).

Figure 3.3: The phase portrait of the system (3.4): (a) the parameter V = 1, ω1 = ω2 = 1; (b) the phase
portrait of the same system in the Poincaré cross-section q1 = 0.

The trajectory resembles tangled threads and is not similar to regular motion of the
phase point on the torus surface in the previous case.

More information about behavior of a system can be obtained by observing the
appearance of phase points in the Poincaré cross-section, i. e. in cross-section of the
phase space with plane q1 = 0. The result of such a numerical experiment is shown in
Figure 3.3(b). Each point in this figure corresponds to “a puncture” of the plane q1 = 0
by the phase trajectory as the phase point moves along the positive direction of the
axis q1.
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There are as yet virtually no rigorous analytical calculations even for sucha simple
model, while the results of numerical experiments of various hands point clearly that
the model demonstrates a stochastic behavior. This is evidenced by the fact that if we
enumerate the points appearing on the display, the sequence of points with adjacent
numbers turns out to be randomly scattered over the isoenergetic surface. In integrat-
ing equations ofmotion, reducing the time-step does not change the situation. Simply
put, such a system exhibits the stochastic behavior (or so-called dynamic chaos).

Let us now try to understand how dynamic chaos appears in a system described
by the Newton equations. Consider a small region of the phase space A. In the case
of integrable systems, a phase flow virtually shifts the region A to a new position
on the isoenergetic surface and covers it completely with the lapse of time. In con-
trast, for non-integrable systems, the region A, preserving its volume, is stratified into
thin threads and gradually is distributed throughout the isoenergetic surface for some
characteristic time,which shouldbe called themixing time. The concept ofmixing can
be quantitatively described through a concept of measure.

Let us call the measure of the area A the ratio of volume of the area A to volume of
the phase space, available for the system and denote it as μ(A). During the evolution,
the volume of A is replaced by the volume At . However, the volume of the area A is the
same size of At, therefore, it is obvious that μ(A) = μ(At). We separate out some other
arbitrary regionBandwewill think that it is nonmovable. It stands to reason that small
parts of the areaAwill fall into the areaB because of themixing event. Themixing pro-
cess will be complete if volume of the overlapping parts of the areas At and B, divided
by the volume of B, will be equal to the relative volume of A. In the context of the con-
cept of a measure, this condition of the complete mixing can be written as follows:

μ(A) = lim
t→∞

μ(At ∩ B)
μ(B)
. (3.10)

The mixing event occurs in such systems, where there is a strong divergence of two
phase points located arbitrarily close to each other at some initial moment. Such sys-
tems are called unstable. The system instability, in turn, leads to unpredictability in
its behavior over time. Indeed, if a position of the phase point is known with some
accuracy in the initial moment, i. e. we know that it belongs to some region with the
characteristic size ε, it is impossible to say where the phase point will be after some
temporal interval t. There is a finite probability for this phase point being anywhere
on the constant-energy surface.

When it comes to a divergence of phase points in systemswithmixing, this is easy
enough to imagine. In this case, one can analyze the behavior of the system’s replicas
whose initial conditions differ. The divergence of trajectories means that the systems
exhibit hypersensitivity to initial conditions. But a question arises: why do we say of
chaos in solving a set of differential equations for several particles and analyzing the
motion of a single phase point? It would seem that the uniqueness theorem for so-
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lutions of differential equations must provide the deterministic behavior to calculate
exact coordinates and momenta of all particles making up the system at any time.

Stochasticity here also arises due to extreme sensitivity of the system’s dynamics
to the assignment of the initial conditions. Unfortunately, we have no chance of ana-
lyzing this problem in detail, so we just give only a pictorial example demonstrating
the essence of the issue. It is said that a good example is the best sermon.

The Sinai billiard may serve as the simplest model of the stochastic system. This
is a flat table bounded by walls; a disk of radius R is located in the center of the table.
Anothermobile diskwith smaller radius r is launchedwith some initial velocity v⃗ from
an arbitrary place of the table. It is assumed that all strikes are absolutely elastic. Since
(see Figure 3.4) the result of the scattering depends strongly on a direction of the initial
velocity and initial position of the mobile disk, then any small change in the initial
conditions leads in the long run to another pattern of motion.

Figure 3.4: Billiards Sinai – the simplest mechanical system demonstrating chaotic behavior.

Thus, it is the extreme sensitivity to conditions of the scattering that leads to the
stochastic behavior of the system. Then, when colliding with the central disk, the
particle’s behavior will not already depend on its initial position and velocity after
some scattering events at any finite accuracy of calculations. Put it otherwise, the
system “forgets” its the initial state and a dynamic description becomes impossible.

Only having calculated the probability of detecting the disk at any place on the
table, description of the motion of such a puck can be possible. It is obvious that the
probabilitywill no longer depend on t after a time equal to themixing time, andwill be
determined only by peculiarities of the system structure, in particular, by geometrical
dimensions.Moreover, themotion of the particle of billiards can be assumed to be irre-
versible. Indeed, information loss about the initial conditionsmeans that information
entropy grows in an isolated system what is characteristic for irreversible behavior.
The criterion, permitting to distinguish systemswith themixing event from integrable
systems consists in difference of the Kolmogorov–Sinai entropy from zero (1.123).
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Concluding this subject, one would like to draw the reader’s attention to the fol-
lowing main aspects. The possibility, but more exactly, the necessity to introduce a
statistical description is associated with weak stability of the dynamic systems. The
statistical description can be assumed to become possible because a phase point
visits a huge number of places scattered randomly throughout the phase surface
for any macroscopic time of the measurement of the dynamic quantity. It is the
mixing that allows one to apply an idea of that the distribution density of phase
points on the isoenergetic surface is a constant (microcanonical distribution). In
essence, this is a cornerstone of the statistical mechanics of Gibbs. The system ergod-
icity (3.9) is a necessary condition but not sufficient that of the statistical description
applicability, because only in systems with the mixing, the distribution density of
phase points proves to be the same throughout the isoenergetic surface of the sys-
tem.

Statistical description for integrable systems is impossible, since a phase point
moves along a trajectory and if one were to introduce the averaged description, the
averagingwould beperformed along the trajectory, rather than the entire phase space.

Chaotic behavior arises both in the dynamical system described by the Hamilton
equations and in the dissipative dynamical systems, with a mechanism of the emer-
gence of dynamic chaos being the same, i. e. there is an ultra-high dependence of the
motion pattern on the initial conditions.

It should be dwelt on one else matter. One should not think that a complexity of
the system automatically guarantees the emergence of the mixing event in it. As far
back as the dawn of the computer experiment, Ulam, Pasta and Fermi decided to test
by numerical study, whether one of main hypotheses of statistical mechanics is ful-
filled, but namely, the hypothesis of proportional distribution of energy over degrees
of freedom. For these purposes there was taken the system of oscillators interacting
against each other not harmonically. As was shown by that numerical study, on being
exited of one of the vibrationalmodes at the beginning there occurred an intensive ex-
change of energy with other modes. Moreover, it would seem energy was distributed
among all the vibrational modes, but after a while fluctuations of the original mode
intensified again. The phenomenon observed is similar to return of the system to its
original state, predicted by Poincaré. The Fermi–Pasta–Ulam problem solution was
obtained by Kruskal and Zabuski in the early 1960s. They established that the Fermi–
Pasta–Ulam system is a difference analog of the Korteweg–De Vries equation and soli-
tonic nature of wave propagation in this system inhibits the uniform distribution of
energy. The term soliton was proposed by Zabuski.

Finally, there is one more remark. Statistical mechanics of Gibbs comes from a
fairly simple assumption about constancy density of phase points on the constant-
energy surface. At the same time, as noted in Chapter 1, a phase space is fractal under
conditions of dynamic chaos andhas a fractional dimension. Unfortunately, until now
it is not clear, whether this circumstance affects somehow the statistical properties of
a system or not.
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3.2 Substantiation of quasiclassical kinetic equations

3.2.1 The Liouville equation for the distribution function

Consider a gas of classical particles, consisting of N identical monatomic molecules
enclosed in some volume V . Suppose for simplicity, the dynamic state each molecule
is determined by the coordinate q andmomentum p. We denote Cartesian projections
of the vectors p and q, as pα and qα (α = 1, 2, 3), respectively. Since we regard the gas of
classical particles, their coordinates and momenta obey the Hamilton equations (3.1)

dpαi
dt
= −
𝜕H
𝜕qαi
,

dqαi
dt
=
𝜕H
𝜕pαi
, i = 1, 2 . . .N , (3.11)

where H is the full Hamiltonian of the system, i is the index of the molecule.
As shown above, a state of the mechanical system at some point t is given by a set

of values of coordinates andmomenta of all particles making up the system. Thus, ev-
ery time the system is represented as a point in 6N-dimensional phase space. The sys-
tem evolution may be described by investigating the motion of the point in the phase
space.

After the manner of Gibbs, we proceed to describe the system dynamics in terms
of a distribution function. To do this, instead of considering the evolution of particu-
lar system, we refer to the collection of quite identical dynamical systems which are
distinct from each other only by the initial locations in the phase space. This set of sys-
tems is referred to as the Gibbs ensemble. It should be noted that the density of points
in the phase space, normalized to unity, being denoted via by ρ(p, q, t), the quantity
ρ(p, q, t) dpdq is the probability of finding the phase point in the volume element dpdq
of the phase space.

System description in the framework of the Gibbs method is a purely dynamic.
It is easy to verify that the distribution function ρ(p, q, t) would meet the certain sort
of equations. As mentioned above in connection with the discussion of the Poincaré
theorem recurrence, the motion of phase points in classical mechanics is a phase
flow, which is defined by given a one-parameter group of transformations of the phase
space:

Gt(p1(0), p2(0), . . . , pN (0); q1(0), q2(0), . . . , qN (0))
→ Gt(p1(t), p2(t), . . . , pN (t); q1(t), q2(t), . . . , qN (t)),

where p(t) and q(t) are found from the solution of the Hamilton equations (3.11).
Consider the phase points, trapped at the time t by some volume element dpdq

of the phase space. These points are replaced into the volume element dpdq of the
phase spaceunder actionof thephaseflowat themoment of time t. As far as thephase
points do not vanish and not reappear, one can write down the obvious equality:

ρ(p, q, t)dpdq = ρ(p, q, t)dpdq.
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This expression holds for the conservation law of the phase points. Since, according
to Liouville’s theorem, the phase flow preserves the phase volume and dpdq = dpdq,
then hence follows the distribution function constancy condition in the course of evo-
lution of particles along the phase trajectory

ρ(p, q, t) = ρ(p, q, t).

Assuming that the temporal increment dt = t − t is infinitesimally small, we carry out
the expansion of the function ρ(p, q, t) with an accuracy to first order:

ρ(p, q, t) = ρ(p, q, t) + [𝜕ρ
𝜕t
+

N
∑
i=1

𝜕ρ
𝜕qi

q̇i +
N
∑
i=1

𝜕ρ
𝜕pi

ṗi]dt. (3.12)

It implies the vanishing of the expression in square brackets on the right side of (3.12).
Taking into consideration the Hamilton equations, satisfied by the coordinates and
momenta of the system particles, one obtains the Liouville equation for the classical
function distribution:

𝜕ρ
𝜕t
+ [ρ,H] = 0, where [ρ,H] =

N
∑
i=1
(
𝜕ρ
𝜕qi
𝜕H
𝜕pi
−
𝜕ρ
𝜕pi
𝜕H
𝜕qi
). (3.13)

Equation (3.13) yields a value of the function ρ(p, q, t), if a value of the distribu-
tion function ρ(p, q,0) was given at the initial time. Moreover, no reduction of the de-
scription of the system in terms of the N-particle distribution function is possible to
achieve. This description is so much detail as a dynamic description by the Hamilton
equations. To proceed, it is necessary to pass on to a less detailed description of the
system using a one-particle distribution function. Such a description may be made, it
follows from the material presented in Section 3.1.1. Actually, the system has forgot-
ten its initial state in the course of its evolution for the temporal period of the order
of a characteristic mixing time. At the same time, correlation coefficients of higher or-
ders vanish. So, when considered over periods greater than the time of chaotization,
it doesn’t make sense to describe the system’s behavior in terms of the N-particle dis-
tribution function ρ(p, q, t). It suffices to use a simplified description in the language
of the one- or two-particle distribution functions. Bogoliubov was the first to show
such an approach for deriving kinetic equations which were investigated in his work
“Problems of dynamic theory in statistical physics” [20].

3.2.2 The chain of the Bogoliubov equations

Since theN-particle distribution functions contain redundant anduseless information
about particle correlations of higher orders, it would be advisable to introduce more
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simple the s-particle distribution functions Fs(t, x1, x2, . . . , xs), s = 1, 2 . . ., s ≪ N having
defined them so that the quantity

1
V s Fs(t, x1, x2, . . . , xs)dx1dx2 . . . dxs (3.14)

would give a probability of the dynamical states of s molecules situated into the in-
finitely small volume dx1dx2 . . . dxs near the point x1, x2, . . . , xs at time t. To determine
the s-particle distribution function, one needs to integrate ρ(x1, x2, . . . , xN ) over all “ex-
tra” variables:

Fs(t, x1, x2, . . . , xs) = V
s ∫ ρ(t, x1, x2, . . . , xN ) dxs+1 dxs+2 . . . dxN . (3.15)

Here and below, the quantity xi means an aggregate of a coordinate and momentum
of the i-th particle, V being volume of the system.

The goal of the authors is to derive the equation for the one-particle distribution
function F1(t, x). Nevertheless, it would be proper to start with a derivation of the mo-
tion equation for s-particle distribution function by simplifying it at the final stage.

For this purpose, let us apply the Liouville equation (3.13). Suppose that the sys-
tem is a dilute gas of freely moving molecules, with the interaction between them be-
ing determined by short-range potential Φ(|qi − qj|), depending only on the distance
modulus between particles. In this case the Hamiltonian system in a potential field
U(q) can be written as follows:

H = ∑
1≤i≤N

H1(xi) + ∑
1≤i<j≤N

Φ(|qi − qj|), H1(xi) =
p2i
2m
+ U(qi). (3.16)

Using the Hamiltonian (3.16), we write down the Liouville equation (3.13) for the full
distribution function:

𝜕ρ
𝜕t
= ∑

1≤i≤N
[H1(xi), ρ] + ∑

1≤i<j≤N
[Φ(|qi − qj|), ρ]. (3.17)

Let us multiply both sides of equation (3.17) by V s and integrate them over the vari-
ables xs+1, xs+2, . . . , xN , except but the integration for each variable of xi is performed
over all possible values of coordinate and momentum of the i-th particle. This results
in obtaining the following expression:

𝜕Fs
𝜕t
= ∑

1≤i≤s
V s ∫[H1(xi), ρ] dxs+1 dxs+2 . . . dxN

+ ∑
s+1≤i≤N

V s ∫[H1(xi), ρ] dxs+1 dxs+2 . . . dxN

+ ∑
1≤i<j≤s

V s ∫[Φ(|qi − qj|), ρ] dxs+1 dxs+2 . . . dxN
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+ ∑
1≤i≤s

s+1≤j≤N

V s ∫[Φ(|qi − qj|), ρ] dxs+1 dxs+2 . . . dxN

+ ∑
s+1≤i<j≤N

V s ∫[Φ(|qi − qj|), ρ]dxs+1dxs+2 . . . dxN . (3.18)

While writing (3.18) we havemade allowance for the representation of the double sum
holding for any symmetric function Φij with respect to permutations of the indices:

∑
1≤i<j≤N

Φij =
1
2
(

s
∑
i=1
+

N
∑
i=s+1
)(

s
∑
j=1

Φij +
N
∑
j=s+1

Φij)

= ∑
1≤i<j≤s

Φij + ∑
1≤i≤s

s+1<j≤N

Φij + ∑
s+1≤i<j≤N

Φij.

For further transformation of equation (3.18) we take into account the following iden-
tities (see the suggestions in Problem 3.1):

∫[H1(xl), ρ] dxl = 0; (3.19)

∫[Φ(|qi − qj|), ρ] dxi dxj = 0. (3.20)

These identical equations are valid, if the distribution density ρ tends to zero at the
boundaries of the phase region, with |q| → ∞ and |p| → ∞. Consider one after an-
other each summand on right side of equation (3.18).

Bearing in mind the definition of (3.15), operation of integrating the first term
yields the new form

∑
1≤i≤s

V s ∫[H1(xi), ρ] dxs+1 dxs+2 . . . dxN = ∑
1≤i≤s
[H1(xi), Fs].

The second term in line with the identity (3.19) vanishes and does not contribute. The
third term on the right side of (3.18) in consideration of the definition of (3.15) is easily
transformed into

∑
1≤i<j≤s

V s ∫[Φ(|qi − qj|), ρ] dxs+1 . . . dxN = ∑
1≤i<j≤s
[Φ(|qi − qj|), Fs].

In the fourth term, one may observe that all summands by summing over the index j
by virtue of the particles identity, which leads to the distribution function invariance
relating to permutation of the particle coordinates xj and xs:

ρ(x1, x2, . . . , xs, . . . , xj, . . . , xN ) = ρ(x1, x2, . . . , xj, . . . , xs, . . . , xN )
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can have the same form, if the change of variables in the course of integration takes
place. The number of such summands, obviously, is equal to N − s. Therefore, we get

∑
1≤i≤s

s+1≤j≤N

V s ∫[Φ(|qi − qj|), ρ] dxs+1 dxs+2 . . . dxN

= (N − s) ∑
1≤i≤s

V s ∫[Φ(|qi − qs+1|), ρ] dxs+1 dxs+2 . . . dxN

=
(N − s)
V
∑
1≤i≤s
∫[Φ(|qi − qs+1|), Fs+1] dxs+1.

Finally, the fifth term on the right side of (3.18) taking into account the identity (3.20)
is zero and does not make any contribution.

Thus, the equation for the s-particle distribution function can be written in the
following form:

𝜕Fs
𝜕t
= [ ∑

1≤i≤s
H1(xi) + ∑

1≤i<j≤s
Φ(|qi − qj|), Fs]

+
N − s
V
∫[ ∑

1≤i≤s
Φ(|qi − qs+1|), Fs+1] dxs+1. (3.21)

We define the Hamiltonian set of molecules s by the relation

Hs = ∑
1≤i≤s

H1(xi) + ∑
1≤i<j≤s

Φ(|qi − qj|) (3.22)

and in equation (3.21)wepass to the thermodynamic limitN →∞,V →∞,N/V = n =
const, where n is for the particle number density. Then the equation for the s-particle
distribution function can be written in more compact form:

𝜕Fs
𝜕t
= [Hs, Fs] + n∫ ∑

1≤i≤s
[Φ(|qi − qs+1|), Fs+1] dxs+1. (3.23)

Having written down this equation, we have not yet progressed toward reducing the
description. In fact, we have got a chain of coupled equations for the distribution func-
tions. In the sense of information completeness this chain is equivalent to the initial
Liouville equation. The idea of applying the aggregate of coupled equations of motion
for a sequence of the distribution functions or correlation functions of the form (2.3)
is often used in non-equilibrium statistical mechanics to build the reduced descrip-
tion. Similar ideas were expressed in work of Born, Green, Kirkwood, Yvon. Therefore
in the corresponding literature, the motion equations (3.23) are very often called the
Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy (BBGKY).

To obtain a closed equation, it is required to express the distribution function,
such as Fs+1, via the distribution functions of lower orders. Then the set of equations is
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closed up and we obtain the reduction in description. In the following paragraphs we
regard various variants of equations for the one-particle distribution function based
on a chain of equations (3.23).

Problem 3.1. Using the definition of the classical Poisson brackets (3.13), one needs
to prove the validity of the identities (3.19), (3.20), provided that ρ tends to zero at the
boundaries of the phase region.

Solution. Consider the identity (3.19). Using the definition of Poisson brackets, we
have

∫[H1(p, q), ρ(p, q)] dp dq = −∫(
𝜕H1(p, q)
𝜕p
𝜕ρ(p, q)
𝜕q
−
𝜕H1(p, q)
𝜕q
𝜕ρ(p, q)
𝜕p
) dp dq. (3.24)

We integrate the first and second terms on the right side of the last expression over
parts;

∫
𝜕H1(p, q)
𝜕p
𝜕ρ(p, q)
𝜕q

dp dq = ∫ dp𝜕H1(p, q)
𝜕p

ρ(p, q)|q→∞ − ∫ dp dq
𝜕2H1(p, q)
𝜕p𝜕q

ρ(p, q);

(3.25)

∫
𝜕H1(p, q)
𝜕q
𝜕ρ(p, q)
𝜕p

dp dq = ∫ dq𝜕H1(p, q)
𝜕q

ρ(p, q)|p→∞ − ∫ dp dq
𝜕2H1(p, q)
𝜕p𝜕q

ρ(p, q).

(3.26)

The first summands into the right-hand side of the expressions (3.25) and (3.26) yield
no contribution, and the second summands proved to be the same. Therefore, there is
a minus sign between the two identical terms on the right-hand side of (3.24).

To prove the identity (3.20), we use the definition of the Poisson bracket (3.13).
Since the potential of the pair interaction between the particles depends only on the
coordinates, we obtain the expression

∫[Φ(|qi − qj|), ρ] dxi dxj

= ∫(
𝜕Φ(|qi − qj|)
𝜕qi

𝜕ρ
𝜕pi
+
𝜕Φ(|qi − qj|)
𝜕qj

𝜕ρ
𝜕pj
) dpi dqi dpj dqj. (3.27)

Upon integrating by parts of each term on the right side of (3.27), it is easy to observe
that the right side of (3.27) is zero and identity (3.20) is indeed satisfied.

3.2.3 Equation for the one-particle distribution. The relaxation time approximation

Let us obtain the equation of motion for the one-particle distribution function F1(x, t).
At the beginning, consider the Poisson bracket [H1, F1]. Going over to the vector nota-
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tions, one obtains the following expression:

[H1, F1] =
𝜕H( ⃗r, p⃗)
𝜕 ⃗r
𝜕F1(t, p⃗, ⃗r)
𝜕p⃗
−
𝜕H( ⃗r, p⃗)
𝜕p⃗
𝜕F1(t, p⃗, ⃗r)
𝜕 ⃗r

= −F⃗( ⃗r)�⃗�pF1(t, p⃗, ⃗r) −
p⃗
m
�⃗�rF1(t, p⃗, ⃗r); F⃗( ⃗r) = −

𝜕H( ⃗r, p⃗)
𝜕 ⃗r
. (3.28)

Given this result, based on equation (3.23), the one-particle distribution function
F1(t, p⃗, ⃗r) is given by the equation

(
𝜕
𝜕t
+ F⃗( ⃗r)�⃗�p +

p⃗
m
�⃗�r)F1(t, p⃗, ⃗r)

= n∫ dr dp[Φ(| ⃗r − ⃗r|), F2(t, p⃗, ⃗r, p⃗
, ⃗r)]. (3.29)

Equation (3.29) is still an accurate dynamic equation; its left side is a change rate of
the one-particle distribution function due to its explicit dependence on the time and
motion of particles in the coordinate andmomentum spaces. In other words, the total
derivative over time of the functionF1 is recordedon the left side (3.29). This derivative,
in contrast to theN-particle distribution function, is not equal to zero, but it is equal to
a change of the distribution function with sacrifice in binary collisions with other par-
ticles. For this reason, the right side of equation (3.29) is often referred to as a collision
integral. From all has been said it follows that the equation for the one-particle distri-
bution function can be written as the below form, replacing the right side of (3.29) by
the collision integral:

𝜕F1
𝜕t
+ F⃗( ⃗r)�⃗�pF1 +

p⃗
m
�⃗�rF1 = −(

𝜕F1
𝜕t
)
col
. (3.30)

Various methods of constructing closed kinetic equations differ essentially only in a
way how to build the collision integral. We suggest considering some of these ways
later, but nowwe start with a relaxation time approximation as the simplest approach.

The relaxation time approximation comes from a simple assumption of that a spa-
tially homogeneous system in the absence of external forces will relax towards equi-
librium with a certain characteristic time τ. Otherwise speaking, the equation

𝜕F1
𝜕t
= −(
𝜕F1
𝜕t
)
col

(3.31)

must describe the relaxation of the non-equilibrium distribution of F1(t) towards the
equilibrium distribution function f0 of the system. It is easy to see that the integral
collision written in the form

(
𝜕F1
𝜕t
)
col
=
F1(t) − f0

τ

meets all these conditions.
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The solution of equation (3.31) in this case takes the form

F1(t) − f0 = C(0)e
−t/τ,

where the constant C(0) is determined from the initial conditions for the function F1.
As a result, the kinetic equation in the relaxation time approximation appears as

𝜕F1
𝜕t
+ F⃗( ⃗r)�⃗�pF1 +

p⃗
m
�⃗�rF1 = −

F1 − f0
τ
. (3.32)

It would be advisable to note that there is no good probative evidence for considering
the relaxation to be exponential. Nevertheless, this approach in virtue of its simplicity
is widely used, particularly in the qualitative interpretation of the experiment results.
As to analysis of transport phenomena in metals and semiconductors, an application
of concept of the relaxation timeoftengivesnoticeable results. In this case thequantity
τ acts as an adjustable parameter. Issuing from the first principles, in some cases one
can construct closed expressions for the relaxation time τ and thus justify the use of
the relaxation time approximation. Details will be discussed in Chapter 4.

3.2.4 The Vlasov kinetic equation for a collisionless plasma

To obtain a closed equation for the one-particle distribution function from the Bogoli-
ubov hierarchy (3.29) it is necessary to represent the two-particle distribution func-
tion in the form of a functional depending only on the one-particle distribution func-
tion. It stands to reason that further progress is impossible without invoking any ad-
ditional physical ideas relating to properties of the interaction potential or behavior
of F2. Therefore, it is worth regarding two opposite cases: R30n ≪ 1 and R30n ≫ 1, where
R0 is characteristic radius of the interaction of microparticles, n being the number of
particles in volume unit. The first case corresponds to a low-density gas, when the
characteristic radius of particle interaction forces is much less than the average dis-
tance between particles. But we leave this question aside so far.

The second case occurs in ionized plasma, where the quantity R0 has meaning of
the Debye screening radius (the Debye length) of charged particles.

Consider a system of particles with the Coulomb interaction potential

Φ(| ⃗r − ⃗r|) = ± e2

| ⃗r − ⃗r|
.

The system as a whole is thought to be electrically neutral. The special feature of the
Coulomb interaction is that the interaction potential decays too slowly with distance
between particles. So, one is forced to take into account the interaction effect of the
test particle with all other particles of the system. Moreover, the effect of pair interac-
tion of the test particle with any other particle of the system proves to be much less
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than the interaction effect of this particle with an effective field, created by a set of the
remaining N − 2 particles. Thus, in the case of the Coulomb interaction potential, the
interaction effect of the test particle with the average field of other particles is more
important than pairwise interactions. This causes of a significant simplification.

Obviously, the two-particle distribution function canbe alwayswritten in the form

F2(t, p⃗, ⃗r, p⃗
, ⃗r) = F1(t, p⃗, ⃗r)F1(t, p⃗

, ⃗r) + G2(t, p⃗, ⃗r, p⃗
, ⃗r), (3.33)

where the function G2(t, p⃗, ⃗r, p⃗, ⃗r) takes into account paired correlations. As noted
above, the pair correlations turned out to be less important than the influence of the
effective field, so the pair correlation function G2 in (3.33) can be neglected. This sim-
plification allows immediately interrupting the Bogoliubov hierarchy and obtaining a
closed equation for the one-particle distribution function.

In real systems, such as electron plasma, the Coulomb potential is screened by
mobile electrons, consequently, the line of reasoning proposed above is valid only for
distances r ≪ rd, where the inverse Debye length q0 is given by

q0 =
1
rd
= √

4πne2
kBT
.

On the other hand, in order to concept of an average field would have a right-to-life, it
is necessary that a lot of particleswouldbe inside theDebye sphere:nr3d ≫ 1. Substitut-
ing the estimate of the Debye length, one obtains the condition kBT ≫ 4πe2n1/3. As far
as n1/3 ∼ 1/a0, where a0 is a quantity of the order of the average distance between par-
ticles, the conditionwritten above is easily interpreted: kinetic energy of themotion of
the particles must be much larger than the Coulomb interaction between neighboring
particles:

kBT ≫
4πe2

a0
.

Thus, the pair correlations being neglected, one finds the two-particle distribution
function as the product of the one-partial functions

F2(t, p⃗, ⃗r, p⃗
, ⃗r) = F1(t, p⃗, ⃗r)F1(t, p⃗

, ⃗r). (3.34)

Then one can substitute this expression into the right side of formula (3.29), which
yields

n∫ d⃗r d⃗p[Φ(| ⃗r − ⃗r|), F2(t, p⃗, ⃗r, p⃗
, ⃗r)]

= n∫ d ⃗r dp⃗ 𝜕Φ(|
⃗r − ⃗r|)
𝜕 ⃗r
𝜕F1(t, p⃗, ⃗r)
𝜕p⃗

F1(t, p⃗
, ⃗r). (3.35)
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Another summand that ariseswhen opening the Poisson brackets inwhich the deriva-
tives are computed by ⃗r and p⃗ is zero because of (3.20). Now the right side of expres-
sion (3.35) can be written as

𝜕Ũ( ⃗r)
𝜕 ⃗r
𝜕F1(t, p⃗, ⃗r)
𝜕p⃗
,

where the effective potential Ũ is determined by the expression

Ũ(t, ⃗r) = n∫ dp⃗ d ⃗rΦ(| ⃗r − ⃗r|)F1(t, p⃗
, ⃗r).

Substituting this result into the equation for the one-particle distribution func-
tion (3.29), one obtains a closed equation for the function F1 with a self-consistent
field:

𝜕F1
𝜕t
+
p⃗
m
𝜕F1
𝜕 ⃗r
−
𝜕(U(t, ⃗r) + Ũ(t, ⃗r))

𝜕 ⃗r
𝜕F1
𝜕p⃗
= 0. (3.36)

In writing this equation we have assumed that the external force F⃗(t, ⃗r) = −�⃗�U(t, ⃗r),
where U(t, ⃗r) is potential of the field of external forces. Equation (3.36) is the Vlasov
equation, obtained by him in 1938. Note several key features of this equation.

First, the integro-differential Vlasov equation is time reversible. Time reversal is
a natural consequence of failure to account for the interaction between particles.

Second, a one-component plasma cannot really exist. Therefore, the equation for
the electron distribution function should be added to the equation for the ion distri-
bution function except for a model case when the density of the ion distribution is
homogeneous and constant.

Third, the motion of charged particles leads to the appearance of an alternating
electromagnetic field. So, the Vlasov equation must be supplemented by the Maxwell
equations for the components of electric andmagnetic fields, respectively. Thus, equa-
tions (3.36) in fact should be regarded as a kind of program, which requires serious ef-
forts. Let us consider how to solve a practically important problemusing the linearized
Vlasov equation.

Problem 3.2. Determine spectrum of longitudinal oscillations of electron plasma us-
ing the linearized Vlasov kinetic equation provided that the positively charged ions
are immobile and uniformly distributed.

Solution. In the conditions of this problem we can confine ourselves only consider-
ing the electron motion. We represent the one-particle distribution function F1 as the
sum of the equilibrium distribution function f0(v) and the non-equilibrium increment
f (t, v⃗, ⃗r):

F1(t, v⃗, ⃗r) = f0(v) + f (t, v⃗, ⃗r).
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The electron gas will be assumed to be nondegenerate. In this case, equilibrium dis-
tribution f0 is the Maxwell–Boltzmann distribution:

f0(v) = (
m

2πkBT
)
3/2

exp(− mv
2

2kBT
), (3.37)

where m is the electron mass, and v is the electron speed. The distribution (3.37) is
normalized to unity:

∫ dvx dvy dvz(
m

2πkBT
)
3/2

exp(− mv
2

2kBT
) = 1.

Upon choosing such a normalization of the distribution function, integration in the
formula for self-consistent potential Ũ should perform over v⃗, rather than over p⃗.

If non-equilibrium is weak and f (t, v⃗, ⃗r)/f0(v) ≪ 1, equation (3.36) can be lin-
earized. Now we analyze forces acting on an electron. According to the closed equa-
tion (3.36) one can observe that both the external force of interaction with the posi-
tively charged background −�⃗�U( ⃗r) and the force being determined by the gradient of
the self-consistent field −�⃗�Ũ(t, ⃗r) act on the electron. In the equilibrium state, these
forcesmust compensate each other. Therefore, the net force acting on the electronwill
be determined only by non-equilibrium increment f (t, v⃗, ⃗r):

− �⃗�(U + Ũ) = eE⃗( ⃗r, t) = −n�⃗�r ∫ dv⃗
 d ⃗r e2

| ⃗r − ⃗r|
f (t, v⃗, ⃗r). (3.38)

In this case, magnetic field, which occurs when there is the motion of charged parti-
cles, does not contribute because the summand

[v⃗H⃗]�⃗�pf0 = 0

vanishes in virtue of collinearity of the vectors v⃗ and �⃗�pf0.
Using (3.38), it is easy obtaining that the intensity vector E⃗( ⃗r, t) of the resultant

electric field satisfies some equation. We find the divergence of the left and right sides
of (3.38). Given that

div �⃗�r(
1
| ⃗r − ⃗r|
) = (

1
| ⃗r − ⃗r|
) = −4πδ( ⃗r − ⃗r),

expression (3.38) yields one of the well-known Maxwell equations:

div E⃗(t, ⃗r) = −4πen∫ dv⃗f (t, v⃗, ⃗r), (3.39)

where  is the Laplace operator.
Using the definition (3.38), we write down the linearized Vlasov equation (3.36)

for the given case,

𝜕f (t, v⃗, ⃗r)
𝜕t
+
p⃗
m
𝜕f (t, v⃗, ⃗r)
𝜕 ⃗r
− eE⃗(t, ⃗r)𝜕f0

𝜕v⃗
= 0. (3.40)
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In this case, the linearization consists in use only of the linear terms in equation (3.40)
relating to the small quantity of f (t, v⃗, ⃗r). Since the electric field E⃗(t, ⃗r) of the latter sum-
mand in (3.40) is linear with respect to this increment, the gradient �⃗�pF1 can be re-
placed by �⃗�pf0, i. e. by the quantity being estimated over the equilibrium distribution.

The set of equations (3.39) and (3.40) allows one solve the problem of determining
the spectrum of longitudinal oscillations of the electron plasma. Asmentioned above,
the Vlasov equation is time reversible. This reversibility leads to the solution degen-
eration regarding the time-reversal operation. The degeneration can be removed by
adding an infinitely small source into the right side of equation (3.40), which is sim-
ilar to the collision integral (3.32) for recording the kinetic equation in the relaxation
time approximation:

(
𝜕F1
𝜕t
)
col
= εf (t, v⃗, ⃗r).

In this formula ε is a small quantity which should be trended towards zero after per-
forming the thermodynamic limit N → ∞, V → ∞, N/V = n = const. For further
calculations we will use the “corrected” Vlasov equation,

𝜕f (t, v⃗, ⃗r)
𝜕t
+
p⃗
m
𝜕f (t, v⃗, ⃗r)
𝜕 ⃗r
− eE⃗(t, ⃗r)𝜕f0

𝜕p⃗
= −εf (t, v⃗, ⃗r), (3.41)

giving solutions of retarding type.
Sincewe are interested in the longitudinal vibrations, instead of the Fourier trans-

form equations (3.39), (3.41) one can simply look for a solution in the form

f (t, v⃗, ⃗r) = fk,ω(v⃗)e
i(kx−ωt), E⃗(t, ⃗r) = E(k,ω)ei(kx−ωt).

Substituting these expressions into (3.39), (3.41), we have equations for the Fourier
components of fk,ω(v⃗) and E(k,ω):

− i(ω − vxk + iε)fk,ω(v⃗) −
e
m
𝜕f0
𝜕vx

E(k,ω) = 0,

ikE(k,ω) = −4πen∫ dv⃗fk,ω(v⃗). (3.42)

From the first equation (3.42) we find

fk,ω(v⃗) = i
e
m
𝜕f0
𝜕vx

E(k,ω)
ω − vxk + iε

.

Nowwe substitute the found value into the right side of the second of equations (3.42).
This results in obtaining the equation for the Fourier components of the field:

kE(k,ω) = −E(k,ω)4πe
2n

m
∫ dv⃗ 𝜕f0
𝜕vx

1
ω − vxk + iε

. (3.43)
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Equation (3.43) has the trivial solution E(k,ω) = 0. If there is a nontrivial solution and
E(k,ω) ̸= 0, the following condition must be fulfilled:

1 + 4πe
2n

mk
∫ dv⃗ 𝜕f0
𝜕vx

1
ω − vxk + iε

= 0. (3.44)

This equation is the required dispersion relation, expressing the dependence of the
electrons oscillation frequency ω on their wave vector k (we recall that longitudi-
nal oscillations of electron plasma along the axis X are being considered). To obtain
the explicit form of the dependence ω(k), one needs to calculate the integral in for-
mula (3.44).

As for the above example, the main objective was to illustrate an application of
the Vlasov equation for solving physical kinetics problems andwe have accomplished
this problem, having obtained equation (3.44). Then we can omit the details in the
following calculations, referring the reader to the literature [17].

To find an explicit dispersion law, we introduce the plasma frequency ω0, having
defined it by the relationship

ω2
0 =

4πe2n
m
.

Now we integrate over the velocity components vy and vz . Given that

𝜕f0
𝜕vx
= −

mvx
kBT

f0, (
m

2πkBT
)∫ dvy dvz exp(−

m(v2y + v
2
z)

2kBT
) = 1,

one has

1 −
ω2
0
k

m
kBT
(

m
2πkBT
)
1/2 ∞

∫
−∞

dvx exp(−
mv2x
2kBT
)

vx
ω − vxk + iε

= 0. (3.45)

The integral in the expression (3.45) holds a singularity at vx = ω/k. To calculate it we
apply the well-known relation

lim
ε→0

1
x + iε
= P 1

x
− iπδ(x),

where P is the principal value of the function, the punctured singular point. This re-
sults in writing the dispersion relation as follows:

1 − Re I + i Im I = 0, (3.46)

Re I =
ω2
0
k

m
kBT
(

m
2πkBT
)
1/2 ∞

∫
−∞

dvx exp(−
mv2x
2kBT
)

vx
ω − vxk

, (3.47)

Im I = π
ω2
0
k

ω
k2

m
kBT
(

m
2πkBT
)
1/2

exp(−m(ω/k)
2

2kBT
). (3.48)

When integrating over vx there has been used the identity δ(ω− kvx) = 1/kδ(ω/k − vx).
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Unfortunately, the integral cannot be exactly calculated according to the for-
mula (3.47), therefore, we consider only long-wave approximation kvx/ω ≪ 1 and
expand the fraction in the integrand in this small parameter, retaining only the first
few terms:

vx
ω − vxk

=
1
ω
(vx +

v2xk
ω
+
v3xk

2

ω2 +
v4xk

3

ω3 + ⋅ ⋅ ⋅).

Given that the odd Maxwell–Boltzmann moments are zero, while the second and
fourth moments are easily calculated: v2x = kBT/m, v4x = 3(KBT/m)

2, where

vnx = (
m

2πkBT
)
1/2 ∞

∫
−∞

dvxv
n
x exp(−

mv2x
2kBT
),

one obtains an approximate expression for the right side of (3.47)

Re I =
ω2
0

ω2 (1 + 3
k2

ω2
kBT
m
). (3.49)

Now we return to an analysis of the dispersion relation (3.46). Discarding the imagi-
nary part for a while, we find the dispersion relation of the long-wave approximation
without damping. For this purpose, we substitute the expression (3.49) into (3.46) and
then the squared electron oscillation frequency can be written as follows:

ω2 = ω2
0(1 + 3

k2

ω2
kBT
m
). (3.50)

This yields the equality ω = ω0 in the zero approximation in the small parameter

k2

ω2
kBT
m
.

Substituting this result into the right side of (3.50) and extracting the square root of
the left and right sides, in the first approximation in k2, we have

ω = ω0(1 +
3
2
kBT
m

k2

ω2
0
). (3.51)

The damping of plasma oscillations can be sought in the zero approximation over the
parameter kvx/ω, assuming that ω = Ω + iγ, where Ω is the real part of the plasma
frequency ω, and γ is the imaginary part of the plasma frequency ω.

To find the relationship between γ and Im I, one should return to the dispersion
equation (3.46) by writing it as

1 −
ω2
0

(Ω + iγ)2
= 0.
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Assuming that the damping is weak and γ/Ω ≪ 1, we expand the denominator in the
last expression up to linear terms in γ/Ω:

1 −
ω2
0

Ω2 (1 − i
2γ
Ω
) = 0.

Upon comparing the above expression with equation (3.46) in zero order over k (Ω =
ω0), one can find the following expression for the damping constant:

γ = √π
ω4
0

k3
(

m
2kBT
)
3/2

exp(−m(ω0/k)2

2kBT
). (3.52)

The damping of the longitudinal plasmawave, being defined by the expression (3.52),
was found by Landau in 1946. One should pay attention to the fact that this damping
was obtained without regard of electron collisions with scatterers. In this case, the
electric field plays the role of an elastic force. The damping is determined only by part
of the electrons, for which the velocity along the X-axis coincides with the phase ve-
locity of the wave, equal to ω/k. These electrons are the most effectively periodically
accelerated and then decelerated by the electric field. After acceleration in the electric
field, the number of electrons, for which the condition vx = ω/k is met, are more than
after slowing-down. Therefore, the inhibitory effect of the electric field ismore effective
than the accelerating effect and electrons of such a group lose on average part of their
energy for an oscillation cycle. It should be noted that there are other mechanisms be-
sides the Landau damping without collisions in damping of the plasma oscillations,
for example, accelerated moving electrons radiate energy.

3.2.5 The Boltzmann equation for a low-density gas

One of the main results of the kinetic theory is a kinetic equation for a one-particle
distribution function. It was obtained by Ludwig Boltzmann in 1872. Consider two dif-
ferent approaches allowing deriving this equation: qualitativemethodwhich L. Boltz-
mann preferred and a first-principles derivation by using a chain of coupled equations
of motion for the Bogoliubov distribution functions. Before proceeding to the direct
derivation of the kinetic equation, one should analyze applicability conditions for the
approach at hand.

First, only pair collisions should be considered because a two-body scattering
problem has an analytic solution. However, for the three-body problem (and, more
generally, the n-body problem for n ≥ 3) only numerical solutions are possible, so they
cannot be represented in an analytical form. For this reason, we confine our attention
to spatially homogeneous systems. In fact, the requirement of spatial homogeneity is
not a severe restriction. A distribution function does not have to change significantly
at distances r ∼ λ (of order of the free path of particles). The distribution function,
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however, may depend on coordinates as a parameter. This turns out to be sufficient
for most physical applications.

Second, we consider a system of particles with potential interaction of repulsion
type. In this case, bound states cannot arise while scattering.

Third, we assume that the radius r0 of the interaction forces is much less than
the average distance a0 = v1/3, between particles, where v is volume per one particle.
Parameter r30/v is small in comparison with other spatial scales of the system.

The existence of two different spatial scales leads to the appearance of two dif-
ferent temporal scales. If one imagines that a system consists of one-sort particles,
having the average speed v, then one can introduce the characteristic time of particle
interaction τ0 = r0/v and the characteristic time of the particlemean free path τ = λ/v,
where λ is the free path. It is obvious that the condition τ0 ≪ τ is fulfilled.

Indeed, there are numerical estimates for a gas under normal conditions: N/V ∼
3 ⋅ 1019 particles/cm3; the volumeper particle is equal to v0 ∼ 3 ⋅ 10−20 cm3; the average
distance between particles is equal to a0 = 3 ⋅ 10−7 cm, the characteristic radius of
interaction forces between particles is r0 ∼ 10−8 cm; the free path is λ ∼ 10−5 cm;
the thermal velocity of the molecules is v = 105 cm/s. This yields the following data:
τ0 ∼ 10−13 s, and τ ∼ 10−10 s. The presence of different temporal and spatial scales
allows one to roughen the description and go over from the dynamical description to
the statistical one.

3.2.6 Qualitative derivation of the Boltzmann equation

Each particle of a gas can be deemed as a closed subsystem provided that collisions
betweenmolecules are not taken into account at all. Then the Liouville theorem holds
for the one-particle distribution function F1(t, p⃗, ⃗r) and it can be written as

dF1
dt
= 0;

or

𝜕F1
𝜕t
+
p⃗
m
�⃗�rF1 + F⃗�⃗�pF1 = 0.

The allowance for the collisions leads to the fact that the distribution function will
suffer a change as the particle moves along a phase trajectory and collides with other
particles. This part of the change in the distribution function, as mentioned above, is
called the collision integral. Themerit of the Boltzmannapproach is that he succeeded
in constructing the collision integral for a low-density gas.

Although the kinematics of collision processes is necessary to take into account
while constructing the collision integral, the qualitative derivation of the Boltzmann
equation cannot be purely dynamic. If the system’s behavior over periods τ0 ≪ t ≤ τ
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is of interest to us, there is no need to describe precisely the particle collision process.
It suffices to know only the asymptotic behavior of the system. In other words, it is
enough to find a relationship between states long before and long after the collision.

When elastic collisions of two particles take place, there must be satisfied laws of
conservation of momentum and energy:

p⃗ + p⃗1 = p⃗
 + p⃗1 = P⃗,

p2 + p21 = p
2 + p1

2
, (3.53)

where p⃗, p⃗1 are formomentumof the particles before collision p⃗, p⃗1 for themomentum
of the particles after collision; P⃗ is the total momentum of the system consisting of two
particles.

The velocities of the relative motion u⃗ = (p⃗1 − p⃗)/m and u⃗ = (p⃗1 − p⃗
)/m before the

collision and after it are equal in value and have opposite arrows: u⃗ = −u⃗.
It is obvious that the particle momentum before and after the collision can be ex-

pressed via two quantities by using equations (3.53), namely, the total momentum of
the particles P⃗ and the relative velocity u⃗:

p⃗ = P⃗
2
−
mu⃗
2
, p⃗1 =

P⃗
2
+
mu⃗
2
,

p⃗ = P⃗
2
−
mu⃗

2
, p⃗1 =

P⃗
2
+
mu⃗

2
. (3.54)

Going over to constructing the collision integral, we introduce the following notations
for simplification of records:

F1(t, ⃗r, p⃗) = f , F1(t, ⃗r, p⃗1) = f1,
F1(t, ⃗r, p⃗

) = f , F1(t, ⃗r, p⃗

1) = f

1 .

(3.55)

At somemoment in time t particles nfd ⃗rdp⃗will be found in the volume element d ⃗rdp⃗ of
the phase space, where n = 1/v is the number of particles per unit volume (concentra-
tion). The collision integral determines the rate of change of particles located in the
volume element d ⃗rdp⃗ of the phase space in the vicinity of the point ⃗r, p⃗. In order to
find the rate of change, it is necessary to count up the number of particles leaving and
entering the volume per unit time. As far as all the scattering events are independent
and the scattered particles get fully thermalized before the next act of scattering, each
scattering event can be also considered as independent.

Let us consider a single particle with coordinates ⃗r, p⃗ then we will stop it, i. e. we
will move over to the coordinate system associated with the particle. Now we take a
model of hard spheres as a model of the interaction between the particles, assuming
that each particle has radius r0. We surround the selected particle by sphere of the
particle interaction with radius equal to 2r0, the center of it to be an origin of cylin-
drical coordinate system. The Z-axis of the system will be directed along the relative
velocity vector u⃗. The selected-axis scheme of the axes is shown in Figure 3.5.
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Figure 3.5: The coordinates choice for an analysis of pair collisions of particles.

Coordinate, setting a polar angle can be denoted asφ and letter a can be assigned to a
radial variable. Besides, we denote the infinitely small element of a cross-section area
of the sphere adadφ as dΩ. In Figure 3.5 this area element is highlighted by a bolder
line. An average number of particles with momentum from p⃗1 to p⃗1 + dp⃗1, falling on
this area per unit time, is equal to nf1udΩdp⃗1. Then the average number of particle
collisions, located into the phase volume element d ⃗rdp⃗ and particles, possessing mo-
mentum from p⃗1 to p⃗1 + dp⃗1, will be determined by the expression

nfd ⃗rdp⃗nf1udΩdp⃗1. (3.56)

As far as oneparticle, changing itsmomentum, leaves the volumeelement of thephase
space d ⃗rdp⃗ owing to each of these collisions, the total number of such collisions can
be found by integrating both over all possible values of momentum p⃗1 and over the
cross-section area of the scattering sphere. As a result, we get the number of particles
leaving the phase volume element d ⃗rdp⃗ per unit time:

n𝜕f
𝜕t

−
d ⃗rdp⃗ = −n2

2π

∫
0

dφ
2r0

∫
0

a da∫ ff1u dp⃗1 d ⃗r dp⃗. (3.57)

To find the number of particles entering the volume element of phase space per unit
time d ⃗rdp⃗ is suffices to note that particles having momenta p⃗ and p⃗1 before the scat-
tering event will possess the momentum p⃗ and p⃗1 after the scattering. Consequently,
the scattering process reversal is needed for finding the number of particles entering
the volume element of the phase space d ⃗rdp⃗. To do so, one shouldmake the following
replacements in formula (3.57): f → f , f1 → f 1 , dp⃗ → dp⃗, dp⃗1 → dp⃗1, u⃗ → −u⃗. This
yields the expression

n𝜕f
𝜕t

+
d ⃗rdp⃗ = n2

2π

∫
0

dφ
2r0

∫
0

a da∫ f f 1 u dp⃗

1 d ⃗r dp⃗

. (3.58)
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Using the kinematics of scattering laws, it is easy to prove that dp⃗dp⃗1 = dp⃗dp⃗1. Actu-
ally, as known, law of the transition from one coordinate system to another is given
with the aid of the Jacobian transformation dp⃗dp⃗1 = |D|dp⃗dp⃗1, where the Jacobian
transformation D (functional determinant) is determined by the expression

D =
𝜕(p⃗, p⃗1)
𝜕(p⃗, p⃗1)

=
𝜕(p⃗, p⃗1)
𝜕(P⃗, u⃗)

𝜕(P⃗, u⃗)
𝜕(P⃗, u⃗)

𝜕(P⃗, u⃗)
𝜕(p⃗, p⃗1)
.

Upon analyzing equation (3.54), one finds that

𝜕(p⃗, p⃗1)
𝜕(P⃗, u⃗)

=
𝜕(p⃗, p⃗1)
𝜕(P⃗, u⃗)
,

for the relationship between the variables p⃗, p⃗1 and P⃗, u⃗
 is exactly the same as for the

variables p⃗, p⃗1 and P⃗, u⃗. It follows that [1, 3]

𝜕(p⃗, p⃗1)
𝜕(P⃗, u⃗)

𝜕(P⃗, u⃗)
𝜕(p⃗, p⃗1)

= 1, D = 𝜕(P⃗, u⃗
)

𝜕(P⃗, u⃗)
=
𝜕(u⃗)
𝜕(u⃗)

P⃗=const
.

To find the functional determinant D, we substitute values of the relative velocity pro-
jections before the pair collision and after it: u⃗ = (ux , uy , uz), u⃗ = (ux , uy ,−uz). Since
in the chosen coordinate system, intended for the consideration of elastic scattering
event, one changes only the component of the velocity uz and the velocity components
ux and uy remain constant, the functional determinant, using the properties [1, 3] can
be simplified further:

D = 𝜕(u⃗)
𝜕(u⃗)
=
𝜕(ux , uy , uz)
𝜕(ux , uy ,−uz)

=
𝜕(uz)
𝜕(−uz)

ux=constuy=const
= −1.

Thus, we have proved that |D| = 1 and dp⃗dp⃗1 = dp⃗dp⃗1. This result allows one to com-
bine the terms describing the entering and escape of particles from the volume ele-
ment d ⃗rdp⃗ under a general integral sign and make the reduction of the same terms in
the left and right sides of equations (3.57) and (3.58). Having combined data obtained,
we write down the Boltzmann equation for a low-density gas with the collision inte-
gral on the right side:

𝜕f
𝜕t
+
p⃗
m
�⃗�rf + F⃗�⃗�pf = n

2π

∫
0

dφ
2r0

∫
0

a da∫(f f 1 − ff1)u dp⃗1. (3.59)

As for practical calculations in the formula (3.59), the variables p⃗ and p⃗1, which con-
trol the functions f  and f 1 , one should express via the variable p⃗ and p⃗1, using rela-
tions (3.53), (3.54).

Let us consider alternative ways to write the collision integral in the case of pair
collisions in a central field. It is worth recalling that a force field whose potential de-
pends only on the distance from the force center is referred to as a central field. Under
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the central field during collision process, the angular momentum is also preserved in
addition to energy andmomentum. This leads to the fact that each elementary scatter-
ing act occurs in a plane perpendicular to the angular momentum vector. The above
considered case of the collision between elastic balls is a particular example of the
scattering event under the central field. Scattering by a central field is usually de-
scribed in terms of the scattering cross-section.

Let a homogeneous beamof particles fall on a stationary scattering centerwith the
constant velocity u⃗, then the scattering cross-section σ(Ω, u) is called a proportionality
factor between the magnitude of the density flux of falling particles I and the number
of particles dN, scattered into the solid angle dΩ = sin θdθdφ per unit time:

dN = Iσ(Ω, u)dΩ, (3.60)

where θ is the so-called scattering angle, i. e. the angle between the relative velocity
vectors u⃗ and u⃗ before and after the scattering event, respectively.

The geometric meaning of the parameters describing the collision of particles in
the central field is shown in Figure 3.6. The example of the collision between elastic
balls with radius r0 is illustrated in this figure. All particles with impact-parameter
from b to b + db will fall into the spherical belt, located on the scattering sphere, and
will have scattering angles from θ to θ + dθ. The belt is depicted in Figure 3.6(a). This
implies that all particles entering the surface element bdbdφ of the scattering sphere
will be scattered into the solid angledΩ.Consequently,wehave the following equation
dN = Ibdbdφ. Upon comparing this expression with (3.60), we find

σ(Ω, u) = b
sin θ


db
dθ


. (3.61)

The derivative db/dθ here has been taken with respect to the modulus, because it
increases with diminishing the impact-parameter while determining the scattering
angle.

Figure 3.6: The kinematics of an elastic scattering: (a) area cross-section of the interaction between
a plane perpendicular to u⃗; (b) scheme, allowing to find the interrelation of the impact-parameter b
with the scattering angle θ.
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Functional connection between the impact-parameter b and the scattering angle θ can
be found by using the building in Figure 3.6(b). As follows from the figure b = 2r0 sin α.
The angle α is related with the scattering angle θ by the simple relation α = π/2 − θ/2.
Therefore b = 2r0 cos θ/2. Substituting this result into the formula (3.61), one obtains
an expression for the scattering cross-section for an elastic collision of particles of
radius r0:

σ(Ω, u) =
2r20 cos θ/2 sin θ/2

sin θ
= r20. (3.62)

The total scattering cross-section σT can be found by integrating over the entire solid
angle

σT = ∫ σ(Ω, u) dΩ =
2π

∫
0

dφ
2r0

∫
0

b db = 4πr20. (3.63)

The second equality is obtained by using the definition of (3.61).
Comparing (3.63) and right side of formula (3.59) it is easy to reveal that the colli-

sion integral in the kinetic Boltzmann equation can be written, using the concept of
the scattering cross-section. In such a case, instead of (3.59) we have

𝜕f
𝜕t
+
p⃗
m
�⃗�rf + F⃗�⃗�pf = n∫ uσ(Ω, u)(f

f 1 − ff1) dp⃗1 dΩ. (3.64)

For practical purposes it is convenient to write the collision integral in such a man-
ner that it would explicitly obey the energy and momentum conservation laws. To do
this, in the collision integral there is need to add the integration both over momen-
tum p⃗1 and over energy E


1 of incident particles after scattering. Also one should add

the appropriate δ-functions, expressing the energy conservation law:

𝜕f
𝜕t

col
= n∫ dp⃗1 dp⃗


1 dE

1uσ dΩ[f (p⃗

)f (p⃗1) − f (p⃗)f (p⃗1)]

× δ(p⃗ + p⃗1 − p⃗
 − p⃗1)δ(E + E1 − E

 − E1). (3.65)

Considering the particle scattering as a system transition from state p⃗, p⃗1 in state p⃗p⃗1,
it should be introduced the concept of the transition probabilityW(p⃗, p⃗1; p⃗, p⃗1) deter-
mining its by relationship

dE1uσdΩ = dp⃗
W(p⃗, p⃗1; p⃗

, p⃗1).

This yields the following entry of the collision integral:

𝜕f
𝜕t

col
= n∫ dp⃗1 dp⃗

 dp⃗1W(p⃗, p⃗1; p⃗
, p⃗1)[f (p⃗

)f (p⃗1)

− f (p⃗)f (p⃗1)]δ(p⃗ + p⃗1 − p⃗
 − p⃗1)δ(E + E1 − E

 − E1). (3.66)
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Upon analyzing the collision integral structure (3.66), it is easy to note that it is falling
into two contributions, describing an arrival of particles in the statewithmomentum p⃗
and escape them from this state. In order to such a representation would be possible,
the transition probabilityW(p⃗, p⃗1; p⃗, p⃗1)must satisfy the condition

W(p⃗, p⃗1; p⃗
, p⃗1) = W(p⃗

, p⃗1; p⃗, p⃗1). (3.67)

The relation (3.67) is a special case for demonstrating the detailed balancing principle,
which, in the given case, is reduced simply to the fact that the mechanical (quantum-
mechanical) transition probabilities between states in forward and reverse directions
are equal.

3.2.7 Derivation of the Boltzmann equation from the Bogoliubov equations chain

We write the first two equations of the BBGKY equations chain for the distribution
functions F1 and F2 in the linear approximation for the parameter r30/v. Having opened
the Poisson brackets in (3.29) and (3.23), we get the following expressions:

(
𝜕
𝜕t
+ F⃗( ⃗r)�⃗�p +

p⃗
m
�⃗�r)F1 =

1
v
∫ d ⃗r1 dp⃗1

𝜕Φ(| ⃗r − ⃗r1|)
𝜕 ⃗r
𝜕F2
𝜕p⃗
, (3.68)

(
𝜕
𝜕t
+
p⃗
m
�⃗�r +

p⃗1
m
�⃗�r1)F2 −

𝜕(Φ(| ⃗r − ⃗r1|) + U( ⃗r))
𝜕 ⃗r

𝜕F2
𝜕p⃗

−
𝜕(Φ(| ⃗r − ⃗r1|) + U( ⃗r1))

𝜕 ⃗r1
𝜕F2
𝜕p⃗1
= 0. (3.69)

Since the integral term in the right side of (3.68) already has the first power of the small
parameter r30/v, we have omitted the integral term on the right side of equation (3.69),
containing the first power of the small r30/v parameter (the interaction potential differs
from zero only inside a sphere of radius r0). Now, the equation for the distribution
function F2 turns into the Liouville equation for the two-particle distribution function.

In looking for a solution of the set of equations (3.68) and (3.69) satisfying the
principle of spatial correlation attenuation, which drops if particles are sufficiently
far away from each other, the pair correlation function can be written as a product of
the one-particle functions:

F2(t, p⃗, ⃗r, p⃗1, ⃗r1)|| ⃗r− ⃗r1|→∞ = F1(t, ⃗r, p⃗)F1(t, ⃗r1, p⃗1). (3.70)

Expression (3.70) can be regarded as a boundary condition for the distribution func-
tion; consequently it allows for finding a physically meaningful solution.

Since equation (3.69) is the Liouville equation for the two-particle distribution
function upon full neglecting collisionswith other particles, the function that remains
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constant during the motion along the phase trajectory will be a solution of this equa-
tion:

F2(t, x(t, x0), x1(t, x0)) = F2(t − τ, x(t − τ, x0), x1(t − τ, x0))
= S−τ(x, x1)F2(t − τ, x(t, x0), x1(t, x0)). (3.71)

The quantities x, x1 in formula (3.71) are used to denote the aggregate of the coordi-
nate and momentum of a particle. The quantity x0 denotes a set of coordinates and
momentum of two particles at initial time. The entry x(t, x0) implies that coordinate
andmomentum of the particle are estimated for solving themechanical problemwith
the initial condition {x, x1} = x0. In writing the second part of (3.71) there has been
used the S−τ(x, x1) operator, which shifts the particles along a phase trajectory for the
time τ interval:

S−τ(x, x1) = e
−iL2τ, iL2A = [A,H],

where iL2 is for the Liouville operator of the two particles.
Assumenow that the τ time is so large and the two particles aremoving away from

each other to a distance exceeding the characteristic correlation radius. In this case,
the two-particle distribution function is falling into the product of the one-particle
distribution functions. Then, having continued the chain of equalities (3.71), the fol-
lowing expression appears:

F2(t, x, x1) = S−τ(x, x1)F2(t − τ, x, x1)
= S−τ(x, x1)F1(t − τ, x)F1(t − τ, x1)
= S−τ(x, x1)Sτ(x)Sτ(x1)F1(t, x)F1(t, x1), (3.72)

where Sτ(x), Sτ(x1) are the one-particle operators of evolution.
Expression (3.72) defines the relationship between the one-particle and two-

particle distribution functions, taken at the same moment of time. This equation is
valid in the approximationof a low-density gaswhen r30/v ≪ 1 formechanical systems,
in which the spatial correlation attenuation is implemented.

We will be concerned with a spatially homogeneous case. Then the dependence
of the one-particle function F1 on coordinates can only be parametric, i. e. relatedwith
graded-change in external conditions, for example such as the presence of a temper-
ature gradient. Besides, the function is independent on coordinates at distances of
order of the free path. Therefore, the relation (3.72) can be simplified further:

F2(t, x, x1) = S−τ(x, x1)Sτ(p⃗)Sτ(p⃗1)F1(t, p⃗)F1(t, p⃗1). (3.73)

This representation for the two-particle distribution functions is formally exact, if the
system is spatially homogeneous and the correlation attenuation principle holds.
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Upon analyzing equation (3.69) the partial derivative over time in the given ap-
proximation can be omitted. Indeed, explicit dependence of the distribution function
on time can only occur due to external interactions with respect to the chosen system
consisting of two particles. These interactions can be collisions with other particles
or interactions with alternating external field which has a characteristic frequency ω.
Assume that the following condition is met:

𝜕F2
𝜕t
∼ ωF2 ≪

𝜕F2
𝜕t

col
∼
F2
τ
.

The restriction imposed is not very stringent, since τ ∼ 10−14 s and the condition ω ≪
1/τ is well satisfied up to frequencies of optical range.

In this case, the partial derivative 𝜕F2/𝜕t and the collision integral have the same
order and, consequently, the order of r30/v. Sinceweare constructing akinetic equation
in thefirst approximation for this parameterwhile the right side of (3.68) it alreadyhas,
then linear terms for the function F2 in equation (3.69) can be omitted. In essence, the
rejection of the private derivative in equation (3.69) is equivalent to assuming that the
collision of two particles occurs at stationary conditions.

We integrate (3.69) over ⃗r1 and p⃗1. Introducing the relative coordinate R⃗ = ⃗r1 − ⃗r,
the following expression appears as

∫
p⃗1 − p⃗
m
𝜕F2(R⃗, p⃗, p⃗1)
𝜕R⃗

dp⃗1 dR⃗ = ∫
𝜕Φ(| ⃗r − ⃗r1|)
𝜕 ⃗r
𝜕F2
𝜕p⃗

d ⃗r1 dp⃗1. (3.74)

The last entry takes into account that

∫
𝜕Φ(| ⃗r − ⃗r1|)
𝜕 ⃗r1
𝜕F2
𝜕p⃗1

d ⃗r1 dp⃗1 = 0

in virtue of the condition F2|p1=±∞ = 0 and U( ⃗r) = 0.
The right side of (3.74) coincides with the collision integral for the one-particle

distribution function up to themultiplier and therefore the right side in formula (3.68)
can be presented as

𝜕F1
𝜕t

col
=
1
v
∫
p⃗1 − p⃗
m
𝜕F2(R⃗, p⃗, p⃗1)
𝜕R⃗

dp⃗1 dR⃗. (3.75)

In integrating the right-hand side of (3.75) over Rwe pass to a polar coordinate system
having selected an origin at the point ⃗r, where one of the particles is located. Let the
Z-axis be directed along the relative velocity vector u⃗ = (p⃗1 − p⃗)/m and polar coor-
dinates will be denoted through the letters a and φ (see Figure 3.2). Besides, the ex-
pressing of the function F2 via the one-particle distribution functions (3.73) is needed
toperform.Weassume that theparticles are elastic balls of radius r0, so the interaction
region will be sphere of radius 2r0. This results in the following expression:

𝜕F1
𝜕t

col
=
1
v
∫ dp⃗1

∞

∫
0

a da
2π

∫
0

dφu
∞

∫
−∞

dz d
dz

S−τ(x, x1)F1(t, p⃗)F1(t, p⃗1). (3.76)
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In writing this expression the evolution operators for one-particle distribution func-
tion have been omitted because the momentum of each particle is not altered when a
particle moves along the phase trajectory. Therefore,

Sτ(p⃗)Sτ(p⃗1)F1(t, p⃗)F1(t, p⃗1) = F1(t, p⃗)F1(t, p⃗1).

Now we carry out integrating over z in the right side of (3.76):

𝜕F1
𝜕t

col
=
1
v
∫ dp⃗1

∞

∫
0

a da
2π

∫
0

dφuS−τ(x, x1)F1(t, p⃗)F1(t, p⃗1)|
∞
−∞. (3.77)

When substituting the lower limit z = −∞, the particles are already separated by a
sufficiently large distance and no interaction exists between them. These particles
are moving away farther apart from each other with the aid of the evolution oper-
ator S−τ(x, x1) and therefore the particle momentum is not changed. As a result, we
get

S−τ(x, x1)F1(t, p⃗)F1(t, p⃗1)
−∞ = −F1(t, p⃗)F1(t, p⃗1).

When substituting the upper limit z = ∞, the particles also prove to be separated
by a sufficiently large distance and therefore do not interact with each other. But the
evolution operator S−τ(x, x1), shifting the particles along the phase trajectory, makes
them interact. Therefore, if the condition a < 2r0 for the impact-parameter is met, one
obtains

S−τ(x, x1)F1(t, p⃗)F1(t, p⃗1)|
∞ = F1(t, p⃗

)F1(t, p⃗

1).

The impact-parameter being a > 2r0, the particles will not collide with each other
and their momenta remain unchanged as a result of the evolution operator ac-
tion:

S−τ(x, x1)F1(t, p⃗)F1(t, p⃗1)|
∞ = F1(t, p⃗)F1(t, p⃗1).

Given the above results, the collision integral in the case of the elastic ball interaction
can be written as

𝜕F1
𝜕t

col
=
1
v
∫ dp⃗1

2r0

∫
0

a da
2π

∫
0

dφu[F1(t, p⃗
)F1(t, p⃗


1) − F1(t, p⃗)F1(t, p⃗1)]. (3.78)

It is easy to see that the expression obtained for the collision integral is identical with
the collision integral in the Boltzmann equation (3.59).
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3.2.8 The Fokker–Planck equation

Processes, in which a change of the parameters of the distribution function of each el-
ementary scattering act in comparison with their characteristic values is small, make
up a significant part of transport phenomena. The momentum relaxation of a heavy
particle in a gas consisting of light particles may serve as a typical case in point of
such a problem. The concentration of heavy particles is assumed small, and therefore
collisions between heavy particles can be neglected. When the heavy particle collides
with a light particle, momentum of the heavy particle changes slightly as in magni-
tude and direction. We denote transmission momentum in an elementary scattering
act by the letter q⃗, p⃗ ≫ q⃗ and find an equation which holds for the one-particle distri-
bution function f (t, p⃗). Here and below we replace the notation F1 for the one-particle
distribution function for the sake of simplification.

Assign the notationw(p⃗, q⃗)dq⃗ for the number of transitions of heavy particles from
the state with the momentum p⃗ in the state with momentum p⃗ − q⃗ per unit time. Then
the quantityw(p⃗+ q⃗, q⃗)dq⃗ is equal to the transition rate from the state p⃗+ q⃗ in the state
with momentum p⃗. As shown above, the collision integral in the kinetic equation can
be written as the difference between two terms, one of which describes the particle
transition rate in state with momentum p⃗ and another describes the particle escape
rate from this state. Applying this principle, we can construct the collision integral for
the heavy particle in a light gas [21]:

𝜕f
𝜕t

col
= ∫[w(p⃗ + q⃗, q⃗)f (t, p⃗ + q⃗) − w(p⃗, q⃗)f (t, p⃗)]dq⃗. (3.79)

According to assumptions made above, the quantity w(p⃗, q⃗) rapidly decreases with
increasing q⃗ (momentum transmission is small). Therefore, the quantity q⃗ is small
compared with themomentum of particles p⃗. This circumstance allows for expanding
the integral collision (3.79),

w(p⃗ + q⃗, q⃗)f (t, p⃗ + q⃗) ≃ w(p⃗, q⃗)f (t, p⃗) + q⃗ 𝜕
𝜕p⃗
[w(p⃗, q⃗)f (t, p⃗)]

+
1
2
qαqβ 𝜕

2

𝜕pα𝜕pβ
[w(p⃗, q⃗)f (t, p⃗)]. (3.80)

Substituting (3.80) into (3.79), the following expression can be written:

𝜕f
𝜕t

col
=
𝜕
𝜕pα
[Aαf (t, p⃗) +

𝜕
𝜕pβ

Bαβf (t, p⃗)]; (3.81)

Aα = ∫ q
αw(p⃗, q⃗) dq⃗; Bαβ =

1
2
∫ qαqβw(p⃗, q⃗) dq⃗. (3.82)

The main distinguishing trait of the kinetic Fokker–Planck equation is to express the
collision integral through averaged characteristics of a single scattering event. Equa-
tions (3.81) and (3.82) confirm this fact. The collision integral contains only the average
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characteristics of the scattering process and they can be expressed through constant
Aα and Bαβ. As shown below, in many practically important cases the number of con-
stants can be reduced to only one constant.

Let us draw reader’s attention to one other feature of the resulting collision inte-
gral. The right side of (3.81) presents the divergence of the particle number flux vector
sα in momentum space:

sα = −A

αf (t, p⃗) −

𝜕
𝜕pβ

Bαβf (t, p⃗).

Similar principles have also been used in constructing the Fokker–Planck equation to
describe themotion of Brownian particles (see formulae (2.29)–(2.33)), although there
has been there the case of the particle flux in momentum space but not in coordinate
one.

As far as the quantities Aα and Bαβ are just some constants, it is convenient to
introduce a new constant Aα instead of the constant Aα for further discussion, having
defined it by relation

Aα = A

α +
𝜕
𝜕pβ

Bαβ.

At the same time expression for the flux sα can be significantly simplified:

sα = −Aαf (t, p⃗) − Bαβ
𝜕
𝜕pβ

f (t, p⃗).

Indeed, the constantsAα andBαβ arenot independent. It is easy to create a relationship
between them, if equilibrium case will be considered. In equilibrium, the distribution
function is known: it is the distribution function of Maxwell–Boltzmann. Further, the
distribution functions will be normalized for a total number of particles in the sample
n. It is worth recalling that earlier the concentration of particles was denoted by the
letter n. This discrepancy in the notation is not principle, because for any estimates
the sample volume is always assumed to be equal to unity:

f (t, p⃗) = n
Z
exp(− p2

2mkBT
), Z =

∞

∫
−∞

dp⃗ exp(− p2

2mkBT
).

Besides, in equilibrium the flux s0α must vanish. Hence, performing the necessary cal-
culations, one obtains

s0α = −Aα + Bαβ
pβ

mkBT
= 0, Aα =

Bαβpβ

mkBT
.

If the transition probability w(p⃗, q⃗) depends only on modulus of the vector q⃗, then
Bαβ = Bδαβ as follows from the definition of coefficients Bαβ (3.82) by virtue of the
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symmetry conditions. In particular, the velocity of heavy particles being neglected in
comparison with speed of light particles, such a situation can be realized. Then one
can run the scattering analysis as the velocity of heavy particles is equal to p⃗/m ≃ 0.

In this case, entry of the collision integral for the Fokker–Planck equation turns
out to be the simplest:

𝜕f
𝜕t

col
= B 𝜕
𝜕pα
[

pα

mkBT
f (t, p⃗) + 𝜕

𝜕pα
f (t, p⃗)]. (3.83)

Problem 3.3. Determinemobility μ of a heavy particle into a light gas with the help of
the Fokker–Planck equation.

Solution. Let a force F⃗ = eE⃗ act on the charged heavy particle where e is the particle
charge in the presence of an external electric field, defined by the electrical vector E⃗.
Assume that the electric field is homogeneous and constant. Under these conditions,
a distribution function depends only on momentum and does not depend on coordi-
nates and time. Then, considering (3.59), a kinetic equation with the collision integral
for the distribution function f (p⃗) can be written in the form of (3.83):

eEα 𝜕f
𝜕pα
= B 𝜕
𝜕pα
[

pα

mkBT
f (t, p⃗) + 𝜕

𝜕pα
f (t, p⃗)]. (3.84)

As far as the left and right sides of equation (3.84) contain identical derivatives 𝜕/𝜕pα,
the following equality should be fulfilled up to a negligible constant:

eEαf (p⃗) = B[ pα

mkBT
f (t, p⃗) + 𝜕

𝜕pα
f (t, p⃗)]. (3.85)

In looking for the solution of equation (3.85) in the linear approximation over external
forces, one can write down the non-equilibrium distribution function as the sum of
the equilibrium distribution function f0 and small correction δf : f = f0 + δf . Since
there exists a first order in the external force on the left side of equation (3.85), here
we replace f by f0. Substituting the equilibriumdistribution function f0 in the collision
integral gives a zero. Therefore, in the linear approximation over the external forces,
a simple equation for the correction of the distribution function appears as

𝜕
𝜕pα

δf + pα

mkBT
δf = eE

α

B
f0. (3.86)

The equation found is a linear inhomogeneous equation. It is easy to verify that the
general solution of a homogeneous equation is the equilibrium distribution func-
tion f0. The particular solution of inhomogeneous equation will be sought in the
form

δf = Cαpαf0,
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where Cα are unknown factors.
Substituting the trial solution of equation (3.86), one finds values of the coeffi-

cients Cα and an explicit form of correction to the distribution function δf :

Cα = eE
α

B
; δf = eE

α

B
pαf0.

In the case of one type of charge carriers, the electrical conductivity σ and themobility
μ are determined from the phenomenological expressions

⃗J = σE⃗ = enμE⃗, σ = enμ. (3.87)

The total current ⃗J can be expressed as an average velocity of charge carrier drift in an
electric field v⃗dr:

⃗J = env⃗dr .

Upon comparing this result with (3.87), one obtains

μ = vdr
E
.

Thus, mobility is numerically equal to an average velocity of charge carrier drift if the
electrical intensity E is equal to unity.

The total electric current in the sample is determined by a correction to the dis-
tribution function δf . Substituting this value in the definition of the charge flux, we
have

Jα = enμEα = e
2

B
∫ vαEβpβf0(p⃗) dp⃗. (3.88)

Hence it follows that the expression for the mobility μ appears as

μ = 2e
3nB
∫

p2

2m
f0(p⃗) dp⃗. (3.89)

In writing the expression (3.89) we have relied on the fact that the function actually
depends on modulus of this vector, and therefore, integrating the expression (3.88)
one can write down the following relation:

vαpβ = 1
3
p2

m
δαβ,

where δαβ is the Kronecker symbol.
Integral on the right side of (3.89) represents the average energy of particles. In-

deed, going over to the integration in a spherical coordinate system, taking into ac-
count the conditions of normalization of the functions f (p⃗) and setting ε = p2/2m, one
finds the following:

4πn∫∞0 ε exp(−ε/kBT)p dp2

4π ∫∞0 exp(−ε/kBT)p dp2
=
n∫∞0 ε3/2 exp(−ε/kBT) dε

∫∞0 ε1/2 exp(−ε/kBT) dε
= nkBT

Γ(5/2)
Γ(3/2)
. (3.90)
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Using the well-known relations for the gamma-function

Γ(n) =
∞

∫
0

xn−1e−x dx; Γ(5/2) = 3/2 ⋅ Γ(3/2),

one obtains a simple formula for the mobility of heavy particles into a light gas

μ = ekBT
B
.

In this expression the constant B can be regarded as a phenomenological parameter
to be found from experiment or estimated from the first principles, having defined the
explicit form of expression for the transition probability in formula (3.82).

3.3 Solving for kinetic equations

3.3.1 The solution of the Boltzmann equation for the equilibrium state

The analysis of the problem to solve the kinetic Boltzmann equation should start with
the simplest case of a system’s equilibrium state. In equilibrium, a distribution func-
tion in the absence of external forces driving the systemout of its equilibrium contains
no explicit dependence both on coordinates and on time. Consequently, the left-hand
side of the expression (3.64) vanishes and a kinetic equation for the equilibrium state
is reduced to the vanishing collision integral:

∫ uσ(Ω, u)(f f 1 − ff1) dp⃗1dΩ = 0. (3.91)

Note that we have still been writing the kinetic equation for the one-particle functions
F1, and it is this function that is involved in formula (3.59). It is worth pointing out
that the notation F1(t, ⃗r, p⃗) = f introduced by (3.55) must not be misleading. It is con-
venient to pass on to the more usual definition of the distribution function which is
normalized to the concentration. Since the one-particle distribution function F1(t, ⃗r, p⃗)
is related to the function f (t, ⃗r, p⃗), normalized to the concentration, by the simple rela-
tion f (t, ⃗r, p⃗) = nF1(t, ⃗r, p⃗), it suffices to omit the expression for the concentration in the
collision integral (3.59) in order to pass on to the new notations for writing the kinetic
equation. The functions appearing in the kinetic equation are assumed to be normal-
ized to concentration and the above changeover has been already achieved. That is
why when writing the collision integral (3.91) the expression for the concentration n
in front of the integral has been omitted.

It is obvious that the vanishing of (3.91) is attained by fulfilling the condition

f (p⃗)f (p⃗1) = f (p⃗)f (p⃗1).
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Also, the equality holds for taking the logarithm:

ln f (p⃗) + ln f (p⃗1) = ln f (p⃗) + ln f (p⃗1). (3.92)

Equation (3.92) can be interpreted as some conservation law: the sum of logarithms of
the distribution function of particles before the collision is equal to the sum of loga-
rithms of the distribution function of particles after the collision. It is known that the
pair elastic collisions are characterized by the presence of additive conservation laws
ofmomentum, energy andparticle number ormass. The conservation lawof the quan-
tityA is called additive, if this quantity can be represented as the sumofAi for all parts
of the system provided no interaction exists between them. No other additive laws of
conservation are in this problem. All in all, angular momentum is also an additive in-
tegral of motion, but in the event of the molecular rotation and change momentum in
the collision not being taken into account, the motion integral can be ignored. There-
fore, the distribution function logarithm can only depend on the above five additive
invariants of the collision:

ln f (p⃗) = A p2

2m
+ B⃗p⃗ + C, (3.93)

where A, B⃗ and C are some constants. We choose these constants so that themomenta
of the distribution function would have meaningful physical values:

∫ dp⃗f (p⃗) = n, (3.94)

∫ dp⃗f (p⃗)p⃗ = nmv⃗0, (3.95)

∫ dp⃗f (p⃗) (p⃗ −mv⃗0)
2

2m
=
3
2
kBTn. (3.96)

The momentum of zero order of (3.94) is a condition of the distribution function nor-
malization; n is the total number (or concentration) of the particles in the sample.
The first momentum (3.95) is a total momentum of the particle system; v⃗0 is the aver-
age drift speed while the second momentum of (3.96) is equal to the total energy of
chaotic motion of particles. It is easy to see that, this being so with respect to such a
choice of the constants A, B⃗ and C, the distribution function has the form

f (p⃗) = n
(2πmkBT)3/2

exp(− (p⃗ −mv⃗0)
2

2mkBT
). (3.97)

Thus, for the equilibrium case a solution of the kinetic equation (3.91) is to be thewell-
known Maxwell–Boltzmann distribution function.

The results of (3.94)–(3.97) can be summarized as follows. First, the previous con-
sideration can be applied to local-equilibrium state. In this case the distribution func-
tion will depend parametrically on coordinates and time through the local concen-
tration n( ⃗r, t), the local temperature T( ⃗r, t), and the drift velocity v⃗0( ⃗r, t). Such an ap-
proach allows for making use of the Boltzmann equation to derive the hydrodynamic
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equations of balance. In the next chapter, equations of momentum balance, energy
and particle number for a system of hot electrons in conductive crystals will be ob-
tained using this method.

Second, it is not hard to generalize the results (3.94)–(3.97) both for the case when
particles of a gas are in a stationary potential field of force U( ⃗r) and for the case of the
inelastic particle scattering. These results can be found in [22].

3.3.2 The Boltzmann H-theorem

In contrast to the dynamic equations, which are time reversible, the Boltzmann ki-
netic equation is noninvariant with respect to time-reversal operation. In order to ver-
ify this, we apply the time-reversal operation (t → −t, p⃗ → −p⃗, ⃗r → ⃗r) to the kinetic
equation (3.59). Having adopted the notation ̂f = f (−t,−p⃗, ⃗r), we get the triple inte-
gral,

−
𝜕 ̂f
𝜕t
−
p⃗
m
�⃗�r ̂f − F⃗�⃗�p ̂f =

2π

∫
0

dφ
2r0

∫
0

a da∫( ̂f  ̂f 1 − ̂f ̂f1)u dp⃗1. (3.98)

After completing the time-reversal operation, we see that the left-hand member of
equation (3.98) has changed sign for the function ̂f = f (−t,−p⃗, ⃗r), while the right-hand
member has not. Irreversibility of the Boltzmann equation is accounted for by the fact
that only those solutions, which satisfy the correlation attenuation principle are se-
lected from all possible solutions of the Bogoliubov hierarchy. Boltzmann’s contem-
porariesmadea slashing criticismofhim forhis breakaway from the ideas of determin-
ism. From the standpoint of contemporary knowledge, as mentioned in Section 3.1.2,
an exact solution of the dynamic problem in systems demonstrating dynamic chaos,
is completely pointless. Therefore, it is necessary to go over to a statistical description
to get results making practical sense. It is this idea that was implemented by Boltz-
mann.

The irreversible behavior of a system, whose description is produced by language
of the distribution functions satisfying the Boltzmann equation, becomes obvious if
the quantity of H will be determined due to Boltzmann. In other words, it is required
to find the Lyapunov function (see (1.97)):

H(t) = ∫ dp⃗f (p⃗, t) ln f (p⃗, t). (3.99)

One must mention that the above function is a nonincreasing function of time. It is
obvious that non-decreasing quantity of S(t) = −H(t) can be also ascertained, it will
coincidewith the systementropyup to adimension factor. Thenonincreasing function
H(t) being determined by the integral of (3.99) is commonly referred to as Boltzmann’s
H-theorem.
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We give a proof of this theorem for the case of spatially homogeneous distribu-
tion of a gas in the absence of external forces. Then the kinetic equation describes the
relaxation of the gas relating to the equilibrium state and has the simplest form:

𝜕f (p⃗)
𝜕t
= ∫ uσ(Ω, u)[f (p⃗)f (p⃗1) − f (p⃗)f (p⃗1)] dp⃗1 dΩ. (3.100)

Now it would be advisable to find a derivative of the function H(t) over time and to
show that H(t) is always nonpositive. Upon carrying out the time-differentiation in
formula (3.99), the following expression appears:

𝜕H(t)
𝜕t
= ∫ dp⃗[1 + ln f (p⃗)]𝜕f (p⃗)

𝜕t
.

We substitute the value of the derivative of the distribution function from the kinetic
equation (3.100) in this expression, then we obtain

𝜕H(t)
𝜕t
= ∫ uσ(Ω, u)[f (p⃗)f (p⃗1) − f (p⃗)f (p⃗1)] × [1 + ln f (p⃗)] dp⃗ dp⃗1 dΩ. (3.101)

As far as the integration is performed over p⃗ and p⃗1 at the same limits, the expres-
sion (3.101) can be symmetrized by writing it as

𝜕H(t)
𝜕t
=
1
2
∫ uσ(Ω, u)[f (p⃗)f (p⃗1) − f (p⃗)f (p⃗1)]

× [2 + ln(f (p⃗)f (p⃗1))] dp⃗ dp⃗1 dΩ. (3.102)

The result found can be undergone by further symmetrization, because dp⃗dp⃗1 =
dp⃗dp⃗1, u = −u

. Therefore, the following expression holds:

𝜕H(t)
𝜕t
=
1
4
∫ uσ(Ω, u)[f (p⃗)f (p⃗1) − f (p⃗)f (p⃗1)]

× [2 + ln(f (p⃗)f (p⃗1)) − 2 − ln(f (p⃗
)f (p⃗1))] dp⃗ dp⃗1 dΩ. (3.103)

Only the expressions in square brackets being considered, one may observe that the
integrand on the right-hand side of (3.103) can be presented as

f (x, y) = (x − y) ln y
x
,

where x = f (p⃗)f (p⃗1), y = f (p⃗)f (p⃗1). Now, it is clear that the function f (x, y) is nega-
tive for all values of x ̸= y. The vanishing is achieved only when the x = y equality is
valid. Since the u relative velocity of the particles before the collision and the σ(Ω, u)
scattering cross-section are positive, the integrand on the right-handmember of equa-
tion (3.103) is a nonpositive magnitude over the entire integrated interval:

𝜕H(t)
𝜕t
≤ 0.

This brings in evidence the Boltzmann H-theorem.
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Note that the BoltzmannH-theorem proved above is equivalent to the second law
of thermodynamics. It reads: a system’s entropy cannot decrease. In fact the Boltz-
mann H-theorem is even a more general statement, since it also holds for systems
being far away from their equilibrium state. This theorem allows one to claim that the
Lyapunov functionwhich is in some sense equivalent to the entropy can be defined for
a non-equilibrium state. The special literature [23, 24] discusses both other formula-
tions of the proof of theH-theoremanddifficulties related to irreversibility of solutions
of the Boltzmann equation.

3.3.3 The Hilbert expansion

The Boltzmann kinetic equation (3.64) is a non-linear integro-differential equation;
therefore, the process of finding solutions satisfying initial and boundary conditions
is an extremely complex problem. It is no wonder that there is still no complete anal-
ysis of the existence and uniqueness of the solutions in a general form. At present, to
the best of our knowledge, results relating to this issue are modest enough, and the
books [23, 24] discuss most of them. The main direction of a practical use of the Boltz-
mann equation for solving problems of physical kinetics is to construct a perturbation
theory.

The method of a linearized collision integral is the simplest and physically clear
approach. In this case the perturbation theory is built in powers of a system’s devia-
tion from an equilibrium state, but a solution of the kinetic equation f (p⃗, t) needs to
be sought in the form of the equilibriumdistribution function f0(p⃗) and a small correc-
tion δf (p⃗, t). The linearization of the collision integral is due to retaining only linear
terms in δf (p⃗, t). For the linearized Boltzmann equation, there are a number of strict
results relating to the existence and uniqueness of problem solutions with initial and
boundary conditions [24]. A disadvantage of this approach is that the analysis holds
only for weakly non-equilibrium states.

Other methods of the perturbation theory consist in expanding the distribution
function into a power-series of some small parameter and in constructing an iterative
scheme for the successive determination of expansion coefficients. In 1912 German
mathematician Hilbert was first to apply this technique to an analysis of solutions of
the Boltzmann equation. In a nutshell, consider a description of its nature and a result
of the Hilbert expansion.

Let us first estimate the order of different terms in the Boltzmann equation. If
one adopts that ω is a characteristic frequency of external effects, v corresponds to
a characteristic velocity of particles, d denotes a characteristic size of spatial non-
homogeneity of a system, l is mean free path of a particle, the time of free path of
the particles is designated as l/v = τ, one may estimate the order of various members

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



120 | 3 Kinetic equations in non-equilibrium statistical mechanics

in the Boltzmann equation:

𝜕f
𝜕t
∼ ωf , v⃗�⃗�rf ∼

v
d
f , 𝜕f
𝜕t

col
∼
f
τ
∼
v
l
f .

It follows that there may be introduced two dimensionless parameters characterizing
a relative magnitude of collision integral compared with contributions of the sum-
mands on the left-hand side of the equation, ωτ and l/d. One can assume that these
parameters as a first approximation are close in value, consequently, the relative con-
tributionof the collision integral is determinedbyonly oneparameter, Kn = l/d,which
is called the Knudsen number. For small values of the Knudsen number, the mean free
path is small and collisions occur rather often and the contribution of the collision in-
tegral is large. At large values of the Knudsen number Kn ≫ 1, the free-molecular-flow
regime in a gas is possible, thus the collision integral in the kinetic equation can be
omitted. This analysis is a point of departure of the perturbation theory which may
be constructed for the kinetic equations for two different limiting cases, i. e. when the
Knudsen number Kn→ 0, and when this number is large and Kn→∞.

The Hilbert expansion corresponds to the first case where the Knudsen number
Kn = ϵ is a small parameter (dense gases). We write down the kinetic equation (3.64),
introducing I(f , f ) as a symbolic notation for the collision integral:

ϵ[𝜕f
𝜕t
+
p⃗
m
�⃗�rf + F⃗�⃗�pf] = I(f , f ). (3.104)

The ϵ quantity has been introduced on the left-hand side of (3.104) in constructing an
iterative procedure for selecting members of the same order of the ϵ parameter.

A solution of the kinetic equation f should be expanded into an infinite series
form in powers of ϵ:

f = f (0) + ϵf (1) + ϵ2f (2) + ⋅ ⋅ ⋅ . (3.105)

After finding all terms of the expansion set the ϵ parameter should be set equal to
unity and plugged back into the original definitions. Following this line of reasoning,
the expansion is a formal subterfuge for selecting members of the same magnitude
order when appropriate.

We substitute the expansion (3.105) into equation (3.104) and equate the terms
containing zero, thefirst, the second, etc. orders of the ϵ parameter on the left and right
sides of equation (3.104). As a result, an infinite sequence of the equations, enabling
one to determine the expansion coefficients f (i) can be written:

0 = I(f (0), f (0)), (3.106)
𝜕f (0)

𝜕t
+
p⃗
m
�⃗�rf
(0) + F⃗�⃗�pf

(0) = I(f (1), f (0)) + I(f (0), f (1)), (3.107)

𝜕f (1)

𝜕t
+
p⃗
m
�⃗�rf
(1) + F⃗�⃗�pf

(1) = I(f (0), f (2)) + I(f (2), f (0)) + I(f (1), f (1)), (3.108)
. . . .
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Equation (3.106) allows the f (0) to be determined. It is easy to see that, in fact, this
equation coincides with equation (3.91). A solution of (3.106) is the quasi-equilibrium
distribution function (3.97):

f (0)(p⃗, ⃗r, t) = n
(2πmkBT)3/2

exp(− (p⃗ −mv⃗0)
2

2mkBT
), (3.109)

where the n, v0, T parameters are local-equilibrium quantities, depending on coordi-
nates and time.

Let us analyze the structure of equations (3.107) and (3.108). Further calculations
are rather cumbersome. As far as only fundamental aspects of themethod are interest-
ing rather than the applied ones, the term proportional to an external force in equa-
tions (3.107), (3.108) can be omitted without any loss. Each of these equations enables
determining the next correction in the expansion (3.105). Thus, in principle, all terms
of the expansion (3.105) can be found, but to do this, a linear inhomogeneous integral
equation has to be solved at each step of the procedure. In looking for the next correc-
tion the integral equation structure f (n) = f (0)h(n) remains the same and can bewritten
in the symbolic form

[
𝜕
𝜕t
+
p⃗
m
�⃗�r]f
(0)h(n−1) = Lh(n) + S(n), n = 1, 2 . . . , (3.110)

Lh(n) = I(f (0), f (0)h(n)) + I(f (0)h(n), f (0)), h(0) = 1, (3.111)

S(1) = 0, S(n) =
n−1
∑
k=1

I(f (0)h(k), f (0)h(n−k)), n = 2, 3 . . . , (3.112)

where L is the linear integral operator and S(n) is some function, whose explicit form
is known, if previous terms of the expansion (3.105) are found. As far as the quantities
of f (0) are known, one can go over to a set of equations for finding the functions h(n),
whose structure is identical and at each step is a nonhomogeneous linear integral
Fredholm’s equation of the second kind:

Lh(n) = g(n). (3.113)

Solutions of the homogeneous equation Lh(n) = 0 for the case of an elastic scat-
tering are additive invariants of the collision ψα, α = 1, 2, . . . , 5, i. e. a constant, three
momentum components and kinetic energy. Note that these quantities are eigenfunc-
tions of the equation Lh = λh, corresponding to the eigenvalue λ = 0. A solution of
the nonhomogeneous equation (3.113) is equivalent to finding the L−1 inverse linear
operator, which in the general case is impossible, since λ = 0 is one of the possible
eigenvalues of L. Therefore, in addition, it is required that the g(n) vector, defining
the nonhomogeneity, would be orthogonal to ψα. Now, finding the solution of such
a class of functions is becoming possible. However, one may refer to a more general
statement, which tells that a solution of the inhomogeneous Fredholm equation of the
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second kind exists if and only if its right-hand side (nonhomogeneity) is orthogonal to
all of its solutions. As a result, one obtains the very important condition that allows
the transport equations (n = 1, 2, . . .) to be found:

∫ψα[(
𝜕
𝜕t
+
p⃗
m
�⃗�r)f
(0)h(n−1) − S(n)] dp⃗ = 0; α = 1, 2, . . . , 5. (3.114)

In the formula (3.114) ψα is a vector whose components are invariants of a collision (a
set of eigenfunctions of homogeneous equation Lh(n−1) = 0 at step n − 1).

A general solution of the homogeneous equation (3.113) is the sum of the partic-
ular solution ĥ(n) of the nonhomogeneous equation and the general solution of the
homogeneous equation:

h(n) = ĥ(n) + C(n)α ψα, α = 1, 2, . . . , 5. (3.115)

Here ĥ(n) denotes any particular solution of equation (3.113), C(n)α presents five vari-
ables which are similar to the A, B⃗ and C coefficients in equation (3.93). These quanti-
ties depend on coordinates and time that are to be determined at each iteration step.

An unambiguous choice of the functions ĥ(n) calls for imposing five additional
conditions:

∫ψαĥ
(n)f (0) dp⃗ = 0, α = 1, 2, . . . , 5. (3.116)

In mathematical terms, the necessity of these conditions is related with finding a so-
lution of the inhomogeneous equation inside a multitude of functions orthogonal to
basis of eigenfunctions of the homogeneous equation Lh(n) = 0, which ensures the
existence of the L−1 operator.

Thus, the function f (0) appears from equation (3.106) and it coincides with the
equilibrium distribution function f0. The corrections

f (n) = f (0)(ĥ(n) + C(n)α ψα) (3.117)

for n = 1, 2, . . . contain unknown functions C(n)α of coordinates and time and unknown
functions ĥ(n). These functions should be found from the conditions (3.114), (3.110),
ensuring the existence of a correction at the n + 1 step. Thus, at least in principle,
there is a possibility to construct an iterative scheme for determining all terms in the
expansion (3.105).

Now, we embody the above scheme for the case n = 1. As far as the integrals

∫ψαS
(n) dp⃗ = 0

for all n provided that theψα quantities are collision invariants [23], the orthogonality
conditions (3.114) are reduced to the five equations of Euler for a nonviscous medium

∫ψα[
𝜕
𝜕t
+
p⃗
m
�⃗�r]f
(0) dp⃗ = 0, α = 1, 2, . . . , 5. (3.118)
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It is worth recollecting that five invariants of the collisions should be taken as the val-
ues ψα, the massm of a particle, three componentsmv⃗ of the particle momentum and
the kinetic energymv2/2. Takingψ1 = m, from (3.118) one obtains the continuity equa-
tion

𝜕ρ
𝜕t
+
𝜕ρv0i
𝜕ri
= 0, (3.119)

ρ = mn = ∫mf (0) dp⃗, v0i =
1
n
∫ vif
(0) dp⃗. (3.120)

For ψ2,3,4 = mv⃗ from the expression (3.118) we get the momentum balance equation:

𝜕ρv0i
𝜕t
+
𝜕
𝜕rj
(Pij + ρv0iv0j) = 0, (3.121)

Pij = m∫(vi − v0i)(vj − v0j)f
(0) dp⃗ = m∫ cicjf

(0) dp⃗, (3.122)

where Pij are the stress tensor components, and ci = vi − v0i the velocity components
of the thermal motion.

In deriving the formula (3.121) the particle’s velocity vi should be written down as
the sumof the velocity ci of a thermalmotion and the drift velocity v0i. Then, consider-
ing that the average rate of the heat motion is equal to zero, the following expressions
appear:

m∫ vivjf
(0) dp⃗ = m∫(ci + v0i)(cj + v0j)f

(0) dp⃗

= m∫ cicjf
(0) dp⃗ +mv0iv0j ∫ f

(0) dp⃗ = Pij + ρv0iv0j.

Finally, substituting the kinetic energy of a particle mv2/2 as the fifth parameter ψ5,
the macroscopic energy balance equation reads

𝜕
𝜕t
ρ(3

2
kBT
m
+
1
2
v20) +
𝜕
𝜕rj
[ρv0j(

3
2
kBT
m
+
1
2
v20) + v0iPij + qj] = 0. (3.123)

The derivation of (3.123) is not difficult, given the relations (3.96) and the definition of
the stress tensor (3.122). The quantity qj is the heat flux

qj =
m
2
∫ c2i cjf

(0) dp⃗.

Equations (3.119), (3.121), (3.123) are the Euler equations for the fivemacroscopic quan-
tities involved in f (0), i. e. n( ⃗r, t) or ρ( ⃗r, t), v⃗0( ⃗r, t) and T( ⃗r, t). However, the hydrody-
namic parameters found from solving these equations are not yet the true density,
speed and temperature. They can be regarded as a first approximation to the true pa-
rameters. To find the next correction one should go over to the next step of the itera-
tion.
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We can generalize the results of (3.119), (3.121), (3.123) for the case of arbitrary val-
ues of n ≥ 1. It is obvious that the combination of five hydrodynamic equations ap-
pearing from the condition of (3.114) can always be written as

𝜕ρ(n)α
𝜕t
+ div ⃗J(n)α = 0, α = 1, 2, . . . , 5, n = 0, 1 . . . , (3.124)

ρ(n)α = ∫ψαf
(n) dp⃗, ⃗J(n)α = ∫ψαv⃗f

(n) dp⃗. (3.125)

It isworthunderstanding that it is necessary to solve the set of equations (3.124) at each
iteration stepand tofind theunknowncoefficientsC(n)α , involved in the corrections f (n).
Further, the particular solution (quantities of ĥ(n)) of the corresponding homogeneous
equation (3.110) need also be found. Thus, it is clear that the planned program is diffi-
cult to realize, and amainmerit of the Hilbert expansion is not to be practical method
of finding solutions of the Boltzmann equation but one is to prove the existence and
uniqueness of a solution. In addition, theHilbert expansion allows the one-to-one cor-
respondence between the distribution function f (p⃗, ⃗r, t) and its firstmoments of n( ⃗r, t),
v⃗0( ⃗r, t) and T( ⃗r, t) to be established. In other words, the Hilbert expansion enables one
to prove that the Boltzmann kinetic equation uniquely determines the distribution
function f (p⃗, ⃗r, t), if the first five moments of the distribution function are given at the
initial time.

To prove this statement it suffices to substitute the expression for f (n) from (3.117)
into the expression (3.125) for the density ρ(n)α . This results in obtaining the equation
of the interrelationship of the ρ(n)α quantities and the C(n)α coefficients:

ρ(n)α = ∫ψαf
(0)ĥ(n) dp⃗ +

5
∑
β=1

C(n)β ∫ψαf
(0)ψβ dp⃗. (3.126)

In virtue of (3.116) the first integral in the expression (3.126) is zero, and hence there
follow five equations expressing the C(n)α coefficients via ρ(n)α . As far as the C(n)α quan-
tities are found by solving differential equations, it is necessary to specify initial con-
ditions for their unambiguous determination. Having recently shown the exact cor-
respondence between the C(n)α and ρ(n)α quantities, then the initial conditions at each
iteration step can be defined not for C(n)α but for ρ(n)α . Thus, all corrections to the dis-
tribution function will be found from the Boltzmann equation, if the ρ(n)α quantities
will be given at the initial time. In other words, the distribution function f (p⃗, ⃗r, t) is
uniquely determined by the five parameters n( ⃗r, t), v⃗0( ⃗r, t) and T( ⃗r, t). As far as one
may pick any initial moment of time, one can claim that the correspondence between
distribution function f (p⃗, ⃗r, t) and the vector of its first five moments, given at arbi-
trary time, occurs. Consequently, there is a possibility to substantiate applicability of
hydrodynamic equations to describe evolution of a system.

The ĥ(n) quantities, of course, also should be determined as partial solutions of
equations (3.110) at each iteration step. But equations (3.110) do not require specifying
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initial conditions and contain theC(n−1)α found alreadywithin previous step. Therefore,
the problem of finding the ĥ(n) quantities does not affect the above conclusion that the
assignments of the first fivemoments for the distribution function at the initial instant
of time uniquely determine the solution of the Boltzmann equation.

Thus, Hilbert proved the existence and uniqueness of the solution of the Boltz-
mann equation in the class of solutions which can be presented in the expansion
form (3.105). Unfortunately, one has so far not yet succeeded in proving the possibility
of such an expansion and evenmore in ascertaining its convergence. Nevertheless, the
Hilbert expansion serves as a theoretical basis for most practically applicable meth-
ods for solving the Boltzmann equation; in particular, the Enskog–Chapman method
whose main ideas are outlined below.

3.3.4 The Enskog–Chapman method. Derivation of hydrodynamic equations

As shown in the previous section a solution of the Boltzmann equation can be con-
structed as an expansion in small parameter (the Knudsen number), which is com-
pletely determined by assigning hydrodynamic quantities at an initial instant of time.
However, if the distribution function f (p⃗, ⃗r, t) at any time t is expressed via the hydro-
dynamic quantities at the initial moment of time, then these hydrodynamic quantities
at any given timemust be expressed through the initial values of thehydrodynamic pa-
rameters. Consequently, we can exclude the distribution function and establish a di-
rect link between thehydrodynamic quantities at different time. This result ofHilbert’s
theory can substantiate the use of the hydrodynamic equations to describe the gas dy-
namics.

The set of the hydrodynamic equations (3.119), (3.121), (3.123) presents five inde-
pendent equations to determine thirteen unknowns. The unknown quantities are the
density ρ, three components of the average speed v⃗0, six components of the symmet-
ric stress tensor Pij and three components of the heat flux q⃗. The temperature T can
easily be expressed in terms of the diagonal components of the stress tensor. Indeed,
determining the pressure by the relation

p = 1
3
(P11 + P22 + P33),

where the components of Pij are defined by (3.122), and recollecting the condi-
tion (3.96), we obtain the well-known relation p = nkBT where the temperature can be
determined through other hydrodynamic parameters.

Thus, the set of the hydrodynamic equations is not closed. To close it, the Pij and
qi quantities need be expressed via the hydrodynamic quantities n, v⃗0, p or T. Then
the set of the hydrodynamic equations will be closed and we have five independent
equations to determinate the five hydrodynamic parameters at each iteration step.
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The purpose of the Enskog–Chapmanmethod is to establish the above connection
and to obtain a closed set of hydrodynamic balance equations. The Enskog–Chapman
method improves the Hilbert method by means of modification of the Hilbert expan-
sion in powers of the small parameter ϵ (the Knudsen number) for the distribution
function f (p⃗, ⃗r, t) [24]. Such a reconstruction is necessary because the Hilbert expan-
sion in any order of ϵ provides only the hydrodynamic equations of a nonviscous fluid.
In physics, there are a lot of examples where, in any order of the perturbation theory,
theoretical results are not in agreement with experiment and the perturbation theory
requires a rearrangement of a series. Note that such a rearrangement is often equiva-
lent to the summation of some infinite sequence of terms of a series in the perturbation
theory. An application both of the diagram technique and the mass operator method
in the problems of solid physics may serve as a case in point of such an approach.

Since there is no opportunity to set forth all details of the original Enskog–Chap-
man method, we will confine ourselves only to a discussion of principles that enable
one to obtain closed equations of hydrodynamics suitable for describing a viscous
fluid. These equations are referred to as the Navier–Stokes equations.

The initial steps of building the Enskog–Chapman expansion coincides com-
pletely with the Hilbert expansion. Thus, similar to line of reasoning in the previous
paragraph, we arrive at equations (3.105)–(3.108). For simplicity, we restrict ourselves
to the case when an external force F⃗ = 0.

The function (3.109) is a solution of (3.106). The n, v⃗0, T parameters present the lo-
cal density of particles, their average speed and temperature, respectively, and in the
general case they are arbitrary functions of coordinates and time. Strictly speaking,
the n(0), v⃗(0)0 , T(0) quantities, i. e. the hydrodynamic parameters of zero approximation
must be involved in equation (3.109). However, if the n, v⃗0, T parameters are assumed
to meet the equations below, the theory becomes considerably more elegant, and re-
sults are easily interpreted;

∫ dp⃗f (0)(p⃗, ⃗r, t) = n, (3.127)

∫ dp⃗f (0)(p⃗, ⃗r, t)p⃗ = nmv⃗0, (3.128)

∫ dp⃗f (0)(p⃗, ⃗r, t) (p⃗ −mv⃗0)
2

2m
=
3
2
kBTn. (3.129)

Here, f (0) is a function of the distributions (3.109). Then the corrections f (n), n = 1, 2, . . .,
must satisfy the system of definitions

∫ dp⃗f (n)(p⃗, ⃗r, t) = 0, (3.130)

∫ dp⃗f (n)(p⃗, ⃗r, t)p⃗ = 0, (3.131)

∫ dp⃗f (n)(p⃗, ⃗r, t) (p⃗ −mv⃗0)
2

2m
= 0. (3.132)
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The five equations (3.130)–(3.132) are analogs of equations (3.116). How these equa-
tions should be used in constructing the hydrodynamic equations, we will discuss
later.

If one confines oneself to the first term into the expansion (3.105) and supposes
that f = f (0), then the Euler equations of hydrodynamics such as (3.119), (3.121)
and (3.123) can be obtained. It is easy to note that in this case the stress tensor can
be written as Pij = pδij and the heat flux q⃗ is equal to zero. Then the set of the hy-
drodynamic equations is closed. This result coincides with the Hilbert expansion
result.

Considering now the correction f (1) in the expansion (3.105); taking

f = f (0) + ϵf (1) = f (0)(1 + ϵh(1)) (3.133)

one can write down the integral equation for h(1),

[
𝜕
𝜕t
+
p⃗
m
�⃗�r]f
(0) = I(f (0), f (0)h(1)) + I(f (0)h(1), f (0)). (3.134)

The inhomogeneous integral equation (3.134) to determine h(1) can be found by set-
ting n equal to unity in equations (3.110)–(3.112). An analysis of equation (3.134) in
the frame of the Enskog–Chapman method differs radically from Hilbert’s analysis.
As already mentioned, the main goal of the Enskog–Chapmanmethod is to derive hy-
drodynamic equations. By virtue of the fact that the Hilbert expansion in any order
of ϵ does not permit obtaining motion equations for a viscous fluid, the expansion
should be rearranged. This rearrangement is based on results obtained by Hilbert. As
far as a solution of the Boltzmann equation is uniquely determined by the first five
moments of the distribution function, the derivative over time in equation (3.134) can
be expressed through these moments.

To implement this program, we substitute the function f (0), being determined by
the expression (3.109), into the left-hand side of equation (3.134) and perform the dif-
ferentiation concerning coordinates and time, assuming that the hydrodynamic pa-
rameters n, v⃗0, T are functions of the coordinates and time. As a result of simple cal-
culations, one finds the following equality:

[
𝜕
𝜕t
+
p⃗
m
�⃗�r]f
(0) = f (0){ 1

n
𝜕n
𝜕t
+
1
T
𝜕T
𝜕t
[
(p⃗ −mv⃗0)2

2mkBT
−
3
2
]

+
p⃗ −mv⃗0
kBT
𝜕v⃗0
𝜕t
+
1
n
v⃗ 𝜕n
𝜕 ⃗r
+
1
T
v⃗ 𝜕T
𝜕 ⃗r
[
(p⃗ −mv⃗0)2

2mkBT
−
3
2
]

+ ((v⃗�⃗�r)v⃗0)
p⃗ −mv⃗0
kBT
}. (3.135)

All derivatives over time in the right-hand side of (3.135) can be excludedwith the help
of the hydrodynamic equations (3.119), (3.121) and (3.123).
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If one takes Pij = pδij, p = nkBT, q⃗ = 0, ρ = nm, these hydrodynamic equations
can be written in a simpler form, which is represented by

𝜕n
𝜕t
+ div nv⃗0 = 0, (3.136)

𝜕v⃗0
𝜕t
+ ((v⃗0�⃗�r)v⃗0) = −

1
ρ
�⃗�rp, (3.137)

𝜕T
𝜕t
+ v⃗0�⃗�rT +

2
3
T div v⃗0 = 0. (3.138)

Before deriving the last equation, the expression (3.123) should be converted by using
the conservation laws of (3.136) and (3.137). After excluding the time-derivatives, as a
result of simple but rather cumbersome transformations, the right-hand side of (3.135)
can be written as [22]

f (0){[ v⃗ − v⃗0
T
�⃗�rT][

m(v⃗ − v⃗0)2

2kBT
−
5
2
] −

1
3

m
kBT
(v⃗ − v⃗0)

2

× div v⃗0 +
m
kBT
(v⃗ − v⃗0)i(v⃗ − v⃗0)j

𝜕v0i
𝜕rj
}. (3.139)

We now write down the integral equation (3.134) using the result found above. For
simplicity, as before, we will use the thermal velocity c⃗ = v⃗ − v⃗0. For the collision
integral we use the expression in the right-hand side of (3.100) and substitute the ex-
pansion (3.133) for the distribution function f . Then, given the energy conservation
law, one can get

f (0)[ c⃗
T
�⃗�rT(

mc⃗2

2kBT
−
5
2
) +

m
kBT
(c⃗ic⃗j −

1
3
c⃗ 2δij)
𝜕v0i
𝜕rj
]

= ∫ uσ(Ω, u)f (0)f (0)1 [h
(1)  + h(1) 1 − h

(1) − h(1)1 ] dp⃗1 dΩ. (3.140)

Equation (3.140) is an inhomogeneousFredholmequationand its solution is the super-
position of a general solution of the homogeneous equation and a particular solution
of the nonhomogeneous equation. It allows a correction to the distribution function of
the first order of ϵ to be found. The technique of solving equation (3.140) is presented
in detail in themonographbyKogan [25]. Not going into the details of the calculations,
we point out that the particular solution of the integral equation (3.140) is sought in
the form

h(1) = −Aci
𝜕T
𝜕ri
− B(cicj −

1
3
c2δij)
𝜕v0i
𝜕rj
, (3.141)

where the scalar A and B quantities are assumed to depend on a velocity modulus of a
thermal motion, density and temperature. To determine these constants, the expres-
sion (3.141) should be substituted into equation (3.140). As a result, it falls into two
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equations: the equation for finding the parameter A and the equation for determining
the parameter B. Then these equations are to be solved.

The distribution function can be written up to first order of ϵ as

f = f (0){1 − A∗ci
𝜕T
𝜕ri
− B(cicj −

1
3
c2δij)
𝜕v0i
𝜕rj
}, (3.142)

where A∗ is a renormalized scalar quantity A. This renormalization appears when the
solution of the homogeneous equation [25] is taken into account.

The expression for the distribution function (3.142) allows one to seek the heat flux
and amore exact expression for the stress tensor. Substituting (3.142) in the definitions
of qj the flux density and Pij stress tensor

qj =
m
2
∫ c2i cjf dp⃗, Pij = m∫ cicjf dp⃗,

we have

qj = −λ
𝜕T
𝜕rj
, Pij = pδij − μ(

𝜕v0i
𝜕rj
+
𝜕v0j
𝜕ri
−
2
3
δij div v⃗0); (3.143)

λ = m
6
∫A∗c4f (0) dp⃗, μ = m

15
∫Bf (0)c4 dp⃗. (3.144)

The λ and μ constants, contained in the expression (3.144), are to be found by solving
equation (3.140). For this purpose, theA(c) andB(c) functions are expanded in a series
of Sonin polynomials [25]. The expansion procedure is cumbersome enough, as the
result depends on the model type of the particle interaction. We give here the result
only for the case when the particles are elastic balls with diameter d and in the case
that only the first term of the Sonin expansion of polynomials is left [25]. In this case

μ = 15
16
√mkBT
√πd2
, λ = 5

2
Cvμ.

In the last formula Cv is the specific heat of a gas at a constant volume.
Thus, the correction h(1) to the distribution function allows instead of (3.136)–

(3.138) for obtaining a newclosed set of hydrodynamic balance equationswith a renor-
malized value of the stress tensor andnon-zeroheat flux. Renormalizationof the stress
tensor is associated with taking into account the irreversible (viscous) momentum
transfer in a gas. The coefficient μ is called the medium viscosity coefficient, λ is the
thermal conductivity coefficient. It is important to note that the viscosity and ther-
mal conductivity coefficients are not phenomenological parameters but are calculated
from first principles.

In conclusion,wewould like to point out that although the step-by-step procedure
for finding the expansion coefficients of (3.133) can be continued in the frame of the
Enskog–Chapman method, one fails to obtain the corrections of a higher order than
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the second to the distribution function due to computation difficulties. Also, one has
so far not succeeded in proving convergence of procedure of the expansion (3.133) in
a general form. Therefore, although the Enskog–Chapman method is widely used in
practice, the scope of its applicability does remain not fully investigated.

3.3.5 The method of moments

Themost universal technique to build a closed set of hydrodynamic balance equations
for arbitrary Knudsen numbers is through the method of moments. In essence, the
above hydrodynamic variables are moments of the distribution function:

n( ⃗r, t) = M(0) = ∫ f dp⃗, (3.145)

nv0i( ⃗r, t) = M
(1)
i = ∫

pi
m
f dp⃗, (3.146)

Pij( ⃗r, t) = mℳ(2)ij = m∫ cicjf dp⃗, (3.147)

qi( ⃗r, t) =
m
2
ℳ(3)ijj =

m
2
∫ cic

2f dp⃗. (3.148)

In formulae (3.145)–(3.148) the indices i, j are taking the values 1, 2, 3. The moments
ℳ are referred to as central and identified for speed deviations about the mean. The
moments M of the distribution function and the central moments ℳ are obviously
related to each other and can be easily expressed via each other.

The main idea of the method of moments is to express the distribution function
through its moments

f (p⃗, ⃗r, t) = f (p⃗,M(0),M(1), . . .), (3.149)

where the moments M(k) are a function of coordinates and time. Then a set of equa-
tions for finding the moments of the distribution function is obtained by inserting the
distribution functionwritten in such away into the Boltzmann kinetic equation. In the
general case, Boltzmann’s kinetic equation is equivalent to an infinite set of equations
for the moments, but in most practically important cases one may restrict oneself to
the few first moments.

Grad was the first to use in 1949 the method of moments for solving the kinetic
equation. Following Grad, we expand the distribution function in a series of three-
dimensional Hermite polynomials:

f = f (0)(a(0)H(0) + a(1)i H(1)i +
1
2!
a(2)ij H
(2)
ij +

1
3!
a(3)ijkH
(3)
ijk + ⋅ ⋅ ⋅). (3.150)

In this formula, the a(N)i,j,... coefficients are functions of the coordinates and time. The
Hermite polynomials are functions of the dimensionless relative velocity,

⃗ξ = p⃗ −mv⃗0
√mkBT

,
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and their explicit form can be obtained with the aid of the following formula:

H(N)ij...k = (−1)
N exp( ξ

2

2
)
𝜕N

𝜕ξi𝜕ξj . . . 𝜕ξk
exp(− ξ

2

2
). (3.151)

Using the formula (3.151) one can easily calculate the explicit form of theHermite poly-
nomial of any order. In practice, it is only required polynomials of lower orders, some
of them are given by

H(0) = 1, H(1)i = ξi, H(2)ij = ξiξj − δij,

H(3)ijk = ξiξjξk − (ξiδjk + ξjδik + ξkδij). (3.152)

From the definition of the Hermite polynomials (3.151) it follows that all polynomials,
which differ by interchanging the indices, are identically equal. The Hermite polyno-
mials (3.151) are orthogonal to some weighting function:

1
(2π)3/2
∫ exp(− ξ

2

2
)H(n)α H(m)β d ⃗ξ = δnmδαβ. (3.153)

The function f (0) in formula (3.150) is defined by the relation

f (0) = n
(2πmkBT)3/2

exp(− ξ
2

2
). (3.154)

Using the orthogonality of the Hermite polynomials, the expansion coefficients can
be expressed in terms of hydrodynamic parameters or moments of the distribution
function:

a(N)α =
(mkBT)3/2

n( ⃗r, t)
∫ fH(N)α d ⃗ξ . (3.155)

Let us give explicit expressions for a few first coefficients of the expansion:

a(0) = M(0) = 1, a(1)i =ℳ
(1)
i = 0, a(2)ij =

Pij − pδij
p
,

a(3)ijk =
mℳ(3)ijk

p √
m
kBT
. (3.156)

As far as the a(N)α expansion coefficients are expressed via moments of the distribu-
tion function, and those, in turn, are the hydrodynamic quantities in question, the
problem of finding the hydrodynamic balance equations in the frame of the method
of moments is reduced to the problem of finding the equations for the coefficients in
the expansion (3.150). The equations of motion for the coefficients a(N)α can be found
with the help of the Boltzmann kinetic equation. To do this, the distribution func-
tion (3.150) needs be substituted in the kinetic equation. Then it is necessary to mul-
tiply both sides of equation by the corresponding Hermite polynomial with weighting
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function and integrate it over the relative speed. The orthogonality condition of the
Hermite polynomials permits the number of terms in each of equations to be limited
significantly. Although this procedure is rather simple but at the same time extremely
cumbersome, the derivation of these equations should be omitted, referring the reader
to the literature [25].

From a practical point of view, it would be desirable to obtain equations for the
moments (hydrodynamic quantities), which are measurable and have clear physical
meaning. As noted above, there are 13 suchmoments: the concentration n, three com-
ponents of the drift velocity v0i, the temperature T, six components of the symmet-
ric stress tensor pij and three components of the heat flux qi. To obtain the hydrody-
namic equations for these variables, it suffices to approximate the distribution func-
tion (3.150) by the expression

f = f (0)(1 + 1
2
a(2)ij H
(2)
ij +

1
10

a(3)ijj H
(3)
ikk), (3.157)

there remaining in it only the first three terms of the expansion. This approximation
of the distribution function is known in the literature as Grad’s 13-moment approxi-
mation. The results obtained in this approximation are in full agreement with the re-
sults of the Enskog–Chapman method. The complete derivation of the hydrodynamic
equations corresponding to the 13-moment Grad approximation can be found in the
aforementioned book [25].

It should be noted that in the frame of the method of moments an approxima-
tion of the distribution function can be virtually arbitrary by using a combination of
hydrodynamic parameters. A certain form of the approximating function depends on
the problemposed and peculiarities of the physical phenomenon involved. In the next
chapter, the method of moments will be applied to obtain closed hydrodynamic equa-
tions for a system of hot electrons in conducting crystals.

3.4 Problems to Chapter 3

3.1. Assume that the exact solution to classical mechanics equations for a system
consisting of N particles is known, and the time dependence between their co-
ordinates ⃗ri(t) andmomenta p⃗i(t) is defined.Write downexplicitly theN-particle
distribution density function

ρ( ⃗r1, ⃗r2, . . . , ⃗rN , p⃗1, p⃗2, . . . , p⃗N , t),

for the system in the so-called N “quasiparticle” representation to satisfy both
the Liouville equation and the normalization condition.

3.2. Write down the Liouville equation for a material particle with mass m, located
in a gravitational field with potential U = mqx, where q is the acceleration of
gravity, x the coordinate of the particle.
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3.3. Let us consider a one-dimensional harmonic oscillator with mass m and the
elastic coupling constant k. Find the general solution to the Liouville equation
for this system.
To solve the problem, it is necessary to determine the particle’s coordinate and
momentum as functions of time and also constants of integration of Hamilton’s
equations of motion C1, C2. Express the constants in terms of the system’s coor-
dinate and momentum. An arbitrary function of the constants ρ(C1,C2) will be
the general solution of the Liouville equation, satisfying the condition

dρ
dt
= 0.

Construct the phase portrait of the system.
3.4. Ascertain that if a system has the number of particles N ≈ 1020, volume V ≈

1 cm3, the mean free path of the particles λ ≈ 10−5 cm, and the mean free time
τ ≈ 10−10 s, it returns to its initial state (the Poincaré recurrence time) after this
period of time T ≈ TN1 ≈ 10

920 s, where T1 is the time to return to its “cube” with
volume λ3 of a single particle. Note that here the coordinate space should be
taken as the phase space only, but not take into account the momentum space.

3.5. Write down an equation in the relaxation time approximation for a system of
chargedparticleswithmassm and charge e, located in an external uniformelec-
tric field E⃗ and a constant magnetic field B⃗. (One should not take into account
quantization of orbital motion in the magnetic field.)

3.6. Find the solution to the Boltzmann equation for a local-equilibrium system in
an external static field with potential U( ⃗r). To solve the problem, use the fact
that ln f ( ⃗r, p⃗) in the local-equilibrium state is a function of five additive collision
invariants only (see (3.93)).

3.7. Prove that the collision integral in the right-hand side of (3.59) does not con-
tribute to the change in density of quantities conserving in the collision process
(the number of particles, momentum, and energy):

n
2π

∫
0

dφ
2r0

∫
0

a da∫(f f 1 − ff1)uψ(p⃗) dp⃗ dp⃗1 = 0,

provided that the function ψ is an arbitrary function of collision invariants.
3.8. Derive an Euler hydrodynamics equation for an ideal fluid using equation (3.64)

and the Chapman–Enskog method.
3.9. Find the solution to equation (3.32) for a weakly non-equilibrium gas of classi-

cal particles by the Chapman–Enskog method. The non-equilibrium is due to a
temperature gradient field and external static potential field. Having obtained
the solution, it is necessary to eliminate all time-derivatives using the continuity
equations.
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3.10. With the aid of the correction obtained in the previous problem to the distri-
bution function, prove that the coefficient of thermal conductivity κ in a linear
approximation is calculated by the simple formula

κ = 5
2
n
m
k2BTτ.
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4 Kinetic equation for electrons and phonons in
conducting crystals

4.1 Kinetic coefficients in the relaxation time approximation

4.1.1 Kinetic equation for electrons and its solution to the relaxation time
approximation

Consider the simplestmodel of the conductor, according towhich quasi-free electrons
or holes are current carriers. The current carriers are interacting with crystal lattice
defects or phonons as a result of the collision processes. For simplicity, the dispersion
law of electrons (holes) is assumed to be parabolic and to have the form

εp⃗ =
p2

2m
, (4.1)

where p⃗ is for the current carrier momentum vector,m is for the current carrier mass.
The assumption of the parabolic nature of the dispersion law is not crucial for

the elementary theory of transport phenomena under consideration in this chapter.
All the results can be generalized to the case of a spherically symmetric conduction
band, the electron energy being dependent arbitrarily on modulus of a wave vector k⃗.

In thermodynamic equilibrium, properties of an electron gas are determined by
the Fermi–Dirac distribution function:

f0(εp⃗) = {exp(
εp⃗ − ζ
kBT
) + 1}

−1
, (4.2)

where kB is the Boltzmann constant.
In the non-equilibrium case, one can also introduce a non-equilibrium distribu-

tion function f ( ⃗r, p⃗, t) that depends on the coordinates ⃗r, momentum p⃗ and time t, and
satisfies the normalization condition:

∑
σ

V
(2πℏ)3
∫ dp⃗ d ⃗rf ( ⃗r, p⃗, t) = n, (4.3)

where σ enumerates the projection of the electron spin on the Z-axis (σ = ±1/2), n be-
ing the number of electrons in the specimen. Furthermore, the specimen volume is
assumed to be equal to unity and the value of n will have the meaning of electron
concentration. The multiplier

V
(2πℏ)3
=
LxLyLz
(2πℏ)3

is the density number of the electrons in themomentum space. The appearance of the
multiplier in the formula (4.3) is due to quantized electron states:

px = ±
2πℏn1
Lx
, py = ±

2πℏn2
Ly
, pz = ±

2πℏn3
Lz
,

https://doi.org/10.1515/9783110727197-004
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where the quantities n1, n2, n3 are integers running from zero to infinity. So when
counted in the formula (4.3), it is necessary to sum the number of states over discrete
states of the electrons with different values of momentum components. To avoid com-
plicated calculations, the summation is usually replaced by integration. In this case,
the integral is multiplied by dimension factor having the meaning of density of states
in the momentum space. It follows from (4.3) that the expression

2V
(2πh)3

dp⃗d ⃗rf ( ⃗r, p⃗, t)

gives the number of the electrons with the momentum p⃗ and the coordinate ⃗r trapped
by the phase volume element dp⃗d ⃗r at the moment in time t.

If one assumes that the electrons are noninteracting particles, then every electron
can be considered as an isolated system. Phase points corresponding to possible dif-
ferent states of the particle just migrate from one region of the phase space to another
not vanishing and appearing again. We do not discuss processes of birth and destruc-
tion of particles here. The phase points’ motion pattern is schematically depicted in
Figure 4.1.

Figure 4.1: Scheme of migration of phase points in the phase space.

Each phase point of the phase space being in the region dp⃗d ⃗r at time twill havemoved
to some region by the moment in time t, as shown in Figure 4.1. Therefore, one can
write down the equality:

f ( ⃗r, p⃗, t)dp⃗d ⃗r = f ( ⃗r, p⃗, t)dp⃗d ⃗r. (4.4)

As already mentioned in Section 3.2.6, the phase flux preserves the phase volume
of the system according to the Liouville theorem, and therefore the equality dp⃗d ⃗r =
dp⃗d ⃗r takes place. Then an important result follows from the formula (4.4),

f ( ⃗r, p⃗, t) = f ( ⃗r, p⃗, t). (4.5)

In accordance with the result obtained above, the non-equilibrium distribution
function of the noninteracting electrons is an integral of motion and its total time-
derivative must be zero. If, nevertheless, there is an interaction between them, the
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total derivative is equal to not zero, but to a change in the distribution function due
to the interaction (collisions) with scatterers such as lattice defects or phonons. Thus,
we get

𝜕
𝜕t
f ( ⃗r, p⃗, t) + ̇⃗r�⃗� ⃗rf ( ⃗r, p⃗, t) + ̇p⃗�⃗�p⃗f ( ⃗r, p⃗, t) = −(

𝜕f
𝜕t
)
col
. (4.6)

The left-hand side of the expression (4.6) describes the change in the phase-space
distribution function under its evolution, while the right-hand side is for the change
in the distribution function due to collisions. In general, it follows from the material
presented in the previous chapter, the collision term on the right-hand side of (4.6) is
a nonlinear functional whose kernel contains the distribution function and depends
on a particular mechanism of interaction between electrons and subsystems in a
crystal. Equation (4.6) represents a kinetic equation for mobile charge carriers (elec-
trons or holes) in a quasi-classical approximation. Conditions of applicability of the
quasi-classical description of the electrons’ motion in the crystal will be considered
later.

As noted above, an attempt to solve strictly the kinetic equation for even the sim-
plest interaction potentials encounters serious computational difficulties. However, it
is well known that many peculiarities of kinetic phenomena in metals and semicon-
ductors can be apprehensible within the framework of the relaxation time approxima-
tion when the collision integral is approximated by the expression

(
𝜕f
𝜕t
)
col
=
f − f0
τp⃗
. (4.7)

Therefore, it would be proper to start an acquaintance with the theory of transport
phenomena in conducting crystals from this simple approximation.

For further simplification of the kinetic equation (4.6), it is worth emphasizing
that

𝜕f ( ⃗r, p⃗, t)
𝜕t
≃ ωf1( ⃗r, p⃗, t) ≪

f1( ⃗r, p⃗, t)
τp⃗
, (4.8)

f1( ⃗r, p⃗, t) = f ( ⃗r, p⃗, t) − f0(εp⃗).

In the expression (4.8) f1( ⃗r, p⃗, t) is a correction to the equilibrium distribution func-
tion, which emerges under the action of external thermodynamic forces. The param-
eter ωτp⃗ ≪ 1 up to an optical frequency range, and therefore in the kinetic equa-
tion (4.6) the time-derivative can be omitted. In other words, as far as the momentum
relaxation time is sufficient small (τp⃗ ≃ 10−13 s), the system of the electrons manages
to tune to an external field. Then the alternating electric field can be considered as
static at every moment in time. This means that the apparent dependence of the non-
equilibrium distribution function on the time in the kinetic equation (4.6) can be ne-
glected.
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Another essential simplification is due to the fact that the non-equilibrium distri-
bution function in locally-equilibrium state depends on coordinates only parametri-
cally via a thermodynamic parameters, such as the temperature and chemical poten-
tial:

�⃗� ⃗rf =
𝜕f
𝜕T
�⃗�T + 𝜕f
𝜕ζ
�⃗�ζ . (4.9)

If one restricts oneself to a linear approximation over the thermodynamic forces
�⃗�T , �⃗�ζ in the kinetic equation (4.6), assuming that non-equilibrium is weak (f0 ≫ f1),
then the non-equilibrium distribution function on the right-hand side of the expres-
sion (4.9) can be replaced by the equilibrium function f0(εp⃗). As a result of simple
calculations, one obtains

�⃗� ⃗rf = −
𝜕f0
𝜕εp⃗
[�⃗�ζ +

εp⃗ − ζ
T
�⃗�T]. (4.10)

In the presence of an external electric field E⃗ and an inducedmagnetic field H⃗ we have

̇p⃗ = eE⃗ + e
c
[v⃗ × H⃗]. (4.11)

Therefore, in the linear approximation in the thermodynamic forces (in the given case,
the magnetic field is not the thermodynamic force that gives rise to a deviation from
equilibrium) we arrive at

̇p⃗�⃗�p⃗f =
𝜕f0
𝜕εp⃗

ev⃗E⃗ + �⃗�p⃗f1
e
c
[v⃗ × H⃗]. (4.12)

In obtaining the result (4.12) we have taken into account that �⃗�p⃗f0 ∼ v⃗, and the con-
tribution

�⃗�p⃗f0
e
c
[v⃗ × H⃗] = 0,

since v⃗[v⃗ × H⃗] = 0.
Having substituted the results (4.7), (4.10) and (4.12) into thekinetic equation (4.6),

we get

−
𝜕f0
𝜕εp⃗

v⃗(eε⃗ −
εp⃗ − ζ
T
�⃗�T) = f1

τp⃗
+ �⃗�p⃗f1

e
c
[v⃗ × H⃗]. (4.13)

In the case when the magnetic field is zero, the expression (4.13) allows one to imme-
diately determine the correction to the distribution function f1 that is linear both in
the electrochemical potential gradient ε⃗ = −�⃗�(φ + 1/eζ ) (1.14) and in the temperature
gradient T:

f1 = τp⃗(−
𝜕f0
𝜕εp⃗
)v⃗(eε⃗ −

εp⃗ − ζ
T
�⃗�T). (4.14)
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If the magnetic field is nonzero, to solve the equation (4.13) the correction f1 needs to
be sought in the form

f1 = −
𝜕f0
𝜕εp⃗
(v⃗ ⃗χ(εp⃗)), (4.15)

where ⃗χ(εp⃗) is the unknown vector function depending only on energy.
Let us calculate the gradient of functions f1 in the momentum space. Using the

definition (4.15), one finds

�⃗�p⃗f1 = −
𝜕2f0
𝜕ε2p⃗

v⃗(v⃗ ⃗χ(εp⃗)) −
𝜕f0
𝜕εp⃗
�⃗�p⃗(v⃗ ⃗χ(εp⃗)),

�⃗�p⃗(v⃗ ⃗χ(εp⃗)) = vi�⃗�p⃗χi(εp⃗) + χi(εp⃗)�⃗�p⃗vi,

�⃗�p⃗χi(εp⃗) =
𝜕χi(εp⃗)
𝜕εp⃗

v⃗, χi(εp⃗)�⃗�p⃗vi =
⃗χ(εp⃗)
m
. (4.16)

Substituting the results obtained in the last summand on the right-hand side of the
expression (4.13) and considering that the terms proportional to the velocity vector v⃗
do not contribute, one may obtain a simple expression:

�⃗�p⃗f1
e
c
[v⃗ × H⃗] = − 𝜕f0

𝜕εp⃗
ω0v⃗[h⃗ × ⃗χ(εp⃗)]. (4.17)

In deriving the formula (4.17), we have used the definition of the Larmor precession
frequency ω0 of electrons in the magnetic field:

ω0 =
eH
mc
, (4.18)

and introduced the unit vector h⃗ oriented along the direction of the magnetic field
vector (H⃗ = h⃗H), H being the modulus of the magnetic field. Then we have performed
a rearrangement in the order of the vectors of the vector-scalar product.

Having substituted the results (4.15), (4.17) into the formula (4.13) and produced
necessary reductions, we obtain the vector equation for the function ⃗χ(εp⃗):

⃗χ(εp⃗) + [a⃗ × ⃗χ(εp⃗)] = b⃗; (4.19)

a⃗ = ω0τp⃗h⃗; b⃗ = τp⃗(eε⃗ −
εp⃗ − ζ
T
�⃗�T). (4.20)

To solve the equation (4.19), we scalarwise multiply it once by the vector a⃗ and a sec-
ond time vectorially by the vector a⃗. Simple algebraicmanipulations result in express-
ing the vector ⃗χ(εp⃗) through the vectors a⃗ and b⃗:

⃗χ(εp⃗) =
b⃗ + a⃗(a⃗b⃗) − [a⃗ × b⃗]

1 + a2
. (4.21)
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For the solution structure to be a more convenient we make use of the identity

b⃗ = 1
a2
{a⃗(a⃗b⃗) − [a⃗ × [a⃗ × b⃗]]} (4.22)

and substitute this expression for b⃗ in the solution of (4.21). As a result, the represen-
tation for the function ⃗χ(εp⃗) expressed via the a⃗ and b⃗ vectors appears as

⃗χ(εp⃗) =
1
a2
a⃗(a⃗b⃗) − [a⃗ × b⃗] + 1/a

2[a⃗ × [a⃗ × b⃗]]
1 + a2

. (4.23)

Finally, considering the explicit form of the a⃗ and b⃗ vectors and substituting their val-
ues of (4.20) into formula (4.23), the vector ⃗χ(εp⃗) is

⃗χ(εp⃗) = eτp⃗{(h⃗ε⃗)h⃗ −
ω0τp⃗[h⃗ × ε⃗] + [h⃗ × [h⃗ × ε⃗]]

1 + (ω0τp⃗)2
}

+ τp⃗
ζ − εp⃗
T
{(h⃗�⃗�T)h⃗ −

ω0τp⃗[h⃗ × �⃗�T] + [h⃗ × [h⃗ × �⃗�T]]
1 + (ω0τp⃗)2

}. (4.24)

Wewill use the formulas (4.14), (4.15) and (4.24) to determine fluxes of charge and heat
and also to calculate kinetic coefficients for describing both thermomagnetic and the
galvanomagnetic phenomena in conducting crystals.

4.1.2 Conditions of applicability for the quasi-classical description of electrons in
conducting crystals

The kinetic equation (4.6), or (4.13) written in the previous section is quasi-classical.
So far as, it is well known that electrons in a crystal are quantum objects and there
are a lot of convincing effects where electrons exhibit quantum nature (for example,
diffraction of electrons in crystals), there arises an issue concerning applicability of
such a description. In fact, the quasi-classical description imposes some restrictions
on the conditions required to conduct a physical experiment. However, one can show
that the quasi-classical description is perfectly justified in most realistic situations,
in which measurements of kinetic phenomena in solids are made. Below, basic con-
ditions of applicability for the quasi-classical kinetic equation are formulated to de-
scribe kinetic phenomena in conducting crystals in a static external magnetic field
and in the absence of it.

These conditions include three main restrictions. First, the electron wavelength λ
must be less than other characteristic spatial scales of the problem what allows con-
sidering an electron as a point object. In the absence of amagnetic field, themean free
path l is a natural parameter of the length dimension. Therefore, the quasi-classical
description is possible if the condition is met that

λ ≪ l.
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Second, the electron E energy uncertainty, which is a consequence of quantum-
mechanical uncertainty principle, must be small compared to the average electron
energy ε (the average energy ε ≃ kBT for nondegenerate case, ε ≃ ζ under conditions
of degeneration)

ℏ
τ0
≪ ε,

where τ0 is a characteristic time of interaction between an electron and other subsys-
tems of a crystal. Therefore, the time of the electron–scatterer interaction τ0 must be
sufficiently large. In this case, collisional broadening of energy levels is thought to be
negligible and temperature remains the only parameter that leads to chaotization of
motion of charge carriers. This condition provides a basis to describe the electron sys-
tem in terms of a distribution function. Moreover, the characteristic time of collisions
must be substantially less than a time between two successive collisions because each
of them is considered as an independent process and a non-equilibrium distribution
in the system is deemed to be established after each collision. Therefore, onemay take
the time between two successive collisions as an upper estimate of τ0 and assume that
τ0 ≈ τp⃗. This is evenmore justified, since the quantity τp yields easily an experimental
evaluation. In this case, the condition

ℏ
τ0
≈
ℏ
τp⃗
≪ ε

is reduced to the condition λ ≪ l. It is easily seen that the given condition holds, if the
previous condition will be written in the form

vℏ
ε
≪ vτp⃗,

multiplying both sides of the inequality by the average velocity v of the electrons. Then
the left-hand side of the inequality has the quantity ℏ/p ≈ λ as the right-hand side
contains the mean free path l = vτp⃗. Thus, in the absence of a magnetic field the first
and second restrictions lead to the same condition, λ ≪ l.

Another limitation occurs when an electron is in effective area of external force
fields. Then, if the electron is regarded as a point object, a change in its energy on the
length scale of the de Broglie wavelength should be much less than the average elec-
tron energy. In other words, if, for example, the electron moves in an external electric
field applied, then, in a nondegenerate case, the condition λeE ≪ ε ≃ kBT must be
met. This is not a very significant restriction, since simple estimations give the limit
E < 106 V/m, which is acceptable in most experimental situations.

Consider conditions of applicability for a kinetic equation to describe non-
equilibrium current carriers in a magnetic field. In this case, there are three char-
acteristic parameters with dimension length: lH , the so-called “magnetic length” or
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characteristic size of the electron Larmor orbit,

lH = (
ℏc
eH
)
1/2
,

the de Broglie wavelength of the electron,

λ = 2πℏ
√2mε
,

and the mean free path of the electron between two successive collisions l.
In these conditions, the first criterion of the quasi-classical description is to be the

following condition:

2πℏ
√2mε
≪ (
ℏc
eH
)
1/2
.

Putting that ε ≃ kBT, we arrive at the condition of applicability for the quasi-classical
description of the electrons in the magnetic field:

ℏω0 ≪ kBT . (4.25)

This condition of applicability is well known in the literature and it admits a simple
interpretation: in the quasi-classical description, the distance between the quantized
energy levels of electrons in amagnetic fieldmust be small, comparedwith the average
energy of a thermal electron motion.

Another condition for the applicability of the kinetic equation in a magnetic field
is also associated with the influence of the magnetic field on the orbital electron mo-
tion. The distance between the Landau levels in the magnetic field ℏω0 must be sub-
stantially less than collisional broadening of the level of ∼ ℏ/τp⃗ caused by electron
scattering by crystal lattice defects or phonons. This condition is usually written as

ω0τp⃗ ≪ 1. (4.26)

The condition (4.26) may have another interpretation: in order for the quasi-classical
description to be applicable, it is necessary that the electronmoving along a cyclotron
orbit between two scattering events should be able to cover only a small fraction of
period T of the circular trajectory:

T ≃ 2πlH
v
,

2π
T
= ω0,

lH
v
=

1
ω0
,

where v is for the electron velocity at the Fermi surface for the degenerate case. It is
worth noting that in the nondegenerate case, the electron velocity at the Fermi sur-
face should be substituted for the average thermal velocity. Since the momentum re-
laxation time is expressed as

τp⃗ ≃
l
v
,
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the condition ω0τp⃗ ≪ 1 can also be written in the form lH ≫ l. In other words, the
radius of the cyclotron orbit must be much greater that the electron free path.

The inequalities obtained allow one to distinguish three regions of change in the
external magnetic field: a weak field, a strong field and a quantizing magnetic field.

If the inequality lH ≫ l is fulfilled, which is equivalent to ω0τp⃗ ≪ 1, the magnetic
fields are called weak.

If the inequality lH ≪ l and, consequently ω0τp⃗ ≫ 1 holds true, magnetic fields
are called strong. In this case, themagnetic field essentially distorts the electron path.
However, if its influence can be ignored in calculating scattering probabilities, the ki-
netic equation is applicable to describing the transport phenomena in the magnetic
field even under such conditions as ω0τp⃗ ≫ 1. Naturally, the condition λ ≪ l should
remain valid.

With further increase of a magnetic field the condition (4.25) is infringed, and the
magnetic field becomes quantizing one. In this case, the spectrum of charge carriers
in a magnetic field is rearranged completely and an influence of the magnetic field
should be considered not only when an analysis of the orbital motion of electrons
runs, but in calculating the scattering probabilities for each elementary act of the col-
lision.

4.1.3 How to determine charge and heat fluxes and calculate kinetic coefficients
when H =0

Summarizing the simplest expression for the flux of charged particles ⃗J = env⃗, where
n is the number of particles with velocity v⃗, we get the expressions for the charge and
heat flux densities:

⃗J =∑
σ

e
(2πℏ)3
∫ dp⃗f (p⃗)v⃗, (4.27)

⃗JQ =∑
σ

1
(2πℏ)3
∫ dp⃗(εp⃗ − ζ )f (p⃗)v⃗. (4.28)

The summation over the spin quantumnumber in the formulas (4.27), and (4.28) gives
the numerical multiplier equal to two, because the spin-splitting of levels is not con-
sidered. In writing the expression (4.28) we have used the definition (1.12).

From physical reasoning it is easy to see that only non-equilibrium correction to
the distribution function f1(p⃗) makes a non-zero contribution in the formulas (4.27)
and (4.28). The correction is defined either by the expression (4.14) in the absence of
a magnetic field or by the expressions (4.15) and (4.24) in the presence of an external
magnetic field.

Consider first transport phenomena in the absence of the external magnetic field.
In this case, the kinetic coefficients are scalar quantities. Then, substituting the ex-
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pression (4.14) into the formulas determining the charge and heat fluxes, we have

⃗J = e2K0ε⃗ −
e
T
K1�⃗�T , (4.29)

⃗JQ = eK1ε⃗ −
1
T
K2�⃗�T , (4.30)

where the integrals Kl, l = 0, 1, 2, are defined by the relation

Kl =
2
(2πℏ)3

1
3
∫ dp⃗(− 𝜕f0

𝜕εp⃗
)τp⃗v

2(εp⃗ − ζ )
l. (4.31)

While deriving the formulas (4.29)–(4.31) we have taken into account the fact that the
following representation holds for the arbitrary function Φ(εp⃗) of the modulus of the
electron quasi-momentum:

∫ dp⃗Φ(εp⃗)vivj =
1
3
∫ dp⃗Φ(εp⃗)v

2δij,

where δij is the Kronecker symbol; i, j = x, y, z.
Having compared the formulas (4.29), (4.30) with the corresponding phenomeno-

logical results of (1.15), (1.35) and (1.36) we can express the kinetic coefficients, which
describe thermal and electrical conductivity, aswell as thermoelectric phenomena via
the above-introduced integrals Kl:

ρ = 1
e2K0
, α = K1

eTK0
,

κ̃ =
K2K0 − K2

1
TK0
. (4.32)

Thus, to calculate these kinetic coefficients integrals ofKl (4.31) are necessary to calcu-
late too. Passing on to the integration over the energy in formula (4.31), after perform-
ing the integration over the polar and azimuthal angles in the spherical coordinate
system, we have

Kl =
2(2m)1/2

3π2ℏ3

∞

∫
0

dεp⃗(−
𝜕f0
𝜕εp⃗
)τp⃗ε

3/2
p⃗ (εp⃗ − ζ )

l. (4.33)

The energy integrals containing the Fermi function or of its derivatives can be reduced
to the so-called the Fermi integrals Fp(ζ /kBT) for index p:

Fp(
ζ

kBT
) =
∞

∫
0

xp

exp(x − ζ /kBT) + 1
dx. (4.34)

These integrals depend on the ζ /kBT parameter and various asymptotic representa-
tions [8] are well known for them. General expressions which can be obtained at the
same time prove to be quite cumbersome, and therefore it would be proper to consider
only two extreme cases whose simple estimates can be easily carried out.
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The case of strong degeneracy
In this case, the conditions ζ > 0, ζ /kBT ≫ 1 are fulfilled and the derivative over the
energy of the distribution function has a sharp peak at εp⃗ = ζ . The dependence of
the Fermi–Dirac function and its the first derivative on a dimensionless parameter x
is represented in Figure 4.2. We have

f0(x) =
1

ex + 1
, x =

εp⃗ − ζ
kBT
.

As can be seen from Figure 4.2(b), the derivative of the distribution function differs
from zero only at a small energy interval εp⃗ ≃ kBT. This peculiarity of the derivative
is widely used for constructing approximate formulas to calculate integrals contain-
ing the product of the smooth function Φ(εp⃗) and the derivative of the Fermi–Dirac
distribution function over energy εp⃗ as integrand.

Figure 4.2: Graphs of the Fermi–Dirac distribution function and its derivative: (a) the Fermi–Dirac
distribution function f0(x) depending on the argument x = (εp⃗ − ζ)/kBT ; (b) the dependence of the
derivative (− 𝜕f0(x)𝜕x ) of the distribution function on the same argument.

The simplest approximation is to replace the derivative of the distribution function by
the Dirac delta-function:

−
𝜕f0(εp⃗ − ζ )
𝜕εp⃗

≃ δ(εp⃗ − ζ ).

In general, there takes place a build-up of the expansion of the integrand over the
small kBT/ζ parameter [26]. As rule, it suffices to keep the first two terms in the expan-
sion:

∞

∫
0

dεp⃗Φ(εp⃗)(−
𝜕f0
𝜕εp⃗
) ≃ Φ(ζ ) + π

2

6
(kBT)

2 𝜕
2Φ(εp⃗)
𝜕ε2p⃗

εp⃗=ζ
+ ⋅ ⋅ ⋅ . (4.35)
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Performing simple calculationswith thehelp of formulas (4.33) and (4.35) andkeeping
the first nonvanishing terms over the small kBT/ζ parameter, we get

K0 =
n
m
τp⃗(ζ ), K2 =

π2

3
(kBT)

2K0,

K1 =
π2

3
n
m
(kBT)2

ζ
[ζ
𝜕τp⃗(ζ )
𝜕ζ
+
3
2
τp⃗(ζ )]. (4.36)

Thenumerical value and type of functional dependence ofmomentum relaxation time
on energy τp⃗(εp⃗) is necessary for practical application of the formulas (4.36). Usually
this dependence is deemed to be power-like:

τp⃗(εp⃗) = τ0(εp⃗/kBT)
r ,

where r is for the scattering coefficient, whose value depends on a particular mech-
anism for the relaxation of the electron momentum, τ0 is for the a size factor, which
depends on the scattering mechanism and temperature. The particular values of τ0
and r for different scattering mechanisms can be found in the monographs [8, 26, 27].

The expressions for the kinetic coefficients in the limit of high degeneracy can
be easily obtained, the expressions (4.36) for the integrals of Kl being substituted
in (4.32):

σ = 1
ρ
=
e2n
m

τp⃗(ζ ), (4.37)

α = π
2

3
kB
e
kBT
ζ
(3/2 + r), (4.38)

κ̃ ≃ κ = π
2

3
k2BT

n
m
τp⃗(ζ ). (4.39)

In deriving the last relation we have taken into account that K0K2 ≫ K2
1 .

The results obtained (4.37)–(4.39) are qualitatively correct todescribe thebehavior
of the electrical conductivity σ, the differential thermopower α and thermal conductiv-
ity κ̃ in normalmetals and highly-degenerate semiconductors.We do not give here val-
ues of the thermoelectric coefficients, characterizing the phenomenon of Peltier and
Thomson, because, as shown in Chapter 1, they are expressed in the isotropic case via
the coefficient of the thermoelectric power. We estimate the order of magnitude of the
differential thermopower α, using formula (4.38)

α ≃ π
2

3
kB
e
kBT
ζ
≃ 10−8T (V/K), (4.40)

where the temperature T is measured in degrees of the Kelvin scale. This evaluation
in the order of the magnitude coincides with the known experimental data for the
thermopower of most metals (α = 3 ÷ 10 µV/K). Significant deviations from the for-
mula (4.38) can occur, for example, in the presence ofmagnetic impurities (the Kondo
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effect). We will not dwell on this interesting question and refer the reader to special
literature [28, 30].

Another important result of the theory in question is to implement the Wiede-
mann–Franz law for the σ and κ̃ coefficients:

κ̃ = σTL, L = π
2

3
k2B
e2
,

This result is well confirmed by experiment at sufficiently high temperatures (T ≃
300K).

Problem 4.1. Explainwith quantumstatistics howan external electric field and a tem-
perature gradient applied to a conductor induce an electric current in it using the ex-
pression (4.14) for the correction to the distribution function.

Solution. Let there be an external electric field E⃗ only. Before switching on the ex-
ternal electric field the equilibrium distribution function was spherically symmetric
and depended only on momentum modulus p⃗ = ℏk⃗. Once the external electric field
emerges some direction is distinguished and the distribution function becomes non-
spherically symmetric. In a stationary non-equilibrium state, the electronmomentum
has an additive componentp⃗ = eE⃗τp⃗ appearing under the action of the external elec-
tric field. In a degenerate case, as seen in Figure 4.2(b) only a small electron layer with
width of the order of kBT near the Fermi surface participates in electromigration. The
rest electrons cannot be accelerated by the external electric field because neighbor-
ing energy states are occupied. Therefore, only those electrons which are lying on the
Fermi surface absorb the additive component to the momentum.

For simplicity, consider thedirection that coincideswith the external electric field.
The electrons moving along this direction are slowed down by the field (an electron
is a negatively charged particle) and on the Fermi surface have a smaller speed than
the electrons moving in the opposite direction. This situation is schematically shown
in Figure 4.3(a).

Thus, upon switching on the electric field there arises a group of electrons near
the Fermi surface. These electrons move against the field and have an additional cor-
rection to velocityv⃗ = |e|/mE⃗τp⃗(ζ ). Another groupof electronsmoving along the field
have less speed which leads to directional motion of electrons upon switching on the
electric field.

In other words, the switching on of a constant electric field leads to a shift of the
Fermi surface in the momentum space by the magnitude p⃗ = eE⃗τp⃗. Therefore, the
distortion of the distribution function can be found through the equilibrium distribu-
tion in a coordinate system shifted by this magnitude:

f0(εp⃗−eE⃗τp⃗ ) = f0(
(p⃗ − eE⃗τp⃗)2

2m
) ≃ f0(

p2

2m
− ev⃗E⃗τp⃗) = f0 − e

𝜕f0
𝜕εp⃗

v⃗E⃗τp⃗.
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Figure 4.3: Appearance of the distribution function asymmetry in present of an external field and
temperature gradient: (a) the Fermi level shift in the presence of an electric field in magnitude of
p⃗ = |e| ⃗Eτp⃗(ζ); (b) a change in shape of the distribution function near the Fermi level in the presence
of a temperature gradient.

It is the last expression in this formula that is the correction to the distribution func-
tion in an electric field. Although, as already noted, the concept of a shift of the Fermi
surface in momentum space is not completely correct, it allows one to deduce an ac-
curate expression for the correction to the distribution function in the electric field.

Now consider the influence of a temperature gradient and again analyze the mo-
tion of electrons only along one direction, which coincides with the orientation of the
temperature gradient. Let us take two cross-sections of the specimen with a distance
between them less than themean free path. Let T1 and T2 be temperatures correspond-
ing to the “hot” and “cold” cross-sections, respectively, i. e. T1 > T2. Consequently,
electrons moving through the given cross-sections of the conductor will have appro-
priate thermal equilibrium distributions. Both distributions are schematically shown
in Figure 4.3(b). As far as electrons located only in a narrow energy layer with width of
a few kBT make a contribution to the transfer, it is important to observe changes in the
velocity distributions. Into the “hot” cross-section, the number of electrons having a
greatermomentum than the Fermimomentum pF increases comparedwith their num-
ber under equilibrium conditions. On the contrary, the number of electrons into the
“cold” cross-section decreases. It is just this change in the shape of the electron distri-
bution that leads to the appearance of an electric currentwhen a conductor is exposed
to a temperature gradient. The above reasoning yields also a quantitative evaluation
of kinetic coefficients to describe thermoelectric effects.

Nondegenerate electron gas
In the other limiting case of anondegenerate electrongas obeying theMaxwell –Boltz-
mann statistics, the conditions ζ < 0, |ζ |/kBT ≫ 1 are fulfilled and the Fermi–Dirac
function is approximated by the expression

f0(εp⃗) = exp(−
εp⃗ − ζ
kBT
). (4.41)

Consider the computation process to find the integrals of Kl in this limit. Taking
into account the expression (4.41) and using the expression (4.33) for the integrals Kl,
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we get

K0 =
2(2m)1/2eζ /kBT (kBT)3/2

3π2ℏ3

∞

∫
0

dxe−xx3/2τp⃗(x)

=
4n

3π1/2m

∞

∫
0

dxe−xx3/2τp⃗(x) =
n
m
⟨τp⃗(x)⟩, (4.42)

⟨τp⃗(x)⟩ =
4

3√π

∞

∫
0

dxe−xx3/2τp⃗(x); (4.43)

n = (2mkBT)
3/2

4π3/2ℏ3
eζ /kBT . (4.44)

The integrals K1 and K2 are calculated quite analogously. Summarizing the results, we
have

K0 =
n
m
⟨τp⃗(x)⟩,

K1 =
n
m
kBT⟨τp⃗(x)(x − ζ /kBT)⟩,

K2 =
n
m
(kBT)

2⟨τp⃗(x)(x − ζ /kBT)
2⟩. (4.45)

Now, it is necessary to find expressions for the kinetic coefficientswhich are of interest
to us. For this purpose, the values of the integrals Kl should be substituted into the
definitions (4.32). As a result, one obtains

ρ−1 = σ = e
2n
m
⟨τp⃗(x)⟩, (4.46)

α = kB
e
(
⟨τp⃗(x)x⟩
⟨τp⃗(x)⟩

−
ζ

kBT
), (4.47)

κ̃ = n
m
k2BT(⟨τp⃗(x)x

2⟩ −
⟨τp⃗(x)x⟩2

⟨τp⃗(x)⟩
). (4.48)

Now consider the averages of ⟨τp⃗(x)xk⟩, involved in the expressions (4.46)–(4.48) for
the kinetic coefficients. Taking into account the definition (4.43) and the commonly
used approximation τp⃗(x) = τ0xr we can express the averages through the ratio of
gamma functions:

⟨τp⃗(x)x
k⟩ =

4
3√π

∞

∫
0

dxe−xτ0x
r+k+3/2 = τ0

Γ(r + k + 5/2)
Γ(5/2)

, (4.49)

where Γ(p) denotes the gamma function defined in a standard manner:

Γ(p) =
∞

∫
0

dxe−xxp−1, Γ(5/2) = 3
√π
4
.
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Plugging the expression (4.49) into the expressions (4.46)–(4.48) for finding the kinetic
coefficients for the nondegenerate case, we have

ρ−1 = σ = e
2n
m

τ0
Γ(5/2 + r)
Γ(5/2)

, (4.50)

α = kB
e
[
Γ(5/2 + r + 1)
Γ(5/2 + r)

−
ζ

kBT
] =

kB
e
[
5
2
+ r − ζ

kBT
], (4.51)

κ̃ = n
m
k2BTτ0[

Γ(5/2 + r + 2)
Γ(5/2)

−
Γ(5/2 + r + 1)2

Γ(5/2 + r)Γ(5/2)
]

=
n
m
k2BTτ0

Γ(5/2 + r)
Γ(5/2)

(5/2 + r). (4.52)

In deducing the formulas (4.51), (4.52) the known relation satisfiedby the gamma func-
tion Γ(p + 1) = pΓ(p) has been used.

Upon comparing (4.50) and (4.52), it is clear that the electrical conductivity and
the electronic component of thermal conductivity, as in the case of strong degeneracy,
are related to each other by the Wiedemann–Franz relation:

κ̃ = σTL, L =
k2B
e2
(5/2 + r).

It is of interest to compare magnitude of the differential thermopower coefficient for
the cases of a strongly degenerate and nondegenerate gas. As to the strongly degen-
erate electron gas, comparing the formula (4.38) with (4.51), it turns out that the ex-
pression for the differential thermopower coefficient contains the additional small pa-
rameter kBT/ζ ≃ 10−2. For this reason, the thermoelectric power of typical metals is
significantly less than that of typical semiconductors.

Note also that the electron’s charge e appearing in the formula (4.51) is negative
and therefore the coefficient α is negative too provided that charge carriers are elec-
trons. In the case of a hole conductivity, the expression (4.51) for the differential ther-
mopower coefficient remains true afterward if the value e is substituted for |e| and the
chemical potential of electrons ζ is replaced by the chemical potential of holes:

ζp = −Eg − ζ . (4.53)

Thus, if charge carriers are holes, then the thermopower coefficient is positive, what
can be used in an experiment to determine a type of the charge carriers in the crystal.

We have just given expressions for the kinetic coefficients for both limits concern-
ing strongly degenerate and nondegenerate statistics. In principle, there are formulas
to evaluate the Fermi integrals (4.34) and the error in estimate does not exceed 1.2%
for actual values of the index p at all values of x = ζ /kBT [29].

Problem 4.2. Deduce a formula for calculating the differential thermal power coeffi-
cient in the case of mixed electron-hole conductivity.
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Solution. Consider the simplest case of a nondegenerate eigen conductor with va-
lence band that is nearly filled by electrons. If a width of the band gap Eg is not very
large, due to thermal excitation of valence electrons, conduction electrons may be ex-
cited into the conduction band. Moreover, in the valence band there appear empty,
unfilled states, which are called holes. The hole concept is convenient and greatly sim-
plifies a description of transport phenomena where the valence band electrons take
part. Consider first equilibrium statistical properties of an electron-hole system.

Electrons in conduction and valence bands are an aggregation of particles as a
whole and are characterized by the same thermodynamic potential. We choose the
lowest conduction band edge as an origin point of the energy scale for electron states
in the valence and conduction bands. Bearing in mind a parabolic dispersion law in
the conduction and valence bands, we have

εc =
p2

2mc
, εv = −Eg −

p2

2mv
, (4.54)

where mc and mv is for the effective mass of electrons in the conduction and valence
bands, respectively.

The chemical potential of electrons can be determined by using the law of conser-
vation of particles: the number of electrons n in the conduction band must coincide
with the number of empty places p (holes) in the valence band. As a result in equilib-
rium we obtain the obvious relation for determining the chemical potential:

∑
σ, p⃗
[exp(εc − ζ

kBT
) + 1]

−1
= ∑

σ, p⃗
{1 − [exp(εv − ζ

kBT
) + 1]

−1
}. (4.55)

We transform the brace on the right-hand side of the expression (4.55)

1 − [exp(εv − ζ
kBT
) + 1]

−1
= [exp(−εv + ζ

kBT
) + 1]

−1
= [exp(

εp − ζp
kBT
) + 1]

−1
.

We have used the definition εv (4.54) for getting the last result and introduced the εp
and ζp notations for the energy and for the hole chemical potential, respectively:

εp =
p2

2mv
, ζp = −Eg − ζ .

Passing on from the summation over the quasi-momentum in the expression (4.55)
to the integration over the quasi-momentum in the spherical coordinate system, and
then going over to the integration over the x = εc/kBT and x = εp/kBT dimensionless
variables for electrons and for holes, respectively, one finds

n = (2mckBT)3/2

2π2ℏ3
F1/2(

ζ
kBT
), p = (2mvkBT)3/2

2π2ℏ3
F1/2(
−Eg − ζ
kBT
), (4.56)
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F1/2(
ζ

kBT
) =
{
{
{

∫ζ /kBT0 x1/2 dx = 2
3 (

ζ
kBT
)3/2;

∫∞0 eζ /kBTe−xx1/2 dx = eζ /kBTΓ(3/2).
(4.57)

Using the formulas (4.55)–(4.57), it is easy to find an expression for the chemical po-
tential in an eigen semiconductor:

ζ = −
Eg
2
+
3
4
ln(mv

mc
). (4.58)

Similarly, using the hole concept, an expression to compute equilibrium thermody-
namic potentials in the presence of donor and acceptor impurity centers in semicon-
ductors may be also derived.

Now consider how to calculate a contribution of valence electrons to the electron
transfer using the hole concept. Applying the formula (4.27), we write down expres-
sions for the contribution of the valence band electrons to an electric current:

⃗J = e∑
σ, p⃗

v⃗f(εv − ζ
kBT
) = |e|∑

σ, p⃗
v⃗{1 − f(εv − ζ

kBT
)}. (4.59)

In writing the second equality in the expression (4.59) we have taken into account the
fact that the contribution to the electric current is equal to zerowhen the valence band
is completely filled. The expression in the braces in the last formula represents a hole
distribution function,

{1 − f(εv − ζ
kBT
)} = f(

εp − ζp
kBT
).

Therefore, the contributionof the valence electrons to the electric current canbe repre-
sented as a current of positively charged quasi-particles having a positive mass (a sec-
ond derivative over momentum of the quasi-particle energy εp = p2/2m) is positive:

⃗J = |e|∑
σ, p⃗

v⃗f(
εp − ζp
kBT
). (4.60)

Under external disturbances such as an external electric field and a temperature gra-
dient the equilibrium hole distribution function suffers from distortions that can be
calculated in the sameway as distortions of the electron distribution function in Prob-
lem 4.1. As to the holes, following the reasoning mentioned above in Problem 4.1, we
can see that the hole drift velocity is directed along the electric field, and the holes
will contribute to the current flow, causing it to increase.

The distortions of the hole distribution function and electron distribution func-
tion are exactly identical. Therefore, under the influence of a temperature gradient,
holes drift in the same direction as the electron flow. Summarizing these results, we
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canwrite down aphenomenological equation governing charge flow in a semiconduc-
tor with the mixed-type conductivity in the presence of an electric field and a temper-
ature gradient:

⃗J = (σn + σp)ε⃗ − (βn − βp)�⃗�T , (4.61)

which is a generalization of the first equation of the set of the phenomenological trans-
port equations (1.15) in the case of a mixed-type conductivity; σn, σp and βn, βp being
the electrical conductivity coefficients and thermoelectric coefficients of the electron
and hole subsystems, respectively. Now, using the relations (1.35) and (1.36) we get an
expression for the field E⃗ inside a homogeneous conductor:

E⃗ = 1
σn + σp

⃗J + [ βn
σn + σp

−
βp

σn + σp
]�⃗�T . (4.62)

Introducing the coefficients of the differential thermopower αn = σ−1n βn and αp = σ−1p βp
for electrons and holes, respectively and considering the fact that the thermopower
differential coefficient for electrons is determined by the formula (4.51) (a similar for-
mula should be written for holes), we get

α = kB
eσ
[σn(5/2 + r −

ζ
kBT
) − σp(5/2 + r

 −
ζp
kBT
)]. (4.63)

In this formula σ = σn + σp represents the complete electrical conductivity, r being
the index of the scattering for the holes.

It should not be supposed that this simple theory of kinetic coefficients based on
the parabolic dispersion law for electrons and holes is well consistent with experi-
mental data. For example, magnitude of the thermopower for the typical metals such
as lithium, copper, silver, gold coincides with magnitude of a simple evaluation but
has a positive sign (it is typical for hole material) over a very wide temperature range
up to their melting point. There have been quite a lot of attempts to account for this
anomaly. The obvious idea that comes to mind is to explain the effect by the influ-
ence both of dispersion law non-parabolicity and of the complex Fermi surface shape.
However, we are forced to discard it immediately because the sign of the Hall effect in
these materials is typical for charge carriers such as electrons.

The effect can be accounted for by an anomalously sharp energy-dependence of
the electronmomentum relaxation time [30]. Indeed, it follows from the formula (4.33)
that the integral sign is determined by what kind of electrons will make a greater con-
tribution to the integral. Of course, one should keep in mind that l needs to be put
equal to unity. The integral can be divided into two pieces, consequently, the con-
tribution of the electrons may be regarded in terms of charge carriers possessing by
energy less and greater than ζ . The electrons with the energy εp⃗ < ζ will give a neg-
ative contribution, and the electrons with the kinetic energy εp⃗ > ζ a positive one. If
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the contribution of the electrons with the kinetic energy is suppressed due to a sharp
decrease in the relaxation time, then a resultant value of the integral K1 will be nega-
tive, and the thermoelectric power will have a positive sign. It is curious to note that
the positive sign of the thermopower for electrons means that they will diffuse along
the temperature gradient towards higher temperatures.

4.1.4 Scattering of electrons by lattice vibrations

A relaxation time approximation gives good enough results in describing thermoelec-
tric phenomena in conducting crystals. But, firstly, this approximation itself needs to
be substantiated, and secondly, there are a number of effects that require going be-
yond the relaxation time approximation. The phenomenon of electron–phonon drag
may serve as an example. In the case, the value of the differential thermopower coeffi-
cient is changed strongly at low temperatures. Another argument in favor of amore de-
tailed study of electron scattering processes in the crystal is to estimate independently
the relaxation time τ from first principles and to calculate a temperature dependence
of the relaxation time.

In order to create a theory that allows posed problems to be solved, it is neces-
sary to derive an explicit form of the electron–scatterer interaction Hamiltonian, to
write down the corresponding collision integral, and then to resolve the kinetic equa-
tion and determine the thermoelectric coefficients. There are many different mech-
anisms of the electron–scatterer interaction, and even a brief review would take up
too much space. More detailed information can be found in monographs [26, 27, 31].
Here, we consider only two types of interaction: interaction of electrons with longi-
tudinal acoustic vibrations and interaction of electrons with charged impurity cen-
ters.

For the electron–phonon interaction Hamiltonian to be derived, it is necessary
to write an expression for a shift of atoms of a crystal lattice when small (obeying a
harmonic law) thermal vibrations of the atoms take place. In the simplest case of a
one-atom lattice, the kinetic energy of the vibrations can be written as

Ek =
1
2
∑
i
M ̇u⃗

2
i , (4.64)

where M is the atomic mass and u⃗i the displacement vector of the i-th atom from the
equilibrium position.

One can introduce a smooth function of the displacement of an atom u⃗( ⃗r) at the
point ⃗r for the sufficiently long-wavelength vibrations and write down the kinetic en-
ergy in the continual form,

Ek =
ρ
2
∫ ̇u⃗2( ⃗r) d ⃗r, (4.65)

where ρ is for the density of the crystal.
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The integration is being performed over total crystal volume. For the transition
from the classical description of atomic vibrations of the crystal lattice to quantum
one, it suffices to introduce quantization rules for coordinates and momenta:

M[u̇αi , u
β
j ] = −iℏδijδαβ. (4.66)

This expression in the continual form can be summarized as follows:

ρ[u̇α( ⃗r), uβ( ⃗r)] = −iℏδαβδ( ⃗r − ⃗r
). (4.67)

It is easy to verify that such a representation is faithful: it is necessary to sum up both
sides of (4.66) over all atoms as both sides of (4.67) to integrate over the whole vol-
ume. Then the right-hand sides of the expressions obtained will be equal to −iℏδαβ,
and the left-hand sides will present the same quantity—the commutator of the total
momentum of the lattice and of the displacement in one of points of the crystal.

Consider the longitudinal vibrations and expand the displacement operator u⃗( ⃗r)
in a Fourier series (in fact, the shift can be represented as a superposition of normal
coordinates). As far as the displacements u⃗( ⃗r) are real quantities, then this expansion
should be written in such a manner that the operator u⃗( ⃗r)would possess the property
of being self-adjoint:

u( ⃗r) = 1
V 1/2 ∑

q⃗
{uq⃗e

iq⃗ ⃗r−iΩq⃗t + u+q⃗e
−iq⃗ ⃗r+iΩq⃗t}. (4.68)

where q⃗ is the wave vector, Ωq⃗ the frequency of normal excitations.
After inserting the expansion (4.68) in the quantization condition (4.67), we arrive

at the commutation relations for the amplitudes uq⃗ and u+q⃗ of normal vibrations:

[uq⃗, u
+
q⃗] =
ℏ

2ρΩq⃗
δq⃗q⃗ , [uq⃗, uq⃗ ] = 0, [u

+
q⃗ , u
+
q⃗] = 0. (4.69)

We introduce the creation and annihilation operators of phonons with the wave vec-
tor q⃗:

b+q⃗ = (
2ρΩq⃗

ℏ
)
1/2
u+q⃗ , bq⃗ = (

2ρΩq⃗

ℏ
)
1/2
uq⃗.

Obviously, these operators satisfy the simple commutation relations:

[bq⃗, bq⃗ ] = 0, [b
+
q⃗ , b
+
q⃗] = 0, [bq⃗, b

+
q⃗] = δq⃗q⃗ . (4.70)

Performing the commutation relations (4.70) requires fulfilling the following condi-
tions in the second-quantization representation of the wave function:

b+q⃗ |Nq⃗⟩ = √Nq⃗ + 1|Nq⃗ + 1⟩, bq⃗|Nq⃗⟩ = √Nq⃗|Nq⃗ − 1⟩. (4.71)
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Using the creation and annihilation operators of phonons, we can write down an ex-
pression for the shift operator u( ⃗r):

u( ⃗r) =∑
q⃗
(
ℏ

2ρΩq⃗
)
1/2
{bq⃗(t)e

iq⃗ ⃗r + b+q⃗ (t)e
−iq⃗ ⃗r},

bq⃗(t) = bq⃗e
−iΩq⃗t , b+q⃗ (t) = b

+
q⃗e

iΩq⃗t . (4.72)

The expression for the kinetic energy (4.65) allows also for writing down the Hamil-
tonian for the phonon system in the second quantization representation. It is worth
recalling that the average kinetic energy and average potential energy are equal for
harmonic oscillations. Therefore, the total energy can be computed by doubling the
kinetic energy. Substituting the expansion (4.68) into the expression (4.65) and aver-
aging it over time, we obtain for the average kinetic energy:

Ek =
ρ
2
∑
q⃗
(uq⃗u
+
q⃗ + u
+
q⃗uq⃗)Ω

2
q⃗. (4.73)

Replacing the operators uq⃗, u+q⃗ in this expression by the bq⃗ and b
+
q⃗ , taking into account

the commutation relations (4.70) we find the formula for the phonon Hamiltonian:

Hp =∑
q⃗
ℏΩq⃗(b

+
q⃗bq⃗ +

1
2
). (4.74)

The expressions (4.70), (4.72) and (4.74) have been derived as a result of simple qual-
itative considerations and do not require a strict argument. However, as shown by
calculations, a contribution of all three branches of the oscillations of the acoustic
phonons and emergence of new optical branches can simply be taken into account,
using the above results.

Now we go over to deriving the electron–phonon interaction Hamiltonian. As al-
ready mentioned, there are multiple mechanisms causing scattering of electrons by
lattice vibrations. Consider the simplest mechanism that consists in the fact that the
oscillations of atoms of the crystal lattice lead to a local deformation of the crystal,
thereby changing the electron energy.

All properties of the strained crystal are defined by components of the symmetric
strain tensor:

ϵij =
1
2
(
𝜕ui
𝜕rj
+
𝜕uj
𝜕ri
).

Therefore, the energy of the electrons in the strained crystal is also a function of com-
ponents of this tensor ε(p⃗, ϵij). Expanding the electron energy in such a crystal in a
series over the strain tensor components yields

ε(p⃗, ϵij) = ε(p⃗) + Eijϵij.
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In the isotropic case or in crystals with cubic symmetry, the strain tensor can be rep-
resented as ϵij = div u⃗δij, and therefore a correction to the electron energy, which has
meaning of the interactionHamiltonian of the electronwith lattice vibrationsHep, can
be written down as

Hep = E0 div u⃗.

The quantity E0 is usually called the strain potential. Substituting the displacement
u⃗( ⃗r) (4.72) in the above expression, we get an expression for the interaction Hamilto-
nian between the electron located at some point ⃗r of a space, and a phonon field:

Hep = i∑
q⃗
(
E20ℏ
2ρΩq⃗
)
1/2
(e⃗q⃗q⃗){bq⃗e

iq⃗ ⃗r − b+q⃗e
−iq⃗ ⃗r}, (4.75)

where e⃗q⃗ is the unit polarization vector of the sound wave.
One can encounter another definition for Hamiltonian Hep in the literature:

Hep =∑
q⃗λ
Cq⃗λ{bq⃗λe

iq⃗ ⃗r + b+q⃗λe
−iq⃗ ⃗r}, (4.76)

where Cq⃗λ is the amplitude of the electron–phonon interaction,

|Cq⃗λ|
2 =

E20ℏ
2ρs

qt ,

s is the sound speed, Ωq⃗λ = sq, λ is the index of the polarization sound wave.
The power index t varies depending on the mechanism of the electron–phonon

interaction (t = 1 for scattering by acoustic phonons in the framework of the potential
strain method). The Hamiltonian (4.76) in choosing the appropriate constant Cq⃗λ and
the exponent t can be used for othermechanisms of the electron–phonon interaction,
which are different from the scattering by longitudinal acoustic vibrations.

4.1.5 The Hamiltonian of interaction between electrons and charged impurity
centers

Let n be the average concentration of electrons in the crystal, n be their concentration
in the vicinity of the impurity center. If one denotes φ as the total potential of the
electrostatic field of an ion located at the origin and the negative charge of electrons
−|e|(n − n), then φmust satisfy the Poisson equation:

2φ = 4π|e|
ϵ
(n − n), (4.77)

where ϵ is the high-frequency dielectric permittivity.
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In this expression, the electron density n is determined by the formula (4.56), and
for the quantity n an analogous expression can be written, having substituted the
chemical potential ζ → ζ − eφ. Indeed, the electron energy in the resultant electro-
static potential is εp⃗ + eφ, the electron distribution function being dependent on the
argument εp⃗ + eφ − ζ . So, the expression for the concentration of the electrons in the
vicinity of the impurity center appears as

n = (2mkBT)
3/2

2π2ℏ3
F1/2(

ζ − eφ
kBT
) = n + (2mkBT)

3/2

2π2ℏ3
F1/2(

ζ
kBT
)
|e|φ
kBT
.

Substituting the last result in the Poisson equation, one obtains a simple equation to
determine the potential φ:

2φ = q20φ, (4.78)

q20 =
2e2(2m)3/2(kBT)1/2

ϵπℏ3
F1/2(

ζ
kBT
), (4.79)

where the quantity q0 has meaning of the inverse screening radius of the electrostatic
potential of an ion.

The solution of equation (4.78) has a spherical symmetry and satisfies the condi-
tion

lim
r→∞

φ(r) = 0,

it appears as

φ = |e|
ϵr
e−q0r .

The interaction energy Eei between the electron located at the point with the coordi-
nate ⃗r and the singly ionized impurity center can be written as follows:

Eei = −
e2

ϵ ⃗r
e−q0 ⃗r = −∑

q⃗
Gq⃗e

iq⃗ ⃗r ,

where Gq⃗ is the Fourier transform of the screened Coulomb potential of a point charge
(multiplied by an electron charge):

Gq⃗ =
4πe2

ϵ(q2 + q20)
. (4.80)

In fact, the crystal has Ni impurities with the coordinates R⃗j, and N electrons with co-
ordinates ⃗ri. If the interaction of the electronswith impurity atoms exhibits an additive
nature, it suffices to sumup the expression of Eei over all impurity centers and all elec-
trons for obtaining the interaction Hamiltonian of the interaction between them:

Hei = −
N
∑
i
∑
q⃗
Gq⃗ρ−q⃗e

iq⃗ ⃗ri ; ρq⃗ =
Ni

∑
j=1

eiq⃗R⃗j . (4.81)
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For practical applications it is more convenient to write down the Hamiltonian of
electron–impurity scattering in the second quantization representation, assuming
that electron states are described by a wave function |ν, σ⟩, where ν, σ are quantum
numbers to define orbital and spin states, respectively. In this case, using the transi-
tion rule to the second quantization representation for the operator A of the additive
type [4]:

A =∑
i
Ai = ∑

νσ ,νσ
⟨νσ|A|νσ⟩a+νσaνσ ,

we get the expression for the Hamiltonian of the electron–impurity scattering:

Hei = −∑
q⃗
Gq⃗ρ−q⃗⟨ν

σe
iq⃗ ⃗r νσ⟩a

+
νσaνσ . (4.82)

Problem 4.3. Derive the expression (4.80) for the Fourier-transform of the electron–
impurity interaction potential.

Solution. One of the best ways for solving the problem is to verify that the inverse
Fourier-transform (4.80) leads to an expression for the screened Coulomb potential
φ(r):

φ(r) = 1
(2π)3
∫ dq⃗ 4π|e|

ϵ(q2 + q20)
e−iq⃗ ⃗r .

For that, one should pass on to integration in the spherical coordinate system in the
last integral by putting dq⃗ = q2dq sin θdθdφ. Setting x = cos θ and after performing
the integration over the angleφ, we arrive at the expression for the screened Coulomb
potential φ(r):

φ(r) = |e|
π

∞

∫
0

q2 dq
ϵ(q2 + q20)

1

∫
−1

e−iqrx dx = |e|
π

∞

∫
0

q dq
ϵ(q2 + q20)

eiqr − e−iqr

ir
.

Next, it is more convenient to perform the integration after substituting the variable
q → −q in the second term of the last integral:

φ(r) = |e|
iπr

∞

∫
−∞

qeiqr

ϵ(q2 + q20)
dq. (4.83)

The last integral is easily estimated by the theory of residues. It should be recalled
that, if the integrand

f (z) = ϕ(z)
ψ(z)
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and the functionϕ(z)have no poles inside the integration regionwhereas the function
ψ(z) has a simple pole at the point a, then

∫
Γ

f (z) dz = 2πi ϕ(a)
ψ(a)
.

The integrand in the formula (4.83) has two poles q = ±iq0. The integration contour in
the complex plane should be closed so that the only pole whose potential would tend
to zero at infinity should be inside of the contour. Thus, we have proved that

φ(r) = |e|
ϵr
e−q0r .

4.1.6 The collision integral for the electron–phonon interaction

Let us deduce an explicit expression for the collision integral free electrons with the
wave vector k⃗ in the conduction band interacted with a phonons.

We calculate the transition probability Wk⃗k⃗ from a state with the wave vector k⃗
to a state with the wave vector k⃗ under the action of the perturbation, defined by the
Hamiltonian (4.76). According to the nonstationary perturbation theory, the transition
probability of a system is determined by averaging the squared modulus of the transi-
tion amplitude ak⃗k⃗(t) over states of the phonon system:

Wk⃗k⃗ = ⟨
ak⃗k⃗(t)

2⟩,

ak⃗k⃗(t) = −
i
ℏ

t

∫
0

dt⟨k⃗Hep(t)
k⃗⟩e

i
ℏ (ε ⃗k−ε ⃗k)t , (4.84)

where |k⃗⟩ is a wave function of a free electron in a state with the wave vector k⃗. The
angle brackets ⟨. . .⟩ denotes a quantum-statistical averaging over states of the phonon
system, the quantity εk⃗ being the energy of an electron with the wave vector k⃗.

Substituting the explicit form of the Hamiltonian Hep (4.76) into formula (4.84)
and considering that the time-dependence of the bq⃗λ(t) and b+q⃗λ(t) Bose-operators is
defined by (4.72) and the quantum-statistical averages over the phonon variables for
products of the creation–annihilation operators have the form

⟨b+q⃗λbq⃗λ⟩ = Nq⃗λδq⃗q⃗δλλ , ⟨bq⃗λb
+
q⃗λ⟩ = (Nq⃗λ + 1)δq⃗q⃗δλλ ,

⟨bq⃗λbq⃗λ⟩ = ⟨b
+
q⃗λb
+
q⃗λ⟩ = 0,

Nq⃗λ = {exp(
ℏΩq⃗λ

kBT
) − 1}

−1
, (4.85)
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where ℏΩq⃗λ is the energy of the phonon with the wave vector q⃗ and polarization λ, we
get

Wk⃗k⃗ =
2πt
ℏ
∑
q⃗λ
|Cq⃗λ|

2{⟨k⃗
e

iq⃗ ⃗r k⃗⟩

2Nq⃗λδ(εk⃗ − εk⃗ − ℏΩq⃗λ)

+ ⟨k⃗
e
−iq⃗ ⃗r k⃗⟩

2(Nq⃗λ + 1)δ(εk⃗ − εk⃗ + ℏΩq⃗λ)}. (4.86)

In writing this expression we have taken into account the fact that

ei/ℏ(ε ⃗k−ε ⃗k+ℏΩq⃗λ)t − 1
i/ℏ(εk⃗ − εk⃗ + ℏΩq⃗λ)



2
=
4 sin2[(εk⃗ − εk⃗ + ℏΩq⃗λ)t/2ℏ]

1/ℏ2(εk⃗ − εk⃗ + ℏΩq⃗λ)2

= 2πℏtδ(εk⃗ − εk⃗ + ℏΩq⃗λ)

and availed of the definition of δ-function

δ(x) = lim
t→∞

1
π
sin2(xt)
x2t
.

Expression (4.86) naturally is divided into two summands, one of that is proportional
to Nq⃗λ + 1, and describes a transition from the state k⃗ to the state k⃗, generating the
phonon. The other one is proportional to Nq⃗λ and describes the processes of the
phonon absorption. From the energy conservation law it follows that the transitions
from a state with the wave vector k⃗ and energy εk⃗ to a state with the wave vector
k⃗ = k⃗ ± q⃗ and energy εk⃗ = εk⃗ ± ℏΩq⃗λ are possible. The two processes lead to a re-
duction in the number of the electrons in the state k⃗. In addition, there may be well
transitions from a statewith the k⃗+ q⃗ and k⃗− q⃗wave vectors to the state k⃗. These transi-
tions will increase the number of the electrons in the state k⃗. The possible transitions
listed above are schematically illustrated in Figure 4.4.

Figure 4.4: Scheme of state-transitions between states of the electrons with energy ε ⃗k , ε ⃗k+q⃗, ε ⃗k−q⃗.
These transitions change the number of the electrons in the state with the wave vector ⃗k.

Using (4.86), we write down expressions for the probability of these transitions:

1. Wk⃗+q⃗k⃗ =
2πt
ℏ
∑
q⃗λ
|Cq⃗λ|

2⟨k⃗ + q⃗
e
iq⃗ ⃗r k⃗⟩

2Nq⃗λδ(εk⃗+q⃗ − εk⃗ − ℏΩq⃗λ),

2. Wk⃗k⃗+q⃗ =
2πt
ℏ
∑
q⃗λ
|Cq⃗λ|

2⟨k⃗
e
−iq⃗ ⃗r k⃗ + q⃗⟩


2(Nq⃗λ + 1) × δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ),
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3. Wk⃗−q⃗k⃗ =
2πt
ℏ
∑
q⃗λ
|Cq⃗λ|

2⟨k⃗ − q⃗
e
−iq⃗ ⃗r k⃗⟩

2(Nq⃗λ + 1) × δ(εk⃗−q⃗ − εk⃗ + ℏΩq⃗λ),

4. Wk⃗k⃗−q⃗ =
2πt
ℏ
∑
q⃗λ
|Cq⃗λ|

2⟨k⃗
e
iq⃗ ⃗r k⃗ − q⃗⟩


2Nq⃗λδ(εk⃗ − εk⃗−q⃗ − ℏΩq⃗λ). (4.87)

Formulas (4.87) give the quantum-mechanical probability of the transition be-
tween the electron states with the k⃗ and k⃗ ± q⃗ wave vectors and over the time t. This
probability is averaged over the phonon states of the system. To calculate the rate of
change of the distribution function

𝜕fk⃗
𝜕t

col
,

involved in the right-hand side of the kinetic equation (4.6), it is necessary to ascertain
the rate of a change in the number of the electrons with the wave vector k⃗, taking into
account both initially filled states and voids in final states. Given that the first and the
third transitions lead to a decrease in the number of the electrons in the state k⃗ as the
second and the fourth transitions to an increase in the number of the electrons in this
state, we get

𝜕fk⃗
𝜕t

col
=
2π
ℏ
∑
q⃗λ
|Cq⃗λ|

2{[(Nq⃗λ + 1)fk⃗+q⃗(1 − fk⃗) − Nq⃗λfk⃗(1 − fk⃗+q⃗)]

× δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ) + [Nq⃗λfk⃗−q⃗(1 − fk⃗) − (Nq⃗λ + 1)fk⃗(1 − fk⃗−q⃗)]

× δ(εk⃗ − εk⃗−q⃗ − ℏΩq⃗λ)}. (4.88)

In deriving the expression (4.88) we have availed of an evenness of the delta-
function δ(x) = δ(−x) and taken into account that, by virtue of the normalization
requirement,

⟨k⃗
e
−iq⃗ ⃗r k⃗ + q⃗⟩


2 = ⟨k⃗ + q⃗

e
iq⃗ ⃗r k⃗⟩

2 = 1.

Using the expression (4.88), we may show that one succeeds in introducing the mo-
mentum relaxation time τp⃗(εp⃗) and in substantiating the representation of the colli-
sion integral in the relaxation time approximation (4.7) to describe the elastic scat-
tering of electrons by phonons. Indeed, the scattering is elastic, if the phonon energy
ℏΩq⃗λ is much smaller than the average thermal energy of electrons ε ≃ kBT. In this
case, expanding exponent in the denominator of the Planck function Nq⃗λ over the
small ℏΩq⃗λ/kBT parameter and restricting ourselves to only a linear approximation,
we obtain

Nq⃗λ =
kBT
ℏΩq⃗λ
≫ 1, Nq⃗λ + 1 ≃ Nq⃗λ. (4.89)
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If one takes into consideration the result (4.89), one can significantly simplify the ex-
pression for the collision integral (4.88) by reducing the members, whose function fk⃗
is quadratically:

𝜕fk⃗
𝜕t

col
=
2π
ℏ
∑
k⃗
V(k⃗, k⃗, )(fk⃗ − fk⃗)δ(εk⃗ − εk⃗),

V(k⃗, k⃗, ) =∑
q⃗λ
|Cq⃗λ|

2Nq⃗λ(δk⃗k⃗+q⃗ + δk⃗k⃗−q⃗). (4.90)

Furthermore, if the non-equilibrium distribution function are written in the form

fk⃗ = f0(εk⃗) + f1(k⃗) = f0(εk⃗) −
𝜕f0(εk⃗)
𝜕εk⃗
( ⃗χ(εk⃗)k⃗), (4.91)

where ⃗χ(εk⃗) is an unknown vector function, depending on only the electron energy,
then the difference of the distribution functions in (4.90) can be expressed via a cor-
rection to the distribution function f1(k⃗)

fk⃗ − fk⃗ =
𝜕f0(εk⃗)
𝜕εk⃗
( ⃗χ(εk⃗)k⃗)[1 −

kχ
kχ
],

where the kχ and kχ quantities are projections of the k⃗ and k⃗ vectors on the vector
⃗χ(εk⃗);

𝜕fk⃗
𝜕t

col
=

f1(k⃗)
τk⃗(εk⃗)
,

1
τk⃗(εk⃗)
=
2π
ℏ
∑
k⃗
V(k⃗, k⃗, )[1 −

kχ
kχ
]δ(εk⃗ − εk⃗). (4.92)

In spite of it not being very convenient for practical computations, the result (4.92)
justifies the assumption made above introducing the relaxation time to describe the
kinetic phenomena in conducting crystals. Also it indicates the limits of the applica-
bility of this approximation.

Quite similarly, the structure of the collision integral at scattering by a screened
Coulomb potential and by magnetic impurities can be obtained.

Problem 4.4. Express the average value ⟨c+ν cν⟩ of the product of the c
+
ν creation and cν

annihilation operators of bosons (fermions) in the state |ν⟩ via the bosonic (fermionic)
distribution function.

Solution. We show that ⟨c+νcν⟩ ≡ Sp{ρ0c
+
νcν} = fνδνν , where ρ0 is the equilibrium

statistical distribution

ρ0 = exp{−β(Φ + H0)}, Φ = 1
β
ln Sp{e−βH0}, H0 =∑

ν
ενc
+
ν cν , (4.93)
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where β = 1/kBT is the inverse temperature, fν the equilibrium distribution function
of bosons or fermions.

If there are other integrals of motion in the system besides the energy, then ρ0
should be written as

ρ0 = exp{−β(Φ + H0 +∑
k
PkFk)}, (4.94)

where Pk is for operators, which are conserved quantities (thermodynamic coordi-
nates); the Fk are the thermodynamic forces corresponding to the above coordinates.

For example, in the case of Fermi-particles, the number of particles is often a con-
served quantity. Then the operator of the statistical distribution in the second quanti-
zation representation should be written as

ρ0 = exp{−β[Φ +∑
ν
(εν − ζ )n̂ν]}, Φ = 1

β
ln Sp{e−β∑ν(εν−ζ )n̂ν }. (4.95)

In the formula (4.95) n̂ν = c+ν cν, the quantity Φ being thermodynamic potential of the
system particles. The quantity ζ is a chemical potential for the fermionic system. For
the bosonic system the quantity ζ is equal to zero.

The quantity fμ is the distribution function of quasi-particles. It involves an av-
erage value of the operator of the number of particles in some state μ. It is using the
thermodynamic potential Φ that is the easiest way to find the quantity fμ:

−
dΦ
dεμ
=
Sp{exp[−β∑ν(εν − ζ )n̂ν]n̂μ}
Sp{exp[−β∑ν(εν − ζ )n̂ν]}

= Sp{ρ0n̂μ} = fμ. (4.96)

Thus, to calculate ⟨c+νcν⟩ the thermodynamic potential Φ needs to be found, which in
turn is expressed via the statistical sum Z.

For estimating the statistical sum of an ideal gas of bosons or fermions can be
obtained in the second quantization representation:

Z = ∑
n1 ,n2 ...nν ...

exp{−β∑
ν
(εν − ζ )nν}. (4.97)

In this formula the quantities nν are eigenvalues of the particle number operator. They
run over the values 0, 1, 2 . . . for the bosonic system whereas for the fermionic system
take only the values 0 and 1. The right-hand side of the expression (4.97) can be rear-
ranged to the form

∑
n1
∑
n2
. . .∑

nN
e−β(ε1−ζ )n1e−β(ε2−ζ )n2 . . . e−β(εN−ζ )nN =∏

ν
∑
nν
e−β(εν−ζ )nν . (4.98)

Thus, performing the summation over the possible values of nν, we obtain the follow-
ing expression:

Z = { ∏ν(1 + e
−β(εν−ζ )) Fermi statistics,

∏ν(1 − e
−βεν )−1 Bose statistics.

(4.99)
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One should note that the summation for Bose statistics is reduced to finding a sum
of an infinitely decreasing geometric progression. According to the formula (4.95) the
thermodynamical potential Φ = ln Z/β so, taking the logarithm of (4.99), we get a
simple expression for Φ:

Φ = 1
β
∑
ν
ln{
(1 + e−β(εν−ζ )) Fermi statistics,

(1 − e−βεν )−1 Bose statistics.
(4.100)

Using the result (4.96), we obtain

⟨c+νcν⟩ = −
dΦ
dεν
=

exp{−β(εν − ζ )}
1 + exp{−β(εν − ζ )}

=
1

exp{β(εν − ζ )} + 1
(4.101)

in the case of Fermi statistics and

⟨c+νcν⟩ = −
dΦ
dεν
=

exp{−βεν}
1 − exp{−βεν}

=
1

exp{βεν} − 1
(4.102)

in the case of Bose statistics.

4.1.7 Phenomenon of phonon drag

We now consider a phenomenon of phonon drag. If one assumes that a phonon sub-
system of a crystal forms a gas of quasi-particles (phonons), then the presence of a
temperature gradient causes deviation of the gas from thermodynamic equilibrium.
Consequently, there arises some phonon flux and, it is this flux that provides heat
transfer through the crystal lattice. Thus, the distribution function of phonons ceases
to be the equilibrium Planck function (4.85). So far as the flux of phonons is directed
from the hotter face of the semiconductor to the cold one, the electrons receive a drift
momentum of the phonon system at scattering. This gives rise to an additional con-
tribution to the electron flux towards the cold conductor edge, causing the electronic
component of the thermopower to increase. Such an increase is usually called the phe-
nomenon of phonon drag.

Under an applied temperature gradient, another correction δNq⃗λ to the phonon
distribution function is necessary to calculate the correction to the thermoelectric
power associated with the electron–phonon drag effect. To find this correction we
write the kinetic equation for the phonon distribution function in the relaxation time
approximation. Then, in the framework of the concept of local equilibrium, we ob-
tain

𝜕Nq⃗λ

𝜕t

f
+
𝜕Nq⃗λ

𝜕t

col
= 0,
𝜕Nq⃗λ

𝜕t

col
=
δNq⃗λ

τq⃗λ
, (4.103)
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where τq⃗λ is the relaxation timeof long-wavelengthphonons, interactingwith the elec-
trons by thermal phonons or face of the sample.

𝜕Nq⃗λ

𝜕t

f
= (v⃗q⃗λ�⃗�)Nq⃗λ(T( ⃗r)) = −(v⃗q⃗λ�⃗�T)

𝜕Nq⃗λ

𝜕Ωq⃗λ

Ωq⃗λ

T
. (4.104)

In the formula (4.104) the quantity v⃗q⃗λ is a group velocity of phonons.
The results (4.103), (4.104) allow one to immediately find the correction to the

phonon distribution function

δNq⃗λ = τq⃗λ
𝜕Nq⃗λ

𝜕Ωq⃗λ

Ωq⃗λ

T
(v⃗q⃗λ�⃗�T) ≃ −

kBτq⃗λ
ℏq
(
q⃗
q
�⃗�T). (4.105)

In writing the last equality, we have taken into consideration that Nq⃗λ ≃ kBT/ℏΩq⃗λ,
Ωq⃗λ = sq, v⃗q⃗λ = sq⃗/q, where s is speed of sound in a crystal.

Let us now hark back to the kinetic equation for electrons. Taking into consider-
ation the fact that the non-equilibrium of the phonon system leads to the appearance
of an additional summand in the collision integral, we see that the integral I (4.88)
falls into two summands in a linear approximation in the thermodynamic forces after
substituting the quantities Nq⃗λ for the Nq⃗λ + δNq⃗λ:

I = I[f1(k⃗),Nq⃗λ] + I[f0(εk⃗), δNq⃗λ]

The first summand in this expression describes the scattering of non-equilibrium elec-
trons by phonons being in thermodynamic equilibrium. The second summand takes
into account corrections responsible for the non-equilibrium of the phonon system.
The electron distribution function into the second summand can be regarded as equi-
librium one because the first order over thermodynamic forces is already collected.
Obviously, we are interested in the second summand. Given that Nq⃗λ = N−q⃗λ, and
δNq⃗λ = −δN−q⃗λ, after simple transformations we arrive at an expression for that part
of the collision integral that describes the correction related to the electron scattering
by the non-equilibrium phonons:

𝜕fk⃗
𝜕t

dr
=
2π
ℏ
∑
q⃗λ
|Cq⃗λ|

2δNq⃗λ[f0(εk⃗+q⃗) − f0(εk⃗)]

× [δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ) − δ(εk⃗ − εk⃗+q⃗ − ℏΩq⃗λ)]. (4.106)

It should be noted that the drag effect occurs only for an inelastic scattering. The ℏΩq⃗λ
being discarded in δ-functions, the right-hand side of (4.106) immediately vanishes.

A change in the energy of the electrons in the process of the absorption (or emis-
sion) of phonons is small: ℏΩq⃗λ ≪ kBT. Therefore we can write the difference of the
distribution functions in the first square bracket of (4.105) using the expansion f0(εk⃗+q⃗)
in the small parameter ℏΩq⃗λ/kBT as follows:

f0(εk⃗+q⃗) − f0(εk⃗) =
𝜕f0(εk⃗)
𝜕εk⃗
(εk⃗+q⃗ − εk⃗).
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Inserting this result into the formula (4.106), we obtain a simple expression appropri-
ate to numerical evaluations:

𝜕fk⃗
𝜕t

dr
=
4π
ℏ
∑
q⃗λ
|Cq⃗λ|

2δNq⃗λ
𝜕f0(εk⃗)
𝜕εk⃗
ℏΩq⃗λδ(εk⃗ − εk⃗+q⃗). (4.107)

For further calculations it is necessary to make a replace the summation in for-
mula (4.107) by integration and substitute both the expression for |Cq⃗λ|2, obtained
earlier (see p. 157), and the correction δNq⃗λ (4.105) into it. As a result, passing on to
spherical coordinates, we get

𝜕fk⃗
𝜕t

dr
= −

E20kBm
8πρ(ℏk)3

(ℏk⃗�⃗�T) 𝜕f0
𝜕εk⃗

2k

∫
0

τq⃗λq
3 dq. (4.108)

One should dwell on the derivation of this formula in more detail. The integration in
spherical system coordinates in the formula (4.107) reduces to the integral

qmax

∫
qmin

dqq3τq⃗λ

π

∫
0

sin θ dθδ(ℏ
2kq cos θ

m
+
ℏ2q2

2m
) ×

2π

∫
0

(
k⃗
k
�⃗�T)cos α

cos β
dφ. (4.109)

where α is the angle between the vector q⃗ and the temperature gradient, vector β the
angle between the vector k⃗ and the temperature gradient. The choice of the angles α,
β, θ and φ is shown in Figure 4.5.

Figure 4.5: The ⃗k, q⃗, �⃗�T vectors and angles between them.

It can be shown [31] that there exists a simple relationship between the angles β, θ
and φ:

cos α = cos θ cos β + sin θ sin β cosφ.
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As far as, as indicated by Figure 4.5, only the angle α depends on the angle φ, the
integration over the angle φ yields

2π

∫
0

(
k⃗
k
�⃗�T)cos α

cos β
dφ = 2π( k⃗

k
�⃗�T) cos θ. (4.110)

After replacing the variable x = −ℏ2kq cos θ/m the integral (4.109) over the angle θ can
be estimated as

ℏ2kq/m

∫
−ℏ2kq/m

x dxδ(ℏ
2q2

2m
− x)( m
ℏ2kq
)
2
=

m
2ℏ2k2
; q < 2k. (4.111)

Since scattering processes comply with both laws of the momentum and energy con-
servation, it follows from the expression (4.111) that the electrons can interact only
with the so-called long-wavelength phonons with wave vectors q < 2k ≃ (8mε/ℏ)1/2

in each elementary act of scattering. Therefore, in the expression (4.111) the integral
over the wave vector of phonons should be calculated between the limits 0 to 2k.

Now, one should add a correction caused by the non-equilibrium of the phonon
system to the collision integral, this makes it possible to compute the correction to the
distribution function f1 (4.14) caused by the drag effect:

−
𝜕f0
𝜕εp⃗

v⃗(eε⃗ −
εp⃗ − ζ
T
�⃗�T) = f1

τp⃗
+
𝜕fk⃗
𝜕t

dr
. (4.112)

Inserting this expression into formula (4.108) one obtains

f1 = τp⃗(−
𝜕f0
𝜕εp⃗
)(
ℏk⃗
m
Φ⃗(εk⃗)),

Φ⃗(εk⃗) = (eε⃗ −
εp⃗ − ζ
T
�⃗�T) − Adr(εk⃗)�⃗�T ,

Adr(εk⃗) =
E20kBm

2

8πρ(ℏk)3

2k

∫
0

τq⃗λq
3 dq. (4.113)

Taking into account one of the known mechanisms of relaxation of long-wavelength
phonons, the integral over q needs to be also evaluated for the practical use of the
result (4.113) obtained. Usually two mechanisms allow one to compute the integral:
the Herring mechanism that gives the estimation

τq⃗λ =
ρℏ2s3

(kBT)3q2
, (4.114)

and the mechanism of Simons, giving

τq⃗λ =
ρℏ3s4

(kBT)4q
. (4.115)
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Both these mechanisms lead to a rather strong dependence of the relaxation time on
a temperature (τq⃗λ ∼ 1/T4 or τq⃗λ ∼ 1/T3). Therefore, non-electronicmechanisms of the
phonon relaxation dramatically increase a contribution at low temperatures T ≃ 4K.
Under these conditions a component of the thermopower caused by the drag effect
beats very much values of the normal diffusion component.

Thenumerical estimation of the contribution of the drag effect to the electron ther-
mopower can be obtained by (4.112), (4.113). For this, it is necessary to substitute the
quantity Adr(εk⃗) for the quantity (εp⃗ − ζ )/T into the formula for the integral K1 (4.45).
We shall not give these simple computations here, inviting the reader to make them
as individual exercises.

4.1.8 Expressions for charge and heat fluxes in a magnetic field. Tensor structure of
kinetic coefficients

We derive explicit expressions for the ρ̂, α̂, Π̂, ̂̃κ tensor components when an external
magnetic field is not equal to zero. For this purpose, using the formulas (4.15), (4.24)
and (4.27), (4.28), we find expressions for the charge and heat fluxes:

⃗J = e2{K‖0(h⃗ε⃗)h⃗ − K
H
0 [h⃗ × ε⃗] − K

⊥
0 [h⃗ × [h⃗ × ε⃗]]}

−
e
T
{K‖1 (h⃗�⃗�T)h⃗ − K

H
1 [h⃗ × �⃗�T] − K

⊥
1 [h⃗ × [h⃗ × �⃗�T]]}, (4.116)

⃗JQ = e{K
‖
1 (h⃗ε⃗)h⃗ − K

H
1 [h⃗ × ε⃗] − K

⊥
1 [h⃗ × [h⃗ × ε⃗]]}

−
1
T
{K‖2(h⃗�⃗�T)h⃗ − K

H
2 [h⃗ × �⃗�T] − K

⊥
2 [h⃗ × [h⃗ × �⃗�T]]}. (4.117)

Here, for convenience of the further discussion we have introduced the following no-
tations (l = 0, 1, 2):



K‖l
KH
l

K⊥l



= 2√2m
3π2ℏ3 ∫

∞
0 dε(− 𝜕f0𝜕ε )ε

3/2(ε − ζ )l



τp⃗
ω0τ2p⃗

1+(ω0τp⃗)2

τp⃗(ε)
1+(ω0τp⃗)2



. (4.118)

Equations (4.116), (4.117) have the same structure as the phenomenological equa-
tions (1.15), what allows the σ̂, β̂ and κ̂ tensor components to be expressed via the
introduced integrals K‖l , K

H
l , K
⊥
l . We write down the equations (4.116) and (4.117)

through the components. Putting that the magnetic field H is directed along the
axis Z, and then h⃗ ‖ e⃗z, ε⃗ = εx e⃗x + εye⃗y + εz e⃗z, �⃗�T = xTe⃗x + yTe⃗y + zTe⃗z, where e⃗x,
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e⃗y, e⃗z are unitary vectors of Cartesian coordinates, we get

Jx = e
2K⊥0 εx + e

2KH
0 εy −

e
T
K⊥1 xT −

e
T
KH
1 yT ,

Jy = e
2K⊥0 εy − e

2KH
0 εx −

e
T
K⊥1 yT +

e
T
KH
1 xT , (4.119)

Jz = e
2K‖0εz −

e
T
K‖1zT ,

JQx = eK
⊥
1 εx + eK

H
1 εy −

1
T
K⊥2 xT −

1
T
KH
2 yT

JQy = eK
⊥
1 εy − eK

H
1 εx −

1
T
K⊥2 yT +

1
T
KH
2 xT , (4.120)

JQz = eK
‖
1εz −

1
T
K‖2zT .

Comparing (4.119), (4.120) with the phenomenological equation of transfer (1.15), one
can find the σ̂, β̂ and κ̂ tensor components, expressing them via the integrals K‖l , K

H
l ,

K⊥l entered above:

σ̂ =(
σ⊥ σH 0
−σH σ⊥ 0
0 0 σ‖

) , β̂ =(
β⊥ βH 0
−βH β⊥ 0
0 0 β‖

) , (4.121)

̂χ =(
χ⊥ χH 0
−χH χ⊥ 0
0 0 χ‖

) , κ̂ =(
κ⊥ κH 0
−κH κ⊥ 0
0 0 κ‖

) , (4.122)

where we have introduced the following notations:

σi = e
2K i

0, βi =
e
T
K i
1, χi = eK

i
1, κi =

1
T
K i
2, (4.123)

i = {⊥, ‖,H}. As mentioned in Chapter 1, it is far easier to control the current ⃗J
through the sample rather than the electrochemical potential gradient ε⃗. Therefore,
the ρ̂, α̂, Π̂, ̂̃κ tensor components are determined in studying the thermogalvanomag-
netic phenomena. The explicit form of these components can be obtained using
formulas (1.35), (1.36) and (4.121)–(4.123). Performing the necessary transformations
of the tensor quantities gives

ρ̂ = σ̂−1 =(
ρ⊥ ρH 0
−ρH ρ⊥ 0
0 0 ρ‖

) , α̂ = ρ̂β̂ =(
α⊥ αH 0
−αH α⊥ 0
0 0 α‖

) ,

̂̃κ = κ̂ − ̂χα̂ =(
κ̃⊥ κ̃H 0
−κ̃H κ̃⊥ 0
0 0 κ̃‖

) , (4.124)

ρ⊥ =
σ⊥

σ2⊥ + σ2H
, ρH =

−σH
σ2⊥ + σ2H

, ρ‖ =
1
σ‖
,

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Kinetic coefficients in the relaxation time approximation | 171

α⊥ =
β⊥σ⊥ + βHσH
σ2⊥ + σ2H

, αH =
βHσ⊥ − β⊥σH

σ2⊥ + σ2H
, α‖ =

β‖
σ‖
,

κ̃⊥ = κ⊥ − χ⊥α⊥ + χHαH , κ̃H = κH − χ⊥αH − χHα⊥,
κ̃‖ = κ‖ − χ‖α‖. (4.125)

Note the main peculiarities of the expressions obtained for the kinetic coefficients.
It follows from the formulas (4.121), (4.122) and (4.124) that the structure of the ten-
sors ρ̂, α̂, Π̂, ̂̃κ is characteristic for gyrotropic media, and it coincides with the structure
that we suggested in Chapter 1. Furthermore, diagonal components of tensors, which
characterize the phenomenon in a plane perpendicular to a magnetic field, contain
only even powers of the magnetic field while longitudinal components of the tensors
ρ̂, α̂, Π̂, ̂̃κ do not depend on the magnetic field. The non-zero off-diagonal elements
that have tensor indices xy and yx are odd in the magnetic field, are equal among
themselves in absolute magnitude, but have opposite signs. From what has been said
above, one can claim that the expressions obtained for the kinetic coefficients satisfy
the symmetry relations of Onsager:

ρik(H⃗) = ρki(−H⃗), αik(H⃗) = αki(−H⃗),

κ̃ik(H⃗) = κ̃ki(−H⃗). (4.126)

Another relation between the β̂ and κ̂ tensors follows from the formulas (4.122), (4.123):
β̂T = κ̂. Hence, considering the result (1.36), we get

Πik(H⃗) = αik(H⃗)T . (4.127)

4.1.9 Galvanomagnetic and thermomagnetic effects in semiconductors with a
parabolic dispersion law

Consider thermogalvanomagnetic phenomena which were qualitatively discussed in
Chapter 1. Using the results (4.118), (4.124), and (4.125), we calculate the kinetic coef-
ficients concerning these effects.

It is necessary to immediately show that the outcomes obtained in such a way
have limited applicability, since the simplest electronic version of the theory of ki-
netic transport phenomena in the relaxation time approximation when only one type
of charge carriers obeying an isotropic quadratic dispersion law is considered can-
not qualitatively explain the dependence of the kinetic coefficients on an amplitude
and orientation of a strong magnetic field in metals. In this case, an electron moving
along the Larmor orbit covers a significant portion of the Fermi surface between two
scattering events and it succeeds in experiencing the real structure of this surface. Gal-
vanomagnetic phenomena in strong magnetic fields are very sensitive to peculiarities
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of the energy spectrum of charge carriers and serve as a reliable way to determine the
structure of the Fermi surface [28, 32].

In the case of semiconductors with a single extremum of the conduction band at
the Brillouin zone center, the most serious restrictions are associated with a necessity
for considering quantization, if the condition ℏω0 ≫ kBT holds. Therefore, it would be
proper to suppose that the magnetic field is not quantizing and the inequality ℏω0 ≪
kBT is fulfilled. This allows a quasi-classical approximation to be applied to describe
the motion of an electron in the magnetic field.

Both the presence of several equivalent minima (valleys) at symmetry points of
the Brillouin zone and the ellipsoidal nature of the energy surfaces in some semicon-
ductor materials (Ge, Si) may be taken into account without significant changes in
main propositions of theory in question [8, 31] and, therefore will not be considered
here.

Themost complete reviewof results concerning the theory of thermomagnetic and
galvanomagnetic phenomena is given in the monograph by Askerov [8], where there
is also an extensive bibliography on this subject. The scope of the present book does
not permit a detailed discussion of all modern outcomes in the theory thermogalvano-
magnetic phenomena with rigor and completeness required. Therefore, we consider
only the simplest situation, but namely, a semiconductor with a standard conduction
band in the case of: (1) extremely strong degeneracy of an electron gas; (2) a nonde-
generate electron gas obeying Maxwell–Boltzmann statistics.

Let us evaluate the integrals K‖l , K
H
l , K
⊥
l defined by the expression (4.118) for the

limiting cases (1) and (2) mentioned above.
Having compared the formulas (4.33) and (4.118) we see that the integrals K‖l co-

incide with the integrals Kl, which have been already calculated above. Therefore, we
show a way of estimating only the integrals K⊥l and KH

l .
To compute these integrals in the limit of the strongly degenerate electron gas,

one should use the formula (4.35). Then in the formula (4.35) for the integrals K⊥0 and
KH
0 it suffices to restrict oneself to a first approximation in the expansion parameter

kBT/ζ and to substitute the derivative −𝜕f0/𝜕ε for delta-function δ(ε − ζ ):

K⊥0 =
n
m

τp⃗(ζ )
1 + [ω0τp⃗(ζ )]2

, KH
0 = ω0τp⃗(ζ )K

⊥
0 . (4.128)

To evaluate the integrals K i
1,K

i
2 where i = {⊥,H} the quadratic expansion term in the

small kBT/ζ parameter must hold in the formula (4.33):



KH
1

K⊥1


= π2

2
(kBT)2

ζ
n
m

τp⃗(ζ )
1+[ω0τp⃗(ζ )]2

×



ω0τp⃗(ζ )[1 +
4/3r

1+[ω0τp⃗(ζ )]2
]

1 + 2r
3
1−[ω0τp⃗(ζ )]2

1+[ω0τp⃗(ζ )]2


, (4.129)

K i
2 =

π2

3
(kBT)

2K i
0, i = {⊥,H}. (4.130)
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In deriving the formula (4.129) we have assumed as before that

τp⃗(εp⃗) = τ0(εp⃗/kBT)
r ,

and have taken into account that

ζ
τp⃗(ζ )

dτp⃗(ζ )
dζ
= r.

In the case of a nondegenerate electron gas obeying Maxwell–Boltzmann statis-
tics, it would be proper to discuss only the case of weak magnetic fields when the
inequality ω0τp⃗ ≪ 1 is fulfilled and to leave only the first nonvanishing term in the
parameter ω0τp⃗ in the integrals (4.118).

Using the definition of the average ⟨τp⃗(x)xk⟩ (4.49) and definition of the electron
density (4.44), after simple transformations we obtain



KH
l

K⊥l


= n

m (kBT)
l ×


ω0⟨τp⃗(x)2(x − ζ /kBT)l⟩
⟨τp⃗(x)(x − ζ /kBT)l⟩ − ω2

0⟨τp⃗(x)
3(x − ζ /kBT)l⟩


. (4.131)

Next, we will use the expressions obtained for the integrals K i
l to go over to discussion

of some galvanomagnetic and thermomagnetic effects.

The Hall effect
TheHall constantR based on the formula (1.57) is determined by the off-diagonal com-
ponent of the conductivity tensor ρxy. Using the formulas (4.124), (4.125), we obtain an
expression for the Hall constant via the K⊥0 and KH

0 integrals:

R = 1
H

σH
σ2H + σ2⊥

=
1

He2
KH
0

(K⊥0 )2 + (K
H
0 )

2 . (4.132)

Inserting the results (4.128), (4.131) into this equation yields

R = 1
enc

(4.133)

in the case of strong degeneracy and

R = γ
enc
, γ =
⟨τp⃗(x)2⟩
⟨τp⃗(x)⟩2

(4.134)

for nondegenerate semiconductors. The value of the parameter γ depends on a mech-
anism of the charge carrier scattering and varies within γ ≃ 1.18 ÷ 1.93 at the value
of the index scattering from r = −1/2 (the case of scattering by acoustic phonons) to
r = 3/2 (the case of scattering by charged impurities).
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Change in transverse resistance in a magnetic field
It should not be left unnoticed that the accuracy in evaluating the integrals K⊥0 and
KH
0 was insufficient for metals. Plugging the results (4.128) into the formula (4.125)

does not make it possible to observe a dependence of the resistance on a magnetic
field. This result would be predicted beforehand, since, as noted in Chapter 1, the re-
sistance change in the magnetic field is associated with the fact that the Hall field
compensates for the magnetic component of the Lorentz force only at an average, and
faster and slower electrons travel along curved trajectories, which decreases their ef-
fective free path length. Therefore, the field dependent quantityρ/ρ can be obtained
by further expansion of the integrals K⊥0 ,K

H
0 in the small parameter kBT/ζ basing on

the formula (4.35). Although these computations are reduced to elementary algebraic
transformations, they do remain rather cumbersome, sowe present here only the final
result but detailed calculations we consider as an example:

ρ
ρ
=
π2

12
(
kBT
ζ
)
2 [ω0τp⃗(ζ )]2

1 + [ω0τp⃗(ζ )]2
. (4.135)

For nondegenerate semiconductingmaterials, itwouldbe appropriate to pay attention
only to the case of weak magnetic fields when the condition ω0τp⃗ ≪ 1 is met. Use of
the results (4.131) for the integrals K⊥0 and KH

0 gives

ρxx(H) = ρxx(0){1 + ω
2
0[
⟨τp⃗(x)3⟩
⟨τp⃗(x)⟩

−
⟨τp⃗(x)2⟩2

⟨τp⃗(x)⟩2
]}. (4.136)

The expression (4.136) can be written in amore convenient form, if one introduces the
dimensionless parameter

Tr =
⟨τp⃗(x)3⟩⟨τp⃗(x)⟩ − ⟨τp⃗(x)2⟩2

⟨τp⃗(x)⟩4
.

Then one has a rather simple expression for a relative resistance change in the mag-
netic field:

ρxx
ρxx
= (ω0⟨τp⃗(x)⟩)

2Tr . (4.137)

It follows from the formula (4.137) that the relative change resistance in the magnetic
field is actually determined by the parameter ω0⟨τp⃗(x)⟩, for the dimensionless factor
Tr depends weakly on the scattering coefficient r and varies in the interval from 0.38
for r = −1/2 to ∼ 2.15 at r = 3/2.

The transverse Nernst–Ettingshausen effect
The transverse Nernst–Ettingshausen effect is determined by an off-diagonal tensor
component of the differential thermopower αH (4.125). Simple but rather cumbersome
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calculations in using formulas (4.56), (4.57), (4.123) and (4.125) being omitted, there
can be given only the final result appropriate for conditions of strong degeneracy,
when the K⊥0 ,K

H
0 integrals are calculated in the zero approximation in the small pa-

rameter kBT/ζ , and the K⊥1 ,K
H
1 integrals are estimated in the first nonvanishing ap-

proximation in this parameter (see the equation (4.35)):

QNE =
αH
H
=
βHσ⊥ − β⊥σH
H(σ2⊥ + σ2H )

=
kB
e
π2

3
μe
c
kBT
ζ

r. (4.138)

Here μe = eτp⃗(ζ )/m is electron mobility (μe/c = ω0τp⃗(ζ )/H).
The expression given above implies that the effect sign is directly determined by

sign of the scattering coefficient r. This fact indicates which of the electron scattering
mechanisms is dominant, for example, r = 3/2 for scattering by neutral impurities,
and r = −1/2 for scattering by long-wavelength acoustic vibrations.

For a nondegenerate electron gas we present the result appropriate only for the
case of a weak magnetic field when the condition ω0τp⃗ ≪ 1 is fulfilled:

QNE =
kB
e
μe
c
[
⟨τp⃗(x)2x⟩
⟨τp⃗(x)⟩2

−
⟨τp⃗(x)x⟩⟨τp⃗(x)3⟩
⟨τp⃗(x)⟩3

]. (4.139)

It is easy to show that the sign of the square bracket in the formula (4.139) is also de-
termined by the sign of a magnitude of the scattering coefficient r. Thus, the inversion
of the sign of the Nernst–Ettingshausen coefficient demonstrates the change in the
mechanism of the electron scattering regardless of whether the electron gas is degen-
erate or not.

The longitudinal Nernst–Ettingshausen effect
Use of the determinations (4.125) gives

αxx(H) ≡ α⊥ = β⊥ρ⊥ + βHρH . (4.140)

In the case of a strongly degenerate electron gas and in the limit of a weak magnetic
field ω0τp⃗ ≪ 1 one can obtain the following expression as a result of simple calcula-
tions:

αxx(H) − αxx(0) =
kB
e
π2

3
kBT
ζ
[ω0τp⃗(ζ )]

2r. (4.141)

For nondegenerate semiconducting materials in the limit of weak magnetic fields we
get

αxx(H) − αxx(0) = −
kB
e
[ω0⟨τp⃗(x)⟩]

2Γ(5/2)2 × {Γ(5/2 + 2r)
2

Γ(5/2 + r)4
− 2Γ(5/2 + 3r)

Γ(5/2 + r)3
}r. (4.142)

The longitudinal Nernst–Ettingshausen effect as well as transverse effect is propor-
tional to the scatteringparameter r. However, this effect ismuchweaker than the trans-
verse one because it contains square of the additional small parameter ω0⟨τp⃗(x)⟩.
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Problem 4.5. Deduce the expression (4.135) for the quantity ρ/ρ under conditions of
an extremely strong degeneracy and strong magnetic fields.

Solution. Note that

ρxx/ρxx(0) = −σxx/σ.

Then the following expression canbe obtainedon the basis of formulas (4.123), (4.125):

σxx = 1/ρ⊥ − σ = e
2[K⊥0 +

KH
0 K

H
0

K⊥0
− K0].

The quantity σxx = 0 in the zero approximation over the parameter kBT/ζ . There-
fore, our purpose is to distinguish summands proportional to the square of the small
parameter kBT/ζ by using the expansion (4.35). After expanding, we obtain

σxx = e
2 π2

6
(kBT)

2 𝜕2

𝜕ε2
{g(ε)τp⃗(ε)

× [
1

1 + (ω0τp⃗(ε))2
+ 2

ω2
0τp⃗(ε)τp⃗(ζ )

1 + (ω0τp⃗(ε))2
−

ω2
0τp⃗(ζ )

2

1 + (ω0τp⃗(ε))2
− 1]}
ε=ζ
. (4.143)

We have introduced the notation in the formula (4.143)

g(ε) = 2(2m)
1/2ε3/2

3π2ℏ3
.

Performing elementary algebraic transformations in the square bracket of (4.143), we
are led to a form suitable for further calculations,

σxx = −e
2 π2

6
(kBT)

2 𝜕2

𝜕ε2
{

g(ε)τp⃗(ε)ω2
0

1 + (ω0τp⃗(ε))2
[τp⃗(ε) − τp⃗(ζ )]

2}
ε=ζ
. (4.144)

So far as there exists the difference [τp⃗(ε) − τp⃗(ζ )]2 in the expression (4.144) which
vanishes at ε = ζ , we obtain

σxx = −e
2 π2

3
(kBT)

2 g(ζ )τp⃗(ζ )ω2
0

1 + (ω0τp⃗(ζ ))2
[τp⃗(ζ )]

2.

Finally, given that

σ = e2K0 = e
2g(ζ )τp⃗(ζ ), [τ


p⃗(ζ )]

2 = 1/4τ2p⃗(ζ )/ζ
2,

we have

σxx
σ
= −

π2

12
(
kBT
ζ
)
2 [ω0τp⃗(ζ )]2

1 + [ω0τp⃗(ζ )]2
. (4.145)

This concludes the discussion of the various thermogalvanomagnetic effects.
The Maggi–Riga–Leduc, Nernst–Ettingshausen, Riga–Leduc and adiabatic effects re-
mained unconsidered. We suggest the reader to calculate kinetic coefficients charac-
terizing these phenomena as an independent work. More detailed information on the
theory thermogalvanomagnetic phenomena can be found in the monographs [8, 32].
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4.2 Hydrodynamic description of a hot electrons

4.2.1 Transition to a hydrodynamic description

For a theoretical study of non-equilibrium states of an electron gas, it is not always
necessary to have a solution of a complex integro-differential kinetic equation since
full information contained in this solution is not often used. Indeed it is well known
that there is an important class of problems in physical kinetics which are solved by
means of equations of fluid dynamics [22, 23, 24, 25].

Chapter 3discussed indetail theprocedure of the transition fromakinetic descrip-
tionof non-equilibriumsystems tohydrodynamic one throughderiving theChapman–
Enskog equations. Ideas developed in this chapter can be applied for going over to the
hydrodynamic description of hot electrons in semiconducting crystals. It is obvious
that hydrodynamic equations are considerably simpler than the kinetic equation due
to microparticle characteristics averaged over their momentum.

The transition to the description by using the averaged momentum corresponds
to rougher and consequently, less complete pattern of a phenomenon under study.
Nevertheless, this idea makes it possible to shorten the description of a system. It is
extremely fruitful in one form or another and used to solve all kinds of problems in
physical kinetics. For example, in deriving the kinetic equation in the framework of
the Bogoliubov method, there appears a set of coupled equations for s-particle distri-
bution functions. This infinite set of coupled equations is equivalent to the dynamic
description. The reduction in the description becomes possible if one succeeds in ex-
pressing a two-particle distribution function via a one-particle one by using some ap-
proximations to close the system of equations. A similar approach is also used in a
Green function method. The system of coupled equations of motion for all kinds of
Green functions is equivalent to the complete dynamic description. As shown in Chap-
ter 1, the state of dynamic chaos is implemented for most actual systems. In this case,
the dynamic description does not make sense but a crude form (a form of averaging)
of the description is important. The roughening of the description within the Green
function method takes place to uncouple coupled equations of motion for the Green
functions. (Assuming, for example, that the n+ 1-Green function is expressed through
the lowest Green functions).

The physical reason for the possible shortening in the description is that the decay
of certain correlations betweendynamical variables occurs as a time scale inwhichdy-
namics of the system is investigated is growing. Moreover, chaotic dynamics of initial
dynamic variables turns into regular dynamics for averaged quantities. Bogoliubov
was first to formulate clearly enough the idea of reducing the description in his work.

Due to Bogoliubov one can identify four stages of evolution of a dynamical system
in the case of a low-density gas. Thus, the system can be described with four different
ways.
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The dynamic stage of evolution corresponds to a exact mechanical description of
a system. No reduction in the description happens. This stage of the evolution corre-
sponds to the time interval

t < r0
v
,

where r0 is the effective radius of the interaction in the system, v the average velocity
of the particles.

As noted in Chapter 1, a dynamic description does not make sense for systems
demonstrating the dynamic chaos. Such a description is appropriate only for narrow
class of systems that show a regular motion of a phase point in a phase space. During
the time t1 ≈ r0/v there takes place a synchronization of distribution functions and the
n-particle distribution function is expressed via the one-particle distribution function.
Thus, the kinetic stage of evolution corresponds to a description of a system in terms
of the one-particle distribution function.

Thus, the kinetic stage of evolution corresponds to a description of a system in
terms of the one-particle distribution function and is characterized by the time scale
that is defined by the inequalities

r0
v
< t < l

v
,

where l is the mean free path of particles.
In the period of time l/v, which coincides with the relaxation time of momentum

over an order of magnitude, a system is able to form the averages that have meaning
of an average number of particles, the average energy, and the average momentum,
i. e. meaning of hydrodynamic variables. Therefore, over periods

t > l
v

there appears the hydrodynamic stage of evolution of a system. At this stage the sys-
tem is described by specifying the hydrodynamic parameters, which are usually asso-
ciated with average values of quantities that, in turn, are additive integrals of motion
because, it is these quantities that are usually “long-lived” variables.

Finally, over periods

t > L
v
,

where L is a characteristic linear dimension of a system, we have the thermodynamic
stage of evolution of the system. At this stage non-equilibrium processes are termi-
nated and thermodynamic equilibrium is established. To describe the system it is suf-
ficient to use the equations of equilibrium thermodynamics.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 Hydrodynamic description of a hot electrons | 179

From all that has been said, it follows that the presence of several stages of evo-
lution of the system and the hierarchy of relaxation times is applicable to a gas of
electrons interacting with phonons.

We want to get a set of hydrodynamic equations to describe the conduction elec-
trons in the presence of a sufficiently strong electric field. Supposing that the exter-
nal electric field leads not only to the emergence of the average drift momentum of
electrons but also to a change in the average electron energy, we introduce several hy-
drodynamic parameters such as temperature Tk of kinetic degrees of freedom of the
conduction electrons, the drift velocity v⃗d of the electrons, and the non-equilibrium
chemical potential ζ .

These parameters are associated with the average kinetic energy of the electrons,
the average momentum of the electrons, the average number of the conduction elec-
trons, respectively. The profile of the dependence of the non-equilibrium distribution
function on the input parameters Tk , v⃗d, ζ is not crucial but can be just convenient.
When thermodynamic equilibrium is established in the system, anon-equilibriumdis-
tribution function is represented by the equilibrium Fermi–Dirac function. Given this,
we write down the non-equilibrium distribution function as

fk⃗ = {exp[βkεk⃗−m ⃗vd/ℏ − βζ ] + 1}
−1,

εk⃗−m ⃗vd/ℏ =
ℏ2(k⃗ −mv⃗d/ℏ)2

2m
, βk =

1
kBTk
. (4.146)

Thus, we have introduced five effective parameters Tk, v⃗d, ζ , which are associatedwith
average values of dynamic quantities that are the additive integrals of motion. This
method of parameterization of non-equilibrium distribution function is also consis-
tent with the Hilbert theorem. This theorem tells that, if a solution of the kinetic equa-
tion exists, it can be expressed through the first five moments of the distribution func-
tion. To find these parameters, five balance equations that havemeaning of the energy
balance equation, of the momentum and of the particle number need to be derived.

It would be proper to make a few remarks concerning applicability of the concept
of the electronic subsystem temperature. Equilibrium in the electronic system is due to
electron–electron collisions with the characteristic frequency νee, and the balance in
the system of electrons and phonons is established due to the electron–phonon colli-
sion frequency νep. Then, in order to apply the effective electron temperature concept,
which differs from the phonon system temperature, the condition is to be fulfilled that

νee ≫ νep.

In some cases, this condition is insufficient. For example, if electrons interact with op-
tical phonons, the electron energy in each scattering event will change by magnitude
of the quantum of the optical phonon ℏΩ0. But if there exist electron–electron colli-
sions, the change in the energy amounts to ≃ kBT ≪ ℏΩ0. Therefore, the electrons
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may not become thermalized even though the condition νee ≫ νep is met. In future,
the applicability conditions for the description in terms of effective parameters Tk, v⃗d,
ζ are assumed to hold throughout the paper.

4.2.2 The momentum balance equation

The kinetic equation which will be used in this chapter can be symbolically written as

(
𝜕f
𝜕t
)
field
+ (
𝜕f
𝜕t
)
col
= 0, (4.147)

where the first summand on the left-hand side has a sense of the rate of change of a
distribution function under the action of an external electric field:

(
𝜕f
𝜕t
)
field
=
e
ℏ
E⃗�⃗�k⃗fk⃗ , (4.148)

The second summand presents the collision integral (4.88), which is numerically
equal to the rate of change of the distribution function due to collisions.

To obtain the momentum balance equation one should multiply the equation
(4.147) by ℏk⃗ and sum up over k⃗ and σ. This results in the following expression:

(
𝜕
𝜕t
⟨P⃗⟩)

field
+ (
𝜕
𝜕t
⟨P⃗⟩)

col
= 0. (4.149)

The first term on the left-hand side of (4.149) is equal to the rate of change in the av-
erage momentum of an electron system due to an external field as the second term
describes the change in the average momentum due to collisions with scatterers. The
use of the expression (4.148) gives the first summand in the formula (4.149) in the form

(
𝜕
𝜕t
⟨P⃗α⟩)

field
=∑

k⃗,σ

ℏk⃗α e
ℏ
Eββ

k⃗
fk⃗ . (4.150)

To arrive at the momentum balance equation one should restrict oneself to a linear
approximation over the drift velocity v⃗d and linear approximation in the electric field.
This implies that the drift velocity in the formula (4.150) can be omitted after substi-
tuting the quantity f s

k⃗
for fk⃗ without the drift velocity

f sk⃗ = {exp[βkεk⃗ − βζ ] + 1}
−1.

Passing on in the formula (4.150) to integration over the energy, we get

(
𝜕
𝜕t
⟨P⃗α⟩)

field
= −eEα (2mkBTk)

3/2

2π2ℏ3
F1/2(

ζ
kBTk
) = −enEα. (4.151)
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Now, consider the second term on the left side of (4.149). Multiplying the expres-
sion (4.88) by ℏk⃗ and summing up over k⃗ and σ, we have

(
𝜕
𝜕t
⟨P⃗α⟩)

col
=
2π
ℏ
∑
k⃗σ,q⃗λ

ℏkα|Cq⃗λ|
2{[(Nq⃗λ + 1)fk⃗+q⃗(1 − fk⃗)

− Nq⃗λfk⃗(1 − fk⃗+q⃗)]δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ) + [Nq⃗λfk⃗−q⃗(1 − fk⃗)

− (Nq⃗λ + 1)fk⃗(1 − fk⃗−q⃗)]δ(εk⃗ − εk⃗−q⃗ − ℏΩq⃗λ)}. (4.152)

So far as the summation over thewave vector k⃗ is beingperformed in the infinite limits,
then theoriginmaybe shiftedbyarbitrary vector q⃗when the summationof terms in the
second square bracket occurs, putting that k⃗− q⃗ = k⃗, k⃗ = k⃗+ q⃗. After the replacement it
is easy to see that the square brackets in the expression (4.152) are equal inmagnitude
but opposite in sign, and the arguments of the δ-functions coincide. As a result, the
formula becomes much simpler:

(
𝜕
𝜕t
⟨P⃗α⟩)

col
= −

2π
ℏ
∑
k⃗σ,q⃗λ

ℏqα|Cq⃗λ|
2[(Nq⃗λ + 1)fk⃗+q⃗(1 − fk⃗)

− Nq⃗λfk⃗(1 − fk⃗+q⃗)]δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ). (4.153)

On the right-hand side of the equation (4.153) we select the terms that are linear over
the drift velocity. So far as the drift velocity is contained in the distribution function,
contains the drift velocity, we expand it in a Taylor series, restricting ourselves to the
linear terms:

fk⃗ = f
s
k⃗ −
𝜕f s
k⃗
𝜕εk⃗
ℏkαvαd . (4.154)

Substituting this expansion for the distribution function into the expression that de-
termines the rate of change in the average momentum of the electrons due to colli-
sions, we can write down the right-hand side of (4.153) as

2π
ℏ
∑
k⃗σ,q⃗λ

1
3
(ℏq⃗)2vαd|Cq⃗λ|

2[(Nq⃗λ + 1)f
s
k⃗+q⃗(1 − f

s
k⃗ )

+ Nq⃗λf
s
k⃗ f

s
k⃗+q⃗]δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ), f sk⃗+q⃗ =

𝜕f s
k⃗+q⃗

𝜕εk⃗+q⃗
. (4.155)

In deriving the formula (4.155)wehave taken into account that the substitution of sym-
metric part of the distribution function f s

k⃗
and f s

k⃗+q⃗
turns the right side of (4.153) into

zero which is quite clear in terms of physics. By symmetry, this can be easily proved
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by considering that the expression under the sum sign is odd in powers of q⃗. In accor-
dance with (4.154) a non-zero result proportional to k⃗ + q⃗ takes place only when the
function fk⃗+q⃗ is expanded. This yields terms proportional to q2.

Summarizing the results (4.151), (4.155) obtained, one can now formulate the mo-
mentum balance equation. Introducing the total drift momentum of the electron sys-
tem P⃗d = ⟨P⃗⟩ = nmv⃗d, we have

|e|nEα = nmv⃗d
τ
, (4.156)

1
τ
= −

2π
ℏ

1
3nm
∑
k⃗σ,q⃗λ

(ℏq⃗)2|Cq⃗λ|
2[(Nq⃗λ + 1)f

s
k⃗+q⃗(1 − f

s
k⃗ )

+ Nq⃗λf
s
k⃗ f

s
k⃗+q⃗]δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ). (4.157)

The momentum balance equation (4.156) makes it quite clear that the force acting on
the system of electrons under the external electric field is equal in magnitude but op-
posite in direction to the force exerted by the lattice. The quantity τ, being defined
by (4.157), is responsible for the relaxation time of the mean (total) momentum of the
electron system.

In the given case, the three momentum balance equations (4.156) contain five the
unknowns: three components of the drift velocity, non-equilibrium temperature Tk of
kinetic degrees of freedom of the electronic system and non-equilibrium chemical po-
tential ζ . If the external electric field is sufficiently weak and does not lead to heating
of the electronic system, the temperature and chemical potential can be considered as
equilibrium parameters. Then the quantity 1/τ (4.157) contains no unknown parame-
ters and themomentumbalance equation (4.156) immediately allows the components
of the drift velocity to be found, consequently, the expression for the conductance of
the equilibrium system has the form

σ = e
2n
m

τ0,

where τ0 is the electron momentum relaxation time under conditions of equilibrium.
Next, we deduce an expression for the full momentum relaxation time of the equi-

librium system. For this purpose, transformation of the formula (4.157) suggests that
the temperature and chemical potential correspond to equilibrium (Tk = T , ζ = ζ0,
here and elsewhere ζ0 is an equilibrium chemical potential). To convert this formula,
the properties of the equilibrium Fermi–Dirac distribution function f 0k⃗ and the Planck
function Nq⃗λ should be used,

1 − f 0k⃗ = f
0
k⃗ e

β(ε ⃗k−ζ0), f 0k⃗ = −βf
0
k⃗ (1 − f

0
k⃗ ),

Nq⃗λ + 1 = Nq⃗λe
βℏΩq⃗λ , β = 1

kBT
. (4.158)
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Given these results, we transform the square bracket of the formula (4.157):

(Nq⃗λ + 1)f
0 
k⃗+q⃗(1 − f

0
k⃗ ) + Nq⃗λf

0
k⃗ f

0 
k⃗+q⃗

= Nq⃗λf
0 
k⃗+q⃗f

0
k⃗ [e

β(ℏΩq⃗λ+ε ⃗k−ζ0) + 1] = −βNq⃗λf
0
k⃗ (1 − f

0
k⃗+q⃗). (4.159)

In deriving the formula (4.159) we have used the energy conservation law ℏΩq⃗λ + εk⃗ =
εk⃗+q⃗.

This yields the expression for the relaxation time of the average electron momen-
tum:

1
τ0
=
2π
ℏ

β
3nm
∑
k⃗σ,q⃗λ

(ℏq⃗)2|Cq⃗λ|
2Nq⃗λf

0
k⃗ (1 − f

0
k⃗+q⃗)δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗λ). (4.160)

In conclusion, it is necessary to calculate the relaxation frequency of the average mo-
mentum νep = 1/τ0 of the electronic system in the case of a quasi-elastic scattering of
electrons by acoustic phonons. In this case, the phonon energy ℏΩq⃗λ in the formula
describing the energy conservation law can be neglected. Going over from the sum-
mation over k⃗ and q⃗ to integration over p⃗, q⃗ in the formula (4.160) and performing the
summation over σ, which is simply reduced to the additional product of the result by
two, we get

1
τ0
=
2π
ℏ

1
3nm

2
(2π)6ℏ3

∫ dp⃗ dq⃗(ℏq⃗)2|Cq⃗|
2 kBT
ℏsq

×
∞

∫
0

dε(−
𝜕f 0p⃗
𝜕ε
)δ(εp⃗+ℏq⃗ − ε)δ(εp⃗ − ε). (4.161)

In deriving the formula (4.161) we have used the approximation (4.89) and taken into
account that, in the deformation-potential method, only the interaction of electrons
with longitudinal acoustic phonons makes a contribution when interactions between
electrons and acoustic lattice vibrations occur. For this reason, the polarization index
in (4.161) has been omitted.

Consider the integral over momenta in the expression (4.161) in more detail:

I(q) = ∫ dp⃗δ(εp⃗+ℏq⃗ − ε)δ(εp⃗ − ε). (4.162)

Passing to the integration in spherical coordinates yields

I(q) = 2π
π

∫
0

sin θ dθ
∞

∫
0

p2 dpδ( p
2

2m
+
ℏ2q2

2m
+
pℏq
m

cos θ − ε)δ( p
2

2m
− ε). (4.163)

After integrating in the formula (4.163) over the momentum by using the second
δ-function there remains only the integral over variable x = cos θ:

I(q) = 2πm√2mε
1

∫
−1

dxδ(ℏ
2q2

2m
+√2mεℏq

m
x). (4.164)
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Next, having denoted

y = ℏ
2q2

2m
+√2mεℏq

m
x

We get the integration over the new variables

I(q) = 2πm
2

ℏq

ℏ2q2
2m +√2mε

ℏq
m

∫
ℏ2q2
2m −√2mε

ℏq
m

dyδ(y). (4.165)

The integral (4.165) differs from zero only when the value y = 0 is included in the do-
main of the integration. This calls for imposing the restriction to the range of the wave
vectors q⃗ of phonons, interacting with electrons. Considering the above, we obtain,
finally, a simple expression for the integral I(q):

I(q) = 2πm
2

ℏq
, 0 < q < (8mε

ℏ2
)
1/2
. (4.166)

Further calculations based on the formula (4.161) are reduced to integration of
the power function q3. In addition, the integral over energy is replaced by the Fermi
integral (4.34). We will not dwell on these simple calculations; we give just the final
result:

1
τ0
=
2E20(2mkBT)

3/2

3π2ρs2ℏ4
F1(ζ0/kBT)
F1/2(ζ0/kBT)

. (4.167)

In writing this formula we have used the determination of the equilibrium electron
concentration:

n = (2mkBT)
3/2

2π2ℏ3
F1/2(ζ0/kBT). (4.168)

Now, consider a non-equilibrium case. Let Nq⃗ ≫ 1 so Nq⃗ + 1 ≃ Nq⃗. This condition im-
poses some restrictions on temperature of the system. If one takes into account the
formula (4.166) and puts for the average kinetic energy of electrons ε ≃ kBT, the in-
equality (4.89) can be written as follows:

Nq⃗ ≃
kBT
ℏΩq⃗
≃

kBT
s(8mkBT)1/2

≫ 1, (4.169)

or

kBT > 8ms
2. (4.170)

The numerical estimation indicates that the inequality (4.170) holds for semiconduc-
tors with effective mass m ∼ 0,01m0 at temperatures already above 1K, where m0 is
the free electron mass.
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If one accepts that the condition (4.169) is true, the expression (4.157) for the in-
verse relaxation time of non-equilibrium electrons has the form

1
τ
=
2π
ℏ

1
3nm

2
(2π)6ℏ3

∫ dp⃗ dq⃗(ℏq⃗)2|Cq⃗|
2 kBT
ℏsq

×
∞

∫
0

dε(−
𝜕f sp⃗
𝜕ε
)δ(εp⃗+ℏq⃗ − ε)δ(εp⃗ − ε). (4.171)

Upon comparing the formulas (4.161) and (4.171) we can obtain the result:

1
τ
=
2E20(2mkB)

3/2TT1/2k
3π2ρs2ℏ4

F1(ζ /kBTk)
F1/2(ζ /kBTk)

. (4.172)

Thus, the expressions (4.156), (4.172) are threemomentumbalance equations, contain-
ing five the unknowns of the parameter v⃗d, Tk, ζ . To obtain a closed set of macroscopic
balance equations it is necessary to add two equations to the three equations: an en-
ergy balance equation and a particle number balance equation.

4.2.3 Balance equations of energy and particle number

Multiply the equation (4.147) by εk⃗ and then sum it up over k⃗ and σ. In contrast to the
momentum balance equation, where we have restricted ourselves to a linear approxi-
mation either for intensity of an external electric field or drift velocity, quadratic terms
of these parameters need to be retained in the energy balance equation.

Introducing the notation

⟨Ek⟩ =∑
k⃗σ

εk⃗fk⃗

for the rate of change of the average kinetic energy of electrons ⟨Ek⟩ due to the field,
we have

(
𝜕
𝜕t
⟨Ek⃗⟩)

field
=∑

k⃗,σ

εk⃗
e
ℏ
E⃗�⃗�k⃗fk⃗ . (4.173)

Now, terms linear for the drift velocity are to be extracted from �⃗�k⃗fk⃗:

αk⃗ fk⃗ =
𝜕fk⃗
𝜕εk⃗
αk⃗

1
2m
(ℏk⃗ −mv⃗d)

2

=
ℏ
m
(ℏkα −mvαd)

𝜕
𝜕εk⃗
[f sk⃗ − f

s
k⃗
ℏkβvβd]. (4.174)
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Substituting the expression (4.174) into the formula (4.173) and considering that odd
terms for k⃗ do not contribute to the sum on the right-hand side of (4.173), we get

(
𝜕
𝜕t
⟨Ek⃗⟩)

field
= −e∑

k⃗,σ

εk⃗E
αvαd[f

s
k⃗
 +

1
3
ℏ2k2

m
f sk⃗
]. (4.175)

To calculate the sum over k⃗ on the right-hand side of (4.175) we replace, as usually,
the summation by integration. Consider the contribution of the first summand in the
square brackets of the formula (4.175)

− eEαvαd∑
k⃗,σ

εk⃗
𝜕f s
k⃗
𝜕εk⃗
= −eEαvαd

2m3/2

π2ℏ3

∞

∫
0

ε3/2
k⃗

𝜕f s
k⃗
𝜕εk⃗

dεk⃗ . (4.176)

Integrating by parts the integral over energy on the right-hand side of (4.176) andmak-
ing the determination of concentration n, we may write the following expression:

− eEαvαd∑
k⃗,σ

εk⃗
𝜕f s
k⃗
𝜕εk⃗
= eEαvαd

3
2
n. (4.177)

Similarly, doing a double integration by parts, we can find also the contribution of the
second term in the square brackets of the expression (4.175) to the rate of change of
the average energy of the electrons at the cost of the field,

−
1
3
eEαvαd∑

k⃗,σ

εk⃗
ℏ2k2

m
𝜕2f s

k⃗
𝜕ε2

k⃗

= −eEαvαd
5
2
n. (4.178)

Having summarized the results of (4.177), (4.178), we arrive at the final expression for
the rate of change of the kinetic energy under an action of the external field:

(
𝜕
𝜕t
⟨Ek⃗⟩)

field
= −eEαvαdn, (4.179)

n = (2mkBTk)
3/2

2π2ℏ3
F1/2(ζ /kBTk). (4.180)

If an external electric field does not give rise to impact-ionization of electrons in donor
impurities and there are no other reasons to believe that the electric field can lead to a
change in the concentration of the electrons in a crystal, then the following condition
must be fulfilled when the electric field is turned on:

(2mkBT)3/2

2π2ℏ3
F1/2(ζ0/kBT) =

(2mkBTk)3/2

2π2ℏ3
F1/2(ζ /kBTk). (4.181)

Such an equation may be regarded as the particle number balance equation.
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Now it would be advisable to derive an expression for determining the rate of
change of the kinetic energy of electrons due to interactions with a lattice. For that,
we multiply the equation (4.88) by εk⃗ and sum up over k⃗ and σ. As before, in deriving
the momentum balance equation we can combine the contributions of the first and
second square brackets on the right-hand side of (4.88). Summing the contribution of
the second square bracket calls for shifting the origin in the k⃗-space by an arbitrary
vector q⃗ by replacing k⃗ − q⃗ → k⃗. Then in accordance with the conservation law

εk⃗+q⃗ = εk⃗ + ℏΩq⃗

we have

(
𝜕
𝜕t
⟨Ek⃗⟩)

col
=
2π
ℏ
∑
k⃗σq⃗

|Cq⃗|
2ℏΩq⃗[(Nq⃗ + 1)fk⃗+q⃗(1 − fk⃗)

− Nq⃗fk⃗(1 − fk⃗+q⃗)]δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗). (4.182)

Further analysis shows that the right-hand side of the expression (4.182) is propor-
tional to the deviation of non-equilibrium temperature δTk = Tk − T from equilibrium
one. Since the temperature deviation is due to heating the electron system by the ex-
ternal electric field, the quantity δTk at least is proportional to the square of field in-
tensity. For this reason, the distribution functions fk⃗ in the square brackets of (4.182)
may be replaced by their symmetric parts f s

k⃗
. If you keep the second term on the right

side of (4.154), this would exceed the accuracy. Also, it is necessary to keep in mind
that we retain the quadratic terms in the external field in the equation for balancing
the kinetic energy.

Given the formulas similar to (4.158), the expression in the square brackets on the
right-hand side of (4.182) can be written as

I(k⃗, q⃗) = (Nq⃗ + 1)f
s
k⃗+q⃗(1 − f

s
k⃗ ) − Nq⃗f

s
k⃗ (1 − f

s
k⃗+q⃗)

= f sk⃗ (1 − f
s
k⃗+q⃗)Nq⃗[e

(β−βk)ℏΩq⃗ − 1]. (4.183)

The smallness of the parameter (β − βk)ℏΩq⃗ being taken into account, we can expand
the exponent into a series containing this parameter. Then we get for I(k⃗, q⃗)

I(k⃗, q⃗) = f sk⃗ (1 − f
s
k⃗+q⃗)Nq⃗ℏΩq⃗

1
kBT
(1 − T

Tk
). (4.184)

If one assumes that the electron–phonon scattering is quasi-elastic, then, inserting
this result into the formula (4.182), the rate of change of the average energy of electrons
due to collisions with a lattice is given by

(
𝜕
𝜕t
⟨Ek⃗⟩)

col
=
2π
ℏ
β∑
k⃗σq⃗

|Cq⃗|
2(ℏΩq⃗)

2Nq⃗f
s
k⃗ (1 − f

s
k⃗+q⃗)

× δ(εk⃗ − εk⃗+q⃗)(1 −
T
Tk
). (4.185)
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After performing simple calculations, by analogy with calculations of the momentum
relaxation time for scattering by longitudinal acoustic phonons, the rate of change of
the average energy of the electrons can be determined as

(
𝜕
𝜕t
⟨Ek⃗⟩)

col
=
8E20(kBTk)

3m4

π3ℏ7ρ
F1(ζ /kBTk)(1 −

T
Tk
). (4.186)

Collecting the results (4.179) and (4.186), one is led to the energy balance equation for
an electronic subsystem:

− eEαvαdn =
8E20(kBTk)

3m4

π3ℏ7ρ
F1(ζ /kBTk)(1 −

T
Tk
). (4.187)

Equations (4.156), (4.181) and (4.187) form a closed set of five equations to determine
the drift velocity components, the temperature of kinetic degrees of freedom of the
conduction electrons and the chemical potential.

4.2.4 Solving a set of balance equations. Applications of hydrodynamic approach

In case of the isotropic dispersion law and isotropic scattering, the momentum bal-
ance equation is indeed a scalar equation, since drift velocity of electrons vd is paral-
lel to an electric-field vector. Next, we extract the quantity vd from the equation (4.156)
and substitute this result into (4.187) which yields the following expression:

Q0
τ
τ0
=
25/2E20(kBT)

3/2m5/2

πρℏ4
F1(ζ /kBTk)
F1/2(ζ /kBTk)

(1 − T
Tk
). (4.188)

In writing the formula (4.188) we have used the quantity Q0 which has meaning of
power absorbed by the conduction electron system per an electron:

Q0 =
e2τ0
m

E2. (4.189)

In expression (4.188), the non-equilibrium chemical potential involves only as an ar-
gument of the Fermi integrals. If one restricts oneself to case of a nondegenerate elec-
tron gas and one makes use of the approximate equality

Fp(ζ /kBTk) = Γ(p + 1)e
ζ /kBTk , (4.190)

then it is easy to see that the dependence on the chemical potential ζ vanishes on the
right-hand side of the equation (4.188). According to formulas (4.167), (4.172) the ratio
τ/τ0 located on the left-hand side of the equation (4.188) can be written as

τ
τ0
≃ (

T
Tk
)
1/2
, (4.191)
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since the dependence τ0 and τ on chemical potential vanishes in the case of a non-
degenerate electron gas. Thus, in the case of a nondegenerate electron gas the equa-
tion (4.188) contains only one unknown parameter—the temperature of the kinetic de-
grees of freedomof the electron conductivityTk, so it can be easily solved. Substituting
the results (4.189), (4.190) into the formula (4.188) and introducing the notations:

Tk
T
= x, Γ = Q0ℏ

4ρπΓ(5/2)
25/2E20m5/2(kBT)3/2

, (4.192)

we obtain a quadratic equation for the unknown kinetic temperature,

x2 − x − Γ = 0, (4.193)

which has only the physically meaningful solution

Tk =
T
2
+ T√1/4 + Γ. (4.194)

Next, we estimate the magnitude of the deviation of the non-equilibrium tempera-
ture from equilibrium, assuming that Γ ≪ 1. For that, we expand the root in the for-
mula (4.194) into a series and restrict ourselves to only linear term over Γ. In this case,
introducing the relative temperature change δTk/T = (Tk − T)/T, we arrive at the fol-
lowing expression:

δTk
T
≃ Γ. (4.195)

For typical parameter values of semiconductor materials (m = 0.07m0, m0 – is free
electronmass,ρ = 5.8 g/cm3, s = 5 ⋅ 105 cm/s,E0 = 1.6 ⋅ 10−18 J,T = 4K), the estimation
of Γ by using the formulas (4.192), (4.189), (4.167) gives δTk/T ≃ 1.32.

Knowing the temperature of the kinetic degrees of freedom of the conduction
electrons, we can also determine the non-equilibrium chemical potential ζ . Using the
equation (4.181) for the case of the classical Maxwell–Boltzmann statistics, we have

(
Tk
T
)
3/2
= exp( ζ0

kBT
−

ζ
kBTk
),

or taking the logarithm of this expression, we get the final result:

ζ = ζ0
Tk
T
−
3
2
kBTk ln(

Tk
T
). (4.196)

It follows from the formula (4.196) that the chemical potential of the non-equilibrium
electrons does not depend on the drift velocity v⃗d in approximation in hand. In fact,
such dependence, of course, takes place and it can be easily defined. For that, the
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terms of the second order of smallness over the parameter ℏkαvαd/kBT in the for-
mula (4.154) need to be retained, but this would be a significant accuracy overesti-
mate.

Thus, we have just considered the problem of the electron system heating by an
external electric field and found expressions for the kinetic temperature (4.194),
the chemical potential (4.196) and the drift velocity (4.156) involved in the non-
equilibrium distribution function (4.146).

It is important to be noted that the deviation magnitude of the electron tempera-
ture Tk from the equilibrium temperature T not necessarily must be small (in fact, the
magnitude of δTk/T is not assumed to be small in deriving the balance equations for
momentum, energy and particle number).

Quite similarly, we could have considered the case of a degenerate electron gas
(this problem is proposed to the reader as a self-guided work).

Let us now go over to discuss potential applications of the developed theory for
solving various problems of physical kinetics.

4.2.5 Negative differential resistance

From a practical point of view, it is important to find such conditions when charge
carrier heating would lead to the appearance of a segment with negative values of
dJ/dE on a voltage–current characteristic. Here J is the electric current density; E is
the intensity of the electric field applied to a specimen. Sucha situationmayarise if the
current density vector ⃗J is antiparallel to the electric field E⃗ intensity or these vectors
are parallel to each other but the density of the electric current inside the specimen
decreases as the electric field increase.

The first case has to do with negative resistance, and the second one is related to
the negative differential resistance (NDR).

Negative differential resistancemay be observed experimentally either by control-
ling the current passing through the specimen (Figure 4.6(a)) (a large additional resis-
tance R is series-connected with the specimen in the circuit) or by controlling the volt-
agemeasured across the specimen that is connected in parallel with a large additional
load-resistance RH (Figure 4.6(b)).

Figure 4.6(a) illustrates an S-shaped nonlinear voltage–current characteristic and
Figure 4.6(b) an N-shaped one. To control the current J, flowing through the specimen
with a series-connected resistance r, the condition R ≫ r must be met. Similarly, in
the case (b) the condition RH ≫ r must be fulfilled.

The simplest way required to observe NDR is to control the current passing
through the specimen (Figure 4.6(a)). Then the magnitude of the electric field in-
tensity E⃗ inside the specimen and the kinetic temperature Tk current-dependent. The
power P, transmitted by the electron system to the lattice coincides with the Joule
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Figure 4.6: S-shaped (a) and N-shaped (b) nonlinear voltage–current characteristics and their mea-
surement schemes under the controlled voltage and current conditions. The resistance r is a speci-
men.

power loss:

P = σE2, E = (P
σ
)
1/2
. (4.197)

On the other hand, the same power can be expressed via the current density

J2 = σP, J = (σP)1/2. (4.198)

Under conditions of heating of an electron gas, as it appears from the formula (4.172)
σ ∼ τ ∼ Tmk for the case of the Maxwell–Boltzmann statistics, where m is some expo-
nent, and according to (4.187) the power transferred by electrons to the lattice has the
following temperature dependence:

(
𝜕
𝜕t
⟨Ek⃗⟩)

col
≡ P ∼ (Tk − T)T

n
k . (4.199)

Substituting the expected temperature σ and P dependence into the equations for the
field strength E (4.197) and magnitude of the current J (4.198), we obtain

E ∼ [(Tk − T)T
n−m
k ]

1/2, J ∼ [(Tk − T)T
n+m
k ]

1/2. (4.200)

It follows from (4.200) that, if the conditions n − m > 0 and n + m > 0 are met, then
E and J increase as Tk rises. Consequently, dJ/dE is positive. If, however, n −m < 0
and n + m > 0, as the current increases and, consequently, the temperature Tk, the
electric field intensity will decrease. Such a situation corresponds to a segment with
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negative differential resistance on the voltage–current characteristic. In this case, the
resulting volt–ampere curve is S-shaped. In particular, it is easy to see that the condi-
tions for the NDR-segment to appear are satisfied if the momentum relaxation is due
to the interaction of electrons with impurities (m = 3/2), and the relaxation energy is
determined by the piezoelectric scattering by acoustic phonons (n = −1/2).

In fact, the NDR-phenomenon occurs along with the development of instabilities
in a homogeneous semiconducting crystal. In particular, theNDR-segment of the volt–
ampere curve (under conditions of the controlled current flowing through the speci-
men) exhibits so-called “pinching” of the current. In the plane of the longitudinal
cross-section of the specimen there arise one or several channels with a lower electric
resistance, which essentially shunts the specimen.

Undermeasured voltage conditions, an instability of a different nature appears. In
other words, regions (domains) with high and low electrical resistance are formed in
the specimen. The total voltage-drop occurs across the high resistance domains. These
domains travel through the specimen under an action of the electric field; thus peri-
odic electrical oscillations take place. The generator of microwave oscillations may
serve as a case in point of practical application of this phenomenon (Gunn diodes).

The Gunn diode is a uniform semiconductor device which generates microwave
oscillations when a direct electric field is applied to the device. The Gunn diode is
based on the Gunn effect, which is to generate high-frequency oscillations of the
electric current passing through the uniform semiconductor with an N-shaped volt–
ampere characteristic. The Gunn effect was discovered by American physicist Gunn
in 1963 in a crystal made of gallium arsenide with electrical conductivity of n-type.

As the electric field E > 2–3 kV/cm is applied to the homogeneous device made of
gallium arsenide of n-type, spontaneous current oscillations appear. In the specimen,
usually near cathode, there is a small part of a strong field (“domain”) which drifts
from the cathode to the anode with the velocity vd ≃ 107 cm/s and disappears at the
anode. Then a new domain is formed at the cathode and the process is periodically
repeated. When the current flowing through the specimen falls down, this moment
corresponds to appearance of the domain. When the current is restored to previous
value, it stands for disappearance of the domain at the anode. The period of the cur-
rent oscillations is approximately equal to the transit time, i. e. to the drift-time of the
domain from the cathode to the anode.

From the standpoint of highly non-equilibrium thermodynamics, the occurrence
of electric current pinches (domains) in a uniform semiconductingmaterial is the typ-
ical example of self-organization and emergence of non-equilibrium structures.

It can be shown that, if a local fluctuation of the current density arises in the semi-
conductor with an S-shaped V–I curve within the NDR-segment, this fluctuation does
not decay, as in a normal material, but grows only. This causes the current pinching.
In complete analogy, if the fluctuations result in appearing of the local region with
a larger value of the electric field than in neighboring regions in the semiconductor
with an N-shaped voltage–current characteristic, this region does not disappear, but
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extends only. Consequently, a strong field domain is formed. In this regard, a semi-
conductor is an active medium provided that the negative differential resistivity con-
ditions are achieved.

Further discussion of the phenomena occurring in semiconductors due to heat-
ing of conduction electron by an external electric field goes beyond the scope of the
present course. More detailed information on hot electrons can be found in themono-
graph by Conwell [27]. References [33, 34] are devoted to the research of instability
processes arising in electronic conductor plasma.

The effective parameter method developed in this chapter enables solving the
quite wide range of problems of physical kinetics associated with the transfer of en-
ergy between subsystems in a crystal. Next, we can list examples of such problems:
the Feher effect that is a dynamic nuclear polarization by an electric current; the effect
of the change in resistance in semiconductors under a saturation of the paramagnetic
resonance of impurity centers (the effect allows simple electric schemes for detecting
the resonance to be used); the Overhauser effect, which is dynamic nuclear polariza-
tion under a saturation of the paramagnetic resonance by free electrons in metals or
semiconductors.

A complete analysis of these problems also goes beyond the scope of the course.
Nevertheless, in Chapter 6, devoted to the non-equilibrium statistical operator meth-
od, we will apply the method for generating the balance equations of momentum,
energy and the number of particles for the interpretation of the Overhauser effect.

Problem 4.6. Obtain an expression for an inverse relaxation time of hot electrons,
assuming that the scattering of current carriers occurs by charged centers with a
screened Coulomb potential.

Solution. Using the scheme (Figure 4.4) of electron transitions between the states k⃗,
k⃗ + q⃗, we write down the rate of change of a distribution function in the state k⃗ due
to interaction with the scatterers. Taking into account the Hamiltonian (4.81) as the
Hamiltonian of interaction with the scatterers, we get the following expressions for
the quantum-mechanical transition probability (by analogy with (4.87)):

1.Wk⃗+q⃗k⃗ =
2πt
ℏ
∑
q⃗
|Gq⃗|

2⟨k⃗ + q⃗
e
iq⃗ ⃗r k⃗⟩

2⟨ρqρ−q⟩impδ(εk⃗+q⃗ − εk⃗),

2.Wk⃗k⃗+q⃗ =
2πt
ℏ
∑
q⃗
|Gq⃗|

2⟨k⃗
e
−iq⃗ ⃗r k⃗ + q⃗⟩


2⟨ρqρ−q⟩impδ(εk⃗+q⃗ − εk⃗).

If one considers the determination of ⟨ρq⟩ (4.81), it is easy to see that the average over
the states of the scatterers is

⟨ρqρ−q⟩imp = Ni,

where Ni is the number of impurity centers per unit volume.
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To find the rate of change of the number of particles in state k⃗ under the influence
of collisions, quantum-mechanical probability transitionsmust bemultiplied both by
occupation probability that the initial state is occupied and the probability that the
final state is unoccupied. As a result, we have

𝜕fk⃗
𝜕t

st
=
2π
ℏ
Ni∑

q⃗
|Gq⃗|

2[fk⃗+q⃗ − fk⃗]δ(εk⃗+q⃗ − εk⃗). (4.201)

Unlike the case of scattering by phonons, it does notmake sense to consider the transi-
tions numbers 3 and 4 in the formula (4.87) because the summation in (4.201) is being
produced over all possible values of q⃗.

By analogy with (4.152), we build the balance equation of momentum:

𝜕
𝜕t
⟨P⃗α⟩col =

2π
ℏ
Ni ∑

k⃗σq⃗

ℏkα|Gq⃗|
2[fk⃗+q⃗ − fk⃗]δ(εk⃗+q⃗ − εk⃗).

Replacing first the summation indices k⃗ + q⃗ → k⃗, k⃗ → k⃗ − q⃗ in the second summand
proportional to q⃗ → −q⃗, we obtain

𝜕
𝜕t
⟨P⃗α⟩col = −

2π
ℏ
Ni ∑

k⃗σq⃗

ℏqα|Gq⃗|
2fk⃗+q⃗δ(εk⃗+q⃗ − εk⃗). (4.202)

Now, it is necessary to separate the terms linear in the drift velocity on the right side
of (4.202). Since the distribution function involves the drift velocity, we expand the
latter in a Taylor series retaining only linear members. Substituting this expansion
(see (4.154)) in the expression that determines the rate of change of the average elec-
tron momentum due to collisions, we can rewrite the right-hand side of (4.202) as

𝜕
𝜕t
⟨P⃗α⟩col =

2π
ℏ
Ni ∑

k⃗σq⃗

1
3
(ℏq)2|Gq⃗|

2f k⃗+q⃗v
α
dδ(εk⃗+q⃗ − εk⃗). (4.203)

Considering the momentum balance equation (4.154), the final expression for an in-
verse momentum relaxation time of hot electrons has the form

1
τ
= −

2π
ℏ

1
3nm

Ni ∑
k⃗σq⃗

(ℏq)2|Gq⃗|
2f k⃗+q⃗δ(εk⃗+q⃗ − εk⃗). (4.204)

4.3 Problems to Chapter 4

4.1. Estimate numerical values of an electric E andmagneticH fields, a temperature
gradient T to describe in the semi-classical form conduction electrons with the
characteristic relaxation time of momentum τ ≈ 10−13 s in semiconductors and
metals.
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What value of the external magnetic field strength is responsible for a strong
one, and what one for quantizing? In estimating assume that the mass of the
conduction electrons is equal to the mass of a free electron; the velocity of the
electrons in semiconductors is equal to the average thermal velocity of motion,
but in metals to the velocity at the Fermi surface.

4.2. As far as the kinetic equation (4.13) is concerned, the correction to a distribution
function is to be sought in the form

f1 = −
𝜕f0
𝜕εp⃗
(v⃗ ⃗χ(εp⃗)),

where ⃗χ(εp⃗) is an unknown only energy-dependent function.
Prove that the correction can be written as (4.24) in the presence of a gradient
of electrochemical potential −(φ + 1/eζ ), a temperature gradient �⃗�T and an
external constant magnetic field h⃗H.

4.3. Using the expressions (4.112)–(4.114), estimate numerically both the contribu-
tion to the diffusion component thermopower and the electron–phonon drag
effect for the Herring momentum relaxation mechanism.
Define the material parameter values and experimental conditions when the
phonon drag contribution is dominant.

4.4. Using the definition of the Maggi–Righi–Leduc effect (1.73), (4.125) and the ex-
pressions (4.118)–(4.120) for charge and heat fluxes in a magnetic field, obtain
a numerical estimate for the change in the thermal conductivity coefficient in
the magnetic field under a strongly degenerate electron gas.

4.5. Utilizing the expression (4.139) for the transverse Nernst–Ettingshausen effect
in the case of a nondegenerate electron gas, show that the effect is positive for
neutral impurity scattering (r = 3/2) and has a negative sign for scattering by
long-wavelength acoustic oscillations (r = −1/2), which can be applied to deter-
mine the dominant momentum relaxation mechanism in a specimen.

4.6. Derive an expression for the collision integral

𝜕fk⃗σ
𝜕t

col
,

taking into account the interactionbetween electrons andmagneticmoments of
impurity centers or nuclei. In deriving the collision integral, one should resort
to the contact electron-nuclear interaction Hamiltonian (6.150), having written
it down preliminarily via the cyclic components Sz , S+ = 1/2(Sx + iSy), S− =
1/2(Sx − iSy) for the electron spin operators. The transition to the cyclic compo-
nents should be performed for the nuclear spins as well. To simplify the deriva-
tion, consider the collision integrals for functions fk↑, fk↓ separately. Arrows in-
dicate the direction of the electron spin relative to the orientation of an external
magnetic field.
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4.7. Using the expression (4.204), define the temperature dependence of the reverse
relaxation time of the average momentum of conduction electrons in scattering
the latter by a screened Coulomb potential in the cases of a nondegenerate and
degenerate electron gas. Estimate numerically the inverse relaxation time.

4.8. Find the region for wave vectors of acoustic phonons that interact effectively
with conduction electrons in quasi-elastic scattering processes. Answer the
question: How does the size of the region depend on the degree of degeneracy
of an electron gas?

4.9. With the typical values of semiconductor material parameters m = 0.07m0,
ρ = 5.8g/cm3, s = 5 ⋅ 105 cm/s, E0 = 1.6 ⋅ 10−18 J, T = 4K of energy and mo-
mentum relaxation of electrons by acoustic phonons, evaluate the electric field
strength to take into account the deviation of kinetic electron temperature from
equilibrium. It must be borne in mind that slight relative changes in the kinetic
temperature (a few percent) can already be experimentally observed.

4.10. Define the temperature dependence of the inverse relaxation timeof the average
energy of electrons in scattering the latter by optical phonons. The interaction
Hamiltonian can be written as (4.76)

Hep =∑
q⃗
Cq⃗{bq⃗e

iq⃗ ⃗r + b+q⃗e
−iq⃗ ⃗r}; |Cq⃗|

2 =
E20ℏ
2ρΩ0
,

where Ω0 is the optical phonon frequency.
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5 Theory of linear response to an external
mechanical perturbation

5.1 Electrical conductivity of an electron gas. The Kubo method

5.1.1 The Liouville equation and its solution

A quantum system can exist in a pure or mixed state. If the system is in a pure state,
it can be described by a wave function ψ, which obeys the Schrödinger equation:

iℏ𝜕ψ
𝜕t
= Hψ, (5.1)

where H is the Hamiltonian of the system, ℏ Planck’s constant.
The quantum-mechanical average of the operator of some physical quantity A in

the state described by the wave function ψ is given by the expression ⟨A⟩ = ⟨ψ|A|ψ⟩.
After averaging, the resulting physical quantities must be real. This leads to the fact
that operators of the physical quantities are Hermitian and satisfy the condition
A+ = A, A+ = Ã∗, where the tilde sign stands for transposition; an asterisk, as usu-
ally, means the complex conjugate of elements of a matrix. From the standpoint of
quantummechanics, a description of the system in terms of the wave functions is the
most complete and in some sense corresponds to the description of particles in terms
of trajectories in classical mechanics.

Let us now define the notion of a mixed state in the framework of the quantum
theory. Consider a subsystem that is a part of some large system being in the pure
state. Let a set of coordinates x describe the subsystem under study. A multitude of q
is of the rest of coordinates of the closed system. The wave function ψ(q, x) depends
on the variables x and q and does not fall into the product of functions depending on
the above-mentioned coordinates. For this reason, the small system of interest does
not have a wave function, so quantummechanics cannot describe such systems with
maximum possible completeness.

We compute, again, the average value of the operator A, which belongs to the
small system, and acts only on variables of x. Generalizing the results obtained for
pure states, one is led to

⟨A⟩ = ∫ψ∗(q, x)Aψ(q, x) dq dx. (5.2)

For practical applications, we introduce a more convenient definition for the aver-
age (5.2). We define a complete set of eigenfunctions φn(x) of some operator, such
as the Hamilton operator for the selected subsystem. For the rest of the system one
should define a similar set of θn(q). Then it is obvious that the wave function ψ(q, x)
can be expanded into a series

ψ(q, x) = ∑
n,m

Cnmφn(x)θm(q). (5.3)

https://doi.org/10.1515/9783110727197-005
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Substituting this result into (5.2), we get

⟨A⟩ = ∑
nm;ij

C∗inCjm ∫ θ
∗
i (q)θj(q) dq∫φ

∗
n (x)Aφm(x) dx. (5.4)

Given that the eigenfunctions θi(q) and θj(q) are orthonormal, we obtain

⟨A⟩ = ∑
n,m;j

Cn(j)
∗Cm(j)Anm. (5.5)

To proceed, it should be noted that the Cn(j)∗ and Cm(j) coefficients depend on the
variable j, related to the large system, which gives

∑
j
Cn(j)
∗Cm(j) =∑

j
W(j)a∗n (j)am(j) = ρmn. (5.6)

The quantity ρmn introduced above bears the name of a density matrix. To understand
better the physical meaning of the density matrix one should regard the diagonal ma-
trix elements

ρnn =∑
j
W(j)a∗n (j)an(j), (5.7)

which can be easily interpreted. Indeed, let the state of the small system be a mix-
ture of pure states which are numbered by the index j. Then the quantityW(j) has the
meaning of the probability of the state j and the product of a∗n (j)an(j) stands for the
probability of the n-th eigenvalue for the j-th pure state. The quantity

ρnn =∑
j
W(j)a∗n (j)an(j)

has the meaning of a location probability system the n-th stationary state which can
observe in any of the possible pure states of the system. Using the definition (5.6), we
can write the average value of A simply enough:

⟨A⟩ = ∑
n,m

ρmnAnm. (5.8)

Now, let the operator A be equal to a unit operator. The average value of such an op-
erator is, obviously, equal to unity. Therefore, instead of the formula (5.8), we have

∑
n
ρnn ≡ Sp{ρ} = 1. (5.9)

The latter result is obvious because a diagonal matric element of the density matrix
also has themeaning as noted above of the probability of finding the system in the n-th
stationary state. The probability of being in one of the possible states of the complete
set of states is unity.
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Looking ahead, it would be appropriate to give immediately amodel of a system in
contact with a heat bath. The wave functions φn(x) are assumed to be eigenfunctions
of the Hamilton operator: Hφn = Enφn, where En is eigenvalues of the energy system.
In this case, the probability of the system to be in a mixed state with the energy value
En is determined by the Gibbs distribution:

ρnn =
exp(−En/kBT)
∑m exp(−Em/kBT)

.

In quantum mechanics, pure and mixed states differ fundamentally. If a system was
in a pure state at some instant of the time t, then, by virtue of the linearity of the
Schrödinger equation, it will remain in the pure state throughout evolution. Actually,
the pure states are an idealization and, apparently, cannot be implemented if the sys-
tem interacts with its environment.

An interesting relationship of pure andmixed states arises in connection with the
measurement problem.

Assume that we have a system that is in a pure state with the wave function
ψ = ∑n CnUn, where Un is for the eigenfunctions, for example, an energy operator.
For a pure state, a normal quantum-mechanical average

⟨A⟩ = ∑
n,m

C∗nCm ∫U
∗
n (x)AUm(x) dx

can bewritten by using the definition of the average (5.8). Hence there follows a simple
expression for components of the density matrix of the system in a pure state:

ρmn = C
∗
nCm. (5.10)

Next, we perform measurements of energy in an ensemble of identical systems. It is
obvious that the probabilities Pn of being the system with values of the energy E = En
can be found by making multiple measurements. Thus, the result of such a measure-
ment will be a mixed state, which is described by another density matrix, which does
not coincide with the original one. This is clear from re-computing the average value
of the operator

⟨A⟩ =∑
n
Pn ∫U

∗
n (x)AUn(x) dx. (5.11)

Upon comparing the last two outcomes, we can see that the density matrix has re-
duced. The matrix has lost off-diagonal elements, which lead to interference of states
with different values of n in the pure state. The situation here bears a complete similar-
ity to the case of two coherent sources of light when the electric field intensity vectors
are added up at some point in space. For incoherent sources, however, the squares of
the intensities are added up, and so the interference disappears.
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Thus, in the course of measurements, the pure state evolves into mixed and in-
formation about the system is lost. Since the information loss means an increase of
entropy, there arises a situation when the measurement process, as in classical me-
chanics, leads to the appearance of an irreversible behavior which increases the en-
tropy. We have no way of dwelling on this crucial but very far from solved measure-
ment problem in quantum mechanics; so, we refer the reader to the monograph by
Prigogine [35], where one can find other sources on this subject.

Let us deduce an equation ofmotion for the densitymatrix. To do this, one should
differentiate the expression (5.7) over time:

𝜕
𝜕t
ρmn(t) =∑

i
W(i)[
𝜕a∗n (i, t)
𝜕t

am(i, t) + a
∗
n (i, t)
𝜕am(i, t)
𝜕t
]. (5.12)

For the equations for the coefficients an to be obtained, one should recollect that
the wave function of each pure state ψ(i) = ∑k ak(i)ψk in the mixture obeys the
Schrödinger equation

iℏ𝜕ψ(i)
𝜕t
= Hψ(i), (5.13)

where the ψk are time-independent eigenfunctions of an operator. Substituting the
value of the wave function ψ(i) in (5.13), we arrive at the equation for the coeffi-
cients an:

iℏ∑
k

𝜕ak(i)
𝜕t

ψk = H∑
k
ak(i)ψk . (5.14)

Multiplying this equation by ψ∗m and integrating with regard to orthonormality of the
eigenfunctions ψn, we get

iℏ𝜕am(i)
𝜕t
=∑

k
∫ψ∗mHψk dvak(i). (5.15)

By analogy, the equation for the complex-conjugate coefficient can be written as

− iℏ
𝜕a∗n (i)
𝜕t
=∑

k
∫ψnH

∗ψ∗k dva
∗
k (i). (5.16)

Substituting the expressions (5.15), (5.16) into the equation of motion of the density
matrix (5.12) and taking into account the Hermitian operator of energy, we obtain

𝜕
𝜕t
ρmn(t) =

1
iℏ
(Hmkρkn − ρmkHkn). (5.17)

Going over from the matric notations to the operator ones and using the definition of
the Liouville operator iL,

iLA = 1
iℏ
[A,H], [A,H] = AH − HA, (5.18)
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we obtain the Liouville equation for quantum systems:

𝜕
𝜕t
ρ(t) + iLρ(t) = 0. (5.19)

Equation (5.19) allows the value of ρ(t) to be determined at all following instants of
time, provided that the value of ρ(t0) is set in some initial time t0.

It should be emphasized that the equation of motion for the density matrix differs
by sign from the equation of motion for the operator in the Heisenberg picture:

d
dt
A(t) = iLA(t), A(t) = exp(i/ℏHt)A exp(−i/ℏHt). (5.20)

The Liouville equation is time reversible and as in the case of classical mechanics, its
solutionwould give themost complete description of the system. It should not be sup-
posed, however, that the exact solution of the Liouville equation gives a possibility to
describe irreversible dynamics ofmacroscopic systems properly. The problem ismuch
more complicated. Chapter 1 often stressed that the irreversible behavior for classical
systems exhibits weak stability of solutions responsible for the evolution of a phase
point in the phase space. In the case of quantum systems, there is no such clarity but
the situation seems to be similar. So, there is no point in striving to obtain the exact
solution of the Liouville equation. A physically meaningful result can be reached only
by a coarse-grained description. For this reason, such a kind of description plays an
increasingly important role in all existing modern methods of non-equilibrium statis-
tical mechanics. This and subsequent chapters review how to construct the descrip-
tion of the non-equilibrium systems by means of the best-known quantum-statistical
approaches.

5.1.2 Linear response of a dynamical system to an external field

Let us consider a system described by a Hamiltonian H as regards how it reacts to
the switching on of an external perturbation being defined by the correction to the
Hamiltonian HF(t):

HF(t) = −AF(t)e
ϵt , ϵ → +0, (5.21)

where A is an operator of the interaction with an external field, F(t) is a C-numerical
function which characterizes amplitude of the external effects. The perturbation of
the type (5.21), which can be given by the correction to the Hamiltonian, usually is
referred to asmechanical one. There is a whole class of external effects, which cannot
be reduced to a mechanical force and cannot be written in the form of (5.21). Such
perturbations are called thermal.
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Wesuppose that the external field is turnedonat themoment time t → −∞. Before
switching on the external field, the system was in equilibrium and was described by
the equilibrium statistical operator

ρ0 =
1
Z
e−β(H−ζN), Z = Sp{e−β(H−ζN)}, (5.22)

whereN is the particle number operator. After switching on the external field, the sys-
tem will deviate from thermodynamic equilibrium and be described by the statistical
operator ρ(t). It is of interest to find how an average value of a physical quantity B is
changed after switching on the external field.

To answer this question, first the explicit form of the statistical operator ρ(t) is to
be found. The operator must satisfy the Liouville equation,

𝜕ρ(t)
𝜕t
+ [iL + iLF(t)]ρ(t) = 0, (5.23)

with the boundary condition

lim
t→−∞

ρ(t) = ρ0. (5.24)

The operators iL and iLF(t) involved in (5.23) are defined by the relation

iLR = 1
iℏ
[R,H], iLF(t)R =

1
iℏ
[R,HF(t)], (5.25)

where R is an arbitrary operator, [A,B] = AB − BA.
Next,wederive a formal solutionof the equation (5.23), assuming that the external

field is weak. For that purpose, one should write ρ(t) as

ρ(t) = ρ0 + ρ(t). (5.26)

Then we linearize the equation (5.23), holding thatHF(t) andρ(t) are small values. It
should be understood that the smallness of operator quantities stands for the small-
ness ofmatric elements in the representation of the diagonal operators. The linearized
equation has the form

𝜕ρ(t)
𝜕t
+ iLρ(t) + iLF(t)ρ0 = 0. (5.27)

We multiply the equation (5.27) by the evolution operator eiLt, defined by the relation

eiLtR = ei/ℏHtRe−i/ℏHt . (5.28)

As a result, we obtain the equation

𝜕
𝜕t
eiLtρ(t) = −ieiLtLF(t)ρ0. (5.29)

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



5.1 Electrical conductivity of an electron gas. The Kubo method | 203

Next, integrating the above equation within the limits from −∞ to t and taking into
account the boundary condition (5.24), we find the solution

eiLtρ(t) = −i
t

∫
−∞

dteiLt

LF(t
)ρ0. (5.30)

To arrive at the non-equilibrium statistical operator ρ(t) in the explicit form, we mul-
tiply both sides of the equation (5.30) by the evolution operator e−iLt . Then we make a
change of variables in the integral term putting t − t = t1. The use of (5.26) yields the
desired value of the statistical operator:

ρ(t) = ρ0 − i
0

∫
−∞

eiLt1LF(t + t1)ρ0 dt1. (5.31)

The substitution of the expression (5.21) for the operator HF(t) gives rise to another
form of this result,

ρ(t) = ρ0 +
0

∫
−∞

eϵt1eiLt1 1
iℏ
[ρ0,A] F(t + t1) dt1. (5.32)

By applying the result obtained we can find a change in the average value⟨B⟩t of the
operator of a physical quantity B due to the action of an external force:

⟨B⟩t = Sp{Bρ(t)} − Sp{Bρ0}. (5.33)

For practical applications, the Fourier transform of the representation is convenient
of the time t for the response function of the system to an external perturbation. For
that, one should perform the Fourier transform over time t:

⟨B⟩t =
∞

∫
−∞

dωe−iωt⟨B⟩ω,

F(t) =
∞

∫
−∞

dωe−iωtF(ω). (5.34)

The Fourier-image of the response to the external impact⟨B⟩ω and the Fourier-image
of the external force F(ω), obviously, are determined with the inverse Fourier trans-
form. Using the results of (5.32), (5.33), we can write down the following expression:

⟨B⟩ω =
0

∫
−∞

e(ϵ−iω)t1 Sp{BeiLt1 1
iℏ
[ρ0,A]} dt1F(ω). (5.35)
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The formula (5.35) allows one to investigate the system’s response to the external field
when a mechanical perturbation does not lead to the development of thermal per-
turbations in the system. In this sense, an iterative procedure of solving the equa-
tion (5.23) holds only at the first step, since a correction of a second order for theHF(t)
is already incorrect, if thermal disturbances induced by the mechanical force are not
taken into account. Electron heating and energy transfer processes between various
subsystems of a crystal may serve as a case in point of such a perturbation. Such a
situation is similar to the analysis done for the energy balance equations for different
subsystems of the crystal in the previous chapter.

Although the solution of (5.23) can be formally constructed as a series in pow-
ers of HF(t), as was done by Kubo in his original paper, it may make sense only for
an impulsive disturbance. In this case, if the pulse duration is small enough, the sys-
tem of electrons can be considered as isolated and thermal perturbations may be not
taken into account, since the time required for their formation is of the order of the
relaxation time for this energy in the system. The interval of time is usually one to two
orders of magnitude more than the momentum relaxation time. Moreover, even if the
perturbation is assumed to be weak and we can restrict ourselves to only a linear ap-
proximation of the external force, the applicability of the result (5.35) to an analysis of
real physical systems apparently is not self-evident.

Indeed, before switching on the interaction at the instant of time t → −∞, the sys-
temwas described by a Gibbs grand canonical distribution and, consequently, was in
contact with a heat bath. After switching on the interaction, the statistical operator
ρ(t) satisfies the equation (5.23), which involves only a system’s Hamiltonian, and the
Hamiltonian of the heat bath is absent. This implies that the separation of the sys-
tem from the heat bath is occurring at the very moment when the external field be-
gan acting. In practice, of course, one fails to implement such a separation, therefore,
the desired solution is valid provided that the difference in thermodynamic charac-
teristics between the isolated system and system in contact with the heat bath can be
neglected.

In conclusion, we consider the important issue of the irreversible the time-
evolution of the statistical operator. In the kinetic Boltzmann equation the irreversibil-
ity occurs due to the irreversible time behavior of a collision integral. Consequently,
this equation is time-irreversible beforehand.

In contrast to the kinetic equation, the Liouville equation is reversible in time. The
irreversibility is due to the boundary condition (5.24). It is such a method that builds
a time-irreversible solution of the Liouville equation in the original work by Kubo and
most presentations of this work [36]. The same result can be achieved by an equiv-
alent but more explicit way by introducing the infinitely small source −ϵ(ρ(t) − ρ0)
into the right-hand side of the Liouville equation (5.23). The source can be interpreted
as an integral of collisions between an isolated system and the environment and be
the cause of the relaxation non-equilibrium statistical distribution to equilibrium (the
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quantity ϵ → 0 after calculating the averages). This proves to be sufficient to obtain
the time-irreversible solution of the Liouville equation and to take into consideration
chaos effects on the part of the heat bath. The infinitesimal source on the right side of
the Liouville equation serves for removing the degeneracy with respect to time rever-
sal.

Let us obtain the solution of the Liouville equation with the infinitesimal source
on the right side:

[
𝜕
𝜕t
+ iL + iLF(t)]ρ(t) = −ϵ(ρ(t) − ρ0), (5.36)

assuming now that

HF(t) = −AF(t). (5.37)

We show that one can obtain the solution (5.32) using the above definition. For this
purpose, as before, we introduce the correction ρ(t), using the relation (5.26) and
linearize the equation (5.36) over the small parametersHF(t) andρ(t). The left side of
the linearized equation will coincide with the left-hand side of the equation (5.27) and
the right side will have the infinitely small sources −ϵρ(t). Multiplying this equation
by e(ϵ+iL)t, we can rewrite the linearized equation (5.36) as follows:

𝜕
𝜕t
eϵteiLtρ(t) = −ieϵteiLtLF(t)ρ0. (5.38)

Integrating this equation within the limits from (−∞ to t), we get the equation analo-
gous to (5.30):

eϵteiLtρ(t) = −i
t

∫
−∞

eϵt

eiLt

LF(t
) dtρ0. (5.39)

In deriving the equation (5.37) by virtue of the finiteness the parameter ϵwehave taken
into account that

lim
t→−∞

eϵteiLtρ(t) = 0.

The operator iLF(t) in the formulas (5.38), (5.39) is defined by the Hamiltonian (5.37).
Multiplying the equation (5.39) by e−(ϵ+iL)t and performing the change of variables t −
t = t1 in the integral term, we indeed get the formula (5.32).

Thus, the equations (5.23) and (5.36) are essentially equivalent, however, the use
of the equation (5.36) is physically more justified, since it takes into account the inter-
action with the heat bath, albeit in an idealized form.
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5.1.3 Calculation of electrical conductivity

Consider a calculation of electrical conductivity of electrons interactingwith phonons
as an example of using the Kubomethod. Let the system be described by the Hamilto-
nian

H(t) = H + HF(t), H = H0 + Hep, (5.40)

where H0 is the operator of the non-interacting electron and photon subsystems

H0 = Hk + Hp, Hk =
P2

2m
, Pα =

N
∑
j
pαj , (5.41)

Hep is the operator of the electron–phonon interaction. An explicit form for most
mechanisms of the electron–phonon interaction can be specified in the form of (4.76);
pαj is the α-projection of the momentum operator of the j-th electron.

The summation in the formula (5.41) is being performed over all electrons in a
conduction band. The Hamiltonian of the interaction of electrons with an external
electric field is given by

HF(t) = −eX
αEα(t), Xα =∑

j
rαj , (5.42)

where rαj is the operator of the α-projection of a coordinate of the j-th electron, E
α the

α-projection of the amplitude of the external electric field.
Recollecting the phenomenological relationship Jα(ω) = σαβEβ(ω) between the

electric current density and electric field intensity and also the result (5.35), we write
down the expression for the conductivity tensor,

σαβ(ω) =
e2

m

0

∫
−∞

e(ϵ−iω)t1 1
iℏ
Sp{Pα[ρ0,X

β(t1)]} dt1. (5.43)

In deriving the formula we have put in use the equality B = Jα = −ePα/m. It fol-
lows from the expression (5.43) that the electrical conductivity of an electron gas is
expressed in terms of a correlation function defined for the system being in equilib-
rium. This physically means that processes responsible for the relaxation time of the
average electron momentum, causing the electrons to drift in the electric field and for
the decay time of fluctuations of the average momentum of the electrons in equilib-
rium are the same.

In contrast to a kinetic equation, where an expression for a correction to the distri-
bution function virtually allows all kinetic coefficients to be immediately calculated,
the use of a formal solution of the Liouville equation (5.32) only leads to the problem
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of computing the quantum correlation functions. Thus, instead of solving the compli-
cated integro-differential kinetic equation, in the Kubo theory there arises the prob-
lem to “disentangle” temporal correlation functions. The correlation function on the
right-hand side of the equation (5.43) may serve as a case in point of such a temporal
correlation function.

To calculate the electrical conductivity σαβ(ω), we use the Green function method
[36, 37].

One should explain why only in this method one needs to find the value of the
conductivity σαβ(ω). The problem here is that the expression (5.43) involves the full
Hamiltonian H both for the statistical operator ρ0 and for the evolution operator that
determines the time-dependence of the electron coordinate operator Xβ(t1). As far as
one fails to find eigenfunctions and eigenvalues of the Hamiltonian, an accurate cal-
culation of the correlation function is impossible. The attempt to expand both the sta-
tistical operator ρ0 and the evolution operator eiLt1 into a power-series of the operator
of the electron–phonon interactionHep in any finite-order in perturbation theory gives
rise to awrong result. It follows from the outcomes obtained on the basis of the kinetic
equation that σ ∼ τ ∼ 1/H2

ep as the expansion of the correlation function into a series
in powers of Hep gives some polynomial dependence on the constant of the electron–
phonon interaction.

The correct result can be reached by summing up some infinite sequence of terms
of a series in the perturbation theory. In addition, this infinite sequence must come to
an infinite decreasing geometric progression amenable to convenient summation. It is
the Green function method that improves both the diagram technique and the mass-
operator method. These enable one to perform easily enough a similar summation of
an infinite series in perturbation theory.

Defining the Green function Gαβ(t1) by the relation

Gαβ(t1) = θ(−t1)e
ϵt1 1
iℏ
Sp{PαeiLt1[ρ0,X

β]},

θ(x) = { 1, x ≥ 0
0, x < 0,

(5.44)

we write down the expression for electrical conductivity:

σαβ(ω) =
e2

m

∞

∫
−∞

e−iωt1 1
iℏ
Gαβ(t1) dt1 =

e2

m
Gαβ(ω), (5.45)

whereGαβ(ω) is the Fourier transformof theGreen function (5.44). Since in accordance
with (5.45), the Fourier transform of the Green function is proportional to the electrical
conductivity, a further goal is to find the quantity Gαβ(ω). For this purpose, it is neces-
sary to build equations of motion for the function (5.44). Next, we differentiate (5.44)
over time t1:

d
dt1

Gαβ(t1) = −δ(t1)
1
iℏ
Sp{Pα[ρ0,X

β]} + ϵGαβ(t1) + G1αβ(t1),
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G1αβ(t1) = θ(−t1)e
ϵt1 1
iℏ
Sp{PαeiLt1[ρ0,

Pβ

m
]}. (5.46)

In deriving the equation of motion for the Green function Gαβ we have used the defi-
nition of the derivative of a theta-function

d
dx

θ(x) = δ(x)

and have taken into account that

d
dt1

eiLt1[ρ0,X
β] = eiLt1 iL[ρ0,X

β]

= eiLt1[ρ0, Ẋ
β]; Ẋβ =

1
iℏ
[Xβ,H] = P

β

m
.

The last equality in this formula is caused by the fact that Hamilton’s operators for
phonons and the electron–phonon interaction commute with the operator of an elec-
tron coordinate.

It is easy to see that the equation of motion for the Green functionGαβ(t1) contains
a newunknownquantityG1αβ(t1), forwhich one can also set up an equation ofmotion.
Differentiating G1αβ(t1) over time t1 in the formula (5.46), we get

d
dt1

G1αβ(t1) = −δ(t1)
1
iℏ
Sp{Pα[ρ0,

Pβ

m
]} + ϵG1αβ(t1) − G2αβ(t1),

G2αβ(t1) = θ(−t1)e
ϵt1 1
iℏ
Sp{ṖαeiLt1[ρ0,

Pβ

m
]}. (5.47)

In deriving the formulas (5.47) we have used the cyclic permutation of the operators
for a spur:

Sp{ABC} = Sp{CAB}. (5.48)

This property is easily proved byusing the definition of the spur as the sumof diagonal
matric elements. In our case, the use of (5.48) gives

Sp{PαeiLt1 iL[ρ0,
Pβ

m
]} = − Sp{ṖαeiLt1[ρ0,

Pβ

m
]}.

The equation for the Green function G1αβ(t1) also includes a new Green function
G2αβ(t1). Thus, virtually, there arises a chain of “coupled” equations of motion set
forth for all new Green functions; consequently, it becomes impossible for us to de-
fine the function Gαβ(t1) exactly.

One of the possible approaches to finding the Green function approximately is to
close deliberately an infinite chain of equations of motion at a certain step. Then a
consequent Green function is expressed via the previous Green function. This means
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that an enhanced accuracy for solving the set of equations can be obtained. This pro-
cedure is to make a so-called decoupling of the Green functions; it is widely used in
the theory of magnetism. Unfortunately, it is hard enough to estimate approximations
by using the technique. Thus, usually, the exact treatment of the equations of motion
requires the comparison process with the results of other methods.

The mass-operator method mentioned above is the more reasonable technique.
An advantage of such a method is its simple and physically clear program. The Green
function in frequency representation as a rule has poles in the complex plane. There-
fore, it does not make sense to construct the perturbation theory for such functions.
At the same time, the poles themselves can be determined by analytic functions, so a
construction of the perturbation theory for them is quite possible.

Consider how this program can be fulfilledwithin example of calculating the elec-
trical conductivity of an electron gas.Wemake the Fourier transform for the equations
of motion for Gαβ(t1), G1αβ(t1), etc. By defining the Fourier transforms

Gαβ(ω) =
∞

∫
−∞

dt1e
−iωt1Gαβ(t1),

G1αβ(ω) =
∞

∫
−∞

dt1e
−iωt1G1αβ(t1),

G2αβ(ω) =
∞

∫
−∞

dt1e
−iωt1G2αβ(t1), (5.49)

we write down the chain of equations of motion for the Green functions in the fre-
quency representation:

(iω − ϵ)Gαβ(ω) = −nδαβ + G1αβ(ω),

(iω − ϵ)G1αβ(ω) = −G2αβ(ω),

. . . . (5.50)

In the expression (5.50), the dots stand for the other equations of motion for the Green
functions G2αβ(ω), etc. In deriving the equations (5.50) we have used the equalities

1
iℏ
Sp{Pα[ρ0,X

β]} =
1
iℏ
Sp{[Xβ,Pα]ρ0} =∑

ij
Sp{[xβi , p

α
j ]ρ0} = −nδαβ,

1
iℏ
Sp{Pα[ρ0,P

β]} = 0.

Next, a solution of the set of the equations (5.50) needs to be sought in the form

Gαβ(ω) =
−nδαβ

iω − ϵ −Mαβ(ω)
, (5.51)
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where Mαβ(ω) is a mass-operator. The poles of the Green function (5.51) determine
the spectrum of collective excitations of the electron gas. The excitations are associ-
ated with a fluctuation of the average momentum of the electronic system. The name
“mass-operator” was borrowed from the theory of elementary particles, where the en-
ergy of elementary excitations is synonymous with their mass.

Since there is reason to believe that the correctionMαβ(ω) to the spectrum of ele-
mentary excitations is an analytic function, one may try to find the correction, using
the electron–phonon coupling as a small parameter in the perturbation theory.

TheGreen functionG1αβ(ω) is proportional to the first power,G2αβ(ω) to the second
power of this parameter (the proof of this important fact will be given below).

In all generality of the results, we consider a solution of the formal set of the cou-
pled equations

LG = I1 + G1,

LG1 = I2 + G2, (5.52)

G = I1
L −M
. (5.53)

The sense of notations in (5.52), (5.53) is quite obvious, so each term in these formulas
can be easily mapped to the corresponding term in the equations (5.50), (5.51).

Substituting the Green function (5.53) into the first equation of the chain (5.52) and
solving the resulting equation with respect toM, we find

M = G1L
I1 + G1
. (5.54)

We first find G1 from the second equation (5.52) and plug them into the numerator of
the expression for themass-operator (5.54). Given that the function I1 does not contain
an interaction but G1 is proportional to the electron–phonon interaction constant, as
a result, we arrive at the expansion of the mass-operator in powers of the small pa-
rameter:

M = I2
I1
+
G2
I1
−
I2
I1
G1
I1
+ ⋅ ⋅ ⋅ . (5.55)

In calculating the electrical conductivity, the function I1 is equal to nδαβ, as I2 = 0, so
the mass-operator can be written as

Mαβ(ω) =
G2αβ(ω)

n
. (5.56)

A more detailed form appears as

Mαβ(ω) =
1
nm

0

∫
−∞

dt1e
(ϵ−iω)t1 Sp{ṖαeiLt1 1

iℏ
[ρ0,P

β]}. (5.57)
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What physicalmeaningdoes themass-operator definedby (5.51) have? For the answer,
itwouldbe advisable to recollect that, according to the classical theory of the electrical
conductivity, the high-frequency conductivity can be written as

σ(ω) = e
2

m
n

1/τ − iω
. (5.58)

Upon comparing the formulas (5.45), (5.51) and (5.58) it is seen that they coincide, if
one assumes that the mass-operatorMαβ(ω) has themeaning of the momentum relax-
ation frequency. Thus, as already noted above, the mass-operator of the Green func-
tion (5.44) describes the spectrum of elementary excitations. Moreover, the real part
of the mass-operator determines damping of the excitations, and the imaginary part
(if it exists) is responsible for the frequency of its own oscillations of the average mo-
mentum of the electron system.

When calculating the mass-operator in accordance with the formula (5.57), the
correlation function analysis becomes problematical again, therefore, at first glance
noprogress seems tohavebeen achieved. In fact, this is far frombeing the case. Firstly,
the mass-operatorMαβ(ω) has the meaning of the relaxation frequency of the average
momentum and, as shown in Chapter 4 (see equation (4.160)), is proportional to the
square of the electron–phonon coupling constant.

Secondly, the second order in the electron–phonon interaction constant has al-
ready been collected both for the Green function G2αβ(ω) and for the mass-operator
Mαβ(ω). Therefore, the Hamiltonian Hep may be omitted both for the statistical oper-
ator ρ0 and for the evolution operator, replacing H by H0. Indeed, by definition, the
operator Ṗα in the right-hand side of the expression (5.57) is equal to

Ṗα = 1
iℏ
[Pα,H0 + Hep] =

1
iℏ
[Pα,Hep] ≡ Ṗ(l), (5.59)

because the Hamiltonian H0 commutes with the operator Pα of the total electron mo-
mentum. The commutator [ρ0,Pβ], occurring in the spur in the formula (5.57) is also
proportional to the electron–phonon coupling constant. This becomes especially evi-
dent when the Kubo identity is used:

[A, e−βH] =
β

∫
0

dλe−λH [H ,A]eλHe−βH . (5.60)

To prove the Kubo identity we introduce the function I(λ)

I(λ) = [A, e−λH], (5.61)

which satisfies the equation

d
dλ

I(λ) = −(AHe−λH − He−λHA). (5.62)
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Now, consider the function I(λ)eλH and find the derivative of its function over λ. Given
the equality (5.61), we arrive at the equation

d
dλ
(I(λ)eλH) = [H , e−λHAeλH], (5.63)

including the obvious initial condition I(0) = 0.
Integrating the equation (5.63) between the limits 0 and β and taking into account

the initial condition, we obtain

I(β) =
β

∫
0

dλe−λH [H ,A]eλHe−βH . (5.64)

It can be seen that the formula (5.64) coincides with the formula (5.60). By applying
the Kubo identity to the commutator [ρ0,Pβ], we get

1
iℏ
[ρ0,P

β] =
β

∫
0

dλṖβ(l)(iℏλ)ρ0,

Ṗβ(l)(iℏλ) = e
−λH Ṗβ(l)e

λH . (5.65)

Thus, we have shown that the second order in the interaction has already been col-
lected for the Green function G2αβ(ω). So, if one restricts oneself to the calculation of
the mass-operator in the Born approximation of scattering theory, one can omit the
interaction operatorHep both in the statistical operator and in the evolution operator.
Then, on the basis of the results (5.57), (5.59), (5.65) we have

1
τ
=

1
nm

0

∫
−∞

dt1e
(ϵ−iω)t1

β

∫
0

dλ⟨Ṗα(l)Ṗ
β
(l)(t1 + iℏλ)⟩,

⟨. . .⟩ = Sp{. . . 1
Z
e−βH0}. (5.66)

In the future, we focus our attention on the case of a static external field, setting the
frequency ω = 0. Now, the integral over time t1 can be extended to +∞, since the
integrand is an even function of the argument t1. Indeed, consider the expression

β

∫
0

dλ⟨Ṗα(l)Ṗ
β
(l)(−t1 + iℏλ)⟩ =

β

∫
0

dλ Sp{Ṗα(l)(t1 − iℏλ)Ṗ
β
(l)ρ0}

=
β

∫
0

dλ Sp{Ṗβ(l)
1
Z
e−βH0eH0λṖα(l)(t1)e

−H0λ}. (5.67)
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Introducing the new variable λ = β − λ, we obtain

β

∫
0

dλ⟨Ṗα(l)Ṗ
β
(l)(−t1 + iℏλ)⟩ =

β

∫
0

dλ⟨Ṗβ(l)Ṗ
α
(l)(t1 + iℏλ

)⟩ =
β

∫
0

dλ⟨Ṗα(l)Ṗ
β
(l)(t1 + iℏλ)⟩. (5.68)

The second equality in the formula (5.68) follows from the isotropy of the Hamiltonian
H0 with respect to rotations in a coordinate space.

Given the last result, the equation (5.66) for the mass-operator Mαβ(0) = 1/τ has
the form

1
τ
=

1
2nm

∞

∫
−∞

dt1e
−ϵ|t1|

β

∫
0

dλ⟨Ṗα(l)Ṗ
β
(l)(t1 + iℏλ)⟩. (5.69)

The formula (5.69) for an inverse momentum relaxation time of conduction electrons
holds for any scattering mechanisms, because the explicit form of the operator of the
electron–phonon scatteringby longitudinal acoustic phononshasnowhere beenused
in deriving this formula.

In the previous chapter, we already evaluated the momentum relaxation time
1/τ0 of equilibrium electrons scattered by longitudinal acoustic phonons (see equa-
tion (4.167)). It is also of interest to compare the results obtained for the relaxation
frequency of the averagemomentumby applying the kinetic equation and themethod
of linear response to an external perturbation.

Since, in this chapter, the averaging is being performed over an equilibrium en-
semble, we will not label the equilibrium characteristics by the additional index “0”.

We use theHamiltonian of the electron–phonon scattering by longitudinal acous-
tic phonons (4.76) obtained previously, writing it in the form

Hep( ⃗rj) =∑
q⃗
Cq⃗{bq⃗e

iq⃗ ⃗rj + b+q⃗e
−iq⃗ ⃗rj}, |Cq⃗|

2 =
E20ℏq
2ρs
. (5.70)

To calculate the correlation function in the formula (5.69), it is convenient to pass to
the second-quantization representation for the electron variables. The operators Ṗα(l)
and Ṗβ(l)(t1 + iℏλ) are represented as the sum of one-particle operators:

Ṗα(l) =
1
iℏ
[∑

j
Pαj ,∑

i
Hep( ⃗ri)] =∑

j
Ṗαj(l),

Ṗαj(l) =
1
iℏ
[Pαj ,Hep( ⃗rj)] = −i∑

q⃗
Cq⃗q

α{bq⃗e
iq⃗ ⃗rj − b+q⃗e

−iq⃗ ⃗rj}. (5.71)

Therefore, according to the transition rule to the second-quantization representation
for additive operators [38], we have

Ṗα(l) = −i ∑
q⃗,k⃗,k⃗ ,σ,σ Cq⃗q

α{bq⃗⟨k⃗
e

iq⃗ ⃗r k⃗⟩ − b
+
q⃗⟨k⃗
e
−iq⃗ ⃗r k⃗⟩}a

+
k⃗σak⃗σδσσ , (5.72)
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where a+
k⃗σ
, ak⃗σ are the Fermi creation and annihilation operators of electrons with a

wave vector k⃗ and spin projection σ on the Z-axis (σ = ±1/2).
The averaging in the formula (5.69) is simultaneously performed independently

over electron andphonon states, since the operatorH0 contains alreadyno interaction
between electrons and phonons. Substituting the result (5.72) into (5.69) and calculat-
ing quantum-statistical averages of products of the creation and annihilation opera-
tors of the electrons and phonons, we obtain

1
τ
=

1
6nm

∞

∫
−∞

dte−ϵ|t|
β

∫
0

dλ ∑
q⃗,k⃗,k⃗ ,σ,σ |Cq⃗|

2q2{|⟨k⃗|eiq⃗ ⃗r |k⃗⟩|2

× (Nq⃗ + 1)fk⃗ (1 − fk⃗)ei/ℏ(ε ⃗k−ε ⃗k+ℏΩq⃗)(t+iℏλ)

+ |⟨k⃗|e−iq⃗ ⃗r |k⃗⟩|2Nq⃗fk⃗ (1 − fk⃗)ei/ℏ(ε ⃗k−ε ⃗k−ℏΩq⃗)(t+iℏλ)}. (5.73)

In deriving this expression, we have used the formulas

⟨a+k⃗ak⃗⟩ = fk⃗δk⃗k⃗ , ⟨ak⃗a+k⃗ ⟩ = (1 − fk⃗)δk⃗k⃗ ;
⟨ak⃗ak⃗⟩ = 0, ⟨a+k⃗a+k⃗ ⟩ = 0;
a+k⃗ (t) = a

+
k⃗ e

i/ℏε ⃗k t , ak⃗(t) = ak⃗e
−i/ℏε ⃗k t ,

(5.74)

and the Wick–Bloch–de Dominicis statistical theorem [38], according to which an av-
erage value of an arbitrary number of creation and annihilation operators of fermions
for systems with Hamiltonian represented as

H0 =∑
k⃗σ

εk⃗σa
+
k⃗σak⃗σ

equals the sum of all possible complete pairing systems of this product. Pairing of the
operators A1 and A2 implies the average value of these operators:

⟨⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞A1 . . .A2⟩ = ⟨A1A2⟩⟨. . .⟩ = Sp{A1A2ρ0} Sp{. . . ρ0}.

Pairings, if there is no single unpaired operator, are called a complete pairing system.
Then, in the case of the Fermi statistics, the sign (−1)P is ascribed to the product of
average pair values of the creation or annihilation operators. Here, P is the number
of permutations of the creation/annihilation operators when the latter are transferred
from the original position into a given one.

According to this theorem, the product of four fermionic operators can be repre-
sented as

⟨
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
a+k⃗σak⃗σ ⏟⏟⏟⏟⏟⏟⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞a+μ⃗ρaμ⃗ρ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩ = fk⃗σδk⃗k⃗δσσfμ⃗ρδμ⃗μ⃗δρρ

+ fk⃗σδk⃗μ⃗δσρ(1 − fk⃗σ)δk⃗μ⃗δσρ . (5.75)
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On the right-hand side of (5.75), the first term, corresponding to the upper lines of the
pairing of the creation/annihilation operators, does not contribute, because of defin-
ing the interaction operator in such a way that it should have no diagonal matrix ele-
ments in the representation ofH0. For this reason, the expression for 1/τ involves only
the second term on the right side of (5.75). Here, the second term corresponds to the
pairing lines, depicted below.

It is not hard to calculate the frequency of the electron momentum relaxation by
the formula (5.73). We first perform integration over t and λ. Using the definition of the
delta-function

δ(x) = 1
2π

∞

∫
−∞

dte−ϵ|t|eixt = 1
2πi
{

1
x − iε
−

1
x + iε
},

we write the first integral in the parentheses of (5.73) in the following form:

∞

∫
−∞

dte−ϵ|t|
β

∫
0

dλei/ℏ(ε ⃗k−ε ⃗k+ℏΩq⃗)(t+iℏλ)

= 2πℏ
1 − exp{−β(εk⃗ − εk⃗ + ℏΩq⃗)}

εk⃗ − εk⃗ + ℏΩq⃗
δ(εk⃗ − εk⃗ + ℏΩq⃗)

= 2πℏβδ(εk⃗ − εk⃗ + ℏΩq⃗). (5.76)

If we transform in a similar way the second integral term of the formula (5.73) and
replace the summation indices k⃗ → k⃗, k⃗ → k⃗, we obtain

1
τ
=

β
6nm

2π
ℏ
∑

q⃗k⃗k⃗σσ |Cq⃗|
2(ℏq)2|⟨k⃗|eiq⃗ ⃗r |k⃗⟩|2{(Nq⃗ + 1)

× fk⃗ (1 − fk⃗) + Nq⃗fk⃗(1 − fk⃗ )}δ(εk⃗ − εk⃗ + ℏΩq⃗). (5.77)

The full identity of the formulas (5.77) and (4.160) is directly proved by the quasi-
momentum conservation law

⟨k⃗|eiq⃗ ⃗r |k⃗⟩ = δk⃗ ,k⃗+q⃗
and by (4.158), according to which

(Nq⃗ + 1)fk⃗ (1 − fk⃗) = Nq⃗fk⃗(1 − fk⃗ ),
provided that the law of conservation of energy works in the system:

εk⃗ − εk⃗ + ℏΩq⃗ = 0.

Given the above, we may write down an expression for the inverse momentum relax-
ation time as follows:

1
τ
=
2π
ℏ

β
3nm
∑
k⃗σ,q⃗

(ℏq⃗)2|Cq⃗|
2Nq⃗fk⃗(1 − fk⃗+q⃗)δ(εk⃗ − εk⃗+q⃗ + ℏΩq⃗). (5.78)
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This expression is completely equivalent to the result (4.160) derived previously in
Chapter 4 for the inverse relaxation time of the average momentum of equilibrium
electrons. Some discrepancy in the notations should not lead to confusion since, as
already claimed, the notation of fk⃗, used in this chapter, means an equilibrium dis-
tribution function. In addition, we have omitted the phonon polarization index λ, as-
suming at once that the scattering occurs by the longitudinal acoustic phonons.

Thus, the example of calculating the electrical conductivity shows that there is
no difference in results obtained by using the kinetic equation and the theory of lin-
ear response to an external mechanical disturbance. The Kubo method, however, is
more general in the sense that the formal expression for the kinetic coefficients of the
type (5.43) also retains its meaning in quantizingmagnetic fields and does not contain
any assumptions about the form of an electron spectrum and about the structure of
the carrier–scatterer interaction Hamiltonian.

Moreover, in physical kinetics there are someproblems,which are difficult to solve
by using themethod of kinetic equations. However, the theory of linear response to an
external disturbance allows one to rather easily get results which agree closely with
experiment.

The calculation of components of the dynamic paramagnetic susceptibility tensor
for an electron gas anddetermination of a relaxation time of transverse components of
spin paramagnetic susceptibility of conduction electrons may serve as a case in point
of such a problem. This problem is to be discussed in the following section.

5.1.4 High-frequency magnetic susceptibility

Let a system of electrons be in an external magnetic field H⃗ ‖ Z. We assume that the
amplitude of thefield is sufficiently small so that the quantizationof the orbitalmotion
does not occur. If a weak radiofrequency field acts on the system besides the static
magnetic field, and this field is polarized in a plane perpendicular to the Z-axis, the
Hamiltonian of the system can be written as

H(t) = H + HF(t), H = He + Hs + Hp + Hep, He =
P2

2m
,

Hs = −gμBS
z |H⃗|, HF(t) = −gμBS⃗h⃗(t), Sα =∑

j
sαj , (5.79)

where sαj is the α-projection of the spin operator of the j-th electron, g is the effective
spectroscopic splitting factor for conduction electrons, μB is the Bohr magneton, S⃗ is
the operator of the total electron spin.

The Hamiltonian Hep describes an interaction of electrons with scatterers; Hp is
the scatterer Hamiltonian. The explicit form of these operators we pay here no atten-
tion to; however, it is worth pointing out that the operator Hep, in contrast to the op-
erator of the electron–phonon interaction, must contain summands proportional to
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the components of the electron spin operator. In the case of the electron–phonon and
electron–impurity interaction, the above structure of Hep appears by considering the
spin–orbit contribution when the electrons and scatterers collide.

Using the theory of linear response of the system to an external field, developed
in Section 5.1.2, we write an expression for the projection of the average magnetic mo-
ment of electrons ⟨M⃗⟩t ≡ m⃗(t):

mα(ω) = (gμB)
2

iℏ

0

∫
−∞

dt1e
(ϵ−iω)t1 Sp{SαeiLt1[ρ0, S

β]}hβ(ω). (5.80)

This result follows directly from (5.35), if one inserts into it the following equalities:

A = B = M⃗ = gμBS⃗, F(ω) = h⃗(ω).

For further transformationof expression (5.80) one shoulduse theKubo identity (5.60),
which now can be written as

1
iℏ
[ρ0, S

β] = β
1

∫
0

dτṠβ(iℏβτ)ρ0, (5.81)

and introduce the convenient notation

(A,B) =
1

∫
0

dτ Sp{AB(iℏβτ)ρ0}. (5.82)

As a result, one gets

mα(ω) = β(gμB)
2

0

∫
−∞

dt1e
(ϵ−iω)t1(Sα, Ṡβ(t1))h

β(ω); (5.83)

Ṡβ = 1
iℏ
[Sβ,H].

Equation (5.83) actually defines the magnetic susceptibility tensor of the electron gas.
The transverse tensor components of circular variables

m± = mx ± imy ; h± = hx ± ihy

have the form

χ±(ω) = β
(gμB)2

2

0

∫
−∞

dt1e
(ϵ−iω)t1(S+, Ṡ−(t1)). (5.84)

As in the case of electrical conductivity, the components of the paramagnetic suscep-
tibility tensor χ±(ω) can be expressed through a correlation function. To calculate it,
the method of Green functions can be used.
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Now, itwouldbeproper, considering the formula (5.84), to introduce aGreen func-
tion for calculating the transverse components of the magnetic susceptibility tensor,

G+−(t1) = θ(−t1)e
ϵt1(S+, S−(t1)). (5.85)

Then, using the equations of motion

Ṡ∓ = iωsS
∓ + Ṡ∓(l), ωs =

gμB|H⃗|
ℏ
, Ṡ∓(l) =

1
iℏ
[S∓,Hep], (5.86)

we can express the transverse components of the paramagnetic susceptibility tensor
via the Green functions G+−(ω) and G1+−(ω):

χ+−(ω) = β
(gμB)2

2
[G1+−(ω) + iωsG+−(ω)], (5.87)

where

G1+−(ω) =
∞

∫
−∞

dt1e
−iωt1G1+−(t1),

G+−(ω) =
∞

∫
−∞

dt1e
−iωt1G+−(t1),

G1+−(t1) = θ(−t1)e
ϵt1(S+, Ṡ−(l)(t1)). (5.88)

The choice of the type of the Green function is not univocal. Given the expres-
sion (5.80), the transverse components of the magnetic susceptibility tensor for an
electron gas can be expressed through the commutator Green function

G+−(t1) = θ(−t1)e
ϵt1 Sp{S+eiLt1 1

iℏ
[ρ0, S
−]}. (5.89)

Fourier transformation of the Green function allows the transverse components of the
paramagnetic susceptibility to be determined:

χ+−(ω) =
(gμB)2

2
G+−(ω). (5.90)

In virtue of the ambiguity, a question arises as to whether the final results will be the
same if one takes different representations (5.85) and (5.89) for the Green function. As
we shall convince ourselves later, the answerwill be negative.When using the approx-
imate methods for calculating the Green function, the expressions (5.85) and (5.89)
give qualitatively different results for the magnetic susceptibility. However, the result
must not depend on the type of the original Green function when performing exact
computations.

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



5.1 Electrical conductivity of an electron gas. The Kubo method | 219

We apply the mass-operator method developed in the previous section to find
the components of the magnetic susceptibility χ+−(ω), taking into account the defi-
nitions (5.85) and (5.89). Also, we explain the difference in the results obtained.

We first use the definition (5.87). Setting up a chain of equations of motion for
Green functions G+−(t1) (5.85) and then passing on to a frequency representation, we
arrive at

i(ω − ωs + iϵ)G+−(ω) = −(S
+, S−) + G1+−(ω),

i(ω − ωs + iϵ)G1+−(ω) = −(S
+, Ṡ−(l)) − G2+−(ω),

. . . , (5.91)

G2+−(ω) =
0

∫
−∞

dt1e
(ϵ−iω)t1(Ṡ+(l), Ṡ

−
(l)(t1)). (5.92)

The set of equations (5.91) is similar to the formal system (5.52). Therefore, introducing
the mass operatorM+−(ω) for the Green function G+−(ω) by the relation

G+−(ω) = −
(S+, S−)

i(ω − ωs + iϵ) −M+−(ω)
(5.93)

and using the results (5.54), (5.55), one gets

G1+−(ω) = −
(S+, S−)M+−(ω)

i(ω − ωs + iϵ) −M+−(ω)
, (5.94)

M+−(ω) =
(S+, Ṡ−(l))
(S+, S−)

+
G2+−(ω)
(S+, S−)

+ O(H2
ep). (5.95)

The last term on the right-hand side of (5.95) stands for terms, containing an electron–
scatterer coupling constant of power higher than the second. Therefore, when calcu-
lating the mass operator in the Born approximation of scattering theory, we take into
account only the first two terms in the formula (5.95), the last term can be dropped.

Substituting the expressions (5.93) and (5.94) into the formula (5.87) for the trans-
verse components of the paramagnetic susceptibility tensor of conduction electrons,
we obtain

χ+−(ω) = β
(gμB)2

2
(S+, S−)[iωs +M+−(ω)]
i(ωs − ω − iϵ) +M+−(ω)

. (5.96)

To interpret themeaning of the above presentation, one should find the paramagnetic
susceptibility by using phenomenological equations proposed by Bloch in 1946 to de-
scribe themotion of themagneticmoment. The set of the equations, written in a Carte-
sian coordinate system, is

d
dt
mx =

gμB
ℏ
[m⃗ × ℋ⃗]x −

δmx
T2
, ℋ⃗ = H⃗ + h⃗,
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d
dt
my =

gμB
ℏ
[m⃗ × ℋ⃗]y −

δmy

T2
,

d
dt
mz =

gμB
ℏ
[m⃗ × ℋ⃗]z −

δmz
T1
, δm⃗ = m⃗ − χ0ℋ⃗, (5.97)

where χ0 is the static magnetic susceptibility of a system. The quantities T1 and T2 are
the relaxation times of longitudinal and transverse components of the spin magneti-
zation, respectively; m⃗ is the total magnetic moment vector of the system. Assuming
that the geometry of the external fields remains the same, we proceed to address the
cyclic dynamical variables. To do so, we have to multiply the second equation of the
set (5.97) by an imaginary unit. Then the first and the second equations should be
added. Consequently, one gets an equation containing only one component of mag-
netization,m+:

d
dt
m+ =

gμB
ℏ
{m+H −mzh+} −

m+ − χ0h+
T2
. (5.98)

Indeed, the quantity mz involved in the formula (5.98), when h+ ≪ H (H = |H⃗|), can
be written as

mz = χ0H .

Performing the Fourier transform of the equation (5.98), we obtain

− i(ω − ωs)m+(ω) = iωsχ0h+ −
m+
T2
+
χ0h+
T2
. (5.99)

Hence, using the definition of magnetic susceptibility

m+(ω) = χ+−(ω)h+(ω),

we find

χ+−(ω) =
χ0(iωs + 1/T2)
i(ωs − ω) + 1/T2

. (5.100)

The expression (5.100) for transversemagnetic susceptibility, obtained from the Bloch
phenomenological equations, has the same structure as the formula (5.96), if the fol-
lowing quantity is playing the role of static susceptibility:

χ0 = β
(gμB)2

2
(S+, S−), (5.101)

and the real part of the mass operator the role as the frequency-dependent inverse
relaxation time ν2(ω),

1
T2
= ν2(ω) = ReM+−(ω).
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The imaginary part of the mass operator in this case describes the frequency shift of
the Zeeman precession δωs due to interaction with scatterers,

δωs = ImM+−(ω).

It is interesting that the results (5.96), (5.100) hold under conditions of high and low
frequencies ω. In the limit of low frequencies ω → 0, the high-frequency paramag-
netic susceptibility χ+−(ω) is altered for static susceptibility χ0. This limiting transition
to the small frequency range is infringed if the commutator Green function (5.89) is
used while calculating the paramagnetic susceptibility.

Indeed,making up a chain of equations ofmotion for the commutator Green func-
tions in the frequency representation, one gets

i(ω − ωs + iϵ)G+−(ω) =
2
iℏ
⟨Sz⟩ +G1+−(ω),

i(ω − ωs + iϵ)G1+−(ω) =
1
iℏ
⟨[Ṡ−(l), S

+]⟩ −G2+−(ω), (5.102)

G1+−(ω) =
0

∫
−∞

dt1e
(ϵ−iω)t1 1

iℏ
⟨[Ṡ−(l)(t1), S

+]⟩,

G2+−(ω) =
0

∫
−∞

dt1e
(ϵ−iω)t1 1

iℏ
⟨[Ṡ−(l)(t1), Ṡ

+
(l)]⟩. (5.103)

The solution of the set of equations (5.102) in the Born approximation of scattering
theory for the mass operatorM+−(ω) has the form

G+−(ω) =
1
iℏ

2⟨Sz⟩
i(ω − ωs + iϵ) −M+−(ω)

, (5.104)

M+−(ω) =
⟨[Ṡ−(l), S

+]⟩
2⟨Sz⟩

+ iℏG2+−(ω)
2⟨Sz⟩
. (5.105)

Substituting the result (5.104) into the formula (5.90) for the transverse components
of the magnetic susceptibility tensor, we obtain

χ+−(ω) =
i
ℏ
(gμB)

2 ⟨Sz⟩
i(ωs − ω − iϵ) +M+−(ω)

. (5.106)

To compare the results (5.106) and (5.96) one must consider that for the zeroth-order
interaction

⟨Sz⟩ = βℏωs
2
(S+, S−). (5.107)

Thus, in the limitω→ 0, the expression χ+−(ω)which is determined by using the com-
mutator Green function is not altered for the static susceptibility χ0. The result (5.106)
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for the susceptibility χ+−(ω) can be obtained from the phenomenological systemof the
Bloch equations (5.97), preliminary mutilating the structure of the relaxation terms. It
is easy to see that the replacement

m+ − χ0h+
T2
→

m+
T2

in the equation (5.98) leads at the first onset to expression χ+−(ω). The structure of this
expression is the same as well as the structure of the formula (5.106). This fact allows
one to better understand the difference between the results (5.106) and (5.96).

The magnetic susceptibility, defined by (5.96), corresponds to the case when the
relaxation of the magnetic moment m+ of the system tends to an equilibrium value
of the magnetic moment χ0h+ in an alternating magnetic field. In addition, the for-
mula (5.106) describes the magnetic moment relaxation to zero of the transverse mag-
netization. For this reason, the result (5.106) is valid only for high frequencies ω ∼
ωs ≫ ν2, when the magnetic moment lags behind the field. Then one can infer that
the relaxation of the magnetic moment tends to zero.

In conclusion, we prove that the relation (5.107) holds and we can calculate the
static susceptibility χ0.

It would be proper to start with the definition of the correlation function

(S+, S−) =
1

∫
0

dτ Sp{S+ρτ0S
−ρ1−τ0 }

=
1

∫
0

dτ Sp{S+eβℏωsSzτS−e−βℏωsSz(1−τ)}. (5.108)

Using the commutation relations for the components of the total spin operator

[S∓, Sz] = ±S∓,

one gets the useful relation

S∓eβHsτ = eβ(Hs∓ℏωs)τS∓, (5.109)

by means of which the expression (5.108) can be transformed as follows:

(S+, S−) = ⟨S+S−⟩ 1 − exp{−βℏωs}
βℏωs

=
2

βℏωs
⟨Sz⟩. (5.110)

In deriving this relation we have again used the formula (5.109) by setting

e−βℏωs⟨S+S−⟩ = Sp{S+S− 1
Z
e−βHs}e−βℏωs

= Sp{S− 1
Z
e−βHsS+}e−βℏωs = Sp{S−S+ 1

Z
e−βHs}, Z = Sp{e−βHs}
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and the commutation relations for the operators S+, S−

[S+, S−] = 2Sz .

Now, it is not hard to calculate the static paramagnetic susceptibility of an electron
gas. Using the definition of χ0, we have

χ0 =
β(gμB)2

2
(S+, S−) = gμB

H
⟨Sz⟩,

⟨Sz⟩ =∑
k⃗σ

szσ⟨a
+
k⃗σak⃗σ⟩

=
1
2
∑
k⃗

(⟨a+k⃗↑ak⃗↑⟩ − ⟨a
+
k⃗↓ak⃗↓⟩), szσ = ±

1
2
, (5.111)

where the arrows ↑ and ↓denote the orientation of the spinmomentwith respect to the
Z-axis. Using the formulas (5.74), we express averages of electron creation/annihila-
tion operators via occupancy functions fk⃗↑ and fk⃗↓ for electrons with the spin oriented
along amagnetic field and in the opposite direction, respectively. Next, if one puts the
parameter βℏωs small, we can expand the distribution functions fk⃗↑ and fk⃗↓ over this
parameterwith accuracy up to linear terms, then, going over from the summation over
the wave vector k⃗ to integration over energy we arrive at the standard formula for the
static paramagnetic susceptibility of the electron gas:

χ0 =
21/2μ2Bm

3/2

π2ℏ3

∞

∫
0

ε1/2(−𝜕f (ε − ζ )
𝜕ε
) dε. (5.112)

To calculate the transverse components of the dynamic paramagnetic susceptibility
of the electron gas completely, one is required, in general, to evaluate both the mass
operator defined by the formula (5.95) and the relaxation frequency of the transverse
components of the spin magnetization ν2(ω). In the second-order interaction Hep, the
quantity ν2(ω) is determined by the real part of the function G2+−(ω) and can be eas-
ily calculated. In principle, there is no significant difference between calculations of
the above quantities and of the inverse relaxation time of the average momentum of
electrons in the previous section. The exception is that the former are cumbersome.
Therefore, we do not give them here.

5.2 Electrical conductivity in a quantizing magnetic field

5.2.1 Charge and heat fluxes in a quantizing magnetic field

In the previous chapter, the theory of thermo-galvanomagnetic phenomenawasbased
on the Boltzmann kinetic equation. However, when external conditions such as the
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temperature T of a specimen and the external magnetic field H change, the approach
based on the kinetic equation becomes not applicable due to possible violation of the
conditions of applicability of the quasiclassical description. As shown in Section 4.1.2,
if the conditions ℏω0 ≫ kBT and ω0τp⃗ ≫ 1 are met, then quantization of the orbital
motion of electrons in the magnetic field and the appearance of discrete energy levels
of the electrons (Landau levels) must be taken into account in constructing the the-
ory of transport phenomena. The presence of the discrete spectrum of the electrons
in the magnetic field gives rise to a number of features exhibited by thermodynamic
and kinetic phenomena. For example, in the quantizing magnetic field there may be
oscillations of both thermodynamic characteristics and thermo-galvanomagnetic co-
efficientswhen changing the externalmagnetic field. These oscillations are associated
with the passage of the next Landau level through the Fermi level. More detailed in-
formation on this issue can be seen in the next section.

Besides these rather obvious differences between the quasiclassical and quantum
theories of thermo-galvanomagnetic phenomena related to restructuring the spec-
trum of current carriers, there are real differences in determining fluxes of charge and
heat. In the last chapter, charge andheat fluxeswere definedby relations (4.27), (4.28).
In quantum theory, analogs of these formulas are the definitions

⃗J = Sp{ ̂⃗Jρ}, ⃗JE = Sp{
̂⃗JEρ},

̂⃗J = e
2
( ̂v⃗N̂ + N̂ ̂v⃗), ̂⃗JE =

1
2e
( ̂⃗JĤ + Ĥ ̂⃗J), (5.113)

where ρ is the statistical operator, ̂⃗J, ̂⃗JE the electric current and energy flux density
operators, ̂v⃗ the current-carrier velocity operator, Ĥ the energy density operator.

In a quantizingmagnetic field, these definitions, however, turn out to be incorrect.
As far back as 1950 s Japanese physicists Kasuya and Nakajima ascertained that the
flow of charge density and heat flux ⃗JQ = ⃗JE − ζ /e ⃗J, defined in such a manner, led
to violation both of the Onsager symmetry relations and of the Einstein relation. In
accordance with the latter, the coefficients, standing before a gradient of the electric
potential and gradient of the chemical potential (divided by the electron charge) must
be equal.

The actual cause of the violations of the Einstein relations was revealed in the
work by Zyryanov and Silin. They showed that the current (c rot m⃗) contributed to the
bulk density of the charge flux in the quantizingmagnetic field in the case of spatially
inhomogeneous systems. The contribution is due to the dependence of paramagnetic
and diamagnetic susceptibilities of an electron gas both on chemical potential and on
temperature. Therefore, the conduction current ⃗Jc involved in calculating the trans-
port coefficients should be properly determined by excluding from the formula of the
charge flux density that part, which is not directly linked to the electrotransfer:

⃗Jc = Sp{
̂⃗Jρ} − c rot m⃗, B⃗ − H⃗ = 4πm⃗. (5.114)
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The heat flux in the quantizing magnetic field also calls for a new definition be-
cause even in the spatially-homogeneous case, the Poynting vector contributes to the
heat flux:

c
4π
[E⃗ × (H⃗ − B⃗)],

which should be subtracted from the energy flux density to obtain a correct expression
for the heat flux:

⃗JQ = ⃗JE −
ζ
e
⃗Jc −

c
4π
[E⃗ × (H⃗ − B⃗)]. (5.115)

In spatial inhomogeneity, additional summandsproportional to the spatial derivatives
of the magnetization current c rot m⃗ appear on the right side of (5.115).

To learn more both about the problem of determining the charge and heat fluxes
in a quantizing magnetic field and about the problem of calculating the thermo-
galvanomagnetic coefficients, one can refer to Refs. [39] and [40]. Necessary refer-
ences to original works can be found there as well.

There is no possibility to fairly completely explicate a theory of thermo-galvano-
magnetic phenomena inaquantizingmagnetic field in the frameof thepresent course.
So, wewould like to dwell on the problem of calculating the diagonal and off-diagonal
components of the electrical conductivity tensor, basing on the Kubo linear response
theory. In this case, the components of the magnetization current density c rot m⃗ van-
ish; consequently, it is worth returning to a common definition of the conduction cur-
rent (5.113). This definition will be used in the future.

5.2.2 Dynamics of electron motion in a quantizing magnetic field

Consider motion of electrons in a crystal in an external magnetic field H⃗, parallel to
the Z-axis. Let the magnetic field be given by the vector potential A = {−Hy,0,0},
H⃗ = rot A⃗. As is well known, forces acting on a particle in a magnetic field are not
potential. However, in an electromagnetic field, a generalized velocity-dependent po-
tential function can be introduced. For a classical system, the Lagrange function L for
free-moving charged particles in the electromagnetic field can be written as

L = mv
2

2
− eφ + e

c
A⃗v⃗. (5.116)

Now, we introduce a generalized (canonical)momentum p⃗ by using the relation

p⃗ = 𝜕L
𝜕v⃗
= mv⃗ + e

c
A⃗. (5.117)

As far as the energy of an electron in a magnetic field (without spin) is mv2/2, but
the Hamiltonian is the energy expressed in terms of a generalized momentum, for the
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Hamiltonian Ĥ for an electron in a magnetic field, one obtains

Ĥ0 =
(p⃗ − e/cA⃗)2

2m
, (5.118)

where p⃗ = −iℏ�⃗�, since it is the canonical momentum that must be replaced by the op-
erator −iℏ�⃗�while passing on to the quantum description. If one introduces the notion
of the kinetic momentum p⃗ = p⃗ − e/cA⃗, the following expressions can appear:

Ĥ0 =
(p)2

2m
, px = −iℏx +

e
c
Hy, py = −iℏy , pz = −iℏz . (5.119)

Now we present the expressions for the spectrum and eigenfunctions of the Hamilto-
nian operator Ĥ. Details of solving this problem can be found in guidebooks on quan-
tum mechanics:

Ĥ0ψnpzpx = εnpzψnpzpx , εn,pz =
ℏ2k2z
2m
+ ℏω0(n +

1
2
),

ψnpzpx = (4πl)
−1/2ei/ℏ(pzz+pxx)Φn(

y − y0
l
),

Φn(x) = Nne
−x2/2Hn(x), ω0 =

eH
mc
, (5.120)

where n = 0, 1, 2, . . . is the number of the Landau level. Here, we have decided to keep
the traditional notation for numbering the Landau levels, albeit before the concen-
tration of electrons was denoted by that letter. l = (ℏc/eH)1/2 is the magnetic length,
y0 = −c/(eH)px,Nn is a normalization factor for the eigenfunctionΦn(x) of a harmonic
oscillator. As follows from the dispersion law (5.120), the motion in the direction Z re-
mains quasi-free. Only themotion in the plane perpendicular to themagnetic field can
be quantized.

We find commutation relations for the components of the kinetic momentum op-
erator p⃗:

[px , py] = [px +
eH
c
y, py] = −

eH
c
[py , y] = i

ℏ2

l2
. (5.121)

[px , pz] = [py , pz] = [px , y] = [py , x] = [py , z] = [pz , x] = 0,
[px , x] = [py , y] = [pz , z] = −iℏ. (5.122)

An interesting feature of the motion of electrons in the magnetic field is that it is pos-
sible to distinguish both slowly changing variables X, Y which are coordinates of the
Larmor orbit center, and coordinates of the relative motion ξ , η. The former are quasi-
integrals of the motion, they commute with the Hamiltonian Ĥ0.

X = x − ξ , Y = y − η, ξ = − c
eH

py , η = c
eH

px . (5.123)
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It is easy to verify that the newly introduced quantities satisfy the commutation rela-
tions

[ξ , η] = il2, [X,Y] = il2. (5.124)

The rest of the commutators are equal to zero:

[ξ ,X] = [η,X] = [ξ ,Y] = [η,Y] = 0.

It follows from the basic principles of quantummechanics that if two operators do not
commute, it is impossible to simultaneously measure any physical quantities corre-
sponding to them, moreover they satisfy the uncertainty principle. It implies that

XY ∼ l2,

i. e. a position of the Larmor orbit center is quantized, and only one center can be
placed in an area of the order πl2.

Next, let us derive the equations of motion for the X and Y operators, given that
the Hamiltonian has the form Ĥ = Ĥ0 + Û . In the future, the operator of the electron–
phonon or electron–impurity interactions will be used as the operator Û .

We first consider the equations of motion for the px and py components of the
momentum:

ṗx =
1
iℏ
[px , Ĥ0 + Û] =

i
ℏm
[py , px]py +

i
ℏ
[Û , px].

Using the previous results (5.122), we obtain

ṗx =
eH
c
𝜕Ĥ0
𝜕py
−
𝜕Û
𝜕x
. (5.125)

In perfect analogy with the above result, the equation of motion for the operator py
can be obtained:

ṗy = −
eH
c
𝜕Ĥ0
𝜕px
−
𝜕Û
𝜕y
. (5.126)

Using the definition (5.123) and the above results (5.125), (5.126), we have

Ẋ = 1
iℏ
[x − ξ , Ĥ0 + Û] =

1
iℏ
[x, Ĥ0] −

1
iℏ
[ξ , Ĥ0] −

1
iℏ
[ξ , Û]

= −
1
iℏ
[ξ , Û] = 1

iℏ
[X, Û] = − c

eH
𝜕Û
𝜕y
,

Ẏ = 1
iℏ
[Y , Û] = c

eH
𝜕Û
𝜕x
. (5.127)

Thus, the coordinates of the Larmor orbit center are changed only under the ac-
tion of the perturbation potential Û . This allows one to regard the X and Y variables
as slowly varying physical quantities. Consequently, the slowly varying variables in a
quantizing magnetic field modify radically the method of describing the kinetic phe-
nomena in the quantizing magnetic field.
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5.2.3 The conductivity tensor in a quantizing magnetic field

In a quantizing magnetic field, conditions for applicability of a kinetic equation are
infringed. Therefore, to analyze the electrical conductivity one should use the expres-
sion (5.43), which was obtained by using the theory of linear response to weak me-
chanical perturbation. By applying the Kubo formula (5.60) to transform the expres-
sion (5.43) and introducing the current operators instead of momenta of Pα, defining
them by the expression Jμ = ePμ, one gets

σμν =
0

∫
−∞

dt1

β

∫
0

dλe(ϵ−iω)t1 Sp{JμJν(t1 + iℏλ)ρ0}. (5.128)

Making the change of variables t1 → −t1, we finally obtain

σμν =
∞

∫
0

dt1

β

∫
0

dλe(iω−ϵ)t1 Sp{Jμ(t1)Jν(iℏλ)ρ0}. (5.129)

Now, we write down the current components Jμ and Jν using the definition of both
coordinates of the Larmor orbit center and coordinates of the relative motion. These
coordinates will be later interpreted as total quantities for an entire system of elec-
trons:

Jx = e( ̇ξ + Ẋ), Jy = e(η̇ + Ẏ).

To simplify the notations and to reduce formulas, we introduce the so-called Kubo
scalar product of the two operators (A,B(t)) (see also formula (5.82)). The product is
an even function of time in a quantummagnetic field if theA andB operators coincide.
The proof of this remarkable fact can be found in Section 5.3.1. We use

(A,B(t)) =
β

∫
0

dλ Sp{AB(t + iℏλ)ρ0}. (5.130)

Then, using the expression (5.129), the following integral for σxx(0) at zero frequency
can be derived:

σxx(0) =
∞

∫
0

dt1e
−ϵt1(Jx(t1), Jx) =

∞

∫
0

dt1e
−ϵt1(Jx , Jx(t1))

= e2
∞

∫
0

dt1e
−ϵt1{( ̇ξ , ̇ξ (t1)) + ( ̇ξ , Ẋ(t1)) + (Ẋ, ̇ξ (t1))

+ (Ẋ, Ẋ(t1))}. (5.131)
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Now, one can show that all terms except the last one are zero. To prove this, consider
the correlation function

∞

∫
0

dte−ϵt( ̇ξ , ̇ξ (t)) =
∞

∫
0

dte−ϵt d
dt
( ̇ξ , ξ (t))

= −( ̇ξ , ξ (0)) + lim
t→∞

e−ϵt( ̇ξ , ξ (t)) + ϵ
∞

∫
0

dte−ϵt( ̇ξ , ξ (t)). (5.132)

In obtaining the expression (5.132)we have carried out integration by parts. Bymaking
use of the correlation weakening principle, according to which a correlation between
two physical quantities, taken at time t1 and t2, is weakened as the time interval t =
t1 − t2 is increased, we have

lim
t→∞

e−ϵt( ̇ξ , ξ (t))→ e−ϵt Sp{ ̇ξρ0} Sp{ξ (t)ρ0}→ 0. (5.133)

To transform the last expression in the formula (5.132) we use Abel’s theorem, accord-
ing to which in the thermodynamic limit, the following equality is valid:

lim
ϵ→+0

ϵ
∞

∫
0

dte−ϵt( ̇ξ , ξ (t)) = lim
t→∞
( ̇ξ , ξ (t)) = Sp{ ̇ξρ0} Sp{ξ (t)ρ0} = 0. (5.134)

Finally, we turn to the second line of the formula (5.132) to transform the first sum-
mand. Upon making the change of the integration variable τ = λ/β in the scalar prod-
uct formula (5.130), we have the following expression:

−( ̇ξ , ξ ) = −β
1

∫
0

dτ Sp{ ̇ξρτ0ξρ
1−τ
0 } = −β

1

∫
0

dτ Sp{ξρ1−τ0
̇ξρτ0}

= −β
1

∫
0

dτ Sp{ξρτ

0
̇ξρ1−τ


0 }

= −
1
iℏ
Sp{ξ [ρ0, ξ ]} = −

1
iℏ
Sp{[ξ , ξ ]ρ0} = 0. (5.135)

In obtaining the result (5.135), we havemade the change of the variables τ = 1− τ and
used the Kubo formula (5.60). In perfect analogy, we can prove that

∞

∫
0

dte−ϵt( ̇ξ , η̇(t)) = −( ̇ξ , η) = 1
iℏ
Sp{[ξ , η]ρ0} =

nc
eH
; (5.136)

∞

∫
0

dte−ϵt(Ẋ, ̇ξ (t)) = 0;
∞

∫
0

dte−ϵt(Ẏ , η̇(t)) = 0. (5.137)
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The vanishing of the correlation functions in (5.137) is caused by the fact that the [X, ξ ]
and [Y , η] commutators are zero.

Now, it is necessary to return to (5.131) for writing the result for σxy(0) aswell as for
the other components of the electrical conductivity in the quantizing magnetic field.
Given the results of (5.134)–(5.137), one gets

σxy =
enc
H
+ e2
∞

∫
0

dt1e
−ϵt1(Ẋ(t1), Ẏ); (5.138)

σxx = e
2
∞

∫
0

dt1e
−ϵt1(Ẋ, Ẋ(t1)); (5.139)

σyy = e
2
∞

∫
0

dt1e
−ϵt1(Ẏ , Ẏ(t1)). (5.140)

Having analyzed the results obtained, it is easy to see that in a quantizing mag-
netic field, the σxx and σyy diagonal components are different from zero only due to
scattering events, since they are proportional at least to the square of the electron–
scatterer coupling constant, which follows from the equations of motion (5.127). The
off-diagonal component σxy contains the collisionless contribution enc/H, indepen-
dent of the scattering events and the correction which is quadratic in the electron–
scatterer coupling constant. It is important to note that the components of the elec-
trical conductivity tensor in a quantizing magnetic field are expressed in terms of
correlation functions of the coordinates of the Larmor orbit centers. The functions
mentioned above can be directly calculated in the Born approximation of scattering
theory.

5.2.4 The conductivity in the case quasi-elastic scattering by phonons

Consider the calculation of the σxx and σyy components in the case of quasi-elastic
scattering by phonons, assuming that the operator Û in formulas (5.127) is the Hamil-
tonian of the electron–phonon interaction (4.76).

To better understand the previous results for the components of the electrical con-
ductivity tensor in the quantizing magnetic field, it is useful to compare them with
results obtained by means of the kinetic equation method in the limit of a strong
ω0τp⃗ ≫ 1 (but nonquantizing) magnetic field. On the basis of formulas (4.118), (4.121)
and (4.128), one gets

σxy =
e2n
m

ω0τ2p⃗
1 + (ω0τp⃗)2

≃
enc
H
; (5.141)

σxx =
e2n
m

τp⃗
1 + (ω0τp⃗)2

≃
e2n

mω2
0τp⃗
. (5.142)
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Thus, in the limit of strong magnetic field, if there remains only the zero term after
expanding the denominator of (5.141) over the small parameter 1/(ω0τp⃗)2, the kinetic
equation for the off-diagonal component of the electrical conductivity gives the same
collisionless contribution as the formula (5.138).

The expression for the diagonal component (5.142) allows one to at least in a for-
mal way determine a momentum relaxation time in a quantizing magnetic field. In-
deed, upon comparing the two expressions (5.142) and (5.139), we obtain the definition
for the momentum relaxation time in the quantizing magnetic field:

1
τp⃗
=
mω2

0
n

∞

∫
0

dt1e
−ϵt1(Ẋ, Ẋ(t1)). (5.143)

The problem of calculating the σxx and σxy components of the electrical conductivity
tensor in the Born approximation in scattering theory essentially reduced to quadra-
tures. Because an interaction in the statistical operator and the operator of the evo-
lution is neglected in this approximation, these operators have only the diagonal ma-
trix elements in the class of eigenfunctions |ν⟩ of Ĥ0. Since the correlation function
(A,B(t)) is an even function of argument t, the integration over the variable t1 in the
integral (5.143) can be extended to −∞, which results in symmetric limits. Then the
integration over time t1 yields a δ-function.

Furthermore, the quantum-statistical average over the electronic and phonon
variables can be presented in the form

Sp{ẊẊ(t)ρ0} = ∑
νν⟨⟨ν|Ẋ|ν⟩⟨ν|Ẋ(t)|ν⟩⟩s
× fν (1 − fν)ei/ℏ(εν−εν). (5.144)

In the formula (5.144), angular brackets, labeled by s, mean the quantum-statistical
averaging over states of scatterers. In deriving this formula we have used the Wick–
Bloch–de Dominicis statistical theorem (5.75).

Finally, we can prove that (it is proposed the reader carries out the proof)

∞

∫
−∞

dte−ϵ|t|
β

∫
0

dλ Sp{ẊẊ(t + iℏλ)ρ0} = β
∞

∫
−∞

dte−ϵ|t| Sp{ẊẊ(t)ρ0}. (5.145)

Given the above, the expression for the component σxx can be represented in the form

σxx =
e2

2kBT

∞

∫
−∞

dte−ϵ|t|
∞

∫
−∞

dE f (E)⟨δ(E − Ĥ0)Ẋ(1 − f (Ĥ0))Ẋ(t)⟩. (5.146)

In this formula, the big angular brackets ⟨. . .⟩ stand for a quantum-statistical average
over phonon variables and quantum-mechanical average over one-particle electron
states.
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Wewrite down the Ẋ and Ẋ(t) operators explicitly. Considering that the coordinate
operators of the Larmor orbit center commute with the Hamiltonian Ĥ0, we obtain

Ẋ = −il
2

ℏ
∑
q
qy{Cq⃗bq⃗e

iq⃗ ⃗r − C∗q⃗b
+
q⃗e
−iq⃗ ⃗r};

Ẋ(t) = −il
2

ℏ
ei/ℏĤ0t∑

q
qy{Cq⃗bq⃗e

iq⃗ ⃗re−iΩq⃗t − C∗q⃗b
+
q⃗e
−iq⃗ ⃗reiΩq⃗t}e−i/ℏĤ0t . (5.147)

Substituting these expressions into (5.146):

σxx =
e2πℏ
kBT

∞

∫
−∞

dEf (E)∑
q⃗

l4

ℏ2
q2y|Cq⃗|

2{(Nq⃗ + 1)

× Sp{δ(E − Ĥ0)e
iq⃗ ⃗r(1 − f (Ĥ0))δ(E − Ĥ0 − ℏΩq⃗)e

−iq⃗ ⃗r}

+ Nq⃗ Sp{δ(E − Ĥ0)e
−iq⃗ ⃗r(1 − f (Ĥ0))δ(E − Ĥ0 + ℏΩq⃗)e

iq⃗ ⃗r}}. (5.148)

The spur in the formula (5.148) implies summation over a complete set of quantum
numbers ν = {n, px , pz , σ}, which characterize the state of an electron in a quantizing
magnetic field.

Now, to transform the expression (5.148) one should take into account the two
identities

Nq⃗[f (E − ℏΩq⃗) − f (E)] = f (E)[1 − f (E − ℏΩq⃗)];

−[Nq⃗ + 1][f (E + ℏΩq⃗) − f (E)] = f (E)[1 − f (E + ℏΩq⃗)], (5.149)

which are checked by direct substitution of distribution functions. Given these re-
lations, the expression (5.148) can be rewritten in more convenient form for further
changes:

σxx =
e22π
ℏ

∞

∫
−∞

dE∑
q⃗
l4q2y|Cq⃗|

2 f (E − ℏΩq⃗) − f (E)
ℏΩq⃗

ℏΩq⃗

kBT

× Nq⃗[Nq⃗ + 1] Sp{δ(E − Ĥ0)e
iq⃗ ⃗rδ(E − Ĥ0 − ℏΩq⃗)e

−iq⃗ ⃗r}. (5.150)

In deriving the formula the change of variables E + ℏΩq⃗ → E haves been made to
transform the second summand of the expression (5.148).

The resulting expression is valid in the case of inelastic and quasi-elastic scatter-
ing by phonons. The elastic scattering by phonons is regarded below as an example.
It is worth remarking that we restrict ourselves to the simplest case of the ultra quan-
tum limit when only electrons of the lowest Landau subband with index n = 0 take
part in the charge transfer. In this case, thematrix elements of the exponent operators
in (5.148) can be easily calculated; as a consequence, we have

|⟨0, pz + ℏqz , px + ℏqx|e
iq⃗ ⃗r |0, pz , px⟩|

2 = el
2q2⊥/2; q⊥ = q

2
x + q

2
y .
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In calculating the spur over of electronic variables, it is convenient to replace the sums
by integrals:

∑
νσ
→ 2 LxLz
(2πℏ)2
∫ dpz ∫ dpx →

2V
(2πl)2ℏ

∞

∫
−∞

dpz . (5.151)

Next, it is necessary to take into account the degeneracy multiplicity of electronic
states in the quantum number px in order to get the last result. To count the quantum
number, the electronwave function (5.120) calls for imposing the circularity condition
along X- and Z-axes. Put it another way, we require that one and the same function
should correspond to the x + Lx, z + Lz and x, z coordinates. When account is taken of
the real formof thewave function (5.120), the above requirement leads to the condition

px =
2πℏ
Lx

nx , pz =
2πℏ
Lz

nz ,

where nx and nz are some integers. The circularity condition will not be now imposed
along the Y -axis but the solution (5.120) must exist only when the coordinate y0 of the
Larmor orbit center falls within:

0 < |y0| < Ly , (5.152)

where Ly is a specimen size within Y -axis. It is easy to verify that y0 is one of the co-
ordinates of the Larmor orbit center and y0 = Y . Thus, the maximum value of the
coordinate of the Larmor orbit center is |y0|max = Ly. Since |y0| = c/(eH)px, the max-
imum quantum number of px can be found: px = ℏ/l2Ly. Then the integral over px in
the formula (5.151) is equal to ℏ/l2Ly and we obtain the last result in this formula.

The summation over the phonon wave vector has to be also replaced by integra-
tion in a cylindrical coordinate system:

∑
q⃗
→

V
(2π)3
∫ dq⃗ → V

(2π)2

∞

∫
0

q⊥dq⊥

∞

∫
−∞

dqz . (5.153)

Given the remarksmade above, an expression for the static conductivityσxx in the case
of quasi-elastic scattering may be written as follows:

σxx =
2πe2l4

ℏ
1
(2π)2

∞

∫
0

q⊥dq⊥

∞

∫
−∞

dqz

∞

∫
−∞

dEq2y|Cq⃗|
2(−
𝜕f (E)
𝜕E
)

× (
kBT
ℏΩq⃗
)

2
(2πl)2ℏ

∞

∫
−∞

dpzδ(ε0pz − E)δ(ε0pz+ℏqz − E)e−l2q2⊥/2. (5.154)

In order to transform the expression (5.154) further, let us consider the integral:

I =
∞

∫
−∞

dqz

∞

∫
−∞

dpzq
tδ(ε0pz − E)δ(ε0pz+ℏqz − E). (5.155)
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The law of conservation of energy implies that

(pz + ℏqz)2

2m
=
(pz)2

2m
.

Therefore, phonons participating in scattering events have a quasi-momentum ℏqz ≃
pz what enables one to easily evaluate the longitudinalwave-vector component for the
phonons:

qz ≃
√2mkBT
ℏ
∼ λ−1 ≃ 107m−1.

This evaluation holds at temperatures where an actual experiment runs. The perpen-
dicular wave-vector component q⊥ for the phonons involved in scattering events is
limited by the cut-off factor:

e−l
2q2⊥/2,

so one can assume that q⊥ ≃ 1/l. Moreover, the perpendicular wave-vector component
for the phonons, participating in scattering, coincides in order of magnitude with the
inverse magnetic length. Because the magnetic length l in the quantizing field is less
than the electron wavelength λ, it is supposed that the condition λ ≫ l is satisfied.
By virtue of the foregoing estimates, it follows that q⊥ ≫ qz and q ≃ q⊥. Thus, the
integrals for I in the expression (5.155) can be simply calculated:

I =
∞

∫
−∞

dqz

∞

∫
−∞

dpzq
tδ(

p2z
2m
+
ℏω0
2
− E) δ(pzℏqz

m
+
ℏ2q2z
2m
) = qt⊥

2m
ℏ

1
E − ℏω0

. (5.156)

While performing the integration of delta-functions we have the useful well-known
formula

δ(φ(x)) =∑
i
δ(x − xi){


dφ
dx

x=xi
}
−1
, (5.157)

where xi are roots of the equation φ(x) = 0. Substituting the result (5.156) into the
formula (5.154), we obtain the following expression for the diagonal static electrical
conductivity:

σxx =
e2l2kBTmC

4π3ℏ4s

∞

∫
−∞

dE(− 𝜕f
𝜕E
)

1
E − ℏω0/2

∞

∫
0

dq2⊥q
t+1
⊥ e−l

2q2⊥/2. (5.158)

In obtaining this result, we have used the notation

|Cq⃗|
2 = Cqt , C =

E20ℏ
2ρs
.
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To simplify further calculations, let us consider only the case of a highly degenerate
electron gas. Then the integral over energy is in an elementary way calculated, if one
uses the approximation

(−
𝜕f
𝜕E
) ≃ δ(E − ζ ).

The integral over q⊥, obviously, reduces to a gamma-function. Therefore, it is not hard
to perform the further integration to the first onset to obtain

σxx =
e2l2kBTmC

4π3ℏ4s
1

ζ − ℏω0/2
(
2
l2
)

t+3
2

Γ( t + 3
2
). (5.159)

A distinguishing feature of the result is the presence of a divergence when the Fermi
level crosses a Landau sublevel. In a quantizing magnetic field, this peculiarity arises
due to a square-root singularity of density of states for electrons at the bottom of each
Landau subband in the energy space. It is especially interesting to observe the effects
occurring in a two-dimensional metal in the presence of a quantizing magnetic field.
A field-effect transistormay serve as a case in point. Nobel Prizes in Physicswere twice
awarded for work dealing with the quantum Hall effect: in 1985 for the discovery of
this phenomenon and in 1998 for the discovery and interpretation of the fractional
quantumHall effect.More detailed information on this interesting theme canbe found
in the specialized literature [41].

Problem 5.1. Obtain an expression for density of states in energy space for the con-
duction electrons in a quantizing magnetic field.

Solution. The simplest way to introduce the concept of density of states in energy
space is the use of the relation:

∑
npxpzσ
→
∞

∫
0

g(E) dE. (5.160)

The meaning of this relation is that the total number of states for electrons may be ex-
pressed not only via the sumbut through a state-density integral g(E) over all possible
values of the energy. With this definition, the density of states is the number of states
for the electrons falling into the energy range from E to E + dE in a crystal whose vol-
ume is equal to unity. To find the number of states, we use the result (5.151) obtained
earlier by adding the summation over a quantum number n:

∑
npxpzσ
→

2
(2πl)2ℏ
∑
n

∞

∫
−∞

dpz . (5.161)

To find the density of states at the formula (5.161) one should pass from the integra-
tion over pz to integration over energy using the definition of the energy spectrum of
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electrons in the quantummagnetic field (5.120):

Enpz =
p2z
2m
+ ℏω0(n + 1/2).

Making the required change of integration variables and comparing the expres-
sions (5.160) and (5.161), then we get

g(E) = 2√2m
(2πl)2ℏ
∑
n

1
√E − ℏω0(n + 1/2)

. (5.162)

In this formula, as always before, a unit volume of a specimen is set. The summation
over n is being performed over all Landau subbands lying below the Fermi level. Equa-
tion (5.162) is valid ifE > ℏω0/2 and thedensity of states is zerowithin the energy range
0 < E < ℏω0/2.

The profile of the electron density of states in a magnetic field is shown in Fig-
ure 5.1 (curve (b)). The energyE subdivides a scale in units of ℏω0/2 along the abscissa.
The quantity

g(E)√ℏω0
2
{
2√2m
(2πl)2ℏ
}
−1

generates a scale along the vertical axis. The curve (a) is responsible for the electron
density of states in the absence of a magnetic field.

Figure 5.1: Density of states of conduction electrons in a quantizing magnetic field.

The result obtained points to the presence of the singularity in the density of states
at the bottom of each Landau subband. Indeed, the density of states at the bottom
of the subbands does not grow indefinitely, keeping a finite value due to a collision
broadening of the Landau levels.
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5.3 Symmetry properties of correlation functions

5.3.1 Additive conservation laws and selection rules for averages

Additive conservation laws lead to additional selection rules for averages. Let a system
state be defined by two quantum numbers k⃗ and σ. Moreover, the total number of
particles in this system remains unchangeable,

N =∑
k⃗σ

a+k⃗σak⃗σ ; [N ,H] = 0,

where H is a total Hamiltonian of the system. The Hamiltonian H and the statistical
operator ρ0 are invariant with respect to the conversion

U = eiφN ; H = U+HU , ρ0 = U
+ρ0U , (5.163)

where φ is an arbitrary real number. Applying this transformation to creation (anni-
hilation) operators of particles, we may obtain

U+ak⃗σU = e
iφak⃗σ , U+a+k⃗σU = e

−iφa+k⃗σ . (5.164)

Let us consider a quantum-statistical average of an arbitrary number of the particle
creation (annihilation) operators:

Sp{a+k⃗σ . . . ak⃗σ . . . ρ0} = Sp{a+k⃗σ . . . ak⃗σ . . .U+ρ0U}
= Sp{U(a+k⃗σ . . . ak⃗σ . . .)U+ρ0} = eiφn Sp{a+k⃗σ . . . ak⃗σ . . . ρ0},

(5.165)

where n is the difference between the numbers of the creation and annihilation opera-
tors of particles. When comparing the first and last expressions in the formula (5.165),
it is not difficult to note that the condition n = 0 is fulfilled since the conversions are
identical, i. e. the number of creation operators must match the number of the anni-
hilation operators under the spur’s sign. Otherwise, this quantum-statistical average
is zero provided that the particle conservation law is satisfied.

The approach under consideration can be also applied along with other conser-
vation laws. In particular, we consider selection rules which are imposed by the ho-
mogeneity of space on the properties of the quantum-statistical averages.

If the space is homogeneous, the momentum of the system is held constant in the
absence of external forces:

P⃗ =∑
k⃗σ

ℏk⃗a+k⃗σak⃗σ .
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As consequence, the Hamiltonian of the system and the statistical operator commute
with the operator of the total momentum. So, one can define a canonical transforma-
tion operator U which leaves the Hamiltonian and the statistical operator ρ0 invari-
ant:

U = eiφ⃗P⃗ ; H = U+HU , ρ0 = U
+ρ0U , (5.166)

where φ⃗ is an arbitrary vector.
Let us consider again the quantum-statistical average of the arbitrary set of the

creation (annihilation) operators of particles. Repeating the foregoing steps (5.165) for
the canonical transformation operator being defined by the formula (5.166), we can
obtain the condition

eiφ⃗ℏ(k⃗+⋅⋅⋅−k⃗
+⋅⋅⋅) = 1. (5.167)

If this condition is not met, then

Sp{a+k⃗σ . . . ak⃗σ . . . ρ0} = 0.
The condition has a simple physicalmeaning: if the totalmomentumof the particles is
preserved in the system, the total quasi-momentum of created particles must be equal
to the total quasi-momentum of annihilated particles. Similar selection rules can be
obtained in the presence of other conservation laws. Each of the laws of conservation
of angular momentum, spin, etc. can serve as a case in point.

The role of degeneracy of energy levels in statistical physics
As well known from quantummechanics, the presence of degeneracy of energy levels
significantly complicates a calculation of averages for operators of dynamic variables.
It would seem that degenerate and non-degenerate states are regarded as completely
identical in statistical mechanics. However, this is far from being the case. To see this,
let us consider a problem of calculating the longitudinal component of the static mag-
netic susceptibility tensor χzz . Using the results (5.80) of the linear response theory,
we can write an expression for longitudinal static susceptibility of an electron gas as
follows:

χzz =
(gμB)2

iℏ

0

∫
−∞

dt1e
ϵt1 Sp{SzeiLt1[ρ0, S

z]} . (5.168)

If the Hamiltonian H0, involved in the definition of the equilibrium statistical opera-
tor ρ0, is independent on the transverse components of the spin S+, S− the statistical
operator commutes with the operator Sz, which results in the unreasonable solution
χzz = 0. It would seem that this result directly emanates from the conservation condi-
tion of the z-component of the total spin.
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In fact, as far as degeneracy of energy levels in quantum-statistical mechanics is
concerned, the averages of operators of dynamical quantities should be replaced by
quasi-averages. The quasi-averages are determined as follows:
1. The Hamiltonian H0 is replaced by the Hamiltonian H0 + uH to remove the de-

generacy property by choosing a certain addition;
2. the required quantum-statistical averages are calculated;
3. after performing the thermodynamic limiting transition, the following limiting

transition u→ 0 needs to be fulfilled.

Thus, the correctly calculated value of the average for an arbitrary dynamic operator
A is a limit:

⟨A⟩ = lim
u→0

Sp{A 1
Z
e−β(H0+uH)}. (5.169)

We now go back to an analysis of the problem of calculating the longitudinal mag-
netic susceptibility in terms of quasi-averages. Assume that the Hamiltonian admits
an infinitesimal correction, which removes the degeneracywith respect to rotations of
the Z-axis in the space of the spins. In this case, it already cannot be a priori tolerated
that [ρ0, Sz] = 0. Therefore, to transform this commutator, we should use the Kubo
formula (5.81), and write it as follows:

1
iℏ
[ρ0, S

z] = β
1

∫
0

dτρτ0Ṡ
zρ1−τ0 . (5.170)

Substituting this expression into the formula (5.168), one obtains

χzz = β(gμB)
2

0

∫
−∞

dt1e
ϵt1

1

∫
0

dτ Sp{Sz Ṡz(t1 + iℏβτ)ρ0} . (5.171)

Performing the integration by parts over variable t1 in this expression, we get

χzz = β(gμB)
2

1

∫
0

dτ Sp{SzSz(iℏβτ)ρ0}

− β(gμB)
2

1

∫
0

dτϵ
0

∫
−∞

dt1e
ϵt1 Sp{SzSz(t1 + iℏβτ)ρ0}. (5.172)

To transform the second summand in the last formula, Abel’s theorem should be used

lim
ϵ→0

ϵ
0

∫
−∞

dteϵtf (t) = lim
t→−∞

f (t).
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Then we finally obtain

χzz = β(gμB)
2

1

∫
0

dτ Sp{SzSz(iℏβτ)ρ0} − β(gμB)
2 Sp{Szρ0} Sp{S

zρ0}. (5.173)

Now, applying the standard notation

Sp{Szρ0} = ⟨S
z⟩,

the result can be written more compactly:

χzz = β(gμB)
2

1

∫
0

dτ⟨(Sz − ⟨Sz⟩)(Sz(iℏβτ) − ⟨Sz⟩)⟩. (5.174)

For a gas of noninteracting electrons H0 = −gμBSzH, so Sz(iℏβτ) = Sz . Then this re-
sult allows for further simplification, and we obtain a formula that coincides with the
classical definition of the magnetic susceptibility :

χzz = β(gμB)
2⟨SzSz⟩, (5.175)

where Sz = Sz − ⟨Sz⟩.

5.3.2 Symmetry properties of correlation functions for operations of spatial
rotation, complex conjugation and time reversal

Considering the symmetry properties for correlation functions at operations of spa-
tial rotation, complex conjugation and time reversal when determining the electrical
conductivity components in a quantizingmagnetic fieldwith the aid of the correlation
function, we have

σμν =
∞

∫
0

dte−ϵtIμν(t),

Iμν(t) =
β

∫
0

dλ⟨Jμ(t)Jν(iℏλ)⟩. (5.176)

Let us first define the symmetry properties of the correlation function Iμν(t) at the op-
eration of the spatial rotation of a coordinate system. In this case, if a system’s Hamil-
tonian is invariant with respect to rotation about a distinguished axis, the correlation
function Iμν(t) is presented as the product of themomentum components PμPν. In par-
ticular, if a magnetic field H = 0, for crystals of the cubic symmetry, one obtains

Ixx(t) = Iyy(t) = Izz(t),
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Ixy(t) = Iyz(t) = Ixz(t) = 0. (5.177)

Thus, in this case, all diagonal components are equal, and the off-diagonal vanish.
In an external magnetic field, application of the same principle leads to the fol-

lowing result:

Ixx(t) = Iyy(t); Ixy(t) = −Iyx(t). (5.178)

All the other off-diagonal components are zero. It is worth saying a few words about
the component Izz(t) in the quantizing magnetic field. In this case, since the motion
along the Z-axis remains quasi-free, to calculate the longitudinal component of the
electrical conductivity tensor the procedure developed in Section 5.1.3 must be used.

We find relations satisfied by the correlation function Iμν(t) at the operation of
complex conjugation. When the correlation function is a real quantity, the correlation
function must also satisfy additional relations, which may come up at this operation.

Wefirst considerwhen the operation of complex conjugation is applied to the spur
of two operators:

(Sp{AB})∗ = (∑
nm
⟨n|A|m⟩⟨m|B|n⟩)

∗

=∑
nm
∫ψnA

∗ψ∗mdτ1 ∫ψmB
∗ψ∗ndτ2 = Sp{B

+A+}. (5.179)

In the formula (5.179) B+ denotes the Hermitian conjugate operator.
Applying the ratio found for the correlation function Iμν(t), we have

Iμν(t)
∗ =

β

∫
0

dλ Sp{(Jν(iℏλ)ρ0)
+Jμ(t)
+} =

β

∫
0

dλ Sp{ρ0Jν(−iℏλ)Jμ(t)}. (5.180)

In deriving this relation we have taken into account that the statistical operator ρ0 is
self-adjoint and ρ+0 = ρ0. The current operator is also self-adjoint one and therefore it
satisfies the relation

Jα(t + iℏλ)
+ = Jα(t − iℏλ).

Making the change of the integration variables λ − β = λ in the last integral of (5.180)
we get

Iμν(t)
∗ = Iμν(t). (5.181)

Thus, we have shown that the correlation function Iμν(t) has a real value.
Now, consider the symmetry properties of correlation functions with respect to

the operation of time reversal.
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In quantum mechanics, symmetry of motion in relation to change of the sign on
time makes itself evident in the fact that if the function ψ is a wave function of some
stationary state, the time-reversed wave function, being designated here by ψ−, also
describes some possible state with the same energy.

Consider the Schrödinger equation,

iℏ𝜕ψ
𝜕t
= Hψ. (5.182)

If the Hamiltonian is invariant with respect to the time-reversal operation, we can ob-
tain another equation, reversing time,

− iℏ𝜕ψ−
𝜕t
= Hψ−. (5.183)

This equation is like the complex conjugate of (5.182):

− iℏ𝜕ψ
∗

𝜕t
= H∗ψ∗. (5.184)

Comparing the equations (5.183) and (5.184), we try to determine an operator, which
would play the role of the time-reversal operator. Let an operator O be unitary, and
satisfy the conditions

OH∗ = HO, O−1O = 1, O−1 = O+.

We apply this operator to the equation (5.184), and the following expression appears:

− iℏ𝜕Oψ
∗

𝜕t
= HOψ∗. (5.185)

Comparing this equation with (5.183), we find that

Oψ∗ ≡ Kψ = ψ−.

The entity K = OK0, where K0 is the operator of complex conjugation, can be called
the time-reversal operator.

The explicit form of the operator O depends on the particularly chosen Hamilto-
nian. If the Hamiltonian has the form

1
2m
(P⃗ − e

c
A)

2
− gμBσ⃗ rot A⃗ + V( ⃗r), (5.186)

the operator O can be chosen as

O = iσyOA,

where the operator OA changes the sign of the vector potential and the direction of a
magnetic field is reversed.
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It is easy to verify that the property OH∗ = HO for the Hamiltonian of (5.186) is
fulfilled for the operatorO = iσyOA. It also holds true for the first and third summands
in (5.186). In order to ensure that this property works, it is sufficient to call attention
to the second summand of Hamiltonian (5.186):

iσyσ⃗ = −σ⃗iσy .

That is because the Pauli matrices,

σx =
1
2
(

0 1
1 0
) , σy =

1
2
(

0 −i
i 0
) , σz =

1
2
(

1 0
0 −1
) ,

anticommute:

σxσy + σyσx = 0, σyσz + σzσy = 0,

and the obvious relation iσyσ∗y = −σyiσy is met.
Thus, the time-reversal operator K has the form

K = OK0 = iσyOAK0; K−10 = K0, O
−1 = O+, (5.187)

where the operatorK0 performs an operation of complex conjugation and the operator
OA changes the sign of A→ −A or H → −H.

Now, we establish the symmetry properties for the correlation functions, arising
due to the invariance of the Hamiltonian with respect to the time-reversal operation.
We first consider the matrix element of the operator

⟨ψn|K
−1AK|ψm⟩ = ⟨ψn

(O
+AO)∗ψm⟩

= ⟨ψ∗n |O
+AO|ψ∗m⟩

∗ = ⟨Oψ∗n |A|Oψ
∗
m⟩
∗ = ⟨Kψn|A|Kψm⟩

∗. (5.188)

Thus, we have proved that

⟨ψn
K
−1AKψm⟩ = ⟨Kψn|A|Kψm⟩

∗.

After generalizing this result, the relation for the spur of two operators can be written
as

(Sp{AB})∗H = (Sp{A
×B×})−H . (5.189)

In deriving the formula (5.189) we have taken into account the fact that the numerical
value of the spur is calculated regardless ofwhich a complete systemof eigenfunctions
is applied: ψ or ψ−, and we have used the notation K−1AK = A×.

The subscript H or −H in the correlation functions only serves as a reminder (the
operation of the sign change in the magnetic field is included in the time-reversal op-
erator).
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Using the relations (5.179) and (5.189) in successive order,weobtain anotheruseful
relation:

(Sp{AB})H = (Sp{B
+×A+×})−H . (5.190)

Applying the above result (5.190) to the correlation function Iμν(t), we can write the
integral

Iμν(t)H =
β

∫
0

dλ Sp{(Jν(−t + iℏλ)ρ0)
+×J+×μ }−H ,

ρ+×0 = ρ0, (Jν(−t + iℏλ))
+× = −Jν(t − iℏλ), J+×μ = −Jμ. (5.191)

Then the expression for the correlation function takes the form

Iμν(t)H =
β

∫
0

dλ(Sp{ρ0Jν(t − iℏλ)Jμ})−H

=
β

∫
0

dλ(Sp{JνJμ(−t + iℏλ)ρ0})−H = Iνμ(t)−H . (5.192)

If one recalls the definition (5.176), the relation (5.192) allows one to write the Onsager
symmetry relation for the components of the electrical conductivity tensor in a mag-
netic field,

σμν(H) = σνμ(−H). (5.193)

After generalizing this result, the components of the generalized susceptibility χAB are
given by

χAB(H) = εAεBχBA(−H), (5.194)

where the εA and εB quantities are equal to ±1, depending on parity of the A and B
operators for the time-reversal operation.

The relations (5.192), (5.193) imply that the diagonal components of the electrical
conductivity tensor can contain only even powers of the magnetic field.

Using the symmetry properties of the current operators relating to the time-
reversal operation, we can write another useful relation:

Iμν(t)H = Iμν(−t)−H . (5.195)
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To prove this relation, we consider the correlation function Iμν(t)H :

Iμν(t)H =
β

∫
0

dλ(Sp{JμJν(−t + iℏλ)ρ0})H

=
β

∫
0

dλ(Sp{(JμJν(t + iℏλ)ρ0)
×})−H

=
β

∫
0

dλ(∑
m
⟨ψ∗m|O

+JμJν(t + iℏλ)ρ0O|ψ
∗
m⟩)
∗

−H

=
β

∫
0

dλ(∑
m
⟨Kψm|JμJν(t + iℏλ)ρ0|Kψm⟩)

∗

−H

=
β

∫
0

dλ(Sp{JμJν(t + iℏλ)ρ0})
∗
−H = Iμν(−t)

∗
−H . (5.196)

By virtue of the equality (5.181), this yields the result (5.195). As far as the diagonal
components of the correlation function Iμν(t) are even in the magnetic field, it follows
that

Ixx(t) = Ixx(−t), Iyy(t) = Iyy(−t), Izz(t) = Izz(−t). (5.197)

5.4 Problems to Chapter 5

5.1. Argue that the following identities hold for arbitrary operators:

1. [AC,B] = A[C,B] + [A,B]C;
2. Sp{B[A(t1), ρ0]} = Sp{[B,A(t1)]ρ0}; A(ti) = exp{iLti}A;
3. Sp{B[A(t1), [A(t2), ρ0]]} = Sp{[[B,A(t1)],A(t2)]ρ0}.

5.2. The Heaviside theta-function is given by

θ(x) = { 1, x ≥ 0,
0, x < 0.

Prove that its derivative coincides with the Dirac delta-function

d
dx

θ(x) = δ(x).

5.3. Formulate physical applicability conditions for the theory of a system’s re-
sponse to an external mechanical perturbation. What is the meaning of the
relaxation time in the expression (5.78)?
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5.4. By means of the formula (5.57), show that one can arrive at the expression
(4.204) again in the case of electron scattering by a screened Coulomb potential
for the reverse relaxation time of the average momentum of the electrons.

5.5. Prove that the Kubo identity can be written as

1
iℏ
[ρ0, S

β] = β
1

∫
0

dτṠβ(iℏβτ)ρ0,

where

H = He + Hs; He =
P2

2m
; Hs = −gμBS

z |H⃗|; Ṡβ = 1
iℏ
[Sβ,H];

ρ0 =
1
Z
e−β(H−ζN), Z = Sp{e−β(H−ζN)}; A(iℏβτ) = ρτ0Aρ

−τ
0 .

5.6. It is well known that the theory of transport phenomena includes the so-called
sum rule: the integral over frequency of generalized susceptibility as well as
kinetic coefficients can be expressed through a static correlation function (in
some cases, the correlation function can be easily calculated).
Prove that the sum rule holds for the electrical conductivity

∞

∫
−∞

dωσμν(ω) = π
e2n
m
,

where σμν is given by (5.43).
5.7. The system of electrons is in an external magnetic field H, oriented along the

Z-axis and in a variable (periodic) field with amplitude h and frequency ω that
is oriented in a plane perpendicular to the Z-axis. The interaction Hamiltonian
between the electrons and the external field can be written as

Hsf = −
ℏω1s
2
(S+eiωt − S−eiωt),

where Sα is the α-component of the total electron spin.
Prove that, in this case, the power Q absorbed by the spin system can be repre-
sented as

Q = 1
2
ωh2χ+−(ω),

where χ+−(ω) is the imaginary part of the high-frequency transverse magnetic
susceptibility.

5.8. To analyze experimental data of how kinetic coefficients behave in a quantizing
magnetic field, it is very important to know the behavior of the Fermi level.
Prove that the position of the Fermi level in the magnetic field is weakly depen-
dent on its amplitude. Calculate the valueof theFermi level for cases lying three,
two or one Landau levels below the Fermi level. Compare the results obtained
with the value of the Fermi level in the absence of the magnetic field.
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5.9. Argue that the relation

⟨A1(t1)A2(t2)⟩H = ϵA1
ϵA2
⟨A2(t2)A1(t1)⟩−H

is valid for the correlation function ⟨A1(t1)A2(t2)⟩ = Sp{A1(t1)A2(t2)ρ0} where
ϵA1

ϵA2
are equal to ±1 depending on the parity of the operators A1, A2 in the

time-reversal operation.
5.10. The quantization of electron orbital motion is most obvious in a two-dimen-

sional metal of MOS transistors. According to (5.138), (4.132), the Hall constant
remains intact and is equal to 1/enc in the zeroth-order interaction. In practice,
it is more convenient to analyze a different quantity, namely the Hall resistance
RH = R⋅H. Then the quantityRH = H/encmust increase linearlywith increasing
a magnetic field. However, an experiment demonstrates a completely different
situation on changing the magnetic field, the Hall resistance obeys the law

RH =
2πℏ
ie2
,

where i is the number of Landau levels below the Fermi level. Explain the above
laws of the quantum Hall effect in a two-dimensional metal.
Hint. Prove that themultiplicity of degenerationof the Landau levels is the same
for all levels and is 1/(πl2).
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6 Non-equilibrium statistical operator method

6.1 Non-equilibrium and quasi-equilibrium statistical operators

6.1.1 Quasi-equilibrium distribution

This chapter reviews themethod of non-equilibrium statistical operator (NSO), which
is conceptually related to the projection operator method developed by Mori. D. N.
Zubarev and V. P. Kalashnikov also made great strides in advancing the NSO method.
As to this method, the books [36, 37] contain a sufficiently complete picture of early
work by these authors. To get acquainted with the method, the monograph G. Repke
[42] is recommended, but, unfortunately, it gives too few examples of applying the
NSO method for various applications. An overview of more recent papers, containing
the modern development of this fairly promising method, can be found in [43].

The authors of the present book do not pretend to give a fairly complete overview
of recent research on the use of theNSOmethod for solving problems of physical kinet-
ics. The goal of the authors is to draw the reader’s attention, first of all of students, to
the NSOmethod that is simple andmodern. Themethod is comparable, all in all, with
the kinetic equation approach. Nevertheless, it has still not found a proper practice.

The time evolution of a non-equilibrium state of a macroscopic system can be set
forth by means of the non-equilibrium statistical operator ρ(t,0), which satisfies the
Liouville equation (5.19):

(
𝜕
𝜕t
+ iL)ρ(t,0) = 0, iLA = 1

iℏ
[A,H] ≡ Ȧ. (6.1)

In the equation (6.1), the quantity of ρ(t,0) has two time arguments. The first describes
the dependence of the statistical operator on time t, i. e. some parameters are con-
nected with time explicitly. For example, this may be the dependence of temperature
or drift velocity on time. The second time argument t describes the time dependence
of the operator on time in the Heisenberg notation. In addition, since the quantity ρ(t)
is an integral of motion, the following expression must be fulfilled:

ρ(t, t) = exp{iLt}ρ(t,0) = ρ(0,0). (6.2)

The Liouville equation within these notations can be written also in the form

dρ(t, t)
dt
= 0. (6.3)

If the statistical operator is known and equal to ρ(t0,0) at an initial moment of time
t0, the solution of the Cauchy problem for the NSO is given by

ρ(t,0) = exp{−iL(t − t0)}ρ(t0,0). (6.4)

https://doi.org/10.1515/9783110727197-006
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At the same time, a time dependence of averages for the operator of some physical
quantity A appears:

⟨A⟩t = Sp{Aρ(t,0)} = Sp{ρ(t0,0) exp{iL(t − t0)}A}. (6.5)

In deriving the last relationwehaveusedboth cyclic commutativity of operators under
the spur sign and expression (5.20) for the Heisenberg evolution operator. It should
be noted that the above relations are treated as a particular case for systems whose
Hamiltonian is not time dependent.

The formulas (6.2)–(6.5) correspond to a precise dynamical system description,
which, as it follows from results of the previous chapters, is unobservable for systems
withweak stability. Suppose that at some point of time τ, which ismore timemixing in
the system,measurable quantities are the average values ⟨Pn⟩t of some set of operators
Pn. Following this line of reasoning, the system’s memory of the initial distribution
ρ(t0,0) is expected to fade away over time τ, and, as a consequence, the evolution of
the system will be determined by dint of general statistical properties.

So we do not take into account the correlations that decay in time t ≃ τ, when
considering the fairly distant asymptotic t ≫ τ. This idea, due to Bogoliubov, is at the
heart of the NSO method. If one accepts it, the true initial condition for the Liouville
equation (which is in any case unknown)

lim
t→t0

ρ(t) = ρ(t0)

can be replacedwithout prejudice by an idealized condition, consisting in the fact that
the NSO at an initial time is a functional only of the same variables of ⟨Pn⟩t, which
prove to be long-living or measurable over periods of time t ≫ τ. Therefore, as follows
from the solution of the Liouville equation (6.4), ρ(t,0)will be also a functional of ⟨Pn⟩t

at all subsequent time points.
Let us now discuss another important level of the method under consideration.

Supposewehavea systemwhose state at a given stageof evolution is describedbya set
of average (measurable) quantities of ⟨Pn⟩t . Alongwith the non-equilibrium statistical
operator ρ(t,0), we introduce a quasi-equilibrium statistical operator ρ(t,0) which is
equivalent toNSO in the sense that the average values of operatorsPn are equal among
themselves at all timepoints for non-equilibriumandquasi-equilibriumdistributions:

⟨Pn⟩
t = Sp{Pn ρ(t,0)} = Sp{Pn ρ(t,0)}. (6.6)

The condition (6.6) is a new assumption and not a consequence of the program of
constructing a theory of irreversible phenomena, which was discussed in the previ-
ous chapter. So one should postpone an explanation of the physical meaning of this
condition before deriving an explicit expression for the quasi-equilibrium distribu-
tion. Now it is worth pointing out but that the condition (6.6) allows thermodynamics
of a non-equilibrium system to be constructed.
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The treatment of the quasi-equilibrium distribution will be accounted for as the
reader advances through the text. Emanating from the fact that such a distribution
may be entered and it is to be some functional of the average values of observable
quantities of ⟨Pn⟩t, we think that the distribution ρ(t,0) is a functional of the observed
averages of ⟨Pn⟩t, taken at one and the same time t. Then, if ρ(t,0) is time dependent
on the time-dependent averages of ⟨Pn⟩t, the differential of ρ(t,0) is given by

𝜕ρ(t,0)
𝜕t
=∑

n

𝜕ρ(t,0)
𝜕⟨Pn⟩t

𝜕
𝜕t
⟨Pn⟩

t . (6.7)

Equation (6.7) allows one to yield another interpretation of the operators Pn. These
operators are basic operators on a Hilbert space. Therefore, the time evolution of any
operator can be expressed through the evolution of an aggregate of the basic opera-
tors. From the equation (6.7) it follows that the quasi-equilibrium distribution does
not satisfy the Liouville equation. The expression for the time derivative for the quan-
tities of ⟨Pn⟩t can be obtained by using equation (6.6). Considering the Liouville equa-
tion (5.19) and differentiating the equation (6.6) over time, we get

𝜕⟨Pn⟩t

𝜕t
= ⟨Ṗn⟩

t . (6.8)

In deriving the last expression we have used the definition of the Liouville opera-
tor (5.18) and taken into account that

⟨Ṗn⟩
t = −Sp{PniLρ(t,0)} = Sp{Ṗnρ(t,0)}. (6.9)

Equation (6.8) can be regarded as a generalized kinetic equation. In particular, this
equation canhave themeaning of an equation for a one-particle distribution function,
if the quantity Pk = a+k⃗ak⃗ where a

+
k⃗
, ak⃗ are creation and annihilation operators of a

particle such as an electron in a state k⃗.
To understand the sense of the introduced quasi-equilibrium distribution, it is

necessary to calculate a system’s entropy, suggesting that a quasi-equilibrium ensem-
ble of systems is already prepared. Let the entropy of the quasi-equilibrium system be
defined by the expression

S(t) = −Sp{ρ(t,0) ln ρ(t,0)}. (6.10)

In addition, the quantity

Ŝ(t) = − ln ρ(t,0) (6.11)

will be called the entropy operator.
Let us find the entropy production in a system. The term “entropy production”

was borrowed from phenomenological thermodynamics of irreversible processes [5]
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and stands for the time derivative of an average value of the system entropy. For equi-
libriumsystems, entropyproduction is zero and for non-equilibriumones it is positive.
Differentiating the equation (6.10) over time, we arrive at

Ṡ(t) = − d
dt
Sp{ρ(t,0) ln ρ(t,0)} = Sp{ ̇Ŝ(t,0)ρ(t,0)}, (6.12)

̇Ŝ(t,0) = ( 𝜕
𝜕t
+ iL)Ŝ(t,0). (6.13)

In deriving the formula (6.12) we have taken into account the fact that ln ρ(t,0) is lin-
ear in operators Pn (this will be shown in the following section), and therefore, the
following expression is valid:

Sp{ρ(t,0) ln ρ(t,0)} = Sp{ρ(t,0) ln ρ(t,0)}.

The quantity ̇Ŝ(t,0) is called the entropy production operator.
Because S(t) is also a functional of ⟨Pn⟩t, using the expression (6.8), we have

𝜕S(t)
𝜕t
=∑

n

δS(t)
δ⟨Pn⟩t
⟨Ṗn⟩

t . (6.14)

Introducing the notation

δS(t)
δ⟨Pn⟩t
≡ Fn(t) (6.15)

for the entropy production we obtain the simple equation

𝜕S(t)
𝜕t
=∑

n
Fn(t)⟨Ṗn⟩

t , (6.16)

which coincides in formwith the equationof entropyproduction inphenomenological
non-equilibrium thermodynamics of Onsager [5]. The sign of δ in the formula (6.15)
means a functional derivative. According to Onsager, entropy production in a system
is equal to the sum of products of a generalized thermodynamic force by a conjugate
thermodynamic flux. The expression (6.15) has the desired structure and allows one
to interpret the quantity Fn(t) as a generalized thermodynamic force, and ⟨Ṗn⟩t as a
generalized thermodynamic flux.

6.1.2 Extremal properties of a quasi-equilibrium distribution. Thermodynamics of a
quasi-equilibrium ensemble

It is interesting to see what the explicit form of the quasi-equilibrium distribution
should be. It is clear that the definition of ρ(t) can be ambiguous due to only one
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requirement to this distribution, i. e., it must be a functional of ⟨Pn⟩t . The expres-
sion (6.10), defining the relationship between the quasi-equilibrium distribution and
entropy, allows one to unambiguously determine the ρ(t). So, we require that ρ(t)
should satisfy the maximum information entropy

S(t) = −Sp{ρ(t,0) ln ρ(t,0)}

under the additional conditions.
1. No matter how the distribution is varied, the observed average values of basic

operators must remain unchanged:

Sp{Pnρ(t,0)} = ⟨Pn⟩
t ; (6.17)

2. In varying the distribution, the normalization condition must be preserved,

Sp{ρ(t,0)} = 1. (6.18)

The extremality conditions (6.10) along with the restrictions (6.17) and (6.18) imposed
on all possible variations put the problemona conditional extremumof the functional
S(t). It is well known that the problem on the conditional extremum of the functional
S(t) can be reduced to a problem of an unconditional extremum of another functional
£(ρ(t)) by introducing Lagrange multipliers:

£ = −Sp{ρ ln ρ} −∑
n
Fn(t)Sp{ρPn} − [ϕ(t) − 1]Sp{ρ}. (6.19)

Here, Fn(t) and [ϕ(t) − 1] are Lagrange multipliers. Calculating the variation of both
sides of (6.19) over ρ, we obtain

δ£ = −Sp{[ln ρ +∑
n
Fn(t)Pn + ϕ(t)]δρ}. (6.20)

From the condition of extremality it follows that δ£ = 0. Therefore, considering that
the quantity δρ is arbitrary, and the spur on the right-hand side of (6.20) must still be
equal to zero, we have

ln ρ +∑
n
Fn(t)Pn + ϕ(t) = 0. (6.21)

From (6.21), it is easy to obtain an explicit form of the quasi-equilibrium statistical
operator:

ρ(t) = exp{−[ϕ(t) +∑
n
Fn(t)Pn]}. (6.22)

The Lagrange multipliers are not yet determined in the formula (6.22). So, it is nec-
essary to use the equations (6.17) and (6.18) to find them. To better understand the
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meaning of the parameters involved in the definition (6.22), let us compare it with the
Gibbs’ canonical distribution

ρ0 =
1
Z
exp{−β(H − ζN)}. (6.23)

Here, Z is the statistical sum, ζ the chemical potential of a system,H the Hamiltonian,
N the number particle operator and β the inverse temperature in energy units.

Upon comparing the formulas (6.22) and (6.23), it is seen that the equilibrium dis-
tribution is the distribution with a certain value of energy and number of particles,
at the same time the quasi-equilibrium distribution is a distribution with a certain
value of averages of ⟨Pn⟩t . The quantity ϕ(t) in the expression (6.22) is known as the
Massieu–Planck function, which, along with the statistical sum Z, is also defined by
the normalization condition:

ϕ(t) = ln Sp{exp{−∑
n
PnFn(t)}}. (6.24)

The choice of parameters Pn and functions Fn(t) depends on the particular problem.
In particular, in the case of the hydrodynamic regimewhen the energy of a system, the
drift momentum and the number of particles are measurable, see the table presented
below, we find the way to select a set of operators Pn and thermodynamic functions
Fn(t) conjugate to them:

Operators H P⃗ N

Thermodynamic functions β(t) β(t)mV⃗(t) β(t)ζ(t)

Here, P⃗ is the total momentum operator of particles in a system, V⃗ the drift velocity of
the particles,m the mass.

Let us address the thermodynamics of a quasi-equilibrium distribution.
Using the definitions (6.10) and (6.22), wewrite down the expression for a system’s

entropy:

S(t) = ϕ(t) +∑
n
⟨Pn⟩

tFn(t). (6.25)

This equation can be regarded as the Legendre transformation, namely as the tran-
sition from one thermodynamic potential to another (from ϕ(t) to S(t)) for the non-
equilibrium system. This becomes obvious if one performs the variation of the Mas-
sieu–Planck function (6.24):

δϕ(t) = δ ln Sp{exp{−∑
n
PnFn(t)}}

= − [Sp{exp{−∑
n
PnFn(t)}}]

−1
∑
m
Sp{PmδFm(t)

× exp{−∑
n
PnFn(t)}} = −∑

m
⟨Pm⟩

tδFm(t). (6.26)
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The last expression on the right-hand side of (6.26) is written in conformity with the
relations (6.6), (6.22) and (6.24).

On the other hand, using the definition of entropy (6.25) and considering the ex-
plicit form of the quasi-equilibrium distribution (6.22), we get

δS(t) = δϕ(t) +∑
n
(δ⟨Pn⟩

tFn(t) + ⟨Pn⟩
tδFn(t)). (6.27)

Substituting the value of δϕ(t), defined by the expression (6.26), into the formula
above, we obtain

δS(t) =∑
n
Fn(t)δ⟨Pn⟩

t . (6.28)

The relations (6.26), (6.28) can be interpreted as follows: in writing the entropy,
the role of independent variables are playing quantities of ⟨Pn⟩t, but in writing the
Massieu–Planck function we have the quantities Fn(t).

The results obtained allow one to generalize the Gibbs–Helmholtz relations in the
case of non-equilibrium thermodynamics. Calculating the derivative of the Massieu–
Planck function and using the equation (6.26), we have

⟨Pm⟩
t = −

δϕ(t)
δFm(t)
. (6.29)

Substituting this result into the expression for entropy, we obtain a generalization of
the Gibbs–Helmholtz relations in the case of non-equilibrium thermodynamics:

S(t) = ϕ(t) −∑
m

δϕ(t)
δFm(t)

Fm(t). (6.30)

This formula expresses the system’s entropy through the Massieu–Planck functional.
Also, it is easy to get the inverse ratio. Indeed, from the expression for the variation of
entropy, Fn(t) appears:

Fn(t) =
δS(t)
δ⟨Pn⟩t
. (6.31)

Then the formula for entropy yields again

ϕ(t) = S(t) −∑
m

δS(t)
δ⟨Pn⟩t
⟨Pn⟩

t . (6.32)

The difference between these relations and their equilibrium analogs reduces to only
a substitution of functional derivatives for partial ones.

To get the meaning of the quasi-equilibrium distribution ρ(t), it is very important
to find whether one can use this distribution for description of non-equilibrium pro-
cesses.
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Now, we calculate entropy production of a quasi-equilibrium state. Averaging the
entropy production operator (6.13) over the quasi-equilibrium distribution, we obtain

⟨Ṡ(t)⟩tq = Sp{ρ(t)[ϕ̇(t) +∑
n
ṖnFn(t) +∑

n
PnḞn(t)]}. (6.33)

Applying the relation (6.26), we arrive at

ϕ̇(t) = −∑
m
⟨Pm⟩

t Ḟm(t).

Substituting this result into (6.33), we find that

⟨ ̇Ŝ(t)⟩tq = Sp{ρ(t)∑
n
[(Pn − ⟨Pn⟩

t)Ḟn(t) + ṖnFn(t)]}

=∑
n
(Sp{ρ(t)Pn} − ⟨Pn⟩

t)Ḟn(t) + Sp{ρ(t)iLŜ(t)} = 0. (6.34)

In deriving the last relation we have taken into account that ρ(t) and the entropy op-
erator Ŝ(t) commute among themselves and therefore

Sp{ρ(t)iLŜ(t)} = 0.

Thus, entropy production in a quasi-equilibrium state is equal to zero. Thismeans that
there are no fluxes in the quasi-equilibrium state, and so such a distribution cannot
describe the non-equilibrium state of the system. Given the above, we can point out
that the quasi-equilibrium distribution characterizes an ensemble whose thermody-
namic forces as if are compensated by some causes. Therefore, these thermodynamic
fluxes do not develop.

However, there is another point of view. The quasi-equilibrium distribution de-
scribes a newly formed non-equilibrium ensemble of particles, the evolution of which
just begins, so the thermodynamic fluxes have not yet been in progress. Obviously,
the quasi-equilibrium distribution can be used as an initial condition for the true non-
equilibrium distribution, which we expect to make further.

At the end of the section, we find the relationship between the second functional
derivatives of the S(t) and ϕ(t) potentials and correlation functions in the quasi-
equilibrium state:

δ⟨Pm⟩t

δFn(t)
= −

δ2ϕ(t)
δFn(t)δFm(t)

=
δ

δFn(t)
Sp{Pm exp{−[ϕ(t) +∑

k
PkFk(t)]}}. (6.35)

Let us make a small mathematical digression and calculate the derivative over the pa-
rameter of the operator exponent.We first consider the simpler question of expanding
the exponent

exp{(A + B)t}
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into a power series. Here, A and B are operators noncommuting among themselves,
and t is some parameter. We introduce the following notation:

exp{(A + B)t} ≡ D(t) ≡ G(t) exp(At).

Let us make up an equation of motion for the function D(t):

dD(t)
dt
= (A + B)D(t) = dG(t)

dt
exp(At) + G(t)A exp(At). (6.36)

The operator A commutes with the operator exponent exp(At). Therefore, the second
equality in the expression (6.36) can be written as

(A + B)D(t) = dG(t)
dt

exp(At) + D(t)A.

A + B also commutes with D(t), so

(A + B)D(t) = D(t)(A + B).

Substituting this result into the formula (6.36) and reducing the identical terms, one
is led to

D(t)B = dG(t)
dt

exp(At),

or
dG(t)
dt
= exp{(A + B)t}B exp{−At}. (6.37)

Given that exp{(A + B)t} = G(t) exp(At) and using the last equation, we get

d lnG(t1)
dt1
= exp(At1)B exp(−At1) dt1.

Integrating this differential equation under the boundary conditions G(0) = 1,
lnG(0) = 0, we have

G(t) = exp{
t

∫
0

exp(Aλ)B exp(−Aλ) dλ},

exp{(A + B)t} = exp{
t

∫
0

exp(Aλ)B exp(−Aλ)dλ} exp(At). (6.38)

If the operator B is small (smallness of the operator is understood as smallness of cor-
responding matrix elements) and one can envisage only the first terms of expansion,
the following expression is arrived at instead of (6.38):

G(t) = 1 +
t

∫
0

exp(Aλ)B exp(−Aλ) dλ;
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exp{(A + B)t} = exp(At) +
t

∫
0

exp(Aλ)B exp(−Aλ) dλ exp(At). (6.39)

Now, on account of this formula, one can derive a rule of differentiation of the operator
exponent over a parameter. Using the definition of the derivative, we have

d
dλ2

exp(P1λ1 + P2λ2)

= lim
Δλ2→0

1
Δλ2
[exp(P1λ1 + P2λ2 + P2Δλ2) − exp(P1λ1 + P2λ2)]. (6.40)

Assuming that the P2Δλ2 is a small operator and t = 1, based on the formula (6.39) we
obtain

exp(P1λ1 + P2λ2 + P2Δλ2) = exp(P1λ1 + P2λ2)

+
1

∫
0

exp[(P1λ1 + P2λ2)λ]P2Δλ2 exp[−(P1λ1 + P2λ2)λ] dλ.

(6.41)

Given the last result, in the long run, we have

d
dλ2

exp(P1λ1 + P2λ2)

=
1

∫
0

exp[(P1λ1 + P2λ2)λ]P2 exp[−(P1λ1 + P2λ2)(λ − 1)] dλ. (6.42)

Let us go back again to the formula (6.35) and find the functional derivative by means
of (6.42),

δ
δFn(t)

exp{−∑
k
PkFk(t)}

= −
1

∫
0

exp[−∑
k
PkFk(t)τ]Pn exp[∑

k
PkFk(t)(τ − 1)] dτ. (6.43)

Similarly, one can deduce the formula

exp(−ϕ(t)) = [Sp{exp(−∑
k
PkFk(t))}]

−1
,

considering that

δ
δFn(t)

exp(−ϕ(t)) =
Sp{Pn exp(−∑k PkFk(t))}
[Sp{exp(−∑k PkFk(t))}]2

.
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Now, an expression for the functional derivative of an average value of the basic oper-
ator can be found:

δ
δFn(t)

Sp{Pmρ(t)} = ⟨Pn⟩
t⟨Pm⟩

t −
1

∫
0

dτSp{Pmρ(t)
τPnρ(t)

1−τ}. (6.44)

Finally, determining the scalar of the two operators by dint of the relation

(Pm,Pn)
t
q =

1

∫
0

dτSp{(Pm − ⟨Pm⟩
t)ρ(t)τ(Pn − ⟨Pn⟩

t)ρ(t)1−τ},

we obtain
δ⟨Pm⟩tq
δFn(t)
= −(Pm,Pn)

t
q. (6.45)

Let us sum up. Emanating from the extremality principle of informational entropy we
have constructed the expression for the quasi-equilibrium statistical operator (6.22).
Themeaning of this distribution is that it describes the just prepared ensemble of non-
equilibrium systems where evolution has not yet occurred and any fluxes are absent.

The key to understanding the NSO method is the relation (6.6), establishing the
equality of average values of the basic operators Pn, which in turn we have calculated
with the use of both non-equilibrium and quasi-equilibrium distributions. This rela-
tion can be interpreted as follows. By the time when the quasi-equilibrium ensemble
had formed, the set of variables of Pn was the only set of quantities measurable in
a non-equilibrium system. In the future, evolution of the system occurs so that new
slowly changing dynamic variables do not appear, and the average values of operators
⟨Pn⟩t slowly evolve due to time-dependent conjugate thermodynamic forces Fn(t).

As for the thermodynamic forces Fn(t), they form in the course of the system’s real
evolution and will depend on non-equilibrium processes in this system. Finding the
thermodynamic forces Fn(t) is the theme of the section devoted to linear relaxation
equations in the NSO method.

The results obtained allow thermodynamics of a non-equilibrium system to be
also constructed. However, the explicit form of the quasi-equilibrium distribution is
still unknown. Therefore, we will formulate an equation of motion for NSO in the next
section. This enables one to restore the explicit form of the quasi-equilibrium distri-
bution and to develop the thermodynamics of the non-equilibrium system.

6.1.3 Boundary conditions and the Liouville equation for the NSO

Consider a non-equilibrium system whose state over sufficiently large periods is de-
scribed by a set of macroscopic variables of ⟨Pn⟩t . As has been repeatedly noted, this
means that only these quantities aremeasurable in the given system, and the assump-
tion made above does not infringe on the reasoning’s generality. Usually, the set of
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the quantities Pn is a set of hydrodynamic quasi-integrals of motion such as energy,
the drift momentum, the number of particles, etc. However, we may also assign more
small structural variables as the quantities Pn. The occupation number of quantum
states may serve as a case in point.

Let us assume that a quasi-equilibrium ensemble of systems described by the
quasi-equilibriumdistribution ρ(t) is alreadyprepared at amoment of time t0. For con-
venience, the time t0 should be referred to negative infinity, which implies “physical
infinity”. The physical infinity means periods much greater than some characteristic
mixing time for the given system during which insignificant correlations for further
evolution die out.

We first formulate an initial condition for a non-equilibrium statistical operator
ρ(t). Let non-equilibrium statistical and quasi-equilibrium operators coincide at the
moment of time t0.

Next, we should define a condition allowing writing down the non-equilibrium
statistical operator in the form of a functional of the quasi-equilibrium distribution.
As already noted, the quasi-equilibrium statistical operator ρ(t) does not satisfy the
Liouville equation. Consequently, it will be transformed under the action of the evolu-
tion operator in contrast to the non-equilibrium distribution ρ(t), which is an integral
of motion.

We think that if one prepares the quasi-equilibrium distribution, the system to
develop, then the transformation of the quasi-equilibriumdistribution ρ(t) to the non-
equilibrium distribution ρ(t) after a certain time of order of the mixing time will take
place.

In terms ofmathematics, considering the definitions (6.2)–(6.4), the last condition
and the boundary condition for NSO formulated above can be written as

lim
t1→−∞

exp(it1L)ρ(t + t1,0) = lim
t1→−∞

exp(it1L)ρ(t + t1,0). (6.46)

Equation (6.46) enables one not only to express the non-equilibrium statistical op-
erator ρ(t) via a quasi-equilibrium distribution ρ(t), but also brings irreversibility in
behavior of the quantity ρ(t). Indeed, in this equation, it suffices to send t1 → +∞ to
describe a decrease in entropy of the system rather than an increase of it. The reason
of this is understandable. In the equation (6.46), the quasi-equilibrium distribution,
formed at the time t0 = −∞, in the course of evolution is transformed into a non-
equilibrium distribution at t > t0.

In other words, a direction of the spontaneous process gets assigned, and a more
ordered state corresponds to the lower temporal value. If one puts t0 = +∞, the sys-
tem as time goes by will transit from a less ordered tomore ordered state, which corre-
sponds to the decrease in the entropy over time. The applicationAbel’s theorem yields

lim
t→−∞

f (t) = lim
ϵ→0

ϵ
0

∫
−∞

exp(ϵt)f (t) dt. (6.47)
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If this limit exists, the equation (6.46) can rewrite in the following form:

lim
ϵ→0

ϵ
0

∫
−∞

exp(ϵt1)ρ(t + t1, t1) dt1 = limϵ→0 ϵ
0

∫
−∞

exp(ϵt1)ρ(t + t1, t1) dt1. (6.48)

Equation (6.48) gives an interesting interpretation. Essentially, the formula (6.48)
claims that the ρ(t + t1, t1) and ρ(t + t1, t1) statistical operators smoothed (averaged)
over a sufficiently large time interval are equal among themselves. Often, smoothing
defined by the formula (6.48), is referred to as taking the invariant part. Obviously,
ρ(t + t1, t1) = ρ(t) and therefore:

lim
ϵ→0

ϵ
0

∫
−∞

exp(ϵt1)ρ(t + t1, t1) dt1 = ρ(t). (6.49)

From equations (6.48), (6.49) it follows that, in the course of evolution, a quasi-
equilibrium distribution is transformed into a non-equilibrium one. This, in fact, is
the physical meaning of (6.48). The result (6.49) can be obtained otherwise. Integrat-
ing the right-hand side of the equation (6.48) by parts, we get

ϵ
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)ρ(t + t1,0)

= ρ(t,0) − lim
t1→−∞

exp(ϵt1)ρ(t + t1, t1)

−
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)(
𝜕
𝜕t1
+ iL)ρ(t + t1,0). (6.50)

Let us require that the last integral in (6.50) should vanish. This requirement is satis-
fied automatically provided that ρ(t,0) is an exact integral of motion. Strictly speak-
ing, as it will be shown later, ρ(t,0) is not an integral of the Liouville equation. But
that expression for ρ(t,0) that we will obtain further also leads to the vanishing of the
integral

0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)(
𝜕
𝜕t1
+ iL)ρ(t + t1,0). (6.51)

Next,

lim
t1→−∞

exp(ϵt1)ρ(t + t1, t1) = 0,

since the quantity ϵ in this formula is finite and must tend to zero after performing
the thermodynamic limit and calculating averages. Therefore, the expression (6.50) is
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essentially the definition of the non-equilibrium statistical operator:

ρ(t,0) = ϵ
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)ρ(t + t1,0). (6.52)

We now find an equation of motion, which is satisfied by NSO (6.52). To do this, the
equation (6.52) needs to be differentiated over time t:

𝜕ρ(t)
𝜕t
= ϵ

0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)
d
dt
ρ(t + t1,0)

= ϵ exp(ϵt1) exp(iLt1)ρ(t + t1,0)|
0
−∞ − ϵρ(t,0) − iLρ(t). (6.53)

Given that the exp ϵt1 → 0 at the t1 → −∞ one is led to the Liouville equation contain-
ing an infinitesimal source on the right-hand side:

𝜕ρ(t,0)
𝜕t
+ iLρ(t,0) = −ϵ(ρ(t,0) − ρ(t,0)). (6.54)

It is necessary to note that the vanishing of (6.51) is performed, as is easily seen if one
recalls the formula (6.48).

One should say a few words about the meaning of the infinitesimal sources in the
right-hand side of the equation of motion for NSO (6.54). As is known the Liouville
equation (5.19) is time-reversible. However, in real systems, there is a spontaneous
infringement of dynamical equations symmetry with respect to the operation of time
reversal. Thus, in reliance on the fact that the second law of thermodynamics removes
degeneracy of states associated with the symmetry with respect to operation of time
reversal, the dynamical equations becomes corrected.

Themain basis for more consistent interpretation of the emergence of the sources
in the right-hand side of equation (6.54) is ideology of Bogoliubov’s quasiaverages
(see Section 5.2.4). Obviously, that under this aspect all averages, which are calculated
by using the NSO method are quasiaverages; moreover, the term −ϵ(ρ(t,0) − ρ(t,0))
removes the degeneracy of the Liouville equationwith respect to the operation of time
reversal. Therefore, if the system is by itself and in contact with a heat bath, this term
in some idealized form takes into account the contact, which leads to relaxation of
the non-equilibrium distribution. Then the quantity ϵ can be interpreted as an inverse
relaxation time of the non-equilibrium distribution to the quasi-equilibrium one.

6.1.4 Linear relaxation equations in the NSO-method

It would be proper to start solving problems by means of NSO method with the sim-
plest case when a weakly non-equilibrium state of a system within a hydrodynamic
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approach can be described by a set of average values of thermodynamic coordinates
of ⟨Pn⟩t or set of their conjugate thermodynamic forces Fn(t) (6.31).

Consider a problem of determining the spectrum of hydrodynamic excitations for
such a system. In other words, one has to put the problem of determining the decay
times of associated fluctuations of the averages:

δ⟨Pn⟩
t = ⟨Pn⟩

t − ⟨Pn⟩
t
0,

where

⟨Pn⟩
t
0 = Sp{Pnρ0},

and ρ0 is the equilibrium Gibbs distribution. Because the non-equilibrium is weak, it
is natural to assume that the set of equations describing the associated relaxation of
the deviations δ⟨Pn⟩t should be linear.

To construct the linear relaxation equations with respect to the quantities δ⟨Pn⟩t,
linear expansion of the ρ(t,0), and ρ(t,0) statistical operators need to be obtained.

We first expand the quasi-equilibrium statistical operator ρ(t,0). For simplicity,
we adopt the following convention: we think of the quantities P, ⟨P⟩t, F(t) as column-
vectorswith components Pn, ⟨Pn⟩t, Fn(t), respectively. Then the quasi-equilibriumdis-
tribution (6.22) can be written as follows:

ρ(t) = exp(−Ŝ(t,0)), Ŝ(t,0) = ϕ(t) + P+F(t). (6.55)

Performing the expansion of Ŝ(t,0), we arrive at

Ŝ(t,0) = Ŝ0 + δŜ(t,0), δŜ(t,0) = δϕ(t) + P+δF(t),
δϕ(t) = ln Sp{exp[−P+(F0 + δF(t))]} − ln Sp{exp[−P

+F0]}. (6.56)

The quantities marked with a subscript 0 pertain to an equilibrium system.
To find the increment δϕ(t) of a functional, it is necessary to expand the operator

exponent in the last expression of (6.56) in the small parameter P+δF(t).
Using the formula (6.39) for the expansion of the operator exponent and consider-

ing the fact that the operator exponents under the spur sign can be cyclically traded,
we get

δϕ(t) = −Sp{P+ρ0}δF(t), ρ0 = exp(−S0). (6.57)

Substituting the result (6.57) into the second equality of the expression (6.56), one is
led to

δŜ(t) = −ΔP+δF(t), ΔP+ = P+ − Sp{P+ρ0}. (6.58)
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Using this representation, the expression (6.55) for the quasi-equilibrium distribution
can be written as

ρ(t) = exp[−Ŝ0 − δŜ(t,0)]. (6.59)

Performing again the expansion of the operator exponent (6.59) by means of the for-
mula (6.39), we have

ρ(t) = ρ0 −
1

∫
0

dτρτ0ΔP
+ρ1−τ0 δF(t). (6.60)

We perform a similar expansion of the non-equilibrium statistical operator ρ(t,0). In-
tegrating this equation by parts yields

ρ(t) = ρ(t) −
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)(
𝜕
𝜕t
+ iL)ρ(t + t1,0). (6.61)

We substitute the result as previously obtained into equation (6.61) for the expansion
of the quasi-equilibrium distribution (6.60). In the long run, performing simple trans-
formations, we get

ρ(t) = ρ0 −
1

∫
0

dτρτ0ΔP
+ρ1−τ0 δF(t)

+
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)

×
1

∫
0

dτρτ0{ΔṖ
+δF(t + t1) + ΔP

+δḞ(t + t1)}ρ
1−τ
0 . (6.62)

The expression (6.62) allows one to solve the posed problem and to obtain the set of
linear relaxation equations for fluctuations of the thermodynamic parameters δ⟨Pn⟩t .
For this it is only necessary to use the condition (6.6):

⟨Pn⟩
t = Sp{Pnρ(t,0)} = Sp{Pnρ(t,0)}.

However, there is amore convenient and elegant form of these equations by passing to
the Fourier representation. Let us define Fourier transforms of the quantities δ⟨Pn⟩t,
δρ(t) = ρ(t) − ρ0, δρ(t) = ρ(t) − ρ0, δF(t) by the following relations:

δ⟨P⟩t =
∞

∫
−∞

1
2π

dω exp(−iωt)δ⟨P⟩ω,

δF(t) =
∞

∫
−∞

1
2π

dω exp(−iωt)δ⟨F(ω)⟩,
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δρ(t) =
∞

∫
−∞

1
2π

dω exp(−iωt)δρ(ω),

δρ(t) =
∞

∫
−∞

1
2π

dω exp(−iωt)δρ(ω). (6.63)

Then, using the obvious relation

δ⟨P⟩ω = Sp{Pδρ(ω)} = Sp{Pδρ(ω)}, (6.64)

from the first side of the equality (6.64) one obtains the important result (see (6.60))

δ⟨P⟩ω = −(P,P+)δF(ω); (P,P+) =
1

∫
0

dτ⟨ΔPΔP+(iℏβτ)⟩. (6.65)

Next, using the definition of δρ(t) and δρ(t), one arrives at

δρ(ω) = δρ(ω) +
0

∫
−∞

exp[(ϵ − iω)t1] exp(iLt1) dt1

×
1

∫
0

dτρτ0Δ(Ṗ
+ − iωP+)ρ1−τδF(ω). (6.66)

If one integrates this expression over t1, instead of (6.66) one gets a simple expression
for δρ(ω), which is convenient for practical applications:

δρ(ω) = δρ(ω) +
1

∫
0

dτ 1
ϵ − iω + iL

ρτ0Δ(Ṗ
+ − iωP+)ρ1−τδF(ω). (6.67)

In the above expression, the operator resolvent is understood as a certain infinite se-
ries.

Now,we can construct the linear relaxation equations. Through logical reasoning,
it becomes clear that such equations in temporal representation must be of the form

𝜕
𝜕t
δ⟨P⟩t =

t

∫
−∞

T(t − t1)δ⟨P⟩
t1 dt1, (6.68)

where T(t−t1) is a some core. Similar equations can bewritten for the deviations δF(t).
An equation of the form (6.68) is easily obtained from the condition

Sp{Pδρ(ω)} − Sp{Pδρ(ω)} = 0.
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Substituting the results for δρ(ω) and δρ(ω) as previously obtained, we have

1

∫
0

dτSp{P 1
ϵ − iω + iL

ρτ0(ΔṖ
+ − iωP+)ρ1−τ0 }δF(ω) = 0. (6.69)

Introducing the correlation functions for brevity,

(A,B)ω =
1

∫
0

Sp{ΔA 1
ϵ − iω + iL

ρτ0ΔBρ
1−τ
0 } dτ

=
0

∫
−∞

dt1 exp[(ϵ − iω)t1](A,B(t1)), (6.70)

gives an equation for the deviations δF(ω) of the thermodynamic forces

iω(P,P+)ωδF(ω) − (P, Ṗ+)ωδF(ω) = 0. (6.71)

It should be recalled that the equation (6.71) is of matrix form and the quantity δF(ω)
is a column-vector.

It is convenient for further analysis to introduce the so-called transport matrix,

T(ω) = 1
(P,P+)ω

(P, Ṗ+)ω. (6.72)

Then the set of the linear relaxation equations takes the simple form

[iω − T(ω)]δF(ω) = 0. (6.73)

A completely analogous equation can be obtained for the quantities δ⟨P⟩ω. To do this,
using the equation

δ⟨P⟩ω = −(P,P+)δF(ω)

(see formula (6.65)), it is necessary to express δF(ω) via δ⟨P⟩ω and to substitute this
result into the equation (6.72). Then a dispersion equation for δ⟨P⟩ω appears:

[iω − T(ω)]δ⟨P⟩ω = 0,

T(ω) = 1
(P,P+)

T(ω)(P,P+). (6.74)

Equations (6.73) and (6.74) allow one to solve the problem about the related relaxation
of hydrodynamic excitations in the weakly non-equilibrium systems. As far as the sets
of equations (6.73) or (6.74) are homogeneous, the spectrum of elementary excitations
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to be sought is found by equating the system’s determinant to zero:

det|T(ω) − iω| = 0. (6.75)

Naturally, a transition to normal coordinates is a more accurate approach in solving
such a problem. The normal coordinates are introduced so that the transport matrix
of new variables would be diagonal.

The monograph by Forster [44] contains examples of collective hydrodynamic ex-
citations in multiparticle systems. For this reason we will not discuss model systems
and restrict ourselves to envisaging principal questions to develop a technique for cal-
culating components of the transport matrix.

We define the matrix Green function of the relaxation equations (6.73) and (6.74)
by the relations

{T(ω) − iω + ϵ}G(ω) = 1,
{T(ω) − iω + ϵ}G(ω) = 1. (6.76)

An explicit definition of the Green function G(ω) can be easily obtained via the corre-
lation functions (P,P+)ω and (P,P+) by using the definition for T(ω) (6.72). Integrating
the numerator of (6.72) by parts brings about

T(ω) = 1
(P,P+)ω

{(P,P+) + i(ω + iϵ)(P,P+)ω}. (6.77)

Substituting this result into the expression (6.76), one is led to

G(ω) = 1
(P,P+)
(P,P+)ω. (6.78)

Similarly, the function can be determined:

G(ω) = (P,P+)ω 1
(P,P+)
. (6.79)

It follows from the definition (6.76) that the introduced Green functions (6.78), (6.79)
are indeed Green functions of the relaxation equations, and their poles coincide with
the spectrum of normal modes of the system.

We next sum up and outline the next steps of solving the posted Problem in de-
termining the spectrum of the hydrodynamic excitations in a system whose state is
determined by a set of dynamic parameters Pn.

Likely, the above results determine a formal problem, since the explicit calcula-
tion of the poles of the Green functions (6.78), (6.79) is a rather daunting problem. Typ-
ically, to determine the poles of a Green function either themass operator method or a
method based on a diagram technique is used. It should be emphasized that the use of
the diagram technique to estimate the Green functions involved in kinetic coefficients
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leads, in the authors’ opinion, to an unreasonably intricate theory. In addition, it is
clear that all the results, which we can achieve by using the diagram technique, can
be obtained by means of the mass operator method. However, the reverse assertion is
incorrect.

Here, we will demonstrate another method to analyze the Green function. It is
known as the Mori method [56]. The Mori projection operator method derives equa-
tions of motion both for correlation functions and for operators of dynamical quanti-
ties. Themethodmentioned above jointly with NSOmethod intended for constructing
both the statistical operator and the generalized relaxation equations enables one to
speak about a creation of a newmethod for solving the problems of physical kinetics.
This new method is based on a successive use of ideology of the projection opera-
tor.

6.2 The projection operators method in non-equilibrium
statistical mechanics

6.2.1 Why is it necessary to introduce projection operators?

To begin constructing a theory of irreversible phenomena, it is natural that the dy-
namic Liouville equation (5.19) to be taken as basic. But in this case, the question im-
mediately arises: how to develop a theory which results in irreversible behavior of a
system?

It is well known due to Boltzmann’s classic work that a nondecreasing function
can be found for a non-equilibrium system:

HB = −∫ dp⃗f (p⃗, t) ln(f (p⃗, t)), (6.80)

where f (p⃗, t) is the one-particle distribution function, p⃗ the momentum of a particle.
The function HB coincides with statistical entropy of a system with accuracy up

to a multiplier that determines the dimension. The quantity f (p⃗, t) satisfies the Boltz-
mann equation, which is not dynamical and more similar to a phenomenological dif-
fusion equation in a phase space. One can try to generalize the definition (6.80), using
the functional

S = −∫ dp dqρ(t) ln(ρ(t)), (6.81)

where ρ is a statistical operator and the integration is being performed over the entire
surface of constant energy (classical case). We determine yet the more general form of
the functional

S = ∫ dp dqρ(t)M(p, q), (6.82)
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whereM(p, q) is some function of sufficiently general form. If the quantity S is a non-
decreasing function (a Lyapunov function), the derivative dS/dt ≥ 0. To calculate this
derivative a formal solution of the equation (5.19) needs to be written as

ρ(t) = exp(−iLt)ρ(0), (6.83)

where ρ(0) is the statistical operator (at the initial instant of time, i. e. immedi-
ately after preparation of an ensemble). The definitions (5.19), (5.20) also imply that
dρ(t)/dt = 0. Emanating from this and differentiating (6.82) over time, we have

dS

dt
= ∫ dp dqρ(t)iLM(p, q) ≥ 0. (6.84)

To write down this equation, we have used the definition

d/dtM(p, q) = iLM(p, q) ≡ {M(p, q),H(p, q)},

which holds true for classical mechanics (the role of the operator iL is playing the
Poisson bracket {A,B}). Let us introduce the notation

iLM(p, q) = D(p, q),

where the quantity D(p, q) can be simply both function and operator acting on the
variables p, q. It can be shown that if D(p, q) is simply a function of the variables p, q
the Lyapunov function cannot be defined by the relation (6.82).

Indeed, consider the special case of an equilibrium system. Then ρ(0) = const
because one assumes that the system is ergodic. IfD(p, q) is a function of the variables
p, q then dS/dt = 0 for the thermodynamic equilibrium state and it follows from (6.82)
that:

dS

dt
= ∫ dp dqD(p, q) = 0, (6.85)

which by the arbitrariness of the system, immediately leads to the conclusion that
D(p, q) = 0. Consequently, the functional (6.82) does not exist, if D(p, q) = iLM(p, q) is
a common function of the variables p, q.

An important conclusion follows from the result (6.85) obtained by Prigogine [35].
If we want to construct a Lyapunov function from first principles in the classical the-
ory,wehave to assume that the quantityM(p, q), involved in the equation (6.82) should
be an operator. As far as D(p, q) = iLM(p, q) ̸= 0, then, according to the ideology de-
veloped in quantum theory, it follows that a system’s energy and the quantityM(p, q)
cannot be measured simultaneously.

This fact can be interpreted as follows: the irreversible behavior of the system
cannot be obtained staying within the concept of single particle trajectories, so the
Lyapunov function cannot be built. We can reject the concept of the trajectories by
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introducing, as in quantum mechanics, a new operator quantity. It is worth recalling
that, in quantum mechanics, a momentum operator is such a quantity, in the theory
of irreversible phenomena; the operator M(p, q) is closely related to the operator of
microscopic entropy.

In the quantum case, when the quantitiesH, ρ(t) are operators themselves, a Lya-
punov function can be introduced by generalizing the relation (6.81), (6.82):

S = −kSp{ρ(t) ln ρ(t)}, (6.86)

or in the more general form

S = Sp{ρ(t)Mρ(t)}. (6.87)

It is quite clear, however, that the former cannot be a Lyapunov function due to the
fact that dρ/dt = 0; consequently dS/dt = 0.

The expression (6.87) can play the role of the Lyapunov function only if the quan-
tity M is a super operator, i. e. an operator acting not to functions, but operators. In
addition, the operatorM must not commute with Hamiltonian and, perhaps most im-
portantly, the operatorMmust be a nonfactorizable operator. In other words, in quan-
tum mechanics, it must not preserve differences between pure and mixed states.

Recall that all other quantummechanical operators, acting on a wave function of
a system in a pure state, leave it in its pure state. The nonfactorizability condition is
less obvious and requires some explanations. It is clear that a description of the sys-
tem in terms of wave functions is the most complete in the quantum theory, where ir-
reversible behavior does not occur. In systems which are characterized by irreversible
behavior, the difference between pure andmixed states is lost. Note that this does not
mean that the Schrödinger equation is no longer valid. In these systems, differences
between pure and mixed states become unobservable. Such a point of view belongs
to Prigogine [35] who together with coworkers was developing it intensively.

The above analysis allows one to conclude that the irreversible behavior can be
introduced neither in classical nor in quantum mechanics without significant addi-
tional assumptions that go beyond the standard classical or quantum theory. Hence,
in particular, it follows that wewill not succeed in creating the irreversible behavior of
a system directly from dynamic equations without new physical ideas. The reason is
that the dynamic description is insufficiently developed. There is to date a possibility
of describing only integrable systems in classical mechanics or systems that are in a
pure state in quantummechanics.

Such reasoning is not new. In either case, Boltzmann himself and all founders of
the theory of transport phenomena recognized this and extended their own methods
of dynamics generalization to case of nonintegrable systems.

For example, Boltzmann used the collision hypothesis (Stosszahlansatz), accord-
ing to which states of particles are assumed to be uncorrelated before they collide.
Moreover, these states are described by one-particle distribution functions. Somewhat
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different arguments were suggested by Bogoliubov in deriving the Boltzmann kinetic
equation of the system for s-particle distribution functions (see [17, 20]). The main
idea of Bogoliubov is to distinguish several characteristic time scales where the sys-
tem should be described by means of different approaches in a crucial respect.

If one adopts that the particle has a characteristic dimensionR0 and a characteris-
tic velocity v, the system can be described only dynamically over the periods t ≈ τcol =
R0/v.

The next temporal scale has a lot to do with mean free time of a particle. If one
denotes an average distance between particles by letter l ≫ R0, the mean free time
is equal to τ = l/v ≫ τcol. The kinetic stage of evolution begins when τ ≤ t ≫ τcol.
At these time intervals, according to Bogoliubov, a two-particle and each successive
distribution function is some functional of a one-particle distribution function. It is
this idea that allows a chain of Bogoliubov equations to be closed and one to obtain
an equation for a one-particle distribution function. It is clear that the Bogoliubov ap-
proach is based on the assumption that the exact dynamics of a system taking into
account all correlations becomes insignificant, starting from some point of time. The
same idea underlies Boltzmann’s hypothesis of collisions. Put differently, the above
techniques are an attempt to make allowance for peculiarity of dynamics of noninte-
grable systems demonstrating instability.

The method of projection operators dating back to the work of Zwanzig [57] is
widely used to obtain irreversible dynamics. This method allows a statistical operator
to fall into two orthogonal, in some sense, parts. It is worth pointing out that the next
paragraph discusses properties of projection operators in detail, but here, we restrict
ourselves to only certain remarks. To construct a statistical operator Pρ(t) Zwanzig
managed to derive a time-irreversible equation of motion, which is usually referred to
as master equation. Part of the statistical operator Pρ(t) is sometimes called the rele-
vant part. The quantity (1 − P)ρ(t) oscillates rather rapidly and it is not usually taken
into account when calculating averages. Chapter 9 presents the method of construct-
ing the description of non-equilibrium systems.

Another approach, based on the application of projection operators was used by
Mori [56]. He advanced the method of constructing equations of motion for opera-
tors of physical quantities. This method was intended for determining dynamics of
an arbitrary operator with the aid of dynamics of a set of the basic operators. In this
case, as for the projection of the operator PA(t) we can deduce the time-irreversible
equation of motion, which reminds one of the Langevin equation for a Brownian par-
ticle.

It is worth noting the distinct advantages to construct the theory of irreversible
phenomenabyusing the projection operator technique, leaving aside details concern-
ing their determination and practical utilization. First of all, the projection operator
method enables one to set up new dynamical equations to describe irreversible and
non-Hamiltonian evolution of dynamical quantities. Secondly, Zwanzig noted that the
derivation of the master equations was a fairly simple and compact procedure.
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In order for the irreversibility to occur, it is necessary to find an appropriatemech-
anism when invariance of a simple dynamic description with respect to time reversal
would be infringed. Symmetry breaking that is of interest to us must be internal, i. e.
not be related to new interactions. At the same time, this mechanism must be univer-
sal. Put another way, it must take place both in classical and in quantum systems.

Such a general and internal cause of the symmetry breaking may take place sub-
ject to realizing not all possible states but some set of states, which possesses by asym-
metry of a required type. In substance, this idea is a new theoretic postulate, which is
equivalent to status of the second law of thermodynamics. (See the monograph [35].)

It is interesting to note that as far back as 1909 Ritz came up with such a state-
ment of the second law of thermodynamics. He deemed that the second law of ther-
modynamics permitted some solutions of dynamic equations to be eliminated when
appropriate.

The consistent construction of the theory of irreversible processes as being dy-
namic is best carried out with the projection operator method. The above theory is
suitable to describe either weak stability or spontaneous symmetry breaking in sys-
tems. The projection operator approach was specially developed for selecting essen-
tial states of evolution.

There is, however, a bolder idea. Developing the projection operator method, we
take a step towards a creation of new dynamics where the second law of thermody-
namics becomes brought to the level of a dynamic principle as picking up only physi-
cally realizable solutions.

6.2.2 The Mori projection operator method

It follows from all the foregoing discussions that the investigation of the dynamics of
hydrodynamic fluctuations leads to the problem of computing correlation functions
of the basic operators i. e. correlation functions dynamical variables as measurable
quantities, on the one hand, and as sufficient ones to describe physical phenomena
under consideration, on the other hand. The calculation of these correlation functions
is a complex independent problem. In essence, we have moved forward here only in
the sense that we succeeded in reducing the problem of relaxation in a weakly non-
equilibriumsystem to investigation of the correlation functions,which are ascertained
for an equilibrium state.

It is well known that there is a crucial possibility of such a reduction, or otherwise,
a possibility of expressing kinetic coefficients of a weakly non-equilibrium system via
equilibrium correlation functions. The above statement is the fluctuation–dissipation
theorem (FDT), which in turn is a powerful tool in statistical physics for predicting the
behavior of non-equilibrium thermodynamical systems.

The fluctuation–dissipation theorem relies on the assumption that the response
of a system in thermodynamic equilibrium to a small applied force is the same as its
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response to a spontaneous fluctuation. Put another way, micro processes, giving rise
to the relaxation in the non-equilibrium system are the same as the causes of the dis-
sipation of the fluctuations in the equilibrium system.

Now, we should take a step further and develop a procedure for calculating the
equilibrium correlation functions of the basic operators. In substance, this is a little
different set up of the problem discussed in Section 6.2.1 where we analyzed the rea-
sons that proved to be convenient for introducing the projection operators.

There are a lot of various definitions of the projection operators, which are used
for building equations of motion for the dynamical variables. To gain insight into the
technique of the projection operators, it would be proper to start with a projection
operator approach proposed by Mori (see [56]).

TheMori projection operatormethod is based on the simple idea that anydynamic
operator A(t) can be divided into two components: one of them is expressed through
basic operators and c-number functions, and another part is the rest:

A(t) = PA(t) + QA(t), Q = (1 − P),

PA(t) = (A(t),P+)(P,P+)−1P, P
2 = P. (6.88)

The scalar product of two operators is defined as before (see equation (6.65)):

(A,B) =
1

∫
0

dτSp{ΔAρτ0ΔBρ
1−τ
0 }. (6.89)

It is quite clear that such a division is accurate and it can be always done. The whole
point of the mathematical operation consists of that the operators PA(t) and QA(t)
pertain to completely different types of time dependence. The operators P and P+ are
quasi-integrals of motion, i. e. almost preserved quantities. They change in time due
to only relatively weak perturbations of a basic Hamiltonian.

The quantityQA(t), on the contrary, oscillates rapidlywith a characteristic time of
atomic scales. It is the fact that enables one to separate slow evolution of an operator
and fast oscillations as determining only the processes with a characteristic atomic
frequency scale.

We should say a few words about the meaning of the concepts “slow evolution”
and “rapid evolution” of the operators. The fact is that the equation of motion for the
correlation function is obtained from the operator equationbymultiplying all its terms
on the right-hand side by some time-independent operator and then by computing the
average over an equilibrium state. Therefore, the behavior of the operator is compara-
ble with the behavior of the correlation functions.

It is easy to understand the meaning of the projection operator if one uses the
geometric analogy shown in Figure 6.1 for the casewhen there is the only one operator
in the set of P.
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Figure 6.1: The geometric meaning of the projection operator.

Using the definition of the projection operator (6.88), it is easy to prove that the most
important condition to project a vector on the axis of the orthogonal basis is fulfilled:
operators PA(t) and (1 − PA(t)) are orthogonal in the sense of the scalar product
of (6.89):

(PA(t), (1 − P)A+(t)) = 0. (6.90)

To prove the relation (6.90) we consider the effect of the projection operator upon the
adjoint operator A+(t). Applying the definition of the Mori projection operator (6.88),
we get

PA+(t) = (PA(t))+ = ((A(t),P+) 1
(P,P+)

P)
+

= P+ 1
(P,P+)
(A(t),P+)+ = P+ 1

(P,P+)
(P,A+(t)). (6.91)

The last equality in the formula (6.91) is immediately obtained, if one recalls that
Sp{AB}+ = Sp{B+A+}. Now, a proof of (6.90) is simply to take into account the for-
mula (6.91) and performing the algebraic manipulations in the expression (6.90).

It must be emphasized that the operator Q is also idempotent projection operator
and the condition Q2 = Q satisfies it.

Consider the equation of motion for the operator P, belonging to a set of basic
operators:

d
dt
P(t) = iLP(t). (6.92)

We apply the operator Q = (1 − P) to this equation. Since the operator (1 − P) is time-
independent, it canbepermutedwith the differentiation operatorwith respect to time.
Introducing the notation QP(t) = (1 − P)P(t) = P(t), one is led to

d
dt
P(t) = QiL(1 − P)P(t) + QiLPP(t). (6.93)
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Next, it would be convenient to introduce the notation to simplify the formulas:

PP(t) = (P(t),P+)(P,P+)−1P = Θ(t)P,

Θ(t) = (P(t),P+)(P,P+)−1. (6.94)

Given these definitions, the equation (6.93) can be rewritten in the form

d
dt
P(t) − (1 − P)iLP(t) = Θ(t)(1 − P)Ṗ. (6.95)

Equation (6.95) can be easily integrated. For this, the left-hand side should be multi-
plied by the operator exponent:

exp{−(1 − P)iLt}.

Then the first two terms in equation (6.95) can be merged as one, and integration in
the range from 0 to t yields

P(t) =
t

∫
0

dt1Θ(t1) exp{(1 − P)iL(t − t1)}(1 − P)Ṗ(t1). (6.96)

This result is intermediate and will be used later.
Consider an equation of motion for the correlation function Θ(t) (6.94). Using

again the relation

iLP(t1) = iLPP(t1) + iL(1 − P)P(t1), (6.97)

we get

d
dt1

Θ(t1) = (
d
dt1

P(t1),P
+)(P,P+)−1 = (Ṗ,P+(−t1))(P,P

+)−1

= (PṖ,P+(−t1))(P,P
+)−1 + ((1 − P)Ṗ,P+(−t1))(P,P

+)−1, (6.98)

or

d
dt1

Θ(t1) = iΩΘ(t1) + ((1 − P)Ṗ,P
+(−t1))(P,P

+)−1, (6.99)

where iΩ is so-called frequency matrix, iΩ = (Ṗ,P+)(P,P+)−1.
Consider the scalar product ((1 − P)Ṗ,P+(−t1)). As far as the equality

((1 − P)C,PB+) = 0

holds true for arbitrary operators C and B, the scalar product can be written as

((1 − P)Ṗ, (1 − P)P+(−t1)).
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Taking into account the result (6.96) the equation of motion for a correlation function
can be represented as

d
dt
Θ(t) = iΩΘ(t)

+
−t

∫
0

dt1((1 − P)Ṗ, (exp{−i(1 − P)L(t + t1)}(1 − P)Ṗ)
+)Θ(t1)

+(P,P+)−1.

(6.100)

Consider the correlation function

Θ(t1)
+ =

1
(P,P+)+

1

∫
0

Sp{P(t1)ρ
τ
0P
+ρ1−τ0 }

+ dτ.

Given the above expression and the symmetry properties of correlation functions un-
der a Hermitian conjugation operation, we obtain

Θ(t1)
+ =

1
(P,P+)
(P(−t1),P

+).

Finally, wemake a change of the variables in the integral by introducing the new vari-
able s = t1+t, and define amagnitude of the random force f by the relation f = (1−P)Ṗ.
Taking into account all observations previouslymade, instead of (6.100)we obtain the
following expression:

d
dt
Θ(t) = iΩΘ(t) −

t

∫
0

ds(f , f +(−s)) 1
(P,P+)

Θ(t − s). (6.101)

If one has recourse to the fact that Θ(t) = (P(t),P+)(P,P+)−1, an equation of motion for
the dynamical variable P(t) can be also obtained:

d
dt
P(t) = iΩP(t) −

t

∫
0

dsΣ(s)P(t − s), (6.102)

where Σ(s) is the so-called memory function, which takes into account the pre-history
of a system at time 0 < s < t

Σ(s) = (f , f +(−s))(P,P+)−1. (6.103)

Now, it makes sense to summarize and discuss the physical meaning of the results ob-
tained. The form of the equations (6.101), (6.102) resembles in appearance a Langevin
equation for a Brownian particle. Consequently, they describe non-Markovian dynam-
ics of the quantities Pn in question. It is important to emphasize that the temporal
evolution of the memory function

Σ(s) ∼ (f , f +(−s)) =
1

∫
0

dτSp{(1 − P)Ṗρτ0[exp{−(1 − P)iLs}(1 − P)Ṗ]
+ρ1−τ0 }
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is non-Hamiltonian and is determined by only one part of the Hamiltonian in which
the terms responsible for the slow evolution of dynamical variables are excluded by
using the projection operator Q.

Note that the above separation of the rapidly changing kernel of the integral equa-
tions (6.101), (6.102) has been produced exactly. In addition, we have not yetmade any
assumptions about weakness of interactions in the system.

Finally,wediscuss themeaning of the “identical” transformations,whichwehave
done in deriving the equations (6.101), (6.102). It seems necessary to do this right now
because the reader is likely to wonder: does it make any sense to perform the iden-
tical transformations of the dynamic equations, entering the projection operators if
anything new cannot be obtained?

Actually, this is a quite complex question. For an answer to be arrived at, it is
necessary again to turn to the problem of describing the systems, showing irreversible
behavior (see Chapter 1).

It seems reasonable to simplify the problem having considered the situation in
the Markov limit when a correlator of random forces (6.103) is supposed to have a
δ-shaped time dependence. In the case of electrical conductivity, such a situationmay
arise provided that the duration of interaction of colliding particles is much less than
the time between the collisions. We would recall for the reader that the Boltzmann
kinetic equation for the case of a low-density gas is also a Markov equation.

Substituting the value Σ(s) = Γδ(s) into the expression (6.102), an equation of mo-
tion for the operator in the Markov limit can be given as

d
dt
P(t) = iωP(t) − γP(t). (6.102a)

In writing this expression we have distinguished the real and imaginary parts:

ω = ReΩ + Im Γ; γ = Re Γ + ImΩ.

The meaning of equation (6.102a) is obvious. If Γ = 0, the dynamic quantity P(t) oscil-
lates with a characteristic frequencyω. But if the value of Γ ̸= 0, the precession damps
and the quantity γ makes sense of reverse decay time.

It is this division of the dynamic equation into the two summands that constitutes
basic sense of using the projection operators. Here, the first and second terms describe
precessionanddamping, respectively.Moreover, it shouldbenoted that the temporary
evolution of random forces within the memory function is not Hamiltonian because it
is determined only by part of Hamilton’s function as orthogonal in some sense to a set
of the basic operators.

As far as, usually, hydrodynamic quasi-integrals of motion should be chosen as
basic operators, the partition of the dynamic equation ofmotion for the physical quan-
tity P(t) on a regular and dissipative component is responsible for distinguishing two
different time scales of evolution. It is this idea which was proposed by Bogoliubov to
derive a kinetic equation for a one-particle distribution function.
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The emergence of damping in the equation of motion for the dynamic variable in
terms of quantum mechanics can be interpreted slightly differently. If a spectrum of
elementary excitations is characterized by an actual value of energy or frequency, the
elementary excitation is well defined and becomes permanent. Such a system is not
dissipative. But if the elementary excitation fails to be well-defined and there is an
imaginary part in the spectrum, there arises an analogue of the uncertainty relation.
It should, however, be recognized that now the uncertainty relation is due to failure
of isolating a subsystem from surroundings. Therefore, the subsystem is considered
to be in a mixed-state and is a part of some other system. That is why a phase surface
of constant energy turns into a layer with width ΔE and an exact value of the energy
cannot be specified. Consequently, this stands for information loss about the system
or its irreversible behavior.

Let us go back again to the further analysis of the equations of motion which were
obtained by means of the Mori projection operator method.

Equations (6.101), (6.102) appear to be simpler, ifwewrite them for Laplace-images
of the Θ(t) and P(t) functions, having performed the Laplace transforms. Specialized
literature (see [58]) containsmore detailed information on thismatter, therefore, basic
relations required to perform Laplace transforms of the equations (6.101), (6.102) are
presented below.

The direct and inverse Laplace transforms of a function f (x) are given by the ex-
pressions

f (s) =
∞

∫
0

f (x)e−sxdx,

f (x) = 1
2πi

C+i∞

∫
C−i∞

f (s)esxds. (6.104)

In the second formula of (6.104), the integration is being performed along a line s in
the complex plane, for which Re s = C.

To transform the equations (6.101), (6.102) other formulas of Laplace-transforms
are required both for the derivative f (x) and for the convolution of two functions:

g(x) =
x

∫
0

dtf1(t)f2(x − t).

We present these formulas without proof [58]:

∞

∫
0

dxe−sxf (x) = sf (s) − f (0),

g(s) = f1(s)f2(s). (6.105)
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Nowonecanwrite down the result,which is obtainedbyapplying the relations (6.104),
(6.105) and after performing the Laplace-transforms of (6.101), (6.102):

Θ(z) = Θ(0)
z − iΩ + Σ(z)

, (6.106)

P(z) = P(0)
z − iΩ + Σ(z)

, (6.107)

Σ(z) =
∞

∫
0

dte−zt(f , [f (−t)]+)(P,P+)−1. (6.108)

In essence, the expressions obtained speak for themselves. Indeed, the structure of
the expression (6.106) is reminiscent of the Fourier transform of an autocorrelation
function when writing in the standard procedure the equations of motion for Green
functions with subsequent use of the mass-operator approach. Meanwhile the quan-
tities Ω and Σ correspond to real and imaginary parts of the mass operator.

By analogy with the mass-operator method, the correlation function can be ex-
panded into a continued fraction. For that purpose, it suffices to make the transfor-
mations for the function Σ(z) by taking the successive steps from the formula (6.94) to
the formula (6.106). Thus, we descend to a level below. This down-path as a matter of
fact means that more subtle correlations in a system should be taken into account. Of
course, it can be extended further. Indeed, using such an approach, we can write an
infinite chain of coupled equations as the continued fraction expansion.

What is the practical advantage of using the technique based on the Mori projec-
tion operator? The aim of this method under a proper choice of dynamical variables
is to obtain immediately an expression for the memory function Σ(z), containing the
interaction of at least a second power.

Due to this, the interaction with scatterers (phonons, impurities, etc.) for the sta-
tistical operator and operators of evolution can be immediately ignored when calcu-
lating the kinetic coefficients in the Born approximation of scattering theory. Then the
quantity Σ(z) can be found at the first onset.

In the next section, wewill demonstrate the application of theMori projection op-
erator method and NSO method in the simplest cases to estimate both electrical con-
ductivity andmagnetic susceptibility for a free-electron system in conducting crystals.

Quite similarly, one can find, in principle, the poles of the Green functions (6.78)
and (6.79) as defining a spectrum of hydrodynamic excitations in a system. However,
it is worth pointing out that the transition to normal coordinates is a necessary pre-
liminary condition in order for a Green function matrix to be diagonal.

6.2.3 Using the Mori projection operators to calculate conductivity

The formal expression for the electrical conductivity, known as the Kubo formula [36],
can be obtained in two ways. First, the electrical conductivity can be defined as a re-
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sponse of a system to an external high-frequency electric field. Another method im-
plies some connection betweenfluctuations of the driftmomentumof the electron sys-
temandfluctuations of the internal electric field. In the given case, the twoapproaches
lead to identical results, which we can easily demonstrate by using the results of the
present chapter.

Let us first find an expression for the electrical conductivity in the form of the sys-
tem response to the external electric field. The formula inquestion canbederivedquite
simply without involving the NSOmethod. For that we restrict ourselves to the theory
of Kubo’s linear response to an external mechanical disturbance (see Section 5.1.3).

However, it would be reasonable to utilize theNSOmethod to solve the above task,
bearing inmind amore complicated case in further consideration, but namely a linear
response of a non-equilibrium system to a weak-measurable field.

Consider a non-equilibrium system described by the Hamiltonian H. We assume
that the disturbance is given by the Hamiltonian Hv and acts on this system. The ex-
plicit formof thisHamiltonianwill be determined later. In particular, we are interested
in the case when the external electric or magnetic field induces the disturbance.

The Liouville equation (6.54) for a non-equilibrium statistical operator (NSO) can
be rewritten now in the form

𝜕ρ(t,0)
𝜕t
+ (iL + iLv)ρ(t,0) = −ϵ(ρ(t,0) − ρ(t,0)), (6.109)

where Lv is a Liouville operator corresponding to part of the Hamilton operator Hv.
Next, we transform the equation (6.109) to an equivalent integral equation. Sub-

tracting from the left-hand and right-hand sides of the equation (6.109) the expres-
sion

(
𝜕
𝜕t
+ iL)ρ(t,0)

can be brought into the form

(
𝜕
𝜕t
+ iL + ϵ)δρ(t,0) = −( 𝜕

𝜕t
+ iL)ρ(t,0) − iLvρ(t,0),

δρ(t,0) = ρ(t,0) − ρ(t,0). (6.110)

Introducing the evolution operator exp(iLt) with the Hamiltonian H and multiplying
the first equation of (6.110) by a factor

exp(ϵt) exp(iLt),

we have

d
dt

exp(ϵt) exp(iLt)δρ(t,0) = − exp(ϵt) exp(iLt)[( 𝜕
𝜕t
+ iL)ρ(t,0) + iLvρ(t,0)]. (6.111)

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



6.2 The projection operators method in non-equilibrium statistical mechanics | 281

Assuming that

lim
t→−∞

exp(ϵt) exp(iLt)δρ(t,0) = 0,

we integrate the equation (6.111) over time between the limits −∞ and t:

ρ(t,0) = ρ(t,0) −
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)

× {
𝜕
𝜕t1

ρ(t + t1) + iLρ(t + t1) + iLvρ(t + t1)}. (6.112)

To derive this formula, the result of integrating the equation (6.111) must be multi-
plied on the left by exp(−ϵt) exp(−iLt). After that, it is necessary to make a change of
variables in the integral, putting t1 − t → t1.

In fact, this is the desired integral equation. If the interaction operator Hv does
not come into the picture explicitly in the basic operators Pn (which is expected in the
future), the equation (6.112) admits a simple interpretation. Since the first two terms
in the integral in the formula (6.112) depend on the Hv only implicitly via the param-
eters of Fn(t), they describe so-called thermal perturbations, whereas the third term,
containing explicitly the interaction Hv, describes a mechanical perturbation.

The last statement is obvious if one considers the case where the quantities Fn are
equal to their equilibrium values, and the operators Pn commute with the Hamilto-
nian. Then the expression (6.112) coincides with the result, which gives Kubo’s linear
response theory.

Equation (6.112) can have another form, which will be used in below. For that pur-
pose, it should be noted that

ρ(t,0) −
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1){
𝜕
𝜕t1

ρ(t + t1) + iLρ(t + t1)}

= ϵ
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)ρ(t + t1). (6.113)

This result is obtained by simple integration by parts in the left-hand side of (6.113),
because

exp(iLt1){
𝜕
𝜕t1

ρ(t + t1) + iLρ(t + t1)} =
d
dt1

exp(iLt1)ρ(t + t1).

Introducing the notation

ρ0(t,0) = ϵ
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)ρ(t + t1), (6.114)
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we write down an integral equation for the NSO in the final form:

ρ(t,0) = ρ0(t,0) −
0

∫
−∞

dt1 exp(ϵt1) exp(iLt1)iLvρ(t + t1). (6.115)

The quasi-equilibrium distribution ρ(t,0) yields the distribution ρ0(t,0) as a conse-
quence of an evolutionary perturbation-free system with the Hamiltonian H whereas
the distribution ρ(t) is a result of the evolution with the total Hamiltonian H + Hv. It
should be noted that the distributions as a matter of fact are not independent, since
ρ0(t,0) depends on accurate values of the functions Fn(t). These values should be de-
termined by the generalized kinetic equations (6.8).

Now one can return to the problem of calculating the electrical conductivity. Let
ρ0(t,0) be equal ρ0 and the system be at equilibrium before switching on the elec-
tric field. Here, ρ0 is Gibb’s equilibrium distribution. In addition, one must confine
oneself to a linear approximation of the electric field when calculating the system re-
sponse and make the substitution of ρ0 for ρ(t,0) in the integral (6.115). Furthermore,
the operator of interacting electrons with a uniform external electric field E(t) needs
to be taken as the operator Hv:

Hv(t) = −e∑
j
Xα
j E

α(t). (6.116)

The summationwith respect to j is beingperformedover coordinatesXj of all electrons.
The index α denotes a projection on the axis of a Cartesian system.We find the average
value of electric current Jα(t) of the system by calculating the average:

Jα(t) = Sp{eP
α

m
ρ(t,0)} = e

2

m

0

∫
−∞

dt1 exp(ϵt1)

× Sp{Pα 1
iℏ
[ρ0,X

β(t1)]}E
β(t + t1) , Pα =∑

j
pαj , (6.117)

wherepj is themomentumof the jth electron. Performing theFourier transformationof
the equation (6.117) and considering the phenomenological definition of the electrical
conductivity tensor:

Jα(ω) = σαβ(ω)E
β(ω),

one can obtain the well-known expression for electrical conductivity:

σαβ(ω) =
e2

m

0

∫
−∞

dt1 exp[(ϵ − iω)t1]Sp{P
α 1
iℏ
[ρ0,X

β(t1)]}. (6.118)
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The direct calculation of the electrical conductivity at the finite order of perturbation
theory is not possible, since, in the given case, it gives rise to physically unreason-
able result. Indeed, conductivity of a system at zero frequency should be inversely
proportional to the effective constant of electron–scatterer interactions. But it occurs
only if one sums up an infinite series, for example, an infinitely decreasing geometric
progression. That is why the mass-operator method is usually used to calculate the
electrical conductivity according to the formula (6.118).

Now, one should show that exactly the same result is obtained when applying the
Mori projection operator method. We first prepare the expression (6.118), using the
Kubo formula (5.60):

1
iℏ
[ρ0,X

α] =
β
m

1

∫
0

dτρτ0P
αρ1−τ0 . (6.119)

Here, β is the inverse temperature in energy units. Substituting the result (6.119)
into (6.118), the expression for conductivity can be written through the Mori scalar
product:

σαβ(ω) =
e2β
m2

0

∫
−∞

exp{(ϵ − iω)t1}(P
α,Pβ(t1)) dt1. (6.120)

In order to utilize the results (6.106) and (6.107) in calculating the components of the
electrical conductivity tensor, the Cartesian components of the total electron momen-
tum operator Pα should be taken as basic operators Pn involved in the formula (6.106).
In addition, the complex variable z needs to be introduced by the relation ϵ − iω = z
instead of frequency. This results in modifying the expression (6.120):

σαβ(z) =
e2β
m2

0

∫
−∞

exp{zt1}(P
α,Pβ(t1)) dt1

=
e2β
m2

∞

∫
0

exp{−zt1}(P
α(t1),P

β) dt1 =
e2β
m2 Θ(z)(P

α,Pβ). (6.121)

Here, attention should be given to the fact that the substitution of t1 → −t1 has been
made in order for the second equation in the formula (6.121) should be obtained.

Finally, using the expression (6.106) for the correlation function Θ(z), we repre-
sent the formula to calculate the electrical conductivity:

σαβ(z) =
e2β
m2

Θ(0)(Pα,Pβ)
z − iΩ + Σ(z)

. (6.122)

In order to compare the result (6.122) with the expression obtained through the mass-
operator method (5.51), it should be noted that Θ(0) = 1, Ω = 0. The first follows from
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the definition (6.94) of the correlation function Θ(t). To prove the second equality we
first consider the correlation function (Pα,Pβ) in the numerator of the formula (6.122)

(Pα,Pβ) = β
1

∫
0

dτSp{Pαρτ0P
βρ1−τ0 }

= mSp{Pα 1
iℏ
[ρ0,X

β]} = mSp{ 1
iℏ
[Xβ,Pα]ρ0} = mnδαβ, (6.123)

wheren is the electron concentration.Repeating the sameoperations for the frequency
matrix iΩ according to its definition (see formula (6.99)), we get

iΩ ∼ Sp{ 1
iℏ
[Pβ,Pα]ρ0} = 0.

Finally, the following expression appears as thememory function, which, in this case,
is the inverse relaxation time of a total momentum for the electronic system:

Σ(ω) = 1
nm

0

∫
−∞

dt1 exp{(ϵ − iω)t1}

× ((1 − P)Ṗα, exp{(1 − P)iLt1}(1 − P)Ṗ
β). (6.124)

For comparison, the expression for the inverse relaxation time, obtained by using the
Green function (see Section 5.1.3), may be represented by

1
τ(ω)
=

1
nm

0

∫
−∞

dt1 exp{(ϵ − iω)t1}(Ṗ
α, exp{iLt1}Ṗ

β). (6.125)

It is easy to see that the difference between the formulas (6.124) and (6.125) is the ab-
sence of projectionoperators in the last expression. Thenatural question arises:which
expression of the two is correct? The question is very relevant, since such a type of
formulas as (6.125) for the relaxation time is widely enough used in the literature.
Moreover, it is well known that these formulas often give results which are in good
agreement with experimental data.

It canbeargued that the expression (6.125) for the totalmomentumrelaxation time
of an electronic system is correct only in the Born approximation. This can be easily
verified. First, if the operator Ṗα is proportional to an interaction, the formulas (6.124)
and (6.125) just coincide in theBornapproximation. Indeed, in this case, theprojection
operators in (6.124) can be omitted. Otherwise this would lead to the retention of the
fourth- and higher-order interaction terms. The proof is to be accomplished by the
reader itself.

It can be shown that an exact value of the inverse relaxation time, determined by
the expression (6.125) is exactly equal to zero at ω = 0 in the constant electric field.
Therefore, strictly speaking, this formula is incorrect.
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Consider the diagonal components of the electrical conductivity tensor at ω = 0:

σαα =
e2β
m2

0

∫
−∞

dt1 exp{ϵt1}(P
α,Pα(t1)). (6.126)

On the other hand

σαα =
e2nτ
m
;

1
τ
=

1
nm

0

∫
−∞

dt1 exp{ϵt1}(Ṗ
α, Ṗα(t1)). (6.127)

We integrate the above integral in (6.127) by parts twice. Performing the integration
for the first time, we obtain

1
nm

0

∫
−∞

dt1 exp{ϵt1}
d
dt1
(Ṗα,Pα(t1))

=
1
nm
(Ṗα,Pα) − ϵ

nm

0

∫
−∞

dt1 exp{ϵt1}(Ṗ
α,Pα(t1)). (6.128)

Since the correlation function (Ṗα,Pα) = 0, applying integration by parts for the sec-
ond time, we get

1
nm

0

∫
−∞

dt1 exp{ϵt1}(Ṗ
α, Ṗα(t1))

=
ϵ
nm
(Pα,Pα) − ϵ2

nm

0

∫
−∞

dt1 exp{ϵt1}(P
α,Pα(t1)). (6.129)

Since all the correlation functions in the right-hand side of (6.129) are finite and they
are multiplied by the parameters ϵ or ϵ2 which, after performing the thermodynamic
limiting transition,

n→∞, V →∞, n
V
→ const

(n is the number of particles in a system, V the volume), should tend to zero, the for-
mula (6.129) implies the vanishing of the inverse relaxation time.

The physical cause for this result is quite obvious. It follows from Section 6.2.1
that the irreversible behavior does not appear by itself due to somemathematical sub-
terfuges. It should be reinforced that the emergence of the irreversibility is associated
with realizing only a limited set of states, leading to the time-irreversible behavior
rather than with all possible states admitted by the dynamic equations.

Certainly, there arise several questions. First of all, why does the use of the pro-
jection operators rather than the standardmethod of Green functions yield the correct
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result? This question becomes even more relevant in the case of carrying out only the
identity transformations in the derivation of the equation ofmotion for the correlation
function Θ(t) (6.99).

Secondly, why is it that the NSOmethod to satisfy the time-irreversible equation is
not a sufficient condition? Must not the correct expressions for the kinetic coefficients
be immediately obtained from this?

It is easier to answer the second question. The time-irreversible equation for the
NSO provides but the correct structure of the kinetic coefficients or generalized ki-
netic equations. Moreover, the correct calculation of the transport coefficients is asso-
ciated with the problem of finding equilibrium or non-equilibrium correlation func-
tions. Even though this is a completely different problem, there are certain essential
similarities.

As to the first question, it is dominant: how to enter those dynamic variables by
means of which can describe the irreversible behavior?

In the equation of motion for the total momentum operator, the projection op-
erator method allows one to separate out the terms, describing both precession and
damping Γ (see equation (6.102a)). This criterion turns out to be a sufficient condition
to obtain the correct result. One can rigorously prove that the term Γ, describing the
damping, is taken into account twice with different signs in calculating the inverse
relaxation time in the form (6.125). Therefore, this term can be exactly compensated.

A brief scheme to prove this curious fact will be represented at the end of the next
section.

6.2.4 Relationship between a linear variant of the NSO-method and Mori’s method

Let us now consider the question of how to further develop the usage-based approach
of the transport matrix T(ω) and the Green functions G(ω) (6.78), (6.79) introduced
earlier. Our objective is to obtain equations of motion in the Mori form (6.102) instead
of the generalized equations of motion for the averages (6.68) within the NSOmethod.

Upon comparing the expressions (6.68) and (6.102), one can see that they are
structurally identical if one manages to write the transport matrix T(ω) in the form

T(ω) = iΩ + Σ(ω).

The difference between the values in the lower limit of the integral is not significant
due to the choice of an initial moment of time.

To prove the possibility of such a representation, we should perform a number of
identical transformations, which result in the derivation of the equation (6.102) by the
Mori method.

To simplify the form of the equality, the notation should be introduced of

P+(E) = 1
iL − iE

P+, iE = iω − ϵ.
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Also, one has to consider the identity

i(L − E)P+(E) = P+. (6.130)

LetP and (1−P) be projection operators acting step-by-step on both sides of this iden-
tity. Then, acting by the operator P and taking into account the identity

P+(E) = PP+(E) + (1 − P)P+(E),

we have

(−iE + PiL)PP+(E) + PiL(1 − P)P+(E) = P+. (6.131)

In deriving this equality it has been taken into account that PP+ = P+. After that,
acting by the operator (1 − P), we find

(−iE + (1 − P)iL)(1 − P)P+(E) = −(1 − P)iLPP+(E). (6.132)

Now, the quantity (1−P)P+(E) should be found from equation (6.132). Multiplying the
left-side equation (6.132) by the quantity (−iE + (1 − P)iL)−1, we get

(1 − P)P+(E) = − 1
−iE + (1 − P)iL

(1 − P)iLPP+(E).

Substituting this result into the equation (6.131), we obtain

(−iE + PiL)PP+(E) − PiL 1
−iE + (1 − P)iL

(1 − P)iLPP+(E) = P+. (6.133)

Consider now an action of the projection operatorP on the quantity P+(E). Emanating
from the definition of the Mori projection operator (6.88) and (6.91), we have

PP+(E) = P+ 1
(P,P+)
(P,P+(E)) = P+G(E),

(P,P+(E)) =
0

∫
−∞

dt1 exp{(ϵ − iω)t1}
1

∫
0

dτSp{P, ρτ0 exp(iLt1)P
+ρ1−τ0 }. (6.134)

In deriving the equality (6.134) the definition of the Green function (6.78) has been
used. Next,

PiLP+ = P+iΩ; iΩ = (P,P+)−1(P, Ṗ+).

Scalar-multiplying the equation (6.133) on the left (in terms of Mori’s scalar product)
by P, we obtain

(P,P+)(−iE + iΩ)G(E) − (P,PiL 1
−iE + (1 − P)iL

(1 − P)iLP+)G(E) = (P,P+). (6.135)
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Using the definition of a projection operator, we transform the second term on the
left-hand side of the equation to obtain the following form:

(P,P+) 1
(P,P+)
(P, iL 1
−iE + (1 − P)iL

(1 − P)iLP+)G(E).

By reducing the same factor (P,P+) on both sides, one is led to

[−iE + iΩ + Σ(E)]G(E) = 1; (6.136)

Σ(E) = 1
(P,P+)
(Ṗ, 1
−iE + (1 − P)iL

(1 − P)iLP+).

Now, if one considers that by virtue of the definition of a projection operator the fol-
lowing expression for any operators A and B appears:

(PA, (1 − P)B) = 0

the expression for a memory function can be written in a form identical to Mori’s def-
inition (6.108):

Σ(E) = 1
(P,P+)
(f , 1
−iE + (1 − P)iL

f +), f = (1 − P)Ṗ. (6.137)

The difference between the definitions for Σ(E) (6.137) and (6.103) is not significant; it
is connected only with a difference between designations.

From the expression (6.136) and equations (6.77) it follows that the transport ma-
trix can indeed be expressed as T(ω) = iΩ + Σ(ω).

Now, onemayback to the issueof how towrite the relaxation frequencies properly.
Here, we should show that the expressions of the type (6.125) for the inverse relaxation
time are, in the concept of a rigorous analysis, incorrect. However, these expressions
are widely used in the literature to calculate the relaxation frequencies in the Born
case. We define a new projection operator P(E) as follows:

P(E)A = (A,P+)E 1
(P,P+)E

P,

P(E)A+ = P+ 1
(P,P+)E

(P,A+)E , (6.138)

(A,B+)E =
0

∫
−∞

dt1 exp{(ϵ − iω)t1}
1

∫
0

dτSp{A, ρτ0 exp(iLt1)B
+ρ1−τ0 }. (6.139)

Considering the definitions (6.138), (6.139), (6.72), and (6.76) it is easy to verify that the
following equations are valid:

P(E)Ṗ = −T(E)P, P(E)Ṗ+ = P+T(E),
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and to prove that the expression for Σ(E) can be written in the form

Σ(E) = 1
(P,P+)
([1 − P(E)]Ṗ, [1 − P(E)]Ṗ+)E . (6.140)

The reader is recommended to perform the proof of (6.140) as an exercise.
The results obtained allow the expression for the inverse relaxation time (6.125) at

zero frequency to be written in another way. Using the definitions (6.139), (6.123), we
get

1
τ
= Σ(ϵ) = (Ṗ, Ṗ+)ϵ 1

(P,P+)

= (P(ϵ)Ṗ,P(ϵ)Ṗ+)ϵ 1
(P,P+)
+ ([1 − P(ϵ)]Ṗ, [1 − P(ϵ)]Ṗ+)ϵ 1

(P,P+)
. (6.141)

Here, P(ϵ) is the projection operator P(E) at ω = 0.
It is not hard to notice that the expression (6.141) is related with the inverse relax-

ation time in an obviousmanner. It is sufficient to replace the P, P+ by components Pα

of the total electron momentum operator.
We first show that

(P(ϵ)Ṗ,P(ϵ)Ṗ+)ϵ 1
(P,P+)

= −(iΩ + Γ).

For that, we use the relations

P(ϵ)Ṗ = −T(ϵ)P, P(ϵ)Ṗ+ = P+T(ϵ),

which can be easily proved by applying the definition (6.138) and formulas (6.72),
(6.76). Then

(P(ϵ)Ṗ,P(ϵ)Ṗ+)ϵ 1
(P,P+)
= −T(ϵ)(P,P+)ϵT(ϵ) 1

(P,P+)

= −T(ϵ)(P,P+)ϵ 1
(P,P+)
(P,P+)T(ϵ) 1

(P,P+)
= −T(ϵ)G(ϵ)T(ϵ).

In deriving the above relation it has been taken into account that the T(ϵ) and T(ϵ)
matrices have a link through the relation (6.74). As far as, by analogy with (6.136), the
expression can be written as

[ϵ + iΩ + Σ(ϵ)]G(ϵ) = 1,

it follows that

lim
ϵ→0

T(ϵ)G(ϵ) = 1,

and we obtain the desired relation

(P(ϵ)Ṗ,P(ϵ)Ṗ+)ϵ(P,P+)−1 = −(iΩ + Σ(ϵ)).
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On the other hand, as it follows from the relation (6.140), the last summand on the
right-hand side of (6.141) is just Σ(ϵ). Summing up the two results, we find

Σ(ϵ) = (Ṗ, Ṗ+)ϵ 1
(P,P+)

= −iΩ.

In other words, the formulas of such a type do contain no damping at all. In the previ-
ous paragraph, the same result was obtained through direct integration for the special
case when the basic operators are the components of the total momentum of an elec-
tronic system.

6.2.5 High-frequency susceptibility

Consider another example of applying the projection operator method to obtain an
expression for transverse components of themagnetic susceptibility tensor of an elec-
tronic system.

We assume that an external perturbationwith the HamiltonianHF(t) begin acting
on the system with the Hamiltonian

H = He + Hs + Hep, He = P
2/2m, Hs = −gμBS

zHz

at some initialmoment of time.Here:He,Hs are theHamiltonianof kinetic andZeeman
degrees of freedom of conduction electrons, respectively;Hep is the electron–scatterer
interactionHamiltonian, g the Zeeman spectroscopic splitting factor μB the Bohrmag-
neton.

Sα =
n
∑
i=1

sαi ,

where n is the number of the conduction electrons.
The interactionHamiltonian of the systemwith a variablemagnetic fieldHF(t) can

be written as

HF(t) = −gμBS
αhα(t),

where hα(t) is an induction vector of the high-frequency magnetic field.
Let us find the magnetic momentmα induced by the high-frequency field hα(t) in

the electronic system.
Using, as in Section 6.2.3, the integral equation (6.115) for the non-equilibrium

statistical operator (NSO), and assuming that ρ0(t,0) = ρ0, the following equation
can be obtained for the Fourier transforms of the high-frequency magnetic moment:

mα(ω) = (gμB)
2

iℏ

0

∫
−∞

dt1 exp{(ϵ − iω)t1}Sp{S
α exp(iLt1)[ρ0, S

β]}hβ(ω). (6.142)
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Again using the Kubo formula (6.119) (Sβ is now playing the role of the operator Xβ)
and introducing the circular components by the relationsm± = mx ± imy, h± = hx ± ihy,
the following can be obtained:

χ+−(ω) =
β(gμB)2

2

0

∫
−∞

dt1 exp{(ϵ − iω)t1}(S
+, Ṡ−(t1)),

Ṡ− = iωsS
− + Ṡ−(l), Ṡ−(l) =

1
iℏ
[S−,Hep], (6.143)

where ωs is frequency of the Zeeman electron spin precession. It is obvious that the
relation (6.143) can be rewritten as

χ+−(ω) =
β(gμB)2

2

0

∫
−∞

dt1 exp{(ϵ − iω)t1}
d
dt1
(S+, S−(t1)). (6.144)

Similarly, as in the case of electrical conductivity, we introduce the notation ϵ− iω = z
andmake the change of variables under the sign of integral t1 → −t1. Then, according
to the notation, the expression (6.144) can be written as

χ+−(z) = −
β(gμB)2

2

∞

∫
0

dt1 exp{−zt1}
d
dt1

Θ(t1)(S
+, S−). (6.145)

The function Θ(t1), appearing in this expression, is defined in accordance with the
formula (6.94) and, in the given case, has the form

Θ(t1) = (S
+(t1), S

−)
1
(S+, S−)

.

Now, applying a generalized Langevin equation to the correlation function Θ(t1)
(6.101), we have

χ+−(z) = −
β(gμB)2

2

∞

∫
0

dt1 exp{−zt1}[iΩΘ(t1)

−
t1

∫
0

ds(f , f +(−s)) 1
(S, S+)

Θ(t1 − s)](S
+, S−),

f = (1 − P)Ṡ+, iΩ = (PṠ+, S−) 1
(S+, S−)

. (6.146)

Performing Laplace transforms in the equation (6.146) and considering the defini-
tions (6.105), we obtain

χ+−(z) =
β(gμB)2

2
(S+, S−)[Σ(z) − iΩ]

z − iΩ + Σ(z)
; (6.147)
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Σ(z) =
∞

∫
0

dt1 exp(−zt1)((1 − P)Ṡ
+, exp{−(1 − P)iLt1}(1 − P)Ṡ

−)
1
(S+, S−)

. (6.148)

Equation (6.147) for the transverse components of the magnetic susceptibility tensor
coincides completelywith the result obtainedbymeans of theBloch equations (5.100),
if one takes into consideration that in the given case iΩ = −iωs as thememory function
determines the inverse relaxation time of the transverse electron spin components.

6.2.6 Determination of non-equilibrium parameters by the NSO-method

The analysis of the NSO-method is incomplete without discussing the main question
of how to calculate the non-equilibrium parameters Fn(t), which define a quasi-
equilibrium and non-equilibrium distribution.

Certainly, theproblemoffinding thenon-equilibriumparameters canbe treated in
a general way without specifying the form of the system. However, due to limitations
of this book, it would be appropriate to regard such a physical effect as, on the one
hand, being typical enough, but, on the other hand, being not complex enough to
carry out the analysis to the end.

So we should dwell on the Overhauser effect that consists in amplifying the sig-
nal of nuclear magnetic resonance by saturation of the free-electrons paramagnetic
resonance in metals or semiconductors.

TheOverhauser effect is a typical effect and canbe explained simply enoughwhen
the effective temperature of Zeeman subsystem of conduction electrons and nuclei is
used as the parameter of Fn(t). From a physical point of view, the nature of this effect
is quite understandable. As far as themagnetic subsystem of the conduction electrons
and nuclei interact mainly with each other, their total magnetic moment is preserved.
The magnetic moment of the electronic system decreases under conditions of para-
magnetic resonance saturation by conduction electrons; consequently, the magnetic
moment of the nuclear system must increase. The increase in the magnetic moment
of the nuclear system is exhibited as a drop in effective temperature of nuclei, which
leads to an enhancement of a signal of nuclear magnetic resonance.

The Feher effect is very similar in essence; it is the phenomenon of nuclei polar-
ization by a direct electric current in semiconductors. The nature of this effect is the
same, i. e. energy is “pumped” into the kinetic degrees of freedom of electrons, and
then is transferred to a thermostat in scattering with an accompanying spin-flip of the
electrons.

There is another distinguishing feature of the Feher and Overhauser effects. In
essence, both are an example of realization of an ordinary refrigerator. If the temper-
ature Ts of the spin system is greater than the temperature of the kinetic degrees of
freedom of the conduction electrons Tk, the energy transfers from the electron Zee-
man system into the kinetic degrees of freedom. Then in every elementary scattering
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event involving electron spin, nuclei and kinetic degrees of freedom, the nuclear Zee-
man system also loses a certain part of the energy. In the case of the Feher effect, the
energy transfers from the subsystemof the kinetic degrees of freedom into the thermo-
stat. Moreover, according to the energy andmomentum conservation laws, when con-
sidered regarding the probability of changing in orientation in every scattering event,
the nuclei’s spins, oriented along an applied field have it slightly greater than others.
This as matter of fact leads to the phenomenon of dynamic nuclear polarization.

There are some other effects, which can be interpreted in the framework of the ef-
fective temperaturemethod. They are exhibited, for example, as a change in electrical
resistance in the vicinity of the resonance under conditions ofmagnetic resonance sat-
uration that occurs by conduction electrons or by donor impurities, or ferromagnetic
resonance in magnetic semiconductors. Moreover, the resulting curve of the change
in resistance accurately coincides with an absorption resonance curve of the high-
frequency energy in a specimen. In spite of the smallness of the effect (of order 30%
for ferromagnetic semiconductors), it allows one to detect the resonance through the
change in electrical resistance.

It should be emphasized that this refers to only the kinetic degrees of freedom of
conduction electrons rather than an increase in temperature of the whole specimen.

Now, after this brief, qualitative overview of the effects, there is every reason for
going over to a detailed description of the Overhauser effect.

Consider the simplest case, when heterogeneity of an electromagnetic microwave
field in specimen volume can be neglected. Furthermore, a subsystem of long-wave-
length phonons interacting with electrons is supposed to be in a state of thermody-
namic equilibrium.

To describe the non-equilibrium system by the NSO method, it is required that
the system’s Hamiltonian and a set of non-equilibrium parameters characterizing the
system should be chosen. Let us represent the Hamiltonian in the form

H(t) = H + HF(t),
H = He + Hs + Hp + Hn + Hep + Hen. (6.149)

The He, Hs Hamiltonians were determined earlier,

Hn = −ℏωnI
z , Iα =∑

j
Iαj ,

where ωn is the Zeeman precession frequency of nuclear spins in a static magnetic
field H⃗; Iα the component of a total spin of the nuclear system, the summation is being
performed over all nuclei with the spin; Hen the electron–nuclear contact interaction
Hamiltonian, which in second-quantization over electronic variables can be written
as

Hen = ∑
νσ ,νσ

Uα
enννS

α
σσa
+
νσaνσ ,
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Uα
enνν =∑

q⃗
Jq⃗⟨ν
|eiq⃗x⃗|ν⟩Iα−q⃗,

Iα−q⃗ =∑
j
Iαj e

iq⃗x⃗j , (6.150)

Jq⃗ is the Fourier transform of a contact interaction between conduction electrons and
magnetic nucleus; x⃗j the coordinate of a nucleus with the spin Iαj ; Hep the electron–
phonon interaction Hamiltonian. The explicit form is presented in Chapter 4.

Let the alternating electromagnetic field with frequency ω and amplitude h(t) be
polarized in the plane perpendicular to direction of the static field H⃗. In this case, the
interaction Hamiltonian of Zeeman degrees of freedom of conduction electrons with
the external field coincides with the Hamiltonian HF(t), used in the previous para-
graph. After introducing circular components, the Hamiltonian HF(t) appears as

HF(t) = −
ℏωs
2
(S+eiωt + S−eiωt). (6.151)

Here ωs is the Zeeman frequency precession of the electron spin in the alternating
magnetic field.

Consider the behavior of the conduction electrons, phonons and nuclear spins
over periods longer than the time required to establish equilibrium inside each sub-
system. Then a description of the subsystems in terms of effective non-equilibrium
temperatures is valid.

We write down the entropy operator (6.11) for the system under study in the form

S(t,0) = ϕ(t) + βk(t)(He − ζ (t)N) + βs(t)(Hs + HF(t))
+ βn(t)(Hn + Hen) + β(Hp + Hep). (6.152)

Here βk(t), βs(t), βn(t) are the inverse temperatures of kinetic and spin degrees of free-
dom of conduction electrons and nuclear spins, respectively; β is the inverse equilib-
rium temperature, ζ (t) the non-equilibrium chemical potential.

For the interacting subsystems of a crystal, the scheme at hand is shown in Fig-
ure 6.2. Here, the crystal is divided into the subsystems which are marked by the rect-
angles: S is the subsystem of spin degrees of freedom, k is the subsystem of kinetic de-
grees of freedom of the conduction electrons, n is the subsystem of the nuclear spins,
andT (thermostat) is for all other degrees of freedomof the crystal. The straight arrows
indicate channels of the energy transfer between the subsystems but a curly arrow de-
picts a radio-frequency energy pumping (Rf) into the subsystem S.

The above scheme shows that there may exist a direct channel to transfer the en-
ergy from the subsystem n into the thermostat, but we leave this process aside. Simi-
larly, the subsystem S can transfer its energy into the thermostat not only directly but
as a result of electron–phonon interaction with both spin-flip and participation of the
kinetic degrees of freedom. The phonon system, which is supposed to be in a state of
equilibrium, may serve as a case in point of such a thermostat.
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Figure 6.2: The Overhauser effect: scheme for interacting subsystems of a crystal.

The direct channel of the energy transfer is not worth taking into account due to its
extreme inefficiency despite its probability (the corresponding arrow is shown in Fig-
ure 6.2). In this sense, the arrow connecting the S and T subsystems demonstrates
only that the system of the electron spins can drop its energy to the thermostat even
without participating of the subsystem k.

To construct a set of energy balance equations for the S, k, n subsystems, which
in this case are playing a role of the generalized kinetic equations (6.8), it is necessary
to write down an expression for the NSO.

We use the integral equation obtained in Section 6.2.3 for the NSO (6.115). It is
natural for the amplitude of the radio-frequency field h to be small. So we restrict our-
selves to terms no higher than the second order over the parameter in these equations.
Then the new integral equation for the NSO can be written as

ρ(t,0) = ρ0(t,0) − i
0

∫
−∞

dt1 exp{ϵt1} exp{iLt1}LF(t + t1)ρ0,

ρ0(t,0) = ϵ
0

∫
−∞

dt1 exp{ϵt1} exp{iLt1}ρ(t + t1,0),

ρ(t,0) = exp{−S(t,0)}.

(6.153)

Here, we have replaced the non-equilibrium distribution on the right-hand side of
the first equation (6.153) by the equilibrium one. The reason is that a deviation of the
non-equilibrium parameters from their equilibrium is of second-order smallness in
interacting with an external electromagnetic field. Since this term itself already con-
tains the first order of the smallness in the field, the deviation of the thermodynamic
parameters from equilibrium can be neglected.

As to the second equation in (6.153) we can transform it by using the result (6.62).
As follows from the expression for entropy (6.152), the thermodynamic coordinates Pn
and thermodynamic forces Fn can be chosen as follows:
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Pn Hk Hs + HF (t) Hn + Hen N

Fn(t) βk(t) βs(t) βn(t) βk(t)ζ(t)

Let us write the equations of motion for basic operators with using of the Hamilto-
nian H. Denoting as before Ȧ = 1

iℏ [A,H], we have

Ṅ = 0, Ḣk = Ḣk(p) + Ḣk(n),

Ḣi(m) =
1
iℏ
[Hi,Hem], i = k, s, m = p, n,

Ḣs = Ḣs(p) + Ḣs(n),

Ḣn + Ḣen = −Ḣk(n) − Ḣs(n). (6.154)

We substitute the results obtained into the formula (6.62). Considering again the fact
that the deviations δβk, δβs, δβn and δζ of the inverse temperatures and chemical po-
tential, respectively, from equilibrium values are proportional to the second-order in-
teraction, and assuming that the steady state is realized when the thermodynamic
parameters δFn are time-independent and therefore δḞn(T) = 0, we rewrite (6.62) in
the form

ρ0(t,0) = ρ0 −
1

∫
0

dτρτ0δS(t,0)ρ
1−τ
0

+
0

∫
−∞

dt1 exp{ϵt1}
1

∫
0

dτ exp{iLt1}ρ
τ
0
d
dt1

δS(t + t1,0)ρ
1−τ
0 , (6.155)

δS(t,0) = Δ{βHF(t) + δβk(Hk − ζ0N) − δζβN + δβsHs + δβn(Hn + Hen)},

d
dt1

δS(t + t1,0) = Δ{β
𝜕
𝜕t1

HF(t + t1) + δβk(Ḣk(p)

+ Ḣk(n)) + δβs(Ḣs(p) + Ḣs(n)) − δβn(Ḣk(n) + Ḣs(n))}. (6.156)

We now construct a set of macroscopic energy balance equations for the subsystems
by means of the NSO (6.155) for further using to find values of the non-equilibrium
temperatures of the subsystems of the crystal.

The equations of motion for the energy operators of the S, k, n subsystems should
be sought with respect to the total Hamiltonian H(t) = H + HF(t). It is clear that
the equations of motion for the k and n subsystems will coincide with the equa-
tions (6.154). The equation of motion for the subsystem S should be written in the
following form:

d
dt
(Hs + HF(t)) =

1
iℏ
[Hs + HF(t),H(t)] +

𝜕
𝜕t
HF(t)

= Ḣs(p) + Ḣs(n) −
iℏωsω
2
(S+ exp{iωt} − S− exp{−iωt}).
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As has been said above, the average energy values do not depend on time, conse-
quently, the partial derivative over time on the left-hand side of (6.8) is equal to zero.
Further, by averaging the operator equations of motion of the energy of the S, k, n
subsystems, one is led to

δβkLkk(p) + δβsLks(p) = 0; (6.157)
δβkLsk(p) + δβsLss(p) + Qs = 0; (6.158)

−δβkLek(n) − δβsLes(n) + δβnLee(n) = 0. (6.159)

Correlation functions, which have appeared in the balance equations, have the form

Lij(m) =
0

∫
−∞

dt1 exp{ϵt1}(Ḣi(m), Ḣj(m)(t1)), (6.160)

i, j = k, s, e, m = p, n,

He = Hk + Hs. The quantity Qs in the equation (6.158) makes sense as the Rf-power
absorbed by the electron spin system and is expressed via the transverse components
of high-frequency magnetic susceptibility χ+−(ω) (6.143). We have

Qs = ω Im χ+−(ω)|h|
2. (6.161)

The previous paragraph discussed the calculation of these components. Note that, in
deriving the set of the coupled balance equations (6.157), (6.158), the weak electron–
nuclear interaction has been neglected because it is not significant when it comes to
the kinetics of an electronic system.

The solution of the set of equations (6.157)–(6.159) allows one to express the cor-
rections to the temperatures of non-equilibrium subsystems both through the correla-
tion functions Lij(m) and through the absorbed power Qs.

There is no necessity to calculate the correlation functions Lij(m) since it would re-
quire a more in-depth discussion of mechanisms of electron scattering in conducting
crystals, which goes beyond the scope of this textbook. Therefore, a solution of set
of (6.157), (6.158) can be written in the general form

δβk = Qs
Lks(p)

Lkk(p)Lks(p) − L2ks(p)
,

δβs = −Qs
Lkk(p)

Lkk(p)Lks(p) − L2ks(p)
,

δβn = −δβk
Lek(n)
Lee(n)
− δβs

Les(n)
Lee(n)
. (6.162)

It is seen from the solution of (6.162) that theOverhauser effect is exhibited as a change
in temperature of the nuclear spins when the Rf-energy pumping into the subsystem
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S occurs. It is recommended for the reader to run a complete analysis of the solution
obtained as independent work to consider all possible modes of the Overhauser effect
implementation and to estimate numerical values of an effective temperature devia-
tion from the equilibrium state.

The set of equations (6.162) permits the temperature values of the non-equilibrium
subsystems S, k andn to be found. In addition, the constancy condition for thenumber
of electrons yields a non-equilibrium chemical potential:

Sp{Nρ} = Sp{Nρ0, },

where N is the particle number operator.
Thus, the example of the Overhauser effect demonstrates the possibility of con-

structing generalized kinetic equations. Moreover, any parameters defining the quasi-
equilibrium and non-equilibrium distributions can be ascertained.

6.3 Hydrodynamic modes and singularity of dynamic correlation
functions

6.3.1 Spin diffusion

Spin diffusion describes a situation where relaxation time of longitudinal and trans-
verse spin components of conduction electrons in conductive crystals often proves to
be several orders of magnitude longer than the momentum relaxation time. So, the
spin relaxation time in a metal Ts ≃ 10−9 s, whereas the momentum relaxation time
τp⃗ ≃ 10−12 s. This leads to conservation of the spin orientation within many electron
scattering events. Therefore, if there arises a deviation of the magnetization of con-
duction electrons from an equilibrium state in any point in space, then motion of the
spin magnetization emerges. This phenomenon is naturally called spin diffusion.

If one assumes that the behavior of a system changes over periods longer than τp⃗,
but less than Ts, the spin orientation is supposed to be preserved. Therefore, it would
be expedient to consider only motion of particles carrying a magnetic moment. Then,
if one introduces the concept of magnetic moment density,

Mα( ⃗r, t) = gμB∑
i
Sαi δ( ⃗r − ⃗ri(t)),

then the macroscopic continuity equation can be written for this quantity:

𝜕
𝜕t
⟨M⃗α( ⃗r, t)⟩ + div⟨ ⃗JMα ( ⃗r, t)⟩ = 0,

⃗JMα = gμB∑
i
Sαi {

p⃗i(t)
m
, δ( ⃗r − ⃗ri(t))},
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{A,B} = 1
2
(AB + BA). (6.163)

Obviously, the continuity equation (6.163) does not give a full description of the dy-
namics of the system’s magnetic moment. In order to determine the temporal behav-
ior of the Mα( ⃗r, t), another equation required for linking the ⃗JMα and Mα( ⃗r, t) among
themselves must be added. As far as there is a tendency to equalization of the mag-
netic moments, such a connectionmay be found by using the phenomenological Fick
law:

⟨ ⃗JMα ( ⃗r, t)⟩ = −D�⃗�⟨Mα( ⃗r, t)⟩. (6.164)

The averages in the expression (6.164) are being calculated with respect to a non-
equilibrium distribution. Upon substituting this result into the continuity equa-
tion (6.163), one is led to a closed expression for the components of the magnetic
moment density of the system:

𝜕
𝜕t
⟨M⃗α( ⃗r, t)⟩ − D2⟨Mα( ⃗r, t)⟩ = 0. (6.165)

This expression allows one to find the value of the components ofmeanmagnetization
at any given time, if the initial density of the magnetization is known.

Assuming that a medium is unbounded, one can perform the Fourier transform
of (6.165) over the variable ⃗r and Laplace transform over t:

⟨M⃗α(k⃗, t)⟩ = ∫ d ⃗r⟨M⃗α( ⃗r, t)⟩e−ik⃗ ⃗r ,

⟨M⃗α(k⃗, z)⟩ =
∞

∫
0

dt⟨M⃗α(k⃗, t)⟩eizt . (6.166)

After that, we obtain the simple equation

𝜕
𝜕t
⟨M⃗α(k⃗, t)⟩ + Dk2⟨Mα(k⃗, t)⟩ = 0, (6.167)

whose solution appears as

⟨M⃗α(k⃗, t)⟩ = ⟨M⃗α(k⃗,0)⟩e−Dk
2t , (6.168)

where ⟨M⃗α(k⃗,0)⟩ is the Fourier-image of the magnetization density at the initial time
t = 0. After substituting the last result in the definition of ⟨M⃗α(k⃗, z)⟩ (6.166), we have

⟨M⃗α(k⃗, z)⟩ =
∞

∫
0

dt⟨M⃗α(k⃗,0)⟩e−Dk
2teizt .

Integration over the time argument yields

⟨M⃗α(k⃗, z)⟩ = − ⟨M⃗
α(k⃗,0)⟩

iz − Dk2
= i ⟨M⃗

α(k⃗,0)⟩
z + iDk2

. (6.169)
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The result found can be interpreted as follows: the diffusion process leads to the ap-
pearance of the pole of the function ⟨M⃗α(k⃗, z)⟩ on the negative imaginary axis,

z = −iDk2.

Such a peculiarity may be treated as a consequence of emergence of the system’s col-
lective excitations called hydrodynamic modes.

The hydrodynamic mode is commonly referred to as a sinusoidal collective fluctu-
ation, slowly decaying near k → 0 with the characteristic temporal scale

τ = 1
Dk2
.

In contrast to a propagating mode with real and imaginary parts of a spectrum of the
collective excitations, the hydrodynamic mode can have only an imaginary compo-
nent, but the lifetime of the excitation tends to infinity as k → 0.

Let us find a link between the spin diffusion coefficient D and the spin correlation
function being introduced as

Sαβ( ⃗r, t) = Sp{M
α( ⃗r, t)Mβ(0,0)ρ0}. (6.170)

In the formula (6.170), the averages are the quantities, calculated by using the equi-
librium distribution ρ0, and therefore

Sp{Mα( ⃗r, t)ρ0} = 0.

Thus, the function Sαβ( ⃗r, t) describes the fluctuations. Assuming in accordance with
the correlation attenuation principle that the function Sαβ( ⃗r, t) decreases rapidly as ⃗r
and t increase, one can use the Fourier transform:

Sαβ(k⃗,ω) =
∞

∫
−∞

dt ∫ d ⃗rSαβ( ⃗r, t)e
i(ωt−k⃗ ⃗r). (6.171)

The quantity Sαβ(k⃗,ω) has the meaning of the spectral density of spin magnetization
fluctuation and is a real positive quantity. Furthermore, it would be appropriate to
regard the system’s Hamiltonian as invariant with respect to the operations of spatial
rotation and time reversal. In this case, the function Sαβ( ⃗r, t) is an even function of ⃗r
and t and a diagonal one with respect to the indices α and β.

We define the function S̃(k⃗,ω) by the Laplace transformation

S̃(k⃗,ω) =
∞

∫
0

dtS(k⃗, t)eiωt (6.172)
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and find a relationship between functions S̃(k⃗,ω) and S(k⃗,ω). For that, the complex
conjugate function should be taken into account:

{S̃(k⃗,ω)}∗ =
∞

∫
0

dtS(k⃗, t)e−iωt .

Making the change of the variables t → −t in the last integral and considering the
parity of the function S(k⃗, t), one is led to

{S̃(k⃗,ω)}∗ =
0

∫
−∞

dtS(k⃗, t)eiωt . (6.173)

Hence, it follows that for real ω

S̃(k⃗,ω) + {S̃(k⃗,ω)}∗ = S(k⃗,ω),

or

2ReS̃(k⃗,ω) = S(k⃗,ω). (6.174)

Now, emanating from the general principles of a hydrodynamic description of the
system we define the function S̃(k⃗,ω) under the assumption that the diffusion equa-
tion (6.165), created for the averages, also holds true at the operator level:

𝜕
𝜕t
Mα( ⃗r, t) − D2Mα( ⃗r, t) = 0. (6.175)

Upon multiplying this equation by operatorMβ(0,0) on the right-hand side and aver-
aging it over the equilibrium distribution, we get an equation for the function S( ⃗r, t),
which, as noted above, is diagonal with respect to the indices α, β:

𝜕
𝜕t
S( ⃗r, t) − D2S( ⃗r, t) = 0. (6.176)

The assumption made above means that the spontaneous equilibrium fluctuations,
being described by the function S( ⃗r, t), and the non-equilibrium quantities ⟨M⃗( ⃗r, t)⟩
are relaxing in accordancewith the same diffusion equations. As early as 1931 Onsager
put forth this hypothesis, but one has still not found disagreeing empirical facts.

Equation (6.176) is solved in exactly the same manner as equation (6.165) for the
non-equilibrium averages ⟨M⃗( ⃗r, t)⟩, and therefore one can immediately arrive at

S̃(k⃗, z) = i S̃(k⃗,0)
z + iDk2

. (6.177)

It should be kept in mind that for this formula S̃(k⃗,0) is S̃(k⃗, t = 0). Below, we show
that

lim
k⃗→0

S̃(k⃗,0) = 1
β
χ,
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where χ is the static magnetic susceptibility of the system. Consequently, in the limit
of the small k⃗, the following representation is valid:

S̃(k⃗, z) = i β−1χ
z + iDk2

. (6.178)

Using the previously obtained result (6.174): 2 Re S̃(k⃗,ω) = S(k⃗,ω), we can find the
representation for the function S(k⃗,ω) in a long-wave approximation:

S(k⃗,ω) = 2ReS̃(k⃗,ω) = 2
β
χ Dk2

ω2 + (Dk2)2
. (6.179)

This result is quite important and canbe easily verified experimentally, since thequan-
tity S(k⃗,ω) is closely associated with a structural factor, determining the particle scat-
tering by fluctuations of a magnetic moment. Also, it enables the spin diffusion coef-
ficient D, expressed via the correlation function of the magnetic moment operators in
the equilibrium states, to be found. Indeed, it is not hard to notice that, performing
the limiting transitions in the correct sequence, but namely k → 0 and then ω → 0,
we obtain

β lim
ω→0

lim
k→0

ω2k−2S(k⃗,ω) = 2Dχ,

D = β 1
2χ

lim
ω→0

lim
k→0

ω2k−2S(k⃗,ω). (6.180)

Thus, we have succeeded in expressing the ratio between a spin diffusion coefficient
and a correlation function of spin fluctuations in an equilibrium state. The result ob-
tained can be considered as yet another confirmation of the fluctuation-dissipation
theorem, described by Kubo.

6.3.2 The fluctuation–dissipation theorem

The fluctuation–dissipation theorem (FDT) relates either correlation functions of op-
erators of physical quantities or corresponding spectral functions with an imaginary
part of generalized susceptibility as a characteristic of dissipative processes to de-
scribe the response of a system to an external perturbation. In other words, according
to the fluctuation–dissipation theorem, relaxation mechanisms of fluctuations of dy-
namical variables in an equilibrium state obey the same physical laws as those mech-
anisms that are responsible for the system’s relaxation behavior in the presence of the
external perturbations.

There are a lot of ways to formulate the fluctuation–dissipation theorem. The
fluctuation–dissipation theorem was originally formulated by Nyquist in 1928, and
later proven by Callen and Welton. To date, the formulations of Kubo and Callen–
Welton are the most popular. In essence, Kubo’s formulation gives the exact mathe-
matical expression for the kinetic characteristics such as electrical conductivity and
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magnetic susceptibility, in terms of the correlation functions of operators of dynamic
variables being in an equilibrium state. The formulas (2.11), (5.43), (5.84) and (6.180)
may serve as examples of the implementation of the fluctuation–dissipation theorem.

As far back as 1951 Callen and Welton generalized the Nyquist theorem on noise
in electrical circuits.

To understand the formulation of the fluctuation–dissipation theorem by Callen
– Welton, it is expedient to cite an example of the magnetic susceptibility tensor χαβ,
being defined by the relation

mα(ω) = χαβ(ω)h
β(ω).

The explicit form of this relation can easily be obtained from the formula (5.80):

χαβ(ω) =
i
ℏ

0

∫
−∞

dt1e
(ϵ−iω)t1⟨[Mα,Mβ(t1)]⟩0 . (6.181)

Here, ⟨AB⟩0 = Sp{ABρ0},Mα = gμBSα.
Let us determine the spectral intensity fαβ(ω) and its classical analogue gαβ(ω)

along with the Fourier transform of the magnetic susceptibility tensor. It is worth
drawing attention to the fact that the quantity gαβ(ω) preserves its meaning when
passing to the classical case:

fαβ(ω) =
i
ℏ

∞

∫
−∞

dt1e
−iωt1⟨[Mα,Mβ(t1)]⟩0, (6.182)

gαβ(ω) =
∞

∫
−∞

dt1e
−iωt1⟨{MαMβ(t1)}⟩0, (6.183)

where

{AB} = 1
2
(AB + BA).

Now, we find a relationship between the functions χαβ(ω), fαβ(ω) and gαβ(ω). For that,
we first consider the expression

(χβα(ω))
∗ =
−i
ℏ

0

∫
−∞

dt1e
(ϵ+iω)t1(⟨[Mβ,Mα(t1)]⟩0)

∗. (6.184)

Given the hermiticity of operators of physical quantities (see the formula (5.179)), it is
easy to show that

(⟨[Mβ,Mα(t1)]⟩0)
∗ = ⟨[Mα,Mβ(−t1)]⟩0.
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Substituting this result into (6.184) and making the change of variables t1 → −t1, we
obtain

(χβα(ω))
∗ =
−i
ℏ

∞

∫
0

dt1e
−(ϵ+iω)t1⟨[Mα,Mβ(t1)]⟩0. (6.185)

Upon comparing the results of (6.181), (6.182) and (6.185) the relationship between the
spectral intensity function fαβ(ω) and the components of the magnetic susceptibility
tensor χαβ(ω) is given by

fαβ(ω) = χαβ(ω) − (χβα(ω))
∗. (6.186)

We now find a link between the functions fαβ(ω) and gαβ(ω). For this, it is necessary to
find how the expressions differ from each other:

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0;

∞

∫
−∞

dt1e
−iωt1⟨Mβ(t1)M

α⟩0.

Let us consider the integral
∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0

=
∞

∫
−∞

dt1e
−iωt1 Sp{Mαei/ℏHt1Mβe−i/ℏHt1ρ0}

=
∞

∫
−∞

dt1e
−iωt1 Sp{Mα 1

Z
e−βHei/ℏH(t1−iℏβ)Mβe−i/ℏH(t1−iℏβ)}.

Making the change of variables t1−iℏβ → t1 in the last integral and taking into account
that e−iωt1 → e−iωt1 ⋅ eβℏω, we obtain

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0 = e

βℏω
∞+iℏβ

∫
−∞+iℏβ

dt1e
−iωt1⟨Mβ(t1)M

α⟩0. (6.187)

The poles of the integrand in (6.187) are on the real axis, so one can shift down the
path of integrations by the magnitude iℏβ. Then instead of (6.187) we have

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0 = e

βℏω
∞

∫
−∞

dt1e
−iωt1⟨Mβ(t1)M

α⟩0. (6.188)

The equality (6.188) can be easily verified to hold true, and consequently, the possi-
bility to shift down the integration contour can become feasible provided that eigen-
functions of the total Hamiltonian H are known. In the given case, there arise delta
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functions when integrating both sides of (6.188) over the time t1, therefore, the equal-
ity (6.188) becomes clear. Because the value of the spur of an arbitrary set of operators
does not depend on the total system of eigenfunctions to evaluate matrix elements,
this relation is taken to be proved.

Inserting the result (6.188) in the definition of the functions fαβ(ω) and gαβ(ω), one
gets

fαβ(ω) =
i
ℏ
(1 − e−βℏω)

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0; (6.189)

gαβ(ω) =
1
2
(1 + e−βℏω)

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0. (6.190)

We combine these two results to obtain the desired relationship between the functions
fαβ(ω) and gαβ(ω):

fαβ(ω) = 2
i
ℏ
1 − e−βℏω

1 + e−βℏω
gαβ(ω). (6.191)

It should be kept in mind that the relationship between the function fαβ(ω) and the
imaginary part of magnetic susceptibility (6.186) exists. Then the spectral intensity of
the symmetrized correlation function gαβ(ω) can be expressed through the imaginary
part of the magnetic susceptibility tensor:

gαβ(ω) =
ℏ
2i
1 + e−βℏω

1 − e−βℏω
⋅ (χαβ(ω) − (χβα(ω))

∗). (6.192)

If one multiplies the numerator and denominator of the last expression by eβℏω/2 and
introduces the notation

1
2i
(χαβ(ω) − (χβα(ω))

∗) = Imχsαβ,

which hasmeaning being the imaginary part of a symmetrical component of the mag-
netic susceptibility tensor, the expression (6.192) can be represented in compact form:

gαβ(ω) = ℏ ⋅ cth(
βℏω
2
) ⋅ Imχsαβ(ω). (6.193)

It is the expression (6.193) that is a formulation of fluctuation–dissipation theory by
Callen and Welton. The results (6.193) and (6.186) hold true in the spatially inhomo-
geneous case, when the functions fαβ(k⃗,ω), gαβ(k⃗,ω), χαβ(k⃗,ω) depend on the wave
vector k⃗ and frequency ω.

In the previous paragraph, another function Sαβ(k⃗,ω) was introduced. Now, rec-
ollecting this fact, one should establish its connectionwith the functions fαβ(k⃗,ω) and
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χαβ(k⃗,ω). For simplicity,we first consider the spatially homogeneous case. Then, using
the definitions (6.171) and (6.170) and setting k⃗ = 0, we obtain

Sαβ(ω) =
∞

∫
−∞

dt1e
iωt1⟨Mα(t1)M

β⟩0

=
∞

∫
−∞

dt1e
iωt1⟨MαMβ(−t1)⟩0 =

∞

∫
−∞

dt1e
−iωt1⟨MαMβ(t1)⟩0.

In writing the last equality in this formula the change of variables t1 → −t1 has been
made. Given this result, the expressions (6.189), (6.190) can be rewritten as follows:

fαβ(ω) =
i
ℏ
(1 − e−βℏω)Sαβ(ω) ; (6.194)

gαβ(ω) =
1
2
(1 + e−βℏω)Sαβ(ω). (6.195)

As far as the relations (6.194), (6.195) are directly generalized for a spatially inhomo-
geneous case, and considering (6.193), we have

gαβ(k⃗,ω) =
1
2
(1 + e−βℏω)Sαβ(k⃗,ω) = ℏ ⋅ cth(

βℏω
2
) ⋅ Imχsαβ(k⃗,ω).

Hence there follows the simple equality in the limit of low frequencies βℏω ≪ 1

Im χsαβ(k⃗,ω) =
βω
2
Sαβ(k⃗,ω). (6.196)

Finally, substituting the value of the function Sαβ(k⃗,ω) of (6.179) into the expres-
sion (6.196) which is valid in the limit of small k⃗, we arrive at the representation of an
imaginary part of magnetic susceptibility

Im χsαβ(k⃗,ω) = χ
Dk2ω

ω2 + (Dk2)2
. (6.197)

This expression holds true also in the long-wave approximation k⃗ → 0. In connection
with the result obtained, it is important to clarify that the structure of the imaginary
part of the magnetic susceptibility of (6.197) is “dictated” by conservation laws and
symmetry properties of the system under consideration. Moreover, it is independent
on the specific form of the system’s Hamiltonian.

Problem 6.1. Prove that

lim
k⃗→0

S(k⃗, t = 0) = 1/β ⋅ χ,

where χ is the static susceptibility in a spatially homogeneous case.
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Solution. We start with the definition of

lim
k⃗→0

S(k⃗, t = 0) = lim
k⃗→0
∫ d ⃗r Sp{M( ⃗r)M(0)ρ0}e

−ik⃗ ⃗r ,

whereM is magnetization of the system along an external magnetic field with an am-
plitude h. Furthermore,M(0) = ∑iMi;

lim
k⃗→0
∫ d ⃗rM( ⃗r)e−ik⃗ ⃗r = lim

k⃗→0
∫ d ⃗r∑

i
Miδ( ⃗r − ⃗ri)e

−ik⃗ ⃗r =∑
i
Mi.

Thus,

lim
k⃗→0

S(k⃗, t = 0) = Sp{MTMTρ0},

whereMT is the total magnetic moment of the specimen.
The magnetic susceptibility of the specimen in the framework of phenomenolog-

ical thermodynamics is given by

χ = lim
h→0

𝜕
𝜕h
⟨M⟩h.

If one assumes that the system’s Hamiltonian H in an external field h can be repre-
sented asH = H0 − hMT , then the average magnetization can be calculated by averag-
ing over an equilibrium ensemble,

⟨M⟩h = Sp{MT exp[−β(H0 − hMT )]}
Sp{exp[−β(H0 − hMT )]}

.

Now, we compute the derivative over h. In this case this can be easily done due to
preserving the total magnetic moment. Consequently, it commutes with the Hamilto-
nian H0. As a result, we get

lim
h→0

𝜕
𝜕h
⟨M⟩h = β ⋅ [⟨M2

T⟩0 − ⟨MT⟩
2
0] = β ⋅ Sp{MTMTρ0}.

The last equality implies that ⟨MT⟩0 = 0 in the absence of spontaneousmagnetization.
Thus, we have shown that indeed

lim
k⃗→0

S(k⃗, t = 0) = 1/β ⋅ χ.

6.3.3 Long-range correlations and slow modes

In Section 6.3.1 of the present chapter in the context of spin diffusion, we discussed
the conditions of the emergence of hydrodynamic modes weakly damped in the limit
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k → 0 for the collective excitations.We showed, in particular, that if a dynamical vari-
able satisfies some conservation law and is a quasi-integral ofmotion, the correspond-
ing autocorrelation function will have a hydrodynamic pole in a complex z-plane.
Now, it is expedient to generalize these results by using the Mori projection operator
method, developed in Sections 6.2.2–6.2.5.

Let us define an autocorrelation function of the operators A(k⃗, t) and A(k⃗, t) by
the relation

CAA(k⃗, t) = (A(k⃗, t),A
+(k⃗,0)) =

1

∫
0

dτSp{ΔA(k⃗, t)ρτ0ΔA
+(k⃗,0)ρ1−τ0 }. (6.198)

By the homogeneity of space, it follows from the formula (5.167) in Section 5.2.4 that
the nonzero averages are only those that satisfy the condition k⃗ = −k⃗. Let the operator
A be self-conjugate, and then A+(k⃗) = A(−k⃗). Next, we define the correlation function
CAA(k⃗, z)byperforming the Laplace transformof the correlation functionCAA(k⃗, t)with
respect to the variable t:

CAA(k⃗, z) =
∞

∫
0

dtCAA(k⃗, t)e
−zt . (6.199)

It isworthdrawing attention to the fact that the functionCAA(k⃗, z)differs from the func-
tion Θ(z) (6.106) only by the factor of the type (A,A+)−1 and an additional dependence
on k⃗. So by repeating all the foregoing calculations leading us to (6.106) from (6.94),
we can seek the representation

CAA(k⃗, z) =
β−1χAA(k⃗)

z +SA(k⃗, z) ⋅ [χAA(k⃗)]−1
, (6.200)

where

SA(k⃗, z) = β((1 − P)Ȧ(k⃗),
1

z − (1 − P)iL
(1 − P)Ȧ+(k⃗)). (6.201)

In the formulas (6.200), (6.201), the following definition has been used:

CAA(k⃗, t = 0) = ⟨A(k⃗)A
+(k⃗)⟩ = β−1χAA(k⃗).

In addition, for simplicity, it would be proper to assume that

iΩ = (Ȧ(k⃗),A+(k⃗))(A(k⃗),A+(k⃗))−1 = 0.

Had the quantity A(k⃗, t) been a preserving quantity, the function SA(k⃗, z), as it was
shown in Section 6.3.1, would be proportional to k2, and a hydrodynamic pole would
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appear as well. This is easily seen, if one assumes that A(k⃗) is the only basis operator
satisfying the equation of motion:

Ȧ(k⃗) = a ⋅ A(k⃗) + ik⃗ ⃗JA(k⃗),

where a is some numerical coefficient, ⃗JA(k⃗) the flow vector, associated with the phys-
ical quantity A. Then, since the correlator of the random forcesSA(k⃗, z) contains the
construction (1 − P)Ȧ(k⃗), the component a ⋅ A(k⃗) does not contribute. Therefore, (1 −
P)Ȧ(k⃗) ∼ k and

SA(k⃗, z) ∼ k
2.

If

lim
k⃗→0

SA(k⃗, z) ⋅ [χAA(k⃗)]
−1 ̸= 0

remains a finite quantity at k⃗ → 0, this means that the correlation function CAA(0, t)
satisfies the equation

𝜕
𝜕t
CAA(0, t) = −

CAA(0, t)
τA
,

τ−1A = lim
k⃗→0

SA(k⃗)[χAA(k⃗)]
−1, (6.202)

showing the usual relaxation behavior. Indeed, if one converts the equation (6.202) by
means of a Laplace-transform and uses the relation (6.105), one is led to

−CAA(0,0) + zCAA(0, z) =
−1
τA

CAA(0, z),

or

CAA(0, z) =
CAA(0,0)
z + τ−1A

.

Assume now that a nonconserved quantity has static correlations of an infinite radius
and

lim
k⃗→0

χAA(k⃗) ∼
M0
RAk2
,

whereM0 and RA are constants. Obviously, then

SA(k⃗, z) ⋅ [χAA(k⃗)]
−1 ∼ k2

and we shall again have a hydrodynamic pole.
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It is of interest to know inwhat systems the 1/k2 singularities of the static suscepti-
bility are possible. First of all, let us consider an isotropic ferromagnetic material. It is
well known that there arises spontaneous ordering of its magnetic moments resulting
in their lining up along a certain direction. The Z-axis can be chosen as the direction.
In fact, nothingmarks this direction, only a veryweak anisotropy in the specimenmay
occur. The anisotropy trends to orient the spontaneous magnetization only along this
direction.

If we now apply an external field hx( ⃗r) along the X-axis, there arises nonzeromag-
netizationMx( ⃗r) under the action of this field. After performing the Fourier transform
of a constitutive equation, we obtain

⟨Mx(k⃗)⟩ = χxx(k⃗)hx(k⃗).

Consider the transition k → 0 in this equation. Obviously, in the given limiting case

lim
k⃗→0
⟨Mx(k⃗)⟩ = M0 = χxxhx ,

where M0 is an equilibrium magnetic moment of the specimen. Since a turn of the
spontaneous magnetization vector is not associated with any work, such a rotation
will occur in an infinitesimal field as well. According to this fact one can conclude
that limk⃗→0 χxx(k⃗)→∞.

To arrive at the same conclusions, another argument can be used. As to the rota-
tion of the spontaneous magnetization vector in a local region of the specimen, only
a very small amount of energy is required. Thus, to create a sinusoidal magnetization
fluctuation with a large wavelength in the space, one must spend an infinitesimal en-
ergy. This is due to fact, that the energy interaction between domains with different
orientations of themagneticmoments is too small. If fluctuations exist, they dampout
too slowly because the spin orientation in each domain is in equilibrium. The inter-
action between the domains with different orientations of magnetization is the only
interaction causing the relaxation processes.

Thus, the divergence of χxx(k⃗) is assumed to be related to static long-range corre-
lations, which, in turn, are caused by spontaneous symmetry breaking in the ground
state. This question calls for more attention when it comes to symmetry breaking in
the ground state. Consider a system of spinswhose interaction is described byHeisen-
berg’s Hamiltonian:

H = − 1
2
∑
i ̸=j
J(| ⃗ri − ⃗rj|)S⃗iS⃗j. (6.203)

It is well known that the total spin is preserved in this system, so

[∑
i
S⃗,H] = 0.
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Assuming that the net magnetic moment is directed along the Z-axis, we calculate the
average value of the z-component of the total spin:

⟨∑
i
Szi⟩

0
=

1
iℏ
Sp{[∑

i
Sxi ,∑

j
Syj ]ρ0}

=
1
iℏ
Sp{[∑

i
Sxi , ρ0]∑

j
Syj } ̸= 0. (6.204)

From this result it follows that the equilibrium statistical operator

ρ0 ≠
1
Z
e−βH .

However, it is more correctly to assume that

ρ0 =
1
Z
PZe
−βH ,

i. e. only those states are selected out of all possible states with a given energy, for
which the total spinmomentum is oriented along the Z-axis. In particular, one should
think that in order to distinguish the Z-direction, the projection operation consists in:

ρ0 →
1
Z
exp{−β(H −∑

i
Szi h)},

whereh is an infinitesimal parameter. In this case, the z-component the total spin com-
mutes with ρ0, but the x-and y-components are not commute. In spite of the extreme
smallness of the external field h, it gives somewhat greater statistical weight for the
states in which the total spin along the Z-axis is not zero. In the ferromagnetic state,
it is sufficient to line up the spins to be parallel to the Z-axis.

Singularity of χxx(k⃗) is associated with symmetry breaking whereas the magnetic
moments are aligned along the Z-axis, while the Hamiltonian of the system is rota-
tionally invariant. That is why the rotation of the resultant magnetic moment occurs
in an infinitely weak field h, applied along the X-axis, which leads to a singularity of
χxx(k⃗). Moreover, as far as χxx(k⃗) is an even function of k (χxx( ⃗r) depends only on | ⃗r|),
this peculiarity has the form 1/k2.

It is interesting also to note that χzz(k⃗) does not have any unusual behavior be-
cause an increase of the magnetic moment along the Z-axis by applying an infinitesi-
mal field along this axis is also infinitesimal.

The result of a quadratic singularity of static susceptibility of systems with spon-
taneously broken symmetry is called the Bogoliubov 1/k2 theorem. The next section
reviews the most basic ideas of the proof of the Bogoliubov theorem on the example
of the static magnetic susceptibility. More detailed information on this theme can be
found in the monographs [44, 59].
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6.3.4 Bogoliubov inequality and 1/k2 divergence theorem

It would be proper to start the present section with a simplified derivation of Bogoli-
ubov’s inequality and the theorem of the singularity of the static components of gen-
eralized susceptibility in systems with broken symmetry in the ground state. In this
case, the static magnetic susceptibility may serve as an example. We first derive the
Kramers–Kronig dispersion relations. Then we establish the sum rule that relates real
and imaginary parts of the generalized susceptibility.

The generalized susceptibility is defined as a response of an operator value of a
physical quantity B to an external action, determined by the perturbation −A+F:

δ⟨B(k⃗,ω)⟩ = χBA(k⃗,ω)F(k⃗,ω),

χBA(k⃗,ω) = χ

BA(k⃗,ω) + iχ


BA(k⃗,ω), (6.205)

where χBA(k⃗,ω) and χ

BA(k⃗,ω) are real and imaginary parts of a generalized suscepti-

bility tensor. Suppose now that

lim
ω→±∞

χBA(k⃗,ω)→ 0. (6.206)

If this is not so, the renormalization of the generalized susceptibility should be made,
for example, by subtracting the value of χBA(k⃗,∞) from χBA(k⃗,ω), the limiting tran-
sition (6.206) to be true for this case as well. Then there is every reason to assume
that χBA(k⃗,ω) is an analytic function in a complex plane z. Consequently, by Cauchy’s
theorem for analytic functions

∫
C

dz χBA(k⃗, z)
z − ω

= 0, (6.207)

if the integration contour is chosen so that a pole of the resolvent can be bypassed
along the segment of the circle centered atω. The pointω lies on the real axis in a way
as shown in Figure 6.3.

Figure 6.3: Contour around the pole of the resolvent in equation (6.207).
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Letρbe the radius of the circle alongwhich thepole canbebypassed. Then the contour
integral can be written as the sum of the three integrals

lim
ρ→0
{
ω−ρ

∫
−∞

dz χBA(k⃗, z)
z − ω

+
∞

∫
ω+ρ

dz χBA(k⃗, z)
z − ω

+ χBA(k⃗,ω)
0

∫
−π

iρeiφdφ
ρeiφ
},

z − ω = ρeiφ, dz = iρeiφdφ. (6.208)

Performing the limiting transition, we find the ratio

iπχBA(k⃗,ω) = P
∞

∫
−∞

dz χBA(k⃗, z)
z − ω
. (6.209)

The real and imaginary parts of the above expression having been separated, the
Kramers–Kronig relations can be easily obtained:

χBA(k⃗,ω) =
1
π
P
∞

∫
−∞

dz
χBA(k⃗, z)
z − ω
; (6.210)

χBA(k⃗,ω) = −
1
π
P
∞

∫
−∞

dz
χBA(k⃗, z)
z − ω
. (6.211)

In the formulas (6.209)–(6.211) the symbol P is used for the principal value of the in-
tegral.

The Kramers–Kronig relations allow for formulating the sum rule for tensor com-
ponents of generalized susceptibility. Putting ω = 0 and considering that

ReχBA(k⃗,0) = χBA(k⃗),

we get

χBA(k⃗) =
1
π
P
∞

∫
−∞

dz
χBA(k⃗, z)

z
. (6.212)

Thus, the static generalized susceptibility can be found by integrating the imaginary
part over the entire frequency interval.

We now show that the generalized static susceptibility χBA(k⃗) can be determined
by the Kubo (Mori) “scalar” product of the two operators A and B, previously de-
fined (5.82), (6.89):

χBA(k⃗) = β(B(k⃗),A
+(k⃗)) = β

1

∫
0

dτ Sp{B(k⃗)ρτ0A
+(k⃗)ρ1−τ0 }. (6.213)
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The proof of this expression comes from the linear-response formula (5.35). For that
purpose, one has to put ω = 0 and perform a series of identical transformations (see
also (5.43), (5.80), (6.118)):

χBA(k⃗) =
i
ℏ

∞

∫
0

dte−ϵt Sp{[ρ0,B(k⃗, t)]A
+(k⃗)}. (6.214)

We use the Kubo identity (5.81)

i
ℏ
[ρ0,B(k⃗, t)] = −β

d
dt

1

∫
0

dτB(k⃗, t + iℏβτ)ρ0

to modify the right-hand side of (6.214). In the formula, integrating by parts the inte-
gral over the variable t, we arrive at

χBA(k⃗) = − β
1

∫
0

dτ Sp{B(k⃗, t + iℏβτ)ρ0A
+(k⃗)}

t=∞
t=0

− ϵ
∞

∫
0

dte−ϵtβ
1

∫
0

dτ Sp{B(k⃗, t + iℏβτ)ρ0A
+(k⃗)}. (6.215)

Applying Abel’s theorem

lim
ϵ→0

ϵ
∞

∫
0

dte−ϵtf (t) = lim
t→∞

f (t)

and the correlation weakening principle, it is easy to show that the second summand
on the right-hand side of (6.215) is zero, assuming that the B and A operators are de-
fined so that their non-equilibriumaverage is equal to zero. By virtue of the correlation
weakening principle, substitution of the upper limit t = ∞ in the first summand on
the right side of (6.215) also yields a zero result. The desired result can be obtained
when substituting the lower limit t = 0:

χBA(k⃗) = β
1

∫
0

dτ Sp{B(k⃗, iℏβτ)ρ0A
+(k⃗)}. (6.216)

The right-hand side of (6.216) coincides with the right part of the formula (6.213), as is
easily seen, making the change of variables τ − 1→ τ in the formula (6.216).

Furthermore, since the correlation function

(A,B) =
1

∫
0

dτSp{Aρτ0Bρ
1−τ
0 }
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possesses all the properties of the scalar product, it provides the Schwarz inequality
for the A and B vectors in a Hilbert space:

(A,A) ⋅ (B,B) ≥ (A,B)

2. (6.217)

Next, the generalized static susceptibility according to (6.213) and (6.212) beingwritten
as the Kubo scalar product of the A and B operators, the Schwarz inequality (6.217)
can be written as follows:

1
π
P
∞

∫
−∞

dω
χAA(k⃗,ω)

ω
⋅
1
π
P
∞

∫
−∞

dω
χBB(k⃗,ω)

ω
≥


1
π
P
∞

∫
−∞

dω
χAB(k⃗,ω)

ω



2

. (6.218)

Equation (6.218) is another way of writing the Bogoliubov inequality for correlation
functions. To show that

lim
k⃗→0

χAA(k⃗) ∼
1
k2
,

the expression (6.218) needs to be used, whereas the A(k⃗) and B(k⃗) operators can be
arbitrary. Now, one should take an operatorMx(k⃗) as the operator A(k⃗), but the oper-
ator Ṁy(k⃗) as the operator B(k⃗). Therefore, the Schwarz inequality for this particular
case can be expressed as

1
π
P
∞

∫
−∞

dω
χMxMx
(k⃗,ω)
ω

≥


1
π
P
∞

∫
−∞

dω
χṀyMx
(k⃗,ω)

ω



2

⋅ [
1
π

∞

∫
−∞

dωωχMyMy
(k⃗,ω)]

−1

. (6.219)

When writing the second co-factor on the right-hand side of (6.219) we have used the
representation (6.186) for the imaginary part of the generalized susceptibility and per-
formed two-fold integration by parts with respect to time argument t. Furthermore,
one can show that the below expression is true with regard to the correlation weaken-
ing principle:

χṀyṀy
(k⃗,ω) = ω2χMyMy

(k⃗,ω).

We convert the first co-factor on the right-hand side of the inequality (6.219). Using the
sum rule (6.212) and formula (6.186), we have

χṀyMx
(k⃗) = 1

π
P
∞

∫
−∞

dω
χṀyMx
(k⃗,ω)

ω

=
1
2π

∞

∫
−∞

dω
∞

∫
−∞

dte−iωt iω
ℏω
⟨[My(k⃗),Mx(−k⃗, t)]⟩0 =

gμB
ℏ
⟨Mz⟩0, (6.220)
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where ⟨Mz⟩0 ≡ M0 is a vector of the magnetic moment in an equilibrium state. In
deriving this expression we have used the definition of the delta-function.

1
2π

∞

∫
−∞

dωe−iωt = δ(t),

and the representation (6.186) for the imaginary part of generalized susceptibility.
Then integration by parts over the time argument t in accordance with the correlation
weakening principle yields

χṀyMx
(k⃗,ω) = iωχMyMx

(k⃗,ω).

In addition, we have taken into account the commutation rules of the Fourier spin
components

[Sα(k⃗), Sβ(k⃗)] =∑
i,j
[Sαi e

ik⃗ ⃗ri , Sβj e
k⃗ ⃗rj ]

=∑
i
[Sαi , S

β
i ]e
(k⃗+k⃗) ⃗ri = iϵαβγS

γ(k⃗ + k⃗). (6.221)

The relation (6.220) can be treated as a variant of writing the sum rule for the
components of the magnetic susceptibility tensor. Here ϵαβγ is a unit third-rank anti-
symmetric tensor.

Thus, the first co-factor on the right side of the inequality (6.219) is independent
on k and proportional to square of the equilibrium magnetizationM0.

We now transform the second factor on the right side of the inequality (6.219). In
temporal representation, the components of a total magnetization vector satisfy the
continuity equation:

𝜕
𝜕t
My( ⃗r, t) + div ⃗JMy

( ⃗r, t) = 0.

Performing the Fourier transform of this equation, we have

iωMy(k⃗,ω) + ik⃗ ⃗JMy
(k⃗,ω) = 0.

Hence, it follows that

ω2χMyMy
(k⃗,ω) = kikjχ


J iMy

J jMy
(k⃗,ω).

In the long run, performing the limiting transition k → 0 in the inequality (6.219) and
considering the sum rule (6.212), we obtain the desired result,

lim
k→0

χMxMx
(k⃗,ω) ≥

M2
0

k2 ⋅ Const
. (6.222)
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In this formula, the constant is determined by a correlation function of magnetization
currents.

Thus, the brief introduction to the proof of the 1/k2 singularity theorem is com-
pleted. It is worth emphasizing that the different behavior of the static susceptibility
components χMyMx

and χMxMx
within the limit k → 0 constitutes the base of the bro-

ken symmetry concept in deriving the formula (6.222). The former remains finite as the
latter diverges as 1/k2.

Having summarized the results obtained, it canbe argued that there are twomech-
anisms of emergence of hydrodynamicmodes. The first is associatedwith the presence
of conserved physical quantities (quasi-integrals ofmotion). The phenomenon of spin
diffusionmay serve as an example. The secondmechanism reflects spontaneous sym-
metry breaking in the ground state. In this case, there also arise the long-wave hydro-
dynamic modes, long-lived, as k → 0, but the nature of their appearance is somewhat
different.

If an original symmetry group is continuous (for example, there is invariancewith
respect to translations or rotations), there may appear a branch of excitations as a re-
sult of the phase transition, which spontaneously breaks the original symmetry. In
the long-wavelength limit, the branch is characterized by vanishing excitation energy.
Goldstone, a British-born theoretical physicist, was first to discover this phenomenon.
The statement put forward by him is often called Goldstone’s theorem. According to
this theorem, massless particles must exist in a relativistic system with broken sym-
metry and a corresponding degenerate vacuum state.

In the nonrelativistic case, this theorem should read as follows: there must ex-
ist a branch of elementary excitations without an energy gap in systems with broken
symmetry. It later became clear that such a formulation had a lot of contradictions,
consequently it was quite pregnable. Therefore, Lange in his work “Nonrelativistic
Theorem Analogous to Goldstone Theorem” postulated some restrictions concerning
the nature of the interaction between particles in such systems. In particular, it turns
out that the long-range Coulomb interaction can suppress the emergence of the hy-
drodynamic modes.

Magnons in ferromagnetic (antiferromagnetic) materials, superfluid helium and
three branches of acoustic phononsmay serve as an example of Goldstone’s modes in
solids. In the first case, the spontaneous orientation of themagneticmoment infringes
spherical symmetry of an original Hamiltonian. The second case is characterized by
broken gauge invariance [60]. The latter reflects the breakdown of invariance with re-
spect to infinitesimal translations of atoms in threemutually perpendicular directions
as a result of their ordering in a crystal lattice.

Goldstone’s theoremprovides only the general statement that a long-wave branch
without energy gap at k → 0 canbe expectedwhen continuous symmetry breaking oc-
curs.However, suchanassertiondoesnot exclude that there are other reasons for such
modes to appear. As far as a hydrodynamic description of excitations is applicable in
the long-wavelength limit, the Goldstone-modes are nothing but the hydrodynamic
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modes. As mentioned above, the hydrodynamic behavior is based on the existence of
conserved physical quantities. The conserved quantities as generators of transforma-
tions of broken symmetry at the phase transition can also be linked with the presence
of the Goldstone modes. For example, a rotation operator of spin moments in a co-
ordinate space through an infinitesimal angle can be treated as the generator of the
transformations. Since a system’s Hamiltonian in the Heisenberg model is invariant
so far as infinitesimal rotations in the coordinate space are concerned, this operator
is a conserved quantity.

More information on the issues raised in Section 6.3.3 and 6.3.4 is contained in the
paper by Forster [44].

6.4 Problems to Chapter 6

6.1. To study an evolving hydrodynamically system, it is necessary to define the
quasi-integrals of motion such as kinetic and spin degrees of freedom of con-
duction electrons, the energy of long-wavelength acoustic phonons, thenumber
and average drift momentum of the electrons.
Write downquasi-equilibrium statistical distribution for this system ρq by intro-
ducing a set of suitable macroscopic parameters Pn and appropriate Lagrange
multipliers Fn(t).

6.2. Prove that if the quasi-equilibrium state of a system is characterized by the vec-
tor of electric polarization Pα = −e∑i x

α
i , where x

α
i is the coordinate of ith elec-

tron, we have the well-known formula

T dS
dt
= ⟨Jα⟩Eα(t),

where ⟨ ⃗J⟩ is the electric current density, E⃗(t) is the external electric field
strength, ensuing from the definition of the entropy (6.10).

6.3. Using the expansion of the NSO (6.62) linear in thermodynamic forces, prove
that the correction to the mean value of any physical quantity assigned by the
operator A is given by

δ⟨A⟩ω =∑
n
{−(A,P+n ) + (A, Ṗ

+
n )

ω − iω(A,P+n )
ω}δFn(ω),

where

(A,B)ω =
0

∫
−∞

dt1 exp{(ϵ − iω)t1}
1

∫
0

dτ Sp{Aρτ0B(t1)ρ
1−τ
0 }.

6.4. Prove that the idempotence property of theMori projection operatorsP andQ =
1 −P holds for any set of basic operators Pn. The projection operator is given by

PA(t) = 1
(P,P+)
(A(t),P+)P.
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6.5. Argue that the identity

((1 − P)C,PB+) = 0

holds for arbitrary operators C and B.
6.6. Derive formulas for Laplace transforms to calculate the derivative of a function

f (x) and convolution of two arbitrary functions

g(x) =
x

∫
0

dtf1(t)f2(x − t).

6.7. Using the expression (6.124) for thememory function, compute the averagemo-
mentum relaxation time of conduction electrons in scattering by charged im-
purity centers with the electron–impurity interaction Hamiltonian (4.82) in the
static case (ω = 0).

6.8. Consider a system of conduction electrons. The system interacts with long-
wavelength acoustic phonons and is in an external static electric field. The
electrons gain energy due to this interaction. In the process of quasi-elastic
scattering, the electrons transfer this energy to the long-wavelength acous-
tic phonons; those in turn transport it to thermal phonons. The subsystem of
the thermal phonons can be regarded as a thermostat. As a result, a station-
ary non-equilibrium state is established with non-equilibrium electron and
phonon temperatures Tk and Tl, and non-equilibrium chemical potential ζ .
Write downa set of energy balance equations for the electrons, long-wavelength
phonons and the number of particles. Deduce expressions for the corrections to
the above temperatures and chemical potential provided that the energy relax-
ation of the long-wavelength phonons by the thermal phonons is characterized
by the relaxation time

1
τph
=

qT4

4πρs4ℏ3
.

Hint. To solve the problem, the plan should include the following:
1. Write down the system’s Hamiltonian H = Hk + Hp + Hkp + HT + HTp + Hkf ,

whereHk,Hp are the Hamiltonians of the electron and phonon subsystems,
Hkp is the electron–phonon interactionHamiltonian,HT is theHamiltonian
of the thermal phonons, HTp is the interaction Hamiltonian between the
thermal phonons and long-wavelength phonons (it is obvious that there is
no need to add the two latter), Hkf is the interaction Hamiltonian between
the electrons and external field.

2. Write down operator equations of motion for the number of particles and
subsystem energies:

ṅ = 0; Ḣk =
1
iℏ
[Hk ,Hkp] +

e
m
PαEα;
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Ḣp + Ḣkp = −
1
iℏ
[Hk ,Hkp] +

1
iℏ
[Hp,HTp].

Write down the non-equilibrium statistical operator, using expressions
(6.153), (6.155) and assuming that

S(t,0) = ϕ + βk(Hk − ζn) + βl(Hp + Hkp) + β(HT + HTP);

δS(t,0) = Δ{δβk(Hk − ζ0n) + δβl(Hp + Hkp) − δζβn};

Ṡ(t,0) = (βk − βl)(Hk − ζ0n) + δβl
1
iℏ
[Hp + Hkp,HTp].

3. Write down energy balance equations for the subsystems and the number
of particles,

n = n0; (βk − βl)Lkk = σαβE
αEβ

(βk − βl)Lkk =
d
dt
⟨Hp + Hkp⟩|T ;

d
dt
⟨Hp + Hkp⟩|T =∑

qλ
ℏωqλ

Nqλ − N0

τph
;

Lkk =
2π
ℏ
∑
k⃗q⃗λσ

|Cqλ|
2(ℏωq)

2N0
qλf

0
k⃗+q⃗(1 − f

0
k⃗ )δ(εk⃗+q⃗ − εk⃗ − ℏωqλ).

4. Calculate non-equilibrium parameters from the equations obtained previ-
ously.

6.9. Using the definition of the generalized kinetic coefficient

LAB(ω) =
0

∫
−∞

e(ϵ−iω)t1 Sp{BeiLt1 1
iℏ
[ρ0,A]} dt1,

relate frequency-dependent real and imaginary parts of the electrical conduc-
tivity.

6.10. Formulate the fluctuation–dissipation theorem in the Callen–Welton form for
the high-frequency conductivity tensor components.
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7 Physical principles of spintronics

7.1 Spin current

7.1.1 Nature of spin current emergence

The standard analysis of kinetic phenomenadescribed in the previous chapters agrees
with the fact that electrons (holes) carry an electric charge and does not account for
their spin degrees of freedom. The fewpublications devoted to nuclear polarization in-
duced by hot electrons (Feher effect), the polarization of spin nuclei upon saturation
of paramagnetic resonance of conduction electrons (Overhauser effect), and detection
of saturation of paramagnetic resonance at conduction electrons by a change in elec-
trical resistance in semiconductors have sparked no interest concerning the problem
of spin transport. This could be partly explained by the circumstance that the charac-
teristic length ls to retain spin orientation turns out to be of the order of several tens
of nanometers. For electronic devices designed in 60–70 years of the last century this
was a too small dimension.

The development of microelectronics dramatically changed the situation. It be-
came possible to apply structures with a layer of several tens of angstroms thick. Un-
der these conditions, the spin polarization created in any way holds during a charge-
carrier motion in the layer. Then there can be spoken of spin-dependent transport.

Naturally, exposing externalmagnetic fields or optical pumping is completely un-
acceptable formicroelectronics to generate spin polarization. In fact, it turned out that
there is a simple, compact, and energy-efficient way to create a flow of spin-polarized
electrons. The main distinguishing features of spintronics are the creation, use, and
control of spin currents. Therefore, it is worth delving into the physical principles of
the generation of spin currents in modern microelectronics.

The simplest device for generating a spin current is a ferromagnetic 3d-metal thin
film deposited onto a substrate of a sufficiently pure paramagnetic metal. To under-
stand how an electric current can arise in such a system to carry a spin magnetic mo-
ment, let dwell on the structural features of the electronic spectrum of ferromagnetic
3d-metals, typical representatives ofwhich are Fe, Co, Ni, their alloys and compounds.
These substances are usually called band magnetics.

The energy spectrum of transition metals of the 3d-group is a wide sp-band as re-
sulting from the broadening of the energy levels of 4s- and 4p-electrons. The sp-band
covers five narrow mutually overlapping 3d-bands combined through the broaden-
ing of the levels of 3d-electrons. Against the typical conduction bands of s- and p-
electrons, 3d-bands have a smaller width. However, the density of energy states in the
latter turns out to be much higher than those of s- and p-electrons in the same en-
ergy range. Figure 7.1 illustrates a schematic arrangement of the sp- and 3d-bands in
transition metals of the 3d-group.

https://doi.org/10.1515/9783110727197-007
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Figure 7.1: (a) Schematic arrangement of sp- and d-bands in transition metals of the 3d-group. The
filled states are shaded. g(ε) is the density of states; (b) shift of 3d-electron subbands with different
spin orientations within the Stoner model. The dotted line indicates the energy dependence of the
density of states of sp-electron. Arrows point the direction of the spin of d-electrons.

Although the charge density distribution of d-electrons is close to the atomic one, the
overlap of the atomic orbitals leads to partial collectivization of d-electrons, and they
can participate in electric transport. However, their mobility remains much less than
that of sp-electrons.

Another characteristic feature of d-electrons is the presence of a strong interaction
between them. The largest value is the energy of the exchange interaction Eex ≃ 10 eV
of electrons with opposite directions of the spin projection, located near the same
site of the crystal lattice. The d-band being rather narrow (its width is estimated as
W ≃ 1 eV), the d-electron subband splits into two subbands with different popula-
tions. It is this difference in the population of the spin d-subbands that provokes the
so-called band magnetism (see Figure 7.1(b)). It should be noted that as far back as
1938 Stoner, having taken a shot to explain the magnetic properties of ferromagnets,
put forward the hypothesis that the Coulomb interaction between electrons gives rise
only to a separation of subbands of electrons with different spin projections, with the
dispersion law and the density of states remaining unchanged (the Stoner model).
Having compiled an equation for the magnetization, Stoner arrived at the condition
for the occurrence of spontaneous magnetization

Eexg(εF) > 1,

where g(εF) is the density of states at the Fermi level. This is the Stoner criterion that,
as it later was found out, is quite well satisfied for ferromagnets of the 3d-group.

If one applies an electric field to a sample of a ferromagnetic conductor, there
arises an electric current defined as the total contribution of electrons with both spin-
up and spin-down. The resulting electrical conductivity is equal to the sum of contri-
butions:

σ = σ↑ + σ↓ = e2
m
(n↑τ↑ + n↓τ↓), (7.1)
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where e,m are the charge andmass of electrons, n↑, n↓− are the concentrations of elec-
trons with spin orientations ↑, ↓ and τ↑, τ↓− are relaxation times of a momentumwith
different spin orientations. So far as a highly degenerate electron gas is concerned,
these relaxation times, according to formula (4.37), coincide with the relaxation times
of electrons with different spin orientations at the Fermi level (εp⃗ = εF). 3d-electrons
are strongly polarized but have rather low mobility. Therefore, formula (7.1) does not
make an allowance for their contribution. s-electrons are collectivized, represent a
quasi-free electron gas in a metal, have high mobility but are very weakly polarized.
Nevertheless, the spin current (flux of the intrinsic mechanical momentum of elec-
trons) can be realized due to the fact that the relaxation time of the momentum of the
mobile s-electrons depends on the orientation of their spins.

Since the main mechanism of scattering of mobile electrons is scattering on the
vibrations of the crystal lattice without a spin flip (transitions with a spin flip occur
only if a sufficiently weak spin–orbit interaction is taken into account), as a result of
scattering s-electronwith energy εp⃗σ can pass into a state εp⃗σ that can belong to either
electrons of the s-band or electrons of the d-band.

If we assume that the quantummechanical amplitude of the probability of transi-
tion from the state p⃗, σ to the state p⃗, σ does not depend onwhat band (s or d) belongs
to the end state, then the inverse relaxation time of the mobile electrons will be deter-
mine by the density of energy levels in the final state. Then the inverse relaxation time
of mobile electrons is controlled by the energy level density in the end state. This re-
sult can be easily obtained if, in the expression (4.92), we go from summing over the
final states p⃗ to integrating over the energy.

The number of d-states per atom is ten; the number of states per atom in the s-
band is two. Therefore, the conductivity of transitionmetals is chiefly governed by the
scattering of mobile charge carriers from the s-band to the d-states with retention of
spin orientation.

After the above remarks, let us turn again to Figure 7.1. The subbandswithdifferent
spin orientations are shifted by Eex due to the polarization of d-electrons. Therefore,
the density of energy states at the Fermi level in these subbands is significantly differ-
ent. This also implies a dramatic difference in the relaxation times τ↑ and τ↓, appear-
ing in the formula (7.1). This, in turn, means that the current that emerges in a ferro-
magnetic 3dmetal is spin polarized despite the lack of spin polarization of s-electrons.
In other words, the electric current is accompanied by the transfer of mechanical and
magnetic moments.

It is interesting to note that the above considerations about the dependence of the
relaxation times of s-electrons on the spin orientation gained fame in the papers by
Mott as far back as 1936. He used them for evaluating the electrical resistance of 3d-
transition metals within the so-called two-channel model. The latter offered that the
conductivity in ferromagnetic 3d-metals consists of the conductivities of each of the
channels with its own characteristic impulse relaxation time. However, the seemingly
obvious conclusion that the electric current, in this case, is accompanied by transport
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mechanical and magnetic momenta was made only more than 50 years after and is
associated with the observation of the giant magnetoresistance effect (up to 100%)
discovered by Fert and Grunberg in 1988.

A spin current can be also observed in a non-ferromagnetic compound. The injec-
tion of a current from a ferromagneticmaterial into a non-magneticmetal inside a het-
erostructure as a thin ferromagnet filmdeposited onto a paramagneticmetal substrate
can exemplify this situation.When passing an electrical current through such a struc-
ture, spin-polarized electrons injected into the paramagnet retain non-equilibrium
spin polarization for t ≃ τs, where τs− is the relaxation time of spin magnetization.
In 1988, Johnson and Silsbee experimentally confirmed the existence of such a cur-
rent. In the same year, the obtained results of their research were published.

There are numerous other experimental proofs of the existence of a spin current.
Among them are giant magnetoresistance already mentioned above, spin accumula-
tion, the spin Hall effect, the spin Seebeck effect, and as well as effects that exhibit
the transfer of mechanical and magnetic momentum by spin current (spin-rotational
effect). These results will be discussed in the following sections of this chapter.

7.1.2 Kinetic equation in the relaxation time approximation for the two-channel
Mott model

Consider the problemof calculating the electrical resistance for a ferromagneticmetal.
As noted above, to describe kinetic phenomena in such a material, it is necessary to
take into account the difference in the relaxation times of different spin-orientation
mobile electrons (along and opposite the direction of spontaneous magnetization).
It is these speculations that brought about the formula (7.1). However, a more rigor-
ous treatment requires accounting for possible transitions between different spin-
orientation states, which change the electron distribution function.

Let us utilize the results of Chapter 4, namely formulas (4.6)–(4.13). Suppose that
there is no magnetic field, the temperature and chemical potential are homogeneous.
Then we can generalize the equation (4.13) for the case of two charge-transfer chan-
nels, each of which is characterized by its own distribution function (f↑, f↓):

e(E⃗ ⋅ v⃗) 𝜕f0
𝜕εp⃗
= −

f↑ − f0
τ↑ − f↑ − f↓τ↑↓ ;

e(E⃗ ⋅ v⃗) 𝜕f0
𝜕εp⃗
= −

f↓ − f0
τ↓ − f↓ − f↑τ↑↓ . (7.2)

In writing the set of equations (7.2), the relaxation of the non-equilibrium distri-
butions (f↑, f↓) to the equilibrium value f0 in each charge-transfer channel is assumed
to meet its time (τ↑, τ↓). The last summand in each equation of (7.2) describes the pro-
cess of changing the distribution function in the channel due to the spin-flip scattering
with a characteristic frequency τ−1↑↓.
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For seeking the solution of this set of equations, we introduce deviations of the
non-equilibrium distribution function (δf↑, δf↓) in the channels from the equilibrium
value f0:

δf↑ = f↑ − f0, δf↓ = f↓ − f0
and rewrite the set of equations in terms of these notations:

e(E⃗ ⋅ v⃗) 𝜕f0
𝜕εp⃗

τ↑↓ = −δf↑ τ↑↓τ↑ − (δf↑ − δf↓),
e(E⃗ ⋅ v⃗) 𝜕f0
𝜕εp⃗

τ↑↓ = −δf↓ τ↑↓τ↓ + (δf↑ − δf↓). (7.3)

The solution of this set of equations

δf↑ = −e(E⃗ ⋅ v⃗) 𝜕f0𝜕εp⃗ (τ↑↓/τ↓ + 2)τ↑τ↓τ↑↓ + τ↑ + τ↓ ,
δf↓ = −e(E⃗ ⋅ v⃗) 𝜕f0𝜕εp⃗ (τ↑↓/τ↑ + 2)τ↑τ↓τ↑↓ + τ↑ + τ↓ (7.4)

allows one to find the electrical current density and electrical resistance of the chan-
nels, ρ↑, ρ↓, expressed them through integrals K0↑, K0↓. The latter are defined by anal-
ogy with the relation (4.31) for the case of a strongly degenerate gas:

1
ρ↑ = e2K0↑; K0↑ = n

2m
(τ↑↓/τ↓ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ ,

1
ρ↓ = e2K0↓; K0↓ = n

2m
(τ↑↓/τ↑ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ . (7.5)

The reverse resistance of the sample being equal to the sum of the reverse resis-
tances of the channels, it is easy to arrive at a rather simple formula for calculating
the electrical resistance of a ferromagnetic metal having a strong difference in the re-
laxation times of different-spin-orientation conduction electrons

ρ =
ρ↑ρ↓ + ρ↑↓(ρ↑ + ρ↓)
ρ↑ + ρ↓ + 4ρ↑↓ , (7.6)

where

ρ↑ = m
e2nτ↑ , ρ↓ = m

e2nτ↓ , ρ↑↓ = m
e2nτ↑↓ .

Problem 7.1. Obtain an expression for the differential thermopower coefficient α for
the two-channelMottmodel, assuming that the relaxation times τ↑, τ↓, τ↑↓ are energy-
independent.
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Solution. Wewrite down the set of equations (7.2) for two thermodynamic forces: elec-
trochemical potential gradient ε⃗ and temperature gradient �⃗�T.

𝜕f0
𝜕εp⃗

v⃗(eε⃗ −
εp⃗ − ζ
T
�⃗�T) = −

f↑ − f0
τ↑ − f↑ − f↓τ↑↓ ,

𝜕f0
𝜕εp⃗

v⃗(eε⃗ −
εp⃗ − ζ
T
�⃗�T) = −

f↓ − f0
τ↓ − f↓ − f↑τ↑↓ . (7.7)

Having solved the set of equations (7.7), we obtain corrections to the electron dis-
tribution functions in the channels δf↑ = f↑ − f0, δf↓ = f↓ − f0;

δf↑ = − 𝜕f0𝜕εp⃗ v⃗(eε⃗ − εp⃗ − ζT
�⃗�T)
(τ↑↓/τ↓ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ ,

δf↓ = − 𝜕f0𝜕εp⃗ v⃗(eε⃗ − εp⃗ − ζT
�⃗�T)
(τ↑↓/τ↑ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ . (7.8)

For finding the differential thermopower coefficient, we use the definition for the
current density (4.29) upon the electrochemical potential gradient ε⃗ and the temper-
ature gradient �⃗�T

⃗J = e2(K0↑ + K0↓)ε⃗ − eT (K1↑ + K1↓)�⃗�T . (7.9)

An explicit form of the integrals K0↑, K0↓ appearing in the formula (7.9) was given
above. The integrals K1↑, K1↓ evaluated for the case of a strongly degenerate electron
gas are defined by the formula (4.36), where the first summand in square brackets on
the right side of the equation vanishes if the relaxation times τ↑, τ↓, τ↑↓, as posted
in the problem statement, are energy-independent. Taking this fact into account, we
can immediately produce the result of computing the integralsK1↑,K1↓ in the following
form:

K1↑ = π24 n
m
(kBT)2

ζ
(τ↑↓/τ↓ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ ;

K1↓ = π24 n
m
(kBT)2

ζ
(τ↑↓/τ↑ + 2)τ↑τ↓
τ↑↓ + τ↑ + τ↓ . (7.10)

Using the definition (4.32) for the differential thermopower coefficient, we write
down

α = α↑ + α↓ = K1↑
eT(K0↑ + K0↓) + K1↓

eT(K0↑ + K0↓) . (7.11)

Plugging the values found for the integrals K0↑, K0↓, K1↑, K1↓, it is easy to deduce
the simple expression

α = π
2

2
kB
e
kBT
ζ
, (7.12)
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that completely coincides with the expression for thermopower of a degenerate
electron gas in the event of the energy-independent electron-momentum relaxation
time.

Indeed, it is necessary to understand that the assumptionmade about the energy-
independence of the momentum relaxation time is rather rough because it is well
known that some typical electron conductors have a thermopower with a positive
sign. This fact is possible due to the decay of the momentum relaxation time with
the growth of energy. If we reject the assumption made, then the thermopower in the
two-channel model is determined by a rather cumbersome expression and therefore
is not given here.

Experimental confirmation of the validity of the two-channel model has been ob-
tained in early work on the measurement of low-temperature electrical resistivity in
dilute nickel-based alloys [45]. Other experimental results confirming the fact that the
electrons with spin ↑ and with spin ↓ in ferromagnetic conductors transfer not only
charge, but also magnetization, which will be discussed in the following sections of
this chapter.

7.2 Magnetoresistance and spin accumulation in layered
structures

7.2.1 Giant magnetoresistance

Magnetoresistance is the relative change of electrical resistance of a conductor in an
externally-applied magnetic field. The influence of a magnetic field on kinetic phe-
nomena in non-magnetic metals and semiconductors was already discussed in the
fourth and fifth chapters. There it was shown (see (4.135)) that the magnitude of the
effect of transverse magnetoresistance in classical magnetic fields for a typical metal
is of the order of

Δρ
ρ
≃ (

kBT
ζ
)
2

and amounts to no more than one percent. In this formula, as before, kB is the Boltz-
mann constant, T is the absolute temperature, and ζ is the chemical potential (the
Fermi level for a degenerate electron gas in metals).

A completely different type of phenomenon called giantmagnetoresistance (GMR)
is implemented in multilayered structures of the [F/N]n type, where F is slim, or-
der a few angstroms, the layer of ferromagnetic metal (such as iron) and N is the
layer of non-magnetic metal (e. g., chromium), n is the number repetition of such a
bilayer.

GMR in multilayers can exhibit in two geometries. In the first case, it is observed
when the current and magnetic field are oriented in the plane of the layers (current
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in-plane, CIP). Another case implies the direction of current transverse to the layers
(current is perpendicular to the plane, CPP). Before 1993, experiments on exploring the
influence of a magnetic field on the resistance of layered structures were carried out
only in CIP-geometry. In particular, in 1988, Fert and Grunberg discovered a signifi-
cant change in the electrical resistance of layered structures Fe/Cr (up to 100%). This
phenomenon gained the name of giant magnetoresistance. The approximate shape of
typical dependencies of the resistance of various layered structures [Fe/Cr]n on the
value of the magnetic field induction H at liquid helium temperature are shown in
Figure 7.2.

Figure 7.2: Dependence of the resistance of [Fe/Cr]n structures on the magnetic field induction H (T):
Hs is the field that completely re-orients the magnetization in the layer; Fe- and Cr-layer thicknesses
amount to 30Å and 12 Å, respectively; the dotted and solid curves correspond to structures with
n = 35 and n = 80, respectively.
The discovery of the giant magnetoresistance effect has served as the starting point
for the development of a new trend in transfer phenomenon research, which is now
commonly referred as to spintronics. The early history of the development of spintron-
ics and its prospects are presented in the Nobel lectures by Fert [46] and Grunberg
[47].

The GMR effect is observed when using the CIP and the CPP geometry, and when
the electric current passes perpendicular to the plane of the layers, the effect value is
greater, all other things being equal.

Let us look qualitatively at the nature of the GMR effect discovered by Fert and
Grunberg. An important feature of layered structures such as [Fe/Cr/Fe]n is the fact
that, due to indirect exchange interactions through the electrons of the intermediate
layer (chromium layer), the magnetization of adjacent iron layers changes from paral-
lel to almost antiparallel with a chromium layer thickness of about 12 Å. The curious
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specifics of the [Fe/Cr/Fe]n structure allows for controlling the orientation of magne-
tization in neighboring iron layers through an externally-applied magnetic field. In
other words, a structure consisting, for example, of 30Å thick iron layers and 12Å
thick chromium layers alters the original antiparallel ordering magnetization in the
iron layers under a sufficiently strong magnetic field with induction H ≃ 2 T: the mag-
netizations of the iron layers becomeparallel to eachother andparallel to thedirection
of the external magnetic field.

Although the CIP and CPP geometries share similar dependencies of the electri-
cal resistance of the [Fe/Cr]n structures on the magnitude of the magnetic field the
interpretation of the GMR effect for this cases is quite different. The fact is that on a
qualitative level, the effect of GMR for CPP configuration can be explained on the ba-
sis of two-channel model conductivity discussed above, while the application of this
model to CIP geometry gives a null result, if we assume a local concept conduction
and that in the process of transport of the electrons from one layers do not fall into the
adjacent layers (this fact is proved below).

The GMR effect in CPP-geometry
To interpret theGMReffect in the CPP-geometry,we address Figure 7.3. Consider the re-
sistance of a structure consisting of twomagnetic layers separated by a non-magnetic
layer. Let the resistance of non-magnetic layers be denoted by the symbolRN . Suppose
that this resistance is spin-orientation independent. Designate the resistance for spin-
up ↑ electrons as it passes through the layers with the magnetizations ↑ and ↓ as R↑↑
and R↑↓, respectively.

If one denies the spin-flip scattering and assumes a local dependence between
the current and the electrical field, there are all grounds to believe that the two spin
channels behave as twoparallel conduction channelswith their own resistance, as de-
picted in Figures 7.3(c) and 7.3(d). The above statement underlies a very simple mech-
anism to explain the GMR effect in the CPP-geometry.

Let RP and RAP be the resistances of a three-layered structure for parallel and an-
tiparallel layer magnetizations, respectively. Then, using the circuits 7.3(c) and 7.3(d)
for the layer resistances, we can write down

1
RP
=

1
R↑↑ + RN + R↑↑ + 1

R↓↑ + RN + R↓↑ ;
1

RAP
=

1
R↑↑ + RN + R↑↓ + 1

R↓↑ + RN + R↓↓ . (7.13)

We denote the structure resistance for the spin-up ↑ electrons by the symbol R↑.
From the relation (7.13) it follows that R↑ = R↑↑ +RN +R↑↑. Analogously, for the spin ↓,
we have R↓ = R↓↑ + RN + R↓↑. Then the resistance of the structure with a parallel
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Figure 7.3: Application of the two-channel conduction model to explain the GMR effect in a three-
layered structure (ferromagnet/normal metal/ferromagnet in CPP-geometry): (a) schematic repre-
sentation of passage the structure with the ferromagnetic ordering of the layers by electrons with
different spin-orientation; (b) the same upon antiparallel layer ordering of a ferromagnet; (c) and (d)
a resistor model for the structure. The resistance of a normal metal is not shown.

orientation of magnetization can be represented as

1
RP
=

1
R↑ + 1

R↓ ; RP = R↑R↓
R↑ + R↓ . (7.14)

Next, we focus on the resistance of the structure with an antiparallel orientation of
layer magnetization. Given the R↑ and R↓ notations previously entered, it is easy to
notice that the channel resistances satisfy the relation

R↑ + R↓ = 2(R↑↑ + RN + R↑↓). (7.15)

If one assumes that the physical properties of the magnet layers are identical, we
can accept that R↑↑ = R↓↓, R↑↓ = R↓↑.

Accounting for the made assumptions and simple transformations yields

1
RAP
=

2
R↑↑ + RN + R↑↓ = 4

R↑ + R↓ ; RAP = 1
4
(R↑ + R↓). (7.16)

Plugging the found values of RAP, RP into the definition for the structure magnetore-
sistance

ΔR
R
=
RAP

RP
− 1, (7.17)

we end up with

ΔR
R
=
(R↑ − R↓)2
4R↑R↓ . (7.18)
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It is granted that the electrical resistance of the layer of the normal metal can be
neglected in formula (7.13) and the R↑↑ and R↑↓ resistances can be replaced by appro-
priate specific resistances ρ↑ and ρ↓, where ρ↑ is the specific resistance in the channel,
in which the directions of spin of an conduction electron and magnetization coincide
(majority electrons), ρ↓ is the specific resistance of the channel, in which the direc-
tions of the spin and magnetization are opposite (minority electrons). Consequently,
the change in multilayered structure resistance can be expressed through the specific
resistances of the channels,

ΔR
R
=
(ρ↑ − ρ↓)2
4ρ↑ρ↓ . (7.19)

The formula given above allows purposefully searching for materials to expect a large
magnitude of magnetoresistance. For example, according to the data given in [48], in
the [Co/Cu/Co] structure the specific resistance for a cobalt film ρ↑ = 32 µΩ cm, ρ↓ =
141 µΩ cm, and the specific resistance of copper in the layer is only 4.6 µΩ cm. Thus,
formula (7.19) predicts the effect magnitude for samples of such a structure as

ΔR
R
=
(ρ↑ − ρ↓)2
4ρ↑ρ↓ ≃ 66%.

Despite the offered model with a series connection of resistors giving a simple
picture to estimate the GMR effect magnitude, it needs improvement in two ways. For
this purpose, it is mandatory to bear in mind both spin-flip scattering to get a realistic
interpretation of the CPP GMR and the effects of chaotic scattering of electrons in a
layer and their finite mean path length to explain the CIP GMR.

The GMR effect in CIP-geometry
As already underscored above, the two-channel model that corresponds with local
conductivity is adequate for explaining GMR in CPP-geometry and gives plausible nu-
merical estimates of the effect. However, this model absolutely fails to provide a sat-
isfactory description of the GMR effect in the CIP-geometry since it is easy enough to
prove that the change in resistance in the CIP geometry is exactly zero if the conduc-
tivity is completely local even in the presence of spin-dependent conductivity.

Let us explore again a structure [F/N/F]n, where F and N are layers of ferromag-
netic andnonmagneticmaterials, respectively.When an electric current flows through
the layer planes, the total current is the sum of currents in each layer. In the case of
completely local conductivity, the current inside each layer does not depend on the
orientation of the magnetization of other layers. So, if the orientation of the magneti-
zation of two ferromagnetic layers is parallel, the total current IP flowing in the three-
layered structure consists of the currents in each layer:

IP = I1↑ + I1↓ + IN + I2↑ + I2↓, (7.20)
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where I1s, I2s (s =↑, ↓) are the currents in spin channels of the first and second ferro-
magnetic layers, IN is the current in the non-magneticmetal layer. If themagnetization
of the layers is antiparallel, the total current IAP flowing in the three-layered structure
is equal to the sum of the currents in the spin channels:

IAP↑ = I1↑ + 12 IN + I2↓;
IAP↓ = I1↓ + 12 IN + I2↑;
IAP = I1↑ + I1↓ + IN + I2↑ + I2↓. (7.21)

Comparing the expressions (7.20) and (7.21), it is easy to see that they are fully
identical, and the magnetization reorientation in one of the layers leads to no change
in the current. Consequently, the resistance of the three-layered structure does not
vary too.

Despite the result obtained above, it is possible, havingmade a number of serious
assumptions, to apply the two-channel model to the interpretation of the GMR in the
CIP geometry.

Suppose that the isotropic scattering of electrons in the layers occurs at randomly
distributed impurity centers with a sufficiently high concentration of ni, nil3s ≫ 1, and
the thickness of the ferromagnetic layers a and the thickness of the nonmagnetic layer
b are significantly less than the characteristic length ls, at which the orientation of the
electron spinmoment is preserved. Under these conditions, we can assume that when
the electrons pass through the layered structure, the residence time of the electron in
each of the layers is proportional to its thickness, and introduce the average resistivity
for each of the channels, ρs:

ρs = 2aρs + bρN
2a + b

, s =↑↓, (7.22)

where ρ↑ and ρ↓ are the specific resistances for electronswhose spin coincideswith the
direction of magnetization in a layer and opposite to it, respectively, ρN is the specific
resistance of a non-magnetic metal.

Hence, the inverse resistivity of the three-layered structure for the parallel (1/ρP)
and antiparallel (1/ρAP) orientations of the layers can be written as

1
ρP
= (

2a + b
2aρ↑ + bρN + 2a + b

2aρ↓ + bρN );
1
ρAP
= (

2(2a + b)
aρ↑ + aρ↓ + bρN ). (7.23)

Accounting for the relationship between the resistivity and the resistance for the
parallel RP and antiparallel RAP orientations of magnetization of the layers leaves us
with

RP = L
(2a + b)S

(
(2aρ↑ + bρN )(2aρ↓ + bρN )

2a(ρ↑ + ρ↓) + 2bρN ); (7.24)
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RAP = L
2(2a + b)S

[a(ρ↑ + ρ↓) + bρN ]. (7.25)

Here L is the sample length, S is the layer cross section area.
Using the results obtained (7.24), (7.25) and the definition of relative change in

resistance (7.17) in result of simple transformations, we obtain the estimate of the GMR
effect in the CIP geometry, which almost coincides with the result of (7.19), previously
obtained for the CPP geometry:

ΔR
R
=

(ρ↑ − ρ↓)2
(2ρ↑ + ξρN )(2ρ↓ + ξρN ) , (7.26)

where ξ = b/a.

GMR in CPP-geometry considering spin-flip processes
The above-examined GMRmodel in CPP geometry is assumed to keep the spin of elec-
trons traveling through the structure layers unchanged. Obviously, this assumption
does not reflect the actual situation despite fulfilling the condition τsf ≫ τps for the
samples used,where τsf is the time of retaining the electron spin, τps is themomentum
relaxation time for electrons with spin s. Spin-flip-electron processes can be allowed
for within either the kinetic Boltzmann equation or an approach based on the usage of
local equilibrium macroscopic balance equations [48]. The second technique is sim-
pler and compact, and we will focus on it.

Let the x- and y-axes of the Cartesian coordinate system lie in the layer planes and
the z-axis be directed perpendicular to them. The system is spatially homogeneous
along the x- and y-axes. However, since we intend to take into account spin-flip pro-
cesses, the density of the electric current ⃗Js and the chemical potential ζs (s =↑, ↓) are
z-coordinate dependent.

Bearing inmind the first of equations of (1.15), we write an expression for the den-
sity of the current ⃗Js in the spin channel s conditional upon a gradient of the electric
field potential φ and a gradient of the chemical potential ζs are imposed

⃗Js = −
σs
e
�⃗�(ζs + eφ). (7.27)

Inwhat follows in the text, e is themodule of the electron charge,σs is the conductivity
of the spin channel s.

When an electric current flows through the system, the electroneutrality condi-
tions are not violated and div ⃗J = 0. However, spin-flip processes break this condition
for electrons with a fixed spin orientation. In this case, their concentration ns is no
longer stationary:

div ⃗Js = −e
dns
dt
. (7.28)
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The electron density ns depends on the coordinate z and on the time t only due to
the fact that the local macroparameter ζs depends on these values. Given this circum-
stance, we can express the quantity ns through the locally equilibrium distribution
function f0

ns(z, t) =
1
V
∑
k⃗

f0(εk⃗s − ζs(z, t)), (7.29)

and the rate of changing in ns(t) can bewritten via density of states, gs(ζs), at the Fermi
quasi-level ζs

dns
dt
= −

1
V
∑
k⃗

df0(εk⃗s − ζs)
dεk⃗s

dζs
dt
= gs(ζs)

dζs
dt
; (7.30)

gs(ζs) = −
1
V
∑
k⃗

df0(εk⃗s − ζs)
dεk⃗s

, (7.31)

where V is the system’s volume.
Under the conditions of the problem, the only reason for the change in the chemi-

cal potential of ζs is the spin-flip processes that change the concentration of ns. There-
fore, we can write

dζs
dt
= −

ζs − ζ−s
τsf
, (7.32)

where the quantity 1/τsf governs the rate of the spin-flip processes.
Let us transform the equation (7.28), using the relations (7.30) and (7.32),

div ⃗Js = eg(ζs)
ζs − ζ−s
τsf
. (7.33)

The density g(ζs) of states can be expressed in terms of electrical conductivity in
the channel with spin s and velocity vF at the Fermi level. For this purpose, we adduce
formulas for electrical conductivity, the density of the number of states at the Fermi
level, and the electron concentration in the channel with spin s:

σs =
e2nsτps

m
; gs =

m3/2ζ 1/2s
21/2π2ℏ3 ; ns =

21/2(mζs)3/2
3π2ℏ3

. (7.34)

Derivation of the last two formulas will be suggested to the reader at the end of the
section as a challenge.

By combining the formulas in the last expression, it is easy to see that

eg(ζs) =
3σs

ev2Fτps
.
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Let us define the diffusion length for the spin s by the relation lsfs = vF√τsτsf /3 , which
allows us to write the continuity equation in the spin channel in a convenient form

div ⃗Js =
σs
e
ζ s − ζ −s
(lsfs )2
. (7.35)

In (7.35),wehave replaced the chemical potential ζs of the electrons in the spin channel
by the electrochemical potential ζ s, defining it as ζ s = ζs + eφ.

Equations (7.27) and (7.35) enable deriving a closed differential equation for the
difference of electrochemical potentials Δζ = ζ ↑ − ζ ↓. Indeed, if we substitute the ex-
pression for the current in the spin channel s (7.27) into the left side of the equation
(7.35) and neglect the dependence of σs on the coordinates, we will get two diffusion
equations,

2ζ ↑ = ζ ↑ − ζ ↓
(lsf↑ )2 ; 2ζ ↓ = ζ ↓ − ζ ↑(lsf↓ )2 , (7.36)

and subtracting from the first equation the second one,we have the diffusion equation
for Δζ ,

d2Δζ
dz2
=
Δζ
l2sf
;

1
l2sf
=

1
(lsf↑ )2 + 1

(lsf↓ )2 . (7.37)

If we neglect the dependence of the diffusion length lsf on the coordinate z, then the
resulting equation is a linear homogeneous second-order differential equation with
constant coefficients and its general solution is the sum of partial solutions that are
easily obtained by using the Euler substitution

Δζ = A exp(z/lsf ) + B exp(−z/lsf ), (7.38)

where A and B are unknown constant coefficients. Since the total current density sat-
isfies the equation continuity div( ⃗J↑ + ⃗J↓) = 0 (current flow does not lead to the accu-
mulation of charge in an arbitrary cross-section of the sample), one more condition
must be met:

d2J
dz2
=

d2

dz2
(σ↑ζ ↑ + σ↓ζ ↓) = 0. (7.39)

Obviously, the solution to (7.39) can be written as

J = σ↑ζ ↑ + σ↓ζ ↓ = Cz + D, (7.40)

where C, D are unknown constants.
For a multi-layer structure, the joint solution of the set equations (7.38), (7.40),

with taking into account the boundary conditions of equality of the current density
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and electrochemical potentials for each of the spin directions at the boundary of each
layer (if there are no additional spin reversal mechanisms in the boundary region),
is a very complex, but solvable problem. As a result, the ζ ↑- and ζ ↓-dependence as a
function of the z-coordinate and total current can be found. In this case, the density
of the electric current Js can be determined through the standard formula (7.27).

Here we will not deal with the implementation of this program, referring the
reader to the original publication [49]. Nevertheless, in the section on spin accumu-
lation, based on the equations (7.38), (7.40), we shall find the coordinate dependence
of the electrochemical potentials ζ ↑, ζ ↓ for the F/N structure.

Problem 7.2. Derive formulas for calculating the density of states and concentration
of electrons in the spin channel within an electron gas model with a parabolic disper-
sion law.

Solution. We proceed from the definition (7.31) for the density states of an electron
gas, assuming that the dispersion law is parabolic. Next, in this formula, we go over
from the summationover awave vector k⃗ to integrationover k in a spherical coordinate
system. In doing so, the sum is replaced by the integral

∑
k⃗

→
∞
∫
0

V
(2π)3

k2 dk sin θ dθ dφ,

where V/(2π)3 is the density of states in k⃗-space. The integration over angular vari-
ables gives 4π. Relying on these results, we have

g(εk⃗s) = −
1
2π2

∞
∫
0

df0(εk⃗s − ζs)
dεk⃗s

k2 dk. (7.41)

In the formula (7.41), let us pass from integration over the wave vector to integration
over energy, having made the substitutions

kdk = m
ℏ2
dεk⃗s; k = (2m)

1/2
ℏ √

εk⃗s.

Entering these results into the formula (7.41) and using the fact that the derivative
of the distribution function f0(εk⃗s − ζs) for a highly degenerate electron gas is approx-
imated by the δ-function, we get an expression for the density of states in the spin
channel:

gs =
m3/2ζ 1/2s
21/2π2ℏ3 .

It is easy to see that the formula deduced is identical to (7.34).
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Furthermore, the concentration of electrons in the spin channel can be computed
through the relation

ns =
1
V
∑
k⃗

f0(εk⃗s − ζs). (7.42)

If in the formula (7.42) we go from summation by k⃗ to integration by k, and then to
integration by energy, then the expression for the concentration in the spin channel
can be written as an integral over energy:

ns =
m3/2

21/2π2ℏ3 ∞∫
0

ε1/2
k⃗s
f0(εk⃗s − ζs)dεk⃗s. (7.43)

Performing partial integration in the formula (7.43) and using the δ-shaped behavior
of the derivative of the distribution function, we obtain the desired expression for the
electron concentration in the spin channel:

ns =
21/2m3/2ζ 3/2s

3π2ℏ3
.

7.2.2 Spin accumulation

In virtue of the difference in themomentum relaxation times, as previously noted (see
Section 7.1), an electric current in a ferromagnet is spin-polarized and accompanied by
a transfer ofmagneticmomentumof the electrons. To observe a spin-polarized current
turned out to be possible as a result of a simple, at first glance, experiment carried out
by Johnson and Silsbee in 1988 [50].

Figure 7.4 schematically illustrates this experiment. Their experiment includes the
following steps. A foilmadeof ultrapuremonocrystalline aluminum is placedbetween
ferromagnetic permalloy films (NiFe). For Al-foil designated asN in the figure, amean
free path of electrons amounts to lp ≃ 17 µm and their spin length diffusion is ls ≃
500 µm. The magnetization direction in F1 and F2 films (see Figure 7.4) can vary under
an applied external field.

An electric current was passed through this system (the direction of movement of
the positive charges is indicated by an arrow). In this configuration, the left ferromag-
netic film served as an injector, creating a nonequilibrium concentration of electrons
ns, (s =↑↓) in the aluminum foil, and the right a detector that allowed detecting the
presence of a non-equilibrium spin concentration of electrons.

Let us examine the interface between the left ferromagnetic film and the paramag-
netic metal. The electric current passing through this system injects electrons into the
paramagneticmetal. A current in a ferromagneticmetal being carriedmainlymajority
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Figure 7.4: Principal scheme of the experiment by Johnson and Silsbee.

electrons, the injected electrons have different concentration ns for ↑ and ↓ spins. In
other words, the injected electrons are non-equilibrium in the paramagnetic metal.

The thermodynamic equilibrium in the electronic system of a paramagneticmetal
will be restored as a result of two processes. First, the non-equilibrium concentration
will decrease due to the spin-flip processes with a characteristic time of τsf , and sec-
ondly, the non-equilibrium will fade out at distances of the order of ls due to the spin
diffusion. Both of these processes are shown schematically in Figure 7.4. The density of
points in the figure reflects the non-equilibrium electron concentration that declines
along the x- and y-axes.

If the distance d between the injector-film and detector-film to choose sufficiently
small (d ≃ ls), and the size of the paramagnetic along x axis to be large enough, then
the non-equilibrium spin state of the injected electrons can change the population of
the spin sublevels in the ferromagnetic detector-film, but the electrons in the lower
contact of aluminum foil will not have the spin polarization.

A measuring device with an impedance of Z connected to an electrical circuit, as
is shown in the figure, depending on the value of the impedance of the device, can
measure either the potential difference if Z is large (a change in the contact potential
difference due to a shift of the Fermi level for electrons in the detector), or the current
to be caused by a change in the potential difference at Z → 0.

Why a change in the contact potential difference arises is easy to understand from
Figure 1.1 of the first chapter. Since thework function of electrons in a vacuum for vari-
ousmetals is different, the chemical potentials of the aluminumfoil and ferromagnetic
film are different too.

Suppose the level of the chemical potential of electrons in the foil is higher than
that in the ferromagnet. Then there will be an overflow of electrons in the boundary
layer due to the difference in chemical potentials, and this overflowwill stopwhen the
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Coulomb potential difference appears. This difference of the Coulomb potentials is a
cause for preventing further redistribution of electrons. As a result, the ferromagnetic
will have an excess negative charge, and the foil will have a positive charge

Figure 7.5 presents schematic diagrams of energy zones in an idealized Stoner
model. For simplicity, d-electrons of the lower spin subband are assumed to fail to
participate in the electrotransfer. In reality, both spin subbands make a contribution
to the charge transfer and magnetization. Figure 7.5(a) reflects a scenario of the lack
of an electrical current in the circuit and thermodynamic equilibrium of the system.
The horizontal dotted line depicts the level of chemical potential (for simplicity, it is
assumed that the contact potential difference in the absence of injection is zero). All
electronic states below the Fermi level under conditions of a strongly degenerate elec-
tron gas are also assumed to be occupied. For a normal metal, this situation is dis-
played as a solid fill of the spin subbands.

Figure 7.5: A scheme of diagrams of the density of states and occupancy of spin subbands of the
injector F1, paramagnetic metal N, and detector F2, which explains the possibility of detecting spin
accumulation.

As seen in Figure 7.5(b), the spin current induced by the electrical current in the circuit
turns out to be polarized, which causes a misbalance of the spin subband population
in the normal metal. Namely, one of the spin subbands has a larger number of elec-
trons. Besides, in the event of preserving the imbalance at the normal metal–detector
boundary, the quasi-chemical potential for ↓ spin electrons in the spin subband of
the detector is proven to be higher than the equilibrium chemical potential (the upper
dotted line in Figure 7.5(b)). With the selected sample geometry (see Figure 7.4), the
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electron gas has time to thermalize in the area of the lower contact of the aluminum
foil with the conductor, the spin system will be in a state of thermodynamic equilib-
rium, and the level of the chemical potential in this area will remain in equilibrium
(the lower dotted line in Figure 7.5(b)). The difference in the chemical potentials of the
aluminum foil and ferromagnetic metal–detector amounts to δV , if the impedance of
the measuring device tends to infinity Z →∞.

7.2.3 Spin-induced voltage detection

Let us estimate the value of the spin-inducedvoltage. A spin-polarized current injected
into a normal metal induces a magnetic moment with a rate Jm per unit contact area

Jm = η
μBJ
e
, (7.44)

where J is the electric current density, μB is the Bohr magneton, η is a dimensionless
parameter reflecting the degree of spin polarization of the electric current, the degree
of depolarization of the electron flow during the passage of interface contact region,
and a number of other factors that can lead to depolarization of the electron flow.

Let the non-equilibrium spins in the region of a normal metal relax in a steady-
state regime with a rate of 1/T2. Then the steady-state non-equilibriummagnetization
M per unit volume in a paramagnetic metal can be evaluated as

M = JmT2
d
=
ημBJT2
ed
, (7.45)

where d is the distance between the injector and the detector. For implementation of
the diffusion regime, the distance d must satisfy two inequalities: d ≫ vFτ, where
τ is the momentum relaxation time, and d ≃ ls. Here ls is the spin diffusion length
determined from the expression ls ≃ √DT2, where D is the diffusion coefficient for
electrons, and T2 is the relaxation time of the non-equilibrium magnetization.

It is obvious that the concentration ns of the non-equilibrium electrons and mag-
netic moment are connected by the relation

ns =
M
μB
= g(ζ )eδV . (7.46)

In this formula, ζ is the equilibrium chemical potential a degenerate electron gas. The
magnitude δV of the shift of the quasi-Fermi level is assumed tobe small,which allows
one to regard the density of states as a constant equal to the density of states at the
Fermi level.

According to (7.34), the density of states at the Fermi level and the equilibrium
concentration of electrons are related to each other by a simple ratio

g(ζ ) = 3n
2ζ
, (7.47)
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where n is the bulk density of electrons in a normal metal. Keeping in mind the re-
lations (7.45)–(7.47), we write down an expression for the potential difference in the
detector circuit

δV = η2ζT2I
3e2nSd
, (7.48)

where I is the current flowing in the injector circuit, S is the injector area adjacent to
the normal metal. Having expressed ζ and performed the simplest transformations,
we get a formula convenient for estimation:

δV = ηIπ4/3ℏ2T2
(3n)1/3e2mSd . (7.49)

If the parameters close to the real values of the experiment [50] are selected for
the numerical estimation of δV : d = 10−4m, T2 = 10−8 c, S = 10−5m2, n = 18 ⋅ 1028m−3,
η ≃ 0, 1, I = 20mA, then the formula (7.49) yields the value of 10−11 V for δV . After
dividing this voltage by the current I = 20mA, the effective resistance value R for the
detector circuit amounts to ≃ 5 nΩ. The value of R ≃2 nΩ found in the experiment of
[50] indicates the operability of this simple spin accumulation model.

7.2.4 Using the Hanle effect to detect spin accumulation

As the above estimate shows, the voltage at the detector induced by the spin current
is very small, and, therefore, the author in the work [50] uses the method of register-
ing the voltage δV based on the use of the Hanle effect, discovered in 1924. The Hanle
effect, applied to the problems of magneto-optics of semiconductors, consists in the
fact that when a magnetic field H is applied perpendicularly to the direction of prop-
agation of circularly polarized light incident on the surface of the semiconductor, the
degree of photoluminescence polarization decreases.

The ideas that allow for controlling the polarization of photoluminescence us-
ing a magnetic field can also be applied to controlling the magnetization of the non-
equilibrium electrons injected into a normal metal using a weak magnetic field with
an induction of the order of hundredths of a T.

Let a constant magnetic field H be applied along the Z-axis and perpendicularly
to the xy-plane, as in Figure 7.4. Then the magnetic moment of the injected non-
equilibrium electrons precesses around the Z-axis. To make sure of this, it is enough
to refer to the Bloch equations (5.97). If the relaxation terms are not taken into account
in these equations, then for the components of our interest of the magnetic moment
of the electronsmx,my we get

dmx
dt
=
gμB
ℏ

myH ;
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dmy

dt
= −

gμB
ℏ

mxH . (7.50)

Having differentiated the first equation over time and transformed its right side taking
the second equation of (7.50) into account, we arrive at a homogeneous second-order
differential equation formx. Analogously, we can deduce an identical equation formy.
We have

d2mx
dt2
= −(

gμBH
ℏ
)
2
mx ;

d2my

dt2
= −(

gμBH
ℏ
)
2
my . (7.51)

Here ω = gμBH/ℏ is the cyclic frequency of spin precession in a magnetic field.
The general solutionmx = a cos(ωt+φ1),my = b cos(ωt+φ2) of (7.51) contains four

constants that can easily be found from the initial conditions:mx(0) = m0,my(0) = 0,

dmx
dt

t=0 = 0, dmy

dt

t=0 = −ωm0,

where m0 is the magnetic moment of an electron at the left boundary of a normal
metal (for simplicity, we assume that the electrons are injectedwith one spin direction
coinciding with the direction of the x-axis). As a result, after finding the constants,
one can make sure that the spin of the electron will make a rotational movement in
the xy-plane:

mx = m0 cos(ωt); my = m0 sin(ωt). (7.52)

For the relaxation time T2 of the transverse components of the spin magnetization,
the direction of the magnetic moment of the injected electron turns by the angle of
ωT2 radians. The experiment of [50] employed at low temperatures the following pa-
rameters: T2 ≃ 7 ⋅ 10−9 c the cyclic frequency was ω ≃ 4 ⋅ 108 c−1 in the magnetic field
of 2.5 ⋅ 10−3 T (25 G). Thus, the vector of the electron magnetic moment rotates by an
angle of the order of one radian during the lifetime of the non-equilibrium spin mag-
netization of the electron. Since the volume of the sample≃ l3s with a characteristic dif-
fusion length ls contains electrons injected at different times, the orientation of their
magnetic moments is also different. This fact gives rise to a decrease in the stationary
non-equilibrium spinmagnetization of the injected electrons. Therefore, according to
the expression (7.46), the spin-transport-induced spin accumulation lowers.

The picture of the phenomenon examined here is qualitative and helps under-
stand only the essence of the method for registering spin accumulation using the
Hanle effect. To achieve valid quantitative outcomes, the relaxation and diffusion
terms of (7.50) need to be accounted for. In this case, the problem solving turns out to
be too involved [50], and we do address it.
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A smooth increase in the induction of the magnetic field applied to the normal
metal raises the precession frequency ω and the angle through which the electron
magnetic moment rotates in a time t. Consequently, the degree of depolarization of
the injected electrons will increase. The highest polarization of the electrons and the
largest value of δV are observed at H = 0. For values of the magnetic induction of
H ≃ 10−2 T, the degree of spin polarization of the electrons almost vanishes. The theo-
retical δV/I-dependence resembles a resonance curve shown in Figure 7.6. The effec-
tive resistance R of the detector circuit is plotted along the ordinate scale (potential
difference is δV = RI). The abscissa scale displays values of the magnetic field induc-
tion in units of 10−2 T. The curve shown in Figure 7.6 also allows us to estimate the
relaxation time of the transverse spin components T2. Indeed, if we assume that the
spin polarization in a normal metal is destroyed in magnetic fields satisfying the con-
dition (gμBH/ℏ)T2 ≃ 1, thenwe canget a numerical estimate ofT2 from this expression.
When measuring the relaxation time using paramagnetic resonance, the value of T2
is usually determined based on the half-width of the resonance line of absorption of
microwave radiation at the half-height. If we proceed from the same principle here,
estimating the line width in Figure 7.6 at half the height of ΔH ≃ 4 ⋅ 10−2 T, we get the
value T2 ≃ 3 ⋅ 10−9 c, which is consistent with the results found by other methods.

Figure 7.6: Detecting spin accumulation using the Hanle effect.

7.2.5 Coordinate-dependence of electrochemical potentials in an F/N structure

The process passing of electrons from a ferromagnetic metal to a non-magnetic metal,
which takes place in the study of the giant magnetoresistance in the CPP geometry,
can be described qualitatively in the framework of the two-band Mott model, that we
have discussed above. This model offers the conductivity of electrons in a ferromag-
neticmetal as the conductivity along two spin channels characterized by their electro-
chemical potentials. As spin-polarized carriers approach the interface (for short, we

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



344 | 7 Physical principles of spintronics

will refer to the F/N region of the structure near the ferromagneticmetal-nonmagnetic
metal boundary as to the “interface”), thedifferencebetween the spin-dependent elec-
trochemical potentials increases, leading to spin accumulation at the interface. The
passage of a spin-polarized current through the interface leads to the spin polariza-
tion (SP) of the initially unnonpolarized electron system in a nonmagnetic metal in
the vicinity of the interface. This SP is preserved at a distance of about the length of
the spin diffusion of electrons.

Consider the spin injection process in the ferromagnetic metal-non-magnetic
metal structure. For this purpose, we resort to basic equations for describing charge
and spin transport.

The ferromagnetic layer F possesses spin-dependent electrical conductivity σF↑ +
σF↓ = σF while the non-magnetic layer N has σN↑ = σN↓ = σN/2.

The starting point of the analysis is the equations (7.38) and (7.40), which allow
us to express the electrochemical potentials ζ ↑, ζ ↓ through the introduced constants
A, B, C, D. We solve this system of equations with respect to ζ ↑, ζ ↓ and redefine the
constants, assuming that the conductivity in spin channels does not depend on z:

ζ
i
γ = a

i + biz ± c
i

σiγ
exp{ z

lisf
} ±

di

σiγ
exp{− z

lisf
}. (7.53)

The behavior of the electrochemical potentials ζ ↑, ζ ↓ both the in ferromagnet F and
the normal metal N is of our interest. The upper index i marks the type of material,
acquiring the two values of F or N; the index γ takes two values of γ =↑ and γ =↓. The
coefficients ai, bi, ci, di in each of the regions are determined by the corresponding
boundary conditions. The plus andminus signs in the formula (7.53) should be chosen
for the quantity ζ ↑ and ζ ↓, respectively.

Let the origin of the coordinate system be located at the interface between two
media, and the z-axis points deep into the normal metal. The thickness of the ferro-
magnetic and normal metals is assumed to bemuch greater than the diffusion length.
Therefore, the F- and N-layers can be physically regarded as semi-infinite.

At the outer boundaries of the ferromagnetic and normalmetals, the electrochem-
ical potentials ζ ↑ and ζ ↓ coincide. Hence,

ζ
F↑ (z = −∞) = ζ F↓ (z = −∞);
ζ
N↑ (z =∞) = ζ N↓ (z =∞).

The foregoing conditions immediately enable one to calculate the values of the con-
stants dF = 0, cN = 0 and simplify expressions for the electrochemical potentials of
each of the regions (F, N)

ζ
F
γ (z) = a

F + bFz ± cF/σFγ e
z/lFsf , z ≤ 0; (7.54)
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ζ
N
γ (z) = a

N + bNz ± cN/σNγ e
−z/lNsf , z ≥ 0, (7.55)

where lFsf , l
N
sf are spin-diffusion lengths in each of layers. Furthermore, since aF and

aN define only the origin of the electrochemical potentials, one of these constants,
without loss generality, can be treated as equal to zero. We put that aF = 0

Taking into account the determination of the electric current density

eJ iγ = −σ
i
γ
𝜕ζ

i
γ

𝜕z
; γ =↑, ↓, (7.56)

let us find the currents JF↑ + JF↓ and JN↑ + JN↓ .
The law of conservation of charge (the current continuity condition) for any cross-

section of the F/N structure says that JF↑ + JF↓ = J, JN↑ + JN↓ = J, where J is the density of
the current supplied to the structure. These two conditions of constant current density
allow us to find of the bF and bN constants

bF = −eJ/(σF↑ + σF↓ ) = −eJ/σF ; (7.57)

bN = −eJ/(σN↑ + σN↓ ) = −eJ/σN .
Taking into account the continuity conditions for the electrochemical potentials

at the interface between two media in the plane z = 0

ζ
F
γ (z = 0) = ζ

N
γ (z = 0); γ =↑, ↓,

we get two equations

cF

σF↑ = cNσN↑ + aN ; − cFσF↓ = − cNσN↓ + aN .
Using the resulting set of equations, we express cF through the constant cN

cF = cN
σNσF↑σF↓
σFσN↑ σN↓ .

A further transformation of the expressions for cF and aN requires one to introduce
the quantity P to characterize the degree of spin polarization of the electric current in
the ferromagnet. Next, we exploit identities to be satisfied by P

P =
σF↑ − σF↓
σF↑ + σF↓ ; (1 − P) = 2σ

F↓
σF
; (1 − P)2 =

4σF↑σF↓
(σF)2
= 2(1 − P)

σF↑
σF
.

Recalling that σN↑ = σN↓ = σN/2, we arrive at ratios for the coefficients

aN = −2cNP/σN , cF = 2cNσF↑ (1 − P)/σN = cNσFσN
(1 − P2). (7.58)
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The last unknown coefficient cN is found from the condition of continuity of currents
at the boundary z = 0. In the case of negligible spin-flip scattering processes at the
interface region, the condition of equality of currents in the spin channels must be
fulfilled. Consider the channel γ =↑. For this channel, the current density continuity
condition

JF↑ (z = 0) = JN↑ (z = 0)
has the form

σF↑(− eJσF + cF

σF↑ lFsf ) = σN↑ (− eJσN − cN

σN↑ lNsf ). (7.59)

Now, in the equation (7.59), the terms proportional to the current density J can bewrit-
ten as

−eJ(
σF↑
σF
−
σN↑
σN
) = −eJ(

σF↑
σF
−
1
2
) = −eJP/2. (7.60)

To transform the remaining terms in the equation (7.59), let us substitute the value of
the coefficient cF found above into, and transform the terms proportional to cN :

−
cN

lNsf
[1 +

2σF↑ lNsf
σN lFsf
(1 − P)] = −c

N

lNsf
[1 + σ

F

σN
lNsf
lFsf
(1 − P)2]. (7.61)

In deriving (7.61), we have used the identity

1/(1 + P) = σF/(2σ ↑F).

Accounting for the results obtained, we find

cN =
eJlNsfP

2[1 + (lNsfσ
F/lFsfσ

N )(1 − P2)]
. (7.62)

Now, we enter the notation

Σ = [1 + σ
F

σN
lNsf
lFsf
(1 − P2)]

to shorten the formulas for the electrochemical potentials. After substituting the de-
duced constants into the equations (7.54) and (7.55), we have

ζ
F↑ (z) = − eJσF z + eJlNsfσN

P(1 − P)Σ−1ez/lFsf , z ≤ 0; (7.63)

ζ
F↓ (z) = − eJσF z − eJlNsfσN

P(1 + P)Σ−1ez/lFsf , z ≤ 0; (7.64)
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ζ
N↑ (z) = − eJσN z − eJlNsfσN

Σ−1P(P − e−z/lNsf ), z ≥ 0; (7.65)

ζ
N↓ (z) = − eJσN z − eJlNsfσN

Σ−1P(P + e−z/lNsf ), z ≥ 0. (7.66)

The equations (7.63)–(7.66) are responsible for the behavior of the electrochemical po-
tentials as a function of the z-coordinate at various values of the parameters J, σF , σN ,
lFsf , l

N
sf .
Let us focus only on the simplest case when σF = σN = σ, lFsf = l

N
sf = L. Figure 7.7

shows the ζ↑, ζ↓-dependence of the electrochemical potentials ζ↑, ζ↓,measured inunits
of Z = eJL/σ at a value of P = 0.6.

Figure 7.7: Electrochemical potentials ζ↑, ζ↓ in a ferromagnetic metal/ non-magnetic metal-
structure: P = 0.6; V = eRi J is the jump of the average electrochemical potential at the interface;
arrows indicate the directions of spins in channels.

Far away from the interface, the electrochemical potentials for both spin orientations
coincide. Nearby the interface, the electrochemical potentials split to imbalance the
spin current (spin accumulation) at the interface. The spin accumulation differs from
zero on either side of the interface at a distance of the order of spin diffusion length. It
should be underscored that despite the continuity of ζ ↑, ζ ↓ at the interface, the aver-
aged values of the electrochemical potentials undergo a jump in the plane z = 0. We
first address the F-region and define the average electrochemical potential ζ

F
0 by the

relation

−
σF

e
dζ

F
0

dz
= J.
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On the other hand, the definition (7.56) leads to an expression for the current in
the F-region:

J = −
σF↑
e
dζ

F↑
dz
−
σF↓
e
dζ

F↓
dz
.

Setting the electrical currents equal in the last two expressions and performing
integration, we can write down

ζ
F
0 =

σF↑
σF

ζ
F↑ + σF↓σF ζ F↓ . (7.67)

The integration constant equal to zero is determined from the boundary condi-
tions at z = −∞ (conductivities and electrochemical potentials in the spin channels
are the sameat z = −∞). To compresswriting,we introduce the coefficientα = σF↑ /σF =
(P + 1)/2, 1 − α = σF↓ /σF . Then

ζ
F
0 = αζ

F↑ + (1 − α)ζ F↓ . (7.68)

Similarly, we calculate the averaged electrochemical potential in the region N . Since
α = 1/2 in this region, the averaged electrochemical potential ζ

N
0 is just the half-sum

of ζ
N↑ and ζ N↓ :

ζ
N
0 =

1
2
(ζ

N↑ + ζ N↓ ). (7.69)

The values of the electrochemical potentials ζ
F
0 and ζ

N
0 calculated by the formulas

(7.68) and (7.69) are designated by a dotted line in the figure. It is well seen that the
averaged values of the electrochemical potential experience a jump at the interface,
δζ 0 = ζ

F
0(0) − ζ

N
0 (0).

The emergence of the electrochemical potential jump at the interface can be in-
terpreted as a jump in potential caused by additional interface resistance

RiJ =
1
e
(ζ

F
0(0) − ζ

N
0 (0)). (7.70)

After having performed fairly simple calculations, we deduce an expression for the
interface resistance

Ri =
2P2lNsf

σN [1 + σF
σN

lNsf
lFsf
(1 − P2)]

. (7.71)

Let us evaluate the spin polarization of the current passing through the F/N inter-
face. It can be represented as the difference between the current densities in the spin
channels, divided by the total current:

β = [J↑(0) − J↓(0)]/J.
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Using the formulas (7.56), (7.63), (7.64), and the above definition of β, we get

β = P

1 + (1 − P2)(σF lNsf )/(σ
N lFsf )
. (7.72)

One of the important tasks of spintronics is the creation of devices that allow per-
forming the injection of spin-polarized electrons. The analysis of the current flow in
the F/N structure and the resulting expressions (7.71), (7.72) allowus to consciously ap-
proach the problemof selectingmaterials that allowus to obtain anoticeable polariza-
tion of the injected electrons. As follows from the above formulas (7.71), (7.72), the spin
polarization quantity and the resistanceRi have the sameparameters:P, σF lNsf /(σ

N lFsf ).
In the vast majority of cases, the spin diffusion length in a ferromagnet is much less
than in a non-magnetic material: lFsf ≪ lNsf . The smallness of lFsf , in essence, is a factor
that limits the possibility of generating a large degree of polarization. The problem
becomes especially significant when it comes to the injection of a spin-polarized cur-
rent from a ferromagnet into a semiconductor. This is because in this case σN ≪ σF

and it makes itself dramatically felt in the degree of spin polarization of the injected
electrons. This issue is known as the conductivitymismatch problem. For providing the
largest value of the P parameter, the selection of a ferromagnet also plays an impor-
tant role. For this purpose, a ferromagnet with the largest conductivity difference in
spin channels should be chosen.

7.3 The spin Hall effect

7.3.1 Phenomenological consideration

In the first, fourth, and fifth chapters of this book, we have already discussed the stan-
dard or ordinary Hall effect for cases of classical (4.132) and quantizing (5.138) mag-
netic fields. The reason for the effect is that the Lorentz force depends on the value
of the electron velocity, but the Coulomb force, that arises due to the redistribution
of electrons, does not depend. Therefore, faster and slower electrons are deflected in
opposite directions. This interpretation of the phenomenon is confirmed in conditions
of adiabatic isolation of the sample, when not only the Hall voltage but also the trans-
verse temperature gradient arises (transverse Ettinghausen effect).

As to ferromagnetic conductors, a completely different picture is observed. Here,
the magnitude of the Hall effect is significantly greater, strongly depends on the tem-
perature, and the dependence on the external magnetic field is nonlinear. The Hall
effect in ferromagnets has been called spontaneous or called the anomalous Hall ef-
fect (AHE) because it also exists with no external magnetic field present. It had taken
70 years before the anomalous Hall effect was for the first time explained after its dis-
covery. For this purpose, the idea of asymmetric electron–impurity scatteringwas pro-
posed to make an allowance for spin–orbit interaction.
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In 1971 Dyakonov and Perel predicted that, with no external magnetic field, an
electric current in a semiconductor can induce a spin orientation in a thin layer near
the samples lateral surface due to the spin–orbit effectswhen electron scattering takes
place. However, a weak magnetic field applied parallel to the electrical current de-
stroys this orientation. Moreover, they phenomenologically established a relationship
between the electric and spin current, which is due to the spin–orbit interaction. The
electric current generates a spin current, while the inhomogeneity of the spin density
gives rise to an electrical current. The term “spinHall effect”was introduced byHirsch
in his paper published in 1999.

As a small digression, it should be noted that the Hall effect turned out to be
very capacious in content. Over the past 20-odd years, the Nobel Prize in Physics has
been awarded twice for investigation of the quantum Hall effect in two-dimensional
structures. In the first time, in 1985, Klaus von Klitzing received his Nobel Prize for
the discovery of the quantum Hall effect. In the second time, in 1998, the Nobel
Prize in physics was divided; one half went to Laughlin for his interpretation of the
fractional quantum Hall effect, and the other half was shared between Stormer and
Chee Tsui for the discovery and fundamental work on the fractional quantum Hall
effect.

Let us compose phenomenological equations for the electron flux density ⃗J0n and
spin flux density ⃗J0s without taking spin–orbit interactions into account:

⃗J0n = −μnE⃗ − D�⃗�n; (7.73)

J0s ij = −μEiSj − D
dSj
dxi
. (7.74)

In this formula, μ = eτp/m is the electron mobility, D is the diffusion coefficient, and
S⃗ is the spin vector density

Si =∑
k⃗

Sp{σ̂iρ( ⃗r, p⃗, t)};

J0s ij =∑
k⃗

Sp{pi
m
σ̂jρ( ⃗r, p⃗, t)},

where σ̂i are Pauli matrices, ρ( ⃗r, p⃗, t) is a statistical operator.
Let us look at how the relations (7.73), (7.74) changewhen accounting for the spin–

orbit interaction. A proper description of the relationship between the particle flux
density and the spin flux density requires bearing in mind that the flux of the number
of electrons is a vector, the spin density vector is a pseudo-vector, and the spin flux
density is a second-rank pseudo-tensor. If, due to the spin–orbit interaction, there
are mechanisms connecting the electron flux density vector and the spin flux density
vector, then in crystals that have symmetrywith respect to the inversion operation, the
spin flux density tensor should enter the equation (7.73) in the combination γϵijkJ0s jk,
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and the electron flux density vector into the equation (7.74) in the form γϵijkJ0nk:

Jni = −μnEi − D
dn
dxi
+ γϵijkJ

0
s jk ; (7.75)

Js ij = −μEiSj − D
dSj
dxi
− γϵijkJ

0
nk . (7.76)

Here γ is a constant proportional to the value of spin–orbit interaction (dimensions of
densities of the electron flux and spin flux coincide upon the definitions chosen), ϵijk
is the unit third-rank antisymmetric tensor (the Levi-Civita tensor), i, j, k are tensor
indices running through the values of x, y, z.

Substituting the definition of the spin-electron fluxdensity (7.74) into the equation
(7.75), we get

⃗J/e = μnE⃗ + D�⃗�n + γμ[E⃗ × S⃗] + γD[�⃗� × S⃗]. (7.77)

In this expression, we have passed from the particle flux density to the density of
the electric current ⃗J = −e ⃗Jn.

Analogously, we modify the equation (7.76) using the definition of the particle
number flux (7.73):

Jsij = −μEiSj − D
dSj
dxi
+ ϵijk(γμnEk + γD

dn
dxk
). (7.78)

The equations for the flux density should be supplemented by the continuity
equations of the form (1.7) arising from the laws of conservation of the particle num-
ber density and spin density:

dn( ⃗r, t)
dt
+ div ⃗Jn = 0; (7.79)

dSi( ⃗r, t)
dt
=
Jsij
dxj
+ [Ω⃗ × S⃗]i +

Si
τs
= 0, (7.80)

where Ω⃗ = gμBH⃗/ℏ is the vector numerically equal to the frequency of spin precession
in a magnetic field H and coincides in direction with the direction of the magnetic
field, τs is the relaxation time of the spin components.

Thus, accounting for the spin–orbit interaction evidences the relationship be-
tween the electric and spin currents through the equations (7.77) and (7.78). The first
two terms in the equation (7.77) describe the current caused by the electric field and
concentration gradient. The third term γμ[E⃗ × S⃗] controls the electric current in the
direction perpendicular to the electric field andmagnetization of the sample. In other
words, it is responsible for the occurrence of the anomalous Hall effect. The last term
γD[�⃗� × S⃗] delineates the appearance of the electric current due to the spin density
gradient. This stands for an inhomogeneous spin density as a result of spin accumu-
lation, which may provoke an electric current or potential difference in the direction
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perpendicular to the spin density gradient. Consequently, the fourth term in the ex-
pression for the current density (7.77) describes the inverse spin Hall effect discovered
experimentally in 2004.

In the expression (7.78), the first two terms indicate the generation of spin current
due to the applied electric field and spin density gradient, if the spin polarization ex-
ists. The last term proportional to a spin–orbit coupling constant describes the direct
spin Hall effect. Otherwise speaking, a spin flow arises in the direction perpendicu-
lar to the electric field strength or the concentration gradient even in the case when
there is no initial spin polarization of electrons and no external magnetic field. Exper-
imentally, this phenomenon was recorded by optical methods in 2004. In 2005, the
phenomenon of spin accumulation produced by an electric current in semiconductor
samples was investigated with direct electrical measurements.

Since in the formula (7.78) the round brackets of the last term include not only a
contribution proportional to the electric field but also a term proportional to the con-
centration gradient, the spin accumulation in the transverse direction can be induced
by an applied temperature gradient (spin analog to the Nernst–Ettinshausen effect).

In concluding the section concerningphenomenological transport equationswith
spin variables, brief mention should be made of experimental findings of the magni-
tude of the spin Hall effect. The magnitude of the normal Hall effect is usually charac-
terized by the angle Hall θ that is given by the relation

tg θH =
Ey
Ex
=
σH
σ⊥ ; θH ≃

σH
σ⊥ , (7.81)

where Ey is the amplitude Hall electric field, and Ex the amplitude applied electric
field: σH ≡ σxy, σ⊥ ≡ σxx is defined equations (4.118) and (4.123). For a degenerate
electron gas, it follows from these formulas that θH ≃ ω0τp⃗ ≪ 1.

For the spinHall effect,we canalsodefine theHall angle θSH as the ratio of the spin
flux density to the electron flux density conditional upon no initial spin polarization
and concentration gradient. Combining formulas (7.77) and (7.78) leads to θSH ∼ γ.
Thus, the magnitude of the spin Hall effect is directly proportional to the spin–orbit
coupling constant.

Numerical values of θSH for various metals and alloys can be found in the paper
[51]. The magnitudes of the Hall angle for the spin Hall effect are fairly wide ranged
usually not exceeding fractions of a percent. A maximum value of θSH , as known by
now [51], amounts to ≃ 0, 1 and meets gold samples. However, most likely, it is not a
limit value.

7.3.2 Spin–orbit interaction mechanisms

The transverse spin current, which occurs as a response of the system to an applied
external electric field, is possible only in the presence of spin–orbit interaction (SOI),
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and therefore, to understand the nature of the spin Hall effect, it is necessary to con-
sider the main types of corrections to the electron energy caused by SOI.

The structure of the SOI Hamiltonian for crystals with different symmetries, two-
dimensional materials, and heterostructures can be obtained up to constant numer-
ical coefficients based on symmetry considerations. The electron Hamiltonian is in-
variant both under the time-reversal operation (t → −t; p⃗ → −p⃗; ⃗s → − ⃗s, where ⃗s is
the spin operator of an electron) and under symmetry operations of the point group
of a crystal. For example, if the symmetry group of a crystal includes the inversion
⃗r → − ⃗r; p⃗ → −p⃗; ⃗s → ⃗s, the Hamiltonian must remain unchanged for such a transfor-
mation.

The Elliott–Yafet SOI Hamiltonian
In the simplest case, the operator of spin–orbit interactionmust involve three vectors,
namely, a vector of the gradient of a potential force field �⃗�V (V includes the potential
of the crystal field, the potential of scattering centers, and the potential of an external
field), an operator of momentum p⃗ and a spin vector σ⃗ with the Pauli matrices σx, σy,
σz as Cartesian components. In crystals with a symmetry center, the simplest combi-
nation of these three vectors is the scalar quantity

HSO = λ[�⃗�V × p⃗]σ⃗. (7.82)

This quantity remains unchanged under both the time-reversal operation and the in-
version operation.

Now we derive an expression for the constant λ proceeding from semi-classical
considerations. Let the charged center with the potentialV be placed at the beginning
of a fixed coordinate system and an electron move in it with velocity v⃗. This center
creates an electric field at a point with a radius-vector ⃗r:

E⃗ = −
⃗r
r
dV
dr
.

In the coordinate system associated with a moving electron, the observer will see a
charged center moving at a speed of −v⃗, that will create both electric and magnetic
fields with a strength of E⃗, H⃗. To find these fields, you need to use the Lorentz trans-
formations for the components of the electromagnetic field.

In the Gaussian unit system, the field components appear as follows:

Ex = Ex ; Ey = Ey − v/cHz

√1 − v2/c2
; Ez = Ez + v/cHy

√1 − v2/c2
; (7.83)

Hx = Hx ; Hy = Hy + v/cEz
√1 − v2/c2

; Hz = Hz − v/cEy
√1 − v2/c2

. (7.84)
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The dashes mark the field components in the moving coordinate system. Neglecting
the terms of expansion of the radical expression in the denominator, of the order of
v2/c2, brings to the following simple form of the magnetic field acting on the moving
electron:

H⃗ = − 1
c
[v⃗ × E⃗] = − 1

mc
[p⃗ × E⃗]. (7.85)

It is the Zeeman correction to the electron energy in the field H⃗ that is the contribution
of the spin–orbit interaction to the electron energy,

HSO = −gμB ⃗sH⃗ = eℏ
2m2c2
[�⃗�V × p⃗]σ⃗. (7.86)

Here ⃗s is the electron spin operator measured in units of ℏ, σ⃗, are the Pauli matrices,

σx = (
0 1
1 0
) , σy = (

0 −i
i 0
) , σz = (

1 0
0 −1
) .

Deduced in thequasi-classical approximation, the formula (7.86), for the contribu-
tion of spin–orbit interaction gives only a double over-estimated value. A strict quan-
tum mechanical approach yields the result that is twice as small:

HEY
SO =

eℏ
4m2c2
[�⃗�V × p⃗]σ⃗. (7.87)

However, the quasi-classical consideration makes it possible to better compre-
hend the nature of this interaction. It is worthwhile to stress that spin–orbit interac-
tion also occurs in aperfect impurity-free crystal latticewithno external fields present.
Impurities andexternal fields just result in additional contributions to this interaction,
which can be regarded as extra terms for the potential V . In the literature, the expres-
sion (7.87) is known as the Elliott–Yafet Hamiltonian. Elliott and Yafet were first to use
it back in 1954 to calculate the spin-lattice relaxation time upon scattering of electrons
by phonons and impurity centers.

The Dresselhaus SOI Hamiltonian
To write down other possible forms of the spin–orbit interaction Hamiltonian, we
again use the symmetry approach. In doing so, we expand the electron Hamiltonian
H(p⃗, σ⃗) in a power series, limiting ourselves to the first-order terms in spin components
σi and the third-order terms of the components in a momentum pi (the even powers
of the momentum operator cannot enter this expansion due to the invariance of the
Hamiltonian under the time-reversal operation):

H(p⃗, σ⃗) = p2

2m
+ βijσipj + Γijklσipjpkpl, (7.88)

where βij, Γijkl are some constants.
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Next, we can significantly simplify the form of the Hamiltonian (7.88) by introduc-
ing a pseudo-vector Ω⃗ composed of the components of the vector p⃗ and having the
dimension of an angular frequency vector,

H(p⃗, σ⃗) = p2

2m
+
ℏ
2
σ⃗Ω⃗; (7.89)

Ω⃗ = 2
ℏ
(βijσipj + Γijklσipjpkpl), (7.90)

while the spin–orbit interaction operator can be now written in the form

HSO =
ℏ
2
σ⃗Ω⃗(p⃗). (7.91)

In cubic crystals with a center of inversion Ω⃗ = 0. A3B5 semiconductors with the point
symmetry group Td (a symmetry group of a regular tetrahedron) have no inversion
center. However, under symmetry transformations of the group Td, the terms linear in
momentum are not invariants and, therefore, in these materials βij = 0. The terms cu-
bic in the momentum components, appearing in the formula (7.90), can constitute an
invariant construction known as the Dresselhaus spin–orbit interaction Hamiltonian.

HD
SO = Γ[σxpx(p

2
y − p

2
z) + σypy(p

2
z − p

2
x) + σzpz(p

2
x − p

2
y)]. (7.92)

The Dyakonov–Perel SOI Hamiltonian
TheHamiltonian of a quantummechanical system is invariant under the time-reversal
operation, which leads to degeneration of levels of the electron energy εp⃗↑ = ε−p⃗↓ (the
Kramers degeneracy). Crystals with no inversion center must be satisfied by the con-
dition εp⃗ ̸= ε−p⃗. Hence, it follows that εp⃗↑ ̸= εp⃗↓. In other words, the electron energy
levels are split in spin due to the spin–orbit interaction by the value of Δ = εp⃗↓ − εp⃗↑.
This splitting can be associated with a magnetic field H⃗(p⃗), the amplitude of which is
momentum-dependent. Similarly to a usual magnetic field, H⃗(p⃗) causes the preces-
sion of electrons with an angular frequency Ω⃗(p⃗) = δH⃗(p⃗), where δ is some constant.
Given the above, the Dyakonov–Perel Hamiltonian can be written as an expression
that coincides in form with (7.91):

HDP
SO =
ℏ
2
σ⃗Ω⃗(p⃗). (7.93)

As for A3B5 semiconductors, the Cartesian components of the cyclic frequency Ω⃗(p⃗),
as the calculation shows, have the form

Ωx = αpx(p
2
y − p

2
z); Ωy = αpy(p

2
z − p

2
x); Ωz = αpz(p

2
x − p

2
y), (7.94)

where α is some constant. In this case, the SOI Hamiltonians (7.92) and (7.93) coincide
in structure.
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The Rashba SOI Hamiltonian
If the inhomogeneity of the potential energy is due to sharp changes in the parame-
ters of the sample near its boundaries, for example, a heterojunction in a semicon-
ductor structure, then such an asymmetry is called structural and is denoted by SIA
(Structure Inversion Symmetry). In this case, the SOI is dominated by the contribution
described by the Rashba Hamiltonian.

Consider a two-dimensional crystal structure. Let its plane coincide with the co-
ordinate plane xy. Then it is obvious that there is a potential gradient along the z-axis
and the spin–orbit interaction operator (7.87) can be represented in the form

HR
SO =

eℏ
4m2c2
[σ⃗ × p⃗]z

dV
dz
= α1(σxpy − σypx), (7.95)

where α1 is some constant. The expression (7.95) is nothing but the Rashba spin–orbit
interaction Hamiltonian (1960).

All of the above Hamiltonians have been constructed based on symmetry consid-
erations. Naturally, they can be derived by applying microscopic mechanisms of ac-
counting for spin–orbit interaction within the quantum theory of a solid body. Such
a calculation enables one to express the constants in the Hamiltonians (7.87), (7.92)
(7.94) and (7.95) through parameters of the band structure of materials. However, since
the band structure parameters are either experimentally found or are computed with
large errors, numerical values of the SOI constants in these Hamiltonians are simpler
determined from experiments by measuring, for example, the spin-magnetization re-
laxation time.

Andnow tofinish the section, it shouldbe said that it is very difficult to distinguish
experimentally the contribution of any SOI mechanism from the spin Hall effect. Most
often, apparently, a cumulative effect of several mechanisms makes itself felt in the
experiment.

7.3.3 The microscopic nature of spin transport

Let us discuss the microscopic nature of the appearance of terms that connect a flow
of charged particles and spin flux in the equations (7.77) and (7.78). Early research un-
dertaken to explain the anomalous and spin Hall effects have been carried out under
the assumption that both of these phenomena are associated with the asymmetry of
electron scattering by impurity centers. As a result, after colliding, the direction of the
electron momentum becomes dependent on the electron spin state. In the literature,
the Hall effect caused by the mechanisms of asymmetric scattering is called the exter-
nal anomalous (spin) Hall effect. Later it was found out that there is another, more
interesting, mechanism of occurrence of the discussed effects, which is not related to
the presence of impurity centers, which is called the intrinsic anomalous (spin) Hall
effect.
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Quasi-classical dynamics of Bloch electrons under perturbation caused by an
electric field is one of the oldest problems in physics solid. Most modern textbooks
provide dynamics equations

̇p⃗ = −dε
d ⃗r
+
e
c
[ ̇⃗r × H⃗];

̇⃗r = dε
dp⃗
, (7.96)

that have not been in doubt until recently. Back in 1954, Karplus and Luttinger were
the first to succeed in interpreting the internal anomalous Hall effect by making an
allowance for the expression for the velocity of Bloch electrons (7.96). This correction,
later called “anomalous velocity,” turned out to be perpendicular to the applied elec-
tric field and allowed them to explain the intrinsic anomalous Hall effect.

Further studies have shown that the anomalous velocity phenomenon but exactly
a change in the semi-classical dynamic laws of Bloch electrons is a very widespread
one and happens in systems with broken symmetry relative to either a time-reversal
operation or an inversion operation, for example, as a result of switching on an exter-
nal electric field. In this case, the semi-classical equations ofmotion of Bloch electrons
are significantly modified:

̇p⃗ = −dε
d ⃗r
+
e
c
[ ̇⃗r × H⃗]; (7.97)

̇⃗r = dε
dp⃗
+
1
ℏ
[ ̇p⃗ × Ω⃗], (7.98)

where the quantity Ω⃗ is called the Berry curvature. Let a sample be exposed to an
external electric field E⃗ with no magnetic field H⃗ present and the system examined
be an electron in a periodic potential field upon spin–orbit interaction. Then formula
(7.98) implies the expression [54] for the electron velocity v⃗:

v⃗ = dε
dp⃗
+
e
ℏ
[E⃗ × Ω⃗(σ, k⃗)], (7.99)

where k⃗ is the wave vector of the electron, σ is a spin index, e is the electron charge
modulus.

If it is possible to calculate the value Ω⃗(σ, k⃗) for a givenmodel system, then the ex-
pression (7.99) almost immediately allows us to explain the integer quantum, anoma-
lous, and spin Hall effects. The above expression (7.99) for the velocity of Bloch elec-
trons is only a partial, though important, result of the application of the Berry phase
concept in modern physics.

The discovery of the role of the Berry phase in the analysis of the evolution of
quantum mechanical systems was not related specifically to Bloch electrons, but
rather to the general idea that the quantum adiabatic transfer of particles in slowly
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varying fields (electric, magnetic, or deformation) can, in principle, change the wave
function. The Berry phase, and more generally the problem of adiabatic transport,
plays a crucial role in Bloch translation-invariant systems where the parameters
(Bloch pulses) change in closed manifolds (zones or Fermi surfaces) by applying
electric or magnetic fields.

It should be underscored that themain content of this section is devoted to a brief
acquaintance of the readerwith themethodologyof operating theBerry phase concept
in exploring the dynamics of Bloch electrons under adiabatic perturbations. However,
we first qualitatively focus on the nature of the arising the intrinsic spin Hall effect in
systems with the Rashba SOI Hamiltonian. In doing so, we will utilize the standard
semi-classical approach.

7.3.4 A qualitative explanation of the intrinsic spin Hall effect for systems with the
Rashba Hamiltonian

Consider a system that is a two-dimensional electron gas. Let the spin–orbit interac-
tion in this system be given by the Rashba Hamiltonian (7.95)

H2D =
ℏ2k̂2

2m
+ α(σx k̂y − σyk̂x), (7.100)

where k̂i = −id/dxi; i = x, y; α is the Rashba spin–orbit interaction constant, σi are the
matrices Pauli.

Now, we find the eigenvalues of this Hamiltonian. The Hamiltonian (7.100) con-
taining the Pauli matrices, the solution of the stationary problem H2Dψ = Eψ needs
to be sought in the form of two-component spinors. The coordinate part of the wave
function should be determined in terms of plane waves. As a result, we find that the
trial solution must look like

ψ(k⃗) = eik⃗ ⃗r  c1c2  , (7.101)

where c1, c2 are some constants, k⃗i = kx , ky; ⃗ri = x, y.
Substituting the trial solution (7.101) into the stationary Schrödinger equation, we

obtain a set of two linear homogeneous equations for the coefficients c1, c2,

(
ℏ2k2

2m
− E)c1 + zc2 = 0;

z∗c1 + (ℏ2k22m
− E)c2 = 0, (7.102)

where z = α(ky + ikx), z∗ = α(ky − ikx).
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The set of equations (7.102) has a nontrivial solution if the determinant of this set
is zero. Setting equal the determinant to zero, we arrive at the dispersion relation

E(λ, k) = ℏk
2

2m
+ λαk; λ = ±1. (7.103)

A plot of electron energy (7.103) as a function of the wave vector kx at a given value
of ky is shown in Figure 7.8 (we find the eigenfunctions of the equation (7.100) later in
calculating the Berry curvature). Let us pinpoint some features of the resulting spec-
trum of the current carriers. To start with, we hold fixed themodulus value of thewave
vector and compute the energy difference

Δ = E(+, k) − E(−, k) = 2αk.

Then we can claim that the spectrum of current carriers exhibits a slit (except for the
k = 0 point). This slit can be treated as spin splitting in a magnetic field induced by
SOI

H⃗ = ℏ
mc
[k⃗ × �⃗�V]; �⃗�V ||z. (7.104)

The last formula also implies another, no less important result, which is that the vec-
tor H⃗, like the vector k⃗, lies in the plane of a two-dimensional layer, and H⃗ always
remains perpendicular to the wave vector k⃗, if the change in the states of the electron
occurs slowly enough.

Figure 7.8: Splitting of the free-electron spectrum by the Rashba spin–orbit interaction: the signs (+)
and (−) stand for bands with λ = 1 and λ = −1, respectively; the dotted line indicates the Fermi level
of one of the subbands.
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Since the electron’s spin is aligned either along the field H⃗, or against this field, a very
important conclusion follows: when an electron moves, its spin is always perpendic-
ular to the vector k⃗.

Thus, there is a stable relationship between the direction of the electron spin and
its wave vector. The electrons from the subbands E(λ = +1, k⃗) and E(λ = −1, k⃗) that
have the same wave vector will have the opposite spin orientation. We can say that
as a result of the SOI, the electron acquired a new property, that is called chirality
(a chiral object is an object that does not coincide with its representation in a flat mir-
ror).

Let us now look at the behavior of electrons in a two-dimensional surface Fermi
of one of the spin subbands exposed to an external electric the field directed along the
x [52].

Figure 7.9(a) schematically depicts electrons in the Fermi surface of one of the spin
subbands. The spin directions are shown by arrows. When an external electric field is
turned on along the direction of the x-axis, an additional force ṗx = −eEx will act on
the electrons, that causes a change in the wave vector kx. During the time t < T2, the
component of the wave vector kx in the positive direction of the axis kx will decreases,
and, for the negative direction of this axis, it will increases by the value |eEt/ℏ|.

Figure 7.9: A model to explain the appearance of spin current along the y-axis under an external
electric field applied along the x-axis: (a) with no external field present and the mean value of the
spin z-component is zero in virtue of the problem symmetry at spin precession in the field H⃗; (b) an
external field along the x-axis breaks the previously existing symmetry and electrons with ky > 0
and ky < 0 have different mean values of the spin z-component.
For this reason, the values of the y-components of the field H⃗ (see the formula H⃗
(7.104)) for ky > 0 and ky < 0 are different, that leads to a nonzero mean z-component
of the electron’s spin. This situation is presented in Figure 7.9(b). Obviously, the contri-
bution of another spin subband turns out to be opposite. Nevertheless, compensation
for spin polarization will be not complete, if there are, for example, differences in the
degree of subband population.
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Summarizing a subtotal, it can be said that the spin Hall effect arises due to the
time-dependent effective magnetic field H⃗ acting on the spin as it moves in momen-
tum space.

Problem 7.3. Using a quantummechanical approach, find themean value of the spin
z-component in a system with the Hamiltonian

ĤS =
1
2
gμBσ⃗H⃗ ,

if the magnetic field is applied along the x-axis.

Solution. The magnetic field points along the x-axis, and we will keep track of the
spin z-component. By |↑⟩ and |↓⟩ denote a basis for eigenfunctions of a matrix σz .

We write down the Zeeman Hamiltonian ĤS in the matrix representation,

ĤS =
ℏΩ
2



0 1
1 0


, Ω = gμBH

ℏ
, H||x.

The Hamiltonian’s eigenfunctions that meet the eigenvalues Ex1 = ℏΩ/2 and Ex2 =
−ℏΩ/2 are the functions

|x1⟩ = 1
√2
(|↓⟩ + |↑⟩);

|x2⟩ = 1
√2
(|↓⟩ − |↑⟩).

The set of the eigenfunctions |x1⟩, |x2⟩ can be used as a basis for solving the non-
stationary Schrödinger problem

iℏdψ(t)
dt
= ĤSψ(t).

Its general solution can be written as a superposition of particular solutions

ψ(t) = c1e
iΩt/2|x1⟩ + c2e−iΩt/2|x2⟩; |c1|2 + |c2|2 = 1.

Aquantum-mechanicalmean value of the z-component of the spin operator is defined
by the expression

Sz(t) =
ℏ
2
⟨ψ(t)|σz |ψ(t)⟩.

Plugging the values found above for the eigenfunctions |x1⟩ and |x2⟩ in matrix form
into this expression and performing rather simple but cumbersome matrix calcula-
tions lead to the well-known outcome

Sz(t) = Sz(0) cos(Ωt + φ),
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where φ is the phase, which is determined by the initial value of spin projection onto
the z-axis.

Thus, we obtained a well-known result: if the magnetic field is applied along the
x-axis, then the spin moment will precess around this axis and the z-component of
the spin will change cyclically over time.

Consider now another approach based on the application of the Bloch equations.
For the Rashba spin–orbit interaction Hamiltonian, the appearance of the spin Hall
effect canbe obtainedby studying the dynamics of spinmagnetizationusing theBloch
equations (5.97), in which the relaxation terms can be ignored.

Following the paper [52], we assume that the Rashba spin–orbit interaction
Hamiltonian (7.100) can be regarded as the Zeeman spin energy in an induced mag-
netic field H⃗ depending on the electron momentum,

HR
SO = −

α
ℏ
σ⃗[n⃗z × p⃗] = −

1
ℏ
S⃗Δ⃗; S⃗ = ℏ

2
σ⃗; Δ⃗ = 2α

ℏ
[n⃗z × p⃗], (7.105)

where n⃗z is the unit vector along the z-axis. Since the vector Δ⃗ introduced by the rela-
tion (7.105) plays the role of the dynamic magnetic field to be followed by the electron
spin vector, we write down the Bloch equations

dℏS⃗(t)
dt
= [S⃗(t) × Δ⃗]

for the spin components. Indeed, this equation describes an extremely complex dy-
namics. As a result of the regular dynamics, the components of the vector k⃗ rotate in
the xy-plane. Consequently, the vector Δ⃗ rotates aswell. However, this dynamic is of no
interest since it does not lead to the appearance of spin transport. Therefore, further
consideration requires restricting oneself to only the irregular dynamics of the vector
Δ⃗ due to the applied external field:

Δ̇x = −
2α
ℏ
ṗy = 0; Δ̇y =

2α
ℏ
ṗx = −

2eα
ℏ

Ex . (7.106)

For simplifying the representation, we replace the vector S⃗ by the spin vector ⃗s mea-
sured in units of ℏ/2 and, for definiteness, take the initial value sx(0) = 1.

Let us trace the dynamics of the spin components upon applying the electric field.
For the y- and x-components, we have

ℏdsy
dt
= szΔx ; (7.107)

ℏdsz
dt
= Δy − syΔx . (7.108)

Next, we differentiate (7.108) over time and substitute the equation (7.107) in the result-
ing expression. As a result, the second-order inhomogeneous equation can be written
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relative to the quantity sz as

d2sz
dt2
+ sz

Δ2x
ℏ2
=
Δ̇y
ℏ
. (7.109)

The general solution to this equation is a term that oscillates with the frequency Δx/ℏ
and is independent on the applied electric field and a term proportional to Ex:

sz =
ℏΔ̇y
Δ2x
. (7.110)

The spin Hall effect follows from the equation (7.110). When a Bloch electron moves
in the momentum space, its spin orientation changes to follow the momentum-
dependent effective field; in addition, it acquires the momentum-dependent static
z-component of spin magnetization. The expression (7.110) allows us to write the
component of the spin current Js zy in the direction of the y-axis caused by the electric
field Ex.

Js zy = ∫
d2p⃗
(2πℏ)2

f0(p⃗)
ℏszpy
2m
. (7.111)

Since the quantity sz ∼ Δ̇y ∼ Ex, the formula (7.111) can really explain the origin of the
intrinsic spin Hall effect caused by the Rashba spin–orbit interaction [52]. The inte-
gration is here performed over the Fermi surface of a two-dimensional system.

Nature of the external spin Hall effect
In addition to the mechanism of generation of the spin Hall effect considered above,
that is associated with the splitting of the spectrum of current carriers by the spin–
orbit interaction, an external spin Hall effect is also possible, as noted earlier, due to
the manifestation of the spin–orbit interaction when scattering on charged impurity
centers in conductors.

The mechanism of the occurrence of the spin Hall effect was proposed by Dyako-
nov and Perel in 1971 and rediscovered by Hirsch in 1999.

Earlier, back in 1929, Mott discovered the dependence on the spin polarization of
the scattering cross-section of free relativistic electrons on heavy atoms. This effect
is still used in high-energy physics to measure the degree of polarization of electron
beams (Mott detectors) and is known as theMott skew scattering mechanism.

The origin of the spin-polarization dependence of the electron scattering angle by
charged impurity can be understood from Figure 7.10 [53].

Let us examine a two-dimensional conductivemediumhaving negatively charged
centers, one of which is depicted in the figure. When an electron moves in the field of
the impurity center in the reference frame associated with the electron, along with
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Figure 7.10: Scheme of electron scattering by a negatively charged center: electron’s spin interacts
with the magnetic field H⃗ ∼ [ ⃗E × ⃗v] perpendicular to the trajectory plane of the electron. The mag-
netic field has the opposite directions for electrons bouncing apart left and right.

the electric field, a magnetic field H⃗ (7.85) arises. The latter’s direction depends on at
which side of the center the electron’s trajectory is located. From the formula (7.85), it
follows that the vector H⃗ is perpendicular to the plane of the conductor. Themagnetic
field arisen determines a number of interrelated phenomena.

Firstly, as has been repeatedly discussed, the Zeeman spin energy of an electron in
a dynamically changing field H⃗ represents the contribution of the spin–orbit interac-
tion to the electron energy, and this contribution depends on the spin orientation. The
resulting magnetic field being inhomogeneous (due to the dependence of the electric
field E⃗ on both the electron-center distance and varying electron velocity v⃗), a force
acting on an electron’s spinmagnetic moment in this field depends on the orientation
of the electronmagnetic moment. This fact ultimately explains the dependence of the
angle of the electron scattering by the charged impurity center on the electron spin
orientation.

If a flow of electrons hitting the impurity center is polarized due to an intrinsic
magnetic field of a ferromagnet and the electron spins are aligned along the direc-
tion of magnetization, there will be an asymmetry in the scattering and the electrons
mostly deviate to one of the faces of the sample, which explains the anomalous Hall
effect.

Secondly, the electron magnetic moment that had before colliding with an impu-
rity some orientation not coincidingwith the direction H⃗ of begins precessing around
H⃗ during the collision process. The spin angle rotation upon scattering depends on
the parameters of the collision. Such a mechanism of changing the orientation of the
electron’s spin upon scattering by a charged impurity underlies the Elliott–Yafet spin
relaxation.

Finally, spin-up and spin-down unpolarized electrons incident on the impurity
center deviate differently due to the scattering asymmetry. Indeed, the electron spin
adjusts to the direction of the field H⃗ for the scattering time. Consequently, under the
Lorentz force, the negatively charged particles moving along a trajectory rightward
from the force center scatter mainly to the right, while the particles moving leftward
from the center deflect to the left. However, the electrons scattered rightward and left-
ward relative to the incomingflowhave, respectively, a predominant spin-up and spin-
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down orientation. This semi-classical approach elucidates the nature of the spin Hall
effect.

In the literature, a further mechanism for the external spin-Hall effect is often
mentioned, the so-called side jumpmechanismproposed byBerger in 1970. Thismech-
anism takes into account the displacement of the center of awave packet upon scatter-
ing by impurities but significantly changes neither the amplitude of skew scattering
cross-sections nor the scattering angle measured at large distances.

7.3.5 The Berry phase. Basic definitions

Consider a quantum mechanical system described by the Hamiltonian Ĥ(R) depen-
dent on the set of parameters R = R1,R2, . . . ,Rk . In the general case, these parameters
R1,R2, . . . ,Rk maybe time-dependent, but this dependencemust be adiabatically slow,
so that, for eachmoment in time, the eigenvaluesEn(R) and the eigenfunctions |ψn(R)⟩
of the Hamiltonian Ĥ(R) can be defined

Ĥ(R)ψn(R)⟩ = En(R)
ψn(R)⟩. (7.112)

The adiabaticity criterion can be formulated as follows: if a perturbation is pe-
riodic with a frequency ω, this frequency should not cause transitions between any
the nearest levels of the system. Let us analyze now the non-stationary Schrödinger
equation

iℏdΨ(t)
dt
= Ĥ(t)Ψ(t). (7.113)

To start with, we expand the function Ψ(t) in a series using the Hamilton operator’s
eigenfunctions |ψn(t)⟩ as basic functions:

Ψ(t) =∑
n
An(t)
ψn(t)⟩.

Substituting this expansion into the non-stationary Schrödinger equation, we arrive
at

iℏ∑
n
{
dAn
dt
ψn(t)⟩ + An

d
dt
ψn(t)⟩} =∑

n
En(t)An(t)

ψn(t)⟩. (7.114)

If therewerenodependenceof theHamiltonian Ĥ(t)on the time t, then the coefficients
An(t) would have a rapidly oscillating dependence An(t) ∼ ei/ℏEnt .

To eliminate the fast time dependence, we need to perform the substitution

An(t) = cn(t) exp{−i/ℏ
t

∫
0

En(τ) dτ}
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to the equation (7.114). As a result, we get the equation for the coefficients cn(t),

dcn
dt
= −∑

m
cm(t) exp{−i/ℏ

t

∫
0

[Em(τ) − En(τ)]dτ}⟨ψn(t)

dψm(t)
dt
⟩. (7.115)

In deriving this expression, we have used the orthonormality of the instant basis
⟨ψn(t)|ψm(t)⟩ = δnm. The right side of the expression (7.115) is small because it con-
tains derivatives of slowly (adiabatically) varying functions of the instant basis.

Let us now apply the adiabatic theorem, the essence of which is that if we put the
system in a certain stationary stateψm(0), then in the adiabatic limit t →∞, the wave
function of the non-stationary problemwill follow the instantaneous state of the given
Hamiltonian and at time t may differ from the instantaneous eigenfunction

Ĥ(t)ψn(t)⟩ = En(t)
ψn(t)⟩

is only a certain phase factor. In other words, with an adiabatic perturbation tran-
sitions between stationary states are unlikely. Therefore, in the right part (7.115), the
summation sign should be omitted, writing

dcn
dt
= icn(t)⟨ψn(t)


i d
dt


ψn(t)⟩. (7.116)

Equation (7.116) is easy to integrate:

cn(t) = cn(0) exp (iγn(t)); γn(t) = i
t

∫
0

dt⟨ψn(t
) ddt ψn(t

)⟩. (7.117)

The quantity γn(t) is called the Berry phase.
Next, we explore the properties of this quantity. Firstly, it should be emphasized

that the Berry phase is a real quantity. You can verify this by simply differentiating the
normalization condition of the function ψn(t) in time.

Secondly, if the Hamiltonian and the wave functions in (7.117) depend on time by
means of a parameter R, the expression for the Berry phase can be written in the form
of a curvilinear integral in the space of these parameters

γn = i∫ dt⟨ψn(R)

ψn(R)⟩

dR
dt
= ∫

C

An(R) dR;

An(R) = i⟨ψn(R)

ψn(R)⟩. (7.118)

The quantity An(R) is called the Berry connection, and the Berry phase is a curvilinear
integral in space parameters. From the above representation of the Berry phase, it is
seen that it is utterly irrelevant how the parameters depend on time. However, it mat-
ters that they must change adiabatically. The magnitude of the Berry phase depends
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on the shape of trajectories in the parameter space. For this reason, the Berry phase is
sometimes referred to as a geometric phase.

Finally, the Berry connection and Berry phase are not gauge-invariant quantities.
The set of the functions |ψn(R)⟩ introduced above is ambiguous. Indeed, we can al-
ways go over to an alternative set by performing the unitary transformation |ψ̃n(R)⟩→
eiφ(R)|ψn(R)⟩. In doing so, the Berry connection and Berry phase are modified as fol-
lows:

Ãn(R) = An(R) − φ; γ̃n(R) = γn(R) + φ(Rf ) − φ(Ri), (7.119)

where φ(Rf ) and φ(Ri) are the values of phase at the finishing and starting points of
the trajectory in the parameter space. If the start and end points coincide (Rf = Ri),
for example, when the parameters change cyclically, then the Berry connection and
Berry phase are gauge-invariant and physically observable quantities. Therefore, it is
for cyclic trajectories R(t) that the Berry phase concept should be utilized.

The Berry connection in its properties resembles the vector potential in electrody-
namics and, therefore, is often called the Berry vector potential. In particular, we can
use Stokes’ theorem and write an integral along a contour in the formula (7.118) as an
integral over a surface spanned on this contour

γn = ∫ dS⃗Ω⃗n(R); Ω⃗n(R) = �⃗�R × A⃗n(R). (7.120)

The quantity Ω⃗n(R) introduced in this way bears the name of the Berry curvature.

Problem 7.4. Find the value of the connection and Berry curvature for a two-level sys-
tem that is the spin of an electron in an adiabatically varying magnetic field.

Solution. The Hamiltonian of the system at hand has the form

Ĥ = −h⃗(t)σ⃗, (7.121)

where h⃗(t) is a quantity proportional to the strength of the external magnetic field,
with its amplitude depending on the adiabatic variable parameter t, σ⃗ are the Pauli
matrices. The spin following the slowly cyclically changingmagnetic field, the original
state is reached at the end of the cycle.

To solve the problem, we will switch to a spherical coordinate system and find
the components of the vector h⃗: h sin θ cosφ, h sin θ sinφ, h cos θ. Next, we represent
the problem’s Hamiltonian in explicit form, substituting the components of the Pauli
matrices and the vector h⃗

Ĥ = −h


cos θ sin θe−iφ
sin θeiφ − cos θ


. (7.122)
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It is straightforward to check by simple substitution that the operator’s own functions
that meet the eigenvalues E± = ±h are the functions

|u+⟩ =  e−iφ cos θ/2sin θ/2


; |u−⟩ =  e−iφ sin θ/2− cos θ/2


. (7.123)

There are two parameters such as the θ and φ angles, on which the wave function
depends. The wave functions do not depend on the amplitude of the magnetic field.
We shall find the components of the Berry connection (vector potential). Exploiting
the definition (7.118), for the lower level energy, we get

Aθ = i⟨u− ddθ u−⟩ = 0,
Aφ = i⟨u− ddφ u−⟩ = sin2 θ/2 = 12 (1 − cos θ). (7.124)

Determine the Berry curvature Ω and the Berry phase γ. The components of the vector
Ω⃗ can be computed from the definition (7.120):

Ωh =
𝜕Aφ
𝜕θ
−
𝜕Aθ
𝜕φ
=
1
2
sin θ; Ωθ = 0; Ωφ = 0. (7.125)

It should be underscored that the Berry curvature is an invariant quantity and does
not change under gauge transformations similarly to the vector of induction of the
magnetic field in electrodynamics, determined by the rotor of the vector potential.

The Berry phase in this problem appears as an integral over a closed contour

γ = 1
2
∮(1 − cos θ)dφ (7.126)

and is equal to the solid angle, at which the trajectory from the unit sphere center in
the parameter space is visible. To be convinced of this, we suppose that the trajectory
of cyclically varying the parameters is such that θ = const. In this case, γ = π(1−cos θ)
and is exactly equal to the solid angle, at which the trajectory from the unit sphere
center is seen. This remark confirms the geometric meaning of the Berry phase.

Let us deduce another expression for the Berry curvature in the original Cartesian
coordinate system, where the vector h⃗ has the components hx, hy, hz . A Jacobian of
transformation from a Cartesian coordinate system to a spherical one, as is known, is
determined by the expressionD = h2 sin θ. Therefore, dividing the result of Ω⃗ (7.125) by
the Jacobian of transformations D yields the Berry curvature in a Cartesian coordinate
system:

Ω⃗(h) = 1
2
h⃗
h3
. (7.127)

Thus, the Berry curvature vector in this problem coincides in direction with an in-
stantaneous value of the external field and inversely proportional to the square of the
amplitude of this field.
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7.3.6 The Berry phase for Bloch electrons

In this section, we will outline the basics of applying the Berry phase concept to the
consideration of the dynamics of band electrons in a periodic crystal field. The issues
raised here are described in more detail in [54].

The previous section discussed some of the propositions of the concept of the
Berry phase for a systemdescribed by aHamiltonian depending on adiabatically vary-
ing parameters. Consider how the ideas for studying the dynamics of electrons in crys-
talline solids can be implemented. As it turns out, the periodic structure of crystals
provides a natural platform for effects associated with the Berry phase and Berry cur-
vature to arise. Wewrite down the Hamiltonian Ĥ of a quasi-free electron in a periodic
crystal field V( ⃗r)

Ĥ = p⃗2

2m
+ V( ⃗r); V( ⃗r + a⃗) = V( ⃗r), (7.128)

where a⃗ is a vector of the Bravais lattice. The eigenfunctions of this Hamiltonian are
well-known Bloch’s functions ψnq⃗( ⃗r)meeting the conditions

ψnq⃗( ⃗r + a⃗) = e
iq⃗a⃗ψnq⃗( ⃗r),

where n is the band index, q⃗ is the wave vector of an electron in the Brillouin zone.
Thus, the system is described by the q⃗-independent Hamiltonian with a q⃗-dependent
boundary condition. Using the general Berry phase formalism, we perform a unitary
transformation to obtain the q⃗-dependent Hamiltonian:

H(q⃗) = e−iq⃗ ⃗rĤeiq⃗ ⃗r = (p⃗ + ℏq⃗)2
2m
+ V( ⃗r). (7.129)

The eigenfunctions of the Hamiltonian (7.128) must be subjected to the same unitary
transformation, as a result of which the Bloch wave function must be multiplied by
e−iq⃗ ⃗r .

As a result, we find that the eigenfunction of theHamiltonian (7.129) is the periodic
part of the Bloch function unq( ⃗r). This result shows that thewave vector q⃗ plays the role
of the adiabatic parameter for band electrons.

If the wave vector changes adiabatically so that the electron’s motion in q-space
should occur along a closed trajectory, the Berry phase is nonzero and, according to
(7.118), can be given by the integral

γ = i∮
c

⟨unq⃗|�⃗�nq⃗|unq⃗⟩dq⃗. (7.130)

This integral is taken along a closed curve C located inside the Brillouin zone. Such
a closed trajectory of the motion in the q-space can be created, for example, by in-
cluding an external magnetic field, as a result of which the electron will make a cyclic
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movement in a cyclotron orbit. Similarly, using the formulas (7.118) and (7.120), we can
write down an expression for the Berry curvature of Bloch electrons:

Ω⃗ = [�⃗�q⃗ × i⟨unq⃗|�⃗�q⃗|unq⃗⟩]. (7.131)

Recall that formulas (7.130) and (7.131) contain the angular brackets ⟨| . . . |⟩ that stand
for quantummechanical averages involving integration in the coordinate space.

Anomalous velocity of Bloch electrons
Earlier, an adiabatic theorem was formulated, according to which, with an adiabatic
change in the parameters of the Hamiltonian, the system being in some stationary
state ψn will remain in this state indefinitely, and its wave function will only change
by a certain phase factor.

Consider again the equation for the expansion coefficients of the wave function
that satisfies the non-stationary Schrödinger equation (7.115). Let the system be in the
state cn(0) = 1, and cm(0) = 0 at the initial moment of time for all m ̸= n. In virtue of
the adiabatic theorem ċn = 0 but ċm ̸= 0, and from (7.115) it follows that

dcm
dt
= − exp{−i/ℏ

t

∫
0

[En(τ) − Em(τ)]dτ}⟨ψm(t)

dψn(t)
dt
⟩. (7.132)

This equation can be integrated because the expression in angle brackets changes
slowly compared to the rapidly oscillating exponential term. As a result, we get

cm(t) = −iℏ
⟨ψm|

dψn
dt ⟩

En − Em
exp{−i/ℏ

t

∫
0

[En(τ) − Em(τ)]dτ}. (7.133)

The validity of the formula (7.133) is easiest to verify by differentiating over time the
left and right sides of (7.133). In doing so, we bear in mind that the expression in an-
gular brackets changes slowly, and the term with this derivative can be neglected. If
we substitute the resulting expression in the expansion of the wave function, which
is the solution of the non-stationary Schrödinger equation, (7.113),

Ψ(t) =∑
l
cl(t) exp{−i/ℏ

t

∫
0

El(τ) dτ}
ψl(t)⟩

and take into account that for l = n cl = 1, and for l ̸= n the coefficients are determined
by the formula (7.133), we get thewave functionΨ(t) taking into account the first-order
correction (the second term in the curly bracket), which determines the effect of the
adiabatic perturbation:

Ψ(t) = exp{−i/ℏ
t

∫
0

En(τ)dτ}{|ψn⟩ − iℏ ∑
m ̸=n |ψm⟩

⟨ψm|
dψn
dt ⟩

En − Em
}. (7.134)
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Note that when calculating the quantum averages, the exponential factor in the for-
mula (7.134) is canceled.

Let usdetermine the influenceof the correctionderived to thewave functionunder
an adiabatic perturbation on dynamic characteristics of the band electrons. Consider
a system described by the Hamiltonian (7.129) and being impacted by an additional
time-dependent adiabatic perturbation without violating translational invariance of
the Hamiltonian. As a result, the system acquires two equivalent parameters q⃗, and t
on which the resulting Hamiltonian depends.

The electron velocity operator in the coordinate representation, as known, is de-
fined by the expression ̂v⃗ = 1/iℏ[ ⃗r, Ĥ]. To write the expression for the velocity v⃗(q) in
the representation in which the Hamiltonian (7.129) is written, you need to perform
a unitary transformation of the commutator. Taking advantage of the properties of a
commutator under the unitary transformation, for the velocity operator ̂v⃗(q), we have

̂v⃗(q) = 1
iℏ
e−iq⃗ ⃗r[ ⃗r, Ĥ]eiq⃗ ⃗r = 𝜕Ĥ(q⃗, t)

ℏ𝜕q⃗
. (7.135)

Let us calculate the average velocity for the states of electrons in the n band, subject
to the first-order correction (7.134)

v⃗n(q) =
𝜕εn
ℏ𝜕q⃗
− i ∑

m ̸=n{ ⟨un|
𝜕Ĥ𝜕q⃗ |um⟩⟨um| 𝜕𝜕t |un⟩

εn − εm
− c.c.}. (7.136)

This equation contains the term c.c., which means a complex conjugate summand. In
deducing (7.136), we have taken into account that the eigenfunctions of the Hamilto-
nian (7.136) in the q-representation are periodic parts of the Bloch function un.

Using the Hermitian property of the Hamilton operator, we transform the factor in
the curly brackets of (7.136), which includes the derivative of the Hamiltonian

⟨un

𝜕Ĥ
𝜕q⃗


um⟩ =

1
i
{⟨un
e
−iq⃗ ⃗r ⃗reiq⃗ ⃗rĤum⟩ (7.137)

− ⟨un
Ĥe
−iq⃗ ⃗r ⃗reiq⃗ ⃗r um⟩} = (εm − εn)⟨un 𝜕dq⃗ um⟩

and simplify the expression for the velocity of band electrons under an adiabatic per-
turbation

v⃗n(q) =
𝜕εn
𝜕ℏq⃗
− i{⟨𝜕un
𝜕q⃗


𝜕un
𝜕t
⟩ −⟨
𝜕un
𝜕t


𝜕un
𝜕q⃗
⟩}. (7.138)

For obtaining the above result, it has been assumed that, for arbitrary operators A
and B, the matrix relation

∑
m ̸=nAnmBmn = (AB)nn

is fulfilled.
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According to the definitions (7.118) and (7.120), the expression in curly brackets
in (7.138) represents the Berry curvature in space of the q⃗, t parameters, whereas the
formula for the velocity of Bloch electrons uponadiabatic variation of theHamiltonian
parameters takes the simple form

v⃗n(q⃗) =
𝜕εn
𝜕ℏq⃗
− Ω⃗n

qt ; Ω⃗n
qt = i{⟨

𝜕un
𝜕q⃗


𝜕un
𝜕t
⟩ −⟨
𝜕un
𝜕t


𝜕un
𝜕q⃗
⟩}. (7.139)

7.3.7 Dynamics of Bloch electrons in an electric field

The formula (7.139) can be applied to the case when the adiabatic perturbation is an
external homogeneous electric field E⃗. Since the setting of a uniform electric field us-
ing a coordinate-dependent potential φ( ⃗r) violates the translational invariance of the
Hamiltonian, we define a homogeneous electric field using the vector potential of the
electromagnetic field A⃗(t), which is homogeneous in space and does not violate the
translational invariance of the Hamiltonian (E⃗ = −1/c ̇A⃗). Consequently, with the aid
of formulas (5.116)–(5.118), the Hamiltonian of an electron in the periodic potential
field V( ⃗r) of a crystal and an external uniform electric field may be written as

Ĥ = [p⃗ − e/c A⃗(t)]
2

2m
+ V( ⃗r). (7.140)

Passing in this Hamiltonian to the q-representation using the unitary transformation
(7.129), we get a Hamiltonian that depends on the parameters q⃗, t:

Ĥ(k⃗), k⃗ = q⃗ − e
cℏ

A⃗(t),

whose properties were discussed earlier.
Using the general formula (7.139), we find expressions for the velocity of Bloch

electrons and the Berry curvature for a particular case, when the adiabatic pertur-
bation is as an external electrical field. Let us perform the following substitutions of
derivatives in the formula (7.139):

𝜕un(k⃗)
𝜕qα
=
𝜕un(k⃗)
𝜕kα
;
𝜕un(k⃗)
𝜕t
=
e
ℏ
Eα
𝜕un(k⃗)
𝜕kα
.

The summation is carried out over the repeated indices.Whenwriting the last formula,
it is taken into account that the electric field does not violate the translational symme-
try and the wave vector q⃗ is an integral of motion. Then ̇k⃗ = −e/cℏ ̇A⃗(t) = e/ℏE⃗. After
all of the changes made, the expression for the electron velocity in the band labeled
with n upon adiabatically switching-on the external field boils down to

v⃗n(k⃗) =
𝜕εn
ℏ𝜕k⃗
+
e
ℏ
[E⃗ × Ω⃗n(k⃗)]; (7.141)
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Ωα
n(k⃗) = εαβγ

𝜕Aγ(k⃗)
𝜕kβ
; Aγ = i⟨un(k⃗)


𝜕
𝜕kγ


un(k⃗)⟩, (7.142)

where εαβγ is the third-rank unit antisymmetric tensor. To test the possibility of such a
representation, we invite the reader, as an exercise, to find the electron velocity x-, y-,
and z-components, relying on the formulas (7.139) and (7.141) and compare the results.

7.3.8 The Berry curvature and the spin Hall effect

The semi-phenomenological formula (7.141) obtained above for the velocity of band
electrons allows one to immediately find both an expression for the Jy-components of
an electric current upon switching on an electric field pointing along the x-axis and
the σxy-component of electrical conductivity. Let a 2D-sample be under no magnetic
field. Then the simultaneous usage of the standard definition σxy of an electric current
and the expression (7.141) for the velocity leads immediately to the expressions

Jy/Ex = −
e2

ℏ
∫
dkxdky
(2π)2

f0(εk⃗)Ωz(kxky); (7.143)

Ωz(kx , ky) =
𝜕Ay(k⃗)
𝜕kx
−
𝜕Ax(k⃗)
𝜕ky
.

The first summand in the formula (7.141) makes no contribution due to the symmetry
considerations.

Thus, computing the Berry curvature for some model of a conductive crystal can
explain the intrinsic anomalous Hall effect.

Let us address again the Rashba Hamiltonian (7.100) and determine the nor-
malized eigenfunctions of this Hamiltonian. As is well known, these functions are
the product of the coordinate part of the wave function and the spin part as a two-
component spinor. We look into only the spin part χ(k⃗) of the wave function of the
Hamiltonian (7.100) and write it in a more convenient form than (7.101). For this pur-
pose, we distinguish explicitly a normalization factor and set one of the constants c1,
c2 equal to the unit:

χ(k⃗) = 1
√2



1
c(k⃗)


, (7.144)

where c(k⃗) is some constant to be determined, k⃗ has kx- and ky-components.
We write down explicitly the Schrödinger equation for the spin part of the wave

function (7.100):

α{kyσ̂x


1
c


− kxσ̂y


1
c


} = α


ky + ikx
ky − ikx





c
1


= ER


1
c


. (7.145)
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Here ER is the spin part of the Rashba Hamiltonian eigenvalues. The matrix equation
obtained implies that

α(ky + ikx)c = ER; α(ky − ikx) =
ER
c
;

E2R = α
2(k2x + k

2
y);ER = λαk; c = λ

ky − ikx
k
; λ = ±1. (7.146)

Thus, we have arrived at the result (7.103) previously found for the dispersion law, and
the eigenwave functions of the Hamiltonian (7.100) ψ(k⃗, λ) can be represented as

ψ(k⃗,+) = e
ik⃗ ⃗r
√2



1
ky−ikx
k


; ψ(k⃗,−) = e

ik⃗ ⃗r
√2



1
− ky−ikxk


. (7.147)

Furthermore, we calculate the Berry connection and the Berry curvature appearing in
the formula (7.143). Given that, in calculating the Berry connection, the formula (7.142)
includes only translation-invariant parts of the Bloch function, for theAγ-components
of the Berry connection and z-components of the Berry curvature, we obtain

Ax =
λ2ky
2k2
; Ay = −

λ2kx
2k2
; Ωz =

𝜕Ay(k⃗)
𝜕kx
−
𝜕Ax(k⃗)
𝜕ky
=
λ2

k2
. (7.148)

It should be noted that the Berry curvature is the same for both Rashba spin subbands.
Next, we analyze the contribution of a band completely filledwith electrons below the
Fermi level and exploit the formula (7.143),

Jy/Ex = −
e2

4π2ℏ
∫ dkx dkyf0(εk⃗)(

𝜕Ay
𝜕kx
−
𝜕Ax
𝜕ky
). (7.149)

We perform the integration by parts, taking into account that the non-integral term
vanishes,

Jy/Ex = −
e2

4π2ℏ
∫ dkx dky(

𝜕f0
𝜕ky

Ax −
𝜕f0
𝜕kx

Ay). (7.150)

Now, for the above expression, the following stepwise procedure should be adopted
to carry out. First, we go over to a polar coordinate system and perform integration
over energy after having made the replacement dε = ℏ2kdk/m. Next, we substitute the
previously calculated values of Ax, Ay (7.148), accounting for the fact that the energy-
derivative of the equilibrium distribution function can be replaced by the δ-function.
In the long run, we get

Jy/Ex = σxy = −
e2

8π2ℏ

∞
∫
0

dε
2π

∫
0

dφdf0
dε
=

e2

4πℏ
. (7.151)
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The foundvalue of Jy/Ex for theRashba spin–orbit interactionmodel only confirms the
well-known result of [54] that the conductivity of σxy for the anomalous Hall effect in a
two-dimensional paramagnet does not depend on the spin–orbit interaction constant
and is a certain invariant.

Similarly, an expression for the intrinsic spin Hall effect can be inferred. Let us
define the spin Hall conductivity σH as the ratio between the flux Jszy of the spin
z-component in the y-axis direction and themagnitude of the applied electric field Ex.
Let us determine the contribution of the Rashba mechanism to the intrinsic spin Hall
effect. This contribution differs from the above result σxy; only the obvious multiplier
ℏ/2e (the spin moment ℏ/2) is transferred rather than a charge. Finally, we present the
following:

σH = Js zy/Ex =
e
8π
. (7.152)

It is mandatory to emphasize that this section restricts itself to exploring an intrin-
sic contribution to the anomalous and spin Hall effects for a perfect impurity- and
defect-free conductive medium model. As noted earlier, impurity-scattering asymme-
try caused by spin–orbit interaction can also give rise to the anomalous and spin Hall
effects. The relative magnitude of contributions of intrinsic and external mechanisms
of the AXE and SHE is at present far from being clear. However, we have settled on
the nature of the intrinsic AHE and SHE for the reason that the nature of the external
AHE and SHE is quite well understood and can be explained by traditional methods
of accounting for the scattering of band electrons on a charged impurity. These calcu-
lations are too involved since the spin–orbit interaction leads to the mixing of states
in the conduction and valence bands.

Over the last years, the Berry phase concept has gainedwidespread use in various
research activities of contemporary physics, including topological effects in crystals
and low-dimensional structures.

The present chapter includes a small section that discusses the dynamics of band
electrons in terms of the Berry phase. This section is solely necessary for the reader
to draw attention to booming investigations on transfer processes in solids and ac-
counting for the dynamical laws (7.97) and (7.108) to classically describe the behavior
of electrons (particular, in particular, when using the kinetic equations) in systems
with no symmetry relative to time-reversal and inversion operations. More detailed
information on this issue is in the paper [54].

7.3.9 Physical principles of operation of spintronics devices

Concluding the chapter on getting to know the physical fundamentals spintronics, it
is useful, at least briefly, to dwell on practical implementation of microelectronic de-
vices to be dominated by spin transport. First and foremost, among them should be

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



376 | 7 Physical principles of spintronics

mentionedmagnetic field sensors. The fundamental design of a magnetic field sensor
essentially coincides with the GMR observation scheme in the CPP-geometry, as out-
lined in Figure 7.3. The only difference is that one of the ferromagnets is fabricated of a
magnetically hard substance, and the second is made of a magnetically soft one that
is capable of changing its magnetization orientation in a weak magnetic field.

When an electric current is passed through such a ferromagnetic layer system,
due to the GMR effect, the resistance of the structure is highly dependent on the mu-
tual orientation of the magnetization that can change under the influence of a weak
external magnetic field. Sensors thus constructed enable one to detect fields with an
amplitude of about ≃ 10−8–10−2 T in times of the order of a nanosecond. GMR sensors
are widely used for reading information recorded on magnetic disks. Thanks to this,
over the past 20 years, the information storage capacity of the disks has increased by
several orders of magnitude.

The other already implemented trend of creating microelectronic spintronics-
based units is to produce cells of Magnetoresistive Random-Access Memory (MRAM).
The MRAM memory cell is a magnetic tunnel junction (MTJ) as a storage element.
The MTJ consists of a thin (about 1 nm) dielectric layer placed between two magnetic
layers. One of them (the so-called free layer) can change the orientation of the mag-
netization under the action of an external magnetic field. The second ferromagnetic
exhibits a constantmagnetization direction.When a voltage is applied toMTJ, an elec-
tric current arises in the structure because the electrons overcome a dielectric barrier
due to the tunneling process. The structure can have either low or high resistance. In
the first case, the direction of magnetization of the layers coincides, and low structure
resistance is interpreted as a value of the bit, equal to one. In the second case, the
layer magnetizations are antiparallel (the GMR effect in a tunnel junction is higher
than that in an F/N/F-structure), and a large resistance is interpreted as a value of
the bit equal to zero.

Changing the orientation of the layer of soft magnetic material is achieved by si-
multaneously passing current through two mutually perpendicular conductors that
position the memory cell. As the current flows (the magnetization of the free layer
varies), the memory cell records information. The advantages of such a memory are
non-volatility and radiation immunity. The disadvantage of MRAM includes rather
large energy costs of information recording.

Nowadays, almost all theworld’s leading electronic companies areworking at cre-
ating anewmemory generation to be less energy-consumed for information recording.
This new generation of non-volatile memory is called Spin-Transfer Torque Magnetic
Random-Access Memory (STT-MRAM). In the coming years, such a memory can re-
place both semiconductor memory and regular MRAMmemory.

An STT-MRAMmemory cell, as much as anMRAMmemory cell, contains a tunnel
junction located between two magnetic layers with fixed and variable magnetization.
Information reading from the cell is produced by passing an electric current through
the structure: low resistance is interpreted as a logical “unit” and is realized under
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parallel layermagnetization. A large resistance of the structure is regarded as a logical
“zero” and arises due to antiparallel magnetization of the layers.

The way of recording information (a way to change the magnetization orientation
in the free layer) in theSTT-MRAMmemory cell is completelydifferent. The recording is
brought about bypassing a spin-polarized current througha tunnel junction to change
the orientation magnetization of the free magnetic layer since the spin-polarized cur-
rent also carries a magnetic moment. STT-MRAMmemory modules have already been
manufactured by the industry since 2016.

An important direction in the development of spintronics is the creation of various
designs of spin transistors.Herewewill dwell on only several options for suchdesigns.

The simplest spin transistor is the Johnson transistor. Its construction consists of
two ferromagnetic layers separated by a paramagnetic insulation and is the [F/N/F]
structure considered earlier, in which the effect of giant magnetoresistance can be re-
alized. As in magnetic field sensors, one of the ferromagnetic layers (an emitter) has a
rigidly fixed orientation of magnetization, and the other (a collector) can change the
orientation of the magnetization under sufficient weakmagnetic fields. The paramag-
netic (N) acts as a transistor base.

If a potential difference is created in the emitter-base circuit (the basemust have a
positive potential relative to the emitter), then as a result of injection, non-equilibrium
electrons with a spin orientation parallel to themagnetization of the emitter will arise
in the base. The current in the base-collector circuit will depend on the orientation of
themagnetization of the collector film,which can be changed by an externalmagnetic
field.

A more functional design is a spin-field transistor, the circuit of which is shown
in Figure 7.11. This unit, as well as a conventional field transistor, contains a source,
drain, and channel, to which the gate voltage is applied. Ferromagnetics having one
direction of magnetization and a flat semiconductor with electron charge carriers are
used as source/drain and channel regions, respectively. The current injected into the
channel from the source is spin-polarized. The gate voltage initiates an induced mag-
netic field H⃗ in the two-dimensional conductive channel (7.85).

Figure 7.11: Schematic illustration of a spin-field-effect transistor.

When moving in the channel, the electron spins precess around the direction of the
field H⃗. As a result, during the time of flight t of the electrons along the channel, the
meanmagnetization vector of injected electrons rotates through the angle≃ ωt, where
ω is the spin precession frequency in the field H⃗. By changing the gate voltage, the
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electron spin orientation at the end of the channel can become opposite to the drain
magnetization. In doing so, the electrons do not cross the channel–drain boundary,
which leads to high resistance of the transistor. Finally, the electric field of the gate
controls the electric resistance of the transistor. As a result, the spin-field-effect tran-
sistor behaves like a conventional field-effect transistor with the peculiarity that the
magnetization of the source and drain (and hence the transistors’ electrical charac-
teristics) is sensitive to an external magnetic field.

More complete information about existing and future spintronics devices can be
found in the review [55].

7.4 Problems to the Chapter 7

7.1. Derive an expression for the Peltier coefficient (1.36) within the two-channel Mott
model, expressing it in terms of the integrals Kl (4.33) for the case of a highly de-
generate electron gas.

7.2. To detect spin polarization, the Hanle effect can be used. Based on the assump-
tions that the rate of spin pumping into a normal metal is unchanged and the in-
jected spins precess with angular velocity ω = gμBH/ℏ, prove that the stationary
average magnetization of the electrons injected into the normal metal is deter-
mined by the expression

⟨M⟩ = T2
dM/dt

1 + (ωT2)2

and hence the magnetization as a function of the magnetic field H has the shape
of a Lorentz curve (see Figure 7.6). Here dM/dt is the spin magnetization pumping
rate; T2 is the relaxation time for transverse components of the spin.
Hint: the average magnetization can be estimated by the formula

⟨M⟩ = lim
T→∞(T dMdt ) 1T T

∫
0

cos(ωt)e−t/T2 dt.
7.3. Using equations (7.38) and (7.40), obtain the expression (7.53) for the z-coordinate

dependence of electrochemical potentials and find the relationship between the
coefficients A, B, C, D and a, b, c, d.

7.4. At the separation boundary between two media of an F/N structure, the electro-
chemical potentials ζ

i
γ, γ =↑, ↓; i = F,N remain continuous, and the averaged

values

ζ
i
= αiζ

i↑ + (1 − αi)ζ i↓
suffer a jump

δζ 0 = ζ
F
0(0) − ζ

N
0 (0).
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Using the previously obtained formulas (7.63)–(7.66) and the definition for the cur-
rent polarization factor

β = [JF↑ (0) − JF↓ (0)]/J,
derive the formula (7.72) and estimate the value for the jump δζ 0 at the following
parameter values: lNsf = 5l

F
sf , σ

F = σN , P = 0, 6. For determining the values of the
parameters σN , lNsf , use literature resources.

7.5. Selection ofmaterials to provide ahighdegree of polarization of injected electrons
is an important problem in spintronics. To solve this problem, a resistor model of
the F/N structure can be utilized, assuming that the current flows through two
connected parallel spin channels with resistances: RF↑ + Ri↑ + RN/2 for a channel
with spin ↑ and RF↓ + Ri↓ + RN/2 for a channel with spin ↓. Here Ri↑, Ri↓ are spin-
dependent resistances of the interface region. Prove that in the resistor model

β = RF

RF + RN + Ri
σ↑ − σ↓
σ↑ + σ↓ + Ri

RF + RN + Ri
Σ↑ − Σ↓
Σ↑ + Σ↓ ,

where RF = RF↑ + RF↓ , σ↑, σ↓ are conductivities of spin channels of a ferromagnet,
Σ↑, Σ↓ are conductivities of spin channels in the interface region.
Explore underwhich conditions ahighdegree of the polarization canbe achieved,
if usually RF ≪ RF + RN + Ri.

7.6. Prove that the velocity of Bloch electrons (7.139) under an external perturbation as-
sociated with an external constant homogeneous electric field E⃗ can be presented
in the form

𝜕εnk⃗
𝜕ℏk⃗
+
e
ℏ
[E⃗ × Ω⃗n(k⃗)].

For the proof, calculate the velocity of the x, y, z-components for expressions
(7.139) and (7.141) and compare them.

7.7. Find the eigenvalues and eigenfunctions of a two-dimensional electron gas upon
the Dresselhaus spin–orbit interaction. The Hamiltonian of the system has the
form

ℏk⃗2

2m
− β(kxσx − kyσy),

where ℏki are the components of the momentum operator, σi are Pauli matrices.
7.8. Using the solutions to the previous problem, find the Berry connection and the

Berry curvature for the case of a two-dimensional electron gas with the Dressel-
haus spin–orbit interaction.
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8 Response of a highly non-equilibrium system
to a weakmeasuring field

8.1 NSO for highly non-equilibrium systems

8.1.1 Set up of the problem. A boundary condition for the NSO

By now the theory of linear response of an equilibrium system to an externalmechani-
cal perturbation is well elaborated (see Chapter 5). This theory is used successfully for
solving problems of physical kinetics in the systems whose state is weakly perturbed
by external influences. Such an approach allows kinetic coefficients to be expressed
in terms of equilibrium correlation functions. The correlation functions in turn can
be estimated by means of modern methods of statistical mechanics (see Chapters 5
and 6).

The situation is quite different in finding the response of the system being al-
ready non-equilibrium to an additional weak measuring field. Still, such problems
are solved exclusively by the kinetic equation method [27] (see also Chapter 4) rather
than by methods of non-equilibrium statistical mechanics.

The present chapter formulates the theory of a linear response of the non-
equilibrium system to aweakmeasuring field. The theory contains the correct limiting
transition to the case of weak non-equilibrium systems and allows one to express the
kinetic coefficients via the correlation functions, which are calculated by using non-
equilibriumdistribution. The calculation of the coefficient of electrical conductivity of
a highly non-equilibrium system of electrons is given as an example. Also, it is shown
that the results obtained based on the kinetic equation in Chapter 4 for the transport
coefficients of the non-equilibrium systems coincide with the data, which the linear
response theory yields.

Assume that the system is already in a non-equilibrium state before switching on
themeasuring field and is described by the non-equilibrium statistical operator (NSO)
ρ0(t,0). As opposed to the NSO-method described in the previous chapter, in this sec-
tion we will introduce the reader to an alternative form of writing the NSO method
proposed by D.N. Zubarev [36]:

ρ0(t,0) = exp{−Φ(t) − P+F(t)} ≡ exp{−S0(t,0)},
Φ(t) = ln Sp{exp{−P+F(t)}}, S0(t,0) = Φ(t) + P+F(t),

P+F(t) = ϵ 0∫
−∞

dt1 exp{ϵt1} exp{iLt1}P+F(t + t1). (8.1)

It is worth paying attention that the notations being used in the formulas (8.1) coin-
cide with the notations adopted in Chapter 6. As before, the operator P+ denotes the

https://doi.org/10.1515/9783110727197-008
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column vector of basic operators as F(t) stands for the row vector of their conjugate
thermodynamic forces.

In the previous chapter, the quasi-equilibrium statistical operator ρq(t,0) =
exp{−S(t,0)} was subjected to the temporal smoothing operation when construct-
ing the non-equilibrium statistical operator. However, now according to the alterna-
tive approach (8.1), the NSO is built as a canonical distribution of quasi-integrals of
motion. Consequently, the temporal smoothing operation is to be performed for an en-
tropy operator. Earlier, Kalashnikov and Zubarev showed in their work that these two
methods of constructing the non-equilibrium statistical distribution were completely
equivalent [43].

It is easy to agree that the form (8.1) for the NSO holds true if we change the
schemeof constructing theNSOoutlined in the previous chapter. Actually, as has been
shown, a boundary condition that must be satisfied by the statistical operator when
switching on the external field (this point is referred to −∞) plays an important role in
constructing the NSO. In this case, the boundary condition helps to choose a certain
type of solution of the Liouville equation. In this equation, the time-dependence of
physical quantities is to be a functional of quasi-integrals of motion involving the ini-
tial quasi-equilibrium distribution ρq. Such an idea is effective enough and has been
used in the physical kinetics for a long time. Suffice it to remember the method of mo-
menta for solving the kinetic equation. To construct the NSO in the form of (8.1) the
similar conditions for ln ρ0(t,0) should be written instead of the boundary condition
(6.46):

lim
t1→−∞

exp{it1L} ln ρq(t + t1,0) = lim
t1→−∞

exp{it1L} ln ρ0(t + t1,0). (8.2)

Repeating the calculations that led us from (6.46) to (6.52), one can get the NSO-
form (8.1). It is worth drawing attention to the fact that here another designation
ρq(t,0) was introduced for the quasi-equilibrium distribution. The overline is used to
denote the temporal smoothing operation (see formula (8.1)).

Let us find the Liouville equation for the non-equilibrium statistical operator
(NSO) (8.1). Applying the Abel theorem (6.47), the boundary condition (8.2) can be
written in the integral form:

lim
ϵ→0

ϵ
0∫
−∞

exp(ϵt1)eiLt1 ln ρq(t + t1,0) dt1 = limϵ→0 ϵ 0∫
−∞

exp(ϵt1)eiLt1 ln ρ0(t + t1,0) dt1.
This result can be can be writtenmore compactly using the notations for the temporal
smoothing operation (8.1):

ln ρq(t,0) = ln ρ0(t,0). (8.3)
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After integrating the right-hand side of the equation (8.3) by parts,

lim
ϵ→0

ϵ
0∫
−∞

exp(ϵt1)eiLt1 ln ρ0(t + t1,0) dt1
= lim

ϵ→0

0∫
−∞

eiLt1 ln ρ0(t + t1,0) ddt1 exp(ϵt1) dt1= ln ρ0(t,0) − lim
ϵ→0

0∫
−∞

exp(ϵt1)eiLt1{ 𝜕dt1 + iL} ln ρ0(t + t1,0) dt1,
we require that ln ρ0(t,0) is to be satisfy the Liouville equation in the sense that

lim
ϵ→0

0∫
−∞

dt1 exp{(ϵ + iL)t1}{ 𝜕𝜕t1 + iL} ln ρ0(t + t1) = 0. (8.4)

Then we get

ln ρ0(t,0) = ln ρ0(t,0). (8.5)

It should be noted that equation (8.4) as well as the vanishing integral (6.51) is a pos-
tulate of the theory. This postulate leads to the fact that the NSO (8.1) satisfies an equa-
tion with the infinitesimal source on the right side rather than the Liouville equation.
Moreover, the source in an idealized form takes into account the contact between the
system and a heat bath after switching on the interaction. It also selects retarded so-
lutions of the Liouville equation.

Onemay stress that the temporal smoothingoperation (8.1) being applied to quan-
tity ln ρ0(t,0) leaves it unchanged, i. e. this operation has the property of a projection
operator (in the sense that the iterated projection does not change results).

Comparing (8.3) and (8.5), we find an explicit expression for the NSO:

ln ρq(t,0) = ln ρ0(t,0). (8.6)

Thus, it has been shown how the NSO can be constructed in the alternative form (8.1).
It remains only to obtain an equation of motion satisfying the NSO.

For this purpose, it is necessary to differentiate both sides of equation (8.6) over
time t. As a result, one gets

lim
ϵ→0

ϵ
0∫
−∞

exp(ϵt1)eiLt1 𝜕𝜕t ln ρq(t + t1,0) dt1 = 𝜕𝜕t ln ρ0(t,0).
On the left-hand side of this equation, the derivative over t may be replaced by the
derivative over t1. Then, after integrating the equation by parts and considering the

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



384 | 8 Response of a highly non-equilibrium system to a weakmeasuring field

result (8.6) one arrives at the desired equation of motion for ln ρ0(t,0):( 𝜕𝜕t + iL) ln ρ0(t,0) = −ϵ(ln ρ0(t,0) − ln ρq(t,0)). (8.7)

Note that the logarithm ln ρ0(t,0) satisfies the equation (8.7) with sources on the right-
hand side rather than the NSO ρ0(t,0). The result obtained (8.7) is consistent with the
original preposition (8.4). Consequently, the condition (8.4) holds automatically due
to the equation of motion (8.7) and the boundary conditions (8.3). Thus, the equa-
tions (8.7) and (8.4) are essentially identical.

In the present chapter, the non-equilibrium distribution ρ0(t,0) is supposed to be
already known. So here there is no necessity to pose the problem of finding the quan-
tities F(t) and average values of the basic operators P+. In Section 6.2.6, we discussed
a way of doing that.

Let the systemwhose the non-equilibriumstate is givenby the distribution (8.1) be
perturbedby anadditionalmechanical perturbationHF(t) = −A+F(t). HereA+ is some
operator and F(t) is the field intensity of the external forces whose response needs to
be determined. Then we assume that the perturbation emerges at the moment of time
t = −∞ (of course, the infinity in this context is understood as the magnitude is much
larger than characteristic relaxation time scales of the problem).

Under the conditions of the external perturbation in the system there arises the
new non-equilibrium state, which cannot be generally described in terms of the old
basis set of the operators P+. So this set is to be extended by adding new operatorsM+

and new thermodynamic parameters φ(t).
We formulate the boundary condition which is satisfied the statistical operator

ρ(t,0), what describes a new non-equilibrium state of the system at t → −∞. It is clear
that the boundary condition (8.2) cannot simply be transferred to this case (see also
expression (6.46) in the previous chapter) because the non-equilibrium distribution
ρ(t,0) has to pass into the non-equilibrium distribution ρ0(t,0) rather than into the
quasi-equilibrium one as it was before.

In order to formulate an appropriate boundary condition a free relaxation ρ(t,0)
should be analyzedwhen switching off the external actionF(t) at some point t → −∞.
In this situation thermal perturbations, which are described by the functions φ(t), do
not immediately vanish. They vary slowly with some characteristic relaxation time τ.
Once the perturbationHF(t) = −A+F(t) is switched off, some internal fieldM+φ(t) acts
on the system. Then the equation which is satisfied by ln ρ(t,0) as t → −∞ is given by𝜕𝜕t ln ρ(t,0) + 1

iℏ [ln ρ,H +M+φ(t)] = −ϵ(ln ρ(t,0) − ln ρ0(t,0)). (8.8)

We have written the equation (8.8) by analogy with equation (8.7). It is possible to do
so provided that the internal field acts as a correction to the Hamiltonian. In fact, the
equation (8.8) is a postulate of the theory, and we will come back to its substantiation
soon after.
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Resorting to the approach described in Chapter 6 (see the derivation of the for-
mula (6.115) in Section 6.2.3), the equation (8.8) for logarithm of the non-equilibrium
statistical operator can be converted into an integral equation, which after iteration
over the small parameterM+φ(t) in the linear approximation has the form

S(t,0) = S0(t,0) − 1
iℏ 0∫
−∞

dt1 exp{(ϵ + iL)t1}[M+, S0(t + t1,0)]φ(t), (8.9)

where

S0(t,0) = − ln ρ0(t,0); S(t,0) = − ln ρ(t,0).
Given the assumption that the functions φ(t) are slowly varying functions of time t,
in writing the equation (8.9) we have neglected their dependence on t1. Now we can
arrive at the desired boundary condition, presuming that the true distribution in
the limit at t → −∞ must coincide with the result obtained by solving the equation
(8.8)

lim
t1→−∞

exp{iLt1}ρ(t + t1,0) = lim
t1→−∞

exp{iLt1} exp{−S(t + t1,0)}, (8.10)

where the quantity

ρ(t,0) ≡ exp{−S(t,0)}
plays the same role as the quasi-equilibrium distribution performed in the previous
chapter.

The expression for the distribution ρ(t,0) can be expanded into a series in the
parameterM+φ(t). We restrict ourselves to a linear approximation as far as only linear
terms in this parameter are concerned,

ρ(t,0) = ρ0(t,0) − 1
iℏ 0∫
−∞

dt1 exp{(ϵ + iL)t1}[M+, ρ0(t + t1,0)]φ(t). (8.11)

It should be reinforced that the distribution (8.11) is not quasi-equilibrium and a sim-
ilar notation like ρ(t,0) is not to be misleading.

However, we have chosen such a long way to obtain the formula (8.11) not by
chance, but to acquaint the reader with the alternative method to the NSO. It is much
easier to come up with the result (8.11) within the NSO-method, developed in the pre-
vious chapter. In fact, such a treatment requires some repetitions, but they will be
useful for the reader.

Consider a non-equilibrium system with the distribution

ρ0(t,0) = ϵ 0∫
−∞

dt1 exp{(ϵ + iL)t1}ρq(t + t1),
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where

ρq(t,0) = exp{−S0(t,0)}, S0(t,0) = Φ(t) + P+F(t).
If the correction HF(t) = −A+F(t) defines the external field acting on the system,

the new non-equilibrium state being described by a set of basic operators is produced
there. Let the number of basic operators be added to the operatorsM+ and thermody-
namic forces F(t) be extended to new forcesφ(t). We assume that the new distribution
is given by the operator ρ(t,0).

The question arises of how to find the form of NSO ρ(t,0). Chapter 6 deals with
a method that cannot be directly applicable to this case. This is because the non-
equilibrium distribution still remains (albeit somewhat modified) when switching off
the external measuring field due to the presence of other disturbances which define
the initial non-equilibrium state.

Wemay resort only to commonmethodology for theNSO-method to derive the dis-
tribution ρ(t,0). For that, it is merely required that the analog of the expression (6.46)
be properly recorded to define a boundary condition for the NSO.

To obtain such a boundary condition the system’s evolution is to be regarded after
switching off the external field at the moment of time t = −∞. Denote the statistical
distribution of the system arising after switching off the external field by the quantity
ρ(t,0). Let the equation satisfied by the distribution ρ(t,0) have the form𝜕𝜕t ρ(t,0) + 1

iℏ [ρ(t,0),H +M+φ(t)] = −ϵ(ρ(t,0) − ρ0(t,0)). (8.12)

If one makes a linearization of the equation (8.12) in the small parameterM+φ(t) and
writes down a formal solution (see more detailed information in Section 5.1.2), one is
led to

ρ(t,0) = ρ0(t,0) − 1
iℏ 0∫
−∞

dt1 exp{(ϵ + iL)t1}[M+, ρ0(t + t1,0)]φ(t),
which completely coincides with (8.11). As before, the function φ(t) is slowly varying
compared with the operator kernel [M+, ρ0(t + t1,0)] and dependence of the quantity
φ(t + t1) on t1 has therefore been neglected.

What are the grounds for writing the equations (8.8), (8.12). It is necessary to look
for that the distribution ρ(t,0), from which as a result of the evolution of the system
with the total Hamiltonian H + HF(t) = H − A+F(t) there arises the non-equilibrium
distribution ρ(t,0) containing new parameters ofM+φ(t). For this reason ρ(t,0) satis-
fies the equationwith the added internal fieldM+φ(t). Thus, the resulting solution for
ρ(t,0) is a functional of a complete set of non-equilibrium parameters.

The final physical results should not be sensitive to the formof the particular func-
tional dependence of ρ(t,0) on the P+ andM+, parameters, ρ(t,0)was chosen so that
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the transition to results of the linear response theory for the equilibrium systemwould
be carried out naturally, on the one hand, and the distribution ρ(t,0) would possess
appropriate properties to construct a new NSO, on the other hand.

The approach developed below for linear response of the system as being non-
equilibrium at an initial moment in time to the weak measuring field can be con-
structed in another way, more formally, even without touching the problem of con-
structing the NSO for ρ(t,0) (this approach will be demonstrated later).

After finding the boundary condition (8.10) for NSO, the Liouville equation, satis-
fied by the distribution can be written:( 𝜕𝜕t + iL(t))ρ(t,0) = −ϵ(ρ(t,0) − ρ(t,0)). (8.13)

The derivation of (8.13) bears an absolute similarity to that of equation (6.54). Given
that

iL(t)B = (iL + iLF)B = 1
iℏ [B,H + HF(t)],

weuse the integral equation (6.115) for NSOand restrict ourselves to the linear terms in
the small correctionHF(t), describing the system’s interaction with the external field,
to solve it. As a result, we arrive at the simple expression

ρ(t,0) = ρ1(t,0) − 0∫
−∞

dt1 exp{(ϵ + iL)t1}iLFρ1(t + t1,0), (8.14)

where ρ1(t,0) = ϵ 0∫
−∞

dt1 exp{(ϵ + iL)t1}ρ(t + t1,0).
In the next section we will use the expression (8.14) to construct an expression for the
linear response of the non-equilibrium system and to express generalized susceptibil-
ity of the system via non-equilibrium correlation functions. We will also estimate the
latter by means of the statistical operator, which describes an initial non-equilibrium
distribution.

8.1.2 Generalized susceptibility of a non-equilibrium system

We define the response of a non-equilibrium system as a change in the mean value of
the basic operatorM,

Δ⟨M⟩t = Sp{Mρ(t,0)} − Sp{Mρ0(t,0)}, (8.15)

where ρ0(t,0) is the statistical distribution describing an initial non-equilibrium pro-
cess.
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Once the expression (8.11) for ρ(t,0) is plugged into (8.15), the response can be
written as

Δ⟨M⟩t = −⟨M,M+⟩tφ(t). (8.16)

Inwriting this expressionwehave introduced anew“scalar” product of operators over
a non-equilibrium state of the system. The scalar product is a generalization of Mori’s
scalar product and evolves into the latter for the case of an equilibrium distribution,⟨ℬ,M+⟩t = 1

iℏ 0∫
−∞

dt1e
ϵt1Sp{ℬeiLt1[M+, ρ0(t + t1,0)]}, (8.17)

where ℬ andM are some operators.
Equation (8.16) provides a mean for determining the system’s response to the in-

ternal field φ(t). However, we are interested in the response to the applied external
field F(t). For this, φ(t) needs to be expressed through F(t). The connection of these
functions can be easily obtained from the condition

Sp{M[ρ(t,0) − ρ(t,0)]} = 0,
which, in accordance with general ideas of the NSO-method, is satisfied by the set of
the basic operatorsM.

Let us find an expression for the difference Δρ(t,0) = ρ(t,0) − ρ(t,0). Integration
of the expression for ρ1(t,0) in (8.14) by parts yields the intermediate result:

ρ1(t,0) = 0∫
−∞

exp{iLt1}ρ(t + t1,0) ddt1 exp{ϵt1} dt1= ρ(t,0) − 0∫
−∞

exp{(ϵ + iL)t1}{ 𝜕𝜕t + iL}ρ(t + t1,0) dt1.
Now,we substitute the expression for (8.11) into the last integral and note that the con-
dition analogous to (8.4) for ln ρ0(t+t1,0) is fulfilled for the non-equilibrium statistical
operator ρ0(t + t1,0). Then, performing elementary computations, we obtain

ρ1(t,0) − ρ(t,0) = 1
iℏ 0∫
−∞

dt1e
ϵt1

0∫
−∞

dt2e
ϵt2eiL(t1+t2)× {[Ṁ+, ρ0(t + t1 + t2,0)]φ(t + t1)+ [M+, ρ0(t + t1 + t2,0)]φ̇(t + t1)}.

Consequently, for the quantity Δρ(t,0) = ρ(t,0) − ρ(t,0) we have
Δρ(t,0) = 1

iℏ 0∫
−∞

dt1e
ϵt1

0∫
−∞

dt2e
ϵt2eiL(t1+t2)× {[Ṁ+, ρ0(t + t1 + t2,0)]φ(t + t1)
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+ [M+, ρ0(t + t1 + t2,0)]φ̇(t + t1)}− 1
iℏ 0∫
−∞

dt1e
(ϵ+iL)t1[A+, ρ0(t + t1,0)]F(t + t1). (8.18)

To continue the investigation, it is convenient to go over from temporary to frequency
representation. Let F(t) be a harmonic function. As far as a linear approximation is
concerned, it makes sense to adopt that the functions φ(t) will also vary in the same
manner. Introducing the notation

F(t) = F(ω)e−iωt , φ(t) = φ(ω)e−iωt ,⟨M⟩ωt = Sp{Mρ0(t)}e−iωt ,
the relation between φ(ω) and F(ω) can be obtained by considering (8.18) and the
condition Sp{MΔρ(t)} = 0:[⟨M, Ṁ+⟩ωt − iω⟨M,M+⟩ωt ]φ(ω) = [⟨M, Ȧ+⟩ωt + ϵ⟨M,A+⟩ωt ]F(ω). (8.19)

The frequency-dependent correlation function, appearing in the expression (8.19) is
given by

⟨M,M+⟩ωt = 1
iℏ 0∫
−∞

dt1e
(ϵ−iω)t1

0∫
−∞

dt2e
ϵt2Sp{MeiL(t1+t2)[M+, ρ0(t + t1 + t2,0)]}. (8.20)

In the formula (8.20) ϵ and ϵ tend to zero after performing the thermodynamic transi-
tion. In deriving the relation (8.19), we have converted the last term of equation (8.18)
by using the identity

1
iℏ 0∫
−∞

dt1e
(ϵ+iL)t1[Ȧ, ρ0(t + t1,0)]

= 1
iℏ [A, ρ0(t,0)] − ϵ 1iℏ 0∫

−∞

dt1e
(ϵ+iL)t1[A, ρ0(t + t1,0)], (8.21)

which can be easily proved, provided that ρ0(t,0) is an exact integral of the Liouville
equation. Indeed, let us transform the last integral in the formula (8.21):

1
iℏ 0∫
−∞

eiLt1[A, ρ0(t + t1,0)] ddt1 eϵt1 dt1= 1
iℏ [A, ρ0(t,0)] − 1

iℏ 0∫
−∞

dt1e
(ϵ+iL)t1{ 𝜕𝜕t1 + iL}[A, ρ0(t + t1,0)].
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With the statistical operator ρ0(t + t1,0) satisfying the equation similar to (8.4), we
can regard the identity (8.21) as a generalization of Kubo’s identity for the case of
strongly non-equilibriumsystemsandobtain it immediately from the last relation. The
results (8.16) and (8.19) provide a mean for constructing the expression for a change
in the mean value of the basic operatorM after turning on the external field F(ω)

Δ⟨M⟩ωt = χMA(t,ω)F(ω) (8.22)

and to determine the components of the generalized susceptibility,

χMA(t,ω) = χMM(t,0) ⟨M, Ȧ+⟩ωt + ϵ⟨M,A+⟩ωt⟨M, Ṁ+⟩ωt − iω⟨M,M+⟩ωt . (8.23)

χMM(t,0) is the static admittance and is expressed through the non-equilibrium cor-
relation function

χMM(t,0) = −⟨M,M+⟩t . (8.24)

In perfect analogy, one can write an expression for the change in the mean value of
some other operator B, which does not belong to the set of basic operators:

Δ⟨B⟩t = Sp{B[ρ(t,0) − ρ0(t,0)]}.
Obviously, this quantity can be written as follows:

Sp{B[ρ(t,0) − ρ0(t,0)]} = Sp{BΔρ(t,0)} + Sp{B[ρ(t,0) − ρ0(t,0)]}.
Given that the value of Δρ(t,0)definedby the relation (8.18),while the quantity ρ(t,0)−
ρ0(t,0) is defined by the relation (8.11). Using the definition of the correlation func-
tion (8.20), we obtain

Δ⟨B⟩ωt = − [⟨B,M+⟩t − ⟨B, Ṁ+⟩ωt + iω⟨B,M+⟩ωt ]φ(ω)− [⟨B, Ȧ+⟩ωt + ϵ⟨B,A+⟩ωt ]F(ω).
Substituting the value of φ(ω) obtained from (8.19) in the last formula, we get

Δ⟨B⟩ωt = χBA(t,ω)F(ω), (8.25)

and the generalized susceptibility χBA(t,ω) in this case is
χBA(t,ω) = − ϵ⟨B,M+⟩ωt ⋅ [⟨M, Ṁ+⟩ωt − iω⟨M,M+⟩ωt ]−1× [⟨M, Ȧ+⟩ωt + ϵ⟨M,A+⟩ωt ] − [⟨B, Ȧ+⟩ωt + ϵ⟨B,A+⟩ωt ]. (8.26)

When writing the formula (8.26) we have resorted to the following relation:⟨B, Ṁ+⟩ωt = ⟨B,M+⟩t − (ϵ − iω)⟨B,M+⟩ωt ,
which can be easily verified by integrating by parts in the left-hand side.
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It is interesting to note that despite a special role of the operatorsM in the theory
considered, the expression for the dynamic susceptibility χMA(t,ω) is easily obtained
from the formula (8.26) by replacing the operator B by the operatorM. In fact, if one
puts B =M, then the last formula implies that

ϵ⟨M,M+⟩ωt = ⟨M,M+⟩t − ⟨M, Ṁ+⟩ωt + iω⟨M,M+⟩ωt .
Having substituted the result obtained for ϵ⟨M,M+⟩ωt into (8.26), we can see that if
the operator B coincides with the operatorM, the generalized susceptibility χBA(t,ω)
becomes the generalized susceptibility χMA(t,ω).

To conclude this section, it is necessary to compare the results (8.23), (8.26) with
the known findings in terms of the response of equilibrium systems.

We show that the scalar product of the operators, defined by the relation (8.17)
turns into the usual Mori scalar product (6.89) in the case of the equilibrium distri-
bution. In order to make sure that this is so, it is sufficient to transform the expres-
sion (8.17), using the Kubo identity, and then to integrate by parts:

⟨B,M+⟩ = β 0∫
−∞

dt1e
ϵt1

1∫
0

dτSp{BeiLt1ρτ0Ṁ+ρ1−τ0 } = β(B,M+),
where β is reciprocal temperature. The last relation holds if the B and M operators
satisfy the principle of correlation weakening:

lim
ϵ→∞

ϵ
0∫
−∞

dt1e
ϵt1Sp{BeiLt1M+} = ⟨B⟩0⟨M+⟩0.

This requirement appears not to be too severe restriction to nature of the B and M

operators for systems with mixing, where only relaxation phenomena are possible. In
addition, we believe that ⟨B⟩0 = ⟨M+⟩0 = 0.

Thus, we have shown that the scalar product (8.17) becomes the usual Mori scalar
product of operators, if non-equilibrium distribution ρ0(t,0) is replaced by equilib-
rium ρ0.

In order to prove that the expressions (8.23), (8.26) have the correct limiting tran-
sition to the case of a linear response of equilibrium systems, it is necessary to de-
duce afresh formulas for the linear response using the standard technique for NSO
discussed in Chapter 6. Since there are no problems to do so, we suggest the reader
to solve this excellent exercise by him- of herself. However, it is worth pointing out
that the result to be obtained for an isothermal response of the equilibrium system
has the same structure as the formula (8.23), differing only in the scalar product (8.17)
and (6.89).
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8.2 Projection operator for non-equilibrium systems

8.2.1 Magnetic susceptibility

Consider the application of the general formulas (8.23), (8.26) of linear response the-
ory for non-equilibrium systems to calculate magnetic susceptibility.

Let an alternating magnetic field B⃗(t) act on a system of magnetic moments M⃗.
To navigate to this case a replacement should be made in the general formulas of the
previous section:

A+F(t)→ M+B(t); Mφ(t)→ M+b(t),
whereM is an operator column-vector with components of the total electronmagnetic
moment, B being the row-vector consisting of components of the magnetic induction
of the external electromagnetic field. For the sake of simplicity, spatial inhomogene-
ity of the electromagnetic field should be neglected. The productM+b(t) is defined in
a similar way. The internal non-equilibrium field b(t) is the thermal perturbation in-
ducedby the external field. The thermal perturbation is associatedwithmagnetization
of the systemm(t) = Δ⟨M⟩t by the relation (8.16):

m(t) = −⟨M,M+⟩tb(t) or m(t,ω) = −⟨M,M+⟩tb(ω). (8.27)

We define the dynamic magnetic susceptibility by the relation

m(t,ω) = χ(t,ω)B(ω).
For this purpose, we use the formulas (8.19) and (8.27). SubstitutingM = M, φ(ω) =
b(ω) into the formula (8.19) and expressing b(ω) with the aid of the formula (8.27) as
b(ω) = −⟨M,M+⟩−1t m(t,ω), we obtain−[⟨M, Ṁ+⟩ωt − iω⟨M,M+⟩ωt ]⟨M,M+⟩−1t m(t,ω) = [⟨M, Ṁ+⟩ωt + ϵ⟨M,M+⟩ωt ]B(ω).
The last formula allows one to easily write down the expression for the components
of the magnetic susceptibility tensor

χ(t,ω) = χ(t,0) 1
T(t,ω) − iω [T(t,ω) + ϵ], (8.28)

where, as before in the case of the response of the equilibrium systems (see the for-
mula (6.72)), we have introduced both the transport matrix

T(t,ω) = 1⟨M,M+⟩ωt ⟨M, Ṁ+⟩ωt (8.29)

and the system’s static magnetic susceptibility

χ(t,0) = −⟨M,M+⟩t . (8.30)
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The time-dependent magnetic susceptibility is related to the time-dependence of the
initial non-equilibriumdistribution. The role of the transportmatrix introduced by the
formula (8.29) is the same as that in the case of the response of equilibrium systems.
In particular, in the relaxation-free regime when the amplitude of the external mag-
netic field is zero, the transport matrix determines the spectrum of normal modes in
the system (6.75). By perfect analogy with the equilibrium case (6.76)–(6.79), a non-
equilibrium Green function can be introduced by the relation

G(t,ω) = 1
T(t,ω) − iω + ϵ = 1⟨M,M+⟩t ⟨M,M+⟩ωt . (8.31)

Thus, a further problem of computing the magnetic susceptibility reduces to find-
ing the transport matrix T(t,ω) or the Green function G(t,ω), which in turn requires
the application of the projection operator technique suitable for use for the non-
equilibrium systems. Such a projection operator can be constructed by analogy with
the Mori projection operator (6.88), (6.91) by simply replacing the Mori scalar product
by the product defined by (8.17). As a result, one arrives at

PtA = ⟨A,M+⟩t 1⟨M,M+⟩tM,
PtA
+ = M+ 1⟨M,M+⟩t ⟨M,A+⟩t ,

Pt(1 − Pt)A = 0, PtM = M, P
2
tM = M. (8.32)

In the definition (8.32), the index t of the projection operator indicates the depen-
dence of the latter on time because the initial non-equilibrium distribution is time-
dependent too. In the future, we assume that the initial non-equilibrium distribution
is stationary, and the subscript t of both the projection operator and the correlation
functions can be omitted.

Since the dot product (8.17) turns into Mori’s scalar product in passing to equilib-
rium, the projection operators (8.32) become the projection operators (6.88). There-
fore, the problem at hand is greatly simplified and reduced virtually to a repetition of
the foregoing computations that we made in Section 6.2.4. These computations sug-
gest replacing the operator P+ byM+ and the equilibrium scalar product of the oper-
ators by non-equilibrium analogue. This again yields

T(ω) = iΩ + Σ(ω),
iΩ = 1⟨M,M+⟩⟨M,PṀ+⟩,

Σ(ω) = 1⟨M,M+⟩⟨f , 1−iω + ϵ + (1 − P)iL f +⟩, (8.33)

where f = (1 − P)Ṁ.
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Thus, we can conclude that the computation of the magnetic susceptibility of the
non-equilibrium system is over and draw attention to the following.

The structure of the magnetic susceptibility tensor components in the non-
equilibrium case remains effectively unchanged, but the definition of the scalar
product of two operators became different. For example, as to the transverse mag-
netic susceptibility of an electron gas, the expressions obtained from the above
formulas have the same structure as the equilibrium susceptibility defined by the
relations (6.147), (6.148), differing from them only in the form of the scalar product of
operators and of some symbols.

The calculation of non-equilibrium correlation functions is of a certain interest.
Therefore, the calculation of non-equilibrium electrical conductivity may be exempli-
fied by analysis of these functions. There arewell-known results obtained bymeans of
the kinetic equations discussed in Section 4.2.2, which allows for comparing the two
different methods in more detail.

8.2.2 Electrical conductivity of highly non-equilibrium systems

Let us give an example of the application of the developed technique of handling the
linear response problem of the non-equilibrium system for a particular case to calcu-
late the electrical conductivity. Then, in the general formulas in Section 8.1.2, we need
to make the following replacement:

A+ → eXα, F(t)→ Eα(t),
M→ ePβ/m, φ(t)→ βVβ(t).

It is worth noting that the above notations coincide with analogous ones in Sec-
tion 6.2.3.

For the sakeof simplicity, the indices of the tensor quantities shouldnot be labeled
wherever it is possible because we cover only the case of the isotropic dispersion law
and isotropic electron scattering. It does matter since only diagonal components of
the conductivity tensor differ from zero.

Using the equation (8.23), we find

σ(ω) = −e2
m
⟨P,P+⟩ ⟨P, Ẋ+⟩ω + ϵ⟨P,X+⟩ω⟨P, Ṗ+⟩ω − iω⟨P,P+⟩ω .

Taking into account both theAbel theoremand theprinciple of correlationweakening,
and also that Ẋ+ = P+/m, we have

ϵ
0∫
−∞

dt2e
ϵt2Sp{[P,X+(t1 + t2)]ρ0(t + t1 + t2,0)}= lim

t2→−∞
Sp{[P,X+(t1 + t2)]ρ0(t + t1 + t2,0)} = 0.
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Then, if the operator P is defined so that its non-equilibrium average is zero, we obtain

lim
ϵ→0

ϵ⟨P,X+⟩ω = 0.
Substituting these results into the formula for the electrical conductivity, we get

σ(ω) = − e2
m2
⟨P,P+⟩

T(ω) − iω ,
T(ω) = 1⟨P,P+⟩ω ⟨P, Ṗ+⟩ω. (8.34)

In writing the expression (8.34) the quantities P,P+ are supposed to be a row vector
and column vector, respectively, consisting of Cartesian components of the operator
of the total electron momentum.

Resorting to the projection operator method (see Section 6.2.4 and the formula
(6.137)), the transport matrix T(ω) can be represented as the sum of the frequency
matrix and the memory function: T(ω) = iΩ + Σ(ω) provided that

iΩ = 1⟨P,P+⟩⟨P,PṖ+⟩,
Σ(ω) = 1⟨P,P+⟩⟨f , 1−iω + ϵ + (1 − P)iL f +⟩, (8.35)

PA+ = P+ 1⟨P,P+⟩⟨P,A+⟩, f = (1 − P)Ṗ.
The formulas given above are general enough and hold true for any stationary non-
equilibrium distribution.

A further treatment requires concretizing the choice of the initial non-equilibrium
distribution. Let βk, βs, βp be reciprocal temperatures of crystal’s subsystems k, S, P
to characterize the distribution, being defined by the expressions (8.36). P means a
subsystem of long-wavelength phonons, the k, S stand for subsystems of kinetic and
spin degrees of freedom, respectively. We have

ρq = exp{−Φ − βkHk − βsHs − βpHp + βζN}, (8.36)
Φ = ln Sp{exp(−βkHk − βsHs − βpHp + βζN)},
Hk = ∑⃗

p,σ
εp⃗a
+
p⃗σap⃗σ , Hs = − ∑⃗

p,σ
ℏωsσa

+
p⃗σap⃗σ ,

Hp = ∑⃗
q,λ
ℏΩq⃗,λ(b+q⃗,λbq⃗,λ + 1/2), εp = p2

2m
, ωs = gμBHℏ .

Here, a+p⃗σ , ap⃗σ are creation (annihilation) operators of electrons with a momentum p⃗
and spin projection σ = ± 12 on the axis Z, respectively. b+q⃗,λ, bq⃗,λ are creation (annihila-
tion) operators of phononswith awave vector q⃗ andpolarization λ, ℏΩq⃗,λ is the phonon
energy, and g is the factor of spectroscopic splitting; μB is the Bohrmagneton,H is the
classical magnetic field strength.
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Let us analyze the frequency matrix and the memory function defined by (8.35).
It is easy to show that the numerator of the frequency matrix is equal to ⟨P,PṖ+⟩ = 0.
Since in the given case the components of the total electron momentum operator Pα

are basis operators, we find

iΩ = 1⟨P,P+⟩⟨P,PṖ+⟩ = 1⟨Pα,Pβ⟩⟨Pα,PṖβ⟩ = 1⟨Pα,Pβ⟩⟨Pα, Ṗβ⟩.
In spite of there being the α and β tensor indices in this formula, one should bear in
mind that, by virtue of isotropy of space, only the diagonal components of the con-
ductivity tensor can be different from zero. Now it is easy enough to prove that the
numerator in the last formula is zero. Suffice it to recall the definition of the correla-
tion function ⟨Pα, Ṗβ⟩ and the identity (8.21),⟨Pα, Ṗβ⟩ = 0∫

−∞

dt1e
ϵt1Sp{PαeiLt1 1

iℏ [Ṗβ, ρ0(t + t1,0)]}= 1
iℏSp{Pα[Pβ, ρ0(t,0)]} − ϵ 0∫

−∞

dt1e
ϵt1

× Sp{PαeiLt1 1
iℏ [Pβ, ρ0(t + t1,0)]} = 0.

The first term in the last expression is zero as the components of the total momen-
tumoperator commute among themselves.When commuting any two operators taken
at different moments of time, the second term is equal to zero too, provided that the
difference in the times tends to infinity (it is assumed that the operators satisfy the
principle of correlation weakening).

Consider the correlation function⟨Pα,Pβ⟩ = 0∫
−∞

dt1e
ϵt1Sp{PαeiLt1 1

iℏ [Pβ, ρ0(t + t1,0)]}= m 0∫
−∞

dt1e
ϵt1Sp{PαeiLt1 1

iℏ [Ẋβ, ρ0(t + t1,0)]}= mSp{Pα 1
iℏ [Xβ, ρ0(t,0)]}− ϵ 0∫

−∞

dt1e
ϵt1Sp{PαeiLt1 m

iℏ [Ẋβ, ρ0(t + t1,0)]} = −nm.
Let us analyze the electrical conductivity in the Born approximation of the scatter-
ing theory. This means that we have to restrict ourselves only to terms of the second
order in the interaction with scatterers (phonons, for example) when calculating the
inverse relaxation time of the total momentum of the electron system (or the memory
function Σ). Consequently, for interaction terms of the fourth order and higher not to
be retained, the projection operators in the memory function can be omitted.
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We make one further simplification and restrict ourselves to computation of the
static conductivity by putting ω = 0. Such an approximation works well indeed pro-
vided that the frequency of an external electric field is ω ≪ 1/τ. This requirement
is valid for ordinary materials up to frequencies of the optical range. Furthermore,
as noted above, the initial non-equilibrium distribution is assumed to be stationary
and time-independent through the macro parameters βk , βs, βp, which accounts for
the statement ρ0(t + t1 + t2,0) = ρ0. Substituting the results obtained into (8.34) for the
conductivity tensor components, we obtain

σ = e2nτ
m
; 1

τ
= Σ = − 1

nm

0∫
−∞

dt1

0∫
−∞

dt2e
ϵt1+ϵt2Sp{ṖαeiL(t1+t2) 1

iℏ [Ṗβ, ρ0]},
Ṗα = 1

iℏ [Pα,H], iLA = 1
iℏ[A,Hk + Hs + Hp + Hel], (8.37)

where Hel is an interaction Hamiltonian with the scatterers.
The expression (8.37) for the inverse relaxation time of the non-equilibrium sys-

tem already incorporates the second-order interaction terms of Hel since the commu-
tator of the total momentum operator commutes both with the Hamiltonians of the
subsystems k, S and with the phonon Hamiltonian:[Pα,Hk + Hs + Hp + Hel] = [Pα,Hel].
For this reason, the interaction Hamiltonian Hel can be ignored, and the statistical
operator ρ0(t,0) may be replaced by the quasi-equilibrium distribution (8.36). When
recording the latter the electron–phonon interaction Hamiltonian has been prudently
omitted. Therefore, the formula (8.37) can be directly used to calculate the inverse
relaxation time of the non-equilibrium system.

Looking ahead to, it should be noted that the next chapter contains a different
expression derived for the inverse relaxation time of the non-equilibrium system. The
formof the new formula differs from the record (8.37). Therefore, it would be advisable
to immediately transform the expression (8.37) in accordance with the master equa-
tion method (see Chapter 9).

First, using the identity (8.21), we can represent the integral in the expres-
sion (8.37) in the following form:

0∫
−∞

dt1

0∫
−∞

dt2e
ϵt1+ϵt2Sp{ṖαeiL(t1+t2) 1

iℏ [Ṗβ, ρ0]}
= 1
iℏ 0∫
−∞

dt1

0∫
−∞

dt2e
ϵt1+ϵt2Sp{Ṗα d

dt2
eiL(t1+t2)[Pβ, ρ0]}

= 1
iℏ 0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1[Pβ, ρ0]}.
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In deriving this equation we have taken the principle of correlation weakening into
account. Next, given that the stationary non-equilibrium distribution satisfies the Li-
ouville equation (8.13),

iLρ0 = −ϵ(ρ0 − ρq),
and Pβ/m = iLXβ, we write 1/τ in such a way that

Σ = − 1
n
1
iℏ{ 0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1 iL[Xβ, ρ0]}

+ ϵ 0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1[Xβ, (ρ0 − ρq)]}}.

Using Abel’s theorem and the principle of correlation weakening, one can prove
that the second summand in the last expression vanishes, since

lim
t1→−∞

Sp{[Ṗα(−t1),Xβ]ρ0} = lim
t1→−∞

Sp{[Ṗα(−t1),Xβ]ρq} = 0.
Thus the expression for 1/τ can be written as follows:

Σ = Σ1 + Σ2,
Σ1 = − 1n 0∫

−∞

dt1e
ϵt1Sp{ṖαeiLt1 iLv 1iℏ [Xβ, ρ0]}; (8.38)

Σ2 = − 1n 0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1 iL0 1

iℏ [Xβ, ρ0]}. (8.39)

The first summand under the spur sign on the right-hand side of the last expression
contains a second order in interaction. Consequently, the interaction both in the evo-
lution operators and in the non-equilibrium statistical operator ρ0 needs to be omitted
with respect to the Born approximation of the scattering theory.

In the second summand the second-order interaction terms can be collected
by keeping interaction with the scatterers either within the time evolution opera-
tor exp(iLt1) or within the statistical operator ρ0. If one omits the interaction in the
operator ρ0, this distribution becomes ρq, and then

iL0[Xβ, ρ0] = iL0[Xβ, ρq] ∼ iL0 βkPβm
ρq = 0,

as the Pβ and ρq operators commute with the Hamiltonian H0, and in this case, Σ2 is
zero.
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If one keeps the interaction in the statistical operator but omits it in the evolution
operator, the expression for Σ2 can be represented in the form

Σ2 = − 1n 0∫
−∞

dt1e
ϵt1Sp{Ṗα d

dt1
eiL0t1 1

iℏ [Xβ, ρ0]}.
Integrating this expression by parts again, we obtain

Σ2 = − 1nSp{Ṗα 1iℏ [Xβ, ρ0]} + ϵ 1
n

0∫
−∞

dt1e
ϵt1Sp{ṖαeiL0t1 1

iℏ [Xβ, ρ0]} = 0. (8.40)

The vanishing of the first summand becomes obvious if one reconstructs the commu-
tator Ṗα = iLPα,

Sp{Ṗα 1
iℏ [Xβ, ρ0]} = −Sp{Pα 1

iℏ [Pβ, ρ0]} + ϵSp{Pα 1iℏ [Xβ, (ρ0 − ρq)]},
and takes into account that [Pα,Pβ] = 0,

1
iℏSp{[Pα,Xβ]ρ0} = 1

iℏSp{[Pα,Xβ]ρq},
by virtue of the normalization condition.

The integral term in the formula (8.40) is equal to zero because after applying
Abel’s theorem (omitting inessential constants) it can be written as

lim
t1→−∞

Sp{[Ṗα(−t1),Xβ]ρ0} = 0.
Although evolution of the operator Ṗα in this expression is determined by theHamilto-
nianH0, which does not contain the interaction, the operator Ṗα is not invariant under
such an evolution. Therefore, the principle of correlation weakening is justifiably ap-
plicable to this situation.

Thus, we have proved that the inverse relaxation time for the non-equilibrium
system can be represented in the form (8.38).

Before proceeding to direct calculations of the inverse relaxation time of the non-
equilibrium system by the formula (8.38), it should be again paid attention to the con-
dition of its applicability. Undoubtedly, the expression (8.35) is correct for thememory
function, containing the projection operators. However, if we reject them, the correct
expression for the inverse relaxation time can be obtained only in the Born approxi-
mation of the scattering theory. Moreover, we can show that, as in the case of linear
response of the equilibrium system, the memory function is exactly zero by discard-
ing the projection operators in (8.35) and taking into account evolution of the system
with the total Hamiltonian. Pursuant to the material set forth in Chapters 5, and 6 of
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the present book, this result should not come as a surprise since exact Hamiltonian
dynamics cannot lead to irreversible behavior.

As it follows from the expression (8.38), the calculation of the non-equilibrium
conductivity reduced to the computation of the inverse relaxation time. If one as-
sumes that the resistance is determined by the scattering of electrons by phonons,
the electron–phonon interaction Hamiltonian Hep in the second-quantization repre-
sentation with respect to electron variables can be written in the form (4.76):

Hep = ∑
q⃗,λ,p⃗ ,p⃗,σ(U q⃗λ

p⃗p⃗bq⃗λ + U−q⃗λp⃗p⃗ b+q⃗λ)a+p⃗σap⃗σ ,
where the matrix elements U q⃗λ

p⃗p⃗ are defined by
U q⃗λ
p⃗p⃗ = Cq⃗λ⟨p⃗eiq⃗ ⃗r p⃗⟩,|p⃗⟩being anormalized systemof eigenfunctions of the conduction electrons,Cq⃗λ being

the electron–phonon coupling constant.
Let us show that the inverse relaxation time (8.38) for the phonon scatteringmech-

anism provides exactly the same result (4.157) as we obtained from the kinetic equa-
tion.

Using the Kubo identity (5.81), one can record an expression for the inverse relax-
ation time in the form to be used for further calculations:

Σ1 = 1n 0∫
−∞

dt1e
ϵt1

1∫
0

dτSp{ṖαeiLt1 iLvρτq 1iℏ [Xβ, S0]ρ1−τq }.
In this formula ρq = exp{−S0}

S0 = Φ + βkHk + βsHs + βpHp − βζN
is the entropy operator of the non-equilibrium system. Since, for the case under con-
sideration

1
iℏ [Xβ, S0] = βk

iℏ [Xβ,Hk] = βkm Pβ

and the operator Pβ commutes with the operator ρq, the integration over the variable
τ can be easily performed. Then this gives

Σ1 = βk
nm

0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1 1

iℏ (PβρqHepρ
−1
q − HepP

β)ρq}.
In deriving this formula we have used the fact that in our case

iLvA = 1
iℏ[A,Hep].
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Going over to the second-quantization representation over electron variables, we
rewrite the expression for the spur:

Sp{ṖαeiLt1 1
iℏ (PβρqHepρ

−1
q − HepP

β)ρq}= 1
iℏ ∑ννμμκ {⟨Ṗα(ep)νν(−t1)PβκHepμμ(iℏβ)⟩scat× ⟨a+ν (−t1)aν(−t1)a+κaκa+μ (iℏβ)aμ(iℏβ)⟩− ⟨Ṗα(ep)νν(−t1)HepμμPβκ⟩scat× ⟨a+ν (−t1)aν(−t1)a+μaμa+κaκ⟩}. (8.41)

Here, the indices ν, ν, μ, μ, κ have been applied for denoting the quantum numbers(p⃗, σ), characterizing the electron states. The large angular brackets stand for the av-
eraging over the states of the scatterers (phonons), A(iℏβ) = ρqAρ−1q .

Using the statistical Wick–Bloch–de Dominicis theorem [38] (see also (5.75)), we
express the average values of six electron creation (annihilation) operators in the last
formula via theFermi–Diracdistribution function. Consideringonly thenon-zeropair-
ing, we have⟨a+νaνa+κaκa+μaμ⟩ = fν (1 − fν)2δνμδνκδκμ − f 2ν (1 − fν)δνκδμκδνμ= fν (1 − fν)(1 − fν − fν )δνμδνμ . (8.42)

Similarly, ⟨a+νaνa+μaμa+κaκ⟩ = fν (1 − fν)(1 − fν − fν )δνμδνμ . (8.43)

If the electron creation (annihilation) operators are time-dependent, then this rela-
tionship must be clearly distinguished by means of the commutation relations

a+ν (t1 + iℏβ)aν(t1 + iℏβ) = a+νaνei/ℏ(εν−εν)t1−βk(εν−εν).
Given that in the formula (8.41)

Ṗα(ep)νν(t1) = −i ∑⃗
q,λ

qα{U q⃗λ
ννbq⃗λe−iΩq⃗λt1 − U−q⃗λνν b+q⃗λeiΩq⃗ λt1},

we obtain the following result for the memory function:

Σ1 = βk
nm

1
iℏ 0∫
−∞

dt1e
ϵt1 ∑

ννq⃗λ −iqα⟨{U q⃗λ
ννbq⃗λeiΩq⃗λt1−βℏΩq⃗λ

− U−q⃗λνν b+q⃗λe−iΩq⃗λt1+βℏΩq⃗λ }{U q⃗λ
ννbq⃗λ + U−q⃗λνν b+q⃗λ}⟩scat× {[Pβν (1 − fν) − Pβν fν] ⋅ eβk(εν−εν) − [Pβν (1 − fν ) − Pβν fν]}× fν (1 − fν) ⋅ ei/ℏ(εν−εν )t1 .
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It should be noted that for the averaging over the states of scatterers, to be reduced to
the calculation of quantum-statistical averages of the phonon creation (annihilation)
operators, the new selection rules arise:⟨b+q⃗λbq⃗λ⟩ = Nq⃗λδq⃗q⃗δλλ , Nq⃗λ = 1

eβpℏΩq⃗λ − 1 ;⟨bq⃗λb+q⃗λ⟩ = (Nq⃗λ + 1)δq⃗q⃗δλλ .
Next, putting that q⃗ = q⃗, λ = λ and averaging over the states of scatterers and not
forgetting that

fν(1 − fν) = −β−1k 𝜕𝜕εν fν = −β−1k f ν ,
eβk(ε


ν−εν)fν (1 − fν) = fν(1 − fν ),

we can get the expression for the inverse relaxation time:

Σ1 = − 1
nm

1
iℏ 0∫
−∞

dt1e
ϵt1 ∑

ννq⃗λ −iqα{[U q⃗λ
νν2(Nq⃗λ + 1)eiΩq⃗λt1

× e−βpℏΩq⃗λ − U−q⃗λνν 2Nq⃗λe
−iΩq⃗λt1 ⋅ eβpℏΩq⃗λ ][Pβν f ν (1 − fν )− Pν f ν fν] − [U q⃗λ

νν2(Nq⃗λ + 1)eiΩq⃗λt1 − U−q⃗λνν 2Nq⃗λe
−iΩq⃗λt1]× [Pβν f ν (1 − fν) − Pβν f ν fν]} ⋅ ei/ℏ(εν−εν)t1 .

We evaluate the integral over t1 in the last expression by considering that(Nq⃗λ + 1)e−βpℏΩq⃗λ = ( 1
eβpℏΩq⃗λ − 1 + 1)e−βpℏΩq⃗λ = Nq⃗λ.

The result of these simple calculations is

Σ1 = 1
nmℏ ∑ννq⃗λ qα{U q⃗λ

νν2[Nq⃗λ(Pβν f ν (1 − fν ) − Pβν f ν fν)− (Nq⃗λ + 1)(Pβν f ν (1 − fν) − Pβν f ν fν)] ℏ
i(εν − εν + ℏΩq⃗λ − iϵ)− U−q⃗λνν 2[(Nq⃗λ + 1)(Pβν f ν (1 − fν ) − Pβν f ν fν)− Nq⃗λ(Pβν f ν (1 − fν) − Pβν f ν fν)] ℏ

i(εν − εν − ℏΩq⃗λ − iϵ)}.
Wemake the change of variables ν  ν in the second term and take into account that|U q⃗λ

νν2= |U−q⃗λνν 2.
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Then, using the definition of the delta function

δ(x) = lim
ϵ→0

1
2πi
{ 1
x − iϵ − 1

x + iϵ},
we get

Σ1 = 1
nm

2πℏ ∑ννq⃗λ ℏqαU q⃗λ
νν2{(Nq⃗λ + 1)(Pβν f ν (1 − fν)− Pβν f ν fν) − Nq⃗λ(Pβν f ν (1 − fν ) − Pβν f ν fν)}δ(εν − εν + ℏΩq⃗λ).

Now we recall that|U q⃗λ
νν|2 = |U q⃗λ

p⃗p⃗|2 = |Cq⃗λ|2|⟨p⃗|eiq⃗ ⃗r |p⃗⟩|2 = |Cq⃗λ|2δ(p⃗ − p⃗ − ℏq⃗).
After applying the law of conservation of momentum, the final expression for the re-
laxation frequency of the momentum of a non-equilibrium system appears as

1
τ
= − 1

3nm
2πℏ ∑q⃗λp⃗p⃗σ |Cq⃗λ|2(ℏq)2{(Nq⃗ + 1)f p⃗σ (1 − fp⃗σ)+ Nq⃗f

p⃗σ fp⃗σ}δ(εp⃗σ − εp⃗σ + ℏΩq⃗λ). (8.44)

It should be emphasized that the odd contributions with respect to the total momen-
tum components vanish when summing over the momentum within the Brillouin
zone, and qαqβ = 1/3q2δαβ. Moreover, as far as the non-equilibrium electrons are
concerned, the expression (8.44) for the inverse relaxation time and the result (4.157)
obtained by means the method of kinetic equation for the momentum relaxation
frequency correspond each other completely.

Finally, it is necessary to point out that the results obtained here relating to the
electrical conductivity can be found as already noted in anotherwaywithoutmention-
ing the reasonof the emergence of anewnon-equilibriumdistributionwhen switching
on the additional measuring field. In essence, this is just the generalization of Kubo’s
formal linear response theory for a non-equilibrium system.

Let HF(t) = −AF(t) be an additional weak external field, acting on the non-
equilibrium system, which is described by the Hamiltonian H. Then we write the
Liouville equation satisfied by the new non-equilibrium distribution ρ(t,0):𝜕ρ(t,0)𝜕t + [iL + iLF(t)]ρ(t,0) = −ϵ(ρ(t,0) − ρ0(t,0)).
Here ρ0(t,0) is the initial non-equilibrium distribution of the system, iL, iLF(t) are
the Liouville operators corresponding to the H and HF(t) Hamiltonians, respectively.
Next, it is natural to think that the initial condition for the distribution ρ(t) coincides
with the original non-equilibrium distribution ρ0(t,0) at the moment in time t = −∞
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after switching on the external field. In this case, the formula for the non-equilibrium
admittance is expressed in terms of a commutator Green’s function in full accordance
with the Kubo theory. For example, in the case of the electrical conductivity, by anal-
ogy with the linear case, we obtain

σ(t,ω) = −e2
m

0∫
−∞

dt1e
(ϵ−iω)t1Sp{PeiLt1 1

iℏ [X+, ρ0(t + t1,0)]}.
This formula can be easily transformed to the result (8.34) obtained earlier. For that,
the principle of correlation weakening and the operator identity (8.21) can be applied.
The latter is the generalization of the Kubo identity as to the non-equilibrium distri-
bution. The simple calculations lead to

σ(t,ω) = − e2
m2 ⟨P,P+⟩tG(t,ω), G(t,ω) = 1⟨P,P+⟩t ⟨P,P+⟩ωt .

Given the relationship between the Green functions G(t,ω) and the transport ma-
trix T(t,ω) defined by (8.31), it becomes clear that the above expression for non-
equilibrium conductivity coincides with the result (8.34) previously obtained.

Problem 8.1. Obtain an expression for the inverse momentum relaxation time of
non-equilibrium electrons using the Hamiltonian (4.81), describing the interac-
tion between charge carriers and charged impurity centers, and also the formu-
las (8.35), (8.37) for a memory function.

Solution. Using the definition (8.35) and the fact that ⟨Pα,Pβ⟩ = −nm we obtain for
the inverse relaxation time

1
τ
= − 1

nm

0∫
−∞

dt1e
(ϵ−iω)t1

0∫
−∞

dt2e
ϵt2Sp{ṖαeiL(t1+t2) 1

iℏ [Ṗβ, ρ0]}. (8.45)

As far as this expression already incorporates the second-order coupling constants
of the scatterers, the non-equilibrium distribution ρ0 can be replaced by a quasi-
equilibrium distribution ρq. The quasi-equilibrium distribution can be represented
as

ρq = e−S0 , S0 = Φ + βkHk + βsHs − βζN .
Thus, the quasi-equilibrium distribution ρq describes the non-equilibrium distribu-
tion of electrons with reciprocal temperatures of the kinetic and spin degrees of free-
dom βk and βs, respectively. In addition, we can ignore the interaction in the evolution
operator iL. So,

[Ṗβ, ρ0] = − 1∫
0

dτρτq[Ṗβ(ei), S0]ρ1−τq , Ṗβ(ei) = 1
iℏ [Pβ,Hei].

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



8.2 Projection operator for non-equilibrium systems | 405

After writing both Ṗα = Ṗα(ei) and the commutator [Ṗβ(ei), S0] in the second-quantization
representation, we find

1
τ
= 1
nm

0∫
−∞

dt1e
(ϵ−iω)t1

0∫
−∞

dt2e
ϵt2 1∫

0

dτ∑
νν⟨Ṗα(ei)νν× 1

iℏ [Ṗβ(ei), S0]μμ⟩imp⟨a+νaνa+μ (z)aμ(z)⟩, (8.46)

z = t1 + t2 + iℏβ. The angle brackets in this expression mean the averaging over the
states of the impurities. Given the explicit form of the electron–impurity interaction
Hamiltonian (4.81), the matrix elements of the operator Ṗα(ei)νν have the form

Ṗα(ei)νν = −i ∑⃗
q
qαGq⃗ρ−q⃗⟨νeiq⃗ ⃗r ν⟩, ρq⃗ = Ni∑

j=1
eiq⃗R⃗j ,[Ṗβ(ei), S0]μμ = Ṗβ(ei)μμ(S0μ − S0μ), (8.47)

where R⃗j is the coordinate of the jth impurity center. In this case, the averaging over
states of the scatterers reduces to the averaging of the quantities ρq⃗:⟨ρq⃗ρq⃗⟩ = Ni, δ−q⃗q⃗ ,
where Ni is the number of the scattering centers.

Substituting the result (8.47) into the expression for relaxation frequency, we ob-
tain

1
τ
= Ni
3nm

0∫
−∞

dt1e
(ϵ−iω)t1

0∫
−∞

dt2e
ϵt2 ∑⃗

qνν q2|Gq⃗|2⟨νeiq⃗ ⃗r ν⟩2
× 1
iℏ 1∫

0

dτ(S0ν − S0ν )ei/ℏ(εν−εν )(t1+t2)e(S0ν−S0ν )τfν (1 − fν).
Integrating over τ, we arrive at

1∫
0

dτ(S0ν − S0ν )e(S0ν−S0ν )τfν (1 − fν) = (e(S0ν−S0ν ) − 1)fν (1 − fν)= fν(1 − fν ) − fν (1 − fν) = fν − fν .
Next, we assume that the frequencyω of the external field is zero, and the integration
over t1 and t2 gives

I = Re 1
iℏ 0∫
−∞

dt1e
ϵt1

0∫
−∞

dt2e
ϵt2ei/ℏ(εν−εν )(t1+t2)

= −Re ℏ
i
lim
ϵ→0

lim
ϵ→0{ 1

εν − εν − iϵ ⋅ 1
εν − εν − iϵ}.
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We introduce the notation εν − εν = x. Then, given that the following equality holds
true in the limit ϵ → 0:

lim
ϵ→

1
x − iϵ = 1x + iπδ(x),

we get the representation for the integral I

I = −Re ℏ
i
[ 1
x
+ iπδ(x)][ 1

x
+ iπδ(x)] = −2πℏ 1

x
δ(x) = 2πℏδ(x).

The quantity −1/x ⋅ δ(x) is usually determined as the derivative of the delta function
δ(x). To make sure that the representation is valid, it is necessary to consider an inte-
gral containing the product of the normal function F(x) and the generalized function
δ(x). Computation of such integrals is produced by integrating by parts, assuming
that δ(x) = 0 if x ̸= 0. Thus it is usually accepted that∫ F(x)δ(x) dx = −∫ F(x)δ(x) dx.
Let us put F(x) = xf (x). Then we have∫ xf (x)δ(x) dx = −∫ f (x)δ(x) dx − ∫ xf (x)δ(x) dx.
Since the last integral is always zero, hence the definition of derivative for the delta
function xδ(x) = −δ(x) follows.

Once we plug the above results into the last expression for the inverse relaxation
time, we have

1
τ
= − Ni

3nm
2πℏ ∑⃗qνν(ℏq)2|Gq⃗|2⟨νeiq⃗ ⃗r ν⟩2f νδ(εν − εν ). (8.48)

This expression coincides up to notations with the result previously obtained by the
kinetic equation (4.204) for the inverse relaxation time of hot electrons.

Without doubt, we could have used the memory function presentation (8.38) to
obtain the formula (8.48). It would be appropriate to dwell concisely on this method
to deduce an expression for the inverse relaxation time of non-equilibrium electrons.
Using the expression (8.38) as an original definition, one is led to

Σ1 = − 1n 0∫
−∞

dt1e
ϵt1Sp{ṖαeiLt1 iLv 1iℏ [Xβ, ρ0]}

= 1
n

0∫
−∞

dt1e
ϵt1

1∫
0

dτSp{ṖαeiLt1 iLvρτq 1iℏ [Xβ, S0]ρ1−τq }
= βk
nm

0∫
−∞

dt1e
ϵt1Sp{Ṗα(ei)eiLt1 1iℏ (PβρqHeiρ

−1
q − HeiP

β)ρq}.
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Passing on to the second-quantization representation, we comewith up the following
result instead of (8.46):

1
τ
= βk
nm

1
iℏ 0∫
−∞

dt1e
ϵt1 ∑

ννq⃗(−iqα)|Gq|2Ni
⟨νeiq⃗ ⃗r ν⟩2× {Pβν fν (1 − fν)eS0ν−S0ν − Pν fν (1 − fν)}ei/ℏ(εν−εν )t1 .

Furthermore, after making a change in the summation indices of the first term ν  ν,
q⃗ → −q⃗, and integrating over time t1, we have

1
τ
= − βk

nm
Ni ∑

ννq⃗ iqα|Gq|2⟨νeiq⃗ ⃗r ν⟩2× Pβν fν (1 − fν){ 1
εν − εν + iϵ − 1

εν − εν − iϵ},
since

fν (1 − fν)eS0ν−S0ν = fν(1 − fν ).
We use the fact that by virtue of the momentum conservation law Pβν = Pβν + ℏqβ, and
taking the definition of the delta function into account, we get

1
τ
= 2πℏ βk

3nm
Ni ∑

ννq⃗(ℏq)2|Gq|2⟨νeiq⃗ ⃗r ν⟩2fν (1 − fν)δ(εν − εν ). (8.49)

The expression (8.49) is diagonal in spin indices. Therefore, in spite of being non-
equilibrium functions, the functions fν, fν in fact differ only in the kinetic energy of
electrons.

Therefore, the distribution functions fν and fν are equal to each other provided
that the kinetic energies are equal too. Consequently,

fν (1 − fν) = −β−1k f ν ,
and we again obtain the result (8.48).

Problem 8.2. Obtain an expression for transverse components of paramagnetic spin
susceptibility of non-equilibrium electrons in conductive crystals.

Solution. Let a non-equilibrium state of the electronic system be stationary and be
described by the initial non-equilibrium distribution

ρ0 = ϵ 0∫
−∞

dt1e
ϵt1eiLt1ρq, ρq = e−S0 ,
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S0 = Φ + βkHk + βsHs + βlHl + βdHd − βζN ,
Φ = ln Sp exp{−βkHk − βsHs − βlHl − βdHd + βζN}, (8.50)

whereHl andHd are the Hamiltonians of the phonon subsystem and the subsystem of
d-electrons, respectively (the presence of the d-subsystem is important for magnetic
semiconductors). βl and βd are the corresponding inverse temperatures;

Hk = ∑⃗
kσ

εk⃗a
+
k⃗σak⃗σ , εk⃗ = ℏ2k22m

, Hs = −ℏωsS
z = −ℏωs ∑⃗

kσ

σa+k⃗σak⃗σ ,
ωs being the Zeeman spin precession frequency in an external constant magnetic
field H ‖ Z. Allowance for the d-subsystem of the local magnetic moments without
analyzing both the shape of the specimen and problems of critical dynamics leads
only to some renormalization of the external magnetic field. So we may exclude the
d-electrons from further consideration. Hl is the Hamiltonian of the phonon subsys-
tem. As far as in the future we will not analyze processes of the energy transfer from
the electron system to the phonon subsystem and then into a heat bath, thenHl in the
operator entropy S0 can be omitted without any loss of generality.

As is well known [61], for finding the system response to the external static mag-
netic field it is sufficient to find the response to a single Fourier component of this
field. Therefore, the Hamiltonian describing the interaction of electrons with a weak
external polarized perpendicular to the Z-axis magnetic field can be written as

HeF = −gμB2 ∑i [S+i h−(q⃗) + S−i h+(q⃗)]eiq⃗ ⃗ri , (8.51)

S±i = Sxi ± iSyi , h±(q⃗) = hx(q⃗) ± ihy(q⃗), hx(q⃗), hy(q⃗) are the Fourier components of the
inhomogeneous magnetic field in a Cartesian coordinate system. Introducing the no-
tation

S±q =∑
i
S±i e

iq⃗ ⃗ri ,
we study the system response to only one of two circular components in the plane-
polarized external field. Then the Hamiltonian of interaction with the external field
(8.51) can be simplified by leaving only one component of the circularly polarized ex-
ternal field

HeF = −gμB2 S−qh
+(q⃗). (8.52)

In accordance with the general response theory (see Section 8.1.2), the non-equilibri-
um system response to the perturbation (8.51) is determined by the transverse com-
ponents of the static susceptibility tensor (8.24). Therefore, the static paramagnetic
susceptibility χ+−q per lattice node is computed as follows:

χ+−q = − (gμB)22N
⟨S+q , S−−q⟩. (8.53)
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The staticmagnetic susceptibility differs fromzero in the zeroth-order interactionwith
the scatterers. The small corrections due to the interaction being ignored, the follow-
ing changes in determining the equilibrium correlation function (8.17) can be made:

iL→ iL0, ρ0(t,0)→ ρq.
As a result, we arrive at an expression for the transverse component of the static spin
susceptibility:

χ+−q = − (gμB)22N

0∫
−∞

dt1e
ϵt1Sp{S+qeiL0t1 1iℏ [S−−q, ρq]}

= − (gμB)2
2N

1
iℏ 0∫
−∞

dt1e
ϵt1[Sp{S+qS−−q(t1)ρq} − Sp{S−−q(t1)S+qρq}]. (8.54)

In deriving this expression we have taken into account the fact that [ρq,H0] = 0.
We write the operators S±q in the second-quantization representation:

S±q =∑
i
S±i e

iq⃗ ⃗ri = ∑
k⃗k⃗σσ S

±
σσ⟨k⃗eiq⃗ ⃗r k⃗⟩a+k⃗σak⃗σ .

Then χ+−q can be rewritten as

χ+−q = (gμB)22N
∑

k⃗k⃗σσ [S+σσ 2⟨k⃗eiq⃗ ⃗r k⃗⟩2 1
εk⃗σ − εk⃗σ − iϵ− S−σσ 2⟨k⃗e−iq⃗ ⃗r k⃗⟩2 1

εk⃗σ − εk⃗σ − iϵ]fk⃗σ (1 − fk⃗σ). (8.55)

Replacing the summation indices k⃗σ  k⃗σ of the second term, and noting that

S+σσ 2|⟨k⃗eiq⃗ ⃗r k⃗⟩2 = S−σσ 2⟨k⃗e−iq⃗ ⃗r k⃗⟩2,
we get

χ+−q = (gμB)22N
∑

k⃗k⃗σσ
S+σσ 2⟨k⃗eiq⃗ ⃗r k⃗⟩2× [ fk⃗σ (1 − fk⃗σ)

εk⃗σ − εk⃗σ − iϵ − fk⃗σ(1 − fk⃗σ )
εk⃗σ − εk⃗σ − iϵ]. (8.56)

When separating them out from the resolvent in the first and second terms
of (8.56), the two contributions (in the principal value and singular) then allow one to
divide the non-equilibrium static susceptibility into the real and imaginary parts:

Re χ+−q = (gμB)22N
∑⃗
k

fk⃗+q⃗↑ − fk⃗↓
εk⃗+q⃗↑ − εk⃗↓ , (8.57)
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Im χ+−q = π(gμB)22N
∑⃗
k

[fk⃗+q⃗↑ − fk⃗↓]δ(εk⃗+q⃗↑ − εk⃗↓). (8.58)

While obtaining these results we have used the fact that the non-zero matrix elementS+σσ 2 = S+↑↓2 = 1.
Here the arrows ↑↓ stand for states with a projection of the z-component of spin mo-
mentum. The states are oriented along and opposite the direction to the external mag-
netic field H. Resorting to the formulas (8.56)–(8.58) we can easily prove that

Re χ−+−q = Re χ+−q , Im χ+−q = − Im χ−+−q .
As it follows from (8.57), the real component of the transverse static susceptibility of
non-equilibrium electrons has the same form as the analogous quantity in the equi-
librium case (see, for example, the monograph [61]). The difference consists only in
replacing the equilibrium distribution functions by non-equilibrium, as in our case

fk⃗+q⃗↑ = [exp{βkεk⃗+q⃗ − βsℏωs/2 − βζ } + 1]−1.
Since the further procedure for computing the real part Re χ+−q is known well enough,
we should not dwell on it.

The imaginary component χ+−q (8.58) is of much greater interest. In the non-
equilibrium case, the imaginary component of the static susceptibility becomes non-
zero, since equality of the energies εk⃗+q⃗↑ = εk⃗↓ due to the presence of a delta function
in (8.57) does not mean equality of the distribution functions fk⃗+q⃗↑ and fk⃗↓. Therefore,
there occurs energy dissipation in such a system (energy exchange between the k-
and s-subsystems of a crystal is caused by a static inhomogeneous magnetic field). It
is easy to see that

lim
q→0

Im χ+−q = 0,
because the kinetic energies of initial and final states are equal at q = 0, whichmeans
nonexistence of spin-flip transitions.

To perform further calculations in the formula (8.58) we pass from summation
over thewave vector k⃗ to integration over themomentum p⃗ = ℏk⃗. As a result, we obtain

Im χ+−q = π(gμB)22N
V(2πℏ)3 ∫ dp⃗∫ dε[f(βk (p⃗ + ℏq⃗)22m

− βs ℏωs
2
− βζ)− f(βk p⃗22m + βs ℏωs

2
− βζ)]δ(ε − (p⃗ + ℏq⃗)2

2m
+ ℏωs

2
)δ(ε − p⃗2

2m
− ℏωs

2
).

Using delta functions, we replace the arguments of the distribution functions by
avoiding the dependence on themomentumcomponents. Then integration over p⃗ cov-
ers only the delta-functions and we shall deal with the integral

I = ∫ dp⃗δ(ε − (p⃗ + ℏq⃗)2
2m
+ ℏωs

2
)δ(ε − p⃗2

2m
− ℏωs

2
).
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The procedure for estimating the integral was discussed in Chapter 4 (see (4.162)–
(4.166)). So it makes sense to give at once the result:

I = 2πm2ℏq , ℏq− ≤ ℏq ≤ ℏq+, ℏq∓ = √2m(ε − ℏωs/2)[√1 + ℏωs
ε − ℏωs/2 ∓ 1].

If the quantity q does not satisfy these inequalities, then I = 0. Substituting the
value of the integral I into the definition (8.58) we get for Im χ+−q

Im χ+−q = VN (gμB)2m2

8πℏ4q ∞∫
0

dε[f(βkε + (βk − βs)ℏωs
2
− βζ)

− f(βkε − (βk − βs)ℏωs
2
− βζ)]. (8.59)

Assuming that the parameter (βk − βs)ℏωs/2 is small, we expand the distribution
functions of the expression (8.59) into a series over this parameter, restricting our-
selves to linear terms,

f (βkε + (βk − βs)ℏωs/2 − βζ ) ≃ f (βkε − βζ ) + (βk − βs)βk
ℏωs
2

df
dε
.

Then, if one assumes that an electron gas is under conditions of degeneration and

df
dε
≃ −δ(ε − ζ ),

we can obtain the simple estimate

Im χ+−q ≃ VN (gμB)2m2ωs
8πℏ3q (βs − βk)βk

. (8.60)

It should be noted that the emergence of the imaginary part of the static magnetic
susceptibility of non-equilibriumelectrons only evidences the possible influence of an
external inhomogeneous magnetic field on processes of the energy transfer between
non-equilibriumkinetic and spin degrees of freedomof the crystal. The energy change
of the kinetic degrees of freedom of the conduction electrons occurs due to the action
of force fields, which determine the original non-equilibrium state of the system.

8.3 Problems to Chapter 8

8.1. If a basic set of operators initially includes all necessary dynamical variables
for constructing the NSO, the analogue of the expressions (8.23), (8.26) for the
isothermal response of a non-equilibrium system to an external mechanical per-
turbation, defined by the Hamiltonian Hf = −Ah(ω) exp{−iωt}, can be obtained
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by using the modified expressions (6.62), (6.71). Plugging the summand (see the
expression (6.115))

− 0∫
−∞

dt1 exp(ϵt1) exp(iLt1)iLf ρ(t + t1)
into the right-hand side of the expression (6.62), the formula (6.71) can be rewrit-
ten as

iω(P,P+)ωδF(ω) − (P, Ṗ+)ωδF(ω) = (PȦ)ωh(ω).
The formula derived previously allows the internal fields F(ω) as a result of the
system’s reaction to be expressed through the external field h(ω).
For this case, deduce an expression for isothermal susceptibility of the non-
equilibrium system, using the definition

χBA(ω) = δ⟨B⟩ωh(ω).
8.2. Argue that the identities

Pt(1 − Pt)A = 0, PtM = M, P
2
tM = M,

are valid for the projection operators given by the relation (8.32).
8.3. UsingWick–Bloch–Dominicis’s statistical theorem, prove that all nonvanishing-

contribution pairings obtained by averaging in the formula (8.41) can be deter-
mined by the expression⟨a+νaνa+κaκa+μaμ⟩ = fν (1 − fν)2δνμδνκδκμ − f 2ν (1 − fν)δνκδμκδνμ= fν (1 − fν)(1 − fν − fν )δνμδνμ .

8.4. Using the definitions (8.36), (8.37) one needs to derive an expression for the re-
verse relaxation time of the average momentum of non-equilibrium electrons,
interacting with long-wavelength phonons, and determine its temperature de-
pendence.

8.5. Using the expression for the memory function

Σ1 = 1n 0∫
−∞

dt1e
ϵt1

1∫
0

dτSp{ṖαeiLt1 iLvρτq 1iℏ [Xβ, S0]ρ1−τq },
derive an expression for the reverse relaxation time of the averagemomentum of
non-equilibrium electrons in scattering of the latter by charged impurity centers.
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9 Master equation approach

9.1 The basic idea of the method

9.1.1 Problem statement

The purpose of the present chapter is to give an overview of the master equation
method and details of its application for solving problems of physical kinetics. The
equation of motion for some part of a statistical operator is referred to as a mas-
ter kinetic equation. A finding of this part of the statistical operator is not arbitrary
and must satisfy the principles formulated in the previous chapters. Some issues are
likely to be repeated, but it makes sense to re-discuss a program to construct a theory
of irreversible processes [62].

Firstly, the Boltzmann equation and Fokker–Planck equations are closed Marko-
vian equations (i. e. they do not make an allowance for any lagging), describing the
establishment of thermal equilibrium in a system. As shown in Chapter 6, it is im-
possible to construct an equation of motion to describe irreversible evolution for the
total statistical operator. Indeed, the material set forth in Chapters 5, 6, 8 requires ad-
dressing the projection operator method to define appropriate expressions for trans-
port coefficients even in spite of using the non-equilibrium statistical operator, which
satisfies a time-irreversible equation of motion. For this reason, an attempt to design
immediately the statistical operator to describe the system’s irreversible evolution is
natural. In addition, it makes sense to restrict oneself to a simple assumption, under
which the statistical operator is to be represented as the sum of two terms:

ρ(t) = Pρ(t) + (1 − P)ρ(t). (9.1)

These two summands are formed so that the quantityPρ(t) should permit to formulate
a closed equation. All existing theories are based on the fact that the remainder of the
statistical operator (1 − P)ρ(t) does not contribute to the observed dynamics at all.

It should be reinforced that the division of the statistical operator into two parts is
trivial by itself, and gives nothing new at all, because a quantity A can always be rep-
resented asB+(A−B). The representation (9.1) can serve as a basis for constructing the
theory provided that this division is natural and consistent with parts of slow kinetics
and fast oscillating dynamics. Further, in order for the theory to be self-consistent, the
operators P and (1 − P)must have the properties of the projection operators

P
2 = P, (1 − P)2 = (1 − P), P(1 − P) = 0. (9.2)

The relations (9.2) provide orthogonality of the operators in some sense and create
prerequisites to separate the quantities Pρ(t) and (1 − P)ρ(t) in the dynamics.

Secondly, the most important property of splitting the statistical operator is to
construct a closed equation for the kinetic part Pρ(t). In other words, there should

https://doi.org/10.1515/9783110727197-009
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arise sub-dynamics of the quantity Pρ(t). For that, the projection operator has to pos-
sess some additional properties. Indeed, let U(t) be an evolution operator which de-
scribes a change in the statistical operator ρ(t) = U(t)ρ(0) in time, and W(t) be an
evolution operator describing the Markov kinetic part of the statistical operator ρ(t) =
Pρ(t). The quantity introduced by the last relation ρ(t) plays the role of the “relevant”
part of the statistical operator. IfW(t) is the evolution operator for ρ(t), the equation
ρ(t) = W(t)ρ(0), must hold true. Consequently, recollecting the definition of the ρ(t),
we get

Pρ(t) = W(t)Pρ(0).

This relation can be written differently by considering the equation of motion of the
statistical operator ρ(t) = U(t)ρ(0). Indeed, there is equality PU(t)ρ(0) = W(t)Pρ(0).
Hence there follows the “intertwining” relation

PU(t) = W(t)P, (9.3)

which allows one to control the correctness of the theory developed.
The algorithm stated above can lead to completely different equations. The reason

for this is enough obvious since there exists only a single state of thermodynamic equi-
librium in every system.However, there are countless non-equilibrium states. As far as
a choice of the projection operator is responsible for the “class” of the non-equilibrium
states, it is clear that there are innumerable projection operators. The previous chap-
ters discussed the projection operators, projecting dynamical variables on a certain
basic set of operators. The following sectionsmake one familiar with other definitions
of the projection operator for the statistical distribution. Moreover, we will see how to
calculate kinetic coefficients by means of this approach.

9.1.2 The Zwanzig kinetic equation

To familiarize the reader with the method of master equations, it would be proper to
start with the equation obtained by Zwanzig [57]. To illustrate the method, Zwanzig
has used the projection operator, which defines system’s dynamics in momentum
space by averaging completely the motion in coordinate space. However, this fact
makes it impossible for the Zwanzig equation to be applied directly to calculate ki-
netic coefficients, but nevertheless, Zwanzig’s paper [57] reviews basic ideas of the
projection operator method.

We begin by looking at the Liouville equation (5.19)

𝜕
𝜕t
ρ(t) + iLρ(t) = 0 (9.4)

for a statistical operator. Although the equation holds true both in the classical and in
the quantum case, the latter is worth considering for the sake of definiteness.
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We introduce a time-independent projection operator P and divide the statistical
operator ρ(t) into two summands:

ρ(t) = ρ(t) + ρ̃(t), ρ(t) = Pρ(t), ρ̃(t) = (1 − P)ρ(t). (9.5)

We apply the operators P and (1 − P) both sides of the Liouville equation (9.4). As a
result, we obtain

𝜕ρ(t)
𝜕t
= −PiL[ρ(t) + ρ̃(t)], (9.6)

𝜕ρ̃(t)
𝜕t
= −(1 − P)iL(ρ(t) + ρ̃(t)). (9.7)

In order for the set of equations (9.6), (9.7) to have a single-valued solution, it is neces-
sary to define the statistical operator at some point of time. This at first glance formal
mathematical procedure indeed has a deep physical meaning to be discussed later.

To obtain a closed equation for ρ(t), ρ̃(t) needs to be eliminated from the right-
hand side of the expression (9.6).Weperforma formal integration of the equation (9.7).
It is easier to do this in the following way: multiply both sides of the equation (9.7) by
the operator exp{i(1 − P)Lt} from the left and write it in the form

d
dt

exp{i(1 − P)Lt}ρ̃(t) = −i exp{i(1 − P)Lt}(1 − P)Lρ(t). (9.8)

The formal integration of the equation (9.8) in the range from some initial time t0 to
time t, which is of interest to us, yields

exp{i(1 − P)Lt}ρ̃(t) − exp{i(1 − P)Lt0}ρ̃(t0)

= −i
t

∫
t0

exp{i(1 − P)Lt}(1 − P)Lρ(t) dt. (9.9)

Re-multiply both sides of the equation (9.9) by the operator exp{−i(1 − P)Lt} from the
left. Performing the necessary calculations, we obtain

ρ̃(t) = − i
t

∫
t0

exp{i(1 − P)L(t − t)}(1 − P)Lρ(t) dt
+ exp{i(1 − P)L(t0 − t)}ρ̃(t0). (9.10)

After substituting the expression (9.10) into the right side of (9.6), we can arrive at the
equation for thepart of the statistical operatorρ(t), describing the system’s irreversible
evolution:

𝜕ρ(t)
𝜕t
+ iPLρ(t) =

t

∫
t0

Σ(t − t)ρ(t)dt − iPL exp{i(1 − P)L(t0 − t)}ρ̃(t0). (9.11)
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Σ(t − t) = iPL exp{i(1 − P)L(t − t)}i(1 − P)L. (9.12)

In expressions (9.8), (9.12) the exponential functions of the operator quantities iL and
P mean the corresponding power series. Equation (9.11) is still not a closed equation
since it contains the quantity ρ̃(t0) at some initial point of time t0.

Let us return to the problem of defining an initial condition for the Liouville equa-
tion (9.4). The setting of the statistical operator at some initial moment of time is of
paramount importance because it is equivalent to defining an ensemble of identical
systemswhose evolution the Liouville equation describes. Moreover, the choice of ini-
tial conditions may determine the class of solutions of the Liouville equation.

It is clear that there is no correctmathematical procedure towrite down this initial
distribution for any complex system. Certainly, coordinates and velocities of all parti-
cles making up a system in the classical case, or a wave function of a particle system
in the quantum casemay serve as initial conditions, but it will be a formal and useless
assignment.

As mentioned earlier in the previous chapters, the initial distribution for inter-
nally stochastic systems should not determine anything already over a short time in-
terval of the order of a mixture time in the system. Therefore, the initial distribution
can be chosen quite arbitrarily, for example, to define its dependence on dynamical
quantities via slowly changingvariables suchas integrals or quasi-integrals ofmotion.
The reason for this is that the particular type of the projection operator and the initial
distribution are to be consistent, so that the projection operator does not change the
initial distribution.

Following these recommendations, we choose an initial distribution for the equa-
tion (9.11):

ρ(t0) = ρ(t0), ρ̃(t0) = 0. (9.13)

Then the Zwanzig master equation can be written in the form

𝜕ρ(t)
𝜕t
+ iPLρ(t) =

t

∫
t0

Σ(t − t)ρ(t)dt. (9.14)

The kernel of the integral equation (9.14)

Σ(t − t) = iPL exp{i(1 − P)L(t − t)}i(1 − P)L (9.15)

is responsible for the “memory” about all previous states of the system (similar to
lagging in electrodynamics).

Thus, we have derived a closed equation, describing both non-Markovian and ir-
reversible evolution of the statistical operator ρ(t). If we define a particular form of the
projection operator and an expression for the averages values of operators of physical
quantities, the equations (9.14), (9.15) can be used to compute kinetic coefficients. The
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next sections concern more interesting, from a practical standpoint, applications of
the projection operator technique. In particular, we will obtain the master equation
for a quasi-equilibrium distribution and show how to deduce an expression for the
kinetic coefficients for a high-non-equilibrium system by using it.

9.2 Master equation for the quasi-equilibrium distribution

9.2.1 Robertson projection operator

Chapters 6 and 8 dealt with the quasi-equilibrium distribution ρq(t,0) that is of some
part of the NSO, on the one hand, and, on the other hand, allows one to calculate av-
erages of basic operators. This is evidenced by the fact that the NSO-method provides
equality of the averages, computed byusing the true non-equilibriumdistribution and
quasi-equilibrium distribution. (See equation (6.6)).

Thus, if we succeed in constructing a closed equation to determine the quasi-
equilibrium distribution and in finding a practical way to solve this equation for re-
covering the form of ρq(t,0), it enables one immediately to express the kinetic coeffi-
cients in terms of correlation functions of operators of dynamic variables, computed
with the use of the quasi-equilibrium distribution.

It is appropriate to recall once again the differences in the programs of construct-
ing the kinetic theory based on techniques of the kinetic equation, statistical operator
and master equation.

As to the kinetic equation, the main difficulty is to find the non-equilibrium
distribution function, in other words to construct a solution of the Boltzmann equa-
tion. Such a function being found, computation of the kinetic coefficients reduces to
quadratures.

Within the Kubo method in the quantum-statistical approach, it is relatively easy
to obtain a formal solution, for example, of the Liouville equation. So, to calculate
the kinetic coefficients, it is necessary to compute appropriate correlation functions
correctly. This problem can be correctly solved if and only if one replaces equations of
motion for the operators of dynamic variables by Langevin-like equations of motion.
The latter to be derived require applying the projection operator technique.

It should be emphasized that the projection operators are used here to construct
the correct dynamic equations of the equilibrium system.

When using the NSO-method we have an intermediate situation at some sense.
On the one hand, the NSO is built only from quasi-integrals of motion, i. e. slowly
changing dynamical variables obtained as a result of the temporal averaging opera-
tion (6.52). The replacement itself of the exact statistical operator (6.52) byNSO is apro-
jection operation to separate out some part of the statistical operator. This approach
allows for deriving closed equations to find the non-equilibrium thermodynamic pa-
rameters Fn(t) of the system (see Section 6.2.6).
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That some roughening in description, caused by the temporal smoothing is being
used here, is the fact that the number of the non-equilibrium parameters turned out
to be finite. To describe the system’s dynamics exactly, it is necessary that the number
of the non-equilibrium parameters should be of the order of the number of particles
in the system.

On the other hand, the dynamic equations satisfied by the basic operators are
standard equations ofNewtoniandynamics, or the Schrödinger equations. That iswhy
the conception of projection operators needs to be brought about for constructing the
correct dynamical equations in systems with a stirring.

Finally, there is an approach underlying the constructing the equation of mo-
tion for the quasi-equilibriumdistribution using the technique of projection operators
from scratch.

Let us consider the derivation of this equation. It is convenient to start with the
Liouville equation for NSO (6.54):

𝜕ρ(t,0)
𝜕t
+ iLρ(t,0) = −ϵ(ρ(t,0) − ρq(t,0)); ϵ → +0. (9.16)

Subtract from both sides of this equation the operator

[
𝜕
𝜕t
+ iL(t)]ρq(t).

As a result, we obtain

[
𝜕
𝜕t
+ iL](ρ(t,0) − ρq(t,0)) = −ϵ(ρ(t,0) − ρq(t,0)) − [

𝜕
𝜕t
+ iL]ρq(t,0). (9.17)

Consider the time derivative of the operator ρq(t,0). As noted in Chapter 6, the quasi-
equilibrium distribution is a functional of the observed averages ⟨Pn⟩t, taken at one
and the same moment of time t. Therefore, we have

𝜕ρq(t,0)
𝜕t
=∑

n

𝜕ρq(t,0)
𝜕⟨Pn⟩t

𝜕
𝜕t
⟨Pn⟩

t . (9.18)

It should be emphasized that the expression (9.18) differs from (6.7) only by other
designation of the quasi-equilibrium distribution, but for convenience we have writ-
ten this formula again. Recall that Pn is a set of basic operators, which are of quasi-
integrals of motion relevant to problem under consideration.

Since

⟨Pn⟩
t = Sp{Pnρ(t,0)},

𝜕
𝜕t
⟨Pn⟩

t = Sp{Pn
𝜕
𝜕t
ρ(t,0)},

then, using the equation of motion for NSO (9.16), we can write down the last equality
in the form

𝜕
𝜕t
⟨Pn⟩

t = −Sp{PniL(t)ρ(t,0)}.
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For simplicity, it is convenient to introduce the Robertson projection operatorPq being
defined by the relation

Pq(t)A =∑
n

δρq(t)
δ⟨Pn⟩t

Sp{PnA}. (9.19)

Using the foregoing outcomes and the definition of the Robertson projection operator,
one is led to

𝜕ρq(t)
𝜕t
= −∑

n

𝜕ρq(t)
𝜕⟨Pn⟩t

Sp{PniL(t)ρ(t)} = −Pq(t)iL(t)ρ(t).

We add and subtract simultaneously the term Pq(t)iLρq(t) on the right-hand side of
the last formula, which allows one to write it as follows:

𝜕ρq(t)
𝜕t
= −Pq(t)iL(t)ρq(t) − Pq(t)iL(t)(ρ(t) − ρq(t)). (9.20)

Substituting this result into the last term on the right-hand side of the equation (9.17),
we arrive at an equation that is still not closed for ρq(t) because it contains the NSO
ρ(t):

[
𝜕
𝜕t
+ iL(t)][ρ(t,0) − ρq(t,0)]

= −ϵ[ρ(t,0) − ρq(t,0)] − [1 − Pq(t)]iL(t)ρq(t) + Pq(t)iL(t)[ρ(t) − ρq(t)]. (9.21)

Let us transform the equation (9.21) to a form that admits integration,

[
𝜕
𝜕t
+ ϵ + [1 − Pq(t)]iL(t)][ρ(t,0) − ρq(t,0)] = −[1 − Pq(t)]iL(t)ρq(t). (9.22)

The Liouville operator here is time-dependent; therefore one is required to introduce a
generalized evolution operatorU(t) to integrate the equation (9.22). It should describe
the evolution of an arbitrary dynamical quantity from the point of time t0 = −∞ to the
moment t when a Hamiltonian of the system depends on the time.

We define the generalized evolution operator, describing non-Hamiltonian dy-
namics of the system by the equation [36]

𝜕
𝜕t
U(t) = U(t)[1 − Pq(t)]iL(t).

This expression is a natural generalization of the equation of motion for the evolution
operator exp{iLt} when the Liouville operator depends on time, and evolution is de-
termined by only some projection of the full Hamiltonian. Equality of the evolution
operator to unity is a natural initial condition for this equation provided that the tem-
poral arguments coincide. In this case, we can get the simple result for the evolution
operator:

U(t) = T exp{
t

∫−∞ dt1[1 − Pq(t1)]iL(t1)}. (9.23)
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In (9.23), the integral is the sum of operators, taken at different moments in time, with
the exponent in terms of the corresponding power series. Since it is assumed that the
operators taken at the different points in time cannot commute with each other, it is
important to define their sequence order. For this purpose, we use the symbol T, in-
dicating the temporal ordering of the operators. It is assumed that the time-argument
of the operators increases from right to left.

Using the generalized evolution operator (9.23), we write the solution of the equa-
tion (9.22):

ρ(t) − ρq(t) = −
0

∫−∞ dt1e
ϵt1U(t1)[1 − Pq(t + t1)]iL(t + t1)ρq(t + t1).

Finally, the substitution of the above result into (9.20) gives the desired closed equa-
tion. Thus, we have derived the master equation (9.24), containing only the quasi-
equilibrium statistical operator ρq(t):

𝜕ρq(t)
𝜕t
= − Pq(t)iL(t)ρq(t) + Pq(t)iL(t)

×
0

∫−∞ dt1e
ϵt1U(t1)[1 − Pq(t + t1)]iL(t + t1)ρq(t + t1). (9.24)

Before concluding the section, devoted to the derivation of the master equation for
the quasi-equilibrium distribution, however, it would be advisable to think of a way
to practical application of the result (9.24).

Of course, we can try to integrate this equation, but it is evident that these at-
tempts are doomed to fail except for the simplest cases. It is much easier to write a
set of generalized kinetic equations for basic dynamic variables and then solve this
system. At least, as to the stationary case, this program appears not to be too compli-
cated. The next section demonstrates the application of themaster equation approach
for finding the electrical conductivity of a non-equilibrium system.

9.2.2 Use of the master equation to calculate kinetic coefficients

To describe a system of non-equilibrium electrons, consider the derivation of the mo-
mentum balance equation which is based on the use of the integro-differential equa-
tion (9.24) for ρq(t). Let the system of the non-equilibrium conduction electrons be
described by reciprocal temperature βk of kinetic degrees of freedom of the electrons,
a non-equilibrium chemical potential ζ and drift velocity V⃗ .

To simplify the problem, we assume that the non-equilibrium temperature and
non-equilibrium chemical potential of the electronic system are already known. It re-
mains to determine only the drift velocity. Such a situationmay arise when the system
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reaches a non-equilibrium state due to the action of an external field. However, we
have to find a response to another weak measuring field. Besides, the last condition
is not crucial, for we can also consider a full statement of the problem when, for ex-
ample, a strong electric field applied to the system leads to heating of the electronic
system, and to the emergence of non-zero drift momentum components. In this case,
onewould have towrite three balance equations: energy,momentum, and the number
of particles.

To arrive at the balance equation for momentum of the electronic system, wemul-
tiply both sides of the equation (9.24) by the component Pα of themomentum operator
and calculate the spur of the sides. Carrying out the acts mentioned above, we get

𝜕
𝜕t
⟨Pαρq(t)⟩ = − Sp{P

α
PqiLρq}

+
0

∫−∞ dt1e
ϵt1Sp{PαPqiLe

(1−Pq)iLt1 [1 − Pq]iLρq}. (9.25)

In deriving this equation, it is assumed that the system’s Hamiltonian is time-inde-
pendent, and the non-equilibrium state of the system is stationary. Then the quasi-
equilibrium distribution does not depend on time as well. It has been taken into ac-
count on the right side of the equation. Furthermore, if the system’s Hamiltonian is
independent on time (the applied electric field that causes the electron drift is con-
stant), the evolution operator is greatly simplified:

U(t) = T exp{
t

∫−∞ dt1(1 − Pq(t1))iL(t1)} = e
(1−Pq)iLt .

Equation (9.25) is the desired balance equation for momentum of the non-equilibrium
systemof the electrons. However, we havewritten down this equation in general form,
and it requires some clarification for particular applications.

Firstly, suppose that the Hamiltonian of the system H can be written as

H = He + Hp + Hep + HF ; H0 = He + Hp,

where He,Hp are the Hamiltonians of the electron and phonon subsystems of a crys-
tal, respectively; Hep is the electron–phonon interaction Hamiltonian; HF is the inter-
action Hamiltonian of electrons with the constant uniform electric field. The explicit
form of these Hamiltonians was already discussed in Chapters 4–6 and 8, so we will
not come back to this issue.

Secondly, the entropy operator of the system can be written as

S = ϕ + βkHe + βHp − βkP
αVα − βζN ,
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where N is the particle number operator, ϕ is the Massieu–Planck functional deter-
mined from the condition:

Sp{ρq} = Sp{e
−S} = 1,

ϕ = ln Sp{e−(βkHe+βHp−βkPαVα−βζN)}.
We return to themomentum balance equation (9.25) and simplify its individual terms.

The expression on the left side of the equation is just equal to zero because the
statistical operator ρq is time-independent.

Consider the termoutside the integral on the right-hand sideof the equation (9.25).
Using the definition of the Robertson projection operator (9.19), we obtain

− Sp{PαPqiLρq} = −∑
n
Sp{Pα

δρq
δ⟨Pn⟩
}Sp{PniLρq}. (9.26)

Here, the summation is being performed over the entire set of the basis operators in-
volving in the definition of the entropy operator (besides Pα in our case, the operators
He andN). By virtue of the symmetry properties of correlation functions, only the term
whose the operator Pα, thermodynamically conjugated to the drift velocity Vα, makes
a non-zero contribution to the sum in the expression (9.26).

Indeed, in accordance with the results obtained in Chapter 6 [see Formula (6.45),
(6.60)],

δρq
δ⟨Pn⟩
=

δρq
δ⟨Fm⟩

δFm
δ⟨Pn⟩
=∑

m

1

∫
0

dτρτqΔPmρ
1−τ
q

1
(Pm,Pn)

, (9.27)

where δ, as before, means the functional derivative, and ΔPm = Pm − Sp{Pmρq}.
Substituting this result into (9.26) and reducing the same terms both in the nu-

merator and in the denominator, we get

− Sp{PαPqiLρq} = −Sp{P
αiLρq} = Sp{Ṗ

αρq}, (9.28)

where

Ṗα = 1
iℏ
[Pα,H0 + Hep + HF].

The operator Pα commutes with the Hamiltonian H0. Further, as far as the statistical
operator ρq, in structure, does not contain interaction, and the Hamiltonian Hep has
no diagonal matrix elements, then Sp{[Pα,Hep]ρq} = 0. Thus, the only non-zero con-
tribution comes from the commutator of the operators Pα and HF . Given the explicit
form of the operator HF = −e∑i X

β
i E

β, where Xβ
i is the coordinate of the ith electron,

but the summation is produced over all electrons, finally we have

− Sp{PαPqiLρq} = enE
α. (9.29)
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Consider now the integral term on the right-hand side of the equation (9.25). The in-
tegral term describes collisions between the electrons and scatterers; consequently, it
corresponds in terms of the kinetic equation to a collision integral. When considered
within the kinetic theory, the usual approximation permits the influence of an elec-
tric field to the collision processes to be neglected. From the above, it follows that the
summand HF in the Hamiltonian of the system can be omitted.

We start by choosing the expression under the integral sign in the formula (9.25).
Carrying out the projection by means of the operator Pq, standing first in the curly
bracket, we obtain

Sp{PαPqiLe
(1−Pq)iLt1 [1 − Pq]iLρq}

= Sp{Pα
δρq
δ⟨Pβ⟩
}Sp{PβiLe(1−Pq)iLt1 [1 − Pq]iLρq}.

Let I denote the integral term on the right-hand side in (9.25). Then, given

Sp{Pα
δρq
δ⟨Pβ⟩
} = δαβ,

we get

I =
0

∫−∞ dt1e
ϵt1Sp{PαiLe(1−Pq)iLt1 [1 − Pq]iLρq}. (9.30)

It is important to note that the momentum balance equation has the simple meaning:
the force acting on the conduction electrons from the external electric field is equal to
the rate of change of electron momentum due to their collisions with the scatterers.
That is why the collision integral in (9.25) should be linearized with respect to the drift
velocity Vα.

To perform the linearization it is necessary to expand the quasi-equilibrium sta-
tistical operator. Using the expansion (6.60), in our case, we have

ρq = ρ
0
q +

1

∫
0

dτρ0 τ
q βkV

βPβρ0 1−τ
q .

Substituting this result into the collision integral (9.30), one gets

I = βk

0

∫−∞ dt1e
ϵt1

1

∫
0

dτ × Sp{PαiLe(1−Pq)iLt1 [1 − Pq]iLP
β(τ)ρ0q}V

β. (9.31)

Here Pβ(τ) = ρ0 τ
q Pβρ0 1−τ

q .
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For further transformation of the expression (9.31), it is convenient to progress to
another representation by replacing the Robertson projection operator by amore con-
venient projection operator, which in turn is the generalization of the Mori projection
operator for the case of non-equilibrium systems.

Consider the correlation function
1

∫
0

dτSp{BPq[CA(τ)ρq]}.

Here, A, B and C are some arbitrary operators, the meaning of the designation A(τ) is
the same as that defined above.

After carrying out the projection by the Robertson operator (9.19) and using (9.27),
the correlation function in hand can be written as

1

∫
0

dτSp{BPq(CA(τ)ρq)} =∑
nm

1

∫
0

dτSp{BρτqΔPnρ
1−τ
q }

1
(Pn,Pm)

1

∫
0

dτSp{PmCA(τ)ρq}

=
1

∫
0

dτSp{BPτCA(τ)ρq}. (9.32)

In (9.32) we have introduced the new projection operator Pτ, being defined by the re-
lation

PτCA(τ) =∑
nm

Pn(τ)
1
(Pn,Pm)

(PmC,A). (9.33)

It follows from formula (9.32) that the correlation functions allow one to replace the
Robertson projection operator Pq by the projection operator Pτ, which is the general-
ization of the Mori projection operator for the case of non-equilibrium systems. This
enables to transform the collision integral further.

We perform integration in the expression (9.31) over time t1. As a result, we have
a representation of the integral collision in the form of the correlation function of the
resolvent

I = −βk

1

∫
0

dτSp{Ṗα 1
ϵ + (1 − Pq)iL

(1 − Pq)iLP
β(τ)ρq}V

β. (9.34)

Consider the operator

M(τ)ρq =
1

ϵ + (1 − Pq)iL
(1 − Pq)iLP

β(τ)ρq,

involved in the expression under the spur sign in the formula (9.34). It is easy to check
that the identity for this operator holds:

(ϵ + iL)M(τ)ρq = PqiLM(τ)ρq + (1 − Pq)iLP
β(τ)ρq. (9.35)

 EBSCOhost - printed on 2/13/2023 3:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



9.2 Master equation for the quasi-equilibrium distribution | 425

If we resort to the relation (9.32), the following two equations can be proved:

1

∫
0

Sp{B(PqiLM(τ)ρq)}dτ =
1

∫
0

Sp{B(PτiLM(τ)ρq)}dτ;

1

∫
0

Sp{B(PqiLP
β(τ)ρq)}dτ =

1

∫
0

Sp{B(PτiLP
β(τ)ρq)}dτ.

Hence, by virtue of arbitrariness of the operator B, the identity (9.35) can be rewritten
by replacing the Robertson projection operator Pq by the new projection operator Pτ:

(ϵ + iL)M(τ)ρq = PτiLM(τ)ρq + (1 − Pτ)iLP
β(τ)ρq.

The last expression can have another form, if one moves the first term on the right-
hand side to the left side and solves the resulting equationwith respect to the operator
M(τ)ρq. In the end, one gets

M(τ)ρq =
1

ϵ + (1 − Pτ)iL
(1 − Pτ)iLP

β(τ)ρq. (9.36)

The last equality is valid only if the operator M(τ)ρq is under the spur sign of the
correlation functions (see formula (9.32)). Given the original definition of the opera-
tor M(τ)ρq, we plug the result obtained (9.36) into the collision integral (9.34). This
gives an expression reminiscent in structure the expression for the memory func-
tion (6.137), (6.137):

I = −βk(Ṗ
α 1
ϵ + (1 − Pτ)iL

(1 − Pτ)iL,P
β)Vβ. (9.37)

In this expression, as before, the definition of the scalar product of the operators A
and B has been used:

(A,B) =
1

∫
0

dτSp{A, ρτqBρ
1−τ
q }.

In our definition of the entropyoperator, operatorPα(τ) commuteswith theHamil-
tonianH0. If one divides the Liouville operator into two parts, iL = iL0+ iLep, where iL0
is the Liouville operator corresponding to the Hamiltonian H0, and iLep corresponds
to the HamiltonianHep, then the equality iL0Pβ(τ)ρq = 0 holds. Consequently, the col-
lision integral (9.37) in the Born approximation in the scattering theory can be written
as

I = −βk

0

∫−∞ dt1e
ϵt1

1

∫
0

dτSp{Ṗα(ep)eiL0t1 iLepPβ(τ)ρq}. (9.38)
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It is worth noting that as far as the second-order explicit incoming interaction Hep in
the expression (9.38) has already been taken, the projection operators are omitted.
Otherwise, there would be a necessity to retain terms of the fourth and even higher
powers in the electron–phonon interaction Hamiltonian, when account is taken of
these projection operators.

Next,we return again to themomentumbalance equation (9.25) to establish a rela-
tionship between the quantity I in the expression (9.38) and phenomenological char-
acteristics. Based on the phenomenological relations, the momentum balance equa-
tion for a stationary case can be represented as

enEα = ⟨P
α⟩
τ
, ⟨Pα⟩ = nmVα,

where τ is the momentum relaxation time of non-equilibrium electrons. Using the re-
lations (9.25), (9.38) and (9.29), and the above definition of the relaxation time τ, one
is led to

1
τ
= −

βk
nm

0

∫−∞ dt1e
ϵt1

1

∫
0

Sp{Ṗα(ep)eiL0t1 iLepPβ(τ)ρq} dτ. (9.39)

The expression (9.39) determines themomentum relaxation time of the non-equilibri-
um electrons. At the end of Chapter 8, we dwelled in detail on the method of calculat-
ing non-equilibrium correlation functions and showed that the result obtained above
gives the same expression for the inverse relaxation time as the kinetic equation.

Thus, we have demonstrated that the use of the master equation for the quasi-
equilibrium distribution allows one to effectively solve problems to compute kinetic
coefficients of strong non-equilibrium systems by applying the quantum-statistical
approach.

9.3 Problems to Chapter 9

9.1. Show that the master equation (9.24) and the average momentum balance equa-
tion built with the help of the former (9.25) are not invariant under the time re-
versal operation.

9.2. If a system’s Hamiltonian is time-independent, the temporal evolution of an op-
erator A is given by A(t) = exp{iLt}A.
Write downa similar expression for a time-dependentHamiltonianof the system.

9.3. Verify the identities of the Robertson projection operator

Pq(t)A =∑
n

δρq(t)
δ⟨Pn⟩t

Sp{PnA} :

P
2
q(t)A = Pq(t)A; Pq(t)(1 − Pq(t))A = 0.
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9.4. The entropy operator for a system of phonons and conduction electrons having
the average drift momentum takes the form

S = ϕ + βkHe + βHp − βkP
αVα − βζN .

What is the projectionPq(t)Pβ, where Pβ is the total momentum of the electronic
system?

9.5. Demonstrate that there is another way to reduce the collision integral (9.31),

I = βk

0

∫−∞ dt1e
ϵt1

1

∫
0

dτ × Sp{PαiLe(1−Pq)iLt1 [1 − Pq]iLP
β(τ)ρ0q}V

β,

to themore convenient form for further calculations. Indeed, since iL = iL0+ iLep
and the entropy operator does not contain any interactions, then iLPβ(τ)ρ0q =
iLepPβ(τ)ρ0q . Then the collision integral (9.31) can be written in the form

I = −βk

0

∫−∞ dt1e
ϵt1

1

∫
0

dτSp{Ṗα(ep)e(1−Pq)iLt1 [1 − Pq]iLepP
β(τ)ρ0q}V

β.

Argue that if no higher than second-order summands are kept in the electron–
phonon interaction, the summand PqiLepPβ(τ)ρ0q in the last expression can be
neglected in the Born approximation in scattering theory.
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