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david fisher

INTRODUCTION

The impact of the work and ideas of Gregory Margulis on modern mathemat-
ics is broad, deep, and profound. Margulis’s work developed and explored key
connections between ergodic theory, Lie theory, geometry, and number theory
that have had a tremendous impact on mathematics. The goal of this volume
is to provide the reader with an overview of many of the areas in which Mar-
gulis made contributions. His contributions range from deep insights into the
structure of discrete subgroups of Lie groups that play a key role in many geo-
metric topics to compelling contributions to homogeneneous dynamics that
played a key role in making it an essential tool for number theory. Instead of
emphasizing the applications tomany fields ofmathematics that can be found
in the individual contributions, the aim of this introduction will be to point to
the unity of the area defined byMargulis’s contributions. This field still lacks a
good name, but the best one we know of was proposed by Francois Ledrappier
who termed the area ergodic geometry.
We now provide an overview of the parts and chapters of the book. This lays

down for the reader a rough map of the larger area of research. At the end of
the introduction we will point to several developments both recent and older
that tie together the disparate parts of this volume and that illustrate some
essential unities in Margulis’s work.
The book is organized into four main parts. The first concerns arithmetic-

ity, superrigidity, and normal subgroups for lattices in Lie groups. The first
chapter in that part, by Fisher, is a survey of developments stemming from
Margulis’s seminal work in the 1970s with some emphasis on open questions
and problems. The other two contributions to this part are modern reimag-
inings of Margulis’s proofs of two major results. The first, by Bader and

David Fisher. Department of Mathematics. Indiana University Bloomington, IN 47405
fisherdm@indiana.edu
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2 /david fisher

Furman, gives a new proof of Margulis’s superrigidity theorem in terms of a
new language of algebraic representations or gates discovered by those authors.
The second, by Brown, Rodriguez Hertz, and Wang, gives a new proof of
the normal subgroup theorem, or at least the half of that result that depends
on a theorem about factors of actions [Mar5]. The original proof of Margulis
was in terms of invariant sub σ -algebras; the new one is in terms of invari-
ant measures. All of these ideas provide additional deep connections to the
field of homogeneous dynamics discussed below. In particular homogeneous
dynamics and Margulis’s work in that area play a key role in the solution of
Zimmer’s conjecture by Brown, Fisher, and Hurtado and in results connect-
ing arithmeticity to totally geodesic surfaces by both Margulis-Mohammadi
and Bader, Fisher, Miller, and Stover [BFH1, BFH2, MM, BFMS1, BFMS2].
The second part of the book contains two additional chapters on discrete

subgroups. The first, by Danciger, Drumm, Goldman, and Smilga, concerns
subgroups of affine transformations acting properly on affine space. Much
work in this area was motivated by either Auslander’s conjecture that compact
complete affine manifolds are solvmanifolds or by Margulis’s construction of
examples that show that the word compact is necessary in that conjecture. The
next chapter, by Gelander, Glasner, and Soifer, concerns maximal subgroups.
Again this area was pioneered by the construction by Margulis and Soifer of
infinite index maximal subgroups in certain higher rank lattices, answering a
question of Platonov’s. The two chapters in this part are unified because both
evolve fromwork of Margulis andMargulis-Soifer in which a use of ping pong
to produce discrete subgroups was developed [MS1, MS2, Mar6].
The third part contains a relatively diverse set of three chapters, all con-

cerned in one way or another with representation theory and spectral theory.
An initial chapter by Benoist and Kobayashi determines exactly what homoge-
neous spaces for simple Lie groups give rise to tempered representations. As
pointed out in their introduction, tempered representations play a key role
in Margulis’s work on a wide range of topics, ranging from the construc-
tion of expanders to homogeneous dynamics to geometry of homogeneous
spaces. The second contribution to this part is a survey on recent progress
on expanders by Breuillard and Lubotzky. Margulis’s construction of explicit
families of expanders was a breakthrough that eventually led to dramatic new
connectionswith additive combinatorics and other areas of geometry and anal-
ysis [Mar3]. The last chapter in this part is an essay by Karlsson exploring
a novel sense of metric spectral theory. While the motivations for this the-
ory are manifold, some motivations come from Karlsson’s early work with
Margulis on multiplicative ergodic theorems, work that was itself motivated
by Margulis’s work on superrigidity [Mar4, KM1].
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The final, and largest, part of this book is devoted to homogeneous dynam-
ics. Margulis’s work on this topic spans many individual contributions.
Probably foremost among them is his solution to the Oppenheim conjec-
ture [Mar7]. This part opens with a survey by Beresnevich and Kleinbock,
surveying the topic of Diophantine approximation on manifolds with empha-
sis on approaches from homogeneous dynamics that were first pioneered
by Kleinbock and Margulis [KM2]. The second contribution, by Eskin and
Mozes, describes the role of Margulis functions in homogeneous dynamics
and beyond. The first construction of these functions was given in the paper of
Eskin, Mozes, and Margulis [EMM] and they have been applied in many areas
of dynamics as described in this contribution. The next chapter, by Linden-
strauss, gives an update on the important topic ofmeasure rigidity for diagonal
actions. A major focus in this area has been the conjectures of Furstenberg,
Katok-Spatzier, and Margulis on classification of invariant measures. Despite
the main conjectures remaining very much open, known special cases pro-
vide numerous applications to important questions in number theory. This
essay is followed by two on the currently very hot topic of effective results in
homogeneous dynamics. This area was pioneered by Margulis in joint work
with Einsiedler and Venkatesh and also Mohammadi [EMV, EMMV]. The
first, by Einsiedler and Mohammadi, gives a survey of recent results in this
area. The second, by Einsiedler and Wirth, illustrates proof techniques in any
interesting special case. This part and the book close with a survey by Hee
Oh of another interesting and new topic, the development of homogeneous
dynamics in infinite covolume with a particular focus on discrete subgroups
of SL(2,C).
One key idea of Margulis’s that indicates the unity of large parts of the work

presented here is the nondivergence of unipotent orbits [Mar1]. Margulis orig-
inally developed this idea to prove that nonuniform lattices in higher rank
semisimple Lie groups were arithmetic [Mar2]. Later he used it in his work
proving the Oppenheim conjecture in number theory using techniques from
homogeneous dynamics [Mar7]. This key result played a central role in his the-
orems, which an outsider might think of as belonging to two different areas.
This idea is central to the theory, with versions, variants, and strengthening
playing a key role inmany of the chapters on homogeneous dynamics but also
in several rigidity results in the first part of the book.
The connections between the different parts and chapters are too numer-

ous to list here, as are the connections to other areas of mathematics, but we
will point to a few. Both the first chapter (by Fisher) and the last chapter (by
Oh) have some focus on recent results about totally geodesic submanifolds in
hyperbolic manifolds. Our understanding of these submanifolds is informed
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by combinations of ideas from rigidity theory and homogeneous dynamics.
In addition, the contribution of Bader and Furman, which is used in some
of this work, brings into focus a fact that was hidden in previous proofs of
superrigidity—namely, that a key step is that objects invariant under some
group T are also invariant under the normalizer N(T) of T . A similar idea in
a very different context plays a prominent role in Margulis’s solution of the
Oppenheim conjecture, work that features here in the contributions of Eskin
and Mozes, Einsiedler and Mohammadi, and Einsiedler and Wirth. This idea
also plays a key role in many other results in homogeneous dynamics, notably
including Ratner’s proof of her measure classification for groups generated
by unipotent elements.
An additional connection between rigidity theory and homogeneous

dynamics is the focus of the chapter by Brown, Rodriguez Hertz, and Wang.
They give an alternate proof of Margulis’s normal subgroups theorem, where
a key step is written in terms of classifying invariant measures. This brings
this result into closer contact with the ideas that permeate the part on homoge-
neous dynamics. Most particularly there is a central connection to the rigidity
of abelian actions that is the focus of Lindenstrauss’s contribution. Similar
ideas appear in the resolution of Zimmer’s conjecture that is discussed in
Fisher’s contribution.
Other deep connections visible here are older. For example, tempered rep-

resentations as discussed by Benoist and Kobayashi play an important role in
proving exponential decay of matrix coefficients. This is then central in many
results in homogeneous dynamics.
The casual reader of this volume will find a sequence of introductions to

various individual subfields. But the careful reader of this book will findmany
other interesting juxtapositions and connections between the different contri-
butions. We hope that this will lead to both a greater understanding of existing
work and to new insights into the areas pioneered by Margulis.
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SUPERRIGIDITY, ARITHMETICITY, NORMAL
SUBGROUPS: RESULTS, RAMIFICATIONS,
AND DIRECTIONS

To Grisha Margulis for revealing so many vistas

Abstract. This essay points to many of the interesting ramifications of Margulis’s
arithmeticity theorem, superrigidity theorem, and normal subgroup theorem. We
provide some history and background, but the main goal is to point to interest-
ing open questions that stem directly or indirectly from Margulis’s work and its
antecedents.

1 Introduction

We begin with an informal overview of the events that inspire this essay and
the work it describes. For formal definitions and theorems, the reader will
need to look into later sections, particularly section 2.
During a few years in the early 1970s, Gregory Margulis transformed the

study of lattices in semisimple Lie groups. In this section and the next, G
is a semisimple Lie group of real rank at least 2 with finite center, and �
is an irreducible lattice in G. For brevity we will refer to these lattices as
higher rank lattices. The reader new to the subject can always assume G is
SL(n,R) with n> 2. We recall that a lattice is a discrete group where the vol-
ume of G/� is finite and that � is called uniform if G/� is compact and
nonuniform otherwise. In 1971, Margulis proved that nonuniform higher
rank lattices are arithmetic—that is, that they are commensurable to the inte-
ger points in some realization ofG as a matrix group [Mar2]. The proof used a
result Margulis had proven slightly earlier on the nondivergence of unipotent
orbits in the space G/� [Mar1]. This result on nondivergence of unipotent
orbits has since played a fundamental role in homogeneous dynamics and its
applications to number theory, a topic treated in many other essays in this
volume. Margulis’s arithmeticity theorem had been conjectured by Selberg
and Piatetski-Shapiro. Piatetski-Shapiro had also conjectured the result on

David Fisher. Department of Mathematics. Indiana University Bloomington, IN 47405
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nondivergence of unipotent orbits [Sel]. Both Selberg and Piatetski-Shapiro
had also conjectured the arithmeticity result for uniform lattices, but it was
clear that that case requires a different proof, since the space G/� is compact
and questions of divergence of orbits do not make sense.
In 1974, Margulis resolved the arithmeticity question in truly surprising

manner. He proved his superrigidity theorem, which classified the linear rep-
resentations of a higher rank lattice � over any local field of characteristic
zero and used this understanding of linear representations to prove arith-
meticity [Mar3]. Connections between arithmetic properties of lattices and the
rigidity of their representations had been observed earlier by Selberg [Sel].
Important rigidity results had been proven in the local setting by Selberg,
Weil, Calabi-Vesentini, and others and in a more global setting by Mostow
[Sel, Wei2, Wei1, Cal, CV, Mos1]. Despite this, the proof of the superrigid-
ity theorem and this avenue to proving arithmeticity were quite surprising
at the time. The proof of the superrigidity theorem, though inspired by
Mostow’s study of boundarymaps in his rigidity theorem, was also quite novel
in the combination of ideas from ergodic theory and the study of algebraic
groups.
Four years after proving his superrigidity and arithmeticity theorems, Mar-

gulis proved another remarkable theorem about higher rank lattices, the
normal subgroup theorem. Margulis’s proofs of both superrigidity and the
normal subgroup theorem were essentially dynamical and cemented ergodic
theory as a central tool for studying discrete subgroups of Lie groups.
The main goal of this chapter is to give some narrative of the repercussions

and echoes of Margulis’s arithmeticity, superrigidity, and normal subgroup
theorems and the related results they have inspired in various areas of math-
ematics with some focus on open problems. To keep true to the spirit of
Margulis’s work, some emphasis will be placed on connections to arithmetic-
ity questions, but wewill also feature some applications to settingswhere there
is no well-defined notion of arithmeticity. For a history of the ideas that led
up to the superrigidity theorem, we point the reader to a survey written by
Mostow at the time [Mos4] and to a discussion of history in another survey by
this author [Fis2, section 3].
In the next section of this essay we give precise statements of Margulis’s

results. Afterward we discuss various later developments with an emphasis on
open questions. We do not attempt to give a totally comprehensive history. In
some cases, wemention results without giving full definitions and statements,
simply in order to indicate the full breadth and impact of Margulis’s results
without ending up with an essay several times the length of the current one.
Wemostly refrain from discussing proofs or only discuss them in outline. For
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a modern proof of superrigidity theorems, we refer the reader to the paper of
Bader and Furman in this volume [BF3]. The proof is certainly along the lines
of Margulis’s original proof, but the presentation is particularly elegant and
streamlined.

2 Arithmeticity and superrigidity: Margulis’s results

For the purposes of this essay, we will always consider semisimple Lie groups
with finite center and use the fact that these groups can be realized as algebraic
groups. We will also have occasion to mention algebraic groups over other
local fields, but we will keep the main focus on the case of Lie groups for sim-
plicity. Given a semisimple Lie group G, the real rank of G is the dimension
of the largest subgroup of G diagonalizable over R.
Given an algebraic group G defined over Q, one can consider the integer

points of the group, which we will denote by G(Z). Arithmetic groups are a
(slight) generalization of this construction. We say two subgroupsA1 andA2 of
G are commensurable if their intersection is finite index in each of them—that
is, [A1 ∩A2 :Ai]<∞ for i= 1, 2.
A lattice�<G is arithmetic if the following holds: there is another semisim-

ple algebraic Lie group G′ defined over Q with a homomorphism π :G′ →G
with ker(π)=K, a compact group such that � is commensurable to π(G(Z)).
A lattice � in a product of groups G1×G2 is irreducible if the projection to

each factor is indiscrete. In most contexts this is equivalent to � not being
commensurable to a product of a lattice �1 in G1 and a lattice �2 in G2.
Irreducibility for a lattice in a product with more than two factors is defined
similarly. We can now state the Margulis arithmeticity theorem formally.

THEOREM 2.1 (Margulis arithmeticity).
Let G be a semisimple Lie group of real rank at least 2 and �<G an irreducible
lattice; then � is arithmetic.

We will now state the superrigidity theorems and then briefly sketch the
reduction of arithmeticity to superrigidity. This requires considering repre-
sentations over fields other than R or C—namely, representations of finite
extensions of the p-adic fieldsQp. Together, these are all the local fields of char-
acteristic zero. Superrigidity and arithmeticitiy are also known for groups over
local fields of positive characteristic as both source and target by combined
works of Margulis and Venkataramana and for targets groups over valued
fields that are not necessarily local by the work of Bader and Furman in this
volume [Mar5, Ven, BF3].
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To state the superrigidity theorem cleanly, we recall a definition. Given a
lattice �<G and topological group H, we say a homomorphism ρ :�→H
almost extends to a homomorphism of G if there are representations ρG :G→H
and ρ′ :�→H such that ρG is continuous, ρ′(�) is precompact and com-
mutes with ρG(G), and ρ(γ )= ρG(γ )ρ′(γ ) for all γ in�. We can now state the
strongest form of Margulis’s superrigidity theorem that holds in our context:

THEOREM 2.2 (Margulis superrigidity).
Let G be a semisimple Lie group of real rank at least 2, let �<G be an irreducible
lattice, and let k be a local field of characteristic zero. Then any homomorphism
ρ :�→GL(n, k) almost extends to a homomorphism of G.

In many contexts this theorem is stated differently, with assumptions on
the image of ρ. Assumptions often are chosen to allow ρ to extend toG rather
than almost extend or to extend on a subgroup of finite index. These assump-
tions are typically that ρ(�) has simple Zariski closure and is not precompact,
which guarantees extension on a finite index subgroup, and that the Zariski
closure is center-free to guarantees an extension on all of �. In many con-
texts where Margulis’s theorem is generalized beyond linear representations
to homomorphisms tomore general groups, only this type of special case gen-
eralizes. The version we state here is essentially contained in [Mar5], at least
when G has finite center. The case of infinite center is clarified in [FM]. We
will raise some related open questions later.
We sketch a proof of arithmeticity from superrigidity; for more details see,

for example, [Zim4, chapter 6.1] or [Mar5, chapter IX]. First, notice that since
� is finitely generated, the matrix entries of � lie in a finitely generated field k
that is an extension ofQ. AssumeG is simple and center-free. Then Theorem
2.2 implies that every representation of � either extends to G or has bounded
image. Note that Aut(C) acts transitively on the set transcendental numbers.
So if we assume k contains transcendentals, we can take the defining repre-
sentation of � and compose it with a sequence of automorphisms of C that
send the trace of the image of some particular γ to infinity. It is obvious that
this can’t happen in a representation with bounded image; it is also not hard
to check that it cannot happen in one that extends to G. This means that k is
a number field, so �⊂G(k) and we want to show that �⊂G(Ok). To see that
�⊂G(Ok), assume not. Then there is a prime p of k such that the image of
� in G(kp) is unbounded where kp is the completion of k for its p-adic valu-
ation. But this contradicts Theorem 2.2 since this unbounded representation
should almost extend to G with ρG nontrivial and continuous and such ρG
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cannot exist since G(kp) is totally disconnected. To complete the proof, we
want to show that � is commensurable to G(Ok). Assuming that k is of mini-
mal possible degree overQ, we establish this by showing thatG(Ok) is already
a lattice in G. We do this by showing that for any Galois automorphism σ of
k other than the identity, the map �→G(σ (Ok)) obtained by composing the
identity with σ has bounded image. This follows from the superrigidity theo-
rem again simply because Galois conjugation does not extend to a continuous
automorphism of the real points of G.
We mention next one additional application of the superrigidity theorem.

Let V be a vector space, and assume a higher rank lattice � acts on V linearly.
A natural object of study with many applications is the cohomology of � with
coefficients in V . The first cohomology is particularly useful for applications.

THEOREM 2.3 (Margulis first cohomology).
Let � be a higher rank lattice and V a vector space on which � acts linearly; then
H1(�,V)= 0.

Let H be the Zariski closure of � in GL(V). The proof results from realizing
that cocycles valued in V correspond to representation into H�V , applying
superrigidity to see that all these representations must be conjugate into H,
and realizing that this implies the cocycle is trivial. An important part of this
argument is that we can apply superrigidity to the groupH�V , which is nei-
ther semisimple nor reductive, since V is contained in the unipotent radical.
We remark that if the image of � in GL(V) is precompact and all simple fac-
tors of G have higher rank, the result follows from property (T) for �. There
are other ways of computing H1(�,V) using techniques from geometry and
representation theory, but as far as this author knows, none of these quite
recover the full statement of Theorem 2.3 in the case of nonuniform lattices;
see, for example, [BW]. These geometric and representation theoretic meth-
ods can also be used to show vanishing theorems concerning higher degree
cohomology that are not accessible by Margulis’s methods.
Margulis also proved a variant of superrigidity and arithmeticity for lattices

with dense commensurators. For a subgroup �<G we define

CommG(�)={g ∈G | g�g−1 and � are commensurable}.

The next theorem was proved by Margulis at essentially the same time as the
superrigidity theorem for higher rank lattices [Mar3]. The proof works inde-
pendently of the rank of the ambient noncompact simple group G, but given
Theorem 2.2, it is most interesting when the rank of G is 1.
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THEOREM 2.4 (Margulis commensurator superrigidity).
Let G be a semisimple Lie group without compact factors, let �<G be an irre-
ducible lattice, and let �<CommG(�) be dense in G and k a local field of
characteristic zero. Then any homomorphism ρ :�→GL(n, k) almost extends to
a homomorphism of G.

As before Margulis obtained a corollary concerning arithmeticity, which again
is most interesting when the rank of G is 1.

COROLLARY 2.5 (Margulis commensurator arithmeticity). Let G be a
semisimple Lie group, let �<G be an irreducible lattice, and let �<CommG(�)

be dense in G; then � is arithmetic.

The argument that Theorem2.4 implies Corollary 2.5 is essentially the same as
the argument that Theorem 2.2 implies Theorem 2.1. The converse to Corol-
lary 2.5, that the commensurator of an arithmetic lattice is dense, was already
known at the time of Margulis’s work and is due to Borel [Bor].
An important related theorem ofMargulis is the normal subgroup theorem.

We state here the version for lattices in Lie groups [Mar4].

THEOREM 2.6.
Let G be a semisimple real Lie group of real rank at least 2 and �<G an irreducible
lattice. Then any normal subgroup N �� is either finite or finite index.

One can view this statement as being about some kind of superrigidity of
homomorphisms of � to discrete groups: either the representation is almost
faithful or the image is bounded. Knowing Theorem 2.1, Theorem 2.6 can
also be viewed as an arithmeticity theorem saying that any infinite normal
subgroup of a higher rank arithmetic lattice is still an arithmetic lattice. The
proof of Theorem 2.6 is quite different from the proof of Theorem 2.2, but
there is a long-standing desire to unify these phenomena in the context of
higher rank lattices.

3 Superrigidity and arithmeticity in rank 1

The purpose of this section is to discuss lattices in rank 1 simple Lie groups.
We discuss both known rigidity results and known constructions and raise
some, mostly long-standing, questions. The rank 1 Lie groups are the isometry
groups of various hyperbolic spaces:
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(1) The group SO(n, 1) is locally isomorphic to the isometry group of the
n-dimensional hyperbolic space H

n.
(2) The group SU(n, 1) is locally isomorphic to the isometry group of the

n-(complex)-dimensional complex hyperbolic space CH
n.

(3) The group Sp(n, 1) is locally isomorphic to the isometry group of the
n-(quaternionic)-dimensional quaternionic hyperbolic space HH

n.
(4) The group F−204 is the isometry group of the two-dimensional Cayley
hyperbolic plane OH

2.

Exceptional isogenies between Lie groups yield isometries between some low-
dimensional hyperbolic spaces—namely, that H2=CH

1, that HH
1=H

4, and
that OH

1=H
8.

The strongest superrigidity and arithmeticity results for rank 1 groups gen-
eralize Margulis’s results completely to lattices in Sp(n, 1) and F−204 . There are
also numerous interesting partial results for lattices in the other two families
of rank 1 Lie groups SO(n, 1) and SU(n, 1).
At the time of Margulis’s proof of arithmeticity, nonarithmetic lattices were

only known to exist in SO(n, 1)when 2≤ k≤ 5. No nonarithmetic lattices were
known in the other rank 1 simple groups. Margulis asked about the other cases
in [Mar3]. In this section we will also discuss known results, including other
criteria for arithmeticity of lattices in rank 1 groups and known examples of
nonarithmetic lattices.

3.1 QUATERNIONIC AND CAYLEY HYPERBOLIC SPACES. In this
subsection we describe the developments that proved that all lattices in
Sp(n, 1) for n> 1 and F−204 are arithmetic. The first major result in this direc-
tion, concerning rigidity of quaternionic and Cayley hyperbolic lattices, was
proved by Corlette [Cor2].

THEOREM 3.1 (Corlette).
Let G=Sp(n, 1) for n> 1 or G=F−204 and �<G be a lattice. Let H be a real sim-
ple Lie group with finite center and ρ :�→H a homomorphism with unbounded
Zariski dense image. Then ρ almost extends to G.

REMARK 3.2.

(1) When n= 1, the group Sp(1, 1) is isomorphic to SO(4, 1).
(2) In this setting, one can replace that “ρ almost extends” with the
statement that “ρ extends on a subgroup of finite index.”

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



16 /david fisher

The proof of Corlette’s theorem has two main steps. The first is the existence
of a �-equivariant harmonic map from HH

n or OH
2 to H/K, the symmetric

space associated toH. This step is contained in earlier work of Corlette or Don-
aldson; see also Labourie [Cor1, Don, Lab1]. Corlette then proves a Bochner
formula that allows him to conclude the harmonic map is totally geodesic,
from which the result follows relatively easily. This work is inspired by earlier
work of Siu that proved generalizations of Mostow rigidity using harmonic
map techniques [Siu]. The idea of using harmonicmaps to prove superrigidity
theorems was well-known at the time of Corlette’s work and is often attributed
to Calabi.
Following Corlette’s work, Gromov and Schoen developed the existence

and regularity theory of harmonic maps to buildings in order to prove the
following [GS]:

THEOREM 3.3 (Gromov-Schoen).
Let G=Sp(n, 1) for n> 1 or G=F−204 and �<G be a lattice. Let H be a simple
algebraic group over a non-Archimedean local field with finite center and let ρ :�→
H be a homomorphism with Zariski dense image. Then ρ has bounded image.

The main novelty in the work of Gromov and Schoen is to prove existence of a
harmonic map into certain singular spaces with enough regularity of the har-
monic map to apply Corlette’s Bochner inequality argument. The harmonic
map is to the Euclidean building associated toH by Bruhat and Tits [BT], and
it is easy to see that there are no totally geodesic maps from hyperbolic spaces
to Euclidean buildings.
Combining these two results with arguments of Margulis’s deduction of

arithmeticity from superrigidity, we can deduce the following:

THEOREM 3.4.
Let G=Sp(n, 1) for n> 1 orG=F−204 and�<Gbe a lattice; then� is arithmetic.

Wemention here a related result of Bass-Lubotzky that answered a question
of Platonov [BL, Lub]. Namely, Platonov asked if any linear group that satis-
fied the conclusion of the superrigidity theorem was necessarily an arithmetic
lattice. Bass and Lubotzky produce counter-examples as subgroups�<�×�
such that diag(�)<�, where �<G is a lattice andG is either F−204 or Sp(n, 1)
for n> 1. The proofs involve a number of new ideas but depend pivotally on
the work of Corlette and Gromov-Schoen to prove the required superrigidity
results. In the examples produced by Bass and Lubotzky, the proof that � is
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superrigid is always deduced from the known superrigidity of diag(�). The
fact that � is a hyperbolic group in the sense of Gromov plays a key role in
constructing �.

QUESTION 3.5. Are there other superrigid nonlattices? Can one find a super-
rigid nonlattice that is Zariski dense in higher rank simple Lie groups? Can one
find a superrigid nonlattice that does not contain a superrigid lattice? Can one
find a superrigid nonlattice that is a discrete subgroup of a simple noncompact Lie
group?

3.2 RESULTS IN REAL AND COMPLEX HYPERBOLIC
GEOMETRY.

3.2.1 Nonarithmetic lattices: Constructions and questions

To begin this subsection I will discuss the known construction of nonarith-
metic lattices in SO(n, 1) and SU(n, 1). To begin slightly out of order, we
emphasize one of the most important open problems in the area, borrowing
wording from Margulis in [Mar6].

QUESTION 3.6. For what values of n does there exist a nonarithmetic lattice in
SU(n, 1)?

The answer is known to include 2 and 3. The first examples were con-
structed by Mostow in [Mos2] using reflection group techniques. The list
was slightly expanded by Mostow and Deligne using monodromy of hyper-
geometric functions [DM, Mos3]. The exact same list of examples was redis-
covered/reinterpreted by Thurston in terms of conical flat structures on the
2 sphere [Thu]; see also [Sch]. There is an additional approach via algebraic
geometry suggested by Hirzebruch and developed by him in collaboration
with Barthels andHöfer [BHH]. More examples have been discovered recently
by Couwenberg, Heckman, and Looijenga using the Hirzebruch-style tech-
niques and by Deraux, Parker, and Paupert using complex reflection group
techniques [CHL, DPP1, DPP2, Der]. But as of this writing there are only
22 commensurability classes of nonarithmetic lattices known in SU(2, 1)
and only 2 known in SU(3, 1). An obvious refinement of Question 3.6 is as
follows:

QUESTION 3.7. For what values of n do there exist infinitely many commensu-
rability classes of nonarithmetic lattice in SU(n, 1)?
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We remark here that the approach via conical flat structures was extended by
Veech and studied further by Ghazouani and Pirio [Vee, GP2]. Regrettably,
this approach does not yield more non-arithmetic examples. It seems that
the reach of this approach is roughly equivalent to the reach of the approach
via monodromy of hypergeometric functions; see [GP1]. There appears to be
some consensus among experts that the answer to both Questions 3.6 and 3.7
should be “for all n”; see, for example, [Kap1, conjecture 10.8]. Margulis’s own
wording as used in Question 3.5 is more guarded.
At the time of Margulis’s work the only known nonarithmetic lattices in

SO(n, 1) for n> 2 were constructed by Makarov and Vinberg by reflection
groupmethods [Mak, Vin1]. It is known bywork of Vinberg that thesemethods
will only produce nonarithmetic lattices in dimension less than 30 [Vin2]. The
largest known nonarithmetic lattice produced by these methods is in dimen-
sion 18 by Vinberg, and the full limits of reflection group constructions is not
well understood [Vin3]. We refer the reader to [Bel] for a detailed survey. The
following question seems natural:

QUESTION 3.8. In what dimensions do there exist lattices in SO(n, 1) or
SU(n, 1) that are commensurable to nonarithmetic reflection groups? In what
dimensions do there exist lattices in SO(n, 1) or SU(n, 1) that are commensurable
to arithmetic reflection groups?

For the real hyperbolic setting, there are known upper bounds of 30 for
nonarithmetic lattices and 997 for any lattices. The upper bound of 30 also
applies for arithmetic uniform hyperbolic lattices [Vin2, Bel]. In the complex
hyperbolic setting, there seem to be no known upper bounds, but a similar
question recently appeared in, for example, [Kap1, question 10.10]. For amuch
more detailed survey of reflection groups in hyperbolic spaces, see [Bel].
A dramatic result of Gromov and Piatetski-Shapiro vastly increased our

stock of nonarithmetic lattices in SO(n, 1) by an entirely new technique [GPS]:

THEOREM 3.9 (Gromov, Piatetski-Shapiro).
For each n there exist infinitely many commensurability classes of nonarithmetic
uniform and nonuniform lattices in SO(n, 1).

The construction in [GPS] involves building hybrids of two arithmetic
manifolds by cutting and pasting along totally geodesic codimension 1 sub-
manifolds. The key observation is that noncommensurable arithmetic man-
ifolds can contain isometric totally geodesic codimension 1 submanifolds.
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This method has been extended and explored by many authors for a vari-
ety of purposes; see, for example, [Ago1], [BT], [ABB+2] and [GL]. It has
also been proposed that one might build nonarithmetic complex hyperbolic
lattices using a variant of this method, though that proposal has largely
been stymied by the lack of codimension 1 totally geodesic 1 submanifolds.
The absence of codimension 1 submanifolds makes it difficult to show that
attempted “hybrid" constructions yield discrete groups. For more information
see, for example, [Pau], [PW], [Wel], and [Kap1, conjecture 10.9]. We point out
here that the results of Esnault and Groechenig discussed below as Theorem
3.19 imply that the “inbreeding" variant of Agol and Belolipetsky-Thomson
[Ago1, BT] cannot produce nonarithmetic manifolds in the complex hyper-
bolic setting even if the original method of Gromov and Piatetski-Shapiro
does.
In [GPS], Gromov and Piatetski-Shapiro ask the following intriguing ques-

tion:

QUESTION 3.10. Is it true that, in high enough dimensions, all lattices in
SO(n, 1) are built from sub-arithmetic pieces?

The question is somewhat vague, and sub-arithmetic is not defined in [GPS],
so a more precise starting point is as follows:

QUESTION 3.11. For n> 3, is it true that any nonarithmetic lattice in �<
SO(n, 1) intersects some conjugate of SO(n− 1, 1) in a lattice?

This is equivalent to asking whether every finite volume nonarithmetic hyper-
bolic manifold contains a closed codimension 1 totally geodesic submanifold.
Both reflection group constructions and hybrid constructions contain such
submanifolds. It seems the consensus in the field is that the answer to this
question should be no, but we know of no solid evidence for that belief.
It is also not known to what extent the hybrid constructions and reflection
group constructions build distinct examples. Some first results, indicating
that the classes are different, are contained in [FLMS, theorem 1.7] and in
[Mil, theorem 1.5].
It is worth mentioning that our understanding of lattices in SO(2, 1) and

SO(3, 1) is both more developed and very different. Lattices in SO(2, 1) are
completely classified, but there are many of them, with the typical isomor-
phism class of lattices having many nonconjugate realizations as lattices,
parameterized by moduli space. In SO(3, 1), Mostow rigidity means there
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are no moduli spaces. But Thurston-Jorgensen hyperbolic Dehn surgery still
allows one to construct many “more" examples of lattices, including ones that
yield a negative answer to Question 3.11. There remains an interesting sense
in which the answer to Question 3.10 could still be yes, even for dimension 3.

QUESTION 3.12. Can every finite volume hyperbolic 3-manifold be obtained as
Dehn surgery on an arithmetic manifold?

To clarify the question, it is known that every finite volume hyperbolic 3-mani-
fold is obtained as a topological manifold by Dehn surgery on some cover of
the figure 8 knot complement, which is known to be the only arithmetic knot
complement [HLM, Rei1]. What is not known is whether one can obtain the
geometric structure on the resulting 3-manifold as geometric deformation of
the complete geometric structure on the arithmetic manifold on which one
performs Dehn surgery.

3.2.2 Arithmeticity, superrigidity, and totally geodesic submanifolds

This section concerns recent results by Bader, this author, Miller, and Stover,
motivated by questions of McMullen and Reid in the case of real hyperbolic
manifolds. Throughout this section a geodesic submanifold will mean a closed,
immersed, totally geodesic submanifold. (In fact all results can be stated also
for orbifolds but we ignore this technicality here.) A geodesic submanifold is
maximal if it is not contained in a proper geodesic submanifold of smaller
codimension.
For arithmetic manifolds, the presence of one maximal geodesic subman-

ifold can be seen to imply the existence of infinitely many. The argument
involves lifting the submanifold S to a finite cover M̃ where an element λ
of the commensurator acts as an isometry. It is easy to check that λ(S) can
be pushed back down to a geodesic submanifold ofM that is distinct from S.
This was perhaps first made precise in dimension 3 by Maclachlan-Reid and
Reid [MR, Rei2], who also exhibited the first hyperbolic 3-manifolds with no
totally geodesic surfaces.
In the real hyperbolic setting the main result from [BFMS1] is as follows:

THEOREM 3.13 (Bader, Fisher, Miller, Stover).
Let � be a lattice in SO0(n, 1). If the associated locally symmetric space contains
infinitely many maximal geodesic submanifolds of dimension at least 2, then � is
arithmetic.
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REMARK 3.14.
(1) The proof of this result involves proving a superrigidity theorem for cer-

tain representations of the lattice in SO(n, 1). As the required conditions
become a bit technical, we refer the interested reader to [BFMS1]. The
superrigidity is proven in the language introduced in [BF3].

(2) At about the same time, Margulis and Mohammadi gave a different
proof for the case n= 3 and � cocompact [MM]. They also proved a
superrigidity theorem, but both the statement and the proof are quite
different from [BFMS1].

(3) A special case of this result was obtained a year earlier by this author,
Lafont, Miller, and Stover [FLMS]. There we prove that a large class
of nonarithmetic manifolds have only finitely many maximal totally
geodesic submanifolds. This includes all the manifolds constructed by
Gromov and Piatetski-Shapiro but not the examples constructed by Agol
and Belolipetsky-Thomson.

In the context of Margulis’s work it is certainly worth mentioning that The-
orem 3.13 has a reformulation entirely in terms of homogeneous dynamics
and that homogenenous dynamics play a key role in the proof. It is also
interesting that a key role is also played by dynamics that are not quite homoge-
neous but that take place on a projective bundle over the homogeneous space
G/�.
Even more recently the same authors have extended this result to cover the

case of complex hyperbolic manifolds.

THEOREM 3.15 (Bader, Fisher, Miller, Stover).
Let n≥ 2 and�<SU(n, 1) be a lattice andM=CH

n/�. Suppose thatM contains
infinitelymanymaximal totally geodesic submanifolds of dimension at least 2. Then
� is arithmetic.

As before, this is proven using homogeneous dynamics, dynamics on a pro-
jective bundle over G/�, and a superrigidity theorem. Here the superrigidity
theorem is even more complicated than before and depends also on results of
Simpson and Pozzetti [Sim, Poz].
The results in this section provide new evidence that totally geodesic man-

ifolds play a very special role in nonarithmetic lattices and perhaps provide
some evidence that the conventional wisdom on Questions 3.11 and 3.6
should be reconsidered.
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3.2.3 Other superrigidity and arithmeticity results for lattices in SO(n, 1)
and SU(n, 1)

The combination of the results in the previous section and Margulis’s com-
mensurator superrigidity theorem, as well as questions in 3.2.1, raise the
following:

QUESTION 3.16. Let �<G be a lattice where G=SO(n, 1) or SU(n, 1). What
conditions on a representation ρ :�→GL(m, k) imply that ρ extends or almost
extends? What conditions on � imply that � is arithmetic?

For SU(n, 1)Margulis asks a similar, but more restricted, question [Mar6]. He
asks whether theremight be particular lattices in SU(n, 1)where superrigidity
holds without restrictions on ρ as in the higher rank, quaternionic hyperbolic
and Cayley hyperbolic cases.
A very first remark is that for many � as above it is known that there are sur-

jections of � on both abelian and nonabelian free groups. This suggests that
one might want to study faithful representations or ones with finite kernel,
though surprisingly very few known superrigidity results explicitly assume
faithfulness of the representation. The main counterexample to this is the fol-
lowing theorem of Shalom [Sha2]. We recall that for a discrete group � of a
rank 1 simple Lie group, δ(�) is the Hausdorff dimension of the limit set of
�. The limit set admits many equivalent definitions; see, for example, [Sha2]
for discussion.

THEOREM 3.17 (Shalom).
Let �<G be a lattice where G=SO(n, 1) or SU(n, 1). Let ρ :�→H be a dis-
crete, faithful representation where H is either SO(m, 1) or SU(m, 1). Then δ(�)≤
δ(ρ(�)).

Shalom actually proves a result for nonfaithful discrete representations as
well, relating the dimension of the limit set of the image and the kernel to
the dimension of the limit set of the lattice. Shortly after Shalom proved
the above theorem, Besson, Courtois, and Gallot proved that equality only
occurs in the case where the representation almost extends [BCG]. The meth-
ods of Besson, Courtois, and Gallot, the so-called barycenter mapping, have
been used in many contexts. The key ingredient in Shalom’s proofs, under-
standing precise decay rates of matrix coefficients, has not been exploited
nearly as thoroughly for applications to rigidity. For either Shalom’s tech-
niques or the barycenter map technique, the utility of the methods are
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currently limited by the requirement that the representation have discrete
image.
Relatively few other superrigidity or arithmeticity-type results are known

for real hyperbolic manifolds, but a plethora of other interesting phenom-
ena have been discovered in the complex hyperbolic setting. We begin with
some of the most recent, which involve a bit of a detour in a surprising
direction.
Simpson’s work on Higgs bundles and local systems focuses broadly on

the representation theory of π1(M), whereM is a complex projetive variety, or
more generally a complex quasi-projective variety [Sim]. This is related to our
concerns because whenG=SU(n, 1), thenM=K\G/� is a projective variety
when � is compact and quasi-projective when it is not. We say a representa-
tion ρ :�→H is rigid or infinitesimally rigid if the first cohomology H1(�, h)
vanishes where h is the Lie algebra of H. For G=SU(n, 1),H=G, and ρ the
defining representation ρ :�→H, the vanishing of this cohomology group is
a result of Calabi-Vesentini [CV]. We state Simpson’s main conjecture only in
the projective case to avoid technicalities [Sim]:

CONJECTURE 3.18. Let M be a projective variety and ρ :π1(M)→SL(n,C)
an infinitesimally rigid representation. Then ρ(�) is integral—that is, there
is a number field k such that ρ(π1(M)) is contained in the integer points
SL(n,Ok).

We state the conjecture for SL targets rather than GL targets to avoid a
technical finite determinant condition. Higher rank irreducible Kähler locally
symmetric spaces of finite volume provide examples where Simpson’s conjec-
ture follows from Margulis’s arithmeticity theorem. Recent work of Esnault
and Groechenig prove this result inmany cases [EG2, EG1]. In particular their
results have the following as a (very) special case:

THEOREM 3.19 (Esnault-Groechenig).
Let �<SU(n, 1) be a lattice with n> 1; then � is integral—that is, there is a
number field k and k structure on SU(n, 1) such that �<SU(n, 1)(Ok).

The theorem is immediate from the results in [EG1] for the case of cocom-
pact lattices. For an explanation of how it also follows in the noncocompact
case see [BFMS2]. A construction of Agol as extended by Belilopetsky-
Thomson shows that the analogous result fails in SO(n, 1) [Ago1, BT]—that is,
there are nonintegral lattices, both cocompact and noncocompact, in SO(n, 1)
for every n.
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We note here that the proof by Esnault and Groechenig does not pass
through a superrigidity theorem. In the context of this paper, onemight expect
this, but the methods of [EG1] depend on algebraic geometry and deep results
of Lafforgue on the Langlands program [Laf]. However, in this context one
might also ask the following:

QUESTION 3.20. Let �<SU(n, 1) be a lattice and n> 1. Assume k is a totally
disconnected local field, H is a simple algebraic group over k, and ρ :�→H is a
Zariski dense, faithful representation. Is ρ(�) compact?

We mention here a question from our paper with Larsen, Stover, and
Spatzier [FLSS] that aims at understanding the degree to which a lattice in
SO(n, 1) can fail to be integral by studying the p-adic representation theory of
these groups.

QUESTION 3.21. Let �g be a surface group of genus g ≥ 2. Is there a discrete
and faithful representation of �g into Aut(Y) for Y, a locally compact Euclidean
building? Can we take Y to be a finite product of bounded valence trees?

More generally one can ask the same questions with�g replaced by a lattice
� in G=SO(n, 1). Once n> 2, it is known that � is contained in the k points
of G for some number field k. To understand the extent to which � fails to be
integral, it suffices to consider the case where Y is the building associated to
some p-adic group G(kp).
There is one other context in which enough superrigidity results are known

to imply arithmeticity—namely, Klingler’s work on fake projective planes
[Kli1].

DEFINITION 3.22. A fake projective plane is a complex projective surface
with the same Betti numbers as P(C2) that is not biholomorphic to P(C2).

Results of Yau on the Calabi conjecture show that any fake projective plane
is of the form CH

2/� with � a cocompact lattice [Yau]. Let G=SU(2, 1); we
can further assume that K\G/�=M satisfies the condition that c21 = 3c2= 9,
where c1 and c2 are the first and second Chern numbers of M. Yau’s work
implies complex ball quotients satisfying these conditions are exactly the fake
projective planes. Klingler then shows that � is arithmetic.

THEOREM 3.23 (Klingler).
If M is a fake projective plane, then �=π1(M) is arithmetic.
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This result is striking since the condition for arithmeticity is purely topo-
logical. The proof uses superrigidity theorems proven using harmonic map
techniques as in subsection 3.1. Following Klingler’s work, the fake projective
planes were classified and further studied by Prasad-Yeung and Cartwright-
Steger [PY, CS]. There turn out to be exactly 50 examples. We note that this is
precisely 50 and not 50 up to commensurability and that some of these exam-
ples are commensurable. The topological condition of being a fake projective
plane is not invariant under passage to finite covers.
Two more recent results of Klingler and collaborators are also intriguing in

this context. In the first of these papers he shows that for certain lattices �
in SU(n, 1), the representation theory of � is very restricted as long as one
considers representations in dimension below n− 1 [Kli2]. The results there
are proven by showing that holomorphic symmetric differentials control the
linear representation theory of fundamental groups of compact Kähler mani-
folds. In a later paper by Brunebarbe, Klingler, and Totaro, the authors extend
this to investigate the case of compact Kähler manifolds without holomorphic
symmetric differentials [BKT].
A different direction for the study of representations of complex hyperbolic

lattices was introduced by Burger and Iozzi in [BI]. They introduce a notion of a
maximal representation of a lattice � inG=SU(n, 1) generalizing a definition
of Toledo in the case of SU(1, 1)∼=SL(2,R) [Tol]. Burger-Iozzi show that maxi-
mal representation of � into SU(m, 1) extends toG. The proof uses a result on
incidence geometry generalizing an earlier result of Cartan to the measurable
setting [Car]. The definitions and results of this paper were further extended
to the case of SU(p, q) targets when p �= q by Pozzetti in her thesis [Poz]. The
proof of Theorem 3.15 uses Pozzetti’s version of the Cartan theorem. More
recently Koziarz and Maubon extended the result to include the case where
p= q and reproved all earlier results using techniques of harmonic maps and
Higgs bundles [KM3].

4 Orbit equivalence rigidity

This section mostly serves to point to a broad area of research that we will not
attempt to summarize or survey in any depth.

DEFINITION 4.1. Let (S,μ) be a finite measure space with an ergodic G
action and (S′,μ) a finite measure space with an ergodicG′ action. We say the
actions are orbit equivalent if there are conull Borel sets S0⊂S and S′0⊂S′ and
a measure class preserving isomorphism φ :S0→S′0 such that s and t are in
the same G orbit if and only if φ(s) and φ(t) are in the same G′ orbit.
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In a remarkable result in [Zim1], Zimmer further developed the ideas in
Margulis’s proof of superrigidity to prove the following:

THEOREM 4.2.
Let G1 and G2 be center-free connected simple Lie groups and assume R-rank(G1)
> 1. Let (Si,μi) be probability measure spaces with free ergodic actions of Gi for
i= 1, 2. If the actions are orbit equivalent, then they are conjugate.

The key ingredient in the proof of Theorem 4.2 is Zimmer’s cocycle super-
rigidity theorem. We do not state this here but point the reader to [Zim4] and
[FM] for detailed discussions.
An important further development in the theory comes in work of Furman,

who extends Zimmer’s results on orbit equivalence to lattices [Fur1, Fur2]. We
do not give a comprehensive discussion but state one result.

THEOREM 4.3.
Let G be a center-free connected simple Lie group and assume R-rank(G)> 1. Let
�1<G be a lattice and let �2 be any finitely generated group. Let (Si,μi) be prob-
ability measure spaces with free ergodic actions of �i for i= 1, 2. If the actions of �i
on (S,μi) are orbit equivalent, then �2 is virtually a lattice in G.

Here virtuallymeans there is a finite index subgroup of �2 whose quotient by
a finite normal subgroup is a lattice in G. Furman also shows that there is a
unique obstruction to conjugacy of the actions.
Following these results, the study of orbit equivalence rigidity became a

rich topic in which many rigidity results are known, many of which depend
on cocycle superrigidity theorems. We do not attempt a survey but point to
one written earlier by Furman [Fur3].

5 The Zimmer program

In 1983, Zimmer proposed a number of conjectures about actions of higher
rank simple Lie groups and their lattices on compact manifolds [Zim3, Zim5].
These conjectures were motivated by a number of Zimmer’s own theo-
rems, including the cocycle superrigidity theorem mentioned in the previous
section. But perhaps the clearest motivation is as a nonlinear analogue of
Margulis’s superrigidity theorem. These conjectures have led to a tremen-
dous amount of activity; see this author’s earlier survey and recent update
[Fis2, Fis3] for more information. Here we focus only on two aspects: the
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recent breakthrough made by Brown, this author, and Hurtado, and a state-
ment of a general conjectural superrigidity theorem for Diff (M) targets.
The clearest conjecture made by Zimmer predicted that any action of a

higher rank lattice on a compact manifold of sufficiently small dimension
should preserve a Riemannian metric. Since the isometry group of a compact
manifold is a compact Lie group, this, together with Margulis’s superrigidity
theorem, often implies the action factors through a finite quotient of the lat-
tice. The recent work of Brown, this author, and Hurtado makes dramatic
progress on this conjecture and completely resolves it in several key cases
[BFH1, BFH2, BFH3]. For example we have the following:

THEOREM 5.1 (Brown, Fisher, Hurtado).
Let� be a lattice inSL(n,R), letM be a compactmanifold, and let ρ :�→Diff (M)
be a homomorphism. Then

(1) if dim(M)< n− 1, the image of ρ is finite;
(2) if dim(M)< n and ρ(�) preserves a volume form on M, then the image of

ρ is finite.

This result is sharp, since SL(n,R) acts on the projective space P(Rn) and
SL(n,Z) acts on the torus T

n. The papers with Brown and Hurtado prove
results about all lattices in all simple Lie groups G of higher real rank, but
are only sharp for certain choices of G. In particular, results about volume
preserving actions are only sharp for SL(n,R) and Sp(2n,R), while results
about actions not assumed to preserve volume are sharp for all split simple
groups. See [Can] and [BFH3] for more discussion.
The most naive version of the Zimmer program is perhaps the following:

QUESTION 5.2. Let G be a simple Lie group of higher real rank, �<G a
lattice, and M a compact manifold. Can one understand all homomorphisms
ρ :�→Diff (M)? If ω is a volume form onM, can one classify all homomorphisms
ρ :�→Diff (M,ω)?

The careful reader will notice a slight variation in wording in the two ques-
tions. This is due to the fact that non–volume preserving actions are known
to be nonclassifiable. In particular the parabolic induction described by Stuck
in [Stu2] shows that even homomorphisms ρ :G→Diff (M) cannot be clas-
sified. In particular Stuck shows that given two vector fields X and Y on a
compact manifold M and a parabolic subgroup Q in G, one can construct
two homomorphisms ρX , ρY :G→Diff ((G×M)/Q) such that ρX and ρY
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are conjugate if and only if the flows generated by X and Y on M are
conjugate.
We briefly describe Stuck’s construction. Any parabolic subgroup Q <G

admits a homomorphism φ :Q→R. Any vector field X on M defines an R

action, which we denote by ρ̄X :R×M→M. We define a Q action on G×M
by (g,m)q= (gq−1, ρ̄(φ(q))). As this commutes with the left G action on the
first variable, we obtain an action ρX of G on (G×M)/Q . The space (G×
M)/Q is a manifold and in fact anM fiber bundle over G/Q . It is transparent
that applying the construction to two vector fields X and Y on manifolds M
andM′, theG actions are conjugate if and only if ρ̄X and ρ̄Y are. The following
seems accessible:

PROBLEM5.3. If ρX and ρY are conjugate as� actions, are ρ̄X and ρ̄Y conjugate
as R actions?

The main goal of this section is to describe a conjectural picture of all �-
actions on compact manifoldsM in terms of G actions. This is very much in
the spirit of Margulis’s superrigidity theorem, and we begin by slightly restat-
ing that theorem. Given a higher rank lattice� in Lie groupG there is a natural
compact extension G×K of G in which � sits diagonally as a lattice. Here K
is a product of two groups K =K1×K2, where K1 is totally disconnected and
K2 is a Lie group. The group K1 is the profinite completion of �. The group K2
is the compact Lie group such that � is commensurable to the integral points
in G′ =G×K2. The definition of arithmeticity in section 2 ensures that K2
exists. We note here that K2 is semisimple and any simple factor of K2 has the
same complexification as some simple factor of G. We refer to G×K as the
canonical envelope of �. Given G×K, Margulis’s superrigidity theorem can be
restated as follows:

THEOREM 5.4 (Margulis superrigidity variant).
Let G be a semisimple Lie group of real rank at least 2; let �<G be an irreducible
lattice and k a local field of characteristic zero. Then any homomorphism ρ :�→
GL(n, k) extends to a homomorphism of G×K, the canonical envelope of �.

We now describe a conjecture analogous to Theorem 5.4 but with Diff (M)
targets. We begin by defining a local action of a group in a way that is similar
to standard definitions of pseudo-groups or groupoids but is adapted to our
purposes. The definition is complicated because we need to be able to restrict
local actions of topological groups to local or global actions of their discrete
subgroups. So it does not suffice for our purposes to have the germ of the
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group action near the identity in the acting group, but rather we need it near
every element in the acting group.

DEFINITION 5.5. Let D be a group and M a manifold. We say D has local
action onM if

(1) for every point x ∈M and every element d∈D there is an open neighor-
hood Vx,d of d∈D and an open neighborhoodUx,d of x inM and a local
actionmap ρx,d :Vx,d×Ux,d→M, and,

(2) given d, d′ in D, whenever z∈Ux,d and g, hg ∈Vx,d and for every
y such that ρx,d(g, x)∈Ug,d′ and h∈Vg,d′ , we have ρx,d(hg, z)=
ρg,d′(h, ρx,d(g, z)).

It may be possible to offer a simpler or more transparent variant of the def-
inition. Point (1) gives local diffeomorphisms at every point corresponding
to elements of D, and point (2) requires that the collection of such local dif-
feomorphisms remembers the group multiplication on D whenever possible.
Even when M is compact, one cannot restrict attention to a finite collection
of local action maps unless D is also compact. The paradigmatic example to
keep in mind is that SL(n,R) acts locally on T

n. Only SL(n,Z) has a globally
defined action, but the lift to R

n one immediately has a global SL(n,R) action,
which can easily be seen to give a local action on T

n. If one carries out the con-
struction of “blowing up" the origin in T

n as in [KL], one obtains a manifold
M with a local SL(n,Z) action, which does not extend to SL(n,R) on any cover.
It is clear that one way to have a local action is to have a global action. We

say a local action restricts from a global action ρ :D×M→M if we have that

ρx,d= ρ|Vx,d×Ux,d

for every x in M and d∈D. Given a subgroup C<D and a global C action
ρC :C×M→ we say that ρC restricts from local D action if

ρx,d|(C∩Vx,d)×Ux,d = ρ|(Vx,d∩C)×Ux,d

for all x ∈X and d∈D.
With these definitions in hand, we can state a general superrigidity conjec-

ture, which we believe is at the heart of the phenomena observed so far in the
Zimmer program.

CONJECTURE 5.6. Let G be a simple Lie group of real rank at least 2 and �<G
a lattice. Let G×K be the canonical envelope of � described above. Then for any
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compact manifold M and any homomorphism ρ :�→Diff (M) there is a local
action of G×K on M that restricts to the � action.

REMARK 5.7.
(1) For a fixed action, one expects that the local action is trivial on a finite
index subgroup of K1—that is, that the local action is one of G×K ′1×
K2, where K ′1 is a finite quotient of K. This is true for K1 actions by the
smooth version of theHilbert-Smith conjecture, which has been known
for some time.

(2) The example of SL(n,Z) acting onT
n shows that one needs some notion

of local action to state the conjecture. The existence of isometric actions
that extend to K2 justify the need for the compact extension of G. The
existence of actions through finite quotients of � justify the need for K1.

At the moment, Conjecture 5.6 incorporates all known ideas for building
“exotic" actions of lattices � in higher rank simple Lie groups. In addition
to the parabolic induction examples discussed above, there is the blow-up
construction introduced by Katok and Lewis, which by now has several vari-
ants [KL, Fis1, BF, FW, KRH]. The conjecture is also of a similar flavor to
a conjecture stated in various forms by Labourie, Margulis, and Zimmer
that a manifold admitting a higher rank lattice action should, under some
circumstances, be homogeneous on an open dense set [Lab2, Mar6]
In complete generality, Conjecture 5.6 seems very far out of reach. It does

seem most accessible for the case where G=SL(n,R) and dim(M)= n and
perhaps when the action is analytic. By the work of Brown, this author, and
Hurtado and that of Brown, Rodriguez Hertz, and Wang, the conjecture is
known for lattices in SL(n,R) for dim(M)< n. A very interesting and over-
looked paper by Uchida from 1979 classifies all analytic actions of SL(n,R) on
the sphere Sn [Uch]. This suggests starting with the following:

PROBLEM 5.8. Classify analytic SL(n,R) actions on manifolds of dimension n.
Classify analytic local actions of SL(n,R) on manifolds of dimension n.

The second part of the problem is clearly harder than the first. For both parts,
it should be useful to look at [CG] and [Stu1].
Other contexts in which Conjecture 5.6 might be more accessible is when

one assumes additional geometric or dynamical properties of the action. Key
contexts include Anosov actions [BRHW2, Fis3] and actions preserving rigid
geometric structures [Gro2, Zim6]. Both hyperbolicity of the dynamics and
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existence of geometric structures can be used to produce additional Lie groups
acting on a manifold or at least on certain foliations, so these hypotheses
should be helpful to find some kind of local action given a � action.

6 Other sources, other targets

Another topic that we can touch on only briefly here is the generalization
of Margulis’s superrigidity theorem to other sources and targets. The set of
targets considered is quite often spaces of nonpositive curvature, frequently
without any assumption that the dimension is finite. The set of sources is
often broadened to more general locally compact groups. Since there is no
good analogue of rank without linear structure, the most common assump-
tion is that one has a locally compact, compactly generated group G that is a
product G=G1× · · ·×Gk and that one has an irreducible lattice �<G. To
give an indication, we state one particularly nice result due to Monod. To do
so we need to define a term. We assume for the definition that X is a geodesic
metric space.

DEFINITION 6.1. A subgroup L< Isom(X) is reduced if there is no
unbounded closed convex subset Y �X such that gY is finite (Hausdorff)
distance from Y for all g ∈ L.

Reduced is one possible geometric substitute for considering subgroups
whose Zariski closure is simple or semisimple. We note that Monod proves
other results in [Mon] that require weaker variants of this hypotheses, but
these are more difficult to state.

THEOREM 6.2.
Let � be an irreducible uniform lattice in a product G=G1× · · ·×Gn of non-
compact locally compact σ -compact groups with n> 1. Let H< Isom(X) be
a closed subgroup, where X is any complete CAT(0) space not isometric to a
finite-dimensional Euclidean space. Let τ :�→H be a homomorphism with
reduced unbounded image. Then τ extends to a continuous homomorphism τ̃ :
G→H.

In the theorem, X is not assumed to be locally compact. The theorem holds
for nonuniform lattices with a mild assumption of square integrability. For a
survey of earlier results, we point the reader to Burger’s ICM address [Bur].
In this context, we also mention that Gelander, Karlsson, and Margulis have
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extended Monod’s results to a broader class of nonpositively curved spaces
[GKM]. A key context for application of these kinds of results are lattices
in isometry groups of products of trees [BMZ] and to Kac-Moody groups
[CR], which provide many examples of lattices in products of locally compact,
compactly generated groups.
A major difference between existing geometric superrigidity theorems like

Monod’s and Margulis’s Theorem 2.2 is that Margulis does not need any
assumption like reduced. It is a major open problem in the area to prove
some analogue of this fact. We state here a version of this question. Since
X is not locally compact, we need to modify the notion of a representation
almost extending slightly. If �<G is a lattice and X is a nonpositively curved
space, we say ρ :�→ Isom(X) almost extends if there exists ρ1 :G→ Isom(X)
and ρ2 :�→ Isom(X), where ρ2 has bounded image, ρ1(G) commutes with
ρ2(�), and ρ(γ )= ρ1(γ )ρ2(γ ) for all γ ∈�.

QUESTION 6.3. Let G=G1× · · ·×Gn for n> 2, where each Gi is a locally
compact group with Kazhdan’s property (T), or let G be a simple Lie group of higher
real rank. Assume � ∈G is a cocompact lattice and that X is a CAT(0) space.
Given ρ :�→ Isom(X), is there a �-invariant subspace Z⊂X such that ρ :�→
Isom(Z) almost extends to G?

One can easily see that the passage from X to Z is necessary by taking the
G action on G/K, the symmetric space for G, restricting to the � action, and
adding a discrete � periodic family of rays to G/K. One might assume some-
thing weaker than property (T) for each Gi and should not really require the
lattice to be cocompact, but solving the question as formulated above would
be a good first step.
Recently Bader and Furman have deeply rethought the proof of Margulis’s

superrigidity theorem [BF3, BF2, BF1]. This work is used in the proof of
Theorems 3.13 and 3.15. It is also used quite strikingly in a proof of super-
rigidity theorems for groups that are not lattices in any locally compact group.
The groups in question are isometry groups of the so-called exotic Ã2 build-
ings. The isometry groups of these buildings are known to be, in many cases,
discrete and cocompact. Bader, Caprace, and Lécureux prove a superrigidity
theorem for large enough groups of isometries of buildings of typeA2 and use
this to show that a lattice in the isometry groups of a building of type A2 has
an infinite image linear representation if and only if the building is classical
and thus the isometry group is a linear group over a totally disconnected local
field [BCL].
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7 The normal subgroup theorem, commensurators,
attempts at unification

In this section we describe some results and questions related to Theorems
2.4 and 2.6. We also describe some attempts to unify the phenomena behind
Theorems 2.2 and 2.6.
As described in [BRHW3] in this volume, Margulis’s proof of the normal

subgroups theorem follows a remarkable strategy. He proves that given a
higher rank lattice � and a normal subgroup N, the quotient group �/N has
property (T) and is amenable. From this, one trivially deduces that �/N is
a finite subgroup. For more discussion see chapter 3, by Brown, Rodriguez
Hertz and Wang, in this volume.
We begin by mentioning that the normal subgroup theorem has also been

generalized to contexts of products of fairly arbitrary locally compact, com-
pactly generated groups. This was first done by Burger and Mozes in the
special case where G=G1× · · ·×Gk, where each Gi is a large enough sub-
group of Aut(Ti), where Ti is a regular tree. Burger andMozes used this result
in order to show that certain irreducible lattices they construct in such G are
infinite simple groups [BM2, BM1]. These new simple lattices are (a) finitely
presented, (b) torsion-free, (c) fundamental groups of finite, locally CAT(0)
complexes, (c) of cohomological dimension 2, (d) biautomatic, and (e) the free
product of two isomorphic free groups F1 and F2 over a common finite index
subgroup. The existence of such simple groups is quite surprising. In later
work, Bader and Shalom proved a much more general result about normal
subgroups of lattices in fairly arbitrary products of locally compact, second
countable, compactly generated groups [BS]. To be clear, the Bader-Shalom
paper gives the “amenability half” of the proof—that is, that �/N is amenable.
Shalom had proven earlier that �/N has property (T) in [Sha1]. These results
were used by Caprace and Remy to show that certain Kac-Moody groups are
also simple groups [CR].
We note that uniform lattices in rank 1 simple Lie groups are hyperbolic.

This means, in particular, that they have infinitely many, infinite index nor-
mal subgroups by Gromov’s geometric variants on small cancellation theory.
In particular, the normal closure N of any large enough element γ ∈� has
the property that �/N is an infinite hyperbolic group [Gro1]. The following
interesting question is open.

QUESTION 7.1. Let G be a rank 1 simple Lie group and �<G a lattice. Assume
N is a finitely generated infinite normal subgroup of �. If G is Sp(n, 1) of F−204 , is
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N necessarily finite index? If G is SU(n, 1) or SU(n, 1) is �/N necessarily a-(T)-
menable?

A-(T)-menability is a strong negation of property (T) introduced by Gromov.
One way to prove the question would be to prove that for all G and all � and
N, the group �/N is a-(T)-menable. This would resemble Margulis’s proof of
the normal subgroup theorem where a key step is proving the quotient group
is amenable. For SO(n, 1) with n> 2 and for all n, many lattices are known
to have finitely generated normal subgroups N where �/N is abelian; see,
for example, [Ago2] and [Kie]. For SU(n, 1), both abelian groups and surface
groups are known to occur [Kap2, Sto]. For �<SO(2, 1) it is relatively elemen-
tary that there are no infinite index finitely generated normal subgroups. This
author first learned a variant of this question around 2006 from Farb.
An older question related to Theorem 2.6 was raised in conversation

between Zimmer and Margulis in the late 1970s. Given a lattice �<G, we
say a subgroup C<� is commensurated if �<CommG(C).

CONJECTURE 7.2. Let G be a simple Lie group of real rank at least 2 and �<G
a lattice. Let N be a commensurated subgroup of �. Then N is either finite or finite
index in �.

For a fairly large set of nonuniform lattices the conjecture is known by work
of Venkataramana and Shalom-Willis [SW, Ven]. Shalom and Willis also for-
mulate a natural generalization for irreducible lattices in products including
S arithmetic lattices. We do not include it here in the interest of brevity.
It has been known since the conversation between Margulis and Zimmer

that Conjecture 7.2 can be formulated as a question about homomorphisms
from� to a certain locally compact group that is a kind of completion of� with
respect to N. Shalom and Willis prove their results on Conjecture 7.2 by prov-
ing a superrigidity theorem for homomorphisms of a special class of lattices to
general locally compact groups. They also formulate an intriguing superrigid-
ity conjecture for homomorphisms from any higher rank lattice � to locally
compact groups. They demonstrate that their conjecture implies not only Con-
jecture 7.2 but also Theorems 2.2 and 2.6 and also the congruence subgroup
conjecture; see [SW, conjecture 7.7] and the surrounding discussion.
In the context of that work, Shalom raised a question about an interesting

analogue of Corollary 2.5.

QUESTION 7.3. Let G be a simple Lie group and � a Zariski dense discrete
subgroup. Assuming CommG(�) is not discrete, is � an arithmetic lattice?

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



superrigidity, arithmeticity, normal subgroups / 35

Since �<CommG(�), it is relatively easy to see that the simplicity of G
implies this is equivalent to assuming CommG(�) is dense in G. For finitely
generated subgroups of SO(3, 1) the question was answered by Mj, building
on work of Leininger, Long, and Reid [Mj, LLR]. For finitely generated sub-
groups in SO(2, 1) the conjecture is easily resolved by noting the limit set is a
proper closed subset of S1. Mj also shows that in general it suffices to consider
the case where the limit set is full. Recent work of Koberda and Mj studies the
case where there is an arithmetic lattice �0 such that ���0 and resolves this
case in many settings, including when �0/� is abelian [KM1, KM2].
Another very interesting variant of the normal subgroup theoremwas raised

by Margulis in response to the proof of results of Abert et al. in [ABB+1].

CONJECTURE 7.4. Let G be a simple Lie group of real rank at least 2 and �<
G a discrete subgroup. Further assume that the injectivity radius is bounded on
K\G/�. Then � is a lattice in G.

It is easy to see that this conjecture implies the normal subgroup theorem.
The results in [ABB+1] are proven using a theorem of Stuck and Zimmer,
which itself is proven by using elements of Margulis’s proof of the normal
subgroup theorem; see [SZ] and [Zim2].1

The work of Stuck and Zimmer was the precursor of a long sequence of
works by Nevo and Zimmer concerning actions of higher rank simple groups.
Their most striking result is the following:

THEOREM 7.5 (Nevo-Zimmer).
Let G be a simple Lie group of real rank at least 2. Let μ be a measure on G whose
support generates G and which is absolutely continuous with respect to Haar mea-
sure. AssumeG acts on compact metric space X, and let ν be aμ-stationarymeasure
on X. Then either ν is G invariant or there exists a ν-measurable G-equivariantmap
X→G/Q for Q <G, a proper parabolic subgroup.

One can view the Nevo-Zimmer theorem as providing complete obstruc-
tions to the existence of G-invariant measures in terms of projective factors
G/Q . They prove a similar but slightly more technical result for actions of
lattices �<G. One can view this as a tool for studying actions of G or �
on compact manifolds M. A central element of the proof of Theorem 5.1 is
finding enough �-invariant measures on M to control growth of derivatives
of the group action. One difficulty for using Theorem 7.5 is that it is hard

1Conjecture 7.4 was resolved by Fraczyk and Gelander while this paper was in press.
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to determine in practice when a measurable projective factor exists. Another
difficulty is that to control growth of derivatives, one needs to control a wider
class of measures than the μ-stationary ones.
In the proof of Theorem 5.1 on Zimmer’s conjecture we use a different

method of detecting invariantmeasures and projective factors for� actions on
compact manifoldsM that is more effective for applications. This is developed
by Brown, RodriguezHertz, andWang in [BRHW1]. WhereNevo andZimmer
follow Margulis and study G-invariant σ -algebras of measurable sets on X to
find the projective factor, Brown, Rodriguez Hertz, and Wang instead study
invariant measures. See the paper of Brown, Rodriguez Hertz, and Wang in
this volume for an account of how to prove Theorem 2.6 by their methods
[BRHW3].
Their approach is particularly intriguing since they earlier used a vari-

ant of the same method in place of Zimmer’s cocycle superrigidity theorem
[BRHW2]. The philosophy behind the approach is generally referred to asNon-
resonance implies invariance. We close this section with a brief description of
this philosophy and one implementation of it.
To apply this philosophy to actions of a lattice �, one always need to pass

to the induced G action on (G×M)/�. This allows one to use the structure
of G—namely, the root data associated to a choice of Cartan subalgebra. To
explain this philosophy better, we recall some basic facts. TheCartan subgroup
A of G is the largest subgroup diagonalizable over R; the Cartan subalgebra a

is its Lie algebra. It has been known since the work of Élie Cartan that a finite-
dimensional linear representation ρ of G is completely determined by linear
functionals on a that arise as generalized eigenvalues of the restriction of ρ to
A. Here we use that there is always a simultaneous eigenspace decomposition
for groups of commuting symmetric matrices and that this makes the eigen-
values into linear functionals. These linear functionals are referred to as the
weights of the representation. For the adjoint representation of G on its own
Lie algebra, the weights are given the special name of roots. Corresponding to
each root β there is a unipotent subgroup Gβ <G called a root subgroup; and
it is well-known that large enough collections of root subgroups generate G.
Two linear functionals are called resonant if one is a positive multiple of the
other. Abstractly, given a G-action and an A-invariant object O, one may try to
associate to O a class of linear functionals �. Nonresonance implies invariance
is the observation that, given any root β of G that is not resonant to an ele-
ment of �, the object O will automatically be invariant under the unipotent
root group Gβ . If one can find enough such nonresonant roots, the object O
is automaticallyG-invariant. We will illustrate this philosphy by sketching the
proof of the following theorem from [BRHW1].
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THEOREM 7.6.
Let G be a simple Lie group of real rank at least 2, and let �<G be a lattice. Let
Q be a maximal parabolic in G of minimal codimension. Assume M is a compact
manifold and ρ :�→Diff (M) and dim(M)< dim(G/Q). Then � preserves a
measure on M.

We begin as above by inducing the action to a G action on (G×M)/�
and noting that �-invariant measures onM correspond exactly to G-invariant
measures on (G×M)/�. Taking the minimal parabolic P<G and using
that P is amenable, one finds a P-invariant measure μ. The goal is to prove
that μ is G-invariant. Once μ is G-invariant, disintegerating μ over the map
(G×M)/�→G/� yields a �-invariant measure onM. Since the measure μ
is P-invariant and A<P, μ is also clearly invariant under the Cartan subgroup
A, so one can try to apply the philosophy that nonresonance implies invariance
by associating some linear functionals to the pair (A,μ). The linear functionals
we consider are the Lyapunov exponents for the A-action.
More precisely we consider the Lyapunov exponents for the restriction of

the derivative of A action to the subbundle F of T((G×M)/�) defined by
directions tangent to the M fibers in that bundle over G/�. We refer to this
collection of linear functionals as fiberwise Lyapunov exponents. In this context
[BRHW1, proposition 5.3] shows that, given an A-invariant measure on X
that projects to Haar measure on G/�, if a root β of G is not resonant with
any fiberwise Lyapunov exponent, then the measure is invariant by the root
subgroupGβ . The rest of the proof is quite simple. The stabilizer ofμ contains
P, which implies that the projection of μ to G/� is Haar measure, so the
proposition just described applies. The stabilizer Gμ of μ in G is a closed
subgroup containing P. We also know that Gμ contains the group generated
by the Gβ for all roots β not resonant with any fiberwise Lyapunov exponent.
We also know that the number of distinct fiberwise Lyapunov exponents is
bounded by the dimension ofM. Since any closed subgroup ofG containing P
is parabolic,Gμ is parabolic. So eitherGμ=G or the number of resonant roots
needs to be at least the dimension of G/Q for Q , a maximal proper parabolic.
This is because given any single root β with Gβ ≮Q , the group generated by
Gβ and Q is G. Our assumption on the dimension ofM immediately implies
there are not enough fiberwise Lyapunov exponents to produce dim(G/Q)
resonant roots, so μ is G-invariant.
We say a few words here on why this philosophy also works to prove

superrigidity-type results. One view of the proof of superrigidity, introduced
by Margulis in [Mar5, chapter VII] is that one starts with an A-invariant
section of some vector bundle over G/� and then proceeds to produce a
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finite-dimensional space of sections that is G invariant. While the proof does
not rely on the nonresonance condition, it should be clear that the objects
considered in that proof might be amenable to an analysis like the one
above.

8 Other criteria for a subgroup to be a lattice

Many of the results and conjectures discussed so far concern criteria for when
a discrete subgroup � in G is actually a lattice or even an arithmetic lattice.
We end this chapter by pointing to somemore theorems and questions giving
criteria for Zariski dense discrete subgroups to be lattices. One is the recent
resolution by Benoist and Miquel of a conjecture of Margulis, building on the
earlier work of Oh. Another is a question of Prasad and Spatzier that can be
seen as similar to the Benoist-Miquel theorem. Finally, wemention a question
of Nori, that is a variant of both of these phenomena and point to some other
results on Nori’s question by Chatterji and Venkataramana.
To state the theorem, we recall some definitions. Let G be a simple Lie

group. It is possible to state a version of the theorem for G semisimple as
well, but we avoid this for simplicity. A subgroup U is horospherical if it is the
stable group of an element g in G—that is, U :={u∈G| limn→∞ gnug−n= e}.
Horospherical subgroups are always nilpotent, so a lattice �<U is always a
discrete cocompact subgroup.

THEOREM 8.1 (Oh, Benoist-Miquel).
Let G be a simple Lie group of real rank at least 2 and �<G be a discrete Zariski
dense subgroup. Assume � contains a lattice � in some horospherical subgroup U
of G. Then � is an arithmetic lattice in G.

This result was conjectured by Margulis, inspired by some elements of his
original proof of arithmeticity for nonuniform lattices. Uniform lattices do not
intersect unipotent subgroups, so the � appearing in the theorem is necessar-
ily a nonuniform lattice. For many semisimple groups G, including all split
groups but SL(3,R), the result was proved by Hee Oh in her thesis [Oh1]. In
subsequent work, including joint work with Benoist, Oh covered many addi-
tional cases [Oh2, BO1, BO2]. Recently Benoist and Miquel have presented a
proof that works in full generality [BM].
We present a conjecture of Ralf Spatzier that has also been stated elsewhere

as a question by Gopal Prasad. The conjecture is formally somewhat similar
Theorem 8.1, but was more inspired by work on rank rigidity in differential
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geometry [Bal, BS]. To make the conjecture we require a definition. Given a
countable group �, let Ai be the subset of � consisting of elements whose
centralizer contains a free abelian subgroup of rank at most i as a finite index
subgroup. The rank of �, sometimes called the Prasad-Raghnathan rank,
is the minimal number i such that �= γ1Ai ∪ · · · ∪ γmAi for some finite set
γ1, . . . , γm ∈�. Note that any torsion-free � has rank at least 1.

CONJECTURE 8.2. Let G be a simple Lie group with real rank at least 2. Let �
be a Zariski dense discrete subgroup of G whose rank is the real rank of G. Then �
is a lattice in G.

Spatzier also asked whether it was enough for �<G to have rank at least 2
to be a lattice. It seems to be generally believed that the statement analogous to
the one in the Beniost-Miquel theorem is false—that is, that there is an infinite
covolume group �<G such that somemaximal diagonalizable subgroup A<
G such that A∩� is a lattice in A. One can attempt to do this by taking the
group generated by some lattice �A<A and some other hyperbolic element
γ ′ ∈G, where γ ′ and�A play ping pong in an appropriate sense. Verifying that
this works seems somewhat tricky, and we do not know a complete argument.
As pointed out by Chatterji and Venkataramana [VC], there is a more

general question of Nori related to Theorem 8.1.

QUESTION8.3 (Nori, 1983). IfH is a real algebraic subgroup of a real semisim-
ple algebraic group G, can one find sufficient conditions on H and G such that any
Zariski dense discrete subgroup � of G that intersects H in a lattice in H is itself a
lattice in G?

Chatterji and Venkataramana conjecture that the answer to this question is yes
in the case where G is simple and noncompact andH<G is a proper simple
noncompact subgroup. They also prove this conjecture in many cases when
the real rank of H is at least 2. Key ingredients in their proof are borrowed
from Margulis’s proofs of superrigidity and arithmeticity. A case they leave
open that is of particular interest is whenH=SL(2,R) andG=SL(n,R). Even
the case n= 3 embedding SL(2,R) in SL(3,R).
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AN EXTENSION OF MARGULIS’S
SUPERRIGIDITY THEOREM

To Gregory Margulis with gratitude and admiration

Abstract.We give an extension of Margulis’s superrigidity for higher rank lattices.
In our approach the target group could be defined over any complete valued field.
Our proof is based on the notion of Algebraic Representation of Ergodic Actions.

1 Introduction

In this essay we present a proof of Margulis’s Superrigidity theorem [10, The-
orem 7.5.6] with algebraic target groups defined over valued fields that are not
necessarily local.

THEOREM 1.1 (Margulis’s superrigidity for arbitrary target fields).
Let � be a local field, H=H(�) be the locally compact group formed by the �-points
of a connected, semisimple, algebraic group defined over �. Assume that the �-rank
of H is at least two. Let �<H be a lattice, and assume that the projection of � in
H/N is nondiscrete whenever N �H is the �-points of a proper normal �-isotropic
subgroup.
Let k be a field with an absolute value, so that as a metric space k is complete.

Let G=G(k) be the k-points of a connected, adjoint, k-simple, algebraic group G
defined over k. Let ρ :�→G be a homomorphism, and assume that ρ(�) is Zariski
dense and unbounded in G. Then there exists a unique continuous homomorphism
ρ̂ :H→G such that ρ= ρ̂|� .
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Note that the homomorphism ρ̂ appearing in Theorem 1.1 is necessarily
given by some algebraic data—this will be properly explained in Corollary 8.1.
Theorem 1.1 has a generalization to the so-called S-arithmetic case; in that
case the group H is assumed to be a product of semisimple algebraic groups
over different local fields. However, this generalization already follows from
our result regarding superrigidity for irreducible lattices in products of gen-
eral locally compact groups [3, theorem 1.2] (alternatively, see [11] or [8]), so
we do not discuss it here. Likewise, in proving Theorem 1.1 the case where
H has more than one noncompact factor follows essentially from [3, theo-
rem 1.2]. Thus, our main concern here is the case where H has a unique
noncompact factor. This case will follow from Theorem 1.3 below. Before
stating this theorem we present two properties of topological groups.

(A) We say that a topological group S satisfies condition (A) if every contin-
uous, isometric S-action without global fixed points on a metric space
is topologically proper.

(B) We say that a topological group S satisfies condition (B) if S is topologi-
cally generated by closed noncompact subgroups T0, . . . ,Tn such that,
in a cyclic order, for every i, Ti+1 normalizes Ti and at least one of the
Ti’s is amenable.

EXAMPLE 1.2. Let � be a local field. Let H=H(�) be the �-points of a
connected almost simple algebraic groupH defined over �. IfH is simply con-
nected, then, by [4, theorem 6.1],H satisfies condition (A). Furthermore, if the
�-rank ofH is at least two, thenH satisfies condition (B). In fact, the sequence
of subgroups Ti could be chosen from the root groups, properly ordered. For
example, forH=SL3(�), we can use the sequence of subgroups
⎡
⎢⎣
1 ∗
1
1

⎤
⎥⎦ ,

⎡
⎢⎣
1 ∗
1
1

⎤
⎥⎦ ,

⎡
⎢⎣
1
1 ∗
1

⎤
⎥⎦ ,

⎡
⎢⎣
1
∗ 1

1

⎤
⎥⎦ ,

⎡
⎢⎣
1
1

∗ 1

⎤
⎥⎦ ,

⎡
⎢⎣
1
1
∗ 1

⎤
⎥⎦ .

THEOREM 1.3.
Let S be a second countable locally compact topological group, and let �<S be a
lattice. Assume S satisfies conditions (A) and (B).
Let k be a field with an absolute value, so that as a metric space k is complete.

Let G=G(k) be the k-points of a connected, adjoint, k-simple algebraic group G
defined over k. Let ρ :�→G be a homomorphism, and assume that ρ(�) is Zariski
dense and unbounded in G. Then there exists a unique continuous homomorphism
ρ̂ :S→G such that ρ= ρ̂|� .
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The proof of Theorem 1.3 will be given in section 3, and the detailed reduc-
tion of Theorem 1.1 to Theorem 1.3 will be carried out in section 7. Currently,
we do not know examples of locally compact groups satisfying conditions (A)
and (B) that are not, essentially, higher rank semi-simple groups over local
fields. Nevertheless we find the formulation of Theorem 1.3 useful not only
for its potential applications but also for psychological reasons, as it clarifies
the different role played by the topological group S and the algebraic groupG.

1.1 ACKNOWLEDGMENTS AND DISCLAIMERS. The content of this
essay is essentially contained in our manuscript [2], which we do not intend to
publish as, in retrospect, we find it hard to read. In our presentation here we
do rely on [3], which contains other parts of the content of [2]. The manuscript
contains further results regarding general cocycle superrigidity à la Zimmer,
on which we intend to elaborate in a forthcoming paper. We also rely here on
the foundational work done in [1]. In our discussion in section 6 and in the
reduction of Theorem 1.1 to Theorem 1.3 given in section 7, we rely heavily
on the work of Borel and Tits, which we refer to via [10].
It is our pleasure to thank Bruno Duchesne and Jean Lécureux for their con-

tribution to this project. We are grateful to Michael Puschnigg for spotting an
inaccuracy in the definition of a morphism of T-algebraic representations in
an early draft of [2]. We would also like to thank Tsachik Gelander for numer-
ous discussions. Above all, we owe a huge mathematical debt to Gregory
Margulis, whose incredible insight is reflected everywhere in this work.

2 Ergodic theoretical preliminaries

In this section we set our ergodic theoretical framework and notations. Recall
that a Polish space is a topological space that is homeomorphic to a complete
separable metric space. By a measurable space we mean a set endowed with
a σ -algebra. A standard Borel space is a measurable space that admits a mea-
surable bijection to a Polish topological space, equipped with the σ -algebra
generated by its topology. A Lebesgue space is a standard Borel space endowed
with the measure class of a probability measure and the completion of the
Borel σ -algebra obtained by adding all subsets of null sets. For a Lebesgue
space X , we denote by L1(X), L2(X), and L∞(X) the Banach spaces of
equivalence classes of integrable, square-integrable, and bounded measur-
able functions X→C, respectively; where two functions are equivalent if they
agree, a.e. We will also consider the space L0(X), consisting of equivalence
classes of all measurable functions X→C. Endowing this space with the
topology of convergence in measure, this is a Polish topological space.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



50 /uri bader and alex furman

Every coset space of a locally compact second countable group is a Lebesgue
space when endowedwith its Haarmeasure class. Unless otherwise stated, we
will always regard the Haar measure class when considering locally compact
second countable groups or their coset spaces as Lebesgue spaces. Given a
locally compact second countable group S, a Lebesgue S-space is a Lebesgue
space X endowed with ameasurable andmeasure class preserving action of S.
Let S be a locally compact second countable group and X be a Lebesgue

S-space. Then S acts on L∞(X) via sf (x)= f (s−1x). This S-action is isometric,
but in general it is not continuous. However, it is continuous when L∞(X) is
taken with the weak-topology induced by L1(X). The action of S on X is said to
be ergodic if the only S-invariant function classes in L∞(X) are the constant
ones.
If the S-action preserves a finite measure in the given measure class on

X , we say that the S-action is finite measure preserving. In such a case, the
S-isometric action on L∞(X) extends to an S-isometric action on L2(X), which
is norm continuous, hence unitary. For finite measure preserving actions, the
S-action on X is ergodic if and only if the only invariant function classes in
L2(X) are the constant ones.
The action of S on X is said to bemetrically ergodic if for every separablemet-

ric space (U, d) on which S acts continuously by isometries, any a.e. defined
S-equivariant map φ :X→U is essentially constant.

EXAMPLE 2.1. Let S be a locally compact second countable group satisfying
condition (A) and let T <S be a noncompact closed subgroup. Then the action
of S on S/T is metrically ergodic.

Recall that a finite measure preserving action of S on X is weakly mixing if
the diagonal S-action on X ×X is ergodic. Weak mixing is equivalent to the
condition that the only S-invariant finite-dimensional subspace of L2(X) is the
constant functions. For finite measure preserving actions, metric ergodicity is
equivalent to weak mixing (cf. [9, theorem 2.1]).

LEMMA 2.2. Let S be a locally compact second countable group satisfying condi-
tion (A) and let X be a finite measure preserving S-ergodic Lebesgue space. Then
for every noncompact closed subgroup T <S, the restricted T-action on X is weakly
mixing.

Proof. The isometric action of S on the unit sphere U of the orthogonal com-
plement of the constant functions in L2(X) is continuous and has no fixed
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points, by the ergodicity assumption. Therefore the S-action onU is proper. It
follows that there is no T-invariant compact subset in U. Therefore T has
no finite-dimensional subrepresentations in L2(X) except for the constant
functions.

The action of S on X is said to be amenable if for every S-Borel space V
and an essentially surjective S-equivariant Borel map π :V→X with compact
convex fibers, such that the S-action restricted to the fibers is by continuous
affine maps, one has an a.e. defined S-invariant measurable section (see [12,
definition 4.3.1]).

EXAMPLE 2.3 ([12, proposition 4.3.2]). Let T <S be an amenable closed
subgroup. Then the action of S on S/T is amenable.

3 Algebraic representation of ergodic actions

In this section we fix a field k with a nontrivial absolute value that is separable
and complete (as ametric space) and a k-algebraic groupG. We note thatG(k),
when endowed with the k-analytic topology, is a Polish topological group; see
[1, proposition 2.2]. We also fix a locally compact second countable group T
and a homomorphism τ :T→G(k), which is continuous, considering G(k)
with its analytic topology. Let us also fix a Lebesgue T-space X .

DEFINITION 3.1. Given all the data above, an algebraic representation of X
consists of a k-G-algebraic variety V and an a.e. defined measurable map φ :
X→V(k) such that for every t∈T and for a.e. x ∈X ,

φ(tx)= τ(t)φ(x).

We shall say that V is an algebraic representation of X and denote φ by φV for
clarity. A morphism from the algebraic representation U to the algebraic rep-
resentation V consists of a G-equivariant k-morphism π :U→V such that φV
agrees almost everywhere with π ◦φU. An algebraic representation V of X is
said to be a coset algebraic representation if in addition V is isomorphic as an
algebraic representation to a coset varietyG/H for some k-algebraic subgroup
H<G.

Ergodic properties of X are reflected in its category of algebraic representa-
tions.
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PROPOSITION 3.2 ([3, proposition 4.2]). Assume X is T-ergodic. Then for
every algebraic representation φV :X→V(k) there exists a coset representation
φG/H :X→G/H(k) and a morphism of algebraic representations π :G/H→V—
that is, a G-equivariant k-morphism π such that for a.e. x ∈X, φV(x)=π ◦
φG/H(x).

In case the T-action on X is weaklymixing (and in particular, finitemeasure
preserving), the category of representation of X is essentially trivial.

PROPOSITION 3.3. Assume X is T-weakly mixing. Then for every algebraic
representation φ :X→V(k), φ is essentially constant. Further, if τ(T) is Zariski
dense in G, then the essential image of φ is G-invariant.

Proof. Letting μ∈Prob(V(k)) be the push forward by φ of the measure on X
and L be the closure of τ(T) in G(k), it follows from [1, corollary 1.13] that φ
is essentially constant and its essential image is L-fixed.

The following theorem guarantees nontriviality of the category of repre-
sentations of X (here, the T-action on X is not assumed to preserve a finite
measure).

THEOREM 3.4 ([3, theorem 4.5], [1, theorem 1.17]).
Assume the T-Lebesgue space X is both amenable and metrically ergodic. Assume
the k-algebraic group G is connected, k-simple, and adjoint, and assume that τ(T)
is Zariski dense and unbounded in G(k). Then there exists a coset representation
φ :X→G/H(k) for some proper k-subgroupH�G.

4 T-algebraic representations of S

Throughout this sectionwe fix a locally compact second countable group S and
a lattice �<S. We endow S with its Haar measure and regard it as a Lebesgue
space. We also fix a field k endowed with a nontrivial absolute value that is
separable and complete (as a metric space) and a k-algebraic group G. We de-
note by G the Polish group G(k). Finally, we fix a homomorphism ρ :�→G.

DEFINITION 4.1. Given all the data above, for a closed subgroup T <S, a
T-algebraic representation of S consists of the following data:

. A k-algebraic group L
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. A k-(G× L)-algebraic variety V, regarded as a left G, right L space, on
which the L-action is faithful. A homomorphism τ :T→ L(k) with a Zariski dense image. An associated algebraic representation of the �×T-space S on V, where
� acts on the left and T acts on the right of the Lebesgue space S—that
is, a Haar a.e. defined measurable map φ :S→V(k) such that for almost
every s∈S, every γ ∈�, and every t∈T ,

φ(γ st)= ρ(γ )φ(s)τ (t).

We abbreviate the notation by saying that V is a T-algebraic representation
of S, denoting the extra data by LV, τV, and φV. Given another T-algebraic
representation U, we let LU,V< LU× LV be the Zariski closure of the image
of τU× τV :T→ LU× LV. Note that LU,V acts on U and V via its projections
to LU and LV correspondingly. A morphism of T-algebraic representations of
S from the T-algebraic representation U to the T-algebraic representation V
is a G× LU,V-equivariant k-morphism π :U→V such that φV agrees a.e. with
π ◦φU.

Fix a k-subgroupH<G and denoteN=NG(H). This is again a k-subgroup.
Any element n∈N gives aG-automorphism ofG/H by gH �→ gn−1H. It is easy
to see that the homomorphism N→AutG(G/H) thus obtained is surjective
and its kernel isH. Under the obtained identification N/H∼=AutG(G/H), the
k-points of the k-group N/H are identified with the k-G-automorphisms of
G/H.

DEFINITION 4.2. A T-algebraic representation of S is said to be a coset T-
algebraic representation if it is isomorphic as a T-algebraic representation to
G/H for some k-algebraic subgroupH<G and L corresponds to a k-subgroup
of NG(H)/H that acts on G/H as described above.

It is clear that the collection of T-algebraic representations of S and their
morphisms form a category.

THEOREM 4.3.
Assume the T-action on S/� is weakly mixing. Then the category of T-algebraic
representations of S has an initial object and this initial object is a coset T-algebraic
representation.
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We will first prove the following lemma.

LEMMA 4.4. Assume the T-action on S/� is weakly mixing. Let V be a T-
algebraic representation of S. Then there exists a coset T-algebraic representa-
tion of S for some k-algebraic subgroup H<G and a morphism of T-algebraic
representations π :G/H→V.

Proof. The T-action on S/� is weakly mixing, and in particular ergodic; thus
the �×T-action on S is ergodic. Applying Proposition 3.2 we get that there
exists a coset representation (G× L)/M for some k-algebraic subgroup M<

G× L and a morphism of algebraic representations π : (G× L)/M→V. We
are thus reduced to the case V= (G× L)/M. Denote the obvious projection
from G× L to G and L correspondingly by pr1 and pr2. The composition of
the map φ :S→ (G× L)/M(k) with the G(k)-invariant map

(G× L)/M(k)→ L/ pr2(M)(k)

clearly factors through S/� and thus gives a coset representation of the
T-Lebesgue space X =S/� on L/ pr2(M). Applying Proposition 3.3, we con-
clude that L/ pr2(M) contains a G-invariant point; thus pr2(M)= L. It follows
that asG-varieties, (G× L)/M∼=G/H forH= pr1(M∩ (G×{e}))<G, and the
lemma follows.

Proof of Theorem 4.3. We consider the collection

{H<G |H is defined over k and there exists a coset T-representation
This is a nonempty collection as it containsG. By the Noetherian property, this
collection contains a minimal element. We choose such a minimal element
H0 and fix corresponding algebraic k-subgroup L0<NG(H0)/H0, homomor-
phism τ0 :T→ L0(k), and a representation φ0 :S→ (G/H0)(k). We argue to
show that this coset T-representation is the required initial object.
Fix any T-algebraic representation of S, V. It is clear that, if it exists, a

morphism of T-algebraic representations from G/H0 to V is unique, as two
differentG-mapsG/H0→V agree nowhere. We are left to show existence. To
this end we consider the product T-algebraic representation V×G/H0 given
by the data φ=φV×φ0, τ = τV× τ0, and L being the Zariski closure of τ(T)
in LV× L0. Applying Lemma 4.4 to this product T-algebraic representation,
we obtain the following commutative diagram:
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S ��

φV

��

φ

���
���

���
���

�

φ0

��

G/H(k)

π

��

V(k) V×G/H0(k)
pr2

��
pr1

�� G/H0(k)

By the minimality of H0, the G-morphism pr2 ◦π :G/H→G/H0 must be a
k-isomorphism and hence an isomorphism of T-algebraic representation. We
thus obtain the morphism of T-algebraic representations

pr1 ◦π ◦ (pr2 ◦π)−1 :G/H0(k)→V(k).

This completes the proof of Theorem 4.3.

REMARK 4.5. Let the data G/H, τ :T→ L(k)<NG(H)/H(k) and φ :S→
(G/H)(k) form an initial object in the category of T-algebraic representation
of S. For g ∈G(k) we get a G-equivariant k-isomorphism πg :G/H→G/Hg

given by xH �→ xg−1Hg . Denoting by inn(g) :NG(H)/H→NG(Hg)/Hg the k-
isomorphism nH �→ ngHg and by Lg the image of L under inn(g) we get that
the data

G/Hg , inn(g) ◦ τ :T→ Lg(k)<NG(Hg)/Hg(k), πg ◦φ :S→G/H(k)

form another T-algebraic coset representation of S, isomorphic to the one
given above, thus again an initial object in the category of T-algebraic rep-
resentations of S. Furthermore, it is easy to verify that any actual coset
presentation of the initial object in the category of T-algebraic representations
of S is of the above form, for some g ∈G(k).

It turns out that an initial object in the category of T-algebraic representa-
tions of S extends naturally to an N-algebraic representation of S, where N
denotes the normalizer of T in S.

THEOREM 4.6.
Assume the action of T on S/� is weakly mixing and let G/H, τ :T→ L(k)<
NG(H)/H(k) and φ :S→G/H(k) be an initial object in the category of T-
algebraic representations of S, as guaranteed by Theorem 4.3. Then the map
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τ :T→NG(H)/H(k) extends to the normalizer N=NS(T) of T in S, and the
map φ could be seen as an N-algebraic representation of S. More precisely, there
exists a continuous homomorphism τ̄ :N→NG(H)/H(k) satisfying τ̄ |T = τ such
that, denoting by L̄ the Zariski closure of τ̄ (N) in NG(H)/H, the data

G/H, τ̄ :N→ L̄(k)<NG(H)/H(k), φ :S→G/H(k)

form an N-algebraic coset representation. Moreover, this N-algebraic coset represen-
tation is an initial object in the category of N-algebraic representations.

Proof. Fix n∈N. Set τ ′ = τ ◦ inn(n) :T→ L(k), where inn(n) :T→T denotes
the inner automorphism t �→ tn= ntn−1, and φ′ =φ ◦Rn :S→G/H(k), where
Rn :S→S denotes the right regular action s �→ sn−1. We claim that the data L,
G/H, τ ′, and φ′ form a new T-representation of S. Indeed, for almost every
s∈S, every γ ∈�, and every t∈T ,

φ′(γ st)=φ(γ stn−1)=φ(γ sn−1tn)= ρ(γ )φ′(s)τ ′(t).

Since the T-algebraic representation of S given by L, G/H, τ , and φ forms an
initial object, we get the dashed vertical arrow, which we denote τ̄ (n), in the
following diagram:

S
φ
��

φ′ ���
��

��
��

��
G/H(k)

τ̄ (n)
��

G/H(k)

It follows from the uniqueness of the dashed arrow that the map n �→ τ̄ (n) is a
homomorphism fromN to the group of k-G-automorphism ofG/H, which we
identify with NG(H)/H(k). For n∈T the map τ(n) :G/H→G/H could also
be taken to be the dashed arrow; thus τ̄ |T = τ , by uniqueness. The fact that the
homomorphism τ̄ :N→NG(H)/H(k) is necessarily continuous is explained
in the proof of [3, theorem 4.7]. We define L̄ to be the Zariski closure of τ̄ (N)
in NG(H)/H. We thus indeed obtain an N-representation of S, given by the
algebraic group L̄, the variety G/H, the homomorphism τ̄ :N→ L̄(k), and the
(same old) map φ :S→G/H(k).
The final part, showing that the above data forms an initial object in the

category ofN-algebraic representations of S, is left to the reader, as we will not
use this fact in the sequel.
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COROLLARY 4.7. Let T1,T2<S be closed subgroups and assume for each i∈
{1, 2} the action of Ti on S/� is weakly mixing, and let

G/Hi, τi :Ti→ Li(k)<NG(Hi)/Hi(k), φi :S→ (G/Hi)(k)

be the corresponding initial objects in the categories of Ti-algebraic representations
of S. Assume that T2 normalizes T1. Then a conjugate of H2 is contained in H1,
and ifH2=H1, then also φ2=φ1.

5 Proof of Theorem 1.3

In the proof below we shall need the following general Lemma that allows
us to assemble a continuous homomorphism τ :S→G from continuous
homomorphisms of subgroups τi :Ti→G.

LEMMA5.1. Let S be a locally compact second countable group and let {Ti<S}i∈I
be a countable family of closed subgroups that together topologically generate S. Let
G be a Polish topological group, and for each i∈ I let τi :Ti→G be a continuous
homomorphism.
Let X be a Lebesgue S-space, and assume that there exists a single measurable

map φ :X→G so that for every i∈ I and every t∈Ti for a.e. x ∈X,

φ(tx)=φ(x)τi(t)−1.

Then there exists a continuous homomorphism τ :S→G so that τ |Ti = τi and

φ(sx)=φ(x)τ (s)−1

for every s∈S and a.e. x ∈X.

Proof. Let us fix a probability measurem in the given measure class on X and
consider the space L0(X ,G) of (equivalence classes of) measurable functions
ψ :X→G taken with the topology of convergence in measure: given an open
neighborhood U of 1∈G and ε > 0, a (U, ε) neighborhood of ψ consists of
classes of those measurable functions ψ ′ :X→G for which m{x ∈X |ψ ′(x)∈
ψ(x)U}> 1− ε. This topology is Polish.
The right translation action ofG on L0(X ,G) given by g :ψ(x) �→ψ(x)g−1 is

clearly free and continuous. In fact, every G-orbit is homeomorphic to G and
is closed in L0(X ,G). To see this we assume giψ→ψ ′ inmeasure and argue to
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show that there exists g ∈G such thatψ ′(x)=ψ(x)g−1. The given converges in
measure imply that there exists a subsequence gij for which ψ(x)g

−1
ij
→ψ ′(x)

for a.e. x ∈X . Therefore gij→ψ ′(x)−1ψ(x) for a.e. x ∈X ; thus indeed there is
a limit g= limj→∞ gij in G such that ψ

′(x)=ψ(x)g−1.
The group S acts on L0(X ,G) by precomposition s :ψ(x) �→ψ(s−1x). This

action is also continuous, because any measurable measure class preserving
action S×X→X of a locally compact group has the property that given ε > 0,
there exists δ > 0 and a neighborhood V of 1∈S, so that for any measurable
E⊂X with m(E)< δ, one has m(sE)< ε for every s∈V .
Now consider φ ∈ L0(X ,G) as in the Lemma. By the assumption, for each

i∈ I the Ti-orbit of φ lies in the G-orbit of φ. Since S is topologically generated
by ∪ITi, the S-action is continuous, and the G-orbit of φ is closed, it follows
that the S-orbit of φ is contained in the G-orbit of φ. Hence, for every s∈S
there is τ(s)∈G so that a.e. on X ,

φ(xs−1)=φ(x)τ (s)−1.

This defines a homomorphism τ :S→G that extends all τi :Ti→G. Continu-
ity of the homomorphism follows from the fact that the S-action is continuous
and G is homeomorphic to the G-orbit of φ.

We now return to the proof of Theorem1.3. We letG be a connected, adjoint,
k-simple algebraic group defined over k as in Theorem 1.3. By the fact that
ρ(�) is unbounded in G(k) we get that the given absolute value on k is non-
trivial. Further, by the countability of �, we may replace k with a complete
and separable (in the topological sense) subfield k′ such that ρ(�)⊂G(k′).
We will therefore assume below that the given absolute value on the field k is
nontrivial and that k is complete and separable as a metric space. Accordingly,
we will regardG=G(k) as a Polish group. We let T0, . . . ,Tn<S be subgroups
as guaranteed by condition (B) and assume, as we may, that T0 is amenable.
We fix i∈ {0, . . . , n}. By Lemma 2.2 the action of Ti on S/� is weaklymixing,

thus by Theorem 4.3 the category of Ti-algebraic representations of S has an
initial object that is a coset Ti-algebraic representation. We denote by

G/Hi, τi :Ti→ Li(k)<NG(Hi)/Hi(k), φi :S→G/Hi(k)

the data forming this initial object.
By Examples 2.1 and 2.3 the S-action on S/T0 is metrically ergodic and

amenable. It follows from [3, lemma 3.5] that the �-action on S/T0 is also
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metrically ergodic and amenable. By Proposition 3.4 we get that there exists a
coset representation φ′ :S/T0→G/H′(k) for some proper k-subgroupH′�G.
Setting L′ = {e}<NG(H′)/H′ and letting τ ′ :T0→ L′(k) be the trivial homo-
morphismwe view φ′ as a T0-equivariant map from S toG/H′(k), thus getting
a nontrivialT0-algebraic coset representation of S. It follows thatH0 is a proper
subgroup of G.
By Corollary 4.7 for each i∈ {0, . . . , n} a conjugate ofHi−1 is contained inHi,

where i is taken in a cyclic order. Going a full cycle we get that the groups Hi

are all conjugated. Using Remark 4.5 we assume that they all coincide and we
denote this common group by H. In particular, we have H=H0�G. Using
again Corollary 4.7, we obtain that the maps φi :S→G/H(k) all coincide and
we denote this common map by

φ :S→G/H(k).

Let N=NG(H) and L be the algebraic subgroup generated by L0, . . . , Ln in
N/H. By [5, 2.1(b)], L<N/H is a k-algebraic subgroup. Denote by L̂ the preim-
age of L under the quotient mapN→N/H and note that L̂<N is a k-algebraic
subgroup. We conclude that the k-G-morphism π :G/H→G/L̂ is Li-invariant
for every i∈ {0, . . . , n}. It follows that π ◦φ :S→G/L̂(k) is Ti-invariant for
every i. Since S is topologically generated by the groups Ti, we conclude that
π ◦φ :S→G/L̂(k) is S-invariant. Thus φ is a constant map and its essential
image is a ρ(�)-invariant point in G/L̂. Since ρ(�) is Zariski dense in G, this
point is G-invariant. We conclude that L̂=G. Since L̂<N<G= L̂ we get that
L̂=N=G. Thus, G normalizes H. Since G is k-simple and H�G we con-
clude thatH is trivial. In particular L= L̂=G and it acts on G/H=G by right
multiplication.
To summarize: We have an a.e. defined measurable map φ :S→G(k) and

for every i∈ {1, . . . , n} a continuous homomorphism τi :Ti→G(k) such that
for every γ ∈�, t∈Ti for a.e. x ∈S:
(5.1) φ(γ xt−1)= ρ(γ )φ(x)τi(t)−1

We also have that the algebraic group generated by τ1(T1), . . . , τn(Tn) is G.
Taking γ = 1 in Equation (5.1) and applying Lemma 5.1 for X =S endowed

with the S-action s : x �→ xs−1, we get a continuous homomorphism τ :S→
G(k) with τ |Ti = τi so that φ(xs−1)=φ(x)τ (s)−1 for every s∈S and for a.e.
x ∈S. It follows now from equation (5.1) that for every γ ∈�, every s∈S, and
for a.e. x ∈S,

(5.2) φ(γ xs−1)= ρ(γ )φ(x)τ (s)−1.
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The a.e. defined measurable map  :S→G given by (s)=φ(s)τ (s)−1 is S-
invariant, hence essentially constant. Denoting its essential image by g ∈G(k)
we get that for a.e. s∈S, φ(s)= gτ(s). Equation (5.2) gives that for every γ ∈�,
s∈S, and for a.e. x ∈S,

gτ(γ xs)= ρ(γ )gτ(x)τ (s).

As the above is an a.e. satisfied equation of continuous functions in the
parameter s, it is satisfied everywhere. Taking x= s= e, we get that for every
γ ∈�,

gτ(γ )= ρ(γ )g.
Setting ρ̂(s)= gτ(s)g−1 we get that ρ̂ :S→G is a continuous homomorphism
such that ρ̂|� = ρ. The uniqueness of ρ̂ follows from [3, lemma 6.3], and the
proof of Theorem 1.3 is completed.

6 Continuous homomorphisms of algebraic groups

LEMMA 6.1. Let k be a complete valued field and k′ a finite field extension,
endowed with the extended absolute value. Let V be an affine k′-variety and denote
by U its restriction of scalar to k. Endow the spaces V(k′) and U(k) with the cor-
responding analytic topologies and consider the natural maps U(k)→U(k′) and
U(k′)→V(k′). Then the composed map U(k)→V(k′) is a homeomorphism.

Proof. By the functoriality of the restriction of scalars and its compatibility with
products, it is enough to prove the lemma for V=A

1, the one-dimensional
affine space. In this case we get V(k′) k′ and U(k) k[k′:k], and the com-
posed map k[k′:k] → k′, which is a k-vector spaces isomorphism, is indeed a
homeomorphism by [1, theorem 4.6].

PROPOSITION6.2. Let k be a field and letG be a connected, adjoint, k-isotropic,
k-simple k-algebraic group. Then there exists a finite field extension k′ of k, unique
up to equivalence of extensions, and there exists a connected, adjoint, k′-isotropic,
absolutely simple k′-algebraic groupG′, unique up to k′-isomorphism, such thatG is
k-isomorphic to the restriction of scalars ofG′ from k′ to k. In particular, the natural
k′-morphism G→G′ gives rise to a group isomorphism G(k)G′(k′).
If k is endowed with a complete absolute value, endowing k′ with the extended

absolute value, the isomorphism G(k)G′(k′) is also a homeomorphism with
respect to the corresponding analytic topologies.
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Note that the above proposition is trivial if G is absolutely simple to begin
with, in which case we have that k′ = k and G′ =G.
Proof. The existence of the field k′ and the group G′ follows from the discus-
sion in [10, I.1.7]. Their uniqueness follows from the uniqueness statement
in [10, Theorem I.1.8]. The last part follows from Lemma 6.1.

Given a filed � and an �-algebraic group H, we denote by H(�)+ the sub-
group ofH(�) generated by all the groups of �-points of the unipotent radicals
of all parabolic �-subgroups ofH; see [10, I.1.5.2].

PROPOSITION 6.3. Let � and k be fields endowed with complete absolute values.
Let H be a connected, semisimple algebraic group defined over �. Assume that H
has no �-anisotropic factors. Let H be an intermediate closed subgroup H(�)+<
H<H(�). Let G be a connected, adjoint, absolutely simple algebraic group defined
over k. Let θ :H→G(k) be a group homomorphism that is continuous with respect
to the corresponding analytic topologies, and let its image be Zariski dense in G.
Then there exists a unique field embedding i : �→ k, which is continuous, and a
corresponding unique k-algebraic groups morphism H→G such that θ coincides
with the precomposition of the corresponding mapH(k)→G(k) with the injection
H<H(�)→H(k).
Furthermore, if � is a local field, then the assumption thatH has no �-anisotropic

factors could be replaced by the assumption that the image of θ is unbounded in
G(k).

Proof. The first paragraph is proven in [10, Proposition VII.5.3(a)]. Note that
in this proof the fields are assumed to be local fields, but this assumption is
used in the proof only via [10, Remark I.1.8.2(IIIa)], which applies equally well
for complete valued fields.
Assume now that � is a local field and θ(H) is unbounded in G(k). We first

remark that the field embedding i : �→ k, if exists, is unique as it must coin-
cide with the corresponding unique field embedding we get by replacingH by
the group Hi given by the almost direct product of all �-isotropic simple fac-
tors ofH, replacingH by the intermediate closed groupHi(�)

+<H∩Hi(�)<

Hi(�) and replacing θ by its restriction to H∩Hi(�), noting that indeed
H∩Hi(�) containsHi(�)

+ by [10, I.1.5.4(iv)]. Second, we remark that the cor-
responding k-algebraic groups morphism H→G, if exists, is unique. To see
this, we will assume i is given and α,β :H→G are two such corresponding
k-morphisms and argue to show that α=β. By definition, α|H =β|H. By [10,
Proposition I.2.3.1(b)],H+ is a closed cocompact normal subgroup inH(�). It
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follows thatH is a cofinite volume subgroup ofH(�). Applying [3, theorem 6.3]
we get that α|H(�)=β|H(�) (note that in this reference we regard lattices, but
the proof applies equally well to closed subgroups of cofinite volume). By [5,
corollary 18.3] we have thatH(�) is Zariski dense inH; thus indeed α=β. In
the sequel we will argue to show the existence of the field embedding i : �→ k
and the corresponding k-algebraic groups morphismH→G.
We letHa be the almost direct products of all �-anisotropic factors ofH and

denote Ha=Ha(�)∩H. We also consider the group H+ =H(�)+. Note that
Ha andH+ are commuting normal subgroups ofH; thus the Zariski closures
of the images of these groups under θ are commuting algebraic normal sub-
groups of the simple group G. AsH+ is cocompact inH, its image under θ is
unbounded and in particular nontrivial. It follows that θ(H+) is Zariski dense
in G; thus θ(Ha) is central and hence trivial. We setH′ =H/Ha and letH′ be
the image ofH inH′ under the quotient mapH(�)→H/Ha(�). We get that θ
factors via θ ′ :H′ →G(k). Note thatH′ has no �-anisotroic factors and thatH′

contains the group H′(�)+, by [10, I.1.5.4(iv) and I.1.5.5]. We conclude hav-
ing a continuous i : �→ k and a corresponding k-algebraic group morphism
H′ →G such that θ ′ coincides with the precomposition of the correspond-
ing map H′(k)→G(k) with the injection H′<H′(�)→H′(k). We are done
by considering the composed k-morphism H→H′ →G, noting that indeed
θ coincides with the precomposition of the corresponding map H(k)→G(k)
with the injectionH<H(�)→H(k).

Combining Proposition 6.3 with Proposition 6.2 we readily get the following
result, in which the target group G is assumed to be k-simple rather than
absolutely simple.

COROLLARY 6.4. Let � and k be fields endowed with complete absolute values.
Let H be a connected, semisimple algebraic group defined over �. Assume that H
has no �-anisotropic factors. Let H be an intermediate closed subgroup H(�)+<
H<H(�). Let G be a connected, adjoint, k-simple algebraic group defined over k.
Let θ :H→G(k) be a group homomorphism that is continuous with respect to the
corresponding analytic topologies, and its image is Zariski dense in G. Then there
exists a group homomorphism θ̂ :H(�)→G(k) that is continuous with respect to
the corresponding analytic topologies such that θ = θ̂ |H.
Furthermore, if � is a local field, then the assumption thatH has no �-anisotropic

factors could be replaced by the assumption that the image of θ is unbounded in
G(k).
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7 Deducing Theorem 1.1 from Theorem 1.3

We let k be a complete valued field and let G be a connected, adjoint, k-simple
k-algebraic group. Assuming having �<H and ρ :�→G(k) as in the theo-
rem, by [3, lemma 6.3] we have that a continuous homomorphism ρ̂ :H→G
such that ρ̂|� = ρ, if exists, is uniquely given. Belowwewill prove its existence.
We fix a local field �. We let H be the collection of all connected semisim-

ple �-algebraic groups H that satisfy the theorem—that is, for every lattice
� in H=H(�), whose projection modulo N(�) for each proper normal �-
isotropic subgroup N�H is nondiscrete, and every homomorphism ρ :�→
G with unbounded and Zariski dense image ρ(�) in G, there exists a contin-
uous homomorphism ρ̂ :H→G satisfying ρ= ρ̂|� . We argue to show thatH
contains all connected semisimple �-algebraic groups of �-rank at least two.
Given a connected semisimple �-algebraic group H, let us denote by H̄ the

associated adjoint group and by p :H→ H̄ the corresponding �-isogeny. The
group H̄ is �-isomorphic to the product of its factors. Let us denote by H̄0 the
product of all �-isotropic factors of H̄ and let q : H̄→ H̄0 be the correspond-
ing projection. We claim that if H̄0 is in H, then so is H. First note that
both maps p :H(�)→ H̄(�) and q : H̄(�)→ H̄0(�) have compact kernels and
closed cocompact images. This is clear for the projection q, and for p it follows
from [10, Proposition I.2.3.3(i)]. In particular, we get that q ◦ p :H(�)→ H̄0(�)
has a compact kernel and a closed cocompact image. Thus, if �<H(�) is a
lattice, then q ◦ p(�)< H̄0(�) is a lattice, and �= ker q ◦ p|� is a finite nor-
mal subgroup of �. Note that for each proper normal �-isotropic subgroup
N� H̄0, the projection of q ◦ p(�) modulo N(�) is nondiscrete if the corre-
sponding assumption applies to �<H(�). Note also that � is in the kernel
of any Zariski dense homomorphism ρ :�→G, by [10, Theorem I.1.5.6(i)],
as ρ(�) is a finite normal subgroup in the adjoint group G. It follows that ρ
factors through q ◦ p(�), and this proves our claim. Noting that the groups H
and H̄0 have equal �-ranks, we are left to show that H contains all connected
semisimple �-algebraic groups of �-rank at least two that are adjoint and have
no �-anisotropic factors. We proceed to do so.
Assume first thatH is adjoint and has at least two k-isotropic factors. Up to

replacingH by an �-isomorphic copy, we assume thatH=H1×H2, where the
groups H1 and H2 are connected, semi-simple, isotropic, adjoint �-algebraic
groups. We fix a lattice � in H=H(�), for which projection modulo N(�) for
each proper normal �-isotropic subgroup N� H̄0 is nondiscrete, and a homo-
morphism ρ :�→G such that ρ(�) is unbounded and Zariski dense in G,
and we argue to show that there exists a continuous homomorphism ρ̂ :H→
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G satisfying ρ= ρ̂|� . We let pri :H→Hi be the corresponding projections,
denote by H′i the closure of pri(�) in Hi(�), and let H′ =H′1×H′2. Therefore
�<H′ is a lattice with dense projections in the sense of [3, definition 1.1];
thus by [3, theorem 1.2] there exists a continuous homomorphism ρ̂′ :H′ →G
satisfying ρ= ρ̂′|� . By [10, Theorem II.6.7(a)] we have thatH(�)+<H′<H(�)
and by Corollary 6.4, there exists a continuous homomorphism ρ̂ :H→G sat-
isfying ρ̂′ = ρ̂|H′ . We conclude that ρ= ρ̂|� , which finishes the proof in this
case.
We are left with the case that H is �-simple and of �-rank at least two. We

fix a lattice � in H=H(�) and note that by [10, Theorem III.5.7(b)] � has a
finite abelianization. We set H+ =H(�)+, �+ =� ∩H+ and conclude by [10,
Theorem I.2.3.1(c)] that �+<� is of finite index. In particular, �+<H is
a lattice; thus �+ is also a lattice in the closed subgroup H+ in which it is
contained. We now set S=H+ and note that it satisfies conditions (A) and
(B): condition (B) follows from the assumption of higher rank, and condition
(A) follows from [4, theorem 6.1]. By Theorem 1.3 there exists a continuous
homomorphism ρ̂+ :H+→G such that ρ|�+ = ρ̂+|�+ . By Corollary 6.4 we get
a continuous homomorphism ρ̂ :H→G such that ρ̂|H+ = ρ̂+. Considering
�+ as a lattice in � and noting that ρ̂|� , ρ :�→G are two homomorphisms
that coincide on �+, we deduce by [3, lemma 6.3] that ρ̂|� = ρ. This finishes
the proof.

8 A fine version of Theorem 1.1

Taking θ = ρ̂ in Proposition 6.3 in case the target group G is absolutely sim-
ple and using Proposition 6.2 otherwise, we get the following corollary of
Theorem 1.1, which could be viewed as a finer version of this theorem.

COROLLARY 8.1. In the setting of Theorem 1.1, if G is absolutely simple, then
there exist a unique field embedding i : �→ k, which is continuous, and a cor-
responding unique k-algebraic groups morphism H→G such that ρ coincides
with the precomposition of the corresponding mapH(k)→G(k) with the injection
�<H(�)→H(k).
In the general case, where G is merely k-simple, considering the finite field exten-

sion k′ of k and the k′-algebraic group G′ given in Proposition 6.2, there exists
a unique field embedding i : �→ k′, which is continuous, and a corresponding
unique k-algebraic group morphismH→G′ such that ρ coincides with the compo-
sition of the corresponding maps �<H(�), H(�)→H(k′), H(k′)→G′(k′), and
G′(k′)G(k).
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THE NORMAL SUBGROUP THEOREM THROUGH
MEASURE RIGIDITY

Abstract. We present an expository proof of Margulis’s normal subgroup theo-
rem and measurable factor theorem using tools of measure rigidity for actions of
higher-rank abelian groups in homogeneous dynamics.

1 Introduction and main results

1.1 INTRODUCTION. We present an expository proof of Margulis’s nor-
mal subgroup theorem, Theorem 1.1 below, which appeared in [15] and
[17] as translated in [16] and [18]. For certain discrete subgroups � (namely,
for irreducible lattices in higher-rank semisimple Lie groups and for some
more general groups), the normal subgroup theorem asserts that any nor-
mal subgroup N of � is either of finite index in � or is contained in the
center of �.

The proof of the normal subgroup theorem follows in two steps: First, one
establishes that �/N has Kazhdan’s property (T). When all simple factors of
G have higher (real) rank this fact is well known. When � is irreducible and
G has rank-1 factors, additional arguments are needed to show noncentral
normal subgroups of � have property (T); these appear as [17, theorem 1.3.2,
theorem 1.4] combined with Margulis’s arithmeticity theorem. The second
step in the proof is to show that �/N is amenable whenever N is noncentral.
This follows fromMargulis’s measurable factor theorem, Theorem 1.2 below,
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which appears as [15, theorem 1.14.2]. See also [19, chapter IV] for more gen-
eral statements and complete proofs of the normal subgroup and measurable
factor theorems.

Our proof of the normal subgroup theorem follows Margulis’s proof. We
present an alternative proof of the measurable factor theorem. Margulis’s
proof of the measurable factor theorem in [15] and [19] may be viewed as
a result on the rigidity of certain σ -algebras. The proof we give is based on
the rigidity of invariant measures for actions of higher-rank abelian groups in
homogeneous dynamics. This approach is inspired by arguments from our
paper [2]. However, none of the arguments presented here are original to us.
In particular, the proof we present below is highly derivative of [5]–[8], [11],
and [12].

1.2 DEFINITIONS. We begin with some definitions. Let g be a real Lie alge-
bra. Recall that g is semisimple if [g, g]= g. The (real) rank of g is, roughly,
the dimension of the maximal ad-semisimple, abelian subalgebra a⊂ g. (See
section 8.1 below for a more precise definition.) A Lie group G is semisimple
if its Lie algebra g is semisimple and the rank of G is the rank of g. We will
always assume G is connected. A semisimple Lie group admits a bi-invariant,
locally finite volume form called the Haar measure. A lattice in G is a discrete
subgroup such that the quotient G/� has finite volume.

A semisimple Lie group G has an almost direct product structure into nor-
mal subgroups G=�k

i=1Gi of positive dimension. When no normal factor
Gi is compact, we say a lattice �⊂G is irreducible if, for every proper sub-
set C⊂{1, . . . , k}, the image of � under the natural projection G→�i∈CGi

is dense; this implies for any normal subgroup H⊂G of positive dimension
thatH� is dense in G.

Let G be semisimple and let G=KAN be a choice of Iwasawa decomposi-
tion ofG. (See section 8.1 below for details.) In particular, ifG has finite center
thenK is amaximal compact subgroup, A is amaximal connected abelian sub-
group whose image under the adjoint representation is R-diagonalizable, and
N is a connected subgroup normalized by A whose image under the adjoint
representation is unipotent. The subgroup A has Lie algebra a and dimension
the rank of G. Let M=CK(A) be the centralizer of A in K and let P=MAN.
Then P is a minimal parabolic subgroup. A parabolic subgroup of G is a closed
subgroup Q containing a minimal parabolic subgroup for some choice of
Iwasawa decomposition.

Given a closed subgroup Q ⊂G, let λQ denote the (left) Haar measure on
Q . Given a parabolic subgroup Q ⊂G, we also denote by λQ\G the (right)
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K-invariant volume form on Q\G; this measure is always in the Lebesgue
class. Similarly, given a lattice �⊂G, we write λG/� for the normalized Haar
measure on G/�.

1.3 MAIN RESULTS. We denote by Z(G) the center of the group G. In [15]
and [17], Margulis established the following rigidity of normal subgroups of
irreducible lattices in higher-rank Lie groups.

THEOREM 1.1 (normal subgroup theorem; [19, theorem IV.4.10]).
Let G be a connected semisimple Lie group with rank at least 2 and no nontrivial
compact factors. Let � be an irreducible lattice subgroup. If N �� is a normal
subgroup of �, then either N⊂Z(G) or N has finite index in �.

In many situations, such as when G is linear, the center Z(G) is finite; in
this case, Theorem 1.1 asserts that every normal subgroup of � is either finite
or cofinite.

The normal subgroup theorem, Theorem 1.1, follows from the following
theorem characterizing measurable factors of the right action of � on P\G.
This action does not preserve any Borel probability measure on P\G; however,
it preserves the Lebesgue measure class λ= λP\G. Given a standard measure
space (X ,μ), we say a (left) Borel action of � on (X ,μ) is nonsingular if γ∗μ
is equivalent to μ for every γ ∈�. Roughly, Margulis’s measurable factor the-
orem states that if a nonsingular left action of � on a measure space (X ,μ)
is a measurable factor of the right �-action on (P\G, λP\G), then (X ,μ) is
measurably isomorphic to (Q\G, λQ\G) for some parabolic subgroup Q ⊃P;
moreover, this isomorphism intertwines the left �-action on (X ,μ) with the
right �-action on (Q\G, λQ\G).

THEOREM 1.2 (measurable factor theorem; [19, corollary IV.2.13]).
Let G be a connected semisimple Lie group with rank at least 2 and no nontrivial
compact factors. Let � be an irreducible lattice subgroup.
Let � act on a Borel space X and let p : P\G→X be a Borel map defined λP\G-

a.e. Assume that p is �−equivariant: for λP\G-a.e. g and every γ ∈�, we have

p(Pgγ )= γ−1 · p(Pg).

Letμ= p∗λP\G be the image of λP\G under p. Then there is a parabolic subgroup
Q ⊃P such that (X ,μ) is�-equivariantly isomorphic to (Q\G, λQ\G): there is a�-
equivariant isomorphism of measure spaces H : (X ,μ)→ (Q\G, λQ\G) such that
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if π : P\G→Q\G is the natural map, then the following diagram commutes:

(P\G, λP\G) (X ,μ)

(Q\G, λQ\G)

p

π
H

In the above theorem, the �-equivariance of p implies the measure μ=
p∗λP\G is nonsingular for the�-action onX . Since the action of� on P\G is on
the right, the �-equivariance of the isomorphism H : (X ,μ)→ (Q\G, λQ\G)
asserts that H(γ · x)=H(x) · γ−1 for μ-a.e. x and every γ ∈�. The isomor-
phismH in Theorem 1.2 need not be defined everywhere but only on a set of
full μ-measure.

A natural setting in which a measurable factor of the �-action on P\G
appears is stated in Lemma 3.1 below. This forms a key step in the proof of
Theorem 1.1 through Lemma 4.1.

One may ask if analogous results hold when the map p in Theorem 1.2 is
assumed to be continuous or smooth. In [3], Dani proves a result analogous to
Theorem 1.2 for continuous factors—that is, assuming the map p is a contin-
uous surjection. More recently, Gorodnik and Spatzier studied in [10] smooth
factors and (under an additionalmild hypothesis) establish a smooth analogue
of Theorem 1.2.

2 Representations, property (T), and amenability

To establish Theorem 1.1 we introduce the concepts of amenability and of
property (T) groups. We begin with the following definition.

DEFINITION 2.1 (almost-invariant vectors). Let H be a locally compact
topological group and let π be a unitary representation of H. We say that π
admits almost-invariant vectors if, for every ε > 0 and every compact subset
C⊂H, there is a unit vector v with

sup
h∈C
‖π(h)v− v ‖ <ε.

2.1 PROPERTY (T) GROUPS. We have the following definition.

DEFINITION 2.2 (property (T) groups). A locally compact topological
groupH has Kazhdan’s property (T) if every unitary representation admitting
almost-invariant vectors has a nontrivial invariant vector.
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REMARK 2.3 (facts on property (T) groups). We collect several well-known
facts about property (T) groups. See [1, chapter 1] or [23, chapter 13] for
detailed exposition on property (T).

(1) Compact groups have property (T).
(2) A product group G1×G2 has property (T) if and only if both the factors

G1 and G2 have property (T).
(3) If G is a connected simple Lie group with real rank at least 2, then G

has property (T); more generally, if every almost simple factor of G has
real rank at least 2, then G has property (T). (See [19, corollary III.5.4].)

(4) A Lie group G has property (T) if and only if every lattice subgroup � of
G has property (T). (See [19, theorem III.2.12].)

(5) If a Lie group G has property (T) and if H is a closed normal subgroup
of G, then the quotient group G/H has property (T).

(6) Suppose G is a semisimple Lie group with no compact factors and at
least one almost-simple factor of G has real rank at least 2. Let � be
an irreducible lattice. Then for any noncentral normal subgroupN⊂�,
the quotient �/N has property (T). See [19, theorem III.5.9(B)]. See also
[18, theorem 1.4].

(7) More generally, suppose that a semisimple Lie group G has real rank
at least 2 and no compact factors and that � is an irreducible lattice.
Then for any noncentral normal subgroup N⊂�, the quotient �/N
has property (T). This follows from [19, theorem IV.3.9] and Margulis’s
arithmeticity theorem [19, theorem IV.3.9]. See also [18, theorem 1.3.2].

The group �=SL(2,Z[√2]) is an irreducible lattice in SL(2,R)×SL(2,R).
It is well known that SL(2,R) fails to have property (T). It follows that
SL(2,R)×SL(2,R) and hence � fail to have property (T). However, from
Remark 2.3(7), the quotient �/N has property (T) for any noncentral normal
subgroup N⊂�.

2.2 AMENABILITY. Let λH be a left-invariant Haar measure on a locally
compact topological groupH. Then L2(H, λH) is aHilbert space and the action
of H on itself by left translation induces a unitary representation of H on
L2(H, λH) called the left-regular representation.

DEFINITION 2.4 (amenability). A locally compact topological group H is
amenable if the left-regular representation of H in L2(H, λH) admits almost-
invariant vectors.
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Examples of amenable groups include all compact groups and all abelian,
nilpotent, or solvable Lie groups.

We recall an equivalent notion of amenability that we use in the sequel.
See, for instance, [19, (5.5.1)], [1, appendix G], or [23, section 12.3] for other
characterizations of amenability.

LEMMA 2.5 (equivalent characterization of amenability). H is amenable if
and only if any continuous action of H on any compact metric space admits an
invariant Borel probability measure.

2.3 PROPERTY (T) AND AMENABILITY. We have the following well-
known fact.

LEMMA 2.6. If a locally compact topological group H has property (T) and is
amenable, then H is compact. In particular, if a countable discrete group has
property (T) and is amenable, then it is finite.

Proof. Suppose the left-regular representation of H in L2(H, λH) admits
almost-invariant vectors. IfH has property (T), then this representation admits
a nontrivial invariant vector. Such a vector coincides with a nonzero constant
function ϕ : H→C. However, if a nonzero constant function ϕ is an element
of L2(H, λH), then λH must be finite, whence H is compact.

3 Suspension space, induced G-action, and Furstenberg’s lemma

We present a key construction on which our proof of Theorem 1.2 depends.
We also recall a classical result of Furstenberg and give a proof based on this
construction.

3.1 SUSPENSION SPACE AND INDUCED G-ACTION. As above, letG
be a semisimple Lie group and let � be a lattice subgroup. Consider a con-
tinuous action of � on a compact metric space X . We recall a standard
construction from which we induce a continuous G-action on an auxiliary
space.

On G×X consider the right action of � given by

(g, x) · γ = (gγ , γ−1 · x)
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and a left action of G given by

g′ · (g, x)= (g′g, x).

These actions commute. Let X� denote the quotient

X� = (G×X)/�

by the � action. TheG-action onG×X descends to aG-action on X� . Writing
[g, x] for the �-equivalence class of (g, x)∈G×X in X� , we have g′ · [g, x]=
[g′g, x].

Note that X� has a fiber-bundle structure over G/� with fibers homeomor-
phic to X :

X X�

G/�

ι

π

The G-action on X� fibers over the G-action on G/�. If � is cocompact in
G, then X� is compact. If � is nonuniform, then we may equip X� with a
metric such that X� is a complete, second countable, locally compact metric
space and such that the projection X�→G/� is distance nonincreasing with
respect to some fixed choice of right-invariant distance on G.

3.2 FURSTENBERG’S LEMMA. We have the following lemma due to
Furstenberg; see [9, theorem 15.1]. Let � act continuously on a compact met-
ric space X . Let P(X) denote the space of Borel probability measures on X
equipped with the weak-∗ topology. The �-action on X naturally induces a
continuous action of � on P(X): given μ∈P(X), γ∗μ∈P(X) is the Borel
measure

γ∗μ(B)=μ(γ−1 ·B).

LEMMA 3.1 (Furstenberg’s lemma). There exists a Borel measurable function

h : G→P(X)

such that

(1) h(gγ−1)= γ∗h(g) for λG-a.e. g and every γ ∈�, and
(2) h(pg)= h(g) for every p∈P and λG-a.e. g.
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In particular, h descends to a �-equivariant map h : P\G→P(X) defined λP\G-
a.e.

Proof. Let X� be the suspension space associated to the �-action on X . Let
P=MAN be a minimal parabolic subgroup of G. As P is a compact extension
of a solvable group, P is amenable. Although X� need not be compact, the
set of Borel probability measures on X� projecting to the normalized Haar
measure λG/� on G/� is a compact, P-invariant subset of the space of Borel
probability measures on X� . Since P is amenable, by a slight extension of the
characterization of amenability in Lemma 2.5, there exists a P-invariant Borel
probabilitymeasure ν on X� projecting to the normalizedHaarmeasure λG/�
on G/�.

Fix such a P-invariant Borel probability measure ν on X� . There exists a
unique lift ν̃ of ν to a locally finite Borel measure on G×X . The measure ν̃
is a �-invariant, P-invariant Borel measure that is finite on compact sets. The
partition of G×X into elements of the form {g}×X is measurable and hence
admits a family of conditional measures ν̃g (see Definition 6.1 and Lemma 6.2
below) parameterized by g ∈G. Identifying each {g}×X with X , we view each
ν̃g as a Borel probability measure on X and obtain a measurable map h : G→
P(X) given by h : g 
→ ν̃g .

By the P-invariance of ν̃, we have ν̃g = ν̃pg for p∈P and hence h descends
to a well-defined function h : P\G→P(X) and (2) follows. Moreover, since
the lifted measure ν̃ on G×X is �-invariant, we obtain �-equivariance of the
measures {̃νg},

νgγ = γ−1∗ ν̃g ,

and (1) follows.

4 The measurable factor theorem implies the normal subgroup theorem

The proof of Theorem 1.1 follows immediately from the following lemma,
which we derive from Theorem 1.2.

LEMMA 4.1 (see [15, theorem 2.7]). Let G be a connected semisimple Lie group
with real rank at least 2 and no nontrivial compact factors. Let � be an irreducible
lattice subgroup and let N be a normal subgroup of �. Then either N⊂Z(G) or
�/N is amenable.

Proof of the normal subgroup theorem, Theorem 1.1. LetN be a non-central nor-
mal subgroup of �. As discussed in Remark 2.3, the quotient H=�/N has
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property (T). By Lemma 4.1, if N is noncentral, then H=�/N is amenable
and hence finite by Lemma 2.6. Thus N is of finite index in � whenever N is
noncentral.

To establish Lemma 4.1, we use the characterization of amenability in
Lemma 2.5. Fix a compact metric space X . Consider an action of H=�/N
by homeomorphisms of X . Note that the action of H induces an action of �
for which every element in N acts as the identity transformation. Assuming
that N is noncentral, we will show there exists an invariant Borel probability
measure for this action; as X was arbitrary, it follows from Lemma 2.5 thatH
is amenable.

Proof of Lemma 4.1. Let Y =P(X) denote the set of Borel probability mea-
sures on X equipped with the weak-∗ topology. The continuous action of
� on X induces a continuous action of � on Y . By Lemma 3.1, we obtain
a �-equivariant Borel measurable map h : P\G→Y defined λP\G-a.e. Let
μ= h∗λP\G. Then μ is a nonsingular measure for the action of � on Y and
(Y ,μ) is a �-equivariant factor of the �-action on (P\G, λP\G). By Theorem
1.2, there is a parabolic subgroup Q and a �-equivariant, measurable isomor-
phism H : (Q\G, λQ\G)→ (Y ,μ) such that h=H ◦π where π : P\G→Q\G
is the natural projection.

We claim that Q =G whenever N is noncentral. In this case, the quotient
Q\G is a singleton, whence the measure μ on Y =P(X) is a point-mass, μ=
δμ0 , for some μ0 ∈Y =P(X). It follows that μ0 is a fixed point for the �-action
on P(X), whence μ0 is a �-invariant Borel probability measure on X .

To complete the proof, it suffices to show that Q �=G implies N⊂Z(G).
Recall that N⊂� acts trivially on X and hence also acts trivially on Y =P(X).
By the measurable identification of (Y ,μ) with (Q\G, λQ\G), we have that N
acts trivially as a group of measurable transformations of (Q\G, λQ\G); as N
acts continuously on Q\G and as λQ\G has full support, we have that N acts
on Q\G by the identity homeomorphism.

Let L⊂G denote the kernel of the right action of G on Q\G; that is,

L={h∈G :Qgh=Qg for all g ∈G}.

We have that L is a closed normal subgroup of G. If L �=G, then G may be
written as an almost direct product G=H · L for some normal subgroupH⊂
G of positive dimension. Since N⊂ L and H commutes with L, we have that
H is contained in NG(N), the normalizer of N in G. Moreover, as N is normal
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in � we have �⊂NG(N). We thus have

H ·�⊂NG(N).

However, since � is irreducible, we have H ·�=G. It follows that N is a dis-
crete normal subgroup of G. This implies N⊂Z(G) by a standard fact we
recall in Lemma 4.2 below.

To complete the proof of Lemma 4.1, we recall the following well-known
fact and its proof.

LEMMA 4.2. If N is a discrete normal subgroup of G, then N is central.

Proof. Fix n∈N. Since N is discrete and normal, there is a compact neigh-
borhood of the identity, C⊂G, such that gng−1= n for all g ∈C. Since G is
connected, C generates G and it follows that gng−1= n for all g ∈G.

5 Preliminaries and reformulation of Theorem 1.2

Let X be a standard Borel space. Let � be as in Theorem 1.2 and consider a
Borel action of � on X . In the setting of the proof of Theorem 1.1, the natural
action used in the proof of Lemma 4.1 was a continuous action. We have the
following, which, in the abstract setting of Theorem 1.2, allows us to assume
that the action is continuous.

LEMMA 5.1 (See [22, theorem 3.2]). There exists a compact metric space Z, a
continuous �-action on Z, and an injective, �-equivariant Borel map ι : X→Z.

Pushing forward the measure on X to a measure on Z, we obtain an almost
surjective, �-equivariant function p : P\G→Z. Replacing X with Z, we may
thus assume for the remainder that the �-action on X is continuous.

We follow the notation of Theorem 1.2. Lift the �-equivariant measurable
map p : P\G→X to a �-equivariant map p̂ : G→X ,

p̂(g)= p(Pg).

Let
Q :={g ∈G : p̂(gx)= p̂(x) for λG-a.e. x ∈G}.

We have P⊂Q . Moreover, the definition implies that Q is a subgroup of G.
Indeed if g1, g2 ∈Q , then there are full measure subsets R1,R2⊂G such that
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p̂(gix)= p̂(x) for all x ∈Ri; then R= (g−12 ·R1)∩R2 has full measure in G and
for x ∈R we have

p̂(g1g2x)= p̂(g2x)= p̂(x),
whence g1g2 ∈Q . Similarly, the set R′ = g1 ·R1 has full measure in G and for
x ∈R′,

p̂(x)= p̂(g1g−11 x)= p̂(g−11 x),

whence g−11 ∈Q .
Although not clear from the above definition, it will follow from obser-

vations below that Q is a closed subgroup. In particular, Q is a parabolic
subgroup of G.

By definition of Q , the function p : P\G→X in Theorem 1.2 descends to a
well-defined, �-equivariant function Q\G→X . To establish Theorem 1.2, it
remains to show that induced function Q\G→X is λQ\G-a.s. injective. That
is, we show for a full-measure subset ofG that the preimages of p̂ : G→X are
Q-orbits. In particular, the proof of Theorem 1.2 follows from the following.

LEMMA 5.2. There exists a full λG-measure subset R̂⊂G such that if g ∈ R̂, then

p̂−1(p̂(g))∩ R̂⊂Qg.

To begin the proof of Lemma 5.2, we construct a Borel probability measure
ν on X� . To construct this measure ν, let P̂ : G→G×X denote the inclusion
of G into the graph of p̂; that is,

P̂(g)= (g, p̂(g)).

Let ν̃= P̂∗λG denote the image of the Haar measure onG under P̂. Then ν̃ is a
locally finite Borel measure onG×X . By the �-equivariance of p̂, the measure
ν̃ is right �-invariant and hence descends to a finite Borel measure ν on X� ,
which we normalize to be a probability measure.

By the definition of Q we have that Q ⊂G coincides with the stabilizers of
ν̃ and ν. In particular, this shows that Q is a closed subgroup of G.

Lemma 5.2may be reformulated in terms of the leaf-wise measures of ν along
orbits of certain subgroups of G acting on X� . See section 6.3 for details on
leaf-wise measures. Here we simply describe the properties that we use. Let
N− denote the subgroup opposite to N; that is, if N is generated by positive
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root spaces, then N− is generated by negative root spaces (see section 8.1).
Then PN− is a dense open subset of G.

Associated to each subgroup H⊂G (for which ν-almost every H-orbit on
X� is free) we construct in section 6.3 a measurable family of locally finite
(hence Radon) Borel measures {νHx : x ∈X} onH called the leaf-wisemeasures
of ν associated to the subgroup H.

Given x ∈X� with freeH-orbit, let

x : H→X , x : h 
→ h · x

be the canonical parametrization of the orbitH · x. Wemay then push forward
each measure νHx to a Borel (in the intrinsic orbit topology on H · x) measure
(x)∗νHx on the orbitH · x. Recall that two locally finite Borel measuresμ1,μ2

onH are proportional, written μ1 ∝ μ2, if there is c> 0 such that

μ1(B)= cμ2(B)

for all Borel sets B. The family of leaf-wise measures {νHx : x ∈X�} on H have
the following properties:

(1) If E⊂X� is a Borel set, then ν(E)= 0 if and only if for ν-a.e. x,

(x)∗νHx (E)= 0.

(2) There is a full measure subset E⊂X� such that for x ∈E and h∈H such
that h · x ∈E,

(−1hx )∗(x)∗νHx ∝ νHh·x.

Note that if y= h · x ∈H · x, then −1y ◦x : H→H corresponds to right
translation by h−1; indeed,

−1y ◦x(h′)=−1y (h′h−1hx)= h′h−1.

In particular, property (2) above implies

(rh−1)∗νHx ∝ νHh·x,

where rh : H→H denotes right translation onH by h.
WriteQ− :=N− ∩Q . Lemma 5.2 is equivalent to the following proposition,

whose proof occupies sections 6–9.
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PROPOSITION 5.3. There exists a set R′ ⊂X� of full ν-measure such that for
x ∈R′, the measure νN−x is supported on Q−. In particular, for x ∈R′,

νN
−

x = νQ
−

x .

We note that since ν is assumed to beQ−-invariant, we have that νQ
−

x is the
Haar measure λQ− on Q− for ν-almost every x ∈R′. (See Claim 6.5 below.)

We show Proposition 5.3 implies Lemma 5.2.

Proof of Lemma 5.2. From Proposition 5.3, the properties of leaf-wise mea-
sures discussed above, and the Q-invariance of ν, we may find a subset
R0⊂X� with ν(R0)= 1 on which the following properties hold:

(1) For x ∈R0, we have νN
−

x = λQ− .
(2) For x ∈R0 and h∈N− such that h · x ∈R0, we have

(−1hx )∗(x)∗νN
−

x ∝ νN−h·x ;

in particular, for all such x and h, we have h−1 ∈Q− and hence h∈Q−.
(3) For x ∈R0 and λQ -almost every q∈Q , we have qx ∈R0.

Viewing G×X as a covering space of X� , we lift R0⊂X� to a �-invariant
conull subset R̃0⊂G×X . Let R̂ denote the image of R̃0 under the projection
G×X→G. We claim Lemma 5.2 holds with this R̂.

Take g ∈ R̂ and write y= p̂(g)∈X . Then (g, y)∈ R̃0 and (following the nota-
tion from section 3.1) we have x=[g, y] ∈R0. Consider g′ ∈ R̂ such that p̂(g′)=
y. Write h= g′g−1. Then h · x=[g′, y] ∈R0.

To complete the proof, we claim h∈Q . Every element h∈G can be written
in the form h= q−12 nq1, where qi ∈Q and n∈N−; moreover, for each fixed
h∈G there is an open set of q1 ∈Q for which such q2 and n exist and depend
rationally on q1. In particular, there are q1, q2 ∈Q such that q2h is contained
in the N−-orbit of q1; since x ∈R0 and h · x ∈R0 and since rational maps are
locally Lipschitz (and hence preserve λQ -null sets), we may moreover assume
q1 and q2 are chosen so that q1 · x ∈R0 and q2h · x ∈R0.

Since q2h · x ∈R0 and is contained in the N−-orbit of q1 · x, we have that
q2hq−11 is in the support of νN

−
q1·x. Since q1 · x ∈R0, it follows that q2hq−11 ∈Q−,

whence h∈Q .

The proof of Proposition 5.3 is carried out in the next four sections using
tools from smooth ergodic theory and measure rigidity for homogeneous
dynamics. The main tools we use are derivative of [4], [5], and [11].
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6 Conditional and leaf-wise measures

6.1 MEASURE THEORY. Let (X ,A,μ) be a complete probability space. We
say (X ,A,μ) is standard if X may be equipped with a topology of a Polish space
such that A is the μ-completion of the σ -algebra of Borel set B in this topol-
ogy. If (X ,A,μ) is standard, it is measurably isomorphic to the union of an
interval [0, a), 0≤ a≤ 1 equipped with the Lebesgue measure and countably
many point-masses.

Let (X ,A,μ) be a standard probability space. Let P andQ be partitions of X
by μ-measurable sets. We say that P is finer than Q (or that Q is coarser than
P), written Q≺P , if there is a full measure subset Y ⊂X such that

P(x)∩Y ⊂Q(x)∩Y

for all x ∈Y . Given a partition P , we say a measurable subset A∈A is P-
saturated if for all x ∈A, P(x)⊂A.

DEFINITION 6.1 (measurable partitions and themeasurable hull). A par-
tition P of (X ,A,μ) of a standard probability space is measurable if there is
a countable collection {Ai} of P-saturated sets such that for every x ∈X and
every y /∈P(x) there is Aj such that either P(x)⊂Aj and P(y)⊂X �Aj or
P(x)⊂X �Aj and P(y)⊂Aj.

Given an arbitrary partition P , the measurable hull of a partition P is the
finest measurable partition Q with Q≺P .

6.2 CONDITIONAL MEASURES. We now fix X to be a second countable,
locally compact, completemetric space. LetM denote the set of all Borel prob-
ability measures on X . Fix μ∈M. Then (X ,μ) is a standard probability space
when equipped with the μ-completion of the Borel σ -algebra.

We have the following standard construction.

LEMMA 6.2 (conditional measures; see [21]). Given a measurable partition
P of (X ,μ), there is a measurable function X 
→M, written x 
→μP

x , with the
following properties:

(1) μP
x is a Borel probability measure on X with μP

x (P(x))= 1;
(2) for a.e. x and every y∈P(x), we have μP

x =μP
y ;

(3) for every bounded Borel function ϕ : X→R,

∫
ϕ dμ=

∫ ∫
ϕ(z) dμP

x (z) dμ(x).
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Moreover, up to a null set, the family x→μP
x is uniquely determined by the above

properties.

6.3 LEAF-WISE MEASURES. Consider a connected, locally compact topo-
logical group H equipped with a right-invariant metric. Suppose H acts
continuously (on the left) on the complete, second countable, locally compact
metric space X . We will moreover assume the action is locally free: for every
x ∈X there is an open neighborhoodU⊂H of the identity on which h 
→ h · x
is injective.

Let μ be a Borel probability measure on X . There is a natural partition of
X into the orbits of H, which we denote by H. In general (and in most situa-
tions of interest here) the partition H of (X ,μ) is not a measurable partition.
We describe a procedure that associates to each orbit H · x ∈H a locally finite
(in the intrinsic topology on the orbit H · x inherited from H) Borel measure
that has similar properties to conditional measures associated to measurable
partitions.

We begin with the following definition.

DEFINITION 6.3 (partitions subordinate to orbits). A measurable parti-
tion P is subordinate to the partition H into H-orbits if, for μ-a.e. x ∈X , the
following hold:

(1) P(x)⊂H · x,
(2) P(x) contains an open (in the orbit topology) neighborhood of x inH · x,

and
(3) P(x) is precompact (in the orbit topology) inH · x.

For simplicity, in what follows we will moreover assume that for μ-almost
every x ∈H, the orbit H · x is free; that is, for μ-a.e. x, we assume the map
h 
→ h · x is injective. This holds for all groups H considered in the setting of
the proof of Proposition 5.3. For such x, we have a canonical parametrization
of the orbit H · x given by x : H→X , x(h)= h · x. Recall (as discussed in
section 5) that if y= h′ · x ∈H · x, then

−1y ◦x : H→H

corresponds to right translation by h′−1.
Let R(H) denote the space of locally finite Borel (hence Radon) measures

on H equipped with the standard topology (dual to compactly supported
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functions). Given r> 0, let BH(r)⊂H denote the ball of radius r inH centered
at the identity with respect to the fixed right-invariant metric onH.

PROPOSITION 6.4. There exists aμ-measurable function X→R(H), denoted

x 
→ νHx

such that the following properties hold:

(1) νHx is normalized so that νHx (BH(1))= 1 for μ-a.e. x.
(2) For any Borel set E⊂X, μ(E)= 0 if and only if for μ-almost every x ∈X,

νHx (
−1
x (E))= 0.

(3) There exists a subset E0⊂X of fullμmeasure such that for x ∈E0 and h∈H
with h · x ∈E0,

(x)∗νHx ∝ (h·x)∗νHh·x.

(4) For any measurable partition P subordinate to the partition into H-orbits,
μ-almost every x, and A⊂P(x), we have

μP
x (A)=

(x)∗νHx (A)
(x)∗νHx (P(x))

.

Moreover, the above properties uniquely determine the family {νHx }modulo null sets.

For a detailed proof, we refer to [8, theorem 6.3]. Below, we outline a
construction of the leaf-wise measures {νHx }.
Proof outline. Fix any R> 1. Fix x ∈X for which theH-orbit of x is free. There
are open neighborhoods x ∈W ⊂U of x such that

(a) for y∈U, the connected component of H · y∩U containing y is a
topologically embedded dim(H)-dimensional disk Dy;

(b) the disks y 
→Dy depend continuously on y for y∈U;
(c) the partition of U into disks {Dy : y∈U} is measurable; and
(d) BH(R) · y⊂Dy for every y∈W; in particular, BH(R) · x⊂Dx.

Given y∈U, let μUy be the conditional measure for the normalized restriction
ofμ toU relative to themeasurable partition {Dy : y∈U} ofU. Given any Borel
subset E⊂BH(R) and y satisfying property (d), define

νHy (E) :=
μUy (E · y)

μUy (BH(1) · y)
.
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We may check that νHy (E) is defined (modulo μ) independently of the choice
of R or U. By a countable exhaustion of the space by partitions of the form
{Dy : y∈U} as R→∞ as above, for μ-a.e. y the quantity νHy (E) is defined for
any compact subset E⊂H. We then obtain a family of measures {νHx } with
the desired properties.

We may write μHx := (x)∗νHx for the locally finite Borel (with respect to the
orbit topology) measure on the orbitH · x. The family of measures {μHx }may
be more natural to consider geometrically. However, it is more convenient in
what follows to consider the family {νHx } as each νHx is supported on H and
hence we can compare νHx and νHy for x �= y. For the family {μHx }, it onlymakes
sense to compare μHx and μHy when y= h · x for some h∈H (in which case we
have μHx ∝ μHy .)

As there is no canonical normalization of each νHx , we write

[νHx ] :={cνHx : c> 0}

for the projective class of measures on H that are positively proportional to
νHx . We have the following straightforward claim whose proof is a standard
exercise.

CLAIM 6.5. A Borel probability measure μ on X is H-invariant if and only if for
almost every x ∈X, the projective class of the leaf-wise measure [νHx ] coincides with
the projective class of left Haar measures on H.

7 Measure rigidity

Let H be a connected Lie group. Equip the Lie algebra h of H with an
inner product and equip H with an induced right-invariant metric. Write
Isom(H) for the group of isometries of H. Write IsomH(H)⊂ Isom(H) for
the subgroup of isometries given by right translations. We canonically iden-
tify IsomH(H) withH. Given a locally finite Borel measure ν onH, recall that
[ν] is the equivalence class of measures positively proportional to ν. Write

IsomH(H; [ν]) :={g ∈ IsomH(H) : [g∗ν]= [ν]}= {g ∈ IsomH(H) : g∗ν ∝ ν}

and let
IsomH(H; ν) :={g ∈ IsomH(H) : g∗ν= ν}.

We have the following elementary fact.
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CLAIM 7.1. The groups IsomH(H; [ν]) and IsomH(H; ν) are closed subgroups
of H.

Let H act continuously on a complete, second countable, locally compact
metric space X . Let μ be a Borel probability measure on X . We assume that
μ-a.e.H-orbit is free. Write H for the partition of (X ,μ) intoH-orbits.

Write Aut(X ,μ) for the set of bijective, measurable, μ-preserving maps of
X . Since (X ,μ) is standard, we have f −1 ∈Aut(X ,μ) for every f ∈Aut(X ,μ)
(see, e.g., [13, corollary 15.2]). Given f ∈Aut(X ,μ), the measure μ need
not be f -ergodic. Write E(f ) for the ergodic decomposition of μ with respect
to f ; precisely, E(f ) is the measurable hull of the partition of (X ,μ) into
f -orbits.

PROPOSITION 7.2. Suppose there exists f ∈Aut(X ,μ) with the following
properties:

(1) f intertwines almost every H-orbit and commutes with the H-action: for a.e.
x ∈X and every h∈H,

f (h · x)= h · f (x); and

(2) E(f )≺H.

Then, for μ-a.e. x ∈X, the group IsomH(H; [νHx ]) acts transitively on the support
of νHx .

Proof. By f -invariance of μ and the assumption that f preserves the canonical
parametrizations of H-orbits, we have that νHf (x)= νHx for almost every x; in

particular, the measurable map x 
→ νHx is constant on f -ergodic components
of μ.

The assumption that E(f )≺H implies for μ-a.e. x and νHx -a.e. h∈H that x
and h · x are in the same f -ergodic component of μ; in particular for μ-a.e. x
and νHx -a.e. h∈H, we have

νHh·x = νHx .

Since

(x)∗νHx ∝ (h·x)∗νHh·x

and since −1h·x ◦x corresponds to right translation by h−1, we have that
h−1, and hence h, are elements of the group IsomH(H; [νHx ]). Since
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IsomH(H; [νHx ]) is a closed subgroup of H, its orbit in H is closed and the
conclusion follows.

Given an automorphism ϕ of H, write dϕ for the corresponding auto-
morphism of the Lie algebra h. Assuming there exists a transformation g ∈
Aut(X ,μ) that intertwinesH-orbits and acts onH-orbits by a contracting auto-
morphism ϕ, we obtain stronger properties of the groups IsomH(H; [νHx ]).

PROPOSITION 7.3. Suppose there exists g ∈Aut(X ,μ) and an automorphism
ϕ ∈Aut(H) with ‖ dϕ ‖ < 1 such that for a.e. x ∈X and every h∈H,

g(h · x)=ϕ(h) · g(x).

Moreover, suppose for μ-a.e. x ∈X that IsomH(H; [νHx ]) acts transitively on the
support of νHx .
Then for μ-a.e. x ∈X,

(1) IsomH(H; [νHx ])= IsomH(H; νHx ), and
(2) νHx coincides (up to a choice of normalization) with the left Haar measure

on a connected Lie subgroup Lx ⊂H.

Proof. For (1), given x ∈X and h∈ IsomH(H; [νHx ]), set

cx(h)= ν
H
x (B

H(1) · h)
νHx (BH(1))

.

For any E⊂H with νHx (E)> 0, we then have

νHx (E · h)= cx(h)νHx (E).

We check the following hold for almost every x:

(a) For h1, h2 ∈ IsomH(H; [νHx ]), we have

cx(h1h2)= cx(h2)cx(h1)

and hence obtain a homomorphism cx : IsomH(H; [νHx ])→ (R+,×).
(b) cx(h)= cg(x)(ϕ(h)).
(c) cx : IsomH(H; [νHx ])→R

+ is continuous.
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Indeed (a) and (b) follow from properties of leaf-wise measures and g-
invariance of μ. For (c), we have that cx : H→R

+,

cx : h 
→ νHx (E · h)
νHx (E)

is both lower- and upper-semicontinuous by considering E⊂H, respectively,
open or closed.

Given δ > 0 and x ∈X , let εx be such that for all h∈BH(εx),

|1− cx(h)|<δ.

We have that εx > 0 for almost every x ∈X . Given R> 0 and any ε > 0, we have
that ϕn(BH(R))⊂BH(ε) for all sufficiently large n. By Poincaré recurrence of
orbits of g to sets on which x 
→ εx is bounded from below and applying (b),
we see for almost every x ∈X that

|1− cx(h)|<δ

for all h∈ IsomH(H; [νHx ]). Taking δ→ 0, conclusion (1) then follows.
For (2), given x ∈X , set Lx := IsomH(H; νHx ). We have that Lx is a closed

subgroup of H and hence a Lie group. We claim Lx is connected for a.e. x.
Indeed, let L′x denote the connected component of Lx through the identity. Let
rx denote theminimal distance from the identity to any L′x-orbit not containing
the identity. If L′x �= Lx, then rx > 0. On the other hand, from (b) above and the
assumptions on ϕ, we have rg(x) < κrx for some 0<κ < 1. If L′x �= Lx for a
positive measure set of x, we would thus obtain a contradiction with Poincaré
recurrence to sets on which x 
→ rx is bounded from below.

We thus have that νHx coincides with a right Haar measure on Lx ⊂H for
almost every x ∈X . The assumption on ϕ ensures that H is nilpotent. It thus
follows that Lx is nilpotent. As nilpotent groups are unimodular, νHx also
coincides with a left Haar measure on Lx ⊂H a.s.

8 Structure theory of G and stable classes of roots

8.1 CARTAN AND IWASAWA DECOMPOSITIONS. Let g denote the
Lie algebra of G. Fix a Cartan involution θ of g and write k and p, respectively,
for the +1 and −1 eigenspaces of θ . Let a be a maximal abelian subalge-
bra of p. Let m be the centralizer of a in k. Recall that dimR(a) is the R-rank
of G.
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We let � denote the set of restricted roots of g with respect to a; elements
of � are real linear functionals on a. A base (or a collection of simple roots) for
� is a subset�⊂� that is a basis for the vector space a∗ and such that every
nonzero root β ∈� is either a positive or a negative integer combination of
elements of �. For a choice of �, elements α ∈� are called simple (positive)
roots. Relative to a choice of base �, let �+ ⊂� be the collection of positive
roots and let �− be the corresponding set of negative roots.

For β ∈� write gβ for the associated root space. Then n=⊕
β∈�+ gβ is a

nilpotent subalgebra. We have that θ(n)=⊕
β∈�− gβ . Write n− = θ(n).

Let A,N, and K be the analytic subgroups of G corresponding to a, n, and
k. We also write N− = θ(N) for the analytic subgroup corresponding to n−.
ThenG=KAN is the corresponding Iwasawa decomposition ofG. WhenG has
finite center, K is compact. Note that the Lie exponential exp : g→G restricts
to diffeomorphisms between a and A and n and N. Write M=CK(a) for the
centralizer of a in K. Then P=MAN is the standard minimal parabolic sub-
group. We have that P is amenable as it is a compact extension of a solvable
Lie group.

8.2 STABLE COLLECTIONS OF ROOTS. We have the following defini-
tion.

DEFINITION 8.1 (stable collection of roots). A collection of roots C⊂� is
called stable if there exist s1, . . . , sk ∈ a such that

C= {
β ∈� :β(si)< 0 for all 1≤ i≤ k}.

If C⊂� is a stable collection of roots, then the vector subspace

uC :=
⊕
β∈C

gβ

is a nilpotent Lie subalgebra of g. Write UC for the corresponding analytic
subgroup of G. A maximal stable collection of roots C⊂� corresponds to
a choice of ordering of � and corresponding collection of negative roots. A
minimal stable collection of roots corresponds to a positive proportionality
class of roots in �, which we refer to as a coarse root and typically denote by
χ ⊂�. By the structure of abstract root systems, we have that every coarse root
χ ⊂� is either a singleton χ ={β} or is of the form χ ={β, 2β}.

As a primary example, we consider the following construction.
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EXAMPLE 8.2 (stable collection of roots transverse to a parabolic sub-
group). Let G=KAN be an Iwasawa decomposition, P=MAN a minimal
parabolic subgroup, andQ ⊃P a parabolic subgroup. Letm, a, n, and q denote,
respectively, the Lie algebras ofM,A,N, andQ . Let� be a base of simple pos-
itive roots so that n is spanned by roots spaces corresponding to positive roots.
Let n− = θ(n) be the Lie subalgebra spanned by roots spaces corresponding to
negative roots relative to this ordering. Let q− = q∩ n−.

We claim there exists a stable collection of roots C⊂� such that q− and uC

are transverse and of complementary dimension in n− so that n− = q− ⊕ uC.
Indeed by the structure of parabolic subalgebras (see, for instance, [14]) we
have that

q :=m⊕ a⊕
⊕
β∈�+

gβ ⊕
⊕

β∈Z≤0-span(�)
gβ

for some subset �⊂�. The last direct sum is taken over all roots β that are
nonpositive integer combinations of elements of �.

Take C to be the collection of all negative roots

β =
∑
α∈�

cαα

(so cα is a nonpositive integer for every α ∈�) such that cα �= 0 for some α ∈
���. We may find s∈ a such that

(1) α(s)= 0 for α ∈� and
(2) α(s)> 0 for α ∈���.

It follows that β(s)< 0 for all β ∈C and that β(s)≥ 0 for all β ∈��C; in
particular, C is a stable collection of roots.

REMARK 8.3. Fix a norm on g. Let C be a stable collection of roots. Fix s∈
a with β(s)< 0 for all β ∈C. Let uC be the unipotent subalgebra associated
with C and let U :=UC = exp(uC) be the corresponding subgroup of G. Then
‖Ad(exp(s))|uC ‖ <κ for some 0<κ < 1.

Let G act continuously on a metric space X . Let f : X→X be f (x)= exp(s) ·
x. Given x ∈X andW ∈ uC we have

f (exp(W) · x)= exp(Ad(exp(s))(W)) · f (x).

In particular, we have

f n(exp(W) · x)= exp(Wn) · (f n(x)),
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whereWn= exp(Ad(exp(ns))(W)) so ‖Wn ‖ ≤ κn ‖W ‖ for all n≥ 0. Assum-
ing the metric on UC-orbits induced by ‖ · ‖ is compatible with the ambient
metric on X , it follows that the UC-orbit of x is contained in the stable set of
x for the action of f .

8.3 STRUCTURE OF LEAF-WISE MEASURES FOR STABLE COLLEC-
TIONS OF ROOTS. LetX be a complete, second countable, locally compact
metric space and let G act continuously on X . Fix an Iwasawa decomposition
G=KAN of G and let μ be an ergodic, A-invariant Borel probability measure
on X .

Given a stable collection of roots C⊂�, let

x 
→ νCx := νUC

x

denote the family of leaf-wise measure on UC associated to μ. We have the
following proposition, which is a simplification of the “product structure”
of leaf-wise measures established by Einsiedler and Katok (see [4, proposi-
tion 5.1, corollary 5.2] and [5, theorem 8.4]). Roughly, we have that if νCx has
nontrivial support, then νχx has nontrivial support for some coarse root χ ⊂C.

PROPOSITION 8.4. Suppose there is a stable collection of roots C⊂� such that
for almost every x ∈X, the leaf-wise measure νCx on UC associated to μ is not a
point-mass supported at the identity.
Then there exists a coarse root χ ⊂C such that for almost every x ∈X, the leaf-

wise measure νχx on Uχ associated toμ is not a point-mass supported at the identity.

Proof. Given any stable collection of roots C⊂� we may find a coarse root
χ ⊂C and s∈ a such that β(s)= 0 for all β ∈χ and β ′(s)< 0 for all β ′ ∈C�χ .

Let C′ =C�χ . Then C′ is a stable collection of roots. If νCx = νC′x for almost
every x, we may replace C with C′ and proceed by induction on the cardinality
of C. Thus, without loss of generality, we may assume there is E⊂X with
μ(E)> 0 such that νCx is not supported onUC′ for x ∈E. Since we assume μ is
A-invariant and ergodic and since A normalizes UC,UC′ , and Uχ , it follows
that νCx is not supported on UC′ for almost every x ∈X .

Let f : X→X be the map f (x)= exp(s) · x. Since χ(s)= 0, exp(s) com-
mutes with elements of Uχ . Since μ is f -invariant, we then have νχx = νχf (x)
for μ-a.e. x.

Since the assignment x 
→ ν
χ
x is measurable, by Lusin’s theorem, given ε >

0 there is a compact Kε ⊂X with μ(Kε)> 1− ε on which the map x 
→ ν
χ
x
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is continuous. For almost every x ∈X and νCx -a.e. u∈UC
�UC′ we have the

following:

(1) The measure νCx is not supported on UC′ .
(2) The identity element of Uχ is contained in the support of νχx and νχu·x.
(3) There exist arbitrarily small values ε > 0, such that x ∈Kε and u · x ∈Kε .
(4) For every n∈N, we have νχx = νχf n(x) and νχu·x = νχf n(u·x).
(5) Taking ε < 1

2 sufficiently small, there exists nj→∞ such that f nj(x)∈
Kε and f nj(u · x)∈Kε .

(6) u= hv where h∈UC′ and v∈Uχ ; moreover for every n≥ 0, f n(u · x)=
unf n(x) where un= hnv and hn→ 0 as n→∞.

Taking nj→∞ and passing to further subsequences, we may assume f nj(x)
and f nj(u · x) converge, respectively, to some x∞ ∈Kε and y∞ ∈Kε . We have
y∞= v · x∞. We have that νχx∞ = νχx and νχy∞ = νχu·x; in particular, the identity
element in Uχ is contained in the supports of νχx∞ and νχy∞ . However, since
y∞= v · x∞, it follows that νχx∞ , in particular, νχx is supported at v∈Uχ ; in
particular, νχx is not an atom supported at the identity.

9 Proof of Proposition 5.3

We use the results and constructions from sections 6–8 to prove Propo-
sition 5.3. From the discussion in section 5, this completes the proof of
Theorem 1.2.

Proof of Proposition 5.3. Let ν be the Q-invariant measure on X� constructed
in section 5. By construction, the projection (X� , ν)→ (G/�, λG/�) is essen-
tially injective; in particular, the projection (X� , ν)→ (G/�, λG/�) is a mea-
surable isomorphism. It is well-known that λG/� is ergodic under the action of
any noncompact subgroupH⊂G. In particular, it follows for any noncompact
subgroup H⊂Q that the action ofH on (X� , ν) is ergodic.

Suppose for the sake of contradiction that there exists a positive ν-measure
subset of x ∈X� for which the leaf-wise measure νN

−
x is not supported onQ−.

SinceA preserves ν and acts ergodically on (X� , ν) and sinceQ− is normalized
by A, it follows that νN

−
x is not supported on Q− for ν-almost every x ∈X� .

LetC be the stable collection of roots as in Example 8.2 with uC transverse to
q− in n−. Then the subgroupUC ⊂N− is transverse toQ−-orbits inN−. Since
νN
−

x is Q−-invariant for ν-almost every x, it follows that νU
C

x is not supported
at the identity for almost every x.
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By Proposition 8.4, we may find a coarse root χ ∈C such that νχx is not
supported at the identity for a positivemeasure subset of x ∈X� ; by ergodicity,
this then holds for ν-almost every x ∈X� .

Fix s∈ a � {0} with χ(s)= 0 and s′ ∈ a � {0} with χ(s′)< 0. Set f , g ∈
Aut(X� , ν) to be

f (x)= exp(s) · x, g(x)= exp(s′) · x.

We have that f is an ergodic transformation of (X� , ν). By Propositions 7.2 and
7.3 (with the above f and g), for ν-a.e. x ∈X� the measure νχx is the left Haar
measure on a connected Lie subgroup Lx ⊂Uχ . Since νχx is not supported
at the identity, Lx has positive dimension. Moreover, since f intertwines the
parametrizations ofH-orbits and preserves the measure μ, the Lie algebras of
Lx and Lf (x) coincide whence the map x 
→ Lx is f -invariant. By f -ergodicity
of ν, there is a subgroup L⊂Uχ such that Lx = L for ν-almost every x. It
follows from Claim 6.5 that μ is L-invariant. But L is not a subgroup of Q ,
contradicting the choice of Q as the (maximal) stabilizer of ν.
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PROPER ACTIONS OF DISCRETE GROUPS OF
AFFINE TRANSFORMATIONS

Dedicated to Grisha Margulis on the occasion of his 70th birthday

Abstract. In the early 1980s Margulis startled the world by showing the existence
of proper affine actions of free groups on 3-space, answering a provocative and
suggestive question Milnor posed in 1977. In this paper we discuss the historical
background motivating this question, recent progress on this subject, and future
directions inspired by this discovery.

1 Introduction

The theory of flat Riemannianmanifolds, also known as Euclideanmanifolds,
is well understood. Starting with its nineteenth-century origins in theoretical
crystallography, Euclidean crystallographic groups and complete flat Rieman-
nian manifolds have a satisfying and cohesive structure theory. In particular,
the Bieberbach theorems imply that every closed flat Riemannian manifold
is finitely covered by a torus or, equivalently, any Euclidean crystallographic
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group is virtually a lattice in R
n, in particular is virtually free abelian. This

survey concerns complete affine manifolds, a natural generalization of com-
plete Euclidean manifolds whose structure theory, by contrast, remains
tantalizingly mysterious and poorly understood. The famous Auslander
conjecture—that every compact complete affine manifold has virtually poly-
cyclic fundamental group—has been a focal point for research in this field.
Now known to be true in dimensions < 7, it remains open in general.
The last 40 years have seen major advances in the theory of complete affine

manifolds. A significant breakthrough was Margulis’s discovery in 1983 of
proper affine actions of nonabelian free groups in dimension 3 and the sub-
sequent classification of complete affine 3-manifolds. As any proper affine
action by a free group in dimension 3 preserves a Lorentzian structure, the
corresponding complete affine 3-manifolds are, more specifically, complete
flat Lorentzian 3-manifolds. They are known today asMargulis spacetimes.
Associated to a Margulis spacetimeM3 is a (necessarily noncompact) com-

plete hyperbolic surface � homotopy equivalent to M3, and we call M3 an
affine deformation of�. Hence, the deformation space of Margulis spacetimes
whose associated hyperbolic surface � has a fixed topological type S natu-
rally projects down to the Fricke-Teichmüller space F(S) of S. The fiber of this
projection consists of equivalence classes of proper affine deformations of �.
A clear picture has emerged of the fiber of this projection as an open convex
cone in the space of infinitesimal deformations of the hyperbolic structure on
�. Much of this essay describes this point of view. Crucial is the properness
criterion for affine deformations developed by Goldman, Labourie, and Mar-
gulis [73]. Along the way, we will also collect the known results on the topology
and geometry ofMargulis spacetimes and give an overview of the current state
of the art in higher dimensional affine geometry.
The fundamental problem in Euclidean crystallography was, in modern

parlance, the classification of fundamental polyhedra for Euclidean crystal-
lographic groups. However, in the setting of Margulis spacetimes, standard
constructions for fundamental polyhedra do not work. The introduction by
Drumm of crooked polyhedra around 1990—about a decade after Margulis’s
discovery—provided tools for building fundamental domains and led in par-
ticular to the discovery that there exist Margulis spacetimes that are affine
deformations of any noncompact complete hyperbolic surface of finite type.
This kindled momentum for the subject and marked the beginning of a
classification program for Margulis spacetimes, which was completed only
recently.
The outline of this essay is as follows. Section 3 summarizes the early his-

tory of the subject, beginning with Bieberbach’s “classification” of Euclidean
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manifolds, and its subsequent generalizations. These generalizations—due
to Zassenhaus, Wang, Auslander, Mostow, and others—set the stage for the
classification of complete affine manifolds with virtually solvable fundamen-
tal group. In 1977, Milnor asked whether every complete affine manifold has
virtually solvable fundamental group, or equivalently, if proper affine actions
of the two-generator free group F2 do not exist. Shortly thereafter, Margulis sur-
prised everyone by showing the existence of complete affine manifolds with
fundamental group F2.
Section 4 begins the construction and classification ofMargulis spacetimes,

modeled on the geometric construction and classification of hyperbolic sur-
faces. Crooked geometry is developed, including the disjointness criteria for
crooked planes, which is fundamental in setting up the geometric conditions
necessary for building Schottky groups. We briefly describe a compactification
ofM3 as a flat RP3-manifold due to Suhyoung Choi, which implies thatM3 is
homeomorphic to an open solid handlebody.
Section 5 introduces the marked Lorentzian signed length spectrum, or Mar-

gulis invariant, denoted α. TheMargulis invariant is anR-valued class function
on π1(M)∼=�, and ever since Margulis introduced this quantity, it has played
an important role in the geometry of Margulis spacetimes. The simplest type
ofMargulis spacetime occurs when the associated hyperbolic surface has com-
pact convex core (or equivalently, π1�=�0< Isom(H2) is convex cocompact).
In this case, every holonomy transformation is hyperbolic, and every essential
loop is freely homotopic to a closed geodesic. A classical result in hyperbolic
geometry asserts that such hyperbolic structures are determined up to isome-
try by their marked length spectrum, the R+-valued class function on � associ-
ating to γ ∈π1(�) the hyperbolic length �(γ ) of the unique closed geodesic in
� that is homotopic to γ . The magnitude of Margulis’s invariant α(γ )

π1(�)
|α|−→R+

γ �−→ |α(γ )|

corresponds to the Lorentzian length of a closed geodesic homotopic to γ . In
particular, the isometry type of a Margulis spacetimeM3 is determined by the
marked length spectrum � of � and the absolute value |α| of the Margulis
invariant.
In fact, only |α| is needed to determine the isometry type ofM3. We discuss

extensions of the definition of the Margulis invariant and of these results to
the setting where � has cusps.
Section 6 develops a properness criterion for actions of free groups in

three-dimensional affine geometry. This turns out to be closely related to

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



98 /danciger, drumm, goldman, and smilga

the direction or sign of α. As originally noted by Margulis (the Opposite Sign
Lemma), for any Margulis spacetimeM, the sign of

�=π1M α−→R

is constant, either positive or negative. A simple proof, given by Goldman–
Labourie–Margulis, involves the continuous extension of the normalized Mar-
gulis invariant α/� to the connected convex set of geodesic currents on �. This
leads to the description of the deformation space of Margulis spacetimes
with fixed hyperbolic surface � as an open convex cone in the vector space
of affine deformations of �0, naturally the cohomology group H1(�0,R2,1),
where

�0=π1�< Isom(H2)= SO(2, 1)
is the holonomy group of �.
Section 7 develops the connection between affine actions in three-

dimensional flat Lorentzian geometry and infinitesimal deformations of
hyperbolic surfaces. Due to the low-dimensional coincidence that the standard
action of SO(2, 1) on R

3 is isomorphic to the adjoint action on the lie algebra
so(2, 1), the space H1(�0,R2,1) of affine deformations of the surface group
�0< SO(2, 1) is in natural bijection with the space of infinitesimal deforma-
tions of the representation �0 ↪→ SO(2, 1), which in turn identifies with the
space of infinitesimal deformations of the hyperbolic surface �. This inter-
pretation leads to the fundamental result of Mess that the hyperbolic surface
� associated to a Margulis spacetime cannot be closed. In particular, if �
is a nonsolvable discrete group acting affinely on 3-space, then � must be
virtually free.
The infinitesimal deformations of hyperbolic structures on � that arise

from proper affine actions may be represented by what Danciger–Guéritaud–
Kassel call contracting lipschitz vector fields, which are the infinitesimal
analogs of contracting Lipschitz maps on the hyperbolic plane.
Section 7 develops the theory of lipschitz vector fields and a structure theo-

rem for Margulis spacetimes:M3 is a bundle of timelike lines over the hyperbolic
surface �. This gave an independent proof of the topological characterization
of Margulis spacetimes referenced above. A discretized version of contract-
ing lipschitz vector fields, known as infinitesimal strip deformations, was
used by Danciger-Guéritaud-Kassel to parameterize the deformation space of
Margulis spacetimes associated to � in terms of the arc complex of �. We
describe concretely the consequences of this general theory in the case that �
has Euler characteristic−1. The qualitative behavior depends on the topology
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of �, which is one of four possibilities: the one-holed torus, the three-holed
sphere, the two-holed projective plane (or cross-surface), or the one-holed
Klein bottle. Section 7 ends with a discussion of the construction, due to
Danciger-Guéritaud-Kassel, of proper affine actions of right-angled Coxeter
groups in higher dimensions. Similar in spirit to the case of Margulis space-
times, these proper actions come from certain contracting deformations of
hyperbolic and pseudo-hyperbolic reflection orbifolds.
Section 8 discusses other directions in higher dimensional affine geome-

try. As in dimension 3, a general approach to Auslander’s conjecture involves
classifying which groups can arise as Zariski closures of the linear holonomy
group. Say that a connected subgroup G<GL(n) isMilnor if no proper affine
action of F2 with Zariski closure of the linear part equal toG exists. Margulis’s
original result can be restated by saying that SO(2, 1)0 is not Milnor, and it is
the groupsG that are notMilnor whichmust be examined in order to study the
Auslander conjecture. Smilga gives a general sufficient condition for a linear
representation of a semisimple Lie group to be non-Milnor. For example, the
adjoint representation of a noncompact semisimple Lie group is not Milnor.
Some other known results in higher dimensions are discussed in Section 8,
concluding with a summary of the current state of Auslander’s conjecture and
a brief discussion of the proof of Abels-Margulis-Soifer for dimension < 7.

1.1 ACKNOWLEDGMENTS. The authors thank François Guéritaud, and
the two anonymous referees for their extensive and excellent comments that
helped to improve thismanuscript. Goldman also expresses thanks to the Clay
Institute for Mathematical Sciences, Institute for Computational and Experi-
mental Research in Mathematics (ICERM), and the Mathematical Sciences
Research Institute (MSRI) where this manuscript was completed.
With great sadness, we must acknowledge that Todd Drumm, the sec-

ond named author, passed away during the final stages of publication of this
manuscript. His profound contribution to this subject is documented in this
essay, but that will hardly compensate for our great personal loss.

2 Notations and terminology

We always work over the field R of real numbers, unless otherwise noted.
Finitely generated free groups of rank n≥ 1 are denoted Fn. Discrete groups
will be assumed to be finitely generated, unless otherwise indicated. Denote
the group of isometries of a space X by Isom(X). If G<GL(N) is a matrix
group, denote its Zariski closure (algebraic hull) by G

Zar
<GL(N).
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If G is a group and S⊂G, denote by 〈S〉 the subgroup of G generated by S.
Similarly, denote the cyclic group generated by an element A∈G by 〈A〉.
Denote the group of inner automorphisms of a group G by Inn(G). Denote

the cohomological dimension of a group � by cd(�). Denote the identity
component of a topological group G by G0.

VECTOR SPACES AND AFFINE SPACES. Let A be an affine space. The
(simply transitive) group of translations of A is a vector space V called the
vector space underlying A. We denote the group of linear automorphisms of V
by GL(V) and the group of affine transformations of A by Aff (A). Let o∈A be
a choice of basepoint. Then each element g ∈Aff (A) is given by a pair (A, b),
where A∈GL(V) is the linear part and b∈V is the translational part:

g(x)= o+A(x− o)+ b.

We will henceforth suppress the basepoint o∈A and identify V with A via
the map v∈V �→ o+ v∈A. When dim A= dim V= n, we often further iden-
tify V with R

n and write A=An to denote the affine space of V=R
n. Then,

GL(V) identifies with invertible n× n (real) matrices. Writing A=L (g) and
b=U (g), the affine transformation g is the composition of an n× n matrix
L (g) and a translation U (g) acting on An:

g(x)=L (g)(x)+U (g)

The linear part of g identifies with the differential

R
n∼= TxAn Dxg−−−→ Tg(x)An∼=R

n

of g, for every x ∈An.
Composing g, h∈Aff (A), we find that

. L is a homomorphism of groups: L (g ◦ h)=L (g)L (h); and. U is a V-valued 1-cocycle, where V denotes the Aff (A)-module defined
by L :

U (g ◦ h)=U (g)+L (g)U (h).

If �
ρ−→Aff (A) defines an affine action of � on an affine space A, then the

linear part L :=L ◦ ρ defines a linear representation � L−→GL(V) where V is
the vector space underlying A. Fixing L :=L ◦ ρ, we say that ρ is an affine
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deformation of L. Evidently an affine deformation of L is determined by the
translational part u :=U ◦ ρ:

�
u−→V

so that, for x ∈A:

(4.1) ρ(γ )(x)= L(γ )x+ u(γ ).

This map u satisfies the cocycle identity:

(4.2) u(γ η)= u(γ )+ L(γ )(u(η))

for γ , η∈�. Denote the vector space of such cocycles � u−→V by Z1(�,V).
If v∈V, define its coboundary δ(v)∈Z1(�,V) as:

γ
δv�−−→ v− L(γ )v.

Denote the image δ(V)<Z1(�,V) by B1(�,V). Two cocycles are cohomologous
if their difference is a coboundary.
Conjugating an affine representation by translation by v preserves the linear

part but changes the translational part by adding δv. Thus translational con-
jugacy classes of affine deformations with fixed linear part L are cohomology
classes of cocycles, comprising the cohomology

H1(�,V) :=Z1(�,V)/B1(�,V).

3 History and motivation

Webriefly review the efforts of nineteenth-century crystallographers leading to
Bieberbach’s work on Euclideanmanifolds and lattices in Isom(En), where we
denote by En the Euclidean n-space (i.e., the affine spaceAn endowedwith a flat
Euclidean metric). Then we discuss extensions of these ideas to affine crystal-
lographic groups and the question of Milnor on virtual polycyclicity of discrete
groups of affine transformations acting properly. The section ends describing
Margulis’s unexpected discovery of proper affine actions of nonabelian free
groups.

3.1 EUCLIDEAN CRYSTALLOGRAPHY. In the nineteenth century crys-
tallographers asked which groups of isometries of Euclidean 3-space E3 can
preserve a periodic tiling by polyhedra. The symmetries of such a tiling form
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a group � of isometries of E3 such that the quotient space, or orbit space, �\E3
is compact.
This led to a classification of crystallographic space groups, independently,

by Schönflies and Fedorov in 1891; compare Milnor [106] for a historical
discussion. Since the interiors of the tiles are disjoint, the elements of � can-
not accumulate and the group must be discrete (with respect to the induced
topology). Henceforth, we assume � is discrete.
Define a Euclidean space group to be a discrete subgroup �< Isom(En)

satisfying any of the following equivalent properties:

. The quotient
M=�\En

is compact.. There exists a compact fundamental polyhedron �⊂ En for the action of
the group �:
◦ The interiors of the images γ (�), for γ ∈�, are disjoint; and
◦ En=⋃γ∈� γ (�).

Since the subgroup � is discrete and acts isometrically on En, its action is
proper. In particular the quotient �\En is Hausdorff. When � is not assumed
to be a group of isometries of a metric space, criteria for a discrete group to
act properly become a central issue.
In 1911–1912 Bieberbach found a general group-theoretic criterion for such

groups in arbitrary dimension. In modern parlance, the discrete cocompact
group � is called a lattice in Isom(En). Furthermore, Isom(En) decomposes as
a semidirect product R

n
�O(n), where R

n is the vector space of translations.
Indeed, an affine automorphism is a Euclidean isometry if and only if its linear
part lies in the orthogonal group O(n).
Bieberbach showed the following:

. � ∩R
n is a lattice <R

n.. The quotient �/ is a finite group, mapped isomorphically intoO(n) by
L .. Any isomorphism �1−→�2 between Euclidean crystallographic groups
�1,�2< Isom(En) is induced by an affine automorphism En−→ En.. There are only finitely many isomorphism classes of crystallographic
subgroups of Isom(En).

A Euclidean manifold is a flat Riemannian manifold—that is, a Riemannian
manifold of zero curvature. A Euclideanmanifold is complete if the underlying
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metric space is complete. By the Hopf-Rinow theorem, completeness is equi-
valent to geodesic completeness.
A torsion-free Euclidean crystallographic group �< Isom(En) acts freely on

En, and the quotient �\En is a compact complete Euclidean manifold. Con-
versely, every compact complete Euclidean manifold is a quotient of En by a
torsion-free crystallographic group. Bieberbach’s theorems have the following
geometric interpretation:

. Every compact complete Euclidean manifold is a quotient of a flat torus
\En, where <R

n is a lattice of translations, by a finite group of
isometries acting freely on \En.. Any homotopy equivalence M1−→M2 of compact complete Euclidean
manifolds is homotopic to an affine diffeomorphism.. There are only finitely many affine isomorphism classes of compact
complete Euclidean manifolds in each dimension n.

3.2 CRYSTALLOGRAPHIC HULLS. Bieberbach’s theorems provide a sat-
isfactory qualitative picture of compact Euclidean manifolds, or (essentially)
equivalently, cocompact Euclidean crystallographic groups. Does a similar pic-
ture hold for affine crystallographic groups—that is, discrete subgroups �<
Aff (An) that act properly and cocompactly on An?
Auslander and Markus [9] constructed examples of flat Lorentzian crystal-

lographic groups � in dimension 3 for which all three Bieberbach theorems
directly fail. In their examples, the quotients M3=�\A3 are flat Lorentzian
manifolds. Topologically, these 3-manifolds are all 2-torus bundles over S1;
conversely, every torus bundle over the circle admits such a structure. Their
fundamental groups are semidirect products Z

2
� Z and are therefore poly-

cyclic—that is, iterated extensions of cyclic groups.
More generally, a group is virtually polycyclic if it contains a polycyclic sub-

group of finite index. A discrete virtually solvable group of real matrices is
virtually polycyclic.
These examples arise from amore general construction: namely, � embeds

as a lattice in a closed Lie subgroup G<Aff (A) with finitely many connected
components and whose identity component G0 acts simply transitively on A.
Since �0 :=� ∩G0 has finite index in �, the flat Lorentz manifold M3 is

finitely covered by the homogeneous space �0\G0. Necessarily, G0 is simply
connected and solvable. The group G0 plays the role of the translation group
R
n acting by translations on An. The group G is called the crystallographic hull

in Fried-Goldman [61].
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3.2.1 Syndetic hulls

A weaker version of this construction was known to H. Zassenhaus, H. C.
Wang, and L. Auslander (compare Raghunathan [113]), defined in [61], and
improved in Grunewald–Segal [79].
If �<GL(n) is a solvable group, then a syndetic hull for � is a subgroup G

such that

. �<G<�
Zar
, where we recall that �

Zar
<GL(n) is the Zariski closure

(algebraic hull) of � in GL(n),. G is a closed subgroup having finitely many connected components, and. �\G is compact (although not necessarily Hausdorff).

The last condition is sometimes called syndetic, since “cocompact” is usually
reserved for subgroups whose coset space is compact and Hausdorff. (This
terminology followsGottschalk–Hedlund [77].) Equivalently, �<G is syndetic
if and only if there exists K ⊂G that is compact and meets every left coset g�,
for g ∈G.
In general, syndetic hulls fail to be unique.

3.2.2 Solvable examples and polynomial structures

The theory of affine group actions is dramatically different for solvable and
nonsolvable groups. Milnor [107] proved that every virtually polycyclic group
admits a proper affine action. Later Benoist [13] found examples of virtually
polycyclic groups for which no crystallographic affine action exists. Dekimpe
and his collaborators [50, 45, 46, 47, 51, 48, 15, 49] replace complete affine
structures by polynomial structures— that is, quotients of An by proper actions
of discrete subgroups of the group of polynomial diffeomorphisms An−→An.
They show that every virtually polycyclic group admits a polynomial crystallo-
graphic action.
Polynomial structures satisfy a suggestive uniqueness property for affine

crystallographic groups similar to the role complete affine structures play
for Euclidean crystallographic groups. Fried-Goldman [61] prove that two
isomorphic affine crystallographic groups are polynomially equivalent.
A simple example, seen in Figure 4.1, occurs in dimension 2, where a

polynomial diffeomorphism of degree 2,

A2
f−→A2

(x, y) �−→ (x+ y2, y),
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Figure 4.1. Tilings corresponding to some complete affine structures on the
2-torus

conjugates the affine crystallographic actions of Z
2. Namely, f conjugates

translation τ by (u, v)∈R
2 to the affine transformation

(4.3) f ◦ τ ◦ f −1 : p �→
[
1 2v
0 1

]
p+

[
u+ v2
v

]
.

The conjugate f Vf −1 is a simply transitive vector group of affine transforma-
tions, where V∼=R

2 is the group of translations.
For different choices of lattices <V, the group ff −1 achieves all affine

crystallographic actions of Z
2 other than lattices of translations. Baues [11]

showed that the deformation space ofmarked complete affine structures is home-
omorphic to R

2. The effect of changing the marking is the usual linear action
of GL(2,Z), the mapping class group of the torus, on R

2. Compare also
Baues-Goldman [12]. These structures were first discussed by Kuiper [94].

3.3 AUSLANDER’S CONJECTURE AND MILNOR’S QUESTION.
In [8], Auslander asserted that every discrete subgroup �<Aff (An) acting
properly and cocompactly on An is virtually solvable. This was his approach
to proving Chern’s conjecture that the Euler characteristic of a compact affine
manifold vanishes in the case the manifold is complete. The general theory
described in Section 3.2 implies that if � is virtually polycyclic, then up to a
finite covering M=�\An has a particularly tractable algebraic structure as a
solvmanifold, a homogeneous space of a 1-connected solvable Lie group by a
lattice.
Namely, M identifies with the quotient �\G, where G is a crystallographic

hull. The simply transitive affine action of G on An identifiesM=�\An with
�\G. Furthermore, M admits the finite covering space (� ∩G0)\An, which
identifies with the solvmanifold (� ∩G0)\G0. This gives a satisfying picture
of virtually polycyclic affine crystallographic groups generalizing Bieberbach’s
theorem. See Grunewald-Segal [79] for more details.
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Unfortunately, Auslander’s proof is incomplete. His assertion that every
affine crystallographic group is virtually polycyclic remains unsolved and, follow-
ing Fried-Goldman [61], has been called the Auslander conjecture. It is one of
the fundamental open questions in the theory of affine manifolds. The main
result of [61] is the proof of this conjecture in dimension 3.
Vanishing of the Euler characteristic of a complete compact affine mani-

fold was later proved by Kostant-Sullivan [93] independently of Auslander’s
conjecture.

3.3.1 Proper affine actions of F2

Affine geometry is significantlymore complicated than Euclidean geometry in
that discrete groups of affine transformations need not act properly. Suppose

�
ρ
↪−→ Isom(En)

defines a faithful isometric action of �. This action is properly discontinuous
(that is, proper with respect to the discrete topology on �) if and only if the
image of� is a discrete subgroup of Isom(En) (that is, ρ is a discrete embedding).
However, if ρ is only affine (that is, the linear part L(�) is not assumed to lie
in O(n)), then discrete embeddings do not necessarily define proper actions.
Milnor realized that the assumption of compactness in Auslander’s conjec-

ture was not necessary to raise an interesting question. Tits [124] proved that
every subgroup � of Aff (An) of affine transformations is either

. virtually solvable or. contains a subgroup isomorphic to a two-generator free group.

If � is also assumed to be discrete, then the first condition of virtual solvability
can be strengthened to virtual polycyclicity.
Milnor then asked whether proper affine actions exist when � is a two-

generator free group F2. Nonexistence implies Auslander’s conjecture, which
would result in a satisfying structure theory generalizing the Bieberbach
theory. Attacking this question requires a criterion for solvability.
Evidently, � is virtually solvable if and only if the Zariski closure ρ(�)

Zar

of ρ(�) in Aff (A) is virtually solvable. Since Zariski closed subgroups have
finitely many connected components in the classical topology, the identity

component (in the classical topology)
(
ρ(�)

Zar
)0

is a connected solvable
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closed (Lie) subgroup, which has finite index in ρ(�)
Zar
. In turn, this is

equivalent to its linear part

G :=L

((
ρ(�)

Zar
)0)

being a connected solvable closed subgroup of GL(V).
Recall the Levi decomposition: a connected Lie group is the semidirect prod-

uct of a maximal normal solvable connected subgroup, called its radical, by
a semisimple subgroup, called its semisimple part or its Levi subgroup. In
particular, a group is solvable if and only if its semisimple part is trivial.
Summarizing:

PROPOSITION 3.1. Let � ↪→Aff (A) be an affine representation. The following
conditions are equivalent:

. � is virtually solvable.. L(�) is virtually solvable.. L(�)
Zar

is virtually solvable.. The identity component
(
L(�)

Zar)0 is solvable.. The semisimple part of
(
L(�)

Zar)0 is trivial.
This raises the question of which groups can arise as semisimple parts of(
L(�)

Zar)0 for a proper affine action �
ρ−→Aff (A) where � is not virtually solv-

able. Following Smilga, we say that a closed connected subgroup G<GL(V)
isMilnor if no such proper affine deformation with

(
L(�)

Zar)0=G
exists. By Tits [124], we can replace � in the above definition by the two-
generator free group F2.

DEFINITION 3.2. Let ρ :G→GL(V) be a linear representation of an algebraic
group G on a vector space V. Then G�ρ V acts affinely on V. We call ρ Milnor if
there does not exist a subgroup �<G�ρ V that is isomorphic to a nonabelian free
group, has linear part L(�)<G Zariski dense, and acts properly discontinuously
on V.

A solvable subgroup is (trivially) Milnor. Similarly, Bieberbach’s structure
theorem implies compact groups are Milnor. Thus Milnor’s question can be
rephrased as whether non-Milnor subgroups exist.
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In fact, even many nonsolvable subgroups, for example GL(V) and SL(V),
are easily seen to be Milnor from the following (see Proposition 3.4).

LEMMA 3.3. Suppose that �
ρ−→Aff (A) defines a free action on A. Then every

element of L(�)
Zar

has 1 as an eigenvalue.

This lemma was first used by Kostant-Sullivan [93] in the proof that the Euler
characteristic of a compact complete affine manifold vanishes.
Lemma 3.3 follows from two elementary observations:

. If g ∈Aff (A) acts freely on A, then L(g)∈GL(V) has 1 as an eigenvalue.. The condition that A∈GL(V) has 1 as an eigenvalue—namely, that
det(A− I)= 0—is a polynomial condition on A and thus passes to the
Zariski closure.

Summarizing:

PROPOSITION 3.4. Suppose that G<GL(V) is not Milnor. Then every element
of G has 1 as an eigenvalue.

3.3.2 Complete affine 3-manifolds

Fried–Goldman [61] classifies which connected semisimple subgroups G can
arise as semisimple parts of L(�)

Zar
when dimV= 3. It follows from their work

that the only connected semisimple subgroupG<GL(3,R) that is not Milnor
is G= SO(2, 1)0. We recall the argument here.
By an easy calculation, the only connected semisimple subgroups of

GL(3,R) are (up to conjugacy):

. SL(3,R),. SO(3),. SL(2,R), and. SO(2, 1)0,

embedded in the standard ways. We have already excluded the case G=
SL(3,R). The case G= SO(3) is excluded by the Bieberbach theorems (since
L(�)must be a finite group, G is trivial).
SupposeG= SL(2,R). Then L(�) can be conjugated into one of these forms:

⎡
⎢⎣
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎤
⎥⎦ ,

⎡
⎢⎣
∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎦
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The condition that these matrices have 1 as an eigenvalue implies that the
(1, 1) entry equals 1.
In the first case, the vector field ∂/∂x is a �-invariant parallel vector field

that descends to a parallel vector field onM. In the second case, the 1-form dx
is a �-invariant parallel 1-form that descends to a parallel 1-form onM.
These cases are eliminated as follows. A parallel 1-form can be perturbed

to have rational periods and integrates to give a fibration of M over S1 with
fibers closed complete affine 2-manifolds, from which the virtual solvability
follows by the two-dimensional case. In the case of a parallel vector field ξ , the
Zariski density implies the existence of two elements γ1, γ2, which generate a
nonabelian free group and correspond to closed orbits of the flow of ξ . These
closed orbits are hyperbolic in the sense of hyperbolic dynamics, but their
stable manifolds intersect (by lifting them to A), which is a contradiction. See
Fried-Goldman [61] for further details.
Finally, consider the most interesting case—namely, G= SO(2, 1)0. Mar-

gulis’s breakthrough [102, 103] may be restated that SO(2, 1)0 is not Mil-
nor. Thus SO(2, 1)0 was the first example of a non-Milnor group. Suppose
M3=�\A3 is a complete affine 3-manifold whose fundamental group � is
nonsolvable. By the above, L(�)

Zar
is (conjugate to) SO(2, 1)0. Hence, the

O(2, 1)-invariant inner product on V3 defines a flat Lorentzian metric on A3

invariant under the action of �. When equipped with this metric, we denote
the affine space by E2,1. Hence,M3=�\E2,1 inherits a flat Lorentzian structure
from the SO(2, 1)-invariant Lorentzian inner product on V. Such a complete
flat Lorentzian 3-manifoldM3 is called aMargulis spacetime.

3.4 THE ASSOCIATED HYPERBOLIC SURFACE.

PROPOSITION 3.5 (Fried-Goldman [61]). Suppose that �< Isom(E2,1) is

discrete and acts properly on E2,1. Either � is virtually polycyclic or �
L−→O(2, 1)

is an isomorphism of � onto a discrete subgroup of SO(2, 1)<O(2, 1).

Selberg [116] proved that every finitely generated matrix group contains a
torsion-free subgroup of finite index (compare Raghunathan [113], corol-
lary 6.13). Thus � contains a finite index subgroup containing no elliptic
elements. Henceforth, we restrict to torsion-free discrete subgroups.
Hyperbolic geometry enters here, as SO(2, 1) is the isometry group of H2

and every discrete subgroup of SO(2, 1) acts properly on H2. The quotient

�2 := L(�)\H2
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is a complete hyperbolic surface. SinceM3 and �2 are both quotients of con-
tractible spaces by proper and free actions of �, M3 and �2 are homotopy
equivalent. We call �2 the hyperbolic surface associated to M3 andM3 an affine
deformation of �2.

3.4.1 Margulis spacetimes are not closed

Note that M3 cannot be compact by the following cohomological dimension
argument. IfM were compact, then

2= dim(�)≥ cd(L(�))= cd(�)= dim(M3)= 3.

This contradiction completes the proof of Auslander’s conjecture in dimen-
sion 3.
Using similar arguments, Goldman–Kamishima [71] proved Auslander’s

conjecture for flat Lorentzian manifolds
(
linear holonomy in O(n, 1)

)
, and

Grunewald–Margulis [78] proved Auslander’s conjecture for affine deforma-
tions for which the linear holonomy lies in other rank 1 subgroups. See also
Tomanov [125, 126].
Around 1990, Mess proved the following:

THEOREM 3.6 (Mess [105]).
The fundamental group of a closed surface admits no proper affine action on A3.

In particular, � is not a closed surface and �0 is not a uniform lattice. In fact,
� must be a free group: every Margulis spacetime is an affine deformation of
a noncompact complete hyperbolic surface �.
In 1999, Goldman-Margulis [76] gave alternate proofs of Theorem 3.6;

compare the discussion in Section 7.2. Later, Labourie [95] and Danciger-
Zhang [43] generalized Mess’s theorem to show that for a certain class of
linear surface group representations, called Hitchin representations, affine
deformations are never proper. On the other hand, proper affine actions by
surface groups do exist by recent work of Danciger–Guéritaud–Kassel; see
Theorem 7.10. (Compare [41, 121].)

3.4.2 Affine deformations of hyperbolic surfaces

Sections 4–7 discuss the geometry and classification of Margulis spacetimes.
To facilitate this discussion, we use Proposition 3.5 to recast these questions
in a more convenient form.
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Suppose thatM3=�\E2,1 is a Margulis spacetime, where �< Isom+(E2,1)
is a discrete subgroup acting properly on E2,1. By Proposition 3.5, we can ass-
ume the linear holonomy group L(�) is a Fuchsian subgroup �0< SO(2, 1).
Fix �0 and consider � as an affine deformation of �0. Affine deformations

of �0 are determined by the translational part �0
u−→R

2,1, and we denote
the affine deformation determined by the cocycle u by �u. In particular, the
zero cocycle determines L(�), so the notation for �0= L(�) is consistent.
Translational conjugacy classes of affine deformations form the vector space
H1(�0,R2,1), which has dimension 3(r− 1) if �0 is a free group of rank r> 1.
More geometrically, consider M3 to be an affine deformation of the hyper-

bolic surface �. Then identify H1(�0,R2,1) with the cohomology H1(�,V),
where V denotes the local system (flat vector bundle) over � determined by
the linear holonomy homomorphism

π1(�)
∼=−−→�0< Isom(R2,1)=O(2, 1).

The main goal now becomes determining which elements of the vector space
H1(�0,R2,1) determine proper affine deformations. This was foreshadowed by
Milnor [107], where he proposed a possible way of constructing proper affine
actions of non–virtually solvable groups:

“Start with a free discrete subgroup of O(2, 1) and add translation components

to obtain a group of affine transformations which acts freely. However it seems

difficult to decide whether the resulting group action is properly discontinuous.”

In retrospect, these are the only ways of constructing such actions in dimen-
sion 3.

4 Construction of Margulis spacetimes

We turn now to a direct construction of Margulis spacetimes via fundamental
domains bounded by piecewise linear surfaces called crooked planes. While
Margulis’s original examples were constructed from a dynamical point of
view (we defer discussion of his original proof until Section 5.3), crooked
fundamental domains bring a geometric perspective to the subject. Their
introduction by Drumm in 1990 launched a classification program for Mar-
gulis spacetimes that was completed recently by Danciger-Guéritaud-Kassel
(see Section 7.7).
Continuing with the discussion of the previous section, we consider

affine deformations of Fuchsian subgroups �0< SO(2, 1). Associate to �0
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a complete hyperbolic surface �=�0\H2. In order for an affine deforma-
tion to have a chance at being proper, � must be non-compact, and we
assume this going forward. The section will give a brief overview of the
fundamentals of crooked geometry leading to a discussion of Drumm’s the-
orem that every complete noncompact hyperbolic surface � admits a proper
affine deformation as a Margulis spacetime. This requires models for both
the hyperbolic plane H2 and the three-dimensional Lorentzian affine space,
which we call Minkowski space E2,1. (Geometrically, E2,1 is characterized as
the unique simply connected, geodesically complete, flat Lorentzian mani-
fold.) We motivate the discussion by relating three-dimensional Lorentzian
geometry to two-dimensional hyperbolic geometry.
After discussing these models, we introduce crooked half-spaces to build

fundamental polyhedra for Margulis spacetimes. Our exposition follows
Burelle-Charette-Drumm-Goldman [20] as modified by Danciger-Guéritaud-
Kassel [40]. Schottky’s classical construction of hyperbolic surfaces (now called
ping pong) extends to crooked geometry, giving a geometric construction of
Margulis spacetimes. This was first developed by Drumm [52, 53, 54]. For
more details and background, see [55], [26], and [81].
Whereas in the initial examples of Margulis the topology of the quotients

is unclear, Margulis spacetimes that have a crooked fundamental polyhedron
are topologically equivalent to solid handlebodies and thus topologically tame.
The tameness of all Margulis spacetimes is discussed at the end of Section 4.4.

4.1 THE GEOMETRY OF H2 AND E2,1. This introductory section des-
cribes the geometry of the hyperbolic plane and its relation to the Lorentzian
geometry of Minkowski 3-space. In particular, we discuss the basic geometric
objects needed to build hyperbolic surfaces and their extensions toMinkowski
space. Then we discuss the classical theory of Schottky groups, which, in the
next section, we extend to proper affine deformations of Fuchsian groups.

4.1.1 The projective model for H2

Start with the familiar model of H2 as the upper half-plane in C, consisting
of x+ iy∈C with y> 0 with the Poincaré metric. The group PSL(2,R) acts on
H2 by linear fractional transformations, comprises all orientation-preserving
isometries, and is the identity component of Isom(H2). The complement
of PSL(2,R) in Isom(H2) is the other connected component, comprised of
orientation-reversing isometries.
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A natural model for the Lorentzian vector space R
2,1 is the set of Killing

vector fields on H2, or the Lie algebra sl(2,R) of PSL(2,R). The Lie algebra
sl(2,R) is identified with the set of traceless 2× 2 real matrices, and the action
of Isom(H2) on sl(2,R) is by Ad, the adjoint representation (see Section 7.1).
The (indefinite) inner product on sl(2,R) is defined by

v ·w := 1
2
tr(vw);

this is 1/8 the Killing form on sl(2,R). The basis

x1=
[
0 1
1 0

]
, x2=

[
1 0
0 −1

]
, x3=

[
0 −1
1 0

]
,

is Lorentzian-orthonormal in the sense that

x1 · x1= x2 · x2= 1, x3 · x3=−1,

and xi · xj= 0 for i = j.
A natural model for H2 is one of the two components of the quadric

u ·u=−1.

A natural isometry from the upper half-plane {x+ iy∈C | y> 0} with the
Poincaré metric to the Lie algebra sl(2,R)←→R

2,1 with the above inner
product is:

H2 −→ sl(2,R) ←→ R
2,1

x+ iy �−→ 1
y

[
x −(x2+ y2)
1 −x

]
←→ 1

2y

⎡
⎢⎣
1− x2− y2

2x
1+ x2+ y2

⎤
⎥⎦ .

Here the vector on the right-hand side represents the coordinates with respect
to the basis x1, x2, x3 of R

2,1:

1
y

[
x −(x2+ y2)
1 −x

]
= 1− x2− y2

2y
x1 + x

y
x2 + 1+ x2+ y2

2y
x3.

Note that the Lie algebra sl(2,R) comes naturally equipped with an orien-
tation, defined in terms of the bracket. Indeed we define the ordered basis
(x1, x2, x3) to be positive since [x1, x2]=+2x3. This orientation of sl(2,R) is
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naturally associated with an orientation of H2—namely, the orientation for
which x3 is an infinitesimal rotation in the positive direction. Note that the
orientation-reversing isometries of the Lorentzian structure on sl(2,R) flip the
sign of the Lie bracket. The adjoint action of an orientation-reversing isometry
ofH2 preserves the Lie bracket and hence the orientation of sl(2,R); however,
it exchanges H2 with the other component of the quadric u ·u=−1.
In relativistic terminology, a vector v∈R

2,1 \ {0} is called spacelike if v · v
is positive, timelike if it is negative, null or lightlike if it is zero. A spacelike
(respectively, timelike) vector v is unit-spacelike (respectively, unit-timelike) if
and only if v · v= 1 (respectively, v · v=−1). A Killing vector field ξ ∈ sl(2,R)
is spacelike (respectively, null, timelike) if and only if it generates a hyperbolic
(respectively, parabolic, elliptic) one-parameter group of isometries.
The set of null vectors (including 0) is a cone, called the light cone and

denoted N . The set N \ 0 has two components, or nappes.
Choosing a preferred nappe is equivalent to choosing a time orientation. For

example, we choose lightlike vectors with v3> 0 to be future pointing and
lightlike vectors with v3< 0 to be past pointing. The connected components
of timelike vectors are similarly defined to be future and past pointing. One
model for H2, already described above, is the space of future-pointing unit-
timelike vectors.
An equivalent model for H2 is the subset of the projective space P(R2,1)

comprised of timelike lines, with ∂H2 the set of null lines. Spacelike vectors
w∈R

2,1 determine geodesics and half-planes inH2 in the projective model as
follows:

hw :={v∈H2 | v ·w> 0}

is the open halfplane defined by w. The boundary ∂hw=H2 ∩w⊥ is the
geodesic corresponding to w. The orientation of H2 together with hw deter-
mines a natural orientation on ∂hw. That is, unit-spacelike vectors in R

2,1=
sl(2,R) correspond to oriented geodesics in H2. Note that as a Killing vector
field, w is an infinitesimal translation along ∂hw in the positive direction. Gen-
erally, the Killing field on H2 associated to w∈R

2,1 is given explicitly in terms
of the Lorentzian cross product on R

2,1, which is just the Lie bracket [·, ·] on
sl(2), by restricting the vector field x �→ [w, x] to the hyperboloid of timelike
future-pointing vectors.

4.1.2 Cylinders and fundamental slabs

A basic hyperbolic surface is a hyperbolic cylinder, arising as the quotient
� :=〈A〉\H2, where A∈ Isom(H2) is an isometry that is hyperbolic, meaning
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A leaves invariant a unique geodesic lA along which it translates by a distance
�A. The image 〈A〉\lA in 〈A〉\H2 is a closed geodesic in � of length �A. The
scalar invariant �A completely describes the isometry type of �.
One can build fundamental domains for the action of 〈A〉 as follows. Choose

any geodesic l0 ∈H2 meeting lA in a point a0 ∈H2, and let h0 be the half-plane
bounded by l0 containing A(a0). Then A(h0)⊂ h0, and the complement

� := h0 \A(h0)

is a fundamental domain for the cyclic group 〈A〉 acting on H2. If w is unit-
spacelike and h0= hw is the open half-plane defined by w as above, then the
fundamental domain takes the form

�= hw ∩ h−A(w),

and we call � a fundamental slab for 〈A〉.

4.1.3 Affine deformations of cylinders

Recall the Minkowski 3-space, E2,1—namely, the complete 1-connected flat
Lorentzian manifold in dimension 3. Equivalently, E2,1 is an affine space
whose underlying vector space is equipped with a Lorentzian inner product.
As above, we model the underlying Lorentzian vector space R

2,1 on the Lie
algebra sl(2,R) of Killing vector fields on H2.
The group of linear orientation preserving isometries Isom(R2,1) equals

the special orthogonal group SO(2, 1)∼= Isom(H2). Its identity component
Isom+(H2), comprising the orientation preserving isometries of H2, is nat-
urally identified via the adjoint representation with PSL(2,R). A hyperbolic
elementA∈PSL(2,R) pointwise fixes one spacelike line, and this line contains
exactly two unit-spacelike vectors that are negatives of each other.
In terms of Killing vector fields, the line fixed by A is just the infinitesimal

centralizer of A. Indeed,

A= exp
(
�A

2
wA

)
∼
[
e�A/2 0
0 e−�A/2

]
,

where wA is one of the two unit-spacelike generators of this line, and �A> 0
is the translation length of A in H2. Since �A> 0, A �→wA is well-defined and
equivariant under the action of Isom+(H2), in the sense that wBAB−1 =BwA,
for any B∈ Isom+(H2).
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Let g ∈ Isom(E2,1) be an affine deformation of A. That is,

g(p)=A(p)+ u,

where the vector u is the translational part of g. There is a unique g-invariant
line, denoted Axis(g), parallel to the fixed line RwA of the linear part A of g.
The line Axis(g) inherits a natural orientation induced from wA.
The restriction of g to Axis(g) is a translation, and the signed displacement

along this spacelike geodesic is a scalar defined by

(4.4) α(g)=wL(g) · u(g).

Here, L(g) :=A is the linear part of g and u(g) is the translational part of g, as
in Equation (4.1). Clearly, g acts freely if and only if α(g) = 0.

DEFINITION 4.1. The scalar quantity α(g) is called the Margulis invariant of g.

Through a translational change of coordinates, the origin may be located on
Axis(g) so that

u(g)=α(g)wL(g).

By an orientation preserving linear change of coordinates, the linear part A=
L(g) diagonalizes and g takes the form:

g(x)=
⎡
⎢⎣
e�A 0 0
0 e−�A 0
0 0 1

⎤
⎥⎦ x+

⎡
⎢⎣

0
0
α(g)

⎤
⎥⎦ .

4.1.4 The role of orientation

We note that the definition of the vector wA, and hence of the Margulis invari-
ant α(g), depends on more than just the structure of R

2,1←→ sl(2,R) as
a Lorentzian vector space. It depends, more specifically, on the Lie algebra
structure, where the operation of the Lorentzian cross product is determined
entirely by the Lorentzian structure and orientation. Margulis’s original work
does not use the Lie algebra sl(2,R). There the definition of α is given directly
in terms of the Lorentzian structure and a choice of orientation, as follows.
The positive direction wA of the 1-eigenspace of L(g) is the one making
the basis (w+,w−,wA) positive, where w+,w− denote representatives of the
attracting and repelling eigenlines of L(g) that have negative inner product
w+ ·w−< 0.
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4.1.5 Parallel slabs

Affine lines parallel to Axis(g) describe a g-invariant foliation, and the folia-
tion F by planes orthogonal to these lines is a g-invariant two-dimensional
foliation defined by the g-equivariant orthogonal projection

E2,1
�−−→Axis(g)←→R.

In particular, since g acts by translation by α(g) on Axis(g), the preimage
�−1

[
0, |α(g)|

]
of the closed interval

[
0, |α(g)|

]
⊂ R

is a fundamental domain for 〈g〉. Since the faces of this fundamental domain
are the parallel hyperplanes�−1(0) and�−1|α(g)|, we call these fundamental
domains parallel slabs.

4.1.6 Schottky groups and ping pong

Having discussed actions of the infinite cyclic groupZ on bothH2 and E2,1, we
now turn to nonabelian free groups. We recall Schottky’s [115] construction
of discrete free groups acting on the hyperbolic plane.
For brevity, let us focus on the two-generator case.
Suppose A1,A2 ∈PSL(2,R) are hyperbolic elements with respective trans-

lation axes l1 and l2. Let w1 and w2 be unit spacelike vectors associated to
half-spaces hw1 , hw2 , such that for each i= 1, 2, the boundary of hwi crosses li
in H2 and satisfies Ai · hwi ⊂ hwi so that a fundamental domain for the cyclic
group 〈Ai〉 is given by �i= hwi ∩ h−Aiwi , as in Section 4.1.2.

PROPOSITION 4.2 (Schottky). Suppose that the four half-spaces

h−w1 , hA1w1 , h−w2 , hA2w2(4.5)

are pairwise disjoint. Then A1 and A2 generate a discrete free subgroup �=
〈A1,A2〉<PSL(2,R).

Let us sketch the proof of this well-known fact. Consider the polygon

�= hw1 ∩ h−A1w1 ∩ hw2 ∩ h−A2w2 ⊂H2,
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which is bounded by four disjoint lines. Then the image of� under any non-
trivial reduced word w in A1,A−11 ,A2,A−12 lies in one of the four half-spaces
in Equation (4.5). Indeed, observe the following relations:

A1 · (h−w1)c =A1 · hw1 = hA1w1

A−11 · (hA1w1)c =A−11 · h−A1w1 = h−w1

A2 · (h−w2)c =A2 · hw2 = hA2w2

A−12 · (hA2w2)c =A−12 · h−A2w2 = h−w2

Then by induction on the length of the reduced word w, the image of� (the
“ping pong ball") under the action of w lies:

. inside hA1w1 if the first (that is, leftmost) letter of w is A1;. inside h−w1 if the first letter is A
−1
1 ;. inside hA2w2 if the first letter is A2; or. inside h−w2 if the first letter is A
−1
2 .

This proves the proposition.
Since � is discrete it acts properly on H2; however, � might not be a

fundamental domain for the action. Indeed, in some cases,

⋃
γ∈�

γ ·�

is a proper subset ofH2. It is always possible, however, to choose a polyhedron
� as above that is a fundamental domain.
The disjointness of the half-spaces in Equation (4.5) is essential in this

construction.
However, in affine space at most two half-spaces can be disjoint. Hence, a

ping pong construction using affine half-spaces does not work in affine geom-
etry. Nonetheless, Schottky fundamental domains in A3= E2,1 do exist and are
constructed from crooked half-spaces.

4.2 CROOKED GEOMETRY. Milnor [107] essentially proposed building
proper actions of free groups by combining proper actions of cyclic groups.
However, deciding whether multiple proper actions by cyclic groups generate
a proper action of the free product is quite delicate. As we observed in the
previous section, hyperplanes, which are perhaps the most natural separating
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surfaces in affine geometry, are not well suited for a Schottky-style construc-
tion of fundamental domains for free groups. Observe that, by contrast to
Euclidean geometry, in our Lorentzian setting the linear part of an affine trans-
formation dominates the translational part for “most” points. Hence building
fundamental polyhedra adapted more to the linear part than the translational
part seems preferable.

4.2.1 Crooked planes and crooked half-spaces

In [52], Drumm introduced so-called crooked planes in order to build fun-
damental domains for proper affine actions of nonabelian free groups. A
crooked plane disconnects E2,1 into two regions, called crooked half-spaces.
Unlike a linear plane, a crooked plane has a distinguished point, called the
vertex. In particular, crooked planes are not homogeneous. Drumm’s orig-
inal construction was given purely in terms of Lorentzian geometry. Here,
however, we make use of the identification R

2,1∼= sl(2,R) and define them in
terms of Killing fields on the hyperbolic plane, following Danciger-Guéritaud-
Kassel [40].
Let w∈ sl(2,R) be a spacelike unit vector, let

�= �w=w⊥ ∩H2

be the oriented geodesic associated tow, and letw+ andw− be future-oriented
lightlike vectors respectively representing the forward and backward end-
points [w+], [w−] of �w in ∂H2. Here we think of the ideal boundary ∂H2 as
the projectivized null cone inR

2,1= sl(2,R). We first define the crooked plane
C(0, �) with vertex the origin 0. The crooked plane C(x, �) with vertex x is just
the translate C(0, �)+ x.
The crooked plane C(0, �) is the union of three linear pieces, a stem and two

wings, described as follows. See Figure 4.2.

. The stem is the closure of the collection of all elliptic Killing fields whose
fixed point in H2 lies on �w.. The wing associated to the forward endpoint [w+] of �w is the union of
the parabolic Killing fields Rw+ that fix [w+] and the hyperbolic Killing
fields for which [w+] is a repelling fixed point. This wing meets the stem
along the hinge Rw+.. Similarly, the wing associated to [w−] is the union of the parabolic Killing
fieldsRw− fixing [w−] and the hyperbolic Killing fields for which [w−] is
a repelling fixed point. This wing meets the stem along the hinge Rw−.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



120 /danciger, drumm, goldman, and smilga

Figure 4.2. A crooked plane

. The lineRw, called the spine, lies in C(0,w) and crosses the stem perpen-
dicularly at 0. The positive ray R

+w lies in the wing associated to [w−]
and the negative ray R

−w lies in the wing associated to [w+].

More succinctly, the crooked plane C(0, �) is the collection of all Killing fields
with a nonattracting fixed point on the closure

�= �∪ {[w+], [w−]}

of � in H2.
A crooked plane C(0, �) divides sl(2,R) into two components, called crooked

half-spaces. The crooked half-space H(0, �) is the collection of Killing vector
fields with a nonattracting fixed point contained in the closure hw⊂H2 of the
positive half-plane hw bounded by �w. Note that

H(0, �)∪H(0,−�)= sl(2,R),

H(0, �)∩H(0,−�)= C(0, �)= C(0,−�),

where −�= �−w is the same geodesic � but with the opposite orientation.
More generally, the crooked plane C(x,w) and crooked half-space H(x,w)

with vertex x are obtained by translating by x:

C(x,w) := x+ C(0,w),
H(x,w) := x+H(0,w).
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4.2.2 Crooked ping pong

The following Lorentzian ping pong lemma was proved in [53].

LEMMA 4.3. Let �=〈γ1, γ2, . . . , γn〉 be a group in Isom(E) and {H±1,H±2,
. . . ,H±n} be 2n disjoint crooked half-spaces such that

γi(H−i)= E \H+i.
Then � is a free group that acts properly on E, with fundamental domain

� := E \∪ni=1(H−i ∪H+i).
In particular, the quotient �\E2,1 is homeomorphic to an open solid handlebody.

The conditions in the lemma immediately imply that the groups satisfying
these conditions act properly on a subset of E. The difficult part of the proof is
to demonstrate that

E =� (�) :=
⋃
γ∈�

γ�.

See Drumm [52, 53, 54], Charette-Goldman [30], and Danciger-Guéritaud-
Kassel [40, Lemma 7.6].
Using Lemma 4.3, Drumm proved the following:

THEOREM 4.4.
Every finitely generated free discrete subgroup of SO(2, 1) admits a proper affine
deformation with a fundamental domain bounded by crooked planes.

4.3 DISJOINTNESS OF CROOKED HALF-SPACES AND PLANES.
The application of Lemma 4.3 requires crooked planes to be disjoint. We now
give a criterion for disjointness, originally due to Drumm–Goldman [58] and
later conceptually clarified by Burelle–Charette–Drumm–Goldman [20].
Consider a set of pairwise disjoint geodesics {�1, �2, . . . , �n} in H2 that

bound a common region. The geodesics can be oriented consistently so that
the interiors of the crooked half-spacesH(0, �i) are disjoint. All of the crooked
half-spaces meet at the origin 0, and pairs of the corresponding crooked
planes, boundaries of the crooked half-spaces, may share a wing.
Translations ui exist for which the sets {H(ui, �i)} are pairwise disjoint. This

situation is exactly the one described in Lemma 4.3. To this end, define the
following:

DEFINITION 4.5. For an oriented geodesic �, the (open) stem quadrant Q(�)
is the open quadrant of the plane containing the stem of C(0, �) that lies inside the
interior of H(0, �).
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Figure 4.3. A crooked plane and a translation of the crooked plane by a vector
in the stem quadrant

The stem quadrant Q(�) is composed of spacelike vectors and bounded by
two null rays inside the plane that contains the stem of C(0, �). In the Lie
algebra interpretation, the spacelike vectors inQ(�) are hyperbolic Killing vec-
tor fields whose invariant geodesics are perpendicular to � and point into the
interior of the half-space defined by �. The null rays on the boundary are the
parabolic Killing vector fields whose fixed points are the endpoints of �.
Stem quadrants were defined in [20] and used to show the following:

LEMMA 4.6. H(u, �)⊂H(0, �) if u∈Q(�). Furthermore, H(u1, �1) and
H(u2, �2) are disjoint if and only if u1−u2 ∈Q(�1)−Q(�2).

See Figure 4.3.
In particular, start with the collection of crooked half-spaces {H(0, �i)}

whose interiors are disjoint. Translate each crooked half-space in a stem
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quadrant direction ui ∈Q(�i) to create a collection {H(ui, �i)} of disjoint
crooked half-spaces as in Lemma 4.3.
Burelle-Charette-Drumm-Goldman [20] introduce foliations by crooked

planes; Burelle-Francoeur [21] show that every crooked slab admits a foliation
by crooked planes, answering a question raised by Charette-Kim [32].

4.4 TAMENESS. A natural question, in a direction converse to Theorem 4.4,
is whether every Margulis spacetime arises from a crooked polyhedron—that
is, whether Drumm’s construction gives all Margulis spacetimes. This ques-
tion, first asked by Drumm–Goldman [57], motivatedmuch of the recent work
on Margulis spacetimes. This Crooked Plane Conjecture was established by
Danciger–Guéritaud–Kassel [40, 42] in general, following earlier work for two-
generator groups by Charette-Drumm-Goldman [27, 29]. See Section 7.6 for a
discussion of these ideas.
This has the following purely topological consequence:

THEOREM 4.7.
A complete affine 3-manifold with fundamental group � free of rank r is homeo-
morphic to a handlebody of genus r.

Theorem 4.7 is the analog of the Marden Conjecture for hyperbolic 3-
manifolds, proved independently by Agol [6] and Calegari-Gabai [23], which
implies that every complete hyperbolic 3-manifold with free fundamental
group is homeomorphic to an open solid handlebody. There are two proofs of
Theorem 4.7 due independently to Choi-Drumm-Goldman and to Danciger-
Guéritaud-Kassel, which do not use crooked planes and which preceded the
resolution of the Crooked Plane Conjecture.
Choi–Goldman [35] proved Theorem 4.7 in the case that � has compact

convex core (i.e., the linear holonomy group is convex cocompact). This was
later extended by Choi–Drumm–Goldman [34] to include the case that � has
cusps. The proof involves compactifying a Margulis spacetime M3 with con-
vex cocompact linear holonomy, as an RP3-manifold with geodesic (ideal)
boundary. The boundary is an RP2-manifold obtained by grafting annuli to
two copies of � along its boundary, as in Goldman [67] and Choi [33]. The
boundary RP2 surface is naturally the quotient of a domain in the projective
sphere at infinity for E2,1. Given that the � action on E2,1 and on this domain
at infinity are both proper, the difficulty lies in proving that the �-action on
the union is also proper. This is accomplished by using the dynamics of the
lifted geodesic flow as in Goldman–Labourie–Margulis [73] and the fact that
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the linear holonomy group�0 acts onH2 as a convergence group.When�0 is no
longer convex cocompact (but still finitely generated), then the proof requires
a detailed technical analysis of the geometry near a cusp.
From a different point of view, Danciger–Guéritaud–Kassel [39, 42] proved

(Proposition 7.5) that any Margulis spacetimeM is fibered in affine (timelike)
lines over the associated surface �. This also gives a proof of Theorem 4.7.
See Section 7 for further discussion.
In another direction, Frances [60] defines an ideal boundary for Margulis

spacetimes, using the action on the (Lorentzian) conformal compactifica-
tion Ein2,1 of Minkowski space, sometimes called the Einstein Universe. This
extends the local conformal Lorentzian geometry of E2,1 in the same way that
the conformal geometry of Sn extends conformal Euclidean geometry on En.
The Einstein Universe is diffeomorphic to the mapping torus of the antipo-
dal map on S2. Its automorphism group is the projective orthogonal group
PO(3, 2). (Compare [10, 69].)
The main result is that the action extends to the conformal boundary in

much the same way that actions of discrete isometry groups on hyperbolic
(n-1)-space extends to its ideal boundary Sn. Frances defines a limit set 
such that � acts properly discontinuously on the complement Ein2,1 \ and
describes a compactification for the quotient

(
Ein2,1 \)/� (which is not a

manifold).

5 The Margulis spectrum

5.1 THE MARKED SIGNED LORENTZIAN LENGTH SPECTRUM.
Themarked length spectrum of a hyperbolic surface� is an important invariant,
which determines the isometry type of �. Recall that this is the function

π1(�)
��−−→R≥0,

which associates to the homotopy class of a based loop γ the infimum of the
lengths of loops (freely) homotopic to γ . When � is closed, then �(γ ) equals
the length of the closed geodesic in � homotopic to γ ; in particular �(γ )> 0.
In general, γ has parabolic holonomy if and only if �(γ )= 0.
This function is part of a general construction defined on the group

Isom(H2). The geodesic displacement function

(4.6) Isom(H2)
�−→R≥0
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associates to g the infimum d
(
p, g(p)

)
, where p∈H2. If g is elliptic or parabolic,

then �(g)= 0. If g is hyperbolic, then �(g) equals the length of the shortest
closed geodesic in the cylinder H2/〈g〉, as in Section 4.1.2.
If M3=�\E2,1 is a Margulis spacetime with associated hyperbolic surface

�∼M3, then each homotopy class of closed curve γ ∈� with nonparabolic
holonomy is represented by a unique spacelike geodesic whose Lorentzian
length is |α(γ )|, where α is defined by Equation (4.4) in Section 4.1.3. More
generally, the function

(4.7) π1(M)
α−→R

is an important invariant of M3 called the marked Lorentzian length spectrum
and is analogous to the marked length spectrum �� for the associated hyper-
bolic surface. As we shall see in the next subsection, the signs of the Margulis
invariants α(γ ) also play a central role in the theory.

5.2 PROPERTIES OF THE MARGULIS INVARIANT. Margulis defined
the function α in [102] and [103]. Recall from Section 4.1.3 that if g ∈
Isom+(E2,1) is an orientation preserving Lorentzian isometry with L (g)
hyperbolic, then g leaves invariant a unique spacelike line Axis(g), which
carries a natural orientation induced from the orientation of E2,1 (see
Section 4.1.3). Furthermore, the restriction of g to Axis(g) is a translation by
a multiple α(g)wg , where wg is the unit-spacelike vector parallel to Axis(g)
determined by the orientation of Axis(g). The sign of g is defined as the sign
of α(g)∈R (positive, negative, or zero).
Margulis’s invariant has the following important properties:

LEMMA 5.1. Suppose g ∈ Isom+(E2,1) with L(g) hyperbolic.

(1) α(g)= 0 if and only if g has a fixed point.
(2) α(g)= (g(p)− p) ·wg for any p∈ E.
(3) α(g)=α(ηgη−1) for any η∈ Isom(E2,1).
(4) α(gn)= |n|α(g) for n = 0.

While the definition of α(γ ) provides the conceptual meaning of the Mar-
gulis invariant, Lemma 5.1.(2) is a useful formula for its computation.
Lemma 5.1.(4) implies that the sign of a power is independent of the exponent
and, in particular,

(4.8) α(γ−1)=α(γ ).
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The four properties of Lemma 5.1 are elementary. In contrast, the follow-
ing Opposite Sign Lemma is deep, playing an important role in characterizing
proper affine deformations (Theorem 6.1).

THEOREM 5.2 (Opposite Sign Lemma).
If g, h are isometries with hyperbolic linear part, with opposite signs—that is,
α(g)α(h)≤ 0—then 〈g, h〉 does not act properly on A3.

Abels’s survey paper [1] provides a detailed proof of Margulis’s Opposite Sign
Lemma, along the lines of the original proof in [102] and [103].

5.3 MARGULIS’S ORIGINAL CONSTRUCTION. The Margulis invari-
ant is also key in his original construction of proper affine deformations of
free discrete groups in �0< SO(2, 1).
To that end, first define the hyperbolicity of a hyperbolic element g ∈ SO(2, 1)

as the Euclidean distance

d(S2 ∩ 〈g+〉,S2 ∩ 〈g−〉),

where S2 is the Euclidean unit sphere and 〈g+〉 (respectively 〈g−〉) is the
attracting (respectively repelling) eigenline for g. Hyperbolicity is related to
the distance of a fixed basepoint 0∈H2 to the invariant geodesic lg ⊂H2 of g.
Call an element ε-hyperbolic if its hyperbolicity is greater than ε.
Moreover, two elements g, h∈ SO(2, 1) are said to be ε-transverse if they are

ε-hyperbolic and
d(S2 ∩ 〈g±〉,S2 ∩ 〈h±〉)> ε.

Margulis showed that, for any two ε-hyperbolic, ε-transverse elements g, h∈
SO+(2, 1) that are “sufficiently contracting” (this basically means that their
largest eigenvalues are sufficiently large), we have

(4.9) α(gh)≈α(g)+α(h).

Now consider a free, two-generator discrete group �0< SO+(2, 1) whose
limit set is not all of ∂H2 (equivalently, �0 is not a lattice). Then there exists

η∈ SO+(2, 1)/�0

so that every element in the coset η�0 is ε-hyperbolic. (In particular η is
ε-hyperbolic, with attracting fixed point outside of .) Then using Equa-
tions (4.8) and (4.9), Margulis showed that, for an affine deformation � whose
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translational parts of the generators satisfy a suitable condition, |α(ηγ )| grows
roughly like the word length of γ for γ ∈�. Once the hyperbolicity is bounded
below by ε, the Margulis invariant α(ηγ ) controls the minimum Euclidean
distance ηγ moves any point. For any compact K ⊂ E2,1,

{γ ∈� | ηγ (K)∩K = ∅}

is finite. This implies that � acts properly on E2,1. For further details, compare
Drumm-Goldman [56].

5.4 LENGTH SPECTRUM RIGIDITY. The marked length spectrum of a
hyperbolic structure on a surface � is the map that assigns to each free
homotopy class [γ ] of loop, the length �(γ ) of the unique closed geodesic in
that homotopy class. Regarding Isom+(H2)=PSL(2,R), suppose π1(�) ρ0−−→
PSL(2,R) is the holonomy representation of the hyperbolic structure on �.
Then �(γ ) relates to the character of ρ0 by:

tr
(
ρ0(γ )

) = ±2 cosh
(
�
(
ρ0(γ )

)

2

)
.

Hence, a hyperbolic structure on� is determined by its length spectrum, sim-
ply because the holonomy representation ρ0 is determined by its character.
This is a general algebraic fact about irreducible linear representations; see,
for example, Goldman [68] for a general proof. For details on this question,
see Abikoff [5]. More recently Otal [109] and Croke [37] proved marked length
spectrum rigidity for surfaces of variable negative curvature,where the algebraic
methods are unavailable. For length spectrum rigidity for locally symmetric
spaces, see Kim [89, 88] and Cooper–Delp [36].
Now we discuss to what extent the marked Lorentzian length spectrum

determines the isometry type of a Margulis spacetime. As a consequence of
Theorem 5.2, either the α(g) are all positive or all negative. By changing the
orientation of E2,1, we may assume they are all positive.
Suppose M3 is a Margulis spacetime whose associated (complete) hyper-

bolic surface � has a compact convex core. (In this case the holonomy group
L(�) of � is said to be convex cocompact.) As in Section 5.1, every element of
L(�)\{1} is hyperbolic and every closed curve in M3 is freely homotopic to a
unique closed geodesic inM3. The absolute value |α(γ )| equals the Lorentzian
length of this closed geodesic inM3. Thus the function

π1(M3)
α◦ρ−−−→R

represents the analogous marked Lorentzian length spectrum ofM3.
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THEOREM 5.3.
Consider two affine deformations ρ, ρ′ of Fn with the same convex cocompact repre-
sentation as linear part. Suppose that α ◦ ρ=α ◦ ρ′. Then ρ and ρ′ are conjugate
in Isom(E).

This was proved by Drumm-Goldman [59] for n= 2, to which we shall
refer. We give below the modifications needed to prove this for general n> 2.
Charette-Drumm [25] proved the stronger statement without the assumption
that ρ and ρ′ have the same linear part, only assuming that α ◦ ρ=α ◦ ρ′. See
also Kim [90] and Ghosh [65].
Assume inductively the result for all free groups of rank at most n, where

n≥ 2. For Fn+1=〈x1, x2, . . . , xn+1〉, consider the three n-generator subgroups:
S1 = 〈x2, x3, x4, . . . , xn+1〉
S2 = 〈x1, x3, x4, . . . , xn+1〉
S3 = 〈x1, x2, x4, . . . , xn+1〉

In the followingwewill only be concernedwith the generators x1, x2, x3, which
do not occur inside every such subgroup. Without loss of generality, we may
choose the generators x1, x2, x3 so that the 1-eigenspaces of the linear parts
L(x1), L(x2), and L(x3) do not have a nontrivial linear dependence. If this is
not the case, we simply replace x1 by x2x1x−12 and the assumption will hold.
We consider two representations ρ, ρ′ of Fn+1 and their restrictions to Si for

i= 1, 2, 3. Denote the translational parts of ρ and ρ′ by
u, u′ ∈Z1(Fn+1,R2,1)

respectively. Let i= 1, 2, or 3. Since the Margulis invariants α,α′ agree, their
restrictions to the n-generator subgroup Si also agree. Thus the restrictions of
u and u′ to Si are cohomologous in Z1(Si,R2,1). That is, there exists ai ∈R

2,1

so that

(4.10) u′(γ )− u(γ )= δ(ai)(γ )= ai− L(γ )ai
for γ ∈Si.
We show that the vector a2− a3 lies in the fixed line

Fix
(
L(x1)

)=Ker(I− L(x1)
)
.

Apply (4.10) to γ = x1 and i= 2, 3:
a2− L(x1)a2= u′(x1)− u(x1)= a3− L(x1)a3,
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from which follows

a2− a3= L(x1)(a2− a3)

as claimed. Similarly, a3− a1 ∈ Fix
(
L(x2)

)
and a1− a2 ∈ Fix

(
L(x3)

)
. By our

assumption above, the three lines Fix
(
L(xi)

)
for i= 1, 2, 3 are not coplanar,

so in particular they form a direct sum decomposition of R
3. Observing that

(a2− a3)+ (a3− a1)+ (a1− a2)= 0,

we deduce that the vectors a2− a3, a3− a1, a1− a2 must each be zero. Thus
the vectors a1= a2= a3 are all equal, and (4.10) holds over the entire group
Fn+1.

5.5 FURTHER REMARKS ON THE MARGULIS LENGTH SPECTRUM.
Charette–Goldman [31] proved an analog of McShane’s identity [104], a
relation on the marked length spectrum for hyperbolic punctured tori.
If a discrete group � of affine isometries with hyperbolic linear part acts

properly on E, then the Margulis invariants α(γ ) are either all positive or all
negative. In general, infinitelymany positivity conditions are needed to ensure
properness (but see Section 6.2 for the two examples of�0 where only finitely
many conditions suffice). Charette [24] found a sequence of affine deforma-
tions ρn of a two-generator Fuchsian group �0 with the following property: for
any given integer n,

. α(ρn(γ ))> 0 for all γ ∈�0 with word length less than n; and. α(ρn(γ ′))< 0 for some γ ′ ∈�0.

Using strip deformations, Minsky [74] explicitly showed there exist free groups
with convex cocompact linear part with the property that the Margulis invari-
ants of all elements have one sign but that do not act properly on E. See the
discussion of Theorem 7.7 in Section 7.6.
The sign of an affine deformation is undefined for elliptic affine transforma-

tions. Charette–Drumm–Goldman [28] extended Margulis’s sign to parabolic
affine transformations. A parabolic element γ of SO(2, 1) fixes no spacelike
vectors and no closed geodesic has holonomy γ . Charette and Drumm find a
subspace of null vectors fixed by γ with a natural orientation and extend the
sign of the Margulis invariant to γ . Lemma 5.1 can be adapted to parabolic
transformations. Moreover, Theorem 5.2 extends to the case where either
or both transformations are parabolic, using this extension of Margulis’s
invariant.
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6 Diffusing the Margulis invariant

In this section we describe the extension of Margulis’s marked Lorentzian
length spectrum to the space of geodesic currents and state the properness
criterion of Goldman–Labourie–Margulis, which leads to a description of the
deformation space of Margulis spacetimes associated to a given hyperbolic
surface.

6.1 NORMALIZING THE MARGULIS INVARIANT. The (signed) Mar-
gulis invariant and the geodesic length function enjoy the same homogeneity(
Lemma 5.1 (4)

)
:

�(γ n)= |n|�(γ )
α(γ n)= |n|α(γ )

Thus the quotient

�0
α̂−→R

γ �−→ α(γ )

�(γ )

is constant on cyclic subgroups of �∼=π1(�).
Cyclic hyperbolic subgroups of π1(�) correspond to closed geodesics on�.

Closed geodesics on� correspond to periodic trajectories of the geodesic flow
� on the unit tangent bundle U� and hence determine �-invariant proba-
bility measures on U� supported on the velocity vector field of the closed
geodesic.
Recall that a geodesic current on � is a �-invariant probability measure

on U�. See Bonahon [17]. The convex set C(�) of all geodesic currents is
equipped with the weak-* topology. It is compact if � has compact convex
core. Geodesic currents corresponding to closed geodesics are dense in C(�).
For a fixed affine deformation ρ of a Fuchsian representation ρ0, the above

function α̂ extends to a continuous map

C(�)
α̂−→R.

Moreover, if we let the ρ= ρ[u] vary over the space H1(�0,R2,1) of affine
deformations, then we have the following:

THEOREM 6.1 (Goldman-Labourie-Margulis [73]).
Fix a hyperbolic surface � with holonomy representation ρ0.
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. There exists a continuous map

H1(�0,R2,1)×C(�)
�−−→R

such that for a fixed affine deformation ρ corresponding to [u] ∈H1(�0,R2,1)

and an element γ ∈� corresponding to an �-invariant probability mea-
sure μ,

�([u],μ)= α̂ρ(γ )
as above. Furthermore this function is bi-affine with respect to the linear
structure on H1(�0,R2,1) and the affine structure on C(�).. The affine deformation ρ= ρ[u] is proper if and only if the image �

(
{u}×

C(�)
)
is bounded away from 0.

Since probability measures supported on periodic trajectories are dense,
properness is equivalent to bounding α̂(γ )=α(γ )/�(γ ) away from zero. In
particular, Minsky’s [74] construction of nonproper affine deformations has
the property that every element has the same sign, but there is a sequence of
elements whose normalized Margulis invariants approach zero.
Theorem 6.1 immediately implies the Opposite Sign Lemma (Theorem 5.2)

as follows. Suppose that α(γ1)< 0<α(γ2). Let μi denote the invariant proba-
bility measure corresponding to γi. Then

α̂(μ1)= α(γ1)
�(γ1)

< 0<
α(γ2)

�(γ2)
= α̂(μ2).

Since C(�) is convex, a continuous pathμt (for 1≤ t≤ 2) joinsμ1 toμ2. Conti-
nuity of α̂ and the Intermediate Value Theorem imply that α̂(μt)= 0 for some
1< t< 2 and μt ∈C(�). By Theorem 6.1, the affine deformation is not proper.
Let us briefly contrast the properness criterion of Theorem 6.1 with the

properness criterion of Benoist [14] and Kobayashi [92] for reductive homoge-
neous spaces. In the setting of reductive homogeneous spaces G/H, proper-
ness of the action of a discrete group �<G is characterized by the behavior of
the Cartan projection (singular values) of �, specifically that the Cartan pro-
jection of � goes away from the Cartan projection of H. There is no known
analogue of this simple criterion in nonreductive settings, such as Minkowski
geometry E2,1. In Minkowski geometry, the Margulis invariant of an element
is less like a Cartan projection andmore like an infinitesimal Jordan projection
(eigenvalues). Thework of Danciger-Guéritaud-Kassel [39] interprets an action
of a group � on Minkowski space E2,1 as an infinitesimal action on the three-
dimensional anti–de Sitter space, the model for constant negative curvature
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Lorentzian geometry in dimension 3. Note that anti–de Sitter space is a
reductive homogeneous space, so the Benoist-Kobayashi properness criterion
applies. However, Kassel [87] andGuéritaud-Kassel [82] give a different proper-
ness criterion in terms of uniform behavior of the Jordan projections. The new
proof of Theorem 6.1 given in Danciger-Guéritaud-Kassel [39] interprets the
uniform behavior of the Margulis invariant as an infinitesimal analogue of
the Guéritaud-Kassel properness criterion in anti–de Sitter geometry. See the
discussion in Section 7.3.

6.2 CLASSIFICATION OF MARGULIS SPACETIMES. Theorem 4.4 implies
that proper affine deformations exist whenever �=�0\H2 is noncompact.
Another consequence of Theorem 6.1 is a determination of the deformation
space of Margulis spacetimes as a convex domain. Theorem 6.1 implies that
the space of all proper affine deformations of �0 equals the subspace of
H1(�0,R2,1) comprised of [u] such that �([u],μ) is either always positive or
always negative for all μ∈C(�).
The positive affine deformations, those [u] for which �([u],μ)> 0 for all

μ∈C(�), form an open and convex cone. This cone is the interior of the
intersection over γ ∈� of the set of half-spaces defined by α[u](γ )> 0. In
fact, it suffices to take this intersection over γ corresponding to simple loops
on �. See Goldman-Labourie-Margulis-Minsky [74] and Danciger-Guéritaud-
Kassel [39]. Indeed, properness is implied by positivity (or negativity) of the
Margulis invariant �([u],μ) over all measured laminations μ (those currents
with self-intersection zero).
Figures 4.4 and 4.5 depict the deformation space for four hyperbolic sur-

faces� representing the four different topological types for which χ(�)=−1,
or equivalently π1(�)∼= F2. Although in these cases

dim H1(�0,R2,1)= 3,

we may projectivize the set and draw the image of this cone in the two-
dimensional projective space P

(
H1(�0,R2,1)

)
. The lines drawn in these pic-

tures are defined by α(γ )= 0, where γ is a primitive element of F2 (that is, an
element living in a free basis of F2). However, only in the case of the one-holed
torus do the primitive elements correspond to simple nonseparating loops.

6.3 DYNAMICAL IDEAS FROM THE PROOF OF THEOREM 6.1. Let
us sketch some ideas from Goldman-Labourie-Margulis [73]. The basic idea
of the properness criterion in Theorem 6.1 is to translate properness of the
discrete group action into a question of properness of a continuous flow.
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Figure 4.4. Deformation spaces for the three-holed sphere and two-holed
cross-surface (projective plane)

Figure 4.5. Deformation spaces for the one-holed Klein bottle and one-holed
torus

Consider the flat affine bundle Eρ→U�, defined as the quotient (E2,1×
UH2)/�, where � acts by ρ= ρ[u] in the E2,1 factor and by ρ0 on the UH2

factor. The geodesic flow ϕt on U� lifts, via the flat connection, to a flow �t

on Eρ . Then the properness of the ρ action of � on E2,1 is equivalent to proper-
ness of the flow �t on Eρ . To determine properness of this flow, it suffices to
consider only the recurrent part Urec� of the unit tangent bundle U�.
Let us describe how to extend theMargulis invariant function to the space of

currents. Let s :U�→ Eρ be a smooth section. Using the flat connection, one
may measure how much s changes along a path in the unit tangent bundle.
The Margulis invariant α(γ ) of an element γ ∈� is equal to the amount the
section s changes in the direction of the translation axis Axis(ρ(γ )) after going
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once around the geodesic representative for γ in U�. To generalize this, for
u∈Urec�, we may ask howmuch the section s changes in the neutral direction
ν(u) along (some finite piece of) a trajectory �tu of the geodesic flow. Here ν
is the canonical section of the associated vector bundle Vρ = (R2,1×UH2)/�,
which maps a tangent vector u to the spacelike unit vector ν(u) dual to the
geodesic in �, tangent to u. Hence, to each point u∈U�, we may associate
the neutral variation 〈dϕt s, ν〉 of s in the direction of the flow, a real valued
function on U�. The definition of the Margulis invariant α̂(μ) of a geodesic
current μ on � is simply the integral over Urec of this function against the
measure μ:

α̂(μ) :=
∫
Urec

〈dϕt s, ν〉dμ.

It can be shown that the definition does not depend on the choice of section
s. Indeed, the functional μ �→ α̂(μ) is continuous and on the dense subset of
currents μγ that are supported on a closed geodesic γ , the definition gives
α̂(μγ )= α̂(γ ).
The properness criterion is proved as follows. On the one hand, if there is a

currentμwith α̂(μ)= 0, then the section s (or rather amodified section whose
variation along flow lines is only in the neutral direction) takes the support of
μ to a compact subset of Eρ that is not taken away from itself by the flow �t;
hence the flow is not proper, and hence the action of � on E2,1 is not proper.
Conversely, if the action of � on E2,1 is not proper, then the flow �t is not
proper and it is possible to find a sequence of longer and longer flow lines
thatmake less and less progress in the fiber with respect to the flat connection.
One constructs a geodesic current with zero Margulis invariant in the limit.

6.4 DYNAMICAL STRUCTURE OF MARGULIS SPACETIMES. While
we do not explore the ideas here, we mention some further work on the
dynamical structure of Margulis spacetimes.
In [72], Goldman and Labourie show that the union of closed geodesics

in a Margulis spacetime with convex cocompact linear holonomy is dense
in the projection of the nonwandering set for the geodesic flow. (Goldman
and Labourie call the projections of the nonwandering orbits recurrent.) In
other words, a Margulis spacetime with convex cocompact linear holonomy
group has a compact “dynamical core.” This is completely analogous to the
behavior of nonwandering orbits for the geodesic flow for a convex cocompact
hyperbolic surface.
Further, Ghosh [62] proves an Anosov property for the geodesic flow in the

dynamical core of a Margulis spacetime. From that he constructs a pressure
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metric on the moduli space [64], analogous to the pressure metric defined
in higher Teichmüller theory constructed by Bridgeman-Canary-Labourie-
Sambarino [19, 18].

7 Affine actions and deformations of geometric structures

The finer structure of the classification ofMargulis spacetimes is deeply tied to
the theory of infinitesimal deformations of hyperbolic surfaces. The connection
comes from the low-dimensional coincidence that the standard representa-
tion of SO(2, 1) acting on R

2,1 is isomorphic to the adjoint representation of
SO(2, 1) acting on its Lie algebra so(2, 1). In general, ifG is a Lie group, affine
actions with linear part in the adjoint representation of G are in direct corre-
spondencewith infinitesimal deformations of representations intoG, which in
many cases correspond to deformations of geometric structures modeled on
some homogeneous space of G. The dynamics of the affine action is often
closely related to the geometry of the associated deformation of geometric
structures. For the case of G= SO(2, 1) corresponding to Margulis space-
times, Danciger–Guéritaud–Kassel [39] showed that properness of the affine
deformation is equivalent to the condition that the associated deformation of
hyperbolic structure is contracting, in a sense to be made precise later in this
section.

7.1 AFFINE ACTIONS AND DEFORMATION THEORY. For the mo-
ment, let us work in the general setting that G is an arbitrary finite-
dimensional Lie group. Recall that the Lie algebra g of G is the Lie subalgebra
ofVec(G) consisting of right-invariant vector fields onG. These vector fields gen-
erate flows by left-multiplication by one-parameter subgroups ofG. The action
of G on itself by left-multiplication induces a (left-) action on Vec(G). Since
left- and right-multiplication commute, the left-action on Vec(G) preserves
g<Vec(G). The resulting action is the adjoint representation

G
Ad−−→Aut(g).

The linear action of G on g extends to an affine action of the semi-direct
product G�Adg, where g acts by translations:

(4.11) v
(g,u)�−−−→Ad(g)v+ u.

The adjoint action ofG on g preserves the Killing form B(·, ·). IfG is semisim-
ple, which will be the case in all of our applications, B is a nondegenerate
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symmetric bilinear form of indefinite signature (p, q). Hence the affine action
of G�Adg on g is by isometries of a flat pseudo-Riemannian metric of
signature (p, q). This gives a map

G�Adg
�G−−→ Isom(Ep,q),(4.12)

which maps G into the stabilizer of a point, a copy of SO(p, q), and maps g to
the translation subgroup R

p,q.
Affine actions of the form (4.11) closely relate to infinitesimal deformations

of geometric structures and representations. The affine group G�Adg is natu-
rally isomorphic to the total space of the tangent bundle TG of the Lie groupG,
under the map that associates g ∈G and u∈ g to the evaluation ug ∈ TgG of u
at g:

TG∼=G�Adg.(4.13)

Given a representation ρ0 :�→G of a discrete group� inG, an infinitesimal
deformation of ρ0 is a homomorphic lift ρ to the tangent bundle TG:

TG

�G
��

�
ρ0 ��

ρ
����������
G

Infinitesimal deformations arise naturally as tangent vectors to paths in the
analytic set Hom(�,G). Indeed, if ρt ∈Hom(�,G) is a smooth path, then

ρ(γ ) := d
dt

∣∣∣
t=0ρt(γ ) ∈ Tρ0(γ )G(4.14)

defines an infinitesimal deformation. Using the isomorphism (4.13), an
infinitesimal deformation ρ of a fixed representation ρ0 ∈Hom(�,G) is effi-
ciently described as a cocycle

u∈Z1(�, gAdρ0),

where gAdρ0 denotes the �-module defined by the composition

�
ρ0−−→G

Ad−−→Aut(g).

(Compare Raghunathan [113], Section 6.)
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We refer to cocycles in Z1(�, gAdρ0) as deformation cocycles. When ρ is the
derivative of a conjugation path

ρt(·)= gtρ0(·)g−1t ,

where gt is a smooth path in G based at the identity, the associated cocycle u
is the coboundary δv, where v∈ g extends the tangent vector

d
dt

∣∣∣
t=0gt ∈ Te(G).

The set B1(�, gAdρ0) of such coboundaries makes up the infinitesimal
conjugations, or trivial infinitesimal deformations. The cohomology group
H1(�, gAdρ0) describes the equivalence classes of infinitesimal deformations
up to infinitesimal conjugation. For further details, see Sikora [117] or
Labourie [97].

7.2 MARGULIS INVARIANTS AND LENGTH FUNCTIONS. For the
remainder of this section (except Section 7.9) we consider the specific case
when

G := Isom(H2)∼= PGL(2,R)∼= SO(2, 1),
g := sl(2,R)∼= so(2, 1),

and �0
ρ0
↪−−→G is the inclusion of a finitely generated, torsion-free, discrete

subgroup corresponding to the hyperbolic surface �=�0\H2.
Since the adjoint action of G on g is isomorphic to the standard representa-

tion of SO(2, 1) on R
2,1, the action of Isom+(E2,1) on E2,1 identifies with the

affine action of G�Adg on the Lie algebra g—in other words, the map

G�Adg
�G−−→ Isom+(E2,1)

from (4.12) is an isomorphism. In particular, a cocycle in

Z1(�0,R2,1
ρ0
)∼=Z1(�0, so(2, 1)Ad)

corresponds both to an affine deformation �u of �0 and to an infinitesi-

mal deformation of the representation �0
ρ0
↪−−→G. By the Ehresmann-Weil-

Thurston principle (see Goldman [70]), infinitesimal deformations of ρ0
correspond to infinitesimal deformations of the hyperbolic structure on �.
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Goldman-Margulis [76] observed the first key entry in the dictionary between
the dynamics of the affine action and the geometry of the associated infinites-
imal deformation.
Recall the geodesic displacement function G

�−→R≥0 defined in Equa-
tion (4.6). Its restriction to the hyperbolic elements of G (an open subset) is a

smooth function, whose differential we denote by TG
d�−−→R.

LEMMA 7.1 ([76]). Let
(g, u)∈G�Adg= TG

be an infinitesimal deformation of the hyperbolic element g ∈G, and let�G(g, u) be
the corresponding orientation preserving affine isometry of E2,1. Then the Margulis
invariant (see Section 5.2) equals the derivative of the length. That is,

α
(
�G(g, u)

)= d�(g, u).

Let �0<G be a fixed convex cocompact subgroup. Recall the extension of
the Margulis invariant to the space of currents from Theorem 6.1:

H1(�0,R2,1)×C(�)
�−−→R.

Lemma 7.1 implies that this function is exactly the differential of the length
function for geodesic currents. More specifically, to each geodesic current μ
on �=�0\H2 is associated a length function �μ on the space Homcc(�0,G)
of convex cocompact representations. The map μ �→ �μ taking currents to
continuous G-invariant functions on Homcc(�0,G) is continuous. Density of
geodesic currents corresponding to closed geodesics implies that �μ(·) may
be approximated in terms of the usual length functions �γ (·) for γ ∈�0,
defined by:

�γ (ρ) := �
(
ρ(γ )

)
.

Lemma 7.1 implies that under the identification

H1(�0,R2,1)∼=H1(�0, gAd),

the diffused Margulis invariant function � is precisely the map

H1(�0, gAd)×C(�)
d�−−→R

taking a cohomology class [u] of infinitesimal deformations and a current μ∈
C(�) to the derivative d�μ(u) of the length of μ in the u direction. Therefore,
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the Goldman–Labourie–Margulis properness criterion (Theorem 6.1) may be
restated:

PROPOSITION 7.2. Let �0<G be a convex cocompact subgroup and u∈
Z1(�0, gAdρ0) a cocycle defining an infinitesimal deformation of the inclusion

�0
ρ0−→G. Then the corresponding affine action�G(ρ0, u) is properly discontinuous

if and only if d�μ(u) = 0 for all geodesic currents μ∈C(�).

By exchanging u with −u (which gives an affine equivalent action), we may
assume that d�ν(u)≤ 0 for some current ν ∈C(�). Hence, since the space
of currents is connected, the condition that d�μ(u) = 0 for all μ∈C(�) is
equivalent to the condition that d�μ(u)< 0 for all μ∈C(�). Equivalently,

sup
γ∈�\{e}

d�γ (u)
�(γ )

< 0.(4.15)

In other words, all closed geodesics on� become uniformly shorter under the
infinitesimal deformation.
Mess’s Theorem 3.6, which states that any affine deformation of a cocom-

pact surface group �0<G fails to be proper, follows easily from Proposi-
tion 7.2. Indeed, suppose that �0=�0\H2 is a closed surface. There exists
a geodesic current μ�0 , the Liouville current associated to �0, whose length in
any hyperbolic structure � is minimized for �=�0. Hence d�μ�0 (u)= 0 for
any infinitesimal deformation u.
In fact, a slightly stronger statement is true: any nontrivial infinitesimal

deformation u of a closed hyperbolic surface must increase the lengths of
some closed geodesics while decreasing the lengths of others. A hint as to
why that should be true is that the area of a closed hyperbolic surface of genus
g ≥ 2 is constant, equal to 4π(g− 1) by the Gauss–Bonnet formula. Thus, if a
deformation contracts in some directions, then it should stretch/lengthen in
other directions.
The same basic idea underpins Thurston’s theory of the Lipschitz metric on

Teichmüller space [123]. This metric measures distance between two hyper-
bolic structures on a closed surface according to the minimum Lipschitz con-
stant of Lipschitz maps between the two structures. Guéritaud-Kassel [87, 82]
extended Thurston’s theory to finite-type hyperbolic surfaces, as well as higher
dimensional hyperbolic manifolds. An application is a properness criterion
in the setting of G×G acting on G by right- and left-multiplication, where
G= SO(2, 1)0 is the identity component of the isometry group of hyperbolic
2-space H2.
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This theory is the starting point for the work of Danciger–Guéritaud–
Kassel [39] on Margulis spacetimes, so we digress briefly to explain it.

7.3 CONTRACTING DEFORMATIONS AND PROPER ACTIONS ON
LIE GROUPS. Consider the identity component G= SO(2, 1)0 of Isom(H2)

and the action of G×G on G by right- and left-multiplication:

(g0, g1) · h := g1hg−10 .(4.16)

Thanks to the exceptional isomorphism so(2, 2)� so(2, 1)⊕ so(2, 1), the
action of G×G on G then models three-dimensional Lorentzian geometry
of constant negative curvature, also known as anti–de Sitter (AdS) geometry.
Consider a discrete (geometrically finite, nonelementary) embedding

�
ρ0−−→G defining a proper action on H2 whose quotient

�0= ρ0(�)\H2

is a complete hyperbolic surface. Consider a second discrete embedding ρ1 :
� ↪→G. Then via (4.16), the pair (ρ0, ρ1) defines an action of � on G. Such an
action is not necessarily properly discontinuous: for instance, if

ρ1= Inn(h) ◦ ρ0

for h∈G, then (ρ0, ρ1)(γ ) fixes h for all γ ∈�.
Here is the properness criterion for such G×G actions on G, due to

Guéritaud–Kassel [87, 82]. Say that ρ1 is a contracting Lipschitz deformation of
ρ0 if and only if there exists a Lipschitz map

H2 f−→H2

with Lipschitz constant Lip(f )< 1 that is (ρ0, ρ1)-equivariant—that is,

f ◦ ρ0(γ )= ρ1(γ ) ◦ f(4.17)

for all γ ∈�.

THEOREM 7.3 (Guéritaud–Kassel [87, 82]).
Up to switching the roles of ρ0 and ρ1, the (ρ0, ρ1)-action of � on G is proper if and
only if ρ1 is a contracting Lipschitz deformation of ρ0.
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Note that if ρ1 is also injective and discrete with quotient�1= ρ1(�)\H2, then
f corresponds to a Lipschitz deformation of hyperbolic surfaces �0→�1. To
see why the existence of such amap f suffices for properness, observe that the
(ρ0, ρ1) action on G projects equivariantly down to the ρ0 action onH2 via the
fixed point map

g �→ Fix(g−1 ◦ f ),
which is well defined by the contraction property. Proper discontinuity of the
action on the base H2 then implies proper discontinuity on G.
Further generalizing Thurston’s theory, Guéritaud–Kassel also studied

the relationship between the optimal Lipschitz constant over all (ρ0, ρ1)-
equivariant maps and the factor by which translation lengths are stretched
in ρ1 compared with ρ0. In particular, when ρ0 is convex cocompact, a
contracting Lipschitz (ρ0, ρ1)-equivariant map exists if and only if

sup
γ∈�\{e}

�
(
ρ1(γ )

)

�
(
ρ0(γ )

) < 1.(4.18)

Observe the similarity with the properness criterion Proposition 7.2. Indeed,
Condition (4.15) may be viewed as the infinitesimal version of (4.18). The
similarity exemplifies a more fundamental principle at work: the affine action
of G�Adg on g is the infinitesimal analogue of the action by right-and left-
multiplication ofG×G onG. This guiding principle ledDanciger–Guéritaud–
Kassel to develop an infinitesimal analogue of the theory of Lipschitz contrac-
tion and proper actions. The next sections will dive into that theory and its
consequences for the structure and classification of Margulis spacetimes.
One consequence, in line with the guiding principle above, is the following

geometric transition statement: every Margulis spacetime is the rescaled limit of
a family of collapsing AdS spacetimes. For the sake of brevity, we do not give
details here; see [39, Theorem 1.4]. For a different survey that develops more
thoroughly the parallel between Margulis spacetimes and complete AdS 3-
manifolds, see Guéritaud [81].
Let us also mention that this geometric transition result has recently been

generalized to the setting of the affine group SO(2n+ 2, 2n+ 1)� R
4n+3, seen

as an infitesimal analogue of the reductive group SO(2n+ 2, 2n+ 2) (Dan-
ciger, Guéritaud, and Kassel’s result is the case n= 1). Of course for arbitrary n
the exceptional isomorphism then no longer applies, so the general case no
longer fits into the framework of G�Ad g and G×G. This generalization has
been done independently in Danciger and Zhang [43] on the one hand and
Ghosh [63] on the other hand.
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7.4 DEFORMATION VECTOR FIELDS AND INFINITESIMAL CONTRAC-
TION. Let us return now to the setting of Margulis spacetimes. Let G=
SO(2, 1) and let g= so(2, 1) be its Lie algebra. Fix a discrete faithful represen-
tation ρ0 :� ↪→G of the finitely generated, torsion-free, group � determining
a hyperbolic surface �0=

(
ρ0(�)

)\H2. Let u∈Z1(�, gAdρ0) be a cocycle tan-
gent to a smooth deformation path ρt ∈Hom(�,G) based at ρ0, as in (4.14).
Assume further that ρ0 is convex cocompact, so that for small t≥ 0, the
representations ρt are also discrete and faithful and determine a family of
hyperbolic surfaces�t :=

(
ρt(�)

)\H2. These hyperbolic surfaces may be orga-
nized into a smoothly varying family of hyperbolic structures on a single
surface � :=�0 by finding a smoothly varying family of developing maps
ft :H2→H2 that satisfy the following conditions:

. f0= id. ft is a homeomorphism for all t. ft is (ρ0, ρt)-equivariant:

ft ◦ ρ0(γ )= ρt(γ ) ◦ ft(4.19)

These conditions ensure that for each t, ft descends to a homeomorphism
�→�t that becomes “close to the identity" as t→ 0. Consider the tangent
vector field X ∈Vec(H2) to the deformation of developing maps, defined by

X(p) := d
dt

∣∣∣∣
t=0

ft(p).

This vector field satisfies an equivariance condition coming from taking the
derivative of Condition (4.19).
Before stating the equivariance condition, observe that the group G acts on

the space Vec(H2) of all vector fields on H2. Indeed, H2=G/K is the space of
right cosets of the maximal compact subgroup K <G, and so Vec(H2) iden-
tifies with the subspace of right-K-invariant vector fields in Vec(G). The left
action of G on Vec(G) determines an action of G on Vec(H2). Thinking of
the Lie algebra g as the space of right-G-invariant vector fields on G as in
Section 7.1, we have a natural embedding g ↪→Vec(H2). The image of g in
Vec(H2) is precisely the space of Killing vector fields—that is, those vector fields
whose flow preserves the hyperbolic metric. We will denote the image of u∈ g

in Vec(H2) again by u.
The group � acts on Vec(H2) via the representation ρ0 :� ↪→G. Differenti-

ating Condition (4.19) yields that
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X − ρ0(γ ) ·X = u(γ )(4.20)

holds for all γ ∈�; in other words, while X is not invariant under the ρ0-
action of �, it differs from any translate by a Killing vector field determined
by the deformation cocycle u. A vector field satisfying this condition is called
u-equivariant or automorphic. We observe the following:

PROPOSITION 7.4. Let X ∈Vec(H2) be a u-equivariant vector field. Then the
coset X − g is an affine subspace of Vec(H2) invariant under the ρ0-action of �.
Furthermore, the action of � on X − g,

X − ξ γ�−→ X − u(γ )−Ad(ρ0(γ ))ξ ,(4.21)

identifies with the affine action �G(ρ0, u) of � on E2,1.

Each element X − ξ ∈X − g satisfies the equivariance property (4.20), but for
a different cocycle—namely, the cocycle

γ �→ u(γ )+Ad(ρ0(γ ))ξ − ξ ,

which is cohomologous to u. The affine space X − g bijectively corresponds
to the cohomology class [u]⊂Z1(�, gAdρ0). Note that we insist on writing
X − g rather than X + g so that the action, as written in (4.21), matches that of
�G(ρ0, u) in (4.12).
Properness of the affine action of � on X − g may be expressed in terms of

an infinitesimal version of the Lipschitz contraction condition of Section 7.3.
Suppose the maps

H2 ft−→H2

above are Kt-Lipschitz with Lipschitz constant

Kt= 1+ kt+O(t2)

converging smoothly to 1 as t→ 0. In this case, the deformation vector field
X satisfies an infinitesimal version of Lipschitz, which Danciger–Guéritaud–
Kassel [39] call k-lipschitz, with lower case “l”: for all x = y in H2,

(4.22) d′X (x, y)≤ kd(x, y),
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where k∈R is a constant and

(4.23) d′X (x, y) :=
d
dt

∣∣∣∣
t=0

d
(
ft(x), ft(y)

)

is the rate at which the vector field X pushes the points x and y away from each
other. Note that this depends only on X , not on the particular path of maps ft.
For any Killing vector field ξ ∈ g, the family exp(−tξ) ◦ ft is also Kt-lipschitz.

The corresponding deformation vector field X − ξ is then also k-lipschitz for
the same constant k. Thus, the entire affine space X − g consists of k-lipschitz
vector fields. Properness of the action on X − g occurs in the case that these
vector fields are contracting, that is, k< 0.

PROPOSITION 7.5 (Danciger–Guéritaud–Kassel [39]). Suppose X is k-
lipschitz for some k< 0. Then the affine space X − g admits a �-equivariant
fibration

X − g
Z−−→H2.

In particular, � acts properly on the affine space X − g with quotient a complete
affine three-manifold M. The quotient map

M :=�\(X − g)−→�0\H2=�

is an affine line bundle over � with total space M.

The proof of Proposition 7.5 is straightforward, following the same “contract-
ing fixed point" idea from Section 7.3:

Proof. Fix a point p∈H2. For any Killing vector field ξ ∈ g, the vector field X −
ξ is also k-lipschitz. For sufficiently large R> 0 (depending on ‖(X − ξ)(p)‖
and k), the vector field X − ξ points inward along ∂BR(p). Thus, X − ξ has a
zero z inside BR(p), by the well-known vector field analogue of the Brouwer
fixed point theorem.
Furthermore, z is the unique zero of X − ξ : by the contraction prop-

erty (4.22), X − ξ pushes any point x = z closer to z. Hence, define

Z(X − ξ) := z

to be this unique zero. Z is a continuous map intertwining the affine action of
� on X − g with the ρ0-action of � on H2. Since the ρ0-action on the base H2

is properly discontinuous, the action on X − g is also properly discontinuous.
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In fact, Z is a fibration. The fiber Z−1(p) over p∈H2 consists of all vector
fields X − ξ vanishing at p. In particular, every tangent vector v∈ TpH2 is the
value of a Killing vector field ξv at p. Now take v=X(p). The vector field X − ξv
vanishes at p, so Z(X − ξv)= p. Thus Z−1(p) = ∅. If ξ1, ξ2 ∈ g and

Z(X − ξ1)=Z(X − ξ2)= p,

then ξ1− ξ2 is a Killing vector field that vanishes at p. Therefore, two elements
of Z−1(p) differ by an element of the infinitesimal stabilizer of the point p, a
copy of so(2) inside of g, which is an affine line of negative (timelike) signature
for the Killing form.

Danciger–Guéritaud–Kassel show that all Margulis spacetimes arise from
contracting infinitesimal deformations. The following theorem was proved
in the case that ρ0 is convex cocompact in [39] and in the general case
in [42].

THEOREM 7.6 (Danciger–Guéritaud–Kassel).
Consider a discrete embedding �

ρ0−−→G of a finitely generated, nonelementary
group � and a deformation cocycle �

u−→ g. Suppose that d�γ (u)≤ 0 for at least
one γ ∈�. Then the affine action �G(ρ0, u) of � on E2,1 is properly discontinuous
if and only if there exists a (ρ, u)-equivariant vector field that is k-lipschitz for some
k< 0. In particular, any proper affine action of a nonabelian free group � on R

3 is
conjugate to one as in Proposition 7.5.

Note that the assumption that d�γ (u)≤ 0 for a least one γ ∈� is satis-
fied by either u or −u, and that the affine actions �G(ρ0, u) and �G(ρ0,−u)
are conjugate by an orientation reversing affine transformation. The proof of
Theorem 7.6 follows the same strategy as the work of Guéritaud-Kassel [82]
discussed in Section 7.3. The key point is that if the infimum kmin of lips-
chitz constants for (ρ0, u)-equivariant vector fields is nonnegative, then any
(ρ0, u)-equivariant vector field realizing kmin must infinitesimally stretch (the
lift of) a geodesic lamination in the convex core of � at a rate precisely equal
to kmin.
However, contrary to the setting of Lipschitz maps, the Arzelà-Ascoli com-

pactness theorem does not hold for lipschitz vector fields. Indeed, the limit
of a (bounded) sequence of k-lipschitz vector fields is not necessarily a vector
field but instead a convex set valued section of the tangent bundle called a con-
vex field. Much technical care is needed in adapting the arguments of [82] to
this setting.
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7.5 TAMENESS OF MARGULIS SPACETIMES. The topology of a Mar-
gulis spacetime may be read off from Theorem 7.6 and Proposition 7.5. By
Theorem 7.6, every proper affine action of a free group � on E2,1 comes from
a contracting infinitesimal deformation of a non-compact hyperbolic surface
� as in Proposition 7.5. The quotient Margulis spacetime M=�\E2,1 is an
affine line bundle over the surface �. This implies the topological tameness
ofM (Theorem 4.7). See the discussion in Section 4.4.

7.6 THE MODULI SPACE OF MARGULIS SPACETIMES: STRIP DEFOR-
MATIONS. Fix a discrete embedding ρ0 of a free group � into G= SO(2, 1).
It follows from Proposition 7.2 or Theorem 7.6 that the set of cohomology
classes [u] ∈H1(�0, gAd) of infinitesimal deformations of ρ0 for which the
affine action �G(ρ0, u) is proper is an open cone in H1(�0, gAd), sometimes
called the admissible cone or cone of proper deformations. The admissible cone
is the disjoint union of a properly convex cone and its negative. One convex
component contains the infinitesimal deformations that uniformly contract
the geometry of the surface�0= ρ0(�)\H2 in the sense of Equation (4.15) and
Theorem 7.6. The other component contains the infinitesimal deformations
that uniformly lengthen. The projectivization of the admissible cone will be
denoted adm(ρ0); it is the moduli space of Margulis spacetimes associated to
a fixed hyperbolic surface �0, considered up to affine equivalence.
In [40] and [42], Danciger-Guéritaud-Kassel give a combinatorial parameter-

ization of adm(ρ0) in terms of the arc complex of �0 in a similar spirit to Pen-
ner’s cell decomposition of the decorated Teichmüller space of a punctured
surface [111]. The parameterization realizes each contracting deformation
[u] ∈H1(�0, gAd) as an infinitesimal strip deformation. The following construc-
tion goes back to Thurston [123] (see also Papadopolous-Théret [110]). Let us
assume the hyperbolic surface �0 has no cusp, so that all infinite ends are
funnels—that is, ρ0 is convex cocompact (this assumption was present in [40]
but removed in [42]). Starting with the hyperbolic surface �0,

. Choose a collection of disjoint nonisotopic properly embedded geodesic
arcs α1, . . . ,αr ⊂�0.. For each 1≤ i≤ r choose an arc α′i disjoint from, but very close to, αi (in
particular isotopic to αi) so that αi and α′i bound a strip in �0—that is, a
region isometric to the region between two ultraparallel geodesics in the
hyperbolic planeH2. Let pi and p′i be the points on αi and α

′
i respectively

with minimal distance. The geodesic segment [pi, p′i] is called the waist
of the strip.
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Figure 4.6. A strip deformation along a single arc

Then, for each i, delete the strip bounded byαi andα′i (we assume the strips are
disjoint), and glue αi to α′i by the isometry that identifies pi to p′i. The result is
a hyperbolic surface �1= ρ1(�)\H2 equipped with a natural 1-Lipschitz map

�0
f−→�1 (which collapses the strips). The holonomy representation �

ρ1−−→G
(defined here up to conjugation) is a new representation of �, which we call
a strip deformation of ρ0. See Figure 4.6. One can show that, even though f is
only 1-Lipschitz, in fact if the arcs α1, . . . ,αr cut �0 into disks, then the Lip-
schitz constant may be improved to < 1 by deforming f ; in particular, (4.18)
holds.
Now consider a family ρt of strip deformations of ρ0, as follows. For each

1≤ i≤ r, let α′i move closer and closer to the fixed arc αi in such a way that the
endpoint pi ∈αi of the waist remains constant and the width

d(pi, p
′
i)=wit+O(t2)

tends to zero at some linear rate wi ∈R
+. The cohomology class [u] ∈

H1(�0, gAd) of the derivative of the path ρt is called an infinitesimal strip defor-
mation of ρ0. The points pi ∈αi are called the waists and the coefficients wi are
called thewidths of the infinitesimal strip deformation. Note that if the arcs cut
�0 into disks, then every closed curve must cross the arcs a number of times
roughly proportional to its length, which should make plausible the fact that
lengths of closed curves are decreasing at a uniform rate as in (4.15); hence
u∈ adm(ρ0) in this case.
Danciger-Guéritaud-Kassel [40] proved that every contracting infinitesimal

deformation u is realized by an infinitesimal strip deformation. The real-
ization becomes unique if further requirements are put on the strips. For
example, let us require that each αi crosses the boundary of the convex core
�⊂�0 at a right angle and that pi is the midpoint of �∩αi. Strip deforma-
tions of this type are naturally organized into an abstract simplicial complex
X , with:
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. a vertex for each geodesic arc α that exits the convex core � orthogonal
to ∂� at both ends; and. a k-dimensional simplex for each collection of k+ 1 pairwise disjoint
geodesic arcs α1, . . . ,αk+1.

This combinatorial objectX is the arc complex of�0. Note that it depends only
on the topology of �0.
Consider the map

X Strip−−−→H1(�0, gAd)

defined as follows. Write any element x ∈X as a formal weighted sum of arcs

x=w1α1+ · · ·+wk+1αk+1

with each wi> 0 and
∑

wi= 1. Then define Strip(x) to be the infinitesi-
mal strip deformation for the arcs α1, . . . ,αk+1, where for 1≤ i≤ k+ 1, the
waist of the infinitesimal strip at αi is the midpoint of αi ∩� and the width
is wi. Denote by X the subset of X obtained by removing all open faces
corresponding to collections of arcs that fail to cut the surface into disks.
Penner [111] showed that X is homeomorphic to a ball of dimension

1 smaller than the dimension of the Fricke-Teichmüller space of complete
hyperbolic structures on �0. The map Strip sends X into the contracting half
of the admissible cone in H1(�, gAdρ0). The projectivization of the restriction
of Strip, denoted

X Strip−−−→ adm(ρ0),

is then a map between balls of the same dimension. The main theorem of [40]
(extended in [42] to when �0 may have cusps), is the following:

THEOREM 7.7.
X Strip−−−→ adm(ρ0) is a homeomorphism.

The proof has two parts: first, Strip is a local homeomorphism, and second,
Strip is proper. Both are nontrivial, but let us comment only on the second.
Consider a sequence xn going to infinity in X . There are two ways this can
happen. First, it could be that, up to subsequence, xn converges in X to a
point x∞ ∈X \X , which is supported on arcs whose complement includes a
subsurface of nontrivial topology. The limit

[u∞]= [Strip(x∞)]
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of the projective classes [un]= Strip(xn) is a projective class of infinitesimal
deformations leaving unchanged the lengths of closed curves in this subsur-
face; hence [u∞]∈ ∂adm(ρ0). Consider second the case that xn diverges even
in X . Then the supporting arcs of xn become more and more complicated
and, after taking a subsequence, converge in the Hausdorff sense to (up to
twice as many) geodesic arcs β1, . . . ,βs, which are no longer properly embed-
ded but rather accumulate in one direction around a geodesic lamination 
in the convex core�. The limit [u∞] of the strip deformations [un]= Strip(xn)
should be thought of as a strip deformation for which the waists of the strips
are infinitely deep in the lamination ; in other words, [u∞] is obtained by
removing (infinitesimal) parabolic strips, each of whose thickness goes to zero
as the strip winds closer and closer to . The lengths of longer and longer
closed curves γ ∈� that travel very close to are affected (proportionally) less
and less by [u∞], showing that uniform contraction (4.15) fails for [u∞], so
that again [u∞]∈ ∂P

(
adm(ρ0)

)
. Thus Strip is proper.

Note that Minsky [74] used strip deformations with parabolic strips to show
that there exist affine deformations of a one-holed torus that are not proper but
for which the Margulis spectrum is positive. See the discussion in Section 5.5.

7.7 STRIP DEFORMATIONS AND CROOKED PLANES. One consequ-
ence of Theorem 7.7 is the resolution of the Crooked Plane Conjecture; see
Section 4.2.

COROLLARY 7.8. Consider a discrete embedding �
ρ0
↪−−→G of a free group

� of rank r≥ 1 and a deformation cocycle �
u−→ g. Suppose that the affine

action �G(ρ0, u) of � on E2,1 is properly discontinuous. Then there exists a
fundamental domain in E2,1 bounded by 2r pairwise disjoint crooked planes.

Before explaining the proof, we make a quick note about more general fun-
damental domains. Recall from Proposition 7.5 that any (ρ0, u)-equivariant
vector field Y that is k-lipschitz for some k< 0 determines a �-equivariant
fibration

E2,1
Z−−→H2.

If �⊂H2 is a fundamental domain, then Z−1�⊂ E2,1 is a fundamental
domain. The surfaces boundingZ−1� are ruled by affine lines but do not have
any other particularly nice structure and are far from canonical. Indeed much
freedom exists in choosing Y . However, Theorem 7.7 implies u is realized
uniquely as an infinitesimal strip deformation.
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Figure 4.7. The preimage of an arc α̃⊂H2 under the fibration determined by a
k-lipschitz vector field Y , as Y converges to an infinitesimal strip deformation
X along α̃, with d′Y (p, q)→ 0 for all p, q∈ α̃ as Y→ Y∞. The limit is a crooked
plane.

As described below, an infinitesimal strip deformation is a (ρ0, u)-
equivariant piecewise Killing vector field X on H2. The vector field X is dis-
continuous along a ρ0(�)-invariant collection Ã of pairwise disjoint geodesic
arcs—namely, the lifts of the arcs A ={α1, . . . ,αr} supporting the strip defor-
mation. Although X is only 0-lipschitz, it is sufficiently contractive to define a
singular version of the fibration from Proposition 7.5. The surfaces in E2,1 that
lift arcs α̃ ∈ Ã of the strip deformation are precisely crooked planes! Indeed,
crooked planes are seen in the limit of the fibrations for k-lipschitz vector fields
Y converging to X , with k→ 0−. See Figure 4.7. Here is the precise recipe for
finding crooked planes from strip deformation data.
First, we describe in more detail the (ρ0, u)-equivariant vector field X asso-

ciated to the strip deformation realizing X . The connected components of
the complement of α1 ∪ · · · ∪αr in �0 are each homeomorphic to a disk (if
the collection A of arcs is maximal, each component is a hyper-ideal tri-
angle). We denote the set of these components by T . The lift to H2 of T

is denoted T̃ ; its elements are the tiles of a ρ0(�)-invariant tiling of H2.
Then,

. The restriction of X to each of the tiles �∈ T̃ is a Killing field ξ� ∈ g.. If two tiles �,�′ ∈ T̃ are adjacent along an arc α̃ ∈ Ã , then the relative
motion of � with respect to �′—namely, the difference

ψ�,�′ := ξ�− ξ�′ ∈ g

—is an infinitesimal translation along an axis orthogonal to α̃ in the
direction of �′. If α̃ is a lift of αi, then the axis of ψ�,�′ intersects α̃
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at the lift of the waist pi ∈αi and the velocity of the translation is equal to
the width wi, as defined in Section 7.6. Note ψ�,�′ =−ψ�′,�.. Since X must be discontinuous along α̃, we define X along α̃ to agree
with the Killing field

vα̃ := (ξ�+ ξ�′)2
,

which is the average of the Killing fields associated to the adjacent tiles
� and�′. Think of vα̃ as the infinitesimal motion of the arc α̃ under the
deformation.

Each arc α̃ ∈ Ã together with its infinitesimal motion vα̃ determines a
crooked plane,

Cα̃ := C(vα̃ , α̃).
Here we identify E2,1 with the (affine space of the) Lie algebra g, as in
Section 4.2, and recall that for � a geodesic in H2 and v∈ g a Killing vector
field, the crooked plane C(v, �)⊂ g is the collection of Killing fields w∈ g such
that w− v has a nonattracting fixed point on the closure � of � in H2. Equip-
ping � with a transverse orientation, the closed crooked half-spaceH(v, �)⊂ g

is the collection of Killing fieldsw∈ g such thatw− v has a nonattracting fixed
point on the closure in H2 of the positive half-space h� bounded by �.

LEMMA 7.9. Let α̃, α̃′ ∈ Ã and endow each arc with a transverse orientation so
that the positive half-space of α̃ is contained in that of α̃′. Then

H(vα̃ , α̃)⊂ Int
(H(vα̃′ , α̃′)

)
.(4.24)

Proof. First, consider the case that α̃, α̃′ ∈ Ã are two distinct arcs on the bound-
ary of a common tile �′′. Let � (respectively �′) denote the tile on the other
side of α̃ (respectively α̃′) from�′′. Then the vertices of the crooked planes Cα̃
and Cα̃′ may be written:

vα̃ = ξ�′′ + (1/2)ψ�,�′′ , vα̃′ = ξ�′′ + (1/2)ψ�′,�′′ .

Hence the crooked half-space Hα̃ :=H(vα̃ , α̃) is obtained from H(ξ�′′ , α̃) by
translating in the direction (1/2)ψ�,�′′ ; similarlyHα̃′ :=H(vα̃′ , α̃′) is obtained
from H(ξ�′′ , α̃′) by translating in the direction (1/2)ψ�′,�′′ .
In fact, the two crooked half-spaces, H(ξ�′′ , α̃) and H(ξ�′′ , α̃′), are nested

and their bounding crooked planes meet only at the vertex:

H(ξ�′′ , α̃)⊂ Int
(H(ξ�′′ , α̃′)

)∪ {ξ�′′ }.(4.25)
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The key observation is Lemma 4.6. If w∈ g is an infinitesimal translation
along an axis orthogonal to α̃ and pushes toward the negative side of α̃, then
affine translation by w pushes the crooked half-space H(0, α̃) inside of itself.
In particular,

Hα̃ = vα̃ +H(0, α̃)= ξ�′′ + (1/2)ψ�,�′′ +H(0, α̃)(4.26)

⊂ ξ�′′ +H(0, α̃)=H(ξ�′′ , α̃).

Similarly, H(ξ�′′ , α̃′)+ (1/2)ψ�′′,�′ ⊂H(ξ�′′ , α̃′), and hence:

H(ξ�′′ , α̃′)⊂H(ξ�′′ , α̃′)− (1/2)ψ�′′,�′(4.27)

=H(ξ�′′ , α̃′)+ (1/2)ψ�′,�′′ = H(vα̃′ , α̃′).

So (4.24) follows from (4.25), (4.26), and (4.27) upon observing that the vertex
ξ�′′ is not contained in Hα̃ .
Now a simple inductive argument shows that (4.24) indeed holds for any

pair of arcs α̃, α̃′ oriented so that the positive halfspace of α̃ is contained in
that of α̃′.

Observe that by Lemma 7.9, the crooked planes in the collection

{Cα̃ := C(vα̃ , α̃) : α̃ ∈ Ã
}

(4.28)

are pairwise disjoint. Further, the half-spaces bounded by these crooked planes
obey the same inclusion relations that hold for half-planes in H2 bounded by
the corresponding arcs. To find a fundamental domain in E2,1∼= g bounded by
disjoint crooked planes, one simply chooses the crooked planes associated to
a subset of arcs of Ã that bound a fundamental domain for the action on H2.
This proves Corollary 7.8.
In the same spirit of Section 7.3, there is a parallel theory of strip defor-

mations and crooked planes in the setting of three-dimensional anti–de Sitter
geometry; see [38] and [69].

7.8 TWO-GENERATOR GROUPS. We now focus on the special case that
the free group� has rank 2, corresponding to Euler characteristicχ(�0)=−1.
There are four possible topological types for �0. In each case, the arc com-
plex X is two-dimensional, but the combinatorics is quite different across
the cases (see Figure 4.8). This results in a substantially different picture of
the (projectivized) cone of proper deformations adm(ρ0), depending on the
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Figure 4.8. Four surfaces of small complexity (top) and their arc complexes,
mapped under Strip to the closure of adm(ρ0) in an affine chart of
P(H1(�, gAdρ0)) (bottom). Some arcs are labeled by arabic numerals.
(Source: [40].)

topology of �0 (see again Figure 4.8). We describe the qualitative behavior
in each of the four cases below in the language of Theorem 7.7. How-
ever, we remark that the understanding of adm(ρ0) in the rank 2 case, in
particular each description below, predates Theorem 7.7. Charette–Drumm–
Goldman [27, 28, 29] described a tiling of adm(ρ0) according to which isotopy
classes of crooked planes embed disjointly in the associated Margulis space-
time. From this, they deduced the Crooked Plane Conjecture, Corollary 7.8,
in the rank 2 case. The relationship between adm(ρ0) and the arc complex X
of �0 is already apparent in this work, which was an important precursor to
Theorem 7.7 and Corollary 7.8.

Figure 4.8(a): Three-holed sphere. The arc complex X has 6 vertices, 9 edges,
4 faces. Its image Strip(X ) is a triangle whose sides stand in natural bijection
with the three boundary components of the convex core of �0: an infinites-
imal deformation u of ρ0 lies in a side of the triangle if and only if it fixes
the length of the corresponding boundary component, to first order. The
set adm(ρ)= Strip(X ) is the interior of the triangle. See also the left part of
Figure 4.4.

Figure 4.8(b): Two-holed projective plane. The arc complex X has 8 vertices,
13 edges, 6 faces. Its image Strip(X ) is a quadrilateral. The horizontal sides
of the quadrilateral correspond to infinitesimal deformations u that fix the
length of a boundary component. The vertical sides correspond to infinites-
imal deformations that fix the length of one of the two simple closed curves
running through the half-twist. The set adm(ρ0)= Strip(X ) is the interior of
the quadrilateral. See also the right part of Figure 4.4.
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Figure 4.8(c): One-holed Klein bottle. The arc complex X is infinite, with
one vertex of infinite degree and all other vertices of degree either 2 or 5.
The closure of Strip(X ) is an infinite-sided polygon with sides indexed in
Z∪ {∞}. The exceptional side has only one point in Strip(X), and corresponds
to infinitesimal deformations that fix the length of the only nonperipheral,
two-sided simple closed curve γ , which goes through the two half-twists. The
group Z naturally acts on the arc complex X via Dehn twists along γ . All
nonexceptional sides are contained in Strip(X ) and correspond to infinites-
imal deformations that fix the length of some curve, all these curves being
related by some power of the Dehn twist along γ . The set adm(ρ0)= Strip(X )
is the interior of the polygon. See also the left part of Figure 4.5.

Figure 4.8(d): One-holed torus. The arc complex X is infinite, with all vertices
of infinite degree; it is known as the Farey triangulation. The arcs are parame-
terized by P

1(Q). The closure of Strip(X ) contains infinitely many segments
in its boundary. These segments, also indexed by P

1(Q), are in natural corre-
spondence with the simple closed curves. However, the boundary is not the
union of these segments; there are additional points corresponding to defor-
mations for which the length of every curve decreases but the length of some
lamination remains constant.
The structure of the boundary of adm(ρ0) in this case was described in

Guéritaud [80] and Goldman-Labourie-Minsky-Margulis [74]. See also the
right part of Figure 4.5. For more details on the affine deformations of nonori-
entable surfaces, compare also Goldman-Laun [75] and Laun’s thesis [99].

7.9 BEYOND FREE GROUPS: RIGHT-ANGLED COXETER GROUPS.
The existence of proper affine actions by nonabelian free groups suggests the
possibility that other finitely generated groups that are not virtually solvable
might also admit proper affine actions. However, in the more than 30 years
since Margulis’s discovery, very few examples have appeared. In particular,
until recently, all known examples of word hyperbolic groups acting properly
by affine transformations on R

n were virtually free groups. To conclude this
section, we summarize further work of Danciger-Guértaud-Kassel [41] that
generalizes the ideas of Section 7.4 to give many new examples, both word
hyperbolic and not.

THEOREM 7.10 ([41, Theorem 1.1]).
Any right-angled Coxeter group on k generators admits proper affine actions on
R
k(k−1)/2.
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A right-angled Coxeter group � is a finitely presented group of the form

�=〈s1, . . . , sg | (sisj)mij = 1,∀ 1≤ i, j≤ g〉,

wheremii= 1, that is, each generator si is an involution, andmij=mji ∈ {2,∞}
for i = j, meaning two distinct generators either commute (mij= 2) or have no
relation (mij=∞). Some examples come from reflection groups in hyperbolic
space. Indeed, the group generated by reflections in the faces of a right-angled
polyhedron in Hn is a right-angled Coxeter group. Though simple to define,
right-angled Coxeter groups have a rich structure and contain many interest-
ing subgroups. As a corollary to Theorem 7.10, the following groups admit
proper affine actions:

. the fundamental group of any closed orientable surface of negative Euler
characteristic;. any right-angled Artin group, see [44];. any virtually special group, see [83];. any Coxeter group (not just right-angled), see [84];. any cubulated word hyperbolic group, using Agol’s virtual specialness
theorem [7];. therefore, all fundamental groups of closed hyperbolic 3-manifolds,
using [114, 86]: see [16];. the fundamental groups of many other 3-manifolds, see [128, 101, 112].

Januszkiewicz–Świa̧tkowski [85] found word hyperbolic right-angled Cox-
eter groups of arbitrarily large virtual cohomological dimension. See also [108]
for another construction. Hence, another consequence of Theorem 7.10 is the
following:

COROLLARY 7.11. There exist proper affine actions by word hyperbolic groups
of arbitrarily large virtual cohomological dimension.

The Auslander Conjecture is equivalent to the statement that a group acting
properly by affine transformations on R

n is either virtually solvable or has
virtual cohomological dimension < n. In the examples from Theorem 7.10,
the dimension n= k(k− 1)/2 of the affine space grows quadratically in the
number of generators k, while the virtual cohomological dimension of the
Coxeter group acting is naively bounded above by k. Hence, Corollary 7.11 is
far from giving counterexamples to the Auslander Conjecture.
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The affine actions from Theorem 7.10 come from infinitesimal deforma-
tions of representations into a Lie groupG as in Section 7.1, forG an indefinite
orthogonal group. Indeed, a right-angled Coxeter group � on k generators
(say, infinite and irreducible) admits explicit families of discrete reflection group
embeddings

�
ρ−→O(p, q+ 1)=:G

for k= p+ q+ 1, which have long been studied by Tits, Vinberg, and others.
The strategy from Section 7.4 of ensuring properness of the affine action from
contraction of the deformation works well when q= 0. In that case, each rep-
resentation ρ acts by reflections in the walls of a right-angled polytope �ρ
in hyperbolic space Hp. For two such representations ρ, ρ′, natural (ρ, ρ′)-
equivariant maps f are described explicitly by mapping�ρ to�ρ′ projectively,
walls-to-walls, and extending equivariantly by reflections. Deformations ρ′ for
which the maps f are Lipschitz contracting are found, roughly, by pushing
the walls of �ρ closer together. The derivative of an appropriate path of such
contracting Lipschitz deformations, for ρ′ smoothly converging to ρ, gives a
(ρ0, u)-equivariant contracting lipschitz vector field and hence a proper affine
action �G(ρ0, u) by the argument given in Proposition 7.5.
It should be noted that, still in the case q= 0, the dimension of the repre-

sentations, and hence of the corresponding affine actions, may sometimes be
reduced: if for some n≥ 2, � admits an action on Hn generated by reflections
in some polytope�, then a contracting deformation as above may be found in
Hn+c−1 if the faces of�may be colored with c colors so that neighboring faces
have different color (see [41, Proposition 6.1]). For example, if � is the group
generated by reflections in a right-angled 2m-gon in the hyperbolic plane (for
m≥ 3), then we may take c= 2. There exists a path of deformations of this
reflection group into the isometry group of H3=H2+2−1 for which tangent
vectors to the path give proper affine actions in dimension 6= dim(so(3, 1)).
Note that in this example, � contains surface subgroups of finite index.
The general case of Theorem 7.10 requires indefinite orthogonal groups of

higherR-rank—that is, q> 0; indeed, not all right-angled Coxeter groups may
be realized as reflection groups in some hyperbolic space. Here, one could
attempt the contraction strategy of Section 7.4 in the higher rank Rieman-
nian symmetric space X of G. However, the most natural space in which
to see the geometry of the Tits–Vinberg representations ρ :�→G is in a
pseudo-Riemannian symmetric space—namely, the pseudo-Riemannian ana-
logue Hp,q⊂RPk−1 of Hp in signature (p, q). Indeed, as above, the ρ-action
of � is by reflections in the walls of a natural fundamental domain, a certain
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polytope�ρ ⊂Hp,q, and natural (ρ, ρ′)-equivariant maps f are defined by tak-
ing�ρ projectively to�ρ′ , walls-to-walls. Further, since the “distances” inHp,q

are computed by a simple cross-ratio formula, similar to Hp (in the projective
model), the “contraction” properties of the maps f are easy to check locally in
the fundamental domain�ρ . Theorem 7.10 is proved by employing a version
of the contraction strategy from the Hp setting, adjusted and reinterpreted
appropriately to work in the pseudo-Riemannian spaceHp,q. Despite the obvi-
ous hurdle that Hp,q is not a metric space, enough structure survives for this
approach to work. One key observation is that ρ(�)-orbits in Hp,q escape only
in spacelike (that is, positive) directions, in which their growth resembles that
of actions on Hp.

8 Higher dimensions

8.1 NON-MILNOR REPRESENTATIONS. Margulis’s original work can
be reinterpreted as the discovery of the first known non-Milnor representation
(see Definition 3.2)—namely, the standard representation of SO(2, 1) on R

3.
We now discuss the question of identifying Milnor and non-Milnor represen-
tations in higher dimensions. Recall Proposition 3.4: if ρ does not have the
property that every element acts with 1 as an eigenvalue, it is automatically
Milnor. Observe, as in Section 7, that the standard representation of SO(2, 1)
is isomorphic to the adjoint representation of SO(2, 1) and, more generally,
that the adjoint representation of any semisimple Lie groupG has the property
that every element of infinite order acts with 1 as an eigenvalue.

THEOREM 8.1 (Smilga [119]).
For every semisimple real linear Lie group G, the adjoint representation is non-
Milnor whenever G is not compact.

Note that the proper affine actions by right-angled Coxeter groups of
Section 7.9 have linear part in adjoint representations of special orthogonal
groups.
In a different direction, the work of Abels-Margulis-Soifer [2, 3] definitively

settles the case of the standard representation of the special orthogonal groups
SO(p, q) on R

p,q:

THEOREM 8.2 (Abels-Margulis-Soifer [2, 3]).
Let p≥ q. Then the standard representation of SO(p, q) on R

p+q is
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(1) Milnor if. p− q = 1 or. p− q= 1 and p is odd; or
(2) non-Milnor if p− q= 1 and p is even.

Observe that when p− q is even, it is not the case that every element of SO(p, q)
has 1 as an eigenvalue and Proposition 3.4 implies that SO(p, q) is Milnor. The
general case, however, involves the detailed analysis from Margulis’s original
argument. The case when q= p− 1 is the most interesting. Then a Margulis
invariant αmay be defined for elements with regular linear holonomy and the
Opposite Sign Lemma holds. If p is odd, then α(γ )=−α(γ−1), and hence no
proper affine actions of F2 exist. However, if p is even, then α(γ )=α(γ−1)
as in Lemma 5.1(4), so there is no obvious sign obstruction to proper affine
actions. Indeed, Margulis’s construction may be generalized in this case.
Smilga [118] constructs fundamental domains for the proper actions of F2

with linear part in SO(p, p− 1) with p= 2k+ 2 even. They are bounded by
hypersurfaces inspired by the crooked planes of Section 4.2, but these hyper-
surfaces are curved rather than piecewise flat. Burelle-Treib [22], on the other
hand, have found a generalization of crooked planes to SO(2k+ 2, 2k+ 1) con-
structed by flat hypersurfaces, which give rise to fundamental domains for the
action of the group on the sphere (quotient of R

4k+3\{0} by positive scalars)
minus the limit set. TheBurelle-Treib constructionmay very likely be extended
to fundamental polyhedra in the affine space. In the same setting, Ghosh-
Treib [66] proved an analogue of the Goldman-Labourie-Margulis properness
criterion 6.1. Following Ghosh’s earlier work [62] on the dynamical structure
of Margulis spacetimes, they interpret proper affine actions as an extension of
Labourie’s Anosov representations [96] to the non-reductive context.
Smilga gave a sufficient condition for an irreducible representation of a

semisimple group to be non-Milnor, which is conjectured [121] to be necessary
as well.
Let G be a semisimple real Lie group with Lie algebra g. Choose in g a

Cartan subspace a and a system �+ of positive restricted roots. Recall that a

is a maximal abelian subalgebra of g consisting of hyperbolic elements, and
a restricted root is an element α ∈ a∗ such that the restricted root space

gα :={Y ∈ g | ∀X ∈ a, [X ,Y]=α(X)Y}

is nonzero. Restricted roots form a root system �; a system of positive roots
�+ is a subset of � contained in a half-space, such that

�=�+ �−�+.
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Let A := exp(a), and let L be the centralizer of a in G. The longest element
of the restricted Weyl group W :=NG(A)/ZG(A) is the unique element w0 such
that w0(�+)=�−. We choose some representative w̃0 ∈G of this element.
(Compare [91].)

THEOREM 8.3 (Smilga [121]).
Suppose that G

ρ−→GL(V) is an irreducible representation such that

(i) ∀l∈ L, ρ(l) · v= v and
(ii) ρ(w̃0) · v = v

for some v∈V. Then ρ is non-Milnor.

Le Floch and Smilga [100] have classified such ρ when G is split.
Since L⊃A, the first condition implies that the restricted weight space

associated to 0
VA={v∈V | ∀a∈A, ρ(a) · v= v}

is nonzero. Equivalently, every element of ρ(G) has 1 as an eigenvalue,
consistent with Proposition 3.4.
The proofs of Theorems 8.2(1), 8.1 and 8.3 all follow the same basic tem-

plate as Margulis’s original proof (see Section 5.3), although the more general
proofs are more complicated.
The main idea is to decompose the representation space V as a direct sum

of three subspaces
V=V>⊕V= ⊕V<

and then construct a “generalized Schottky group”�� in ρ(G) so that every ele-
ment γ ∈��, conjugated by a suitable map, preserves all three spaces and has
very large eigenvalues on V>, very small eigenvalues on V<, and eigenvalues
“close to 1” on V=. Moreover, there is then a further decomposition

V= =Vt⊕Vr

such that every element of �� has a conjugate that stabilizes Vr and fixes Vt. A
crucial point is that Vt = 0 (this comes from Condition (i), as it turns out to be
precisely the subspace of fixed points of L).
Now let A be the affine space corresponding to the vector space V. Then

every affine map g with linear part in ��, when conjugated by a suitable map,
preserves the decomposition of A into three subspaces

A=V>⊕A= ⊕V<
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(where A= is an affine subspace of A parallel to V=). Its restriction to A= is
then a sort of generalized “screw-displacement”: it preserves the directions
parallel to Vt and Vr and acts by pure translation along At. We call such affine
transformations quasi-translations, and we call the translation vector along Vt

of the (suitable conjugate of) g theMargulis invariant M(g).
In particular cases, these constructions can be simplified. For G= SO(2, 1)

acting onR
2,1, the space Vt has dimension 1, so that the vectorMargulis invari-

antM(g) reduces to the classical (scalar) Margulis invariant α(g); the space Vr

is trivial, so that quasi-translations reduce to just translations.
Now in the general case, the analog of Formula (4.8) is

(4.29) M(g−1)= ρ(w̃0) ·M(g).
Proving this turns out to be straightforward. Most of the effort goes into prov-
ing an analog of (4.9): for elements g and h inG that are “regular,” “sufficiently
transverse,” and “sufficiently contracting,”

(4.30) M(gh)≈M(g)+M(h).
We then conclude in the same way as Margulis: we combine (4.30) with (4.29)
to prove that, for a suitable choice of the translation parts of the generators,
Margulis invariants of large elements of the group grow unboundedly. More
precisely, we prescribe these translation parts in such a way that the Margulis
invariants of the generators become equal to (some sufficiently large multiple
of) the vector v supplied by the hypotheses of Theorem 8.3. Here Condition (ii)
is crucial, as it allows the Margulis invariants of both the generators and their
inverses to go in the same direction.
We conjecture the converse of Theorem 8.3, which generalizes part (1) of

Theorem 8.2. We have the following partial result.
Say that an irreducible representation G

ρ−→GL(V) is nonswinging if and
only if ρ has no nonzero w0-invariant weight. In particular if G has no simple
factor of type An≥2, D2n+1, or E6, then w0=−I and every representation is
nonswinging.

THEOREM 8.4 ([120]).
Let G be a semisimple Lie group. Furthermore, suppose

. the group G is split;. ρ is a nonswinging irreducible representation; and. ρ does not satisfy the hypotheses of Theorem 8.3.

Then ρ is Milnor.
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8.2 AUSLANDER’S CONJECTURE IN DIMENSION AT MOST 6.

THEOREM 8.5 (Abels-Margulis-Soifer [4]).
Let n≤ 6. Suppose �<Aff (An) is a discrete subgroup acting properly and cocom-
pactly on An. Then � is virtually solvable.

In the case that n≤ 5, this result follows from Fried-Goldman [61] for n≤ 3
and independently Tomanov [127] and Abels-Margulis-Soifer [4] for n= 4, 5.
(As Abels-Margulis-Soifer point out in [4], an earlier version of Tomanov’s
work contained a gap, which was subsequently filled in [127].) Furthermore
Tomanov [127] proposed a suggestive generalization of Auslander’s conjecture
to arbitrary algebraic groups ofmixed type, and proved this stronger statement
for n≤ 5:

CONJECTURE 8.6. Let G be a real algebraic group, and suppose that H<G
contains a maximal reductive subgroup of G. Suppose that �<G acts crystallo-
graphically on G/H (that is, � is a discrete subgroup, acts properly on G/H, and
the quotient �\G/H is compact). Then � is virtually polycyclic.

For another perspective and possible attack on Auslander’s conjecture,
compare Labourie [98].
Here are some components of the proof of Auslander’s conjecture in low

dimensions. For convenience, consider the equivalent formulation: Assume
�<Aff (An) is a discrete subgroup acting properly on An and � is not virtually
solvable. Then �\An is not compact.
As in Proposition 3.1, consider the semisimple part S of the identity com-

ponent G= (L(�)Zar)0 of the Zariski closure. Write S=S1 · · ·Sk as an almost
direct product of simple Lie groups. The first key ingredient is the following
theorem.

THEOREM 8.7 (Soifer [122], Tomanov [126, 127]).
If each factor Si has real rank ≤ 1, then � is not cocompact.

Hence assume that at least one simple factor S1 has real rank ≥ 2. By
a dynamical argument, for certain S satisfying the hypotheses, � does not
act properly. In other cases, a cohomological dimension argument (as in
Section 3.4.1) rules out cocompactness. What remains is a handful of inter-
esting cases requiring some more sophisticated arguments.
Most interesting is the standard (six-dimensional) representation of G=

SO(2, 1)× SL(3,R) on R
2,1⊕R

3. Since G is not Milnor, proper affine
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deformations of non–virtually solvable discrete subgroups of G exist. Since
cd(�)≤ dim(G/K)= 7, where � is a torsion-free discrete subgroup of G and
K is the maximal compact subgroup of G, cohomological dimension does
not obstruct the existence of an affine crystallographic action on A6. In this
case, Abels-Margulis-Soifer define a Margulis invariant α(g) for elements
g ∈� whose linear part L(g) is regular enough. It is essentially the Margulis
invariant of the SO(2, 1)� R

2,1 part of g. Then they prove the Opposite Sign
Lemma in this setting. Note that the dynamics in this setting is more com-
plicated than in the setting of Margulis spacetimes. One sign that things are
more complicated is that the attracting subspace for a regular element L(g)
and for its inverse L(g)−1 have different dimension. To conclude the proof in
this case, they show that cocompactness implies that some subset of an orbit
escapes in a timelike direction of the R

2,1 factor and derive a contradiction to
the Opposite Sign Lemma.

References

[1] Herbert Abels, Properly discontinuous groups of affine transformations: a survey, Geom.
Dedicata 87 (2001), no. 1–3, 309–333. MR 1866854

[2] Herbert Abels, Gregory A. Margulis, and Gregory A. Soifer, On the Zariski closure of
the linear part of a properly discontinuous group of affine transformations, J. Differential
Geom. 60 (2002), no. 2, 315–344. MR 1938115

[3] , The linear part of an affine group acting properly discontinuously and leaving a
quadratic form invariant, Geom. Dedicata 153 (2011), 1–46. MR 2819661

[4] , The Auslander conjecture for dimension less than 7, arXiv:1211.2525
[5] William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathe-

matics, vol. 820, Springer, Berlin, 1980. MR 590044
[6] Ian Agol, Tameness of hyperbolic 3-manifolds, arXiv:math.GT/0405568, 2004.
[7] , The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087, with an

appendix by Ian Agol, Daniel Groves, and Jason Manning. MR 3104553
[8] L. Auslander, The structure of complete locally affine manifolds, Topology 3 (1964),

no. suppl. 1, 131–139. MR 0161255
[9] L. Auslander and L. Markus, Flat Lorentz 3-manifolds, Mem. Amer. Math. Soc. No. 30

(1959), 60. MR 0131842 (24 #A1689)
[10] Thierry Barbot, Virginie Charette, Todd Drumm, William M. Goldman, and Karin

Melnick, A primer on the (2+ 1) Einstein universe, Recent developments in pseudo-
Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 179–
229. MR 2436232

[11] Oliver Baues, Varieties of discontinuous groups, Crystallographic groups and their gen-
eralizations (Kortrijk, 1999), Contemp. Math., vol. 262, Amer. Math. Soc., Providence,
RI, 2000, pp. 147–158. MR 1796130 (2001i:58013)

[12] Oliver Baues and William M. Goldman, Is the deformation space of complete affine struc-
tures on the 2-torus smooth?, Geometry and dynamics, Contemp. Math., vol. 389, Amer.
Math. Soc., Providence, RI, 2005, pp. 69–89. MR 2181958 (2006j:57066)

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



proper actions of discrete groups of affine transformations / 163

[13] Yves Benoist, Une nilvariété non affine, J. Differential Geom. 41 (1995), no. 1, 21–52.
MR 1316552

[14] , Actions propres sur les espaces homogènes réductifs, Ann. of Math. (2) 144 (1996),
no. 2, 315–347. MR 1418901

[15] Yves Benoist and Karel Dekimpe, The uniqueness of polynomial crystallographic actions,
Math. Ann. 322 (2002), no. 3, 563–571. MR 1895707

[16] Nicolas Bergeron andDaniel T.Wise,A boundary criterion for cubulation, Amer. J.Math.
134 (2012), no. 3, 843–859. MR 2931226

[17] Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math.
92 (1988), no. 1, 139–162. MR 931208

[18] Martin Bridgeman, Richard Canary, François Labourie, and Andres Sambarino, The
pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015), no. 4, 1089–
1179. MR 3385630

[19] Martin Bridgeman, Richard Canary, and Andrés Sambarino, An introduction to pressure
metrics for higher Teichmüller spaces, Ergodic Theory Dynam. Systems 38 (2018), no. 6,
2001–2035. MR 3833339

[20] Jean-Philippe Burelle, Virginie Charette, Todd A. Drumm, and William M. Goldman,
Crooked halfspaces, Enseign. Math. 60 (2014), no. 1–2, 43–78. MR 3262435

[21] Jean-Philippe Burelle and Dominik Francoeur, Foliations between crooked planes in 3-
dimensional Minkowski space, Internat. J. Math. 30 (2019), no. 1, 1950004, 7. MR
3916271

[22] Jean-Philippe Burelle and Nicolaus Treib, Schottky presentations of positive representa-
tions, arXiv:1807.05286, 2018.

[23] Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-
manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385–446. MR 2188131

[24] Virginie Charette, Non-proper affine actions of the holonomy group of a punctured torus,
Forum Math. 18 (2006), no. 1, 121–135. MR 2206247

[25] Virginie Charette and Todd A. Drumm, Strong marked isospectrality of affine Lorentzian
groups, J. Differential Geom. 66 (2004), no. 3, 437–452. MR 2106472

[26] , Complete Lorentzian 3-manifolds, Geometry, groups and dynamics, Contemp.
Math., vol. 639, Amer. Math. Soc., Providence, RI, 2015, pp. 43–72. MR 3379819

[27] Virginie Charette, Todd A. Drumm, and William M. Goldman, Affine deformations of a
three-holed sphere, Geom. Topol. 14 (2010), no. 3, 1355–1382. MR 2653729

[28] , Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol. 7 (2014),
no. 1, 225–246. MR 3180618

[29] , Proper affine deformations of the one-holed torus, Transform. Groups 21 (2016),
no. 4, 953–1002. MR 3569564

[30] Virginie Charette and William M. Goldman, Affine Schottky groups and crooked tilings,
Crystallographic groups and their generalizations (Kortrijk, 1999), Contemp. Math.,
vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 69–97. MR 1796126

[31] , McShane-type identities for affine deformations, Ann. Inst. Fourier (Grenoble)
67 (2017), no. 5, 2029–2041. MR 3732683

[32] Virginie Charette and Youngju Kim, Foliations of Minkowski 2+ 1 spacetime by crooked
planes, Internat. J. Math. 25 (2014), no. 9, 1450088, 25. MR 3266531

[33] Suhyoung Choi, The convex and concave decomposition of manifolds with real projective
structures, Mém. Soc. Math. Fr. (N.S.) (1999), no. 78, vi+102. MR 1779499 (2001j:57030)

[34] Suhyoung Choi, Todd A. Drumm, and William M. Goldman, Tameness of Margulis
spacetimes with parabolics, Forum Math. (to appear).

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



164 /danciger, drumm, goldman, and smilga

[35] Suhyoung Choi and William Goldman, Topological tameness of Margulis spacetimes,
Amer. J. Math. 139 (2017), no. 2, 297–345. MR 3636632

[36] Daryl Cooper and Kelly Delp, The marked length spectrum of a projective manifold or
orbifold, Proc. Amer. Math. Soc. 138 (2010), no. 9, 3361–3376. MR 2653965

[37] Christopher B. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math.
Helv. 65 (1990), no. 1, 150–169. MR 1036134

[38] Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Fundamental domains for free
groups acting on anti–de Sitter 3-space, Math. Res. Lett. 23 (2016), no. 3, 735–770. MR
3533195

[39] ,Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann.
Sci. Éc. Norm. Supér. (4) 49 (2016), no. 1, 1–56. MR 3465975

[40] , Margulis spacetimes via the arc complex, Invent. Math. 204 (2016), no. 1, 133–
193. MR 3480555

[41] , Proper affine actions for right-angled Coxeter groups, Duke Math. J. 169 (2020),
no. 12, 2231–2280.

[42] ,Margulis spacetimes with parabolic elements, in preparation.
[43] Jeffrey Danciger and Tengren Zhang, Affine actions with Hitchin linear part, Geom.

Funct. Anal. 29 (2019), no. 5, 1369–1439. MR 4025516
[44] Michael W. Davis and Tadeusz Januszkiewicz, Right-angled Artin groups are commensu-

rable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000), no. 3, 229–235.
MR 1783167

[45] Karel Dekimpe, Polynomial structures and the uniqueness of affinely flat infra-nilmanifolds,
Math. Z. 224 (1997), no. 3, 457–481. MR 1439202

[46] , Polycyclic-by-finite groups: from affine to polynomial structures, Groups St.
Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge
Univ. Press, Cambridge, 1999, pp. 219–236. MR 1676619

[47] , Solvable Lie algebras, Lie groups and polynomial structures, Compositio Math.
121 (2000), no. 2, 183–204. MR 1757881

[48] , Affine and polynomial structures on virtually 2-step solvable groups, Comm.
Algebra 29 (2001), no. 11, 4965–4988. MR 1856924

[49] , Polynomial crystallographic actions on the plane, Geom. Dedicata 93 (2002),
47–56. MR 1934685

[50] Karel Dekimpe and Paul Igodt, Polynomial structures on polycyclic groups, Trans. Amer.
Math. Soc. 349 (1997), no. 9, 3597–3610. MR 1422895

[51] , Polynomial alternatives for the group of affinemotions, Math. Z. 234 (2000), no. 3,
457–485. MR 1774093

[52] Todd A. Drumm, Fundamental polyhedra for Margulis space-times, ProQuest LLC, Ann
Arbor, MI, 1990, Thesis (Ph.D.)–University of Maryland, College Park. MR 2638637

[53] , Fundamental polyhedra forMargulis space-times, Topology 31 (1992), no. 4, 677–
683. MR 1191372

[54] , Linear holonomy of Margulis space-times, J. Differential Geom. 38 (1993), no. 3,
679–690. MR 1243791

[55] , Lorentzian geometry, Geometry, topology and dynamics of character vari-
eties, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 23, World Sci. Publ.,
Hackensack, NJ, 2012, pp. 247–280. MR 2987620

[56] Todd A. Drumm and William M. Goldman, Complete flat Lorentz 3-manifolds with free
fundamental group, Internat. J. Math. 1 (1990), no. 2, 149–161. MR 1060633

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



proper actions of discrete groups of affine transformations / 165

[57] , Crooked planes, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), no. 1,
10–17. MR 1336695

[58] , The geometry of crooked planes, Topology 38 (1999), no. 2, 323–351. MR1660333
[59] , Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom. 58 (2001), no. 3,

457–465. MR 1906782
[60] Charles Frances, The conformal boundary of Margulis space-times, C. R. Math. Acad. Sci.

Paris 336 (2003), no. 9, 751–756. MR 1989275
[61] David Fried and William M. Goldman, Three-dimensional affine crystallographic groups,

Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763
[62] Sourav Ghosh, Anosov structures onMargulis spacetimes, Groups Geom. Dyn. 11 (2017),

no. 2, 739–775. MR 3668058
[63] , Avatars of Margulis invariants and proper actions, arXiv:1812.03777, 2018.
[64] , The pressure metric on the Margulis multiverse, Geom. Dedicata 193 (2018),

1–30. MR 3770278
[65] , Margulis multiverse: Infinitesimal rigidity, pressure form and convexity,

arXiv:1907.12348, 2019.
[66] Sourav Ghosh and Nicolaus Treib, Affine Anosov representations and proper actions,

arXiv:1711.09712, 2017.
[67] William M. Goldman, Projective structures with Fuchsian holonomy, J. Differential

Geom. 25 (1987), no. 3, 297–326. MR 882826
[68] , Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, Handbook

of Teichmüller theory, vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc.,
Zürich, 2009, pp. 611–684. MR 2497777

[69] , Crooked surfaces and anti-de Sitter geometry, Geom. Dedicata 175 (2015), 159–
187. MR 3323635

[70] , Flat affine, projective and conformal structures on manifolds: a historical perspec-
tive, Geometry in History (S. Dani and A. Papadopoulos, eds.), Springer, Inc., Cham,
2019.

[71] William M. Goldman and Yoshinobu Kamishima, The fundamental group of a compact
flat Lorentz space form is virtually polycyclic, J. Differential Geom. 19 (1984), no. 1, 233–
240. MR 739789 (85i:53064)

[72] William M. Goldman and François Labourie, Geodesics in Margulis spacetimes, Ergodic
Theory Dynam. Systems 32 (2012), no. 2, 643–651. MR 2901364

[73] William M. Goldman, François Labourie, and Gregory Margulis, Proper affine actions
and geodesic flows of hyperbolic surfaces, Ann. of Math. (2) 170 (2009), no. 3, 1051–1083.
MR 2600870

[74] WilliamM. Goldman, François Labourie, Gregory Margulis, and Yair Minsky, Geodesic
laminations and proper affine actions, in preparation.

[75] William M. Goldman and Gregory Laun, Affine Coxeter extensions of the two-holed
projective plane, arXiv:1511.05228, 2015.

[76] WilliamM. Goldman and Gregory A. Margulis, Flat Lorentz 3-manifolds and cocompact
Fuchsian groups, Crystallographic groups and their generalizations (Kortrijk, 1999),
Contemp. Math., vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 135–145. MR
1796129

[77] Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, Amer-
ican Mathematical Society Colloquium Publications, vol. 36, Amer. Math, Society.
Providence, RI, 1955. MR 0074810

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



166 /danciger, drumm, goldman, and smilga

[78] Fritz Grunewald and Gregori Margulis, Transitive and quasitransitive actions of affine
groups preserving a generalized Lorentz-structure, J. Geom. Phys. 5 (1988), no. 4, 493–531
(1989). MR 1075720

[79] Fritz Grunewald and Dan Segal, On affine crystallographic groups, J. Differential Geom.
40 (1994), no. 3, 563–594. MR 1305981

[80] François Guéritaud, Lengthening deformations of singular hyperbolic tori, Ann. Fac. Sci.
Toulouse Math. (6) 24 (2015), no. 5, 1239–1260. MR 3485334

[81] , On Lorentz spacetimes of constant curvature, Geometry, groups and dynamics,
Contemp. Math., vol. 639, Amer. Math. Soc., Providence, RI, 2015, pp. 253–269. MR
3379833

[82] François Guéritaud and Fanny Kassel,Maximally stretched laminations on geometrically
finite hyperbolic manifolds, Geom. Topol. 21 (2017), no. 2, 693–840. MR 3626591

[83] Frédéric Haglund and Daniel T. Wise, Special cube complexes, Geom. Funct. Anal. 17
(2008), no. 5, 1551–1620. MR 2377497

[84] , Coxeter groups are virtually special, Adv. Math. 224 (2010), no. 5, 1890–1903.
MR 2646113

[85] Tadeusz Januszkiewicz and Jacek Świa̧tkowski, Hyperbolic Coxeter groups of large
dimension, Comment. Math. Helv. 78 (2003), no. 3, 555–583. MR 1998394

[86] Jeremy Kahn and Vladimir Markovic, Immersing almost geodesic surfaces in a closed
hyperbolic three manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190. MR 2912704

[87] Fanny Kassel,Quotients compacts d’espaces homogènes réels ou p-adiques, Thesis (Ph.D.)–
Université Paris-Sud 11, 2009.

[88] Inkang Kim, Ergodic theory and rigidity on the symmetric space of non-compact type,
Ergodic Theory Dynam. Systems 21 (2001), no. 1, 93–114. MR 1826662

[89] , Marked length rigidity of rank one symmetric spaces and their product, Topology
40 (2001), no. 6, 1295–1323. MR 1867246

[90] , Affine action andMargulis invariant, J. Funct. Anal. 219 (2005), no. 1, 205–225.
MR 2108366

[91] Anthony W. Knapp, Lie groups beyond an introduction, second ed., Progress in Mathe-
matics, vol. 140, Birkhäuser, Boston, 2002. MR 1920389

[92] Toshiyuki Kobayashi, Criterion for proper actions on homogeneous spaces of reductive
groups, J. Lie Theory 6 (1996), no. 2, 147–163. MR 1424629

[93] B. Kostant and D. Sullivan, The Euler characteristic of an affine space form is zero, Bull.
Amer. Math. Soc. 81 (1975), no. 5, 937–938. MR 375341 (51 #11536)

[94] N. H. Kuiper, Sur les surfaces localement affines, Géométrie différentielle. Col-
loques Internationaux du Centre National de la Recherche Scientifique, Stras-
bourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 79–87.
MR 0060288

[95] François Labourie, Fuchsian affine actions of surface groups, J. Differential Geom. 59
(2001), no. 1, 15–31. MR 1909247

[96] , Anosov flows, surface groups and curves in projective space, Invent. Math. 165
(2006), no. 1, 51–114. MR 2221137

[97] , Lectures on representations of surface groups, Zurich Lectures in Advanced
Mathematics, Eur. Math. Soc. (EMS), Zürich, 2013. MR 3155540

[98] , Entropy and affine actions for surface groups, arXiv:1908.00599, 2019.
[99] Gregory Laun, Fundamental domains for proper affine actions of Coxeter groups in

three dimensions, ProQuest LLC, Ann Arbor, MI, 2016, Thesis (Ph.D.)–University of
Maryland, College Park. MR 3553574

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



proper actions of discrete groups of affine transformations / 167

[100] Bruno Le Floch and Ilia Smilga, Action of Weyl group on zero-weight space, C. R. Math.
Acad. Sci. Paris 356 (2018), no. 8, 852–858. MR 3851538

[101] Yi Liu, Virtual cubulation of nonpositively curved graphmanifolds, J. Topol. 6 (2013), no. 4,
793–822. MR 3145140

[102] G. A.Margulis, Free completely discontinuous groups of affine transformations, Dokl. Akad.
Nauk SSSR 272 (1983), no. 4, 785–788. MR 722330

[103] , Complete affine locally flat manifolds with a free fundamental group, Journal of
Soviet Mathematics 36 (1987), no. 1, 129–139.

[104] Greg McShane, Simple geodesics and a series constant over Teichmuller space, Invent.
Math. 132 (1998), no. 3, 607–632. MR 1625712

[105] Geoffrey Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007),
3–45. MR 2328921

[106] John Milnor, Hilbert’s problem 18: on crystallographic groups, fundamental domains, and
on sphere packing, Mathematical developments arising from Hilbert problems (Proc.
Sympos. Pure Math., vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), Amer.
Math. Soc., Providence, RI, 1976, pp. 491–506. MR 0430101

[107] , On fundamental groups of complete affinely flat manifolds, Advances in Math. 25
(1977), no. 2, 178–187. MR 454886

[108] Damian Osajda, A construction of hyperbolic Coxeter groups, Comment. Math. Helv. 88
(2013), no. 2, 353–367. MR 3048190

[109] Jean-Pierre Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of
Math. (2) 131 (1990), no. 1, 151–162. MR 1038361

[110] Athanase Papadopoulos and Guillaume Théret, Shortening all the simple closed geodesics
on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1775–1784. MR
2587462

[111] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys.
113 (1987), no. 2, 299–339. MR 919235

[112] Piotr Przytycki and Daniel T. Wise, Mixed 3-manifolds are virtually special, J. Amer.
Math. Soc. 31 (2018), no. 2, 319–347. MR 3758147

[113] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik
und ihrer Grenzgebiete Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR
0507234

[114] Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc.
London Math. Soc. (3) 71 (1995), no. 3, 585–617. MR 1347406

[115] F. Schottky,Ueber die conforme Abbildung mehrfach zusammenhängender ebener Flächen,
J. Reine Angew. Math. 83 (1877), 300–351. MR 1579739

[116] Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contri-
butions to function theory (Internat. Colloq. Function Theory, Bombay, 1960), Tata
Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324

[117] Adam S. Sikora, Character varieties, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5173–
5208. MR 2931326

[118] Ilia Smilga, Fundamental domains for properly discontinuous affine groups, Geom.
Dedicata 171 (2014), 203–229. MR 3226793

[119] , Proper affine actions on semisimple Lie algebras, Ann. Inst. Fourier (Grenoble)
66 (2016), no. 2, 785–831. MR 3477891

[120] , Construction of Milnorian representations, Geom. Dedicata 206 (2020), 55–73.
[121] , Proper affine actions: a sufficient criterion, Math. Ann. (to appear), arXiv:

1612.08942v4.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



168 /danciger, drumm, goldman, and smilga

[122] G. A. Soifer, Affine crystallographic groups, Algebra and analysis (Irkutsk, 1989), Amer.
Math. Soc. Transl. Ser. 2, vol. 163, Amer. Math. Soc., Providence, RI, 1995, pp. 165–
170. MR 1331393

[123] William P. Thurston,Minimal stretch maps between hyperbolic surfaces, arXiv:math.GT/
9801039, 1998.

[124] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 0286898
[125] George Tomanov, On a conjecture of L. Auslander, C. R. Acad. Bulgare Sci. 43 (1990),

no. 2, 9–12. MR 1062291
[126] , The virtual solvability of the fundamental group of a generalized Lorentz space

form, J. Differential Geom. 32 (1990), no. 2, 539–547. MR 1072918
[127] , Properly discontinuous group actions on affine homogeneous spaces, Tr. Mat. Inst.

Steklova 292 (2016), Algebra, Geometriya i Teoriya Chisel, 268–279, reprinted in Proc.
Steklov Inst. Math. 292 (2016), no. 1, 260–271. MR 3628466

[128] Daniel T. Wise, Research announcement: the structure of groups with a quasiconvex
hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009), 44–55. MR 2558631

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 tsachik gelander, yair glasner, and gregory soifer

MAXIMAL SUBGROUPS OF COUNTABLE GROUPS:
A SURVEY

To our friend, teacher, and colleague Grisha Margulis with great admiration. While
proving the most remarkable theorems in the field as well as many other fantastic
results, Margulis invented techniques and developed ideas that inspired so many
mathematicians. This essay describes one such idea and its many ramifications as
it allowed us and others to solve problems and extend the theory.

Abstract. This essay surveys the works of Margulis-Soifer on maximal subgroups
and its many ramifications.

1 Introduction

This paper is a survey on the works [MS77, MS79, MS81] on maximal sub-
groups in finitely generated linear groups, and the works that followed it
[GG08, GG13b, GG13a, Kap03, Iva92, HO16, GM16, AGS14, Sf90, Sf98,
Per05, AKT16, FG18, GS17, Mei95] concerning maximal subgroups of infi-
nite index in linear groups as well as in various other groups possessing a
suitable geometry or dynamics.

1.1 THE MARGULIS-SOIFER THEOREM. The originalmotivation came
from the following question of Platonov:

QUESTION 1.1. Does SLn(Z), n≥ 3 admit a maximal subgroup of infinite
index?
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In [MS77], [MS79], and [MS81] this question was answered positively. More-
over these papers clarified the existence question of infinite index maximal
subgroups for all finitely generated linear groups:

THEOREM 1.2 ([MS77, MS79, MS81]).
A finitely generated linear group admits a maximal subgroup of infinite index if
and only if it is not virtually solvable.

The proof of theorem 1.2 is inspired by Tits’s proof of the classical Tits alter-
native [Tit72]. Recall that Tits proved that a finitely generated linear group �
that is not virtually solvable admits a free subgroup. In 1.2 it is shown that in
fact � admits a profinitely dense free subgroup F. By Zorn’s lemma F is con-
tained in a maximal proper subgroupM of �. Since F is profinitely dense, so
isM, and therefore [� :M]must be infinite. The details of the proof, however,
are quite involved, especially in the case where � is not Zariski connected.

1.2 PRIMITIVITY. Every subgroup H of a group � corresponds to a tran-
sitive action of �-namely, the action on the coset space �/H. The group H
is maximal if and only if this coset action is primitive in the sense of the
following:

DEFINITION 1.3. An action of a group � on a set X is primitive if |X |> 1
and there are no �-invariant equivalence relations on X apart from the two
trivial ones.1 An action is called quasiprimitive if every normal subgroup acts
either trivially or transitively. A group is primitive or quasiprimitive if it admits
a faithful primitive or quasiprimitive action on a set.

In particular � has a maximal subgroup of infinite index if and only if it
admits a primitive permutation action on an infinite set. Primitive actions
form the basic building blocks of the theory of permutation groups. A lot
of research was dedicated to the study of finite primitive groups (cf. [AS85],
[KL88], and [DM96]). The papers [MS77], [MS79], and [MS81] opened a door
to the study of permutation representation of infinite linear groups.

The transition to permutation theoretic terminology suggests shifting the
attention from infinite primitive groups to the study of groups admitting

1The trivial equivalence relations are those with a unique equivalence class or with singletons as
equivalence classes. When |X | = 2, one should also require that the action is not trivial.
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a faithful primitive action. This leads us to phrase the following guideline
question.

QUESTION 1.4. Characterize the countable primitive groups.

Due to the method developed in [MS77], [MS79], and [MS81] a satisfactory
answer is within reach for many natural families of groups. This brings us to
the following definition, which will turn out to be central to our discussion:

DEFINITION 1.5. A countable group � is called of almost simple type if

. if it contains no nontrivial finite normal subgroups and. M,N �� with [M,N]= 〈e〉, then eitherM=〈e〉 or N=〈e〉. In particular
� contains no nontrivial abelian normal subgroups.

As a direct consequence of Theorem 1.2 one can prove the following:

THEOREM 1.6.
An infinite finitely generated linear group � is primitive if and only if it is of almost
simple type.

The permutation representation viewpoint also suggests natural properties
that are stronger than primitivity.

DEFINITION 1.7. An action ��X is called 2-transitive if the induced
action on pairs of distinct points G�X ×X \ diag(X) is transitive. An action
G�X is k-transitive if it is transitive on k-tuples of distinct points and is highly
transitive if it is k-transitive for every k. A group will be called highly transitive
if it admits a faithful, highly transitive action.

Every 2-transitive action is primitive. Indeed if∼ is a� invariant equivalence
relation on X and if x∼ y for some x �= y∈X , then 2-transitivity readily implies
that any two points are equivalent.

1.3 THE CHARACTERIZATION OF COUNTABLE PRIMITIVE LINEAR
GROUPS. Theorem 1.2 was generalized to the setting of countable, but not
necessarily finitely generated, linear groups.
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THEOREM 1.8 ([GG08]).
Any countable linear nontorsion group of almost simple type is primitive. In fact
such a group admits uncountably many nonequivalent faithful primitive actions.
Any countable linear nontorsion group that is not virtually solvable has uncount-

ably many maximal subgroups of infinite index.

In the zero characteristic case, as well as in the finitely generated case, the
theorem remains valid without the assumption that the group is nontorsion.
In positive characteristic, we need this assumption for our proof. In fact, as
in the finitely generated case, the proof of Theorem 1.8 actually establishes a
stronger statement: the existence of a free subgroup that is contained in amax-
imal subgroup. This stronger statement fails for torsion groups like PSL2(F7),
where F7 is the algebraic closure of the field F7, of seven elements. Note, how-
ever, that PSL2(F7) does not violate Theorem 1.8 because it is primitive, and
in fact it even admits a faithful 3-transitive action on the projective line PF7.

Another difference that stands out between this theorem and its finitely
generated counterpart is the lack of the converse direction. Themissing impli-
cation is actually the easy direction of Theorem 1.2. But, upon leaving the
realm of finitely generated groups, it fails. An easy example is the 2-transitive
action of the solvable group �=

{(
a b
0 1

) ∣∣∣∣∣ a∈Q
∗, b∈Q

}
on the invariant set

{(
x
1

)
∈Q2

∣∣∣∣∣ x ∈Q
}
.

This action can also be identified as the natural affine action of the semidirect
product Q∗�Q�Q.

DEFINITION1.9. Let�=��M be a semidirect product. The natural affine
(or standard) action of � is the action ��M in whichM acts on itself by left
translations and � acts onM by the conjugation

m · x=mx, ∀m∈M, δ · x= δxδ−1, ∀δ ∈�.

As it turns out, this example is quite indicative, as can be seen from the
following two theorems.

THEOREM 1.10.
Let � be a primitive countable group that is not of almost simple type. Then � splits
as a semidirect product �=��M, and the given primitive action is equivalent to
its natural affine action on M.
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In particular it follows that the faithful primitive action is unique in this
case. In fact it is even unique among all faithful quasiprimitve actions of this
group. Of course the same groupmight admit additional primitive actions that
are not faithful. Take, for example, the group SL2(Q)�Q2. Its natural action
onQ2 is 2-transitive—hence the unique primitive faithful action of this group
by Theorem 1.10. However, this group admits a quotient that is of almost
simple type SL2(Q). Thus by Theorem 1.8 it does admit uncountably many
primitive actions factoring through this quotient.

The semidirect products whose natural action is primitive/faithful are easily
classified.

THEOREM 1.11.
The affine action of a semidirect product �=��M�M is faithful iff ZM(�)=
{δ ∈� | [δ,m]= e ∀m∈M}= 〈e〉. This action is primitive if and only if the only
subgroups of M that are normalized by � are M itself and the trivial group 〈e〉.

DEFINITION 1.12. Let �=��M be a countable, semidirect product
whose natural action is primitive and faithful—that is, such that M is char-
acteristically simple and admits no nontrivial �-invariant subgroups and
ZM(�)=〈e〉. Then, if in addition M is abelian, � is called primitive of affine
type; ifM is nonabelian, � is called primitive of diagonal type.

Combining Theorem 1.8 with the elementary classification of primitive
groups that are not of almost simple type yields a characterization of countable
linear primitive groups subject to the additional assumption that the groups in
question contain at least one element of infinite order. We like to think of this
theorem as a rough generalization of the Aschbacher-O’Nan-Scott theorem
(see [AS85], [DM96]) to the setting of countable linear groups.

THEOREM 1.13.
A countable nontorsion linear group � is primitive if and only if one of the following
mutually exclusive conditions holds.

. � is primitive of almost simple type.. � is primitive of affine type.. � is primitive of diagonal type.

In the affine and the diagonal cases the group admits a unique faithful quasiprim-
itive action. In the almost simple case the group admits uncountably many
nonisomorphic faithful primitive actions.
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REMARK 1.14. For a finitely generated group �, only the first possibility can
occur in the above theorem.

REMARK 1.15. In all the cases under consideration, it is shown that a group
is primitive if and only if it is quasiprimitive.

EXAMPLE 1.16. Let � be any simple countable linear group that is not tor-
sion. For example one can take �=PSL2(Q). Now consider the two groups
�1=�×� and �2= (Z/2Z)� (�×�). Despite the clear similarity between
these two groups (one being an index two subgroup in the other), their respec-
tive permutation representation theories are quite different. �1 is primitive of
diagonal type and hence it admits a unique faithful primitive action. More-
over this action is very explicit; it is the action �1 �� given by (γ1, γ2) · σ =
γ1σγ

−1
2 . On the contrary the group �2 is primitive of almost simple type and

hence admits uncountably many, nonisomorphic faithful primitive actions.
Yet, we do not have a good explicit description for any of these actions.

EXAMPLE 1.17. Let �=PSLn(Q). This group admits a very explicit faith-
ful primitive action—namely, its action on the projective line P(Qn). When
n= 2 this action is not only primitive but also 3-transitive. Being a group of
almost simple type, the above theorem yields uncountably many other non-
isomorphic primitive permutation representations. Again, we do not have any
explicit descriptions of these actions.

Section 2 is dedicated to the classification of countable primitive groups that
are not of almost simple type. It deals with general countable groups and uses
only soft, group theoretic arguments. Section 3 is dedicated to the linear case
and the proof of Theorem 1.13.

1.4 THE VARIETY OF MAXIMAL SUBGROUPS. Since the construction
of maximal subgroups of infinite index in [MS77], [MS79], and [MS81], it is
expected that there should be examples of suchmaximal subgroups of various
different natures. In particular, in the latter paper the existence of uncountably
many maximal subgroups in any finitely generated non-virtually-solvable lin-
ear group was established. However, as the proof is nonconstructive and relies
on the axiom of choice, it is highly nontrivial to lay one’s hands on specific
properties of the resulting groups.

In many special cases one can find examples of maximal subgroups in the
same group that are very different from each other. Example 1.17 describes

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



maximal subgroups of countable groups / 175

actions of PSLn(Q), some of which have Zariski dense stabilizers and oth-
ers not. For SL2(Q) one even has a 3-transitive action with a solvable point
stabilizer. In another direction, Section 5 constructs highly transitive faithful
actions for any nontorsion group of almost simple type �<SL2(k), where k
is any local field. Many of these groups also admit actions that are not highly
transitive. These examples and many more come to show that there is prob-
ably a whole zoo of maximal subgroups out there that we are only starting
to see.

To some extent, a benchmark example is the group SLn(Z), n≥ 3, the same
group appearing in the original question of Platonov. These groups are very
rigid in nature, and it is quite possible that a good understanding of the family
of maximal subgroups here would shed light on the general case.

The first step would be to show that, indeed, maximal subgroups �≤
SLn(Z) of different nature do exist. As of today, little can be said about the
intrinsic algebraic structure of�. Instead, one is led to focus on the way it sits
inside SLn(Z). Two points of view that are natural to consider are

. the associated permutation representation ���/� and. the action of � on the associated projective space P
n−1(R).

The following results were established in [GM16]:

THEOREM 1.18.
Let n≥ 3. There are 2ℵ0 infinite index maximal subgroups in SLn(Z).

THEOREM 1.19.
Let n≥ 3. There exists a maximal subgroup� of SLn(Z) that does not have a dense
orbit inP

n−1(R). In particular, the limit set of� (in the sense of [CG00]) is nowhere
dense.

THEOREM 1.20.
Let n≥ 3. There exists an infinite index maximal subgroup M of PSLn(Z) and an
element g ∈PSLn(Z) such that M⋂

gMg−1={id}.

THEOREM 1.21.
Let n≥ 3. There exists a primitive permutation action of SLn(Z) that is not 2-
transitive.

REMARK 1.22. These theorems remain true also for SLn(Q) instead of
SLn(Z).
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REMARK 1.23. Recall that Theorem 1.2 is much more general. It holds
for any finitely generated non-virtually-solvable linear group �. However the
proof of the last results rely on special properties of SLn(Z), n≥ 3. In partic-
ular one important ingredient here is the beautiful result of Venkataramana
about commuting unipotents, Theorem 4.8. Another ingredient is the result
of Conze and Guivarc’h, Theorem 4.12. Some of these results can be extended
to the class of arithmetic groups of higher Q-rank.

1.5 HIGHLY TRANSITIVE ACTIONS. Over the years many authors gen-
eralized the results and the methods of [MS77], [MS79], and [MS81]. In
section 5 we describe two major directions that eventually converged together
in a very nice way. The first direction involves implementing the methods of
[MS81] to various linear-like settings. Notable examples include the works of
Kapovich [Kap03] for subgroups of hyperbolic groups and Ivanov [Iva92] on
mapping class groups. More specifically than just linear-like, these examples
exhibit boundary dynamics closer in nature to that of subgroups of rank-1
Lie groups. From the group theoretic point of view, this has the effect that
often after ruling out obvious obstructions, all groups in question are of almost
simple type and primitive.

The second direction involves construction of k-transitive or highly tran-
sitive permutation representations, which are a priori harder to construct.
Originally the predominant feeling was that highly transitive groups aremuch
rarer. However, over a period spanning a few decades, wider and more elab-
orate constructions of highly transitive groups were given. Some notable
papers in this direction are [McD77], [Dix90], [Hic92], [Gun92], [Kit12], [MS13],
[Cha12], [GG13a], and [HO16]. The paper of Hull and Osin establishes the
following:

THEOREM 1.24 ([HO16, theorem 1.2]).
Any countable acylindrically hyperbolic group with no finite normal subgroups is
highly transitive

The family of acylindrically hyperbolic groups is very wide, encompassing
within it most groups that could be considered as rank-1, even in a weak sense
of the word. Thus, while Theorem 1.24 does not imply Theorem 1.2, it ties
together the strings, establishing a very strong form of this theorem for a
wide range of rank-1 examples, thereby generalizing the theoremsmentioned
above. To emphasize this we quote from their paper a few specific situations
where their theorem applies.
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. A countable group relatively hyperbolic to a collection of proper sub-
groups is highly transitive iff it is not virtually cyclic and has no finite
normal subgroups.. Mod(�g,n,p), themapping class group of a compact orientable surface, of
genus g, p-punctures, and n-boundary components, is highly transitive
if and only if n= 0 and 3g+ p≥ 5.. Out(Fn) is highly transitive iff n≥ 3.. π1(M), whereM is a compact irreducible 3-manifold, is highly transitive
iff it is not virtually solvable andM is not Seifert fibered.. A right-angled Artin group is highly transitive if and only if it is noncyclic
and directly indecomposable.

We can summarize all of the above by saying that in each and every one of
these situations, a subgroup is highly transitive if and only if it is of almost
simple type.

Inspired by the work of Hull and Osin, and applying the theory of linear
groups, we establish the following result.

THEOREM 1.25.
Let k be a local field, and let�<SL2(k) be a center-free unbounded countable group.
Then the following conditions are equivalent for �.

(1) � is of almost simple type.
(2) � is Zariski dense.
(3) � is not virtually solvable.
(4) � is highly transitive.

We note that this is the only result in this survey that has not been proved
before.

From a group theoretic point of view we use Hull-Osin’s characterization of
the point stabilizers in highly transitive actions. From the geometric point of
view, we use the topological dynamics of the boundary action, instead of the
small cancellation-type methods used in [HO16].

1.6 OTHER GEOMETRIC SETTINGS. As seen so far the ideas behind the
proof of Theorem 1.2 have been substantially generalized to many linear-
like settings, by which we refer very loosely to the situation where there is
a group action with a rich enough proximal dynamic. The outcome of the
theory in many of these settings is that all groups of almost simple type
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are primitive. Sometimes, notably in negatively curved type settings, much
stronger transitivity properties are established by similar techniques.

In section 6 we offer just a glimpse, without proofs, into some fascinating
works outside the linear-like setting. Here we encounter completely different
methods and different types of behavior.

2 Faithful primitive actions of countable groups

2.1 NECESSARY CONDITIONS AND GROUP TOPOLOGIES ON �.
The goal of this section is to establish Theorems 1.10 and 1.11 from the intro-
duction. A more detailed version of these, which appears here as Proposition
2.1, can be thought of as a summary of those implications in Theorem 1.13,
which hold for general countable groups without any additional assumptions.
It provides the classification of countable primitive groups into three disjoint
classes: affine, diagonal, and almost simple. The structure of primitive groups
of affine or diagonal type is well understood. But the structure of primitive
groups of almost simple type remains mysterious; this is the class of groups
for which Question 1.4 is the most interesting. We start with the proof of The-
orem 1.11, characterizing primitivity and faithfulness for the standard actions
of semidirect products.

Proof of Theorem 1.11. Consider the natural action of a semidirect product
�=��M�M. One easily verifies that �=Stab�({e}); hence the kernel of
the action is ZM(�)={δ ∈� | δmδ−1=m, ∀m∈M}, which proves the first
statement. If 〈e〉 �=K �M is normalized by �, then �<��K <�, so � is
not maximal and the standard action fails to be primitive. Conversely, assume
that� fails to be amaximal, with����� an intermediate subgroup. Using
the unique product decomposition �=�M, we find that 〈e〉 �=�⋂

M is a
nontrivial proper subgroup ofM normalized by �.

This gives rise to a very explicit description of primitive groups of both affine
and diagonal type. It follows that in a primitive group of affine or diagonal type
the normal subgroupMmust be characteristically simple. WhenM is abelian
and countable this means that M is the additive group of a countable vector
space—that is, either M∼=F

∞
p or M∼=Qn, n∈N⋃{∞}. In this case � can be

identified with an irreducible subgroup of GL(M).
When M is nonabelian it is center-free, so the natural map ι :M→

Inn(M)<Aut(M) is injective. Since there are no nontrivial �-invariant sub-
groups,�

⋂
Inn(M) is either trivial or equal to Inn(M). In the first possibility
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� commutes with Inn(M) contradicting the fact that there are no�-invariant
subgroups in M; hence Inn(M)<�. Recall that we identified the action of
M with its left action on itself. Now that we have realized the inner automor-
phisms of M as a subgroup of �, we can distinguish another subgroup of �,
which is isomorphic toM and commutes with it—namely, the action ofM on
itself from the right:

N={ι(m−1)m | m∈M}<�.

This is of course the source of the name diagonal type. Indeed we have con-
structed here the diagonal action M×M�M described in Example 1.16 as
a subaction of any primitive group of diagonal type. We turn to the proof of
Proposition 2.1, which is a more detailed version of Theorem 1.10 from the
introduction.

PROPOSITION 2.1. Let��
 be a faithful primitive action of a countably infi-
nite group on a set. Fix a basepoint ω0 ∈
 and let �=�ω0 be its stabilizer. Then
every nontrivial normal subgroup of � is infinite. Moreover � falls into precisely one
of the following three categories:

(1) Either � is primitive of almost simple type.
(2) Or � is primitive of affine type. In this case �=��V, with V a count-

able vector space over a prime field F (possibly F=Q) and� an irreducible
subgroup of GLF(V). The given action is equivalent to the standard affine
action of � on V.

(3) Or � is primitive of diagonal type. In this case �=��M with M a non-
abelian, characteristically simple group. Inn(M)<�<Aut(M) andM has
no nontrivial subgroups that are invariant under the �-action. Again the
given action in this case is equivalent to the standard action of � on M.

Conversely if � falls into categories (2) or (3), then its natural action is faithful
and primitive.

Proof. As the action is faithful, 
 must be infinite, so it is absurd that a
finite normal subgroup would act transitively. If � fails to be of almost simple
type, then we can find 〈e〉 �=M,N �� with [M,N]= 〈e〉. Both normal sub-
groups must act transitively on 
 since the action is primitive and faithful.
But Mnω0 = nMω0n

−1=Mω0 , ∀n∈N so that the stabilizer Mω0 will fix all of
Nω0=
, which implies Mω0 =〈e〉 by the faithfulness of the action. Thus M
acts regularly on 
. Identifying 
 with M via the orbit map m �→m ·ω0, it
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is now routine to verify that �=��M and that the given action of � on

 is equivalent to the standard affine action of this semidirect product. The
question whether the group is of affine or diagonal type now depends only on
whether M is abelian or not. The detailed description of the structure of the
group in these two cases follows from our discussion above.

Let us note that, just like M, the group K =M⋂
N is a normal subgroup

commuting with N. So, either K =〈e〉 or K too acts regularly by the same
argument, in which case M=N. These two cases, of course, correspond to
the diagonal and the affine cases respectively.

This theorem highlights the family of almost simple groups for which Ques-
tion 1.4 is interesting. In all other cases the existence question of a faith-
ful primitive action is easily resolved. Proposition 2.1 is very similar in its
structure to our main Theorem 1.13. It basically summarizes all the “easy”
implications of that theorem that do not require the linearity assumption.
The remaining implication does not work without the linearity, as the fol-
lowing example shows. Section 6 will be dedicated to a more comprehensive
treatment of such examples.

THEOREM 2.2 ([Per05]).
The first Grigorchuk group is an example of a group that is of almost simple type
but does not admit any infinite primitive action.

2.2 THE NORMAL TOPOLOGY. We like to think of the definition of
groups of almost simple type in topological terms. Let

N (�)={〈e〉 �=N ��}
be the collection of all nontrivial normal subgroups. If � is of almost simple
type, every N ∈N (�) is infinite, and this family is closed under intersections.
Clearly it is invariant under conjugation. Thus it forms a basis of identity
neighborhoods for a group topology on �.

DEFINITION 2.3. The normal topology τN on a countable group of almost
simple type � is the topology obtained by taking N (�) as a basis of open
neighborhoods of the identity.

PROPOSITION 2.4. The normal topology is second countable. It is finer2 than
the profinite topology. It is Hausdorff if and only if Ncore(�)=⋂

N∈N (�)N=〈e〉.

2Possibly the two topologies are equal; this happens exactly when the group admits the Margulis
normal subgroup property.
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Proof. We denote by 〈〈g〉〉= 〈γ gγ−1 | γ ∈�〉�� the normal subgroup of �
generated by the conjugacy class of the element g ∈�. The countable collection
{〈〈g〉〉 | g ∈G} forms a basis of identity neighborhoods for the normal topol-
ogy. Thus the topological group (�, τN) is first (and consequently also second)
countable. All the rest of the statements are obvious.

In [GG13b, definition 2.3] we gave a different definition for linear groups
of almost simple type. The following lemma shows that in the specific case of
countable linear groups these two definitions agree.

LEMMA 2.5. Let � be a countable linear group. Then � is of almost simple type
if and only if there exists a faithful linear representation φ :�→GLn(k), with k
algebraically closed, such that the Zariski closure G=

(
φ(�)

Z
)
satisfies G(0)=

Hm where H is a simple, center-free, algebraic group and � acts transitively by
conjugation on these m simple factors. Moreover, for any such representation, if
〈e〉 �=N ��, then G(0) <

(
φ(N)

Z
)
.

Proof. Assume that � is linear of almost simple type. Realize �<GLn(k) as a
linear group, over an algebraically closed field k, and letG=�Z be the Zariski
closure. We may assume, without loss of generality, that G is semisimple.
If not, we divide out by the solvable radical of G. Since � has no nontrivial
abelian normal subgroups, it also has no nontrivial solvable normal sub-
groups and it will still map injectively into the semisimple quotient. Next
we may assume without loss of generality that G is adjoint upon replacing
it by its image under the adjoint representation. Since � has no finite or
abelian normal subgroups, it maps injectively into this new group too. Note
that now G(0)=H1×H2× · · ·×Hl is a direct product of simple, center-free
groups. � acts on G(0) by conjugation. We claim that this action must per-
mute these l-simple factors. Fix γ ∈� and 1≤ i, j≤ l; by simplicity of these
factors there are only two options: either γHiγ

−1=Hj or γHiγ
−1 ⋂

Hj=〈e〉.
When the second of the two options holds, we have [γHiγ

−1,Hj]= e. Since
γHiγ

−1 cannot commute with the whole group, there must be a (necessarily
unique) j such that γHiγ

−1=Hj. Let us denote the permutation represen-
tation thus obtained by γHiγ

−1=Hπ(γ ,i). After rearranging we can rewrite
the decomposition of the connected component into simple factors as fol-
lows:G(0)=G1× · · ·×Gk, where eachGi is the direct power of simple factors
Gi=Hmi

i that are permuted transitively by �. This gives rise to an injective
map φ :�→Aut(G1)× · · ·×Aut(Gk), and since we assumed that � is subdi-
rect irreducible we can find a factor i0 such that the map φi0 :�→Aut(Gi0) is
already injective. This is our desired quotient.
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Conversely, assume that � admits such a linear representation. If 〈e〉 �=N �

�, thenW =
(
φ(N)

Z
)

�G. If N were either finite or abelian,W would be the
same, contradicting the fact that G does not admit finite or abelian normal
subgroups.

By assumption N is infinite so that W has positive dimension and
W

⋂
G(0) �= 〈e〉. This means that W

⋂
H �= 〈e〉 for at least one of the simple

factorsG(0)=Hm. By simplicityW actually contains this simple factor, and by
transitivity of the � action on the factors W >G(0). This establishes the last
statement.

Finally, assume thatN1
⋂

N2=〈e〉 for two normal subgroups 〈e〉 �=N1,N2 �

�. Then [N1,N2]= 〈e〉. Passing to the Zariski closure Wi=Ni
Z
, we have

[W1,W2]= 〈e〉. But by the previous paragraph this implies thatG(0) is abelian,
which is absurd. This concludes the proof of the lemma.

DEFINITION 2.6. Let� be a group of almost simple type. A subgroup�<�
is called prodense if it is dense in the normal topology.

DEFINITION 2.7. The core of a subgroup �<� is the normal sub-
group Core�(�)=⋂

γ∈� γ�γ−1. The subgroup � is called core-free if Core�
(�)=〈e〉.

Note that Core�(�) is exactly the kernel of the permutation representation
���/�. Consequently this action is faithful if and only if� is core-free. We
leave the verification of the following easy lemma to the reader.

LEMMA 2.8. The following conditions are equivalent for a subgroup� in a group
� of almost simple type:

. � is prodense.. �N=� for every 〈e〉 �=N ��.. φ(�)=φ(�) whenever φ :�→H is a homomorphism with nontrivial
kernel.

In particular prodense subgroups are always core-free. Clearly every prodense
subgroup is profinitely dense.

Such subgroups play a central role in the strategy for construction of maxi-
mal subgroups. The idea is that if�<� is a prodense (respectively profinitely
dense subgroup), then any larger subgroup still has the same property. In par-
ticular if �<M<� is a proper maximal subgroup containing �, thenM too
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must be prodense (respectively profinitely dense). This in turn guarantees that
M is core-free (respectively of infinite index). In order to make sure that � is
contained in some proper maximal subgroup, we use the following condition.

DEFINITION 2.9. A subgroup �<� is called cofinitely generated if �=
〈�,F〉 for some finite F⊂�.

If �<� is cofinitely generated, let F be a finite subset as in the above def-
inition. Zorn’s lemma yields a subgroup �<M<�, which is maximal with
respect to the condition that F �⊂M. Any strictly larger subgroup will contain
�=〈M,F〉, soMmust be a maximal subgroup. To summarize the discussion:

PROPOSITION 2.10. Let � be any group.

(1) � contains a maximal subgroup of infinite index if and only if it contains a
profinitely dense cofinitely generated subgroup.

(2) � contains a core-free maximal subgroup if and only if it contains a prodense
cofinitely generated subgroup.

3 Linear groups

For countable linear groups, there is almost a complete answer to Question
1.4. The missing part of the puzzle is the case of amenable countable linear
groups of almost simple type. We give a more or less complete description of
what is known, starting with some preliminaries.

3.1 PROJECTIVE TRANSFORMATIONS OVER VALUATION FIELDS.
In this section we shall review some definitions and results from [BG03] and
[BG07] regarding the dynamical properties of projective transformations that
we shall use in the proof.

Let k be a local field and ‖·‖ the standard norm on kn—that is, the stan-
dard Euclidean norm if k is Archimedean and ‖x‖=max1≤i≤n |xi|, where
x=∑

xiei when k is non-Archimedean and (e1, . . . , en) is the canonical basis
of kn. This norm extends in the usual way to �2kn. We define the stan-
dard metric on P(kn) by d(v, v)= ‖v∧w‖‖v‖‖w‖ , where v denotes the projective point
corresponding to v∈ kn. ‖v∧w‖ can be thought of as the area of the paral-
lelogram defined by the vectors v,w—that is, ‖v‖ times the distance of w to
the line spanned by v. Unless otherwise specified all our notation will refer
to this metric (see also [Tit72]). In particular (A)ε :={x ∈P(kn) | d(x,A)< ε}
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will denote the open ε-neighborhood and [A]ε :={x ∈P(kn) | d(x,A)≤ ε} the
closed neighborhood of a set A⊂P(kn). With respect to this metric, every
projective transformation is bi-Lipschitz on P(kn).

DEFINITION 3.1. For ε ∈ (0, 1), we call a projective transformation g ∈
PGLn(k) ε-contracting if g

(
P(kn) \ (H)ε

)⊂ (v)ε for some point v∈P(kn) and
projective hyperplane H<P(Kn), which are referred to as an attracting point
and a repelling hyperplane for g. We say that g is ε-very contracting if g and
g−1 are ε-contracting. A projective transformation g ∈PGLn(k) is called (r, ε)-
proximal (r> 2ε,> 0) if it is ε-contracting with respect to some attracting
point v∈P(kn) and repelling hyperplaneH, such that d(v,H)≥ r. A projective
transformation g is called (r, ε)-very proximal if both g and g−1 are (r, ε)-
proximal. Finally, g is simply called proximal (respectively very proximal) if it
is (r, ε)-proximal (respectively (r, ε)-very proximal) for some r> 2ε,> 0.

The attracting point v and repelling hyperplaneH of an ε-contracting trans-
formation are not uniquely defined. Yet, if g is proximal with good enough
parameters, then we have the following natural choice for an attracting point
and a repelling hyperplane:

LEMMA 3.2. ([BG07, lemma 3.1]). Let k be a local field and ε ∈ (0, 14 ). There
exist two constants c1, c2≥ 1 such that if g ∈PGLn(k) is an (r, ε)-proximal transfor-
mation with r≥ c1ε and associated attracting point v and repelling hyperplane H,
then g fixes a unique point vg ∈ (v)ε and a unique projective hyperplaneHg ⊂

(
H

)
ε
.

Moreover, if r≥ c1ε2/3, then the positive powers gn, n≥ 1, are (r− 2ε, (c2ε)
n
3 )-

proximal transformations with respect to these same vg andHg. The constants c1, c2
may depend on the local field k, but they become only better when passing to a finite
extension field.

REMARK 3.3. In what follows, whenever we add the article the (or the canon-
ical) to an attracting point and repelling hyperplane of a proximal transforma-
tion g, we shall mean the fixed point vg and fixed hyperplane Hg obtained in
Lemma 3.2.

Moreover, when r and ε are given, we shall denote by A(g),R(g) the ε-
neighborhoods of vg ,Hg respectively. In some cases, we shall specify different
attracting and repelling sets for a proximal element g. In such a case we shall
denote them by A(g),R(g) respectively. This means that

g
(
P(kn) \R(g))⊂A(g).
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If g is very proximal and we say that A(g),R(g),A(g−1),R(g−1) are spec-
ified attracting and repelling sets for g, g−1, then we shall always require
additionally that

A(g)
⋂ (R(g)

⋃
A(g−1))=A(g−1)

⋂ (R(g−1)
⋃

A(g))=∅.

DEFINITION 3.4. If g, h are very proximal elements with given associated
repelling and attracting neighborhoods, we will say that g is dominated by h if
R(gη)⊂R(hη),A(gη)⊂A(hη) for η∈±1.

These notions depend not only on the elements themselves but also on
the specific choice of attracting and repelling neighborhoods, but when these
neighborhoods are clear, we will suppress them from the notation.

Definition 3.1 is stated in terms of the topological dynamics of the action of
a single projective transformation g ∈PGLn(k) on the projective space P(kn).
A fundamental idea to the whole theory, which was fully developed in [BG03]
and [BG07], is that contraction can also be alternatively expressed in metric
or in algebraic terms: metrically, in terms of the Lipschitz constant of g on
an open set away from the repelling hyperplane; algebraically, in terms of
the singular values of the corresponding matrix. The equivalence between the
different notions is quantitative.

LEMMA 3.5. Let F be a local field, c1, c2 the constants given in Lemma 3.2, and
g ∈GLn(F). Denote by [g] the image of g in PGLn(F) and by g= kak′ its Car-
tan decomposition, with a= diag(a1, a2, . . . , an), a1≥ a2≥ . . . an> 0. Set H=
Span{k′−1(ei)}ni=2, p= ke1. Then there exists a constant c> 0 depending only on
the field such that for any 0<ε < 1

4 we have the following:

. If a1a2 ≥ 1
ε2
, then [g] is ε-contracting with (H, a) as a repelling hyperplane and

an attracting point. Moreover [g] is ε2r2 Lipschitz outside the r-neighborhood
of H.. Assume that the restriction of [g] to some open set O⊂P(Fn) is ε-Lipschitz;
then a1

a2
≥ 1

2ε and [g] is c
√
ε-contracting.. If [g] is (r, ε)-contracting for r> c1ε, then it is c ε

2

d2 -Lipschitz outside the d-
neighborhood of the repelling hyperplane.

Using proximal elements, one constructs free groups with the following
variant of the classical ping pong lemma.
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LEMMA 3.6. Suppose that {gi}i∈I ⊂PGLn(k) is a set of very proximal elements,
each associated with some given attracting and repelling sets for itself and for its
inverse. Suppose that for any i �= j, i, j∈ I, the attracting set of gi (respectively of
g−1i ) is disjoint from both the attracting and repelling sets of both gj and g

−1
j . Then

the gi’s form a free set—that is, they are free generators of a free group.

This lemma calls for several important definitions that will play a central
role in this essay. Our general setting is somewhat more general than usual,
because we work with countable linear groups that are not necessarily finitely
generated.

Let (K, v) be a complete valued field and �<PGLn(K) a countable group.
For every �<� let us denote by (k(�), v(�)) the closed subfield that is gen-
erated by the matrix coefficients of elements in �. Even though K itself will
typically not be a local field, we do assume that (k(�), v(�)) is a local field
whenever � is finitely generated.

DEFINITION 3.7. A finite list of elements {gi ∈�}i∈I will be called a ping
pong or a Schottky tuple, and the group that they generate �=〈gi | i∈ I〉 will
be called a Schottky subgroup if they satisfy the conditions of Lemma 3.6 on
P(kn) for every intermediate local field k(�)< k<K. Such a tuple, as well as
the group it generates, will be referred to as spacious Schottky if there exists
an additional element g ∈� such that {gi | i∈ I}

⋃{g} is still a Schottky tuple.
Finally we will call �<� locally Schottky or locally spacious Schottky if every
finitely generated subgroup of� is such. We denote byX =X(�) the collection
of locally spacious Schottky subgroups of �. When � is an abstract group,
with an action on a projective space given by a representation ρ :�→PGLn(k),
we will denote by Xρ(�) the collection of subgroups whose image under ρ is
locally spacious Schottky.

One example of a locally spacious Schottky group is just an infinite Schottky
group. By definition this is a subgroup with a given infinite generating set�=
〈gi | i∈ I〉 such that for every finite J⊂ I the tuple {gi | i∈ J} is a ping pong tuple,
and hence �J =〈gj | j∈ J〉 plays ping pong on P(kJ) with kJ = k(�J). The local
fields {kJ} and corresponding projective spaces {P(kJ)} form a direct system
inside K and P(K) respectively. Though note that in our current setting there
is no canonical ping pong playground where the generators play all together.
The following lemma is easy; we leave its proof to the reader.

LEMMA 3.8. Let �=〈η1, η2, . . . , ηm, ζ 〉 ∈X(�) be a spacious Schottky sub-
group. Let {e �=wj | j∈N} be any ordered set of nontrivial elements, possibly
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containing repetitions, in the group 〈η1, η2, . . . , ηm〉. Then {ζ−iwiζ
−i | i∈N} is

an infinite Schottky tuple.

DEFINITION 3.9. Let K be any field. A pair α=
(
H
+
, v−

)
, with H

+
<

P(Kn) a hyperplane and v− ∈H+ a point, will be called a minimal flag or an
M-flag for short. We denote by M(Kn) the (projective) variety of all such M-
flags. We will say that two M-flags α1,α2 touch each other if either v−1 ∈H

+
2

or v−2 ∈H
+
1 . A collection of M-flags

{
αi=

(
H
+
i , v−i

)
| i∈ I

}
is said to be in

general position if the following conditions are satisfied:

. ⋂
j∈J H

+
j =∅ for every J⊂ I with |J| = n.. Span{v−j | j∈ J} :=Span

{
v−j | j∈ J

}
=P(Kn) for every J⊂ I with |J| = n.

Note that the plus and minus superscripts indices in this definition do not
really play any role; they are only there in anticipation of the following:

DEFINITION 3.10. If k is a local field and g ∈PGLn(k) is a very proximal
element, thenwe can associate with it anM-flag α(g)=

(
Hg , vg−1

)
. Wewill say

that a ping pong tuple (g1, g2, . . . , gm) is in general position if both {α(gi) | 1≤
i≤m} and {α(g−1i ) | 1≤ i≤m} are.

LEMMA 3.11. If {αi ∈M(Kn) | 1≤ i≤m} is in general position withm≥ 2n− 1,
then no α ∈M(Kn) can touch simultaneously all of the M-flags {αi, 1≤ i≤m}.

Proof. Let I={1, 2, . . . , 2n− 1} and assume that αi=
(
H
+
i , v−i

)
and α=(

H
+
, v−

)
. Set J={i∈ I |v− �∈H+i }. Since v− ∈

⋂
i∈I\J H

+
i �= ∅, the first condi-

tion in the general position assumption implies that |J| ≥ n. Now the second
condition implies that Span

{
v−j | j∈ J

}
=P(Kn) so that v−i0 �∈H

+
for some

i0 ∈ J. Thus the two M-flags α,αi0 fail to touch and the lemma is proved.

DEFINITION 3.12. A linear representation ρ :�→GLn(k) is called strongly
irreducible if one of the following equivalent conditions holds:

. ρ(�) does not preserve a finite collection of nontrivial proper subspaces.. ρ(�) is irreducible for every finite index subgroup �<�.. (
ρ(�)

Z
)(0)

is irreducible.
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We leave the verification of the equivalence to the reader. Strongly irre-
ducible representations of groups of almost simple type offer a lot of flexibility,
a fact that we attempt to capture in the next two lemmas.

LEMMA 3.13. Let �<GLn(K) be a group of almost simple type, G=�Z its
Zariski closure with G(0)=Hm as in Lemma 2.5. Let ρ :G→GLm(K) be a
strongly irreducible representation defined over K. Then ρ(N) is irreducible for every
〈e〉 �=N ��. In particular, given a vector 0 �= v∈Km and a hyperplane V <Km

there is some n∈N such that ρ(n)(v) �∈V.

Proof. By the equivalence of the conditions in the previous definition, ρ(G(0))
is irreducible. By Lemma 2.5, N

Z
>G(0) so that ρ(N) is irreducible as well.

Since ρ(N) is irreducible we have

Span{ρ(n)v | n∈N}=Km,

so this set cannot be contained in the proper subspace V .

LEMMA 3.14. Let k be a local field, m∈N, and �<GLn(k) a strongly irre-
ducible group of almost simple type. Assume that � contains a very proximal
element g. Then � contains a Schottky tuple (η1, η2, . . . , ηm) in general posi-
tion. More generally if (γ1, γ2, . . . , γl) is a spacious Schottky tuple, then one
can find a spacious Schottky tuple (η1, η2, . . . , ηm) in general position, such that
(γ1, γ2, . . . , γl, η1, η2, . . . , ηm) is still spacious Schottky.

Proof. We start with the first statement—namely, with the special case l= 0.
Assume by induction that we already have a spacious Schottky tuple {βi | i∈ I}
whose corresponding attracting points and repelling hyperplanes satisfy all of
the conditions implied so far:

. dim
(⋂

j∈J H
+
j

)
= n− |J| − 1, ∀J⊂ I. dim(Span{v−i | j∈ J})= |J| − 1, ∀J⊂ I, |J| ≤ n. v ηi �∈H

ε

j whenever either i �= j or ε= η

Here dim denotes projective dimension, and we have adopted the convention
that a negative dimension corresponds to an empty set. As the basis of the
induction we can take β1 to be any conjugate of g.

Now let us fix a finite set of points A⊂P(kn) such that

{v ηi ∈A, | i∈ I, η∈±1}⊂A
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and also A
⋂ (⋂

j∈J H
η

j

)
�= ∅ for every subset J⊂ I with |J|< n and every η∈

{±1}. Since � is strongly irreducible we can find an element γ ∈� subject to
the following two conditions:

. A
⋂
γH

ε

g =∅, ∀ε ∈±1.. γ v−g �∈
⋃

J⊂I
|J|<n

Span{v−j | j∈ J}.

Setting βp+1= γ gγ−1 we have H
ε

βp+1 = γH
ε

g and v εβp+1 = γ v εg , ∀ε ∈±1.
After m such steps we obtain a collection of very proximal elements whose
attracting points and repelling hyperplanes are subject to all of the desirable
conditionsmentioned above. We obtain the desired ping pong tuple by setting
ηi=βNi for a high enough value of N.

Now assume l �= 0 and let g be the proximal element such that
(γ1, γ2, . . . , γl, g) is Schottky. Let us construct (η′1, η′2, . . . , η′n) as a spacious
Schottky tuple in general position, just as we did in the previous para-
graph. By taking care we may assume that these were constructed in such
a way that (gn, η′1, η′2, . . . , η′n) is still Schottky. Now setting ηi= gη′ig−1 we
obtain a Schottky tuple in general position (η1, η2, . . . , ηn) subject to the
additional condition that A(η±i )⊂A(g),R(η±i )⊂R(g). This implies that
(γ1, γ2, . . . , γl, η1, η2, . . . , ηl) is as required.

The main ingredient in the method we use for generating free subgroups
is a projective representation whose image contains contracting elements and
acts strongly irreducibly. The following theorem is a particular case of Theo-
rem 4.3 from [BG07]. Note that a similar statement also appeared earlier in
[MS81].

THEOREM 3.15.
Let F be a field and H an algebraic F-group for which the connected component
H
◦ is not solvable, and let � <�<H be Zariski dense subgroups with � finitely

generated and � countable. Assume that� contains at least one element of infinite
order. Then we can find a valued field (K, v), an embedding F ↪→K, an integer n,
and a strongly irreducible projective representation ρ :H(K)→PGLn(K) defined
over K with the following properties.

(1) (k(�), v(�)) is a local field for every finitely generated subgroup �<�.
(2) There exists an elementψ ∈�, such that ρ(ψ) is a very proximal element on

P(kn) for some parameters (ε, r) satisfying the stronger condition appearing
in Lemma 3.2 for every intermediate local field k(�)< k<K.
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Where as above, (k(�), v(�)) denotes the closed subfield of K generated by
all matrix coefficients of ρ(�).

3.2 PRIMITIVITY FOR LINEAR GROUPS OF ALMOST
SIMPLE TYPE.

THEOREM 3.16.
Let � be a countable linear group of almost simple type, containing at least one
element of infinite order. Then � is primitive.

Let H=�Z be the Zariski closure. By dimension considerations we can
find a finitely generated subgroup� <� with the same Zariski closure. Obvi-
ously � contains an element of infinite order. We now apply Theorem 3.15
and fix once and for all the data that this theorem yields. In fact we will just
identify� with its image under this representation ρ(�) in order to avoid cum-
bersome notation. Once we have fixed this representation we will denote by
X(�)=Xρ(�) the collection of all subgroups whose image under this fixed
representation is locally spacious Schottky. With all this notation in place
Theorem 3.16 will follow from the following, slightly more general statement.

THEOREM 3.17.
Any finitely generated spacious Schottky subgroupD<� is contained in amaximal
core-free subgroup D<M<�.

Proof. By Proposition 2.10 it suffices to construct a subgroup D<�<� that
is prodense and cofinitely generated. As a feature of the proof, the group �
we construct will be spacious Schottky, and in particular �∈X(�).

Let (δ1, δ2, . . . , δm) be a Schottky generating set for the subgroupD. LetD<
D′<� be a larger (not necessarily Schottky) finitely generated subgroup that
has the same Zariski closure as�. Letting k= k(D′) be the local field generated
by the matrix coefficients of D′, this implies that ρ(�)

⋂
GLn(k) is strongly

irreducible. Appealing to Lemma 3.14 we can construct a spacious Schot-
tky tuple (δ1, δ2, . . . , δm, σ1, . . . , σ2n−1, ζ ) with �=〈σ1, . . . , σ2, . . . , σ2n−1, ζ 〉,
a Schottky subgroup whose generators are in general position, as in Defi-
nition 3.9. The last element is denoted differently just because it will play a
separate role in the proof. We set �0 :=D, k0= k(〈�0,�〉) and in P(kn0) we
denote by H

±
i =H±σi , v±i = v±σi ,H

± =H±ζ , v± = v±ζ the attracting points and
repelling hyperplanes of the corresponding ping pong game, all defined over
k0. We did not name the attracting points and repelling neighborhoods of the
δi’s, as we will not refer to them explicitly.
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Let us use odd indices {γ1〈〈n1〉〉, γ3〈〈n3〉〉, γ5〈〈n5〉〉, . . .} to list all cosets of
all these normal subgroups that are generated by one, nontrivial, conjugacy
class. Since any nontrivial normal subgroup contains one of these, the col-
lection of these cosets forms a basis for the normal topology on �. So a
subgroup intersecting all of them nontrivially will be prodense. Similarly
we use even indices (�θ2�,�θ4�, . . .) to enumerate the nontrivial double
cosets of � in �. A subgroup �<� that has a nontrivial intersection with
all of these double cosets will be cofinitely generated by virtue of the fact that
�=〈�,�〉.

We will construct an infinitely generated Schottky group

�=〈δ1, δ2, . . . , δm, η1, η2, . . .〉

such that ηi ∈ γi〈〈ni〉〉 for every odd i and ηi ∈�θi� for every even i. This
will be done by induction on i, with �i :=〈D, η1, η2, . . . , ηi〉 the group con-
structed at the ith step and ki= k(〈�i,�〉) the corresponding local subfield of
K. We obtain a sequence of local fields k0< k1< k2< . . .<K with correspond-
ing, direct sequence of projective spaces P(kn0)⊂P(kn1)⊂P(kn2)⊂ . . .⊂P(Kn).
The generators of �i will form a ping pong tuple in their action on P(kni ). By
Lemma 3.5, the canonical attracting and repelling neighborhoods of the ping
pong players ηi will be of the form

(
H
±
ηi

)
εi
,
(
v±ηi

)
εi
. These are all defined over

ki, in the sense that vi ∈ kni , Hi has a basis consisting of (n− 1) vectors in kni
and ε is determined by the singular values of ηi that are inside ki. Thus the
same elements will form a ping pong tuple also on P(kj) for any j> i. The
attracting points and repelling hyperplanes in the extended vector space are
obtained by an extension of scalars and εi remains the same.

Assume we constructed ��=〈δ1, . . . , δm, η1, η2, . . . , η�−1〉<PGLn(k�−1),
satisfying

. ηi ∈ γi〈〈ni〉〉 if i is odd, and ηi ∈�θi� if i is even; and. ηi= ζ iqiζ−i with qi very proximal and dominated by some nontrivial
element in 〈σ1, σ2, . . . , σ2n−1〉<� for every 1≤ i<�.

The second condition guarantees that ��−1 is Schottky by Lemma 3.8.
When � is odd, we are looking for an element η� ∈ γ�〈〈n�〉〉. We extend

scalars to K, but by abuse of notation we will identify L±i < kni with their scalar
extensions L±i ⊗k�−1 K <Kn and similarly for w±i ∈ kn�−1⊂Kn. By Lemma

3.13 we find n1, n2, n3 ∈ 〈〈n�〉〉 such that n ε1 v
+
1 �∈H

−
1 , n2γ�v+ �∈H−, n−12 v+ �∈

γH
−
, n ε3 v

−
1 �∈H

+
1 , ∀ε ∈ {±1}. Let k�= k(〈��−1,�, n1, n2, n3〉) and consider

the element
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η�= ζ �q�ζ−�= ζ �σN1 n3σ−N1 ζ−�n2γ�ζ �σ−N1 n1σN1 ζ
−� ∈ γ�〈〈n�〉〉,

where the auxiliary element q� is also defined by the above equation. Follow-
ing the dynamics of the action of this element on P(kn�) we see that, for N
large enough, q� is very proximal and dominated by σ1. Thus by Lemma 3.8
the tuple (δ1, δ2, . . . , δm, η1, η2, . . . , η�)= (δ1, δ2, . . . , δm, ζq1ζ−1, . . . , ζ �q�ζ−�)
is Schottky. Group theoretically it is easy to verify that η� thus defined belongs
to the desired coset γ�〈〈n�〉〉.

Next, assume that � is even. Now our goal is to construct a ping pong player
of the form η�= ζ �q�ζ−� ∈�θ��. By Lemma 3.11 we can find some i= i� such
that theM-flag α(σi) does not touch theM-flag θ�α(σ−11 ). Explicitly thismeans
that v−i �∈ θ�H

−
1 and θ�v+1 �∈H

+
i . These are exactly the conditions needed in

order to ensure that, for a high enough value of n= nl, the element q� :=
σ ni θlσ

n
1 is dominated by the element σ ni σ

n
1 ∈�. Now set η� := ζ lσ ni θ�σ n1 ζ−� ∈

�θ��. This concludes the even step of the induction and completes the
proof.

4 Counting maximal subgroups of SLn(Z)

When restricting the attention to SLn(Z), n≥ 3, one can make use of the
arithmetic structure and the abundance of unipotent elements to produce 2ℵ0
different maximal subgroups. We follow the argument of [GM16].

4.1 PROJECTIVE SPACE. Let n≥ 3. By P(kn) we denote the (n− 1)–
dimensional real projective space endowed with the metric defined in Section
3.1. For every 0≤ k≤ n− 1, the setLk of k-dimensional subspaces of P(kn) can
be endowed with the metric defined by

distLk(L1, L2) :=max{d(kn)(x, Li) | x ∈ L3−i∀ 1≤ i≤ 2}

for every L1, L2 ∈Lk. Note that Lk is naturally homeomorphic to the Grass-
mannian Gr(k+ 1,Rn).

4.2 UNIPOTENT ELEMENTS.

DEFINITION 4.1 (rank-1 unipotent elements). We say that a unipotent ele-
ment u has rank 1 if rank(u− In)= 1. The point pu ∈P(kn) that is induced by
the Euclidean line {ux− x | x ∈Rn} is called the point of attraction of u. The
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(n− 2)–dimensional subspace Lu⊆P(kn) induced by the Euclidean (n− 1)–
dimensional space {x ∈Rn | ux= x} is called the fixed hyperplane of u. The set
of rank-1 unipotent elements in SLn(Z) is denoted by U .

The following two lemmas follow directly from the definition of U and are
stated for future reference.

LEMMA 4.2 (structure of unipotent elements). The set U can be divided into
equivalence classes in the following way: u, v∈U are equivalent if there exist nonzero
integers r and s such that us= vr . The map u �→ (pu, Lu) is a bijection between
equivalence classes in U and the set of pairs (p, L) where p∈P(kn) is a rational
point and L⊆Ln−2 is an (n− 2)–dimensional rational subspace that contains p.

LEMMA 4.3 (dynamics of unipotent elements). Let u∈U . For every ε > 0
and every δ > 0 there exists a constant c such that if m≥ c and v= um, then vk(x)∈
(pu)ε for every x ∈P(kn) \ (Lu)δ and every k �= 0. Note that the previous lemma
implies that pu= pv and Lu= Lv.

4.3 SCHOTTKY SYSTEMS.

DEFINITION 4.4. Assume that S is a nonempty subset of U and A⊆R are
closed subsets of P(kn). We say that S is a Schottky set with respect to the
attracting setA and the repelling setR and call the triple (S,A,R) a Schottky
system if for every u∈S there exist two positive numbers δu≥ εu such that the
following properties hold:

(1) uk(x)∈ (pu)εu for every x ∈P(kn) \ (Lu)δu and every k �= 0;
(2) If u �= v∈S then (pu)εu

⋂
(Lv)δv =∅;

(3)
⋃

u∈S(pu)εu ⊆A; and
(4)

⋃
u∈S(Lu)δu ⊆R.

DEFINITION 4.5. The Schottky system (S,A,R) is said to be profinitely
dense if S generates a profinitely dense subgroup of SLn(Z). We say that the
Schottky system (S+,A+,R+) contains the Schottky system (S,A,R) if S+ ⊇
S, A+ ⊇A, and R+ ⊇R.

LEMMA 4.6. Let (S,A,R) be a Schottky system. Assume that [p]ε ⋂A=∅ and
[L]δ ⋂R=∅ where δ≥ ε > 0 and p is a rational point that is continued in a ratio-
nal subspace L∈Ln−2. Denote A+ =A⋃[p]ε and R+ =R⋃[L]δ . Then there
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exists v∈U with p= pv, L= Lv such that (S+,A+,R+) is a Schottky system that
contains (S,A,R) where S+ :=S ⋃{v}.

Proof. Lemma 4.2 implies that there exists u∈U such that pu= p and Lu=
L. Lemma 4.3 implies that there exists m≥ 1 such that v := um satisfies the
required properties.

The following lemma is a version of the well-known ping pong lemma:

LEMMA 4.7 (ping pong). Let (S,A,R) be a Schottky system. Then the natural
homomorphism ∗u∈S〈u〉→ 〈S〉 is an isomorphism.

An important ingredient for our methods is the following beautiful result:

THEOREM 4.8 (Venkataramana [Ven87]).
Let � be a Zariski-dense subgroup of SLn(Z). Assume that u∈U ⋂

�, v∈� is
unipotent and 〈u, v〉�Z2. Then � has finite index in SLn(Z). In particular, if �
is profinitely dense, then �=SLn(Z).

Note that if u, v∈SLn(Z)⋂U and pu= pv, then (u− 1)(v− 1)= (v− 1)
(u− 1)= 0 and in particular uv= vu. Thus we get the following lemma:

LEMMA 4.9. Let g ∈SLn(Z) and u1, u2 ∈U . Assume that pu2 = gpu1 and Lu2 �=
gLu1 . Then 〈u1, g−1u2g〉�Z2.

LEMMA 4.10. Assume that g is an element of SLn(Z), (S,A,R) is a profinitely
dense Schottky system, δ≥ ε > 0, p1 and p2 are rational points, and L1 and L2 are
rational (n− 2)–dimensional subspaces such that the following conditions hold:

(1) ([p1]ε ⋃[p2]ε)⋂R=∅ and ([L1]δ ⋃[L2]δ)⋂A=∅;
(2) [p1]ε ⋂[L2]δ =∅ and [p2]ε ⋂[L1]δ =∅; and
(3) p1= gp2 and L1 �= gL2.

Denote A+ =A⋃[p1]ε ⋃[p2]ε and R+ =R⋃[L1]δ ⋃[L2]δ . Then there exists a
set S+ ⊇S such that (S+,A+,R+) is a Schottky system that contains (S,A,R)
and 〈S+, g〉=SLn(Z).

Proof. For every 1≤ i≤ 2 choose ui ∈U such that pui = pi and Lui = Li. Lemma
4.9 implies that 〈u1, g−1u2g〉�Z2. Lemma 4.3 implies that there exists m≥ 1
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such that (S+,A+,R+) is a Schottky system where v1 := um1 , v2 := um2 , and
S+ :=S ⋃{v1, v2}. Theorem 4.8 implies that 〈S+, g〉=SLn(Z).

DEFINITION 4.11. Let 1≤ k≤ n. A k-tuple (p1, . . . , pk) of projective points
is called generic if p1, . . . , pk span a (k− 1)–dimensional subspace of P(kn).
Note that the set of generic k-tuples of P(kn) is an open subset of the product
of k copies of the projective space; indeed it is even Zariski open.

THEOREM 4.12 (Conze-Guivarc’h, [CG00]).
Assume that n≥ 3 and that �≤SLn(R) is a lattice. Then � acts minimally on the
set of generic (n− 1)-tuples.

COROLLARY 4.13. Assume that n≥ 3 and �≤SLn(R) is a lattice. For every
1≤ i≤ 2, let pi ∈ Li ∈Ln−2. Then for every positive number ε and δ there exists
g ∈� such that gp1 ∈ (p2)ε and gL1 ∈ (L2)δ .

The proof of the following proposition is based on the proof of the main
result of [AGS14].

PROPOSITION 4.14. Assume that n≥ 3 and p∈ L∈Ln−2. Then for every δ≥
ε > 0 there exists a finite subset S ⊆U such that (S,A,R) is a profinitely dense
Schottky system where A :=[p]ε and R :=[L]δ .

We will make use of the following well-known lemma:

LEMMA 4.15. Let n≥ 3 and �≤SLn(Z) be a subgroup such that � projects on
SLn(Z/4Z) and SLn(Z/pZ) for every odd prime p. Then � is profinitely dense in
SLn(Z).

We sketch a proof that was shown to us by Chen Meiri:

Proof. For 1≤ i �= j≤ n and a∈Z, let Ei,j(a) be the matrix with 1 on the diag-
onal, a on the (i, j) entry, and zero elsewhere. For a, b,m∈Z we write a≡m b
to indicate that a is equal to b modulo m. For every prime p and every m≥ 1,
let πpm : SLn(Z)→SLn(Z/pmZ) be the reduction map. The following two facts
are straightforward:

FACT 4.16. Let p be an odd prime. If A≡p Ei,j(1), then for every m≥ 1,
Apm ≡pm+1 Ei,j(pm).
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FACT 4.17. If A≡4 Ei,j(2), then for every m≥ 1, A2m ≡2m+2 Ei,j(2
m+1).

CLAIM 4.18. Let p be an odd prime and S⊆SLn(Z). If πp(S)⊇πp({Ei,j(1) |
1≤ i �= j≤ n}), then for every m≥ 1, πpm(〈S〉)=SLn(Z/pmZ).

Proof. The proof is by induction on m. The case m= 1 is clear. Assume that
the claim holds for some m≥ 1. By 4.16,

πpm+1(〈S〉)⊇{πpm+1(Ei,j(pm)) | 1≤ i≤ j≤ n}.

The result follows since SLn(Z/pmZ)/SLn(Z/pm+1Z) is isomorphic to
sln(Z/pZ) and sln(Z/pZ) is spanned by {gei,j(1)g−1 | g ∈SLn(Z/pZ), 1≤ i �=
j≤ n}.

Arguing similarly, one obtains the following:

CLAIM 4.19. Let S⊆SLn(Z). If π4(S)⊇π4({Ei,j(1) | 1≤ i �= j≤ n}) then for
every m≥ 2, π2m(〈S〉)=SLn(Z/2mZ).

CLAIM 4.20. For all distinct primes q, p1, . . . , pk with q odd and every m≥ 1,
the group � contains an elementA such that πq(A)=πq(Ei,j(1)) and πpmr (A)=
πpmr (In) for every 1≤ r≤ k.

Proof. For every prime p, PSLn(Z/pZ) is simple. The Jordan-Holder theo-
rem implies that � projects onto SLn(Z/qZ)×∏

1≤r≤k PSLn(Z/prZ). Choose
1≤ l≤ n distinct from i and j. Then � contains an element B such that
πq(B)=πq(El,j(1)) and πpr (B)=±πpr (In) for every 1≤ r≤ k. Choose C ∈�
such that πq(C)=πq(Ei,l(1)). Denote D :=[C,B]. Then, πq(D)=πq(Ei,j(1))
and πpr (D)=πpr (In) for every 1≤ r≤ k. Choose t such that t(p1 · · · pk)m−1≡q
1. Then A=Dt is the required element.

In order to complete the proof of Lemma 4.15, note that in view of the con-
gruence subgroup property it is enough to prove that for every distinct prime
p1, . . . , pk and every m≥ 2, � projects onto

∏
1≤r≤k SLn(Z/pmr ). Claim 4.19

implies that for every m≥ 1, � projects onto SLn(Z/2mZ). The result follows
from Claims 4.18 and 4.20.

Proof of Proposition 4.14. We recall some facts about Zariski-dense and
profinitely dense subgroups. For a positive integer d≥ 2, let πd : SLn(Z)→
SLn(Z/dZ) be the modulo-d homomorphism and denote Kd := kerπd.
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(1) IfH≤SLn(Z) and πp(H)=SLn(Z/pZ) for some odd prime p, thenH is
Zariski dense [Wei96, Lub99].

(2) The strong approximation theorem of Weisfeiler [Wei84] and Nori
[Nor87] implies that if a subgroup H of SLn(Z) is Zariski dense, then
there exists some positive integer q such that πd(H)=SLn(Z/dZ) when-
ever gcd(q, d)= 1.

Fix δ≥ ε > 0 and set A :=[p]ε and R :=[L]δ . For every 1≤ i≤ 2n2− n,
fix a point pi belonging to an (n− 2)–dimensional subspace Li and positive
numbers δi≥ εi> 0 such that the following two conditions hold:

(1)
⋃

1≤i≤2n2−n(pi)εi ⊆A and
⋃

1≤i≤2n2−n(Li)δi ⊆R.
(2) For every 1≤ i �= j≤ 2n2− n, (pi)εi

⋂
(Lj)δj =∅.

For every 1≤ i �= j≤ n, let ei,j ∈SLn(Z) be the matrix with 1 on the diagonal
and on the (i, j) entry and zero elsewhere, and let e1, . . . , en2−n be an enumer-
ation of the ei,j’s. Denote the exponent of SLn(Z/3Z) by t. If g1, . . . , gn2−n ∈
K3 and k1, . . . , kn2−n are positive integers, then π3(H1)=SLn(Z/3Z), where
ui := gietki+1i g−1i and H1 :=〈ui | 1≤ i≤ n2− n〉. Note that for every u∈U and
g ∈SLn(Z), pgug−1 = gpu and Lgug−1 = gLu. Thus, Lemma 4.3 and Corollary 4.13
imply that it is possible to choose gi’s and ki’s such that

(3) uki (x)∈ (pi)εi for every 1≤ i≤ n2− n, every x �∈ (Li)δi , and every k �= 0.

In particular, {u1, . . . , un2−n} is a Schottky set with respect to A and R, which
generates a Zariski-dense subgroup H1.

The strong approximation theorem implies that there exists some positive
integer q such that πd(H1)=SLn(Z/dZ) whenever gcd(q, d)= 1. Denote the
exponent of SLn(Z/q2Z) by r. As before, there exist gn2−n+1, . . . , g2n2−2n ∈Kq2

and positive integers kn2−n+1, . . . , k2n2−2n such that the elements of the form
ui := gierki+1i g−1i satisfy

(4) πq2(H2)=SLn(Z/q2Z) whereH2 :=〈ui | n2− n+ 1≤ i≤ 2n2− 2n〉; and
(5) uki (x)∈ (pi)εi for every n2− n+ 1≤ i≤ 2n2− 2n, every x �∈ (Li)δi , and

every k �= 0.

Denote S :={u1, . . . , u2n2−2n}. Lemma 4.15 implies that πd(〈S〉)=SLn
(Z/dZ) for every d≥ 1. Thus, (S,A,R) is the required profinitely dense
Schottky system.
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Zorn’s lemma implies that every proper subgroupH of SLn(Z) is contained
in a maximal subgroup M (since SLn(Z) is finitely generated, an increasing
union of proper subgroups is a proper subgroup). If H is profinitely dense
then so isM; henceM should have infinite index. Thus, Theorem 1.18 follows
from the following proposition:

THEOREM 4.21.
Let n≥ 3. There exist 2ℵ0 infinite-index profinitely dense subgroups of SLn(Z) such
that the union of any two of them generates SLn(Z).

Proof. For every nonnegative integer i, fix a rational point pi belonging to a
rational (n− 2)–dimensional subspace Li and two numbers δi≥ εi> 0 such
that [pi]εi

⋂[Lj]δj =∅ for every i �= j. Let A andR be the closures of
⋃

i≥0(pi)εi
and

⋃
i≥0(Li)δi respectively. Proposition 4.14 implies that there exists a finite

subset S0⊆U such that (S0,A0,R0) is a profinitely dense Schottky system
where A0=[p0]ε0 and R0=[L0]δ0 . Lemmas 4.2 and 4.3 imply that for every
i≥ 1 there are ui,1, ui,2 ∈U such that

(1) pi= pui,1 = pui,2 and Lui,1 �= Lui,2 ⊆ (Li)δi (hence, 〈ui,1, ui,2〉∼=Z2); and
(2) uki,j(x)∈ (pi)ε for every 1≤ j≤ 2, every x �∈ (Li)δi , and every k �= 0.

For every function f from the positive integers to {0, 1}, the set Sf :=
S0

⋃{ui,f (i)|i≥1} is a Schottky set with respect to the attracting set A and
the repelling set R. If f and g are distinct functions, then Sf

⋃Sg contains
{ui,1, ui,2} for some i≥ 1, so Theorem 4.8 implies that 〈Sf

⋃Sg〉=SLn(Z).

5 Higher transitivity in negative curvature settings

Our goal in this section is to prove Theorem 1.25.

5.1 PRECISE PING PONG DYNAMICS. The proof will proceed via the
topological dynamics of the action of � on P :=P(k2) and on the limit set L=
L(�)⊂P (see Lemma 5.1). By a neighborhood of a point p we mean any set
containing p in its interior. By a fundamental domain for the action of � on
an open invariant subset Y ⊂P, we will always refer to an open subset O⊂Y
satisfying (a) γO

⋂
O=∅, ∀γ ∈� \ {1}, (b) Y ⊂⋃

γ∈� γO, and (c) ∂O has an
empty interior.

Let γ ∈SL2(k) be a very proximal element. In our current rank-1 setting
there is a new symmetry between the attracting and repelling neighborhoods:
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the repelling hyperplaneH
+
γ reduces to a single point and coincides with the

attracting point of the inverse v−γ . To emphasize this we slightly change the
notation. We say that
±γ ⊂P are attracting and repelling neighborhoods for a
very proximal element γ on P if they are closed, disjoint neighborhoods of the
attracting and repelling points v±γ ∈
±γ satisfying γ

(
L \
−)⊂
+, or equiv-

alently γ−1
(
L \
+)⊂
−. We will further call such attracting and repelling

neighborhoods precise if O= L \ (
+⋃

−) is a fundamental domain for the

action of the cyclic group 〈γ 〉 on L \ {v+, v−}.

LEMMA 5.1. Let k be a local field and �<SL2(k) a center-free unbounded
countable group. Assume � fixes neither a point nor a pair of points in P(k2).
Then

(1) � contains a very proximal element.
(2) There is a unique, minimal, closed, �-invariant subset L= L(�)⊂P(k2).

Moreover L(�) is perfect as a topological space.
(3) The collection {(v+γ , v−γ ) | γ ∈�, very proximal} is dense in L(�)2.
(4) If e �= γ ∈�, then Supp(γ )={x ∈ L(�) | γ x �= x} is an open dense subset

of L(�).

Proof. Since � is unbounded it contains elements with an unbounded ratio
between their singular values. Thus by Lemma 3.5, for every ε > 0, we can
arrange for g ∈� such that both g, g−1 are ε-contractions. Let h∈� be such
that hv+g �= v−g ; then hgn will be very proximal for a high enough value of n.

Let g be a very proximal element with attracting and repelling points
v±. We know that limn→∞ gn(x)= v+,∀x �= v−, and if hv− �= v−, then
limn→∞ gnh(v−)= v+. So L :=�(v+1 ) is contained in every closed �-invariant
set, proving the first sentence of (2).

Now let U± ⊂ L(�) be two (relatively) open subsets. As the action of �
on L(�) is clearly minimal we have elements h± ∈� such that h±v± ∈U±,
respectively. The element q= h+gn(h−)−1 will be very proximal with attract-
ing and repelling points v±q ∈U±. This proves (3). If q, g are two very proximal
elements with different attracting and repelling points, then {qnv+g | n∈Z} is
an infinite set of points contained in L(�). Thus L(�) is an infinite compact
minimal �-space and hence perfect. This concludes (2). Finally, (4) follows
from the fact that |Fix(γ )|< 3 for every e �= γ ∈�.

LEMMA 5.2. Any very proximal element γ ∈�≤SL2(k) admits precise attract-
ing and repelling neighborhoods 
±γ ⊂ L(�) in its action on L(�).
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Proof. Given attracting and repelling neighborhoods 
±1 ⊂ L(�), we replace

them by precise neighborhoods by setting
− :=
−1 and
+ := γ (L(�) \
−).
It is clear that 
± thus defined are closed and that the sets {γ kO | k∈Z} are
pairwise disjoint whereO= L(�) \ (
−⋃


+). Given any x ∈ L(�) \ {v+γ , v−γ },
let k∈Z be the largest number such that γ kx �∈
+. Then γ kx is neither in
+
nor in 
−, since γ k+1x ∈
+. It follows that γ kx ∈O.

In this rank-1 setting we can obtain a more precise version of the ping pong
lemma (3.6).

LEMMA 5.3 (precise ping pong lemma). Let S={γ1, γ2, . . . , γN}⊂SL2(k)
be a collection of N≥ 2 very proximal elements. Set �=〈S〉. Suppose that {
±i ⊂
P}Ni=1 are pairwise disjoint, precise attracting and repelling neighborhoods for the γi
action on P. Set 
i=
+i

⋃

−i and 
=⋃N

i=1
i and assume that O=P \
 is
nonempty. Then,

(1) S freely generates a free group �.
(2) There is a unique minimal closed �-invariant subset L= L(�)⊂P.
(3) There is a �-equivariant homeomorphism � : ∂�→ L.
(4) �O is open dense and L is nowhere dense in P.
(5) O is a fundamental domain for the action �� P \ L.

Proof. Statement (1) is the standard ping pong lemma, as proved, for example,
in [Gel15, proposition 3.4].

Let us denote by vi ± ∈P the attracting and repelling points for γi. We
know that limn→∞ γ n1 (x)= v+1 ,∀x �= v−1 , and limn→∞ γ n1 γ2(v

−
1 )= v+1 . Set L :=

�(v+1 ). Then L is contained in every closed �-invariant set proving (2). Note
that L contains every attracting or repelling point for every e �= δ ∈�.

We identify ∂� (the geometric boundary of the free group �) with infi-
nite reduced words in S�S−1. If ξ ∈ ∂�, let ξ(k)∈� denote its k-prefix.
Now define recursively a map � :� \ {e}→Cl(P) of � into the space of closed
subsets of X by setting �(s ε)=
ε

s for s∈S, ε ∈ {±1} and �(s εw)= s ε�(w)
whenever w∈� is represented by a reduced word that does not start with s−ε .
The ping pong dynamics yield two properties that are easy to verify: (a) �(w)⊂
�(v) whenever the reduced word representing v is a prefix of that representing
w and (b) γ �(w)⊂ �(γw) whenever γ ,w∈� and w is represented by a long
enough word in the generators.

Nowwe extend this definition to ∂� by setting �(ξ)=⋂
k∈N �(ξ(k)) for every

ξ ∈ ∂�. �(ξ) is non-empty by the finite intersection property. Using the metric
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contraction properties of the very proximal elements γ±i given in Lemma 3.5,
we verify that �(ξ(k))∈P is a single point. Thus � defines a point map, which
by abuse of notation we will still denote by � : ∂�→P. By property (a) above,
this map is injective; by property (b) it is � invariant. Assume that ξn→ ξ is
∂�. By the definition of the standard topology on ∂�, this just means that for
everym∈N them prefixes {ξn(m) | n∈Z} eventually stabilize and are equal to
ξ(m). Consequently, �(ξn)∈ �(ξ(m)) for every n large enough, which imme-
diately implies continuity; because both spaces are compact and metric � is a
homeomorphism onto its image. But the image is a minimal� set and hence
equal to L(�) by (2). This concludes the proof of (3).

SetOi=P \
i and note thatO=
⋂N

i=1Oi. By our assumptionOi is a funda-
mental domain for the action of 〈γi〉 on P \ {v±i }. Since the sets
i are disjoint,
O=⋂N

i=1Oi. It is clear from the ping pong dynamics that the � translates of
this set are disjoint. Thus to demonstrate (4) we take x ∈P \ L(�) and pro-
duce some element δ ∈� such that δx ∈O. We achieve this by an inductive
procedure setting x0 := x and defining a sequence of points x0, x1, . . .⊂�x0,
stopping on the first time we hit O. Thus if xm ∈O, we are finished. If not,
there is a unique index 1≤ im≤N such that xm �∈Oim . But xm �∈ {v±im}⊂ L(�)
so we can find some nm ∈Z so that γ−nmim

xm ∈Oim . This inductive procedure
must terminate after finitelymany steps. Indeed it is easy to verify by induction
that γ n00 γ

n1
1 . . . . . . γ

nm
m is a reduced word and that x ∈ �(γ n00 γ

n1
1 . . . . . . γ

nm
m ).

If the procedure never terminates we will obtain an infinite reduced word
ξ = γ n00 γ

n1
1 . . . . . . γ

nm
m . . .∈ ∂� with x ∈ �(ξ), contradicting our assumption

that x �∈ L(�).
Finally it follows directly from the above that �O is a dense open subset

contained in X \ L(�), proving (5).

5.2 POSSIBLE PARTIAL PERMUTATIONS. A possible partial permuta-
tion is a triplet of the form φ= (m,α,β) with m∈N, α= (a1, a2, . . . , am),
β = (b1, b2, . . . , bm)∈�m. A possible partial permutation is called special if
a1= b1= e. We will use the notation φ= (m(φ),α(φ),β(φ)) to emphasize the
data that is associated with a given possible partial permutation φ. Denote by
PPP=PPP(�) the set of all possible partial permutations of �, and by PPP0

the collection of special ones. A given φ ∈PPP is said to be legitimatemodulo
a subgroup �<� if both α,β give rise to m distinct elements

α�={αi� | 1≤ i≤m}, β�={βi� | 1≤ i≤m}⊂�/�.

Such a legitimate φ ∈PPP defines a partial map on �/�, which we denote
by the same letter φ :α�→β�, given by φ(αi�)=βi�, 1≤ i≤m. Finally if
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there exists an element γ ∈� such that the partial map φ is the restriction
of the quasiregular action γ :�/�→�/�, we will say that φ is realized by γ .
With this terminology in place note the following characterization of highly
transitive actions in terms of the properties of a stabilizer of a point.

LEMMA 5.4. Let �<� be a subgroup and ψ :�→Sym(�/�) the correspond-
ing transitive action. Then the following conditions are equivalent:

. ψ is highly transitive (i.e., has a dense image).. Every possible partial permutation φ ∈PPP(�) that is legitimate modulo �
is realized by some γ ∈�.. Every special possible partial permutation φ ∈PPP0(�) that is legitimate
modulo � is realized by some δ ∈�.

DEFINITION 5.5. A subgroup�<� satisfying the equivalent conditions of
Lemma 5.4 will be called co-highly transitive or co-ht for short.

5.3 HIGH TRANSITIVITY PROOFS.

Proof of Theorem 1.25. The equivalence of conditions (1), (2), and (3) follows
directly from Lemma 2.5 combined with the fact that every connected proper
algebraic subgroup of SL2 is solvable. That condition (4) implies condition (1)
follows from Proposition 2.1 combined with the fact that primitive groups of
both affine and diagonal type are never highly transitive. Indeed, it is proven
in that proposition that these groups are semidirect products of the from
��M and that their unique primitive action is the standard affine action
��M. If this action were to be highly transitive, it would follow that the
conjugation action of � on M \ {e} is highly transitive, which is absurd for
any group. Thus we remain with our main task for this section: to construct
a co-ht core-free subgroup � in � whenever �<SL2(k) is of almost simple
type. We construct such a subgroup that is infinitely generated Schottky com-
ing from a ping pong game on Y = L(�)⊂P(k2). The limit set of �, given by
Lemma 5.1(2).

Let PPP0={φ2,φ4,φ6, . . .} be an enumeration of all special possible partial
permutations of �. Let {γ1〈〈n1〉〉, γ3〈〈n3〉〉, γ5〈〈n5〉〉, . . .} be an enumeration of
all cosets of all the normal subgroups that are generated by a nontrivial con-
jugacy class. We construct, by induction on �, an increasing sequence of pre-
cise, spacious Schottky groups ��=〈δ1, δ2, . . . , δN�〉 subject to the following
properties:
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. (δ1, δ2, . . . , δN� ) is a precise spacious ping pong tuple on L(�).. For � even, if φ� is legitimate modulo ��−1, then it is realized modulo
�� (by some element of ��).. For � odd, ��

⋂
γ�〈〈n�〉〉 �= ∅.

Setting�=⋃
� ��=〈δ1, δ2, . . .〉, the condition imposed on the odd steps guar-

antees that � will be prodense, and in particular core-free. The even steps
ensure that it is co-ht, by virtue of Lemma 5.4. Hence the coset action���/�

will be faithful and highly transitive.
The odd steps of the induction were already treated, in greater generality,

in the proof of Theorem 3.16. We will not repeat the argument here but turn
directly to the even steps. Fix an even �. For the sake of better legibility, we will
often omit � from the notation. For example, we will denote φ=φ�= (m,α,β).
If φ=φ� is illegitimate modulo ��−1, then it would definitely be illegitimate
modulo any larger subgroup. In this case we just declare ��=��−1. From
here on we suppose that φ� is legitimate modulo ��−1.

By our induction assumption, ��−1 is generated by a precise ping pong
tuple ��−1=〈δ1, δ2, . . . , δN�−1〉. We will find γ ∈� such that

{
δ1, δ2, . . . ,

δN , γ , b−12 γ a2, . . . , b−1m γ am
}
still constitutes a precise ping pong tuple. Set-

ting �� to be the group generated by these elements, after renaming them
appropriately3, we verify that φn is now realized by γ ∈�� modulo ��.

Let {
±i }i=1...N�−1 be precise attracting and repelling points for the genera-

tors of��−1 andO= L(�) \⋃N�−1
i=1 (


−
i ∪
+i ) the fundamental domain, given

by Lemma 5.3, for the action ��−1 � L(�) \ L(��−1). Since, by assumption,
��−1 is spacious Schottky inside�, the set L(�) \ L(��−1) is nonempty. Hence
by item (4) in that same lemma, O⊂ L(�) is relatively open and dense.

Consider the sets

R=
m⋂
i=1

a−1i �O,A=
m⋂
i=1

b−1i �O⊂ L(�).

By the Baire category theorem both sets are open and dense in L(�). In
particular we can find two points a∈A, r ∈R. Let

{θj | 1≤ j≤m}, {ηj | 1≤ j≤m}
be the unique elements of ��−1 satisfying θ−1j a−1j r ∈O and η−1j b−1j
a∈O, ∀1≤ j≤m. Thus the sets

3That is, setting δN�−1+1= γ , δN�−1+2= b−12 γ a2, . . . , δN�−1+m = b−1m γ am and setting N�=
N�−1+m.
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R1 :={x ∈R | θ−1j a−1j x ∈O, ∀1≤ j≤m} and
A1 :={y∈A | η−1j b−1j y∈O, ∀1≤ j≤m}

are open and nonempty.
By Lemma 5.1(3) we can find a very proximal element γ ∈� with repelling

and attracting points (v−, v+) subject to the following open conditions:

(1) v− ∈R1, v+ ∈A1

(2) v− ∈Supp(akθkθ−1j a−1j ) and v+ ∈Supp(bkηkη−1j b−1j ), ∀1≤ j �= k≤m
(3) bkηkθ

−1
j a−1j v− �= v+, ∀1≤ j, k≤m

For the second conditions we used Lemma 5.1(3) together with our assump-
tion that φ is legitimate modulo ��−1 to ensure that akθkθ

−1
j a−1j �= e and

bkηkη
−1
j b−1j �= e.

The above choices guarantee that

{rj := θ−1j a−1j γ−, aj := η−1j b−1j γ+ | 1≤ j≤m}

are 2m distinct points inside O. We propose a precise ping pong generating
set for �� of the form

{
δ1, δ2, . . . , δN , γ k, (b2η2)−1γ k(a2θ2), . . . , (bmηm)−1γ k(amθm)

}
.

If we can adjust the parameter k so that these are indeed a precise ping
pong tuple, all the desired properties hold. In particular γ k ∈� would be the
element realizing φ.

But if 
± are repelling and attracting neighborhoods for γ k, then

(5.1) rj ∈ θ−1j a−1j 
−, aj ∈ η−1j b−1j 
+

serve as repelling and attracting neighborhoods for (bjηj)−1γ k(ajθj). By setting
k large enough we can make the neighborhoods 
± arbitrarily small. Using
Lemma 5.2 we can impose the condition that these sets are precise pairwise
disjoint and contained in O. This completes the proof of the theorem.

6 Groups that are not linear-like

The proof of Theorem 1.2 started with the construction of a profinitely dense
subgroup, which then passed to a maximal subgroup containing it. We
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have seen by now many variants on this idea. One common feature of all
constructions described so far is that the profinitely dense subgroup is free
and constructed by various ping pong games á la Tits. Consequently all prim-
itive groups that we have encountered so far are large in the sense that they
contain a nonabelian free subgroup. One notable exception is some of the
primitive groups of affine and diagonal type that we encountered.

This is a feature of the methods we have used so far. There are many prim-
itive groups of almost simple type that do not contain free subgroups. In fact
there are even linear examples. Take the group PSLn(K), whereK is any count-
able locally finite field. One could take K =Fp to be the algebraic closure of Fp.
These are all primitive groups of almost simple type, even though they are
locally finite. In the case n= 2 the group PSLn(K) is even 3-transitive by virtue
of its standard action on the projective line P(K). The goal of this section is to
give a short survey, devoid of proofs, on some other results that are of different
nature than the ones considered in previous sections.

6.1 SOME GROUPS OF SUBEXPONENTIAL GROWTH. It is easy to
verify that the Grigorchuk group G is of almost simple type, though it is not
stably so in the sense thatmany of its finite index subgroups fail to be of almost
simple type. In factGn<G, the stabilizer inG of the nth level of the tree, splits
as the direct product of 2n subgroups.

Grigorchuk asked whether all maximal subgroups of the first Grig-
orchuk group are of finite index. This question was answered positively by
Pervova:

THEOREM 6.1 ([Per05]).
Every maximal subgroup of the Grigorchuk group is of finite index.

Thus we have an example of a residually finite, finitely generated group
of almost simple type admitting no maximal subgroup of infinite index. The
results of Pervova were later generalized in [AKT16] to encompass a much
larger family of groups. However, there are groups of subexponential growth
that admit infinite index maximal subgroups, as shown by the following
remarkable theorem of Francoeur and Garrido. The theorem deals with a fam-
ily of groups that they coin Šunić groups, as they were defined by Zoran Šunić
in [Š07]. We refer the reader to one of these articles for their precise defini-
tion, remarking here only that it is a family of finitely generated groups of
subexponential growth acting on the binary rooted tree.
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THEOREM 6.2 ([FG18]).
Let G be a nontorsion Šunić group that is not isomorphic to the infinite dihedral
group, acting on the rooted binary tree. Then G admits countably many maximal
subgroups, out of which only finitely many are of finite index.

Other examples of groups admitting countably many maximal subgroups
of infinite index include Tarski monsters (that have only countably many sub-
groups to begin with) as well as some examples of affine type constructed by
Hall in [Hal59].

6.2 THOMPSON’S GROUP F. The abelianization F/F′ of the Thompson
group is isomorphic to Z2. Any nontrivial normal subgroup of F contains the
commutator; thus F is clearly of almost simple type. A subgroup �<F is
profinitely dense if and only if it maps onto the abelianization, so it is not
surprising that F contains many infinite index maximal subgroups.

In [Sav15] and [Sav10] Savchuk proves that all the orbits of the natural action
of F on the interval (0, 1) are primitive. Otherwise put, Fv<F is a maximal
subgroup of infinite index for every v∈ (0, 1). A notable fact is that many of
these maximal subgroups are even finitely generated. Savchuk shows in par-
ticular that Fv is finitely generated whenever v∈Z[1/2] and that it fails to be
finitely generated whenever v is irrational.

All of these facts are not difficult to verify. Svachuk asked whether Thomp-
son’s group F containsmaximal infinite index subgroups that fail to fix a point.
In a beautiful paper, Golan and Sapir [GS17] answer this question positively
by constructing many very interesting examples of maximal subgroups. In
particular they prove the following:

THEOREM 6.3 ([GS17]).
The Jones group �F<F, constructed in [Jon17], is maximal of infinite index.

This is the same group constructed by Vaughn Jones for establishing con-
nections between link theory and Thompson’s group F. It was shown by
Brown in [Bro87] that the group �F is isomorphic to the triadic version of
the group F itself—namely, the group of all orientation preserving homeo-
morphisms of the interval [0, 1] that are piecewise linear with slopes that are
powers of three and finitely many nondifferentiability points, all of which are
contained in Z[1/3].

In addition to this one example, which is of particular interest due to the
fact that this group is finitely generated and of independent interest, Golan
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and Sapir provide general methods of constructing a large variety of infinite
index maximal subgroups in F.

6.3 LOCALLY FINITE SIMPLE GROUPS. By a famous theoremof Schur,
every periodic linear group is locally finite. Thus, in view of Theorem 1.8 and
the discussion following it, among the countable linear groups, locally finite
groups of almost simple type are the only ones for which Question 1.4 is still
open. Within this family, locally finite simple groups constitute an interesting
special case.

In the emerging theory of locally finite simple groups (see, e.g., [HSBB95]),
linear groups also play a special role. In fact it is quite customary in this sub-
ject to sort the locally finite simple groups into four families of increasing
complexity: (a) finite, (b) linear, (c) finitary linear, and (d) the general case:

DEFINITION 6.4. A group � is called finitary linear if there exists a vector
space V over a field F and an embedding �<GL(V) with the property that
Im(γ − I) is a finite-dimensional subspace of V for every γ ∈�.

In view of all this we find the following theorem of Meierfrankenfeld
extremely interesting. His theorem gives a very strong solution to Question
1.4 exactly in the most complicated class of locally finite simple groups:

THEOREM 6.5 ([Mei95, theorem B]).
Let � be a locally finite simple group that is not finitary linear. Then every finite
subgroup D<� is contained in some proper maximal subgroup.

Note that since � here is simple, every maximal subgroup is automatically
core-free.

6.4 NONESSENTIALLY FREE HOMEOMORPHISM GROUPS OF THE
CIRCLE AND OF ∂T . Here we wish to highlight a very recent theorem of
Le Boudec and Matte Bon. We view this theorem as one of the only nontrivial
obstructions currently known to a group being highly transitive.

THEOREM 6.6 ([LBMB]).
Let �<Homeo(S1). Assume that the action of � on S1 is proximal, minimal, and
not topologically free. Assume that distinct points in S1 have distinct stabilizers.
Then every faithful, 3-transitive action of G on a set is conjugate to its given action
on one of the orbits within S1.
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In the same paper the authors prove a very similar theorem for group
actions on a regular locally finite tree. This enables them to bound the transi-
tivity degree of many groups. For example, for the natural index two extension
T± of Thompson’s group T (generated by T and a reflection of the circle), they
show that it admits a 3-transitive action on a set (the set of dyadic points on
the circle) but does not admit a 4-transitive action.
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TEMPERED HOMOGENEOUS SPACES II

Dedicated to G. Margulis

Abstract. Let G be a connected semisimple Lie group with finite center and H
a connected closed subgroup. We establish a geometric criterion that detects
whether the representation of G in L2(G/H) is tempered.

1 Introduction

This essay is the sequel to our paper [3] dealing with harmonic analysis on
homogeneous spaces G/H of semisimple Lie groups G. In the first paper,
we studied the regular representation of G in L2(G/H) when both G and H
are semisimple groups. The main result of [3] is a geometric criterion that
detects whether the representation of G in L2(G/H) is tempered. The aim of
the present paper is to extend this geometric criterion to the whole generality
thatH is an arbitrary closed connected subgroup.
In this introduction we will discuss the following questions:

. Why to care about tempered representations of semisimple Lie groups?. What is our temperedness criterion for the homogeneous space G/H?. What are the main ideas and ingredients in the proof of this criterion?
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1.1 TEMPERED REPRESENTATIONS. Let G be a semisimple Lie group
with finite center and K a maximal compact subgroup of G. Understanding
unitary representations ofG inHilbert spaces is amajor topic of research since
the beginning of the 20th century. Its history includes the works of Cartan,
Weyl, Gelfand, Harish-Chandra, Helgason, Langlands, Vogan, and many oth-
ers. Themainmotivations came fromquantumphysics, analysis, and number
theory.
Among unitary representations of G a smaller class called tempered repre-

sentations plays a crucial role. Let us recall why they are so useful.

. By definition tempered representations are those that are weakly con-
tained in the regular representation of G in L2(G). Therefore a unitary
representation ofG is tempered if and only if its disintegration into irre-
ducible unitary representations involves only tempered representations.. Tempered representations are those for which K-finite matrix coeffi-
cients belong to L2+ε(G) for all ε > 0. This definition does not look so
enlightening, but equivalently these matrix coefficients are bounded by
an explicit multiple of an explicit spherical function �; see [8].. Classification of irreducible tempered representations of G was accom-
plished byKnapp andZuckerman in [16], while nontempered irreducible
unitary representations have not yet been completely understood.. Tempered representations are a cornerstone of the Langlands classifi-
cation of admissible irreducible representations of G in [20]; see also
[15].. Irreducible tempered representations π can be characterized in term of
the leading exponents: these exponents must be a positive linear combi-
nation of negative roots; see [15, chapter 8].. One can also characterize them in terms of the distribution character of π :
this charactermust be a tempered distribution onG; see [15, Chapter 12].. Tempered representations are closed under induction, restriction, tensor
product, and direct integral of unitary representations.. The Kirilov-Kostant orbit methods work fairly well for tempered repre-
sentations; see [13], for example.

1.2 THE REGULAR REPRESENTATION IN L2(G/H). One of themost
studied representations of G is the natural unitary representations of G in
L2(G/H) where H is a closed subgroup of G. When H is unimodular, the
space G/H is implicitly endowed with a G-invariant measure and G acts
naturally by translation on L2 functions. When H is not assumed to be
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unimodular, the representation ofG in L2(G/H)might involve an extra factor
(see Equation 2.2) and is nothing but the (unitarily) induced representation
IndGH(1).
The disintegration of L2(G/H) is sometimes called the Plancherel formula

or L2-harmonic analysis on G/H.

. For instance, Harish-Chandra’s celebrated Plancherel formula [12] deals
with the case where H={e}.. Another case that attracted a lot of interest in the late 20th century is
the case where G/H is a symmetric space for which the disintegration
of L2(G/H) is proved up to the classification of (singular) discrete series
representations for symmetric spaces [9, 27].. Even when H is not unimodular, the regular representation of G in
L2(G/H) is still interesting. For instance, when H is a parabolic sub-
group ofG, this representation is known to be a finite sum of irreducible
representations of G. This follows from Bruhat’s theory for a minimal
parabolic and is due to Harish-Chandra in general (see [15, proposition
8.4]).. The decomposition of the tensor product (fusion rule) is sometimes
equivalent to the Plancherel formula forG/H whereH is not necessarily
unimodular (see section 5.3).

We refer to [3, introduction] for more remarks on the historical develop-
ments of the disintegration of the regular representation of G in L2(G/H).
Getting a priori information on this disintegration was one of the main moti-
vations in our search for such a general criterion. To the best of our knowledge
there does not yet exist any general theorem involving simultaneously all these
regular representations in L2(G/H) with H connected. Our temperedness
criterion below seems to be the first one in that direction.
In this series of papers, we address the following question: What kind of

unitary representations occur in the disintegration of L2(G/H)? More precisely,
when are all of them tempered?
As noted in [3], this question has not been completely solved even for reduc-

tive symmetric spaces G/H because the Plancherel formula involves a deli-
cate algebraic problem on discrete series representations for (sub)symmetric
spaces with singular infinitesimal characters (see Example 5.5).
We give a geometric necessary and sufficient condition on G/H under

which all these irreducible unitary representations in the Plancherel formula
are tempered, or equivalently under which the regular representation of G in
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L2(G/H) is tempered. This criterion was first discovered in [3] in the special
case whereH is a reductive subgroup of G.
In the present essay we extend this criterion to any closed subgroupH with

finitely many connected components.
Formally the extended criterion is exactly the same as forH reductive. Here

is a short way to state our criterion (see Theorem 2.9).

(1.1) L2(G/H) is tempered ⇐⇒ ρh(Y)≤ ρg/h(Y) for all Y ∈h.

Here g and h are the Lie algebras of G and H, and, for an h-module V and
Y ∈h, the quantity ρV (Y) is half the sum of the absolute values of the real part
of the eigenvalues of Y in V (see section 2.3). We note that our criterion holds
beyond the (real) spherical case ([18]; cf. [28] for a non-Archimedean field) so
that the disintegration of L2(G/H)may involve infinite multiplicities. We will
give an explicit example of calculations of functions ρV in Corollary 5.8.
Our criterion in Equation (1.1) also detects whether L2(X) is tempered for

any real algebraic G-variety X : L2(X) is unitarily equivalent to the direct inte-
gral of the regular representations for generic orbits, and one just has to check
(1.1) at almost all orbits.

1.3 STRATEGY OF PROOF. The proof of Equation (1.1) relies on the uni-
form decay of matrix coefficients as in [3], but the main techniques are
different.
To avoid any confusion we will sometimes say G-tempered for tempered as a

representation of G.
Dealing with nonunimodular subgroups H and dealing with the finitely

many components of H will not be a problem because we prove in Corollary
3.3 the equivalence

L2(G/H) is tempered ⇐⇒ L2(G/[H,H]) is tempered
⇐⇒ L2(G/He) is tempered,

where [H,H] is the derived subgroup, which is always unimodular, and where
He is the identity component ofH that is always connected! Therefore the tem-
peredness of L2(G/H) depends only on h and we can assume that h=[h,h].
Then the homogeneous space G/H admits a G-invariant Radon measure vol
and, according to Corollary 2.7, the temperedness of L2(G/H)means that the
compact subsets C of G/H intersect their translates gC in a set whose volume
is bounded by a multiple of the Harish-Chandra function �:

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



tempered homogeneous spaces ii / 217

(1.2) vol(g C∩C)≤MC �(g) for all g in G.

To prove the direct implication, L2(G/H) tempered =⇒ ρh≤ ρg/h, we will
just estimate in Proposition 3.7 the volume in Equation (1.2) whenC is a small
neighborhood of the base point of the space G/H.
As in [3], the converse implication, ρh≤ ρg/h =⇒ L2(G/H) tempered, is

much harder to prove. Using again Corollary 3.3, we can also assume that both
G andH are Zariski connected algebraic groups. We proceed by induction on
the dimension of G. We introduce in Lemma-Definition 4.1 two intermediate
subgroups F and P:

(1.3) H⊂F⊂P⊂G.

The group P is a parabolic subgroup of minimal dimension that contains
H. We write P= LU and H=SV , where U is the unipotent radical of P, L
is a maximal reductive subgroup of P, V ⊂U is the unipotent radical of H,
and S⊂ L is a maximal semisimple subgroup of H. The group F is given by
F :=SU.
When P is equal to G, the group H is semisimple and we apply the main

result of [3]. We now assume that P is a proper parabolic subgroup of G.
Let Z be the homogeneous space Z=F/H�U/V endowed with the natural
F action. We denote

. by τ the regular representation of F in L2(F/H),. by π the regular representation of P in L2(P/H), and. by� the regular representation of G in L2(G/H).

Let Z0 be the same space Z0=U/V but endowed with another F action,
where U acts trivially and where S acts by conjugation.
We denote

. by τ0 the regular representation of F in L2(Z0),. by π0 the regular representation of P in L2(P×F Z0), and. by�0 the regular representation of G in L2(G×F Z0).

Note that both theG-manifoldsX :=G/H�G×F Z andX0 :=G×F Z0 have
aG-equivariant fiber bundle structure over the same spaceG/F with fiber Z�
Z0, but the unitary representations of G in L2(X) and in L2(X0) are different.
We want to study the representation of G in L2(X), whereas the induction
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hypothesis will give us information on L2(X0). This is why we will need to
compare in Equation (1.5) the volumes in the fibers Z and Z0.
More precisely, the induction hypothesis combined with a reformulation

of our criterion in Proposition 3.8 and a simple computation in Lemma 4.2
tell us that the representation π is L-tempered. If we knew that π were a P-
tempered representation it would be easy to conclude, using Lemma 2.3, that
the representation �= IndGPπ is G-tempered. However, what we know is the
temperedness of π0 and Ind

G
Pπ0, and Corollary 2.7 gives us, for any compact

subset C0 of G×F Z0, a bound:

(1.4) vol(g C0 ∩C0)≤MC0 �(g) for all g in G.

In order to deduce Equation (1.2) from (1.4), we first focus on the representa-
tions τ in L2(Z) and τ0 in L2(Z0). We prove in Proposition 4.4 that for every
compact subset D of the fiber Z=F/H, a uniform estimate of vol(fD∩D)
with respect to translates of the element f ∈F by elements of the unipotent
subgroup U. Namely, there exists a compact subset D0⊂Z0 such that

(1.5) vol(fD∩D)≤ vol(fD0 ∩D0) for all f in F.

Since �= IndGF τ and �0= IndGF τ0, we deduce from (1.5) in Proposition 4.9
that for every compact subset C⊂G/H�G×F Z, there exists a compact
subset C0⊂G×F Z0 such that

(1.6) vol(g C∩C)≤ vol(g C0 ∩C0) for all g in G.

And (1.2) follows from (1.4) and (1.6). This ends the sketch of the proof of the
criterion (1.1). The details are explained in subsequent sections.

1.4 ORGANIZATION. Here is the organization of the paper.
In section 2 we recall the basic definition and state precisely our criterion.
In section 3 we collect the parts of the proof that do not involve the inter-

mediate parabolic subgroup P. It includes the proof for the necessity of the
inequality ρh≤ ρg/h and a formulation of the temperedness criterion for

IndGH(L
2(V)) (Theorem 3.6).

In section 4 we introduce the intermediate subgroups F and P in Equa-
tion (1.3) and detail how they work to conclude the proof for the hard part—
that is, the proof that the inequality ρh≤ ρg/h is sufficient.
In section 5 we give a few examples that illustrate the efficiency of our

criterion.
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1.5 DEDICATION. The notion of tempered representations plays an impor-
tant role in quite a few papers of G. Margulis. As we have seen tempered
representations are one of themain tools to obtain uniform estimates for coef-
ficients of unitary representations. Margulis found many very different and
very ingenious applications of these uniform estimates all along his math-
ematical career—for instance, to the construction of expanders in [22], to
the nonexistence of compact quotients of homogeneous spaces in [23], to a
pointwise ergodic theorem for probability measure preserving actions of
semisimple Lie groups in [24], to a local rigidity phenomenon for actions
of higher rank lattices in [11], to an effective rate of equidistribution of closed
orbits of semisimple Lie groups in finite volume spaces in [10], to a uni-
form estimate on the smallest integral base change between two equivalent
nonsingular integral quadratic forms in [21], and more.
One inspiration for Theorem 2.9 came from lemma 6.5.4 of [10], which

says that for a connected semisimple Lie group G with no compact factor and
a proper closed connected subgroup H, the representation of G in L2(G/H)
always has a spectral gap
We are proud to dedicate this paper to G. Margulis.

2 Definition and main result

We collect in this chapter a fewwell-known facts on tempered representations,
on almost L2 representations, and on uniform decay of matrix coefficients.

2.1 REGULAR AND INDUCED REPRESENTATIONS. Wefirst recall the
construction of the regular representations and the induced representations.

2.1.1 Regular representations

Let G be a separable locally compact group, X be a separable locally compact
space endowed with a continuous action of G, and νX be a Radon measure
on X .
When theG action preserves the measure νX , one has a natural unitary rep-

resentation λX of G in the Hilbert space L2(X) := L2(X , νX ) called the regular
representation and given by

(λX (g)ϕ)(x)=ϕ(g−1x) for g in G, ϕ in L2(X) and x in X .

When the class of the measure νX isG-invariant, one still has a natural uni-
tary representation π of G in the Hilbert space L2(X) := L2(X , νX ) also called
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the regular representation. The formula will involve the Radon-Nikodym co-
cycle c(g, x), which is defined for all g in G and for νX -almost all x in X by the
equality

(2.1) g∗νX = c(g−1, x) νX .

The regular representation of G in L2(X) is then given by

(λX (g)ϕ)(x)= c(g−1, x)1/2 ϕ(g−1x) for g in G,ϕ in L2(X),(2.2)

and x in X .

2.1.2 Induced representations

Assume now that X is a homogeneous space G/H, where H is a closed sub-
group ofG. One can choose aG-invariant Radon measure onG/H if and only
if the modular function of G coincides on H with that ofH,

�G(h)=�H(h) for all h inH.

In general there always exists a measure ν onG/H whose class isG-invariant,
and the regular representation ofG in L2(G/H) is the induced representation
of the trivial representation of H,

λG/H = IndGH(1).

More generally, for any unitary representation π of H, one defines the
(unitarily) induced representation � := IndGH(π) in the following way. The
projection

G−→G/H

is a principal bundle with structure group H. We fix a G-equivariant Borel
measurable trivialization of this principal bundle

(2.3) G�G/H×H,

which sends relatively compact subsets to relatively compact subsets. The
action of G by left multiplication through this trivialization can be read as

g (x, h)= (gx, σ(g, x)h) for all g ∈G, x ∈G/H, and h∈H,

where σ : G×G/H→H is a Borel measurable cocycle.
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The space of the representation � is the space H� := L2(G/H;Hπ ) of Hπ -
valued L2 functions onG/H, and the action ofG is given, for g inG, ψ inH�,
x in G/H, by

(�(g)ψ)(x)= c(g−1, x)1/2 π(σ(g, g−1x))ψ(g−1x),

where c is again the Radon-Nikodym cocycle (2.1).

2.1.3 Induced actions

When the closed subgroupH ofG is acting continuously on a locally compact
space Z, one can define the induced action of G on the fibered space

G×H Z := (G×Z)/H,

where the quotient is taken for the right H-action (g, z)h= (gh, h−1z) and
where the G-action is given by g0(g, z)= (g0g, z), for all g0, g in G, z in Z,
and h in H. Using Equation (2.3), one gets a G-equivariant Borel measurable
trivialization of this fibered space

G×H Z�G/H×Z.

Through this identification, the G-action is given by

g(x, z)= (gx, σ(g, x)z) for all g ∈G, x ∈G/H, and z∈Z.

When the H-action preserves the class of a measure νZ on Z, the G-action
preserves the class of the measure νX := ν⊗ νZ . In this case the regular
representation of G in L2(G×H Z) is unitarily equivalent to the induced
representation of the regular representation ofH in Z:

(2.4) L2(G×H Z)� IndGH(L2(Z)) as unitary representations of G.

2.2 DECAY OF MATRIX COEFFICIENTS. We now recall the control of
thematrix coefficients of tempered representations of a semisimple Lie group.

2.2.1 Tempered representations

Let G be a locally compact group and π be a unitary representation of G
in a Hilbert space Hπ . All representations π of G will be assumed to be
continuous—that is, the map G→Hπ , g �→π(g)v is continuous for all v in
Hπ . The notion of tempered representation is due to Harish-Chandra.
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DEFINITION 2.1. The unitary representation π is said to be tempered or
G-tempered if π is weakly contained in the regular representation λG of
G in L2(G)—that is, if every matrix coefficient of π is a uniform limit on
every compact subset of G of a sequence of sums of matrix coefficients of λG.

We refer to [1, appendix F] for more details on weak containments.

REMARK 2.2. The notion of temperedness is stable by passage to a finite
index subgroup G′ of G—that is, a unitary representation π of G is tempered
if and only if π is tempered as a representation of G′.

This notion is also preserved by induction.

LEMMA 2.3. Let G be a locally compact group, H be a closed subgroup of G,
and π be a unitary representation of H. If π is H-tempered, then the induced
representation IndGH(π) is G-tempered.

Proof. Since the H-representation π is weakly contained in the regular represen-
tation λH of H, the G-representation IndGH(π) is weakly contained in the regular
representation λG= IndGH(λH) and hence is G-tempered.

REMARK 2.4. (1) When G is amenable, according to the Hulanicki-Reiter
theorem in [1, theorem G.3.2], every unitary representation of G is tempered.
(2) When G is a product of two closed subgroups G=SZ with Z central, a
unitary representation π of G is G-tempered if and only if it is S-tempered. Indeed
the regular representation ofG in L2(G) is clearly S-tempered. Conversely, we
want to prove that any unitary representation π ofG that is S-tempered is also
G-tempered. We can assume that π is G-irreducible. The action of Z in this
representation is given by a unitary character χ , and π is weakly contained
in the representation IndGZχ . Since χ is Z-tempered, this representation is
G-tempered.

2.2.2 Matrix coefficients

Let now G be a semisimple Lie group (always implicitly assumed to be real
Lie groups with finitely many connected components and whose identity
component has finite center).
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DEFINITION 2.5. A unitary representation π of G is said to be almost L2

if there exists a dense subset D⊂Hπ for which the matrix coefficients g �→
〈π(g)v1, v2〉 are in L2+ε(G) for all ε > 0 and all v1, v2 in D.

We fix a maximal compact subgroup K of G. Let � be the Harish-Chandra
spherical function on G (see [8]). By definition, � is the matrix coefficient of a
normalized K-invariant vector v0 of the spherical unitary principal represen-
tation π0= IndGPmin(1Pmin), where Pmin is a minimal parabolic subgroup of G.
That is,

(2.5) �(g)=〈π0(g)v0, v0〉 for all g in G.
Since Pmin is amenable, the representation π0 is G-tempered. Moreover, the
function� belongs to L2+ε(G) for all ε > 0 (see [15, proposition 7.15]). We will
need the following much more precise version of this fact.

PROPOSITION 2.6 (Cowling, Haagerup, Howe [8]). Let G be a connected
semisimple Lie group with finite center and π be a unitary representation of G. The
following are equivalent:

(1) The representation π is tempered.
(2) The representation π is almost L2.
(3) For every K-finite vectors v, w inHπ , and for every g in G, one has

|〈π(g)v,w〉| ≤�(g)‖v‖‖w‖(dim〈Kv〉)1/2(dim〈Kw〉)1/2.

See [8, theorems 1 and 2 and corollary]. See also [14], [25], and [26] for other
applications of Proposition 2.6.
For regular representations this proposition becomes the following:

COROLLARY 2.7. Let G be a connected semisimple Lie group with finite center
and X a locally compact space endowed with a continuous action of G preserving
a Radon measure vol. The regular representation of G in L2(X) is tempered if and
only if, for any compact subset C of X, the function g �→ vol(g C∩C) belongs to
L2+ε(G) for all ε > 0.
In this case, when C is K-invariant, one has

(2.6) vol(g C∩C)≤ vol(C)�(g) for all g in G.

Recall that the notation g C denotes the set g C :={gx ∈X : x ∈C}.
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Proof. Note that a compact subset C of X is always included in a K-invariant
compact subset C0, that the function 1C0 is a K-invariant vector in L

2(X), and
that

〈λX (g)1C0 , 1C0 〉= vol(g C0 ∩C0) for all g in G.
Note also that the functions 1C span a dense subspace in L2(X).

2.3 THE FUNCTION ρV . We now define the functions ρh and ρg/h occur-
ing in the temperedness criterion, explain how to compute them and empha-
size their geometric meaning.
When H is a Lie group we denote by the corresponding gothic letter h the

Lie algebra ofH. LetV be a real finite-dimensional representation ofH. For an
element Y in h, we consider the eigenvalues of Y in V (more precisely in the
complexification VC), and we denote by V+, V0, and V− the largest vector sub-
spaces of V on which the real part of all the eigenvalues of Y are respectively
positive, zero, and negative. One has the decomposition V =V+ ⊕V0⊕V−.
We define the nonnegative functions ρ+V and ρV on h by

ρ+V (Y) :=Tr(Y|V+),
ρV (Y) := 1

2 ρ
+
V (Y)+ 1

2 ρ
+
V (−Y),

where Tr denotes the trace of a matrix. Note that one has the equality
Tr(Y|V−)=−ρ+V (−Y).
By definition, one always has the equality ρV (−Y)= ρV (Y).Moreover, when

the action ofH on V is volume preserving, one has the equality

ρV (Y)= ρ+V (Y).

The function called ρV in [3, section 3.1] is what we call now ρ+V . It coincides
with our ρV since in [3] we only need to consider volume preserving actions.
Since this function ρV : h→R≥0 plays a crucial role in our criterion, we

begin by a few trivial but useful comments, which make it easy to compute
when dealing with examples. To simplify these comments, we assume thatH
is an algebraic subgroup of GL(V). Let a=ah be a maximal split abelian Lie

subalgebra of h—that is, the Lie subalgebra of a maximal split torus A of H.
Any element Y in h admits a unique Jordan decomposition Y =Ye+Yh+Yn
as a sum of three commuting elements of h, where Ye is a semisimple matrix
with imaginary eigenvalues, Yh is a semisimple matrix with real eigenvalues,
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and Yn is a nilpotent matrix (see, for instance, [19, 2.1]). Moreover there exists
an element λY in a that isH conjugate to Yh. Then one has the equality

ρV (Y)= ρV (λY ) for all Y in h.

This equality tells us that the function ρV is completely determined by its
restriction to a.
This function ρV : a→R≥0 is continuous and is piecewise linear—that is,

there exist finitely many convex polyhedral cones that cover a and on which
ρV is linear. Indeed, let PV be the set of weights of a in V and, for all α in PV ,
let mα := dimVα be the dimension of the corresponding weight space. Then
one has the equality

(2.7) ρV (Y)= 1
2

∑
α∈PV

mα|α(Y)| for all Y in a.

For example, when h is semisimple and V =h via the adjoint action, our
function ρh is equal on each positive Weyl chamber a+ of a to the sum of
the corresponding positive roots—that is, to twice the usual ρ linear form.
For other representations V , the maximal convex polyhedral cones on which
ρV is linear are most often much smaller than the Weyl chambers. Explicit
computations of the functions ρV will be given in section 5.

The geometric meaning of this function ρV is given by the following
elementary Lemma as in [3, proposition 3.6].

LEMMA 2.8. Let V =R
d. Let a be an abelian split Lie subalgebra of End(V) and

C be a compact neighborhood of 0 in V. Then there exist constants mC > 0, MC > 0
such that

mCe
−ρV (Y)≤ e−Trace(Y)/2 vol(eYC∩C)≤MCe

−ρV (Y) for all Y ∈a.

Such a factor e−Trace(Y)/2 occurs in computing the matrix coefficient of the
vector 1C in the regular representation L2(V) when the action on V does
not preserve the volume. Here vol denotes the volume with respect to the
Lebesgue measure on V . The proof of Lemma 2.8 goes similarly to that of
[3, proposition 3.6], which deals with the case where the action is volume
preserving.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



226 / yves benoist and toshiyuki kobayashi

2.4 TEMPEREDNESS CRITERION FOR L2(G/H). We can now state
precisely our temperedness criterion.
Let G be a semisimple Lie group and H a closed subgroup of G. Let g and

h be the Lie algebras of G and H. The temperedness criterion for the regular
representation ofG in L2(G/H) will involve the functions ρh and ρg/h for the
H-modules V =h and V =g/h.

THEOREM 2.9.
Let G be a connected semisimple Lie group with finite center and H a closed
connected subgroup of G. Then, one has the equivalence

L2(G/H) is G-tempered ⇐⇒ ρh≤ ρg/h.

REMARK 2.10. The assumption that G and H are connected is not very
important. As we shall explain in Corollary 3.3, Theorem 2.9 is still true when
G and H have finitely many connected components as soon as the identity
component Ge has finite center.

REMARK 2.11. When H is algebraic and a is a maximal abelian split Lie
subalgebra of h, inequality ρh≤ ρg/h holds on h if and only if it holds on a.

REMARK 2.12. WhenH is a minimal parabolic subgroup of G the represen-
tation of G in L2(G/H) is tempered because the group H is amenable. Our
criterion is easy to check in this case since the functions ρh and ρg/h are equal.
This example explains why, when H is nonunimodular, our temperedness
criterion involves the functions ρV instead of the functions ρ+V .

3 Preliminary proofs

In this section we state a useful reformulation of Theorem 2.9 and prove the
direct implication in Theorem 2.9.

3.1 THE HERZ MAJORATION PRINCIPLE. We first explain how to
reduce the proof of Theorem 2.9 to the case where bothG andH are algebraic
and how to deal with groups having finitely many connected components.

PROPOSITION 3.1. Let G be a semisimple Lie group with finitely many compo-
nents such that the identity component Ge has finite center and H′ ⊂H two closed
subgroups of G.
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(1) If L2(G/H) is G-tempered, then L2(G/H′) is G-tempered.
(2) The converse is true when H′ is normal in H and H/H′ is amenable (for

instance, finite, compact, or abelian).

LEMMA 3.2. Let G be a semisimple Lie group with finitely many connected com-
ponents such that Ge has finite center, and let H be a closed subgroup of G. If the
regular representation in L2(G/H) is G-tempered, then the induced representation
�= IndGH(π) is also G-tempered for any unitary representation π of H.

Proof of Lemma 3.2. This classical lemma is called the Herz majoration prin-
ciple (see [2, chapter 6]). We recall the short argument since it will be very
useful in Proposition 4.9. We use freely the notation of section 2. For a func-
tion ϕ in the space L2(G/H,Hπ ) of the induced representation�= IndGH(π),
we denote by |ϕ| the function in the space L2(G/H) of the regular represen-
tation �0= IndGH(1) given by |ϕ|(x) :=‖ϕ(x)‖ for x in G/H. The space D of
bounded functions with compact support is dense in L2(G/H,Hπ ). For ϕ and
ψ in D, one can compute the matrix coefficients

〈�(g)ϕ,ψ〉=
∫
G/H

c(g−1, x)1/2〈π(σ(g, g−1x))ϕ(g−1x),ψ(x)〉 dν(x),

|〈�(g)ϕ,ψ〉| ≤
∫
G/H

c(g−1, x)1/2‖ϕ(g−1x)‖ ‖ψ(x)‖ dν(x)

≤ 〈�0(g)|ϕ|, |ψ |〉.

Since �0 is tempered, these matrix coefficients belong to L2+ε(G) for all ε >
0. Therefore the representation � is almost L2 and hence is G-tempered by
Proposition 2.6.

Proof of Proposition 3.1.

(1) This follows from Lemma 3.2 applied to the regular representation π of
H in L2(H/H′).

(2) Since H/H′ is amenable, the trivial representation of H is weakly
contained in the regular representation of H in L2(H/H′). Therefore,
inducing to G, the regular representation of G in L2(G/H) is weakly
contained in the regular representation of G in L2(G/H′) and hence is
G-tempered.

The following corollary tells us that the temperedness of L2(G/H) depends
only on the Lie algebras g, h and does not change if we replace h by its derived
Lie algebra [h,h].
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COROLLARY 3.3. Let G be a semisimple Lie group with finitely many connected
components such that Ge has a finite center ZG, and let H be a closed subgroup
with finitely many connected components. Then the following are equivalent:
(i) L2(G/H) is G-tempered⇐⇒ (ii) L2(Ge/He) is Ge-tempered⇐⇒
(iii) L2(G/HZG) is G/ZG-tempered⇐⇒ (iv) L2(G/[H,H]) is G-tempered

Proof. This follows from Proposition 3.1 and Remark 2.2 since the quotients
H/He,HZG/H, andH/[H,H] are amenable groups.

REMARK 3.4. Corollary 3.3 is useful to reduce the proof of Theorem 2.9 to
the case where both G andH are algebraic groups.
Indeed, every semisimple Lie algebra g is the Lie algebra of an algebraic

group: the group Aut(g). Therefore, using (i)⇔ (ii)⇔ (iii), we can assume
that G is algebraic.
Moreover, by Chevalley’s théorie des repliques in [6], for any closed subgroup

H of an algebraic groupG, there exists two algebraic subgroupsH1 andH2 of
G whose Lie algebras satisfy

h1⊂h⊂h2 and h1=[h,h]= [h2,h2].

Therefore, using (i)⇔ (iv), we can assume thatH is an algebraic subgroup.

REMARK 3.5. Since the group [H,H] is unimodular, Corollary 3.3 is also
useful to reduce the proof of Theorem 2.9 to the case whereH is unimodular.

3.2 A STRENGTHENING OF THE MAIN THEOREM. Theorem 2.9 will
be proven by induction on the dimension of G. This induction process
forces us to prove simultaneously an apparently stronger theorem that
involves L2(V)-valued sections over G/H associated to a finite-dimensional
H-module V .

THEOREM 3.6.
Let G be an algebraic semisimple Lie group, H an algebraic subgroup of G,
and V a real finite-dimensional algebraic representation of H. Then, one has
the equivalence:

IndGH(L
2(V)) is G-tempered ⇐⇒ ρh≤ ρg/h+ 2 ρV .

Again, we only need to check this inequality on a maximal split abelian Lie
subalgebra a of h. Note also that, by Remark 3.4, Theorem 2.9 is the special
case of Theorem 3.6 where V ={0}.
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3.3 THE DIRECT IMPLICATION. We first prove the direct implication in
Theorems 2.9 and 3.6.
From now on, we will set q :=g/h.

PROPOSITION 3.7. Let G be an algebraic semisimple Lie group, H an algebraic
subgroup of G; and V an algebraic representation of H. If the representation �=
IndGH(L

2(V)) is G-tempered, then one has ρh≤ ρq+ 2ρV .

Proof. By Equation (2.4) this representation � is also the regular representa-
tion of the G-space X :=G×H V . Let A be a maximal split torus of H and a
be the Lie algebra of A. We choose an A-invariant decomposition g=h⊕q0
and small closed balls B0⊂q0 and BV ⊂V centered at 0. We can see BV as a
subset of X , and the map

B0×BV −→G×H V , (u, v) �→ exp(u)v

is a homeomorphism onto its image C. Since� is tempered, one has a bound
as in Equation (2.6),

(3.1) 〈�(g)1C, 1C〉≤MC �(g) for all g in G.

We will exploit this bound for elements g= eY with Y in a. In our coordinate
system (3.1), we can choose the measure νX to coincide with the Lebesgue
measure on q0⊕V . Taking into account the Radon-Nykodim derivative and
the A-invariance of q0, one computes

〈�(eY )1C, 1C〉≥e−Trq0 (Y)/2e−TrV (Y)/2 volq0(eYB0 ∩B0) volV (eYBV ∩BV ),

and therefore, using Lemma 2.8, one deduces

〈�(eY )1C, 1C〉≥mC e
−ρq(Y)e−ρV (Y) for all Y in a.(3.2)

Combining Equations (3.1) and (3.2) with known bounds for the spheri-
cal function � as in [15, proposition 7.15], one gets, for suitable positive
constants d, C,

mC

MC
e−ρq(Y)−ρV (Y)≤�(eY )≤M0 (1+‖Y‖)de−ρg(Y)/2 for all Y in a.

Therefore one has ρg≤ 2 ρq+ 2 ρV , and hence ρh≤ ρq+ 2 ρV as required.
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3.4 EQUIVALENCE OF THE MAIN THEOREMS. Wehave already noti-
ced that Theorem 2.9 is a special case of Theorem 3.6. We explain now why
Theorem 3.6 is a consequence of Theorem 2.9.

PROPOSITION 3.8. Let G be an algebraic semisimple Lie group. If the conclu-
sion of Theorem 2.9 is true for all algebraic subgroups H of G, then the conclusion
of Theorem 3.6 is also true for all algebraic subgroups H of G.

The proof relies on the following lemma.

LEMMA 3.9. Let H be a Lie group and V a finite-dimensional representation of
H. Let v∈V be a point whose orbit Hv has maximal dimension and Hv be the
stabilizer of v in H. Then the action of Hv on V/hv is trivial.

Proof of Lemma 3.9. Assume by contradiction that there exist Y in h and w in
V such that the vector Yw does not belong to hv.
Choose a complementary subspacem ofhv inh so thath=hv⊕m. Choose

also a point vε = v+ εw near v. For ε small, the tangent space h vε to the orbit
H vε contains both the subspacem vε, which is nearm v=h v, and the vector
ε−1Yvε =Yw. Therefore, for ε small, one has the inequality dimhvε > dimhv,
which gives us a contradiction.

Proof of Proposition 3.8. Weassume that ρh≤ ρq+ 2 ρV , andwewant to prove,
using Theorem 2.9, that the regular representation ofG in L2(G×H V) is tem-
pered. Since the action is algebraic, there exists a Borel measurable subset
T ⊂V that meets each of theseH-orbits in exactly one point. Let νV be a prob-
ability measure on V with positive density and νT be the probability measure
on T �H\V given as the image of νV . One has a direct integral decomposition
of the regular representation

L2(G×H V)=
∫ ⊕
T

L2(G/Hv) dνT (v),

where Hv is the stabilizer of v in H. Since the direct integral of tempered
representations is tempered, we only need to prove that, for νT -almost all v
in T ,

(3.3) L2(G/Hv) is G-tempered.
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Our assumption implies that

(3.4) ρh(Y)≤ ρq(Y)+ 2 ρV (Y) for all Y in hv.

For νT -almost all v in T , the orbit Hv has maximal dimension; hence, by
Lemma 3.9, the action of h on the quotient V/hv is trivial, and therefore one
has the equality

(3.5) ρV (Y)= ρh(Y)− ρhv
(Y) for all Y in hv.

Combining (3.4) and (3.5), one gets, for νT -almost all v in T ,

2 ρhv
(Y)≤ ρq(Y)+ ρh(Y)= ρg(Y) for all Y in hv,

which can be rewritten as the temperedness criterion ρhv
(Y)≤ ρqv(Y) for

L2(G/Hv) in Theorem 2.9 and hence proves Equation (3.3).

4 Using parabolic subgroups

The aim of this section is to prove the converse implication in Theorem 2.9. As
we have seen in Remarks 3.4 and 3.5, we can assume that G is a Zariski con-
nected algebraic group and that H is a Zariski connected algebraic subgroup
such that h=[h,h].
The proof relies on the presence of two nice intermediate subgroups,

H⊂F⊂P⊂G.

4.1 THE INTERMEDIATE SUBGROUPS. We first explain the construc-
tion of these intermediate subgroups, F and P.
Let G be an algebraic semisimple Lie group and H a Zariski connected

algebraic subgroup of G such that h=[h,h].

LEMMA-DEFINITION 4.1. We fix a parabolic subgroup P of G of minimal
dimension that contains H and denote by U the unipotent radical of P. There exists
a reductive subgroup L⊂P such that P= LU and H= (L∩H)(U ∩H). More-
over the group S := L∩H is semisimple and the group V :=U ∩H is the unipotent
radical of H. We denote by F the group F=SU.

Proof. The group V :=U ∩H is a unipotent normal subgroup ofH. The quo-
tient S′ :=H/V is a Zariski connected subgroup of the reductive group P/U,
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which is not contained in any proper parabolic subgroup of P/U. Therefore,
by [5, section 8.10] this group S′ is reductive. Since h=[h,h], this group S′ is
semisimple and there exists a semisimple subgroup S⊂H such thatH=SV .
Since S is semisimple, the group V is the unipotent radical ofH. Since maxi-
mal reductive subgroups L of P areU-conjugate, one can choose L containing
S and therefore one has S= L∩H.

The following two lemmas will be useful in our induction process.

LEMMA 4.2. With the notation of Definition 4.1, the following two functions on
s are equal:

(4.1) ρg/h− ρh= ρl/s+ 2 ρu/v− ρs.

Proof. Since ρg/p= ρu, one has the equalities of functions on s,

ρg/h= ρu+ ρl/s+ ρu/v and ρh= ρs+ ρv.

LEMMA 4.3. Let P= LU be a real algebraic group that is a semidirect product of a
reductive subgroup L and its unipotent radical U. Let π0 be a unitary representation
of P that is L-tempered and trivial on U. Then the representation π0 is also P-
tempered.

Proof. The weak containment π0≺ L2(L) as unitary representations of L
implies the weak containment π0≺ L2(P/U) as unitary representations of
P because U acts trivially on both sides. Since U is amenable, the triv-
ial representation of U is U-tempered; therefore by Lemma 2.3 the regular
representation of P in L2(P/U) is P-tempered, and π0 is also P-tempered.

4.2 BOUNDING VOLUME OF COMPACT SETS. The proof of Theo-
rem 2.9 relies on a control of the volume of the intersection of translates of
compact sets in X =G/H. We first explain how to bound such volumes in
Z=F/H. This bound is quite general.

PROPOSITION 4.4. Let F=SU be a real algebraic group that is a semidirect
product of a reductive subgroup S and its unipotent radical U. Let H=SV be an
algebraic subgroup of F containing S where V =U ∩H. Let Z be the F space Z=
F/H=U/V endowed with a U-invariant Radon measure. Then for every compact
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subset D⊂Z, there exists a compact subset D0⊂Z such that for all s∈S and u∈U,
one has

(4.2) vol(suD∩D)≤ vol(sD0 ∩D0).

Here is the reformulation of Proposition 4.4 that we will use later.

DEFINITION 4.5. Let Z0 be the same space Z0=U/V as Z but endowed
with another F-action where U acts trivially and where S acts by conjugation.

COROLLARY 4.6. Same notation as in Proposition 4.4. Then for every com-
pact subset D⊂Z, there exists a compact subset D0⊂Z0 such that for every f ∈F,
one has

(4.3) vol(fD∩D)≤ vol(fD0 ∩D0).

The proof of Proposition 4.4 is by induction on the dimension of Z. It relies
only on geometric arguments and uses no representation theory.
Before studying the proof of Proposition 4.4 the reader could as an exercise

focus on the following very simple example where Z=R
2 is the affine 2-plane

and F is the group of affine bijections

(
a r
0 b

)(
t
s

)

that preserve the horizontal foliation. In this case, S is the two-dimensional
group of diagonal matrices andU is the three-dimensional Heisenberg group.
The proof for this example relies on the same ideas while being very concrete.

Proof of Proposition 4.4.
Case 1: S is a split torus.
We denote by C the center of U and CV =V ∩C. Let W be the closed

subgroupW :=VC⊂U. The projection

Z=U/V −→Z′ :=U/W

is a principal bundle of group CW :=C/CV =W/V . According to Lemma 4.7,
there exists a continuous trivialization of this principal bundle

(4.4) Z�Z′ ×CW

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



234 / yves benoist and toshiyuki kobayashi

such that the action of U and S through this trivialization can be read as

su (z′, c)= (suz′, sc+ sc0(u, z′))(4.5)

for all s∈S, u∈U, z′ ∈Z′, c ∈CW , where c0 is a continuous cocycle c0 :U×
Z′ →CW . We fix three compatible invariant measures volZ, volZ′ , and vol on
Z, Z′, and CW .
We start with a compact set D⊂Z. Through the trivialization in Equa-

tion (4.4), this set D is included in a product of two compact sets D′ ⊂Z′ and
B⊂CW ,

D⊂D′ ×B,

where B is a symmetric convex set in the group CW seen as a real vector space.
By the induction hypothesis, there exists a compact set D′0⊂Z′ that satisfies
the bound of Equation (4.2) for D′, such that

(4.6) volZ′(suD′ ∩D′)≤ volZ′(sD′0 ∩D′0) for all s∈S, u∈U.

We compute using Equation (4.5) and Lemma 4.8, for all s∈S and u∈U,

volZ(suD∩D)≤
∫
suD′∩D′

vol((sB+ s c0(u, (su)−1z′))∩B) dz′

≤
∫
suD′∩D′

vol(sB∩B) dz′,

where dz′ also denotes theU-invariant measure on Z′. Hence, using (4.6), we
go on with

volZ(suD∩D)≤ volZ′(suD′ ∩D′) vol(sB∩B)
≤ volZ′(sD′0 ∩D′0) vol(sB∩B)
= volZ(sD0 ∩D0),

where D0 is the compact subset of Z given by D0 :=D′0×B.

Case 2: S is a reductive group.
This general case will be deduced from the first case. Indeed, any reductive

group admits a Cartan decomposition S=KSASKS , where KS is a maximal
compact subgroup of S and AS is a maximal split torus of S. We start with
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a compact set D of Z. According to the first case, there exists a KS -invariant
compact set D0⊂Z such that, for all a∈AS and u∈U, one has

vol(auKSD∩KSD)≤ vol(aD0 ∩D0).

Therefore, for all s in S and u in U, writing s= k1ak2 with k1, k2 in KS and a
in AS , one has

vol(suD∩D)≤ vol(a(k2uk−12 )k2D∩ k−11 D)

≤ vol(aD0 ∩D0)

= vol(sD0 ∩D0),

as required.

In the proof of Proposition 4.4, we have used the following two lemmas.

LEMMA 4.7. Let U be a unipotent group, V ⊂U a unipotent subgroup, C be
the center of U, W :=VC, and CV :=C∩V. Let S⊂Aut(U) be a split torus
that preserves V. Then there exists a continuous trivialization of the U-equivariant
principal bundle U/V→U/W with structure group C/CV,

U/V �U/W ×C/CV ,

such that the action of U and S through this trivialization can be read as

su(y, c)= (suy , sc+ sc0(u, y))

for all u∈U, s∈S, y∈U/W, c ∈C/CV, where c0 is a continuous cocycle c0 : U×
U/W→C/CV.

Proof of Lemma 4.7. These claims are a variation of a classical result of
Chevalley-Rosenlicht (see, for instance, [7, theorem 3.1.4]). The proof relies
on the existence of “an adapted basis in a nilpotent Lie algebra.” Here is a
sketch of proof of these claims.
As usual, let u, v, c, and w be the Lie algebras of the groups U, V , C,

andW. Let I be the ordered set I={1, . . . , n}, where n= dimu. We fix a basis
(ei)i∈I of u, such that
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. for every i≥ 1, the vector space spanned by the ej for j≥ i is an ideal;. for every i≥ 1, the line Rei is invariant by S;. there exists a subset IV ⊂ I such that v is spanned by ei for i∈ IV ;. there exists a subset IC ⊂ I such that c is spanned by ei for i∈ IC; and. the Lie algebraw is spanned by ei for i∈ IW := IC ∪ IV .

Then, the map

� : R
I −→U, (ti)i∈I �→

∏
i∈I exp(tiei),

where the product is performed using the order on I, is a diffeomorphism,
and one has

�(RIV )=V , �(RIC )=C, and �(RIW )=W.

Setting JV := I� IV and JW := I� IW , the map

�V : R
JV −→U/V , (ti)i∈JV �→

∏
i∈JV exp(tiei)V

is also a diffeomorphism, and the restriction of this map to the subset R
JW

gives an S-equivariant section of the bundle U/V→U/W.

Here is the second basic lemma used in the proof of Proposition 4.4.

LEMMA 4.8. Let B, B′ be two symmetric convex sets of Rd; then one has

vol((B+ v)∩B′))≤ vol(B∩B′) for all v∈R
d.

Proof. By the Brunn-Minkowski inequality (see [4, section 11]), the map v �→
vol((B+ v)∩B′)1/d is concave on the convex set B′ −B and hence achieves its
maximum value at v= 0.

4.3 MATRIX COEFFICIENTS OF INDUCED REPRESENTATIONS. We
now explain how to control the volume of the intersection of translates of
compact sets in the G-space X =G/H with those in X0 :=G×F Z0.

PROPOSITION4.9. Let G be an algebraic semisimple Lie group andH aZariski
connected algebraic subgroup such that h=[h,h]. Let P= LU, F=SU, and H=
SV be the groups introduced in Definition 4.1. Let Z0 be the F-space introduced in
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Definition 4.5 and X0 the G-space X0 :=G×F Z0. Then, for every compact subset
C⊂G/H, there exists a compact subset C0⊂X0 such that

(4.7) vol(g C∩C)≤ vol(g C0 ∩C0) for all g in G.

In Proposition 4.9 the assumption h=[h,h] can be removed but the con-
clusion in Equation (4.7) becomes slightly more technical when there is no
G-invariant measure on G/H. Indeed, when h �= [h,h], one has to replace
the bound (4.7) by a bound of K-finite matrix coefficients of the induced rep-
resentation �= IndGF (L2(F/H)) thanks to K-finite matrix coefficients of the
induced representation�0= IndGF (L2(Z0)).

Proof of Proposition 4.9. The projection

G→X ′ :=G/F

is a G-equivariant principal bundle with structure group F. As in section 2.1,
we fix a Borel measurable trivialization of this principal bundle

(4.8) G�X ′ ×F,

which sends relatively compact subsets to relatively compact subsets. The
action of G by left-multiplication through this trivialization can be read as

g (x′, f )= (gx′, σF(g, x′)f ) for all g ∈G, x′ ∈X ′, and f ∈F,

where σF : G×X ′ →F is a Borel measurable cocycle. This trivialization in
Equation (4.8) induces a trivialization of the associated bundles

X =G×F Z�X ′ ×Z ,

X0=G×F Z0�X ′ ×Z0.

We start with a compact set C of X . Through the first trivialization, this
compact set is included in a product of two compact sets C′ ⊂X ′ and D⊂Z:

(4.9) C⊂C′ ×D
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We denote byD0⊂Z0 the compact set given by Corollary 4.6 and we compute
using Equation (4.3) for g in G,

volX (g C∩C)≤
∫
gC′∩C′

volZ(σF(g, g−1x′)D∩D) dx′

≤
∫
gC′∩C′

volZ0(σF(g, g
−1x′)D0 ∩D0) dx′

≤ volX0(g C0 ∩C0),

where dx′ is a G-invariant measure on X ′ and C0 is a compact subset of X0�
X ′ ×Z0, which contains C′ ×D0.

4.4 PROOF OF THE TEMPEREDNESS CRITERION. We conclude the
proof of Theorem 2.9.

Proof of the converse implication in Theorem 2.9. We prove it by induction on
the dimension ofG. By Remarks 3.4 and 3.5, we can assume thatG is a Zariski
connected semisimple algebraic group and that H is a Zariski connected
algebraic subgroup such that h=[h,h]. Let

H=SV ⊂F=SU⊂P= LU⊂G

be the groups introduced in Definition 4.1. Let Z0=U/V be the F-space
introduced in Definition 4.5 and X0 be the G-space X0=G×F Z0.
When P is equal to G, the groupH is semisimple and we apply [3, theorem

3.1]. We now assume that P is a proper parabolic subgroup of G.
By assumption one has ρh≤ ρg/h on h. Therefore, by Lemma 4.2, one has

the inequality on s,

(4.10) ρs≤ ρl/s+ 2 ρu/v.

We introduce the regular representation π0 of P in L2(P×F Z0), which is
unitarily equivalent to IndPF(L

2(u/v)) by the isomorphism in Equation (2.4).
As a representation of L, one has

π0|L= IndLS(L2(u/v)).

Using our induction hypothesis on the dimension of G to the derived sub-
group of L, Proposition 3.8 and Remark 2.4 tell us that the representation π0

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



tempered homogeneous spaces ii / 239

is L-tempered by Equation (2.4). Therefore, by Lemma 4.3, the representation
π0 is P-tempered. The regular representation �0 of G in L2(G×F Z0) is uni-
tarily equivalent to �0= IndGP (π0) because �0� IndGP (IndPF(L2(u/v))). Now,
Lemma 2.3 implies that this representation �0 is G-tempered. Therefore, by
Corollary 2.7, for any K-invariant compact subset C0 of G×F Z0, one has a
bound

vol(g C0 ∩C0)≤ vol(C0)�(g) for all g in G.

Hence, by Proposition 4.9, for any compact subset C of G/H, one also has a
bound

vol(g C∩C)≤MC �(g) for all g in G.

Again by Corollary 2.7, this tells us that the representation of G in L2(G/H) is
G-tempered.

5 Examples

The criterion given in Theorem 2.9 allows us to easily detect for a given homo-
geneous space G/H whether the unitary representation of a semisimple Lie
group G in L2(G/H) is tempered or not. We collect in this chapter a few
examples, omitting the details of the computational verifications.

5.1 EXAMPLES OF TEMPERED HOMOGENEOUS SPACES. We first
recall a few examples extracted from [3] where H is reductive.

EXAMPLE 5.1. L2(SL(p+ q,R)/SO(p, q)) is always tempered.
L2(SL(2m,R)/Sp(m,R)) is never tempered.
L2(SL(m+ n,C)/SL(m,C)×SL(n,C)) is tempered iff |m− n| ≤ 1.
L2(SO(m+ n,C)/SO(m,C))×SO(n,C)) is tempered iff |m− n| ≤ 2.
L2(Sp(m+ n,C)/Sp(m,C)×Sp(n,C)) is tempered iff m= n.

EXAMPLE 5.2. Let n= n1+ · · ·+ nr with n1≥ · · · ≥ nr ≥ 1, r≥ 2.
L2(SL(n,R)/

∏
SL(ni,R)) is tempered iff 2n1≤ n+ 1.

L2(Sp(n,R)/
∏

Sp(ni,R)) is tempered iff 2n1≤ n.
Let p= p1+ p2, q= q1+ q2 with p1, p2, q1, q2 ≥ 1.
L2(SO(p, q)/SO(p1, q1)×SO(p2, q2)) is tempered iff |p1+ q1− p2− q2| ≤ 2.

EXAMPLE 5.3. LetG be an algebraic semisimple Lie group and K a maximal
compact subgroup. L2(GC/KC) is GC-tempered iff G is quasisplit.
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REMARK 5.4. A way to justify this last example is to notice that our criterion
2 ρkC

≤ ρg
C
means that the trivial K-type is a small K-type of G in the terminol-

ogy of Vogan’s paper [29, definition 6.1] (see also Knapp’s book [15, chapter 15])
and to use the following equivalences due to Vogan in the same paper [29,
theorem 6.4]:

G has a small K-type⇐⇒ the trivial K-type is small⇐⇒ G is quasisplit

Here is a delicate example for semisimple symmetric spaces.

EXAMPLE 5.5. Let G/H :=Sp(2, 1)/Sp(1)×Sp(1, 1). The Plancherel for-
mula [9, 27] tells us that both the continuous part and a “generic portion"
of the discrete part of L2(G/H) are tempered; however, our criterion in Equa-
tion (1.1) tells us that L2(G/H) is nontempered because ρh(Y)= 3

2ρq(Y)>
ρq(Y) if Y is a nonzero hyperbolic element of h. In fact, the discrete part
of L2(G/H) consists of Harish-Chandra’s discrete series representations, say
πn(n= 1, 2, ...), and two more nonvanishing representations π0 and π−1 in
the coherent family, where π0 is still tempered but π−1 is nontempered ([17,
theorem 1]).

Here is another direct application of our criterion in Equation (1.1) where
H is not anymore assumed to be reductive.

COROLLARY 5.6. Let G be an algebraic semisimple Lie group and H an
algebraic subgroup.

(1) If the representation of GC in L2(GC/HC) is tempered, then the representa-
tion of G in L2(G/H) is tempered.

(2) The converse is true if H contains a maximal torus that is split.

5.2 SUBGROUPS OF SL(N ,R). We now explain how to check our crite-
rion in Equation (1.1) with a very concrete example.
In Table 6.1, we specify criterion (1.1) when G=SL(Rp⊕R

q) and H is a
subgroup of G normalized by the group SL(Rp)×SL(Rq).
In Table 6.2, we specify criterion (1.1) when G=SL(Rp⊕R

q⊕R
r) and H

is a subgroup of G normalized by the group SL(Rp)×SL(Rq)×SL(Rr). Note
that in these two tables, the center of the diagonal blocks is not important by
Corollary 3.3.

REMARK 5.7. It is rather easy to guess the inequalities in Table 6.2. Here
is the heuristic recipe: There is one inequality for each nonidentity diagonal
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Table 6.1. The criterion ρh≤ ρg/h when G= SL(p+ q,R)

H1 :
(∗ 0
0 I

)
H2 :

(∗ ∗
0 I

)
H3 :

(∗ ∗
0 ∗

)
H4 :

(∗ 0
0 ∗

)

p≤ q+ 1 p= 1 p= q= 1 p≤ q+ 1
q≤ p+ 1

Table 6.2. The criterion ρh≤ ρg/h when G= SL(p+ q+ r,R)

H1 :

⎛
⎝
∗ 0 ∗
0 I 0
0 0 I

⎞
⎠ H2 :

⎛
⎝
I 0 ∗
0 ∗ 0
0 0 I

⎞
⎠ H3 :

⎛
⎝
I ∗ ∗
0 ∗ 0
0 0 I

⎞
⎠ H4 :

⎛
⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞
⎠

p≤ q+ 1 q≤ p+ r+ 1 q≤ r+ 1 p= q= r= 1

H5 :

⎛
⎝
∗ 0 0
0 ∗ 0
0 0 I

⎞
⎠ H6 :

⎛
⎝
∗ 0 ∗
0 ∗ 0
0 0 I

⎞
⎠ H7 :

⎛
⎝
∗ ∗ ∗
0 ∗ 0
0 0 I

⎞
⎠ H8 :

⎛
⎝
∗ 0 ∗
0 I 0
0 0 ∗

⎞
⎠

p≤ q+ r+ 1 p≤ q+ 1 p= 1 p≤ q+ 1
q≤ p+ r+ 1 q≤ p+ r+ 1 q≤ r+ 1 r≤ q+ 1

H9:

⎛
⎝
I ∗ ∗
0 ∗ 0
0 0 ∗

⎞
⎠ H10:

⎛
⎝
∗ 0 0
0 ∗ 0
0 0 ∗

⎞
⎠ H11:

⎛
⎝
∗ 0 ∗
0 ∗ 0
0 0 ∗

⎞
⎠ H12:

⎛
⎝
∗ ∗ ∗
0 ∗ 0
0 0 ∗

⎞
⎠

q≤ r+ 1 p≤ q+ r+ 1 p≤ q+ 1 p= 1
r≤ q+ 1 q≤ p+ r+ 1 q≤ p+ r+ 1 q≤ r+ 1

r≤ p+ q+ 1 r≤ q+ 1 r≤ q+ 1

block. The left-hand side of this inequality is given by the size of this diagonal
block, while the right-hand side can be guessed by looking at the size of the
zero blocks on the right and on the top of it.

We will explain the proof for just the groupH=H11 in Table 6.2. The other
cases are similar.

COROLLARY 5.8. Let G=SL(p+q+r,R) and H the subgroup of matrices

⎛
⎜⎝
α 0 z
0 β 0
0 0 γ

⎞
⎟⎠

with α ∈GL(p,R), β ∈GL(q,R), γ ∈GL(r,R), z∈M(p, r;R). Then L2(G/H) is
G-tempered if and only if p≤ q+1, q≤ p+r+1, r≤ q+1.
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Proof of Corollary 5.8. We denote by a the Lie algebra of diagonal matrices

a={Y = (x, y, z)∈R
p⊕R

q⊕R
r |Trace(Y)= 0}.

We only need to check the criterion in Equation (1.1) on the chamber

a+ = {Y = (x, y, z)∈a | x, y, and z have nondecreasing coordinates}.

We recall that q=g/h and we compute for Y ∈a+,

ρh(Y)=
∑p

i=1 aixi+
∑q

j=1 bjyj+
∑r

k=1 ckzk ,

where ai := 2i− p− 1, bj := 2j− q− 1, ck := 2k− r− 1, and

ρq(Y)=∑i,j |xi− yj| +
∑

j,k |yj− zk|.

Assume first that the criterion ρh≤ ρq is satisfied on a. It is then also sat-
isfied on R

p+q+r . Applying it successively to the three vectors Y = ep, Y =
ep+q, and Y = ep+q+r of the standard basis e1, . . . , ep+q+r of R

p+q+r , one gets
successively the three inequalities p≤ q+1, q≤ p+r+1, and r≤ q+1.

Assume now that these three inequalities are satisfied. Note that

ρq(Y)≥∑ai>bj(xi−yj)+
∑

bj>ai(yj−xi)+
∑

bj>ck(yj−zk)+
∑

ck>bj(zk−yj)
=∑p

i=1 �ixi+
∑q

j=1mjyj+
∑r

k=1 nkzk,

where

�i= |{j | bj< ai}| − |{j | bj> ai}|
mj= |{i | ai< bj}| − |{i | ai> bj}| + |{k | ck< bj}| − |{k | ck> bj}|
nk= |{j | bj< ck}| − |{j | bj> ck}|.

Since p≤ q+ 1, one has �i= ai for all 1≤ i≤ p.
Since r≤ q+ 1, one has nk= ck for all 1≤ k≤ r.
For 1≤ j≤ q, one has mq+1−j=−mj and, when j> q/2,

mj=min(bj, p)+min(bj, r).
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Since q≤ p+ r+ 1, one hasmj≥ bj for all j> q/2. Then using the fact that the
yj’s are nondecreasing functions of j, one gets, for Y in a+,

ρq(Y)− ρh(Y)=
∑q

j=1(mj− bj)yj≥ 0.

This proves that the criterion ρh≤ ρq is satisfied.

Some of the subgroups in Table 6.2 appear naturally in analyzing the tensor
product representations of SL(n,R) as below.

5.3 TENSOR PRODUCT OF NONTEMPERED REPRESENTATIONS.
Suppose � and �′ are unitary representations of G. The tensor product rep-
resentation �⊗�′ is tempered if � or �′ is tempered. In contrast, �⊗�′
may be and may not be tempered when both � and�′ are nontempered.
For instance, let n= n1+ · · ·+ nk be a partition, and we consider the

(degenerate) principal series representation �n1,··· ,nk := IndGPn1,··· ,nk (1) of G=
SL(n,R), where Pn1,··· ,nk is the standard parabolic subgroup with Levi sub-
group S(GL(n1,R)× · · ·×GL(nk,R)). Then�n1,··· ,nk is tempered iff k= n and
n1= · · ·= nk= 1. Here are some examples of the temperedness criterion in
Equation (1.1) applied to the tensor product of two such representations.

PROPOSITION 5.9. Let 0≤ k, l≤ n, and a+ b+ c= n.

(1) �k,n−k⊗�n−l,l is tempered iff |k− l| ≤ 1 and |k+ l− n| ≤ 1.
(2) �a,b,c⊗�b+c,a is tempered iffmax(b, c)− 1≤ a≤ b+ c+ 1.
(3) �a,b,c⊗�c,b,a is tempered iff 2max(a, b, c)≤ n+ 1.

Proof. For any parabolic subgroups P and P′ of G, there exists an element w∈
G such that PwP′ is open dense in G, and thus the tensor product IndGP (1)⊗
IndGP′(1) is unitarily equivalent to the regular representation in L2(G/H) by
the Mackey theory, where H=w−1Pw∩P′. In the above cases, we have the
following unitary equivalences:

�k,n−k⊗�n−l,l� L2(G/H12) with (p, q, r)=(|k−l|,min(k, l), n−max(k, l)),
�a,b,c⊗�b+c,a� L2(G/H11) with (p, q, r)= (b, a, c),
�a,b,c⊗�c,b,a� L2(G/H10) with (p, q, r)= (a, b, c),

whence Proposition 5.9 follows from Table 6.2 in section 5.2.
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7 emmanuel breuillard and alexander lubotzky

EXPANSION IN SIMPLE GROUPS

Dedicated to Grisha Margulis with admiration and affection

Abstract. Two short seminal papers of Margulis used Kazhdan’s property (T) to
give, on the one hand, explicit constructions of expander graphs and to prove, on
the other hand, the uniqueness of some invariant means on compact simple Lie
groups. These papers opened a rich line of research on expansion and spectral
gap phenomena in finite and compact simple groups. In this essay we survey the
history of this area and point out a number of problems that are still open.

1 Introduction

Grisha Margulis has the Midas touch: whatever he touches becomes gold.
It seems that he did not have a particular interest in combinatorics, but in
the early seventies events of life brought him to work at the Institute for
Information Transmission in Moscow, where he became aware of the con-
cept of expander graphs. Such graphs were known to exist at the time only by
counting considerations (à la Erdős’s random graph theory), but because of
their importance in computer science, explicit constructions were very desir-
able. Margulis noticed that such explicit constructions could be made using
the (new at the time) Kazhdan property (T) from representation theory of
semisimple Lie groups and their discrete subgroups. His short paper [Mar73]
opened a new area of research with a wealth of remarkable achievements.
A similar story happened with Margulis’s contribution to the so-called

Ruziewicz problem. Namely, must every rotation invariant finitely additive
measure on the sphere Sn be equal to the Lebesgue measure? It had been
known for a long time that the answer is “no” for n= 1, but Margulis [Mar80]
(as well as Sullivan [Sul81]) showed, again using Kazhdan’s property (T), that
the answer is “yes” for n≥ 4.
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These two seemingly unrelated topics are actually very much connected.
This was explained in detail in [Lub94]. We will repeat it in a nutshell in
Section 2 and give a brief historical description. Both directions of research
led to a problem of the following type:

Problem. Let G be a simple nonabelian finite (respectively, compact Lie) group. For
a finite symmetric, that is, S=S−1, subset S of G, consider

�S=
∑
s∈S

s

as an operator on L2(G), where sf (x) := f (s−1x). It is easy to see that its largest
eigenvalue is k= |S| (with the constant functions being the eigenspace). It has mul-
tiplicity one if and only if S generates (respectively, generates topologically) G. Find
S with spectral gap, that is, for which the second largest eigenvalue of�S is bounded
away from |S|.

This problem has many variants. Do we take S optimal (best case sce-
nario), worst (worst case scenario), or random? Do we want k= |S| to be fixed?
Is the “bounded away” uniform? In what: The generators? All groups? All
generators?
A quite rich theory has been developed around these questions, which grew

out from the above two papers ofMargulis. The goal of this essay is to describe
this story and to point out several problems that are still open.
In Section 2, we will give some more history and show how the central

problem we study here is related to expanders and to the Ruziewicz problem.
In Section 3, we describe the numerous developments the expansion prob-

lem for finite simple groups has had in the last decade or so. This led to amaz-
ing connections with additive combinatorics, diophantine geometry, Hilbert’s
fifth problem, and more. It also led to a new noncommutative sieve method
with some remarkable applications. These subjects have been discussed in a
number of books and surveys [Lub94, Tao15, Lub12, Bre16, Bre15, Bre14c], so
we do not cover them here.
In section 4, we will turn our attention to the compact simple Lie groups.

Here much less is known but an important connection has been made
between the spectral gap problem and a certain noncommutative diophantine
problem. We discuss this and state some further open problems.
Finally, in section 5 we discuss another direction, which has recently

received renewed interest from questions in quantum computation (golden
gates). Now, one looks not only for topological generators S :={g1, . . . , gk} in
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G with spectral gap but also for an algorithm that will enable us to find for
every g ∈G a short word w in g1, . . . , gk such that w(g1, . . . , gk) is very close
to g.
This essay, which only illustrates a small part of Margulis’s influence on

modern mathematics, is dedicated to Grisha with admiration and affection.
He has been a personal and professional inspiration for both of us.
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Nicolas de Saxcé, and Peter Sarnak for useful comments. We also thank the
referee for his careful reading. The first author acknowledges support from
the ERC (grant no. 617129). The second author acknowledges support from
the ERC, the NSF, and the BSF.

2 Expanders and invariant means

A family of finite k-regular graphs Xi= (Vi,Ei) is called an expanding family, if
there exists ε > 0 such that for every i and every subsetY ⊂Vi with |Y| ≤ |Vi|/2,

|∂Y| ≥ ε|Y|,

where ∂Y =E(Y ,Y) is the set of edges going out from Y to its complement Y .
Margulis made the following seminal observation, which connected

expanders and representation theory:

PROPOSITION 2.1 (Margulis). Let� be a group generated by a finite set S with
S=S−1 and |S| = k. Assume that � has Kazhdan property (T); then the family
of finite k-regular Cayley graphs Cay(�/N;S), where N runs over the finite index
normal subgroups of �, forms an expanding family.

Let us give a sketch of proof: property (T) means that the trivial represen-
tation is an isolated point in the unitary dual of �, the space of irreducible
unitary representations of � up to equivalence endowed with the Fell topol-
ogy. In concrete terms for �=〈S〉 as above, it says that there exists an ε′> 0,
such that whenever � acts unitarily on a Hilbert spaceH via a (not necessarily
irreducible) unitary representation ρ without a nonzero fixed vector, for every
vector v 	= 0 in H, there exists s∈S such that

(1) ‖ρ(s)v− v‖≥ ε′‖v‖.
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In our situation, let Y be a subset of �/N—that is, a subset of vertices in
Cay(�/N,S). Let f be the function f in L2(�/N) defined by

f (y)= |Y|

if y∈Y and
f (y)=−|Y|

if y∈Y , where Y is the complement of Y .
Then f ∈ L20(�/N), that is,

∑
y∈V f (y)= 0. Now, � acts unitarily by left trans-

lations on L20(�/N), which, as a representation, is a direct sum of nontrivial
irreducible representations. We may thus apply (1) and deduce that there
exists s∈S such that

(2) ‖ρ(s)f − f ‖≥ ε′‖f ‖.

Spelling out the meaning of f , and noting that f is essentially the (normal-
ized) characteristic function of Y , one sees that

|sY�Y| ≥ ε′′|Y|,

which implies the desired result. See [Lub94] for the full argument with the
constants involved.
This fundamental argument gave a lot of families of finite (simple) groups

that are expanding families. Every mother group � with property (T) gives rise
to a family of expanders.
For example, for every n≥ 3, �n=SLn(Z) has (T) by Kazhdan’s theorem

[Kaz67]. Fix a finite symmetric set S of generators in �. One deduces that
the family {Cay(PSLn(p),S); p prime} is a family of expanders. Naturally this
raises the question whether all PSLn(p) (all n all p) or even all nonabelian finite
simple groups can be made into an expanding family simultaneously. This
will be discussed in section 3. Meanwhile, let us give it another interpretation.
The well-known result of Alon, Milman, and others (see [Lub94] for detailed
history) gives the connection between expanders and the spectral gap. Let us
formulate it in the context of finite groups.

PROPOSITION 2.2. Let {Gi}i∈I be a family of finite groups with symmetric
generating sets Si with |Si| = k for every i. The following are equivalent:

(1) {Cay(Gi;Si)}i∈I forms an expanding family of k-regular graphs.
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(2) There exists ε′> 0 such that all eigenvalues of

�Si =
∑
s∈Si

s

acting on L20(Gi) are at most1 k− ε′.

Let us nowmove to the invariant mean problem (a.k.a. the Ruziewicz prob-
lem) and we will see that the same spectral gap issue comes up. The problem
to start with was formulated for the spheres Sn on which G=SO(n+ 1) acts.
But it generalizes naturally to the group G itself and actually to every compact
group, so we will formulate it in this generality.
Let G be a compact group. An invariant mean from L∞(G) to R is a linear

functional m satisfying for every f ∈ L∞(G),

. m(f )≥ 0 if f ≥ 0,. m(1G)= 1, and. m(g.f )=m(f ) for all g ∈G,

where 1G is the constant function equal to 1 on G, and for g ∈G, g.f (x)=
f (g−1x). Integration against the Haar measure, or Haar integration, is such
an invariant mean. It is the only such if we assume in addition thatm is count-
ably additive. The question is whether this is still true also among the finitely
additive invariant means.

THEOREM 2.3 (Rosenblatt [Ros81]).
Let G be a compact group, S=S−1 a finite symmetric set in G with |S| = k, and
�=〈S〉 the subgroup generated by S. The following are equivalent:

. The Haar integration is the unique �-invariant mean on L∞(G).. There exists ε′> 0 such that all the eigenvalues of �S=∑
s∈S s acting on

L20(G) are at most k− ε′.

It is not surprising now that if �=〈S〉⊂G is a dense subgroup with prop-
erty (T) (i.e., � has (T) as an abstract discrete group), then every �-invariant
mean (and hence G-invariant mean) of G is equal to the Haar integration.

1This is a one-sided condition, i.e., for each eigenvalue λ≤ k− ε′. However, it is also equivalent to
the two-sided condition |λ| ≤ k− ε′, provided the Gi’s do not have an index two subgroup disjoint
from Si; see [BGGT15, appendix E] and [Bis19].
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This was the way Margulis [Mar80] and Sullivan [Sul81] solved the Ruziewicz
problem for Sn (and SO(n+ 1)), n≥ 4, to start with.
Note that when G is finite, then the spectral gap property is not so interest-

ing for a single groupG; it just says that S generatesG. For an infinite compact
group, S generates G topologically if and only if k has multiplicity one—that
is, all other eigenvalues are less than k. But we want them (there are infinitely
many of them!) to be bounded away from k by ε′. So the question is of interest
even for a single group G.
Let us mention here a result that connects the two topics directly:

THEOREM 2.4 (Shalom [Sha97]).
Let �=〈S〉, S=S−1, |S| = k be a finitely generated group and G= �̂ its profinite
completion. Then the Haar integration is the only �-invariant mean on G if and
only if the family {Cay(�/N;S);N �, |�/N|<∞} forms an expanding family.

In what follows, if G is a finite or compact group and S=S−1 is a subset
of G with |S| = k, we will say that S is ε-expanding if all eigenvalues of �S=∑

s∈S s acting on L20(G) are at most k− ε. Sometimes we simply say expanding,
omitting the ε, when we talk about an infinite group G or about an infinite
collection of G’s with the same ε.
In the case of finite groups, if all eigenvalues of�S on L20(G) are, in absolute

value, either k or at most 2
√
k− 1, we say that S is a Ramanujan subset of G.

In this case Cay(G,S) is a Ramanujan graph [LPS88, Lub94] and 2
√
k− 1

is the best possible bound one can hope for (for an infinite family of finite
groups) by the well-knownAlon-Boppana result (see [Sar90, (Section 3) 3.2.7]).
This notion extends naturally to subsets S of an infinite compact group G.
Also, here 2

√
k− 1 is the best possible bound (even for a single such group

G) because 2
√
k− 1 is the rate of exponential growth of the number of closed

paths of length n based at a point in the k-valent tree.
In sections 3 and 4, we will describe what is known about expanding sets

in finite simple groups, and in compact simple Lie groups. Very little is
known about the existence of Ramanujan subsets, andwewill raise there some
questions.

3 Expansion in finite simple groups

In this section we are interested in expanding subsets of size k in finite sim-
ple groups. Abelian groups cannot give rise to expanders, (see [LW93]), so
when we say simple, we always mean noncommutative simple groups. We
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will divide our discussion into three subsections: best, random, and worst
case generators.

3.1 BEST CASE GENERATORS. The classification of the finite simple
groups can be used to show that every such group is generated by two ele-
ments. In our context it is natural to ask if all finite simple groups are
uniformly expanding. As mentioned in section 2, it was shown at an early
stage that for fixed n0≥ 3, {SLn0(p)}p∈P is an expanding family when p runs
over the set P of all primes, using the generators of the mother group SLn(Z).
But what about the family Gn(p0) :=SLn(p0) when this time p0 is fixed and n
varies?
In [LW93] it was shown that the family {Gn(p0)}n≥2 is not expanding

with respect to some set of generators of bounded size (see section 3.3; for
{Gn0(p)}p∈P this is still an open problem!). This was deduced there by embed-
ding a finitely generated amenable group as a dense subgroup of

∏
n SLn(p0),

something which is impossible in
∏

p SLn0(p). It has been suggested that
maybe bounded rank (i.e., n0 fixed) groups behave differently regarding expan-
sion than unbounded rank (i.e., p0 fixed and n→+∞). This still might be
the case regarding worst case generators. A combination of works of Kass-
abov [Kas07a, Kas07b], Lubotzky [Lub11b], Nikolov [Nik07] (see [KLN06]), and
Breuillard-Green-Tao [BGT11b] gives us the following:

THEOREM 3.1.
There exist k∈N and ε > 0 such that every non-abelian finite simple group G has
a subset S=S−1 of size k such that Cay(G;S) is an ε-expander.

The breakthrough for the proof of Theorem 3.1 was the paper of Kass-
abov [Kas07b] in which he broke the barrier of bounded rank to show that
{SL3n(p); p∈P , n∈N} is an expanding family. Rather than describing the
exact historical development (which can be found in [KLN06]), let us give the
conceptual explanation.
In [EJZ10] it is shown that �=Ed(Z〈x1, . . . , x�〉) has property (T) for every

d≥ 3 and �∈N, where Z〈x1, . . . , x�〉 is the free noncommutative ring on �
free variables and Ed(R), for a ring R, is the group of d× d matrices over R
generated by the elementary matrices {I+ rei,j; 1≤ i 	= j≤ d, r ∈R}. Now, for
every prime power q and every n∈N, the matrix ring Mn(Fq) is 2-generated
as a ring—that is, Z〈x1, x2〉 can be mapped onto Mn(Fq). This implies that
�=E3(Z〈x1, x2〉) can be mapped onto E3(Mn(Fq))�SL3n(Fq) and hence

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



expansion in simple groups / 253

by Margulis’s original result—that is, Proposition 2.1—{SL3n(Fq)}n≥1 is an
expanding family.
Let us take the opportunity to observe that this can be used to answer (pos-

itively!) a question asked in [LW93]; it was asked there whether it is possible
to have an infinite compact group K containing two finitely generated dense
subgroups A and B such that A is amenable and B has property (T). If K is
a compact Lie group, this is impossible because the Tits alternative forces A,
and henceG and B, to have a solvable subgroup of finite index, but a (T) group
that is also amenable must be finite. On the other hand, it was shown in that
paper that the compact group

∏
n≥3 SLn(Fp) does contain a finitely generated

amenable dense subgroup. Hence its quotient K :=∏
n≥1 SL3n(Fp) also has

such an A. But from the previous paragraph, we see that K also has a (T) sub-
group B. Indeed the diagonal image of �=E3(Z〈x1, x2〉) has (T) and must
be dense in K because it maps onto each of the nonisomorphic quasi-simple
groups SL3n(Fp) (Goursat’s lemma).
Now let us move ahead with expanders. An easy lemma shows that if a

group is a bounded product of expanding groups, then it is also expanding (for
different k and ε). Nikolov [Nik07] showed that when the rank is large enough,
every finite simple group of Lie type is a bounded product of the groups treated
by Kassabov, thus extending the result for all high rank. But what about lower
rank and first of all SL2?
Let us observe first that one cannot hope for a proof of the Margulis/

Kassabov kind for the groups SL2(q)=SL2(Fq). In fact there is no mother
group � with property (T) that is mapped onto SL2(q) for infinitely many
prime powers q. Indeed, if such a group � exists, then by some standard ultra-
product argument (or elementary algebraic geometry; see, e.g., [LMS93]), �
has an infinite representation into SL2(F) for some algebraically closed field
F. However, this is impossible as every property (T) subgroup of SL2(F)must
be finite (see, e.g., [Lub94, Theorem 3.4.7] for the proof when char(F)= 0,
but the same argument works in positive characteristic: any action of a (T)
group on a Bruhat-Tits tree or hyperbolic space must fix a point, so it must
have compact closure in all field completions; see also [dlHV89, chapter 6,
Proposition 26]).
So a different argument is needed; for p prime, it has been deduced from

Selberg’s theorem (λ1≥ 3
16 ) that {SL2(p)}p∈P are expanding; see, for example,

[Gam02] and [Bre14b]. Similar reasoning (using Drinfeld instead of Selberg)
gives a similar result for {SL2(p�0)}, where p0 is fixed and �∈N; see [Mor94].
But how to handle them together? This was done by Lubotzky [Lub11b] using a
very specific construction of Ramanujan graphs (and Ramanujan complexes).
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That construction, in [LSV05b], made G=SL2(p�) into a (p+ 1)−regular
Ramanujan graph using a set of p+ 1 generators of the following type:
{tct−1; t∈T}, where c is a specific element in G=SL2(p�) and T is a nonsplit
torus inH=SL2(p). Now by Selberg as above,H is expanding with respect to
2 generators (and their inverses)—say,

a=
(
1 1
0 1

)
and b=

(
1 0
1 1

)
;

by the previous sentence,G is sowith respect to oneH-conjugate orbit of c ∈G.
From this, one deduces that G is an expander with respect to {a±1, b±1, c±1}
(see [Lub11b] for details and [KLN06] for an exposition). In fact, it is also shown
there that one can use the more general Ramanujan complexes constructed
in [LSV05a] and [LSV05b] to give an alternative proof to Kassabov’s result for
SLn(q), all n, and all q simultaneously.
Anyway, once we have SL2(q) at our disposal, all finite simple groups are

bounded products of SLn(q) (all n, all q) except for two families that still need
special treatment for the expanding problem and for proving Theorem 3.1.
One family is the family of Suzuki groups; these finite simple groups (which

are characterized by the fact that they are the only finite simple groups whose
order is not divisible by 3; see [Gla77]), do not contain copies of PSL2(Fq)

and resist all the above methods. They were eventually resolved by Breuillard-
Green-Tao [BGT11b] by random methods, so we postpone their treatment to
section 3.2.
Last but not least is the most important family of finite simple groups,

Alt(n). They do contain copies of groups of Lie type, but one can show that
they are not bounded products of such. So a new idea was needed here; what
Kassabov [Kas07a] did is to consider first n’s of the form n= d6 when d= 2k− 1
for some k∈N. The fact that SL3(Z〈x1, x2〉) has property (T) implies that the
direct product SL3k(F2)d

5
is an expanding family, and he embedded this group

into Alt(n) in six different ways. The product of these six copies is still not the
full Alt(n), but (borrowing an idea from Roichman [Roi96]) he treated sepa-
rately representations of Alt(n) corresponding to partitions λ= (λ1≥ . . .≥ λ�)
of n with λ1≤ n− d5/4 and all the others. The first were treated by appealing
to results on “normalized character values,” and the second were treated col-
lectively by giving their sum a combinatorial meaning and showing that the
action of a bounded product of six copies of that model mixes in a few steps.
The reader is referred to the full details of this ingenious proof in [Kas07a] or
to the exposition in [KLN06].
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All in all, the knowledge on best case expansion in finite simple groups is
in pretty good shape, as Theorem 3.1 shows, and certainly better than what we
will describe in the other five topics. Still, some natural problems arise here:

PROBLEMS 3.1.
(a) Is there a discrete group with property (T) that is mapped onto all finite

simple groups of large rank? Or on all Alt(n)? By the computer-assisted
recent breakthrough in [KNO], we now know that the group of (order
preserving) automorphisms of the free group F5 has property (T). This
group is known to surject onto Alt(n) for infinitely many n’s; see [Gil77].
See also [Lub11a], [KKN], and [Nit] for the even more recent extension of
[KNO] to Aut(Fk) for all k≥ 4.

(b) The proof of Theorem 3.1 described above gives an explicit set of genera-
tors in all cases except the Suzuki groups. It would be of interest to cover
this case. Theorem 3.1 also gives a certain fixed number k of generators,
which is bounded but larger than two. One hopes to get a proof with
smaller sets of generators (perhaps two). This is especially of interest for
Alt(n).

(c) We discussed expanding families—that is, the eigenvalues are bounded
away from k= |S|. What about Ramanujan families—that is, families of
groups Gi with |Si| = k such that all nontrivial eigenvalues are bounded
by 2
√
k− 1. As of now, only subfamilies of {SL2(p�); p prime, �∈N} are

known to have such generators; see [LPS88] and [Mor94]. What about
SL3(p)? Alt(n)? In [P20] Parzanchevski defines Ramanujan directed
graphs. Strangely enough, while it is not known how to turn many finite
simple groups into Ramanujan graphs, hemanages in [P18] to turn them
into Ramanujan directed graphs!

3.2 RANDOM GENERATORS. A well-known result, proved by Dixon in
[Dix69] for the symmetric groups, Kantor-Lubotzky [KL90] for the classical
groups, and Liebeck-Shalev [LS95] for the exceptional ones, asserts that for
everym≥ 2, randomly chosenm elements of a finite simple groupG generate
G. This means that

Prob
(
(x1, . . . , xm)∈Gm; 〈x1, . . . , xm〉=G

)−→|G|→+∞ 1.

The basic question of this section is whether they form expanders—namely,
is there ε > 0 such that

(3) Prob
(
Expd(G,m, ε)

)−→|G|→+∞ 1,
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where

Expd(G,m, ε) :={(x1, . . . , xm)∈Gm;Cay(G;S) is ε-expanding for

S={x±11 , . . . , x±1m }?

This is still widely open. The best result as of now is the following:

THEOREM 3.3 (Breuillard-Guralnick-Green-Tao [BGGT15]).
For each m≥ 2 and r≥ 1, there is ε > 0 such that (3) holds for all finite simple
groups G of rank at most r.

The rate of convergence in (3) is even polynomial in |G|−1. In particular
this holds for the groups G=PSLn(q) when the rank n− 1 is bounded and q
goes to infinity. It also includes the family of Suzuki groups, thus completing
Theorem 3.1 by showing the existence of some expanding Cayley graph; see
[BGT11b] for this special family, a case that was not covered by the Kassabov-
Lubotzky-Nikolovmethods. The case of PSL2(p) in the above theoremwas first
established by Bourgain and Gamburd in [BG08b].
The method of proof here, pioneered in [Hel08] and [BG08b] for the family

of groups {PSL2(p)}p, is based on the classification of approximate subgroups
of G (see Theorem 3.4 below), an important statistical lemma in arithmetic
combinatorics (the so-called Balog-Szemerédi-Gowers lemma), and a crucial
property of characters of finite simple groups: the smallest degree of their
nontrivial irreducible characters is at least |G|δ , where δ > 0 depends only on
the rank of G.
This property, going back to Frobenius for PSL2(p), was established in full

generality in a classic paper by Landazuri-Seitz [LS74]. It was used by Sarnak-
Xue [SX91] and in Gamburd’s thesis [Gam02] in the closely related context of
spectral gap estimates for the Laplacian on hyperbolic surfaces. It also plays
an important role in various combinatorial questions regarding finite groups.
It was coined quasi-randomness by Gowers [Gow08]. In particular it implies
what is now called Gowers’s trick: namely, the fact that given any finite subset
A of a finite simple group, we have AAA=G, that is, every element of G can
be written as the product of three elements from A, provided |A|> |G|1−δ ,
where δ > 0 depends only on the rank of G. See [BNP08, Bre14a] for proofs of
this fact.
The approximate groups mentioned above are by definition subsets A of G

such that AA can be covered by a bounded number of translates of A. This
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bound, say, K, determines the quality of the K-approximate subgroup. With
this definition, 1-approximate subgroups of G are simply genuine subgroups
of G. The classification of subgroups of finite simple groups is a vast subject,
which of course is part of the Classification of Finite Simple Groups (CFSG).
Starting with Jordan’s 19th-century theorem that finite subgroups of GLn(C)
are bounded-by-abelian [Jor78, Bre12] and Dickson’s early 20th-century clas-
sification of subgroups of PSL2(q) [Dic58], it climaxes with the Larsen-Pink
theorem [LP11], which gives a CFSG-free classification of subgroups of finite
linear groups, saying in essence that they are close to being given by the Fq

points of some algebraic group. Regarding approximate groups, the main
result is as follows:

THEOREM 3.4 (Classification of approximate subgroups).
Let G be a finite simple group, A⊂G a generating subset, and K ≥ 1. If AA⊂XA
for some X ⊂G with |X | ≤K, then either |A| ≤CKC or |G|/|A| ≤CKC, where C
depends only on the rank of G. Moreover, for all generating subsets A⊂G,

|AAA| ≥min{|G|, |A|1+δ}

for some δ > 0 depending only on the rank of G.

For PSL2(p) and more generally in rank 1, the above result can be estab-
lished by elementary methods based on the sum-product theorem à la
Bourgain-Katz-Tao [BKT04]. This was proved by Helfgott for PSL2(p) [Hel08]
and generalized by Dinai [Din11] to PSL2(q) for all q. In high rank, new
ideas were required and although some mileage had been achieved by Helf-
gott [Hel11] and Gill-Helfgott [GH10] for PSL3(p) and PSLn(p), the solution
came after Hrushovski [Hru12] proved a very general qualitative version of
the above theorem based on a model-theoretic generalization of the Larsen-
Pink theorem and ideas from geometric stability theory. The result in the form
above was finally proved independently in [PS16] by Pyber-Szabó (all groups)
and in [BGT11a] by Breuillard-Green-Tao (who had initially only announced
it for Chevalley groups) without using any model theory but rather more
down-to-earth algebraic geometry in positive characteristic. See [Bre15] for an
exposition.
We now briefly explain the link between Theorems 3.4 and 3.3 following

the strategy first developed in [BG08b]. We refer the reader to the expository
paper [Bre15] and to the book [Tao15] for further details. In order to get a
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spectral gap, it is enough to show that the probability that the simple random
walk on the Cayley graph returns to the identity in O(log |G|) steps is close to
1/|G|. The Cayley graph is assumed to have large girth (see below Problem
3.2(c)), so during the first c log |G| steps (c is a small constant), the random
walk evolves on a tree and we understand it very well (via Kesten’s [Kes59]
theorem in particular). The main point is then to establish further decay of
this return probability between c log |G| steps and C log |G| steps (C is a large
constant). Here the main tool, the �2-flattening lemma of Bourgain-Gamburd,
is a consequence of the celebrated additive-combinatorial Balog-Szemerédi-
Gowers lemma (see [TV10]). It implies that decay takes place at some rate (of
order exp(−nα) for some small α > 0), provided the random walk does not
accumulate on an approximate subgroup of G. Theorem 3.4 then kicks in
and allows one to reduce the proof to showing that the random walk does not
accumulate on subgroups of G. This last step, which is in fact the main part
of [BGGT15], is straightforward in rank 1 but requires several new ideas in
high rank, in particular the existence of so-called strongly dense free subgroups
of simple algebraic groups in positive characteristic, proved in [BGGT12] for
this purpose.
Finally, we mention that the above method also produces expander Cayley

graphs for finite groups that are no longer simple (for example, SLd(Z/nZ)

when n is no longer assumed to be prime). The generators of these Cayley
graphs can be chosen to be the reduction modulo n of a set of generators in
a fixed Zariski dense subgroup in SLd(Z). This is the subject of super strong
approximation, for which we refer the reader to the works of Bourgain, Varjú,
and Salehi-Golsefidy [Var12, SaVa12, BV12], and its many applications—in
particular, to the affine sieve [BGS10, SaSa13] (see also the surveys [Sal14],
[Bre15]).

PROBLEMS 3.2.

(a) The corresponding problem for the family of alternating groups Alt(n)
with n growing to infinity is still wide open. Is there ε > 0 and m≥ 2
such that Equation (3) holds when G=Alt(n)? Can this even happen
with probability bounded away from 0? How about G=Sym(n) the
full symmetric group? Looking instead at the random Schreier graphs
Sch(Xn,r ;S) of Sym(n) obtained by the action on the set Xn,r of r-tuples
of n elements, it is well-known that (3) holds for some ε= ε(r)> 0 when
r is fixed (e.g., see [Lub94], [FJR+98]), while one would need r= n to get
the full Cayley graph of Sym(n). Nevertheless, a conjecture of Kozma
and Puder ([PP20, Conjecture 1.8]) asserts that for every generating
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set S, the spectral gap of the Cayley graph Cay(Sym(n);S) ought to be
entirely governed by that of the Schreier graph Sch(Xn,4;S) with r= 4.
This conjecture, if true, would imply that randomCayley graphs ofAlt(n)
are expanders.

(b) Being an expander implies that the diameter of the Cayley graph is log-
arithmic in the size of the graph; see [Lub94]. However, when the rank
of the finite simple groups goes to infinity, such as for the family Alt(n),
we do not even know whether or not the diameter of a random k-regular
Cayley graph can be bounded logarithmically in the size ofG. In the case
of Alt(n), however, poly logarithmic bounds have been established (see
[BH06], [SP12], [HSZ15]). See also [EJ20] for the case of classical groups
of high rank.

(c) Girth lower bounds are also relevant to the problem. For finite simple
groups of bounded rank, it is known that m randomly chosen elements
generate Cayley graphs with girth at least c log |G|, where c> 0 depends
only onm and on the rank ofG. In other words, the group’s presentation
has no relation of length< c log |G|; see [GHS+09]. As pointed out above
this was used in the proof of Theorem 3.3. However, logarithmic girth
lower bounds when the rank of the groups is allowed to go to infinity are
still completely open, even for Alt(n).

(d) What about Ramanujan graphs? Numerical evidence [LR93] hints that
random Cayley graphs of PSL2(p) may not be Ramanujan. However, it
is plausible that they are in fact almost Ramanujan, in the sense that for
each ε > 0 with very high probability as p→+∞, all nontrivial eigenval-
ues are bounded by 2

√
k− 1+ ε. See [RS17] where an upper bound on

the number of exceptional eigenvalues is established and numerics are
given. The same could be said of the family of alternating groups Alt(n)
(and perhaps even of the full family of all finite simple groups). Partial
evidence in this direction is provided by Friedman’s proof of Alon’s con-
jecture [Fri08] that the Schreier graphs of Alt(n) acting on n elements are
almost Ramanujan (see also [Pud15], [Bor15], [BC19]).

3.3 WORST CASE GENERATORS. The family of finite simple groups
Alt(n) was shown (see section 3.1) to be a family of expanders with respect
to some choice of generators, but it is not with respect to others: for example,
take τ = (1, 2, 3) and σ = (1, 2, . . . , n) if n is odd and σ = (2, . . . , n) if n is even.
Then Cay(Alt(n); {τ±1, σ±1}) are not expanders (see [Lub94]).
A similar kind of argumentation can be performed for every family of finite

simple groups {Gi}i∈I of Lie type with unbounded Lie rank. In [Som15] it was
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shown that for each such family there is a generating set Si of Gi of size at
most 10, such that the sequence of graphs {Cay(Gi,Si)}i∈I is not expanding.
By contrast we have the following conjecture (see [Bre14c]):

CONJECTURE 3.6. Given r ∈N and k∈N, there exists an ε= ε(r, k)> 0 such
that for every finite simple group of rank ≤ r and every set of generators S of size
|S| ≤ k, Cay(G,S) is an ε-expander.

Some evidence toward this conjecture is provided by the following result:

THEOREM 3.7 ([BG10]).
There exists a set of primesP1 of density 1 among all primes satisfying the following:
there exists ε > 0 such that if p∈P1 and x, y are two generators of SL2(p), then for
S={x±1, y±1}, Cay(SL2(p),S) is an ε-expander.

The proof uses the uniform Tits alternative proved in [Bre11] as well as the
same Bourgain-Gamburd method used in the proof of Theorem 3.3. The uni-
form Tits alternative in combination with the effective Nullstellensatz is used
to show that formost primes p, the probability of return to the identity (or even
to any proper subgroup) of the simple random walk on SL2(p) after n= log p
steps is at most p−c for some fixed c> 0 independent of the generating set.
This in turn implies a spectral gap via the Bourgain-Gamburd method and
Theorem 3.4.

4 Expansion in compact simple Lie groups

In this section we are interested in expanding subsets of size k in com-
pact simple Lie groups. Here again, we will divide our discussion into three
subsections: best, random, and worst case (topological) generators.

4.1 BEST CASE GENERATORS. Here the question is to find a topological
generating set with spectral gap:

THEOREM 4.1 (Margulis, Sullivan, Drinfeld).
Every simple compact Lie group contains a finite topological generating set with
spectral gap.

Every simple compact Lie group G not locally isomorphic to SO(3) con-
tains a countable dense subgroup with Kazhdan’s property (T). Indeed one
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can find an irreducible high rank arithmetic lattice in a productG×H, where
H is a certain noncompact semisimple Lie group, and project it to G; see
[Mar91, III.5.7]. Any finite generating subset S of this countable (T) group
� will provide an example of a topological generating set of G with a spectral
gap (in particular, the conditions of Theorems 2.3 and 2.4 will hold). These
observations were made by Margulis [Mar80] and Sullivan [Sul81].
However, the case of SO(3) (and its double cover SU(2)) is exceptional: it

does not contain any countable infinite group with property (T) (see [dlHV89,
Chapter 6, Proposition 26]). So it seems much harder to find a topological
generating set with spectral gap. Nevertheless this was achieved by Drinfeld
shortly after the work of Margulis and Sullivan in a one-page paper [Dri84].
Kazhdan’s original proof that lattices in high rank simple Lie groups have
property (T) is representation theoretic by nature. It uses heavily the fact that
the discrete group is a lattice, so that one can induce unitary representations
from the lattice to the ambient Lie group and thus reduce the problem to a
good understanding of the representation theory of the Lie group. Drinfeld’s
idea is similar: the countable dense subgroup of G he uses arises from the
group of invertible elements in a quaternion algebra defined over Q, which
ramifies at the real place (so that the associated Lie group is locally isomorphic
to SO(3)). But the tools to establish the spectral gap are much more sophisti-
cated: namely, the Jacquet-Langlands correspondence is used to reduce the
question to spectral gap estimates for Hecke operators associated to irre-
ducible PGL2(Qp) representations arising from automorphic representations
on the adelic space L2(PGL2(A)/PGL2(Q)). These estimates follow either
from the work of Deligne on the Ramanujan-Peterson conjectures [Del74] or
from earlier estimates due to Rankin [Ran39]. We refer to Drinfeld’s original
paper and to the book [Lub94] for the details of this argument.
These methods produce some specific (topological) generating sets arising

fromgenerators of a lattice in a bigger group. One can be very explicit andwrite
down concrete matrices for the generators. See [Lub94], [Sar90], and [CdV89].
Lubotzky-Phillips-Sarnak [LPS87] pushed this to produce many examples of
families of topological generators of SO(3) with optimal spectral gap (i.e.,
Ramanujan). The set S consisting of the three rotations of angle arccos(− 3

5 )

around the coordinate axes ofR3 and their inverses provides such an example.2

In these examples the quality of the gap deteriorates as the dimension tends
to infinity. In [Sar90, section 2.4], Sarnak gives an inductive construction

2These generators are called V gates in the quantum computing literature; see section 5.
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starting with a set S of size k in SO(n) with spectral gap at least ε, which
produces a new set S′ in SO(n+ 1) of size 2k with spectral gap at least ε/2k.
However, the following is still open:

PROBLEM 4.1. Does there exist ε > 0 and k> 0 and for each n a symmetric
set of k topological generators of SO(n) with all eigenvalues < k− ε (i.e., a
spectral gap that is uniform in n)?

4.2 RANDOM CASE. Here the situation is wide open. Sarnak [Sar90, p. 58]
asks the questionwhether for a generic pair of rotations a, b in SO(3) the corre-
sponding set S={a, b, a−1, b−1} has a spectral gap. This question is still open
regardless of whether generic is understood in the sense of Lebesgue measure
or in the sense of Baire category.
Regarding the latter, an interesting observation was made in [LPS86]: if G

is a compact simple Lie group, then for a Baire generic family of (topological)
generating sets S of size k, generating a free subgroup ofG, the Laplace opera-
tor�S on L20(G) has infinitely many exceptional eigenvalues (i.e., eigenvalues
of size > 2

√
k− 1); see the end of section 4.

It is also worth mentioning that generically a k-tuple of elements in G gen-
erates a free subgroup. This is true both in the sense of Baire category and in
the sense of measure (see, e.g., [GK03], [BG03], [Aou11]).
Another interesting observation in the random (with respect to Lebesgue)

situation was made by Fisher [Fis06]. He observed that the property of an
m-tuple (a1, . . . , am) in Gm to have some nonzero spectral gap (i.e., S=
{a±11 , . . . , a±1m } has a spectral gap) is invariant under the group of automor-
phisms of the free group Fm. Indeed if S has a spectral gap, so does any other
generating subset of the group 〈S〉 generated by S. Now the action of Aut(Fm)
on Gm is known to be ergodic when m≥ 3 by a result of Goldman [Gol07]
(case of SU(2)) andGelander [Gel08] (generalG); see also [Lub11a] for this and
general background on Aut(Fm) and its actions. Hence we have the following
zero-one law:

THEOREM 4.3 (Fisher [Fis06]).
Let G be a simple compact Lie group. If m≥ 3, then either Lebesgue almost
all m-tuples have a spectral gap, or Lebesgue almost no m-tuple has a spectral
gap.

In the next paragraph we discuss the new method introduced by Bourgain
and Gamburd to establish a spectral gap.
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4.3 WORST CASE. Even worse: we do not know even a single example of a
finite topological generating set of SO(3) (or any compact simple Lie group)
without a spectral gap. Nevertheless a breakthrough took place a decade ago
when Bourgain and Gamburd produced many more examples of topological
generators with spectral gap. They showed in [BG08a] that every topologi-
cal generating set all of whose matrix entries are algebraic numbers (i.e., in
SU(2,Q)) have a spectral gap. This has now been generalized, first to SU(d)
by Bourgain-Gamburd themselves [BG12], then to arbitrary compact simple
Lie groups by Benoist and Saxcé [BdS16]:

THEOREM 4.4 (Bourgain-Gamburd, Benoist-Saxcé).
Let G be a compact simple Lie group and S⊂G be a finite symmetric subset gener-
ating a dense subgroup such that tr(Ad(s)) is an algebraic number for every s∈S.
Then S has a spectral gap.

Note that the best case examples mentioned above and produced by Mar-
gulis, Sullivan, and Drinfeld have algebraic entries (property (T) groups have
an algebraic trace field by rigidity) and so they fall in the class of subsets han-
dled by the above theorem. The converse, however, is not true: in Theorem
4.4 the subgroups generated by S are usually not lattices in any Lie group,
and although they can be made discrete under the usual geometric embed-
ding looking at the different places of the trace field, they will only be thin
subgroups there—that is, Zariski-dense of infinite covolume.
The proof of Theorem 4.4 is inspired from the above-mentioned method

Bourgain and Gamburd first pioneered for the family of finite simple groups
PSL2(p), but it is much more involved. It still contains a significant combina-
torial input in that instead of the growth properties of triple products of finite
subsets as in Theorem 3.4, one needs to consider the growth under triple prod-
ucts of δ-separated sets and thus consider discretized approximate groups. The
cardinality of a finite set A is replaced by the δ-discretized cardinality Nδ(A),
which is the minimum number of balls of radius δ needed to cover A. This
setting was explored by Bourgain in his proof that there is no nontrivial Borel
subring of the reals with positiveHausdorff dimension [B03] culminatingwith
Bourgain’s discretized sum-product theorem and later by Bourgain-Gamburd in
[BG08a]. In his thesis Saxcéwas able to prove the suitable analogue of Theorem
3.4 in the context of discretized sets in compact Lie groups.

THEOREM 4.5 (Saxcé’s product theorem [dS15]).
Let G be a simple compact Lie group and δ > 0. For every κ > 0 and σ > 0 there is
ε > 0 such that for every set A⊂G that is (a) of intermediate size (i.e., Nδ(A)=
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δ−α for α ∈ [σ , dimG− σ ]), (b) κ-non-concentrated (i.e., Nρ(A)≥ δερ−κ for all
ρ ≥ δ), and (c) ε-away from subgroups (i.e., for every proper closed subgroup H of
G there is a∈A with d(a,H)≥ δε), we have

Nδ(AAA)≥Nδ(A)1+ε .

An interesting consequence of this theorem (proved in [dS17]) is that sets
of positive Hausdorff dimension have a bounded covering number: namely,
given σ > 0, there is p∈N such that for any typologically generating Borel
subset A of G with Hausdorff dimension at least σ , Ap=G.
As in the case of finite groups of Lie type, the spectral gap in Theorem

4.4 is established by showing the fast equidistribution of the simple random
walk on G induced by S. A similar combinatorial argument based on the
Balog-Szemerédi-Gowers lemma shows that the fast equidistribution must
take place unless the walk is stuck in a δ-discretized approximate group and
hence (applying Theorem 4.5) in the neighborhood of some closed subgroup.
It only remains to show that the random walk cannot spend too much time
close to any subgroup. This is where the algebraicity assumption comes in.
In fact, as shown in [BdS16], it is enough to know that the probability of
being exponentially close to a closed subgroup is uniformly exponentially
small.

DEFINITION 4.6 (Weak diophantine property). A finite symmetric subset
S of a compact simple Lie group G (with bi-invariant metric d(·, ·)) is said to
be weakly diophantine if there are c1, c2> 0 such that for all large enough n and
every proper closed subgroupH≤G, we have

Prob{w;|w|=n}
(
d(w,H)< e−c1n

)≤ e−c2n,

where the probability is taken uniformly over the kn words w of length |w| = n
in the alphabet S.

Note that the presence of a spectral gap gives a rate of equidistribution of the
random walk. In particular, it easily implies the weak diophantine property.
But we now have the following:

THEOREM 4.7 (see [BdS16]).
For a finite symmetric subset S the weak diophantine property and the existence of
a spectral gap are equivalent.
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If S has algebraic entries (or if the trace field generated by tr(Ad(s)) is a
number field), then it is well-known and easy to show that it satisfies a strong
diophantine property—namely, there is c1> 0 such that d(w, 1)> e−c1|w| for
every word w in S not equal to the identity. Benoist and Saxcé verify that it
must also satisfy the weak diophantine property.
The uniform Tits alternative yields a weaker version of the weak dio-

phantine property (where e−c1n is replaced by e−nc1 ), which holds for every
topological generating set S; see [Bre11].
It has been conjectured in [GJS99] and [Gam04, section 4.2] that the strong

diophantine property ought to hold for Lebesgue almost every S (it does not
hold for every S; for example, it fails if S contains a rotation whose angle mod
π is a Liouville number).
Finally, we propose a stronger spectral gap conjecture:

CONJECTURE 4.8. Let G be a simple compact Lie group and k≥ 4. There is
ε > 0 such that for every symmetric set S of size k generating a dense subgroup of G,
�S has only finitely many eigenvalues outside the interval [−k+ ε, k− ε].

It is easy to see that not all eigenvalues can be contained in a proper sub-
interval: for example, if the generators are close to the identity inG, then there
will be many eigenvalues close to the maximal eigenvalue k. Partial evidence
for this conjecture is supported by the fact that the analogous statement (even
without exceptional eigenvalues) does hold, with a uniform ε, for the action
of S on the regular representation �2(〈S〉) of the abstract group 〈S〉, as follows
from the uniform Tits alternative; see [Bre11].
What about Ramanujan topological generating sets? As mentioned above

Lubotzky-Phillips-Sarnak produced such examples in [LPS88]. In [LPS86,
Theorem 1.4], however, they observed that generic (in the sense of Baire)
generators are in general not Ramanujan. In this vein the following is still
open:

PROBLEM 4.3. Is being asymptotically Ramanujan a Baire generic prop-
erty? Namely, is there a countable intersection � of dense open subsets
of Gk such that for every ε > 0 and every k-tuple of symmetric generators
S∈�, there are only finitely many eigenvalues of �S outside the interval
[−2√k− 1− ε, 2√k− 1+ ε]? The same question can be asked for almost
every k-tuple of generators in the sense of Lebesgue measure, and in this case
the argument for the zero-one law of Theorem 4.3 no longer applies.
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5 Navigation and golden gates

5.1 NAVIGATION IN FINITE SIMPLE GROUPS. One of the most im-
portant applications of expander graphs is their use for the construction of
communication networks. Let us imagine nmicroprocessors working simul-
taneously within a supercomputer. Ideally we would like to have them all con-
nected to each other, but this would require �(n2) connections, which is not
feasible. Expander graphs give a replacement that can be implemented with
O(n) connections and with reasonable performance. But this also requires
a navigation algorithm, which will find a short path between any two ver-
tices of the graph. It is easy to see that ε-expander k-regular graphs X have
diameter bounded by C logk−1(|X |), where C depends only on the expansion
coefficient ε. In section 3, we showed that there exist k, ε such that every (non-
abelian) finite simple group G has a symmetric set of generators S of size
at most k such that Cay(G,S) is an ε-expander, and so there is C such that
diam(Cay(G,S))≤C logk−1(|G|). But the proof that provided these generators
did not offer an algorithm to find a path between two given points of length at
most C logk−1(|G|). This is still open:

PROBLEM 5.1.a. Find k∈N and ε,C> 0 such that every nonabelian finite
simple group has a symmetric set of generators of size at most k, for which
Cay(G,S) is an ε-expander and there exists a polynomial time (i.e., polynomial
in logk−1 |G|) algorithm that expresses any given element in G as a word in S
of length at most C logk−1(|G|).

In [BKL89] a set S of size 14 was presented (for almost all the finite sim-
ple groups) for which diam(Cay(G,S))=O(log |G|) with an absolute implied
constant, even though these Cayley graphs were not uniform expanders.
The case when G is the alternating group Alt(n) (or the symmetric group

Sym(n)) is of special interest: we know a set of generators S that would give
expanders (see [Kas07a] or [KNO]), but they come with no navigation. On the
other hand, [BKL89] gives such a navigation algorithm but not expanders.
Another case of special interest is the family of groups PSL2(Fp), where p

runs overs the primes. For this family,

S=
{(

1 ±1
0 1

)
,

(
1 0
±1 1

)}

gives rise to expanders, but the best navigation algorithm with this generating
set is due to Larsen [Lar03]. However, his probabilistic algorithm gives words
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of length O((log p)2) rather than the desired O(log p). Here is a baby version
of this problem:

PROBLEM 5.1.b. Find an algorithm to express

(
1 p+1

2
0 1

)
=

(
1 1
0 1

) p+1
2

as a word of length O(log p) using

(
1 ±1
0 1

)
and

(
1 0
±1 1

)
.

Let us mention that if one allows to add an extra generator—say,

t=
(
2 0
0 1

2

)
,

then this is easily done. Denote by ux the unipotent matrix

(
1 x
0 1

)
.

For b= 1, . . . , p− 1, write b=∑r
i=0 ai4i with r≤ log4(p) and 0≤ ai≤ 3. Then,

since tuxt−1= u4x, we get ub= ua0 tua1 t−1 · . . . · truar t−r . This means that ub
is a word of length O(r)=O(log p) using only the letters u1 and t. A similar
trick for the lower unipotent matrices plus the observation that everymatrix in
SL2(p) is a product of at most four upper and lower unipotent matrices shows
the following:

PROPOSITION 5.3. Problem 5.1.a. has an affirmative answer for the family of
groups {PSL2(p); p prime}.

The navigation algorithm in PSL2(q), with respect to the p+ 1 genera-
tors provided by the LPS Ramanujan graph, received some special attention
[TZ08, PLQ08, Sar19, Sar17] as it has been suggested that these Cayley graphs
can be used to construct efficient hash functions. It turned out that this prob-
lem is intimately related to some deep problems in number theory asking
for solutions of some diophantine equations. Some of these problems are
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NP-complete and some are solved in polynomial time! These works give
a probabilistic polynomial time algorithm to navigate G=PSL(2, q) (with
respect to the p+ 1 generators of the LPS Ramanujan graphs) finding a path
of length at most (3+ o(1)) logp |G| between any two points, while the typ-
ical distance between two vertices chosen at random in the graph is (1+
o(1)) logp |G|. But already this implies that these Cayley graphs are not a
good choice for hash functions. On the other hand, finding the shortest path
between any two points is NP-complete!

5.2 NAVIGATION IN SIMPLE COMPACT GROUPS. Let G be a com-
pact group with bi-invariant metric d, where ourmain interest will be compact
simple Lie groups with the metric induced by the Riemannian structure. In
this case the analogous question to those discussed in section 5.1 for finite
simple groups is of interest even for a single group G and has the following
form.

PROBLEM 5.2. Find a finite symmetric subset S of G of size k, which gen-
erates a dense subgroup � of G, and find an algorithm that given ε > 0 and
g ∈G provides a word w of short length in S with d(w, g)< ε.

What do we mean by short? Let με be the volume of a ball of radius ε in G.
We normalize the volume so thatG has volume 1. We want to coverG by balls
of radius ε around the words of length ≤ � in S. The number T of such words
satisfies |T| ≤ k�, and so the best we can hope for is �≤Ok(log 1

με
). For simple

Lie groups, με ∼ cεdimG, so we can hope for �≤Ok,G(log 1
ε
). Ideally we would

like also to have an efficient algorithm that, when ε and g ∈G are given, will
find w∈� that is ε-close to g and will express w as a word of length O(log( 1

ε
))

in the elements of S. This problem for the group PU(n) (especially PU(2), but
also for larger n) is of fundamental importance in Quantum Computing. The
elements of � are usually called the gates, and optimal gates are golden gates
(see [NC00], [PS18], and the references therein for more on this). We will not
go in this direction here but will just mention that the classical Solovay-Kitaev
algorithmworks for general gates (i.e., a subset S as before) but gives a word w
that is of polylogarithmic length log( 1

ε
)O(1), while the spectral methods to be

discussed briefly below work for special choices of gates but give w of smaller
length, sometimes evenwith an almost optimal implicit constant. We refer the
reader to Varjú’s work [Var13] for the best-known polylogarithmic estimates
for general gates in all compact simple Lie groups.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



expansion in simple groups / 269

Problem 5.2 has two parts, and each one is nontrivial: (a) Given g ∈G, find
w∈� that is short and ε-close to g, and (b) Express w as an explicit short word
(circuit) in terms of S.
The work of Ross and Selinger [RS16] essentially gave a solution to both

parts for the case G=PU(2). They observed that every g ∈G can be writ-
ten as a product of three diagonal matrices and showed how to solve the
problem for each diagonal matrix. For both (a) and (b), they used the group
�=PU2(Z[

√
2][ 1√

2
]) (which is the first factor projection of the corresponding

arithmetic lattice in PU2(R)×PGL2(K), where K is the degree 2 extension of
the field Q2 of 2-adic numbers associated to the prime

√
2).

The work of Parzanchevski and Sarnak [PS18] gives a conceptual explana-
tion for this and a vast generalization. They find a number of groups � that are
suitable to achieve this goal: all the �’s are arithmetic lattices, which appear
naturally as lattices in PU(2)×PGL2(K), when K is a local non Archimedean
field (see [Lub94] for a thorough explanation of this). The projection of � to
PU(2) gives the desired dense subgroup. But themore interesting point is that
the discrete projection to PGL2(K) and the action of� on its associated Bruhat-
Tits tree gives the navigation algorithm that solves part (b) of the problem.
Some special choices of such �’s gives super golden gates, which are essentially
optimal.
The work of Evra and Parzanchevski [EP18] takes the story a step further by

studying the analogous problem for PU(3). This time, this is done via arith-
metic discrete subgroups � of PU(3)×PGL3(Qp). Again the projection to
PU(3) gives the desired dense subgroup of PU(3), while the projection to the
other factor gives an action of � on the Bruhat-Tits building, which enables
one to also solve the navigation problem (in spite of not being a tree). The
reader is referred to [EP18] for this emerging beautiful theory and for more
open questions.
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8 anders karlsson

ELEMENTS OF A METRIC SPECTRAL THEORY

Dedicated to Margulis, with admiration

Abstract. This essay discusses a general method for spectral-type theorems using
metric spaces instead of vector spaces. Advantages of this approach are that
it applies to genuinely nonlinear situations and also to random versions. Met-
ric analogs of operator norm, spectral radius, eigenvalue, linear functional, and
weak convergence are suggested. Applications explained include generalizations
of the mean ergodic theorem, the Wolff-Denjoy theorem, and Thurston’s spectral
theorem for surface homeomorphisms.

1 Introduction

In one line of development of mathematics, considerations progressed from
concrete functions, to vector spaces of functions, and then to abstract vector
spaces. In parallel, the standard operations, such as derivatives and integrals,
were generalized to the abstract notions of linear operators, linear function-
als, and scalar products. The study of the category of topological vector spaces
and continuous linearmaps is basically what is now called functional analysis.
Dieudonné wrote that if one were to reduce the complicated history of func-
tional analysis to a few keywords, the emphasis should fall on the evolution of
two concepts: spectral theory and duality [Di81]. Needless to say, as most often
is the case, the abstract general study does not supersede the more concrete
considerations in every respect. In the context of analysis, one can compare
the two different points of view in the excellent texts [L02] and [StS11].
The metric space axioms were born out of the same development; see

the historical note in [Bo87] or [Di81]. In the present essay, I would like to
argue for another step: from normed vector spaces to metric spaces (and their
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generalizations), and bounded linear operators to semicontractions. This
could be called metric functional analysis, or in view of the particular focus
here, a metric spectral theory. Indeed we will in the metric setting discuss a
spectral principle and duality in the form of metric functionals. This is moti-
vated by situations that are genuinely nonlinear, but there is also an interest in
the metric perspective even in the linear case. The latter can be exemplified by
a well-known classical instance: for many questions in the study of groups of
2× 2 real matrices, it is easier to employ their (associated) isometric action on
the hyperbolic plane, which is indeed a metric and not a linear space, instead
of the linear action onR

2. The isometric action of PSL2(R) is by fractional lin-
ear transformations preserving the upper half-plane. This generalizes to n× n
matrices and the associated symmetric space.
Geometric group theory is a subject that has influenced the development

of metric geometry during the last few decades. Gromov has been the lead-
ing person in this subject with his many and diverse contributions. Orig-
inally he found some inspiration from combinatorial group theory and the
Mostow-Margulis rigidity theory (for example, the Gromov product appeared
in Lyndon’s work, Mostow introduced the crucial notion of quasi-isometry,
andMargulis noted that one can argue in terms of wordmetrics in this context
of quasi-isometries and boundary maps).
There is another strand of metric geometry sometimes called the Ribe

program; see Naor’s recent ICM plenary lecture [N18] for some history and
appropriate references. Bourgain wrote already in 1986 [B86] in this context
that “the notions from local theory of normed spaces are determined by the
metric structure of the space and thus have a purely metrical formulation.
The next step consists in studying these metrical concepts in general metric
spaces in an attempt to develop an analogue of the linear theory.” The present
text suggests something similar, yet rather different. The properties of the
Banach spaces and metric spaces studied in the Ribe program are rather sub-
tle; in contrast, we are here much more basic and in particular motivated by
understanding distance preserving self-maps. This latter topic we see as a kind
of metric spectral theory with consequences within several areas of mathe-
matics: geometry, topology, group theory, ergodic theory, probability, complex
analysis, operator theory, fixed point theory, and more.
We consider metric spaces (X , d), at times with the symmetry axiom

removed, and the corresponding morphisms, here called semicontractions
(in contrast to bi-Lipschitz maps in the context of Bourgain, Naor, and oth-
ers). A map f between two metric spaces is a semicontraction if distances are
not increased—that is, for any two points x and y, it holds that
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d(f (x), f (y))≤ d(x, y).

Synonyms are 1-Lipschitz or nonexpansive maps.
It is reasonable to wonder whether in such a general setting there could

be anything worthwhile to uncover. One useful general fact is well-known:
the contraction mapping principle. The abstract statement appeared in Banach’s
thesis, but some version might have been used before (for the existence and
uniqueness of solutions to certain ordinary differential equations). In this
essay I will suggest a complement to this principle, which basically appeared
in [Ka01] and that is applicable more generally than the contraction mapping
principle since isometries are included.
The objective here is to discussmetric space analogs of the linear concepts

. linear functionals and weak topology,. operator norm and spectral radius, and. eigenvalues and Lyapunov exponents,

and then show how these metric notions can be applied. At the center for
applications is, as already indicated, a complement to the contraction map-
ping principle—namely, a spectral principle [Ka01, GV12], its ergodic theoretic
generalization [KaM99, KaL11, GK15] (see also [G18]), and a special type of
metrics that could be called spectral metrics [T86, Ka14].
Here is an example: Let M be an oriented closed surface of genus g≥ 2.

Let S denote the isotopy classes of simple closed curves on M not isotopi-
cally trivial. For a Riemannian metric ρ onM, let lρ(β) be the infimum of the
length of curves isotopic to β. In a seminal preprint from 1976 [T88], Thurston
could show the following consequence (the details are worked out in [FLP79,
“Théorème Spectrale”]):

Theorem 1.1 ([T88, theorem 5]).
For any diffeomorphism f of M, there is a finite set 1≤ λ1<λ2< · · ·<λK of alge-
braic integers such that for any α ∈S there is a λi such that for any Riemannian
metric ρ,

lim
n→∞ lρ(f nα)1/n= λi.

The map f is isotopic to a pseudo–Anosov map iff K = 1 and λ1> 1.

This is analogous to a simple statement for linear transformations A in
finite dimensions: given a vector v there is an associated exponent λ (absolute
value of an eigenvalue), such that
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lim
n→∞

∥∥Anv
∥∥1/n= λ.

To spell out the analogy: diffeomorphism f instead of a linear transforma-
tion A, a length instead of a norm, and a curve α instead of a vector v. Below
we will show how to get the top exponent, even for a random product of
homeomorphisms, using our metric ideas and a lemma inMargulis’s and my
paper [KaM99]. This is a different approach than [Ka14]. To get all the expo-
nents (without their algebraic nature) requires some additional arguments;
see [H16].
One of the central notions in the present text is that of a Busemann function

or metric functional. This notion appears implicitly in classical mathematics,
with Poisson and Eisenstein, and is by now recognized by many people as a
fundamental tool. In differential geometry, see the discussion in Yau’s survey
[Y11]. Busemann functions play a crucial role in the Cheeger-Gromoll splitting
theorem for manifolds with nonnegative Ricci curvature. The community of
researchers of nonpositive curvature also has frequently employed Busemann
functions. For example, it has been noted by several people that the horofunc-
tion boundary (metric compactification) is the right notion when generalizing
Patterson-Sullivan measures; see, for example, [CDST18] for a recent contri-
bution. In my work with Ledrappier, we used this notion without knowing
anything about the geometry of the Cayley graphs, in particular without any
curvature assumption. Related to this, with a view toward another approach
to Gromov’s polynomial growth theorem, see [TY16]. There are many other
instances one couldmention, but still, it seems that the notion of a Busemann
function remains a bit off the mainstream, instead of taking its natural place
dual to geodesics.
A note on terminology: When I had a choice, or need, to introduce aword for

a concept, I sometimes followed Serge Lang’s saying that terminology should
(ideally) be functorial with respect to the ideas. Hence I use metric functional
for a variant of the notion of horofunction usually employed and introduced by
Gromov, generalizing an older concept due to Busemann, in turn extending
a notion in complex analysis (and also from Martin boundary theory). While
some people do not like this, I thought it could avoid confusion to have differ-
ent terms for different concepts, even when, or precisely because, these are
variants of each other. In addition to being functorial in the ideas,metric func-
tional also sounds more basic and fundamental as a notion than horofunction
does. Indeed, the present essay tries to argue for the analogy with the linear
case and the basic importance of themetric concept of horofunctions ormetric
functionals. See [Ka19] for a metric Hahn-Banach theorem.
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2 Functionals

2.1 LINEAR THEORY. For vector spaces E, lines

γ :R→E

are of course fundamental objects, as are their dual objects, the linear func-
tionals

φ :E→R.

In the case of normed vector spaces the existence of continuous linear func-
tionals relies in general on Zorn’s lemma via the Hahn-Banach theorem. It
is an abstraction of integrals. The sublevel sets of φ define half-spaces. The
description of these functionals is an important aspect of the theory; see, for
example, the section entitled “The Search for Continuous Linear Functionals”
in [Di81].

2.2 METRIC THEORY. For metric spaces X , geodesic lines

γ :R→X

are fundamental. The map γ is here an isometric embedding. (Note that
geodesic lines has two meanings: in differential geometry they are locally dis-
tance minimizing, while in metric geometry they are most often meant to
be globally distance minimizing. The concepts coincide lifted to contractible
universal covering spaces.) Now we will discuss what the analog of linear
functionals should be; that is, some type of maps

h :X→R.

Observation 2.1. Let X be a real Hilbert space. Take a vector v with ‖v‖= 1
and consider

lim
t→∞

∥∥tv− y∥∥−‖tv‖= lim
t→∞

√
(tv− y, tv− y)− t= lim

t→∞
(tv− y, tv− y)− t2√
(tv− y, tv− y)+ t

= lim
t→∞

t
(−2(y, v)+ (y, y)/t)

t
(√

1− 2(y, v)/t+ (y, y)/t2+ 1
) =−(y, v).
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In this way one can recover the scalar product from the norm differently
than from the polarization identity.
In an analytic continuation of ideas, as it were, one is then led to the next

observation (which maybe is not how Busemann was thinking about this):

Observation 2.2 (Busemann). Let γ be a geodesic line (or just a ray γ :R+→
X). Then the following limit exists:

hγ (y)= lim
t→∞ d(γ (t), y)− d(γ (t), γ (0)).

The reason for the existence of the limit for each y is that the sequence in
question is bounded from below and monotonically decreasing (thanks to the
triangle inequality); see [BGS85] and [BrH99].

Example 2.3. The open unit disk of the complex plane admits the Poincaré
metric in its infinitesimal form

ds= 2 |dz|
1− |z|2 .

This gives a model for the hyperbolic plane, and moreover it is fundamental
in the way that every holomorphic self-map of the disk is a semicontraction
in this metric; this is the content of the Schwarz-Pick lemma. The Busemann
function associated to the ray from 0 to the boundary point ζ—in other words,
ζ ∈C with |ζ | = 1—is

hζ (z)= log |ζ − z|
2

1− |z|2 .

These functions appear (in disguise) in the Poisson integral representation
formula and in the Eisenstein series.

We can take one more step, which will be parallel to the construction of
the Martin boundary in potential theory. This specific metric idea might have
come fromGromov around 1980 (except that he considers another topology—
an important point for us here).
Let (X , d) be a metric space (perhaps without the symmetric axiom for d

satisfied; this point is discussed in [W14] and [GV12]). Let

	 :X→R
X

be defined via
x �→ hx(·) := d(·, x)− d(x0, x).
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This is a continuous injective map. The functions h and their limits are called
metric functionals. In view ofObservation 2.2.2, Busemann functions are exam-
ples of metric functionals and are easily seen as not being of the form hx, with
x ∈X . Even though geodesics may not exist, metric functionals always exist.
Note that like in the linear case functionals are normalized to be 0 at the origin:
h(x0)= 0.
Every horofunction (i.e., uniform limit on bounded subsets of functions hx

as x tends to infinity) is a metric functional, and every Busemann function is a
metric functional. On the other hand, in general it is a well-recognized fact that
not every horofunction is a Busemann function (such spaces could perhaps be
called nonreflexive) and not every Busemann function is a horofunction; some
artificial counterexamples showing this can be thought of:

Example 2.4. Take one ray [0,∞] that will be geodesic, then add an infinite
number of points at distance 1 to the point 0 and distance 2 to each other.
Then at each point n on the ray, connect it to one of the points around 0 with
a geodesic segment of length n− 1/2. This way hγ (y)= limt→∞ d(γ (t), y)−
d(γ (t), γ (0)) still of course converges for each y but not uniformly. Hence the
Busemann function hγ is a metric functional but not a horofunction.

As already stated, to any geodesic ray from the origin there is an associated
metric functional (Busemann function); compare this with the situation in the
linear theory that the fundamental Hahn-Banach theorem addresses. In the
metric category the theory of injective metric spaces considers when semicon-
tractions (1-Lipschitz maps) defined on a subset can be extended; see [La13]
and references therein. See also [Ka19]. The real line is injective, whichmeans
that for any subset A of a metric space B and semicontraction f :A→R there
is an extension of f to B→R without increasing the Lipschitz constant—for
example,

f̄ (b) := sup
a∈A

(
f (a)− d(a, b))

or
f̄ (b) := inf

a∈A
(
f (a)+ d(a, b)).

It would require a lengthy effort to survey all the purposes horofunctions have
served in the past. Two instances can be found in differential geometry: in
nonnegative curvature, the Cheeger-Gromoll theorem, and in nonpositive cur-
vature, the Burger-Schroeder-Adams-Ballmann theorem. In my experience,
many people know of one or a few applications, but few have an overview of
all the applications. Other applications are found below or in papers listed
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in the bibliography; for example, let us mention a recent Furstenberg-type
formula for the drift of random walks on groups [CLP17], in part building on
[KaL06] and [KaL11]. It is also the case that the last two decades have seen iden-
tifications and understanding of horofunctions for various classes of metric
spaces.

3 Weak convergence and weak compactness

3.1 LINEAR THEORY. One of the main uses for continuous linear func-
tionals is to define weak topologies that have compactness properties even
when the vector space is of infinite dimension (the Banach-Aloglu theorem);
see [L02].

3.2 METRIC THEORY. We will now discuss how the definition of metric
functionals on a metric space will provide the metric space with a weak topol-
ogy for which the closure is compact. There have been other, more specific
efforts to achieve this in special situations. Maybe the first one for trees can
be found in Margulis’s paper [Ma81]; see also [CSW93] for another approach,
[Mo06] for a discussion in nonpositive curvature, and then [GV12] for the
general method taken here.
Let X be a set. By a hemi-metric on X we mean a function

d :X ×X→R

such that d(x, y)≤ d(x, z)+ d(z, y) for every x, y, z∈X and d(x, y)= 0 if and
only if x= y. (The latter axiom can be satisfied by passing to a quotient space.)
In other words, we do not insist that d is symmetric (one could symmetrize
it) or positive. For more discussion about such metrics, see [GV12] and [W14].
One way to proceed is to consider

D(x, y) :=max
{
d(x, y), d(y, x)

}
,

which clearly is symmetric but also positive (see [GV12]), so an honest metric.
One can take the topology on X from D.
For a weak topology there are a couple of alternative definitions, but we

proceed as follows. As defined in the previous section, let

	 :X→R
X,

defined via
x �→ hx(·) := d(·, x)− d(x0, x).
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This is a continuous injective map. By the triangle inequality we note that

−d(x0, y)≤ hx(y)≤ d(y, x0).

A consequence of this in view of Tychonoff’s theorem is that with the point-
wise (= product) topology, the closure	(X) is compact. In general this is not a
compactification in the strict and standard sense that the space sits as an open
dense subset in a compact Hausdorff space, but it is convenient to still call it
a compactification; for a discussion about this terminology, see [Si15, 6.5].

Example 3.1. This has by now been studied for a number of classes of met-
ric spaces: nonpositively curved spaces [BGS85, BrH99], Gromov hyperbolic
spaces ([BrH99], or more recent and closer to our consideration is [MT18]),
Banach spaces [W07, Gu17, Gu18], Teichmüller spaces (see [Ka14] for ref-
erences in particular to Walsh), Hilbert metrics [W14, W18, LN12], Roller
boundary of CAT(0)-cube complex (due to Bader-Guralnick; see [FLM18]), and
symmetric spaces of noncompact type equipped with Finsler metrics [KL18].

Let me introduce some terminology. We call 	(X) the metric compactifica-
tion (the term was also coined for proper geodesic metric spaces by Rieffel in
a paper on operator algebras and noncommutative geometry) and denote it
by X , even though this is a bit abusive, since the topology of X itself might
be different. The closure that is usually considered starting from Gromov (see
[BGS85, BrH99]) is to take the topology of uniform convergence on bounded
sets (note that uniform convergence on compact sets is in the present con-
text equivalent to our pointwise convergence), and following [BrH99] we call
this the horofunction bordification. For proper geodesic spaces the two notions
coincide.

Example 3.2. A simple useful example is the following metric space, which
I learned from Uri Bader. Consider longer and longer finite closed intervals
[0, n] all glued to a point x0 at the point 0. This becomes a countable (met-
ric) tree that is unbounded but contains no infinite geodesic ray. By virtue of
being a tree it is CAT(0). It is easy to directly verify that there are no limits in
terms of the topology of uniform convergence on bounded subsets. Alterna-
tively, one can see this less directly since for CAT(0) spaces every horofunction
is a Busemann function, but there are no (infinite) geodesic rays. So there
are no horofunctions in the usual sense; the horofunction bordification is
empty; no points are added. The metric compactification also does not add
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any new points, but new topology is such that every unbounded subsequence
converges to hx0 . This shows in particular that there are minor inaccuracies
in [BrH99, 8.15 exercises] and [GV12, remark 14].

Let us discuss some more terminology: We call, as said above, the ele-
ments in 	(X) metric functionals. We call horofunctions those that arise from
unbounded subsequences via the strong topology, that of uniform conver-
gence on bounded subsets. The metric functionals coming from geodesic
rays, via Busemann’s observation above, are called Busemann functions. As
observed, not every Busemann function is a horofunction, and vice versa.
In my opinion these examples show the need for a precise and new termi-

nology, instead of just using the word horofunction for all these concepts, with
its precise definition depending on the context.
Moreover, we attempt to distinguish further between various classes of

metric functionals. We have finite metric functionals and metric functionals at
infinity. The latter are those functions that have −∞ as their infimum; the
former are those metric functionals that have a finite infimum. Busemann
functions are always at infinity. The tree example above shows that even an
unbounded sequence can converge to a finite metric functional. (What can
easily be shown, though, is that every metric functional at infinity can only be
reached via an unbounded sequence). An example of a metric functional from
an unbounded sequence that has finite infimum is the h∞,0≡ 0 in the Hilbert
space example in the next section.
One can have metrically improper metric functionals with infinite infi-

mum. For the finite metric functionals, we suggest moreover that the ones
coming from points x ∈X , hx are internal (finite) metric functionals and the
complement of these are the exotic (finite) metric functionals. Examples of the
latter are provided by the Hilbert space proposition in the next section (their
existence is needed since we claim to obtain a compact space in which the
Hilbert space sits). For related division of metric functionals in the context of
Gromov hyperbolic spaces, see [MT18].

Example 3.3. Here is a simple illustration of how the notion of metric func-
tionals interacts with Gromov hyperbolicity. Let h be a metric functional
(Busemann function) defined by a sequence ym belonging to a geodesic ray
from x0. Assume that xn is a sequence such that h(xn)< 0 and xn→∞. Then

2
(
xn, ym

)= d(xn, x0)+ d(ym, x0)− d(xn, ym)> d(xn, x0)

for any n with m sufficiently large in view of 0> h(xn)= limm→∞ d(ym, xn)−
d(ym, x0). So for each n we can find a sufficiently large m such that this
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inequality holds along this subsequence
(
xn, ym

)→∞, showing that the two
sequences hence converge to one and the same point of the Gromov boundary.
Formore onmetric functionals for (nonproper) Gromov hyperbolic spaces, we
refer to [MT18].

4 Examples: Banach spaces

4.1 LINEAR THEORY. The set of continuous linear functionals forms a
new normed vector space, called the dual space, with norm

∥∥f ∥∥= sup
v 
=0

∣∣f (v)∣∣
‖v‖ .

4.2 METRIC THEORY. The weak compactification and the horofunctions
of Banach spaces introduce a new take on a part of classical functional anal-
ysis, especially as they have a similar role as continuous linear functionals.
Two features stand out: first, the existence of these new functionals do not
need any Hahn-Banach theorem, which in general is based on Zorn’s lemma;
second, the horofunctions are always convex and sometimes linear. Horofunc-
tions interpolate between the norm (h0(x)=‖x‖) and linear functionals. More
precise statements now follow.

Proposition 4.1. Let E be a normed vector space. Every function h∈E is convex;
that is, for any x, y∈X, one has

h
(
x+ y
2

)
≤ 1
2
h(x)+ 1

2
h(y).

Proof. Note that for z∈E, one has

hz((x+ y)/2)=
∥∥(x+ y)/2− z∥∥−‖z‖= 1

2

∥∥x− z+ y− z∥∥−‖z‖

≤ 1
2
‖x− z‖+ 1

2

∥∥y− z∥∥−‖z‖= 1
2
hz(x)+ 1

2
hz(y).

This inequality passes to any limit point of such hz.

Furthermore, as Busemann noticed in the context of geodesic spaces, any
vector v gives rise to a horofunction via

h∞v(x)= lim
t→∞‖x− tv‖− t ‖v‖ .
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Often this is a norm 1 linear functional; it happens precisely when v/ ‖v‖ is a
smooth point of the unit sphere [W07, Gu17, Gu18].
Note that in this case one has, in addition to the convexity, that h∞v(λx)=

λh∞v(x) for scalars λ, and so h∞v is a homogeneous sublinear function. By
the Hahn-Banach theorem we have a norm 1 linear functional ψ associated
to unit vector v for which ψ(v)= 1 and such that ψ ≤ h∞v.

Proposition 4.2. Let H be a real Hilbert space with scalar product (·, ·). The ele-
ments of H are parametrized by 0< r<∞ and vectors v∈H with ‖v‖≤ 1, and
the element corresponding to r= 0, v= 0. When ‖v‖= 1,

hr,v(y)=
∥∥y− rv∥∥− r,

and for general v,

hr,v(y)=
√∥∥y∥∥2− 2(y, rv)+ r2− r.

In addition there is h0(y) := h0,0(y)=
∥∥y∥∥ and the r=∞ cases

h∞,v(y)=−(y, v),

where v∈H with ‖v‖≤1. A sequence (ti, vi) with ‖vi‖= 1 converges to hr,v iff ti→
r ∈ (0,∞] and vi→ v in the standard weak topology or to h0 iff ti→ 0.

Proof. In order to identify the closure we look at vectors tv∈H where we
have normalized so that ‖v‖= 1. By weak compactness we may assume that a
sequence tivi (or net) clusters at some radius r and some limit vector v in the
weak topology with ‖v‖≤ 1. In the case r<∞ we clearly get the functions

hr,v(y)=
√
r2(1−‖v‖2)+ ∥∥y− rv∥∥2− r,

which after developing the norms give the functions in the proposition. Note
that in case t→ 0 the function is just h0 independently of v.
In the case ti→∞ we have the following calculation:

h∞,v(y)= lim
i→∞

√
(tivi− y, tivi− y)− t= lim

i→∞
(tivi− y, tivi− y)− t2√
(tivi− y, tivi− y)+ t

= lim
i→∞

ti
(−2(y, v)+ (y, y)/ti

)

ti

(√
1− 2(y, v)/ti+ (y, y)/t2i + 1

) =−(y, v).
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It is rather immediate that the functions described are all distinct, which
means that for convergent sequences both ti and vi must converge (with the
trivial exception of when ti→ 0).

We have in this way compactified Hilbert spaces. To illustrate the relation
with the (linear) weak topology, consider an ON basis {en}. It is a first example
of the weak topology that en⇀ 0 weakly; likewise does the sequence λnen for
any sequence of scalars 0<λn< 1. InH it is true that en→ h1,0, but λnen does
not necessarily converge. On the other hand, n · e1 does not converge weakly
as n→∞ but n · e1→ h∞,e1(·)=−(·, e1) inH.
For Lp spaces we refer to [W07], [Gu17], [Gu18], and [Gu19]. An interesting

detail that Gutiérrez showed is that the function identically equal to zero is not
a metric functional for �1. He also observed how a famous fixed point–free
example of Alspach must fix a metric functional.

5 Basic spectral notions

5.1 LINEAR THEORY. Let E be a normed vector space and A :E→E a
bounded (or continuous) linear map (operator). One defines the operator norm

‖A‖= sup
v 
=0
‖Av‖
‖v‖ .

A basic notion is the spectrum that is a closed nonempty set of complex
numbers. As Beurling and Gelfand observed, its radius can be calculated by

ρ(A)= lim
n→∞

∥∥An∥∥1/n ,

called the spectral radius of A. (The existence of the limit comes from a simple
fact, known as the Fekete lemma, in view of the submultiplicative property of
the norm; see [L02, 17.1]). One has the obvious inequality

ρ(A)≤‖A‖ .

In many important cases there is in fact an equality here, such as for normal
operators, which includes all unitary and self-adjoint operators.
For a given vector v one may ask for the existence of

lim
n→∞

∥∥Anv
∥∥1/n .
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Such considerations are called local spectral theory. In infinite dimensions this
limit may not exist when the spectral theory fails. In finite dimensions the
limit exists, as is clear from the Jordan normal form. A counterexample can
be given in �2 where A is a combination of a shift and a diagonal operator,
having two exponents each alternating in longer and longer stretches, making
the behavior seem different for various periods of n. See, for example, [Sc91]
for details.
When An is replaced by a random product of operators, an ergodic cocycle,

then Oseledets multiplicative ergodic theorem asserts that these limits, called
Lyapunov exponents, exist a.e.

5.2 METRIC THEORY. Let (X , d) be a metric space and f :X→X a semi-
contraction (i.e., a 1-Lipschitz map). One defines the minimal displacement

d(f )= inf
x
d(x, f (x)).

Like in hyperbolic geometry, or for nonpositively curved spaces [BGS85], one
can classify semicontractions of a metric space as follows:

. Elliptic if d(f )= 0 and the infimum is attained (i.e., there is a fixed point). Hyperbolic if d(f )> 0 and the infimum is attained. Parabolic if the minimum is not attained.

Usually the parabolic maps are the more complicated. It might also be use-
ful to divide semicontractions according to whether all orbits are bounded
or all orbits are unbounded, and in the latter case whether all orbits tend
to infinity. For example, a circle rotation is hyperbolic and bounded. In this
general context we again recommend [G18] for examples and a simpler proof
of Calka’s theorem, which asserts that for proper metric spaces, unbounded
orbits necessarily tend to infinity.
Another basic associated number is the translation number (or drift or escape

rate)

τ(f )= lim
n→∞

1
n
d(x, f n(x)).

Notice that this number is independent of x because by the 1-Lipschitz prop-
erty any two orbits stay on bounded distance from each other. This number
exists by the Fekete lemma in view of the subadditivity coming from the tri-
angle inequality and the 1-Lipschitz property. It also has the tracial property
τ(fg)= τ(gf ), as is simple to see.
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One has the obvious inequality

τ(f )≤ d(f ).

In important cases one has equality, especially under nonpositive curvature:
for isometries see [BGS85], and for the most general version see [GV12]. In
view of the fact that holomorphic maps preserve Kobayashi pseudo-distances,
one can study the corresponding invariants and ask when equality holds:

Problem 5.1. For holomorphic self-maps f , when do we have equality τ(f )=
d(f ) in the Kobayashi pseudo-distance?

This has been studied by Andrew Zimmer and is analogous to operators
when the spectral radius equals the norm.
The following fact is a spectral principle [Ka01] that is analogous to the dis-

cussion about the local spectral theory. Note that in contrast to the linear case,
it holds in all situations. The first statement can also be thought of as a weak
spectral theorem or weak Jordan normal form. (For comparison, there is a
stronger version in [GV12] for a restricted class of metric spaces.)

Theorem 5.2 (metric spectral principle [Ka01]).
Given a semicontraction f : (X , d)→ (X , d)with drift τ , there exists h∈X such that

h(f k(x0))≤−τk

for all k> 0, and for any x ∈X,

lim
k→∞
−1
k
h(f k(x))= τ .

Proof. Given a sequence εi↘ 0 we set bi(n)= d(x0, f n(x0))− (l− εi)n. Since
these numbers are unbounded in n for each fixed i, we can find a subsequence
such that bi(ni)> bi(m) for any m< ni. We have for any k≥ 1 and i that

d(f k(x0), f ni(x0))− d(x0, f ni(x0))≤ d(x0, f ni−kx0)− d(x0, f nix0)
= bi(ni− k)+ (l− εi)(ni− k)− bi(ni)− (l− εi)ni
≤−(l− εi)k.

By compactness, there is a limit point h of the sequence d(·, f ni(x0))−
d(x0, f ni(x0)) in X . Passing to the limit in the above inequality gives
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h(f k(x0))≤−lk

for all k> 0. Finally, the triangle inequality

d(x, f k(x))+ d(f k(x), z)≥ d(x, z)

implies that
h(f k(x0))≥−d(x0, f k(x0)).

From this, the second statement in the theorem follows in view of the fact that
changing x0 to x only is a bounded change since f is 1-Lipschitz:

∣∣∣d(x0, f k(x))− d(x0, f k(x0))
∣∣∣≤max

{
d(f k(x), f k(x0)), d(f k(x0), f k(x))

}

≤max {d(x, x0), d(x0, x)} .

Example 5.3. The classical instance of this is the Wolff-Denjoy theorem in
complex analysis. This is thanks to Pick’s version of the Schwarz lemma,
which asserts that every holomorphic map of the unit disk to itself is 1-
Lipschitz with respect to the Poincaré metric ρ. It says that given a holomor-
phic self-map of the disk, either there is a fixed point or there is a point on the
boundary circle that attracts every orbit. From basic hyperbolic geometry one
can deduce this from our theorem. Wolff also considered horodisks but may
not have discussed lengths τ , which here equal inf z∈D ρ(z, f (z)), as follows,
for example, from [GV12].

In the isometry case, in the same way, looking at times for which the orbit is
closer to the origin than all future orbit points, one can show that there exists
a metric functional h such that

h(f −nx0)≥ τf −1 · n

for all n≥ 1.

6 Application: Extensions of the mean ergodic theorem

In 1931, in response to a famous hypothesis in statistical mechanics, von
Neumann used spectral theory to establish that for unitary operators U,

1
n

n−1∑
k=0

Ukg→Pg,
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where P is the projection operator onto theU invariant elements in theHilbert
space in question. Carleman showed this independently at the same time (or
before), and a nice proof of a more general statement (for U with ‖U‖≤ 1)
was found by F. Riesz, inspired by Carleman’s method. Such a convergence
statement is known not to hold in general for all Banach spaces, in the sense
that there is no strong convergence of the average. On the other hand, let
f (w)=Uw+ v; then we have

f n(0)=
n−1∑
k=0

Ukv.

If ‖U‖≤ 1, then f is semicontractive and Theorem 5.2 applies, and it does so
for any Banach space.
In other words, the theorem is weak enough to always hold. On the other

hand, when the situation is better—for example when we are studying trans-
formation of a Hilbert space—then the weak convergence can be upgraded to
a stronger statement, thanks to knowledge about the metric functionals. Here
is an example:
LetU and f be as above acting on a real Hilbert space. Theorem 5.2 applied

to f hands us a metric functional h, for which

1
n
h

(n−1∑
k=0

Ukv

)
→−τ ,

where as before τ is the growth rate of the norm of the ergodic average. Either
τ = 0 and we have

1
n

n−1∑
k=0

Ukv→ 0,

or else we need to have that h is a metric functional at infinity (because hmust
be unbounded from below; see Proposition 4.2); in fact, it must be of the form
h(x)=−(x,w) with ‖w‖= 1 (since τ is the growth of the norm that h applied
to the orbit matches). It is a well-known simple fact that if we have a sequence
of points xn in a Hilbert space and a vector w with norm ‖w‖≤ 1, such that
(xn,w)→ 1 and ‖xn‖→ 1, then necessarily xn→w and ‖w‖= 1. These are the
details for the current situation:

∥∥∥∥∥
1
n

n−1∑
k=0

Ukv− τw
∥∥∥∥∥
2

=
∥∥∥∥∥
1
n

n−1∑
k=0

Ukv

∥∥∥∥∥
2

− 2
(
1
n

n−1∑
k=0

Ukv, τw

)

+‖τw‖2→ τ 2− 2τ 2+ τ 2= 0

This finishes the proof of the classical mean ergodic theorem.
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7 Spectral metrics

At the moment I do not see an appropriate axiomatization for the type of met-
rics that will be useful. Here is an informal description; precise definitions will
follow in the particular situations studied later. We will have a group of trans-
formations, with elements denoted f or g, of a space. This space has objects
denoted α with some sort of length l; the set or subset of these objects should
be invariant under the transformation, and we define

d(f , g)= log sup
α

l(g−1α)
l(f −1α)

.

The triangle inequality is automatic from the supremum, as is the invariance.
The function d separates f and g if the set of α’s is sufficiently extensive. On
the other hand, this distance is not necessarily symmetric. If desired it can be
symmetrized in a couple of trivial ways.

Example 7.1. Define a hemi-metric between two linear operators A and B of
a real Hilbert spaceH:

d(A,B)= log sup
v 
=0

∥∥Btv∥∥∥∥Atv
∥∥ .

(Here t denotes the transpose.) Note that we may take the supremum over the
vectors that have unit length, and we see that there is the obvious connection
to the operator norm

d(I,A)= log ∥∥At∥∥= log ‖A‖ ,

where I denotes the identity operator.

Here is an example of classical and very useful metrics:

Example 7.2. Metrics on the Teichmüller space of a surface,

d(x, y)= log sup
α∈S

ly(α)
lx(α)

,

where x and y denote different equivalence classes of metrics (or complex
structures) on a fixed surface, S is the set of nontrivial isotopy classes of sim-
ple closed curves, and l could denote various notions of length, depending on
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the choice whether the metric is asymmetric. See the next section for more
details and applications.

Here is another possibility:

Example 7.3. Taken from ([DKN18]). Given two intervals I, J and a C1-map
g : I→ J, which is a diffeomorphism onto its image, the distortion coefficient
is defined by

K(g; I) := sup
x,y∈I

∣∣∣∣log
(
g′(x)
g′(y)

)∣∣∣∣ .

This is subadditive under composition, and K(g, I)=K(g−1, g(I)).

Other examples of such metrics include the Hilbert, Funk, and Thompson
metrics on cones [LN12], the Kobayashi pseudo-metric in the complex cate-
gory, Hofer’s metric on symplectomorphisms [Gr07], and the Lipschitz metric
on outer space.

8 Application: Surface homeomorphisms

Let� be a surface of finite type. Let S be the set of nontrivial isotopy classes of
simple closed curves on �. One denotes by lx(α) the infimal length of curves
in the class of α in themetric x. Themetric x can be considered to be a point in
the Teichmüller space T of� and hence a hyperbolicmetric; the length will be
realized on a closed geodesic. Thurston introduced the following asymmetric
metric on T :

L(x, y)= log sup
α∈S

ly(α)
lx(α)

.

Thurston’s seminal work provided a sort of Jordan normal form for mapping
classes of diffeomorphisms of � and deduced from this the existence of Lya-
punov exponents, or eigenvalues as it were. A different approachwas proposed
in [Ka14]. In this section we will use the metrics directly, without metric func-
tionals explicitly. We will use a lemma in a paper byMargulis andme [KaM99],
which was substantially sharpened in [GK15].
Let (�, ρ) be a measure space with ρ(�)= 1, and let T :�→� be an

ergodic measure preserving map. We consider a measurable map ω �→ fω,
where fω are homeomorphisms of � (or more generally semicontractions of
T ). We assume the appropriate measurability and integrability assumptions.
We form Zn(ω) := fω ◦ fTω ◦ · · · ◦ fTn−1ω. Let
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a(n,ω)= L(x0,Zn(ω)x0),

which is a subadditive (sub-)cocycle that by the subadditive ergodic theorem

a(n,ω)/n

converges for a.e. ω to a constant that we denote by τ . Given a sequence of εi
tending to 0, proposition 4.2. in [KaM99] implies that a.e. there is an infinite
sequence of ni and numbers Ki such that

a(ni,ω)− a(ni− k,Tkω)≥ (τ − εi)k

for all Ki≤ k≤ ni. Moreover, we may assume that (τ − εi)ni≤ a(ni,ω)≤ (τ +
εi)ni for all i.
We will now use a property of L established in [LRT12] (that was not used

in [Ka14]). Namely, there is a finite set of curves μ=μx0 such that

L(x0, y)= log sup
α∈S

ly(α)
lx0(α)

� logmax
α∈μ

ly(α)
lx0(α)

up to an additive error.
Now by the pigeonhole principle refine ni such that there is one curve α1 in

μ that realizes the maximum for each y=Zni(ω)x0; in other words,

lZni x0
(α1)� exp(ni(τ ± εi).

Given the way ni were selected, we have

− log sup
α∈S

lZnx0(α)

lZkx0(α)
≥−a(ni− k,Tkω)≥ (τ − εi)k− a(ni,ω).

(The first inequality is an equality in case the maps are isometries and not
merely semicontractions.) It follows, like in [Ka14], that

lZkx0(α1)≥ lZni x0
(α1)e−a(ni,ω)e(τ−εi)k.

Since no length of a curve can grow faster than eτk, we get

lZkx0(α1)
1/k→ eτ .

In other words, the top Lyapunov exponents exist in this sense. For the other
exponents in the independent, identically distributed case, we refer to Horbez
[H16] and, in the general ergodic setting, to a forthcoming joint paper with
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Horbez. The purpose of this section was to show a different technique to get
such results using spectral metrics and subadditive ergodic theory. For a simi-
lar statement but with the complex notion of extremal length and usingmetric
functionals, see [GK15].

9 Conclusion

9.1 A BRIEF DISCUSSION OF EXAMPLES OF METRICS. The hyper-
bolic plane was discovered (rather late) as a consequence of the inquiries on
the role of the parallel axiom in Euclidean geometry. At that time it was proba-
bly considered a curiosity, but it has turned out to be a basic example connected
to an enormous amount ofmathematics. In particular it is often the first exam-
ple in the following list of metric spaces (for references see [Gr07], [Ka05],
[GK15]).

. L2 metrics: The fundamental group of a Riemannian manifold acts by
isometry on the universal covering space. In geometric group theory, it
is important to have isometric actions on CAT(0) spaces—for example,
CAT(0)-cube complexes.. Symmetric space–type metric spaces: Extending the role of the hyper-
bolic plane for 2× 2 matrices and the moduli of two-dimensional tori,
there are the Riemannian symmetric spaces. These have recently also
been considered with Finsler metrics. Other extensions are Teichmüller
spaces, outer space, spaces of Riemannian metrics on which homeo-
morphisms or diffeomorphisms have induced isometric actions, and
invertible bounded operators on spaces of positive operators.. Hyperbolic metrics: The most important notion is Gromov hyperbolic
spaces, appearing in infinite group theory (Cayley-Dehn; see below),
the curve complex (nonlocally compact!), and similar complexes com-
ing from topology and group theory, and Hilbert and Kobayashi metrics
in the next item.. L∞ metrics. Again generalizing the hyperbolic plane and the positivity
aspect of spaces of metrics are cones and convex sets with metrics of
Hilbert metric–type. In complex analysis in one or several variables, we
have pseudo-metrics of a similar type, generalizing the Poincaré met-
ric, the maximal one being the Kobayashi pseudo-metric. The operator
norm, Hofer’s metric, and Thurston’s asymmetric metric are further
examples. Roughly speaking, these are the metrics referred to above as
spectral metrics, and the natural maps in question in all these examples
are semicontractions.
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. L1 metrics: Cayley-Dehn graphs are associated with groups and a gen-
erating set; the group itself acts on the graph by automorphisms, which
amount to isometries with respect to the word metric.

9.2 FURTHER DIRECTIONS. Horbez in [H16] extended [Ka14] to give all
exponents in the independent, identically distributed case, thus in particular
recovering Thurston’s theorem (except for the algebraic nature of the expo-
nents), and implemented the same scheme for the outer automorphisms
group via an intricate study of the Culler-Vogtmann outer space, in partic-
ular its metric functionals. The paper by Gaubert-Vigeral [GV12], which in
particular establishes, with another method, a strengthening of the metric
spectral principle above in case the metrics admit a combing of nonpositive
curvature, contains further references to examples of hemi-metrics and semi-
contractions arising in areas such as game theory and optimal control. Other
directions could be

. Symplectomorphisms and Hofer’s metric.. Reproving some statements for invertible linear transformations or
compact operators using the asymmetric metric above.. Diffeomorphisms of manifolds. There are several suggestions for spec-
tral metrics here; see, for instance, Navas’s preprint [Na18] on distortion
of one-dimensional diffeomorphisms.. The subject of Kalman filters via the metric approach of Bougerol and
others, giving rise to semicontractions; see [Wo07].

In the works of Cheeger and collaborators on differentiability of functions on
metric spaces, (see [Ch99], [Ch12]), the notion of a generalized linear function
appears. In [Ch99] Cheeger connects this to Busemann functions; on the other
hand he remarks in [Ch12] that nonconstant functions do not exist for most
spaces. Perhaps it remains to investigate how metric functionals relate to this
subject.
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9 victor beresnevich∗ and dmitry kleinbock†

QUANTITATIVE NONDIVERGENCE AND
DIOPHANTINE APPROXIMATION ON MANIFOLDS

Dedicated to G. A. Margulis, with admiration

Abstract. The goal of this survey is to discuss the quantitative nondivergence esti-
mate on the space of lattices and present a selection of its applications. The topics
covered include extremal manifolds, Khintchine-Groshev-type theorems, rational
points lying close to manifolds, and badly approximable points on manifolds. The
main emphasis is on the role of the quantitative nondivergence estimate in the
aforementioned topics within the theory of Diophantine approximation; therefore
this paper should not be regarded as a comprehensive overview of the area.

1 Quantitative nondivergence estimate and its origins

1.1 BACKGROUND. The main purpose of this survey is to discuss a par-
ticular strand of fruitful interactions between Diophantine approximation
and the methods of homogeneous dynamics. The focus will be on the tech-
nique/estimate developed in [KM98] by Margulis and the second-named
author, which is commonly known by the name of quantitative nondivergence
(QnD). Before considering any quantitative aspects of the theory, it will be
useful to explain the meaning of nondivergence of sequences and maps in the
space

Xk :=SLk(R)/SLk(Z)

of real unimodular lattices. As is well-known, the quotient topology induced
from SLk(R) makes this space noncompact. Naturally, a nondivergent
sequence in Xk is then defined by requiring that it keeps returning into some
compact set. To give this narrative description more rigor it is convenient to
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use Mahler’s compactness theorem and the function

δ :Xk→R+,

which assigns the length of the shortest nonzero vector to a given lattice. Thus,

δ(�) := inf {‖v‖ : v∈�� {0}} for every �∈Xk.

Mahler’s Compactness Theorem [Mah46] states that “a subset S of Xk is rela-
tively compact if and only if there exists ε > 0 such that δ(�)≥ ε for all�∈S.”
Thus, a sequence of lattices is nondivergent if and only if for a suitably chosen
ε > 0 the sequence contains infinitely many elements in the (compact) set

(1.1) Kε :=
{
�∈Xk : δ(�)≥ ε

}
.

The choice of the norm ‖ · ‖ does not affect Mahler’s theorem. For simplicity
we shall stick to the supremum norm: ‖v‖=max1≤i≤k |vi| for v= (v1, . . . , vk).
Similarly, given a continuous map

φ : [0,+∞)→Xk ,

we will say that φ(x) is nondivergent (as x→+∞) if there exists ε > 0 such that
φ(x)∈Kε for arbitrarily large x.
The development of the QnD estimate in [KM98] was preceded by several

important nonquantitative results instigated by Margulis [Mar71] regarding
the orbits of one-parameter unipotent flows. The main result of [Mar71] ver-
ifies that if {ux}x∈R is a one-parameter subgroup of SLk(R) consisting of
unipotent matrices, then φ(x)= ux� is nondivergent for any �∈Xk. Several
years later Dani [Dan79] strengthened Margulis’s result by showing that such
orbits return into a suitably chosen compact set with positive frequency. To be
more precise, Dani proved that there are 0<ε, η< 1 such that for any interval
[0, t]⊂ [0,+∞), one has that

(1.2) λ
{
x ∈ [0, t] :φ(x) 
∈Kε

}
<η t ,

where λ stands for Lebesgue measure on R. Subsequently Dani [Dan86]
improved his result by showing that under a mild additional constraint on
{ux}x∈R, the parameter η> 0 in (1.2) can be made arbitrarily small, in which
case, of course, ε has to be chosen appropriately small. Later Shah [Sha94]
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generalized Dani’s result to polynomial maps φ that are not necessarily orbits
of some subgroups of SLk(R). It has to be noted that the nondivergence the-
orem of Margulis was used as an ingredient in his proof of arithmeticity of
nonuniform lattices in semisimple Lie groups of higher rank [Mar75] and that
subsequent qualitative nondivergence estimates—in particular, Dani’s result
in [Dan86]—were an important part of various significant developments of
the time, such as Ratner’s celebrated theorems [Rat94]. The essence of the
quantitative nondivergence estimate obtained in [KM98] is basically an explicit
dependence of η on ε in Equation (1.2). More to the point, it is applicable to a
very general class of maps φ of several variables that do not have to be polyno-
mial, let alone the orbits of unipotent subgroups. In the next subsection we
give the precise formulation of the QnD estimate.

1.2 THE QUANTITATIVE NONDIVERGENCE ESTIMATE. First we re-
call some notation and definitions. Given a ball B=B(x0, r)⊂R

d centered at
x0 of radius r and c> 0, by cB we will denote the ball B(x0, cr). Throughout,
λd will denote Lebesgue measure on R

d. Given an open subset U⊂R
d and

real numbers C,α > 0, a function f :U→R is called (C,α)-good on U if for
any ball B⊂U for any ε > 0:

λd
({
x ∈B : |f (x)|<ε}) ≤ C

(
ε

supx∈B |f (x)|
)α
λd(B).

Finally, given v1, . . . , vr ∈R
k, the number ‖v1 ∧ . . .∧ vr‖will denote the supre-

mum norm of the exterior product v1 ∧ . . .∧ vr with respect to the standard
basis of

∧r
(Rk). Up to sign the coordinates of v1 ∧ . . .∧ vr can be computed

as all the r× r minors of the matrix composed of the coordinates of v1, . . . , vr
in the standard basis. Recall that the norm ‖v1 ∧ . . .∧ vr‖ is equivalent to the
r-dimensional volume of the parallelepiped spanned by v1, . . . , vr , which is
precisely the Euclidean norm of v1 ∧ . . .∧ vr .1

THEOREM 1.1 (quantitative nondivergence estimate [KM98, Theorem
5.2]).
Let k, d∈N, C,α > 0, 0<ρ ≤ 1/k, a ball B in R

d and a function h : 3kB→
GLk(R) be given. Assume that for any linearly independent collection of integer
vectors a1, . . . , ar ∈Z

k,

1In Diophantine approximation, if v1, . . . , vr is a basis of Z
k ∩V , where V =Span

R
(v1, . . . , vr), the

Euclidean norm of v1 ∧ . . .∧ vr is known as the height of the linear rational subspace V of R
k; see

[Sch91].
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(1) the function x → ‖h(x)a1 ∧ . . .∧ h(x)ar‖ is (C,α)-good on 3kB, and

(2) sup
x∈B
‖h(x)a1 ∧ . . .∧ h(x)ar‖≥ ρ.

Then for any ε > 0,

λd
({
x ∈B : δ(h(x)Zk)<ε}) ≤ kC(3dNd)

k
(
ε

ρ

)α
λd(B) ,(1.3)

where Nd is the Besicovitch constant.

We note that in [Kle08] the second-named author established a version of the
QnD estimate where the norm ‖ · ‖ is made to be Euclidean, not supremum.
This made it possible to remove the condition ρ < 1/k and at the same time
replace condition (2) above by a weaker condition:

(3) sup
x∈B
‖h(x)a1 ∧ . . .∧ h(x)ar‖≥ ρr .

The latter has been especially useful for studying Diophantine approximation
on affine subspaces. See [Kle10a] for a detailed exposition of the proof of the
refined version of Theorem 1.1 established in [Kle08].
The estimate in Equation (1.3) is amazingly general. However, in many

applications, analyzing conditions (1) and (2)/(3) represents a substantial,
often challenging, task. In the case when h is analytic—that is, every entry of h
is a real analytic function of several variables—condition (1) always holds for
someC andα; see [KM98] for details. For the rest of this surveywe shallmainly
discuss developments in the theory of Diophantine approximation where the
QnD estimate played an important, if not crucial, role. Naturally, we begin
with the application of the QnD estimate that motivated its discovery.

2 The Baker-Sprindžuk conjecture and extremality

In this section we explain the role of QnD in establishing the Baker-Sprindžuk
conjecture—a combination of two prominent problems in the theory of Dio-
phantine approximation on manifolds, one due to A. Baker [Bak75] and the
other due to V. G. Sprindžuk [Spr80]. The Baker-Sprindžuk conjecture is not
merely a combination of two disjoint problems. Indeed, the origin of both
problems lies in a single conjecture of Mahler [Mah32]—an important prob-
lem in the theory of transcendence posed in 1932 and proved by Sprindžuk
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in 1964 [Spr69]. Mahler’s conjecture/Sprinzǔk’s theorem states that for any
n∈N and any ε > 0 for almost every real number x the inequality

(2.1) |p+ q1x+ q2x2+ · · ·+ qnxn|< ‖q‖−n(1+ε)

has only finitely many solutions (p, q)∈Z×Z
n, where q= (q1, . . . , qn) and, as

before, ‖q‖=max1≤i≤n |qi|. Note that, by Dirichlet’s theorem or Minkowski’s
theorem for systems of linear forms, if ε≤ 0, then (2.1) has infinitely many
integer solutions (p, q) for any x ∈R. The condition ε > 0 in Mahler’s conjec-
ture is therefore sharp; that does not mean, however, that one cannot improve
on it! The improvements may come about when one replaces the right-hand
side of (2.1) with a different function of q. One such improvement was con-
jectured by A. Baker [Bak75], who proposed that the statement of Mahler’s
conjecture had to be true if the right-hand side of (2.1) was replaced by


+(q)−(1+ε), where 
+(q) :=
n∏
i=1
qi 
=0

|qi|.

Clearly this leads to a stronger statement than Mahler’s conjecture since

(2.2) 
+(q)≤‖q‖n.

The essence of replacement of ‖q‖n with
+(q) is tomake the error of approx-
imation depend on the size of each coordinate of q rather than on their
maximum.
In another direction Sprindžuk [Spr80] proposed a generalization of

Mahler’s conjecture by replacing the powers of x in (2.1) with arbitrary ana-
lytic functions of real variables that together with 1 are linearly independent
over R. The two conjectures (of Baker and Sprindžuk) can be merged in an
obvious way to give what is known as the Baker-Sprindžuk conjecture:

CONJECTURE 2.1 (Baker-Sprindžuk). Let f1, . . . , fn :U→R be real analytic
functions defined on a connected open set U⊂R

d. Suppose that 1, f1, . . . , fn are
linearly independent over R. Then for any ε > 0 and for almost every x ∈U, the
inequality

|p+ q1f1(x)+ · · ·+ qnfn(x)|<
+(q)−1−ε

has only finitely many solutions (p, q)∈Z×Z
n.
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At the time these conjectures were posed each seemed intractable, and for a
long while only limited partial results were known. Indeed, both conjectures
remained open for n≥ 4 almost until the turn of the millennium, when they
were solved in [KM98] as an elegant application of the quantitative nondiver-
gence estimate (Theorem 1.1). The ultimate solution applies to the wider class
of nondegenerate maps (defined below) that are not necessarily analytic.
Nondegeneracy. Let f = (f1, . . . , fn) :U→R

n be a map defined on an open
subsetU of R

d. Given a point x0 ∈U, we say that f is �-nondegenerate at x0 if f
is � times continuously differentiable on some sufficiently small ball centered
at x0 and the partial derivatives of f at x0 of orders up to � span R

n. The map
f is called nondegenerate at x0 if it is �-nondegenerate at x0 for some �∈N; f is
called nondegenerate almost everywhere (inU) if it is nondegenerate at almost
every x0 ∈U with respect to Lebesgue measure. The nondegeneracy of differ-
entiable submanifolds ofR

n is defined via their parameterization(s). Note that
a real analytic map f defined on a connected open set is nondegenerate almost
everywhere if and only if 1, f1, . . . , fn are linearly independent over R.
With the definition of nondegeneracy in place we are now ready to state

the following flagship result of [KM98] that solved the Baker-Sprindžuk con-
jecture in full generality, not only in the analytic case but also for arbitrary
nondegenerate maps.

THEOREM 2.2 ([KM98], Theorem A).
Let f = (f1, . . . , fn) be a map defined on an open subset U of R

d that is non-
degenerate almost everywhere. Then for any ε > 0, for almost every x ∈U the
inequality

(2.3) |p+ q1f1(x)+ · · ·+ qnfn(x)|<
+(q)−1−ε

has only finitely many solutions (p, q)∈Z×Z
n.

It is worth making further comments on the terminology used around the
Baker-Sprindžuk conjecture. The point y∈R

n is called very well approximable
(VWA) if for some ε > 0 the inequality

(2.4) |p+ q1y1+ · · ·+ qnyn|< ‖q‖−n(1+ε)

has infinitely many solutions (p, q)∈Z
n+1. The point y that is not VWA is

often referred to as extremal. The point y∈R
n is called very well multiplicatively

approximable (VWMA) if for some ε > 0 the inequality

(2.5) |p+ q1y1+ · · ·+ qnyn|<
+(q)−1−ε
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has infinitely many solutions (p, q)∈Z
n+1. The point y that is not VWMA

is often referred to as strongly extremal. As one would expect from a well-set
terminology we have that

y is strongly extremal =⇒ y is extremal.

This is due to Equation (2.2).
Similarly, if μ is a measure on R

n, one says that μ is extremal or strongly
extremal if so is μ-a.e. point of R

n. The same goes for subsets of R
n car-

rying naturally defined measures. For example, the notion of almost all for
points lying on a differentiable submanifold in R

n can be defined in several
equivalent ways. Perhaps the simplest is to fix a parameterization f :U→R

n

(possibly restricting M to a local coordinate chart) and consider the pushfor-
ward f∗λd of Lebesgue measure on R

d. Then a subset S of f (U) is null if and
only if λd

(
f−1(S)

)= 0. Now Theorem 2.2 can be rephrased as follows: almost
every point of any nondegenerate2 submanifold M of R

n is strongly extremal, or
alternatively any nondegenerate submanifoldM of Rn is strongly extremal.
Sketch of the proof of Theorem 2.2 (for full details see [KM98]). Define the
following (n+ 1)× (n+ 1)matrix:

(2.6) uf (x)=
(

1 f (x)

0 In

)
.

For t= (t1, . . . , tn)∈Z
n≥0 define the following (n+ 1)× (n+ 1) diagonal

matrix:

gt=

⎛
⎜⎜⎜⎜⎝

et

e−t1
. . .

e−tn

⎞
⎟⎟⎟⎟⎠
, where t= t1+ · · ·+ tn.

Given a solution (p, q)∈Z
n+1 to Equation (2.3), one defines r=
+(q)−ε/(n+1)

and the smallest nonnegative integers ti such that

e−ti max{1, |qi|} ≤ r.

Observe that eti < r−1emax{1, |qi|}. Then, by (2.3),

et|p+ q1f1(x)+ · · ·+ qnfn(x)|<
(
enr−n
+(q)

)

+(q)−1−ε = enr.

2Here we say thatM is nondegenerate if f is nondegenerate at λd-almost every point of U.
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Also, an elementary computation shows that r< e−tγ enγ with γ = ε/(n+ 1+
nε). As a result we have that

(2.7) δ(gtuf (x)Z
n+1)< enr< en(1+γ )e−γ t.

Clearly, if for some x ∈U (2.3) holds for infinitely many q, then (2.7) holds for
infinitely many t∈Z

n≥0. Then the obvious line of proof of Theorem 2.2 is to
demonstrate that the sum of measures

∑
t

λd
{
x ∈B : δ(gtuf (x)Zn+1)< en(1+γ )e−γ t

}

converges, where B is a sufficiently small ball centered at an arbitrary point
x0 ∈U such that f is nondegenerate at x0. Indeed, the nondegeneracy con-
dition placed on f justifies the restriction of x to B while the Borel-Cantelli
Lemma from probability theory ensures that for almost all x, Equation (2.7)
holds only finitely often subject to the convergence of the above series.
The following are the remaining steps in the proof:

. Take h(x)= gtuf (x);. Verify conditions (1) and (2) of Theorem 1.1 for suitably chosen balls B;. Conclude that

λd({x ∈B : δ(gtuf (x)Zn+1)< en(1+γ )e−γ t})≤Const · e−γαt; and

. Observe that for each t there are no more than tn−1 integer n-tuples t
such that t1+ · · ·+ tn= t and that

∞∑
t=0

tn−1e−γαt<∞,

thus completing the proof.

It should be noted that the above sketch of proof ismissing the details of ver-
ifying conditions (1) and (2) of Theorem 1.1. In particular, this requires explicit
calculations of actions of h on discrete subgroups of Z

n+1 and understanding
why certain maps are (C,α)-good. Details can be found in [KM98].

2.1 FURTHER REMARKS ON THE BAKER-SPRINDŽUK CONJECTURE
AND EXTREMALITY. The ideas of [KM98] have been taken to a whole new
level in [KLW04] by identifying a large class of so-called friendly measures that
are strongly extremal. Examples include measures supported on a large class
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of fractal sets (the Cantor ternary set, the Sierpinski gasket, the attractors
of certain iterated function systems) and their pushforwards by nondegen-
erate maps. See also the work of Das, Fishman, Simmons, and Urbański
[DFSU18, DFSU21], where they introduced an even larger class of weakly
quasi-decaying measures to which the QnD method applies.
Theorem 2.2 was generalized in [Kle03] to affine subspaces of R

n (lines,
hyperplanes, etc.) that satisfy a natural Diophantine condition, as well as to
submanifolds of such affine subspaces. Affine subspaces and their submani-
folds represent a very natural (if not the only natural) example of degenerate
submanifolds of R

n. One striking consequence of [Kle03] is the following cri-
terion for analytic submanifolds: an analytic submanifoldM of Rn is (strongly)
extremal if and only if the smallest affine subspace of R

n that contains M is
(strongly) extremal. See also [Kle08] and [Kle10b] for an extension of this inher-
itance principle to arbitrary (possibly nonextremal) affine subspaces of R

n.
Other natural generalizations of Theorem 2.2 include Diophantine approxi-
mation on complex analytic manifolds [Kle04], Diophantine approximation in
positive characteristics [Gho07], and in Qp (p-adic numbers) and more gen-
erally Diophantine approximation on submanifolds in the product of several
real and p-adic spaces [KT07].
The Baker-Sprindžuk conjecture deals with small values of one linear form

of integer variables. This is a special case of the more general framework of
systems of several linear forms in which the notions of extremal and strongly
extremal matrices are readily available. Given an n×m matrix X with real
entries, one says that X is extremal (not VWA) if and only if for any ε > 0,

(2.8) ‖qX − p‖m< ‖q‖−n(1+ε)

holds for at most finitely many (p, q)∈Z
m×Z

n. The choice of the norm ‖ · ‖
does not affect the notion, but again for simplicity we choose the supremum
norm: ‖q‖=max1≤i≤n |qi| for q= (q1, . . . , qn). Similarly, one says that X is
strongly extremal (not VWMA) if and only if for any ε > 0,

(2.9) 
(qX − p)<
+(q)−(1+ε)

holds for at most finitely many (p, q)∈Z
m×Z

n. Here
(y)=∏m
j=1 |yj| for y=

(y1, . . . , ym) and, as before, 
+(q)=∏n
i=1, qi 
=0 |qi| for q= (q1, . . . , qn).

The QnD estimate can be applied to establish (strong) extremality of sub-
manifolds of the space of matrices; however, conditions (1) and (2) of Theo-
rem 1.1 are more difficult to translate into a natural and practically checkable
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definition of nondegeneracy. Indeed, identifying natural generalizations of
the notion of nondegeneracy for matrices has been an active area of recent
research; see [KMW10] and [BKM15]. In the case of analytic submanifolds of
the space of matrices, the goal has been attained in [ABRS18], with the notion
of constraining pencils in the space of matrices replacing affine hyperplanes
of R

n. See [DS19] for a solution to the matrix version of Baker’s Conjecture
proposed by the second-named author in [Kle10b].

3 Khintchine-Groshev-type results

The theory of extremality discussed in the previous section deals with Dio-
phantine inequalities with the right-hand side written as the function

(3.1) ψε(h)= h−1−ε

of either 
+(q) or ‖q‖n; see Equations (2.8) and (2.9). Of course, there
are other choices for the height function of q. For instance, in the case of
the so-called weighted Diophantine approximation, one uses the quasi-norm
defined by

(3.2) ‖q‖r= max
1≤i≤n

|qi|1/ri ,

where r= (r1, . . . , rn)∈R
n
>0 is an n-tuple of weights that satisfy the condition

(3.3) r1+ · · ·+ rn= 1.

In this section we discuss the refinement of the theory of extremality that
involves replacing the specific function ψε given by (3.1) with an arbi-
trary (monotonic) function ψ , akin to the classical results of Khintchine
[Khi24, Khi26]. Below we state Khintchine’s theorem in the one-dimensional
case. Given a function ψ :N→R+, let

A(ψ) :={x ∈ [0, 1] : |qx− p|<ψ(q) for infinitely many (p, q)∈Z×N}.

THEOREM 3.1 (Khintchine’s theorem).

λ1
(A(ψ)) =

⎧⎨
⎩
0 if

∑∞
h=1 ψ(h)<∞ ,

1 if
∑∞

h=1 ψ(h)=∞ and ψ is nonincreasing.
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This beautiful finding has been generalized in many ways, and the theory
for independent variables is now in a very advanced state; see, for instance,
[BBDV09] and [BV10]. The generalization of Khintchine’s theorem to systems
of linear forms was first established by Groshev [Gro38]. In the modern-
day theory, various generalizations of Khintchine’s theorem to Diophantine
approximation on manifolds are often called Khintchine-type or Groshev-type
or Khintchine-Groshev-type results. We will not define precise meanings of
these words as there is some inconsistency in their use across the literature,
although some good effort to harmonize the terminology was made in the
monograph [BD99].
It has to be noted that the convergence case of Theorem 3.1 is a relatively

simple consequence of the Borel-Cantelli Lemma. In the case of Diophan-
tine approximation on manifolds this is no longer the case, and establishing
convergence Khintchine-Groshev-type results for manifolds leads to a major
challenge—indeed, even in the special case associated with extremality. In
this section we shall describe the role played by the QnD estimate in address-
ing this major challenge—namely, in establishing convergence Khintchine-
Groshev-type refinements of Theorem 2.2 that were proved in [BKM01]. The
key result of [BKM01] reads as follows.

THEOREM 3.2 (see [BKM01]).
Let f = (f1, . . . , fn) be a map defined on an open subset U of R

d that is nondegen-
erate almost everywhere. Let � :Zn→R+ be any function such that

(3.4) �(q1, . . . , qi, . . . , qn)≤�(q1, . . . , q′i, . . . , qn) if |qi| ≥ |q′i| and qiq′i> 0.

Suppose that

(3.5)
∑
q∈Zn

�(q)<∞.

Then for almost every x ∈U the inequality

(3.6) |p+ q1f1(x)+ · · ·+ qnfn(x)|<�(q)

has only finitely many solutions (p, q)∈Z
n+1.

Observe that �(q)=
+(q)−1−ε for ε > 0 satisfies the conditions of The-
orem 3.2, and thus Theorem 3.2 is a true generalization of Theorem 2.2.
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Prior to describing the ideas of the proof of Theorem 3.2, we formally
state the following three corollaries: standard, weighted, and multiplicative
Khintchine-Groshev-type results.

COROLLARY 3.3. Let f be as in Theorem 3.2 and let ψ :R+→R+ be any
monotonic function. Suppose that

(3.7)
∞∑
h=1

ψ(h)<∞.

Then for almost every x ∈U the inequality

(3.8) |p+ q1f1(x)+ · · ·+ qnfn(x)|<ψ(‖q‖n)

has only finitely many solutions (p, q)∈Z
n+1.

This Khintchine-Groshev-type theorem, a direct generalization of Sprind-
žuk’s conjecture discussed in the previous section, is in fact a partial case of
the following, more general, weighted version.

COROLLARY 3.4. Let f be as in Theorem 3.2, ψ :R+→R+ be any mono-
tonic function, and r= (r1, . . . , rn)∈R

n
>0 be an n-tuple satisfying Equation (3.3).

Suppose that (3.7) holds. Then for almost every x ∈U the inequality

(3.9) |p+ q1f1(x)+ · · ·+ qnfn(x)|<ψ(‖q‖r)

has only finitely many solutions (p, q)∈Z
n+1.

Recall again that Corollary 3.3 is a special case of Corollary 3.4. Indeed, all
one has to do to see it is to set r= ( 1n , . . . , 1n ). Corollary 3.3 was established in
[Ber02] using an approach that does not rely on the QnD estimate. However,
without new ideas, that approach does not seem to be possible to extend to
the weighted case, let alone multiplicative approximation (the next corollary),
where the QnD estimate has proven to be robust.

COROLLARY 3.5. Let f be as in Theorem 3.2 and ψ :R+→R+ be any mono-
tonic function. Suppose that

(3.10)
∞∑
h=1
(log h)n−1ψ(h)<∞.
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Then for almost every x ∈U the inequality

(3.11) |p+ q1f1(x)+ · · ·+ qnfn(x)|<ψ
(

+(q)

)

has only finitely many solutions (p, q)∈Z
n+1.

Sketch of the proof of Theorem 3.2 (for full details see [BKM01]). The proof
again uses the QnD estimate (or rather an appropriate generalization of The-
orem 1.1). However, this time the QnD estimates are not directly applicable to
get the required result. The reason is that α in Equation (1.3) is not matching
the heuristic expectation; in fact it can hardly match it. The idea of the proof,
which goes back to Bernik’s paper [Ber89],3 is to separate two independent
cases as described below.

Case 1: Fix a small δ > 0 and consider the set of x ∈U such that Equation (3.6)
is satisfied simultaneously with the following condition on the gradient

(3.12)
∥∥∇(q1f1(x)+ · · ·+ qnfn(x)

)∥∥≥‖q‖0.5+δ

for infinitely many (p, q)∈Z
n+1.

Case 2: Fix a small δ > 0 and consider the set of x ∈U such that (3.6) is satisfied
simultaneously with the opposite condition on the gradient.

(3.13)
∥∥∇(q1f1(x)+ · · ·+ qnfn(x)

)∥∥< ‖q‖0.5+δ

for infinitely many (p, q)∈Z
n+1.

Clearly, Theorem3.2would follow if one could show that the set x ∈U under
consideration in each of the two cases is null. So how does splitting into two
cases help?
Regarding Case 2, note that the two conditions of Equations (3.4) and (3.5)

imposed on � imply that
�(q)≤
+(q)−1

when ‖q‖ is sufficiently large. Hence it suffices to show that the set of x ∈U
such that

(3.14)

{ |p+ q1f1(x)+ · · ·+ qnfn(x)|<
+(q)−1∥∥∇(q1f1(x)+ · · ·+ qnfn(x)
)∥∥< ‖q‖0.5+δ

3It is worthmentioning that in [Ber89], Bernik essentially proved Corollary 3.3 in the case fi(x)= xi.
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for infinitely many (p, q)∈Z
n+1 is null. For δ < 0.5 this effectively brings us

back to an extremality problem, this time for matrices, which is dealt with
using the QnD estimate in a similar way to the proof of Theorem 2.2, albeit
with much greater technical difficulties in verifying conditions (1) and (2) of
Theorem 1.1 (or rather an appropriate generalization of Theorem 1.1).
Regarding Case 1, the presence of the extra condition—namely, that of

Equation (3.12), leads to the following two key properties, which can be
verified provided U is of a sufficiently small (fixed) diameter.

Separation property: There is a constant c> 0 such that for any q∈Z
n with

sufficiently large ‖q‖ for any x ∈U satisfying (3.12), the inequality

(3.15) |p+ q1f1(x)+ · · ·+ qnfn(x)|< c∥∥∇(q1f1(x)+ · · ·+ qnfn(x)
)∥∥

can hold for at most one integer value of p.

Measure comparison property: For some constant C> 0 for any q∈Z
n with

sufficiently large ‖q‖ and any integer p,

λd
({x ∈U : (3.6) & (3.12) hold})(3.16)

≤C�(q)λd
({x ∈U : (3.6) & (3.15) hold}).

The separation property implies that for a fixed q,

∑
p∈Z

λd
({x ∈U : (3.6) & (3.15) hold})≤ λd(U).

Putting this together with Equation (3.16) and summing over q gives

∑

(p,q)∈Zn+1
q
=0

λd
({x ∈U : (3.6) & (3.12) hold})≤Cλd(U)

∑
q∈Zn

�(q)<∞.

It remains to apply the Borel-Cantelli Lemma to complete the proof.

REMARK 3.6. The above sketch proof is a significantly simplified version of
the full proof presented in [BKM01], which is far more effective. The effective
elements of the proof are stated as two independent results—Theorems 1.3
and 1.4 in [BKM01]. These underpin a range of further interesting applications
of the QnD estimate, which we shall touch on in later sections.
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3.1 FURTHER REMARKS ON KHINTCHINE-GROSHEV-TYPE RESULTS.
Similarly to the theory of extremality, Khintchine-Groshev-type results are
not limited to nondegenerate manifolds and have been extended to affine
subspaces ofRn; see, for instance, [Gho05], [Gho10], and [Gho11]. Khintchine-
Groshev-type results in p-adic and more generally S-arithmetic settings
received their attention too; see, for instance, [MSG09] and [MSG12]. Another
remarkable application of the QnD estimate initially discovered in [Ber05] for
polynomials and then extended in [BD09] to nondegenerate curves enables
one to remove the monotonicity constrain on ψ from Corollary 3.3.
The state of the art for Diophantine approximation of matrices is far

less satisfactory, where we do not have sufficiently general convergence
Khintchine-Groshev-type results. Partial results include matrices with inde-
pendent columns; see [BBB17]. The key difficulty likely lies within the case
of simultaneous Diophantine approximation, which boils down to counting
rational points near manifolds, and will be discussed in section 5.
Theorem 3.2 implies that, under the convergence assumption of Equation

(3.5), for almost every x ∈U there exists a constant κ > 0 such that

(3.17) |p+ q1f1(x)+ · · ·+ qnfn(x)| ≥ κ�(q)

for all (p, q)∈Z
n+1 with q 
= 0. Clearly, the constant κ depends on x. Let

B(f ,�; κ) denote the set of x ∈U satisfying the above condition for the
same κ . Thus, B(f ,�; κ) is the set of all x ∈U such that (3.17) holds for all
(p, q)∈Z

n+1 with q 
= 0. The conclusion of Theorem 3.2 exactly means that
λd(U \B(f ,�; κ))→ 0 as κ→ 0+. In general, the measure of U \B(f ,�; κ)
is positive. It is therefore of interest to understand how fast it is converging
to zero. Motivated by applications in network information theory, this ques-
tion was explicitely posed in [Jaf10]. The answer was provided in [ABLVZ16,
Theorem 3] and reads as follows:

λd(U \B(f ,�; κ))≤ δλd(U)

for any

κ ≤min

⎧⎪⎨
⎪⎩
κ0, C0δ

⎛
⎝ ∑
q∈Zn\{0}

�(q)

⎞
⎠
−1

, C1δd(n+1)(2l−1)

⎫⎪⎬
⎪⎭
,

where l is a parameter characterizing the nondegeneracy of f and κ ,C0,C1
are positive (explicitly computable) constants that depend only on f . This
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quantitative version of the Khintchine-Groshev theorem for manifolds has
been generalized to affine subspaces [GG19].
Given that Khintchine’s theorem (Theorem 3.1) treats both convergence

and divergence, the question of establishing divergence counterparts to the
convergence statements of this section is very natural. In this respect we now
state the following known result.

THEOREM 3.7.
Let f be as in Theorem 3.2, ψ :R+→R+ be any monotonic function, and r=
(r1, . . . , rn)∈R

n
>0 be an n-tuple satisfying (3.3). Suppose that

(3.18)
∞∑
h=1

ψ(h)=∞.

Then for a.e. x ∈U the inequality (3.9) has infinitely many solutions (p, q)∈Z
n+1.

Motivated by a Khintchine-Groshev generalization of Mahler’s conjecture,
Theorem 3.7 was first established in [Ber99] for equal weights r1= · · ·= rn
and functions fi(x)= xi of one variable. Subsequently the method was gen-
eralised in [BBKM02] to arbitrary nondegenerate maps and later to arbitrary
weights [BBV13]. Theorem 3.7 provides the divergence counterpart to Corol-
laries 3.3 and 3.4. Establishing the divergence counterpart to Corollary 3.5 (the
multiplicative case) remains a challenging open problem even in dimension
n= 2:

PROBLEM 3.8. Let f be as in Theorem 3.2 and ψ :R+→R+ be any mono-
tonic function. Suppose that

(3.19)
∞∑
h=1
(log h)n−1ψ(h)=∞.

Prove that for almost every x ∈U Equation (3.11) holds for infinitely many
(p, q)∈Z

n+1.

In the light of the recent progress on a version of Problem 3.8 for simulta-
neous rational approximations for lines made in [BHV20], [Cho18], [CY], and
[CT19], it would also be very interesting to investigate Problem 3.8 when f is
a linear/affine (and hence degenerate) map from R

d into R
n (1≤ d< n). Note

that the case d= n of Problem 3.8 follows from a result of Schmidt [Sch64].
We conclude this section by one final comment: the proof of Theorem 3.7

is also underpinned by the QnD estimate. At first glance this may seem
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rather counter intuitive since theQnD estimate deals with upper boundswhile
Theorem 3.7 is all about lower bounds. One way or another, this is the case,
and we shall return to explaining the role of the QnD estimate in establishing
Theorem 3.7 in the next section, within themore general context of Hausdorff
measures.

4 Hausdorff measures and dimension

It this section we discuss another refinement of the theory of extremality that
aims at understanding theHausdorff dimension of exceptional sets. The basic
question is as follows: Given a nondegenerate submanifold M of R

n and ε > 0
(not necessarily small), what is the Hausdorff dimension of the set of y∈M such
that Equation (2.4) holds for infinitely many (p, q)∈Z

n+1? The same question
can be posed in the multiplicative setting of Equation (2.5), for weighted Dio-
phantine approximation (when ‖q‖n is replace by ‖q‖r given by (3.2)), and for
Diophantine approximation of matrices such as in (2.8) and (2.9).
The background to this question lies with the classical results of Jarník

[Jar29] and Besicovitch [Bes34] stated below in the one-dimensional case.

THEOREM 4.1 (Jarník-Besicovitch Theorem).
Let ε > 0 and ψε(x)= x−1−ε . Then

dimA(ψε)= 2
2+ ε .

This fundamental result tells us exactly how the size ofA(ψε) get smaller as
we increase ε and thus make the approximation function ψε decrease faster.
As with Khintchine’s theorem, the Jarník-Besicovitch theorem has been gen-
eralized in many ways, and the theory for independent variables is now in a
very advanced state; see, for instance, [BV06], [BBDV09], [BV10], and [AB18].
It has to be noted that showing the upper bound dimA(ψε)≤ 2

2+ε is a rela-
tively simple consequence of the so-called Hausdorff-Cantelli Lemma [BD99],
an analogue of the Borel-Cantelli Lemma. However, in the case of Diophantine
approximation on manifolds, establishing upper bounds for manifolds leads
to a major challenge that is still very much open (see Problem 4.4). On the
contrary, the lower bounds have been obtained in reasonable generality. The
main purpose of this section is to exhibit the role played by the QnD estimate
in obtaining the lower bounds.
As before, f :U→R

n, and r= (r1, . . . , rn) is an n-tuple of positive num-
bers satisfying Equation (3.3). Given s> 0, Hs will denote the s-dimensional
Hausdorff measure. Let δ > 0,H> 1, and
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�r(H, δ) :=
{
x ∈U : ∃ q∈Z

n
� {0} such that

{
|p+ q · f (x)|<δH−1
‖q‖r≤H

}
.

Also, given a function ψ :R+→R+, letW(f ,U, r,ψ) be the set of x ∈U such
that (3.9) has infinitely many solutions (p, q)∈Z

n+1. The following homoge-
neous version of one of the main results from [BBV13] works as a black box
to proving divergence Khintchine-Groshev-type results (such as Theorem 3.7)
and lower bounds for Hausdorff dimension.

THEOREM 4.2 ([BBV13], Theorem 3).
Let f :U→R

n be a C2 map on an open subset U of Rd, and let r= (r1, . . . , rn) be
an n-tuple of positive numbers satisfying (3.3). Suppose that for almost every point
x0 ∈U there is an open neighborhood V ⊂U of x0 and constants 0<δ,ω< 1 such
that for any ball B⊂V we have that

(4.1) λd
(
�r(H, δ)∩B

)≤ωλd(B)

for all sufficiently large H. Let d− 1< s≤ d andψ :R+→R+ be monotonic. Then

Hs(W(f ,U, r,ψ)
)=Hs(U) if

∑
q∈Zn
=0

‖q‖
(
ψ(‖q‖r)
‖q‖

)s+1−d
=∞.

The proof of this result makes use of ubiquitous systems as defined in
[BDV06]; see also [Ber00], [BBKM02], and the survey [BBD02b] for the related
notion of regular systems. The QnD estimate steps in when one wishes to apply
Theorem 4.2—namely, to verify the condition of Equation (4.1). In particu-
lar, as was demonstrated in [BBV13], any nondegenerate map f satisfies this
condition for any collection of weights r. Upon taking s= d one then verifies
that

Theorem 4.2 =⇒ Theorem 3.7.

Another consequence of Theorem 4.2 is the following lower bound on
the Hausdorff dimension of exceptional sets that contributes to resolving the
problem outlined at the beginning of this section. For simplicity we only state
the result for the case of equal weights: r0= ( 1n , . . . , 1n ).

COROLLARY 4.3 ([BBV13], Corollary 2). Let f be as in Theorem 3.2, let ψ :
R+→R+ be any monotonic function, and let

τψ := lim inf
t→∞

− logψ(t)
log t

.
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Suppose that n≤ τψ <∞. Then

(4.2) dimW(f ,U, r0,ψ) ≥ s := d− 1+ n+ 1
nτψ + 1 .

The number τψ is often referred to as the lower order of 1/ψ at infin-
ity. It indicates the growth of the function 1/ψ near infinity. Naturally for
ψε(t)= t−1−ε we have that τψε = 1+ ε. Estimate (4.2) was previously shown
in [DD00] for arbitrary extremal submanifolds of R

n. The additional benefit
of Theorem 4.2 compared to (4.2) is that it allows one to compute the Haus-
dorff measure of W(f ,U, r0,ψ) at s= dimW(f ,U, r0,ψ). It is believed that
the lower bound given by (4.2) is exact for nondegenerate maps f , at least in
the analytic case. It is readily seen that to establish the desired equality for all
ψ in question, it suffices to consider approximation functions ψε only. Hence
we have the following:

PROBLEM 4.4. Let f :U→R
n be an analytic nondegenerate map defined on

a ball U in R
d. Prove that for every ε > 0

(4.3) dimW(f ,U, r0,ψε) = d− 1+ n+ 1
n+ 1+ nε .

Problem 4.4 was established in full in the case n= 2 by R. C. Baker [Bak78].
For n≥ 3 it remains very much open. However, for the polynomial maps f =
(x, . . . , xn), it was settled by Bernik in [Ber83] for arbitrary n.

4.1 FURTHER REMARKS ON HAUSDORFF MEASURES AND DIMEN-
SION. Although establishing the upper bound in (4.3) remains a prominent
open problem, it was shown in [BBD02a] that the QnD estimate can be used to
resolve it for small ε—namely, for 0<ε< 1/(4n2+ 2n− 4) when d= 1. This
seemingly inconsequential result turned out to have major significance in
resolving open problems on badly approximable points on manifolds, which
will be discussed in section 6.
We can refine Problem 4.4 in the spirit of Khintchine-Groshev-type results

by asking to prove the following convergence counterpart to Theorem 4.2.

PROBLEM 4.5. Let f :U→R
n be a nondegenerate analyticmap defined on a

ball U in R
d, 0< s< d, and r= (r1, . . . , rn) an n-tuple of positive numbers sat-

isfying Equation (3.3). Suppose that ψ :R+→R+ is any monotonic function.
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Prove that

Hs(W(f ,U, r,ψ)
)= 0 if

∑
q∈Zn
=0

‖q‖
(
ψ(‖q‖r)
‖q‖

)s+1−d
<∞.

For n= 2, Problem 4.5 was resolved in [Hua18] for equal weights, but in
higher dimensions it is still open even for f (x)= (x, . . . , xn), let alone nonde-
generate maps. In fact, for n= 2 the case of nonequal weights can be reduced
to the case of equal weights. This can be shown by modifying the proof of
Theorem 2 from [BB00].

5 Rational points near manifolds

Rational and integral points lying on or near curves and surfaces crop up in
numerous problems in number theory and are often one of the principle
objects of study (e.g., in analytic number theory, Diophantine approxima-
tion, Diophantine geometry). The goal of this section is to demonstrate the
role of the QnD estimate in recent counting results on rational points lying
close to manifolds [Ber12, BDV07, BZ10, BVVZ]. The motivation lies within
the theory of simultaneous Diophantine on manifolds, which boils down to
understanding the proximity of rational points p/q= (p1/q, . . . , pn/q) to points
y= (y1, . . . , yn)∈R

n restricted to a submanifold M. Here p1, . . . , pn ∈Z and
q∈N is the common denominator of the coordinates of p/q. By Dirichlet’s
theorem, for every irrational point y∈R

n there are infinitely many p/q∈Q
n

such that

max
1≤i≤n

∣∣∣∣yi−
pi
q

∣∣∣∣< q−1−1/n.

This inequality can be rewritten in the form

(5.1) max
1≤i≤n

∣∣qyi− pi
∣∣n< q−1.

Understanding when the right-hand side of (5.1) can be replaced by ψε(q)=
q−1−ε , ε > 0 (or even by a generic monotonic functionψ) is the subject matter
of many classical problems and famous results. The basic question is about
the solvability of

(5.2) max
1≤i≤n

∣∣qyi− pi
∣∣n<ψε(q)

in (p, q)∈Z
n×N for arbitrarily large q. For example, celebrated Schmidt’s

subspace theorem states that for any algebraic y1, . . . , yn such that 1, y1, . . . , yn
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are linearly independent over Q and any ε > 0, Equation (5.2) has only finitely
many solutions (p, q)∈Z

n×N.
When the point y lies on a submanifold M, (5.2) forces the rational point

p/q to lie nearM. Hence, metric problems concerning (5.2) (e.g., Khintchine-
type results, analogues of the Jarník-Besicovitch theorem) have resulted in
significant interest in counting and understanding the distribution of rational
points lying close to submanifolds of R

n. The basic setup is as follows. Given
Q > 1 and 0<ψ < 1, let

RM(Q ,ψ) =
{
(p, q)∈Z

n×N : 1≤ q≤Q , dist(p/q,M)≤ψ/q
}
.

It is not difficult to work out the following heuristic

(5.3) #RM(Q ,ψ)�ψmQd+1,

where d= dimM, m= n− d= codimM, and # stands for the cardinality.
Also, � means the simultaneous validity of two Vinogradov symbols � and
�, where�means the inequality ≤ up to a positive multiplicative constant.

REMARK 5.1. This heuristic estimate has to be treated with caution as, for
instance, the unit circle y21+ y22= 1 will always contain at least const·Q ratio-
nal points (given by Pythagorean triples) resulting in #RM(Q ,ψ)�Q no
matter how smallψ is. On the contrary, the circle y21+ y22= 3 contains no ratio-
nal points resulting in #RM(Q ,ψ)= 0 for large Q when ψ = o(Q−1). Also,
rational (affine) subspaces inherently contain many rational points and so any
manifold that contains a rational subspace may break the heuristic with ease
for moderately small ψ .

The following is the principal problem in this area; see [Ber12] and [Hua20].

PROBLEM 5.2. Show that (5.3) holds for any suitably curved compact differ-
entiable submanifold M of R

n when ψ ≥Q−1/m+δ , where δ > 0 is arbitrary,
and m= codimM.

Ideally, it would be desirable to resolve this problem for all nondegener-
ate submanifolds of R

n. The condition ψ ≥Q−1/m+δ is pretty much optimal
unless one imposes further constraints on the internal geometry of M. For
instance, to relax the condition on ψ , one has to exclude the manifolds that
contain a rational subspace of dimension d− 1 (when d> 1). In what follows
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we shall describe the role of the QnD estimate in establishing the lower bound
for analytic nondegenerate manifolds.

THEOREM 5.3 ([Ber12], Corollary 1.5).
For any analytic nondegenerate submanifoldM⊂R

n of dimension d and codimen-
sion m= n− d, there exist constants C1,C2> 0 such that

(5.4) #RM(Q ,ψ)≥C1ψmQd+1

for all sufficiently large Q and all real ψ satisfying

(5.5) C2Q−1/m<ψ < 1.

Sketch of the proof (for full details see [Ber12]). For simplicity we will assume
that M is the image f (U) of a cube U ⊂R

d under a map f and that M is
bounded. Further, without loss of generality, we will assume that f is of the
Monge form—that is,

f (x1, . . . , xd)=
(
x1, . . . , xd, f1(x1, . . . , xd), . . . , fm(x1, . . . , xd)

)
.

The rational points p/q give rise to the integer vectors a= (q, p1, . . . , pn), which
are essentially projective representations of p/q. Define y(x)= (1, f (x)), a pro-
jective representation of f (x). As is well-known, the distance of p/q from f (x)
is comparable to the projective distance between them, defined as the sine of
the acute angle between a and y(x). Tomake this angle�ψ/q and thus ensure
that p/q lies in RM(Q ,ψ), it is enough to verify that

(5.6) |q| ≤Q and |gi(x) · a|�ψ (1≤ i≤ n)

for any fixed collection g1(x), . . . , gn(x) of vector orthogonal to y(x) and such
that ‖gi(x)‖� 1 and ‖g1(x)∧ . . .∧ gn(x)‖�‖g1(x)‖ · · · ‖gn(x)‖. Clearly, (5.6)
defines a convex body of a∈R

n+1, and one can potentially use Minkowski’s
theorem on convex bodies to find a. However, forψ much smaller thanQ−1/n,
this is impossible—the volume of the body is too small. To overcome this dif-
ficulty, the convex body is expanded in the directions tangent to the manifolds
written in the projective coordinates; see (5.7) below. For this purpose it is con-
venient to make the following choices for gi(x). First of all, for i= 1, . . . ,m,
the vectors gi(x) are taken to be orthogonal to y(x), ∂y(x)/∂x1, . . . , ∂y(x)/∂xd,
which are linearly independent for f of the Monge form. Next, for i=m+
1, . . . , n, the vectors gi(x) are taken to be orthogonal to y(x), g1(x), . . . , gm(x).
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We will need two auxiliary positive parameters ψ̃ and Q̃ , which will be pro-
portional to ψ and Q respectively. Now, for κ > 0 and a given x, we consider
the convex body of a∈R

n+1 defined by

(5.7)

|gi(x) · a|<ψ̃ (1≤ i≤m) ,
|gm+j(x) · a|<(ψ̃mQ̃)−

1
d (1≤ j≤ d) ,

|q| ≤ κQ̃ .
For a suitably chosen constant κ = κ0 dependent only on n and f , this body is of
sufficient volume to apply Minkowski’s theorem. This results in the existence
of an a∈Z

n+1
� {0} satisfying (5.7). Thus the set

B(ψ̃ , Q̃ , κ)={x ∈U : ∃ a∈Z
n+1

=0 satisfying (5.7)}

coincides with all of U for κ = κ0. Now suppose that κ1<κ0 and

x ∈U �B(ψ̃ , Q̃ , κ1) ( =B(ψ̃ , Q̃ , κ0)�B(ψ̃ , Q̃ , κ1) ).

Then, the first two collections of inequalities in (5.7) are satisfied for some
vector a= (q, p1, . . . , pn)∈Z

n+1 such that

κ1Q̃ ≤ |q| ≤ κ0Q̃ .

The first set of inequalities in (5.7) keeps the rational point p/q at distance
� ε1= ψ̃/Q̃ from the tangent plane to the manifold at f (x). The second set
of inequalities in (5.7) keeps the rational point p′/q, where p′ = (p1, . . . , pd)
at distance � ε2= (ψ̃mQ̃)−

1
d Q̃−1 from x. Since the tangent plane deviates

from the manifold quadratically, assuming that ε22 ≤ ε1, we conclude that the
point p/q remains at distance� ε1+ ε22� ε1 from the manifold; see [Ber12,
Lemma 4.3]. The proof of this uses nothing but the second-order Taylor’s
formula.
To sum up,

U �B(ψ̃ , Q̃ , κ1)⊂
⋃

(p,q)∈RM(c1Q̃ ,c2ψ̃)

B(p′/q, c3ε2) ,

where B(x, r) is a ball inR
d centered at x of radius r, and c1, c2, c3> 0 are some

constants. Then

λd
(
U �B(ψ̃ , Q̃ , κ1)

)� #RM(c1Q̃ , c2ψ̃)(c3ε2)d(5.8)

� #RM(c1Q̃ , c2ψ̃)ψ−mQ−(d+1).
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At this point the QnD estimate is used to verify that for a suitably small con-
stant κ1, the set B(ψ̃ , Q̃ , κ1) has small measure—say,≤ 1

2λd(U). Thus λd
(
U �

B(ψ̃ , Q̃ , κ1)
)≥ 1

2μd(U), and (5.8) implies the desired result on requiring that
Q̃ ≤Q/c1 and ψ̃ ≤ψ/c2.
To finish this discussion, we shall show explicitly how (5.7) can be rewritten

for the purpose of applying the QnD estimate. For simplicity we consider a
nondegenerate planar curve C={(x, f (x) : x ∈U}, where U is an interval, and
so d=m= 1 and n= 2, and we restrict ourselves to the case when ψ̃ � Q̃−1.
The latter means that we are counting rational points closest to C. Let ψ̃Q̃ =
κ1/3, et= ψ̃−1κ1/3, and e−t= Q̃−1κ−2/3.
Then, (5.7) can be replaced by

(5.9) δ(gtGxZ
3)< κ1/3,

where

Gx =
⎛
⎜⎝

f (x)− xf ′(x) f ′(x) −1
x −1 0
1 0 0

⎞
⎟⎠

and

gt=
⎛
⎜⎝

et 0 0
0 1 0
0 0 e−t

⎞
⎟⎠ .

Indeed, the first row of Gx is simply g1(x) appearing in (5.7), and the second
row of Gx is simply a multiple of g2(x) appearing in (5.7). Thus, counting
rational points closest to a planar curve as discussed above relies on finding
an appropriately small constant κ > 0 such that the set of x ∈U satisfying (5.9)
has measure at most, say, 12λ1(U) for all sufficiently large t. To rephrase this,
half of the curve x →GxZ

3 in X3 has to remain in the compact set Kε defined
by Equation (1.1) with ε= κ1/3 under the action by the gt; that is,

(5.10)
λ1({x ∈U : gtGxZ

3 ∈Kε}) ≥ 1
2λ1(U) for all sufficiently large t.

5.1 FURTHER REMARKS ON RATIONAL POINTS NEAR MANIFOLDS.
When d= 1, it was shown in [Ber12, Theorem 7.1] that for analytic non-
degenerate curves, Equation (5.5) can be relaxed to

(5.11) C2Q−
3

2n−1 <ψ < 1.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



quantitative nondivergence and diophantine approximation / 327

More recently, the condition of the analyticity was removed in [BVVZ] follow-
ing amore careful and explicit application of theQnDestimate. In essence, the
analytic case does not require us to deal with condition (1) of Theorem 1.1, the
latter task being accomplished in [BVVZ]. For d> 1, removing the analyticity
condition from Theorem 5.3 remains an open problem. In the case of planar
curves, Problem 5.2 was solved for nondegenerate planar curves as a result
of [Hux94], [BDV07], [BZ10], and [VV06]; see also asymptotic and inhomo-
geneous results in [BVV11], [Hua15], [Cho17], and [Gaf14]. Upper bounds in
higher dimensions represent a challenging open problem, but see [BVVZ17],
[BY], [Sim18], and [Hua20] for some recent results.4

For n= 2 (d= 1), the condition in Equation (5.11) does not actually improve
on (5.5). In fact, (5.5) is optimal within the class of all nondegenerate hyper-
surfaces, and in particular nondegenerate planar curves; see Remark 5.1. In
principle, the existence of rational points as opposed to counting does not
require using the QnD; see [BLVV17].
Detecting rational points near planar curves closer than the limit set by the

left-hand side of Equation (5.4) will require additional conditions on top of
nondegeneracy and represents an interesting problem:

PROBLEM 5.4. Find reasonable conditions on a connected analytic curve C
in R

2 sufficient to satisfy

(5.12) lim inf
q→∞ q2dist (C, 1qZ

2)= 0.

Observe that for ellipses in R
2, Problem 5.4 reduces to the Oppenheim

conjecture (1929) remarkably proved by Margulis in 1986:

THEOREM 5.5 (Margulis, 1986).
Let Q be a nondegenerate indefinite quadratic form of three real variables, and
suppose that Q is not a multiple of a form with rational coefficients. Then for any
ε > 0 there exist nonzero integers a, b, and c such that

(5.13) |Q(a, b, c)|<ε.

To see the link between Theorem 5.5 and Problem 5.4, first divide (5.13)
through by c2 and, using the fact that Q is a homogeneous polynomial of
degree 2, obtain the following equivalent inequality:

4In particular, the upper bound of [BY] for rational points avoiding certain exceptional sets uses
the QnD estimate to measure these exceptional sets and is sharp.
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(5.14)
∣∣∣Q

(a
c
,
b
c
, 1
)∣∣∣< ε

c2
.

Since Q is indefinite, without loss of generality one can assume that

Q(x, y, 1)= Q̃(x− x0, y− y0)− r2

for some positive definite quadratic form Q̃ of two variables and some r> 0.
If necessary one can permute the variables a, b, and c to make sure this is the
case. If C denotes the curve in R

2 defined by the equation Q(x, y, 1)= 0, then
an elementary check shows that (5.14) is equivalent to dist

(C, (a/c, b/c))�
ε/c2 and also that |c|�max{|a|, |b|}. Hence it becomes obvious that Theo-
rem 5.5 is equivalent to (5.12) for the specific type of curves C in question. For
instance, if Q(x, y, z)= x2+ y2− (rz)2 for some r> 0, then C is the circle of
radius r centered at the origin. In general, C is an ellipse.
Apparently, when attacking Problem 5.4 one has to appeal to an unbounded

gt-orbit of GxZ
3 as opposed to the bounded parts of this orbit appearing in

(5.10), where gt and Gx are the same as in (5.9). Indeed, assuming that C=
{(x, f (x) : x ∈U} is bounded, it is a relatively simple task to verify that

(5.15) (5.12) =⇒ {gtGxZ
3 : x ∈U, t≥ 0} is unbounded in X3 ,

while the converse requires a slight tightening of the condition on the right
by replacing U with any closed subset U′ of the interior of U, in which case
we have that

(5.16) (5.12) ⇐= {gtGxZ
3 : x ∈U′, t≥ 0} is unbounded in X3.

The argument in support of (5.15) and (5.16) can be obtained onmodifying the
technique used for detecting rational points near manifolds that we discussed
above and as detailed in [Ber12], [BDV07], [BZ10], and [BVVZ]. Of course,
due to Margulis’s theorem on the Oppenheim conjecture, Equation (5.12) and
consequently the right-hand side of (5.15) hold for irrational ellipses.
Oppenheim’s conjecture is only one example of problems on small val-

ues of homogeneous polynomials at integral points. Clearly, any problem of
this ilk falls into the framework of rational points near manifolds. To give
another example, which is of current interest and where the QnD estimate
plays an important role, consider counting integral (irreducible) polynomi-
als P of degree n and height H(P)≤Q with relatively small discriminant
D(P). Indeed, for polynomials of degree 2 the problem reduces to counting
rational points near the parabola y= x2; see [BBG16, section 2]. In general,
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D(P) can be written as a homogeneous polynomialD(a0, . . . , an) of the coeffi-
cients a0, . . . , an of P= anxn+ · · ·+ a0; the degree of D is 2n− 2. Thus, when
H(P)=max{|a0|, . . . , |an|} ≤Q , we have that |D(P)|�Q2n−2. This gives rise
to the following:

PROBLEM 5.6. Let n≥ 2 be an integer and v∈ [0, n− 1]. Establish the
asymptotic behavior (as Q→∞) of the number Nn(Q) of integral irreducible
polynomials P of degree n and heightH(P)≤Q satisfying the condition

(5.17) 0< |D(P)|�Q2n−2−2v.

The problem can be equally restated formonic polynomialsP= xn+1+ anxn+
· · ·+ a0 of degree n+ 1.

It was shown in [BBG16] that

(5.18) Nn(Q)�Qn+1− n+2
n v

for any v∈ [0, n− 1]. Quite remarkably, the proof of (5.18) represents yet
another application of the QnD estimate. To be more precise, establishing
(5.18) uses counting irreducible polynomials P such that P and its derivatives
have prescribed values at points x from a subset of [−1/2, 1/2] of measure
at least 1/2; see [BBG10, Lemma 4]. The latter is proved by using the QnD
estimate applied to the system

|P(i)(x)|<θi (0≤ i≤ n)

for a suitable choice of positive parameters θi such that the product θ0 · · · θn is
a sufficiently small constant; see [BBG10, Lemma 1] or more generally [Ber12,
Theorem 5.8]. In all likelihood (5.18) is sharp, but the complementary upper
bound remains unknown except for n= 2 [BBG16] and n= 3 when 0< v<
3/5 [GKK14]. Very recently, in [DOS, Theorem 1.1], an upper bound for the
number of monic irreducible polynomials of a fixed discriminant and height
H(P)≤Q has been established for arbitrary degrees≥ 3. However, this recent
upper bound seems to have enough room for further improvement, even for
monic polynomials of degree 3; thus finding upper boundswithin Problem5.6
remains an almost entirely open challenge.

6 Badly approximable points on manifolds

The notion of badly approximable points in R
n comes about by reversing the

inequalities inDirichlet’s theoremwith a suitably small constant. Recall again,
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by Dirichlet’s theorem, for every y= (y1, . . . , yn)∈R
n there are infinitelymany

q∈N such that

max
1≤i≤n

|〈qyi〉|n< q−1 ,

where |〈qyi〉| is the distance from qyi to the nearest integer pi. Thus, the point
y∈R

n is badly approximable if there exists a constant c= c(y)> 0 such that

(6.1) max
1≤i≤n

∣∣〈qyi
〉 |n≥ cq−1

for all q∈N. More generally, given an n-tuple of weights r= (r1, . . . , rn)∈R
n≥0

normalized by Equation (3.3), the point y∈R
n is called r-badly approximable if

there exists c= c(y)> 0 such that

(6.2) max
1≤i≤n

|〈qyi〉|1/ri ≥ cq−1

for all q∈N. Here, by definition, |〈qyi〉|1/0= 0. In what follows, the set of r-
badly approximable points in R

n will be denoted by Bad(r). It is a well-known
fact that Bad(r) is always of Lebesgue measure zero. Therefore, in Diophan-
tine approximation, one is interested in understanding how small the sets
Bad(r) really are by using, for example, Hausdorff dimension. More sophis-
ticated problems arise when one considers the intersections of Bad(r) and
restrictions to submanifolds of R

n. This broad theme has been around for
several decades and investigated in great depth; see [Dav64], [PV02], [KW05],
[KTV06], [KW10], [Fis09], [Sch66], [Ber15], [BV14], [BPV11], [NS14], [Nes13],
[ABV18], [An16], and [An13] amongmany dozens of other papers on the topic.
There is also a natural link, known asDani’s correspondence [Dan85], between
badly approximable points in R

n and bounded orbits of the lattices

�y=
(

In y

0 1

)
Z
n+1,

where y∈R
n is treated as a column and In is the identity matrix. Accord-

ing to Dani’s correspondence, a point y∈R
n is badly approximable if and

only if gt�y (t≥ 0) is bounded in the space of lattices Xn+1, where gt :=
diag{et, . . . , et, e−nt}. Later it was shown in [Kle98] that Dani’s correspondence
extends to Diophantine approximation with weights and for matrices. In par-
ticular, a point y∈R

n is r-badly approximable if and only if the trajectory gt�y

(t≥ 0) is bounded in Xn+1, where gt := diag{etr1 , . . . , etrn , e−t}.
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The purpose of this section is to expose the role of the QnD estimate in a
recent proof given in [Ber15] that countable intersections of the sets Bad(r)
restricted to a nondegenerate submanifold of R

n have full Hausdorff dimen-
sion. The following key result of [Ber15] will be the main subject of discussion
in this section.

THEOREM 6.1 ([Ber15], Theorem 1).
Let n, d∈N, W be a finite or countable collection of n-tuples (r1, . . . , rn)∈R

n≥0 with
r1+ · · ·+ rn= 1. Assume that

(6.3) inf {τ(r) : r∈W}> 0

where

τ(r1, . . . , rn)=min{ri> 0 : 1≤ i≤ n}.
Let Fn(B) be a finite collection of analytic nondegenerate maps defined on a ball
B⊂R

d. Then

(6.4) dim
⋂

f∈Fn(B)

⋂
r∈W

f−1
(
Bad(r)

)= d.

Sketch of the proof (for full details see [Ber15]). To begin with, one uses a trans-
ference principle to reformulate Bad(r) in terms of approximations by one
linear form: y∈R

n is in Bad(r) if and only if there exists c> 0 such that for
anyH≥ 1 the only integer solution (p, q1, . . . , qn) to the system

(6.5)
|p+ q1y1+ · · ·+ qnyn|< cH−1,

|qi|<Hri (1≤ i≤ n)

is zero—that is, p= q1= · · ·= qn= 0. Another simplification is that one can
assume that d= 1—that is, it suffices to deal with curves. This is due to
the existence of appropriate techniques for fibering analytic nondegenerate
manifolds into nondegenerate curves and Marstrand’s slicing lemma; see
[Ber15].
For simplicity we will assume that #W = 1, #Fn(B)= 1, andB=[0, 1]. Then

Equation (6.4) becomes

(6.6) dim {x ∈ [0, 1] : f (x)∈Bad(r)}︸ ︷︷ ︸
S

= 1.
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The basic idea is to construct a Cantor set

K :=
∞⋂
t=1

Kt+m

starting from Km=[0, 1], where m is a large integer, and fulfilling the
condition

(6.7) Kt+m⊂Kt−1+m � {x ∈ [0, 1] : δ(gtuf (x)Zn+1)< κ} for t∈N ,

where η> 0 is a suitably large constant, gt= diag{eηt, e−ηtr1 , . . . , e−ηtrn}, and
uf (x) is the same as in Equation (2.6). By Dani’s correspondence, or rather by
its version from [Kle98], K is a subset of S defined in (6.6). The goal is thus to
demonstrate that for any δ > 0 there exists a suitably small κ > 0 such that

(6.8) dimK≥ 1− δ.

The level sets Kt of K are made of small building blocks—closed subinter-
vals of length R−t with disjoint interiors, where the parameter R is a large
positive integer. This requirement makes it easier to estimate the Hausdorff
dimension of K. Essentially, Kt is obtained from Kt−1 by chopping up each
building block of Kt−1 into R equal pieces and then removing some of them.
The building blocks that have to be removed are identified by requirement
(6.7). Effectively, to achieve the dimension bound in (6.8) one has to show that
we remove relatively little. How little is determined by a technical statement on
Cantor sets originally obtained in [BPV11] and [BV11] and developed further
in [Ber15] into a notion of Cantor rich sets. Cantor rich sets are closed under
countable intersections, albeit there is a mild technical condition attached to
intersections; see also [BHNS18] for a comparison of Cantor rich sets with
other similar notions. It is the nature of Cantor rich sets that allowed us to
assume that #W = 1 and #Fn(B)= 1.
To accomplish the final goal one has to analyze the composition of the set

{x ∈ [0, 1] : δ(gtuf (x)Zn+1)< κ}

—that is, the set removed in (6.7). This set is defined as the union over all the
integer points (p, q1, . . . , qn) subject to |qi|< eηtri (1≤ i≤ n) of all the solutions
x to

(6.9) |p+ q1f1(x)+ · · ·+ qnfn(x)|<κe−ηt.
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For a fixed (p, q1, . . . , qn), inequality (6.9) defines a finite collection of intervals.
The number of these intervals is bonded by a constant depending on n and f ;
however, the length of these intervals depends on the slope of the graph of the
function x → p+ q1f1(x)+ · · ·+ qnfn(x)—that is, on

(6.10) |q1f ′1(x)+ · · ·+ qnf ′n(x)|

—and thus can vary hugely. It is convenient to combine together the intervals
of similar size by sandwiching (6.10) between consecutive powers of a real
number. Effectively, for some �∈Z, one considers the system

(6.11)

|p+ q1f1(x)+ · · ·+ qnfn(x)|<κe−ηt,
eη(γ t−γ ′�)≤ |q1f ′1(x)+ · · ·+ qnf ′n(x)|< eη(γ t−γ ′(�−1)),

|qi|< eηtri (1≤ i≤ n).

Since the maximum of (6.10) is� eηtγ , where γ =max{r1, . . . , rn}, it suffices
to assume that � is nonnegative. The parameter γ ′ is used for convenience to
eventually synchronize the (approximate) length of the intervals arising from
(6.11) with that of building blocks of an appropriate level of K. Indeed, for
relatively small � the intervals of x arising from (6.11) for a fixed (p, q1, . . . , qn)
are of length

(6.12) � κe−ηteη(γ t−γ ′�).

The proof uses a counting argument from the geometry of numbers to esti-
mate the number of different points (p, q1, . . . , qn) that give rise to a nonempty
set of x satisfying (6.11), and this estimate put together with (6.12) appears to
be sufficient to make the Cantor rich sets work.
The problem remains in the case of relatively large �. And this is precisely

the case where the QnD estimate comes to the rescue. The idea is to consider
the system

(6.13)

|p+ q1f1(x)+ · · ·+ qnfn(x)|<κe−ηt,
|q1f ′1(x)+ · · ·+ qnf ′n(x)|< eηt(γ−ε),

|qi|< eηtri (1≤ i≤ n),

where ε is a fixed constant. In practice, ε can be chosen within the limits
1/n≤ ε≤ 2/n. The solutions of (6.11) with �� εt will fall into the set St of
solutions x to (6.13). Using the version of the QnD estimate from [BKM01],
one verifies that the measure of St is
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� e−tαε ,

where α depends only on n. In fact, if we swell the set St up by placing a ball
of radius

� := κe−ηt/eηt(γ−ε)
around each point of St, the QnD estimate applies to this bigger set Ŝt. Due
to its construction the set Ŝt can be written as a disjoint union of intervals of
length ��, while the total measure of these intervals is still� e−tαε . Hence,
one gets a bound on the number of the intervals, and this bound appears good
enough to complete the proof.

REMARK 6.2. The basic idea for treating Equation (6.13) that we described
above evolved from the paper [BBD02a], which deals with a very special case of
Problem 4.4 discussed in section 4.1. Indeed, the method of [BBD02a], which
relies on the QnD estimate, can be easily modified to obtain the upper bound
for the Hausdorff dimension,

(6.14)

dim
{
x :

(6.13) has a nonzero solution (p, q1, . . . , qn)
for infinitely many t∈N

}
≤ 1− c(α, ε, n),

for some explicitly computable parameter c(α, ε, n)> 0 depending only on α,
ε, and n. Recall that within the proof of Theorem 6.1 the target set K given by
Equation (6.8) is sought to satisfy (6.8) for arbitrarily small δ > 0. In the case of
(6.11) this goal is attained by taking η sufficiently large and κ sufficiently small.
Now note that the estimate (6.14) is independent of η and κ . This means that
when constructing the levels Kt of our Cantor set, the case (6.13) removes a
set of dimension strictly smaller than 1− δ as long as we impose the condition
0<δ < c(α, ε, n) with δ the same as in (6.8).

6.1 FURTHER REMARKS ON BADLY APPROXIMABLE POINTS ON
MANIFOLDS. The technical condition of Equation (6.3) on the weights of
approximation arises within the part of the proof of Theorem 6.1 that does not
use the QnD. Introducing new ideas to this part, Lei Yang [Yan19] managed
to remove (6.3) completely.
Theorem 6.1 has a straightforward consequence to real numbers badly

approximable by algebraic numbers. These can be defined via small values
of polynomials:

Bn=
{
ξ ∈R :

∃ c1= c1(ξ , n)> 0 such that |P(ξ)| ≥ c1H(P)−n
for all nonzero P∈Z[x], degP≤ n

}
.
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As a consequence of Theorem 6.1 we have that for any natural numberN and
any interval I in R,

(6.15) dim
N⋂
n=1

Bn ∩ I = 1.

However, Theorem 6.1 leaves the following problem open: show that (6.15)
holds when N=∞. The generalization of Yang [Yan19] that removes condition
(6.3) does not solve this problem. However, it has been resolved in [BNY1] on
showing that the sets

{x ∈R : (x, . . . , xn) is badly approximable}

are winning. Previously, this was shown in dimension n= 2 [ABV18]. More
generally, it is shown in [BNY1] that for any n∈N and any n-tuple r of weights,
the set of r-badly approximable points on any nondegenerate analytic curve
in R

n is absolute winning. We note that the results of [BNY1] represent yet
another powerful application of the QnD, this time for fractal measures as
established in [KLW04]. Another remarkable application of the QnD for fractal
measures is the proof that the sets Bad(r) are hyperplane absolute winning,
established in [BNY2].
We note that the above exposition is not a complete account of known

applications of the QnD estimates. There is no doubt that many new exciting
applications are still awaiting to be discovered!
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MARGULIS FUNCTIONS AND THEIR APPLICATIONS

To Grisha with our admiration

1 Definition and basic properties

1.1 MOTIVATION. In many cases, one wants to show that trajectories of
some dynamical system spend most of the time in compact sets or more gen-
erally avoid on average a certain subset of the space. The construction of a
Margulis function allows one to obtain remarkably sharp estimates of this
type. The first construction is due to Margulis in [EMM98] to show quanti-
tative recurrence for the action of SO(p, q) on SL(p+ q,R)/SL(p+ q,Z); this
is used in the proof of the “quantitative Oppenheim conjecture”. The difficulty
in this problem is related to the complicated geometry of the noncompact part
of the space. However, the method is remarkably versatile and has seen many
other applications.

We now proceed with the formal definition and give examples later. The
reader is encouraged to skip ahead to the examples as necessary.

Let X be the space where our dynamics takes place. First we need an aver-
aging operator A. This is formally just a linear map from the space C(X) of
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continuous functions on X to itself, where X is the space where the dynamics
takes place. We always assume that A is a Markov operator—that is, that A
takes nonnegative functions to nonnegative functions and takes the constant
function 1 to itself.

Let Y be a possibly empty subset of X . If Y is not empty, we assume
that it is invariant in the sense that if h∈C(X) is supported on X \Y , then
so is Ah.

DEFINITION 1.1. A continuous function f :X→[1,∞] is called a Margulis
function for Y if the following hold:

(a) f (x)=∞ if and only if x ∈Y . For each �> 0, the set {x : f (x)≤ �} is a
compact subset of X \Y .

(b) There exists c< 1 and b<∞ such that for all x ∈X ,

(1.1) (Af )(x)≤ cf (x)+ b.

The continuity assumption on f is often modified; this will be mentioned
below.

We now state an immediate consequence of the definition:

LEMMA 1.2. Suppose x ∈X \Y. Then, there exists N=N(x) such that for all
n>N,

(1.2) (Anf )(x)≤ 2b
1− c <∞.

The constant N(x) depends only on f (x) and can thus be chosen uniformly over the
compact sets {x : f (x)≤ �}.

Proof. By iterating (1.1) we obtain

(Anf )≤ cnf (x)+ cn−1b+ · · ·+ cb+ b≤ cnf (x)+ b
1− c ,

where for the last estimate we summed the geometric series. Now choose n
so that cnf (x)< b/(1− c).

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



344 / alex eskin and shahar mozes

2 Random walks

In this setting, a Margulis function is also called a Foster-Lyapunov (or drift)
function and has been used extensively. See the book [MT09] for further
references.

Suppose we are considering a random walk on X . This means that for each
x ∈X we have a probability measure μx on X so that the probability of moving
in one step of the random walk from x into some subset E⊂X is μx(E). Now,
for h∈C(X), let

(Ah)(x)=
∫

h dμx,

so A is the averaging operator with respect to one step of the random walk.
Then An is the averaging operator with respect to n steps of the random walk,
and we can write Anh= ∫

X h dμ
n
x, where μ

n
x(E) is the probability of moving in

n steps of the random walk into some set E.

LEMMA 2.1. Suppose Y ⊂X and that a Margulis function f can be constructed
for Y. Then, for any ε > 0 there exists a compact subset Fε of X \Y such that for
any x ∈X \Y, for all sufficiently large n (depending on x and ε), μnx(Fε)> 1− ε.

In particular, Lemma 2.1 shows that anyweak-star limitμ∞x of themeasures
μnx is a probability measure satisfying μ∞x (Y)= 0.

Proof. The equation (1.2) has the interpretation that for any x ∈X , for large
enough n, ∫

f dμnx ≤ 2b/(1− c).

Now suppose ε > 0 is given, and choose �> 2b
(1−c)ε . By Markov’s inequality we

have

μnx({x : f (x)> �})≤ 2b
(1− c)� < ε.

Thus, the μnx measure of the compact set {x : f (x)≤ �} is at least 1− ε.
The existence of a Margulis function also implies certain large deviation

results; see, for example, §6.

3 Actions of semisimple groups

Suppose the space X admits a continuous action of a semisimple groupG. For
simplicity of presentation, we will assume in this section that G=SL(2,R).
For the case where G=SO(p, q) see the original paper [EMM98].
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Recall that G acts on the upper half plane H by Möbius transformations. It
is convenient to write this action as

(
a b
c d

)
· z= dz− b
−cz+ a .

This is a right action of G, and the stabilizer of i∈H is K =SO(2). Thus, H is
canonically identified with K\G. This action is by hyperbolic isometries; thus
dH(Kg1g,Kg2g)= dH(Kg1,Kg2) for all g1, g2, g ∈G, where dH is the hyperbolic
metric on H. We will also use this action to identify the unit tangent bundle
T1(H) of H with G.

Let at=
(
et 0
0 e−t

)
, rθ =

(
cos θ − sin θ
sin θ cos θ

)
. Then, under the identification

of G with T1(H), left-multiplication by at on G corresponds to geodesic flow
for time t on T1(H). In particular,

dH(Katg,Kg)= t.

Also, since Krθ g=Kg, rθ g corresponds to the same point in H as g but with a
different tangent vector. For g ∈G, let

Sτ (Kg)={Kaτ rθ g : 0≤ θ < 2π}⊂H.

Then, Sτ (Kg) is the circle of radius τ around the point Kg ∈H.
Now supposeX is an arbitrary space with a continuous (left) SL(2,R) action.

For a function h :X→R, we can pull back h to a function hx on G∼=T1(H).
We then let the averaging operator Aτ be defined as

(3.1) (Aτh)(x)= 1
2π

∫ 2π

0
h(aτ rθx) dθ = 1

2π

∫ 2π

0
hx(aτ rθ ) dθ .

We will usually take h to be invariant under the action of K =SO(2)⊂G.
Using the identification of K\G with H, we think of (Aτh)(x) as the average
of h over a circle of radius τ in the G orbit through x, or more precisely the
average of hx over Sτ (K), where K is the base point of K\G∼=H.

Suppose Y ⊂X is a G-invariant submanifold. (Again, Y =∅ is allowed).

DEFINITION 3.1. A K-invariant function f :X→[1,∞] is called a Margulis
function for Y if it satisfies the following properties:
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(a) There exists σ > 1 such that for all 0≤ t≤ 1 and all x ∈X ,

(3.2) σ−1f (x)≤ f (atx)≤ σ f (x).

(This holds if log f is uniformly continuous along the G-orbits).
(b) For every c0> 0 there exist τ > 0 and b0> 0 such that for all x ∈X ,

Aτ f (x)≤ c0f (x)+ b0.

(c) f (x)=∞ if and only if x ∈Y , and f is bounded on compact subsets of
X \Y . For any �> 0, the set {x : f (x)≤ �} is a compact subset of X \Y .

LEMMA 3.2. Suppose there exists a Margulis function f for Y. Then,

(i) For all c< 1 there exists t0> 0 (depending on σ and c) and b> 0 (depending
only on b0, c0, and σ ) such that for all t> t0 and all x ∈X,

(At f )(x)≤ cf (x)+ b.

(ii) There exists B> 0 (depending only on c0, b0, and σ ) such that for all x ∈X,
there exists T0=T0(x, c0, b0, σ) such that for all t>T0,

(At f )(x)≤B.

(iii) For every ε > 0 there exists a compact subset Fε of X \Y such that for all
x ∈X, there exists T0=T0(x, c0, b0, σ) such that for all t>T0,

|{θ ∈ [0, 2π) : atrθx ∈Fε}| ≥ 2π(1− ε).

For completeness, we include the proof of this lemma. It is essentially taken
from [EMM98, section 5.3], specialized to the case G=SL(2,R).

The basic observation is the following standard fact from hyperbolic
geometry:

LEMMA 3.3. There exist absolute constants 0<δ′< 1 and δ > 0 such that for
any p, q∈H, for any t> 0, for at least δ′-fraction of z∈St(q) (with respect to the
visual measure from q), we have

(3.3) dH(p, q)+ t− δ≤ dH(p, z)≤ dH(p, q)+ t.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



margulis functions and their applications / 347

Using the identification of G with T1(H) we can restate Lemma 3.3 as
follows:

COROLLARY 3.4. There exist absolute constants 0<δ′< 1 and δ > 0 such that
for any t> 0, any s> 0, and any g ∈G, for at least δ′-fraction of φ ∈ [0, 2π ],

(3.4) t+ s− δ≤ dH(Katrφasg,Kg)≤ t+ s.

Proof. This is indeed Lemma 3.3 with p=Kg, q=Kasg (so dH(p, q)= s). As φ
varies, the points Katrφasg trace out St(q)=St(Kasg)⊂H.

COROLLARY 3.5. Suppose f :X→[1,∞] is a K-invariant function satisfying
(3.2). Then, there exists σ ′> 1 depending only on σ such that for any t> 0, s> 0,
and any x ∈X,

(3.5) (At+sf )(x)≤ σ ′(AtAsf )(x).

Outline of proof. Fix x ∈X . For g ∈SL(2,R), let fx(g)= f (gx), and let

f̃x(g)= 1
2π

∫ 2π

0
f (grθx) dθ .

Then, f̃x :H→[1,∞] is a spherically symmetric function—that is, f̃x(g)
depends only on dH(Kg,Ke), where e is the identity of G.

We have

(3.6) (AtAsf )(x)= 1
2π

∫ 2π

0

1
2π

∫ 2π

0
f (atrφasrθx) dφ dθ = 1

2π

∫ 2π

0
f̃x(atrφas).

By Corollary 3.4, for at least δ′-fraction of φ ∈ [0, 2π ], (3.4) holds (with g= e).
Then, by (3.2), for at least δ′-fraction of φ ∈ [0, 2π ],

f̃x(atrφas)≥ σ−11 f̃x(at+s),

where σ1= σ1(σ , δ)> 1. Plugging in to (3.6), we get

(AtAsf )(x)≥ (δ′σ−11 )f̃x(at+s)= (δ′σ−11 )(At+sf )(x),

as required.
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Proof of Lemma 3.2. By condition (b) of Definition 3.1 we can choose τ large
enough in (b) so that c0 is sufficiently small so that κ ≡ c0σ ′< 1, where σ ′ is
as in Corollary 3.5. Then, for any s∈R and for all x,

(As+τ f )(x)≤ σ ′As(Aτ f )(x) by (3.5)

≤ σ ′As(c0f (x)+ b0) by condition (b)

= κ(Asf )(x)+ σ ′b0 since σ ′c0= κ .

Iterating this we get, for n∈N,

(Anτ f )(x)≤ κnf (x)+ σ ′b0+ κσ ′b0+ · · ·+ κn−1σ ′b0≤ κnf (x)+B,

where B= σ ′b0
1−κ . Since κ < 1, κnf (x)→ 0 as n→∞. Therefore both (i) and (ii)

follow for t∈ τN. The general case of both (i) and (ii) then follows by applying
again condition (a). The derivation of (iii) from (ii) is the same as in the random
walk case.

As in the random walk setting, the existence of a Margulis function implies
certain large deviation results; see section 6.

4 Construction of Margulis functions I: Easy cases

In this section, we construct Margulis functions in the simplest possible set-
tings. A much more elaborate (and useful) construction is done in the next
section.

We begin with the following elementary calculation:

LEMMA 4.1. Fix 0≤ δ < 1. Then there exists a constant c(δ) such that for any
τ > 0 and any v∈R

2−{(0, 0)},

(4.1)
1
2π

∫ 2π

0

dθ
‖aτ rθ v‖1+δ ≤

c(δ)e−τ(1−δ)

‖v‖1+δ

Proof. By rescaling and rotating, we may assume that v= (0, 1). Then, the
left-hand side of (4.1) becomes

1
2π

∫ 2π

0
(e2τ sin2 θ + e−2τ cos2 θ)−(1+δ)/2 dθ .
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We decompose [0, 2π ]=R1 ∪R2, where R1={θ : e2τ sin2 θ ≤ e−2τ cos2 θ}
and R2 is the set where the opposite inequality holds. Note that there exist
absolute constants 0< c1< c2 such that

(4.2) c1e−2τ ≤ |R1| ≤ c2e−2τ .

On R1, the integrand is bounded by a constant multiple of eτ(1+δ). Hence, in
view of (4.2), the integral over R1 isO(e−τ(1−δ)), as required. Now the integral
over R2 is bounded by

e−τ(1+δ)
∫
R2

| sin θ |−(1+δ) dθ =O(e−τ(1−δ)),

where in the last estimate we used (4.2).

4.1 INTERPRETATION IN THE HYPERBOLIC UPPER HALF PLANE.
Given g ∈SL(2,R), we may write

g−1=
(
1 x
0 1

) (
y1/2 0
0 y−1/2

) (
cos θ sin θ
− sin θ cos θ

)
.

In view of our conventions at the beginning of section 3, g · i= x+ iy, and
let φ(g)= x+ iy. Then, φ gives an identification between SO(2)\SL(2,R)
and the hyperbolic upper half plane H. Under this identification, the
right-multiplication action of SL(2,R) on SO(2)\SL(2,R) becomes action by
Möbius transformations on H.

Let β :H→R
+ be defined by β(x+ iy)= y1/2. Note that in view of the

definitions of β and φ,

β(φ(g))=
∥∥∥∥∥g

(
1
0

)∥∥∥∥∥
−1

.

Thus, Lemma 4.1 is equivalent to the following, which is well-known:

LEMMA 4.2. Fix 0≤ δ < 1. Then there exists a constant c(δ) such that for any
τ > 0 and any z∈H,

(4.3)
∫
Sτ (z)

β1+δ(w) dmz(w)≤ c(δ)e−τ(1−δ)β(z)1+δ ,
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where Sτ (z) is the sphere in H centered at z and with radius τ , and the measure
mzis the normalized visual measure (from z) on the sphere Sτ (z).

(In other words, most of the measure of Sτ (z) is concentrated closer to the
x axis than z). If, as in section 3, we let

(4.4) (Aτh)(z)=
∫
Sτ (z)

h dmz,

then (4.3) may be rewritten as

(4.5) (Aτ β1+δ)(z)≤ c(δ)e−τ(1−δ)β1+δ(z).

4.2 TAKING THE QUOTIENT BY SL(2,Z). Letα(z)= supγ∈SL(2,Z) β(γ z).

LEMMA 4.3. For any 0≤ δ < 1 and any τ large enough depending on δ, the
function α1+δ is a Margulis function for the averaging operator (4.4) on X =
H/SL(2,Z) with Y =∅.

Proof. The property (a) of Definition 1.1 is immediate from the description
of the fundamental domain of the action of SL(2,Z) on H. To show (1.2), fix
τ > 0 large enough so that c0≡ c(δ)e−(1−δ)τ < 1.

Note that if Im z≥ 1, then α(z)=β(z). Thus, if Im z is large enough so that
S(z, τ)⊂{x+ iy : y≥ 1}, then, in view of (4.5), we have

(Aτ α1+δ)(z)≤ c0α1+δ(z).

If Im z is not large enough, then α(z)≤C(τ ), and then for all w∈S(z, τ),
α(z)1+δ ≤ b(δ, τ), where b(δ, τ) is some constant. Thus, in this case,

(Aτ α1+δ)(z)≤ c0α1+δ(z)+ b(δ, τ).

Thus, for all z∈H,

(Aτ α1+δ)(z)≤ c0α1+δ(z)+ b(δ, τ),

and c0< 1. This verifies condition (b) of Definition 1.1.
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4.3 THE SPACE SL(2,R)/SL(2,Z). The space L2 of unimodular lattices
inR

2 admits a transitive action by SL(2,R), and the stabilizer of the square lat-
tice is SL(2,Z); thus L2 is isomorphic to the quotient space SL(2,R)/SL(2,Z).

Note that the map φ is SL(2,Z)-equivariant. Let d(L) denote the length of
the shortest vector in the lattice L. From the definitions we see the following:

LEMMA 4.4. For any g ∈SL(2,R),
α(φ(g))= d(gZ2)−1.

Then, as a corollary of Lemma 4.3, we get the following:

LEMMA 4.5. For any 0≤ δ < 1, the function d−(1+δ) is a Margulis function (in
the sense of Definition 3.1 with the averaging operator Aτ given by (3.1)) for the
action of SL(2,R) on X =L2, with Y =∅.

We now come full circle by indicating a direct proof of Lemma 4.5 (i.e.,
without thinking of the hyperbolic plane). Note that a unimodular lattice in
R
2 can have at most one (linearly independent) vector of length< 1 (otherwise

the covolume is too small). If the shortest vector v of a lattice L is sufficiently
short (depending on τ ), then for all θ ∈ [0, 2π), d(aτ rθL)=‖aτ rθ v‖. Then, by
Lemma 4.1,

(Aτd−(1+δ))(L)≤ c(δ)e−(1−δ)τ d−(1+δ)(L).

If not, then d(L)−(1+δ)≤C(δ, τ), and then

(Aτd−(1+δ))(L)≤ b(δ, τ)d−(1+δ)(L).

Then, in all cases, provided τ is large enough so that c0≡ c(δ)e−(1−δ)τ < 1, we
have

(Aτd−(1+δ))(L)≤ c0d−(1+δ)(L)+ b0,

where c0< 1. Thus, (b) of Definition 3.1 holds. The condition (c) holds by
Mahler compactness, and (a) follows immediately from the definitions.

4.4 BALL AVERAGES. For h :H→R, let (Bτh)(z) denote the average of h
over the ball B(z, τ) of radius τ centered at z with respect to the hyperbolic
volume. Thus, Bτ is similar to Aτ but is doing ball averages instead of sphere
averages. In view of hyperbolic geometry (and in particular the fact that most
of the hyperbolic volume of a ball is concentrated near its outer radius) and
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the results for the sphere averages Aτ , we see that for all 0≤ δ < 1, assuming
τ is sufficiently large depending on δ, we have for all z∈H,

(Bτ α1+δ)(z)≤ c0α1+δ(z)+ b0,

where c0< 1 and b0= b0(δ, τ).

4.5 PRODUCTS OF UPPER HALF PLANES. Suppose X =H×H is a
product of two copies of the hyperbolic plane. We consider X with the supre-
mum metric (i.e., distance on X is the supremum of the distances in the two
factors). Then, the ball of radius τ in X is the product of the balls of radius τ
in the two factors. Hence, if BXτ is the averaging operator over the ball in X of
radius τ , then BXτ =B1

τB
2
τ , where B

1
τ is the averaging operator over the ball of

radius τ in the first factor, and B2
τ is the analogous thing in the second factor.

For z= (z1, z2)∈X , let α1(z)=α(z1), α2(z)=α(z2).

LEMMA 4.6. Suppose 0≤ δ < 1. Let

u(z)= ε(α1(z)α2(z))1+δ +α1(z)1+δ +α2(z)1+δ .

Then (provided τ is large enough depending on δ) and ε is chosen sufficiently small
depending on δ and τ , u is a Margulis function for the averages BXτ on X, with
Y =∅.

Proof. We have

BXτ (εα
1+δ
1 α1+δ2 )= ε(B1

τ α
1+δ
1 )(B2

τ α
1+δ
2 )≤ ε(c0α1+δ1 + b0)(c0α1+δ2 + b0)(4.6)

≤ εc20α1+δ1 α1+δ2 + εb0α1+δ1 + εb0α1+δ2 + εb20.
Also, for i= 1, 2,

BXτ (α
1+δ
i )≤ c0α1+δi + b0.

Thus,

BXτ u≤ εc20α1+δ1 α1+δ2 + (εb0+ c0)α1+δ1 + (εb0+ c0)α1+δ2 + εb20+ 2b0.

We now choose ε sufficiently small so that c1≡ εb0+ c0< 1. We get

BXτ u≤ c1u+ b1,

where c1< 1 and b1= εb20+ 2b0. This completes the proof.
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Similar constructions work for the product of any number of copies of H,
but the coefficients ε become more complicated. The Minsky product region
theorem [Mi96] states that the geometry at infinity of Teichmüller space is sim-
ilar to that of products of hyperbolic planes (with the supremum metric). In
view of this, an analogue of the function u of Lemma 4.6 was used in [EMi11]
to show that most closed geodesics return to a given compact set. A more
refined version (which can deal with random geodesics on strata of quadratic
or abelian differentials) was proved in [EMR12].

5 Construction of Margulis functions: SL(n,R)/SL(n,Z)

Let� be a lattice in R
n. We say that a subspace L of R

n is�-rational if L∩� is
a lattice in L. For any �-rational subspace L, we denote by d�(L) or simply by
d(L) the volume of L/(L∩�). Let us note that d(L) is equal to the norm of u1 ∧
· · · ∧ u� in the exterior power

∧�
(Rn) where �= dim L, (u1, · · · , u�) is a basis

over Z of L∩�, and the norm on
∧
(Rn) is induced from the Euclidean norm

onR
n. If L={0}wewrite d(L)= 1. A lattice is� unimodular if d�(Rn)= 1. The

space of unimodular lattices is canonically identified with SL(n,R)/SL(n,Z).
Let us introduce the following notation:

αi(�)= sup
{ 1
d(L)

∣∣∣ L is a �-rational subspace of dimension i
}
, 0≤ i≤ n,

α(�)= max
0≤i≤n

αi(�).(5.1)

The classical Mahler compactness theorem states that for anyM> 0, the set
{�∈SL(n,R)/SL(n,Z) : α(�)≤M} is compact.

Let G=SL(n,R), �=SL(n,Z), K̂ ∼=SO(n) is a maximal compact sub-
group of G,H∼=SO(p, q)⊂G and K =H∩ K̂ is a maximal compact subgroup
ofH.

For any K-invariant function f on G/�, let (At f )(x)=
∫
K f (atkx) dm(k),

wherem is the normalized Haar measure on K. Suppose x ∈G/� and the sta-
bilizer of x in H is trivial. Then K\Hx is isomorphic to the symmetric space
K\H, with x corresponding to the origin. If rankK\H= 1, then (At f )(x) can
be interpreted as the average of f over the sphere of radius 2t centered at the
origin in the symmetric space K\Hx.

If p≥ 3 and 0< s< 2, or if (p, q)= (2, 1) or (2, 2) and 0< s< 1, it is shown in
[EMM98, Lemma 5.6] that for any c> 0 there exist t> 0, and ω> 1 so that the
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functions αsi satisfy the following system of integral inequalities in the space
of lattices:

(5.2) Atα
s
i ≤ ciαsi +ω2 max

0<j≤min(n−i,i)

√
αsi+jα

s
i−j,

whereAt is the averaging operator (At f )(�)=
∫
K f (atk�) and ci≤ c. If (p, q)=

(2, 1) or (2, 2) and s= 1, then (5.2) also holds (for suitably modified functions
αi), but some of the constants ci cannot be made smaller than 1. (The proof of
[EMM98, Lemma 5.6] is a much more complicated version of the direct proof
of Lemma 4.5 in section 4.)

In [EMM98, section 5.4] it is shown that if the αi satisfy (5.2), then for any
ε > 0, the function f = fε,s=∑

0≤i≤n εi(n−i)αsi satisfies the scalar inequality

(5.3) At f ≤ cf + b,

where t, c, and b are constants. (This proof is a more complicated version of
the proof of Lemma 4.6 in section 4.) If c< 1, which occurs in the case p≥ 3,
it follows that f is a Margulis function (for the case Y =∅).

If c= 1, which will occur in the SO(2, 1) and SO(2, 2) cases, then (5.3)
implies that (Arf )(1) is growing at most linearly with the radius.

Throughout [EMM98] one considers the functions α(g)s for 0< s< 2, even
though for the application to quadratic forms one only needs s= 1+ δ for
some δ > 0. This yields a better integrability result and is also necessary for
the proof of the convergence results [EMM98, Theorem 3.4] and [EMM98,
Theorem 3.5].

Even though the function f is not strictly speaking a Margulis function for
the case s= 1, p= 2, q= 2, it plays a key role in the analysis of the (2, 2) case
of the quantitative Oppenheim conjecture in [EMM05].

6 Large deviation estimates

For simplicity we state the results for the SL(2,R)-action setting. For the
random walk setting, see [Ath06, Theorem 1.2].

Let C�={x ∈X : f (x)< �}. Letm denote the uniformmeasure on SO(2)⊂
SL(2,R). We refer to the trajectories of the group {at : t∈R} as “geodesics.”
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THEOREM 6.1 ([Ath06, Theorem 1.1]).

1. For all l sufficiently large and all x /∈Cl, there are positive constants c1=
c1(l, x), c2(l), with

m{θ : atrθx /∈Cl, 0≤ t≤T}≤ c1e−c2T

for all T sufficiently large. That is, the probability that a random geodesic
trajectory has not visited Cl by time T decays exponentially in T.

2. For all l,S,T sufficiently large and all x ∈X, there are positive constants c3=
c3(S, l, x), c4= c4(l), with

m{θ : atrθx /∈Cl,S≤ t≤S+T}≤ c3e−c4T .

That is, the probability that a random geodesic trajectory does not enter Cl in
the interval [S,S+T] decays exponentially in T.

3. Let x ∈X. For any 0<λ< 1, there is l≥ 0, and 0<γ < 1, such that for all
T sufficiently large (depending on all the above constants),

m{θ : 1
T
|{0≤ t≤T : atrθx /∈Cl}|>λ}≤ γ T .

Result (3) above may be thought of as a large deviations result for the
geodesics. SupposeμQ is an SL(2,R)-invariantmeasure onX (which we think
of as the volume). While ergodicity guarantees that 1

T |{0≤ t≤T : atx ∈Cl}|→
μQ (Cl) for μQ -almost every x ∈X , Theorem 6.1 gives explicit information
for any x ∈X about the likelihood of bad trajectories starting in the set
SO(2)x. Notice, however, this is not a traditional large deviations result,
which estimates the probability of a deviation of any ε > 0 from the ergodic
average.

7 Other constructions and applications

7.1 HOMOGENEOUS DYNAMICS. Let G be a semisimple Lie group,
and let � be a lattice in G. Suppose μ is a probability measure on G; then
μ defines a random walk on G/�.

In [EMa05], provided that the group generated by the support ofμ is Zariski
dense in G, a Margulis function for this random walk (and Y =∅) was con-
structed; in the case G=SL(n,R) and �=SL(n,Z), the function is in fact the
same as the function in section 5.
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In [BQ12], a Margulis function for this random walk (again with Y =∅) was
constructed under the weaker assumption that the Zariski closure of the group
generated by the support ofμ is semisimple. For a treatment of the case where
Y is a closed orbit of some semisimple subgroup, see [BQ13].

In [GM10] a different Margulis function was used in conjunction with
Fourier analysis to give polynomial error terms for the quantitative Oppen-
heim conjecture in at least five variables. This also gives an alternative proof
of the definite case of the Oppenheim conjecture in five or more variables first
proved in [G04].

A Margulis function (for Y =∅) was constructed for the space of inhomo-
geneous lattices in [MM11] in order to prove the analogue of the quantitative
Oppenheim conjecture for inhomogeneous quadratic forms.

In [HLM17], the construction of the Margulis function on the space of lat-
tices was extended to the S-arithmetic case and used to prove the S-arithmetic
version of the quantitative Oppenheim conjecture.

In [EK12] and [KKLM17], a modification of the Margulis function from
[EMM98] was used to control the entropy contribution from the thin part of
the space of lattices. In [Kh18], a Margulis function was used to study the
Hausdorff dimension of the set of diverging trajectories of a diagonalizable
element on the space of lattices.

7.2 TEICHMÜLLER DYNAMICS. The idea of Margulis functions has
played a key role in Teichmüller dynamics. In [EMas01], a Margulis function
for the action ofSL(2,R) forY =∅ on strata ofAbelian or quadratic differentials
has been constructed. The construction has some parallels to that of section 5.
This function was used in [Ath06] to prove some exponential large deviation
estimates for Teichmüller geodesic rays starting at a given point in the space.
Athreya’s results were later used in [AthF08] to control deviation of ergodic
averages in almost all directions for a billiard flow in a rational polygon. The
Margulis function of [EMas01] was later used in [AG13] in their proof of expo-
nential decay of correlations for the Teichmüller geodesic flow. Building on the
work of [EMas01] and [Ath06], aMargulis function for the same action but arbi-
trarySL(2,R)-invariant submanifoldsY wasconstructed in [EMM15]. Together
with the measure classification theorem of [EMi18], this function played
a key role in the proof that SL(2,R)-orbit closures are invariant submani-
folds. This function is also used in many related results, such as [CE15].

A modified (and independently developed) version of the Margulis func-
tion technique was used in [AF07] to prove that the generic interval exchange
transformation is weak mixing.
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7.3 OTHER APPLICATIONS. Suppose μ is a probability measure on
SL(n,R). We may then consider random products of independent matrices,
each with the distributionμ. We can then ask if the Lyapunov exponents λi(μ)
of these random products depend continuously on μ. In [V14, Chapter 10] a
new version of theMargulis function technique, due to Avila and Viana, which
involves a modification of the natural averaging operator so that a Margulis
function can be constructed, was used to show that in dimension 2, a natural
continuity statement holds; namely, if μj→μ in the weak-star topology and
also the support ofμj tends to the support ofμ in theHausdorff topology, then
for i= 1, 2, λi(μj)→ λi(μ). (The assumption about the support is necessary;
see [V14, Chapter 10] for a counterexample). A more complicated proof was
given previously in [BV10] without use of Margulis functions.

The result of [V14, Chapter 10] was extended in [MV14] to the case ofMarkov
processes. (For the case n≥ 2, see the next paragraph).

7.4 ADDITIVE MARGULIS FUNCTIONS. Suppose we have a decompo-
sition of X =C∪D, where C∩D=∅. Let A be an averaging operator. An
additive Margulis function (relative to this decomposition) is a function φ :
X→R

+ with the following properties:

(a) There exists a constant κC > 0 such that for x ∈C,

(7.1) (Aφ)(x)<φ(x)− κC.

(b) There exists a constant κD> 0 such that for x ∈D,

(7.2) (Aφ)(x)<φ(x)+ κD.

Suppose f is a Margulis function, and choose �> b/c. Let

C={x ∈X : f (x)>�} D={x ∈X : f (x)≤�}.

Then, it follows from Jensen’s inequality that log f is an additive Margulis
function relative to the decomposition X =C∪D.

However, it is not true that if φ is an additive Margulis function, then eφ is
a multiplicative one. In fact, the inequality (1.1) is very sensitive to the “worst
case behavior” of eφ on the support of the measure μx defining A; on the
other hand, the inequalities (7.1) and (7.2) depend more on the “average case”
behavior of φ. Because of this effect, it is often much easier to construct an
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additive Margulis function than a multiplicative one. (In fact we do not know
how to construct a useful multiplicative Margulis function in the setting of
[V14, Chapter 10] beyond the case n= 2).

Additive Margulis functions are useful because of the following:

LEMMA 7.1. Suppose φ is an additive Margulis function for A relative to the
decomposition X =C∪D, and suppose η is a measure on X with

∫
X φ dη<∞.

Suppose also
∫
X (Aφ)(x) dη(x)≥

∫
X φ(x) dη(x) (for example, this holds if η is

A invariant). Then,

(7.3) η(D)≥ κC

κC + κD η(X).

Proof. We have

∫
X
φ(x) dη(x)≤

∫
X
(Aφ)(x) dη(x)<

∫
X
φ(x) dη(x)− κCη(C)+ κDη(D).

Thus, −κCη(C)+ κDη(D)> 0, which implies (7.3).

This circle of ideas was used in [AEV] in order to extend the results on con-
tinuity of Lyapunov exponents in [V14, Chapter 10] to arbitrary dimensions,
and was also used in [BBB15] in a nonlinear setting.

8 Comparison to other techniques

In the homogeneous dynamics setting, there is another technique for prov-
ing results similar in flavor to what can be obtained using Margulis functions.
For the case Y =∅, this originates with the paper [Mar71] and was further
developed in [Dan84] and [Dan86]. These ideas were used in many of the
foundational papers in homogeneous dynamics such as [DM89], [DM90], and
[Ra91]. For other Y , the key result is the linearization technique of [DM93]
(in which in particular the asymptotically exact lower bounds for the quanti-
tative Oppenheim conjecture were proved). An abstract framework for these
methods in terms of “(C,α)-good” functions defined in [EMS97] is developed
in [KMar98]. These techniques (and in particular the framework in [KMar98])
have numerous applications to Diophantine approximations and other areas,
which are beyond the scope of this survey.

The “(C,α)-good” techniques rely essentially on the variants of the poly-
nomial nature of the unipotent flow and have limited applicability outside
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of homogeneous dynamics. (Exceptions are [MW02] and [MW14], where
the authors manage to obtain results on nondivergence in the Teichmüller
dynamics setting using essentially polynomial techniques). In the homo-
geneous setting, one usually obtains sharper estimates if one manages to
construct a Margulis function; for example, the quantitative Oppenheim con-
jecture cannot be proved by (C,α)-good techniques since the estimates one
obtains that way are too weak. (This is in fact the original motivation for Mar-
gulis functions). However, a construction of a Margulis function is not always
possible, for example, for the action of a single unipotent. This is related to the
fact that (1.1) has to hold for all x ∈X . This can be easier to do if one considers
additive Margulis functions instead, but then the results are even weaker than
what is obtained by (C,α)-good methods. In general, (nonadditive) Margulis
functions are an extremely powerful tool, but inmany cases their construction
is a difficult engineering challenge.
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RECENT PROGRESS ON RIGIDITY PROPERTIES OF
HIGHER RANK DIAGONALIZABLE ACTIONS AND
APPLICATIONS

Dedicated to G. A. Margulis

Abstract. The rigidity properties of higher rank diagonalizable actions is a
major theme in homogeneous dynamics, with origins in work of Cassels and
Swinnerton-Dyer in the 1950s and Furstenberg. We survey both results and con-
jectures regarding such actions, with emphasis on the applications of these
results toward understanding the distribution of integer points on varieties,
quantum unique ergodicity, and Diophantine approximations.

1 Introduction

The extensive theory of actions of unipotent groups on homogeneous spaces,
to which G. A. Margulis made many pioneering contributions, gives very sat-
isfactory qualitative (if not yet quantitative) understanding of these actions,
with numerous and profound applications. The current state of the art regard-
ing actions of diagonalizable groups is much less satisfactory, and indeed for
most natural questions we only have partial results regarding the dynamics.
Fortunately, these partial results already have fairly wide applicability. It is the
purpose of the survey to present some of the rigidity results regarding such
actions as well as their applications.
The motivation to study rigidity properties of higher rank diagonal actions

comes from two different directions. One of these is from the geometry of
numbers: the program, initiated by Minkowski, of using lattices in Euclidean
spaces and their generalizations for understanding number theoretic ques-
tions. We shall make in the survey a distinction between arithmetic ques-
tions—that is to say, properties of integer points (or more generally rational
or algebraic points), such as counting and distribution properties of integer
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points on varieties—and questions in Diophantine approximations, such as
how well a point to a given variety can be approximated by integer or ratio-
nal points. Both kinds of applications were already prominently present in
the geometry of numbers since its inception by Minkowski.
A classical problem in the geometry of numbers is the study of the set of val-

ues attained at integer points by a homogeneous form F of degree d obtained
by taking the products of d-linear forms in d-variables that is, one considers
forms

F(x1, . . . , xd)=
d∏
i=1

li(x1, . . . , xd),

where l1, . . . , ld are d linearly independent linear forms,1 and investigate the
values attained by F for x= (x1, . . . , xd)∈Z

d. For instance, one may study the
quantity

νF = inf
x∈Zd�{0}

|F(x)| .

If we present the coefficients of the linear forms li in a d× d-matrix g (one
row for each linear form), then the map F(g) assigning a product of d linear
forms F to a d× d-matrix g is left invariant under the action of the (d− 1)–
dimensional diagonal subgroup A<SL(d,R), whereas the map F �→ νF is
invariant under composition of F by an element of GL(d,Z) (in the geom-
etry of numbers literature, two forms that are the same up to the action of
GL(d,Z) are said to be equivalent2). Thus we may view g �→ νF(g) as either
a (left) A-invariant function on GL(n,R)/GL(n,Z) or a (right) GL(n,Z)-
invariant function on A\GL(n,R). It is convenient to use the normalized
quantity ν̄F(g)= νF(g)/

∣∣det g∣∣, which is a well-defined function on PGL(d,R),
left invariant under A and right invariant under PGL(d,Z).
Already the case d= 2 is of some interest and was quite extensively stud-

ied [C2, section 2]. In this case the possible forms F considered are simply
the set of nondegenerate indefinite quadratic forms in two variables. For any
product of two linear forms in two variables F, the value of ν̄F is ≤

√
5, with

equality if and only if F is equivalent (up to a multiplicative scalar and the
action of GL(2,Z)) to F(x, y)= x2− xy− y2. Up to the same degrees of free-
dom, Markoff constructed a complete list of (countably many) binary form

1When considering a product of d linear forms in d variables, the forms will be implicitly assumed
to be linearly independent even if this is not explicitly stated.
2Sometimes one makes a distinction between forms that are the same up to composition by an
element of SL(d,Z), which are said to be properly equivalent, and forms that are the same under
the action of the slightly bigger group GL(d,Z), which are said to be only improperly equivalent.
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with ν̄F > 1
3 but there are uncountablymany such indefinite binary forms with

ν̄F = 13 and a set of full Hausdorff dimension of forms with ν̄F > 0. Cassels
and Swinnerton-Dyer investigated the possible values of ν̄F for forms that are
a product of three linear forms in three variables [CSD]. They discovered that
integral forms of this type satisfy a very strong isolation result, much stronger
than the analogous isolation result of Remak and Rogers for a product of two
linear forms in two variables. We emphasize that an integral form that is a
product of d linear forms in d variables need not be presentable as a product
of d integral linear forms in d variables. This led them to make the follow-
ing remarkable conjecture (to be precise, Cassels and Swinnerton-Dyer state
this conjecture in their paper for d= 3, but it is clear that they realized a sim-
ilar phenomenon should hold for higher d; cf. also the much later remark in
Swinnerton-Dyer’s book [SD, p. 20]):

CONJECTURE 1a (Cassels and Swinnerton-Dyer [CSD]). Let d≥ 3. Any
form F that is a product of d linear forms in d variables that is not proportional to
a form with integral coefficients has ν̄F = 0.

This farsighted paper [CSD], and in particular the above conjecture, was
highlighted by Margulis in [M5]. Stated in terms of the homogeneous space
PGL(d,R)/PGL(d,Z), this conjecture is equivalent to the following:

CONJECTURE 1b ([CSD, M5]). Let d≥ 3. Any orbit of the diagonal group A
in PGL(d,R)/PGL(d,Z) is either unbounded or periodic.

Here and throughout we say that an orbit L.x of a locally compact group L
on a space X is periodic if the stabilizer of x is a lattice in L—that is, dis-
crete and of finite covolume. Cassels and Swinnerton-Dyer show in [CSD] that
Conjecture 1a implies a conjecture of Littlewood’s from circa 1930:

CONJECTURE 2 (Littlewood). For any α,β ∈R, it holds that

inf
n>0

n ‖nα‖ ‖nβ‖= 0.

Here we use for x ∈R the somewhat unfortunate but customary notation
‖x‖=minn∈Z |x− n|.
A second historical motivation comes from ergodic theory—namely, the

work of Furstenberg on “transversality” of the ×a and ×b maps on T=R/Z

for a and b multiplicatively independent. Recall that two integers a and b are
said to bemultiplicatively independent if they are not both powers of this same
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integer—that is, if log a/ log b 	∈Q. In his landmark paper [F2], Furstenberg
proved the following theorem:

THEOREM 1.1 (Furstenberg [F2]).
Let X be a closed subset of T invariant under the action of the multiplicative semi-
group Sa,b, generated by two multiplicatively independent integers a and b—that is
to say, s.x ∈X for any s∈S and x ∈X. Then X is either finite or X =T.

In this paper Furstenberg introduced the notion of joinings and the related
notion of disjointness of dynamical systems (which will be important for
us later on in this survey) and deduced Theorem 1.1 from a particular
disjointness principle, one of several enunciated in the paper.
He also presented the following highly influential conjecture that is

still open, a natural analogue to Theorem 1.1 in the measure preserving
category:

CONJECTURE 3 (Furstenberg, ca. 1967). Let Sa,b⊂N be a semigroup gen-
erated by two multiplicatively independent integers as above, and let μ be an
Sa,b-invariant and ergodic probability measure on T. Then either μ is finitely
supported or μ is the Lebesgue measure mT on T.

In this survey we will use Greek letters to denote unknown probability mea-
sures andm (often decorated with subscripts) to denote a canonical probability
measure such as Lebesgue measure or Haar measure. We stress that μ
being Sa,b-ergodic does not imply it is ergodic under the action generated by
multiplication by a or by b—only that any measurable subset X ⊂T that is
Sa,b-invariant has either μ(X)= 0 or μ(T �X)= 0.
Dealing with semigroup actions is somewhat awkward; this is easily

remedied, though: it is easy to see that Conjecture 3 is equivalent to clas-
sifying the

{
akbl : k, l∈Z

}
-invariant and ergodic probability measures on∏

p|ab primeQp/� with �=Z[1/ab] diagonally embedded in∏p|ab Qp.
An important insight of Rudolph [R6], building on prior work of Lyons [L5],

is that entropy plays an important role in understanding this measure clas-
sification question. Specifically, Rudolph proved for a, b relatively prime that
Lebesgue measure is the only Sa,b-invariant and ergodic probability measure
on T so that its entropy with respect to at least one element of Sa,b is posi-
tive. This was extended to the more general multiplicative independent case
by Johnson [J]. We now have quite a few other proofs of Rudolph’s theorem
(e.g., [F1], [H2], [H1] to name a few) that seem to me quite different, though
all rely very heavily on the positive entropy assumption.
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The key feature of the rigidity of higher rank abelian groups such as the
action of Sa,b on T is that the rigidity does not come from the action of an
individual element. For any s∈Sa,b there are uncountably many s-invariant
and ergodic probability measures on T with any entropy in [0, log s] as well as
uncountablymany s-invariant closed subsets ofT of anyHausdorff dimension
in the range [0, 1], though we domention one important restriction: Lebesgue
measure mT is the unique s-invariant measure on T with entropy log s, and T

is only an s-invariant closed subset of T of Hausdorff dimension 1.
Furstenberg presented the ×a, ×b problem as a special instance of a more

general problem, and indeed the type of phenomena pointed out by Fursten-
berg exists also in the action of A on PGL(d,R)/PGL(d,Z) and in many other
high dimensional diagonal actions.
The key feature of rigidity of higher rank diagonalizable actions—rigidity of

the action as a whole while no rigidity for the action of individual elements—is
in contrast to the rigidity properties of unipotent groups and more generally
actions of groups generated by unipotents.

DEFINITION 1.2. Let G be a locally compact group and �<G a closed sub-
group. A measure μ on G/� is said to be homogeneous if it is supported on a
single orbit of its stabilizer stabG μ=

{
g ∈G : g.μ=μ}.

A landmark result of Ratner [R3, R2] gives that for groups generated by
one-parameter unipotent subgroups, any invariant probability measure on a
quotient spaceG/� has to be homogeneous. Here the rigidity is already exhib-
ited in the action of individual one-parameter subgroups of the action (another
proof of this measure classification result using entropy theory was given by
Margulis and Tomanov in [MT1]). Ratner used her measure classification the-
orem to classify orbit closures under such actions [R4], which enabled her
to prove Raghunathan’s Conjecture (this conjecture, together with a related
conjecture of Dani, appeared in [D1]). Several important nonhorospherical3

cases of this conjecture were proved prior to [R4, R3] by Dani and Margulis
[M3, DM1, DM2], including in particular Margulis’s proof of the longstanding

3The horospherical case ismore elementary and can be proved, e.g., usingmixing of an appropriate
one-parameter diagonalizable flow; this is not unrelated to the phenomenon of the uniqueness
of measure of maximal entropy for a one-parameter diagonalizable flow we already encountered
in the context of the ×s map on T. We note also that the horospherical case inspired Dani and
Raghunathan tomake their general conjectures on unipotent orbits—indeed, this is precisely what
Dani’s paper [D1] is about!
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Oppenheim conjecture via the study of orbits of the group SO(2, 1)<SL(3,R)
on SL(3,R)/SL(3,Z).
There is another, less important wrinkle that requires some care in formu-

lating general conjectures regarding rigidity of higher rank abelian groups,
as the following simple example illustrates: Suppose one would like to clas-
sify invariant measures for the action of the complex diagonal matrices on
XC=SL(3,C)/SL(3,O) with O the ring of integers in an imaginary quadratic
field; for instance, the Gaussian integers Z[i]. Then XR=SL(3,R)/SL(3,Z),
considered as a homogeneous subspace of XC, is invariant under the real
diagonal group. Let mXR

denote the uniform measure on XR, and set

μ=
2π 

0

2π 

0

⎛
⎜⎝
eiθ1

eiθ2

e−i(θ1+θ2)

⎞
⎟⎠ .mXR

d θ1d θ2

(here we use the symbol
ffl
to denote integration normalized by the measure

of the set we integrate on that is, so that
ffl
dx= 1). The measure μ is invariant

and ergodic under the action of the (complex) diagonal group in SL(3,C), but
it is not homogeneous.

DEFINITION 1.3. Let G be a locally compact group and �<G a closed sub-
group. A measure μ on G/� is said to be almost homogeneous if there is a
homogeneousmeasurem0 onG/� with stabilizerH0= stabG m0 and a closed
subgroup L<G so that L/(L∩H0) has finite L-invariant volume and

μ=
 
L/(L∩H0)

	.m0 d	.

If the quotient L/(L∩H0) is finite we say that μ is virtually homogeneous.

DEFINITION 1.4. Let k be a local field (e.g., R), and letG be an algebraic group
defined over k. An element g ∈G(k) said to be of class-A if it is diagonalizable
over k, generates an unbounded subgroup of G(k), and moreover for any action of
G(k) on a projective space PV(k) and v∈PV(k) any limit point of

{
gn.v : n∈Z

}
is g-invariant. An element g ∈∏i Gi(ki) is of class-A if all of its components are of
class-A.

For example, a R-diagonalizable element of G(R) with positive eigenval-
ues is of class-A. Another example that works in any local field k is taking an
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element g ∈G(k), where all of its eigenvalues are integer powers of some fixed
θ ∈ k with |θ |> 1. This latter example has been called class-A by Margulis and
Tomanov in [MT2], but it is precisely the invariance property of any limit point
of elements for projective actions of the underlying group that was used there,
and it seems convenient to enlarge this class using this property.

DEFINITION 1.5. We say that a topological group A is of higher rank if there
is a homomorphism Z

2→A that is a proper map with respect to the discrete
topology on Z

2.

General conjectures regarding rigidity for invariant measures under higher
rank abelian groups were made by Furstenberg (unpublished), Katok and
Spatzier [KS2], and Margulis [M7]. The following is a variant of their conjec-
tures:

CONJECTURE 4. Let G be a linear algebraic group defined over Q, and let S be
a finite set of places for Q containing∞. Let OS=Z[1/p : p∈S�∞] denote the
ring of S-integers in Q, G=∏

v∈S G(Qv), and �=G(OS)
4 diagonally embedded

in G. Let A<G be a closed subgroup consisting of elements of class-A of higher rank
and let μ be an A-invariant and ergodic probability measure on G/�. Then either
μ is virtually homogeneous or there is a Q-subgroup L≤G and a proper normal
Q-subgroup H � L so that, if H=∏

v∈S H(Qd) and L=
∏

v∈S L(Qd), then

(1) A∩ L has finite index in A,
(2) there is some g ∈G so thatμ(g.[L]�)> 0 (with [•]� denoting the image under

the projection G→G/�),5 and
(3) the image of A∩ L in L/H is not of higher rank.

Unlike the case of unipotent flows, where the classification of invariant
measures and orbit closures go hand in hand and are very closely analogous,
for diagonal flows the problem of classifying invariant measures seems, in
general, better behaved than understanding orbit closures. This is somewhat
surprising, as in the ×a,×b system considered by Furstenberg, with a and b
multiplicatively independent integers, a complete orbit closure classification
was obtained by Furstenberg already in 1967, whereas the measure classifi-
cation question (without a positive entropy assumption) is Conjecture 3—a

4To be more precise: we fix a realization of G as a Q-subgroup of SL(d) for some d and set �=
G(Q)∩SL(d,OS).
5We will also use the notation [g] for [g]� when � is understood.
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notoriously hard open problem. However, already in the slight generaliza-
tion of considering ×a,×b for a and bmultiplicatively independent (rational)
integers on C/Z[i], not much is known (see section 3.2 for more details).
While this is not immediately clear from the formulation, Conjecture 3 is

essentially a special case of Conjecture 4. For simplicity, assume that a and b
are distinct primes (the modification for general multiplicatively independent

a and b is left to the imagination of the reader). Let G=
{(
∗ ∗
0 1

)}
—that

is, the semidirect product of the multiplicative group Gm with the additive
group Ga—and take S={∞, a, b}. Let G=∏

v∈S G(Qv), �=G(Z[1/ab]), and
A<

∏
v∈SGm(Qv)<G be the group

{
akbl : k, l∈Z

}
diagonally embedded in∏

v∈SGm(Qv). For any y∈R
× we have that

Yy :=
{[(

y x∞
0 1

)
,

(
ya xa
0 1

)
,

(
yb xb
0 1

)]

�

∣∣∣∣∣
yv ∈Z

×
v for v= a, b

xv ∈Qv for v= a, b,∞

}

is a compact A-invariant subset of G/�; hence any A-invariant and ergodic
probability measures μ on G/� are supported on a single Yy. Without loss of
generality we can assume it is supported on Y1. Let π be the projection of Y1
to Xa,b=R×Qa×Qb/Z[1/ab] given by

[(
1 x∞
0 1

)
,

(
ya xa
0 1

)
,

(
yb xb
0 1

)]

�

�→ [
x∞, xa, xb

]
Z[1/ab].

For any A-invariant and ergodic probability measure μ supported on Y1,
the measure π∗μ is a ×a,×b-invariant and ergodic probability measure on
Xa,b. Conversely, since the fibers of the map π :Y1→Xa,b are compact, any
×a,×b-invariant and ergodic probability measures on Xa,b can be lifted to an
A-invariant and ergodic measure on Y1.
In this survey we focus on S-arithmetic quotients: quotients of a finite index

subgroup G of the QS points G(QS) of a Q-group G by a subgroup � com-
mensurable toG(OS). By restriction of scalars, this implicitly also includes the
case of algebraic groups defined over any number field, but because of issues
related to those pointed out above for SL(3,C)/SL(Z[i]), it is more convenient
to work with the smaller field Q.

DEFINITION 1.6. An S-arithmetic quotient G/� is saturated by unipotents
if it has finite volume and the group generated by one-parameter unipotent
subgroups of G acts ergodically on G/� (with respect to the Haar measure
on G/�).
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When working with real algebraic groups G(R), where G(C) is generated by
unipotents (equivalently, the radical ofG is equal to the unipotent radical ofG),
a quotient G/� satisfies the saturated by unipotents property if and only if it
is connected in the Hausdorff topology (cf. [M4, chapter 2]).
A very interesting and active direction we do not cover in this survey is

actions on quotients of algebraic groups defined over global fields of positive
characteristic. The key feature here is that there is no analogue to Q: there
is no minimal global field. This type of issue makes analyzing even the ana-
logue of the ×a,×b-system in positive characteristic quite intricate (cf. [KS4,
construction 5.2] and [E]). For quotients of semisimple groups the situation
is better, and a measure classification theorem for positive entropy measures
analogous to what Einsiedler, Katok, and this author [EKL] proved for Q has
been proved by Einsiedler, Mohammadi, and this author in [ELM]. However,
even in this case, it is far from clear to which extent one should expect an ana-
logue to Conjecture 4; in this context wemention the paper [ANL] by Adiceam,
Nesharim, and Lunnon, where a very interesting example is constructed.
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also like to thank him for comments on earlier versions of this survey. I also
thank Ilya Khayutin for helpful comments and corrections. Finally, I would
like to thank the editors of this volume for inviting me to contribute to it and
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2 Measure rigidity of higher rank diagonal actions

While Conjectures 3 and 4 are still wide open, significant progress was
obtained regarding classifying invariant measures under a positive entropy
condition. In subsections 2.4–2.6 we survey some applications of these results.
Typically we are given a sequence of A-invariant probability measures μi on
G/� and would like to understand what are the weak-∗ limit points of the
sequence μi. Suppose μ is such a limit. A priori it seems very difficult to con-
trol any kind of ergodicity or mixing condition for the limiting measure. On
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the other hand, entropy is fairly well behaved with respect to weak-∗ limits.
For example, for an A-invariant measure ν, let h(ν, a) denote the ergodic the-
oretic (also known as Komogorov-Sinai or metric) entropy of ν with respect to
the action [g]� �→ a.[g]� . Then if G/� is compact, if μi→μ weak-∗, then for
any a∈A,

h(μ, a)≥ limi h(μi, a)

(cf., e.g., [EKL, section 9]). This actually also holds if G/� is not compact
assuming μ is a probability measure.
Rudolph’s theorem [R6], discussed above, regarding Sa,b=

{
akbl : k, l∈N

}
-

invariant and ergodic measure μ on T has been a prototype for many subse-
quent theorems. We remark that a simple yet important lemma in Rudolph’s
proof implies that if h(μ, s)> 0 for one s∈Sa,b, then h(μ, s)> 0 for all s∈Sa,b.
Katok and Spatzier ([KS2, KS3]; cf. also Kalinin and Katok [KK1]) pioneered
the study following Rudolph of higher rank abelian actions by automorphisms
on T

d and by translations on quotients G/� (similarly to what we have seen
for the ×a,×b case, the former can be viewed as a special case of the latter,
where the group G is a semidirect product of a torus and an abelian additive
group). In some cases, Katok and Spatzier were able to obtain a full analogue
of Rudolph’s theorem, but in most cases (e.g., for Z

k actions on G/� with
G semisimple) an additional ergodicity condition is needed, a condition that
unfortunately is not stable under weak-∗ limits.

2.1 RIGIDITY OF JOININGS. Arguably the most complete result regard-
ing the classification of higher rank abelian actions on arithmetic quotients
does not explicitly mention entropy, though entropy plays an important role
in the proof. In the same paper [F2] in which Furstenberg proved Theorem 1.1,
thereby introducing higher rank rigidity from the dynamical perspective,
Furstenberg also introduced joinings as a key tool in the study of measure
preserving and topological dynamical systems. Suppose H is a topological
group acting in a measure preserving way on two probability measures spaces
(X ,μ) and (X ′,μ′). Then H also acts on the product space X ×X ′ by setting
h.(x, x′)= (h.x, h.x′). A joining of (X ,μ,H) and (X ′,μ′,H) is an H-invariant
probability measure on X ×X ′ that projects to the measure μ and μ′ on X
and X ′ respectively. There is always at least one joining between any two
such actions—namely, the product measure μ×μ′. Existence of other join-
ings can be interpreted as evidence of some communality between (X ,μ,H)
and (X ′,μ′,H); an extreme form of this would be if these two measure pre-
servingH-actions would be isomorphic (asH-actions; i.e., there is a measure
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preserving 1-1 and onto map φ between subsets of full measure of X and X ′

commuting with the H-action), in which case the pushforward under (id,φ)
of μ would be a nontrivial joining supported on the graph of φ.
The following general joining classification theorem is the main result of

[EL3] by Einsiedler and this author:

THEOREM 2.1 ([EL3]).
Let r, d≥ 2, and let G1, . . . ,Gr be semisimple algebraic groups defined over Q that
are Q almost simple, G=∏r

i=1Gi, and S be a finite set of places of Q. Let Xi=
�i\Gi be S-arithmetic quotients6 saturated by unipotents for Gi≤Gi(QS), and let
X =∏

i Xi. Let ai :Z
d→Gi be proper homomorphisms so that a= (a1, . . . , ar) :

Z
d→G=∏

i Gi is of class-A, and set A= a(Zd). Suppose μ is an A-invariant
and ergodic joining of the actions of Ai= ai(Zd) on Xi equipped with the Haar
measure mXi . Then μ is homogeneous.

In fact, [EL3] gives slightly more precise information, in that μ is not just
homogeneous but Haar measure on a finite index subgroup of the S-adic
points of an algebraic group defined overQ. Such a measure would be said to
be an algebraic measure defined over Q. This joining classification theorem can
be extended to perfect groups. Recall that an algebraic group G is said to be
perfect if G=[G,G].

THEOREM 2.2 ([EL3]).
Let r, d≥ 2, and let G1, . . . ,Gr be perfect algebraic groups defined over Q, G=∏r

i=1Gi, and S be a finite set of places of Q. Let Xi=�i\Gi be S-arithmetic quo-
tients for Gi≤Gi(QS) saturated by unipotents, and let X =∏

i Xi. Let ai :Z
d→Gi

be homomorphisms so that a= (a1, . . . , ar) :Zd→G=∏
i Gi is of class-A, such

that the projection of ai to every Q almost simple factor of Gi(QS) is proper. Sup-
pose μ is an A-invariant and ergodic joining of the action of Ai= ai(Zd) on Xi
equipped with the Haar measure mXi . Then μ is homogeneous, indeed an algebraic
measure defined over Q.

We remark that for the action of a one-parameter unipotent group on
quotients of SL(2,R) by lattices, Ratner established a joining classification
theorem in [R1]. A general joining classification result for actions of unipotent

6In particular, by our definition of S-arithmetic quotients, Gi has finite index in Gi(QS).
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groups was given by Ratner in [R2] as a by-product of her techniques to classify
all invariant measures.7

The restriction to perfect groups in Theorem 2.2 is important. If α is a
(faithful) Zk-action on a torus T

d by automorphisms, or more generally a Z
k-

action on the solenoid T
d
S=

(∏
v∈S Qv

)d (a prime example of the latter being
the action generated by the ×a and ×b maps on TS with S containing ∞
as well as all prime factors of ab) for k≥ 2, then any hypothetical nonatomic
α(Zd)-invariant and ergodic invariant measure on T

d
S of zero entropy would

give rise to a nontrivial, nonhomogeneous self-joining of (Td
S,mT

d
S
,α(Zk))

given by the pushforward of the measure m
T
d
S
×μ using the map (x, y) �→

(x, x+ y) from T
2d
S →T

2d
S . This simple example shows that classifying self-

joinings of such Z
k-actions is (at least) as hard as Conjecture 3. However, one

can classify joinings between such Z
d-actions up to zero entropy quotients

[KK2, KS1, EL1].

2.2 SOMEMEASURE CLASSIFICATIONTHEOREMS FOR S-ARITHMETIC
QUOTIENTS. Joinings between higher rank abelian actions have positive
entropy coming from the factors being homogeneous, but in fact being a
joining imposes additional restrictions on leafwisemeasures that are very use-
ful for the analysis. If one wants a measure classification of positive entropy
measures, some additional conditions are needed.
One condition that gives rise to a clean statement is when the acting group

is a maximal split torus or more generally satisfies the following condition:

DEFINITION 2.3. LetG be an algebraic group defined overQ and S a finite
set of places. A subgroup A<G(QS) will be said to be a partially maximal
QS-split torus if there is for each s∈S a (possibly trivial) algebraic normal sub-
group8 Hs � G(Qs) so that (A∩Hs) is a maximal Qs-split torus in Hs and
A=∏

s∈S′(A∩Hs).

THEOREM 2.4 (Einsiedler and Lindenstrauss [EL2]).
Let G be a Q almost simple algebraic group, S a finite set of places, and G/� an
S-arithmetic quotient for G saturated by unipotents in the sense of Definition 369.

7Indeed, the joining classification follows directly from the measure classification theorem of Rat-
ner in [R3], but in [R2] (which is part of the sequence of papers establishing the results in [R3]),
this result is already noted.
8To be precise, Hs is a group of Qs-points of a Qs group, however (in contrast to the global field
case), when considering an algebraic group over a local field will not make the distinction between
the abstract algebraic group and the groups of points.
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Let A be a higher rank, partially maximal QS-split torus. Let μ be an A-invariant
and ergodic measure on G/�, and assume that

(1) μ(g[L(QS)∩G]�)= 0 for every proper reductive subgroup L<G and g ∈G
and

(2) h(μ, a)> 0 for some a∈A.

Then μ is the uniform measure on G/�.

Using Theorem 2.4 a decomposition theorem can be proved for measures on
S-arithmetic quotients corresponding to a semisimple Q-group as a product
of four pieces that may well be trivial:

THEOREM 2.5 (Einsiedler and Lindenstrauss [EL2]).
Let G be a semisimple algebraic group defined over Q, S a finite set of places, G/�
an S-arithmetic quotient for G, and A a partially maximal QS-split torus. Let μ be
an A-invariant and ergodic measure on G/�. Then there is a finite index subgroup
A′<A and a probability measure μ′ so that μ= 1

|A/A′|
∑

a∈A/A′ aμ′ and so that
μ′ can be decomposed as follows. For i∈ {1, 2, 3} there is a semisimple Q-subgroup
Li≤G and an anisotropic Q-torus L0<G so that ι : (l0, . . . , l3) �→ l0 · . . . l3 gives
a finite-to-one map

∏3
i=0 Li(QS)→G(QS) so that μ′ = ι∗(μ0× · · ·×μ3) with

each μi an A′ ∩Li(QS)-invariant and ergodic probability measure on (Li(QS)∩
G)/(Li(QS)∩�), A′ =∏3

i=0(A∩Li(QS)) and

(1) μ1 is the uniformmeasure on L/(L1(QS)∩�)with L≤L1(QS) a finite index
subgroup,

(2) μ2 satisfies that h(μ2, a)= 0 for every a∈A∩L2(QS), and
(3) L3(QS) is an almost direct product of Q almost simple groups L3,i(QS) so

that for all i the group A∩L3,i(QS) is not of higher rank.

The special cases of Theorems 2.4 and 2.5 for G/�, a quotient of∏k
i=1 SL(2,Qvi) by an irreducible lattice (with vi ∈ {primes or∞}) or G/�=

SL(n,R)/SL(n,Z), were proven earlier by this author [L2] and Einsiedler,
Katok, and this author [EKL], respectively.
Ideally, one would like to obtainmeasure classification results for measures

invariant under a higher rank diagonalizable group in the more general con-
text of Conjecture 4. This is the subject of ongoing work; in particular, in joint
work with Einsiedler we have the following:
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THEOREM 2.6 (Einsiedler and Lindenstrauss [EL4]).
Let G be an algebraic group over Q that is Q almost simple and a form of SLk2 or
of PGLk2 with k≥ 1, S a finite set of places, and G/� an S-arithmetic quotient for
G. Let A<G be a closed abelian subgroup of class-A and of higher rank. Let μ be
an A-invariant and ergodic probability measure on X =�\G such that hμ(a)> 0
for some a∈A. Then one of the following holds:

. (Algebraic) The measure μ is homogeneous.. (Solvable) The space X is noncompact. There exists a nontrivial unipotent
subgroup L such that μ is invariant under L. The measure μ is supported
on a compact A-invariant orbit x0M∼=�M,x0\M, where M<G is a solvable
subgroup and �M,x0 ={m∈M |m.x0= x0} is the stabilizer of x0 in M. The
lattice�x0,M inM intersects the normal subgroup L�M in a uniform lattice,
and if π :M→M/L denotes the natural projection map, then the image of μ
under the induced map �M,x0\M→π(�M,x0)\(M/L) has zero entropy for
the action of A.

2.3 A RIGIDITY THEOREM FOR MEASURES INVARIANT UNDER
A ONE-PARAMETER DIAGONAL GROUP WITH AN ADDITIONAL
RECURRENCE ASSUMPTION. For the application of measure rigidity to
quantum unique ergodicity, a variant of the above results was essential, where
the assumption of invariance under a higher rank group was relaxed.

DEFINITION 2.7. Let H be a locally compact group acting on a standard
Borel space (X ,B). We say that a measure μ on X is H-recurrent9 if for every
B⊂X with μ(B)> 0 and any compact subset F⊂H, then for μ-a.e. x ∈X ,
there is an h∈H�F with h.x ∈B.

We stress that no assumption is made regarding H-invariance of μ or even
the measure class of μ.

THEOREM 2.8 (Lindenstrauss [L2]).
Let G=∏r

i=1 SL(2,Qvi)with vi ∈
{∞, primes} and r≥ 2, and let�<Gbe an irre-

ducible lattice. Let A<SL(2,Qv1) be a one-parameter diagonal group, with a∈A

9An alternative terminology often used in this context isH-conservative; we preferH-recurrent as
it seems to us more self-explanatory.
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generating an unbounded subgroup of A, and H=∏r
i=2 SL(2,Qvi). Suppose that

μ is A invariant and H-recurrent and that for a.e. A-ergodic component μξ of μ,
the entropy h(μξ , a)> 0. Then μ is the uniform measure on G/�.

We note that using recurrence as a substitute for invariance under a higher
rank group was motivated by Host’s proof of Rudolph’s theorem in [H2].

3 Orbit closures: Many questions, a few answers

3.1 PROLOGUE: ORBIT CLOSURES AND EQUIDISTRIBUTION FOR
UNIPOTENT FLOWS. For unipotent flows, there is a very close relation-
ship between behavior of individual orbits and the ergodic invariantmeasures.
This correspondence was used by Ratner [R4] to prove the Raghunathan
conjecture:

THEOREM 3.1 (Ratner [R4]).
Let U be a connected unipotent subgroup of real algebraic group G and �<G a
lattice. Then for any x ∈G/� there is a closed subgroup U≤ L≤G so that U.x=
L.x, with L.x a periodic orbit (i.e., stabL(x) is a lattice in L). Moreover, U acts
ergodically on L/ stabL(x).

In particular, the orbit closure of every U-orbit U.x is the support of a U-
invariant and ergodic measure on G/�.
One key ingredient used to prove this surprisingly tight correspondence is a

nondivergence estimate for unipotent flows developed by Dani and Margulis
[M2, D2, DM3]. In addition to establishing nondivergence of theU-trajectory,
needed in order to obtain from an orbit some limiting probability measure
that can be analyzed, to deduce Raghunathan’s Conjecture from the mea-
sure classification theorem, one needs to establish that a trajectory of a point
x ∈G/� does not spend a lot of time close to a tube corresponding to shifts
of a given periodic L orbit, unless x itself is in this tube. A flexible way to
establish such estimates, known as the Linearization Method, was developed
by Dani and Margulis [DM4]; while [DM4] uses Ratner’s measure classi-
fication theorem, the technique itself was developed earlier by Dani and
Margulis (with closely related works by Shah) in order to prove some cases of
Raghunathan’s conjecture by purely topological means (see, e.g., [DM2]); an
alternative approach to linearizationwas used by Ratner in her proof of Raghu-
nathan’s Conjecture. We mention that a stronger (more) explicitly effective

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



rigidity properties of higher rank diagonalizable actions / 377

version of the Dani-Margulis Linearization Method was given recently by
Margulis, Mohammadi, Shah, and this author [LMMS].
We also recall the following theorem of Mozes and Shah that relies on

Ratner’s measure classification theorem and the linearization method:

THEOREM 3.2 (Mozes and Shah [MS]).
Let G be a linear algebraic group over R, �<G a lattice, and let μi be a sequence
of probability measures on G/�, and u(i)t a sequence of one-parameter unipotent
subgroups of G so that for every i the measure μi is u

(i)
t -invariant and ergodic.

Suppose μi converges in the weak-∗ topology to a probability measure μ. Then μ
is homogeneous, and there are gi→ e so that gi supp(μi)⊂ supp(μ) for i large
enough.

This theorem was extended to the S-arithmetic setting by Gorodnik and
Oh [GO].

3.2 ORBIT CLOSURES FOR HIGHER RANK DIAGONALIZABLE GROUPS
IN A TORUS. Actions of one-parameter diagonal groups display no rigid-
ity, and most questions about behavior of individual orbits for one-parameter
diagonal groups seem to be hopelessly difficult. For instance, it is a well-
known open problem whether 3√2 (or indeed any other irrational algebraic
number of degree ≥ 3) has a bounded continued fraction expansion, which is
completely equivalent to the question whether the half-orbit

{(
et

e−t

)[(
1 3√2
0 1

)]
: t≥ 0

}

is bounded in G/�=SL(2,R)/SL(2,Z).
One could hope that the situation would be better for actions of higher

rank diagonal groups, which do have some rigidity, and to a certain extent
this is true. However, any hope of obtaining as good an understanding of
orbits of higher rank diagonal groups as we have for unipotent flows is
doomed to failure, in large part stemming from the fact that the connection
between individual orbits and invariant measures for diagonal flows is much
weaker.
To illustrate this point, consider first Furstenberg’s Theorem 1.1. This

theorem gives a complete classification of orbit closures for the action of
Sa,b={anbm : n,m∈N} on T=R/Z: either a finite orbit on which Sa,b acts
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transitively, or T. This was significantly extended by Berend, who showed the
following:

THEOREM 3.3 (Berend [B1, B2]).
Let K be a number field, S a finite set of places including all infinite places, and OS

the ring of S integers—that is, the ring of k∈K satisfying that |k| ≤ 1 for any place
v 	∈S of K. Let  a higher rank subgroup of O∗S. Assume that

(1) no finite index subgroup of  is contained in a proper subfield of K and
(2) for every v∈S, there is some a∈ with |a|v> 1.

Then any -invariant closed subset of X =∏
v∈S Kv/OS is either finite or X

itself.

For K =Q and⊂N (not including 0!) this reduces easily to Furstenberg’s
theorem. The proofs of Furstenberg and Berend (as well as a simple proof of
Furstenberg’s theorem by Boshernitzan [B3]) are purely topological, but one
can deduce Theorems 1.1 and 3.3 fromRudolph’s theorem and its analogue to
solenoids [EL1] by Einsiedler and this author respectively by establishing that
any infinite closed -invariant subset Y ⊂X =∏

v∈S Kv/OS has to support a
-invariant measure of positive entropy. The reason this can be shown is that it
is not hard to show if Y is such a closed, infinite, invariant subset Y −Y =X .
This approach was used by Bourgain, Michel, Venkatesh, and this author to
give a quantitative version of Furstenberg’s theorem in [BLMV].
Both conditions in Theorem 3.3 are needed in order to ensure that any

closed invariant subset is either finite or X . However, dropping assumption
(2) does not dramatically change the situation: if there is some v∈S so that
for every a∈ we have that |a|v= 1, then there would certainly be other pos-
sible orbit closures—for example, a -invariant subset of X supported on the
Kv-orbit of the origin on which acts by generalized rotations. However, with
the minor necessary changes needed to accommodate such obvious examples
of orbit closures, the above classification also holds without assumption (2).
This was shown by Wang [W1] for the case of X being a torus (essentially, the
same proof also works for the more general class of X considered in Theo-
rem 3.3); we also mention that a very interesting combinatorial application
for the case of K =Q(i) was given by Manners in [M1] (who gave an indepen-
dent treatment of the relevant orbit closure classification theorem). We further
note that the approach outlined in the previous paragraph to proving Theo-
rem 3.3 using the measure classification result of Einsiedler and this author

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



rigidity properties of higher rank diagonalizable actions / 379

[EL1] works just as well in the case where assumption (2) does not necessarily
hold.10

If one instead weakens the conditions of Theorem 3.3 by eliminating the
irreducibility assumption (1) (even keeping assumption (2)), we already enter
the realm of conjectures, where surprisingly difficult questions loom. For
instance, suppose that  is contained in a subfield L<K with [K : L]= 2 but
that no finite index subset of is contained in a proper subfield of L. Suppose
even that  is the full group of units of the S integers of L (or more precisely,
the SL units of L, with SL the set of places of L corresponding to those in S)
and that S consists only of all infinite places of K (so that X is a torus11). Then
if the rank of  is ≥ 3, Wang and this author [LW1] proved that any orbit clo-
sure is (at most) a finite union of cosets of closed (additive) subgroups of X .
Surprisingly, this statement is false for  of rank 2! We make, however, the
following conjecture:

CONJECTURE 5. Let K be a number field, S a finite set of places including all
infinite places, andOS the ring of S integers—that is, the ring of k∈K satisfying that
|k| ≤ 1 for any place v 	∈S of K. Let L<K, SL the set of valuations of L corresponding
to places in S, and  a higher rank subgroup of the group of SL units of L; assume
moreover that no finite index subgroup of  is contained in a proper subfield of L.
Let X =∏

v∈S Kv/OS, and let Y =.x for x ∈X. Then either Y =X or there exists
a finite collection Xi of closed proper subgroups of X and torsion points pi ∈X so that
Y ⊂.x∪⋃i(Xi+ pi).

We remark that (at least when [K : L]= 2) one can give a complete classifi-
cation of the support of -ergodic and invariant measures, and (at least to us)
it seems that the key difficulty in proving Conjecture 5 is the weak correspon-
dence between invariant measures and individual orbits in the diagonalizable
case, in sharp contrast to section 3.1.
Conjecture 5 is somewhat close in spirit to a recent result of Peterzil and

Strachenko [PS] (which they extended later to nilmanifolds) that proves a sim-
ilar structure for the image of a definable subset of R

d with respect to an
o-minimal structure in T

d=R
d/Zd.

10The paper [EL1] gives a full treatment of a measure classification theorem assuming positive
entropy for irreducible actions, which is the case relevant here, as well as announces results for
more general cases with some hints regarding proofs.
11The assumption that is the full group of units of the S integers of L is a significant assumption;
the assumption that X is a torus—i.e., S consists only of all infinite places of K—can be removed.
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3.3 ORBIT CLOSURES AND LIMITS OF PERIODIC MEASURES FOR
ACTIONS OF HIGHER RANK DIAGONALIZABLE GROUPS ON
QUOTIENTS OF SEMISIMPLE GROUPS. We already mentioned in the
introduction the important conjecture of Cassels and Swinnerton-Dyer
regarding orbit closures of the full diagonal group A in the homogeneous
space SL(d,R)/SL(d,Z).12 For the convenience of the reader, we recall it here:

CONJECTURE 1b ([CSD, M5]). Let d≥ 3. Any orbit of the diagonal group A
in PGL(d,R)/PGL(d,Z) is either unbounded or periodic.

One would like to say at least conjecturally something stronger about the
orbit closure of an orbit A.x for A.x nonperiodic. For instance, in the same
paper Cassels and Swinnerton-Dyer give a conjecture that can be phrased
as saying that any orbit of SO(2, 1) on SL(3,R)/SL(3,Z) is either periodic
or unbounded, a conjecture that is a special case of Raghunathan’s conjec-
ture and was proved by Margulis in the mid-1980s [M6, M3]. As we saw in
section 3.1 for SO(2, 1), one actually has that any orbit is either closed or dense.
But this is false for A-orbits. A trivial example is the orbit A.[e] of the identity
coset that is a divergent orbit. Slightly less trivial is the example of an A-orbit
of a point

x ∈
⎡
⎢⎣

⎛
⎜⎝
∗ 0 0
0 ∗ ∗
0 ∗ ∗

⎞
⎟⎠

⎤
⎥⎦,

where essentially the action of A degenerates to a rank-1 action (one direction
in A acts in a trivial way sending every point to the cusp). The following exam-
ple, due to Shapira [S2], of elements in SL(3,R)/SL(3,Z) shows even this is
not the only obstacle to A.x being dense: Consider for any α ∈R the point

pα =
⎡
⎢⎣

⎛
⎜⎝
1 0 α

0 1 α

0 0 1

⎞
⎟⎠

⎤
⎥⎦ .

The A-orbit of pα is certainly not A-periodic, but

A.pα ⊂A.pα ∪
⎡
⎢⎣

⎛
⎜⎝
∗ 0 ∗
0 ∗ 0
∗ 0 ∗

⎞
⎟⎠

⎤
⎥⎦∪

⎡
⎢⎣

⎛
⎜⎝
∗ 0 0
0 ∗ ∗
0 ∗ ∗

⎞
⎟⎠

⎤
⎥⎦ ;

12We implicitly identify between SL(d,R)/SL(d,Z) and PGL(d,R)/PGL(d,Z); while the underlying
algebraic groups are different, the quotients are isomorphic.
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see [LS] for details. Note the analogy to the possible behavior allowed in Con-
jecture 5. Related examples of orbits of higher rank diagonal groups exhibiting
this phenomena were given earlier by Macourant [M8], though not for a maxi-
mal diagonal group; another very interesting class of examples is investigated
by Tomanov in [T3].
For x=[g] ∈SL(d,R)/SL(d,Z), set

α1(x)=
(
inf

n∈Zd�0

∥∥gn∥∥
)−1
.

The following conjecture seems to us plausible:

CONJECTURE 6. Let d≥ 3, and let x ∈SL(d,R)/SL(d,Z) be such that

(3.1) lim
a∈A
logα1(a.x)
log ‖a‖ = 0.

Then A.x= L.x for A≤ L≤SL(d,Z), and moreover L.x is a periodic L-orbit
(i.e., has finite volume).

As explained to us by Breuillard and Nicolas de Saxce [BdS], the Strong Sub-
space Theorem of Schmidt [S1, section 6.3] implies that if g ∈SL(d,Q), then
(3.1) holds for [g] unless g is in a proper Q-parabolic subgroup of SL(d,R).
In particular we conjecture that if g ∈SL(d,Q), not contained in any proper
Q-parabolic subgroup of SL(d,R), then A.[g] is homogeneous.
Despite these difficulties, there are some positive results (not only conjec-

tures) about orbit closures in this case. The first result in this direction is
arguably Cassels and Swinnerton-Dyer’s result from their farsighted paper
[CSD] that we already mentioned. In this paper, Cassels and Swinnerton-
Dyer prove that for the full diagonal group in A<SL(d,R), every A-orbit A.x
that is itself nonperiodic, but so that its closure A.X contains a periodic A-
orbit, is unbounded. This allowed them to prove that Littlewood’s conjecture
(Conjecture 2) follows from Conjecture 1a.
Using Ratner’s Orbit Closure Theorem, Barak Weiss and this author were

able to strengthen this as follows:

THEOREM 3.4 (Weiss and Lindenstrauss [LW2]).
Let A.x be an orbit of the full diagonal group A in SL(d,R)/SL(d,Z), and suppose
that A.x⊃A.x0 with A.x0 periodic. Then A.x is a periodic orbit of some group L
with A≤ L≤SL(d,R).
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An analogous result to Theorem 3.4 for SL(2,Qp)×SL(2,Qq)/� (for �, an
irreducible lattice arising from a quaternion division algebra) was established
earlier byMozes [M9]; Mozes’s work is completely self-contained. Theorem3.4
was extended to inner forms of SL(d) (i.e., lattices arising from central simple
algebras over Q) by Tomanov in [T1].
We already noted that deciding, for example, if, for α= 3√2,

{(
et

e−t

)[(
1 α

0 1

)]
: t≥ 0

}

is bounded in G/�=SL(2,R)/SL(2,Z) is a notoriously difficult question.
Indeed, despite the fact that it is conjectured that for any irrational algebraic
number α of degree ≥ 3 the orbit above should be unbounded, not a single
example of such an α is known. For higher rank (e.g., for SL(3,R)/SL(3,Z)),
one can at least give examples of explicit A-orbits of algebraic points that are
dense. Indeed, Shapira and this author show in [S2] and [LS] that if α,β are
such that 1,α,β span over Q a number field of degree 3 over Q, then

A.

⎡
⎢⎣

⎛
⎜⎝
1 0 α

0 1 β

0 0 1

⎞
⎟⎠

⎤
⎥⎦ =SL(3,R)/SL(3,Z).

This is related to another old result of Cassels and Swinnerton-Dyer, which
showed in [CSD] that Littlewood’s Conjecture (Conjecture 2) holds for
such α,β.
The strongest result to date regarding Conjecture 1a for general points is

due to Einsiedler, Katok, and this author [EKL], where using the classifica-
tion of A-invariant measures of positive entropy on SL(d,R)/SL(d,Z) that we
obtained in that paper, it was shown that for d≥ 3,

dimH
{
x ∈SL(d,R)/SL(d,Z) :A.x is bounded}= d− 1,

which implies that transverse to the flow direction (i.e., to A), the set of x with
a bounded A-orbit has zero Hausdorff dimension. Conjecturally, of course,
this set is supposed to be a countable union of periodic A-orbits.
Finally, we mention that Tomanov and Weiss [TW] classified all closed

A-orbits in SL(n,R)/SL(n,Z) and more generally maximally split tori in arith-
metic quotients, showing that an A-orbit A.[g] is closed if and only if there is a
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R-split maximalQ-torus T<SL(n) so that A.[g]= g[T(R)]. Their work builds
on the result ofMargulis classifying all divergentA-orbits in SL(n,R)/SL(n,Z)
(such orbits correspond to Q-split maximal Q-tori). This has the striking con-
sequence that if F is a product of n linearly independent linear forms in
n-variables, then F(Zn) is discrete iff F is proportional to an integral form [T2].
We now turn our attention to the question whether an analogue to the theo-

rem of Mozes and Shah (Theorem 3.2) holds for higher rank diagonal groups,
where it seems the answer is mostly negative (but see section 4 for some
significant positive results).
For example, there are explicit examples of sequences of A-periodic orbits

A.xi in SL(d,R)/SL(d,Z) for A, the (d− 1)–dimensional diagonal group in
SL(d,R), so that the corresponding measuresmA.xi on SL(d,R)/SL(d,Z) have
escape of mass: there is a 0≤ c< 1 so that for any compact K for all ε > 0
and all large enough i, we have that μA.xi(K)< c+ ε, and it is even possi-
ble to give such examples with c= 0. Examples of A-periodic trajectories with
escape of mass were noted in [ELMV1] (following a suggestion by Sarnak),
with more elaborate examples (in particular with c= 0) given by Shapira [S3]
and David and Shapira [DS1]; implicitly, these examples feature already in
old work of Cassels [C1]. Escape of mass can also occur for a sequence of peri-
odic measures for unipotent groups or, more generally, a sequence of periodic
measures that can arise as ergodic measures for unipotent groups, but only if
the support of these measures, in its entirety, escapes to infinity—that is, if we
denote the sequence of measures by μi, then for every compact set K ⊂G/�
for every i large enough, K ∩ suppμi=∅. For the periodic A-orbits consid-
ered above, there is a fixed set K ⊂SL(d,R)/SL(d,Z) intersecting every one of
them, indeed intersecting every A-orbit whether periodic or not.
Furthermore, assuming the equidistribution results of [ELMV2] hold in a

quantitative way with polynomial error rates (which they surely should!), one
can construct sequences of A-periodic orbits A.xi in SL(3,R)/SL(3,Z) with
volumes →∞, which converge weak-∗ to a probability measure that gives
positive mass to periodic orbit A.y distinct from all the A.xi.

We end this section with a conjecture analogous to Conjecture 5.

CONJECTURE 7. Let G be an algebraic group over Q, S a finite set of places
for Q containing ∞, and G/� a corresponding S-arithmetic quotient saturated
by unipotents (see Definition 1.6). Let A<G be a closed subgroup consisting of
elements of class-A so that the projection of A to

∏
v∈S(G/H)(Qv) for any proper
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normal Q-subgroup H � G is of higher rank. Then for any x ∈G/�, either A.x is
dense in G/� or there are finitely many proper Q-subgroups Li<G and gi ∈G/�
such that

A.x⊂A.x∪
⋃
i

gi[Li(R)].

4 Applications regarding integer points and Q-tori

The study of integer points on varieties is arguably the most basic problem in
number theory. It seems at first sight rather surprising that the rigidity results
for diagonalizable groups listed above could be relevant for such a problem.
Fortunately they are, and perhaps a good point to start the discussion of this
topic is by going back to the remarkable work of Linnik on the distribution
of integer solutions to ternary quadratic equations, work that is presented in
his book with the apt title Ergodic Properties of Number Fields [L4], but in fact
Linnik’s farsighted work in this direction started even earlier, in the late 1930s.

4.1 LINNIK’S ERGODIC METHOD FOR STUDYING TERNARY QUAD-
RATIC FORMS USING A ONE-PARAMETER DIAGONALIZABLE ACTION.
Linnik considered several related problems: local to global results regard-
ing which integers can be represented by an integer quadratic form in three
variables; the distribution of integer points on a two-dimensional sphere
of radius

√
m for m 	≡ 0, 4, 7 mod 8; and the analogous problem regard-

ing distribution of integer points on one- and two-sheeted hyperboloids in
3 space.
Consider in particular the distribution of integer points on the hyperboloid

Vd=
{
(a, b, c) : b2− 4ac= d

}
,

where d is an integer. Let Vd(Z) denote the integer points on Vd (these
correspond to integral quadratic forms ax2+ bxy+ cy2 of discriminant d=
b2− 4ac), and let V∗d (Z)⊆Vd(Z) be the set of primitive points (i.e., triplets
(a, b, c) with no nontrivial common denominator). Note that for V∗d (Z) to be
nonempty, d has to be ≡ 0, 1 (mod 4). The discriminant d is said to be a fun-
damental discriminant ifV∗d (Z)=Vd(Z)—that is, if either d is square-free and
≡ 1 (mod 4) or d= 4mwithm square-free satisfyingm≡ 2 or 3 (mod 4). The
action of GL(2) on binary quadratic forms gives us a natural action of GL(2,Z)
on V∗d (Z) for every integer d. It is classical that V

∗
d (Z) consists of finitely many

GL(2,Z) orbits; indeed it is one of Gauss’s remarkable discoveries that for a
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given d one can define a natural commutative group law (which in this survey
we denote by�) onV∗d (Z)/GL(2,Z). One way to characterize this group law is
that if [q1]� [q2]= [q3] with qi ∈V∗d (Z), there are bilinear integral forms α,β
so that

(4.1) q1(n,m)q2(l, s)= q3(α(n,m; l, s),β(n,m; l, s))

(cf. [C3, section 1.3]). As the identity in this group we take the GL(2,Z) coset
[qe] of qe= x2− d′y2 if d= 4d′ or qe= x2+ xy− (d− 1)/4y2 if d≡ 1 (mod 4).
For example, if d= 4d′, then Equation (4.1) applied to the triple [qe]� [qe]=
[qe] is given explicitly by

(n2− d′m2)(l2− d′s2)= (nl+ d′ms)2− d′(ns+ml)2.

The following natural problem is a special case of an important class of
counting questions raised by Linnik:

QUESTION4.1. Let di→+∞. Let Ṽdi be the sets d
−1/2
i V∗di(Z)⊂V1. How are

the points in these sets distributed? Let m1 denote the unique (up to scalar)
SL(2,R)-invariant measure on V1. Do the points in Ṽdi equidistribute in the
sense that for any nice subsets E1,E2⊂V1 (e.g., bounded open sets with m1-
null boundary),

#(Ṽdi ∩E1)
#(Ṽdi ∩E2)

→ m1(E1)
m1(E2)

?

Similarly, let di→−∞, and let Ṽdi = |di|−1/2 V∗di(Z)⊂V−1. Do the points in
Ṽdi become equidistributed in V−1?

The answer to the question is yes for any di→∞. This was proved by
Duke [D3] (building on work of Iwaniec [I]), at least when di is a sequence
of fundamental discriminants (which is, as implied by the name, the most
fundamental [and hardest] case). Duke’s proof is quantitative and relies on
estimates of Fourier coefficients of half integral weight Maass forms. Under
an additional congruence condition on the sequence di—namely, that there
is some fixed prime p so that di are quadratic residues mod p for all i (i.e.,( di
p

)= 1)—this equidistribution result was proved much earlier by Linnik and
Skubenko [L4, S4]. In fact if di→+∞, a variant of Linnik’s argument can be
used to establish equidistribution with no (additional) side condition, as was
shown by Einsiedler, Michel, Venkatesh, and this author in [ELMV3].
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Set G=PGL(2,R), A<G the group of diagonal matrices, and �=
PGL(2,Z). Note that A is the stabilizer13 of the quadratic form q= xy, and
using this we can view V1 as A\PGL(2,R). The above equidistribution ques-
tion regarding Ṽdi , di> 0, which we recall is a finite union of �-orbits in V1

∼=
A\G, can be recast as a question regarding equidistribution of finite collec-
tions of closed A-orbits inG/� as follows. Consider a quadratic form q(x, y)=
ax2+ bxy+ cy2= a(x− ξ1y)(x− ξ2y) with ξ1,2=−b±

√
d/2a. We associate to

q the A-orbit A.pa,b,c in G, where

pa,b,c :=
(
a −b+√d

2

a −b−√d
2

)

and where as before A is the (one-parameter) diagonal subgroup of G.
Clearly if γ ∈� the A-orbit corresponding to q ◦ γ will be A.pa,b,cγ , and vice
versa: if A.pa,b,c =A.pa′,b′,c′γ for (a, b, c), (a′, b′, c′)∈V∗d (Z) and γ ∈�, then the
corresponding quadratic forms q, q′ satisfy that q= q′ ◦ γ .
It follows that to each PGL(2,Z)-orbit in Vd(Z) there corresponds an A-

orbit in G/�. A standard duality argument can be used to show (at least for
di that are not perfect squares, though the case of di perfect squares can also
be handled this way) that equidistribution of the sequence of sets Ṽdi in V1

∼=
A\G in the sense of Question 4.1 is equivalent to the equidistribution of the
sequence of collections of closed A-orbits

Tdi =
{
A.pa,b,c : (a, b, c)∈V∗di(Z)

}

in G/�—that is, for every f , g ∈C0(G/�) with
´
g dm 	= 0,

(4.2)

∑
A.p∈Tdi

´
A.p f

∑
A.p∈Tdi

´
A.p g
→

´
G/� f dm´
G/� g dm

.

Note that we present the equidistribution in the above form to allow for
sequences di that contain perfect squares, as in that case the A-orbits A.pa,b,c
are divergent. For di a sequence avoiding perfect squares, one can take g≡ 1
instead.

13Technically we are being slightly imprecise here, as PGL(2,R) acts only on proportionality classes
of quadratic forms.
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We give two more ways to look at the points V∗d (Z)/GL(2,Z), which will be
important for us later.

I. The cosets
{[pa,b,c]� : (a, b, c)∈V∗d (Z)

}
correspond in an obvious way

to the Z-modules p̄a,b,c spanned by a and −b+√d/2, which (for d
not a perfect square) are in fact ideals in the order Od of discrimi-
nant d (for fundamental discriminants, Od is the ring of integers in
Q(
√
d); if d= f 2d′ with d′ fundamental, Od is a subring of Od′ con-

taining the identity of index f in Od′ ). For (a, b, c), (a′, b′, c′)∈V∗d (Z), we
have that [pa′,b′,c′ ]� ∈A.[pa,b,c]� if and only if the ideals pa′,b′,c′ and pa,b,c
are in the same ideal class—that is, for some k∈Q(

√
d), we have that

(kOd) · pa′,b′,c′ = pa,b,c. An observation that can be attributed essentially to
Dirichlet is that the Gauss composition law on GL(2,Z) cosets in V∗d (Z)
is the same group law as the group law in the ideal class group cl(Od) of
the order Od.

II. For any positive d∈Z and (a, b, c)∈V∗d (Z), the group p−1a,b,cApa,b,c is the
group of R-points of a Q-torus Ta,b,c <PGL(2). Moreover, it is not hard
to see that Ta,b,c is Q-split iff d is a perfect square. It follows that the
orbit A.[pa,b,c] is a closed A-orbit in G/�, and this A-orbit A.[pa,b,c] is a
periodic A-orbit if d is not a perfect square and divergent otherwise. The
tori Ta,b,c are conjugate to each other in PGL(2) over Q but not over Z:
for (a, b, c), (a′, b′, c′)∈V∗d (Z), the tori Ta,b,c and Ta′,b′,c′ are conjugate to
each other over Z if and only if pa′,b′,c′ ∈ pa,b,c�.
These collections Td of A-orbits in G/� can be described very suc-

cinctly in the language of the adeles. Let A denote the adele ring of Q,
and let

π : PGL(2,A)/PGL(2,Q)→PGL(2,R)/PGL(2,Z)=G/�

be the natural projection, which takes the coset [(g, g2, g3, . . . )]PGL(2,Q)
of an element (g, g2, g3, . . . )∈PGL(2,A) with g ∈PGL(2,R) and gp ∈
PGL(2,Zp) for every (finite) prime p to the coset [g]� in G/�. Then for
any (a, b, c)∈V∗d (Z),

Td= pa,b,c π
([Ta,b,c(A)]

)
;

since this is valid for any choice of (a, b, c), wemay aswell take the explicit
choice of (a, b, c)= (1, 0,−d/4) (for 4|d) or (a, b, c)= (1, 1,−(d− 1)/4)
(for d≡ 1 (mod 4)).
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Up to minor changes—replacing A with the compact group K ={(
cos θ sin θ
− sin θ cos θ

)}
and taking pa,b,c to be

(
a −b/2
0

√|d|/2

)
— the correspon-

dences described in I and II also hold for d negative. Of course, A and K are
quite different R-groups, with K being R-anisotropic and compact while A is
R-split.
For the remainder of this subsection we restrict our attention to di> 0 not

perfect squares (i.e., Ta,b,c Q-anisotropic); for a discussion of the isotropic
case, see [OS], [DS2], and [SZ]. As explained in [ELMV3], in modern ter-
minology Linnik’s approach can be interpreted as the following three-step
strategy:

A. Let μi be the probability measure given by

μi(f )=

∑
A.p∈Tdi

´
A.p f

∑
A.p∈Tdi

´
A.p 1

.

One needs to establish that this sequence of measures is tight—that is,
for every δ > 0 there is a compactXδ ⊂G/� so thatμi(Xδ)> 1− δ for all i.
Linnik establishes this via analytic number theory, in a way that is closely
related to a key step in [ELMV2], which we discuss below, but this can
also be established using purely ergodic theoretic means (cf. [ELMV3]).

B. Linnik proves an upper bound on the measure of small tubes transverse
to the A action of radius r≥ d1/4i , on average

(4.3)
ˆ
Xδ
μi(B(r, 1, x)) dμi(x)�δ,ε r2dεi

for ε, δ > 0, Xδ , as above, and

B(r, 1, x′)=
{(
1 s
0 1

)(
et

e−t

)(
1 0
s′ 1

)
.x′ : |s| , ∣∣s′∣∣< r, |t|< 1

}
.

An important point here is that the dεi term in the right-hand side
implies that this estimate is meaningful only for r> d−ci ; hence, for each
i we obtain information regarding the distribution of μi at a different
scale.
The estimate of Equation (4.3), which Linnik called the Basic Lemma,

is key to the whole approach. Note that the exponent 2 in the right inside
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of (4.3) is sharp. It is a deep bound that relies on results of Siegel and
Venkov on quadratic forms and is closely related to the Siegel Mass
Formula (see [ELMV3, appendix A] for a self-contained treatment).

C. Now somehow one needs to upgrade the sharp nonconcentration (on
average) estimate of (4.3) to an equidistribution statement: to both lower
and upper bounds on the measure of fixed-sized subsets of G/�. One
way to proceed, explained in [ELMV3], is as follows: By passing to a sub-
sequence if necessary, and in view of the tightness of the sequence of
measures μi discussed in step A, we can assume that μi converges to
someA-invariantmeasureμ as i→∞ in the weak-∗ topology. The action
ofA onG/� is a prime example of a rank-1 diagonalizable group actions,
one which does not satisfy the type of rigidity provided by Theorem 2.5
of the other measure classification theorems discussed in section 2.2.
Because there are so many A-invariant measures inG/�, it is in general
very hard to prove that a limiting measure obtained from a number the-
oretic construction will be the uniform measure (see the discussion at
the beginning of section 3.2). However, the fact that the estimate of (4.3)
is sharp rescues us, as (4.3) together with the subadditivity of entropy
allows us to deduce that the entropy of μ with respect to the action of
at ∈A is maximal and that on G/� there is a unique measure of maximal
entropy.

Linnik and Skubenko did not quite follow the method outlined in step C.
To begin with, they considered the dynamics not for the diagonal subgroup in
PGL(2,R) but for a diagonal group over Qp: Linnik and Skubenko assumed
that for some fixed prime p, the sequence di satisfied

( di
p

)= 1, which implies
that the measures μi (as well as any limiting measure μ) can be lifted to prob-
ability measures on PGL(2,R)×PGL(2,Qp)/PGL(Z[1/p]) that are invariant
under the diagonal subgroup of PGL(2,Qp). This p-adic dynamics is symbolic
in nature, which facilitated the analysis. Moreover they did not first pass to the
limit, which allowed them to give rates of equidistribution (even if logarithmic
rather than polynomial, as in the work of Duke). A third alternative14 to step C
using property τ (i.e., using spectral gaps) was given by Ellenberg, Michel, and
Venkatesh in [EMV2], which gives another readable, modern interpretation of
the Linnik method and in addition raises an important joining question to
which they are able to give a partial answer (see below).

14Some may say this is more of a development of Linnik’s original method.
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Linnik’s method is not limited to the discriminant form b2− 4ac but is
applicable to any integral ternary quadratic form, in particular to the form
a2+ b2+ c2—that is, to the distribution of integer points on the sphere. Both
b2− 4ac and a2+ b2+ c2 are quadratic forms with the nice property that any
other integral form that is equivalent to them over R and Zp for all p is in fact
equivalent to them over Z. The collection of all integral quadratic forms equiv-
alent over R and Zp for all p to a given quadratic form is called the genus of
the quadratic form.15 For general integral quadratic forms, one needs to study
all forms in the genus in order to prove equidistribution of integer points on
each of the corresponding quadratic surfaces. The form a2+ b2+ c2 is treated
explicitly by Linnik in his book [L4] and earlier works and is also the case
explained in [EMV2]; the case of general quadratic forms is discussed, for
example, in Linnik’s paper [L3]. See [W2] for a nice modern exposition by
Wieser.

4.2 GOING BEYOND LINNIK: JOINT EQUIDISTRIBUTION USING
RIGIDITY OF JOININGS FOR HIGHER-RANK DIAGONALIZABLE
ACTIONS. In the previous section we considered how points on the one-
or two-sheeted hyperbolic

Vd(Z)=
{
(a, b, c) : b2− 4ac= d

}

project onto the unit one- or two-sheeted hyperboloid V1 or V−1, respec-
tively depending on the sign of d; similarly, regarding projection of points
on the sphere of radius

√−d (for notational convenience, we will use negative
integers to parameterize spheres),

Sd(Z)=
{
(a, b, c :∈Z

3 : a2+ b2+ c2=−d
}

projects to the unit sphere S. As explained in I and II in section 4.1, for the
special case of the one-sheeted hyperboloid (i.e., Vd(Z) for d> 0; see also the
paragraph immediately afterward regarding the modification for d< 0), these
distribution problems regarding the integer points Vd(Z) and Sd(Z) can be
interpreted in terms of the ideal class group ofQ(

√
d) or translated into ques-

tions regarding the distribution of suitable translates of the adelic points of
Q-tori Td(A) in G(A)/G(Q) for G being the Q-group PGL(2) or SO(3) in the
hyperboloid and sphere cases respectively.

15A somewhat anachronistic terminology, as this genus has nothing to do with the genus of any
surface.
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We will be mainly interested in the harder case of Td Q-anisotropic—
that is, d not a perfect square—in which case Td will split over the quadratic
extension Q(

√
d) of Q. In particular, the Q-torus Td will be split over R for

d> 0—that is, for one-sheeted hyperboloids—and over Qp iff
( d
p

)= 1. If one
wants to follow a scheme as in A–C to prove equidistribution using dynamical
ideas—particularly if one follows C to construct a limiting measure μ out of
a sequence di→±∞ and use dynamics to study this limiting measure—one
needs to assume either that di> 0 for all i or that there is a fixed prime p so
that

( di
p

)= 1 for all i.
We can strengthen our assumptions and require two places v,w∈{∞, primes} at which the tori Tdi splits—that is,

( di
v

)= ( di
w

)= 1 for all i; to
allow also the case of v or w=∞, we define ( d

∞
)= sign(d). If we make this

assumption we will obtain a limiting measure μ on G(A)/G(Q) (or, if we
prefer, on an S-arithmetic quotient of G for any S containing v,w,∞) that is
invariant under a higher rank diagonal group, on which we can try to apply
the measure rigidity theorems presented in section 2, and in particular the
joining classification theorem, Theorem 2.1.
We now describe an arithmetic consequence of the rigidity of higher rank

diagonal groups obtained in this way by Aka, Einsiedler, and Shapira [AES2].
Let d be a negative integer. By the Three Squares Theorem of Legendre and
Gauss, Sd(Z) is nonempty, iff d 	≡ 1 mod 8 (recall that in our conventions, d
is negative!). Consider for any integer vector n∈Sdi(Z) the lattice in the plane
orthogonal to n (with respect to the standard inner product on R

3),

�n=
{
x∈Z

3 : x ·n= 0
}
.

Let v1, v2 be generators of �n (considered as an additive group); then v1, v2
give rise to a positive definite binary quadratic form q(x, y)= ∥∥xv1+ yv2

∥∥2.
The integer quadratic form q will have (negative) discriminant 4d (we leave
this as an exercise for the reader), and given n the form q is well defined up
to the action of GL(2,Z) on V4d(Z). To be slightly more precise, n gives an
orientation on the plane n⊥, so if we chose v1, v2 to be a basis with positive
orientation, the form q is well defined up to the action of SL(2,Z). Thus we
get amap α :Sd(Z)→V4d(Z)/SL(2,Z). This map is neither injective nor onto,
but it is close to being both: up to a bounded integer factor, both the kernel
and co-kernel of this map is of size 2r−1, where r is the number of distinct
primes dividing d (this is less obvious but was understood already by Gauss).
Let mY denote the SL(2,R)-invariant measure on Y =V−1/SL(2,Z) and mS

the uniform measure on the unit sphere S (both normalized to be probability
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measures). We remark that Y can naturally be identified with H/PSL(2,Z),
with H the hyperbolic plane. The map α is close enough to being 1-1 that,
for example, if one assumes that di→−∞ with di 	≡ 1 mod 8 square-free and( di
p

)= 1 for some fixed prime p, then it follows—for example, using Linnik’s
methods—that the projections of

{
α(n) :n∈Sdi(Z)

}
to Y become equidis-

tributed with respect tomY . Recall also that Linnik showed under these condi-
tions that the collection of points Sdi(Z) projected to the unit sphere S becomes
equidistributed with respect to mS. Using Theorem 2.1, Aka, Einsiedler, and
Shapira were able to upgrade these two statements to a joint equidistribution
statement:

THEOREM 4.2 (Aka, Einsiedler, and Shapira [AES2]).
Let p, q be two distinct finite primes and di→−∞ a sequence of square-free neg-
ative integers 	≡ 1 mod 8 so that ( dip

)= ( di
q

)= 1 for all i. Then the projection of
the sets

{
(n,α(n)) :n∈Sdi

}⊂Sdi(Z)× (V4di(Z)/SL(2,Z))

to S×Y becomes equidistributed with respect to the measure mS×mY on this space
as i→∞.

In other words, for any nice subsets E⊂S and F⊂Y

#
{
n∈Sdi(Z) : |di|−1/2 n∈E and |4di|−1/2 α(N)∈F

}

#Sdi(Z)
→mS(E) ·mY (F).

Unlike the individual equidistribution on S and V−1/SL(2,Z), which can
also be proved using analytic number theoretic tools (indeed, the analytic
tools give significantly sharper results), there does not seem to be a plausible
approach using currently available technology to proving this joint equidis-
tribution statement using the techniques of analytic number theory or auto-
morphic forms. For more information in this direction we refer the reader to
[AES1, Appendix by Ruixiang Zhang16].
Theorem 4.2 turns out to be closely related to the following equidistribution

result stated in terms of the class group:

16[AES1] is the arXiv version of [AES2].
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THEOREM 4.3.
Let di→−∞ be a sequence of negative integers ≡ 0 or 1 mod 4 so that there
are two primes p, q for which

( di
p

)= ( di
q

)= 1 for all i. Identifying as before
elements of V∗di(Z) with primitive integral quadratic forms, we fix for every i

an arbitrary integral form qi ∈V∗di(Z) and define a collection of points Ṽ(2)di
⊂

(Vdi(Z)/GL(2,Z))
2 by

(4.4) Ṽ(2),qidi
=
{
([q], [qi]� [q]� [q]) : q∈V∗di(Z)

}
.

Then the projection of these collections to Y2 becomes equidistributed with respect to
mY ×mY as i→∞.

Note: We restrict ourselves to di< 0 for purely aesthetic reasons, as in this
case the relation of the equidistribution statement to integer points is cleanest.
In fact, taking di→+∞ is even better, as then only one additional split place
is needed—that is, one need only assume the existence of one prime p for
which

( di
p

)= 1 for all i.
Sketch of proof. For simplicity of notations, assume 4|di for all i (the modifi-
cation to di≡ 1 (mod 4) poses no additional difficulties). Let qe= x2− di

4 y
2,

and let Ti be the corresponding adelic torus as in paragraph II in section 4.1
(adapted for d< 0). Concretely, we can take Ti to be the stabilizer of the pro-
portionality class of qe in PGL(2,R). The Q-torus Ti is anisotropic over Q

and even over R but by our assumption on
( di
p

)
and

( di
q

)
will be split over

Qp and Qq. Let G=PGL(2,R), �=PGL(2,Z), K be the maximal compact
subgroup of PGL(2,Z) as in paragraph II, S= {∞, p, q}, GS=∏

v∈S PGL(Qv),
and �S=PGL(Z[1/pq]) diagonally embedded in GS.
Let Ṽdi = |di|−1/2 V∗di(Z)⊂V−1. Consider the natural projections πS,πY

G(A)/(Q)
πS−→GS/�S

πY−→K\G/�∼=Y ,

and let π =πY ◦πS. We denote by π ′, π ′Y the unnormalized form of π and
πY—that is, the corresponding maps to Vd/GL(2,Z). For suitable choice of
gi ∈PGL(2,A), we have that

π(gi[Ti(A)])= Ṽdi/GL(2,Z)

and that πS(giTi(A)) is invariant under the diagonal groups A1<PGL(2,Qp)

and A2<PGL(2,Qq). In particular, there is a ti ∈Ti(A) so that π(gi[ti]) is the
point in Y that corresponds to the GL(2,Z)-coset of qi.
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Reconciling the two points of view on the set V∗d (Z) given in I and II in
section 4.1, one verifies that

Ṽ(2),qidi
=
{
([q], [qi]� [q]� [q]) : q∈V∗di(Z)

}

is equal to {
(π ′(gi[t]),π ′(gi[ti · t · t])) : t∈Ti(A)

}
;

in particular Ṽ(2),qidi
is the projection of the

{
(a1a2, a21a

2
2) : a1 ∈A1, a2 ∈A2

}
-

invariant subset

{
(πS(gi[t]),πS(gi[tit2])) : t∈Ti(A)

}
≤ (GS/�S)

2

to (Vd/GL(2,Z))2.
The projection of the first coordinate in Ṽ(2),qidi

to Y equidistributes by the
work of Linnik [L4] or Duke [D3] (since we already assumed two split places—( di
p

)= ( di
q

)= 1 for all i—wemay as well use Linnik, who needs only one). The
second coordinate in Ṽ(2),qidi

does not run over all ofV∗di(Z)/GL(2,Z) but rather
over a subcollection—say, Vseconddi

of index equal to the 2-torsion in the class
group cl(Odi) of Odi .
Fortunately, already Gauss understood the 2-torsion in the class group of

quadratic fields (remarkably, even today we do not understand 2-torsion of the
class group in fields of higher degree!), and its size is nicely controlled by the
number of divisors of di; in particular it has size �|di|ε for all ε > 0 (by a
theorem of Siegel, the size of cl(Odi) is (noneffectively)�|di|1/2−ε for all ε).
To prove the equidistribution ofVseconddi

, one can either quote a result ofHar-
cos andMichel [HM] that can be viewed as an extension of Duke’s work, or one
can use ergodic theory: Vseconddi

is the projection of a
{
a21a

2
2 : a1 ∈A1, a2 ∈A2

}
-

invariant subset of GS/�S that can be treated using Linnik’s method as the
analogue of Equation (4.3) will also hold for Vseconddi

. For more details,17 we
refer the reader to [AES2, section 4].
Once the equidistribution of each component of Ṽ(2),qidi

separately has
been proved, Theorem 2.1 takes care of the rest. A key point is that
there is no nontrivial algebraic joining in (GS/�S)

2 invariant under{
(a1a2, a21a

2
2) : a1 ∈A1, a2 ∈A2

}
.

17At least for the case of fundamental discriminants, though the general case is not more
complicated.
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It is a folklore conjecture that for any integer k, the k-torsion in cl(Od) is
�|d|ε as |d|→∞ (see, e.g., [EV]). Assuming this conjecture, the method of
Theorem 4.3 would give that for any k, any sequence of negative integers di→
−∞ with di≡ 0 or 1 mod 4 and

( di
p

)= ( di
q

)= 1 for two fixed primes p, q and
any choice of qi,1, qi,2, . . . qi,k ∈V∗di(Z), we have that the projection of

{
([qi,1]� [q], [qi,2]� [q]�2, . . . , [qi,k]� [q]�k) : q∈V∗di(Z)

}

to Yk becomes equidistributed.
Consider now another collection of points in (Vdi/GL(2,Z))

2,

(4.5) Ṽ join,qidi
=
{
([q], [qi]� [q] : q∈V∗di(Z)

}
,

depending on the discriminant di as well as qi ∈V∗di(Z).
It would seem to be a simpler collection to study than the non-linear collec-

tion Ṽ(2),qidi
defined by Equation (4.4), if only because the equidistribution of

each of the two projections to Y follows literally from Duke’s theorem. How-
ever, this intuition turns out to be misguided. Studying the distribution of
the collections, Ṽ join,qidi

turns out to be substantially subtler than the collection

Ṽ(2),qidi
for a simple reason: after passing to a limit, there are nontrivial joinings

that need to be ruled out. And indeed, without further assumptions, the pro-
jections of the collection of points Ṽ join,qidi

to Y ×Y need not equidistribute.

For instance, if one takes qi to be x2− (di/4)y2 or x2+ xy− (di−1)
4 y2 (so that

[qi] is the identity for Gauss’s group law on V∗di(Z)/GL(2,Z)) the projection
of this collection of points to Y2 is supported on the diagonal {([v], [v]) : v∈Y}
and hence certainly does not equidistribute!
A similar problem holds if [qi] has small size N([qi]). To define N(•) we

use the correspondence in paragraph I in section 4.1 between elements of
Ṽ∗di(Z)/GL(2,Z) and elements of the ideal class group cl(Odi). If I�Odi is

the ideal corresponding to the quadratic form q∈ Ṽ∗di(Z)/GL(2,Z), we define

N([q])=min {N(J) : J�Odi , J∼ I
}
.

If we consider a sequence di→−∞ and qi ∈V∗di(Z)withN([qi]) bounded (say,
less than N), for similar reasons the collections Ṽ join,qidi

will be restricted to a
subset of Y ×Y of dimension dimY = 2: the union of the graphs of the Hecke
correspondences on Y ×Y of order ≤N.
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Michel and Venkatesh conjectured this is the only obstruction:

CONJECTURE 8 (Michel and Venkatesh [MV1, conjecture 2]). Let di→
−∞ along the sequence of fundamental discriminants. For each i, let qi ∈V∗di(Z),
and assume that N([qi])→∞. Then the projection of the collection Ṽ join,qidi

to
Y ×Y equidistributes as i→∞.

We recall that for d< 0 (ineffectively) the size of cl(Od), which as we have
seen can be identifiedwithV∗d (Z)/GL(2,Z), is |d|1/2+o(1). The number of ideal
classes [I] in cl(Od) withN([I])<N can be easily seen to be�N1+o(1). More-
over, by a simple application of Minkowski’s theorem, one can see that for any
ideal class [I] ∈ cl(Od), one hasN([I])�|d|1/2 (except for the lower bound on
the size of cl(Od), all of these bounds are elementary and effective).
In [EMV2], Ellenberg, Michel, and Venkatesh prove Conjecture 8 for di→
−∞ and qi ∈V∗d (Z)/GL(2,Z) withN([qi])→∞ assuming one split prime as
long asN([qi])< |di|1/2−ε for some fixed ε > 0. Essentially, their proof employed
a variant of Linnik’s method with a rather quantitative variant of step C in
section 4.1, which gave first an equidistribution statement for the projection
of an appropriate shift of the adelic torus gi[Ti(A)] (notations as in the proof
of Theorem 4.3) to the quotient PGL(2,R)/�i with �i<PGL(2,Z) an appro-
priate congruence subgroup with [�i : PGL(2,Z)]→∞. This equidistribution
of a single orbit in a homogeneous space of increasing volume can then be
coupled with the equidistribution of the natural embedding

PGL(2,R)/�i ↪→ (PGL(2,R)/PGL(2,Z))2

as the uniform measure on a closed orbit18 of a diagonally embedded
PGL(2,R) ↪→PGL(2,R)2 to the uniform measure on the product space.
Assuming two split primes, Khayutin has been able to (essentially) prove

Conjecture 8 using a combination of ergodic and analytic tools, in particular
Theorem 2.1:

THEOREM 4.4 (Khayutin [K2, theorem 1.3]).
Let di→−∞ be a sequence of fundamental discriminants so that there are two
primes p, q for which

( di
p

)= ( di
q

)= 1 for all i, and let qi ∈V∗di(Z) satisfy N([qi])→
∞. Assume furthermore that the Dedekind ζ -function of the fields Q(

√
di) have

18In fact, the graph of a Hecke correspondence.
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no exceptional Landau-Siegel zero. Then the projection of the collection Ṽ join,qidi
to

Y ×Y equidistributes as i→∞.

It is very widely believed that Landau-Siegel zeros do not exist, as this is a
very special, albeit important, case of the Riemann hypothesis for Dedekind
ζ -functions. Moreover, even if these notorious Landau-Siegel zeros were to
exist, they would have to be exceedingly rare: by a theorem of Landau (see [IK,
theorem 5.28]), for any A> 1 and D large enough there will be at most one
fundamental discriminant d between −D and −DA for which the Dedekind
ζ -function of Q(

√
d) has such a zero.

Theorem 2.1 allows one to deduce from Theorem 4.4 the following seem-
ingly much more general theorem:

THEOREM 4.5 (Khayutin [K2, theorem 3.9]).
Fix k∈N. Let di→−∞ be a sequence of fundamental discriminants so that there
are two primes p, q for which

( di
p

)= ( di
q

)= 1 for all i, and let qi,1, . . . , qi,k ∈V∗di(Z)
so that for any 1≤ j<	≤ k we have that N([qi,j]� [qi,	]−1)→∞. Assume fur-
thermore that the Dedekind ζ -function of the fields Q(

√
di) have no exceptional

Landau-Siegel zero. Then the projection of the collections

{
([qi,1]� [q], . . . , [qi,k]� [q] : q∈V∗di(Z)

}

to Yk equidistributes as i→∞.

We end this rather long subsection with a striking equidistribution result
by Aka, Einsiedler, and Wieser on the space gr2,4(R)×Y4, where gr2,4(R)
is the projective variety (known as the Grassmannian) of two-dimensional
subspaces of a four-dimensional space over R, arising due to the “acciden-
tal” local isomorphism between SO(4) and SU(2)×SU(2) (or equivalently
SO(3)×SO(3)).
Consider now the quaternary19 integer quadratic form Q(x, y, z,w)= x2+

y2+ z2+w2, and consider all the binary integral quadratic forms q of discrim-
inant d that can be represented by Q—that is, so that there is a 4× 2 integer
matrixM so that

q(x, y)≡Q
(
M

(
x
y

))
.

19I.e., of four variables.
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Necessarily these binary quadratic forms will be positive definite, and
hence d< 0. It is a classical theorem that there are such binary quadratic
forms iff −d 	≡ 0, 7, 12, 15 mod 16. The image of M is a rational subspace
L<R

4 of dimension 2 and hence in particular gives us a point in gr2,4. The
space perpendicular to L also intersects the lattice Z

4 in a lattice; hence,
after choosing (arbitrarily) a basis for L⊥ ∩Z

4, we obtain another binary
quadratic form that can be shown to also have discriminant d. Thus we obtain
for any d< 0, −d 	≡ 0, 7, 12, 15 mod 16 a collection of triplets of points in
gr2,4×(Vd(Z)/GL(2,Z))2, which we can project to gr2,4×Y2. For each choice
of a binary form q represented by Q , Aka, Einsiedler, and Wieser magically
pull two more rabbits (actually, only points of Y) out of the hat using the Klein
map, which assigns to any L∈ gr2,4 a point in (S×S)/{±1}, with the ±1 act-
ing by scalar multiplication on both factors. Identifying R

4 with the Hamilton
quaternions

{
x+ iy+ jz+ ijw : x, y, z,w∈R

}
, where i2= j2=−1, ij=−ji, pick

two linearly independent vectors v,w∈ L, and define

a= vw− trace(vw) a′ =wv− trace(wv).

a, a′ are two traceless quaternions; they hence lie in a three-dimensional space
and have the same norm. After rescaling, they define a point in (S×S)/{±1}
that turns out to be independent of the choice of generators v, w. If we chose
v,w to be generators of L∩Z

4, then a, a′ will be integral, andQ(a)=Q(a′)will
be equal to |d|. The vectors a and a′ give a continuous parameterization of L,
so considering the joint distribution in the limit of the rescaled collections of
triplets consisting of

. a binary integral quadratic form q of discriminant d represented by Q ,. the corresponding L∈ gr2,4, and. the quadratic form induced on L⊥
implicitly also describes the distribution of a, a′. However, these are inte-
gral vectors in a three-dimensional space, and the quadratic form induced
by choosing generators of the lattices perpendicular to a and a′ in this space
gives the desired two additional points of Y .

THEOREM 4.6 (Aka, Einsiedler, Wieser [AEW]).
Let di→−∞ along the sequence−d 	≡ 0, 7, 12, 15 mod 16 so that ( dip

)= ( di
q

)= 1
for two odd primes p, q. Then the collections of 5-tuples in gr2,4×Y4 defined above
become equidistributed as i→∞ with respect to the SO(4,R)×PGL(2,R)4–
invariant measure on this space.
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In a similar way to how Theorem 4.3 relates to Theorem 4.2, Theorem 4.6
is related to the distribution of the 6-tuples
{
([q], [q′], [qi,1]� [q]� [q′], [qi,2]� [q]� [q′]−1, [qi,3]� [q]2, [qi,4]� [q′]2) :

q∈V∗di(Z)
}
,

with qi,1, . . . , qi,4 ∈V∗di(Z) arbitrary, in Y6. We refer the reader to [AEW,
section 7] for more details. Similarly to Theorems 4.3 and 4.2, the joining
theorem, Theorem 2.1, is a key ingredient.

4.3 LINNIK’S PROBLEM IN PGL(3) AND BEYOND. Equidistribution
of integer points discussed in sections 4.1 and 4.2 are at the core questions
about the distribution of adelic points of Q-tori on arithmetic quotients of
forms of PGL(2) and their joinings. In this section we consider the more gen-
eral question of density and equidistribution of adelic torus subsets—sets of
the form g[T(AF)] inG(AF)/G(F), where F is a number field, AF is the Adele
ring of F,G is a reductive group over F, and T is an anisotropic F-torus. When
F=Q we write A for AQ.
Let S be a set of places for F (equivalence classes of embeddings of F in

local fields—if v is such an embedding, we denote by Fv the corresponding
local field; we implicitly assume F is dense in Fv) containing at least one place
v in which T splits and all infinite places (embeddings of F in R or C up to
identifying conjugate embeddings in C). Let G=∏

v∈S G(Fv).
In section 4.2 essential (though mostly implicit) use was made of

the fact that there is a natural projection from PGL(2,A)/PGL(2,Q) to
PGL(2,R)/PGL(Z) with compact fibers. At the level of generality we are dis-
cussing here, the picture is slightly more complicated: if one would like to
project G(AF)/G(F) to some quotient of G, in general one needs to take a
finite number of lattices �1, . . . ,�k<G with �i all conjugate over G(Q) and
all commensurable to G(OF,S) to obtain a natural projection

(4.6) πS :G(AF)/G(F)→
i=1⊔
k

G/�i

analogous to the projection from PGL(2,A)/PGL(2,Q) to PGL(2,R)/PGL(Z)
(see [PR, section 5]).20 We will also use πS to denote the natural projection
G(AF)→G.

20We already saw this phenomenon implicitly when discussing orthogonal groups in section 4.2—
this is precisely the reason why for general ternary definite quadratic forms we need to consider
not one quadratic form individually but the whole genus of quadratic forms locally equivalent to it.
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Since T was assumed to be F anisotropic, the orbit [T(AF)] in
G(AF)/G(F) supports a T(AF)-invariant probability measure mT(AF). The
projection of g[T(Af )] to

⊔i=1
k G/�i is a finite union of periodic Ag,S=

πS(g)
∏

v∈S T(QS)πS(g−1)-orbits, and if v∈S is a place where T is split, then
the uniformmeasure onπS(g[T(AF)]), which is simply the average of the peri-
odic measure on each of the Ag,S-periodic orbits comprising πS(g[T(Af )]), is
invariant under a nontrivial Qv-diagonalizable group.
Moreover, if either the Qv-rank of T(Qv) is ≥ 2 or T splits over at least one

other place v′ ∈S, πS(g[T(Af )]) is invariant under a higher rank action, and
one can hope to use the tools of section 2 to study this set as well as the
corresponding probability measure.
As an explicit example, we show how periodic A-orbits in PGL(n,R)/

PGL(n,Z) fit in this framework, where A<PGL(n,R) is the full diagonal
group. This corresponds to the above for S={∞} and G=PGL(n) when the
shifting element is chosen appropriately. Indeed, an A-periodic orbit A.[g∞]
in PGL(n,R)/PGL(n,Z) defines a R-split Q-tori in G by

T=CG

(
PGL(n,Z)∩ g−1∞ Ag∞

)
.

Then

(4.7) A.[g∞]⊆π(g[T(A)])
(
g= (g∞, e, e, . . . )∈PGL(n,A)

)
.

Equality does not always occur in (4.7)—in general, the projection π(g[T(A)])
of the above adelic toral subset consists of a packet of several periodic A-orbits
A.[g(i)∞], all with the same shape—that is, with the same

stabA([g(i)∞])=
{
a∈A : a.[g(i)∞]= [g(i)∞]

}
.

In this context, the following seems to be a natural conjecture. Conjecture 8
can be viewed as a special case of this conjecture.

CONJECTURE 9. LetG be a semisimple algebraic group over a number field F, let
Ti<G be anisotropic F-tori, and let gi ∈G(AF). Let G̃ be the simply connected cover
of G with j : G̃→G the corresponding isogeny. Then we have these alternatives:

(1) Any weak-∗ limit of the uniform measures on gi[T(AF)] is invariant under
j(G̃(AF)).
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(2) There exist a bounded sequence hi ∈G(AF) and a proper Q-subgroup H<G

so that for infinitely many i,

gi[T(AF)]⊂ hi[H(AF)].

We remark that if G is simply connected, alternative (1) is equivalent to
gi[T(AF)] becoming equidistributed in G(AF)/G(F) and in general implies
that any weak-∗ limit of the corresponding measures is homogeneous. We
also note that the assumption that hi be bounded in alternative (2) of Conjec-
ture 9 is equivalent to the following: there is a finite set of places S so that
for any v∈S the G(Fv) component of hi remains bounded, and for any v 	∈S
the G(Fv) component of hi is in G(Ov), where Ov is the maximal compact
subring of Fv.
Of interest are results not just for the full group of adelic points T(AF) but

also for large subgroups. These occur naturally, in particular in the context
of the study of special points on Shimura varieties: the orbit under the abso-
lute Galois group on a special point, considered as a Q-point in an arithmetic
model of K\G/�, turns out to be such a group, though it is rather difficult to
put one’s finger on how big this group is; see, for example, Tsimerman’s paper
[T4], which proves an important special case of the André-Oort conjecture
(namely, when G=SP(n)) via such an analysis.
The analogue of Conjecture 9 when Ti is not a torus (e.g., when it is a

semisimple or reductive group) is also highly interesting.21 If one assumes
(implicitly or explicitly) that there is a fixed place v for which Ti(Fv) contains
a unipotent subgroup, one can bring to bear deep tools on unipotent flows, in
particular Ratner’s measure classification theorem [R3] and its S-arithmetic
generalizations by Ratner [R5] and by Margulis-Tomanov [MT1], as was done
by Eskin and Oh in [EO]. Indeed, under some additional assumptions, and
for Ti semisimple, Einsiedler, Margulis, and Venkatesh [EMV1] and these
three authors jointly with Mohammadi [EMMV] were able to give a quantita-
tive equidistribution statement; an exciting feature of [EMMV] is that thanks
to the quantitative nature of the proof, it is even able to handle sequences ofQ-
groups Ti for which there is no place v at which all (or even infinitely many) of
these groups split. The discussion of these interesting works is unfortunately
beyond the scope of this survey.

21In general, in the context ofQ-groups ormore generally groups defined over a number field F, we
reserve T to denote an algebraic torus; we make an exception to this convention in this paragraph
in order to abuse the notations of Conjecture 9 to cover a wider context.
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Results toward Conjecture 9 for G=PGL(n) or inner forms of PGL(n)
(see below) were obtained by Einsiedler, Michel, Venkatesh, and this author
in [ELMV1] and [ELMV2] and strengthened in certain respects by Khayutin
in [K1].
When considering periodic orbits of a fixed groupH on a space X , one can

fix a Haar measure on H and, once this is done consistently, measure the
volume of allH periodic orbits. When one allows the acting group to vary, one
needs a slightly more sophisticated notion of volume:

DEFINITION 4.7 ([ELMV2, definition 4.3]). LetG be a fixed group defined
over a number field F and �⊂G(AF) a fixed neighborhood of the iden-
tity. Let H<G be an F-subgroup. We define the size22 of an adelic shifted
orbit gi[H(AF)] to be∞ if H(AF)/H(F) does not have finite H(AF)-invariant
measure and

size(gi[H(AF)])= mH(AF)(H(AF)/H(F))

mH(AF)(H(AF)∩ g−1i �gi)
.

Note that changing � changes the size only up to a constant factor.

THEOREM 4.8 (Einsiedler, Michel, Venkatesh, and Lindenstrauss
[ELMV2]).
Let G=PGL(3), F be a number field, gi ∈G(AF), and Ti<G be a maximal
F-torus. Assume the following:

(1) There is a place v of F so that (a) Ti is split over Fv and (b) Fv has no proper
closed subfield—that is, either Fv∼=R or Fv∼=Qp for some prime p.23

(2) size(gi[T(AF)])→∞.

Then any limiting measure of the uniform distribution on gi[T(AF)] is invariant
under the image of SL(3,AF) in G(AF). In particular, if the class number of the
integer ring in F satisfies # cl(OF)= 1, then the adelic torus sets gi[T(AF)] become
equidistributed in G(AF)/G(F).

22In [ELMV2] we used the term volume of a periodic orbit to denote what we call here size. We
decided to use a different terminology in this survey so we can unambiguously use volume to denote
the volume of a periodic orbit with respect to a fixed Haar measure on the acting group.
23Part (b) of this assumption was omitted in [ELMV2] but is implicitly used in the proof. It is of
course automatically satisfied for F=Q.
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Assumption (2) in Theorem 4.8 turns out to be equivalent to assump-
tion (2) in Conjecture 9, as there are no proper F-subgroups of PGL(3)
containing a maximal F-torus other than the torus itself, and the assump-
tion that the volume size(gi[T(AF)])→∞ rules out the adelic torus subsets
gi[T(AF)] being all in bounded translate of the image of a fixed F torus in
G(AF)/G(F).
The following is an easier-to-digest (weaker) form of Theorem 4.8 for F=Q,

where the adeles are not explicitly mentioned:

THEOREM 4.9 (Einsiedler, Michel, Venkatesh, and Lindenstrauss
[ELMV2]).
Let A be themaximal diagonal group inPGL(3,R). Let Vi be the sequence of all pos-
sible volumes of A-periodic orbits in PGL(3,R)/PGL(3,Z) with respect to the Haar
measure on A. For every i, let Ci be the collection of A-periodic orbits of A of volume
exactly Vi. Then these collections become equidistributed in PGL(3,R)/PGL(3,Z)
as i→∞.

The proof of Theorem 4.8 goes via a combination of analytic and ergodic
tools:

(1) Using the analytic theory of automorphic forms—specifically the sub-
convexity estimates of Duke, Friedlander, and Iwaniec [DFI] (or when F
is a general number field, an extension byMichel and Venkatesh of these
subconvex bounds [MV2]), which incidentally are closely related to the
works of Duke and Iwaniec mentioned in section 4.1—one shows that
for some rather special functions f ∈ L2(G(AF)/G(F)),

(4.8)
 
gi[Ti(AF)]

f → 0.

Indeed, here the estimates are even quantitative.
(2) Consider the Fv-split tori gi,vTi(Qv)g−1i,v , with gi,v denoting the Fv com-
ponent of Gi and v a place as in Theorem 4.8(1). Without loss of
generality these would converge to some Fv-group Av. If this group con-
tains unipotent elements, we can use Ratner’s measure classification
theorem (or more precisely its S-arithmetic extensions [R5, MT1]). Oth-
erwise one can use Equation (4.8), established for a certain collection
of special f , to ensure that every ergodic component of any weak-∗ limit
of the probability measures attached to gi[Ti(AF)] has to have positive
entropy with respect to the action ofAv, whence one can use themeasure
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classification results of [EKL] and [EL2] (e.g., Theorem 2.4), to conclude
the theorem.

We note that Theorem 4.8 can be combined with the joining classification
theorem (Theorem 2.1) to obtain joint equidistribution statements; see [EL3,
theorem 1.8] for a precise statement.
In [ELMV1], a purely ergodic theoretic approach was used. This approach

is not powerful enough to give a full equidistribution result, but on the other
hand it is significantly more flexible and in particular gives information about
rather small subsets of an adelic torus subset. For simplicity (and to be more
compatible with the terminology in [ELMV1]), we work over Q (instead of a
general number field F) and use the more classical language of A-periodic
orbits employed in Theorem 4.9. We also assume for notational simplicity
that the place where the Q-tori we will consider is split is∞, though the dis-
cussion below with minimum modification also holds for tori split over Qp

instead of R.
Recall the relationship given in Equation (4.7) between periodic A-orbits

and the projection under πS of appropriate shift of the adelic points of Q-
tori (with πS as in Equation (4.6) and S={∞}): a periodic orbit A.[g] in
PGL(n,R)/PGL(n,Z) defines a Q-torus T, and g.πS([T(A)]) is a packet of
periodic A-orbits of the same volume. In addition to the volume of a peri-
odic A-orbit A.[g] and its shape stabA([g]), we can attach to this orbit an order
in a totally real degree n-extension of R embedded in the subring of (not
necessarily invertible) diagonal n× nmatrices D<Mn×n(R) as follows:

(4.9) O[g] =
{
x ∈D : xgZn⊆ gZn} .

The order O[g] in D is best thought of as an abstract order O in a totally real
number fieldK with [K :Q]= n, together with an embedding τ of this order in
D (essentially this amounts to giving an ordering on the n embeddings K→
R). The discriminant disc(A.[g]) of the periodic orbit A.[g] is by definition the
discriminant of the orderOD—that is (up to sign), the square of the covolume
of O[g] in D: it is an integer, since if α1= 1, then α2, . . . ,αn are independent
generators of O[g]:

disc(O[g])= det(trace(αiαj))ni,j=1.

The relation between the volume of a periodic orbit A.[g] (which is called
by number theorists the regulator) and the size of the adelic toral subset
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g̃[T(A)] (with g̃ the image of g in PGL(n,A) under the obvious embedding
PGL(n,R) ↪→PGL(n,A)) is rather weak. Assuming the field generated byO[g]
does not contain any nontrivial subfields,24 then

log(disc(A.[g]))n−1� vol(A.[g])� size (ḡ[T(A)])(4.10)

= disc(A.[g])1/2+o(1),

the last “equality” being ineffective (see [ELMV1] and [ELMV2] for details).
Using the measure classification result in PGL(n,R)/PGL(n,Z) of [EKL] (a

special case of Theorem 2.4) and a rather crude entropy estimate, the following
was proved in [ELMV1]:

THEOREM 4.10 (Einsiedler, Michel, Venkatesh, and Lindenstrauss
[ELMV1, theorem 1.4]).
Let � be a compact subset of PGL(n,R)/PGL(n,Z) and A the maximal diagonal
subgroup of PGL(n,R) for n≥ 3. Then

#
{
periodic A orbits A.[g]⊂� with disc(A.[g])≤D}�ε,�Dε .

Since the number of A-periodic orbits A.[g] with disc(A.[g]) is easily seen
to be�Dc for appropriate c> 0, Theorem 4.10 can be viewed as evidence to
the following conjecture, implied by Conjecture 1a:

CONJECTURE 10. Let n≥ 3. Any compact �⊂PGL(n,R)/PGL(n,Z) con-
tains only finitely many A-periodic orbits.

Conjecture 10 follows from Conjecture 1a using the Cassels and
Swinnerton-Dyer isolation result; see [M5]. Note that for n= 2 the ana-
logue of Theorem 4.10 is false; indeed, for any ε there is a compact �⊂
PGL(2,R)/PGL(2,Z) so that

#
{
periodic A orbits A.[g]⊂� with disc(A.[g])≤D}�D1−ε ;

see [ELMV1, theorem 1.5].
The noncompactness of PGL(n,R)/PGL(n,Z)makes it harder to deduce a

density statement from these rigidity results; however, for cocompact inner
forms of PGL(n)—namely, PGL(1,M) with M a central division algebra of

24This assumption is needed only for the first inequality.
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degree n over Q—one can say more. Assume M splits at R (i.e., M⊗R∼=
Mn×n(R)), and let OM be a maximal order in M(Q). Then PGL(1,M⊗R)∼=
PGL(n,R) and PGL(1,OM) (or any subgroup of PGL(1,M⊗R) commensu-
rable to it) can be viewed as a cocompact lattice in PGL(n,R).
Let A be a maximal R-split R-torus in PGL(1,M⊗R), and let D be the

abelian subalgebra ofM⊗R commuting with A. As in Equation (4.9), we can
define for any periodic A-orbit A.[g] in PGL(1,M⊗R)/PGL(1,OM) an order
in a totally real number field and an embedding of this order to the algebra D
by considering

OA.[g] =D∩ gOMg−1.

While this will not be of relevance to our purposes, not all orders in totally real
fields of degree n can appear in this way; indeed, an abstract order O∼=OA.[g]
attached to a periodic A-orbit in PGL(1,M⊗R)/PGL(1,OM) has to satisfy the
local compatibility condition that O⊗Qp can be embedded inM⊗Qp for all
prime p. In this context, one has the following:25

THEOREM 4.11 (Einsiedler, Michel, Venkatesh, and Lindenstrauss
[ELMV1, theorem 1.6]).
Let M be a division algebra over Q of degree n so that M⊗R∼=Mn×n(R). Let
OM be a maximal order in M⊗Q, and let A be a maximal R-split R-torus
in PGL(1,M⊗R). Let α > 0, and for any i, let Ci be a collection of (distinct)
A-periodic orbits

{
A.[gi,1], . . . ,A.[gi,ki ]

}
so that

ki≥
(
max
j
disc(A · [gi,j])

)α

and ki→∞. Assume that there is no subgroup A≤H<PGL(1,M⊗R) so that
infinitely many gi,j lie on a singleH-periodic orbit inPGL(1,M⊗R)/PGL(1,OM).
Then the collections Ci become dense in PGL(1,M⊗R)/PGL(1,OM)—that is, for
every open U⊂PGL(1,M⊗R)/PGL(1,OM), we have that there is an i0 so that
for i> i0 there is a j∈ {1, . . . , ki} so that A.[gi,j] ∩U 	= ∅.

To prove Theorem 4.11 one uses in addition to the ingredients used in
Theorem 4.10 (namely, Theorem 2.4 and an appropriate entropy estimate)
a variant of the orbit closure/isolation theorems of Weiss and this author
[LW2] and Tomanov [T1] (cf. Theorem 3.4). Applying Theorem 4.11 to the

25The phrasing here is a bit stronger than that in [ELMV1]; the proof in [ELMV1] gives this slightly
stronger version.
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collections Ci=
{
A.[g] :OA.[g] = τi(Oi)

}
for Oi, a sequence of maximal orders

in totally real degree n number fields, one gets the following, which can also
be interpreted as a theorem about the projection of adelic toral subsets in
PGL(1,M⊗A)/PGL(1,M⊗Q) to PGL(1,M⊗R)/PGL(1,OM):

COROLLARY 4.12. In the notations of Theorem 4.11, letOi be the ring of integers
in totally real fields Ki, τi the embeddings of Oi ↪→D, and

Ci=
{
A.[g] :OA.[g] = τi(Oi)

}
;

assume that Oi is chosen so that the collections Ci are nonempty. Assume that there
is no fixed field L of degree d|n, which is a subfield of infinitely many Ki. Then the
collections Ci become dense in PGL(1,M⊗R)/PGL(1,OM).

In [K1], a substantially more refined entropy estimate was given. This
entropy estimate is quite interesting in its own sake, and in particular implies
the following:

THEOREM 4.13 (Khayutin [K1]).
Let Ki be a sequence of totally real degree n number fields and let Oi be the ring of
integers Ki. Let ζ be a generator for Ki over Q. Assume that n is prime and that
the Galois group of the Galois extension of Ki acts two-transitively on the Galois
conjugates of ζ . Let τi be embeddings of Oi ↪→D and let

Ci=
{
A.[g] :OA.[g] = τi(Oi)

}
;

assume again thatOi is chosen so that the collections Ci are nonempty. Then for any
bounded continuous f on X =PGL(1,M⊗R)/PGL(1,OM),

(4.11) lim
i→∞

∑
A.[g]∈Ci

´
A.[g] f∑

A.[g]∈Ci
´
A.[g] 1

≥ 1
2(n− 1)

ˆ
X
f .

The techniques of [ELMV1] also imply an estimate of the form (4.11) but
with a much worse bound. An important technical point is that the entropy
bounds in [K1] apply with regard to singular one-parameter diagonal sub-
groups ofA and hencewould also be useful in the context of analyzing periodic
orbits of a Q-torus that is only partially split at a given place.
We remark that if one fixes a Q-torus T and shifts it either in the real place

or in one (or several) p-adic places, one also obtains interesting equidistribu-
tion results, though they are now related less to diagonal flows and more to
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unipotent ones. See the work by Eskin, Mozes, and Shah [EMS1, EMS2] for
the former (with a nice application regarding counting matrices with a given
characteristic polynomial in large balls in SL(n,R)) and by Benoist and Oh
[BO] for the latter (using these results to study rational matrices with a given
characteristic polynomial). Finally, we mention the work of Zamojski, giving
counting (and equidistribution) results for rational matrices in a given charac-
teristic polynomial in terms of the height of these matrices [Z1]. This leads to
subtler issues, where unipotent flows or equidistribution of Hecke points do
not apply. Instead, Zamojski uses measure rigidity of diagonal flows, building
on [ELMV2]. Notably, by fixing a Q-torus, Zamojski is able to handle Q-tori in
SL(n,R) for a general n; the fact that theQ-torus is fixed allows one to avoid the
need to use subconvexity results, and an additional averaging that is present in
the problem studied by Zamojski allows handling intermediate subvarieties.

5 Applications regarding quantum ergodicity

In this section, we consider applications of homogeneous dynamics—namely,
diagonal flows—to the study of Hecke-Maass cusp forms on H/� and their
generalizations. We note that by the Selberg trace formula, Hecke-Maass
forms can be considered as a dual object to the periodic A-trajectories con-
sidered in section 4.1, and though we are not aware of a dynamical result that
makes use of this duality, the analogy is quite intriguing.
Consider first the case of G=PGL(2). Then K\G(R)/G(Z) for K =

PSO(2,R) can be identified with the modular surface26 H/PSL(2,Z).
To any primes p there is a correspondence—theHecke correspondence, which

we will denote by CHeckep —assigning to every x ∈H/PSL(2,Z) a set of p+ 1-
points in this space. This correspondence can be described explicitly as
follows: If x=[z] for z∈H, then

(5.1) CHeckep ([z])=
{
[pz], [z/p], [(z+ 1)/p], . . . , [(z+ p− 1)/p]

}
;

while each one of the points on the right-hand side depends on the choice
of representative z of [z], the collection of p+ 1-points is well-defined. More-
over this correspondence lifts to PGL(2,R)/PGL(2,Z), giving to each [x] ∈
PGL(2,R)/PGL(2,Z) a set (also denoted by CHeckep ([x])) of p+ 1-points in
PGL(2,R)/PGL(2,Z) so that if πY : PGL(2,R)/PGL(2,Z)→H/PSL(2,Z) is

26To some, the modular curve.
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the natural projection, then

πY

(
CHeckep ([x])

)
=CHeckep (πY ([x])).

An important property of the Hecke correspondence is its reflexivity:

(5.2) [y] ∈CHeckep ([x]) iff [x] ∈CHeckep ([y]).

Moreover, CHeckep ([•]) is equivariant under left translations on PGL(2,R)
/PGL(2,Z)—that is,

CHeckep (h.[x])= h.CHeckep ([x])

—which implies that on H/PGL(2,Z), each branch of CHeckep ([•]) is a local
isometry.
In terms of the projection (for S={∞})

πS : PGL(2,A)/PGL(2,Q)→PGL(2,R)/PGL(2,Z),

if ap ∈PGL(2,A) is the element equal to
(
p
1

)
in theQp-component and the

identity in every other component, then for any [x] ∈PGL(2,R)/PGL(2,Z),

(5.3) CHeckep ([x])=πS(ap.π−1S ([x])).

Phrased slightly differently, if we consider an ap orbit

{[x̄], ap.[x̄], . . . , akp.[x̄]}⊂PGL(2,A)/PGL(2,Q)

and project it to PGL(2,R)/PGL(2,Z), we will get a sequence of points
[x0], . . . , [xk] with [xi] ∈CHeckep ([xi−1]); moreover, it can be shown that this
discrete trajectory is non-backtracking in the sense that [xi] 	= [xi+2].
Using the Hecke correspondences CHeckep (•) on H/PSL(2,Z), we define

for any prime p a self-adjoint operator Tp, called Hecke operators, on
L2(H/PSL(2,Z)) by

(Tpf )(x)= p−1/2
∑

y∈CHeckep (x)

f (y).

It follows from the relation between the Hecke correspondences and actions
of diagonal elements in PGL(2,A)/PGL(2,Q) (or directly from the defini-
tion of these correspondences in Equation (5.1)) that for every prime p, q,
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the operators Tp and Tq commute. Moreover, using the symmetry of the
Hecke correspondences in (5.2) and the fact that each branch of CHeckep (•)
is a locally isometry, one sees that operators Tp are self-adjoint operators
on L2(H/PSL(2,Z)) commuting with the Laplacian. Thus using the well-
known spectral properties of the Laplacian, the discrete spectrum of � in
L2(H/PSL(2,Z)) is spanned by joint eigenfunctions of � and all Hecke oper-
ators. Moreover, except for finitely many of them (in fact only the constant
function), these eigenfunctions will be cusp forms—that is, eigenfunctions
of � with the property that their integral over any periodic horocycle on
H/PSL(2,Z) is zero. These joint eigenfunctions are called Hecke-Maass cusp
forms.27

A similar setup works in cocompact quotients. Let M be a quaternionic
division algebra over R with M⊗R∼=M2×2(R). Let G=PGL(1,M). Then
G(R)∼=PGL(2,R), and if OM is a maximal order in M, then �=O×

M
/Q×

is a cocompact lattice in G(R) commensurable to G(Z).28 Taking as before
S={∞}, then by Equation (4.6)

πS :G(A)/G(Q)→
k⊔

i=1
PGL(2,R)/�i.

Indeed, maximal orders in R-split quaternion algebras have class number 1,
so in fact the image is a single quotient PGL(2,R)/�; though if one takes
a nonmaximal order O, a disjoint union is needed (cf. [RS, section 2.2] and
references therein). At any place p in whichM⊗Qp∼=M2×2(Qp) (in particular,
for all but finitely many places), we can choose (noncanonically) an element ap
as in the paragraph above (5.3), and this allows us using (5.3) to define Hecke
correspondences CHeckep (•) on PGL(2,R)/� and H/� as well as a family of
self-adjoint operators Tp commuting with each other and with� on L2(H/�).
Then L2(H/�) is spanned by Hecke-Maass forms—joint eigenfunctions of�
and all Tp.29

Motivated in part by the study of Hecke-Maass forms, Rudnick and Sarnak
made the following bold conjecture regarding any hyperbolic surface:

27For us cuspidality of the forms is not relevant, but only that these are eigenfunctions of � and
all Tp in L2(H/PSL(2,Z)).
28To defineG(Z) (at least in the way we do it in the survey) one needs to choose aQ-embedding of
G in some SL(N); reasonable people might do this in different ways, but they would all agree that
the � we define is commensurable to G(Z).
29In this case, these joint eigenfunctions, even the constant function, satisfy the condition of
cuspidality automatically (if somewhat vacuously) since there are no periodic horospheres!
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CONJECTURE 11 (Quantum Unique Ergodicity30 Conjecture [RS]). Let
M be a compact manifold of negative sectional curvature. Let {φi} be a complete
orthonormal sequence of eigenfunctions of the Laplacian � on M ordered by eigen-
value. Then the probability measures |φi(x)|2 d volM(x) converge weak-∗ to the
uniform measure on M.

In their paper, Rudnick and Sarnak focus on the case ofHecke-Maass forms,

showing that any weak-∗ limit of a subsequence
∣∣∣φij(x)

∣∣∣2 d volM(x) cannot be
supported on finitely many closed geodesics. The multiplicities in the spec-
trum of the Laplacian on arithmetic surfaces H/� with � as above (or more
generally the

⊔k
i=1H/�i on which the Hecke correspondences are defined

if we work with nonmaximal orders) are not well understood. Empirically,
these multiplicities seem to be bounded; indeed in favorable cases, the mul-
tiplicity of every eigenvalue of � seems to be one, so one does not seem to
lose much by using a sequence of Hecke-Maass forms instead of an arbi-
trary sequence of eigenfunctions of �. Let M be an arithmetic surface (or
a more general local symmetric manifold K\G/� with K <G maximal com-
pact, G=G(R) for G a semisimple Q-group, and �<G a congruence lattice
[in particular commensurable toG(Z)]). We shall call the closely related ques-
tion to Conjecture 11—whether on such an M the probability distributions
|φi(x)|2 d volM(x) corresponding to Hecke-Maass forms φi (i.e., joint eigen-
functions of � and all Hecke operators) converge weak-∗ to the uniform
measure—the Arithmetic Quantum Unique Ergodicity Problem.
Conjecture 11 is to be compared to the following quantum ergodicity

theorem of Schnirelman, Colin de Verdiere, and Zelditch:

THEOREM 5.1 (Schnirelman [Ś5], Colin de Verdiere [CdV], Zelditch
[Z2]).
Let M be a compact manifold so that the geodesic flow on the unit tangent bundle of
M is ergodic. Let {φi} be a complete orthonormal sequence of eigenfunctions of the
Laplacian � on M ordered by eigenvalue. Then there is a subsequence ij of density

1 so that restricted to this subsequence
∣∣∣φij(x)

∣∣∣2 d volM(x) converge weak-∗ to the
uniform measure on M.

Using Theorem 2.8 as well as an entropy estimate by Bourgain and this
author [BL1] we are able to prove the following, in particular establishing
Arithmetic Quantum Unique Ergodicity for compact hyperbolic surfaces:

30Abbreviated QUE below.
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THEOREM 5.2 ([L2]).
Let φi be an L2-normalized sequence of Hecke-Maass forms on an arithmetic sur-
face31 M=H/� with the lattice � either a congruence subgroup of PGL(2,Z) or
arising from an order in a quaternion division algebra over Q as above. Suppose
|φi(x)|2 d volM(x) converges weak-∗ to a measure μ on H/�. Then μ is, up to a
multiplicative constant, the uniform measure on H/�. In particular, arithmetic
quantum unique ergodicity holds for compact arithmetic surfaces.

What is not addressed in that theorem is the question whether there can
be escape of mass for the sequence of measures |φi(x)|2 d volM(x) for �, a
congruence sublattice of PGL(2,Z). What is shown by Theorem 5.2 is that
whatever remains converges to the uniform measure. This difficulty was
resolved by Soundararajan using an elegant analytic argument:

THEOREM 5.3 (Soundararajan [S6]).
Let φ be a Hecke-Maass form on H/PSL(2,Z), normalized to have L2-norm 1.
Then ˆ

|x|≤1/2
y>T

∣∣φ(x+ iy)∣∣2 d volH(x+ iy)� log(eT)√
T
,

with an absolute implicit constant.

Theorem 5.3 implies in particular that any weak-∗ limit of a sequence of
measures corresponding to Hecke-Maass forms |φi(x)|2 d volM(x) is a prob-
ability measure; hence using Theorem 5.2 arithmetic QUE holds also in
the noncompact case, where �=PSL(2,Z) (a similar argument works for
congruence sublattices of PSL(2,Z)).
The entropy bound by Bourgain and this author in [BL1] gives a uniform

upper bound onmeasures of small balls in PGL(2,R)/� of an appropriate lift
of the measures |φi(x)|2 d volM(x) to PGL(2,R)/�. An alternative approach
by Brooks and this author using only one Hecke operator gives a less quan-
titative entropy statement that is still sufficient to prove quantum unique
ergodicity:

THEOREM 5.4 (Brooks and Lindenstrauss [BL2]).
Let φi be an L2-normalized sequence of smooth functions on H/� with � an arith-
metic cocompact lattice arising from an order in a quaternionic division algebra

31More generally, a finite union of surfaces
⊔k

i=1 H/�i.
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over Q as above. Assume that for some sequences λi→∞, λi,p ∈R, ωi→ 0,

‖�φi− λiφi‖2≤ λ1/2i ωi
∥∥Tpφi− λi,pφi

∥∥
2≤ωi.

Then |φi(x)|2 d vol(x) converges weak-∗ to the uniform measure on H/�.

A surprising link between quantum unique ergodicity and the number of
nodal domains for Hecke-Maass forms φ onH/� was discovered by Jang and
Jung. If φ :M→R is a � eigenfunction (say, �φ+ λφ= 0) on a compact sur-
face M, Courant’s Nodal Domain Theorem and the Weyl law imply that the
number of nodal domain N (φ) for φ satisfies N(φ)� λ. However, it is well-
known that in general N (φ) could be much less: indeed in the 2 sphere S

there is a sequence of� eigenfunctions with eigenvalues→∞withN (φ)≤ 3,
and in general it is very hard to bound the number of nodal domains from
below; for more details, see, for example, [JJ] and the references given by that
paper.

THEOREM 5.5 (Jang and Jung [JJ]).
Let φi be a sequence of Hecke-Maass forms on H/� for �, an arithmetic triangle
group. Then limi→∞N (φi)=∞.

Triangle groups are discrete subgroups of the isometry group of H gener-
ated by reflections in three sides of a triangle with angles π/a,π/b,π/c. To
such a group �′ we can attach the orbifold H/�, where �<�′ is the group
of orientation preserving isometries. �′ is generated by � and a reflection σ
with σ�σ =�; hence σ induces an orientation reversing involution on H/�

(for convenience we will also call � a triangle group). An arithmetic trian-
gle group (there are only finitely many of these) is a triangle group that is
commensurable to PSL(2,Z) or a lattice coming from a quaternionic order
over Q as above. Examples are �=PSL(2,Z) itself (giving the triangle group
(∞, 3, 3)) and the compact triangle group (2, 6, 6). Quantitative results giv-
ing N (φ)� λ 127−ε were given by Ghosh, Reznikov, and Sarnak, assuming
the Lindelöf hypothesis for L-functions of GL(2) forms [GRS2, GRS1]; quantum
unique ergodicity is used as a (partial) substitute for the Lindelöf hypothesis
in [JJ].
In addition to considering a sequence of Hecke-Maass forms with eigen-

value λi→∞, one can consider on a given quotient H/� a sequence
of holomorphic Hecke forms of weight →∞. These correspond to an
irreducible PGL(2,R) representation in L2(PGL(2,R)/�), which has no
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PO(2,R)-invariant vectors. Using analytic techniques, and in particular mak-
ing heavy use of the Fourier expansion of such forms in the cusp, Holowinsky
and Soundararajan [HS] were able to prove an arithematic quantum unique
ergodicity theorem for these automorphic forms for�, a congruence subgroup of
PGL(2,Z). Their techniques seem to be restricted to the noncompact case; the
analogous question for compact quotients, and even on the sphere S, remain
important open questions.
A related question involves fixing the weight (or bounding the Laplacian

eigenvalue) but considering a sequence of newforms on a tower H/�(N) of
congruence subgroups. This question also makes sense in a purely discrete
setting: instead of taking a quaternion division algebraM over Q that is split
at infinity, one can take a definite quaternion algebra such as the Hamilton
quaternions,

M=Q+ iQ+ jQ+ ijQ i2= j2=−1, ij=−ji.

For such M, the group PGL(1,M⊗R) is compact (in fact, isomorphic to
SO(3,R)), so for S= {∞, p}, the S-arithmetic projection

πS : PGL(1,M⊗A)/PGL(1,OM)→PGL(1,M⊗R)(5.4)

×PGL(1,M⊗Qp)/�

can be composed with a further projection by dividing the right-hand side
of (5.4) from the left by the compact group PGL(1,M⊗R)×K(n), with
K(n)≤PGL(1,M⊗Zp) a compact open subgroup. This gives a map from
PGL(1,M⊗A)/PGL(1,OM) to a finite set. For every q 	= p, the q-Hecke cor-
respondence gives this finite set the structure of a q+ 1–regular graph—the
Lubotzky, Phillips, and Sarnak “Ramanujan graphs” [LPS]. TakingHecke new-
forms on a sequence of these graphs with decreasing K(n), Nelson [N] was
able to use an adaptation of the method of proof of Theorem 5.2 to prove
arithmetic QUE in the level aspect for newforms corresponding to principle
series representations of PGL(2,Qp). The restriction to principle series rep-
resentations is the analogue in this context of the restriction in Theorem 5.2
to Maass forms (i.e., Laplacian eigunfunctions) as opposed to holomorphic
forms.
The dynamical approach to arithmetic quantum unique ergodicity can be

extended to other arithmetic quotients. Notable work in that direction was
done by Silberman and Venkatesh:
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THEOREM 5.6 (Silberman and Venkatesh [SV2, SV1]).
Let G=PGL(1,M), where M is a degree n-division algebra over Q, split over R, for
n≥ 3. Let G=G(R)∼=PGL(n,R), K <G be maximal compact, and � be a lattice
in G arising from amaximal order inM. Let φj be a sequence of L2-eigenfunctions of
the ring of invariant differential operators on K\G as well as of all Hecke operators.
Assume that the irreducible G-representation Hj< L2(G/�) of G spanned by left
translations of φj is a principle series representation with parameter tj ∈ iaR that
stays away (uniformly in j) from the edges of the positiveWeyl chamber in iaR. Then∣∣φj(x)

∣∣2 d volK\G/� converges to the uniform measure on
∣∣φj(x)

∣∣2 d volK\G/� .

The proof of Theorem 5.6 proceeds, similarly to that of Theorem 5.2, by
lifting the probability measures

∣∣φj(x)
∣∣2 d volK\G/� to an (approximately) A-

invariant probability measure on G/�. This part of the argument, which is
carried out in [SV2], uses only the information about the behavior of φj at the
infinite place. Then using the information about other places—explicitly, the
fact that φi is a sequence of eigenfunctions of all Hecke operators—positive
entropy of any ergodic component of any weak-∗ limit as above is derived in
[SV1]; this argument is related to the entropy estimate of Bourgain and this
author in [BL1]. Once this entropy estimate is established, one can employ the
measure classification results of [EKL] (special case of Theorem 2.4) to deduce
the above arithmetic quantum unique ergodicity result.

6 Applications regarding Diophantine approximations

We started this survey with a historical introduction concerning some origins
of the study of the rigidity properties of higher rank diagonal actions. One
important such work was the paper of Cassels and Swinnerton-Dyer [CSD],
relating Littlewood’s Conjecture (Conjecture 2) to Conjecture 1a regarding
bounded A-orbits in PGL(3,R)/PGL(3,Z).
It is therefore not surprising that the significant progress obtained toward

understanding these higher rank diagonal actions in the half century since
Cassels and Swinnerton-Dyer’s seminal paper has shed some light on Dio-
phantine questions, though Littlewood’s Conjecture itself remains at present
quite open. Indeed, in terms of concrete (e.g., algebraic) numbers α,β ∈R,
for which Littlewood’s conjecture can be verified—that is, so that

(6.1) inf
n>0

n ‖nα‖ ‖nβ‖= 0
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—I am not aware of any nontrivial examples beyond that given by Cassels and
Swinnerton-Dyer in [CSD]: namely, those α,β ∈R so that the field Q(α,β)
they generate is of degree 3 over Q.
The following was proved by Einsiedler, Katok, and this author in

[EKL] using measure rigidity of the action of the diagonal group on
PGL(3,R)/PGL(3,Z):

THEOREM 6.1 (Einsiedler, Katok, Lindenstrauss).
For any ε > 0, the set

(6.2)
{
(α,β ∈ [0, 1]2 : inf

n>0
n ‖nα‖ ‖nβ‖≥ ε

}

has zero (upper) box dimension.

Zero upper box dimension simplymeans that the set in (6.2) can be covered
by�δ,ε Nδ squares of diameterN−1 for anyN> 0. This of course implies that
the set of exceptions to Littlewood’s conjecture hasHausdorff dimension zero,
and moreover for any α ∈R outside a set of Hausdorff dimension zero, (6.1)
holds for every β ∈R.
This latter statement can actually be made more explicit: Let α ∈ [0, 1] be

given. Expand α to a continued fraction

(6.3) α= 1

n1+
1

n2+
1

n3+
1

n4+ . . .
If the sequence nd is unbounded, then already inf n>0 n ‖nα‖= 0, and hence
(6.1) holds for every β. For any k let Nk(α) denote the number of possible k-
tuples of integers i1, . . . , ik appearing in the continued fraction expansion of
α—that is, so that there is some 	∈N so that

(i1, . . . , ik)= (n	, . . . , n	+q−1).

The following proposition follows readily from the techniques of [EKL]; we
leave the details to the imagination of the interested reader, but the key point
is that the condition given in the proposition on α can be used to verify the
positive entropy condition.
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PROPOSITION 6.2. Let α ∈ [0, 1] be such that the continued fraction expansion
of α satisfies that

lim
q→∞

log(Nk(α))

k
> 0

(this limit exists by subadditivity). Then for any β ∈R, Equation (6.1) holds.

De Mathan and Teulié gave the following analogue to Conjecture 2:

CONJECTURE 12 (de Mathan and Teulié [dMT]). For any prime p and
any α ∈R,

(6.4) inf
n>0

n |n|p ‖nα‖= 0.

Recall that |n|p= p−k if pk | n but pk+1 � n; hence (6.4) is equivalent to

inf
n>0,k≥0

n
∥∥∥npkα

∥∥∥= 0.

Note that by Furstenberg’s theorem (Theorem 1.1)32 for any two distinct
primes p, q,

inf
n>0

n |n|p |n|q ‖nα‖= 0

since either α is rational, in which case lim ‖nα‖= 0, or {pkq	α mod 1} is
dense in [0, 1], in particular inf k,	≥0

∥∥pkq	α∥∥= 0.
By a variant of the argument of Cassels and Swinnerton-Dyer, de Mathan

and Teulié show that (6.4) holds for quadratic irrational α ∈R. Interestingly,
Adiceam, Nesharim, and Lunnon give in [ANL] a completely explicit (and
nonobvious) counterexample to the function field analogue of Conjecture 12,
also stated in [dMT]. Using a similar argument to [EKL], but using themeasure
classification result of [L2] instead of that in [EKL], Einsiedler and Kleinbock
prove in [EK] that for any ε > 0, the set of α ∈ [0, 1] for which

inf
n>0

n |n|p ‖nα‖≥ ε

has zero box dimension.
Theorem 6.1, unlike many of the other applications we gave for the rigidity

of higher rank diagonal actions, only tells us that something is true outside an

32Another result we cited in the introduction that played a central role in the development of the
subject!
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unspecified, but small, set of exceptions. The following interesting application
of measure rigidity by Einsiedler, Fishman, and Shapira gives an everywhere
statement, in the spirit of Conjecture 12:

THEOREM 6.3 (Einsiedler, Fishman, and Shapira [EFS]).
For any α ∈ [0, 1], let n1(α), n2(α) . . . be the digits in the continued fraction expan-
sion of α as in Equation (6.3). Denote by c(α)= limi→∞ ni(α). Then for every
irrational α ∈ [0, 1],

sup
n
c
(
nα mod 1

)=∞.

Somewhat unusually, the proof of this theorem actually involves adelic
dynamics [L1], a result closely related to Theorem 2.8 but with no explicit
entropy assumption (the necessary entropy assumption is derived in [L1] from
the dynamical assumptions by a variation on the argument of [BL1]).
David Simmons observed that Theorem 6.3 implies in particular that for

any ψ :N→R with ψ(t)→∞ as t→∞, for any α ∈ [0, 1],

(6.5) lim
Q→∞

Q min
q≤Q ,m≤ψ(q)

∥∥qmα∥∥= 0,

answering a question of Bourgain related to the work of Blomer, Bourgain,
Radziwill, and Rudnick [BBRR], where they show that if α is a quadratic irra-
tional (with some additional restrictions, removed later by Dan Carmon), for
every ε > 0, one has that limQ→∞Q2−εminq,m≤Q

∥∥qmα∥∥= 0; they also show
this for a.e. α (but their techniques do not show (6.5) for every α, even when
ψ(q)= q).
Write

A(Q ,Q ′)=Q min
q≤Q ,m≤Q ′

∥∥qmα∥∥ .

By an (easy) result of Dirichlet, Qminq≤Q
∥∥qα∥∥< 1 for all α,Q ; hence for any

Q ,Q ′ we have the trivial estimate A(Q ,Q ′)≤ 1. By considering an α ∈ [0, 1]
that has a sequence of extremely good approximations pi

qi
with qi prime, it is

easy to see that there are uncountablymany α for which limQ→∞ A(Q ,Q)= 1.
However, one can still give the following strengthening of (6.5), whose details
will appear in the forthcoming [EL4]:

THEOREM 6.4 (Einsiedler and Lindenstrauss).
For any ψ→∞ and any α ∈R, one has that A(2k,ψ(2k))→ 0 outside possibly a
subsequence of density zero.
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This theorem also relies on a measure classification result for higher rank
diagonal actions, in this case Theorem 2.6.
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EFFECTIVE ARGUMENTS IN
UNIPOTENT DYNAMICS

Dedicated to Gregory Margulis

Abstract. We survey effective arguments concerning unipotent flows on locally
homogeneous spaces.

1 Introduction

In the mid-1980s Margulis resolved the long-standing Oppenheim conjecture
by establishing a special case of Raghunathan’s conjecture. Further works by
Dani and Margulis in the context of the Oppenheim conjecture and Ratner’s
full resolution of Raghunathan’s conjectures have become a cornerstone for
many exciting applications in dynamics and number theory.
Let us briefly recall the setup. Let G be a connected Lie group and let �⊂

G be a lattice (i.e., a discrete subgroup with finite covolume) and X =G/�.
Let H⊂G be a closed subgroup of G. This algebraic setup gives hope for the
following fundamental dynamical problem.

Describe the behavior of the orbitHx for every point x ∈X .
However, without further restrictions on H this question cannot have any
meaningful answer; for example, ifG is semisimple andH is a one-parameter
R-diagonalizable subgroup ofG, then the time onemap is partially hyperbolic
(and in fact has positive entropy and is a Bernoulli automorphism) and the
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behavior of orbits can be rather wild, giving rise to fractal orbit closures (see,
e.g., [46]). There is, however, a very satisfying answer when H is generated
by unipotent subgroups—for example, whenH is a unipotent or a connected
semisimple subgroup; in these cases Ratner’s theorems imply that closures
of all orbits are properly embedded manifolds; see section 5.
These results, however, are not effective; for example, they do not provide

a rate at which the orbit fills out its closure. As is already stated by Margulis
in his ICM lecture [55], it is much anticipated and quite a challenging prob-
lem to give effective versions of these theorems. It is worth noting that except
for uniquely ergodic systems, such a rate would generally depend on delicate
properties of the point x and the acting group H. Already for an irrational
rotation of a circle, the Diophanine properties of the rotation enter the picture.
The purpose of this essay is to provide an overview of effective results in this
context of unipotently generated subgroups.
Let us further mention that there have been fantastic developments both

for other choices of H and beyond the homogeneous setting. In fact the
papers [50], [24], and [25] give partial solutions to the conjectures by Mar-
gulis [56] concerning higher rank diagonalizable flows; the papers [10] and
[5, 6, 7] (inspired by the methods of Eskin, Margulis, and Mozes [31]) concern
the classification of stationary measures; and [34] and [35] concern the SL2(R)
action on moduli spaces and also apply the method developed for stationary
measures. These works, with the exception of [10], are all qualitative, and an
effective account of these would be very intriguing. This essay, however, will
focus on the case where H is generated by unipotent elements.
We note that good effective bounds for equidistribution of unipotent orbits

can have far-reaching consequences. Indeed the Riemann hypothesis is equiv-
alent to giving an error term of the form Oε(y

3
4+ε) for equidistribution of

periodic horocycles of period 1/y on the modular surface [81, 71].
Given the impact of Margulis’s work for the above research directions, and

especially the research concerning effective unipotent dynamics on homo-
geneous spaces portrayed here, but more importantly, given our personal
interests, it is a great pleasure to dedicate this survey to Gregory Margulis.

1.1 PERIODIC ORBITS AND A NOTION OF VOLUME. Suppose x ∈X
is so that Hx is dense in X . As will be evident in the following exposition,
and was alluded to above, the orbit Hx may fill up the space very slowly; for
example, x may be very close to an H-invariant manifold of lower dimension.
To have any effective account, we first need a measure of complexity for these
intermediate behaviors.
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We will always denote theG-invariant probability measure on X by volX . Let
L⊂G be a closed subgroup. A point x ∈X will be called L-periodic if

stabL(x)={g ∈ L : gx= x}

is a lattice in L. Similarly, a periodic L-orbit is a set Lx where x is an L-periodic
point. We note that a periodic L-orbit is automatically closed in X . Given an
L-periodic point x we let μLx denote the probability L-invariant measure on
Lx. By a homogeneous measure on X we always mean μLx for some L and x.
Sometimes we refer to the support of a homogeneous measure, which is an
L-periodic set for some L, as a homogeneous set.
Fix some open neighborhood � of the identity in G with compact closure.

For any L-periodic point x ∈X , define

(1.1) vol(Lx)= mL(Lx)
mL(�)

,

where mL is any Haar measure on L and mL(Lx) is the covolume of stabL(x)
in L with respect tomL. We will use this notion of volume as a measure of the
complexity of the periodic orbit.
Evidently this notion depends on �, but the notions arising from two dif-

ferent choices of � are comparable to each other, in the sense that their ratio
is bounded above and below. Consequently, we drop the dependence on � in
the notation. See [26, section 2.3] for a discussion of basic properties of the
above definition.
The general theme of statements will be a dichotomy of the following

nature. Unless there is an explicit obstruction with low complexity, the orbit
Hx fills up the whole space—the statements also provide rates for this density
or equidistribution whenever available.
We have tried to arrange the results roughly in their chronological order.

2 Horospherical subgroups

Let G be a semisimple R-group and let G denote the connected component of
the identity in the Lie group G(R).
A subgroup U⊂G is called a horospherical subgroup if there exists an

(R-diagonalizable) element a∈G so that

U=W+(a) :={g ∈G : anga−n→ e as n→−∞};

putW−(a)=W+(a−1).
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Horospherical subgroups are always unipotent, but not necessarily vice
versa; for example, for d≥ 3, a one-parameter unipotent subgroup in SLd(R) is
never horospherical. In a sense, horospherical subgroups are large unipotent
subgroups. For example, ifU⊂G is a horospherical subgroup, thenG/NG(U)
is compact, where NG(U) denotes the normalizer of U in G.
Let �⊂G be a lattice and X =G/�. We fix a horospherical subgroup

U=W+(a) for the rest of the discussion. The action of U on X has been
the subject of extensive investigations by several authors—this action induces
the horocylce flow, when G=SL2(R) or the horospherical flow in the general
setting of rank 1 groups.
Various rigidity results in this context are known thanks to the works of

Hedlund, Furstenberg, Margulis, Veech, Dani, Sarnak, Burger, and oth-
ers [12, 14, 15, 18, 39, 43, 57, 71, 79]. Many of these results and subsequent
works use techniques that in addition to proving strong rigidity results do so
with a polynomially strong error term—for example, the methods in [71], [12],
[73], and [77], relying on harmonic analysis, or themore dynamical arguments
in [57], [46], and [80]. See Theorems 2.1 and 2.2 for some examples.
Let U0⊂U be a fixed neighborhood of the identity in U with smooth

boundary and compact closure; for example, one can take U0 to be the image
under the exponential map of a ball around 0 in Lie(U) with respect to some
Euclidean norm on Lie(U). For every k∈N, put Uk= akU0a−k.
We normalize the Haar measure, σ , on U so that σ(U0)= 1.

THEOREM 2.1.
Assume X is compact. There exists some δ > 0, depending on�, so that the following
holds. Let f ∈C∞(X); then for any x ∈X we have

∣∣∣∣
1

σ(Uk)

∫
Uk

f (ux) dσ(u)−
∫
X
f dvolX

∣∣∣∣�X S(f )e−δk,

where S(f ) denotes a certain Sobolev norm.

The constant δ depends on the rate of decay for matrix coefficients corre-
sponding to smooth vectors in L2(X , volX )—in other words, on the rate of
mixing for the action of a on X . In particular, if G has property (T) or � is a
congruence lattice, then δ can be taken to depend only on dimG.
As mentioned above there are different approaches to prove Theorem 2.1.

We highlight a dynamical approach that is based on the mixing property of
the action of a on X via the so-called thickening or banana technique; this idea
is already present in [57]; the exposition here is taken from [46].

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



430 /manfred einsiedler and amir mohammadi

Making a change of variable, and using σ(U0)= 1, one has

1
σ(Uk)

∫
Uk

f (ux) dσ(u)=
∫
U0

f (akuy) dσ(u),

where y= a−kx.
The key observation now is that the translation of U0 by ak is quite well

approximated by the translation of a thickening ofU by ak. To be more precise,
let B be an open neighborhood of the identity so that

B= (B∩W−(a))(B∩ZG(a))U0.

Then since ak
(
B∩W−(a))a−k→ e in the Hausdorff topology, we see that

akU0y and akBy stay near each other. This, in view of the fact that y stays in
the compact set X , reduces the problem to the study of the correlation

∫
X
1B(z)f (akz) dvolX ,

which can be controlled using the mixing rate for the action of a on X .
As the above sketch indicates, compactness of X is essential for this unique

ergodicity result (with a uniform rate) to hold. If X is not compact, there are
intermediate behaviors that make the analysis more involved—for instance,
if x lies on a closed orbit of U, or is very close to such an orbit, Theorem 2.1
as stated cannot hold. We state a possible formulation in a concrete setting;
see [73] and [77] for different formulations.

THEOREM 2.2.
Let G=SLd(R) and �=SLd(Z). There exists some δ > 0 so that the following
holds. For any x= g� ∈X and n, k∈N with k> n, at least one of the following
holds.

1. For any f ∈C∞c (X) we have
∣∣∣∣
1

σ(Uk)

∫
Uk

f (ux) dσ(u)−
∫
X
f dvolX

∣∣∣∣�d S(f )e−δn,

where S(f ) denotes a certain Sobolev norm.
2. There exists a rational subspace W ⊂R

d of dimension

m∈ {1, . . . , d− 1}
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so that
‖ugw‖�d e

n for all u∈Uk,

where w=w1 ∧ . . .∧wm for a Z-basis {w1, . . . ,wm} of W ∩Z
n, and ‖ · ‖ is

a fixed norm on
∧m

R
d.

Similar results hold for any semisimple group G. In the more general set-
ting, Theorem 2.2(2) needs to be stated using conjugacy classes of a finite
collection of parabolic subgroups of G that describe the non-compactness
(roughly speaking, the cusp) of X .
The proof of Theorem 2.2 combines results on quantitative non-divergence

of unipotent flows [53, 16, 17, 21, 47], together with the above sketch of the
proof of Theorem 2.1; see [48] and [61].
Recall that a subgroup H⊂G is called symmetric if H is the set of fixed

points of an involution τ onG—for example,H=SO(p, n− p) inG=SLn(R).
Translations of closed orbits of symmetric subgroups present another (closely
related) setting where effective equidistribution results, with polynomial error
rates, are available. In this case as well, the so-called wave front lemma [33,
theorem 3.1] asserts that translations of an H-orbit stay near translations of a
thickening of it. Therefore, onemay again utilizemixing; see, for example, [33]
and [4]. Analytic methods also are applicable in this setting; see [22].
We end this section by discussing a case that is beyond the horospherical

case but closely related. Let Ĝ=G�W, where G is a semisimple group as
above andW is the unipotent radical of Ĝ. Let �̂⊂ Ĝ be a lattice and put X̂ =
Ĝ/�̂. Let π : Ĝ→G be the natural projection.

PROBLEM 2.3. Let U⊂ Ĝ be a unipotent subgroup so that π(U) is a horo-
spherical subgroup of G. Prove analogues of Theorem 2.2 for the action of U
on X̂.

Strömbergsson [78] used analytic methods to settle a special case of this
problem—that is, G=SL2(R)� R

2 with the standard action of SL2(R) on R
2,

�=SL2(Z)� Z
2, and U the group of unipotent upper triangular matrices in

SL2(R); his method has also been used to tackle some other cases.

3 Effective equidistribution theorems for nilflows

In this section we assume G is a unipotent group. That is, we may assume G
is a closed connected subgroup of the group of strictly upper triangular d× d
matrices. Let �⊂G be a lattice and X =G/�—that is, X is a nilmanifold.
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Rigidity results in this setting have been known for quite some time thanks
to works of Weyl, Kronecker, L. Green, and Parry [3, 65] and more recently
Leibman [49].
Quantitative results, with a polynomial error rate, have also been established

in this context and beyond the abelian case; see [38] and [42]. The com-
plete solution was given by B. Green and Tao [42]; here we present a special
case from that work describing the equidistribution properties of pieces of
trajectories.

THEOREM 3.1 ([42]).
Let X =G/� be a nilmanifold as above. There exists some A≥ 1 depending on
dimG so that the following holds. Let x ∈X, let {u(t) : t∈R} be a one-parameter
subgroup of G, let 0<η< 1/2, and let T > 0. Then at least one of the following
holds for the partial trajectory {u(t)x : t∈ [0,T]}.
1. For every f ∈C∞(X) we have

∣∣∣∣
1
T

∫ T

0
f (u(t)x) dt−

∫
X
f dvolX

∣∣∣∣�X ,f η,

where the dependence on f is given using a certain Lipschitz norm.
2. For every 0≤ t0≤T there exists some g ∈G and some H�G so that H�/�

is closed with vol(gH�/�)�X η
−A and for t∈ [0,T] we have

|t− t0| ≤ ηAT =⇒ dist(u(t)x, gH�/�)�X η,

where dist is ametric on X induced from a right-invariant Riemannianmetric
on G.

This is a consequence of a special case of amore general effective equidistri-
bution result for polynomial trajectories on nilmanifolds [42, theorem 2.9], as
we now explicate. Since T > 0 is arbitrary, we may assume that u(t)= exp(t𝓏)
for some 𝓏 in the Lie algebra of G of norm one. We note that for T ≤ η−O(1)
the above is trivial. In fact, as is visible in the maximal abelian torus quo-
tient, every point belongs to an orbit gH�/� of bounded volume of a proper
subgroupH�G, and now (2) follows by the continuity properties of the one-
parameter subgroup if T ≤ η−O(1). Hence we will assume in the following
T >η−O(1) for a constant O(1) that will be optimized.
For every 1/2≤ τ ≤ 1, put Bτ ={u(nτ) : n= 0, 1, . . . ,Nτ }, where Nτ =
T/τ�. We now apply [42, theorem 2.9] for the sequence (discrete trajec-
tory) Bτ . Assume first that Bτx is η-equidistributed for some τ ∈ [ 12 , 1].
That is,
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(3.1)
∣∣∣∣
1
Nτ

Nτ−1∑
n=0

h(u(nτ)x)−
∫
X
h dvolX

∣∣∣∣�X ,h η

for all h∈C∞(X). In this case Theorem 3.1(1) holds. Indeed,

1
Nτ τ

∫ Nτ τ

0
f (u(t)x) dt= 1

τ

∫ τ

0

1
Nτ

Nτ−1∑
n=0

f (u(s)u(nτ)x) ds,

so the claim in (1) follows from (3.1) applied with h(·)= f (u(s)·) for all
0≤ s≤ τ .
The alternative in [42, theorem 2.9] to η-equidistribution as above is an

obstruction to equidistribution in the form of a slowly varying character of
G/�. To make a precise statement we need some notation. Fix a rational basis
for Lie(G). Using this basis we put coordinates (also known as coordinates
of the second kind) on G; the standing assumption is that � corresponds to
elements with integral coordinates; see [42, definitions 2.1 and 2.4]—the esti-
mates1 will depend on the complexity of the structural constants for group
multiplication written in this basis (which we assume to be fixed). Follow-
ing [42] we denote the coordinates of g ∈G by ψ(g). In this notation, given a
character χ :G→R/Z with �⊂ ker(χ), there exists a unique kχ ∈Z

dimG so
that χ(g)= kχ ·ψ(g)+Z; see [42, definition 2.6].
Assume (3.1) fails for all τ ∈ [1/2, 1]. Then, by [42, theorem 2.9]; see also

lemma 2.8, we have this: there are constants A0,A1> 1, and for every τ
there is a character χτ :G→R/Z with �⊂ ker(χτ ) so that the following two
conditions hold.

(a) Let kτ ∈Z
dimG be so that χτ (g)= kτ ·ψ(g)+Z; then we have the bound

‖kτ‖�G,� η
−A0 ; and

(b) ‖χτ
(
u(τ )

)‖R/Z�G,� η
−A1/T , where ‖x‖R/Z= dist(x,Z).

Let Hτ denote the connected component of the identity in ker(χτ ). Infor-
mally, (a) tells us that χτ defines a closed orbit Hτ�/� of not too large
volume—indeed the latter covolume is bounded by ‖kτ‖. Moreover, ‖kτ‖ con-
trols the continuity properties of χτ . On the other hand, (b) tells us that the
character changes its values very slowly along the discrete trajectory (since
we are allowed to think of a large T). We wish to combine these for various
τ ∈ [1/2, 1] to obtain (2).

1Indeed the estimates in Theorem 3.1(1) also depend on this basis.
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To that end, note that the number of characters χτ so that (a) holds is ≤
η−O(1) for some O(1) depending on A0. Moreover, (b) implies that there exist
some C=C(G,�), some A2 depending on A0 and A1, and for every 1/2≤ τ ≤
1 there is some rational vector vτ with ‖vτ‖� 1 and a denominator bounded
by O(η−O(1)) so that the distance of ψ(u(τ )) to vτ +ψ(Hτ ) is <Cη−A2/T .
For every 1/2≤ τ ≤ 1, let Iτ be the maximal (relatively open) interval so that
for all s∈ Iτ the distance of ψ(u(s)) to vτ +ψ(Hτ ) is <Cη−A2/T . This gives a
covering of [1/2, 1]with η−O(1)many intervals. Therefore, at least one of these
intervals—say, I0= (a0, b0) defined by τ0—has length b0− a0� ηO(1). Let χ =
χτ0 . Then for any τ ∈ I0 we have that the distance of ψ(u(τ )) to vτ0 +ψ(Hτ0)

is <Cη−A2/T . Since b0− a0� ηO(1), we get that the distance of ψ(u(τ )) to
vτ0 +ψ(Hτ0) is � η−O(1)/T for all 0≤ τ ≤ 1. Hence we obtain the character
estimate ‖χ(

u(τ )
)‖R/Z�X η

−O(1)/T for all 0≤ τ ≤ 1.
Let g ∈G and γ ∈� be so that u(t0)= gγ and ‖ψ(g)‖�X 1. Let H=Hτ0 .

Then since γH�=H�, the claim in (2) holds with g and H if we choose A
large enough.
We now highlight some elements involved in the proof of [42, theorem 2.9]

for our simplified setting of a linear sequence—that is, a discrete trajectory (the
reader may also refer to [42, section 5], where a concrete example is worked
out).
Let τ = 1—that is, consider {u(n) : n= 0, 1, . . . ,N− 1} on X . The goal is to

show that either Equation (3.1) holds or (a) and (b) must hold for a character
χ ; note first that replacing {u(t)} by a conjugate, we will assume x in (3.1) is
the identity coset, �, for the rest of the discussion. The proof is based on an
inductive argument2 that aims at decreasing the nilpotency degree of G. For
the base of the induction—that is, when G is abelian—one may use Fourier
analysis to deduce the result (e.g., see [42, proposition 3.1]).
The following corollary (see [42, corollary 4.2]) of the van der Corput trick

plays an important role in the argument. Let {an : n= 0, 1, . . . ,N− 1} be a
sequence of complex numbers so that 1N

∑N−1
n=0 an≥ η. Then for at least η2N/8

values of k∈ {0, 1, . . . ,N− 1}, we have 1N
∑N−1

n=0 an+kān≥ η2/8, where we put
an := 0 for n /∈ {0, 1, . . . ,N− 1}.
Let an= h(u(n)�), and suppose that (3.1) fails. One may further restrict to

the case where h is an eigenfunction for the action of the center of G corre-
sponding to a character ξ whose complexity is controlled by η−O(1); see [42,
lemma 3.7]. Note that if ξ is trivial, then h is Z(G) invariant; thus we have

2The reader may see the argument in [65, section 3].
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already reduced the problem to G/Z(G)—that is, a group with smaller nilpo-
tency degree. Hence, assume that ξ is nontrivial; in consequence

∫
h dvolX =

0. Now by the aforementioned corollary of the van der Corput trick, there are
at least η2N/8 many choices of 0≤ k≤N so that

(3.2)
1
N

N−1∑
n=0

h(u(n+ k)�)h(u(n)�)� η2/8.

Fix one such k and write u(k)�= v� for an element v in the fundamen-
tal domain of �; note that {(v−1gv, g) : g ∈G}⊂ {(g1, g2)∈G×G : g1g−12 ∈
[G,G]}=:G′. Similarly, define �′. Two observations are in order.

. Equation (3.2) implies that 1N ∑N−1
n=0 h̃(wn�

′)� η2/8, where h̃ is the
restriction of ĥ(y, z)= h(vy)h(z) to G′ and wn= (v−1u(n)v, u(n)).. Since h is an eigenfunction for the center of G, we have h̃ is invariant
under �(Z(G))={(g, g) : g ∈Z(G)}; moreover, h̃ has mean zero.

The above observations reduce (3.2) modulo �(Z(G))—that is, to the group
G′/�(Z(G)), which has smaller nilpotency degree; see [42, proposition 7.2].
There is still work to be done; for example, one needs to combine the informa-
tion obtained for different values of k to prove (a) and (b), but this reduction,
in a sense, is the heart of the argument.

4 Periodic orbits of semisimple groups

Beyond the settings discussed in sections 2 and 3, little was known until
roughly a decade ago. The situation drastically changed thanks to the work
of Einsiedler, Margulis, and Venkatesh [27], where a polynomially effective
equidistribution result was established for closed orbits of semisimple groups.
We need some notation in order to state the main result. Let G be a con-

nected, semisimple algebraicQ-group, and letG be the connected component
of the identity in the Lie group G(R). Let �⊂G(Q) be a congruence lattice in
G and put X =G/�. Suppose H⊂G is a semisimple subgroup without any
compact factors that has a finite centralizer in G.
The following is the main equidistribution theorem proved in [27].

THEOREM 4.1 ([27]).
There exists some δ= δ(G,H) so that the following holds. Let Hx be a periodic H-
orbit. For every V > 1 there exists a subgroup H⊂S⊂G so that x is S-periodic,
vol(Sx)≤V, and
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∣∣∣∣
∫
X
f dμHx −

∫
X
f dμSx

∣∣∣∣�G,�,H S(f )V−δ for all f ∈C∞c (X),

where S(f ) denotes a certain Sobolev norm.

Theorem 4.1 is an effective version (of a special case) of a theorem by
Mozes and Shah [63]. The general strategy of the proof is based on effec-
tively acquiring extra almost invariance properties for the measure μ=μHx.
This general strategy (in qualitative form) was used in the topological context
by Margulis [54], by Dani and Margulis [19], and by Ratner in her measure
classification theorem [67, 68].
The polynomial nature of the error term—that is, a (negative) power of

V—in Theorem 4.1 is quite remarkable; effective dynamical arguments often
yield worse rates (see section 5). A crucial input in the proof of Theorem 4.1,
which is responsible for the quality of the error, is a uniform spectral gap for
congruence quotients.
The proof of Ratner’s Measure Classification Theorem for the action of a

semisimple group H is substantially simpler. A simplified proof in this case
was given by Einsiedler [23]; see also [27, section 2]. This is due to com-
plete reducibility of the adjoint action of H on Lie(G) as we now explicate.
Let {u(t) : t∈R} be a one-parameter unipotent subgroup in H, and let L be a
subgroup that contains H. Then one can show that the orbits u(t)y and u(t)z
of two nearby points in general position diverge in a direction transversal to L.
This observation goes a long way in the proof. Indeed starting from an H-
invariant ergodic measure μ, one may use arguments like this to show that
unless there is an algebraic obstruction, one can increase the dimension of
the group, which leaves μ invariant. In a sense, the argument in [27] is an
effective version of this argument; a different argument that is directly based
on the mixing property of an R-diagonalizable subgroup in H was given by
Margulis (see [62]).
Let us elaborate on a possible effectivization of the above idea. The diver-

gence of two nearby points u(t)y and u(t)z is governed by a polynomial
function. For example, in the setting at hand, write y= exp(v)z for some
v∈ Lie(G); then this divergence is controlled by Ad(u(t))v. In consequence,
one has a rather good quantitative control on this divergence.
However, the size of T so that the piece of orbit, {u(t)y : 0≤ t≤T},

approximates the measure μ depends on y. More precisely, suppose μ is
{u(t)}-ergodic.3 Then it follows fromBirkhoff’s ergodic theorem that forμ-a.e.

3By the generalizedMautner phenomenon, whenH has no compact factors, one can always choose
{u(t)} so that μ is {u(t)}-ergodic.
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y and all f ∈C∞c (X), we have 1T
∫ T
0 f (u(t)y) dt→ ∫

X f dμHx. However, for a
given ε > 0, the size of T so that

∣∣∣∣
1
T

∫ T

0
f (uty) dt−

∫
X
f dμHx

∣∣∣∣�f ε where f ∈C∞c (X)

depends on delicate properties of the point y—for example ymay be too close
to a {u(t)}-invariant submanifold in support of μ.
One of the remarkable innovations in [27] is the use of uniform spectral gap

in order to obtain an effective version of the pointwise ergodic theorem. The
required uniform spectral gap has been obtained in a series of papers [45, 64,
74, 44, 11, 13, 40]. This is then used to define an effective notion of generic
points where the parameters ε and T above are polynomially related to each
other.
IfH is amaximal subgroup, one can use the above (combinedwith bounded

generation of G by conjugates of H and spectral gap for volX ) to finish the
proof. However, Theorem 4.1 is more general and allows for (finitely many)
intermediate subgroups. The main ingredient in [27] to deal with possible
intermediate subgroups is an effective closing lemma that is proved in [27,
section 13]. In addition to being crucial for the argument in [27], this result
is of independent interest—it is worth mentioning that the proof of [27,
proposition 13.1] also uses spectral gap.

Theorem 4.1 imposes some assumptions that are restrictive for some appli-
cations: H is not allowed to vary; moreover, H has a finite centralizer. The
condition that H is assumed not to have any compact factors is a splitting
condition at the infinite place; this too is restrictive in some applications.

4.2 ADELIC PERIODS. In a subsequent work by Einsiedler, Margulis,
Mohammadi, and Venkatesh [26], the subgroup H in Theorem 4.1 is allowed
to vary. Moreover, the need for a splitting condition is also eliminated. The
main theorem in [26] is best stated using the language of adeles; the reader
may also see [28] for a more concrete setting.
Let G be a connected, semisimple, algebraic Q-group4 and set X =

G(A)/G(Q), where A denotes the ring of adeles. Then X admits an action
of the locally compact group G(A) preserving the probability measure volX .
Let H be a semisimple, simply connected algebraic Q-group, and let g ∈

G(A). Fix also an algebraic homomorphism

4The paper [26] allows for any number field, F, but unless X is compact, δ in Theorem 4.3 will
depend on dimG and [F :Q].
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ι :H→G

defined overQ with finite central kernel. For example, we could haveG=SLd
andH=Spin(Q) for an integral quadratic form Q in d variables.
To this algebraic data, we associate a homogeneous set

Y := gι(H(A)/H(Q))⊂X

and a homogeneous measure μ; recall that we always assume μ(Y)= 1.
The following is a special case of the main theorem in [26].

THEOREM 4.3 ([26]).
Assume further thatG is simply connected. There exists some δ > 0, depending only
on dimG, so that the following holds. Let Y be a homogeneous set and assume that
ι(H)⊂G is maximal. Then

∣∣∣∣
∫
X
f dμ−

∫
X
f dvolX

∣∣∣∣�G S(f )vol(Y)−δ for all f ∈C∞c (X),

where S(f ) is a certain adelic Sobolev norm.

Aswe alluded to above, Theorem4.3 allowsH to vary, and it also assumes no
splitting conditions5 onH; this feature is crucial for applications: for example,
H(R) is compact in an application to quadratic forms, which will be discussed
momentarily. These liberties are made possible thanks to Prasad’s volume
formula [66] and the seminal work of Borel and Prasad [8]. Roughly speaking,
the argument in [26, section 5] uses [66] and [8] to show that if at a prime
p the group H(Qp) is either compact or too distorted, then there is at least a
factor p contribution to vol(Y). Thus one can find a small prime p (compared
to vol(Y)) whereH is not distorted.
The dynamical argument uses unipotent flows as described above: the

source of a polynomially effective rate is again the uniform spectral gap.
Let us highlight two corollaries fromTheorem 4.3. Themethod in [26] relies

on uniform spectral gap. However, it provides an independent proof of prop-
erty (τ ), except for groups of type A1—that is, if we only suppose property (τ )
for groups of type A1, we can deduce property (τ ) in all other cases as well as
our theorem. In particular it gives an alternative proof of the main result of
Clozel in [13] but with weaker exponents; see [26, section 4].

5Compare this to the assumption thatH has no compact factors in Theorem 4.1.
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Another application is an analogue of Duke’s theorem for positive definite
integral quadratic forms in d≥ 3 variables, as we now explicate. Even in a
qualitative form this result is new in dimensions 3 and 4 since the splitting
condition prevented applying unipotent dynamics before.
Let Qd=POd(R)\PGLd(R)/PGLd(Z) be the space of positive definite

quadratic forms on R
d up to the equivalence relation defined by scaling and

equivalence over Z. We equip Qd with the pushforward of the normalized
Haar measure on PGLd(R)/PGLd(Z).
LetQ be a positive definite integral quadratic form on Z

d, and let genus(Q)
(respectively spin genus(Q)) be its genus (respectively spin genus).

THEOREM 4.4 ([26]).
Suppose {Qn} varies through any sequence of pairwise inequivalent, integral, pos-
itive definite quadratic forms. Then the genus (and also the spin genus) of Qn,
considered as a subset of Qd, equidistributes as n→∞ (with speed determined by
a power of | genus(Q)|).

In the statement of Theorem 4.3 we made a simplifying assumption that
G is simply connected; PGLd, however, is not simply connected. Indeed the
proof of Theorem 4.4 utilizes the more general [26, theorem 1.5]. In addition
one uses the fact that

PGLd(A)=PGLd(R)KPGLd(Q) where K =∏
p PGLd(Zp)

to identify L2(PGLd(R)/PGLd(Z)) with the space of K-invariant functions in
L2(PGLd(A)/PGLd(Q)).
Similar theorems have been proved elsewhere (see, e.g., [37] where the split-

ting condition is made at the Archimedean place). What is novel here, besides
the speed of convergence, is the absence of any type of splitting condition on
the {Qn}—this is where the effective Theorem 4.3 becomes useful.
Theorem 4.3 assumed ι(H)⊂G is maximal. This is used in several places

in the argument. This assumption is too restrictive for some applications; see,
for example, [30] where ι(H)⊂G has an infinite centralizer. The following is
a much desired generalization.

PROBLEM 4.5. Prove an analogue of Theorem 4.3 allowing ι(H) to have an
arbitrary centralizer in G.

The uniform spectral gap, which is the source of a polynomially effec-
tive error term, is still available in this case. However, in the presence of an
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infinite centralizer, closed orbits come in families; moreover, there is an abun-
dance of intermediate subgroups. These features introduce several technical
difficulties.
See [29], [28], and [1] for some progress toward this problem.
We note that a positive solution to Problem 4.5 would lead to strengthening

of the results in [30]. Indeed, it is expected that one would obtain the result
in [30] when the gap between the number of variables is three or more without
requiring any congruent conditions.

5 The action of unipotent subgroups

We now turn to the general case of unipotent trajectories. LetG be anR-group
and let G be the connected component of the identity in the Lie group G(R);
U will denote a unipotent subgroup ofG. Let �⊂G be a lattice and X =G/�.
Let us recall the following theorems of Ratner, which resolved conjectures

of Raghunathan and Dani.

THEOREM 5.1 ([67, 68, 69]).

1. Every U-invariant and ergodic probability measure on X is homogeneous.
2. For every x ∈X the orbit closure Ux is a homogeneous set.

The above actually holds for any group that is generated by unipotent ele-
ments [76]. In the case of a unipotent one-parameter subgroupU, more can be
said. Suppose Ux= Lx as in Theorem 5.1(2). Ratner [69] actually proved that
the orbit Ux is equidistributed with respect to the L-invariant measure on Lx.
Prior to Ratner’s work, some important special cases were studied by Mar-

gulis [54] and Dani and Margulis [19, 20]. The setup they considered was
motivated by Margulis’s solution to the Oppenheim conjecture—unlike Rat-
ner’s work, their method is topological and does not utilize measures. Let
G=SL3(R), let �=SL3(Z), and let U be a generic one-parameter unipotent6
subgroup of G. In this context, the paper [20] proves thatUx is homogeneous
for all x ∈X .
Theorem 5.1 has also been generalized to the S-arithmetic context—that

is, the product of real and p-adic groups—independently by Margulis and
Tomanov [59] and Ratner [70].

6A one-parameter unipotent subgroup of SLd(R) is called generic if it is contained in only one Borel
subgroup of SLd(R).
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Let us recall the basic strategy in the proof of Raghunathan’s conjectures;
see also the discussion after Theorem 4.1. The starting point, á la Margulis
and Ratner, is a set of “generic points" (a dynamical notion) for our unipotent
groupU. The heart of thematter, then, is to carefully investigate divergence of
theU-orbits of two nearby generic points; the slow (polynomial-like) nature of
this divergence implies that nearby points diverge in directions that are stable
under the action of U. That is, the divergence is in the direction of the nor-
malizer of U—this is in sharp contrast to hyperbolic dynamics where points
typically diverge along the unstable directions for the flow. The goal is to con-
clude that unless some explicit algebraic obstructions exist, the closure of a
U-orbit contains an orbit of a subgroup V �U.
As mentioned, the slow divergence of unipotent orbits is a major player in

the analysis. This actually is not the only place where polynomial-like behavior
of unipotent actions is used in the proofs. Indeed in passing from measure
classification to topological rigidity (and more generally equidistribution the-
orem) nondivergence of unipotent orbits [53, 16, 17] plays an essential role;
see also section 5.4.
Generic sets play a crucial role in the above study, and the existing notions—

for example, minimal sets in the topological approach or a generic set for
Birkhoff’s ergodic theorem in Ratner’s argument are rather non-effective. Pro-
viding an effective notion of a generic set that is also compatible with the
nice algebraic properties of unipotent flows is the first step toward an effective
account of the above outline. With that in place, one then may try to carry out
the analysis in an effective fashion. The caveat is that the estimates one gets
from such arguments are usually rather poor—that is, rather than obtaining a
negative power of complexity, one typically gets a negative power of an iterated
logarithmic function of the complexity; see the discussions in section 4 for an
instance when this argument is carried out successfully and actually with a
polynomial rate.

5.2 EFFECTIVE VERSIONS OF THE OPPENHEIM CONJECTURE. The
resolution of the Oppenheim conjecture by Margulis [54] has played a crucial
role in the developments of the field.
Let us recall the setup. LetQ be a nondegenerate, indefinite quadratic form

in d≥ 3 variables onR
d. TheOppenheim andDavenport conjecture stated that

Q(Zd)=R if and only ifQ is not amultiple of a formwith integral coefficients.
Quantitative (or equidistribution) versions were also obtained [31, 32, 60, 58];
see also [72], [9], and [2], where effective results for generic forms (in different
parameter spaces) are obtained.
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On an effective level one might ask the following question. Given ε > 0,
what is the smallest 0 �= v∈Z

d so that |Q(v)| ≤ ε? Analytic methods, which
were used prior to Margulis’s work to resolve special cases of the Oppen-
heim conjecture, yield such estimates. Margulis’s proof, however, is based
on dynamical ideas and does not provide information on the size of such
solutions.
The paper [41] proves a polynomial estimate for n≥ 5 and under explicit

Diophantine conditions onQ—it combines analytic methods with some ideas
related to systems of inequalities that were developed in [31]. In [72] and [9]
analytic methods are used to obtain polynomial estimates for almost every
form in certain families of forms in dimensions 3 and 4.
In general, however, the best-known results in dimension 3 are due to

Lindenstrauss and Margulis, as we now discuss.

THEOREM 5.3 ([51]).
There exist absolute constants A≥ 1 and α > 0 so that the following holds.
Let Q be an indefinite, ternary quadratic form with detQ = 1 and ε > 0. Then

for any T ≥T0(ε)‖Q‖A, at least one of the following holds.

1. For any ξ ∈ [−(logT)α , (logT)α] there is a primitive integer vector v∈Z
3

with 0< ‖v‖<TA satisfying

|Q(v)− ξ |� (logT)−α .

2. There is an integral quadratic form Q ′ with | detQ ′|<Tε so that

‖Q − λQ ′‖�‖Q‖T−1,

where λ= | detQ ′|−1/3.

The implied multiplicative constants are absolute constants.

The above theorem provides a dichotomy: unless there is an explicit Dio-
phantine (algebraic) obstruction, a density result holds; in this sense the result
is similar to Theorems 2.2 and 3.1. In particular, if Q is a reduced, indefi-
nite, ternary quadratic form that is not proportional to an integral form but
has algebraic coefficients, then Theorem 5.3(1) holds true for Q ; see [51,
corollary 1.12].
Note, however, that the quality of the effective rate one obtains in Theo-

rem 5.3 is (logT)−α—ideally, one would like to have a result where (logT)−α
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is replaced by T−α ; however, such an improvement seems to be out of reach
of the current technology.
We now highlight some of the main features of the proof of Theorem 5.3.

An important ingredient in the proof is an explicit Diophantine condition [51,
section 4]; this is used in place of the notion of minimal sets that was used
in [54], [19], and [20]. We will discuss a related Diophantine condition in
the next section; one important feature of the notion used in [51] is that it
is inherited for most points along a unipotent orbit; see also Theorem 5.8.
The proof in [51] then proceeds by making effective and improving on sev-

eral techniques from [54], [19], and [20]. If one follows this scheme of the
proof, the quality of the estimates in Theorem 5.3(1) would be (log logT)−α .
Instead [51] uses a combinatorial lemma about rational functions to increase
the density of points (see [51, section 9])—this lemma, which is of independent
interest, is responsible for the better error rate in Theorem 5.3(1).

5.4 EFFECTIVE AVOIDANCE PRINCIPLES FOR UNIPOTENT ORBITS.
Let G be a connected Q-group and put G=G(R). We assume � is an arith-
metic lattice in G. More specifically, we assume fixed an embedding ι :G→
SLd, defined over Q so that ι(�)⊂SLd(Z). Using ι we identify G with
ι(G)⊂SLd and hence G⊂SLd(R). Let U={u(t) : t∈R}⊂G be a one-
parameter unipotent subgroup of G and put X =G/�.
Define the family of subgroups

H=
{
H⊂G :H is a connected Q-subgroup and R(H)=Ru(H)

}
,

where R(H) (respectively Ru(H)) denotes the solvable (respectively unipotent)
radical of H. Alternatively, H∈H if and only if H is a connected Q-subgroup
and H(C) is generated by unipotent subgroups. We will always assume that
G∈H.
For any H∈H we will write H=H(R); examples of such groups are H=

SLd(R), SLd(R)� R
d (with the standard action), and SOd(R). By a theorem of

Borel and Harish-Chandra, H∩� is a lattice inH for any H∈H.
Define NG(U,H)={g ∈G :Ug⊂ gH}. Put

S(U)=
( ⋃
H∈H
H �=G

NG(U,H)
)
/� and G(U)=X \S(U)

Following Dani and Margulis [21], points in S(U) are called singular with
respect to U, and points in G(U) are called generic with respect to U. This
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notion of a generic point is a priori different from measure theoretically
generic points for the action of U on X with respect to volX ; however, any
measure theoretically generic point is generic in this new sense as well.
By Theorem 5.1(2), for every x ∈G(U) we have Ux=X .
In [21], Dani and Margulis established strong avoidance properties for

unipotent orbits; see also [75]. These properties, which are often referred to in
the literature as linearization of unipotent flows, go hand in handwith Ratner’s
theorems in many applications; see, for example, [63] and [36].
In this section we will state a polynomially effective version of the results

and techniques in [21]. These effective results as well as their S-arithmetic
generalizations are proved in [52].
The main effective theorem, Theorem 5.8, requires some further prepara-

tion. Let us first begin with the following theorems, which are corollaries of
Theorem 5.8.

THEOREM 5.5 ([52]).
There exists a compact subset K⊂G(U) with the following property. Let x ∈G(U);
then Ux∩K �= ∅.

Theorem 5.5 is a special case of the following.

THEOREM 5.6 ([52]).
There exists some D> 1 depending on d and some E> 1 depending on G, d, and �
so that the following holds.
For every 0<η< 1/2 there is a compact subset Kη ⊂G(U) with the following

property. Let {xm} be a bounded sequence of points in X, and let Tm→∞ be a
sequence of real numbers. For eachm let Im⊂[−Tm,Tm] be ameasurable set whose
measure is >Eη1/D(2Tm). Then one of the following holds.

1.
⋃

m{u(t)xm : t∈ Im} ∩Kη �= ∅.
2. There exists a finite collection H1, . . . ,Hr ∈H and for each 1≤ i≤ r there

is a compact subset Ci⊂N(U,Hi), so that all the limit points of {xm} lie in
∪ri=1Ci�/�.

Theorem 5.6 is reminiscent of the sort of dichotomy that we have seen in
previous sections: unless an explicit algebraic obstruction exists, the pieces
of the U-orbits intersect the generic set; see also Theorem 5.8, where this
dichotomy is more apparent.
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The polynomial dependence Eη1/D in Theorem 5.6 is a consequence of the
fact that Theorem 5.8 is polynomially effective. We note, however, that even for
Theorem 5.5 it is not clear how it would follow from the statements in [21].
We now fix the required notation to state Theorem 5.8. Let ‖ · ‖ denote the

maximum norm on slN(R) with respect to the standard basis; this induces
a family of norms, ‖ · ‖ on ∧m slN(R) for m= 1, 2, . . . . Let furthermore g=
Lie(G) and put g(Z) := g∩ slN(Z).
For any η> 0, set

Xη =
{
g� ∈X : min

0�=v∈g(Z) ‖Ad(g)v‖≥ η
}
.

By Mahler’s compactness criterion, Xη is compact for any η> 0.
LetH∈H be a proper subgroup and put

ρH :=
∧

dimH Ad and VH :=
∧

dimHg.

The representation ρH is defined over Q. Let vH be a primitive integral vector
in ∧dimHg corresponding to the Lie algebra ofH—that is, we fix a Z-basis for
Lie(H)∩ slN(Z) and let vH be the corresponding wedge product.
We define the height of H∈H by

(5.1) ht(H) :=‖vH‖.

GivenH∈H and n∈N, define

ht(H, n) := enht(H).

Given a finite collection F ={(H, n)}⊂H×N, define

ht(F)=max{ht(H, n) : (H, n)∈F}.

Using the element vH ∈∧dimH g we define the orbit map

ηH(g) := ρH(g)vH for every g ∈G.

Given a nonzero vector 𝓌∈∧r g, for some 0< r≤ dimG, we define 𝓌 :=
𝓌
‖𝓌‖ .
Let 𝓏∈ g with ‖𝓏‖= 1 be so that u(t)= exp(t𝓏). Let H∈H; the definition

of NG(U,H) then implies that

NG(U,H)={g ∈G :𝓏∧ ηH(g)= 0}.
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Wewill need the following definition of an effective notion of a generic point
from [52].

DEFINITION 5.7. Let ε :H×N→ (0, 1) be a function so that ε(H, ·) is decreas-
ing and ε(·, n) is decreasing in ht(H).
A point g� is said to be ε Diophantine for the action of U if the following holds.

For every nontrivialH∈H, withH �=G, and every n∈N, we have

for every γ ∈� with ‖ηH(gγ )‖< en

that ‖𝓏∧ ηH(gγ )‖≥ ε(H, n).
(5.2)

Given a finite collection F ⊂H×N, we say that g� is (ε;F) Diophantine
if (5.2) holds for all (H, n)∈F .

This is a condition on the pair (U, g�). We note that the definition of singu-
lar points S(U) using the varieties N(U,H)={g ∈G : g−1Ug⊂H} for various
subgroups H is defined using polynomial equations. As such, its behavior
may change dramatically under small perturbations. Definition 5.7 behaves
in that respect much better.
Moreover, one checks easily that #{H∈H : ht(H)≤T}�TO(1); now for a

given pair (H, n), the condition in (5.2) is given using continuous functions.
This implies that any x ∈G(U) is ε Diophantine for some ε as above.
Normal subgroups of G are fixed points for the adjoint action of G, and

hence for U. Thus, we need to control the distance from them separately. For
any T > 0, define

σ(T)=min
{
‖𝓏∧ vH‖ : H∈H,H�G,

ht(H)≤T , {1} �=H �=G
}
.

For every (H, n)∈H×N and any C> 0, set

(5.3) �C(H, n) :=min
{
ht(H, n)−C, σ

(
ht(H, n)C

)}
.

Let ‖ ‖ be a norm on SLd(R) fixed once and for all. For every g ∈SLd(R), and
in particular, for any g ∈G, let

|g| =max{‖g‖, ‖g−1‖}.

As we discussed after Theorem 5.3, an important property one antici-
pates from generic points is that genericity is inherited by many points along
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the orbit. The following theorem guarantees this for the notion defined in
Definition 5.7.

THEOREM 5.8 ([52]).
There are constants C and D, depending only on d, and a constant E depending on
d, G, and � so that the following holds. Let F ⊂H×N be a finite subset. For any
g ∈G, k≥ 1, and 0<η< 1/2, at least one of the following holds.

1.
∣∣∣∣
{
t∈ [−1, 1] : u(ekt)g� �∈Xη or

u(ekt)g is not (ηD�C;F) Diophantine

}∣∣∣∣<Eη1/D.

2. There exist a nontrivial proper subgroup H0 ∈H and some n0 ∈N with

ht(H0, n0)≤Emax{ht(F), |g|η−1}D,

so that the following hold.
(a) For all t∈ [−1, 1] we have

‖ηH0(u(ekt)g)‖≤Een0 .

(b) For every t∈ [−1, 1] we have
∥∥∥𝓏∧ ηH0(u(ek−1t)g)

∥∥∥≤Ee−k/Dmax{ht(F), |g|η−1}D.

As was alluded to before, the effective notion of a generic point (Defini-
tion 5.7) is one of the main innovations in [52]. In addition to this, the proof
of Theorem 5.8 takes advantage of the role played by the subgroup L={g ∈G :
gvH= vH} to control the speed of unipotent orbits: the distance betweenU and
subgroup L(R) controls the speed of t �→ utvH. Note that L is a Q-subgroup of
Gwhose height is controlled by ht(H)O(1)—it is defined as the stabilizer of the
vector vH. However, Lmay not belong to the classH. Actually, it turns out that
one may use the fact that U is a unipotent group to replace L by a subgroup
M⊂ L in H, which already controls the aforementioned speed.
The general strategy of the proof of Theorem 5.8, however, is again based

on polynomial-like behavior of unipotent orbits, and it relies on effectivizing
the approach in [21].
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EFFECTIVE EQUIDISTRIBUTION OF CLOSED
HYPERBOLIC SUBSPACES IN CONGRUENCE
QUOTIENTS OF HYPERBOLIC SPACES

Dedicated to Professor Gregory Margulis

Abstract. We prove an effective equidistribution theorem for closed hyperbolic
subspaces in congruence quotients of hyperbolic spaces. The argument relies
on uniform decay of matrix coefficients and effective versions of arguments in
unipotent dynamics. Along the way an effective Borel density theorem is proved
for the cases at hand.

1 Introduction

LetG be a semisimpleQ-group and set G=G(R). Let � be a lattice in G such
that � is a congruence subgroup of G(Q) and write X =�\G. Furthermore,
let H be a connected, semisimple subgroup of G that has no compact factors
and assume that the centralizer of h= Lie(H) in g= Lie(G) is trivial. Building
on the work of Margulis [17], of Ratner [23], and of Mozes and Shah [19],
Einsiedler, Margulis, and Venkatesh proved the following result in [9]:

THEOREM 1.1.
There exists δ > 0, d∈N depending only on G,H, and V0> 1 depending only on
�,G,H with the following properties. Let μ be the H-invariant probability measure
on a closed H-orbit x0H inside X =�\G. For any V ≥V0 there exists an inter-
mediate subgroup S (satisfying H⊆S⊆G) such that x0S is a closed S-orbit with
volume ≤V and ∣∣∣∣

∫
f dμ−

∫
f dμx0S

∣∣∣∣<V−δSd(f )

for any f ∈C∞c (X), where μx0S is the normalized invariant measure on the orbit
x0S and Sd(f ) denotes an L2-Sobolev norm of degree d.

Wenote that the restriction to congruence quotients implies a uniform spec-
tral gap property, which is crucial to the argument. For this we refer to the

Einsiedler acknowledges the support of the SNF Grants 200021-152819 and 200020-178958.

452

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



effective equidistribution of closed hyperbolic subspaces / 453

paper by Burger and Sarnak [2] (which is sufficient for the theorem below in
the case of noncompact quotients) respective to the general case in the work
of Clozel [3] (see also [21], [8, section 4], and references therein).
For the desired extension of Theorem 1.1 to hyperbolic spaces, we recall

some standard notation. We write Q0 for the indefinite quadratic form

Q0(x1, . . . , xn+1)=−x21 + x22 + · · ·+ x2n+1
in n+ 1 variables of signature (n, 1). We will assume implicitly that n≥ 3. The
special orthogonal group of signature (n, 1) is then given by

SOQ 0(R)=SO(n, 1)={g ∈SLn+1(R) |Q0 ◦ g=Q0}
= {g ∈SLn+1(R) | gTJ0g= J0},

where J0= diag(−1, 1, . . . , 1) is the symmetric matrix representing Q0.
Let Q be another quadratic form defined over Z with signature (n, 1) and

fix gQ ∈SLn+1(R) so that Q0 ◦ gQ = λQ for some λ> 0. In this essay, we are
going to prove a result similar to Theorem 1.1 for the special case where G=
SO◦(n, 1), �<G corresponds to SOQ (Z) under conjugation by gQ andH is a
fixed subgroup ofG isomorphic to SO◦(2, 1) (corresponding to the orthogonal
group on the subspace R

3×{0}n−2). Here, SO◦(n, 1) denotes the connected
component of the identity, or for n≥ 2 equivalently the index two subgroup
of SO(n, 1) generated by its unipotent elements. We note that the connected
component of the centralizer of H equals SO(n− 2) (embedded in the lower
right corner block ofG). Therefore, the methods from [9] do not apply directly
once n≥ 4. We say that a closed connected subgroup L of G is intermediate if
H< L; we will classify these subgroups in section 3. The purpose of this paper
is to generalize the arguments from [9] to handle the following new cases of
effective equidistribution.

THEOREM 1.2.
There exist δ > 0, d∈N depending only on the dimension n, and V0> 1 depending
on � with the following properties. Let μ be the H-invariant and ergodic probability
measure on X =�\G, which equals the normalized Haar measure on a closed orbit
of some x0 ∈X and some intermediate subgroup. For any V ≥V0 there exists an
intermediate subgroup L such that x0L is a closed L-orbit with volume ≤V and

∣∣∣∣
∫

f dμ−
∫

f dμx0L

∣∣∣∣<V−δSd(f )

for any f ∈C∞c (X).
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Let K =SO(n)<G be the maximal compact subgroup (defined as the
orthogonal group on the subspace {0}×R

n). Restricting to torsion-free lat-
tices �<G and K-invariant functions on X wemay phrase the above theorem
in geometric terms by saying that closed hyperbolic subspaces of large vol-
ume within the hyperbolic manifold�\Hn∼=�\G/K effectively equidistribute
within closed hyperbolic submanifolds of smaller volume.
We refer to the survey in this volume [10] to put Theorems 1.1–1.2 in a

broader context of effective arguments in unipotent dynamics.
We thank Andreas Wieser and Amir Mohammadi for discussions and their

comments on an earlier draft. M. E. also thanks Klaus Schmidt formentioning
the permanent at precisely the right time.
It is a great pleasure to dedicate this paper to Professor Gregory Mar-

gulis, whose influence on the arguments of this essay and the theory of
homogeneous dynamics in general could not be more obvious.

2 Quantitative Nondivergence

In this section, we are going to recall a quantitative nondivergence result for
unipotent orbits that became an indispensible tool in homogeneous dynamics
and goes back to the work of Margulis [16].
Suppose that Q0 ◦ gQ = λQ as in the introduction. We note that Q0(v)=

vTJ0v for all v∈R
n+1 and also

(1) Q0(g−1gQv)= vTgTQ (g−1)TJ0g−1gQv= λQ(v)∈ λZ

for all v∈Z
n+1 and g ∈SO(n, 1). By the same argument we also have that

g−1Q SO(n, 1)gQ equals the orthogonal group SOQ associated to the quadratic
form Q . Moreover, we may also make the description of � in the introduction
formal by setting �= gQ SOQ (Z)g−1Q ∩G.
Our first lemma shows that, in contrast to the case of general elements of

SLn(R)/SLn(Z) for n≥ 3, every lattice corresponding to elements of the space
X =�\SO◦(n, 1) contains (up to scalar multiples) at most one nonzero short
vector. For this we identify x=�g ∈�\SO◦(n, 1) with

g−1gQ SLn+1(Z)∈SLn+1(R)/SLn+1(Z)

and in addition with the unimodular lattice

�x = g−1gQZ
d+1<R

n+1.
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Then Equation (1) shows that Q0(�x)⊆ λZ and similarly 〈�x,�x〉Q 0 ⊆ 1
2λZ

for all x ∈X , where 〈·, 〉Q 0 denotes the indefinite bilinear form induced byQ0.

LEMMA 2.1 (Short vectors). There exists some ρQ > 0 with the following prop-
erty. For any x ∈X there exists, up to scalar multiples, at most one vector v∈
�x \ {0} with Euclidean norm ‖v‖<ρQ.

Proof. Using continuity of Q0 there exists some ρQ > 0 such that v,w∈R
n+1

with ‖v‖, ‖w‖<ρQ implies that |Q0(v)|, |Q0(w)|, |〈v,w〉Q 0 |< 1
2λ.

If now v,w∈�x for some x ∈X satisfy ‖v‖, ‖w‖<ρQ , then by (1) we must
have Q0(v)=Q0(w)=〈v,w〉Q 0 = 0. However, given that Q0 has signature
(n, 1), its maximal isotropic subspace is one-dimensional, and this implies
that v and w are linearly dependent.

Since there is (up to sign) at most one short primitive lattice element, the
proof of the following quantitative nondivergence result becomes substan-
tially easier than the corresponding statement for SLn(R)/SLn(Z). In what
follows, we think ofH=SO◦(2, 1) as being embedded in the top left corner of
SO◦(n, 1). Moreover, we define

(2) ut=
⎛
⎜⎝
1+ t2

2
t2
2 t

− t2
2 1− t2

2 −t
t t 1

⎞
⎟⎠ and vt=

⎛
⎜⎝
1+ t2

2 − t2
2 t

t2
2 1− t2

2 t
t −t 1

⎞
⎟⎠

for t∈R and note that these define unipotent one-parameter subgroups {ut |
t∈R} and {vt | t∈R} ofH that together generateH.

LEMMA 2.2 (Invariant vectors). If v∈�x is a primitive lattice element with
‖v‖<ρQ that is invariant under SO◦(2, 1), then v= 0.

Proof. A short calculation using the above matrices reveals that a vector v∈
�x invariant under SO◦(2, 1)must be of the form (0, 0, 0, v4, . . . vn+1)T . Since
‖v‖<ρQ and Q0(v)∈ λZ, the same argument as in the proof of Lemma 2.1
implies that 0=Q0(v)=∑n+1

k=4 v
2
k . Hence v= 0 as required.

Note that the previous lemma implies in particular that for every x ∈X there
exists a unipotent one-parameter subgroup (either {ut | t∈R} or {vt | t∈R}) of
H that does not stabilize the (up to sign) unique short primitive vector from
Lemma 2.1, if such a vector exists. For a lattice�⊆R

n+1, we denote by λ1(�)
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the length of the shortest vector in� \ {0}. Moreover, for every ε > 0 we define
the compact set

X(ε)={x ∈X | λ1(�x)≥ ε} .

PROPOSITION 2.3 (Quantitative nondivergence). Assume that the unipo-
tent one-parameter subgroup {ut}<H defined in Equation (2) has no nontrivial
invariant vectors v∈�x of norm less than ρQ. Then there exists some constant
Tx > 0 such that for all ε > 0 and for all T ≥Tx, we have

1
T
|{t∈ [0,T] | xut /∈X(ε)}|Q ε

1/2.

This is a special case of the results proven in [16] and [4]. Proposition 2.3
also holds for the second unipotent subgroup in (2) and implies in particular
that there exists a fixed compact subset Xcpct⊆X , such that each H-orbit is
of the form xH for some x ∈Xcpct (and the same also holds for each L-orbit,
where L is an intermediate group). Moreover, Proposition 2.3 and theMautner
phenomenon for {ut}<H allow us to choose the compact subset so thatμ(X \
Xcpct)≤ 1

1011 for anyH-invariant and ergodic measure μ on X .

3 Intermediate subgroups

The aim of this section is to identify all intermediate Lie algebras so(2, 1)⊆
l⊆ so(n, 1), which then also gives us a classification of the closed, connected,
intermediate subgroups SO◦(2, 1)≤ L≤SO◦(n, 1).

PROPOSITION 3.1. Every intermediate Lie algebra so(2, 1)⊆ l⊆ so(n, 1) is
Ad-conjugated to so(k, 1)⊕ k for some 2≤ k≤ n and k being contained in the cen-
tralizer of so(k, 1) in so(n, 1). In fact, the conjugating element can be choosen in
SO(n).

Proof. There is a surjective algebraic homomorphism

SL2(R)−→SO◦(2, 1),

which extends to a homomorphism into SO(n, 1). Note that the Lie algebra of
SO◦(2, 1) (defined using the quadratic form −x21 + x22 + x23) is given by

so(2, 1)=
{
X ∈Mat3(R) |XTJ+ JX = 0

}
, where J=

⎛
⎜⎝
−1 0 0
0 1 0
0 0 1

⎞
⎟⎠ .
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We explicitly define the above homomorphism by giving the following sl2-
triple in so(2, 1):

H=
⎛
⎜⎝
0 2 0
2 0 0
0 0 0

⎞
⎟⎠ , X =

⎛
⎜⎝
0 0 1
0 0 1
1 −1 0

⎞
⎟⎠ , and Y =

⎛
⎜⎝
0 0 1
0 0 −1
1 1 0

⎞
⎟⎠ .

It is easily checked that this indeed is an sl2-triple—that is, it satisfies the
relations

[H,X ]= 2X , [H,Y ]=−2Y , [X ,Y ]=H.
Consider now the Lie algebra

so(n, 1)=
{
X ∈Matn+1(R) |XTJ0+ J0X = 0

}
,

where J0= diag(−1, 1, . . . , 1), and embed so(2, 1) in the top left corner of
so(n, 1). Note that the centralizer of so(2, 1) in so(n, 1) is isomorphic to
so(n− 2), embedded in the bottom right corner of so(n, 1). We will denote
the corresponding elements when embedded into so(n, 1) by H, X , and Y
as well. Moreover, we introduce the following shorthand notation for k∈
{4, . . . , n+ 1}:

(k; a, b, c) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a
0 b

0 c
0

a −b −c . . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the entries a, b, c appear in the kth row (resp. column). Notice that
(k; a, b, c)∈ so(n, 1) and that for any element of so(n, 1) the entries below the
diagonal are uniquely determined by the entries above the diagonal. Moreover,
one easily checks that the following identities hold for all k∈ {4, . . . , n+ 1}:

adX (k; a, b, c)= (k; c, c, a− b)
adY (k; a, b, c)= (k; c,−c, a+ b)
adH(k; a, b, c)= (k; 2b, 2a, 0).

In particular, this shows that the algebra so(2, 1) acts irreducibly on

Vk :={(k; a, b, c) | a, b, c ∈R}
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for all k∈ {4, . . . , n+ 1} and that these representation spaces are isomorphic
to the adjoint representation. Note that if we define

R=
n+1⊕
k=4

Vk⊆ so(n, 1),

then every nontrivial, irreducible sl2-representation in R can be written in the
form

Vλ=
{n+1∑
k=4

λk · (k; a, b, c) | a, b, c ∈R

}

for some λ= (λ4, . . . , λn+1)∈R
n−2 with ‖λ‖= 1. Moreover, we have

so(n, 1)= so(2, 1)⊕R⊕ so(n− 2),

where so(n− 2) is the centralizer of so(2, 1) inside so(n, 1). In terms of the
adjoint action of so(2, 1) on so(n, 1) the decomposition into the summands
so(2, 1)⊕R and so(n− 2) is canonical in the following sense: the former
summand is as an so(2, 1)-space isomorphic to n− 1 copies of the adjoint
representation, and on the latter the representation is trivial.
Let so(2, 1)⊆ l⊆ so(n, 1) be an intermediate Lie algebra. Note that if l∩R=
{0}, then l is of the required form so(2, 1)⊕ k, where k= l∩ so(n− 2) is con-
tained in the centralizer so(n− 2) of so(2, 1) in so(n, 1). We therefore assume
that l∩R �= {0}. This means that

l∩R=Vλ(1) ⊕ · · ·⊕Vλ(m)

is a direct sum of irreducible sl2-representations of the form as above for some
1≤m≤ n− 2, where λ(i) ∈R

n−2 satisfies
∥∥λ(i)∥∥= 1 for all i∈ {1, . . . ,m} and

the vectors λ(1), . . . , λ(m) are linearly independent.
We claim that there exists an element g ∈SO(n− 2), so that

Adg(l)∩R=
m+3⊕
k=4

Vk.

Indeed, letM be them× (n− 2)-matrix whose rows are given by λ(1), . . . , λ(m).
By the Gram-Schmidt algorithm, there exists an element g ∈SO(n− 2), so
thatMg is of the form (T , 0), where T is an invertible, lower triangularm×m-
matrix. This implies the claim.
Let Ek,� denote the square matrix with a 1 in the kth row and the �th column

and with 0 otherwise. Then
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(k; 1, 0, 0)=E1,k+Ek,1
(k; 0, 1, 0)=E2,k−Ek,2
(k; 0, 0, 1)=E3,k−Ek,3

[(k; 1, 0, 0), (�; 1, 0, 0)]=Ek,�−E�,k

all belong to Adg(l) for all k, �∈ {4, . . . ,m+ 3}. This implies that so(m+ 2, 1)⊆
Adg(l), where the Lie algebra so(m+ 2, 1) is embedded in the top left corner of
so(n, 1). Since Adg(l)∩⊕n+1

k=m+4 Vk={0}, we have Adg(l)= so(m+ 2, 1)⊕ k,
where k is contained in the centralizer of so(m+ 2, 1) in so(n, 1). Therefore,
l is Ad-conjugated to so(m+ 2, 1)⊕ k as claimed in the proposition.

COROLLARY 3.2. Every closed, connected, intermediate group

SO◦(2, 1)≤ L≤SO◦(n, 1)

is conjugated by some element of SO(n) to SO◦(m, 1)×K ′, where 2≤m≤ n
and K ′ ⊆SO(n−m) is a subgroup of the compact centralizer of SO(m, 1) in
SO(n, 1).

Proof. By the previous proposition we have after conjugation by an element
of SO(n) that Lie(L)∼= so(m, 1)⊕ k for some 2≤m≤ n and k contained in the
centralizer of so(m, 1) within so(n, 1). Since L is connected, this immediately
implies the result.

COROLLARY 3.3. Let L<SOQ be an algebraic subgroup defined over Q so
that its group of R-points contains a subgroup conjugated to SO(2, 1). Then
L contains a unique algebraic subgroup L̃ defined over Q that is Q-simple
and satisfies that over R the group L̃ is isomorphic to SO(m, 1)×SO(m+ 1)p
for some m≥ 2 and p≥ 0. In fact, gQ L̃g−1Q is conjugated by some ele-
ment of SO(n) to SO(m, 1)×SO(m+ 1)p embedded as block matrices into
SO(n, 1).

Proof. Without loss of generality we may assume L is Zariski connected. By
Corollary 3.2 L(R) contains a normal semisimple subgroup F conjugated to
SO(m, 1) for some m≥ 2. Using the Levi decomposition of L it follows that L
must contain a Q-simple normal subgroup L̃ whose group of R-points con-
tains F as a normal almost direct factor. Also recall that L̃ after conjugation by
gQ and an element of SO(n) becomes the product of SO(m, 1) embedded in
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the upper left block of size (m+ 1) and a subgroup of SO(n−m) embedded
in the lower right block of size n−m. In particular, F is indeed a direct (not
just almost direct) factor of L̃(R). Taking Galois conjugates of this normal
subgroup we see that the other factors of L̃ over R must also be forms of
SO(m+ 1) andmust have similar block structure corresponding to a collection
of mutually orthogonal subspaces. We also note that over R all other factors
must be compact and so must indeed be isomorphic to SO(m+ 1) over R.
Hence L̃(R) is a direct product as stated in the corollary.

4 Existence of many small lattice elements

4.1 ORBIT CLOSURES. Recall that G=SO◦(n, 1) and let �<SO◦(n, 1) be
as in Section 1. Let S=SO◦(m, 1) for some 2≤m≤ n (embedded in the upper
left block in G) and let x0=�g0 ∈X for some g0 ∈SO◦(n, 1). By Ratner’s orbit
closure theorem [24] we have that x0S= x0L is a closed orbit (automatically
with finite volume) in �\G for a connected intermediate subgroup L. Apply-
ing Corollary 3.2 we find a maximalm′ ∈ {m,m+ 1, . . . , n} so that a conjugate
of SO(m′, 1) is a normal subgroup of L. Applying [1, proposition 1.1] andCorol-
lary 3.3 we see that there exists an algebraic Q-group L<SOQ defined over
Q and Q-simple so that L is the connected component of g−10 gQL(R)g−1Q g0
and in particular conjugated to SO◦(m′, 1)×SO(m′ + 1)p for some p≥ 0. To
simplify the notation we conjugate S and L by some element of SO(n) if nec-
essary, move the point x0 by the same element, and assume that m′ =m and
that L=S×SO(m+ 1)p embedded in the upper left block of G.

4.2 VOLUMES AND LATTICE ELEMENTS. We note that the restriction
of the Riemannian metric on G to H or more generally a connected interme-
diate subgroup L induces a Riemannian metric on L, which we will use to
define the volume of a closed L-orbit. Indeed the volume vol(x0L) of the orbit
x0L is defined as the Haar measure (induced by the restriction of the Rieman-
nianmetric) of a measurable fundamental domain F⊂ L for the quotient map
g ∈ L �→ x0g. Moreover, we define the Haar measure μx0L on a closed orbit x0L
as the normalizedmeasure (vol(x0L))−1(x0mL|F), wheremL denotes the Haar
measure on L, mL|F denotes its restriction to the fundamental domain F⊂ L,
and x0mL|F denotes the pushforward under the quotient map.
Denote the connected component of the normalizer of S in G by

(3) N=NG(S)◦ ∼=S×SO(n−m).
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As already pointed out, we may assume that L<N. We will also write Sg0 =
g0Sg−10 and Ng0 = g0Ng−10 for the conjugated groups. Since N/L is compact,
we have vol(x0N) vol(x0L). In the next section we are going to prove a ver-
sion of the converse inequality—that is, vol(x0N)� vol(x0L)κ1 for some κ1> 0
that only depends on the dimension n. This section will provide a crucial step
toward that result.
For r> 0 we define the ball in N of radius r by

BHSr ∩N=
{
g ∈N | ∥∥g∥∥HS≤ r

}
,

where ‖·‖HS is the Hilbert-Schmidt norm with respect to the standard repre-
sentation of N on R

n+1:
∥∥g∥∥2HS=

n+1∑
i=1

∥∥gei
∥∥2
2

PROPOSITION 4.1 (Existence of lattice elements). Let x0=�g0 ∈X be as
above so that vol(x0L)<∞. There exist d∈N, lattice elements

γ1, . . . , γd ∈Ng0 ∩�,

and a constant κ2> 0 depending only on n so that the Zariski closure of the subgroup
generated by {γ1, . . . , γd} contains Sg0 and

‖γi‖HS vol(x0N)κ2 for i= 1, . . . , d.

Recall that there exists a torsion-free congruence subgroup �1<� that has
finite index in �. We are going to prove Proposition 4.1 by finding lattice
elements γ1, . . . , γd in g−10 �1g0 ∩N with norms bounded by  vol(x0N)κ2 .
Using Proposition 2.3 we may choose the element g0 to belong to a fixed com-
pact subset of X . Therefore, conjugating these elements by g0 gives lattice
elements in Ng0 ∩� with the desired properties.
We note that BHSr ∩N is invariant under SO(n−m) so that the following

counting results are easily reduced to a counting of lattice elements in S. In
fact the action of the group S on L2(x0N/SO(n−m)) has a uniform spectral
gap and there exists δ > 0 independent of x0 such that we have the following
effective lattice point counting result (see, e.g., [12], [9, proposition 12.1], [6],
[11], [13], and [18]):
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|g−10 �1g0 ∩BHSr ∩N| =
mN(BHSr ∩N)
vol(x0N)

+O(mN(BHSr ∩N)(1−δ))(4)

= mS(BHSr ∩S)mCG(S)(CG(S))
vol(x0N)

+O(mS(BHSr ∩S)(1−δ))

� mS(BHSr ∩S)
vol(x0N)

+O(mS(BHSr ∩S)(1−δ)).

We set d(r)=
∣∣∣g−10 �1g0 ∩BHSr ∩N

∣∣∣ for a given radius r> 0. This means that
there exist precisely d(r) distinct elements γ1, . . . , γd(r) ∈ g−10 �1g0 ∩N of norm
at most r. Let

Lr =〈γ1, . . . , γd(r)〉Z ∩N
be (the group ofR-points of) the Zariski closure of the subgroup generated by
the lattice elements γ1, . . . , γd(r) intersected with the connected component N
of the normalizer NG(S) of S in Equation (3). In order to prove Proposition
4.1, it remains to show that we can choose r in such a way that S is contained
in Lr . In fact, we are going to show that by setting r to be a certain power of
vol(x0N), we have too many lattice elements than can fit in M×SO(n−m)
for a proper subgroup M�S. We denote the projection to the first factor by
πS :N=S×CG(S)→S.
We claim that S� Lr implies πS(Lr)�S. To see this we suppose indirectly

that πS(Lr)=S. In this case Lr ∩S is a normal subgroup of S�N, and as S
is a simple Lie group we see that Lr ∩S=S or Lr ∩S is finite. The former
contradicts our assumption S� Lr . The latter leads together with πS(Lr)=S
to a contradiction, since in this case the subgroup Lr would define a surjec-
tive homomorphism from a subgroup of the compact group SO(n−m) to the
simple noncompact Lie group S/Lr ∩S.
Therefore, Lr is contained in M×SO(n−m), where M=Mr is a proper

Zariski closed subgroup of SO(m, 1). Since SO(n−m) is compact and �1 is
torsion-free, Lr cannot be contained in SO(n−m) or the product of a finite
group with SO(n−m) if r is large enough. For such radii M is at least one-
dimensional.

LEMMA 4.2. Let M≤SO(m, 1) be a proper Zariski closed subgroup of positive
dimension. Then one of the following holds for some g ∈S:

1. M∩CS(AM) has at most index two in M, where AM is the unique split torus
in M.

2. M≤ g(O(�, 1)×O(m− �))g−1 ∩SO(m, 1) for some �∈ {2, . . . ,m− 1}.
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3. M≤ gPg−1, where P is a fixed parabolic subgroup of S.
4. M is compact and contained in g SO(m)g−1.

In the proof wewill make use of the structure theory of algebraic groups and
special properties of SO(m, 1). In particular, we note that SO(m, 1) contains
the split rank one torus A containing the elements

(5) at=
⎛
⎜⎝
cosh t sinh t 0
sinh t cosh t 0
0 0 Im−1

⎞
⎟⎠

for t∈R, where Im−1 stands for the identity matrix in m− 1 dimensions. We
also define P<SO(m, 1) as the parabolic subgroup defined by {at} so that
{ut}<P.

Proof of Lemma 4.2. Suppose that the Lie algebra m of M contains Adg
(so(�′, 1)) for some g ∈S and 2≤ �′<m. To simplify the notation we assume
without loss of generality that so(�′, 1)⊆m. By Proposition 3.1 there exists
some integer � with �′ ≤ �<m so that after another conjugation m contains
so(�, 1) and is contained in so(�, 1)× so(m− �). Let h∈M⊆SO(m, 1). Then
we have Adh(m)=m, Adh(so(�, 1))= so(�, 1), and hence Adh(so(m− �))=
so(m− �). We now define the subspaces of invariant vectors

V1= (Rm+1)SO(m−�)=R
�+1×{0}m−�

V2= (Rm+1)SO◦(�,1)={0}�+1×R
m−�

for the two subgroups and obtain R
m+1=V1⊕V2 and h(Vi)=Vi for i= 1, 2.

This, however, implies that h∈O(�, 1)×O(m− �) and therefore that M is
contained in

(O(�, 1)×O(m− �))∩SO(m, 1)

(up to conjugation), as claimed in case (2) of the lemma. We note that the
Jacobson-Morozov theorem, the fact that S has rank one, and Proposition 3.1
can be used to show that any noncompact simple subgroup of SO(m, 1) is
isomorphic to SO(�, 1) for some k with 2≤ �≤m. Hence we will assume in
the following thatM does not contain any noncompact simple subgroup.
If M is compact, it is contained in a maximal compact subgroup. As these

are conjugated to SO(m) we obtain in this case (4) of the lemma.
If the unipotent radical of M is trivial, then M is reductive. As mentioned

above we may assumeM has a trivial or compact semisimple part. Assuming
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also that M is not compact and recalling that S has rank one, it follows that
M contains a unique one-dimensional split torus AM. This implies that M is
contained in NS(AM). Since the only nontrivial algebraic automorphism of
AM is (a∈AM �→ a−1), it follows thatM∩CS(AM) has index at most two inM
as claimed in case (1) of the lemma.
Assume now that the unipotent radical UM of M is nontrivial. Then there

exists some g ∈SwithUM ⊆ gPg−1. We again assume for simplicity thatUM ⊆
P and recall that P is the parabolic subgroup defined by a1. Let v− ∈ Lie(UM)

be nontrivial and let h∈M. Applying the Iwasawa decomposition we have h=
kan for k∈SO(m), a∈A, and u∈U belonging to the unipotent radical U of
P. Clearly an∈P so we restrict our attention to k. A calculation reveals that
v− ∈ Lie(U) has the form

v− =
⎛
⎜⎝
0 0 ξT

0 0 −ξT
ξ ξ 0

⎞
⎟⎠

for some ξ ∈R
m−1 (see also Equation (2)). By assumption we have Adk v− ∈

Lie(UM)⊆ Lie(U). We claim that k∈SO(m), and Adk v− ∈ Lie(U) implies k∈
C(A). This gives h= kan∈P as required for case (3) of the lemma.
To prove the claim we suppose for k∈SO(m) that Adk v− belongs to Lie(U)

and calculate1

Adk v− =
(
1 0
0 k

)⎛
⎜⎝
0 0 ξT

0 0 −ξT
ξ ξ 0

⎞
⎟⎠
(
1 0
0 kT

)

=
⎛
⎜⎝

0 (0, ξT)kT

k

(
0
ξ

)
k

(
0 −ξT
ξ 0

)
kT

⎞
⎟⎠ .

Focusing on the second column of the product, we note that the top row entry
is supposed to vanish and the remaining column is supposed to equal

k

(
0
ξ

)
.

However, if c11 denotes the top left entry of k (and equivalently of kT ), then the
remainder of the second column has the form

1The dimensions of this matrix calculation are confusing, but k has m rows and columns and ξ
has m− 1 coordinates.
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c11k

(
0
ξ

)
+ . . . ,

where the ellipsis indicates a vector linearly independent of

k

(
0
ξ

)
.

Therefore, c11= 1 and since k∈SO(m) we obtain that k (when embedded as
before into the lower right block) belongs to C(A) as claimed.

Recall that we wish to prove that for r large enough, Lr cannot be contained
inM×SO(n−m) in any of the cases appearing in Lemma 4.2.
IfM is compact, then so isM×SO(n−m). Since �1 is torsion-free no non-

trivial element of �1 can be contained in M×SO(n−m). Hence Lr is not
contained in M×SO(n−m) if r is chosen sufficiently large to ensure that
d(r)> 1.
In order to show that Lr cannot be contained inM×SO(n−m) ifM is one

of the noncompact groups appearing in Lemma 4.2, we want to show that
the lattice elements γ1, . . . , γd(r) cannot all be contained in a ball of radius r
inside M×SO(n−m) if r is large enough. For this we need an estimate for
the asymptotic volume growth of a ball in the relevant subgroups of S.
Recall the Cartan decomposition of S: every element g ∈S can be written in

the form g= k1atk2 for some k1, k2 ∈SO(m) and t≥ 0.

LEMMA 4.3. Let S=SO◦(m, 1) for some m≥ 2. Then

rm−1mS(BHSr ∩S) rm−1

for all sufficiently large r≥ 1.

Proof. Recall that BHSr ∩SO◦(m, 1)=
{
g ∈SO◦(m, 1) | ∥∥g∥∥HS≤ r

}
. Writing g=

k1atk2 ∈SO◦(m, 1) and using the fact that k1 and k2 belong to the compact
subgroup of SO(m)<SO◦(m, 1), we have

∥∥g∥∥2HS=‖k1atk2‖2HS=‖at‖2HS= 4(cosh t)2+m− 3≥ e2t.(6)

This shows that
∥∥g∥∥HS≤ r implies t≤ log r. From this we deduce (using, e.g.,

[15, chapter 1, section 5]) that

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



466 /manfred einsiedler and philipp wirth

mS(BHSr ∩S)=
∫
BHSr

1 dmS
∫ log r

0
sinhm−1 t dt


∫ log r

0
e(m−1)t dt rm−1.

The reverse estimate for all sufficiently large r≥ 1 follows similarly using
instead of (6) the estimate

∥∥g∥∥2HS≤ e2t+m.
It turns out that if Lr is contained in a conjugate of P×SO(n−m), where

P is the parabolic subgroup of SO(m, 1) and Lr has a non-trivial unipotent
radical, then the following estimate for the volume growth of a ball in the
unipotent radical U of P will be helpful in the proof of Proposition 4.1.

LEMMA 4.4. Let U be the unipotent radical of P<SO(m, 1). Then

mU(BHSr ∩U) r
1
2 (m−1)

for all r≥ 1.

Proof. The unipotent radical U of P is given by

U=

⎧⎪⎨
⎪⎩
uξ =

⎛
⎜⎝
1+ 1

2ξ
Tξ 1

2ξ
Tξ ξT

− 12ξTξ 1− 1
2ξ

Tξ −ξT
ξ ξ Im−1

⎞
⎟⎠ | ξ ∈R

m−1

⎫⎪⎬
⎪⎭
.

Note that we have

∥∥uξ
∥∥2
HS=

m+1∑
i=1

∥∥uξ ei
∥∥2
2= (m+ 1)+ 4 ‖ξ‖22+ 1

2 ‖ξ‖42 .

With this we see that
∥∥uξ

∥∥
HS≤ r implies ‖ξ‖2≤

√
2r. Therefore,

mU

(
BHSr ∩U

)
≤ vol

{
ξ ∈R

m−1 | ‖ξ‖22≤ 2r
}
 r

1
2 (m−1)

for all r≥ 1.
We briefly sketch the argument for Proposition 4.1 in the case of the diag-

onal subgroup (case (1) in Lemma 4.2). For this recall that the diagonal
subgroup has logarithmic volume growth (since we use balls with respect to
theHilbert-Schmidt norm), but we have in fact a polynomial growth rate of the
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lattice points in Equation (4). Since each lattice point contains a ball around it
that can be chosen of uniform measure, this rules out the possibility that the
lattice elements all belong to a diagonal subgroup. However, the precise for-
mulation of this volume argument is more delicate; indeed the subgroup AM

is only conjugated toA by some g ∈S, and the conjugation by gmay drastically
change the group and the normalization of the Haar measure on it. This in
turn affects the desired volume estimate, as we now explain.
In order to understand the meaning of the conjugating element g, we con-

sider its action on the hyperbolic space H
m=SO◦(m, 1)/K—respectively its

frame bundle PSO◦(m, 1). See also Figure 1. In fact the set gAK ={gatK | t∈R}
is a geodesic in H

m that contains the point gK. Consider the point ga−t0K ∈
gAK, which is closest to K. We claim that

g= kbskcat0 = kbsat0kc,

where k∈K, kc ∈K ∩CS(A), and

(7) bs=
⎛
⎜⎝
cosh s 0 sinh s
0 Im−1 0

sinh s 0 cosh s

⎞
⎟⎠

for some s∈R. Indeed let us firstmove the frame g along the geodesic from gK
to ga−t0K, which results in the frame ga−t0 . Since the point ga−t0K is closest
to K from all points on the geodesic gAK, the geodesic connecting ga−t0K to
K is orthogonal to the geodesic gAK. Allowing for some kc ∈K ∩CS(A) we
can assume that the elements k−1c bskc with s∈R is moving the frame ga−t0
back to K along this geodesic. In other words there exists some s∈R so that
ga−t0k−1c b−skc ∈K, which gives the claim.
Therefore the Hilbert-Schmidt norm of the element gatg−1 in AM equals

the Hilbert-Schmidt norm of bsatb−s. Using our definitions in Equations (5)
and (7) and subtracting the identity matrix from at, the conjugate bs(at− I)b−s
is given by

(8)

⎛
⎜⎜⎜⎝

cosh2 s(cosh t− 1) cosh s sinh t 0 cosh s sinh s(1− cosh t)
cosh s sinh t cosh t− 1 0 − sinh s sinh t

0 0 0 0
cosh s sinh s(cosh t− 1) sinh s sinh t 0 − sinh2 s(cosh t− 1)

⎞
⎟⎟⎟⎠,

where the third row with only zeroes stands for m− 1 rows, and similarly the
third column stands for m− 1 columns.
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Figure 13.1. The image gAK={gatK | t∈R} of the geodesic AK={atK | t∈R}
under application of the isometry g in H

m

Here s is determined by g and we wish to estimate the volume of the Haar
measure of all gatg−1 ∈AM for which the Hilbert-Schmidt norm of (8) is
bounded by r. In order to determine the normalization of the Haar measure
on AM, we may, for example, consider the intersection of AM with the ball

{gatg−1 ∈AM | ‖bsatb−s− I‖HS≤ 1}.

The Haar measure coming from the Riemannianmetric is normalized so that
this set has measure � 1. One can then distinguish two cases. It could be
that s is not that large (compared to r), in which case one obtains, roughly
speaking, a logarithmic estimate. Or it could be that s is very large (compared
to r) and the conjugated group AM = gAg−1 behaves on BHSr already almost
like a unipotent subgroup. The latter leads to a polynomial estimate that is
still sufficient. This outline has a gap, as we would also have to consider the
conjugation of K ∩CS(A). We will give a more algebraic argument below for
the diagonal case and give all details of the outlined volume argument in the
case of noncompact semisimple group (case (2) of Lemma 4.2).

Proof of Proposition 4.1. Let M≤S be the intersection of one of the non-
compact subgroups appearing in Lemma 4.2 with S, and assume that all the
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lattice elements in
g−10 �1g0 ∩BHSr ∩N

are contained inM×SO(n−m). We are going to derive a contradiction to this
assumption if r= vol(x0N)κ2 and κ2> 0 is chosen correctly (only depending
on n).
Let v1= vol(x0N) so that r= vκ21 , and recall that by Equation (4) and

Lemma 4.3 we have

d(r)=
∣∣∣g−10 �1g0 ∩BHSr ∩N

∣∣∣� vκ2(m−1)−11 +O(vκ2(m−1)(1−δ)1 ).

Therefore there exist constants c> 0 and κ3> 0 so that

(9)
∣∣∣g−10 �1g0 ∩BHSr ∩N

∣∣∣≥ cvκ2(m−1)−11

whenever κ2≥ κ3 and v1≥ 2. As explained before, we may assume that M is
noncompact.

Case (1) of Lemma 4.2. CS(AM)∩M has at most index two inM, where AM

is the unique split torus inM.

Let g ∈S be such that AM = gAg−1. We recall that �<SO(n, 1) has been
obtained by intersection and conjugation from SLn+1(Z). This implies that
there exists some c= cn> 1 such that for every γ ∈�, either there is an
eigenvalue of absolute value ≥ c or all eigenvalues of γ have absolute value
one. Since AM <S is a split torus and C(AM) is an extension of AM by
a compact group and �1 is torsion-free, the nontrivial lattice elements in
g−10 �1g0 ∩C(AM) have nontrivial components in AM with absolute values of
eigenvalues outside of (c−1, c). This implies that the intersection must be
cyclic. Moreover, note that all elements of BHSr have eigenvalues of absolute
values r—say,≤ c′r for some c′ = c′n> 1. Using that, it follows that there are
at most log(c

′r)
log c many elements in g−10 �1g0 ∩C(AM)∩BHSr .

It remains to handle the elements in M \CS(AM). If g−10 �1g0 ∩BHSr inter-
sects M \C(AM), we suppose that γj belongs to the intersection and fix j.
Multiplying now the elements in g−10 �1g0 ∩BHSr \C(AM) with γj, we obtain
a subset of g−10 �1g0 ∩BHSc′′r2 ∩C(AM) for some c′′ = c′′n > 1. Applying the previ-
ous estimate we obtain therefore that g−10 �1g0 ∩BHSr \C(AM) contains atmost
log(c′c′′r2)
log c many elements.
Together we arrive at the estimate

∣∣∣g−10 �1g0 ∩BHSr ∩N
∣∣∣ log r+C
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for a constant C=Cn. This contradicts the lower bound in Equation (9) once
v1 (and hence r) is sufficiently large.

Case (3) of Lemma 4.2. M≤ gPg−1 for some g ∈S, where P is the parabolic
subgroup within S.

If Lr has a nontrivial unipotent radical, then our assumption implies that the
lattice elements γ1, . . . , γd(r) are contained in gUKPg−1×SO(n−m), where
KP∼=SO(m− 1) is the maximal compact subgroup in P and, as before,

U is the unipotent radical of P. Indeed, L
g−1Q g0
r = g−1Q g0Lrg−10 gQ (with Lr =

〈γ1, . . . , γd(r)〉Z) is a Q-group whose lattice points are Zariski dense, and so it
admits no nontrivialQ-character. However, if now Lr is not of the stated form,
then the determinant of the adjoint representation of Lr on the Lie algebra of

Lr would induce a nontrivial Q-character on L
g−1Q g0
r .

Next we apply the Iwasawa decomposition g= kau, where k∈SO(m), a∈A,
and u∈U. We note that theUKP is normalized by au. Therefore, the conjuga-
tion with g reduces to a conjugation with k belonging to a compact subgroup
of S and is therefore irrelevant for the volume calculation of BHSr ∩ (UKP)

g

below, where we again use the shorthand (UKP)
g = gUKPg−1.

As mentioned before, the element g0 belongs to a fixed compact set, and
so there exists some uniform ε0> 0 so that g−10 �1g0 has no nontrivial ele-
ments in the Riemannian ball B2ε0(I) around the identity in S. Hence, the
balls

Bε0(γ ) for γ ∈ g−10 �1g0 ∩BHSr ∩N

are disjoint. We note that their union is contained in BHS2r (if ε0> 0 is chosen
sufficiently small depending only on n). Since SO(n−m) is compact, we may
use the intersection of these balls with (UKP)

g ×SO(n−m) to obtain from
Lemma 4.4 that

∣∣∣g−10 �1g0 ∩BHSr ∩N
∣∣∣≤ vol(BHS2r ∩ ((UKP)

g ×SO(n−m)))
vol(Bε0(I)∩ ((UKP)

g ×SO(n−m)))

 vol(BHS2r ∩ (UKP)) r
1
2 (m−1)= v

1
2κ2(m−1)
1 ,

with r= vκ21 and vol denoting the Haar measure on (UKP)
g ×SO(n−m),

respectively (UKP)
g . It follows that there exists a κ4> 0 so that if κ2≥ κ4 and

v1≥ 2, then this upper bound contradicts the lower bound in Equation (9). In
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other words, we can ensure that there are too many lattice elements to fit in a
conjugate of U or of P.
We note that in case Lr is contained in a conjugateM of P but Lr has a trivial

unipotent radical, then Lr is contained in the centralizer of the split torus AM

ofM and has already been treated in case (1) above.

Case (2) of Lemma 4.2. M is contained in g(O(�, 1)×O(m− �))g−1 ∩S for
some g ∈S and 2≤ �<m.

We initially only consider the connected subgroup

(10) SO◦(�, 1)×SO(m− �)< (O(�, 1)×O(m− �))∩S

of index four. Similarly to the outline before the proof, we consider the
subspace g SO◦(�, 1)K and find the point gh−1K closest to K with h∈
SO◦(�, 1). The geodesic connecting gh−1K to K can again be parameterized
by gh−1k−1c bskcK for s∈R and kc ∈K ∩C(SO◦(�, 1)), which gives that

g= kbskch

for some k∈K, s∈R, kc ∈K ∩C(SO◦(�, 1)), and h∈SO◦(�, 1).
Since we are only interested in the effect that g has when the group in (10)

is being conjugated by g and intersected with BHSr , we may ignore k, kc, h and
simply assume that g= bs.
For an element h∈SO◦(�, 1), we are going to consider the Cartan decom-

position h= k1atk2 in SO◦(�, 1), where k1, k2 are contained in the maximal
compact subgroup of SO◦(�, 1). Recall that SO◦(�, 1) is embedded in the top
left corner of SO◦(m, 1), and hence bs as in Equation (7) commutes with the
maximal compact subgroup of SO◦(�, 1) (which is isomorphic to SO(�) and
is embedded in the coordinates {2, . . . , �+ 1}). For an element h= k1atk2 ∈
SO◦(�, 1) with k1, k2 ∈K ∩S, we therefore have

‖ghg−1‖=‖bsk1atk2b−s‖=‖bsatb−s‖.

Case (2), normalization of Haar measures. We continue with case (2) and
estimate the normalization of the Haar measure.
In order to determine the normalization of the Haar measure on

g SO◦(�, 1)g−1, we first consider the set

(11)
{
h∈SO◦(�, 1) | h= k1atk2 and ‖bsatb−s− I�+1‖HS≤ 1

}
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Using Equation (8) we see that ‖bsatb−s− I�+1‖HS≤ 1 implies | cosh s sinh t| ≤
1 and hence |t| e−s. On the other hand, there exists an absolute constant
c such that |t| ≤ ce−s implies ‖bsatb−s− I�+1‖HS≤ 1. Using [15, chapter 1,
section 5] again, it follows that the set in (11) has Haar measure

�
∫ e−s

0
sinh�−1 t dt�

∫ e−s

0
t�−1 dt� e−�s.

After conjugating SO◦(�, 1) to g SO◦(�, 1)g−1 the set in (11) is the intersection
of the group with a fixed neighborhood of the identity. Hence the Haar mea-
sure of this subset of g SO◦(�, 1)g−1 is � 1. In other words, the push-forward
of the Haar measure of SO◦(�, 1) needs to be multiplied with � e�s to obtain
the Haar measure on g SO◦(�, 1)g−1.
Similarly, the compact group SO(m− �) is being embedded into S using

the coordinates {�+ 2, . . . ,m+ 1}, and the subgroup SO(m− �− 1) embed-
ded into S using the coordinates {�+ 2, . . . ,m} commutes with bs. Hence the
volume calculations reduce to a volume calculation on the quotient of these
two subgroups—that is, to a volume calculation for a subset of S

m−�−1. We
will use matrices of the form

kφ =
⎛
⎜⎝
Im−1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞
⎟⎠

with φ ∈R as a replacement of our diagonal subgroup A. Conjugating kφ − I
by g= bs we obtain

(12)

⎛
⎜⎜⎜⎝

sinh2 s(1− cosφ) 0 sinh s sinφ cosh s sinh s(cosφ− 1)
0 0 0 0

sinh s sinφ 0 cosφ− 1 − cosh s sinφ
cosh s sinh s(1− cosφ) 0 cosh s sinφ cosh2 s(cosφ− 1)

⎞
⎟⎟⎟⎠.

Requiring this to have the Hilbert-Schmidt norm bounded by 1 (for a fixed s)
amounts to an inequality of the form |φ| e−s. Taking the dimension of
S
m−�−1 into account we see that the Haar measure of this set is of the order
� e−(m−�−1)s.
Case (2), combining the subgroup.We continue with case (2) and explain how

to put the groups SO(�, 1)◦ and SO(m− �) and their elements h, respectively
k, together.
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Since (h− I) and (k− I) are block matrices and in both cases three out of
four blocks vanish, we see that (h− I)(k− I)= 0 and the size of the conjugate
of the product

bshkb−s= bs
(
(I+ (h− I))(I+ (k− I)))b−s

= I+ bs(h− I)b−s+ bs(k− I)b−s

is basically the sum (instead of the product) of the sizes of the two conju-
gates. This shows that both our normalization of the Haar measure of the
product g(SO(�, 1)◦ ×SO(m− �))g−1 and the calculation of the Haar mea-
sure of BHSr below can be done in each group separately. Given a radius r> 0,
we want to estimate the volume of the ball BHSr ∩ g SO◦(�, 1)g−1 and BHSr ∩
g SO(m− �)g−1 with the respective Haar measures (normalized as discussed
above).

Case (2), volume estimate on SO◦(�, 1). For SO◦(�, 1) the requirement that
the matrix in Equation (8) is of norm r is (apart from the precise choice of
the implicit constants) equivalent to the two requirements e2s(cosh t− 1) r
and es sinh t r. If es≤ r1/2 we use [15, chapter 1, section 5] and the second
inequality to obtain

mg SO◦(�,1)g−1
(
BHSr ∩ g SO◦(�, 1)g−1

) e�s
∫ arsinh(ce−sr)

0
sinh�−1 t dt

 e�se(�−1) log(ce−sr)

 esr�−1≤ r�− 12

for some absolute constant c> 0. If es≥ r1/2 we use the first inequality
e2s(cosh t− 1) r, which becomes (cosh t− 1) re−2s≤ 1 and forces t to be
in a bounded interval I (that can be chosen absolute). With 1+ 1

2 t
2≤ cosh t for

all t∈R and sinh t� t for all t∈ I, we arrive at

mg SO◦(�,1)g−1
(
BHSr ∩ g SO◦(�, 1)g−1

) e�s
∫ cr

1
2 e−s

0
sinh�−1 t dt

 e�s
∫ cr

1
2 e−s

0
t�−1 dt

 e�s(r
1
2 e−s)�= r 12 �≤ r�− 12

for some absolute constant c.
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Case (2), volume estimate on SO(m− �). For SO(m− �) we instead consider
the matrix in Equation (12) and suppose that its norm is  r. If es≤ r, this
inequality is essentially meaningless and we obtain the trivial estimate

mg SO(m−�)g−1(BHSr ∩ g SO(m− �)g−1) e(m−�−1)s≤ rm−�−1.

If es≥ r, then the required estimate for (12) implies |φ| e−sr and we obtain
using the geometry of S

m−�−1 that

mg SO(m−�)g−1(BHSr ∩ g SO(m− �)g−1) e(m−�−1)s(e−sr)m−�−1= rm−�−1.

Case (2), concluded. Putting these estimates together we obtain in any
case that the Haar measure of BHSr for the conjugated group g SO◦(�, 1)×
SO(m− �)g−1 is bounded by rm− 32 , which beats the estimate for the group
SO◦(m, 1) in Lemma 4.3. Recalling that the subgroup in Equation (10) has
index four, this volume estimate also generalizes to (O(�, 1)×O(m− �)(R))∩
S conjugated by g. Recalling moreover that r= vκ21 and applying (9) we obtain

vκ2(m−1)−11 
∣∣∣g−10 �1g0 ∩BHSr ∩N

∣∣∣
 vol(BHS2r ∩ g((O(�, 1)×O(m− �)(R)))g−1 ∩S)

 v
κ2(m− 32 )
1 .

Hence there exists a constant κ5> 0 so that for all r= vκ21 with κ2≥ κ5, the
above inequality cannot hold.

Conclusion of proof of Proposition 4.1. Choosing r= vκ21 with κ2=
max{κ3, κ4, κ5}, we see that Equation (9) contradicts the assumption that the
lattice elements belong to a proper subgroup of the form M×SO(n−m). It
follows that there are lattice elements {γ1, . . . , γd}⊆ g−10 �1g0 with ‖γi‖HS≤
vκ21 such that the Zariski closure of the subgroup generated by {γ1, . . . , γd}
contains S. Since g0 belongs to a fixed compact subset, the lattice elements

{g0γ1g−10 , . . . , g0γdg−10 }⊆�1

satisfy
∥∥∥g0γig−10

∥∥∥ vκ21 , and the Zariski closure of their generated subgroup
contains Sg0 as claimed.

The following lemma strengthens the conclusion of Proposition 4.1 and
shows that it suffices to consider a fixed number of lattice elements.
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LEMMA 4.5. There exists an absolute constant D∈N depending only on n with
the following property. Suppose d∈N and g1, . . . , gd ∈SO(n, 1) are nontorsion
elements of a discrete subgroup that generate a subgroup with Zariski closure
L⊆SO(m, 1)×SO(n−m) containing SO(m, 1). Then there exist

j1, . . . , jD ∈ {1, . . . , d}

such that gj1 , . . . , gjD together generate a subgroup with Zariski closure containing
SO(m, 1).

Proof. Denote by πS : L→SO(m, 1) the projection to SO(m, 1) and set Dm=
dim(SO(m, 1)). Since the element g1 is nontorsion and no finite index sub-
group of the subgroup generated by g1 can belong to SO(n−m), the Lie
algebra of the Zariski closure of the group generated by πS(g1) is at least
one-dimensional. We set j1= 1 and choose the indices j2, . . . , jDm as follows:
Assume we have already chosen j1, . . . , j� for some 1≤ �<Dm. If the ele-
ments gj1 , . . . , gj� already generate a subgroup with Zariski closure containing
SO(m, 1), we are done (and, e.g., repeat the first element to obtain Dm ele-
ments). Otherwise, we look at the Lie algebra l � so(m, 1) of the Zariski
closure of the group generated by πS(gj1), . . . ,πS(gj� ). Since l is at least one-
dimensional, it cannot be a Lie ideal and there exists some gj�+1 that does not
normalize l. Adding this element to the list we see that the dimension of the
Zariski closure of the group generated by the new list gj1 , . . . , gj�+1 increased
at least by one. This gives the lemma for D= dimSO(n, 1) (by once more
repeating elements to obtain a list of length D precisely).

5 Bounding the volume in terms of the normalizer orbit

5.1 THE DISCRIMINANT OF A CLOSED S -ORBIT. Recall that�= gQ
SOQ (Z)g−1Q for some fixed gQ ∈SLn+1(R) and that we are using the abbrevia-
tion S=SO◦(m, 1) for some 2≤m≤ n. Wewant to attach to each closed S-orbit
an arithmetic invariant, called the discriminant. Let V =∧m+1

R
n+1 and con-

sider the integral lattice VZ=∧m+1
Z
n+1⊂V . Note that the quadratic form

Q on R
m+1 induces a quadratic form Q∧ on V so that

Q∧(v1 ∧ . . .∧ vm+1)= det
(〈vi, vj〉Q

)
.

Given a closed S-orbit �g0S for some g0 ∈SO◦(n, 1), we define

wg0S= g−1Q g0(e1 ∧ . . .∧ em+1)
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and

disc(�g0S)= inf
{|Q∧(dwg0S)|

∣∣d> 0 and dwg0S ∈VZ \ {0}
}
.

Note that e1 ∧ . . .∧ em+1 is invariant under S, that g−1Q g0〈e1, . . . , em+1〉 is a
rational subspace by Borel density, and that VZ is stable under g−1Q �gQ =
SOQ (Z). Therefore, the discriminant of the orbit �g0S is well-defined and
finite. Moreover,

Q∧
(
g−1Q g0(e1 ∧ . . .∧ em+1)

)= λ−(m+1)Q0,∧
(
g0(e1 ∧ . . .∧ em+1)

)

=−λ−(m+1) �= 0,

which shows that disc(�g0S)> 0.
We note that the ratio

∣∣Q∧
(
dg−1Q g(e1 ∧ . . .∧ em+1)

)∣∣
∥∥∥dg−1Q g(e1 ∧ . . .∧ em+1)

∥∥∥2

is constant with respect to d> 0 and depends continuously on g ∈G so that
it is bounded from above and below if g varies inside a compact subset of G.
From this we see that

(13) disc(�g0S)� inf
{∥∥dwg0S

∥∥2 ∣∣d> 0 and dwg0S ∈VZ

}
,

where we insist (as we may) on g0 being chosen from a fixed compact subset
of G that projects onto Xcpct.

5.2 THE DISCRIMINANT OF A CLOSED L-ORBIT. More generally we
already saw in section 4.1 that orbit closures of noncompact special orthog-
onal subgroups on X take (after applying on the right an element of SO(n))
the form x0L for some x0=�g0 ∈X and L=SO◦(m, 1)×SO(m+ 1)p with
m∈ {2, . . . , n} and p≥ 0. We wish to define a discriminant of x0L using as
far as possible again the vector w̃g0L= g−1Q g0(e1 ∧ . . .∧ em+1). Unlike the pre-
vious case this vector may not be a multiple of a rational vector; it is, however,
an algebraic vector. In fact, the R-simple factors of the Q-group L define
finitely many algebraic subspaces that are Galois conjugated to each other.
The exterior tensor g−1Q g0(e1 ∧ . . .∧ em+1) corresponds to one of them and by
the above discussion is normalized to haveQ∧-value−λ−(m+1), which implies
that the tensor product is algebraic and its Galois conjugates correspond to the
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algebraic subspaces on which the other R-simple factors of L act nontrivially
(possibly with repetitions).
We define wg0L as the symmetric tensor product of g

−1
Q g0(e1 ∧ . . .∧ em+1)

and its p linearly independent Galois conjugates. More precisely, since we
assume that L is embedded as block matrices in the first (p+ 1) blocks of
size (m+ 1) along the diagonal, we can make the definition more concrete by
setting

wg0L= g−1Q g0
(
(e1 ∧ . . .∧ em+1)� (em+2 ∧ . . .∧ e2m+2)� · · ·
· · · � (ep(m+1)+1)∧ . . .∧ e(p+1)(m+1))

)∈V� =⊙p+1V ,

where we denote the symmetric tensor product by �. It follows that the line
spanned by wg0L is invariant under the Galois action. Hence the line contains
a rational and so also an integer vector in the canonical integer lattice V�,Z=⊙p+1 VZ⊂V�.
We also note that for a given quadratic form q on R

N we can induce a
quadratic form q� on

⊙P
R
N by using the permanent of all possible inner

products:

q�(v1� · · ·� vP)= perm(〈vi, vj〉)=
∑
σ∈SP

〈v1, vσ(1)〉 . . . 〈vP, vσ(P)〉.

We apply this to q=Q∧ to define Q� on⊙p+1∧m+1
R
n+1. In our case this

quadratic form is very easy to evaluate on wg0L since g
−1
Q again switches up to

a power of λ to the quadratic form Q0, g0 preserves Q0, and

Q0,�
(
(e1 ∧ . . .∧ em+1)� · · ·� (ep(m+1)+1)∧ . . .∧ e(p+1)(m+1))

)=−1.

We now define the discriminant of the closed orbit �g0S=�g0L by

disc(�g0L)= inf
{|Q�(dwg0L)| | dwg0L ∈V�,Z \ {0}

}
> 0.

As in the previous case we have

(14) disc(�g0L)� inf
{‖dwg0L)‖2 | dwg0L ∈V�,Z \ {0}

}

if we insist that the representative g0 is chosen from a fixed compact subset of
G that projects onto Xcpct.
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5.3 BOUNDING DISCRIMINANT IN TERMS OF VOLUME. The fol-
lowing represents the main result of the section and will relate the volume
of the N-orbit and the discriminant of the closure of the associated S-orbit.

PROPOSITION 5.1. There exists κ6> 0 such that S=SO◦(m, 1)� L=S×
SO(m+ 1)p and �g0S=�g0L implies

disc(�g0L) vol(�g0N)κ6 .

Given lattice elements γ1, . . . , γD ∈Ng0 ∩� as in Proposition 4.1 and
Lemma 4.5, we are going to study the set of (m+ 1)–dimensional subspaces
of R

n+1 that are invariant under all the elements η1= g−1Q γ1gQ , . . . , ηD=
g−1Q γDgQ . Notice that the subspace

V0= g−1Q g0〈e1, . . . , em+1〉

satisfies this condition and that it is in some sense isolated from all other
invariant subspaces (see Lemma 5.3). We will use this together with the
bounds in Proposition 4.1 on the lattice elements to prove Proposition 5.1.
In other words our goal in all of the following discussions is to bound the
arithmetic complexity of the (potentially irrational but always algebraic) point

R
×g−1Q g0(e1 ∧ . . .∧ em+1)

in terms of the size of the parameters η1, . . . , ηD.

5.4 ALGEBRAIC SETUP FOR L =S. Let k be a field and n≥ 1, and
denote by

Pn (k)=Pn

(
kn+1

)
=
(
kn+1 \ {0}

)
/∼

the projective space of dimension n over k, where the equivalence relation
is defined by (x1, x2, . . . , xn+1)∼ (y1, y2, . . . , yn+1) if and only if there exists
λ∈ k× with xi= λyi for all i∈ {1, 2, . . . , n+ 1}. We write k×(x1, x2, . . . , xn+1)
for the corresponding equivalence class.
Recall that for n≥ 2 and 1≤ r< n, the Grassmannian Grr,n(k) is defined

to be the set of all r-dimensional subspaces of kn and has the structure of a
projective variety; see, for example, [14, section 6] for a proof of the following.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



effective equidistribution of closed hyperbolic subspaces / 479

PROPOSITION 5.2 (Plücker embedding). For any field k, define the map

ι : Grm,n(k)−→P

(∧m
kn
)

as follows: For any m-dimensional subspace V of kn, choose a basis v1, . . . , vm of V
and define ι(V) := k×(v1 ∧ . . .∧ vm). Then the map ι is well-defined and injective.
Moreover, the Grassmannian is a projective variety defined by quadratic equations.
The map ι is called the Plücker Embedding.

We consider the set

Y =
{
(V , η1, . . . , ηD)∈Grm+1,n+1(R)× (Matn+1(R))D |(15)

ηiV =V for i= 1, . . . ,D
}
,

which by Proposition 5.2 is a variety defined over Q. We define

r= dim
(∧m+1

R
n+1

)
=
(
n+ 1
m+ 1

)
.

We denote the variables corresponding to the standard basis of
∧m+1

R
n+1

obtained from the standard basis ofRn+1 byX= (X1, . . . ,Xr) and the variables
corresponding to the entries of η1, . . . , ηD byT= (T1, . . . ,Ts), so s=D(n+ 1)2.
With that, we view Y as a subset of P (Rr)×R

s.
We will think of T as parameters while our main interest lies in the

variables X. In fact, notice that if we set ηi= g−1Q γigQ in (15), where
γ1, . . . , γD are the lattice elements obtained from Proposition 4.1 and Lemma
4.5, then the fiber in Y above the point (η1, . . . , ηD) corresponds to the
set of all (m+ 1)–dimensional subspaces of R

n+1 that are invariant under
g−1Q γ1gQ , . . . , g−1Q γDgQ . We denote this set, which is a projective variety, by

(16) Ỹ =
{
V ∈Grm+1,n+1(R) |

(
g−1Q γigQ

)
V =V for i= 1, . . . ,D

}
,

where we keep the dependence on γ1, . . . , γD implicit.

LEMMA 5.3. Let W be an (m+ 1)–dimensional, S-invariant subspace of C
n+1.

Then either W =C
m+1×{0}n−m or W is contained in {0}m+1×C

n−m. In partic-
ular, R×wg0S (as defined in section 5.1) constitutes a zero-dimensional irreducible
component of Ỹ .
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Proof. Assume indirectly that there is a vector v= (v1, v2)∈W, where v1 ∈
C
m+1 \ {0} and v2 ∈

({0}m+1×C
n−m) \ {0}. Let s∈S be an element that acts

nontrivially on v1; then (sv1, v2)∈W and (ṽ1, 0) := (v1, v2)− (sv1, v2)= (v1−
sv1, 0)∈W, where ṽ1 ∈C

m+1 \ {0}. Since S acts irreducibly on C
m+1, this

implies that Cm+1⊆W and thus dim(W)≥m+ 2, which is a contradiction.
Recall that by our construction of γ1, . . . , γD we have that Sg0 is contained in

the Zariski closure of the group they generate. For the irreducible component
W of Ỹ that contains our point, this forces dimW = 0.

5.5 ALGEBRAIC SETUP FOR GENERAL L. For orbit closures �g0S=
�g0L with S� L=SO◦(m, 1)×SO(m+ 1)p and p> 0, we define Y as the
collection of all tuples

(
R
×v1� v2� · · ·� vp+1, η1, . . . , ηD

)
,

where v1, . . . , vp+1 ∈∧m+1
R
n+1 are pure tensors, each representing a sub-

space that is fixed by the matrices η1, . . . , ηD. Once more this defines a variety
defined over Q.
Moreover, if we specify ηi= g−1Q γigQ for i= 1, . . . ,D we obtain the vari-

ety Ỹ ⊂P(
⊙p+1∧m+1

R
n+1) corresponding to unordered (p+ 1)-tuples of

(m+ 1)–dimensional subspaces of R
n+1 that are fixed by the conjugates of

our lattice elements.

LEMMA 5.4. The point R
×wg0L defined in section 5.2 constitutes a zero-dimen-

sional irreducible component of Ỹ .

Proof. By Lemma 5.3 the subspace g−1Q g0〈e1, . . . , em+1〉 is an isolated point of
the variety of all Sg

−1
Q g0 -invariant subspaces. We recall that the Zariski closure

of η1, . . . , ηD equals the Q-group L so that Lg
−1
Q g0 is the connected component

of its group of R-points. Hence the Galois conjugates of g−1Q g0〈e1, . . . , em+1〉
are also isolated points of the variety of subspaces that are invariant under
η1, . . . , ηD. Since wg0L corresponds precisely to this unordered tuple, the
lemma follows.

5.6 THE TREE OF AFFINE VARIETIES. Let X= (X1, . . . ,Xr) and T=
(T1, . . . ,Ts) be two lists of variables. Let I ⊆Q[X,T] be an ideal. In this section,
we are going to construct a finite tree of ideals in Q[X,T], only depending on
the ideal I.
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Let

I = q1 ∩ . . .∩ qn(I)

be a minimal primary decomposition of I and denote by p1, . . . , pn(I) the cor-
responding prime ideals. For every i∈ {1, . . . , n(I)} we define the prime ideal
ai= pi ∩Q[T], the ring Rai =Q[T]/ai of regular functions, and the field kai of
rational functions on the variety V(ai). Identifying pi with its image in Rai [X]
we also define the prime ideal p′i= kaipi≤ kai [X]. We note that the dimension
of the variety defined by pi (overC) equals the dimension of the variety defined
by ai (over C) plus the dimension of the variety defined by p′i over kai . This is
a simple consequence of the definition of the dimension of a variety as the
transcendence degree of its associated field of rational functions.
Denote by PI ⊆Q[T] the finite set of polynomials obtained by varying i∈
{1, . . . , n(I)} and j∈ {1, . . . , r} as follows. If p′i is zero-dimensional (referred to
as a zero-dimensional case in the following discussions), thenXj+ p′i ∈ kai [X]/p′i
is algebraic over kai . Hence there exists a polynomial in pi in the variables Xj
and T that is nonzero even when considered modulo ai; we choose one such
polynomial, assume that the leading coefficient (with respect to the variable Xj
and belonging to Q[T]) does not belong to ai, and add this leading coefficient
to our set PI .
This defines the first level of our tree: the ideal I together with the set PI

and in any zero-dimensional case the polynomials in the variables Xj and T
for j= 1, . . . , L.
To find the next level of the graph, we let p∈PI be one of the leading coef-

ficients for a polynomial in Xj and T belonging to pi (in the zero-dimensional
case). Now consider Ip= pi+Q[X,T]p (which is strictly bigger than pi and so
also than I). Whenever this ideal is proper we repeat the above discussion for
it to find a new vertex of our tree.
Since the ring Q[X,T] is Noetherian, this process eventually terminates,

leading to a finite tree of affine varieties. We also note that for the terminal
leaves I we have that p∈PI corresponding to pi implies that pi+Q[X,T]p=
Q[X,T].

5.7 ESTIMATING THE HEIGHT. We return to our study of the Grass-
mannianGrm+1,n+1(R) and the varietiesY in Equation (15) and Ỹ in Equation
(16), respectively its generalizations in section 5.5. For i0 ∈ {1, 2, . . . , r}, define
the affine charts

Âi0 =
{
R
×(x1, x2, . . . , xr)∈P(Rr) | xi0 �= 0

}⊆P
(
R
r)
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and set Ai0 :=Y ∩ (Âi×R
s). Note that the sets Ai0 are affine varieties and that

(17) Y =
r⋃

i0=1
Ai0 .

We will always assume that i0 is chosen so that Ai0 contains the point

(18) X̃ := (R×wg0L, g
−1
Q γ1gQ , . . . , g−1Q γDgQ )∈Y ,

where γ1, . . . , γD are the lattice elements fromProposition 4.1 and Lemma 4.5.

DEFINITION 5.5 (Height). Given a point R
×v∈P (V) in the projective

space associated to a vector space V with an integral structure VZ, we define
its height ht(R×v)=ht(v) by

ht(v)= inf {‖dv‖ | dv∈VZ and d∈R
×}.

We note that for us this definition is useful since

ht(R×wg0L)
2� disc(�g0L)

by Equations (13) and (14).

LEMMA 5.6 (Rational roots of rational polynomials). For every d≥ 1we have
that any rational root x= p/q∈Q of a nonzero polynomial

f (X)= adXd+ . . .+ a1X + a0 ∈Q[X]

with gcd(p, q)= 1 satisfies

ht(x) :=max{|p|, |q|} ≤ht(ad) . . .ht(a0).

Proof. We may suppose a0ad �= 0. For i= 0, 1, . . . , d, write ai= αi
βi
with

gcd(αi,βi)= 1. Multiplying f with A=β0β1 . . . βd yields a polynomial cdXd+
. . .+ c1X + c0 ∈Z[X] with coefficients ci=βd . . . βi+1αiβi−1 . . . β0 and there-
fore ht(ci)≤ht(ad) . . .ht(a0). The claim now follows from the fact that given
a rational root x= p/q∈Q of a polynomial cdXd+ . . .+ c1X + c0 ∈Z[X] with
gcd(p, q)= 1, then q divides the leading coefficient cd and p divides the
constant term c0. In particular, ht(x)≤max{|cd|, |c0|}.
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In the proof of Proposition 5.1, we are going to use the following result; see,
for example, [22, chapter 4, section 2].

PROPOSITION 5.7. Let V be an irreducible affine variety of dimension n and
let f1, . . . , fr be elements of the ring of regular function on V . If W is an irre-
ducible component of V(f1, . . . , fr)={x ∈V | fi(x)= 0 for 1≤ i≤ r}, then we have
dimW ≥ n− r.

Proof of Proposition 5.1. Let I ={f ∈Q[X,T] | f (y)= 0 for all y∈Ai0} be the
ideal of relations for all unordered (p+ 1)-tuples of (m+ 1)–dimensional sub-
spaces within the affine chart Âi0 and group elements that preserve (each of)
the subspaces. Following the construction from section 5.6, we consider the
finite tree corresponding to I, and we want to choose one variety containing
X̃ in Equation (18) from this tree. It is important to note that the ideal I is
independent of �g0L except for the choice of i0 ∈ {1, . . . , r}. Hence all poly-
nomials appearing below are from a finite list of polynomials constructed in
section 5.6.
Let pi be one of the minimal prime ideals associated to I so that

X̃ ∈V(pi)={y∈Ai0 | f (y)= 0 for all f ∈ pi},

and let t= (t1, . . . , tM) be the entries of the lattice elements η1, . . . , ηD conju-
gated to γ1, . . . , γD from Lemma 4.5 by gQ . Since gQ is fixed, Proposition 4.1
gives that ‖t‖ vol(x0N)κ2 .
We now wish to introduce the additional relations T1− t1, . . . ,TM − tM

to the ideal pi, or equivalently specify the last M coordinates in the variety
V =V(pi). By definition of ai we have t∈V(ai). Let di= dimV(ai) so that pre-
cisely di elements of the list of variables T1, . . . ,TM form a transcendence
basis for the field of rational functions kai over Q. For technical reasons we
do not use these but instead apply the Noether normalization lemma (see [25,
section 2.5.2, theorem 4]) for the variety V(ai) to define the regular functions
f1, . . . , fdi ∈Q[T]. We apply Proposition 5.7 to the variety V =V(pi) and the reg-
ular functions f1(T)− f1(t), . . . , fdi(T)− fdi(t). Hence the resulting subvariety
of V defined by these equations has the property that all its irreducible compo-
nentsW have dimension at least dimV(pi)− di. Also note that for all of these
varietiesW , the T-coordinates are determined up to finitely many possibilities
since the morphism

ϕ(T)= (f1(T), . . . , fdi(T))
is finite on the variety V(ai) by construction of f1, . . . , fdi .
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Suppose our point X̃ belongs to the irreducible componentW of V . By con-
struction, all elements of W consist of tuples of an (unordered (p+ 1)-tuple
of) (m+ 1)–dimensional subspaces and group elements that preserve the sub-
spaces. Since the group elements η1, . . . , ηD are rational, the T-coordinates
in W are completely determined by these, and it follows that the subspaces
appearing in W are contained in the variety Ỹ appearing in Equation (16)
(respectively the variety discussed in section 5.2). By Lemmas 5.3 and 5.4
it follows that W is zero-dimensional. By the above dimension estimate we
must therefore have dimV(pi)= di or equivalently dimV(p′i)= 0, which puts
us into the zero-dimensional case of the construction of the tree.
We first suppose that p(t) �= 0 for all of the leading coefficients p∈PI of the

polynomials in Xj and T belonging to pi. We apply this to the rational vector we
obtain by considering R

×wg0L in the affine chart Ai0 . Hence each component
of this rational vector satisfies a nontrivial polynomial relation whose degree is
bounded and whose coefficients are rational with heights bounded by a mul-
tiple of a power of vol(x0N). Lemma 5.6 now shows that each component has
height bounded by a power of vol(x0N). Clearing denominators we see that
there exists an integral representative of R

×wg0L of size bounded by a power
of vol(x0N).
In the second case we have that p(t)= 0 for one of the leading coefficients

p∈PI of the polynomials in Xj and T. However, this shows that X̃ belongs to
the variety defined by Ip= p+Q[X,T]p and we may start the argument with
this ideal again. Since the tree is finite we will eventually reach the first case,
and Proposition 5.1 follows.

5.8 AN UPPER BOUND FOR THE VOLUME OF A CLOSED S-ORBIT. We
start by recalling Siegel’s lemma; see, for example, [20, lemma 6.1]:

LEMMA 5.8. Let M<N and let aij be integers with |aij| ≤C for some C≥ 0 and
all 1≤ i≤M, 1≤ j≤N. Then there is a κ7> 0 and a nonzero integral solution x
to the homogeneous system

N∑
j=1

aijxj= 0, 1≤ i≤M

satisfying |xj|M,N Cκ7 .
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The next lemma specifies the principle that the orthogonal complement of
a subspace of low arithmetic complexity is also of low complexity.

LEMMA 5.9. Let R> 0 and let v1, . . . , vm ∈Z
n be vectors linearly independent

over R with ‖vi‖≤R for i= 1, . . . ,m. Then there exists a κ8> 0 depending only
on n so that the orthogonal complement (for the bilinear form coming from Q)
of V =Span(v1, . . . , vm)⊆R

n has a basis vm+1, . . . , vn ∈Z
n with

∥∥vj
∥∥Rκ8 for

j=m+ 1, . . . , n.

Proof. We apply Lemma 5.8 inductively in order to find a basis of V⊥. Siegel’s
lemma immediately gives us a first vector vm+1 ∈V⊥ ∩Z

n with ‖vm+1‖Rκ7

as a solution to the m linear conditions that vm+1 is orthogonal to v1, . . . , vm.
In order to complete the induction, assume that we have found linearly
independent vectors

vm+1, . . . , vm+� ∈V⊥ ∩Z
n

for some 1≤ �< n−m with ∥∥vj
∥∥Rκ9 for some κ9> 0. Lemma 5.8 produces

a vector vm+�+1 ∈V⊥ ∩Z
n, being linearly independent of vm+1, . . . , vm+� and

satisfying ‖vm+�+1‖Rκ7κ9 , as a solution to them+ � linear conditions that
vm+�+1 is orthogonal to v1, . . . , vm+�.

We fix some Riemannian metric on G and write d(g1, g2) for g1, g2 ∈G,
respectively d(x1, x2) for x1, x2 ∈X for the resulting metrics.

PROPOSITION 5.10 (Transverse discreteness of orbits). Suppose that g1
and g2 are two points defining the same S-orbit closure, chosen from a fixed compact
subset that projects onto Xcpct. Moreover, assume that �g1S=�g2S=�g1L (for an
intermediate group L) has discriminant D and that g1L �= g2L. Then there exists
κ10> 0 so that d(g1, g2)�D−κ10 .

Proof. We suppose first that �g1S is a closed orbit as in section 5.1. Write
γ g1s= g2 for some γ ∈� and s∈S and let h= g−11 g2 so that

g1h= g2= γ g1s.

If h is not contained in NG(S), then h does not fix the subspace spanned by
e1, . . . , em+1 and so R

×wg1S �=R
×wg2S, where

wgiS= g−1Q gie1 ∧ . . .∧ g−1Q giem+1
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for i= 1, 2. By the definition of the discriminant,Rwg1S andRwg2S contain two
different lattice elements ofVZ of equal quadratic value and size approximately
D1/2. Therefore

∥∥wg1S−wg2S
∥∥�D−1/2. Since the map g �→wgS is smooth,

since gQ is fixed, and since g1, g2 belong to a fixed compact subset, this implies
that d(g1, g2)�D−1/2.
If on the other hand h∈NG(S), we consider the orthogonal complement

(for the bilinear form coming from Q) of the subspace

W1= g−1Q g1〈e1, . . . , em+1〉⊆R
n+1.

By Minkowski’s theorem on successive minimas and Equation (13) it follows
that W1 has a basis w1, . . . ,wn−m ∈Z

n+1 with ‖wi‖D1/2. By Lemma 5.9,
there exists κ10> 0 and a basis w1, . . . ,wn−m ∈Z

n+1 ofW⊥1 with ‖wi‖Dκ10

for i= 1, . . . , n−m.
Note that g−1Q γ gQwi for i= 1, . . . , n−m are lattice elements as well. If

g−1Q γ gQwi=wi for i= 1, . . . , n−m, then the conjugate hg
−1
Q of h= g−11 γ g1s

acts trivially on 〈em+2, . . . , en+1〉. Therefore h belongs to S and g1S= g2S,
which contradicts the assumption of the proposition. So there exists i∈
{1, . . . , n−m} with g−1Q γ gQwi �=wi, which means that wi and g−1Q γ gQwi are
two different lattice elements. Note that given v∈R

n+1 with ‖v‖= 1, then the
map g �→ gv is smooth and g1, g2 belong to a fixed compact subset. Therefore,

1≤Q
(
g−1Q γ gQwi−wi

)
Q0

(
g1hs−1g−11 gQwi− gQwi

)

=Q0

(
g1hg−11 gQwi− gQwi

)
Dκ10d(g2g−11 , e)

since s−1 fixes g−11 gQwi ∈ 〈em+1, . . . , en+1〉. It follows that

d(g1, g2)�D−κ10 .

We now suppose that we are in the situation considered in section 5.2. We
again write γ g1�= g2 for γ ∈�, �∈ L, and we set h= g−11 g2. If h is not in
NG(L), thenR

×wg1L �=R
×wg2L and we can argue as in the first case considered

above. So suppose h∈NG(L) or equivalently wg1L=wg2L. Here too the argu-
ment is very similar to the case considered above once we have shown that the
orthogonal complement of g−1Q g1〈e1, . . . , e(p+1)(m+1)〉 has a basis consisting of
integer vectors of size bounded by disc(g0L)∗. To prove this we have to use
that the symmetric tensor dwg1L ∈V�,Z is integral, is of size disc(�g1L)1/2,
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and roughly speaking corresponds to (p+ 1) linearly independent (algebraic)
(m+ 1)–dimensional subspaces.
For this we start by noting that any tensor w∈⊙p+1∧k

R
n+1 can be used

to induce a homogeneous polynomial map

w∧ (·) : v∈R
n+1 �→w∧ v∈⊙p+1∧k+1

R
n+1

of degree p+ 1. In fact, for any pure tensor w=w1�w2� · · ·�wp+1 with
w1, . . . ,wp+1 ∈∧k

R
n+1, we define

w∧ v= (w1 ∧ v)� (w2 ∧ v)� · · ·� (wp+1 ∧ v),

which extends by symmetry and multilinearity to a definition of w∧ v for
all w∈⊙p+1∧k

R
n+1. Moreover, for integral w this polynomial has integer

coefficients.
Since the form Q is nondegenerate it induces an isomorphism between

R
n+1 and its dual space. Moreover, identifying

∧n+1
R
n+1 with R gives an

isomorphism between V =∧m+1
R
n+1 with V∗ =∧n−m

R
n+1 (only depend-

ing on Q) so that, for example, g−1Q g1(e1 ∧ . . .∧ em+1) is identified with
g−1Q g1(em+2 ∧ . . .∧ en+1) (apart from a sign and a power of λ that only depends
on m and n). We let w∈V∗

Z
be the image of dwg1L under this isomorphism,

multiplied by a power of λ to ensure integrality of w. With this, we wish to
consider the equation

(19) ∂α(w∧ v)= 0,

where α ∈N
n+1
0 is assumed to satisfy

∑n+1
j=1 αj= p and ∂α stands for the iter-

ated partial derivatives with respect to the coordinates of v. Since w∧ v is
homogeneous of degree p+ 1, we see that (19) actually amounts to linear equa-
tions in the variable v. Moreover, by construction we have that the coefficients
to these equations are integral and bounded by a power of disc(�g1L). We
claim that these define precisely the subspace g−1Q g1〈e(p+1)(m+1)+1, . . . , en+1〉.
Using this and Lemma 5.8 it follows that this subspace has indeed a basis
consisting of integer vectors of size that is bounded by a power of disc(�g1L),
which in turn implies the remaining case of the proposition.
To see the claim, it is best to switch again from Q to Q0 and using

that g1 belongs to the orthogonal group we may also drop g1. After this, w
becomes a scalar multiple of the symmetric tensor product of the alternating
tensors
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em+2 ∧ . . .∧ e(p+1)(m+1) ∧ e(p+1)(m+1)+1 ∧ . . .∧ en+1,
e1 ∧ . . .∧ em+1 ∧ e2(m+1)+1 ∧ . . .∧ e(p+1)(m+1) ∧ e(p+1)(m+1)+1 ∧ . . .∧ en+1,

...

e1 ∧ . . .∧ ep(m+1) ∧ e(p+1)(m+1)+1 ∧ . . .∧ en+1,

where in each line a different block of (m+ 1) consecutive basis vectors is
missing. From this we see thatw∧ v vanishes of order p+ 1 on the desired sub-
space 〈e(p+1)(m+1), . . . , en+1〉 and hence all partial derivatives in (19) of order p
vanish too. For v= v1+ · · ·+ vp+1 with vj belonging to the subspace spanned
by the basis vectors with indices in (j− 1)(m+ 1)+ 1, . . . , j(m+ 1), we have
that w∧ v equals the symmetric tensor product of the first alternating tensor
in the above list with v1, the second with v2, and so on. In particular, if we
expand the product into linear combinations of the standard basis vectors, we
obtain that each coefficient is itself a product of p+ 1 coordinates with one
coordinate of each v1, . . . , vp+1 (and not a sum of such products). Taking now
the partial derivative ∂α as above we can isolate all coordinates of vj to obtain
vj= 0 for j= 1, . . . , p+ 1. This implies the claim.

The above transverse separation of an orbit to itself implies a bound for the
volume of a closed S-orbit in terms of its discriminant.

PROPOSITION 5.11. There exists a constant κ11> 0 (depending only on n) so
that �g0S=�g0L for some g0 ∈G implies

vol(�g0L) disc(�g0L)κ11 .

We only sketch the argument and refer to [7, proposition 2.8] for the details.
If X is compact, we can cover it by finitely many balls with radius below the
injectivity radius. In each one of these ballsB the separation property in Propo-
sition 5.10 shows that at mostD∗ many local pieces of the orbit �g0L can
go through B, where the exponent ∗ depends on n and κ10 only. Putting this
together gives the result. If X is noncompact, one applies the same argument
but within Xcpct, which suffices for the volume estimate.
Taking Propositions 5.1 and 5.11 together we obtain the desired partial

converse to the trivial estimate vol(�g0N) vol(�g0S).
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PROPOSITION 5.12 (Volume comparison). There exists κ1> 0 such that

vol(�g0N) vol(�g0S) vol(�g0N)κ1

for any g0 ∈G for which �g0S=�g0L and S� L.

5.9 NUMBER OF CLOSED N -ORBITS. Proposition 5.10 also applies to
closed N-orbits. In fact we can define the discriminant of the N-orbit as the
discriminant of any S-orbit closure it contains. Moreover, this shows that the
number of closed N-orbits with disc(�g0N)≤D is bounded by Dκ12 for
some constant κ12> 0 depending only on n. In fact, our discussion associates
to each orbit �g0S=�g0L⊂�g0N (with the representative g0 chosen from a
fixed compact subset of G) the integer vector wg0L of sizeD1/2. Since this
vector determines the orbit �g0L up to the normalizer of L (which is contained
in N), this gives the claim.

6 The dynamical argument

Throughout this section we let μ be an H-invariant and ergodic probability
measure on X as in Theorem 1.2. In order to prove Theorem 1.2, we are going
to iteratively increase the groupH to a bigger group S under which μ is almost
invariant until there exists a closed orbit x0S of small volume. We then conclude
that μ is close to the Haar measure on x0S.
While doing this iteration, we will always have that μ is almost invariant

under a subgroup S≤G that is conjugated by an element of themaximal com-
pact subgroup ofG to SO◦(m, 1) for some 2≤m≤ n. If x0S does not have small
volume, we are going to produce additional invariance transversal to the nor-
malizerN of S, which leads to μ being almost invariant under S′ ∼=SO◦(m′, 1)
for some m<m′ ≤ n with S�S′. The exact notions of small and close will be
specified in the proofs by concrete exponents that only depend on m and will
be denoted by κ with various indices.
The arguments in this section are very similar to the corresponding argu-

ments in [9], except that we have to take care of the existence of the compact
centralizer. Therefore, after some preparations of general nature, the material
from sections 4 and 5 will become crucial for the arguments in section 6.5.
Moreover, quite often in the argument it is useful to recall that, up to conjuga-
tion by elements of a compact subgroup, only finitely many subgroups S<G
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need to be considered. In this sense the subgroups S<N that we care about
can be thought of as undistorted.

6.1 SOBOLEV NORMS. For an integer d≥ 0, we define the Sobolev norm
of degree d by

Sd(f )2=
∑
D

∥∥∥ht(x)dDf
∥∥∥2
L2(X)

,

where the sum runs over all monomialsD in the universal enveloping algebra
of g of degree at most d, using a fixed basis of g, and the height ht(x) of a point
x ∈X is defined by

ht(x)= sup
{∥∥∥Ad(g−1)v

∥∥∥−1 |�g= x, v∈ gZ \ {0}
}
.

For this we also let ‖·‖ be a fixed Euclidean norm on g that is invariant under
the maximal compact subgroup SO(n) of G=SO◦(n, 1). Notice that there
exists R> 0 so that

Xcpct⊆S(R) := {x ∈X |ht(x)≤R} ,

where Xcpct is the compact subset of X chosen in section 2. Therefore, we
may and will choose Xcpct=S(R0) for some R0≥ 0 such that it still has the
properties that each S-orbit is of the form xS for some x ∈Xcpct and μ(X \
Xcpct)≤ 1

1011 . We note that ht is SO(n)-invariant, which implies the same for
sets of the form S(R) for R> 0.
We recall some basic properties of the Sobolev norm from [9, section 3.7]:

PROPOSITION 6.1. The following properties hold:

(S1) There exists a constant d0> 0 such that for all d≥ d0 and f ∈C∞c (X),
∥∥f ∥∥∞d Sd(f ).

(S2) For every d≥ d0 there exist integers d2> d1> d and an orthonormal basis
{ek} of the completion of C∞c (X) with respect to Sd2 , which is also orthogonal
with respect to Sd1 so that

∑
k

Sd1(ek)2<∞ and
∑
k

Sd(ek)2
Sd1(ek)2

<∞.
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(S3) There exists a constant κ13> 0 so that for any g ∈G and d≥ 1 we have

Sd(g.f )d
∥∥g∥∥κ13d Sd(f ),

where g.f (x)= f (xg) for all x ∈X.
(S4) If d> d0, then we have

∥∥f − g.f ∥∥∞d d(I, g)Sd(f ),

where I denotes the identity in G.
(S5) If f1, f2 ∈C∞c (X) and d′> d+ d0, then

Sd(f1f2)d Sd′(f1)Sd′(f2).

We refer to [9, section 3.7] for a proof of Proposition 6.1.

6.2 ALMOST INVARIANCE. For a measure μ on X and an element g ∈G,
we denote by μg the pushforward of μ under the map x �→ xg—that is,

μg(f )=μ(g.f )=
∫
X
f (xg)dμ for f ∈Cc(X)

—where we again write g.f for the function x ∈X �→ f (xg).

DEFINITION 6.2. Let μ be a measure on X , d> 0, and ε > 0. Then, μ is
called ε-almost invariant under an element g ∈G with respect to Sd if

∣∣μg(f )−μ(f )∣∣≤ εSd(f ) for all f ∈C∞c (X).

Themeasureμ is called ε-almost invariant under a connected subgroup S≤G
with respect to Sd if it is ε-almost invariant with respect to Sd under every
element g ∈S with d(g, I)< 1. We say that μ is ε-almost invariant under an
element v∈ g if it is ε-almost invariant under exp(tv) for all |t| ≤ 1.

An important tool concerning almost invariance is the following lemma;
see also [9, lemma 8.2].

LEMMA 6.3. There exists a constant κ14> 0 so that the following holds: Let S be a
simple connected intermediate subgroup—that is, H≤S≤G with S∼=SO◦(m, 1)
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for some m∈ {2, . . . , n}. Assume that μ is ε-almost invariant under S with respect
to Sd. Then ∣∣μs(f )−μ(f )∣∣ ε ‖s‖dκ14 Sd(f ) for all s∈S.

The proof of [9, lemma 8.2] uses the fact that there is no nontrivial cen-
tralizer and more precisely that there are only finitely many intermediate
subgroups, which is not the case in our setting. Note, however, that by Corol-
lary 3.2, there are, up to conjugation by an element of the maximal compact
subgroup of G, only finitely many simple connected intermediate subgroups
H≤S≤G. It therefore suffices to prove Lemma 6.3 individually for each
possible conjugacy class.
Let S=SO◦(m, 1) for somem∈ {2, . . . , n}. Using the Cartan decomposition

of S, there are constants c1, κ15 depending only on m, so that for every r≥
2, the following holds: Every s∈S with ‖s‖≤ r can be written as the product
of ≤ c1+ κ15 log r elements h∈S with d(h, I)< 1. This allows one to iterate
the almost invariance while keeping track of the accumulated errors (using
Proposition 6.1(S3)); see the proof of [9, lemma 8.2] for more details.
Finally, notice that this extends uniformly to all conjugates of SO◦(m, 1) by

elements of SO(n). Indeed suppose S is conjugated to SO◦(m, 1) under some
k∈SO(n). If now μ is almost invariant under S, then μk is almost invariant
under SO◦(m, 1). Indeed the Sobolev norm of a smooth function f ∈C∞c (X)
changes by Proposition 6.1(S3) at most by a bounded multiplicative factor
if we compose f with application of k. Applying the established result to μk

then gives the same result for μ and S (possibly with a slightly worse but still
uniform implicit constant).

6.3 GENERIC POINTS. In what follows, we again use the unipotent one-
parameter subgroup {u(t)}≤H defined in Equation (2).

DEFINITION 6.4 (Generic points). Fix some M> 0. For a function f ∈
C∞(X), we define the discrepancy D�(f ) for �≥ 1 by

D�(f )(x)= 1
(�+ 1)M − �M

∫ (�+1)M

�M
f (xu(t)) dt−

∫
X
f dμ.

Let T0<T1 be positive real numbers. A point x ∈X is said to be [T0,T1]-
generic with respect to the Sobolev norm Sd if for all integers �∈ [T0,T1] and
for all f ∈C∞(X), we have

(20)
∣∣D�(f )(x)

∣∣≤ �−1Sd(f ).
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A point x ∈X is called T0-generic with respect to the Sobolev norm Sd if (20)
holds for all integers �≥T0.

Since the action of SO◦(2, 1) on L2μ(X) has a spectral gap independent of μ
(see [2] and [3]), it turns out that most points are generic if only M is chosen
sufficiently large. More precisely, we have the following proposition, which
is proven in [9, section 9] as a consequence of the uniform spectral gap and
Proposition 6.1(S2). We will use the shorthand BS(R)=S∩BHSR for any R> 0.

PROPOSITION 6.5 (Effective ergodic theorem). Let d≥ 1. Then there exists
β ∈ (0, 1/2) and d′> d so that the following holds. Let S∼=SO◦(m, 1) for some
2≤m≤ n, and assume that μ is ε-almost invariant under S with respect to Sd
for some ε > 0. For R,T0 ∈ (0, ε−β), the fraction of points (x, s)∈X ×BS(R) with
respect toμ×mS for which xs is not [T0, ε−β ]-generic with respect toSd′ isd T

−1
0 .

6.4 TUPLES OF GENERIC POINTS LEAD TO ADDITIONAL INVARI-
ANCE. We denote the Lie algebra of G by g= so(n, 1). Fixing some m∈
{2, . . . , n} we let S∼=SO◦(m, 1) be an intermediate subgroup with Lie algebra
s= so(m, 1), and letN=NG(S)◦ with Lie algebra n. Write g= n⊕ r, where r is
an Ad(H)-invariant complement of n in g. Moreover, let r0 be the centralizer
of {ut} in r (or equivalently the highest weight subspace in r) and let r1 be the
orthogonal complement of r0 in r with respect to ‖·‖. We also write r= (r0, r1)
for r= r0+ r1 ∈ r and assume r0 ∈ r0 and r1 ∈ r1. Finally we use the norm on
g and the interval [0, 2]⊆R to induce a supremums norm on the space of
g-valued polynomials on R.

PROPOSITION 6.6 (Additional invariance). Let d≥ d0+ 1. Then there exist
constants κ16> 0 and κ17>κ18> 0 with the following property:
Suppose that x1, x2 ∈X satisfy x2= x1gC exp(r) for some

r= (r0, r1)∈ r with r1 �= 0,
gC ∈CG(S),

and that x1, x2 are [‖r1‖−κ18 , ‖r1‖−κ17 ]-generic with respect to μ and the Sobolev
norm Sd. Then there exists a polynomial q :R−→ r0 of degree≤ 2 and norm 1 such
that ∣∣∣μgC exp q(s)(f )−μ(f )

∣∣∣d ‖r1‖κ16 Sd(f ), 1≤ s≤ 21/M.

In fact μ isd ‖r‖κ16/2-almost invariant under some v∈ r0 with ‖v‖= 1 .
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Proof. The proof is very similar to the proof of [9, proposition 10.1], so we will
be brief. Moreover, as we have seen in section 3 the invariant complement r is
isomorphic as a representation space overH=SO◦(2, 1)(R) to several copies
of the adjoint representation. This makes the following discussion easier than
the general case considered in [9].
Let r= (r0, r1) with r1 �= 0. Note that Ad(u(−t))r0= r0, whereas Ad(u(−t))r1

is a polynomial of degree at most 2 and with coefficients bounded up to a
constant by ‖r1‖. Moreover, since r1 �= 0 the component of Ad(u(−t))r1 in
the highest weight subspace r0 is nontrivial with a trivial constant term. This
implies that there exist a polynomial q :R−→ r0 and a constant T > 0 (used as
a time-lapse parameter) with ‖r1‖−1/2T‖r1‖−1 such that the following
properties hold:

. The image of q is centralized by u(R) (since q(R)⊆ r0),. Ad(u(−t))r= q(t/T)+O(‖r‖1/2) for all t≤ 3T , and. q(0)= 0 and maxs∈[0,2]
∥∥q(s)∥∥= 1 (by definition of T).

We fix positive κ18< 1
2M and κ17> 1

M so that we have

[
T1/M, (2T)1/M

]
⊆ [‖r1‖−κ18 , ‖r1‖−κ17

]

whenever ‖r1‖ is sufficiently small.
We now assume as in the proposition that x2= x1gC exp(r) and x1 are[‖r1‖−κ18 , ‖r1‖−κ17

]
-generic. This gives

(21)

∣∣∣∣∣
∫

f dμ− 1
(�+ 1)M − �M

∫ (�+1)M

�M
f (xiu(t)) dμ

∣∣∣∣∣≤ �
−1Sd(f )

for any integer �∈ [T1/M, (2T)1/M] and for any f ∈C∞c (X). Notice also that for
t, t0 ∈

[
(�− 1)M, (�+ 1)M], we have

(22) |t− t0| �M−1�T1−1/M.

Therefore, using the properties of the polynomial q and (S4) of Proposition
6.1, we have

f (x2u(t))= f (x1u(t)gC exp(Ad(u(−t))r))
= f (x1u(t)gC exp(q(t/T)))+O(‖r1‖1/2 Sd(f ))
= f (x1u(t)gC exp(q(t0/T)))+O(‖r1‖1/2 Sd(f ))+O(T−1/MSd(f ))
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for every f ∈C∞c (X). Applying Equation (21) for x2 with f and x1 with
(gC exp(q(t0/T)).f , we obtain
(23) μ(f )=μ(gC exp(q(t0/T)).f )+O((T−1/M +‖r1‖1/2)Sd(f )).

Let us summarize the situation: We have already shown that there exists a
linear or quadratic polynomial q :R−→ r0 of norm 1, such that for any integer

�∈ [T1/M, (2T)1/M]⊂ [‖r1‖−κ18 , ‖r1‖−κ17 ]

and for any t0 ∈ [�M, (�+ 1)M], we have (23). In other words, there exists
κ16> 0 so that μ is ‖r1‖κ16 -almost invariant under gC exp(q(s)) for all2
s∈ [1, 21/M]. This proves the first assertion of the proposition.
If we denote by {at} the diagonal one-parameter subgroup in H and use
‖r1‖≤‖r‖, then μ is also ‖r‖κ16 -almost invariant under the conjugated
element

a− log 2gC exp(q(s))alog 2= gC exp(2q(s))
and therefore, by Proposition 6.1(S3), under the element

(
gC exp(q(s))

)−1 gC exp(2q(s))= exp(q(s))

for all s∈ [1, 21/M]. In fact, since q takes only values in the highest weight
subspace r0, we may use that r0 is abelian (see also the discussions in section
3) in the above calculation.
Let δ=‖r‖κ16/2 and notice that the conclusion of the proposition is trivial if

δ is large enough—in particular, if δ > 1
2 (2

1/M − 1). Using that the derivative
q′ is linear with maxs∈[0,2] |q′(s)|� 1 and choosing either s= 1 or s= 21/M − δ,
we may assume that |q′(s)|� 1. Moreover, s and s+ δ are both contained in
[1, 21/M]. Therefore, μ is‖r‖κ16 -almost invariant under both exp(q(s)) and
exp(q(s+ δ)) and so also, by Proposition 6.1(S3), under the element

exp(−q(s)) exp(q(s+ δ))= exp(w∗)

for w∗ = q(s+ δ)− q(s)∈ r0 satisfying ‖w∗‖� δ.
Proposition 6.1(S3) then implies that μ is δ2=‖r‖κ16 -almost invariant

under exp(w∗). Iterating this statement � times for all � δ−1 and noting that

2For t∈ [T , �T1/M�M]we can use the given argument for t0 =�T1/M�M together with Equation (22)
to also obtain (23) in this case.
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μ is δ-almost invariant under sw∗ for all s∈ [−1, 1] by Proposition 6.1(S4),
we see that μ is δ=‖r‖κ16/2-almost invariant under v= 1

‖w∗‖w
∗, which proves

the proposition.

6.5 EXISTENCE OF TUPLES OF GENERIC POINTS. In this section
we are going to prove that there exist two generic points x1, x2 ∈X that are
close by in the direction of r. As in the previous section, they are allowed to
differ by an element in the direction of the centralizer, whose size we do not
control. This is the analogue to [9, section 14].
The existence of the nontrivial centralizer creates another technical wrin-

kle in the argument. In fact, the group S constructed inductively and almost
preserving the measure is not well-defined within its conjugacy class; we may
simply perturb it using a conjugation by a small element from M=CG(H).
For this reason we also have to allow for this conjugation in the following dis-
cussion, which will be important for the construction of the tuple of generic
points. As before we let m∈ {2, . . . , n}, S∼=SO◦(m, 1), and N=NG(S)◦.

LEMMA6.7. There exist constants V0> 0 and κ19> 0with the following property:
Let V ≥V0 and suppose that μ(xNk)= 0 for all closed N-orbits xN of volume ≤V
and all k∈M. Then

μ({x ∈X | there exists x′ ∈X and k∈M with d(x′k, x)≤V−κ19
such that x′Nk is closed of volume ≤V})≤ 1/2.

The argument behind this lemma is known as the linearization technique;
see [9, section 11] and [5] and [19] for the general case. The proof of the above
is significantly easier due to the concrete setup, and we only outline the proof
but skip the details. In fact, due to the formulation of the lemma, it suffices
to consider S=SO◦(m, 1). By the connection between discriminant and vol-
ume and the discussion in section 5.9, we have a concrete upper bound for the
number of closed N-orbits of volume ≤V in terms of a power of V . Hence it
suffices to get a sufficiently good estimate for one closed N-orbit xN. Next we
cover xNM by sufficiently thin tubular sets of the form xN exp(BWδ ) exp(B

W ′
δ )k,

where k∈M,W ′ is an invariant complement of nwithin n+ Lie(M), andW is
an invariant complement of n+W ′ within g. Here δ > 0 is a negative power of
V to ensure that these sets are canonically homoemorphic to the direct prod-
uct of xN and the neighborhood BWδ ×BW

′
δ of 0 in W ×W ′. Combining the

pointwise ergodic theorem for the characteristic function of these sets with
polynomial divergence, we can bound the measure of the set of points for
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which theW1-component is smaller than V−κ19 . In fact, if κ19 is large enough
the measure of this set is itself bounded by a negative power of V . Taking the
union over δ− dimM many k∈M and all closedN-orbits of volume less than
V and choosing κ19 large enough, this gives the lemma.
We let β > 0 be as in the effective ergodic theorem (Proposition 6.5). For

T > 0 we define BN(T)=N ∩BHST and write mN for the Haar measure on N.

PROPOSITION 6.8. There exist constants κ20> 0, Q0 ∈ (0,β), and δ > 0 with
the following properties for all q∈ (0,Q0). Suppose μ is ε-almost invariant under
S=SO◦(m, 1) for some ε > 0 and m∈ {2, . . . , n}, set T = ε−q, and suppose x ∈
Xcpct satisfies the following two conditions.

1. The set
Bx =

{
h∈BN(T) | xh has property (G′)

}

has measure larger than (1− 10−6)v, where v=mN(BN(T)) and (G′) is
defined below.

2. There does not exist x′ ∈X and k∈M with d(x′k, x)≤ v−κ19 such that x′Nk
is a closed orbit of volume ≤ v.

Then there exist b1, b2 ∈Bx, r′ ∈ r so that xb1= xb2 exp(r′), and T−κ20
∥∥r′∥∥

v−
δ

2 dim(G) . Moreover, the component r′1 ∈ r1 of r′ satisfies
∥∥r′1

∥∥� ∥∥r′∥∥.

In [9, proposition 14.1], Proposition 6.8 is formulated for Swith the property

(G) xh is [T0, ε−β ]-generic,

whereas we are going to use it for N with the property

(G′) xhgC is [T0, ε−β ]-generic for some gC ∈CG(S).

We note that the proof of Proposition 6.8 in [9, section 14.2] remains essen-
tially unchanged by this, so we will only outline the argument.
The proof of Proposition 6.8 relies on an effective closing lemma for actions

of semisimple groups. The reader is referred to [9, section 13] for a statement
and a proof of this closing lemma. Roughly speaking, the closing lemma says
that if the orbit of a point returns very often very close to itself within a certain
ball of the acting group, then the original point is in fact close to a closed
orbit of small volume. The proof of the closing lemma relies on the arithmetic
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nature of the lattice to turn the close returns into actual returns for a nearby
point and on techniques similar to the lattice point counting used in section
4 to estimate the volume of this orbit.
So how is this closing lemma relevant? Since we assume in Proposition 6.8

that our point is not close to a closed orbit of small volume, we know that the
assumptions to the closing lemma cannot hold. This shows that the N-orbit
cannot clump together too much. However, with this, a geometric version of
a pigeonhole argument allows us to find the tuple of generic points as in the
conclusion of Proposition 6.8. We refer to [9, section 14.2] for a more formal
argument.

PROPOSITION 6.9 (Tuples of generic points). Let ζ ∈ (0, 1) and d≥ 1; then
there exist ξ and d′ (depending only on n, ζ , and d) and ε0> 0 with the following
property: Suppose for some ε ∈ (0, ε0) that

. μ is ε-almost invariant under S with respect to Sd, and. μ(xNk)= 0 for all closed N-orbits of volume ≤ ε−ζ and all k∈M.

Then there exist x1, x2 ∈X so that x2= x1gC exp(r), where r ∈ r, gC ∈CG(S),
‖r‖≤ εξ , and x1, x2 are both [‖r1‖−κ18 , ‖r1‖−κ17 ]-generic with respect to Sd′ .

Note that the constants κ18 and κ17 are coming from Proposition 6.6; below
we will also use again κ19> 0 from Lemma 6.7.

Proof. We again set v=mN(BN(T)) for T = ε−q and q> 0 to be chosen below.
In order to apply Proposition 6.8, we start by establishing that there exists a
point x ∈Xcpct with the following two properties:

1. The set

Bx ={h∈BN(T) | xhgC is [T0, ε−β ]-generic for some gC ∈CG(S)}

has measure larger than (1− 10−6)v.
2. There does not exist x′ ∈X and k∈M with d(x′k, x)≤ v−κ19 such that

x′N is closed of volume ≤ v.

Consider the set

E1={x ∈X | there exists x′ ∈X and k∈M with d(x′k, x)≤ v−κ19
such that x′Nk is closed of volume ≤ v},
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and notice that by Lemma 6.7 we have μ(E1)< 1/2 whenever v∈ [V0, ε−ζ ]
(which is the case if ε is small enough and we choose q small enough).
We claim that the fraction of points (x, h)∈X ×BN(T) (with respect to the

measure μ×mN ) for which xh /∈Xcpct is ≤ 1
1010 if ε is small enough. Indeed,

recall that Xcpct=S(R0) for some R0≥ 0 and that Xcpct is invariant under
SO(n). Therefore, in order to prove the claim, it suffices to show that the
fraction of points (x, s)∈X ×BS(T) (with respect to the measure μ×mS) for
which xs /∈S(R0) is ≤ 1

1010 if T is big enough.
This argument is identical to the one in the proof of [9, proposition 14.1].

Consider a smooth function F on X so that

X\S(R0)≤F≤ X\S(R0/2),

where we may assume that S(R0/2) satisfies similar estimates as S(R0) for
all H-invariant and ergodic probability measures. Lemma 6.3 together with
the fact that μ is ε-almost invariant under S with respect to Sd implies that

∣∣∣∣
∫
X
F(xs) dμ(x)−

∫
X
F dμ

∣∣∣∣ εTdκ14Sd(F) for all s∈BS(T)

and therefore

1
mS(BS(T))

∫
s∈BS(T),x∈X

F(xs) dμ(x) dmS(s)−μ(X \S(R0/2))

 ε1−qdκ14Sd(F).

Notice that F can be fixed depending on G and � only. Since we also have
1− qdκ14> 1/2 if q is chosen sufficiently small, the claim follows for ε small
enough.
For x ∈X , consider the function

f (x)= 1
v
mN({h∈BN(T) | xh∈Xcpct and there exists

gC ∈CG(S) so that xhgC is [T0, ε−β ]-generic}).

Note that for every h∈BN(T) and gC ∈CG(S) we have hgC ∈BS(T). If T0> 0
is large enough, Proposition 6.5 together with Proposition 2.3 then implies
that

∫
(1− f (x))dμ≤ 2

1010 and, therefore, the set E2={x ∈X | f (x)< 1− 10−6}
satisfies μ(E2)< 1/10. Define Xgood=X \ (E1 ∪E2) (which is a set of positive
measure) and note that any x ∈Xgood satisfies the properties at the beginning
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of the proof—that is, the set Bx has measure larger than (1− 10−6)v and there
does not exist x′ ∈X and k∈M with d(x, x′k)≤ v−κ19 such that x′N is closed
of volume ≤ v.
Proposition 6.8 now implies that there exist b1, b2 ∈BN(T) and c1, c2 ∈

CG(S) so that xbici is [T0, ε−β ]-generic for i= 1, 2 and we have

xb1c1= xb2 exp(r′)c1
= (xb2c2)c−12 c1(c−11 exp(r′)c1)

= (xb2c2)gC(exp(r)),

where r ∈ r and gC ∈CG(S). Indeed, since r is AdN -invariant and c1 ∈N, we
have c−11 exp(r′)c1= exp(r) for some r ∈ r. Moreover, since CG(S) is compact,
we still have the estimates

T−κ20‖r‖ v−
δ

2 dim(G) and ‖r1‖�‖r‖ .

If q is chosen sufficiently small (depending only on n) and ε > 0 is suffi-
ciently small, we also have that

[‖r1‖−κ18 , ‖r1‖−κ17 ]⊆ [T0, ε−β ].

In fact for the inequality ‖r1‖−κ17 ≤ ε−β we recall that by definition T = ε−q,
and so also, together with the above,

‖r1‖−κ17‖r‖−κ17Tκ20κ17 = ε−qκ20κ17 .

We now choose q so that qκ20κ17<β. For sufficiently small ε the implicit
constants do not matter as we have a strict inequality in the exponents.

6.6 MORE TOOLS FROM HOMOGENEOUS DYNAMICS. We cite two
more results from [9] that we are going to use for the proof of Theorem 1.2.
The first result can be found in [9, proposition 8.1]:

PROPOSITION 6.10. Let d> 0 and suppose that μ is ε-almost invariant under
a connected, intermediate subgroup H≤S≤G and under Z ∈ r with respect to
Sd, where ‖Z‖= 1. Then there exists κ21> 0 so that μ is also d ε

κ21 -almost
invariant under some subgroup S′ conjugated to SO(m′, 1) with m′>m and
H⊆S′.
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Note that the proof as written in [9, section 8] establishes that under the
assumption of Proposition 6.10, the measure μ is almost invariant under an
intermediate Lie algebra s⊂ s′ ⊂ g with dim(s′)> dim(s) and containing h.
Using the second assertion of [9, proposition 7.1], we can also deduce that s
and Z are almost contained in s′. By the discussion in section 3 of Lie subalge-
bras containing h, this implies that s′ contains a Lie subalgebra conjugated to
so(m′, 1) for some m′>m.
In order to pass from the Lie algebra s′ to the Lie group S′, we may apply

the exponential map and argue as in Lemma 6.3, which completes the proof
in our setting.
The next proposition tells us that a probability measure on an S-orbit x0S,

which is almost invariant under S, is close to the invariant measure on x0S.
This is [9, proposition 15.1].

PROPOSITION 6.11. Let x0S be a closed orbit of volume V and suppose that μ
is a probability measure on x0S that is ε-almost invariant under S with respect to
a Sobolev norm Sd. Let ν be the Haar probability measure on x0S. Then there are
κ22, κ23> 0 so that

∣∣μ(f )− ν(f )∣∣d V
κ22εκ23Sd(f ) for all f ∈C∞c (X).

In particular there exist κ24, κ25> 0 with the property that if V ≤ ε−κ24 , then
∣∣μ(f )− ν(f )∣∣d ε

κ25Sd(f ) for all f ∈C∞c (X).

Note that the proof of [9, proposition 15.1] is a simple application of spec-
tral gap and does not make use of the triviality of the centralizer. It therefore
remains unchanged in our setting.

6.7 PROOF OF THEOREM 1.2. We prove Theorem 1.2 by induction,
using the following induction hypothesis: Let S∼=SO◦(m, 1) for some 2≤m≤
n, ε > 0, and d> 0, and assume that μ is an H-invariant and H-ergodic mea-
sure on X which is ε-almost invariant under S with respect to the Sobolev
norm Sd. As before, let N denote the normalizer of S in G. The following
lemma will use our results from sections 4 and 5.

LEMMA6.12. Let d> 0. Then there are constants κ26, κ27, κ28> 0 and d′ depend-
ing only on d so that for any sufficiently small ε > 0, the induction hypothesis implies
that one of the following properties holds true:
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. x0Sk is a closed orbit of volume ≤ ε−2κ1κ26 and
∣∣∣μ(f )−μx0Sk(f )

∣∣∣ εκ27Sd(f ) for all f ∈C∞c (X),

or. the measure μ is εκ28 -almost invariant under S′ ≤G with respect to Sd′ ,
where S′ ∼=SO◦(m′, 1) for some m<m′ ≤ n and H⊆S′.

Proof. Suppose first that μ(x0Nk)= 1 for a closed orbit x0Nk of volume ≤
ε−κ26 and some k∈M, where the constant κ26> 0 is chosen in a moment.
Since S is conjugated to SO◦(m, 1) by an element of the maximal compact
subgroup of G by Corollary 3.2, we can apply Proposition 5.12 to see that the
orbit x0Sk satisfies vol(x0S) ε−κ1κ26 . Assuming that ε > 0 is small enough
and worsening the exponent slightly, we can get rid of the implicit constant
and may assume that the closed orbit x0S has vol(x0S)≤ ε−2κ1κ26 . Choos-
ing κ26 small enough, we can apply Proposition 6.11 to obtain κ27> 0 such
that ∣∣∣μ(f )−μx0S(f )

∣∣∣ εκ27Sd(f ) for all f ∈C∞c (X).

Assume now that μ(xNk)= 0 for all closed N-orbits of volume ≤ ε−κ26
and k∈M. We apply Proposition 6.9 to produce ξ > 0 and d′> d, as well as
x1, x2 ∈X with x2= x1gC exp(r), where r ∈ r, gC ∈CS(G), ‖r‖≤ εξ , and x1, x2
are both

[‖r1‖κ18 , ‖r1‖κ17
]
-generic with respect to Sd′ . Now apply Proposi-

tion 6.6 to see that μ is  εmin(1/2,κ16ξ/2)-almost invariant with respect to
Sd′ under an element Z ∈ r with ‖Z‖= 1. Proposition 6.10 now implies that
μ is  εκ21 min(1/2,κ16ξ/2)-almost invariant with respect to Sd′ under some
subgroup S′ ⊆G conjugated to SO(m′, 1) with m′>m andH⊆S′. Setting

κ28= κ21 min(1/2, κ16ξ/2)

implies that μ is  εκ28 -almost invariant with respect to Sd′ under S′ ∼=
SO◦(m′, 1) with m′>m, and hence the result.

Proof of Theorem 1.2. By assumption, μ is invariant under H. This means in
particular that it is ε-almost invariant under H with respect to Sd for every
ε > 0 and d≥ d0+ 1. By Lemma 6.12, we get for ε small enough and with
κ29= 2κ1κ26 that either
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. x0H is a closed orbit of volume ≤ ε−κ29 , or. there exist constants c1> 0 and ξ1> 0 depending only on H and G so
that μ is c1εξ1 -almost invariant under a subgroup S1∼=SO◦(m, 1) with
respect to Sd2 , where 2<m≤ n.

In the second case, we have established the induction hypothesis with εξ1

instead of ε and for ε small enough. Notice that we may iterate this process at
most n− 2 times until we arrive at a situation where

∣∣∣μ(f )−μx0Sj(f )
∣∣∣ εξjκ27Sdj(f ) for all f ∈C∞c (X),

where Sj∼=SO◦(m, 1) for some 2≤m≤ n and x0Sj is a closed orbit of volume
 ε−ξjκ29 . Here, the constant ξj and the Sobolev degree dj only depend on H
and G. Define

�=max
j
ξjκ29 , δ=min

j
ξjκ27 , d=max

j
dj,

where the index j runs over all the stages occurring in the above process. Then,
there exists ε0> 0 such that for all ε < ε0 there exists an intermediate subgroup
Sj∼=SO◦(m, 1) for some 2≤m≤ n so that x0Sj is a closed Sj-orbit of volume
≤ c2ε−� and

∣∣∣μ(f )−μx0Sj(f )
∣∣∣≤ c3εδSd(f ) for all f ∈C∞c (X)

for some constants c2, c3> 0. Now choose ε so that c2ε−�=V . If V is large
enough (i.e., V ≥ (c3εδ)−�/δ), then

∣∣∣μ(f )−μx0S(f )
∣∣∣V−δ/�Sd(f ) for all f ∈C∞c (X),

where S∼=SO◦(m, 1) for some 2≤m≤ n and x0S is a closed orbit of volume≤
V . In order to get rid of the implicit constant, we worsen the exponent slightly
and choose an appropriate V0> 0 so that for all V ≥V0,

∣∣∣μ(f )−μx0S(f )
∣∣∣≤V−2δ/�Sd(f ) for all f ∈C∞c (X),

which proves Theorem 1.2.
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DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C)

Dedicated to Gregory Margulis with affection and admiration

Abstract.Margulis wrote in the preface of his bookDiscrete Subgroups of Semisim-
ple Lie Groups [29]: “A number of important topics have been omitted. The most
significant of these is the theory of Kleinian groups and Thurston’s theory of
3-dimensional manifolds: these two theories can be united under the common
title Theory of discrete subgroups of SL2(C).”

In this essay, we will discuss a few recent advances regarding this missing topic
from his book, which were influenced by his earlier works.

1 Introduction

A discrete subgroup of PSL2(C) is called a Kleinian group. In this essay, we
discuss dynamics of unipotent flows on the homogeneous space �\PSL2(C)
for a Kleinian group � that is not necessarily a lattice of PSL2(C). Unlike
the lattice case, the geometry and topology of the associated hyperbolic 3-
manifoldM=�\H3 influence both topological andmeasure theoretic rigidity
properties of unipotent flows.
Around 1984–1986, Margulis settled the Oppenheim conjecture by prov-

ing that every bounded SO(2, 1)-orbit in the space SL3(Z)\SL3(R) is compact
[27, 28]. His proof was topological, using minimal sets and the polynomial
divergence property of unipotent flows. With Dani [11, 12], he also gave a clas-
sification of orbit closures for a certain family of one-parameter unipotent sub-
groups of SL3(R). On the basis of Margulis’s topological approach, Shah [49]
obtained a classification of orbit closures for the action of any connected closed
subgroup generated by unipotent elements in the space �\PSL2(C) when �
is a lattice. This result in a much greater generality, as conjectured by Raghu-
nathan, was proved by Ratner using her measure rigidity theorem [43, 44].
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The relation between invariant measures and orbit closures for unipotent
flows is not as tight in the infinite volume case as it is in the finite volume
case. Meanwhile, the topological approach in the orbit closure classification
can be extended to the class of rigid acylindrical hyperbolic 3-manifolds, yield-
ing the complete classification of orbit closures for the action of any connected
closed subgroup generated by unipotent elements. This was done jointly
with McMullen and Mohammadi [36, 37]. Much of this essay is devoted to
explaining these results, although we present slightly different viewpoints
in certain parts of the proof. Remarkably, this approach can handle the
entire quasi-isometry class of rigid acylindrical hyperbolic 3-manifolds, as
far as the action of the subgroup PSL2(R) is concerned [38]. An immediate
geometric consequence is that for any convex cocompact acylindrical hyper-
bolic 3-manifold M, any geodesic plane is either closed or dense inside the
interior of the convex core of M, thereby producing the first continuous
family of locally symmetric manifolds for which such a strong rigidity the-
orem for geodesic planes holds. This result extends to geometrically finite
acylindrical hyperbolic 3-manifolds as shown in joint work with Benoist [4].
We also present a continuous family of quasi-Fuchsian 3-manifolds con-
taining geodesic planes with wild closures [38], which indicates the influ-
ence of the topology of the associated 3-manifold in the rigidity problem
at hand.
We call a higher dimensional analogue of a rigid acylindrical hyperbolic

3-manifold a convex cocompact hyperbolic d-manifold with Fuchsian ends,
following Kerckhoff and Storm [21]. For these manifolds �\Hd, in joint work
with Lee [22], we have established a complete classification of orbit closures in
�\SO◦(d, 1) for the action of any connected closed subgroup of SO◦(d, 1) gen-
erated by unipotent elements. The possibility of accumulation on closed orbits
of intermediate subgroups presents new challenges, and the avoidance theo-
rem and the induction arguments involving equidistribution statements are
major new ingredients in higher dimensional cases (Theorems 9.10 and 9.11).
We note that these manifolds do not admit any nontrivial local deformations
for d≥ 4 [21].

ACKNOWLEDGMENT. This survey is mostly based on the papers [37], [38],
[36], [4], and [22]. I am grateful tomy coauthors CurtMcMullen, AmirMoham-
madi, Yves Benoist, and Minju Lee. I would like to thank Yair Minsky and
Amir Mohammadi for helpful comments on the preliminary version of this
essay.
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2 Kleinian groups

We give a brief introduction to Kleinian groups, including some basic notions
and examples. General references for this section include [43], [26], [24], [33],
[47], [17], and [8]. In particular, all theorems stated in this section with no
references attached can be found in [26] and [33].
We will use the upper half-space model for hyperbolic 3 space:

H
3={(x1, x2, y) : y> 0}, ds=

√
dx21 + dx22 + dy2

y
.

In this model of H
3, a geodesic is either a vertical line or a vertical semi-

circle. The geometric boundary ofH
3 is given by the Riemann sphere S

2= Ĉ,
when we identify the plane (x1, x2, 0) with the complex plane C.
The group G :=PSL2(C) acts on Ĉ by Möbius transformations:

(
a b
c d

)
z= az+ b

cz+ d with a, b, c, d∈C such that ad− bc= 1.

This action of G extends to an isometric action onH
3 as follows: each g ∈G

can be expressed as a composition InvC1 ◦ · · · ◦ InvCk , where InvC denotes the
inversion with respect to a circle C⊂ Ĉ.1 If we set �(g)= InvĈ1 ◦ · · · ◦ InvĈk ,
where InvĈ denotes the inversion with respect to the sphere Ĉ in R

3, that is
orthogonal to C and Ĉ∩C=C, then �(g) preserves (H3, ds). Moreover, the
Poincaré extension theorem says that � is an isomorphism between the two
real Lie groups

PSL2(C)= Isom+(H3),

where PSL2(C) is regarded as a six-dimensional real Lie group and Isom+(H3)

denotes the group of all orientation preserving isometries of H
3.

DEFINITION 2.1. A discrete subgroup � of G is called a Kleinian group.

For a (respectively torsion-free) Kleinian group �, the quotient �\H3 is a
hyperbolic orbifold (respectively manifold). Conversely, any complete hyper-
bolic 3-manifoldM can be presented as a quotient

M=�\H3

1If C={z : |z− z0| = r}, then InvC(z) is the unique point on the ray {tz : t≥ 0}, satisfying the equa-
tion |z− z0| · | InvC(z)− z0| = r2 for all z �= z0, and InvC(z0)=∞.
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for a torsion-free Kleinian group �. The study of hyperbolic manifolds is
therefore directly related to the study of Kleinian groups.
Throughout the remainder of the essay, we assume that a Kleinian group �

is nonelementary—that is, � does not contain an abelian subgroup of finite
index. By Selberg’s lemma, every Kleinian group has a torsion-free subgroup
of finite index. We will henceforth treat the torsion-free condition loosely.

2.1 LATTICES. The most well-studied Kleinian groups are lattices of G: a
Kleinian group �<G is a lattice if M=�\H3 has finite volume. When M
is compact, � is called a uniform or cocompact lattice. If d> 0 is a square-
free integer, then PSL2(Z[

√−d]) is a nonuniform lattice of G. More lattices,
including uniform ones, can be constructed by number theoretic methods
using the Lie group isomorphism G
SO◦(3, 1).
Let Q(x1, x2, x3, x4) be a quadratic form with coefficients over a totally real

number field k of degree n such that Q has signature (3, 1) and for any non-
trivial embedding σ : k→R, Qσ has signature (4, 0) or (0, 4); the orthogonal
group SO(Qσ ) is thus compact.
Then for G=SO◦(Q) and for the ring o of integers of k, the subgroup

(2.1) � :=G∩SL4(o)

is a lattice in G by a theorem of Borel and Harish-Chandra [6]. Moreover,
if Q does not represent 0 over k (which is always the case if the degree
of k is bigger than 1), then � is a uniform lattice in G by the Godement’s
criterion. These examples contain all arithmetic lattices (up to a commensura-
bility) that contain cocompact Fuchsian subgroups—that is, uniform lattices
of SO◦(2, 1)
PSL2(R) [24].
Take two arithmetic noncommensurable hyperbolic 3-manifoldsN1 andN2

that share a common properly imbedded closed geodesic surface S, up to an
isometry. We cut each Ni along S, which results in one or two connected com-
ponents. Let Mi be the metric completion of a component of Ni−S, which
has geodesic boundary isometric to one or two copies of S. We now glue one
or two copies ofM1 andM2 together along their geodesic boundary and get a
connected finite volume hyperbolic 3-manifold with no boundary. The result-
ing 3-manifold is a nonarithmetic hyperbolic 3-manifold, and its fundamental
group is an example of the so-called hybrid lattices constructed byGromov and
Piatetski-Schapiro [16].
The Mostow rigidity theorem says that any two isomorphic lattices of G are

conjugate to each other. Since a lattice is finitely presented, it follows that a
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Figure 14.1. Convex core

conjugacy class of a lattice is determined by its presentation. Hence, despite
the presence of nonarithmetic lattices in G, there are only countably many
lattices of G up to conjugation, or equivalently, there are only countably many
hyperbolic manifolds of finite volume up to isometry.

2.2 FINITELY GENERATED KLEINIAN GROUPS. Wewill mostly focus
on finitely generated Kleinian groups. When studying a finitely generated
Kleinian group �, the associated limit set and the convex core play funda-
mental roles.
Using theMöbius transformation action of� on S

2, we define the following:

DEFINITION 2.2. The limit set�⊂S
2 of � is the set of all accumulation points

of �(z) for z∈H
3 ∪S

2.

This definition is independent of the choice of z∈H
3 ∪S

2, and � is a
minimal �-invariant closed subset of S

2.

DEFINITION 2.3. The convex core of M is the convex submanifold of M given by

coreM :=�\hull� ⊂ M=�\H3

where hull�⊂H
3 is the smallest convex subset containing all geodesics connecting

two points in �.

If Vol(M)<∞, then �=S
2 and henceM is equal to its convex core.

DEFINITION 2.4.
(1) A Kleinian group � is called geometrically finite if the unit neighborhood of

coreM has finite volume.
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(2) A Kleinian group � is called convex cocompact if coreM is compact or,
equivalently, if � is geometrically finite without any parabolic elements.

An element g ∈G is either hyperbolic (if it is conjugate to a diagonal element
whose entries have modulus not equal to 1), elliptic (if it is conjugate to a diag-
onal element whose entries havemodulus 1), or parabolic (if it is conjugate to a
strictly upper triangular matrix). By discreteness, an element of a torsion-free
Kleinian group is either hyperbolic or parabolic.
Geometrically finite (respectively convex cocompact) Kleinian groups are

natural generalizations of (respectively cocompact) lattices ofG. Moreover, the
convex core of a geometrically finite hyperbolic manifold admits a thick-thin
decomposition: there exists a constant ε > 0 such that coreM is the union of
a compact subset of injectivity radius at least ε > 0 and finitely many cusps.
In the class of geometrically finite groups, lattices are characterized by the
property that their limit sets are the whole of S

2, and the limit sets of other
geometrically finite groups have Hausdorff dimension strictly smaller than 2
[52, 53].
The group G=PSL2(C) can be considered as a real algebraic subgroup—

more precisely, the group of real points of an algebraic group G defined over
R. A subset S⊂G is called Zariski dense if S is not contained in any proper
real algebraic subset of G. The Zariski density of a Kleinian group � in G is
equivalent to the property that its limit set � is not contained in any circle of
S
2. When � is contained in a circle, � is conjugate to a discrete subgroup of
PSL2(R); such Kleinian groups are referred to as Fuchsian groups. Geometri-
cally finite Kleinian groups are always finitely generated, but the converse is
not true in general; see section 2.6.

2.3 EXAMPLES OF GEOMETRICALLY FINITE GROUPS. Below we give
examples of three different kinds of geometrically finite groups that are
relevant to subsequent discussion. Their limit sets are respectively totally dis-
connected, Jordan curves, and Sierpinski carpets. We note that a geometrically
finite nonlattice Zariski dense Kleinian group � is determined by its limit set
� up to commensurability; more precisely, � is a subgroup of finite index in
the discrete subgroup Stab(�)={g ∈G : g(�)=�}.

2.3.1 Schottky groups

The simplest examples of geometrically finite groups are Schottky groups. A
subgroup �<G is called (classical) Schottky if � is generated by hyperbolic
elements g1, · · · , gk ∈G, k≥ 2, satisfying that there exist mutually disjoint
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closed round disks B1, · · · ,Bk and B′1, · · · ,B′k in S
2 such that each gi maps

the exterior of Bi onto the interior of B′i.
If g1, · · · , gk are hyperbolic elements ofGwhose fixed points in S

2 aremutu-
ally disjoint, then gN1 , · · · , gNk generate a Schottky group for allN large enough.
A Schottky group � is discrete and free; the common exterior of the hemi-
spheres bounded by Bi, B′i is a fundamental domain F of �. Since the limit
set of �, which is totally disconnected, is contained in the union of interiors
of Bi and Bi’s, it is easy to see that the intersection of the hull of � and the
fundamental domain F is a bounded subset of F. Hence � is a convex cocom-
pact subgroup. Its convex core is the handlebody of genus k; in particular, the
boundary of coreM is a closed surface of genus k.
Any Kleinian group � contains a Schottky subgroup that has the same

Zariski closure. If � is Zariski dense, take any two hyperbolic elements γ1 and
γ2 of � with disjoint sets of fixed points. Suppose that all of four fixed points
lie in a circle—say, C⊂S

2; note that C is uniquely determined. Since the set
of fixed points of hyperbolic elements of � forms a dense subset of �, there
exists a hyperbolic element γ3 ∈� whose fixed points are not contained in C.
Now, for any N≥ 1, the subgroup generated by γN1 , γN2 , γN3 is Zariski dense,
as its limit set cannot be contained in a circle. By taking N large enough, we
get a Zariski dense Schottky subgroup of �. This in particular implies that any
Kleinian group contains a convex cocompact subgroup that is as large as itself
in the algebraic sense.

2.3.2 Fuchsian groups and deformations: Quasi-Fuchsian groups

An orientation preserving homeomorphism f :S2→ S
2 is called κ-quasicon-

formal if for any x ∈S
2,

lim sup
r→0

sup{|f (y)− f (x)| : |y− x| = r}
inf {|f (y)− f (x)| : |y− x| = r} ≤ κ .

The 1-quasiconformal maps are precisely conformal maps [26, section 2]. The
group G=PSL2(C) is precisely the group of all conformal automorphisms
of S

2.
A Kleinian group � is called quasi-Fuchsian if it is a quasiconformal

deformation of a (Fuchsian) lattice of PSL2(R)—that is, there exists a qua-
siconformal map f and a lattice 	<PSL2(R) such that �={f ◦ δ ◦ f −1 :
δ ∈	}. Any quasiconformal deformation of a geometrically finite group is
known to be geometrically finite; so a quasi-Fuchsian group is geometrically
finite.
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Figure 14.2. Limit set of a rigid acylindrical group (McMullen)

Aquasi-Fuchsian group is also characterized as a finitely generated Kleinian
group whose limit set � is a Jordan curve and which preserves each compo-
nent of S

2−�. If �± are components of S
2−�, then S± :=�\�± admits

a hyperbolic structure by the uniformization theorem, and the product
Teich(S+)×Teich(S−) of Teichmüller spaces gives a parameterization of all
quasi-Fuchsian groups that are quasiconformal deformations of a fixed lattice
of PSL2(R).

2.3.3 Rigid acylindrical groups and their deformations

AKleinian group�<G is called rigid acylindrical if the convex core of the asso-
ciated hyperbolic manifoldM=�\H3 is a compact manifold with nonempty
interior and with totally geodesic boundary. If coreM has empty boundary,
then M is compact and hence � is a uniform lattice. Rigid acylindrical non-
lattice groups are characterized as convex cocompact Kleinian groups whose
limit set satisfies that

S
2−�=

⋃
Bi,

where Bi’s are round disks with mutually disjoint closures.
If M is a rigid acylindrical hyperbolic 3-manifold of infinite volume, then

the double of coreM is a closed hyperbolic 3-manifold; hence any rigid acylin-
drical group is a subgroup of a uniform lattice of G that contains a cocompact
Fuchsian lattice π1(S) for a component S of ∂ coreM. Conversely, if �0 is a
torsion-free uniform lattice of G such that 	 :=�0 ∩PSL2(R) is a uniform
lattice in PSL2(R), then M0=�0\H3 is a closed hyperbolic 3-manifold that
contains a properly immersed totally geodesic surface 	\H2. By passing to a
finite cover ofM0,M0 contains a properly embedded totally geodesic surface—
say, S [24, theorem 5.3.4]. Now the metric completion of a component of
M0−S is a compact hyperbolic 3-manifold with totally geodesic boundary, and
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Figure 14.3. Sierpinski carpet

its fundamental group, which injects to �0=π1(M0), is a rigid acylindrical
Kleinian group.
Rigid acylindrical Kleinian groups admit a huge deformation space com-

prised of convex cocompact acylindrical groups. We begin with the notion of
acylindricality for a compact 3-manifold. Let D2 denote a closed 2-disk and let
C2=S1×[0, 1] be a cylinder. A compact 3-manifold N is called acylindrical

(1) if ∂N is incompressible—that is, any continuous map f : (D2, ∂D2)→
(N, ∂N) can be deformed into ∂N—or, equivalently, if the inclusion
π1(S)→π1(N) is injective for any component S of ∂N; and

(2) if any essential cylinder of N is boundary parallel—that is, any con-
tinuous map f : (C2, ∂C2)→ (N, ∂N), injective on π1, can be deformed
into ∂N.

A convex cocompact hyperbolic 3-manifoldM is called acylindrical if its con-
vex core is acylindrical. WhenM has infinite volume, it is also described by the
property that its limit set is a Sierpinski carpet: S2−�=⋃

Bi is a dense union
of Jordan disks Bi’s with mutually disjoint closures and with diam(Bi)→ 0.
By Whyburn [55], all Sierpinski carpets are known to be homeomorphic to
each other. We refer to [57] for a beautiful picture of the limit set of a convex
cocompact (nonrigid) acylindrical group.
Any convex cocompact acylindrical Kleinian group � is a quasiconformal

deformation of a unique rigid acylindrical Kleinian group �0, and its quasi-
conformal class is parameterized by the product

∏
i Teich(Si) where Si’s are

components of ∂ core(�0\H3) [54, 35]. In terms of a manifold, any convex
cocompact acylindrical hyperbolic 3-manifold is quasi-isometric to a unique
rigid acylindrical hyperbolic 3-manifold M, and its quasi-isometry class is
parameterized by

∏
i Teich(Si).

The definition of acylindricality can be extended to geometrically finite
groups with cusps using the notion of a compact core. IfM is a hyperbolic 3-
manifold with finitely generated π1(M), then there exists a compact connected
submanifold C⊂M (with boundary) such that the inclusion C⊂M induces an
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isomorphism π1(C)
π1(M); such C exists uniquely, up to homeomorphism,
and is called the compact core ofM. Now a geometrically finite hyperbolic 3-
manifoldM is called acylindrical if its compact core is an acylindrical compact
3-manifold.

2.4 THURSTON’S GEOMETRIZATION THEOREM. The complement
� :=S

2−� is called the set of discontinuity. Let � be a finitely generated
Kleinian group. Ahlfors finiteness theorem says that �\� is a union of finitely
many closed Riemann surfaces with atmost a finite number of punctures. The
Kleinian manifold associated with � is defined by adding �\� to �\H3 on the
conformal boundary at infinity:

M(�)=�\H3 ∪�, ∂M(�)=�\�.

The convex cocompactness of � is equivalent to the compactness ofM(�).
If � is geometrically finite with cusps, then M(�) is compact except possi-
bly for a finite number of rank-1 and rank-2 cusps. We denote byM0(�) the
compact submanifold of M(�) obtained by removing the interiors of solid
pairing tubes corresponding to rank-1 cusps and solid cusp tori corresponding
to rank-2 cusps (cf. [26]).
The following is a special case of Thurston’s geometrization theorem under

the extra nonempty boundary condition (cf. [20]):

THEOREM 2.5.
Let N be a compact irreducible2 orientable atoroidal3 3-manifold with nonempty
boundary. Then N is homeomorphic to M0(�) for some geometrically finite
Kleinian group �.

We remark that if ∂N is incompressible and N does not have any essential
cylinders, then � is a geometrically finite acylindrical group.
By applying Thurston’s theorem to the compact core of �\H3, we deduce

that every finitely generated Kleinian group � is isomorphic to a geometrically
finite group.

2.5 DENSITY OF GEOMETRICALLY FINITE GROUPS. The density con-
jecture of Bers, Sullivan, and Thurston says that most Kleinian groups are
geometrically finite. This is now a theorem whose proof combines the work

2Every 2 sphere bounds a ball.
3Any Z

2 subgroup comes from boundary tori.
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of many authors with the proof in full generality due to Namazi-Souto and
Ohshika (we refer to [26, section 5.9] for more details and background).

THEOREM 2.6 (density theorem).
The class of geometrically finite Kleinian groups is open and dense in the space of
all finitely generated Kleinian groups.

In order to explain the topology used in the above theorem, let� be a finitely
generated Kleinian group. By Thurston’s geometrization theorem, there exists
a geometrically finite Kleinian group �0 and an isomorphism ρ :�0→�. In
fact, a more refined version gives that ρ is type preserving—that is, ρ maps a
parabolic element to a parabolic element. Fix a finite generating set γ1, · · · , γk
of �0. The density theorem says there exists a sequence of geometrically finite
groups �n<G and isomorphisms ρn :�0→�n such that ρn converges to ρ as
n→∞, in the sense that ρ(γi)= limn ρn(γi) for each i= 1, · · · , k.
Here is an alternative way to describe the density theorem: fix a geomet-

rically finite Kleinian group � with a fixed set of generators γ1, · · · , γk and
relations ω1, · · · ,ωr . Define

R(�) :={ρ :�→G homomorphism}/∼

with the equivalence relation given by conjugation by elements of G. The set
R(�) can be identified with the algebraic variety {(g1, · · · , gk)∈G× · · ·×G :
ωi(g1, · · · , gk)= e for 1≤ i≤ r}/∼, where∼ is given by conjugation by an ele-
ment of G under the diagonal embedding. This defines a topology on R(�)

called the algebraic convergence topology.
The discrete locus is then defined by the subcollection of discrete and

faithful representations:

AH(�) :={ρ ∈R(�) : type preserving isomorphism to a Kleinian group}.

Then AH(�) is a closed subset that parameterizes hyperbolic structures on
�\H3. The interior of AH(�) consists of geometrically finite Kleinian groups,
and the density theorem says that

IntAH(�)=AH(�).

When � is a lattice in G, AH(�) is a single point by the Mostow rigidity
theorem. For all other geometrically finite Kleinian groups, AH(�) is huge;
the quasiconformal deformation space of � given by
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Figure 14.4. Frame bundle of H
3

T(�)={ρ ∈AH(�) : ρ is induced by a quasiconformal deformation of �}

is a connected component of the interior of AH(�) and is a complex ana-
lytic manifold of dimension same as the dimension of Teich(�\�)—that is,∑m

i=1(3gi+ ni− 3), where gi is the genus of the ith component of �\�=
∂M(�) and ni is the number of its punctures [26, theorem 5.13]. Moreover,
when � is rigid acylindrical, the interior of AH(�), modulo the orientation (in
other words, modulo the conjugation by elements of Isom(H3) rather than by
elements of G= Isom+(H3)), is connected and hence equal to T(�); this can
be deduced from [9], as explained to us by Minsky. Therefore IntAH(�)/±=
T(�)=Teich(�\�).

2.6 EXAMPLES OF GEOMETRICALLY INFINITE GROUPS. Not every
finitely generated Kleinian group is geometrically finite. An important class
of finitely generated geometrically infinite Kleinian groups is given by the
fundamental groups of Z-covers of closed hyperbolic 3-manifolds. The vir-
tual fibering theorem, proved by Agol, building on the previous work of Wise,
says that every closed hyperbolic 3-manifold is a surface bundle over a circle,
after passing to a finite cover [26, section 6.4]. This implies that, up to passing
to a subgroup of finite index, any uniform lattice �0 of G contains a normal
subgroup	 such that�0/	
Z and	 is a surface subgroup—that is, isomor-
phic to the fundamental group of a closed hyperbolic surface. Note that 	 is
finitely generated (being a surface subgroup) but geometrically infinite as no
normal subgroup of a geometrically finite group of infinite index is geometri-
cally finite. In fact, any finitely generated geometrically infinite subgroup of a
uniform lattice ofG arises in this way, passing up to a subgroup of finite index
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(cf. [8]). These manifolds give examples of degenerate hyperbolic 3-manifolds
with�=S

2. We mention that there are also degenerate hyperbolic manifolds
with � �=S

2.

3 Mixing and classification of N-orbit closures

Let �<G=PSL2(C) be a Zariski dense geometrically finite Kleinian group
andM :=�\H3 the associated hyperbolic 3-manifold. We denote by

π :H3→M=�\H3

the quotient map.
We fix o∈H

3 and a unit tangent vector vo ∈To(H3) so that K =SU(2) and
M0={diag(eiθ , e−iθ ) : θ ∈R} are respectively the stabilizer subgroups of o and
vo. The action of G on H

3 induces identifications G/K 
H
3, G/M0
T1(H3),

and G
F(H3), where T1(H3) and F(H3) denote respectively the unit tangent
bundle and the oriented frame bundle over H

3.
Thus we may understand the oriented frame bundle FM as the homoge-

neous space �\G. Denote by
p :�\G→M

the basepoint projection map.
Unless � is a lattice, the G-invariant measure on �\G is infinite and dissi-

pative for natural geometric flows such as the geodesic flow and horospherical
flow. Two locally finite measures on �\G, called the Bowen-Margulis-Sullivan
(BMS) measure and the Burger-Roblin (BR) measure, play important roles,
and they are defined using the Patterson-Sullivan density on the limit set of �.

3.1 PATTERSON-SULLIVAN DENSITY. We denote by δ the critical expo-
nent of �—that is, the infimum over all s≥ 0 such that the Poincaré series∑
γ∈� e−sd(o,γ (o)) converges. As � is geometrically finite, δ is equal to the

Hausdorff dimension of � [52].
Bishop and Jones proved that δ is strictly bigger than 1, unless � is totally

disconnected or contained in a circle [5]. As � is assumed to be Zariski dense,
we have the following:

THEOREM 3.1.
If � is connected, then δ > 1.

Recall that for x, y∈H
3 and ξ ∈S

2, the Busemann function βξ (x, y) is given
by limt→∞ d(x, ξt)− d(y, ξt) where ξt is a geodesic ray toward ξ .
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DEFINITION 3.2. A �-invariant conformal density of dimension s≥ 0 is a
family {μx : x ∈H

3} of finite measures on S
2 satisfying

1. for any γ ∈� and x ∈H
3, γ∗μx =μγ(x) and

2. for all x, y∈H
3 and ξ ∈S

2, dμxdμy
(ξ)= esβξ (y,x).

THEOREM 3.3 (Patterson-Sullivan).
There exists a �-invariant conformal density {νx : x ∈H

3} of dimension δ, unique
up to a scalar multiple.

We call this Patterson-Sullivan density. Denoting by	 the hyperbolic Lapla-
cian on H

3, the Patterson-Sullivan density is closely related to the bottom of
the spectrum of 	 for its action on smooth functions on �\H3. The function
φ0 defined by

φ0(x) := |νx|
for each x ∈H

3 is�-invariant, and hencewemay regard φ0 as a function on the
manifold�\H3. It is the unique function (up to a constant multiple) satisfying
	φ0= δ(2− δ)φ0; so we call φ0 the base eigenfunction.
Set ν := νo and call it the Patterson-Sullivanmeasure (viewed from o). When

� is convex cocompact, the Patterson-Sullivan measure νo is simply propor-
tional to the δ-dimensional Hausdorff measure on � in the spherical metric
of S

2.

3.2 MIXING OF THE BMS MEASURE. Consider the following one-para-
meter subgroup of G:

A :=
{
at=

(
et/2 0
0 e−t/2

)
: t∈R

}
.

The right translation action of A on FH
3=G induces the frame flow: if g=

(e1, e2, e3), then gat for t> 0 is the frame given by translation in direction of
e1 by hyperbolic distance t. Let v±o ∈S

2 denote the forward and backward end
points of the geodesic given by vo respectively. In the upper half-space model
of H

3, choosing vo to be the upward normal vector at o= (0, 0, 1), we have
v+o =∞ and v−o = 0.
For g ∈G, we define

g+ = g(v+o )∈S
2 and g− = g(v−o )∈S

2.

The map g �→ (g+, g−, s=βg−(o, g)) induces a homeomorphism between
T1(H3) and (S2×S

2− diagonal)×R called the Hopf parameterization.
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We define a locally finite measure m̃BMS on T1(H3)=G/M0 as

dm̃BMS(g)= eδβg+ (o,g) eδβg− (o,g) dν(g+)dν(g−)ds,

where ds is the Lebesgue measure on R.
Denote by mBMS the uniqueM0-invariant measure on �\G that is induced

by m̃BMS; we call this the Bowen-Margulis-Sullivan measure (BMS measure).
Sullivan showed that mBMS is a finite A-invariant measure. The following

is due to Babillot [2] forM0-invariant functions and to Winter [56] for general
functions:

THEOREM 3.4.
The frame flow on (�\G,mBMS) is mixing—that is, for any ψ1,ψ2 ∈
L2(�\G,mBMS),

lim
t→∞

∫
�\G

ψ1(gat)ψ2(g) dmBMS(g)= 1
|mBMS|m

BMS(ψ1) ·mBMS(ψ2).

We define the renormalized frame bundle ofM as

RFM={[g] ∈�\G : g± ∈�}.

This is a closed A-invariant subset of �\G, which is precisely the support
of mBMS, and an immediate consequence of Theorem 3.4 is the topological
mixing of the A-action on RFM: for any two open subsetsO1,O2 intersecting
RFM, O1at ∩O2 �= ∅ for all sufficiently large |t|.

3.3 ESSENTIAL UNIQUE ERGODICITY OF THE BR MEASURE. We
denote by N :={g ∈G : a−tgat→ e as t→+∞} the contracting horospherical
subgroup for the action of A, which is explicitly given as

N=
{
ut=

(
1 t
0 1

)
: t∈C

}
.

The projection π(gN) in H
3 is a Euclidean sphere tangent to S

2 at g+, and
gN consists of frames (e1, e2, e3), whose last two vectors e2, e3 are tangent to
π(gN). That N is a contracting horospherical subgroup means geometrically
that π(gNat) for t> 0 is a Euclidean sphere based at g+ but shrunk toward g+

by the hyperbolic distance t.
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We define m̃BR on G/M0=T1(H3) as

dm̃BR(g)= eδβg+ (o,g) e2βg− (o,g) dν(g+)dg−ds,

where dg− is the Lebesgue measure on S
2. We denote by mBR the unique

M0-invariant measure on �\G that is induced by m̃BR. We call this measure
the Burger-Roblin measure (BR measure). If � is a lattice, mBR is simply the
G-invariant measure. Otherwise mBR is an infinite, but locally finite, Borel
N-invariant measure whose support is given by

RF+M :={[g] ∈�\G : g+ ∈�}=RFM ·N.

The projection of the BR measure to M is an absolutely continuous mea-
sure on M with a Radon-Nikodym derivative given by φo: if f ∈Cc(�\G) is
K-invariant, then

mBR(f )=
∫
�\G

f (x)φo(x) dx,

where dx is a G-invariant measure on �\G. Using Theorem 3.4, Roblin and
Winter showed the following measure classification of N-invariant locally
finite measures, extending an earlier work of Burger [7]:

THEOREM 3.5. ([46], [56]).
Any locally finite N-ergodic invariant measure on �\G is either supported on a
closed N-orbit or proportional to mBR.

3.4 CLOSURES OF N-ORBITS. If x /∈RF+M, then xN is a proper immer-
sion of N to �\G via the map n �→ xn, and hence xN is closed. In understand-
ing the topological behavior of xN for x=[g] ∈RF+M, the relative location
of g+ in the limit set becomes relevant. The hypothesis that � is geomet-
rically finite implies that any ξ ∈� is either radial (any geodesic ray ξt ∈M
converging to ξ accumulates on a compact subset) or parabolic (it is fixed by
some parabolic element of �). Since this property is �-invariant, we will say
that x+ is radial (respectively parabolic) if g+ is for x=[g]. When � is convex
cocompact, � consists only of radial limit points.
The topological mixing of the A-action on RFM implies the following

dichotomy for the closure of an N-orbit:

THEOREM 3.6. ([15], [56]).
For x ∈RF+M, xN is closed (if x+ is parabolic) or dense inRF+M(if x+ is radial).
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4 Almost all results on orbit closures

Let �<G=PSL2(C) be a Zariski dense geometrically finite Kleinian group
andM :=�\H3 the associated hyperbolic 3-manifold.
We are mainly interested in the action of the following two subgroups

on �\G:

H :=PSL2(R) and(4.1)

U :={ut=
(
1 t
0 1

)
: t∈R}.

Any one-parameter unipotent subgroup of G is conjugate to U, and any
connected closed subgroup of G generated by unipotent one-parameter sub-
groups is conjugate to either N, H, or U. Note that the subgroups N, H,
and U are normalized by the subgroup A, which is an important point for
the following discussion as the measures mBMS and mBR are invariant and
quasi-invariant under A respectively.
The first question is whether there exist almost all results for the closures

of these orbits for appropriate measures.
We recall:

THEOREM 4.1 (Moore’s ergodicity theorem).
Let �<G be a lattice. For any unbounded subgroup W of G, xW is dense in �\G
for almost all x ∈�\G.

When � is geometrically finite but not a lattice in G, no orbit of a proper
connected subgroup W is dense in �\G. Moreover, it is easy to verify that if
∂(gW)⊂S

2 does not intersect �, then the map W→[g]W ⊂�\G given by
w �→ [g]w is a proper map, and hence [g]W is closed.4

IfW has the property that ∂(gW)= (gW)+—for instance, ifW =H or U—
then the nontrivial dynamics of the action ofW on �\G exists only inside the
closure of RF+M ·W.
We will see that RF+M ·H is always closed; it is useful to understand the

geometric description of RF+M ·H in order to understand its closedness.

4For a subset S⊂G, we use the notation ∂S to denote π(S)∩ S
2 under the projection π : FH

3→
H
3 ∪ S

2.
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Figure 14.5. Geodesic planes inM

4.1 GEODESIC PLANES AND ALMOST ALL H-ORBITS. A geodesic
plane in H

3 is a totally geodesic imbedding of H
2, which is simply either a

vertical plane or a vertical hemisphere in the upper half-space model.
Let P denote the set of all oriented geodesic planes of H

3 and C the set of
all oriented circles in S

2. The map P �→ ∂P gives an isomorphism between P
and C.
On the other hand, the map

gH �→Pg :=π(gH)

gives an isomorphism between the quotient space G/H and the set P , whose
inverse can be described as follows: for P∈P , the set of frames (e1, e2, e3)
based in P such that e1 and e2 are tangent to P and e3 is given by the orientation
of P is precisely a singleH-orbit. Consequently, the map

gH→Cg := ∂Pg
gives an isomorphism between G/H and C.

DEFINITION 4.2. An oriented geodesic plane P⊂M is a totally geodesic immer-
sion of an oriented hyperbolic plane H

2 in M, or equivalently P is the image of an
oriented geodesic plane of H3 under π .

In this essay, geodesic planes and circles are always considered to be
oriented. Note that any geodesic plane P⊂M is of the form

P= p(gH) for some g ∈G.
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Figure 14.6. Orbits under A, U, and H

Therefore the study of H-orbits on �\G has a direct implication on the
behavior of geodesic planes in the manifold �\H3.
We set

(4.2) F� :=RF+M ·H and C� :={C ∈ C :C∩� �= ∅}.

It follows from the compactness of� that C� is a closed subset of C=G/H. As

F�/H=�\C�,

we deduce the following:

LEMMA 4.3. The set F� is a closed H-invariant subset of �\G.

PROPOSITION 4.4. For mBMS-a.e. x ∈RFM,

xH=F�;

in particular, the geodesic plane p(xH) is dense in M.

Proof. We have RFM ·U=RF+M [34], and hence RFM ·H=F�. Theorem
3.4 implies that mBMS is ergodic; thus by the Birkhoff ergodic theorem, for
almost all x, xA is dense in RFM. Since A⊂H, we deduce

xH⊃RFM ·H=F�.

4.2 HOROCYCLES AND ALMOST ALL U-ORBITS. A horocycle in H
3

is a Euclidean circle tangent to S
2.
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DEFINITION 4.5. A horocycle χ in M is an isometrically immersed copy of R

with zero torsion and geodesic curvature 1, or equivalently χ is the image of a
horocycle of H3 under π .

The right translation action of U on �\G is the horocyclic action: if g=
(e1, e2, e3), then gut for t> 0 is the frame given by translation in the direction
of e2 by Euclidean distance t. In fact, any horocycle χ ⊂M is of the form

χ = p(gU) for some g ∈G.

Note that both gA and gU have their trajectories inside the planePg =π(gH).
In particular, π(gU) is a Euclidean circle lying on Pg tangent to S

2 at g+.
We now discuss the almost all results for U-orbits in terms of the Burger-

Roblin measure. It turns out that the size of the critical exponent δ matters in
this question. The following was proved in joint work with Mohammadi for �
convex cocompact [39] and by Maucourant and Schapira [34] for geometrically
finite groups.

THEOREM 4.6.
If δ > 1, mBR is U-ergodic and conservative.

PROPOSITION 4.7. Let δ > 1 (e.g., � is connected). Then for mBR-a.e. x ∈
RF+M,

xU=RF+M;

In particular, the horocycle p(xU) is dense in M.

Proof. Since mBR is an infinite measure, unless � is a lattice, the Birkhoff
ergodic theorem does not apply. Instead we use theHopf ratio theorem, which
applies by Theorem 4.6, and hence the claim follows.

In [34], it was proved that if δ < 1, mBR is totally U-dissipative, and hence
almost all U-orbits are divergent (cf. [14]). Whether mBR is ergodic or not at
δ= 1 remains an open question.

4.3 ORBIT CLOSURE THEOREM FOR LATTICES. The almost all results
on orbit closures in Propositions 4.4 and 4.7 do not describe the topological
behavior of a given individual orbit. In the lattice case, we have the following
remarkable classification of all possible orbit closures, due to Ratner [45] and
Shah [49] independently:
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THEOREM 4.8.
Let �<G be a lattice and x ∈�\G.

(1) The closure xH is either xH or �\G.
(2) The closure xU is either xU, xv−1Hv for some v∈N, or �\G.

This theorem immediately implies the first part of the following theorem;
the rest follows from the results in the same papers by Ratner and Shah.

THEOREM 4.9.
If M has finite volume, the closures of a geodesic plane and a horocycle are properly
immersed submanifolds of M. Moreover,

(1) any properly immersed geodesic plane has finite area;
(2) there are at most countably many properly immersed geodesic planes in M;

and
(3) any infinite sequence of properly immersed geodesic planes Pi becomes dense

in M—that is, limi→∞ Pi=M.5

The density statement (3), which is a topological version of the Mozes-
Shah theorem [41], implies that every properly immersed geodesic plane P
is topologically isolated, in the sense that there exists an open neighborhood
of P that does not contain any other properly immersed geodesic plane in its
entirety.

4.4 TOPOLOGICAL OBSTRUCTIONS TO ORBIT CLOSURE THEOREM.
In this section, we describe a family of quasi-Fuchsian manifolds, some of
whose geodesic planes have fractal closures; in particular, they have non-
integral dimensions. These geodesic planes pass through the interior of the
convex core ofM but their boundaries meet the limit set� only at two points.
These examples can be seen easily for Fuchsian manifolds. By performing

a small bending deformation along a simple closed geodesic far away from
our fractal closures of a fixed plane, we will obtain quasi-Fuchsian manifolds
keeping the fractal closure intact.

5For a sequence of closed subsets Yi of a topological space X , we write limi→∞ Yi=Y if
lim supi→∞ Yi= lim inf i→∞ Yi=Y .
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Figure 14.7. Bending deformation

4.4.1 Fuchsian 3-manifolds

Consider a Fuchsian 3-manifoldM that can be expressed as

M=S×R

in cylindrical coordinates where S is a closed hyperbolic surface of genus at
least 2. Or equivalently, take a torsion-free uniform lattice �<PSL2(R), and
consider � as a subgroup of G, so that M=�\H3= (

�\H2)×R. We have
coreM=S.
It is well-known that geodesics on a closed hyperbolic surface S can behave

as wildly as we wish for; in particular, for any β ≥ 1, there exists a geodesic
whose closure has Hausdorff dimension precisely β.

(1) The closure of a geodesic plane need not be a submanifold: if γ ⊂S is a
geodesic and P is a geodesic plane orthogonal to S with P∩S= γ , then

P
 γ ×R.

Therefore, if we take a geodesic γ ⊂S whose closure γ is wild, then P is
very far from being a submanifold.

(2) There are uncountably many properly immersed geodesic planes inter-
secting coreM; if γ ⊂S is a closed geodesic and P is a geodesic plane
with P∩S= γ , then P is a properly immersed geodesic plane. By varying
angles between P and S, we obtain a continuous family of such P.

We can now use a small bending deformation ofM to obtain quasi-Fuchsian
manifolds in which the same phenomenon persists.

4.4.2 Quasi-Fuchsian hyperbolic 3-manifolds

Let γ0 ∈� be a primitive hyperbolic element representing a separating simple
closed geodesic β in S. Without loss of generality, we assume γ0 ∈A, up to
conjugation. If S1 and S2 are components of S−β, then each �i :=π1(Si) is a
subgroup of �, and � can be presented as the amalgamated free product

�=�1 ∗〈γ0〉 �2.
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Setting mθ = diag(eiθ , e−iθ ), note that mθ centralizes γ0. For each non-trivial
mθ , we have �1 ∩m−1θ �2mθ =〈γ0〉, and the map that maps γ to γ if γ ∈�1
and to m−1θ γmθ if γ ∈�2 extends to an isomorphism �→�θ where

�θ :=�1 ∗〈γ0〉m−1θ �2mθ .

If θ is sufficiently small, then

. �θ is a discrete subgroup of G,. Mθ :=�θ\H3 is a quasi-Fuchsian manifold, and. there is a path isometric embedding jθ :S→ ∂ coreMθ such that its
image Sθ is bent with a dihedral angle of θ along the image of β and
otherwise totally geodesic.

Fix ε > 0 sufficiently small that β has an embedded annular collar neigh-
borhood in S of width 2ε. Let γ ⊂S1 be a geodesic whose closure γ is disjoint
from a 2ε-neighborhood O(β, 2ε) of β. Now if we set S1(ε) :=S1−O(β, 2ε),
then there is a unique orientation preserving isometric immersion

Jθ :S1(ε)×R→Mθ ,

which extends jθ |S1(ε) and sends geodesics normal to S1(ε) to geodesics
normal to jθ (S1(ε)). Now, if θ is small enough (relative to ε), then

Jθ is a proper isometric embedding.

This can be proved using the following observation. Let α=[a, b1] ∪ [b1, b2] ∪
· · · ∪ [bn−1, bn] ∪ [bn, c]beabrokengeodesic inH

3, which is aunionof geodesic
segments and which bends by angle 0≤ θ <π/2 at each bi. Suppose the first
and the last segments have length at least ε > 0 and the rest have length at
least 2ε. Let Pi denote the geodesic plane orthogonal to [bi, bi+1] at bi. If θ = 0,
then the distances among Pi’s are at least ε. Now if θ is small enough so that
sin(θ/2)< tanh ε, then the planes Pi remain a positive distance apart, giving a
nestedsequenceofhalf-planes inH

3. This implies that Jθ isaproper imbedding.
It now follows that for the plane P := γ ×R⊂S1(ε)×R, its image Pθ :=

Jθ (P)⊂Mθ is an immersed geodesic plane whose closure Pθ is isometric to
P
 γ ×R. Therefore by choosing γ , whose closure is wild, we can obtain a
geodesic plane Pθ ofMθ with wild closure (see [37] for more details).
This example demonstrates that the presence of an essential cylinder in

M gives an obstruction to the topological rigidity of geodesic planes. For the
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Figure 14.8. Divergence of U-orbits of two nearby points

behavior of an individual geodesic plane P, it also indicates that the finite
intersection ∂P∩� can be an obstruction.

5 Unipotent blowup and renormalizations

The distinguished property of a unipotent flow on the homogeneous space
�\G is the polynomial divergence of nearby points. Given a sequence zgn ∈
�\G, where gn→ e in G, the transversal divergence between two orbits zgnU
and zU can be understood by studying the double coset UgnU in view of the
equality

zgnut= zus(u−1s gnut)

and the behavior of rational maps t �→ uαn(t)gnut for certain reparameteriza-
tions αn :R→R so that lim supn→∞{uαn(t)gnut : t∈R} contains a non-trivial
element of G−U.6
We denote by V the transversal subgroup

V ={uit : t∈R}

to U inside N, so that N=UV . Note that the normalizer N(U) of U is equal
to AN, and the centralizer C(U) of U is equal to N.
The following unipotent blowup lemma (though stated in the setting of

SL3(R)) was first observed by Margulis [28, lemma 5], in his proof of the
Oppenheim conjecture.

LEMMA 5.1.
(1) If gn→ e in G−AN, then lim supn→∞UgnU contains a one-parameter

semigroup of AV.

6If Qn is a sequence of subsets of G, q∈ lim supn→∞ Qn if and only if every neighborhood of q
meets infinitely many Qn, and q∈ lim inf n→∞ Qn if and only if every neighborhood of qmeets all
but finitely many Qn. If lim supn Qn =Q∞ = lim inf Qn, then Qn is said to be convergent and Q∞
is the limit of Qn [19].
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(2) If gn→ e in G−VH, then lim supn→∞UgnH contains a one-parameter
semigroup7of V.

5.1 USE OF UNIPOTENT BLOWUP IN THE COMPACT �\G CASE.
In order to demonstrate the significance of this lemma, we present a proof of
the following orbit closure theorem, which uses the notion ofU-minimal sub-
sets. A closedU-invariant subset Y ⊂�\G is calledU-minimal if everyU orbit
in Y is dense in Y . By Zorn’s lemma, any compact U-invariant subset of �\G
contains a U-minimal subset.

THEOREM 5.2. Let�<G be a uniform lattice. For any x ∈�\G, xH is either
closed or dense.

Proof. Set X := xH. Suppose that X �= xH. By the minimality of the N-action
on �\G (Corollary 3.6), it suffices to show that X contains an orbit of V .

Step 1: For any U-minimal subset Y ⊂X ,

YL=Y for a one-parameter subgroup L<AV .

It suffices to show that Yqn=Y for some sequence qn→ e inAV . Fix y0 ∈Y . As
Y is U-minimal, there exists tn→∞ such that y0utn→ y0. Write y0utn = y0gn
for gn ∈G. Then gn→ e in G−U, because if gn belonged to U, the orbit y0U
would be periodic, which is a contradiction to the assumption that � is a
uniform lattice and hence contains no parabolic elements. If gn= anvnun ∈
AN=AUV , then we may take qn= anvn. If gn /∈AN, then by Lemma 5.1,
lim supn→∞UgnU contains a one-parameter semigroup L of AV . Hence for
any q∈ L, there exist tn, sn ∈R such that q= lim utngnusn .

(5.1) Since Y is compact, y0u−tn converges to some y1 ∈Y

by passing to a subsequence. Therefore y0gnusn = y0u−tn(utngnusn) converges
to y1q∈Y . Since q∈N(U) and Y is U-minimal, we have

y1qU= y1Uq=Yq=Y .

This proves the claim.

7A one-parameter semigroup of V is given by {exp tξ : t≥ 0} for some nonzero ξ ∈ Lie(V).
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Figure 14.9. Closed or dense

Step 2: There exists aU-minimal subset Y ⊂X such that X − y0H is not closed
for some y0 ∈Y .
If xH is not locally closed—that is, X − xH is not closed—then let Y be any

U-minimal subset of X . If Y ⊂ xH, then for any y0 ∈Y , X − y0H=X − xH is
not closed. If Y �⊂ xH, then choose y0 ∈Y − xH. If xH is locally closed, then
let Y be a U-minimal subset of X − xH. Then X − y0H is not closed for any
y0 ∈Y .
Step 3: For Y from step 2, we have

Yv⊂X for some nontrivial v∈V .

By step 2, we have y0gn ∈X for some y0 ∈Y and a sequence gn→ e in G−H.
If gn ∈VH for some n, then the claim follows. If gn /∈VH for all n, then by
Lemma 5.1(2), lim supn→∞UgnH contains a nontrivial element v∈V . Since
v= lim utngnhn for some tn ∈R and hn ∈H, we deduce Yv⊂X as in step 1.

Step 4: X contains a V -orbit.
It suffices to show that X contains x0V+ for a one-parameter semigroup V+

of V , because if vn→∞ in V+ and x0vn→ x1, then

x1V = x1 · lim sup
n

(v−1n V+)⊂ x0V+ ⊂X .

Let Y ⊂X be a U-minimal subset from step 2. By step 1, YL⊂Y where L is
either V or v0Av−10 for some v0 ∈V . If L=V , this finishes the proof. If L=A,
then by step 3, we get Yv=Yv(v−1Av)⊂X . Hence we get X ⊃ x0v−1AvA for
some x0 ∈X and a nontrivial v∈V . Since v−1AvA contains a one-parameter
semigroup of V , this finishes the proof.

We highlight the importance of Equation (5.1) from the above proof:
if q belongs to the set lim supn→∞UgnU in Lemma 5.1—that is, q=
limn→∞ utngnusn for some tn, sn ∈R—then the size of tn and sn are essentially
determined by the sequence gn→ e, up to multiplicative constants. On the
other hand, we need the convergence of the sequence y0u−tn in order to derive
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Yq⊂Y . That is, if y0u−tn diverges, which will be typical when �\G has infi-
nite volume, Lemma 5.1, whose proof depends on the polynomial property
of unipotent action, does not lead anywhere in the study of the orbit closure
problem.

5.2 UNIPOTENT BLOWUP AND RENORMALIZATIONS OF THE
RETURN TIME. Loosely speaking, for a given y0 ∈�\G, we now would like
to understand the set

lim sup
n→∞

TgnU,

where T is the recurrence time of y0U into a fixed compact subset of �\G.
Most of the time, lim sup TgnU may be empty. In order to make sure that this
set is nontrivial enough for our purpose, we need a certain polynomial φ(t)
(see proof of Lemma 5.5) not to vanish on the renormalized set lim sup λ−1n T,
where λn> 0 is a sequence whose size is dictated by the speed of convergence
of the sequence gn→ e. Since we do not have a control on gn in general, the
following condition on T, or more generally on a sequence Tn, is necessary for
an arbitrary sequence λn→∞.

DEFINITION 5.3. We say that a sequence Tn⊂R has accumulating renormal-
izations if for any sequence λn→∞,

T∞ := lim sup
n→∞

λ−1n Tn

accumulates at both 0 and∞.

That is, T∞ contains a sequence tending to 0 as well as a sequence tending
to∞. We allow a constant sequence Tn in this definition.
The following lemma is immediate:

LEMMA 5.4. If there exists κ > 1 such that each Tn is κ-thick in the sense
that for all r> 0, Tn ∩±[r, κr] �= ∅, then the sequence Tn has accumulating
renormalizations.

We now present a refined version of Lemma 5.1, which will be a main tool
in the study of U-orbits in the infinite volume homogeneous space: via the
map t �→ ut, we identify R
U.
We write g= h⊥ ⊕ h where h= sl2(R) is the Lie algebra of H and h⊥ =

isl2(R); note that h⊥ isH-invariant under conjugation.
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LEMMA 5.5 (unipotent blowup). Let Tn⊂U be a sequence with accumulat-
ing renormalizations.

(1) For any gn→ e in G−AN, the subset AV ∩ (
lim supn→∞ TngnU

)
accu-

mulates at e and∞.
(2) For any gn→ e in G−VH, the subset V ∩ (

lim supn→∞ TngnH
)
accu-

mulates at e and∞.
(3) For any gn→ e in exp h⊥ −V , the subset V ∩ (

lim supn→∞{utgnu−t : t∈
Tn}

)
accumulates at e and∞.

Proof. For (1), we will find a sequence λn→∞ (depending on gn) and a
rational map ψ :R→AV such that for T∞ := lim supn→∞ λ−1n Tn,

. ψ(T∞)⊂ lim supn→∞ TngnU, and. ψ(T∞) accumulates at e and∞.
The construction ofψ follows the arguments ofMargulis and Tomanov [32].

SinceU is a real algebraic subgroup ofG, by Chevalley’s theorem, there exists
an R-regular representation G→GL(W) with a distinguished point p∈W
such that U=StabG(p). Then pG is locally closed, and

(5.2) N(U)={g ∈G : pgu= pg for all u∈U}.

Set L :=VAMN+, where N+ is the transpose of N. Then UL is a Zariski
dense open subset of G, and pL is a Zariski open neighborhood of p in the
Zariski closure of pG. We choose a norm on W so that B(p, 1)∩ pG⊂ pL,
where B(p, 1)⊂W denotes the closed ball of radius 1 centered at p.
Without loss of generality, we may assume gn ∈UL for all n. For each n,

define φ̃n :R→W by

φ̃n(t)= pgnut,
which is a polynomial of degree uniformly bounded for all n. Define λn≥ 0 by

λn := sup{λ≥ 0 : φ̃n[−λ, λ]⊂B(p, 1)}.

As gn �∈N(U)=AN, φ̃n is nonconstant, and hence λn<∞. As φ̃n(0)= pgn→
p, we have λn→∞. We reparameterize φ̃n using λn:

φn(t) := φ̃n(λnt).
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Then for all n,

φn[−1, 1]⊂B(p, 1).
Therefore, the sequence φn forms an equicontinuous family of polynomials,
and hence, after passing to a subsequence, φn converges to a polynomial

φ :R→ pG⊂W

uniformly on every compact subset of R. Note that φ is nonconstant, since
φ(0)= p and max ‖φ(±1)‖= 1. As the map ρ :L→ pL defined by � �→ p� is
a regular isomorphism and pL is a Zariski open neighborhood of p in the
Zariski closure of pG, we now get a rational map ψ :R→L given by

ψ(t)= ρ−1(φ(t)).

If we define ψn(t) as the unique L-component of gnut in the UL
decomposition—that is, gnut= usnψn(t) for some sn ∈R—then

ψ(t)= lim
n→∞ψn(λnt),

where the convergence is uniform on compact subsets ofR. It is easy to check
that Imψ ⊂N(U)∩L=AV using Equation (5.2).
Set

T∞ := lim sup
n→∞

λ−1n Tn.

By the hypothesis on Tn, T∞ accumulates at 0 and∞. Since ψ :R→AV is
a nonconstant rational map with ψ(0)= e, ψ(T∞) accumulates at e and∞.
Letting t∈ T∞, choose a sequence tn ∈ Tn such that limn→∞ λ−1n tn= t. Since

ψn ◦ λn→ψ uniformly on compact subsets,

ψ(t)= lim
n→∞(ψn ◦ λn)

(
λ−1n tn

)
= lim

n→∞ψn(tn)= lim
n→∞ usngnutn

for some sequence sn ∈R. Hence,

ψ(T∞)⊂ lim sup
n→∞

UgnTn.

By applying this argument to g−1n , we may switch the position of U and Tn,
and hence finish the proof of Lemma 5.5 (1).
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To prove (2), by modifying gn using an element of H, we may assume that
gn= exp qn ∈ exp h⊥ −V . Hence, (2) follows from (3). We define a polynomial
ψn :R→ h⊥ by

ψn(t)= utqnu−t for all t∈R.

Since gn /∈V and hence does not commute with U, ψn is a nonconstant
polynomial. Define

λn := sup{λ≥ 0 :ψn([−λ, λ])⊂B(0, 1)},

where B(0, 1) is the closed unit ball around 0 in h⊥. Then 0<λn<∞ and
λn→∞.
Now the rescaled polynomials φn=ψn ◦ λn :R→ h⊥ form an equicontinu-

ous family of polynomials of uniformly bounded degree and limn→∞ φn(0)=
0. Therefore φn converges to a nonconstant polynomial

φ :R→ h⊥

uniformly on compact subsets.
We claim that Im(φ)⊂ Lie(V). For any fixed s, t∈R,

usφ(t)u−s= lim
n→∞ uλnt+sqnu−λnt−s

= lim
n→∞ u

λn(t+λ−1n s)qnu−λn(t+λ−1n s)

= lim
n→∞ uλntqnu−λnt=φ(t).

Hence, φ(t) commutes with U. Since the centralizer of U in h⊥ is equal
to LieV , the claim follows. Define ψ :R→V by ψ(t)= exp(φ(t)), noting that
exp : LieV→V is an isomorphism. Setting

T∞ := lim sup
n→∞

λ−1n Tn,

we deduce that ψ(T∞) accumulates at e and ∞. For any t∈ T∞, we choose
tn ∈ Tn so that t= lim λ−1n tn. Then

ψ(t)= lim
n→∞ utngnu−tn

as φn(t)→φ(t) uniformly on compact subsets. Hence,

ψ(T∞)⊂V ∩
(
lim sup
n→∞

{utgnu−t : t∈ Tn}
)
.

This completes the proof of Lemma 5.5 (3).
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5.3 RELATIVE MINIMAL SETS AND ADDITIONAL INVARIANCE. Let
�<G be a discrete subgroup. LetX ⊂�\G be a closedH-invariant subset with
no periodicU-orbits.8 LetW ⊂�\G be a compact subset such that X ∩W �= ∅.
We suppose that for any y∈X ∩W,

(5.3) T(y) :={t∈R : yut ∈W} has accumulating renormalizations.

Under this hypothesis, we can obtain analogous steps to Theorem 5.2 steps
1 and 3 for relativeU-minimal subsets of X . Since X is not compact in general,
a U-minimal subset of X may not exist. Hence, we instead consider a relative
U-minimal subset of X .

DEFINITION 5.6. A closed U-invariant subset Y ⊂X is called U-minimal with
respect to W if Y ∩W �= ∅ and yU is dense in Y for every y∈Y ∩W.

As W is compact, it follows from Zorn’s lemma that X always contains a
U-minimal subset with respect toW.

LEMMA 5.7 (translates of Y inside Y). Let Y ⊂X be a U-minimal subset with
respect to W. Then

YL⊂Y
for some one-parameter semigroup L<AV.

Proof. It suffices to find a sequence qn→ e in AV such that Yqn⊂Y .
Fix y0 ∈Y ∩W. We claim that there exists gn→ e in G−U such that y0gn ∈

Y ∩W. By the minimality assumption on Y , there exists tn→∞ in T(y0) so
that y0utn converges to y0 ∈Y ∩W (see [4, lemma 8.2]). Hence, there exists
gn→ e such that

y0utn = y0gn.
Then gn /∈U, because if gn belonged to U, y0U would be periodic, contradict-
ing the assumption that X contains no periodic U-orbit.

Case 1: gn ∈AN. Bymodifying gn with elements ofU, wemay assume that gn ∈
AV . Since gn ∈N(U) and y0 ∈Y ∩W, we get y0Ugn= y0gnU⊂Y , and hence
y0Ugn=Ygn⊂Y .

8The case when X contains a periodic U-orbit turns out to be more manageable; see [4, proposi-
tion 4.2].

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



dynamics for discrete subgroups of sl2(C) / 537

Case 2: gn /∈AN. By Lemma 5.5, for any neighborhood O of e, there exist
tn ∈ T(y0) and sn ∈R such that u−tn gnusn converges to some q∈ (AV −{e})∩O.
Since y0utn ∈W and W is compact, y0utn converges to some y1 ∈Y ∩W by
passing to a subsequence. Therefore as n→∞,

y0gnu−sn = (y0utn)(u−tn gnusn)→ y1q∈Y .

As y1 ∈Y ∩W and q∈N(U), it follows that Yq⊂Y . Since such q can be found
in any neighborhood of e, this finishes the proof.

LEMMA 5.8 (one translate of Y inside X). Let Y ⊂X be a U-minimal subset
with respect to W such that X − y0H is not closed for some y0 ∈Y ∩W. Then

Yv⊂X for some nontrivial v∈V .

Proof. By the hypothesis, there exists gn→ e in G−H such that y0gn ∈X .
If gn ∈VH for some n, the claim is immediate as X is H-invariant. If gn /∈

VH for all n, by Lemma 5.5, there exist tn ∈ T(y0) and hn ∈H so that u−1tn gnhn
converges to some nontrivial v∈V . Since y0utn belongs to the compact subset
W, by passing to a subsequence, y0utn converges to some y1 ∈Y ∩W. Hence
y0gnhn= y0utn(u−1tn gnhn) converges to y1v. By the minimality of Y with respect
toW, we get Yv⊂Y , as desired.
For a subset I⊂R, we write VI ={uit : t∈ I}. When the conditions for Lem-

mas 5.7 and 5.8 are met, we can deduce that X contains some interval of a
V -orbit:

LEMMA 5.9. Let X be a closed H-invariant subset of �\G containing a com-
pact A-invariant subset W. Let Y ⊂X be a U-minimal subset with respect to W.
Suppose

(1) YL⊂Y for some one-parameter semigroup L<AV and
(2) Yv⊂X for some nontrivial v∈V.

Then X contains x0VI for some x0 ∈W and an interval 0∈ I.

Proof. Any one-parameter semigroup L<AV is either a one-parameter semi-
group V+<V or v0A+v−10 for some v0 ∈V and a one-parameter semigroup
A+<A.

Case 1: If L=V+, we are done.
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Case 2: If L= v0A+v−10 for a nontrivial v0 ∈V , then

X ⊃Y(v0A+v−10 )A.

Since v0A+v−10 A contains VI for some interval 0∈ I, the claim follows.

Case 3: If L=A+, we first note that YA⊂Y ; take any sequence an→∞ in
A+, and y0 ∈Y ∩W. Then y0an ∈Y ∩W converges to some y1 ∈Y ∩W. Now
lim supn→∞ a−1n A+ =A. Therefore Y ⊃ y1A. Since y1U=Y , we get Y ⊃YA.
Since AvA contains a semigroup V+ of V , we deduce

X ⊃YvA⊃YAvA⊃YV+.
In the next section, we discuss the significance of the conclusion that X

contains a segment x0VI, depending on the relative location of x0 to ∂ coreM.

6 Interior frames and boundary frames

Let �<G be a Zariski dense geometrically finite group, and let M=�\H3.
WhenM has infinite volume, its convex core has a nonempty boundary, which
makes the dynamical behavior of a frame under geometric flows different
depending on its relative position to ∂ coreM.
Recall the notation F� from Equation (4.2). We denote by F∗ the interior

of F� and by ∂F the boundary of F�. In order to show that a given closed H-
invariant subset X ⊂F� with no periodic U-orbits is equal to F�, it suffices
to show that X contains x0VI for some x0 ∈F∗ ∩RF+M and an interval 0∈ I
(Lemma 6.1). It is important to get x0 ∈F∗, as the similar statement is not
true if x0 ∈ ∂F. For example, in the rigid acylindrical case, if x0 ∈ ∂F, then
x0HV+H is a closedH-invariant subset of ∂F for a certain semigroup V+<V
(cf. Theorem 7.1), and hence ifVI belongs toV+, we cannot use x0VI to obtain
useful information on X ∩F∗.

6.1 INTERIOR FRAMES. In this section, we assume that � is connected.
Under this hypothesis, the closed H-invariant set F�=RF+M ·H has a non-
empty interior that can be described as follows:

F∗ = {[g] ∈�\G :π(Pg)∩M∗ �= ∅}
=

⋃
{xH⊂�\G : p(xH)∩M∗ �= ∅},

whereM∗ denotes the interior of coreM.

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



dynamics for discrete subgroups of sl2(C) / 539

The condition π(Pg)∩M∗ �= ∅ is equivalent to the condition that the cir-
cle Cg = ∂Pg separates the limit set �—that is, both components of S

2−Cg

intersect � nontrivially. If we set

C∗ :={C ∈ C :C separates �},

we have

F∗/H=�\C∗.

We observe that the connectedness of � implies the following two equiva-
lent statements:

(1) For any C ∈ C∗, #C∩�≥ 2.
(2) F∗ ∩RF+M⊂RFM ·U.

By the openness of F∗ and (2), for any x ∈F∗ ∩RF+M, there exists a
neighborhood O of e in G such that

(6.1) xO∩RF+M⊂RFM ·U.

Thanks to this stability, we have the following lemma:

LEMMA 6.1. Let X ⊂F� be a closed H-invariant subset intersecting RFM and
with no periodic U-orbits. If X contains x0VI for some x0 ∈F∗ ∩RF+M and an
interval 0∈ I, then

X =F�.

Proof. It suffices to find z0V inside X for some z0 ∈RFM by Theorem 3.6.
Without loss of generality, we may assume I=[0, s] for some s> 0. We write
vt := uit. Since x0 ∈F∗ ∩RF+M, there exists 0<ε< s such that x0vε ∈X ∩
RFM ·U by Equation (6.1). Hence, there exists x1 ∈ x0vεU ∩RFM∩X , so
x1v−1ε VI = x1V[−ε,s−ε] ⊂X . SinceX has no periodicU-orbit, x+1 is a radial limit
point of�, and hence there exists tn→+∞ such that x1atn converges to some
z0 ∈RFM. Since

lim sup
n→∞

a−1tn V[−ε,s−ε]atn =V

and x1V[−ε,s−ε]atn = x1atn(a−1tn V[−ε,s−ε]atn)⊂X , we obtain z0V ⊂X as
desired.
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6.2 BOUNDARY FRAMES. The geometric structure of the boundary ∂F=
F�−F∗ plays an important (rather decisive) role in the rigidity study. For
instance, unless xH is bounded, xH is expected to accumulate on ∂F. In the
most dramatic situation, all the accumulation of xH may fall into the bound-
ary ∂F so that xH⊂ xH∪ ∂F. Unless we have some analysis on what possible
closed H-invariant subsets of ∂F are, there isn’t too much more we can say
about such situation.
A geodesic plane P⊂H

3 is called a supporting plane if it intersects hull(�)
and one component of H

3−P is disjoint from hull(�), or equivalently the
circle C= ∂P is a supporting circle in the sense that #C∩�≥ 2 and C does
not separate �.
For C ∈ C, we denote by �C the stabilizer of C in �. The theory of bending

laminations yields the following:

THEOREM 6.2 ([38, theorem 5.1]).
For any supporting circle C ∈ C,

(1) �C is a finitely generated Fuchsian group, and
(2) there exists a finite subset �0⊂C∩� such that

C∩�=�(�C)∪�C�0,

where �(�C) denotes the limit set of �C.

DEFINITION 6.3. We call x ∈ ∂F a boundary frame, and we call x=[g] ∈
∂F a thick boundary frame if there exists a supporting circle C with a non-
elementary stabilizer �C such that Cg =C or Cg is tangent to C at g+ ∈�(�C).

THEOREM 6.4.
If x ∈ ∂F is a thick boundary frame such that xU is not closed, then xU⊃ xvAv−1
for some v∈V. If x ∈RFM in addition, then xU⊃ xA.

Proof. Choose g ∈G so that [g]= x. By the hypothesis on x, there exists a sup-
porting circleCwith�C nonelementary and g+ ∈�(�C). The circleCg is equal
toC or tangent toC at g+. It follows that there exists v∈V such thatC=Cgv. By
Theorem 6.2, the stabilizer�C is finitely generated and nonelementary. It now
follows from a theorem by Dal’Bo [10] that xvU is either periodic (if g+ = (gv)+
is a parabolic fixed point of �C) or xvU contains xvH∩RF+M⊃ xvA. Since
v commutes with U, the first claim follows. If x ∈RFM in addition, then Cg

must be equal to C, and hence v= e.
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LEMMA 6.5. Let X ⊂F� be a closed H-invariant subset intersecting RFM with
no periodic U-orbits. If X ∩F∗ contains zv0 for some thick boundary frame z∈
∂F∩RFM and v0 ∈V −{e}, then

X =F�.

Proof. By Lemma 6.1, it suffices to find x0VI inside X for some x0 ∈F∗ and an
interval 0∈ I. By Theorem 6.4, we have zU⊃ zA. Therefore,

X ⊃ zv0UA= zUv0A⊃ zAv0A⊃ zV+,

where V+ is the one-parameter semigroup contained in V ∩Av0A. Since
zv0 ∈ zV+ ∩F∗ �= ∅ and F∗ is open, zv0VI ⊂ zV+ ∩F∗ for some interval 0∈ I,
as desired.

7 Rigid acylindrical groups and circular slices of �

Let �<G be a rigid acylindrical Kleinian group andM :=�\H3 the associated
hyperbolic 3-manifold. We assume Vol(M)=∞.

7.1 BOUNDARY FRAMES FOR RIGID ACYLINDRICAL GROUPS. In this
case, we have a complete understanding of the orbit closures in the bound-
ary ∂F, which makes it possible to give a complete classification for all orbit
closures in F.
When � is rigid acylindrical, every supporting circle C is contained in the

limit set, so thatC∩�=C. It follows that�C is a uniform lattice ofGC and the
orbit xH= p(gH) is compact whenever Cg is a supporting circle. This implies
the following:

THEOREM 7.1 ([37]).
Let � be rigid acylindrical, and let x ∈ ∂F be a boundary frame.

(1) If x ∈RF+M, then

xU= xvHv−1 for some v∈V .

(2) If x ∈RFM, then xH is compact.
(3) If x ∈RF+M−RFM, there exist a one-parameter semigroup V+ of V and a

boundary frame x0 ∈ ∂F with x0H compact such that

xH= x0HV+H.
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Figure 14.10. Circular slice of �

7.2 CIRCULAR SLICES OF �. Circular slices of the limit set� control the
recurrence time of U-orbits into the compact subset RFM. For x ∈RFM, set

T(x) :={t∈R : xut ∈RFM}.

If x=[g], then (gut)+ = g+ ∈Cg ∩�, and hence

t∈ T(x) if and only if (gut)− ∈Cg ∩�.

We will use the following geometric fact for a rigid acylindrical manifoldM:
if we write S2−�=⋃

Bi where Bi’s are round open disks, then

(7.1) inf
i�=j

d(hull(Bi), hull(Bj))≥ ε0,

where 2ε0 is the systol of the double of the convex core of M. This follows
because a geodesic in H

3 that realizes the distance d(hull(Bi), hull(Bj)) is
either a closed geodesic in M or the half of a closed geodesic in the double
of core(M).

PROPOSITION 7.2. Let � be rigid acylindrical. There exists κ > 1 such that for
all x ∈RFM, T(x) is κ-thick. In particular, for any sequence xi ∈RFM, T(xi) has
accumulating renormalizations.

Proof. For ε0> 0 given by Equation (7.1), consider the upper half-plane model
of H

2={(x1, 0, y) : x1 ∈R, y> 0}. For a< b, hullH2(a, b)⊂H
2 denotes the con-

vex hull of the interval connecting (a, 0, 0) and (b, 0, 0). Define κ > 1 by the
equation

dH2(hull(−κ ,−1), hull(1, κ))= ε0/2;
since lims→∞ dH2(hull(−s,−1), hull(1, s))= 0, such κ > 1 exists.
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Since z �→ tz is a hyperbolic isometry in H
2 for any t> 0, we have

dH2(hull(−κt,−t), hull(t, κt))= ε0/2.

We now show that T(x) is κ-thick for x ∈RFM. It suffices to show the claim
for x=[g], where g= (e1, e2, e3) is based at (0, 0, 1) with e2 in the direction of
the positive real axis and g+ =∞, g− = 0. Note that gut ∈RFM if and only if
t= (gut)− ∈� and hence

T(x)=R∩�.
Suppose that T(x) is not κ-thick. Then for some t> 0, T(x) does not intersect
[−κt,−t] ∪ [t, κt]—that is, [−κt,−t] ∪ [t, κt]⊂⋃

Bi. Since Bi’s are convex and
0∈�, there exists i �= j such that [−κt,−t]⊂Bi and [t, κt]⊂Bj. Hence,

d(hull(−κt,−t), hull(t, κt))= ε0/2≥ d(hull(Bi), hull(Bj))≥ ε0,

yielding contradiction. The second claim follows from Lemma 5.4.

7.3 CLOSED OR DENSE DICHOTOMY FOR H-ORBITS. In Theorem
7.1, we have described all possible orbit closures forH andU-action inside ∂F.
It remains to consider orbits of x ∈F∗.

THEOREM 7.3 ([37]).
For any x ∈F∗, xH is either closed or dense in F�.

Proof. Set X := xH, and assume that X �= xH. We then need to show X =
F�. Since F∗ ∩RF+M⊂RFM ·U and xH⊂F∗ ∩RF+M ·H, we may assume
without loss of generality that x=[g] ∈RFM.
SetW :=X ∩F∗ ∩RFM.

Case 1:W is not compact. In this case, there exists xn ∈W converging to some
z∈ ∂F∩RFM. Write xn= zgn with gn→ e in G−H.
Suppose that gn= hnvn ∈HV for some n. Since zhn ∈ zH⊂ ∂F∩RFM and

(zhn)vn ∈F∗ ∩RFM, the claim follows from Lemma 6.5.
Now suppose that gn /∈HV for all n. By Lemma 5.5, there exist tn ∈ T(xn) and

hn ∈H such that hngnutn converges to some v∈V −{e}. Since zH is compact,
zh−1n converges to some z0 ∈ ∂F∩RFM by passing to a subsequence. Hence,
as n→∞,

xnutn = zh−1n (hngnutn)→ z0v.
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Since z0 ∈ ∂F∩RFM and z0v∈RFM, we get z0v∈F∗; hence the claim follows
by Lemma 6.5.

Case 2:W is compact. It follows from the definition ofW that for any x ∈W,

T(x)={t : xut ∈W}.

We claim that X contains a U-minimal subset Y with respect to W such
that X − y0H is not closed for some y0 ∈Y ∩W. We divide our proof into two
further cases:

Case (a): Suppose that xH is not locally closed that is, X − xH is not closed.
In this case, any U-minimal subset Y ⊂X with respect to W works. First, if
Y ∩W ⊂ xH, then choose any y0 ∈Y ∩W. Observe that xH− y0H= xH− xH
is not closed, which implies the claim. If Y ∩W �⊂ xH, choose y0 ∈ (Y ∩W)−
xH. Then xH− y0H contains xH and hence cannot be closed.

Case (b). SupposethatxH is locallyclosedandX − xH intersectsW non-trivially.
ThereforeX − xH contains aU-minimal subsetY with respect toW. Then any
y0 ∈Y ∩W has the desired property; since y0 ∈X − xH, there exists hn ∈H
such that xhn→ y. If we write xhn= ygn, then gn→ e in G−H, since y /∈ xH.
By Lemmas 5.7, 5.8, and 5.9, X contains x0VI for some x0 ∈W and for an

interval 0∈ I; since x0 ∈F∗, this finishes the proof by Lemma 6.1.

7.4 TOPOLOGICAL RIGIDITY OF GEODESIC PLANES. In [36] and
[37], the following theorem was obtained:

THEOREM 7.4.
Let M be a rigid acylindrical hyperbolic 3-manifold. Then

(1) any geodesic plane P intersecting coreM is either properly immersed or dense,
(2) the fundamental group of a properly immersed P intersecting coreM is a

nonelementary Fuchsian subgroup,
(3) there are at most countably many properly immersed geodesic planes in M

intersecting coreM, and
(4) any infinite sequence of geodesic planes Pi intersecting coreM becomes dense

in M—that is limPi=M.

REMARK 7.5.
(1) There exists a closed arithmetic hyperbolic 3-manifold �\H3 with-

out any properly immersed geodesic plane, as shown by Maclachlan-
Reid [25].
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(2) When M has finite volume and has at least one properly immersed
geodesic plane, then M is arithmetic if and only if there are infinitely
many properly immersed geodesic planes [31, 3].

(3) A natural question is whether a rigid acylindrical hyperbolic 3-manifold
M necessarily covers an arithmetic hyperbolic 3-manifold if there exist
infinitely many properly immersed (unbounded) geodesic planes inter-
secting its core. The reason for the word unbounded in parentheses is
that in any geometrically finite hyperbolic 3-manifold of infinite volume,
there can be only finitely many bounded geodesic planes [37, 4]. In view
of the proofs given in [31, 3], the measure theoretic equidistribution of
infinitely many closedH-orbits needs to be understood first.

7.5 CLASSIFICATION OF U-ORBIT CLOSURES. In the rigid acylindri-
cal case, the complete classification of the U-orbit closures inside ∂F given in
Theorem 7.1 can be extended to the whole space RF+M:

THEOREM 7.6 ([36]).
For any x ∈RF+M,

xU= xL∩RF+M,

where L is either v−1Hv for some v∈N, or G.

Our proof is based on two main features of a rigid acylindrical group. The
first property is that

there exists a compact H-orbit in RF+M

—namely, those [g]H whose corresponding plane Pg is a supporting plane.
This very important feature of M is a crucial ingredient of our proof. In par-
ticular, the following singular set is nonempty:

S (U)=
⋃

zHV ∩RF+M,

where the union is taken over all closedH orbits zH.
We set

G (U) :=RF+M−S (U)

and call it the generic set. Note that

G (U)⊂F∗.
The second property is the following control on the prelimiting behavior of

RFM-points, whose proof is based on the totally geodesic nature of ∂ coreM.
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LEMMA 7.7 ([36, lemma 4.2]). If xn ∈F∗ converges to some y∈RFM, then
there exists a sequence x′n ∈ xnU ∩RFM converging to y or converging to some
boundary frame y′ ∈ ∂F∩RFM.

For x ∈S (U), Theorem 7.6 follows from a theorem of Hedlund [18] and
Dal’Bo [10] on the minimality of horocyclic action on the Fuchsian case.

PROPOSITION 7.8 ([36]). If x ∈G (U), then

xU=RF+M.

Proof. Setting X := xU, we first claim that

(7.2) X ∩S (U) �= ∅.

If X ∩ ∂F �= ∅, the claim follows from Theorem 7.1(1). Hence, we assume
thatX ⊂F∗. LetY be aU-minimal subset ofX with respect to RFM. By Lemma
5.7, YL⊂Y , where L<AV is a one-parameter semigroup. If L is a semigroup
of V—say, V+—then take a sequence vn→∞ in V+. Since YV+ ⊂Y ⊂F∗ ⊂
RFM ·U, up to passing to a subsequence, there exists yn ∈Y such that ynvn
converges to an RFM-point—say y0. Then

y0V = lim
n→∞(ynvn) · lim sup

n
(v−1n V+)⊂YV+ ⊂Y .

Hence, Y =X =RF+M, proving the claim. If L= vA+v−1 for some semi-
group A+ of A, since S (U) is V -invariant, we may assume that L=A+.
Take a sequence an→∞ in A+. Then for any y∈Y , yan converges to an
RFM-point—say, y0 ∈Y—by passing to a subsequence. So

y0A= lim
n→∞(yan) · lim sup

n
(a−1n A+)⊂YA+ ⊂Y .

On the other hand, either y0 ∈S (U) or y0H=F� (Theorem 7.3). In the latter
case, y0H contains a compact H-orbit zH. Since y0AUM0= y0H, it follows
that y0AU ∩ zH �= ∅, proving the claim in Equation (7.2).
Therefore X contains yU= yvHv−1 ∩RF+M for some y∈S (U). Without

loss of generality, we may assume X ⊃ yH∩RF+M by replacing x with xv.
Set Y := yH∩RF+M, which is a U-minimal subset. There exists sn ∈R such
that y= limn→∞ xusn . In view of Lemma 7.7, wemay assume that xusn ∈RFM
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for all n. Write xusn = ygn for some sequence gn→ e in G. Since y∈S (U) and
x ∈G (U), it follows that gn /∈HV for all n. Hence by Lemma 5.5, there exist
tn ∈ T(ygn) and hn ∈H such that hngnutn converges to some v∈V ; moreover, v
can be taken arbitrarily large. By passing to a subsequence, ygnutn converges to
some y0 ∈RFM, and hence yh−1n converges to y1 := y0v−1 ∈ yH∩RF+M=Y .
Therefore X ⊃ y0= y1v, and hence X ⊃Yv. As y1v∈RFM, Yv∩RFM �= ∅. As v
can be taken arbitrarily large, there exists a sequence vn→∞ in V such that X
contains Yvn. Choose yn ∈Y so that ynvn ∈RFM converges to some x0 ∈RFM
by passing to a subsequence. SinceY isA-invariant and lim supn→∞ v−1n Avn⊃
V , we deduce

X ⊃ lim
n→∞(ynvn) · lim sup

n→∞
(v−1n Avn)⊃ x0V .

Therefore X =RF+M.

As an immediate corollary, we deduce the following:

COROLLARY 7.9 ([36]). Let M be a rigid acylindrical hyperbolic 3-manifold.
Then the closure of any horocycle is either a properly immersed surface, parallel to
a geodesic plane, or equal to M.

7.6 MEASURE RIGIDITY? If there exists a closed orbit xH for x ∈RF+M,
then the stabilizer of x in H is a nonelementary convex cocompact Fuchsian
subgroup and there exists a unique U-invariant ergodic measure supported
on xH∩RF+M, called the Burger-Roblin measure mBR

xH on xH.

QUESTION 7.10. LetM be a rigid acylindrical hyperbolic 3-manifold. Is any
locally finiteU-ergodic measure on RF+M eithermBR ormBR

xH for some closed
H orbit xH, up to a translation by the centralizer of U?

Theorem 7.6 implies the positive answer to this question at least in terms
of the support of the measure: the support of any locally finiteU-ergodic mea-
sure on RF+M is either RF+M or RF+M∩ xHv for some closed orbit xH
and v∈N.

8 Geometrically finite acylindrical hyperbolic 3-manifolds

Let �<G be a Zariski dense geometrically finite group, and let M=�\H3.
We assume Vol(M)=∞. In the rigid acylindrical case, we were able to give a
complete classification of all possible closures of a geodesic plane inM; this is
largely due to the rigid structure of the boundary of coreM. In particular, the
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intersection of a geodesic plane and the convex core of M is either closed or
dense in coreM.
In general, the convex core ofM is not such a natural ambient space to study

the topological behavior of a geodesic plane because of its non-homogeneity
property. Instead, its interior, which we denote byM∗, is a better space to work
with: first of all, M∗ is a hyperbolic 3-manifold with no boundary (although
incomplete), which is diffeomorphic to M; second, a geodesic plane P that
does not intersect M∗ cannot come arbitrarily close to M∗ as P must be
contained in the endsM−M∗.

DEFINITION 8.1. A geodesic plane P∗ in M∗ is defined to be a nonempty
intersection P∩M∗ for a geodesic plane P ofM.

Let P=π(P̃) for a geodesic plane P̃⊂H
3, and set S=Stab�(P̃)\P̃. Then the

natural map f :S→P⊂M is an immersion (which is generically injective),
S∗ := f −1(M∗) is a nonempty convex subsurface of S with π1(S)=π1(S∗),
and P∗ is given as the image of the restriction of f to S∗. The group π1(S∗)
will be referred to as the fundamental group of P∗. We note that a geodesic
plane P∗ is always connected as P∗ is covered by the convex subset P̃∩ Interior
(hull �).

8.1 RIGIDITY OF GEODESIC PLANES IN M∗. An analogous topologi-
cal rigidity of planes to Theorem 7.4 continues to hold insideM∗, providedM
is a geometrically finite acylindrical hyperbolic 3-manifold.
The following rigidity theorem was proved jointly with McMullen and

Mohammadi for convex cocompact cases in [36] and extended to geometrically
finite cases jointly with Benoist [4]:

THEOREM 8.2.
Let M be a geometrically finite acylindrical hyperbolic 3-manifold. Then geodesic
planes in M∗ are topologically rigid in the following senses:

(1) Any geodesic plane P∗ in M∗ is either properly immersed or dense;
(2) the fundamental group of a properly immersed P∗ is a nonelementary geomet-

rically finite Fuchsian subgroup;
(3) there are at most countably many properly immersed geodesic planes in M∗;

and
(4) any infinite sequence of geodesic planes P∗i becomes dense in M∗—that is,

limP∗i =M∗.
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This theorem is deduced from the following results on H-orbits in F∗:

THEOREM 8.3. ([36], [4])
Let M be a geometrically finite acylindrical hyperbolic 3-manifold. Then

(1) any H-orbit in F∗ is either closed or dense;
(2) if xH is closed in F∗, then StabH(x) is Zariski dense in H;
(3) there are at most countably many closed H-orbits in F∗; and
(4) any infinite sequence of closed H-orbits xiH becomes dense in F∗—that is,

lim xiH=F∗.

8.2 CLOSED OR DENSE DICHOTOMY FOR ACYLINDRICAL GROUPS.
In this section, we discuss the proof of the following closed or dense
dichotomy:

THEOREM 8.4.
LetM be a geometrically finite acylindrical hyperbolic 3-manifold. Then anyH-orbit
in F∗ is either closed or dense.

Indeed, the proof of Theorem 7.3 for the rigid acylindrical case can be
modified to prove the following proposition.

PROPOSITION 8.5 (main proposition). Let � be a Zariski dense convex
cocompact subgroup of G with a connected limit set. Let R be a closed A-invariant
subset of RFM satisfying that for any x ∈R, T(x) :={t : xut ∈R} has accumulat-
ing renormalizations. Then for any x ∈R∩F∗, xH is either locally closed or dense
in F. When xH is locally closed, it is closed in RH∩F∗.

Proof. Let X := xH for x ∈R∩F∗. Set W :=X ∩R∩F∗. Suppose that either
xH is not locally closed or (X − xH)∩W �= ∅. We claim that X =F�.
Case 1: W is not compact. By repeating verbatim the proof of Theorem 7.3,
we obtain zv∈X ∩R for some z∈ ∂F∩R and nontrivial v∈V . As z=[g] ∈R,
�Cg is nonelementary and hence z is a thick boundary frame. Since zv∈F∗,
the claim follows from Lemma 6.5.

Case 2: W is compact. By repeating verbatim the proof of Theorem 7.3, we
show that X contains a U-minimal subset Y with respect toW such that X −
y0H is not closed for some y0 ∈Y ∩W. Hence by applying Lemmas 5.7, 5.8,
5.9, and 6.1, we get X =F�.
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When � is rigid acylindrical, note thatR=RFM satisfies the hypothesis of
Proposition 8.5. In view of this proposition, Theorem 8.4 for a convex cocom-
pact case now follows from the following theorem, and a general geometrically
finite case can be proved by an appropriately modified version, taking account
of closed horoballs, which is responsible for the noncompactness of RFM.

THEOREM 8.6.
Let M be a geometrically finite acylindrical hyperbolic 3-manifold. Then there exists
a closed A-invariant subsetR⊂RFM such that for any x ∈R, T(x) :={t : xut ∈R}
accumulating renormalizations. Moreover, F∗ ⊂RH.

We use the notion of a conformal modulus in order to find a closed subset
R satisfying the hypothesis of Theorem 8.6. An annulus A⊂S

2 is an open
region whose complement consists of two components. If neither component
is a single point,A is conformally equivalent to a unique round annulus of the
form {z∈C : 1< |z|<R}. The modulus mod(A) is then defined to be logR. If
P is a compact set of a circle C such that its complement C−P=⋃

Ii is a
union of at least two intervals with disjoint closures, we define the modulus
of P as

mod P := inf
i�=j

mod (Ii, Ij),

where mod (Ii, Ij) := mod
(
S
2− (Ii ∪ Ij)

)
.

For ε > 0, define Rε ⊂RFM as the following subset:

Rε :={[g] :Cg ∩� contains a compact set of modulus ≥ ε containing g±}.

LEMMA 8.7. For ε > 0, the set Rε is closed.

Proof. Suppose that gn ∈Rε converges to some g ∈RFM. We need to show
g ∈Rε . Let Pn⊂Cgn ∩� be a compact set ofmodulus≥ ε containing g±n . Since
the set of all closed subsets of S

2 is a compact space in the Hausdorff topology
on closed subsets, we may assume Pn converges to some P∞ by passing to a
subsequence. This means that P∞= lim supn Pn= lim inf n Pn [19].
Write Cg −P∞=⋃

i∈I Ii as the disjoint union of connected components.
As g± ∈P∞, |I| ≥ 2. Let i �= j∈ I, and write Ii= (ai, bi) and Ij= (aj, bj). There
exist ai,n, bi,n, aj,n, bj,n ∈Pn converging to ai, bi, aj, and bj, respectively. Set Ii,n
and Ij,n to be the intervals (ai,n, bi,n) and (aj,n, bj,n) respectively. Since Ii,n→ Ii
and Ij,n→ Ij, Ii,n ∪ Ij,n⊂Cgn −Pn for all large n. Since ai,n, bi,n ∈Pn, Ii,n is a
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Figure 14.11. Apollonian gasket

connected component of Cgn −Pn. Similarly, Ij,n is a connected component
of Cgn −Pn. Since mod (Ii,n, Ij,n)≥ ε for all n, it follows that Ii and Ij have
disjoint closures and mod (Ii, Ij)≥ ε. This shows thatP∞ is a compact subset
of Cg ∩� of modulus at least ε containing g±. Therefore, g ∈Rε.

There exists κ = κ(ε)> 1 such that for any x ∈Rε , T(x) :={t : xut ∈Rε}
is κ-thick (see [36, proposition 4.3]); hence, Rε satisfies the hypothesis of
Theorem 8.6.
In general,Rε may be empty! However, for geometrically finite acylindrical

manifolds, there exists ε > 0 such that

(8.1) F∗ ⊂RεH

([36], [4]); hence, Theorem 8.4 follows. The inclusion (8.1) is proved using
bridge arguments devised in [36] and the monotonicity of conformal moduli,
based on the property that for a convex cocompact acylindrical manifoldM,�
is a Sierpinski carpet of positive modulus—that is,

inf
i�=j

mod(S2− (Bi ∪Bj))> 0,

where Bi’s are components of S
2−� (see [36] for details).

WhenM has cusps, the closures of some components of S
2−�may meet

each other, and hence � is not even a Sierpinski carpet in general. Never-
theless, under the assumption that M is a geometrically finite acylindrical
manifold, � is still a quotient of a Sierpinski carpet of positive modulus in the
sense that we can present S

2−� as the disjoint union
⋃
� T�, where T�’s are

maximal trees of components of S2−� so that

inf
��=k

mod(S2− (T� ∪Tk))> 0.
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QUESTION 8.8. Let � be a Zariski dense geometrically finite subgroup of
G with a connected limit set. Let C ∈ C∗. If C∩� contains a Cantor set,

is �C either discrete or dense in C∗?

If C∩� contains a Cantor set of positive modulus, this question has been
answered affirmatively in [4].

One particular case of interest is when� is the Apollonian gasket. The cor-
respdoning geometrically finite hyperbolic 3-manifold is not acylindrical in
this case, because its compact core is a handlebody of genus 2, and hence it is
not boundary incompressible; this can also be seen from the property that the
Apollonian gasket contains a loop of three consecutively tangent disks.

QUESTION 8.9. Can we classify all possible closures of U-orbits in a geo-
metrically finite acylindrical group? In order to answer this question, we first
need to classify all possible H-orbit closures in ∂F, which is yet unsettled.

9 Unipotent flows in higher dimensional hyperbolic manifolds

LetHd denote the d-dimensional hyperbolic space for d≥ 2 with ∂(Hd)=S
d−1,

and letG :=SO◦(d, 1), which is the isometry group Isom+(Hd). Any complete
hyperbolic d-manifold is given as the quotient M=�\Hd for a torsion-free
discrete subgroup �<G (also called a Kleinian group). The limit set of �
and the convex core of M are defined just like the dimension 3 case. As we
have seen in the dimension 3 case, the geometry and topology of hyperbolic
manifolds become relevant in the study of unipotent flows in hyperbolic man-
ifolds of infinite volume, unlike in the finite volume case. Those hyperbolic
3-manifolds in which we have a complete understanding of the topological
behavior of unipotent flows are rigid acylindrical hyperbolic 3-manifolds.

9.1 CONVEX COCOMPACT HYPERBOLIC MANIFOLDS WITH FUCH-
SIAN ENDS. The higher dimensional analogues of rigid acylindrical hyper-
bolic 3-manifolds are as follows:

DEFINITION 9.1. A convex cocompact hyperbolic d-manifold M is said to have
Fuchsian ends if the convex core of M has nonempty interior and has totally geodesic
boundary.

The term Fuchsian ends reflects the fact that each component of the bound-
ary of coreM is a (d− 1)–dimensional closed hyperbolic manifold, and each
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Figure 14.12. Convex cocompact manifolds with Fuchsian ends

component of the complement M− core(M) is diffeomorphic to the prod-
uct S× (0,∞) for some closed hyperbolic (d− 1)-manifold S. For d= 2, any
convex cocompact hyperbolic surface has Fuchsian ends. For d= 3, these are
precisely rigid acylindrical hyperbolic 3-manifolds.
Convex cocompact hyperbolic manifolds with nonempty Fuchsian ends are

constructed from closed hyperbolic manifolds as follows. Begin with a closed
hyperbolic d-manifold N0=�0\Hd with a fixed collection of finitely many,
mutually disjoint, properly embedded totally geodesic hypersurfaces. Cut N0

along those hypersurfaces and perform the metric completion to obtain a
compact hyperbolic manifold W with totally geodesic boundary hypersur-
faces. Then � :=π1(W) injects to �0=π1(N0), and M :=�\Hd is a convex
cocompact hyperbolic manifold with Fuchsian ends.
Unlike the d= 3 case, Kerckhoff and Storm showed that if d≥ 4, a convex

cocompact hyperbolic manifoldM=�\Hd with Fuchsian ends does not allow
any nontrivial local deformation, in the sense that the representation of � into
G is infinitesimally rigid [21].

9.2 ORBIT CLOSURE OF UNIPOTENT FLOWS ARE RELATIVELY HOMO-
GENEOUS. We let A={at} be the one-parameter subgroup of semisimple
elements of G that give the frame flow, and let N
R

d−1 denote the contract-
ing horospherical subgroup. We have a compact A-invariant subset RFM=
{x ∈�\G : xA is bounded}.
The following presents a generalization of Theorems 7.3 and 7.6 to any

dimension:

THEOREM 9.2 ([22]).
Let d≥ 2 and M be a convex cocompact hyperbolic d-manifold with Fuchsian ends.
Let U be any connected closed subgroup of G generated by unipotent elements.
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Figure 14.13. Limit set of a convex cocompact hyperbolic 4-manifold with
Fuchsian boundary

Suppose that U is normalized by A. Then the closure of any U-orbit is relatively
homogeneous in RFM in the sense that for any x ∈RFM,

xU ∩RFM= xL∩RFM

for a connected closed reductive subgroup U< L<G such that xL is closed.

When M has finite volume, this is a special case of Ratner’s orbit closure
theorem [45]. This particular case was also proved by Shah by topological
methods [48].
Theorem 9.2 and its refinements made in [22] yield the analogous topolog-

ical rigidity of geodesic planes and horocycles. A geodesic k-plane ofM is the
image of a totally geodesic immersion f :Hk→M.

THEOREM 9.3 ([22]).
Let M be a convex cocompact hyperbolic d-manifold with Fuchsian ends. Then for
any 2≤ k≤ d− 1,

(1) the closure of any geodesic k-plane intersecting coreM is a properly immersed
geodesic m-plane for some k≤m≤ d;

(2) a properly immersed geodesic k-plane is a convex cocompact (immersed)
hyperbolic k-manifold with Fuchsian ends;

(3) there are at most countably manymaximal properly immersed geodesic planes
intersecting coreM; and

(4) any infinite sequence of maximal properly geodesic planes intersecting coreM
becomes dense in M.
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A k-horosphere in H
d is a Euclidean sphere of dimension k that is tangent

to a point in S
d−1. A k-horosphere inM is simply the image of a k-horosphere

in H
d under the covering map H

d→M=�\Hd.

THEOREM 9.4 ([22]).
Let χ be a k-horosphere of M for k≥ 1. Then either

(1) χ is properly immersed or
(2) χ is a properly immersed m-dimensional submanifold parallel to a convex

cocompact geodesic m-plan of M with Fuchsian ends for some m≥ k+ 1.

9.3 AVOIDANCE OF SINGULAR SET. An important ingredient of the
proof of Theorem 9.2 that appears newly for d≥ 4 is the avoidance of
the singular set along the recurrence time of unipotent flows to RFM.
Let U={ut} be a one-parameter unipotent subgroup of N. Extending the

definition given by Dani-Margulis [13] to the infinite volume setting, we define
the singular set S (U) as

(9.1) S (U) :=
⋃

xL∩RF+M,

where RF+M=RFM ·N, and the union is taken over all closed orbits xL of
proper connected closed subgroups L of G containing U. Its complement in
RF+M is denoted by G (U) and called the set of generic elements of U.
The structure ofS (U) as the countable union of singular tubes is an impor-

tant property that plays crucial roles in bothmeasure theoretic and topological
aspects of the study of unipotent flows. Let H denote the collection of all
proper connected closed subgroups H of G containing a unipotent element
such that �\�H is closed and H∩� is Zariski dense in H. For each H ∈H ,
we define the singular tube:

X(H,U) :={g ∈G : gUg−1⊂H}.

We have the following:

(1) H is countable;
(2) X(H1,U)∩ gX(H2,U)=X(H1 ∩ gH2g−1,U) for any g ∈G; and
(3) if H1,H2 ∈H with X(H1 ∩H2,U) �= ∅, there exists a closed subgroup

H0⊂H1 ∩H2 such that H0 ∈H .
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In particular S (U) can be expressed as the union of countable singular
tubes:

S (U)=
⋃

H∈H
�\�X(H,U)∩RF+M.

REMARK 9.5. If �<G=PSL2(C) is a uniform lattice and U is the one-
parameter subgroup as in Equation (4.2), then H ∈H if and only if H=
g−1 PSL2(R)g for g ∈G such that � intersects g−1 PSL2(R)g as a uniform
lattice. It follows that if H1,H2 ∈H and X(H1,U)∩X(H2,U) �= ∅, then
H1=H2.
We note that H and hence S (U) may be empty in general; see Re-

mark 7.5(1).

When the singular set S (U) is nonempty, it is very far from being closed
in RF+M; in fact, it is dense, which is an a posteriori fact. Hence, presenting
a compact subset of S (U) requires some care, and we will be using the fol-
lowing family of compact subsets S (U) in order to discuss the recurrence of
U-flows relative to the singular setS (U). We define E = EU to be the collection
of all subsets of S (U) that are of the form

⋃
�\�HiDi ∩RFM,

where Hi ∈H is a finite collection and Di is a compact subset of X(Hi,U).
The following theorem was obtained by Dani and Margulis [13] and inde-

pendently by Shah [51] using the linearization method, which translates the
study of unipotent flows on�\G to the study of vector-valued polynomialmaps
via linear representations.

THEOREM 9.6 (avoidance theorem for lattice case; [13]).
Let �<G be a uniform lattice, and let U<G be a one-parameter unipotent sub-
group. Then for any ε > 0, there exists a sequence of compact subsets E1⊂E2⊂ · · ·
in E such that S (U)=⋃

n≥1 En, which satisfies the following: Let xj be a sequence
converging to x ∈G (U). For each n≥ 1, there exist a neighborhood On of En and
jn≥ 1 such that for all j≥ jn and for all T > 0,

(9.2) �{t∈ [0,T] : xjut ∈
⋃
i≤n

Oi}≤ εT ,

where � denotes the Lebesgue measure.
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If we set
Tn :={t∈R : xjnut /∈

⋃
i≤n

Oi},

then for any sequence λn→∞, lim sup λ−1n Tn accumulates at 0 and∞; hence,
the sequence Tn has accumulating renormalizations.
When xL is a closed orbit of a connected closed subgroup of L containing

U, the relative singular subsetS (U, xL) of xL∩RF+M is defined similarly by
replacing H by its subcollection of proper connected closed subgroups of L,
and G (U, xL) is defined as its complement inside xL∩RF+M. Theorem 9.6
applies in the sameway toG (U, xL)with the ambient space�\G replacedbyxL.
In order to explain some ideas of the proof of Theorem 9.6, we will discuss

the following (somewhat deceptively) simple case when G=PSL2(C) and �
is a uniform lattice. Let U={ut} be as in Equation (4.2).

PROPOSITION 9.7. Let E ∈ EU. If x ∈G (U), then xU spends most of its
time outside a neighborhood of E; more precisely, for any ε > 0, we can find a
neighborhood E⊂O such that for all T > 0,

(9.3) �{t∈ [0,T] : xut ∈O}≤ εT .
Proof. Since xU is dense in �\G a posteriori, xut will go into any neighbor-
hood of E for an infinite sequence of t’s, but that the proportion of such t is
very small is the content of Proposition 9.7. In view of Remark 9.5, we may
assume that E is of the form �\�N(H)D, where H=PSL2(R) and D⊂V is
a compact subset; note that X(H,U)=N(H)V and that N(H) is generated by
H and diag(i,−i).
As remarked before, we prove this proposition using the linear represen-

tation and the polynomial-like behavior of unipotent action. As N(H) is the
group of real points of a connected reductive algebraic subgroup, there exists
an R-regular representation ρ :G→GL(W) with a distinguished point p∈W
such that N(H)=Stab(p) and pG is Zariski closed. The set pX(H,U)= pV is
a real algebraic subvariety.9

Note that for x=[g], the following are equivalent:

(1) xut ∈ [e]N(H)O.
(2) pγ gut ∈ pO for some γ ∈�.

9We can explicitly take ρ and p as follows. Consider the adjoint representation of G on its Lie
algebra g. We then let ρ be the induced representation on the wedge product space ∧3g and set
p=w1 ∧w2 ∧w3, where w1,w2,w3 is a basis of h.
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Therefore, we now try to find a neighborhood pO of pD so that the set

{t∈ [0,T] : xut ∈ [e]N(H)O}⊂
⋃
q∈p�
{t∈ [0,T] : qgut ∈ pO}

is an ε-proportion of T . Each set {t∈ [0,T] : qgut ∈ pO} can be controlled by the
following lemma, which is proved using the property that themap t �→ ‖qgut‖2
is a polynomial of degree uniformly bounded for all q∈ p�, and polynomial
maps of bounded degree have uniformly slow divergence.

LEMMA 9.8 ([13, proposition 4.2]). Let A⊂W be an algebraic variety. Then
for any compact subset C⊂A and any ε > 0, there exists a compact subset C′ ⊂A
such that the following holds: for any neighborhood �′ of C′ in W, there exists a
neighbhorhood � of C of W such that for any q∈W −�′ and any T > 0,

�{t∈ [0,T] : qut ∈�}≤ ε · �{t∈ [0,T] : qut ∈�′}.

Applying this lemma to A= pV and C= pD, we get a compact subset C′ =
pD′ for D′ ⊂V . Since x /∈ [e]N(H)D′, we can find a neighborhood O′ so that
x /∈ [e]N(H)O′. Fix a neighborhood �′ of C′, so that �′ ∩ pG⊂ pO′. We then
get a neighborhood � of C such that if O is a neighborhood of D such that
pO⊂�, then

(9.4) �(Jq ∩ [0,T])≤ ε · �(Iq ∩ [0,T]),

where Jq :={t∈R : qgut ∈ pO} and Iq :={t∈R : qgut ∈ pO′}.
We now claim that in the case at hand, we can find a neighborhood O′ of

D′ so that all Iq’s are mutually disjoint:

(9.5) If q1 �= q2 in p�, then Iq1 ∩ Iq2 =∅.

Using (9.4), this would finish the proof, since

�{t∈ [0,T] : xut ∈ [e]N(H)O}≤
∑
q∈p�

�(Jq ∩ [0,T])≤ ε ·
∑
q∈p�

�(Iq ∩ [0,T])≤ εT .

To prove (9.5), we now observe the special feature of this example—namely,
no singular tube �\�X(H,U) has self-intersection, meaning that

(9.6) X(H,U)∩ γX(H,U)=∅ if γ ∈�−N(H).
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If nonempty, by Remark 9.5, we must have H∩ γHγ−1=H, implying
that γ ∈N(H). Now if t∈ Ipγ1 ∩ Ipγ2 , then gut ∈ γ−11 HV ∩ γ−12 HV and hence
γ1γ
−1
2 ∈N(H). So pγ1= pγ2, proving (9.5).

In the higher dimensional case, we cannot avoid self-intersections of
�X(H,U); so Iq’s are not pairwise disjoint, which means a more careful study
of the nature of the self-intersection is required. Thanks to the countability of
H , an inductive argument on the dimension of H ∈H is used to take care
of the issue, using the fact that the intersections among γX(H,U), γ ∈� are
essentially of the form X(H0,U) for a proper connected closed subgroup H0

ofH contained in H (see [13] for details).
In order to illustrate the role of Theorem 9.6 in the study of orbit closures,

we prove the following sample case: Let G=SO◦(4, 1), H=SO◦(2, 1), and
L=SO◦(3, 1); the subgroupsH and L are chosen so thatA<H< L andH∩N
is a one-parameter unipotent subgroup. The centralizer C(H) of H is SO(2).
We setH′ =HC(H).

PROPOSITION 9.9. Let �<G be a uniform lattice. Let X = xH′ for some x ∈
�\G. If X contains a closed orbit zL properly, then X =�\G.

A geometric consequence of this proposition is as follows: LetM be a closed
hyperbolic 4-manifold, and let P⊂M be a geodesic 2-plane. If P contains a
properly immersed geodesic 3-plane P′, then the closure P is either P′ orM.

Proof. Let U1=H∩N and U2=H∩N+, where N+ is the expanding horo-
spherical subgroup of G. Then the subgroups U1 and U2 generate H, and
the intersection of the normalizers of U1 and U2 is equal to AC(H). Since
zL is compact, each U� acts ergodically on zL by Moore’s ergodicity theorem.
Therefore, we may choose z so that zU� is dense in zL for each �= 1, 2.
It suffices to show X contains either N or N+-orbit. Since zL is a proper

subset of X , there exists gn→ e in G− LC(H) such that xn= zgn ∈X . As L
is reductive, the Lie algebra of G decomposes into Ad(l)-invariant subspaces
l⊕ l⊥ with l the Lie algebra of L. Hence we write gn= �nrn with �n ∈ L and
rn ∈ exp l⊥ −C(H). As gn /∈C(H), there exists 1≤ �≤ 2 such that no rn belongs
to the normalizer ofU� by passing to a subsequence. We setU=U�. Without
loss of generality we assume U=H∩N; otherwise, replace N by N+ in the
argument below.
Note that zU= zL; in particular, z is a generic point: z∈G(U, zL)= zL−S

(U, zL). We replace the sequence z�n with z�jn , with jn given by Theorem 9.6.
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Define

(9.7) Tn :={t∈R : z�nut /∈
⋃
i≤n

Oi}.

By Theorem 9.6 applied to zL= zSO◦(3, 1), Tn has accumulating renormal-
izations.
Now by a similar argument as in the proof of Lemma 5.5(3), we can show

that

lim sup{utrnu−t : t∈ Tn}
accumulates at 0 and∞ in V , where V is the one-dimensional unipotent sub-
group (L∩N)V =N. In particular, there exists v∈V of arbitrarily large size
such that v= lim u−tn rnutn for some tn ∈ Tn.
Note that z�nutn is contained in the compact subset zL−

⋃
i≤nOi. Since⋃

iOi is a neighborhood of S (U, zL), z�nutn converges to some

(9.8) z0 ∈G (U, zL).

Therefore,

zgnutn = z�nutn(u−tn rnutn)→ z0v.

Since z0 ∈G (U, zL), by Proposition 7.8, we have

X ⊃ z0vU= z0Uv= zLv.

As v can be taken arbitrarily large, we get a sequence vn→∞ in V such that
X ⊃ zLvn. Using the A-invariance of X , we get X ⊃ zL(AvnA)⊃ z(L∩N)V+
for some one-parameter semigroup V+ of V . Since X ⊃ zvn(L∩N)v−1n V+ and
lim sup v−1n V+ =V , X contains an N orbit, finishing the proof.

Roughly speaking, if H is a connected closed subgroup of G generated by
unipotent elements, the proof of the theorem that xH is homogeneous uses an
inductive argument on the codimension ofH∩N inN and involves repeating
the following two steps:

(1) Find a closed orbit zL inside xH for some connected reductive subgroup
L<G.

(2) If xH �= zL, then enlarge zL—that is, find a closed orbit zL′ inside xH
with dim(L′ ∩N)> dim(L∩N).
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The proof of Proposition 9.9 is a special sample case of step (2), demonstrat-
ing the importance of getting accumulating renormalizations for the sequence
of return time avoiding the exhausting sequence of compact subsets of the
singular set.
The following version of the avoidance theorem in [22] is a key ingredient

in the proof of Theorem 9.2:

THEOREM 9.10 (avoidance theorem).
Let M=�\Hd be a convex cocompact hyperbolic manifold with Fuchsian ends. Let
U<N be a one-parameter unipotent subgroup. There exists a sequence of compact
subsets E1⊂E2⊂ · · · in E such that S (U)∩RFM=⋃

n≥1 En, which satisfies
the following: Let xj ∈RFM be a sequence converging to x ∈G (U). For each n≥ 1,
there exist a neighborhood On of En and jn≥ 1 such that for all j≥ jn,

(9.9) T�(xj) :={t∈R : xjut ∈RFM−On}

has accumulating renormalizations.

Note that in the lattice case, one can use the Lebesgue measure � to under-
stand the return time away from the neighborhoodsOn to prove Theorem 9.6,
as was done in [13] (see also the proof of Proposition 9.7). In the case at hand,
the relevant return time is a subset of {t∈R : xnut ∈RFM}, on which it is not
clear whether there exists any friendlymeasure. This makes the proof of The-
orem 9.10 very delicate, as we have to examine each return time to RFM and
handpick the time outside On. First of all, we cannot reduce a general case
to the case E⊂�\�X(H,U) for a singleH ∈H . This means that not only do
we need to understand the self-intersections of �X(H,U), but we also have to
control intersections among different �X(H,U)’s in S (U),H ∈H .
We also cannot use an inductive argument on the dimension of H. When

G=SO(3, 1), there are no intersections among closed orbits in S (U), and
the proof is much simpler in this case. In general, our arguments are based
on the k-thick recurrence time to RFM, a much more careful analysis on the
graded intersections among �X(H,U)’s, H ∈H , and a combinatorial induc-
tive search argument. We prove that there exists κ > 1, depending only on �
such that T�(xn) is κ-thick in the sense that for any r> 0,

T�(xn)∩±[r, κr] �= ∅.

We remark that unlike the lattice case, we are not able to prove that {t∈
R : xnut ∈RFM−⋃

j≤nOj} has accumulating renormalizations. This causes

 EBSCOhost - printed on 2/10/2023 4:10 PM via . All use subject to https://www.ebsco.com/terms-of-use



562 /hee oh

an issue in carrying out a similar proof as in Proposition 9.9, as we cannot
conclude that the limit of xnutn for tn ∈ T�(xn) belongs to a generic set as
in (9.8).
Fortunately, to overcome this difficulty, we were able to devise an inductive

argument (in the proof of Theorem 9.11) that involves an extra step of proving
equidistribution of translates of maximal closed orbits.

9.4 INDUCTION. For a connected closed subgroup U<N, we denote by
H(U) the smallest closed simple Lie subgroup of G that contains both U and
A. If U
R

k, then H(U)
SO◦(k+ 1, 1). A connected closed subgroup of G
generated by one-parameter unipotent subgroups is, up to conjugation, of the
form U<N or H(U) for some U<N.
We set FH(U) :=RF+M ·H(U), which is a closed subset. We define the

following collection of closed connected subgroups of G:

LU :=
{
L=H(Û)C : for some z∈RF+M, zL is closed in �\G

and StabL(z) is Zariski dense in L

}
,

where U< Û<N and C is a closed subgroup of the centralizer of H(Û). We
also define

QU :={vLv−1 : L∈LU and v∈N}.
Theorem 9.2 follows from the following:

THEOREM 9.11 ([22]).
Let M=�\Hd be a convex cocompact hyperbolic manifold with Fuchsian ends.

(1) For any x ∈RFM,
xH(U)= xL∩FH(U),

where xL is a closed orbit of some L∈LU.
(2) Let x0L̂ be a closed orbit for some L̂∈LU and x0 ∈RFM.

(a) For any x ∈ x0L̂∩RF+M,

xU= xL∩RF+M,

where xL is a closed orbit of some L∈QU.
(b) For any x ∈ x0L̂∩RFM,

xAU= xL∩RF+M,

where xL is a closed orbit of some L∈LU.
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(3) Let x0L̂ be a closed orbit for some L̂∈LU and x0 ∈RFM. Let xiLi⊂ x0L̂ be
a sequence of closed orbits intersecting RFM where xi ∈RF+M, Li ∈QU.
Assume that no infinite subsequence of xiLi is contained in a subset of the
form y0L0D, where y0L0 is a closed orbit of L0 ∈LU with dim L0< dim L̂
and D⊂N(U) is a compact subset. Then

lim
i→∞

(xiLi ∩RF+M)= x0L̂∩RF+M.

We prove (1) by induction on the codimension of U in N and (2) and (3) by
induction on the codimension of U in L̂∩N. Let us say (1)m holds if (1) is
true for all U satisfying co-dimN(U)≤m. We will say (2)m holds if (2) is true
for all U and L̂ satisfying co-dimL̂∩N(U)≤m, and similarly for (3)m.
We then deduce (1)m+1 from (2)m and (3)m; (2)m+1 from (1)m+1, (2)m, and

(3)m; and (3)m+1 from (1)m+1, (2)m+1, and (3)m. In proving Theorem 9.2 for
the lattice case, we do not need (3)m in the induction proof. In the case at
hand, (3)m is needed since we could not obtain a stronger version of Theorem
9.10 with On replaced by ∪j≤nOj.
We remark that in the step of proving (2)m+1, the following geometric fea-

ture of convex cocompact hyperbolic manifoldsM of Fuchsian ends is used to
ensure that S (U, x0L̂) �= ∅.

PROPOSITION 9.12. For any 2≤ k≤ d, any properly immersed geodesic k-
plane of M is either compact or contains a compact geodesic (k− 1)-plane.

This proposition follows from the hereditary property that any properly
immersed geodesic k-plane P of M is a convex cocompact hyperbolic k-
manifold of Fuchsian ends; hence, either P is compact (when P has empty
ends) or the boundary of coreP provides a codimension 1 compact geodesic
plane.
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