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PREFACE 
 
 
 
The organic matter preserved in aquatic sediments provides an abundance 
of evidence for the environmental conditions prevailing at the time of 
deposition. Understanding the sources of organic matter and the processes 
that modify its composition is the foundation of the field of organic 
geochemistry. Many lipid biomarkers (compounds that can be related to 
specific organisms) have been identified that allow different sources (e.g., 
bacteria, archaea, vascular plants, microalgae, macroalgae, zooplankton, 
benthic animals etc) to be differentiated. However, only a small proportion 
of compounds biologically produced in the water column reach the 
sediment intact and many of the chemical structures are modified by 
chemical and biological processes in the water column and by processing 
through aquatic food webs. 

Much attention has been paid to the microbial degradation of lipids, 
but abiotic processes can be particularly important in the surface layers of 
aquatic environments, where sunlight can penetrate, and also in oxic 
surface sediments. Through decades of research, Dr. J.-F. Rontani has 
shown that photooxidative degradation can destroy much of the 
unsaturated lipids in the water column and hence can strongly alter the 
lipid signature of organic matter reaching the seafloor. It is thus essential 
to take into account the potential effects of abiotic degradation when 
making palaeoenvironmental reconstructions from sedimentary organic 
matter. In this book, the main types of oxidation are examined in detail 
and specific degradation products have been identified as biomarkers for 
such reactions. These results are contrasted with the compounds produced 
by microbial degradation of lipids thus allowing a comprehensive 
understanding of the cycling of organic compounds in aquatic environments.  

As an example of this approach, Dr. Rontani and his team incubated 
the geochemically important haptophyte Emiliania huxleyi and showed 
that free radical-mediated processes (autoxidation) were extensive and 
altered monounsaturated fatty acids, sterols and the chlorophyll phytyl 
side-chain giving rise to specific oxidation products. These included 11-
hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids, Z- 
and E-3,7,11,15-tetramethylhexadec-3-ene-1,2-diols and 3,7,11,15-
tetramethylhexadec-2-ene-1,4-diols. Autoxidation also affects the composition 
of unusual very long-chain alkenones (unsaturated methyl and ethyl 
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ketones) produced by this species which can lead to small changes in the 
paleotemperature proxy values derived from alkenone abundances. 

Photo- and autoxidation of lipids specific of terrestrial phototrophs are 
also covered in this book and several tracers for monitoring the abiotic 
degradation of these organisms on land and in the oceans are proposed. 

Interactions between biotic and abiotic degradation processes are also 
discussed. Although complex, these interactions need to be taken into 
account during estimates of the balance between degradation and preservation 
of phototrophic organisms in the natural environment. Lipoxygenase (LOX)-
induced autoxidative degradation of terrestrial particulate organic matter 
constitutes a nice example of such interactions. This process is shown to 
be widespread in estuaries and that this varies with latitude. At high 
latitudes, lower temperatures and irradiance favour photooxidative damage 
to higher plant debris and, consequently, hydroperoxide production. High 
hydroperoxide content strongly contributes to LOX activation in mixed 
waters. The high resulting LOX activity enhances alkoxyl radical 
production and thus autoxidation. At low latitudes, photooxidative effects 
are limited, but riverine autoxidation is enhanced by the high temperatures. 
This process affords high levels of hydroperoxides also inducing intensive 
LOX activity and autoxidation in estuaries. 

In summary, this book provides, up-to-date and detailed information 
on oxidation of lipids and how carbon is cycled in aquatic environments 
which has until now been rather neglected in the literature. The analytical 
work is meticulous, and inferences are backed up by laboratory studies of 
geochemically relevant organisms. Multiple examples are provided drawn 
from scientific papers published over many decades spanning a variety of 
environments. The book should appeal to those new to the field and to 
experts alike. 
 

John K. Volkman BSc(Hons), PhD (U. Melb.), Dhc (U. Méd), FAA, 
FRACI, C.Chem 

CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia 
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INTRODUCTION 
 
 
 
Lipids—from hydrocarbons, pigments and terpenoids to free fatty 

acids, acylglycerides, phospholipids, galactolipids, cutins, suberins and 
waxes; Harwood and Russell, 1984)—are important components of 
phototrophic organisms. To illustrate, lipids account for 16-26% of the 
organic content of phytoplankton (Jònasdòttir, 2019). Their relative 
stability (preservation in sediments for millions and even billions of years; 
Huang et al., 1995; Brocks et al., 1999) and specificity (restricted origins 
from individual or groups of organisms; Huang et al., 2004) means that 
lipids are often used as tracers of the origin of organic matter in terrestrial 
and marine environments (Volkman, 2006; Waterson and Canuel, 2008; 
Parrish, 2013; Nguyen Tu et al., 2017; Guo et al., 2020).  

Compounds resulting from abiotic oxidation of unsaturated lipids can 
also prove very useful for discerning individual degradation processes 
such as photooxidation or autoxidation in specific phototrophic organisms. 
Unfortunately, most studies of the degradation of these organisms to date 
have focused on biotic degradation processes (Afi et al., 1996; Sun et al., 
1999; Mäkinen et al., 2017), and investigations have only recently turned 
to the role played by photochemical and free radical-mediated processes in 
the degradation of lipid components during the senescence of phototrophic 
organisms (e.g. Walker et al., 2002; Ramel et al., 2012; Rontani et al., 
2012a, 2014c, 2017; Amiraux et al., 2016). This book sets out to provide 
an instructive overview of: (i) the reactions involved during these abiotic 
degradation processes, (ii) the characterization and quantification of 
suitable lipid tracers of these processes, and (iii) the potential applications 
of such compounds. 

Although complex lipids (such as acylglycerides, phospholipids, 
galactolipids and steryl esters) can be analyzed by high-performance liquid 
chromatography-mass spectrometry (HPLC-MS; Roces et al., 2016; Pham 
et al., 2019) or by Iatroscan thin-layer chromatography-flame ionization 
detection (TLC-FID; Volkman et al., 1986; Parrish and Ackman, 1983), 
monitoring of lipids and their oxidation products is often carried out by 
gas chromatography-mass spectrometry (GC-MS) after NaBH4 reduction 
and alkaline hydrolysis steps. Even though sample preparation for GC-MS 
analyses is relatively time-consuming, the technique is mostly used in 
electron ionization (EI) mode, which provides more structural information 
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than the soft ionization methods (such as ESI, APCI) utilized during 
HPLC-MS analyses (Xia and Budge, 2017). It is notably very useful to 
determine the position of functional groups of lipid oxidation products 
(Koek et al., 2011). The NaBH4 reduction step serves to convert 
thermolabile hydroperoxides arising from lipid oxidation to the corresponding 
alcohols that are more amenable to analysis by GC-MS (Marchand and 
Rontani, 2001). The subsequent alkaline hydrolysis step then serves to (i) 
break complex lipids down into their constituent fatty acids, plus glycerol, 
phosphate, sterol or sugar groups, and (ii) separate fatty acids from 
‘neutral’ lipid components such as hydrocarbons, sterols, alcohols and 
ketones (Volkman, 2006). 

The first chapters of this book explain in detail the mechanisms 
(mainly involving singlet oxygen) and timing (during senescence or in 
response to a high stress) of type-II photosensitized oxidation processes in 
phototrophic organisms. We then go on to describe photooxidation of the 
main simple unsaturated lipid components of phototrophs (fatty acids, 
chlorophyll, carotenoids, sterols, triterpenoids, alkenones, n-alkenes, HBI 
alkenes, cuticular waxes, and more). In this part, we focus on the 
specificity of the photooxidation products formed and on their potential 
application as tracers of these processes.  

The next chapters then discuss the transfer of photooxidative damage 
in non-phototrophic material (heterotrophic bacteria and zooplanktonic 
fecal pellets) and the effect of temperature and solar irradiance on the 
efficiency of type-II photooxidation processes. 

We then explain the different steps (initiation, propagation and 
termination) of the free-radical oxidation (autoxidation) processes and 
look in detail at the autoxidation mechanisms of the main lipids of 
phototrophs, which can be affected by these processes, with a focus again 
on the selection of specific tracers of these processes. 

The following chapters pay special attention to the characterization and 
quantification of the main photo- and autoxidation products of lipids 
selected as tracers. Mass spectrometry fragmentations of trimethylsilyl 
derivatives of these compounds are described, and selected fragment ions 
are proposed for monitoring abiotic degradation of specific phototrophic 
organisms in environmental samples. We anticipate that this part should be 
particularly useful for future users of lipid oxidation products. We also list 
published quantitative estimates of the degradation state of the main lipids 
of different phototrophic organisms (phytoplankton, phototrophic bacteria, 
terrestrial and aquatic higher plants) and in a variety of environmental 
samples (sinking and suspended particulate matter, sediments, sea ice and 
microbial mats). 
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We then describe some of the environmental hotspots of phototrophic 
organism photo- and autoxidation (e.g. polar and more particularly under-
ice areas for type-II photosensitized oxidation and polar and equatorial 
estuaries for autoxidation). 

The next chapter proposes several potential applications for lipid 
oxidation products (i.e. organism-specific indicators of stress, new proxies 
of paleoenvironmental changes, indicators of abiotic alterations of 
paleoproxies, ozone depletion and permafrost abiotic degradation, and use 
for determining the double bond position of monounsaturated fatty acids 
or n-alkenols). 

The penultimate chapter uses several examples to discuss the very 
complex interactions between biotic and abiotic degradation processes that 
can substantially reshape the balance between degradation and preservation 
of phototrophic organisms in the natural environment. 

The final chapter inventories and discusses the enzymatic oxidation 
processes liable to bias photo- and autoxidation estimates. 
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CHAPTER ONE 

PHOTOOXIDATIVE REACTIONS 
 
 
 

Direct photooxidative reactions 
 

In the natural environment, direct photooxidation occurs when 
sunlight is absorbed by the chemical of interest to form excited or radical 
species, which then react with oxygen or water. These processes involve 
light-absorbing entities called chromophores (defined as a region in a 
molecule where the energy difference between two different molecular 
orbitals falls within the range of the solar spectrum; Shukla et al., 2016) 
that can undergo oxidative change as a direct consequence of absorbing 
photons (Zafiriou et al., 1984). In autotrophic organisms, only pigments 
(e.g. chlorophylls and carotenoids; Nelson, 1993), some polyunsaturated 
fatty acids (Collins et al., 2018), vitamins (e.g. thiamine and riboflavin; 
Ahmad et al., 2018, Golbach et al., 2014) and some amino acids (e.g. 
tryptophan, tyrosine, and histidine; Pattison et al., 2012) have absorption 
peaks in the UV and visible region of solar light (Zafiriou et al., 1984) 
and can thus be directly photooxidized under environmental conditions. 

Indirect photooxidative reactions 

Indirect photooxidative reactions are common in the natural environment. 
They are crucial processes as they can alter molecules that resist 
photolysis, such as transparent species or chromophores whose reactive 
states are inefficiently populated by absorption (Zafiriou et al., 1984). The 
first step of these reactions involves the absorption of light by a substance 
called a ‘photosensitizer’, which is a molecule capable of producing a 
chemical change by transferring energy to an excited neighbouring 
molecule. These compounds have two systems of electronically excited 
states: singlet (1S) and triplet (3S) (Foote, 1976). The triplet state is usually 
longer-lived than the singlet, even though the singlet is the initial product 
of light absorption (Foote, 1976). Most of the photosensitized oxidation 
reactions in nature start from the photosensitizer in its triplet state 
(Gollnick, 1968). To be efficient under environmental conditions, sensitizers 
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2

need to: (i) absorb visible or near-UV light, (ii) afford a long-lived triplet 
state in high quantum yield, and (iii) be sufficiently stable. All photosensitizers 
contain chromophores, which are usually cyclic compounds with resonating 
conjugated double bond systems that enable them to absorb visible and 
UV-A light. However, some chromophores are bicyclic, some are 
tricyclic, and some, like tetrapyrroles (chlorophylls and hematoporphyrin), 
are polycyclic (Giese, 1980).  

 

R

R

O2

H2O2

RH O2O2
HOO O2

O2
R O2

R

RO2

Type-I Type-II

-

-or 3S*

R   +  SH

R  + +  S  -

Reactions

Reactions

S   +  1O2

S  + +  O2

Reactions

ReactionsReactions

Reactions

Type-I Type-II  
 
Figure 1. Reactions of a triplet sensitizer (Adapted from Rontani and Belt, 2020). 
(R or RH = reduced substrate, 3S* = triplet sensitizer, 1O2 = singlet oxygen, 3O2 = 
ground-state oxygen, O2• - = superoxide ion, HOO• = hydroperoxide radical, H2O2 
= hydrogen peroxide) 
 

In the presence of oxygen, triplet sensitizers can follow two main 
types of reactions (Fig. 1): 

– In a type-I reaction, the excited triplet sensitizer reacts directly with 
a reducing substrate (RH or R) to afford free radicals (after hydrogen 
atom transfer) or radical ions (after electron transfer) (Schenck and Koch, 
1960; Gollnick, 1968). These radicals can then: (i) abstract an electron or 
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a hydrogen atom to other molecules, (ii) react with oxygen to initiate free-
radical chain autoxidation, or (iii) react with the reduced sensitizers 
(back-reactions). Reduced sensitizers (SH• and S•-) can also react with 
oxygen to afford superoxide ion (O2

•-) or hydroperoxide radical (HOO•), 
which can then disproportionate to H2O2 or react with the substrate (Fig. 
1) (Foote, 1976).  

– In a type-II reaction, the triplet sensitizer transfers its excitation 
energy to oxygen, forming an electronically excited singlet state of 
oxygen (1O2) (Fig. 1). Given the exceptionally high speed of this energy 
transfer, it is generally considered to account for most quenching of triplet 
sensitizers by oxygen (Foote, 1976). The 1O2 thus formed is strongly 
electrophilic and can therefore only react with compounds that possess 
substituted double bonds or other electron-rich functionalities (Frimer, 
1979). Less efficient electron transport from triplet sensitizer to oxygen 
can also occur, affording O2

•- (Fig. 1) (Kasche and Lindqvist, 1964).  
The mechanisms of (type-I or type-II) photosensitized oxidation 

depend on: (i) type of sensitizer and substrate, and (ii) concentrations of 
substrate and oxygen. Type-I photoprocesses are generally favoured in the 
case of readily-reduced sensitizers (e.g. quinones) and readily-oxidized 
substrates (e.g. phenols or amines; Saito et al., 1975), whereas less 
readily-reduced sensitizers (e.g. dyes or aromatics) and high oxygen 
concentrations will favour 1O2 reactions (Nilson et al., 1972). 
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CHAPTER TWO 

INDUCTION OF TYPE-II PHOTOSENSITIZED 
OXIDATION PROCESSES IN THE MEMBRANES 

OF PHOTOTROPHIC ORGANISMS 
 
 
 

The photoprotective system of healthy cells 

When a chlorophyll molecule absorbs a quantum of light energy, it 
forms an excited singlet state (1Chl) which, in healthy cells, is mainly 
used in the characteristically fast photosynthesis reactions (Foote, 1976). 
The energy of this excited state gets transferred to the photosynthesis 
reaction centre where it drives photochemical reactions. However, a small 
proportion of 1Chl (<0.1%) undergoes intersystem crossing (ISC) to form 
the longer-lived triplet state 3Chl (Knox and Dodge, 1985; Fig. 2). 3Chl is 
not only potentially damaging per se in type-I reactions (Knox and 
Dodge, 1985; Fig. 1), it can also generate damaging 1O2 and O2

•- by 
reaction with ground-state oxygen (3O2) via type-II photoprocesses (Fig. 
1). O2

•- may subsequently: (i) disproportionate to 1O2 and H2O2 in the 
presence of a proton donor (Foote, 1976), and (ii) interact with H2O2 in 
the presence of non-heme Fe+3 to generate hydroxyl radicals (HO•) via 
the Haber–Weiss reaction (Leshem, 1988). Despite the production of 
these reactive oxygen species (ROS), the photoproduction of 1O2 is 
mainly considered to be responsible for light-dependent reactions that 
damage plant cells (Triantaphylides et al., 2008). 

As chloroplasts are susceptible to oxidative damage, they possess an 
array of antioxidant-protective mechanisms. Carotenoids quench 3Chl and 
1O2 by energy transfer mechanisms at very high rates (Fig. 2). These 
compounds have a dual role: preventing 1O2 formation and helping to 
remove any 1O2 that does manage to form (Foote, 1976). Tocopherols and 
ascorbic acid are also efficient quenchers of 1O2 (Halliwell, 1987). 
Tocopherols can also remove 1O2, O2

•-, HOO• and HO• by acting as 
sacrificial scavengers, i.e. in processes that induce irreversible oxidation 
of the tocopherol molecule (Halliwell, 1987). Superoxide dismutase 
(SOD) enzyme and ascorbic acid can scavenge O2

•-, while catalase 
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activity can decrease H2O2 levels, thus providing less substrate for HO• 
formation in the Haber–Weiss reaction (Leshem, 1988). 

 

Photosynthesis

Chl + h

Car + heat

Car + heat

Quenching

Intersystem
   crossing1Chl

h

Fluorescence

 1O2

3Chl

Chl

Quenching

3O2 +  3Car

3O2

Chl  +  3Car

Car

Car

< 0.1%

PAR or UV
radiation

Figure 2. Potential pathways for chlorophyll excitation energy in healthy cells of 
autotrophic organisms (simplified scheme limited to the formation of 1O2 and the 
photoprotective role of carotenoids). 

The photodynamic effect in senescent cells 

In senescent phototrophic organisms, the cessation of photosynthetic 
reactions results in an accelerated rate of formation of 3Chl and ROS 
(mainly 1O2) (Nelson, 1993). The rate of formation of these potentially 
damaging species can then exceed the quenching capacity of the 
photoprotective system, enabling the photodegradation of cell components 
to occur (photodynamic effect; Merzlyak and Hendry, 1994) (Fig. 3). 
Three sites in the photosynthetic apparatus are the major sources for 
generation of ROS: the photosystem II (PSII) reaction centre, the 
photosystem I (PSI), and the light-harvesting complex (LHC) of PSII 
(Pinnola and Bassi, 2018). The direct irreversible reaction of 3Chl with 
ground-state triplet oxygen (3O2), i.e. direct photobleaching, gives 
photooxidation products (Harbour and Bolton, 1978) (Fig. 3). 1O2 reacts 
very quickly with any nearby biomolecules at near-diffusion-controlled 
rates (Knox and Dodge, 1985; Cadenas, 1989). The very high reactivity of 
1O2 with numerous cell components such as unsaturated lipids, nucleic 
acids and some amino acids (Rontani, 2012; Devasagayam and Kamat, 
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2002) is a consequence of the loss of the spin restriction that normally 
prevents 3O2 reaction with these biomolecules (Zolla and Rinalducci, 
2002). 1O2 also reacts with the sensitizer (chlorophyll), causing it to 
photobleach (Nelson, 1993; Rontani, 2012) (Fig. 3). Photobleaching of the 
sensitizer reduces 1O2 production, and thus competes with the 
photodynamic effect.  
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Figure 3. Potential pathways for chlorophyll excitation energy in senescent cells of 
autotrophic organisms (simplified scheme limited to the formation of 1O2 and the 
photoprotective role of carotenoids). Adapted from Rontani et al. (2021b). 
 

Due to its high reactivity and short lifetime, it is generally thought that 
1O2 can mostly interact with molecules in its closest environment 
(Krasnovsky, 1998). However, 1O2 produced from sensitizers in a lipid-
rich hydrophobic environment could have a longer lifetime and greater 
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potential diffusive distance than its behaviour in aqueous solution (Suwa et 
al., 1977). In biological membranes, the lifetime of 1O2 ranges between 13 
and 35 s (Ehrenberg et al., 1998; Sokolov and Pohl, 2009), which equates 
to a calculated diffusion length of about 400 nm (Baier et al., 2005). It has 
been observed in the photosynthetic apparatus of Chlamydomonas 
reinhardtii that 1O2 produced in thylakoid membranes under high light 
conditions is able to reach the cytoplasm or even the nucleus (Fisher et al., 
2007). It is not surprising, therefore, that type-II photosensitized oxidation 
of the majority of unsaturated lipid components has been observed in 
numerous senescent autotrophic organisms ranging from phytoplankton, 
cyanobacteria and purple sulphur bacteria to terrestrial and aquatic higher 
plants (Marchand and Rontani, 2003; Rontani et al., 1996a; 2005a; Rontani, 
2012; 2019).  

Note that in autotrophic organisms, the physiological state of the cells 
plays a key role in the induction of type-II photosensitized oxidation 
processes. Indeed, 1O2 production can only exceed the quenching capacities 
of the photoprotective system (and thus induce cell damage) when the 
photosynthetic pathways are inoperative, as is the case in senescent or 
highly-stressed cells (Nelson, 1993). 

The problem of stratospheric ozone depletion has prompted numerous 
studies to examine the degradative effects of enhanced UV-B doses on 
lipids in autotrophic organisms (e.g. He and Häder, 2002; Nawkar et al., 
2013). However, UV radiation does not hold a monopoly on photochemical 
damage in autotrophs. In fact, the presence of chlorophylls, which are very 
efficient photosensitizers (Foote, 1976; Knox and Dodge, 1985), means 
that numerous organic components of senescing autotrophs are susceptible 
to photodegradation by visible photosynthetically active radiation (PAR).  
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REACTION OF SINGLET OXYGEN  
WITH OLEFINS 

 
 
 

Different types of reactions 
 

Due to its strong electrophilic character and the lack of spin restriction 
(Dmitrieva et al., 2020), 1O2 readily reacts with molecules containing 
double bonds. The reactions of 1O2 with olefins can be collapsed into 
three classes, which are outlined in Fig. 4. The first class involves a [2 + 
2] cycloaddition to the double bond affording a dioxetane. This reaction 
mainly takes place in the case of electron-rich or sterically-hindered 
double bonds (Frimer, 1979). The dioxetane thus formed, which is not 
very stable, is generally cleaved into two carbonyl fragments under the 
action of temperature or light. In the presence of allylic hydrogen atoms, a 
direct reaction of 1O2 with the carbon–carbon double bond by a concerted 
“ene”, also named Schenk-ene reaction addition, results in the formation 
of allylic hydroperoxides at each end of the original double bond while 
shifting it to the adjacent position (Frimer, 1979) (Fig. 4). In the case of 
conjugated dienes, the addition of 1O2 produces cyclic peroxides 
(endoperoxides) (Clennan, 1991). 

Numerous theoretical and experimental studies have investigated the 
mechanism involved in 1O2 mediated allylic oxidation (e.g. Alberti and 
Orfanopoulos, 2008; Sheppard and Acevedo, 2009). It now seems likely 
that a perepoxide is a viable intermediate in the 1O2 addition to simple 
alkenes (Alberti and Orfanopoulos, 2010). Note, however, that this is not 
a free radical process. 
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Figure 4. Main classes of 1O2 reactions with olefins. Adapted from Frimer 
(1979). 

 
It was previously observed that the rate of reaction of 1O2 with olefins 

is controlled by entropy ( S) and thus by the degree of substitution and 
the configuration (cis- or trans-) of the double bond (Table 1) (Hurst et 
al., 1985). This means that terminal and trans olefins are weakly reactive 
to 1O2.  
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Substrate 

 

 
S (e.u.)* 

 
k (mol-1 s-1) 

 
References 

 

 
 

 
-23 

 
2.2 x 107 

 
Hurst et al. (1985) 

 
 

-30 7.2 x 105 Hurst et al. (1985) 

 
 

-32 4.8 x 104 Hurst et al. (1985) 

 
 

 
-42 

 
7.2 x 103 

 
Hurst et al. (1985) 

 
 
 

 
-43 

 
4.0 x 103 

 
Hurst et al. (1985) 

 
 

 2.3 x 102 Kopecky and Reich, 1965 

* Entropy units 
 

Table 1. Relative rate constants for the reaction of 1O2 with isolated acyclic 
double bonds in solvents. 

Features of the “ene” reaction 

As seen in Chapter 5, the “ene” reaction plays a key role in the 
photosensitized oxidation of natural unsaturated lipids bearing allylic 
hydrogen atoms. A special feature of this reaction is its remarkable side 
specificity (named cis effect), where the more substituted side of 
trisubstituted double bonds is also the most highly reactive (Stratakis and 
Orfanopoulos, 2000; Griesbeck et al., 2003) (Fig. 5). Houk et al. (1981) 
attributed this specificity to lower rotational barriers in the more highly 
congested environment.  

The “ene” reaction appears to be particularly sensitive to electronic 
effects and to a lesser extent to the steric hindrance when bulky substituents 
are present (Morales et al., 2012). Indeed, in some cases, the presence of a 
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bulky substituent may diminish reactivity by partially blocking the singlet 
oxygen attack on the double bond. This is notably the case in some 
polycyclic structures such as 5-sterols and pentacyclic triterpenes 
(Beutner et al., 2000; Galeron et al., 2016a; 2016b). 

 
 

OOH

OOH

1O2+
R1

R2

R3 R1 R3

R2

R1 R3

R2

R1 R3

R2 OOH

 
 

Figure 5. Cis effect in the reaction of 1O2 with trisubstituted alkenes. 
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CHAPTER FOUR 

DEGRADATION AND REARRANGEMENT  
OF ALLYLIC HYDROPEROXIDES UNDER 

ENVIRONMENTAL CONDITIONS 
 
 
 

Allylic rearrangement 
 

The rearrangement of allylic hydroperoxides (Fig. 6), which produces 
exclusively trans allyl products, has been extensively studied over the 
years (for reviews, see Porter et al., 1995; 2013). It is known to act on 
allylperoxyl radicals (Frimer, 1979), but the mechanism involved is still 
open to debate. The latest studies now seem to indicate that it proceeds 
through an oxygen-allyl radical complex (Porter, 2013). The intensity of 
this rearrangement is very sensitive to the hydrogen donor properties of 
the surrounding molecules (Porter et al., 1995). The rearrangement should 
be slow in biological membranes that are rich in polyunsaturated fatty 
acids (PUFAs), which are good hydrogen donors, but fast in membranes 
that are rich in monounsaturated fatty acids (MUFAs) or saturated fatty 
acids, which are poor hydrogen donors (Rontani et al., 2021a). The extent 
of the allylic rearrangement of the hydroperoxides present in environmental 
samples could therefore reflect the composition and ageing of the 
organisms present (Rontani et al., 2021a). 

Heterolytic cleavage 

Heterolysis of the hydroperoxide O–O bond leads to the formation of 
two carbonyl fragments (Hock cleavage). This proton-catalyzed cleavage 
is initiated by the migration of groups to positive oxygen, which then 
induces a series of skeletal changes (Fig. 6; Frimer, 1979). The migratory 
aptitude follows the order: cyclobutyl > aryl > vinyl > hydrogen > 
cyclopentyl or cyclohexyl >> alkyl (Frimer, 1979). In the particular case 
of allylic hydroperoxides, the migrating group will be the vinyl group and 
the resulting fragments will be two aldehydes (Fig. 6). These cleavages are 
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generally acid-catalyzed, but several of them have been reported to occur 
in the absence of any added acid (Turner and Herz, 1977; Frimer, 1979), 
and notably in senescent phytoplanktonic cells (Rontani, 1998) and 
seawater (Rontani et al., 2007c). 
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Figure 6. Rearrangement process and main degradation pathways of allylic 
hydroperoxides. 

Homolytic cleavage 

Homolysis of the O–O bond of hydroperoxides is induced by enzymes 
(e.g. lipoxygenases), redox-active metal ions undergoing one-electron 
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transfer, heat, or light (Schaich, 2005) (see Chapter 8 for further details). It 
leads to carbonyl (dehydration), alcohol (reduction), fragmentation ( -
scission) or oxirane (radical cyclization) products (Fig. 6; Frimer, 1979). 
Note that -scission acts mainly on the side of the hydroperoxy group 
affording an alkyl radical, since cleavage on the other side leads to the 
formation of an unstable and unlikely vinyl radical. Homolytic cleavage 
also produces several radicals, and notably the very reactive hydroxyl 
radical (HO•), which may be at the origin of the initiation of free-radical-
mediated oxidation chain-reactions (See Chapter 8). 

Further oxidation or condensation 

Lipid hydroperoxides can also be oxidized to epoxyhydroperoxides, 
oxohydroperoxides, bihydroperoxides, cyclic peroxides, and bicyclic 
endoperoxides (Frankel, 1984), or else undergo condensation reactions 
forming dimers and polymers cross-linked through either peroxide or ether 
linkages and containing hydroperoxy, oxo- or hydroxy groups (Neff et al., 
1988; Frankel, 1998; Pignitter and Somoza, 2012). These condensation 
reactions mainly act in the case of polyunsaturated substrates (Frankel, 
1998). 

Occurrence under natural environmental conditions  

Despite these various degradation processes, literature nevertheless 
features several reports of intact allylic hydroperoxides in environmental 
samples or organisms, including phytoplankton (Orefice et al., 2015), 
bacteria (Petit et al., 2013), marine and terrestrial angiosperms (Rontani et 
al., 2014a; Rontani, 2019), particulate matter (Rontani et al., 2012; Galeron 
et al., 2015) and marine sediments (Rontani and Marchand, 2000). The 
unexpected stability of allylic hydroperoxides in sediments (where the 
residence time of organic matter may be relatively long) could result from 
protection of these compounds in well-silicified diatoms or higher plant 
debris (Rontani and Marchand, 2000). 
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TYPE-II PHOTOSENSITIZED OXIDATION  
OF THE MAIN UNSATURATED LIPIDS  

OF AUTOTROPHIC ORGANISMS:  
SELECTION OF PROCESS SPECIFIC TRACERS 

 
 
 

Chlorophylls 
 

1O2 produced by chlorophyll photosensitization may act directly on 
the sensitizer, inducing chlorophyll degradation (photobleaching) (Fig. 3). 
In the literature, the photodegradation of chlorophylls has mainly been 
studied with respect to the tetrapyrrolic moiety of the molecule (Fig. 7), 
which is the more reactive. Although promising intermediate photoproducts 
were identified (Engel et al., 1991; Iturraspe et al., 1994), they are not 
sufficiently stable and specific to serve as specific tracers for the 
chlorophyll macrocycle photodegradation in the natural environment. 

The trisubstituted double bond of the phytyl side-chain of chlorophyll-
a or -b (Fig. 7) can also react with 1O2. The rate of this reaction is 3–5 
times slower than that of the tetrapyrrolic structure (Cuny et al., 1999; 
Christodoulou et al., 2010). Due to the well-known Syn selectivity of the 
“ene” reaction (cis effect) (Alberti and Orfanopoulos, 2006), this reaction 
affords photoproducts of structures a and b (Fig. 8), which are 
quantifiable after reduction and alkaline hydrolysis, respectively, in the 
form of 6,10,14-trimethylpentadecan-2-ol and 3-methylidene-7,11,15-
trimethylhexadecan-1,2-diol (more concisely named ‘phytyldiol’; Fig. 8; 
Rontani et al., 1994). 
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Figure 7. Structures of chlorophyll-a and chlorophyll-b. 
 
Phytyldiol appeared to be relatively stable under environmental 

conditions (Rontani et al., 1996b) and yet highly specific. This specificity 
results from the strong preference for Syn ene addition of 1O2 at the 
disubstituted side of the double bond (cis effect; Alberti and 
Orfanopoulos, 2006; Fig. 8). Phytyldiol compound was thus proposed as 
biogeochemical marker of chlorophyll photodegradation in the natural 
environment (Cuny and Rontani, 1999). 

The molar ratio phytyldiol:phytol (defined as chlorophyll phytyl side-
chain photodegradation index, or ‘CPPI’) was proposed as an estimator of 
the extent of photooxidation of chlorophylls possessing a phytyl side-
chain in natural samples, using the empirical Eq. 1 (Cuny et al., 1999).  

 
 
(chlorophyll photooxidation % = (1 - [CPPI+1]-18.5) x 100                (1) 
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Figure 8. Type-II photosensitized oxidation of the chlorophyll phytyl side-chain 
and subsequent reduction and alkaline hydrolysis of the resulting hydroperoxides. 
Adapted from Rontani and Belt (2020). 
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Carotenoids 

Carotenoids are tetraterpenes containing a conjugated system of double 
bonds with delocalized -electrons (Fig. 9). As seen in Chapter 2, these 
constituents of thylakoid membranes play special roles in the protection of 
tissues against damage caused by light and oxygen (Britton, 1995). The 
physical quenching pathway described in Eqs. 2 and 3 is thought to be the 
most favoured mechanism for carotenoid and 1O2 interactions (Boon et al, 
2010), but carotenoids can also quench 1O2 by chemical reaction 
(scavenging) (Eq. 4). 
 
Car + 1O2    3Car* + 3O2                                                                     (2) 
 
3Car*      Car + Heat                                                                     (3) 
 
Car + 1O2    Carotenoid oxidation products                                     (4) 

 
The reaction of 1O2 with carotenoids in biological membranes is not 

well understood (Boon et al., 2010). In the case of -carotene, which 
appeared to be a preferred in vivo target of 1O2 compared to xanthophylls 
(Ramel et al., 2012), it seems that -carotene-5,8-endoperoxide (Fig. 9) 
was the primary oxidation product formed (Fiedor et al., 2005). Further 
degradation of this compound affords several aldehydes and ketones ( -
ionone, -apo-14 -carotenal, -apo-10 -carotenal, -apo-8 -carotenal, and 
more; Stratton et al., 1993; Yamauchi et al., 1998; Ramel et al., 2012). 
While -carotene-5,8-endoperoxide makes a useful early signal of 1O2 
production in plant leaves (Ramel et al., 2012), it is clearly not stable 
enough to serve as a viable environmental tracer. Unfortunately, most of 
the shorter oxidation products resulting from the degradation of this 
endoperoxide can be also produced by enzymatic and autoxidative 
degradation of -carotene (Boon et al., 2010) and thus do not make 
unequivocal indicators of type-II photosensitized oxidation of carotenoids 
in phototrophic organisms. 
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Figure 9. Oxidation of -carotene by 1O2. 

Unsaturated fatty acids 

Unsaturated fatty acid carbon chains contain one or more (methylene-
interrupted) double bonds with a terminal carboxylic group (–COOH). 
These fatty acids fall into two groups depending on number of double 
bonds: (i) monounsaturated fatty acids (MUFAs), which contain a single 
double bond, and (ii) polyunsaturated fatty acids (PUFAs), which contain 
more than one double bond. The fatty acids in eukaryote membranes are 
mainly esterified with glycerol in phospholipid molecules, which are the 
building blocks of biological membranes (Mansy, 2010).  

Note that most natural unsaturated fatty acids are cis-configurated, and 
therefore reactive to 1O2 (Table 1). The reaction rates of 1O2 with oleic 
(C18:1), linoleic (C18:2), linolenic (C18:3) and arachidonic (C20:4) acid in 
biological membranes are 0.74, 1.3, 1.9, and 2.4 mole-1s-1, respectively 
(Min and Boff, 2002), and thus practically proportional to number of 
double bonds in the molecules. Even if PUFAs are particularly reactive 
with 1O2, the resulting oxidation products cannot serve as tracers of type-II 
photooxidation processes in the environment, due to (i) the instability of 
the primary oxidation products formed, and (ii) the involvement of cross-
linking reactions. Indeed, some allylic hydroperoxides resulting from 
photosensitized oxidation of PUFAs may quickly cyclize to hydroperoxy 
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epidioxides while others undergo addition of 1O2 to the conjugated diene 
systems resulting from the “ene reaction” after cis-trans isomerization, 
affording hydroperoxide endoperoxides (Fig. 10) (Frankel, 1998). The 
decomposition of these different multi-oxidized compounds results in the 
production of several nonspecific volatile products (Frankel, 1998). Allylic 
hydroperoxides of PUFAs also dimerize and oligomerize, leading to the 
formation of macromolecular structures containing peroxide or ether 
linkages and hydroperoxy, hydroxy and oxo groups (Neff et al., 1988) that 
are not amenable to gas chromatography.  
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Figure 10. Further oxidation of allylic hydroperoxides of PUFAs. 
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Figure 11. Type-II photosensitized oxidation of MUFA components of 
phospholipids, and subsequent NaBH4 reduction and alkaline hydrolysis of the 
resulting hydroperoxides. 
 

Type-II photosensitized oxidation of MUFA components of phospholipids 
involves the addition of 1O2 to the two carbon atoms of their double bond 
and leads to the formation of two trans allylic hydroperoxides (Fig. 11; 
Frankel et al., 1979; Frankel, 1998). These hydroperoxides can subsequently 
undergo stereoselective radical allylic rearrangement (Fig. 6) affording 
two other isomers with a trans double bond (Fig. 11; Porter et al., 1995). 
Trans allylic hydroxy acids arising from NaBH4 reduction and alkaline 
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hydrolysis of photooxidized MUFA-containing phospholipids (Fig. 11) are 
sufficiently stable for use as tracers of type-II photosensitized oxidation 
processes, but using them requires prior subtraction of the amounts of 
these compounds arising from autoxidation processes, which can be 
estimated (Marchand and Rontani, 2001) (see Chapter 10). 

-Hydroxy monounsaturated fatty acids 

The outer layer of the epidermal cells of primary plant tissues like 
leaves (cuticle) is composed of an insoluble polyester polymer (cuticular 
wax; Graça et al., 2002) that, when depolymerized, mainly affords C16 and 
C18 saturated and monounsaturated -hydroxycarboxylic acids (Kolattukudy, 
1980). We previously demonstrated that in senescent plants, i.e. when rate 
of 3Chl and 1O2 formation exceeds the quenching capacity of the 
photoprotective system (Fig. 3), 1O2 can migrate outside the chloroplasts 
and affect the unsaturated components of cuticular waxes, notably 18-
hydroxyoctadec-9(cis)-enoic (18-hydroxyoleic) acid (Rontani et al., 
2005a). Type-II photosensitized oxidation of this acid affords 9-
hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-
hydroxyoctadec-8(trans)-enoic acids (Fig. 12).  

 

R1OH2C
COOR2

HOO
R1OH2C

COOR2

OOH

HOH2C
COOH

HO

HOH2C
COOH

OH

1O2h

9 10

NaBH4 reduction

Alkaline hydrolysis

R1OH2C COOR2

 
Figure 12. Type-II photosensitized oxidation of 18-hydroxyoleic acid in polymeric 
cuticular waxes. Adapted from Rontani et al. (2005a). 
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The corresponding alcohols resulting from the reduction of these 
hydroperoxides (Fig. 12) were proposed as indicators of photooxidation of 
the unsaturated components of higher plant cuticular waxes in the natural 
environment (Rontani et al., 2005a). 

Sterols 

Sterols are monohydroxy alcohols with a rigid tetracyclic structure or 
steroid nucleus and a short branched alkyl chain (Fig. 13), which are 
important membrane components of phototrophic organisms as they help 
structurally stabilize the phospholipid bilayers and regulate membrane 
fluidity and permeability (Piepho et al., 2012). In some plants, they have a 
specific function in cell proliferation, signal transduction, and modulation 
of the activity of some membrane-bound enzymes (Volkman, 2003). The 
main sterols are 5-sterols, but 7-sterols can also be found in small 
quantities (Martin-Creuzburg and Merkel, 2016). They may be free, 
esterified with a fatty acid or sulphuric acid, or etherified with a 
monosaccharide (glycosides) (Fig. 13). 
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Figure 13. Generalized structure of 5-sterols (additional double bonds may be 
found at C-7, C-8, C-22, C-24(28) or C-25-27). Adapted from Volkman (2003). 
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1O2 attack on the 5 double bond of these compounds mainly produces 
a 6-5 -hydroperoxide and to a lesser extent 4-6 -hydroperoxides 
(Kulig and Smith, 1973; Korytowski et al., 1992; Fig. 14). 
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Figure 14. Type-II photosensitized oxidation of 5-sterols. Adapted from Rontani, 
(2008). 

 
Although highly specific, 6-5 -hydroperoxides readily undergo allylic 

rearrangement to 5-7 -hydroperoxides, which in turn epimerize to the 
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corresponding 7 -hydroperoxides (Fig. 14; Smith, 1981). These 7 / -
hydroperoxysterols were ruled out as candidate markers of type-II 
photosensitized oxidation of 5-sterols due to their lack of specificity (See 
Chapter 10) and stability (Christodoulou et al., 2009; Rontani et al., 2009). 
Although produced in lower relative proportions compared to the 6-5 -
hydroperoxides, 4- -hydroperoxides appear more environmentally 
stable. Indeed, -scission of the alkoxyl radicals resulting from homolytic 
cleavage of the peroxy bond of 6-5-hydroperoxysterols and 5-7 -
hydroperoxysterols affords radicals more stable than in the case of 4-6-
hydroperoxysterols and is thus strongly favoured (Christodoulou et al., 
2009). 4-Stera-3 , -diols resulting from NaBH4 reduction to the 
corresponding hydroperoxides (Fig. 14) have thus been proposed as reliable 
tracers of type-II photosensitized oxidation of 5-sterols (Christodoulou et 
al., 2009). The 4- -hydroperoxides/ 6-5 -hydroperoxides ratio (0.3) 
generally found in biological membranes (Korytowski et al., 1992) 
prompted the idea of estimating the extent of photooxidation (%) of the 
parent sterol using Eq. 5 (Christodoulou et al., 2009; Rontani et al., 2009).  

 
5-sterol photooxidation % = 4- -hydroperoxides % x (1+0.3)/0.3   (5) 

 
Even though trisubstituted double bonds react more quickly with 1O2 

than disubstituted double bonds (Table 1), type-II photosensitized 
oxidation appeared to be slower for 5-sterols than MUFAs in solvents 
and in biological membranes (Rontani et al., 2011a). This weak reactivity 
was attributed to the rigid tetracyclic structure of sterols inducing steric 
hindrance during the 1O2 attack of the sterol 5 double bond (Beutner et 
al., 2000). 

Vitamin E 

Vitamin E, an important constituent of photoprotective systems in 
cells, is capable of highly efficient 1O2 scavenging (Neely et al., 1988). 
The reaction of vitamin E with 1O2 mainly results in the formation of 8a-
hydroperoxytocopherone (Yamauchi and Matsushita, 1979; Clough et al., 
1979; Fig. 15), which may subsequently be cleaved to different isoprenoid 
compounds after homolytic and heterolytic cleavages (Nassiry et al., 2009; 
Fig. 15). 
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Figure 15. Type-II photosensitized and radical oxidation of vitamin E. Adapted 
from Rontani and Belt (2020). 

 
Unfortunately, peroxyl radicals also react with the 8a position of 

vitamin E, affording 8a-hydroperoxytocopherone (Liebler, 1994) (Fig. 15), 
which means that isoprenoid compounds resulting from homolytic and 
heterolytic cleavages of this compound cannot serve as specific tracers of 
type-II photosensitized oxidation of vitamin E. However, among them, 
4,8,12,16-tetramethylheptadecan-4-olide appeared to be sufficiently stable 
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and specific to act as marker of abiotic oxidation of vitamin E, and so this 
lactone was proposed as a potential tracer of organic matter sedimentation 
under oxic conditions (Nassiry et al., 2009). 

Pentacyclic triterpenes 

Pentacyclic triterpenes and their derivatives, which can be divided into 
three main classes, i.e. lupane, oleanane and ursane, are all widely found 
in angiosperms (Jäger et al., 2009). These polycyclic structures can occur 
as free, esterified (with hydroxycinnamic acids for instance) or glycosylated 
forms, where glycosylated forms are called triterpenoid saponins (Furtado 
et al., 2017). There has been little investigation into the type-II 
photosensitized oxidation of these compounds, although there has been a 
recent study on betulin, -amyrin and -amyrin, which belong to the three 
main classes of pentacyclic triterpenoids and possess double bonds able to 
be attacked by 1O2 (Fig. 16) (Galeron et al., 2016a; 2016b).    
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Figure 16. Structures of betulin, -amyrin and -amyrin. 
 

Betulin was photodegraded in pyridine in the presence of hematoporphyrin 
as sensitizer (Galeron et al., 2016a), and its photodegradation rate appeared to 
be 17-fold slower than that of esterified cholesterol. This relatively low 
reactivity is consident with the well-known increase in double-bond 
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reactivity to 1O2 with increasing alkyl substitution (Table 1; Hurst et al., 
1985). Type-II photooxidation of betulin specifically produces lup-20(30)-
ene-3 ,28-diol-29-hydroperoxide, which is quantifiable after NaBH4 
reduction in the form of lup-20(30)-ene-3 ,28,29-triol (Fig. 17). The very 
high regioselectivity of betulin attack by 1O2 is in good agreement with 
previous results on gem-disubstituted alkenes possessing a methyl and a 
bulky substituent. Indeed, in this case photooxygenation shows a strong 
preference for hydrogen abstraction from the methyl group that is geminal 
to the larger substituent of the alkene (Alberti and Orfanopoulos, 2006).  
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Figure 17. Type-II photosensitized oxidation of betulin. Adapted from Galeron et 
al. (2016a). 
 

Lup-20(30)-ene-3 ,28,29-triol, which is found in senescent leaves of 
Quercus ilex (Galeron et al., 2016a), was proposed as a marker of type-II 
photosensitized oxidation in angiosperms. 

Despite the presence of trisubstituted 12 double bonds known to be 
reactive to 1O2 (Table 1), - and -amyrins were totally unaffected during 
photodegradation experiments (Galeron et al., 2016b). This lack of 
reactivity was attributed to the involvement of steric hindrance when 1O2 
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approaches the double bond. Indeed, during the ‘ene’ reaction, the 
presence of the bulky methyl groups 25 and 26 in the amyrin structures 
can potentially hinder the approach of the beta side of the 22 double bond 
and of the axial allylic hydrogen atoms carried by carbon-11 and -18 (Fig. 
16).  

Alkenones 

Alkenones are a class of mono-, di-, tri-, tetra- and penta-unsaturated 
C35–C40 methyl and ethyl ketones that are produced by some marine 
haptophytes and widespread in the oceans (Volkman et al., 1980, 1995; de 
Leeuw et al., 1980; Marlowe et al., 1984; Prahl et al., 2006; Jaraula et al., 
2010). An unsaturation ratio of C37 alkenones (the 

'
37
KU  index defined in Eq. 

6, where [C37:2] and [C37:3] are the concentrations of di- and tri-unsaturated 
C37 alkenones, respectively) is now widely used in paleoceanography to 
reconstruct past sea surface temperatures (SSTs) (e.g. Brassell et al., 1986; 
Prahl and Wakeham, 1987; Müller et al., 1998). 

 
 
'

37
KU   = [C37:2] / ([C37:2] + [C37:3])                                                               (6) 

 
 

Type-II photosensitized oxidation of these compounds was 
investigated in senescent haptophytes in order to determine whether these 
degradation processes could appreciably alter the 

'
37
KU  index by inducing a 

faster degradation of the C37:3 alkenone relative to the C37:2 (Rontani et al., 
1997a; Mouzdahir et al., 2001; Christodoulou et al., 2010). Type-II 
photosensitized oxidation of alkenones appeared to be too slow to induce 
significant alteration of 

'
37
KU  index before the photosensitizing substances 

were destroyed. This lack of photodegradation was attributed to the trans 
configuration of alkenone double bonds (Rechka and Maxwell, 1988), 
which are known to be  7-fold less reactive to 1O2 than the cis 
configuration (Table 1), and to the separation of the double bonds by five 
carbon atoms in the alkenone structure instead of one in the very reactive 
PUFAs (Rontani et al., 1997a; Mouzdahir et al., 2001). The fact that 
alkenones are localized in cytoplasmic vesicles (Eltgroth et al., 2005) may 
also explain this poor reactivity by decreasing the likelihood of interaction 
between 1O2 (produced in chloroplasts) and alkenone molecules.  

It may be expected that if the configuration of their double bonds had 
been cis, then there would have been intensive selective photodegradation 
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of di- and tri-unsaturated alkenones during senescence of the haptophytes, 
thus confounding the use of 

'
37
KU for paleotemperature estimation (Rontani 

et al., 2013a). 

Long-chain n-alkenes 

Some microalgae are able to biosynthesize long-chain alkenes 
(Volkman, 2018). This is notably the case of the Eustimatophyte 
Nannochloropsis salina that produces C25, C27 and C29 mono- and poly-
unsaturated n-alkenes (Gelin et al., 1997) and the Prymnesiophyceae 
Emiliania huxleyi (Volkman et al., 1980) that contains C31, C33, C37 and 
C38 n-alkenes with two, three and four double bonds. Type-II 
photosensitized oxidation of n-alkenes was investigated in senescent cells 
of N. salina and E. huxleyi (Mouzdahir et al., 2001). 

In N. salina, there was strong photodegradation of C25-C29 poly-
unsaturated n-alkenes, with degradation rates increasing logically with 
number of double bonds. In contrast, mono-unsaturated n-alkenes 
appeared to be unaffected (Mouzdahir et al., 2001). This lack of reactivity 
was attributed to the terminal position of the double bond in these 
compounds (Gelin et al., 1997), which is well-known to offer little 
reactivity to 1O2 (Table 1) (Kopecky and Reich, 1965).  

In E. huxleyi, C31 and C33 n-alkenes possessing cis double bonds 
(Rieley et al., 1998) were strongly photodegraded, while major C37 and C38 
n-alkenes possessing trans internal double bonds (Rieley et al., 1998) 
appeared particularly recalcitrant to 1O2 (Mouzdahir et al., 2001). Although, 
as in the case of alkenones (see above), we cannot rule out an effect of C37 
and C38 n-alkene localization in cytoplasmic inclusions (Eltgroth et al., 
2005) on their reactivity to 1O2, these results flag up the importance of 
lipid double-bond configuration during type-II photosensitized oxidation 
processes.   

Highly branched isoprenoid (HBI) alkenes 

Highly-branched isoprenoid (HBI) alkenes are produced by a 
relatively short list of marine and freshwater diatoms belonging to the 
Berkeleya, Haslea, Navicula, Pleurosigma, Pseudosolenia and Rhizosolenia 
genera (Belt and Müller, 2013; Belt, 2018). C25 HBI alkenes (exhibiting 
1-6 double bonds) are the most commonly reported in marine sediments 
(Rowland and Robson, 1990; Belt et al., 2000). Among these compounds, 
3,9,13-trimethyl-6-(1,5-dimethylhexyl)-tetradec-1-ene (called IP25) and 
2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-pentadec-6(17)-ene (called 

 EBSCOhost - printed on 2/13/2023 2:59 AM via . All use subject to https://www.ebsco.com/terms-of-use



Type-II Photosensitized Oxidation of the Main Unsaturated Lipids 
of Autotrophic Organisms: Selection of Process Specific Tracers 

31 

IPSO25; Fig. 18) have been proposed as proxies of past seasonal sea ice in 
the Arctic and Antarctic, respectively (Belt et al., 2016; Belt, 2018). 
2,6,10,14-Tetramethyl-9-(3'-methylpent-4-enylidene)-pentadec-6(Z)-ene 
(HBI III; Fig. 18) has been identified as a potentially useful open-water 
counterpart to IP25 (Belt, 2018). 
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Figure 18. Structures and numbering of IP25, IPSO25 and HBI III. 
 

Type-II photosensitized oxidation of several HBI alkenes was studied 
in solvents and in senescent diatoms (Rontani et al., 2011a; 2014b). In 
polyunsaturated HBI alkenes, attack by 1O2 occurs preferentially at the 
trisubstituted double bonds (Fig. 19), which are more reactive than the (6-
17) methylidene group or the (23-24) terminal double bonds (Table 1) 
(Kopecky and Reich, 1965; Hurst et al., 1985).  
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Figure 19. Type-II photosensitized oxidation of a triunsaturated HBI alkene 
possessing one trisubstituted double bond. Adapted from Rontani et al. (2011a). 

 
Due to the very low 1O2 reactivity of methylidene groups and terminal 

double bonds, the degradation rates of HBI alkenes increase with number 
of trisubstituted double bonds. HBI alkenes with one trisubstituted double 
bond are photooxidized 16-fold faster than phytyl esters possessing a 
similar double bond (Rontani et al., 2011a). This results from electronic 
effects induced by the electron-accepting ester group in phytyl esters that 
decrease the electron density of the double bond and thus its reactivity to 
1O2 (Griesbeck et al., 2003).  

HBI alkenes with more than one trisubstituted double bond appeared to 
be photodegraded at similar or higher rates compared to PUFAs, vitamin E 
and chlorophyll (Rontani et al., 2011a; 2014b), which are known to be 
highly reactive to 1O2 (Yamauchi and Matsushita, 1979; Clough et al., 
1979; Nassiry et al., 2009). Unfortunately, the oxidation products of these 
HBI alkenes are not accumulate, due to the involvement of fast secondary 
oxidation reactions. 
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Summary of the results obtained 

Table 2 below recaps the relative type-II photosensitized degradation 
rates of the main unsaturated lipid components of phototrophic organisms 
investigated to date. 
 
 
Compound 
 

 
Relative rates* 

 
HBI alkenes with 3 trisubstituted double bonds 

 
1.0 

HBI alkenes with 2 trisubstituted double bonds 0.8 
Carotenoids 0.7 
Chlorophylls 0.7 
Di-, tri-, tetra- and penta-unsaturated PUFAs  0.1-0.6 
Vitamin E 0.5 
HBI alkenes with 1 trisubstituted double bond 0.4 
Di-, tri- and tetra-unsaturated cis n-alkenes  0.001-1.0 
Chlorophyll phytyl side-chain 0.13 
MUFAs 0.06 

5-Sterols 0.02 
Betulin 0.001 
Di-, tri- and tetra-unsaturated alkenones <0.001 
Di- and tri-unsaturated trans n-alkenes  <0.001 
Amyrins 0 
IPSO25 0 
IP25 0 
  
* Estimated from: Nelson, 1993; Cuny et al., 1999; Rontani et al., 1995, 1997b, 
1998, 2011a; Mouzdahir et al., 2001.  
 

Table 2. Relative rates of type-II photosensitized oxidation of unsaturated lipids. 
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Type-II photosensitized oxidation in heterotrophic 
bacteria 

 
Significant amounts of photooxidation products of cis-vaccenic acid 

arising from the “ene” reaction (i.e. 11-hydroperoxyoctadec-12(trans)-
enoic and 12-hydroperoxyoctadec-10(trans)-enoic acids; Fig. 20) were 
previously detected in particulate matter and recent sediment samples 
collected in diverse zones of the oceans (Marchand and Rontani, 2001; 
Rontani et al., 2011b; 2012a). cis-Vaccenic acid, which is produced by 
many species of heterotrophic bacteria (Gillan and Sandstrom, 1985), is 
generally considered as a bacterial biomarker (Sicre et al., 1988; Keweloh 
and Heipieper, 1996). Given the lack of a chlorophyll photosensitizer in 
heterotrophic bacteria, this photooxidation appeared to be enigmatic. 

Irradiation of axenic and non-axenic cultures of the diatom 
Skeletonema costatum allowed us to attribute this unexpected photooxidation 
of cis-vaccenic acid to a transfer of 1O2 from senescent phytoplanktonic 
cells to their attached bacteria (Rontani et al., 2003a). Indeed, it was 
recently demonstrated that 1O2 has a much larger intracellular sphere of 
activity than previously thought (Ogilby, 2010). The radius of this sphere 
of activity from the point of production was estimated to be between 155 
and 340 nm (Baier et al., 2005; Ogilby, 2010; Skovsen et al., 2005), 
which is a large-enough distance to allow 1O2 to cross the cellular 
membranes (Ogilby, 2010) and thus reach attached bacteria. 

Due to the lack of efficient photoprotective and antioxidant systems in 
heterotrophic bacteria (Garcia-Pichel, 1994), 1O2 can cause substantial 
damage in these microorganisms and affect not only MUFAs but also 
proteins (Davies, 2005) and nucleic acids (Dias Cavalcante et al., 2002). 
The deleterious effects of 1O2 on bacteria are well known, and photodynamic 
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killing of bacteria using light and synthetic 1O2-producing photosensitizers 
to induce a phototoxic reaction (a strategy called photodynamic therapy, 
PDT) has even emerged as a viable treatment for several oncological and 
non-oncological indications (Jarvi et al., 2012). 

 
 

COOH
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COOH
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12

1O2 "ene" reaction

 
Figure 20. Type-II photosensitized oxidation of cis-vaccenic acid. 

 
It is generally well accepted that marine bacteria colonize and 

contribute to the degradation of phytoplankton-derived particles (Fig. 21), 
but 1O2 production in senescent phytoplanktonic cells can also induce 
oxidative damage in attached bacteria during their stay within the euphotic 
layer of the oceans (Petit et al., 2013). This oxidative-driven damage could 
limit bacterial growth and thus contribute to better preservation of algal 
organic matter during sedimentation. 

Note, however, that the presence of a silica matrix (as in the case of 
highly-silicified diatoms) or high amounts of surrounding exopolymeric 
substances (EPS) (as in the case of ice algae) can inhibit the transfer of 1O2 
and thus limit the photooxidative alteration of attached bacteria (Petit et al, 
2015a; Amiraux et al., 2017). In contrast, a carbonaceous matrix (as in the 
case of coccolithophorids) does not seem to inhibit 1O2 transfer, probably 
due to the release of coccoliths upon cell death (Petit et al., 2015a). The 
limitation of 1O2 transfer by a silica or EPS matrix could be attributed to 
the polar nature of silica or polysaccharides, respectively, which would 
decrease the lifetime of 1O2 (Suwa et al., 1977), and/or to the presence of 
some components of the diatom frustule or EPS structure (e.g. 
mycosporine-like amino acids; Ingalls et al., 2010) acting as quenchers of 
1O2 (Suh et al., 2003). Petit et al. (2015a) could previously clearly 
demonstrate in vitro that the inhibition of the transfer of 1O2 to the 
attached bacteria is directly linked to the concentration of biogenic silica 
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concentration in diatoms cells and could thus favour biodegradation of 
phytodetritus resulting from these organisms. 

 

 
 
 

Figure 21. Scanning electron microscopy image of diatoms (Skeletonema 
costatum) contaminated by heterotrophic bacteria. 
 

EPS concentrations in Arctic sea ice are typically an order of magnitude 
higher than for under-ice and open water environments (Krembs and Engel, 
2001; Meiners et al., 2003). The lower production of EPS by open water 
phytoplankton thus favours 1O2 transfer from phytodetritus to attached bacteria 
and, as a result, increases the susceptibility of the latter towards oxidative 
damage (Fig. 22) 
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Figure 22. Cross-plot of % photooxidation of cis-vaccenic acid versus % 
photooxidation of 24-methylenecholesterol illustrating the variation of photo-
oxidation of attached bacteria relative to that of the algae in the case of pelagic (A) 
and sympagic (B) diatoms. Adapted from Amiraux et al. (2017). 
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Type-II photosensitized oxidation in zooplanktonic 
material 

Marine zooplankton count four main types of storage lipids: 
triacylglycerols, wax esters, phospholipids, and diacyl-glycerol ethers (Lee 
et al., 2006). Wax esters consisting of simple esters of long-chain primary 
alcohols and long-chain fatty acids are major storage lipids in high-latitude 
species (Lee et al., 2006).  
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Figure 23. Type-II photosensitized oxidation of C20: 11 and C22: 11 alkan-1-ol 
components of zooplanktonic wax esters. Adapted from Rontani et al. (2012). 
 

In herbivorous copepods that undergo diapause, the most common 
alkan-1-ols of the wax esters are generally C20: 11 and C22: 11 (Albers et al., 
1996). Photooxidation products of these two alcohols resulting from the 
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involvement of the “ene” reaction (Fig. 23) were recently observed after 
NaBH4 reduction and alkaline hydrolysis of suspended particulate material 
collected in the Beaufort Sea (Canadian Arctic) (Rontani et al., 2012a).  

This unexpected photooxidation of wax esters was attributed to the 
presence in these samples of copepod faecal pellets of both lipid droplets 
(rich in wax esters) (Najdek et al., 1994) and intact phytoplankton cells 
(containing undigested chlorophyll or phaeopigments; Turner, 2002). 
Indeed, the fact that phytoplanktonic cells are in close contact with lipid 
droplets in faecal pellets should favour the transfer of 1O2 (produced from 
chlorophyll and phaeopigments in phytoplankton cells) to the double 
bonds of wax esters (Rontani et al., 2012a). Moreover, the apolar nature of 
lipid droplets should increase the lifetime and the diffusive distance of 1O2 
(Suwa et al., 1977). 
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Temperature dependence of type-II photosensitized 
oxidation processes 

 
Surprisingly, previous analyses of particulate matter samples collected 

in both the Arctic (Rontani et al., 2012a) and Antarctic (Rontani et al., 
2019a) showed that the efficiency of type-II photosensitized oxidation of 
phytoplanktonic lipids was considerably higher there than in equatorial 
zones (Rontani et al., 2011b). On the basis of the interesting work of 
Ehrenberg et al. (1998) showing that high temperatures increase the rates 
of 1O2 diffusion outside cell membranes, an effect of temperature on these 
unexpected observations was suspected.  

Recently, then, we studied type-II photosensitized oxidation of lipids 
(photodynamic effect) and chlorophyll photooxidation (sensitizer 
photobleaching) (Fig. 2) in dead cells of the centric diatom Chaetoceros 
neogracilis RCC2022 at different temperatures (Amiraux et al., 2016). 
The results showed a 3.0 ± 0.5-fold increase in kcamp/kchl ratio (where kcamp 
and kchl are the pseudo-first-order photodegradation rates of campesterol 
and chlorophyll, respectively) when temperature decreased from 17°C to 
7°C. Low temperatures clearly favour the photodynamic effect at the 
expense of photobleaching, and thus make the type-II photosensitized 
oxidation of lipids more efficient (Fig. 24). These temperature effects 
could explain the higher photooxidation of phytoplanktonic lipids 
previously observed in polar zones (Rontani et al. 2012a, 2019a), 
although as we will see in the next subchapter, solar irradiance may also 
play a role. 
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Solar irradiance dependence of Type-II photosensitized 
oxidation processes 

During the in vitro study of Amiraux et al. (2016) carried out on dead 
cells of C. neogracilis RCC2022, it was also observed that weak solar 
irradiances strongly enhance the efficiency of type-II photosensitized 
oxidation of lipids (Fig. 24). Indeed, kcamp/kchl ratio increased 4.2 ± 0.8-
fold when irradiance decreased from 2038 to 165 μmol photons m-2s-1. 
This enhanced efficiency of the photodynamic effect was attributed to 
relative preservation of the sensitizer (chlorophyll) at low irradiances 
resulting in a longer-lasting production of 1O2 and thus more intense lipid 
damage (Amiraux et al., 2016).  
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Figure 24. Effect of temperature and irradiance on efficiency of the photodynamic 
effect. 
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More recently, we compared the efficiency of the photodynamic effect 
in Arctic sinking particle samples collected in ice-covered and open water 
regions (Rontani et al., 2021b). The efficiency of the photodynamic effect 
was found to differ significantly between sinking particles collected under 
sea ice compared to open water (kbra/kchl = 4.0 ± 2.2 at 30 m under the ice 
versus 0.5 ± 0.2 at 100 m in open water, where kbra and kchl are the pseudo-
first-order photodegradation rates of brassicasterol and chlorophyll, 
respectively; Rontani et al., 2021b). This enhanced efficiency of the 
photodynamic effect in ice-covered zones was attributed to the weak solar 
irradiance intensity generally observed under ice. Indeed, in the Arctic, 
photosynthetically active radiation (PAR) irradiance is vastly higher in 
open water than in ice-covered zones (365 ± 62 versus 10.9 ± 2.7 μmol 
photons m-2s-1 in the surface mixed layer, respectively; Alou-Font et al., 
2016).  
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FREE RADICAL OXIDATION (AUTOXIDATION) 
PROCESSES  

 
 
 
Ground-state triplet molecular oxygen (3O2) is a paramagnetic bi-

radical with two electrons occupying separate * orbitals with parallel 
spins. Spin restriction means that it has less oxidizing ability than 1O2 in 
which the two electrons are paired with opposite spins (Krumova and 
Cosa, 2016). Indeed, the unpaired electrons of 3O2 can only interact with 
unpaired electrons of transition metals or organic radicals, which in the 
latter case drives autoxidation reactions. Autoxidation involves free-
radical-mediated oxidation chain reactions, which can be divided into 
three steps: chain initiation, propagation, and termination (Schaich, 2005). 

Chain initiation 

In order to proceed, the autoxidation process requires initiators or 
catalysts (able to produce radicals by removing an electron to the substrate 
molecule or breaking a covalent bond). The most common initiators are 
heat, light, metals, and certain enzymes. 

High temperatures provide enough energy to break C-C or C-H 
covalent bonds in organic molecules and thus generate a huge variety of 
radicals (Nawar, 1969). However, this is not the case of the moderate 
temperatures generally found in the natural environment, which can only 
break weak bonds such as the O-O bond of hydroperoxides (which have a 
bond energy of only 34 kcal/mol) produced by other processes such as 
photosensitized oxidation (Girotti, 1998). 

As seen in the Chapter 1, some chromophore-containing molecules can 
be directly excited in the UV and visible region of solar light, affording 
long-lived triplet states (Zafiriou et al., 1984). Some of these triplet states 
can abstract hydrogen atoms on other molecules and initiate type-I 
photosensitized oxidation processes (Fig. 1), which are in fact light-
induced free-radical chain oxidation processes. This is notably the case for 
the excited triplet state of carbonyl compounds, which can form at 
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wavelengths < 350 nm (Schaich, 2005; Fig. 25). Solar UV radiation can 
also break weak covalent bonds such as the O-O peroxy bond (Schaich, 
2005). 
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Figure 25. Light-induced free-radical chain oxidation in the case of carbonyl 
compounds. 
 

Redox-active metal ions undergoing one-electron transfer (e.g. Fe2+, 
Co2+, Fe3+, Cu2+, Mn2+, Zn2+, Mg2+, V2+) are thought to be major initiators 
of lipid oxidation in biological systems (Pokorny, 1987). Indeed, they are 
ubiquitous, active in many forms, and highly efficient at even very low 
concentrations (Schaich, 2005). They can direct the cleavage of 
hydroperoxides through either alkoxyl radicals (hydroperoxide reduction) 
(Eq. 7) or peroxyl radicals (hydroperoxide oxidation) (Eq. 8). Note that 
hydroperoxide reduction proceeds much faster than hydroperoxide 
oxidation. 
 
ROOH Mn+ RO HO-

+ + M(n+1)++               (7) 
 
ROOH ROO H+ Mn++ +M(n+1)+ +                (8) 
 

Certain enzymes such as lipoxygenases (LOXs) that produce radicals 
during their catalytic cycle can also catalyze the induction of free-radical 
oxidation chains (Fig. 26; Bhattacharjee, 2014; Fuchs and Spiteller, 
2014). Moreover, the production of increasing amounts of free radicals 
may damage the active site of LOXs and release Fe2+ ions (Sato et al., 
1992; Fuch and Spiteller, 2014) that can very efficiently catalyze the 
reduction of hydroperoxides to alkoxyl radicals (Eq. 7). 
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Figure 26. Induction of free-radical chain oxidation by lipoxygenases (LOX-Fe2+ 
= native ferrous lipoxygenase, LOX-Fe3+ = active ferric lipoxygenase, LH = lipid, 
LOOH and ROOH = hydroperoxides) 

Propagation 

The propagation step proceeds as a succession of reactions in which 
each radical produced in one reaction is consumed in the next (Fossey et 
al., 1995). It generally proceeds via hydrogen atom abstraction through a 
cyclic network of peroxy–hydroperoxide-mediated free-radical chain 
reactions (Yin et al., 2011; Fig. 27). Hydrogen atoms are generally 
abstracted from tertiary, allylic or  to oxygen positions, with doubly 
allylic hydrogen atoms being the most susceptible to abstraction. These 
radicals are then converted to hydroperoxides after the addition of 
molecular oxygen (Fig. 27).   
 

ROO R1H ROOH R1
O2 R1OO

R2H R2
R1OOH+ +  

 
 
Figure 27. Hydrogen abstraction by peroxyl radicals. 

 
Interestingly, abstraction is not selective in the case of the hydroxyl 

radical (HO•), which is so electrophilic and reactive that it can abstract 
hydrogen atoms indiscriminately from all positions of alkyl chains 
(Schaich, 2005). 
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Peroxyl radicals can also add to double bonds, affording di-peroxides 
after reaction with molecular oxygen or epoxides by fast intramolecular 
homolytic substitution (Fig. 28). However, hydrogen abstraction processes 
generally dominate the autoxidation of unsaturated compounds, and 
radical addition only becomes competitive when the double bond is 
conjugated, terminal, or 1,1-disubstituted (Hiatt and McCarrick, 1975). 
Conditions that favour addition generally develop during lipid oxidation, 
due to the increasing number of conjugated double bonds. 

 
 

- RO
OOR O

+O2

ROO OO ROO OOH

+

R2H

ROO
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Figure 28. Addition of peroxyl radicals to double bonds. 

Termination 

Termination reactions decrease the number of radicals and yield non-
radical products such as alcohols and ketones (Schaich, 2005). They 
involve either (i) radical recombination (Figs. 29A and 29B), (ii) electron 
transfer (Fig. 29C), or (iii) radical elimination (Fig. 29D). Antioxidants, 
which play a key role during this step, can function as: (i) reducing agents 
(electron or hydrogen atom donors) or (ii) peroxyl radical chain 
interrupters. Chain-breaking antioxidants react with peroxyl radicals to 
yield stabilized radicals that are unable to further propagate the oxidative 
chain (Amorati et al., 2017). 
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Figure 29. Disproportionation (radical self-recombination) of (A) peroxyl and (B) 
alkoxyl radicals, (C) peroxyl radical reduction, and (D) hydroperoxyl radical 
elimination. 
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As in the case of type-II photosensitized oxidation, autoxidation 

processes should only be prevalent in phototrophic organisms when they 
senesce or undergo intense stresses, i.e. when ROS (including 1O2) 
concentrations exceed the quenching capacities of the antioxidant defence 
system.  

Induction of autoxidation processes during the senescence 
of phototrophic organisms 

Autoxidation processes are generally thought to play a key role in the 
deleterious effects of senescence in plants (Leshem, 1988). Viral infection 
(Evans et al., 2006) and autocatalytic programmed cell death (Bidle and 
Falkowski, 2004) of phototrophic organisms can also lead to elevated 
production of ROS able to induce the autoxidation of cell components.  

In senescent phototrophic cells, initiation of autoxidation processes 
mainly appears to result from the decomposition of hydroperoxides 
produced by the photodegradation of cellular components (Girotti, 1998; 
Rontani et al., 2003b). As seen in the previous chapter, heat, light, some 
redox-active metal ions, and certain enzymes can cleave these 
hydroperoxides to hydroxyl, peroxyl and alkoxyl radicals (Fig. 30). Even 
though photochemically-produced hydroperoxides present in the cells are 
a major driver of lipid autoxidation (Galeron et al., 2016c), it is important 
to note that the intensity of autoxidative processes also depends on 
conditions conducive to homolytic cleavage of these hydroperoxides 
(Sheldon and Kochi, 1976; Schaich, 2005; Fig. 30). 
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Figure 30. Initiation of autoxidation processes from photochemically-produced 
hydroperoxides. Adapted from Rontani and Belt (2020). 

Induction of autoxidation processes under abiotic stresses 

In the natural environment, plants are exposed to a number of abiotic 
stresses (salinity, drought, extreme temperature, metal toxicity, air 
pollutants, ultraviolet light, and high doses of pesticides; Choudhury et 
al., 2013; Xie et al., 2019) that can alter ROS metabolism and thus induce 
their accumulation (Chaki et al., 2020). Like during senescence, high 
concentrations of these reactive species can overwhelm the antioxidant 
defence system, thus leading to oxidative stress and, ultimately, to cell 
death.  

Induction of autoxidation processes under natural 
environmental conditions 

As the propagation of radical chain oxidation requires the presence of 
molecular oxygen (Fig. 27), autoxidation processes can operate in all the 
oxic environments. These processes will be particularly efficient when 
plant material experiences long residence times under oxic conditions, 
whether on land or in the oceanic water column. Note that in soils and 
sediments possessing a thick oxic layer, the contact of organic matter with 
oxygen may be relatively long (decades to centuries in the case of some 
Arctic sediments; Rontani et al., 2018a). In such particular environments, 
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even weakly reactive substrates such as terminal alkenes or branched 
hydrocarbons could be significantly affected by autoxidation processes 
(Rontani et al., 2018a). 
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Chlorophyll 

Autoxidation of the tetrapyrrolic core of chlorophyll a was studied in 
vitro in the presence of hydrogen peroxide (Walker et al., 2002). It mainly 
resulted in the formation of 132-hydroxychlorophyll a (Fig. 31). This 
coumpound and/or its Mg-lacking counterpart 132-hydroxyphaeophytin 
have been detected in senescent Thalassiosira pseudonana and 
Closterium sp. cultures (Louda et al., 1998; Franklin et al., 2012), in 
virally-infected cultures of Emiliania huxleyi (Bale et al. 2013) and 
Ostreococcus Tauri (Steele et al., 2018), and in several sediments 
(Villanueva et al., 1994; Stephens et al., 1997; Louda et al., 2000; Walker 
et al., 2002). Their relative stability to further oxidation (attributed to the 
lack of readily-abstractable hydrogen atoms at C-132; Walker et al., 2002) 
served as rationale for using these oxidation products as potential markers 
of chlorophyll oxidation processes for paleoenvironmental assessment 
(Walker et al., 2002; Squier et al., 2005), and some authors suggested 
using these oxidized transformation products of chlorophyll as indicators 
of the oxicity of the depositional environment (Louda et al., 2000; Squier 
et al., 2002; Walker et al., 2002). 
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Figure 31. Pathways forming 132-hydroxychlorophyll and 132-hydroxyphaeophytin. 
 

Chlorophyll phytyl side-chain autoxidation mainly involves allylic 
hydrogen atom abstraction. As the presence of an ester group on the 
carbon-1 of the phytyl chain strongly decreases the reactivity of hydrogen 
atoms to abstraction (Huyser and Johnson, 1968), these processes mainly 
act on the secondary allylic carbon-4. Subsequent oxidation of the allylic 
radicals thus formed yields four isomeric hydroperoxides which are 
converted (after NaBH4 reduction and alkaline hydrolysis) to 3,7,11,15-
tetramethylhexadec-3-en(Z/E)-1,2-diols and 3,7,11,15-tetramethyl-hexadec-2-
en(Z/E)-1,4-diols (Rontani and Aubert, 2005; Fig. 32).  

It was recently observed that autoxidation of the chlorophyll phytyl 
side chain also affords 3-peroxy-3,7,11,15-tetramethylhexadec-1-ene, 
which is converted to 3,7,11,15-tetramethylhexadec-1-en-3-ol (isophytol) 
after NaBH4 reduction (Rontani and Galeron, 2016). The formation of this 
hydroperoxide was attributed to an allylation (Berkessel, 2014) of the 
chlorophyll phytyl side chain initiated by the addition of peroxyl radical 
on the ethylenic carbon-3 of the molecule (Rontani et al., 2019a; Fig. 32).  
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Figure 32. Autoxidation of the chlorophyll phytyl side chain. Adapted from 
Rontani and Belt (2020) and Rontani et al. (2019a). 
 
This reaction appears to be driven by the formation of a highly stable 
acetoxyl radical. Peroxyl radicals also add on the ethylenic carbon-2, but 
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to a lesser extent, and only affording very minor oxidation products 
(mainly epoxides and a triol) (Rontani, 2012).  

Consequently, isophytol, 3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-
diols and 3,7,11,15-tetramethyl-hexadec-2-en(Z/E)-1,4-diols have been 
proposed as specific tracers of chlorophyll phytyl side-chain autoxidation 
(Rontani and Aubert, 2005; Rontani and Galeron, 2016). 

Carotenoids 

Autoxidation of carotenoids results first in the production of epoxides, 
carbonyl compounds and uncharacterized oligomers (Boon et al., 2010). 
Further oxidation processes produce secondary short-chain carbonyl and 
carboxylic compounds (Mordi et al., 1993). Unfortunately, none of these 
oxidation products are sufficiently stable and specific to serve as tracers 
of carotenoid autoxidation. 

Unsaturated fatty acids 

PUFAs, which contain methylene-interrupted double bonds and thus 
bis-allylic hydrogen atoms that are particularly reactive to abstraction, are 
strongly affected by autoxidation processes (Frankel, 1998), and their 
oxidation rates logically increase with number of double bonds (Cosgrove 
et al., 1987). Unfortunately, as in the case of type-II photosensitized 
oxidation, the instability of the primary oxidation products formed 
precludes the use of these compounds as tracers of PUFA autoxidation in 
the natural environment. 

Autoxidation of the MUFA components of phospholipids, which 
mainly involves allylic hydrogen abstraction and subsequent oxidation of 
the allylic radicals thus formed, affords six isomeric allylic hydroperoxides 
(Porter et al., 1995; Fig. 33). These compounds can be converted to the 
corresponding hydroxy acids after NaBH4 reduction and alkaline 
hydrolysis (Fig. 33). The crucial factor here is that free radical oxidation 
of MUFAs affords cis and trans hydroxy acids whereas type-II 
photosensitized oxidation only gives trans hydroxy acids (Fig. 11), which 
means that cis hydroxy acids are specific tracers of autoxidation 
processes. These compounds proved valuable for distinguishing the 
proportion of trans hydroxy acids resulting from autoxidative processes 
from the proportion arising from photooxidative processes (Marchand and 
Rontani, 2001). 
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Figure 33. Autoxidation of the MUFA components of phospholipids and 
subsequent NaBH4 reduction and alkaline hydrolysis of the resulting 
hydroperoxides. Adapted from Rontani (2012) and Rontani and Belt (2020). 
 

Indeed, based on the proportions of cis hydroxy acids detected and the 
ambient temperature T (°C), it is possible to estimate the proportion of 
trans hydroxy acids arising from autoxidation of MUFAs using different 
equations (see Eqs. 9-12 given for 9 MUFAs) (Frankel 1998; Marchand 
and Rontani, 2001). 

 
([8-cis] + [11-cis])/[9-trans] = -0.0138T + 1.502                                      (9)    
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([8-cis] + [11-cis])/[10-trans] = -0.0144T + 1.553                                  (10)    
 
[8-cis]/([8-cis] + [8-trans]) = -0.0055T + 0.627                                      (11)    
 
[11-cis]/([11-cis] + [11-trans]) = -0.0055T + 0.627                                (12)    

-Hydroxy monounsaturated fatty acids 

Autoxidation of the unsaturated components of cuticular waxes such as 
18-hydroxyoleic acid (Kolattukudy, 1980) and subsequent NaBH4 
reduction and alkaline depolymerisation afford six isomeric allylic 
dihydroxy acids (two cis and four trans) (Fig. 34). As in the case of 
MUFAs, the (autoxidation-specific) cis dihydroxy acids can be used to 
estimate the proportion of trans isomers resulting from autoxidation. 
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Figure 34. Autoxidation of 18-hydroxyoleic acid in polymeric cuticular waxes. 
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5-sterols 

Autoxidation of 5-sterol mainly involves hydrogen abstraction and, to 
a lesser extent, peroxyl radical addition to the double bond (Smith, 1981; 
Morrissey and Kiely, 2006). Hydrogen abstraction focuses on the allylic 
carbon-7 of the steroid nucleus and does not act on the allylic carbon-4 
(Fig. 35). This selectivity may be attributed to the fact that the dissociation 
energy of the carbon-hydrogen bond is weakest at this position (89.0 and 
83.2 kcal/mol for C4-H and C7-H, respectively; Zielinski, 2021), which 
allows peroxyl or alkoxyl radicals to readily abstract these hydrogen atoms 
(Murphy and Johnson, 2008). 
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Figure 35. Autoxidation of 5-sterols. Adapted from Rontani and Belt (2020). 
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As seen in Chapter 5, 7 -hydroperoxysterols resulting from hydrogen 
abstraction at carbon-7 (Fig. 35) can also be formed by allylic rearrangement 
of photochemically-produced 5 -hydroperoxysterols and then be easily 
homolytically cleaved. They are thus not sufficiently specific and stable to 
be used as tracers of 5-sterol autoxidation. 

Addition of peroxyl radicals to the double bond of 5-sterols affords 
isomeric 5 ,6 - and 5 ,6 -epoxysterols by fast intramolecular homolytic 
substitution (see chapter 8). These epoxides can be easily hydrolysed to 
the corresponding 3 ,5 ,6 -trihydroxysterols by some enzymes (epoxide 
hydrolases; Aringer and Eneroth, 1974) and during alkaline hydrolysis 
classically employed during lipid analyses (Fig. 35). These triols were 
proposed as suitable tracers of sterol autoxidation in autotrophic organisms 
(Christodoulou et al., 2009; Rontani et al., 2009). The extent of sterol 
autoxidation can be estimated using Eq. 13 based on previously 
determined relative formation rate constants of epoxysterols and 7-
hydroperoxysterols (Morrisey and Kiely, 2006). 
 
Sterol autoxidation % = 3 ,5 ,6 -trihydroxysterol % × 2.4                   (13) 

Vitamin E 

Autoxidation processes act intensively on vitamin E, but unfortunately 
afford the same products as type-II photosensitized oxidation (Liebler, 
1994; Rontani et al., 2007b; Fig. 15). Among these compounds, only the 
lactone 4,8,12,16-tetramethylheptadecan-4-olide appeared sufficiently 
stable and specific to act as a marker of abiotic oxidation of vitamin E 
(Nassiry et al., 2009). 

Pentacyclic triterpenes 

Autoxidation of pentacyclic triterpenes of the lupane group (betulin, 
lupeol and betulinic acid) mainly involves peroxyl radical addition to their 
20-29 double bond (Galeron et al., 2016a; Fig. 36). Indeed, as seen in 
Chapter 8, terminal double bonds are conducive to these reactions (Schaich, 
2005). In the case of betulin, they result in the formation of 20,29-epoxy-
lupan-3 ,28-diol (by fast intramolecular homolytic substitution) and a 
diperoxide that is strongly stabilized by intramolecular hydrogen bonding 
(Galeron et al., 2016a; Fig. 36). 
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Figure 36. Autoxidation of betulin. Adapted from Galeron et al. (2016a). 
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Homolytic and heterolytic cleavages of this diperoxide result in the 
formation of the stable lupan-20-one-3 ,28-diol (Fig. 36) while 20,29-
epoxy-lupan-3 ,28-diol rearranges to 3 ,28-dihydroxy-lupanal (Tolstikov 
et al., 2005). In the presence of molecular oxygen, this aldehyde is then 
quickly oxidized to the corresponding acid (3 ,28-dihydroxy-lupan-29-oic 
acid; Fig. 36). Lupan-20-one-3 ,28-diol and 3 ,28-dihydroxy-lupan-29-
oic acid, which are detectable in riverine particles, have been proposed as 
tracers of betulin autoxidation (Galeron et al., 2016a). 

In the case of pentacyclic triterpenes of the ursane and oleane groups 
(e.g.  and amyrins) possessing a trisubstituted 22 double bond 
instead of the terminal double bond of lupanes (Fig. 16), autoxidation 
processes mainly involve hydrogen abstraction and specifically produce 
11 -hydroperoxyamyrins (Galeron et al., 2016b; Fig. 37). This high 
regiospecificity (lack of hydrogen abstraction at the allylic carbon-18) was 
attributed to the presence of the methyl group 28 hindering the approach of 
peroxyl radicals to the hydrogen atom carried by the allylic carbon-18 
(Galeron et al., 2016b). Steric hindrance can also explain the high 
stereospecificity observed (methyl groups 25 and 26 hindering the 
approach of peroxyl radicals to the -side of the molecule; Fig. 37). 

Homolytic cleavage of 11 -hydroperoxyamyrins affords the corresponding 
ketones 3 -hydroxy-urs-12-en-11-one and 3 -hydroxy-olean-12-en-11-
one (11-oxoamyrins) and to a lesser extent the corresponding alcohols 
(11 -hydroxyamyrins; Galeron et al., 2016b; Fig. 37). Surprisingly, 11 -
hydroperoxyamyrins are unaffected by the NaBH4-reduction often 
employed in the treatment of natural samples containing labile 
hydroperoxides. They are thus thermally cleaved to the corresponding 11-
oxoamyrins during GC or GC-MS analyses using hot (splitless) injectors 
(Galeron et al., 2016b; Fig. 37). 

11-oxoamyrins could be detected in dry Smilax aspera leaves (Galeron 
et al., 2016b). Moreover, incubation of this material in water containing 
Fe2+ ions (well-known initiators of autoxidative processes; see Chapter 8) 
was able to confirm the autoxidative production of these compounds from 
the respective amyrins under conditions closer to those of the natural 
environment (Galeron et al., 2016b). These compounds have consequently 
been proposed as specific tracers of amyrin autoxidation.  

Oxidation products of pentacyclic triterpenes of the lupane, ursane and 
oleane groups, such as lupan-20-one-3 ,28-diol, 3 ,28-dihydroxy-lupan-
29-oic acid, 3 -hydroxy-urs-12-en-11-one and 3 -hydroxy-olean-12-en-
11-one, all emerge as useful tracers of autoxidation in angiosperms. 
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Figure 37. Autoxidation of amyrins. Adapted from Galeron et al. (2016b) 
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Dehydroabietic acid 

Dehydroabietic acid (8,11,13-abietatrien-18-oic acid; DHAA), which is 
a component of fresh conifer resin, is often used as a tracer of 
gymnosperms (Brassell et al., 1983; Otto et al., 2005). The selectivity of 
this compound was recently challenged by Costa et al. (2015) who 
detected DHAA in several cyanobacteria. However, it seems that the 
environmental amounts of plant-origin DHAA are so much higher than 
environmental amounts of cyanobacterial-origin DHAA that this 
compound still makes a reliable tracer of gymnosperm autoxidation 
(Rontani et al., 2017). 
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Figure 38. Autoxidation of dehydroabietic acid. Adapted from Rontani et al. 
(2015). 
 

Autoxidation of DHAA mainly involves hydrogen atom abstraction at 
the benzylic (C-7) position (Fig. 38; Rontani et al., 2015) and results in the 
formation of -hydroperoxydehydroabietic acids. To be used as tracers 
of autoxidation of gymnosperms in the environment, these unstable 
hydroperoxides need to be reduced to the corresponding alcohols ( -
hydroxydehydroabietic acids; Fig. 38). Note that these hydroxy acids can 
also be produced during the metabolism of DHAA by some bacteria (e.g. 
Doménech-Carbó et al., 2006) (See Chapter 16), although the amounts of 
metabolites generally accumulated by bacteria are too small to rule out the 
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use of -hydroxydehydroabietic acids as tracers of gymnosperm 
autoxidation. 

Alkenones 

The autoxidative reactivity of alkenones has been studied in vitro 
(Rontani et al., 2006). These polyunsaturated ketones appeared to be more 
sensitive to oxidative free radical processes than esterified phytol, MUFAs 
and 5-sterols. It seems that the trans configuration of the double bonds of 
alkenones, which protects these compounds from type-II photosensitized 
oxidation (see Chapter 5), has no effect on autoxidation. Indeed, Waraho 
et al. (2011) observed no significant differences in lipid oxidation rates 
between cis and trans C18:1 9 acids. As in the case of PUFAs, oxidation 
rates of alkenones increase logically with number of double bonds, and 
this increasing reactivity with degree of unsaturation induces a significant 
increase of 

'
37
KU  index (up to 0.20; Rontani et al., 2006). 

Free radical oxidation of each isolated 1,2-disubstituted double bond of 
alkenones (as in the case of MUFAs) mainly involves allylic hydrogen 
abstraction and results in the formation of six isomeric allylic 
hydroperoxides (four trans and two cis) (Rontani et al., 2006, 2013a; Fig. 
39). Unfortunately, these hydroperoxyalkenones, which could be used as 
tracers of alkenone oxidation after NaBH4 reduction to their corresponding 
diols (Fig. 39), are not accumulated. Indeed, due to the presence of other 
reactive double bonds, they undergo further oxidation reactions affording 
unstable polyhydroperoxyalkenones. Interestingly, diols resulting from the 
reduction of monohydroperoxyalkenones were detected in cultures of E. 
huxleyi strain CS-57 that exhibited anomalously high 

'
37
KU  values (Rontani 

et al., 2007a) and in surface sediments from SE Alaska (Rontani et al., 
2013a). These tracers could therefore, in some cases, be used as qualitative 
indicators of autoxidative alteration of 

'
37
KU . In absence of these tracers, 

more stable lipid oxidation products (e.g. of 5-sterols) could be used to 
identify cases where there has been substantial autoxidation of organic 
matter, and thus by extension alkenones (Rontani et al., 2009) (see Chapter 
14). 

In some marine zones, autoxidation of alkenones can be significant 
enough to explain certain discrepancies between sea surface temperatures 
and alkenone-based temperature estimates observed in marine particulate 
matter (Freeman and Wakeham, 1992) and oxic sediment samples (Hoefs 
et al., 1998; Gong and Hollander, 1999; Prahl et al., 2003). 
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Figure 39. Autoxidation of C37:3 alkenone (simplified scheme showing only the 
oxidation of the 22 double bond). Adapted from Rontani et al. (2013a). 
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Long-chain n-alkenes 

Autoxidation of long-chain n-alkenes has never, to our knowledge, 
been studied. As in the case of alkenones (Fig. 39), free radical oxidation 
of isolated internal cis or trans double bonds of long-chain n-alkenes is 
expected to involve hydrogen atom abstraction and produce six allylic 
hydroperoxides. In contrast, in the case of terminal alkenes, peroxyl 
radical addition should be strongly favoured (Schaich, 2005), resulting in 
the production of terminal epoxides after fast intramolecular homolytic 
substitution (Fig. 40).  
 

R1

+ ROO

R1

ROO - RO

R1

O

 
Figure 40. Autoxidation of terminal long-chain alkenes. 

Highly branched isoprenoid (HBI) alkenes 

The sensitivity of HBI alkenes to autoxidation processes is strongly 
dependent on the number, degree of substitution and positions of their 
double bonds. Mono- and di-unsaturated HBI alkenes (such as IP25 and 
IPSO25) possessing only terminal or 1,1-disubstituted double bonds (Fig. 
18) appeared to autoxidize very slowly (Rontani et al 2014b). While 
autoxidation rates of HBI alkenes logically increase with increasing 
number of double bonds, the more reactive HBI alkenes were found to be 
those possessing a bis-allylic position, which are degraded at similar rates 
as PUFAs (Rontani et al., 2014b). Indeed, it was previously demonstrated 
that hydrogen abstraction is 60 times higher at bis-allylic positions than in 
the case of mono-allylic counterparts (Ingold, 1969).  

Autoxidation of HBI alkenes possessing a bis-allylic position (such as 
the widely-distributed HBI III; Fig. 18) thus mainly involves hydrogen 
atom abstraction at this position and affords two isomeric hydroperoxides 
with conjugated double bonds (Fig. 41). Unfortunately, these compounds, 
which are particularly prone to addition by peroxyl radicals and readily 
undergo copolymerization with oxygen (Yin et al., 2011), are quickly 
converted to very polar and oligomeric secondary oxidation products. 
Moreover, they are not specific (also produced by type-II photosensitized 
oxidation of HBI III) (Rontani et al., 2014b). 
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Figure 41. Autoxidation of HBI III. Adapted from Rontani et al. (2014b). 
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In contrast, the autoxidation of IP25 is very slow and involves hydrogen 
atom abstraction at the tertiary allylic carbon-22 and the tertiary carbon-2, 
carbon-6, carbon-10 and carbon-14 and subsequent oxidation of the 
radicals thus formed, affording several hydroperoxides (Rontani et al., 
2018a; Fig. 42).  
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Figure 42. Autoxidation of IP25. Adapted from Rontani et al. (2018a). 
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The corresponding alcohols (obtained after NaBH4 reduction; Fig. 42) 
were recently detected in Arctic sediments (Rontani et al., 2018a), thus 
evidencing the autoxidative degradation of IP25. It thus seems that 
autoxidation of very poorly-reactive compounds may be prevalent in the 
natural environment when organic material experiences long residence 
times under oxic conditions. 

 

+ ROO HOO

- RO

O

HO

HO CH2OHOH

1

2
3

4

5 6
7 8

9

10

11

12

13

14
15

16 17 18 19

20 21
22

23

24

25

HydrolysisReduction

Indirect tracers of IPSO25 autoxidation

Hydrogen
atom abstraction

at C-5

NaBH4
reduction

Tracer of IPSO25
autoxidation

 
 
Figure 43. Autoxidation of IPSO25 and abiotic degradation of the foregoing 
epoxide. Adapted from Rontani et al. (2019b). 
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There appeared to be particularly efficient addition of peroxyl radicals 
to the 1,1-disubstituted 6–17 double bond of IPSO25, affording an epoxide 
after fast intramolecular homolytic substitution (Rontani et al., 2019b; Fig. 
43). Unfortunately, this compound is not sufficiently stable in sediments to 
serve as a tracer of IPSO25 autoxidation. Indeed, it is quickly hydrolysed to 
the corresponding diol or reduced to the corresponding tertiary alcohol 
(Fig. 43) (see Chapter 16). Note, however, that both these degradation 
products have been detected in Arctic sediments (Rontani et al., 2019b) 
and seem to be sufficiently stable and specific to serve as ‘indirect’ tracers 
of IPSO25 autoxidation.  

Less efficient hydrogen atom abstraction at C-5 and subsequent NaBH4 
reduction) affords 6-methylidene-2,10,14-trimethyl-7-(3-methylpent-4-
enyl)-pentadecan-5-ol (Fig. 43), which is a well specific tracer of IPSO25 
autoxidation.   

Summary of the results obtained 
Compound 
 

Relative autoxidation rates* 

PUFAs 1.0 
HBI alkenes with a bis-allylic position 0.61 
Tetraunsaturated alkenones 0.32 
Triunsaturated alkenones 0.20 
Diunsaturated alkenones  0.11 
HBI alkenes with four double bonds 0.10 

5-sterols 0.088 
MUFAs 0.057 
-amyrin 0.055 

HBI alkenes with three double bonds 0.046 
DHAA 

-amyrin 
0.046 
0.038 

Betulin 0.034 
Chlorophyll phytyl side chain 0.032 
IPSO25 0.006 
IP25 0.002 
  
*Estimated from Rontani et al., (2006, 2014b), Galeron et al., (2016a, 2016b).  
 
Table 3. Relative rates of free radical oxidation of unsaturated lipids. 
 

Table 3 recaps the relative free radical oxidation rates of the main 
unsaturated lipid components of phototrophic organisms investigated to 
date. Note that these values are only indicative of the relative reactivities 
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of the given compounds. Additional compartmentalisation effects can also 
play a role in heterogeneous microenvironments such as cells of phototrophs 
and the reactivity of lipids can thus also strongly depend on their 
localization in the cells. Moreover, it must keep in mind that even very 
weakly-reactive compounds (e.g. branched saturated hydrocarbons) could 
be affected by autoxidation processes when organic matter experiences 
long-enough residence times (decades to centuries) in the oxic layer of 
sediments (Rontani et al., 2018a). 
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This chapter describes the main fragment ions employed for gas 

chromatography–mass spectrometry (GC-MS) characterization of silylated 
lipid oxidation products in natural samples. Trimethylsilylation is often 
used as derivatization procedure during GC-MS analyses (Pierce, 1982; 
Evershed, 1993). Trimethylsilyl (TMS) derivatives result from active 
proton displacement by a trimethylsilyl group. Numerous protic 
functional groups found in organic compounds (alcohols, acids, amines, 
thiols) can be converted to highly volatile yet thermally stable TMS 
derivatives that present outstanding gas chromatographic characteristics. 
Moreover, when used in GC-MS analyses, TMS groups increase the total 
ion current and, therefore, the sensitivity of detection (Halket and Zaikin, 
2003). Electron ionization (EI) mass spectra of TMS derivatives generally 
exhibit a significant [M–15]+ ion formed by loss of a methyl group 
bonded to silicon, which is especially useful for determining molecular 
mass. These mass spectra are also hugely informative for structural 
elucidations (Goad and Akihisa, 1997; Harvey and Vouros, 2020). 

Accurate masses of the different fragment ions formed are given in 
this Chapter, which makes them amenable to use in very specific gas 
chromatography-electron ionization quadrupole time-of-flight mass 
spectrometry (GC-QTOF) analyses while the corresponding unit masses 
can still be used in classical or tandem GC-MS analyses. 

Lipid oxidation products were previously formally identified (see the 
numerous references cited) by comparing their retention times and 
accurate mass and mass spectra against those of suitable standards (See 
Chapter 12). 
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Chlorophyll phytyl side chain 

TOF mass spectra of the TMS derivatives of 3-methylidene-7,11,15-
trimethylhexadecan-1,2-diol (phytyldiol, a tracer of chlorophyll phytyl 
side-chain photooxidation), 3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-
diols and 3,7,11,15-tetramethyl-hexadec-2-en(Z/E)-1,4-diols (tracers of 
chlorophyll phytyl side-chain autoxidation) are shown in Fig. 45. The 
mass spectra of phytyldiol and 3,7,11,15-tetramethylhexadec-3-en(Z/E)-
1,2-diol TMS derivatives (Figs. 45A and 45B) exhibit interesting specific 
fragment ions at m/z 353.3235 that result from classical -cleavage 
between the carbon atoms 1 and 2 bearing the two TMS ether groups 
(Rontani and Aubert, 2005; Fig. 44). In contrast, in the case of 3,7,11,15-
tetramethyl-hexadec-2-en(Z/E)-1,4-diol TMS derivatives, -cleavage acts 
between carbon atoms 4 and 5 affording a stable and specific fragment ion 
at m/z 245.1388 (Rontani and Aubert, 2005; Fig. 44). 
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Figure 44. Main EI mass fragmentations of TMS derivatives of phytyldiol, 
3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-diols and 3,7,11,15-tetramethyl-
hexadec-2-en(Z/E)-1,4-diols. 
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Figure 45. TOF mass spectra of TMS derivatives of phytyldiol (A), 3,7,11,15-
tetramethylhexadec-3-en(Z/E)-1,2-diols (B) and 3,7,11,15-tetramethylhexadec-2-
en(Z/E)-1,4-diols (C). 
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Interestingly, fragment ions at m/z 353.3235 (corresponding to the loss 
of a methyl radical by the molecular ion) are also found in low abundance 
in TOF mass spectra of TMS derivatives of phytol and isophytol. Tracking 
ions at m/z 353.3235 and 245.1388 thus allows easy characterization and 
quantification of phytol and its main oxidation products (isophytol, 
phytyldiol, 3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-diols and 3,7,11, 
15-tetramethylhexadec-2-en(Z/E)-1,4-diols) in environmental samples. An 
example is given in Fig. 46.  

 

 
 

Figure 46. Partial ion chromatograms (m/z 353.3235 and 245.1388) showing the 
distribution of the chlorophyll phytyl side chain and its oxidation products in 
particulate matter collected in the Rhône River (France).  

Monounsaturated fatty acids 

EI fragmentation of TMS derivatives of isomeric allylic hydroxyacids 
resulting from photo- and autoxidation of MUFA and subsequent NaBH4 
reduction mainly involves -cleavage at the TMS ether group. It acts on 
the saturated side of the molecule (as the vinylic position of the double 
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bond hinders cleavage on the other side) and affords stable and 
informative fragment ions. Fig. 47 describes EI fragmentation of TMS 
derivatives of oleic acid oxidation products as an illustrative example. 
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Figure 47. EI fragmentation of TMS derivatives of oleic acid oxidation products. 
 

Different fragment ions are produced depending on the carbon atom number 
and double-bond position of the MUFAs. Table 4 recaps those resulting from -
cleavage of silylated oxidation products of the more common MUFAs.  

Silylated oxidation products of some MUFAs often coelute with higher 
homologous fatty acid TMS derivatives found in high proportions in lipid 
extracts. Unfortunately, EI mass spectra of these silylated acids also 
exhibit some weak isobaric fragment ions that can complicate classical 
GC-MS characterization of MUFA oxidation products, which in practice 
makes it necessary to use GC-QTOF or triple quadrupole GC-MS (GC-
MS/MS) for such analyses. 

High-resolution accurate-mass GC-QTOF has been employed to 
successfully characterize TMS derivatives of MUFA oxidation products in 
natural samples (Amiraux et al., 2016, 2017; Galeron et al., 2018; Rontani 
et al., 2018b, 2021a). This powerful technique allows clean characterization 
and quantification of these compounds in complex lipid extracts. An 
example of the technique in application is given in Fig. 48.  
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MUFAs 
 

 
m/z 

 
m/z 

 
m/z 

 
m/z 

 
C16:1 9 

 
199.1518a 

 
213.1675a 

 
329.1968b 

 
343.2125b 

C16:1 11 171.1206 185.1363 357.2280 371.2437 
C16:1 13 143.0748 157.1051 385.2592 399.2749 
C18:1 9 227.1830 241.1987 329.1968 343.2125 
C18:1 11 199.1518 213.1675 357.2280 371.2437 
C18:1 13 171.1206 185.1363 385.2592 399.2749 
C20:1 9 255.2139 269.2295 329.1968 343.2125 
C20:1 11 227.1830 241.1987 357.2280 371.2437 
C20:1 13 199.1518 213.1675 385.2592 399.2749 
C22:1 9 283.2451 297.2607 329.1968 343.2125 
C22:1 11 255.2139 269.2295 357.2280 371.2437 
C22:1 13 
 

227.1830 241.1987 385.2592 399.2749 

a Fragments containing the terminal methyl group. 
b Fragments containing the trimethylsilyl ester group. 
 
Table 4. Accurate masses of the main fragment ions produced during EI 
fragmentation of NaBH4-reduced and silylated photo- and autoxidation products of 
the more common MUFAs. 
 

 
 
Figure 48. Partial ion chromatograms (m/z 227.1830, 241.1987, 329.1968 and 
343.2125) showing the presence of oleic acid oxidation products in a particulate 
matter sample collected in the Chukchi Sea (Arctic). 
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Triple quadrupole mass spectrometers allow to carry out multiple-
reaction monitoring (MRM) analyses, which are performed by isolating a 
precursor ion in the first quadrupole (Q1), fragmenting it within Q2, and 
monitoring the optimum fragment ions using Q3. The first step of MRM 
analyses consists in selecting intense and selective transitions from the 
precursor ions to the corresponding product ions. In the case of silylated 
MUFA oxidation products, the fragment ion at m/z 129 can be used as 
product ion for precursor ions containing the terminal methyl group, and 
ions resulting from two losses of trimethylsilanol (TMSOH) for the ions 
containing the TMS ester group (Fig. 49).  
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m/z 241 (R = CH3-CH2-)

– TMSOH – TMSOH

m/z 343

m/z 253 m/z 163

  
Figure 49. Formation of product ions employed in MRM analyses of silylated 
MUFA oxidation products: example of oleic acid. 
 

MRM analyses using such transitions allow clean characterization and 
quantification of TMS derivatives of MUFA oxidation products in 
complex lipid extracts (Galeron et al., 2015). An example of the technique 
in application is given in Fig. 50.  
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Figure 50. MRM chromatogram (m/z 199  129, 213  129, 329  149 and 
343  163) showing the presence of oleic acid (C18: 9) oxidation products in a 
particulate matter sample collected in the Rhône Estuary (Mediterranean Sea). 

5-sterols 

EI fragmentation of TMS derivatives of 4-stera- , -diols 
(proposed as tracers of type-II photosensitized oxidation of 5-sterols; see 
Chapter 5) was previously studied by Harvey and Vouros (1979). 
Elimination of TMSOH (m/z 90.0501) from [M]+• led to abundant ions, 
which are often the base peaks of EI mass spectra of these compounds 
(Fig. 51). Harvey and Vouros (1979) posited a specific cleavage process 
involving double bond ionization and subsequent hydrogen migrations and 
cleavages of the C-1–C-10 and C-4–C-5 bonds (as shown in Fig. 52) to 
explain the formation of very interesting fragment ions at [M – 
143.0887]+. These specific ions proved to be very useful for monitoring 

4-stera- , -diol TMS derivatives and thus type-II photosensitized 
oxidation of the corresponding 5-sterol in natural samples. Accurate 
masses of the [M – 143.0887]+ fragment ion of some common 5-sterols 
are given in Table 5. 

Due to steric hindrance, the 3 ,5 ,6 -trihydroxysterols proposed as 
tracers of 5-sterol autoxidation (see Chapter 10) are only silylated at their 3 
and 6 positions by the reagents classically employed for trimethylsilylation 
(Rontani et al., 2014a). During EI fragmentation, these derivatives thus 
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readily leave a molecule of water and yield mass spectra that look very 
similar to those of the corresponding 4-stera- , -diol TMS derivatives 
(Fig. 51A). Note that the relatively poor chromatographic properties of 
these only-partially-silylated derivatives can make them hard to detect, 
particularly at low concentrations. Research is in progress to develop a 
new method (using perfluoroanhydrides) capable of fully derivatizing 
these triols (Claude Aubert, Unpublished data, 2021). 
 

 
 
Figure 51. TOF mass spectra of TMS derivatives of 24-ethylcholest-4-en- -
diol (A) and 24-ethylcholest-4-en- -diol.  
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TMSO
OTMS

H

TMSO
OTMS

CH2TMSO

TMSO
OTMS

H

OTMS

[M - 143. 0887]+ 
 
Figure 52. Pathways of fragment ion formation [M – 143.0887]+ during EI 
fragmentation of 4-stera- , -diols TMS derivatives. Adapted from Harvey and 
Vouros (1979). 
 
 

5-sterols 
 

 
[M – 143.0887]+ 

 
Cholesta-5,22-dien- -diols 

 
401.3240 

Cholesta-5,24-dien- -diols 401.3240 
Cholest-5-en- -diols 403.3396 
24-Methylcholest-5-en- -diols 417.3562 
24-Methylcholesta-5,22-dien- -diols 415.3396 
24-Methylcholesta-5,24/28-dien- -diols 
24-Ethylcholest-5-en- -diols 
24-Ethylcholesta-5,22-dien- -diols 
 

415.3396 
431.3710 
429.3552 

 
Table 5. Accurate masses of the [M – 143.0887]+ fragment ion of some common 

5-sterols. 
 
The conversion of disilylated 3 ,5 ,6 -trihydroxysterols to the corresponding 

-diol TMS derivatives during EI ionization means that the fragment 
ion [M – 143.0887]+ can be monitored to characterize and quantify both 
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photo- and autoxidation of 5-sterols in natural samples. An example is 
given in Fig. 53. 
 

 
 
Figure 53. Partial ion chromatograms (m/z 431.3710) showing the presence of 
oxidation products of 24-ethylcholest-5-en- -ol (sitosterol) in lipid extracts of dry 
Smilax aspera leaves. 

Pentacyclic triterpenes 

The TOF mass spectrum of lup-20(30)-ene- ,28,29-triol TMS derivative 
proposed as a tracer of betulin photooxidation (see Chapter 5) exhibits a 
small molecular peak at m/z 674.4941 and several fragment ions at m/z 
584.4440, 571.4360, 494.3824, 481.3860 and 391.3355 arising from 
successive losses of neutral TMSOH and CH2OTMS radical (Fig. 54A). 
The relative intensity of the fragment ion at m/z 481.3860 makes it a good 
candidate for monitoring type-II photosensitized oxidation of betulin in 
environmental samples. 
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Figure 54. TOF mass spectra of lup-20(30)-ene- ,28,29-triol (A), lupan-20-one-

,28-diol (B) and lupan-20-one- -ol (C) TMS derivatives. 
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Fig. 54 also gives the TOF mass spectra of lupan-20-one- ,28-diol 
and lupan-20-one- -ol resulting from the autoxidation of betulin and 
lupeol respectively (two of the main triterpenoids of the lupane group). 
The mass spectrum of lupan-20-one- ,28-diol exhibits intense fragment 
ions at m/z 498.3908 and 395.3305 corresponding to [M – TMSOH]+• and 
[M – TMSOH – CH2OTMS]+, respectively (Fig. 54B). The lack of a TMS 
ether group at carbon-28 means that the TMS derivative of lupan-20-one-

-ol only gets weakly fragmented during EI ionization. Its mass spectrum 
is thus dominated by the molecular peak at m/z 500.4053 and exhibits 
intense fragment ions at m/z 410.3553 and 395.3305 resulting from the 
successive losses of TMSOH and methyl radical (Fig. 54C). 

Consequently, fragment ions at m/z 395.3305, 498.3908 and 500.4053 
could be used for monitoring lupeol and betulin autoxidation in 
environmental samples. An example of application is given in Fig. 55. 

    

 
 
Figure 55. Partial ion chromatograms (m/z 395.3305, 498.3908 and 500.4053) 
showing the presence of oxidation products of lupeol and betulin in particulate matter 
collected in the Rhône Estuary (Mediterranean Sea). 
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TOF mass spectra of TMS derivatives of 3 hydroxy urs 12 en 11 one 
and 3 hydroxyolean 12 en 11 one (resulting from - and -amyrin 
autoxidation, respectively; see Chapter 10) are given in Fig. 56. 

 

 
Figure 56. TOF mass spectra of 3 hydroxy urs 12 en 11 one (A) and 
3 hydroxyolean 12 en 11 one (B) TMS derivatives. 
 

The EI fragmentation of these compounds was recently studied 
(Rontani et al., 2018c). The retro-Diels-Alder cleavage of the unsaturated 
ring C, which is a characteristic and diagnostically valuable feature in the 
mass spectra of most 12 oleanene and 12 ursene derivatives (Wahlberg 
and Enzell, 1971), leads to the formation of the fragment at m/z 232.1822 
(Fig. 57), while hydrogen rearrangement of the ionized 11 keto group 
(McLafferty rearrangement with charge retention) and subsequent 
cleavage of the 7–8 bond affords a well-stabilized fragment ion at m/z 
273.2213 (Fig. 57). A fragmentation pathway involving loss of the TMS 
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group together with carbon-1, -2 and 3 of the A ring after initial cleavage 
of the 3–4 bond, similar to what is often observed with steroid structures 
possessing 4,4 dimethyl groups (Goad and Akihisa, 1997), was proposed 
to explain the formation of the fragment ion at m/z 383.3308 (Fig. 57). 
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Figure 57. EI fragmentation pathways of 3 hydroxy urs 12 en 11 one and 
3 hydroxyolean 12 en 11 one TMS derivatives. 
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The intense and specific fragment ions at m/z 512.4063 [M]+•, 
383.3308, 273.2213 and 232.1822 are useful for monitoring autoxidation 
products of - and -amyrins in environmental samples. An example of 
the technique in application is given in Fig. 58. 

 

 
 
Figure 58. Ion chromatograms (m/z 232.1822, 273.2213, 383.3308 and 512.4063) 
showing the presence of autoxidation products of - and -amyrins in sediments 
collected in the Beaufort Sea (Canadian Arctic). 
 

MRM analyses also showed promise for identifying and quantifying 
relatively low amounts of amyrin oxidation products in natural samples 
(Rontani et al., 2018c). The more selective and intense transitions m/z 273 

 135 and m/z 232  217 were selected for this purpose. The first 
transition results from the migration of methyl group 27 from carbon 14 to 
carbon 13 as previously proposed by Budzikiewicz et al. (1963) and 
concerted cleavage of the 13–18 and 15–16 bonds to afford a very well- 
stabilized ion at m/z 135 (Fig. 59). The second transition simply results 
from the loss of a methyl radical by the ion at m/z 232 resulting from retro-
Diels-Alder cleavage of the molecular ion (Fig. 57). 
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Figure 59. Proposed pathways for formation of the fragment ion at m/z 135. 
Adapted from Rontani et al. (2018c). 
 
 

Dehydroabietic acid 

Figure 60. TOF mass spectra of - (A) and -hydroxydehydroabietic acid (B) 
TMS derivatives. 
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- and -hydroxydehydroabietic acids were proposed as tracers of 
autoxidation in gymnosperms (see Chapter 10). Both TOF mass spectra of 
their TMS derivatives (given in Fig. 60) exhibit a significant molecular 
peak at m/z 460.2825 and fragment ions corresponding to the loss of 
methyl (m/z 445.2575) and isopropyl (m/z 417.2276) radicals. Other ions 
at m/z 191.0887, 234.1435 and 237.1638 are also observed, but their 
relative abundances differ strongly between the two isomers (Fig. 60).  
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Figure 61. EI fragmentation pathways of / -hydroxydehydroabietic acid TMS 
derivatives. Adapted from Rontani et al. (2015). 
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While formation of the ion at m/z 237.1638 results from classical 
successive losses of neutral TMS formate and methyl radical (Fig. 61), the 
formation of fragment ion at m/z 234.1435 involves relatively complex 
fragmentation pathways that were recently elucidated using deuterium 
labelling (Rontani et al., 2015) but cannot be detailed here. During these 
pathways, the 6-7 and 9-10 bonds are cleaved and a stable bicyclic ion is 
formed (Fig. 61) that can easily lose an isopropyl radical to give the stable 
fragment ion at m/z 191.0887. 

Fragment ions at m/z 191.0887, 234.1435 and 237.1638 are sufficiently 
specific and intense for monitoring - and -hydroxydehydroabietic 
acids in natural samples. An example of the technique application is given 
in Fig. 62. 

  

 
 

Figure 62. Ion chromatograms (m/z 191.0887, 234.1435 and 237.1638) showing 
the presence of autoxidation products of dehydroabietic acid in particulate matter 
collected in the Rhône Estuary (Mediterranean Sea). 
 

Note that the transitions m/z 234  191, m/z 252  237 and m/z 460 
 417 were successfully used for MRM-based identification and 

quantification of relatively low amounts of dehydroabietic acid autoxidation 
products in Arctic sea ice and sediment samples (Rontani et al., 2015). 
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Alkenones 

As in the case of MUFA oxidation products (see above), EI fragmentation 
of TMS derivatives of isomeric diols resulting from alkenone autoxidation 
and subsequent NaBH4 reduction mainly involves -cleavage at the TMS 
ether group and acts on the saturated side of the molecule (Fig. 63). 

 

 
 
Figure 63. Partial m/z 311 and 325 chromatograms revealing the presence of 
silylated C37 and C38 alkenediols after NaBH4 reduction and silylation of the total 
lipid fraction of E. huxleyi strain CS-57 that exhibited abnormally high 

'
37
KU  values. 

Adapted from Rontani et al. (2007a). 
 

Oxidation products of the 22 double bond of alkenones afford (after 
NaBH4 reduction and silylation) fragment ions containing the terminal 
methyl group of the molecule at m/z 311.2765 and 325.2922, which are 
sufficiently stable and specific to directly evidence alkenone autoxidation 
in situ (Rontani et al., 2013a). Unfortunately, as seen in Chapter 10, these 
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compounds are not accumulated and can therefore only give qualitative 
pointers on the autoxidative alteration of alkenones. 

Highly branched isoprenoid (HBI) alkenes 

The TOF mass spectra of IP25 autoxidation-product TMS derivatives 
were recently reported (Rontani et al., 2018a). Fragment ions at m/z 
131.0885, 143.0883 and 201.1670 (Fig. 64) appeared to be good candidates 
for monitoring these oxidation products in sediment samples (Rontani et 
al., 2018a). 
 

OTMS

OTMS

OTMS

m/z 143.0883

m/z 131.0885

m/z 201.1670

 
Figure 64. EI fragmentations of TMS derivatives of the main IP25 autoxidation 
products.  
 

TOF mass spectra of TMS derivatives of IPSO25 oxidation products are 
also available in the literature (Rontani et al., 2019b). The TOF mass 
spectrum of the TMS derivative of 6-methylidene-2,10,14-trimethyl-7-(3-
methylpent-4-enyl)-pentadecan-5-ol (a tracer of IPSO25 autoxidation; Fig. 
43) exhibits interesting specific fragment ions at m/z 365.3235 and 
275.2742 (Fig. 65). The TOF mass spectrum of the TMS derivative of 2-
(4-methylpentyl)-3-(3-methylpent-4-enyl)-6,10-dimethylundecane-1,2-diol 
(an indirect tracer of IPSO25 autoxidation; Fig. 43) shows a notable 
molecular peak at m/z 526.4581 and an intense peak at m/z 333.3521 
corresponding to [M – CH2OTMS – TMSOH]+ (Fig. 65). 
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Figure 65. EI fragmentations of TMS derivatives of the main tracers of IPSO25 
autoxidation.  
 

 
 
Figure 66. Ion chromatograms (m/z 333.3521, 365.3237 and 526.4581) showing 
the presence of IPSO25 oxidation products in sediments from the Arctic. 
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These different fragment ions emerge as sufficiently stable and specific 
for monitoring IPSO25 autoxidation in some sediments. An example in 
application is given in Fig. 66. Note, however, that sediments with a very 
low content of IPSO25 and its oxidation products may require the use of 
MRM analyses (Rontani et al., 2019b).  

The transitions m/z 213  117, 213  129 and 213  143 (Fig. 67) 
appeared to be useful for the detection of isomeric 9-hydroxy-2,6,10,14-
tetramethyl-7-(3-methylpent-1,4-dienyl)-pentadeca-7(20E),10(18)-diene 
and 9-hydroxy-2,6,10,14-tetramethyl-7-(3-methyl-pent-1,4-dienyl)-penta-
deca-7(20E),10E/Z-diene TMS derivatives. These minor oxidation products 
result from hydrogen abstraction at carbon-11 of the HBI triene III (Fig. 
41).  
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OTMS O

TMS
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TMS
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Figure 67. EI fragmentations of the 9-hydroxy-2,6,10,14-tetramethyl-7-(3-methyl-
pent-1,4-dienyl)-pentadeca-7(20E),10E-diene TMS derivative. Adapted from 
Rontani et al. (2014d). 

 
Indeed, MRM analyses using these transitions allowed to characterize 

these compounds in Arctic and Antarctic particulate matter samples 
(Rontani et al., 2014c; 2014d; 2019b). However, the instability of these 
primary oxidation products resulting from the further oxidation of the 7-20 
trisubstituted double bond means that this information remains only 
qualitative. An example of application is given in Fig. 68. 
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Figure 68. MRM chromatogram (m/z 213  117, 213  123 and 213  143) 
showing the presence of 9-hydroxy-2,6,10,14-tetramethyl-7-(3-methylpent-1,4-
dienyl)-pentadeca-7(20E),10(18)-diene and 9-hydroxy-2,6,10,14-tetramethyl-7-(3-
methylpent-1,4-dienyl)-penta-deca-7(20E),10E/Z-diene TMS derivatives in a 
particulate matter sample from the Antarctic. Adapted from Rontani et al. (2014d). 
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CHAPTER TWELVE 

QUANTIFICATION OF SELECTED TRACERS 
 OF LIPID PHOTO- AND AUTOXIDATION  

IN ENVIRONMENTAL SAMPLES 
 
 
 

Methodology 
 

Lipid oxidation products 
 

Origin 
 

 
References or suppliers 

Phytyldiol 
 

Sa 
 
Rontani and Aubert, 2005 

3,7,11,15-tetramethylhexadec-3-en(Z/E)-1,2-diols S Rontani and Aubert, 2005 
3,7,11,15-tetramethylhexadec-2-en(Z/E)-1,4-diols S Rontani and Aubert, 2005 
4,8,12,16-tetramethylheptadecan-4-olide Nb Rufai et al., 2019 

-carotene-5,8-endoperoxide S Stratton et al., 1993 
Isomeric MUFA oxidation products   S Marchand and Rontani, 2001 

-steradiols Cc Maybridge Ltd 
-steratriols S Li and Li, 2013 

Lup-20(30)-ene- ,28,29-triol S Galeron et al., 2016a 
Lupan-20-one- ,28-diol S Galeron et al., 2016a 
3 hydroxy urs 12 en 11 one S Galeron et al., 2016b 
3 hydroxyolean 12 en 11 one S Galeron et al., 2016b 

-hydroxydehydroabietic acids S Rontani et al., 2015 
Allylic hydroxyalkenones S Rontani et al., 2007a 
IPSO25 oxidation products S Rontani et al., 2019b 

 
a Synthetic 
b Natural extract 
c Commercially available 
 
Table 6. Origin of the standard oxidation products employed as tracers of lipid 
photo- and autoxidation. 
 

The quantification of each oxidation product involved extraction of 
specific fragment ions (see Chapter 11), peak integration, and determination 
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of individual response factors using external standards and adequate 
software. Most of the standards of lipid oxidation products are not 
commercially available and need to be synthesized. References describing 
the synthesis or isolation of these compounds (and the rare suppliers where 
available) are summarized in Table 6. 

Quantification of lipid photo- and autoxidation in dead 
phytoplanktonic cells 

The light-dependent degradation of unsaturated lipids in senescent or 
dead phytoplankton cells generally shows a good fit to apparent first-order 
kinetics (Rontani et al., 1998). The rate constants of these processes (k) 
can thus be easily determined from regression lines determined as ln(C/Co) 
= - kD (where C is concentration at the time of sampling, Co is initial 
concentration, and D is cumulative light dose). The percentages of 
photodegradation of the main unsaturated lipids observed in dead cells of 
various phytoplanktonic strains are summarized in Table 7 and appeared to 
be very high. 

 
 
Lipids 

 
Haslea 

Ostreariaa 
 

 
Dunaliella 

 sp.b 

 
Phaeodactylum 

tricornutumb 

 

E. huxleyid 

 
Chlorophyll 

 
 

 
 

 
 

 
100 

Carotenoids    100 
HBI triene 99    
Phytyl chain 72 88 95 96 
C16:1 acid 70   79 
C18:1 acid  88 88 72 
C18:2 acid  100 99  
C18:3 acid  100  91 
C20:5 acid 100    

5-sterols 
 

41 71 50 43 

 
Table 7. Percent photodegradation of unsaturated lipids in dead phytoplanktonic 
cells. Summarized from Rontani et al. (1998)a, (2011a)b and Christodoulou et al. 
(2010)c. 
 

Autoxidation of unsaturated lipids was studied in diatoms collected in 
Antarctica and incubated in the presence of Fe2+ ions (Rontani et al., 
2011a). The results obtained, which are summarized in Table 8, confirmed 
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the high autoxidative reactivity of HBI possessing bis-allylic positions 
(HBI III) and PUFAs. 

 
 
Lipids 

 
Autoxidation percentage 

 
 
HBI triene III (Z) 

 
42 

HBI triene III (E) 44 
C21:1 n-alkene 29 
Phytyl chain 21 
C16:1 acid 4 
C20:5 acid 54 
24-methylcholesta-5,22(E)-dien-3 -ol 1 
24-methylcholesta-5,24/28-dien-3 -ol 
 

3 

 
Table 8. Percent autoxidation of lipid components of diatom cells collected from 
Commonwealth Bay (East Antarctica) and incubated in seawater in the presence of 
Fe2+ ions at 4°C under darkness. Adapted from Rontani et al. (2011a). 

Quantification of lipid photo- and autoxidation  
in senescent leaves of terrestrial higher plants 

Photodegradation of lipids was monitored in dry leaves of Mediterranean 
angiosperms (Quercus ilex, Smilax aspera, Petroselinum sativum and 
Urtica dioica; Rontani et al., 2014a; Rontani, 2019; Rontani, unpublished 
data, 2014). The results obtained are summarized in Table 9. The 
photodynamic effect appeared to be less efficient in these organisms than 
in phytoplankton (Table 8). The very fast photodegradation of chlorophyll 
during the senescence of temperate terrestrial higher plants appears to 
substantially limit its photosensitizing properties relative to the other cell 
lipid components and notably to 24-ethylcholest-5-en-3 -ol (sitosterol), 
which is the major sterol of terrestrial vascular plants (Lütjohann, 2004). 
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Lipids 

 
Q. ilexa 

 

 
S. asperaa 

 
P. sativumb 

 
U. dioicac 

 
Chlorophyll 

 
100 

 
100 

 
100 

 
100 

Sitosterol 49 33 9 36 
Betulin 
 

6    

 
Table 9. Percent photodegradation of unsaturated lipids in dry leaves of 
Mediterranean angiosperms. Summarized from Rontani (2019)a, Rontani et al. 
(2014a)b and Rontani (unpublished data, 2014)c. 
 

Autoxidation also appeared to play a significant role in the senescence 
of the terrestrial higher plants investigated (Galeron et al., 2016a; 2016b; 
Fig. 53; Table 10) and is likely induced by homolytic cleavage of 
photochemically-produced hydroperoxides, which should be strongly 
favoured by the strong UV irradiance and relatively high temperatures 
found in Mediterranean zones. 

 
 
Lipids 
 

 
Q. ilex 

 
S. aspera 

 
Sitosterol 

 
 

 
2 

Betulin 5  
amyrin  35 

-amyrin 
 

 33 

 
Table 10. Percent autoxidation of unsaturated lipids in dry leaves of Mediterranean 
angiosperms. Summarized from Galeron et al. (2016a) and (2016b). 

Quantification of lipid photo- and autoxidation  
in detached leaves of seagrasses 

Type-II photosensitized oxidation processes are more efficient in 
senescent seagrasses (marine angiosperms; Table 11) than in senescent 
terrestrial angiosperms (Table 9). This higher efficiency may be attributed 
to the relative persistence of chlorophyll in senescent seagrasses (Pellikaan, 
1982; Auby, 1991) due to the lower temperatures and solar irradiance 
generally observed in the aquatic realm, which allows long periods of 1O2 
production (see Chapter 7).  
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Lipids 

 
Posidonia 
oceanica 

 

 
Zostera 
 noltii 

  
Chlorophyll 

 
20 

 
50 

Sitosterol 72 95 
24-ethylcholesta-5,22(E)-dien-3 -ol 
 

69  

 
Table 11. Percent photodegradation of unsaturated lipids in senescent leaves of 
Mediterranean seagrasses. Summarized from Rontani et al. (2014a) and Rontani 
(2019). 
 

In contrast, autoxidation processes appear to remain limited in 
detached leaves of these organisms (Rontani, 2019). However, their high 
content of photochemically-produced hydroperoxides (Rontani et al., 
2014a; Rontani, 2019) may induce the intense autoxidation of sitosterol 
(see Chapter 9) previously observed in the oxic layer of coastal and 
estuarine sediments colonized by marine seagrasses (Rontani et al., 
2014a). 

Quantification of lipid photooxidation in dead photo-  
and photoheterotrophic bacteria 

Light-induced degradation processes were previously studied in the 
purple sulphur bacteria Thiohalocapsa halophila and Halochromatium 
salexigens (Marchand and Rontani, 2003). After complete degradation of 
the sensitizer (bacteriochlorophyll a), an intense degradation of the main 
MUFAs (C16:1 9 and C18:1 11) of these phototrophic bacteria was observed 
(Table 12). This degradation mainly involves type-II photosensitized 
oxidation processes. 

These processes have also been studied in some aerobic anoxygenic 
bacteria (AAPs) (Erythrobacter sp. NAP1 and Roseobacter sp. COL2P; 
Rontani et al., 2003a), which are well-known photoheterotrophic organisms 
employing bacteriochlorophyll-containing reaction centers (Shiba, 1991; 
Yurkov & Beatty, 1998). In this case, the degradation observed (Table 12) 
was clearly the result of radical-induced processes. The lack of phytyldiol 
(a specific product of chlorophyll phytyl side chain type-II photosensitized 
oxidation; Fig. 8) at the end of irradiation confirmed that 1O2 is not 
produced during the photodegradation of these photoheterotrophic bacteria 
(Rontani et al., 2003a). The radical nature of this degradation is also well 
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supported by the detection of epoxyacids resulting from the addition of 
peroxyl radicals to MUFA double bonds.  

 
 
Lipids 

 
T. 

halophilaa 
 

 
H. 

salexigensa 

 
E. 

Sp. NAP1b 

 
R. 

Sp. COL2Pb 

 
Bacteriochlorophyll 

 
100 

 
100 

 
nq 

 
nq 

C16:1 9 acid nqc 60   
C18:1 11 acid nq 51 21 39 
C16:2 acid 
 

  63  

a Purple sulphur bacterium 
b Aerobic anoxygenic bacterium 
c Not quantified 

 
Table 12. Percent photodegradation of unsaturated lipids in dead phototrophic and 
photoheterotrophic bacteria. Summarized from Marchand and Rontani (2003) and 
Rontani et al. (2003a). 

Detection of lipid photo- and autoxidation in suspended 
and sinking particles 

The lipid oxidation content of suspended and sinking particles 
collected at widely-contrasted latitudes (Arctic Ocean, East Antarctica, 
Mediterranean Sea, and equatorial Pacific Ocean) has been investigated 
(Marchand et al., 2005; Christodoulou et al., 2009; Rontani et al., 2011b; 
2012a; 2014c; 2016; 2018b; 2019a). Suspended particles were collected 
with Niskin bottles or in situ multiple-unit large-volume filtration systems 
(MULVFS), while sinking particles were collected with floating or fixed 
mooring sediment traps. The results obtained during these different 
studies, which are summarized in Tables 13 and 14, show that the 
photodynamic effect is particularly enhanced in polar zones (Rontani et 
al., 2021b) (see Chapter 13).  
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Lipids 

 
Mediterranean Seaa 

 

 
Arctic Oceanb 

 
Equatorial Pacific 

Oceanc 

 
  

Auto 
 

 
Photo 

 
Auto 

 
Photo 

 
Auto 

 
Photo 

 
Chlorophyll 

  
10-100% 

 
Quald 

 
0-100% 

 
 

 
50-90% 

5-sterols  0-30% 0-20% 0-50% 0-30% 0-10% 
MUFAs 
 

0-50% 0-10% 0-70% 0-100% 0-5% 0-15% 

a Marchand et al., 2005 
b Rontani et al., 2012a; 2016; 2018b 
c Rontani et al., 2011b 
d Only qualitative information 
 
Table 13. Percent auto- and photooxidation of unsaturated lipids measured in 
sinking particle samples. 
 
 
 

 
Lipids 

 
Arctic Oceana 

 

 
East Antarcticab 

 
Equatorial Pacific 

Oceanc 

 
  

Auto 
 

 
Photo 

 
Auto 

 
Photo 

 
Auto 

 
Photo 

 
Chlorophyll 

 
Qual 

 
0-50% 

 
Quald 

 
3-50% 

 
 

 
20-70% 

5-sterols 10-85% 0-30%  0-30% 0-30% 0-10% 
MUFAs 
HBI  III 
 

10-70% 
Qual 

5-50% 
Qual 

0-90% 0-85% 0-10% 0-15% 

a Rontani et al., 2014c 
b Rontani et al., 2019a 
c Rontani et al., 2011b 
d Only qualitative information 
 
Table 14. Percent auto- and photooxidation of unsaturated lipids measured in 
suspended particle samples. 
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Detection of lipid photo- and autoxidation in surface 
sediments 

Lipid oxidation was also monitored in several surface sediments 
collected at widely-contrasted latitudes (Arctic Ocean, equatorial Atlantic 
Ocean, and Atlantic coast of France; Rontani et al., 2012b; 2014a; 2017; 
2018a; 2019b; Galeron et al., 2018). The results obtained during these 
different studies are summarized in Table 15. Note that isomeric C37 and 
C38 diols arising from alkenone autoxidation and subsequent NaBH4 
reduction (Fig. 38) were detected in surface sediments from South East 
Alaska (Rontani et al., 2013a). These qualitative results (not included in 
Table 15) provide the first direct evidence of alkenone autoxidation in situ. 

The strong autoxidation of unsaturated lipids of terrestrial higher plants 
observed in Arctic and equatorial sediments (Table 15) was attributed to 
the high photooxidation state of Arctic higher plants and to high equatorial 
temperatures, respectively (Galeron et al., 2018). 

 
 
Lipids 

 
Arctic Oceana 

 

 
Atlantic Coast, 

Franceb 

 
Equatorial Atlantic 

Oceanc 

 
  

Auto 
 

 
Photo 

 
Auto 

 
Photo 

 
Auto 

 
Photo 

5-sterols 
 

0-60% 
 

0-40% 
 

0-100% 
 

0-100% 
 

 
 
 

MUFAs 
IP25 
IPSO25 

0-20% 
0-9% 
0-1% 

0-20% 
 

   
 

 

 

amyrin 80-100%    90-95%  
-amyrin 

Betulin 
DHAA 
 

90-95% 
90-100% 
30-80% 

   70-80% 
90-95% 

 

a Rontani et al., 2012b; 2017 ; 2018a ; 2019b 
b Rontani et al., 2014a 
c Galeron et al., 2018 
 

Table 15. Percent auto- and photooxidation of unsaturated lipids measured in 
surface sediment samples. 
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Detection of lipid photo- and autoxidation in sea ice 

Sympagic diatoms (inhabiting the ice matrix) are concentrated at the 
ice-water interface within the skeletal layer of congelation ice (Fig. 69). 
These diatoms were recently shown to exhibit higher sensitivity to light-
induced stress than pelagic diatoms (Kvernvik et al., 2020). Such differences 
in sensitivity were attributed to the gradually-changing low-amplitude 
irradiance typically experienced by algae in ice compared to open water 
(Hill et al., 2018). 
 

 
 

 Figure 69. Typical sympagic algae layer at the underside of Arctic sea ice. 
 
Previous research on the photo- and autoxidation of unsaturated lipid 

components of these organisms (Rontani et al., 2014c; 2018b) showed 
(Table 16) strong photobleaching of chlorophyll sensitizer and a weakly-
efficient photodynamic effect in these organisms compared to pelagic 
phytoplankton (Table 7), which contrasts with their expected higher 
sensitivity to light-induced stress. This paradoxical observation may be 
attributed to PAR irradiance, which is considerably higher at the ice–water 
interface than in deeper open waters where pelagic algae live. Indeed, as 
seen in Chapter 7, high solar irradiances strongly weaken the efficiency of 
type-II photosensitized oxidation of algal lipids (Amiraux et al., 2016; 
Rontani et al., 2021b). 
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Lipids 

 
Arctic sea ice 

 
  

Autoxidation 
 

 
Photooxidation 

 
Chlorophylla 

 
Qualc 

 
30-100% 

5-sterolsa 0-50% 0-20% 
MUFAsb 0-15% 0-10% 
HBI IIIa Qual Qual 

 
a Rontani et al., 2014c 
b Rontani et al. 2018b 
c Only qualitative information 
 
Table 16. Percent auto- and photooxidation of unsaturated lipids measured in 
Arctic sea ice samples. 

Detection of lipid photo- and autoxidation  
in microbial mats 

Microbial mats are complex communities of microorganisms that are 
usually organized into layers that can be seen with the naked eye (Fig. 70). 
In wet environments, the uppermost layers of microbial mats are generally 
dominated by aerobic photosynthesizing cyanobacteria (Des Marais, 
2010). Type-II photosensitized oxidation processes can thus potentially 
intervene in these particular ecosystems. The photo- and autoxidation of 
unsaturated lipids were thus studied in microbial mat samples collected in 
the Camargue (France) which are dominated by Microcoleus-type 
cyanobacteria (Caumette et al., 2001; Marchand and Rontani, 2003). The 
results obtained are summarized in Table 17. 

The very high solar irradiance measured at the surface of these mats 
(3320 μmol photons m-2 s-1 at 14 h in May; Wieland and Kühl, 2001) is 
almost certainly what drives the strong photobleaching of chlorophyll and 
the relatively weak efficiency of photodynamic effect observed (see 
Chapter 7). The production of high amounts of sulphides (well known to 
easily reduce hydroperoxides; Mihara and Tateba, 1986) by sulphate-
reducing bacteria in the microbial mats (especially during the night) might 
explain the relatively weak intensity of autoxidative processes in these 
particular ecosystems. 
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Figure 70. Macroscopic view of surface (A) and 0-10 cm cross section (B) of the 
microbial mats found in the Camargue (South of France).  
 
 
Lipids 

 
Camargue microbial matsa 

 
  

Autoxidation 
 

 
Photooxidation 

 
Chlorophyll 

 
 

 
80% 

C16:1 9 7% 8% 
C18:1 9 27% 30% 
C18:1 11 
 

23% 14% 

a Marchand and Rontani, 2003 
 
Table 17. Percent auto- and photooxidation of unsaturated lipids measured in 
Camargue microbial mats. 
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ENVIRONMENTAL HOTSPOTS OF PHOTO-  
AND AUTOXIDATION OF PHOTOTROPHIC 

ORGANISMS 
 
 
 

Type-II photosensitized oxidation 
 

As seen in Chapter 7, temperature and intensity of solar irradiance both 
strongly affect the efficiency of type-II photosensitized oxidation 
processes (i.e. ratio of photodynamic effect-to-sensitizer photobleaching; 
Fig. 3) in phototrophic organisms. The efficiency of type-II photo-
sensitized oxidation was recently compared in phytoplankton collected at 
different latitudes (Rontani et al., 2021b). These investigations clearly 
showed enhanced photooxidation of lipids at the expense of chlorophyll 
photodegradation in polar regions compared to temperate and equatorial 
regions. This enhancement might result from lower temperatures in polar 
regions decreasing the diffusion rates of 1O2 outside the membranes 
(Ehrenberg et al., 1998) and thus favouring oxidative damage. However, 
there were also strong differences in the efficiency of the photodynamic 
effect between particles collected under ice and in open water zones in 
both Arctic (Fig. 71) and Antarctic (Fig. 72) samples. These differences 
may stem from the respective contributions of sympagic (i.e. living within 
ice) vs. pelagic algae to the different samples. Indeed, as seen in Chapter 
12, sympagic algae are more sensitive to light-induced stress than pelagic 
algae (Kvernvik et al., 2020). However, the lack of correlation observed 
between lipid photooxidation percentage and concentration of the sea ice 
lipid biomarker IP25 (Belt and Müller, 2013) argues against this hypothesis 
(Rontani et al., 2021b). In fact, the intensity of solar irradiance, which is 
considerably lower under ice than in open water zones (Alou-Font et al., 
2016), was found to be the key parameter in type-II photosensitized 
oxidation of lipids in senescent phytoplankton. 
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Figure 71. Values for the ratio of 24-methylenecholesterol photooxidation %-to-
chlorophyll photooxidation % and chlorophyll photooxidation % in samples of 
sinking particulate matter collected in Arctic ice-covered and open-water zones. 
Adapted from Rontani et al. (2021b). 
 

 
Figure 72. Values for the ratio of brassicasterol photooxidation %-to-chlorophyll 
photooxidation % and chlorophyll photooxidation % in samples of suspended 
particulate matter collected in open and ice-covered zones along a N-S transect 
terminating in the Amundsen Sea (Antarctica). Adapted from Rontani et al. 
(2021b). 
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The efficiency of type-II photosensitized oxidation processes is 
particularly high in strongly-aggregated sympagic algae due to the 
concentration of the less-metabolically-active sea ice algae in aggregates 
(Riebesell et al., 1991) sinking quickly to deep waters where light 
transmission is low (Rontani et al., 2016).  

Paradoxically, in temperate and strongly light-irradiated equatorial 
regions (solar irradiance ranging from 100 to 250 W m-2 in the Amazon 
Basin; Pinker and Laszlo, 1992), the short lifespan of the chlorophyll 
sensitizer coupled with the high diffusion rate of 1O2 means that only 
weakly-damaging type-II photoprocesses occur (Galeron et al., 2018). 

 

 
 
Figure 73. Values for the ratio of sitosterol photooxidation %-to-chlorophyll 
photooxidation % and chlorophyll photooxidation % in terrestrial and aquatic 
angiosperms. Adapted from Rontani et al. (2014a) and Rontani (2019). 
 

Temperature and solar irradiance also induce contrasted patterns of 
efficiency of the photodynamic effect in terrestrial and aquatic higher 
plants (Fig. 73). Indeed, in temperate regions, these processes appear to be 
more intense in aquatic angiosperms such as P. oceanica and Z. noltii than 
in terrestrial angiosperms such as Q. ilex and S. aspera, likely due to the 
lower temperatures and solar irradiance generally observed in aquatic 
environments than on land. 
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Autoxidation 
 

As seen above, high temperatures and solar irradiance intensities have 
a negative effect on the type-II photosensitized oxidation of lipid 
components of phototrophic organisms. The enhanced photooxidation that 
occurs during the senescence of Arctic terrestrial higher plants thus 
produces high proportions of hydroperoxides that, once homolytically 
cleaved, induce intense autoxidation (Fig. 74).  

 

 
 
Figure 74. Abiotic degradation of phototrophs in Arctic, temperate and equatorial 
zones. Adapted from Galeron et al. (2018). 

 

 EBSCOhost - printed on 2/13/2023 2:59 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Thirteen 
 

110

The amounts of photochemically-produced hydroperoxides are logically 
lower in equatorial and temperate regions than at higher latitudes (Galeron 
et al., 2018). However, in equatorial regions, the particularly high 
temperatures and solar irradiance intensities observed on land very 
efficiently cleave the small amounts of hydroperoxides resulting from 
photooxidation (see Chapter 8), which results in intense production of free 
radicals and thus strong autoxidation of the lipid components of equatorial 
higher plants (Fig. 74; Galeron et al., 2018). In contrast, in temperate 
regions, photooxidative damage and hydroperoxide cleavage, which are 
relatively limited, only induce moderate autoxidation of phototrophs (Fig. 
74). 

Analysis of samples of suspended particulate matter from different 
rivers and estuaries at different latitudes showed that autoxidative 
degradation of vascular plant-derived lipids is particularly intense in 
estuarine waters (Rontani et al., 2014c, Galeron et al., 2017; 2018). The 
induction of these processes seems linked to lipoxygenase activation, 
which increases with salinity (Mittova et al., 2002; Zhang et al., 2012). 
Indeed, the lipoxygenase catalytic cycle, through the generation of alkoxyl 
radicals, may induce autoxidative damage (Fig. 26; Fuchs and Spiteller, 
2014). The release of Fe2+ when the radicals generated cause damage at 
the active site of lipoxygenase itself (Sato et al., 1992; Fuchs and Spiteller, 
2014) could be another mechanism that induces autoxidation in estuarine 
waters (Fig. 75). Activation of lipoxygenases involves the reaction of the 
ferrous enzyme with hydroperoxides, producing an active ferric enzyme 
and an alkoxyl radical (Ivanov et al., 2005; Fig. 75). It is thus strongly 
favoured in vascular plant debris carried by Arctic and equatorial rivers 
containing high proportions of photooxidative and/or autoxidative-
produced hydroperoxides (Galeron et al., 2018).  
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Figure 75. Proposed pathways for lipoxygenase-induced autoxidative degradation 
of terrestrial vascular plant material in estuaries. Adapted from Galeron et al. 
(2018). (LH = linoleic or linolenic acids; LOX-Fe+2 = inactive lipoxygenase; LOX-
Fe+3 = active lipoxygenase) 
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Use of lipid oxidation products as stress indicators  
of specific organisms 

 
Type-II photosensitized oxidation and autoxidation products of lipid 

components of phototrophs are mainly produced during their senescence 
(see Chapters 2 and 9), which makes these compounds very useful 
indicators of environmental stress. In the case of unsaturated lipids which 
are far less prevalent in phototrophs and their associated heterotrophs 
(Table 18), their oxidation states can afford very instructive information 
on the stress state of specific organisms.  

 

 
 
Figure 76. Ion chromatograms at m/z 339.2710 [M – CH3]+, 199.1518, 227.1830, 
329.1968 and 357.2280 showing the presence of oleic and vaccenic acids and their 
photooxidation products in suspended particulate matter collected in Chukchi Sea 
(Arctic). 
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Lipid oxidation products afford information on the physiological state 
of terrestrial vascular plants, pelagic and sympagic diatoms, green algae, 
haptophytes and copepods (Table 18). Moreover, as seen in Chapter 6, 
type-II photosensitized oxidation processes can also significantly affect 
heterotrophic bacteria associated with phytoplankton. Oxidation products 
of specific bacterial MUFAs such as C18:1 11 and C16:1 11 (Sicre et al., 1988; 
Burot et al., 2021) could thus prove very useful for monitoring photooxidative 
stress in heterotrophic bacteria associated with phytoplanktonic cells (Fig. 
76). 

   
 

Lipids 
 

 
Origin 

 
References 

 
 and -amyrins 

 
Terrestrial angiosperms 

 
Jäger et al., 2009 

Betulin Terrestrial angiosperms Jäger et al., 2009 
Lupeol Terrestrial angiosperms Jäger et al., 2009 
Dehydroabietic acid Gymnosperms Otto et al., 2005 
18-hydroxyoleic acid Terrestrial angiosperms Kolattukudy, 1980 
24-methylenecholesterol 
24-norsterol 

Diatoms 
Diatoms 

Volkman, 2003 
Rampen et al., 2007 

7-sterols Green algae Patterson, 1974 
C18:1 11 acid Heterotrophic bacteria Sicre et al., 1988 
C16:1 11 acid Heterotrophic bacteria Burot et al., 2021 
C16:1 9 acid Diatoms Liang and Mai, 2005 
IP25 Sympagic diatoms Belt and Müller, 2013 
IPSO25 Sympagic diatoms Belt et al., 2016 
C37 and C38 alkenones Haptophytes Brassell et al., 1986 
C20:1 and C22:1 n-alkenols Herbivorous copepods Lee et al., 2006 
Myxoxanthophyll 
Bacteriochlorophylls 
 

Cyanophytes 
Photosynthetic bacteria 

 

Bianchi et al., 1993 
Oren, 2011 
 

 
Table 18. Main unsaturated lipids employed as biomarkers for assessing sources of 
organic matter in the environment. (This list is not exhaustive).   

 
Monitoring on the photooxidation of 24-methylenecholesterol (mainly 

derived from diatoms; Volkman, 2003; Rampen et al., 2010) and epi-
brassicasterol (arising from diatoms and/or prymnesiophytes; Volkman, 
2003) in particulate matter samples clearly showed a strong efficiency of 
type-II photosensitized oxidation processes in diatoms (Rontani et al., 
2012a; 2016; 2019a; Fig. 77). The less efficient photooxidation observed 
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in prymnesiophytes was attributed to their high content of mycosporine-
like amino acids, which are known to protect cells against reactive oxygen 
species such as 1O2 (Suh et al., 2003; Elliott et al., 2015). 

 

 
 
Figure 77. Ion chromatograms at m/z 470.3940 and 415.3396 showing the higher 
reactivity of diatoms to type-II photosensitized oxidation processes in suspended 
particles collected in East Antarctica. 

 
Allylic rearrangement of hydroperoxides resulting from MUFA 

oxidation in biological membranes is very sensitive to the hydrogen atom 
donor properties of the surrounding molecules (Porter et al., 1994; 1995). In 
algal membranes containing a high proportion of intact and/or oxidized 
PUFAs, which are very good hydrogen atom donors (Porter et al., 1995), 
allylic rearrangement is logically relatively limited (Fig. 78). In contrast, 
bacterial periplasm containing only saturated fatty acids (SFAs) and MUFAs 
(both poor hydrogen atom donors) is conducive to allylic rearrangement. 
Fig. 79 presents a typical profile of MUFA autoxidation products observed 
in high-PUFA-content algae. This high sensitivity of allylic rearrangement 
to the hydrogen atom donor properties of surrounding molecules could be 
particularly useful when only oxidation products of non-source-specific 
MUFAs (such as oleic and palmitoleic acids) are present. In this case, the 
extent of allylic rearrangement of various hydroperoxides found in each 
sample may be indicative of the degree of unsaturation of initial 
membranes of the organisms (bacteria or algae) present in the sample.  
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Figure 78. Effect of the hydrogen atom donor properties of surrounding molecules 
on allylic rearrangement of MUFA oxidation products. The example given is the 
case of a 10-hydroperoxyacid. 
 

 
Figure 79. Partial ion chromatograms (m/z 199.118, 213.1675, 329.1968 and 
343.2125) showing a very weak allylic rearrangement of palmitoleic acid oxidation 
products in a PUFA-rich particulate matter sample collected at 10 m under the ice 
in Baffin Bay (Arctic). 
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Use of lipid oxidation products as proxies  
of paleoenvironmental changes 

Some lipid oxidation products surprisingly appeared to be relatively 
well preserved in sediment samples (Rontani et al., 1996b; Rontani and 
Marchand, 2000; Marchand and Rontani, 2001; Rontani et al., 2012b; 
2017). Their preserved state was attributed to protection conferred by 
intact membranes of well silicified diatoms or higher plant debris. Indeed, 
the lipid oxidation products present in sediments are mainly in esterified or 
bound forms (Rontani and Marchand, 2000), which are mainly found in 
intact biological debris (Cranwell, 1978; Sun et al., 1993). Monitoring 
these oxidation products in sediments could thus give very useful 
information concerning past environmental changes. 

Phytyldiol/phytol ratio (chlorophyll phytyl side-chain photooxidation 
index, CPPI; see Chapter 5) was previously proposed for monitoring past 
photodegradation of chlorophylls with a phytyl side chain in sediments 
(Rontani et al., 1996b). Indeed, it was observed that “esterified or bound” 
phytyldiol is degraded in recent sediments at a similar rate to “esterified or 
bound” unchanged chlorophyll phytyl side chain (Rontani and Grossi, 
1995; Rontani et al., 1996b). This non-selective degradation together with 
detection of significant amounts of intact “esterified or bound” phytyldiol 
in sediments aged up to 2.5 x 104 years BP (Philippe Cuny, unpublished 
data, 1996) well supports the use of this ratio as paleotracer of chlorophyll 
photodegradation.  

More recently, relatively high and variable proportions of autoxidation 
products of - and -amyrins were detected in sediments aged up to 800 
years BP collected in the Beaufort Sea (Canadian Arctic) (Jean-François 
Rontani, unpublished data, 2010; Fig. 80). Interestingly, the lowest 
autoxidation percentages observed between 300 and 400 years BP correspond 
to a period when the Canadian Arctic was colder than now (Barry et al., 
1977). As seen in Chapters 8 and 9, temperature plays a key role in the 
homolytic cleavage of photochemically-produced hydroperoxides and thus 
in the initiation of autoxidation reactions. The limitation of autoxidative 
damage observed at the lowest temperatures is thus perfectly logical. In 
future studies, it will be very instructive to compare the variations of these 
autoxidation percentages with those of classical proxies of paleotemperatures 
(alkenones, TEX86 or foraminiferal assemblages; for a review, see 
Hertzberg and Schmidt, 2016). 
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Figure 80. Variation of - and -amyrin autoxidation percentages in sediments 
collected in the Beaufort Sea near the Mackenzie Estuary (Malina Program, 2009). 

 
Some lipid tracers are used to trace anoxic conditions in ancient water 

columns of lakes, inland seas and oceans (Brocks et al., 2005; Hebting et 
al., 2006). For example, the carotenoids isorenieratene and okenone, which 
are only produced by phototrophic sulfur bacteria belonging to the 
Chromatiaceae and Chlorobiaceae (Schaeffer et al., 1997; Brocks and 
Pearson, 2005), are widely employed as indicators of hypoxia. Photooxidation 
and autoxidation of the lipid components of phytoplankton requires the 
presence of molecular oxygen, and so the distributions of lipid oxidation 
products in marine sediments would potentially make useful tools for 
determining the redox conditions of the bottom waters at the time of 
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deposition. The weak abiotic degradation of sterols (up to 5%) observed in 
the oxygen-deficient suboxic zone of the Black Sea (Rontani and 
Wakeham,  2008), which contrasts markedly with the strong autoxidation 
of sterols in the north-western Mediterranean (Fig. 81) where the entire 
water column is oxygenated (6 mL L-1 O2 in the mixed layer to 25 m depth 
and 4 mL L-1 from 100 m down to 800 m depth; Rontani et al., 2009) well 
supports the argument that lipid oxidation products are suitable for use as 
indicators of oxic conditions during sedimentation. 

Use of lipid oxidation products to detect abiotic alteration 
of paleoproxies 

Lipid oxidation products could prove equally useful for monitoring 
abiotic alterations of some proxies under environmental conditions, and 
thus inform validity assessments on future paleoenvironmental studies 
(Rontani et al., 2013a). For example, high proportions of autoxidation 
products of IP25 or IPSO25 (see Chapter 10) in marine sediments could be 
indicative of a partial diagenetic degradation of these widely-employed 
sea-ice proxies (Belt and Müller, 2013; Belt et al., 2016) and thus of 
potential biases in reconstructions of Arctic and Antarctic sea ice edges.  

The alkenone-based 
'

37
KU  index is now universally accepted as a robust 

proxy for reconstructing environmental temperatures (Brassell et al., 1986; 
Prahl and Wakeham, 1987; Müller et al., 1998). However, when working 
with the 

'
37
KU  temperature proxy, it is vital to keep in mind that selective 

autoxidative degradation of these compounds can introduce biases. 
Unfortunately, as seen in Chapter 10, autoxidation products of alkenones 
are too unstable to be used as direct tracers of this potential degradation in 
sediments. Homolytic and heterolytic cleavages (see Chapter 4) of 
hydroperoxides resulting from methyl C37 alkenone autoxidation afford, 
after subsequent NaBH4 reduction, a complex mixture composed of 
saturated n-alkan-1-ols and fatty acids ranging from C13 to C16 plus two 
series of C13 C16 ( -1)-hydroxyacids and (1, -1)-diols (Rontani et al., 
2007c). In the case of autoxidation products of ethyl C38 alkenones, after 
reduction these cleavages afford C14 C17 ( -2)-hydroxyacids and (1, -2)-
diols, instead of C13 C16 ( -1)-hydroxyacids and (1, -1)-diols (Rontani et 
al., 2007c). Among these different compounds, ( -1)- and ( -2)-
hydroxyacids (obtained after reduction of the corresponding ketoacids) 
were selected as potential tracers of alkenone autoxidation. After NaBD4 
reduction to increase the selectivity of these tracers, silylated [12-2H]-12-
hydroxytetradecanoic, [13-2H]-13-hydroxytetradecanoic, [14-2H]-14-
hydroxyhexadecanoic and [15-2H]-15-hydroxyhexadecanoic acids were 
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detected in suspended particles collected in the Ligurian Sea, indicating a 
strong autoxidative alteration of alkenones in the samples analyzed 
(Rontani et al., 2007c). In the presence of a high proportion of these 
compounds (relative to alkenones), we can expect to see a “warming 
effect”, in which case caution is warranted before using the inferred 
temperature data. 

 

Figure 81. 
'

37
KU  index and percent sitosterol autoxidation measured in suspended 

particulate matter samples collected in the Ligurian Sea. Adapted from Rontani et 
al. (2009). 
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More stable oxidation products of other lipids can also be used to 
identify cases where autoxidation of organic matter, and by extension 
alkenones, has been significant enough to expect a shift in 

'
37
KU values. Fig. 

81 gives a nice example showing the variation of 
'

37
KU  index and percent 

autoxidation of sitosterol (a sterol present in some alkenone-producing 
Prymnesiophyceae; Marlowe et al., 1984) in suspended particulate matter 
collected at different depths in the Ligurian Sea (Rontani et al., 2009). The 
strong correlation observed (R² = 0.94, n = 9) provides a strong indication 
of autoxidative alteration of alkenones in the suspended particles 
investigated.  

A link between autoxidation and the observed increase of 
'

37
KU  values in 

CO2-stressed E. huxleyi cells was previously demonstrated by plotting the 
variation of this index according to percent autoxidation of oleic acid (R² = 
0.97; Rontani et al., 2007a). Unfortunately, assigning a magnitude to 
temperature bias due to autoxidation in environmental samples remains 
more problematic (Rontani et al., 2013a). 

Use of lipid oxidation products for ozone depletion 
monitoring 

Christodoulou et al. (2010) compared visible and UV light-induced 
degradation of lipid components of E. huxleyi and thus observed that UV 
exposure induced photosensitized stereomutation (cis-trans isomerization) 
of the double bonds of some MUFA oxidation products (Fig. 82). The 
resulting cis-hydroxyacids (e.g. 9-hydroxyoctadec-10(cis)-enoic and 10-
hydroxyoctadec-8(cis)-enoic acids in the case of oleic acid autoxidation), 
which are only produced in trace amounts during visible light-induced 
degradation or autoxidation of MUFAs (Frankel, 1998; Porter et al., 1995), 
were proposed as tracers of UV-induced photodegradation (Christodoulou 
et al., 2010). Such compounds could provide new ways to gain information 
on current environmental problems related to ozone depletion. Indeed, 
although some recovery of stratospheric ozone seems evident in certain 
locations since the 1989 Montreal Protocol (Steinbrecht et al., 2009), the 
impacts of climate change on the future global UV environment and the 
resulting responses in plants are still not well understood (Watanabe et al., 
2011; Andrady et al., 2012; Warjent and Jordan, 2013).  
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Figure 82. Simplified scheme showing visible and UV-induced photodegradation 
of oleic acid in senescent phytoplanktonic cells. Adapted from Christodoulou et al. 
(2010). 

Use of lipid oxidation products in permafrost degradation 
monitoring 

Permafrost, which is defined as subsurface earth materials remaining 
below 0°C for two consecutive years, is widespread in the Arctic and 
boreal regions of the Northern Hemisphere (Zhang et al. 1999). Carbon 
dioxide and/or methane (greenhouse gas) released to the atmosphere as a 
result of destabilization and microbial decomposition of permafrost carbon 
have the potential to significantly accelerate global warming (Schuur et al., 
2008). We cannot confidently predict the influence of global change on the 
delivery and preservation of permafrost over the Arctic shelves without a 
far more complete understanding of the fundamental processes that control 
the degradation and preservation of this material (Rontani et al., 2017).  
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As the organic carbon in permafrost originates mainly from plants 
(Schuur et al., 2008), it must also be affected by photo- and autoxidation 
processes, which are very intense in the Arctic (see Chapter 7) and can 
strongly affect permafrost mineralization. Indeed, there are very complex 
interactions between biotic and abiotic degradation processes, and 
previous abiotic alteration of phototrophic material can positively or 
negatively alter its bioavailability (see Chapter 15). These interactions are 
strongly dependent on: (i) the phototrophic organisms and bacteria in 
presence and (ii) certain environmental conditions (such as temperature 
and solar irradiance). Some authors assert that oxidative stress caused by 
photochemical ROS generation should be regarded as an environmental 
variable determining the abundance, activity, and phylotype composition 
of environmentally-relevant bacterial groups (Glaeser et al., 2010; 2014).  

Consequently, in future studies of permafrost degradation, it will be 
very important to avoid over-focusing on bacterial degradation processes 
and also take into account photo- and autoxidation and the many complex 
interactions between all these processes. The different lipid oxidation 
products described in this book will be very useful for such purpose. 

Use of oxidation products for determining the double 
bond position of MUFAs and monounsaturated n-alkenols 

Due to the migration of their double bond during ionization, TMS 
derivatives of MUFAs afford very similar EI mass spectra. To determine 
the position of this double bond and avoid this migration problem, it is 
necessary to prepare specific derivatives that ‘fix’ the double bond. 
Numerous methods are employed that involve reactions with either the 
double bond or the carboxylic group. The main derivatization techniques 
acting directly with the double bond are osmium tetroxide oxidation 
(affording diols which are then silylated; McCloskey and McClelland, 
1965) and dimethyl disulfide addition (affording dithiolethers; Nichols et 
al., 1986). Reaction of the carboxylic group with nitrogen-containing 
compounds affords derivatives (i.e. N-acylpyrrolidides, picolinyl esters or 
4,4-dimethyloxazoline (DMOX); Andersson and Holman, 1974; Harvey, 
1982; Fay and Richli, 1991) that act as highly favourable charge sites 
during ionization and therefore minimize double bond ionization and 
migration (Dubois et al., 2009). 
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Figure 83. GC-QTOF determination of the double bond position of MUFAs with the 
TMS derivatives of their oxidation products in a suspended particulate matter sample 
collected in the Chukchi Sea (Arctic).  
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Figure 84. GC-QTOF determination of the double bond position of n-alken-1-ols 
with the TMS derivatives of their oxidation products in a sample of the 
bottommost layer (0–3 cm) of sea ice collected in Baffin Bay (Arctic). 
 

GC-QTOF analyses of TMS derivatives of MUFA oxidation products, 
which are widespread in natural samples (see data given in Chapter 12), 
allow easy and unambiguous attribution of the position of the double bond 
of these compounds. An example of the technique in application is given 
in Fig. 83. Table 4 lists accurate masses of the fragment ions (containing 
the TMS ester group) employed for determining the double bond position 
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of the main MUFAs. Note that this attribution can also be carried out by 
classical GC-MS using unit masses. 

This method of determining double bond position only requires adding 
a simple NaBH4 reduction step (to reduce unstable hydroperoxyacids to 
the corresponding hydroxyacids; Marchand and Rontani, 2001) before the 
alkaline hydrolysis classically employed for the treatment of complex lipid 
extracts (Volkman, 2006). Note that this method can also be employed on 
monounsaturated n-alken-1-ols (resulting from the hydrolysis of 
zooplanktonic long-chain wax esters; Lee et al., 2006) by using the 
fragment ions of TMS derivatives of their oxidation products containing 
the two TMS ether functional groups (Rontani et al., 2021c; Fig. 84). 
However, this case demands the use of accurate masses (Table 19) as unit 
masses interfere with more stable isobaric fragment ions of TMS derivatives 
of MUFA oxidation products, which are present in environmental samples 
in higher proportions than those of monounsaturated n-alken-1-ols. 
 
 
Parent  
n-alken-1-ol 
 

 
m/z 

 
m/z 

 
m/z 

 
m/z 

 
C16:1 9 

 
199.1518a 

 
213.1675a 

 
315.2170b 

 
329.2327b 

C16:1 11 171.1206 185.1363 343.2483 357.2640 
C16:1 13 143.0748 157.1051 371.2796 385.2953 
C18:1 9 227.1830 241.1987 315.2170 329.2327 
C18:1 11 199.1518 213.1675 343.2483 357.2640 
C18:1 13 171.1206 185.1363 371.2796 385.2953 
C20:1 9 255.2139 269.2295 315.2170 329.2327 
C20:1 11 227.1830 241.1987 343.2483 357.2640 
C20:1 13 199.1518 213.1675 371.2796 385.2953 
C22:1 9 283.2451 297.2607 315.2170 329.2327 
C22:1 11 255.2139 269.2295 343.2483 357.2640 
C22:1 13 
 

227.1830 241.1987 371.2796 385.2953 

a Fragments containing the terminal methyl group. 
b Fragments containing the terminal trimethylsilyl ether group. 
 
Table 19. Accurate masses of the main fragment ions produced during EI 
fragmentation of NaBH4-reduced and silylated photo- and autoxidation products of 
the more common n-alken-1-ols. 
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CHAPTER FIFTEEN 

INTERACTIONS BETWEEN BIOTIC AND ABIOTIC 
DEGRADATION PROCESSES 

 
 
 
Biodegradative, autoxidative and photooxidative degradation processes 

at work in the environment cannot be considered separately. Indeed, these 
processes are inextricably linked, and an understanding of their interactions, 
although complex, is a fundamental step towards precisely identifying the 
balance between degradation and preservation of phototrophic organisms 
in the natural environment (Rontani et al., 2017; Rontani, 2019). 

Interactions between photo- and autoxidation processes 

As we saw in Chapter 9, homolytic cleavage of photochemically-
produced hydroperoxides can initiate free radical oxidation chains and thus 
autoxidation (Girotti, 1998; Rontani et al., 2003b). Moreover, photooxidation 
processes can also degrade phenols (Opsahl and Benner, 1993), which are 
present at significant concentrations in higher plants (Zapata and 
MacMillan, 1979) and can inhibit autoxidation (due to their strong 
antioxidant properties; Foti, 2007). 

Interactions between photooxidation and biodegradation 
processes 

Photodegradation of the phenolic components of higher plants (Psahl 
and Benner, 1993), which are well-known for their antibacterial properties 
(Harrison, 1982; Cueva et al, 2020), can thus indirectly favour bacterial 
growth. Moreover, light-induced degradation can break down structural 
barriers in the leaves of higher plants and expose new microniches to 
bacterial colonization (Vähätalo et al., 1998; 2010), thus increasing the 
bioavailability of pieces of higher-plant detritus. 
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Figure 85. Biotic degradation of sitosterol and its photoproducts in senescent 
leaves of P. oceanica. Adapted from Rontani (2019). 
 

In contrast, photooxidative hydroperoxides, which can be found in 
significant proportions in marine and terrestrial vascular plants and 
phytoplankton (Rontani, 2019; Rontani et al., 2014a; Petit et al., 2013), 
can exert detrimental effects on the invading microorganisms through their 
ability to induce damage of their protein and DNA (Farr and Kogoma, 
1991). Several enzymatic processes avoiding accumulation of these toxic 
compounds can be employed by bacteria. These processes involve: (i) 
reduction to the corresponding hydroxyacids by lipoxygenases (Galliard 
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and Chan, 1980), (ii) conversion to oxoacids by lipohydroperoxidases 
(Kuehn et al., 1991), (iii) dehydration to allene oxides by hydroperoxide 
dehydrases and subsequent hydrolysis of these unstable intermediates 
(Hamberg, 1987), and (iv) direct cleavage of the hydroperoxides to 
aldehydes and oxoacids (Galliard et al., 1976). 

Less toxic lipid photoproducts can be metabolized by bacteria at 
similar or higher rates than their parent lipids. A case in point was 
observed in senescent leaves of P. oceanica, where bacterial degradation 
processes act not only on sitosterol but also on its photooxidation products 
(6-keto- and hydroxysterols; Rontani, 2019; Fig. 85). 

As seen in Chapter 6, during photooxidation of senescent phytoplanktonic 
cells, the sphere of activity of 1O2 from its point of production has a wide 
enough radius to induce the degradation of associated heterotrophic 
bacteria (Rontani et al, 2003a; Petit et al., 2013). Transfer of 1O2 from 
phytoplanktonic cells to their attached heterotrophic bacteria can cause 
substantial cell damage, as these microorganisms lack efficient 
photoprotective and antioxidant systems (Garcia-Pichel, 1994), and this 
damage can strongly affect their ability to degrade particulate organic 
matter. Rontani et al. (2011a) previously attributed the higher biodegradation 
observed in sinking particles than in suspended particles collected in 
equatorial Pacific to the abundance of charged mineral surfaces such as 
siliceous diatom frustules in sinking particles, whose presence reduces the 
lifetime of 1O2 (see Chapter 6) and thus allows enhanced bacterial 
preservation. 

Effects of singlet oxygen transfer on the diversity of bacteria attached 
to phytodetritus were previously investigated in a non-axenic culture of E. 
huxleyi in late-stationary phase (Petit et al., 2015b). In this culture, most of 
the attached bacteria (91 ± 3%) were dead and the residual living attached 
bacterial community appeared to be dominated by pigmented species 
(Maribacter, Roseobacter, Roseovarius…) whose resistance towards 1O2 
likely results from their high carotenoid content. Bacteria belonging to the 
family Rhodobacteraceae (Alphaproteobacteria) appear to be relatively 
insensitive to the reactive species of oxygen (Glaeser et al., 2010; Blanchet 
et al., 2016). Future research will need to determine whether the abundance 
of Roseobacter and other AAPs often observed during bloom termination 
(Pinhassi and Berman, 2003; Zhou et al., 2018) effectively results from 
their particular resistance to oxidative damage.  

Shewanella oneidensis (strain MR1) has previously been used as a 
model organism to better understand attractive and/or repulsive effects of 
bacteria in response to specific chemical species such as 1O2 (Petit et al., 
2015b). This bacterium was selected on the basis of its high mobility (Sun 
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et al., 2014). The results obtained (Fig. 86) showed that S. oneidensis was 
unable to detect 1O2 coming from dead E. huxleyi cells. This lack of 
repulsive effect was attributed to: (i) the very short diffusion distance (0.2 
μm) of 1O2 in water (Redmond and Kochevar, 2006; Ozog and Aebisher, 
2018), (ii) the lack of sensors allowing 1O2 detection by S. oneidensis, or 
(iii) an attractive effect of dead E. huxleyi cells outweighing the repulsive 
effect of 1O2. Although these results cannot be extended to the whole 
bacteria, they strongly suggest that bacteria, which are strongly attracted 
by senescent phytoplanktonic cells, are unable to detect 1O2 production. 
Consequently, they should accumulate on phytodetritus and be strongly 
affected by the 1O2 transfer. 

 
 
Figure 86. Chemotaxis of S. oneidensis in irradiated and non-irradiated cultures of 
E. huxleyi. Adapted from Petit et al. (2015b). 

Interactions between autoxidation and biodegradation 
processes 

Some epoxides (Swaving and de Bont, 1998), which may be produced 
after addition of peroxyl radicals and subsequent fast intramolecular 
homolytic substitution (see Chapter 8), are relatively toxic and have to be 
removed in order for bacteria to survive. Removal involves glutathione 
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transferases (GSTs) (which catalyze the reduction of the epoxide ring to an 
alcohol; Kieslich et al., 1986) and epoxide hydrolases (which catalyze the 
hydrolysis of the epoxide ring to a vicinal diol; Michaels et al., 1980; 
Arand et al., 2005). 
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Figure 87. Interactions between biotic and abiotic degradation processes during 
the degradation of the HBI IPSO25 in sediments. Adapted from Rontani et al. 
(2019b). 
  

We recently observed that the epoxide 1,2-epoxy-2-(4-methylpentyl)-
3-(3-methylpent-4-enyl)-6,10-dimethylundecane (the main autoxidation 
product of the HBI IPSO25; Rontani et al., 2019b) is converted by 
sedimentary bacteria to the corresponding tertiary alcohol and diol (Fig. 
87). This conversion of the epoxide to a tertiary alcohol was attributed to 
the involvement of glutathione transferases (Rontani et al., 2019b). 
However, direct conversion of IPSO25 to this compound via a process 
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involving hydratases (well known to act on isoprenoid alkenes such as 
squalene, pristenes and phytenes; Rontani et al., 2002, 2013b) cannot be 
totally excluded (Fig. 87). Hydrolysis of this epoxide to the corresponding 
diol was attributed to the involvement of epoxide hydrolases. However, 
epoxides can also be abiotically hydrolyzed in the presence of clays (Haag 
and Mill, 1988; Minerath et al., 2009).       

Degradation of vitamin E by aerobic bacterial communities isolated 
from marine sediment and microbial mat samples appeared to be mainly 
carried out by strains belonging to the genera Idiomarina and Bacillus 
(Rontani et al., 2008). The detection of metabolites with a shortened side 
chain and opened chroman ring (indicative of the involvement of 
autoxidation processes) pointed to the fact that the aerobic degradation of 
vitamin E involves complex interactions between autoxidation and 
bacterial degradation processes (Fig. 88). The combination of these 
processes results in the utilization of the isoprenoid side chain of vitamin E 
as a carbon and energy source (production of 3 propionyl-CoA and 2 
acetyl-CoA), leading to further metabolization of the residual 2,5,7,8-
tetramethyl-2(20-carboxyethyl)-6-hydroxy-chroman ( -CEHC) and its 
opened oxidation products. Some of the detected metabolites of vitamin E 
resulting from the combination of autoxidation and aerobic biodegradation 
processes could potentially serve as specific tracers of oxic sedimentation 
conditions. However, aerobic biodegradation of vitamin E oxidation 
products is not limited to the isoprenoid side chain, and the opened 
chroman ring is also quickly consumed by bacteria. Consequently, it 
seems unlikely that these compounds preserve well in sediments. 

It was also proposed previously that the formation of pristane 
(2,6,10,14-tetramethylpentadecane), which is an isoprenoid hydrocarbon 
widely distributed throughout the geosphere (Volkman and Maxwell, 
1986), is driven by the anaerobic bacterial degradation of trimers resulting 
from autoxidation of -tocopherol (see Chapters 5 and 10) initially 
produced within the water column during the senescence of phytoplankton 
organisms, and that seem to be well preserved in anoxic environments 
(Rontani et al., 2010). Biotic degradation of these trimeric oxidation 
products may involve either direct reductive cleavage to pristane similar to 
the reduction of epoxides to alcohols (Amate et al., 1991; Duetz et al., 
2003; Fig. 89) or thermal formation and subsequent biohydrogenation of 
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Figure 88. Interaction between aerobic bacterial degradation and autoxidation of 
vitamin E. Adapted from Rontani et al. (2008). 
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Figure 89. Proposed pathways for the biodegradation of trimeric oxidation 
products of -tocopherol in anoxic sediments. Adapted from Rontani et al. (2010). 
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prist-1-ene to the corresponding alkane (Fig. 89). More recently, it was 
demonstrated that biohydrogenation has no significant action on the 
double bond of pristenes (Rontani et al., 2013b). This resistance was 
attributed to the lack of a binding polar group (or groups) to anchor the 
substrate to the enzyme and thus allow the double bond to reach the 
reductive catalytic site (Watts and Browse, 2000). This production of 
pristane from -tocopherol autoxidation products does not support the use 
of pristane-to-phytane (2,6,10,14-tetramethylhexadecane) ratio as an 
indicator of oxic or anoxic stages of diagenesis (Brooks et al., 1969; Didyk 
et al., 1978), which was based on the assumption that both these 
compounds arise from degradation of the same precursor i.e; the 
chlorophyll phytyl side chain. 
 

 
Figure 90. Partial structure of lignin with potential autoxidative cleavages in red. 
Adapted from Lange et al. (2013). 
 

Note here that autoxidation processes can affect biopolymers (Schmid 
et al., 2007), lignin (Palmer et al., 1987; Waggoner et al., 2015) and kerogen 
(Fookes and Walters, 1990), inducing ring opening and chain cleavage 
(Fig. 90) which can then enhance the bacterial degradation of these 
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complex structures (Bianchi, 2011; Bianchi and Bauer, 2011; Bianchi et 
al., 2011). Such interactions could play an important role in the loss of 
lignin often observed during export of terrestrial organic matter in natural 
waters (Opsahl and Benner, 1997). 

As seen in Chapter 8, some enzymes producing radical species during 
their catalytic cycle (such as lipoxygenases, peroxidases and laccases) can 
also initiate autoxidation reactions (Fuchs and Spiteller, 2014). The key 
role played by lipoxygenases in the induction of autoxidation of higher 
plant debris in estuaries (Galeron et al., 2018) was detailed in Chapter 13. 
The metabolism of lignin by some fungi (see next subchapter) offers 
another nice example of tight interactions between enzymes (peroxidases 
and laccases) and reactive oxygen species.  

The particular case of the ‘enzymatic combustion’  
of lignin  

Lignin is an aromatic polymer that confers woody plant tissues with 
rigidity and resistance to biological attack. It represents approximately 
20% of plant litter input into the soil (Datta et al., 2017). Due to the lack of 
hydrolyzable linkages in its complex tridimensional structure, lignin is 
very recalcitrant to biodegradation processes (Reid, 1995). Only some 
white-rot fungi (Basidiomycetes) are able to completely mineralize this 
polymer, which they achieve via a process involving ‘enzymatic combustion’ 
wherein enzymes generate reactive radical intermediates without direct 
control of the reactions leading to lignin breakdown (Kirk and Farrell, 
1987; Reid, 1995). During this degradation of lignin, the white-rot fungi 
employ extracellular peroxidases and laccases. Peroxidases include lignin 
peroxidases (LiPs), Mn-dependent peroxidases (MnPs) and versatile 
peroxidases (VPs) (Hattaka and Hammel, 2010). LiPs oxidize non-
phenolic lignin substructures by abstracting one electron and generating 
aryl cation radicals that then decompose chemically (Kirk and Farrell, 
1987). MnPs oxidize Mn2+ to Mn3+ which then oxidizes phenolic rings to 
phenoxyl radicals, leading to the decomposition of the structures (Gold et 
al., 2000). VPs combine the molecular architecture and properties of LiPs 
and MnPs. Laccases use molecular oxygen as oxidant, and also oxidize 
phenolic rings to phenoxyl radicals (Thurston, 1994; Baldrian, 2006). The 
different aromatic radicals thus formed then evolve through different non-
enzymatic reactions, including ether breakdown, aromatic ring cleavage, 
and demethoxylation. As ligninolytic enzymes are too big to penetrate the 
compact structure of wood tissues (Martinez et al., 2005), the initial stages 
of lignin degradation involve non-enzymatic reactions of low-molecular-
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weight oxidants, and notably of ROS (HO•, O2
-•, H2O2, RO•, ROO•; 

Janusz et al. 2017). These different radical species resulting from 
enzymatic and Fenton (Eq. 14) reactions contribute to the oxidative 
depolymerization of lignin and its degradation products (Guillen et al. 
2000). 

 
Fe3+  +  H2O2    Fe2+  +  HO-  +  HO•                                                  (14)                     
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Oxidation of MUFAs 
 

Fatty acid dioxygenases catalyze the regiospecific and stereospecific 
insertion of two oxygen atoms into a fatty acid. They include lipoxygenases 
(LOXs), cyclooxygenases (COXs), heme-containing dioxygenases (DOXs) 
and -dioxygenases ( -DOXs), and they produce fatty acid hydroperoxides 
or endoperoxides (Hamberg et al., 1994; Funk, 2001). Only DOXs have 
the potential to act on MUFAs and produce mid-chain hydroperoxides 
able to interfere with auto- and photooxidation products of these fatty 
acids (see Chapters 5 and 10).  

Regiospecific enzymatic peroxidation of the allylic carbon 10 of cis-
vaccenic acid was previously observed in some strains of AAPs (Roseobacter 
sp. strain BS110, Roseobacter sp. strain BS36 and Erythrobacter sp. strain 
MG3; Rontani et al., 2005b; Rontani and Koblìžek, 2008) and in the 
purple sulphur bacterium Thiohalocapsa halophila incubated under 
aerobic conditions in the dark (Marchand et al., 2002). This enzymatic 
process was attributed to a DOX. The degradation of the 10-
hydroperoxyoctadec-11(cis)-enoic acid thus formed mainly involves 
reduction to the corresponding hydroxyacid and cleavage to the 
corresponding oxoacid. 10-hydroxyoctadec-11(cis)-enoic acid likely 
arising from a similar enzymatic process and the subsequent NaBH4-
reduction of the corresponding hydroperoxyacid and oxoacid was also 
detected recently in lightened dead cells of E. huxleyi contaminated by the 
AAP Dinoroseobacter shibae (Fig. 91; Christopher Burot, unpublished 
data, 2021). The good correlation (R² = 0.78) between photooxidative 
damage in D. shibae and the enzymatic production of 10-hydroxyoctadec-
11(cis)-enoic acid strongly suggests that this activity should play a role in 
this bacteria’s resistance to oxidative stress. Note that in this case the 
strong dominance of the 10-cis isomer among the oxidation products of 
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cis-vaccenic acid (Fig. 91) clearly indicates its enzymatic origin, and thus 
serves to avoid overestimation of the abiotic degradation of this MUFA.  

 

 
 
Figure 91. Partial ion chromatograms (m/z 199.1518, 213.1675, 357.2280 and 
371.2437) showing the production of DOX and photooxidative oxidation products 
of cis-vaccenic acid in D. shibae associated to lightened dead E. huxleyi cells. 
 

Type-II photosensitized oxidation and free radical-induced oxidation 
of 9 MUFAs produce (after NaBH4-reduction of hydroperoxyacids) 
equal proportions of the major 9-trans and 10-trans isomeric allylic 
hydroxyacids (Frankel, 1998). However, a 10-hydroxyhexadec-8(trans)-
enoic acid was previously found to strongly dominate among palmitoleic 
acid oxidation products observed in sea ice (Fig. 92) and in sinking 
particles in the Canadian Arctic (Amiraux et al., 2017; Rontani et al., 
2018b), in estuaries of diverse latitudes (Galeron et al., 2018), and also 
more recently in suspended particles collected in the English Channel 
(Rontani et al., 2021a).  

This dominance was attributed to the involvement of a bacterial 10S-
DOX enzyme capable of converting palmitoleic acid to 10(S)-
hydroperoxyhexadec-8(trans)-enoic acid (reduced to the corresponding 
hydroxyacid during NaBH4-reduction). This enzyme was previously 
isolated from the bacteria Pseudomonas aeruginosa 42A2 (Guerrero et 
al., 1997; Busquets et al., 2004) but has recently also been found in other 
genera of marine bacteria, such as Pseudoalteromonas, Shewanella and 
Aeromonas (Shoja Chaghervand, 2019). This 10S-DOX activity seems to 
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be a detoxification strategy (Martinez et al., 2013; Rontani et al., 2021a) 
allowing bacteria to survive in the presence of the bactericidal free 
palmitoleic acid (Desbois et al., 2009; Desbois and Smith, 2010) released 
by diatoms as part of their well-known oxylipin-based chemical defence 
against copepods (Pohnert 2000; 2002). 

Allylic rearrangement of 10-hydroperoxyhexadec-8(trans)-enoic and 
9-hydroperoxyhexadec-10(trans)-enoic acids affords 8-trans and 11-trans 
isomers, respectively (Porter et al., 1995). 10S-DOX contribution to 
oxidation products of palmitoleic acid can thus be easily estimated from 
the difference between (10-trans + 8-trans) and (9-trans + 11-trans) 
oxidation products (Galeron et al., 2018; Rontani et al., 2018b).  

 

 
 
Figure 92. Partial ion chromatograms (m/z 199.1518, 213.1675, 329.1968 and 
343.2125) showing the production of 10S-DOX, photo- and autoxidative 
oxidation products of palmitoleic acid in sea ice (0–3 cm) collected in Baffin Bay 
(Arctic) in Summer 2006. 

Oxidation of HBI alkenes 

Monooxygenases belonging to the cytochrome P450 superfamily can 
oxidize double bonds to epoxides and saturated carbon atoms to secondary 
alcohols (Guengerich, 2008). P450-dependent monooxygenases can produce 
epoxides from a broad range of lipophilic substrates including n-alkenes 
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(Soltani et al., 2004), terpenes (Duetz et al., 2003), unsaturated fatty acids 
(Ratledge, 1994) and alkenones (Zabeti et al., 2010). 
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Figure 93. Expected enzymatic and autoxidative attacks of the double bonds of the 
HBI diene IPSO25. Adapted from Rontani et al. (2019b).  

 
These enzymes are thus able to produce 1,2-epoxy-2-(4-methylpentyl)-

3-(3-methylpent-4-enyl)-6,10-dimethylundecane, which is the main 
autoxidation product of the HBI diene IPSO25 (Fig. 93), and could 
introduce biases in estimates of the autoxidation of this HBI alkene. 
However, if bacterial epoxidation really affects IPSO25, then it should act 
more intensively on the terminal 23–24 double bond (Fig. 93) due to the 
better proximity of the terminal double bond to the heme iron of 
cytochrome P450 (Andersen et al., 1997). As we saw in Chapter 15, in 
sediments, epoxides are quickly reduced to the corresponding alcohols by 
glutathione transferases (GSTs) (Fig. 93). The lack of the reduction 
product of the 23–24 epoxide in sediments (whereas the reduction product 
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of the 6-17 epoxide was present) points to the inefficiency of such 
bacterial processes on IPSO25 (Rontani et al., 2019b). 

Oxidation of dehydroabietic acid 

Autoxidation of abietic acid mainly affords -hydroperoxy-
dehydroabietic acids, which are reduced to the corresponding -
hydroxyabietic acids after NaBH4 reduction (see Chapter 10). These 
compounds were proposed as tracers of autoxidative alteration in 
gymnosperms (Rontani et al., 2015). Bacteria able to degrade 
dehydroabietic acid are widely distributed in the environment (Mohn, 
1995; Martin et al., 1999; Luchnikova et al., 2019). 
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Figure 94. Bacterial metabolism of dehydroabietic acid. 
 
Dehydroabietic acid is first oxidized by an unidentified enzyme at the 

C-7 position to yield 7-hydroxydehydroabietic acid and then 7-
oxodehydroabietic acid (Fig. 94). After NaBH4 reduction of environmental 
samples, these bacterial metabolites could thus interfere with dehydroabietic 
acid autoxidation estimates. However, it is important to note that these 
metabolites have often been isolated from culture media in the presence of 

 EBSCOhost - printed on 2/13/2023 2:59 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Sixteen 142

metabolic inhibitors or additional carbon and energy (e.g. n-hexadecane) 
sources. Without these additions, 7-hydroxydehydroabietic acid and 7-
oxodehydroabietic acid are quickly metabolized via: (i) oxidation at C-3 
and subsequent decarboxylation, or (ii) dioxygenation of the aromatic ring 
(Fig. 94; Mohn, 1995; Martin and Mohn, 2000). It thus seems very unlikely 
that these bacterial metabolites interfere with autoxidation products of 
dehydroabietic acid. 
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