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Chapter One

Introduction
1.1 THE EINSTEIN-KLEIN-GORDON COUPLED SYSTEM

The Einstein field equations of General Relativity are a covariant geometric
system that connect the Ricci tensor of a Lorentzian metric g on a manifold M
to the energy-momentum tensor of the matter fields in the spacetime, according
to the equation

Gop = 81T yp. (1.1.1)

Here Gog = Rap — (1/2)Rgap is the Einstein tensor, where R,z is the Ricci
tensor, R is the scalar curvature, and T, is the energy-momentum tensor of
the matter in the spacetime.

In this monograph we are concerned with the Einstein-Klein-Gordon coupled
system, which describes the coupled evolution of an unknown Lorentzian metric
g and a massive scalar field . In this case the associated energy momentum
tensor T, is given by

1
Top := Dot Dgih — 58as (D, yD* ) + 1p?), (1.1.2)

where D denotes covariant derivatives.

Our goal is to prove definitive results on the global stability of the flat space
among solutions of the Einstein-Klein-Gordon system. Our main theorems in
this monograph include:

(1) A proof of global regularity (in wave coordinates) of solutions of the
Einstein-Klein-Gordon coupled system, in the case of small, smooth, and local-
ized perturbations of the stationary Minkowski solution (g, ) = (m,0);

(2) Precise asymptotics of the metric components and the Klein-Gordon field
as the time goes to infinity, including the construction of modified (nonlinear)
scattering profiles and quantitative bounds for convergence;

(3) Classical estimates on the solutions at null and timelike infinity, such as
bounds on the metric components, weak peeling estimates of the Riemann cur-
vature tensor, ADM and Bondi energy identities and estimates, and asymptotic
description of null and timelike geodesics.

The general plan is to work in a standard gauge (the classical wave co-
ordinates) and transform the geometric Einstein-Klein-Gordon system into a
coupled system of quasilinear wave and Klein-Gordon equations. We then an-
alyze this system in a framework inspired by the recent advances in the global
existence theory for quasilinear dispersive models, such as plasma models and
water waves.
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More precisely, we rely on a combination of energy estimates and Fourier
analysis. At a very general level one should think that energy estimates are
used, in combination with vector-fields, to control high regularity norms of the
solutions. The Fourier analysis is used, mostly in connection with normal forms,
analysis of resonant sets, and a special norm, to prove dispersion and decay in
lower regularity norms.

The method we present here incorporates Fourier analysis in a critical way.
Its main advantage over the classical physical space methods is the ability to
identify clearly resonant and non-resonant nonlinear quadratic interactions. We
can then use normal forms to dispose of the non-resonant interactions, and focus
our attention on a small number of resonant quadratic interactions. This leads
to very precise estimates.

In particular, some of our asymptotic results appear to be new even in the
much-studied case of the Einstein-vacuum equations (corresponding to ¢ = 0)
mainly because we allow a large class of non-isotropic perturbations. Indeed,
our assumptions on the metric on the initial slice are weak, essentially of the
type

8o = Mas +200((@) ), Bgap = 200((@) ).

These assumptions are consistent with non-isotropic decay, in the sense that we
do not assume that the metric has radial decay of the form M /r up to lower
order terms. Even with these weaker assumptions we are still able to derive
suitable asymptotics of the spacetime, such as weak peeling estimates for the
Riemann tensor, and construct a Bondi energy function.

1.1.1 Wave Coordinates and PDE Formulation of the Problem

The system of equations (1.1.1)—(1.1.2) is a geometric system, written in covari-
ant form. To analyze it quantitatively and state our main theorems we need to
fix a system of coordinates and reformulate our problem as a PDE problem.

We start by recalling some of the basic definitions and formulas of Lorentzian
geometry. At this stage, all the formulas are completely analogous to the Rie-
mannian case, hold in any dimension, and the computations can be performed
in local coordinates. A standard reference is the book of Wald [73]. Assume g
is a sufficiently smooth Lorentzian metric in a 4 dimensional open set O. We
assume that we are working in a system of coordinates 20, z!, 22, 2% in O. We
define the connection coefficients I'" and the covariant derivative D by

1
Tpap = 8(0u, Do, 0a) = §<aag6# + 988ap — OuBas), (1.1.3)
where 0,, := Ogn, 1 € {0,1,2,3}. Thus

D9 = Do,00 =T 0pds,  TWag = 8" Thas, (1.1.4)

where g®? is the inverse of the matrix 8ap, i€, g“ﬁgﬂg = 6. For p,v €
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{0,1,2,3} let
1 v v
Ty =g Tpop = 8" 0uoy — 58" Ouap,  TV:=g"Ty. (115
We record also the useful general identity
Dag!” = —g""g"Dagp, (1.1.6)
and the Jacobi formula

O (log|g]) = 8" 0a8uv, a€{0,1,2,3}, (1.1.7)

where |g| denotes the determinant of the matrix g, in local coordinates.
Covariant derivatives can be calculated in local coordinates according to the
general formula

n
DaTp.. .0 = 0aThr 50 = DT 0, Thr s (1.1.8)
j=1
for any covariant tensor 7T'. In particular, for any scalar function f

Ogf = g*’DoDyf = Ogf —T70,f, (1.1.9)

where g := g°%0,05 denotes the reduced wave operator.
The Riemann curvature tensor measures commutation of covariant deriva-
tives according to the covariant formula

D.Dgsw, —DgDaw, = R, 5, " wy, (1.1.10)
for any form w. The Riemann tensor R satisfies the symmetry properties

Rozﬁ,ul/ = _Rﬁa,uu = _Raﬁu,u = R,ul/ozﬁa

(1.1.11)
Ra[ﬁpy + Rﬂ[l,()zl/ + R/wzﬂu = 07
and the covariant Bianchi identities
D,Ragu + DaRgpur + DgRpapr = 0. (1.1.12)

Its components can be calculated in local coordinates in terms of the connection
coefficients according to the formula

R,5," = 0"y, +0pT",, — 17, TV, +T7, T (1.1.13)

aBp ap

Therefore, the Ricci tensor Ry, = gﬁpRaﬂup is given by the formula

Rap, = _a}rppﬂ + aprpau - I‘pz/aryp,u + I‘pPVFUCYIW
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Simple calculations using (1.1.3) and (1.1.5) show that the Ricci tensor is given
by
2Ray = —Ug8ap + 0Ty + 0, Lo + F 2 (g, 0g), (1.1.14)

where F 02,32 (g,0g) is a quadratic semilinear expression,

1
FZ3(g.09) = 3

+ gpugl//\{ - apgu)\aagﬁv - pg,u)\aﬁgow
+ apgu)\aygaﬂ + aagp)\augﬁu + aﬁgp/\augau}

gpugVA{augpuaﬂga/\ + 8l/gpu8agﬁ)\ - augpua/\gaﬂ}

(1.1.15)

1 17
- igpug )\(aaguu + avgau - 6/Lgau)(aﬁgp)\ + apgﬂ)\ - akgﬁp)~

We consider the Einstein field equations (1.1.1)—(1.1.2) for an unknown
spacetime (M, g); for simplicity, we drop the factor of 87 from the energy-
momentum tensor. The covariant Bianchi identities D*G, = 0 can be used to
derive an evolution equation for the massive scalar field ¢. The equation is

Ogt) — b = 0. (1.1.16)

Therefore the main unknowns in the problem are the metric tensor g and the
scalar field v, which satisfy the covariant coupled equations (1.1.1) and (1.1.16).

To construct solutions we need to fix a system of coordinates. In this paper
we work in wave coordinates, which is the condition

= —0g2* =0 for ac{0,1,2,3}. (1.1.17)

Wave coordinates are known to be a good system of coordinates to prove global
stability at least in the Einstein-vacuum equations due to the work of Lindblad-
Rodnianski [63]. Our construction of global solutions of the Einstein-Klein-
Gordon system is based on the following proposition, which can be proved by
straightforward calculations.

Proposition 1.1. Assume g is a Lorentzian metric in a 4 dimensional open set
O, with induced covariant derivative D and Ricci curvature Rog, andy : O -+ R
is a scalar. Let 20, x', 22, 23 denote a system of coordinates in O and let TV be
defined as in (1.1.5).

(i) Assume that (g,) satisfies the Einstein-Klein-Gordon system

2
Ros ~ DatiDat — & gas =0, gt~ =0, (1118)

in O. Assume also that T = 0 in O, p € {0,1,2,3} (the harmonic gauge
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condition). Then

Oe8as + 2000050 + 1°8as — Foj (9,99) =0,

_ (1.1.19)
Ogtp — =0,

where the quadratic semilinear terms Ffﬁz(g,ag) are defined in (1.1.15) and

Og := g2 0,85 denotes the reduced wave operator .
(i) Conversely, assume that the equations (1.1.19) (the reduced FEinstein-
Klein-Gordon system) hold in O. Then

P? 1 _
Rag 8@/@31/) 5 gaps 2 (5arg + 3gra) =0, (1.1.20)
g — ¢ +T#0,4 =0,
and the functions I'g = g3, I'V satisfy the reduced wave equations
OgLs = 2T78,0ds¢ + g** [T (0,15 + 05T,
el's YO + g"* [T (0, L5 + 9T",) (1.1.21)

+ I‘yp,é’(aary + al/]-‘a)] + 8MFU85g””.

In particular, the pair (g,) solves the Einstein-Klein-Gordon system (1.1.18)
ifT,=01inO.

Our basic strategy to construct global solutions of the Einstein-Klein-Gordon
system is to use Proposition 1.1. We construct first the pair (g, ) by solving
the reduced Einstein-Klein-Gordon system (1.1.19) (regarded as a quasilinear
Wave-Klein-Gordon system) in the domain R? x [0, 00). In addition, we arrange
that Ty, 0,T", vanish on the initial hypersurface, so they vanish in the entire
open domain, as a consequence of the wave equations (1.1.21). Therefore the
pair (g, 1) solves the Einstein-Klein-Gordon system as desired.

In other words, the problem is reduced to constructing global solutions of the
quasilinear system (1.1.19) for initial data compatible with the wave coordinates
condition.

1.2 THE GLOBAL REGULARITY THEOREM

To state our global regularity theorem we introduce first several spaces of func-
tions on R3.

Definition 1.2. For a > 0 let H* denote the usual Sobolev spaces of index a
on R3. We define the Banach spaces ng’b, a,b € Z,, by the norms

£l gee == D 19 f e, (1.2.1)

loe|<b
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where Q% = Q53 Q57075 and Qi = x;0, — x10; are the rotation vector-fields of
R3. We also define the weighted Sobolev spaces Hg;fm and Hg:,l;g by the norms
— B’ 9b — B’ 5B
Wlse = S 1270 e, Wfllger = S0 10" fllae,
1B'1<18I<b 181,18"1<b
(1.2.2)

where 27 = 21222l and 98 = 07195208 Notice that Hg:,zg — Hg:f;a —
HYY < HO.

To implement the strategy described above and use Proposition 1.1 we need
to prescribe suitable initial data. Let ¥g = {(z,t) € R3 x [0,00) : t = 20 =
0}. We assume that g, k are given symmetric tensors on X, such that g is a
Riemannian metric on 3. We assume also that g, : ¥y — R are given
initial data for the scalar field .

We start by prescribing the metric components on X,

gij = Gij> goi =0, goo = —1.

The conditions ggg = —1 and gg; = 0 hold only on the initial hypersurface
and are not propagated by the flow. They are imposed mostly for convenience
and do not play a significant role in the analysis. We also prescribe the time
derivative of the metric tensor,

Oi8ij = —2kj,

in such a way that k is the second fundamental form of the surface X, k(X,Y) =
—g(Dxn,Y), where n = Jy is the future-oriented unit normal vector-field on
Yo. The conditions Ty, = 0, a € {0, 1,2, 3}, can be used to determine the other
components of the initial data for the pair (g, ) on the hypersurface ¥g, which
are

8ij = 9ijs 8oi = 8io = 0, goo = —1,
Gt —ij o i —

Ongij = ~2kij,  Orgoo =29"kij,  Oiguo =770iG5, — 597 0uTs;, (123)

w = wOa 815'1,/1 = ’1/11.

The remaining restrictions 9;I', = 0 lead to the constraint equations. In
view of (1.1.20) the constraint equations are equivalent to the conditions Rqo —
(1/2)Rgao = Tao, o € {0,1,2,3}, where Typ is as in (1.1.2). This leads to four
constraint equations

R+39g"" (kijkmn — kimkjn) = ¢35 + 37 Dt D 3 124
R+g g (1] mn m ]n)_wl +g ﬂ% ]¢O+w07

where D denotes the covariant derivative induced by the metric g on X¢, and R
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is the scalar curvature of the metric g on .
We are now ready to state our first main theorem, which concerns global
regularity of the system (1.1.19) for small initial data (g,;, kij, V0, %1)-

Theorem 1.3. Let X := {(z,t) € R* : t = 0} and assume that (g;;, kij, o, Y1)
is an initial data set on Yo, satisfying the constraint equations (1.2.4) and the
smallness conditions

3 3
SO AlIvpEAg, - 5ij)HHggﬂnu>m + || |V|_1/2+5/4kij||Hggunam}
n=0i,j—1 ’

, (1.2.5)
+ 2 Moy + Wil gyt < 0 <=

Here Ny := 40, d := 10, § := 107°, N(0) := No + 16d, N(n) = No — nd for
n > 1, € is a small constant, and the operators |V| and (V) are defined by the
multipliers || and (£).

(i) Then the reduced Einstein-Klein-Gordon system

Oe8as + 2001037 + 1 8ap — F3 (g,9g) =0,
Ogtp — ¢ =0,

admits a unique global solution (g,v) in M = {(x,t) € R* : t > 0}, with
initial data (g;;, kij,o,191) on Yo (as described in (1.2.3)). Here Fjg(g,ag)

are as in (1.1.15) and Iig = g"0,0,. The solution satisfies the harmonic
gauge conditions

(1.2.6)

(07 1 (03
0=T, =g"0.gs, — 38 0,808, we {0,1,2,3} (1.2.7)

in M. Moreover, the metric g stays close and converges to the Minkowski metric
and ¥ stays small and converges to 0 as t — oo (in suitable norms).

(ii) In view of Proposition 1.1, the pair (g,) is a global solution in M of
the Finstein-Klein-Gordon coupled system

wQ
Rog — DoyYDgyp — 7ga5 =0, gt — 1 =0, (1.2.8)

with the prescribed initial data (gij, kij, o, ¥1) on Xo. In our geometric context,
globality means that all future directed timelike and null geodesics starting from
points in M extend forever with respect to their affine parametrization.

The proof of Theorem 1.3 is based on a complex bootstrap argument, involv-
ing energy estimates, vector-fields, Fourier analysis, and nonlinear scattering.
We summarize some of its main elements in subsection 1.3.1 below, and then
provide a more extensive outline of its proof in section 2.2.
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The global regularity conclusion of Theorem 1.3 is essentially a qualitative
statement, which can only be proved by a precise quantitative analysis of the
spacetime. In Chapter 7 we state and prove more precise theorems describing
our spacetime. These theorems include global quantitative control and nonlin-
ear scattering of the metric tensor and the Klein-Gordon field (Theorem 7.1),
pointwise decay estimates in the physical space (Theorem 7.2 and Lemma 7.4),
global control of timelike and null geodesics (Theorem 7.6), weak peeling es-
timates for the Riemann curvature tensor (Theorem 7.7 and Proposition 7.9),
and ADM and Bondi energy formulas (Proposition 7.11, Proposition 7.13, The-
orem 7.23, and Proposition 7.24). We will discuss some of these more precise
conclusions in section 1.3 below.

In the rest of this section we discuss previous related work and motivate
some of the assumptions on the initial data.

1.2.1 Global Stability Results in General Relativity

Global stability of physical solutions is an important topic in General Relativity.
For example, the global nonlinear stability of the Minkowski spacetime among
solutions of the Einstein-vacuum equation is a central theorem in the field,
due to Christodoulou-Klainerman [12]. See also the more recent extensions of
Klainerman-Nicolo [52], Lindblad-Rodnianski [62], Bieri and Zipser [6], Speck
[72], and Hintz-Vasy [33].

More recently, small data global regularity theorems have also been proved
for other coupled Einstein field equations. The Einstein-Klein-Gordon system
(the same system we analyze here) was considered recently by LeFloch-Ma [58],
who proved small data global regularity for restricted data, which agrees with a
Schwarzschild solution with small mass outside a compact set. A similar result
was announced by Wang [74].

Our main goals in this monograph are (1) to prove global nonlinear stability
for general unrestricted small initial data, and (2) to develop the full asymptotic
analysis of the spacetime. In particular, we answer the natural question, raised
in the physics literature by Okawa-Cardoso-Pani [66], of whether the Minkowski
solution is stable or unstable for small massive scalar field perturbations. A
similar global regularity result for general small data was announced recently
by LeFloch-Ma [59].

We also refer to the work by Fajman-Joudioux-Smulevici [19], Lindblad-
Taylor [64], and, more recently, Bigorgne-Fajman-Joudioux-Smulevici-Thalleron
[7] on the global stability of Einstein-Vlasov systems.

In a different direction, one can also raise the question of linear and nonlinear
stability of other physical solutions of the Einstein equations. Stability of the
Kerr family of solutions has been under intense study in recent years, first at
the linearized level (see, for example, [13, 30] and the references therein) and
more recently at the full nonlinear level (see [26, 32, 54]).

The stability of Kerr in the presence of a massive scalar field seems interesting
as well. Solutions to the Klein-Gordon equation in Kerr can grow exponentially
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even from smooth initial data, as shown in [70], and this phenomenon was used
by Chodosh and Shlapentokh-Rothman [10] to construct a curve of time-periodic
solutions of the Einstein-Klein-Gordon system bifurcating from (empty) Kerr
(see [31] for a prior numerical construction). Therefore a result on stability of
Kerr similar to our main theorem could only be possible, if at all, in a stronger
topology where this curve is not continuous (see also the discussion on the mini-
bosons in subsection 1.2.5 below).

1.2.1.1 Restricted initial data

One can often simplify considerably the global analysis of wave and Klein-
Gordon equations by considering initial data of compact support. The point
is that the solutions have the finite speed of propagation, thus remain sup-
ported inside a light cone, and one can use the hyperbolic foliation method and
its refinements (see [56] for a recent account) to analyze the evolution.

However, to implement this method one needs to first control the solution on
an initial hyperboloid (the “initial data”), so the method is restricted to the case
when one can establish such control. Due to the finite speed of propagation,
this is possible for compactly supported data (for systems of wave or Klein-
Gordon equations), or data that agrees with the Schwarzschild solution outside
a compact set (in the case of the Einstein equations).

The use of “restricted initial data” coupled with the hyperbolic foliation
method leads to significant simplifications of the global analysis, particularly at
the level of proving decay. In the context of the Einstein equations these ideas
have been used by many authors, such as Friedrich [21], Lindblad-Rodnianski
[62], Fajman-Joudioux-Smulevici [19], Lindblad-Taylor [64], LeFloch-Ma [58],
and Wang [74].

1.2.2 Simplified Wave-Klein-Gordon Models

Our system (1.2.6) is complicated, but one can gain intuition by looking at
simpler models. For example, one can consider the simplified system

—Ou = Aa58av85v + Dv?,

(1.2.9)

(=04 1)v = uB*?9,85v + Euv,
where u, v are real-valued functions, and A*?, B®3 D, and E are real constants.
This system was introduced by LeFloch-Ma [57] as a model for the full Einstein-
Klein-Gordon system (1.2.6). Intuitively, the deviation of the Lorentzian metric
g from the Minkowski metric is replaced by a scalar function u, and the massive
scalar field ¢ is replaced by v. The system (1.2.9) has the same linear struc-
ture as the Einstein-Klein-Gordon system (1.2.6), but only keeps, schematically,
quadratic interactions that involve the massive scalar field; for simplicity, all the
quadratic interactions of the wave component with itself are neglected in this
model.
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Small data global regularity for the system (1.2.9) was proved by LeFloch-Ma
[57] in the case of compactly supported initial data (the restricted data case),
using the hyperbolic foliation method. For general small initial data, global
regularity was proved by the authors [38].

Global regularity of Wave-Klein-Gordon coupled systems in 3 dimensions is
a natural topic, motivated by physical models such as the Dirac-Klein-Gordon
equations, and had been investigated earlier by Georgiev [22] and Katayama
[44]. A similar system, the massive Maxwell-Klein-Gordon system, was analyzed
recently by Klainerman-Wang-Yang [55], who also proved global regularity for
general small initial data.

Coupled Wave-Klein-Gordon systems have also been considered in 2 dimen-
sions, where the decay is slower and the global analysis requires nonlinearities
with much more favorable structure (see, for example, Ifrim-Stingo [34] and the
references therein).

1.2.3 Small Data Global Regularity Results

The system (1.2.6) can be easily transformed into a quasilinear coupled system
of wave and Klein-Gordon equations. Indeed, let m denote the Minkowski metric
and write

as = Magp + haBa gaﬁ = maﬁ +g;?7 aaﬁ € {07 17273}

It follows from (1.2.6) that the metric components hyg satisfy the nonlinear
wave equations

(03 — A)hap = NPy = KGap + 9%10,0,hap — F 5 (9, 9) (1.2.10)

where FaZﬁQ(g, 0g) are the semilinear terms in (1.1.15) and KGqg := 20,9959 +
Y2(Mmap + hap). Moreover, the field 1 satisfies the quasilinear Klein-Gordon
equation

(35 — A+ 1)y = NY := g410,0,1). (1.2.11)

Therefore Theorem 1.3 can be regarded as a small data global regularity re-
sult for a quasilinear evolution system. Several important techniques have been
developed over the years in the study of such problems, starting with seminal
contributions of John, Klainerman, Shatah, Simon, Christodoulou, Alinhac, and
Delort [1, 2, 11, 12, 14, 15, 42, 43, 48, 49, 50, 51, 69, 71]. These include the
vector-field method, normal forms, and the isolation of null structures.

In the case of Einstein equations and other hyperbolic systems, most global
results have been proved mostly using the “physical space” framework, based on
pointwise spacetime estimates. This is well adapted to geometric backgrounds
with non-constant coefficients. The analysis is naturally carried out through
weighted estimates and relies heavily on the presence of symmetries (vector-
fields) that can be used to extract information about solutions. This is the
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main framework for many works on General Relativity, especially away from
Minkowski space and in vacuum or with electromagnetic and massless scalar-
fields, such as [6, 7, 12, 13, 19, 26, 52, 54, 58, 59, 62, 63, 64, 72].

1.2.3.1 Fourier analysis and the Z-norm method

In the last few years new ideas have emerged in the study of global solutions
of quasilinear evolutions, inspired mainly by the advances in semilinear theory.
The basic goal is to combine the classical energy and vector-fields methods with
refined analysis of the Duhamel formula, using the Fourier transform. This
starts by decomposing an unknown U into a superposition of elementary waves

1 =5 i[{x —
Uz, t) = W/Rd V(€ t)elle8—tA @l ge (1.2.12)

for some appropriate dispersion relation A. The main objective is then to un-
derstand quantitatively properties of the “linear profile” V during the evolution.

The main advantage of the Fourier transform method over physical space
methods is the ability to identify clearly resonant and non-resonant nonlinear
interactions, by decomposing the various waves as in (1.2.12) and examining
their interactions. One can then dispose of the non-resonant interactions (us-
ing, for example, normal forms), and concentrate on a small number of resonant
interactions. This is particularly important in low dimensions (like 1 or 2 di-
mension), when decay by itself cannot be enough to lead to global control of
solutions.

In semilinear dispersive and hyperbolic equations Fourier analysis is a central
tool that has led to major progress in the entire field. On the other hand,
in the context of quasilinear evolutions, Fourier analysis has only been used
more recently, starting essentially with the “method of spacetime resonances”
of Germain-Masmoudi-Shatah [24, 25] and Gustafson-Nakanishi-Tsai [29]. The
main difficulty in the quasilinear case is that the Duhamel formula cannot be
used exclusively to study the evolution, due to derivative loss, and one has to
rely also on energy estimates.

Our general philosophy, which we use in this monograph to prove Theorem
1.3, is to work both in the physical space, mainly to prove energy estimates (in-
cluding vector-fields), and in the Fourier space, mainly to investigate resonances
using the Duhamel formula and prove decay of the solutions in time. At the
implementation level, the analysis in the Fourier space is based on a choice of
a “Z-norm” to measure the size of the linear profiles dynamically in time. This
choice is very important, and one should think of it as analogous to the choice of
the “resolution norm” in the case of semilinear evolutions (the classical choices
being Strichartz norms or X*° norms). The key point is that the Z-norm has
to complement well the information coming from energy estimates.

The Z-norm method, with different choices of the norm itself, depending on
the problem, was used recently by the authors and their collaborators in several
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small data global regularity problems, for water waves and plasmas, such as
[16, 17, 27, 28, 35, 36, 37, 39, 40, 41, 46]. It is particularly well suited to the
study of systems with multiple characteristics, in which different components of
the system evolve according to different dispersion relations and have different
speeds of propagation, such as plasma models or the Einstein-Klein-Gordon
system (1.2.10)—(1.2.11). The point is that such systems tend to have fewer
joint symmetries, which complicates significantly the analysis in the physical
space, but the Fourier analysis method is much less sensitive to the presence of
symmetries.

1.2.4 Assumptions on the Initial Data

The precise form of the smallness assumptions (1.2.5) on the metric initial data
g;; and k;; is important. Indeed, in view of the positive mass theorem of Schoen-
Yau [68], one expects the metric components J;j — 0ij to decay no faster than
M/{x) and the second fundamental form k to decay no faster than M/{x)?
where M < 1 is the mass. Capturing this type of decay, using L2-based norms,
is precisely the role of the homogeneous multipliers |V|'/29/4 and |V|~1/2+3/4
in (1.2.5). Notice that these multipliers are sharp, up to the §/4 power.
Our assumptions on the metric are essentially of the type

gij = 0ij +€00((x) ), kij = goO((w) ) (1.2.13)

at time ¢ = 0. These are less restrictive than the assumptions used sometimes
even in the vacuum case ¢ = 0—see, for example, [12, 52, 63]—in the sense that
the initial data is not assumed to agree with the Schwarzschild initial data up to
lower order terms. For maximal time foliations, our assumptions are, however,
more restrictive than the ones in Bieri’s work [6], but we are able to prove more
precise asymptotic bounds on the metric and the Riemann curvature tensor; see
section 1.3 below.

We remark also that our assumptions (1.2.5) allow for non-isotropic initial
data, possibly with different “masses” in different directions. For the vacuum
case, initial data of this type, satisfying the constraint equations, have been
constructed recently by Carlotto-Schoen [9].

1.2.5 The Mini-bosons

A serious potential obstruction to small data global stability theorems is the
presence of non-decaying “small” solutions, such as small solitons. A remark-
able fact is that there are such small non-decaying solutions for the Einstein-
Klein-Gordon system, namely the so-called mini-boson stars. These are time-
periodic (therefore non-decaying) and spherically symmetric exact solutions of
the Einstein-Klein-Gordon system. They were discovered numerically by physi-
cists, such as Kaup [47], Friedberg-Lee-Pang [20] (see also [60]), and then con-
structed rigorously by Bizon-Wasserman [8].
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These mini-bosons can be thought of as arbitrarily small (hence the name) in
certain topologies, as explained in [8]. However, the mini-bosons (in particular
the Klein-Gordon component) are not small in the stronger topology we use
here, as described by (1.2.5), so we can thankfully avoid them in our analysis.

1.3 MAIN IDEAS AND FURTHER ASYMPTOTIC RESULTS

In this section we provide first a brief summary of some of the main ingredients
in the proof of the global nonlinear stability result in Theorem 1.3. Then, in
subsections 1.3.2-1.3.6 we present some of the additional theorems we prove in
Chapter 7, concerning the global geometry of our spacetime.

1.3.1 Global Nonlinear Stability

The classical mechanism to establish small data global regularity for quasilinear
dispersive and hyperbolic systems has two main components:

(1) Propagate control of energy functionals (high order Sobolev norms and
vector-fields);

(2) Prove dispersion/decay of the solution over time.

These are our basic goals here as well, as we investigate solutions of the
coupled Wave-Klein-Gordon system (1.2.10)—(1.2.11) in the variables hog and
1. As expected, our analysis also involves vector-fields, corresponding to the
natural symmetries of the linearized equations, namely the Lorentz vector-fields
I', and the rotation vector-fields €y,

Ty = 2,0; +t0,, Qap = 240 — 2504, (1.3.1)

for a,b € {1,2,3}. These vector-fields commute with both the wave operator
and the Klein-Gordon operator in the flat Minkowski space. We note that the
scaling vector-field S = t9; +x -V, does not satisfy nice commutation properties
with the linearized system (due to the Klein-Gordon field), so we cannot use it
in our analysis.

The main objects we analyze in the proof of nonlinear stability are the nor-
malized solutions U*"«# and UX¥ and the associated linear profiles V=P8 and
VEY  defined by

U Lhas (t) :== 0, (ﬁhaﬁ) (t) — iMpa (Ehag) (1), VEhas (t) == etthwaprLhas (1),

USY(t) := 0p( L) () — iMgg (L)(2), VEV(t) = MUY (1),
(1.3.2)

where Ayq = |V, Agg = (V) = /|V|? + 1. Here £ denotes differential opera-
tors obtained by applying up to three vector-fields I',, or Q;, and these operators
are applied to the metric components h,g and the field 1.

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

14 CHAPTER 1

The complex-valued normalized solutions U*"«# and U*¥ capture both the
time derivatives (as the real part) and the spatial derivatives (as the imaginary
part) of the variables h,g and . The linear profiles V<24 and V¥, which are
constructed by going forward in time along the nonlinear evolution, and then
going backwards in time along the linear flow, capture the cumulative effect of
the nonlinearity over time.

Our proof of global stability relies on controlling simultaneously three types
of norms, as part of a bootstrap argument:

(1) High order energy norms, involving Sobolev derivatives and the vector-
fields I';, and 45, with slow growth in time;

(2) Matching weighted estimates on the profiles V5"# and V4% in Sobolev
spaces, again with slow growth in time;

(3) Sharp uniform in time estimates on the Klein-Gordon profile V¥ and on
some parts of the metric profiles V8 in a suitable Z-norm to be defined.

We discuss these estimates in more detail in the rest of this subsection.

1.8.1.1 Energy estimates and weighted estimates on the profiles

The main energy estimates we prove as part of our bootstrap argument are
()91 <0) 492U ()] yacer + [UE )] ey S €0TED, (1.3.3)

for a suitable hierarchy of parameters n(L£) and H (L) that depend on the dif-
ferential operator £. We remark that the energy estimates we prove for the
metric variables U%"*# also contain significant information at low frequencies,
due to the operators |V|™'/2 and |V|<;, which are connected to the natural
|#| = decay of the metric components hag. The nonlinear propagation of the
low-frequency energy bounds is, in fact, the more subtle part of the argument.

The second component of our bootstrap argument consists of compatible
weighted estimates on the profiles V%5 and VA%, of the form

V2@ (1)) Pa(aaVER=2) (1) e

. , - (1.3.4)
+ 2 | Po(mVEY) (1) 22 S eot)T (D027 DR
for any k € Z, 1 € {1,2,3}, and differential operator £ containing at most
two vector-fields I', or €,,. Here Py denote Littlewood-Paley projections to
frequencies ~ 2* and 2+ = max(z,0) and = = min(z, 0) for any x € R.

The energy estimates (1.3.3) and the weighted estimates (1.3.4) are com-
patible, at the level of the important parameters H (L), n(£), H'(L), and n'(L)
that measure the slow growth in time and the Sobolev smoothness of the various
components.

The weighted estimates (1.3.4) imply almost optimal pointwise decay esti-
mates on the metric components and the Klein-Gordon field, with improved
decay at low and high frequencies, due to Lemma 3.9. We emphasize, however,
that weighted estimates on linear profiles are a lot stronger than pointwise de-
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cay estimates on solutions, and serve many other purposes. For example, space
localization of the linear profiles allows us to decompose the main variables both
in frequency and space, which leads to precise control in nonlinear estimates.

1.3.1.2  Weak null structure and decomposition of the metric tensor

The proof of the global stability theorem is involved, mainly because the non-
linearities \V. o}zLB and N'¥ have complicated structure, both at the semilinear level

(for NV gﬁ) and at the quasilinear level.

In particular, it is well known that the semilinear terms F' 552 (9,9g) do not

have the classical null structure. They have, however, a remarkable weak null
structure in harmonic coordinates, which is still suitable for global analysis as
discovered by Lindblad-Rodnianski [62]. To identify and use this weak null
structure we need to decompose the tensor hqg.

The standard way to decompose the metric tensor in General Relativity
is based on null frames (see, for instance, [12] or [62]). Here we use a different
decomposition of the metric tensor, reminiscent of the div-curl decomposition of
vector-fields in fluid models, which is connected to the classical work of Arnowitt-
Deser-Misner [3] on the Hamiltonian formulation of General Relativity. For us,
this decomposition has the advantage of being more compatible with the Fourier
transform and the vector-fields €, and T',.

More precisely, let R; = |V|719;, j € {1,2,3}, denote the Riesz transforms
on R3, and let

F .= (1/2)[h00 + RijhjkL E = (1/2)[h00 - Rijhjk},
p = thoj, Wj =E Kl Rkhob (135)
Qj =5kl Ry Ry him, 79jk =€ impCkng RmRnhpq-

Geometrically, the variables F'+ I, p, and w are linked to the lapse and the shift
vector, F' — F and 2 are gauge components associated to spatial coordinates,
while ¢ corresponds to the (linearized) coordinate-free component of the spatial
metric (see Proposition 7.14). The metric tensor h can be recovered linearly
from the components F, F, p,w;, Q;, 0.

Our analysis shows that the components F,w;,$);, 9, satisfy good wave
equations, with all the quadratic semilinear terms having suitable null structure.
On the other hand, the components F' and p (which are related elliptically due
to the harmonic gauge conditions) satisfy wave equations with some quadratic
semilinear terms with no null structure. However, these non-null quadratic
semilinear terms have the redeeming feature that they can be expressed only in
terms of the good components ¥y.

This algebraic structure suggests that we should aim to prove that the good
components F,wj,§2;,9;; do not grow during the evolution, in suitable norms
to be made precise. On the other hand, the components F', p, as well as all the
components Lhg and L1 which contain some weighted vector-fields Q4 or I'g,
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should be allowed to grow in time slowly, at suitable rates to be determined. We
note that our vector-fields are adapted to the Minkowski geometry, containing
the coordinate functions z, and t, not to the true geometry of the spacetime;
thus it is expected that they can only be useful only up to (¢)°F losses. At a
qualitative level, this is precisely what our final conclusions are.

1.3.1.3 Uniform bounds and the Z-norm

To prove uniform control on the good metric components F,wj;, §2;,9;, and the
field ¥ we use what we call the Z-norm method: we define the special norms

L _
1 £l Zopa = ilélz?N"k 28 00| Py fl oo,

B Nkt o~ (12— ) 1| B (1.3.6)
£z, = %2 2 [P fll o
S

where Ny = 40 and x = 1073. The last component of our bootstrap construction
involves uniform bounds of the form

IVEO zuo + IV )|z + IV Ol 200 + VIOl 2y S0, (1.3.7)

for any t € [0,00) and a,b € {1,2,3}, where the profiles V¢ are defined in as
(1.3.2),

UC(t) := 0,G(t) — ihpoG(t),  VE(t):= erealU%(1), (1.3.8)

for G € {F,wq,Y4p}. The main point of the estimates (1.3.7) is the uniformity in
time, in particular allowing us to prove sharp £o(t) ! pointwise decay on some
components of the metric tensor.

The Z-norms defined in (1.3.6) measure the L norm of solutions in the
Fourier space, with weights that are particularly important at low frequencies.
They cannot be propagated using energy estimates, since they are not L2-based
norms. We use instead the Duhamel formula, in the Fourier space, which leads
to derivative loss. Because of this the Z-norm bounds (1.3.7) are weaker than
the energy bounds (1.3.3) at very high frequencies. One should think of the
Z-norm bounds as effective at middle frequencies, say (t)~1/2 < 2F < (t)1/2,

1.3.2 Nonlinear Scattering

The global dynamics of solutions is complicated mainly because they do not
scatter linearly as ¢ — oco. This is due to the low frequencies of the metric
tensor in the quasilinear terms g4" 9,0, hap and g% 9,,0,1, which create a long-
range perturbation. - B

To understand the asymptotic behavior of our spacetime we need to renor-
malize the profiles. More precisely, we define the wave phase correction (related
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to optical functions)

t
A’LU(Z
Oua(ert) = [ M (s8/Aa().5) 225
0 ce (1.3.9)
B (56 Mua(©), )65 + W (5 Mua(€), ) 320 | ds
and the Klein-Gordon phase correction
t
A
Ony(6rt) = [ {5 (/Mg (6),9) 22
0 ” (1.3.10)
+ B (56 vy (€), )8 + IR (56 Mg €),9) 5322 5 } s
where hfl"é” are low frequency components of the metric tensor,
@U(Pa s) = p<o((8)°p)hap(p,s),  po = 0.68. (1.3.11)

The choice of py, slightly bigger than 2/3, is important in the proof to justify the
correction. Geometrically, the two phase corrections ©,, and Oy, are obtained
by integrating suitable low frequency components of the metric tensor along the
characteristics of the wave and the Klein-Gordon linear flows.

The nonlinear profiles are obtained by multiplication in the Fourier space,

VE(E 1) 1= e OmEOVE(e 1), VI(E 1) = e OHEOVIE ), (13.12)

for G € {F,w,,¥a}. Notice that [|[VEz,. = [[VE|z,. and [|[Vi¥]z, =
V%] z,,, since the phases O, and Oy, are real-valued. The point of this
construction is that the new nonlinear profiles V,f', Ve, V% and VY converge
as the time goes to infinity, i.e.,

IV () = Vil 2 + V2 () = V22| 2,0 + IV (8) = Vi | 2,00 S £0(8) /2,

V() = VEllzi, S eolt)™,
(1.3.13)

wa

where VI V@ VVar € Z,, and V¥ € Zy, are the nonlinear scattering data.
These functions, in particular the components V;Z;lb and V¥, are important in
the asymptotic analysis of our spacetime. Chapter 5 is mainly concerned with
the proofs of the bounds (1.3.13).

1.3.3 Asymptotic Bounds and Causal Geodesics

Our core bootstrap argument relies on controlling the solution both in the phys-
ical space and in the Fourier space, as summarized above. However, after closing
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the main bootstrap argument, we can derive classical bounds on the solutions
in the physical space, without explicit use of the Fourier transform.
We start with decay estimates in the physical space. Let

L= 6t+8r7 LZ: at—ar7 (1314)
where r := |z| and 0, := |z|"1279;. Let
T o= {L,r 'Qu2,7 " Qo3, 77 Q31 } (1.3.15)

denote the set of “good” vector-fields, tangential to the (Minkowski) light cones.
In Theorem 7.2 we prove that the metric components satisfy the bounds

\h(z, )] + (t + 1) 0vh(z, 1) + (t — )| Oph(z, t)] S solt + )21, (1.3.16)

in the manifold M := {(z,t) € R? x [0,00)}, where r = |z|, V € T, h € {hag},
ow = W*9,, and &' = 20005. The scalar field decays faster but with no
derivative improvement,

[ (x, t)] + 180y (. )] S et + )/~ (r) ™2,

, (1.3.17)
1Oz, )| S eolt +1)° /2732 be{1,2,3}.

Also, in Lemma 7.4 we show that the second order derivatives to the metric
satisfy the bounds

(r)?[0v, 0w, h(, t)] + (¢ — )?|0L Az, 1))

, (1.3.18)

+ (t = r){(r)|OLdv h(e, )] < eo(r)® 1,
in the region M’ := {(z,t) € M : t > 1, |z| > 275}, where V1, V5 € T are good
vector-fields.

The pointwise bounds (1.3.16)—(1.3.18) are as expected, including the small
0’ losses that are due to our weak assumptions (1.2.13) on the initial data. These
bounds follow mainly from the profile bounds (1.3.4) and linear estimates.

As an application, we can describe precisely the future-directed causal geo-
desics in our spacetime M. Indeed, in Theorem 7.6 we show that if p =
(p°, pt, p%, p?) is a point in M and v = v*9, is a null or timelike vector at
p, normalized with v® = 1, then there is a unique affinely parametrized global
geodesic curve v : [0,00) = M with

7(0)=p=©%p"p%p%),  4(0)=v= (" 0" v 0?).

Moreover, the geodesic curve v becomes asymptotically parallel to a geodesic

line of the Minkowski space, i.e., there is a vector vy, = (v, vl ,v2 ,v3)) such

o0 Yoo Yoo Yoo
that, for any s € [0, o),

5(5) = voo| S e0(1+8) 7% and  |3(s) — veos — p| S eo(1 + )%
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1.3.4 Weak Peeling Estimates

These are classical estimates on asymptotically flat spacetimes, which assert,
essentially, that certain components of the Riemann curvature tensor have im-
proved decay compared to the general estimate |R| < eo(t + r)~1H(t — )72
The rate of decay is mainly determined by the signature of the component.

More precisely, we use the Minkowski frames (L, L, e, ), where L, L are as in
(1.3.14) and e, € Ty, := {r Q12,77 1Q03, 771031}, and assign signature +1 to
the vector-field L, —1 to the vector-field L, and 0 to the horizontal vector-fields
in 7p,. With eq, ez, e3,e4 € Tp,, we define Sig(a) as the set of components of the
Riemann tensor of total signature a, so

) { (L e1, L, 62)},
) { (L eleﬂeQ)}v
Sig( 1) :={R(L,e1,e2,e3),R(L,L,L,e1)},
):={R(L,e1,e2,e3),R(L,L,L,e1)},
(0) := {R(e1, e2,e3,e4), R(L, L, e1,e2), R(L, €1, L, e2),R(L,L, L, L)}
(1.3.19)

These components capture the entire curvature tensor, due to the symmetries
(1.1.11).
In Theorem 7.7 we prove that if ¥,y € Sig(a), a € {-2,—1,1,2}, then

Wy (@, t)] S eo(r)™ Mt — )72,
W1y (@, )] S eo(r)™ 2t —r) 71, (1.3.20)
| o) ()| + [0y (2, 8)] + [ W0y (2, 8)] S 20 (r)™ 2,
in the region M’ = {(z,t) € M : t > 1 and |z| > 278¢}. This holds in all cases

except if W (g is of the form R(L, ey, L, e3) € Sig(0), in which case we can only
prove the weaker bounds

IR(L,e1, L, ex) (2, 1) S o)™ 2t — )L (1.3.21)

Notice that we define our decomposition in terms of the Minkowski null pair
(L, L) instead of more canonical null frames (or tetrads) adapted to the metric
g (see, for example, [12], [52], [53]). This is not important however, since the
weak peeling estimates are invariant under natural changes of the frame of the
form (L,L,e,) — (L', L', ¢)), satisfying

(L= L), )] + (L~ L)@, )] + (0 — €)@, )] S 727 in M.

As we show in Proposition 7.9, one can in fact restore the full go(r)7 =3 de-
cay of the component R(L', e}, L’ e}), provided that L’ is almost null, i.e.,
g(L, L) (@, )] S (r) 2+ in M.
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The almost cubic decay we prove in (1.3.20)—(1.3.21) seems optimal in our
problem, for two reasons. First, the Ricci components themselves involve squares
of the massive field, and cannot decay better than (r)~3% in M’. Moreover, the
almost cubic decay is also formally consistent with the weak peeling estimates
of Klainerman-Nicolo [53, Theorem 1.2 (b)] in the setting of our more general
metrics (formally, one would take v = —1/2— and § = 2+ with the notation in
[53], to match our decay assumptions (1.2.13) on the initial data; this range of
parameters is not allowed, however, in [53] as ¢ is assumed to be < 3/2).

1.3.5 The ADM Energy and the Linear Momentum

The ADM energy (or the ADM mass) measures the total deviation of our space-
time from the Minkowski solution. It is calculated according to the standard
formula (see, for example, [4])

1 z"

= Tor AL, (Oi8ni — Ongii) o (1.3.22)

Fapm (t) :
where the integration is over large (Euclidean) spheres Sg; C ¥, = {(z,t) :
r € R3} of radius R. In our case we show in Proposition 7.11 that the energy
Eaprm(t) = Eapay is well defined and constant in time. Moreover, it is non-
negative and can be expressed in terms of the scattering profiles V¥ and VZmn
(see (1.3.13)) according to the formula

1 1
E = — VL3, + — Vomn|2,. 1.3.2

We can also prove conservation of one other natural quantity, namely the
linear momentum. Let N denote the future unit normal vector-field to the
hypersurface ¥y, let §,, = gap» denote the induced (Riemannian) metric on ¥,
and define the second fundamental form

kap := —g(DaaN, 8;,) = g(N, Daa’ab) = N“I‘Mb, a,be {1, 2, 3}
Then we define the linear momentum p,, a € {1,2, 3},

1 . xb _
pa(t) := o ngnoo - ﬂabm dz, Tab = kap — (t1k)Gops

In Proposition 7.13 we prove that the functions p, are well defined and constant
in time. Moreover, we show that > ;55 p2 < E%p,;, so the ADM mass

Mapr = (E3pa — D123} p2)1/2 > 0 is well defined.

We remark that the momentum p, vanishes in the case of metrics g that
agree with the Schwarzschild metric (including time derivatives) up to lower
order terms. In particular, it vanishes in the case of metrics considered in earlier
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work on the stability for the Einstein vacuum equations, such as [12, 52, 62].
However, in our non-isotropic case the linear momentum does not necessarily
vanish, and the quantities p, defined above are natural conserved quantities of
the evolution.

1.3.6 The Bondi Energy

To define a Bondi energy we have to be more careful. We would like to compute
integrals over large spheres as in (1.3.22), and then take the limit along outgoing
null cones towards null infinity. But the limit exists only if we account properly
for the geometry of the problem.

First we need to understand the bending of the light cones caused by the
long-range effect of the nonlinearity (i.e., the modified scattering). For this we
construct (in Lemma 7.19) an almost optical function u : M’ — R, satisfying
the properties

w(z,t) = x| —t+u"(z,t),  g*P0qudsu = O(eo(r)2t%).  (1.3.24)

In addition, the correction u®" = O(go(r)??) is close to Ouq/|z| (see (1.3.9))
near the light cone,

ucor(x7 t) _

w‘ < eolr) I ((1)065 (1 — [, (1.3.25)

||

if (x,t) € M', |t—|z|| < t/10. Notice that we work with an approximate optical
condition g*?d,udsu = O(go(r)~216%") instead of the classical optical condition
g*¥9,udsu = 0. This is mostly for convenience, since the weaker condition is
still good enough for our analysis and almost optical functions are much easier
to construct than exact optical functions.

For any ¢t > 1 we define the hypersurface ¥; := {(z,t) € M : x € R3},
and let g, = g;i denote the induced (Riemannian) metric on ;. With u as
above, we define the modified spheres Sg, = {z € ¥; : u(z,t) = R} and let
n; = 9;u(g®d,udpu)1/? denote the unit vector-field normal to the spheres
Sk For R € R and t large (say t > 2|R| + 10) we define

1 ,
EBonai(R) := — lim 7% (8uhjp — Ojhap)0? do, (1.3.26)

t— u
167 o SR,t

where do = do(g) is the surface measure induced by the metric g. Notice that
this definition is a more geometric version of the definition (1.3.22), in the sense
that the integration is with respect to the metric g. Geometrically, we fix R and
integrate on surfaces S , that live on the “light cone” {u(z,t) = R}

In Theorem 7.23 we prove our main result: the limit in (1.3.26) exists, and
EBongi : R — R is a well-defined increasing and continuous function on R, which
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increases from the Klein-Gordon energy Ex g to the ADM energy Eapa, i-e.,

Rlm Eponai(R) = Exc = %HVSQH%% Aim Eponai(R) = Eapum.
(1.3.27)

The definition (1.3.26) of the Bondi energy is consistent with the general
heuristics in [73, Chapter 11] and with the definition in [67, Section 4.3.4].
It also has expected properties, like monotonicity, continuity, and satisfies the
limits (1.3.27).

However, it is not clear to us if this definition is identical to the definition
used by Klainerman-Nicolo [52, Chapter 8.5], starting from the Hawking mass.
In fact, at the level of generality of our metrics (1.2.13), it not even clear that
one can prove sharp r—2 pointwise decay on some of the signature 0 components
of the curvature tensor, which is one of the ingredients of the argument in [52].

We notice that the Klein-Gordon energy Ex¢ is part of Eponqi(R), for all
R € R. This is consistent with the geometric intuition, since the matter travels
at speeds lower than the speed of light and accumulates at timelike infinity, not
at null infinity. We can further measure its radiation by taking limits along
timelike cones. Indeed, for a € (0,1) let

n

1 . x
Ei+ (a) = E tll)n’olo o (ajhnj — 8nh”)m dif, (1328)

where the integration is over the Euclidean spheres S,:; C ¥ of radius at. In
Proposition 7.24 we prove that the limit in (1.3.28) exists, and F;+ : (0,1) > R
is a well-defined continuous and increasing function, satisfying

lim Efr (Oé) = O7 hIn1 Ei+ (Oz) = EKG’~ (1329)
a—

a—0

1.3.7 Organization

The rest of this monograph is organized as follows:

In Chapter 2 we introduce our main notations and definitions and state
precisely our main bootstrap Proposition 2.3. This proposition is the key quan-
titative result leading to global nonlinear stability, and its proof covers Chapters
3, 4,5, and 6. Then we provide a detailed outline of the proof of this proposition,
describing at a conceptual level the entire construction and the main ingredients
of the proof.

In Chapter 3 we prove several important lemmas that are being used in
the rest of the analysis, such as Lemmas 3.4 and 3.6 on the structure and
bounds on quadratic resonances, Lemma 3.9 concerning linear estimates for
wave and Klein-Gordon evolutions, and Lemmas 3.10-3.12 concerning bilinear
estimates. Finally, we use these lemmas and the bootstrap hypothesis to prove
linear estimates on the solutions and the profiles, such as Lemmas 3.15 (localized
L? bounds) and Lemma 3.16 (pointwise decay).
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In Chapter 4 we analyze our main nonlinearities LN O% and LN at a fixed
time t. The main results in this chapter are Proposition 4.7 (localized L%, L,
and weighted L? bounds on these nonlinearities), Lemmas 4.19-4.20 (identifi-
cation of the energy disposable nonlinear components), and Proposition 4.22
(decomposition of the main nonlinearities).

In Chapter 5 we prove the main bootstrap bounds (2.1.50) on the energy
functionals. We start from the decomposition in Proposition 4.22, perform ener-
gy estimates, and prove bounds on all the resulting spacetime integrals. The
main spacetime bounds are stated in Proposition 5.2, and are proved in the rest
of the chapter, using normal forms, null structures, angular decompositions, and
paradifferential calculus in some of the harder cases.

In Chapter 6 we first prove the main bootstrap bounds (2.1.51) (weighted
estimates on profiles) in Proposition 6.2, as a consequence of the improved energy
estimates and the nonlinear bounds in Proposition 4.7. Then we prove the main
bootstrap bounds (2.1.52) (the Z-norm estimates). This proof has several steps,
such as the renormalization procedures in (6.2.4)—(6.2.6) and (6.3.3)—(6.3.4), and
the estimates (6.2.14) and (6.3.16) showing boundedness and convergence of the
nonlinear profiles in suitable norms in the Fourier space.

In Chapter 7 we prove a full, quantitative version of our main global regular-
ity result (Theorem 7.1) as well as all the other consequences on the asymptotic
structure of our spacetimes, as described in detail in subsections 1.3.3-1.3.6
above.

1.3.8 Acknowledgements
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FRG grant DMS-1463753. The second author was supported in part by NSF
grant DMS-1362940 and by a Sloan Research fellowship.
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Chapter Two

The Main Construction and Outline of the Proof
2.1 SETUP AND THE MAIN BOOTSTRAP PROPOSITION
In this section we introduce most of our notations and definitions and state our

main bootstrap proposition.

2.1.1 The Nonlinearities N; and N'¥
Let m denote the Minkowski metric and write

gaB = Map + haﬁv ga[ﬂ = maﬁ + g;? (2'1'1)
We start by rewriting our system as a Wave-Klein-Gordon coupled system:

Proposition 2.1. Assume (g,v) in a solution in R® x [0,T] of the reduced
FEinstein-Klein-Gordon system in harmonic gauge (1.2.6)—(1.2.7). For o, €
{0,1,2,3} we have

(03 = Ahap = Nls 1= KGag + ¢41 0,0, hap — F 5 (9,09), (2.1.2)
where
KGap = 20010051 + 9% (Mag + hag). (2.1.3)
Moreover,
(05 — A+ 1)y =NV := g410,0,1). (2.1.4)

In addition, the nonlinearities FaZBQ (g,09) admit the decompositions

F3(9.09) = Qap + P, (2.1.5)
where
Qag = 8" 8 (BahpxIphpr — Dy ahsy)
+ 87 g™ (DphyxOphar — Oy s Ophan)
+ (1/2)8" & (Oxhppr Oshar — Ol Orhan) (2.1.6)
+(1/2)877 8™ (O hpp Oahipy — OahipyOrhis)
B gpp/g/\/\/(aAho‘P'aﬂhﬁA’ — Ophap Orhpx) + gpp/g/\/\/ap'hax@phm
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and

1 ’ ’ 1 ’ ’
Pag = 7§gpp g)‘)‘ 8ahp/>\/aghp)\ + ngp gM 8ahpp185hM/. (2.1.7)

Proof. The identities (2.1.2) and (2.1.4) follow directly from the system (1.2.6).
The identities (2.1.5), which allow us to extract the null components of the semi-
linear nonlinearities, follow by explicit calculations from the identities (1.1.15);
see, for example, [58, Lemma 4.1] and notice that d,h,, = 0,9,.- O

We often need to extract the linear part of the matrix giﬁa . So we write
927 = ¢%% + 20 and use the identity

05 = g8y = (M +g7" + 935)(mp, + hg)p)
= 6;3’1 + (maphﬁp + glapmﬁp) + (gfphgp + g;gmgp + g;ghgp).

Therefore, we can define g‘f‘ﬁ and g;g by

00 _ 0j _ j§0 ik
g1~ = —hoo, 91 =91 = hoj, g1 = —Nhjk,

« « (0% (2'1'8)
935mgp + gS5he, + 91 he, = 0.

2.1.1.1 The quadratic nonlinearities

We identify now the quadratic components of the nonlinearities N fjﬁ and NV,
which play a key role in the nonlinear evolution. We start from the identities
(2.1.2) and rewrite them in the form

Nls = g% 00has + Y. 9210u00hap + KGap — F23(9,09).
(11:2) #(0,0)

We would like to eliminate the terms that contain two time derivatives, in order
to express the nonlinearities in terms of the normalized solutions U"e# and UY
(defined in (2.1.32) below). Indeed, since 93hag = Ahag + N5, we have

NPy = (1 - ggol)*l[ S 0.0 has + 9% Ahas + KGas — Fjg(g,ag)]

(1,v)#(0,0)
(2.1.9)
Recall the decomposition of the metric components,
g% = m 4 g0 = mP 4 g0 4 925, (2.1.10)

into the Minkowski metric, a linearized metric, and a quadratic metric. Using
this decomposition we extract the quadratic components of the nonlinearity

NIZ =KGls + Q25 + 825, (2.1.11)
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where KG? 5 are semilinear quadratic terms that involve the Klein-Gordon field,

KG2 5 := 20a1p051 + 9> mag, (2.1.12)

2 o1
Q. are quasilinear quadratic terms,

2= Y g 0u0hap + g0 Dhag
(1,)#(0,0) (2.1.13)
= 7h00Aho‘5 + 2h0j(906jha5 — hjkﬁjakhag,

(compare with the formulas (2.1.9)), and
52;3 = *(Qiﬁ + P(zﬁ)
are semilinear quadratic terms that involve the metric components, where
iﬁ = mpp/m)‘x (8ahp/,\/8ph5>\ — 8php/,\/aah5,\)
+ mpplm)\/\, (65h,,w8pha,\ — 8php/,\/aﬂhak)
+ (I/Q)mpp/m»‘/ (a)\’hpp’aﬁha)\ —_ 8ﬁh’pp/aA/hoc)\) (2114)
+ (1/2)mpp/m>\)\,(8>\’hpp’ 8ahﬂ)\ - aahpp’a)\’ hﬂ)\)
— mpp,mM/ (6Ahap/8phﬁx — 8phap/a)\h/g)\/ — 8p/ha)\/8ph5,\)

and
2 1 pp AN 1 op AN
Pig = —gm”'m Oahp A Oghoy + e m Oahppr Oghan . (2.1.15)

Compare with the formulas (2.1.6)—(2.1.7). Let Nh 23 . =N N denote
the cubic and higher order components of A (i‘
Similarly, Klein-Gordon nonlinearities deﬁned in (2.1.4) can be written as

NY = > g40,0,0+90 050 = D ¢410,0,0+9% (A= +NY).

(p,v)#(0,0) (k,v)#(0,0)
Therefore
NY =(1-g%1)" 1[ > 40,0, + g% (AY — w)} (2.1.16)
(k,v)#(0,0)

Using also the identities (2.1.8) we extract the quadratic component of N'¥,

NP2i= 0 Y g 0,0,4 + ¢ (A —¢)
(1:1)#(0,0) (2.1.17)

= —hoo(AY — ) + 2h;000;9 — h;j10;0k,
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and let N'¥'23 := N'¥ — N'¥:2 denote its cubic and higher order component.

2.1.2 The Fourier Transform and Frequency Projections

We will use extensively the Fourier transform and the Fourier inversion formula
on R3,

1
(2m)% Jps

F©)e =€ de,

(2.1.18)
defined for suitable functions f : R3 — C. We fix ¢ : R — [0, 1] an even smooth
function supported in [—8/5,8/5] and equal to 1 in [-5/4,5/4]. For simplicity
of notation, we also let ¢ : R® — [0, 1] denote the corresponding radial function
on R3. For any k € Z and I C R let

or(@) = e(xl/2) —(jzl/257), o= ) om.
melnZ

FO=FN©:= | f@e " dv,  fla)=

For any B € R let

P<B ‘= P(~00,B]y ¥P>B ‘= P[B,0)y P<B = P(~00,B): P>B ‘= P(B,x0)-
For any a < b€ Z and j € [a,b]NZ let
vj ifa<j<b,
[a,b]

;= v<e ifj=a, (2.1.19)
©>b lf] =b.

Let Py, k € Z, (vespectively Pr, I C R) denote the operators on R? defined
by the Fourier multipliers £ — ¢ (§) (respectively &€ — ¢;(€)). For simplicity of
notation let P = Pjy_2 4.

For any z € Z let 7 = max(x,0) and = := min(z,0). Let

T = 1{(kj) €LX Ty i+ 20},
For any (k,j) € J let

p<_p(x) fk+j=0and k<0,
@gk)(x) = 9 p<o(x) ifj=0and k>0,
() ifk+j>1andj>1,

and notice that, for any k € Z fixed, ij_min(kp) @5&) =1
For (k,j) € J let Q; 1 denote the operator

(Qirf)(@) =G (@) - Prf(w). (2.1.20)
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In view of the uncertainty principle the operators @); ; are relevant only when
272k > 1, which explains the definitions above.

We will often estimate bilinear interactions, like products of two functions.
For k € Z let

Xk = {(k‘l, k‘g) S Z2 : |max(k, k‘l, kg) — med(k‘, kil, k2)| < 4} (2.1.21)

Notice that Py(Pg, f - Pr,g) = 0 if (k1,k2) ¢ X.

2.1.3 Vector-fields
Recall the vector-fields I'; and €2, defined in (1.3.1),

T;:= x]ﬁt + taj, Qjp = xjak — .rkaj

for j,k € {1,2,3}. These vector-fields satisfy simple commutation relations,
which can be written schematically in the form

[0,0] =0, [0,9Q] =0, [0, =0,

2.1.22

[Q,Q] = Q, Q,T] =T, [, T] = Q, ( )
where 0 denotes generic coordinate vector-fields, ) denotes generic rotation
vector-fields, and T" denotes generic Lorentz vector-fields. For o = (o, a, a3) €
(Z,)? we define

0% 1= 071052053, 0% = Q530570703 re.=Trreeree. (2.1.23)
For any n,q € Z we define VI as the set of differential operators of the form

V= {L=TQ": |a| + [b] <7, q(L) == |a| < ¢} (2.1.24)

Here q(£) denotes the number of vector-fields transversal to the surfaces ¥, :=
{(x,t) € R® x R: t = a}. We remark that in our proof we distinguish between
the Lorentz vector-fields I' (which lead to slightly faster growth rates; see the
definition (2.1.49)) and the rotational vector-fields Q. Notice that, for any o €
{0,1,2,3} and any £; € VI, Ly € V2, we have

ny?

L1L5 = sum of operators in Vzlligi,

[0, £1] = sum of operators of the form dgL’, 5 € {0,1,2,3}, L e V' _,.

(2.1.25)

2.1.4 Decomposition of the Metric Tensor

Let R; = |V|719;, j € {1,2,3}, denote the Riesz transforms on R?, and notice
that 6;,R;R; = —I. To identify null structures we use a double Hodge de-
composition for the metric tensor, which is connected to the work of Arnowitt-
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Deser-Misner [3] on the Hamiltonian formulation of General Relativity.

Recall the variables F, F, p,w;, Q;,¥;; defined in (1.3.5). To include vector-
fields we need to expand this definition. More precisely, given a symmetric
covariant 2-tensor H,g we define

[H]
[H]
= plH] := R; Hy;,
wj = wj[H] =€ ReHor,
Q; = Q;[H] =€ R Ry Him,
?9jk = ﬁjk[H} =CimpChng RmRanq.
Notice that w[H] and Q[H] are divergence-free vector-fields,
Ryw;[H] =0,  R;Q[H] =0, (2.1.27)
and Y[H] is a symmetric and divergence-free tensor-field,
19jk[H] = ﬁkj[HL Rjﬁjk[H] =0, Rkﬁjk[H] =0. (2.1.28)

This provides an orthogonal decomposition of hyg in terms of {F, F, p,w, 2,9}
(see Lemma 7.16). Using the general formula €,,,1€pqk= OmpOng — OmqOnp We
notice that we can recover the tensor H according to the identities

Hoo = F[H] + F[H],

Hoj = —RjplH|+ €5 Ryw[H],

Hj, = Rij(F[H] —E[H]) — (€kim R+ €jim Rk)RlQm[H}
+ €jpmEign BpRq¥mn[H].

(2.1.29)

We often apply this decomposition to the tensor Hyg = Lhog, £ € Vi. As a
general rule, here and in other places, we first apply all the vector-fields to the
components hqg, and then take the Riesz transforms. So we define the variables

G* := G[Lh), G € {F,F,p,w;, Qj, 91} (2.1.30)

For simplicity of notation, let G = G4, G € {F, F, p,w;,$;, 9}, corresponding
to the identity operator £ = Id. As a consequence of the harmonic gauge
condition, we will show in Lemma 4.15 that the main dynamical variables are
F,F,w; and the traceless part of ¥;;, while the variables p and €;, can be
expressed elliptically in terms of these variables, up to quadratic remainders.
This is important in identifying suitable null structures of the nonlinearities
N5 in section 4.3.

This 3 + 1 formalism, where the spacetime is foliated by time slices X,
is commonly used in general relativity, and is connected to the Hamiltonian
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formulation of Einstein’s equations (see e.g. [3, 65]). In this context, one can
think of the unknowns being evolved as the spatial metric § and the second
fundamental form k. The foliation defines two kinematic objects: the lapse N
and shift vector-field N;, which in our setting determine F'4 F and p, w through
the Hodge decomposition on ¥;:

N = (=¢")""? =1~ hoo/2+ O(h*) = —(F + F)/2 + O(h?),

. B (2.1.31)
N;j = hoj = =05(IVI" " p)+ €jw1 O (IV]™ w1

Two other gauge components (F' — F) and 2 are associated to choices of coor-
dinates on X; through the Lie-derivative of the Euclidean metric ¢ gq.:

gjk = 9gjk = (LXéEucl)jk+ € jpm Ekqn Rquﬁmm
1
Xa = §a¢1‘v‘_2(F - E)_ Cabe 6b(|v|_2Q)cv (LxéEucl)jk = aJXk + 8kXJ
Finally, the last component ¥ is (to first order) coordinate-independent on X;.
Proposition 7.14 shows that it can be understood as the expression of the Rie-

mannian metric on ¥y in spatially harmonic coordinates. This quantity plays a
central role in our analysis.

2.1.5 Linear Profiles and the Z-norms

We define the normalized solutions Ules, UF, UL, UP, U¥s, U, UYar UV
and their associated linear profiles Vhes VE VE yr ywa YV YV V¥
o, 8€{0,1,2,3}, a,b € {1,2,3}, by

UY(t) == 0,G(t) — ihwaG(t),  VE(t):=eMhwalUC%(1),

Uw(t) = Opp(t) — ilrgt(2t), Vw(t) — pithig Uw(t), (2.1.32)

where G € {hag, F\ F, p,wq, Qa,Vap} and

Awa == V], Ay = (V) = /|[V[E+1. (2.1.33)

More generally, for £ € V3 (see definition (2.1.24)) we define the weighted nor-
malized solutions U* and the weighted linear profiles V* by the formulas

ULhas (t) = (0 — ihwa) (Lhap)(t),  VERB(t) 1= eithwerlhes (1),
UCT (1) i= 0y — ihua) (GE)(t), VI (t) 1= eMMwaU %" (1), (2.1.34)
URP () = (9 — ifng) (LY)(1),  VEU(t) i= &M UR0 (1),

for GX € {F‘:,Eﬁ,p‘:,wf,ﬂﬁ 95}, Finally, let

a’ab

Ut .=U*, U*= :=U*, Vet =V, Ve =V*  (2.1.35)
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for any * € {FC,EL,pﬁ,wﬁ,QL V5 Lhag, L1}

a a’ “ab’

The functions Fﬁ,Eﬁ,pﬁ,wf,QaLﬁaﬁb,ﬁh(xﬁ,Ew can be recovered linearly
from the normalized variables UF*, UE® Ur® Uws U, UV, ULhas, LY

by the formulas

200G = (UC +UG)/2,  ApaG=i(UY-TUG)/2,

(2.1.36)
QoLy = (U +UFP) /2, Mgy =i(USY —ULY)/2,
where G € {Fﬁ,Eﬁ,pﬁ,wf,QaLﬁaﬁb,Ehag}.
The identities (2.1.2) and (2.1.4) show that
(07 + M%0)(Lhap) = LNLg, (97 + A7) (Ly) = LNV, (2.1.37)

for any «, 8 € {0,1,2,3} and £ € V3. Using the definitions (2.1.34), we have
(O + iha) U0 = LNV5, (9 4 ihig)USY = LNV, (2.1.38)
In terms of the linear profiles, these basic identities become
OV ERen () = ehue LNTS (1), O VEV(t) = e M LN (1), (2.1.39)

for any t € [0, 7], o, 8 € {0,1,2,3}, and £ € V3.
Let
P = {(wa,+), (wa, -), (kg,+), (kg, =)} (2.1.40)

Let Awa,+(£) = Awa(f) = |§‘, Awa,f(f) = _Awa,+(§)v Akg,+(£) = Akg(g) =

VIEP +1, Agg,—(§) = —Agg,+(€). For any o, u,v € P we define the quadratic
phase function

Do REXR? 5 R, @pp(é,n) = A () — Ap(E—n) — Au(n). (2.1.41)
In our analysis we will need a few parameters:

No:=40, d:=10, k:=10"%, §:=1071° ¢ :=20005, ~:=4/4.
(2.1.42)

We define also the numbers N (n) (which measure the number of Sobolev deriva-
tives under control at the level of n vector-fields),

N(0) := Ny + 16d, N(n) :== No —dn for n €{1,2,3}. (2.1.43)

Let |£|<; denote a smooth increasing radial function on R? equal to || if |¢] <
1/2 and equal to 1 if |{| > 2. Let |[V|L; denote the associated operator defined
by the multiplier & — [£]1;. -

We are now ready to define the main Z-norms.

Definition 2.2. For any z € R let z* = max(z,0) and = = min(x,0). We
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define the spaces Zyq and Zig by the norms

. _
111200 = 2161122]\’“ 28 ()| P | poe (2.1.44)
and L -
1z, = pup 2t 2" AR e 2145

2.1.6 The Main Bootstrap Proposition

Our main result is the following proposition:

Proposition 2.3. Assume that (g,%) is a solution of the system (1.2.6)—(1.2.7)
on the time interval [0,T], T > 1, with an initial data set (g;;, kij, Yo, 1) that
satisfies the smallness conditions (1.2.5) and the constraint equations (1.2.4).

Define UG, U hes UFY as in (2.1.32)(2.1.34) and recall (2.1.24). Assume
that, for any t € [0,T], the solution satisfies the bootstrap hypothesis

sup {6y H@mf| ()| V] <1)7 |V 2PUERE ()| v
q<n<3,LeVd (2.1.46)

U Ol gven } < e

sup sup 2N(n+1)k+ <t>fH(q+1,n+1)6

q<n<2, LeVE keZ, 1€{1,2,3}

{2225 ()| Pe(@VE o) ()2 + 28 | Pu(aVEY) (0|2} < e,

(2.1.47)
and
VOl 2o+ IV Ol 2o+ IV D) 2., o)
+ NV Oz, + IV Ol 2, < e,
for any o, B € {0,1,2,3} and a,b € {1,2,3}. Here (t) := /1 + 12,
1 ifq=0 andn =0,
Hign) = 60(n — 1) + 20 ifq=0andn > 1, (2.1.49)

200(n — 1) + 30 ifg=1andn>1,
100+ 1)(n—1) g2,

and g1 1= 6(2)/3. Then, for any t € [0,T), o, 5 € {0,1,2,3}, and a,b € {1,2,3},
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one has the improved bounds

sup ()" H@m|((0)|V]<1) | V[T EUE S ()| v
q<n<3, LeV] (2.1.50)

HITE Ol gven } S <o

sup sup 21\r(n+1)k+ <t>—H(q+1,n+1)5

q<n<2, LeV] kEZ,1€{1,2,3}
{25225 ()| Pe(wnVE ) ()| 2 + 2% | Pr(aVEY) (1) 22} S o,
(2.1.51)

and

VI zoo + 1V Ol 2,0 + IV ()] 2,

2.1.52
+ 070NV ()| 2,0 + IV (D) 2, S e0- ( :

We will show in section 7.1 below that the smallness assumptions (1.2.5) on
the initial data imply the bounds (2.1.50)—(2.1.52) at time ¢ = 0, and for all
t € [0,2]. Then we will show that Proposition 2.3 implies our main conclusions,
in the quantitative form of Theorem 7.1, and use it to derive some additional
asymptotic information about the solutions (in Chapter 7).

Most of the work in this monograph, Chapters 3, 4, 5, and 6, is concerned
with the proof of Proposition 2.3. As summarized in section 1.3.1, our goal is to
control simultaneously three types of norms: (i) energy norms involving up to
three vector-fields I', and €4, (ii) weighted norms on the linear profiles V<"as
and V4%, and (iii) the Z-norms on the undifferentiated profiles.

Remark 2.4. The function H defined in (2.1.49) is important, as it establishes
a hierarchy of growth of the various energy norms. At the conceptual level
this is needed because we define the weighted vector-fields 'y, Q4 in terms
of the Minkowski coordinate functions z, and ¢, and thus we expect (at least
logarithmic) losses as we apply these vector-fields.

At the technical level, the function H satisfies superlinear inequalities like

H(q1,m1) + H(g2,n2) < H(q1 + g2, 11 + na) — 40, (2.1.53)

if n1,ns > 1 and n; + ne < 3, and more refined versions. Such inequalities are
helpful to estimate nonlinear interactions when the vector-fields split among the
different components.

We notice also that we treat differently the two types of weighted vector-
fields I', and €., in the sense that the application of the non-tangential vector-
fields I', leads to more loss in terms of time growth than the application of the
tangential vector-fields Qg (for example, H(0,1) =20 < H(1,1) = 30). This is
a subtle technical point to keep in mind, connected to a more general difficulty
of estimating the effect of non-tangential vector-fields.
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2.2 OUTLINE OF THE PROOF

The proof of Proposition 2.3 is involved and covers Chapters 3, 4, 5, and 6 of
this monograph. In this section we provide an expanded outline of this proof.

2.2.1 Chapter 3: Preliminary Estimates

In this chapter we start by proving a few lemmas, such as estimates on mul-
tilinear operators, lower bounds on the phases of bilinear interactions, parad-
ifferential inequalities, linear and bilinear estimates on solutions of wave and
Klein-Gordon operators, and interpolation inequalities. Then we use the boot-
strap assumptions (2.1.46)—(2.1.48) to prove several linear estimates concerning
the main variables U%"=# and U*¥ and the associated profiles V<78 and V£¥.
We provide now some details on some of the main results of this chapter.

2.2.1.1 Normal forms and the bilinear phases @,

Our goal is to set up the application of normal forms. Indeed, in many of the
estimates in Chapters 5 and 6 we need to control integrals of the form

J(€) = / / a(s)ei =P ENTi(e =, )V (5, s)m(¢ —n,m) dnds,  (22.1)
R JR3

where o, p, v € {(wa,+), (wa,—), (kg,+), (kg, —)}, and (I)GIW(& n) = A (&) -
A (E—n)—Ay(n) asin (2.1.40)-(2.1.41). Here V#, V" are associated profiles, i.e.,
VP € {VEhasEY if p = (wa,+) and VP € {VEYE} if p = (kg, £). Integrals of
this type arise, for example, when using the Duhamel formula starting from the
identities (2.1.39), with various multipliers m. Slightly different integrals arise
in energy estimates—see Proposition 5.2—or could include the phase corrections
Org(&, s) and Oy (&, s), as in sections 6.2 and 6.3.
The basic idea to estimate such integrals is to integrate by parts in time, so

/ M 5 Ponr (&M . q(s)VE(E —n,5)VV(n, s) dnds
rs Pou(&,1)

// m(§—n,n) nn 5 Pour (6m) L (8)(8,VI) (€ =, $)V¥(n, s) dnds
R3

O’p.l/ ga

/ / m(§ — 57777]7 5 Poun () L g (Vi (E — 1, 5)(8,VV)(n, s) dnds.
R3 o LV
+ (2.2.2)

The point of this procedure is to gain integrability. Indeed, if ¢ is localized to
an interval of times s ~ 2™ > 1 then the integrands in the three integrals in
(2.2.2) all gain a factor of almost 27™ compared to the integrand in (2.2.1),
upon application of the formulas (2.1.39).

The main obstruction is the potential presence of “small denominators”
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in the integrals in (2.2.2), coming from the resonant frequencies (£,7n) where
P, (€,m) = 0. In our problem we have two types of phases: mixed Wave-
Klein-Gordon phases of the form

Awa,b(f) — Apgu (E—n)— Akgis (n) or Akg,b(f) — Nigi, (E—n)— Awa,s (n),
(2.2.3)

containing two Klein-Gordon dispersions and one wave dispersion, or pure wave
phases of the form

Awa,L(g) - Awa,u (5 - 77) - Awa,Lz (77) (2-2-4)

Thus, to apply normal forms we need to understand the multipliers (§,n) —
<I>(,W(£,77)_1. We show that the mixed Wave-Klein-Gordon phases can only
vanish when the frequency of the wave component is 0, and in fact satisfy the
quantitative bounds

(L+ €2+ 1€ =nl* + [nI*)/ 1],

(L+ [+ 1€ = nf* + [n*)/1nl,
(2.2.5)

| Awai(€) = Mkguy (€ = 1) = Akgoia ()]
|Akg,L(£) - Akg¢1 (5 - 77) - Awa,m (77)’

for any £,7 € R3. On the other hand, the pure wave phases can vanish on

much larger sets, corresponding to parallel and anti-parallel interactions, in the
quantitative form

-1 -1
< |71| + 1§ —n| .
|‘:L1L2 (5 - 77377)|

where E,,,, (v, w) denotes the angle between the vectors v and w,

|Aw‘1»L(§) - Awa;Ll (5 - 7}) - Awa,L2 (77) ‘ ! (226)

EL1L2 (U7w) = le/|v| - L2w/|w|

In fact, in order to bound multilinear integrals such as those in (2.2.2), in
Lemmas 3.4 and 3.6 we prove stronger estimates on the multipliers ® ., (&, n)~t,
involving suitable frequency localizations and the L! norms of the inverse Fourier
transforms of the localized multipliers. These estimates are consistent with the
pointwise bounds (2.2.5) and (2.2.6), and are also compatible with multilinear
estimates such as those in Lemma 3.2.

2.2.1.2 Linear estimates

Estimates on solutions of linear wave and Klein-Gordon equations are the main
building blocks of our nonlinear analysis. To prove efficient estimates we de-
compose functions f : R? — C both in frequency and space,

F=Y_Pf= Y PQjwf

kEZ (k,))eT
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where the operators Q;x are defined in (2.1.20) and P, = Pj_3 2. In our
case the functions f we decompose are the linear profiles V<" and V£V,

Our linear estimates are stated and proved in Lemma 3.9. For example, we
prove general dispersive estimates of the form

le=* e fkllzoe < 2%/ min(L, 27 6)~1)[1Qjok fll 2,

where fjr = PiQ,rf, [t| > 1, and j > max(—k,0). We also prove more
specialized dispersive estimates, like

lem e fosklliee S 27K M |Q<jn fll Lo if 27 < (t)!/227k/2,

which give sharp decay of the linear solutions in terms of the L> norms of the
profiles in the Fourier space, thus connecting to our Z-norms. For the Klein-
Gordon components we prove similar bounds, such as

—itAL . + _ .
le™# %0 fklloe S min {2%5/2, 257 () =320 2} Q1 f | 12,
if [t| > 1 and j > max(—k,0), as well as the stronger bounds
—3 + _ =~ . ;
le™#* fejnllie S 2228721 Qgynf = if 27 S ()12

Notice that these bounds are expressed in terms of three basic parameters: the
frequency parameter k, the spatial location parameter j, and the length of the
time of evolution [¢].

Our linear estimates also include super-localized dispersive bounds such as
(3.2.16)—(3.2.18), which are useful in High x High — Low estimates, as well as
non-dispersive bounds such as

- o o
1Fjaellzee S min {2%72]1Qk fll 12, 2727 %2 U+ Qj  f | ot }
and -
1fik O 2r2ar e Sp 1Qikfllgor, P € [2,00),

which provide additional control on the profiles.

2.2.1.8 Bilinear estimates

The linear estimates in Lemma 3.9 are sufficient to control most nonlinear in-
teractions, at least after suitable decompositions in frequency and space. In a
small number of cases, however, these estimates are not sufficient, and we need
to prove bilinear estimates directly. Our bilinear estimates are stated and proved
in Lemma 3.10-3.12. For example, we prove sharp bilinear estimates such as

HPkIm [e_itAwa fﬁjlykl ’ szg] HL2

. . (2.2.7)
< 2mintkk) 2 () =193 2 Q. b, flle | Progll 2,
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if [t| > 1 and 27t < (t)1/227k1/2 4 o= min(kkik2) wwhere f,g € L?(R?) and I,
denotes a suitable paraproduct. The proof of (2.2.7) relies on a TT* argument,
thus going beyond the conclusions one could prove by using linear estimates on
each component.

2.2.1.4 Bounds on the functions U*tes ULV VEres  qnd VE¥

We combine the bootstrap assumptions (2.1.46)—(2.1.48) and linear estimates
to derive bounds on our solutions. For example, in section 3.3 we prove global
L? bounds on the profiles V" and V¥ of the form

IV <) IV 2VER @) | v + IVE @) gven S en()@M2
for any £ € V4 and h € {has}, as well as localized L? bounds like

P25 ()1 2(|QskVE ()12 + 28 271Qa VEY (1) | 2
< 61<t>H(q+1,n+1)527N(n+1)k+’

for any (k,j) € J and £ € VI, n < 2. We prove also general pointwise decay
bounds on the normalized solutions U*" and U*¥ of the form

||Pk;U£h(t)HLOC g 81<t>71+H(q+1,n+1)52k727N(n+1)lc++2/cJr min{l, <t>2k7 }176
and

||PkULw(t)||LOO < 81<t>—1+H(q+1,n+1)62k’/22—N(n+1)k++2k+ min{1, 92k~ Y,
forany k€ Z, t € [0,T], and £L € V%, n < 2.

The Z-norm assumptions (2.1.48) lead to estimates on the L° norms of the
unweighted profiles V" and V¥ corresponding to £ = Id, as in (3.3.7). They
also lead to sharp pointwise decay bounds on certain parts of the unweighted
normalized solutions U" and U¥, with no (t)¢9 loss, as discussed in Lemma
3.16 (ii). All these estimates are stated and proved in section 3.3 and are used
extensively in the nonlinear analysis.

2.2.2 Chapter 4: the Nonlinearities N; and N¥

The goal in this chapter is to investigate the structure of the nonlinearities N gﬂ
and N'¥. We decompose these nonlinearities into quadratic and cubic and higher
order components, as in subsection 2.1.1, and then decompose these components
dyadically in the Fourier space along every time-slice 3; = {(z,t) : z € R3},
using the Littlewood-Paley projections P.
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Ideally, we would like to prove that the nonlinearities satisfy bounds like

Yo NGO Sam™ Y I VaiLhas(®],

a,8€{0,1,2,3} «,B€{0,1,2,3} (228)
IENY @) S e ()M (V) D) L)),

in suitable norms, as if N* and N'¥ were of the size of € (t) =1 (|V,|h, ;) and
e1(t) "L ((V4)h, 0;h) respectively. Such optimal bounds are, of course, not true,
as we have both derivative loss, due to the quasilinear nature of the system, and
loss of decay in time, due to the slower decay of the metric components h,g.
But the bounds (2.2.8) can still serve as a guideline for the type of control we
are looking for, and we are able to prove such bounds up to small losses, both
at the level of time decay and at the level of smoothness.
We summarize now the main conclusions of this chapter.

2.2.2.1 Weighted bounds on the nonlinearities N5 and N

As part of our analysis, we prove two weighted bounds on the full nonlinearities

Nahﬁ and NV,

22K (1)) | P AT ) (1) S €3 ) Tlar bt Db Ntk

(2.2.9)
| Pe(@i LAY D)l S €] (1) ot Do N DR,

for any k € Z, t € [0,T], I € {1,2,3}, and operators £ € VI, n < 2. These

bounds, which follow from the stronger bounds in Proposition 4.7, play a crucial

role in our bootstrap scheme, as they allow us to prove the main bootstrap

estimates (2.1.51) in section 6.1.

The polynomial factors z; in (2.2.9) correspond to ¢, derivatives in the
Fourier space. These derivatives can hit the various factors of the nonlin-
ear terms, including the oscillatory factors e*4+(€) and the frequency cutoffs.
Therefore, at the analytical level, the polynomial factors x; are essentially equiv-
alent to multiplication by () +27%, and the weighted bounds (2.2.9) essentially
follow from the L? bounds

27 M2 ()| PLN g ()2 S 3y Ot b0 NI DR min ok (1) 71},

IPLLN (8)]| g2 S e3¢y H ottt Dog= Nt DR min {0k (1)=1},
(2.2.10)

for any k € Z, t € [0,T], and operators £ € V¢, n < 2. These L? bounds are
consequences of the stronger bounds (4.2.3)—(4.2.4) in Proposition 4.7, and are
consistent with the heuristics that ideal bounds like (2.2.8) hold up to small loss

of time decay and derivative loss.
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2.2.2.2 Energy disposable nonlinear terms

Some of the nonlinear terms can be treated perturbatively in energy estimates, as
they have sufficient time decay and do not lose derivatives. More precisely, wave-
disposable remainders of order (¢, n) are defined as functions L : R3 x [0, 7] — C
that satisfy the bounds

|||v|71/2L | €%<t>fl+H(q,n)§75/2

|HN(n) 5
for any ¢ € [0,T]. Similarly, KG-disposable remainders of order (g, n) are func-
tions L : R3 x [0, 7] — C that satisfy the bounds

HL < €1<t>—1+H(q,n)6—6/2.

Wienen S

Our analysis shows that most cubic and higher order nonlinear terms and
all of the commutator terms arising from commuting Sobolev derivatives and
the vector-fields €2 and I' are energy disposable. See Lemmas 4.19 and 4.20 for
precise statements.

As a consequence, for the purpose of proving energy estimates we can con-
centrate on the quadratic components of the nonlinearities A/* ap and NV (as
expressed in terms of the variables hop and 1) and on the quasilinear terms of
the form g>10%h and g>10%¢.

2.2.2.83 Elliptic consequences of the harmonic gauge condition

The harmonic gauge conditions g*?0,hg, = (1/2)g*?0,has can be used to
derive approximate identities for some of the metric components. Indeed, in
terms of the functions F£, FX, o=, w£ QL 19 defined in section 2.1.4, we have
the approximate identities

IV[p" ~ QE",  |VIQF ~dwst, ;05 ~0, (2.2.11)

up to suitable quadratic errors (which only lead to energy disposable terms).
Precise identities of this type are derived in Lemma 4.15 and play an important
role in identifying the null structures of the metric nonlinearities A (QB.

2.2.2.4  Null structures and decompositions of the nonlinearities N ap and NY

The presence of null structures is an important feature of many nonlinear hy-
perbolic equations. In our case we define the class of “semilinear null forms of
order (¢,n)” as the set of finite sums of paraproducts Iﬁzlé [UFrhuen [Thzhaz)
of the form
{Inull Lihin U£2}L27L2]}(§)
My
1 —— (2.2.12)
=53 [ e —n, WU (€ — ) ULahasia () dy,
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where 11,10 € {+, =}, h1,ho € {hag}, L1 € VI, Lo € VI, (q1,n1) + (g2,m2) <
(g,n). The multipliers n,,,, belong to the set of null multipliers

Mol {n : (R3 \ 0)2 = C: n(x,y) = (nwzi/|z| — vayi/|lyl)m(z, )

e (2.2.13)
for some m € M and i € {1,2,3}}.

Here M denotes a general class of acceptable multipliers, as defined in (3.2.41).
Our class of semilinear null forms contains the classical null forms

Dah105hs — 05h104ha and m*P0yh105hs,

but is more flexible, i.e., we allow Fourier multipliers and bilinear paraproducts.

We are now finally ready to decompose the nonlinearities LN gﬁ and LN,
More precisely, in Proposition 4.22 we show that if «, 8 € {0,1,2,3} and £ € Vg,
n < 3, then

LNJg = Y §810u00(Chap) + Qialhap)
w,ref0,1,2,3} (2.2.14)

+S5 + 85+ KGE s + RES
and

LNV = > G800, (LY) + hoo Ly + QF, () + R7Y,  (2.2.15)

wv€{0,1,2,3}

where the remainders Rgg and R*Y are wave-disposable and KG-disposable of
order (g,n). The reduced metric components 'gvgl; are defined by

~0j ~1_0j ~ ik 17 gk ;
g5 =0, g =0-9%) Y, @l =0—g0) gl + 92107

The origin of most of the terms in (2.2.14)—(2.2.15) can be traced back by
examining the formulas (2.1.9) and (2.1.16). The terms g%79,0,(Lhqas) and
9818,0,(L1) come from the main quasilinear terms in the nonlinearities N5
and A%, when the entire differential operator £ hits the functions h,s and 9
respectively (recall that commutators between derivatives and the operators £
are energy disposable).

The quadratic terms Q% (has) (Which have a certain type of quasilinear null
structure) and hooLy + Qfg (1) also come from the main quasilinear terms in
the nonlinearities A (fﬂ and N'¥, after distributing the operator £ between the
factors and noticing that all cubic and higher order terms are energy dispos-
able remainders. Similarly, the semilinear quadratic terms Kggﬁ come from
the Klein-Gordon terms KG,ps in (2.1.9), after distributing the operator £ and
removing energy disposable remainders.
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Finally, the semilinear quadratic terms Sféél and 8552 can be written as

L1 _ null Lih1,1 Loho,ta

SO(B - Z Z Z m1L2 U U }
hl,hze{h‘“,} Ll,LQE{Jr } Li+Lo=

8552 = Z (1/2)C£1,£2Rquaoﬂ9fn R R 6/319mn’
Li+Lo=L

(2.2.16)

for suitable null multipliers n,,,, € Mfﬁl;, and suitable constants ¢z, z,. The
point of this decomposition is that semilinear Wave x Wave interactions are ei-
ther null, as in S(f[;l, or involve only the good components ¥ of the metric tensor.
This is a key weak null structure property of the Einstein equations in harmonic
gauge, as identified by Linblad-Rodnianski [63]. The formulas (2.2.16) are de-
rived using the identities (2.1.14), (2.1.15), and (2.1.29), and the approximate

identities (2.2.11).

2.2.3 Chapter 5: Improved Energy Estimates

In this chapter we prove the main energy estimates (2.1.50). We define the
operators P7. = (V)NM|v|71/2|v|2 | and P, = (V) N apply the opera-
tors P, L and Pkgﬁ to the equations (2 1.2) and (2.1.4) respectively, construct
suitable energy functionals, and perform energy estimates. The main issue is to
estimate the spacetime cubic (and higher order) bulk terms generated by the
nonlinearities.

After eliminating the contributions of the energy disposable remainders, we
are left with eight main spacetime integrals that need to be estimated. The
required bounds are stated in Proposition 5.2. These integrals involve either
Wave x Wave x Wave interactions (coming from the metric nonlinearities) or
Wave x KG x KG interactions (coming from both the metric and the Klein-
Gordon nonlinearities). Our main tool to estimate these integrals is the method
of normal forms (integration by parts in time).

We discuss below some of the main bounds we prove.

2.2.3.1 Semilinear wave interactions

There are two types of semlhnear Wave x Wave x Wave spacetime contributions,
coming from the terms S5 of ! and S5 B in (2.2.14). In particular, we need to prove

that if n,,,, € M™% then

L1tz

A R U O
e (2.2.17)

x PrULhe (g, s) deds| < e3270m,

wa
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where t1,t9,13 € {-h—}, hi,ho,h € {hag}, LeVi L e Vi Ly eV

ni? ni?

(q1,n1) + (g2,n2) < (¢g,m). We also prove that if m € M and 9 € {$,,,,,} then

| / / G (&) F{PL U™, U 1) (E, ) - Pl UFh (¢, 5) deds
Jm JR3

5 811322H(q,n)6m—2'ym.

(2.2.18)

The cutoff function gy, in (2.2.17)—(2.2.18) restricts to times s = 2™ > 1.

To illustrate the main ideas we discuss only the simpler bounds (2.2.17), in
the main case £1 = Id and Lo = L. After dyadic decompositions in frequency
it suffices to prove that

Wkt —
> 22Nk ’“‘/ G (s)
J.

kk1,k2 €7 (2.2.19)
X Gy, [P U0 (5), P, U 0202 (), LU (5)] ds| S 270,

where, for suitable multipliers m, the trilinear operators Gy, are defined by

-~ =

Gl fr g, 1] = /R &= ) (e~ miathe) ded.

To prove (2.2.19) we fix m (the parameter connected to the size of the time)
and analyze the contributions of the various frequency parameters (k, k1, ko).

In some cases, for example, if min(k, k1, k2) < —m—0d"m or if max(k, k1, ko) >
d'm, we can simply use L? or L™ estimates on every factor in the trilinear
expressions, and bound the corresponding contributions.

In the more complicated cases, for example, if k, ki, ks € [—0'm, 8 m], we
need to exploit the null structure of the multiplier. For this we insert angular
cutoffs of the form p<,, (E,,.,, (=1, 1)) and ¢4, (E,,., (=1, 7)) in the definition
of the trilinear operator G,,, where gqg = —86’m. The point is that the multiplier
n,,,, is small in the region where the angle |Z,,,,(£ —n,n)| is small, due to the
null structure assumption. On the other hand, if the angle |Z,,,,(§ —n,n)| is
large then we are in the non-resonant region (due to (2.2.6)) and we can use
normal forms, as described in subsection 2.2.1.1 to gain time integrability.

There is one more issue that comes up in the analysis of semilinear cubic
terms, in the case when 2%t ~ 1 and 2% ~ 2%2 > 1. We can still insert the
angular decomposition and try to use normal forms to bound the non-resonant
contributions, but this leads to a loss of derivative. This is a well-known issue
that comes up when using normal forms in the context of energy estimates in
quasilinear problems, and we deal with it as in some of our earlier work [16, 17]
using paradifferential calculus and a second symmetrization.
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2.2.3.2 Low frequencies and the quasilinear terms

The most difficult contributions come from the quasilinear terms g&" 0,0, has
and g4 0,,0,1, when the entire operator £ hits the undifferentiated metric com-

ponents g&', i.e., the terms

L(GE7) - 0u0uhagp and L(g57) - 00,9 (2.2.20)

These terms have their own quasilinear null structure, which helps with the
analysis of medium frequencies, but the difficulty is to bound the contributions
of very low frequencies of the factor £(g47), which does not have a spatial
derivative. When £ = Id, we can symmetrize the system and obtain improved
estimates, but no algebraic symmetrization is possible when £ # Id.

After dyadic decompositions in time and frequency, we need to prove bounds
of the form

Z 22N(n)k+7k+k17k222'y(m+k_)‘/ o (5)
ok k2 €2 I (2.2.21)

% gql,ll,z [Pkthl,Ll (S),PkQUEhZ’LQ (S),PkUﬁh’L(S)] ds‘ s 5§22H(q,n)5m’
where q,,,, is a null multiplier and £ € V4, n > 1. This looks similar to the
semilinear bounds (2.2.19), but with an additional factor of 2¥*=*2 in the sum
in the left-hand side.

We can still exploit the null structure of the multipliers and use normal
forms (with paradifferential calculus again to set up a second symmetrization)
to deal with the contribution of frequencies that are not too small. But a
different idea is needed to deal with the contribution of triples (ki, ks, k) for
which 2F1 ~ 2% ~ 1 and 2*2 ~ 27™ due to the large additional factor 2¥*=*2, In
this case we “trivialize” one vector-field, in the sense that we notice that a vector-
field essentially contributes a factor of about 2™2%2 at such low frequencies, in
the context of multilinear estimates (the precise statement is in Lemma 4.13).
Then we can close the desired estimates (2.2.21) provided that the hierarchy
function H(g,n) allows for sufficiently large gaps between the growth rates of
different differential operators.

This is the most difficult case of the energy analysis. Some of the main
choices we make in the proof, like the precise choice of the function H(g,n) in
(2.1.49) that determines the hierarchy of energy growth, are motivated by the
energy analysis of the terms in (2.2.21).

2.2.3.3 Wave-Klein-Gordon undifferentiated interactions

At the conceptual level, the new difficulty in the analysis of interactions of the
metric tensor and the massive field is the presence of terms that do not contain
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derivatives. There are two such quadratic interactions,
terms like 2 in Ngﬁ and terms like k) in 'Y, (2.2.22)

as one can see from the formulas (2.1.12) and (2.1.17). These undifferentiated
terms do not have null structure, of course, but the situation is worse mainly
because the low frequencies of the Klein-Gordon field 1 disperse slowly and lead
to slow decay. The Klein-Gordon Z-norm defined in (2.1.45) is designed as a
very strong norm at low frequencies mainly to be able to capture these terms.

As before, our main tool to analyze these interactions is the method of
normal forms. The point is that the resonant structure of these interactions
is determined by the Wave-Klein-Gordon quadratic phases ®(&,n) = Agq(€) £
Arg(n) £ Awa(€ + 7). As we have seen earlier, in (2.2.4)—(2.2.5), these phases
are resonant only when the wave component has frequency 0. This means that
the normal forms lead to stronger bounds, which are able to compensate for the
fact that the factors themselves are undifferentiated at low frequencies.

2.2.4 Chapter 6: Improved Profile Bounds

In this chapter we prove the main profile bounds (2.1.51) and (2.1.52), thus
completing the proof of the bootstrap. We accomplish this in three main steps.

2.2.4.1 The weighted bounds (2.1.51)

These bounds follow from the main energy estimates (2.1.50), already proved
in Chapter 5, the main weighted estimates (2.2.10) on the nonlinearities LN/ (';B

and LN, proved in Proposition 4.7, and the general identities
e MO0 MOV (E 1) =TT (€. 1) — (0 N)(E,1),

which hold if u € {wa, kg}, (0;+iA,)U = N and V (t) = e «U(t) on R®*x [0, T7.
These identities, which are proved in Lemma 6.1, show explicitly that application
of Lorentz vector-fields on linear solutions of wave and Klein-Gordon equations
is connected to differentiation of the associated profiles in the Fourier space.

2.2.4.2 The Z-norm bounds on the Klein-Gordon profile

We would like to use the formula 9, V¥ (t) = e s A% (¢) in (2.1.39) and integrate
in time to prove the desired uniform bounds [|[V¥(t)|z,, < 0. However, this
does not work directly since the profile V¥ (¢) itself does not converge as t — oo,
due to a long-range effect.

Our solution is to renormalize the profile V¥, and this can be done efficiently
in the Fourier space. We start from the quadratic nonlinearity N'¥»? in (2.1.17)
and use the identities (2.1.36) and (2.1.32) to rewrite it in the Fourier space in
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the form
eithes () N2 (¢ 1)

1 i ; oL (2.2.23)
=53 Z /R3 it Ara (&) gFithng (E=M Yo+ (¢ 0, ) kg4 (€ — 1,1, 1) dn,
+

where

—~ — PiPk
+ ho; (n,t)p; £ hip(n, t . (22.24
07 (77 )p] Jk(n )2Akg(p) ( )

We would like to eliminate the resonant bilinear interaction between h.g and
V¥+ in (2.2.23) corresponding to || < 1. To identify the main term we ap-
proximate, heuristically,

—~ A
Qkg,+ (P, 7, 1) 1= Ehoo(n, 1) kg2(p)

1
CaE

/ e ietthra(8) gt Mg (E=M Y4+ (¢ 1) kg4 (€ — 1,0, 8) dy
n|<(t)—1

zinnL(f,t)/ eitn'VAkg(ﬁ)
2m)*  Ji<py-1/2

_ A —~ h o J
X {hoo(% t) k;(g) +hoj (0, 1)&; + hyn(n, 1) 21&?(65) } an
e A
~ VY (¢, t){héoow (A;gg(g) ’ t) ng(g)

+ heg (Af(@ )+ mie (A:f(ﬁ) ) 2/2?55) J

(2.2.25)

where hl;é“ are suitable low-frequency components of hqg.
To eliminate this term, we define the nonlinear (modified) Klein-Gordon
profile V¥’ by

VA (€ t) = e O @0 V(e p), (2.2.26)

where the Klein-Gordon phase correction Oy, is defined by

Org(6,8) = /0 {hé%‘”(sf/Akg(af),s)A%@

(2.2.27)
B (56 Mg (€), )8 + B (56/ g (€).9) 5 2%V s,
2A1g(8)
and the low frequency components hffé” are given by
hio (p,s) == p<o((s)"p)has(p,s),  po = 0.68. (2.2.28)
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The choice of py, slightly larger than 2/3, is important in the proof, to justify the
validity of the approximation in (2.2.25). The phase correction Oy, is defined
such that (0,0,)(£,t) matches the factor in the last line of (2.2.25), and has
a simple geometric interpretation: it is obtained by integrating low frequency
components of the metric tensor along the characteristics of the Klein-Gordon
linear flow given by VAyg(§) = &/Arg(§).

—

Since Oy, is real-valued we have |V, (¢,t)] = |ﬁ(§,t)| for any (&,t) € R? x
[0, 7], therefore |V (t)]| z,, = |V¥(t)||z,,- The modified profile V;¥’ satisfies the
better equation

DV (1) = O EN V() — iVHE DO (6D}, (22.29)

which allows us to replace the resonant long-range interaction between V¥t
and the metric tensor by a perturbative term of the form

—iOpg(&,t _—
6(2)(;)/ i{ et (O Ma €T (¢ — gy 1)
m R3

X qgfogu,)+ (f -nn, t) - eit(&-n)/Akg(ﬁ)Vw (57 t)qu;f)_;,_ (Ea 7, t)} dﬂ

¥ _
R ()= (2.2.30)

We would like to prove that the nonlinear profile VY (t) is uniformly bounded
and converges in the Z;, norm as t — oo. For this it suffices to prove that

ik (VY (& t2) = Vi (& t1) Mg S 20270m/227k /24w 7 9= Mok (9.9.31)

for any k € Z, m > 1, and t,t5 € [2™ — 2,2 N[0, T).

This is proved in subsection 6.2.2, in several steps. First we dispose of very
low or very high frequency parameters k, in which case the energy norms already
provide suitable control. In the intermediate range k € [—xm,d’m], m > 100,
we integrate the identity (2.2.29) between times ¢; and ¢, use the formula
OV (€,1) = MO NV (£ 1), and expand the nonlinearity N'¥. This produces
four terms RY, a € {1,2,3,4}, one of them being the integral in (2.2.30).

To prove (2.2.31) we need to bound spacetime oscillatory integrals, involving
the Wave-Klein-Gordon phases Apg(§) — Akg,., (6 — 1) — Awa,i, (1), which are
similar to the integral in (2.2.1). The point is that the relevant interactions are
all non-resonant, due to the bounds (2.2.5) and the renormalization procedure
that removed the low frequencies of the wave component. We can therefore
integrate by parts in time, as in (2.2.2), and gain sufficient decay to prove the
desired bounds (2.2.31).

2.2.4.8 The Z-norm bounds on the metric profiles

These bounds are similar to the Z-norm bounds for the Klein-Gordon profile,
at least at the conceptual level. For G € {hag, F,wq,Uqp} we define the renor-
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malized nonlinear profiles V.¢ by
VO(E,t) 1= e 10w @DV G (g 1), (2.2.32)
where the wave phase correction ©,,, is defined by

Ounl6t) = [ {1 s6/Mn(). ) 225

(2.2.33)

B (56 M (€), )65 + M (56 / Auwa (€). S>2A§ﬁ§>} "

and the low frequency components hffé” are as in (2.2.28). The phase correction
Oy is designed to eliminate the long-range effect of the quasilinear component
%3 defined in (2.1.13). As in the Klein-Gordon case, it is obtained by integrat-
ing low frequency components of the metric tensor along the characteristics of
the wave linear flow. It is also connected to the construction of optical functions,
as we discuss later in section 7.3
To prove the bootstrap bounds (2.1.52) it suffices to show that

—

/\1 a mo—k~ —kk™ 9g—Np +
lion (V"7 (&, t2) = Vi (€, t1) Mg S 2027m2 7 —rh 2= Mok,

0 C (2.2.34)
H(pk(g){V*H(gatQ) - V*H(f,tl)}HLgo S 502—§m/22—k ok 2_N0k+7

for any H € {F,wq, Y}, kK € Z, m > 1, and t1,ty € [2™ — 2,2mF1 N[0, 7).
We may also assume that & is in the intermediate range k € [—xkm/4,5 m],
since in the other cases the energy estimates are already stronger. The bounds
(2.2.34) are conceptually similar to the bounds (2.2.31), but more involved at
the technical level.

Starting from the formula 0,V "es = eitAwaN(i‘ﬁ in (2.1.39) and expanding

j\/gﬁ = ;cgiﬁ + Q2+ 825+ ,/\/(%23, we can express 9;V7'"? as a sum of six

terms RZ“B, a € {1,...,6}. Most of these terms lead to non-resonant or cubic
contributions that can be bounded using normal forms as in the Klein-Gordon
case. However, the term Siﬁ leads to a more difficult contribution,

Rg’aﬁ (57 t) — e_i@wa (gvt) eitAwa(g)‘gz\ﬁ(g’ t).

The contribution of the term ’Rgaﬁ is analyzed in subsections 6.3.3 and 6.3.5.
It requires not only angular decompositions and normal forms, but also careful
Fourier analysis of the resulting cubic nonlinearities, to show that the three
interacting factors are not coherent (in the spirit of the spacetime resonances
method). Finally, we also need to use again the weak null structure of the
semilinear term S 5, In order to be able to distinguish between the good and
the bad components of the metric, and prove the bounds (2.2.34).
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Chapter Three

Preliminary Estimates
3.1 SOME LEMMAS

We are now ready to start the proof of the main bootstrap proposition 2.3. In
this section we prove several results that are used in the rest of the monograph.

3.1.1 General Lemmas

We start with a lemma that is used often in integration by parts arguments.

Lemma 3.1. Assume that 0 < ¢ < 1/e < K, N > 1 is an integer, and f,g €
CNTL(R3). Then

| [ egds| s (K9 S eIDgln]. (3.1.1)
- lal<N
provided that f is real-valued,
IVafl 2 Lappg,  and ||Dgf - Lappgllz= Sy el 2 <Jal < N +1. (3.1.2)

Proof. We localize first to balls of size & e. Using the assumptions in (3.1.2) we
may assume that inside each small ball, one of the directional derivatives of f
is bounded away from 0, say |01 f| Zn 1. Then we integrate by parts N times
in z1, gaining a factor of K and losing a factor of 1/e at every step, and the
desired bounds (3.1.1) follow. O

To bound multilinear operators, we often use the following simple lemma.

Lemma 3.2. (i) Assume thatl > 2, f1,..., fi, fix1 € L*(R3), and M : (R3)! —
C is a continuous compactly supported function. Then

| [ M€ &) Fi6) o FiE) fira( = ) e
5 H‘F_lMHLl((RS)Z)||f1||L”1 Hfl-l-lHLPH'la
(3.1.3)

for any exponents p1,...,pi+1 € [1,00] satisfying 1/p1 + ...+ 1/pi41 = 1.
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(ii) As a consequence, if q,p2,ps € [1,00] satisfy 1/ps + 1/ps = 1/q then

|7 { [ e mFena-¢ —myan} | < 170l fllesslglass- (31.4)

Proof. Let K := F~1M. The integral in the left-hand side of (3.1.3) is equal to
C/ K(ys,-osm) - file =) - file — ) dadyy - dy,
(R3)L+1

as a consequence of the Fourier inversion formula. The desired bounds (3.1.3)
follow using the Holder inequality in the variable z and the L' integrability of
the kernel K.

The bounds (3.1.4) can be proved in a similar way, using duality. O

We will use also a Hardy-type estimate.

Lemma 3.3. (i) For f € L>(R®) and k € Z let

3
A= Pefllz + Y lon(€) O N2,

= (3.1.5)
2j 2 1Y/2
Bi=| Y 2¥IQufll]
j>max(—k,0)
Then, for any k € Z,
Ap S Z By (3.1.6)
k! —k| <4
and
By < Z-kiza by / FE20, (3.1.7)
N\ Ewez A2 FFI 2 min(1, 28R if k<o,

(ii) If m € Mo—see (3.2.40)—then, for any (k,j) € J,

1QudF P S S I Quaflla2 7, (3.1.8)

j'>max(—k,0)

Proof. (i) The bounds (3.1.6)—(3.1.7) were proved in [38, Lemma 3.5]. For con-
venience we reproduce the proofs here. Clearly, by almost orthogonality,
By~ 27RO B fl 2 + |||2] - Pf 2

3 . 3.1.9
~ 2RO Bl + > 110, (Pr(€)FED Lz 319

=1

The bound (3.1.6) follows. The bound in (3.1.7) also follows when k& > 0. On
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the other hand, if £ < 0 then it suffices to prove that
278 Pefllze $ ) A2 F R 2 min(1, 2K 7F), (3.1.10)
K€z

For this we let f; :=a;f, 1 € {1,2,3}, so

f= |z |2+1f Z| \2+1

and, for any k' € Z,

3
1P fllz + D 1P fill 2 S Ak

=1
Since |F{(2 + 1) HE)| S [¢1 and |F{ai(a + 1) HE)] S Je[ for L €
{1,2,3}, for (3.1.10) it suffices to prove that
27 r(€) (g% K)(Ollr2 £ D Aw2* 12 min(1, 24 ), (3.1.11)
k' €L
provided that ||ps -g| 2 < Ap and K () = |n|~2. With gir = @ - g we estimate
low(€)(gr * K)(E)llzz S Ngwllz2 K - p<rrrollnr S 25 llgwellzz  if [k — K| < 6;

ok (€)(grr * K)(E)llz < 22|l gill ez | K - ipr—apr a2
< 23K/20K /21l e i K >k + 6;
llon(€)(grr * K)(E)l L2 S llgw I 1K - s nrall 2
< 297K 2 gl i K <k —6.
The desired bound (3.1.11) follows, which completes the proof of the lemma. [

3.1.2 The Phases 9.,

Our normal form analysis relies on precise bounds on the phases ®,,, defined
n (2.1.41). We summarize the results we need in this subsection.

We consider first Wave x KG — KG and KG x KG — Wave interactions.
These interactions are weakly elliptic, in the sense that the corresponding phases
®,,,,, do not vanish, except when the wave frequency vanishes. More precisely,
we have the following quantitative estimates.

Lemma 3.4. (i) Assume that ®,,, is as in (2.1.41). If [£],|£ —n|,|n| € [0,0],
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1 <b, then

|(I)0MV(55 77)| > |£|/(4b2) Zf (U’ Hy V) = ((wa7 L)’ (kg7 L1)7 (kg7 LQ))?
| @op (&) 2 [l /(46%) if (0, p,v) = ((kgs 1), (kg, 1), (wa, i2)).

(ii) Assume that k,ki,ky € Z and n satisfies |F~'n||L1rsxprsy < 1. Let
k= max(k, klka)' If (O’,,u,?I/) = ((wavL)a (kngl)v (kngQ)) then

(3.1.12)

[F ™ oy (€)™ 1(E, 1) - 0k (€)1 (€ = MPha (M| 11 5 sy S 2 kiR,
(3.1.13)
MO’I‘(EOU@’I’, Zf (Ua Hy V) = ((kga L)? (kg7 Ll)a (wa, LQ)) then

[F = Poyur (1)~ 1(E, 1) - 0k (€)1 (€ = )Pk M| 11 s sy S g k2",
(3.1.14)

Proof. The conclusions were all proved in Lemma 3.3 in [38]. For convenience
we reproduce the proof here.
(i) The bounds follow from the elementary inequalities

V1Ita2+y/1+y2— (x+y) > 1/(20),

(3.1.15)
z4+1+y2— V1 (z+y)?2 > z/(4b?),

which hold if z,y,z +y € [0,b]. The second inequality can be proved by setting
F(z) := 2+ /1+y2—+/1+ (z + y)? and noticing that F'(z) > 1/(4b?) as long
as y,z +y € [0,b].

(ii) By symmetry, it suffices to prove (3.1.13). Also, since

IF ey SUF T Flle IF gllze (3.1.16)

without loss of generality we may assume that n =1 and « = 4. Let

1
—k k ~1

m(v,n) :=2""®s,,(2%0,n)" " = — — .

o) ) T Ry G 20) — 2 g, (1)
(3.1.17)

For (3.1.13) it suffices to prove that
.+

H]:_l{m(v7n) . SDO(U)SDICI (77 - 2kv)(pk2 (n)}HLl(R3><R3) 5 24k . (3'1'18)

We consider two cases, depending on the signs ¢1 and ¢o.
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Case 1. 11 # 12. By symmetry we may assume that 1o = —, 11 = +, so

1
m(v,n) =
) = e T TP 2 T P
_ 2"l + VI + V1 A+ [y — 2R (3.1.19)

2(Jvlv/ 1+ +v-n)
[26[v] + /1 + 02+ /1 +|n = 250]2] [Jv[\/T+ [n]? — v - 7]

2[Jvf* + [vl*nl* = (v n)?]

The first identity follows by algebraic simplifications, after multiplying both the
numerator and the denominator by |v| + 27%y/1 + [ — 2kv[2 4+ 27 /1 + |n|2.
The second identity follows by multiplying both the numerator and the denom-
inator by |v[\/1+ |n|? — v - n. The numerator in the formula above is a sum of
simple products and its contribution is a factor of 925" n view of the general
bound (3.1.16), for (3.1.18) it suffices to prove that, for I > 0,

R 1
ety po(v)p<i(n) dvdnH < 2%
H /]R3><]R3 02 + [o][nl* = (v-n)? - Li,
(3.1.20)
We insert thin angular cutoffs in v. Due to rotation invariance it suffices to
prove that

iy - 90<_l—10(U2)s0<—l—10(’U3)
el = = wo(v)e<i(n) dvdn‘
H /Raxu@ [v]? + [v[n[* — (v-n)? =

<1
Laln)y

We make the changes of variables vy < wi,vs < 27 we, v3 ¢ 27 ws, m <
2lp1,m2 < p2,m3 <> p3. After rescaling the spatial variables appropriately, it
suffices to prove that

| [ emmemont o, posg(wn)peolwe)os-ofus)
RO xR (3.1.21)

% pcalp)psiralp)psiealps) dudp| 1,

where
m'(w, p) = {wi(1+ p3 + p3) + p3 (w3 + wi)
+ 272 (w3 + w3 + (waps — wzp2)?) — 2p1w; (waps + w3p3)}_1
It is easy to see that |m'(w,p)] ~ (1 + |p|*)~" and |[DgDIm/ (w,p)| < (1 +
|,o|2)_1_|ﬂ‘/2 in the support of the integral, for all multi-indices a and 8 with

|a] <4, |8] < 4. The bound (3.1.21) follows by a standard integration by parts
argument, which completes the proof of (3.1.18).
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Case 2. 11 = 1. If 17 = 15 = + then we write, as in (3.1.19),

1
) S e T P 2 LA P
— 2ol = VI P + V1 + In— 2%0P] [lo| T+ [0l +v-n]

2[[o[? + [v[2[n[? = (v n)?]

On the other hand, if 1y = 15 = — then we write, as in (3.1.19),

1
m(v,n) =
(v,1) [v] +27%/1 + |n — 2kv|2 + 27k, /1 + |n|2
_ [2%[o] + /1 + 0] — /1 + [n — 2502] [Jol /1 + ]2 — v - n}
2[[v[2 + [v[*n]? = (v n)?]

The desired conclusion follows in both cases using (3.1.20) and (3.1.16). Since
[F~H{po()(2F|v] £ /1T + 02 F 1+ [n— 2502} 11 rexrs) S 2F, we get in
fact a stronger bound when o = (wa, ) and p=v € {(kg, +), (k:g7 )}

[F~H{ oy (€,m) " 1(E, 1) - @1 (€) s (€ = 1) rea (] 11 5 ) S 2", (3.1.22)
as desired. O

We will also consider Wave x Wave — Wave interactions. In this case the
corresponding bilinear phases ®,,, can vanish on large sets, when the frequen-
cies are parallel, and the strength of these interactions depends significantly on
the angle between the frequencies of the inputs. To measure this angle, for
t1,t2 € {+, —} we define the functions

0 n

S (R3 \ {()}) — Ba, E0,m) = le — Lgm, (3.1.23)

where Br := {z € R : |z| < R}. Let Z,,,,£(0,n) = t160x/|0] — tank/|nl,
k€ {1,2,3}. We will often use the following elementary lemma:
Lemma 3.5. (i) By convention, let ++ = —— =+ and +— = —+ = —. Then
- 2(10[|m] — e1e26 - )
S0 (0,n)] = \/ il : (3.1.24)

(ii) We define the functions Z : (R3\ {0})2 = [0,2],

2(0,n) 4+ L

N ’\9| ol H o1 " Inl

e
‘ - 16 1) (3.1.25)

IR
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Then, for any 0,m € R3\ {0} we have

win{ [, (0.7)],|E_(0.m)]} < E(0.7) < 2min{ [, (O.0)].|E_(O.0)]}. (3.1.26)
Moreover, for any z,y,z € R®\ {0} we have
2(x,2) < 2[E(x,y) + Z(y, 2)]. (3.1.27)
In addition, if y + z # 0 then
Sz, y+ 2)|ly + 2| <E(z,9)|y| + Z(x, 2) 2. (3.1.28)

Proof. The identities (3.1.24) follow directly from definitions. The inequalities

(3.1.26) follow from definitions as well, once we notice that Z(6,7) = |24 (6,7)|-
[E_(0,n)| and |E4+(6,n)| + |E-(0,7n)| > 2. For (3.1.27) we notice that

min{|5+(x, Z)|, |E* ('Tv Z)|}
< min{|Z+ (e, y) [E- (2, y)]} +min{|Z4 (g, )], [E- (. )]},

and then use (3.1.26). Finally, to prove (3.1.28) we may assume that x =
(1,0,0), y = (v1,v), 2 = (21,2’), and estimate, using just (3.1.25),

S,y +2)ly + 2l =2y + 2| <20y| +2|2'| = E(z,y)ly| + E(=, 2)]],
which gives the desired conclusion. O

We consider now trilinear expressions localized with respect to angular sep-
aration, as well as expressions resulting from normal form transformations.

Lemma 3.6. (i) Assume x1 : R® — [0,1] is a smooth function supported in the
ball Ba, 11,10 € {+,—}, b<2, f, f1, f2 € L*(R?), and k,ky, ks € Z. Let

Lz,kl,kz = / m(f - 77a77)X1(2_bEL1L2 (5 - 77777))
R3 xRR3

x Pry J1(6 = n) Pa, fa(n) P (€) déd,

(3.1.29)

where m is a symbol satisfying || F~(m)|| L1 (rsy < 1. Then

Lk o | S min{27%, 297 1} Py ful| oo || Py foll 2 [ P fll 22 (3.1.30)

(ii) Let x2 : R® — [0,1] be a smooth function supported in By \ Bi s,
(o, 1, v) = ((wa, 1), (wa, t1), (wa, t2)), t,t1,t2 € {+,—}. Then for any k, k1, ks €
Z

J

[P0 (&,1) 7" - k() Pk, (€ = M)y (M) x2(27 E010 (€ = 1ym))|

S 2721)27 min(kl,ktg), (3131)
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where @y, (E,m) = Ao (&) — Ap(§ —n) — Au(n) as in (2.1.41). In addition, if

-
MP — _ X2(2 :lez(f_ 77777))
P /Rang e = Doy (§5m) (3.1.32)

X Pry J1(€ = 0) Pry fa(n) P f (€) dédn,

and || F~1(m)||pr ey < 1, then
MR g, g, | S 272027 i) min {270 oR =k 4}
X || Piy fill oo | Pry fol 22 | Pr f| 2

(1) If x5 : R — [0,1] is a smooth function supported in [—2,2]\ [-1/2,1/2]
and @y, is as above then, for any k, ki, ks € Z,

yn X3<2_2b|EL1L2 (5 -1 77)|2) o d
/Rse Do (6,17 ok (§)r, (€ — M)pra (1) 77‘ L (3.1.34)

5 2—2b2— min(k)l,kz) .

(3.1.33)

sup
£ER3

Remark 3.7. All estimates would follow from the “natural” localization bounds

[F (27 E00a (€ = 1) w0 (€ = @0 (M} 1 ey S 1 (3.1.35)

and the identities (3.1.48). We are not able to prove these bounds, but we
prove the weaker bounds (3.1.36) and (3.1.44), which still allow us to derive the
conclusions of the lemma.

Proof. Step 1. We show first that, for any ki, ke € Z and 1,19 € {+, —},
||}—71{X1(27bEL1L2 (f - ﬂ))‘Pkl (g - n)‘ka (n)}HLl(R(‘) 5 271)' (3136)

After changes of variables we may assume that t; = 10 = +, k1 = ko = 0. We

have to prove that HFI,HL1 < 27% for any b < 2, where

Fule,y)i= [ @0 ma@ s 0 e @pom dodn. (3,137
R

In fact, we will prove the stronger pointwise bounds

1
|Fy(z,y)| S
[1 4 226]a|2 + 220y 2]
1 926 (3.1.38)
X P )
[1+ min{|z], |y|}E(z,y)]> A+ 2>+ [y[)/?
for any z,y € R3, which would imply the desired conclusion HFbH o <270,
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In proving (3.1.38), we may assume that |y| < |z|, z = (21,0,0), 21 > 0,
y = (y1,Y2,¥3), ly2] > |ys|. The desired bounds (3.1.38) are then equivalent to

1 1 22b

F Z, g )
| b( y)‘ [1+22bx%]8 [1+ |y2|]8 (1+I’%)1/2

(3.1.39)

where y = (y1,y’). Notice that this follows easily if 7 <
integration is taken over a set of volume = 22
We will integrate by parts in € and n using the operators

1, since the 6,7

QQbAg, 22bAn, Lg = Ojé)(,_j, L,7 = ﬁjanj, Sij = 91'89]. + mé)nj. (3140)
The main point is that the vector-fields Lg, Ly, Si; act well on Z44(6,7), i.e.,

(L95++,k)(9a 77) =0, (Ln5++,k)(9777) =0,

(SisEr4k)(0,n) = jk[9¢/|9| — 772/|77|] _ [0i9j9k/|9|3 B 771'77j77k/‘77|3}. (3.1.41)

In particular, if O is any combination of the operators Ly, Ly, S;j, 22°Ay then

O{x1(27"214(0,m))¢0(0)p0(n)} is a function of the form X[27°= (6, n),6, 7],

where X = Yo is a smooth function supported in the set By x (Bg '\ Bl/2)2.
‘We notice now that

Sjl{eiz~96iyn} — 7;(9],:61 4 njyl){eiw‘eeiyn}.

Therefore, if |y1| < 2722, then we can integrate by parts using only the vector-
fields S;1 and gain a factor of x; at every iteration. It follows that |Fy(z,y)| S
22(1 + 22)72% which is better than the desired bounds (3.1.39).

On the other hand, if |y;| > 2720z, then we first integrate by parts using
22°Ay and Sj2, j € {1,2,3}, to gain the factors (14 22022)~19 and (1 + |ya|)~1°
in (3.1.39). Letting

Fl(z,y) = /R IR L (0,),0,1] dbd, (3.1.42)

where X is a smooth function supported in the set By x (By \ By /2)?, it remains
to prove that
By (2, y)] S 22°(1 + |2 |) (3.1.43)

For this we use the scaling vector-field Ly. For integers n > 0 we define Iy,

by inserting cutoff functions of the form @L?’Oo)(z -0) in the integral in (3.1.42).
Clearly, |Fj,(z,y)| < 2°°(1 4 |x1])~". We integrate by parts twice using the
scaling vector-field Ly to show that |Fy. (z,y)| < 27"2%°(1 + |21])~', and the
desired bounds (3.1.43) follow.
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Step 2. With x; as in (i), we show now that

[F a2 B0 (€ = nmX' @7/ Inl = )k, (€ = m)@ra (M| 1 o) S 1
(3.1.44)
for any smooth function y’ : R? — [0, 1] supported in the ball By and any vector
e € S?. Indeed, to prove this we can rescale to k1 = ko = 0. Then we define

Go(w,y) = /RS 0y (272 (0,m)X (27 (n/In] — €))po(6) o (n) dbdn,

(3.1.45)
and notice that it suffices to prove the pointwise bounds

1 24b

Gb(, )] S :
[1 4 220[2]2 + 22b|y|2]8 (I+]z-e2+y-e?)?

(3.1.46)

for any z,y € R3. These bounds follow by integration by parts as before, using
(3.1.41) and the operators 22°Ay, 22°A, . Ly, L,, and S;; defined in (3.1.40).

Step 3. We prove now the bounds (3.1.30). The estimates with the factor
2% follow from (3.1.36) and (3.1.3). To prove the estimates with the factor
2k1=F 1 1 we need to introduce an angular decomposition. Given g € Z, q < 2,
we fix a 2%-net M, on S? and define

p<o(272YE/ €] — ef?)
Perem, P<o(272E/1E] — €' |?)’ (3.1.47)

Pk-;q,ef = fﬁl{‘pk;q,ef}a

for any k € Z and e € 91,;. We insert the partition of unity {¢x,.s.c () }eem, in the
integrals in (3.1.29). Notice also that if |=Z,,,,(€ —n,1)| < 2° and |n/|n| —e| < 2°
then Z(¢,e) < 2°(25 % 4+ 1) in the support of the integral, as a consequence of

(3.1.27)—(3.1.28). Thus
b b,e
L ey ky = Z Lk,kl,k27
eeMNy
b,e —b—
Ly ke = / m(€ —n,m)x1(27 ., (€ —n,m))
R3xR3

% Py F1(& = 1) Page f2(0) P Ay o £(€) déd,

where b := b+max{k; — k,0} + C, and A/ble\f(ﬁ) = f(f)gpgo(Z_b,E(g,e)). Thus

L2 ko ® S Pk fillie { D I1Praefello 3 D 1 PsAy e fl72}

eeMNy eeMNy,
/_
S 1P fillZeo 1 Pes foll 22 - 2202 || P f 7,

(pk;q,e(f) =Pk (5)

using (3.1.44), (3.1.3), and orthogonality. The desired bounds (3.1.30) follow.
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Step 4. We prove now the bounds in (ii). With 8 = £ — n we write

1 . 1 B L|9+77|+L1|9‘+L2|77|
oy (§sm) €l —ual€ —nl —e2nl  2(6-n — r1e2]6]In])
_ YO+ n]+ e1]6] + ea|n|

N _L1L2|9||77HEL1L2 (9777)'2 .

(3.1.48)

The bounds (3.1.31) and (3.1.33) follow, using also (3.1.30).
Step 5. Since [|F~Y(m - m))||x S (| F mlpa || F~1m/|| 1, for (3.1.34) it
suffices to prove that, for any & € R3,

Hm(&) /RS eV (272 E 0 (E =1 m)I?) - ry (€= M)y (1) dnHLl <1 (3.1.49)

By symmetry and rotation, we may assume that ko < ky and & = (£1,0,0),

&1 > 0. The bounds (3.1.49) follow by standard integration by parts if b > —20,
since the function

Hye(n) =272, —n,n)

satisfies differential bounds of the form [Dy Hyp.¢(n)| Sja| 2~ lelk2 iy the support
of the integral, for all multi-indices a € Zi.
When b < —20 we have to be slightly more careful. Notice that if b < —20

then the function Xa(2~2*[Z,,, (€ — 1. )1?) - 4 (€)rs (€ — )iy () is nomtrivial
only if b < k — max(ky, k2) + 10. This can be verified easily by considering the
two cases 11 = i3 and ¢; = —19, and examining the definitions. Notice also that

_ g1 [E—nllnl —eea(€—m) -
1€ —nlIn]
27— 2n2 — ((€ —n) - n)?]
= e alllE = allal + a2 € — ) 7] (8.1.50)
_ 2720 eR (13 +13)
1€ = nlnlllE —nllnl + tre2(€ —n) 1)’

Hye(n)

using (3.1.24). Notice that the denominator of fraction in the right-hand side
above is ~ 22K1%2k2 in the support of the integral. Thus the 7 integral in

(3.1.49) is supported in the set Ry := {|n| = 2k2, [¢ — | ~ 2", \/n2 + 13 ~
2bFhitk2=k 1 (according to the remark above, we may assume that 20TF1+k2=k <
gmin(k1.k2) — 9k2) Moreover, it is easy to see that

|05, Hye ()] < 272191, 107 Hyye ()| < 271010+ RHka 8,

for n € Ry, I € {2,3}, and a € [0,10]. The bounds (3.1.49) follow by integra-
tion by parts in 7. O
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3.1.3 Elements of Paradifferential Calculus

In quasilinear equations the application of normal forms to prove energy esti-
mates leads to loss of derivative. As in some of our earlier work [16, 17], we deal
with this issue using paradifferential calculus.

In this subsection we summarize some basic tools of paradifferential calculus.
We recall first the definition of paradifferential operators (Weyl quantization):
given a symbol a = a(z, () : R? x R® — C, we define the operator T, by

~

FALI© = gz [ o ale - n e n/nfndn G150

where @ denotes the Fourier transform of a in the first variable and x¢ = ¢<—_40.
We will use a simple norm to estimate symbols: we define

lallzs == sup (1+[¢1*) 7| |al (-, O)ll s
e (3.1.52)
lal(z,0) == Y [KIPIN(DIDga) (=, ), -

|B1<20, |a|<3

for g € [1,00] and | € R. The index [ is called the order of the symbol, and it
measures the contribution of the symbol in terms of derivatives on f. Notice
that we have the simple product rule

lablles .

S llallgg [0lley,,  1/p=1/¢+1/r. (3.1.53)
Our main result in this subsection is the following lemma.
Lemma 3.8. (i) If 1/p=1/q+1/r and k € Z, and | € [—10,10] then

1P Taflle < 2% [lall coll P —2,p2 f | - (3.1.54)

~

(i) For any symbols a,b let E(a,b) == To,Ty—Top. If 1/p=1/q1+1/q2+1/r,
ke€Z, and ly,ly € [—4,4] then

~

254 PeE(a,b) fl v < (2“k*|\a||a;?11)(2l2k*||b||g;122) N Pr—spra fllzr (3.1.55)

(i) If ||al|cee < oo is real-valued then T, is a bounded self-adjoint operator
on L?. Moreover, we have

Tof =Tuf, where d'(y,¢) = aly,—C). (3.1.56)

Proof. The conclusions were all proved in Appendix A in [17]. For convenience
we provide complete proofs here as well.
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(i) Using the definition (3.1.51) we write

(PT.f.9) = C [ 3@ )1 (e.g)dady,

o) = [ a6 /20 e (21000 dndsc
_ /R 9 a(z 640 /2)610-(z—y)€i£'(9¢—y)xg(2£|9+ 0|)¢,€(,5)¢§k,10(9) deddz.
(3.1.57)

‘We observe that

2 242 _ a(z,€+0/2) 19|
(1+ 2% |z — gy I(z,y) = /]Rg T+ 22Mz — )2 5 X0 (‘2§+0|> r(§)e<r—10(0)

X [(1 — 92K A g)2(1 — 22K A )2 {02V 6 (=) }} dedod:.
By integration by parts in £ and 6 it follows that

|al(2, € + 0/2)pir—2 k42 (§) p<r—s(0)
(1+22k‘x_y|2)2|1(1’7y)‘ S\/]RQ (1+2£I;€|jk_+;]|2)2 ks

dedodz,

where |a| is defined as in (3.1.52). Notice that 23%||(1 + 22%|y|?)=2|| L1 (rs) S 1.
The bounds (3.1.54) follow using (3.1.57).

(ii) The point is the gain of one derivative in the left-hand side for the
operator TyTy, — Typ. In view of part (i) we may assume that k > 0 and replace
the symbols a and b with P<j_s0a and P<j_50b respectively. As before,

(PeE(a,0)f,9) / (Puasa @) (@ y)dedy,  (3.1.58)
where
J(z,y) = /]R9 (&) p<i—s0(& — p)o<n—so(p — n)e™Ce ¥

< fae — 0. 5T 200 — 0, 25 e — 0. 5T — 0, S 1) dndpde

We decompose
+ + ~ + 1\ +
X200 — . ) e — o, ST (o, 51T

(g P 2
=my(&,n,p) +ma(€,n, p),
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where, for any &,7,p € R3,

€)= a(e — p, 2000 — . L2 ~ale — o, )0 — . S0
1, o B B
(3.1.59)
and
ma(em,p) = (€~ p, LYo — 0, S50 e~ ST bp -, S5
~ 1,y (o
:b(p_mg;n)/o G 277)3 (8415)(5_07W) ds.
(3.1.60)

Then we decompose J = J; + Jo where

Jn(z,y) == /Rg k(&) p<i—s0(& — p)p<i—_so0(p — n)e eV m, (&,m, p) dndpdE.

As before we would like to estimate |.J,,(x, y)|. We rewrite

mi(&,n,p) = O/O /Rﬁ(azja)(z’ 542”0)(5’(]-1))(11), E—F%S(p—é))

x e~ 12 (E=P) = tw (p=1) G dapds.

Therefore

Ji(z,y) = C/O1 /RG /R9 Pk (§)p<i—s0(§ — p)p<r—s0(p — 1)

§+p E+n+s(p—8)[1 = 22FAPelm¢
x (0z,a) (2, D) ) (¢, b) (w, D) ) [1+ 22F|z — 2|2]2
[1 _ 22k:An]26i(w—y)~n [1 _ 22kAp]2ei(z—w)~p
T+ w—yPF [+ 2% — wlP

dndpdédzdwds.

We integrate by parts in £, 7, p and use the definition (3.1.52) to bound

1
Pl s [ [ ] lenarea©perale =~ pperato= )

|a| (27 EJer) |b| (w7 f+n+;(p—f))
[T 25 — P+ 22w — PR T 227w

5 dndpd€dzdwds.
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Notice that ||(1+2%]y[*) 72| 11@s) S 273%. Using the Hélder inequality we have

[ 215 lla@) P )] dedy

S 1Ppe—s s e gl por (25 lal] o) (225 1] 222)

if felL',geL and 1/p' +1/q1 +1/qz +1/r = 1.

The contribution of the kernel J; defined by the multiplier mo in (3.1.60)
can be estimated in a similar way, and the desired bounds (3.1.55) follow.

(iii) The operators T, associated to symbols a € L5° are bounded on L? due
to (3.1.54). Self-adjointness and the identities (3.1.56) follow easily from the
definition (3.1.51). O

We remark that the operators E(a,b) = T,Tp — Top gain one derivative,
compared to the individual operators T, T}, and Tgp, as shown in (3.1.55). One
could gain two derivatives by subtracting also the contribution of the Poisson
bracket of the symbols a and b, defined by

a,b} :=V,aVb—VeaV, b,
¢ ¢

but we do not need a refinement of this type in our applications.

3.2 LINEAR AND BILINEAR ESTIMATES

Localized linear and bilinear estimates, localized in both frequency and space,
are the main building blocks to prove nonlinear estimates. In this section we
state and prove several such estimates that are used in the nonlinear analysis.

3.2.1 Linear Estimates

We start with our main linear estimates, which are localized in both frequency
and space. In fact, in some estimates we need to localize in the Fourier space
to rotational invariant sets that are thinner than dyadic. For this we fix a
smooth function y : R — [0,1] supported in [—2,2] with the property that
Yonez X(@ —mn) = 1 for all z € R. Then we define the operators C,;, n > 4,
l€Z, by

Crag(€) = x(€127" = )3 (). (3.2.1)

We prove now several linear dispersive estimates.
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Lemma 3.9. For any f € L*(R3) and (k,j) € J let

fik = PQjrf,  Qeikf = > Qirkfs  f<jn = PQ<jnlf,
j’ €[max(—k,0),7]
(3.2.2)
where P}, = Py,_ j19). For simplicity of notation, let

f;‘,k =Qjrf, f;j,k = Q<jrf (3.2.3)

(i) Then, for any a € (Z4)3,

IDg Fiklle <2V Fr e, IDE finllie S 21Vl (3:24)

Moreover, we have

1 Fiellpoe S min {2572 1yl 2, 272720 UER | £y o}, (3.2.5)
1F51(rO) | L2 2ary e S 2701 FFpl 22 (3.2.6)
15O 2 2ary iy Sp 1 fllgos,  p € 2,00), (3.2.7)

and o ' 4
1F5s = Finlloee < 25972274040 P £ . (3.2.8)

(ii) For any t € R, (k,j) € J, and f € L*(R?) we have
le™ e finllpee S 2%%2 min(1, 27 ()~ | fxll - (3:2.9)

In addition, if |t| > 1 and 7 > max(—k,0), then we have the stronger bounds

— —14 - 3 *
lo—so.s01 ()~ @) (e~ e fr ) (@)lnge S (0712521 + (02) 115kl g

(3.2.10)
. 3 . y —
lle™ e finllze S (87125 2(1 + (6)2%) ||kl o if 22 <2710t);
(3.2.11)
lle™ e fejpllie S 225 I F2 ki if 2 S P2 (32.12)
(iii) For any t € R, (k,j) € J, and f € L*(R?) we have
le=®M%s 4| poe S min {23572, 2387 (1) =3/2239/2Y || £ | 1. (3.2.13)
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Moreover, if [t| > 1 and j > max(—k,0), then we have the stronger bounds

—i + _ /9 -3 *
lle tAkgfj,k”Loo < 95k {t) 3/295/2—k (1+ <t>22k )5 ||fj,k||Hgl (3:2.14)
if 29 < 2 g

. + ., - . i
le e feyullie SO PN e Y S0 (3:215)

(iv) The bounds (3.2.11), (3.2.12), (3.2.14) can be improved by using the
super-localization operators C,,; defined in (3.2.1). Indeed, assume that [t| > 1,
j > max(—k,0), and l < k —6. Then

» 1/2 ~ _—
[ e e fialie ) < 07220+ 029 [ ulggr  (3216)
n>4

provided that 29 4+ 270 < (£)(1 + (t>2k)’53. Moreover, if 20 4+ 271 < (t)1/22-k/2
then 4 o
sup [le= " veCo i fejkllne S 2240 Y| FZ; 4llnee- (3.2.17)

n>4 ~
Finally, if 27 + 270 < ()28 (1 + ()22 )=%" then
—itAy 2 1/2< 5k N —19l/20—k~ 2k 8% || px
{ D llem o finllin } S 2 072227 (1 (025)% | £l g

n>4

(3.2.18)

Proof. The conclusions were all proved in Lemma 3.4 in [38]. For convenience
we reproduce the proof here.

(i) The bound (3.2.4) follows from definitions, since every ¢ derivative cor-
responds to multiplication by x in the physical space. Similarly,

1 Finllzoe SN Fix * P<grallioe S 2572\ f2llz2,

which gives the first inequality in (3.2.5). A similar argument also gives (3.2.8).
Using the Sobolev embedding along the spheres S, for any g € H, 502’1 we have

GO | 12 2ary 2 S > s esregle S, lillhes,  (3:2.19)

mi+ma+m3z<1

for any p € [2,00). This gives (3.2.7). Moreover, for £ € R? with |¢| =~ 2 we
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estimate

Fr©1 % [ IFLllezmae - ro)rards
S50l (rzary 2 12% (1 + 276 — )l L2 rzary 2
<p ”ﬁ”H%l 93i9—i/29ko-2(i+k)/p’_

The second bound in (3.2.5) follows. The proof of (3.2.6) is similar.

We prove the remaining bounds (3.2.9)—(3.2.18) in several steps.
Step 1: proof of (3.2.16) and (3.2.17). Let

Figon = Cutfins  Gam(€) = F(©p<a@7|¢] = ). (3.2.20)

By orthogonality,

2 1/2 *
Hsoz’l} S ”fj,kHHg’l'

{3 ligsnn

n>4

For (3.2.16) it suffices to prove that, for any n > 4 and z € R?,

| /R e el g ()t (X127 — n) de

_ 3
S 67122((6)2%) Nlgjhin

(3.2.21)

‘ 0,1.
HQ

This follows casily if 2%(t) < 1. Recall that 27 + 271 < (t)(1 + (£)2¥)=9" and
k > 1+46. The bounds (3.2.21) also follow directly from Lemma 3.1 (integration
by parts in €) if |z| ¢ [2749(), 240(¢)].

It remains to prove (3.2.21) when

£

2k (t) > 259, lz| € [2759(¢), 259(t)). (3.2.22)

By rotation invariance we may assume z = (x1,0,0). Then we decompose
—itAwa _
e’ figm(x) = Zb,czo Jp e, where

Joe =0 /R T (€t k21 ()X(€[27" = mpet & 7 yy o (€) de,
Une(€) 1= @l (62 /2M)pl0%) (g5 /2%), 2t = (1) 122k,

We estimate first |Jg o|. For any p € [2, 00), using also (3.2.19) we have

(3.2.23)

|0.0

5 ||%<T€)||L2(Tsz)Lg (2)‘_k)2/p . 2]621/2

i (3.2.24)
Sp 195kl o - (6)122((6)25) V7.

This is consistent with the desired bound (3.2.21), by taking p large enough.
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To estimate |Jp .| when (b, c¢) # (0,0) we may assume without loss of gener-
ality that b > c. It suffices to show that if b > max(c,1) then

_ 3
[ o.el S (O71272((0)2)° /|l gj psnll o1 (3.2.25)

We integrate by parts in the integral in (3.2.23), up to three times, using the
rotation vector-field Qqo = §10¢, — £20¢, . Since Qio{x1&1 —t|E|} = —&o1, every
integration by parts gains a factor of [t|2 0 ~ (t)1/22F/2+b and loses a factor
< (6)Y/22K/2 If Q5 hits the function gj 1., then we stop integrating by parts
and bound the integral by estimating Q127; 5, in L2. As in (3.2.24), we have

ol S G55 (0 | 2 (r2ary pp (227F) /7 24212270
+ ||912m (2)\+b2l/2)(<t>1/22k/2+b)—1,

|2

which gives the desired bound (3.2.25). This completes the proof of the main
bounds (3.2.21).

The proof of (3.2.17) is easier. We define f<j . := Cpn,if<;r. For (3.2.17)
it suffices to prove that, for any n >4 and x € R3,

| / e e (O pta ez (OX(E27 — ) de| < 2°2'(0) TN -
(3.2.26)

Tithva foj k() =

As before, we may assume z = (z1,0,0) and decompose e
!/
Zb,czo J; ., where

Jlg,c =C R3 @(5)@[k—2,k+2] (f)X(|§|2il - n)eiwlgliitlgl'l/}b,c(g) dgv

Ube(€) 1= @l (£2/2)pl0) (£5/2Y),  2) 1= (1) /22N,

(3.2.27)

Using polar coordinates, it is easy to see that [.J§ o] < 2¥2!(¢)~! ||E]\,€||Loo Then
we integrate by parts in & or & (using the assumption 27 + 27! < (£)2227%) to
show that /\

| Tpol S 27Xkl () 7| Fr |

for any b, ¢ > 0. The desired conclusion (3.2.26) follows.

Step 2: proof of (3.2.9) and (3.2.10). We start with (3.2.10). By rotation
invariance we may assume x = (21,0,0), |z1| = (¢). We may also assume that
2k (t) > 240 As before we decompose e~ #ve f;  (z) = > b0 Jh e Where

Jl;/,c = 43 f/']',\k(f)@[k—4,k+4] (é—)eiamfl _itlélwb,c(é-) dé-v

() 1= ol (62/2M)pl0%) (g3/2Y), 2= (1) 1/22k/2,

This is similar to the decomposition (3.2.23) with I = k — 6, once we notice that

(3.2.28)
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super-localization is not important if 2! ~ 2. As in (3.2.24)-(3.2.25), we have
_ 3
ool Sp I Fiell o - 8122 (()25)° /%,
and, if b > max(c, 1),
—_ 3 *
|Jel S 871 2H 20025 BN £ g

The proof of this second bound uses integration by parts with the rotation
vector-field Q19 = £10¢, — £20¢,, and relies on the assumption |z1| ~ (t). The
desired conclusion (3.2.10) follows from these two bounds.

The bounds (3.2.9) follow by the same argument, using the decomposition
(3.2.28), but using (3.2.6) instead of (3.2.7) in the estimate of |Jyo|. Also, we
integrate by parts in & or &3 to bound |Jp, .| when 2Xtmax(b.e) > 9j+k (1) =1,

Step 3: proof of (3.2.11) and (3.2.12). The bounds (3.2.12) follow directly
from (3.2.17) by taking 2! ~ 2. To prove (3.2.11) we may assume that z =
(71,0,0) and (t)2F > 240 If |z | € [2719]¢|, 21°|¢|] then the desired bounds follow
from (3.2.10). On the other hand, if |z1] < 2719¢| or |z1]| > 2!°|¢| then we write

e fi4)(2) = C Fir(ple et lop o0 (€) dédy.

R3 xXR3
‘ (3.2.29)
Here we use the fact that 2/ < (¢)271° and integrate by parts in ¢ sufficiently
many times (using Lemma 3.1) to see that

e fi ()] S ((6)25) 1225292 £l S (025) 7 2% 02 £kl e,

which is better than what we need.
Step 4: proof of (3.2.18). This is similar to the proof of (3.2.16). It
suffices to show that for any n > 4 and 2 € R?,

’ /RS e MO G () h—2.m2 ()X(IE[27F — n) dE

S2F () T12227R (14 (02%) g kom0

(3.2.30)

This follows easily if 225 (t) < 1. Recall that 20 4+ 271 < (£)2F (1 + (t)22k )=
and k > [+ 6. The bounds (3.2.30) also follow directly from Lemma 3.1 if
x| ¢ [27992% (1), 27028 (1))].

It remains to prove (3.2.30) when

22k (1) > 250, lz| € [27592% (1), 2502% (1)]. (3.2.31)

_ —itAg . _ 111
We may assume z = (21,0,0) and decompose e 9 fikn(T) = Dy 50 Jhes
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where

e =C /R L Gin(©)ppe—2 p121 ()X(E27" = m)e @Oy (€) de,
Uhe(6) =0y ) (6a/2)l ) (&/2Y), 2V = (722

As in the proof of (3.2.16), we estimate first |J§y|, using (3.2.19). Thus, for any
p € [2,00),

(3.2.32)

0l S 1557 (rO) 2 ey (23 )27 20212
<o lggisnll o - 272 278 (1) 7122 ((1)22 ),

Moreover, if b > max(c, 1) then we show that

L _ - — 3
|y < 2557 () 122 ()22 )08 g

oyt (3.2.33)

These two bounds clearly suffice to prove (3.2.30).

To prove (3.2.33) we integrate by parts in the integral in (3.2.32), up to three
times, using the rotation vector-field Q2 = §10¢, — §20¢,. Since Qia{z1&1 —
t(€)} = —&xq, every integration by parts gains a factor of 28 [¢[2A 1P ~
(t)1/22F+b (see (3.2.31)) and loses a factor < (£)1/22F. If Q5 hits the function
gjﬁl then we stop integrating by parts and bound the integral by estimating
nggfﬁl in L2. As before it follows that

PAARS ||m(T9)||L2(r2dr)L§(2X_k)2/p,2k2l/22_b

+ Q2|2 (22022 (1) /22440) 71,

which gives the desired bound (3.2.33). This completes the proof of the main
bounds (3.2.30).

Step 5: proof of (3.2.13)—(3.2.15). Clearly |le=" ks f; |1 < ||f/j\k||L1 <
238/2|| f; || 2. Moreover, the standard dispersive bounds

—i _ +
e~ ke Pyl e S (14 J2]) /22"

~

can then be used to prove (3.2.13), i.e.,

e ztAkgfj7k|‘Loo S (14 1E) 3/293k ||f;k||L1 <

~

— + ] *
(L4 [e)=>/22%5 2592 7 .
To prove (3.2.14) we consider first the harder case 2/ > (t)!/2. By rotation

invariance we may assume = = (x1,0,0), 1/t > 0. We may also assume that
20tk > 93kTH10 (otherwise the desired conclusion follows from (3.2.13)) and
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273 > 1. If |aq] < 2710004287 or || > 2190(¢[2F” then we write

e e fial(@) =C [ faly)em e eIV oy o) (€) dédy.
R3xR
(3.2.34)
We integrate by parts in £ sufficiently many times (using Lemma 3.1 and recall-
ing that |y| < 2911 < 28 ~19(4)) to see that
e 0 f ()|

~

(622 )~ 2282392 £ .

This is better than what we need.

It remains to consider the main case |z1| &~ [t]2¥ . Let p € (0,00) denote
the unique number with the property that tp//p? + 1 = x4, such that (p,0,0)
is the stationary point of the phase & — 16 — t1/[€[2 + 1 and p > 2F . Using
integration by parts (Lemma 3.1), we may assume that &, &, {3 are restricted
to |€2, €3] < 28710 and & € [2871928+19] (for the other contributions we use
(3.2.34) and get stronger bounds as before). Then we let

Jape = /]R3 f]}\k(f)@[k—4,k+4] ()14 (&1)p<k—o0(&2)p<k—9(&3)
e s T 3.2.35
x em Iy, (6) de, (323)
Yape(§) = Pl (&1 — p) /2 )l ™ (€2/222)pl0%) (€527,
where, for some sufficiently large constant C,
oM 1= 20 (1) 13K HC )2k )4 g () 1/ 29T (3.2.36)

Compared to the earlier decompositions, such as (7.1.66), we insert an additional
decomposition in the variable & around the stationary point (p,0,0).

Recall that 27 > (£)1/2. We estimate first |Jy 00|, using (3.2.7), for any
p € [2,00),

10,00l Sp 1£5.6(rO) L2 (r2ary e (202 7F)2/P gkoh /2
0

R _ s (3.2.37)
Sp I fsull o (8)~3/229/ 227 2487 ()22 ) /P78,

This is consistent with the desired bound (3.2.14), by taking p large enough.
To estimate |J, | when (a,b,c) # (0,0,0) we may assume without loss of

generality that b > c. If 22240 > 23 (#)=12k" ((£)22k7)8°/40 then we integrate by
parts in £ many times, using Lemma 3.1, to show that

[abel S 1l ()27 ) 712472,

which is better than what we need. This also holds, using integration by parts
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in &, if 22240 < 29 (1) =12k ((£)22k)5°/40 and @ > 1. It remains to prove that

o 19k —\63 "
[Josel S 25 ()220 ()22 ) 1 f i g (3.2.38)

provided that
b>max(c,1)  and  2%2t0 < 29(f) 1ok ((1)22k )840 (3.2.30)

To prove (3.2.38) we integrate by parts in (3.2.35), up to three times, using
the rotation vector-field Q1o = &g, — £20¢,. Since Qa{z1& — t\/|E)2 + 1} =
—&x1, every integration by parts gains a factor of [¢|2F 22210 ~ (¢)1/22k+0 and
loses a factor < (t)1/22F. If Q5 hits the function E\k then we stop integrating

by parts and bound the integral by estimating ngfj; in L2, As in (3.2.37) it
follows that

[Jo.b.c] Sp Hfj,k(Te)HLz(err)Lg(2>\2_k)2/p/2k2)\1/22_b
12Tyl 2 2020225,
which gives the desired bound (3.2.38). This completes the proof of (3.2.14)
when 27 > <t>1/2.

The bound (3.2.15) follows by a similar argument. We decompose the in-
tegral dyadically around the critical point (p,0,0), as in (3.2.35), with 2* =

(t)=1/22367+C and 2%z = (t)=1/22%"  and integrate by parts in &1, &, or .
The bound (3.2.14) when 27 < (t)!/2 follows from (3.2.15) and (3.2.5). O

3.2.2 Multipliers and Bilinear Operators
We define two classes of multipliers Mg and M by

Mg = {m :R> = C : |z|l*l |]D¥m(z)] Slal 1

3.2.40
for any o € Z% and x € R*\ {0}}, ( )

and
M= {m:R® = C: m(z,y) = mi(z,y)m'(x +y), m" € Mo,

|:C||a||y|ﬁ |D§‘Dy’8m1(sc,y)| Sal,)g 1 for any o, 8 € Zi’r and 2,y € R3\ {0}}.
(3.2.41)

In most of our applications the multipliers in M will be of the form my (x)ms(y),
where my, ms € M. We will also need to allow sums of such multipliers in order
to be able to define the important classes of null multipliers M7 C M; see
Definition 4.21.

In some of our constructions, in particular connected to the application of
normal forms and associated angular cutoffs, the class of multipliers M is too
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restrictive. To treat such situations we define a more general class of multipliers

M= {m e L¥(R®) : | F~H{m - on, (2)or, (1) er (@ + 9} L1 @ey S 1

(3.2.42)
for any k1, ke, k € Z}.

Given a bounded multiplier m let I = I,,, denote the bilinear operator

T8

TR = TnlFoa)€) = g [ mie—nmfie—natndn. (3249

We will often use the simple L? bounds
1Py, f. Proglllze < 25mn bkl 2 B f o Pgle (3:2.44)

for any multiplier m satisfying ||m||z~ <1, f,g € L*(R3), and k, k1, ks € Z.

3.2.3 Bilinear Estimates

Linear estimates are insufficient to bound some of the quadratic terms in our
nonlinearities. In this subsection we use TT™* arguments to prove several addi-
tional bilinear estimates involving solutions of wave and Klein-Gordon equations:

Lemma 3.10. Assume k,ky € Z, (k1,71) € J, t € R, and f,g € L?(R3).
Define fji kis f<juibrs fips 250 as in (3.2.2)(3.2.3). Assume that m € M*
and I, is a bilinear operator as in (3.2.43). If [t| > 1 and

2j1 < <t>1/22—k1/2+2—min(k,k1,k2) (3245)
then

HPI@Im [e_itA“m’ fﬁjl,]ﬁ ) szg} HL2 S gmin(k-k2)/2 <t>_123k1/2 ||f;jl,k71 HLOO |‘Pk2g||L2'
(3.2.46)

Proof. By duality we may assume that k < ko, and the point is to gain both
factors (t)~! and 2%/2 in the right-hand side of (3.2.46). We write

m(& = 10,1 Pk—a,k+4 ()Pl —4,k1 +41 (§ = M) Plky—a, ko +41(0)
= C’/ K(m,y)e*”'ge*i(y*z)'" dxdy,
R6
for some kernel K satisfying || K|/;: < 1. Combining the factors e~**¢ and

e~ "W=2)" with the L? functions, we may also assume m = 1 and write, for
simplicity, I = I,,.
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We estimate first
[PeIle™ ™ feji ks Peaglllze S 2%%2 (1 f<jy ko 22 || Progll 22

S PPN fojy g, | p | Pragll -

This suffices if (£)2¥ < 1. On the other hand, if (t)2% > 240 and (t)2F < 240
then we estimate

[ Pele " e f<jy krs Praglline S 2% f<jy i lzoe | Peogll 22,

which suffices. If (t)2F > 240 (#)2F1 > 240 and k; < k + 10 then 27%F <
27k H10 < (1)1/292=k1/2 Therefore 27t < (t)1/227F1/2+1 and (3.2.12) gives

[ PeIle " f<ji ks Praglllne S lle™ e foji i llzoe || Peygll 22
SRATURS VRSN PR A
which suffices. It remains to prove (3.2.46) when
k<k —10, ()28 >210 20t <ok (1)l/297k/2 (3.2.47)
Case 1. Assume first that (3.2.47) holds and, in addition,
27k > (1)1/297k1/2, (3.2.48)

In particular, 27t < 27%+1 and k < 1. We pass to the Fourier space and write
1PeIle™ " f<jy s Praglllf = C oo D20 Piag(p) L. p) dndp
X

where

L(?% P) = /R3 @i(f)e_it/\wa(g_n)fﬁjl,h (f - n)eitAu,a(f—p)ijl,kl (5 - p) dg.

(3.2.49)
Using Schur’s lemma, for (3.2.46) it suffices to prove that

sup [ s (D6tes 1)L, ) i S 2500225 | T
R

pER3

Sup/ Plir—,ks+4) (Pl —2,1+41 (P) L (0, p) dp S 25(0) 22 (| F2, (G
ner3 JR3
(3.2.50)

Since L(p,n) = L(n, p), it suffices to prove the first bound in (3.2.50).
We would like to integrate by parts in £ in the integral definition of the kernel
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L. Let ny denote the smallest integer satisfying 270 > (2%(¢))~! and let

L) = [0 (N € = 1) = Nl = ) (©)

x e Hhwalemm=Rwa &P fu (€ =) f<jy h (€ — p) dE.

(3.2.51)

We may assume that ||]€1\k1 lLee = 1. Assume n =ng+p, p > 0. If p > 1 then

we integrate by parts in ¢, using Lemma 3.1 with K = (t)2" and e ~ 2% (recall
that 27t < e !and 277k <27k (#)2F < e~ due to (3.2.48)). It follows that,
for all p > 0,

L)) 27 [ pniaWonl€ =) = Noal€ = P)p—snsa (€
X Olky—a,kr+4] (§ = 1) Py —a,ky +41 (€ — p) dE.

Therefore, after changes of variables,

/R;P[kl—z;,klﬂ] (77)|Ln(777p)| dn

S2 [ i) - Mo @)t ansa o+ o)
R3xR3
X Py —a,ky+4] (P + T = Y) Py 4 ky +41 (V) Pky — 4,y +4) (7) dzdy,
for any p € R® with |p| € [2¥176 2k1%6]. Since A/, ,(2) = z/|z|, the integration

in y in the expression above is essentially in a rectangle of sides smaller than
C2m2k x C2n2k x O2%1. Thus

/ Pt —a iy +4) (M) L (0, p)| dy S 2740221230123k < 9=2p (1) =293k gk,
RS

The desired conclusion (3.2.50) follows.
Case 2. Assume now that (3.2.47) holds and, in addition,

27k < (1)1/297k1/2, (3.2.52)

We fix a smooth function x : R — [0, 1] supported in [—2, 2] with the property
that >, x(z —n) =1 for all z € R. Then we decompose

Feim = S<iibims  Fpmnm(€) = Feim ©x(27*[E] - n).

Let Grym (€) i= Prog(€)p<a(27%(¢] = n). Clearly

Pkl[e_itAwaijl,/m ) szg] = Z Pkl[e_itAwa fgjlxkl?ﬂ? gkz;n]'
n
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The sum in n has at most C2%1~* nontrivial terms, so, by orthogonality,

1P e fe by Progllie S D0 e fejy i Gasnlll 2
n

5 11/2
2.}

|00

<2 R2L S et f
n

< 2(k1*k)/2||Pk2g||L2 sup ||€7itAwa f<jikim
n

For (3.2.46) it suffices to prove that, for any n ~ 2k %,

3 Awa _ —_—
lle™" e feji pumlli= S 2525 ) I, gy o=
which follows from (3.2.17). O
We also have some variants using only rotational derivatives:

Lemma 3.11. Assume k,k1,ke € Z, (k1,71), (k2,j2) € T, t € R, |t| > 1, and

f,9 € L*(R®). Define fi, kys [, kys Ginkas Gy 1y @5 0 (3.2.2)(3.2.3).
(i) If m € M*, L, is the associated bilinear operator as in (3.2.43), and

291 < () (1 + 281 (1)) 70/20 4 g min(kkrka) (3.2.53)
then
| Pe e 2 f5, kys Proglll L2

< 2RO T L+ (025)° 2 £k, g 1Prag 2

(3.2.54)

(i) If m € M and I, is the associated bilinear operator as in (3.2.41)-
(3.2.43), Ly € {+, —},

ok okz ¢ [(1)=1H9/2 (1)2/9] and 272 < (1)179/2, (3.2.55)

g+ -
then, with Gjo by “= Giaks and 9is ky = Gja ks

Ml £ gy e Pumiag e S 22742 g sl g
(3.2.56)

Proof. (i) As before, by duality we may assume that k < ko and the point is to
gain both factors (£)~! and 2¥/2. We may assume that m = 1 and write I = I,,,.
We estimate first, using just the Cauchy-Schwarz inequality,

1PeIle™ "N £,y Praglllize S 28RO £ 2| Pry gl -

This suffices to prove (3.2.54) if 2min(kk1) < (1)=1(1 4 (£)2F1)9/20 On the other
hand, if 2™k > (1) =1(1 4 (£)2F1)9/20 and ky < k + 20 then we use (3.2.11)
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to estimate

HPICI[eiitAwn’fjhkl 7P/€29]HL2 5 HeiitAwafjhkl ||L°° ||Pk29]HL2
S 722+ 020 f5 g o | Praglle,

which suffices. It remains to prove (3.2.54) when
E<k—20, ()28 > (14()2k)%/20  2v < (1)(14-281 (1)) ~%/20. (3.2.57)

We decompose

Jivk = Z firkiims Jivkim = Crk i k-

n>4
Let Gipm (€) i= Prog(€)p<a(27%1€] — n). Clearly

PkI[e_itAwa fjl,kl ) leg] = Z PkI[e_itAwafjl,kunv gk2;n]'

n>4
Therefore
[PI[e™ ™ £y Proglle S ) [le7 ™ £, kyimllzoe || ghaim | .2
n>4
, 1/2 1/2
S e il )Y NgranlEe }
n>4 n>4

- 1 6 *
S @722+ 02O F, g0 - 1 Progllze,

where we used (3.2.16) (see the restrictions (3.2.57)) and orthogonality in the
last inequality. This completes the proof of (3.2.54).
(ii) We decompose e~ "wa f5 = Py gk ya)Hit + Py —a 5441 HE, , where

Hy () := @_a0.40 (@ /() e Ave i g (@),
HE (x) = (1 — p[_a0,40 (x/(t)))e™ e fi, g, (@),

for z € R3. In view of (3.2.10), we have

1R, oo S 2520702 12 o

so the contribution of H ,%1 is bounded as claimed.
On the other hand, we claim that the contribution of H 131 is negligible,

—itAwa,. - * *
||IW[P[k174,k1+4]nglve * 292 1l S () 2ng2,kz||L2Hfj1,k;1HL2~ (3.2.58)
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Indeed, the definitions (3.2.41) and (3.2.43) show that
I[P F, PLGl(2)] Sn (IF] + KfY)(2) - (|G * KiY) (=),
for any l1,lo € Z and N > 10, where K}¥ (y) := 23/(1 + 2! |y|)~". Moreover,

lor-0,30) (/) - (1HE, | * K (@)l < 6N F5, iz,

for Iy € [ky — 4,k + 4], in view of the support restriction on H,fl and the

assumption 2% (t) > (t)%/2. Also, using Lemma 3.1 and the assumption 272 <
({t)179/2 we have

(1 = @-s0,80) /(1)) - (le™ " gy 1| ¥ K@)z S (8) 21195, 1 225

for ly € [k —4, k2 +4]. The desired estimates (3.2.58) follow from the last three
bounds. O

We also need some bilinear estimates involving the Klein-Gordon flow:

Lemma 3.12. Assume k,ki,ks € Z, (k1,j1) € T, t € R, |t| > 1, and f,g €
L*(R®). Define fj, ky, f5, 1, as in (3.2.2)~(3.2.3). If [|F~'m|lp1 <1, Iy, is the
bilinear operator as in (3.2.43),

kE <k —10 and 271 < (1)2k (1 4 2%k (1)) =9/20, (3.2.59)
then

HPkIm[eiitAkgfjuh ) szg] ”L2

. _ _ 3.2.60
S 2k/2<t>712okf27k1 (1 + <t>22k1 )6/20||f;1,k1 |‘H%1 Hpkgg”L?- ( )

Proof. This is similar to the proof of Lemma 3.11 (i). We may assume m = 1
and write I = I,,,. We estimate first, using just the Cauchy-Schwarz inequality,

HPkI[e_itAkgijh?Pk2g]||L2 g 23k/2||fj17k1 ||L2||Pk29HL2,

which suffices if 2F+%1 < ()71 (1 + (£)22#1)%/20. On the other hand, if 28F1 >
()11 4 (£)22#1)%/20 and k < k7 — 10 then 2251 >> ()~ and we decompose

fj17k1 = Z fjl,kl;na fjl,klm = Cﬂ,kfjl,kl (5)

n>4
Let Grom (€) = Prog(€)p<a(27F|€] = n). Clearly

PkI[eiitAkg fjl,kl s szg] = Z Pkl[eiitl\wafjhkl;na gkg;n]-
n>4
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Therefore, as in the proof of Lemma 3.11 (i),

||P/€I[eiitAkgfjl,kl7F)kzgwlz2 5 Z HeiitAkgfjl,klmHLoo ||gk2;nHL2
n>4

) 1/2 1/2
S e ™ il b lgkainl3e )

n>4 n>4

. F kT - .
S (712 (L (225 )20 £k Nl | Pl e

using (3.2.18) (see (3.2.59) and recall that 2851 > (£)~1(1 + (£)22%1)%/20) and
orthogonality in the last inequality. This completes the proof of (3.2.60). O

3.2.4 Interpolation Inequalities

Finally, we need some interpolation bounds involving LP spaces and rotation
vector-fields.

Lemma 3.13. (i) Assume that f € Hg’l, keZ, and0< Ay S Ay <B. If
1Qikfllzz < Ao, N1Qinfllgor <A, 2HHQjufllor < B (3.2.61)

for all j > —k™, then

1P flles S 272K/2 A0/ pa+a)/4 (3.2.62)
and -
1Pfllpoe S 27382 A0 702 pO+0/2] (3.2.63)

13 Iff S HO72, Qe 923, 931, Qo 5 and k € Z then
Q

1P f |l S 1P F 21 B £ 1) e (3.2.64)

HY?
Similarly, if f € Hy® and Q2 € {Q53Q%2093 : ay + ag + az = 2} then

1P |lzs S I PeFII2N P SIY

0,39
HQ

(3.2.65)
1P fllzs S IPLAIE2 LA 10
Finally, we have the L? interpolation estimates
1P llze < PRSI 1Pk fora (3.2.66)
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and

1P f |2 S 1P F 252 Pofll Ml

0,39
Hﬂ

1/3 2/3
1PLQ2 FllL2 S P IS P f 11

0,3
HQ

(3.2.67)

Proof. (i) The bounds follow from (3.2.5): with f;, = PwQjxf we have

— . . o 3.
1Fjaellzee S min{2¥/2)Qjpf 2, 227427 UE Qi fll ot }

< 278k/2 1in (230 HR)/2 4 9= (ik)/298° (R B

The desired bounds (3.2.62) follow by summing over j and considering the two
cases 27tk < (B/Ap)'/? and 271F > (B/Ag)/?. Similarly,

—— . _ 3 .
I fjkllpe S 20/27K2° UM)HQj,kaHgl

< 9=3k/29(j+k)(1/2+6%) min{A;, B2—(j+k)}.

The desired bounds (3.2.63) follow again by summing over j.
(ii) For (3.2.64) we let g := Py f and use integration by parts to write

90l = [ 29908585 ds =~ [ g-0{09 0505 da.
R R
Therefore we can estimate
1291172 S /RS gl Q2% [Q%g| dz < NlgllLe< 129l 2 1229174,

which gives (3.2.64).
Similarly, to prove (3.2.65) we estimate as above

(90l 5 [ lolil* 19201 do S ol 9%l (3:208)
and
192915 = | || 020 0P(0Pg0 ) 2 da] 5 [ 10001101 19| do
< lgll o2 119291l 211291l o,

where Q3¢ denotes vector-fields of the form Q53Q32Q¢3 with a1 + a2 + az = 3.
Therefore, using also (3.2.68) and simplifying,

1/2
192917 < llgll gos 199le < llgll o (gl 19%g]2s) ™,
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which gives the bounds in the second line of (3.2.65). The bounds in the first
line now follow from (3.2.68).
The L? bounds (3.2.66) and (3.2.67) follow by similar arguments. O

We need also a bilinear interpolation lemma:

Lemma 3.14. Assume k,k1,ke € Z, k+4 < K := min(k1,k2), t € R, and
f,g9 € L*(R3). Assume J > max(—K,0) satisfies

27 < (1)1 /207 K/2=2 9k (3.2.69)

and define f<jr, and g<ji, as in (3.2.2). Then

1Pelle™ "M fe gy e Mg g lllie S 28223206 7| Py £l e || Pragll o
(3.2.70)
for all exponents a,b € [2,00] satisfying 1/a +1/b=1/2.

Proof. The conclusion follows directly from Lemma 3.10 (which corresponds to
the cases (a,b) = (00,2) and (a,b) = (2,00)) and bilinear interpolation. O

3.3 ANALYSIS OF THE LINEAR PROFILES

In this section we use the main bootstrap assumptions (2.1.46)—(2.1.48) to derive
many linear bounds on the profiles V* and the normalized solutions U*.
For t € [0,T], (4,k) € J, J > max(—k,0), and

X € {F7E7p7wa,Qa,7.9ab,£haﬁ,£’ll): E €V§}7

we define the profiles VX% as in (2.1.35). If £ € V2 we define also the space-
localized profiles

V() = PLQiaVE®),

, 3.3.1
VAL =S vEE),  vEEe =S viEe B3
i<J i>J

and the associated localized solutions
s —1 ,+
U () = e e VA (1),
X,+ X,+ X,+ X,+ 3.3.2
USA® =3 UNE®,  UNA® =Y U, (83.2)
J<d i>J

where p = kg if X = L1 and p = wa otherwise. For simplicity of notation, we
sometimes let VX := V5T and UX .= U*X’+, and notice that V;¥~ = VX and
U~ =UX.

*
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Given two pairs (¢,n),(¢,n') € Z% we write (¢,n) < (¢/,n’) if ¢ < ¢
and n < n/. In the lemmas below we let h denote generic components of the
linearized metric, i.e., h € {hag : a,B € {0,1,2,3}}.

Lemma 3.15. Assume that (g,%) is a solution of the system (1.2.6)—(1.2.7) on
the interval [0,T], T > 1, satisfying the bootstrap hypothesis (2.1.46)—(2.1.48).
(i) For any t € [0,T] and L € VI, n < 3, we have

IOV <) IV 2VER D)l + [V ) e S e @™ (3.3.3)
In addition, if (k,j) € J and L € VI, n < 2, then

2R (1)) Qs VE ()12 + 2 2 QaVEV (B2 S 1Y (s tigm)

(3.3.4)
and
2| PVEY (1) e + 1PVEY ()] o S €12" Y (K, tiq,n), (3.3.5)
where, for q¢,n € {0,1,2},
Y(k,t;q,n) = (t)H@thnt1)dg=-N(ntk" (3.3.6)
(i) For any H € {F,wa,ﬁab ca,be {1,2,3}} and k € Z
[PV @)l + (6 [PV e S 21278 4 270" )

||m(t>||Loo 5 512—k7/2+nk72—N0k+'
Moreover, if (k,j) € J and H' € {F,E7 Py Wa, Qay Vap} then

1PV (@) oo S 1 (8O0 NOR 92 (1287 ) =0 ifa < 3,

2j||Qj,kVH,(t)||Hg,a <el <t>H(1,a+1)627N(a+1)k+27k/2(<t>2k’)*77 if a < 2.
(3.3.8)
Proof. The bounds (3.3.3) follow directly from (2.1.46), and the bounds (3.3.7)

follow from (2.1.48) and Definition 2.2.
It follows from (2.1.47) that

25/2(25 (1)) |ion (€) (0, VER) (€, 1)l 2 + 2° (| 0r(€)(Be, VE») (€, D) 2
S Ely(ku t7 q, n)7

(3.3.9)

for any k € Z, 1 € {1,2,3}, and £ € V4, (¢,n) < (2,2). The bounds in (3.3.4)
follow using also (3.3.3) and Lemma 3.3 (i). The bounds (3.3.5) follow from
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(3.3.9) and the estimates
1PVEY () or S 2"l () Ve(VEV)E )z S €12 Yk tig,n).
To prove (3.3.8) we notice first that if Q € {Qa3,Q31, 212} then

QQj,kVX = Qj,kQVX = Qj,]gVQX and QPkVX = PkQVX = PkVQX,
(3.3.10)
for suitable profiles X. Recall that the functions H’ are defined by taking Riesz
transforms of the metric components hng (see (2.1.26)). The bounds in the first
line of (3.3.8) follow from (3.3.3), while the bounds in the second line follow
from (3.3.4) and Lemma 3.3 (ii). O

We prove now several pointwise decay bounds on the normalized solutions.

Lemma 3.16. (i) For any k € Z, t € [0,T], and L € VI, n < 2, we have

> IO e
j>—k= (3.3.11)
< 51<t>71+H(q+1,n+1)52k_27N(n+1)k++2k+ min{1, <t>2k_}176,

where h € {haﬁ ta, 8 € {0, 1,2,3}} as before. In addition, if 28 (t) > 220 then

Z ”Uf,lg(t)HL“ 5 €1<t>71+H(q,n+1)62k_27N(n+1)k++2k+' (3312)
22—k~ 2-20(t)]
Moreover,
L
Yo U @)=
j>—k= (3.3.13)

< oy (A 2y N T i1 92K 1))
a’rLd; Zf.] Z _k_;
||U.£;€Z’(t)||Loo < 51<t>—3/2+H(q+1,n+1)62j/22—1\/(n+1)k++2k+_ (3.3.14)
J ~J
Finally, if 22*" =20(t) > 1 and £L € VI, n < 1, then

> IOl
227k 2k —20(1)) (3.3.15)
< 51<t>73/2+H(q+1,n+2)627k_/227N(n+2)k++5k+(<t>22k_)6/4'

(it) In the case n =0 (L = Id) these bounds can be improved slightly. More
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precisely, assume k,J € Z, t € [0,T], 28 (t) > 229, and 27 € [27F | 2710(1)].
Then for any H € {F,wa,ﬂab ca,be {1,2,3}} and h € {hag},

_ ok —kk— o—Nokt 45kt
UL @)l + (O NUL 1 (D)o S ea(t)~28 —rF 27 Mok T8k (3.3.16)

Moreover, if k,J € Z, t € [0,T)], 22k (t) > 220, and 27 € [27F | 2F —20(3)],
then

[UZ54(®)lloe S er(t) =20 H /24eh™ /209 = Nok k™, (3:3.17)
Proof. (i) We prove first (3.3.11). We estimate, using just (3.3.4),

e thun VER (@) e S 22 VER(B)12 S 1Y (bt q,m)2279 (28 (1),
(3.3.18)
This suffices to prove (3.3.11) if 2% < (t)~!, by summing over j > —k. On the
other hand, if 2¥ > 220(¢)~! then (3.3.18) still suffices to control the sum over
§ with 27 > 2710(¢). Finally, if 28 > (£)~! and 27 < 2710(¢) then we use (3.2.9)
and (3.3.4) to estimate

le™ e VA B | o S 2%/2(8) 71 27| Qs VR (8)] 2
< 712y (k tig,n) (120 )7,
The desired conclusion follows by summation over j with 2/ € 2% 2710(¢)].

For (3.3.12) we use (3.3.3) and (3.2.11). Recalling (3.3.10) we estimate the
left-hand side by

CoY 2T U2 ) Qe VE () oo
23 €[2—k" 2-20(t)]
5 Z 2Ic+ <t>—12k7/2(<t>2k7)6/20
29 €[2—k7 ,2720(¢)]
X €1 <t>H(q,n+l)52—N(n+l)k+2k/2(<t>2k’)—’y.

The desired bound (3.3.12) follows.
We prove now (3.3.13). As in (3.3.18) we have

—itAy —kTo—j

e ko VEL ()| 1o S 2% 2 VL ()12 S 1Y (K, t.,m) 2%/ 227H 27
(3.3.19)
This suffices to prove the desired bound when 22¢ < (t)~!. This bound also

suffices to control the sum over j with 27 > (t>2k—2’k+ when 2% > (#)~1. On
the other hand, if 27 < <t)2k—2”€+ then we use (3.2.13) and (3.3.4) to estimate

le= ko VEL (8[| e < 237 (1) 7%/22%972)|Q; 1 VE¥ (8) |2
S eV (k,t; q,n)2% (1) ~3/229/2,
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The desired bound (3.3.13) follows by summation over j with 2/ < (t>2k72_k+.
The bounds (3.3.14) follow from (3.2.13) and (3.3.4). The bounds (3.3.15)
follow from (3.2.14) and (3.3.4), once we notice that Q,,Q; VEY = Q; x Vet £¥,
for any rotation vector-field 2.
(ii) To prove (3.3.16) we define Jy by 270 = 219()1/227k/2 and estimate

e VI, ()l S 220 Qe VAl S 22 (8) a2k —ek Nk

if J < Jy, using (3.2.12) and (3.3.7). If J > Jy then we estimate the remaining
contribution by

—itAwa Ty —lok™ -
C Y e VR M= £ Y 28 (072 2628 ) 2Qua VT (#)l] o
J€[Jo,J] jzJo
< 2—N(2)k++3k+ <t>—3/2+(H(1,2)+1)52k*/2

where we used (3.2.11) and (3.3.8). These two bounds suffice to prove the
estimates (3.3.16) for H when 2% < (¢)1/6Gd); if 28 > (1)1/(5d) then the desired
estimates for H follow by Sobolev embedding from (3.3.3). The bounds for the
metric components h follow by a similar argument.

The bounds (3.3.17) follow in a similar way, using just (3.3.3) if 28 >
(t)1/004) and (3.3.7) if 28 < (¢)~1/2HR/8 If 2k ¢ [(t)~1/2H+R/8 (1)1/(104)] then we
use (3.2.15) and (3.3.7) if 27 < 2'°(t)1/2) and (3.2.14) and (3.3.4) to estimate
the remaining contribution if 27 > 210(¢)1/2, O

Remark 3.17. We notice that the last two bounds (3.3.16) and (3.3.17) provide
sharp pointwise decay at the rate of ()~ and (t)~3/2 for some parts of the
metric tensor and of the Klein-Gordon field. In all the other pointwise bounds
in Lemma 3.16 we allow small (£)°? losses relative to these sharp decay rates.

We prove now several linear bounds on the profiles V" and V"%. These
bounds are slight improvements in certain ranges of the bounds one could derive
directly from the bootstrap assumptions. These improvements are important
in several nonlinear estimates, and are possible because we use interpolation
(Lemma 3.13) to take advantage of the stronger assumptions (3.3.7) we have on
the functions V" and V¥.

Lemma 3.18. (i) For a € [0,3] we let Q% denote generic vector-fields of the
form Q53052 Q03 with a1 + az +az < a. Ift € [0,T) and 2% > (t)~1 then
Hpkvﬂlh(t)HL2 S 512k/227N(1)k+ <t>H(0,1)6 . <t>206276dk+’

(3.3.20)
Hpkvﬂgh(t)HLZ 5 612k/227N(2)k+ <t>H(0,2)6 . <t>205274dk+’
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where h € {hag cay B € {0, 172,3}} as before. Moreover,

Hpkvﬂlw(t)”LQ SJ 612—N(1)kJr <t>H(O,1)5 . 21@’ <t>1052—dkJr

)

Q% < — N2kt /\H(0,2)5 ok~ /3 /4\158—2dkT (3:3.21)
[PV ()]l 2 < €12 (t) F28 IR(t)02
and, for any j > —k—,
HVQ h(t)||L2 5 612k/227N(1)k+ <t>H(0,1)6 . <t>5052dk+27(2/3)(j+k)7 (3 ; 22)
HVJQI: (t)||L2 < El2k/22—N(2)k+ <t>H(0,2)6 . <t>2562dk+2—(1/3)(j+k). e
(ii) In addition, for any J > —k~,
[UZ (s S e12% g SOV y-1/24 HODIOD5 o501
C o 2NMWANG) 4+, 2H(0,1)+H(0,3) T
||U<Jk(t)||L6 S 2% /62 5 K ()23 3 . (t)B09%T
||U<Jk(t)||L3 5 6122167/32_ N(1)+32N(3) Kt <t>_1/3+H(0,1)+32H(0,3)6 ) <t>4622k+.
(3.3.23)

Moreover, if 228 (t) > 220 and 27 € [27F 28 =20(1)] then

||Ug;j/;c(t)||L4 S glgfwlﬁ <t>73/4+6H(0,2)/227k—/4 . 21@]@‘/602—2]@‘*7

||U2;1/I;(t)||L6 hS sﬂka* (#)~1HOH0.3)/39—k" /3 gnk™ /609-2.5kF

||U<Jk(t)||L3 < 6127Mk+ <t>71/2+26H(0,3)/327k*/6 . grk™ /609—1.5k"

(3.3.24)

Proof. (i) We use the interpolation inequalities in (3.2.66)—(3.2.67). The bounds
(3.3.20) (which are relevant only when 295+ > 210(#)9) follow from (3.3.3).

The bounds in the first line of (3.3.21) follow directly from (3.3.5) if £ <0
(notice that H(1,1) — H(0,1) = 10) and from (3.3.3) and (3.2.66) if £ > 0.
Similarly, the bounds in the second line of (3.3.21) follow from (3.2.67), (3.3.7)

(if £ <0), and (3.3.3) (if & > 0).
For the bounds in the first line of (3.3.22) we use (3.2.67) and (3.3.3)—(3.3.4),

1 2/3 1/3
IV @llze < IV OIZ IV Ol 0
< [612/%/2<t>H(1,1)27N(1)k+27(j+k)]2/3[612/%/2<t>H(0,3)27N(3)k+]1/3’
which gives the desired bounds. The estimates in the second line follow in a

similar way.
(ii) To prove (3.3.23) we use (3.2.64)—(3.2.65). Indeed, using also (3.3.11)
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and (3.3.3),

1/2 1/2

15 @lzs < 1UL R OILZ UL kO o
_ - 2 _ 1/2
§51(<t> 1+H(1,1)59k™ 9 N(l)k++2k+)1/ (<t>H(O,2)62k/22 N(2)k+) / 7

which gives the bounds in the first line of (3.3.23) (recall that H(1,1) = H(0,1)+
10). Similarly,

T2 @)llee S NUL O ITL (O]
HQ

_ —a— 2/3 _ 1/3
551(<t> 14+H(1,1)39k™ o N(1)k++2k+) / (<t>H(O,3)52k/22 N(3)k+) /

and

2y, 1/3 2/3
U250l S VL O 210 0125
< 81(<t>71+H(1,1)62k’27N(1)k++2k+)1/3(<t>H(O,3)62k/227N(3)k+)2/3.
The remaining bounds in (3.3.23) follow. We notice that these bounds can be
improved slightly if 27 < (¢)272°, by using the L> bounds (3.3.12) instead of
(3.3.11). This is not useful for us, however, since we will apply these bounds to
estimate the contributions of localized profiles corresponding to large j.

The bounds (3.3.24) follow in a similar way, using (3.2.64)—(3.2.65), (3.3.17),
and (3.3.3):

U255 @) s

<e (<t>—3/22—k’/2+nk’/202—N(1)k+—5k+)1/2 (<t>H(072)62—N(2)k+)1/27

UL (1)) o

< El(<t>—3/22—k*/2+nk*/202—1v(1)k+—5k+)2/3(<t>H(o,3)52—N(3)k+)1/37
102550z
< El(<t>73/227k_/2+nk‘/2027N(1)k+75k+)1/3<<t>H(O,3)627N(3)k+)2/3'
The bounds in (3.3.24) follow. O
We also record a few additional L* bounds in the Fourier space.
Lemma 3.19. Ifk € Z and L € VI, n <1, then

[PV Ehes (2) | oo

3.3.25
< 5127k_75k_/2<t>H(q’"+1)+f(’1+l‘"+2)627N0k++(n+3/2)dk+73k+/4. ( )
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Moreover, if (k,j) € J and L € Vi, n <1, then

29/2| Qe V ERes (1)]| o + 2| Qri VX (1)

3.3.26
< 612_j/2+5j/4Y(k,t;q,n+ 1)26k+/4. ( )

Proof. The bounds (3.3.26) follow from (3.2.5), (3.3.4), and (3.3.10). To prove
the bounds (3.3.25) we use the estimates

HQ;‘,kVﬁhuﬁ (t)HHg‘l 5 51<t>H(q,n+1)62k/22—N(n+1)k+ (2k’ <t>)—'v,

2J+kHQj,’CVChaB(t)||Hg‘1 551<t>H(q+1,n+2)62k/22 N(n+2)k (2k <t>) v

which follow from (3.3.3)—(3.3.4), and the bounds (3.2.63). O
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Chapter Four

The Nonlinearities /\/Zfﬁ and N¥
4.1 LOCALIZED BILINEAR ESTIMATES

One of our main goals is to prove good bounds on the various components of the
nonlinearities LN SB and LAY, where £ € V3. Ideally, we would like to prove
that these nonlinearities satisfy bounds of the form

Yoo NGO Sam™ Y I VaeiLhas@)],

0‘166{0117273} 04756{0,1,2,3} (411)
IEN? @) S er(t) M (V) B) L)),

in suitable norms. Unfortunately, such optimal bounds do not hold for most of
the important components of the nonlinearities. As we will see, we have both
derivative loss, due to the quasilinear nature of the system, and loss of decay in
time, due to the slower decay of the metric components h,3. However, we can
still prove estimates that are somewhat close to (4.1.1), but with certain losses.
To quantify this, we define the acceptable loss function

00,0):=3,  £0,1):=13,  £(1,1):=23,  Ll(gn):=33 if n>2.
(4.1.2)
Notice that ¢(q,n) +7 < H(g,n) if n > 1.

4.1.1 Frequency Localized L? Estimates

In this subsection we prove several bounds on localized bilinear interactions,
which are the main building blocks for the estimates on the nonlinearities N, (fﬂ
and A% in the next section. Notice that, as a consequence of the definitions
(2.1.49), we have the superlinear inequalities

H(qi,n1 + 1)+ H(g2,n2) < H(q1 + g2, 1 + n2) + 20,
H(qi,m1 + 1)+ H(g2,n2) < H(q1 + q2,m1 + ng) — 40 if go > 1,
<H

H(qpp +1,n1 + 1) + H(ga,n2) (@1 + q2,m1 +n2) + 30 if g2 > 1,
(4.1.3)

which hold when ny > max(1, q1), no > max(1,gz), n1 + ne < 3.
We start by proving L? bounds on localized bilinear interactions of the metric
components.

Lemma 4.1. Assume that £, € Vi1, Lo € V2

no’

ny+ne <3, hi,hy € {hag :
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a,f € {0,1,2,3}}, and 11,12 € {+,—}. Assume that m € M (see (3.2.41)),
I =1, is defined as in (3.2.43), and let

Lt () = 27 2 | P [P U i Py, UE2R22] ()], (4.1.4)
for any t € [0,T) and k, k1,ks € Z. Then

I;:Z;I)]Q (t) S E?Q—k/223 min{k,kl,kg}/Q(<t>22kf+k;)_72k1/2+k2/2 (4 X 5)

% <t>[H(Q1;n1)+H(Q27n2)]52—N(n1)kT—N(n2)k;.
In addition, assuming ny < ng (in particular ny < 1), we have:

(1) if k = min{k, k1, k2} and ny =1 then

Tl (6) S (6 U am b am )42k ks /g -NCWK' - (41,6)

(2) if k = min{k, k1, k2} and ny =0 then

Ll (1) S € ) T @) lasna)ly 20 ok (g NGR - (417)

(3) if k1 = min{k, k1, ka} and ny € {0,1} then

;ﬁi’f’b(t) 5E%<t>—1+6[H(q2,n2)+H(Q17n1+1)+1]2k12—2kf2|k|/42_N(n2)k+; (418)

(4) if ko = min{k, k1, k2} and ny =1 then

wa,1 (t) < 6%<t>71+6[H(q2,n2)+H(q1,n1+1)+1]2k2272k;2\k|/427N(n1+1)k+;

k?,kl,ktg ~
(4.1.9)
(5) if ke = min{k, k1, k2} and (n1,n2) € {(0,0),(0,1)} then
I (1) S €50) 7B e ) 1) glag 2k ol /i Nok HT(4.1.10)
(6) if k2 = min{k, k1, k2} and (n1,n2) € {(0,2),(0,3)} then
[ (1) S e3(t) " ) +oas mallgha =265 9K/ 49 -N KT (41,11

Proof. We remark first that bilinear Wave x Wave interactions appear in the
metric nonlinearities N*»#_ both in semilinear and in quasilinear form. Accord-
ing to the general philosophy described in (4.1.1), we would like to have bounds
on the form

It (1) < eam bRl min (28 (1) =1y Nimtna)RTHRT (4.1.12)
The factors 27151 =%2| in the right-hand side are critical, in order to be able to

estimate the quasilinear components of the nonlinearities A 5/3- We notice that
the bounds (4.1.6)—(4.1.11) that we actually prove are variations of the ideal
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bounds (4.1.12), with small (t)C% loss of decay and loss of derivative 2% in
some cases. For later use, it is very important to minimize the time decay loss
as much as possible.

The estimates follow from a case by case analysis, using Lemmas 3.15 and
3.16, and the bilinear estimates in Lemmas 3.10 and 3.11. We estimate first,
using just (3.2.44)

Ly, (1) S 2728 mintiked 2| p et (4)]| o || P, UF20202 (8) | 12,
(4.1.13)
which gives (4.1.5) in view of (3.3.3). To prove the rest of the bounds, we
consider three cases.

Step 1. We prove first (4.1.6) and (4.1.7). Assume that k = min{k, ki, k2 }.
We may also assume that |ky —ko| < 4, 28 > (#)=1 and 272 < (£)1/20 (otherwise
the bounds follow from (4.1.5)). Let .J; be the largest integer such that 271 <
() (1 + 251 (t))79/2% and decompose

Py, U (8) = ULy (8) + UZ1 (1) 4.1.14
e E @) 4 G g,

see (3.3.1)-(3.3.2). Using (3.2.54), (3.3.3), and (3.3.4) we estimate

272 || PI[USY 0 (1), Po, US2"2 2 (1]
SO+ 28)10)| Qe VI (t)HHgJ [P, U2 (1) ]| 2 (4.1.15)

< g2 <t>71+5[H(Q2,n2)+H(Q1,n1+1)+1]27N(n2)k;'75k;'ka—/g
and, using (3.2.44),

27R2|| P I[USY 1 (1), P, US2m2 02 (1)),

S (UL (O] ol Pe, U522 (8)] 2 (4.1.16)

< Ef<t>—1+5[H(q2,n2)+H(q1+1,m+1)+1]2—N(n2)k;—5k2+21;/2_
Moreover, if ny < 2 then we can use (3.3.4) and (3.3.11) to estimate

2~k 2|| P IUS Y (1), P URh=2 ()]

S2US, O 1P U5 (@) (4.1.17)

< 5%2—1@/2<t>—2+5’2—N(n1+1)k{r—N(n2+1)k;+5k; .

Since H(1,1) = 30, the bounds (4.1.7) follow from (4.1.15) and (4.1.16) if
ny = 0 and ny > 2. The bounds (4.1.6) follow from (4.1.15) and (4.1.17) if
ny > 1 (in this case ny < 2).

It remains to prove the bounds (4.1.7) when ny = 0 and ny < 1. The
estimates (4.1.17) and (4.1.15) still suffice if 2%> < (£)=% but are slightly too
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weak when 2F2 > <t>_5/. In this case we need a different decomposition: let
J| be the largest integer such that 271 < (t)1/227%1/2 4 2=k and decompose

Py UM (1) = UZY (8) + ULY (1) as in (4.1.14). Using (3.2.46), (3.3.3),

and (3.3.7) we estimate

9~ k/2 nykI[Ugyf}kl (t), P, U= (1] L
SO F{Qes i VB 1P US 2 ()] e (4.118)

< E% <t>—1+5[H(q2,n2)+1]Q—N(nz)k;—%; oks /2

Moreover, using (3.3.4) and (3.3.11) we estimate

27| PLI ULy, (1), P U2 @)
S 27ROy, 4 O 2 1P U2 (1) o
< 5?2_’“/2 <t>—1+5'2—N(n2+1)k;+5k; oks /2 min{z—J; 2—N(1)/c1+ 7 2—N(0)/c1" 1.
(4.1.19)

By analyzing the cases 28 > ()9 2% € [(£)=1/2, (£)%'], and 2% < (¢)~1/2 it is easy
to see that the right-hand side of (4.1.19) is suitably bounded, as claimed in the
right-hand side of (4.1.7). The desired conclusion follows using also (4.1.18).

Step 2. We prove now (4.1.8). Assume that k; = min{k, k1, k2}. We may
also assume |k — ko| < 4 and 2F* > (t)~! (otherwise the bounds follow from
(4.1.5)). We estimate first

27| P I[Py U P U202 (1),

S 2702 P, U (1)]] o | P, U2 (1) 22 (4.1.20)
< 5% <t>_1+[H(q2,ng)+H(q1+l,n1+1)+1]52—N(n2)k; 2k1 2_516?7

using (3.3.3) and (3.3.11). This suffices to prove (4.1.8) if 25> < (t)=9" or 2%» >
(t)%". Also, the desired bounds follow directly from (4.1.5) if 2k < (¢)=1+109,

It remains to consider the case (£) > 1, 252 e [(£)=% (t)0'], 2k > (¢)~ 14103,
Let J; be the largest integer such that 27t < (¢)273° and decompose Py, U*1h1:41
asin (4.1.14). Let Jy be the largest integer such that 272 < (£)'/? and decompose
Py, U%2M2:t2 in a similar way. Then

2—k/2

Lih sl1 L
|PkI[U§J1,1ki (t)’131<72(]£2h‘27 2(t)]HL2
S22 US (1] [P U2 (1) 2 (4.1.21)

< 8%<t>71+6[H(q2,n2)+H(q1,n1+1)+1]27N(n2)k2+2k1275kf7

~
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using (3.3.3) and (3.3.12). Moreover,

2R 2| PIUEY (1), U2 1)

'Y >J2,ka
—ko L L
S 272 US, ()] LI035, ()] 22 (4.1.22)
< E%<t>—5/42—k22—N(n2+1)k2+2k12—51{7

using (3.3.4) and (3.3.11). In addition, for any j; > J; we use (3.2.56) and
(3.3.3) to estimate

_ Lihi, Loha,t
2 k/2HPkI[Ujlfk11 ' (t)’ U§?72,2k22 (t)] HL2
S 2R TR |Q VM () o 1Q< sk VE 2 (B)llze (4.1.23)

< E%<t>—1+36/4+H(q1,n1+1)6+H(q2,n2)62k12—5kfr2—N(n2)k;.

Finally, when 271 > (t)4 then we just use (3.3.3) and (3.3.4) to estimate
— Lih1, Loho,t
2 k/2||PkI[Uj11k11 l(t)’ U332?k22 (t>]||L2

< 2—k2/223k1/2ijlll’1kh11 (t)HL? vaﬁihjw )|l 2 (4.1.24)

< €§2—3j1/42k12—5kfr2—N(nz)k;.

The desired bounds (4.1.8) follow from (4.1.21)—(4.1.24) if 2k2 e [(¢)=9", ()%].

Step 3. Finally, we prove (4.1.9)—(4.1.11). Assume that ko = min{k, k1, k2}.
We may also assume |k —k;| < 4, 22 > (#)=1 and 251 € [(t)~4/5 (t)] (otherwise
the bounds follow from (4.1.5)). Let J; be the largest integer with the property
that 271 < (£)(1 + 251 (t))=9/20 and decompose Py, U141 (1) as in (4.1.14).
Using (3.2.54), (3.3.3), and (3.3.4) we estimate

— Lih1,t 2ha,ta
272 P UZ 0 (1), P US> (1]
5 27k1/2<t>71+5/42k2/2||QSJ1,k1 V£1h1 (t)HHg'l Hpkz U£2h2 (t)||L2 (4125)

< 5% <t>—1+5[H(Q27"2)+H(Q17n1 +1)+1]2k2 2—51€;r 2—1\7("1-"-1)16;r

~

and

22 PV @), U 0]

SR PPRPUL N, O | P U O (4.1.26)
< g2 ()~ 1H0lH (a2n2)+ H(q1+1,m+1)+1) 9 =5k 92ka g —k1 9= N(mi+ Dk

Since H(1,1) = 30, these bounds clearly suffice to prove (4.1.11) when (nq,ng) €
{(0,2),(0,3)}.

It remains to consider the cases (ni,n2) € {(0,0),(0,1),(1,1),(1,2)}. As-
sume first that 2¥ ¢ [(t)fs‘s/, (t)s‘;/]. Then we estimate, using (3.3.3) and (3.3.11),
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27M2|| PPy, US (1), P, US2" 202 (1]
S 2782 P UM (0] |1 PrsUS2" () (4.1.27)

< 6% <t>71+5'/22k2 24;@r 27N(n1)k1*' 7

~

which suffices to prove (4.1.9)(4.1.10) when 2!k > (£)89",
On the other hand, if

(n1,m2) € {(0,0),(0,1)}  and 2 e [(1)~%, (1)*], (4.1.28)

then we would like to use Lemma 3.10. Let J{ be the largest integer such that
271 < (1)1/227F1/2 and decompose Py, U™ (t) as in (4.1.14). Using (3.2.46),
(3.3.3), and (3.3.7) we estimate

27M2|| PI[ULy (1), P, US> (1)) 0

S 27 MRHR 2 ) T B FLQ g i, VI MO o 1P U2 () 22 (41.29)
< 5%<t>71+6[H(q2,n2)+1]2k2275k;27nk1’ 9—Noki +ki
Moreover, using (3.3.4) and (3.3.11) we estimate

27k/2||PkI[Uh1,L1 (t), Pk2 UL2h2,L2 (t)] HL2

>Ji k1
S 2752 Qu gy i VI ()] Lo Pra U272 ()| (4.1.30)

< E%<t>73/2+6’27k1/22k227N(1)k1*'75k3'.

These two bounds clearly suffice to prove (4.1.10) when 2% € [(£)=8% (£)39'].
Finally, assume that

(n1,n2) € {(1,1),(1,2)}  and 28 e [(1)73, (£)8). (4.1.31)

Let J; be the largest integer such that 271 < (t)(1 + 2¥1(t))~%/20 as before and
notice that (4.1.25) gives suitable bounds for the contributions of U f}]’l“kil(t)

Moreover,

2742 Pl 1), P U )]

<22 Qu s VA (1) o P U272 1) (41.32)
< e2(f) 20 g0k ghag—kig=N(m+ Dk

using (3.3.4) and (3.3.11). This suffices to complete the proof of (4.1.9). O

We prove now L? bounds on localized bilinear interactions of the Klein-
Gordon field.
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Lemma 4.2. Assume that L1 € VI, Lo € V2, ny +ng < 3, ng < ng. Assume
also that m € M (see (3.2.41)), I = I, is defined as in (3.2.43), and let

L2 () =27 2| | PI[Py, US 1 P, UR202] (1)L, (4.1.33)
for any t € [0,T], t1,t2 € {+,—}, and k,k1,ks € Z. Then

I;:Z,zk (t) < 5%2—19/223min{k,kl,kz}/QQ—N(nl)kf—N(ng)k;
sR1,R2 ~

x min { (¢)(@:m)8 by () Hlat+lm+1)d) (4.1.34)
x min { (¢)H(@2:12)3 oz () H(azt1n2+ )31

where the second factor in the right-hand side is, by definition, (t)H(92:72)8 if
ng = 3. Moreover,

wa,2 (t) < 82 <t>—1+6[H(q1+q2,n1+n2)+€(q1+q2,n1+n2)]2—N(n1+n2)k+ 2_k+/4.
k,k1,k2 ~ =1
(4.1.35)
Proof. As in the previous lemma, we remark that bilinear KG x KG interactions
appear in the metric nonlinearities N’ (f,@, in semilinear form. According to the

general philosophy described in (4.1.1), ideally we would like to have bounds on
the form

L2 () S e min(2F, (1) 7h)2 7 Nmna) kT =k /2 (4.1.36)

We notice that the estimates (4.1.34)—(4.1.35) we actually prove are variations
of these optimal bounds, with small (t)“° loss of decay in some cases.

The estimates (4.1.34) follow using just L? bounds; see (3.2.44), (3.3.3),
and (3.3.5). To prove (4.1.35), we will have to consider several cases. We will
sometimes use the general bounds

L2 () S 272 P USY () = | P, US () 12
< 5%<t>—1+5(H(q1+177L1+1)+H(qz7n2)) (4.1.37)

% 2—k/22k;/22—N(n2)k;2—N(n1+1)kfr+2kf7
which follow from (3.3.3) and (3.3.13). Similarly, if ny < 2,

L2 0) S 272 Py US Y (@)l 2 | P, U2 ()] oe
< 6%<t>71+6(H(ql,n1)JrH(q2+1mz+1)) (4.1.38)

« 9—k/29ky /29=N(n1)k{ 9—N(na+1)kf +2k5

We can prove one more general bound of this type when no < 2 by decom-
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posing the profiles. Indeed, let

v Ly, L2 Lo,
D V7 SN FEED o
j1>max(—kq,0) jo>max(—kz,0)
(4.1.39)
as in (3.3.1)—(3.3.2). In view of (3.3.4) and (3.3.14), we have
US| pe S 2791 (kb
” Ji,ki ()||L2 ~ €1 ( ls aQZ’nl)v (4140)
_— ) 1.
TS0 (1)L S 23K (1) ~3/227 )Y (o, 1 i),

for [ € {1,2}, where Y is defined as in (3.3.6). We use the L? x L° estimate for
each interaction (as in (4.1.37)—(4.1.38)), and place the factor with the larger j
in L? (in order to gain 2~ ™&x(1.2)) and the factor with the smaller j in L.
After summation over ji, jo, it follows that

I;:,Zf@ (t) S 3V (k1 t;q1,m1)Y (K2, t; g2, m2) L4l
% 23(k1++k;r)27k/2<t>73/22min(kf,k;)/2. (4.1.41)
Step 1. Assume first that ny = 1, thus (ny,n2) € {(1,1),(1,2)}. The
desired bounds (4.1.35) follow from (4.1.34) if 2k +h2 ++7 < (1)=1=0" " They
also follow if 2max{kik2} > (10" using (4.1.37)(4.1.38) if & > 0 and (4.1.41)
if £ < 0. If 2maxthuh} < (4)" then the bounds (4.1.35) follow from (4.1.41)
if 28 > (t)=1+109" " After these reductions, it remains to prove (4.1.35) when

[t| > 1 and
ok 9k ¢ (18 (1)), 2k < ()T 110 (4.1.42)

This is a High x High — Low interaction and loss of derivatives is not
an issue, so we only need to justify the (#)~1Ho[H(a1+az,n14n2)433] time decay.
The bounds still follow from (4.1.34) if 28 < (£)71309; gee (2.1.53). On the
other hand, if 28 > (¢)=1+309 then we let J; be the largest integer such that
271 < (t)3/4, Using (3.2.60), (3.3.3)~(3.3.5), and (3.3.13) we estimate

27| PIIUZS 3 (), Py U2 (1)

S (7R 2R Qe g VAL (1) o | P, U ()12 (4.1.43)

5 E% <t>—1+<5[H(Q1+1,n1+1)+H(Q2,n2)+1]

and
27K PI[USY 4 (), P, USY 2 (1))
S Q_k/2HQ>J1J€1 V’Clw(t)HLz ||Pk2 U£2w(t) ||L°° (4144)

< E%Q_k/2<t>_7/4+6/.

The desired bounds (4.1.35) follow if g5 > 1, using the last inequality in (4.1.3).
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We can also repeat these estimates with the roles of the functions Py, U*1%:41
and Py, U*2%:*2 reversed. Thus 1,2”212,62 (t) < e3(t)~1HolH (@ Lnat 1) +H (guna)+1]
and the desired conclusion follows if ¢; > 1.

Finally, 251 || P, US1%|| 12 < 1Y (k1,£:0,0) < e ()H@D2-NWk i g =
g2 = 0, as a consequence of (3.3.5) and the assumption n; = 1. Then we
estimate, as in (4.1.43),

2782 || P I[Pe, U (1), Ugf;,g; @1 -
S () 702 27k || P US (8] 12| Qo s VI ()] o

< 2(f) O LD +H O ma+1)+1],
where J, is the largest integer such that 272 < (t)3/4. Since H(1,1) = 30, this
is consistent with the desired estimates (4.1.35). The contribution of Uﬁﬁ}:; (t)
can be bounded as in (4.1.44), using an L™ x L? estimate and (3.3.4). This
completes the proof of (4.1.35) when n; = 1.

Step 2. Assume that n; = 0. It follows from (3.3.7) that || Py, U¥*“ (¢)| 2 <
£, 2k1 +rky 9= Nok{ 42k Therefore

I;:Z,fkg (t) < E%Z—k+/22min{k*,kl’,k;}Zkf+nkl’ 9—Nok{ +4k{ 9—N(n2)k5 <t>H(q2,n2)67
(4.1.45)
as a consequence of (3.3.3) and (3.2.44). The desired bounds (4.1.35) follow if
ok < <t>71/2+n/8 or if (2k1_ > <t>71/2+n/8220 and 2k~ k1 < <t>71).
On the other hand, if () > 21/9,

oky > (4)71/2+x/8 and 28 *Rr > ()t (4.1.46)
then we let .J; be the largest integer such that 271 < 21 =20(¢) and decompose
P U¥(t) = e hraa VIS () 4 emhraa VI (1) as in (4.1.14). Using
(3.3.17), (3.3.3), and (3.3.4) we estimate

27}6/2 ||PkI[U§}Z]Lll,k1 (t)’ Pk? U£2va2 (t)} || L2

S2RUL,, b, (Ol P U (0)]]22 (4.1.47)
< 5? <t>—3/2+6[H(!127n2)+1]2—k/22—kf /22—Nokf+5kf2—N(n2)k;

and, with k = min{k, k1, k2 },

2 R2|| P IUYS (1), P, UR2 2 (1]
<2722 UY L (1)]] L1 Pe U (8)]] 2 (4.1.48)

< 5% <t>—1+5[H(427"2)+H(171)+1]Q—kf —k/293k/29—N(1)k{ 9—N(n2)k3

~

Case 2.1. Assume first that k = min(k, ky,ke) and 2¥ > (¢)~'. Then
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|k1 — k2| < 4 and the bounds (4.1.47)—(4.1.48) show that
Iwa,2 (t) < 8%<t>71+5[H(q2,n2)+1]27N(n2)k;75k2+

Fok ok ) (4.1.49)
~ {Q—k/22—k1 /2<t>_1/2 + 2k—k1 <t>H(1’1)6}.

Since H(1,1) = 30 and 27%/227 k1 /2(¢)=1/2 < 1 (see (4.1.46)), this suffices when

ny > 2 or when 28-%12-4k < (#)=9' In the remaining case (ny € {0,1} and

ok—kig—4ky ¢ [(t)=9",1]) we need to improve the bounds (4.1.48). Using (3.3.4)

and (3.3.13) we estimate

27k/2 ||PkI[Ug:]Lll7k1 (t), Pk2 Uﬁzw,Lz (t)] || Lo
S0, O] P U ()]
< E?<t>72+5’2—k;/27k/2.

~

Since 24" < (£)%" we can use also (4.1.47) to complete the proof of (4.1.35).
Case 2.2. Assume now that k; = min(k, k1, k2). Then |k — ko] < 4 and the
bounds (4.1.47)—(4.1.48) show that

I;:iszz ) < 6%<t>—1+5[H(€l2mz)-*-l]Q—N(nz)k;—%l+
% {2—k/22—k;/2<t>—1/2 + 2(k;—k)/2<t>H(1,1)5}_

In view of (4.1.46), this suffices when ny > 2 or when o(ky —k7)/29—k™" /4 < (t)“sl.
In the remaining case (ny € {0,1} and 20 =k7)/22=k7/4 ¢ [(t)=%" 1]) we can
use (3.3.4) and (3.3.13) to improve the bounds (4.1.48),

22| P IUY (1), P, US2 02 (1)) 0

—k/2|| 7% Lot o2t ok (4.1.50)
S 27 2UL e, O o |1 PeaUS2 ()| e S () 7270275

Since 28" < %" and 27%1 < (t)1/2, the desired bounds (4.1.35) follow.

Case 2.3. Finally, assume that ko = min(k, k1, k2). In proving (4.1.35) we
may also assume that ny > 1, since the case ny = 0 follows from the analysis
in Case 2.2 by reversing the roles of the functions Py, U¥**t and P;,U%*2. The
bounds (4.1.47)—(4.1.48) show that

I;UZ’zk ) < 8%<t>—1+5[H(qz,n2)+1]2—4k2~+—N(1)kfr
yR1,R2 ~
{2—k/22—k;/2<t>—1/22—4k;f +2(k;—k)/2<t>H(1,1)5}.

In view of (4.1.46), this suffices if ny > 2 or if (ny = 1 and 2F2 =%~ 2-k"/2 <
(t)=%"). In the remaining case (ny = 1 and 2F2 =" 27%7/2 ¢ [(£)=9" 1]) we use
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(3.3.4) and (3.3.13) to prove bounds identical to (4.1.50),

27]6/2 ||PkI[U1>/):]L11,k1 (t)’ Pk2 U£2wab2 HL2 ~ 2 2” k_
The desired bounds (4.1.35) follow in this last case. This completes the proof

of the lemma. O

Finally we prove L? bounds on localized bilinear interactions of the Klein-
Gordon field and the metric components.

Lemma 4.3. Assume that L1 € V11, Ly € V,%’g, ny +ng < 3. Assume also that

m e M (see (3.2.41)), I = I,,, is defined as in (3.2.43), and let

I, (t) = 2K 9| P I[P, US e P URY2)(1)

k,k1,k2 (4151)

Iz
for any t € [0,T), t1,t2 € {+,—}, h € {hap}, and k, k1, ks € Z. Then

Ji& (t) < 5%27/’61/223min{k,k1,kz}/22,N(n1)kil—7N(n2)k§_+k;_

Rk ez ) ) (4.1.52)
x (¢)Aaum)d (1) 9k Y=Y min {<t>H(qz,n2)6,2k2 <t>H(f12+1,n2+1)5}7

where the second factor in the right-hand side is, by definition, (t}‘[“((‘”’"?)‘S when
ng = 3. In addition, we have:
(1) if ny =0 and ny > 0 then

Ligkm t) < 5%<t>—1+5[H(qz7n2)+33]2—N(n2)k++5k+/42—2min{kf’,k;’}; (4.1.53)

(2) if ng =ng =0 then

(4.1.54)

_ ot A +_ 1.+ .
If (1) ef (1) 14027 2ka g N Ok =k /1 if k1 > ks
kki,ko\") ~ E%<t>71+46272kj'27Nok;+6k; if by < ko

(3) if ng > 1 and ny = 0 then

I/]:ihkz (t) s 5?<t>71+5(H(Q1,n1)+Z(Q1,n1))27N(n1)k+fk+/4272min{kf’,k;}; (4155)

(4) if n1 > 1 and ny > 1 then

I]:,gkl,kQ t) < E%<t>—1+5(H(q1+q2,n1+n2)+33)2—N(n1+n2)k+—k+/42—2min{kj,k;}.
(4.1.56)

Proof. We notice that bilinear Wave x KG interactions appear in the nonlinear-
ities A%, in quasilinear form. As before, ideally we would like to have bounds
on the form

Ir9

K9 () S e2min(2F, (£)~1)2 N lmona kT k T (4.1.57)

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

98 CHAPTER 4

but we are only able to prove variations of these bounds, with small losses.
The estimates (4.1.52) follow using the L? bounds (3.2.44), (3.3.3), (3.3.5).
Step 1. We observe that we have the following general bounds, which follow
from (3.3.3), (3.3.11), and (3.3.13): if ny < 2 then

k +_
L5y ey (8) 25 7P, US (0 | Lo | P, U2 (1) 12

4.1.58
< 5?<t>—1+6(H(q1+1,nl+1)+H(q2,n2))2—N(nz)k§+k2+2—N(n1+1)k1++k1+. ( )

Similarly, if no < 2 and 2%+ > (¢)~! then

T+
L% 1, () S 25 78| P USR] 2| P, U2 ()]
< E%<t>—1+5(H(q1,n1)+H(q2+1,n2+1))2—k1/22k;/22—N(n1)kf2—N(n2+1)k;+3k;'

(4.1.59)

Since H(1,1) = 30, the bounds (4.1.53) follow from (4.1.58) if ny > 1. They
also follow from (4.1.58) if no = 0 and k; < ko and from the stronger bounds
(4154) if Ng = 0 and kl 2 kz.

Step 2. Assume now that ne = 0 and we prove the bounds (4.1.54)—(4.1.55).
We have

- min{kq
Iy (8) S 255 23 mintin 232 P U0 0) |12 | Py, U ()] 2
< €%<t>6H(q1,n1)2min{kf,k;}2k5+nk; (<t>2k;)——yQ—N(nl)kf—kf/22—N0k5r+5k;7
(4.1.60)

using L? estimates and the inequality 23min{ki-k2}/2 < oky /2gmin{ky ky }93k3 /2,
This suffices to prove (4.1.54)—(4.1.55) if 2min{kr ks boks < ()=1,

Assume now that (t)=1 < 2min{kik}oks =40 Tet J, denote the largest
integer such that 272 < 2%2 =20(¢). Using (3.3.17) and (3.3.3) we estimate

2k R | I[P, US e UL 1))

+_
< 2 R P, US M (1)]| 21U, 4, (D) e

c <t>—3/2+§H(ql,m)Q—k;/22—k;/22—N(nl)kf—kj/22—1\/0k;+6k2+

, (4.1.61)
1
2
1

<t>—1+5H(q1,nl)2—N(n1)k;r—k1+/22—N0k;r+6k;.
Using also (3.3.4) and L? estimates, we also have, with k = min{k, k1, k2 },

25 M| I[P, US M UL ()] s

>Ja,k2
+_
< ks —k1g3k/2| p Uﬁlh@)HLz”U;sz’kz ()| 22 (4.1.62)
< E%<t>—1+6(H(q1,n1)+30)2—N(n1)kfr—kf/22—N(1)k;‘+4k;.
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The last two bounds suffice to prove (4.1.55) when nq > 2.
On the other hand, if ny <1 then we can also estimate, using (3.3.11),

25 M| PP, US M U252 ()] s

>Ja,k2
g L
S 25 TR P, US ()| UL 5, 4, (D22 (4.1.63)
< E%<t>—2+5’2—k2’2—N(n1+1)kf+2kf2—N(1)k;+2k;.

The bounds (4.1.54) and (4.1.55) with n; = 1 follow from (4.1.61) and (4.1.63)
if 28 4 2k < ()4, On the other hand, if k; > ky and ok > ()4 then
the bounds (4.1.54) and (4.1.55) with n; = 1 follow from (4.1.61) and (4.1.62).
Finally, if k1 < ko and 2%2 > (t)4" then the bounds (4.1.54) and (4.1.55) with
ny = 1 follow from (4.1.58).

This completes the proof of the bounds (4.1.54) and (4.1.55) in all cases.

Step 3. We prove now the bounds (4.1.56) when ks < k;. The bounds
(4.1.59) give the desired conclusion if 2F* > (£)%". Also, the bounds (4.1.52) give
the desired conclusion if 21 < (¢)=1/2-9",

In the remaining case

ke <k, 2% e[V 07, (4.1.64)

we decompose Py,U%r2¥2 = 2 ja > max(—ks.0) Ujif:;“ as in (4.1.39). Then we
estimate

25 K| P[P U (), UL () o

Ja2,k2
+_ L _ s _
< 95 R P OB ) | | U, (0l e S £50) 5242 2722k,
using (3.3.3) and (3.3.14). This suffices to estimate the contribution of the
localized profiles for which 272 < (t)'/3. On the other hand, using (3.3.12) and
(3.3.4) we also estimate

+_ L Lo,
2k M| I[Py, US4 (), U202 (0] 2

S 25 R P USR8 o U2 2 S €38 7422772,
which suffices to estimate the contribution of the localized profiles for which
272 > (t)1/3,

Step 4. Finally, we prove the bounds (4.1.56) when k1 < ko. The bounds
(4.1.58) give the desired conclusion if 2¥2 > (¢)9". Also, the bounds (4.1.52) and
(2.1.53) give the desired conclusion if 2F1 < () =1+409,

If g2 > 1, the bounds (4.1.56) follow from (4.1.58) and the last inequality in
(4.1.3). If g2 = 0 then we let J; be the largest integer such that 271 < (¢)2730
and decompose Py, U171 (t) as in (4.1.14). We also decompose Py, U*2h¢2(t) =

Ugjgffz () + Uff,’;;é (t), where J, is the largest integer such that 272 < (¢)49"
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Then
+_ v .
oks ~ku|| P IUEY 2 (1), P, US2 2 (1)]| -

g L1k
S 28 US4 (O] e [ Pe US2Y (1) 2

< 5%<t>71+6[H(O,n2)+H(q1,n1+1)+1]27N(n2)k;+k;275kfr7

using (3.3.3) and (3.3.12). This suffices due to the first inequality in (4.1.3).
Also,

+_ Lih, Lo, g Lih L
2k | P IUSY G (8, US3 2 (0O)]| 2 S 28 P UL (O] < 102324, (0] 22

+4 et +
< 6%<t>71+5[H(1,n2+1)+H(ql+1,n1+1)+1]2*‘]22*N(’ﬂ2+1)k2 +kg 9—5k]

)

using (3.3.4) and (3.3.11). For (4.1.56) it remains to prove that

25 R || PI[UE e (0, US3 2 O)]| s

Z ok . (4.1.65)
< E%<t>—1+5(H(q1,n1+n2)+33)2—N(n1+n2)k+—k+/42—2k1 ,
provided that [t| > 1 and
=0, (BT <okt <ok < () 902 < ()4 (4.1.66)

Let X := 2’“;’]“1||PkI[U§1J?’,L€11 (t),Uij’,ij (t)]||,» denote the expression in the

left-hand side of (4.1.65).

Case 4.1. Assume first that g; = 0. We use the bounds in Lemma 3.18.
If n; = 1 and ny = 1 then we use the L* bounds in (3.3.23) and (3.3.24) to
estimate

F- Lih Y
X <ok kl||U>},h,€1(t)HL4||U§3;{k2(t)||L4
< g2 (t) B/ 411059 —ky [ag—k; [Ag=N(2)ky —2k3 g—dky

~

Alternatively, we could use the L? bounds in (3.3.21)—(3.3.22) to estimate

+_
X gk RS2 ()2 |USSY, (0)] e

< 5% <t>—2/3+11052k; /39ks 9= N(1)k$ 9—dk

~

We use the first estimates if (¢)2%1 2¥2 > 1 and we use the second estimates if
(t)2F1 2k < 1. The desired bounds (4.1.65) follow if ny = ny = 1.
Similarly, if n; = 1 and ny = 2 then we use the L® bounds in (3.3.23) and

- printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.coniterns-of-use



EBSCOhost -

THE NONLINEARITIES Nﬁi AND N¥ 101

the L? bounds in (3.3.24) to estimate

g Lih L
X g2 R Ut )l lUS5 ,, ()]s

< E%<t>—7/6+17052—k1’/62—k2’/62—N(3)k2+—2k;2—4k;r.
Alternatively, using the L? bounds in (3.3.21)—(3.3.22) we estimate
Fo Lih £
X g2l R ust @) |US5 ,, ()2
< E%<t>—2/3+17062kf/32k2’/32—N(2)k2+2—4k;r.
As before, the desired bounds (4.1.65) follow if ny = 1 and ny = 2 from these
two estimates.
Finally, if n; = 2 and ny = 1 then we use the L? bounds in (3.3.23) and the
L% bounds in (3.3.24) to estimate
i Lih L
X g2k ULy (O |USSY ()]l e

< E%<t>—4/3+16062—kf/32—kg/32—N(3)k2+—2k2+2—4k;r.

Using the L? bounds in (3.3.21)—(3.3.22) we also estimate
Fo Lih £
X gk Rtk 2t (@)|]2 |USSY , (0)]le
< 5% <t>—1/3+160622k;/32k; 9—N(2)k3 9—4ki
The desired bounds (4.1.65) follow if n; = 2 and ny = 1 from these estimates.
Case 4.2. Assume now that ¢g; > 1 and ¢ = 0. Recall that
US54, (@) S €124/ min (1) o091 12 gy Hlon 1+ )0k
Lo 5 n —N(n2)k
1052 1, (Dllze S e12¥% (1) Cmog N o)k,

(4.1.67)

as a consequence of (3.3.3)—(3.3.5). Using just L? estimates we have

. L L
X g2k th 2 Ut ()] | UYL ()]l e

< g2ok1 Hhy <t>5(H(q1 1)+H(1,n2))9—N(n2)kg +2k3 94k

Since H(1,n2) + H(q1,n1) < H(q1,n1 + n2) — 150 (due to the last inequality
in (4.1.3) and the assumption ¢; > 1), this suffices to prove (4.1.65) when
okt ks < (1)~ 1H1805,

Finally, assume that 2F1 tF2 > (¢)=1+1809 If n, — 1 then we estimate, using
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(4.1.67), Sobolev embedding, and the L bounds in (3.3.24),

- Lih L
X g2k h oy (Ol UL, (D)l
< 5? min{(t)H(ql7”1)57 <t>—12—k1 <t>H(q1+1,n1+1)6}

% 95k <t>—1+5052—k;/32—N(2)k;—k;

5 5%2_’“;/3<t>_1/32_k;/3<t> H(41+1,7L1+;)+2H(q1,7l1)52_4k;r <t>_1+5052_N(2)k;_k;.

Since H(q1 +1,n1+1)+2H(q1,n1) < 3H(q1,n1 +1) (see (2.1.49)), this suffices
to prove (4.1.65) if ny = 1.
On the other hand, if no = 2 (so necessarily (g1,n1) = (1,1)) we estimate

T —kiyr7L1R L
X S 28 TMULy O llUZ3E 5, ()]s
< &.%2161/2 min{<t>H(q1’nl)5, <t>7127k1 <t>H(q1+1,n1+1)6}

« 95k <t>71/2+100527k2’/627N(3)k;rfk;

2H(q1 41 m1+D+H(91.m1) 5
3

S etaha /0(t) =23k /o)
« 94k <t>71/2+100627N(3)k;7k;

using (4.1.67) and the L3 bounds in (3.3.24). Since [2H(2,2) + H(1,1)]/3 <
H(1,3) — 100 (see (2.1.49)), this suffices to prove (4.1.65) if ng = 2. This
completes the proof of the lemma. O

4.1.2 The Classes of Functions G,

In most cases, the cubic and higher order nonlinearities can be treated pertur-
batively, and do not play a significant role in the analysis. To justify this, we
need good bounds on the quadratic metric components g<5.

The metric components ggg satisfy the identities (2.1.8). Therefore they can
be represented as infinite sums of monomials of degree > 2 in the functions h,,,.
More generally, for integers a > 1 we define the sets

Ga={Ga=h1-...-hg: hi,...,hq € {hu}}. (4.1.68)
By convention, set Gy := {1}. In this subsection we prove the following bounds:

Lemma 4.4. Assume L € VI, t € [0,T], 1 € {1,2,3}, and G, € G4, a > 2.
Then there is a constant Cy > 1 such that

18" N  9=k/2 in {1, 2% (1)} =%

2+8'9—N(nt1)kF +3kT min{1,2"" (t)}*~*

[ PeLGa(t)]| 2 < (Coer)*(t)™
[PeLGa(t)|[L < (Coer)*(t)~
| Pe(20LGa) (#)]| 22 < (Coza)*((8) + 275 )T 2 Ntk 9=k /2,

)

(4.1.69)
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where §' = 20008 (see (2.1.42)), and the inequality in the first line holds for all
pairs (q,n) with n < 3, while the inequalities in the last two lines hold for pairs
(g,m) with n < 2. Thus

IPLgZS (12 S 3ty =1 27 NR 9=k 2 minf1, 9k (1)},
1P Lg% (#) ]| poe < e3(t) =2+ 2 NOHDE 43 pmin (1, 957 (1)}2 %, (4.1.70)
1Pe(21£925) (D)2 S €3((t) + 2747 )Y 27 Nk DR g=k/2,

)"
)"

Remark 4.5. We notice that we prove more than just frequency-localized L?
bounds on the functions ﬁgig. In particular, we prove weighted L? bounds that
are important in our bootstrap scheme; see the key estimates (6.1.5) and (6.1.8)
in Proposition 6.2.

Proof. The bounds (3.3.3), (3.3.11), and (2.1.47) show that

| PeLhap(t)||ne < 1 (t)H@mOg=NmE 9=k/2((1yok™ )=,
| PyLhos ()| < ey ()~ HHH @ Lnt)og= Nt DR 43KT i (7 9k~ (4)}1-6
| P (21Lhap) ()| 22 < e (t)H @t Lnt1)d
x 2 NOHEDE 9 R 20K ) ()28) 7,
(4.1.71)

for any £ € V4 and k € Z, where the first inequality holds for all pairs (¢, n) <
(3,3), while the last two inequalities hold for pairs (¢,n) < (2,2). Indeed, for
the last bound we estimate first

| Pe(2iLhag)(t)|e S 2727 | P ora)US 8 ()| 2
+27% |k ()0, UULW(&J)HL?-

Then we recall that U/Lh\aﬂ(g, t) = e*“\ﬁ\v/ﬁ@(g, t). Therefore, the right-hand
side of the inequality above is bounded by

C2% 27+ (O Pa s g U ()l 2 + C27F [|ion(€)Dg VE=2 (€,0)]] 12-

The estimate in the last line of (4.1.71) follows from (3.3.3) and (3.3.9).
Step 1. We consider first the case a = 2. Assume £ € V@1 L, € V&2

ni? ng?

(q1,m1) + (g2,m2) < (g,n). Assume also hq, hy € {hy,}. If 28 < (£)71 then we
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bound, using (4.1.71) and (3.2.44),

[ Px(L1ha - Loha)(t)|| L2

S D 28min Rk P £ hy (t)|| 2] Pry L2ha(t) | 2
(kl,kQ)EXk

< 6% <t>6'/22k7/2—6k77

(4.1.72)

where X}, are as in (2.1.21). Moreover, if ny,ny < 2 and 2¥ > (¢)~! then

IPe(L1hy - Loho) ()l S Y 1P Laha (8)] oo || Py Loha ()| oe
(k1,k2)EXY
< €%<t>—2+5’2—1\/(n+1)k++3k+_

(4.1.73)

To estimate ||Px(x;L1h1 - Loho)(t)]|L2 we combine the factor z; with the
higher frequency term and estimate it in L2, and estimate the lower frequency
term in L. Using (4.1.71) as before, it follows that, for I € {1, 2, 3},

| Pi(@iL1ha - Loho) ()| L2

, _ _ , _ 4.1.74
5 €%<t>—1+5 2—N(n+1)k+2—k /2 min(1,2k <t>)1—6 . (2—k + <t>) ( )

The L> bounds in (4.1.69) follow from (4.1.73) if 2% (¢) > 1 and from
(4.1.72) if 2% (t) < 1. The weighted L? bounds in the last line of (4.1.69) follow
from (4.1.74). The L? bounds in the first line of (4.1.69) follow from (4.1.72) if

2% (t) < 1. Tt remains to prove that
|Pe(Lahn - o) (B 2 S 38y~ 27 b/ 29Nk (4.1.75)
for any k € Z with 28 > (¢)~! and any £, € V@

ni?
(q2.m2) < (q,n).
To prove (4.1.75), we assume first that ni,ny < 2 and estimate

Lo € Vg; with (ql,nl) +

“Pk(ﬁlhl 'ﬁghg)(t)HLQ < 51+ 55 + 53, (4176)

where, using (3.3.11) and the inequality in the first line of (4.1.71),

Sy = Z | P, L1721 (1) oo || Py L2ha(t) || L2
k1 <k—6, [ks—k|<4

< 31y~ 22N Gk

~
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Sy = > [Py L1h1 ()| 2 || Pry L2 () || Lo
ka<k—6, [ky—k|<4

< 6?<t>—1+5’/22—k/22—N(n1)k+

~

and

S3 1= > [Py L171 ()] oo || Py L2R2(2) ] 22
k1 ko>k—6, k1 —k2|<10
< g2(t) 14029 -k/29 = N(na)k™

~

These bounds clearly suffice to prove (4.1.75).

On the other hand if max(ny,ng) = 3, then we may assume that no = 3 and
ny1 = 0. The bounds on S; and S3 above still hold, but the bounds on Sy fail,
because we do not have suitable L> bounds on Py, L2hs(t). However, we can
still use L? bounds as in (4.1.72) to control the contribution of small frequencies
ko, i.e., 282 < (#)~1. For (4.1.75) it remains to show that

1Pk (Pryha - Pey £2ho) (1) 2 S €3 (1) 71203 h/2g= NRT=RT (4 .77)

provided that |k; — k| <4, (t)~! < 2F2 ky < k — 6, and 2F < (t)1/10,

To prove (4.1.77) we would like to use Lemma 3.11 (i) (the simple idea of
directly estimating Py, hy in L* and Py,Lohe in L? does not work when ks is
small, due to the factor 27*2/2 coming from (4.1.71)). For this we write first

hi(t) = =|V[TISUM (1) = — V|71 S(e e v (D)),

see (2.1.34)). Then we decompose Py, V1 = VQ},’IL}Q + V:};L}ﬁ, where J; is

the largest integer such that 27/t < (t)(1 + 2¥1(t))=% and ¢; € {+,—}. With I
defined as in (3.2.41)—(3.2.43), we estimate
| PTle™ e V2 (1), PealCoha) ()] 22
S 25/2(8) 71 (28 ()| P Loha (8)]] 2 | P, V™ | o

< 6%<t>71+5’/22k1/227N(1)kf+2kf7

~

for v; € {4+, —}, using (3.2.54), (4.1.71), and (3.3.3). We also estimate

| PpI[e™ Ao VIV (8), Pry Loho) (1)) 2

< 27272 Py Loha ()| 22 11Q 1 e VI (8)] 2
< 5%<t>71+6//22k1/227N(1)k1*'+2kj'7
using (4.1.71) and (3.3.4). The estimates (4.1.77) follow from these two bounds,
which completes the proof of (4.1.75).
Step 2. We prove now the bounds (4.1.69) for a > 3, by induction over a.
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The last two bounds in (4.1.69) follow as in Step 1, since the bounds satisfied
by (Ce1)~%G, in (4.1.69) are stronger than the bounds satisfied by €] *hag in
(4.1.71). As before, it remains to prove that if h € {hog} and G € G, then

|Pe(Lah - L2G)(8)]12 S (Coer)er(t)™ 47 /29 7K/29=NEK" - (41.78)

for any k € Z with 2¥ > ()7!, and any £; € VI,
(g2, n2) < (q,7n).

The bounds (4.1.78) are similar to the bounds (4.1.75) if max{ni,ns} < 2,
using L™ x L? estimates with the lower frequency measured in L. On the
other hand, if (ny,n2) = (0,3), then we have to prove the analogue of the
bounds (4.1.77), which is

Ly € ng with (g1,n1) +

1Ps(Pi b - Py £2G)(#)]| 2 S £1(Coen)* (1) 127 H/ 22 NIRT 4T

provided that |ky — k| < 4, ()~' < 2F2 ky < k — 6, and 28 < (£)1/10
This is easier now, since we can just use the L? estimates ||Py,LoG(t)| 2 <
(Coe1)®27k2/2(1)=14%" from the induction hypothesis, and combine them with
L™ estimates on P, h. The loss of the factor 27k2/2 ig mitigated in this case by
the gain of time decay. The proof in the case (n1,n2) = (3,0) is similar, which

completes the proof of the lemma. O
In some estimates in sections 4.2 and 4.3 we need slightly different bounds:

Lemma 4.6. Assume L € Vi, t € [0,T],k € Z, and G>1 = 3_ ;5 aaga for some

functions gq € Gq (see (4.1.68)) and some coefficients aq € R with |ag| < C?.
Then

1PAI VT L(G210,h) (D12 S e3(8) =127 NR 27k 2 minf1, 247 (1)},

1P| V| L(G18,h) (8) || e S €3(t) =2+ 2 NOHDRTH3ET i £ ok™ (4929,
(4.1.79)

where h € {hag}, p € {0,1,2,3}, and the bounds in the second line hold only if
n < 2.

Proof. Notice that the bounds (4.1.79) are slightly stronger than the L? and
the L° bounds in (4.1.69), but we do not prove weighted L? bounds. Low x
High — High interactions can still be estimated in the same way, but some care
is needed to estimate High x High — Low interactions, due to the factor |V|~1.
More precisely, we prove that for any k € Z, and £, € V1!, Lo € V2 with

ny?
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(q1,m1) + (g2, n2) < (g,n), we have

> PP, £1G 51 - Pry0,L20)(t)] 2
k1,ko>k

< 5? <t>71+5’27N(n)k+2k/2 min{1, ok~ <t>}175”

> NPe(Pe, £1G1 - Pry0,Lah) (1) oo
ki,ka>k

(4.1.80)

< 5% <t>72+5'27N(n+1)k++3k+ ok min{1, ok~ <t)}2"5l.

These bounds follow easily when 2% (t)1=2° < 1 using just L? estimates as
in (4.1.72). They also follow easily when k > 0, since there is no potential
derivative loss in this case. Finally, if 2F € [210(¢)2~! 1] then the contribution
of the components a4G4, d > 2, in G>1 can be bounded in the same way, using
(4.1.69). After these reductions, for (4.1.80) it remains to show that

Y 27N B[P U P U2 ()| 2 S ef ()28,
k1 ko>

Y 2 B[P U PL U ) (1) | e S 3(1) 2,
k1 ska >k

(4.1.81)

provided that hi,hs € {hag}, t1,02 € {+,—}, I is as in (3.2.43), and 2F €
[210<t>26717 1]'

To prove (4.1.81), by symmetry, we may assume n; = min(ni,ns) < 1 and
decompose Py, UXthiti(t) = Ué,iléil (t) + Uf}ilk’il (t) as in (4.1.14), where J;
is the largest integer such that 2/t < (t)(1 + 2*1(t))=%. The L? bounds in
(4.1.81) follow using (3.2.54) to estimate the contribution of Uf}/flk’il (), and
using (3.2.44) and (3.3.4) to bound the contribution of Uﬁ}?‘kil (t). For the L*>®
bounds, it suffices to show that

| PLI[Pe, DS s, Py U] 1) S 3220208 Py abd 5245,
(4.1.82)
provided that |ky — ko| < 4, 2% € [219(¢) 71 1], and 2F1 2k2 € [2F (¢)].
We decompose Py, U~ 2h2:t2 = Ufr‘}iukf —I—Uf;fi;;z, with J; = Js, and estimate

|PTE PaU 10 + |

>J1,ky 7
! + +
g E%23k/22k1/2 <t>—2+5 /22—4]€1 2—4k2 ,

Lihy, Loha,
PkI[Uth,lkil ’ U>32?k;2](t)"L“
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using (3.3.4) and (3.3.11). Finally, using (3.2.16) with [ = k we estimate
Lih1,t Loho,t
HPkI[Uﬁtlh,lkll’ U§2JQ,2k22](t)HL°°

SO e US| Caa U2 (0],

|n17n2|§4

< E%<t>72+5’/22k2k1/22k2/2274kf274k;,

using also (3.3.3) in the last estimate. This completes the proof of (4.1.82). O

4.2 BOUNDS ON THE NONLINEARITIES NO% AND NV

Recall the decompositions (see (2.1.9)—(2.1.17))

h 2 2 2 h,>3
Nag =KGos + Qap + Sap + Ny,

(4.2.1)
N¥ = N2 4 A3,

In this subsection we prove several frequency-localized bounds on the nonlinear
terms Engiﬁ, EQiﬂ, ESgﬂ, EN;L’ﬁZS, LNY2 and LN¥23. One should think
of these as rather general bounds; we could improve some of them slightly, in
terms of both differentiability and time decay, but we do not pursue all the
possible improvements at this stage. B

For n > 0 we define ¢(n) (a slightly worse loss function) and N(n) by

l(n):=35ifn>1, £0):=25, N(n):=N(n)ifn>1 N(0):= No.
(4.2.2)
The following proposition is our main result in this section.

Proposition 4.7. For any k € Z, t € [0,T], L € V1, ¢ <n <3, and a, f €
{Oa 17273}7

1PL (LN ) (1) 12 S 3282 () H(@mSg=NKTHTRT i (9 (1)30/2 ()= 1+E(m)3)
(4.2.3)
and

|PL(LA) (@)l S (1) 022 N ORI min (2 ()72, (1) 71 H10°),
(4.2.4)
Moreover if n <2 and l € {1,2,3} then

1P (LNDS) (6) | oo S €225 (1) 1440 9= N DETHSET iy 9k (19 =1y,

h < ~20k/2 0\ H(q,n)5+0(n)5o—N(n+1)k+—2k" (4.25)
| P (21 LNGg) ()| 2 < €727/ 7(t) 2
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and
||Pk(£~/\/w)(t)HL°° 5 5%2k/2 <t>—1+45/2—N(n+1)k++5k+ min(2k, <t>_1),

_ 4.2.6
| P LAY @)l S e ) Hlams+imsg =Nkt -2, e

The proposition follows from Lemmas 4.8-4.12 below. We notice again that
we prove weighted L? bounds on the nonlinearities LAZ5 and LAY, which will
play a critical role in our bootstrap scheme in Proposition 6.2.

4.2.1 The Quadratic Nonlinearities

We consider first the nonlinearities KG2 8-

Lemma 4.8. Assume thatt € [0,T], L€V, ¢<n <3, and k € Z. Then

|P{LKG2 5} (1) 12 Sed2b/2o-NmET (gyHa.m)s

4.2.7
% min(2k <t>36/2, <t>—1+€(q,n)6+6/2>. ( )

Moreover, if l € {1,2,3} and n < 2 then we also have the bounds
IPALRGE ) Dl S 12507202V min 2, (71,

1P KGR 5} ()] 12 S e32b/ 2o NInt DRT=0RT (g dlH (am)£m)],

Proof. Step 1. Recall the operators I defined in (3.2.43) and the loss function
¢ defined in (4.1.2). In view of (2.1.36), for (4.2.7) it suffices to prove that

> P[P, U, P, US42](1)] 2
(kl,kg)GXk (4.2.9)
< 6%2k/227N(n)k+ <t>H(q,n)5 min(2k<t>35/2, <t>—1+e(q,n)5+a/2)

for any t1,10 € {+, =}, L1 € VI, L2 € V2, (q1,m1) + (g2,12) < (¢,n). This
follows easily from the bounds (4.1.34)—(4.1.35).
Step 2. To prove the L> bounds in (4.2.8) it suffices to show that

ST B[P US 0, P UE02] (1)]| oo
(kl,kz)e‘)(k (4.2.10)
< E%Zk<t>—1+26’2—N(n+1)k++3k+ min(Qk, (t)‘l).

This follows from (4.2.9) if 2% < (¢)~1, using just the Cauchy-Schwarz inequality.
On the other hand, if 2¥ > (¢)~! then the contribution of the pairs (ki, ko) for
which min{ki, k2} < k4 10 can be bounded easily, using just (3.3.13). These
bounds also suffice when min{k1, k2} > k + 10, but only if k¥ > 0. Moreover,
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using just (3.3.5) we have
1P [Py, US040, P U0 2] ()| e S 20| P USY (1) 2| P, US2Y (8)]| 2
< 5%23’“2’“12’“2 <t>6’274kj’274k;,
and this suffices to bound the contribution of the pairs (k1, k2) that satisfy the

inequality 22F2k1 2k2 < (£)=2+8"
In the remaining case

2% e (71, 1],  min{ky, ko} > k+10, 2R <M ()92 (4.2.11)

Lip,r — prlada L, Lo,e — prl2,i2
we decompose Py, U™ = U250 + USG0 and P, U292 = UZ5 5" +

Uﬁzjf,g, where 271 = 272 &~ 2%1 (£)179"/2_ Then we estimate

| BRI lUESY 0 P U2 2) () e S 22 [US5058 (0] 2 | P U522 (1) | o
< 5§23k/22_h t) —1+6"gky /22—4k1+ 2—4k;

< 6%23k/2<t>—2+36’/22—k;/22—4k1+2—4k2+
using (3.3.4) and (3.3.13). Similarly,

| PLIUER 3 US21 (0w S 32?2 () =250 2g ks /2= a0 g =i,

Finally, using (3.2.18) with I = k and recalling the definition (3.2.1), we estimate

12U US22)O] e S D0 10U 3 | e |Cn VS 2 (1))

\nl—n2\§4

< 6%<t>72+6’2k274kj274k;
where we also used (3.3.5) in the estimate in the second line. Therefore
PRI [Py, US40, P U202 (1| e S 28 () 727320740 04k (4.9.19)

which suffices to bound the contribution of the remaining pairs in (4.2.11).
Step 3. To prove the weighted L? bounds in (4.2.8) it suffices to show that

> [ Prf{ai I[Py, U5V, Py, U202 ()| 2
(k1,k2)EXL, k1 >ko (4213)
< E%Qk/ZQ—N(n+1)k+—5k+ <t>(§[H(q,n)+é(n)].

Notice that we may assume that k; > ko in (4.2.13), due to symmetry. We

write ULi04s (t) = e~ "M VEUs(¢), j € {1,2}. When proving (4.2.13), the
O, derivative can hit the multiplier m(§ —n,n), or the phase e kg (6=1) o
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the profile Py, VE1¥:11(€ — n). In the first two cases, the derivative effectively

corresponds to multiplying by factors < 2751 or < (), and the desired bounds
are again consequences of Lemma 4.2.

Let Uy (&) = e "o O Loy, VE25} (€, 1). In view of (3.3.9) and
(3.3.5) we have

(U5 (1)l S e (g Ptk Ning + DR, (4.2.14)

Using also the L> bounds (3.3.13) and the L? bounds (3.3.3) we estimate

IPATIUS " Py US98 2

) - N . (4.2.15)
Sef(t)” min((t)~", 2% 28 )27k gm NImA Dk

This suffices to prove (4.2.13), except if there is derivative loss, which happens
when
ni=n and 2F > (t)1/100910, (4.2.16)

In this case the estimates (4.2.15) still suffice to bound the contribution of the
pairs (k1, ko) as in (4.2.13), unless ko € [—10k, k — 10]. In this last case we make
the change of variables 7 — £ — 7 in order to move the ¢, derivative on the low
frequency factor, and estimate

|PATIP UB 4 U]y ()| < 37 2 NOORE 9% 72,

for any (k1, ko) € Xj with ko < k;. We remark that the loss of the factor of (t)‘s/
is mitigated by the gain of derivative and the assumption 2% > (¢)1/100, This
suffices to bound the remaining contributions as claimed in (4.2.13). O

We consider now the quadratic nonlinearities 92 5 and S? 5

Lemma 4.9. Assume thatt € [0,T], LV, q<n <3, and k € Z. Then

1P{LQasY )2 + [ P{LS25} (1) 2

< Eizk/zrﬁ(n)kugw <t>H(q,n)5 min(2k<t>35/27 <t>—1+’l7(n)6). (4.2.17)
Moreover, if n <2 and l € {1,2,3} then we also have the bounds
1PALQ%5} ()| + (| P{LS3 5} (1) L
< 6%2k<t>71+26'27N(n+1)k++3k+ min{Qk’ <t>*1}, .

[P{zi£Qa 53 () L2 + | Pe{x: L8553 (1) | 22
< 5%21@/22—N(n+1)k+—5k+ <t>§[H(q,n)+€~(n)].

Proof. We notice that Siﬁ is a sum of quadratic expressions of the form d,h; -
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Oyha, where hy,ha € {has}, and Q(Qw is a sum of quadratic expressions of
the form hy - 0,0,h2, (1,v) # (0,0). The differential operator £ can split
between these two factors. Notice that commutation with one vector-field 0,
generates similar terms of the form 9, L’ (see (2.1.25)), while commutation with
two vector-fields 9,0, (which appear in 02 5) leads to terms of the form 9,05 L’
If = 3 = 0 then we have to further replace 92£'h with AL'h + L'N™ (as in
(2.1.9)), in order to have access to elliptic estimates.

Step 1. In view of these considerations, for (4.2.17) it suffices to prove that

> ARhIRI(R, U, B U () 12
(k1,k2)EX (4.2.19)
< €§2k/22—ﬁ(n)k++3k+ <t>H(q,n)5 min(2k<t>3§/2, <t>—1+i(n)5)

and

S 2 B[P, U P, LN (8)] 12
(k1,k2)€X) (4.2.20)
< E%2k/22—N(n)k++3k+ <t>H(q,n)5 min(2k<t>36/2’ <t>—1+€(n)6)7

for any t1,12 € {4+, -}, hi,ha € {hag}, N € {Nl3}, L1 € V2

nio

‘C/ € Vfw (q17n1) + (QQ,TLQ) S (q:n)a (q17n1) + (q/,n/) S (q,?’l — 1)
Without loss of generality, in proving (4.2.19) we may assume that ny < na.
We use Lemma 4.1. If 25(¢)30/2 < (£)=1+4(")3 then the bounds (4.2.19) follow

from (4.1.5) and (2.1.53). On the other hand, if 2% (#)3/2 > (t)=1+£(")9 then the
contribution of the pairs (k1, ko) € Xy with min(kq, ks) > k (thus |k — ko] <
10) is bounded as claimed due to (4.1.6), (4.1.7), and the first inequality in
(4.1.3). The contribution of the pairs (ki,k2) € Xj with k; = min(k, ky, k2)
(thus |ke —k| < 4) is bounded as claimed due to (4.1.8) (this case gives the worst

contribution to the growth function (¢)°[F(4:7)+4")] when n; = 0). Finally, the
contribution of the pairs (ki, ks) € Xj with ks = min(k, k1, k2) is bounded as
claimed due to (4.1.9) if ny = 1 and (4.1.10)—(4.1.11) if n; = 0.

To prove (4.2.20) we use only L? bounds. We may assume, by induction over
n (in the case n = 0 the left-hand side of (4.2.20) is trivial), that the bounds
(4.2.3) hold for Py, N£'"'(t) and estimate the left-hand side of (4.2.20), using
also (3.3.3), by

Lo € V2

na?

SO aThegrminthika 2 p g ek (4] | P LN (1)1
(k1 k2) € X% (4.2.21)
< 6%2319/22711?(71)]@* <t>71+6[H(q1,n1)+H(q/,n’)+Z(n')+2].

This suffices to prove (4.2.20), using also (2.1.53).
Step 2. Similarly, to prove the L bounds in (4.2.18) it suffices to show
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that

S22 BB, US e, P U 1)
(k1,k2) € Xy, (4.2.22)
S 6%2](} <t>71+26'27N(n+1)k++3k+ min{?k, <t>71}

and

S 2R PU[P, US| P LN (8)]|
(k1,k2)EXy (4.2.23)
< 20k ()~ 1428 9= Nk DR 43K oy ok 1y =11.

These bounds follow easily from (4.2.19)—(4.2.20) if 28 < (¢t)='+%". Also, the
bounds (4.2.23) follow from (3.3.11) and using Proposition 4.7 inductively.

We prove now the bounds (4.2.22). The contribution of the pairs (k1, k2)
with min{ky, k2} < k + 10 or max{ky, k2} > (t) can be bounded easily using
(3.3.11). This also suffices to bound all the contributions if & > 0. In the
remaining case, the desired bounds follow from (4.1.82).

Step 3. Similarly, to prove the weighted L? bounds in (4.2.18) it suffices to
show that

Do 2 RIRLn I[P U PLUS 1)
(k1,k2)EXy, k2 >k (4224)
< &_%21@/22—N(n+1)k+—5k+ <t>5[H(q,n)+Z(n)]

and

S 2R B d [P, US4, Py LN (1) 2
(k1,k2)EXy (4.2.25)
< E%Qk/22—N(n+l)k+—5k+ <t>6[H(q,n)+ﬂ(n)].

Notice that in (4.2.24) it is more convenient to assume that k1 < ks instead of
ni S no. .

To prove the bounds (4 2.24) we write ULihiti(t) = e "Hhwary YLkt (),
J € {1,2} and let U*lkJ’LJ(f t) = e hea; Qg Lo - VEMGY(E ), as in
Lemma 4.8. In view of (3 3.9) and (3.3.3) it follows that, for j € {1, 2},

HU£ hm( )2 < eq(t)H @t +1)09—k; 3/29=N(n;+1)kf S (0287, (4.2.26)

To prove (4.2.24) we make the change of variables n — £ —17) and notice that
the Og, derivative can hit the multiplier m(n, £ —n), or the phase e Mhwa,p (E=n)

or the higher frequency profile Py, V£2h2:02(¢ — ). In the first two cases, the
derivative effectively corresponds to multiplying by factors < (t)+27%2 | and the
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desired bounds are then consequences of (4.2.19). In the last case we estimate

oka—k1 | P{I[ Py, pLihin ’ Ufl?:;,m]}(t) 2

2/4\8’ 1 ok ok™\9/100—8kT o—N 1)kt +kT (4.2.27)
< e2(t)? min((¢) 71, 2k 2k )9/109= 8k 9= N(not1)ks +hkz

using the L? bounds (4.2.26) and the bounds (3.3.11) and (3.3.3). As in Lemma
4.8, this suffices except if there is derivative loss, which can happen only when

ng =n and 2k > (1)1/100910, (4.2.28)

Assuming that (4.2.28) holds, the sum over k1 < —10k or k; > k—10 can still
be bounded as before, using (4.2.27). To bound the sum over k; € [—10k, k—10]
we return to the original formula for I (without making the change of variables
n — & —n) and notice that the 9¢, derivative now hits the low frequency factor.
Then we estimate, using just (4.2.26) and (3.3.3),

2k2—k1HPk{I[Uﬁjlzl,u’PkQULQhQ,LQ]}(t)”Lz < E%<t>6/2_N(n)k;r+2k;‘2—6kf_

As before, the loss of the factor of (t)‘SI is compensated by the gain of derivative
and the assumption 2F > (#)1/199, This suffices to complete the proof of (4.2.24).

The bounds (4.2.25) are easier: as in (4.2.21) we estimate the expression in
the left-hand side by

2—k123min{k,k1,k2}/2HPk U,Clhl,Ll (t)||L2
E : 1
(k1,k2)EXy

% [I1Pey {i LN} ()2 + 2752 [P, LN (8)]| 2]

< €%2k2—N(n+1)k+—8k+ <t>6[H(q1,n1)+H(q',n/)+Z(n/)+2]7

where P/ = Pj_3 42, using (3.3.3) and Proposition 4.7 inductively. This
clearly suffices. O

Finally, we consider the quadratic nonlinearities N2,

Lemma 4.10. Assume thatt € [0,T], L€ VI, n <3, and k € Z. Then

| PALN 2} (1) 12 S 32 NOORTHTT () HOm i (28 (1)30/2, () =160,
(4.2.29)
Moreover, if l € {1,2,3} and n < 2 then we also have the bounds

||Pk{£Nw’2}(t)||Loo S 6%2k/2<t>—1.|.25'2_N(n+l)k+.~_3k+ min{?k, <t>_1},

| P LA 21 (1) 2 S e N =3k (pyalittam (o],
(4.2.30)

Proof. We examine the definition (2.1.17) and notice that A™¥+2 is a sum of terms
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of the form h - 9,0,¢, (p,v) # (0,0), or h -1, where h € {h,,}. As in Lemma
4.9, we distribute the vector-field £, commute with the derivatives 0,,0,, and
further replace 02L/¢) with (A — 1)L'¢p + L'NY.

Step 1. For (4.2.29) it suffices to prove that

> 2 MBIIPL U PLUS(0)] o
(k1,k2)€Xp, (4.2.31)
g 5%27N(n)k++7k+ <t>H(q,n)6 min(2k <t>35/2, <t>fl+f(n)5)

and

Y. 2 MPI[PL UST M, Py LNV 12
(k1,k2)€X) (4.2.32)
< S%Tzv(n)ku?w <t>H(q,n)6 min(2k<t>36/2’ <t>71+€(n)5)

)

for any 11,10 € {+,—}, h € {hap}, L1 € VI L e Vfii, (q1,m1) +

n?
(g2,m2) < (¢:n), (q1,n1) + (¢',n') < (¢,n —1).
To prove (4.2.31) we use Lemma 4.3. The bounds follow from (4.1.52) if
2k (1)30/2 < () =1 Tf 2k (£)30/2 > (1)=1+HUM)S then (4.2.31) follows from
(4.1.54) when ny = ng = 0, or from (4.1.53) if ny = 0 and ny > 1, or from
(4.1.55) if ny > 1 and ng = 0, or from (4.1.56) if ny > 1 and ng > 1.
The bounds (4.2.32) follow easily, using just L? estimates as in (4.2.21).
Step 2. To prove the L* bounds in (4.2.30) it suffices to show that

Lo € V2

ng?

S oMk P I[R, UE | P UE R (1)
i (4.2.33)
< c29R/2 ()~ 1H20 g N DR 3 1y ok (1) =11

and

S 2 MBI TS, P LN (1)
(k1,k2)€X) (4234)
< 5%2k/2<t>71+26’27N(n+1)k++3k+ min{Qk’ <t)*1}.

These bounds follow easily from (4.2.31)—(4.2.32) if 2% < (£)=1%%" using the
Cauchy-Schwarz inequality. Also, the bounds (4.2.34) follow from (3.3.11) and
using Proposition 4.7 inductively.

We prove now the bounds (4.2.33). The contribution of the pairs (ki1, k2)
with min{ky, k2} < k4 10 or max{ky, k2} > (t) can be bounded easily, using
just (3.3.11) and (3.3.13). This also suffices to bound all the contributions if
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k > 0. To summarize, it remains to show that

2—k1 ”PkI[Pkl U£1h1,L1 ’ sz Uﬁzwwz](t)”Lw g 6%21’3/2 <t>—2+36'/22—2kf2—2k;’
(4.2.35)
provided that 2% € [(t)71F9 1], |ky — ko| < 4, and ky, ko € [k + 10, (t)].

This is similar to the bounds (4.2.12). First we estimate the left-hand side
of (4.2.35) by 23k/222(1)=1+9"/29k29—4k{ 9—4k3 yging (3.3.5) and (3.3.11). This
suffices if 2522 < (£)7119". On the other hand, if 2¥2%> e [(£)=1+%" 1] then
we decompose Py, UFihit = U?J}f,lk’il + Uf}ilk’il and Py, U2 = U§2J;plij +
Ufﬁ,iz, where 271 ~ (t)1=9'/2 and 272 ~ 2%2 (£)179"/2, Then we estimate

—k Lihi,1 Lo, —kq Lihy,t1 Lo,

27| P IIUZ 3 Py U 2] ()| o 4+ 270 | PRI U 50 US5 31 (0] o
< €§23k/22—k2 <t>—2-|r35’/22—4k1+2—4k2+7

using (3.3.4), (3.3.11), and (3.3.13). Morever, using (3.2.16) and (3.2.18) with
[ = k we estimate

27k || POy USSR )| o
S27 D I U e 1Caa USSR )]
[n1—na|<4

< 5%<t>72+5’2k27k1/2274kl+274@7

using also (3.3.3) and (3.3.5) in the estimate in the second line. This completes
the proof of (4.2.35).

Step 3. As before, to prove the weighted L? bounds in (4.2.30) it suffices
to show that

S R P I[P, US4, P US 2] (1)1
(ky F2YE X (4.2.36)
< 5?27N(n+1)k+—3k+ <t>5[H(q,n)+z(")]

~

and

> 2P [P, U P LNV} 2
(k1,k2)€X) (4.2.37)
< 5327N(n+1)k+73k+ <t>5[H(q,n)+l7(n)].

The bounds (4.2.37) are easy. As in the proof of (4.2.25) we estimate the
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left-hand side by

Z 27k123mi1’1{k,k}1,k2}/2HpklUL‘,lhl,Ll (t)||L2
(kl,k‘Q)EXk

X (| Pro {1 LNV ()| L2 + 272 || P, LNV (2) | 2]
< Efzk/QQ—N(n+l)k+—8k+ <t>6[H(q1,n1)+H(q’,n')+Z(n’)+2]7

using (3.3.3) and Proposition 4.7 inductively. This clearly suffices.

To prove (4.2.36) we write UX2¥2 = e~#Mkgs J/£2¥02 and examine the for-
mula (3.2.43). We make the change of variables n — £ — n and notice that the
Of, derivative can hit the multiplier m(n, & — n), or the phase e kg2 (E=1) op

the profile Py, V£2¥:2(£ —p). In the first two cases, the derivative effectively
corresponds to multiplying by factors < (t) or < 27%2 | and changing the mul-
tiplier mq, in a way that still satisfies (3.2.41). The desired bounds are then
consequences of the bounds (4.2.31) (in the case 2¥2 < (t)~! we need to apply
(4.1.52) again to control the corresponding contributions).

It remains to consider the case when the O derivative hits the profile

Py, VE2t2 (¢ —n). Tt suffices to prove that

+_ 2 ot
S 2 PR U TS (1)1
o S (4.2.38)
< e2(t)OlH (@) +Um)] g =N (n+ DET —4k™

—

where, as in Lemma 4.8, Uﬁfﬁ;’” (&) = e o2 (O { o, - sz}(f,t). In
view of (4.2.14) we have

TS (1) |2 S e (tyF (@t Linat DO =N (nat kT, (4.2.39)

Assume first that n; > 1. The contribution of the pairs (k1, k2) in (4.2.38)
for which ky < kg + 10 is bounded as claimed, using the L estimates (3.3.11)
and the L? bounds (4.2.39). Similarly, the contribution of the pairs (ky, ko) for
which ko < ky — 10 (thus |k — k| < 4) is bounded as claimed if 2% < (¢)1/100,
Finally, if 2% > (t)1/1% then the contribution of the pairs (ki,ks) for which
ko < k1 — 10 is bounded as claimed using (3.3.3) and (4.2.39).

Assume now that

ny =0 and ng = n. (4.2.40)

We need to be slightly more careful than before. If 2F < (£)1/19 then we can
just use the L> bounds in (3.3.11) and the L? bounds (4.2.39) to prove (4.2.38).
On the other hand, if 2% > (£)1/19 then the contribution of the pairs (ki, k)
with k1 > k — 10 or k3 < —10k can be estimated as before, using just (4.2.39)
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and the L? bounds in (3.3.3).
To estimate the remaining contributions we need to avoid the derivative loss.
Going back to (4.2.36), it remains to prove that if 2% > (£)1/190 then

+_ . .
> 242 | P{0g F{I[Py, US M P US 02111 (1)| 12
(k1,k2)EXy, k1 €[—10k,k—10]
< 6?2—N(n+1)k+—3k+'

(4.2.41)

We do not make the change of variables n — £ —n now, so the 0, derivative
hits the low frequency factor or the multiplier in the definition of the operator
I. The contribution when the derivative J¢, hits the multiplier can be bounded
easily using (3.3.11). Using the L? bounds (3.3.3) on 1, and L? x L™ estimates
as before, for (4.2.41) it suffices to prove that

27K || F= 0, [P UB(E, O]} || oo S 01 (8) 272K 2720k (4.2.42)

To prove (4.2.42) we replace UX1" (t) by e "*IVIV L1 () and use either (3.3.11)
when the 0, derivative hits the factor ¢y, (£)e~"/¢! or (3.3.9) when the derivative
hits the profile. The desired bounds (4.2.42) follow. This completes the proof
of the lemma. O

4.2.2 The Cubic and Higher Order Nonlinearities

We now prove bounds on the nonlinearities LA22 and LN %23,

Lemma 4.11. Assume that t € [0,T], L€ VI, n<2,1€{1,2,3}, and k € Z.
Then

1P (ENDZ2) (1) 12 S ety ~/2H00 9= NIRRT i 2k (1)=1)3/2 (4.2.43)

1Pkt LN (1) 2 S 3282 () 71240 g~ NIt DET =387 (49 44)

Moreover, if n =3 and L € VI then
1PL(ENEZS) (1) 2 S 3282 (1)~ 1/2+40 2 NIE 46K i (9% (1)1, (4.2.45)

Proof. We notice that N£’23 is a sum of terms of the form G>; - N7, where
G>1 =) >, aq9q for some functions gq € Gg (see (4.1.68)) and some coefficients

aq € R with |ag| < C?, and A is a quadratic term similar to those in ICgiB,
Qs Sgﬁ. It suffices to prove that if £ € VI then

1PL(L(Gs1 - N))(8)]| 2 S 3 (t) /248 9= NIORTHOET iy 9k () =1)3/2,
(4.2.46)
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1Pk (2 L£(G1 - N (1) 2 S €328/ () 71240 g~ NIt DET=3RT (4 9 47)
provided that n < 2. Moreover, if n = 3 then

IPL(L(Gor - N ()12 S ed2/2 ()71 /2472 NOORTHOE in (28, (1)),
(4.2.48)
Concerning the functions G>1 and ANp, we may assume that (see (4.1.71)
and (4.1.70))

| PDG21 (1)l S ea(t) 27N Omk pmh/2g =k
||PkDG21<t)||L°° 5 £ <t>—1+6’2—N(m+1)k++3k+ min{l, ok~ <t>}1_6, (4_2.49)
|Pe(eDGo ) (1) s S 217 2 N F DR 97 /2(2-47 (1)),

where [ € {1,2,3} and D € V4, where the inequalities in the first line hold for
all pairs (¢,m) < (3,3), while the inequalities in the last two lines hold only
for pairs (¢,n) < (2,2). We may also assume that N satisfies the bounds (see
Lemmas 4.8 and 4.9)

| PeDNL ()| o < e22k/29=N(mk 437 11y =148 i £7 ok ()}
| PeDN ()| e < 228 (1) 2420 2= NOmt DET 43K i £1 9k (1)} (4.2.50)
_N(m +_5pt ’
| P (21 DN (1) 2 S e328/227 NOmaDRT =0k ()07,

The bounds (4.2.46) follow easily from (4.2.49)—(4.2.50), using L? x L
estimates similar to those in Lemma 4.4, with the higher frequency factor placed
in L? and the lower frequency factor in L>. The proof of (4.2.47) also follows
from (4.2.49)-(4.2.50). The case 2* < (t)~! follows by L? estimates as before.
If 28 > (t)~! then we first combine the weight z; with the higher frequency and
place it in L2, Using (4.2.49)—(4.2.50), we have

> [Py L1G>1 ()| oo+ (| Py (21 L2N1) ()| 2

(kl,kg)GXk, k1 <ks+10
— L y— +_qkt
S E%<t> 1436 ) N(n+1)k™ —4k

and

> 1Pe, (20£1G 1) ()| 2 - (| Pry (L2N1)(8) ] oo
(k1,k2)EXy, ka<ki1—10 (4.2.51)
< 6?<t>71+35’27N(n1+1)k+2k*/2.

These bounds suffice in most cases, except when (n; = n and 2F > (£)1/8),
because of the loss of derivative in (4.2.51). In this case, however, we combine
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the weight z; with the lower frequency and use the estimate

> 1Py (£1G1) ()| 2 - 25K2/2]| Py, (20 L2N) (1) 2

(k1,k2)EX,, ka<k1—10

r n +
< e ey oV

bl

which suffices.

The bounds (4.2.48) also follow from (4.2.49)—(4.2.50). We use first L? x L>
estimates with the lower frequency placed in L°°. This suffices in most cases,
except when all the vector-fields apply to the low frequency factor (so we do not
have L control of this factor). In this case, however, we can reverse the two
norms, and still prove (4.2.48) in a similar way. O

Lemma 4.12. Assume thatt € [0,T], L€ VI, n <3, and k € Z. Then
1P (LN 23) (1) g2 S €2(t) 002 NOIRTH6KT pip fok (1)=1}. (4.2.52)
Moreover, if l € {1,2,3} and n < 2 then we also have the bounds

| Pe(LNZ3) (1) oe S 2320/ (1)~ 027 N DET 45K min ok (1) =1},

P, >3 < 2 —0.6 *N(n+1)k+72k+ (4253)
[Pl LN =012 S 37002 |

Proof. We examine the identity (2.1.16). It suffices to prove that if ¥/ €
{,0u,0,0,¢ : p,v € {0,1,2,3}, (u,v) # (0,0)} and G2 is a sum of the
form 3,5, aqga for some functions gq € Gg (see (4.1.68)) and some coefficients
aq € R with |ag| < C?, then

| PAL(Gz - 0} (022 S 36002 VO minfF ()71} (4.2.54)
and, assuming that n < 2,

IPAL(G22 - W)} () S e32%/2(1) 1027 NOHDRT R min ok, (1) 71,

|Pe{ziL(G sz - W) Y1) |12 S €3 ()~ 062 Nt DR =287,
(4.2.55)

Concerning the functions G>2 and ¥’, we may assume that (see (4.1.69))
| PeDGs (1) < €3(t) 72 NI 27k min1, 27 (1)),
|PaDG5(t)|| e S e2(t) =20 27 NmaDRTH3ET 1in £ 9k7 (111279, (4.2.56)
Sel

| Pe(2:DGs2) ()] S e3(27% + <t>)5,2—N(m+1)k+2_k*/2’

where [ € {1,2,3} and D € V4, where the inequalities in the first line hold for
all pairs (¢,m) < (3,3), while the inequalities in the last two lines hold only for
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pairs (q,m) < (2,2). Also, as a consequence of (3.3.3), (3.3.13), and (3.3.9),
|PeDY (1) 12 < 51<t>5/2*N(m)k++k+7
| PDY (t)|| e < 81<t>*1+5'2*N(m+1)k++3k+2k*/2 min{1, 225 (1))
1P (mDW)(#)]| 12 S e (t)” (1428 (£))2- NOm DR HAT,

)

(4.2.57)
As before, we start with L? estimates,
| Pe(£1G>2 - L2W)(1)] 2
S ) 2tk B £ G (8)]| 2| Py L2 (1) 2 (4.2.58)

(k1,k2)E€Xy

< 5:1321( <t>—1+35’2—N(n)k++2k+7
provided that £y € Vi1, Lo € V2, ny + ny = n. This suffices to prove (4.2.54)
if 28 < (£)72/3 or if 28 > (t)1/5. Moreover, if 2F € [(t)=2/3,(t)'/5] then we
use L? x L* estimates and (4.2.56)—(4.2.57), with the lower frequency factor
estimated in L> and the higher frequency factor estimated in L2. This suffices
in most cases, except when n = 3 and all the vector-fields apply to the low
frequency factor. In this case, however, we can reverse the two norms, and still
prove the desired conclusion (4.2.54).

The L* bounds in (4.2.55) follow from the L? bounds (4.2.58) if 2% < (¢)=0-9.
On the other hand, if 28 > ()79 then we just use the L? and the L bounds
in (4.2.56)—(4.2.57).

The proof of the weighted L? bounds in (4.2.55) is similar. The case 2 <
(t)~! follows by L? estimates as before. As in the proof of Lemma 4.11, if
2% > (1)1 then we first combine the weight z; with the higher frequency and
place it in L2. This gives the desired bounds (4.2.55) in most cases, except when
2k > ()1/10 and (ny = n or ng = n), because of the loss of derivative. In these
cases, however, we combine the weight z; with the lower frequency factor and
use the L? estimates in the first and third lines of (4.2.56)—(4.2.57). The desired
bounds (4.2.55) follow in these cases as well. O

4.2.3 Additional Low Frequency Bounds

We prove now some additional linear bounds on the solutions P,U*" when k is
very small. These bounds are important in some of the energy estimates in the
next sections, when the vector-fields hit very low frequency factors.

Lemma 4.13. Assume thatt € [0,T], k <0, and J+k > 0. If L =T,L,
a€{l,2,3}, L€V, n<2, and h € {hag} then

(25 (0)72752 [ pes(2) - PBUE D)) 12 S e128(27 + (1)) - (@042 (4.2.59)
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In addition, if |a| <3, L € VI, n+ |a| < 3, then
@5 )27 oy (@) - PUY M) 12 S en2*IHR () Hlam - (4.2.60)

Proof. These bounds, which should be compared with (3.3.3), are used only
when 2¢ < ()79, Recall the formula U*"(t) = (9; — iAwa)(LR)(t). To prove
(4.2.59) we write

ULM (t) = (8; — iMwpa) (T L'R)(t) = DU ™ () + [0 — iAwa, Ta] (£'R) (). (4.2.61)
The commutator can be bounded easily, without needing spatial localization,

| P[0y — iMwsa Tl (L'R) ()| 12 S ||PkU£ ht g1 (28 (1)) T2k 2 () H(am)9,

- =

see (3.3.3). For the main term we write DoUL' (1) = t0,UL M (t) + 2,0,U M (¢),
and estimate

| Petd UL (#)]|,0 < (1)2F]| PeU~ ™ (2)

1> S Sea@® ()2 )@ (1)t

=

Using the identity 9,U~ " (t) = —iAyo UL ()4 L N (t) and spatial localization,

o< (@) - Pr(@a@U ()| 22 S 27 | PLOUE (1)) 12
S 2TRPUE ()| e + 27 | PRLN (1) 12 (4.2.62)
< 2J+k€1<2k’ <t>)—72k/2 <t>H(q’n)5 + 2J€%23k/2<t>H(q,n)5+3§/2’
where P = Pj;_3 ;42] and we use (4.2.3) in the last line. The desired conclusion
(4.2.59) follows from the last three bounds.

The proof of (4.2.60) is easier, since PU?" £ (t) = QP UL (t), and each
) vector-field generates a factor of 2/+%  as in (4.2.62) above. O

4.2.4 Additional Bounds on Some Quadratic Nonlinearities

We will also need some slightly stronger bounds on some of the components of
the nonlinearities LA, when £ € VY.

Lemma 4.14. Forany k €Z,t € [0,T], L€ VI, n<1, and o, 8 € {0,1,2,3}
||Pk(ﬁlcgiﬁ)(t)”L2 + ”Pk(ﬁsiﬁ)(t)”LQ S E§2k/2<t>71+H(q,n)5+35/227N(n)k++k+.
(4.2.63)

Moreover, if 2 < (t)=1/19 then
IPL(LQ25) (1) L2 S ef2b/2(t)~1HHamot30/2, (4.2.64)

Proof. The quadratic nonlinearities lC(]iﬁ, 825, and Q2 5 are defined in (2.1.12)~
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(2.1.15). The point of the lemma is the slightly better estimates in terms of
powers of (t), when at most one vector-field acts on nonlinearities. We prove
the desired bounds in several steps.

Step 1. We consider first bilinear interactions of the metric components.
For later use we prove slightly stronger frequency-localized estimates. Assume
k ki ko € Z, t €[0,T], L2 € ng, ng < 1, hi,hy € {hag}, and 1,19 € {+,—}.
Assume that m is a multiplier satisfying || F~'m||11ge) < 1 and define I,,, as in
(3.2.43). Using just L? estimates we have

1Pl [P, U (2), Py U222 ()]
< £293 min{k,ki,k2}/2 (<t>22k;+k; ) TYok1/2+k2/2 (4.2.65)

x (t)[H(g2,m2)+1159=N(O)k{ =N (n2)kf

Moreover, if (t) > 1, 28 > ()71, and k = min{k, k1, k2} then we also have the
estimates (see (4.1.18)—(4.1.19))

|| PiLon [P, U1 (8), P, U202 (0] 9,66
<5%2k/2<t>71+6[H(q2,n2)+1]27N(n2)k;'75k3'2k2_/4' (4.2.66)

On the other hand, if (t) > 1, 28 > (#)=1, and k; = min{k, k1, k2} then
2F ~ 2F2 and

1Pl [Py U041 (1), Py U222 (1], < 2 1hel(e) =172k 2 Nimalk™,
(4.2.67)
using the bounds (3.3.11) and (3.3.3). If, in addition, (£)=80" < 2k < 2k2 <
(t)89" then we let J; be the largest integer such that 27 < (¢)2730, decompose
Py, UMt (t) = UGS, (#)+ULGY, (t) asin (4.1.14), and use (3.3.4) and (3.3.11),
together with the stronger bounds (3.3.16) on ||U§}’f}k1 (t)|| Lo, to show that

[T [Pa, U2 (1), P, U222 ()]

4.2.
5 5%2—\161|/2<t>—1+6[H(q2,n2)+1]2k/22—N(n2)k+. ( 68)

Finally, if (t) > 1, 2¥ > (t)~!, and ky = min{k, k1, ko} then 2¥ ~ 2%t and,
using (4.1.10),
HP/cIm[Pkl Uthl (t)’ Pk2U£2h27L2 (t)]HL2

4.2.
< E%<t>,1+5[H(q2’n2)+1]27|k2\2\k\/427Nok++2k+. (4.2.69)
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We examine the identities (2.1.14)—(2.1.15) and estimate

1P (£855) (1) 2

< Z HPkIm[Pkl Uh1,L1(t)7Pk2Uﬁzh2,Lz (t)]HLT (4.2.70)
k1,k2,t1,t2,h1,he,LoEVE

The desired bounds in (4.2.63) follow from (4.2.65) if (t) < 1 or if 28 < (¢)~L.
On the other hand, if (t) > 1 and 2¥ > (t)~! then the High x High — Low
interactions in (4.2.70) can be estimated as claimed using (4.2.66). The Low x
High — High interactions in (4.2.70) can be estimated using (4.2.67)—(4.2.68) if
k1 < ko or if n =0 (thus Lo = Id); they can also be estimated using (4.2.69) if
kg <k and n = 1. This completes the proof of the bounds on || P.(£SZ 5)(t)]| 2
in (4.2.63).
Similarly, using the identities (2.1.13) we estimate

1P (£Q25) ()] 2

< Z 2|k1_k2|HPkIm[Pk1Uhl’” (t)’szULzhwz (t)]HLZ
k1,k2,t1,t2,h1,he, Lo€V]

+ Z 2_k1HP]@Im[PkthhLl(t)aPk2N2h<t)]HL2’
k17k2,L17h1)N2h
(4.2.71)

where NJ' € {N/;, a, 8 € {0,1,2,3}}. The terms in the last line of (4.2.71)
are generated by commuting £ and derivatives, and then replacing 93h with
Ah + N as in the proof of Lemma 4.9. The desired bounds (4.2.64) follow as
before, using (4.2.65), (4.2.66), (4.2.67), and (4.2.69) to control the terms in the
second line of (4.2.71) (recall that 28 < (t)=1/19) and the L? estimates (4.2.3)
and (3.3.3) to control the terms in the last line.

Step 2. We consider now bilinear interactions of the Klein-Gordon field, and
prove again slightly stronger frequency-localized estimates. Assume k, k1, ko €
Z,t € [0,T], L € VI, ny <1, 11,10 € {+, —}, and m satisfies ||.7-"1m||L1(]R6) <
1. Using L? x L estimates (with the higher frequency in L?), and the bounds
(3.3.13), (3.3.3), and (3.3.5), we have

||PkIm[Pk1 U¢7L1 (t)v PkQUﬁzw)LQ (t)]HL2

4.2.72
< 5%<t>—1+5l2min{kf,k;}/22max{kf,k;}2—N(n2)max{kf,k;}. ( )

Assume that 251 > (£)=1/2220, Then we write Py, U1 (t) = U;[’j;ll’kl(t) +
U;Z”Jbll i, (1) as in (3.3.1)-(3.3.2), where J; is the largest integer satisfying 271 <
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2k =20(¢). Using (3.3.17), (3.3.13), and (3.3.3)(3.3.4) we estimate

| P Lo [Py UY 2 (2), P, U2"2(t)] [P
SIS o Ol | P, U2 (1) 2 + [UL52 4, (D)2 ]| Peu U252 (1) e
< 22 (1) ~3/2 Hlazma) oKy /2wy /209—N(L)kf 9—5kF
(4.2.73)

Finally, since || Py, U1 (t)||z2 < 21 +rkr 2=NokT 42k (gee (3.3.7)) we can
use just L2 bounds to estimate

|| PrLon [P, U (1), P, U2 ()]

+ (4.2.74)
< 6223mm{k ey kg }/22k +rky 29— N(l)lc1 92— N(n2)ks <t>H(q27n2)5’
We can now complete the proof of (4.2.63). We estimate first
1P (£KG25) ()l < > | Pl [P, U (1), Piy, U202 (1] | -
kl,k‘z,bl,Lz,EZGV;{
(4.2.75)

The bounds claimed in (4.2.63) follow using only (4.2.72) if 2% > ()9, If
2% € [1, (t)°'] then the desired bounds follow using (4.2.73) for the contribution

of the pairs (ky, k2) € &) with 281 > (#)71/2220 and (4.2.74) for the other pairs.

Assume now that 28 < 1. First we use (4.2.74) to bound the contribution
of the pairs (ky, ko) for which 281+ < (#)=1. On the other hand if 2k+ +&~ >
(t)~12190 then we use (4.2.73) if 251 > (£)=1/2220 and (4.2.72) for the remaining
pairs with 2% < (£)=1/2220 < 25" This completes the proof of (4.2.63). O

4.3 DECOMPOSITIONS OF THE MAIN NONLINEARITIES

4.3.1 The Variables F£, F* p~, w£ Qf,ﬁfk

Recall that these variables were defined in (2.1.26) and (2.1.30). The harmonic
gauge condition (1.2.7) gives

1
56 hgu — §m o) hag = E>2 —g>13 hgu + g>18 hagp- (4.3.1)

These identities and the identities (2.1.2) can be used to derive elliptic equations
for the variables F, F, p,w;,Q;,9;;. More precisely, let Ry := |V|~10; and

7 =7[H]| := (1/2)[0;x Hjx + RjRxHji] = —(1/2)0;19[H] ;.. (4.3.2)
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We show below that the variables p* and Qf can be expressed in terms of the
other variables, up to quadratic errors, while the variables 7% := 7[£h] are in
fact quadratic. More precisely:

Lemma 4.15. Assume that £ € V3 and define
com OC 1 [e3%
EF™ = m® [0, LIhg, — 3 P10, Llhag- (4.3.3)

Then the variables p*~, QJE (defined in (2.1.30)) satisfy the elliptic-type identities

= RoF* + Ror* + |V|7'LES? + |V EST,

= Row? +|V|™' € RILED + V|7 € RIEZ. 434
The variables T satisfy the identities
2V[*7E = 0. LES? + 0uEFY + FILN"] + 7[LN™],
2|V|8y7F = —|V|LES? + RkaOcE,jQ \VIEELT + Qo R B + plLN™).
(4.3.5)
Proof. As a consequence of (4.3.1) we have
00 Lhi — 500 Lhos = LB + m* [0, Llhgy — 50y, Ll
_ £E>2 + Bgem,
(4.3.6)
Notice that m®? Lh,g = 275 — 2F~. Therefore (4.3.6) with u = 0 gives
—00(F* + E) + |V|p* — do(7F — F*) = LEG + B
This simplifies to
—0oF" + |V|p* — 07" = LEG + EZy. (4.3.7)
Similarly, using (4.3.6) with =k € {1,2,3} gives
—0oLhoy + 0;Lhjy, — %(%(mo‘ﬁﬁhag) LEZ? + EZ.
Taking the divergence and the curl, and using (2.1.26), this gives
~80p* — |V|EF + |V|r€ = Ry LET + RLEEY (4.3.8)

and
—Oowt +|VIQF =€ RILET*+ € RIEZ}. (4.3.9)
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The identities (4.3.4) follow from (4.3.7) and (4.3.9).

We can now use (4.3.7) and (4.3.8) to derive the identities (4.3.5) for 7~.
Indeed, applying 0y to the first equation and |V| to the second equation and
adding up we have

2 2\ L 2 2\, L 2_L
(3 FE_
(05 + V2 )ES — (95 + V)78 + 2|V [*r
= 0 LEF® + |V|RLE” + 0 EZY + |V|RLELT.

Similarly, applying —|V| to the first equation and 9y to the second equation and
adding up,

—(02 + |V [))pF +2|V|007” = —|V|LES? + RO LET” — |V|ELT + R ELY.

The desired identities (4.3.5) follow since (92 + |V|2)GX = G[LN"], G €
{E,7,p}. H

4.3.2 Energy Disposable Nonlinearities

To prove energy estimate in the next section we need to bound the contribution
of spacetime integrals. Many resulting terms can be estimated easily, without
normal form analysis, using just decay properties. In this subsection we identify
these terms. We start with a definition.

Definition 4.16. Assume that (q¢,n) < (3,3). A function L : R® x [0,T] — C

will be called "wave-disposable of order (q,n)” if, for any t € [0,T],
[IVI7Y2L()|| ey S Ty~ HHH@mI=0/2, (4.3.10)

Similarly, a function L : R3 x [0,T] — C will be called ”KG-disposable of order
(¢;n)” if
L]y reny S Tty HH@mI=0/2, (4.3.11)

We identify now suitable classes of cubic terms that are energy disposable.
More precisely:

Definition 4.17. We define two sets of quadratic and higher order expressions

QU C U
QU := {0ah10sh2, G>1 - 0ah10shs, ’Cgig, G>1 "Cgiga G>1-0a0sh2},
QU := {0ah10sh2, G>1 - 0ah10ghs, Kgiﬁa G>1 "Cgig},
(4.3.12)

where o, B € {0,1,2,3}, hi,ha € {hu}, KG%4 are defined in (2.1.12), and
G>1 = > 451 dga for some functions ga € Ga (see (4.1.68)) and some coeffi-
cients ag € R with |ag| < CY.
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A “semilinear cubic remainder of order (q,n)” is a finite sum of expressions
of the form

IV LN, 0o Lohy] or T|VITLLN, VT LN or I[L1Ny, Lahyw),
(4.3.13)
where I = I,, m € M, is as in (3.2.43), N ,N" € QU, Ny € QUy, L; € V¥,
and (q1,n1) + (g2, 12) < (¢,7n).

For example, the functions N, 8,E22,|V|d,7 can be written as sums of

pvo

terms of the form RN for N' € QU, where R* = R{' R3*R5* (see (4.3.1) and
(4.3.5)).
We show that functions in QU satisfy quadratic-type bounds similar to N ahﬁ:

Lemma 4.18. If N € QU, L€ VI, n<3,t€[0,T], and k € Z then

||Pk{£N} (t) HL2 5 €§2k/2 <t>H(q,n)62—f\7(n)k’++7k+ min(2k <t>36/27 <t>—1+l7(n)6).

(4.3.14)
Moreover, if n <2 and l € {1,2,3} then we also have the bounds
IPHLEN YOl S 522 MO D min 28, (1),
| P LA} B)|a S 28/ (t) 2 N DT =2k, a
Finally, if L€ V1, n<3,t€[0,T], k€ Z, and 2% < <t>_5, then
|P{LN (B[] 2 S e728/2 (1) 0o ()~ HlamoTo/2, (4.3.16)

Proof. The bounds (4.3.14)—(4.3.15) follow from the proofs of Lemmas 4.8, 4.9,
4.11. The bounds (4.3.16) follow from (4.2.7) if N = ICQ?M and from (4.2.46) if
N is a cubic term. It remains to prove that

1PALQA Y (O)l2 + | P{ L8253 (1) 12 S €722 (1) (@m)? (1)~ 1A amororz

if 28 < ()79, where QZ; and 825 are as in (2.1.13)-(2.1.15). This can be
proved as in Lemma 4.9, using Lemma 4.1. Most of the terms gain a factor of
2k/2 which is more than enough to give the additional time decay. The only
exception are the High x High — Low interactions that are controlled using

(4.1.5)—(4.1.7); however, in these interactions we already have the time decay
factor (t)H(4:7)9 (1) =1+6(a:m)0+6/2 a5 claimed. O

We show first that most cubic and higher order terms in EJ\/gﬂ and LNV
are disposable.

Lemma 4.19. If (¢,n) < (3,3) then any semilinear cubic remainder of order
(g,mn) (see Definition 4.17) is wave-disposable. In addition, if I = I,,,, m € M,
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is as in (3.2.43) and hy € {hyu,} then terms of the form
IV L1 (G10ph1), Lay)] (4.3.17)

are KG-disposable of order (q,n) for all Ly € VI, Ly € VI with (q1,n1) +

(g2,m2) < (g,m).
Moreover, if no < n, then terms of the form

IV £1(G>10,h1), 0405 L2hs) (4.3.18)
are wave-disposable of order (q,n), while terms of the form

IV L1(G510,h1), 0005 Loy)] (4.3.19)
are KG-disposable of order (q,n).

Proof. Time decay is not an issue in this lemma, since we are considering cubic
and higher order terms, but we need to be careful to avoid possible derivative
loss. For any (¢,n) with (¢,n) < (3,3) and t € [0,T] we define the frequency

envelopes {b; }rez = {bk (¢, n;t) }rez by
v (q,m;t) = sup <t>_H(‘1’")5
Kevi, a,€{0,1,2,3}
< ([P (DY <) [V [T2UM Y (O] vy + IPUSY )| grven }5 - (4.3.20)
bi(g,n;t) := g2 kI/A 4 Z Z_V‘k_k,l/zlbg,(q,n; t).
=
In view of the bootstrap assumption (2.1.46) we have
> (brlg.mit)? St and (g mst) < bre(g,n; )27 K1/ for any k, K € 2.

kEZ
(4.3.21)

The main point of the definition is that we have the slightly better L? bounds
PO 0 ()] 2 < br(g, ms ) (8 @328/ 29 =N RS (1) oh ™y =,

. e e (4.3.22)
[P UV ()| o S bi(g, s ) (1) H(@mog=NmET

for any k € Z, K € V4, and «, 8 € {0,1,2,3} (compare with (3.3.3)).
To prove the conclusions we need two more quadratic bounds: if Ny € QU
and N € QU (see (4.3.12)), k >0, t € [0,T], and K € V!, then

|G} lz2 S exbila,n's )28/ 22- N0k (1) =1+0'/2,

, , (4.3.23)
1PN Y (0]l p2 S exbrlq’,n's 4)2%4/227 NIk () =150 /2,

Notice that these bounds are improvements over the general bounds (4.3.14)
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when k£ > 0.

Step 1. We assume first that the bounds (4.3.23) hold and show how to
prove the conclusions of the lemma. Recall also the bounds (4.1.79). In view of
the definitions it suffices to show that

1PI[[V| " LN, UEzh2) (1) 2 S enbi(g, ns )28/ 227 N KT (1) =1,
IPLITVIT LN, [V T LN (1) | e S erbi(g,ms )28/ 227 VR (1) =1 0 (4.3.24)
IPI[LaNo, [V~ U2 202] (1) 2 S nbi(g, ms8)28/ 227 NOORT ()=,

and

1PV~ L1 (Go18pha), (V) HUE22] (1) 2 S 2?2~ NmRT gy =1

(4.3.25)

for any k € Z, t € [0,T], N,N" € QU, Ny € QUy, L1 € VI, Ly € V2,

(q1,71) + (g2,n2) < (g,m). Moreover, if ny < n and N € {N7;}, then we also
have to prove the bounds

1PV L1(G10,h), [V|UE2M202] (1) 2 S G2 0IMgh 29 = NET 4y =1,

PI[|V| L1 (Go10,h1), LoNM (1) || 2 S 22701k gk/29=N(m)kT 4y —1

>10p 1
(4.3.26)

and

1PV L1(G18,h), (V)T 2] (1) 2 S eF2 02 NI (1) =

-1 ) < 29—8lklg—N(n)kt jp\—1 (4.3.27)
[PeI[IV]|™ L1(G>10,h1), LaNP] ()2 S €727 71712 ),

in order to show that the expressions in (4.3.18)—(4.3.19) are also disposable.
The proofs of (4.3.24)—(4.3.27) rely on L? x L™ estimates, as in Lemmas

4.4-4.6. In most cases we place the high frequency factor in L? and the low

frequency factor in L°°, except when the low frequency factor carries all the

three vector-fields. We provide all the details only for the proof of the harder

estimates in the first line of (4.3.24), which require the frequency envelopes.
The functions |V|~1£1N and U*2"2:¢2 gatisfy the bounds

1Pe, (IV] LN () 22 S e1bny (g, m; )27 NOORTHRT/2 i (201 (1)=1)1/2=0")
1P, (IV] 7 LN ()| e S €3 () 14072 NIt DRTHSRT iy 9k (7)1
(4.3.28)

(see (4.3.23), (4.3.14), and (4.3.15)) and

’

1Py, (U242 (8[| 2 S by, (g5 8)27 N m2)ks 43 29k /2=0ks (18",

Loha,ta < 146 oky —N(7L2+1)k2++2k2+ (4329)
HPlfz(U )(t)HLOO N€1<t> 2%2 2
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(see (4.3.22) and (3.3.11)). As before, the L> bounds in the second lines of
(4.3.28) and (4.3.29) hold only if ny <2 and ny < 2. We estimate first
|PI[V |~ LN, UE2"202] (1) | 2

S D0 2B (VI LN Oz 1P (UF22) (1) 2
(kl,k‘z)exk
< 5?<t>_1/2+45/23k/27

which suffices to prove (4.3.24) if 28 < (£)=9°1. Moreover, if 2% > (#)7°! and
ny,n2 € [0,2] then we estimate, using also (4.3.21),

| PLI[|V | LIN, U2 202) (1) 2 < Sp + So,

where
S1i= > [P, (IV| 7 LN ()| 2 || iy (US222) (8) || Lo
(k1,k2)EXK, k1>k—8
< &2y (g, m; £)2 N R TR /2 ) =3/24487
Sz 1= S B (VI LN (@)oo | Pry (UE2R22) (1) 2

(k1,k2)€Xy, k1 <k—8
_ o+ B
< efbp(g,ny )2 N TERT 24y =58,

Finally, if ny = 3 (thus ny = 0, n = 3), then we estimate

IPI[IV | LN, TR 2] (1) e
S B (VI LN (@) 2l Py (U222 (8)]| o

(k1,k2)€EXs
< 6%[)]@((]7 n; t)2_N(n)k++k+/2<t>_3/2+45/’
while if no =3 (thIlS n=0,n= 3)7 then

1LV | LN, U 2R (1) e

S 1P (VI LN @) o 1Py (UF2242) (1) 2
(k1,k2)EX
Nkt 4kt _
S efbr(q, s )27 VIR,
These bounds suffice to prove (4.3.24) when 2% > (¢)=0-51,

The estimates (4.3.26)—(4.3.27) are slightly easier, because we do not need
to carry the frequency envelopes. The functions |V|™'£(G>10,h) satisfy the
bounds in Lemma 4.6, while the functions N~2"2 and N'*2¥ satisfy the bounds
in Proposition 4.7. Since ny < n there is no derivative loss, and the estimates
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(4.3.26)—(4.3.27) follow in the same way as (4.3.24).

Step 2. We prove now the bounds (4.3.23). We examine the definition
(4312) If Nol = 8ah1 . 85h2 and N(JQ = GZlaahl '(95h2, Oé,ﬂ S {0,1,2,3},
hy,ha € {h,,}, then

1PAKNG (Bl 22 + | PAKNG B 22 S enbi(q,n's )25/ 227 Nk () =107,
(4.3.30)
for any k > 0, ¢t € [0,T], and K € V!,. This is easy to see just using L? x L>
estimates and the bounds (4.3.22), (3.3.11), and (4.2.49). Similarly, if N§ =
ICQZB (see (2.1.12)) for some a, B € {0,1,2,3} and N := G>1 ~1Cgiﬂ then

IPAKNG H ()22 + | PAKNG } ()] 2 S e32 NIk (1) =15, (4.3.31)
for any k> 0,t € [0,T], and K € Vg;. Finally, if (a, 8) # (0,0), then
|P{K(G1 - Bapha) }(£)|| L2 S exbi(q/ s 4)27 N IRESR/2 () =140" (4 3 39)

for any k > 0, t € [0,T], and K € Vz:, using again L2 x L> estimates as
before (and Proposition 4.7 to bound the commutator term [IC,0,0]h2). As
a consequence of the last three bounds and the identitites (2.1.9), the metric
nonlinearities A/ ﬁu satisfy bounds similar to (4.3.32),

IPLAKNL H()l| 2 S enbi(a’, /', 1)2 7 NOIRESRT gy =1

Therefore, we can use the equation 93h = Ah+N" to prove the bounds (4.3.32)
for « = =0 as well. This completes the proof of (4.3.23). O

We show now that all the quadratic terms arising as commutators are also
energy disposable.

Lemma 4.20. Assume that (q,n) < (3,3), L1 € Vi1, Ly € V2, (q1,n1) +
(g2,m2) < (g,n—1). If hi,ha € {hu}, p,a, B € {0,1,2,3} then quadratic terms
of the form

I[UFen glee] or  I[R,Lihy, 0005Lahs]  or  I[0,L1h1,85Lahs]
(4.3.33)
are wave-disposable of order (q,n), where 11,12 € {+,—}. Moreover, terms of
the form
I[R,L1h1,0,03L21)] (4.3.34)

are KG-disposable of order (q,n).

Terms such as those in (4.3.33) and (4.3.34) will be called “wave (respectively
KG) commutator remainders” of order (g,n).

Proof. Derivative loss is not an issue in this lemma, since n; +ns < n — 1, but
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we need to be careful with the time decay. We show first for any k, k1,ks € Z
and ¢t € [0, T

27k/2|| P I[Py, UST ¥ P, US2Y22](8) | 2 (4.3.35)
_ E%<t>_1+6[H(q,n—1)+€(qv”—1)+1]2_N("_1)k+2_wk|+|kl|+‘k2|)/4. 3.

Indeed, these bounds follow from (4.1.34) and (2.1.53) if 2min{kkikz} < (1) =
(see also the definitions (4.1.2)). On the other hand, if 2mintkkuke} >
then (4.3.35) follows from the bounds (4.1.35). Since

H(g,n—1)+£4(qg,n—1)+ 12 < H(q,n), (4.3.36)

the bounds (4.3.35) suffice to show that I[U%1%:¢1, U*2¥+42] is wave-disposable.
Moreover, we also have

o-k/2glki=kal| py [[ Py, UFrh Py UF2h22) (1)) o

< 5%<t>_1+5[H(q»”)_4]2_N(")k+—2k+2—’7("?‘+|k1‘+|k2\)/47 (4:3.37)
for any k,k1,ke € Z, t € [0,T], h1,ha € {hap}, t1,t2 € {+,—}. These bounds
follow from (4.1.5) if 2min{kkukzt < (1)=1 and from (4.1.6)-(4.1.11) (see also
(4.1.3) and use (4.1.10) instead of (4.1.8) when n; = ny = 0) if 2min{kkike} >
(t)~%. Thus terms of the form I[R,L1h1,0,08L2ho] and I[0,L1h1, 0, Lohs] are
also wave-disposable of order (g,n) (in the case («, 5) = (0,0) we replace first
02 Lohy with ALyhg + LoN and use (4.2.3) and (4.2.5) to bound the nonlinear
contribution).

Finally, we can use Lemma 4.3 in a similar way to show that

25 PP, U P TS ()] 1

L (4.3.38)
< e2(f)~ VHOH (@m)~alg=N(m)k* 2k gkl +lka | +1k2])/4,

for any k,ki,ks € Z, t € [0,T], hy € {hag}, t1,t2 € {+,—}. Therefore expres-
sions of the form I[R,L1h1,0,03L21)] are KG-disposable of order (g,n). This
completes the proof. O

4.3.3 Null Structures

In the analysis of the wave nonlinearities A it is important to identify null
components, for which we prove better estimates. We start with a definition.

Definition 4.21. We define two classes of null multipliers MT‘” and M™

Miu” — {n . (R3 \ 0)2 — C: n(x,y) = (xi/|x] F yi/lyl)m(z,y)

(4.3.39)
for some m € M and i € {1,2,3}}.
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For any (g,n) with 0 < ¢ < n < 3 we define the set of “semilinear null forms
of order (q,n)” as the set of finite sums of expressions I,’}filfz [UFrhisi [7Ezhe.2]

defined by
F{It e Ut g
1 _— _ (4.3.40)
= 5 [, Mera (€ = U (€ = Ut () i,

where 11,13 € {4, =}, hi,ha € {hag}, L1 € VI, Lo € VZ, (q1,71) + (g2,n2) <

(q,n), and n,,,, € M™ By convention, ++ = —— =+ and +— = —+ = —.

L1tz

Our definition of semilinear null forms contains the classical null forms
Oah10gha — Ogh10aho and m®P 9y h105hs, (4.3.41)
for hi,he € {huw}, o, B, n,v € {0,1,2,3}. Indeed, since
doh = (1/2)[U™T + U™,  9;h = (i/2)[R;U"T — R;U"],

for any h € {hag} (see (2.1.34)), we have, for a,b € {1, 2, 3},

3ah13bh2 o 3bh13ah2 _ Z ]—nlu;lbl2 [Uh1,L1 th,u}
€l o) (4.3.42)
nob(8, ) = Loy — ana,
4 10[In|
Ooh10pho — Oph100he = Z LJ:&g [l ghee],
L1
”"26“7*} (4.3.43)
0 b o
n?’b 0,n) := o ,
=[5 ~in)
m P Oahdshy = Y I Ut U,
“a2€iH -} (4.3.44)
R0 =114 0 .
’ 4 10]In]

It is easy to verify that the symbols n®* n%? 5, are in M™  as defined in
(4.3.39) (in fact n®® € M7 0 M) therefore the classical null forms in
(4.3.41) are all semilinear null forms of order (0,0). The vector-fields £ can be
incorporated as well, without any difficulty.

We remark that our definition (4.21) of semilinear null forms is slightly more
general because we would like to allow forms expressed in terms of the variables
F.F,p,w;, 8,91, which involve the Riesz transforms. For example, expressions
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of the form
RifRig— RofRyg.  fg— RyRif - RyRig (4.3.45)

are semilinear null forms of order (0,0) if f,g € {R]*R3*R5*0ahu}-

4.3.4 The Main Decomposition

We are now ready to prove an important proposition concerning the decompo-
sition of the nonlinearities N5} and A%,

Given three operators £, = T QY | L, = T9"QY | £ = T9QP (see (2.1.23)),
we say that £, + Lo = L if a’ +a” = a and ' + V" = b. Therefore

L(fg)= Y. croc.laf-Lag, (4.3.46)
Li+Lo=L

for some coefficients ¢z, z, € [0, 0).

Proposition 4.22. If «, 5 € {0,1,2,3}, (¢,n) < (3,3), and £ € VI then

LNEs = > §410,0,(Lhap) + Qf o (has)
w,ve{0,1,2,3} (4.3.47)
+ S5 S+ KGE + RED

and

LNY = " G10,0, (L) + hooLy) + QF, () + REY.  (4.3.48)

n,ve{0,1,2,3}

The remainders Rgg and R*Y are wave-disposable (respectively KG-disposable)
of order (q,n), and the reduced metric components §gq are defined by

7% =0, g% =01-9¢%) Y, g =1— %) el + g%
(4.3.49)
e The terms Q% (hap) and Qﬁg(w) are given by

Qualhap) = Y > >

GE{F,F.wn,9mn} t1,02€{+,—} L1+L2=L, LoFL (4.3.50)

Loty aGue [|V|_1UGL1 ,L1’ |V|U£2haﬁ7b2]’

ofW) =3 > >

Ge{F,E,wn,9mn} t1,02€{+,—} L1+L2=L, LoFL (4351)
Cﬁl’LQIqLGl’Lkzg HV‘—l UGE1 )1 , <V>U‘2W2],
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Vmnywa e Ml (phich are in fact double-

F,wa Fwa _w, wa
The multipliers U PP o S« s [
F.,kg

null as defined in (5.2.2)) and qF°F9, qi7?, qonk9, qlmekd € M are given ea-
plicitly in (4.3.59)-(4.3.60).
o The semilinear terms S(f[’al, Sa@ , and Kgﬁﬁ are given by

st= Y > oo s e (4.3.52)

hl,hze{h‘”,} Ll,L2€{+, } Li+Lo=L

St= > (1/2)cc, o RpRy0aV5, - RyReds0i2,, (4.3.53)
Li+Lo=L

KGigi= Y cry.e,(20aLat) - OpLoth + magLlitpLoth), (4.3.54)
Li+Lo=L

where n,,,, =0,,,,(L1, L2, h1, h2) are null multipliers in M® , (see (4.3.39)).

L1tL2

Remark 4.23. (1) The nonlinearities LN, ;}5 contain five types of components, in
addition to wave-disposable remainders:

(i) The top order terms g&"0,0,(Lhapg), which lead to derivative loss in
energy estimates and normal form analysis;

(ii) The terms Q% (hap), which are sums of bilinear interactions of the metric
components, with null multipliers qG W@ These interactions are all defined by
null multipliers, but are not of the same type as the semilinear null forms. The
issue is the additional anti-derivative on the first factor |V\*1UG£1¢, which
leads to significant difficulties at very low frequencies, particularly when these
first factors carry all the vector-fields El =L;

(iii) Generic semilinear null terms Sk aﬁ ;

(iv) The special terms 85’2, which involve non-null bilinear interactions of
the “good” metric components ¥;

(v) The Klein-Gordon nonlinearities KG% 5- These nonlinearities do not have
null structure and, in fact, involve the massive field 1) in undifferentiated form.

(2) The Klein-Gordon nonlinearities LAY contain two types of quasilinear
components, which are somewhat similar to the first two types of metric non-
linearities described above, and a KG-disposable remainder.

Proof. Step 1. We start with the quasilinear components of the metric nonlin-
earities, which can be written in the form 37 123, G810, 0uhap (see (2.1.9)
and (4.3.49)). Thus

L{34"0,0vhas } = 35" L(0u0vhagp) + > c2y,£: L1957 L2(0, 00 hag).-
Ly+La=L, LotL

(4.3.55)

The first term in the right-hand side can be replaced by ¢&' 9,0, (Lhqg), while

the second term can be replaced by >, \, . » . cr, 2,£101" 000 (Lohag)

up to wave-disposable errors (due to Lemmas 4.19 and 4.20), where ¢} is the
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linear part of g&|. In view of the formulas (2.1.8) and (4.3.49), we have

3°=0, gV =ho,  G*=—hjr— hood. (4.3.56)
Therefore
‘C{-Aggliaﬂal’haﬁ} - gganaV(Ehaﬁ) = Z CLy,Lo
Li4Lo=L, La#tL (4.3.57)
x [2L1ho; - 000 Lahas — L1(hji + hoodse) - 050k Lahas] + RERY,

where Rig’l is wave-disposable of order (¢,n). Using (2.1.29) with H = £;h,
we have

2L1hoj - 80 Lahas — L1(hjk + hoodjk) - 9;0kLahas

= [<2R;p"" + 2 €jpn Rywi'] - 0;00L2has

+ [ = Gn(FE + E5) = RjRy(F© — EY)

+ (€jim Rt €xim Rj)RINE — €jpmEngn RpRg95:] - 0;0kLokag.

We use now the formulas (4.3.4). After reorganizing the terms, the expression
above becomes

— [0 + RjRi)FX* - 0,0k Lohags

—{2R;RoF** - 0;00Lohas + (65 — RjRi)E™ - 0;0kLohag }

+ {2 €jmn Rimnws" - 0;00L2has + (€jin Ret Epin Rj)RiRows" - 9;0kLahas }
— €pmEhqn RpyRy05L, - 0;0kLohas — 2R; Rom™ - 8;00Lohas + REMZ.

af
(4.3.58)

Here 7'\’,522 corresponds to the contribution of the error terms in (4.3.4), and
is wave-disposable of order (¢,n), in view of Lemma 4.19 (see (4.3.18)) and
Lemma 4.20. The terms —2RjR07'£1 - 0j00L2hqp are wave-disposable errors
(due to Lemma 4.24 below), while the other terms can be rewritten as claimed
in (4.3.50), using the identities

QoLohag = (1/2)(UF2hert 4 Uhahos™),
V| L2hap = (i/2)(UFert — ghehes)

see (2.1. and similar identities for LT wt v e symbols q,7;
2.1.36 d similar identities for F£1, F£1 wEt 9L Th bols q&;we

n s Ymn* LiLa
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are given by
qF,wa — —lil2 |: _ (0 ) 77)2:|
e T DT P
— 0-n12
Gy = m—— {1 - L1L27n} ;
4 18]I (4.3.59)
qeonwa . Z01 Ejpn Opnj [1 s -1 }
2 |0fIn| 10]]n]
qimnwa t1t2 €jpm Upnj Ekgn Bqnk
4 16]In] 10[ ||

These multipliers are similar to the classical null multipliers in (4.3.42)—(4.3.44),
and thus belong to M[‘l’jlj as claimed.

Step 2. We consider now the Klein-Gordon nonlinearity AN¥ defined in
(2.1.16). The analysis is similar to the analysis of the quasilinear wave nonlin-
earities. One can first place most of the cubic and higher order terms and the
commutator terms in the KG-disposable remainder, due to Lemmas 4.19 and
4.20, thus

LNY = gL L£(0,0,1)+L(hooth) + ey, L1G1 L2(0,0,0)+REV1,

D

Li+Lo=L, LoFL

where R“%! is KG-disposable, and the additional term L(hgot) comes from
the term (1 — ¢99)71¢% % in (2.1.16). The first two terms in the right-hand
side are as claimed in (4.3.48), and we can decompose the remaining term as
in (4.3.57)—(4.3.58), with hap replaced by . The terms —2R; Ro7*1 - 0;00 L)
are KG-disposable errors (due to Lemma 4.24 below), while all the other terms,

including L(hoot), are accounted for in Qﬁg(dz). The resulting symbols qffi’;g
can be calculated as before, and are given explicitly by
Fkg . —lit2 [ _ (0 - ,7)2}
R SR
_ 0.n 12
A = e {1 — i } )
4 161(n)
) (4.3.60)
qeonka . 4 Egpn Oyt [1 LA ]
e 2 |0Kn) 161(n)
qﬂmn,kg _ 2 Ejpm Op1j Ekan Bqni
e 4 [0y 10[(n)

Step 3. Finally, we consider the semilinear terms coming from the last
two terms in (2.1.9). The cubic terms and the commutators can be safely
included in the wave-disposable remainders, due to Lemmas 4.19-4.20. The
Klein-Gordon contributions coming from XG2 3 are included in the terms KG~ 3
in (4.3.54). The null contributions coming from Qiﬁ are included in the terms
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Sféél in (4.3.52) (see (4.3.42)-(4.3.44)). The contributions of the terms P2z in

(2.1.15) are recovered in the terms Sﬁél and Saﬁéz, due to Lemma 4.25 below. [

In the analysis of the quasilinear terms in Lemma 4.22, we used the fact that
certain quadratic expressions involving 7 are energy disposable. We prove this
below:

Lemma 4.24. Assume that (¢,n) < (3,3), L1 € Vi1, Lo € V2, (q1,m1) +

(g2,m2) < (g,n), andng <mn (son>1). If I = I,,, m € M, is as in (3.2.43),
he{hu}, and a € {0,1,2,3} then quadratic terms of the form

I[Ro7*", |V |0 Loh] and I[75, |V |Da Loh] (4.3.61)
are wave-disposable of order (q,n). Similarly, quadratic terms of the form

I[RoT™1, (V)0aLot)] and I[75 (V)0 Lot)] (4.3.62)
are KG-disposable of order (q,n).

Proof. The main point is that the metric components 7! have quadratic char-
acter, up to lower order terms, due to the identities (4.3.5). At low frequencies,
however, the resulting quadratic bounds are not effective, and we need to trivi-
alize one vector-field using Lemma, 4.13.

More precisely, with |k| := max{|k/|, |k1]|,|k=2|} it suffices to prove that

2k22_k/2”P]€I[Pk1 RIJ«TL1 P sz ULzh7L2](t) HLz

_ 4.3.63
< 6%<t>71+H(q,n)676/227N(n)k+ o—lkl/4 ( )

and

255 | PL [Py, R, PryU2 2] (1) 2 S () 71 (@m0 =0/29 = NOOET 9= K/4,

(4.3.64)
for any p € {0,1,2,3}, 12 € {+,—}, k,k1,k2 € Z, and t € [0,T]. These bounds
follow from (4.1.5) if 2min{kkuke} < (4)=1-48 o jf gmax{kkik2} > (4)21 Tn the
remaining range

) >2"" and 2 2k 2k2 ¢ [(1)"1740 ()2 (4.3.65)

we divide the proof into several steps.
Step 1. Assume first that (4.3.65) holds and ks = min{k, k1, k2}. Then
2k20=F/2|| P I[Py, R, T5Y, P, UR22) (1) 12
< 2272 Py, Ry (8)| 2 || P, U 52" (8) ] (4.3.66)
< 6%27k/2<t>71+6'22k2_ 2781@' .27k1/227|k1\27N(n1)kj'
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and

+
282 || Pl [Py, Ry, Pr, US292](1)]| 2
+
< 255 || Py Ry (8) | 2 || Pey U2 (8) | o (4.3.67)

< 6?<t>—1+6’2k;/2 min{1, <t>22k; }2—8@ .2—k1/227\k1|2—N(n1)kf7

using the L™ estimates (3.3.11) and (3.3.13) on the second factor. The desired
bounds (4.3.63)—(4.3.64) follow unless (£)~1/2-20" < 9ka < 9k1 < (4)26,

In this case, however, we use (4.3.5) and replace R, 75! with lower order line-
ar terms of the form R%|V|~20,,0,L hap (coming from the commutator terms)
and nonlinear terms of the form R%|V|=2LYN, where N' € QU (see (4.3.12)),
LyeVvh | LY eVi, a8, v e{0,1,2,3}, and R* = R{" Ry> Rg®.

The contributions of the linear commutators R*|V|~28,0, L) hqp are suitably
bounded as claimed, due to the more general estimates (4.3.37) and (4.3.38).
The contributions of the nonlinear terms R?|V|~2L{N can be bounded using
L? x L™ estimates, as in (4.3.66)—(4.3.67), and recalling the L? bounds (4.3.14)
and the assumption (¢)~1/2728" < 9k2 < 9k1 < (1)28"

Step 2. Assume now that (4.3.65) holds and & = min{k, k1, k2 }. The bounds
(4.3.63)(4.3.64) follow from (4.1.6)-(4.1.7) and (4.3.67) unless (£)~1/2728" <
22~ 9k1 < ()20 In this case, however, we can again use the identities (4.3.5).
As before, we estimate the contributions of the linear commutators using (4.3.37)
and (4.3.38), and the contributions of the nonlinear terms R*|V|~2L/N using
the L? bounds (4.3.14). The desired bounds (4.3.63)—(4.3.64) follow.

Step 3. Assume now that k1 = min{k, k1, k2} and n; < m. Recall that
ny < n, thus H(q1,n1) + H(g2,n2) < H(g,n) — 40 (see (2.1.53)). The desired
bounds follow from (4.1.5) if 2k < (#) 71439 or 2k2 > (#). On the other hand,
if (£)71+399 < 2k < 92k2 < (1) then we use the identities (4.3.5) as before, and
replace R, 751 with lower order linear terms of the form R%|V|~20,0,Lhag
and nonlinear terms of the form R%|V|~2LYN. The contributions of the lower
order linear terms can be suitably controlled using (4.3.37)—(4.3.38). Moreover,
we estimate

2822782 PLI [Py, ROV |72 LYN, P U2 (1)) 2
< 2222 P V| T2 LYN (8) |2 | P U (1) 2 (4.3.68)
< 6%216<t>71+H(q1,n1)6+365<t>H(Q2,n2)527N(n2)k+

and

ha — w,L
22 || Py I[Py, RV |72 LYN, Py, US292](8)] 2
< 2522 Py [V T2LYN (1) 2| Pr, U2 (1) o (4.3.69)
< E§2k+ <t>—1+H(¢Z1,n1)6+365<t>H(qZ,nz)52—N(n2)k+7

using (4.3.14) and (3.3.3). The desired bounds (4.3.63)—(4.3.64) follow.
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Step 4. Finally, assume that k; = min{k, k1,k2}, (q1,71) = (¢,n), and
(g2,m2) = (0,0). The proof is harder in this case mainly because the decompo-
sition (4.3.5) is not effective when k; is very small, say 2%t ~ (t)~!. We consider
two cases:

Case 4.1. Let

Y(0,1):=15, Y(1,1):=25, Y(qn):=55 if n>2.  (4.3.70)
If 2k € [(£) =149 ()~ 1+Y(97)9] then we prove the more general bounds

ok =k 9=k /2| P[Py, US 2 P, U2 (8)]| 2

. (4.3.71)
< 2 ()~ 1+ (@n)3—5/29=N(n)k* o =Tk /4

and

+_ 7 01
ks —k1 ||PkI[P}c1 [Lihas , Pr, Uiﬁ,bz}(t) ||L2 (4 ; 72)
< e2(f)~LHH(am)6-8/29=N(m)k* g —7[kl/4 o
for any £4 € VI, n > 1, 11,10 € {+,—}, h1,ha € {hap}, k,k1,ks € Z, and
t e [0,77.

The bounds (4.3.71)—(4.3.72) follow easily using just L? estimates unless
2lk2l < (1)9" and (t) > 1. In this case we decompose Py, U2 (t) = Ug,’;sz (t)+
Uﬁzjsz (t) and P, U%+2(t) = Ugj;’b (t) —I—Ufj;’b (t) as in (3.3.1)—(3.3.2), where
Jy is the largest integer satisfying 272 < (t)l/lo. The contributions of the
functions Uﬁf,fb (t) and Ufz;;kz (t) to (4.3.71) and (4.3.72) respectively can
be bounded easily, using again just L? estimates.

We now consider the main terms. Let J; denote the largest integer satisfying
271 < (27F1 4 (#))(t)%/* and decompose

Uf7SJ1 = Plé1 ((pSJl'PklUﬁlthl)’ Uik,>J1 = Plél (90>J1'Pk1 Uﬁlhh“)' (4'3'73)

Notice that in this case we decompose in the physical space the normalized solu-
tions Py, UXth1:11 not the profiles Py, V*1h141. The point is that the functions
U <, satisfy the L? bounds

IUT <, (D)2 S ex2M/3 () H@mo=T0/4, (4.3.74)

These bounds are stronger than (3.3.3) (notice the gain of (t)~7%/4) and follow

from Lemma 4.13. Indeed, if ¢ = 0 then we use (4.2.60) and the assumption
9k1 c [<t>_1_45, <t>—1+Y(q,n)5]7 S0

U7 < ()22 S (25 (1)) 77252 (1 + 25 (1) (1) /4 () O 0e,

The desired bounds (4.3.74) follow when ¢ = 0 since H(0,n — 1) + Y (0,n) <
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H(0,n) — 3; see (4.3.70). The proof is similar in the case ¢ > 1, using (4.2.59)
instead of (4.2.60).
Using (3.2.46), (4.3.74), and (3.3.7), we find that

2827 | PIUT <, U252, 1(8) e

SR TIPRUT ) (1)) 0| P VIR ()] (4.3.75)
< £2(p)~1HH @085 /1g=N(m)k" gk~ /29-3k"

Similarly, using (3.3.17) and (3.3.7) we have

+_ * b
2k k1 ||PkI[U1,§J17 U;bJ;,k2](t)||L2

+_ " .
5 2k2 k1 ||U1,§J1 (t)||L2 mln{||U;pJ27k2 (t)”Loo s 23k1/2 HU;l}szk’z (t)||L2}
< 2<t>71+H(q,n)5776/427N(n)k+2;{16_/202731(*"

~ €1
(4.3.76)
Finally, we claim that the remaining contributions are negligible,
ko/2—k1 * ha,t
2" ||PkI[U1,>J1a Ug?i;l%](t)”L? (4.3.77)

I— * N 26— +
+ 2k TR PO L USR (0)ne S g3t 227 NmRT,

To see this we use approximate finite speed of propagation arguments. Indeed,
we observe that

PuIUT < 5, U5, (2, 1)

= O/ P>Jq (Z)Plﬁ Uchl’bl (Z) CP<JT, (y)PkQVh%Lz (y)K(l' YT Z) dde,
R6
where the kernel is given by

K(y. )= [ emiblet 16 tm (o, )
RS
X k(0 + 1)@k —2,k1 +2] () Py —2,k5 421 (1) dOdn.

The point is that |K (v, 2')| is small when |y — 2’| > 271, Indeed, for any M > 1
we have

|K( / z')\ <o, 93k193k 11 4 M o
Yy, ~M <t> T 9—k1 )
using integration by parts either in 7 or in . Since |y — z| > 27t ~ (£)/4((t) +
27F1) in the support of the integral, it follows that the first expression in (4.3.77)
is negligible as claimed. The second expression can be bounded in the same way.
In view of (4.3.75)—(4.3.76), this completes the proof of (4.3.71)—(4.3.72).
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Case 4.2. Finally we prove the bounds (4.3.63)—(4.3.64) when

(q1,m1) = (q,n), (q2,m2) = (0,0),

4.3.78
ky = min{k, ki, ko), 28 > (1)~ 1HY(@n)s, ( )

We use the identities (4.3.5). The contributions of the linear commutators
R|V|720,0, L hap are bounded as claimed, due to the estimates (4.3.37)-
(4.3.38). It remains to prove that

2k2/2|| PI[Py, |V |72 L1 N, P, U2 (¢

M2
+ = (4.3.79)
S6%<t>71+H(q,n)576/227N(n)k 9—Ikl/4
and
+ — L
2% || Pl [Py, [V 2 LN, P, UY 2] (8) | 2 (43.80)

< 6%<t>71+H(q,n)675/227N(n)k+27'ym/4,

for any NV € QU. Using (4.3.14), (3.3.3), (3.3.11), and (3.3.13), these bounds
follow if 281 > (£)=1/2 or if 2F2 ¢ [(¢)=9", (£)%].

On the other hand, if 251 < (¢£)=1/2 and 2% € [(£)=%, (t)?'] then we would
like to use (4.3.16) and estimate as in (4.3.75)—(4.3.76). For this we replace first
Py, UM with UZ’EJQ and Py, U%*2 with U’é’jjkz at the expense of acceptable

errors, where .J; is the largest integer satisfying 272 < <t)1/10. Then we estimate,
using (3.2.46), (4.3.16), and (3.3.7),

2k2/2|| P I[Py, [V | 2Lo N, UL, 1(8)] 12
< 22 (1) 7192 | Py |V LN (1) 2| P VP2 (8) | =
< 6%27’(}1 <t>72+H(q,n)5+f(q,n)5+36/227N(n)k+ ok~ —rk™ 273k+ )

Similarly, using (3.3.17) and (3.3.7) we have

T — L
2% || PI[ Py, [V LN, ULS2 10 2

+_ .
S 25 7 P, LN (1) | g2 mind U, 1, ()2, 222N UE 4 (D)2}
< €§2—k1 <t>—2+H(q,n)a+e(q,n)5+5/22—N(n)k+251(/202—31#.

Since 27F1 ()1 < (t)"Y (@) (see (4.3.78)) and Y(q,n) > £(q,n) + 2, these
bounds suffice to prove (4.3.79)—(4.3.80). This completes the proof of the lemma.
O

We show now that the nonlinearities EPS 5 can be written as sums of bilinear
expressions involving only the good metric components ¢, null semilinear forms,
and acceptable errors.
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Lemma 4.25. If £L € V2 then, with S(f(f as in (4.3.53),
LP2y = -850 + 115, + RE,, (4.3.81)

where Hgﬁ are semilinear null forms of order (¢,n) and Rgﬁ are wave-disposable
remainders of order (q,m) (sums of semilinear cubic remainders of the first
two types as defined in (4.3.13) and wave commutator remainders as defined in
(4.3.33)).

Proof. Using (2.1.15) we write

L:P(ig = Z 051752{ — (1/2)6a£1h00613£2h00 + 8a£1h0j85£2h0j
Li+Lo=L

— (1/2)8a£1hjk85£2hjk
+ (1/4)0aL1(—hoo + djkhjk) s L2(—hoo + 5j'k/hj’k')} + 725"

for some wave commutator remainders 7;%1 of order (g,n). Using now (2.1.29)
and assuming £; € V1, (q1,n1) + (q2,n2) = (¢,n), we rewrite the expression
between the brackets as

— (1/2)8a(F5 + EF1)05(F*2 + E*2)
+ 0a(—R;jp“ + €ju1 Raw[*)0p(—R;p“>+ €jwr Rpw[?)
— (1/2)0a[R;Ri(F* — F*') — (€kim Rj+ €jim Ri) RV
+ €jpmEhgn RpRy95L] x O[R; R (FF2 — FX2)
— (€ Rj+ €jirmr Re)RyQEZ+ €y Egrnr Ry Ry 952, )]
+ 0o (TE1 — FE1)5(152 — FF2).

We replace also p~i with R()E[:i+R0Tﬁi+|V‘71£iE022+|V|71E22% and Qf@ with
Rowjﬁi + V|1 €tk RlﬁiEkZQ + V|1 Ejie REF,, according to the harmonic
gauge identities (4.3.4). The contributions of the error terms lead to either
semilinear cubic remainders of order (g, n) (of the first type described in (4.3.13))
or wave commutator remainders of order (q,n) (of the last type in (4.3.33)).
Then we regroup and expand the remaining terms, in the form

ALE 4 AFE L AR AFD | AP AR AFD | pw s Aw0 4 499 L AT (4.3.82)
where
AL = (1/2)(0aF ™ - 05F"® — RiRWOF" - R Ry05F*?),

ATE = _(1/2)(0uF% - 95F% — R;Rp0.F" - Ry Ryd5F°)

- (1/2)(85FL2 : aaEL1 - RijaﬁFLQ . RijaaEﬁl),
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Aglé) =Ckim RkRjaaFﬁl : RleRoafijSf-i- Ekim RkRjagF£2 . RleRoaawél,
ALY = —(1/2) €jpm RjRkOF"" - Ry Exgn Ry0395%,
—(1/2) €jpm Rij63F£2 "Ry Ckgn Rqaaﬁﬁlm
AL = —(1/2)(0aF" - 95F + RjRi0.F“" - RjR,03F*
— 2Rg R0, F*" - RyRy,05F"?),

Agﬁw = — Skl RjRoaaELI -Rkagwa— €jkl RjR085E£2 -Rkaawfl

— €him RiRjOoE"" - RiRjRoDpw’s2 — €ppm R R;O3FE? - RIR; RoDpawk?,

AL = (1/2) €jpm RjRkOE™ - Ry €pgn Rydp052,
+(1/2) €jpm RjRkIsF - Ry €pgn Ryda?EL,,
“e = RiOaws) - Ri0sws? — RjRyRiO4ws! - RjRoRidswi?
— (ROowE! - Ripdpwi® — RjRoRiOawE! - RjRoRymOpwi?)
— (1/2) €rimEjirm RIRjRoOaw’! - Ry Ry Rodsw’?
- (1/2) ejlmekl’m/ RleROaaw,%l . Rle/RoaﬁwLZ

ALY =€ kg RiR RoDawi - RpRi0p05%— €jrg RjRIR0Oaw)! - RiRin0p0i?

+ €jkq RleR()a@wff . Rleaaﬁq‘ng— €jkq RleRoaﬂwﬁf . RkRmaaﬁq‘:ll,

AZZ = Rquaaﬁﬁfn : RpRnaﬂﬁgfq - (1/2)Rquaa19ﬁ1n : RquaﬁﬂfnZn
— (1/2)RyR,0aV5Y, - R, R, 00952

pq>
AT 5 = 0aT - 95752 + RoR;0a 75" - RoR;95772 — o1t - 95 FF2
— 0o F51 - 95752 + RoR;0, 75 - RyR;05F? + RyR;0o F*' - RyR;Dpm"*
— RQRjaaTﬁl' Cjpq Rp35w§2 — RoRjagT£2' Cjpq Rpﬁaw,fl.

All the terms in Af; g , AEQE, Agg, Afg are clearly semilinear null forms (see

also (4.3.45)). Since 9 is divergence free (see (2.1.28)), the terms R,R,0,95%, -
Ry R,0p052 and Ry Rq0o 05}, - Ry Rn0p952 in Agg are also semilinear null forms.
The remaining term in Agg generates the terms S(f[f in (4.3.81).

The terms that contain Ry require a little more care. We notice first that if
a # 0 then Ry0, = R,0y; moreover, if & = 0 then we use the identities

Ro00G* = |V|7H{AGS + G[LN"]} = R0, GE + |V 1GILNT], (4.3.83)

for any G € {F, F,wp,, Omn, 7}. Thus we can express all the terms in Agg, Agg,

and A%Y as sums of semilinear null forms and semilinear cubic remainders (of
the first type in (4.3.13)).
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To deal with the remaining terms, we claim that
RARy9,GL" - RPRyd3G5? = R*R;0,G" - R°R;05G5> (4.3.84)

for any G1,G2 € {F, F,wp, Ymn, T}, o, 8 € {0,1,2,3}, and R* = R{*R3*R5®,
R = RllnRgz R?, where the identity holds up to sums of semilinear null forms
and semilinear cubic remainders (of the first two types in (4.3.13)). Indeed, if
a, 3 € {1,2,3} then this follows from (4.3.44) and the identities Ry0, = R,0p,
R;0, = R,0;, p € {a,B}. If @ =0 or § = 0 then (4.3.84) follows using first
(4.3.83), to extract the cubic remainders, and combining with (4.3.42)—(4.3.44).

We examine now all the terms in Agﬁﬂ and Ag%; as a consequence of (4.3.84)
and (4.3.45), they can all be written as sums of semilinear null forms and semi-
linear cubic remainders. B

Similarly, all the terms in A7 ;5 are sums of semilinear null forms, semilinear
cubic remainders, and wave commutator remainders of order (g,n). Indeed,
the main point is that 8“7":1' can be written as a sum of expressions of the
form R*|V|~'L'N and R*0,L"h, N € QU, h € {hap}, L € VI, L' e V] _,,
p € {0,1,2,3} (due to (4.3.5)). We replace also RoX RoY with Ry XR.Y, at
the expense of acceptable errors, in three of the terms in g;[g’ and use (4.3.83)
for the terms in the last line of ,Z;ﬂ if a=0o0r g =0. It follows that all terms

in ﬁ; 5 can be written as a sum of acceptable errors, and the lemma follows. [
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Chapter Five

Improved Energy Estimates
5.1 SETUP AND PRELIMINARY REDUCTIONS

In this chapter we prove the main energy estimates (2.1.50). More precisely:

Proposition 5.1. With the hypothesis in Proposition 2.3, for any t € [0, T] and
LeVi n<3, we have

< eo(t)H@m)d  (51.1)

~

1BV <) VIV 20 2 ()| vy + 1T (@) v

We notice that these bounds hold when ¢t = 0 due to the initial-data assump-
tions (1.2.5) (and, in fact, for all ¢ € [0,2] due to the stronger bounds (7.1.10)
proved in Chapter 7). Our main goal in this section is to prove these energy
estimates for all ¢ € [0, 7.

5.1.1 Energy Increments

To prove Proposition 5.1 we start by defining suitable energy functionals. We
consider the modified metric g"” := m” + gL, where g are as in (4.3.49),

and the modified wave operator ﬁg == g"0,0,. Suppose that A € {0,1} and
¢ € C([0,7T] : L?) is a real-valued solution of the equation

—0O56 + A(1 — hgo)p = N.

We define
E0@) = 5 [ {000 + 740,006+ N1 = ha)(0)*}
B@) = [ 0,300 ~ (/20500000 (5:1.2)
+ 8,770 00k + (M/2)0thoo (¢)?] da.
Since g%° = —1, we have
diem) =-B(¢)+ | ¢ Ndux. (5.1.3)
t RS
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Using (3.3.11), it is easy to see that if €7 is small enough then

E0(9) < | Vaidll72 <4&0(0),  &1(9) < [ Vaidllie + l9]72 < 461 (9).
(5.1.4)

This will form the basis of our energy estimates for both A and v, as we apply
these identities to Lhap (with A = 0) and Ly (with A = 1), with suitable
multipliers, and use (4.3.47)—(4.3.48).

The bulk terms B have the same regularity as the energy, and additional
“null structure”. Indeed, using the formulas (4.3.56), (2.1.29) (with H = h),
and (4.3.4) (notice that the commutator errors are trivial in this case), we have

9;5% (0v9)* — (1/2)0:57"0;$00 + 0; 57" 0,y

= (019)*0;ho;j + (1/2)0;¢0k 0% (hjk + 6;1hoo)

— 8490 $0; (hji, + Sjhoo) + ES5 0000

= (1/2) (9;6 - 0;¢ - OF + 0;¢ - Oxp - R; R0, F)

— Chim Op® - (050 - RjRi0:Qyy + 0:¢ - 0]

+ 5 (200) - OF +0;6- 0,0 OF — 4006 0> O — 36~ 046+ Ry Rudi )

+(1/2) €jpmErqn 056 - O - RyRyOi9mn + (0:0)? - Oy + B - 0adh - 5.
(5.1.5)

The coefficients of the last two terms in the last line above are of the form
R|V|7IN, for some N € QU (see (4.3.5) and Definition 4.17).

We claim now that the main terms in (5.1.5) can be expressed in terms
of semilinear null forms. Indeed, if ¢ is a wave unknown then we let U®* :=
(0r — tiAye) ¢ and rewrite

%/Rg (8;¢ - D;- OF + j¢p - O - RjRiOF) dx
5.1.6
= Z Ip,F”ﬁ“ ) [UF7“ , U¢,L2’ qu,b] ( )
L1yt €{£} e
where
1 . P
LIRGH) = oz [ pen)FE—nGmA©dean,  (5.17)
and
f ol R E-n ny(E-n ¢
7 M) = e uey s — e\ e )| (018
Pzl 16[“2\n| €] “2<|s—n| Inl>(|€—nl M (5.1.8)

The other terms in the right-hand side of (5.1.5) can be written in a similar
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way, as sums of integrals of the form Z c.ua UG UPt2 U], where G €

{F, Qm, Pmn}, with symbols P
F,wa 1 n 5_77 n
—192 7_2 L
PRGN = g2+ app g~ 2ty (5.19)
E—n ¢ E-=n n\/&-n & o
72 R = . _° - - .2
T m{*”(M—m MO(K—M KQL
wa 1 (5_77)1 Nk 5_77 5
mawa (e ) = m LA ), 5.1.10
le L2,L (5 77) 8L2 €kl |§_"7| |77| <L|€—77| |§| Ll) ( )

Dn, WA o 1 . (5_"7) i (5—77) fi
i €m = —ggua( Sm e ) (S Gt ) G110

The calculation is similar if ¢ is a Klein-Gordon variable. In this case we
define U%* := (8; — tilyy) ¢. We add up the term Ozhgop?/2 from (5.1.2), and
rewrite the main terms in the right-hand side of (5.1.5) as sums of integrals
of the form Ichl,’zig’L[UG’“,U¢*L2,U¢’L], G € {F,F,Qn,%mn}, t1,t2,0 € {+,—}.

The resulting symbols are

1 E-1 §— £-n £
wleom el w) ez @) e

k
pfz LZ L(£7 ) .

n-&—1 9 E—n 1
— zalil2

1
F.k
Ve LQg, (5 77) 76 [2 + L2

(&) € —n <n>
— 2011 il . i + Lo <§7777 7)( &= i)] 11
€ =nl (&) & =nl )/ \[§— 77| &/
Qg _1 E—nhm( &=n &
Pl (6m) = gt2 Epim €] <n>( TG 1), (5.1.14)

T B SN i Y RS ') WY
Pt 6o o= —ggua( S e ) (S ey ) G119

5.1.2 The Main Spacetime Bounds
We would like now to use the calculations in the previous subsection to start
the proof of Proposition 5.1. Assume £ € V? and define

Pp, = (WMNMV[T2vL,, P =

L= (V)N (5.1.16)
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We define also the associated multipliers pPr (&) = (f}N(”)|§|_1/2|§|;1 and
P& = (YN ¢ € R3. We first let ¢ := P?,(Lh), h € {has}, and write

[€0(Pia(Lh) ()] S [€0(Piq (£R))(0)] + /0 B(Py,(Lh))(s)ds

0s(Pyp, (Lh))(s) - Og(Ph, (Lh))(s)ds

R3

)

for any t € [0,7], as a consequence of (5.1.3). Since |E(PL,(Lh))(s)| =~
| P2, (U (s))||22 for any s € [0,¢] (due to (5.1.4)), to prove the first inequality
in (5.1.1) it suffices to show that

’/B «(£R)) dS‘Jr‘//Rs m)e) (5.1.17)

X D'g( P2 .(Lh))(s) ds‘ < B(p)2H@mi=2,

for any t € [0,T]. Similarly, to prove the second inequality in (5.1.1) it suffices
to show that

| /0 B(PL (L6)(s) ds| + | /0 t /R P (0:(Lw))(s)

x { = B (P, (£0))(s) + (1 — hoo) PRy (£u)(5) ds| < 1),
(5.1.18)
We decompose the time integrals into dyadic pieces. More precisely, given

t € [0,T], we fix a suitable decomposition of the function 1y, i.e., we fix
functions qg, . ..,qr+1 : R = [0,1], |L — logy(2 + t)| < 2, with the properties

suppqo € [0,2],  suppgqr41 C [t — 2,1,

supp ¢m C [2™71, 2™ for m € {1,..., L},

L+1

Z am(8) = Lpg(s), (5.1.19)

¢
qm € C'(R) and/ lg.,(s)|ds < 1 for m € {1,...,L}.
0

We are now ready to state our main estimates on spacetime contributions.

Proposition 5.2. Assume that t € [0,T], t,t1,t2 € {+,—}, hyh1,ha € {has},
LeVi LieVi,ie{l,2}, Ly +Ly < L. For any bounded symbol q let I,
denote the associated operator as in (3.2.43). Let J,, denote the supports of the
functions q,, defined above. Then:

(1) if Lo # L and 5% is a symbol of the form q%*(0,n)mo(0)my (n)ma(0+

L1t L1t
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n), where G € {F, F,wy, 9mn}, q50% are as in (4.3.59), and mg, my, ma € Mo,
h qL1L2
then

[ PR g [V 02 0wy, )

. (5.1.20)
xULM(E, 5) dEds| < e (amom=2ym,
(2) if 0y € MUY then
[T Rt 0Et D
R (5.1.21)
x P, Uk (&, 5) déds| S €327
and
[ [ an@F U PO )
Tm JR? (5.1.22)
X Pp U (€, s) déds| S 7270,
(3) if me M and 9 € {Un}, then
£1 44 L2 4o
[ an @ PP F I 07 o
R (5.1.23)
X ULh,L(g,S) dfds 5 E§22H(q,n)5m—2’ym;
(4) if p,v €{0,1,2,3} and g& are as in (4.3.49), then
[ [ P 0.0,k - 0,0, (P L)} €9
R (5.1.24)
X PgaUﬁh’L(f, 8) dfds S 6:1522H(q,n)5m—2’ym;
(5) if m € M then
[ PR F e vy o
R? (5.1.25)

X ﬁh\,b(é" S) dé‘ds S 6i{)22H(q,n)6m—2'}/771;
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(6) if m € M and ny < n then

[ [ an PP F UV U2 @puese e,
T JR3 (5.1.26)

x ULVL(E, 5) dEds| < e3o2H (@m)om

(7) if p,v € {0,1,2,3} and g& are as in (4.3.49), then

[ [ st PP o220 + hoc

— [§410u0, (Pl LY) + hoo Py L1} (&, 8) PR USH (€, 5) déds| S 22 (@mom
(5.1.27)

(8) if pi;5 . s of the form ple (€, mymo(€ — myma(n)ma(§), where p1Y,
are as in (5.1.12)—(5.1.15), G € {F, F, Uy, Imn}, and mo, m1,ma € My, then

[ a0 € - no) T (0,5)
R3 xR3 (5.1.28)

x P/:LQ/UYEZ}’L(& s)dédnds| S gi’QQH(Q,n)ém.

Proof of Proposition 5.1. It is easy to see that the bounds (5.1.17)—(5.1.18) fol-
low from Proposition 5.2. Indeed, we start from the identity —O(Lhap) = ﬁN(fB,
and use (4.3.47). Thus

~O(PloLhag) = Y §210,0,(P,Lhap)
n,ved{0,1,2,3}
= Y (PRI 0u0u(Chap)] — 41040 (Pl Lhag)}  (5.129)
n,ve{0,1,2,3}

+ Pn Qwa(h ) + Pgasibl + Pu?a‘if,(f + Pgalcggﬂ + PSU,R

Therefore the contribution of the second term in the left-hand side of (5.1.17)
can be bounded as claimed, as a consequence of the estimates (5.1.20)—(5.1.25)
and the definitions.

To estimate the contribution of the first term in the left-hand side of (5.1.17)
we examine the formulas (5.1.5)—(5.1.11). The contribution of the last two terms
in (5.1.5) is bounded as claimed, due to the L* bounds in (4.3.15). Moreover, we
claim that all the other terms are null forms that can be estimated using (5.1.22).

Indeed, the symbols p?l"";;ﬁa and p} ””;7“’“ are clearly null in the variables & — n
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and 7, due to (4.3.42). Moreover, by examining (5.1.8)—(5.1.9) we can write

16pfwe, (&n) = <L1 é : Z| — L2 |Z|) <L1 é : Z| - L%)

’ He—nl nl |77|H He—nl nl If\‘

and

pfﬁ%%(f 77) (ng;n _ L2l) . (ng;n _ L£>

1€ — 7 In| |£—77\ €]
1 &—n L
+alE= - |77|H i

thus pfz’ff;b and erquzaL are sums of acceptable null symbols in the variables £ —n
and n multiplied by symbols of £, as desired.

The estimates (5.1.18) follow in a similar way, using (5.1.26)—(5.1.27) to
bound the contributions of the nonlinearities, and using (5.1.28) for the space-

time integral of B(P}, (Ly))(s). O

5.1.3 Poincaré Normal Forms

We examine now the bounds in Proposition 5.2, and notice that all the space-
time integrals in the left-hand sides do not have derivative loss. In most cases,
however, the time decay we have is not enough to allow direct estimates. In such
a situation we would like to integrate by parts in time (the method of normal
forms) to prove the desired spacetime estimates.

More precisely, assume that we are given a trilinear form

~

Gulfog. = [ mie—nn) (e~ mamh(e) dedn (5.1.30)
R3 xR3
for a suitable multiplier m, and consider its associated quadratic phase

q)crpl/(ga 77) = AJ(&) - A,u(g - 77) - AV(T})»

where o, u, v € {(wa, +), (wa, —), (kg, +), (kg, —)} as in (2.1.40). Define

mE—n,m) 7 SR
Huwlf, g, h] = - h(§) dédn. 1.
Fon= [ G mamh© et G131
Using integration by parts in time, for m € {1,..., L} we have
fz‘/ Gm(8)Gm[f(5), 9(s), h(s)]ds = H' + H* + H® + H*, (5.1.32)
R
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where the functions g, are defined as in (5.1.19), and
H' = [ d(s) 7). 9(5). (s,

" = / G (5)Hen [ (05 + 10,) £(5), 9(5), B(5)]ds,
R (5.1.33)

" — / Gon () Hunl£ (), (05 + i) (). h(s)ds,
R

= / 4o () Hun [ (5), 9(5), (D + i) B(s)]ds.
R

In other words, we can estimate integrals like those in the left-hand side
of (5.1.32) in terms of integrals such as those in (5.1.33). The point is to use
the identities (2.1.38) to gain time integrability. The main issue when applying
(5.1.32) is the presence of time-resonances, which are frequencies (£, n) for which
@5, (€,m) = 0, and which lead to significant difficulties in estimating the terms
Hwmlf,g,h] in (5.1.31). These resonances are stronger in the case of trilinear wave
interactions, where parallel frequencies (£,7) lead to resonances; in the case of
mixed interactions involving two Klein-Gordon fields and one wave component,
resonances only occur when the frequency of the wave component vanishes (see
Lemmas 3.6 and 3.4).

In some cases we can use simple estimates to control trilinear expressions,
such as

|Gen[Proy F, Py G, PeHJ| S | F 7m0 - ey oo Hl o | Py Fll 2on | Py Gl oz | PoH || o
(5.1.34)

provided that k, k1, ks € Z, p,p1,p2 € [1,00], 1/p1 + 1/p2 +1/p = 1, where

Prkrks (0:1) = Ppr—2.k42] (1 + 0) ks 2,k 42] () Pk —2.ko 421 () (5.1.35)
These bounds follow from Lemma 3.2 (i). We also have pure L? bounds

|gm[Pk1F7 szvakH”

. (5.1.36)
< 28Rk} 2 oy |l oo | Py Fll o2 (| Pro Gl 2 || PiH | 2

Trilinear expressions like H,, are often estimated using Lemmas 3.6 and 3.4.

5.1.4 Paralinearization of the Reduced Wave Operator

The use of normal forms as in (5.1.32) to bound spacetime integrals leads to
loss of derivative coming from the quasilinear nature of the nonlinearities. To
remove this we use paradifferential calculus, as summarized in section (3.1.3).
In this subsection we prove a proposition about paralinearization of our wave
and Klein-Gordon operators.
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Recall the modified metric g := m*” + gL', where g’ are as in (4.3.49),

and the modified wave operator Iig := g"”9,0,. Notice that g°° = —1. We first
define the main symbols

Dwa = (§Oj<-j)2 + ﬁjijCka Eu)a = Dwa - gﬂjCja Owa ‘= V Dwa + §0j<j7
(5.1.37)
and the main symbols for the Klein-Gordon components,

Dkg = (gﬂjCj)Q +1+ gjijCIw Ekg = Dkg - AgﬂjCja Okg = V/ Dkg + gﬂjCj~
(5.1.38)
These definitions are related to the paradifferential identities in Proposition 5.3.
Using the formulas (4.3.56) we can extract the linear and higher order com-
ponents of the symbols ¥, and ¥j,. Indeed, we have

Duwa = CI* = hool¢|* — hjrCGk + [¢)* D22,

where D22 is a quadratic symbol of order 0. Thus, in view of Lemma 4.4,

Z’wa = |C|(1 + Eiua + 21211121)?
SL = —(1/2)[hoo + 2h0; GG + hjr&;Grl, (5.1.39)
152l + 19552l S <1(0)* 2,
where CAJ = (;/|¢|]. Similarly, we have the decomposition of the Klein-Gordon
symbol g,
Skg = (C) (1 + T4, + E,if),

< - GGk
Sk, = —(1/2) [hoow + 200, + har 3 . (5.1.40)
> > _
155 g + 1025 llege < €26 2,
The main result of this subsection is the following:

Proposition 5.3. For £ € V4, (¢,n) < (3,3), we define the “quasilinear vari-
ables”

UFhes .= (0, —iT,,,) (Lhag), UV = (0 —iTy,,) (LY). (5.1.41)
(i) Then, for any t € [0,T], k € Z, and f € {Lhaop, L1},

1P = UT) (1)l 22 S e min{1, 28O} 0(0) =131 - || Pyg 9 U7 (1) 2.
(5.1.42)
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(i) Moreover, we have

(at + Z’TE,A,O,)Z/{f = *~Hya,ual/f + Hwa[qu fO?” f € {Ehcxﬁ}v

5.1.43
(0 + iTs,, ) U = (=3 0,0, + V) f + T [UT],  for f € {Ly}, (5.1.43)

where the remainder terms IL.[UY] satisfy, for x € {wa, kg},

M= Y g WU

h&{hap},t1,02€{+,—}

h,*
L1tz

17~ {7, (8, m)pry (0) iy (M)} 21 S min{1, 2%} (5.1.45)

Here m are multipliers in M satisfying the additional bounds

for any ki,ks € Z, and the cubic remainders satisfy

f 2/1\—5/46k/20—N(n)k™* .
wa L2 5 s 1ly fe% )
| PkCoaU ()] 12 S e1(t) 281=9 bi(g,mn;t) for f € {Lhap}
IPLCg[U ()| 2 S €3 (1) =242 N by (gomst)  for [ € {Ly},
(5.1.46)

where by (g, n;t) are the frequency envelope coefficients defined in (4.3.20).
(i1i) As a consequence, if Y'(0) =Y'(1) =2 and Y'(2) = Y'(3) = 35, then

|9 +iTs,,) Pid“ton(t)|] o S er (67128207 NOE by (g nst), (5.1.47)

|| (at + iTEwa)Pkuﬁhag (t)||L2 5 5%<t>71+H(q,n)§+Y/(n)§2k/2271’\7(n)k++7k+’
(5.1.48)

(90 +iTs,,) PUL ()] 2 S 1) 27N b (gumit). (5.1.49)

Proof. The bounds (5.3)—(5.1.49) illustrate the main gains one can expect by
using quasilinear profiles instead of linear profiles: there are no derivative losses
in (5.1.47) and (5.1.49), and a smaller loss in terms of time decay when n <
1 in (5.1.48), compared to the bounds on (9 + iAq)PU e = £N£ﬁ and
(0 + iMoo PLUSY = LNY.

(i) Using (5.1.39) we have

Owa = Ywa + 2@«(;1'1 j = |C| + |C|(211ua + Eig + 25(;1 j)'

The bounds (5.1.42) follow using (3.1.54) and (3.3.11) when f € {Lhys}. The
proof is similar when f € {£t} using (5.1.40) instead of (5.1.39).
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(ii) We compute, using the definitions,

(O +1Tx,,) (0r —iT,,,) f=[0:0: +iT5,, 000t + T5puowa |

. 5.1.50
- ZTathaf + (TEwaTawa - TEwaawa) f; ( )

and, recalling that g% = —1,

—E””au&,f [8158,5 — 2T g9 ¢, 8t ]kC Ck]f + E]_ + EQ, (5151)

— 2% . . _
Ey(§) = % g [gj ;m XO(:§+Z) —m}gx(f n)8: f(n)dn,

-1 (& +m) (e +m) (1€ =] N
Es —
In view of the definitions (5.1.37), we have X, —0we = —2ng<j and Yo Owa =

¢7%¢;¢k. Thus the main terms in (5.1.50)-(5.1.51) are the same, and the iden-
tities in the first line of (5.1.43) follow easily by extracting the quadratic terms
(which do not have derivative loss and can be written as claimed in (5.1.44)).
The cubic and higher order remainders can be bounded as claimed in (5.1.46),
using the bounds in Lemma 4.4.

The analysis of the Klein-Gordon terms is similar, using the identities 3, —
Okg = —2G%¢; and Siy - okg = 1+ ¢, see (5.1.38).

We remark that we could obtain more information on the remainder terms,
which consist mostly of null quadratic terms and cubic terms, but this is not
necessary for our purpose.

(iii) In view of (2.1.9) and the definitions (4.3.49) we have

— §" 0,0, Lhap = (07 — A)Lhag — §510,0,Lhag

= L(470u00has) = 551040, Lhas + L{(1 = ¢%0) T KGas — F2i (9, 09)]}-
(5.1.52)

To prove the estimate (5.1.47) we use the identity in the first line of (5.1.43).
Notice that the expression (1 — ¢2%)71[KGns — aﬂ *(g,dg)] in the right-hand
side or (5.1.52) is a sum of terms in QUy; see (4.3.12). The contribution of
these terms is therefore bounded as claimed, due to (4.3.23). The cubic terms
C[U*"5] also satisfy acceptable estimates, due to (5.1.46). Therefore it remains
to prove that

| PeT[U UEh2) (1|2 S e (8) 128227 N by (g mse),

, (5.1.53)
IPLT£1G, Do Loha](1)]| 12 S &3 (1) ™1 2R/ 29 NmAT g0k

for any hi,hy € {hag}, t1,02 € {+,—}, v, 0,8 € {0,1,2,3}, L1 € VI, Ly €
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V& (q1,n1) + (q2,m2) < (¢,n), and ng < n.

The proofs of the bounds (5.1.53) are similar to some of the proofs in section
4.3, such as the proofs of (4.3.24) and (4.3.26). Indeed, for the bounds in
the first line, we decompose the input functions dyadically in frequency, then
use L2 x L™ estimates for the Low x High — High interactions and for the
High x High — Low interactions when k& > 0; the remaining High x High — Low
interactions when k < 0 can be bounded using (4.1.5) and (4.1.7). The proof of
the bounds in the second line of (5.1.53) is similar (compare with (4.3.26)).

For n > 2, the estimates (5.1.48) follow from the formulas (5.1.43), (5.1.52),
and the proofs of the L? estimates in section 4.2 such as (4.2.9), (4.2.19)—(4.2.20),
and (4.2.46). For n € {0,1} the estimates (5.1.48) follow from the improved
estimates in Lemma 4.14 and cubic estimates such as (4.2.46). If n = 1 the
term L£(91"0,0,hap) — 91" 0,0, Lhap in (5.1.52) can be estimated using the
bounds (4.2.69) when the undifferentiated factor carries the vector-field and its
frequency is small.

The estimates (5.1.49) are similar. We start from the identities

(=g 0,0, + 1)Ly = (07 — A+ 1)Ly — §510,0, Ly
= ﬁ(ggqauau¢) - ﬁgqauav&/f - ﬁ{(l - 9%01)71902011#}7

which follow from (2.1.16). Then we use the identities in the second line of
(5.1.43), and notice that all the resulting terms that need to be estimated are
quadratic or higher order, and do not lose derivatives. The desired bounds are
similar to some of the bounds we proved in section 4.3, such as (4.3.27) and
(4.3.25), using also the inequalities (5.1.45) when £ = Id to compensate for the
lower regularity of U" compared to UY. O

5.2 PURE WAVE INTERACTIONS

In this section we consider Wavex Wavex Wave interactions, and prove the
bounds (5.1.20)-(5.1.24) in Proposition 5.2.

5.2.1 Null Interactions

We start with a lemma concerning null interactions:
Lemma 5.4. With the assumptions of Proposition 5.2, we have

Z 2N(n)k+—k/2(2zv(n)kl+—k1/2+2N(n)k;—k2/2+2N(n)k+—k/2)
k.k1,k2€Z

X

/ qm(s)gmug [PklU£1h1,L1 (S),Pk2U£2h2’L2 (S),PkULh’L(S)] ds‘ S 8:%2—6m
J?’Tl
(5.2.1)
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for any m € {0,...,L + 1}, where n,,,, € M™ s a null symbol and the
operators Gy, . are defined as in (5.1.30).
Moreover, if q,,,, s a double-null symbol of the form

Qurio (0,1) = (110:/10] = tomi/n[)(1105/10] = com; /In)ma (6,m), (5.2.2)

where 1,5 € {1,2,3}, m1 € M, and if no < n then we also have

Z 22N(n)k+—k+k2—k1 227(m+k*)‘ / qm(s)
Kok k€2 Im

X Garyuy [P US4 (5), P, U200 (s), PLUE (s)] ds| 5 a2 oo,
(5.2.3)

It is easy to see that this lemma gives four of the bounds in Proposition 5.2:
Corollary 5.5. The estimates (5.1.20), (5.1.21), (5.1.22), and (5.1.24) hold.

Proof of Corollary 5.5. The bounds (5.1.21) and (5.1.22) follow from (5.2.1).
Notice also that all the symbols in (4.3.59), thus all the symbols ¢/>"’% in (1) of

L1tz

Proposition 5.2, are double-null, so the bounds (5.1.20) follow from (5.2.3).
To prove (5.1.24) we calculate, as in (4.3.57)—(4.3.58),
§§”18M8,,H = _[5jk + Rij]F . 8j8kH
— {2RJR0E . 8j00H + (5Jk — RJRk)E 8J8kH}
+ {2 €jmn Bmwn -ajaoH + (ejln Ri+ €kin Rj)RlRown . ajakH}
— €jpmEhgn RpRyOmn - ;00 H — 2R;Ro7 - 0;00H + > G- 0,0,H,
(k,v)#(0,0)

where H € {Lho, P, Lhs}. The quadratic coefficients é’;l; are linear combina-
tions of expressions of the form R*|V|~!(G>10,h), where R* = R{* R3*> R§® and
G>1 are as in Definition 4.17. Therefore, as in Proposition 4.22, we have

P, (941 0,0, Lho] — §410,0, (Plr, Lha) = > >
Ge{F,F,wp,Omn} t1,L26{+,—}

{Phalye e VTS [VIUER 2] — Lo [V T US, P, VU]
— Z{P;La [RjROT . 8]‘80[:}12} — RjRQT . 8j80(P3a£h2)}

+ Y APLIGY, - 0,0,Lhs) — G- 9,0, (P, Lha)},
(k,v)#(0,0)
(5.2.4)
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where the null multipliers q%;*® are defined in (4.3.59). We notice that

L1tz

Pl T e IV U0, [VUER43] — Lo o [9]71US 4, PR, VUSR]

wa q

= Prolye UG, U2 4 [ oo [US, Py, U],

Moy

(5.2.5)
where, for G € {F, F,w,,%mn},
wa wa + 9
b 00 s= a0, {ip<alo /) TEeCE = ia )
+a-all/laD o (5.26)

wa /]7
W2 00m) = a5 0.)esa(01/ )

These are null multipliers as in (2) of Proposition 5.2. The resulting integrals
are similar to the integrals (5.1.21)—(5.1.22) and can be bounded using (5.2.1).

We claim now that the remaining terms in (5.2.4) are cubic-type acceptable
errors satisfying

| PialH - 0,0, Lha](s) — H(s) - 8,0, (PyaLha2)(s)| 1, Seils)™ (5.2.7)
for (11,v) # (0,0) and s € [0, T], where H is either R;Ror or G%. This would
clearly suffice to complete the proof of (5.1.24). To prove the bounds (5.2.7) we
notice that |V|H is of the form R*|V|~!\/, for some N € QU (see (4.3.12) and
use (4.3.5)). We decompose as in (5.2.6). For (5.2.7) it suffices to prove that

|PEIVI N, UEP1(8)] o+ TN P U] (8)] | S 36~
(5.2.8)
for any 13 € {+,—} and bilinear operators I as in (3.2.43). The bound on the
first term follows from the first inequality in (4.3.24), while the second term can
be bounded easily using (4.3.28) and the assumption || P7, UL (s)|| g2 < e1(s)?.

This completes the proof of (5.2.7) and (5.1.24). O

)]

Proof of Lemma 5.4. We remark first that the two estimates are somewhat simi-
lar, except that the bounds (5.2.3) involve stronger null multipliers (double-null),
but we have to deal with an additional anti-derivative, which causes significant
difficulties at low frequencies.

The contributions of very small frequencies can sometimes be bounded using

EBSCChost - printed on 2/13/2023 9:18 PMvia . All use subject to https://ww.ebsco.conlterns-of -use



EBSCOhost -

IMPROVED ENERGY ESTIMATES 161

just L? norms,

ktbothtky
2

(G [P U4 (), P, U2 (), PUS (5)]| < 282

I k
X 273 || Py US (5) || 2 - 27 F || Py UR22 (s) | 12 - 27 3 || BLU S (s) | 2 (

5.2.9)
< 5?22E+EQ*7(/€;+7€2_+k7)Q*N(ﬂl)kT*N(nz)k;*N(")kJr

% <5>[H(£1)+H(£2)+H(£)]6—3fy,

provided that ||m| e~ < 1, where k := max{k, k1, k2}, k := min{k, k1, ko }, and
H(L) = H(q,n), H(L;) = H(qi,ns), i € {1,2}. These bounds suffice to prove
the desired conclusions if 2™ < 1, so in the analysis below we may assume that
m > 52

Step 1. We consider first the contribution of the triplets (k, k1, k2) for which
k < k+8. In this case 2F2—F1 < 1 and it suffices to focus on the harder estimates
(5.2.1). In fact, we will prove the stronger bounds, for any k, k1, ke € Z satisfying
kE<k+S8,

2N(n)k+7k/2(2N(n)kf7k1/2 _|_2N(n)k;rfk2/2 + 2N(n)k+fk/2)

< [ a0, [P UE 0 6), PO (5), U (5)] ds| - (5:2.10)
JIm

< E§2—6m2—5(|k|+\k1|+\k2|)'

Without loss of generality, in proving these bounds we may assume that n; < ns.
Case 1.1. Assume first that t; = —io. In this case, we notice that

1F {000y - Prkars Ml S 2875, (5.2.11)

where @ri,k, is as in (5.1.35), since the multiplier n,,,, contains a small factor
of the form 6/|0| +n/|n|. If k < —§'m or if k > —§'m and k > §'m, then we
can just use (5.1.34) with (p1,p2,p) = (00,2,2) (recall that ny < ns), and the
estimates (3.3.3) and (3.3.11). On the other hand, if k, k1, ko € [—d'm, 'm] then
we may assume m < L (the case m = L + 1 is easier because |J,,,| < 1) and
decompose the multiplier into resonant and non-resonant contributions. More
precisely, let gqg = —8'm and

Ny = n;m + n?lrwv “fm 0,m) = ¥<qo (B (0,m)00,.,(0,m), (5.2.12)

where E,,,, is defined as in (3.1.23).

We bound the contributions of the resonant parts ny, ,, using the null struc-
ture, while for the non-resonant parts n]’’, we use normal forms (the identity
(5.1.32)). It follows from (3.3.3), (3.3.11), (4.2.3) (or (4.3.23) if I > 0), and
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(4.2.5) (recalling also (2.1.38)) that

|PUM ()22 S ex(t)”/22/227 27 NI,

Kh < §'/2=10l" o—N(n'+1)I* 420+ _ . - 1—s (5213)
|1PU () ||pee S e1(t) 2 2 min{1,2" (t)}

and

PO + i e ) U (1) || 12 < &1 (£)0 /2712120 N(OITHT 1in (1, 917 (1),

P8 + i e ) U (1) || oo < &1 (£)45 2207 2 N HDITHET i 17 917 (1)1,
(5.2.14)

for any l € Z, h € {has}, t € [0,T], and K € sz, where the inequalities in the
first lines hold for all n’ < 3, while the inequalities in the second lines only hold
for n’ < 2. Thus, using (3.1.30) and (5.2.13), and recalling the null structure of
the symbols n,,,,, we have

Gur [Pkl Uﬁ1h1,L1 (5)7 Pk2 ULth,Lz (8)7 PkUﬁh,L(S)] ‘

yeg
< 20102max(k1,k2)7kHPkl Ut ()| Lo HPkQUbhz ()| e ||PkU£h($)HL2
< 5?2‘10 226/"7‘<5>71+26/2*N(n)k++k/22fN(n)k2++k2/2
(5.2.15)

assuming that 270'™ < 9k < 9k1 v 2k2 < 98" where (p1,p2) = (00,2). This
suffices to estimate the resonant contributions as in (5.2.10).
For the non-resonant symbols n}’’, , we can use the normal form formulas

(5.1.32)-(5.1.33) and the bounds (3.1.33). Using (5.2.13)—(5.2.14) and estimating
as in (5.2.15) we have

‘Hn?ﬂz [Pkl UL1h1,L1 (8)7 Pkg Uﬁzhz,bz (S), PkULh,L(S)] ‘
S_, 61152—3q02—0.9m7
‘Hﬁ?lﬁ,z [Pkl U£1h1,L1 (8)7 Pk:g ULth,Lz (8)7 Pk(as 4 iAwa’L)Uﬁh,L(S)] ‘

(5.2.16)
+ ]Hny{b [Prs (05 4 i8 o, US4 (), P, UR22002 (5), BLUSM ()] ‘

[, [P US04 (), Py (05 + i 1) U2 5), U (5)]|

39—3q0o—1.9m
S 277102 ,

for any s € J,, (recall that 2/¥| 4 2k1l 4 glk2| < 2‘5/7”). This completes the proof
of (5.2.10).

Case 1.2. Assume now that ¢y = 5. If k > min{k;,ko} — 10 then 2% ~
2k~ 2F2 the bounds (5.2.11) still hold, and the same proof as before gives the
desired bounds (5.2.10).
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On the other hand, if ¥ < min{ky, ko} — 10 then we have no resonant contri-
butions, i.e., E,,,,(0,1m) = 1 in the support of the integral. So we can integrate
by parts directly using (5.1.32). If 28 < 27m/4 or if 251 > 28™ then we use only
the L? bounds in the first lines of (5.2.13) and (5.2.14), and estimate as in (5.2.9)
using (3.1.31). On the other hand, if —m/4 < k < min{k1, k2} — 10 < ¢’m then
we can estimate the resulting terms in (5.1.33) as in (5.2.16), using L? x L? x L>°
bounds and (5.2.13)—(5.2.14). The desired bounds (5.2.10) follow.

Step 2. We complete now the proof of (5.2.1) by analyzing the contribution
of the triplets (k, k1, ko) for which k& > k + 8. By symmetry, we may assume
that n; < no.

Case 2.1. We assume first that n; > 1. In this case 1 < n; < ny < 2,
ny < n, and we can still prove the strong bounds (5.2.10). Indeed, if k <
—28'm or if £ > —28m and k > 20'm, then we can use (5.1.34) (with the
lowest frequency placed in L°°) and the estimates (5.2.13). On the other hand,
if k,ki1,ko € [-26'm,26'm] then we still decompose n,,,, = nj ,, + 1}, as
in (5.2.12), with g9 = —8'm, and apply (3.1.30) and (3.1.33), together with
(5.2.13)—(5.2.14). The desired bounds follow easily by estimating the resonant
and the non-resonant contributions as in (5.2.15)—(5.2.16).

Case 2.2. Assume now that n; = 0, ny > 1, and consider the contribution
of the triplets (k, k1, ko) for which k1 > ko. We can still prove the strong bounds
(5.2.10) because there is no derivative loss in this case. If ny < 2 then we can
still estimate as in (5.2.15)—(5.2.16), using L? x L? x L> bounds with the lowest
frequency placed in L*°. On the other hand, if ny = 3 (thus n = 3), then
(5.2.10) follows from (5.2.9) if k2 < —3m/4; if ka > —3m/4 then we decompose
the symbol as in (5.2.12) and estimate as in (5.2.15)—(5.2.16), with the terms
corresponding to the frequency =~ 2%t always placed in L.

Case 2.3. Finally, assume that n; = 0 and consider the contribution of the
triplets (k, k1, ko) for which k1 < k. The main issue here is the loss of derivative
in normal form arguments. Let

bl i={ [ ntams )P 1l @l s} G20

m

where the frequency envelope coefficients by (g, n;s) are defined in (4.3.20) (if
m =0 or m =L+ 1 then we do not include the term |g/,(s)| in the definition
(5.2.17)). We will show that

2N(n)k+7k/2(2N(n)kffk1/2 + 2N(n)k+7k/2)
x’/ G (8)Gn, ., [Pr, U0 (5), Pry U2 (), PLUS*(s)] ds‘ (5.2.18)
I
S22l by (g,m))?,

provided that |k — k2| < 4 and £ € VI, (¢,n) < (3,3). This is slightly weaker
than the bounds (5.2.10) (since by m(g,n) = €127 due to (4.3.20)), but still
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suffices to complete the proof of (5.2.1) due to the square summability of the
coefficients by (g, n) (see (4.3.21)).

To prove (5.2.18) we notice that we can still use the normal form argument
as in Case 2.1 if 28 < 27/10 or to control the contribution of the factor
Nk —k1/2 i) the left-hand side. If 2 > 2m/10 and |ky| > §'m then we can
use just L x L? x L? estimates (with the L? bounds on the two high frequency
terms coming from (4.3.22)) to prove (5.2.18).

In the remaining case when |ki1| < ¢’m the resonant contribution can be
estimated as in (5.2.15). The bound on the non-resonant contribution requires
an additional idea (the use of paradifferential calculus) to avoid the derivative
loss in the application of the Poincaré normal form; the desired bounds follow
from Lemma 5.7 below.

Step 3. We turn now to the proof of (5.2.3). In view of (5.2.1) it suffices
to prove that

2~k

/ Gn(5)Ta,, ., [P U510 (5), Py U521 (s), U (s)] dis|
']'VTL

< Ei,2—2N(n)k+22H(L)6m2—2~,m2—~/(|k|+\l~cl+m|)/47

(5.2.19)

for any triplet (k,k;,ks) for which k; = k& < k — 10. Using first (5.2.9), the
left-hand side of (5.2.19) is bounded by

C€?2k1+k2—ka —2vk~ 2—8kf‘2—N(n)k+—N(n2)k+ om+8m(H (L1)+H(L2)+H(L))~3vym_

(5.2.20)
Since N(nz2) > N(n) 4 10, this implies (5.2.19) unless

2k1+m2727(k1+m)_ 278k+2(175)k_ 2 2§m(H(£)7H(E1)7H(£2)) . (5221)

It remains to prove (5.2.19) for triplets (k, k1, k2) for which (5.2.21) holds. In
particular, we may assume that m > §~2 in the analysis below.

Case 3.1. Assume first that ny < n. Thus H(L) — H(Ly) — H(L2) > 40
(due to (2.1.53)) and k1 +m > 40dm (due to (5.2.21)). We may also assume that
m < L, and use (5.1.32). We observe that |q,,,, (& —1,1)(Pouw (& n)) 71 S 275,
where (o, 1, v) = ((wa, ), (wa, 1), (wa,t2)) in the support of the integral, due
to the double-null assumption (5.2.2) and the bounds (3.1.31). Using a normal
form and L? estimates, the left-hand side of (5.2.19) is bounded by

C2%41/2272 sup {(|| P, US" (5)]| 2

SEJm

+ 27| Py LN (5)]| 22| Py U2 ()| 2| PeU " (5) | 2
+ 27| P, UM () || 12 || Py L2N5 ()| 2| PRU " (5) | 2

+ 27| P UM ()| 12 || P U S22 ()| 2 || PR LN () | 22}

~— ~—

where N", N3', N ‘are suitable components of the metric nonlinearities N
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In view of (3.3.3) and (4.2.3), and recalling that £(n) < 35 (see (4.2.2)), all the
terms in the expression above are dominated by

Cgi>2k26m(H(£1 )+H(£2)+H(£))+366m2—2N(n)k+ —2kt

)

which suffices to prove (5.2.19) in this case (due to (2.1.53)).
The same argument also proves the desired bounds (5.2.19) when ng = 0,
(q1,m1) = (g,n), and |k| > §’'m.
Case 3.2. Assume now that (5.2.21) holds, ny = 0, (q1,n1) = (¢, n), |k] <
0’'m, and
k1 +m <Y(¢g,n)dm, (5.2.22)

where Y (¢,n) is defined as in (4.3.70). In particular, we may assume that
—20m < k1 + m, due to (5.2.21). To prove (5.2.19) in this case, we trivialize
one vector-field using Lemma 4.13. As in (4.3.73) we define

Ul*,§J1 = Plé1 (‘pSJl ' PklUclhhM% Uik,>Jl = Plél ((P>J1 . Pkl Uﬁlhl’“)v
where J; denotes the largest integer satisfying J; < max{—ki,m}+dm/4. Then

U <5, (8)|| g2 S eq2k/22H (@m)om=Tom/4, (5.2.23)

see (4.3.74). We decompose also Py, U"2'2(s) = UZ?}’:Z’,CQ (s) + UZ?]’;Z,Q(S) as in

(3.3.1)—(3.3.2), where J; is the largest integer satisfying Jo < m/4.
With I, ,, as in (3.2.43), the left-hand side of (5.2.19) is bounded by

C2 kigm sup | PeIy, [ Pe, U4 (5), Pry U2 (3)]|| o | Plo— 2,021 U™ (5) [ 2.
s€dm

eqeg

In view of (3.3.3), for (5.2.19) it suffices to prove that, for any s € J,,,

27| Py, [P, US04 P U2 ()]

5 6%27N(n)k+7k+27m+H(q,n)5m27'ym27'y|k1+m\/4.

L1t [

(5.2.24)

In view of (5.2.21), we may assume that |k| < §m. Using just L? estimates,
we have

2Pl [P U4 U (9)] o S 27 2700 (5.225)

LlLQ[ > Jo ko ~

To bound the contribution of the profile UZ":;;?,Q (s) we use (3.2.46), (3.3.7), and
(5.2.23), so -
—k1 * ha,t
27+ ”PquL1L2 [U17§J1’U§?72,2k2](8)HL2

< 278000 ., (9)]5227% 2 Py U (5:226)
< E%2—m2H(q,n)6m—76m/426m2—N01€++2k+ .
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Finally, the bilinear interaction of U . ; (s) and U 2?1;21@(5) is negligible,

- * ha,u —
27| Prdy,, , [UT < g, US3221(5) || 1o S €722, (5.2.27)

using an approximate finite speed of propagation argument as in the proof of
(4.3.77). The desired bounds (5.2.24) follow from (5.2.25)—(5.2.27).

Step 4. To prove (5.2.19) in the remaining cases we need to use angular
localization and integrate by parts in time. More precisely, we decompose

Quite = Z qlzlua qlfm (0,1) = ©(E4,0,(0,7))80,0,(0,m), (5.2.28)
b<4

and define the associated operators Gg»  as in (5.1.30). For (5.2.19) it suffices
1L
to prove that

2~ k1

/ qm(8)Gqv | [PklUﬁlhl’“(s),PkQUhQ’”(S),PkUEh’L(s)] ds
T 12 (5.2.29)

5 6?272N(n)k+ 22H(q,n)5m273'ym25b’

provided that £,£; € V4, b <4, m > §2, and
ki > —m + Y (q,n)dm, k| < 8'm, k1 <min{k,ko} — 6.  (5.2.30)

Case 4.1. Assume first that b < —3§’m. We decompose Py,U"22(s) =
UQZJ’:?M (s) + U’;zjf,§2 (s) as in (3.3.1)—(3.3.2), where J5 is the largest integer
satisfying Jo < m — ¢’m. Using (3.1.36) and the double-null assumption (5.2.2)
we have |F71(¢? . - @rkiks)|lr S 2°. Using (3.2.54) and (3.3.3) we estimate

9~k

/J qm(:s)ng;“2 [PklUﬁlhl’“(s), Ug“’]’;?kz(s), PkUEh’L(s)] ds

$2702% sup [Py, [P U™ (), U255, ()] |2 [ Paas U (6) 1
s€dm

5 2—k1 om 2b2k1/22—m+6m

h
X sup [|Py, US0 (5)]| 12 [UZ5)7%, (8)| o [|PLUE" ()| 2

SE€EJm
5 E%2b26/m2k2—2N(n)k+ .
(5.2.31)

Moreover, using L? estimates, the double-null assumption (5.2.2), and (3.3.3)—
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(3.3.4), we have

2~k

/J 0 (5)Gas, [P, U170 (), U2, (5), PRUZ(s)] ds|

< 9—k19mo3k1/292b Selbp | P, ULibin (S)||L2||UZ?:?kQ (s)||L2||P]éU£h’L(S)||L2
sE€Jm

< 5?221’2'“1_ 226'm272N(n)k+'
(5.2.32)

The desired bounds (5.2.29) follow from (5.2.31)—(5.2.32) if b < —36'm.
Case 4.2. Assume now that the inequalities (5.2.30) hold, and, in addition,

b>—36m and k1 > —0.6m. (5.2.33)

If m = L+ 1 then (5.2.29) follows easily using (5.1.34). On the other hand,
if m < L then we integrate by parts in time and use (5.1.32)—(5.1.33). Using
(3.1.33), the left-hand side of (5.2.29) is bounded by

02721273 sup {(|| Pi, US" ()] 2 || Pe, U™ () [ Lo | PLU " (5) ] 2

sEJm

2 P LN O [ PTG IPUS ()2 55,3
+ 27| P, U (5) | 2 (| Pro NG () | e | PRU " (5) | 2

+ 27| P, UM (8)| 22 | Py U2 (8) || o [| P LN (3) [ 2}

where N{*, N3, N"* are suitable components of the metric nonlinearities V5. In
view of (5.2.13)—(5.2.14), the terms in the expression above are dominated by

08?2—3k1/22—3b2—m+25 m 5 Ei)2—m/20’

where we used the assumptions (5.2.33) in the last inequality. This suffices to
prove (5.2.29).
Case 4.3. Assume now that the inequalities (5.2.30) hold, and, in addition,

k1 < —0.6m and b € [-38'm, —25m). (5.2.35)

We can use the condition k; < —0.6m to improve the argument in Case 4.1.

Indeed, let J := —k; and decompose Py, U"2:*2(s) = Uﬁfjfzkz (s)+ Ui?,’,”kz (s) as
>dJoy 2

in (3.3.1)—(3.3.2). Using (3.2.46) (instead of (3.2.54)), (3.1.36), the assumption
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(5.2.2), (3.3.3), and (3.3.7), we estimate

9~k

/] 4 (5)Gas,,, [P U514 (5), U525 (), PUZ"(s)] ds|

S22 sup || Pelgy [P US0 (), UL (9] 2 | Pl i U™ (5)]] 1

sCdm

5 2—k12m . 2b2]€1/22—7)’L23k2/2

X sup [|P, US00 (5)| 2| Py U202 (5) || o< | PLU ™ (5) ] 2

sedm

5 Ei)2()22H(q,n)(5m26m2—2N(n)kJr —2k'+;
(5.2.36)

compare with (5.2.31). The contribution of the profile Ug?jgfb (s) can be esti-
mated as in (5.2.32), and the bounds (5.2.29) follow if b < —2dm.

Case 4.4. Finally assume that the inequalities (5.2.30) hold, and, moreover,

k1 < —0.6m and b e [—2dm,4]. (5.2.37)

If + # 15 then we can still use normal forms and estimate as in (5.2.34), but with
a factor of 271 replaced by 27%, due to the better lower bound |®(&, n)| > 2*.
The desired bounds follow. Also in the case m = L + 1 there is no loss of 2™
and the desired bounds follow easily using (5.1.34).

On the other hand, if « = 15 and m < L then we may assume that ¢ = 1o = +,
by taking complex conjugates. The proof in this case is more complicated, as it
requires switching to the quasilinear variables &"? and U/*", and is provided in
Lemma 5.8 below. O

5.2.2 Non-null Semilinear Terms

In this subsection we show how to estimate the remaining Wave x Wave x Wave
interactions in Proposition 5.2.

Lemma 5.6. With the assumptions of Proposition 5.2 we have
Z 227k*2—k221v(n)k+

/ Qm(s)
k1 ks Im

% gm[Pkl Uﬂﬁl,Ll (S)7Pk2U19E2,L2 (8)’PkU£h,L(S)] ds 5 E§22H(q,n)6m—2'ym7
(5.2.38)

where m € M and the operators Gy, are defined as in (5.1.30). Thus the bounds
(5.1.23) hold.

Proof. In proving (5.2.38) it is important to keep in mind that 9., are among
the “good” components of the metric, which satisfy strong bounds like (3.3.7)
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uniformly in time.
Lq
For suitable values J > max{—ky,0} we sometimes decompose Py, U” “+a

U<J,€’L“ + U>J,€’L“ a € {1,2}, where

95 Lo —itAya., / 9Ea 1,
Usyp," i=e ra Py (o< P,V ),

o » i (5.2.39)
UL i = e e Bl (s g - B, V700,
and V9" ta = ¢ithuwaa 9" ta . We consider several cases.
Step 1. We assume first that min{n;,ne} = 0. By symmetry, we may
assume that ny = 0. Let J; := oo if |ky| > &’m — 10 and J; := m — &'m if
|k1| < 6'm — 10, and decompose Py, U%*t = U?jikl + Ul9 !k, asin (5.2.39) (in
particular, P, U%* = U19 Ty if (k1| > &'m — 10).
In this case we prove the stronger bounds

Z 927k~ 9—k92N(n) ’/ e

Fhk (5.2.40)
X Gn[UY . szUﬁ 2(s), PU™ (s)] ds| < €3

~ )

and, for any s € J,,, and k € Z,

_ * c
2N N PIUZS , (5), P U (5)] 2
k1,k2 (5241)
5 €1bk,(q7n§ S)Zk/22fN(n)k+27m+H(q,n)6m,
where I = I, is as in (3.2.43), the coefficients by (g, n;t) are defined in (4.3.20),
and 7, " denotes the sum over pairs (ki,k2) € X with the additional as-
sumption k1 < ko if £ = Id (thus ny = ng = n = 0). It is clear that (5.2.40)—
(5.2.41) would suffice to prove (5.2.38).
Using (4.3.22), (3.3.7), and L? estimates as in (3.2.44), we have

2V MR P (5), Pry U2 ()] 12 < €12°5 b1y (g, s 5)

91k~ —k3 ) gka/29—N(n)k$ 9H(g,n)dm ki /2—kky 27N0k1++2kf, (5-2.42)
for x € {< J1,> J1} and any k, k1, ke € Z.

Substep 1.1. We prove first the bounds (5.2.41). Recalling (4.3.21), these
bounds follow from (5.2.42) when 2" < 1 or when 2F < 2=m+7m/2 " Agsume
that m > 6=2 and 2F > 2=™m+t7m/2 We examine first the contribution of the
pairs (ki, ka) with |ki| > §'m — 10, thus UZ)! = P, U%* . In view of (4.3.22)

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

170 CHAPTER 5

and (3.3.11) we have

P B[P, U (5), P U5 12 S exbia(a,755) i
w (kT —k3 ) oka/29—N(n)kf gH(a.n)dm _ oki g—m+35'm/29—N(1)k{ +2k (5.2.43)
This suffices to bound the contribution of the pairs (ki, k2) € Xj with 2lk1l >
20m and ky < k — 4. Tt also suffices to bound the contribution of the pairs
(K1, ko) with 2F1l > 29 and |k — k| < 8 and n > 2. The contribution of the
pairs (k1, ke) with |k — k1| < 8 and n < 1 can be controlled in a similar way, by
estimating Py, U?*1(s) in L? and PkQUﬂE"2 (s) in L.

The contribution of the pairs (k1, k2) with k1, ke > k+4 and k3 < —3m/4 or
k1 > m/4 can be estimated using (5.2.42). Finally, to estimate the contribution
of the pairs (k1, ko) with k1, ke > k + 4 and ky € [-3m/4, m/4] we decompose
P, U% = Uz’jikl + Uii;{l,kl with J{ := m — §'m/4. Then we use the L>
super-localized bounds (3.2.16) to estimate

— . L .
2R PIULSE Py (), P U (5)] |2

m 79L1 c
S Y 2UNC, kUL L Pey(8)l] o [1Cna e P U ()] 2 (5.2.44)

|n17n2\§4
S 5%2k2/227N(n)k;2H(q,n)5m . 2k1/22k/227m+5,m/2278kr.
The contribution of the U> 1k €A1 be estimated using just L? bounds, as in

(5.2.42). This suffices to bound the contribution of all the pairs (k1, ko) with
|k1] > 6'm — 10.

We consider now the pairs (k1,k2) € Xj with |k1] < ¢’m — 10 and use the
more precise estimates (3.2.46). Let J; denote the largest integer such that

2J{/ S 2_10[2m/2—k1/2 + 2—k] (5245)

and apply first (3.2.46) (or (3.2.12) if ky = min{k, k1, k2}), and then (3.3.7) to
estimate

— v L
2| PIUL L, (s), P UY "2 ()] 2

5 27m2min{k,k1,k2}/223k1/2HPM/‘-/?(S)”LOO 2 y(m+k~ ||Pk (3)||L2 (5 ) 46)
< 5127m+H(q,n)6m2k:;/427(N072)kfr o
% 2min{k,k1,kz}/22k2/22w(k’7k;)bk2 (q,m; 8)27N(n2)k2+

Y1 —ithwa,, P B, : :
where UgJ{’,kl =e 1 P (o< P, VP') as in (5.2.39). Moreover, using
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(3.2.11) and (3.3.4) instead, we estimate

= L Loy
Y 2RI (), PU” 2 ()] e
helTt (5.2.47)
< 8%277714»5’7)127,]{’2k2/2278kr27N(n2)k:;.

It is easy to see that these two bounds can be summed over (k1, ks) € Xj with
|k1] < ¢’m — 10 to complete the proof of (5.2.41). In the (harder) case of pairs
k1, ko with k1, ko > k+4 one can use (4.3.21) to sum (5.2.46), and the definition
(5.2.45) to sum (5.2.47).

Substep 1.2. We prove now the bounds (5.2.40). We may assume that
|k1] < ¢'m, due to the definition of J;. We notice that the bounds (5.2.40)
follow using just L? estimates (similar to (5.2.42)) and (3.3.3)—(3.3.4) if 2™ < 1
or k< —28"m

Assume now that m > 6=2 and k > —26"m. We would like to integrate by
parts in time as in (5.1.32). For this we need to decompose into resonant and
non-resonant contributions. As in (5.2.12), with ¢g = —84’m and E,,,, as in
(3.1.23), we decompose

m=m"4+m"", m"(0,n) = ©<qo(Ei1,(0,m))m(6,n). (5.2.48)

To bound the resonant contribution we use the smallness of Fourier support
and Schur’s lemma. For this we notice that, with ¢k, k, defined as in (5.1.35),

sup / T2 (€= 1, )00 (€ — 0, 0)] Pk (€ — 1,1)
neER3

S 10250 O

’19L T
s / TP (€ =0, ) 7 (€ — 1, 0)] Ptk (€ — 1,7)
(S

. 23161/22(107

S NUZ5 0, ()] - 20 22,

where in the second estimate we bound E(ﬁ—n, )< E(g—n, n)2k2—k < 209k —k
in the support of the integral (see (3.1.28)). Therefore, using to Schur’s test,

m+k~ LV £,
2V P L (UL, (), P U742 ()] 2
S 27(m+k7)||Pk2U195 HL2 ||U>J1 . )HL2 . 23k1/22q0(1 + 2k2—k)’
5 612k127N(1)kT27J12q025 m 2k2/227N(n)k;bk2 (q, n; S)(l + 2k27k:)2’y(k:_7k2_)’

where I is as in (3.2.43). Since |ki| < 8'm and 271 < 27m+8'm  this suffices
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to show that

_ * L £
2 Y P U254, (), P U2 ()]
ot (5.2.49)

< €1bk(q,n; S)Qk/227N(n)k+2fmf6'm’
if 28 > 2728'm  This is similar to (5.2.41) and implies the required bounds on
the resonant contributions.

On the other hand, the non-resonant contributions corresponding to the
symbol m™ can be treated as in the proof of (5.2.1) in Lemma 5.4. We may
assume first that m < L, integrate by parts in time, and notice that estimates
like (5.2.16) still hold; such estimates suffice to prove (5.2.40) when k& < m/10.
In the remaining case when k is very large and |k;| < ¢’m, the desired conclusion
follows using paradifferential calculus from Lemma 5.7 below.

Step 2. We prove now (5.2.38) when n1,ny > 1. In this case we prove the
strong bounds

2R B[P, U (5), P, U2 (s)] 1
ey e (5.2.50)
< e29-7Ikl/49k/29=N(m)k* g=m-+H(qm)ém

for any s € J,,, and k € Z (compare with (5.2.41) and recall that bx(q,n;s) >
g1277IkI/4),
As in (5.2.42), we recall that k = min{k, k1, ko} and start with L? estimates,

PO P[P, U0 (s), PyU”™ 2 (s)] 22
5 6%23E/22k1/22k2/227’ykf7'yk27 27N(nl)k:fr27N(n2)kz+ 2H(q1,n1)5m+H(q2,n2)5m’
(5.2.51)

for any k, k1, ko € Z. This suffices to prove the bounds (5.2.50) when 2™ < 1,
or when k < —m + 356m, or when k > m/9 (using (2.1.53) and N(n) + 10 <
min{N(ny), N(na)}).

On the other hand, if m > 6! and k € [—m + 356m, m/9] then the bounds
(5.2.51) suffice to control the contribution of the pairs (k1,k2) € X} for which
either min{ky, ka} < —3m/4 or max{ky,ko} > m/9. Using L? x L> estimates
as in (5.2.43)—(5.2.44) we can also control the contribution of the pairs (k1, k2)
for which max{|k1|, |k2|} > 6’m. In the remaining range ki, ks € [—6'm,d'm]
we consider two cases.

Case 2.1. Assume first that ¢ = g2 = 0. Since rotations and Riesz trans-
forms essentially commute (up to multipliers that are accounted for in the mul-

tiplier m), we may replace U?"*+t by £,U%" a € {1,2}, and use interpolation
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inequalities. Let

J* = max { ma’;{kl’ LIRS (5.2.52)

Assuming that k > max{kq, ka} — 10, we use (3.2.64)—(3.2.65) to estimate
19£1,L 1952,L I, I,
1P IUS -k, (5), Us e ;fz(s)HlL2 SIEUZ5 (S)||La||£2U<Jz o )||Lb

9, 9, 9, 9,
SIUZE @I 1PV onHU<}"i,k2( ez 1PuV

HO sy
where U<J*’2“ are as in (5.2.39), n = ny + ng, and
1_oml 1 ml (5.2.53)
a n?2 b n2

Using now (3.3.16) and (3.3.3) we have
m 9=l 9~ 2
gr(mk” )||PkI[U<J* ; ( ) U<J* [ ( )]HL2 (5 9 54)
< 8%2—m+H(O,n)6m2k1/2+k2/22—N(n)k1+—N(n)k;2—\k1|/8—\k2|/8. o

On the other hand, if ¥ < max{ky, k2} — 10 then we need a bilinear estimate

to bring in the small factor 2¥/2. We use Lemma 3.14 followed by (3.2.64)—
(3.2.65) to estimate

1951,L 19£2,L
HPkI[UgJ*,kll (s), UgJ*,kzg(s)]”Lz
< 2_m2k/223k1/2IIF{L‘lPklUﬁ’“}( )IILGHF{EszzUﬂ’”}( )z
< 2_m2k/223k1/2HF{PMVIS‘}HLOO ”Pkl Vﬂ

Ho AF PV ||Pk2VﬂHHom
where a, b are as in (5.2.53). Using (3.3.7) and (3.3.3), it follows that
- L1, L2,
2PV 3 (), U253 (s (5.2.55)
< 6%27m+H(0,n)6m2'yk_2k/227N0k1*'23k1_/4. -
For the remaining terms we use (3.3.11), (3.3.4), and L? x L* bounds
m4+k~ 195 i 9c2 .
2O PIUZ S5 (5), UL 52 (8)] e
L L
+ | PIUZ 508 (5), PeyUP 42 ()] 2 ) (5.2.56)

< 8%2—m+5 mo—J"9lk1 |/2+|162|/22—N(m+1)1f1+2—1\r(nz+1)k2+ 22(k1++k;)

We combine (5.2.54) and (5.2.56) to control the contribution of the pairs (k1, k2)
for which k& > max{ky, k2} — 10; we also combine (5.2.55) and (5.2.56) to control
the contribution of the pairs (k1, k) for which k¥ < max{ki, ko} — 10. This
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completes the proof of (5.2.50).

Case 2.2. The case max{qi,¢2} > 1 is comparatively easier. Without loss
of generality we may assume that ¢ > max{q;,1}. We use Lemma 3.11 and
(3.3.3) to estimate

- £y, £y,
2 PIUZ, 03 gy 1 (9, Pra U7 (5)] 2

< 2’777l2—77l+6m2m111{k7k2}/2||Pk1 U19£1 (S)HH?)J ||Pkrz Uﬂﬁg (s) ||L2

< 2—m+5m2min{k,k2}/22k1/22k2/22—N(n1+1)kf—N(n2)k;2H(q1,n1+1)5m+H(q2,n2)5m_

This gives acceptable contributions using (4.1.3). On the other hand, using just
L? x L* estimates, (3.3.4), and (3.3.11), we have

m—+k~ 91, L2, —1.9m
DR PIUY o g L (5), P U (5)] [ e S g3,
for any ki,ko € [—0'm,d'm|. The bounds (5.2.50) follow in this case as well,
which completes the proof of the lemma. O

5.2.3 Second Symmetrization and Paradifferential Calculus

In the case of interactions of vastly different frequencies |£| ~ |n| > [€ — ],
L = g, the application of normal forms as in (5.1.32) leads to a loss of derivatives
due to the quasilinear nature of the nonlinearities. To avoid this loss we use
paradifferential calculus and perform a second symmetrization.

Our first lemma concerns the contribution of very high frequencies and ap-
plies to conclude the analysis in Case 2.3 in Lemma 5.4 and Substep 1.2 in
Lemma 5.6.

Lemma 5.7. Ift, 11,12 € {+,—}, hyh1,ha € {hag}, t € [0,T], m € [6~, L+1],
|k1]| < &'m, k ko > m/10, J1 > m —25m, (¢,n) < (3,3), and L, Lo € VI then

[ (G 02515, (), PaU2(5), PLU(5)] d|
Jm -

S a2 NIRRT by (g, m))?,

(5.2.57)

where m™ (6,m) = m(0,n)@>q, (20,0, (8,1)) is the non-resonant part of a symbol
me M, qo=—8m, and by m(q,n) are defined in (5.2.17).

Proof. Notice that, as a consequence of (4.3.22)—(4.3.23),

[Py US2h2:02 ()| 1o + || PeU SR (s) || 2 S by (s)20 ™2R/2= Nk (5.9, 58)
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and

(s i) Py U222 (5) 12 + 100+ iBua )RRU e )
< €1bk(8)2—m+6/m23k/2—N(n)k7 -
for any s € J,,,, where, for simplicity of notation, we let bg(s) := bi(q,n;s).
Moreover,

UR (8)|pe S 270 Mok 9 =8k (5.2.60)

and
1(9s + i UL, ()| S ef27 10 (5.2.61)

The bounds (5.2.60) follow from (3.3.11). The bounds (5.2.61) are slightly
harder because of the spatial cutoffs. To prove them we write

(0s + zAwa)U<‘j,‘l3 g, (8) = (0 + iAwa)[e_iSAwaPk/:l (o<, - Pe, V"5 (5))]

= e M Pl (oo, - Dy Py V4 (s))
= e*iSA’*"IP,;1 (o<, - Py, eiSA“"‘Nfﬁ(S))v

for any «, 8 € {0,1,2,3}. Therefore, for any = € R3,
(0s +@Awa)U<J 5 (T08)

=0/ el (@< (& = n)e” Mg, (N4 (n, s) dédn

=C e et et e UntOInlgl () + 0)P<7, (0)pr, (NN (n, 5) dbdn,

where ), = V[, 2.k, +2]- Let

Ly s(n) = /R ) wwbe=islintel=Inllyr (n+0)(2313(2716)) do, (5.2.62)

SO

(0s + iAwa)U <J K1 (z,5) = O/ ei(miy).an,S(m‘Ph (W)Ngﬁ(yﬁ) dndy.
R6

(5.2.63)
Since s2771 4 2kl < 928'm (the hypothesis of the lemma), it is easy to see
that Dy Ly s(n)| S 249'mlel for any = € R3, || ~ 251, and multi-indices a with
|a] < 10. Therefore

(00 + 8 U5, 8| S [ 2970 o= 2 ™) N ()]

using integration by parts in n in (5.2.63). The desired conclusion (5.2.61)
follows from (4.3.15).
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We divide the rest of the proof of the lemma into several steps.

Step 1. We start with some preliminary reductions. First, we may assume
that m € [§71, L] since otherwise |J,,| < 1 and the desired bounds follow using
(5.2.58), (5.2.60), and (3.1.30). We may also assume that ¢ = ¢2; otherwise

|(I)0;w(§a 77)‘ = |Awa,L(§) - Awa,bz (77) - Awtwl(f - 77)| Z 2

in the support of the integral, so the normal form argument (5.1.32) still gives
the desired conclusion since the loss of derivatives in (5.2.59) is compensated by
the large denominator. By taking complex conjugates, we may actually assume
that 19 = ¢ = +.
To continue we switch to the quasilinear variables defined in (5.1.41),
Uz = (9, —iT,, )(Lahy) and UM = (9, —iT,

Twa

)(£Lh).

See subsections 3.1.3-5.1.4 for the definition of the paradifferential operators Ty,
and the symbols oy,,. In view of (5.1.42) we have, for any s € J,,,

[P U212 — UF212) (s)[| 2 + (| P " — UF") (5)| 12

< 2—m+6'mbk(8)2k/2—N(n)k’. (5264)

Thus we may replace Py, U*2"2 with Py, U*2"2 and P,U*" with P,U/*" in the in-
tegral in (5.2.57), at the expense of acceptable errors. To summarize, it remains
to prove that

] / G (8)Ganrr (U (5), Pegd™2" (5), PUS" (5)] ds|
JIm

5 612—2N(n)k+k2—25mb%’m’

(5.2.65)

provided that m € [671, L] and, for simplicity, by m := bkm(q,n).

Step 2. We integrate by parts in s using (5.1.32). The contributions of
the first two terms, when the d/ds derivative hits either the function g,,(s) or
the first term Ugf,’fkl (s), can be bounded easily, using the L>° bounds (5.2.60)—
(5.2.61) and the L? bounds (5.2.58) and (5.2.64) (there are no derivative losses
in this case). So it remains to prove that

]Hmm [U1153,(5), (D + i) Peud 22 (s), PUZP (s))]

e [U255%, (5), PLUE(5), (0, + b PU )] (5:2:66)

S 61272N(n)k+k27m726mbk(8)2’

for any s € J,,,, where the operators Hynr are defined in (5.1.31). Notice that

(85 + iAwa)PkZ/[Lh = (39 + i1y )Pkl/lﬁh — iTEwa_|<|PkZ/{£h,

wa
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where the symbols ¥, are defined in (5.1.37), and a similar identity holds for
Py, U*2"2. Therefore we use the bounds (5.1.47) to replace (95 +iAyq) P, U2
and (95 + iAya) PlUE" with —iTs ¢ Po,d*2"2 and —iTy, | Pud“" respec-
tively in (5.2.66), at the expense of acceptable errors. For (5.2.66) it remains to
prove that

[ [UL584, (5), 1Ty Pald 2 (5), P4 (5)]

o Mo [U513, (), Prald 2" (s), T2 U (5)] | (5.2.67)

< 61272N(n)k+k27m726mbk(8)2’
for any s € J,,,, where Y21 (z,¢) = Zya(z, () — [¢].

Step 3. We now write explicitly the expression in the left-hand side of
(5.2.67) and exploit the cancellation between the two terms to avoid derivative
loss. Using the definitions we write

hin Lah cny _ ¢ m"(§ —n,m)
Mo (U5 T U U] = o | Tl — e

1 n+p n =PI\, o — —
X Yae (n - p, T)XO ( T o) ) U251, (& = n) Pr,UR2h2(p) PUE(E) dédndp,

, —i m" (€ —n,n)
Howrr (UM P P22 T o PUEM] = — ’
wor (Ui P Hia ) 873 Jro €] — Inl — el —n

P (e MY g - g: UL, (€ = m) Pl 2= (n) PRUEH (p) dgddp.
The key property that allows symmetrization is the reality of the symbol £=1

wa?’

which shows that E%; (5 -p, E'%") = Z%é (p —¢, HTP) Therefore, after changes

of variables, we have

Hunr [ULG5, (5), 1T 521 Pe,US" (5), PUS"(s)]
+ Mo [ULZ5, (5), Pt 2" (5), 1Ty 21 P (5)]

—

= C/g Konr (&1, 3 YULS (€ =1 — p, 8)PryldC22 (n, s) PRUEN (€, 5) dEdndp,
R
(5.2.68)

where

Kmnr (57 ’I’}’ p; S)
__m(E=n—pntp) 551( 2n+p )0( | )
&l = [n+pl —ul§=n—pl T2 7 2n+p|/)  (5.2.69)

m" (& —n—p,n) S/ 2-p |p]
- Ywal p, , .
€= p[— Il —ule—n—p] (=3 5>X°(\2§—p|)
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Step 4. To prove (5.2.67) it suffices to show that

-

’ /Rg K (6,1, 05 YUY, (€ =1 = p, 5) Pay o (0) P J(€) d€dndyp

S 1272 Puf |l 2| Pes foll 22,

(5.2.70)

for any s € J,,, and f, fo € L?. The main issue is the possible loss of derivative,
so one should think of [¢[,|n| € 284, 2k4] as large and |p|, | — 1 — p| < 2F=20
as small. For a,b € [0,1] let

S(&,m, p; sya,b) == m(E =1 — PN+ ap)p>qy (B4 (§—n—p,n+ap))
e € —p+ap| —n+ap| — ul¢—n—p

—b(ﬁ—n—P)aS)XO(pgp?'bp('f77P)|)’

so Kn(&,1n,p;8) =S(&,n,p;8;1,1) — S(E,m, p; s;0,0). It suffices to prove that

5.2.71
2% — ( )
2

X D74 (,0,

—

| [ VenStn pisia UL, (6 = 0 = p.s) P o) PLy (€) dsdndp) 5o

< 12732 P f | p2|| Pey fol 2

72)

for any a,b € [0,1].

We notice that the symbol 21 (2, () = La(x, ¢) —|¢| can be decomposed as
a sum of symbols of the form Ag;Gg(x)pa(¢), d > 1, 1€ {1,...,L(d)}, where
G, € Gq (see definition (4.1.68)), 114, are smooth homogeneous multipliers of
order 1, and the constants A4; and L(d) are bounded by C?. Using the L>
norms in (4.1.69) and (5.2.60), together with the general estimate (3.1.3), for

(5.2.72) it suffices to bound
1F M | oy S 27420 (5.2.73)

for any a,b € [0,1] and integers I > m /20, l; € [-2§'m,2§'m], and I3 < [ — 20,
where
My (n, p,0)

B m(0, 1+ ap)p>q, (E,+ (0,1 + ap))
Vb A
L0+ n+apl — [0+ ap| = u1]0]

(m+ (1 —=b)f+p/2) (5.2.74)

This multiplier is obtained from the expression in (5.2.71) by making the change
of variables € = 0+ 1+ p, and A : R® — R is a smooth homogeneous function
of order 1.
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To prove (5.2.73) we use first (3.1.48), thus

P>qo (EL1+(97 n + ap))
0 +n+ap| — [0+ ap| — 11]0]
_ 10+ n+apl + |0+ apl+ 11]0] 950 (Ev, (0,1 + ap))
—u110||n + apl 1Zn+(0,m+ap)|?

We use now (3.1.36) and recall that 27% < 280'm The bounds (5.2.73) follow by
examining the terms resulting from taking the derivatives in a or b, and recalling
the algebra property || F~t(m -m/)||px < | F~Lm)| i | F~H(m))]|| 1. O

Finally, we complete the analysis in Case 4.4 in the proof of Lemma 5.4.
Lemma 5.8. Ifi; € {+,-},t€[0,T], me€ [§72,L], £L,L1 €V, n>1, and
k1 € [-m+Y (g, n)dom, —0.6m], |k, [ka| < &'m, b € [-26m,4], (5.2.75)

then, with h,hy,hy € {hog} and q°,, defined as in (5.2.28) and (5.2.2),

9~k

/ qm(s)gqb . [Pk1 Uﬁlhl’“(s), Py, UhQ(s),PkUEh(s)] ds
JIm ‘1

S 5?272N(n)k+ 22H(q,n)5m276m.

Proof. As in the proof of Lemma 5.7 we replace first the solutions U"? and U*"?
with the quasilinear variables U"? = (9; —iT,,,. )hy and U*" = (0, —iT,, . )(Lh)

defined in (5.1.41), at the expense of acceptable errors that can be estimated as
in (5.2.64). It remains to prove that

2 k1

/ qm(s)gq? N [Pkl Uﬁlhl,bl (S), Pk2uh2 (S), Pkuﬁh(s)] ds‘
I !

5 5?272N(n)k+ 22H(q,n)5m76m.

(5.2.76)

Then we apply the integration by parts identity (5.1.32). With H . defined
Ly
as in (5.1.31), for (5.2.76) it suffices to prove that

"quzﬁ [Pe, US M 01(s), Po,U™ (), PlU" ()] |

. (5.2.77)
S 8?2]@1 272N(n)k 22H(q,n)§m76m.7

2" Mo [(0s + iNwayy ) Pey US11(s), P, (s), PUS(s)] |

X (5.2.78)
g 5?2% 2—2N(n)k 22H(q,n)5m—6m

)
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and
2m‘quZ + [Pkl yhin (s),(0s + iAwa)szuhz (s), Pkuﬁh(s)}
+Hae [Po, US4 (5), P, (5), (05 + ihwa) PUF" (s)] | (5.2.79)

5 81132161 272N(n)kJr 22H(q,n)5m76m7

for any s € J,,. We prove these estimate in several steps.
Step 1. We start with the easier estimates (5.2.77) and (5.2.78). The main
point is that

1Pe, UE (5) [ 22 + 27 (D5 + ihwa,ir ) Py US04 (5)] 2

< 21/ 29H @mam Y (m)5m (5.2.80)

)

where Y/(1) := 2 and Y'(2) = Y'(3) := 35. Indeed, these bounds follow from
(3.3.3) and (4.2.3) when n > 2. If n = 1 they follow from (3.3.3), Lemma 4.14
(recall k1 < —0.6m), and (4.2.43).

Using (3.1.36), (3.1.48), and (5.2.2) we have

<2 kg7t (5.2.81)
L' (RS)

L -
e (s e

With Jo = —k; we decompose, as in (3.3.1)—(3.3.2),

Phkrk (€ — TIJ?)H

Pp" = P, U™ + P, (U™ — U™) = UL+ UL+ P, (U — U™).
B (5.2.82)
For G(s) € {U*M:41(s),2™(0s + iAwa,., ) Ps, U141 (5)}, we estimate, using
(3.2.46) and (5.2.81),

[Has,, [G(5), U5, () U )|
S 24722 g6 s) 12 | P U (9 [ PU (3) 12 (5:289)

5 E§2k7/22—2N(n)k+—4k+ 22H(q,n)5m2—m+Y’(n)5m+6m2—b7

using also (3.3.3), (3.3.7), (5.2.80) in the last line. We also estimate, using just
L? bounds,
ha,
Moy [G), U257, (5) + Pra(td's — U"=)(s), U (5)]
S 2227 G s) | o | PAU " () 2
<0220k, (912 + 1Py @ = U)(s)l| 2 }
< 6?22]61226/771’

(5.2.84)

using also (3.3.3)—(3.3.4), (5.1.42), (5.2.80) in the last line. The desired bounds
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(5.2.77)—(5.2.78) follow once we notice that —m+Y”'(n)dm+om—>b < k; —66m,
due to (5.2.75) and (4.3.70).
Step 2. We consider now the estimates (5.2.79). We decompose

(as + ZAwa)Pk)2uh2 = Pk:z (85 + ZTZwa)uhz - Z‘Pk;2 TEwa*'CIZ/{hz’
Pi(0s + iha UM = P05 + iTs,, U —iPTs,, —jcU™".

For (5.2.79) it suffices to prove that

2m |7-qu1+ [Po, US4 (s), Pry (05 + T, UM (5), Puld™"(s)]|

< B3oki9—2N(n)kT 92H (q,n)dm—om (5.2.85)
~ “1 )
2" [Har  [Pe,US"0(s), Pyt (5), Pu(0s + T, JU" (5)] (5250
< 6?2k1272N(n)k+22H(q,n)6m76m’ o
and
2" Mo [Pr, US"(5), P T, U2 (5), PRUS" (5)]
—He [Pe, US4 (5), P, (s), PyTs,,, - 1c U= (5)]| (5.2.87)

S, 6?2]@‘1 272N(n)k+ 22H(q,n)5m75m.

We notice that the bounds (5.2.86) follow from (5.1.48), using the decompo-
sition (5.2.82) and estimating as in (5.2.83)—(5.2.84).

Step 3. We prove now the bounds (5.2.85). We use the formulas (5.1.43)
and (5.1.52) with £ = Id. The contribution of the cubic and higher order
terms can be bounded easily, proceeding as in (5.2.84). To control the main
contributions we will prove that

2m| QP [PklUﬁlhl’Ll (5)7 PksUh&LS (S)’ Pk4Uh4’L4 (5)3 Pkuﬁh(S)H

< 5‘1‘22’“1 272N(n)k+ 92H (q,n)6m—106mok™ /29k; /4gky /2—4k} (5.2.88)

and

27| Qy [P, UF M1 (s), P, U3 (s), Po, U (s), Pild™"(s)]|

5.2.89
< 5‘1122’“1 2-21\/(n)k+ 92H (g,n)8m—108mok™ /29k; /421%*/2—41@7 ( )

for any s € Jp, t3,ta € {+, =}, hs, ha € {hag}, k3 < k4 € Z. Here

=

. p(E —n,1— p,p) F1(€ =) f3(n — p) fa(p) F(€) dedndp,
(5.2.90)

Qplfr, f3: far [l = /(RS)
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and p is a multiplier satisfying ||[F~'p||z1®e) < 1. These bounds clearly suffice
to prove (5.2.85); they are in fact stronger than needed because we would like
to apply them in the proof of the estimates (5.2.87) as well.

Substep 3.1. We prove first the bounds (5.2.88). Since k3 < k4 we may
assume that k4 > k — 8. Using (3.1.3) we estimate first the left-hand side of
(5.2.88) by

C2m 2% 2| Py UR1 (s)| 2 || Py U (8) || o< || P, U™ (5) | 2 | Pl " (5) | .2
< 81112%1 98'moks o—N(0)k{ +2k{ 9k~ /29— N (n)k* ,
(5.2.91)

where we used (3.3.3) and (3.3.11) in the second line. This suffices if either
ks < —88'm or kg4 > 8'm. On the other hand, if k3, k4 € [—8'm,85'm] then
we fix J3 = Jy the largest integer smaller than m / 4 and decompose Py, U"3:*3 =

Uk + UL and P Uhets = UL+ U4, as in (3.3.1)~(3.3.2). The

L . h h . . .
contributions of the functions UJ%"? and UJ%*4 can be estimated easily, using
>J3,k3 >Jy ks ’

(3.3.4). After these reductions it remains to prove that

m L hs3,t hg,t
2 |QP [Pkl Uﬁlhh ! (5)7 US?IS,S]% (S)a US%LL:L]M (S), Pkuﬁh (S)} |

¥ o (5.2.92)
S 541122]612—2]\7(71)]6 22H(q,n)5m—105m2k /22k3 /42k4 /2—4k} ,

for any s € J,,, and k3 < ky € [—85'm, 85 m)].
To prove (5.2.92) we examine the formula (5.2.90) and write

Qp [fla f3a f47 f] =C K(J?, Y, z)e—ix~pe—iy~(£—p)e—iz'(n—f)
R9 JRY

x f1(p) F3(€ — p) faln — f)f( ) dédndp drdydz
after changes of variables, where K = F~1(p). Since ||K| ;1 < 1, we have
|Qplf1, f3: f1, f]]
S /Rg T (Fulp)e) Fo(& — p) Fan — ) (Flm)er=n) dédndp (5.2.93)

5 Sup' ||I[f1( - y)7f3]||L2||I[ﬁ7f( - Z)]HLQa
y,zER3

where I is defined as in (3.2.43) with the multiplier m equal to 1.
In our case, we apply (5.2.93) and (3.2.46) to estimate the left-hand side of

EBSCChost - printed on 2/13/2023 9:18 PMvia . All use subject to https://ww.ebsco.conlterns-of -use



EBSCOhost -

IMPROVED ENERGY ESTIMATES 183

(5.2.92) by

C2m (24 /227 m 23 2| P UC™ (s) | 2| Py UM () | = )

x (28227 m 232 P (s) | L2 || Pr, UM (5) || 1)
< 84112—7”22H(q,n)6m+26m2k1 2—1\1(n)k+ +2kT 2—Nokj +2kF ok~ /29ky [4gky /2

where we used (3.3.3) and (3.3.7) in the last line. This gives the claimed bounds
(5.2.92) once we recall that ky > k — 8 and 2=+ (@m)0m < 9k see (5.2.75)
and recall (4.3.70).

Substep 3.2. We prove now the bounds (5.2.89). Estimating as in (5.2.91),
this is easy using the L™ estimates (3.3.13) unless k3, ky € [—85'm,85'm]. In
this case we fix J3 = Jy the largest integer smaller than m/4, as before, and
reduce matters to proving that

27 Qp [P, US4 (5), ULY2 | (5), ULy2 4 (), PR (5)]|
< 5411221612—2N(n)k+22H(q,n)5m—106m2k’/22k§/42kZ/2—4kI

for any s € J,, and k3 < kg4 € [-80"m, 85’ m]. This follows easily using (3.3.17).
Step 4. Finally we prove the bounds (5.2.87). We write ¥, — |(| =
IC|ZL . +[¢|222, as in (5.1.39). The contribution of the symbol ¥22 leads to

higher order terms that can be estimated using just L? bounds. To bound the
main term we write, as in (5.2.68)—(5.2.69),

Hp [P US0 (5), Py Ty, U (s), P (5)]
~Hyp [P US55 (5), Pd"(s), Py, UM (5)]

= C/ A(gv 1, p)Pkl U‘Clhhbl (f —nN—=p S)P];2uh2 (777 S)P]:;uﬁh(€7 S) dgdndﬂ
RO

(5.2.94)
where P} = Py._2 py2s P, = Plro—2,k,+2], and
At p) - = W61 =P+ P (1 +p)
(€l = 1n+pl =l —n—pl
< (T8 (252 x0 (2 o6 -
5.2.95

@, (E == pm)er (n)
€= pl = Inl —ul€—n—pl

< (KT8 (252 ) xo (el s = .

The formula (5.1.39) shows that (|§/|§/}m) (p,v) is a sum of expressions of the
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form ﬁ;(p)g(v), where h3 € {hog} and g(v) is either |v| or |[v|7;, or |v|0;0k. As
in (5.2.71), for x,y € [0, 1] let

_qui (& —=n—p,n+xp)op(E,4(§ —n— p,n+xp))

B(&,n, p;x,y) = T s e By S
X hy (1 + mp)g(%; . y(§—n— ,0)) (5.2.96)
el B
s XO(\%—/)—23/(5—77—p)|)s0k(5 p+ap)

such that A(£,n, p) is a sum over hg, g of expressions of the form [B(&,n, p;1,1)—
B(&,1m,p;0,0)]hs(p). Using these identities, for (5.2.87) it suffices to show that

2"y ‘/ VayBE n, pix,y)lp| ™ Pe, UEhu (€ — 1 — p,s) P, Uhs (p, 5)
ks<k—10 7R
x PLUM (1, 5) PIUEH (¢, s) dedndp| S i2a 2N DR g2 (amim=om,
(5.2.97)

for any z,y € [0,1] and 3 € {4, —}.
Let B'(&,1m,p) == VuB(&,n, p;z,y), for z,y € [0,1]. To prove (5.2.97) we
notice that

[F=HB' (& m p)lel ™ e, (p)1, (€ = 1 = p)ers @1 (E)H] 11 oy

(5.2.98)
< 272027k 497

for any x,y € [0,1], where I,11,l3,lo € Z, l,ls € [-20'm,28'm], |l — ls| < 4,
1 < —0.6m + 4, I3 <1 —10. Indeed, one can think of 2! and 2!2 as large and
comparable, and 21,2/ as small. Using (3.1.48) we rewrite

G+ —n—pn+xp)op(E,+ (€ —n—p,n+ap))
—ulE,+ (€ —n—pn+xp)?

1€ = p+zpl +[n+2p| + 1€ — 1 — pllpr, (1 + zp)pr(§ — p + zp)

Iplln +xpl - 1€ —n—pl

xg<2£;p y(gnp))xo(l%—p—?';('f—n—p)l)'

BEm, piz,y)lpl ™t =

X

(5.2.99)

Using (3.1.36) and the double-null assumption (5.2.2), it is easy to see that

[FHBE . o2, 9)|pl ™ e1a (D)1, (€ = 1 = P)ra M@} 11 oy

(5.2.100)
5 2—b2l2—l1—l3

for any z,y € [0,1] and [,11,l3,lo as above. Taking x derivatives generates
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factors < 27°2!3~! from the terms in the first two lines of (5.2.99), while taking
y derivatives generates factors < 2/1~ from the terms in the third line of (5.2.99).
Combining these estimates yields (5.2.98).

We can now complete the proof of (5.2.97). In view of (5.2.98) it suffices to
show that

2m272b Z (27}61 + 271{)3)
k3<k—10

/]Rg p'(p, € —n— p,n) P, UFht (€ —n — p, s)

X Pkg‘/Uh\W3 (p, s)Pk’/JFZ (n, S)PE/[EL(& s) d€dndp
< E?2k12—2N(n)k+22H(q,n)5m—6'm’

(5.2.101)

provided that p’ is a multiplier satisfying || F~'p’[| 1(gey < 1. The sum over
ks > ki is bounded as claimed due to (5.2.88), while the sum over k3 < k; can
be estimated easily as in (5.2.91). This completes the proof of the lemma. [

5.3 MIXED WAVE-KLEIN-GORDON INTERACTIONS

We consider now the interactions of the metric components and the Klein-
Gordon field, and prove the bounds (5.1.25)—(5.1.28) in Proposition 5.2.
We start with the semilinear estimates.

Lemma 5.9. With the assumptions of Proposition 5.2, for anym € {0,..., L+
1} we have

Z 22N(n)k+7}c227(m+k_)‘/ G (5)

kk1,ko €2 Im (5.3.1)
X G| Py, UF1V41 (), Pp, US2¥02(s), PLUSM(5)] ds| < ed22H (am)om

where m € M* (see (3.2.42)) and the operators Gm are as in (5.1.30). Moreover,
Z 22N(n)k+2k;—k1

[ ants)
kK1, ko €7 Im

X G [P, UFM11 (), P U202 (), PLUSY ()] ds| < ei22H (@m)om

(5.3.2)

if ng < m. Therefore the bounds (5.1.25)—(5.1.26) hold.

Proof. The proofs are similar to some of the proofs in section 5.2, using mainly
L? or L™ estimates on the frequency-localized solutions. In some cases we
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integrate by parts in time, using (5.1.32)—(5.1.33) and the bounds in Lemma 3.4
on the resulting multipliers.
Recall some of the L? estimates we proved earlier,

<2l’ 2m)72—l/2 HPlUICh(S) HL2 < 512H()c)5m2—N(n/)l+

||PlUKw(3)HL2 < 512H()C)5m2—N(n/)l+

)

(5.3.3)

and

2m27l/2||]3l(88 + Z-Awa)UICh(S)HLZ < 6%2H()C)6m271v(n')l++7l+ . 2355m,

. , (5.3.4)
2m||Pl(ag + iAkg)U’Cw(fS)HLZ S 6%2H(}C)6m27N(n W4t . 2355m,

for any K € ng, | €7Z,and s € Jp,. See (3.3.3) and (4.2.3)—(4.2.4).
Letting k = min{ky, k2, k3} and k = max{ky, ko, k3} as before we find that

22N(n)k+7k22'y(m+k_) |gm [Pkl U[llw,bl (5)7 Pk2 Uﬁgw,m (S), PkU[lh,L(S)] |
< Bokg(mtk™) g(k—k) 29[H(La)+ H(L2)+H(£)omg N (m)ki N (na)kf +N (k"
(5.3.5)

using just the L? bounds (5.3.3), and

22N(n)k++k;—k1 |gm[Pk1 Uclhl,bl(s),PkQUczw,Lz(s%PkUz:w,L(S)H
< 3okg—v(ky +m)g(k—h1)/2 (5.3.6)

w QUH(L1)+H (L2)+H(L)]dmg—N(n1)ki —N(n2)kf +k3 +N(n)k"

We prove the main estimates in several steps.

Step 1. We consider first the case when min{nj,ns,n} > 1. The bounds
(5.3.5)—(5.3.6) already suffice in this case to bound the contributions of the sums
over the triples (k, k1, ko) with min{k, k1, ko} < —m or max{kq, ko, k3} > m/4,
due to (2.1.53). They also suffice to bound the entire sums when |J,,| < 1.

For the remaining contributions we integrate by parts using (5.1.32)—(5.1.33).
Using also Lemma 3.4 (i) each term in the sum in the left-hand side of (5.3.1)
is bounded by

C22N(n)k+—k22’y(m+k7)23ﬁ/22—k22ﬁ+ Squ {[Hpkle:lw(s)”LZ
sE m

+ 27| Py, (05 + ibig ) U (5)]| 2] | Pe, US2Y ()| 2| PLU " (5) | 2
+ 27| P, U () | 2| Pra (95 + g )U 2 (5) | 2| PLU " (5) 2
+ 27| Py U ()| 22| Pry U2 (5) | 22 | P (05 + iawa) US" (5) [ 22}
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In view of (5.3.3)—(5.3.4) this is bounded by
k) 29l (L1)+H (L2) - H(L)]om

% 2—N(n1)kf—N(ng)k;JrN(n)m 9365m99 max{k* kT k3 }

Since n > max{ni, no} and recalling the bounds (2.1.53), this suffices to com-
plete the proof of (5.3.1). Similarly, each term in the sum in the left-hand side
of (5.3.2) is bounded by

06?23(E7k1)/22[H(£1)+H(£2)+H(£)]6m27N(n1)k:j'fN(nz)k;+k:3'+N(n)k+2366m29E+

(compare with (5.3.6)) and the desired bounds (5.3.2) follow.

Step 2. We consider now the case when min{n;, ng,n} = 0. By symmetry,
the possibilities are (ny = 0, n > ng > 0) in (5.3.1) or (ngo =0, n > n; > 1) in
(5.3.2). The two possibilities are similar, by changes of variables. More precisely,
assume that 0 < ¢ <n <3 and L,Ly € VI, t € [0,T], and m € {0,..., L+ 1}.
For any k,ki,k2 € Z and ¢, 11,12 € {4, —} let

Tonikoky kg 1= / G (8)Gun [Pr, UV (5), P, US2V2(5), Py U™ (s)] ds, (5.3.7)
J

m

where ||F~1(m)||z: < 1. We will show that

ST o2 RNMR KT ] S edo2Hamim (5.3.8)
k,k1,ko€Z
and, if n > 1,
+ WEF o— n)dom
> 2 NI 9Tk k| S 722 @O, (5.3.9)
k,k1,k2€Z

These two bounds would clearly suffice to complete the proof of (5.3.1)-(5.3.2).
Using just the L? bounds (3.3.3) and (3.3.7), we have

27k|-,[m;k,k1,k2‘ < E?‘Jm‘QQH(q,n)t?mQEJrkf 9(k=k)/2  g—y(m+k™)grks

5.3.10
5 27N(n)k+fN(n)k;r27(N072)k1+. ( )

Using the L> bounds (3.3.13) on the Py, U¥*** component we also have

2_k‘zm;k,k17k2| 5 E?'Jm|2—k/22—m+6’m/22k;/22—7(m+k7)

« 9~ Nkt =N(n)ki g—(N(1)~2)kf (5.3.11)

The bounds (5.3.8)—(5.3.9) follow if |J,,| < 1. Indeed, the bounds (5.3.10)
suffice to estimate the contribution of the triplets (k, k1, ko) with |k|+|k1 |+ k2| >
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6’m (in the case n = 0 we use also a similar bound with the roles of k; and ks
reversed). On the other hand, the contribution of the triplets (k, k1, ko) with
|k| + k1] + |k2| < &’m can be bounded using (5.3.11).

On the other hand, if |J,,| ~ 2™ > 1 (thus m € [6~!,L]) the bounds
(5.3.10) still suffice to bound the contribution of triplets (k, k1, k2) for which
either £k < —m or max{k, ky,ke} > 4m. For the remaining contributions, we

consider several cases.
Step 3. We show first that if m € [1/4, L] then

2 k)o—k 3092H(q,n)o
22V TR | Tk k| S €722 (00,
k,k1,ko€Z, k>—m,k<—0.6m
+ ot ol :
E 22N(n)k2 2k1 2) k‘Im;k7k1,k2| § 6‘;22[‘[((],77,)6’”7,7 n Z 1.

k,k1,k2€Z, k>—m, k<—0.6m
(5.3.12)

This is the case of small frequencies 2*. The estimates (5.3.10) cleary suffice to
control the contribution of the triplets (k, k1, ko) for which & < —0.6m and k; <
—0.4m. They also suffice to control the contribution of the triplets (k, k1, k2)
for which k < —0.6m and (1 +~)(m + k) + ki (1 + k) — 6.5k, < 0.

It remains to bound the contribution of the triplets (k, k1, k2) for which

k € [-m,—0.6m] and (m+ k) + ky > 6k;. (5.3.13)

In particular, &y > —m/2 + 100. Let J; := ki + m — 40 and decompose
Py U¥ = ULy + U asin (3.3.1)(3.3.2). Let

I71n§k,k1,k2 = / qm(s)gm [U;p:]?,m (S)’ Pk2 U£2¢7L2 (8)7 PkULh’L(S)] ds,
m (5.3.14)
Igz;k,kl,kQ 1:/ Qm(s)gm[U;pjll,kl (s), Pr, U272 (s), P, U (s)] ds.

m

Using (3.3.3) and (3.3.17) we estimate

—k —k Lh s Lo,
2 sk ] S 27275 sup | PUS ()2 IUL, 5, (8) ]l 2oe | P U272 (5) | 12

s m

< 5?22H(q,n)5m(2m2k2k;)71/22mk1_/20277(m+k)27N(n)k;'27(N075)kf'.
Therefore, for (k, k1, k2) as in (5.3.13),

27k227(m+k) |In11 ‘ 5 6?22H(q,n)6m(2m2k2k;)71/24»’}/275/”61"

skok ko

27]622]\](77,)]6; 2kfr |Il

k| S €228 (@m)Im gmokoky Ty =1/2 (5.3.15)

w 9=V (m+k)gN(n)k; —(No—6)ki
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Similarly, using (3.3.3), (3.3.4), and L? bounds we estimate

—k k Lh ) Lo,
2T ks ] S 27247 Sup 1O (3122 |UL52 1, ()21 Py U242 ()] 2
sClm

< €£I>22H(q,n)5m27’y(m+k:)2305m2k7k1_ 27N(n)k;27N(1)k1" )

Therefore, for (k, k1, k2) as in (5.3.13),

—ko2vy(m+k) |72
2772 Zons ke

9 k2N (ks okt (Tt g | S €722 (@r0mo =tk 9300m (5.3.16)

‘ S €§22H(q,n)§m27(m+k)2305m2k7k17 27kfr,

« 9k—ki 9N(n)ki 9—N()k{ +ki

It is easy to see that (5.3.15)—(5.3.16) suffice to bound the remaining contribution
of the triplets (k, k1, k2) as in (5.3.13). The desired estimates (5.3.12) follow.
Step 4. We show now that if m € [1/4, L] then

2v(m~+k7) 92N (n)kt o—k 3692H (q,n)ém
E 2% V92N (k™o ‘Im;k7k1,k2| Sej2 (@)
kki,ka €7, k>—0.6m, k<88 m

I
§ 22N(n)k2 +k 92 k‘Im;k,kl,k2| g 5?22H(q,n)6m.
kk1,ka €7, k>—0.6m, k<85'm
(5.3.17)

For this we use normal forms; see (5.1.32)—(5.1.33). Using also Lemma 3.4 (ii)
we estimate

7.+
2 Dok kr o] S 272521 sup {1 Py UY ()| e[| Py U2 (5) | 2 | PeU " (5) | .2

s€Jdm

+ 2" Py (05 + i8ig)UY (8) | Lo | P US2Y () 22| P U ()] 2
+ 27 P, U (5)l| o | Pra (95 + ieg)U Y (5)| 2| PLU " (5) | 2
+ 27 Py UV (8) | o | Py US2Y () | 22| P (05 + i a)US" (5)| 22 }-

Using the L? bounds (5.3.3)—(5.3.4) and the L> bounds (3.3.13) and (4.2.6) we
then estimate

’ .
2_k|Im;k},k1,k2‘ 5 Ei’2_|k1|/42_3k/22_m+86 7n2—4k

)

and the bounds (5.3.17) follow.
Step 5. We finally bound the contribution of high frequencies: if m €
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[1/6, L] then

2N (n)kt 92v(m+k™)o—k 3
E 92N (MET 92 b A o
k,k1,ka€Z, k>—0.6m, k>85"m
Z ot o :
22N(n)k2 +k1 2 k|Im;k,k'17k2| S 6%, n 2 1

k,k1,ko€Z, k>—0.6m, k>85'm
(5.3.18)

Assume first that n < 2. Using (3.3.3), (3.3.11), and (3.3.13), with the lowest
frequency placed in L*°, for triplets (k, ki, k2) as in (5.3.18) we have

2R Tty | S 3220 M- NORS 9= NORT i o — g
27k|Im‘k ks kQ‘ S 5113225/7712]{:1_/274]@?27N(n)k;27N(’I’L)k:+7k/2 lf kl — E,

27k|Im;k,k1,k2‘ < 5?226/7712]62_/27419;'27N(n)k+7k/227N(0)k:1" if ky = k.

These bounds suffice to prove (5.3.18), due to the gain of high derivative in all
cases.

Assume now that n = 3. The bounds (5.3.11) suffice to bound the contri-
bution of the triplets (k, k1, k2) as in (5.3.18) for which & > 0. On the other
hand, if k¥ < 0 (thus k = k, kq,ke > 85’'m — 6), then we let J; = m — 40 and
decompose Py, U¥"1 = U;bjllykl +U1>pf]bll’k1 and Ly k1 ks = Lmsk,k ks + Lk ko ko
as in (5.3.14). Then we estimate

2 M| Dk o] S 272K sup [|PUE ()| IUL5) , (5) |z | Py U242 (5)] | 2

sCJdm

< 5?225/1112—k/22—m/22—N(n)k;2—(N0—5)kfr’
using (3.3.3) and (3.3.17). Also

27K T ke k| S 27247 Sup 1PLU " ()| [UL 7 g, ()] 2 [ Py U522 () | 2
sC€LIm

< 8?225/77121@271\7@)1@;27N(1)k;r7

using (3.3.3)~(3.3.4). Therefore, 27| T x, iy | < £3220'm2= Nk o= N jf
k € [—0.6m, 0], which suffices to bound the remaining contributions over k < 0
in (5.3.18). O

We can now finally complete the proof of Proposition 5.2.

Lemma 5.10. With the assumptions of Proposition 5.2, for anym € {0, ..., L+
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1} we have

Z 2N(n)k+(2N(n)k2++2k;fk1+2N(n)kf)(27k+_|_2fk;r)‘/ G (5)
k.k1 ko €7 Im

X G [P, U1 (8), P, U2V (5), P U (s)] ds( < edg2H(gm)om,
(5.3.19)

where L, Ly € V4, n < 3, and m € M*. Moreover, if n,,,, € M®, s a null

L1L2
multiplier then
/ Gm(8)
Jm

X Ga,,,, [P UM (s), Po,US2Y2(s), PLUSY ()] ds| < ef22H(ameom,
(5.3.20)

Z 2N(n)k+(2N(n)k;+2k;—kj2N(n)kl+)
K.k, ko €Z

As a consequence, the bounds (5.1.27)—(5.1.28) hold.

Proof. Using the L bounds (3.3.11) and the L? bounds (3.3.3) we have the
general estimates

‘ / G (5)Gun [Py U™ (5), Po, US212(s), PUSY(5)] ds
T (5.3.21)
S E?|Jm|22H(q,n)67712—m+306m2kf2—N(n)k+—N(n)k2+2—(N(1)—2)k1+-

As before, we divide the proof into several steps.
Step 1. We consider the contribution of large frequencies k1, and show that

Z 2N(n)k+(2N(n)k2++2k;—kj2N(n)k;) / am(3)
kb1 k2 €7, ki >k—8
X Gun[Pr, UM (5), Pr, US> (5), PRUR"(5))] ds‘ < e392H(am)om
(5.3.22)

where k = max{k, k1,ko}. Clearly, N (kg < ks —ki QN()k{ fo; (k,k1,ka) as
in (5.3.22). By symmetry we may assume ky < k (the harder case).

If n < 2 then we can use the L> bounds (3.3.13) and the L? bounds (3.3.3)
to estimate

‘ / qm(s)gm[Pkthlm <s>7Pk2U[,21/),L2 (S)’PkUL'L/J,L(S)] ds
" (5.3.23)
< 5§|J ‘22H(q7n)5m2k;/22—4k;2—m+5’m/22kf/22—N(0)kf_N(n)kJr.
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The bounds (5.3.21) (used for n = 3) and (5.3.23) (used for n < 2) show that the
contribution of the triples (k, k1, k2) in (5.3.22) for which max{|k|, |k1|, |k2|} >
2§'m is bounded as claimed.

Assume now that max{|k|, |k1, |k2|} < 28'm. If |Jp| < 1 then the bounds
(5.3.21) and (5.3.23) still suffice to control the contribution of these triples. On
the other hand, if m € [§71, L] then we use normal forms (see (5.1.32)—(5.1.33))
and Lemma 3.4 (ii) to estimate

\ / G (8)Gm [P U1 (5), P, UL2Y42(5), PLUEY (5)] ds
JIm

7.+
S 272 sup {|| Py, U™ (5)|| poe || Pry U2 ()| 12 | PeUSY (5) | 2
€ Jm , (5.3.24)
+ 27| Py (05 + ihwa) U™ (8)l| o= | Pia U2 (5) || 22 | PLU Y (5) [ 2

+ 2| Pr, UM (5) || Lo || Py (8 + i81g) US2Y (5) || 22 || PeU Y (5) | 2

+ 2| P, UM (5) | oo || Pry US2¥ (5) | 2 || Pi (05 + i kg ) U= ()| 22 }-
In view of the L? bounds (3.3.3) and (4.2.4) and the L> bounds (3.3.11) and
(4.2.5), all the terms in the right-hand side of (5.3.24) are bounded by C2~™/2,

This suffices to bound the remaining contributions in (5.3.22).
Step 2. We complete now the proof of (5.3.19) by showing that

S 2NN g )| [ g
k.k1.k2€Z, k1 <k—8 (5.3.25)

X G [P, UM 41 (s), Py, UL2%502(s), PLUEY(s)] ds( < g3g2H(gm)om.

Indeed, we may assume that 2¥ ~ 22 and use (5.3.21) to bound the contribu-
tion of the triples (k, k1, k2) in (5.3.25) for which max{|k|, |k1, |ka|} > 26'm. For
the remaining triples (k, k1, ko) with max{|k|, |k1|, |k2|} < 2§’m we use normal
forms and estimate as in (5.3.24).

Step 3. Finally, we complete the proof of (5.3.20) by showing that

Z 2N(n)k+ 2N(n)k;

/ G (s)
k,k1,k2€Z, k1§E—8 Im

X Gu,,,, [P UM (s), P, USY2 (), PLUSY ()] ds| < ef22H(@meom,
(5.3.26)

This is more subtle, essentially due to the possible loss of high derivative,
and we need to exploit the null structure of the symbol n,,,,. We start by
estimating some of the easier contributions. Recall the coefficients by(s) =
bi (g, m; s) defined in (4.3.20) and the time averages by m = bg,m (g, n) defined in
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(5.2.17). Using (3.3.11) and (4.3.22) we have

[ (G0, [P U9, P U (), U (5)] ds
Jm (5.3.27)

<& |Jm|22H(q,n)5m2—m+306m2k; 274kf27N(n)k+7N(n)k; bi,m

if |k — k2| < 8. In view of (4.3.21) this suffices to control the contribution of the
triplets (k, k1, k2) in (5.3.26) for which |k1| > §'m.

Assume that |k1| < §’m. The bounds (5.3.27) still suffice to control the sum
if |J;n] < 1. On the other hand, if m € [, L] then we can use normal forms
as in (5.3.24) to control the contribution of the triplets (k, ki, ks) for which
max{k, k2} < 908'm.

After these reductions, we may assume that

me 6t L], k1| < 8'm, k, ko > 808'm. (5.3.28)

We can further dispose of the resonant part of the multipliers. As in (5.2.12)
we decompose

Ny = nflLQ + ﬂ?ﬁz’ nflLQ (0,m) = ¥<qo (B (0,m)00,.,(0,1m), (5.3.29)

where go := —26’m and E,,,, is defined as in (3.1.23). In view of (3.1.30),

‘ / Gm (S)anlLZ [Pkrl Uh1,L1 (S), sz U£2¢,L2 (S), PkULw’L(S)] ds

Im (5.3.30)
< 612(1022H(q,n)6m2—m+305m2k;2—4k;r2—N(n)k+—N(n)k;bi7m7
for k, k1, ko as in (5.3.28). The key factor 2% in the right-hand side is due to
the nullness assumption on the multiplier n,,,,. The bounds (5.3.30) suffice
to control the contributions of the resonant interactions. To summarize, for
(5.3.26) it remains to show that

'/ Qm(s)gn?TL [Pkl yhiu (s),PkZU‘:W“ (S),PkUcw’L(S)] ds
T v (5.3.31)

—2N(n)kT 12
S 512 (n) bk,m’

provided that m, k, k1, ko satisfy (5.3.28).
Step 4. The bounds (5.3.31) are similar to the bounds (5.2.57) in Lemma
5.7. Recall that

1 Pea U242 (5) | 2 + [1PLU S (s) |2 S bie(s)2° ™27 V00K,

. (5.3.32)
2| Py UM ()| oo + 227 (|(Ds + ibwa,i ) P U™ (s) || 1o S €227
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(see (4.3.22)) and

105 + 18 kguia) Pea U522 ()] 2 + (1D, + g, )BTV * (5)]|

< €1bk(8)2_m+6/m2_N(n)k+k. (5333)
These bounds follow easily using L? x L estimates from the formulas (2.1.38)
and (2.1.16).

To prove (5.3.31) it is convenient for us to apply the wave operator A, to
the Klein-Gordon variables U%2% and U%Y, instead of the more natural Klein-
Gordon operator Ay,. The reason is to be able to reuse some of the estimates
in Lemma 5.7, such as (5.2.70), and also use some of the bounds in Lemma 3.6
that do not involve derivative loss, such as (3.1.36). We notice that the two
operators are not too different at high frequency,

[(Awa = Arg) Pifllee S 27 NP fllee, L€ {k ko). (5.3.34)

Asin Step 1 in the proof of Lemma 5.7, the estimates (5.3.31) follow easily if
L = —1ig, using normal forms and the ellipticity of the phase Ayq,,(§)—Awa,i, (7)—
A, (£ —n). On the other hand, if ¢ = ¢ then we may assume that ¢ = ¢ = +
and replace the variables U%2¥»*2 and U*%* with the quasilinear variables 2/~2¥
and UY | at the expense of acceptable errors (as bounded in (5.1.42)). We then
apply normal forms and notice that

_ M€ =mn,m)
|7 ﬁf— (€ =)}

< 27]01 273(]0 5 285/777,7

L1(RS) ™
(5.3.35)
as a consequence of (3.1.36) and (3.1.48) (notice that there is no high derivative
loss in these bounds). Therefore we can estimate the first two terms in (5.1.33)
using just (5.3.32).
To control the remaining two terms and prove (5.3.31) it remains to show
that

\H [P, U1 (s), (8 + iwa) Prad 27 (5), PUY (5)]
o+ Mgy, [Pe, UM (3), PV (5), (0, + i) UV ()] | (5:3.36)
5 512—2N(n)k2—mbk(s)2

)

for any s € J,,,, where the operators H“Tf+ are defined in (5.1.31). We decompose
(05 + ihwa) PUSY = (05 + iTs, ) PUY —iT%, 5, Pld™" — iT >0 PUSY,

where ¥4, Xgy are defined in (5.1.37)-(5.1.38) and 21 (z,¢) = Sya (2, ¢) — [C].

a

Notice that [[Xgg — Zuallce, < 15 see the definition (3.1.52). Therefore, using
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(3.1.54) and (5.1.49) we have

105 + iTs,, ) Pild=¥ (5)|| 12 S €27 H0m2 =Nk, (s),
|51, — S PR | 12 S 2727 N (),

for any s € J,,,. Therefore, recalling that k& > 800’m and the bounds (5.3.32),
(5.3.35), these contributions to the second term in the left-hand side of (5.3.36)
can be bounded as claimed. Similarly, we can replace (9s + iAyq)Pr,U?Y
with —z’TEﬁszuﬁW in the first term, at the expense of acceptable errors. For
(5.3.36) it remains to prove that, for any s € J,,,

’,an”l’+ [Pkl Uhl’b1 (S), ingéP]@2u£2¢(S), Pkuﬁw(s)]
+ Mo, [Po, U4 (5), U™V (s), iTygs PV (5)] \ (5.3.37)
5 512_2N(n)k2_mbk (8)2

The bounds (5.3.37) are similar to the bounds (5.2.67) (with J; = o0).
They follow by the same argument, first rewriting the expression as in (5.2.68)—
(5.2.69), and then using the general bounds (5.2.70). This completes the proof
of (5.3.37), and the desired bounds (5.3.20) follow.

Step 5. Finally we prove the bounds (5.1.27)—(5.1.28). Notice that

: 1
Pi B _ P - (5.3.38)
G,kg

ol (o) el p)Ipl+ ()

for any p € R3 and j € {1,2,3}. We examine now the multipliers p
the formulas (5.1.12)-(5.1.15), and compare them with the multipliers p&? in

L1st2,l

(5.1.8)~(5.1.11). The multipliers p&¢, are null in the variables & — 7 and 7, as

L1st2,L
shown in the proof of Proposition 5.1 in section 5.1, and the difference between
pg ’fqu pg 4, gains at least one derivative either in £ or in 7, due to (5.3.38).

The bounds (5.1.28) follow from (5.3.19)—(5.3.20).
To prove (5.1.27) we use identities similar to (5.2.4)—(5.2.6),

in

Pkg [~“Va 8 £¢ + hOO‘CqM [ggqaﬂﬁ,,(P,?gﬁw) + hOOP]?g[/w]
= Z Z {nglqﬁ’fzg HvrlUG,u’ <V>Uﬁw’L2]

GE{F,F,wn,Omn} t1,t2€{+,—}
— Low (VT UG, PL (V) USY2])
— 2{P}},[R;Ro7 - 8;00Ly)] — R; Ro7 - 8;00 (P}, L1)}
+ Y {PLIGY, - 0,0,L9) — G - 0,0, (Pr L)},
(p,v)#(0,0)

where the null multipliers q%;%9 are defined in (4.3.60) and, as in (5.2.4), G”2 are

L1tz
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linear combinations of expressions of the form R*|V|~!(G>18,h). The contri-
butions of the cubic and higher order terms in the last two lines can be bounded
as in (5.2.7).

To estimate the main terms we decompose, for G € {F, F,w,, 9mn},

Pyl e [[V]TIUS (VUSR] = Lo [|[V|TTU S, PL (V) U]
= Pl U U2 4+ PLT 26 [UGa, LY (5.3.39)

Mg

+ g, U9 PLUS,

where

Biy(n+6) = Py () (n)
PR o

W2 (0,1) = oo (A0, ) s 4(9|/In)<9|>

PR (n+0)— Pkg(n)@}

PR ) o)

W01 = o A0, )01/

lez(e n) - SDSO( )ngig(eﬂn)

(5.3.40)

+ p<-a(l6]/Inl) =+

It is easy to see that, for a € {1,2,3} and G € {F, F,wn, Ymn}

|7 {5 0. m) ok, (.0} |t o) S min{1, 275} for any k. ki ks € Z.
Therefore the contribution of the multipliers m1 G can be controlled using just
(5.3.19). To bound the contributions of the multlphers m? e G and leL we replace
first the symbols q7*9 with &;“¢, and gain a factor of (n)~' (compare (4.3.60)
and (4.3.59), and use (5.3.38)). After this substitution we can thus use (5.3.19)
to estimate the contributions of the smoothing components, and (5.3.20) for the
contributions of the null components associated to the null symbols qG we. This

completes the proof of the bounds (5.1.27)—(5.1.28). O
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Chapter Six

Improved Profile Bounds
6.1 WEIGHTED BOUNDS

In this section we prove the main bounds (2.1.51). Recall the identities (2.1.38).
We also need a key identity that connects the vector-fields I'; with weighted
norms on profiles.

Lemma 6.1. Assume p € {wa, kg} and
(0 +1iM,)U =N, (6.1.1)
on R3 x [0,T]. If V(t) = e U(t) and | € {1,2,3} then, for any t € [0,T),

T (& 1) = i(9e N (&, 1) + e O [AL(V (€, 1)) (6.1.2)

Proof. We calculate

LU (& 1) = FlamidU + AU}, 1)
= i(0a N)(&:1) + 90 [Au(OT (€. 0] + it &, 1)
= (0, N) (&, ) + e O [AL(EV (€, 1))
—it(0g M) (©)e M ONOV(E ) +itGT (&, 1)-
This gives (6.1.2) since (9g,Au)(§)AL(E) = & O
Our main result in this section is the following proposition:

Proposition 6.2. With the hypothesis in Proposition 2.3, for any t € [0,T],
LeVin<2 1e{l,2,3}, and k € Z we have

n’

28228 ()| Py V2 ) ()| 2 + 28| P VEP ) (8) 1

N (6.1.3)
g €0 <t>H(q+1,n+1)527N(n+1)k

Proof. The identities (6.1.2) and (2.1.38) for U~ ¢ give

T U%has (€,1) = i(Dg L) (6, 1) + e M0e g [A () VERs (¢, 1)),
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for I € {1,2,3}. Therefore

e*”Aw”‘(E)Awa(ﬁ)(agl‘m)(ﬁ) = Fﬁm &) — i(@glﬁ//\f?ﬁ)(@
— et (g /| VPR 6).

We multiply all the terms by 27%/2(25 (1)) (€) and take L? norms, so

257228 (1)) |or (€) (B, VER=) (©) 2 < 27H2(2* (1)) llon(©)TIU R (£) 2
+ 2722 (1)1 (€) (B N2 ) (€) | 2

2R 22 (1) o (€)VER (&) | 2.
(6.1.4)

To control the first term in the left-hand side of (6.1.3) it suffices to prove that
- - AR _ +
27225 (1) lon () (0, LND5) (€)1 2 S ()@ Hhn 9= NInH R (6.1.5)

and

2722 (0) lpn ()T o () |z S eoft) 1D NI,
_ — (6.1.6)
27228 () lion )V Eres (&)l z S eoft) TR N IR,

The bounds (6.1.6) follow from the main improved energy estimates in Propo-
sition 5.1, and the commutation identities

[ UEhes — gTilhas — _j AL [TERs (6.1.7)

The nonlinear estimates (6.1.5) follow from (4.2.5) and the observation H(q,n)+
U(n) < H(g+1,n+1) — 4 (see (2.1.49)).

The inequality for the Klein-Gordon component in (6.1.3) follows similarly,
using the identity (6.1.2) for u = kg, the improved energy estimates in Propo-

sition 5.1, and the nonlinear bounds

4 (E)(Ge LNP)(E) 2 S 3ty a1t g N i (6.18)
These nonlinear bounds follow from (4.2.6). O

6.2 Z-NORM CONTROL OF THE KLEIN-GORDON FIELD

In this section we prove the bounds (2.1.52) for the Klein-Gordon field. We
notice that, unlike the energy norms, the Z norm of the Klein-Gordon profile
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V¥ is not allowed to grow slowly in time. Because of this we need to renormalize
the profile V¥.

6.2.1 Renormalization

We start from the equation 9;V¥ = eAs A% in (2.1.39), where N'¥ is the
nonlinearity defined in (2.1.4). To extract the nonlinear phase correction we
examine only the quadratic part of the nonlinearity, which is (see (2.1.17))

N2 = —hoo (A — ) + 2h0;0009 — hj0; 011 (6.2.1)

The formulas in the second line of (2.1.36) show that

_— U6 (p) — iU%— _ C UF(p) + U
_5800(6) = g LD VPO ) i, LD EUOT()
2A1g(p) 2

Therefore, using also the identitities U%%(p,t) = eFithra(P) V4% (p 1),

M OND2 (¢ 1)

1  ithg (€)  Fit Ak (E—n) (79 T

= B R A (N —n,n,t)dn,

(2n)? ;/st € (€ =1, 1)qkg,+(§ —m,m, 1) dn
(6.2.2)

where
- A _ - ,
Qig. (1, 1) = o, ) k) hoy (1, )p; % Fyr(n, ) =225 (6.2.3)
2 2A1q(p)

We would like to eliminate the resonant bilinear interaction between h,g and
V¥%* in (6.2.2) corresponding to || < 1. For this we define the Klein-Gordon
phase correction (justified heuristically by the approximate formulas (2.2.25))

L ¢ low s S Akgi(g)
On(6.t) = [ {hg(s6/ 01y 9).5)™ (6.2.)

+ hi 56/ Mg (€), $); + M (5€/ Mg (£). 5) sz?@ joo
g

where, for any h € {has} the low frequency component h'°? is defined by
hlow(p, s) := p<o({s)?° p)h(p, 5), po := 0.68. (6.2.5)

The reason for this choice of pg, slightly bigger than 2/3, will become clear
later, in the proof of Lemma 6.7. Finally, we define the nonlinear (modified)
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Klein-Gordon profile vy by
Ve 1) 1= e 1O ED U (¢ 1), (6.2.6)

Recall that the functions h!°" are real-valued, thus Oyg is real-valued. Let

h§" := hap — hlo¥ and recall the definitions (6.2.3). For X € {low, high} let

— Arg(p) —~ i Pi
x = +h¥ kg x Y % (6.2
qu,i(p7"7at) hOO(nat) 9 + hO](nvt)p] h]k(nat) 2Akg(p) (6 7)

The formula (6.2.2) and the equation 9;V¥ = e+ A% show that

4

DV (E,1) = e O EN(QV (£, 8) — iV (E )0y (E,1)} = D RY(E,1),
a=1
(6.2.8)
where Oy(&,1) := (9:Oy) (€, 1),
*i@kg(gvt) . . —
R¢ ) = 67/ 1t rg (&) it g (E=m) 1/, — (¢ — t
1(§ ) (277)3 RA e € (g n ) (629)
X qi_ (& —m,m,t) dn,
671'@;99(5,7&) - 3 — — gy ow
Rg)(§7 t) = W /R3 7’{6 Hkg (€)= o (& n))vw (f -1 t)qévg,-‘r(f - mnn, t)
— e EM MOy (¢ t)qie?, (€,m,1) } dn,
(6.2.10)
—iOg(&,t) ) ) —
'Rg)(f,t) = % Z / ielt/\kg("f)efltl\kg,t(E*n)vw,b(f _ 77725)
T e R (6.2.11)

X qZ;‘?Lh(g -nn, t) dna
and

RY(€,1) 1= e~ OraED A O [N (€ 1) — NV2(€, 1)), (6.2.12)

6.2.2 Improved Control

In the rest of this section we prove our Z-norm estimate for the profile V¥.

Proposition 6.3. We have, for any t € [0,T),

V() z., < eo- (6.2.13)
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Since |X//’\‘/’(§,t)| = [V¥(&,1)], in view of the definition (2.1.45) it suffices to
prove that

lon( @V (&, 12) = Vi (& 1) e S 0270/ 227k /2mh7 9= Mok (6.9.14)

for any k € Z, m > 1, and t;,ts € [2™ — 2,27 N [0,7]. We prove these
bounds in several steps. We start with the contribution of very low and very
high frequencies.

Lemma 6.4. The bounds (6.2.14) hold if k < —km or if k > 6'm — 10.

Proof. Step 1. We start with the case of large k > §’m — 10. Notice that
1QiAVY B2 S oty 27 NOKT 2 HHQu VY (1) o S eoft)? 27N OKT,

for any j > —k~, due to Propositions 5.1 and 6.2, and Lemma 3.3 (i). Using
(3.2.62) we have

IBVo(0) o < 230220 (1)7 -2~ NOK (1= /g NIK 34/
< EO<t>6'2—3k/22—N0k+Q—dlﬁ7
for any t € [0,T] and k € Z (recall (2.1.43)). The bounds (6.2.14) follow if
2k Z 26’m.
Step 2. It remains to show that if k < —km and t € [2™ — 2,2™ 1 N[0, T]

then e
ek VY (&, bl S o2 0m/227 2k, (6.2.15)

It follows from Proposition 6.2 that
2 [lok(£) (96, VE) (€, )12 S eoft) T Lt DI Nok ()i

forany t € [0,T], k € Z, 1 € {1,2,3}, and L € VI, n € [0,2]. Using Lemma 3.3
(i), we have

sup 27(|Q VY ()| 2 S eo(t) Lt NOQ= NokT T DART (6 9 16)
j=—k~

We use now (6.2.16) and (3.2.63) to estimate

Hp/kﬁ(t)”Lw 5 273}6/2{ sup ||Qj,kvw(t)||H§UZ,1}(176)/2{€0<t>H(1’2)62k}(1+6)/2,
j>—k~

Therefore, recalling that 2 > 44’, for (6.2.15) it suffices to prove that

||Pka(t)||Hg.1 < g (t)20 gkt 10sk
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if k < —kmandt € 2™ —2,2"F1 N[0, 7). In view of (3.1.7), for this it suffices
to prove that

3
1BV (0)l|2 + Y Neu(€) (D, V) E )2 S eot)™ 210, (6.2.17)

a=1

for any leZand t € [O,T], where ) € {Id, 923,931,912}.

The bound on the first term in the left-hand side of (6.2.17) follows from
(6.2.16). To bound the remaining terms we use the identities (6.1.2). For (6.2.17)
it suffices to prove that

| PLU™ ()22 + [ 91(6) (0, )€ D12 S 2o0(8)?5'210%, (6.2.18)

forany I € Z,t € [0,T], and a € {1,2,3}. The term ||PT,U?¥(t)||z> is bounded
as claimed due to (6.2.16) and the commutation identities (6.1.7) (with Ayq
replaced by Ayg and hag replaced by ¢). Therefore, it remains to prove that

[PLONY (€, 8)|| 2 S eo(t)? 210k min{ () ~1, 2% J2=2+"

N : 6.2.19
10k (&) (e, ANY) (&, )| L2 S £o(t)20' 9105k ( )

for any ke Z,te [O,T], Qe {Id, 923,9317012}, and a € {1,2,3}

Step 3. The bounds (6.2.19) are similar to the bounds in Lemmas 4.10 and
4.12. We may assume k < 0 and the only issue is to gain the factors 2'%* and
we are allowed to lose small powers <t>25/. Notice that the cubic components
QN¥:23 gatisfy stronger bounds (this follows from (4.2.52)—(4.2.53) if 2% > (¢)~*
and the L? estimates (4.1.69) and (3.3.5) if 28 < (¢)71). After these reductions,
with I as in (3.2.41)—(3.2.43), for (6.2.19) it suffices to prove that

+_ 01
o 2 B[P, US R P USR8 1
(k1,k2)€X), (6220)
< ) 2O min((1) !, 2F)
and
n
> 2k2"“IIsDk(i)(agaf{I[PklU“h’“,szUﬁw’”]})(«S,t)lng
(k1,k2)€X) (6221)
5 €%<t>26'210mk7
for any k < 0, h € {hag}, t1,02 € {+,—}, a € {1,2,3}, L1 € V2, L5 € VY,
ny +ng < 1.

Substep 3.1. We prove first (6.2.20). These bounds easily follow from
(4.1.52) when 2% < (t)~!. On the other hand, if 2¥ > (¢)~! then we estimate,
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using (3.3.5) and (3.3.11),

2R P[Py, U, P U2 () o
S 28R PLUS ()l | P U (1) 2o
< 20k2 <t>—1+6’ min(1, 2% <t>)1/2274(kf+k2+).
This suffices to bound the contribution of the pairs (k1, k2) € A% in (6.2.20) for
which 2#2 < 2/10 For the remaining pairs we have min(ky, ko) > k/10+10, thus
|k1 — k| < 4. Let J; denote the largest integer such that 27t < (¢)(1 +2F1(¢))=9

and decompose Py, U1 (1) = Uff,il,ill (t) + Uﬁ}lfgll (t), as in (4.1.14). We use
first Lemma 3.11. Therefore B

+_ Lih,t @
25 B P U255, (), P U2 ()| 2
S 25 2 (1 2R (1)) () M| Qe V() ot | P, U2 (1) 2
< 6%2k/2<t>71+6’27k1’/2274(kf+k2+).
Moreover, using (3.3.4) and (3.3.13),

2k k|| PI[USY 2 (1), P, U242 (1],

>J1,k1
+_ 1
S 25T MULY L (02 | P USY () 2
< 5%<t>71+6’273k1—/227J1274(kf+k;).

Therefore, recalling that 2% € [(¢)~!,1] and min(ky, ko) > k/10 + 10, we have
+_ Lih,t1 " — " o—k= — + +
2P PIUZS G (1), P, US202 (1)][| o S ef2M2 () 710 27 /2o m i,

This suffices to complete the proof of (6.2.20).

Substep 3.2. To prove (6.2.21) we write U%2¥2 = e~ ko L29:02 and
examine the formula (3.2.43). We make the change of variables n — £ — ¢
and notice that the O, derivative can hit the multiplier m(n,§ — n), or the
phase e~ #Mka.2(€=1) o the profile Py, V£E2¥2(¢€ —n). In the first two cases,
the derivative effectively corresponds to multiplying by factors < (t) or < 27F2
The desired bounds then follow from (6.2.20) (in the case 2*2 < (t)~! we need
to apply (4.1.52) again to control the corresponding contributions).

Finally, assume that the Og, derivative hits the profile Py, V£2¥:2(¢ — n).
Letting (as in Lemma 4.10) Uf(f}fz’” (&,t) = e Mmoo @9, {op, - VEV2}(E, 1)
it suffices to prove that

> 2TRIRIPL TS USEE @)l S (0720 (62.22)
(kl,kQ)EXk
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This follows easily using the L? bounds (4.2.39) and (3.3.3). O

We return now to the main estimates (6.2.14). In the remaining range
—m < k < §'m — 10, they follow from the identity (6.2.8) and the bounds
(which are proved in Lemmas 6.5-6.8 below)

fovte) [ Rete sy g ctamion (6:2.23)
1 3

for a € {1,2,3,4}, m > 100, and t; <ty € [2m 1, 2mT] "0, 7).

In some estimates we need to use integration by parts in time (normal forms).
For p € {(kg,+), (kg,—)}, v € {(wa,+), (wa,—)}, and s € [0,T] we define the
operators T’ l’fﬂ by

et g +yuv (§:m) ~

k 8) = ———m(— —n,8)9(n, s 2.
T 6 8) = [ G sml — nn fiE )i ) dn, (6220

where @0 1), (§,1) = Arg(§) — Au(§ —n) — Au(n) (see (2.1.41)) and m € M
(see (3.2.41)).

Lemma 6.5. The bounds (6.2.23) hold for m > 100, k € [—xm,d'm], and
a=4.

Proof. We use the bounds (3.2.63), combined with either (4.2.4) and (4.2.6) or
(4.2.52)—(4.2.53) (in both cases n = 1). It follows that
||W(t)”L°C <t>71/2+5'27l€_27N(2)k+72k+

1PN Z3(8)]| Lo

b

S et
o . (6.2.25)
5 €%<t>—1.1+6 2—k) 2—N(2)k —2k ,

for any ¢t € [0, T] and k € Z. The estimates (6.2.23) follow from definitions. [

Lemma 6.6. The bounds (6.2.23) hold for m > 100, k € [—xm,d'm], and
a=1.

Proof. We examine the formula (6.2.9), substitute h = iAZL(U+ — UM7) /2,
h € {hag}, and decompose the input functions dyadically in frequency. For
h € {hag) let

TR (6,5) = peo(SPOTIR(E,5), ViR (E,5) = peol(s)P€)Vhoa (€, 5).
(6.2.26)
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With I defined as in (3.2.41)—(3.2.43), it suffices to prove that, for 15 € {+, -},

t
O P

(k1 k2 ) E X, 2 (6.2.27)
X F{I[Pe, U™, P, U2} (&, s)ds||  Sefammm.
3
We estimate first, using just (3.3.7) and (3.3.3),
ZkIr_kQH‘F{I[PklUw’_’szUszuz <§7S)HL°C
S 28 P U (9)| oo | P U 5) (6.2.28)

< afZ‘kf/H”kf 9—Nok{ +ki gka—bkz96"m
~Y

This suffices to bound the contribution of the pairs (k1, k) for which ks <
—1.1m — 10. It remains to prove that

)/ [ et eome etV (¢~ )
R3

- (6.2.29)
x e hwans () P Vibie (i, 5) dnds| S ef2 =20k
for any & with |¢| € [2K174,2F1+4] provided that
ke € [-1.1m — 10, —pom + 10], ki € [—km — 10,8'm + 10]. (6.2.30)

To prove (6.2.29) we integrate by parts in time. Letting o = (kg,+),
u=(kg,—), v = (wa,t2), we notice that ®,,,(§,n) 2 1 in the support of the
integral. Here it is important that p # (kg,+), so the phase is nonresonant, as
the nonlinear correction (6.2.6) was done precisely to weaken the corresponding
resonant contribution of the profile V*9:+,

The left-hand side of (6.2.29) is dominated by C(Iyg (&) +11kg(&)+111k4(§)),
where, with Tl’fg defined as in (6.2.24),

to .
Ikg(f) = (1 +/t |@k9(§’8)‘ ds) Sup |T5§[Pklvwv_’Pk2V2’;122](£7S)‘v

sE[t1,t2]

(€)= [ IT210, (B, V), P 5 ds,

ITTy(€) = / TSP, VL 0u(Py V(€. )] ds.

n%
t1

(6.2.31)
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As in (6.2.28), assuming ki, ko as in (6.2.30), we estimate for s € [t1,ts]
ITHPL VY™, P Vi€ s)| S efah /2gPhegtom,

The definition (6.2.4) gives [Oy (&, 5)| S 25 supy g [[haplp= < 28 27mH0m,
Therefore - )
Iig(§) S ef2 ki /29220, (6.2.32)

—

Similarly, using (6.2.25) and the bounds || Py, lh “2(5)|| L1 < 12202249 we have

Ifkq(i) < E%Qm/2+26’m2—kf22k2.
Finally, using also (4.2.3),

17406 (P Vigas) ()Yl S 28272104 (P Vi) (8) 112 S 2702222,
(6.2.33)
and it follows that I11j4(§) can be bounded as in (6.2.32). Therefore

Tig (&) + I (&) + I111e(§) S 5§2m/2+26’m2—k; 92ks

The desired bounds (6.2.29) follow, recalling that py = 0.68 and the frequency
restrictions (6.2.30). O

Lemma 6.7. The bounds (6.2.23) hold for m > 100, k € [—xkm,d'm], and
a=2.

Proof. We decompose V¥ = o (krines V;f’,jl as in (3.3.1) and examine the
definition (6.2.10). For (6.2.23) it suffices to prove that

‘ Rg{eit(mg<§> Akg(€—m) fo,ffl(f 0, a0 (€ —n,m,t)

_ eit(ﬁ'ﬁ)//&kg(ﬁ)‘/;f:;rl (€, t)qgct;w+ &, t)} dn‘ < 8%2—m—nm2—5j17

provided that |k; — k| < 10 and ¢ € [2m~1, 2™ T, Using also the definitions
(6.2.7) it suffices to prove that for any multiplier m € Mj (see (3.2.40)) and
a,f €{0,1,2,3} we have

/ R (1, £){ A0 O=Aro €= Y 0F (6 _ iy (e — )€ — )

ett(&m) /Awg (€ (g’ ) }dﬂ‘ < 522 m—rmog—4j1
(6.2.34)

Recall that ||V;f,:r1 ®)lpe S £12F19i1/2+851/298 mo—4k{ , gee (3.3.26). The-
refore, without using the cancellation of the two terms in the integral, the left-
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hand side of (6.2.34) is bounded by
0612—11/2+51125/m2—kf ”@(t)”Ll < 6%2—j1/2+5j1225,m2—kf2—P0m.

This suffices to prove (6.2.34) when j; is large, i.e., 21/2 > 2(1.01=po)m
On the other hand, if 2™ > 1 and j;/2 < (1.01 — po)m = 0.33m then we
estimate

‘eit(AkQ(f)—AkQ(E—n)) _ eit(E'n)/Akg(§)| < 2—2Pom+m7

V2 (€ = ntym(e — m) (€ — ) — VI7 (€ ym(€)(€)] (6.2.35)

i1/2928' mo—2k] o—
< g271/2920'mg—2ky 9—pom

provided that |¢| ~ 2 and |n| < 27Po™. Indeed, the first bound follows from
the observation that VA, (&) = §/Arg(§). The second bound follows from

o —

(3.3.26) once we notice that taking 0 derivative of the localized profiles V;f,:rl

corresponds essentially to multiplication by a factor of 271, If j;/2 < 0.33m it
follows that the left-hand side of (6.2.34) is bounded by

0512—0.34m th;év (t) HLl 5 2,_:%2—pgm—0.34m+5’m.

This suffices to prove (6.2.34) when j;/2 < 0.33m, which completes the proof
of the lemma. O

Lemma 6.8. The bounds (6.2.23) hold for m > 100, k € [—xm,d'm], and
a=3.

Proof. We examine the formula (6.2.11). Let Uf};{;i = Uhe2 — g2 Vh};gz =

low
Vhota Vl];;f)z; see (6.2.26). As in the proof of Lemma 6.6, after simple reductions
it suffices to prove that

t
o () / * ishkg (€)—i0(£,5)
ty

X F{IPL U UL Y ) ds||| S oo™
3

ok{ —k2

(6.2.36)
for v1,10 € {+,—}, and (k1, ka) € Xk, k1, ko € [—pom — 10, m/100].
As in the proof of Lemma 6.6 we integrate by parts in time to estimate

to ) )
| [ @O £, U P ) ds
t1

S Tig(§) + Iy (§) + TTT14(8),
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where, with p = (kg,¢1) and v = (wa, t3) and T} defined as in (6.2.24),

to .
€)= (14 [ 1u(eolds) s TP,V POV,

2 s€[t1,ta]

ta
11y (©) = [ TEI0(P V), PV € o) ds,
ty
to
IH1},(€) = [ TPV 0P VI 9 ds.
t1
Notice that [O, (&, s)| < 2749 ™ as a consequence of (3.3.11). After possibly
changing the multiplier m in the definition (6.2.24), for (6.2.36) it suffices to
prove that

0w () TR [Py V1, P, V2] (€, )| S 3271100 moks | (6.2.37)
2" ok () TR0 (P V1), Py, V12 (€, 5)] S €327 1100 maka - (6.2.38)
2™ |k (E)TRI [Py, VV1, 05 (P, VI2)] (€, 5)| S g2 1100 maks (6.2.39)

for any s € [2m717 2m+1]’ k1, ko € [=pom—10,m/100], p = (kg, 1), v = (wa, t2),
t1,t2 € {+,—}.

Step 1: proof of (6.2.37). If k; < —4km —10 (so ky > —xm — 20) then we
can just use the L? bounds (3.3.3) and (3.3.5) on the two inputs, and Lemma 3.4

(i). On the other hand, if k&; > —4xm then we decompose Py, V¥t = i V;f,?l

and P, Vit =3, Vi agin (3.3.1). Let k := max k, k1, ko) and recall that
2 J2 jz,k3+
1D (1og, -+ (§,m)| 2 272272F " in the support of the integrals defining the operators
k
T8 (see (3.1.12)). N .
The contribution of the pairs vy ity ith gmax(ii.z) < 90-99mo—6k
Ji,k1? 7 j2,ke
is negligible,

TRy P Y (e g)| < e2o72m gf gmax(inda) < 90-99m9—6k" (g9 40
2R SR P ~ -1

Indeed, this follows by integration by parts in 1 (using Lemma 3.1), the bounds
(3.2.4), and the observation that the gradient of the phase admits a suitable
lower bound |V, {sAkg.., (6 — 1) + sAwa,, (M} 2 (s)272k in the support of the
integral. On the other hand, we estimate

kg e 1rhie < o—kag2ET _203ks /27 b iz
T Vi ks Vis ) (6 )l S 2772270 a2 2|V (s) o= [V, e, ()] 2
< 6%26’m2k2/222kf+2k; . 9—k19—31/2+6j19— 10k 9 —j2g—ky /2—46ky 9—10k;

< 8%226’m2—k12—j1/2+5j12—j22—6E+
~Y

)
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using (3.3.4), (3.3.26), and Lemma 3.4 (i). Since k1 > —4xm, this suffices

to estimate the contribution of the pairs (V;'}1, V{2 ) for which 2max(i.d2) >

2099m9—6F" 414 the bound (6.2.37) follows.
Step 2: proof of (6.2.38). Notice that, for any ¢ € [0, 7],

OV (t) = elthha NV (1) = ko N¥V2(1) 4 eithrad N23(1), (6.2.41)
The contribution of the nonlinearity N'¥>Z3 can be bounded using (6.2.25),
|or(E)T e’ ras Py N 23 (s), P, V2 ())(€)]
S 2728 | PN 3 (5)]| oo | Pry V1 (5)] 22 00 )2

5 271.09m2k2 9~ max(kl,k2)276E+ )

This is better than the bounds (6.2.38) since max(k1, k2) > k—10 > —xm — 10.
To bound the contribution of the quadratic components AN'¥>2 we recall that
F{Py, N¥2}(s) can be written as a sum of terms of the form

@k, (7) /Rg lp| = (v — pyms(y = p)U¥+s (y — p)Urs4(p) dp,

where (3,14 € {+,—}, ha € {hop}, and ms is a symbol as in (3.2.40) (see
(2.1.17)). We combine this with the formula (6.2.24). For (6.2.38) it suffices to
prove that, for any £ € R3,

Ok (E—mmE =11 inu(m) p 1
fovte) [ VN 73 W ey iy ) R M A

x m3(&—n—p)(€—n—p)lpl T ULs(& —n— p,s)Urs4a(p, s) dndp

5 6%2]62 271.005?77,,

(6.2.42)

provided that p = (kg,i1), v = (wa,2), t1,t2,t3,t4 € {+,—}, and ky, ke €
[-pom — 10, m/10].

We decompose the solutions U¥»3, Uh+t4 and Py, V™2 dyadically in fre-
quency and space as in (3.3.1). Then we notice that the contribution when one of
the parameters js, k3, ja, ka, jo is large can be bounded using just L? estimates.
For (6.2.42) it suffices to prove that

—k ok — —i e —isA,yrh, —i ha,
275 9 g MV (), VLR (), AV (5)]€))

(6.2.43)
S 6?271.01m

for any ke € [_pOm - 107m/10]7 k37k4 € [_2m7m/10]7 and j27j37j4 < 2m,
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where 0 = (kg,t3), 9 = (wa, t4), and, with m € M, msz, my € My,

_ en(€ )%(5 mm(§ —n,mn)
Cullatler= [ (6.2.44)
x m3(€ —n — p)ma(p) - F(€ —n— p)G(n)h(p) dndp.
Substep 2.1. Assume first that
gz > 0.99m — 3k . (6.2.45)

Let k* := max{ky, k5, k] }. Let Y denote the left-hand side of (6.2.43). Using
Lemmas 3.4 and 3.2 (i) we estimate

+_ _ + 1.+ A, h, h
Y§2k3 kag—2k2+6 max(k ,k2)||V;§IL€?;( M pzlle™ is ij 222( 8)|| oo ”V]:kt:l( DI

< 5?246lm2_j32_m2_k; 2—k4 /22—dk‘*’
(6.2.46)

where in the last line we use (3.3.11) and some of the bounds from Lemma 3.15.
Since 272 < 20-68m and j3 4+ 3k > 0.99m, this suffices to prove (6.2.43) when
k; > —0.55m — 10.

On the other hand, if k4 < —0.55m — 10, then we estimate in the Fourier
space. Using (3.1.12), (3.3.26), and (3.3.3)—(3.3.4)

g ax (bt kF
Y52k3 k42 2ko+6 max(k ,kQ)HVva]L;;( )”Loo

/’LL h N3 2.4
x 202/2 ||tz ()| 223K/ 2|Vt (5)) o (6.2.47)

< E?Q45’M2—j3/22k,42—k32—dk*.
Since k4 < —0.55m — 10, this suffices to prove (6.2.43) when k3 > —0.01m — 10.
Finally, if k4 < —0.55m — 10 and k3 < —0.01m — 10 then ko > —xkm — 10 (due

to the assumption k£ > —xm) and a similar estimate gives

Y < ki —kag—2ka+Emax(k®, ’“+)23’“3/2HV”” o (8)] 22

Ja.ks
< VS () e 2072 VS 9] o (6.2.48)

56?20.01m2 ]32k42 dk )

This completes the proof of (6.2.43) when js > 0.99m — 3k .
Substep 2.2. Assume now that

j3 < 0.99m — 3k . (6.2.49)

We notice that the i gradient of the phase —sAg(§—n—p)—sA,(n) is = gmo—2ky
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in the support of the integral in (6.2.44). Similarly, the p gradient of the phase
—shg(E—n—p) —shy(p) is 2 2m2=2k3 in the support of the integral. Using
Lemma 3.1 (integration by parts in n or p), the contribution is negligible unless

j2 >0.99m — 3k and  js > 0.99m — 3k3 . (6.2.50)
Given (6.2.50), we estimate first, as in (6.2.47),

—_—
Y g 2k§'7k4272k2+6 max(k'*'}k;') H‘/jw’l? (S)HLOO
3,k3

hits Thata
x 232V ()] 22202 V] (5) e

5 5?245/m2—j2—j42—k2 2—]{}3/22—(116* .

This suffices if k3 > —0.2m —10. On the other hand, if k3 < —0.2m — 10 then we
may assume that max{ks, k4} > —km — 10 (due to the assumption k > —km)
and estimate as in (6.2.46),

+_ _ + .+ —isA L h, ha,
Y 24 gt omax D) sy ()] V12 () 1 [V ) e

,S 6:1),245’m2—m2—j2—j4 2—5k2/22—3k4/22—dk* )

Since 27*2 < 2P0 this suffices to prove (6.2.43) when k4 > —0.1m—10. Finally,
if k3, k4 < —0.1m — 10 and ko > —km — 10 then we estimate as in (6.2.48)

.
Y < oks —hag2katOmax(kt k) g3ks/2) va (g))
< J3,R3

This 3k /2|1 haria
st 3 N2
X V32 (5) ]| oo 2542 V240 (5) | 2

5 8.1;)20.01777,27]'4 27j2/227dk‘* ,

which suffices. This completes the proof of the the bounds (6.2.38).
Step 3: proof of (6.2.39). Notice that, for any ¢ € [0,T] and h € {hag},

BV (1) = eithwan N (t) = eithwans NA2 (1) 4 githwas N23 (1) (6.2.51)

If k1 < —0.0lm — 10 then we may assume that ko > —km — 10 (due to the
assumption k > —xm) and estimate the left-hand side of (6.2.39) using just
(3.1.12), (3.3.5), and (4.2.3),

022 2 2 || B V|2 || BN 1 S €327 228,

which suffices. On the other hand, if k&4 > —0.01m — 10 then we decompose
P, V¥ = Zjlz—kf V;f;cll, and notice that the contribution of the localized
profiles for which j; > 0.1m can also be bounded in a similar way, using (3.3.26)
and estimating Py, N* in L' to gain a factor of 2%%2/2, The contribution of the

cubic and higher order nonlinearity can also be bounded in the same way, using
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the stronger estimates (4.2.43). It remains to prove that

27 [ () TRIV, 4 (), €M emn P, A2 (5))(€)] S 32705, (6.2.52)
for any s € [2m7 1, 2mH) by € [—pem — 10,m/10], k; > —0.0lm — 10, and
J1 <0.1m.

We examine now the quadratic nonlinearities AV, : [’32 in (2.1.11). They contain
two types of terms: bilinear interactions of the metric components and bilinear
interactions of the Klein-Gordon field. We define the trilinear operators

, o 1 (&) r, (Mm(§ —n,m)
Cualfr 9 PI(E) = /]R3><]R3 Akg(€) = Au(€ —n) — Au(n) (6.2.53)
x ma(n — pyma(p) - F(€ —n)G(n — p)h(p) dndp,

where m € M, msz, myqy € M. For (6.2.52) it suffices to prove that

9—ky 2|k37k4‘|cl/€g[€7iSA“ V;f:chll (5)’ e i8N wa,ig V]’;?];;z (5)’ e i8N wa iy VJZ?ILT (8)}(§)|

< 6%2—1401m2—7(j3+|k3‘+j4+‘k74|)
(6.2.54)

and

e —isAu 1Y, —isAkg,u5 ¥ —ishkg.a Y-
27K2 |Clg[em MV (5), 7PN VIS (), e M VI (5)](6)) (6.2.55)
< 53271.01771277(3’3&\ksIJrszrIkz;\)7

where s, k1, k2,71 are as in (6.2.52), hg, hq € {hag}, and (ks, js), (k4,j1) € J.
Substep 3.1: proof of (6.2.54). Using just L? estimates, we may assume
that k4 < k3 <m/10+10. Notice that the n gradient of the phase —sAgg,, (§ —
N) — SAwa,s(n — p) is 2 2m2=2k{ in the support of the integral. Therefore,
using integration by parts in 7 (Lemma 3.1), the integral is negligible if j3 <
0.99m—3k;". Similarly, by making the change of variables p — n— p, the integral
is negligible if 7, < 0.99m — 3k;". Finally, if min{js, j4} > 0.99m — 3k} then we
use (3.1.12) to estimate the left-hand side of (6.2.54) by
v

— _ _ + .+
o) k22k3 k42 ko+6 max(k ,Icl)”le)kl(S)HLoo

3ha /2|11 h3oa k)21 haria

7L- 7[‘
x 28R 2|V (5) | L2 28R 2 V4 () || 2
< E§20.01m27k2/227k;27]'327j4(176’)27dmax{k1+,k;}'

This suffices to prove (6.2.54).
Substep 3.2: proof of (6.2.55). Using Lemma 3.4 (ii) and (3.3.15), we
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estimate the left-hand side of (6.2.55) by

_ + .+ —isA R , R
O 2kt OmaxE D) BN s () | V20 ) 2|V )

_ e i _ et _ .t
562152 1.49’!)’L2 ]32 j42 2k22 k3 k‘4.

This suffices if 270-48m2—Jsg—j12=2k2 < 9-70s+J1)  Otherwise, if (1 — v)(js +
Ja) +0.48m < —2ks — 120 then we may assume that j3 < j4 (so j3 < 0.45m — 40
since ko > —0.68m — 10) and use (3.3.15) again to estimate the left-hand side
of (6.2.55) by

-
- + ot »
O 2kt Omaxk D) 01 (5) o 93822 M VI () e [V (5)]

5 8?2—1.49'm2—k; /22—k; /22—j4 .

The bounds (6.2.55) follow since 2774273 /2 < 1. This completes the proof of
the lemma. ]

6.3 Z-NORM CONTROL OF THE METRIC COMPONENTS

In this section we prove the bounds (2.1.52) for the metric components.

Proposition 6.9. With the hypothesis of Proposition 2.3, for any t € [0,T],
a,b € {1,2,3} and o, 8 € {0,1,2,3} we have

VIO 2y + 1V Ol 2,0 + IV (O 200 + O NV ()] 2, S 0. (63.1)

wa ~Y

The rest of the section is concerned with the proof of this proposition. As in
the previous section, we need to first renormalize the profiles V«#. The nonlin-
ear phase correction is determined only by the quadratic quasilinear components
of the nonlinearity

Qiﬁ = { - hooA + 2h0j808j - hjkajak}hag; (632)

see (2.1.13). The point of the renormalization is to weaken some of the reso-
nant bilinear interactions corresponding to very low frequencies of the metric
components.

We define our nonlinear phase correction and the nonlinear profiles asso-
ciated to the metric components as in subsection 6.2.1. As in (6.2.5), for

any h € {h,,} we define the low frequency component h!°“ by h/l‘;’(p,s) =
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gogo(<s>p0p)ﬁ(p, s), po = 0.68. Then we define the correction

Oual 1) = /0 [ (/A a(€) 5) Pl
&k

low (Sf/Awa( ) s)£] + hé’okw (Sf/Awa(g)’ s)m} o

(6.3.3)

Finally, we define the nonlinear (modified) profiles of the metric components by

VO(E,1) = e ©we@DVE(E 1), G € {hap, F,wa, Vap}- (6.3.4)

We notice that the functions h!°? are real-valued, thus ©,,, is real-valued.
Let h§" := hap — hlow. For X € {low, high} let

o (01.8) = 050,005 R 0 55 00 20 (639

To derive our main transport equations we start from the formulas

3ch“‘* _ eitAwaJ\[(;Lﬁ _ eitAwa Qiﬁ + eitAwalcgiﬁ + €itAwaS§ﬂ + 6itAwaNOZ’323;
(6.3.6)
see (2.1.11). The formulas in the first line of (2.1.36) show that, for h € {hazs},
iU (p) = iUM(p) g o UMH(p) + UM (p)
000;h(p) = ip; :
2Awa(p) ) 0y (p) 1P )

—0;0kh(p) = pjpr

Thus, using (6.3.2), (6.3.5), and the identities U= (p, ) = eFithwa(@ ThE (5, ¢),
we have

Q2s(6,1) = @) Z/ TR0 €MV har (€ — 1, 1)y, (€ — 1,7, ) dn,
(6.3.7)
where qua,+ = 40, + qi2" . Finally, we notice that
Oua(6:t) = 7333 / Tuva (6, £)e" 1 M ) iy, (6.3.8)
R3

Combining (6.3.6)—(6.3.8) we derive our main equations for the modified
profiles V"7,

—

DV (6,1) = e OmaED {9,V s (€,1) — iV s (£,1)Opa (€. 1)}

6
=Y Ra(6,1),
a=1

(6.3.9)
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where
—1O4ya (&,t)
ha € - itAwa itAwa(E—
Rl B(gat) = W Agle tA (é)e tAwa (=) (6 3 10)
X Vhan= (& —n,t)qie_ (€ —n,m,t) dn,
—1Owa (&,t) o
ha e . i wa —Awa(E—
RE 5(5’75) — oy /]R3 z{e t(Awa(§)—Awa (€ n))Vhaﬁ(é' —n,t) (6311)
x gl (& —n,m,t) — e EM MOV has (¢ t)glow (¢,m,t)} dn,
—z@wa(f t)
RE(et) = /3zezmwu<s ) g ithuwa,. (=)
ve{+,—1 'R (6.3.12)
X Vhari (¢ =, 69" (€ — n,m, ) dn,
Ry (1) = e 1OwelEDeithuaO G (¢ 1), (6.3.13)
REP (€,1) 1= e 1Owa(EDithua© 52 (¢ ), (6.3.14)
and
ha o . /}1-7\
R (£,1) 1= e Oual@leithua N2 (¢ 1), (6.3.15)

6.3.1 The First Reduction

We return now to the proof of Proposition 6.9. Since |‘//E(§, t)| = H//*E(f, t)], in
view of the definition (6.3.4) it suffices to prove that

—

lon(FVE? (&,t2) — VA" (€, t1) Hlnge S £o27m2 7" —mhT g Nok™,

_ _ o (6.3.16)
lion(©{VA (€ t2) = VH(E 1) }Hl1ge S eo2m/207k —rk ™ 9= Nok™,

for any H € {F,wq,%ap}, k € Z, m > 1, and t1,ty € 2™ — 2,27 N[0, T]. As
before, we show first that the bounds (6.3.16) hold if & is too small or if k is too
large (relative to m).

Lemma 6.10. The bounds (6.3.16) hold if k < —(&'/k)m or if k > 6'm — 10.

Proof. As in Lemma 6.4, we use Propositions 5.1 and 6.2, and the inequalities
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(3.2.62). Thus

”Pk/v?afi Ol < 602—1@—51@*/2<t>5'/22—N(o)k+(1—5)/42—N(2)k+(3+5)/4

< 5027/@* 76k*/2<t>6//227N0k+7dk+.

This suffices to prove (6.3.16) if k < —(8'/s)m or if k > §’'m—10, as claimed. O

In the remaining range k € [—(¢'/k)m, 6’'m—10], we use the identities (6.3.9)—
(6.3.15), so

— — 6 t
VI (€ ty) — VIS (6 t) = Y

a=171

RE? (¢, 5) ds.

We analyze the contributions of the nonlinear terms RZ“B separately, and prove
the bounds (6.3.16). In fact, in all cases except for the semilinear wave interac-

aff

. . h
tions in the terms R5*” we can prove stronger bounds, namely

ta B
‘wk(g) Rhed (¢, 5) ds| < e29-Im/29- k" 9= Nok™t (6.3.17)
t1

with a gain of a factor of 279/2 instead of a loss. See Lemmas 6.11, 6.12, 6.13,
6.14, and 6.19. In the case of semilinear wave interactions (a = 5) we prove
slightly weaker bounds, which still suffice for (6.3.16). See Lemma 6.20.

6.3.2 The Nonlinear Terms R.*’, a € {1,2,4,6}

In this subsection we consider some of the easier cases, when we can prove
the stronger bounds (6.3.17). As in (6.2.24), for u,v € {(kg,+), (kg,—)} or
p, v € {(wa, +), (wa, —)}, and s € [0,T] we define the operators T, by

e#5® (wa,+) v (§51) —~

T (f, g)(E.5) = / m(& — ) F(€ —n,9)(n.5)dn, (6.3.18)

R3 (I)(wa,+),u,z/ (5, 77)

Where ® a4y (€1) = Aua(€) — Au(€ — 1) — Ay () (sce (2.1.41)) and m € M
(see (3.2.41)).

Lemma 6.11. The bounds (6.3.17) hold for m > 100, k € [—xm,d'm], and
a=6.

Proof. We use (3.2.63), combined with either (4.2.3)—(4.2.5) or (4.2.43)—(4.2.44).
Thus

| PNLZ o S €3ty 1245 97k /2= N, (6.3.19)
”pst,BZSHLw < E?<t>75/4+66’273k’/427N(2)k+'
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The bounds in the second line suffice to prove (6.3.17) for a = 6. O

Lemma 6.12. The bounds (6.3.17) hold for m > 100, k € [—km,§' m], and
a=1.

Proof. This is similar to the proof of Lemma 6.6 and the main point is that
the interaction is nonresonant so we can integrate by parts in time. We use the
formula (6.3.5), substitute h = iAy L (Ut —U"7)/2, h € {hap}, and decompose
all the input functions dyadically in frequency. With Ul};fut and Vlgq’ﬂi defined as
in (6.2.26), it suffices to prove that

t
S gk gOk(g)/2ez’sAm<§>fz'(->m(57s)
(1,ka) € X h (6.3.20)

X F{IIPL UM, PLURLCIYE ) ds| 5 o,

low
13

for hq,he € {hag} and 12 € {+,—}.
We estimate first, using just (3.3.7) and (3.3.3),

—

_ ha,t “[Thi— ha,e
|7 126U Pl T E 9 e S WP UP I PUE e o

- = +
S 6%27]61 7&]@1 22]{:275]62225’"1274]61 .

This suffices to control the contribution of the pairs (k1, k) for which ko <
—1.01m. After this reduction it remains to prove that

t2 —_—
‘/ / (i ua (=100 (€.5) (¢ . p)eishual&m) po VAT~ (¢ — . 8)
t R3

- (6.3.22)
x e ot (D P VR (o, s) dyds| S ef2r 02t
for any & with |¢| € [2k174,2k1+4] provided that
ke € [=1.01m, —pom + 10], ki € [—=km — 10,6"m + 10]. (6.3.23)

To prove (6.3.22) we integrate by parts in time. Notice that Ayq (&) +Awa(§—

n) — Awa.,(n) = 2% in the support of the integral. The left-hand side of
(6.3.22) is dominated by C(Lya + ITwa + I11,4)(E), where, with p = (wa, —)
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and v = (wa, t2) and T};;* defined as in (6.3.18),

to .
Faal€) = (15 [ 16uals)lds) sup [T PGV™ T PLVE)(E )

ty s€[t1,ta]

ITya(6) = / T30, (Py, Vo), Py V22 (€, 5)] ds,

t1

ta
I1Ta(€) ::/ (T [Pry VI, 05 (Pr, Vot 2))(€, ) ds.

low
t1

(6.3.24)

As in (6.3.21), assuming k1, ko as in (6.3.23), we estimate for any s € [t1, 2]
[T [Py VI, Py Vit 2) (&, )| S 3272k~ p2hagioma b,

It follows from (6.3.3) that [Ouq(E, s)| < 287 sup, 4 |has(s)llL~ S 9—m+28'm
Therefore
Lo (€) S 727422000, (6.3.25)

—

Similarly using (6.3.19) and the bounds || Py, V2% (s)|| 1 < 1225224 we have
IT,a(€) < e22m/292k292km,

Finally, using (6.2.33), we see that I11,, (&) < e322+22001m a5 in (6.3.25). The
desired conclusion (6.3.22) follows. O

Lemma 6.13. The bounds (6.3.17) hold for m > 100, k € [—km,d'm|, and
a=2.

Proof. This is similar to the proof of Lemma 6.7. With hy = h,g we decompose
Vhi = Dok g)eT V;:lk as in (3.3.1) and examine the definition (6.3.11). It
suffices to prove that

zt(Awa(f) AwalE— n))th (-, )q€32”+(§—77,777t)

‘RB

— MDA OV (e p)glo( (&m0} dy| S e3ommmrmoon,

Ji.k1 wa,+

provided that |k; — k| < 10 and t € [2m~1 2m*1]. Using also the definitions
(6.3.5) it suffices to prove that for any multiplier m € M (see (3.2.40)) and
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a, €{0,1,2,3} we have

5)‘/3 RIoE (i, £){ "B O=Nunl i VI (€ (e — p)lé — )

it(§n)/Awa () th (57 ) )|€|} dn‘ S 5%2—m—mm2—§j1.
(6.3.26)

Recall that ||V7hll;1(>||Loc < £1273k1/29-01/2485190'mo—4k]\ gee (3.3.26).

Thus, without using the cancellation of the two terms in the integral, the left-
hand side of (6.3.26) is bounded by

Cey 271 /2407mg2mm | plow(t)|| 1 < g2 /2+07g3wmy=pom,

This suffices to prove (6.2.34) when j; is large, i.e., 21/2 > 2(1.01=po)m
On the other hand, if 2™ > 1 and j;/2 < (1.01 — pg)m = 0.33m then we
estimate

’eit(/\wa(f)—l\wa(&—n)) — HEM/Aua(©)] < g-Zamtmodem,

Ve = tym(E =)l —nl — V;:vﬂ(/s Hym(€)[€]| S e1271/223rma—pom,
(6.3.27)

provided that |¢| ~ 2F and || < 2779, Indeed, the first bound follows from
the observation that VA, (§) = &/Awa(§). The second bound follows from

-

(3.3.26) once we notice that taking 0 derivative of the localized profiles Vjﬁ“,’;

corresponds essentially to multiplication by a factor of 271, If j;/2 < 0.33m it
follows that the left-hand side of (6.3.26) is bounded by

051270.34771”}},5510( )HLl < 522 pom— O34m+l~em

This suffices to prove (6.3.26) when j;/2 < 0.33m, which completes the proof
of the lemma. O

Lemma 6.14. The bounds (6.3.17) hold for m > 100, k € [—km,d' m], and
a=4.

Proof. Here we analyze bilinear interactions of the Klein-Gordon field with itself.
The important observation is that these interactions are still nonresonant, due
to Lemma 3.4. Recall that ICQQ[, = 20,0050 + V*mas. We express 9, 9,1 in

terms of the normalized profiles U¥** and decompose dyadically in frequency.
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It suffices to prove that

for any (k1,k2) € Xy and ¢1,12 € {+, —}.

The estimates (6.3.28) follow easily using the bounds (3.3.5) and (3.3.7)
when min(ky, k2) < —3m/5 or max(ky, k2) > m/20. In the remaining range we
integrate by parts in time. As before, notice that [©q (€, s)| < 2728 With
Ty as in (6.3.18), it suffices to prove that

|k ()T [Pr, VI, Pe, V2](€,5)| S gg—003m (6.3.29)
and
27 |1 (E) T2 (05 (P, VY1), P, VV12)(€, )| S e327600"™, (6.3.30)

where p = (kg, 1), v = (kg,t2), s € 271, 2™ and ky, ko € [-3m/5, m/20].
Step 1: proof of (6.3.29). We decompose Py, V¥t = Zjlszf /ASH

Ji,k1
and P, V¥ = Zjﬁik; V;f,ffz as in (3.3.1). The contribution of the pairs
(V;f,?l , V;f;fz) with max(j1,j2) > 0.01m can be estimated easily, using the obser-

vation that [® (e 4. (§,7)] 2 ok~ g—2max(k{.k3) in the support of the integral
(see Lemma 3.4 (i)) and the L? bounds (3.3.4).
On the other hand, if max(ji, j2) < 0.1m then we have to show that

e is[Au(E—n)+Ay (n)]
’sok(f) /Rs m(& = n,m)

(I)(wa7+)ul/(§77]) (6331)
X VI (€ = n. )V (n.s) d| S ef2™"™

We observe that
[V Akg(2) = VArg ()| 2 12— yl/(1+ 2" +y|*) for any z,y € R®. (6.3.32)

Therefore, using integration by parts in 1 (Lemma 3.1), the left-hand side of
(6.3.31) is < 227%™ if y = —v. On the other hand, if 4 = v then the only space-
resonant point (where the gradient of the phase vanishes) is n = £/2 and we
insert cutoff functions of the form <o (2°4™(n—¢/2)) and @1 (204™(n—£/2)).
Then we estimate the integral corresponding to [n—¢/2| < 2704m by Ce22-1-1m
by placing the profiles .7-'V;f;€11 and F ij’Lz in L*. Finally, we estimate the

2,k2
integral corresponding to |n — &/2] 2 2704m by Ce2272™ using integration by
parts in 1 and (6.3.32). This completes the proof of (6.3.31).

Step 2: proof of (6.3.30). Recall that 9;V¥:*1(t) = e®tkas N'¥:2(¢) +
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e kg N'¥23(1); see (6.2.41). The contribution of the cubic and higher order
nonlinearity N'¥+=3 is easy to estimate, using just the L? bounds (4.2.52) and the
lower bounds |®(yq,+)u (85 1) 2 2’“72_2“‘“(’“?”“;), which hold in the support
of the operator.

To bound the contribution of A"¥'2 we define the trilinear operators

_ i (€ )%(5 nm(€ —n,n)
Cwalf, 9,1 (§) .—/]R:SxIRs Ao (&) = A€ —m) — Au(n) (6.3.33)

x m3(& —n — pyma(p) - F(€ — 1 — p)G(n)h(p) dndp,

where m € M, m3, my € My. For (6.3.30) it remains to prove that

gm Z 2k: 7k4|C PkSle,g P, U¢L2 P, UhL4](£, )’58%27605'777,7
kg ka €7
(6.3.34)
where p = (kg,11), v = (kg,t2), s € 271,21 h € {haps}, and kq, ko €
[—3m/5,m/20].
Using Lemma 3.4 (ii) and the bounds (3.3.5) and (3.3.11) we estimate

[Coal iU, P,U2, P, U6, 5)|
S 27 RHOma D P UV 2 | P U 2| P, U™ e (6.3.35)

55?225'17@2@21@;21@;(1—5) min(2—m72k )2—2omax(k+ ki ki)

This suffices to bound the contribution of the triplets (ko, ks, ks) for which
ks < —1.01m, or k3 < —0.01m, or max(ko, k3, k4) > 106’m. In the remaining
range we further decompose Py, U%* = 37 e kg s V;é’;ja and P, U%"2 =

i e kga V;f;é Notice that the contribution of the pairs (jz,j3) for which

max(j2,73) > 0.1m can be suitably bounded, using an estimate similar to
(6.3.35). For (6.3.34) it remains to prove that

(Cunle™ 05V 43 eihis.a 2 B Uhs](e, )| S el2-101m9b, (6.3.36)
provided that ks, k3 € [—0.1m, 106'm], k4 € [—1.01m, 108'm], and jo, j5 < 0.1m.

To prove this, we insert cutoff functions of the form @< (2°%(p — ¢)) and
©>1(2935(p — £)) in the integral in (6.3.33). The contribution of the integral
when |p — &| < 270935 (which is nontrivial only if 2%+ > 27%™) is bounded as

.

claimed by estimating in the Fourier space, with V;ﬁ ,L;; and Vd’ 12 . estimated in
2 and P, UM estimated in L.
On the other hand, the integral when |p — &| > 27935 can be estimated as

in the proof of (6.3.31). Using (6.3.32), the 7 integral is bounded by Ce?2~1-1m
for any £, p € R3. Then we notice that || Py, U (p, s)||L}) < £122ka90'm and the
desired conclusion (6.3.36) follows. This completes the proof of the lemma. [
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6.3.3 Localized Bilinear Wave Interactions

In this subsection we start analyzing the remaining cases, where we have bilinear
interactions of the metric components. These cases are more difficult because of
the presence of time-resonant frequencies (parallel bilinear interactions), which
prevent direct integration by parts in time.

For b € Z, £ € R3, and multipliers m € M we define the bilinear operators

Tolf, 91(&) = Toiuria £, 91 (6) :=/R3 m(€ = 0.0 F (€ = mGm)ee(Zuria (€ = m,m)) di,
(6.3.37)
for 1,2 € {+, —} (see the definition (3.1.23)). As in the proof of Lemma 3.6, we

remark that an expression of the form ¢, (ELle (&—n, 77)) (&) ek, (E—n)pr, ()
can be nontrivial only if either b > —20 or 20 < 2k—max(ki,k2)
We start with a lemma.

Lemma 6.15. Assume m > 10, t € [2m~ L 2T N [0,T], I,l1,lo € Z N
[—m,m/5 + 10].
(i) If b € [-m, 2], (I1, 1), (I2, j2) € T, and n € L>®(R? x R?) then

’501(5) /3 n(&mVI (€ = n )V (0,8 0<b(E0,0, (€ — m,m)) dn
R
< €2|n| e .9d'm min(272max(l1,12),22b72l)2l1+l227 max(jl,j2)2720(lf'+l;)’
(6.3.38)

for any £ € R3, hy, hy € {hag}, and 11,12 € {+,—}.
(ii) If b > (—m+1—1; —l2)/2+ dm/8 then, for any & € R3, hy, ha € {hap},
and t1,t9 € {+, -1},

hi,t ha,t
Z |(‘0l(§)Jb [Ujllvlll (t)’ Uj;lz? (t)H
N>=ly, 2>y (6.3.39)
< 6?226’777,7177, min(szaX(zl,zz)’ 22b72l)27b+l1+l22718(l1*'+l§').

As a consequence, for any & € R3,

)RS DR A PA AR OR Ol
b2 1>y, jo> 1y (6.3.40)

< 6%225/m7m2min(l1,l2)712718(lf+l;).

Proof. (i) We may assume that ||n||p~ = 1. Without loss of generality, by
rotation, we may also assume that j» > j; and & = (&,0,0), & € [2071, 2041
We notice that the 7 integral in the left-hand side is supported in the set R<p.¢ :=
{In| = 22, ¢ —n| =21, /3 +n3 £ X := min(2h, 22 20F0h+2=0)1 (the last
bound on /13 + n3 holds when b < —20; see (3.1.50)).
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With e; := (1,0,0), we estimate the left-hand side of (6.3.38) by
h 2 h L
CIVEE Ol [ Vi 1.0, ()
SV @l [ VI 16, 8) 2,
i [0,00)x52, [0y | S22 x>

Using (3.3.25), (3.2.7) (with p = 1/ large) and (3.3.4), we can further estimate
the right-hand side of the expression above by
§'m —221t 5— /hT —ly ! 2
Ce 2™/~ g~k IV, (r0, $)ll L2 rzaryrr - (2 2 X)2/P g%/
< 8§25/m2—20(lf+l;)2—j22—l1—l2 mm{2min(zl,lg)7 2b+11+12—1}2.

The bound (6.3.38) follows.

(ii) Notice that (6.3.40) follows from (6.3.38)—(6.3.39) by summation over b.
To prove (6.3.39) we notice first that the contribution of the pairs (j,j2) for
which max(j1,j2) > m + b — dm is bounded as claimed, due to (6.3.38).

We claim that the contribution of the remaining pairs (ji, j2) is negligible,

L —1 N’ —Ameo— + 7+
|pu(&) Jyle ™ thwmna VI (1), e~ ithwea 2 (1] < g3 4ma 200 )
(6.3.41)

if max(j1,72) < m+ b — dm. For this we would like to use Lemma 3.1. Notice
that, in the support of the integral, we always have the lower bounds

‘Vn Awa,, (§=n) + Awa,, (77)]! = ’Ean (£ - 77777)| 2 2" (6.3.42)

We would like to use Lemma 3.1 with K ~ 2™*+* and e ~ 29™/8 /K. As in the
proof of Lemma 3.6 let Hy¢(n) = 272|Z,,,,(€ —n,m)|? such that ¢, (Z,,., (€ —
1,1)) = ¢4 (Hye(n)), where gff(x) = Ljg00)(x)p0(v/z). If 2° 2 1 then the
function Hy,¢ satisfies bounds of the form | D Hy.¢(1)] <o 2lelmax(=l,=12) in the
support of the integral, for all multi-indices a € Z:L and the desired conclusion
(6.3.41) follows from Lemma 3.1.

Assume now that b < —20 (so 2 < 2t~max(lnl2)) and, as before, & = (&, 0,0),
&1 > 0. The formula (3.1.50) shows that

| Dy Hye (n)| Sjog 271910T0H70 0 e 7, (6.3.43)

for n € Rye = {In| = 22, [¢ — | = 2", \/nd + n} ~ 20Th+l2=11 Notice that
e2max(ji.j2) 4 9= (bthitl—l) < 9=0m/8 (e to the assumptions 2b + m + [; +
lo —1 > ém/4 and 2m2xU12) < K279 The desired bounds (6.3.41) would
follow from Lemma 3.1 if we could verify the second bound in (3.1.2). With

f =K s[Awa, (€ = 1) + Awa.n ()], we always have

D f ()] Sjoy K~ 12me(el=tmindyl) (6.3.44)
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in the support of the integral. Since 2~ ™in(n:l2) < K9-0m/8 it suffices to verify
the bounds (3.1.2) when |a| = 2, i.e., K—12m2~ minllz) < 9=0m/8 T view
of the assumption 2b > —m — I} — lo + 1 + dm, this holds when 2/—max(tn.l2) > 1
and the desired conclusion (6.3.41) follows in this case.

If | < max(ly,l2) — 40 then we need to be slightly more careful with the
estimates (6.3.44). Since b < —20, we may assume that b < [ — max(ly,l2) + 10.
We may also assume that 1y = —t9, since otherwise ¢4(Z,,,,(§ —n,71)) = 0. We
define K, ¢, f as before and notice that the bounds (6.3.44) can be improved to

|Daf(77)| S\ozl K—12m2l—max(11,l2)2—(|a|—1) max(ll,lz)’

in the support of the integral. This suffices to verify the bounds (3.1.2) in
Lemma 3.1 in the remaining case, and completes the proof of (6.3.41). O

Our main result in this subsection is the following lemma, in which we show
that the contribution of non-parallel wave interactions is suitably small.

Lemma 6.16. Assume thatm > 100, t1,ty € [2m1, 27HN[0, T, k, k1, k2 € Z,
k € [-km/4,0'm], —pom — 10 < ko < k; < m/10, and ¢ > (—m + k — k1 —
k2)/2 4+ ém/8. Then

ta
iSAwa(g)_i@wa(Evs) hi,t1 ha,t2
@kf/ e Jq| P, U , Pr,U &, s dsH
ox©) | [P, R CE L

< 8%2—0.001m2k;
for any hq,he € {hag} and t1,12 € {+,—}.
Proof. We notice that the desired bounds follow directly from (6.3.39) if ¢ <
—0.002m + 10 (recall that k, k1 > —xm/4 — 10). On the other hand, if
q € [~0.002m + 10,2 (6.3.46)

then we integrate by parts in time. Notice that

‘Awa(g) - Awa,u (5 - 77) - Awa,Lg (77)}_1 ,S 2_2q_k2 (6.3.47)

in the support of the integral, as a consequence of (3.1.31). We define the
operators T by

e (wa,+) v (§:1)

T/;Du();q[fv gl(&,s) = /stm(ﬁ —n,n)

X F(€—1.8)5(10, 8) g (Suria (€ — m,1m)) d,

(6.3.48)

where p = (wa, 1), v = (wa,t2), and P(ye, 1) (§;1) = Awa(§) — Ap(§ —
n) — A,(n). As in Lemma 6.12, we integrate by parts in time and recall
that |Ouwe(€,s)] < 27™F29™  For (6.3.45) it suffices to prove that, for any
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s € [2m=1,2mH),

[P (O)T ity [Py VI, P, V2] (€, 5)] S ef2700m100make - (6.3.49)

27 o ()Tt [P, VI 0, (P, VI )| (€, 5)]| S 327 000m=100mas
(6.3.50)

2m|(,0k(§)T;UVa;q[as(Pklvthl)7Pk2vh2’L2](€75>‘ 5 8%2—0.001m—106/m2k;.
(6.3.51)

Step 1: proof of (6.3.49). We decompose Py, V11 = > le“kbll and

Py, Vhatz = > s V]sz:z The contribution of (ji,j2) with max(j1,72) < 0.99m
is negligible, due to Lemma 3.1, the assumptions ¢ > —0.002m — 10, ko >

—pom — 10, and the bounds (6.3.42), (6.3.47). We estimate also

ok ()T [V V1216, 6)] < 220K [V ()| oo 2552 V202 ()|
Pk prsglY gy ky 0 Vg ke NS SIS g1,k \S)lILee jaska \S)ILee

5 8%255/m2—4ki 22k2—2q(2—3k2/22—j2/2+5j2)(2—3k1 /22—j1/2+5j1)

< 5%20-01m2—2q2/€;/22—(j1+j2)/2+5(j1+j2)

using (3.3.26). Since 272¢ < 20-01™ (due to (6.3.46)) and 27*2 < 2P0 this
suffices to control the contribution of the pairs (j1,j2) with j1 + j2 > 0.99m.
The bounds (6.3.49) follow.

Step 2: proof of (6.3.50). Recall (6.2.51). The contribution of the cubic
terms N"23(s) can be estimated easily, using the bounds in the second line of
(6.3.19). The quadratic nonlinearities N2 contain two main types of terms:
bilinear interactions of the metric components and bilinear interactions of the
Klein-Gordon field (see (2.1.11)). The desired bounds follow from (6.3.53)—
(6.3.54) in Lemma 6.17 below.

Step 3: proof of (6.3.51). As before, the contribution of the cubic and
higher order nonlinearities N23(s) can be estimated using the bounds in the
second line of (6.3.19). The quadratic nonlinearities N*? can be estimated
using the change of variables n — & — 7 and the bounds (6.3.55)—(6.3.56) in
Lemma 6.17 below. O

We estimate now the trilinear operators arising in the proof of the previous
lemma:

Lemma 6.17. For mg,mq € My, m € M (see (3.2.41)) we define the trilinear
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operators

al er(§)m(§ — nﬂ?) - B
C [fag’ ](6) : ~/R3><R3 Awa( )7A/L(§ 77) ( )(pq(“hbz(g 77777))()01(77)

~

x ms(n — p)ma(p) - F(€ —n)G(n — p)h(p) dndp,

(6.3.52)
where q,1 € Z, and p = (wa,t1),v = (wa, ). Assume that m > 100, s €

[2m71’2m+1] N [O,T}, k,k?l, ko € Z, ke [7ﬁm/4,5/m}, —pom — 10 < ko <k <
m/10, and ¢ > —0.002m + 10. Then

ky 2\1@3 ka| |C!I kz h17L1 (8), Uh:ubs (5)7 Uh4’L4 (S)](§)| 5 6%271.002m’ (6.3.53)

]1 k1 VERLE Ja,ka

—ky |C(I ko Uh1 L1( ) Uw Ls( ) Uw L4 ( )](5)‘ ,S 61132—1.002m’ (6354)

Ji,k1 Js,k3 Ja,ka

2—k;2\k3—k4llcgu,§1 Uh27bz( ), UhB’L?’( ), UZM’M(S)](O‘ < 6:132—1.002m’ (6.3.55)

J2,k2 FERLE] Ja,ka
and
O U (9, UL (). U (€] S Sh271002, (6.3.56)

for any (k1, j1), (k2, j2), (k3, j3), (ka,ja) € T and hy, ha, h3, hy € {hag}.

Proof. Let Y1,Y5,Ys5,Y, denote the expressions in the left-hand sides of (6.3.53),
(6.3.54), (6.3.55), and (6.3.56) respectively. We may assume that £ = (£,0,0),
&1 > 0. We remark that the bounds (6.3.53) and (6.3.55) are different because ko
can be very small, ko > —pom — 10, but k1 cannot be so small, ky > —km/4—4.
The same remark applies to the bounds (6.3.54) and (6.3.56).

Step 1: proof of (6.3.53). We may assume that k, k; > —xm/4 — 10. We
estimate first, using (6.3.47), (6.3.40) (or (3.3.3) if min(ks3, k4) < —m+dm), and
(3.3.26)

- _ Cog_ hia ,
v, <2 ky glks—kalg—2q k2||U]11k?Lll( e
5%23k2226/m m2 k2+min{k3,k4}2—10max{k;,kz} (6357)

< 81152—0.995m2—j1/2+6j1 gmax{k; ki }2—8max{k;,kj}2—8kj )

This suffices to prove the desired bounds unless

J1<0.02m, ki € [-km/4—10,0.0lm], max{ks,ks} € [-0.01m,0.01m)].
(6.3.58)
On the other hand, if these inequalities hold, then we analyze several subcases.
Substep 1.1. Assume first that the inequalities in (6.3.58) hold and, in
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addition,
min{ks, k4 } < —0.03m — 30. (6.3.59)

By symmetry we may assume that ks < ks, therefore |ko — k3| < 4. We fix p
with |p| < 2¥4+2 and estimate the 7 integral by C2-20—k22-0-99mo—4k) 9~k
using Lemma 6.15 with 2! ~ 2F 20 ~ 2k1 212 x~ 93 Thus

Y, < 2z gka—kig—2q—ks 9—0.99mo—4kT o—dk o(2—0)ks

The conclusion follows in this case.
Substep 1.2. Assume now that the inequalities in (6.3.58) hold and, in
addition,

min{ks, ks} > —0.03m—30 and max{js,js} > 0.97m+k; —100. (6.3.60)

We estimate first in the physical space, using (3.1.3), (3.1.34), and (3.3.11),

— - Q — - - h ’ h i h )
Vg2 b R U ) U O U Ol
<5§2—0.95m2—2k;2—(1—6)(j3+j4)2—10k1+, B

which suffices if ko > —0.3m — 30.

On the other hand, if ks € [—pom — 10,—0.3m — 30] then we may as-
sume that |k3 — k4| < 4 and, by symmetry, j3 < js. Using just L? esti-
mates on the two components, we notice that the p integral is bounded by
228" mo—jsg—hs/29=ja9—ki/29=4ki  This would suffice if j3, j4 satisfied slightly
stronger bounds, such as j4 > 1.03m + k3 — 100 or j3 > 0.1m. In the remaining
case, when

ja—m—ky+100] <0.03m  and  j3<0.lm

we need to gain by integration by parts in 7.

Recall that £ = (£1,0,0) and insert cutoff functions of the form <y (p2, p3)
and @=n(p2, p3), where n := —0.15m + 100. More precisely, for * € {< n,> n}
we define

Px (,027 /)3)

. o9—ky @k(g)m(f — 1, 77)<sz (n)@q(EHLQ (5 -1, 77))
co=2t [

% m3(77 _ p)m4(p)efiS[Awa,L1(Efn)+Awa,L3(nfp)+Awa,L4(p)]

—

X V(€ =, )Vt (n — p, s)Vii (p, s) dndp.

J1,k1 J3,k3 Ja,ka

Notice that the n derivative of the phase is bounded from below

(2.2 1,1
\% AwaL1 - Awaba - - -
9l anas(€ =)+ Avaasr =Pl 2 SRR = (g + =)

—k
g 2",
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in the support of the integral defining G~,. Thus |Gs,(£)] < 272%™, using
integration by parts in 7 with Lemma 3.1 (recall that ji,j3 < 0.1m).
Finally we estimate |G <, (£)] as in the proof of Lemma 6.15 (i), with p = 1/6,

—kpo—2g— i o
|G<n ()] 27 227207 P20 |V () [ oo V%0 (5) | o

—

X /RS P<n(p2, p3) |V, (p, 5)| dp

Thaa
< 5§2k220'04m||vjﬁ1;14 (r0, )| L2(r2ary L2

< 390 dmg2ngka9=js

. 2(2%—2]&1)/]}’ 23k}4/2

The conclusion follows since 2774Fk2 < 270-9"m__ge6 (6.3.60)—and 22" < 270-3m,
Substep 1.3. Assume now that the inequalities in (6.3.58) hold and, in
addition,

min{ks, ks} > —0.03m—30 and max{js,js} < 0.97m+k, —100. (6.3.62)

By symmetry, we may assume that k4 < k3. We insert first cutoff functions
of the form ¢4 (Z,,,,(n — p,p)) in the integral (6.3.52). Using (6.3.41) (with
2l ks 9la ny 2Ra 9l x 2k2 b = ¢/) the contribution is negligible if ¢’ >
k5 —0.025m. On the other hand, if

< q <ky —0.025m, where qj:=-m/2+ko/2+0.03m, (6.3.63)

then the p integral is bounded by Ce2220'm—1.02moks+ki—k29-8ki (a5 a conse-
quence of (6.3.39)) for any 1. The desired bounds then follow, once we notice
that the 7 integral gains a factor of 23%2.

To bound the contribution of ¢4 (Eis0a(n — p,p)), we further insert cutoff
functions of the form <,/ (p’) and @,/ (p"), where n’ := —0.05m + k4 + 100
and p' = (p2, p3). More precisely, as before, for x € {< n/, > n'} we define

Gl (6) — 2—k; / onr(g)m(f -, 77)9%2 (n)@q(ELuz (§ -, 77))
* R3 xR3 Apa(§) = Ap(§—m) — Au(n)
R N )

—

hi,t1 h3 s ha,a
X i (p)ma(n — p)ma(p) V(€ —m, $)Vi%iid (n — p, s)V i (py s) didp.
For (6.3.53) it remains to prove that
bR G (€) + 25 GL, (€)] S ef2m O, (6.3.64)
Notice that the integral in the definition of G,STL/ is supported in the set

{(n,p) : 10| S 2™, E(n, p) < 2Fe—F22m),
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due to (3.1.28) and the assumption Z,,,, (n — p, p) < 2%. Therefore, using also
Lemma 3.19,

|G/§n/ (€)| 5 2—k222q—k2 . 2271/2k‘42k2 (2k32q6)2 . Ei)2—k1—kg—k42—8k;r—8k;225/m

< 6?2—1.02m22k42—4k;_
(6.3.65)

Finally we have to bound the functions G, ,,. This can be done as in (6.3.65)
if j3 > 0.3m, since the gain of 227" can be replaced by a gain of 2778/2 coming
from Lemma 3.19. On the other hand, if j3 < 0.3m then we claim that

Gl ()] S ef272m, (6.3.66)
To see this we use integration by parts in 7. We show that
IVi{Awa,u (€ =) + Awaus (1 — p)H 2 9~ 0-46my=hk/2 (6.3.67)

in the support of the integral defining G ,,(£). In view of Lemma 3.1 (with
K~ 2054m=k2/2 ¢ — K=129m) and recalling (6.3.58), this would suffice to
prove (6.3.66).

To prove (6.3.67), assume for contradiction that it fails, so =,,,,(§ —n,n —
p) < 270-46m=k2/2 for some 7, p in the support of the integral defining G, (€).
We may assume also that m > 1/§. Since Z,,,,(n — p,p) < 2704Tm+k2/2)

it follows from (3.1.28) that Z(n, p) < 270-47m—k2/2tks+4 and it follows from

(3.1.26)-(3.1.27) that Z(£—n, p) < 270:46m—k2/2+4_ Uging again (3.1.28) we have
2(¢, p) < 270-44m—k2/2 in contradiction with the assumption |p/| > 274 >
270:05m+ka+90 (recall that —kq/2 < pom/2 + 10 < 0.34m + 10). This completes
the proof of (6.3.66).

Step 2: proof of (6.3.54). An estimate similar to (6.3.57) still holds, using
(4.1.34)—(4.1.35) instead of (6.3.40). This proves the desired conclusion when
j1 > 0.1m or when max{ks, ks} > 0.0lm. On the other hand, if j; < 0.1m and
max{ks, ks} < 0.01m then we notice that |V, [sAwa,., (6 —1)+5Akg,s(n—p)]| 2
2m2-2k3 i the support of the integral. Therefore, using integration by parts
in n with Lemma 3.1, Y5 is negligible if j3 < 0.9m. Similarly, after making the
change of variables p — n— p, Y5 is negligible if j;, < 0.9m. Finally, if j; < 0.1m
and 73, j4 > 0.9m then we estimate

k PR ko |1/ Y
—ky 5—2¢— " 3 u ),
Yo € 2745 220 VR (o) 29 4 5 IV ()

360.1mo—js0—jso—6ki —6k}
<er2 277327I47 00 4,

The bounds (6.3.54) follow.
Step 3: proof of (6.3.55). We may assume that k4 < k3, thus k, ki, ks >
—km/4 — 10 and k < k1 + 6 and k; < k3 + 6. The main frequency parameters
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in the proof are ko and ky. We estimate first, using (6.3.47) and (6.3.40) (or
(3.3.3) if ky < —m + dm),

o
—k5 oks—kso—2q—koo3ka /2| 77h2,t2 . 20928'm—moks—k1 9—10kT
Yy < 27k oha—hag 22302 U2 (s) - €52 oka—k1g—10k;

(6.3.68)
< €?27O.995m27j27k2_ 9—8ky

This suffices unless js + k3 < 0.01m. In this case we analyze several subcases.
Substep 3.1. Assume first that

jo4ky <0.0lm  and  ky < ky — 0.03m — 30. (6.3.69)

This is similar to the case analyzed in (6.3.59). We fix p with |p| < 2¥4+2 and
estimate the 7 integral by C2~2a—ka9=0-99m gk —kg—4k] using Lemma 6.15 with
2l 2k 9l g Qk2 9l2 ~ 9ks Thus

Yg < Q—k; 2k‘3—k‘42—2q—k22—0.98'Vn2k‘2—k2—4k;22k4.

The desired conclusion follows since 2F4+=*2 < 270-03m. 00 (6.3.69).
Substep 3.2. Assume now that

jo+ky <0.0lm,  ky>ky—0.03m—30,  j3>0.97m —100. (6.3.70)

As in (6.3.61), we estimate in the physical space, using the bounds (3.1.3),
(3.1.34), and (3.3.11),

— k> - —2q— ha,t h3,t ha,u
Y; 5 9—ky gks—kag—2q szUj;k;(S)HLw||Uj33:k;(8)“L2HUJ—:k;(S)HLz (6 3 71)
< 6?270‘997712719227%4/227]‘327j4274k§"

Since 272 < grom = 20.68m anq 2—ki—j1 < 1 this suffices to prove (6.3.55)
when —k4 < 0.55m. On the other hand, if k4 < —0.55m then we can bound
simply, using (3.3.26) and (3.3.3),

N rhais ha s haia
Yy 27K gk ke ke g3k 2 )| U722 (5) e 22/ U )

< €:I,20.01m2k42—j3/2+5j3 2—4k§r
< .

Given (6.3.70), this suffices to prove (6.3.55) if k4 < —0.55m.
Substep 3.3. Assume now that

Jo +ky <0.0lm, ks > ko — 0.03m — 30, ja > 0.97m — 100. (6.3.72)
The bounds (6.3.71) still hold, but they only suffice to prove (6.3.55) when

2J3th2+3ka/2 > 9=0.95m  Thig holds if 273 k2 > 20-12m (hecause 2k4 > 270.71m)
or when 2F+ > 270-18m (hecause 2731z > 270:68m) Tt remains to prove (6.3.55)
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in the case when
3+ ko < 0.12m and ks < —0.18m — 50. (6.3.73)

Assuming that both (6.3.72) and (6.3.73) hold, we consider the operator
defined by 7 integration first. More precisely, with n := —0.05m 4 50 and
* € {< n,>n} we define

@k(g)m(ea 6 - 9)90k1 (5 - o)wq(Eble (0’ 6 B 9))

H.(&p) =2"" /

R? Awa(§) = Au(0) — Ay (§ - 0)
x ¢*(EL2L3 (03 5 —p— 9))7713(5 —p— 9) (6374)
% e—iS[Awa,LQ (9)+Awa,L3 (5—,0—(9)]‘/"7}212];;2 (9’ 8)‘/;};?];23 (é_ —p— 9, 3) d@

This corresponds to the 7 integral in the operator in (6.3.52), after making the
change of variables n — £ — 6 and inserting angular cutoff functions of the form
0« (Epyus (0,6 — p—0)). For (6.3.55) it suffices to prove that, for x € {<n,>n}
and £ € R3,

2ok [ L AIIULE 0 0) dp 5 20 (6375

Ja,ka
Using just (6.3.38) (with & — & — p, 2! a0 2k, 2l ~ 2k2 212 &~ 2k3) we bound

- - + +
|Hgn(§,P)| 5 2—k2 .6%2—2q—k222n—2k22k2 2—8k:3 5 6%2—0.09m2—4k3 )

The bound (6.3.75) for H<,, follows since ||Uh4’L4 (P, £127712ka23"m and

Ja,ka LL ~
2—j4 5 2—0.977n.

On the other hand, we claim that Hs, is negligible, i.e., |Hsn(&,0)] <
5%2*4’”2*4’“;. This follows by integration by parts in 6 using Lemma 3.1 (as
in the proof of (6.3.41)), once we notice that the 6 gradient of the phase is
bounded from below by ¢2"2™ > 209 in the support of the integral, and recall
that 2max(j2.73) < 208m (due to (6.3.72)(6.3.73)). This completes the proof of
(6.3.55) when (6.3.72) holds.

Substep 3.4. Finally, assume that
Jetks <0.0lm, kg>ka—0.03m—30, max(js,js) <0.97m—100. (6.3.76)
This is similar to the case analyzed in (6.3.62). We insert the cutoff functions
©q' (Eiges(n—p, p)) in the integral (6.3.52). Using (6.3.41) (with Iy = ks, lo = ku,
I =ky, b=¢') the contribution is negligible if ¢’ > —0.025m. Moreover, if
¢y <q <-0.025m, where ¢} :=-m/2—k4/2+40.0lm (6.3.77)

then we use (6.3.39) to see that the contribution of the p integral is bounded by
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C£22-0.02m—m9=2ki gka+ks =4k for any 5. The desired conclusion then follows,
once we notice that the 7 integral gains a factor of 27242k2 28'm

To bound the contribution of <,/ (Z.30.(n = p, p)), we make the change of
variables 7 — £ —0 and insert angular cutoff functions of the form ¢, (=,,,,(0,&—
p —0)). More precisely we define

e =2t [ AECE Il T 2,06 -0)
X 0<q (Bigia (€ =0 = 0, 0)) s (Bunis (0,6 — p— 0))msz(§ — p — 0)

x e tolhuna O Rwea €m0l P22 (9, )VIS (€ — p— 0, 5) db,
where n := —0.05m + 50 as in (6.3.74) and * € {< n,> n}. For (6.3.53) it
remains to prove that

2t [ U o) dp < st (6:3.78)

We consider first the contribution of [HZ, (£, p)|. We use the restrictions
EE—0-pp)$2%  and  E(E-0-p,0) 2", (6.3.79)

which hold in the support of the defining integrals. Therefore E(g —6,p) <
2912k3=k1 yging (3.1.28). Moreover, since 2% < 27, we have Z(p, 6) < 2" (using
(3.1.27)). In addition Z(¢ — 6, 0) < 272ks—k1 and then Z(¢,6) < 2725~F (using
(3.1.28)). Therefore the support of the (6, p) integral is included in the set
{(6,p) : 2(&,0) < 2n2ks—k E(¢ — 9, p) < 202ka—F1} . Thus

_ hava S Fi1o hai
2ka ke ASIH;n(€7P)|!Uj4f£f(p78)\dpS2’“ Rag =202k 2k | V022 (s) | oo |
VR e U8 (9 - 298 2o b by

3062n9—0.95m0—8k.
< ey2em2 27

using Lemma 3.19 and (6.3.77) in the last inequality. This gives (6.3.78) when
* =< n.

The same argument also gives the desired bounds (6.3.78) when * => n
if j3 > 0.2n or if k3 > 0.0lm. In the remaining case, when j3 < 0.2m and
ks € [-km/4 — 10,0.01m] we can integrate by parts in 6, using Lemma 3.1, to
see that the contribution is negligible, |[H. (&, p)| < €227%™. This completes
the proof of (6.3.78).

Step 4: proof of (6.3.56). As in the proof of (6.3.55) we may assume that
ks < ks, thus k, k1, k3 > —xm/4 — 10 and k < k; + 6 and k; < k3 + 6. Using
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(3.3.4) we have

— k> 60—29— ho, sbe )
VS 2 B R U e
< 621’>20.01m2—k; 2—j22—j32—j42—20k§r.

This suffices if k3 > 0.06m or if j3 + j4 > 1.02m. On the other hand, if
ks < 0.06m, jo < m — dm — 2ks, and j3 < m — ém — 2k; then we notice that
IVailsAwa,, (E—n) + 8Akg.s(n—p)]| 2 2m=2k3 in the support of the integral, so
Y, is negligible using integration by parts in 1 and Lemma 3.1. Similarly, Y} is
negligible if k3 < 0.06m, jo < m — ém — 2k5, and jy, < m — ém — 2k7.

Finally assume that

ks < 0.06m and Jo >m — om — 2k (6.3.81)

The bounds (6.3.80) are sufficient to prove (6.3.56) if j* := max{js, ja} > 0.7m—
1014:; On the other hand, if j* < 0.7m — IOk;' then we examine the definition
(6.3.52) and insert cutoff functions of the form @<, (p—n/2) and p~,(p—1/2),
where n” := —0.29m + 5k — 10. More precisely, for * € {< n”, > n'’} we define

oy Pk (E)m(E = 1,1) 0k, (1)Pq(Enrin (€ —1,1))
R R R wi=rEwr)
X u(p = 1/2)ma(n — pyma(p)e SHiros (170 FAko s (0)

X U2 (& =, )V,03t (n = pos)Vivit (p, s) dndp.

The contribution of I, (£) is negligible, using integration by parts in p (Lemma
3.1) and (6.3.32). Notice also that <,/ (§) = 01if ks < kg — 8. If ky > k3 — 8
then we estimate

kg 9—2q—ka ||g7h2, s [
<o (€)] S 2712 27207k U232 (s)] L2 22222 U2 (5) | o U750, (9) e

360.02mo—k; o—j —0.87mao—4k
<er2 272277922 27

using (3.3.4) and (3.3.26). The desired conclusion follows since 275z 2772 <

2-0-3m+2k{ (due to (6.3.81) and the assumption 27%2 < 2Po™). This completes
the proof of the lemma. O

We conclude this subsection with an estimate on certain cubic expressions.

Lemma 6.18. Assume that m > 100, t € [2m~1 27+ N [0,T], k, k1, ke € Z,
k € [—km,d'm], k1, k2 € [-pom — 10, m/10 + 10], hy € {hag}, t1,t2 € {+,—},

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

234 CHAPTER 6

and g € [-m,2]. Then

oul©) [ | 1PaUR € = nDIIPLTT (. Dl (Snia(€ = )

(6.3.82)
< €§22q27m+35m2k1_+k2_ 9—10(ky +k3)
for any £ €R3, and H = |V|7N, N € QU (see (4.3.12)).
Proof. Tt follows from Lemma 4.18 and (3.2.7) that
| Py, H (10, ) Laqragnrr S 61220 mTme TR /207 15k; (6.3.83)

for p=1/4. The proof of (6.3.82) is similar to the proof of Lemma 6.15 (i). We
may assume that & = (£1,0,0), & € [28=1 2¥+1]. The 1, integral in the left-hand

side is supported in the set {|n| & 2¥2, |¢ — | & 27 /3 4 nF S 20TRTRamk Y
With e; := (1,0,0), we estimate the left-hand side of (6.3.82) by

Cl|PaTF o (1) 1o / \Bo H(r0, 1)| r2drdd
[0,00)xS2, [§—ey | <2a+k1—k
< ||p,j]Tm( )| o< | P, H (10, |2 (r2am L 5,22<q+krk)/pf23k2/z

+
g 8127]6125'777,2720]61 . 6%235 m7m27k2/22715k:2 22q+2k172k23k2/2.

The desired conclusion follows once we recall that k > —xm. O

6.3.4 The Nonlinear Terms Rg"ﬁ

We are now ready to bound the quasilinear contributions defined in (6.3.12), for
which we can still prove strong bounds.

Lemma 6.19. The bounds (6.3.17) hold for m > 100, k € [—-km/4,6'm], and
a=3.

Proof. The formulas (6.3.5) and (2.1.29) (with H = h) show that
Awa(0) 0,0
2 20 wa(0)
= F(n)mp., (0,1) + Em)m.o, (0.0) + 5n)my.., (0,1) +Gi(n)me., (6,m)
+ Qu()ma, . (0,7) + Tan ()9, (6,7),

+ hoj ()8 + 1l (n)

JQwa,u, (9, 77) = LlhOO (77>
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where

2101 — 1.0,

mp,, (60,1) =0

2|n216| ’
02161 + ;7100
mpg.,. (9#7) = ’
= 2|n|2|0|
n;0;
mp,u (0777) = _Z|]7|7
) U ) (6.3.84)
ikl Mk
My, (0 77) 177
|
(€kia MM+ Ej1a Men1)0;0k
mao, . (03 77) =0 ’
! 2|n|2|0|
CjipaCkqb 77p77q9j9k
Mgy, (0,7) = =11 =22
b 2|n|2|0|

We rewrite quq,, in terms of the normalized solutions U%*2, using (2.1.36),

—

UG
Qwan (0,0) = Y > L27(77)mc,£1 0,1).  (6.3.85)

2[n|
t2€{+,—} GE{F,F,p,wa,Qa,%ab}

We substitute this formula into the definition (6.3.12) and decompose dya-
dically. Let

aBillst
Ry (€:1)
e~ ®ualEt)

— itAya () = _ P, T]h\alg,q —nt
(27_(_)3 /]RSG @q( L1L2(£ TIJI)) k1 (5 7, ) (6386)

X Z 12 Py, UGtz (nﬁ)Ws@»(@)“n) dn,
GE{F.F,pwa.Qa,Iab} N

and notice that

ORI ED = D Y S ORI E ).

t1,t2€{+,—} (k1,k2)€X) q<4

For (6.3.17) we have to prove that if m > 100, k € [~xm/4,8m], £ € R®, then

Z Z Z‘pk / 3k€72127fq2(§7 s)ds

t1,e2€{+,—} (k1,k2)EX) q<4

S 6%27577’1/227]\70]6*' .

(6.3.87)
The multipiers mg,,, are all sums of symbols of the form |0|m4 (8)m2(n), with
my,me € My (see definition (3.2.40)). We may assume that ky > —pem — 10 in

the sum in (6.3.87). Using the bounds || Py, Uhest1|| g1 < g,22k1—0k198'm it jg
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easy to see that the contribution in the sum corresponding to the pairs (kq, k2)
for which k1 < —pem — 10 (thus |k — k| < 4) is bounded by C279™  Also,
the contribution of the pairs (k1, ko) for which max(kq, ko) > m/10 is bounded
by C2791m using L? estimates on the profiles. Finally, the contribution of the
indices ¢ with > go := (—m+k — k1 — k2)/2+ 0m/8 is bounded as claimed, due
to Lemma 6.16 (the time dependence of the multiplier ¢>1((s)?°n) generates an
additional term after integration by parts in time, which can be controlled using
(6.3.49)). After these reductions, it suffices to prove that

@k(f) Z /Rs $<qo (Eubz (5 - U))Pk@’“ (5 -1 t)

Ge{FaEvl)vwanaaﬂab}
S azex mag. b —dm—meo—
% Pk2UG’L2(777t)W¢>l(<t>mn) dn 55%2 5 2 Nok+’
(6.3.88)
for any ¢t € [2m~ 1, 2m 1y, € {4, =}, and ky, ko € [~pom — 10,m/10].

To prove (6.3.88) we use the fact that the multipliers m¢ ,, satisfy certain
null structure conditions. Indeed, notice that

[vawy — vswal* + ([v[*w]* = |(v - w)*) < [ollw] ([v][w] = [(v-w)])
o , (6.3.89)
SCIRRACRT)

for any ¢ € {+, -}, a,b € {1,2,3}, and v,w € R3. Therefore, using the defini-
tions (6.3.84),
M., (€ —n,m)| S 2M2% (6.3.90)

in the support of the integral in (6.3.88), for G € {F,wq, s, Vap}. Using
(6.3.38), it follows that the integrals in (6.3.88) corresponding to the functions
F wq, Qq, ¥4 are bounded by

06%25’m2k1+k2 . gmin(k1,k2)92¢0—2k _ gk1—k29q09—4(ky +k3)
5 6%22nm2—3m/22— n’lil’l(k,‘l,k:g)/Z7
which suffices.

Clearly, the symbols m, + and mg + in (6.3.84) do not satisfy favorable null
structure bounds like (6.3.90). However, we can use the identities (4.3.4)—(4.3.5)
to combine the p and F terms and extract a cancellation. Indeed, notice that

Up’+ = atp — Z|V|p
— 8(RoF + Ror + |V| " EZ?) — i|V|(RoE + Ror + |V EZ?)
=—|V|E+ |V|T'WE = V|7 + |V TINT + V|0 EZ? — i, F — idym — i B>

= —iUEA 4 { — U™ 4 |VTWE 4 |V TINT 4 |V L ER? — B2
(6.3.91)
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Therefore U+ = UL+ + HE where the functions HT and H~ = H+ satisfy
the bounds (6.3.82) of Lemma 6.18.
We combine the contributions of U+ and UL® in the left-hand side of
(6.3.88). Notice that
Urz(n)mp,., (€ = n,n) + UL (n)mp,., (§ —n,1)

= UE=(n)i(€ —n,m) + He(n)ymy,,, (€ —n,m),

as a consequence of (6.3.84) and (6.3.91), where

n;9;
2
]

1017 + (n;8,)* _ ulb] -
49— |‘:'L1L2(07 )|4

m(0,n) := —
() = 2T 8

+ 1

The main point is that the combined symbols m satisfy favorable null structure
bounds of the form |m (& —n,n)| < 25129 similar to (6.3.90) (see also (3.1.24)),
in the support of the integral in (6.3.88). As before, this suffices to bound
the corresponding contributions in (6.3.88). Finally, the contributions of the
functions H* to the left-hand side of (6.3.88) are bounded as claimed, as a
consequence of (6.3.82). This completes the proof of the lemma. O

6.3.5 The Nonlinear Terms Rg“”

Finally, for the contribution of the semilinear quadratic terms we prove weaker
bounds, but still sufficient to conclude the proof of (6.3.16).

Lemma 6.20. Assume that m > 100, t1,ty € [2m71 2"F N [0,T], and k €
[—rm/4,6'm]. Then, for any & € R3,

to B
[os(6) / R (€, 5) ds| < 527 227K Mok (6.3.92)
ty

Moreover, for G € {F,Qq, 3.} we have
to _
ou@) [ RE(€ s ds| S 2oma i e (693)
ty
where (compare with the definitions (2.1.26) with H = h)

1 .
Ry = S[RE™ + R;RiRS™),
R?a =€ ki RkRnglm, (6.3.94)

h
RY% =€ ympChng Rm RnRs"".

Proof. Recall that Rg“ﬁ(f,t) = e’i@wa(g’t)eimwa(g)%(ﬁ,t) and the decompo-
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sition S2 5= —(Q? P + P2 B)’ where the nonlinearities Q2 5 and P2 5 are explicitly
given in (2.1.14)-(2.1.15). We decompose Q2 + P2, =L ; +C.7° — 8.7 as in
Lemma 4.25, where I1Z 5 are semilinear null forms and Ci’BZ3 are semilinear cu-

bic remainders (there are no commutator remainders when £ = I). The desired
conclusions follow from Lemmas 6.21-6.23 below. O

We prove strong bounds for the cubic terms and the semilinear null forms.

Lemma 6.21. Assume that m, k,t1,t,& are as in Lemma 6.20 and C*23 is a
semilinear cubic remainder of order (0,0) of one of the first two types as defined
in (4.3.13). Then

t2 . . —_
‘wk(g) / e 1Owa(69) ishua(OCT 23 (¢ 5) ds| < e3270m/22~Nok™ | (6.3.95)
ty

Proof. Bilinear interactions of the quadratic and higher order expression are easy
to bound, using just (4.3.14). On the other hand, if C'>22 is a semilinear cubic
remainder of the first type as defined in (4.3.13), then we decompose dyadically
in frequency and use Lemma 6.18. It remains to bound the contribution of the
middle frequencies, so we have to prove that

k(O F{I[P, UM, P, NTHE, 5)| S ef27 10, (6.3.96)

for any ¢ € R3, s € [2m7L 2mH) Ky ko € [—4km,10sm], [ = I,,, m € M,
hi € {hap}, 1 € {+,—}, and N' € QU. Using (3.3.11) and Lemma 4.18 we
estimate

HPIcACI[Pkl Uhl’Ll,sz./\/](S)HLz 5 2—2m-‘,—0.01m7

Z ”Pk{xlCI[Pkl Uhl’Ll,PkZJ\f]}(S)||L2 < 2—m-|—0.01m7
1€{1,2,3}

for any £ = Q7, |y| < 1. The desired bounds (6.3.96) follow by interpolation;
see (3.2.63). O

Lemma 6.22. Assume that m,k,t1,t2,€ are as in Lemma 6.20 and 11 is a

semilinear null form (see Definition 4.21). Then

to N
(@A&)/ e—z®m(575)ezsAma(E)H(§7S)ds 5652—6m/22—N0k+. (6.3.97)

t1

Proof. After decomposing dyadically in frequency, it remains to prove that

ST Yk Sef270m/2m Mok (6.3.98)
(kl,kz)eXk
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where, with n € Mmlzl being a null multiplier as in Definition 4.21,

to ) )
Yk1,k2 = ’Sﬁk(f)/ ezsAwa(f)—szQ(E,s)
f (6.3.99)

x / Pe U1 (€ — 1, 8) P Utz (1, s)n(€ — 1,17) dnds|.
R3

The sum over the pairs (k1, ko) in (6.3.98) for which min(ky, k2) < —0.01m or
max(k1, ke) > 0.01m can be bounded as claimed using (6.3.40) and disregarding
the null structure of the multiplier n.

On the other hand, if |ki|, k2| < 0.0lm then we insert cutoff functions

of the form $<qo (EL1L2 (5 - 77777)) and 90>q0(EL1L2 (5 - 77777))1 qo ‘= (_m + k-
k1 — k2)/2 + dm/8, in the integral in (6.3.99). The contribution corresponding
60 V540 (010, (€ — 1,m)) can be bounded using Lemma 6.16. The contribution
corresponding to ¢<q,(E,,,,(§ —n,71)) can be bounded using (6.3.38) and the
null structure bound |n(§ —n,n)| <29 if =,,,,(E —n,n) S 290. O

Finally, we bound the contributions of the terms H,s := Sé; (see the defi-
nition (4.3.53)).

Lemma 6.23. Assume that m,k,t1,t2,& are as in Lemma 6.20. Then
‘%(E) /tz R () ds‘ < e220m/29 k"9~ NokT 1 (6.3.100)
31
Moreover, for G € {F,Qq, 3.} we have
’w(é) /tz e Oual&9) i Mua G (¢ ) ds‘ < g2979m/29=NokT (.3 101)
t1

where
1
HE = 5[HOO + R;RiH 1),

H :=Eqp R Ry Him, (6.3.102)
H =€ mp€ing RimBnHpg-

Proof. Using the definitions and decomposing dyadically in frequency, to prove
(6.3.100) it suffices to show that

STV, Sefim2aTh g okt (6.3.103)
(klak2)€Xk
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where, with ¢4, 95 € {Uap}, 1,12 € {+, -}, and mq1,ma € M,

t2 . .
Ykll,kg — ‘@k(f)/ ei5hwa(€)—1Owa(§,5) /]R3 my (& — n)ma(n)

t1

(6.3.104)
X le Udnu (5 - S)sz Uv2rz (777 5) d77d5 :

As in Lemma 6.22, the sum over the pairs (ki,k2) in (6.3.103) for which
min(ky, ko) < —0.0lm or max(ky,ke) > 0.0lm can be bounded as claimed
using (6.3.40). On the other hand, if |ki|, |k2| < 0.0lm then we insert cut-
off functions of the form @<y, (E,,,,(§ —n,1)) and @sq,(Euy, (6 —1,m)), qo =
(—m+k—ki —k2)/2+Im/8, in the integral in (6.3.104). The contribution cor-
responding to ¢sq,(E.,.,(§ —1,m)) can be bounded using Lemma 6.16. Finally,
the contribution corresponding to w<g,(E.,.,(§ —1,n)) can be bounded, using
the estimates in the first line of (3.3.7) and the fact that the support of the
n-integral has volume < 2min(k1:k2)92q0+2k1+2k2 =2k (see the sets R<p,e defined
in Lemma 6.15), by

Comomin(ki k2)92qo+2k: +2ka —2k €§2—k; —rki 9=Nok{ g~k —rky 9—Noky

< E§25m/42—k* (2min(k1,kz)2—nkf 9—rky )2—k++kf+k; 9—Noki 9—Nok

This suffices to bound the remaining contributions, as claimed in (6.3.103).
Notice that this last estimate is tighter than before, and it relies on the strong
bounds in (3.3.7), without 2°™ losses, and on the weak null structure of the
nonlinearity.

To prove (6.3.101) we need to notice that H', H% H% are defined by
multipliers that satisfy suitable null structure bounds. Indeed, we decompose
dyadically in frequency, as in (6.3.103)—(6.3.104), and notice that we only need
to focus on the pairs (kq, k2) for which |k1], |k2| < 0.01m. The identities (2.1.36)
show that the functions H¥', H?e, Hs* are defined by the multipliers

n

¥ (0 ) O+mn)-66+n) -1
£ 1) = Conapgpre (V= e G )
(6-m)2@+m-n_ (O+n)b
SeEIT

(0 4+ 1) mbp (04 1)nnq
6 +n[16] 16 +nllnl

Q
nL aL (0777) = CL L
. "21012n[? 10 + nlln|

(6-n)?
"?1“;’22 (0,n) = CLMZW CampChng

where t1, 15 € {+,—}. These multipliers satisfy suitable null structure bounds,
namely |17, (€ — 1, 7)| S 20205 if [¢], ], € — ] € [27001m 10, 2000m 10

L1t

and E,,,,(§—n,n) < 2% (see also (6.3.89)). The desired bounds (6.3.101) follow

~

as in Lemma 6.22. O
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Chapter Seven

The Main Theorems
7.1 GLOBAL REGULARITY AND ASYMPTOTICS

In this section we prove our first set of main theorems. All of the theorems
below rely on Proposition 2.3, and some of the ingredients in its proof.

7.1.1 Global Regularity

We start with a quantitative global regularity result:

Theorem 7.1. Assume that (g;;, kij,%o,%1) is an initial data set on ¥o =
{(z,t) € R* : t = 0} that satisfies the smallness conditions (1.2.5) and the
constraint equations (1.2.4).

(i) Then the reduced Einstein-Klein-Gordon system

De8ap + 2001057 +1°8aps — F5 (g, 08) =0,

Ogtp— v =0,

admits a unique global solution (g,) in M = {(z,t) € R* : t > 0}, with
initial data (g,;, kij,o,1) on Yo (as described in (1.2.3)) and satisfying ||g —

m|caary + |[¥llcsry S 0. The solution also satisfies the harmonic gauge
conditions in M

(7.1.1)

0="T, =g"0.g5, — (1/2)gP0,805, 1 <€{0,1,2,3}. (7.1.2)

(i1) Let hop = 8ap — Map as in (2.1.1) and define the functions U*,V* as
in (2.1.32)—(2.1.34). For any t € [0,00), o, 8 € {0,1,2,3}, and a,b € {1,2,3}
we have
sup (1)~ @m|(()V]<0) 7|V THEUE ()] v
n<3, LEVE (7.1.3)
HIUEY Ol v } S €0,

sup sup 21\/(n+1)k+ <t>—H(q+1,n+1)5
n<2, LEV] k€Z,1€{1,2,3} (714)

{2225 ()| PemVE ) )12 + 28 [ Pu(@V ) (0|12} S <o,
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and

IVEDZ00 + 1V O] 2y + 1V ()] 2,0
+ O NV ()] 200 + IV D] 21, S €0,
where H(q,n) is defined as in (2.1.49).

(iii) For any k € Z, t € [0,00), and L € V4,
L) satisfy the pointwise decay bounds

(7.1.5)

n < 2, the functions Lhog and

| PO (1) o S eoft) /22 2~ N DR 42T in (1 (1)9k" 1172 (7.1.6)
and

HPIcULw(t)HLOC 5 EO<t>—1-l,-6//22k’/22—N(n-',-1)lg+.1_215r min{l, <t>22k’}1/2.
(7.1.7)

Proof. Step 1. We prove first suitable bounds on the functions h,g and % for
t € [0,2]. Indeed, notice first that, at time ¢ = 0,

> V]2V L, (2% 0P805° hap) (0) || srven S €0,
[8'|<|8]4+Bo—1<n (7 1 8)
> @908 0 xS e

181,18+ Bo—1<n

for any n € [0,3] and By € {0,1}, where 2% = xflxg%% and 9° = 97190200
These bounds follow directly from (1.2.3) and (1.2.5), by passing to the Fourler
space and using Lemma 3.3.

We can construct the functions h,g and 1 by solving the coupled system

(05 = Dhap =Nl5, (95— A+ 1) =NY; (7.1.9)

see Proposition 2.1. Using standard energy estimates, similar to (5.1.2)-(5.1.3),
the solutions hag, 1) are well defined C? functions on R? x [0,2] and satisfy
bounds similar to (7.1.8),

> V]~V 12, (27 0P 95° hag) (8) | vy S €0,
[81<|B]+Bo—1<n (7 1 10)
Y 1@ o) (D) e S <o,

[8'],18]+Bo—1<n

for any t € [0,2], n € [0,3], and By € {0,1}.

We would like to show now that the estimates (7.1.10) hold for all 3, € [0, 3].
Indeed, using the equations (7.1.9), we can replace 92hapg with Ahyg + NP «p and
92+ with Ay — ¢ + N'¥. Simple product estimates using just (7.1.10) and the
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formulas in Proposition 2.1 show that

— ’ 72
> V]2V L, (2% 07850 2N L) ()| v S o0,
|8"|<|B|+Bo—1<n, fo€{2,3}
(2 095 > N) (t)]| vy S o
|B8'],18|+Bo—1<n, Boe{2,3}

2] and any n, 5y € [0, 3].

Therefore the bounds (7.1.10) hold for all ¢ € [0,
3)—(7.1.5) for t € [0,2]. Using

Step 2. We prove now the bounds (7.1.
(7.1.10) we have

V112V 1L, (Ve e Lhap) ()| ven S o,
LY arven + I Va i LY @)l v S €o,
for any ¢t € [0,2], n € [0,3], and £ € V4. The energy bounds (7.1.3) follow.
The weighted bounds (7.1.4) then follow using Lemma 6.1 and (7.1.10) (for the

nonlinear estimates), as in the proof of Proposition 6.2.
We prove now the Z-norm bounds (7.1.5). Using (7.1.4) and (3.1.7) we have

(7.1.11)

N @K 9k /297K 91|, V8 (1) || 12 < €0, (7.1.12)
for any t,€ [0,2], k € Z, and Q € {Qa3, 31, Q12}. Moreover,

+ . - v
N OFT 9=k 2977 1Q; V5 ()| 12 S <0,

due to (7.1.3). Using (3.2.62) it follows that | PyVhas||[p < go2 k7K 2~ Nok™
for any k € Z. Thus ||Vhes (t) < € as desired.

[ Za S

Similarly, using (7.1.10) for any ¢ € [0, 2] we have
1U% )l v + (@)U ()l aver S eo. (7.1.13)

In particular ||PyUY¥(t)||z: < €0, which gives ||17k[ﬁ(t)||Loo < g for any k € Z.
This suffices for & < 0. On the other hand, if k¥ > 0 then it follows from (7.1.13)
that

— + _ +
1P @)z S 202 NOF [ aPRUY ()] S 202 VOR

Thus ||P.UY(#)||zr < £02~ (N(OF3N@)/4k" - which gives the desired control
V¥ ()l ze, < o

Step 3. To summarize, given suitable initial data we construct the solution
(hap, ) of the system (7.1.9) on the time interval [0, 2] satisfying the bounds
(7.1.10). Letting go3 = mag+hag, the metric g (which is close to the Minkowski
metric m) and the field ¢ satisfy the reduced Einstein-Klein-Gordon system
(7.1.1) in R? x [0, 2]. The harmonic gauge condition (7.1.2) holds at time ¢ = 0,
due to the constraint equations (1.2.4). Therefore it holds in R? x [0,2] due to
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the reduced wave equations (1.1.21).

We apply now Proposition 2.3. A standard continuity argument shows that
the solution (heg,?) can be extended globally in time, and satisfies the boot-
strap bounds (7.1.3)—(7.1.5) and the pointwise smallness bounds ||hag(t)|/ 1> S
go for all £ > 0. These pointwise bounds follow from (3.2.9) and (7.1.4) (com-
pare with the proof of (3.3.11)) and are needed to justify that the metric g
is Lorentzian, so g*? are well defined.

Finally, the bounds (7.1.6)—(7.1.7) are similar to the bounds (3.3.11) and
(3.3.13). The profile bounds (7.1.4) and the estimates (3.1.7) show that

2¥225 (1)) 2|QukVE () e + 2% 2711Q VY (8)] 2

N (7.1.14)
g EOQ—N(n—i-l)k <t>H(q—‘,-1,n—i-1)67

for any t € [0,0), (k,j) € J, and £ € VI, n < 2. The desired bounds (7.1.6)—
(7.1.7) follow from the linear estimates in Lemma 3.9. O

7.1.2 Decay of the Metric and the Klein-Gordon Field

We prove now several estimates in the physical space. We introduce the tensor-
fields

L:=08+08,, L:=08—9, U .=r2[Q8%0],+0%500,+0505], (7.1.15)

where 7 := |z| and 8, := |z|"'279;. Notice that
1
meP = _§{Lay +LOLP} +11°F. (7.1.16)

Given a vector-field V' we define the (Minkowski) derivative operator dy :=
V@0q. Let
T = {L, 77 Qua, 77 Qoz, 77131} (7.1.17)

denote the set of “good” vector-fields, tangential to the Minkowski light cones.
For n € {0,1,2} and p < 6 we define also the sets of differentiated metric
components

Hpp = {07°05205* Lhap : a1 +as +az <p, LEV!, o, B € {0,1,2,3}}.
(7.1.18)
We show first that the metric components and their derivatives have suitable
decay,

[h(z, t)] + (¢ + r)|Ovh(x,t)] 4+ (t — r)| Ve h(z, t)] Seolt + P21 (7.1.19)
where V € T is a good vector-field and h € {h,3}. More precisely:

Theorem 7.2. Assume that (g,v) is a global solution of the Finstein-Klein-
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Gordon system as given by Theorem 7.1.
(1) For any H € Ha ¢ we have

|H (2, t)| + |00H (z,t)] < ot + )0 /271, (7.1.20)
(ZZ) IfH/ S /Hl)4, H" ¢ ,Ho’3, a e {1,2,3}, and Q) € {ng, 923, le} then

(t + )0, H' (z,)] + (MIOLH (2, £)]| S eoft +7)> 7,
(t = )|0u H' (2,1)] + min((r), (¢ — )| H (1) S ot +7)* ", (7.1.21)
(t + PO H" (z,t)] + (t — )| O H" (z,1)] < ot + 1) 1.
(#i) The scalar field decays faster but with limited improvement: for U =
011 05205° L1 for some L1 € VI and a1 + az + az < 4 we have
| (,1)] + 00 (2, t) + (V)W t)] S eolt +7)° /27 () 712,

.1.22
10,0 ()| < eolt + 707273/ for b e {1,2,3). (7.1.22)

Proof. Step 1. We prove first the bounds (7.1.20), using the profile bounds
(7.1.14) and linear estimates. With £ € V3 and H = 0"Lohas € Hag, 0% =
07 05205%, we have
|PeH (z,t)| + |PrOoH (2, 1)
5 z Z aaRP/ 7’LtAwaQ Vﬁzh(,ﬁ )) (Qj, t)| (7123)
Re{|V|~1Id} j>—k~

for any k € Z and (z,t) € M. Using (3.2.9) and (7.1.14) we thus estimate

1PLH (1)|| e + || Pudo H () o
S22 N min(1,27(8) 1) (|Qy Ve (8)] 12 (7.1.24)
j>—k=

< e <t>71+H(3,3)6+6272k+ min(l, ok~ <t>)175.

The bounds (7.1.20) follow from (7.1.24) if » < (¢). On the other hand, if
r = |z| > 4(t) then we still use (7.1.23) first and notice that the contribution of
the pairs (k,j) with 2% > 2-10,1/2 o 97 > 271016 (ap still be bounded as in
(7.1.24). On the other hand, if 2¥,27 < 27102|'=% and m € M, then we have
rapid decay,

| [ e e m@ v 6 0 | < ol 1020, (7.1.25)
RS ’

using integration by parts in £ (Lemma 3.1). The desired bounds (7.1.20) follow.
Step 2. We consider now the bounds (7.1.21), which we prove in several

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

246 CHAPTER 7

stages (more precisely, the bounds (7.1.21) follow from (7.1.26), (7.1.28), (7.1.30)
(7.1.33), and (7.1.35)).
We prove first that if H' € Hy 4, r = |z| > 2(t), and p € {0,1,2,3} then

10, H (2, )| S e 2 (7.1.26)

Indeed, as in (7.1.23) we estimate

0. H (.0l < Y Y [(ROP 05205 Pie™ "M Qv Ehes) ) () .
(k.j)€T RE{R,,1d}
(7.1.27)
Using now (7.1.60), for any k € Z we have

N
|| Pr (0, H') (e, )] S (14 2"[a])?272287 % 7 ]QV A" (1)) ot

Jjz—k-

The sum over the pairs (k, j) € J with 27 > 179 is controlled as claimed using

(7.1.14). On the other hand, since r > 2(t), the sum over the pairs (k,j) € J

with 29 < 27197179 ig negligible, as in (7.1.25). The bounds (7.1.26) follow.
We show now that if H' € Hj 4 and r < 4(t) then

Ir 1 H' (2, 1) < e ()Y 2. (7.1.28)
Indeed, this follows using the identities
tQab = l‘an - bea, (7129)

and the bounds (7.1.20) applied to the functions T'H'.
We prove now that if H' € H; 4 and r < 4(t) then

0L H' (2, 1) S eo(r) (1) . (7.1.30)

This follows from (7.1.20) if » < 1. On the other hand, if 24 < 7 < 4(t) then

1 -
2|0 H' (z,t) = = {|x|0* (U s 4 ULrhas) (2, t
10 ' (2, 1) = 5 {410 ) .
+ il‘bRbaa(UﬁthB _ U£1haﬂ)(x,t)}7

where 0% = 9{105205%, L1 € Vi, H' = 0°L1hqp. Therefore, using the bounds
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(7.1.61) below,

|l|0nH' (@, )] < |(|o] + i’ Ry) 0" U e (x, 1)|

< X P IRUS ()]

2k <1 (7.1.32)
oy 2R 2 min(1, 2747 [[Q KV (1) o
2k>t=1 (k,j)ET

The desired bounds (7.1.30) now follow from (7.1.3) and (7.1.14).
We prove now that if H’ € Hy 4, r < 4(t), and a € {1,2,3} then

0. H' (2, 1)] < eo(t) 1t — 1)L (7.1.33)
Indeed, for this we use the identity
(r — )0, = rL — r~ 12Ty, (7.1.34)

Using now (7.1.30) and (7.1.20) it follows that |t — r||8,H' (z,t)] < eo(t)¥ 1.
Using also (7.1.28) it follows that |t — 7||0,H' (x,t)| < o(t)? ™1, a € {1,2,3}.
The bounds (7.1.33) follow using also (7.1.20) in the case |t — r| < 1.

Step 3. Finally, we prove that if H” € Hg 3 and r < 4(t) then

|0 H" (2,)] < eot) 22 (7.1.35)

This follows from (7.1.30) ¢ < 1 or if 2 ¢. On the other hand, to prove the
bounds when ¢t > 2% and r < t/8 we notice that

OL0L = 02 — 02 =02 — A+ (2/r)d, + 17202, + Q% +02),  (7.1.36)

where L = 9; — 0,. We apply 0, to 9, H" and use the wave equations (2.1.2).
Thus

OLOLH" =W 1= 0°Nls + (2/r)0:(0"hap) + 172 (3, + D35 + Q31) (0% hagp).
(7.1.37)
We prove now that if s > 26 and |y| < s/2 then

W (y, 5)| < eolyl ™" (s) =22/, (7.1.38)

Indeed, for the nonlinear terms in 9%N, 5}5 this follows from the formula (2.1.9)
and the bounds (7.1.20), (7.1.22) (which is proved below), (7.1.30), and (7.1.33).
For the term (2/r)0,(0%hqap) these bounds follow directly from (7.1.33), while
for the term r72(3, + Q33 + Q%,)(0%hap) the bounds (7.1.38) follow using
(7.1.29) and (7.1.20).

We can now use the identity 9,0, H” = W' and integrate along the vector-
field L to complete the proof of (7.1.35). Indeed, for any function F' and A €
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[0,t/2] we have

x A d T
F(:L',t)F(:z:+)\|$|,t>\)/O —%F(qus'x‘,t—s)ds
A x
:/ (OLF)(z 4+ s—,t — s) ds.
o ||

We apply this with FF = 9 H” and A = t/8. Since |F(z + Az/|z|,t — A)| <
eot =2+ (due to (7.1.30)) and | F)(x + sz /|z|,t — s)| S eo(s+ |x]) "Lt =2+397/2
for any s € [0, A] (due to (7.1.38)), it follows that

O, H" (2, 1)| < eot™213 2 In(t/|2)) for t > 2% and |z| <t/8.  (7.1.39)

The bounds (7.1.35) follow if |z| > t=*. Moreover, if |2/| < 2¢t=* then
|8, H" (2, 1)| < et~ 219" (due to (7.1.33)) and |8,00H" (', 1)| < eot™ 1, a €
{1,2,3} (due to (7.1.20)). In view of (7.1.39) it follows that |OQgH" (x,t)| <
ot ~2129" if |z| < 2¢74, and the desired bounds (7.1.35) follow if |z| < ¢/8.

Step 4. We prove now the bounds (7.1.22) on the scalar field. These bounds
follow in the same way as (7.1.26) if » > 2(t) or if r +¢ < 1.

It remains to consider the case ¢ > 8 and r < 4t. Notice that t9,¥ =
[y — 29,7, so the bounds |9y (z,t)| < eot—3/2+9/2 in (7.1.22) follow from
the bounds in the first line (for dye)), and the L estimates (3.3.13) (for T'y)).
To summarize, it remains to prove that if ¢ > 8 and r < 4¢ then

(U (2, 8)| + [0 (z, t)| + (V) U (x, 1)| < eot® />~ ()12, (7.1.40)

These bounds follow from (3.3.13) if |r| < 1. On the other hand, if » > 1
then we estimate

| B0 (2, 1) |4| Pudo (2, )| + | Po (V) O (x, 1)
S Y Y @R Qv S ) (1), (T1.41)

RE{A,:;,Id}jZ—k’
where ¥ = 9°L19, £, € V. Using (7.1.14) we estimate

| (0" RP{(e7*™ s QuuVE)) (2,1)| S 2% 2321 Qs V51 (1) 12

. o (7.1.42)
5 502—516 23k/22—]t6 /4.

If 2% < +71/2 then we use (7.1.42) to estimate the contribution of the pairs
(k,7) with 27 > 71792710 On the other hand, if 27 < 71792710 then we have
rapid decay,

|(0*RP (e 9Q; , VE¥)) (2, )| S €02®%/2r™, (7.1.43)
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using integration by parts in the Fourier space (Lemma 3.1). Therefore, using
(7.1.41),

|PLU (2, 8)| + | PeBo¥ ()| < eo(22Ft)r=1/2¢9'/3-1, (7.1.44)
Assume now that 2740 > ¢t=1/2, Using (3.2.14) and (7.1.14) we have
(0 RPL(e 840 Q, V%) ()] S 29 4-9/200/2K 8, VT (1) o
< 502—2k+t—3/2+6//32_k/2
(7.1.45)
provided that 27 < 2%~ =20¢. Moreover, if r1=% > ¢2k%20 and 29 < 25" —20¢ then
|(8“RP,g(e‘“Ak9Qj,kV‘5“")) (z, t)| < €02—21@*7;67

using integration by parts in the Fourier space (Lemma 3.1). Therefore, using
(7.1.45),

Z ’ (aaRPé (e_itAngj,kVLIw)) (.7;, t)‘ 5 802_2k+t_1+26//57“_1/2.
2ig[2—kT 2k —20¢)
(7.1.46)

To bound the contribution of the sum over j large with 27 > 2F —20¢ we
notice that

(00 RP (e 0 QyVE)) (2, )] S 77 (14 250)225/ 22871 Q5 VA | o
< 607,7127415"2k/227jt6'/27457

(7.1.47)

as a consequence of (7.1.60) and (7.1.14). We use now (7.1.42) if » < 27% and
(7.1.47) if » > 27% to conclude that

Z ‘ (8QRP[C(6_“A’“9 Qj,kvﬁlw)) (x, t)’ 5 602_2k+t_1+5,/2_457“_1/2.

25 >k~ 20

Using also (7.1.46) and (7.1.41), if 28740 > ¢=1/2 we have

|PoU(2, )| + | PuOo ¥ (x, )| + |Pu(V) (2, 1)| S o2 2 ¢ 1H0'/2-45,—1/2,
The bounds (7.1.40) follow if » > 1 by summation over k, using also (7.1.44). O

Using also the harmonic gauge condition (7.1.2) we can prove some additional
bounds on the derivatives of the metric hog. More precisely:

Lemma 7.3. With (g,) as in Theorem 7.1 and I1*% defined as in (7.1.15),
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we have the additional bounds
[VOLPOL(0%hag) (2, )] + [TPDL (0%hap) (2, 1) S eolt +r) 723 (7.1.48)
for any (z,t) € M,V € T, and 0% = 071 05205%, a1 + az + a3z < 3.
Proof. We write the harmonic gauge condition in the form (4.3.1),
M0y — (1/2m Db = g% Dahpy + (1/2)9%5 s
Using (7.1.20)—(7.1.21), it follows that, for u € {0, 1,2, 3},
M {96 (0" hsu) — (1/2)0,(0%hap) } = O(eg(t + 1) =23, (7.1.49)

where f = O(g) means |f(z,t)| < g(x,t) for all (x,t) € M. We use the formula
(7.1.16), and eliminate some of the terms using (7.1.21), to conclude that

[e% a 1 o @ @ @ *
LPL*9a(0"hg) = 5{LOLY + L"LP}0,(0"hap) + T1°70,(9"hap) (7.1.50)

= O(eo(t + 1) 725,

for p € {0,1,2,3}. The desired conclusions in (7.1.48) follow by multiplying
with either V¥, V € T, or L*. O

We prove now almost sharp bounds on two derivatives of the metric tensor,
in the region {|z| = ¢ = 1}. These bounds are used later to prove weak peeling
estimates.

Lemma 7.4. Assume that (g,v) is a global solution of the FEinstein-Klein-
Gordon system as given by Theorem 7.1. If V1,Vo € T and H € Hpz (see
(7.1.17)—~(7.1.18) ) then

(t = r)*|OLH (x,8)| + (¢ — r)(r)|0Lv, H (@, 8)| + (r)?|0v, 0v, H (2, 1) 151
for any (x,t) € M' := {(z,t) € M : t > 1 and |x| > 275t}.

Proof. Step 1. The bounds are easy when either Vi or V5 is a rotation vector-
field. Indeed, if Vi = r~1Qg;, then Oy, H is a sum of functions of the form r~*H’,
H' € Hy3, s0

(t = r)(r)0Ldv, H (2, )| + (r)?|0v,0v, H . )] S eolr) =7, (7.1.52)

as a consequence of (7.1.21). Moreover, if Vo = r~1Q,, then the commuta-
tors [Va, L] and [Va, V4] are sums of vector-fields of the form r—*W, W € T.
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Therefore, using also (7.1.52),
(t — ) (r)|Ov, O H (2, 1) + (r)2|Bv, v, H (2, 1) S eo(r) 12 (7.1.53)
We show now that
(t — ) (r)|OLOL H (x,t)| < eo(r) 120, (7.1.54)
Recalling that H = 0%h,p and using the formula (7.1.37), we have
OLOLH = 0°Ns + (2/1)0,(0%hap) + 122, + Q33 + 03,)(0%hap). (7.1.55)
As in the proof of (7.1.38), it is easy to see that

(2/7)[0,(0%hap) (2, 1) < (t — r) 1 (r)~2H20"
P2 (3 + Q25 + 02))(0%as) (,1)| < ()32

)

using (7.1.21) and (7.1.20). The nonlinearity 8“N£5(x,t) can be estimated
using the formula (2.1.9) and the bounds (7.1.20)—(7.1.22). The desired bounds
(7.1.54) follow.

Step 2. For (7.1.51) it remains to prove that

(t —r)?|0LH (x, )] + (r)?07 H(x,t)| < eo(r) 113, (7.1.56)
for any (z,t) € M’. We define the vector-field
I :=r 2T, = 10, + t0, (7.1.57)
in M’, and notice that
T = (1/2)[(r +t)L + (r —t)L). (7.1.58)
Moreover, using (7.1.21),

OL(TH)(z,t)| < —2428"
01.(FH) (2, )] 5 2ofr) 72720 70
OL(TH) (2, 0)] S eo(r) "2 (t =)L
Using (7.1.58) we have |9, [(r + )0 + (r — )AL H (2, 1)| < eo(r) 220" thus
|(r + )02 H (,1)] S eo(r) 22 + |0p H (,1)| + (t — r)[0L0L H (z,1)].

The bound on |02 H(x,t)| in (7.1.56) follows using also (7.1.21) and (7.1.54).
Similarly, using (7.1.58)—(7.1.59) we have

OL[(r — )3 + (r + )] H (2, 1) < eo(r) "2 (¢t — 1)1,
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therefore
(r — )03 H (x, )| S eo(r) 2 (t —r) ™1 + |0 H (2, 8)| + (r)|OL0L H (w,1)].

The bound on [0} H(x,t)| in (7.1.56) follows using also (7.1.21) and (7.1.54)
when [t —r| > 1, or using (7.1.20) when |t — | < 1. This completes the proof of
the lemma. O

We prove now the additional linear estimates we used in Theorem 7.2.

Lemma 7.5. (i) For any f in L*(R3?), x € R®, and k € Z we have
||z|Puf(2)] < (1+ 2k|x|)‘52’“/2||Pkf||Hg,1. (7.1.60)
(i) In addition, if t > 1, |z| < 8t, (k,j) € J then

[(Jal + 2 Ra) Ton (e~ ) ()] S (1+ 202252 min(1, 247 £ .
(7.1.61)
Here fix = PlQjrf, fix = Qjxf are as in (3.2.2)~(3.2.3), Ry = [V|7'0,
are the Riesz transforms, and the linear operators T, are defined by T,,g =
F~Ym -g), where m € M.
Finally, if |z| € 2729, 8] and 279 < t(1 + 2¥1)~7 then

|(Jz] + iz Ra) T (€7 we £ ) ()| S (1 + 2kt)2‘52_k/2t_1Hfj7kHHg,z. (7.1.62)

Proof. (i) Clearly || Pyf||p~ < 2%%/2||Pyf]|12, so the bounds (7.1.60) follow if
|z| < 27%. On the other hand, if |z| > 27%*20 then we estimate

|Prf(2)] S /R |Pef(y)] - 2%R(1 4 28|z — y]) =5 dy. (7.1.63)

Using the Sobolev embedding along the spheres S?, for any g € Hg’l and p €
[2,00) we have

1900 oy S0 D0 1Bl S, lglygr (7.164)

mi+ma+m3z<1

Therefore, for € R with |z| > 27%+20 we can estimate the right-hand side of
(7.1.63) by

CIPS () z2(r2ary 2 120+ 2 = 10 ™ o
<o 1Pl s - 25272 ] (2] 27

The desired bounds (7.1.60) follow in this case as well, by taking p sufficiently
large such that 1 —1/p’ < §/4.
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(ii) We prove now the bounds (7.1.61). Notice that we may assume 27 <
t(1+ 2Ft)=% since otherwise the bounds follow from (7.1.60). We write

(2] + iz Ry) Ty (e~ wa £ 1) (2) = C / (Jz| — - €/ |€]ym(€)ei™ s T 1 (€) de.

RS
(7.1.65)
We may also assume |x| € [t/2,2t] (otherwise we have rapid decay using inte-
gration by parts). The conclusion follows from (7.1.62) and the observation that
iz S 212
It remains to prove the bounds (7.1.62). We still use the formula (7.1.65), and
notice that the desired bounds follow easily if 2¥¢ < 1, so we may assume that
2kt > 250, By rotation invariance, we may assume x = (71,0, 0), 1 € [2729%, 8¢].
Then we bound the right-hand side of (7.1.65) by Ct 3y .c(0.0-20(2r4)1/2] [Jb.c| +
R, where

T = /R IOk (€)1 = & /DLy (€)™ el o (6) de,

Yool(8) i= 0 (€2/2)pl0%) (6/2Y), 2t =712,
(7.1.66)

and R is an acceptable remainder that can be estimated using Lemma 3.1.
To prove (7.1.62) it suffices to show that for any b,c € [0,272°(2%¢)/?] we
have

[Tl SE7227R2(128) ) £l e (7.1.67)
Notice that
) G+8 N RS
m()(1 =& /€)1 (&) = 1f§1/)|5| T L (@) = m (O 1 (),

(7.1.68)
in the support of the integrals defining Jj ., for some suitable symbol m’ € M.
We estimate first |Jy,o|. For any p € [2,00), using also (7.1.64) we have

[70.0

SIFi (POl 2 r2ary oy (21 7F) 2/ 230292272

,Sp ”fj,k”Hg'l _t—22k/2(t2k§)1/p7 (7.1.69)
where the factor (22=%)2/?'23%/2 is due to the L?(r2dr)L% norm of the support
of the integral, and the factor 22*=2¥ is due to the null factor (&3 + £2)/|¢|? in
(7.1.68). This is consistent with the bound (7.1.67), by taking p large enough.
To prove (7.1.67) when (b,¢) # (0,0) we may assume without loss of gene-
rality that b > ¢, so b > max(c,1). We integrate by parts in the integral in
(7.1.66), up to eight times, using the rotation vector-field Q12 = £10¢, — £20¢, .
Since Qi2{x1&1 — t|€|} = —&x1, every integration by parts gains a factor of
12M+b oy $1/29K/2+b and loses a factor £1/225/2. Tf Q45 hits the function f]\k twice
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then we stop integrating by parts and bound the integral by estimating Q3,g;
in L2 As in (7.1.69) it follows that

[ Tb.el S N Fik (O 2r2aryzr + 12 fik(rO) | L2 (r2ar L2 }
« (2/\—k)2/p'23k/222>\—2k2—b + HQ%E,\k 2/\+b2k/2)(t2>\+b)—222>\+2b—2k7

|2 (

which gives the bound (7.1.67). This completes the proof of the lemma. O

7.1.3 Null and Timelike Geodesics

We consider now the future-directed causal geodesics in our spacetime M, and
prove that they extend forever (in the affine parametrization) and become
asymptotically parallel to the geodesics of the Minkowski space. More precisely:

Theorem 7.6. With (g,%) as in Theorem 7.1, assume p = (p°,pt, p?,p3) is
a point in M and v = v¥0, is a null or timelike vector at p, normalized with
vY = 1. Then there is a unique affinely parametrized global geodesic curve =y :
[0,00) = M with

(0) =p="p" % 0%,  H0)=v=("0"0*07). (7.1.70)

Moreover, there is a vector vo, = (v, v, v%,v3)) such that, for any s € [0, 00),

00’ Yoo Yoo Yoo

5(5) = voo| S 0(14s)7H0  and Mapv vl = gag(p)v®?®.  (7.1.71)
The implicit constant in (7.1.71) is independent of p. As a consequence
Iv(s) — vaos — p| < e0(1 4 5)5 for any s € [0, 00). (7.1.72)
Proof. The proof uses only Theorem 7.2, Lemma 7.3, and the definitions.
Step 1. Assume that 7 > 0 and v = (7°,9%,72%,9%) : [0,T) — M is a C*
curve satisfying the geodesic equation
A4 T 0 =0, pe{0,1,2,3}, (7.1.73)

with initial data (7.1.70). Let V(s) = (V°, V1, V2 V3)(s) := 4(s). The identity
(7.1.73) implies the norm conservation identity

Vo (s)VP(s)gas(7(s)) = constant for s € [0,T), (7.1.74)

as well as the general identity
d 1%
£{Vﬂga5} = (1/2)VFV"Ouhy,  a€{0,1,2,3}. (7.1.75)

Using first (7.1.74) it follows that V(s)V?(s)gas < 0 for all s € [0,7). In
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particular,
[V'(s)] < 1.1]VO(s)| for any s € [0,7), (7.1.76)

where V'(s) = (V1(s),V2(s),V3(s)). Since V°(0) = 1 and V(s) # 0 (by
uniqueness of solutions to the ODE (7.1.73)), we have V°(s) > 0 for all s € [0, )
Step 2. The idea is to prove that, for any s € [0,7T) and « € {0,1,2, 3},

VO(s) € [3/4,4/3] an /\a B (Y V@)V ()| du S 29 (7.1.77)

We use again a bootstrap argument. Assume that, for some 7" < T, the weaker
inequalities

VO(s) € [2/3,3/2] and / |00 by (7(w)) V() VY ()| du < €1,

’ (7.1.78)
hold for any s € [0,T"), where &1 = Eg/ % as before. It suffices to show that
the stronger inequalities (7.1.77) hold for any s € [0,7”), under the bootstrap
assumption (7.1.78).

It follows from (7.1.78) and (7.1.76) that, for any s € [0,7") and u €
{0,1,2,3},

Vi) <2, 4%s) —p° € [25/3,35/2]. (7.1.79)
We apply now (7.1.75) with o = 0. Let
As) == =V (s)gos(7(s)) = VO(s) = VI (s)hos(7(s))- (7.1.80)

Using (7.1.75) we calculate
0,A = —(1/2)VHVY0phy

Using the bootstrap assumption (7.1.78) it follows that |A(s) — A(0)] < &
for any s € [0,7"). Thus |V°(s) — 1| < &1 (see (7.1.80)), and the bounds
VO(s) € [3/4,4/3] in (7.1.77) follow.

To prove the second bounds in (7.1.77) we would like to use (7.1.48), but
for this we need to link the vectors V(s) and L(vy(s)). We define the function
B:[0,T7") — R by

B(s) i= 147°(s)+(147°())% = {1+(31(5))2+(3%(5)) 2+ (1% (5))2} /2

One should think of B as a slight modification (for the purpose of making it
increasing along the geodesic curve 7) of the function 7°(s) — |7/(s)|, where

7(s) = (71(),7%(5),7°(9)) and [7/(s)] := [(v'(9))* + (42(5))% + (+°(5))°] /2.

. (7.1.81)
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We calculate

(0sB)(s) = VO(s) +26'VO(s)(1 +1°(5)* !

__(VYE) + AVE) + (V) (7.1.82)
{14+ (1 (9))% + (12()2 + (33(s))2}/*
Notice that
L+ (B()2 < (1°(s) — 7 (5)) (1 +7°(s))2". (7.1.83)

Moreover, since the vector V(s) is timelike or null and using (7.1.20), we have
0 < VO(s) = [V'(s)] + CegVO(s)(1+7°(s) + [/ (5)) 7+

for some constant C' > 1, with V'(s) as in (7.1.76). Therefore

(0:B)(s) > |[V°(s) /<s>|+{|V'<s>|—m}. (7.1.84)

We would like now to express the vector V(s) in terms of the good vectors
at the point y(s). More precisely, for any s € [0, T") we would like to decompose

V(s) = V'(s)|L(v(s)) + H'(v(5)) + E(v(s)), (7.1.85)

where H' = H'0, + H?0,+ H305 is a horizontal vector tangential to the sphere,
[H(v(s))| S V(9sB)(s),  H'(v(s))-7'(s) =0, (7.1.86)

and E = E%9y + E'0, + E?0y + E305 is an error term,
|E*(v(s)] S (0sB)(s),  we€{0,1,2,3}. (7.1.87)

Indeed, one can simply take H' = 0if |/(s)| < 1, since in this case |(0;B)(s)| 2 1
(see (7.1.84)). On the other hand, if |y/(s)] > 1 then we use the decomposition

V=V2+(V"0.)0 + H' = |V'|L+H +{(V° = V') 0o+ [(V"-0,) — [V"[}0: },
where H' = H®9,, H' - 8, = 0. Since 9, = |¥/|7/, |H'|> = |[V'|> — (V' - §,)?
and 9sB > [V — |V'|| + (]V'| = V' - 0,) (see (7.1.84)), the desired conclusions

(7.1.85)—(7.1.87) follow.
We show now that, for any s € [0,7”) and a € {0,1,2,3},

100l (V($))VH()V ()] S €0 (1 + |y(s)]) 2+

+eo(1+ [y (s)) 13 (0sB)(s) (7.1.88)

(1+B(s)?)/2

Indeed, in view of (7.1.85) and (7.1.77) the left-hand side of (7.1.88) is bounded
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by

C{l10alyu L L) (v(5))| + |[Oahyu L (H') ] (v(5))]
+ O lryu (H' ) (H)](7(5))] + |[0a Tty VI E"(v(3))] + [[Oahyun E* E¥](7(5))[}-

The terms in the first line are bounded by Ceo (14 |v(s)|) =24, due to (7.1.21)
and (7.1.48). The terms in the second line are < eo(1 4 |y(s)]) 120" (49(s) —
|v'(s)|) 1 (0sB)(s), due to (7.1.21) and (7.1.86)—(7.1.87). The desired bounds
(7.1.88) follow using also (7.1.83).

Finally, we can complete the proof of the second estimate in (7.1.77). Since
1+ |y(s)| = 1+s+p°+[p'| = 1+s+p| (due to (7.1.79)), it follows from (7.1.88)
that

to b /
/ 100h (7(8))VH(s)VV(s)]ds < / go(1+ s+ |p|)~2+5% ds
t1 4
to
+/ co(l+ s+ |p) 1+ %log[m‘i‘B(S)] ds (7.1.89)
ty

Seo(l+ty + [p)) 1+

for any t1 <ty € [0,7"), where we used integration by parts and the observation
that [B(s)] S 1+ |v(s)| S 1+ s+ |p|. The conclusion (7.1.77) follows by setting
t1 =0.

Step 3. We can now prove the conclusions of the theorem. In view of
(7.1.77), (7.1.79), and the standard existence theory of solutions of ODEs, the
geodesic curve vy extends for all values of s € [0,00) as a smooth solution of the
equation (7.1.73). Thus one can take T' = oo, and the inequalities (7.1.77) are
satisfied for all s € [0, 00).

We apply (7.1.75) for all o € {0,1,2,3} and integrate between times s; <
s2 € [0,00). Using (7.1.89) we have

[V (52)8a5(1(52)) = V7 (s1)8as(v(51))| S o1+ 51+ |p]) 707"

Since [has(Y(52))| + |has((51))] < eo(1 + 51+ |p|) 1+ it follows that
[V (s2) = V(s1)| S oL+ 51+ [p]) 1% (7.1.90)
for any s; < s € [0,00) and « € {0,1,2,3}. In particular, veo := limg_o, V(s)
exists. Notice that (7.1.71) follows from (7.1.90) and (7.1.74). The bounds in

(7.1.72) then follow by integrating the bounds |§(u) — veo| < o(1 4 u)~1+6%
from 0 to s. O
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7.2 WEAK PEELING ESTIMATES AND THE ADM ENERGY

7.2.1 Peeling Estimates

In this section we prove weak peeling estimates for the Riemann tensor of our
spacetime. The Riemann tensor R satisfies the symmetry properties

Raﬁ/,w = _Rﬂap,u = _RQBV,U, = R;Luaﬁ7

(7.2.1)
Ropuv + Rapar + Ryapy = 0.
In our case, we also have the Einstein-field equations
& R = Ras = DatDyt) + (12/2)gas. (7.22)

The rates of decay of the components of the Riemann tensor are mainly deter-
mined by their signatures. To define this, we use (Minkowski) frames (L, L, e, ),
where L, L are as in (7.1.15) and e, € Tp, := {r Q2,77 1003, 7 103, }. We
assign signature +1 to the vector-field L, —1 to the vector-field L, and 0 to the
horizontal vector-fields in T;,. With ey, eq, e3, e4 € Ty, we define Sig(a) as the set
of components of the Riemann tensor of total signature a, so

) { (L e1, L, 62)}7
) { (L el>La€2)}>
Sig( 1) :={R(L,e1,e2,€3),R(L,L,L,e1)},
):={R(L,e1,e2,e3),R(L,L,L,e1)},
):={R(e1,ea,e3,e4),R(L,L,e1,e3),R(L, ey, L,es), R(L, L, L,L)}.
(7.2.3)

These components capture the full curvature tensor, due to (7.2.1).

Notice that we define our decomposition in terms of the Minkowski null pair
(L, L) instead of more canonical null frames (or tetrads) adapted to the metric
g (see, for example, [12], [52], [53]). However, as we explain below, the weak
peeling estimates are invariant under natural changes of the frame, and the
rate of decay depends only on the signature of the component, except for the
components R(L, ey, L, e5). More precisely:

Theorem 7.7. Assume that (g,1)) is as in Theorem 7.1, (x,t) €
M :t>1and|z| > 275}, and U, € Sig(a’) fora < o’ € {—
Then

W (g (2,t)| S eo(r)® "1t — )72,
W1y (@, t)] S eo(r)® ~2(t —r) 71, (7.2.4)
W oy (2, t)] + W (1) (z,0)] S go ()73

MO’I"@O’U@T', Zf \Ij%()) € Slgl(o) = {R(elu62763764)7R(L7L761762)7R(L7L7L7L)}
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then /
|[Wloy (2, )] S eo(r)™ . (7.2.5)

Remark 7.8. (i) In view of (7.2.2), we notice that the Ricci components decay
at most cubically, Rog = O({r)=3T) in M’. As a result we do not expect
uniform estimates of order better than cubic for any components of the Riemann
curvature tensor, so the weak peeling estimates in Theorem 7.7 are optimal in
this sense, at least up to 7" losses. In fact, the almost cubic decay is also
formally consistent with the weak peeling estimates of Klainerman-Nicolé [53,
Theorem 1.2 (b)] in the setting of our more general metrics.

(ii) We show in Proposition 7.9 below that our weak peeling estimates are
invariant under suitable changes of the frame. Moreover, we also show that the
natural (r)~3* decay of the signature 0 components R(L,e1, L, es), which is
missing in the estimates (7.2.4)—(7.2.5), can be restored if one works with a null
vector-field L.

Proof. The estimates follow from the formulas (7.2.1)—(7.2.3), the bounds on
first and second order derivatives of hog in Theorem 7.2 and Lemmas 7.3-7.4,
and the general identity

Roz,li’,uu = 780¢I‘uﬂu + aﬁruau + gp)\]-—‘pﬁur)\au - gp)\rpaur/\ﬁv
1
= 5[0a0uhs, + pDuhas, — 050 hay — Baduhip] (7.2.6)
+g” [FpﬁﬂFAaV - Fpaul—‘)\ﬁl/]

Step 1. In view of (7.1.21)—(7.1.22) and (7.1.51) we have the general bounds

ITagp(@, O] S solt =)~ r) =7,
100Dy (2, )] < 2olt — )2 (r) 7+ (7.2.7)
R (@, t)] < eolr) 52,
for any (z,t) € M’ and o, B, p, v € {0,1,2,3}. Also, if V1, Va2, V5 € T then, using
also (7.1.48),

VEVS VT apu(@,t)] + |L*LPVI Tagy(z, t)]

L*vL'T VeL’L'r < copry-2ar (T2
LV L Tagp(@, 1) + [V LE LM Capu(a, t)] S €olr)
and, using (7.1.51),

VEVL 0005k (2, 1)| < eolr) 3139,

Vi*Va 00Oy (1) S €0(r) (7.2.9)

IV L Ba0phy (, )| < 2ot — 1) 71 (r) 7243,

We can now prove the bounds (7.2.4). The bounds on ¥(_5) and ¥, follow,
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since all the terms in the right-hand side of (7.2.6) have suitable decay, using
(7.2.7) for W(_yy and (7.2.8)(7.2.9) for W(y.

If W (_y) is one of the curvature components in Sig(a’), a’ > —1, containing at
most one vector-field L, then the desired bounds follow using (7.2.7) and (7.2.9).
On the other hand, if ¥(_;) = R(L,L,L,V), V € T, then we use (7.1.16) and
the Einstein equations (7.2.2). Thus

~R(L,V) = m*PR(L, 0s, 03, V) + g21R(L, 8, 03, V)

(7.2.10)
= ~(1/2)R(L, L, L, e1) + TP R(L, O, 9, €1) + gAR(L, D, D, 1)

Using (7.1.20) and (7.2.7) we have R(L, L, L, V) = O(eo(t — r)~1(r)=2+59") as
desired.

If Uy = R(L,e1,e2,e3) then the desired bounds in (7.2.4) follow from
(7.2.8)—(7.2.9). On the other hand, if ¥ = R(L, L, L, e1) then we use again the
Einstein equations as in (7.2.10), and estimate

‘R(L7L7L361)| 5 |R(L761)| + |g§§R(L,aa,aﬂ,€1)| + ’HQBR(Laaaaaﬂaelﬂ'

The desired bounds follow using (7.2.7), (7.2.6), (7.1.20), (7.2.9), and the defi-
nition of IT in (7.1.15).
Step 2. We bound now the components of signature 0. Clearly, using just
(7.2.7)~(7.2.9),
|R(e1,e2,e3,e4)(x,t)| < 50<r>_3+5‘sl. (7.2.11)

We prove now that for any (z,t) € M’
IR(L, L, e1, e5) (2, 1)| < eo(r) 357", (7.2.12)
The quadratic terms involving connection coefficients can be bounded easily,
L LP e} 8" T psuTran|
SILOLP el es gAT ysuTran| + [LLE el esm T 5, T x|
S eo(r) T 4 |[LOL el 5 TIPT 55, T x| (7.2.13)
+|LoLPel el (LP LY + LPLMT y5,T x|
S €0<T>_3+56/,

for any ey, ea € T, using (7.1.20), (7.2.7)—(7.2.8), and (7.1.16). Moreover, we
also have )
|LYe? LV €4 0005hyu (z, )] S eo(r) 3457 (7.2.14)

Indeed, to see this we start with the harmonic gauge condition (7.1.2) and write
it in the form

M0, 0ah sy — (1/2m?0,0,has = ~0, (925 0ahsy) + (1/2)0,(9250uhas).
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Using now (7.1.16) and multiplying by 2e¥el we have
—(LYLP + L*LP)e¥ b 0,00 hp, + 211%P e b 0,00 hs,
=m™ el es 0,0, hap — 2e{ €50, (921 0ahay) + €50, (921 0uhap).
Thus
LY LP et e 0,00hpul S |LOL €} el 0,00hp,| + 17 el €50, 00hp,|
+ |[mPefeb D, 0uhas| + |ef 50,21 Duhgy] + et eb 9270, 0ahsy|
+ [ef eh 0,925 0uhap] + e} e 9270, 0uhagl,

and the bounds (7.2.14) follow using (7.1.51), (7.1.21), and (7.1.20). The desired
estimates (7.2.12) now follow from (7.2.13)—(7.2.14), the formula (7.2.6), and the
bounds (7.1.51).

Finally, we prove now that for any (z,t) € M’

|R(L, L, L, L)(,1)| < go(r)=3+7". (7.2.15)
Indeed, we start with the Einstein-field equations (7.2.2). Thus

~R(L,L) = m**R(L, 8,05, L) + g2 R(L, 8a, 03, L)
= —(1/2)R(L, L, L, L) + I°’R(L, 8., 3, L) + g2i R(L, 8, 95, L).

We use (7.2.7) and the curvature bounds (7.2.4) proved earlier to estimate the
error terms in the identity above. For (7.2.15) it suffices to prove that

[T R(8,i, L, Dy, L) (2, 8)| S e0(r) 737 (7.2.16)
To prove (7.2.16) we apply again the Einstein equations and (7.1.16), so

HIUJRNV = Hlu/maﬁR(8M7 aaa 811, 85) + H#Vg;[fR(aM, 80” 8,,7 6/@)
= —T1""R(9,, L, 9, L) + W TI**R(D,1, D, D, )
+ 11 g2 R (D)1, O, D, D).

In view of (7.2.7), (7.2.11), and (7.1.20), for (7.2.16) it suffices to prove that
[T R(D,, Wi, By, Wa ) (2, 1)] S e0(r) 720, (7.2.17)

for any Wi, Wy € {L7L, 7”_1912, 7"_1923, 7"_1931},
The bounds (7.2.17) follow from (7.2.4) and (7.2.11), unless W, = Wy = L.
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In this case we use again the Einstein-field equations and (7.1.16), so

R(L,L) = m**R(L, 0o, L, 9p) + g2TR(L, 0u, L, Ip)
= I°’R(L, Do, L, 0p) + g2 R(L, 0u, L, 0p).

The bounds (7.2.17) follow, which completes the proof of the theorem. O

We would like to show now that our weak peeling estimates are invari-
ant under natural changes of frames. Assume L',L',r=1Q,,r=1Qh, r=1Q%;
are vector-fields in M’, which are small perturbations of the corresponding
Minkowski vector-fields, i.e.,

(L — L), )] + (L — L) (@, )] + |2] 7 (12 — Qo) (2, 1)]

B ! e (1.218)
+ | T (Q23 — Qo3) (@, )] + 2] TH( Qa1 — Q) (, 8)] < (1)1,

for any (x,t) € M’, where ¢y € [20’,1/10]. We define the associated sets of
curvature components, as in (7.2.3),

Sigl( 2) = {R(L/7e/17él>el2>}7
Sig/(2) = {R(le 6/1a L, 612)}7
Sig'(=1) == {R(L', ¢}, €5, €3), R(L', L', L', €})},
Sig' (1) := {R(L', e}, eh,e5), R(L', L', L', €})}, (7.2.19)
Sig'(0) == Sig; (0) U Sig5(0),
Sig1(0) := {R(e}, €5, e5,¢4), R(L', L', e, ), R(L, L', L', L) },
Sigy(0) == {R(L", ¢}, L', €5)},

where €], ¢eh, es, €} € T, == {r 1), r 10, r~1Q%, }.
Proposition 7.9. Assume that \I/'(a) € Sig/(a) for a < a’ € {-2,-1,0,1,2},

and \I!’(%)) € Sig}(0). Then ¥/

(a)’ \I!’(%) satisfy similar bounds as before,

V(o (@ D] S o)™t =),
Ty (2, 1)] S eo(r) 23 oot — )=t (7.2.20)
Wy (2, )] + [0y (0, )] + [y (0, 1)] S o) ~H3 20,
Moreover, if the vector-field L' satisfies the almost null bounds
lg(L, L") (w,t)] < (r)~2t20, for any (x,t) € M’ (7.2.21)

(see Lemma 7.19 below for the construction of such vector-fields associated to
almost optical functions), and \Il’(%) € Sigh(0), then we have the additional bounds

(TR (2,1)] S eo(r) 23020, (7.2.22)
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Proof. Step 1. We prove first the bounds (7.2.20). Assume that Wy,..., Wy
are vector-fields in { L, L,7~1Q,} and let W/, ..., W} denote their corresponding
perturbations. In view of Theorem 7.7 all the components of the curvature tensor
in the Minkowski null frame are bounded by Ceq(r)~ 3% (t — r)=2. Therefore
we can estimate

|R(WY, W5, W5, Wj) — R(Wy, Wa, Wa, Wy)| < [R(W] — Wy, Wa, Wa, W)
+ |R(Wl7 WQ/ - W27W37 W4)| + ’R(W17W27 Wé - W37W4)|

+ | R(Wy, Wa, Wa, Wi — Wa)| + eo(r) =242 (1) 71439 (4 — ) =2,
(7.2.23)

The last remainder term in the right-hand side of (7.2.23) is compatible with all
the desired estimates (7.2.20). The other four curvature terms in the right-hand
side are all bounded by Ceq(r)=1F¢o (r)=1+38" (t — 1)=2 which still suffices to
prove the estimates on [W{_, | and [¥{_,| in the first two lines of (7.2.20).

On the other hand, we can also use (7.2.23) to estimate the terms |W{, [ and
|\IJ21)‘ in the last line of (7.2.20) by

Ceo(r) 1o (p) =250 (¢ — p) =1, (7.2.24)

This is because the four curvature terms in the right-hand of (7.2.23) contain
only components of signature > —1, since the change of one vector-field can
reduce the signature by at most 2. The remaining term |\I/’(%))| is also bounded
by the expression (7.2.24), because in the case of the components in Sig; (0) the
change of one vector-field can only reduce the total signature by 1. The desired
bounds (7.2.20) follow.

We remark that this argument fails for the components R(L,e;, L, e2) in
Sig2(0): even if such a component is O({r)~3") for a choice of frame, this bound
is not invariant under a small change of the frame (satisfying (7.2.18)) because
the replacement of the vector L in the first position would bring in errors of the
form (r)~'*R(L, €1, L, e2), which are too big in the wave region.

Step 2. We prove now the bounds (7.2.22). Notice first that we may replace
L', ¢}, and e}, with L, e1, and e, respectively, at the expense of components of
signature > —1, thus bounded by the expression in (7.2.24). We may also
assume that L' = L + pL, where |p(z,t)| < (r)~17¢. Using (7.2.1) we have

R(L/7 €1, Lv 62) - R(La €1, L/a 62) = R(L,7L7 €1, 62)-
Using the Einstein-field equations (7.2.2) and (7.1.16) we have

R(er,e2) = m*R(0a, €1,08, €2) + 92T R(Da, €1, 93, €2)
= _(]‘/2)[R(L7 61,L7 62) + R(La €1, L) 62)}
+ HQBR(aa, €1, 8,8, 62) + g;?R(aaa €1, 867 62)-
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In view of (7.2.20) and (7.2.7), we have

IR(L', L, e1, e2) ()] + [Roer, e2) (2, 1)| + [T R(8a, 1,95, e2) (, )]
5 €O<7'>76/_3-
Combining the last three equations and recalling that L = L' — pL we have
R(L/y eleu 62) - R(L7 €1, Lla 62) = O(EO <T>75/_3>7
[R(L/> €1, La 62) + R(La €1, Lla 62)]
— 2pR(L, e1, L, €2) — 292TR(3a, €1, 03, 2) = O(eq(r)™ ~2).

Therefore, to prove (7.2.22) it suffices to show that
pR(L,e1, L,es) + gng(aa, e1,0p,€2) = 0(50<r>_3+36/+200). (7.2.25)

The contributions of the curvature components in the term R(0q, €1, 93, €2)
in (7.2.25) are all bounded by the expression in (7.2.24), with the exception of the
component R(L, ey, L, e2), which has signature —2. Therefore, if we decompose
Oa = AL + BoL + W, where W - 9y = W - 9, = 0, then the left-hand side
(7.2.25) is

[0+ 925 Aa Ag]R(L, €1, L, e2) + O(eq(r) =343 20, (7.2.26)
Moreover, A, = —(1/2)9,u’, where u®(z,t) := |z| — t. Therefore
P+ 027 Aads = p+ (1/4)920.u°95u’ = p — (1/4) L*LP hag + O((r) 272,

where the last identity follows from the explicit formulas (2.1.8). Since L =
L' = pL, p = O((r)~¥%0), and g(L', L) = —2 + O({r)~1+) we have

4p =g(L,L) —g(L', L") + O((r)~>+2<).

The last two identities and the assumption (7.2.21) show that p + ggthaAﬁ =
O((r)=2%2¢0). The desired conclusion (7.2.25) follows using also (7.2.26). O

7.2.2 The ADM Energy

The ADM energy measures the total deviation of our spacetime from the Min-
kowski solution. In our asymptotically flat case it is calculated by integrating
on large spheres on the surfaces ¥; = {(z,t) € M : z € R?}, according to the
formula

1 "

EADM(t) = 1677'(' Rll—r>noo o (ajgnj - 6ngjj)m dx, (7.2.27)
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where the integration is over large (Euclidean) spheres Sg; C ¥; of radius R.
Using Stokes theorem and the definitions (2.1.29) and (4.3.2), we can rewrite

1 .,
Expum(t) = Tom ngnoo wien —2A7(x,t) d. (7.2.28)

We analyze first the density function —2Ar.

Lemma 7.10. We can decompose
—2A7 = —0;u Ph, + {(809)? + ¥ + 009,90} + O' + 0,03, (7.2.29)
where szk are defined as in (2.1.15),
1O ()| 21 msy S eg(t) ™" for any t > 0, (7.2.30)

and

OJZ = —ho;jO0ohoo + hooOoho; — honOohn; + hnjOohon — hinOjhin
+ hOnajhOn - hOnanhOj + hknanhkj — hooaj (T + E) (7231)
-+ 2h0j80(7' +E) — hnjan(T +E>

Proof. Recall the identity (4.3.5)
1 1
—2AT = 9,EZ2 + E(N") + 1(N") = 0,E22 + 5/\/(?0 + iajk/\/fk. (7.2.32)

Step 1. We use the formulas (2.1.9)-(2.1.15) and (4.3.1) and identify first
the L' errors. Indeed, all the cubic and higher order terms are bounded by
Ce3(t—|z|) = {t+|z]) 37" or by Ce3(x) = {t+|x|) =3, due to (7.1.20)—(7.1.22),
so they are acceptable L' errors. The semilinear quadratic null forms in Qiﬁ
(see (2.1.14)) are also acceptable L! errors because

|(m*P0ah10ph2) (2, )| + [ (0,1 0yha — Oyhadyho) (2, 1))

7.2.33
Sep(t—lal)THE+ [al) 7, ( :

for any p,v € {0,1,2,3} and hy, ha € {hqop}. This follows from (7.1.21) and the
observation

Op=—-0,+L and 0; = (z;/r)0.+sum of good vector-fields in 7. (7.2.34)

The Klein-Gordon contributions coming from (2.1.12) are the second term
in the right-hand side of (7.2.29). It remains to analyze the quadratic semilinear
and quasilinear terms involving the metric components, which are

1 1
5(Qo + 95)) — 5 (Poy + Pjy) + 0 Ef + 0, B3, (7.2.35)
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where, using (4.3.1) and (2.1.8),

« 1 «
Eﬁ = —glﬂaahﬂu + §glﬁauha,3
= hooOohou — how (Qohiy + Okhoy) (7.2.36)
1 1
+ hknakhn,u - ihOOa,uhOO + hOka,uhOk - ihknaphkn

Notice that all the terms in (7.2.35) are of the form dh-9dh or h-9*h. To extract
acceptable L' errors, notice that, for u,v € {0,1,2,3}, h € {hap}, and V € T,

lh)||Lr Seolt)™™ if p> 3+ 4k, (7.2.37)

10uh(0)12e + 18,8 h(0) |20 S o(t)™ i p > 2+ 4r, (7.2.38)

(1 =x¢) - Ouh(@)lle + (1 = xt) - 0O h(t) | Lr

- : (7.2.39)
FVFORMlLe Seolt)™ i p>3/2+4x,

where x; is a smooth characteristic function of the wave region, for example,
xe =0if ¢t <8 and x4(x) = p<_a((t —|z|)/t) if ¢ > 8. These bounds follow from
Theorem 7.2. Moreover

[(Oah1 - Ogh2)(t)lLe + [|(h1 - OaOph2)(t)| e

NSOl + 1B + 0B Ol S0t
for any p > 1 + 2k. In particular, all the terms in (7.2.35) are barely missing
to being acceptable L' errors. All the semilinear terms that contain a good
derivative are acceptable L! errors.

Step 2. We analyze now the quadratic expressions in (7.2.35). Since (92 —
A)hap = N5, we can use (7.2.40) to write

1 1
DEG ~ 530710030%0 + ihooﬁhoo — OohokOrhoo — horOo0khoo
1 1
+ 8Ohkn8khn0 + hkngoathO - iaohknaohkn - ihknAhkna

where in this proof F' ~ G means ||F — G||p: < e3(t)~". Using also (7.2.33)

1 1

QEZ ~ iaj(hooajhoo) — Ok (horOohoo) + Ok (RnkOohno) — iaj(hknajhkn)-
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Therefore, using again (7.2.36), we have 9y E§ + 0;E7 ~ 6j0j2-’1, where

0]2’1 = —ho;00hoo + hn;Oohno — Rikn0jhin + hooOohoj; (7.2.41)
— honOohn; — honOnhoj + hinOkhng + hondjhon. o

We examine now the terms Qf, and Q3;. Using the identities (2.1.13)

L/q2 2 2,2
z - 5.0%
2<QOOJr Qn) = 0,05 (7.2.42)
+ {95h000; (T + F) = 20;ho;00 (1 + E) + 9nhj0; (7 + F) },
where (1/2)(hoo + dxhjr) =7 + F (see (4.3.2)) and
0]2-’2 = —hooaj(T + E) + 2h()j80<7’ + E) - hnjan(T + E) (7243)

The desired formula (7.2.31) follows from (7.2.41) and (7.2.43).

Step 3. We identify now the contribution of the semilinear terms. We show
first that the semilinear terms in the bracket in the right-hand side of (7.2.42)
are acceptable L! errors. Indeed, using (7.2.34) and (7.2.38)—(7.2.39), we may
replace 0; with —(z;/r)dy, at the expense of acceptable errors. The semilinear
expression in (7.2.42) is

~ {00hoo0o(T + F) + 2(2;/7)00h0;00 (T + E) + (2n2;/1%)0hn;j0o(T + F)}
~Oy(T+ F)- (LaLﬁaohag).

This is an acceptable L! error due to Lemma 7.3 and (7.1.21).

Finally, we examine (2.1.15) and notice that Pyo ~ P;;, due to (7.2.34) and
(7.2.38)(7.2.39). The contribution of —(1/2)(Pg, + P7;) is the first term in the
right-hand side of (7.2.29). O

We prove now that the ADM energy is well defined, conserved in time,
non-negative, and can be linked to the scattering data of our spacetime. More
precisely:

Proposition 7.11. We have A7(t) € L*(R3) and

1
EADM(t) = E s —2AT(£L‘,t) dx = EADM (7244)

does not depend on t € [0,00). Moreover, for any t > 0,

Fapu = oo / {UPOP+ /) Y U0} de + O () ).
T JRs m,ne{1,2,3}
(7.2.45)
In particular, recalling the scattering profiles V¥ and VS from (7.3.18), we have
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1 1
E = —|[|[VY|? + — VUmn|2, 7.2.46

Proof. Step 1. It follows from (7.1.21)—(7.1.22) that
10, BZ2 () cinreyes) + N llzinrzy@s) Seolt)!, ¢ €(0,00), (7.247)

for any u,v € {0,1,2,3}. In particular A7 € L'(R?) (due to (4.3.5)), and the
identity (7.2.44) holds. To prove that the energy is constant we estimate, for
any t1 <ty € [0,00) and R large,

| [ Artaocollal/Ryde = [ Arati)pzollel/R) de

to
[ R e o
t1 R3

Slta —t|R7Y*Y sup Z 1000;7(8)| Lass-
s€ltib] jef1,2,3)

Using now (4.3.5) and (7.2.47) it follows that

R—o0

lim ‘/Rs AT(glm152)5030(|x\/R)dx—/}R3 AT(z,t1)e<o(|z|/R) dx| =0,

for any t; <ty € [0,00), so the function E4pps is constant in time.

Step 2. We prove now the identity (7.2.45). We start from (7.2.29) and
notice that the contribution of the Klein-Gordon field ¢ is given by the integral
of [U¥(t)|?, as claimed. The divergence term 9; sz» does not contribute, because
1O2(t) 0 S 23,

Finally, to calculate the contribution of §;;P;; we would like to use Lemma
4.25. To apply it, we use the bounds (7.2.49) proved below. In particular, using
also (7.2.34) we have

|(m*? 0o Rh - 95 R')(#)|| .

7.2.48
+||(8.Rh - 0,R'N — d,Rh - 8, R'W)(t)| ., Seplt)™", ( )

~

for any h,h' € {hag}, u,v € {0,1,2,3}, and compounded Riesz transforms
R R.

We can now use the calculations in Lemma 4.25 with £ = £ = Lo = Id.
The cubic and higher order terms are all acceptable L! errors, due to (7.2.40).
Also, most of the quadratic terms in (4.3.82) can be estimated using (7.2.33),
for example,

R;Rp0,Gh - R;Ry0,Go = 0; Ri RnG - 0, R; RiGo
~ Oy Ry Ry Gy - 0;R; RGo = 0,G - 4G,
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for any G1,Ga € {F,F,wa,9ap}, where f ~ g means |f — gl < e3(t)™" as
before. The terms containing 7 are all acceptable L! errors, due to (4.3.5) and
(7.2.49) below. The only remaining terms are (1/2)9;9mn -0 9mn ~ (1/2)0001mn -
000 mn ~ (1/4)(0;Ymn - 0j9mn + Oo¥mn - OgUmn), coming from féjkA?,f, which
lead to the identity (7.2.45). O

We collect now some bounds on the Riesz transforms of the metric compo-
nents, which are used in Proposition 7.11 and Theorem 7.23 below.

Lemma 7.12. Assume that R = R‘“R;QRQ a1+as+as < 6, is a compounded
Riesz transform, h € {hag}, N" € {Nl3}, and V € T is a good vector-field.
Then
[0uRR(8)|[ e S €0(t)™"  if p =2+ 45,
IVEOLRR®] e S colt)y™  if a>3/2+ 4,
[IVITE RN @) o + [IVIT ROLEZ2 (1) y Seolt) ™™ if g 3/2+ 4r,
(7.2.49)

for any p, o € {0,1,2,3}. In addition, ift <1 orift > 1 and |z| € [2710¢,210¢]
then

|Rh(z,t)] + |0, R(x, )] < eo{t) ™7,

[V#0,Rh(z,t)| < eq(t) /31",

IV BN (2, 8)| + ||V REZ? (2, 8)| + ||V T ROLEZ? (2, )| S eolt)~*/3".

(7.2.50)

Proof. The bounds in the first line of (7.2.49) follow directly from (7.2.38).
The bounds in the third line follow from (7.2.40) and the Hardy-Littlewood-
Sobolev inequality. To estimate ||[V*0,Rh(t)| L« we notice that the contribution

of (1 —x¢)0,h(t) is bounded easily, due to the estimate on the first term in the
left-hand side of (7.2.39). Moreover,

IV*R(xe0uh()l Lo S IV xe0uh(t)l[Le + [V, R](xeyuh(t) (7.2.51)

M -

The first term is bounded by Ceq(t)~", due to (7.2.39). The second term is a
Calderén commutator that can be estimated using the general bound

Ve R@@] S [l =l Vi) = Vi)l dy
(7.2.52)
S/Rg\g(y)\t v =yl ™" dy.

Therefore, recalling that |g(z)| < eoxe(@)(t—|z|) 1251 (see (7.1.21)), we have

H[Vu R](x10,h(t HLq <t 1||g||LP1 < Eot—ltza —1t2/p1
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where 1/p; = 1/q+1/3 (by fractional integration). The desired bounds (7.2.49)
follow using also (7.2.51).

We notice now that the pointwise bounds (7.2.50) follow easily from (7.1.3)
if t < 1. On the other hand, if ¢ > 8 then we fix Ky the largest integer such
that 2%0 < (#)® and notice that the contribution of low or high frequencies
P<_k,—1h + P>gy+1h is suitably bounded due to (7.1.3). For the medium
frequencies we use the general estimate

IRPL iy o) flle < 108(2 + )P iy reo) o (7.2.53)

The bounds in the first line of (7.2.50) follow from (7.1.20) and (7.1.21).
To prove the bounds in the second line we estimate

[VER(P_ Ky, 101 Ouh) (2, 1) S (|1 RP ko, 5] (VHOuR) (1) Loe
+ |[V*, RP_ Ky, 10 (O h) (, 1))

The first term in the right-hand side is bounded by eot=2t%", due to (7.1.21)
and (7.2.53). Since |z| & t the second term can be bounded as in (7.2.52),

[V RR sy ) 0u) 0] S [ 10,0l =3l 2y

48" —1
so [ LEI
rs (= [y)tlz —y/?

where we used (7.1.21) for the second estimate. The last integral in the inequa-
lities above is bounded by Ct—*/ 3"‘56/, which suffices to prove the estimates in
the second line of (7.2.50).

The estimates in the third line follow from Hdélder’s inequality once we notice
that the functions N*, EZ2 and 8#E§2 are all bounded by C’E%t*‘L/S*S‘Sl in L?
for all p >3 —¢'. O

7.2.3 The Linear Momentum

With ¥; as before, let N denote its associated future-pointing unit normal
vector-field. We define the second fundamental form

kap := —g(DaQN, 8b) = g(N, Daaab) = Na].—‘aab, Cl,b S {1, 2, 3} (7254)

Let g,), = g;x denote the induced (Riemannian) metric on ¥;. Our main result
in this section is the following:

Proposition 7.13. We define the linear momentum
b

1 x
= — i — = — g 2.
Pa(t) - Jim o Tab 7] dz, Tab = kap — (t7K) Tops (7.2.55)

printed on 2/13/2023 9:18 PMvia . Al use subject to https://ww.ebsco.conlterns-of-use



EBSCOhost -

THE MAIN THEOREMS 271

where Sry C ¥, denotes the sphere of radius R as before. Then the functions
Pa, @ € {1,2,3} are well defined and independent of t € [0,00). Moreover, for
any t > 0,

1 1 2 —K
P =g [ 2000045 Y At (0 do + O )

m,ne{1,2,3}
(7.2.56)
In particular
> pl< Eipu (7.2.57)
ac{1,2,3}

1/2 .
so the ADM mass Mapy = (EE‘DM — Za6{1,2,3} pg) / > 0 s well defined.

Proof. This is similar to the proof of Lemma 7.10 and Proposition 7.11.
Step 1. Since ¢ is fixed, the quadratic and higher order terms do not con-
tribute to the integral as R — 0o, so we may redefine

1 b
o(t) = — i L d L=kl — Sapdinkl,, 7.2.58
P ( ) ] Rl—r}éo S 7Tab‘x| €T, Tab ab bOjkRjk ( )

where k}lb := I'gyp is the linear part of the second fundamental form k,

Qkéb = 8U«h‘Ob + 8bhOa - 8Ohab = RaRb(—2‘V|p — 80F —+ aoE)
+ (€ant RyRi+ €prt RaRi)(|V|wr + 00)— €apmEvgn OoRpRgVmn,

using (2.1.29). Recall that R, Rp®mn = 0 and 0, Omn = —27 (see (2.1.26) and
(4.3.2)). Thus

20,y = — €art |V|Rr(|V|wi + 9o 4 20,007 (7.2.59)
Using (2.1.26) and then (4.3.1) we calculate

— €at |VIRE(|V|wr + 90%) = (Skmban — Sknbam) Bk Bon (IV*hon + 000bhns)
= —(8an + RaRn)(IV[*hon + 00 hns)
= —(0an + RaRRn)(— Ahgy + O3hon + O EZ?)
= —(0an + RoRn) (NE, + 00 EZ?).

Using (4.3.5) and the last two identities we calculate (after cancelling four terms)

20yl = —NE — 0, E5° — dEZ2. (7.2.60)

Step 2. Using Stokes theorem, (7.2.47), and (7.2.60), the limit in (7.2.58)
exists and

1

alt) = —
Pa(t) = 76—

1
/ 20y7L, dx = f—/ (NE + 0,E% + 0EZ%} do. (7.2.61)
R3 167 R3
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Moreover, using (7.2.59),

D0(20y7L,) = — €ant Ok (|V|0owr + 93 + 20,03
In view of (4.3.4)—(4.3.5) and (7.2.47), we have

(191001 + G220 ()] s + 88 (D) s S 0lt)™

and the same argument as in the proof of Proposition 7.11 shows that the
components p,(t) are constant in time.

To prove the identity (7.2.56) we use the formula (7.2.61), extract the time
decaying components, and then let ¢ — oo, just as in the proofs of Lemma
7.10 and Proposition 7.11. Indeed, all the cubic and higher order terms and
all the quadratic null terms lead to time decaying contributions. Thus using
(2.1.9)—(2.1.15) and (4.3.1),

NE 4+ 0, EZ + 0 EZ? ~ 20010, + Q2, — P2, + 0oE2 + 0, EZ,

where F' ~ G means ||F — G|[p1 < €2(t)™" as before. Also, as we know from
the proof of Proposition 7.11, derivative terms of the form J(h - Oh) do not
contribute to the integral in the limit ¢ — oo. As in the proof of Lemma 7.10,
the terms Q2,, OoE?, and 9,E7 are sums of derivatives and L! acceptable er-
rors. The only terms that contribute in the limit are the terms 20¢1 0,1 and
(1/2) Ry Ry00Vmn Ry RgOaVrmn coming from —Pg, after removing the L' accept-
able errors (as in Proposition 7.11). In view of (7.2.61), this leads to the desired
formula (7.2.56). Finally, the inequality (7.2.57) follows using also (7.2.45) and
letting ¢ — oo. O

7.2.4 Gauge Conditions and Parameterizations

Our main result, Theorem 1.3 works in any parameterization of the initial time
slice. It turns out that some gauge choices allow us to simplify the metric up
to quadratic O(e3) terms. We now explore this and its relation to the Hodge
decomposition in (2.1.29). We first observe that ¢ represents a “minimal” ex-
pression of the metric on any time slice.

Proposition 7.14. Lett > 0 and consider ¥y a fized time slice in the spacetime
constructed in Theorem 1.3; let g be the induced Riemannian metric. There
exists a choice of spatially harmonic coordinates on (X¢,q) for which the metric
gjr coincides linearly with the ¥ component of g in the sense that

||Vw<§jk_ Cjpmkqn Rquﬁmn)HH3 S 5(2)<t>26 -l (7.2.62)
In particular, we see that T is related to the scalar curvature of i,

IR+ A7 g2 < 2(8)2 1. (7.2.63)
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Remark 7.15. Conversely, using Lemma 7.16, we see that ||V,g||, is always at
least as large as ||V,0(2..

Proof of Proposition 7.14. We start by computing the spatial covariant deriva-
tive. Starting from the formula

fj — {8th0j — (1/2)6]h00} = I‘ + {FjOO — (%hoj + (1/2)8jh00}
{ 9>1 9>1 jpg T 9%011“3'00 + 290;1I‘jp0}>
we define the first order corrector ™7 by
IpxH7 = 09 Ry, {—Rohog + (1/2)Ryhoo} - (7.2.64)

By the bootstrap bounds (2.1.50), we have V,x!7 € H*, so that y/ is well
defined and in C3. In fact, adapting the proof of (7.1.20), we can see that

M (2, t)| S eola) /(] + 1)1 72
Let 27 be the usual coordinates on ¥;. We look for (spatially) harmonic coor-
dinates of the form 37 = a7 + ¢7 = z7 + x'7 + 97, where 97 satisfies
= {T7 — 69 [9,hoy — (1/2)0gho0] } — {9240,0,x 7 + T 0,x" ).
Direct calculations, using (7.1.20.)7 show that the right-hand side is in H?, so
that, by elliptic regularity, 17 € H' N C3. In addition,
IV [l S 0()> 7,

. s (7.2.65)
[9p ¢ R, {—Rohog + (1/2)Rghoo} ||ae S €5(t) ;

so the mapping 27 — y7 is a global diffeomorphism. Let gj; = ;1 + Ejk be the
metric in the new coordinates 37, so that

_ OyP oyt _ _ b~ .~ o g
k= 8k = Tpagy5 gk = 9ok Iok050" + 3Ok’ + Gpg0; 0" 00" (7:2:66)

In particular, using (7.2.65), we find that

hjkll L S eo,
[Rjr — i — RoRjhor — RoRihoj + R Rihool|gs < e2(8)2 1.
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Therefore

IV (hji— €jpmErgn RpRqOmn)|lms < ed(t)®

+ Vo (E + Rop) |l s + ||V (Row — Q)| s < e2(t)2 7L,
where we use Lemmas 4.19 and 4.20 and the identities (see (4.3.4))
F + Rop+71 = |V| 2 [EIN"] + TN"]] + V|20, E5>. (7.2.67)

We now turn to (7.2.63). Since g;, denotes the metric in spatial harmonic
coordinates, the same computations as in (1.1.14) give that

IR+ (1/2)5°° 570,30, Gan | 1o S 58
Since z and y derivatives of g;i agree up to quadratic errors, we deduce that

| R+ (1/2)667% 0,5 0y (hjr — 056" — 0k ) || 1o S

~

B
Using (2.1.29) and (7.2.65), we obtain that
IR + A7l S €2(t)2 1 + | A(E + Rop) ||z + || Row — Q| s S €3(8)2 1.

This completes the proof. O

Lemma 7.16. The decomposition (2.1.29) is orthogonal in L2, i.e,

4
Y 18ga5l7 = 210F (72 + 210E |72 + |15l

a,B=0
3 3
£ 3 eyl +2109513:] + 3 19958]3.
j=1 j k=1

for any derivative & = 0,,.

Proof of Lemma 7.16. This follows by direct computation, starting with (2.1.29)
and using the identities @Qj = 8jwj =0 and 8j19jk = 8j19kj =0. L]

Proposition 7.17. Given initial data (3o, 7, k) satisfying the constraint equa-
tions (1.2.4), we can choose harmonic coordinates such that, for allt >0,

IE@ Iz + o)l + lw @)z + 1202 + [ Vasr (@)l S 50~

Vel s + Ve Q) 1 S €5
(7.2.68)

In addition, if the initial slice Xo C M is mazimal (i.e., if §%kqp = 0), then we
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can also assume that
ONEO Lo + Ve F ()l S €5
Thus the metric is purely determined by ¥ and F, p at the linear level.

Remark 7.18. While the assumption that the initial time slice is maximal is
a geometric assumption, Cauchy surfaces can often be deformed to maximal
Cauchy surfaces; see [5].

Proof of Proposition 7.17. It suffices to verify (7.2.68) for the initial components
as the nonlinear evolution will only contribute terms of order O(sg); see, e.g.,
the proofs in section 6.3. We assume that we start with spatial coordinates on
Yo that are spatially harmonic as in Proposition 7.14 and are then extended to
spacetime coordinates on M that satisfy the harmonic gauge condition (1.1.17).
Using Proposition 7.14, we have

IVa(F = E)(t =) + Vot = 0)l| 2 S &5
In addition, given our definition of initial data in (1.2.3), we see that

ho;(t = 0) =0,
1
Othoa(t = 0) = —(§8Q(F — F)— €aim 0 — 0,7)(t = 0) + O(c5) = O(<p),

from which we deduce that ho; and hence p and w remain of size O(g3). Using
(4.3.4) and (7.2.67), we can then extend these bounds to F and €.
On the other hand, using (1.2.3), we also see that

(F+E)t=0)=0,  9(F+F)(t=0)=7"ka.

Therefore if the initial slice is maximal then 9,F(0) = O(?). O

7.3 ASYMPTOTICALLY OPTICAL FUNCTIONS AND THE
BONDI ENERGY

Our final application concerns the construction of Bondi energy functions, with
good monotonicity properties along null infinity. We would like to thank Yakov
Shlapentokh-Rothman for useful discussions on this topic.

7.3.1 Almost Optical Functions and the Friedlander Fields

In order to get precise information on the asymptotic behavior of the metric in
the physical space we need to understand the bending of the light cones caused
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by the long-range effect of the nonlinearity (i.e., the modified scattering).

In the Minkowski space, the outgoing light cones correspond to the level sets
of the optical function u® = || —¢. In our case, the analogous objects we use
are what we call almost (or asymptotically) optical functions u, which are close
to u® but better adapted to the null geometry of our problem. Recall that the
metrics we consider here have slow O((r)~!*) decay at infinity, and we expect
a nontrivial deviation that is not radially isotropic.

We first define and construct a suitable class of almost optical functions.

Lemma 7.19. There exists a C* almost optical function u: M’ — R satisfying
the properties

u(z,t) = |z| —t + u"(x, 1), g9 9, udsu = O(go (r)y=2+69") (7.3.1)
and, for any p € {0,1,2,3},

ucor — O(EQ<T>36,>7 8MUCOT _ O(€0<’r>36/_1), aﬂ(Laaaucor) _ O<EO<T>36’—2).
(7.3.2)

In addition, u®®” is close to Oy /|x| (see (6.3.3)) in the vicinity of the light
cone, i.e., if (x,t) € M and |t — |z|| < t/10 then

ur (z,t) —

w‘ < o)1 ()P0 4 (1 — [a])). (7.3.3)

||

Remark 7.20. The classical approach—see, for example, [12]—is to construct
exact optical functions, satisfying the stronger identity g®?d,udsu = 0 instead
of the approximate identity in (7.3.1). We could do this too, but we prefer
to work here with almost optical functions instead of exact optical functions
because they are easier to construct and their properties still suffice for our two
main applications (the improved peeling estimates in Proposition 7.9 and the
construction of the Bondi energy in Theorem 7.23).

Proof. We define the function Hy, : M — R,
| L agy 04 0,1 aBq 04 0
H; = §L LPhog = —5921&3@ Opu” + 59228au Opu’, (7.3.4)
where the identity holds due to (2.1.8). Notice that
Hp = O(eo{t + 1)), 8,Hp = O(eor™H{t + r) 7113, (7.3.5)

in M, as a consequence of (7.1.20), (7.1.21), and (7.1.48). We will define u®°"
such that
L29auc = Hy, (7.3.6)

in addition to the bounds in (7.3.2)—(7.3.3).
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Step 1. For s,b € [0,00) we define the projections II, and II;,

I, Hi(s) == L LPF " {o<o (b)) has (€, 5)},

— (7.3.7)
I Hr(s) = Lo L F 7 {por ((0)°6) has (€, 5)},
as in section 6.3, where py = 0.68. Then we define the correction u" by

integrating the low frequencies of Hy, from 0 to ¢ and the high frequencies from
t to oo. More precisely, let

t

uSer (x, 1) ::—/OO(HjHL)(x—i—(s—t)x/|x|,s) ds+/0 (I Hr)(sz/|z], 5) ds

- too (0 Hy) (@ + (s — )2/lal, s) — (05 Hy)(sz/la]. )} ds,
(7.3.8)

and

[e%e} ||
uS” (x, 1) ::—/l (HjHL)(sx/|x|,s+t—|x\)ds—|—/0 (I17 Hy)(sx/|z|, s) ds

|

- lT{(HsHL)(Sl?/llfI,S +t—a|) — (I Hy)(sx/|z],5)} ds.

(7.3.9)

We fix a smooth function x; : R — [0, 1] supported in (—o0,2] and equal to 1
in (—oo,1]. Let x2 :=1— x1 and define

u(z,t) = ui (z, t)x1(|z] — t) + us® (z, t)x2(Jz| — t). (7.3.10)

Notice that, formally, one can rewrite the formula (7.3.8) as

uf"(x,t) ~ f/ Hy(z+ (s —t)z/|z|,s)ds + / (IT; Hy,)(sx/|z|, s) ds,

‘ ’ (7.3.11)
which is consistent with the desired transport identity (7.3.6). However, the two
infinite integrals in (7.3.11) do not converge, and we need to reorganize them as
in (7.3.8) to achieve convergence. A similar remark applies to the definition of
u§®" in (7.3.9).

We prove now the bounds (7.3.2). Notice that, for any b > 0 and (y, s) € M,

Ly Hr(y. )] + [9]| V.« (1 Hi) (9, 9)] S eoflul +5)°
<y>|(Hb+HL)(y7 5)| S €0<|y‘ + s>36/_1<b>P07

due to (7.3.5) and Lemma 7.21. Finally, for (z,t) € M’ and s > max(p,0),
p € [max(t, |z|) — 3, max(¢, |x|) + 3], using the bounds in the first line of (7.3.12)

(7.3.12)
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we have

(0 He)(w + (s — p)a/lal, s+t — p) — (I Hy)(sw/|al, s)]

< eolt - |x|><s>35/_2. (7.3.13)

Using the definitions (7.3.8)—(7.3.10), it follows that the functions u§°", u$’" are
well defined for any (z,t) € M’, and moreover satisfy the estimates

Xa(lz] = O (@, 6)] S eo@)®,  xallz] = 1)[0uul (2, 8)] S eof)® 1,
(7.3.14)
for a € {1,2} and p € {0,1,2,3}. Using again the gradient bounds in (7.3.12)
and (7.3.5), we also have [u$%" (z,t) — u®"(x, )| < eo(@)3' ~1if |z| — t € [1,2].
Finally,

LOyui" = Hp if |z] =t < 2 and LOgus™ = Hy, if x| —t > 1,

and the desired bounds in (7.3.2) follow.
Step 2. We calculate now in M’

g% 0qudgu = (m*? + ggf)aa (u® + w0 (u® + u")
- 2m°‘58au065uco’" + gg{faauoaguo + O(Eo<r>_2+6‘s/)
= 2LP95uc" — 2H + O(eo(r) =210,

using (7.3.4) and (7.3.2). The bounds in (7.3.1) follow using also (7.3.6).
Finally, to prove (7.3.3) we examine the definition (6.3.3) and notice that

Oualz,t)

t
2] = /0 (I1; Hp)(sz/|z|, s) ds. (7.3.15)
Therefore, using (7.3.12), if (z,t) € M’ and t = ||

Owa(, 1) ‘

< gp <r>_1+35/+p0 .
||

~

UCOT((E,t) _

The estimates (7.3.3) follow using also the bounds 8,u" = O(go(r)3'~1). O
Lemma 7.21. We have

|| HLaLﬂa’frl:;t]vm,thaﬁ‘ (z,8) < eol|z| + 531, (7.3.16)

where

~

Fimy 119 = p<o(®PO) [ (),  mf =1-m,

is the multiplier from (7.3.7).
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Proof. Clearly, it suffices to consider m = 7, . We rewrite the commutator as

I(x)—1
@ -1,

[z -yl
where H denotes a generic derivative of a component of h, H = J,hg,, and

I denotes a generic tensor in {1,z;/|z|, z;z/|z|*}. The bounds (7.3.16) then
follows by direct integration using that

T[H] = (o)~ /Rd {®) |z =yl p<o((b) P (x —y))} H(y.s)

[H(y)| S collyl + )2 "yl =)' |a] ’M‘ <1

lz—yl |~
as follows from Theorem 7.2. O

We will prove now asymptotic formulas in the physical space for some of the
metric components and for the Klein-Gordon field. These formulas will be used
in the Bondi energy analysis in subsection 7.3.2 below.

Recall the definitions

‘//;E(g’t) = ‘//5(67t)eiiewa(§’t)a G e {F7 Wavﬁab}a
v Z ; (7.3.17)
V*w(f,t) = Vw(g,t)eﬂ@kg(ﬁ,t);

see (6.3.4) and (6.2.6). It follows from (6.3.16) and (6.2.14) that there are
functions V¢ € Zyq, G € {F,wa,9ap}, and V¥ € Zy, such that, for any ¢ > 0,

Yo VEO) = VE e + IV = VE 2, Seot)™2 (7.3.18)
Ge{F,wa,%qp}

We define the smooth characteristic function x,., of the wave region by

Xwa : {(2,t) € M :t>8} = [0,1],  Xwal®,t) == p<o((|2] — ) /t*7).
(7.3.19)
We define also the function

xT
Vkg(T,t) i= ——,
0= R

such that vgg(z,t) is the critical point of the function £ — x - & —t4/1 4 |£|2.
We are now ready to state our main proposition describing the solutions in the
physical space.

Vkg : {(z,t) € M 1t > 8, |z < t} — R, (7.3.20)
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Proposition 7.22. For any G € {F,w,, ¥} and t € [8,00) we have

—1Xwa(ZT,t o ioulx O

U (1) = 47r|(33) | ek Vo el 0pdp -+ U a0,
1. (t— |z]) e VE-I2lP¢ -

Uw(:r,t) _ +( |]) Slekg(ykg(z’t)’t)P[—ko,ko]v*¢(ng($,t)J)

\/8r3ein/4 (t2 — |g;|2)5/4
+ UYL (2,1),
(7.3.21)

where u is an almost optical function satisfying (7.3.1)—(7.3.3) and ko denotes

the smallest integer for which 2F0 > 9. The remainders Ugm and UY,,,, satisfy
the L? bounds
> UL @l + UL @)llz2 Seot™,  foranyt > 8. (7.3.22)

Ge{F,wa,%0}

Proof. Step 1. We prove first the conclusions concerning the variables U%. We
start from the formula

UG(€,1) = e el eiOua &Y G (¢ 1), (7.3.23)

and extract acceptable L? remainders until we reach the desired formula.
We may assume that ¢ > 1 and let Jy denote the smallest integers for which
270 > /3 We define

V*Cﬂ = (I = Pi_ oy o))ViE + P2, k04205 Jo+1 * Pio ko) V],

(7.3.24)
V*C,;Q = P[_k0_27k50+2] [SOSJO : P[—ko,kg]‘/*GL
and notice that V¢ := V,% + V,%. We show first that
IVA®) e S eot ™/ (7.3.25)

Indeed, notice that [[(I — Py, ko)) V.iE @)z < got~%/4, due to (7.1.3) and
(7.3.17). To bound the remaining term we examine the definition (6.3.3) and
notice that

|Dg[eﬂewa(f,t)” <a tlel(1=po+26") 428 if =8 <E < 19 (7.3.26)

Let A; denote the operator on the Euclidean space R3 defined by the Fourier
multiplier £ — e*igw(f’t)@[_ko_lkﬁg} (€). Notice that

Pliig o) V& = At[Plg 1) VE]
= At [SDSJ074 : P[—ko,ko]VG] + At [SDZJO*3 : P[—ko,ko]VG]'
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In view of (7.3.26), the kernel of the operator A; decays rapidly if |z| > 27, so
05 10+1 - Atlp<so—a* Pioio) VOl 2 S eot™ (7.3.27)

Moreover, using (7.1.14),
| Al s0—s - P[fko,ko]VG]HLz < gg2 Tt < gyt 1/3+20 (7.3.28)

The bounds (7.3.25) follow, using the definition. Therefore

UG 1 ()2 S eot™/4, where US,,, (1) == F~H{e lElei®ua (&) (f )}
(7.3.29)
We define now

UGz = (1= Xuwa) - FH{e Melei®ua&DVE (¢ 1)}, (7.3.30)

Using integration by parts in & (Lemma 3.1) and the formulas (7.3.24) and
(7.3.26) we have rapid decay,

UGzt S eot™ (7.3.31)

To estimate the main term yuq - F~*{e le@uaEDVE (€ 1)} we write it
in the form

wa t e . —
US (2,t) == % /]R e el SOV G (¢ 1) de. (7.3.32)

We can extract more remainders by inserting angular cutoffs. Notice that if
we insert the factor ¢>1(t%49(z/|z| — £/|¢])) in the integral above then the
corresponding contribution is a rapidly decreasing L? remainder. Passing to
polar coordinates z = rw, £ = pf, w, € S?, it remains to estimate the integral

Uf(l’ t) — Xwa(l‘,t) /OO/ eirpw-eefitpeip@wa(e,t)
’ 8m3 S2

x V& (0, t)o<o(t"* (w — 0)) p*dpdo.

(7.3.33)

For any w,0 € S? and p € [2710t9"2104%'] we have
170w 00) — ¢i0Owe 0] |V (0, 1) — V. (pro,t)] S 2ot |0 — ] (7.3.34)

Indeed, using the definitions we have |[Qg[eE#Owe(@:D]| < 20 where (U is any
of the rotation vector-fields in the variable € S%. The bounds (7.3.34) follow
using also (3.3.25). Therefore we can further replace the angular variable § with
w in two places in the integral in (7.3.33), at the expense of acceptable errors.
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It remains to estimate the integral
XwalZ,1 —itp i —
UG (z, t) 87(T3 ) / e ztpezp@wa(w,t)v:gé(pw7 t)
0 (7.3.35)
% { /2 eirpwﬂ(pSO(tOAQ(w _ 6)) de}pzdp.
S

The integral over S? in (7.3.35) does not depend on w and can be calculated
explicitly. We may assume w = (0,0,1) and use spherical coordinates to write
this integral in the form

™ 1
277/ eire cosngo(t0.492 sin(y/2)) siny dy = 871'/ 61"""(17222)@50(150'4922)2 dz
0 0

o . /°° 24049 _omi | ,
=—¢e"" e <p<0< \/&> do= ——e"" + Ot ?).
rp 0 V2rp rp )

We substitute this into (7.3.35), and it remains to estimate the integral

77:Xwa (377 t)

Uﬁc(:c, t) = A2y

/ e erOun OV G (o, t)e ™ pdp.  (7.3.36)
0

In view of (7.3.27)-(7.3.28) we can replace now the factor V.%(pw,t) in
(7.3.36) with F{P,_k, ko V.7 }(pw, t). Then we replace O (w,t) = Ouq(z/|z], 1)
with u®"(z,t), up to acceptable errors (due to (7.3.3)). The desired formula in
(7.3.21) follows, since u(x,t) = |x| — t + u°"(x,t).

Step 2. The proof for the Klein-Gordon variable U? is similar. We start
from the formula

U% (¢, 1) = e VIR i DY (¢ 1), (7.3.37)

and extract acceptable L? remainders until we reach the desired formula in
(7.3.21). We may assume t > 1, set Jy such that 270 ~ ¢'/3 and define

VI = (I = Py o))V + Ploko—2,k0+2)[902 Jo+1 * Ploo ko) V¥ 1, (7.3.38)
Vo i= Plkg—2mo421 (<0 - Piokoko] ViV
The definition (6.2.4) shows that
| Dg[eX®ra(&:0]| <, tlol(=pok200y20" i 4=0" <je| <47, (7.3.39)

As in (7.3.25) it follows that HVw )l < eot™%/4, so the contribution of

V¢ is an acceptable remainder. The contribution of Vw is also a remainder
in the region {Jz| > t}, due to Lemma 3.1. It remains to estimate the main

~
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contribution,

1. (t— , ; , b
U;p(:c,t) = % /RS em'ée—zt\/1+\§\2619kg(57t)v*1f’2(§7t) de. (7.3.40)

We can insert a cutoff function of the form ¢<o(t%4%(& — vyy(z,t))) in the
integral above to localize near the critical point, and then replace e*©+s(&t) and

VY, (€,1) with e?©ro(ro(@:0)0) and V*%Q(ng(x,t),t) respectively, at the expense
of acceptable remainders (using (7.3.39) and (3.3.26) respectively).

Therefore, the desired identity in (7.3.21) holds if vy, (x,t) > 2% (with the
main term vanishing). On the other hand, if vg,(z,t) < 2K+ (thus t — |z| >
t1*45/) then the remaining ¢ integral in (7.3.40) can be estimated explicitly,

/ e e IVITIER o (1049(¢ — vy (2, 1)) dE
RS
) —im /4 3/2
:e—z\/t2—|x|26 (27T) i‘L_’_O(t—7/4)7

@ =[Py

where the approximate identity follows from the standard stationary phase for-
mula. After these reductions, the remaining main term is

efiw/t27|:r\267i7r/4t

CEFREL

1. (t— . T
U (2,t) = +f/87?|)~””|)ezekgmg(x,t),t)V;g(ykg(x’ D.1)

The desired conclusion in (7.3.21) follows using (3.3.26). O

7.3.2 The Bondi Energy

We can define now a more refined concept of energy function. For this we fix
t > 1, define the hypersurface ; := {(z,t) € M : z € R*}, and let g;;, = g
denote the induced (Riemannian) metric on ;. Let g’* denote the inverse of
the matrix g;;, g/ kﬁjn = 0% let D denote the covariant derivative on ¥; induced
by the metric g. Notice that

g7 — g Seglt+r) 2, T =T, (7.3.41)

for any n,j,k € {1,2,3}. With « an almost optical function as defined in
(7.3.1)—(7.3.2) let
n; = ;u(g**d,udpu) ~/? (7.3.42)

denote the unit vector-field in 3} := {z € ¥; : |z| > 278}, normal to the level
sets of the function u. In this section we use the metric g to raise and lower
indices.

We fix a function u as in Lemma 7.19. For R € R and t large (say ¢t >
2|R| +10) we define the modified spheres Sg, := {z € ¥ : u(z,t) = R}. We
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would like to define

Epondgi(R) == — lim W;n’ ' do, (7.3.43)

for a suitable vector-field W, where do = do(g) is the surface measure induced
by the metric g. The main issue is the convergence as t — oo of the integrals
in the formula above, for R fixed. For this we need to be careful with both the
choice of surfaces of integration S% , and the choice of the vector-field W.

Our main theorem in this section is the following:

Theorem 7.23. Let
W; = g‘“’(@ahﬂ, — Ojhap). (7.3.44)

Then the limit in (7.3.43) exists, and Egongi : R — R is a well-defined conti-
nuous and increasing function. Moreover,

1
lim Egondi(R) = Exg = —||[VX|2,,
R——00 167 L (7.3.45)

lim Epondi(R) = Eapum-
R—o0

Proof. Step 1. We decompose W = W1 4 W22,

Wi = 6°°(0uhjp — Ojhay), W22 = 3% (Dahjy, — Ojhab). (7.3.46)

To calculate the linear contribution of le we use the divergence theorem

Win'do= [ D'W}dp, (7.3.47)
Shi By

where By , := {z € ¥; : u(z,t) < R} is the ball of radius R. Then we calculate

D'W} =g oW —T" W} = 650, W} +gl* oW} — 6*T" ju W, + Ex,

(7.3.48)
where F; is a cubic and higher order term and g{’“ = g{k = —hji is the linear
part of the metric g7F. As in the proof of Lemma 7.10, the cubic term satisfies
the bounds ||E1(t)||z1 < €ét~". The point of the identity (7.3.48) is that the
linear part ¢/ kaijl = —2Ar satisfies the equations (7.2.32). We can therefore
apply the results of Lemma 7.10, and write

D'W} ~ =8, P3 + {(900)? +v* + 0;00;0} + 0,02
— hjp@; Wi — 87T W,
~ =8k P+ {(00w)? + ¥ + 0;000;0} + 0;{0F — hyx Wit}
+ {0 Wi — T W, b

(7.3.49)
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As in the previous section, F' ~ G means [|[F — G||1 < egt™", and OF is defined
in (7.2.31).

We show now that the last semilinear term in (7.3.49) is an acceptable L!
error. Indeed, using (4.3.1) and the definitions,

— 1
Wy — Ty, W, = iakhjj(aahka — Okhaa)

= %(%(27’ —F+F) - (€kim 01 — 20xT).
Using now (7.2.48) and (4.3.5) with (7.2.49) we have
OjhjpWit —Topji Wi ~ 0. (7.3.50)
Moreover, since 632 = OJQ- — hjkal is quadratic,
8;{0% — hy W} ~ gD, 02,

Using the divergence theorem, the formulas (7.3.47), (7.3.49), and the proof of
Proposition 7.11, we have

lenj do = / {[(ao¢)2 + 9?4 0590, (t)

u u
Sk B .

1 ~
+5 > |8019mn(t)|2}du+/ O%n’ do + O(3(t) ™).
2 St

m,ne{l1,2,3}

(7.3.51)

Step 2. We examine now the term 5J2-nj in the surface integral above. This
is a quadratic term, thus generically bounded by Ceo(t) =27, so its integral does
not vanish as ¢ — co. However, many of its pieces have additional structure
(such as good vector-fields), and therefore satisfy slightly better estimates and
do not contribute in the limit as ¢ — oco.

More precisely, in view of (7.2.50), (4.3.4), and (4.3.5), if || € [t/8, 8] then

|R(IV|p = 0o E)(x,t)| + |R(Oop + [V|E)(x, )| + [R(|V|Q; — Jow;) (1)
+|R(00Q; + |V|w;)(x, )| + |RD,T(z,t)| < eot >/
(7.3.52)

for any i € {1,2,3}, p € {0,1,2,3}, and any compounded Riesz transform
R = R{*R$*R§?, a1 + as + a3z < 6. Moreover, with Z; := 27/|z|, j € {1,2,3},
we have
t=H (! —Z;)(z, )] + |(Do + 8, ) RG(z, t)| + |(8; + T;00) RG ()| < eot /4,
(7.3.53)

for any 7 € {1,2,3} and G € {F, F, p,wqa, Qa,Vap}, as a consequence of (7.2.34),
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(7.2.50), and Lemma 7.19.
We regroup now the terms in the formula (7.2.31), with respect to the non-
differentiated metric component. Using (2.1.29) and (7.3.52)—(7.3.53) we write

n? {hoodohoj — hoo0; (T + E)} =~ hooZj(—R;00p — 0; F+ €31 doRiwi)
~ hoofﬂ\j €kl ‘V|Rle ~ 0,
where in this section f ~ g means |(f — g)(z,?)| < gdt=27" for all (z,t) with

t > 1 and |z| € [t/4,4t]. The other terms in n/(OF — h;;W}}) can be simplified
in a similar way, using also (7.2.34),

Ilj{—hojaohoo + 2h0j30(7 + E)} ~ hoj.’/E\jao(—F + E) >~ hojaj (F - E),
0 {~honOohnj + hondjhon — honOnhoj}

~ hOn{ajhnj + /-’)C\j Cnab ajRawb — fr,'\j Ejab anRaWb}

=~ hOn{an(E - F)+ Enab 8aQb_ Enab 80Rawb} ~ hOnan(E - F)7
0/ {hy,jO0hon — hnjOn (7 + F) — hy Wi}

~ hnj{ — 8]‘]7,0” — EEJ%E—# /(E\j (anhaa — 8ah,m)}

~ hnj{0;Rup — T;0nF— Enab 0jRaws — Tj Enab 0ol }

= h"j{ —ZjRn(0op + |V|E) + Zj €nap Ra(Oowy — |V|Qb)} ~ 0.

Summing up these identities and using (2.1.8) we get
10’ 0? = 19y (Ophij — shin) = —17GE (Onhurj — Ohien). (7.3.54)

Therefore, njéjz + njVVjZ2 ~ 0, and (7.3.51) gives
Winldo = [ {[(@09)* +9* + 0;90;9](t)
Skt BE .+

+(1/2) > |000ma ()P} du+ O(e5(t) 7).

m,ne{1,2,3}

(7.3.55)

Step 3. We fix now R € R and let t — co. At this stage, for the limit to
exist it is important that the almost optical function w has the properties stated
in Lemma 7.19.

Recall the scattering profiles V¥ and VY defined in (7.3.17)-(7.3.18). We
show first that, for any R € R,

lim [ [(@0w) + v + 0,000 (x. t) du = V2|3, (7.3.56)

t—o00
By
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Indeed, we notice that
/RS[(30¢)2 + 02 + 09059 (x,t) de = U (D)2 = VX )7, (7:357)
and dp = da(1+O(go(t)~129")). Therefore, for (7.3.56) it suffices to prove that

lim [(D01)? + ? + 0j00;¢] (2, t) dz = 0. (7.3.58)
t—o00 Rs\B}l‘{,t
Recalling that U¥(t) = 9pth(t) — ihrgtp(t) and |u(z,t) — |z + t| < eo(x)3
(see Lemma 7.19), for (7.3.58) it suffices to prove that, for operators A €
{1,(V)=1,0;(V)~1} we have

lim |AUY (2, t)|* da = 0. (7.3.59)

t—o0 |z|>t—t1/2

This follows as in the proof of Proposition 7.22. Indeed, with kg, Jy defined
as the smallest integers for which 2ko > 48" and 270 > 1/ 3. we have

||A(I_P[—k>0,k:0])Uw (t) ||L2+||AP[—’CO—2,7€0+2] (¢2J0+1'P[—kro,ko]Uw)(t)HL2 550t767

due to (7.1.14). Moreover, the remaining component AP, 2 jo+2(0<s, -
Pk ko) UY)(t) is rapidly decreasing in the region {|z| > t—t'/2}, so the desired
limit (7.3.58) follows.

Step 4. To calculate the contribution of the metric components |9p¥q|* we
use Proposition 7.22. For v € R, § € S2, and t > 10 we define

Laf0.0.0) = R{ 5 [ ooy VI (0. 0pdp}. (7360)

We show first that, for any R € R, a,b € {1,2,3}, and t > (2 + |R|)!* we
have

J

Indeed, we can first replace the measure du by dx, at the expense of an ac-
ceptable error. Then, using (7.3.25), (7.3.30), and (7.3.31), we may assume
that the integration is over the domain DF—tM/S,R],t where D&B]’t ={zreX:
u(z,t) € [A, B}, since the integration in the interior region {|z| < t—t%4/20} of
|00¥45(t)|? produces an acceptable error. In addition, we may replace 9g¥ap(z, )
with 2|71 Lap(u(a, t), /2|, t) at the expense of acceptable errors, due to the first

1000, )| dps = / | Lo (0,0, 8)|? dvdd + O(c2¢~0). (7.3.61)

o [—t0-4/8, R]xS?
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identity in (7.3.21). To summarize,

J,
(7.3.62)

We pass now to polar coordinates x = rf, and then make the change of variables
r — v :=u(rf,t). The approximate identity (7.3.61) follows using also (7.3.2).
We apply now (7.3.18) to conclude that

1000 ap (2, )] du:/ || 2| Lap (u(2, t), z/|x], t)|* do + 0(5(2)1575).

u u
R,t [—t0-4/8,R],t

im [ [0 )] dpt = / L2 (0, 0) 2 dvdd), (7.3.63)

t=oo By, (—o00,R] xS2

where L (v, 0) = limy—, o0 Lap(v,0,t) in L2(R x S?) is given by

LS (v,0) == m{% /0 eipvvoﬁab(pa)pdp}. (7.3.64)

Combining this with (7.3.55) and (7.3.56), we have

, 1
lim Wil do = V23 +5 > / |L, (v, 0)|% dvd.
2 (o0, RIx82

t—o0 Su
R,t m,ne{l1,2,3

Recalling the definitions (7.3.43) we have

1 1
E ondi = T4 Y2 Yy / Ly, ; 2 )
)= AVt 32 [P de
(7.3.65)
which is clearly well defined, continuous, and increasing on R. The limit as
R — —oo in (7.3.45) follows since LSS, € L*(R x S?). To prove the limit as

R — oo we use (7.2.45) and let t — co. Clearly lim o [|[UY(1)]|2, = [|[VZ]%2
and, using (7.2.48),

Jim {7 (0)]32 = 20000 mn (D32} = 0.

The desired limit as R — oo in (7.3.45) follows using also (7.3.61). O

7.3.3 The interior energy

We see that the total Klein-Gordon energy Fx¢ defined in (7.3.45) is part of
the null Bondi energy Eponai(R), for all R € R. This is consistent with the
geometric intuition, because the matter travels at speeds lower than the speed
of light, and accumulates at the future timelike infinity, not at null infinity. We
show now that this Klein-Gordon energy can be further radiated by taking limits
along suitable timelike cones.
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Proposition 7.24. For a € (0,1) let

n

1
B+ (a) == — lim (9;hn; — anhjj)% dz, (7.3.66)

167 t—oo Sat,t

where the integration is over the Euclidean spheres Sqtr C X4 of radius at. Then
the limit in (7.3.66) exists, and E;+ : (0,1) — R is a well-defined continuous
and increasing function. Moreover, we have

iiir%) E;+(a) =0, o1(1_>11t11 E;+(a) = Fkg. (7.3.67)
Proof. We notice that the definition (7.3.66) is similar to the definition of the
ADM energy in (7.2.27). We could also use a more “geometric” definition in-
volving the vector-field W (see (7.3.44)), but this would make no difference
here as t — oo, because the integrand [0jh,; — Onh;j| is already bounded by
Ca <t> —24+46' )
Step 1. We may assume that ¢ is large, say t > a1 + (1 — )~ 1. Using
Stokes theorem and the definitions (4.3.2), we can rewrite
x’ﬂ

Sat,t |z|<at

]

The density function —2A7 was analyzed in Lemma 7.10. The contributions
of the error terms O' and 9;03 decay as t — oo, and the contribution of the
metric components féjkszk also decays because [gh,., (z,1)| <o co(t) =212 in
the ball {|z| < at} (due to (7.1.21)). Thus

/ e e = / ((B00)? + 2 + 000, (x,£) di + O (265,
z|<at

lz]<at
(7.3.69)
Step 2. To apply Proposition 7.22 we would like to show now that

[ @+ v o)etyde= [ U@ 0 do + Oalet ™).
|z|<at

|z <ot
(7.3.70)
Indeed, the real part of U is 9y1, as needed. The imaginary part of U? is
—(V)®, and some care is needed because the functions ¢ and 0;1) are connected
to (V)1 by nonlocal operators.

In view of (7.1.22), we may replace the integral over the ball {|z| < at}
with a suitably smooth version, using the function x; (t7%°(|z| — at)), where
x1 : R — [0,1] is a smooth function supported in (—o0,2] and equal to 1 in
(=00, 1]. For (7.3.70) it suffices to prove that

/]RB X1 (87 (2] = at) ) {* + 05005 — (V) )} (@, 1) dx = Oa(e5t ™). (7.3.71)
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To prove this we notice that

[l el = at) GGl e = € [ GOGMK (6 —n)dedn
s (7.3.72)
where
Ki4(p) == /}R3 x1(t (x| — at)) e da. (7.3.73)

We apply the identity (7.3.72) for G € {(V)¢,¢,0;¢}. For (7.3.71) it suffices
to prove that

’ /W - D& )P ) ((E) ) — 1 = &my) K e(€ — ) dfdn‘ <o €270 (7.3.74)

Using integration by parts it is easy to see that | K1 ((p)| o t3(1+t%9p|) 719 (the
rapid decay here is the main reason for replacing the characteristic function of
the ball {|z| < at} by the smooth approximation y; (t~%(|x| —at))). Moreover,

[(€)(n) — 1= &my| < (€)(m)€ — nl, thus
(&) (m) — 1 = &my| [ K12 (& — )] Sa () (me* (1 +1271¢ — )~
Therefore, the left-hand side of (7.3.74) is bounded by
Callb(& 1)) 7217 Sa et ™",

as desired. This completes the proof of (7.3.70).
Step 3. We use now (7.3.21), pass to polar coordinates, and change variables
to calculate

/ |UY (2,t)|* dz
el <at

1 tr? R 0 2 2,5
=515 o @ ot (g )]+ Oulch™

1

— 9 _
= w/[o i Pk V(0. 1)[ dpdd + Oa (™).
R —a?]x

Therefore, using also (7.3.68)—(7.3.70) and letting ¢ — oo, we have

1 1

- 21, 2
~ 167 879 /M P Ve (p0)|” dpdd, (7.3.75)

Ei+ (OZ)

which is clearly a well-defined continuous and increasing function of « satisfying
(7.3.67) (recall that Exq = 1/(167)||V4]2, = 1/(167)(87%) 1|VEL[2.). O
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