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Preface

The geophysics course from which this book is derived was
offered by the great physicist Enrico Fermi in 1941 in the
physics department at Columbia University. It met every
week for a single hour-and-a-half session. It was primarily
intended as a senior-level elective for science and engineer-
ing undergraduates. Enrollment presupposed a mathematical
preparation in partial differential equations and vector calcu-
lus and one in physics that included courses in mechanics,
thermodynamics, and at least some basic notions of electric-
ity and magnetism.

The same prerequisites for a geophysics course hold true
today. Some subjects, such as the theory of elasticity, are
not contained in the usual undergraduate physics curricu-
lum, nor are they presented in the notes, but, are necessary
for understanding Fermi’s discussion of seismic phenomena,
so we have included the necessary material in our text. In a
few cases we have gone beyond the discussion Fermi provided:
the inclusion of the equations governing the precession of the
equinoxes is one example, a more complete discussion of the
thermodynamics of perfect gases is another, and a fuller elab-
oration of tidal motion is a third. In a few other instances we
have briefly introduced topics that we felt Fermi might have
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xii PREFACE

suggested his students consider as challenging extensions of
the material he had presented. The thermodynamics of hur-
ricanes, breather mode oscillations of the Earth, and water
drops in electrical fields are examples of such topics.

This book is not meant to include all the material neces-
sary for an introductory course in geophysics, but we believe
geophysicists will find it interesting for historical reasons and
that any scientist or engineer with an adequate physics back-
ground will profit from a study of its contents. Many of the
topics it treats, such as thermodynamic and electrical prop-
erties of the atmosphere, will generally not be contained in
a conventional introductory geophysics course. The resulting
text is a concise overview that readers will find intriguing as
an introduction to this broad, fascinating subject. In remain-
ing faithful to the original scope of the notes, we have made
no attempt to bring its contents up to date by the inclusion
of topics unknown or insufficiently clarified in 1941, such as
plate tectonics or the geodynamo theory of the Earth’s mag-
netic field.

The eighteen chapters follow the order of the original pre-
sentation of that same number of topics, but the reader may
choose to follow another sequence. Each chapter is essen-
tially self-contained, so any single one can be consulted as a
separate entity. In every case, following the lead Fermi pro-
vided, the presentation is made as simple as possible. A few
technical appendices provide additional details.

In the intervening decades a switch has been made to SI
units from the centimeter-gram-second (cgs) units common at
the time Fermi presented these lectures. We have thought the
reader would find it easier if we used SI units as well, though
admittedly it has been useful at some points to present cgs
results, e.g., density in grams per cubic centimeter, in order
to discuss the numerical estimates. The same is true for elec-
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tromagnetism, where at the time of Fermi’s lectures, electro-
static (esu) units were common. In esu, the unit of magnetic
field is the gauss (G), whereas in SI, the unit of magnetic
field is the tesla (T). For the magnetic fields near the Earth,
the gauss is the more natural unit (1G= 10−4T), so in the
following text, magnetic fields are usually stated in gauss.

We have also reproduced in this text reproductions of a few
of the thirty-eight pages (not all complete pages) of Fermi’s
notes, as found in the Regenstein Library Fermi Archives.
This is done in order to give the reader an impression of how
they appeared to us. They have been placed immediately
preceding the chapter in which they appear. Readers desiring
to see the full manuscript of Fermi’s notes on geophysics may
access them at https://press.uchicago.edu/sites
/fermis_geophysics/index.html.
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CHAPTER 1

Introduction

1.1 Fermi’s Notes

While studying material on Enrico Fermi at the University
of Chicago Regenstein Library to aid in the preparation of a
biography of Enrico Fermi one of us (Gino Segrè) was writ-
ing in collaboration with his wife, Bettina Hoerlin, found a
folder labeled “Geophysics, Columbia (1941).” It appeared to
be a set of sketchy personal notes for a course on geophysics
that Fermi had taught in the physics department at Columbia
University in 1939, 1940, and 1941. Though the contents of
the folder were surely clear to Fermi, Segrè felt the material
they contained would not be evident without the benefit of
a detailed explanation. He was intrigued by them as well as
being surprised that Fermi would have chosen to teach an in-
troductory course on geophysics as his initial course offering
upon arriving in America. That puzzle was later solved by
discovering that in 1928, young Fermi, already recognized as
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2 CHAPTER 1. INTRODUCTION

a genius and freshly chosen as Italy’s first professor of theo-
retical physics, had taught Italy’s initial offering in quantum
physics and an additional course in geophysics: incidentally,
this had been a regular offering in Rome’s physics department
at that time. In other words, Fermi had arrived in America
as an experienced instructor of geophysics, and, always inter-
ested in all branches of physics, he had doubtless continued
to study the subject.

This led Segrè to envision the project of presenting to a sci-
entific public both the schematic notes and an explanation of
the material in them, aiming to achieve this goal at the level of
an advanced undergraduate physics course. Concerned about
the task at hand, Segrè was fortunate to enlist an old friend
to collaborate on the project: John Stack, a physics professor
at the University of Illinois in Urbana. In addition, having
been a graduate student of Geoffrey Chew, one of Fermi’s
first American students, Stack was also a “physics grandson”
of Fermi.

Though geophysics has undergone great advances since the
time of the Fermi lectures, many of the subjects and tech-
niques Fermi used are not out of date, so we felt such a
monograph could be instructive for students as well as be-
ing of historical interest. We therefore decided to describe in
detail the topics he introduced and how he dealt with them
because Fermi, one of the titans of twentieth-century physics,
had certain personal characteristics that made any set of lec-
tures by him especially interesting.

One of these is that he was a famously lucid lecturer, ad-
mired by the physics community for his unparalleled ability to
present complicated subjects in simple terms. Second, he was
known in a wider community for both his interest and abil-
ity to estimate the magnitude of any physical phenomenon,
a capacity that he encouraged his co-workers and students
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1.2. PLAN OF THE BOOK 3

to develop. His skill in such endeavors became so well known
that such puzzles are now simply known as “Fermi questions.”
This facility is on full display in these lectures, where every
topic covered includes quantitative results on the size of the
effect under consideration.

1.2 Plan of the Book

Geophysics, as taught by Fermi, is a somewhat idiosyncratic
set of lectures. The course includes items about the Earth
that we would expect in any introductory geophysics course:
its motion within the solar system, the shape of the Earth
and its composition, heat in its interior, elasticity and seismic
waves, geomagnetism, and atmospheric physics.

Other topics might not normally fall within the purview
of geophysics lectures at present. Ocean currents and tides
would appear in an oceanography course, the fall of raindrops
in one on fluid mechanics, details of radioactivity as a case
study in nuclear physics, and many of the thermodynamics
calculations in a set of lectures on that subject.

Several key new developments in geophysics, plate tecton-
ics being an outstanding example, are not mentioned in the
notes. This is understandable because although the roots of
this subject go back to the work on continental drift by the
explorer and meteorologist Alfred Wegener in 1915, the the-
ory was not widely accepted until the 1960s, twenty years
after these lectures. Other subjects, such as geomagnetism,
have undergone such radical changes that much of the ma-
terial in the lectures on that subject is mainly of historical
interest.

It is also sad to see the absence in the lectures of the im-
portant changes ushered in by the use of electronic computers

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



4 CHAPTER 1. INTRODUCTION

and the novel study of nonlinear dynamics, for these are ar-
eas in which Fermi was a true and important pioneer in the
years immediately preceding his untimely death in 1954. He
certainly would have eagerly followed the advances in mod-
eling of the atmosphere, the oceans, and the Earth’s interior
that have depended on powerful computers. Computational
geophysics was essentially nonexistent in 1941 but now is a
mature field.

Except in minor instances we have not attempted to bring
these notes up to date, for doing so would distort what is
after all the perception of them that Fermi had in 1941. Our
aim in presenting this book has been to follow closely his
notes, discussing the topics he raised in the manner and in
the order he adopted for his presentation. But on occasion,
particularly when we have felt a fuller discussion would help
the reader, we have tried to present one. In a few instances
we have found it irresistible to add an extension of a topic
Fermi was discussing. Our main concern has been to attempt
to elucidate the frequently telegraphic style of the notes. This
has meant, inter alia, to provide derivations and explanations
of equations that Fermi used as jumping-off points.

We hope to have produced a set of notes similar to what an
attentive student might have prepared for the course Fermi
taught in 1941. We have also tried to incorporate its many nu-
merical estimates, realizing that some of them may not have
been meant for inclusion in the lectures but were rather a
reflection of his well-known habit of continually checking for-
mulas numerically. Except for the few cases when we thought
it would cause confusion, the notation we have adopted is the
same as the one Fermi used.

Though a reader may wish to examine the topics in an
order other than the one we have presented, by, e.g., joining
together all the sections on the atmosphere, and separately
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1.2. PLAN OF THE BOOK 5

all those of the interior of the Earth, we felt compelled to
remain faithful to the selection made by Fermi in his notes,
though we are well aware that this may not be the actual
order in which he presented the material during his lectures.
But we have tried insofar as it was possible, to be consistent
with the spirit of those lectures

Since our version of his lectures has been prepared without
the benefit of oversight by Fermi, we are naturally open to
the accusation that we have misread or misinterpreted what
he intended to say. We have tried to remedy this pitfall by
making available his personal notes on the material, as we
found them in the Chicago archives. At the very least, this
volume will have the merit of allowing an interested reader to
see how a physics genius with a strong interest in geophysics
approached teaching this fascinating subject and what topics
he deemed appropriate to include at the time he taught a
course on the subject.

We are sensitive to the charge that Fermi would not have
liked to have his lectures see the light of day in their present
format. There are certain discussions in them that are incom-
plete and even a few numerical errors, obviously the result of
these being preliminary notes. But we have felt that the inter-
est in seeing the choice of topics Fermi made and his approach
to them has justified the preparation of the present volume.
We only hope the reader will share our judgment and forgive
our errors.
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CHAPTER 2

Gravity and Precession of the Earth

2.1 The Earth’s Gravity

Erastothenes of Cyrene, a third-century BCE. Greek, is com-
monly regarded as the father of modern geography. He not
only regarded the Earth as a sphere but succeeded in cal-
culating its circumference by measuring the difference in the
length of the shadows cast at noon in localities a consider-
able distance apart in a north-south direction. He was also
the first to calculate the tilt of the Earth’s axis. That is where
matters stood until the seventeenth century when observers
noted that the Earth was not a perfect sphere. Isaac Newton
put forth the notion that because of the centrifugal force the
Earth was in fact better approximated as an oblate flattened
ellipsoid. The next significant advance was Alexis Clairaut’s
publication in 1743 of Theorie de la figure de la terre. This
contains a theorem on the variation of the gravitational accel-
eration over the Earth. We return to this in Sec. (2.2) below.
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8 CHAPTER 2. GRAVITY AND THE EARTH

Table 2.1: Gravitational data used by Fermi

a 6,378,388 m
b 6,356,911 m
Tsol 86,400 s
Tsid 86,164.09 s
G 6.67× 10−8 cm3/g s2

ge 978.052 cm/s2

gp 983.21 cm/s2

Fermi takes up the story by considering the variations of
the acceleration due to gravity over the Earth’s surface. Ta-
ble (2.1) contains the values of various physical quantities
used by Fermi. In Table (2.1), a is the equatorial semi-axis
of the Earth, b is the polar semi-axis, Tsol is the length of a
solar day, Tsid is the length of a sidereal day, G is Newton’s
gravitational constant, ge is the acceleration due to gravity
at the equator (including centrifugal effects), and gp is the
acceleration due to gravity at the poles. A solar day can
be defined to a very good approximation using a simple sun-
dial. With an approximate error of only 30 s/year, a solar
day is the time it takes the sundial’s shadow to make a first
return to a specific position. The figure of Tsol = 86, 400 s is
24 h/day × 60 min/h × 60 s/min. A sidereal day is approx-
imately 4 min shorter than a solar day. It is measured by
considering the Earth’s rotational motion with respect to the
far away or “fixed” stars rather than with respect to the Sun.
In most of our subsequent discussion, the distinction between
Tsol and Tsid will not play a role and will be ignored. How-
ever, for the interested reader, more detail on the distinction
between Tsol and Tsid is provided in Appendix A.
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2.1. THE EARTH’S GRAVITY 9

The quantity known as the “flattening” is
a− b
a

= f, (2.1)

where f is a commonly used notation. Fermi writes
a− b
a

=
1

297
, (2.2)

a value which follows from the data in the table. For the
volume of the Earth, he gives

V = 1.082 × 1027 cm3. (2.3)

This is close to the value obtained by assuming the Earth is
an ellipsoid of revolution. For that case, we have

V =
4

3
πa2b = 1.083 × 1027cm3.

Fermi then goes on to an elementary calculation of the mass
of the Earth assuming the Earth is a sphere of radius Re =
a, with acceleration due to gravity given by g = 980 cm2/s.
Newton’s law of gravity states

g =
GMe

R2
e

, (2.4)

so

Me =
gR2

e

G
=

(6.36× 108)2 × 980

6.67× 10−8
= 5.94× 1027g, (2.5)

comparable to the current best value of 5.97× 1027g. For the
density of the Earth, Fermi gives

ρ =
M

V
= 5.5 g/cm3,

similar to the current value of 5.51 g/cm3. It should be noted
that the numerical values given by Fermi are typically correct
to “slide rule accuracy,” the slide rule famously being Fermi’s
personal hand calculator. This occasionally leads to discrep-
ancies in the second decimal place. From here on, we will not
comment on this sort of discrepancy.
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10 CHAPTER 2. GRAVITY AND THE EARTH

2.2 The Earth’s Gravitational
Potential

Geographical Coordinates Suppose we set up a coordi-
nate system with the origin at the center of mass of the Earth,
and the positive z axis pointing north along the Earth’s axis
of symmetry Any point can be specified relative to this co-
ordinate system by giving its spherical coordinates; r, θ, φ,
where r is the distance of the point from the center of mass,
and θ and φ are the usual polar and azimuthal angles. For
a point on the surface of the Earth, θ is often called the “co-
latitude,” the latitude being |θ − 90◦|, plus the designation
N or S, depending on whether θ is less than or greater than
90◦.1 The azimuthal angle φ is closely related to the longi-
tude. The longitude of a point on the Earth’s surface is the
angle along a circle of constant latitude, measured either east
or west from the Prime Meridian, which runs through Green-
wich, a borough of London. Following Fermi, we will use the
spherical coordinates θ and φ.

Nonspherical Effects Having defined our coordinates, let
us turn to the gravitational potential due to the masses in the
Earth. We denote the Earth’s gravitational potential as Vg.
There are, of course, gravitational effects near the Earth that
arise from the Moon, the Sun, and other planets and stars,
for example the precession of the equinoxes and the tides.
These are discussed in Sec. (2.5) and Chap. (10), respectively.
However, with respect to the gravitational acceleration near
the Earth, the effects of other astronomical bodies can be
neglected compared to those that come from the Earth itself.

The gravitational potential due to the Earth has a value at
1For example, the latitude of Chicago is 41.9◦N, while that of Buenos

Aires is 34.6◦S.
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2.2. EARTH’S GRAVITATIONAL POTENTIAL 11

any point inside, outside, or on the Earth. For a small mass
µ which is acted upon by the Earth’s gravity, the potential
energy is µVg. Since gravity is an attractive force, we expect
Vg < 0, with −µVg being the work required to move the mass
µ out of the Earth’s field to infinity.

Although the gravitational potential at points inside the
Earth is certainly of interest, we will restrict the present dis-
cussion to points outside the Earth or on its surface. In this
region, satellite measurements have determined the Earth’s
gravitational effects with great accuracy. To start off, sup-
pose the Earth were perfectly spherical. In that case, Vg is
very simple;

Vg = V (0)
g = −GMe

r
. (2.6)

It is one of the remarkable features of Newton’s law of gravity
that for a spherical body the gravitational potential obeys
Eq. (2.6) at any point outside or on the surface of the body.
But the Earth is not perfectly spherical. As briefly mentioned
at the beginning of Sec. (2.1), it is slightly oblate, with a larger
radius at the equator than at the poles. (See Table (2.1).) It is
clear that the zeroth-order term V

(0)
g needs to be augmented

by a correction term, which must depend on the polar angle
θ, in addition to r.

There is a systematic procedure for finding angle-dependent
corrections to V (0)

g . This is to make use of the fact that, out-
side of the Earth’s mass distribution, the complete gravita-
tional potential satisfies Laplace’s equation,

∇2Vg = 0. (2.7)

Eq. (2.7) is directly analogous to the statement that away
from any charges, the electric potential satisfies Laplace’s
equation.

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



12 CHAPTER 2. GRAVITY AND THE EARTH

If the Earth’s oblateness is the only nonspherical feature
that needs to be included, a correction term of the form

3 cos2 θ − 1

r3
(2.8)

is sufficient. It is easy to check that the formula of Eq. (2.8)
satisfies the Laplace equation. Adding a term of this form to
V

(0)
g , we now may write

Vg = V (0)
g + V (2)

g + . . . (2.9)

= −GMe

r
[1− 1

2
J2(

a

r
)2(3 cos2 θ − 1) + . . .]

In Eq. (2.9), a is the Earth’s equatorial radius, and J2 is a di-
mensionless parameter whose modern value is J2 = 1.0826×
10−3. It is fair to ask, what property of the Earth’s mass
distribution determines the value of J2? As will be explained
in Sec. (2.4), the answer is that J2 is determined by the mo-
ments of inertia of the Earth. The terms denoted by + . . . in
Eq. (2.9) represent a sum over higher-order corrections that
can account for more detailed angular dependence than V (2)

g .
The general form of the lth term in the series is

Nl(θ, φ)

rl+1
, (2.10)

where l = 3, 4, . . . , and Nl is a polynomial (Legendre func-
tion) of order l in cos θ and sin θ, where a factor of sin θ is
accompanied by either cosφ or sinφ. The terms with l > 2
are all very small, but it is of interest that modern satellite
measurements have determined their strength up to approx-
imately l = 40. Such terms will not be needed in our subse-
quent discussion, and we will use only the explicitly written
terms in Eq. (2.9) from here on.
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2.2. EARTH’S GRAVITATIONAL POTENTIAL 13

Centrifugal Effects The Earth is rotating, so a position
fixed with respect to the Earth is in a rotating coordinate
system and centrifugal effects must be taken into account.
Recall that in elementary physics a mass µ, which is rotating
at angular frequency ω experiences a “centrifugal force.” For
a mass located at a distance of r⊥ from the axis of rotation,
the centrifugal force is

µr⊥ω
2

and points away from the axis of rotation. The centrifugal
force can be derived from a centrifugal potential, given by

Vcent = −1

2
r2
⊥ω

2. (2.11)

Denoting the centrifugal force on a mass µ as Fcent, we have

Fcent = −µ∇Vcent = µω2r⊥. (2.12)

Returning to the case of the Earth’s rotation and using spher-
ical coordinates, r⊥ is just the distance from the Earth’s axis
and is given by r⊥ = r sin θ. The centrifugal potential be-
comes

Vcent = −1

2
(rω sin θ)2, (2.13)

and ω = 2π/Tsid. Adding Vcent to our expression for Vg from
Eq. (2.9) and dropping all angular dependence from Legendre
functions with l > 2, , the total potential is

Vtot = −GMe

r
[1− 1

2
J2(

a

r
)2(3 cos2 θ − 1)]− 1

2
(rω sin θ)2.

(2.14)
The local acceleration due to gravity and centrifugal effects
is defined as

g = −∇Vtot. (2.15)

Evaluating g using Eq. (2.15) at the equator, the spherically
symmetric term in Vtot gives ∼ 980 cm/s2. The J2 term is
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14 CHAPTER 2. GRAVITY AND THE EARTH

∼ 1.6 cm/s2. The centrifugal term is ∼ 3.4 cm/s2.We see that
the spherically symmetric term is dominant, while the J2 and
centrifugal terms are much smaller.

It is important to note that in a rotating coordinate sys-
tem, Newton’s second law is modified in two ways, commonly
known as centrifugal and Coriolis forces. The addition of
Vcent to Vg does account for centrifugal effects, but it leaves
out the Coriolis force. The latter comes into play only when
the body being considered is moving relative to the Earth,
e.g., a part of the atmosphere which is in motion as in a storm,
discussed further in Sec. (6). For a body of mass µ hanging at
rest from a string connected to an earthbound support, there
is no Coriolis force and the tension in the string is given by

T = −µ∇Vtot = µg.

This provides a simple way to measure g.

Equipotentials and Gravitational Acceleration What
is commonly called Clairaut’s theorem, is an equation for the
gravitational acceleration on the Earth’s surface as a function
of latitude or equivalently, the polar angle θ. As will be seen
below, it is easy to derive from our expression for Vtot as given
in Eq. (2.14) and holds at the same level of accuracy. Using
Eq. (2.15) to obtain g leads to an expression of the form

g = grr̂ + gθθ̂. (2.16)

Both gr and gθ depend on r and θ.

To proceed, one needs to find the surface of the Earth.
Specifically, for a given latitude or polar angle, what is the
value of r that corresponds to being at the surface of the
Earth? The answer to this question depends on the notion
of equipotential, an equipotential being a surface on which
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2.2. EARTH’S GRAVITATIONAL POTENTIAL 15

Vtot is constant. An important property of an equipotential
is that the gravitational force on a mass is always perpendic-
ular to the equipotential surface on which the mass is located.
A fluid cannot support a force tangent to its surface, so the
surface of a fluid which is in mechanical equilibrium will coin-
cide with a gravitational equipotential. As a simple example
of this, consider a handheld container of water. If the con-
tainer is tilted, the surface of the water remains horizontal
at a constant elevation h, and therefore at a constant value
of the local gravitational potential, gh. Applying this same
reasoning to the Earth as a whole, it is clear that the surface
of the ocean must be an equipotential. Moving onto dry land,
the average elevation over the surface of the Earth is ∼ 800 m,
so the value of Vtot increases on average by only one part in
104. This is a very small amount. It is then well within the
accuracy of our formula for Vtot to assume that the Earth’s
surface is an equipotential.

Assuming this to be true, Vtot must take the same value
at any point on its surface. In particular this includes the
equator and the poles, where r takes the values a and b,
respectively. We have

Vtot(a, 90◦) = Vtot(b, 0). (2.17)

It will be useful to introduce a dimensionless parameter which
characterizes the contribution of the centrifugal term. Follow-
ing Fermi, we define m (not a mass) by

m =
a3ω2

GMe
. (2.18)

We now have three small dimensionless parameters: f, J2,
and m. The formulas that follow will be correct to first or-
der in these small parameters. Higher-order terms will be
dropped. Writing out Vtot(a, 90◦), we have

Vtot(a, 90◦) = −GMe

a
[1 +

J2

2
+
m

2
]. (2.19)

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



16 CHAPTER 2. GRAVITY AND THE EARTH

Doing the same at r = b, θ = 0, we have

Vtot(b, 0) = −GMe

b
[1− J2(

a

b
)2]. (2.20)

We may simplify this expression by keeping only first-order
terms. Since J2 is already first order, we may make the re-
placement a/b → 1 in its coefficient. Using the definition of
the flattening from Eq. (2.1), we have b/a = 1− f. Using this
to rewrite the first term in Eq. (2.20), we have

GMe

b
=
GMe

a
(
a

b
) =

GMe

a

1

1− f
∼ GMe

a
(1 + f). (2.21)

Our final, correct to first order, expression for Vtot(b, 0) is

Vtot(b, 0) = −GMe

a
[1 + f − J2]. (2.22)

Equating this to Vtot(a, 0), we obtain

− GMe

a
[1 + f − J2] = −GMe

a
[1 +

J2

2
+
m

2
]. (2.23)

Canceling terms, we finally have

f =
3

2
J2 +

1

2
m, (2.24)

so only two of our three small parameters are independent
quantities. Using modern data, Eq. (2.24) is accurate to a
part in a thousand, so the approximation of working to first
order is a very good one.

Eq. (2.24) will be used in what follows, but we still must
find the value of r that corresponds to being on the Earth’s
surface for an arbitrary polar angle θ. The work done above
motivates the following trial form,

r(θ) = a(1− f cos2 θ). (2.25)
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2.2. EARTH’S GRAVITATIONAL POTENTIAL 17

This certainly works at θ = 0◦, 90◦, and 180◦, but many other
formulas would also work for these angles. What singles out
Eq. (2.25) is that when r(θ) from Eq. (2.25) is substituted
in Eq. (2.14) for Vtot, the result is constant, independent of
θ, implying that an equipotential has been reached, to first
order. The elementary steps showing this will not be written
out, but it is worth noting that the cancellation of all factors
of cos2 θ is a direct consequence of Eq. (2.24).

Clairaut’s Formula Knowing the parameters of the Earth’s
surface, we can now evaluate the acceleration due to gravity
on it. What we want is the magnitude of the gravitational
acceleration, as given by

g(θ) ≡
[
(
∂Vtot
∂r

)2 + (
1

r

∂Vtot
∂θ

)2

]1/2

, (2.26)

where r is evaluated using Eq. (2.25) after the derivatives are
taken. Since the term involving ∂/∂θ is the square of a first-
order term and therefore of second order, the value of g(θ)
correct to first order is given by the simpler formula

g(θ) = |∂Vtot
∂r
|. (2.27)

Evaluating the derivative, and substituting for r(θ) from Eq. (2.25),
we obtain

g(θ) =
GMe

a2
[(1 +

3

2
J2−m) + (2f − 9

2
J2 +m) cos2 θ]. (2.28)

Eliminating J2 using Eq. (2.24), we find

g(θ) =
GMe

a2
[(1 + f − 3

2
m) + (

5

2
m− f) cos2 θ]. (2.29)

The equator is at θ = 90◦, so setting geq = g(90◦), we have

geq =
GMe

a2
(1 + f − 3

2
m), (2.30)
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18 CHAPTER 2. GRAVITY AND THE EARTH

and, again dropping higher-order terms, g(θ) becomes

g(θ) = geq[1 + (
5

2
m− f) cos2 θ]. (2.31)

This is Clairaut’s formula. As treated here, it is a first-order
expression so not really a “theorem.” Pursuing this point a bit
further, Clairaut’s formula can be an exact result or theorem
if certain detailed assumptions are made about the Earth’s
internal structure. It is in the spirit of Fermi’s approach to
physics to derive it as we have done from the form of the
gravitational potential near the Earth, rather than to model
the interior of the Earth. Nevertheless, theorem or formula, it
is a remarkable expression. As we will see in the next section,
it gives a quite accurate description of the acceleration due
to gravity at various points on the Earth.

The Accuracy of Clairaut’s Formula Clairaut’s formula
is remarkably accurate for the variation of g over the Earth.
Using modern values of ge,m and f taken from Table 2 of (Yo-
der 1995; Ahrens 1995), and evaluating g(θ) using Eq. (2.27),
Clairaut’s formula for g(θ) becomes

g(θ) = 978.03 + 5.18 cos2 θ, (2.32)

where g(θ) is expressed in cm/s2, and we have retained five
significant figures. Recalling that the latitude is |θ − 90◦|,
Eq. (2.32) is used to compute the local value of g(θ) for several
locations.
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2.3. PRESSURE AT THE CENTER OF THE EARTH 19

Table 2.2: Accuracy of Clairaut’s theorem for several
locations

Location Latitude Measured Clairaut
North Pole 90◦N 983.2 983.21
Stockholm 59◦N 981.8 981.84
New York 41◦N 980.3 980.26
Auckland 37◦ S 980.0 979.91

From Table (2.2) it is seen that Clairaut’s theorem is accurate
at the 0.1% level.

2.3 Pressure at the Center of the Earth

Fermi also does a simple calculation of the pressure at the
center of the Earth. The Earth’s rotation and slight non-
sphericity are very small effects here and are ignored. The
Earth is taken to be spherically symmetric, of radius Re, and
in hydrostatic equilibrium. The equation of hydrostatic equi-
librium for a point inside the Earth is

−∇p+ ρg = 0, (2.33)

where p is the pressure, g is the acceleration due to gravity,
and ρ is the mass density. The acceleration is related to the
gravitational potential by

g = −∇Vg. (2.34)

For a spherically symmetric Earth, we have

g = −r̂g(r), (2.35)
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20 CHAPTER 2. GRAVITY AND THE EARTH

where
g(r) =

GM(r)

r2
, (2.36)

and M(r) is the mass inside a sphere of radius r,

M(r) = 4π

∫ r

0
ρ(r)r2dr. (2.37)

Evaluation of this integral requires a model for ρ(r). The sim-
plest possible assumption would be to use the average density
of the Earth for ρ(r). However, this ignores the fact that the
density at the center of the Earth must be significantly larger
than the density at the surface. Fermi chooses the next sim-
plest model by taking

ρ(r) = ρ0 − ρ1r. (2.38)

(We slightly changed Fermi’s notation, making the replace-
ment p → ρ1 in his formula for ρ(r).) To determine ρ0 and
ρ1, Fermi uses the average mass density of 5.5 g/cm3, and
a surface mass density of ρ(Re) = 3 g/cm3. This results in
ρ0 = 13 g/cm3, and ρ1Re = 10 g/cm3.

The equation of hydrostatic equilibrium is now

∂p

∂r
= −4πGρ(r)

r2

∫ r

0
ρ(r′)r′

2
dr′.

Doing the integral, we have

∂p

∂r
= −4πG

r2
(ρ0 − ρ1r)(

1

3
ρ0r

3 − 1

4
ρ1r

4).

Integrating again from r = 0 to Re, we arrive at Fermi’s
formula

p(0)− p(Re) =
2

3
πG(ρ0Re)

2

(
1− 7

6
(
ρ1Re
ρ0

) +
3

8
(
ρ1Re
ρ0

)2

)
.
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The (atmospheric) pressure at the Earth’s surface can be ig-
nored compared to the pressure at the center. For numer-
ical evaluation, we use the SI unit of pascals (Pa) where
1Pa= 1 N/m2. Fermi’s formula gives

p(0) = 3.11× 108 kPa = 3.07× 106 atm,

where we use 1 atm=101,325 Pa. The amount of infor-
mation on the interior of the Earth which is available at
present compared to Fermi’s time is truly enormous. Never-
theless, Fermi’s simple approach yields a number fairly close
to 3.6 × 108 kPa, the current estimate of the pressure at the
center of the Earth.

2.4 The Moments of Inertia of the Earth

Continuing, Fermi returns to the gravitational potential and
its connection with the moments of inertia of the Earth. In or-
der to make contact with modern results on the gravitational
potential, we briefly give a more general discussion before re-
turning to Fermi’s notes. We start from a general expression
for the gravitational potential,

Vg(r) = −G
∫
d3r′

ρ(r′)

|r − r′|
. (2.39)

This is just Newton’s gravitational potential for a continuous
mass distribution, ρ(r). At any point outside of the Earth,
|r| > |r′|, and it is useful to expand the gravitational poten-
tial in inverse powers of r = |r|. Starting with the expansion
of the denominator in Eq. (2.39), we have

1

|r − r′|
=

1

r

[
1− 2

r · r′

r2
+ (

r′

r
)2

]−1/2

(2.40)

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



22 CHAPTER 2. GRAVITY AND THE EARTH

=
1

r

[
1 +

r · r′

r2
+

1

2r4
[3(r · r′)2 − r2(r′)2] + . . .

]
.

Inserting this expansion into Eq. (2.39), we may write Vg as
a series,

Vg(r) = V (0)
g (r) + V (1)

g (r) + V (2)
g (r) + . . . , (2.41)

where

V (0)
g (r) = −G

r

∫
d3r′ρ(r′) = −GMe

r
, (2.42)

V (1)
g (r) = −(

G

r3
)rj

∫
d3r′ρ(r′)r′j , (2.43)

V (2)
g (r) = −(

G

2r5
)(3rjrk − r2δjk)

∫
d3r′ρ(r′)r′jr

′
k, etc.,

(2.44)

with repeated indices being summed in all cases. In general,
V

(l)
g (r) varies with r as 1/rl+1. Choosing the origin at the

Earth’s center of mass, the l = 1 term vanishes, so the first
nonvanishing term has l = 2. It can be expressed in terms of
the Earth’s moment of inertia.

The moment of inertia tensor is defined as

Ijk =

∫
ρ(r′)(δjk(r

′)2 − r′jr′k)d3r. (2.45)

Comparing this integral to the one in V
(2)
g (r), the δjk(r′)2

term in Eq. (2.45) is absent in the V (2)
g (r) integral. However,

since
(3rjrk − r2δjk)δjk = 0,

the same answer is obtained if we replace r′jr
′
k with r′jr

′
k −

(r′)2δjk in the integrand of V (2)
g (r). After doing that, we have

V (2)
g (r) = (

G

2r5
)(3rjrk − r2δjk)Ijk. (2.46)
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This formula makes it clear that V (2)
g is determined by the

moment of inertia tensor. Although we will not consider l
values greater than 2, each term in V

(l)
g is determined by a

corresponding moment, involving an integral of the density ρ
weighted with l powers of r.

The situation considered by Fermi assumes the Earth is
azimuthally symmetric. For an azimuthally symmetric body,
the moment of inertia tensor is diagonal. The polar axis
element I33 is conventionally denoted as C. The elements I11

and I22 are equal, and their common value is conventionally
denoted as A. The l = 2 term becomes

V (2)
g =

G(C −A)

2r5
(3r2

3 − r2) =
G(C −A)

2r3
(3 cos2 θ − 1),

(2.47)
where the angle θ is measured with respect to the Earth’s
polar axis. Writing out Vg, including l = 0 and l = 2 terms,
we have

Vg = −GMe

r
+
G(C −A)

2r3
(3 cos2 θ − 1). (2.48)

The form of V (2)
g given in Eqs. (2.47) and (2.48) is known as

McCullagh’s formula. Comparing to Eq. (2.9), we see that

J2 =
C −A
Mea2

. (2.49)

The values of C and A are well known (Yoder 1995) and can
be written as multiples of Mea

2, where Me is the Earth’s
mass and a is the equatorial radius. Using that notation, the
values of A and C are

A = 0.3296108Mea
2, C = 0.3307007Mea

2. (2.50)

For comparison, if the Earth were an axially symmetric ellip-
soid with a uniform mass density, we would obtain

Ael = 0.4000Mea
2, Cel = 0.3986Mea

2. (2.51)
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We see that both of these values are larger than the actual
values of A and C. This actual data is consistent with the
Earth having a nonuniform mass density, with higher density
closer to the center of the Earth. Using the known values
of A and C to compute J2 via Eq. (2.49) gives J2 = 1.089 ×
10−3, which is within 1% of the value determined by satellite
observations of the Earth’s gravitational potential.

The small inhomogeneities of the Earth’s mass distribution
show up in the higher l terms in the gravitational potential.
Modern measurements of the gravitational potential make use
of very accurate satellite data and are able to determine terms
up to l ∼ 40 in the gravitational potential (Nerem 1994).

2.5 Motions of the Earth’s Axis

In the next two sections, we treat material not explicitly cov-
ered in Fermi’s lecture notes: the precession of the equinoxes
and the search for Euler’s nutation. This material is of long-
term historical interest and fits naturally onto subjects just
covered in preceding sections.

2.6 Equinoxes and Solstices

The existence of seasons certainly affects the physics of the
Earth’s surface. The cause of seasons is that the Earth’s spin
axis is tilted at an angle with respect to the normal to the
ecliptic plane, the plane of the Earth’s orbit. The tilt an-
gle is θt = 24.44◦. The onsets of spring and fall occur at the
vernal and autumnal equinoxes, respectively. As the names
suggest, night and day have the same duration at an equinox.
Between the autumnal and vernal equinoxes there is the win-
ter solstice, when the the Earth’s axis points the maximal
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amount away from the Sun. Similarly, the summer solstice
occurs between the vernal and autumnal equinoxes, when the
the Earth’s axis points the maximal amount toward the Sun.
The winter and summer solstices are often referred to as the
“shortest” and “longest” days of the year, the reference being
to the number of hours of sunlight in the Northern Hemi-
sphere.

To define the locations of equinoxes and solstices precisely,
let n̂ be a unit vector along the Earth’s spin axis, and let n̂ec
be the projection of that vector on the ecliptic plane. At a sol-
stice n̂ec is parallel or antiparallel to Rse, the vector from the
center of mass of the Sun to the center of mass of the Earth.
An equinox occurs when n̂ec is perpendicular to Rse. The
Earth’s position at the various seasons is shown schematically
in Fig. (2.1). The vertical arrows are along ê, the normal to
the ecliptic plane. The slanted arrows are pointed along the
Earth’s spin axis, n̂. The n̂ vector rotates very slowly around
ê, the period of that rotation being many thousands of years.
Determining the period of that rotation is the subject of the
next section.

2.7 Precession of the Equinoxes

As discussed in previous sections, the Earth is slightly non-
spherical. This means that in addition to attracting the
Earth, the Sun and Moon exert torques on the Earth. The
net torque causes the Earth’s angular momentum vector to
precess very slowly about the normal to the ecliptic plane.
The resulting slow motion along the Earth’s orbit is called
“precession of the equinoxes.” Of course the solstices change
location along the Earth’s orbit as well, but “precession of the
equinoxes” has been used for this precession. To visualize the
effect of this precession, let Tex be its period. After passage
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θt

autumnal equinox

vernal equinox

winter solsticesummer solstice

Figure 2.1: The Earth’s spin axis at various seasons

of times Tex/4 or 3Tex/4, equinoxes and solstices will be in-
terchanged, so March 21, instead of being the vernal equinox,
will be the winter or summer solstice. Likewise, after a time
of Tex/2, equinoxes remain equinoxes, but winter and sum-
mer solstices are interchanged. History recorded so far has
not been long enough to see these dramatic effects, but the
small shifts in the dates of equinoxes and solstices have been
known from the time of the ancient Greeks.

To compute the precession rate, we turn to the angular
equation of motion

K =
dL

dt
, (2.52)

where the angular momentum of the Earth L, like the torque
K, is computed about the Earth’s center of mass. The angu-
lar momentum of the Earth is completely dominated by the
spinning of the Earth on its axis, since the shortest period in
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the problem by far is the length of a single day, Tsol. Defining

ωd ≡
2π

Tsol
, (2.53)

with negligible error we have

L = (Cωd)n̂, (2.54)

where C is the moment of inertia about the Earth’s spin axis.
It is useful to break L into two components, one along the
normal to the ecliptic plane, L‖, and the other perpendicular
to the normal, and hence in the ecliptic plane, L⊥. Their
magnitudes are given by

|L‖| = Cωd cos θt, |L⊥| = Cωd sin θt. (2.55)

The solution of Eq. (2.52) becomes very simple if we av-
erage both sides over a period long compared to a year or a
month, but much shorter than the many thousands of years
involved in the period of the equinox precession. The time-
averaged torque K̄ due to the Sun and the Moon is calculated
in Appendix B, Eq. (B.13). As shown there, the magnitude
of K̄ is

|K̄| = 3

2
sin θt cos θt(C −A)(

GMs

R3
se

+
GMm

R3
me

), (2.56)

and it lies in the ecliptic plane, perpendicular to L⊥. The
torque has no effect on L‖, which is therefore constant. The
torque rotates L⊥, leaving the magnitude of L⊥ unchanged.
Let the angular frequency with which L⊥ rotates be ωex. This
is the sought-for frequency of the equinox precession. We then
have

| d
dt
L⊥| = ωex|L⊥| = ωex(Cωd sin θt). (2.57)
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The angular equation for |L⊥| is

|K̄| = | d
dt
L⊥|. (2.58)

Writing this out using Eqs. (2.56) and(2.57), we have

3

2
sin θt cos θt(C −A)(

GMs

R3
se

+
GMm

R3
me

) = ωex(Cωd sin θt).

(2.59)
Solving for the equinox precession frequency, we find

ωex =
3

2
(
C −A
C

)
cos θt
ωd

(
GMs

R3
se

+
GMm

R3
me

) (2.60)

Using current values for the various parameters in Eq. (2.60),
we have

ωex = 8.26× 10−12 rad/s, (2.61)

corresponding to a period of 24,200 years, within a few per-
cent of the actual value of 25,800 years (Yoder 1995). The dis-
crepancy is largely accounted for by taking account of the ec-
centricities of the Earth and Moon’s orbits. It is worth point-
ing out that the sense of the precession about the normal to
the ecliptic plane is opposite to the sense of the Earth’s orbit
around the Sun. Viewing the ecliptic plane from above, the
Earth’s orbit around the Sun has a counterclockwise sense,
while the precession of the Earth’s axis about the ecliptic
plane normal is clockwise. The effect is to make each season
appear a tiny bit sooner each year. Of course, once the period
of the precession of the equinoxes has elapsed, the Earth’s
axis has turned through a full 360◦ and returns to its original
position. The precession of the equinoxes was observed over
2000 years ago.

The first quantitative description is usually attributed to
Hipparchus in the first century BCE but its explanation had
to wait until Newton’s great work on motion and gravity in
1687.
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2.8 Nutation and Torque-Free Rotational Mo-
tion

In classical mechanics (Goldstein 1999; Landau and Lifshitz
1976), the term “nutation” refers to an oscillation in what is
usually known as the “second Euler angle.” This was θt in
Fig. (2.1), the angle between the Earth’s symmetry axis and
the normal to the ecliptic plane. As the Earth undergoes
the precession of the equinoxes it also undergoes oscillation
or nutation in θt. One of the main contributors to nutation
of the Earth is the variation with time of the torque on the
Earth due to the Moon. This has a period of 18.6 years.

In astronomy, the term “nutation” is sometimes used in a
broader sense. An interesting and easy to understand ex-
ample is a phenomenon which has various names, “Euler’s
nutation,” “free nutation,” and “polar motion.” Up to now,
we have assumed that the Earth’s axis of symmetry is coin-
cident with the direction of the Earth’s angular momentum
L. However, observations involving the fixed stars show that
there is a tiny angle between the Earth’s symmetry axis and
its angular momentum vector, 9.7× 10−7 rad. If two lines are
drawn through the center of mass of the Earth, one along
the symmetry axis and the other parallel to L, they cross
the Earth’s surface near the North Pole at points only ∼ 6 m
apart, certainly a small distance on an astronomical scale!

In this section, we will ignore external torques and treat the
angular momentum of the Earth as a constant vector. This
may seem paradoxical given that in the preceding section, the
precession of the equinoxes was explained as the direct result
of external torques, but this is not as strange as it seems at
first glance. The torques which act on the Earth from other
planets or the Sun are very small, and to be observable, time
intervals of thousands of years are needed. In comparison, the
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time intervals of interest in Euler’s nutation are very short
(300–400 days). Over such small time intervals, the torques
due to other planets only change the angular momentum by a
negligible amount and therefore it is an excellent approxima-
tion to treat the Earth’s angular momentum L as constant
over intervals of 300–400 days.

We will make use of two coordinate systems: one which
is space-fixed (xyz) with L along the z axis and one which
is body-fixed (123) with the 3 axis along the Earth’s axis of
symmetry. The space-fixed system is generated from the one
used in Sec. (2.7) by a rotation which takes the normal to
the ecliptic plane to a direction parallel to L. The body-fixed
coordinate system is a rotating coordinate system, rotating
at angular velocity ω, which in components is

ω = ω11̂ + ω22̂ + ω33̂. (2.62)

As explained in more detail in Sec. (6), in computing the time
rate of change of any vector, it is necessary to distinguish be-
tween the rate of change in the space-fixed coordinate system
and that in the body-fixed system. The relation between the
two is2

(
dL

dt
)sf = (

dL

dt
)bf + ω ∧L. (2.63)

In the absence of torques, the angular momentum in the
space-fixed system is conserved, so Eq. (2.63) is now

0 = (
dL

dt
)bf + ω ∧L. (2.64)

Written out in components, Eq. (2.64) becomes a set of three
equations known as Euler’s equations. For the case of the
Earth with I3 = C and I1 = I2 = A, the angular momentum
is

L = Aω11̂ +Aω22̂ + Cω33̂, (2.65)
2For vectors A and B, A ∧B is the cross-product, equal to A×B.
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and Euler’s equations are

0 = Aω̇1 + ω2ω3(C −A) (2.66)
0 = Aω̇2 − ω1ω3(C −A)

0 = Cω̇3.

From the third of Eqs. (2.66), we learn that ω3 is constant and
therefore so is L3 = Cω3. Defining β as the angle between L
and the 3 axis, we have

L3 = L · 3̂ = |L| cosβ. (2.67)

It follows that the angle between the angular momentum vec-
tor and the Earth’s axis of symmetry is constant. Fig. (2.2)
shows the angle β and indicates the sense of the Earth’s ro-
tation around its axis of symmetry. The setup is similar to
that shown in Fig. (2.1), except that here the z axis is along
L, rather than along the normal to the ecliptic plane.

Defining the part of L which is perpendicular to the sym-
metry axis as L⊥ = A(ω11̂ + ω22̂), the angular momentum
vector is L = L33̂ +L⊥, and its square is

L ·L = (L3)2 +L⊥ ·L⊥. (2.68)

Eq. (2.68) shows that

L⊥ ·L⊥ = A2(ω2
1 + ω2

2)

is constant, so ω2
1 + ω2

2 is also constant. To the Earth-fixed
observer, the angular momentum appears to whirl around the
symmetry axis, L3 and |L⊥| remaining constant, with the
direction of L⊥ moving in a circle. This is Euler’s nutation.
Defining the corresponding frequency as

ωeu ≡ ω3(
C −A
A

), (2.69)
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the first two Euler equations become

ω̇1 = −ωeu ω2 (2.70)
ω̇2 = +ωeu ω1.

To an Earth-fixed observer, Eqs. (2.70) describe a counter-
clockwise motion of the angular momentum around the Earth’s
symmetry axis. (Note that for a prolate object with C < A,
the motion would be clockwise.)

To evaluate ωeu, the modern values of C and A were given
in Eq. (2.50). Using these we have

C −A
A

= 0.0033066 =
1

302.423
. (2.71)

The frequency ω3 is related to the length of a day by ω3 =
2π/Td, and likewise ωeu is related to its period by ωeu =
2π/Teu. Rewriting Eq. (2.69), we have

2π

Teu
=

2π

Td
(
C −A
A

), or Teu = Td(
A

C −A
). (2.72)

Since Td is one day, using Eq. (2.71), we find a period for
Euler’s nutation of

Teuler = 302.423 days. (2.73)

An intensive search for a nutation with this period was carried
out in the late nineteenth century. The results were negative.
In 1891 Seth C. Chandler, an American amateur astronomer,
investigated a wider range of periods and discovered a nu-
tation with a period of approximately 434 days. This has
come to be known as the “Chandler wobble.” A prime sus-
pect for the reason the period is so different from the value
calculated by Euler is that the assumption that the Earth is
a rigid body has finally broken down. This is plausible, given
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the presence of the oceans near the surface of the Earth, and
regions of the Earth’s interior which are liquid. However, this
explanation encounters its own problems, namely, if the pe-
riod of the Chandler wobble is largely due to the fluidity, the
wobble itself should die away in less than 100 years. It re-
mains a fascinating problem still of interest today to explain
how a torque-free Earth and accompanying atmosphere can
maintain an enduring wobble with the correct frequency.

Y

Z

X

L

β

3

2

1

Figure 2.2: Axis and angular momentum of the Earth
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CHAPTER 3

Thermodynamics of the Earth’s
Atmosphere

In this chapter, we intersperse discussion of the contents of
Fermi’s notes with sections which review key topics in ther-
modynamics. Secs. (3.1)–(3.3), (3.5), and (3.6) review ther-
modynamics, while Secs. (3.4) and (3.7)–(3.10) expand on the
actual material in Fermi’s notes. More details on the subject
of thermodynamics can be found in Fermi’s own volume on
the subject (Fermi 1956).

Thermodynamics, a field whose foundations were laid in
the nineteenth century, is founded on the realization that
heat is a form of energy and on the transformation of me-
chanical work into heat and of heat into mechanical work. It
was further elucidated by the development toward the end
of the nineteenth century of statistical mechanics. Statistical
mechanics demonstrated how the heat content of a gas could
be understood as the energy of motion of the molecules in
the gas.
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3.1 First Law of Thermodynamics

The first law of thermodynamics is a statement of energy con-
servation as applied to thermal systems. For the most part,
in Fermi’s notes, the system is the atmosphere, a gas. The
internal energy of a gas or liquid is simply the total kinetic
and potential energy of the system of molecules present. The
internal energy is denoted as U. The system may expand (do
work) or be compressed (be worked on). Likewise, the sys-
tem may absorb or give off heat. If ∆Q is the heat absorbed
in a thermodynamic process and ∆W is the work done by
the system in the same process, then conservation of energy
states

∆U = ∆Q−∆W. (3.1)

Eq. (3.1) is quite general, requiring only that each term in
the equation is well defined. The process may involve equi-
librium or nonequilibrium states, and the equation is inde-
pendent of the particular variables needed to specify internal
energy, heat, and work. In the next section, for processes con-
necting thermodynamic equilibrium states, it is shown how
to write the equation in terms of differential changes in ther-
modynamic variables.

3.2 State Variables. Entropy

The equilibrium state of a thermodynamic system is defined
by the values of a small number of macroscopic variables. For
a gas containing a single type of molecule, the relevant vari-
ables are pressure, volume, temperature, and the number of
molecules in the system. Any three of these are enough to
specify the thermodynamic state of the system, the fourth
being specified by the equation of state. State variables are
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independent of the history of the system and are either exten-
sive or intensive. Extensive variables, like volume and number
of particles, are “how much” variables. Intensive variables like
pressure and temperature, are “how strong” variables.

Neither work nor heat is a state variable. Both are physical
quantities whose values depend on the history of the system.
Taking a system through a closed cycle of thermodynamic
states, a net amount of work may be done, and heat absorbed
or given off. But the system could equally well have been left
in its initial state, and not taken through a cycle. In that
case, the net work done and heat absorbed are zero, so the
work done and the heat absorbed obviously depend on the
history of the system, not just its present state.

The work done by a gaseous system in going from state 1
to state 2 is given by

W1→2 =

∫ 2

1
PdV. (3.2)

The value of W1→2 depends on the particular path taken
through thermodynamic states in going from state 1 to state
2. For an infinitesimal change, dW = PdV.

There is a state variable S, known as entropy, whose inte-
gral with respect to temperature expresses the heat absorbed
by the system. The concept of entropy was developed in the
nineteenth century by three of the founders of the study of
thermodynamics; Sadi Carnot, Rudolf Clausius, and William
Thomson (Lord Kelvin), who worked in France, Germany,
and Britain, respectively. Stated as an equation, the heat ab-
sorbed in a process which starts in state 1 and ends in state
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2 is1

Q1→2 =

∫ 2

1
TdS. (3.3)

The heat absorbed in a transition between two thermody-
namic states depends on the path taken from state 1 to state
2, showing that Q1→2 is also not a state variable. For an
infinitesimal change,

dQ = TdS. (3.4)

Entropy, like volume, number of particles, and internal en-
ergy, is an extensive variable. The concept of entropy has
wide applicability beyond the realm of equilibrium thermo-
dynamics discussed here. It is commonly regarded as a mea-
sure of the disorder in a system; the higher the entropy, the
more disordered the system. For a thermodynamic system
in equilibrium, it is generally true that the entropy increases
when the temperature of the system increases.

We may now recast the first law in differential form for
infinitesimal processes that do not involve molecules either
entering or leaving the system. This is

dU = TdS − PdV. (3.5)

In Sec. (3.5), we will generalize Eq. (3.5) to include the flow
of molecules in or out of the system.

3.3 The Second Law of Thermodynamics. Carnot
Cycle

A formulation of the second law, due to Lord Kelvin, says
that heat extracted from a source kept at constant temper-

1The temperature T in Eq. (3.3) is the absolute temperature; such
that absolute zero, approximately −273◦C, is the lowest obtainable tem-
perature.
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ature cannot be fully transformed into work. Another one,
first put forward by Clausius, says that it is impossible to
have a transformation whose only function is to transfer heat
from a body at lower temperature to one at higher tempera-
ture. The ideas associated with the second law are perhaps
best illustrated by making use of a process first considered by
Carnot, and known ever since as the Carnot cycle. Although
not strictly needed to follow Fermi’s lecture notes, a discus-
sion of the Carnot cycle will allow us in Sec. (6.3) to discuss
a modern subject that surely would have been of interest to
Fermi: the use of Carnot cycles to understand the physics of
hurricanes.

Carnot Cycle A Carnot cycle is a reversible cycle that
takes a gas through a sequence of four steps. At the end
the gas has returned to its original state. The cycle operates
between two heat baths, one at absolute temperature T>,
and the other at absolute temperature T<, with T> greater
than T<. In the first step of the cycle, the gas is placed in
contact with the heat bath at T> and allowed to expand.
In doing so, the gas performs work and absorbs an amount
of heat Q>, with the work performed equal to Q>. Since it
is at constant temperature, the internal energy of the gas
remains constant. In the second step, the gas is removed
from the heat bath and allowed to expand a second time,
this time adiabatically, so no heat is transferred to or from
the gas. Again, in expanding, the gas performs work. In this
step, since there is no heat transfer, the gas lowers its internal
energy, and hence its temperature, arriving at the lower value,
T<. In the third step, the gas is placed in contact with a
heat bath at T< and compressed. Since work is performed
on the gas in this step, it gives off heat Q<, where Q< is
equal to the work performed. Finally, in the last step, the
gas is again isolated and adiabatically compressed back to its
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original state at the higher temperature, T>.

In the first two steps of the cycle, the gas does work, and
in the last two steps of the cycle, work is done on the gas.
The difference between the work the gas does and the work
performed on it is the net work,W. By conservation of energy,
the net work is the heat absorbed minus the heat given off,

W = Q> −Q<. (3.6)

The efficiency of the cycle is the ratio of the net work to the
heat absorbed,

η =
W

Q>
= 1− Q<

Q>
. (3.7)

The efficiency can be expressed solely in terms of T> and
T< using the fact that the entropy of the system is a state
variable. In the isothermal expansion at temperature T>, the
entropy of the system increases by Q>/T>. The entropy does
not change in the following adiabatic expansion. Then in
the isothermal compression at temperature T<, the entropy
decreases by Q</T<. In the final adiabatic compression the
entropy does not change. Since the entropy is a state variable,
it must return to its initial value at the end of the cycle, so
the gain in the isothermal expansion at T> must be balanced
by the decrease in the isothermal expansion at T<, so

Q>
T>

=
Q<
T<

, (3.8)

or
Q<
Q>

=
T<
T>

. (3.9)

Using this in Eq. (3.7), we finally have

η = 1− T<
T>

. (3.10)

From Eq. (3.10), it is seen that a unit efficiency is only possi-
ble if T< = 0, absolute zero.
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3.4 Ideal Gas. Isothermal and
Adiabatic Atmospheres

A substance in a gaseous state has the characteristic property
that it fills the volume of its container regardless of the shape
of the container. In our present discussion the gas in question
is the Earth’s atmosphere, a gas composed approximately of
78% diatomic nitrogen (N2), 21% diatomic oxygen (O2), and
0.93% argon (Ar), along with trace amounts of neon (Ne), he-
lium (He), methane (CH4), water vapor (H2O), krypton (Kr),
and diatomic hydrogen (H2). We begin by treating “dry air,”
“moist air” referring to the case when a significant fraction of
water molecules are present. The effects of moisture will be
discussed in Sec. (3.7).

The equation of state of a gas is the relation that holds be-
tween its pressure, density, and temperature. An ideal gas is
one in which the interaction energy between molecules can be
ignored compared to the molecular kinetic energy. Any gas
becomes ideal at high enough temperature and low enough
density. The Earth’s atmosphere meets these conditions suf-
ficiently well that treating it as an ideal gas is a good approx-
imation. The equation of state of an ideal gas is

PV = NmolRT. (3.11)

In Eq. (3.11), P is the pressure, V is the volume, Nmol is the
number of moles present, T is the absolute temperature, and
R is the ideal gas constant. Its value is R = 8.314 J/mol/K =
8.314×107erg/mol/K. It is also useful to express the gas law
in terms of the mass per unit volume. Let ρmol = Nmol/V be
the number of moles/volume. Then if the gas molecules have
molecular weight Mmol, the mass/volume is ρm = nmolMmol,
and the ideal gas law takes the form

P = ρm
RT

Mmol
. (3.12)
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For the atmosphere,Mmol = 28.965 g, very close to the molec-
ular weight of the N2 molecule, 28.014 g. The mass density of
air at sea level and T = 15◦C is ρm = 1.225× 10−3g/c3.

Internal Energy of Ideal Gas The internal energy of an
ideal gas arises solely from the kinetic energy of the molecules,
which in general can include rotational and vibrational ki-
netic energy in addition to translational kinetic energy. For
a monatomic gas with only translational degrees of freedom,
the internal energy is

U = Nmol(
3

2
RT ). (3.13)

According to classical thermodynamics, each degree of free-
dom contributesRT/2 to the internal energy. For a monatomic
gas, there are three degrees of freedom, one for each direction
of motion. This explains the factor 3/2 in Eq. (3.13). The at-
mosphere is predominantly composed of diatomic molecules
such as N2 and O2. For such gases at the temperatures in
the atmosphere, rotational kinetic energy must be taken into
account. In addition to their three translational degrees of
freedom, diatomic molecules have two rotational degrees of
freedom,2 each of which contributes an additional RT/2 per
mole to the kinetic energy. For diatomic molecules and air in
particular, we then have

U = Nmol(
5

2
RT ). (3.14)

Specific Heats of an Ideal Gas The specific heat of any
system is a measure of how much the internal energy changes
per degree of temperature change. There are two specific

2Visualizing a diatomic molecule as a dumbbell, the axis of the dumb-
ell can be rotated in two directions.
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heats for a gas, denoted as CV and CP , according to whether
the temperature is changed holding volume V or pressure P
constant.

For an ideal gas, the internal energy is given by

U = CVNmolT. (3.15)

For the case where heat is added to the system at constant
volume, the first law reduces to dU = TdS = dQ. The specific
heat/mole at constant volume is, by definition,

CV =
1

Nmol
(
dQ

dT
)V , (3.16)

and using dQ = dU along with Eq. (3.15) the specific heat at
constant volume is

CV =
1

Nmol
(
∂U

∂T
)V . (3.17)

So for a monatomic ideal gas, we have

(CV )mono =
3

2
R, (3.18)

while for a diatomic ideal gas, we have

(CV )diatomic =
5

2
R. (3.19)

Experimental values of specific heats are usually given in
J/kg/K. In these units, the value of CV for dry air at standard
temperature and pressure is 717.1J/kg/K. Dividing 5/2R by
the molecular weight of air (28.965×10−3 kg) gives 717.6J/kg/K,
so air in the atmosphere is behaving as an ideal gas.

The specific heat/mole at constant pressure for an ideal
gas is related to the specific heat/mole at constant volume
by the simple formula

CP = CV +R, (3.20)
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so for air with CV = 5R/2, we have CP = 7R/2. Eq. (3.20)
is easy to derive. The first law now reads

dU = TdS − PdV. (3.21)

The ideal gas law states

P =
NmolRT

V
, (3.22)

so if dP = 0, we have d(T/V ) = 0, which is equivalent to
dT/T = dV/V. Using this, PdV = NmolRdT, so we have

(dQ)P = (TdS)P = dU +NmolRdT (3.23)

= NmolCPdT = Nmol(CV dT +RdT ),

which leads to
CP = CV +R. (3.24)

For an ideal diatomic gas, the ratio CP /CV is 7/5. The value
of this ratio for dry air at standard conditions is in close
agreement with 7/5, another indication that the atmosphere
is behaving as an ideal gas.

Effects of Gravity on the Atmosphere The average
properties of the atmosphere as a function of altitude are
remarkably stable despite the attractive force of gravity on
the air molecules. The reason is that the pressure in the
atmosphere is such that a given slab of air is in mechanical
equilibrium. If z is the altitude, measured from the surface of
the Earth, the equation governing the variation of the pres-
sure is

dP

dz
= −ρmg, (3.25)

where g is the gravitational acceleration. This equation, along
with the ideal gas law, gives us two equations in the three un-
knowns of pressure, temperature, and density. To solve for
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all three, another equation is needed. The simplest possibil-
ity, one we will explore in the next section, is to assume the
temperature of the atmosphere is constant as a function of
altitude. More realistic results are obtained by assuming the
atmosphere is adiabatic, a behavior that will be explained
after our treatment of the isothermal atmosphere.

Isothermal Atmosphere At first sight, the assumption
of a constant temperature for the atmosphere seems reason-
able. For example, an observer is more likely to notice “thin
air” (reduced density) than any change in temperature when
traveling 2 km above sea level. But the decrease of tempera-
ture with altitude does become very clear when the altitude
increases by several kilometers. By an altitude of 9 km the
external temperature is approximately 60◦C below the sea
level temperature.

Although ultimately unrealistic, the isothermal atmosphere
is a useful preliminary to the case of an adiabatic atmosphere.
Proceeding, we simplify notation by having ρm → ρ, Mmol →
M,Nmol → N, and, we denote sea level quantities by a sub-
script 0; P0, T0, and ρ0.

For an isothermal process connecting states 0 and 1, for an
ideal gas we have

P1V1 = P0V0, (3.26)

which is equivalent to

P1ρ
−1
1 = P0ρ

−1
0 . (3.27)

Applying this to the atmosphere, we take state 1 to be the
state of the atmosphere at altitude z, while state 0 is the state
of the atmosphere at sea level. Eq. (3.27) becomes

P (z)(ρ(z))−1 = P0ρ
−1
0 . (3.28)
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Using this equation to solve for ρ(z) and substituting the
result in Eq. (3.25) gives

dP (z)

dz
= −Mg

ρ0

P0
P (z). (3.29)

The ideal gas law at sea level is P0 = ρ0RT0, so Eq. (3.29)
becomes

dP

dz
= −(

Mg

RT0
)P. (3.30)

The combination RT0/Mg is a characteristic length D0,

D0 ≡ RT0/Mg. (3.31)

Taking T0 = 288 K, Eq. (3.31) gives D0 = 8.43 km.

Eq. (3.30) now reads

dP

dz
= − 1

D0
P, (3.32)

so that
P (z) = P0 exp(− z

D0
). (3.33)

As long as the temperature is constant, the ideal gas law says
that the density and pressure vary with altitude in the same
way, so for the density, we have

ρ(z) = ρ0 exp(− z

D0
). (3.34)

To summarize, both pressure and density fall exponentially
for the case of an isothermal atmosphere while the tempera-
ture remains at the sea level value. Comparing P (z) calcu-
lated from Eq. (3.33) to actual data at various altitudes, one
finds that Eq. (3.33) is in good agreement with the data up
to z ∼ 1 km, but eventually decreases too fast. For example,
at z = 9 km, the pressure calculated from Eq. (3.33) is ∼ 12%
smaller than the actual pressure at that altitude.
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Adiabatic Atmosphere One reason for favoring an adia-
batic description of the atmosphere is the low heat conductiv-
ity of air; the heat conductivity of air is ∼ 1/25 that of water,
and ∼ 1/10, 000 that of copper. The other reason is that the
atmosphere is rarely, if ever, absolutely still. There are con-
tinuous exchanges of parcels of air over various distance and
time scales. The heat conductivity of air is so low that these
exchanges are essentially adiabatic; a negligible amount of
heat is transferred when two small volumes are exchanged.

If states 0 and 1 of an ideal gas are connected by an adia-
batic expansion or compression, their pressures and volumes
are related by

P1V
γ

1 = P0V
γ

0 . (3.35)

In Eq. (3.35), γ is the ratio of the specific heat/mole at con-
stant pressure to the specific heat/mole at constant volume.3

For diatomic molecules such as N2 and O2, we have

CV =
5

2
R, CP =

7

2
R, (3.36)

so γ = 7/5. To derive Eq. (3.35), we note that there is no
heat transfer in an adiabatic process so dS = 0. For a general
process, dS is

dS =
1

T
(dU + PdV ). (3.37)

For an ideal gas, this expression can be transformed into

dS = N [CP
dV

V
+ CV

dP

P
]. (3.38)

Setting dS = 0, we have

CP
dV

V
+ CV

dP

P
= 0, (3.39)

3Fermi uses κ instead of γ.
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which is equivalent to the usual form of the adiabatic law,

PV γ = const. (3.40)

Adapting Eq. (3.35) to the atmosphere, we can relate the
pressure and density at altitude z to their sea level values.
Eq. (3.35) is equivalent to

P (z)ρ(z)−γ = P0ρ
−γ
0 . (3.41)

Solving for ρ(z),

ρ(z) = ρ0(
P (z)

P0
)1/γ . (3.42)

Using this expression for ρ, Eq. (3.25) now involves only the
pressure P and the altitude z. Skipping some elementary
steps, the solution for the pressure is

P (z) = P0(1− (
γ − 1

γ
)
ρ0gz

P0
)

γ
γ−1 . (3.43)

Since γ = 7/5, we have

γ − 1

γ
=

2

7
.

Using the ideal gas law, we have

ρ0g

P0
=
Mg

RT0
=

1

D0
. (3.44)

Our expression for the pressure at altitude z in an adiabatic
atmosphere becomes

P (z) = P0(1− 2

7

z

D0
)
7
2 . (3.45)
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Having found the pressure as a function of altitude, let us
find the temperature. First, we use the ideal gas law to solve
for the density. This gives

ρ(z) =
P (z)M

RT (z)
. (3.46)

Substituting for ρ in Eq. (3.41) and canceling constant factors,
we arrive at

P (z)1−γ

T (z)−γ
=
P 1−γ

0

T−γ0

, (3.47)

or
T (z)

T0
= (

P (z)

P0
)
γ−1
γ . (3.48)

Using Eq. (3.45) to substitute for P (z)/P0, we finally obtain

T (z) = T0((1− (
γ − 1

γ
)
ρ0gz

P0
). (3.49)

Substituting for γ and D0, we have

T (z) = T0(1− 2

7

z

D0
). (3.50)

We see that the temperature decreases linearly with altitude
in an adiabatic atmosphere. At first sight it is worrisome that
Eqs. (3.45) and (3.50) predict zeroes in pressure and temper-
ature at z = 7D0/2. However, this altitude is well above the
troposphere, and into the next layer of the atmosphere, the
stratosphere, where additional factors come into play.

Lapse Rate Remaining in the troposphere, Eq. (3.50) pre-
dicts a definite value for the “lapse rate,” Γ, which is

Γ ≡ dT

dz
. (3.51)
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Using Eqs. (3.31) and (3.50), we have

Γ = −(
γ − 1

γ
)
Mg

R
. (3.52)

Using the definitions of CP , CV , and γ, Γ becomes the very
simple expression,

Γ = −Mg

CP
. (3.53)

This expression for Γ, which is known as the “dry air lapse
rate,” is the ratio of the force of gravity on a mole of air,
divided by the specific heat/mole at constant pressure. Its
numerical value is −9.8 K/km, so an increase in altitude of
1 km will be accompanied by a decrease in temperature of
9.8 K. While this is accurate for dry air, the actual air in the
atmosphere is rarely completely dry. The presence of water
vapor in the atmosphere has a large effect on the lapse rate,
generally reducing it from the dry air lapse rate to around
6 K/km. The treatment of an adiabatic atmosphere contain-
ing water vapor is a more complex subject which is treated
in Sec. (3.7). The lapse rate is closely related to D0. From
Eqs. (3.31) and (3.53), we have

Γ =
T0

γD0
. (3.54)

From the adiabatic formula for pressure, Eq. (3.45), we
have P/P0 = 0.58 at z = D0/2, and P/P0 = 0.31 at z = D0.
At smaller values of z, the adiabatic formula approaches the
isothermal formula for pressure. Again, the adiabatic formula
for pressure, as expressed in Eq. (3.45), is a dry air formula.
The atmospheres over a desert or a snowfield are examples of
places where it would hold.
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3.5 Chemical Potential. Thermodynamic
Potentials

Chemical Potential The cases discussed so far are those
of a gas with a fixed number of particles. Thermodynamics
applies to the more general case when the number of parti-
cles is varied. The corresponding intensive variable is called
the “chemical potential” and is usually denoted as µ. If more
than one type of molecule is present, each type i has its own
chemical potential, µi. In the atmosphere there are separate
chemical potentials for N2, O2, H2O, etc. The chemical po-
tential plays a central role when particle exchange is present.
For the physics of the atmosphere, the transition of water
molecules from liquid to vapor forms is the most important
example.

Thermodynamic Potentials We now have all the ther-
modynamic state variables needed to express the first law of
thermodynamics in its most general form:

dU = TdS − PdV +
∑
i

µidNi. (3.55)

This says that the small change in the internal energy of the
gas is the sum of the heat absorbed, minus the work done,
plus the extra energy derived from adding particles. In what
follows, Ni is the number of moles of molecule i, so µi is
the chemical potential/mole for species i. Eq. (3.55) is a true
differential, meaning that the internal energy is a function of
the entropy, the volume, and the Ni, with

(
∂U

∂S
)V,Ni = T, (

∂U

∂V
)S,Ni = −P, (

∂U

∂Ni
)S,V = µi. (3.56)

An important result (Callen 1960) for the internal energy is
the Gibbs-Duhem relation, which is an explicit formula for
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the internal energy:

U = TS − PV +
∑
i

µiNi. (3.57)

Eq. (3.57) follows from the extensive property of the internal
energy.

If the internal energy is known as a function of S, V, and
the Ni, complete thermodynamic information is available.
However, this form is inconvenient for relating to measur-
able quantities. Temperature and pressure are preferable to
their extensive counterparts, entropy and volume. The two
forms of “free energy” known as the Helmholtz free energy
and the Gibbs free energy are quantities closely related to
the internal energy, in which one or more extensive variables
have been traded for their corresponding intensive variables.

Consider first the Helmholtz free energy, defined by

F ≡ U − TS. (3.58)

It is easy to show (Callen 1960) that F is a function of tem-
perature, pressure and the Ni. In terms of F (T, V,Ni), the
first law takes the form

dF = −SdT − PdV +
∑
i

µidNi. (3.59)

For a process which takes place at constant temperature and
constantNi, the Helmholtz free energy changes only when the
system does work or is worked upon, so at constant temper-
ature and Ni, F is independent of the flow of heat in and out
of the system. From the Gibbs-Duhem relation, Eq. (3.57)
and Eq. (3.58), F is given in explicit form as

F = −PV +
∑
i

µiNi. (3.60)
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The Gibbs free energy takes the process of trading exten-
sive variables for intensive variable one step further. It is
defined by

G = U − TS + PV = F + PV. (3.61)

Again using the Gibbs-Duhem relation, G is given explicitly
by

G =
∑
i

µiNi. (3.62)

The Gibbs free energy is a function of T, P, and the Ni. The
first law, when expressed in terms of G, is

dG = −SdT + V dP +
∑
i

µidNi. (3.63)

For a process at constant temperature and pressure, the Gibbs
free energy changes only when there is particle exchange. At
constant T and P, the Gibbs free energy is independent of
both the heat flowing in and out of the system and the work
done by or on the system. The Gibbs free energy is partic-
ularly useful in cases where a gas is in equilibrium with its
liquid form, the most important example being water vapor
in equilibrium with its liquid form in the atmosphere.

Let us return to the case where there is only one type of
molecule present. Then Eq. (3.62) reduces to

G = µN. (3.64)

Defining the Gibbs free energy per mole as g ≡ G/N, we see
that g is just the chemical potential, µ,

g(T, P ) =
G

N
= µ(T, P ). (3.65)

Now

dG = −SdT + V dP + gdN = dgN + gdN. (3.66)
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Demanding that the terms on the right side of Eq. (3.66) agree
leads to

∂g(T, P )

∂T
= − S

N
≡ −s, (3.67)

∂g(T, P )

∂P
=
V

N
≡ v, (3.68)

so the derivatives of the Gibbs free energy per mole determine
the entropy and volume per mole.

3.6 The Boundary between Phases

A given substance can exist in different forms or phases, the
most familiar example being water, which can be in gaseous,
liquid, or solid form. In this section, we will first treat the
generic case of a liquid in mechanical and thermal equilibrium
with its vapor, and then go on to the particular application
considered by Fermi of liquid water in equilibrium with its
vapor. We denote the liquid as system 1 and the vapor as
system 2. Thermal equilibrium between 1 and 2 requires
that T1 = T2, while mechanical equilibrium demands that
P1 = P2, so we have a common temperature and pressure
denoted from now on by T and P. Similarly the chemical po-
tentials of the two phases must be equal since an inequality
between µ1 and µ2 would lead to a net flow of particles from
the system of higher chemical potential into the one of lower
chemical potential. Thus the system is only in complete equi-
librium when the three intensive variables, T, P, µ, take the
same values in the two systems.

It is important to realize that although the chemical po-
tential is the same throughout the entire system, g1(T, P )
and g2(T, P ) are different functions, describing respectively
the thermodynamic properties of the vapor and of the liquid.
This point is illustrated by considering the volume per mole

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



3.6. THE BOUNDARY BETWEEN PHASES 55

in the two phases. The vapor is certainly less dense than the
liquid, so v1 > v2. Using Eq. (3.68), we have

v1 =
∂g1(T, P )

∂P
> v2 =

∂g2(T, P )

∂P
. (3.69)

It is clear from Eq. (3.69) that g1(T, P ) and g2(T, P ) must be
different functions. The same conclusion follows from consid-
ering the entropy per mole. From a geometric point of view,
we can visualize either g1 or g2 as a surface, g1 and g2 being
the heights above the T, P plane. The physical requirement
that g1 = g2 can only be realized along the curve where the
surfaces intersect. This means that for a vapor-liquid system
to be in equilibrium, only one of T and P can be chosen freely
so that if T is chosen, requiring that g1(T, P ) = g2(T, P ) will
determine the pressure. An equation for the coexistence curve
follows from writing out dg1(T, P ) = dg2(T, P ):

dg1 =
∂g1(T, P )

∂T
dT +

∂g1(T, P )

∂P
dP = (3.70)

dg2 =
∂g2(T, P )

∂T
dT +

∂g2(T, P )

∂P
dP

Using Eqs. (3.67) and (3.68), Eq. (3.70) is equivalent to

s1dT + v1dP = s2dT + v2dP. (3.71)

Solving for the derivative along the coexistence curve, we have

dP

dT
=
s1 − s2

v1 − v2
. (3.72)

This equation can be put into a more useful form by recast-
ing it in terms of sg and sl, the entropies per unit mass of
the vapor and liquid, respectively, and likewise vg and vl,
the volumes per unit mass of the vapor and liquid. If the
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molecules in the system have molar massM , then sl = s1/M,
sg = s2/M, and vl = v1/M, vg = v2/M. Using this notation,
Eq. (3.72) becomes

dP

dT
=
sg − sl
vg − vl

. (3.73)

The heat required to vaporize a unit mass of liquid is called
the latent heat4 and is denoted by Fermi as λ. It is defined
by

λ ≡ T (sg − sl). (3.74)

In terms of the latent heat, Eq. (3.73) becomes

dP

dT
=

λ

T (vg − vl)
. (3.75)

Eq. (3.75) is usually known as the Clausius-Clapeyron equa-
tion, or sometimes simply as the Clapeyron equation, Clapey-
ron’s work having predated that of Clausius by a number of
years.

Fig. (3.1) shows a portion of the pressure vs. tempera-
ture coexistence curve between liquid water and its vapor.
It is clear from the graph that lower pressure means lower
boiling temperature, a fact familiar to mountain dwellers. It
should also be mentioned that if the graph were extended
to much higher temperatures and pressures, the coexistence
curve would end in what is known as a “critical point,” Tc =
374◦C, Pc = 218 atm. By taking the system on a continuous
path around this point, liquid water can be transformed into
water vapor with no latent heat.

Assuming the vapor obeys the ideal gas law, we have

Pvg =
RT

M
, (3.76)

4The latent heat is denoted as L by other authors.
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T
100◦C0◦C

P

Patm

liquid

vapor

Figure 3.1: P vs. T for water and its vapor

where M is the mass of one mole (18 g for water). Since
vapors are generally much less dense than liquids, it is rea-
sonable to ignore vl compared to vg in Eq. (3.75). This gives

dP

dT
' λ

T (vg)
. (3.77)

Eliminating vg using Eq. (3.76), we obtain

dP

dT
= (

λM

R
)
PT

T
, (3.78)

or
dP

P
= (

λM

RT
)
dT

T
. (3.79)

We can integrate this equation if we ignore the rather modest
variation with temperature of the latent heat. Specializing to
the case of water, we will take the latent heat to be constant
and equal to its value at 100◦C, λw = 540 cal/g = 2, 260 J/g.
Doing this, and adjusting the constant of integration so that
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atmospheric pressure is obtained5 at T = 100◦C = 373 K, we
find

P (T ) = Patm exp(13.1− 4, 893

T
), (3.80)

where T is in kelvins. This simple formula is a reasonable
approximation to the accurate data plotted in Fig. (3.1).

Since the Clausius-Clapeyron equation applies generally to
phase transitions, it is interesting to also consider its predic-
tion for the phase change from ice to water. Whereas we
saw earlier that v2 � v1, in this case v2 = 1.00 cm3/g is less
then v1 ≈ 1.09 cm3/g. In other words, ice floats on water, an
anomaly because the solid phase is usually denser than the
liquid phase. Moreover, since the difference in volume per
gram is orders of magnitude smaller than it is for the vapor
to liquid transition, dP/dT is orders of magnitude larger and
conversely dT/dP is orders of magnitude smaller.

Even though dT/dP is relatively small for the water-ice
transition, it can play an important role in glacier flow since
ice encountering a rock-like obstacle experiences a consequent
increase in pressure. It may then melt because the negative
sign of (v2− v1) implies that dT/dP is also negative. The ice
will refreeze almost immediately, but its temporary melting
may aid the glacier to slide around the obstacle.

3.7 Adiabatic Transformation of
Moist Air

An adiabatic transformation for dry air obeys Eq. (3.40). Tak-
ing the ratio of specific heats for air to be 7/5, and using the

5Kelvins means temperature with respect to absolute zero. The re-
lation between Celsius temperature TC and and Kelvin temperature TK
is TK = TC + 273.
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the ideal gas law, the following three quantities are constant
in a dry-air adiabatic process:

PV 7/5, V T 5/2, and PT−7/2.

Taking differentials gives

V

P

dP

dV
= −7

5
,
T

V

dV

dT
= −5

2
, and

T

P

dP

dT
=

7

2
. (3.81)

In the presence of moisture, all three of these differential re-
lations will be modified. In this section of his notes, Fermi
focuses on the last one, involving dP/dT. Before presenting
the way in which that relation is modified, it is certainly in
Fermi’s spirit to ask what is the qualitative expectation; does
7/2 get replaced by a larger or a smaller factor? To answer
this, consider an adiabatic expansion of a dry ideal gas. Both
the pressure and temperature decrease. Now if moisture is
also present in form of water vapor, lowering the pressure
slightly will generally lead to a small amount of condensa-
tion, and the release of a small amount of latent heat into the
surrounding gas. This will make the decrease in temperature,
dT, smaller in magnitude than it was before. Looking back
at the last relation in Eq. (3.81), we then expect 7/2 to be
replaced by a larger number.

The formula derived by Fermi involves two dimensionless
ratios which we give the symbols α and β. If λ is the latent
heat of water, and Mv is the molecular weight of water, then

α ≡ λMv

RT
. (3.82)

This combination first appeared in discussing the Clausius-
Clapeyron equation. See Eq. (3.79). If Pv is the vapor pres-
sure of water at the chosen conditions, and P is the total
pressure, then

β ≡ Pv
P
. (3.83)
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As a numerical example, suppose the temperature is 20◦C=
293 K, a typical temperature for a humid summer day. Then

α =
(2260 J/g) · (18 g)

(8.314 J/mol K) · (293 K)
= 16.7. (3.84)

For β, the partial pressure of water vapor at 20◦C is 17.5 mmHg.
Dividing by atmospheric pressure of 760 mmHg we find

β =
17.5

760
= 2.3× 10−2. (3.85)

So β is small, and it is valid to ignore β compared to 1.
Fermi also makes this approximation. The parameter α is
considerably larger than 1, but it always appears as either
αβ or α2β. For the conditions just stated, αβ = 0.38, and
α2β = 6.4, so α2β is very significant and in fact dominates
the final result.

Fermi’s formula,6 with α2β = 0.38 and αβ = 16.7, gives

T

P

dP

dT
=

7

2

(
1 + 2

7α
2β

1 + αβ

)
= 7.17, (3.86)

so the dry air result of 7/2 is indeed increased by condensation
of water vapor, by a rather large factor!

Derivation of Fermi’s Formula We are interested in an
adiabatic process in moist air; dry air plus water vapor. What
is adiabatic for the moist air as a whole is not adiabatic for
the dry air. The dry air picks up latent heat when water va-
por condenses (or gives it up when liquid water evaporates).
Applying the first law to the dry air provides a direct route to

6Fermi makes a rare algebraic error on page 4B of his notes, inverting
numerator and denominator on the right-hand side of Eq. (3.86).
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Fermi’s formula. We will use a subscript a for dry air quan-
tities, and a subscript v for water vapor quantities. Writing
the first law in the form given in Eq. (3.5) for dry air gives

dUa = TdSa − PadV. (3.87)

Dry air is treated as an ideal gas which obtains its heat in-
put or output solely from vapor condensation or evaporation.
Explicitly, Eq. (3.87) becomes

5

2
NaRdT = −λMvdNv −

NaRT

V
dV, (3.88)

where Na and Nv are mole numbers for dry air and vapor.
It is worth remarking on the sign of the first term. Suppose
there is condensation, so dNv < 0. The minus sign in front
of this term ensures that the resulting latent heat is added
to the dry air when vapor condenses. Dividing Eq. (3.88) by
NaRT gives

5

2

dT

T
= −λMv

RT

dNv

Na
− dV

V
. (3.89)

Since the number of dry air moles is not changing,

dNv/Na = d(Nv/Na).

Further, since both dry air and vapor are assumed to be ideal
gases, we have d(Nv/Na) = d(Pv/Pa). Rearranging the terms
in Eq. (3.89) results in

5

2

dT

T
+
dV

V
= −λMv

RT
d(
Pv
Pa

) (3.90)

= −λMv

RT

(
1

Pa

dPv
dT

dT +
Pv
Pa

(
dV

V
− dT

T
)

)
,

where we use the ideal gas law to evaluate d(1/Pa). We as-
sume the moist air is saturated so the derivative of Pv can be
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evaluated using the Clausius-Clapeyron equation, Eq. (3.79).
This results in

1

Pa

dPv
dT

dT = (
λMv

RT
)
Pv
Pa

dT

T
. (3.91)

Returning to Eq. (3.90), it now reads

5

2

dT

T
+
dV

V
= −(

λMv

RT
)
Pv
Pa

(
(
λMv

RT
)
dT

T
+
dV

V
− dT

T

)
.

(3.92)
At this point it is convenient to express things in terms of α
and β. The total pressure of the moist air is P = Pa + Pv =
Pa + βP, so Pa = (1 − β)P. Since β is quite small, it is a
good approximation to follow Fermi and replace Pa with P ;
Pv/Pa ≈ Pv/P. Doing so, we get

5

2

dT

T
+
dV

V
= −αβ

(
α
dT

T
+
dV

V
− dT

T

)
. (3.93)

Rearranging this equation, we have(
5

2
+ αβ(α− 1)

)
dT

T
+ (1 + αβ)

dV

V
= 0. (3.94)

For an ideal gas, we have

dP

P
+
dV

V
=
dT

T
. (3.95)

Using this formula to replace dV/V in Eq. (3.94) gives

(
7

2
+ α2β)

dT

T
= (1 + αβ)

dP

P
, (3.96)

or
T

P

dP

dT
=

7

2

(
1 + 2

7α
2β

1 + αβ

)
, (3.97)

which is Fermi’s formula.
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The dominant effect in the modification of 7/2 to a bigger
number is the large latent heat of water. The water vapor
plays a small role in the pressure and internal energy of moist
air. However, the condensation of vapor releases the latent
heat into the surrounding gas and significantly affects the
adiabatic law which holds for dry air.

3.8 Atmospheric Composition and Temperature

As mentioned in Sec. (3.4), the dominant components of the
lower atmosphere are the diatomic molecules of nitrogen and
oxygen, by volume respectively 78.08% and 20.95% of the
atmosphere at sea level, 15◦C and atmospheric pressure of
101, 325 Pa = 1 atm. Argon, at 0.93%, constitutes the ma-
jority of the remainder. The fourth-largest constituent, one
that has drawn increasing focus because of its effect on global
warming, is carbon dioxide, at 0.033%. With the exception of
neon, at 0.0018%, no other gas rises to the level of parts per
thousand. Nevertheless two other gases in the atmosphere
have drawn public attention: methane because of its effect
on global warming, and ozone because of its dual effect as
a greenhouse gas at levels up to about 10 km, in the tro-
posphere, and as a protector against ultraviolet radiation at
higher levels (in the stratosphere). In addition the atmo-
sphere contains a variable amount of water vapor, ranging
from trace amounts to as high as 4–5%.

3.9 Temperature as a Function of Altitude

As we see in Fig. (3.2), the temperature of the atmosphere de-
creases linearly as a function of altitude up to approximately
10 km above sea level. As discussed in Sec. (3.4), linear de-

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



64 CHAPTER 3. HEAT AND THE ATMOSPHERE

crease of temperature with altitude occurs in a dry adiabatic
atmosphere, but the rate of decrease in the actual atmosphere
is smaller than it would be in dry air. At an altitude of 10 km,
the temperature has dropped to approximately −50◦C.

Leaving the troposphere one enters the stratosphere, a re-
gion in which the ozone molecule (O3) plays an important
role both in heating its surroundings and in protecting the
Earth against the harmful effects of solar ultraviolet radia-
tion. The temperature above the troposphere rises slowly at
first in the region known as the tropopause and then more
rapidly, reaching a peak of 50◦C at 50 to 60 km above sea
level. The stratosphere is known to be very dry and to have
little convection, which in turn implies little turbulence, a
distinct advantage for aviation. This stability may, however,
be disturbed by volcanic eruptions or thunderstorms. Above
the stratosphere the temperature begins once again to drop.

The heating of the stratosphere is largely due to ultraviolet
solar radiation operating in a process known as photolysis
during which its ozone is rapidly destroyed and recreated in
a cyclical manner. It begins with an oxygen molecule (O2)
in the stratosphere being split into two oxygen atoms by the
absorption of ultraviolet radiation with a wavelength λ ≤
242 nm. An oxygen atom (O) then combines with an oxygen
molecule to form an ozone molecule (O3): during this process
energy is released that is transformed into heat. The ozone
molecule is then rapidly disassociated by lower-energy solar
radiation (λ ≤ 320 nm), and the cycle begins anew. In brief,
solar ultraviolet radiation is the source of the heating.

This important layer of ozone, the protector from the harm-
ful effects of ultraviolet radiation, can be partially destroyed
by the catalytic action of other molecules in the stratosphere.
Chlorofluorocarbons are a well-known example. The action
of photolysis on them releases chlorine atoms (Cl) which com-
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Figure 3.2: Temperature vs. altitude in the Earth’s
atmosphere.
Source: NASA

bine with ozone ( O3 )to form ClO + O2. The ClO molecules
then interact with an oxygen atom, ClO + O→ Cl + O2, and
chlorine is free again to bond with ozone. In other words,
chlorine is a very effective catalyst for the destruction of
ozone.

3.10 Exotic Phenomena in the
Upper Atmosphere

Twilight: The Earth’s lower atmosphere is illuminated even
when the Sun is below the horizon because of sunlight being
scattered by dust particles in the upper atmosphere. The
phenomenon occurs both near dusk and near dawn.

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



66 CHAPTER 3. HEAT AND THE ATMOSPHERE

Luminous Clouds: Also known as noctilucent clouds, these
are caused by sunlight being scattered by ice crystals in the
mesosphere. They are too faint to be seen other than during
twilight.

Zodiacal Light: This is a diffuse light around the Sun
caused by the scattering of sunlight by dust in the zodiac
or ecliptic, the apparent path in the celestial sphere swept
out by the Earth during the course of the year.

Note: There are other notable sources of transitory phe-
nomena of dust in the atmosphere that affect sunlight, such
as volcanic eruptions or the passage and subsequent breakup
of meteors entering the atmosphere. A discussion of addi-
tional phenomena caused by electromagnetic radiation such
as auroras is postponed until Chap. (17).
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Escape velocity from Earth’s atmosphere
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CHAPTER 4

Loss of Planetary Atmosphere

4.1 Maxwell Distribution

The starting point of a discussion about particle loss from the
atmosphere is the Maxwell-Boltzmann distribution of veloci-
ties for the particles of an ideal gas at temperature T . That
distribution, with the integral over all velocities normalized
to one, is (Mandl 1971)

f(v)d3v = π−3/2U−3e−v
2/U2

d3v, (4.1)

where
U ≡

√
2kT/m,

m is the particle’s mass, and k is equal to Boltzmann’s con-
stant, a constant that is related to the perfect gas constant
R by a factor of Avogadro’s number, R = NAk. The mean-
ing of U is that it is the most probable magnitude for the
particle velocity. Fermi uses the parameter c, which is the
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root-mean-square velocity. The two are related by

c =

√
3

2
U, (4.2)

so Eq. (4.1) for f(v) is the equivalent to Fermi’s expression.
The average kinetic energy of a particle in an ideal gas is
expressed in terms of c2 by

(
1

2
mv2)ave =

1

2
mc2 =

3

2
kT. (4.3)

4.2 Escape Velocity

Gas particles with sufficient velocity may escape from the
atmosphere. A naive formulation says this will occur if the
overall particle energy, the sum of its kinetic and potential
energy, is greater than zero, so the particle is able to overcome
the Earth’s gravitational pull. This requires

mv2/2−GMem/r ≥ 0, (4.4)

whereG is Newton’s constant,Me is the Earth’s mass, r is the
particle’s distance from the Earth’s center, and the particle’s
velocity is directed radially away from the Earth.

This is overly simplistic, for the gas particles in the high-
velocity tail of the Maxwell distribution will in general rescat-
ter and therefore not escape from the atmosphere because
their velocity will be redirected many times by rescattering.
For example, the mean free path of an air molecule at sea level
is approximately 65 nm, so small that in traveling 1 mm, the
molecule will undergo over ten thousand collisions. It there-
fore makes no sense to calculate an “outward flux” at sea level.
However, the mean free path of a molecule steadily increases
as the density of the atmosphere decreases. At the “top” of
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the atmosphere, the mean free path is very large and an out-
going molecule has little chance of being scattered before it
escapes.

The situation is illustrated in Fig. (4.1), which shows the
velocity vector (bold arrow) of an escaping particle at angle θ
relative to a vector from the center of the Earth (thin arrow).
The outer shaded layer in the figure represents the lower
layers of the Earth’s atmosphere (troposphere, stratosphere,
mesosphere, thermosphere). We define the “top” of the at-
mosphere to be the lower edge of the exosphere, commonly
known as the “exobase,” a region located between 500 km and
1000 km above the Earth’s surface. The mean free path of a
molecule there is thousands of meters. We call rc the critical
distance from the center of the Earth at which the particle is
within a mean free path of the “top” of the atmosphere, and
Tc the atmosphere’s equilibrium temperature at this radius.
For definiteness, in the following, we take rc to correspond to
an altitude of 1000 km, and Tc = 1000 K.

The value of the escape velocity at distance rc is

vc =
√

2GMe/rc. (4.5)

Denoting the density of particles at rc by nc, the British as-
trophysicist Sir James Jeans defined what is called the Jeans
particle escape flux, the number of particles expected to es-
cape per second per unit of area (Jeans 1916); (Gross 1974).
We denote this quantity by F. The outward flux for particles
with given velocity v is proportional to the component of
the particle’s velocity along the outward direction, given by
ncv · r̂ = ncv cos θ, where for outgoing particles v · r̂ > 0, or
0 ≤ θ ≤ 90◦. Multiplying the Boltzmann distribution by this
quantity, and integrating over outgoing particles with veloc-
ities greater than vc, we obtain the following expression for
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θ

exosphere

earth

Figure 4.1: Atmospheric escape

F

F =

(∫
d3vf(v)ncv · r̂

)
v·r̂>0,|v|>vc

. (4.6)

Integrating over the angles of the escaping particle yields

F =
nc√
π

∫ ∞
vc

dv(
v

Uc
)3e
− v2

U2
c , (4.7)

where

Uc =

√
2kTc
m

. (4.8)

The subscript on Uc means that it is the most probable veloc-
ity of a particle of mass m at temperature Tc. The remaining
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integral over v is simple, as can be seen by using as variable
x = v2/U2

c and observing that∫ ∞
xo

xe−xdx = (x0 + 1)e−x0 . (4.9)

We finally obtain

F = ncUc

(
1

2
√
π

(1 +
v2
c

U2
c

)e−v
2
c/U

2
c

)
, (4.10)

showing that F involves the natural prefactor ncUc, multi-
plied by a dimensionless function of (vc/Uc)

2.

Fermi introduces an interesting way of parameterizing (vc/Uc)
2.

Begin by defining a local acceleration due to gravity,

gc =
GMe

r2
c

. (4.11)

At an altitude of 1000 km, and taking 6371 km for the Earth’s
radius, the value of gc is

gc = (
6371

7371
)2(9.8 m/s2) = 7.3 m/s2, (4.12)

about 75% of g at the Earths’s surface. Then using Eq. (4.5)
for vc and the Eq. (4.11) for gc, we obtain

(
vc
Uc

)2 =
2GMe

rc
(

1

Uc
)2 = rc(

2gc
U2
c

) ≡ rc
h
, (4.13)

where the length h is given by

h = U2
c /2gc =

kTc
mgc

, (4.14)

or equivalently,
mgch = kTc. (4.15)
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Now consider the gravitational potential energy of an atom
of mass m located at rc+h. Assuming h is much smaller than
rc, we can work to first order in h/rc. We have

− GMem

rc + h
≈ −GMem

rc
+m(

GMem

r2
c

)h = −GMem

rc
+mgch,

(4.16)
so mgch is the potential energy at h of an atom of mass m,
relative to its value at rc.

At an altitude of 1000 km and a temperature of 1000 K,
h turns out to be 1132 km for a hydrogen atom. Rewriting
Eq. (4.10) in terms of rc/h, we have

F =
Ucnc
2
√
π

(1 +
rc
h

)e−
rc
h ≈ Ucnc

2
√
π

(
rc
h

)e−
rc
h . (4.17)

From here on, we will use the expression on the extreme right
of Eq. (4.17) for F. The exact form of the factor multiplying
the exponential in Eq. (4.17) plays an insignificant role com-
pared to the exponential. For hydrogen,

rc/h = (7371/1132) = 6.51. (4.18)

The quantities nc, h, and Uc all vary from atom to atom, so
to denote atom a, we write nc(a), h(a), Uc(a), and Fa. Given
the dampening due to the exponential, h(a) can also be inter-
preted as the effective depth for the layer of the atmosphere
from which the particle with mass ma can be emitted. For
an atom a of mass ma, the value of rc/h is that of hydrogen
multiplied by the ratio of atomic masses, ma/mH . Due to
the exponential dependence of F (a) on rc/h, this means that
F (a) decreases quite rapidly in going from hydrogen to the
heavier atoms in the atmosphere.
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4.3 Lifetime of Atmosphere for
Various Atoms

Let Na denote the total number of atoms (or molecules) of
type a in the layer of the Earth’s atmosphere of thickness
h(a). Likewise, dNa/dt is the rate at which particles of type
a are being lost from the atmosphere. It is obtained by mul-
tiplying Fa by the area, 4πr2

c ,

dNa

dt
= 4πr2

cFa. (4.19)

We may estimate a lifetime τa for species a by the following
simple equation;

Na =
dNa

dt
τa, (4.20)

or
τa = Na(

dNa

dt
)−1. (4.21)

From Fa and Eq. (4.19), we have a definite expression for
dNa/dt. We estimate Na by multiplying the density nc(a) by
the volume of a spherical shell of thickness h(a),

Na ≈ 4πr2
ch(a)nc(a). (4.22)

Using this approximation, we arrive at a picture of how life-
times vary as we vary the type of atom. From Eqs. (4.17) and
(4.22), we obtain the following expression for τa;

τ(a) = 2
√
π
h(a)

Uc(a)

(
h(a)

rc
exp(

rc
h(a)

)

)
(4.23)

=
1

gc

√
2πkTc
m(a)

(
h(a)

rc
exp(

rc
h(a)

)

)
.

To proceed, we use the the same parameters as above; Earth
radius of 6371 km, the “top of the atmosphere” altitude of

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



76 CHAPTER 4. ATMOSPHERIC LOSS

1000 km, and rc = 7371 km. Taking account of the factor of
1/
√
m(a) in the prefactor and multiplying rc/h(a) by the ra-

tio m(a)/m(H), it is straightforward to generate Table (4.1).
It is evident from the numbers in the table that atoms heavier

Table 4.1: Estimated lifetimes of atmosphere for light
atoms

a τ(a) year

H 3.3× 10−3

H2 8× 10−1

He 1.35× 105

C 1.32× 1027

than helium have lifetimes for Jeans escape which are much
larger than the age of the Earth. While the escape velocity is
independent of the mass of the escaping particle, the needed
kinetic energy grows linearly with mass and becomes larger
and larger vs. kTc.

4.4 Magnitude of Particle Losses

As we said earlier, most of the particles escaping will do
so from the “top” of the atmosphere, the zone within one
mean free path of free streaming. For Earth, this zone is
known as the exosphere, its bottom lying at approximately
1000 km above sea level. The temperature there is estimated
at roughly 1000 K though values of both Tc and rc within a
factor of two are often considered.

At rc = 7371 km, the escape velocity, as defined in Eq. (4.5),
is vc = 10.4 km/s. It is of course the same for all particles,
while Uc, the most probable velocity at Tc, is inversely propor-
tional to the square root of the particle’s mass. Jeans escape
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is usually parameterized using the rms velocity Urms (Fermi’s
c,) related to Uc by Urms = (

√
3/2)Uc. A rough rule of thumb

(Catling and Zahnle 2009) for estimating Jeans escape loss is
that the loss is only significant if

λ = vc/Urms ≤ 6.

At the temperature of 1000 K, we have Urms = 4.98 km/s for
a hydrogen atom, so λH ∼ 2. Consequently we expect the
Jeans mechanism to be significant for atomic and molecular
hydrogen and possibly even for helium, which has a λ of only
4, still below the limit of 6. On the other hand, the mecha-
nism does not lead to a loss of heavier gases such as oxygen
and nitrogen.

In detail atmospheric escape is more complicated than Jeans
escape for a number of reasons. One is that the Jeans mecha-
nism is an overestimate of particle loss because it assumes the
tail of the Maxwell velocity distribution from which the par-
ticles escape is replenished as fast as, or faster than particles
escape. This does not seem to be the case. A second reason is
the existence of other mechanisms (Gross 1974; Catling and
Zahnle 2009) for particle escape that play an important role
in hydrogen loss and are dominant for heavier atoms. A de-
tailed discussion of them is outside the scope of Fermi’s notes,
but we will mention one that is known to play an important
role for hydrogen and for helium. A chemical reaction in the
upper atmosphere can produce a rapid ion. The Earth’s mag-
netic field normally acts to prevent such an ion from escaping,
but the field’s lines of force loop back toward the Earth near
the poles so the ion may avoid there the constraining force
the field imposes. This phenomenon is known as polar wind.
Alternatively an ion, e.g., a fast hydrogen ion produced in
a chemical reaction, may strip away an electron from a slow
hydrogen atom, which now neutral, may proceed without suf-
fering much loss of velocity.
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Another effect leading to escape is the solar wind, the
stream of charged particles emitted at the Sun’s corona. It
is largely deflected by the Earth’s magnetic field, except near
the poles, but it can certainly act in that region to attract and
then drag away positively charged ions present in the upper
atmosphere. Hydrodynamic escape, in which a strong ther-
mal escape of lighter particles drags along heavier particles
by collision is yet another example.

4.5 Helium

We present here a few facts about helium, present at approx-
imately 5 ppm (parts per million) in the atmosphere at stan-
dard conditions of pressure and temperature (STP). Since
helium is such a light atom, it is at first sight surprising that
it exists at all as a component of the lower atmosphere. The
explanation is that there is a constant influx into the atmo-
sphere of helium atoms produced in the Earth’s crust. They
originate through the emission of alpha particles (helium nu-
clei) in radioactive decay, principally caused by uranium and
thorium isotopes. The alpha particles then attach to elec-
trons and form atomic helium.

Helium escapes from the atmosphere at approximately
1.5× 106 kg/year, (Catling and Zahnle 2009), a much larger
rate than the Jeans mechanism predicts. Our present under-
standing is that whereas the Jeans mechanism accounts for
almost half of atmospheric hydrogen’s escape, atmospheric
helium escape is almost entirely due to other mechanisms,
principally polar wind and chemical exchange.

The helium fraction in the atmosphere appears to be sta-
ble, although there is no fundamental physics requirement
that this be so. A stable fraction would imply that the rate
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at which helium escapes from the lower atmosphere is bal-
anced by the rate at which helium from radioactive decays is
emitted into the lower atmosphere. Neither of these rates is
known with great precision although both have been intense
subjects of research in the recent years.

Helium has many practical applications: in medicine, com-
puter chip manufacture, high-speed internet cable manufac-
ture, welding, and fundamental physics research, to name just
a few. This has led to a helium extraction industry, whose
main source is the small fraction of helium in natural gas.
The rate at which industrial helium is produced is usually
quoted in cubic meters at STP per year. Fermi quotes a fig-
ure of 15×106 m3/year for the amount of helium produced in
the United States. The present figure, approximately 40% of
the world’s total, is closer to 70× 106 m3/year. At STP, the
density of helium is 0.179 kg/m3, so the US production of he-
lium is roughly 13× 106 kg/year. This is several times larger
than the amount of helium that escapes the atmosphere in
a year. Since helium is a nonrenewable resource, there have
been recent concerns about the world’s supply of this gas be-
ing exhausted. Helium stockpiling, new extraction methods,
and helium recycling are all being pursued to ensure a steady
supply of helium for the foreseeable future.

4.6 Speed of Sound and
Atmospheric Altitude

Fermi briefly illustrates how the speed of sound varies with
altitude as sound waves propagate through the atmosphere
at different altitudes. Sound waves are caused by successive
compressions and rarefactions of the medium through which
the disturbance is propagating. The speed of the longitudinal
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wave therefore depends on the relation between the pressure
P that is exerted and the density ρ of the medium. The
square of the sound speed is given by

vs
2 = (

∂P

∂ρ
)ad. (4.24)

The subscript ad means that the compressions and rarefac-
tions take place adiabatically; pressure and volume are re-
lated, as discussed in Sec. (3.4), by

P = const.ργ .

Isaac Newton was the first to evaluate the speed of sound
but he erroneously assumed that the successive compressions
and rarefactions took place isothermally. Pierre Laplace later
realized that the heat flow from one region to another is negli-
gible as long as the wavelength is long compared to the mean
free path in the medium. Computing the partial derivative
of Eq. (4.24) gives

vs
2 =

γP

ρ
. (4.25)

For an ideal gas of molecular weight M, we have

P

ρ
=
RT

M
, (4.26)

so
vs

2 =
γRT

M
. (4.27)

Though not providing the formulas we have just shown, Fermi
illustrates graphically how the velocity of sound first decreases
with increasing altitude in the atmosphere and then increases
as we transition from the troposphere to the stratosphere, fol-
lowing the same pattern of temperature versus atmospheric
altitude we have already displayed in Fig. (3.2).
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In the troposphere, using M = 28.97g for the molecular
weight of air, γ = 7/5, and taking T = 373 K, the speed of
sound waves is

vs =

√
γRT

M
= 343 m/s. (4.28)

The corresponding result for the rms velocity Urms is

Urms =

√
3RT

M
= 502 m/s. (4.29)

We see that the sound velocity is somewhat smaller than the
rms velocity. The ratio is independent of temperature and is
given by

vs
Um

=

√
γ

3
=

√
7

15
= 0.68 . (4.30)
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CHAPTER 5

Liquid Drop Physics

5.1 Vapor Pressure and Radius of Raindrops

In his discussion of thermodynamics Fermi discussed the prob-
lem of phase transitions between a gas and a liquid, and here
he extends that discussion by considering the formation of
a drop of liquid in a saturated vapor. This requires going
beyond the earlier treatment and examining the effect of the
surface tension of the drop on the phase transition.

Consider a liquid in equilibrium with its vapor, for exam-
ple, a closed container containing pure water in both liquid
and vaporous forms, with liquid water lying at the bottom of
the container and water vapor in the space above. Mechani-
cal equilibrium requires that the pressure in the vapor equal
the pressure in the liquid. Denoting liquid and gas phases by
subscripts 1 and 2, this states

P1 = P2. (5.1)
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This equation applies to the case where the interface between
the liquid and vapor is a plane. However, when treating the
mechanical equilibrium between a liquid drop and surround-
ing vapor, there are curved surfaces, and surface tension must
be taken into account. Eq. (5.1) is modified. Surface tension
has units of force/length and will be denoted in the following
by γ. Numerical values of surface tension in SI units are usu-
ally given in milli-newtons/meter, equivalent to the cgs unit
of dynes/cm. The surface tension of water is approximately

γwat = 73 mN/m. (5.2)

In the case of a droplet surrounded by vapor, surface tension
acts to minimize the area of the droplet. The result is that
the pressure inside the droplet is larger than the pressure of
the surrounding vapor, so P1 > P2.

An equation for P1−P2 is easily obtained using a balance-
of-forces treatment, illustrated in Fig. (5.1). Take a spherical
droplet of radius r, surrounded by vapor. Divide the sphere
exactly in half and consider the forces on the upper hemi-
sphere. In the upward direction the pressure of the liquid
exerts a force πr2P1. In the downward direction, the pres-
sure of the vapor exerts a force of πr2P2. The surface tension
also exerts a downward force on the upper hemisphere. Act-
ing along the circumference of the hemisphere, the surface
tension force is 2πrγ. Equating upward and downward forces
gives

πr2P1 = πr2P2 + 2πrγ, or P1 − P2 =
2γ

r
. (5.3)

The spherical drop is a special case of a more general formula
due to Young and Laplace(Landau and Lifshitz 1980) that
involves the two principal radii of curvature of the surface at
the point of contact of the two phases. Eq. (5.3) can be used
to compute the pressure difference between a raindrop and
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2γ
r

2γ
r

P2

P1

liquid

vapor

Figure 5.1: Forces on upper half of a droplet

the surrounding water vapor. Taking γ = 73 mN/m, and a
raindrop of radius1 r = 1 mm, we have

2γ

r
= 146 Pa. (5.4)

This is tiny compared to atmospheric pressure of 101, 325 Pa,
so the pressure inside a typical raindrop is only slightly higher
than atmospheric pressure.

The presence of a droplet also makes a small change in
the vapor pressure of the surrounding vapor, compared to

1The range of raindrop radii is roughly 0.1 mm to 5.0 mm.
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its value for a plane interface between liquid and vapor. We
follow Fermi’s treatment of this in the next section, where we
will use subscripts that indicate liquid and vapor rather than
the numerical subscripts 1 and 2.

5.2 Change in Vapor Pressure in
the Presence of Liquid Drops

Landau and Lifshitz’s Statistical Physics (Landau and Lif-
shitz 1980) has a formal derivation of the change in vapor
pressure, δPvap, caused by the existence of a drop. Here we
follow Fermi’s heuristic approach which leads to the same re-
sult. Consider a large closed receptacle that contains both
a liquid and a vapor phase of the same substance. A long,
narrow tube with a cross-section of radius r is suspended in
the receptacle; both its ends are kept open (see Fig. (5.2)).
Capillary action creates a difference in height h between the
fluid in the tube and the fluid in the rest of the container.
The small difference in the vapor pressure between what is
exerted on the surface of the fluid in the tube and what on
the surface of the rest of the container is simply due to the
different amounts of vapor above each surface.

Consider first a column of vapor outside the tube. Requir-
ing that this vapor column be in mechanical equilibrium, we
have

δPvap = Pvap(0)− Pvap(h) = ρvapgh. (5.5)

Turning to the column of liquid in the tube, since the liq-
uid at the bottom of the tube is at the same level as the
vapor outside the tube, the pressure at the bottom of the
tube is Pvap(0). At the top of the tube, the vapor applies the
pressure Pvap(h). In addition, if we take the contact angle to
be 90◦, surface tension provides an upward effective pressure
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z = 0

z = h

liquid

vapor

Figure 5.2: Diagram for Fermi’s calculation of δPvap

on the liquid of 2γ/r.2 Requiring the tube of liquid to be in
mechanical equilibrium gives

Pvap(0) +
2γ

r
= Pvap(h) + ρliqgh. (5.6)

From Eqs. (5.5) and (5.6) we have two expressions for gh.
Setting them equal gives

gh =
Pvap(0)− Pvap(h)

ρvap
=
Pvap(0)− Pvap(h) + 2γ

r

ρliq
. (5.7)

Solving for Pvap(0)− Pvap(h) = δPvap, we have

δPvap =
ρvap

ρliq − ρvap
(
2γ

r
) ≈ ρvap

ρliq
(
2γ

r
), (5.8)

2We are assuming the surface tension at the vapor-liquid-tube junc-
tion is approximately the same as the surface tension used in Sec. (5.1).
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where in the last term we used ρvap << ρlig. Defining the
pressure difference between inside and outside of the liquid
droplet as δPliq = P1 − P2, and using Eq. (5.3), we have

δPvap = (
ρvap
ρliq

)δPliq. (5.9)

We saw from Eq. (5.4) that δPliq is generally quite small.
Eq. (5.9) shows that δPvap, while nonzero, is still smaller by
the ratio ρvap/ρliq. Fermi puts this quantitatively by calcu-
lating the ratio δPvap/Pvap at T = 300 K. He gives

δPvap
Pvap

≈ 10−7

r(cm)
. (5.10)

For r = 1 mm, Eq. (5.10) says that δPvap is a million times
smaller than Pvap itself.

5.3 Radius and Terminal Velocity of
Falling Raindrops

Raindrops typically form at a height that may vary up to
several kilometers. They do so mainly by condensation of
water vapor around a dust particle. The drops vary as they
fall to Earth and, depending on their size, different methods
are used to calculate the resistance they encounter in their
descent. The drops may also undergo change of shape, but we
follow Fermi in making the approximation that they retain
their spherical form. He considers two limiting cases, one
corresponding to very small raindrops and the other to larger
ones as illustrations of two different mechanisms that act to
determine the speed with which drops fall.

The first case is that of motion of a sphere of radius r mov-
ing at constant velocity through an infinite incompressible
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fluid of constant density and viscosity, a standard problem in
transport phenomena (Huang 1987). The equation that de-
scribes such a state, the balance between the retarding force
of the medium and the force of gravity, is known as Stokes’s
Law. It says

mg = 6πνrv, (5.11)

wherem is the mass of the drop, r is its radius, v, its terminal
velocity, and ν is the coefficient of viscosity. Taking m =
ρ(4πr3/3), and working in cgs units with ρ = 1 g/cm3, we
find the expression for the drop’s terminal velocity to be

v(cm/s) =
2r2ρg

9ν
= 1.26× 106(r(cm))2, (5.12)

where we have employed the value of viscosity coefficient for
air that Fermi gives: ν = 17.3 × 10−5 g/s · cm. This relation
holds, however, only for the very smallest of drops because
the viscosity retarding force given in Eq. (5.11) corresponds
to just the first term in an expansion:

F = 6πνrv(1 +
3ρvr

8ν
+ ......). (5.13)

Its validity depends on the relative smallness of ρvr/ν, a
quantity known as the Reynolds number (Landau and Lif-
shitz 1959). Since the viscosity of air is such a relatively
small number, Stokes’s law is only a good approximation for
the case of for the smallest of raindrops, ones that are essen-
tially mist-like, r ≤ 2.5 × 10−3 cm. In this case the terminal
velocity is small; a few cm/s (Van Boxel 1998).

For larger drops, terminal velocity is reached differently.
The force of gravity is now balanced by an upward-directed
aerodynamic drag. The equation describing the balance is

mg =
4πr3

3
ρg = κπr2v2, (5.14)
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where κ is the coefficient of air resistance. This is normally
written as

κ =
ρairC

2
, (5.15)

where C is a dimensionless quantity that is of order unity for
air. We thus have

v =

√
8gr

3ρairC
≈ 1500

√
r · cm/s (5.16)

which gives v ≈ 7 m/s for a raindrop with a 2 mm radius, a fig-
ure in rough agreement with experimentally observed values.
It may also be worth noting that this formula, as expected,
also accounts for the terminal velocity of hailstones.

Fermi quotes two values of terminal raindrop velocity, one
at sea level and the other at an altitude of 4 km. He gives the
first as v = 1344

√
r and the second as v = 2200

√
r at 4 km

above sea level.The increase, 2200/1344, corresponds roughly
to the decrease in the ratio of the square roots of ρair at the
two altitudes, a dependence indicated in formula Eq. (5.16).
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CHAPTER 6

Coriolis Effects in the Earth’s
Atmosphere

6.1 The Coriolis Force

In this section, we give a brief review of the Coriolis force.
This force plays an important role in understanding the physics
of storms and hurricanes in the Earth’s atmosphere. It is
a “fictitious force,” arising from the use of an accelerated or
noninertial coordinate system. Such forces share with gravity
the property of being proportional to the mass of the particle
being considered, or the mass density in the dynamics of a
fluid. Despite the nomenclature, the effects of the Coriolis
force are very real.

We consider two coordinate systems; an inertial or space-
fixed coordinate system with unit vectors x̂, ŷ, ẑ, and a rotat-
ing or body-fixed coordinate system with unit vectors x̂′, ŷ′, ẑ′.
The body-fixed system is rotating with respect to the space-
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fixed coordinate system around the common z axis. The an-
gular velocity, assumed constant, is ω. The unit vectors in
the two systems are related by

x̂′ = cosφ x̂+ sinφ ŷ, (6.1)
ŷ′ = − sinφ x̂+ cosφ ŷ,

ẑ′ = ẑ,

where φ = ωt.

A generic vector such as r, the coordinate of a particle,
can be expanded in either coordinate system;

r = x x̂+ y ŷ + z ẑ = x′ x̂′ + y′ ŷ′ + z ẑ = r′, (6.2)

where, since the z axis is common, there is no need for primes
on z components or unit vectors. Furthermore, note that r
and r′ are just different notations for the same vector.

Subtleties arise when computing time derivatives of vec-
tors. It is necessary to distinguish the time rate of change
with respect to the space-fixed system from one taken with
respect to the body-fixed system. When r is differentiated in
the space-fixed system, the result is

d

dt
r =

dx

dt
x̂+

dy

dt
ŷ +

dz

dt
ẑ. (6.3)

There is no question of taking time derivatives of x̂, ŷ, ẑ; they
are unit vectors in an inertial system and therefore constant.
Now consider time derivatives from the viewpoint of a body-
fixed observer. Such an observer will naturally regard the
body-fixed unit vectors as constant, and define his rate of
change of r as

v′ ≡ d

dt

′
r =

dx′

dt
x̂′ +

dy′

dt
ŷ′ +

dz

dt
ẑ. (6.4)
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The difference between the rates of change from Eqs. (6.3)
and (6.4) comes about because the body-fixed unit vectors x̂′

and ŷ′ are not constants in the space-fixed system. The rates
of change of the body-fixed unit vectors from the viewpoint
of the space-fixed system are

d

dt
x̂′ = ω ∧ x̂′, (6.5)

d

dt
ŷ′ = ω ∧ ŷ′,

where the angular velocity vector is ω = ωẑ. With the aid of
Eq. (6.5), it is easy to relate the two rates of change of r. We
have

d

dt
r =

d

dt

′
r + ω ∧ r, (6.6)

or
v = v′ + ω ∧ r. (6.7)

Symbolically, the two rates of change are related by

d

dt
=

d

dt

′
+ ω ∧ . (6.8)

In the space-fixed frame, Newton’s law takes the simple form,

F = m
d2r

dt2
= m

d

dt
(
d

dt
r). (6.9)

Substituting from Eq. (6.6) gives

F = m
d

dt
(
d

dt

′
r + ω ∧ r). (6.10)

Applying Eq. (6.8), we have

F = m(
d

dt

′
+ ω∧)(

d

dt

′
r + ω ∧ r). (6.11)
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Expanding the right-hand side gives

F = m

{
d

dt

′
(
d

dt

′
r) + 2ω ∧ d

dt

′
r + ω ∧ (ω ∧ r)

}
. (6.12)

The first term on the right side of Eq. (6.12) comes from the
acceleration of the particle as seen in the body-fixed frame,
the middle term is the Coriolis force, and the last term is the
centrifugal force. To write this equation in a more conven-
tional way, define the body-fixed acceleration by

a′ =
d

dt

′
(
d

dt

′
r) =

d

dt

′
v′. (6.13)

Then using r = r′, we have

F = ma′ + 2mω ∧ v′ +mω ∧ (ω ∧ r′). (6.14)

Defining

Feff = F − 2mω ∧ v′ −mω ∧ (ω ∧ r′), (6.15)

Newton’s law in the body-fixed coordinate system takes the
simple form (Goldstein 1999)

Feff = ma′. (6.16)

For the important case of the rotating Earth, expressing r in
terms of components parallel to and perpendicular to ω, we
have

r = r‖ω̂ + r⊥. (6.17)

Using this form for r, the last term in Eq. (6.15) becomes

−mω ∧ (ω ∧ r) = mω2r⊥, (6.18)

which is just the centrifugal force as given in Eq. (2.12).
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6.2 Coriolis Effects in the Earth’s Atmosphere

All equations in this section are in a rotating coordinate sys-
tem rigidly attached to the Earth, so primes on vectors and
time derivatives are dropped. For a moving element of fluid,
instead of a mass m subject to a force F , we consider the
force per unit volume f1 acting on the mass density ρ. The
analog of Newton’s second law is Euler’s fluid equation, which
in our rotating coordinate system takes the form

ρ(
∂v

∂t
+ v ·∇v) = f − 2ρω ∧ v − ρω ∧ (ω ∧ r). (6.19)

In Eq. (6.19),
∂v

∂t
+ v ·∇v

is the local acceleration moving with the fluid, and the right-
hand side of the equation is the analog for a fluid of Eq. (6.15).

Treating the atmosphere as an ideal fluid (ignoring viscos-
ity), the force/volume is

f = −∇p− ρ∇Vg, (6.20)

where p is the pressure, and Vg is the gravitational potential
due to the masses in the Earth. As in Sec. (2.2), we combine
the gradient of Vg and the centrifugal force term, defining

g ≡ −∇Vg − ω ∧ (ω ∧ r). (6.21)

With these definitions, Eq. (6.19) reads

ρ(
∂v

∂t
+ v ·∇v) = −∇p− 2ρω ∧ v + ρg. (6.22)

The middle term on the right-hand side of Eq. (6.22) is the
Coriolis force/volume. It plays a crucial role in many atmo-
spheric phenomena.

1The force/mass f is not to be confused with the Coriolis parameter
f, defined below.
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Wind Circulation around Low- and High-Pressure
Regions This section deals with the direction that wind
circulates around points of high and low pressure.2 It de-
pends on whether the center of the storm is a local maximum
or minimum of pressure, and whether the storm is in the
upper or lower hemisphere.

Storms typically form a cylindrical structure, the axis of
which is aligned with the local vertical direction. Their cen-
ters do of course move, but very slowly compared to the wind
speeds in the storm, so we assume the storms are stationary,
with their axes along the local vertical direction.

For describing the coordinates of a storm, it is convenient
to take the z axis of the Earth-fixed coordinate system point-
ing in the local vertical direction, parallel to the axis of the
storm. Although storms can extend over hundreds of kilome-
ters, the extent of even a very large storm is still very small
compared to the radius of the Earth. The curvature of the
Earth therefore plays no role in describing the storm, and g
in Eq. (6.22) can be taken to be a constant vector pointing
inward along the z axis.

A point in the storm is located by giving z, the vertical
height above the surface of the Earth, and r, the horizontal
vector from the storm axis to the point of interest.3 A section
of the storm at a definite elevation z forms a horizontal plane
perpendicular to the z axis. The plane tangent to the Earth
at z = 0 is known as the “f plane” in meteorology. For
an axially symmetric storm, cylindrical coordinates are very
natural, the coordinates being z, r = |r|, and λ, where λ is
an angle specifying the angle r makes with an axis in the
same horizontal plane. The “radial direction” is simply the

2The storms considered in this section are variously known as “trop-
ical cyclones,” “cyclonic storms,” “cyclones,” and “hurricanes.”

3Note that r is not the usual radial vector in spherical coordinates.
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direction of r. Fig. (6.1) shows schematically a cyclonic storm,
the f plane, and the location of a parcel of atmosphere inside
the storm.

Writing the velocity of a point in the storm in cylindrical
coordinates, we have

v = ur̂ + vλ̂+ wẑ. (6.23)

In a cyclonic storm, the radial velocity u is the velocity of
the wind heading toward or away from the storm axis, the
azimuthal velocity v is the velocity of the wind circulating
around the storm axis, and w is the wind velocity in the
vertical direction, traveling up or down in the axial direction.

The Coriolis term in Eq. (6.22) is small compared to |g|.
Suppose a hurricane has wind speeds of 100 mph, or 44 m/s.
The duration of a day is Td = 86, 400 s, so the Coriolis term
is maximized by

|ω ∧ v| ≤ 2π

Td
|v| = 3.2× 10−3 m/s2, (6.24)

which is completely negligible compared to |g| = 9.8 m/s2.
As a result, Coriolis forces in the vertical direction can be
ignored. However, Coriolis forces in the horizontal direction
play an important role in hurricane dynamics. Such terms
could in principle come from the horizontal component of
ω crossed into the vertical term in v. However, the vertical
velocity w is the smallest wind velocity in a cyclic storm,
typically ≤ 1 m/s, so this term can also be neglected. The
horizontal Coriolis terms of interest are generated by replac-
ing ω with its vertical component, ω ∧ v → ω cos θ(ẑ ∧ v).
In meteorology, what is known as the “Coriolis parameter”
is defined by f ≡ 2ω cos θ, where ω = 2π/Td is the angu-
lar velocity of the Earth and θ is the polar angle as defined
above. Note that due to the factor of cos θ in the definition of
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f, f is positive in the Northern Hemisphere, negative in the
Southern Hemisphere, and zero on the equator. In terms of
f, the Coriolis term on the right side of Eq. (6.22) becomes a
combination of radial and azimuthal terms,

− 2ρω cos θẑ ∧ v = ρf(vr̂ − uλ̂). (6.25)

storm

Earth

r

z

θ

f−plane

Figure 6.1: Coordinates for a cyclonic storm

The dominant feature of a cyclonic storm is, as the name
implies, rotation around the center of the storm. The largest
component of v is v. As mentioned above, the vertical velocity
w is quite small, but it is also true that the radial velocity
u is much smaller than the azimuthal velocity v. As a result,
insight into the structure of a storm can be gained by setting
u = w = 0 and looking for a steady-state solution. The
solution of Eq. (6.22) obtained by doing so is termed “gradient
wind balance.” The vertical component of Eq. (6.22) reduces
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to the barometric equation

− ∂p

∂z
= ρg. (6.26)

The radial equation is

v2

r
+ fv =

1

ρ

∂p

∂r
. (6.27)

The v2/r term in Eq. (6.27) is the centripetal acceleration
familiar in elementary mechanics. It arises from the radial
component of the v ·∇v term in Eq. (6.22),

r̂ · (v ·∇v) = r̂ · (v1

r

∂

∂λ
vλ̂) = −v

2

r
. (6.28)

Let us consider the sizes of the terms in Eq. (6.27) for a
typical tropical cyclone. Taking θ = 45◦ for definiteness, the
Coriolis parameter is f ∼ 10−4 s−1. At an intermediate dis-
tance from the axis of such a storm, the velocity might be as
large as v ∼ 40 m/s, and for r ∼ 40 km, the centripetal term
v2/r is dominant, approximately ten times larger than the
Coriolis term. However, as the radius increases, the velocity
v decreases, and at r ∼ 200 km, v ∼ 10 m/s, the Coriolis term
is twice as large as the centripetal term. At still larger values
of r, the Coriolis term dominates. At very large values of r,
where the Coriolis term dominates, Eq. (6.27) becomes

fv ∼ 1

ρ

∂p

∂r
. (6.29)

We see that the sign of fv is correlated with the sign of ∂p/∂r.
For a storm which surrounds a pressure minimum, we expect
that ∂p/∂r > 0, so fv must be positive. In the Northern
Hemisphere, where f > 0, v must be positive as well; the
sense of rotation around the pressure minimum is counter-
clockwise. In the Southern Hemisphere, where f < 0, v must
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be negative; the sense of rotation around a pressure minimum
is clockwise. Both of these behaviors have been extensively
documented by satellite photos. Pressure maxima are more
rare, but do occur, e.g., in Siberia. For a storm surrounding
a pressure maximum, the sense of rotation is clockwise in the
Northern Hemisphere, counterclockwise in the Southern.

It is of interest to estimate the kinetic energy of rotation
in a cyclonic storm. At intermediate distances from the axis
of the storm, the whole system is basically in solid body rota-
tion. Taking the storm to be a cylinder of height h ∼ 15 km,
radius ∼ 30 km, regarding the system as a giant cylinder ro-
tating at a frequency ∼ f, the kinetic energy of rotation is
roughly 6 × 1013 J, quite comparable to the energy released
in the Hiroshima atomic bomb!

Jet Streams The temperature of the Earth’s atmosphere
is higher near the equator than near the North or South Pole
and the resulting lack of thermal equilibrium causes a flow
of air toward the poles in both hemispheres. The Coriolis
force then deflects these poleward flows. To get the overall
direction of the resulting force, let us assume the flow of air
is strictly toward the poles in both hemispheres. This can be
written as

v = vθθ̂, (6.30)

where θ̂ and φ̂ are the usual unit vectors for polar and az-
imuthal angles. In the Northern Hemisphere, poleward flow
implies vθ < 0; the flow is from values of θ < 90◦ toward
θ = 0. In the Southern Hemisphere, flow toward the South
Pole corresponds to vθ > 0; the flow is from an angle θ > 90◦

toward θ = 180◦. So vθ has opposite sign in the two hemi-
spheres.

Taking account of the sign change of cos θ in the two hemi-
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spheres, we see from Eq. (6.22) that the resulting Coriolis
force is along the φ̂ or eastern direction in both hemispheres;
the Coriolis force on the poleward flow is always toward the
east, regardless of hemisphere. The resulting deflection gives
the general direction of the jet streams in both Northern and
Southern Hemispheres. While this argument does give the
correct west-to-east direction of the jet streams, there are
additional complex behaviors. Perhaps the most important
of these is that jet streams, in addition to their general east-
ward flow, have oscillations in latitude. These have a major
effect on the weather in the northern United States. When
the jet stream “dips” into the northern US, bitter cold win-
ter weather is the usual result. The full physics of the jet
streams was first elucidated by the Swedish-American mete-
orologist Carl Gustav Rossby in 1939 (Rossby 1939), and the
term “Rossby wave” is associated with the oscillations of the
jet stream in the atmosphere. Rossby waves also occur in the
ocean.

6.3 Hurricanes

Hurricane as an Example of a Carnot Cycle Hurri-
canes illustrate how a simple construct can be useful in or-
ganizing and describing the features of a complex physical
phenomenon. In this case the construct is the one discussed
in Sec. (3.3), the Carnot cycle.

Hurricane, a term used in the North Atlantic for a storm
with average winds over 30m/s, is a weather system gener-
ated in tropical zones by a low-pressure area rising over the
ocean being acted upon by the Coriolis force that converts the
inward rush of air toward the eye of the storm into a circu-
lating motion. In the western Pacific such systems are known
as typhoons: the general term is severe tropical cyclone. The
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characteristics are the same everywhere.

In applying the steps of a Carnot cycle to such a storm, the
ocean acts as the heat source of an isothermal step at a con-
stant temperature T2 ≈ 300 K, the heat energy is provided by
the ocean through the evaporation of water (Emanuel 1991).
This is followed in step two of the Carnot cycle by the rapid
adiabatic expansion of the air as it rises to an altitude of order
15 km, a height where the ambient temperature is T1 ≈ 200 K.
In step three the air is cooled by radiation to outer space and
compressed; in step four the air descends adiabatically to sea
level and the cycle then resumes.

Calculation of Wind Velocity As an example of the
analogy’s usefulness, we will use it to obtain a formula for
the wind velocity in terms of the air’s heat gains and loses.
The work done in this cycle goes into the frictional dissipa-
tion that occurs as the air blows over the ocean surface. Of
course frictional dissipation is also the cause of the destruc-
tion wreaked by the storm once it makes landfall. Since the
wind’s drag force Fdrag ∝ v2, work is done by the wind over
the ocean at a rate of

dW/dt = −Fdragv = −Av2 · v,

where A is a constant. Heat is given off to the wind by the
ocean at a rate Bv, with B also a constant, representing the
lack of equilibrium between the ocean and the wind. This
heat can optimally be converted into work during the cycle
at the rate proportional to η, the Carnot cycle’s thermal ef-
ficiency,

η =
T2 − T1

T2
.

At equilibrium we may equate the rate at which heat is con-
verted into work with the rate at which work is done through
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frictional dissipation. This implies that

Av3 = ηBv.

We can therefore expect a hurricane velocity of

v2 = η(B/A) =⇒ v =

√
Bη

A
=

√
T2 − T1

T1
(B/A).

If, as we said earlier, T2 ≈ 300 K, T1 ≈ 200 K, we find

v ≈
√
B/2A,

in approximate agreement with experimental observation.
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Thermal properties of Earth’s surface above
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CHAPTER 7

Thermal Properties and Radiation at the
Earth’s Surface

7.1 Surface of the Earth

The surface of the solid Earth lies partly below sea level and
partly above sea level. As a glance at a desktop globe makes
clear, the greater fraction of the Earth’s crust lies below sea
level. In terms of area, roughly 29% of the surface area is
above sea level and the remaining 71% is below sea level. The
“hypsographic curve” is shown in Fig. (7.1). This illustrates
what percentage of the Earth’s solid surface lies above a given
elevation. The percentage starts from zero at the top of Mt.
Everest, at an elevation of 8.848 km, and reaches 100% at
the bottom of the Mariana Trench in the Pacific Ocean, at
a depth or negative elevation of 10.984 km. From the top of
Mt. Everest to the bottom of the Mariana Trench spans a
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Figure 7.1: Hypsographic curve-
Source: NOAA

distance of roughly 20 km, a large distance on a human scale,
but less than 1% of the Earth’s radius, so on a planetary
scale, the Earth’s surface is relatively smooth.

7.2 Crust of the Earth

The crust is a layer of rock lying above, or one might even
say “floating” on, the Earth’s mantle, a layer that near the
top can behave like a very viscous fluid. The oceanic crust
is 5–10 km thick with an average density of 3.0 g/cm3 while
the continental crust is typically less dense, with an average
density of 2.7 g/cm3 and a thickness that ranges from 30 to
50 km. This is a dynamic system with parts of the crust sink-
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7.4. SURFACE TEMPERATURE EQUILIBRIUM 109

ing deeper into the mantle until a condition of equilibrium
known as isostasy is reached. In Sec. (12.10) we shall go into
more detail about the behavior of the continental crust.

7.3 Composition of the Oceans

Each liter of seawater contains approximately 35 g of dis-
solved salts. The average density of seawater is 1.027 g/cm3.
The main components of the salts, 27 out of the 35 g, are
sodium and chlorine ions. Sulfur, magnesium, calcium, and
potassium ions constite almost all of the remainder. In Chap. (8),
we will discuss the thermal properties of ocean water.

7.4 Temperature Equilibrium of
the Earth’s Surface

Solar radiation is the main source of the Earth’s energy. The
total power emitted by the Sun in the form of electromagnetic
waves is called the solar luminosity, Q�. It is determined from
the average power/area reaching the Earth. This quantity
is known as the solar constant, S�. Attempts to determine
the solar constant began in the late nineteenth century. At
present, satellite measurements measure both the time depen-
dence and the mean value of S� with great accuracy. When
sunspots are at a minimum in the solar cycle, the mean value
of the solar constant is

S� = 1361 W/m2. (7.1)

This is roughly the same power that would result from thir-
teen one-hundred-watt light bulbs held directly over an area
of one square meter.
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110 CHAPTER 7. RADIATION AT THE SURFACE

To evaluate Q�, we use the fact that the total power emit-
ted by the Sun passes through every sphere surrounding the
Sun. For a sphere of radius r, the resulting intensity is

(
Q�

4πr2
)W/m2. (7.2)

Taking r to be the Earth-Sun distance Res = 149.6 × 106 km,
Q� is

Q� = 4π(Res)
2S� = 3.828× 1026 W. (7.3)

The solar luminosity is constant to within 0.1% over the last
several 11-year solar sunspot cycles.

7.5 Black Bodies and the Temperature of Sun
and Earth

A so-called black body is simply one which totally absorbs
every wavelength of radiation incident upon it. During the
nineteenth century, physicists proved a number of general the-
orems about black bodies in thermodynamic equilibrium, a
state in which the black body emits the same amount of radi-
ation that it absorbs. It should be noted that the term “black
body” is a bit of a misnomer. A totally absorbing body will
only appear to be black when its temperature is relatively low,
such as room temperature. The body will begin to glow when
its temperature is high enough so that a substantial amount
of energy is emitted in the visible part of the spectrum.

The intensity I (units: power/area/s) radiated from a black
body is known as the Stefan-Boltzmann law, which states

I = σT 4, (7.4)

where σ is the Stefan-Boltzmann constant. The value of σ is

σ = 5.67× 10−8W/m2/ (K)4.
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The value of σ, known empirically in the nineteenth century,
had been shown by general thermodynamic arguments to be
independent of the substance forming the black body. Early
in the twentieth century, after the discovery of the quantum
nature of light by Max Planck, it was realized that σ can
be expressed in terms of the velocity of light, Boltzmann’s
constant, and Planck’s constant. See Eq. (7.14).

Assuming the Sun and Earth are black bodies, their tem-
peratures can be estimated using the Stefan-Boltzmann law.
The Sun’s radius is Rs = 695, 700 km. Dividing Q� by the
Sun’s area, we have an expression for the intensity emitted
by the Sun. Applying the Stefan-Boltzmann law, we have

Is =
Q�

4πR2
s

= σ(Ts)
4. (7.5)

Solving for Ts gives

Ts = 5772K. (7.6)

Another law, derived from thermodynamic principles to-
ward the end of the nineteenth century, provides an indepen-
dent estimate of the temperature of the solar surface. Wien’s
displacement law (Landau and Lifshitz 1980) gives a relation
between the wavelength of the body’s maximum intensity of
radiation and its temperature in kelvins.

λmax · T = 2.898× 107 ÅK, (7.7)

where Å stands for the angstrom unit of 10−8 cm. The wave-
length range of visible light is 3900 Å to 7000 Å, the mid-
point being 5450 Å. From Wien’s law, a black body with
λmax = 5450 Å would have T = 5317 K, a value within 10%
of Eq. (7.6).

Assuming also that the Earth is a black body, and that the
incident intensity arises solely from incoming solar energy, the
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total incident solar energy is the product of the solar constant
and πR2

e, the area the Earth presents to the incoming radi-
ation. If the Earth were to re-radiate this energy as a black
body, we would have

S�πR
2
e = 4πR2

eσT
4
e . (7.8)

Note that in the left side of Eq. (7.8), it is the area of the
Earth’s cross-section that enters, while on the right-hand side
it is the total surface area of the Earth. Solving this equation
for Te gives

Te = 278 K, (7.9)

again a reasonable value. This calculation ignores the pres-
ence of the Earth’s atmosphere, which reflects part of the
Sun’s energy. The fraction, known as the albedo and denoted
as α, has a value of α = 0.3 for the Earth. The atmosphere
itself can be modeled as a so-called grey body, which satisfies
a modified form of the Stefan-Boltzmann law,

Igrey = εσT 4, (7.10)

where ε is the emissivity of the atmosphere, for which a rea-
sonable value is ε = 0.8. It is also worth noting, as Fermi
points out, that if the absorption of solar radiation were re-
duced by a factor A ≤ 1 and the Earth’s radiation by a factor
a ≤ 1 , Eq. (7.8) should be modified by multiplying the left
side by A and the right side by a. The result would be

Te = 278K · (A/a)1/4. (7.11)

As a rough estimate of these effects, set A = 1−α = 0.7, and
a = ε = 0.8. The effect is to reduce the temperature of the
Earth’s atmosphere from Te = 278 K to Te = 268 K.

The assumption that the Earth is effectively a black body
is only a rough approximation. In particular the structure
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of many molecules makes for a very selective absorption. An
example is water, which absorbs strongly in the infrared and
is relatively transparent in the visible range. Despite these
complications, assuming black body behavior for both Earth
and Sun gives a reasonable estimate for the mean temperature
of the Earth’s atmosphere.

With regard to the actual balance between absorption of
solar radiation and re-radiation by the Earth, a full under-
standing is complicated by strong dependence on cloud cover,
the mix of gases in the atmosphere, and a myriad of other fac-
tors. A schematic picture of how that balance is achieved is
presented in Fig. (7.2).

Figure 7.2: Energy balance; figure courtesy of Kevin
Trenberth, John Fasullo, and Jeff Kiehl, USNCAR
(National Center for Atmospheric Research)

Fermi provides a few lines of estimates of thermal balance,
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displaying how intake and outtake roughly match for the case
of the sea. He also notes a striking fact that we will return
to and discuss in detail in Chap. (15), namely that the heat
reaching the surface from the Earth’s interior, roughly due in
equal parts to heat from the Earth’s formation and decay of
radioactive isotopes, is negligible compared to heat from the
Sun, less than one part in a thousand. It is nevertheless cru-
cial because it controls the geological features of the Earth:
plate tectonics, igneous activity, etc. Rock is, however, such
a poor conductor that the Earth’s surface is practically insu-
lated from it.

7.6 Planck’s Spectral Radiance Formula

In 1900 Max Planck wrote his famous formula, marking the
beginning of the quantum era. The formula is for the spectral
radiance of a black body at temperature T. The term “radi-
ance” implies power per unit area per unit solid angle. The
addition of “spectral” means per unit frequency. The SI unit
for spectral radiance is watts/meter2/steradian/frequency.
Denoting the spectral radiance by B(ν, T ), Planck’s formula
as a function of frequency ν and temperature T is

B(ν, T ) =
2hν3

c2
[exp(

hν

kT
)− 1]−1, (7.12)

where k is Boltzmann’s constant, c is the velocity of light,
and h is Planck’s constant. Planck’s derivation required the
concept that any form of electromagnetic radiation be made
up of packets of energy, photons, each one having an energy
hν.

Integrating B(ν, T ) over all frequencies leaves a quantity
with units of watts/meter2/steradian. A subsequent solid an-
gle integration would produce a quantity with the same units
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as occur in the Stefan-Boltzmann law. The actual relation
between the Stefan-Boltzmann law and Planck’s formula is

σT 4 =

∫ 2π

0
dφ

∫ π/2

0
sin θ cos θdθ

∫ ∞
0

dνB(ν, T ). (7.13)

The angular integral in Eq. (7.13) has two features worth not-
ing: (1) the upper limit of the θ integral is π/2 rather than π;
and (2) there is a factor of cos θ in the integrand. Both can
be understood by considering a cavity containing black body
radiation, with a small opening of area ∆A, from which black
body radiation escapes. Erecting an outward normal to ∆A,
it is clear that radiation which escapes the cavity must have
polar angle θ in the range 0 to π/2. The factor of cos θ can
be understood by considering the current of photons headed
from inside the cavity toward the opening ∆A. Let e(ν, T ) be
the energy density of photons/solid angle/frequency in the
cavity. This is related to B(ν) by e(ν, T )c = B(ν, T ), where
c is the velocity of light. The energy which arrives at ∆A per
unit time/area/solid angle/frequency is e(ν, T )(c cos θ). It is
evident that the photon energy current is proportional to the
velocity with which the photons approach the opening. For
a photon approaching the opening at angle θ to the normal,
this velocity is c cos θ. This is the origin of the cos θ in the
integral of Eq. (7.13).

The integral in Eq. (7.13) is a standard one. The final
result is

σT 4 =
2k4π5T 4

15c2h3
. (7.14)

Eq. (7.14) is a striking result in that it shows that constant
σ can be evaluated via Planck’s formula in terms of other
known physical constants, including Planck’s constant. Since
Wien’s displacement law is simply a statement of the location
of the frequency peak of radiation from a black body, it must
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be equivalent to
∂B(ν, T )

∂ν
= 0.

The constant in Wien’s law is therefore also given by the fun-
damental parameters in Planck’s law. It is worth noting that
the Planck distribution for sunlight regarded as a function of
wavelength has a broad maximum that closely matches the
visible range of 3900 Å to 7000 Å.

7.7 Special Cases

In order to illustrate the range of the formulas derived in
the previous section, Fermi shows how they could be used to
consider the completely unphysical case in which absorption
and emission of radiation from the Sun by the Earth only
took place at a single frequency, ν0. To do so we would have
to replace Eq. (7.8) by absorption and emission at that single
frequency,

B(ν0, Ts)
4πR2

s

4πd2
πR2

e = 4πR2
eB(ν0, Te), (7.15)

where d is equal to the distance between the Earth and the 
Sun (149.5 × 106 km). Rearranging this equation slightly, we 
have

4
d2

R2
s

=
exp(hν0kTe

)− 1)

exp(hν0kTs
)− 1)

. (7.16)

The left-hand side is approximately equal to 18.6×104. Fermi
looked at two limits, one in which hν0/kTe � 1 and the other
in which hν0/kTe � 1. In the first case we see

18.6× 104 ≈ Ts
Te
⇒ Te ≈ 0.03 K. (7.17)
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Of course the Earth’s temperature is so low because the pho-
tons being absorbed have very low energy. Conversely, for
hν0/kT � 1 the equality of Eq. (7.16) implies Te ≈ Ts. In
one of these examples the Earth’s temperature is almost ab-
solute zero and in the other it lies close to that of the Sun.
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CHAPTER 8

Thermal Properties of the Ocean

The oceans of the Earth form an enormously complex sys-
tem whose behavior has important effects on a huge range
of human activities. Oceans contain flows of both seawater
and heat, e.g., the Gulf Stream. They are acted upon by
solar energy, wind, and freshwater input. Physical quantities
relevant for describing ocean behavior are temperature, fluid
velocity, seawater density, and salinity.

Our treatment of the ocean’s thermal behavior is necessar-
ily brief. In the next two sections, Secs. (8.1) and (8.2), we
introduce the notion of heat current and derive an equation
that can describe the flow of heat in the ocean. In Sec. (8.3),
we present Fermi’s application of the heat equation to the
diurnal behavior of the ocean near its surface. Finally, in
Secs. (8.4) and (8.5), we give an overview of the variation of
temperature with ocean depth and ocean circulation.
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8.1 Heat Current and Thermal
Conductivity

The direction of heat flow in a body is from higher to lower
temperatures. The heat current density, q, normally specified
in units of watts per square meter (W/m2), measures the rate
at which heat flows across unit area. In the simplest situation
(no convection or mixing), the heat current is linear in the
temperature gradient,

q = −κ∇T, (8.1)

where κ is the heat conductivity of whatever material is con-
ducting heat. The SI unit of κ is W/m K.1 Examples of κ,
all in W/m K, are copper, 401; seawater, 0.62; air at 25◦C,
0.026. Water, and seawater in particular, has a value of heat
conductivity three or four times greater than wood or wool,
but only a fourth that of common rock and, as seen above,
far less than that of metals. Seawater or water in general
may be said to be a rather poor conductor of heat. In fact
the temperature of the ocean falls only by about 20◦C from
the surface to a depth of 1000 m. Estimating the gradient of
temperature to be 0.02◦C/m, the downward heat current is
approximately 1.2 W/m2, a quite small value.

Fermi emphasizes the relative smallness of the heat conduc-
tivity of seawater by comparing the effects of thermal conduc-
tivity in seawater to the actual rate at which heat is transmit-
ted by “mechanical exchanges” such as currents or convection
in general. The difference is roughly a factor of 105. Using
κsw = 0.62 W/m K, and multiplying the heat conductivity of
seawater by 105, Fermi defines an “effective thermal conduc-
tivity,” κeff ∼ 6.2 × 104 W/m K, or κeff ∼ 143 cal/cm s K.

1The relation to an older commonly used unit is 1 W/m K = 2.39×
10−3cal/cm s K.
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Using κeff instead of κsw in Eq. (8.1) provides a simple way
to estimate the effects of mechanical exchanges. An example
of this is given in Sec. (8.3).

8.2 The Heat Equation

Local Heat Absorption In the thermodynamics of a uni-
form system, the heat transfer and the change in entropy are
related by

dQ = TdS. (8.2)

For a fluid system in local equilibrium, the heat transferred
to a system per second is given by the surface integral of the
heat current. The rate of heat transfer to a volume of fluid is

dQ

dt
= −

∫
S

(q · dA), (8.3)

where S is the surface bounding the system, and dA is di-
rected along the outward normal of a surface element. The
minus sign in Eq. (8.3) assures that −(q · dA) is the rate
at which heat flows across dA into the volume V. Using the
divergence theorem to transform the surface integral to a vol-
ume integral, we have

dQ

dt
= −

∫
V

(∇ · q)dV. (8.4)

From Eq. (8.4), it follows that −∇ ·q is the local rate of heat
transfer/volume. From the second law of thermodynamics,
this must equal the product of temperature and the rate of
change of the entropy/volume, ρs, where ρ is the mass den-
sity, and s is the entropy/mass. We have

T
d

dt
(ρs) = −∇ · q. (8.5)
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In Eq. (8.5) the time derivative for a moving fluid must be
the “substantial derivative,” or the derivative moving with
the fluid, as in Euler’s fluid equation. Eq. (8.5) thus becomes

T [
∂(ρs)

∂t
+ v ·∇(ρs)] = −∇ · q, (8.6)

or

T [s(
∂ρ

∂t
+ v ·∇ρ) + ρ(

∂s

∂t
+ v ·∇s)] = −∇ · q. (8.7)

Since ρ obeys the continuity equation, as we see in Eq. (9.2),
this simplifies to

Tρ(
∂s

∂t
+ v ·∇s) = −∇ · q. (8.8)

Eq. (8.8) ignores viscous effects, but viscosity is negligible for
both water and air. It is worth noting that if ∇ · q = 0,
Eq. (8.8) states that s obeys its own continuity equation; mov-
ing with the fluid, the entropy/mass is constant.

Heat Equation The elimination of entropy in Eq. (8.8)
takes place after a replacement of the form Td(ρs) → cdT,
where c is a specific heat/mass for the fluid, in this case sea-
water. Fermi does not specify whether c means the specific
heat at constant volume, cv, or at constant pressure, cp. To
see why, it is useful at this point to review a few facts about
the specific heat of seawater. These are as follows: (1) at all
depths of the ocean, the values of cp and cv are within 1% of
each other; and (2) over the tremendous range of pressures
that exist between the surface and bottom of the ocean, cp
and cv vary by less than 10%. Remarks (1) and (2) also hold
accurately in going from pure water to water with the saline
content found in ocean water.
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So, although the pressure varies over a large range in the
ocean, the two common specific heats are essentially equal
and insensitive to the pressure. In what follows, we will de-
note the common specific heat as csw, assumed constant, with
the well-determined surface value csw = 4.0 kJ/kg K.

Making the replacement Td(ρs)→ cswdT, and using Eq. (8.1)
for q, Eq. (8.8) becomes

(ρc)sw(
∂T

∂t
+ v ·∇T ) = −∇ · q. (8.9)

Eq. (8.9) is quite general. In particular, it can be applied
when convection and mixing are present. When the heat
current is given by Eq. (8.1) and the fluid is at rest, Eq. (8.9)
reduces to the familiar form of the heat equation,

∂T

∂t
= χsw∇2T, (8.10)

where
χsw = (

κ

ρc
)sw (8.11)

is the “thermal diffusivity.” Using ρsw = 1024 kg/m3, κsw =
0.6 W/m K, and csw = 4 kJ/kg K, we have χsw = 1.47 ×
10−7 m2/s. The diffusivity is tabulated for many materials.
As is obvious from Eq. (8.11), better heat conductors have
higher χ values. For example the thermal diffusivity of gold
is larger than χsw by a factor of roughly 1000.

8.3 Diurnal Temperature Variation

We now turn to Fermi’s application of Eq. (8.10) to the flow
of heat near the surface of the ocean. The heat flow is taken
to be perpendicular to the surface of the sea, so we have a
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single spatial derivative,

∂T

∂t
= χsw

∂2T

∂z2
. (8.12)

The solution sought has both oscillatory and nonoscillatory
time variation. The former has a frequency determined by the
length of a day and accounts for the daily variation in heat
incident on the ocean’s surface. The nonoscillatory terms
allow for a mean temperature and mean temperature gradient
in the ocean. Taking the positive direction for z downward,
a solution of Eq. (8.12) which satisfies these conditions is

T (z) = A+Bz + C exp(−iωt) exp(−az + ibz), (8.13)

where A,B,C, a, b are all constant, and we temporarily drop
the sw subscript. We will eventually superpose the oscillatory
term in Eq. (8.13) and its complex conjugate to obtain a real
function. Demanding that the trial form satisfy Eq. (8.12),
we have

− iω = χ(−a+ ib)2 = χ(a2 − 2iab− b2), (8.14)

or
ω = χ[i(a2 − b2) + 2ab]. (8.15)

The real and imaginary parts of this equation give

a2 = b2, (8.16)

ω = 2χab.

On physical grounds a must be positive. From Eqs. (8.16),
we have |b| = |a|, with b and ω having the same sign. Using
all this, a real form for T (t, z) is

T (t, z) = A+Bz + δT cos(ωt− az + η)e−az, (8.17)
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where η is a constant phase. For the application of interest,
ω is determined by the length of a day, 86, 400 s, so

ω =
2π

86, 400
rad/s, (8.18)

and
a =

√
ω

2χ
. (8.19)

Before evaluating a, let us determine A and B. If we average
over one day, the oscillatory terms in T (t, z) give zero. De-
noting the temperature averaged over a day at sea level by
T̄0, and that at depth z = −d by T̄d, A and B are determined.
Our formula for T (t, z) becomes

T (t, z) = T̄0 +
T̄0 − T̄d

d
z + δT cos(ωt− az + η)e−az. (8.20)

As reasonable values we may take the average ocean temper-
ature at sea level to be 22◦C and 4◦C at d = 1000 m. These
would give

T (t, z) = 22◦C+(1.8×10−2 C/m)z+δT cos(ωt−az+η)e−az.
(8.21)

We will not attempt to find δT quantitatively, but from the
variation of air temperature over a day at sea level, a rough
estimate of δT is a few C.

Finally, let us determine a. Using Eq. (8.18) and our value
of χsw from above, we have

asw = 15.7m−1, or
1

asw
= 6.6 cm. (8.22)

This result implies that the oscillatory term in the tempera-
ture is damped away at quite small depths. For example, if
z = 25 cm the oscillating term in T (t, z) is reduced to only
2% of its sea level value, and by a depth of 1 m the oscillating
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term would be too small to detect. In contrast, actual data
taken from the ocean show diurnal variations of temperature
of approximately 0.15◦C at a depth of 5 m. The likely cause of
this is that the simple form of heat current given in Eq. (8.1)
does not apply. Convection and mixing are certainly present
in the layer of the ocean nearest the surface. A remedy for
the situation is, following Fermi, to use the effective heat con-
ductivity κeff ∼ 6.2×104 W/m K. This raises χsw by a factor
of 103 and increases 1/a by

√
1000, so we have

1

asw
→ 1

aeff
= (
√

1000)6.6 cm = 209 cm,

a step in the right direction. The fact that diurnal tempera-
ture variations are observable at a depth of 5 m is a definite
indication that the actual heat current is much larger than
the simple form of Eq. (8.1) evaluated using κsw.

For annual variations the a is smaller than the daily value
by a factor of

√
365. The diurnal and seasonal variations in

temperature are smaller in bodies of water than on dry land,
principally because of water’s large specific heat.

8.4 Temperature of Seawater

The subject of ocean circulation is a complicated one, ordi-
narily treated in an oceanography course, but a few remarks
along the lines of those articulated by Fermi are appropri-
ate here. The main source of surface water heating is so-
lar radiation, more than twice as great near the equator as
near the poles, while the difference in re-radiation is compar-
atively small. The average surface temperature is approxi-
mately 17◦C, but temperatures as low as −2◦C have been
recorded near the poles and as high as 36◦C in the Persian

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



8.4. TEMPERATURE OF SEAWATER 127

Table 8.1: Average surface temperature versus latitude

Latitude (◦N) 0 30 60 90

Temperature(C) 27.1 21.3 4.8 –1.7

Gulf. Temperatures below zero are possible because of sea-
water’s salinity: at the average salinity value of 35 parts per
thousand in weight, water does not freeze until −1.94◦C. In
Table (8.1) we show some average surface temperatures at
different latitudes.
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Figure 8.1: Ocean temperature vs. depth
Source: NOAA

Though solar heat is absorbed primarily in the top centime-
ters of the ocean’s surface, winds and waves distribute that
surface heat sufficiently to the top 100 m to keep the temper-
ature relatively uniform. Below that level we have a precip-
itous drop in temperature in a region of rapid temperature
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change known as a thermocline; it is shown in Fig. (8.1) for a
latitude near the equator. Further down, starting at a depth
of approximately 1000 m, we reach what is known as the deep
ocean, a region containing some 90% of the ocean’s volume.
From this depth, temperature remains approximately con-
stant, typically at between 0◦C and 3◦C, with an average esti-
mated at 2.5◦C. The thermocline is of course only pronounced
in regions of the ocean where the surface temperature is con-
siderably above that of the deep ocean. The amount of heat
flowing downward in the ocean may also be estimated by cal-
culating κeffdT/dz. Taking a section of the thermocline in
which the temperature drops by 1◦C in a kilometer, we have

κeffdT/dz ≈ 0.62 W/m2. (8.23)

For deep freshwater, such as found at the bottom of deep
lakes, the absence of salts leads to an average temperature of
≈ 4◦C.

8.5 Ocean Circulation

As already mentioned, Fermi emphasizes that what he calls
“mechanical agitation” is by far the primary factor in the ther-
mal balance of ocean water. The presence of currents with
different temperatures has been known for centuries; for ex-
ample, Benjamin Franklin documented the existence of what
we now call the Gulf Stream in a record of ocean temperatures
he measured during a crossing of the Atlantic.To understand
the existence of currents, salinity also needs to be taken into
account.

High-salinity water is denser and tends to sink, causing
a sideways movement of less-dense water to replace it. The
interplay between temperature and salinity is so important
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that scientists speak of thermohaline circulation in describ-
ing the system of currents that constitute what is sometimes
known as the global conveyor belt, a system of sinking and
rising masses of water that dictates both the surface and deep
ocean flow of water throughout our planet.
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CHAPTER 9

Gravity Waves

Fermi discusses waves that propagate on the surface of oceans
and lakes. The fluid in question is water and gravity is the
external force acting on the fluid. Such waves are often called
“gravity waves.” These are not to be confused with the re-
cently detected waves of the same name discovered in 2015.
The latter represent oscillations of the very fabric of space
and time. The gravity waves which propagate on the sur-
face of water have a counterpart in surface seismic waves, the
subject of Chap. (13).

9.1 Dispersion Relations

The relation between frequency f and wavelength λ of any
wave is called its “dispersion relation.” Rather than a for-
mula for f(λ), the relation is often expressed as ω(k), where
ω = 2πf, and wave number k = 2π/λ. In either language, the
dispersion relation determines the velocity of propagation of
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the waves. There are actually two velocities. The phase ve-
locity, vp, is defined by

vp ≡
ω

k
= fλ =

λ

T
,

where T is the period. For an infinitely long wave, the phase
velocity specifies the velocity of propagation of surfaces of
constant amplitude or “phase.” However, infinitely long waves
with definite frequency and wavelength are an idealization.
A physically realizable wave is constructed by superposing a
continuum of wavelengths near a dominant wavelength. Such
wave packets, as they are called, move with the group velocity,
vg, defined by

vg ≡
∂ω

∂k
=

∂f

∂(1/λ)
. (9.1)

9.2 Euler’s Equation and the
Equation of Continuity

The equations of fluid dynamics are macroscopic equations,
replacing a microscopic description at the molecular level
with a small number of average quantities: (1) the mass den-
sity ρ; (2) the local velocity v; and (3) the pressure p. This is
similar to what is done in thermodynamics, but variation of
quantities in space and time are allowed in fluid dynamics.

For the analysis of surface waves in water, one of the two
fluid equations needed is the equation of continuity,

∂ρ

∂t
+∇ · (ρv) = 0, (9.2)

which states that water is neither created nor destroyed. It is
very similar to the equation in electrodynamics stating that
electric charge is neither created nor destroyed.
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The other equation needed is Euler’s equation,

ρ(
∂v

∂t
+ v ·∇v) = −∇p− ρ∇Vg, (9.3)

where Vg is the gravitational potential. For waves travel-
ing on the surface of the ocean or a lake, Vg is given by the
elementary formula Vg = gz, where z is the local vertical
coordinate.1 Euler’s equation is the expression of Newton’s
second law for a fluid. The right-hand side of Eq. (9.3) is
the force/volume acting on the fluid. The term −∇p is the
force/volume produced by the spatial variation of pressure.
A difference of pressure on opposite sides of a small volume of
fluid produces a net force in the direction of decreasing pres-
sure. The term in Vg is the force/volume exerted on water by
the Earth’s gravity. Water is accurately described as an “ideal
fluid,” meaning viscous forces are negligible, so there are no
other terms on the right side of Eq. (9.3). The left side of
Euler’s equation is the rate of change of momentum/volume
of the fluid. In Newton’s second law, as applied to the mo-
tion of a projectile, the acceleration is evaluated along the
trajectory of the projectile. The same must hold for a small
volume of fluid. Such a volume may have a velocity at time
t of v(x, t). At an instant dt later, the velocity of this small
volume including its motion is

v(x+vdt, t+dt) = v(x, t)+(
∂v

∂t
(x, t)+v ·∇v(x, t))dt. (9.4)

From this, we see that the rate of change of v moving with
the fluid is (

∂v

∂t
(x, t) + v ·∇v(x, t)

)
. (9.5)

The presence of the v ·∇v term makes Euler’s equation non-
linear and very difficult to solve. We will proceed by ignoring

1Note that in this section the z axis points upward.
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quadratic terms in the velocity, and define the conditions for
which this is valid after the solution of the linearized equation
has been found.

9.3 Small Amplitude Surface Waves

Water occupies the region z < 0, with the atmosphere in the
region z > 0. We are seeking a surface wave, one whose am-
plitude is largest at the water surface, damped when moving
deeper into the water. As is typical for most fluid waves,
there are no vortices present, so ∇ × v = 0. This allows the
velocity to be derived from a velocity potential,

v =∇φ. (9.6)

Treating the density of water as constant, and using the conti-
nuity equation, Eq. (9.2), we also have ∇ ·v = 0. The vanish-
ing of ∇ ·v along with Eq. (9.6) implies the Laplace equation
for φ,

∇ · v = 0→ ∇2φ = 0. (9.7)

Euler’s equation (for the case where quadratic terms in the
velocity can be neglected) is

ρ
∂v

∂t
= −∇(p+ ρgz). (9.8)

As discussed explicitly below, ignoring quadratic terms in
the velocity is justified if the wavelength of the wave is large
compared to the amplitude of the wave.

Using Eq. (9.6) and the constancy of ρ to rewrite Eq. (9.8),
we have

ρ
∂

∂t
∇φ =∇(ρ

∂φ

∂t
) = −∇(p+ ρgz). (9.9)
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It is desirable to remove the gradient operator in Eq. (9.9) and
get an equation relating the time derivative of the velocity
potential directly to the pressure and gravitational potential.
To proceed, consider first the case where the fluid is at rest
and φ ≡ 0. Then we have

∇(p+ ρgz) = 0. (9.10)

If the surface of the water is at z = 0, the pressure is the
atmospheric pressure, pa. The solution to Eq. (9.10) is given
by the barometric formula

pb(z) + ρgz = pa. (9.11)

Returning to Eq. (9.9), we will take φ to be a traveling wave
which satisfies Laplace’s equation in spatial variables. Re-
moving the gradient, we now write

− ρ∂φ
∂t

= p− pb = p− pa + ρgz. (9.12)

Eq. (9.12) builds in the barometric formula when the ampli-
tude of the traveling wave is reduced to zero. We take our
surface wave to be moving in the x direction with wave num-
ber k and frequency ω. As a trial form, we set

φ = A cos(kx− ωt)ekz. (9.13)

Computing second derivatives, we have

∂2φ

∂x2
= −k2φ, (9.14)

∂2φ

∂z2
= k2φ,

so Laplace’s equation is satisfied. Writing the exponential
factor in φ as exp(2πz/λ), we see that the penetration depth
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is λ/2π, so longer wavelengths penetrate more deeply into the
ocean.2

Returning to Eq. (9.12), we have

− ρωA sin(kx− ωt)ekz = p− pa + ρgz. (9.15)

When the wave is present, the surface of the water is no longer
at z = 0, but at a variable distance, z = ξ(x, t). The pressure
at the surface is of course still atmospheric. At z = ξ(x, t)
and atmospheric pressure, Eq. (9.15) becomes

− ρωA sin(kx− ωt)ekξ = ρgξ. (9.16)

This equation determines the wave amplitude ξ(x, t). How-
ever, there is no need to solve it exactly. We are interested
in waves of small amplitude, i.e., amplitude much less than
the wavelength. Since kξ = 2πξ/λ, we have kξ << 1, so the
factor exp(kξ) ∼ 1. Setting exp(kξ) = 1, Eq. (9.16) now gives
an explicit formula for ξ(x, t). Taking the time derivative of
ξ gives the z component of velocity at the water’s surface,

∂ξ

∂t
= (vz)surface =

ω2

g
A cos(kx− ωt). (9.17)

But vz at any point in the water or on its surface is given by

vz =
∂φ

∂z
.

Taking the derivative with respect to z of Eq. (9.13), we have

vz = kA cos(kx− ωt)ekz. (9.18)

Evaluating this at z = ξ, again setting exp(kξ) = 1, gives a
second formula for the z component of velocity at the surface,

(vz)surface = kA cos(kx− ωt). (9.19)
2In Appendix C, we analyze a surface wave that travels in the Earth’s

crust, where again the penetration depth is controlled by the wavelength.
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Equating the two expressions gives

ω2

g
A cos(kx− ωt) = kA cos(kx− ωt), (9.20)

which gives the dispersion relation

ω2 = kg. (9.21)

The phase velocity is

vp =
ω

k
=

√
g

k
=

√
gλ

2π
. (9.22)

The group velocity is 1/2 the phase velocity,

vg =
∂ω

∂k
=

1

2

√
g

k
=

1

2

√
gλ

2π
. (9.23)

In the present approximation, discussed in the next section,
surface waves can be superposed, interfere, scatter off islands,
etc. Much more detail on these topics is given in Kinsman’s
book (Kinsman 1965).

Criterion for Dropping Quadratic Terms in Fluid Ve-
locity When is it valid to drop quadratic terms in the fluid
velocity? If quadratic terms are to be ignored, we must have

∂v

∂t
>> v ·∇v. (9.24)

For a wave with frequency ω and wave vector k, this condition
becomes

ωv >> v · kv. (9.25)

Canceling a factor of v, and dividing by k, Eq. (9.25) becomes

vp =
ω

k
>> |v|. (9.26)
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This says that the phase (or group) velocity should be large
compared to the velocity of the particles in the fluid. For
particles at the surface of the fluid, the velocity is ∼ kA ∼
A/λ, so dropping quadratic terms is justified if

A

λ
<<

√
gλ. (9.27)

For a fixed A, this criterion will be satisfied for sufficiently
large wavelength λ, or for a fixed wavelength, it will be satis-
fied for sufficiently small A. As a numerical example, suppose
λ = 10 m. For this wavelength, vp ∼ 4 m/s. Then A/λ << vp
will be satisfied for A/λ in the range of 0.4 m/s or smaller.

Surface Waves in Water of Finite Depth The preced-
ing discussion described the case where the depth of the body
of water being considered was effectively infinite. The case
of water of finite depth, h, can be treated by a simple gener-
alization of the trial form of Eq. (9.13). For a finite depth of
water, both exp(kz) and exp(−kz) are allowed in the veloc-
ity potential. The boundary condition at the bottom of the
body of water is that the velocity normal to the surface must
vanish, i.e., vz = 0. A trial form that satisfies the Laplace
equation is

φ = A
cosh[k(z + h)]

cosh(kh)
cos(kx− ωt). (9.28)

The z component of velocity is

vz =
∂φ

∂z
= Ak

sinh[k(z + h)]

cosh(kh)
cos(kx− ωt). (9.29)

This vanishes at z = −h, so the boundary condition at the
bottom of the body of water is satisfied. The rest of the

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



9.3. SMALL AMPLITUDE SURFACE WAVES 139

calculation proceeds in a similar manner to the case of un-
limited depth. Eq. (9.12) applies here as well. Taking the
time derivative of φ, the generalization of Eq. (9.15) is

− ρωAcosh[k(z + h)]

cosh(kh)
sin(kx− ωt) = p− pa + ρgz. (9.30)

We have atmospheric pressure at the water’s surface, and
z = ξ(x, t). At the surface, Eq. (9.30) reduces to

− ρωAcosh[k(ξ + h)]

cosh(kh)
sin(kx− ωt) = ρgξ. (9.31)

Ignoring ξ compared to h, we obtain an explicit formula for
ξ,

ξ(x, t) = −ωA
g

sin(kx− ωt). (9.32)

The time derivative of ξ gives (vz)surface. Equating this to
(vz)surface obtained from Eq. (9.29) gives

ω2A

g
cos(kx− ωt) = Ak tanh(kh) cos(kx− ωt), (9.33)

where we again ignore ξ compared to h. Dividing common
factors on both sides, the dispersion relation for surface grav-
ity waves in water of finite depth is

ω2 = gk tanh(kh). (9.34)

We see that Eq. (9.34) reduces to Eq. (9.21 ) when kh >> 1,
or h >> λ/2π. Actually, since tanh(2πh/λ) approaches unity
rapidly, Eq. (9.34) is essentially exact once h > λ/2.

Qualitative Behavior One of the most interesting fea-
tures of surface gravity waves is the nonlinear relationship be-
tween wavelength and period. Taking the case where h > λ/2
and Eq. (9.21) is valid, we have

λ =
g

2π
T 2, (9.35)
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Table 9.1: Wavelengths and phase velocities for surface
gravity waves

T (s) λ(m) vp(m/s)
1 1.56 1.56
10 156 15.6
100 15,600 156
1000 1.56× 106 1560

where λ = 2π/k is the wavelength and T = 2π/ω the period.
In Table (9.1), we show the period, wavelength, and phase
velocity for various periods. The behavior seen in the table
is quite different from waves such as sound and light waves,
where the wavelength grows linearly with T, and the phase
velocity is independent of T.

Table (9.1) is for the case h > λ/2, where Eq. (9.21) holds.
For waves on the open ocean, taking a typical depth of h =
4000 m, such waves will not “feel the bottom” for λ < 8000 m
or T < 72 s. Now suppose a wave of period T < 72 s moves
from the open ocean, with wavelength given by Eq. (9.35),
into shallow waters, where λ < h/2 is no longer satisfied.
Using Eq. (9.34), we have

λ =
g

2π
T 2 tanh(

2πh

λ
). (9.36)

From this equation, we can see that if h is significantly less
than λ, the wavelength will be smaller than its large h value
given by Eq. (9.35), so for a given period of the wave, the
wavelength decreases when the wave moves from the open
ocean toward the shore. As an example, suppose T = 10 s. In
the deep ocean, this corresponds to a wavelength λ = 156 m.
Moving to shallower water, the wavelength is reduced to ∼
70 m at a depth of h = 12 m.

Fermi considers two situations: that of a wave sweeping
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across either a lake or an ocean, both involving h � λ and
therefore both making use of Eq. (9.36). For h << λ, Eq. (9.36)
simplifies to

λ =
√
ghT, (9.37)

so in this limit, surface waves have velocity independent of
period. For a lake of depth h = 300 m and width a = 20 km,
a wave with a maximum on one side and a minimum on the
other side will have λ = 2a = 4 × 104 m. Eq. (9.37) gives
T = 738 s.

For the analogous case of an ocean tide, Fermi chooses h ∼
4000 m, a depth lying roughly in between the average depths
of the Pacific and Atlantic Oceans, and as width he chooses
a ∼ 4000 km. In this case the period for the disturbance is

T ∼ 4× 104 s,

a little less than 12 hours. The ocean, or any body of water,
has its own characteristic modes of oscillation. In addition,
ocean tides are driven by the gravitational forces of the Sun
and Moon. This is discussed in detail in the next chapter.
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CHAPTER 10

Tide Physics

10.1 Effects of the Moon

The Moon exerts an overall force of attraction on the Earth.
According to Newton’s law of gravity, this force is given by

Fem =
GMmMe

R3
R, (10.1)

where R is the vector from the Earth’s center of mass to the
Moon.1 In addition to this total force, the Moon exerts what
are known as “tidal forces” on the Earth. To define exactly
what a tidal force is, consider the gravitational force of the
Moon on a small mass δ, which is located at a position r,
either in the interior of the Earth or on its surface.

The vector pointing to the Moon from the location of δ is

1The Moon will be treated as a point mass in what follows.
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R

d r

r̂ χ̂

Earth

Moon

χ

Figure 10.1: The Earth-Moon system

d = R− r. Again using Newton’s law, the force on δ is

Fδm(r) =
GMmδ

d3
d =

GMmδ

|R− r|3
(R− r). (10.2)

Extracting the factor of δ in Eq. (10.2), we can define the
Moon’s gravitational acceleration at r by

gm(r) ≡ GMm

|R− r|3
(R− r). (10.3)

At r = 0, gm(r) reduces to

gm(0) =
GMm

|R|3
(R). (10.4)

Comparing to Eq. (10.1), we see that

Fem = gm(0)Me. (10.5)

It is clear from Eq. (10.5) that gm(0) is the acceleration due
to the Moon that the entire Earth experiences (Stacey 1969).
Every part of the Earth’s mass, including the small mass δ,
experiences this acceleration. The tidal acceleration is defined
to be the difference between gm(r) and gm(0),

gtm(r) ≡ gm(r)− gm(0). (10.6)
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Using Eqs. (10.2), (10.3), and (10.4), we can express the Moon’s
force on the small mass δ as

Fδm(r) = gtm(r)δ + gm(0)δ. (10.7)

The second term in Eq. (10.7) is just the contribution of δ to
the total force exerted by the Moon on the Earth. The first
term, gtm(r)δ, is the tidal force on δ. By acting differently on
its constituent parts, tidal forces in general tend to change
the shape of a massive body.

Substituting from Eqs. (10.3) and (10.4), we have

gtm(r) =
GMm

|R− r|3
(R− r)− GMm

R3
R. (10.8)

Since the ratio of the Earth’s radius to the Earth-Moon dis-
tance is small (1.66 × 10−2), it is a good approximation to
evaluate gtm(r) to first order in r/R. Expanding the factor
1/|R− r|3, we have

1

|R− r|3
=

1

R3
[1− 2r cosχ

R
+ (

r

R
)2]−3/2 (10.9)

=
1

R3
(1 +

3r cosχ

R
+ . . .).

Substituting this expression into Eq. (10.8) and keeping only
terms of order r/R, we have

gtm(r) =
GMm

R3

(
3r cosχ

R
R− r

)
. (10.10)

It is useful to break R into components tangent and perpen-
dicular to the Earth at r. In terms of the unit vectors r̂ and
χ̂ (see Fig. (10.1)), R is

R = R(r̂ cosχ− χ̂ sinχ). (10.11)
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Substituting this expression into Eq. (10.10), gtm(r) becomes

gtm(r) =
GMm

R2
(
r

R
)
(
r̂(3 cos2 χ− 1)− χ̂ 3 sinχ cosχ

)
.

(10.12)

Moon

Earth

Figure 10.2: Tidal forces on the Earth’s surface

Fig. (10.2) is an arbitrary section through the center of
the Earth and shows the pattern of tidal forces derived from
gtm(r) acting at the Earth’s surface. On the hemisphere clos-
est to the Moon, tidal forces tend to push matter toward the
point which lies nearest to the Moon. On the hemisphere
further from the Moon, the pattern repeats with tidal forces
pushing matter to the point farthest from the Moon. The
tidal force tangent to the Earth has maximal magnitude at
χ = π/4 and χ = 3π/4.
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10.2 The Tidal Potential

The tidal acceleration due to the Moon can be derived from
a tidal potential, as Wtm,

gtm(r) = −∇Wtm(r) = −(r̂
∂

∂r
+ χ̂

1

r

∂

∂χ
)Wtm(r). (10.13)

It is easy to check that taking the negative gradient of

Wtm(r) = −GMmr
2

2R3
(3 cos2 χ− 1) (10.14)

reproduces Eq. (10.12) for gtm(r). Regarded as a function of
χ, Wtm(r) has minima at χ = 0 and χ = π. These correspond
to the points on the Earth nearest to and farthest from the
Moon in Fig. (10.2).

10.3 Surface Displacement for an
Earth Covered with Water

A large fraction of the Earth’s surface (71%) is covered with
water. To gain insight into how the Moon affects the distribu-
tion of water on the Earth, we consider an idealized situation
in which the Earth is taken to be a solid nonrotating sphere,
covered entirely by ocean whose depth is uniform in the ab-
sence of the Moon.

Once the Moon’s tidal forces are taken into account, the
depth of the ocean will vary from point to point, depending
on the location of the point being considered relative to the
Moon. The magnitude of this variation follows from the re-
quirement that the surface of the ocean be a gravitational
equipotential, so that there is no net force tangent to the liq-
uid surface. The calculation to follow is quite similar to the
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one which determined r(θ), in the discussion of Clairaut’s
theorem in Sec. (2.2) (see Eq. (2.25).

In the absence of the Moon, the Earth’s radius a is the
distance from the surface of the ocean to the Earth’s center
of mass. In the presence of the Moon and its accompanying
tidal forces, the liquid surface of the Earth will be distorted
by a small amount we denote as η. At a point on the surface,
the distance from the center of the Earth is now a+η instead
of a. The total gravitational potential at such a point receives
a contribution from the Earth as well as the Moon. The total
gravitational potential at the surface is

Vtot = − GMe

(a+ η)
+Wt(χ). (10.15)

Working to first order in the small quantities η and |Wt|, we
may set r = a in evaluating Wt. The tidal potential then
depends only on the angle χ defined in Fig. (10.1). In order
for Vtot to be an equipotential at the surface, it cannot depend
on the angle χ. This can be accomplished by allowing η to
depend on χ. Expanding Vtot to first order, we have

Vtot = −GMe

a
(1− η

a
)− GMm

2R
(
a

R
)2(3 cos2 χ− 1). (10.16)

Requiring that the term linear in η cancel the contribution of
the tidal potential, we have

η

a
=
Mm

Me
(
a

R
)3 1

2
(3 cos2 χ− 1) + C, (10.17)

where the constant C is independent of χ. The value of C
is determined by the requirement that the distortion of the
surface away from purely spherical cannot change Voc, the
total volume of water in the ocean. The change in the volume
of the ocean can be written to first order as

∆Voc =

∫
ηa2dΩ, (10.18)
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where dΩ is the element of solid angle. The term in ∆Voc
arising from the tidal potential integrates to zero, leaving

∆Voc = 4πa2C. (10.19)

Requiring that ∆Voc = 0 then implies C = 0. We are left
with

η = a(
Mm

Me
)(
a

R
)3 1

2
(3 cos2 χ− 1). (10.20)

Using the known values for the parameters in Eq. (10.20),
we have for the points on the Earth which are nearest and
farthest from the Moon

η(0) = η(π) ≈ 36 cm, (10.21)

while for χ = π/2,

η(π/2) ≈ −18 cm. (10.22)

A vessel traveling on this all-ocean Earth engaged in depth
sounding would find the ocean to be 36 cm deeper at χ = 0 or
π, and 18 cm shallower at χ = π/2. The terms “deeper” and
“shallower” are a comparison of the distance from the surface
of the ocean to the bottom of the ocean in the presence of
the Moon’s tidal forces vs. the case where the Moon’s tidal
forces are absent.

The situation so far is purely static, whereas tides are in-
trinsically time-dependent phenomena. Actual tides can be
introduced on our model ocean-covered Earth by allowing
the Earth to rotate. From an Earth-fixed viewpoint, the
Moon will appear to rotate around the Earth. Referring to
Fig. (10.2), for simplicity ignore the Earth’s tilt angle so the
Earth’s spin axis is perpendicular to the page. As the Moon
rotates around the Earth, the gravitational potential from the
Moon will be time-dependent, since now the angle χ = ωt,
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where ω = 2π/Tday. A small island on the equator would ex-
perience the angles χ = 0, π/2, π, π/2, 0 in succession with
“high tides” at χ = 0, π, and “low tides” at χ = π/2, π/2.

Returning to the actual Earth, the maximum and mini-
mum values of η given above can be used to make order of
magnitude estimates of the height of actual tides in many
places. Much larger values do occur. In particular the shape
of the ocean basin can act to greatly amplify the magnitude
of tides.

10.4 Time Dependence of Tides

It is familiar that each day there are two high tides and two
low tides. Both are easily experienced at any point along an
ocean’s shore. These tides are caused by tidal forces from the
Moon and also the Sun. What is meant by a “day”is slightly
different in the two cases. For solar tides, a day is simply 24
hours, denoted from here on by Ts. For lunar tides, the day is
the “lunar day” which is 24 hours and 50 minutes, denoted in
the following as Tl. The lunar day is longer than the solar day
because the moon has moved a small but perceptible amount
in 24 hours. This is discussed in more detail in ndix A. After
the passage of a lunar day, a point on the Earth will return
to a position whose orientation to the Moon is very close to
the original orientation.2

Fig. (10.3) shows tidal data observed at a point on the east-
ern coast of Florida. Although the time scale shown in the
figure does not allow the difference between Tl and Ts to be
resolved, it does clearly show that there are two high tides
and two low tides in a period of roughly 24 hours. Further,

2The tilt of the Moon’s orbit prevents the two orientations from being
exactly the same.
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Figure 10.3: High and low tides in Florida, US
Source: NOAA

the high tides spaced by approximately 12 hours clearly have
different amplitudes.

Lunar Tide Time Dependence The goal of this section
is to understand why lunar high tides spaced by Tl/2 have dif-
ferent amplitudes.3 Start by imagining that the plane of the
Moon’s orbit coincides with the plane of the Earth’s equator.
Then in both Fig. (10.1) and Fig. (10.2), the spin axis of the
Earth is perpendicular to the page. Fig. (10.2) makes it clear
that as the Earth rotates around its spin axis, the Earth will
return to the same orientation with respect to the Moon after
a half lunar day. For this case, the high tides spaced apart
by half a lunar day would have the same amplitude.

3Additional tidal effects from the Moon that depend on the length
of the lunar month will not be discussed here.

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



152 CHAPTER 10. TIDE PHYSICS

Note that all the time dependence of the tidal potential of
Eq. (10.14) resides in the way the factor

cos2 χ =
1

2
(1 + cos(2χ)) (10.23)

changes as the Earth rotates. To see how cos2 χ varies when
the Moon is not in the Earth’s equatorial plane, it is useful
to adopt a coordinate system with the origin at the Earth’s
center of mass, the z axis along the Earth’s spin axis, and
the x and y axes fixed in orientation with respect to distant
stars (Cook 1973). In this system, the Earth rotates around
the z axis, the x–y plane being the plane of the equator. The
vector R from the origin to the Moon can be represented by
its spherical coordinates, R, θm, φm in this coordinate system.
Likewise the vector r to a point on or in the Earth can be
represented by r, θe, φe. Using standard formulas, the unit
vectors r̂ and R̂ are

r̂ = cos θeẑ + sin θe(x̂ cosφe + ŷ sinφe), (10.24)

and
R̂ = cos θmẑ + sin θm(x̂ cosφm + ŷ sinφm).

Taking the scalar product of these two unit vectors gives
cosχ. We have

cosχ = cos θe cos θm + sin θe sin θm cos(φe − φm). (10.25)

Having accounted for the most important part of the Moon’s
movement by using the lunar day, the only time dependence
in Eq. (10.25) comes from the Earth’s rotation, which causes
φe to vary in time as

φe(t) = φe(0) +
2πt

Tl
. (10.26)

As mentioned above, the tidal potential depends on the square
of cosχ. Without writing out the details, it is clear from
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Eq. (10.25) that when we compute cos2 χ, there will be a
term in cos(φe − φm), and one in cos2(φe − φm). The first
of these is periodic with a period of Tl, while the second is
periodic with period Tl/2. This shows that the tidal potential
from the Moon, and therefore the Moon’s tidal forces, con-
tains terms of two types: one periodic with a period of Tl/2,
the other periodic with a period Tl. We will not attempt to
actually calculate the differences between the high tides at
these two intervals, but the discussion just given makes it
clear that in general they will be different. Note that putting
the Moon back in the Earth’s equatorial plane amounts to
setting cos θm = 0, and then cos2 χ becomes periodic with
period Tl/2.

Solar Tide Time Dependence The analysis just given
for the effects of the Moon on Earth tides can repeated for
the effect of the Sun on Earth tides. Rewriting Eq. (10.20)
for the Sun, we have

η(χs) = r(
Ms

Me
)(

r

Re−s
)3 1

2
(3 cos2 χs − 1), (10.27)

where χs is measured relative to the vector from the Earth’s
center of mass to the Sun. Evaluating η for χs = 0 or π, we
have

ηs(χs = 0) = ηs(χs = π) = 16.3 cm, (10.28)

approximately half the effect from the Moon. In general, the
Sun and Moon are not aligned, so their net effect is a vector
sum,

η(χm) + η(χs). (10.29)

There is a contribution to the tidal potential due to the Sun
of similar form to Eq. (10.14). In general the ratio of tidal
effects from the Sun to those from the Moon goes as

(
Ms

Mm
)(
Re−m
Re−s

)3 ≈ 0.45,
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so although the tidal effects of the Moon are larger, the tidal
effects of the Sun are not negligible. The high tides due to
the Sun are determined by the solar day, and so have periods
Ts/2 and Ts.

10.5 Tides on Lakes and Seas

Fermi briefly considers the problem of tides on finite bod-
ies of water. Any finite body of water has certain natural
frequencies. Let us consider a wide canal of length L and av-
erage depth h. In the limit kh << 1, the dispersion relation
Eq. (9.34) reduces to ω = k

√
gh, so vp = vg =

√
gh. For a

wave of very large wavelength, we may estimate the tidal pe-
riod by setting the velocity of the wave equal to L/T, which
gives

T ∼ L√
gh
. (10.30)

As an example, the Suez Canal has L = 193 km, and h =
24 m. Using Eq. (10.30) to estimate the period gives T ∼
3.5 h.

Fermi also gives a brief treatment of a forced simple har-
monic oscillator. The application to the problem at hand is
to regard the natural frequency of the oscillator as the lowest
frequency mode of the body of water under consideration.
This is acted upon by an external force. Fermi notes that
if the natural frequency of the oscillator is greater than the
frequency of the force, the displacement of the oscillator and
the force are in phase, while they are out of phase if the
natural frequency of the oscillator is smaller than the force
frequency. For the case of the Suez Canal, the passage of a
vessel through the canal takes roughly 12 hours, so if passing
vessels are treated as the external force on the canal, this is a
case where the natural frequency of the canal is greater than
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the frequency of the applied force, so the applied force and
natural motion of the canal are in phase. This is presumably
not dangerous unless vessel passage time were to be reduced
and approach the period of the canal.
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CHAPTER 11

General Properties of Earthquakes

Fermi lists the Mercalli scale of earthquake intensity and es-
timates the energy released in the 1906 San Francisco earth-
quake. The Mercalli scale is a qualitative scale that classifies
earthquakes by their local effects. For example, class I is a
weak earthquake not felt by humans at the scene, while class
V is moderate and felt by nearly everyone near the scene; class
VIII is so severe it causes ordinary buildings to collapse.

“Great earthquakes” are ones that release enormous amounts
of energy. Part of that energy is radiated as seismic waves,
the properties of which are discussed in Chap. (12). The re-
mainder of it goes into local heat and destruction. The latter
is usually called “plastic deformation.” The total energy re-
leased in the San Francisco earthquake of 1906 is generally es-
timated to be in the range of 1023−24 erg. The Earth Alabama
website is helpful in grasping the significance of such a huge
amount of energy (EarthAlabama 2017). It is noted there
that the total energy released in the San Francisco earth-
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quake was at least a thousand times larger than that released
in the nuclear weapon detonated over Hiroshima in 1945.

A method of estimating the energy released in great earth-
quakes which has some overlap with Fermi’s method, makes
use of a quantity known as the “seismic moment” (Kanamori
1977). It is denoted as M0 and defined as follows:

M0 = µAD̄, (11.1)

where µ is the shear coefficient of the rock near the fault,
A is the area of the fault that moves during the earthquake,
and D̄ is the average distance the area A moves during the
earthquake. The product AD̄ is a volume, while µ has the di-
mension of pressure, i.e., force/area, soM0 has the dimension
of energy.

Although it has the right units, M0 is not the energy re-
leased in the earthquake. That can be seen by first consider-
ing the work done as the area A moves. Roughly speaking,
work is force times distance, but account must be taken of
the fact that the force moving the area A in the direction of
its displacement is decreasing as the displacement increases.
This produces a factor of 1/2 in the energy formula, similar
to the 1/2 that appears in the energy of a charged capacitor.

The force in the direction of the displacement at any stage
of the earthquake can be written as σA, where σ is the shear
stress at the given displacement. If the net decrease in the
stress is ∆σ, then equating the work done to the energy re-
leased, we have

W0 =
1

2
∆σAD̄ = (

∆σ

2µ
)M0. (11.2)

The quantity ∆σ is known to be ∼ (2 − 6) × 107 dyne/cm2,
and for rock in the Earth’s crust, µ ∼ (3−6)×1011 dyne/cm2
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(Kanamori 1977). The ratio 2µ/∆σ is dimensionless and is
∼ 2× 104, so W0 becomes

W0 ∼
M0

2× 104
. (11.3)

Using a number of different techniques, the value of the seis-
mic moment for the San Francisco earthquake has been de-
termined to be

(M0)SF ∼ 1028 erg, (11.4)

which gives, using Eq. (11.2),

(W0)SF ∼ 5× 1023 erg. (11.5)

W

L

D̄

Earth’s surface

Figure 11.1: Schematic of San Francisco earthquake

In estimating the energy released in the San Francisco
earthquake, Fermi used the first expression in Eq. (11.2). For
this earthquake, the area of the fault involved in the earth-
quake can be approximated by a rectangle of area A = LW,
where L is the horizontal dimension of A, and W is the ver-
tical dimension. The standard values, as used by Fermi for
L,W, and D̄, were L = 435 km, W = 20 km, and D̄ = 4 m.
Fig. (11.1) shows schematically the geometry of the earth-
quake. Using these figures, the volume combination AD̄ turns
out to be 3.48× 1016 cm3. For the formula Fermi employs, he
has used a figure of 10 dyne/cm2 for ∆σ, which leads to his
result

(W0)SF−Fermi ∼ 1.74× 1024 ergs, (11.6)
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approximately three times the value given in Eq. (11.5). Given
the uncertainties in the San Francisco earthquake parameters
and the fact that Fermi made his estimate in the early 1940s,
it is remarkable that his value is within a reasonable factor
of the generally accepted result.
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CHAPTER 12

Seismic Waves and Seismology

12.1 Elementary Seismographs

The basic idea behind the workings of an elementary seis-
mograph, as described, e.g., in Richter’s text on seismology
(Richter 1958), is the analysis of the changes induced by seis-
mic waves in the behavior of a simple oscillator. As an ex-
ample let the oscillator in question be an ordinary simple
pendulum of length l and mass m. Newton’s law, in the ab-
sence of any vibrational motion of the Earth, says that for
small oscillations

mẍ = −mg
l
x, (12.1)

where x is the deviation from the vertical. When no external
disturbances are present the pendulum oscillates at a natural
frequency ω0 =

√
g/l.

Consider now the case where the pendulum’s support is
attached to the Earth’s surface, which is itself oscillating at a

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



164 CHAPTER 12. SEISMIC WAVES

frequency Ω because of seismic waves. The restoring force on
the pendulum is still given by −mgx/l, but the acceleration
of the mass must now also take into account the acceleration
of the pendulum’s support. Let X be the coordinate of that
support relative to a fixed origin. The total acceleration of
the mass is Ẍ + ẍ, and Newton’s law now reads

m(Ẍ + ẍ) = −mg
l
x = −mω2

0x, (12.2)

which can be rewritten as

(ẍ+ ω2
0x) = −Ẍ. (12.3)

Setting x(t) = x0(t) + x1(t),where x0(t) is any solution of
Eq. (12.1), and x1(t) is a function that oscillates at frequency
Ω, Eq. (12.3) becomes

ẍ1 + ω2
0x1 = −Ω2X(t). (12.4)

Solving for x1(t), we have

x1(t) =
Ω2

Ω2 − ω2
0

X(t). (12.5)

Now x(t), the deviation from the vertical of the pendulum, is
expressed as a superposition of an oscillation at the natural
frequency of the pendulum and an oscillation at the frequency
of the seismic wave. Disentangling the oscillation at frequency
Ω is the goal of the device. To facilitate this analysis, damping
of the oscillation at the natural frequency of the pendulum
was introduced in early seismographs. Seismographs of the
twenty-first century are much more sophisticated but make
use of these same principles.
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12.2 Seismic Waves

Having already examined the effects of earthquakes and seen
a very simple example of how the oscillations they generate
are measured, we now turn to the subject of how those waves
are produced and how they propagate, taking note of the
fact that there is more than one type of seismic wave. Prior
to doing so, we review some basic concepts in the theory of
elasticity, a subject often neglected in a common physics cur-
riculum (Landau and Lifshitz 1986; Rawlinson ). There are
two key concepts. The first is that of strain, as encoded in
a strain tensor that describes the deformations a body un-
dergoes. The second is that of stress, with the body’s stress
tensor being the indicator of the forces leading to the defor-
mations.

12.3 Strain and the Strain Tensor

When forces act on a solid, a small volume centered at x in
a solid body moves to a new location

x′ = x+ u(x).

The fundamental quantity characterizing strain is not the dis-
placement u(x), but the strain, a dimensionless measure of
relative displacement.

Examples As an example, consider a bar of original length
l, which is extended to length l′ as shown in Fig. (12.1). If x
is the coordinate in the undeformed bar, and x′ is the corre-
sponding coordinate in the deformed bar, we have

x′ =
l′

l
x.
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l′

l
x

Figure 12.1: Elongation strain

The displacement in the x direction is

ux(x) = (x′ − x) =
l′ − l
l

x.

The strain in this case is equal to

∂ux
∂x

= (
l′ − l
l

). (12.6)

We will consider only cases where the strain is small, so
quadratic terms can be ignored. For our deformed bar, small
strain means

| l
′ − l
l
| << 1.

Another example of strain is shown in Fig. (12.2). Here the
displacement in the x direction depends on y :

x′ = x+
ε

h
y, ux(y) = x′ − x =

ε

h
y.

The strain in this case is

1

2

∂ux
∂y

=
ε

2h
. (12.7)

The reason for the factor of 2 in the denominator of Eq. (12.7)
will become clear below. (See Eq. (12.9).)
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h

ε x

y

Figure 12.2: Shear strain

General Case Treating a general case, consider two points
that are very close together in a solid body. Under deforma-
tion their separation ds =

√
dxidxi becomes

ds′ =
√

(dxi + dui)(dxi + dui).

Setting

dui =
∂ui
∂xj

dxj

in the above equation, we may write

ds′ =
√
ds2 + 2uijdxidxj ,

where uij is a tensor, known as the strain tensor. It is easy
to see that it equals

uij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

). (12.8)

We will consider only cases of small strain,

|∂ui
∂xj
| << 1.
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Then the terms in Eq. (12.9) that are quadratic in partial
derivatives of the displacement can be ignored and the strain
tensor becomes

uij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (12.9)

Volume Change Since strain changes distances between
neighboring points, we also expect it to change small vol-
umes. To see how, note that since uij is a symmetrical tensor,
coordinate axes can be chosen at any point so that only its
diagonal elements are nonzero. In such a coordinate system,
a small volume dV in the undeformed solid transforms to dV ′

in the strained solid. We have

dV = dx1dx2dx3 → dV ′ (12.10)
= dx1(1 + u11)dx2(1 + u22)dx3(1 + u33).

Keeping only linear terms in strain tensor components,

dV ′ = dV (1 + u11 + u22 + u33) = dV (1 + tr(u))). (12.11)

Due to the invariance of the trace, the last equality in Eq. (12.11)
is true in any coordinate system, whether or not the strain
tensor is diagonal.

12.4 Stress and the Stress Tensor

The total force on a volume V of a solid is the sum of the
forces acting on the individual atoms in the volume. Treating
the solid as a continuum, the total force is expressed as the in-
tegral over V of the force/volume, f(x). There are two types
of terms in f(x), body forces and surface forces. Gravity is
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the most important body force.1 Its contribution to f(r) is
ρ(x)g(x), where g(x) is the local acceleration due to gravity.
In Sec. (2.3), Eqs. (2.34)–(2.36) amounted to a calculation of
g(x) for a spherical Earth.

The remaining term in the force/volume is the force on the
material in V due to the material outside V. Using the fact
that interatom forces are short in range, in the continuum
this can be represented as a surface integral over the surface
of V. Let us break f into terms arising from body and surface
forces, f = fb + fs. Doing likewise for the total force on the
volume V, we can write F (V ) = Fb(V ) + Fs(V ). The total
body force is

Fb(V ) =

∫
V
fb(x)d3x. (12.12)

Likewise, the total surface force is

Fs(V ) =

∫
V
fs(x)d3x. (12.13)

To see how the volume integral in Eq. (12.13) can be trans-
formed into a surface integral, it is easiest to work with spe-
cific components,

(Fs)i =

∫
V

(fs)id
3x. (12.14)

By the generalization of Gauss’s theorem, transformation of
the volume integral to a surface integral is only possible if the
integrand is a gradient,

(fs)i =
∂σij
∂xj

. (12.15)

Using this form for (fs)i in Eq. (12.14), we have

(Fs)i =

∫
V

∂σij
∂xj

d3x =

∫
S
σijdSj , (12.16)

1For rotating bodies, the centrifugal force is also a body force.
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In Eq. (12.16), dSj is the jth component of the element of
surface dS = n̂dS where n̂ is the outward unit normal. The
tensor σij is known as the stress tensor. It is symmetric
under interchange of indices, σij = σji, and has the same
dimensions as pressure: force/area. To visualize its action,
suppose a surface element of the body in question has its
normal in the j direction. Regarding i as the “force index”
and j as the “area index,” σij is the force/area in the ith
direction acting on an element of the surface whose normal is
in the jth direction.

Gravity and Stress In the next section, we will introduce
Hooke’s law for solids and then go on in subsequent sections
to treat seismic waves. Body forces will play no role in this
discussion. The reader may well wonder, what happened to
body forces? Body forces do affect the stress tensor. They
cause an equilibrium or zeroth-order stress. Hooke’s law and
seismic waves involve small oscillations around this state of
stress. Writing the stress as the sum of zeroth and first-order
parts, we have

σij = σ
(0)
ij + σ

(1)
ij , (12.17)

the zeroth-order term can be written

σ
(0)
ij = −δijp(r), (12.18)

where the pressure p(r) is the solution to Eq. (2.33). As dis-
cussed in Sec. (2.3), p(r) depends on the entire mass inside
radius r. So only for those displacements which affect the mass
inside radius r does the body force due to gravity come into
the equations of motion. Ordinary seismic waves are unaf-
fected, but for oscillations of the Earth as a whole, the body
force from gravity does come into the equations of motion.
This point is discussed further in Sec. (13.3).
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In the next sections on Hooke’s law and seismic waves, it
is to be understood that the part of the stress tensor being
discussed is σ(1)

ij , and the superscript will be dropped.

12.5 Hooke’s Law

In the case of small deformations, strain is generally propor-
tional to stress , a relation commonly referred to as Hooke’s
law. Its most familiar example is the harmonic oscillator,
where the force on the oscillator is proportional to the dis-
placement from equilibrium of the oscillator coordinate. The
general statement of the proportionality between stress and
strain is

σij = Cij;klukl, (12.19)

where the Cij;kl are a set of coefficients that are independent
of stress and strain but may depend on position, temperature,
etc. We will follow Fermi in only treating the simpler case of
a homogeneous deformation, one in which the components of
the strain tensor remain constant throughout the body. In
this case of Hooke’s law, the relation between the stress and
the strain tensor only requires only two constants, Young’s
modulus and Poisson’s ratio. These are introduced in the
next section.

12.6 Young’s Modulus and Poisson’s Ratio

Fig. (12.3) shows a solid block held rigid below and with no
external forces on the sides but subject to a pressure p from
above, so only σ33 6= 0. Similarly only the diagonal elements
of uij 6= 0. The force/area acting on the top is directed
downward, so σ33 = −p. The block will respond to the ap-
plied pressure by becoming “squished” or compressed, mean-
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u11 > 0u11 > 0

u33 < 0

p = −σ33

3

1

Figure 12.3: Young’s modulus and Poisson’s ratio

ing u33 < 0. Young’s modulus E is the coefficient that relates
stress to strain in the 3 direction:

σ33 = Eu33. (12.20)

Strain is dimensionless, so from Eq. (12.20), we note that
Young’s modulus has the same units as stress or pressure,
namely, force/area. The values of Young’s modulus for solid
materials are usually given in GPa, or 109 Pa. The order
of magnitude of the Young’s modulus of Earth materials ∼
100 GPa, so for such materials even very small strains require
pressures of thousands of atmospheres.

In addition to compression in the 3 direction, the block
will generally expand in the perpendicular directions. For
a homogeneous solid, the block expands equally in the two
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perpendicular directions, so u11 = u22. The ratio of transverse
to longitudinal strain is Poisson’s ratio, σ. (In what follows,
both Poisson’s ratio and the stress tensor involve the Greek
letter σ. They are distinguished by the stress tensor having
two subscripts, while Poisson’s ratio has none.) The defining
equation is

u11 = u22 = −σu33. (12.21)

The minus sign in this equation makes σ positive for all known
solid materials. A solid with a value of σ = 0.25 is called a
“Poisson solid.”

12.7 The Stress-Strain Relation for a Solid

The components of the stress tensor of a material obeying
Hooke’s law will be proportional to the components of the
strain tensor with the coefficients expressible in terms of Young’s
modulus and Poisson’s ratio. Writing the strain tensor as the
sum of of a trace and of a traceless part is an identity. We
thus write

uij =
1

3
δijtr(u) +

(
uij −

1

3
δijtr(u)

)
,

where tr(u) = u11 +u22 +u33. For a material obeying Hooke’s
law, having stress proportional to strain, we must have sep-
arately that the trace of the stress tensor is proportional to
the trace of the strain tensor and the traceless part of the
stress tensor is proportional to the traceless part of the strain
tensor, so

σij = Kδijtr(u) + 2µ

(
uij −

1

3
δijtr(u)

)
, (12.22)

where K and µ are constants. We saw earlier in Eq. (12.11)
that a change in volume associated with strain is proportional
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to tr(u). The quantity K is therefore known as the bulk or
compression modulus, while the second term, being traceless,
represents a shear stress; hence µ is known as the shear mod-
ulus.

The two constants K and µ must be expressible in terms
of Young’s modulus and Poisson’s ratio. To find the relation-
ship, start with the trace of both sides of Eq. (12.22). This
gives

σ11 + σ22 + σ33 = 3K(u11 + u22 + u33). (12.23)

Let us apply this equation to the situation of a compressed
block, discussed earlier. In that situation, the only nonzero
stress component is σ33. On the right-hand side of Eq. (12.23),
using Eq. (12.21), we can eliminate u11 and u22 in favor of u33.
Eq. (12.23) becomes

σ33 = 3K(−2σ + 1)u33. (12.24)

Using σ33 = Eu33, we find

K =
E

3(1− 2σ)
. (12.25)

To determine µ, we write out the 33 component of Eq. (12.22).
This is

σ33 = K(u11 + u22 + u33) + 2µ[
2

3
u33−

1

3
(u11 + u22]. (12.26)

Again using the compressed block situation, we substitute for
K, and using Eqs. (12.20) and (12.21), we see that

Eu33 =

(
E

3
+

4

3
µ(1 + σ)

)
u33, (12.27)

or
µ =

E

2(1 + σ)
. (12.28)
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Since K and µ are both positive we must have

−1 ≤ σ ≤ 1/2.

In practice, since we saw earlier that σ ≥ 0, our limit is

−0 ≤ σ ≤ 1/2.

Hooke’s law in terms of the constants E and σ now reads

σij =
E

3(1− 2σ)
δijtr(u) +

E

(1 + σ)
(uij −

1

3
δijtr(u)). (12.29)

12.8 Newton’s Law inside an
Elastic Solid

Consider a volume V inside a solid. The surface of the volume
is denoted as Σ. Newton’s law for the mass of the solid inside
V is, taking the ith component both of acceleration and of
force, ∫

V
ρ
∂2ui
∂2t

dV =

∫
Σ
σijdSj , (12.30)

where ρ is the mass density of the solid. Applying the diver-
gence theorem, the right hand side of Eq. (12.30) becomes∫

V
dV

∂σij
∂xi

,

and Newton’s law now reads∫
V
dV

(
ρ
∂2ui
∂2t
− ∂σij
∂xi

)
= 0. (12.31)

This equation must hold no matter what choice is made for
the volume V, so the integrand must vanish, i.e.,

ρ
∂2ui
∂2t

=
∂σij
∂xi

. (12.32)

This is the generalization to the interior of a solid of the point
particle version of Newton’s laws, F = ma.
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12.9 The Equation of Motion for Displacement

We want to turn Eq. (12.32) into a partial differential equa-
tion for the displacement u(x). Since uij is proportional to
derivatives of position, and σij is proportional to uij , the
right-hand side of this partial differential equation will only
involve second-order spatial derivatives of u. In order for the
right-hand side to also be a 3-vector, it must be a linear com-
bination of the two possible 3-vectors, ∇(∇ ·u), and (∇2)u.
To discover the coefficients of the two, we return to Hooke’s
law as expressed in Eq. (12.22). Rearranging this equation
slightly, we have

∂σij
∂xj

= (
∂tr(u)

∂xi
)(K − 2

3
µ) + 2µ

∂uij
∂xj

. (12.33)

Now

tr(u) = u11 + u22 + u33 =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= (∇ · u).

Furthermore,

∂uij
∂xj

=
1

2

∂

∂xj
(
∂uj
∂xi

+
∂ui
∂xj

) =
1

2
(∇i(∇ · u) + (∇2)ui).

Returning to the derivative of the stress tensor, we have

∂σij
∂xj

= (K +
1

3
µ)∇i(∇ · u) + µ(∇2)ui). (12.34)

Substituting for K and µ from Eqs. (12.25) and (12.28), the
final form of the equation of motion is

ρ
∂2u

∂t2
=

E

2(1− 2σ)(1 + σ)
∇(∇ · u) (12.35)

+
E

2(1 + σ)
(∇2)u.
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This equation describes the waves that can propagate in
an elastic solid.

12.10 Longitudinal and Transverse Waves

Eq. (12.35) is easy to solve for an infinite medium of fixed
composition. An arbitrary solution can be expanded into
plane waves of the form

U(k, t)eik·x. (12.36)

Acting on this functional form, ∇ brings down a factor of ik,
reducing Eq. (12.35) to an equation for the amplitude U(k, t),

ρ(
d2U

dt2
) = − E

2(1 + σ)
[

1

(1− 2σ)
k(k ·U) + (k ·k)U ]. (12.37)

We resolve the amplitude U into components parallel and
perpendicular to k, or longitudinal (L) and transverse (T )
parts:

U = UL +UT . (12.38)

Our equation of motion now becomes

ρ(
d2UL
dt2

+
d2UT
dt2

) = −k2 E

2(1 + σ)
[
2(1− σ)

(1− 2σ)
UL +UT ].

(12.39)
Every term in the equation can be resolved into longitudi-
nal and transverse components. Taking the longitudinal case
first, we have

ρ(
d2UL
dt2

) = −k2 E(1− σ)

(1 + σ)(1− 2σ)
UL. (12.40)

This is just a harmonic oscillator equation whose solution is

UL(k, t) = UL(k)e−iωLt, (12.41)
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where the frequency satisfies

ρω2
L =

E(1− σ)

(1 + σ)(1− 2σ)
k2. (12.42)

To summarize, a longitudinal plane wave solution of Eq. (12.35)
takes the form

UL(k)eik·x−iωLt, (12.43)

where k × UL = 0. The velocity of the longitudinal waves,
cL, is given by

c2
L = (

ωL
k

)2 =
E(1− σ)

ρ(1 + σ)(1− 2σ)
. (12.44)

Proceeding in a similar way, the transverse component of
Eq. (12.39) satisfies

ρ(
d2UT
dt2

) = −k2 E

2(1 + σ)
(UT ), (12.45)

which is solved by

UT (k, t) = UT (k)e−iωT t, (12.46)

with the frequency given by

ρω2
T =

E

2(1 + σ)
k2. (12.47)

A transverse plane wave solution of Eq. (12.35) is

UT (k)eik·x−iωT t, (12.48)

where k · UT = 0. The velocity of transverse waves is cT ,
where

c2
T = (

ωL
k

)2 =
E

2ρ(1 + σ)
. (12.49)
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The ratio of transverse to longitudinal velocities is a di-
mensionless function of Poisson’s ratio. From Eqs. (12.44)
and (12.49), we have

(
cT
cL

)2 = 1− 1

2(1− σ)
. (12.50)

As we saw earlier, −1 ≤ σ ≤ 1/2, so longitudinal waves
have higher velocity than transverse ones. This also means
they arrive at detectors earlier. causing them to be known
by seismologists as P or “primary waves.” Transverse waves
are accordingly known as S or “secondary waves.” Reflect-
ing this choice, the wave velocities are also often denoted
by vP and vS rather than cL and cT . Their typical values
in the Earth’s continental crust are, respectively, of order
5 km/s and 3 km/s (Richter 1958). Using these values and
Eq. (12.50), we find that Poisson’s ratio in the Earth’s con-
tinental crust is σ ∼ 0.22, a conclusion consistent with the
measurements of materials in that crust that generally show
Poisson ratios lying in the range 0.20− 0.30.

The density of the continental crust is ρ ∼ 2.7 g/cm3. Using
this value, vP = 5 km/s, Eq. (12.44), and taking σ = 0.25, we
find an average value for Young’s modulus in the continental
crust of E ∼ 59 Gpa, about 1/4 the value of Young’s modulus
for iron or steel, and otherwise typical of rocks found in the
Earth’s surface.

Studying deeper regions of the Earth, namely, moving be-
yond the crust into the mantle, we see that P and S wave
velocities both increase. At a depth of around 3000 km, vP =
13.5 km/s and vS = 8 km/s (Richter 1958). Beyond the man-
tle, we enter the Earth’s core, whose outer part is believed
to be fluid. This is in agreement with the observation that
S waves do not penetrate this region, as expected because
liquids cannot support the shear stress needed for their ex-
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istence. However, longitudinal (P ) waves can and do pass
through this region. As for the frequencies of seismic waves,
they are generally in the 1− 10 Hz range, with corresponding
wavelengths ranging from a few hundred meters to several
thousand meters.

12.11 Snell’s Law for Elastic Waves

Seismic waves, like optical waves, are refracted and reflected
when they strike a boundary between two media. Their wave
vectors are determined by a generalized form of Snell’s law,
familiar from optics. Suppose the boundary between the two
media is the plane x3 = 0, and the wave vectors of all waves
are in the 1 − 3 plane. Fig. (12.4) shows three such waves:
(1) an incident wave at angle φa with respect to the normal;
(2) a reflected wave also making an angle φa with respect to
the normal; and (3) a transmitted wave making an angle φb
with respect to the normal. In optics, Snell’s law is usually
expressed in terms of indices of refraction,

na sinφa = nb sinφb. (12.51)

It can equally well be written using the velocity of light prop-
agation in the media a and b,

sinφa
va

=
sinφb
vb

, (12.52)

where we use va = c/na, vb = c/nb. Fig. (12.4) shows a case
where φb < φa, corresponding to vb < va. This is an illus-
tration of the familiar phrase in optics that “going from a
fast medium to a slow medium, the transmitted wave is bent
toward the normal.”

Seismic waves also obey Snell’s law, but in general seismic
waves cannot be described by the situation of elementary op-
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φa φa

φb

x1

x3

Figure 12.4: Three waves at a boundary

tics where a single reflected wave and a single transmitted
wave are sufficient The main difference is that requiring the
continuity of displacement and of the stress tensor leads to
four boundary conditions at the interface. Given an incident
wave of known amplitude, four waves must be present: re-
flected S and P waves, and transmitted S and P waves. In
Fig. (12.5) we illustrate the situation for an incident P wave.
The situation illustrated in the figure is for the case where
x3 > 0 is the “slow” medium, and x3 < 0 is the “fast” medium.
In going from slow medium to fast medium, waves are bent
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φl
φtr

φ′l

φ′tr

x1

x3

Figure 12.5: P wave incident on a boundary
Note: Thick lines are P waves; thin lines are S waves.

away from the normal. In each medium the longitudinal ve-
locity is greater than the transverse velocity, so transverse
waves are closer to the normal. If vl, vtr are the velocities of
P and S waves in the upper medium, and v′l, v

′
tr are for the

lower medium, the statement of Snell’s law for this situation
is

sinφl
vl

=
sinφl
vl

=
sinφtr
vtr

=
sinφ′l
v′l

=
sinφ′tr
v′tr

, (12.53)

where the first term is written twice to indicate that incident
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and reflected P waves have the same angle φl. These con-
ditions follow simply, as in optics, from the constancy of the
frequency and of the tangential component of the wave vector
in the two media. The situation depicted in Fig. (12.5) occurs
in a general way in the Earth, with the crust as the upper
medium, and the mantle as the lower medium. The actual
situation in the Earth is more complex due to a break in rock
composition known as the Mohorovic discontinuity. Lying at
the boundary between crust and mantle, this discontinuity is
up to 500 m thick.

103◦103◦

150◦150◦

Figure 12.6: Paths for P waves

Fig. (12.6) illustrates the pattern of P seismic waves fol-
lowing an earthquake. The focus of the earthquake is at the
top of the graph, and the straight black lines are possible
paths of P seismic waves.2 The large circles represent man-

2Actually, the lines have slight curvature, but they are shown here as
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tle, outer core, and inner core, respectively. Taking the focus
of the earthquake to be at 0◦, the blacked out regions be-
tween 103◦ and 150◦ are angles between which no P waves
can be received from the earthquake. The explanation is sim-
ply Snell’s law physics. The mantle is the “fast” medium and
the core is the “slow” medium. The ray that just grazes the
core arrives at the surface of the Earth at 103◦. This ray can
also be refracted into the core and after refraction reaches the
Earth’s surface at 150◦. A similar phenomenon would occur
with light if the mantle were replaced by air (fast medium),
and the core (slow medium) by glass.

Another striking phenomenon on the side of the Earth
away from the earthquake is that S waves are not detected
at any angles greater than 103◦. This is very strong evidence
that the outer core is liquid, where transverse waves cannot
propagate.

straight for simplicity.
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CHAPTER 13

Surface Seismic Waves and Oscillations
of the Earth

13.1 Surface Waves

There are waves concentrated near the surface in addition to
the S and P waves that travel through the Earth. These, gen-
erally denoted as L waves, are of two types, sometimes known
as Rayleigh (LR) and Love (LQ) waves after Lord Rayleigh
and Augustus Love, who deduced the waves’ existence. As
revealed by their analyses, the velocity of these surface waves
is smaller then that of either S or P waves. Consequently
surface waves are the last to arrive at a seismograph from a
distant disturbance. But despite their slower velocities, sur-
face waves from an earthquake are very destructive because
their intensity falls off only as the inverse distance from the
disturbance, while S and P waves lose intensity as the inverse
square of distance. This is illustrated in Fig. (13.1) where it
is seen that although L waves arrive at a recording station
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Figure 13.1: Seismic record of 1989 Loma Prieta
earthquake
Source: USGS

later than S and P waves, their amplitudes are considerably
larger.

Rayleigh and Love waves can be distinguished in a seis-
mograph that can detect all three directions of oscillation.
Taking the local vertical direction to be the z direction, sup-
pose the surface wave is traveling in the x direction. Then a
Rayleigh wave has displacements in the z and x directions,
while the displacement of a Love wave is entirely in the y
direction. The treatment of Love waves is somewhat intri-
cate and will not be covered here. However, many interesting
properties of Rayleigh waves are easily derived; an elementary
treatment is given in Appendix C.
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13.2 Oscillations of the Earth

In previous sections, we have considered the Earth as a medium
through which seismic waves travel, much as light can travel
through a medium with a variable index of refraction. In this
section, we consider the oscillations of the Earth as a whole,
a problem first considered in the nineteenth century by S.
D. Poisson, Lord Rayleigh, and Horace Lamb, among others.
The equation of motion for the various seismic waves applies
here as well.

We will confine the discussion here to the simplest possi-
ble mode of oscillation, namely, the “breather” mode in which
the Earth undergoes only radial oscillations. Fermi does not
discuss this in his lectures, but it provides a possible example
of a “Fermi question,” the type of question that Fermi con-
stantly posed to his colleagues and students. He might have
phrased it as “Given the radius of the Earth and making an
estimate of the Earth’s average elastic properties, what is the
order of magnitude of the fundamental period of the radially
symmetric mode of oscillation?” The next section answers
that question, and the following section gives more details on
the breather mode of the Earth.

13.3 Breather Mode

Order of Magnitude of the Period Since the the dis-
placement is purely radial in a breather mode it locally looks
like a longitudinal or P wave. The displacement u is a vector,
but assuming the equation of motion for u can be reduced
to a scalar wave equation for a scalar function ψ, it should
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satisfy the wave equation

1

c2
L

∂2ψ

∂t2
= ∇2ψ, (13.1)

where c2
L is the squared velocity of longitudinal seismic waves,

defined in Eq. (12.44). Assuming a frequency ωb, Eq. (13.1)
can be written

(∇2 + k2
b )Ψ = 0, (13.2)

where ω2
b = (kbcL)2. The only spherically symmetric solution

of of Eq. (13.2) which is finite at the origin is

sin(kbr)

kbr
,

so ψ takes the form

ψ = Ab
sin(kbr)

kbr
, (13.3)

for some constant Ab. The value of kb will be determined by
a boundary condition at r = a. Once a definite kb is in hand,
the period is determined. We have

ωb =
2π

Tb
= kbcL, or Tb =

2π

kbcL
. (13.4)

Since we have not specifically identified ψ, it is not obvious
what boundary condition to apply. A reasonable guess for
the order of magnitude of kb is obtained by requiring ψ to
vanish at r = a. Requiring ψ(a) = 0 gives kba = π. Setting
kb = π/a, our formula for the period becomes

Tb =
2a

cL
. (13.5)

Since our goal here is to obtain an order of magnitude esti-
mate, we evaluate Tb from Eq. (13.5) using a range of values of
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cL; 5 km/s, 10 km/s, and 15 km/s. Taking a = 6371 km, these
yield Tb ∼ 42 min, 21 min, and 14 min, respectively. The an-
swer to Fermi’s hypothetical question on the rough magnitude
of Tb is then “a few tens of minutes.” In the next section, we
will analyze Tb more precisely.

The Breather Period for a Homogeneous Earth In
this section, we fill in the details and derive the breather
period for a homogeneous Earth with constant elastic prop-
erties. Since the displacement is purely radial, it satisfies
∇× u = 0. Therefore

∇× (∇× u) =∇(∇ · u)−∇2u = 0. (13.6)

As a result, both terms on the right-hand side of the equation
of motion for u (Eq. (12.35)) are of the same form. Assuming
a harmonic time dependence with frequency ωb, Eq. (12.35)
becomes

− ω2
bu = c2

L∇(∇ · u) = 0, (13.7)

where c2
L is defined as before by Eq. (12.44). Setting ω2

b =
(kbcL)2, Eq. (13.7) becomes an equation for u, given ∇ · u,

u = − 1

k2
b

∇(∇ · u). (13.8)

To find∇·u, we take the divergence of both sides of Eq. (13.7)
and obtain

(∇2 + k2
b )(∇ · u) = 0. (13.9)

Comparing with Eq. (13.2), the scalar function ψ used in the
previous section can be identified as ∇ · u. Again requiring
that the solution for ∇ ·u be spherically symmetric and non-
singular at r = 0, ∇ · u must take the form of Eq. (13.3):

∇ · u = Ab
sin(kbr)

kbr
. (13.10)
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The period of the breather mode is determined by impos-
ing a physical boundary condition at the Earth’s surface. The
pressure of the atmosphere at the Earth’s surface is negligi-
ble compared to pressures that occur inside the Earth. The
correct boundary condition is then that there should be van-
ishing stress exerted by the breather mode normal to the
Earth’s surface. For an Earth which is a homogeneous sphere,
the only component of stress at the boundary is σrr, so the
boundary condition is that σrr(a) = 0. The stress tensor is
given in terms of the strain tensor by Eq. (12.29). Omitting
some algebraic details, it is possible to use this equation to
find σrr(r) in terms of ∇ · u. The formula is

σrr(r) =
E

(1 + σ)(1− 2σ)
[(1− σ)(∇ · u) (13.11)

+
2(1− 2σ)

(kbr)2
r
∂

∂r
(∇ · u)].

Requiring that σrr vanish at r = a gives

[(1− σ)(∇ · u) +
2(1− 2σ)

(kbr)2
r
∂

∂r
(∇ · u)]r=a = 0. (13.12)

From this equation, we see that the correct boundary condi-
tion requires the vanishing of a combination of the value and
derivative of ∇ · u. Setting ∇ · u = 0 would only be correct
for 2σ = 1. Using Eq. (13.10) for∇ ·u, it is easy to show that
Eq. (13.12) is equivalent to (Stoneley 1961)

(kba) cot(kba) = 1− 1

2
(

1− σ
1− 2σ

)(kba)2. (13.13)

It is reasonable to assume the Earth is isotropic, which corre-
sponds to a Poisson ratio σ = 0.25. For σ = 0.25, the smallest
root of Eq. (13.13) is at kba = 2.563.1 The corresponding pe-

1Note that this is a smaller value of kba than the guessed value of π.
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riod is given by

Tb =
2π

kba
(
a

cL
) =

2π

2.563
(
a

cL
). (13.14)

The period of the breather mode has been observed (Ness,
Harrison, and Slichter 1961) to be approximately 20.5 min,
or 1230 s. We may use this value for Tb along with the known
Earth radius of a = 6371 km to deduce a value of cL. The
speed of longitudinal waves is known to be different for dif-
ferent regions of the Earth, but since the mantle occupies the
greatest volume, we might expect to obtain a value for cL
characteristic of the mantle. Using Eq. (13.14) to solve for cL
gives

cL =
2πa

kbaTb
=

2π(6371)

2.563(1230)
km/s = 12.7 km/s, (13.15)

a reasonable value for cL in the Earth’s mantle.

While assuming the Earth has constant elastic properties is
clearly an approximation, it would appear that an even more
drastic approximation is the complete neglect of gravity in-
side the Earth. As we saw in Sec. (2.3), due to the inward
pull of gravity, the pressure at the center of the Earth is mil-
lions of times larger than atmospheric pressure. Thus even at
equilibrium, the deep interior of the Earth is in a state where
both stress and strain are definitely nonzero. As realized by
several physicists in the nineteenth century, the oscillations
of the Earth should be thought of as small oscillations about
a state of hydrostatic equilibrium between the inward force
of gravity and the stress tensor of the Earth’s materials. The
case of an Earth-sized sphere with constant elastic properties
was analyzed in detail by A. H. Love (Love 1911), among
others. The general effect of gravity on the period of an
Earth oscillation is to lower the period. However, due to its
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complete spherical symmetry, the breather frequency is un-
affected, so the analysis given above is correct for an Earth
with constant elastic properties even when gravity is taken
into account.

The first observation of a normal mode of vibration of the
Earth took place in the 1950s. By now many higher modes
have been observed with nontrivial angular dependence (Stein
and Wysession 2003). Just as plucking a violin string excites
its normal modes, earthquakes excite the normal modes of
the Earth. A huge effort has gone into explaining the data
on the various modes of oscillation of the Earth in terms of
its internal properties (Schubert 2009). While the breather
mode discussed above is consistent with a homogeneous and
isotropic Earth, the higher modes are not, and they require
models which take detailed account of the variation in the
Earth’s parameters in its different regions.
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CHAPTER 14

Radioactivity and the Earth’s Interior

14.1 Historical Note

The discussion in Fermi’s notes of the density in the Earth’s
interior is very short, scarcely half a page. However, the
brief summary notes of the Sixth Washington Conference on
Theoretical Physics show this to be a subject that interested
Fermi greatly at the time these notes were written and one
in which he was regarded as an expert.

The yearly three-day Washington Conferences on Theo-
retical Physics began in 1935. They were the brainchild of
the physicist and, later, cosmologist Russian refugee George
Gamow, then a recent arrival in the United States. Aided in
their organization by fellow refugee Hungarian Edward Teller
and the Carnegie Institution’s Merle Tuve, they loosely mod-
eled the meetings on the annual gatherings hosted by the
eminent Danish physicist Niels Bohr in Copenhagen during
which a small group of physicists gathered for informal dis-
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cussions not marked by an official record of the proceedings.

One way in which Washington differed from Copenhagen
was that a topic for discussion was chosen each year and
the group attending was constituted with this in mind. The
Washington meetings were a great success from the start, in
part because they provided an informal atmosphere for Amer-
ican physicists to become acquainted with recent emigres such
as Gamow and Teller.

The 1938 conference, with topic of “Stellar Energy and
Nuclear Processes,” is notable for drawing the leading nu-
clear physicist Hans Bethe into applying his expertise to as-
trophysics. The 1939 conference, whose topic was “Low Tem-
perature Physics and Superconductivity,” is best remembered
for the organizers’ decision to abandon the planned schedule
and have the first two talks be on nuclear fission, a discovery
that had been announced only weeks earlier. The impact of
the talks was magnified by the universal respect for the first
two speakers, Niels Bohr and Enrico Fermi.

14.2 The Sixth Washington Conference on The-
oretical Physics

The chosen topic for 1940 was “The Interior of the Earth.”
Though, as stated earlier, proceedings were not published, a
brief summary of the discussions was issued, giving us some
idea of what transpired. The first day’s discussions, centering
on the physical state and composition of the Earth’s interior,
were introduced and led by Fermi. This was a mark of both
his interest and expertise in the subject. Fermi began by
asserting that if electrons could be treated as moving inde-
pendently, the pressure-volume relation could be dealt with
by statistical reasoning, but of a very different sort than is
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used at normal pressures, densities, and temperatures. It was
known that the center of the Earth had a mass density of ap-
proximately 12 g/cm3, and was composed predominantly of
iron. Fermi was interested in the question of whether the
pressure there could be explained by assuming that the iron
atoms were completely stripped of their electrons, and that
the electrons formed a free gas obeying what is now called
“Fermi-Dirac” statistics. If the temperature is very low, this
is a completely quantum mechanical regime. For particles of
mass m and number density ρ, the pressure of an ideal Fermi
gas is (Landau and Lifshitz 1980)

P =
π(9π)1/3

5me
~2ρ5/3, (14.1)

where ~ is Planck’s constant divided by 2π. Using a mass den-
sity for the Earth of 12 g/cm3, and assuming the composition
is 100% iron, the density of electrons is

ρ = 3.37× 1024 electrons/cm3.

For electrons stripped from the iron nuclei, Fermi’s suggestion
was to assume they form an ideal Fermi gas, in which case
Eq. (14.1) can be used to compute the pressure. Using the
known values of ~ and the electron mass, this gives

Pearth−center = 1.7× 108Patmosphere.

This is much higher than the estimate found by Fermi as
described in Sec. (2.3). Fermi correctly concluded that the
center of the Earth is not an ideal Fermi gas of electrons.
However, in the realm of astrophysics, such gases do occur
inside white dwarf stars. Fermi then went on to give esti-
mates of the melting point of iron at such pressures on the
assumption that a solid melts when the thermal vibrations of
its atoms reach a certain fraction of its interatomic distance.
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Such questions are not discussed in Fermi’s lecture notes.
We have included this aside to show how involved Fermi was
in geophysics questions at the time of the lectures.

14.3 Estimates of the Earth’s
Interior Density

There is a long history of attempting to describe the Earth’s
potential energy by models of the planet’s shape and density
distribution. The items of data that were used, most of them
discussed earlier in these notes, are: (1) total mass; (2) ellip-
ticity of the meridian; (3) difference of moments of inertia;
and (4) density at surface. Many analytic parameterizations
of the Earth’s density were given over the years. The reader
may recall that in Sec. (2.3), Fermi wrote down a simple for-
mula for ρ(r) in Eq. (2.38)). Two nineteenth-century exam-
ples, the first by Edouard Roche and the second by Friedrich
Helmhert (Brush 1996) are presented below, with ρ measured
in g/cm3 and Re the Earth’s radius. Roche’s formula is

ρ = ρ0[1− βr2/R2
e], (14.2)

where ρ0 = 10.1, β = 0.764, and Helmhert’s formula is

ρ = ρ0[1− β1r
2/R2

e + β2r
4/R4

e], (14.3)

where ρ0 = 11, β1 = 1.04, β2 = 0.275.

Such parameterizations assume that the Earth’s density
varies smoothly, as if there were no discontinuities in its chem-
ical composition. Such is not the case as is seen by the abrupt
change in the impedances1 of seismic waves that takes place

1The impedance I of a seismic wave of velocity v in a medium of
density ρ, is I = ρv.
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at a depth of approximately 2900 m below sea level. Known
as the Gutenberg discontinuity, so named after the late Ger-
man geophysicist Beno Gutenberg, this corresponds to the
boundary between the Earth’s solid mantle and its liquid core.
Fermi also quotes data showing the rise in density in g/cm3

to be linear from a value of 3.4 at a depth of 60 km to one of
4.7 at 1200 km and again linear from 4.7 at 2450 km to 5.0
at 2900 km, the point of the Gutenberg discontinuity (Brush
1996). From there until the Earth’s center, which lies at a
depth of 6371 km, he quotes a constant value of 11.0 g/cm3.
This, as noted earlier, is less than the modern value of the
density of the Earth in the inner core, 12.0− 13.0 g/cm3.

14.4 Early Estimates of the Age of the Earth

The discovery of radioactivity near the turn of the twentieth
century had a profound and immediate effect on geophysics,
most notably on the ongoing debate of the Earth’s age. Early
estimates of this number, principally those of Lord Kelvin,
followed from calculations of heat conduction and were based
on observed temperature gradients near the Earth’s surface.
Depending on the assumptions made, the number obtained
varied from twenty million years to upwards of a hundred
million years, insufficient to account for the observed time of
geological changes and certainly too short for the evolution of
species by natural selection proposed by Charles Darwin and
Alfred Wallace. Radioactivity showed that highly significant
and previously unaccounted sources of heat were likely to be
present in the Earth’s crust and that, as has proved the case,
any calculation needed to take into account these new sources
(Jackson 2006).
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14.5 Radioactive Decay Equation

Within a relatively short time, the work of Lord Ruther-
ford and others determined that radioactive decay was due
to the spontaneous disintegration of atomic nuclei and could
be characterized by the emission of alpha, beta, and gamma
rays (Cook 1973). These were respectively due to a nucleus
emitting a helium nucleus, an electron, or a photon. It was
quickly seen that in all cases the rate of decay was simply pro-
portional to N, the number of nuclei present in the original
sample,

dN/dt = −λN, (14.4)

where λ was known as the decay constant. Accordingly the
number of daughter nuclei grows as

dN1/dt = +λN. (14.5)

The solution to Eq. (14.4 )is

N(t) = N(0) exp(−λt). (14.6)

The half-life of the decaying nucleus, T1/2, is the time in which
N(t) is reduced to half its original value. It is simply given
by

exp(−λT1/2) = 1/2 (14.7)

so that λT1/2 = ln 2.

14.6 Heat by Radioactivity within the Earth

It is believed that radioactivity is responsible for approxi-
mately half of the 47 Tw (1 Tw = 1012 watts) flowing to the
surface from the Earth’s interior, the other half being pri-
mordial heat generated by a variety of causes during Earth’s
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formation. While this amount of heat is only 0.027 % of the
173,000 Tw from insolation, the latter only penetrates a few
tens of centimeters into the Earth. Primordial heat and ra-
dioactivity are responsible for observed geological processes
such as plate tectonics and volcanic activity.

The key radioactive elements are thorium; the two isotopes
of uranium; and the rare isotope of potassium, 40K. This last
isotope constitutes some 0.012% of the potassium found in
nature and decays with a long life-time: 1.25 × 109 years.
Its two principal decay modes are to 40Ca, accounting for
89% of the decays, and 40Ar, for the remaining 11%. Though
comparatively rare, this potassium isotope is important in
the Earth’s heat production because potassium is relatively
abundant, of the order of a few percent in both granite and
basalt, the principal components of the Earth’s crust. As a
side note, this decay is also responsible for the almost 1% of
the Earth’s atmosphere being composed of argon. The heat
generated per second by a gram of each of these radioactive
elements is listed in Table (14.1) (this data is from Fermi’s
notes) and Table (14.2) lists the percentages of these elements
in common rocks.

Table 14.1: Rate of heat generation by K, U, Th

K U Th
3.9× 10−12cal/(g s) 2.5× 10−8cal/(g s) 5.6× 10−9cal/(g s)

With these numbers Fermi was in a position to estimate
the amount of heat generated in the Earth by radioactivity.
Multiplying the proportional amount of each radioactive el-
ement in a type of rock by the heat generated per gram by
that element, we find for the case of granite

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



204 CHAPTER 14. RADIOACTIVITY

Table 14.2: The percentages of radioactive elements in
common rocks

rock K U Th
granite 2.6× 10−2 6× 10−6 2.0× 10−5

basalt 1.28× 10−2 1.6× 10−6 0.6× 10−5

peridotite 0.22× 10−2 0.3× 10−6 0.1× 10−5

free iron 0.14× 10−2 0.02× 10−6 0.06× 10−5

Qgranite = (3.9× 10−12)× (2.6× 10−2) (K) (14.8)

+ (2.5× 10−8)× (6× 10−6) (U)

+ (5.6× 10−9)× (2× 10−5) (Th)

= 3.6× 10−13cal/(g s).

The biggest unknown lies in estimating how many grams of
the material containing the radioactive isotopes are present in
the Earth. The value for granite of 3.2× 1020 cal/year given
below in Table (14.3) corresponds to estimating that granite
makes up ≈ 0.5% of the Earth’s mass, or the total amount
of granite is ∼ 3× 1025 g. This is a reasonable estimate given
that although granite is the main component of the first few
tens of kilometers of the continental crust, there is little of
it elsewhere in the Earth. Making similar estimates for the
other types of rock and multiplying our results by the num-
ber of seconds in a year, 3.15×107, Fermi obtained estimates
of the amount of heat generated in the Earth measured in
units of cal/year for each of the four types of rock. These are
listed in Table (14.3). Given the relative scarcity of radioac-
tive elements in peridotite, it seems surprising at first glance
that it is the principal contributor to the heat balance. The
answer is quite simple: peridotite is the dominant rock in the
Earth’s mantle and therefore constitutes a far larger compo-
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Table 14.3: Heat production in common rocks

granite basalt peridotite free iron
3.2× 1020 cal/year 2.6× 1020 cal/year 16.1× 1020 cal/year. 4.3× 1020 cal/year

nent of the Earth’s volume than either granite or basalt, key
elements of the considerably smaller crust of the Earth.

To appreciate the scale of the heating due to radioactivity,
imagine that the heat generated by radioactivity remained
entirely within the Earth rather than escaping into the atmo-
sphere. The sum of the heat production for the rocks listed
in Table (14.3) is Hrad = 26.2 × 1020 cal/year. Taking the
specific heat of rock as approximately ce = 0.2 cal/(g K) we
would then expect the Earth’s temperature to rise by

Hrad

Mece
=

26.2× 1020

6× 1027 × 0.2
= 2.2× 10−6K/year

or more than 2000 K in a billion years. This has not happened
because heat escapes into the atmosphere.

The methods and the calculations above are correct, but
the results reflect data available in 1941. Modern measure-
ments have improved and changed our present understanding
of these numbers. In particular the estimate of heat gener-
ated by radiation that reaches the Earth’s surface, Hrad =
26.2 × 1020 cal/year, is almost an order of magnitude larger
than the value we presently believe to be true. There are
many reasons for the discrepancy, including overly large esti-
mates of the amount of radioactive material present, partic-
ularly true in the case of peridotite. Some of the heat also
surely is responsible for the movement of the tectonic plates,
a phenomenon unknown or at least unaccepted in 1941. In
addition, it was believed at the time that the thickness of the
crust underneath the oceans and the continents was compa-
rable. We now know that this is not the case. Whereas the
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continental crust, a material comparatively rich in uranium
and thorium, extends for 30 km or so, the oceanic crust has
a thickness of only a few kilometers.

14.7 Uranium Decays and Lead
Isotope Abundances

In what follows Fermi focuses on three of the four isotopes
that contribute significantly to radioactively generated heat
in the Earth. Each one of these three, 238U, 235U, and 232Th,
has a long decay chain that terminates in one of the four
stable isotopes of lead, the lead isotopes having respective
atomic weights of 208, 207, 206, and 204. They have signifi-
cant abundances in common lead (52.4%, 24.1%, 22.1%, and
1.4%, respectively), and all four have primordial components,
but only the first three are produced as the end products of
radioactive decay by elements of higher atomic number. We
list below the three principal modes in question and their
respective half-lives.

Table 14.4: Decay Modes of Uranium Isotopes

238U→ 8He4 + 6e− + 206Pb T1/2 = 4.56× 109 year
235U→ 7He4 + 4e− + 207Pb T1/2 = 7.13× 108 year
232Th→ 6He4 + 4e− + 208Pb T1/2 = 1.31× 1010 year

As indicated, the transition from uranium or thorium to
lead comes as the conclusion of many steps that involve either
the emission of an electron or of an alpha particle.The half-
life measurements given in Fermi’s notes differ slightly from
the presently determined best values but are close enough for
the calculations below.

There is a subtlety here which is worth mentioning. In
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principle the decay of, e.g., 238U involves fourteen steps in
succession, eight of them involving the emission of an alpha
particle and six of them that of an electron. This raises the
question of what does λ mean? The ith daughter in the decay
chain satisfies

dNi+1/dt = λiNi − λi+1Ni+1 (14.9)

rather than the the simple form of Eq. (14.5), so it would
appear that we have to solve a large set of simultaneous dif-
ferential equations. Fortunately this is not the case because,
in all three of isotope decays listed above, the first decay has
a much longer half-life than all the others, or equivalently,

λ1 � λ2, λ3, ... λn, (14.10)

so the T1/2 quoted in the table above is the T1/2 for the first
decay in the chain. This reasoning does not hold for 40K,
which has two decay modes with comparable lifetimes, but
we will not pursue that case here.

14.8 Using Radioactive Isotopes for Dating

There are many examples of employing radioactive isotopes
to date rocks or other materials. We shall give one example
here. It makes use of zircon, a mineral that during its forma-
tion incorporates uranium and thorium but not lead into its
crystal structure. Any lead present in an undamaged sample
of zircon is therefore the result of uranium or thorium decay.

Let N238(t) be the number of 238U atoms present at time
t, where t is the number of years since the rock was formed,
i.e., it is the age of the zircon rock. Likewise, let N206(t)
be the number of 206Pb atoms present at time t. We know
that N238(0), the number of 238U atoms at the time of the
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zircon rock formation, is equal to N238(t) + N206(t) because
originally there was no lead in the zircon and the 238U atoms
that decayed are now present in the zircon as 206Pb atoms.
Writing this as an equation, we have

N238(0) = N238(t) +N206(t), (14.11)

or, dividing by N238(t),

N238(0)

N238(t)
= 1 +

N206(t)

N238(t)
. (14.12)

Using the radioactive decay law, Eq. (14.6), we have

N238(t) = N238(0)e−λ238t, (14.13)

so Eq. (14.12) becomes

eλ238t = 1 +
N206(t)

N238(t)
. (14.14)

Taking logarithms of both sides, we obtain

t = (
ln(1 + N206(t)

N238(t))

λ238
) = (

ln(1 + N206(t)
N238(t))

ln(2)
)(T1/2)238, (14.15)

where from Table (14.4), (T1/2)238 = 4.56 × 109year. The
last form of Eq. (14.15) is quite useful. It gives the age t of
a sample of zircon as a fraction of the half-life of 238U. The
fraction depends only on the ratio of 206Pb to 238U at time
t in the sample. Fermi gives an example of such dating to
determine the age of geological eras. In Table (14.5), we use
his method to calculate the ages of various eras in the Earth’s
history, using Eq. (14.15) to calculate the age of the era from
the Pb/U ratios.

As a check on the results obtained using the decay of 238U
to 206Pb, we can instead use the decay of 235U to 207Pb. The
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Table 14.5: Eras, Pb/U ratios, and era lengths

Era Pb/U ratio Era length (years)
Oldest 0.228 1.4× 109

Lower Cambrian 0.08 5.1× 108

Carboniferous 0.04 2.6× 108

Lower Cenozoic 0.008 5.2× 107

age of the same sample of zircon would now be given in terms
of the ratio of 207Pb to 235U,

t =

 ln(1 + N207(t)
N235(t))

λ235

 = (T1/2)235

 ln(1 + N207(t)
N235(t))

ln(2)

 ,

(14.16)
where from Table (14.4), (T1/2)235 = 7.13× 108years.

The general method described above is known as U-Pb
dating and is one of the oldest and most reliable methods
of radiometric dating. As the preceding discussion hopefully
makes clear, the discovery of radioactivity and the use of
radiometric dating revolutionized the understanding of the
age of the Earth. Present estimates are consistent with the
time required for biological and geological evolution.
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CHAPTER 15

The Physics of Heat Flow in the Earth

This section of Fermi’s notes is concerned with the flow of
heat to the surface of the Earth from its interior. The sources
of this heat can be broken into two broad classes even though
it is not possible to completely disentangle them. The two are
energy released in radioactive decay and so-called primordial
heat. We believe the heat arriving at the Earth’s surface from
radioactive decay is for the most part generated in the mantle
and the Earth’s crust. These regions contain isotopes of ura-
nium, thorium, and potassium, the main sources of Earth’s
radioactivity, while the presence of these isotopes in regions
below the mantle is unlikely according to present models of
the Earth’s interior.

The major components of the primordial heat come from
accretion during the Earth’s formation and energy released
in the establishment of the Earth’s iron core. Hence their
origins lie in regions that are deeper in the Earth’s interior.
It is also believed that the flow of heat in the Earth’s crust is
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212 CHAPTER 15. HEAT FLOW IN THE EARTH

primarily by conduction, while convection plays an important
role in the mantle and the core. Regardless of its source, the
mean power delivered to the Earth’s surface from sources
inside the Earth has been determined to be

PE = 47(±2)× 1012 W. (15.1)

The oceanic heat current is typically about 50% higher
than the current in the continental crust, the higher value
being due to factors such as the magma at floor ridges and
the subsequent spreading of the ocean floor.

We can understand the figure for PE by taking reasonable
average values of the continental and oceanic heat currents,
namely,

qcont = 6.7× 10−2 W/m2, qocean = 10−1 W/m2, (15.2)

and multiplying them, respectively, by the continental area of
the Earth, ∼ 2× 108 km2, and ∼ 3.1×108 km2 for the oceans.
This gives

PE = (2× 1014 m2)(67× 10−3 W/m2) (15.3)

+ (3.1× 1014 m2)(101× 10−3 W/m2)

= 45× 1012 W.

PE is thousands of times smaller than the power arriving from
the Sun. However, solar power affects only the atmosphere
and the first several centimeters below the Earth’s surface,
while the inner Earth heat currents, driven relentlessly for-
ward by the temperature gradient, provide the energy for vol-
canic activity and all the observed major geologic processes
such as the movements of tectonic plates.
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15.1 Periodic Heat Variations Near
the Earth’s Surface

Much of the material in this section was already discussed
in Sec. (8.3), but following Fermi, we return to the subject
one more time. The same daily and annual changes in the
atmosphere’s temperature that are responsible for variations
below sea level also cause a periodic temperature dependence
below ground level. For convenience, we rewrite the solution
to the heat conduction equation, Eq. (8.20), as

T (t, z) = T̄0 +
T̄d − T̄0

d
z + δT cos(ωt− az + η)e−az, (15.4)

where, as before,

a =

√
ωd
2χ
. (15.5)

In applying Eq. (15.4) to the temperature variation near the
surface of the Earth’s crust, the values of the mean surface
temperature T̄0 and its periodic variation δT can be set to
the same values used over the ocean, but the temperature
gradient in the crust (T̄d − T̄0)/d is much larger than (∼
30 K/km), and of the opposite sign to, that of the ocean; in
the crust, the temperature increases with increasing depth.
However, our main interest is in the value of a, which now
depends on the thermal diffusivity of the crust. A reasonable
value for it is

χcrust = 8.0× 10−7 m2/s, (15.6)

significantly larger than the value of 1.4× 10−7 m2/s for wa-
ter. The resulting values for a and 1/a for daily temperature
variation in the Earth’s crust are

a = 6.7m−1, or
1

a
= 15 cm. (15.7)
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For annual variation, the value of 1/a is increased by
√

365,
resulting in a value for annual variation of 283 cm.

In the nineteenth century, Lord Kelvin proposed using the
periodic variation of temperature at various depths as a way
to find 1/a, and thereby deduce the thermal diffusivity of
rock in the Earth’s crust and finally obtain its thermal con-
ductivity. However, this turned out to be difficult due to the
presence of water in most rocks near the surface.

15.2 Estimate of Heat Passage
through the Earth’s Surface

The mean continental heat current q is related to the thermal
gradient by

qcont = κcrust
dT

dz
. (15.8)

Fermi used

dT

dz
≈ 3.2× (10−4) K/cm, and κcrust = 0.005 cal/K cm.

(15.9)
Converting units, and computing the continental heat current
with these parameters, gives

qcont = 0.067 W/m2,

the value we used earlier in our estimate of PE . Fermi also
estimated the value of the total power by multiplying this
q current by the area of the Earth, obtaining of course a
value that was too low because it was not yet well known
that the oceanic heat current is significantly higher than the
continental one.
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15.3 Space-Time Scales in Heat Conduction

Before a heat-conducting system has reached a steady state or
if it is perturbed from a steady state, the temperature of the
system obeys the time-dependent heat equation. Since the
flow of heat in the Earth’s crust is essentially one dimensional,
we have

∂T

∂t
= χ

∂2T

∂z2
, (15.10)

Daily experience gives qualitative information about the
space and time scales of heat conduction. As an example,
suppose a steel rod, initially at room temperature, has its
end placed in boiling water. If the rod is touched at an ele-
vation above the boiling water, it will begin to feel “hot” at a
time that increases as the elevation of the touched point in-
creases. Using Eq. (15.10), a more quantitative statement can
be made. In general the solution of the equation is a function
of both z and t, but if we impose boundary conditions that
do not set scales,

T (z, 0) = T1 T (0, t) = T2,

with T1 and T2 equal to constants, the solution for T (z, t) is
a function of only the dimensionless variable

V = z2/(χt).

Temperature’s partial derivatives can then be written as

∂T

∂t
= −dT

dV
· V
t

∂T

∂z
=
dT

dV
· 2V

z
.

With a little work we see that the heat conduction equation
then reduces to a first-order differential equation,

dT

dV
=

A

V 1/2
exp(−V/4),
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where A is a constant. Given this dependence, a semiquanti-
tative criterion for deciding when a region is “hot” is

exp(−V/4) = exp(−z2/4χt) =
1

e
,

or

t ∼ z2

4χ
. (15.11)

In general, there will be an additional constant multiplying
z2/(4χ), but ratios of times for different z values will still be
captured by Eq. (15.11).

Ordinary steel has χ ≈ 2 × 10−5 m2/s. Table (15.1) gives
the time scale from Eq. (15.11) for distances on the rod of
1, 10, and 100 cm. The results illustrate the important point
that the time scale goes as the square of the corresponding
distance scale.

Table 15.1: Heat conduction scales for a steel rod

z (cm) t (s)

1.0 1.25

10.0 125

100 1.25× 104

Fermi uses a formula equivalent to Eq. (15.11) to estimate
time and distance scales for heat conduction in the Earth. As-
sume a disturbance in a steady state of heat flow arises at the
junction between the Earth’s crust and mantle. Setting z = 0
at this boundary, and measuring z upward, we may apply
Eq. (15.11) to relate distance and time scales for the propaga-
tion of this disturbance upward into the crust. For the Earth’s
crust, a reasonable value is χcrust = 8.0 × 10−7 m2/s. Using
this for χ in Eq. (15.11), several time and distance scales are
given in Table (15.2). Table (15.2) again illustrates the very
rapid growth with distance of the time for a disturbance to
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Table 15.2: Heat conduction scales for the Earth’s crust

z t

1.0 m 3.6 days

100 m 99 years

1 km 9900 years

10 km 990000 years

propagate. Given that the Earth’s crust is approximately
35 km thick, a perturbation at the mantle-crust boundary
would take over 12 million years to reach the Earth’s surface.
Fermi uses a formula equivalent to Eq. (15.11) to estimate
time and distance scales for heat conduction in the Earth. It
reads

t = Cρ/4κ(T0/γ)2 =
1

4χ
(T0/γ)2,

but his T0 is the estimated temperature at the crust’s base
and γ is an average temperature gradient in the crust’s rock
so that (T0/γ) is a measure of distance. Fermi has a table
which makes the same point as Table (15.2).

15.4 Equilibrium with Production of Heat

Fermi also considers heat conduction in the Earth’s continen-
tal crust in the presence of a distribution of heat sources as
a way to include the presence of heat generated by radioac-
tive decays. The one-dimensional heat equation in this case
is modified to

ρCp
∂T

∂t
= κ

∂2T

∂z2
+ ρH, (15.12)

where H is the strength of the heat source within the conti-
nental crust, with units of power/mass; ρ is the mass density.
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For a steady state, we have

κ
∂2T

∂z2
+ ρH = 0. (15.13)

It is reasonable to assume that κ and ρ are independent of z in
the continental crust. For the present, we will follow Fermi
and also assume that H is independent of z. (This point
is discussed further below.) With κ, ρ, and H all constant,
integrating Eq. (15.13) gives

κ
dT

dz
(z) = κ

dT

dz
(0)− ρHz. (15.14)

Eq. (15.14) relates the heat current at depth z to the heat
current at the surface. Denoting the thickness of the Earth’s
continental crust by ε, Eq. (15.14) at z = ε gives

κ
dT

dz
(ε) = κ

dT

dz
(0)− ρHε. (15.15)

The left-hand side of this equation is the heat current entering
the crust from the mantle. This is certainly nonzero, but
again following Fermi, we temporarily assume it is zero, so
all the heat which arrives at the Earth’s surface is generated
by sources in the crust. This leads to

κ
dT

dz
(0) = ρHε. (15.16)

Fermi uses this equation to estimate ε, the thickness of the
Earth’s crust, using the parameters of section (1.2), namely,

κ
dT

dz
(0) = 0.067 W/m2. (15.17)

To obtain a value forH, the heat content of the rock in the
crust, we return to the discussion in section (14.6) of heat
generated within the crust by radioactivity. Averaging over
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granite and basalt, Fermi assumes a value for ρH of 5 ×
10−13 cal/cm3 s, or 2.1 × 10−6 W/m3. Solving for ε, we ob-
tain

ε = κ
dT

dz
(0)/(ρH) (15.18)

= (0.067 W/m2)/(2.1× 10−6 W/m3 = 31.9 km,

a somewhat small, but not altogether unreasonable, value for
the continental crust thickness. However the mantle does in-
ject a significant amount of heat into the crust. As a result,
the amount of heat generated by sources in the crust cannot
add up to the total heat current at the surface. In addition,
although the density of radioactive sources in the mantle is
less than that in the crust, the volume of the mantle is ap-
proximately a thousand times larger than that of the crust so
that most of heat from radioactive decays is generated in the
mantle. This should also be expected since, as we have al-
ready noticed, despite the continental crust being far thicker
than the oceanic one, their heat currents are comparable.

The present-day picture of distribution of radioactive heat
sources is that approximately 4/5 of the radioactive heat gen-
erated in the Earth comes from the mantle, with only 1/5
coming from the crust (Fowler 1990). A consistent picture
can therefore only be obtained by dropping the assumption
of a uniform density of sources in the crust and instead al-
lowing a distribution of heat sources in the crust to decrease
with increasing depth. In particular the formula

H(z) = H(0) exp(− z

hr
) (15.19)

explains the data in many parts of the world (Masters and
Constable ), with hr ∼ 10 km. This, of course, incorporates
some of the vast amount of information that has been ob-
tained in the 80 years since Fermi’s lectures.
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Finally, let us discuss the temperature in the Earth’s con-
tinental crust. We return to Eq. (15.13) and integrate twice,
allowing H to depend on z. This results in the following equa-
tion for the temperature at depth z,

T (z)− T (0) = z
dT

dz
(0)− 1

κ

∫ z

0
dz′
∫ z′

0
dz′′ρH(z′′) (15.20)

We are interested in the temperature at the bottom of the
Earth’s continental crust, at z = ε. For an assumed value of
ε = 35 km, and with the previously used value of dT/dz(0) =
32 K/km, the first term on the right-hand side of Eq. (15.20)
is 1120 K. This is the value which would hold in the absence
of heat sources, assuming constant heat conductivity. The
presence of heat sources in the crust will reduce this number,
the amount of reduction depending on the z dependence of
H(z). Taking first the case considered by Fermi, i.e., ρH(z)
is a constant equal to 2.1× 10−6 W/m3, and κ = 2.1 W/m K,
the integral is easily evaluated and and we have

T (ε)− T (0) = 1120 K− 612 K = 508 K. (15.21)

If on the other hand, we use the model of Eq. (15.19), we
obtain

T (ε)− T (0) = 1120 K− 250 K = 870 K. (15.22)

The actual temperature of any point in the Earth’s crust
which lies deeper than the deepest borehole is not directly
measurable, and is therefore dependent on models for pre-
dicted values. From the results just obtained it is reasonable
to conclude that in regions of the crust where its depth is
near the mean value of 35 km, T (ε)−T (0) should lie between
1120 K (no heat sources in the crust) and 508 K (too many
heat sources in the crust).

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



Magnetic field expansion in spherical harmonics

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



CHAPTER 16

Earth Magnetism

16.1 Units

We briefly discuss the units used in electromagnetism before
addressing the question of the Earth’s magnetic field. Fermi,
like most physicists of his time, used esu-cgs = gaussian-cgs
units. In them the gauss (G) is the unit of magnetic field
and the now obsolete statampere (statA) is the unit of cur-
rent. However since World War II, most scientific work on
electromagnetism uses SI units in which a magnetic field is
measured in tesla (T), where 1 T = 104 G, and electric cur-
rent is measured in the familiar ampere (A). It is therefore
desirable to use SI units to calculate magnetic fields in tesla
from currents in amperes. To then obtain the magnetic field
in gauss, simply multiply by 104. This two step procedure
will be used in what follows.
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16.2 Magnetic Moments

The concept of magnetic moment, a vector which we will de-
note as m, plays a key role in the treatment of the Earth’s
magnetic field. For a planar loop of wire of area A, carrying
current I, the magnitude ofm is given by |m| = IA (A ·m2)
regardless of the loop’s shape. The direction of m is de-
termined by the sense of the current. If the current flows
counterclockwise when viewed from above, m points toward
the observer; if the current flows clockwise when viewed from
above, m points away from the observer. If a magnetic mo-
ment m is placed at the origin, with the z axis parallel or
antiparallel to m the magnetic field (in T) is

B = ±(
µ0

4π
)
|m|
r3

(2 cos θr̂ + sin θθ̂). (16.1)

Here + corresponds to m parallel to ẑ, and − to m an-
tiparallel to ẑ. In Eq. (16.1), r and θ are the usual spherical
coordinates, while r̂ and θ̂ are the corresponding unit vectors.
The combination µ0/4π is given by

µ0/4π = 10−7m2 ·kg/s2 ·A2.

Using this information, a practical formula that leads to the
field in gauss from the magnetic moment in A·m2 and r in
meters, is

B = ±(
1

1000
)
|m|
r3

(2 cos θr̂ + sin θθ̂). (16.2)

As discussed below in more detail, the case of m antipar-
allel to ẑ is convenient in discussing the Earth’s magnetic
field. The magnetic moment of the Earth then points from
the Northern Hemisphere to the Southern Hemisphere, so the
conventional “North Pole” is really a south magnetic pole, or a
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“north-seeking pole.” Taking the magnetic z axis to point to-
ward Greenland (remember the magnetic axis does not coin-
cide with the Earth’s axis of rotation), the magnetic moment
of the Earth points in the negative z direction, corresponding
to the − sign in Eqs. (16.1) and (16.2).

16.3 Magnetic Field of the Earth

The dominant feature of the Earth’s magnetic field at loca-
tions at or near the Earth’s surface is a dipole field. This
field can be described by a dipole moment located inside the
Earth. There is also a generally much weaker nondipole field,
which has been mapped out in fine detail by modern satel-
lite measurements. A challenging inverse problem, still under
investigation, consists of trying to determine the features of
the electric currents inside the Earth which give rise to the
total magnetic field (dipole plus nondipole) observed above
its surface.

Restricting the discussion to the dipole field, the magni-
tude of the dipole moment which gives a good description of
the field at the Earth’s surface is (Fowler 1990)

|me| = 7.94× 1022 A·m2. (16.3)

The magnetic dipole vector is at a (downward) angle of ap-
proximately 11.5◦ to the axis of rotation of the Earth. The
“magnetic equator” goes around the Earth in a similar man-
ner to the geographic equator, but in such a way that the
magnetic moment of the Earth is perpendicular to plane of
the magnetic equator. Because of the 11.5◦ tilt of the Earth’s
magnetic moment, compass needles point in a direction which
deviates somewhat from geographic north. The magnetic
field on the Earth’s surface also has a vertical component,
which can be detected using a “dip needle,” which is similar
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Figure 16.1: Magnetic field lines around Earth

to a compass needle but is allowed to rotate around a hor-
izontal axis instead of a vertical one. At the north pole or
south pole the magnetic field has only a vertical component.

The strength of the field at the Earth’s surface ranges from
0.25 to 0.65 G with characteristic daily variations at any point
of up to (4 − 5) × 10−4 G. There are also so-called magnetic
anomalies, localized differences in the field due to the presence
of large iron ore deposits: the region near the Russian city of
Kursk is a particularly striking example. But such anomalies
do not amount to site-dependent variations of more than a
few percent.

Using 6371 km for the radius of the Earth and the value
of |m| given above, Eq. (16.2) gives the following formula for
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the Earth’s magnetic field at its surface:

B = −(0.31 G)(2 cos θr̂ + sin θθ̂). (16.4)

It is valid to think of the r̂ and θ̂ components of B as “ver-
tical” and “horizontal.” At the magnetic equator (θ = π/2),
B has only a horizontal component, which points (opposite
to θ̂) along a magnetic longitudinal line toward the north
pole. At the magnetic north pole, (θ = 0), B has only a
vertical component, which points (opposite to r̂) downward
toward the center of the Earth. Fig. (16.1) shows the pattern
of magnetic field lines around the Earth. Note that lines of
B emerge from the Earth in the Southern Hemisphere, and
enter the Earth in the Northern Hemisphere.

We have not yet addressed what is the cause of the Earth’s
magnetic field. Largely stimulated by the need for better
navigational tools, that field has been a longtime subject of
intense study, but its cause has escaped understanding until
comparatively recently, chiefly because of ignorance of what
lay in the Earth’s interior. At the beginning of the twenti-
eth century interest began to focus on mechanical models as
a possible source, the principal idea being that the Earth’s
rotation was the principal agent. Following Fermi, we will
briefly discuss two such examples. In both cases, the fre-
quency of the Earth’s daily rotation around its axis comes in.
This is ω = 2π/Tday, where the number seconds in a day is
Tday = 86, 400 s. The numerical value of ω is 7.27×10−5 rad/s.

16.4 Earth Magnetization and
Rotation

The link between angular momentum and magnetization (Gal-
ison 1987) was treated by the British physicist Owen W.
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Richardson in 1908 and explored experimentally a few years
later by a number of authors. In 1915 A. Einstein and W. J.
de Haas performed a series of experiments that showed how
a freely hanging bar of ferromagnetic material would undergo
rotation if the magnetic field in the bar were altered by the
shifting of the current in a coil surrounding the bar.

The Barnett effect is the converse of the de Haas Einstein
effect. In simple terms, the Barnett effect asserts that if
a sample containing angular momentum–bearing atoms or
molecules is rotated, there will be magnetic polarization and
an effective magnetic field in the frame rotating with the sam-
ple. This effect has been observed in laboratory experiments,
starting with those of S. J. Barnett himself.

To estimate the magnitude of the effective magnetic field
induced by such an effect, begin by considering an electron
carrying an angular momentum L that is caused by it trav-
eling in an orbit around a nucleus. Both classically and
quantum-mechanically, this motion induces a magnetic mo-
ment

m =
−e
2me

L, (16.5)

where e is the magnitude of the electron’s charge and me is
its mass. As in Eq. (2.64), the Earth rotating with angular
velocity ω leads to L in the body-fixed frame satisfying the
equation

dL

dt
= −ω ∧L. (16.6)

Using the expression above for m, this equation becomes

dL

dt
= m ∧ (

2me

e
ω). (16.7)

From the angular equation of motion, the right side of Eq. (16.7)
is the torque acting on L. Further, since the torque acting on
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a magnetic moment m in the presence of an external mag-
netic field B is m ∧B, we see that the effect of the Earth’s
rotation is equivalent to a torque exerted onm by a magnetic
field

B = (
2me

e
)ω. (16.8)

This field’s magnitude is

|B| = (
2me

e
)|ω| = 2(

9.1× 10−31kg

1.602× 10−19C
)(7.27× 10−5 rad/s)

(16.9)
∼ 8.26× 10−16T = 8.26× 10−12 G.

This is utterly negligible compared to the normal magnetic
field of the Earth. Therefore the Barnett effect cannot begin
to explain the Earth’s magnetic field.

16.5 Rotation of Charges

Fermi also considers the possibility of a magnetic field that
is generated by an electric charge density Σ uniformly dis-
tributed over the Earth’s surface. Such a charge density
would lead to an electric field of magnitude E = 4πΣ di-
rected radially outward or inward, depending on the sign of
Σ. From the viewpoint of an observer in a space-fixed frame
(one not rotating with the Earth), the charge on the Earth
will be in motion, so a space-fixed observer will see a current
and therefore a magnetic field. However to an Earth-bound
observer, the surface charge on the Earth is not in motion and
therefore does not create a magnetic field. Hence the Earth’s
magnetic field that deflects needles in compasses held by nav-
igators on Earth does not arise from the surface charge of the
Earth.

It is of interest to estimate the magnetic field arising from
the rotation of the charged Earth as seen by a space-fixed
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(nonrotating) observer. A simple way to do this is to first
compare the magnetic moment due to the rotating charged
Earth with the magnetic moment that produces the magnetic
field that acts on compass needles for an observer on the
Earth. For the latter, recall from Eq. (16.3) that |me| =
7.94× 1022 A·m2. Let the magnetic moment due to rotation
of the charged Earth be denoted asmrot. If the Earth carries
a total charge Qe, and is rotating at angular velocity ω, then
an elementary calculation gives

|mrot| =
1

3
|Qe|ωR2

e, (16.10)

where Re is the Earth’s radius. As discussed in Sec. (17.2),
there is strong evidence that the Earth is negatively charged
with |Qe| ∼ 5× 105 C. Using Re = 6371 km, and ω = 7.27×
10−5 rad/s, we have

|mrot| =
1

3
|Qe|ωR2

e ∼ 5× 1014 A·m2. (16.11)

From this result we see that |mrot| is at least seven orders of
magnitude smaller than |me|. It would produce a magnetic
field which is also seven orders of magnitude smaller com-
pared to the field from me. So as a matter of principle, to
a space-fixed observer, there is a tiny magnetic field arising
from the rotation of the charged Earth. However, at a mag-
nitude of roughly one ten-millionth of a gauss, it is unlikely
that it will ever be observed.

16.6 Currents inside the Earth

What then causes the Earth’s large magnetic moment? It
has become clear that the answer lies in the generation of a
geodynamo within the Earth’s core, a region that extends to
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approximately 3400 km from the center of the Earth. The
inner core, lying in the first 1200 km, is predominantly iron
with smaller admixtures of other substances. It is solid be-
cause of the enormous pressure there, somewhat more than
three million Atmospheres. The next 2200 km, mainly iron
and an iron-nickel alloy, are liquid as can be seen, follow-
ing our discussion in Sec. (12.10), by the fact that transverse
seismic waves do not propagate there. The cause of the liq-
uefaction is the high temperature in the core which is on the
order of 6000 K, due to the the primordial heat generated
during the Earth’s formation.

This core temperature is well above the Curie tempera-
ture, the point where a metal such as iron loses the ability
to form the large domains that can add up to macroscopic
magnetic moments. Given that ordinary ferromagnetism is
ruled out, the explanation of the Earth’s large magnetic mo-
ments must lie in the presence of electric currents inside the
liquid outer core. These fields would produce magnetic fields
via Ampere’s law. Since currents are rapidly damped out in
a conductor’s interior, the necessary currents must flow near
the boundary of the conductor, a region known as the conduc-
tor’s “skin depth” (Jackson 1999). For the Earth, this would
imply that the current producing the Earth’s magnetic field is
concentrated at approximately 3400 km from the Earth’s cen-
ter. To get an idea of the currents required, imagine that the
crude model of the Earth’s magnetic moment arises from a
wire of radius 3400 km carrying a current I. Using the simple
formula |m| = IA, we can solve for I, setting

I =
|m|
A

=
|m|
πR2

core

. (16.12)

Substituting for |m| from Eq. (16.3) and usingRcore = 3400 km,
we obtain I = 2.19 × 109 A, a truly enormous current. Ad-
mittedly this model is crude but the conclusion that there
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are enormous currents in the interior of the Earth appears
inescapable.

As a point of interest, continue with the single wire model
and ask for the sense of the current. Imagine an observer
located above the Earth’s axis of symmetry in the Northern
Hemisphere. To such an observer, the Earth rotates coun-
terclockwise; the Sun rises in the east and sets in the west.
Now as discussed earlier, the magnetic moment of the Earth
points away from such an observer. The current that pro-
duces a moment pointing away from this observer must flow
clockwise, or in a westerly direction, opposite to the sense of
the Earth’s rotation.

The whole picture becomes even more curious when we
take into account the movements of the Earth’s magnetic
field. Though significant, they are not so large and rapid as to
invalidate the use of a compass. Among these changes are the
secular variations that take place over the course of a year.
The most recent example is a decline in intensity of the order
of 0.05% per year and a westward drift of the north magnetic
pole by about 0.2◦ per year. But the most dramatic change
is the complete reversal of the field, as seen in examinations
of the geological record. These reversals have occurred re-
peatedly at random times, the interval between them rang-
ing from one hundred thousand to fifty million years with
an average of approximately 250,000 years; the latest rever-
sal took place 780,000 years ago. The reversals indicate that
over a relatively short period of time the currents producing
the Earth’s magnetic field have gone from flowing in the same
sense as the Earth’s rotation to flowing in the opposite sense.
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16.7 Magnetosphere

The Earth’s magnetic field is assumed to first approximation
to be that of a dipole, but high above the Earth’s surface
the field is strongly distorted by the “solar wind,” a contin-
uous stream of high-energy particles principally produced in
the Sun’s corona. The stream consists mainly of electrons
and protons though some alpha particles are also present.
The wind’s effect on Earth would be devastating were it
not at least partially turned aside as it approaches Earth by
the Earth’s magnetic field. This occurs in the field’s upper
reaches, a zone known as the magnetosphere. Because of the
solar wind, the Earth’s magnetic field takes a shape described
by some as resembling water streaming around a rock.

On the day side of the Earth the magnetic field is flattened
out in a region known as the magnetopause, located at a
distance on the order of ten Earth radii. The field’s pressure
is balanced there by that of the solar wind. Conversely, on
the night side, the wind acts to draw the field in a tail that
extends past the Moon, 50 or more Earth radii out.

16.8 Magnetic Storms

A geomagnetic storm is a sudden disturbance in the Earth’s
magnetic field caused by a shift in intensity of the solar wind,
such as what occurs during a solar flare. Despite the action
of the Earth’s magnetic field some particles from the solar
wind do enter the Earth’s atmosphere. Their entry is more
likely to take place within a few degrees of the magnetic poles
because the direction of the Earth’s field is then closer to
that of the particles so that the Lorentz force is less likely
to turn them away. In the collisions with oxygen or nitrogen
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molecules at elevations typically of the order of 100 km, a
bright light is often produced. This phenomenon is known as
aurora borealis (a term coined by Galileo) near the magnetic
north pole and aurora australis near the southern magnetic
pole (Campbell 2003).

16.9 Magnetic Potential Expansion

The potential V of the Earth’s magnetic field, defined by
B = −∇V, satisfies ∇2V = 0 because ∇ · B = 0. As first
proposed by the great German mathematician Carl Friedrich
Gauss, it can therefore be expanded in spherical harmonics:

V (r, θ, φ) = a

∞∑
l=1

m=l∑
m=−l

Ylm(θ, φ)[(a/r)l+1clm + (r/a)ldlm],

(16.13)
where we have assumed the Earth to be a sphere of radius a.

The components of the B field in spherical coordinates are
then

Z = −∂V
∂r

(16.14)

X = − ∂V
r∂θ

(16.15)

Y = − ∂V

r sin θ∂φ
. (16.16)

Furthermore, since the sources of the Earth’s magnetic field
essentially lie within the Earth, the potential can be fitted by
setting all the dlm equal to zero. In this case the l = 1 term
is

V1 = 1/r2[A cos θ +B sin θ cosφ+ C sin θ sinφ]. (16.17)
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The first term in the above potential corresponds to a mag-
netic dipole field directed along the Earth’s axis of rota-
tion, originating from a source at the center of the Earth.
The terms proportional to sin θ modify the inclination of the
dipole but leave its location at the Earth’s center unchanged.
A more accurate fit to the Earth’s magnetic field requires
higher terms in Eq. (16.13) since the best dipole fits to B
suggest a location of the dipole 300 km or so away from the
Earth’s center. However the convergence of the spherical har-
monic expansion is rather poor, suggesting that a better fit
might be obtained by considering the magnetic field as due to
multiple dipole fields placed at different locations within the
Earth. This would correspond to the field being generated by
a number of current loops (Jackson 1999).
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CHAPTER 17

Atmospheric Electricity

17.1 Overview

The topic of atmospheric electricity is a very broad one with
varied phenomena taking place at every layer of the Earth’s
atmosphere, from the surface of the Earth to the exosphere.
As elsewhere, our discussion will largely follow the schematic
presentation of Fermi’s notes. The terms “electrosphere” and
“ionosphere” give a very broad classification of two regions
with different electromagnetic phenomena. The first refers
to the electric charge on the Earth and the compensating
opposite-sign charge that resides in the troposphere and the
lower part of the stratosphere. The ionosphere is a much
higher-altitude region whose defining property is its reflec-
tion of radio waves. Fig. (17.1) shows the layers of the atmo-
sphere and their overlap with the ionosphere. The latter is
essentially a plasma; an ionized gas. The electrosphere, on
the other hand, contains ions, but these ions are only a small
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fraction of the particles present.

17.2 Properties of the Electrosphere

In 1795 the French physicist Charles-Augustin de Coulomb
discovered that ordinary air conducts electricity, where by
“ordinary air,” we mean the lower regions of the atmosphere.
This was followed in the nineteenth century by the realization
that the Earth is negatively charged. In order to have electri-
cal neutrality the British polymath scientist Lord Kelvin pro-
posed that a positively charged region exists at some elevation
in the atmosphere. Taking account of Coulomb’s result that
ordinary air conducts electricity, we thus see that the electro-
sphere resembles a spherical condenser or capacitor, necessar-
ily a “leaky” one in which an electric current flows downward
from the positive region in the atmosphere to the negative
one at the Earth’s surface. This downward current, by now a
well established fact, would cause the Earth’s charge to dis-
appear in a matter of minutes if it were not being replenished.
The British physicist Charles T. R. Wilson proposed that the
positive charge in the atmosphere and the negative charge on
the Earth are maintained by the existence of thunderstorms
reversing the flow of charge due to the “fine weather” current
by creating an atmospheric circuit (Chalmers 1967). This is
made plausible by the fact that on an average day the Earth is
experiencing 1800 thunderstorms at any time or some 40,000
or more over a 24-hour period.

The Charge on the Earth The average value of the elec-
tric field near the Earth’s surface is approximately−100 V/m,
where the minus sign takes account of the fact that the field
points toward the Earth. (Fermi used the somewhat larger
value of −120 V/m.) The magnitude of the field is related
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to the charge density on the Earth’s surface by Gauss’s law.
Writing this law in the esu units favored by Fermi and many
other theorists, we have

E(esu) = 4πΣ(esu), (17.1)

where Σ is the charge/area on the Earth’s surface. To con-
vert the electric field to volts/meter, divide the left side of
Eq. (17.1) by 3 × 104; in order to convert the surface charge
density to coulombs/square meter multiply the right side of
Eq. (17.1) by 3× 105 (Jackson 1999). The result is

Σ(C/m2) =
1

4π × 9× 109
E(V/m). (17.2)

For E = −100 V/m, we find

Σ = −8.85× 10−10 C/m2, (17.3)

or on the order of 1010 electron charges per square meter. We
obtain for the total charge on the Earth, using Re = 6371 km

Qe = 4π(Re)
2Σ = −452 kC. (17.4)

Using other values of the average electric field obviously gives
somewhat different numbers for Qe, but all estimates agree
that the charge is in the vicinity of −500 kC.

Current Flowing to the Earth If the physical picture of
a leaky spherical condenser with charge constantly being re-
plenished is correct, the current should be constant at differ-
ent altitudes. A constant Earthward current has indeed been
observed in many different experiments at altitudes ranging
up to 28 km (Holzworth 1991). The average current density
is Jz = 2.4 ± 0.4 pA/m2. The total current being delivered
to the Earth is

Ie = 4πR2
eJz ≈ 1200 A. (17.5)
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troposphere

stratosphere

mesosphere

thermosphere

exosphere

ionosphere

12 km

45 km
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Figure 17.1: Layers of the atmosphere and ionosphere

The time it takes to deliver a charge of Qe to Earth is

Te =
Qe
Ie
≈ 370 s, (17.6)

or about 6 minutes. Although it does not specifically ver-
ify the proposed thunderstorm mechanism, the fact that the
downward current density has been observed to remain con-
stant in time in many different experiments is strong evidence
that the charge in the atmosphere is constantly being replen-
ished.
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Ions in the Electrosphere Experiments in the early twen-
tieth century by C. T. R. Wilson and others established the
existence of charged ions in the atmosphere. The various
types of ions that exist, most carrying a single unit of electric
charge, go by the prosaic names of “small,” “intermediate,”
and “large.” We will discuss only the small and large ions.

Either an ion or a neutral particle undergoes many colli-
sions in the atmosphere; these collisions act to change the
direction of the particle’s velocity thousands of times per sec-
ond. Charged particles will have an additional drift velocity
in addition to this random velocity when an electric field is
present. This drift velocity vd is in the same or opposite di-
rection as the electric field, depending on the sign of the par-
ticle’s charge. The mobility k is the ratio of the magnitude
of the drift velocity to that of the electric field,

|vd| = k|E|, or k = |vd
E
|. (17.7)

It is well established that small ions have different mobili-
ties according to whether their charges are positive or nega-
tive. We will follow Fermi in taking the mobility of positively
charged ions at ground level to be k+ ∼ 1.4 cm2/(V · s) and
that of negatively charged ions to be k− ∼ 1.9 cm2/(V · s).
Large ions have mobilities roughly 500 times smaller than
those of small ions.

Small ions may be thought of as several molecules, many
of them water molecules, loosely bound together. If the
charge is removed, the molecules are no longer bound to-
gether (Chalmers 1967). On the other hand, large ions (much
greater in size, e.g., aerosols) remain intact if their charge is
removed. They are also more numerous near cities and in-
dustrial areas and, because of their small mobility, they play
a negligible role in the atmospheric conductivity.

Assuming the numbers of positive and negative small ions
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to be roughly equal, and that they are singly charged, the
conductivity σ is given by1

σ = en(k+ + k−), (17.8)

where n is the common number of positive and negative small
ions per unit volume. Fermi also writes a formula equivalent
to Eq. (17.8).

Eq. (17.8) can be used to determine n at ground level,
using the conductivity of 1.33 × 10−16 A/(V · cm) (Volland
1984). Using the mobilities given above, Eq. (17.8) gives
n ∼ 300 ions/cm3 at ground level. As might be expected,
the experimental values of n near the Earth’s surface have a
fairly wide variation. Still, 300 ions/cm3 is a typical value for
the density of small ions at the Earth’s surface.

Sources of Ions in the Electrosphere The reason there
are ions in ordinary air was elucidated by a series of ingenious
experiments carried out in the early twentieth century. Ul-
traviolet photons emitted by the Sun with sufficient energy
to ionize air molecules are responsible for the existence of the
region known as the ionosphere, also sometimes known as
the “Heaviside” layer, so named after the British electricity
expert Oliver Heaviside. However, as shown in Fig. (17.1),
the ionosphere is at much higher altitude than the ordinary
atmosphere, and ultraviolet photons from the Sun, though
crucial in this layer, play a negligible role in creating ions in
the region of the atmosphere nearer to the Earth.

The cause of ions closer to the Earth, in the so-called or-
dinary air, was found to arise from two sources: radioactive
elements, principally radon, whose origins are in the Earth,
and cosmic rays. Radon’s dominant radioactive action is due

1Fermi uses Λ for conductivity.
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to it being the only radioactive element that is gaseous at nor-
mal pressure and temperature. The additionally mentioned
source of ions was shown to be present by experiments at
different altitudes as well as by ones that shielded against
radioactivity through the use of lead enclosures. This source
was seen to be extraterrestrial and is now known as cosmic
rays; cosmic rays are composed of highly energetic heavy par-
ticles that enter the atmosphere and undergo numerous ion-
izing collisions with molecules of the atmosphere. Above an
altitude of a few kilometers (Fermi’s estimate is 3 km), cosmic
rays account for the bulk of ions produced in the atmosphere,
on average 10 ion pairs per cubic centimeter per second at sea
level (Wahlin 1989), and 4 to 5 times more at an altitude of
∼ 20 km.

Conductivity and Potential in the Electrosphere In
an ordinary condenser, the potential rises steadily in moving
from the negative conductor toward the positive conductor.
With some modification, this general idea can be applied to
the electrosphere. Starting from the surface of the Earth,
the potential increases by 100 V for each meter of altitude.
Eventually, the rate of change of the potential decreases, and
the potential levels off, analogously to when the positive con-
ductor is approached in an ordinary condenser (Wahlin 1994).
Fig. (17.2) shows in a highly schematic way the lines of electric
field emanating from positive charges in the atmosphere and
ending on negative charges on the Earth’s surface. The lines
of electric field become more widely spaced as the altitude
increases, corresponding to the decrease in the magnitude of
the electric field. The figure is idealized in that only positive
ions are shown, whereas in reality there is only a slight excess
of positive ions over negative ions.

All this can be made more explicit by using the data on
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electric conductivity. With increasing altitude, the density of
air molecules decreases. This lengthens the mean free path
and leads to a rapid increase of conductivity. In the upper tro-
posphere and lower stratosphere, the conductivity increases
exponentially (Holzworth 1991),

σ = σ0 exp(
z

H
), (17.9)

where H ∼ 7.5 km. In the troposphere and stratosphere, ions
undergo frequent collisions with neutral molecules, so Ohm’s
law2 holds:

Jz = σEz. (17.10)

Given the constancy of Jz with altitude, along with the ex-
ponential increase of σ, Eq. (17.10) implies that the electric
field decreases exponentially,

|Ez| =
1

σ
|Jz| ∼ exp(

−z
H

). (17.11)

For altitudes greater than 4 km, the electric potential, while
not literally constant, begins to level off (Wahlin 1994). Al-
though only the electric field is directly measurable, an esti-
mate of the electric potential at altitude z can be made as
follows. Set

Ez(z) = Ez(0) exp(− z

H
), (17.12)

and obtain the potential at z by integrating

V (z)− V (0) = −
∫ z

0
Ez(z

′)dz′ (17.13)

= −Ez(0)H
(

1− exp(− z

H
)
)
.

2To convert the values Fermi gives for conductivity to SI units, divide
by 9× 109.

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



17.2. PROPERTIES OF THE ELECTROSPHERE 245

Using Ez(0) = −100 V/m, H = 7.4 km, and z = 4 km, the
integral in Eq. (17.13) gives

V (4 km)− V (0) ∼ 305 kV. (17.14)

Fermi uses H = 3.8 km, Ez(0) = −120 V/m, and estimates
the potential at z = H as V (H)− V (0) ∼ Ez(0)H ∼ 456 kV.
It is safe to say at altitudes of a few kilometers, the potential
relative to the Earth is a few hundred kilovolts.

earth

atmosphere

Figure 17.2: Atmospheric charge

Equilibrium The number of ions per unit volume is deter-
mined by a balance between sources and sinks. For simplicity,
consider an altitude high enough that the electric field is neg-
ligible. In such a region, the number of positive ions will be
essentially the same as the number of negative ions. Here
radioactivity is a small effect, but cosmic rays continually
create new ions. Let Π be the number of ions produced per
second per unit volume by cosmic rays. Ions can be removed
by collisions between positive and negative ions that leave
electrically neutral products. If n is the common number of
positive and negative ions per unit volume, the rate at which
collisions produce neutral products must be proportional to
n2. (This process is called “recombination” in the literature.)
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The proportionality coefficient is usually denoted as α. An-
other way in which a small ion can disappear is to attach
itself to a neutral aerosol. Neutral aerosols are sometimes
called “nuclei” (definitely not atomic nuclei). We may write
the following simple equation for the rate of change of n:

dn

dt
= Π− αn2 − βnN0, (17.15)

where N0 is the number of neutral aerosols per unit volume.
(Fermi writes a similar equation, but the factor multiplying
β is missing.) At equilibrium dn/dt = 0, we have

Π = αn2 + βnN0. (17.16)

Volland (Volland 1984) gives the following for α and β:

α ∼ 2× 10−6 cm3/s, β ∼ 1× 10−5 cm3/s. (17.17)

Fermi gives a similar number for α. At an altitude of 15 km,
the value of Π due to cosmic rays is ∼ 50 ions/(cm3 · s). If we
assume that at this altitude, the number of aerosols is much
smaller than n, we can ignore the nN0 term in Eq. (17.17),
and we have

Π ∼ αn2, or 50 ∼ 2× 10−6n2, (17.18)

which gives
n ∼ 5000 small ions/cm3.

This is significantly larger than the sea level value of n ∼
300 small ions/cm3 (Shreve 1970). As cosmic rays enter the
atmosphere, more and more are absorbed on the way to the
Earth’s surface. Due to this absorption, the intensity of cos-
mic rays increases with increasing altitude. This tracks well
with the fact that the density of ions also increases with in-
creasing altitude.
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17.3 Water Drops in an Electric Field

In Chap. (5), we discussed the thermodynamic features of liq-
uid drops suspended in a vapor. We examined there the bal-
ance between surface tension and pressure difference that sta-
bilizes the drop. That balance becomes more complicated in
the presence of an electric field. Since to a first approxima-
tion, water may be treated as an electric conductor, there is
no electric field inside the drop and therefore no contribution
to the energy density of the electric field from the drop’s in-
terior. That is not true for the exterior of the drop. There is
thus an additional factor that must be taken into account in
determining the state of equilibrium between the drop and a
surrounding insulating medium.

Under these circumstances does the drop remain spheri-
cal or, if not, what shape does it take? This is the problem
studied by G. I.Taylor, the great British student of fluid me-
chanics. He found that an instability, now referred to as the
Taylor cone, set in as the electric field intensity grew. The re-
sult was that the drop assumes a conical shape whose side has
a fixed angle θ0 = 49.3° with respect to the axis of symmetry.

To see how this occurs, turn back to Eq. (5.3). We saw
there that pure mechanical equilibrium in the absence of an
electrical field occurs for a spherical drop when δP = 2γ/R,
where γ is the surface tension and R is the drop’s radius (we
have deliberately used R for radius instead of r in order to
avoid later confusion). We also said that there was a more
general formula due to Young and Laplace. It consists of
replacing 2/R with the mean curvature H. In fact the mean
curvature becomes singular in the vicinity of a cone’s tip,
diverging as 1/r, where r is now taken to be the distance in
spherical coordinates from the cone’s tip.

The hydrostatic pressure does not diverge as the tip is ap-
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proached, so equilibrium for a conical surface must instead
be obtained by a divergence in the electrostatic field energy
that also behaves as 1/r if the drop is to take a conical shape.
(The presence of a singularity already had been observed in
a general way by Benjamin Franklin in his discovery of the
lightning rod.) That electrostatic energy is proportional to
‖ E · E ‖ or equivalently to ‖ ∇Φ · ∇Φ ‖, where we have
written the electric field as the gradient of an electrostatic
potential, E = −∇Φ.

Since ∇ · E = 0, the potential has to satisfy Laplace’s
equation,

∆Φ = 1/r2(
∂

∂r
r2∂Φ

∂r
+

1

sin θ
(
∂

∂θ
(sin θ

∂Φ

∂θ
)) = 0, (17.19)

where we have assumed azimuthal symmetry. We look for a
solution of the form

Φ(r, θ) = A(r)B(θ).

The equations to solve are then

∂

∂r
(r2∂A

∂r
) = λA

and
1

sin θ
(
∂

∂θ
(sin θ

∂B

∂θ
) = −λB.

In order for ‖ E ·E ‖ to behave as 1/r as r → 0, the potential
Φ and hence A must behave as r1/2 as r → 0.

A = r1/2 is in fact an exact solution of the radial differential
equation with eigenvalue λ = 3/4. With that value of λ, the
polar angle equation is satisfied by the half-integral Legendre
function P1/2(cos θ); this function has a single zero at θ0 =

49.3° with respect to the axis of symmetry. Since the interior
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of the cone is a conductor, we must have Φ = 0 at the cone’s
surface. We therefore see that

Φ = Cr1/2P1/2(cos θ),

with C an overall constant, satisfies all the constraints we
have imposed, thus implying that a conducting fluid drop in
the presence of an electrostatic field can assume a conical
shape at the specified angle. The existence of this singularity
has also led to the development of a technique known as elec-
trospraying in which a fine ion emission proceeds from the
slightly rounded tip of a fluid cone, but such discussions take
us far afield.
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CHAPTER 18

Waves and Plasma in the Earth’s High
Atmosphere

18.1 Ions in the High Atmosphere

The region Fermi refers to as the high atmosphere, roughly
from a little less than a hundred kilometers up to a thousand
kilometers above sea level, is also known as the ionosphere,
a name given to it because of its electromagnetic properties.
The Sun’s ultraviolet radiation in this zone is powerful enough
to ionize atoms and give the released electrons sufficient en-
ergy to prevent them from being immediately recaptured by
positive ions. This region’s existence was conjectured in 1911
by Oliver Heaviside and A. E. Kennelly in order to explain
the apparent bending of transmitted radio waves. Its pres-
ence was proved little more than a decade later by E. V.
Appleton and M. A. F. Barnett (Bleeker, Geiss, and Huber
2001).
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Given the ionosphere’s extent, it is not surprising that the
details of its behavior are complicated. There are three main
layers of increasing altitude: D, ≤ 90 km; E, 90−150 km; and
F, ≥ 150 km; each further subdivided. The principal ions in
the ionosphere are ionized forms of the atmospheric gases
NO,O2,H,He. The variety of the ions depends on altitude,
with O+

2 , NO+ prevalent in the lower layers while O+,H+

are more abundant in the higher layers. The temperature
also varies accordingly, as does the degree of ionization. This
depends on the action of the Sun, obviously quite different
between night and day, and winter as opposed to summer.
The electrons and ions are typically at different tempera-
tures, with electron temperatures of thousands of kelvins in
the upper reaches of the ionosphere. Solar flares or flashes
of increased brightness also affect the degree of ionization, as
does lightning, nor can the effect of cosmic rays be neglected.
We shall not go into these details, limiting ourselves instead
to a discussion of how it is that the ionospheric plasma leads
to the reflection of radio waves.

18.2 Radio Waves and the
Electron Plasma

The ionosphere can be treated as an ionized gas or plasma,
consisting of electrons, ions, and neutral molecules. We will
denote the different charged species by the subscript α, where
α takes values e, i for electrons (e) and ions (i). While as
mentioned, there are several species of ions, we can capture
the relevant physics by assuming a two-fluid plasma in which
there are electrons and a single species of ion. The equations
of motion for this system consist of Euler-type equations for
each of the two fluids, along with Maxwell’s equations (Krall
and Trivelpiece 1973). As in our discussion of gravity waves
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in Sec. (9), we will assume that the waves being discussed are
small oscillations about an equilibrium state.

In the plasma equilibrium state, there are no external elec-
tric or magnetic fields; the electric and magnetic fields that
are present are generated by the wave traveling through the
plasma itself. As we will see below, the ions are basically
immobile. Since the ions and neutral molecules are the main
source of mass, gravity plays no role in electromagnetic wave
propagation in the ionosphere. Further, the ionosphere is so
dilute that its pressure is negligible. As a result, both of the
terms on the right-hand side of Eq. (9.3) can be neglected.
The force terms in the Euler-type equations for our plasma
are strictly electromagnetic in origin. The equations are1

mαnα(
∂vα
∂t

+ vα ·∇vα) = nαqα(E +
vα ×B

c
), (18.1)

where nα,mα, qα, and vα are number density, mass, charge,
and velocity for species α. Treating the velocities and electric
and magnetic fields as first-order quantities, the term in the
magnetic field is the product of two first-order terms and so
can be ignored. The equations simplify to

mαnα
∂vα
∂t

= nαqαE. (18.2)

Assuming sinusoidal time dependence exp(−iωt), we can solve
for the vα in terms of the electric field,

vα = i
qαE

mαω
. (18.3)

With the velocities in hand, the total current is

J =
∑
α

qαnαvα. (18.4)

1This section uses esu units.
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Substituting in Maxwell’s generalization of Ampere’s law, we
have

∇×B =
1

c

∂E

∂t
+

4πJ

c
= − iω

c
E

(
1− 1

ω2

∑
α

4πnαq
2
α

mα

)
.

(18.5)
At this point, it is useful to simplify the

∑
α term that appears

in Eq. (18.5). Assuming only one species of ion, we have ne =
ni, and qe = qi = −e. Using these notations, we have∑

α

4πnαq
2
α

mα
=

4πn2
ee

2

me
(1 +

me

mi
). (18.6)

The electron mass is much smaller than any ion mass, so
me/mi can be ignored compared to 1. The ions are basically
immobile, serving only to provide a neutralizing background
to the electron motion. Eq. (18.5) simplifies to

∇×B =
1

c

∂E

∂t
+

4πJ

c
= − iω

c
E

(
1−

ω2
p

ω2

)
, (18.7)

where

ω2
p =

4πnee
2

me
. (18.8)

The frequency ωp is known as the “plasma frequency.” To de-
rive a dispersion relation, we will eliminateB using Faraday’s
law,

∇×E = −1

c

∂B

∂t
. (18.9)

Taking the curl, we have

∇× (∇×E) = −1

c

∂

∂t
(∇×B) =

iω

c
∇×B. (18.10)

Using this equation and Eq. (18.7) to eliminate B, we have

∇× (∇×E) =
ω2

c2
E(1−

ω2
p

ω2
). (18.11)
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Taking the spatial dependence in plane wave form exp(ik ·x),
Eq. (18.11) becomes

− k(k ·E) + k2E =
ω2

c2
E(1−

ω2
p

ω2
). (18.12)

In the study of wave propagation in the ionosphere, an or-
dinary electromagnetic wave is launched upward from the
Earth’s atmosphere. Such a wave is transverse, so k ·E = 0.
From Eq. (18.12), for E 6= 0, a transverse wave must have

(kc)2 = ω2 − ω2
p, or ω2 = (kc)2 + ω2

p. (18.13)

The ionosphere has a number of layers. The electron den-
sity and plasma frequency vary with altitude z within the
ionosphere, so we have ne(z) and ωp(z). These quantities are
measured with a technique called “ionospheric sounding.” A
radio frequency wave launched from the surface of the Earth
will propagate upward into the ionosphere until it reaches
an altitude where k2 = 0. Being unable to travel further in
the vertical direction, the wave is then reflected and travels
back to the Earth’s surface where it is detected. By knowing
the frequency and measuring the time delay of the reflected
wave, the density of electrons as a function of altitude can be
mapped out.

The density of electrons in the ionosphere is found to vary
from 104 electrons/cm3 in the lower part of the ionosphere to
∼ 1010 electrons/cm3 in the upper reaches of the ionosphere.
From Eq. (18.8), the plasma frequency itself varies as the
square root of the electron density. At ne ∼ 107 electrons/cm3,
ωp/2π = fp ∼ 30 MHz, a frequency at the boundary between
VHF and UHF bands.
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18.3 Other Effects

In this section Fermi mentions, without details, a number of
other electric effects that occur in the atmosphere.

18.4 Double Refraction

This phenomenon affecting the propagation of electromag-
netic waves in the ionosphere is also known as magneto-ionic
double refraction. It is is due to the combined effect of the
Earth’s magnetic field and the plasma of electric charges
present in the ionosphere. In our discussion, we will, as be-
fore, assume the ions are immobile, and consider only the mo-
tion of electrons. In the presence of a static magnetic field,
electrons move in circular orbits at the electron cyclotron fre-
quency, ωc, given by

ωc =
eB

mec
, (18.14)

where B is the external magnetic field on the plasma. In
geophysics, the external magnetic field is that of the Earth.
Taking the Earth’s magnetic field to be ∼ 0.5 G, ωc turns out
to be ∼ 9 MHz, so in the ionosphere ωc << ωp.

The derivation of the plasma dispersion relation when a
magnetic field is present proceeds along similar lines to the
derivation of Eq. (18.13). Writing Eq. (18.1) for electrons,
again to first order, we now have

mene(
∂ve
∂t

) = qene(E +
ve ×B

c
). (18.15)

In Eq. (18.15), E is, as before, the electric field of the wave
itself, a first-order quantity, but B is the external magnetic
field, a zeroth-order quantity. Using Eq. (18.15) and Maxwell’s
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equations, dispersion relations can be obtained for the vari-
ous waves that can propagate. The presence of the magnetic
field complicates the derivation since the plasma is no longer
isotropic. However, the case where the plasma wave propa-
gates parallel to the magnetic field is relatively simple and
will be outlined here.

Even in the presence of the external magnetic field, there
is rotational symmetry around the direction of the magnetic
field. For this case, there are two dispersion relations, one
for right circularly polarized waves and another for left cir-
cularly polarized waves. Recall from elementary physics that
if the magnetic field points directly toward the observer, the
electron moves counterclockwise in a circle at frequency ωc.
For a right circularly polarized wave, the electric field tends
to be in phase with the circular motion of the electron. The
relation between wave number kR and frequency for that case
turns out to be

(kRc)
2 = ω2 − ω2

p

ω2

ω(ω − ωc)
. (18.16)

Note that for frequencies such that ω >> ωc this disper-
sion relation reduces to that of Eq. (18.13). As ω is reduced,
kR also decreases and eventually reaches zero at a finite fre-
quency. Below this frequency, there is a region where right
circularly polarized waves cannot propagate, until the fre-
quency drops below ωc, where a region of allowed propagation
for right circularly polarized waves again opens up.

For left circularly polarized waves, the electric field of the
wave tends to be out of phase with the circular motion of the
electrons. For this case, the wave number kL is related to the
frequency by the dispersion relation

(kLc)
2 = ω2 − ω2

p

ω2

ω(ω + ωc)
. (18.17)
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Here again, for frequencies such that ω >> ωc this disper-
sion relation reduces to that of Eq. (18.13). As ω is reduced,
kL also decreases and eventually reaches zero at a finite fre-
quency. Below this frequency, there is a region where left cir-
cularly polarized waves cannot propagate, and for this case
this remains true all the way to ω = 0.

Coming down from high frequencies, right circularly polar-
ized waves reach their cutoff frequency before left circularly
polarized waves. The difference between the two cutoff fre-
quencies is the cyclotron frequency, ωc.

Spray Electrification Starting at the end of the twentieth
century a series of experiments on the subject were carried out
by J. Elster and H. Geitel and soon after that by P. Lenard
(Loeb 1958). These led to the conclusion that falling water,
whether in the form of raindrops or spray, carried a small
electric charge. The phenomenon was also known as the “wa-
terfall effect” since this is where some of the first experiments
were carried out. The phenomenon does not have a single
simple explanation and, indeed, its causes are numerous and
situation-dependent. Since the Earth’s surface is generally
negatively charged, it seems natural to assume an electrical
dipole moment is formed in water drops with the positive
charge directed preferentially downward. One can imagine
that as drops fall they preferentially repel positively charged
ions and attract negatively charged ones. This is but one ex-
ample of the reasoning one can adopt to begin explaining the
phenomenon.

Electrical Storms Electrical storms are commonly known
as thunderstorms because the electrical discharges or light-
ning bolts that characterize them are accompanied by acous-
tic emissions known as thunder. There is no single explana-
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tion for the complicated mechanisms that generate the bolts,
nor are these fully understood, but a broad overview says the
process starts with the rapid rise of warm, moist air. As it
ascends, reaching heights of 15 km or more, it cools and the
moisture condenses, forming a cumulonimbus cloud (Feyn-
man, Leighton, and Sands 1966).
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Afterword

Enrico Fermi was the only twentieth-century physicist to have
reached the very peaks of the profession as both a theorist and
an experimentalist. Even setting aside his very considerable
experimental work, the breadth of his interests and research
as a theorist spanned more fields than any other physicist of
his era. One cannot even imagine geniuses such as Einstein,
Bohr, Schrodinger, Dirac, Pauli, or Heisenberg teaching a
course on geophysics. Fermi doing so is not surprising.

Unfortunately, after the one on which these notes are based,
Fermi never taught a course on geophysics again. His work
during World War II was entirely devoted to nuclear fission,
to the development of a nuclear weapon, and to the problems
related to that goal. Though he no longer was a teacher, his
ability to grasp the essential features of a problem and his
lucidity in explaining possible solutions meant that he con-
tinued to be consulted on every facet of those developments.
When the war was over, Fermi remained at Los Alamos for
a few months during which time he delivered a course on
neutron physics. After that, he took a professorship at the
University of Chicago.

In the period between 1946 and his early death in Novem-
ber of 1954, Fermi’s brilliance in teaching and research made
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Chicago a true physics Mecca. Half a dozen of his students
went on to win physics Nobel Prizes and most of the others
had careers of extraordinary distinction. His research during
this time focused largely on nuclear and elementary particle
physics as well as astrophysics and cosmic rays. However, he
also became a pioneer in computational physics and was one
of the first to see the need to study nonlinear phenomena.

Fermi never published any work on geophysics, but he
surely kept abreast of the developments in the field. He is
known to have made extensive use of what he called his “ar-
tificial memory,” a set of 3 × 5 cards that referred to more
extensive folders that stored material of particular interest to
him. Among them, we find ones on “geophysics” and “geo-
magnetism and electrical phenomena.”

It would not have been surprising to see him study such
questions at greater length if his life had not ended at such
a tragically young age. Perhaps Fermi might even have once
again taught a course on geophysics. In one way, this book
allows his teachings on this topic to live on.
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APPENDIX A

Solar, Sidereal, and Lunar Days

When the phrase “24 hours a day” is used, the reference is
to a solar day. The length of the solar day is determined
by two things: the rate at which the Earth rotates around
its axis, and the rate at which the Earth moves around the
Sun. The sidereal day depends only on the rate at which
the Earth rotates around its axis. The two definitions of day
can be stated in terms of the positions of astronomical objects
relative to the Earth. After one solar day, from the viewpoint
of an Earth-based observer, the Sun appears to have returned
to the same position in the sky as it was one solar day earlier.
After one sidereal day, distant or “fixed” stars appear in the
same position they occupied one sidereal day earlier. The
sidereal day is approximately 4 minutes shorter than the solar
day.

The reason a sidereal day is shorter than a solar day can be
seen from Fig. (A.1). The view is looking down on the plane
of the Earth’s orbit around the Sun (ecliptic plane). For
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EarthSun

α

Ve

Res

Figure A.1: Solar and sidereal days

simplicity, the tilt of the Earth’s axis away from the normal
to the ecliptic plane is ignored here, so the Earth’s axis is
pointing perpendicular to the page. The sense of the Earth’s
rotation around its axis is counterclockwise, as denoted by
the curved arrows. The Earth is moving with a velocity Ve
in its orbit around the Sun. It is clear from the figure that
for the Sun to appear in the same position as it did one solar
day earlier, the Earth must rotate a full 360◦, plus the angle
denoted as α in the figure. The angle α is small, so we can
approximate the angle by its tangent and write

α ∼
|Ve|Tday
|Rse|

. (A.1)

Since α is a small angle, it makes little difference whether the
sidereal or solar day is used for Tday in this formula. Let ωse
be the angular frequency of the Earth in its orbit around the
Sun. Then we have

|Ve| = |Rse|ωse = |Rse|
2π

Tyear
. (A.2)

Using this in the formula for α, we have

α(rad) = 2π
Tday
Tyear

, or α(deg) = 360
Tday
Tyear

∼ 360

365
∼ 1 deg.

(A.3)
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We conclude that the solar day will be longer than the sidereal
day by the time it takes the Earth to rotate 1◦ around its axis
to a good approximation. Now 24 hours corresponds to 360◦,
so one degree will correspond to (24/360) hour, or 4 minutes.
To summarize, the solar day is the time it takes for the Earth
to rotate so that the Sun is in the same relative position it
was one solar day earlier. This requires the Earth to rotate
361◦ around its axis. The sidereal day is the time it takes
the Earth to rotate around its axis by 360◦. The sidereal day
is shorter than the solar day by an amount very close to 4
minutes.

Lunar Day

There are two meanings assigned to the term “lunar day” The
most common usage refers to the time it takes for the Moon to
complete one rotation around its axis. This is approximately
29.5 solar days. The other meaning of lunar day, and the one
discussed here, is the time it takes for the Moon to return to
the same relative position it was one lunar day earlier. This
is the lunar day that affects tides on the Earth.

EarthSun

α

Ve

Res

α′

Figure A.2: Lunar day

The length of a lunar day as meant here can be computed
in a way very analogous to the discussion of the solar and
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sidereal days of the previous section. We again ignore the
tilt angle of the Earth’s axis so the Earth’s axis is normal to
the ecliptic plane. In addition, we assume the Moon’s orbit
lies in the ecliptic plane. Fig. (A.2) shows the situation at
the time of a solar eclipse, and one solar day later. After one
solar day the Moon has moved ahead as shown in the figure
by the angle α′. The length of a lunar day is a solar day plus
the time it takes the Earth to rotate through the angle α′.
At that time, the Moon will be in the same relative position
to the Earth that it was one lunar day earlier. To calculate
the angle α′, we use Eq. (A.3) from the previous section, with
Tyear replaced by Tmonth, where Tmonth = 29.5Tday. For the
angle α′ in degrees, we have

α′ =
360

29.5
= 12.2 deg. (A.4)

Since 1◦ corresponded to 4 minutes of the Earth’s rotation,
12.2◦ corresponds to 12.2 × 4 = 48.8 minutes of the Earth’s
rotation. According to this calculation, the lunar day is longer
than the solar day by approximately 49 minutes. This is close
to the result of a more precise calculation.
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APPENDIX B

Torque on the Earth

N.B. In calculating the torques due to the Sun and the Moon
on the Earth in this section, we will ignore the eccentricities
of the orbits of both Sun and Moon.

Consider a small part of the Earth of mass ma, located at
ra from the Earth’s center of mass. From Newton’s law of
gravity the force exerted by the Sun on this mass is

Fa = − GMsma

|ra +Rse|3
(ra +Rse). (B.1)

The torque onma computed about the Earth’s center of mass
is

Ka = ra × Fa = − GMsma

|ra +Rse|3
(ra ×Rse). (B.2)

Since |ra| << |Rse|, we expand |ra + Rse|−3 in powers of
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1/Rse, which gives

1

|ra +Rse|3
=

1

R3
se

(1 + 2
ra ·Rse

R2
se

+
r2

R2
se

)−3/2 (B.3)

∼ 1

R3
se

(1− 3
ra ·Rse

R2
se

+ . . .).

The 1 in the last term of Eq. (B.3) gives zero in the sum over
all massesma because the origin for ra is the center of mass of
the Earth. The terms denoted . . . are higher order in 1/Rse
and can be neglected. We obtain for the total Sun-Earth
torque Kse,

Kse =
∑
a

Ka = 3
GMs

R5
se

∑
a

ma(ra ×Rse)(ra ·Rse). (B.4)

We can readily evaluate Kse when the Earth is at winter
solstice. We use a coordinate system with origin at the center
of mass of the Earth. The z axis points along the Earth’s axis
of rotation, so ẑ = n̂. The x axis is in the same plane as n̂
andRse and makes an angle θt withRse. The y axis is defined
by ŷ = ẑ × x̂. In this coordinate system, we have

Rse = Rse(cos θtx̂+ sin θtẑ), (B.5)

and
ra = xax̂+ yaŷ + zaẑ. (B.6)

In working out
∑

ama(ra × Rse)(ra · Rse), since the Earth
is symmetric about the z axis, the moment of inertia tensor
is diagonal and only terms in xaxa and zaza appear in our
expression forK. The result for the torque from the Sun when
the Earth is at winter solstice is

Kse = ŷ
3GMs

R3
se

sin θt cos θt
∑
a

ma(zaza − xaxa) (B.7)
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In the present notation, the moments of inertia C and A are

C =
∑
a

ma(xaxa + yaya) (B.8)

and
A =

∑
a

ma(zaza + yaya). (B.9)

Using these formulas, we have

Kse = −ŷ3GMs

R3
se

sin θt cos θt(C −A). (B.10)

Note that Kse = 0 for C = A (spherical Earth), and that
the sense of the torque for any θt less than 90◦ is to twist the
Earth toward θt = 0.

Now consider the Sun-Earth torque as the Earth moves on
its orbit away from the winter solstice. In the coordinate sys-
tem we are using, the vector Rse rotates around the normal
to the ecliptic plane. This rotation can be described by an
angle φ = (2πt)/Tyear, where Tyear is 1 year. At an arbitrary
value of φ, the Sun-Earth torque becomes

Kse = − cos2 φŷ
3GMs

R3
se

sin θt cos θt(C −A) + sinφ cosφK ′se.

(B.11)
We will not need the expression for K ′se since, as we show
shortly, it does not contribute to our final expression for the
torque. Now the quantity we are seeking, the rate at which n̂
precesses about the normal to the ecliptic plane, has a period
of many thousands of years. We can smooth out the yearly
oscillations of Kse by averaging over a period of years much
smaller than the period we are seeking, but large enough to
replace cos2 φ by its average of 1/2, and sinφ cosφ by its
average of zero. An averaging period as small as 10 years
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does this to 1% accuracy. Denoting the time-averaged torque
by K̄se, we have the simple formula

K̄se = −ŷ 3GMs

2R3
se

sin θt cos θt(C −A). (B.12)

The Moon also exerts a torque on the Earth. If we ignore
the 5.1◦ tilt of the Moon’s orbit relative to the ecliptic plane
normal, the calculation of the Moon-Earth torque is done in
the same way as the Sun-Earth torque. The time-averaged
total torque on the Earth due to the Sun and Moon is then

K̄tot = −3

2
ŷ sin θt cos θt(C −A)(

GMs

R3
se

+
GMm

R3
me

). (B.13)

Since ŷ is in the ecliptic plane, so is K̄tot. The direction of
K̄tot is perpendicular to both the normal to the ecliptic plane,
ê, and the unit vector along the Earth’s normal, n̂.
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APPENDIX C

Rayleigh Waves

As mentioned in Chap. (13), surface waves generated by earth-
quakes are among the most destructive earthquake effects.
In this appendix we will discuss the simplest form of sur-
face wave, the Rayleigh wave, first analyzed in 1885 by John
Strutt, Lord Rayleigh. Like Lord Kelvin, Lord Rayleigh was
a British scientist known for major investigations in both the-
ory and experimental science. Rayleigh waves generated in
an earthquake often travel around the entire Earth several
times. However, the frequency-wavelength relation or dis-
persion relation can be obtained accurately by treating the
Earth as locally flat. Being surface waves, Rayleigh waves
are damped exponentially upon moving into the Earth. The
penetration depth is of the same order of magnitude as the
wavelength. The latter ranges from a few kilometers to hun-
dreds of kilometers, so Rayleigh waves often penetrate well
into the mantle. However, many of the main features of such
waves can be captured by treating the Earth as flat, com-
posed of a single medium with the elastic properties of the
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Earth’s crust, and this will be done in the following.

Contrast with Bulk Waves There are two important
points of contrast between Rayleigh waves and the S and
P waves discussed in Sec. (12.2). For both S and P waves,
boundary conditions played no role in determining the dis-
persion relation or, equivalently, the speed of the wave. For
Rayleigh waves, as we will see below, boundary conditions
at the Earth’s surface play a crucial role in determining the
dispersion relation. Furthermore, for bulk waves, oscillations
along and perpendicular to the direction of propagation are
independent. Since they move at different speeds, there is no
phase relation between the displacements of S and P waves.
On the other hand, one of the most characteristic features of
Rayleigh waves is that oscillations parallel to and perpendic-
ular to the direction of propagation move at the same speed
and are exactly 90 degrees out of phase.

Meaning of “Longitudinal” and “Transverse” Take the
x − y plane parallel to the Earth’s surface, with the z axis
pointing upward from the Earth’s surface, the Earth’s surface
being at z = 0. A Rayleigh wave propagates in a direction
parallel to the Earth’s surface and is damped exponentially as
z moves from z = 0 toward negative values inside the Earth.
If the meanings of “longitudinal” and “transverse” are gener-
alized, such a wave can still be broken into longitudinal and
transverse parts. A longitudinal displacement uL is defined
as one with no curl, i.e.,

∇× uL = 0, (C.1)
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while a transverse displacement is defined to be one with no
divergence, i.e.,

∇ · uT = 0. (C.2)

The direction of propagation can be any direction in the x y
plane. For convenience, we take it to be the x direction.
The space-time dependence of longitudinal and transverse
displacements are then of the form

uL ∼ exp(ikx+ κLz − iωt) and uT ∼ exp(ikx+ κT z − iωt).
(C.3)

To satisfy boundary conditions at the Earth’s surface (z = 0),
it is necessary that both terms vary the same way in x and t.

To see how Eqs. (C.1) and (C.2) may be satisfied, apply
the gradient operator to the space-time factor of, say, uL.
We obtain

∇ exp(ikx+ κLz− iωt) = (ikx̂+ κLẑ) exp(ikx+ κLz− iωt).
(C.4)

It is easy to see that if we set

uL = AL(ikx̂+ κLẑ) exp(ikx+ κLz − iωt), (C.5)

then ∇× uL = 0. Likewise, if we set

uT = AT (κT x̂− ikẑ) exp(ikx+ κT z − iωt), (C.6)

then ∇ · uT = 0 is satisfied.1 The full displacement is the
sum of uL and uT ,

u = uL + uT . (C.7)

1∇ · uT = 0 is also satisfied if uT points along ŷ, but this is needed
only for Love waves.
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Equation of Motion Both uL and uT satisfy their respec-
tive wave equations,

∂2uL
∂t2

= c2
L∇ ·∇uL (C.8)

and
∂2uT
∂t2

= c2
T∇ ·∇uT . (C.9)

Using our forms for uL and uT , these become

ω2uL = c2
L(k2 − κ2

L)uL (C.10)

and
ω2uT = c2

T (k2 − κ2
T )uT . (C.11)

Combining the last two equations, we have

ω2 = c2
L(k2 − κ2

L) = c2
T (k2 − κ2

T ). (C.12)

Note that Eq. (C.12) does not yet determine the velocity of
Rayleigh waves, but it does show that κ2

L and κ2
T are not

independent.

Boundary Conditions The pressure and shear stress ex-
erted on the surface of the Earth by the atmosphere are neg-
ligible on a geophysical scale. For the purpose of bound-
ary conditions on elastic waves traveling near the surface of
the Earth, they may be set to zero. Our boundary condi-
tion is then that the pressure and shear stress evaluated by a
Rayleigh wave traveling near the Earth’s surface must vanish
at z = 0. Since our wave depends only on x and z, these
conditions are

σxz(x, 0) = σzz(x, 0) = 0. (C.13)
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Strain Components The stress components at the sur-
face of the Earth will be expressed by Hooke’s law in terms
of the strain components uxx, uxz, and uzz. The strain compo-
nents are easily calculated using the forms given in Eqs. (C.5),
(C.6), and (C.7). Since we are at z = 0, and the x and t de-
pendence is common to all terms, we will record only the
amplitudes of the various strain components. We have

uxx =
∂ux
∂x

= ik(ikAL + κTAT ), (C.14)

uzz =
∂uz
∂z

= κ2
LAL − ikκTAT , (C.15)

uxz =
1

2
(
∂uz
∂x

+
∂ux
∂z

) (C.16)

=
1

2
[2ikκLAL + (k2 + κ2

T )AT ].

Stress Components The stress tensor is given in terms
of the strain tensor by Eq. (12.22). Using that formula, the
expression for the shear stress is particularly simple. We have

σxz = 2µuxz, (C.17)

so the vanishing of σxz at the Earth’s surface is accomplished
if the amplitude uxz = 0. From Eq. (C.16) this gives

2ikκLAL + (k2 + κ2
T )AT = 0. (C.18)

This equation is of interest, since it determines the ratio of
AL to AT ,

AL
AT

= i
(k2 + κ2

T )

2kκL
. (C.19)

Using this expression for AL/AT , it is easy to show that the
amplitude ratio ux/uz is imaginary; in other words, the dis-
placements in x and z directions are 90◦ out of phase. This

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



276 RAYLEIGH WAVES

is an important hallmark of Rayleigh waves, clearly seen in
seismograph records.

We have still to satisfy σzz = 0 at the Earth’s surface.
Using Eq. (12.22) again, this gives the condition

[K(κ2
L − k2) +

2µ

3
(2κ2

L + k2)]AL − 2iµkκTAT = 0. (C.20)

Before proceeding, it is useful to simplify the coefficient of AL
in Eq. (C.20). Expressing the ratio (cT /cL)2 of Eq. (12.50) in
terms of the bulk and shear moduli, we have

(
cT
cL

)2 =
µ

K + 4µ
3

. (C.21)

Using this and Eq. (C.12), which relates κ2
L and κ2

T , Eq. (C.20)
simplifies to

µ(k2 + κ2
T )AL − 2iµkκTAT = 0. (C.22)

At this point, in Eqs. (C.18) and (C.22), we have two ho-
mogeneous equations in the two unknowns, AL and AT . For
a nontrivial solution, the determinant of the coefficients in
these two equations must vanish. This gives

4k2κTκL − (k2 + κ2
T )2 = 0. (C.23)

The Rayleigh Wave Velocity Eq. (C.23) ultimately de-
termines the dispersion relation obeyed by Rayleigh waves.
This means that given a frequency ω the wave vector k is de-
termined, or vice versa. To obtain an equation which solely
involves ω, k, and elastic constants, κL and κT must be elim-
inated. We first square Eq. (C.23) and obtain

16k4κ2
Lκ

2
T = (k2 + κ2

T )4. (C.24)

 EBSCOhost - printed on 2/13/2023 6:40 AM via . All use subject to https://www.ebsco.com/terms-of-use



RAYLEIGH WAVES 277

Substituting for κ2
L and κ2

T from Eq. (C.12), we obtain

16k4(k2 − (
ω

cL
)2)(k2 − (

ω

cT
)2) = (2k2 − (

ω

cT
)2)4. (C.25)

We then introduce the dimensionless variables

ζ ≡ (
ω

kcT
)2, η ≡ (

cT
cL

)2. (C.26)

Substituting into Eq. (C.24) and canceling some terms, we
arrive at

ζ3 − 8ζ2 + 8(3− 2η)ζ − 16(1− η) = 0. (C.27)

From the form given for (cT /cL)2 in Eq. (12.50), it follows
that η is a function of Poisson’s ratio, so given a value for
Poisson’s ratio, a solution of Eq. (C.27 determines the disper-
sion relation for Rayleigh waves. There is only one real root
of this equation so the dispersion relation is unique. Defining
the velocity of a Rayleigh wave as cR = ω/k, we have

cR = cT
√
ζ. (C.28)

By examining the solution of the cubic equation, it is found
that ζ is always less than 1 as the Poisson ratio varies from
0 to 1/2, so the velocity of Rayleigh waves is always smaller
than cT . For the case where the Earth’s crust is a “Poisson
solid” with a Poisson ratio of 0.25, the root of Eq. (C.27) is
2− 2/

√
3, so

cR = cT [2− 2√
3

]1/2 ∼ 0.92cT .

As an example, take cT = 3 km/s, so cR ∼ 2.76 km/s. For a
period of the Rayleigh wave of 30 s, the wavelength of the
Rayleigh wave is

λR = cRTR = 2.76× 30 ∼ 83 km.
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Penetration Depths The amplitude of a Rayleigh wave
falls exponentially with increasing depth. There are of course
two terms, one varying as exp(κLz) and the other as exp(κT z).
We may define corresponding penetration depths,

aL =
1

κL
and aT =

1

κT
. (C.29)

These define the depths at which the longitudinal and trans-
verse amplitudes fall to 1/e of their surface values. From
Eq. (C.12), we have

κ2
T = k2(1− (

cR
cT

)2). (C.30)

Solving for aT , setting k = 2π/λR, and continuing to assume
a Poisson ratio of 0.25, we have

aT =
λR

2π
√

1− (cR/cT )2
= 0.405λR. (C.31)

The corresponding result for aL is

aL = 0.241λR. (C.32)

For the example of the previous section which had λR ∼
83 km, the penetration depths are at most 40 km, so for such
waves the displacement is still significant in the upper region
of the mantle.
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