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 1©2020 SAE International

This chapter explains the author’s engineering journey, where his changes in career, 
industries, job roles, experience, and skills have resulted in unique insights that are 
relevant to this book. The author came to the aerospace industry specializing in gas 
turbines from a background in the military marine–nuclear sector, both having safety–
criticality at the core of their DNA, but subtly approaching safety in different ways.

A feature of the aerospace safety culture is a rigorous and demanding method for 
approving planned maintenance (PM) relating to flight safety. The official maintenance 
must be justified and proven to reduce measurable risk to acceptable levels. Predictive 
maintenance (PdM) is not yet (apart from one or two examples) accepted as mainstream 
PM technique, as there is much work to do to justify its use with regulators, manufacturers, 
operators and the maintenance repair and overhaul organizations (MROs). This book 
will describe ways to make PdM more mainstream. PdM is being used in most industries, 
but the output is mainly advisory.

Additionally, the author came from working in the in-service phase of the complex 
machinery lifecycle during his naval career. Having a mature in-service perspective 
often brings insights that even the most talented designers who have only worked in 
design may never realize.

One of the author’s wishes is to break down barriers and improve communication 
in the engineering community, thus supporting Product Lifecycle Management (PLM), 
Integrated Vehicle Health Management (IVHM), and Systems Engineering that claim 
to address the whole product lifecycle. It is notable that these initiatives began their lives 
in the design-and-build phases of the product lifecycle, and a mistake the author perceives 
is that in-service phase processes and standards are being predominantly defined by 
design experts. One standard discussed extensively in this text is Reliability Centred 
Maintenance (RCM).

An Engineer’s Journey
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2 Aerospace Predictive Maintenance: Fundamental Concepts

The author joined the Royal Navy as an Artificer (Technician) apprentice in 1974. 
He trained as an Ordnance-Electrical specialist but later changed designation to Marine-
Engineering Electrical with post-apprenticeship qualifications in nuclear engineering 
in the Submarine Service.

With gained seniority, the author worked in all the specialist sections conducting 
defect repair, maintenance, and operation of submarine nuclear propulsion plant and 
ship systems. Later, as the senior electrical technician on-board, called the “Chief EA” 
(Electrical Artificer), the author conducted much of the preventative and corrective 
maintenance planning and scheduling.

The demands of nuclear submarine maintenance are exacting for a number 
of reasons:

 • The submarine has a very wide variety of equipment and machinery in order to 
sustain it. As the submarine operates independently of the air, it needs to:

 • Have a powerful power plant for propulsion and power production.

 • Be habitable for extensive periods of time under water independent of 
the atmosphere.

 • Carry and operate weapon systems.

 • Carry and operate sophisticated sensor and communication systems.

 • Additionally, in order for the submarine to remain undetected, all of this machinery 
has to operate making minimum noise which makes systems more complex.

 • The machinery is packed into constrained spaces and so the equipment is often of 
compact design where accessibility may be traded off.

 • Many systems store different forms and extremes of energy, making the working 
environment relatively hazardous. Many of the materials are hazardous.

 • The number of crew is limited, and they have to be multi-skilled and 
highly capable.

Submarine maintenance has been equated to the complexity of space shuttle main-
tenance. Many maintenance tasks require contortionist skills and the dexterity of a 
surgeon. The part of the equipment being worked on is often out of the line of sight of 
the maintainer, so the maintenance work is frequently done by using mirrors and feel.

With a submarine on patrol, it is vital the crew is able to act without support. It is 
vital to maintain the submarine’s patrol goals that are “to remain on patrol as an effec-
tive military asset, remaining undetected.” Submarine systems and machinery have a 
high degree of redundancy which helps mitigate against the effects of failure, but this 
also increases the complexity of the installed systems. In the trade, submariners often 
describe the analogy of having a belt, braces, and string to keep their trousers up (an 
example of triple redundancy). Redundancy in a machinery context means many systems 
or machines are duplicated, and able to operate in case the first-duty machine breaks 
down. Standby machines or systems having interconnections (or cross-connections) to 
allow them to start or take over the duty of a failing machine are common. This allows 
submarines to live with some machinery failure, because we can use their standby 
machines or reconfigure the systems to restore the function. This may take the immediate 
pressure off of defect repair, but it does not eliminate it. It is still highly desirable to fix 
what is broken and restore the robustness of a fully working system.

The processes of forming Procedure Authorization Groups (PAGs) for any emergent 
work that had nuclear or safety implications on-board involved many of the engineering 
team. Great responsibility was placed on young people empowered to speak up and 
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 An Engineer’s Journey 3

express concerns to ensure work was safe and effective. This ethos was rewarding and 
enhanced the already high degree of military teamwork. As a senior person, I relied on 
17-year-old stokers working in the lower parts of the engine room to take the right actions 
that my own life depended on. The ingenuity and problem solving used to keep the boat 
on patrol as an effective military asset is an attractive part of the job.

On a submarine it is necessary to remain vigilant to maintain water-tight integrity 
(submarines do not have a large reserve of buoyancy). There is also a need to keep a 
minimum amount of systems in commission in order to maintain reactor and nuclear 
containment, and remove residual decay-heat from the shutdown nuclear reactor. 
Maintenance must also be conducted with many systems containing stored energy and 
where some of the plant had to be kept operational. The management of safe-to-work 
boundaries with highly interconnected systems for many parallel maintenance tasks, 
aligned with keeping systems operational, required constant management, surveillance, 
and ultra-strict control. A nuclear submarine only approaches the “cold metal” state 
where every system may be shut down and decommissioned after a year from last oper-
ating the reactor. This occurs only in a major refit situation with the submarine in a dry 
dock. During a normal submarine commission (4 or 5 years), this situation hardly ever 
occurs. After the reactor has been shut down for months, the decay heat from the nuclear 
reactor reduces to a level where heat may naturally dissipate through the remaining 
coolant in the reactor pressure vessel. In summary there are few situations that require 
the level of engineering excellence that submarine operations and maintenance demands.

Military engineers are both maintainers and operators. These tasks are usually split 
in commercial industry. Both operating and maintaining provide two perspectives on 
machinery that, when combined, give a greater understanding of how plant operates 
and fails. Having maintenance experience also helps operators deal with an overload of 
data that floods in when machinery trips offline. When a machine trips there is normally 
a cascade of alarms and warnings as other services reliant on the tripped machine are 
no longer operating. Being both the maintainer and operator makes for a greater appre-
ciation of knowing what warnings and alarms are more important and need acting on. 
This also works the other way around: operational experience helps the maintainers’ 
awareness of what can and cannot be done in planning the withdrawal of equipment 
from service and ensuring safe-to-work boundaries are not conflicting. In most other 
industries operators and maintainers are separate.

The sheer depth, variety, and intensity of operating and maintaining a nuclear 
submarine plant leaves an indelible set of memories and experience that makes the 
author empathic to both maintainers and operators in other industries. Although other 
industries’ processes and contexts may be different in which machinery is used and 
maintained, there is enough in common that the author found he could rapidly appreciate 
the challenges involved.

During the latter part of his naval career, the author joined the new UK nuclear 
deterrent submarine class, the Vanguard Class (SSBN, Ship-Submergible-Ballistic-
Missile). This class had a significant number of new digital controls, instrumentation, 
and monitoring systems, including the nuclear reactor control and protection. This 
required the technical teams after a basic introductory course to essentially teach them-
selves digital electronics and data processing, with different means of fault-finding and 
using software as new essential knowledge to maintain the equipment. Learning on the 
job proved to be a most powerful way of successfully dealing with this paradigm shift. 
Knowing how to learn is a skill that is necessary.

There is an adage about machinery faults and fault finding (or troubleshooting): 
“Mechanical problems are often easy to find, but harder to fix, whereas electrical problems 
are often harder to find and easier to fix.” In my experience, an electrical maintenance 
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4 Aerospace Predictive Maintenance: Fundamental Concepts

engineer may have extensive training and theoretical knowledge, but it takes 2–3 years 
of constant defect rectification work to become a competent electrical diagnostician. A 
competent maintainer is 2–4 times as productive compared with a trained but inexpe-
rienced person. This realization of time to competence agrees with some theories of 
knowledge management, and the difference between tacit and explicit knowledge that 
are discussed in this book.

When the author joined HMS/M Victorious during its build, he took on a personal 
task to look at maintenance improvement, writing many deficiency reports identifying 
duplicated effort between the Preventative Maintenance (PM) regime and nuclear reactor 
safety checks. Some of the combined PM and safety checks required multiple disturbance 
of systems that would have caused post-maintenance infant mortality failures.

For his troubles, the author was invited to serve his last appointment in the Navy 
within the Ministry of Defence (MoD) to help fix the problem. The author undertook 
training to become a Reliability Centred Maintenance (RCM) facilitator and reliability 
engineer. The RCM course was akin to an epiphany, making sense of 20 previous years 
of practical maintenance work and defect rectification. The author could immediately 
relate to what maintenance was nugatory, because the failure patterns were not compat-
ible with the types of maintenance tasks being conducted, and viscerally understood 
the importance of on-condition maintenance.

In the latter part of the author’s career at sea, the Navy started using handheld 
vibration-analysis tools, which printed recorded acceleration spectra by frequency on 
thermal paper. These instruments were crude by today’s standards, but they were classic 
and effective for on-condition maintenance tasks. Some of the crew were trained to 
be vibration analysts on-board. They correctly diagnosed the onset of rolling element 
bearing failure in a number of our important rotating machines. This would have other-
wise caused machine failure on patrol that were able to be changed out during our PM 
periods, demonstrating the efficacy of these systems.

The maintenance review project conducted in the MoD included overseeing the 
contracted industry team supporting submarines who did the bulk of the groundwork. 
The author was the only qualified Vanguard Submariner on the combined team, and 
his submarine plant and operating knowledge was vital to the success of the project. The 
joint MoD and industry team concluded the RCM-based review which resulted in a 20% 
reduction in PM for no loss of safety or reliability.

During the author’s last appointment, he instituted visits from the MoD design and 
support authority to the boat’s technicians just after they came off patrol. The boats 
signalled significant deficiency and failures in reports they had suffered as soon as they 
broke their patrol. When the reports were received, they were incorporated into a 
database (paper at the time) of the various machinery sections at the MoD design 
authority. These reports became the basis for reliability analysis and any subsequent 
redesign work. It was the responsibility of the design authority engineers to review the 
reports and separate them out into groups by equipment type. They could then review 
equipment history and using pencil-and-paper calculations determine where unaccept-
able reliability problems existed.

Part of the problem with this system was the time it took for report submission, 
analysis, and review until anything was done about them. Feedback of consolidated 
defects from the whole fleet from the last period was released back to all boats every 
quarter, but this had minimal feedback of actions being taken from the shore authorities. 
Many maintainers felt that it may not have been worth the effort in submitting these 
reports, because they had often left for new appointments before any remedial action 
was taken by the design authority and reported back to the fleet. There was little incen-
tive to provide decent data.
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 An Engineer’s Journey 5

From the design authority engineer’s perspectives, many of the reports could not 
be acted on because of missing and low-quality data.

By visiting the technicians on the crew after they had returned from a patrol, a joint 
review was held of their last batch of reports. This prompted discussion between the 
crew and MoD team about what other data was needed and what the MoD team was 
going to do with the data in the support office. The results were spectacular: there was 
a 16-fold increase in the number of high-quality deficiency reports and an improvement 
in responding to reports for follow-up action. This allowed a focused effort on more 
effective modification work.

This visiting regime vastly improved communications between two groups of people, 
providing better outcomes for the Royal Navy. It also taught the author an important 
lesson: That accelerated improvement happens when two communities of dedicated 
engineers, with mutual respect and understanding, cooperate. Continued discussion 
between design and maintenance engineers was extremely valuable with insights being 
realized by both groups. A manufacturer or repair and overhaul (R&O) organization 
may not be able to meet pilots or line maintainers at the end of each flight sector, but 
there are opportunities for representative groups to meet periodically and discuss experi-
ences around such issues as “No-Fault-Found” (NFF).

As part of the author’s preparation for leaving the Royal Navy and starting a second 
career, I read for an honour’s degree in Computer Science. I took computer science 
because my submarine was selected for a pilot project to develop one of the first comput-
erized engineering-management programs. The consultants who conducted the require-
ments and wrote the software were arrogant and condescending to the crew. They talked 
over the crew in their own jargon and ridiculed our existing systems. The author deter-
mined never to be treated like that again. The engineering maintenance-software appli-
cation was a dismal failure with the computerized processes taking twice as long as our 
existing manual system. I was able to reflect on this project as my ICT education 
progressed, and treat it as a case study in how not to run a technical project.

The author supplemented his bachelor’s with a master’s degree 10 years later in 
Information Systems. One of the highlights of both of my degree courses was the 
discovery of Systems Thinking and Systems Engineering. The Soft-Systems Methodology 
was especially enlightening since it showed that a different perspective besides 
determinism needs to be taken to solve complex (wicked) problems. I also learned that 
technical projects are mainly people projects. If people could not or would not use 
new technology, the project failed. The author has actively applied his formal education 
merging it into his specialist engineering maintenance domain in developing expertise 
in PdM. Other benefits of my education have been in data management, where learning 
about relational databases and the mathematical basis of SQL, from both academic 
and practical perspectives, have been invaluable in appreciating data integrity 
and quality.

After the Royal Navy, the author joined Rolls-Royce as a maintenance and reliability 
specialist. Rolls-Royce are the UK’s design authority for the UK submarine fleet’s nuclear 
steam raising plant. The author designed and project managed the build of a comput-
erised Failure Recording Analysis and Corrective Action System (FRACAS). The 
FRACAS system framework was extended and electronically linked the reliability statis-
tics of submarine equipment to the maintenance being conducted. Part of the issue in 
understanding submarine reliability (especially the new into service Vanguard Class) 
was the low number of boats (4) in the fleet, and dealing with low populations of failure 
events on most of the equipment. Weibull analysis was not viable, and the team had to 
adapt techniques such as Crow-AMSAA to determine likely failure rates and trends to 
compensate for the lack of data.
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6 Aerospace Predictive Maintenance: Fundamental Concepts

Crow-AMSAA is a means of tracking the cumulative ages between failures to show 
rates of failure developed by the US Army. The project team adopted it from the design 
reliability-growth process, used to improve new products, for in-service use where the 
number of failures had unacceptable variation. The FRACAS software application was 
later used by the MoD as the reliability baseline (then the legacy submarine fleet) to set 
improved contractual reliability targets for the new Royal Navy (RN) Astute class subma-
rines, and pointing out areas where design improvements should be focused.

One interesting lesson was the careful design of the data structure that underpinned 
the application. We had a boat that was built of millions of components. This number 
of components was impractical to manage and we had to define a breakdown of equip-
ment to a lowest level of functional significance that resulted in under 10,000 identified 
parts. The effort taken to get to this stage consumed over 50% of the project time and 
money. In hindsight, it was the right thing to do, but this was not without risk when 
project sponsors expected earlier tangible results. The project ran using a Rapid 
Development System called Dynamic Systems Development Method (DSDM) that was 
very new at that time (1997–8). The level of trust in the project was high because of the 
direct engagement and participation of the users, who bought into why we had to initially 
focus on the data design. Active involvement of influential users in software projects is 
very beneficial.

The author then transferred to a new Rolls-Royce joint venture company (Data 
Systems & Solutions or DS&S), a new group tasked to develop systems to gain access to 
Rolls-Royce asset usage data to de-risk Rolls-Royce power-by-the-hour™ service 
contracts. The initial thinking was that data access from the control systems was going 
to be possible, but this was subsequently not proven because of customers’ sensitivity 
and costs for providing data without any apparent benefit. The most effective way of 
accessing and learning from asset data was to provide PdM services to the customers. 
In this way the customer attached more value to their business and provided permission 
to access data. In the future, data owners will realize the value of their data. In order to 
induce data owners to share that data, they need to realise a business benefit, and their 
intellectual property and competitive differentiation must be kept safe.

DS&S started with gas turbine engine health monitoring software that was given 
to Rolls-Royce customers after their purchase of gas turbines. It is striking and remark-
able that a business was started based on software that was given away free. The new 
company expanded this to offering fee-paying services for in-house analysis and alerting 
using the software. The original value proposition was based on DS&S expertise of the 
health monitoring software to interpret the interim results and summarize them. Later 
additional benefit was realized because the size of the fleet being monitored from many 
customers enabled the service to learn lessons from one customer that could be applied 
to all. This service was very successful, eventually covering the whole range of Rolls-
Royce’s and other manufacturers’ products. The health management project started just 
before the dot-com boom in the early 2000s where the service team was posting customer-
analysis results in pdf documents for Engine Health Monitoring (EHM) on the web.

The author was a key member of the team leading Research and Development (R&D) 
and became the corporate owner for the PdM capability over many years, before Big 
Data, applied Artificial Intelligence (AI), machine learning (ML), and predictive tech-
nologies emerged. The Rolls-Royce system was redeveloped through several generations 
over the years and is still at the forefront of PdM capability globally in any industry 
sector. The Rolls-Royce PdM system adds hundreds of millions of dollars of value 
annually to airline operators, Maintenance Repair & Overhaul (MRO) shops, and 
Rolls-Royce itself.
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 Who Is This Book Intended For? 7

During this time the author participated in aerospace and oil and gas maintenance 
standards writing, becoming team leader in describing PdM for API 691, Risk-Based 
Machinery Management (for rotating machinery) and contributed several chapters to 
SAE books on Integrated Vehicle Health Management (IVHM), and other books on 
Through Life Engineering Services. The author is co-inventor of a PdM patent in 
simplifying diagnostics.

In late 2014, the author took voluntary redundancy from Rolls-Royce and soon after 
co-founded Ox-Mountain Ltd. Ox-Mountain successfully developed service software 
that applies ML to machinery data to automate engineering and reliability processes in 
the process industries sector (mainly mining). Being part of a small team and having to 
turn his hand to various diverse tasks, the author discovered the power of the program-
ming language Python and spent the last few years learning how to prototype solutions 
using it to gain insights from the data.

Who Is This Book Intended For?
The goal of this book is to explain PdM in a simple and understandable way. The intent 
is to de-mystify core concepts and challenge hype. It is also intended for students, tech-
nical managers, non-engineering managers who may rely on or are involved with 
financing asset maintenance. This book is intended to explain PdM in an approachable 
way to enable those people to make more informed decisions in adopting or using 
the technology.

PdM is a relatively new capability and has not reached full maturity. It is still subject 
to a high degree of marketing hype and claims attempting to differentiate many suppliers’ 
sales pitches. This leads to over-exaggeration and false claims that result in confusion 
and misunderstanding that the author hopes to clarify.

This book posits that PdM is a subset of Condition-Based Maintenance (CBM) and 
must obey the same underlying rules and pre-requisites that apply to CBM. CBM is 
further explained in the Glossary. PdM is new because it takes advantage of newly 
emerged digital technology, in sensing, acquiring data, communicating the data, and 
processing it but it is a subset of CBM. The more recent advances in Big Data and predic-
tive technologies has also accelerated PdM development.

Applying digital technology allowed sensors to be continuously monitored, and 
timeliness of processing is also enhanced, widening the ability to take practical remedial 
action if a failure is detected. Other major differences between traditional CBM and 
PdM are:

 • The fidelity of on-line sensing can be lower compared with CBM periodic sampling 
using handheld equipment. This is because taking one sample requires that the 
machine needs to operate without failure for a considerable period longer than 
being able to derive readings from online systems much more frequently.

 • The data processing and analysis lifecycle may be highly automated, with applied 
ML and AI (predictive technologies). This capability can autonomously analyze the 
data and send alerts and advice to decision makers, potentially reducing through 
life cost and improving safety.

 • The high automation inherent in a quality PdM system also boosts scalability, the 
PdM system is capable of dealing with many more assets’ health compared with 
manual or immature PdM systems that require a high degree of 
human intervention.
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8 Aerospace Predictive Maintenance: Fundamental Concepts

In the wider world the rate of technology innovation and adoption is accelerating, 
illustrated in Figure 1.1. This is the case with the development of PdM. The internet means 
that adoption times can be very short, given its global reach and connection to most 
people on the planet. Think how fast automated security software patches are adopted 
for computer operating systems to understand how fast adoption could be. This title will 
explore how PdM may evolve, how it fits with other emerging technological development, 
and how it may take advantage of it. It provides a context for how PdM may be further 
developed in the future. This book does not cover an explanation of some of the under-
lying on condition techniques such as vibration analysis, these techniques are explained 
in detail in another complementary book by Keith Mobley (Chapter 1 reference 1).

PdM has been applicable to any industry that relies on complex physical assets that 
require maintenance. As PdM has emerged and has been maturing, especially with 
automation, the scope of its applicability is widening. PdM can be applied to smaller 
lower value assets where sensor and other data is available. This trend of ever wider 
applicability will continue and organizations’ operational effectiveness and efficiency 
may be increased by small increments that feed directly to their bottom lines. Examples 
will be drawn from many industries, but the book recognizes that the aerospace industry 
is most likely to be the leading user and developer of the technology. There are other 
industry sectors that have distinct requirements where PdM and machinery monitoring 
they use are specialized and world leading. For example, oil exploration where directly 
monitoring and controlling the drilling bit is paramount. This book has an aerospace 
focus but should be directly relevant to other industry sectors.

How This Book Is Organized
Many history texts that describe a specific but highly influential event often set the context 
by describing the preceding story in detail. This prehistory helps the readers comprehend 
why the events unfolded, deepening the appreciation of how and why the central subject 
was so influential. It is so in this book. Some of the chapters describe other, but related 
technologies and frameworks that might at first glance seem disconnected. This risks 
possible inconsistency and confusion for the reader. This section will provide an overview 

 FIGURE 1.1  The acceleration of emerging technology adoption (Source New York Times).
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 How This Book Is Organized 9

of how the chapters fit together, what relationship and influence to PdM they have and 
how they all help to gain both a broader and deeper appreciation of the technology.

Chapter 1 describes the author’s unusual career path to establish a frame of refer-
ence for his worldview and perspectives. The chapter provides the reader with an insight 
for the author’s frame of reference and how this influences his views of PdM. This allows 
the reader to reflect on their own frame of reference and empathise or disagree with the 
content of this book. If any reader has contrary views, the author would welcome any 
constructive feedback with reasoning.

Chapter 2 provides a history of maintenance, how over millennia it has developed 
and adapted in response to growing complexity of machinery over time. Not only has 
machinery complexity increased, but what society demands of modern machinery has 
considerably increased in scope as well. Performance, safety, and the environment make 
direct demands on maintenance to help ensure these requirements are met and managed. 
With increased demand, maintenance has to deliver more for less. An important story 
told in Chapter 2 is the generational thinking about the patterns of failure that exist. 
Many people are taught about the second-generation model, called the bath-tub curve, 
but do not realize that a third generation exists subsuming the older model produced 
after extensive research with empirical evidence. The third generation of failure patterns 
are vital to understand why on-condition and PdM are so important.

Chapter 3 initially introduces maintenance and the purpose of maintenance from 
a high-level perspective to set a context of where PdM sits and operates in the wider 
maintenance regimes. PdM is not a panacea, and does not make other maintenance 
obsolete. PdM is a component of Preventative Maintenance that preserves functions 
(preventing machinery functional failures). The chapter broaches functional failure 
and what aspects in the design, manufacture, operating, and environmental contexts 
influence failures and failure rates. It shows that much of the background knowledge 
around failure can be contained and structured in a Failure Modes and Effects Analysis 
(FMEA). A Taxonomy of maintenance task types is provided. The chapter then 
describes the core PdM in detail, showing conceptual models of what types of failure 
are applicable for PdM, the concept of a model of normality, novelty, and anomaly 
detection, how PdM breaks down into diagnostics and prognostics before alerting 
those that need to know. The chapter describes some of the hype surrounding PdM, 
before finally showing how it impacts and disrupts traditional maintenance planning 
and scheduling.

Chapter 4 covers Integrated Vehicle Health Management (IVHM) that aims to provide 
a platform-centric framework for PdM. IVHM is not covered in detail but enough informa-
tion is given for the reader to find further information. IVHM is a whole product lifecycle 
approach that uses Systems Engineering to conceptualize design, build, and operate PdM 
for any complex asset. The aerospace sector has a growing number of Aerospace 
Recommended Practices (ARPs) for IVHM including PdM. In the aerospace sector, formal 
maintenance is defined using the MSG3 RCM methods with enough evidence to formally 
assure flight safety. PdM has yet to be adopted in this formal process, but the IVHM, SAE, 
and RaeSoc and industry regulators are working toward agreed processes to formally adopt 
PdM techniques so they may deliver maintenance credits, thereby reducing risk of failure 
to acceptable levels.

Chapter 5 explains the economic advantages of applying PdM instead of other 
traditional fixed-interval preventative maintenance, where it is practical to do so. This 
is an important benefit to be applied when building a business case for adopting PdM. 
The explanation introduces the Weibull distribution and its associated cumulative density 
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10 Aerospace Predictive Maintenance: Fundamental Concepts

function to illustrate the economic advantage of PdM over scheduled replacement or 
restoration tasks. The chapter points out that the maximum potential value for PdM 
would be the utilization of components for a population that would be the median value 
of the Weibull characteristic, in addition to avoidance of disruption. The chapter describes 
how RAM simulation (using Weibull distributions and Monte Carlo techniques) may 
be used to provide the data for business cases.

Chapter 6 takes a closer look at how PdM relates to RCM (or MSG-3). It highlights a 
common misunderstanding that PdM is superior or supersedes RCM, and explains why 
this is nonsense. RCM is used to design and specify maintenance, PdM is an important 
constituent of maintenance. This chapter shows what other data should be included in a 
FMEA to make it better for RCM, but also to provide vital information to judge whether 
PdM is applicable or not. The chapter provides a light introduction to a graph structure, 
and then shows a schema for a FMEA drawn up in Figure 6.2. The chapter moves onto the 
second stage of RCM where a decision logic is used to assign different maintenance tasks 
to the underlying failure modes and shows the criteria used to make the choices.

Chapter 7 discusses PdM maturity. To provide a context, the transformation of data 
through information and knowledge is described, because PdM is massively data 
dependent as a system. Understanding some of the precepts of knowledge management 
provides a really useful and powerful perspective on PdM as an information system. A 
critique is provided for a traditional knowledge management system, with an improved 
version that the author puts forward that helps conceptualize PdM. The chapter goes on 
to discuss Data Quality to ensure that both hard and soft attributes of quality are 
included. The chapter moves on to provide a functional breakdown of a PdM system 
used by IVHM, called SATAA. This book extends the model to include Learning 
(SATAAL) to illustrate that an operational information system needs feedback and 
reflection to continuously improve. A PdM system needs to adapt as assets age, new 
technology emerges and improve as lessons are learned. SATAAL is described in detail, 
with salient points explained in more detail that illustrates what needs to be in a PdM 
system. In order to operate a successful PdM system, a number of necessary competencies 
and roles are put forward. Finally, a simple five level maturity model is described that 
show major elements of what have been described in the chapter are ranked.

Chapter 8 provides a template functional specification for a PdM system, showing 
importance of the requirements. The requirements are based on discussions in the earlier 
chapters and may be used as a datum set of requirements for any organization that wants 
to specify or assess a PdM system.

Chapter 9 discusses disadvantages of PdM and shows how these may be addressed. 
One of the fundamental changes PdM implies is a shift from deterministic black and white 
thinking to more nuanced decision making informed by probabilities and uncertainty. 
This was discussed in building a business case but is also vital in how the recommendations 
from a PdM system are trusted and acted on. PdM implies that future forecasting of 
maintenance events is more uncertain compared with a traditional time-scheduled based 
system. This may be mitigated by delivering a usefully long P-F interval to enable planning, 
predisposition of resources and timely withdrawal from service minimising disruption. 
Other concerns such as data management, privacy, and ownership are discussed.

Chapter 10 is a forward-looking view of PdM. At the very beginning of the book 
we illustrate the ever-accelerating emergence of new technology, and this is almost certain 
to influence the further development of PdM. We describe Big Data and Cloud which is 
already being widely adopted, but also cover newly emerging technologies such as the 
Industrial Internet of Things (IIoT) that will result in proliferation of cheap, wireless, 
ultra-low-power sensors with a tsunami of increased data volumes. IIoT will transform 
PdM, because it will make so much more equipment and their environments economically 
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monitorable. Industry 4.0 is covered, which exploits IIoT, and how the data produced in 
manufacturing should be exploited by PdM. The sharing of data between different phases 
of the equipment lifecycle (between design manufacturing and in-service support) may 
be improved through Industry-4.0 adoption. A more blue-sky technology is discussed 
using nanotechnology that can be used for new sensors, micro-robotics for inspections 
and self-healing or repairing systems that may be integrated with PdM.

Chapter 11 provides a summary, but also offers some indicators and pitfalls to avoid 
when implementing a PdM system. How you might start and rapidly scale up after initial 
value has been demonstrated. How knowledge is being lost due to demographics and 
how this might be  compensated. This ties back to an appreciation of knowledge 
management covered in chapter 7. A couple of described examples of how PdM works 
provide a “what does PdM feel like” when it is adopted.

Chapter 12 shows an example of a signal processing using a single variable Kalman 
Filter to smooth a time-series data trend. The filter is coded in Python and run to show 
some examples of the smoothing using example data. The Kalman filter is shown compared 
with using other moving average algorithms. The example also shows how the Kalman 
filter may also be exploited to deliver “novelty” or “anomaly” detection, where trends either 
exceed a threshold, step change or ramp, so that these can be further used in the Sense - 
Acquire - Transfer - Analyse - Act - Learn (SATAAL) Analysis stage as inputs to diagnosis.

A Glossary is provided at the end of the book.
Figure 1.2 shows the book chapters and how they fall into three groupings to describe 

the context, then the PdM technology followed by a small case study and what advances 
in the future may occur.

 FIGURE 1.2  An overview of chapters and flow through this book.
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To set the scene for PdM, the history of maintenance will be discussed through millennia 
up to modern times, including the more recent developments in aerospace with the “Air 
Transport Association” (ATA), now called the “Airlines for America” (A4A), MSG-3 
Recommendations, and the adoption of Reliability Centred Maintenance (RCM) in other 
industries. Other standards are also emerging for many industries that take a wider 
perspective of Asset Management, such as the ISO 55,000 series [1]. These other standards 
embrace maintenance and maintenance management and use many of the systems and 
frameworks described in this book.

Maintenance has been conducted for thousands of years in distinct phases as the 
complexity of machinery and technology has evolved. The first phase of maintenance 
was characterized by simple wooden machines, where breakage was repaired by using 
many of the natural resources in the immediate vicinity of the maintainer (or artificer). 
Some of the maintainers were skilled masons, carpenters, or blacksmiths, but they were 
relatively independent and self-sufficient. Some of the most sophisticated devices built 
up to the industrial revolution were clocks and timepieces, especially those built for 
maritime navigation in the 18th century.

This continued until the Industrial Revolution. The British Royal Naval dockyards 
invented the earliest forms of industrial manufacturing during the Napoleonic wars, 
producing standardized cordage, rigging and other replacement parts using proto-
production lines to keep the vast fleet of the Royal Navy operating. I. K. Brunel’s father, 
Marc Brunel*, was responsible for building a series of jigs for making rigging blocks 
used to improve manufacturing efficiency by 11-fold [2] in the Royal dockyards.

When steam power was introduced, machinery took a step-change increase in 
complexity and introduced the second phase of maintenance. Although the majority of 

* The Brunels were famous Victorian engineers who both set new engineering records and had similar reputa-
tions and fame in their time as Elon Musk has today.

A History of Maintenance and How 
Maintenance Is Done Today
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14 Aerospace Predictive Maintenance: Fundamental Concepts

 FIGURE 2.1  Major innovations in the first industrial revolution.
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the maintenance was corrective (fixing equipment after it has broken), some servicing 
(mainly lubrication and cleaning) and restoration (restoring the condition of the machine 
to nearly new) maintenance was introduced to restore condition or performance. For 
example, boiler tube cleaning was periodically conducted to bring back heat transfer perfor-
mance and efficiency of steam production. The predominant belief in how equipment failed 
at this time was due to wear-out, where the probability of failure increased with usage of 
the asset or its time exposed to the environment. A summary timeline of major innovations 
and inventions during the Industrial Revolution is shown below (Figure 2.1).

Machinery complexity took another step change in the 1930s with the introduction 
of monocoque multi-engine aircraft. The sophistication of aircraft was also accelerated 
by WWII. When you can compare a Boeing B29 Superfortress from 1944 with a pres-
surized heated cabin, centrally directed powered guns, new avionics and hydraulics to 
another simpler aircraft like a Boulton & Paul Overstrand, it is easy to see at least two 
generations of development between these two aircraft types. Jet engines also made their 
operational appearance during WWII (Figure 2.2).

Although these newer aircraft systems were complicated, their reliability was rela-
tively poor compared with today’s standards. Typical serviceability figures for the RAF 
in the 1940s varies between 60% and 80% availability. The third generation of mainte-
nance was initiated by the introduction of preventative maintenance with scheduled 
overhauls and replacement of parts after a period of time before they wore out. The 
widely held belief at the time was that the more a complex machine was maintained the 
better its reliability.

The introduction of jet engines, pressurized cabins, and the discovery and fixing of 
low-cycle fatigue failure modes with the Britannia Comet aircraft initiated mass travel. 
The complexity of aircraft systems increased with the introduction of solid-state 
electronics (Figure 2.3).

The beliefs in reliability morphed to the bathtub model where there may be a stage 
of infant mortality failure before a period of useful life prior to wear-out. Concepts such 
as “burn-in” were adopted to run components on load just after they were manufactured 
to reduce the incidence of in-service failure due to infant mortality, especially in 
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electronics. A major misunderstanding about infant mortality is that a period of infant 
mortality may be initiated after invasive planned maintenance has been conducted, 
where the work quality may be substandard. This complicates the simplistic bathtub 
characteristic as it may not be uniform over the full in-service phase of the product 
lifecycle (Figure 2.4).

In the late 1960s, The US Aerospace Maintenance Steering Group (MSG) introduced 
MSG1 that incorporated the concepts of engineering discipline for design safety. 
Overhaul and on-condition tasks were introduced to make the through-life maintenance 
costs of the Boeing 747 (Jumbo Jet) low enough to make the aircraft economically viable. 
Mass travel by aeroplanes would never have been possible without the adoption of the 
new MSG maintenance philosophies.

In the early 1970s, MSG-2 was released, introducing the concept of condition 
monitoring in time for the introduction of the Lockheed 1011 and McDonald Douglas 
DC-10. Equivalent standards were also adopted in Europe for Concorde and the 
Airbus A300.

In the late 1970s, the as-then Air Transport Association of America (ATA) instituted 
a review of the MSG-2 standards because of the effects of inflation with huge rises in 

 FIGURE 2.2  Comparison of the complexity of aircraft spanning WWII (Source Wikipedia).
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 FIGURE 2.3  The old superseded bathtub belief of how machinery fails.
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16 Aerospace Predictive Maintenance: Fundamental Concepts

fuel costs, the introduction of other new aircraft and engines (GE CFM56), and the 
release of the United Airlines Reliability Centred Maintenance (RCM) report [3].

The Nowlan & Heap RCM report was seminal. It included a major empirical study 
that identified functional failures which fell into six distinct failure patterns, some of 
these being wear related, some random, and another conforming to the bathtub and 
infant mortality. This was a major update in the previous generational belief in the 
bathtub curve representing failure patterns. The study also showed that the majority of 
functional failures for complex machinery was random. These unexpected results were 
confirmed later by further independent empirical RCM studies in the US Navy and US 
nuclear industry. These results seem unintuitive to many engineers and may require 
some explanation. The following diagram shows the progression of beliefs in how assets 
failed over the three generations of maintenance development (Figure 2.5).

Each of the graphs above show the conditional probability of instant failure (the Y 
axis) against the age of the component (X-axis). The unexpected result is the predomi-
nance of random failure, which needs to be explained. Many people believe that wear-out 
and age-related failure predominates, dismissing the results of the RCM studies.

Many reliability and maintenance textbooks still quote the bathtub model today as 
being the underlying model of failure that is still prevalent. This may be due to the extra 
complications of explaining the six models, and the unintuitive conclusions that most 
functional failures in complex machinery are random. The RCM theory is not yet 
pervasive, except in those industries mentioned above where safety is critical. Another 
issue is the way reliability engineering is taught, especially if it is only a module taken 
as part of a general engineering degree, is that teaching the bathtub as a model for failure 
is far simpler than the six RCM failure patterns. The bathtub is not a satisfactory model 
for all failure patterns, it certainly does not represent the pattern of failure caused 
by fatigue.

 FIGURE 2.4  Major innovations in Aviation.
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 Most Functional Failures in Complex Machinery Are Random 17

Most Functional Failures in Complex 
Machinery Are Random
The Nowlan and Heap study considered functional failure which may be caused by many 
failure modes on many components. System complexity is substantially increased by 
the inclusion of software.

The failure patterns are for complex machinery where the top-down approach of 
looking at system failure down towards components probably mixes many failure modes. 
Where the breakdown has occurred at individual component level individual compo-
nents, such as turbine blades, the failure patterns for these parts is wear-out with thermal 
low-cycle fatigue, a major life-limiting factor. Other failures can be caused by environ-
mentally driven events [such as Foreign Object Damage (FOD), including birdstrike], 
which are random (sometimes these are called “acts of God”). The general idea seems 
to be: if the part has no moving components or is a physical (structural) entity in contact 
with the operating medium (e.g., a turbine blade in the gas path, or a pump impellor in 
contact with the liquid being pumped), then the failure pattern for the predominant 

 FIGURE 2.5  Generations of belief of the patterns of failure (Source Ch 2) [4].
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18 Aerospace Predictive Maintenance: Fundamental Concepts

failure modes of that part is likely to be age or wear-out related. A structural part in 
contact with the operating medium is not inherently complex.

Another factor that may support the predominance of random failure patterns is 
that the root causes of the majority of failures can eventually be traced to human factors, 
such as lack of communication or incorrect decisions. These human factors are explored 
in Chapter 7 where Knowledge Management is covered.

Infant mortality failures (where failure occurs at unexpectedly low age) are mainly 
caused by quality issues in design, manufacturing, assembly, operations, or maintenance. 
During the in-service support period, infant mortality may still be present due to 
maloperation and bad maintenance. This means that infant mortality might not just 
be a factor at the start of the working life of a component; it is liable to recur after each 
maintenance period, if the maintenance procedures have quality issues. A primary 
function of a PdM system should be to present an analysis of failure ages of components 
after Preventative Maintenance to identify infant mortality. If parts are replaced with 
new as scheduled replacements, and the new parts are badly fitted, the Weibull analysis 
will also pick up maintenance-induced infant mortality.

Maloperation may also be monitored using PdM systems, showing where machinery 
is operated beyond its intended design boundaries. Type 2 prognostics (explained in 
chapter 3) can be used to update the likelihood of failure, given that damage has 
accumulated by maloperation. Where maloperation is due to operators, the exposure 
should be treated as a learning and improvement opportunity instead of a blame culture 
and applying a “stick” to discipline operators. Both the nuclear and aerospace industries 
have an open culture where operational mistake reporting is actively encouraged and 
shared, and treated as learning and improvement opportunities.

When conducting RCM (or MSG-3, described in detail later in the book) analysis, 
analysts drill down from the asset through its systems to components (known as 
indenture levels), identifying the failure modes (and often the mechanisms) of failure. 
An assessment of the impact and likelihood of the failures occurring are recorded 
simultaneously. As a granular level of components is reached, the failure mechanisms 
and the failure patterns tend toward being aged and worn-out. If functions and functional 
failure at the higher levels of indenture are considered, functions may fail for different 
failure modes and environmental effects. This implies the mixed failure modes leading 
to a single functional failure may appear to be random. This effect may be mitigated if 
all failure modes have wear-out patterns where the increases in probability of failure are 
varied, implying one or two failure modes are predominant, which mask the other failure 
modes from presenting themselves.

We need to understand that failure may be represented as a hierarchy: at the top 
there are functional failures, caused by one or many failure modes, each failure mode 
degrades because of the underlying failure mechanisms. A common mistake is to mix 
these entities up.

What Is the Difference between 
Failure Modes and Failure 
Mechanisms?
This explanation is included here because many people do not differentiate between 
Failure modes or mechanisms and frequently mix them up. One of the important things 
to get right in the RCM process is to ensure these are differentiated and correctly identified.
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A failure mode in the RCM domain is a description of the state an object is in when 
functionally failed. If a machine is “leaking” at an unacceptable rate, this is describing 
the failure mode. It is well to remember that many machines with a containment function 
have an acceptable or design leakage rate. “Leaking” may be more formally termed “loss 
of containment.” The failure mechanism leading to the leak describes the physical process 
by which the failure mode has occurred. The failure mechanism may be due to corrosion, 
erosion, fatigue, etc. All of these are plausible failure mechanisms leading to functional 
failures. Depending on what mechanisms are likely or predominant, they may influence 
choices on what sensors should be fitted to provide, such as early warning of functional 
failure using PdM in a particular operating context. Failure mechanisms may also work 
interactively (e.g., corrosion is combined with erosion). The rate of degradation is likely 
to increase if two or more failure mechanisms interact concurrently. The interaction of 
failure mechanisms is also a demonstration of holism: “the interaction is greater than 
the sum of the failure mechanisms acting alone.”

In summary, functional failure that can be caused by a multitude of failure modes 
tends toward being random. Complex machinery and components (with software) may 
tend toward random. Simpler, more structural parts or components with few failure 
modes tend toward presenting wear-out and age-related behavior.

Intrinsic and Achieved Reliability
Many people assume that improving maintenance leads to ever improving reliability, 
this is a mistake. Maintenance (including PdM) cannot exceed intrinsic reliability set 
as an upper level of achievable reliability by design and manufacturing of equipment. 
However, it is possible that the reliability achieved in service may be far less than intrinsic 
reliability due to maloperation and mal-maintenance. The in-service efforts in operations 
and maintenance should aim to attain levels equal or close to intrinsic design reliability. 
Only design change, or modifications can change machinery intrinsic reliability.

Applied Systems Thinking
The author is a convinced adherent of “Systems Thinking” and how this has been applied 
in the engineering domain of “Systems Engineering.” It is valuable to apply systems 
thinking to equipment to determine the best way a project team can preserve its func-
tions in the most effective and efficient way. This section will describe reductionist and 
systems thinking ideas and how this applies to analysing equipment to determine how 
it may be maintained, including using predictive maintenance.

During the last 300 years, reductionist thinking was used to divide problems into 
smaller components, so better understanding about the smaller constituents is possible 
to resolve the larger problem. Reductionism remains a very potent strategy for problem 
solving and needs to be used in conjunction with systems approaches. Systems thinking 
and systems engineering does not reject reductionist processes but augments them as 
described below.

As equipment has increased in complexity over time, projects that have relied on 
reductionist approaches have increasingly failed. A new approach to address complexity 
and the limitations of reductive thinking was the development of Systems Thinking and 
Systems Engineering.
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Systems Thinking adopts the concept of a system that has a boundary and exists in 
an environment that it interacts with. The systems approach embraces Reductionism 
but adds the concept of Holism; when systems are observed as an entire entity, they have 
properties that are not present if you observe all isolated system components. This idea 
of Holism is best encapsulated when Aristotle said, “The whole is greater than the sum 
of its parts.”

Other system concepts include “emergent behavior” and “self-organizing systems.” 
Emergent behavior is when a complex system displays unexpected behaviors if system 
influences change or more components are added to the system. On top of emergent 
behavior is the systems concept of “self-organizing systems,” where systems may 
spontaneously reorganize themselves. This phenomenon is especially true if there are 
associated social constituents of a system. The inclusion of people in a system requiring 
human intervention to operate manage and maintain the system, makes it the most 
complex possible and most likely to self-organize in ways that are unexpected and diffi-
cult to predict. It is often known as the “law of unexpected consequences.”

The act of decomposing assets (that are systems with identified boundaries) into 
smaller systems to simplify and address complexity is reductionism at work. The analyst 
also needs to consider that a whole system may have functions and behaviors that are 
not apparent by analysing their parts in isolation. So, the analysis must not be restricted 
to a pure reductionist approach.

MSG-3 Overview
Based on the RCM principles derived from the Nowlan and Heap RCM report, MSG-3 
was issued in 1980 and is the current aerospace guidance for defining maintenance 
regime for the manufacturers and airline operators for each type of aircraft. MSG-3 has 
been updated through the years with the latest version being issued in 2018. It is 
noteworthy that MSG-3 has remained extant for 40 years, a testament to its technical 
soundness based on solid empirical evidence.

MSG-1, 2, and 3 recommendations were important turning points in maintenance 
history and important to the invention of PdM because they introduced the concepts of 
on-condition maintenance, which PdM is part of. Without RCM and MSG-3 the airline 
industry would be uneconomic to run because maintenance costs would have been too 
high. The reductions in costs of flying while maintaining the rigorous standards to 
preserve and help improve safety derived via RCM meant the whole era of mass travel 
was enabled. Many people who criticise RCM as being too onerous would do well to 
remember how our ability to travel cheaply relies on RCM in its MSG-3 guise.

The MSG-3 standards form recommended practices that guide operators and 
manufacturers for the construction of maintenance programs for aerospace. The 
standards are split into independent sections covering fixed wing, rotary, structural 
systems, and powerplant and since continued to update. The latest 2018 version is avail-
able from A4A publications [5].

Figure 2.6 shows a simplified representation of the MSG-3 decision logic used to 
determine what maintenance task types are applicable. Starting at the top, the question 
of “evident” means “the failure is evident to the asset operators or maintainers when 
they are undertaking their normal duties.” If the failure is not evident, the user of the 
decision logic follows the “hidden” branch. The next question asks, “does the failure 
have any safety impact or consequences,” because then the stringency for the selected 
tasks will be tighter, and the burden of proof that the maintenance tasks will reduce the 
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probability of failure to required levels will be harder compared with a failure mode that 
has operational or economic impact or consequences only. If a failure has safety 
consequences, then it follows that these have automatic operational and economic 
consequences as well.

The middle column in the decision logic below level two is where the various types 
of maintenance tasks are considered. Underlying questions will be applied about the 
practicality, cost and effectiveness of each of the task types to reduce the probabilities to 
acceptable levels. If no tasks are relevant, then no scheduled maintenance would be the 
result where machinery may be allowed to run to failure. However, if the failure mode 
has safety consequences, other redesign options may be mandatory, which involves modi-
fication of the physical design or changes to the operating boundaries, procedures, or rules.

For any aircraft maintenance regime, the MSG-3 is used as guidance: the manufac-
turers and operators put together an initial new aircraft maintenance regime and present 
this to the FAA Maintenance Review Board (in the USA) for review and acceptance. 
There are similar regulators in the rest of the world for the aerospace industry.

PdM emerged as digital control, digital instrumentation, and information and 
communications technology (ICT) matured. The primary driving force for development 
has not been the rigorous processes for defining maintenance in MSG-3, but in finding 
a way of system and propulsion manufacturers to adopt servitization business models 
where safety is a given, but the operational and economic risks may be better addressed. 
PdM is a means of accessing data to determine onset of failure that may disrupt operations 
and drive servitization costs up.

It is only latterly that efforts have been started to explore whether PdM can 
be exploited more fully to gain “Maintenance Credits,” where the reduction of risk of 
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 FIGURE 2.6  Highly simplified MSG-3 decision logic (Source MSG).
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safety-related failures to acceptable levels can be justified with measurable certainty. 
This work with groups such as the regulators (EASA, CAA and the FAA), operators and 
manufacturers are working out how PdM may be further exploited.

Key Take-Away Points
 • Maintenance is evolving at an increasing rate

 • The demands made on maintenance are increasing, with safety, efficiency, 
environment, ever-improved reliability, and reductions in through-life cost

 • There are six patterns of failure: as the complexity of machinery increases, so 
functional failures tend to be random

 • PdM has been adopted in many industries addressing operational and economic 
factors. Aerospace is attempting to formalize PdM is guaranteeing risk reduction 
in Safety & Health failures under a revised MDG-3 guidance

 • There are many examples in different industries of best PdM practice, where the 
techniques are adapted to suit different operating contexts and environments

 • Maintenance is not just a cost centre, it can significantly add value and 
extra revenue

 • Machines and maintenance are becoming ever more complex: it is necessary to 
take a systems approach to their analysis and management to ensure success
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This chapter introduces PdM, explains why and how it has emerged, and how PdM fits 
with any maintenance regime. Initially, the context for PdM will be set within a more 
generalized maintenance system. Not all may agree with the exact context or the defini-
tions used here. The intent is to deliver a working context so that PdM can be better 
understood. The definitions should be general enough that, when other texts and defini-
tions are presented, they may be recognized and mentally mapped to those presented 
here. A Maintenance Regime is how an asset-rich organization designs and operates its 
asset maintenance program. The maintenance regime often includes logistics, spare part 
management and, where maintenance is carried out (on the line, at a maintenance bay 
or depot, or at a factory level).

The fundamental contextual setting of PdM is its relation to the whole Maintenance 
Regime. In this book, the definition of the Purpose of Maintenance is:

To preserve functions stakeholders required of machinery – within their 
defined operating contexts.

This definition is highly influenced by John Moubray’s definition of maintenance [1].
Preserving asset functions has a wider scope beyond preventing and recovering 

from an asset’s physical failure. This is too narrow a perspective to take when considering 
maintenance and PdM in modern times. The stakeholders of machinery who are the 
owners, operators, maintainers, users, and ultimately the general public have far wider 
expectations of assets than in previous ages, and these expectations are constantly growing.

A significant minority of asset-functional requirements are not associated with safety, 
physical integrity, or performance. There are also requirements for aesthetics, intrinsic 
value, and the need to enhance the experience of users. For example, enhanced passenger 
experience is a major differentiator to an airline operating company, so why shouldn’t 
maintenance (such as keeping engine rotors balanced more often, leading to lower levels 
of cabin noise) directly contribute to this functional requirement? If an airline operating 

What Is Predictive Maintenance (PdM) 
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company made a much stronger link between how maintenance could enhance customer 
experience, then would ensuring in-flight entertainment systems were working properly 
take on greater importance? How many times have people travelled and been frustrated 
where the sound does not work, or the jack-plug connectors for earphones do don’t either? 
The point is wider society and the general public also influence the requirements for 
maintenance. There is great sensitivity to pollution (noise, particulate and greenhouse 
gasses) that can be reduced by new design and maintenance, where monitoring and main-
tenance of optimal machinery performance also delivers reduced emissions.

Another significant area where PdM can be directly employed beyond physical 
failures is maintaining the functional requirements for optimizing performance, effi-
ciency, and emissions. Efficiency is most often thought of as improving fuel efficiency. 
An example is where aero engines are periodically washed to improve efficiency. Dirt 
accumulates in the compressor stages which reduces aerodynamic efficiency increasing 
fuel input for the same power out. Washing restores performance, but also has a trade 
off because washing may slightly increase corrosion. The PdM system can derive effi-
ciency through several sensor measurements, and then trigger washing when the engine 
efficiency drops to a predetermined level. The monitoring can also determine how effec-
tive the maintenance has been in restoring the efficiency by measuring its increase.

It is also important to break down the words in the definition to enable a full under-
standing. The next sections will explain what is meant by these terms:

 • Functions

 • Operating Performance Levels

 • Operating Context

 • Operating Environment
 • Asset Stakeholders

What Are Functions?
Functions are requirements that asset stakeholders expect their assets to fulfil. The functions 
must include required levels of performance and tolerances where appropriate, which then 
enables an understanding of what Functional Failure means. Functions and functional require-
ments should be wide-ranging, going beyond the mere physical operability of machinery. 
They may include performance and efficiency, aesthetics, look and appearance, residual value 
of the asset, and the experience of users (crew and passengers in aircraft), etc. The residual 
value of aircraft is dependent on keeping logs and operating ranges. This defines the extent 
of what is normal expected behavior. Functions are records of maintenance history, certificates 
of conformance and an accurate configuration of fitted parts. Without these records, safety 
cannot be assured, and the economic value of the aircraft is nil. The maintenance regime’s 
functional requirement in this aspect is to maintain accurate and complete records.

What Are Operating Performance 
Levels?
Functions should include constraints and operating performance settings that define 
normal often categorized as primary and secondary to help focus the analysis, where a 
secondary function is one that supports any primary functions.
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The Major Influences of Failure
As part of the context for maintenance it is worth keeping in mind what the major drivers 
of physical failures are when designing the maintenance regime. The predominance of 
the failure modes and their frequency will be highly influenced by how assets are operated 
and maintained in their operational environments, as well as design. These factors should 
guide us to what data is included in the operating context and environment descriptions 
that need to be integral to a Failure Modes and Effects Analysis (FMEA) (Figure 3.1).

An FMEA is a way of populating a table of information that defines and captures 
how an asset may functionally fail in a declared operating context and environment, 
what failure modes and mechanisms are at play, and what the effects and likelihood of 
the failure are. The combination of likelihood, impact, and detectability of failure may 
be evaluated in a FMEA Risk Priority Number (RPN) or if a variant of FMEA is used, 
called Failure Modes Effects Criticality Analysis (FMECA) where criticality is deter-
mined using a slightly different process. Criticality is the interplay between likelihood, 
impact and detectability where the more frequent and higher impact have greater criti-
cality. The evaluation of impact and likelihood are the same factors that are considered 
in risk analysis processes.

The FMEA has a drawback because it only considers failure modes in isolation from 
each other. When conducting a full maintenance FMEA study, it is often necessary to 
consider what happens with multiple failures or, in an industrial plant, what may happen 
with a failure if other parts of the plant are withdrawn from service. This is an example 
where systems thinking, and holism apply. It is not enough that all failure modes are 

 FIGURE 3.1  The major influences on failure.
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considered in isolation but what may happen when several failure modes may 
happen simultaneously.

Other tools for considering multiple failures are using Hazops, Fault Trees, and 
Reliability Block diagrams. These tools are explained in the glossary. In the nuclear 
industry in the USA, a live Probabilistic Risk Analysis (PRA) based on Fault Trees is 
necessary to keep aligned with the availability of plant components to show the conse-
quential risks against unacceptable outcomes, such as fission-product release outside of 
containment to the general public.

There is a big difference between a FMEA conducted during design and one for a 
maintenance regime. The Design FMEA focuses on the maximum and minimum perfor-
mance, and is especially geared to failures with safety consequences. The maintenance 
FMEA focuses on what is required of the machine in its operating context, so the required 
performance may be less than the design performance. Although safety is paramount 
and is definitely considered, the maintenance FMEA for PdM also considers failures 
with significant operational and economic impacts in greater depth. Although a design 
FMEA also takes into account operational and economic factors, they often cannot 
anticipate all the corner cases of how machinery is configured and used, and what varia-
tions of operating environment may exist.

It is worth considering what the manufacturers recommended maintenance is in 
the industrial domain. The recommendations are a trade-off between the worst of the 
most probable machinery use cases the manufacturer knows, keeping through life cost 
competitive (with similar competitor’s machinery), their own manufacturing costs and 
achieving acceptable competitive levels of reliability. The Operator may use this as a 
baseline, but then design a far more appropriate maintenance regime by using the RCM 
or MSG-3 process.

In aerospace, the airline has to get its maintenance approved and the regime is far 
more rigorous in being approved to ensure safety. However, where systems are not safety 
implicated but may be vital to influence customer experience (such as in-flight entertain-
ment) then there is more flexibility to determine the maintenance.

Other industries also have strict safety standards, such as the nuclear power and 
pharmaceuticals where strict approval regimes are enforced for maintenance.

When RCM is conducted retrospectively on industrial plant, it is often found that 
the design performance of the fitted machinery is not enough to deliver the current 
functional requirement, especially after other parts of the plant have been modified, or 
production requirements have been changed. The FMEA process can often prompt 
design changes and modifications. If a plant or operations go through a staff reduction 
exercise, it is vital that the MSG-3 or RCM study is reviewed, especially to re-evaluate 
whether failures are hidden or not.

Writing FMEAs is conceptually simple; the basic rules can be learned in less than 
an hour. Whether the FMEA is useful or not is another matter. It takes someone with 
experience and skill (facilitating a team to extract expert knowledge) to write a 
useful FMEA.

Expert knowledge is also required to understand how deep an RCM analysis needs 
to be taken in terms of breaking down machinery to constituent parts. Too deep and 
the analysis will be too expensive and long and the detail at the lowest levels will have 
little value. Too shallow and important failures may be overlooked that might have safety 
consequences. The cut-off point is not obvious, but it is vital to get this right. An expert 
FMEA or RCM facilitator will have the essential tacit knowledge to make the 
correct decision.

The intrinsic reliability of a product is set by design. Intrinsic design reliability may 
be reduced by manufacturing, maloperation and maintenance. Maintenance can never 
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exceed an asset’s intrinsic reliability, but it has a direct influence on getting close to or 
achieving it. Intrinsic reliability may only be  increased by design change(s) and 
modification(s).

What Is an Operating Context?
Many people conflate operating context and operating environment together. They are 
only separated in this text to show some of the distinctions for the sake of clarity.

The Operating Context description should accompany a FMEA or FMECA to provide 
some of the bounding assumptions that apply to how an asset is operated, and how this 
may influence failures and behavior. In the experience of the author, an FMEA or FMECA 
that does not include a description of the operating context/environment has marginal 
value. If the operating context is missing, then it will be difficult to establish all of the 
purposes and functions machinery delivers and impossible to fully describe the indirect 
effects and consequences of functional failure (beyond the machine and its boundary).

The following information is usually required to define an Operating Context:

 • What are the boundaries of the asset system under consideration? This may take 
the form of a diagram. Defining a system and its boundary is a 
systems-engineering technique.

 • References to any engineering drawings or documents should be included. The 
FMEA or FMECA study will require access to system, ISO or isometric (so the 
physical positioning of sensors within a system can be seen) and process diagrams, 
especially in the industrial plant context.

 • Identify the inputs, outputs, controlling and influencing factors from the 
environment acting on the boundary.

The reasons these are included is to divide machinery and plant up, so work in 
designing the maintenance regime may be simplified and more efficient. Some 
parts or groupings of machinery may be more critical than others and may 
take priority.

Although it is common practice to divide a whole asset into systems and sub-
systems to analyse and define maintenance, the theories of “Systems Thinking” 
and “Systems Engineering” tell us that other behaviors emerge as systems are 
connected in a larger asset. This means other properties emerge when systems are 
joined together and interact. The point is that eventually the design of maintenance 
must consider the whole asset and the influences it is subjected to from 
its environment.

 • How does the asset deliver business value and how may supply-and-demand 
fluctuate? The reasons why these are important is that machinery delivers mainly 
financial and business value. Maintenance must ultimately deliver safe business 
value. Some industrial plant must deliver in accordance with dispatch 
commitments (aircraft must meet timetables and fly on time). Maintenance must 
support these commitments. A high-level description of the impact asset non-
availability may have on the organization will enable a wider consideration of what 
functions machinery delivers and the impact of the loss of those functions in 
business terms.

 • Any high-level asset design assumptions that may be relevant (e.g., the design life 
and what constitutes the end of economic life of the asset).

These factors have an influence on how a maintenance regime is designed and 
run, especially major cadences such as mid-life overhauls and end of economic life. 
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Is there a desire to have some residual or resale value after the organization decides 
to sell a used asset?

How does the asset fit in the organization’s portfolio of assets and/or plant? 
What does the asset do, within the context of the wider business? For example, an 
organization may have a mixed short-and long-fleet. Newer assets may be assigned 
to more lucrative routes, as an example. Aircraft engines need to work with 
temperature margins that limit thrust. Engines have to work harder when aircraft 
operate from airports at higher altitudes. There is a big difference between 
operating from Mexico City compared with Singapore.

A description of the operating and duty cycles.
Some operating regimes accelerate or increase the influence of factors that 

impact reliability, performance and usability of machinery. For example, short-
haul routes have higher numbers of take-offs and landings per month and 
consume cyclic life (driving fatigue failure mechanisms) faster than 
long-haul routes.

 • A description of the maintenance cadences (minor and major overhauls):

 • This should include what asset components drive these cadences. For example, 
some industrial gas turbines have a 4-year overhaul that is driven by restoring 
the thermal protection coatings on turbine blades and guide vanes. A major 
overhaul cadence at 8 years replaces the turbine blades and guide vanes with 
new ones.

 • One way of determining the economic life of a merchant ship is via hull 
thickness with an assumption it will decrease on exposure to its operating 
environment (the sea). There are other items that fix the maintenance cadences, 
so it is worth knowing what these are.

 • Many mining vehicles may have a mid-life engine change, and economic life is 
defined by the structural health in the vehicle chassis (cracking in the 
main chassis).

 • A brief history of the asset, any modifications or areas of concern in terms of 
reliability, availability, or maintainability. There are usually significant differences 
between the as-designed, as-built, and as-maintained states of the asset, which 
need to be thoroughly understood and documented.

 • Any legislation or industry standards that define or influence how the asset may 
be maintained or operated.

The conformance to standards and legislation form functional requirements 
that affect operations and maintenance. Different countries may have different 
legislation and require compliance to differing standards.

 • A description of the organizational breakdown with outline responsibilities for 
operating and sustaining the asset. This is important to determine who has to 
make operational logistic, financial and maintenance decisions. Identifying who 
has the authority to decide and act is vital if the wider organizational system is to 
work. One example where this would be important is where manufacturers are 
adopting servitization strategies, where they are seeking service revenues from the 
after markets based on their products. They may rent or lease their products or 
guarantee availability and provide their own maintenance for ongoing fees. The 
adoption of PdM is a very potent way of mitigating servitization risks, and a 
description of how an organisation has to evolve to embrace servitization and PdM 
is a vital source for planning and change management.

 • A description of the operating environment, especially highlighting which factors 
will influence the risk of failure and rate of deterioration. For example, exposure to 
salt and moisture may increase the risk of corrosion. These environmental factors 
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may be referred to as “environmental stressors.” Daily and seasonal variations may 
also be mentioned. The altitude and general levels of pollution at the main 
operating airports are important. Mexico City is at 7,382 ft (2,250 m) above sea 
level which means lower air density which impacts turbine gas temperature (TGT) 
margins. According to the World Health Organization (WHO), India has six cities 
cited as the worst polluted, which may increase the rates of sulphidation 
corrosion [3].

 • A brief overview of the current maintenance regime with references to details. In 
aerospace the main maintenance regime will be explicitly defined, but if PdM is 
being used outside the official maintenance then it is worth including. Many 
organizations in other industries may not apply planned maintenance and allow 
machinery to run to failure.

 • The operating context may include the results of a Level of Repair Analysis 
(LORA). This will include who, when, and where maintenance is done at various 
levels of depth of maintenance. What maintenance can be done on the line, what 
maintenance can be done in a hangar or maintenance bay, what maintenance can 
be done at a specialized Maintenance Repair and Overhaul facility, and what 
maintenance may be done at a manufacturer’s factory? The military has 
designations of where maintenance is conducted, either On-asset, Line, Depot 
or Factory.

 • In conjunction with the LORA, consideration needs to be given to stores’ 
availability and the logistics system. One of the most important pieces of data 
needed when applying PdM is the practical and cost-effective lead time in ordering 
spare parts and comparing this to the P-F interval explained in Figure 3.4. 
Unavailability of spares is a major reason for planned maintenance disruption, and 
lead and delivery times must be factored in.

What Is an Operating Environment?
The Operating Environment is the environment that the asset operates in. For aircraft 
flying at high altitude, the operating environment may be relatively consistent, but 
differences exist at lower altitudes and airports where air pollution may vary, and 
corrosion rates may be accelerated. Other similar environmental stressing factors can 
include altitude (of an airport), proximity to the sea with salt-laden moisture, or 
proximity to desert conditions with abrasive sand. Offshore oil and gas platforms have 
a harsh environment to operate in with design features to suppress the effects 
of corrosion.

A useful reminder of the different influences of Operating Context and environ-
ments is to consider the case of the Tornado multi-role combat aircraft in Europe. The 
Royal Air Force operated Tornados as high-altitude interceptors in Northern Europe 
and as low-level strike aircraft during Operation Desert Storm in Iraq. The maintenance 
demands varied widely on the same asset between these two scenarios.

A further illustration of how failure is inf luenced is to consider aircraft assets 
operating in either the civil or military sectors. Military aircraft used on the front 
line are generally designed optimised for performance, whereas civil aircraft are 
generally designed optimised for fuel efficiency and long-term reliability in mind. 
This does not suggest reliability is not important in military assets, but to ensure 
superior military capability against adversaries’ design trade-offs are different. These 
design differences inf luence the failure modes and the rate of failure for differently 
designed assets.
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Who Are Asset Stakeholders?
The functional requirements required of assets are derived from the asset stakeholders. 
Some of the stakeholders are direct with explicit requirements, other indirect with 
implicit requirements. Stakeholders may include:

 • Asset owners, leasers, financiers etc.

 • Asset Operators (including those who may have financially invested)

 • The asset operating and maintenance crew

 • The asset users (passengers in the case of civil aircraft)

 • Industry regulators and standards groups

 • The media at large
 • The general public

A Taxonomy of Maintenance Tasks
Having discussed influences on failure the book moves on to discuss another aspect of 
maintenance that provides context for PdM. This is to describe a taxonomy of mainte-
nance type tasks to describe where PdM fits.

There are a variety of maintenance task types listed in Figure 3.2 below. Many of 
these task types are also included in the MSG-3 decision logic in Figure 2.5. This taxonomy 
provides a context to show where PdM fits within the wider maintenance domain. 

 FIGURE 3.2  Taxonomy of types of maintenance task.
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PdM can never replace the entirety of other types of tasks within Preventive Maintenance, 
because there are physical constraints that limit PdM. These limits will be explained 
below, but as PdM capabilities improve due to the emergence of new technology it may 
take over a higher overall percentage of all maintenance tasks. It is also important to 
know what type of maintenance task is applicable to which failure pattern. This knowl-
edge enables the selection of appropriate maintenance task types as some have limited 
applicability. This principle is embedded at the heart of the RCM philosophy.

Although RCM recognizes 6 distinct patterns of failure (see Figure 2.4), these six 
patterns may be abstracted into three main groups: age related (wear-out), random 
failure, and infant mortality.

Age-related failure is where the probability of failure increases with age. Random 
failure is where the probability of failure is nearly constant despite the age. The compo-
nent is equally likely to fail no matter what the age is. Infant mortality is where the 
probability of failure is higher when the age is lower. It is caused by quality problems: 
the appropriate maintenance response is to conduct Root Cause Analysis (RCA) to 
determine causes that can be rectified and to focus on those rectifications. The rectifica-
tion actions may take considerable time, such as waiting for equipment modification. If 
so, it may be sensible to apply on-condition maintenance (including PdM) as a palliative 
action to try and contain the effects of infant mortality.

The Taxonomy of Maintenance
Maintenance may be decomposed into various types of activities or tasks as follows. 
Within the explanation a description of which failure patterns apply will be  
mentioned:

Figure 3.2 has a reference beside “No scheduled maintenance,” to SHEL this stands 
for Safety, Health, Environmental and Legislative compliance. This is explained in detail 
later on in Chapter 3.

There are many versions of the maintenance taxonomy that vary from this figure 
in other textbooks. PdM is a type of on-condition maintenance. Some may distinguish 
PdM as being pro-active and not part of preventative maintenance. These other defini-
tions may be motivated by marketing to differentiate the capability, but any preventative 
maintenance task is proactive. There have been some discussions about proactiveness 
and maintenance in focusing on defect elimination. This relies on having a failure history 
and conducting root cause analysis (RCA) to enable action to eliminate some causes of 
failure to improve achievable reliability. This activity is valid but not covered in this 
book. This book will explain each type of maintenance, so that readers can reconcile 
other taxonomies if and when they encounter them.

The detailed explanation of maintenance type tasks shown in Figure 3.2 are 
as follows:

Preventative Maintenance
There may be some disagreement in marketing circles that PdM and so-called Proactive 
Maintenance (associated with defect elimination and redesign) are separate from 
Preventative Maintenance. This Aerospace Predictive Maintenance: Fundamental Concepts 
posits that these are marketing attempts to emphasize differentiation of these techniques 
to increase sales. They are not truly new branches split from Preventative Maintenance.
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On-condition maintenance is where a component’s condition may be measured, 
and a prognosis made of how much time is left before a component deteriorates so much 
that it cannot fulfil its functions. This calculation determines the Remaining Useful Life 
(RUL) of the component. PdM is a subset of on-condition maintenance.

Component condition is monitored by fixed sensors continuously with software 
doing the diagnostic and prognostic analysis. By continuously we mean the fixed sensors 
do not need intervention by people to acquire the data independent of the sampling rate. 
PdM may sample a subset of data from fixed sensors at rates different from what it is 
sensed. This could mean data is sampled at a rate between milliseconds to once every 
week, or at discrete times within an aircraft flight or sector. Traditionally, on-condition 
maintenance has been conducted by periodic inspections or surveys that determine 
condition and initiate corrective action as necessary. On-condition maintenance is 
applicable to any of the six basic failure patterns. On-condition maintenance enables 
the prediction of functional failure, but not the onset of failure in the incipient failure 
model (Figure 3.4). It does not strictly prevent failure but allows us to avoid functional 
failure and its consequences.

Scheduled Restoration is where a component is refurbished, repaired, or cleaned 
to restore its condition or performance to as close to new as possible at a time when the 
probability of functional failure increases or performance drops to an unacceptable level. 
The task is completed at a set interval, regardless of condition, that may be based on 
elapsed calendar time, operating hours, cycles, or some other accumulating count asso-
ciated with operations. The “regardless of condition” implies that the condition cannot 
be economically or effectively measured, and on-condition maintenance is, therefore, 
not optimal. Scheduled Restoration is only applicable to components failing with the 
age pattern.

Scheduled Replacement, often termed Scheduled Discard, is where a component 
is discarded and replaced with a new one, regardless of the condition of the original 
component at a time when the probability of failure increases to an unacceptable level. 
As common with Scheduled Restoration, the “regardless of the component condition” 
implies on-condition is not economically viable or practical. Scheduled Replacement is 
only applicable to components failing with the age pattern (see Figure 2.4).

Many maintenance regimes that have not been undergone the RCM process make 
the mistake of applying Scheduled Restoration or Replacement tasks to components 
exhibiting random failure. This is not effective at reducing unreliability, it merely 
increases through-life cost.

Hidden Failure Finding is where a component may exist in the failed state unnoticed 
by the operating crew or maintainers undertaking their normal duties. This situation is 
perilous where the failed component has a protection or standby function. If the device 
has failed and a second event requires the protection or standby function, then the 
consequences of this multiple failure is severe. In most modern systems, safety or protec-
tion systems are designed to be “fail safe,” in a condition that is instantly recognizable 
by the operator. Hidden failure-finding tasks may include scheduled physical or func-
tional checks or inspection. An example of a safety device failing in a hidden manner 
may be a safety relief valve fitted to a pressure vessel that has failed in the shut state (its 
normal operating state). The relief valve would fail to function on a subsequent over-
pressure excursion in the pressure vessel, which may cause the vessel to catastrophically 
fracture. Hidden failure-finding tasks may consist of physical or functional tests or 
on-condition inspections.

In the FMEA discussion above, it was pointed out that the FMEA does not really 
consider multiple failures acting together that may cause higher levels of unacceptable 
consequences. However, the FMEA should consider hidden failures a consequence of 
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two failure events as an exception. The other tools such as Hazops, Fault Trees, and 
Reliability Block diagrams should also be used to account for multiple failures.

Servicing and Zonal Checks: These types of checks may include lubrication and 
cleaning tasks, as well as experienced maintainers conducting more informal walk-downs 
and machinery rounds. The five human senses combined with the brains of the experienced 
operator and maintainer are among the best systems for detecting and recognizing abnormal 
behavior and early signs of problems. These checks may be related to the rate of consump-
tion of consumables. Operator or maintainer walk-downs are a type of on-condition task.

No Scheduled Maintenance: This may be a deliberate choice where maintenance 
is not possible or not cost-effective. If this is the case and unacceptable residual risk of 
failure exists, then redesign will be mandatory if it is safety implicated or desirable if 
operational or economically implicated, otherwise failure risks and criticality are small, 
and items may be left to run to failure where corrective maintenance will then be applied.

Although the next sections are not included in Figure 3.2, the author considers it 
is worth including here as many other books include this calling it “proactive mainte-
nance.” This activity is not a maintenance task, but an approach and effort expended by 
the operators and maintenance crew to improve reliability. There is a framework called 
Total Productive Maintenance (TPM) that includes these activities. Predictive mainte-
nance is a subset of on-condition maintenance that exploits digital technology.

Redesign and Defect Elimination: Ongoing efforts to recognize where there are 
benefits in either improving intrinsic reliability (by redesign and modification) or actively 
removing causes of failure of defects.

Predictive Maintenance (PdM) is an advanced form of condition monitoring and 
on-condition maintenance that exploits digital technologies in sensing, communication, 
and data processing.

PdM may be highly automated using acquired sensor time series data to diagnose 
when assets or components begin to fail from a failure mode, determine the condition 
of an asset, and then to prognose remaining useful life (RUL) in which any remedial 
action needs to take place.

PdM may also be different from traditional on-condition maintenance because:

 1. It enables continuous monitoring of assets through its fixed sensors, which does 
not require any scheduled task to sample or gather condition-related data, 
although it may merge data from these other CBM-type tasks to get a richer 
picture of asset condition.

 2. The timeliness of data processing should be optimized to align with the ability 
to act and the impact of functional failure. PdM offers the opportunity to do 
near-real time processing if this is justified.

 3. The PdM system can provide alerts to different people who manage assets. 
Alerts and advice may be output to local line maintainers if remedial action is 
urgently required. Where longer P-F intervals are involved, the PdM system 
may inform planners and managers who can pre-dispose resources and plan for 
recovery, liaising with the operational managers when it is least disruptive to 
withdraw assets from service. PdM systems that feed information to operators 
should be treated with caution for fear of overloading them with information 
(mixed with alarms and warnings) if assets degrade to abnormal states. This is 
described in more detail further down in this chapter.

 4. PdM may combine data from separate sources to gain a richer picture of 
condition. For example, combining vibration data with oil-debris data increases 
certainty that bearing incipient failure is diagnosed. Much of this combination 
may be done in an experienced maintenance manager’s head but having a 
system that does this automatically allows the experienced maintainers to focus 
effort on improvement, as well as helping knowledge transfer.
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Deeper Explanation of PdM
It is necessary to consider two main models for PdM, best explained by two diagrams. 
The first model is called Long-term Degradation, which covers time spans lasting months 
to years. The second model is called Incipient Failure Detection where the P-F interval 
may last milliseconds to months in duration. The two figures look very similar at first 
glance, but the practical differences are profound. With Long-term Degradation there 
is no failure inception point: the asset begins to degrade as soon as it enters service or 
as soon as it is exposed to its operating environment (for example, a ship is launched 
before it is fitted out and the hull is exposed to corrosion in a seawater environment).

It should be noted that the curved cumulative decay shown in both diagrams may 
not represent many failure modes and how they degrade. These types of curve have been 
used in most textbooks describing on-condition maintenance and are repeated here for 
familiarity. Other degradation modes (such as damage accumulation or fatigue degrada-
tion) may be more linear. A minority of the traces or loci of degradation may even show 
improvement: for example, if cracking in a structure (such as a gas turbine fan blade) 
initiates, it may change the resonance of that structure which may be seen as an improve-
ment depending on where vibration sensors are sited.

It is noteworthy that a similar list in an existing standard CBM in JA 1011 showing 
the pre-requisites (described above in this section) for PdM (the guidance document 
for RCM) does not explicitly mention that variance in the times to failure needs to 
be reasonable. The variance is important as it increases the practical difficulties in 
prognosis and increases uncertainty that remaining useful life is sufficient to take 
remedial action.

It is also noteworthy that in long-term deterioration it may not be possible to measure 
the deterioration and condition until late in the life of the component. An example may 
be low-cycle fatigue that causes cracking in structures and may only become apparent 
by traditional NDT or inspections, when the cracks grow big enough and appear on the 
surface of the structural material, which could be relatively late in the degradation cycle. 
This may be best illustrated by using two examples:

 • Long-term degradation in pipe wall thickness. It is possible to measure pipe 
wall thickness at any time in the degradation cycle, and so the condition can 
be quantified for the whole degradation, by scheduled on-condition checks.

 • Long-term degradation in structural integrity. It is possible to determine the 
emergence of structural material cracking caused by fatigue by NDE inspections 
when cracks appear near and at the surface of the material. This occurs late in the 
overall degradation cycle, where possible 80% or 90% of the useful life has already 
been consumed. The NDE inspection periodicity needs to be adjusted to a smaller 
P-F interval. Because degradation might not be detectable, critical structures may 
well have an associated damage-accumulation model built, where PdM 
continuously monitors stress cycles and applies formulas that predict the condition 
to augment the NDE regime. Such a model increases the confidence in estimating 
the degradation of condition (Figure 3.3).

The second mode to be considered is when a failure may initiate at any time during 
the in-service life, and there is a relatively smaller time delay until the condition degrades 
to a point where functions are lost. At first glance this chart looks very similar to Long-
term Degradation, but the major differences are that the Incipient Failure Detection has 
a point of failure inception (perhaps some kind of shock event that initiates failure). The 
second major difference is the time scales over which the majority of the failures occur: 
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the vast majority of Incipient Failure Detection times are much less than the Long-term 
Degradation. This is illustrated in the following figure:

The periodicity of the sampling rate, if PdM continuous monitoring is not available, 
needs to be a fraction of the P-F interval. With PdM that has continuous monitoring of 
fixed sensor data this monitoring frequency is not an issue.

Successful PdM in common with condition monitoring and condition-based main-
tenance relies on certain physical characteristics of how assets or their components fail. 

 FIGURE 3.3  Long-Term Degradation.
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 FIGURE 3.4  Incipient Failure Detection.

©
 S

A
E 

In
te

rn
at

io
na

l

C
H

A
P

T
E

R
 
3

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use



36 Aerospace Predictive Maintenance: Fundamental Concepts

There are a number of pre-requisites that must be met if any condition monitoring and 
PdM are going to be successfully applied. These are:

 1. There must be a time period between inception of failure and the eventual 
functional failure.

 2. The failure (or potential failure) must be observable during the failure lifecycle. 
It is sometimes feasible that the inception of failure itself may be observable or 
is known.

 3. The time period between potential failure and functional failure (often called 
the P-F interval) must be:

 a. Consistent with acceptable variance between other similar failure events of 
the same failure mode, on the same type of components. The variance needs 
to be reasonably small so that the estimate of remaining useful life may 
be accurate.

 b. Long enough to allow for planned recovery and the predisposal of resources, 
to execute the most effective and efficient recovery preferably timed allowing 
the minimum disruption to operations.

 4. If condition is not continuously measured, then the periodicity of condition 
sampling must be a fraction of the expected P-F Interval.

 5. The effort and cost to conduct PdM must be less than the avoided cost of the 
consequences of unplanned functional failure. Simply expressed the Return 
on Investment (ROI) must be positive. If the likelihood of failure is small, 
then the cost of applying PdM may be large before detection, implying the 
effects or consequences of failure in these cases are large. In any organization 
seeking to adopt PdM, the ROI must be greater than 3, with a rapid breakeven 
within a year or two. Often in the author’s experience, ROI up to 10 is 
often achievable.

The difference between the P-F interval (illustrated in Figure 3.4) and remaining 
useful life (RUL) is that the P-F interval is the time between the earliest possible time a 
failure may be diagnosed to the time of functional failure. The RUL is the time from any 
point within the failure lifecycle after diagnosis until the functional failure. After diag-
nosis, the RUL reduces as time passes toward the functional failure point.

Levels of Diagnostic Capability
There are a range of PdM systems varying in maturity and capability. The simplest PdM 
includes a straightforward means of anomaly detection and has no failure mode diag-
nostics or prognostics. When judging the maturity and effectiveness of the PdM system, 
a set of questions to determine the extent of the analytics should be adopted based on 
the discussion below.

The simplest type of anomaly detection is based on single-sensor readings with a 
set threshold so that, if the sensor reading exceeds it, the system alerts the user. The 
sensor data trends tend to be uncompensated for environmental or other influencing 
parameters also captured by available sensor readings. For example, if the PdM system 
were monitoring an air-cooled cooling system, then analysts should compensate for 
daily and seasonal ambient temperatures. Often the system sets PdM alarms on impor-
tant parameters below that already set by installed warning and alarm systems. The PdM 
system is in competition with the alarm systems and usually is not particularly effective. 
An uncompensated, single-parameter-threshold detection system for detection of 
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anomalies is a recipe for excess false positives and is not worthy of being called a PdM 
system. If false positive alarms are regularly received then the motivation is to set the 
threshold higher, which then risks missing genuine abnormal excursions.

Most immature PdM systems only use threshold exceedance to flag an anomaly. 
This may be too late and not give enough time to act. Anomalies should be able to be clas-
sified from threshold exceedance, step changes (that do not breach exceedance values), 
and gradual rates of change. If a residual signal has a steady increase or decrease, then 
anomalous behavior can be alerted long before a threshold value is exceeded.

Mature anomaly detection has techniques beyond simple threshold exceedance.
One of the most effective PdM diagnostic strategies is to use a “model of normality.” 

The simplest model of normality is the same sensor reading from a similar machine in 
the same operating environment. It is important that the same operating environment 
is shared to do this. On an aircraft with lots of redundancy this is easy: for example, 
engine-to-engine comparisons are an effective strategy. Both engines on a single aircraft 
share the same operating environment. The advantage of using equipment-to-equipment 
comparisons is that they generally automatically compensate for environmental and 
influencing parameters which considerably reduces variance. This has a beneficial effect 
in reducing false-positive rates. Using a model of normality, the predicted reading of 
the dependent variable can be subtracted from the observed reading of the dependent 
variable, resulting in a residual that can be trended over time or other variables. The 
trend of residuals can be regarded as a “deviation from normal behavior” signal, making 
it very simple to observe anomalies. The concept is illustrated in Figure 3.5.

Figure 3.5 shows an example of both using equipment-to-equipment (E-to-E) 
comparisons or where a model is used. If using the E-to-E, the other equipment is 
substituted as the model of normality in the Figure 3.5. It is important to ensure trend 
data is labelled properly, with identifiers that include the asset or machine, plus the “tag” 
of the sensor(s) supplying the data. In an industrial setting, the author has often discov-
ered discrepancies between data-tag identifiers in a data-historian database and sensor 
identifiers in a process or ISO engineering drawing. Sometimes different identifiers are 

 FIGURE 3.5  Model of normality with residual variable.

©
 S

A
E 

In
te

rn
at

io
na

l

C
H

A
P

T
E

R
 
3

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use



38 Aerospace Predictive Maintenance: Fundamental Concepts

used in the databases compared with the drawings. Mistakes in identification can lead 
to false positives and lost credibility in the PdM system.

The model of normality may be physics-based, or could be a ML or AI model, where 
the influences of the independent variables on the dependent variable is learned from 
historical sensor data. Physical modelling may be preferable over data-driven models 
for auditability and trust by the engineering domain team because they may be reflected 
on and understood from engineering first principles. However, the ease and simplicity 
of building data-driven models, especially in Python, has considerable advantages in 
rapidly deploying and using models. In a mature PdM system, training and test data 
preparation, model building, testing, deployment and automated triggering for 
re-training is usually an automated pipeline of execution. There are shortages of PdM 
experts and others such as data scientists, as well as experts in the customer organisa-
tion. Automation is key to success.

Years ago, only manufacturers had the intellectual capacity to build accurate 
physical models, and they had a monopoly in using models of normality. Today, anyone 
with access to complete time-series data can build-data driven models: the modelling 
capability has been effectively commoditized by Python etc. (see Chapter 10). It must 
be stressed that data-derived models are only representations of the data used to train 
them. The data used for model training needs to include operations at every part of the 
normally operating envelope, and needs to include other environmental influencing 
data to ensure accurate representative modelling. For example, in an industrial context, 
the full range of seasonal and daily variation in ambient temperature may need to 
be included. An aero engine will require altitude and air temperature. The differentiating 
factor today for conducting PdM is not modelling, it is access to representative sets of 
machinery data.

Having said this, the author does not endorse PdM modelling from a purely data-
driven approach. Engineering domain knowledge is still a vital part of validating and 
verifying that models are working as required. Some companies might claim they can 
fully automate processes of normality modelling, novelty and anomaly detection, and 
diagnosis. This is a false claim, because they often rely on the tacit engineering knowledge 
within their customers to diagnose and validate the outputs. This dependence on expert 
interpretation is not normally mentioned in a sales pitch, and any organization with 
limited engineering domain expertise may be overwhelmed with managing the volume 
of anomalies that are reported. Automated diagnosis is required to deliver a scalable 
solution. There is also overhype of data science being a silver bullet solution that can 
deal with low levels of data quality. People building or adopting PdM need to be sceptical 
and alert to extravagant claims.

It’s an obvious realization that a digital twin can be used as a sophisticated model 
of normality for many dependent variables, as well as a model for prognostics.

Diagnostics
Anomaly detection has some value, but a mature PdM system needs to be able to differ-
entiate specific failure modes for identified components. Diagnostics is a 
classification problem.

A definition of terminology is required to understand the build-up to diagnosis:

 • A novelty is a detected deviation from known normal behavior. The novelty is not 
yet confirmed to be an anomaly and may be a case of operating within a previously 
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unknown area of normal behavior that is not recognised by a model of normality. 
A novelty might be caused by a benign event such as performance improvement 
after restorative maintenance.

 • An anomaly is a detected deviation from normal behavior that is known to 
be abnormal. It is not known whether the anomaly is a symptom of a failure mode. 
Some immature PdM systems are limited to only detect anomalies, which may 
be diverting the PdM user into insignificant alerts.

 • A symptom is an anomaly that is a known constituent indication associated with a 
diagnosis of a particular failure mode. A symptom is significant and needs to 
be brought to the attention of a PdM user.

 • A set of known symptoms correlates to the diagnosis of a failure mode.  
Not all symptoms may be present at the same time. Some symptoms may  
only present themselves later as the failure degrades through time. The time delays 
may be quantified (as a distribution) and treated as symptoms in their own right. 
A confirmed diagnosis and a prognosis need to be alerted to the PdM user, and 
the machinery operating and maintenance authorities to start planning 
for recovery.

The shift from anomaly detection to diagnostics may be achieved by understanding 
the way a set of anomalies from different sensors change through a timeline in relation 
to other anomalies. A set of anomalies behaving in a certain repeatable pattern that are 
associated with a failure mode can be thought of and termed as symptoms of failure. 
Taking an engineering perspective of symptomatic anomalies, it is possible to make 
expert predictions about the likely physical effects of the failure mode, and this knowl-
edge can be used to predict what other physical effects may be presented in other sensor 
data. If sensor data has been retained that covers older occurrences of the same failure 
mode, then the data can be mined to confirm or refute these predictions. Part of the 
PdM system requirement is to be able to mine the historical event (failure or maintenance 
events) and sensor data.

Many failure modes may share similar symptoms so, to isolate the failure modes, 
it is necessary to discriminate between the symptoms. The nature of how symptoms 
present themselves and their timing in context with other symptoms may be used as 
discriminatory factors to help isolate the failure modes. For example:

A filter may be diagnosed as blocked when the flow through the filter is reduced, 
combined with an increase in the pressure drop (the delta-pressure or DP) across 
the filter increases. Both of these symptoms MUST be present to unambiguously 
diagnose a blocked filter. In many blocked filter cases, only one of these parameters 
is available to a diagnostician, but if this is the case false positives may occur. An 
example may be if a system has a blockage downstream of a filter causing a reduc-
tion in flow readings through the filter, which would not be caused by a blocked 
filter.

Some symptoms may or may not present. A specification for a diagnosis may include 
a set of symptoms that includes the probability that symptoms will appear, including 
any delayed timescales. Each symptom may also include a vector representing the magni-
tude in the trend’s change and direction (plus or minus) of the symptom’s difference 
from expected normal behaviour will be for each failure mode.

In the real world there is never a set of perfect sensors to get unequivocal symptoms 
to diagnose failure modes unambiguously. The engineering domain experts must look 
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for other clues and compensate with other sensors that infer information relevant to a 
more accurate diagnosis. For example:

In the case of the blocked filter, if filter DP is the only reading available, it may 
be combined with other indications such as system pump parameters or other 
temperature readings (that vary if the flow of fluid is not normal) that may help 
the diagnostic discrimination. The diagnostician should try and infer the fluid flow 
through the filter in this example.

There are certain techniques that can detect the onset of failure earlier than others 
for certain failure modes. For example, for a failing rolling element bearing, oil, oil 
debris, and a vibration analysis may be the earliest and most sensitive symptoms. These 
should be followed by increased bearing temperature and, just before functional failure, 
audible noise coupled with temperatures so high a maintainer cannot keep their hand 
on the bearing housing. Differing techniques may be applied if it is necessary to gain 
sufficient P-F intervals to plan recovery, and minimize disruption.

Having more than one technique for diagnostics also facilitates prognosis, as the 
symptoms appear in a predictable time between each other.

Mature diagnostic capability is characterized by:

 • Multivariate sensor (parameters or features) normalized to account for normal 
behavior and machine state in the trend, to detect novelties. In data science, each 
sensor time series data trend that has correlation to detecting a failure is called 
a “feature.”

 • Detecting different behaviors in features such as threshold exceedance, rates of 
change, step changes (a step change is a high rate of change). Is the feature trending 
high or low? What is the percentage of change from normal (using the residual 
signals)? Note that step changes may be observed in parameters after a short outage 
period because of the effects of carrying out planned maintenance. The PdM 
system needs to classify and recognize the effects of planned maintenance and 
ensure they are not reported as diagnosis of a failure mode.

 • Recognizing a novelty and classifying it either as an anomaly or not. An anomaly 
may be thought of as a candidate symptom of a diagnosis.

 • Differentiating the timing and sequence of observed anomalies. When do some 
anomalies present themselves in a timeline? Some symptoms may be delayed. How 
can this information be used to discriminate? How can this behavior be used to 
help prognostics? The time is a feature in this analysis. (The timeline itself is a 
feature). The time to presentation of anomalies may also be a signature in its own 
right and may also be useful in prognostics.

 • Analyzing a set of multiple anomalies as a symptom. A set of anomalies that may 
have direction and magnitude may be present over time and can be grouped 
together as a diagnosis. Such a defined set of anomalies to a diagnosis may then 
be labelled symptoms. Some symptoms will always be present when a particular 
failure mode initiates, some others may or may not be present but may appear later, 
or the magnitudes may vary over the P-F interval period. Other symptoms may 
only present themselves later on in the failure, but if the delay for their appearance 
has a reasonably small variance, then the time delay before they appear is useful 
information in both diagnosis and prognostics.

 • Providing a level of confidence or accuracy of diagnosis. The diagnosis should 
show a measure of certainty that the diagnosis is correct. This can be based on the 
strength and number of symptoms present combined with historical statistics of 
diagnostic accuracy.
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It should be possible to build up a knowledge base of the symptoms of diagnostic. 
An example may look like:

Failure Mode: Blocked Filter; Machine: XXX; Equipment: Filter Identifier

 • Normal operating range DP xxx to xxx

 • Symptom: Slow rise (ramp) in DP Normal expected rate = xxx per xxx 
from renewal

 • Symptom: DP exceeds threshold xxx (Normally expected 3 to 5 months 
after renewal)

 • Symptom: Lube Oil pump (xxx) discharge pressure residual slow rise in line with 
Filter DP rise. Note: The residual implies that a model of normality is being used to 
model the lube-oil pump.

 • Symptom: Both pump bearings (xxx and xxx) slow rise in smoothed residual 
temperature in line with filter DP rise. The temperature change will be less than 
one degree F, and both bearing temperatures will change together. (Note: it may 
be possible to use each bearing as a model of normality for the other bearing, 
smoothing the residuals also implies that the change in temperature is small and 
would be difficult to detect in noisy data).

This specification could be expressed as a set of rules in a decision tree and encoded 
in the PdM system to detect the failure mode.

The following figure shows elements of novelty, anomaly, and diagnostics in a mature 
PdM system (Figure 3.6):

 FIGURE 3.6  Functional blocks associated with a mature PdM system.
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Diagnostic Effectiveness
Measuring diagnostic effectiveness is mostly achieved by a confusion matrix and Receiver 
Operator Characteristic (ROC).

The confusion matrix records whether the true state of a system is classified correctly 
over a number of failure events. The classifier’s performance can be recorded as below 
(Figure 3.7):

The terminology of the confusion matrix may be fuzzy because of the words used 
in the goal of the classifier. If the goal of the classifier is to detect system failure, then 
this is the “positive” in the matrix and the healthy state of the system the classifier detects 
is the “negative.” The words seem contrary; the trick is to always remember the goal of 
the classifier. In the confusion matrix figure, the green squares are good and the red 
ones are bad.

Each quadrant in the matrix represents the following

 • A true positive is when the classifier correctly detects the system’s failed state

 • A false positive is when the classifier indicates the failed state when the real system 
is healthy

 • A false negative is when the classifier indicates the healthy state when the real 
system has failed

 • A true negative is when the classifier correctly detects the system’s healthy state

The false positive rate (FPR) is the number of false positives divided by the number 
of negative events.

The true positive rate (TPR) is the number of true positives divided by the number 
of positive events (Figure 3.8).

 FIGURE 3.7  The confusion matrix.
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The following text is adapted from the Wikipedia explanation of ROC:
An ROC is a chart with an x axis measuring FPR and y axis the TPR as x and 

y axes. This shows the trade-offs between true positive (benefits) and false positive 
(costs). Each prediction result or instance of a confusion matrix represents one 
point in the ROC space.

A hypothetical situation may be where a failure mode has safety consequences, 
where the classifier missing a failure event (a false negative) is unacceptable because 
the safety consequences are catastrophic. In this case, it may be acceptable to have 
a small number of false positives as an optimum trade-off because the wasted effort 
in remedial work is better than missing the safety implicated failure. On the other 
hand, the optimisation and tuning of the classifier may be reversed in a situation 
where the operational disruption may be more expensive than the direct conse-
quences of the failure itself (which are only economic). In this case, a trade off to 
minimize false positives, accepting a small number of false negatives, may be pref-
erable. Diagnostic specificity or sensitivity* may be tuned and optimized.

Prognostics
Much seminal work on Prognostics has been done by the NASA Ames Research Centre.

Prognostics is a regression-type problem and is distinct from Diagnostics 
(Diagnostics is a classification problem). Prognostics is used to estimate the remaining 

* Specificity and sensitivity are defined in the glossary at the end of the book

 FIGURE 3.8  Receiver-operator curve (ROC) characteristic.
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44 Aerospace Predictive Maintenance: Fundamental Concepts

useful life before functional failure as well as describing the effects of the functional 
failure, and what recovery may entail. It is helpful to use an analogy of medical diag-
nostics and prognostics to understand the difference and what the content should include. 
A doctor may tell you:

“You have measles (The Diagnosis): you will be off work for approximately a 
fortnight, by when you should have fully recovered. You will remain contagious 
for a week, so it is not advisable to mix with other people until after this time (The 
Prognosis).”

A PdM system that does not include prognostics is an incomplete system. The types 
of model identified in the diagram to the right of the boxes marked “Type” are explained 
below (Figure 3.9).

Type 1 Models
Weibull model: The Weibull distribution is a continuous distribution most often used 
in reliability engineering to fit failures in a population of the same components. Other 
distributions can also be used occasionally. The distribution may be represented by three 
parameters: Location, Shape, and Scale. However, in most cases, Location is not used, 
as most components do not degrade before they are used in-service. If a sample of failure 
data is captured for a component and the age of the data at the time of failure is known, 
then there are estimation algorithms that can be used to fit the data to the Weibull 
distribution. This can then be used to determine the likelihood of failure for components 
at a specific age using a derived cumulative distribution function graph. Some 

 FIGURE 3.9  Types of prognostic model, their data and what they address.

©
 S

A
E 

In
te

rn
at

io
na

l

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Prognostics 45

components degrade from the time of manufacture (e.g., rubber hoses and their time 
since cure date) may require the Weibull location parameter to be used, or age since cure 
date may be used as the start of service date for a 2-parameter Weibull.

Weibull may be used to prognose long-term deterioration that defines component 
life but is in practice rarely used to determine incipient failure deteriorations. There is 
no technical barrier to using Weibull analysis to model the distribution of time-of-failure 
inception (or diagnosis) until functional failure, especially for PdM systems that use 
continuous monitoring. If historical events are used, then some compensation for the 
condition of the removed parts may need to be employed, because at the time of change 
the components may not be in the functionally failed state.

Weibull analysis is valuable for another reason inherent in the RCM process, which is 
the selection of maintenance-type task, dependent on the basic patterns of failure that parts 
fall into. This will be discussed more in Chapter 5, where a deeper understanding of how 
RCM and PdM interact will be given. In mature systems with many assets of the same type 
there may be sufficient failure data to conduct Weibull analysis. This can determine whether 
the failure patterns are infant mortality, random or age related through the Weibull shape 
parameter used in the RCM process to select which maintenance tasks are applicable. The 
Weibull results can also be used for prognostics (for long term deterioration) and may be used 
in RAM (Reliability–Availability–Maintainability) simulations to inform supply chain and 
logistics decisions to ensure supply of spares as well as supporting through-life cost simula-
tions that can support capital expenditure projects for upgrading or modifying assets.

The Duane [4] or Crow-AMSAA [5] are similar techniques and were originally 
developed to show reliability growth during testing phases of a new product. They can, 
however, also be used during the in-service phase of a product lifecycle where failure 
events, dates, and ages can be sorted in date order, and plotted on a graph with loga-
rithmic axes. The data may show change of slope that indicates whether reliability is 
getting better or worse. This can act as a warning that operational or maintenance quality 
is changing with worsening failure rates.

Type 1 prognostics can be used to predict the likelihood of what proportions of the 
population of components are likely to have failed at a certain age. It is possible to use 
Crow-AMSAA to predict likely time of failure for single components, but accuracy of 
the prediction depends on the number of previous failure events.

When the author worked in the MoD, in the UK submarine support team, we used 
Cumulative models such as Crow-AMSAA in preference to Weibull. This was because 
we were supporting a flotilla of four boats, that were new to service and the number of 
failures per equipment were small. The uncertainty in Weibull analysis was too large to 
base reliability improvement decisions on. Crow-AMSAA provided a earliest warning 
that reliability trends were of concern and needed early intervention.

Type 2 Models
Proportional-Hazard or Cox Models [6], are able to build on the Weibull distributions 
by adding other influencing continuous or discrete data that correlate to age at failure. 
Other continuous data may be environmental stressors (moisture, temperature, etc.) or 
other cyclic data that may influence deterioration.

Damage accumulation models may take cyclic data (such as engine starts or shut-
downs, or electrical air circuit-breaker operations) that define the age of component 
failure. Thermal cycling may cause low-cycle fatigue where the temperature transients 
may cause differing expansion and contraction rates in structures made of different 
materials,. The more rapid the change in temperature, the more stress is imparted and 
the higher the damage accumulated.
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PdM may be used to feed type 2 models with continuous sensor data for environ-
mental and dependent parameters.

Type 3 Models
This is where models are used to infer prognostics either using physical models or those 
constructed using data, both of which may also be termed digital twins. Some models 
may simulate damage accumulation itself; for example, modelling structural crack 
propagation. Type 3 and 4 prognostics is where PdM plays a major role.

Another useful method used in both diagnostics and prognostics is to use change-
point analysis and information entropy in the time series data. Change point and infor-
mation entropy are related concepts used to determine when underlying things have 
changed (such as an initiation of failure and its local physical effects picked up by sensors). 
Information entropy is distinct from thermodynamic entropy and was developed by 
Claud Shannon as part of what is called Information Theory [9]. Information entropy 
informs us how much information is in an event (which might be the next time a data 
point is recorded in a time-series trend). If the event is deterministically predictable, 
then the information content is reduced, if not the information is increased. Entropy is 
the measure of the uncertainty and information in these events—entropy may peak if 
a failure initiates where another sensor reading may deviate from what is expected. These 
techniques are part of the arsenal of algorithms and techniques used by PdM to detect 
anomalous behavior and help establish reference points of change that are useful 
in prognostics.

In diagnosis, a change point may show where failure is initiated, or a symptom or 
novelty presented itself. In prognostics, change points can be used with a stochastic 
approach as part of an inferred stochastic approach. A stochastic approach occurs when 
a set of parameters that vary (or the set of parameters change their state) randomly over 
set periods of time, may be used to determine whether known states (an example being 
defined by the diagnostic rules above) is reached. The entropy or change state knowledge 
may be mixed in with the diagnostic rules and may be used to help identify states of 
degradation for prognosis. It has already been described that diagnostic symptoms and 
their time of presentation also provide useful data for a stochastic model for prognostics.

Type 4 Models
Direct observation or measurement of the direct mechanisms of failure may be used as 
a basis to predict RUL.

Other models can use a stochastic approach where there are more obvious state 
changes with temporal relationships between the states. This may also work where some 
of the diagnostic symptoms of failure only show after a time is spent deteriorating. For 
example, in the case of a bearing failure, oil debris, oil and vibration analysis may pick 
up the earliest symptoms (enough to conduct a diagnosis) but, as deterioration proceeds, 
audible noise and/or local heat after predictable periods of time are other later-developing 
prognostic symptoms (changes of state) that can contribute to increasing the certainty 
of diagnosis and prognostic regression estimation.

Both Type 3 and Type 4 models can take either inferred or directly read prognostic 
data and conduct a statistical regression on them. An often-used prognostic technique 
is Particle Filtering, which is a combination of Monte-Carlo Simulation and Kalman 
Filtering to estimate the regression of a failure.
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Fallacies and Hype Surrounding PdM
PdM is an emerging technology. In common with other emerging technologies, recog-
nized by Gartner with its famous Hype Cycle, (Ch 2, Reference 7), there is a lot of 
marketing hype and misplaced expectations. This section aims to discuss some of the 
claims and clarify how they might or might not represent true value.

The ‘Real Time’ Label of Superior PdM 
Misunderstanding
An often-claimed advantage of PdM is that it happens in real time, delivering results to 
remote (from the assets) PdM users, within seconds of data being sensed from distant 
and mobile assets.

A question here would be, “what do you mean by real time?” Real time may have a 
requirement in a protection system to invoke the safety system within milliseconds of 
detecting the failure, or where a failure that requires remedial action by an operator 
within an hour can be declared within 5–10 s of detecting the condition. If a PdM system 
is sending data from a remote and mobile asset (such as an aircraft) to a central point 
where analysis is conducted and remedial actions decided, then the system may 
be constrained by communications and network latency, which one would never be able 
to predict without having installed a real-world system and understood its operation.

While the ability to monitor running equipment in real time is an advantage, and 
detection of plant transients or instantaneous defects are necessary for plant operators 
(aircraft pilots, are a good example) to both operate normally and deal with abnormal 
conditions, a wider perspective should be taken. It is really necessary to understand the 
system boundaries that separate other condition-monitoring systems that feed protec-
tion, alarm, warning, and condition-based maintenance systems. Figure 3.8 illustrates 
these sub-system boundaries. In general terms, on-board systems on the left of the figure 
require real time, the PdM system on the right-hand side of the figure needs to be timely, 
but most often not real time. The later chapter discussing Integrated Vehicle Health 
Management also helps answer this question.

Also, note the two discrete regions of the remote (off-board) PdM system, each 
corresponding to the two models of PdM, the incipient failure and long-term degrada-
tion regions illustrated in Figures 3.3 and 3.4.

The fallacy is that the remote PdM system does not benefit from being real time. 
Any alerts of anomalous behavior or failure diagnosis must, however, be timely. The 
costs of achieving real time (milliseconds responsiveness to a remote site), especially 
where mobile assets are concerned with the effects of internet latency, are likely to 
be prohibitively high. If real time is going to mean anything useful, it needs to be quanti-
fied and qualified. A reason for near-real time (e.g., receiving an alert within a minute 
or two) is when it needs to be received while an aircraft is in-flight by a ground-based 
response system, so it may pre-position maintenance staff and spares to meet the aircraft 
on arrival at its next landing airport. A minute or two delay in transmission to receiving 
the alert may be perfectly acceptable. A PdM user needs to ask the question “Is this level 
of latency classed as real time for their purpose?” (Figure 3.10)

How often will the severity of the alert require immediate investigation on landing, 
and does this warrant the cost of implementing a real time system? Perhaps aircraft bird 
strike or an environmental act of God may require it. On the other hand, other failure 
modes not caused by acts of God that suddenly take a turn for the worse or are initially 
diagnosed with a severely low condition suggests diagnosis capabilities need to 
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48 Aerospace Predictive Maintenance: Fundamental Concepts

be improved. This implies a continuous process of learning and incremental improve-
ment is needed in operating a PdM system.

A Data-driven Approach Negates the Need 
for Engineering Domain Knowledge
This claim is only partly true: the PdM system is not in a position to replace domain 
experts, but may make them more productive and effective. Using the diagram in Figure 
3.4 above, it is possible to see a generalized picture of the volume and completeness of 
data compared with the impact of failure. This book also describes the Resnikoff 
Conundrum (Chapter 9) which explains that data is rare for safety-implicated failures, 
because those failures are rare. They are rare because too many safety failures would 
result in the asset type being withdrawn from use, as legal and societal pressures will 
not allow unsafe machinery to be used. The other main reason why safety impact failures 
are rare is because the majority of effort by a product design team have been expended 
to eliminate or severely reduce the risk of safety-related failures. We as a society would 
not expect anything less.

This implies that there is more useful data about failures that have ever decreasing 
impacts of failure. The trap for a purely data-driven approach to PdM with no engineering 
domain knowledge is that the most satisfying analysis with complete data is possible on 
failures that do not matter. If the pure data-driven approach is taken, then what matters 
may not be known. Domain expertise is necessary to establish what matters, and this is 
usually and usefully contained in a maintenance Failure Modes and Effects 
Analysis (FMEA).

 FIGURE 3.10  Sub-system boundaries where on-condition principles apply (Source Author, a simplified copy is also 
included in API 691, contributed by the Author).
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Note: The text deliberately mentions a Maintenance FMEA. There are many types 
of FMEA which means some (such as a Design FMEA) are suboptimal to build a 
maintenance regime.

What Is the Difference between Condition 
Monitoring and Condition-Based 
Maintenance?
These terms are often used interchangeably but, while there is a close relationship, 
monitoring condition is an activity that may be conducted alone without any inter-
vening actions. The condition that warrants maintenance action is a secondary consid-
eration that depends on prognosing remaining useful life (RUL), the operational 
context, and the impact and consequences of an end failure. Other condition moni-
toring may re-establish a probabilistic baseline in a risk-based approach to mainte-
nance, where further operation for a defined period is judged to be at acceptable risk 
levels of functional failure.

It is possible to start monitoring the condition of a machine before it is operated 
in service but exposed to its operating environment. If the failure mechanism that is 
intended to be monitored is primarily driven by the operating environment, then 
monitoring of its condition should begin at the launch. A good example is measuring 
the thickness of a ship’s hull while being fitted out and then when exposed to sea water 
after its launch, thus measuring its gradual corrosion. While the marine paint 
protecting the hull is working optimally on launch, it gradually dissipates and allows 
corrosion to begin. The general point here is that some monitoring needs to start as 
soon as a (partially built) asset is exposed to its operating environment, which may 
be before it is operational.

Immature Systems Are Sold as PdM 
Systems
If a system is capable of only detecting anomalies, it is a very immature PdM system. If 
we consider a system where engineering experts are able to access all sensor data, then 
they will be overwhelmed with data and will only be capable of “firefighting” emergent 
failures. A massive increase in effectiveness is delivered with anomaly detection, but in 
most organisations the volume of anomalies will still overwhelm the engineering experts. 
A PdM system limited to anomaly detection is not scalable to gain significant 
business value.

PdM systems need to include automated diagnosis linking several anomalies to an 
identified failure mode, of a component(s) at a deep-enough indenture to facilitate effec-
tive recovery and effective automated prognostics to enable remaining useful life to 
be quantified and in which remedial action can be planned and resourced, minimizing 
the impact of operational disruption.

Many salespeople may not understand what full maturity is and claim what is in 
effect an anomaly detection system, as a diagnostic system. The buyer of such systems 
needs to question the vendor to establish the maturity of the system before committing 
to buying or installing. Chapter 8 provides a high-level specification that can be used as 
a basis to assess such systems.
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Wasteful Number of Inspections
On-condition monitoring including PdM sometimes has to use scheduled inspection 
and periodic sampling (hand-held vibration surveys, or oil or oil debris analysis). If 
managers do not understand that the periodicities are a function of the P-F interval, 
and they observe possibly many hundreds of historical inspection or sampling tasks that 
have not discovered failures, then they are often tempted to reduce the frequency of 
inspections to try and save costs. This is a serious mistake especially where the failure 
being monitored may be infrequent but may also have a high impact. The PdM system 
needs to be linked to the FMEA data to maintain the technical justification for why the 
scheduling periodicity has been selected. With the advent of IIOT, it may become prac-
tical and cost effective to fit sensors so that the PdM system can conduct automated and 
continuous monitoring.

How Does PdM Impact Maintenance 
Planning and Scheduling?

What Is a Maintenance Schedule?
A maintenance schedule is a database often managed by application software termed a 
Computerized Maintenance Management System (CMMS), showing all of the preventa-
tive maintenance where the call-up periodicities are quoted. The schedule should also 
have gone through maintenance packaging where the call-up frequency is aligned, so 
nugatory repeating work can be avoided. The maintenance schedule applies to a fleet of 
assets, managed by the operator.

What Is a Maintenance Plan?
It is thought that one of the best aspects of planned scheduled maintenance is that the 
future maintenance and material demand is highly predictable because it is either 
calendar or operating hour-based, which makes maintenance scheduling easy. In reality, 
many maintenance scheduling plans are disrupted by unexpected failures.

In a Maintenance Regime that is predominantly “on-condition” based, the variance 
of degradation and the incidence of random failure events means a maintenance plan 
is more dynamic, less predictable and needs more automation. The key to reducing the 
impact of this dynamic behavior is having sufficiently long P-F intervals that enable 
planning and pre-disposition of resources to be made. There may be physical constraints 
on the length of the P-F interval that frustrate this, but if planning or logistics processes 
are improved it may be possible to accommodate shorter P-F intervals, which may allow 
system wide trade-offs.

Another way of mitigating this is to have a ‘future looking view’ showing

 1. When scheduled maintenance is due
 2. What is the current and prognosed remaining useful life (RUL)?
 3. The probability of failure of components coming from Weibull analysis of 

failure events
 4. The probability of failure of components using damage accumulation models
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Digital Twin
One of the recent advances in PdM is the adoption of digital twins (Ch 5, Reference 8). These 
models may be seeded by data captured from the real asset and the digital twin operated as 
a virtual copy. The digital twin can be made up of the most sophisticated and detailed design 
models a manufacturer has available, but the processing cost and time may be prohibitive. 
If a detailed digital twin is exercised covering the complete set of the asset’s normal (and 
known abnormal) operating states and the data from the modelled sensors is collected, then 
it is possible to build-data driven models from that output data, and use derived models for 
the digital twin shadowing requirement. The derived models will be much simpler and have 
very high computing performance, allowing them to run in true time.

Digital twins may also be stimulated with known errors and exercised in abnormal 
circumstances to try to gain insights into unknown areas of behavior that result in the 
specification of new symptoms the PdM system may be set up to detect. It may be possible 
that the positioning and orientation of sensors may also be optimized using digital 
twin models.

Key Take-Away Points
 • The purpose of maintenance is to preserve functions—not just preserve machines

 • A physical asset may be functionally failed, yet not be physically broken.

 • Maintenance and PdM are complex systems both involving complex machinery, 
software and people. A “systems” approach is required.

 • PdM is a specialized sub-category of on-condition or Condition-Based 
Maintenance (CBM).

 • PdM does not supersede or replace RCM. RCM promotes the adoption of PdM if 
the right questions are answered and technologies considered in the RCM 
decision logic.

 • An FMEA (or FMECA) is an essential reference for the design of a maintenance. 
regime. The FMEA for a maintenance regime is different from a design FMEA.

 • PdM should be defined by an RCM process (for industry - MSG for aerospace), 
along with a maintenance FMEA.

 • Real-time PdM systems tend to be hyped: PdM systems must be timely to ensure 
defective machinery can gracefully withdraw from service, recovery planned, and 
operational disruption minimized.

 • Mature PdM systems include novelty, anomaly detection, and diagnostics and 
prognostics. If any of these three major sub-systems are missing from a PdM 
application, then avoid it. Beware the salesperson that does not know the difference 
between PdM anomaly detection and diagnostics or conflates the two.
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IVHM was invented because it was recognized that Predictive Maintenance (PdM) had 
developed and been focused on aircraft sub-systems in isolation of each other. The 
engines, avionics, structure, and other systems had PdM developed independently by 
their manufacturers. The IVHM idea is that PdM should be a whole, integrated platform 
approach justified by a business case. An IVHM system should be designed and built 
using an open and tiered architecture with a systems-engineering approach as a full 
platform capability, and be a basis for enhancing or replacing traditional maintenance, 
delivering maintenance credits. The open architecture enables sub-system manufacturers 
to build PdM systems that can share data with the other platform systems, although the 
concepts of IVHM have been developed in aerospace the principles are applicable to any 
industry. In different circumstances there may be a need to stretch the meaning of vehicle 
(in the IVHM), to include any industrial plant. The word “vehicle” may be mistaken to 
only apply to mobile assets; this is not true. A deeper explanation about IVHM may 
be found in [1].

Many industrial plants have some existing PdM systems including periodic vibra-
tion analysis using portable vibration-sensing equipment, oil and oil debris analysis with 
samples sent to laboratories and possibly other non-destructive testing (NDT) or exami-
nation (NDE). These results are usually reviewed in isolation of each other and any other 
PdM system. Often the IT systems used to gather the data and produce the results are 
standalone and the data is proprietary and cannot be shared between different IT systems. 
This misses the opportunity to combine the information to gain a richer picture of 
machinery health and condition following the ideas behind IVHM.

IVHM aligns with other standards such as:
Mimosa [2]: This open standard has been produced by a consortium of industrial 

organizations, including initial funding from the US Navy. Mimosa incorporates the Open 
Systems Architecture for Condition Based Maintenance (OSA-CBM) that is defined in 
ISO-13374 [3] as a functional architecture. The ISO standard is split into four parts. Mimosa 

How Does PdM Fit with Integrated 
Vehicle Health Management (IVHM)?
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 FIGURE 4.1  The OSA-CBM (ISO 13374) functional block diagram (Source Mimosa).
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defines a logical architecture with UML and SQL schemas for data and interfaces used by 
the ISO standard and provides a reusable architecture based on SQL data management.

Mimosa also defines the Open Systems Architecture for Enterprise Application 
Integration (OSA-EAI) standard, which defines data structures for storing and sharing 
information about equipment. The scope includes equipment configuration, reliability, 
and maintenance. OSA-CBM uses many elements of OSA-EAI.

Another important project Mimosa runs jointly with the OPC Foundation (the 
Mimosa and OPC Foundation CCOM OPC Working Group: [4]) is the OPC UA standard 
for industrial data acquisition. Transfer and storage are having an interface standard 
developed so that OPC UA may have access to the wider scope of Mimosa asset data. 
OPC UA is a mature open standard implemented in most data historian applications, 
and provides a means of collecting and centralizing sensor data from a wide range of 
industrial data systems where there is a myriad of lower level data networking standards. 
Data historians have been developed over many years to efficiently acquire, store, and 
move industrial data. The use of data historians is an area where aerospace lags behind 
the capabilities of other industries. Data historians were dealing with very large data 
sets before Big Data emerged (Figure 4.1).

The OSA-CBM stack is a similar abstraction as the SATAAL breakdown described 
in Chapter 7. The SATAAL acronym stands for the major functional areas PdM decom-
poses to. It stands for “Sense,” “Acquire (data),” “Transfer,” “Analyse,” “Act,” and “Learn.”

It is worth being aware of both because SATAAL and OSA-CBM provide valuable 
but different perspectives on PdM; OSA CBM being more technical and SATAAL more 
functional. Using them both enables a better PdM system to be architected.
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If IVHM is taken to its next logical level, it should extend the principles from the 
individual platform or vehicle level to an Integrated Fleet Health Management (IFHM) 
approach. The integrated fleet approach integrates data from all similar platforms with 
similar operating contexts and environments, increasing the size of data populations 
and improving statistical certainty. A greater number of insights in machinery behavior 
may be derived from a fleet view. Many manufacturers in the Aerospace market have 
embraced fleet wide PdM, where they can increase the statistical certainty of their 
analysis with access to a bigger population of assets across many customers. What insights 
are gleaned from the fleet view can be applied to small operators with a limited number 
of assets.

IFHM has considerable hurdles to jump before it may emerge as an open concept 
due to the latent value and commercial sensitivity of the data from the subsystems and 
the sharing across platforms that may have different commercial operators. The manu-
facturers get access to data by offering other services wrapped around their products 
that provide benefits to the operators for sharing data. This process of manufacturers 
providing services is known as servitization. Having access to the data allows a clever 
analyst to conduct a full dissection of organizational operations and poses a risk of loss 
of competitive advantages. Operators with smaller fleets also stand to gain more from 
this than those with larger fleets.

The adoption of IVHM where data sharing across the full product lifecycle is a goal 
which implies changes in how industry stakeholders collaborate and may shift industry 
value chains. There is much work to do to minimize disruption to value chains and 
profits, and attain the benefits of significant cost cutting in the whole industry.

There are a series of Aerospace Recommended Practices (ARPs) that have and are 
being written about IVHM associated with a lifecycle model to build an aerospace IVHM 
system. The general principles in the documents should be transferable to any industry. 
Some of the ARP documents are still being developed by the SAE Health Management 
(HM-1 committee). The following diagram shows the HM-1 development lifecycle and 
the associated ARPs that have been and which are still being produced. The production 
ready ARP and AIR documents may be purchased at [5]. More documents are in produc-
tion and being released. AIR 6904 that covers data interoperability has been subsequently 
released (Figure 4.2).

What Are Maintenance Credits?
PdM has matured independently of the certified maintenance regimes in aerospace that 
have the proofs and quality assurance relied on to reduce risk of failure (termed 
Maintenance Credits). PdM has predominantly focused on failures with operational 
and economic consequences, reducing the commercial risks associated with servitiza-
tion. It has been realized that there is an opportunity to extend PdM into being certifi-
cated, but there are numerous procedural and quality assurance challenges to overcome.

Maintenance credits are where maintenance is able to demonstrate a quantified 
reduction in the probability of failure, where the failure has very bad consequences. The 
proof that a PdM maintenance task can achieve this may rely on having access to a 
statistically significant set of data from many sources and quality assurance in the PdM 
process and applications before the maintenance credit is approved. This provides 
another incentive for IFHM.

This empirical evidential approach may be difficult as there is little data around 
failures (especially those with high impacts), because these events are rare (see the notes 

C
H

A
P

T
E

R
 
4

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use



56 Aerospace Predictive Maintenance: Fundamental Concepts

on the Resnikoff Conundrum in Chapter 9), so other approaches may need to be taken 
to provide sufficient evidence. These include:

 • Using component as-found condition data from repair and overhaul facilities 
(R&O) to report the condition of components at an operating age after the 
components have been removed, coupled with previous time-series data from the 
component in-service time. Marrying up “as found” condition data to previous 
operating history and sensor data bolsters prognostic certainty.

 • Using any post maintenance test data (such as testbed data). This data may also 
be used to seed other data-derived models used in PdM, because the baseline of 
normality will have shifted due to maintenance intervention.

 • Using the data from any samples of replaced parts subsequently tested to 
destruction and the data associated with the test, as-found condition and time-
series data from the component in-service time.

 • Using any in-service NDT/NDE or inspection data and merging this in PdM.

 • Using high-fidelity modelling and digital twins.
 • Using any relevant design data and assumptions: if reliability growth was 

performed then all the data from this program should be included.

 FIGURE 4.2  IVHM development lifecycle and associated SAE ARP documents (Source SAE ARP 6803) Correct at 
December 2018.
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The PdM system itself will require inbuilt facilities to increase assurance that it 
performs the process of diagnosis and prognosis to a set standard with guaranteed 
degrees of certainty. For example, failures will be detected and diagnosed 95% of the 
time with 95% certainty.

The author collaborated with an academic colleague contributing to a chapter in 
[6], on trust in IVHM systems. We cited a research project STRAPP we had conducted 
to enhance trust in a PdM system, by making the provenance of data, models and algo-
rithms apparent to a PdM user. This provided evidence and an audit trail that the process 
for building and operating a PdM system had high quality and integrity, so that an 
element of gaining maintenance credits was shown.

The SAE E-32 committee produced ARP5987, “A process for utilizing aerospace 
propulsion health management systems for maintenance credit” has been released. This 
document begins the process of bridging the gap between Advisory PdM (health manage-
ment) systems and MSG3.

Key Take-Away Points
 1. IVHM is a developing model in aerospace but is applicable to other industries.
 2. PdM is integral to IVHM.
 3. IVHM aligns with other open standards that help define and provide guidance 

for building a PdM system in the context of IVHM and 
maintenance management.

 4. The standards have yet to properly cover operating PdM and an IVHM system.
 5. IVHM is being developed to enable PdM to be used in mainstream aerospace 

maintenance to a high level of integrity to deliver maintenance credits.
 6. IVHM should be extended to the next level, it should be Integrated Fleet Health 

Management, or even Integrated Portfolio Health Management.
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This chapter will discuss why PdM is a better choice for replacing other traditional 
maintenance if conditions allow it, and how it maximizes the utilization of all the 
economic life of components. Applying PdM implies doing maintenance only when it 
is needed, just before components are going to fail. This aligns with the policy of “if it 
ain’t broke, don't fix it.”

On-condition maintenance is in principle applicable to any of the six patterns of 
failure (see Figure 2.5) as long as the other pre-requisites outlined in Chapter 3 are met. 
The underlying assumption is that the PdM on-condition is practical, effective, and cost 
beneficial. Other traditional maintenance tasks, such as scheduled restoration or replace-
ment (replacement is sometimes called discard) are only applicable to failures that align 
with a wear-out, age pattern: these tasks cannot be applied to other patterns. Weibull 
analysis provides an indication of whether a part’s functional failure (or failure mode) 
is wear-out or age related as its shape parameter is greater than 1. There is no hard 
boundary for shape indicating wear-out, but a value greater than 2 is a greater wear-out 
indicator than a shape value of 1.1, which would be very close to random.

Why Choose On-Condition over 
Scheduled Discard/Replacement or 
Restoration?
Scheduled restoration or discard maintenance organize the interventions to a time before 
the probability of failure increases to unacceptable levels, meaning the failure modes fit 
a wear-out or age pattern. The benefit is that this early intervention prevents unexpected 
failure and the accompanying operational disruption, avoiding, possible secondary damage.

Why Is PdM Generally Better than 
Traditional Maintenance? (How to Build 
a Business Case)
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The age for conducting scheduled restoration or replacement tasks is selected so it 
is triggered before the probability of failure substantially increases, and this can 
be demonstrated by using the results from a Weibull analysis.

If a graph of a Weibull cumulative distribution function (see Figure 5.1 below) is 
drawn, one can see the cumulative probability of failure at an age for a population of 
components. For a wear-out failure pattern, the shape of the cumulative loci is a classic 
“S” shape. Here there is an early period of useful life, followed by an increase in the 
probability of failure observed by the increasing slope in the middle of the line. This 
graph is a representation of probability that a component has failed at an operating age. 
The graph is produced by estimating the fit of a population of ages at the time of failure 
events, for a particular component from a single failure mode to a Weibull distribution. 
The cumulative probability distribution is then plotted

In the chart below a line is arbitrarily drawn for scheduled replacement maintenance 
to be done at an operating age that coincides with the B-10 measure (when probability 
of failure is 0.1% or 10%). It may be observed that the majority of economic life of the 
components surviving beyond the B-10 figure is being deliberately discarded as those 
parts are replaced. At B-10, 90% of the components are likely to have survived when 
they are replaced regardless of their condition. This implies that if scheduled replacement 
or restoration are the only effective planned maintenance then there is no known means 
of measuring condition. The belief that there is no means of measuring condition or 
detecting symptoms of failure could and should be challenged.

If a high-integrity PdM task can be applied with high confidence that the PdM will 
be successful, then the vast majority of incipient failure events can be detected just before 
they fail. This implies that there is a means of measuring condition for using PdM. The 
time of incipient failure detection will be at the latest possible time after all of the 
economic life of the component has been consumed. As long as the P-F interval is 

 FIGURE 5.1  Typical periodicity for restorative or replacement maintenance seen using a Weibull Cumulative 
Density Function (CDF) chart.
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sufficiently long to regard the recovery as a planned event, then there are significant 
economic advantages. Through life costs have potential to be reduced by tens of percentage 
points for age-related failures. The following figure helps illustrate this.

In Figure 5.1, an imaginary component with a dominant age-related failure mode 
is illustrated. The graph shows the cumulative density function (CDF) and the increasing 
probability of failure over operating time (or operating cycles). It is assumed that there 
is high confidence that the CDF is accurate. The graph also shows the “B-10” life of the 
component. This is the age where 10% of a population of components is likely to have 
failed. It can easily be translated to a percentage by multiplying by 100, because prob-
ability is a measure in the range zero to one. In other texts (such as Moubray) this is 
called the “useful life” before the rate of failure increases to unacceptable levels.

It is reasonable to select the B-10 life as the periodicity for changing used parts for 
new (scheduled discharge or replacement maintenance task) where the Weibull shape 
parameter is > 2.0 (showing wear-out). If there is population of 100 components, it is 
probable 10 are likely to have failed by the time the discard maintenance is triggered, 
and the remaining 90 are replaced at the B-10 age.

The reason this discard maintenance is done is that it is trying to avoid unplanned 
failure, because the consequences (including the disruption) of the unplanned event are 
unacceptable. It is noteworthy that the discard trigger point still accepts that a small 
proportion of the failures will be unexpected because they lie in the left-hand tail of 
the distribution.

If the economic life is discarded by changing the surviving 90 components before 
they have failed, it is possible to see by eye from the graph that the waste of usable 
economic life of the discarded components is considerable.

If there was a regime that took away any preventative maintenance and allowed the 
population of components to run to failure, then the median of all the ages at time of 
failure would be the best “expected” age for this component. It is axiomatic that the 
median age is much greater than the B-10 age.

If it was possible to apply fully effective on-condition maintenance,

 • The system detects every single potential failure

 • The system does not signal detection of a potential failure where none exists 
(avoids false positives)

 • The P-F is sufficient to plan recovery and minimize operational disruption

If on-condition maintenance prerequisites are met, and on condition is effective it 
means organizations could utilize all possible economic lives of the components, minus 
the relatively very short P-F interval. Effectively, PdM is enabling the economic utiliza-
tion up to their median lives for the population of components. The perfect PdM solution 
also eliminates the unplanned failures accepted by the scheduled replacement regime 
(the likely unplanned failures of 10% of the population up to the B-10 age).

It is axiomatic that the median value always exceeds B-10, and therefore value is 
generated. The value is (with perfect PdM):

 • Full utilization of all possible economic life of the components, the material costs 
of components are consumed over a much greater period of utilization time.

 • Elimination of unplanned disruptive failures, all potential failures have enough 
P-F intervals to plan the recoveries at a time minimising operational disruption.

 • Reduced frequency of maintenance work, this will include reductions in

 • Labor cost.
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 • Outage time (although one component might not change the normal planned 
outage time cadences and durations). Unplanned outage time will be reduced.

 • Material costs.

 • If the reduction of unplanned outage is reduced, then that time may be spent in 
profitable utilization of the asset generating more revenue or higher 
availability rates.

In the real world, PdM systems are rarely perfect, diagnosis will have errors, some 
failures will be missed (false-negative), and sometimes the PdM system reports detect 
failure where no failure exists (false-positive). The performance of the PdM system must 
be optimized to reduce these errors so that the benefits of using PdM are realized. The 
difference in value between scheduled replacement/restore and PdM is so great, that a 
reasonably small level of PdM errors is still acceptable and will still deliver considerable value.

Some terminology used in statistics may also be useful to know. The ability to tune 
a diagnostic to capture all of the genuine failure events is optimising the systems “sensi-
tivity” which addresses false negatives. Increasing sensitivity may trade off “specificity” 
where you accept higher false-positive rate. The PdM tuning may be a continuous process 
in order to maximize benefits. The language of sensitivity, false-negatives, specificity and 
false positives are associated with confusion matrixes described in greater detail elsewhere 
in this book.

Another factor that supports the use of PdM is that it should be cheaper to apply 
compared with traditional on-condition maintenance. A PdM system should be highly 
automated and able to continuously monitor, allowing a user maintainer to monitor a 
huge number of components with the system alerting the user when they need to take 
action. The costs of applying highly automated PdM compared to using traditional 
on-condition maintenance using periodic manual surveys is a fraction of the latter. In 
the Rolls-Royce PdM system in the early days an expert could manage up to 100 assets, 
as automation developed over the years this figure grew to thousands of assets with 
vastly improved automated diagnostics and prognostics.

The combination of cheaper PdM through automation, greater utilization of the 
whole of the economic life of the component and reducing the frequency of replacing 
the part, the benefit of applying PdM over traditional scheduled restorative or replace-
ment maintenance is considerable. Therefore, in the RCM system, on-condition main-
tenance is preferred over scheduled restoration or scheduled replacement tasks.

Exceptions to the Rule — When Is 
Scheduled Replacement Better?
When thinking about applying on-condition maintenance, other factors may play a part. 
It is worth considering these when judging the effectiveness of the on-condition tasks.

Some component failures have minimal consequences and it might not be cost 
effective to conduct preventative maintenance. These should be designated as ’No 
Scheduled Maintenance’ (NSM) and allowed to run to failure (RCM: Chapter 6).

Another case where PdM may not be the optimal maintenance choice is where many 
the same components exist and have a very high degree of redundancy, but each requires a 
lot of effort to individually change. An example is factory lighting where the lamps have a 
wear-out failure pattern. Changing a single lamp may be expensive (if scaffolding needs to 
be erected, disrupting production lines, etc.), so there is no advantage in condition monitoring 
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leading to individual lamps being changed: the most effective maintenance task to apply is 
scheduled replacement of many lamps as possible in one task (spreading the cost of erecting 
the scaffolding and minimising loss of production) regardless of the condition of the lamps. 
A variant of on-condition is to wait until a number of adjacent lamps have failed, reducing 
localized lighting levels to a just acceptable level, and then initiate immediate batch changing. 
This alternative strategy has a risk of contravening health and safety (unacceptable lighting 
in a workplace) legislation, and so must have safeguards to avoid breaches.

When Should Median and Mean 
Measures Be Used?
In this book the author has used median over mean to measure a distribution’s expecta-
tion measure (a measure of its “middling tendency”). This section explains why.

If the median life of a population of components is calculated, it will show a summary 
measure of the “expected life.” Within statistics the “expected value” equates to the best 
measure of the middle tendency of the data. Why choose the median? Why not use mean 
or average (or in other words the Mean Time Before/To Failure (MTBF or MTTF))?

The median is selected for two reasons:

 1. Because it is a better measurement of middling tendency or expectation of 
continuous data if the underlying distribution is not uniform and symmetrical 
like a Gaussian bell-curve. With a symmetric normal or Gaussian distribution, 
the mean is the same as the median.

 2. The mean measure is also far more sensitive to outliers than the median 
measure. Sometimes statisticians use “trimmed mean” to eliminate the 
undesirable effects of outliers. The author merely prefers using the median.

There are other reasons why MTB(T)F should not be used:
Merely quoting MTBF with no other information for equipment reliability means 

some assumptions must be made. These are:

 • The underlying failure rate is constant.

 • If the underlying failure rate is constant, then the probability distribution that 
applies, that the failures best fit into is the Negative Exponential Distribution. Not 
a normal distribution.

 • The mean for this distribution coincides with a probability of 0.63, which translates 
as 63% of a population are likely to have failed at the mean age (probabilities are 
always expressed as a number between zero and one).

Many lay people may expect the mean would equate to 50% (which would be correct if 
the distribution were normal or Gaussian). The assumption that the failure rate is constant is 
also a special case in the real world. Reliability is defined as “The ability of an asset to continue 
functioning, for a stated time, in a stated operating context”. Using MTBF as a metric risk 
vastly over-simplifies what reliability actually is and should be used with great caution.

The point is without knowing any other information, the MTBF does not explicitly 
say how many assets have failed at the MTBF. It is therefore highly questionable then 
that MTBF is actually a true measure of reliability. The author personally tends not to 
use MTBF and relies more on Crow-AMSAA and Weibull (sometimes other distribu-
tions) to understand reliability.

Understanding the implications of Weibull distributions and how they may be esti-
mated using failure (and censored removal) data and how scheduled replacement or 
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on-condition (PdM) maintenance works with respect to the Weibull, enables the calcula-
tion of costs and benefits using simple simulation.

Why Is the Use of MTBF Persisted?
The persistence of MTBF (MTTF) is because it has always been done this way and the 
metric is deeply embedded in society. The mathematics associated with MTBF reliability 
calculations are simple. This means it is easy to teach to non-technical people in courses 
that only have time to cover rudiments of the subject. Its use as a reliability metric is highly 
dubious and its use to try and calculate periodicities for scheduled maintenance must never 
be done. The RCM process covered in Chapter 6 has references for how to properly calculate 
maintenance periodicities for different types of maintenance tasks. Many people are not 
taught the basics of statistics, including many engineers.  In these modern times mainte-
nance managers will be expected to make decisions and act on data presented to them.  
They need to understand how the data has been treated statistically to ensure it is 
not misleading.

Building the Business Case
Building a business case for PdM is difficult for two reasons. The first is that PdM, to 
date, is similar to taking out an insurance policy: you pay up front to mitigate unwanted 
events that may or may not happen. If PdM is only regarded as insurance, it makes the 
investment discretionary and less likely to be approved against other spend in the orga-
nization. Secondly, PdM is probabilistic and not deterministic: diagnosing functional 
failure may miss genuine failure events or may diagnose failure where none exists (false 
positive), prognosis has uncertainty and may fail to forecast Remaining Useful Life 
(RUL) accurately. Most business cases are mainly built on deterministic assumptions 
such as a constant failure rate with no variation. Some may have worst, medium, and 
best-case assumptions, but even these are built deterministically. Although well inten-
tioned and easy to grasp, they may lead an organization to make grave mistakes. A 
business case built on probability, variation and simulation would be harder to sell to 
business-orientated people who may be unfamiliar with probability.

The difficulty of justifying the investment in PdM and making a convincing case 
for PdM based on probability might be overcome by using simulation to avoid the difficult 
mathematics of a dynamic system. Simulation can be used to provide statistically signifi-
cant data that builds confidence that the results may be trusted. Simulations can be built 
with dynamics shown graphically which helps the business users understand the system 
and assists in building trust in the results.

Business Cases Built on Reliability–
Availability–Maintainability (RAM) 
Simulation
Reliability–Availability–Maintainability (RAM) modelling is the term used in the US 
for what is often called ARM modelling in the UK. These models consist of utilizing 
Weibull distributions and knowing the periodicity of Planned Maintenance using a 
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discrete-event Monte-Carlo simulation to simulate the running, failure, maintenance, 
and recovery of fleets of assets in order to determine their availability and reliability. 
The RAM model may then be extended to include cost data (loss of production while 
unavailable, maintenance labor and material cost for either planned or corrective main-
tenance, etc.), to build a cost model to contribute to a trustable through-life cost calcu-
lator. This type of model can then be changed to run “what if” scenarios such as changing 
maintenance from “planned replacement” to PdM to determine the cost benefits of doing 
so. These simulation models will be easy to build using Python and some of its special-
ized libraries [1, 2]. Many business cases may be built using static spreadsheets where 
failure is represented by MTBF with their assumed constant failure rates and using 
perfect maintenance plans (that are not disrupted by unexpected failures). This is most 
often not representative of real-world conditions and will result in an inappropriate 
budget allocation. This is likely to result in undesirable emergent behavior where the 
greatest efforts of the maintenance team will be spent on meeting inappropriate budgets 
as they struggle with containing failures.

PdM has other considerable benefits because it gathers much data, and the 
behavior and condition of machinery are known. In a situation where corrective 
maintenance needs to be conducted, PdM can inform the maintenance planner 
whether other components that have been made accessible by the corrective main-
tenance are near the end of their lives and whether it is economic to change these 
components now. This can discard some residual economic life but also mitigates 
the risk of failures before the next planned outage (or planned maintenance period) 
of the asset. The basic idea for looking for opportunistic maintenance is increasing 
the probability that the asset will not have an unexpected breakdown before the next 
planned maintenance outage.

The second improvement is that greater data is available to help the RCA process 
where investigations into reliability may be targeted better (PdM provides better data 
on failures), and can help isolate the preventable causes of failure.

The elements needed in a business case run by a RAM model are:

 1. The Weibull shape and scale parameters for each component’s failure mode so 
that the simulation can randomly sample this to generate simulated 
failure events

 2. The cost of sampling, or inspecting. For a PdM system, the cost of acquiring, 
transferring and analysing data in a highly automated system will be low. The 
costs of manual inspection may be higher

 3. The costs involved with not detecting a failure, which may include lost 
production time (disruption to schedule), and any extra labour or materials 
needed to recover from a complete failure

 4. The labour, material and possible lost production time for a planned recovery, 
when the on-condition works. Lost production might not be included if 
recovery is included within a planned outage.

 5. The on-condition effectiveness of 
a. probability of detecting all simulated failures
b.  The false positive rate where nugatory planned recovery maintenance is 

carried out

The RAM simulation is run over a period of selected time (maybe the full life of the 
asset), thousands of times and summary statistics used to calculate the distributions of 
the costs. These can be used to determine upper, median and lower bounds of cost at 
several pints in the assets lifetime.
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Key Take-Away Points
 1. If on-condition and PdM is practical and cost-effective with minimized false 

positive rate it is most often a better choice economically than other traditional 
maintenance tasks (scheduled restoration or replacement).

 2. Business cases should be built using Weibull metrics on RAM discrete-event 
simulations. These simulations are relatively easy to build with the advent of 
Python and its specialist libraries.

 3. PdM helps the build of knowledge of how machinery operates and degrades to a 
far better degree than without it.

 4. Using MTBF for reliability analysis is an oversimplification that can lead to 
incorrect management decision making. MTBF is arguably not a measure 
of reliability.

 5. PdM data and knowledge should be used in Root Cause Analysis (RCA) processes.
 6. PdM and prognostics should be used as intelligence to conduct opportunistic 

maintenance when other preventative or corrective maintenance is necessary 
because of a breakdown, due to knowing the likelihood of failure and condition 
of other components that could also be worked on.
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The aerospace version of RCM is known as MSG3. MSG3 and RCM and both share a 
common ancestry back to the original RCM report [1] conducted by United Airlines.

On a personal note, the author has spent most of his professional engineering working 
life engaged in operating and sustaining in-service complex assets. There is a perceived 
schism between design and in-service engineering, where it seems more prestigious to 
be a design engineer. Many of the engineering frameworks, such as Systems Engineering, 
Reliability Engineering, and IVHM, originate in the design stage of the complex asset 
lifecycle. RCM originates in the in-service phase and values the knowledge of experienced 
operators and maintainers above the knowledge of the design engineers while recognizing 
design knowledge is valuable. RCM is the voice of the in-service engineering discipline.

There is much marketing material that claims PdM is superior to RCM or supersedes 
it. This chapter will explain why this is not the case, that PdM is complementary to RCM 
and the two frameworks are not in competition. PdM does not supersede, nor is better 
than MSG3. PdM may be included in MSG3-derived maintenance regimes in aerospace 
if and when the methods for IVHM/PdM maintenance credits are resolved.

The seminal Moubray book RCM II [2], has recently been revised with the release 
of “RCM3, risk-based RCM” [3] where the process has been updated to answer eight 
basic questions, from the previous version’s seven questions. This book is fully aligned 
with these updated principles.

RCM 3 requires these questions are addressed

 1. What are the operating conditions (How is the equipment or system being used)?
 2. What are the functions and associated performance standards of the asset in its 

current operating context?
 3. In what ways does it fail to fulfil its functions (failed states)?

How Does PdM Relate to  
Reliability-Centered Maintenance 
(RCM)?
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 4. What causes each failed state (failure modes and failure mechanisms)?
 5. What happens when each failure occurs (failure effects and consequent severity)?
 6. What are the risks associated with each failure (inherent risk qualified)?
 7. What MUST be done to reduce intolerable risks to a tolerable level (using 

proactive risk management strategies)?
 8. What CAN be done to reduce or manage tolerable risks in a cost-effective way?

The first six questions RCM poses can be answered within a maintenance-centric 
Failure Modes and Effects Analysis (FMEA). The answers to questions seven and eight 
may be derived using an RCM decision tree (see Figure 6.3 or the MSG3 version in 
Figure 2.5). The FMEA is a widely used tool to determine how items may fail, their risk 
and how critical the failures are, with an explanation of consequences. The FMEA is 
described in more detail below.

There are many claims that PdM supersedes or is an improvement on RCM (or MSG3 in 
aerospace). The comparison does not make sense. RCM is a framework that defines, builds, 
and sustains a maintenance system or regime for any asset, whereas PdM is an advanced 
type of on-condition based maintenance taking advantage of digitization, continuous sensor 
data, and automated data analysis. One of the outcomes of RCM is to select the most appro-
priate maintenance tasks to prevent or avoid loss of function: that includes on-condition 
predictive maintenance tasks. The tasks are selected if they are effective and efficient. PdM 
may be specified as a natural consequence of running an RCM process, and this makes it 
obvious that PdM does not supersede or replace it. Within the RCM process the PdM should 
be selected if the right knowledge is held about PdM and how it works.

RCM is a rigorous process that was developed for industry that has gained an unde-
served reputation of being too onerous, bureaucratic, and often wasteful. There are many 
other “streamlined” or alternative RCM processes that have been pitched that have often 
missed out several vital elements of the analysis, occasionally leading to inappropriate 
maintenance that could be dangerous. This was recognized by John Moubray the origi-
nator of Industrial RCM who, with others, developed SAE standards JA 1011 [4] and 
later JA 1012 [5] which provided a list of elements that must be in a process that claims 
to be RCM compliant. Moubray’s RCM 2 book [2] is a key reference used by these stan-
dards. The RCM process needs to be done properly and will pay back handsomely 
when done.

One of the keys to writing useful FMEAs or using them is predicated on some of 
the information that needs to be captured within them. It is known that PdM systems 
utilize sensor data that can be continuously sampled. Additionally, PdM can also take 
account of other condition data where samples are taken periodically (discussed in the 
principles of IVHM).

The FMEA is usually arranged as a grid of columns and rows (a table) with text 
entered in each of the cells. There are many formats of FMEA, and sometimes in large 
organizations these formats are predetermined. Many formats are not as useful for 
designing a maintenance regime, including PdM. The following section defines the 
column headings used in an ideal FMEA contents that is optimal to help adoption of 
PdM. The column headings are in bold.

 1. The FMEA row reference number. This uniquely identifies the main item in the 
next column. The numbering system may use an indenture system where the 
identifier is split to identify the level of indenture that the equipment item exists 
in a bill of material.

 2. The equipment items. A description of the item and any identifiers that may 
be used for the physical position or identification to the item in the wider asset.
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 3. The equipment item functions. Functions should be split to show whether they 
are primary or secondary functions. An equipment item may have many 
functions. Functions may be shared between equipment or a lower level 
equipment’s primary function may be a secondary function of a higher-level 
function. There is a one-too-many relationships between the equipment item 
and its functions. Some functions may be shared between items of equipment. 
Functions need to be expressed with required performance bounds or limits. 
This is extremely important in understanding the difference between normal 
and abnormal behavior.

 4. Functional failures. This follows on from functions as a description of how 
functions may not be delivered. Once functions are identified the functional 
failures are usually very easy to define.

 5. Failure Modes. The failure modes that result in functional failure 
described above.

 6. Failure mechanisms. An FMEA that includes failure mechanisms is often called 
FMMEAs. Where the knowledge exists, it is well to include this information, 
because it may allow organizations to take action to avoid the failure modes, and 
it may help the selection of sensors to apply for on-condition maintenance. In 
this way, including failure mechanisms assists the adoption of PdM.

 7. Failure causes. From one perspective, failure mechanisms are the root physical 
causes of failure. This entry is still required because other predominant causes 
are people and quality. Failure may be caused by overloading or operating plant 
outside its design intent. Bad maintenance (possibly due to lack of training) may 
also be a cause of failure. It is often helpful to think in terms of credible hazards 
or vulnerabilities associated with the environment processes and organization 
to properly populate this section. The FMEA may extend its usefulness if any 
data that is discovered in any subsequent Root Cause Analysis (RCA) process is 
back populated in the FMEA.

 8. Effects and consequences. It may be necessary to break down different effects 
for different parts of the mission profile, or variation in the environment 
(winter/summer):

a. Immediate local effects. What happens to the part itself when it fails?
b. Immediate higher-level effects. What happens to the part and dependent or 

adjacent equipment? This may be effects to the part’s parent assembly 
or system.

c. Immediate whole-asset level effects. What happens to the whole asset or 
train of equipment in an industrial setting? Is the whole asset made 
unavailable or not? If so, this will have significant operational impact.

d. Higher level consequences. If the failure disrupts operations or reduces the 
quality of the product being produced (in the industrial context).

e. Business effects. Effects on reputation, meeting legislation, avoiding fines etc.
f. Recovery or corrective maintenance. How long, when, what resources are 

needed (human and material), and what is the likely cost. Information about 
recovery is part of prognostic advice that should be given with Remaining 
Useful Life (RUL).

Effects severity may also be categorised as SHEL (Safety, Health, 
Environment, Legislation), Operational, Economic, Insignificant, see the 
explanation below.

 9. Likelihood or probability of occurrence. Effects severity may also be 
categorised as SHEL (safety, Health, Environment, Legislation) Operational 
Economic Insignificant see the explanation below. These are traditionally 
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provided as an ordinal value at the most basic of “infrequent,” “normal,” or 
“frequent” that may be quantified as a probability of failure within a time unit. 
For example, each asset having one failure per year.

 10. The severity (or criticality) of the impact. This is where it is possible to classify 
the failure as per the breakdown shown earlier on the Y scale of Figure 3.8. This 
will be further explained later.

 11. The detectability of the failure. This section is especially important to applying 
PdM, because it provides baseline information that can be used in the RCM 
decision logic to answer the question, “Is on-condition (or PdM) practical and 
cost effective?”

a. Is the failure “hidden” from the operators or maintainers? Were there any 
alarms or warnings or other indications or symptoms present before or during 
the failure? Is a normally hidden failure become apparent in other abnormal 
machine states (e.g., a stuck pressure relief valve fails to open when an 
abnormal overpressure excursion occurs)? Capturing the time these symptoms 
presented themselves before failure is useful data to support prognostics.

b. What is the nature of the failure? Was the failure a gradual deterioration or 
was it intermittent or sudden/catastrophic? On-condition maintenance relies 
on having a time gap between failure initiation and final functional failure. If 
the failure is sudden there might be no practical P-F interval. This time delay 
is a pre-requisite for applying on-condition maintenance.

c. What sensors are available that may be used to detect failure? This 
obviously plays directly into applying PdM. Inferring how symptoms may 
be observed from seeming unrelated sensors is also an intellectual puzzle 
most engineers will relish.

 12. Any dormancy in detectability. Can the equipment operator or the maintainer 
undertaking their normal duties detect the onset, progress, or failed state? This 
is important to identify hidden failures that are considered in their own branch 
of the RCM decision logic.

 13. The Probabilistic Risk Number (PRN) or the Criticality. A combination of:

a. Likelihood
b. Severity/impact
c. Detectability (of the failure)

These methods of determining criticality are described in more detail below.
 14. The level of risk: This is using similar impact and likelihood measures that are 

used to determine criticality, but other business-orientated views may be taken 
around risks.

It is easier to estimate impact or consequences of failure than it is to determine 
the likelihood or frequency. Care need to be taken when working out the criticality of 
high-impact but low-likelihood failure modes. It may be better to increase the criticality 
for these items to compensate for the lack of accuracy in assessing the likelihood.

How Can Severity of Failure 
Be Categorized?
A breakdown of classes of impact of failure was introduced in Figure 3.8. This breakdown 
of classes split severity into 4 groups. It is worth developing this idea here in order to 
classify FMEA effects and consequences in greater detail.
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The break-down of severity is as follows:
Safety, Health, Environmental, and Legislative Compliance (SHEL). This is the 

most severe classification, and repeated failures of this nature threaten the existence of 
any organization that owns or uses complex physical assets. It is possible to break this 
category down further to capture where safety and health issues cause death, or lower 
down the scale whether debilitating injuries are caused. Environmental issues are also 
unsustainable with restrictions on emissions becoming ever more stringent. PdM can 
be used to monitor emissions and provide information that enables management and 
minimization. Legislation is tied up with SHEL but may also be associated with other 
operational restrictions that need to be taken into account. PdM can be utilized to monitor 
these aspects and report compliance if regulations, standards, or laws require this. A 
severity in the SHEL classification automatically has operational and economic impacts.

Operational. This severity impacts the ability to operate a complete asset that 
compromises production, disrupts operational schedules, or product quality. This has 
economic impact as well. Product quality is related to the quality of the output of the 
machinery being monitored. This may be more or less important dependent on the 
context of the equipment and how it is used.

Economic. This severity is where avoidable cost is incurred that has no operational 
impact. The cost of maintenance material or recovery may be high. This can apply to 
the replacement of intrinsically expensive parts that have little impact on operations.

Insignificant. This may seem obvious, but it is important to know because one needs 
to prioritize and focus effort on. There is a danger in PdM that a purely data-driven 
approach that lacks domain expertise may become trapped in dealing with insignificant 
parts because the data is so rich. It is necessary to positively know what equipment failure 
is insignificant in severity so it can be actively avoided in consuming resources in low-value 
PdM analysis. This also provides a defendable justification for why maintenance is not done.

How Can the Likelihood of Failure 
Be Categorized?
The likelihood of failure may be categorized in several classes from extremely unlikely 
to frequent. What this means depends on the context of the machinery and what has 
been historically accepted or not.

The Applicability of Weibull Analysis
One useful tool is the Weibull analysis covered in Chapter 3 with type 1 prognostics. 
This allows us to express likelihood of failure as a probability distribution that is much 
more satisfactory than a figure like Mean Time To/Between Failure (MTBF). A Weibull 
distribution can be defined using two variables: the shape and the scale. The shape 
determines the shape of the distribution varying between 0 to 1 (that would indicate 
infant mortality), 1 that indicates random (the probability of failure is constant over 
age), or greater than 1 where the probability of failure shows wear-out. The scale is a 
measure of the age where the probability of failure is 0.63. In other words, the age by 
when 63% of a population of parts is likely to have failed.

A useful factor of considering what maintenance type tasks in an RCM process is 
based on the shape parameter.

 • If shape is < 1, then the maintenance intervention is discovering the root cause of 
the failures (as it is a quality issue) and avoiding the cause.
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 • If shape = 1, the failure pattern is random, the only applicable maintenance task is 
on-condition (or PdM).

 • If shape is > 1 (but more usefully > 2) then on-condition or scheduled restoration 
or replacement tasks are applicable. On-condition is preferable to the other types 
of maintenance.

Where Weibull analysis may be useful in terms of a FMEA is to use what is known 
as the B-20 age. B-20 is the age at which 20% of a population of parts is likely to have 
failed given a Weibull distribution. This measure is low enough to be sensitive to infant 
mortality or wear-out characteristics. The FMEA could have a range of bins that the 
B-20 would fall into, thereby providing a machine-centric range. For example: the FMEA 
bins might be between 0 and 1000 h, 1000 and 2000 h, 2000 and 3000 h, etc.

It is also worth noting that B-20 is a measure of reliability and may be more sutable 
to use compared to MTBF.

FMEA Storage and Tools for Analysis
The initial job of defining an FMEA is to work out a physical breakdown of an asset 
undergoing an analysis. For example, an aircraft breaks down into systems such as 
avionics, propulsion, structure, etc. which then breaks down further to reach levels of 
parts that correspond to being functionally significant or constitute a maintainable part. 
The data structure for this is a hierarchy of physical components that break down in 
distinct levels (sometimes called indenture levels) into ever simpler constituent parts. 
For example, an aircraft breaks down into propulsion, structure, and avionics at the next 
lower indenture level. In systems engineering, system diagrams are often broken down 
into ever simpler levels of a similar hierarchical structure. A similar hierarchy based on 
functions is also possible with asset-level functions on the top, breaking down into ever 
simpler functions. The two hierarchies, physical and functional, are related. A physical 
component fulfils functions. A function may be delivered by physical components. This 
means that there is a many-to-many relationship between functions and parts.

A many-to-many relationship makes it extremely difficult to ensure its integrity 
using tools like spreadsheets: other data management tools are required.

The traditional data structure for an FMEA is to record it in a table. This has the 
advantage of being understandable for humans to read and review. It does, however, 
have disadvantages if an organization wants to use electronic means to help analyze the 
data. Many organizations produce tools that allow the FMEA data to be stored in spread-
sheets or a relational database that supports relating the data attributes. If the data is 
stored in a relational database, the data may then be queried using the SQL (Structured 
Query Language) facilities of the database. SQL is far more powerful than filtering and 
searching using spreadsheets. Relational databases record data in separate tables of data 
resembling smaller spreadsheets. Each table may be related to others by including 
primary and foreign keys (unique, identifying data fields in the table) to explicitly link 
the tables. The degree of relationships can be one-to-one (a person has one brain) or 
one-to-many (a person has many fingers), allowing a rich representation of real-world 
attributes. The traditional FMEA table type grid may be reproduced as a report output 
from the database, retaining the advantages of humans finding the table format easy to 
read and review. There are free, open-source, database-management systems available 
see (Ch 6, Reference 5). These would allow any organization to build their own database 
for an FMEA.

A more powerful way of structuring FMEA data that is much rarer than using 
the relational model, is as a graph data structure. Why would we do this? The FMEA 
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data is very rich in attributes (like different levels of impact of failure) that relate to 
each other. The key factor is that many of these attributes may be shared between many 
of the other entities in the FMEA. This means it is very difficult to remember that a 
common attribute such as “local impact” to a number of functional failures might 
be entered slightly differently using a spreadsheet with free-flow text entries. A way 
to address this is to use drop-down lists with a selection of predefined entries. Using 
drop-down lists also have disadvantages. If the list is too short, the choice of entries 
do not cover the real world situation the user is trying to record. If the list is too long, 
the authors own experience suggests the limit should be about 20 entries. Then the 
user often does not spend the time necessary to pick the most appropriate item. Data 
integrity is often degraded because users may select the top item in the list if they are 
unsure. Another situation that occurs is if two or more entries are applicable. The 
graph data structure is optimal where the data set is rich in relationships that are 
“many-to-many” in nature. These many-to-many degrees of relationship between 
entities describe the true nature of an FMEA.

There are now free-to-use Graph Database Management systems available (Ch 6, 
Reference 6), along with standards used to create what is known as Linked-Data (Ch 6, 
References 7 and 8). In the linked model, the data exists in a series of triples that are 
broken down as “subject-predicate-object”. Concepts such as “leak” – “is a type of” – 
“failure mode” can be formed in the triple structure that allows us to form a semantically 
rich set of relationships creating a network or nodes (subjects and objects) linked by 
edges (predicates) as illustrated below (Figure 6.1).

The triples can be queried using SPARQL which is the equivalent to the Structured 
Query Language (SQL) in a relational database specifically designed to query triple 
databases. One of the advantages of the triple store is that the data store, itself, can infer 
new relationships (predicates) by logic within the SPARQL system by applying rules.

For example, a rule may state: if Charles is the son of (Patricia and Edwin) and Peter 
is the son of (Patricia and Edwin) then the system may infer Charles is the brother of 
Peter (and vice versa). Any other siblings sharing the same parents would also inherit 
the same predicates (is the brother/sister of) automatically. The triple database, thereby, 
becomes hugely powerful for extension because of the ease of adding metadata and new 
predicate linkages. These automatic logical inferences are not possible using basic spread-
sheets or “out of the box” relational databases. The rules could be encoded, but this would 
take a lot of effort.

The graph database structure is particularly suited to mining the data where rela-
tionships between the data entities is particularly rich. This is eminently suitable for data 
such as that contained in an FMEA. The following figure shows a possible graph linked 

 FIGURE 6.1  An example of a Triple used in linked data.
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 FIGURE 6.2  Graph data schema for an FMEA.
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triple schema for the FMEA described in this chapter. The nodes (circles) edges 
(connecting directional lines) equate to the triple “subject (Node)-predicate (edge)-
Object (Node)” where the object is being pointed at. Each Node represents an entity that 
may be decomposed into attributes. For example, the Function entity may be decomposed 
into primary and secondary functions, all described using triples (Function)—[decom-
pose to]→(Primary Functions) and (Function)—[decompose to]→(Secondary Functions). 
Navigating through the triples is semantically rich and easy to understand what relates 
to what.

The author believes an FMEA would be best suited to store as a graph database. 
Another factor that may be relevant is the degree of the relationship. In a spreadsheet, 
the degree is binary, it is either true or by its absence is false. It is possible to define 
“degrees or strength” of relationships, but it can be overcomplicated. In a graph database 
this is easy to do, by including relationship attributes. For example, it would be possible 
to calculate the probability that a symptom was associated with a failure mode. The 
relationship is the association, and the unique probability can be assigned to the instance 
of the relationship (Figure 6.2).

In a PdM system, it is highly desirable to keep a live and accessible FMEA that can 
be updated during the RCM “age exploration” phase, where lessons learned and new 
facts may be added, as well as adaptations of the FMEA made when equipment may 
be modified. An FMEA should be revisited or reviewed after the following changes in 
an organization:

 1. Standard operating procedures are changed.
 2. Reductions in personnel – especially where hidden failures are concerned.
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The history of application of PdM in aerospace is that it has been developed outside 
of the MSG regime, where the MSG preventative maintenance needs to prove that it 
reduces the residual (from design and manufacture) risk of failure events to acceptable 
levels. This validation process is expensive and detailed, and to-date PdM has not been 
adopted wholesale within the MSG regime.

PdM has been developed and used most effectively by some airlines and aerospace 
manufacturers and has been applied to supplement the existing MSG3 maintenance 
regimes. It also helps de-risk servitization where manufacturers offer services based 
around their products.

The outputs of the PdM have been advisory only, mitigating operational and 
economic risks and do not yet have a basis of Verification & Validation (V&V) such that 
the performance can deliver predictable results. This does not imply the results of applied 
PdM are not dependable or valuable. PdM delivers considerable business value in terms 
of mitigating operational and economic risks.

There are studies being undertaken by the SAE HM-1 committee (E-32 ARP5987) 
to write ARPs on how to achieve “maintenance credits” using PdM.

The RCM process is based on gathering data around the eight questions quoted 
above. The data for questions 1-6 is contained in a Failure Modes and Effects Analysis 
(FMEA), and an RCM decision logic is used to determine what must be done at what 
times. The RCM decision logic in Figure 6.3 is equivalent to that for MSG3 in Figure 2.5.

PdM is a subset of on-condition maintenance and is considered within the RCM 
decision logic, above other maintenance task types such as scheduled restoration or 
replacement. The aim is to reduce the likelihood of failure or reduce its impact to accept-
able levels. The order of consideration of each of the tasks is significant: On-condition 

 FIGURE 6.3  Simplified RCM Decision logic.
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is preferable to scheduled restoration or scheduled replacement. Many RCM processes 
do not consider a combination of the tasks as satisfactory, which the MSG3 process does.

The scope of redesign includes changing the standard operating procedures to avoid 
stress (on the asset) or physical redesign of the asset itself (modification) to improve 
reliability or reduce the failure impact. For an operator using manufacturer’s machinery, 
this may involve modification by the operator or working with the manufacturer to 
mitigate safety-related failures. Intrinsic safety of an asset is rarely an issue because the 
major focus of the design process of the manufacturer is eliminating safety risks, safety 
assurance being an existential issue. The other elements of SHEL may be dependent on 
the assets operating regime and environment and legislation may change during the 
asset’s life. Modification by operators or specialist companies may supply solutions.

Of special interest is the hidden failure situation. Good design ensures that safety 
protection devices “fail safe,” that is to an “evident” state, usually to a tripped condition. 
There are some devices (such as pressure relief valves) that cannot be designed this way. 
Many operating organizations have business cycles where they economize and save costs. 
One way this is done is by manpower reductions. It is vitally important that if operator 
or manpower reductions are made that this is done in the knowledge that this may make 
some failures hidden, and some failures may remain dormant when experienced people 
who used to walk around their machinery to inspect it have been made redundant. These 
inspections are not usually officially recorded in a maintenance management system 
and, therefore, the benefits of this normal “best engineering” practice are not apparent 
to accountants conducting a cost-benefit study. It would be useful to capture data where 
incipient failure or fault conditions have been found on these types of rounds or 
walk downs.

A major aspect of RCM that was extensively written about in the original Nowlan 
and Heap RCM report was a concept called “Age Exploration”. This is where data analysis 
and updates to the RCM regime are embedded to update the maintenance tasks as lessons 
were learned. Age Exploration has not been fully developed by RCM or its aerospace 
equivalent MSG3 but, with the advent of PdM, the opportunity exists to develop the 
concepts. PdM supplies much of the data necessary to deliver age exploration and, 
coupled with reliability engineering (using Weibull analysis), could be further exploited 
as a continuous improvement process.

RCM age exploration is the systematic collection of data about parts in their oper-
ating contexts in order to establish their condition and failure related to their operating 
age and comparing this against their declared intrinsic reliability. Classifying which of 
the RCM failure patterns apply to parts is conducted. This is used to verify the RCM 
assumptions and original decisions to help revise the types of maintenance tasks and 
their periodicity selected to prevent or avoid unplanned failures. Age exploration also 
verifies design assumptions, although feedback of data from in-service to design teams 
in the product lifecycle needs to be improved. Weibull analysis described in more detail 
in this book would be a major tool used in Age exploration.

Another Maintenance management framework called Total Productive Maintenance 
(TPM) has been developing that addresses some of the RCM age exploration intent. This 
is based on trying to eliminate defects and common causes of failures to improve opera-
tional effectiveness, by empowering asset operators and local maintainers to take respon-
sibility for implementing incremental improvements that improve quality, reliability, 
availability, and lower cost. TPM is also linked to Operational Excellence, which also 
seeks to improve safety and reliability.
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Key Take-Away Points
 1. RCM and MSG3 share the same ancestry derived from the Nowlan and Heap 

RCM report of 1978. They share the same principles differing only in detail.
 2. RCM and PdM are often compared as one being better than the other: This is 

not correct. RCM and MSG3 are a framework used to define a maintenance 
regime that may include PdM if the FMEA contains the right data and use of 
sensor time series data is considered as a means of applying on-condition data.

 3. RCM has been adopted in other safety-critical industries besides aerospace, 
such as nuclear and the military and deserves recognition, as a strategically 
important system used to design optimal maintenance regimes.

 4. RCM has a reputation of being overly complex and onerous. This is not deserved 
when RCM is run by experienced professional people. It does take effort and 
commitment, but the results are often transformative.

 5. FMEA data is more suited to be stored in a graph database because it is rich in 
relationships between the data entities and attributes.
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This chapter identifies and explains key features of a PdM system and expands why they 
are important. Some features that are often cited as being advantageous in marketing 
material (such as real time) will be critiqued and placed in a more realistic context. The 
chapter produces a PdM maturity model as a basis for a PdM specification or a means 
of scoring a third-party PdM system.

The chapter initially sets a context with an entry on the relationships between data 
information and knowledge, and the ambiguity that exists. A PdM system is an informa-
tion system, and exploring these relationships and setting some definitions helps the 
reader better appreciate a successful system.

Data, Information and Knowledge
The raw material of PdM is data and, in order to understand the working of a successful 
PdM system, it is necessary to discuss the nature of data and how this is synthesized 
into information and knowledge. PdM is massively data centric and understanding data 
information and knowledge is enormously helpful in designing, procuring, or running 
a successful PdM system. A long-accepted model for data-to-knowledge was first 
produced in 1974, according to the reference [1], although the concepts go back further. 
A deeper explanation of Data-Information-Knowledge-Wisdom (DIKW) can be found 
at [2]. The original model was hierarchal with data on the bottom and information, 
knowledge, understanding, and wisdom towards the top. Each level above is a synthesis 
of the lower level. The original model had understanding but most literature since has 
omitted this as a distinct transform (Figure 7.1).

The search to find clean, simple definitions of data, information, and knowledge is 
hard and has not yet reached a satisfactory conclusion in literature. Knowledge is a 

What Are the Key Features in a PdM 
Maturity Model?
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particularly elusive concept. Attempts to define it have been going on since the time of 
Greek philosophers, and academia still does not have a good definition that is universally 
accepted today. A major problem with the concepts is that the terms, such as data infor-
mation and knowledge, are often used interchangeably and some attempted definitions 
of knowledge are described in terms of information and information in terms of data. 
This is wholly unsatisfactory but may never be resolved with crisp and unambiguous clarity.

There is a widespread belief that machines can infer or synthesize information from 
data. This is a mistaken belief as machines can give the impression that they can synthe-
size information. The outputs of Machine Learning and their ability to classify and 
regress data are very impressive, but those outputs are still not information. It is an 
innate ability of human beings to “sense-make” using all of their senses (not just digital 
data) to take in data and then synthesize information. Machines are not capable of sense 
making, they can only act or output new data following encoded rules. Sense-making 
is highly contextual, situational, and pre-disposed from previous experience of the 
persons along with their values and beliefs. Meanings derived from data can be entirely 
different for different people who are in the same place and context. Machines are unable 
to synthesize information.

A machine can only obey instructions, select data, infer new data, or add new labels 
to it. They can apply inferred data to other codified instructions and initiate actions (as 
described in the linked data example in Chapter 6), but they cannot synthesize informa-
tion. Machines would have to be sentient to do so.

The current model to show the relationship between Data, Information, Knowledge, 
and Wisdom (DIKW) therefore seems to be deficient and inadequate. However, the 
existing model does not satisfactorily recognize the ability of machines to process and 
infer new data.

A solution to this was developed by Checkland and Howell [3] where the concept 
of Capta was introduced. Capta is a subset of data that has been selected with a context 
in mind, by either human or machine using encoded instructions. Capta is the missing 
step between Data and information that properly recognizes the ability of computing 
machines to process data. If this new model with Capta is adopted, it may save miscon-
ceptions that machines can synthesize information.

 FIGURE 7.1  The Data-information-knowledge-wisdom (DIKW) hierarchy (Source 
Wikipedia) [2]).
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The other problem with then traditional model is that it includes Wisdom, which 
is synthesized after knowledge. Wisdom being the optimal use of knowledge to achieve 
goals. The author does not agree that wisdom is a true synthesis or transformation from 
knowledge for two reasons:

 1. Wisdom seems to be a “value judgement” on Knowledge. If wisdom is merely a 
value judgement, it is not a true transform from knowledge.

 2. Wisdom is only wisdom from certain perspectives. One person’s wisdom is 
often another person’s folly, or seeming wisdom today is recognized as folly in 
the future. Wisdom is therefore transient and is not ubiquitous, it is not a 
true transform.

In some literature, some authors make claims that Wisdom is also proof that a 
human has a soul. The author rejects this quasi-religious view.

The Data—Capta—Information—Knowledge model posited in this book is summa-
rized in Figure 7.2.

If this model is used, it is possible to put the analytical and processing elements of 
a PdM system in their proper place from the perspective of an Information System. An 
Information System primarily serves human beings. Human beings are the most impor-
tant component that need to be in the decision loop where stakes are high and uncertainty 
and variance exists. The role of computers in processing data and enabling the presenta-
tion of Capta, provides a more satisfactory positioning for the capabilities of machines 
and human beings.

 FIGURE 7.2  The Data-Capta-Information-Knowledge synthesis model.
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Data Quality
Data quality, according to [4], may be defined as, “The perception of a user that data is 
fit for their purposes, in particular contexts.” The important word here is perception. 
Quality is perceived by people and has a subjective aspect. Data may have objective 
measures of quality (that are essential) including accuracy, completeness, timeliness, 
and relevance. But if data has all of these and a user does not trust, understand, or value 
the data, it is still low quality.

In the PdM system, highly objective quality data and Capta must be presented to the 
user in a way that they can understand and act on, and the experience of using the system 
presenting the data must have a positive emotional impact. This experience needs to be a 
pleasure for them to use to be successful and complete the subjective needs of data quality.

Another vital facet of the PdM information system is that humans can take different 
meanings from the same data. This variation in sense-making may be minimized by the 
application of formal processes and shared semantics among the domain experts using 
the PdM system. At the other end of this spectrum of formal processes, tight teamwork 
carries the danger of developing groupthink, so the culture needs to be right so that 
people who think differently can feel confident to challenge accepted beliefs, backed up 
by data-driven evidence.

So what? What has this to do with a PdM system? Having a deeper understanding 
about the nature of data to wisdom and the role of humans and machines and knowing 
that data quality has both hard explicit as well as soft implicit attributes provides the 
reader with insights to acquire and use a PdM system.

The Breakdown of PdM into 
Functional Blocks
The SATAAL (Sense—Acquire—Transfer—Analyze—Act—Learn) system is a functional 
decomposition of the PdM system often cited with the Integrated Vehicle Health 
Management (IVHM) perspective on PdM. SATAAL is an acronym providing an easy to 
remember mental model for IVHM and PdM systems. This functional model is comple-
mentary to the OSA-CBM model discussed in Figure 3.8. Both models are widely used.

In IVHM the “Learn” part of SATAAL is not generally included. The author includes 
it in this book as it adds a self-reflective and continuous improvement aspect to operating 
a PdM system. As more data is gathered and modelling technology has improved, it is 
possible to apply lessons learned in constantly updating the PdM system. Constant 
updating and improvement should be a goal inherent in the architecture of the PdM 
system itself. The improvement system must include the human actors in the system.

On occasion, there may be changes in the steps taken in the process, dependent on 
the requirements of the system. For example, a level of analysis or pre-processing data 
often occurs before transfer. As can be seen in the left-hand side of Figure 3.8, if mitiga-
tion needs to occur locally on a mobile remote asset, then the full SATAAL cycle needs 
to occur locally. Risk needs to be managed where it can best be mitigated within the 
physical topology of the PdM system. In general terms, issues with shorter P-F intervals 
are better dealt with locally by operational means, while those with longer term P-Fs are 
better dealt with remotely, especially where investigative or remedial action requires 
central action to pre-position resources.
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Sense
Sensing incorporates the sensors and measuring devices that provide the data necessary 
for PdM. The sensor specifications should be such that the accuracy, precision, frequency 
of sampling, responsiveness (stiction and hysteresis) are fit for the PdM purpose. The 
sense function would normally include analogue to digital conversion and the presenta-
tion of data to the acquisition system.

In the development of PdM, the requirements for sensing have been primarily 
driven by safety, control, and operator indication. Sensors and instrumentation are 
expensive to fit and maintain, as they increase system complexity and, in an aero-
space context, add weight. This means that PdM systems sometimes have had to 
make do with the sensors and data acquisition systems fitted for these other func-
tions. It is only recently that system design is starting to consider PdM system 
requirements for enhanced monitoring and data acquisition. The problems with 
suitability of sensors for PdM is also a factor in the difficulty in building a business 
case for PdM. Notwithstanding this difficulty, it is generally accepted that 80% of 
cost for an engineered product is expended during its service life. This is a consider-
able incentive to ensure PdM can have access to the right data to help minimize 
through life cost.

There is a PdM perspective to be developed when considering sensing, measurement, 
and data acquisition. One of the major considerations is data sampling rates, which is 
expanded below in a subsection. Other areas are:

The functions of the sensor and data acquisition. Sensors are fitted for (In order 
of importance)

 • Protection and prevention (Interlocks)

 • Control

 • Operator aid—observation, alarms, and warnings

 • Maintenance (which is where PdM will be included)
 • Commissioning and testing. There may be mounting points or ports that may not 

be permanently fitted with sensors

Positioning and orientation of sensors. There are a number of physical and oper-
ating environment constraints that dictate where sensors may be fitted. The trade-off 
may reduce the effectiveness of PdM as it may degrade the signal to noise ratio or atten-
uate the signal.

Accuracy, precision, and responsiveness. PdM may have requirements that mean 
better quality sensors may be needed. For transient monitoring, the sensor stiction and 
hysteresis may be important: the frequency range for vibration sensors may need to 
be  extended to examine features in the data at the extremes of the spectrum 
of frequencies.

Data Sampling Rates
We have already covered the concept of PdM systems exploit continuous data sampled 
from fixed sensors. The concept of continuously sampled data needs further definition. 
Most sensors are analogue but have analogue to digital conversions done at the sensor, 
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so that data may be transmitted and multiplexed on data busses. Digital data therefore 
has an underlying rate of generation, so that they are transmitted as discrete readings 
over time.

The PdM system may want to consume all of the readings over time, or only some 
of the readings, but whatever the case, the readings are considered continuous, as a 
reading can be captured on demand. This section explains what the underlying sampling 
rates are driven by.

As part of the PdM requirements, consideration must be given to how the symptoms 
of failures (anomalies in the data) may be detected to feed into the diagnostic stage. 
These anomalies may only be detectable in four sampling rate domains:

 1. Dynamic. Dynamic data sampling is conducted at between 1 kHz and 100’s 
of kHz to capture vibration and acoustic data. The data needs to 
be transformed from time snapshots to the frequency domain using Fast 
Fourier and related filtering methods in order to be able to see spectral data. 
The various peaks of energy, velocities, or acceleration can be interpreted to 
extract anomalies. The frequency of sampling the raw data is determined by 
Shannon-Nyquist laws [5] that state that sampling must be at least twice 
the rate of the underlying fundamental periodicity of the feature to 
be detected. This is the theoretical mathematical limit: to gain practical 
measurements the frequency is normally five to ten times the 
fundamental periodicity.

 2. Transient state. Data is sampled at rates of 1–100 Hz to capture a transient 
condition. For example, to capture and trend the stiction, hysteresis and cycle 
times of gas turbine bleed valves, where the cycle time may be 1 second, it is 
necessary to sample valve position and actuator power at 100 Hz. Valve cycling 
is a good example of a transient change.

 3. Steady state. The easiest state to model because the relationships between the 
sensor data are unvarying, have reached an equilibrium and are 
more predictable.

 4. Chaotic state. This is where a system may be exhibiting multiple phases 
(solid, liquid, gas, plasma) at the same time. Probabilistic modelling may 
be relevant in this state, but this state is usually avoided by control and 
protection systems in real life. An example where this is important comes 
from steam generation in a nuclear reactor core (Pressurized Water Reactor, 
PWR), where it is indeterminate whether the reactor coolant is in the liquid 
(water) or gaseous (steam) condition, and the chaotic state of multiple 
phases must be avoided. Modelling (digital twins) may be useful in 
understanding where the boundaries of the chaotic state lie, so they may 
be avoided. If systems move into a chaotic state, it is likely due to an 
unwanted excursion possibly linked with loss of control and/or 
protection systems.

The following diagram shows a simple system with two sets of sensor trends tran-
siting from a steady state, through a transient state, to a new steady state. The correla-
tions between the sensor readings become more unpredictable in the transient state, 
which is why steady-state modelling and splitting out the steady-state data from the 
bulk time series data is conducted. The relationship between values may be linear or 
non-linear in the steady state, but they are much more predictable compared to the 
transient state.
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Acquire
Sensed data must be captured and made available to other functions that require it. 
There may be geographical, cost, and timeliness constraints that determine the physical 
acquisition architecture. There is often a requirement for processing data that may share 
attributes with the acquisition system. For example, the acquisition system may pre-
process data to reduce its volume to accommodate restrictions in transmission bandwidth.

PdM systems make use of sensed data that has other primary purposes and func-
tions. The PdM system must never reduce the effectiveness of the other primary functions 
that the sensors and data systems are fitted to carry out. PdM data sensing cannot 
be allowed to degrade safety protection or control functions.

A really important factor in acquiring time-series data is that the date and time 
stamps should ideally be in Coordinated Universal Time (UTC) so that there is a common 
baseline to compare different trends, and to avoid confusion as mobile assets cross time-
zones and the international date line. For mobile assets, a geographical position should 
ideally be recorded: GPS can provide both position and time information.

A significant factor to be considered is time-series data reduction. Data sampled at 
one hertz (once a second) may be averaged and recorded for readings every minute. If 
machinery is in the steady state and parameters are not changing between a set of limits, 
then the median value is recorded whilst data stays within those limits; for example, 
plus or minus 1°C for a temperature reading.

If the analysis conducted is steady-state, then these sorts of data reduction regimes 
should be acceptable as long as the averaging times are fractions of the P-F interval. The 
disadvantage of doing this may be that sudden events may be masked (such as a bird-strike 
event in an engine). It may be desirable when averaging data to include the maximum and 
minimum values over the averaging period. If these values are beyond a threshold, then 
perhaps data may be saved at the raw sampling rate for a window of time around the event.

 FIGURE 7.3  Trending through the transient state.
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The data acquisition logic can be  quite sophisticated in order to capture the 
maximum useful information. This will be traded off against the processing power, 
memory, and what data needs priority to transfer in a timely manner through commu-
nications channels with limited bandwidth.

Another important function is to model machine state to distinguish between steady 
and transient states, shown in Figure 7.3. Data sampling at the appropriate rates needs 
to be triggered so that the detection of anomalies can be more accurate, and the health 
of some components can be measured. For example, valve (transient) cycle times may 
indicate deterioration of stiction and hysteresis.

It is worth re-considering the discussion about operating context here. Using the 
example of a military front-line aircraft that has a dynamic operating profile. The aircraft 
are maneuvering far more frequently compared to a civil passenger aircraft flying long 
haul, where much of the flight sector is spent in a steady state. The PdM system for the 
military aircraft needs a higher percentage of transient analysis, compared with a civil 
aircraft with a higher proportion of static analysis. The data acquisition systems need to 
cater for these underlying requirements.

Transfer
The transfer of data from a mobile asset to a centralized point is necessary if timely 
remedial action that is better coordinated from a central position is necessary. The 
advantages are

 • Planning is better coordinated centrally,

 • The predisposition and logistics are better coordinated centrally,

 • PdM, planning, and logistics expertise can be concentrated centrally and forms a 
critical mass that helps increase innovation of PdM system improvements,

 • Whole fleet views are able to be visualized and insights are more easily noticed.

Timeliness, connectivity, and bandwidth are key constraints in the system that 
enables transfer of data. In aerospace, there is a worldwide network that allows VHF 
and satellite data communications using the ACARS system managed by SITA.

The ACARS data transfer protocol is relatively old, using a subset of ASCII characters 
in pre-formatted “reports” that are defined in the aircraft avionics.

Other services are starting to emerge, such as Honeywell’s aircraft data gateway, 
that have improved interoperability, connectivity, and security.

Other ground-to-air data bandwidth is also being provided for on-aircraft 
on-demand entertainment, communication, and web connectivity for business users. 
These capabilities are being driven by improving passenger experience and expectations. 
Redirecting smaller volume aircraft-related data, including PdM data piggybacking on 
these channels, is a possibility because the data transfer infrastructure will exist.

Time-series and frequency-domain data may be compressed. Commercially (or general 
use open source) available compression libraries such as pkzip, or GnuZip could be used, 
but they are not optimized for time-series data, and better, more specific compression 
algorithms can be used. Other means using pictorial data sent as JPG or PNG files could 
be sent: for example, a selected time for a vibration waterfall diagram may be sent as a JPG, 
with energy peaks being encoded with color, is a viable means of highly compressing 
dynamic vibration data in less than 100 Kbytes. The data formats are very easy to dissect 
on the ground to calculate the position, volume, and peaks of the energy within.
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Analyze
Analyze may be split between local processing at the asset or central processing after 
data has been transferred from assets. The SATAAL is a functional and not a 
physical abstraction.

Analysis can take two broad approaches: the first is a data science and data-centric 
approach, the other uses physical modelling. The Big Data approach is where all asset 
data is treated as one data set and analyzed as such. The idea would be to spot anomalous 
behavior or insights and use these to then relate back to failures. The advantage is that 
there are no pre-conceptions about cause and effect in this analysis. The anomalies are 
then normally discussed with domain experts to try to find a real cause and effect correlation.

The first stage of analyze is to conduct data quality checks, looking for missing 
data or obvious signs of sensor failure (a reading holds steady at a set value where there 
is known transient behavior or is way outside a sensible range). If time-series data is 
being acquired in batches, then stitching the files together to form a contiguous timeline 
is important. Gaps in data when the asset is out of service need to be properly accounted 
for. If errors or Data Quality (DQ) anomalies are spotted, then the system can alert 
these to the PdM operators, who may then choose downstream actions to correct them.

Many systems may convert the data into a neutral format so that the PdM system 
may have a single unambiguous means of analysis. This may also involve converting 
signals, for example converting engineering units from Imperial to SI representation.

Some PdM systems are only capable of detecting anomalies, others diagnose incip-
ient failure. Many do not include prognostics. Some PdM systems align with Prognostic 
Health Monitoring, as if this is a separate system from PdM. This text posits a PdM 
system must include Diagnostics and Prognostics to be truly viable. Prognostics is 
integral to PdM.

Major stages of analysis include machine-state detection, so that data can be separated 
at least into transient and steady state data, Diagnosis and Prognosis. Other peripheral 
analysis is associated with data quality, Dynamic data is high volume and so much pre-
processing and analysis needs to be undertaken on board. The time-series dynamic data 
needs conversion to frequency domain to understand where resonances of energy/accelera-
tion or velocity exist. A number of frequency spectra snapshots can be taken and shown 
through time to derive a waterfall type view. Waterfall plots can also be separated into 
transient (for example rotating machinery acceleration and deceleration) or steady state 
(hourly readings where the data is steady). Anomaly detection can then be focused on the 
size and volume of predictable spikes in the frequency spectra. Other software detectors 
can be set up to look for unexpected spikes of energy: for example, if a machine rotates at a 
set speed, it will display an expected spike of energy at a predictable resonant frequency 
proportional to speed. If an unexpected spike of energy is observed at 0.5 and 1.5 times the 
resonant frequency, it is indicative (a symptom, or an anomaly) of the rotor rubbing the stator.

Part of the analysis would include normalizing the trend data using models of 
normality, or equipment to equipment comparisons to produce residual signals. The 
detection of novelties, anomalies, and symptoms can then proceed as preparation for 
the diagnostics stage.

Other event data may also be included, such as when restorative maintenance is 
conducted, that may explain why step changes may be observed in the time series data, 
so that any false positive diagnosis mistaking these events as failures may 
be actively suppressed.

Also, it may be too expensive to transfer bulk data about transient conditions in 
flight, so much pre-processing and analysis may be completed onboard with low-data 
volume summarizations and anomalies being transferred. An example may 
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be transmitting and centrally trending timings for controlled valve cycle times. The 
machine state detection was mentioned in the Acquire section Act.

The PdM system can take autonomous action if it is highly trusted for some outputs. 
Work order and spares demands may be raised in an Enterprise Asset Management 
(EAM) System or Maintenance Management System (MMS). If a human must remain 
in the process loop, at least the work orders and spares demand may be raised in the 
EAM/MMS and a suitable domain user alerted to authorize their release. The mundane 
aspects of the work may be completed electronically.

The PdM system may alert the following classes of information. These are funda-
mental requirements for the PdM system.

 1. Where it detects data quality issues, including missing data.
 2. The performance of the algorithms, alerting when algorithms are not 

meeting metrics.
 3. The detection of a novelty. This may be benign behavior as yet not recognized as 

normal behavior, the PdM operator needs to either update the model of normality 
or update anomaly detection if the deviation is proven not to be benign.

 4. The detection of an anomaly, which is known to be indicative of 
non-normal behavior.

 5. The detection of a symptom, which is known to be an anomaly that is a 
component of a diagnosis.

 6. The detection of a diagnosis that indicates which component is faulty. The 
granularity of the fault isolation and the failure mode are the key value drivers 
for diagnosis. The diagnosis should also include certainty information and the 
probability of false positives. The use of a confusion-matrix and observer-
operator characteristic curve (see Figures 3.5 and 3.6) are best practice.

 7. The report of prognostic information. This may occur at any time during a long-
term degradation of condition, or after a diagnosis of incipient failure. The point 
is to present enough information and guidance to enable operations and 
maintenance to make the optimal decisions based on data driven evidence. 
Prognostic information should ideally include:

a. The expected, projected usage of the equipment. The usage will directly 
influence the rate of prognostic deterioration.
i. It may be advantageous to show projected RUL with lighter duty cycles or 

usage if extensions may be operationally advantageous.
b. The measure of condition, or resistance to failure. In the simplest case this 

might be a percentage of full condition.
c. The Remaining Useful Life (RUL) left before functional failure occurs, along 

with certainty or confidence bands (at the time of diagnosis, the RUL equals 
the P-F interval).

d. What the impact and consequences of failure will be at functional failure. 
There may be several points: for example, RUL to losing primary function, 
RUL to where induced damage to other systems is likely and the recovery 
work-scope grows, RUL to catastrophic failure (such as a bearing seizing).

e. The recommended remedial action and how long the active outage time of 
the asset is likely to be to conduct corrective action. A medical analogy is 
when a doctor gives a prognosis, the patient wants to know how long it will 
take to recover and what they need to do before getting back to normal life. 
Machinery prognostics should be no different.

 8. Pointers to historical corrective maintenance records for similar failure modes 
should be provided.
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Learn
A PdM system needs constant effort to maintain quality to suppress false positives and 
provide timely, accurate results. There must be a feedback system from the maintenance 
function that conducts the troubleshooting and corrective maintenance for failures or 
condition reports from the PdM system. This data feeds the metrics of both the diagnostic 
and prognostic systems. The feedback needs to incorporate the “condition” and what failure 
mechanisms were involved. Rich data including image and video could be extremely useful 
as an archive. It is often necessary for the asset to re-enter service and new data to become 
available if the PdM system is able to confirm the effectiveness of diagnostics.

There is also a large opportunity for ongoing incremental improvement to the system 
that requires a constant effort for reflection of the results. Looking at how diagnosis can 
be made earlier, delivering ever better granularity of fault isolation in the components and 
improving the accuracy and certainty of prognostics should be part of this process as well.

The digital-twin technology, RAM discrete-event Monte-Carlo systems that have 
access to the full set of historical data for the sensor time-series data, along with associ-
ated maintenance records, provide a resource where active innovation and incremental 
improvement should be a full-time process to support the learning process.

The development of people and their skills working in a multidisciplinary team that 
includes data scientists, software engineers, engineering domain experts from mainte-
nance and design are vital elements of a successful PdM system. Because of the trust 
issues involved with a PdM system, the way data and the auditability of the PdM system 
should also include User Experience (UX) experts, as the presentation of information 
to end users must be not just intuitive, but needs to have a positive emotional experience: 
a joy for a user to use. HM-1 has released AIR6915 about human factors for IVHM.

One of the key attributes of an information system such as PdM, that either recom-
mends follow-on action (decision support), or automates follow-on action is the ability for 
the system stakeholders to trust in it. This is more important where the system is proba-
bilistic in nature, where fully deterministic predictions of outcomes are not possible. Trust 
is subjective driven by prejudices and differing world views of the people that the 
system serves.

A measure of maturity for any information system is: how can the design, build, 
and operation of the system enhance trustworthiness? The following general 
principles apply:

 • The analytics leading to diagnostics and prognostics should be open and intuitive 
to human decision makers: black-box analytics are not fit for purpose.

 • The PdM system and the transforms and analytics made using it needs to 
be auditable throughout its data lifecycle.

 • Where models are trained on data, the provenance of the models and their 
training data needs to be open: models, training, and verification data sets need to 
be version-controlled so that a history of past diagnoses and prognoses can be built 
up, which form a basis of continuous improvement. Regression control to move 
back to a previous version must also be present.

People and Competencies
In order to successfully adopt, build, and run a large PdM system, people with the 
following expertise and experience are required. The PdM team needs to cohesively work 
together, although there will be people from different backgrounds. Much work is needed 
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to achieve a shared understanding of PdM, the system and the processes surrounding 
it. People from different backgrounds will have different ways of viewing and solving 
problems based on their own domain of experience. People need to be natural team 
players, who are also expert in their own areas. Brilliant people who are not team players 
may well slow development down. Having the whole team undertake RCM awareness 
training together will accelerate their melding as a team while developing a shared 
framework of understanding and collaboration.

The following competencies should be considered:
An Executive Sponsor: This will be a senior manager who can authorize the release 

of resources and who can act as champion for PdM at senior levels in the company and 
who will “own” the introduction of PdM. A thorough understanding of the positive 
business impact of applying PdM is vital to enable the executive sponsor to champion 
PdM. The executive sponsor will provide advice on how project reporting and business 
cases should be expressed to report back to senior management. Without senior manage-
ment buy-in any disruptive technology adoption will have a high risk of failure.

Team Leadership and Project Management: As a leader, this person should 
be prepared to facilitate the team and take away their barriers. This person should also 
need to talk in the same language as business-orientated people and communicate 
technology in a simple way. This person needs to be able to manage detailed technical 
aspects, but also communicate with businesspeople so they understand the business 
reasons for adopting PdM in business terms.

Operational, Maintenance, and Reliability Expertise: Those that operate and 
maintain machinery are closest to machinery, and with the best understanding how 
they behave and fail. Senior maintainers or operators who have the ability to reflect, 
generalize and draw lessons from their years of practice are the ideal people to include 
in a PdM team as domain experts. It would also be better if these people had specialist 
RCM training, and could apply the principles to help implement PdM.

Product Design Expertise: While operational, maintenance and reliability expertise 
is more important, product design expertise is very valuable: however, designers often 
do not know how machinery is used operationally, and do not fully understand how 
machinery fares in the various operating environments and contexts that it is used in. 
By collaborating the PdM team can enhance the understanding of the in-service product 
leading to improved product design.

Systems Architecture: This would not be a full-time role and in a large organization 
it would possibly fall into the Enterprise architect’s role. The systems architect should have 
experience in industrial data management and systems as well as enterprise systems. The 
two domains are very different. Part of the role is to extract data from the industrial systems 
as well as ERP, CMMS, and other maintenance-related systems so the data may be processed. 
Output data will need to be fed back to the transactional work-management systems so 
recommendations can be actioned. During the very early stages of PdM adoption where 
prototype and pilot systems may be set up, the architect’s involvement would be guidance 
and learning. It is in the design and specification of a PdM production system that the 
architect needs to be fully engaged to ensure the system is right and properly integrated.

Software Engineering: A full stack (able to build all the layers in an application, 
data, logic, and presentation) software engineer with either Maths or (traditional) engi-
neering knowledge will be ideal. Software engineers with data science, machine learning, 
and statistical backgrounds are highly advantageous. Software engineers should have a 
knowledge of software architecture.

Data Management and Systems Sustainment. Software engineers often do not 
understand how to support and maintain IT and data. The confidentiality, integrity, 
and availability of the data to authorized parties is very important. This person should 
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also act as a mentor for the full team, as it is every persons’ responsibility to maintain 
data integrity and quality. ISO 27000 is a well-known standard that helps define an 
Information Security Management System (ISMS) that ensures IT governance is 
appropriately applied.

Data science, statistics: Data scientists and data engineers are recently created job 
roles. These people are generalist in nature, having a broad background in ICT, statistics, 
Machine Leaning, and Artificial Intelligence (AI). For PdM there may be sub-special-
ization of data processing, especially in time-series data signal processing and digital 
filtering to improve signal-to-noise ratios. The data scientists should be able to explore 
what models are best suited to each diagnostic and prognostic problem and bring these 
to fruition in an operational PdM system. The data scientist should also be a skilled 
communicator, able to discuss technology with senior management.

User Experience (UX). PdM is probabilistic and needs a degree of buy-in and trust 
for operational and maintenance people to act on the PdM output. If diagnostic and 
prognostic capta is not presented in a way that is intuitive and promotes a positive 
emotional feeling to the users, the whole system risks being ignored. A UX expert would 
be massively beneficial in the success of PdM as a human-decision support system. This 
is an important issue to address the “Learn” section in SATAAL.

Maturity Model
The following model provides a scale for assessing the level of maturity of a PdM system:

Level 1—Data is centralized and made available for viewing and reflection. Although 
centralization and availability of data involves considerable investment and is a large 
technical achievement, it only represents the first step to PdM maturity. The volume of 
data for a whole asset-rich organization is usually far too much for maintenance experts 
to regularly review and spot anomalous machinery behavior.

Level 2—Anomaly detection. Simple alarms are set but diagnosing distinct failure 
modes is left to expert maintenance personnel. The kinds of anomaly detection implied 
by this level of maturity are described and demonstrated in Chapter 11, with the univar-
iate Kalman Filter. The system will have a means of alerting experts who should know 
when…….. (something is missing here).

Level 3—Diagnostics. Models for machine state and normality are incorporated 
and used to derive. Automated metrics for diagnostics is in-built (ideally using Confusion 
Matrices and RoC) (see Figures 3.5 and 3.6).

Level 4—Prognostics. The ability to predict Remaining Useful Life (RUL) are incor-
porated and used to estimate the times to varying degrees of functional failure. Metrics 
for prognostics are in-built.

Level 5—Continuous improvement, verification and auditability are built into the 
PdM system. Processes are embedded for the whole PdM system and for who, what, and 
when actions should be initiated.

Key Take-Away Points
 1. Specifying a PdM system must not be considered a primarily technical issue: 

introducing disruptive technology always initiates change (Systems Theory and 
emergent behavior). This change can be anticipated and managed or ignored.

 2. Knowledge, culture, and ways of thinking about probability are necessary to 
embrace PdM.
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This chapter includes a template for judging the maturity of an organization that relies 
on complex assets for its core activities. It also looks at requirements specification where 
relevance or assumptions to the maturity matrix will be highlighted. This may mean 
that several important investments may need to be made before a strategic Predictive 
Maintenance (PdM) system is introduced. Even if an organization is relatively immature 
in terms of readiness for PdM, there may be areas where early opportunities to prototype 
pay back handsomely. Prototyping allows lessons can be learned to help de-risk a larger 
strategic investment in the roll-out of a full PdM system. Quick wins that have high 
value establish credibility in the eyes of the senior management and confidence in the 
minds of the consumer. Care must be taken with deploying prototypes, to deter business 
people to assume that prototypes are production capable. The limits and costs of trying 
to scale prototypes must be carefully and robustly explained.

Assumptions
The most critical assumptions are that the organization relies on physical assets that:

 • business critical, so there is a high reliance on the assets to achieve the 
organizations goals.

 • have high impact or consequences to the business or other stakeholders if they fail.
 • require maintenance.

Specifying Predictive Maintenance

C H A P T E R 8
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This implies that assets do not necessarily have to be complex, capital intensive 
(relatively expensive), or require specialist maintenance possibly recommended by the 
asset manufacturer. But assets that do have these attributes are most probably going to 
require a maintenance system.

Another case where maintenance needs to be considered is if assets are used in a 
novel operating context, or environment, that the manufacturer has not considered in 
their maintenance recommendations.

Designers and manufacturers survive in the market because their assets have been 
designed to be safe and reliable (meeting standards and being competitive). However, 
although the asset may be intrinsically safe, the operational safety may need wider 
consideration as it, depends how assets are used or integrated into a larger system. This 
is especially important in an industrial situation, where vulnerabilities that may have 
safety implications emerge (remember the principles of systems thinking and 
emergent behavior).

Having an FMEA to support and justify a maintenance regime is not mandatory, 
unless it is claimed to be an RCM process but experience suggests that it is highly benefi-
cial in applying PdM. Especially where assets are used in novel context and environments.

Note that SAE standard JA1011 [1] specifies what is necessary in a process to claim 
that it is compliant. RCM mandates the use of a FMEA to design a maintenance regime.

Basic Requirements
The list here captures the requirements of PdM systems using the SATAAL breakdown 
and their explanations. The requirements produced here are either “Must Have”, or 
“Should Have” where “Must Have” is critical for the system to work, and “Should Have” 
is a function that adds considerable value to PdM system. This system of marking require-
ment importance uses some of the MoSCoW system used in software engineering.

 • M = Must Have. If these requirements were missing, the system would not 
function at its highest level. These requirements are critical.

 • S = Should Have. If these requirements were missing, the system would work but 
be severely compromised.

 • C = Could Have. These requirements are nice to have and may be included if 
budget and time constraints allow.

 • W = Would Have. These will not be done in this phase of the project as they are 
only partially beneficial; but may be retained for review later.

If any “Should Have” requirements are missing, they severely degrade the PdM 
system. The following are purely functional requirements as performance, constraints, 
and other non-functional requirements will be contingent on the context of the system 
being considered. There may be constraints due to existing systems to interface with 
and ITC infrastructure that will all determine non-functional requirements. This is a 
set of “Must Have” and “Should Have” requirements that may be used as a baseline:

 • The PdM system shall be able to connect to and process time-series, event, and 
frequency domain data (Must Have).

 • The PdM system shall be able to apply state detection algorithms to split data into 
transient or steady states (Should Have).

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Basic Requirements 95

 • The PdM system shall be able to, if relevant using vibration, apply signal processing 
to transform frequency to time domain and vice versa (Should Have, but is more 
critical with rotating machinery).

 • The PdM system shall provide means to explore data, to find correlations between 
and within event and trend data (Should Have)

 • The PdM system shall be able to use models representing normal behavior (Should 
Have, but this technique is a significant differentiator).

 • Models may be physics- or data-based.

 • Models may be either imported from an external source or data-driven models 
built and trained using the PdM system itself.

 • Where data is used for models (build, training, and verification) data sets must 
be separated and labeled. These data sets must be version controlled and 
be available for historical auditing purposes.

 • The PdM system shall be able to produce residual signals from normal behavior 
models and sampled data (as above—Should Have).

 • The PdM system shall be able to detect deviation from normal behavior and 
classify novelties, anomalies, or symptoms. These algorithms will include 
threshold exceedance, ramp, and step changes in the time series trends. The 
anomaly detectors shall be tuneable by the users (Must Have).

 • The PdM system shall be able to track anomalies through time and classify these 
where they form a signature of a failure mode (diagnosis) (Must Have for a 
complete PdM system) this classifies anomalies as symptoms of a failure mode.

 • The PdM system shall be able to detect failure early enough and alert those 
needing to intervene in sufficient time so that they can take effective remedial 
action. (Must Have).

 • The PdM system shall be able to isolate failure modes and failed components at the 
required level of indenture in machinery break down structure to be able to 
facilitate effective and efficient recovery. For example, should the system fault 
isolation be at the whole engine, compressor combustor turbine or the row of 
blades or guide vanes levels of indenture (Must Have).

 • The PdM system shall provide a means of measuring the performance of diagnosis 
(usually a Confusion Matrix) (Should Have – but improving the system depends 
on measuring its performance).

 • The PdM system shall be able to provide prognostic regression to report 
Remaining Useful Life with certainty bands, along with forecasts of effects and 
consequences of functional failure (Must Have).

 • The PdM system shall be able to apply any prognostic model (Should Have).

 • Models may be physics- or data-based.

 • Models may be imported from an external source or data-driven models built 
and trained using the PdM system itself.

 • Where data is used for models (build, training, and verification) data sets may 
be separated and labeled. These data sets must be version controlled and 
be available for historical auditing purposes.
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 • The PdM system shall have an alerting system that may be user configured to 
inform those responsible for decision making or taking remedial actions, with 
settable priorities, for anomalies diagnosis and prognostic events (Must Have).

 • Alerts shall be able to be positively acknowledged to ensure they are received.

 • Actions taken on alerts shall be recorded in the PdM system.

 • The PdM system shall be able to form work orders for a maintenance scheduling 
system (leaving a maintenance scheduler user authorization to release the 
work order).

 • Make available all historical alerts of the same nature, to reassure the users that 
the appropriate action is initiated.

 • Ensure that alerts are not repeated for the same failure event, where no 
significant changes have occurred.

 • The PdM system shall share data to enable Age Exploration, to establish parts age 
and usage in relation to condition and failure (Should Have).

 • The PdM system shall be capable of advising other opportunistic maintenance 
when a failure is diagnosed, where the assets recovery provides the opportunity for 
other work that may be due, or where prognostics indicates a high probability of 
failure during the next phase of operations (Should Have).

 • Any changes within the PdM system shall be recorded, by whom and when, along 
with a justification for making changes. This shall form an audit trail 
(Should Have).

 • Some changes may only be available to named users

 • Changes shall be able to be reversed

 • The PdM system shall be able to archive older data (Should Have).

 • Archived data shall be able to be restored into the PdM system on demand

 • The PdM system shall be able to produce reports for any failure, with anomaly 
detection, diagnostics, prognostics, and alerting events (Should Have).

 • The PdM system shall be able to be used as assistance to Root Cause Analysis 
(Should Have).

 • The PdM system shall be able to report any asset’s components likelihood of failure 
and Remaining Useful Life to support maintenance planners searching for 
candidates for opportunistic maintenance (Should Have, inclusion of Type 1 and 2 
prognostic capability).

 • The PdM system shall be able to export data for offline analysis (Should Have).

 • The PdM system shall be able to separate data logically between different 
stakeholders so preserving privacy (Must Have, as this may also have legal 
ramifications if personal data is included).

 • The PdM system shall include a feedback system so the maintenance function 
conducting corrective maintenance can report on the condition of the part to 
verify diagnosis and prognosis (Should Have, very important for verification and 
continuous improvement).

 • The PdM system shall provide case studies and be able to be used for training users 
(Should Have, but very important users are considered as intrinsic to a successful 
PdM system).
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 • The PdM system shall interface with data historians, system surveillance (for 
example SCADA), reliability applications, FMEA structures, FRACAS (Failure 
Recording Analysis and Corrective Action Systems), maintenance management 
and logistics systems. (Should Have—very important for automation, transfer of 
data involving manual input is not scalable).

Key Take-Away Points
 1. This chapter provides organizational context for needing a PdM system.
 2. It provides baseline set of functional requirements for an effective PdM system.
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PdM is firmly based on and subject to probability. Many other processes and mindsets 
are based on determinism and deterministic outcomes. People who have spent a major 
part of their careers tacitly learning how to deal with their world in a deterministic 
manner face a substantial challenge here. They have to adapt their thinking and reflect 
on and change long-held assumptions when dealing with the probabilistic nature of 
PdM. This change is necessary, and it demands change at every level of the organization: 
this is not an easy cultural move. This problem is especially acute in building business 
cases for PdM.

There is useful literature to be reviewed in understanding how people think, which 
provides knowledge for how culture change may be planned so that organizations can 
adapt to dealing with probability.

Daniel Kahneman: Thinking Fast, 
Thinking Slow
Khaneman book [1] describes how the brain is organized into two working systems. 
System 1 is the fast-acting intuitive side that works subconsciously and underpins how 
people automatically react to danger without conscious effort. System 2 is rational, 
conscious, and slower acting. System 2 takes more energy and effort to use, and thus our 
brain combines System 1 and System 2, preferentially using System 1 to make quick 
choices. This natural tendency may not be the best way of making decisions where a 
more considered and rational approach is necessary. The book describes how the brain 
also compensates for not being able to process and store all of our sensory inputs. It also 
shows how decision-making can be highly influenced by external stimuli. Reading this 

What Are the Disadvantages of PdM 
and How Should They Be Addressed?
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and understanding how our mind works work may help make us better decision makers. 
Our brain is limited because it does not remember every single past event: the brain 
actually superimposes frequently observed patterns it has seen in the past to current 
situations, which means people may not notice other peripheral things going on. An 
example of this “selective attention test” is found at [2]. People can easily be biased in 
misinterpreting data or capta because of erroneous patterns recalled from our memory.

Nassim Nicholas Taleb: Fooled by 
Randomness
This book [3] has stock market investment as its context, where investment success and 
decision making are far more influenced by random chance than most of us give credit 
for. There are widespread beliefs in extreme success being due to expertise where in 
reality it is random luck. The book contains some strategies that are useful in dealing 
with probability and expectancy. One of these directly relevant to PdM decision making 
is where a maintenance and operational machinery manager has a diagnostic alert with 
prognosis advice from the PdM system. The dilemma is that whatever decision is made 
whether to act or not, the costs are high:

 • The cost of withdrawing an asset from service and conducting the corrective 
maintenance when the diagnosis is false may be unacceptable.

 • The cost of ignoring a diagnosis and suffering an unplanned failure defeats the 
object of applying PdM. This cost is unacceptable.

The decision making is critical and has high intrinsic value; understanding more 
about how humans make decisions is valuable to enable the decision maker to have 
multiple perspectives to help them decide. The book illustrates how decision making 
may be  based on risk management principles to help insulate yourself against 
dire outcomes.

This is also relevant in some RCM processes where an FMEA Probabilistic Risk 
Number (PRN) criticality matrix is used (discussed in Chapter 5) to determine the 
criticality of failure based on the likelihood and impact of failure. If the RCM process 
is considered where expert knowledge is being elicited from experienced maintainers, 
then the process may insulate the organization from failure events that have dire conse-
quences, but these events may be so unlikely that some may consider them as not credible. 
If an event like this occurred, it may be considered a “Black Swan” event [4]. The mitiga-
tion against extremely high impact/extremely low likelihood events is to relax the likeli-
hood parameter (because likelihood is much harder to accurately estimate compared 
with impact), and apply active measures such as employing PdM specific to that failure.

The point is that management and decision making in the probabilistic domain 
require a change of mindset, and it is highly advisable to build some background knowl-
edge about how human decision making is made to deal with uncertainty. Probability 
and uncertainty pervade PdM.

The certainty of predicting future needs to withdraw assets from service for main-
tenance reduces with PdM. In a world where strict periodicities are set for planned 
maintenance (scheduled inspections, replacements, and restorative tasks), the forward-
looking plan has relatively high certainty. This means capacity planning, utilization of 
maintenance resources, financial commitments, and minimization of disruption to asset 
operational schedules can be forecasted with high confidence.
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A clear plan based on fixed period scheduling looks very neat and outwardly attrac-
tive, but in common with any military operation, a plan is only valid up to the point 
where battle is joined. Once a set of assets starts to have unplanned failures, the neatness 
of the original plan quickly disappears; and the planning process can become an ongoing 
fire-fighting for the recovery from unexpected failure events.

With PdM the prediction of failure has uncertainty, and this is also inherited into any 
plan. The plan looks messy, but in reality, it should (if PdM is effective) actually represent 
the real-world demands for maintenance intervention compared with a fixed-period 
schedule. The key to success is where PdM delivers sufficient P-F interval or Remaining 
Useful Life (RUL) to allow planning and predisposition of resources for recovery.

The possibility of false positives causing nugatory work may lead to a loss of confi-
dence and trust in PdM. The continuous effort to improve PdM and suppress false 
positives is considerable. Loss of trust in PdM can occur quickly with a small number 
of false-positive events involving unnecessary withdrawal of assets from service and 
useless work. This may take a long time to re-establish. A sensitive trade-off needs to 
be continuously reviewed against balancing specificity and sensitivity of the diagnosis 
process. On occasion, it may take manual confirmation of the diagnosis (by inspection) 
to ensure false positives are avoided but this checking activity tends to reduce the cost 
effectiveness. The use of a Confusion Matrix and Receiver Operator Characteristic curve 
(ROC) to measure and trade-off diagnostics is highly recommended.

Maintenance planning and scheduling may be perceived to be less predictable 
than calendar of elapsed operating hour or cycles-based maintenance. This makes 
planning and scheduling maintenance harder, along with problems of utilizing main-
tenance resources in a steady manner more problematic. Spares forecasting and ordering 
may require that larger stocks are held and slightly increased costs with associated 
sunk capital.

A mature PdM mitigates some of these disadvantages by focusing on delivering a 
reasonable diagnosis of failure early enough that the Remaining Useful Life (RUL) is 
maximized, and optimal times where assets are withdrawn from service may be made 
to minimizing disruption. Most maintenance regimes have concepts of planning 
horizons as follows:

 1. Short-term planning horizon, possibly two weeks to a month looking forward: 
maintenance plans are solidly committed, and spare parts are predisposed (or 
firmly committed) in order to conduct work. If an organization mandates that 
RUL exceeds the short-term planning horizon for any failure mode, then the 
disadvantages of more uncertain planning and scheduling are mainly mitigated.

 2. Medium-term planning horizon, possibly three to six months in advance (or 
two minor maintenance cycles ahead, where machinery is regularly withdrawn 
from service). This is where maintenance is planned but not yet committed.

 3. Long-term planning horizon, possibly looking at a year ahead, and likely to 
be linked to the annual financial planning and commitment cycle. This is where 
longer term capacity planning is likely to take place having understood the 
utilization of maintenance resources and how their budget is consumed.

The willingness to continue operations with known incipient failures is low (in 
aerospace). Any accident caused by a known incipient failure will cause catastrophic 
loss of reputation and loss of confidence in the whole aerospace industry. In this situa-
tion, the ability to continue operations with a known higher risk of failure is 
probably untenable.

If a serious defect has been found with a low probability of functional failure for 
several flights and the aircraft has no local maintenance facilities, it may be justifiable 
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to conduct a ferry flight with minimal crew and no passengers to an airport with the 
appropriate maintenance capability. If incipient failure is going to be corrected as soon 
as possible after diagnosis, then most efforts will be put into the accuracy of diagnostics, 
with prognostics being of lesser importance. (This does not imply prognostics is 
not important.)

In other industries, where production is a priority and there are no safety implica-
tions, machinery with known damage may be kept running for as long as possible. In 
extreme cases, a machine may be run to failure, because from a business perspective it 
may be more beneficial to do so. Perhaps there are large penalties for not meeting a 
production dispatch commitment. Having effective and trustable prognostics is vital in 
these situations.

In the industry a reader works in, the tolerance to continuing operating with known 
defects must be assessed and extra effort must be put into the continual improvement 
of prognostic accuracy.

Access, ownership, and security of data. Many organizations are realizing the 
inherent value of data and its utility as a business resource. The questions of access and 
ownership of data derived from assets is becoming sharper. In some industries manu-
facturers sell access to in-service data to operators. This practice will likely become 
untenable, as that data can easily be analyzed and the whole picture of how assets are 
utilized and operated can be derived, which constitutes sensitive Intellectual Property (IP).

If whole industry verticals and the data involved in the full life cycles of complex 
machinery are reviewed, it will be noticed that data exists in siloes. Many data silos will 
belong to different stakeholders within the industry. Design and manufacturing, opera-
tors (including PdM) and R&O data are most often separated and not shared. Systems 
to exploit the data by its aggregation have not yet been produced, and the structure of 
the data held by each organization is different and not interoperable.

If a means by which data could be shared technically, so it is interoperable and 
transferrable, that takes into account sensitivities that protect IP, it would have the 
potential to save much through-life cost.

There is a difference in structured data and unstructured data. Structured data may 
be contained in relational database systems while unstructured data (images, videos, 
and documents) are held in hard copy or in computer file systems. It is estimated that 
only 5% of all data held by an organization is kept as structured data in a database 
management system. Data schemas to contain data suitable for industry are often not 
stored in a standard way, although data standards are developing. As Big Data technology 
has been emerging there are new types of what are called “no SQL” database manage-
ment systems. No SQL systems fall into five basic types:

 • Key Pair data stores.

 • Document databases.

 • Time-series databases. This would include industrial historian systems that store 
sensor time-series data.

 • Big table (column or row orientated) databases.
 • Graph databases. An application for graph databases is discussed in Chapter 6.

It is not in the scope of this book to provide a detailed explanation of these 
new systems. It is worth knowing about them because it does imply that a much 
higher percentage of all data held by organizations may be stored more securely in 
No-SQL databases. This makes that data available to be  exploited as a valuable 
business resource.
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Security of data is going to require constant effort and work to ensure only those 
authorized to see or access it can. With the emergence of Industrial Internet of Things 
(IIoT) and ever greater networked connectivity of machinery and components the vulner-
abilities associated with a network multiply.

The ability for PdM that relies on connectivity, to deliver maintenance credits must 
include the highest standards of data security for it to be successfully deployed. The 
current standards applied to current data systems are not yet fit for purpose. SAE has a 
Digital and Data Steering group (DDSG) to analyze and report on gaps in existing 
standards. Certifying a PdM system to ISO 27000 is also a means of addressing security.

The adoption and full exploitation of PdM requires fundamental changes. Any 
change in an organization or federation of organizations and stakeholders is uncomfort-
able and difficult. The amount of effort required to invest in the change management 
process is large and may easily be underestimated.

It may be tempting to cut project costs by reducing or eliminating change manage-
ment and training, which actually increases the risk that the necessary deep-rooted 
changes are not made, and PdM does not deliver value. Usually, social and human aspects 
of a technology introduction are harder to get right than deploying the technology itself. 
If a project is initiated and leadership is devolved for delivering it to IT or engineering 
departments, then the likelihood that the project will fail is high. Successfully adopting 
PdM must be business lead and is mainly a people-change issue, the technology aspect 
often being the easiest to build.

The Resnikoff Conundrum
In his book RCMII, Moubray [7], described the conundrum that the higher the impact 
of failure (especially safety-implicated) the rarer will be the failure events. It is also not 
ethical and most often too expensive to test to failure where safety impacts are apparent. 
This means there may not be any data of statistical significance about these events. 
Moubray concluded that actuarial analysis was therefore not practical in these cases and 
where data was required to understand the failure modes, he recommended it be derived 
from expert operators and maintainers through expert elicitation with a skilled 
RCM facilitator.

Whilst knowledge elicitation from experienced operators and maintainers is vital 
and should be the default position for an RCM study, the introduction of modern infor-
mation systems, metrology and communication technology coupled with the availability 
of data, have improved at an exponential rate over the last 10–15 years. The author 
believes Moubray’s conclusions may be challenged for the following reasons:

 • The application of Bayes’ Theorem and its recent ascendency from being the 
underdog of the frequentists school in the statistical community has been 
transformative. The ability to model physical processes and degradation is way 
beyond the levels assumed by Moubray in the 1980s.

 • Besides Bayes, the emergence of Artificial Intelligence and Machine Learning that 
underpin data-driven predictive technologies provide the tools to model and 
predict machinery behavior.

 • The emergence of digital twins utilizing detailed physical and data-driven models 
enables flying a physical and virtual asset synchronously: any abnormal behavior 
may be explored using the digital twin, enhancing root-cause analysis, diagnostics, 
and prognostics.
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 • Moore’s Law with the capability of IT doubling for the same cost every 2 years 
since Moubray’s time, the emergence of cloud, distributed computing-on-demand 
using Big Data technology have transformed the ability for computing to process 
and solve huge problems. Consider how weather forecasting has improved over the 
last 20 years by this development, where five-day forecasts may now be trusted. 
Strictly speaking, Moore’s law that predicts the increase in the density of 
transistors per unit area of silicon has reached physical limits. The processing 
capability is still increasing, because multiple processors are being produced per 
Central Processing Unit (CPU), and programming languages can exploit this using 
parallel processing to reduce the time taken to compute.

 • We are also at the point where the Industrial Internet of Things (IIoT) is emerging, 
where miniaturized, smart, ultra-low power, wireless-enabled sensors and devices 
will slash the costs of fitting sensors by orders of magnitude compared to today’s 
systems. The result is likely to be far more reliable with data becoming available to 
monitor and measure, or accurately infer condition degradation. IIoT is an 
emerging technology, where barriers for adoption will be discussed in Chapter 10 
but the potential is transformative.

 • The following may be accessed and analyzed: used parts that may be deeply 
inspected or run to failure; accessing data captured during their service life to 
determine the degradation of condition including advanced prognostics. These 
will supply detailed capta to predict failure. These data combined with Bayesian, 
digital twin, and other machine learning (applied deep learning perhaps) may 
address Moubray’s criticism.

The conclusion is that by exploiting more of the data that is created through the 
lifecycle of the components, it should be possible to conduct more actuarial-type analysis 
to specify and help justify the configuration of a PdM system to increase the confidence 
in its outputs.

However, access to the data may still be problematic as data may be owned by 
different organizations in the industry. Manufacturers and their suppliers, operators, 
maintainers, and other parties may be reticent to openly share data as this may expose 
IP. Organizations are also becoming more aware of the latent business value in their 
data and want to ensure that they gain the benefits of analyzing it.

Commercial incentivization to share data where benefits accrue to all organizations 
needs to be worked out. The technology to enable sharing is available: it is the willing-
ness to share data between organizations within industrial sectors, whilst preserving 
Intellectual Property and value streams, that needs to be developed.

Key Take-Away Points
 1. There are disadvantages in PdM:

 a. The need to deal with probabilistic systems that requires adjustment in 
thinking and decision making.

 b. The changes in projecting future maintenance are made uncertain by PdM, 
but this is mitigated by having enough time within the Remaining Useful 
Life to predispose resources and plan for recovery.

 c. New competencies are necessary to employ and develop.
 2. Modern ICT and data analytics, along with increases of data availability, start 

to challenge the RCM belief that actuarial analysis is not practical.
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 3. Commercial issues in data ownership and access need to be overcome in 
adopting PdM, without compromising sensitive IP.

 4. IVHM has a large potential to reduce costs throughout the supply chain, and 
also in the product lifecycle.
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We live in an age where the emergence of new technologies and their universal and rapid 
adoption is accelerating (see Figure 1.1). An example of this is the invention and take-up 
of the landline telephone system that took just under 100 years before it was fully adopted 
in developed countries. This should be compared with the mobile smart phone that has 
emerged and been universally adopted in the last 15 years in most countries in the world.

Big Data and Cloud Services
The first technology discussed that has recently emerged is Big Data and the availability 
of internet-based cloud services.

Big Data technology has been developed because of the requirements of on-line 
(internet-based) commerce and information services. Amazon.com required reliable 
online ordering and fulfilment systems that also directly marketed to customers based 
on analysis of millions of users’ buying preferences. Google required search-based 
services to return personalized and useful information to users in under a second. The 
requirements for much higher volumes and varieties of data, to be processed at much 
higher speeds (velocity) and timeliness, where the outputs were accurate and could 
be trusted (addressing veracity) were necessary in order to deliver usable trusted services. 
See Ref. [1] for the IBM explanations of the four “V”s in Big Data. The four Vs are volume, 
variety, velocity, and veracity.

The traditional data management vendors did not have systems or products available 
to economically deliver the performance demanded with volume, variety, veracity, and 
velocity from the new online businesses. These businesses developed the Big Data tech-
nology themselves but used an open-source approach. The technologies they invented 

How PdM Will Likely Transform with 
the Emergence of New Technology

C H A P T E R 10

C
H

A
P

T
E

R
 
1

0

 EBSCOhost - printed on 2/14/2023 4:42 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://Amazon.com


108 Aerospace Predictive Maintenance: Fundamental Concepts

helped scale computing infrastructure, producing distributed and parallel processing. 
Core technologies like:

 • Hadoop [2] that enables storage and processing of vast volumes of data includes a 
file system,

 • Hadoop File System (HDFS), that allows data to be split over very many cheap file 
servers using a big table No-SQL approach (discussed in Chapter 6, using a No-
SQL graph database).

 • The development of Map-Reduce algorithms [3] added the distributed parallel 
processing that substantially reduces the time to compute over massive distributed 
data sets on Hadoop.

The traditional data management solutions had to include very expensive server 
clusters, which grow exponentially in cost for marginal improvement at the upper end 
of the spectrum of capability.

There is much hype about industry adopting Big Data, cloud services, and IoT: many 
projects including PdM are being launched claiming exploitation of Big Data. While 
these claims may be exaggerated and much of the projects based on current technology 
(such as conventional sensors), it is still legitimate to use the new emerging information 
and communication technology (ICT) capabilities: Organizations do not necessarily 
need Big Data to exploit Big Data technologies. Many projects experiment with Big Data 
to position themselves for downstream exploitation and allow experience to be gained.

Compared with the online giants such as Google and Amazon, most aerospace 
companies are not in the same league in terms of Big Data, but this does not stop aero-
space from taking advantage of and exploiting the technology.

The Emergence of the Industrial 
Internet of Things (IIoT)
IoT and its industrial equivalent means that any smart device with localized processing 
and memory may be connected to the Internet [4]. Smart devices may also locally network 
with other IIoT devices using ultra low-powered mesh wireless networks. These local 
networks (in IoT terms called the “edge”) can act autonomously and adapt depending 
on what they sense from their environment. The edge-networked devices will be able to 
do more together than they could do as the sum of their isolated abilities. For example, 
in an IoT-enabled in-house motion sensors may work to switch room lights on and off 
as people move through rooms. The system will also distinguish between authorized 
and unauthorized people, so the system does not inadvertently help burglars.

In the industrial sector, IoT needs more maturity and have a market developed for 
volume sales in the following areas:

 1. Security needs to be seriously upgraded. There is an adage “if it has software it 
might be hacked, if it works on a network it will be hacked”.

 2. Industrial packaging of the sensors is necessary to operate in harsher 
environments in industry.

 3. The trade-offs between power, processing, memory, and data transfer 
(bandwidth, power, and range) need optimizing for industrial purposes. Most 
systems today will be bespoke, and commoditization will be necessary before a 
large uptake ensues.
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 4. The early adopters of the technology will more likely be those organizations 
with static assets. For example, oil and gas exploration are prime for this as 
instrumentation associated with drilling may provide early breakthroughs with 
hardened packaging.

 5. Predictive analytics will need further development so that the algorithms will 
work with reduced processing power and memory. It might emerge that 
specialized low-power processing chips (such as Google’s Tensor Processing 
Units, TPU) may be used in IIoT edge applications.

The promise of IIoT is that the cost of fitting sensors reduces by orders of magnitude 
compared with today’s technology. This provides the opportunity to measure, sense, 
and make data available at a far greater granularity than is achievable today. Sensors 
will be miniaturized adding a step improvement in the ability to conduct Predictive 
Maintenance. Miniaturization is possible using micro-electrical mechanical sensor 
(MEMS) methods and minimally invasive monitoring sensors (MIMS) being developed 
in the medical domain, where the principles can be adapted for use on machinery.

Initial applications with IIoT in aerospace may emerge in structural and avionic-
type systems. It will probably not emerge in gas-path sensing in jet engines due to 
extreme environments.

IIoT will also enable better PdM architectures, conducting more onboard processing 
to deliver more local recommendations and automatic actions based on the ability for 
local processing to mitigate incipient failure compared with centralized functions. Local 
automation of diagnostics, prognostics, and booking remedial action and initiating 
planning and logistics systems to meet the maintenance demands will become common. 
If self-driving vehicles become more common, then the advent of them turning up at 
maintenance bays with remedial work already scheduled may become prevalent. The 
automation potential of IIoT still needs to be balanced against the requirement of central-
ized PdM systems components. The human needs in an information system are still 
paramount, and the concentration of expertise in a critical mass enables robustness 
learning and continuous improvement.

IIoT will also be optimally positioned to take advantage of 5G mobile-phone tech-
nology [5]. 5G enables local wireless networks of smart IoT devices to communicate 
large data sets with reduced latency (compared with 4G systems). IIoT may be the killer 
application of 5G telecommunications systems with the maturity of 5G rollout, the 
author may begin to believe marketing hype about real time PdM.

Industry 4.0
Industry 4.0 [6] is an amalgamation of several emerging technologies including IIoT, 
robotics, Big Data, additive manufacturing, data-driven manufacturing, and predictive 
technologies. It promises to deliver highly autonomous production lines that may recon-
figure themselves (using data and instructions) for manufacturing different parts. The 
system can respond to short-term demand and be better suited to Just in Time (JIT). 
Production line workers are minimized, but new skilled digital jobs to support the new 
systems will develop.

As part of the IIoT the smart production line may also electronically negotiate supply 
of materials and use centralized optimization intelligence to produce the most economic 
production runs, optimizing switching time, and costs between reconfigurations.

This technology may also impact globalization because the wages of production 
line workers is less important and the emphasis is on creating software (to both define 
the manufacturing instructions for the product being produced, and for the 
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configuration of the production line itself). Manufacturing may become more localized, 
producing goods where they are demanded, thereby reducing transport costs and delays. 
It may also reduce risks of stock-outs, perhaps allowing contingency stocks to be reduced 
as well if they can be locally manufactured just in time on demand. The transformative 
change that Industry 4.0 promises is that data becomes the export commodity instead 
of goods. This changes the nature of value chains and allows costs to be reduced.

PdM should be an integral technology to Industry 4.0, with a prime task of moni-
toring and assuring the quality of the manufactured product. If product quality is the 
primary target for PdM in an Industry 4.0 production line, then the health management 
of the manufacturing equipment will be delivered as a by-product.

The potential for aerospace manufacturing is attractive, but it is the higher potential 
to share data that also has benefits. Data produced in the Industry 4.0 process should 
be available to product in-service PdM. Access may provide datum points for establishing 
condition. Access to design and manufacturing records may provide knowledge of 
concessions to design that may affect intrinsic reliability. Industry 4.0 data is also useful 
in enriching digital twins (providing test data, etc. from products).

Nanotechnology
The application of nanotechnology to structures and materials will be continuously 
developed: new materials will have different behaviors to failure mechanisms (corrosion, 
fatigue, etc.) that will require new methods for inspection, testing, and measurement 
of condition.

One exciting opportunity is the ability to weave glass fiber into structures where 
the fiber has inherent temperature and strain measuring capability. Many sensors may 
exist in series in a single strand of fiber. The ability to measure temperature and dynamic 
stresses in a matrix of sensors embedded inside structures presents exciting opportuni-
ties to eliminate invasive inspections or NDT (Non-Destructive Examination or Testing). 
This technology has the potential to augment and eventually replace aerospace ABC 
type checks [7] where extensive invasive manual inspections could be replaced with 
continuous PdM monitoring. This has huge benefits in reducing the high costs of these 
checks and increasing aircraft availability.

A recently emerging technology is in the field of miniaturized robotics where inspec-
tion and image capture of inaccessible places become possible. The technology may also 
be developed with additive manufacturing to deposit new material or dress and improve 
worn surfaces to restore their condition. The data gathered from such devices augment 
the condition information available to Predictive Maintenance.

Configuration Management
One of the underlying technical enablers of the IoT is the adoption of the IP6v [8] 
addressing space for indexing the internet. The older standard IP4v, allowed for over 4 
billion unique addresses (232) to be indexed in the internet, and recently this capacity 
has been used. IPv6 has 2128 addresses available. Not all addresses are available for general 
use, some being reserved, but IPv6 is essential as an IoT enabler to allow billions and 
billions of new smart devices to be directly connected to the internet.

If a review of Internet Protocols (IP) and internet addressing is undertaken, 
extending to the world-wide-web then the URLs and URIs (Uniform Resource Locators 
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or Identifiers) are translations from the IP address (expressed as groups of numbers) are 
defined by humans and are consequently much more human friendly to read.

The beauty of using IP addresses (URI & URL) is that:

 • all parts may be assigned a unique IP address. It is possible to use IP masking to 
differentiate between the equivalent of a part number and a part serial number.

 • Each part is uniquely addressable and communicable over the internet, if it is 
connected with any associated sensors or RFID tag. The part may be traced.

 • Each part may use extensions to the URI and URL to point to any data about 
that part (again accessible via the internet). The part URL not only identifies the 
part-serial number, location, current data, but also any associated historical data. 
The part carries its own log history with maintenance and certificates 
of conformance.

 • Using linked data or data triples, a network of relationships can be modeled that 
provides rules for any type of relationship between individuals. Physical or 
functional dependencies may be modeled and maintained. This enables complex 
rules for part effectivity to be maintained. Many assets, systems, and components 
may be improved and modified. There are complex rules associated with 
configuration management. They ensure only legally allowed combinations of 
components with compatible modification states are fitted using a graph database. 
These rules are easily expressible as data triples in linked data.
 • Linked data may be queried and surfed, and due to the underlying logic new 

relationships may be inferred and established, (e.g., if people are linked entities, 
then “my Mother’s brother is my Uncle”, the Uncle relationship is inferred 
from rules).

The advantage of URI/URLs is that it is both a unique identifier as well as an index 
pointing to other related data that can be accessed directly by computers. Might this 
capability make using part and serial numbers for components obsolete? This has poten-
tial for enormous cost savings in configuration management.

The Advent of the Citizen  
Data-Scientist
One of the biggest realizations in the author’s career in terms of tools available to use 
for managing, analyzing, and visualizing insights from data was working in Ox Mountain. 
As a start-up, my colleagues and I have had to become generalists doing whatever has 
been needed to advance the company.

The author had been used to PdM engineers using MATLAB [9] and compiling 
models (using a MATLAB to C language conversion before C compilation) in Rolls-
Royce, wrapping these in production systems. The costs for MATLAB and its compiler 
was too expensive for a start-up company, and so we have prototyped using Python [10] 
and used Java [11] as our production code.

One of the areas that is core to our business is data management and analysis. There 
has been a quiet revolution going on in the development of free, free-to-exploit, easy to 
learn/use, open source software tools. In the main there are open-source Big Data appli-
cations with the Apache software foundation, a set of programming languages and 
scalable middleware that can be used for free, and cloud services that may be experi-
mented with very cheaply.
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The Apache Software
The Apache software foundation has over 350 software projects and initiatives being 
actively undertaken. Many of these projects create large server and scalable technologies 
for Big Data. The list is too large to discuss in the scope of this book, but those wanting 
to understand how important the technical development is should see for themselves [12].

Python
The Python programming language [13] has been recognized as a leading language for 
data science and predictive technologies. It also has over 100,000 software libraries that 
may be downloaded and used including those that are at the forefront of current Machine 
Learning and Artificial Intelligence research and development.

Python is designed to be user friendly and easy to learn and is known to be produc-
tive in terms of the ease programmers find to build solutions. The language is interpreted 
and execution speed is relatively slow, but it is faster than interpreted MATLAB.

There are a number of software libraries associated with Python that have been 
written and compiled in the C programming language, compensating for some of the 
speed shortfall. These include Numpy [14] for fast mathematics and Pandas [15] providing 
a DataFrame that enables rapid numeric computation and indexing. The DataFrame is 
better than an excel spreadsheet and is used in the Python sci-kit learn libraries that has 
an extensive set of machine learning algorithms, along with simple-to-follow training 
and examples. Python graphics are included in a library called Matplotlib [17] which 
will be familiar to persons coming to Python via MATLAB.

There are many other powerful and easy-to-use libraries in the Python ecosystem 
that are worth exploring including: Simpy or Salabim are Discrete Event Monte Carlo 
simulation libraries, useful for building RAM analysis simulations [21, 22].

There are micro versions of Python available for microprocessor programming, 
which may help development of IIoT prototypes.

R is a specialist programming language, designed to be used by statisticians, that 
complements Python. The syntax of the language probably fits a statistician’s mindset, 
but engineers seem to prefer Python. R is free with unrestricted deployment licenses [18].

These tools can easily be learned and used by any person with the motivation to 
learn. There is a myriad of instructional videos on YouTube, programming support on 
Stack-overflow [19] and many organizations who will support and describe how best to 
exploit the analytics.

Other Open-Source Capabilities
NASA has released it GSAP [20] (Generic Software for Prognostics) tools as an open 
source suite of C++ (C++ is a programming language) that can be used and extended 
by anyone. GSAP provides an extensible environment where third-party prognostic 
models can be embedded and run.

Key Take-Away Points
 1. PdM is still emergent as a technology even without other new technologies 

discussed in this chapter that will also accelerate PdM’s capability.
 2. Being able to apply PdM to gain maintenance credits so that PdM becomes 

mainstream in aerospace maintenance will be a next major step to increase yield.
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 3. The emergence of Industrial IoT will transform PdM in making sensing data far 
cheaper and ubiquitous compared to today’s technology.

 a. IoT needs to mature in two aspects: security and commoditized with 
industrial packaging before its widespread adoption in industry.

 4. Tools for data management and analysis are available for free, with low-learning 
thresholds that allow easier adaptation and adoption. Support costs are 
still applicable.

 a. The development of major new data-management capabilities is open source.
 5. The open source tools Python and R have very powerful libraries that are easy 

to use, and at the leading edge of Artificial Intelligence and Machine Learning.
 6. Time series data analysis for PdM is very different from that commonly applied 

to financial (stock market) analysis.
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Knowledge about PdM, how it works, how it may be successfully applied and sustained 
is immature. Systems are being sold and adopted that are underdeveloped and will only 
add marginal value. Indeed, some immature systems will merely add overhead cost to 
an existing maintenance regime.

PdM is still evolving technically and procedurally. It is on the cusp of being justified 
in aerospace in taking maintenance credits and significantly expanding the scope of 
application. Along with PdM’s development, the demands of maintenance in general 
are growing as societal and customer demands grow. More is expected, quicker for less 
cost and effort.

Emergent technology will further transform PdM because it will imply far more 
and cheaper sensing producing big volumes of new data, along with the tools available 
to interpret that data. Data has sometimes been cited as the new oil of business: it is 
certainly a resource that has much latent value ready to be released.

How Do You Start Implementing 
PdM?
The following bullet points provide a template for introducing PdM without an initial 
strategic-level investment, aimed to deliver rapid benefits:

 • Start small, pick a failure that has high impact, with sensor data that PdM can 
solve by applying the questions and pre-requisite questions in this book.

 • Set up a six-week duration project with innovative people and solve the problem 
using PdM principles.

A Summary, Future States, and Things 
to Look For
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 • Show how the failure mode may be diagnosed in each failure event and show how 
prognostics can predict remaining useful life, allowing corrective maintenance to 
be scheduled that avoids the original disruption. There are plenty of free tools to 
use to build the analytics, but even if your IT is locked down in your organization 
you can still use Excel. Demonstration of a live project with real data and 
considerable value immediately establishes excitement and credibility to commit to 
a larger pilot project.

 • Build on success and pick the next set of problems to solve. As you develop, 
you should take the time to reflect and review with the project team, learn lessons, 
and apply them going forward.

 • As you pick up experience and knowledge, you can think about scaling the 
solution, and perhaps buying ready-built tools—your experience will inform 
you about your requirements as well as the advice gleaned from this book.

At a point where the experimenting and prototyping have proven value, the project 
should then switch to the assets (or systems) that drive the most cost in production. 
Apply the RCM process, but run it in a way that ensures PdM is fully considered 
and adopted.

Traditionally maintenance has been assumed to be a necessary cost for an asset-rich 
organization. This attitude is incorrect: PdM and the clever application of maintenance 
can actually increase revenue earned from assets. Consider examples where both reli-
ability and availability are increased for assets: can this be exploited by further profitable 
utilization, as well as saving sunk capital in reducing spares and standby assets (reducing 
“static” inventory)? Each situation needs to be considered in context. For example, there 
is no profitable utilization to be gained by running all buses in a fleet at 3 am  in 
the morning.

Maintenance can also address low-asset performance and efficiency, including fuel 
saving and reducing emissions that are becoming mandatory with new legislation. What 
about maintenance improving customer experience, if they use your assets (aircraft 
passengers)? How can noise, temperature, humidity, and comfort be enhanced as well 
as the elimination of unplanned breakdown?

Focus on reducing or eliminating events such as delayed departures, aircraft turn-
arounds due to equipment failure. Cleanliness and appearance are important and 
engender trust in customers that clean assets are well maintained, and in their minds 
are preferred for their use. In a production line as part of an Industry 4.0 initiative, PdM 
can monitor product quality, delivering as a by-product production-line machinery 
health management output.

The Baby Boomers generation is retiring, taking a great deal of knowledge with 
them. The new generation of engineers are no less capable, but there are fewer of them. 
Apprenticeships that produced the last generations of technicians are no longer as 
common, or some of the quality of apprenticeships has declined. The degree of automa-
tion in PdM is considerable (if properly implemented), which compensates for this 
demographic trough. The newer generation of engineers needs to be more data and 
predictive-technology savvy compared to their predecessors, so they can take advantage 
and be far more productive.

The author once conducted a consultancy for a large utilities company, where drastic 
manpower reductions had taken place in a fossil-fuel fired power station. The residual 
crew had the knowledge to run the power plant under normal running conditions but 
were unable to cope with abnormal operations. After a planned outage, they conducted 
a plant start up that went drastically wrong, they boiled dry and wrote off a complete 
boiler that resulted in costs far exceeding the savings made from the manpower reduc-
tions. Making such drastic cuts based on economic drivers and not recognizing the true 
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value of knowledgeable people may be counterproductive. Systems thinking and under-
standing that major influencing feedback loops (causes and effects) often have long delays 
would be a useful skill in these circumstances.

Management needs to be accustomed to thinking and making decisions embracing 
probabilistic data and uncertainty.

PdM is still emerging and knowledge about it is still ambiguous. There are many 
new suppliers who are trying to generate an edge, some unfortunately by making claims 
that do not stand up to detailed scrutiny. This book attempts to explain some of this 
hype and improve understanding. Hype and inflated expectations will continue to reduce 
until PdM becomes more mainstream, and high-quality PdM suppliers emerge.

PdM Analogies
PdM principles are often understood better if we use examples that most people experi-
ence and can appreciate. One of the best examples to use is the car.

PdM Triggers Restorative Action. An example may include sensing tyre pressure, 
where an alarm is set off when tyre pressure falls too low, and the pressure needs to 
be restored to a nominal normal value.

As an added sophistication, the PdM system could also sense ambient temperature, 
and adjust the alarm or alert levels because it may be more desirable to lower tyre pres-
sures in winter conditions to try and increase traction. The tyre may become warmer 
after the car has run for a few miles compared to the temperatures after a car has been 
parked for a few hours. Temperature will influence pressure, and so the pressure reading 
may be normalized by compensating for tyre and ambient temperature.

PdM Triggers Replacement Action. Two examples may be used here.

 • One or more of the rear braking light clusters have failed. This event occurring 
in the UK warrants a stop by traffic police, the police would caution the driver to 
rectify the problem at the earliest opportunity. How would a driver know that the 
braking lights had failed, when driving the car? It is very difficult for the driver by 
themselves to observe the lighting working when they press the brake pedal. 
The consequences of this failure might be catastrophic if another event occurred. 
The other event could be you are driving with a lorry following you. You observe a 
hazard in the road that you need to brake for. Because of the partial loss of braking 
lights in your car, the lorry driver fails to notice you are braking and crashes your 
rear. This situation is known in the Reliability Centered Maintenance (RCM) 
framework as a “hidden failure”. The device has failed but the failed state is 
unnoticed by the operator, undertaking their normal duties (driving the car). A 
second event (lorry crash) occurs where the impact and consequences are far 
greater than the first failure. How can PdM help? What if all cars had a fiber-glass 
strand (or set of strands) that ran from the rear lights to the car dashboard? The 
driver could start the car, test the brake, and observe the lights working through 
the fiber on their dashboard (This would be the author’s preferred solution). 
Alternatively, PdM could have a light sensor fitted, that worked in conjunction 
with brake position (brake applied or not applied), to trigger an alert if the lights 
did not turn on when required. With a bit more sophistication, during the car 
starting sequence the brake lights could be tested and reported.

 • The Pollen/Air Filter Is Blocked. Blocked-filter detection is quite common, but in 
the author’s experience if it is not implemented correctly can lead to false positives. 
If the filter is blocked, the air conditioning or heating may be reduced in its 
effectiveness leading to passenger discomfort. The author suffers from hay fever and 
opening a window for forced ventilation is not particularly satisfactory when 
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ambient pollen levels are high. A blocked filter might be detected by measuring the 
difference in pressure across the filter, with the fan speed setting being used to 
regulate the alert function. The more blocked the filter the higher the differential 
pressure (most engineers use the term “DP” for differential pressure), proportional 
to the speed of the fan. An alert may be sent if DP rises above a threshold warning 
the driver to service the car and replace the filters for new to restore the function. 
However, there may be a problem with this arrangement. What if downstream of 
the filter the pipework carrying the air came adrift, reducing the back pressure 
behind the filter.? The physical effects are that the flow of air would increase, and the 
DP would also increase setting off the blocked filter alert. In this situation the alert 
would be wrong (a false positive) the filters are not blocked. A more sophisticated 
PdM system that would eliminate this false positive is fitting a sensor that measured 
airflow, as well and another sensor measuring DP. The accurate diagnosis of a 
blocked filter is definitive when DP increases and flow decreases. This is an example 
illustrating the thinking that needs to occur using engineering-domain expertise to 
properly specify accurate PdM systems. The arrangement of sensing flow and DP 
would also widen the scope of diagnosis, because besides monitoring the filters, the 
fan blade performance (losing aerodynamic performance) through getting dirty 
could be isolated as well as leaks in the ventilation tubing. By eliminating faults in 
these three areas, it may also be indicative if the car cabin environment cannot 
be maintained, that faults exist in the air conditioning or heating systems. For 
example, perhaps the air conditioning compressor needs re-gassing? The 
effectiveness of the PdM system is significantly improved.

Some may critique this, by saying that fitting extra sensors may be expensive, and 
make the whole sensing system more complicated, and therefore more unreliable. However, 
this valid point may be countered with the emergence of the Industrial Internet of Things 
(IIoT), sensors become smaller, cheaper, and far more reliable. The IIoT will not require 
the sensors to be cabled for power or for transmitting data, they will work with low-energy 
wireless and scavenge their own power. This slashes the cost of instrumenting by orders 
of magnitude compared with today’s technology. This also implies the proliferation of 
sensors that enables a transformation in the coverage and effectiveness of PdM.

Key Take-Away Points
 1. PdM is maturing within the current state of technology but will be transformed 

with the emergence of new technology. Embracing it now, positions 
organizations to take advantage of the future transformation.

 2. The DNA of PdM is automation but keeping humans in the decision-making 
loop. This improvement of productivity will compensate for the loss of 
knowledge with Baby Boomers retiring. Much of their knowledge needs to 
be captured in PdM systems. The automation should aim to make the human-
domain experts orders of magnitude more effective and productive.

 3. Automation of the more mundane aspects of analysis are laudable, but never 
forget that the important components of a system are the people. Automation 
should make them more productive and improve their work experience by 
relieving them of some of the more mundane parts of their jobs.

 4. Start PdM as a small project, with a painful failure mode with lots of events and 
data. Prove value, establish credibility, and build knowledge. Then scale up.

 5. RCM will be extremely valuable to apply once you know how to operate PdM.
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This chapter will outline a simple PdM use case and show how time series data may 
be analyzed and processed to detect anomalous behavior. This is intended to be a taster, 
the use case will not include diagnostics, prognostics, or a managed alerting system, 
because they would be unfeasible within the constraints of this chapter. The author may 
develop a GitHub repository with other simple PdM use cases separate from this book.

The data will be simulated and the Python language within a Jupyter Notebook will 
demonstrate some of the concepts discussed in this book.

The case study will use a single variate Kalman Filter, that has been developed by 
Dr. Michael Provost outlined in [1]; Chapter 6.

The Python script for the univariate Kalman Filter is shown below, this will allow 
the script to be reproduced in reader’s own systems so they can experiment with the 
Kalman Filter algorithm:

An Example PdM Case Study Using 
Open-Source Development Tools
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Univariate enhanced Kalman Filter, from algorithms written by Dr Provost. 
Copyright for the code CE Dibsdale (2017). Use of this code is at your own risk and if 
used you should recognize and acknowledge the authors.

Plots
The first set of plots is a comparison of the Kalman Filter algorithm compared with an 
Exponentially Weighted Moving Average (EWMA) and a Moving Average (MA) plot.

The data is generated from a “random walk” algorithm with added noise to simulate 
a time-series plot, that may be typical of transient behavior in an asset. The data consists 
of 100 points. The EWMA and MA algorithms have a moving window (from which the 
averages are calculated) of ten historical data points. The plotting is done with the Python 
MatPlotLib library. The blue trend line is the random raw data and the red trend lines 
are the estimated smoothed lines.

You may notice the Kalman Filter plot in Figure 12.1 displays less “lag” and tracks 
the raw data more closely. Both the Kalman Filter and the EWMA plots may also be tuned 
to be more responsive (more or less smoothing) by adjusting the alpha and beta values in 
the Kalman Filter algorithm. It is also possible to change the moving windows to calculate 
the means using the MA algorithms and also to adjust the degree of exponential in the 
EWMA algorithm.
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 FIGURE 12.1  Comparison of time-series smoothing algorithms.
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The next set of charts shows two time series plots with the upper plot showing a 
trend with a step change about halfway through. The lower plot shows an extra output 
variable inside the Kalman Filter algorithm that shows the rate of change in the under-
lying trend. It is this plot that could be set with a threshold detection (at a level of 0.06 in 
the lower plot). This would set an alarm when a significant step occurs that indicates 
that something fundamental has occurred that may be indicative of failure. Step changes 
may also be indicative of restorative maintenance being done, where the performance 
of machinery has improved. The diagnostic function is required to differentiate between 
failure and other events to ensure false positive are minimized. The step change may 
not be big enough to set off a threshold alarm in the smoothed trend in the upper chart, 
but it is enough to set off a “step change anomaly detector” (say set at 5.5 in the upper 
chart) that can then be supplied into a diagnostic function (Figure 12.2).

 FIGURE 12.2  Kalman Filter step change novelty detector, using the Kalman trend parameter.
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The third example for a Kalman filter below in Figure 12.3 is when a trend is ramping 
up slowly over a period of time. A simple threshold on the raw parameter may only 
trigger an alert after a considerable time after the ramp increase has started. It would 
be better to detect the ramp increase anomaly earlier. This, coupled with other anomalies, 
may trigger an earlier diagnosis allowing a longer P-F period and calculated Remaining 
Useful Life.

 FIGURE 12.3  Kalman filter ramp change novelty detector.
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There are a few possibilities here to construct a Novelty detector.

 1. By taking the estimated (smoothed) trend from the top chart in Figure 12.1 and 
calculating the slope between points.

 2. By taking the rate of change trend line from the bottom chart in Figure 12.3 and 
setting a threshold (say at 0.015) and counting an arbitrary number of 
consecutive data points (say 5) that all stay above the threshold.

Summary Notes
This chapter has shown the power of Kalman Filtering to

 1. Smooth noisy timeseries data more effectively than the simpler 
moving-average algorithms.

 2. Output rate of change and acceleration. Experience in applying Kalman Filters 
to PdM suggests acceleration is rarely needed, it is more applicable to problems 
such as future position prediction for moving target in gunnery. These may 
be used as anomaly detectors to detect ramp or step changes that captures the 
earliest evidence of changing machinery behavior.

These demonstrate a big improvement in having simple threshold detection and 
anomaly detectors alone.

There are other algorithms that may be applied including Auto-regression Moving 
Averages (ARMA) or Auto-regression Integrated Moving Average (ARIMA) that have 
similar outcomes. There are many simple-to-follow tutorials and YouTube videos that 
demonstrate how to implement these algorithms.

Code Notes
These notes provide some more explanation of the code and with what and how it 
was written.

The code was written to enhance understanding and mirrors the algorithm written 
by Dr M Provost [1] and acknowledges his original work.

The code is compatible with Python version 3.6 (and above) with the Numpy and 
Pandas libraries (any version), that provide advanced numerical routines on vectors and 
the DataFrame (the df object in the code), that makes Maths on indexed arrays of 
numbers very easy. The code could be considerably improved for performance, but this 
would detract from understanding the algorithm. Python and the Pandas and Numpy 
libraries can be downloaded and exploited commercially for free.

The code is commented and includes Python Type labeling and a python-doc entry 
(between the triple quotes). The type annotation is not mandatory in Python (as the 
language is not statically typed) and will not affect the execution.

The values may be passed into the function as a list (a vector) of values representing 
readings of time series data sampled at a uniform time interval.

The df (DataFrame) return value is a Pandas data frame, that can then be passed 
into a separate function for plotting. The algorithms for Exponentially Moving Averages 
and plotting are not reproduced here.

Reference
 1. Dr. Michael. Provost, “Servitization and Physical Asset Management,” SAE, 2018.
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glossary

Term Description
Big Data (Including the 
4 x V’s description)

Is a catch-all term used to describe data processing technology to economically capture process 
and store very large volumes of a wide variety of data (including unstructured data). The 
technology has been developed as open source software, and reduces costs significantly from 
traditional database and data warehousing technologies. The four Vs provide a descriptive 
framework to describe the attributes of Big Data.

Volume: describes the accelerating global production of data, that is doubling every 2 years. The 
volume is such that the older generation of database management systems are unable to 
economically scale to contain them.

Variety: describes the variety of the types of data being produced image, video, audio data is 
increasing and the application of AI and Natural Language Processing (NLP) is starting to make 
these varieties of data classifiable and searchable. Video image data used in augmented reality 
may greatly improve maintainability.

Veracity: describes the truthfulness of data, and whether it can be trusted. On one hand, using 
statistics may help filter out erroneous data, and automatically deal with lower quality data. But 
on the other hand, data selection may include bias that will be replicated in AI systems. Much 
work on Ethics in AI need to be done to improve veracity.

Velocity: There are many use cases where the speed of systems must approach real time. Google 
helped develop Big Data because their search engine needs to return credible search results 
often in under a second so that user experience is optimal. PdM may need near real time if 
actions need to be taken if P-F intervals are short. This is best done on the asset, where the 
operators are optimally positioned to take remedial action. Real time is not needed for events 
with longer P-F intervals, where remedial action might be best initiated remotely and centrally. 
PdM does not necessarily need real time but has to be timely.

Black Swan Event Is a metaphor using a medieval saying that due to evidence the likelihood that black swans 
existed (in the then known world) was so unlikely it was almost certain not to exist? Then black 
swans were discovered with the exploration of Australia. The saying is now representative of a 
very unlikely event that is still possible.

Capta Is a new term in the amended DIKW model presented in this book, that captures the ability of 
computing machines to produce or infer finite sets of data (facts) that have relevance in a 
context. Capta is relevant subsets of data that a human can synthesize information from, using 
the human ability to sensemake.

Condition Based 
Maintenance (CBM)

Condition-based maintenance, or on-condition is a type of maintenance that determines the 
condition and remaining useful life in order to maximize the utilization of economic life of 
machinery. If the condition has degraded sufficiently, remedial or corrective action may 
be planned and resources pre-disposed so recovery is as least disruptive as possible. The US 
armed forces (DoD) also have a concept of CBM+, where they exploit RCM to specify as much 
CBM as possible (including PdM) and institute a continuous improvement program to increase 
effectiveness and efficiency of the CBM, but also to widen the scope of applied CBM as possible. 
The CBM+ concept also incorporates integral prognostics. See the handbook at https://www.dau.
edu/guidebooks/Shared%20Documents/Condition%20Based%20Maintenance%20Plus%20
(CBM+)%20Guidebook.pdf

Discrete event 
simulation

Is a means of simulating systems where objects change state over time. The events may 
be triggered by a randomly sampled period of time. The simulation may consist of queues, 
objects, and services that interact via encoded rules. This technology is used in RAM and 
through-life cost calculations.
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Term Description
Failure mechanism This is where basic physical processes in thermodynamics, chemical, electrolytic and galvanic 

action, stress, cyclic fatigue, tribology and impact/loading-distortion domains that when applied 
lead physical assets to functionally fail. Failure mechanisms can act alone or interactively to 
cause failure. Failure mechanisms may also be more or less likely to act depending on operating 
environments. For example, corrosion is more likely in salt-laden moisture environments.

Failure Mode Is a description of the state of an asset when it is failed. This is not the same as a failure 
mechanism. A failure mechanism leads to failure modes. A failure mode example is 
“unacceptable leakage” that may be caused by corrosion, erosion, impact deformation or cyclic 
fatigue. PdM is configured to monitor the onset and degradation of failure modes. It is possible 
for PdM to measure the local effects of failure modes or the underlying failure mechanisms itself.

Industry 4.0 Is an amalgamation of many emergent technologies to build data-driven configuration control 
and monitoring of production lines. The technology takes advantage of production line robotics 
and additive manufacturing to vastly reduce manning. This provides opportunities to 
manufacture locally on-demand Just in Time. This saves logistics costs. The instructions to 
manufacture may be globally transferred as data, meaning transportation of physical goods is 
reduced. As part of the Industry 4.0 mix it uses PdM as a major component of product quality 
assurance and machinery health.

(Industrial) Internet of 
things (IoT)

Is based on miniaturization of very low-powered sensors processing and memory for small 
devices that can link to the internet. Many of the smart devices communicate through localized 
mesh wireless networks. This offers the opportunity of fitting many more sensors without data 
or power cables cheaply, with local hubs on remote machines that can process data and take 
more autonomous decisions. This technology may transform the capability of PdM.

MSG3 Aerospace, Maintenance Steering Committee 3. The body and current version for guidance for 
the application of maintenance. MSG3 is derived from the same resource as RCM that is used in 
other industries, both from the Nowlan and Heap 1978 report. This guidance is used by 
aerospace companies as a set of baseline principles for designing and implementing aircraft 
maintenance regimes. Each regime is then formally approved by regulators.

NDT or NDE Non-destructive testing or examination: techniques such as ultrasonic, magnetic eddy current, 
and dye-penetration tests used to discover cracking in metallic structures, where the tests do no 
harm to the structure. These tests and examinations belong to the family of condition monitoring 
maintenance. The results of the tests are traditionally assessed by qualified specialists who will 
report the condition of the inspected structure. These tests are types of on-condition 
maintenance usually used to monitor long-term degradation.

Predictive Maintenance 
(PdM)

Predictive maintenance is a way of exploiting digital control, data, communication, and 
processing, married to predictive technologies (including machine learning and artificial 
Intelligence) to automate condition monitoring. PdM usually uses fixed sensors and so 
monitoring is continuous and the speed of automatic analysis is only limited by processing delay 
and communication latency and bandwidth, enabling the remote management of failures with 
shorter P-F intervals than the previous generation of on-condition maintenance techniques.

Python Is a scripting programming language that has been designed to be easy to learn with a syntax 
that reads closer to English than most other programming languages? Python has gained 
popularity because of its software libraries associated with Machine Learning and Artificial 
intelligence. It is free to procure and the resultant code is free to deploy commercially. Python is 
a suitable replacement of and complements engineering tools such as MatLab that some people 
may find prohibitively expensive.

RCM Reliability Centered Maintenance is a framework for designing implementing and monitoring 
(with a process called “age exploration”) a maintenance regime. RCM and MSG3 are closely 
aligned both being developed from the Nowlan and Heap (1978) RCM report. A regime or 
process claiming to be RCM must comply with SAE JP 1011. The compliance standard was 
introduced because of the emergence of hybrid or accelerated RCM processes that miss out 
some of the important stages.

Specificity and 
sensitivity

Are terms used with machine learning classifiers, confusion matrixes, and RoC curves. This is 
where classifiers may be tuned to be more sensitive, where the identification of true positives is 
enhanced (correctly identifying a failure), or more specific where the identification of true 
negatives is enhanced (correctly identifying where a failure is not present).
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Aerospace Predictive 
Maintenance: Fundamental 
Concepts
An SAE Technology Profile

Charles E. Dibsdale

Aerospace Predictive Maintenance: Fundamental Concepts, written by long-
time practitioner Charles E. Dibsdale based in the UK, considers PdM a subset of 
Condition Based Maintenance (CBM), and must obey the same underlying rules 
and pre-requisites that apply to it. Yet, PdM is new because it takes advantage of 
emerging digital technology in sensing, acquiring data, communicating the data, 
and processing it. This capability can autonomously analyse the data and send 
alerts and advice to decision makers, potentially reducing through-life cost and 
improving safety. 

Aerospace Predictive Maintenance: Fundamental Concepts provides a history 
of maintenance, and how performance, safety and the environment make direct 
demands on maintenance to deliver more for less in multiple industries. It also 
covers Integrated Vehicle Health Management (IVHM) that aims to provide a 
platform-centric framework for PdM in the mobility domain.  

The book discusses PdM maturity, offering a context of the transformation of 
data through information and knowledge. Understanding some of the precepts 
of knowledge management provides a really useful and powerful perspective 
on PdM as an information system. On the other hand, Aerospace Predictive 
Maintenance: Fundamental Concepts also discusses disadvantages of PdM 
and shows how these may be addressed. One of the fundamental changes PdM 
implies is a shift from deterministic black-and-white thinking to more nuanced 
decision making informed by probabilities and uncertainty. Other concerns such 
as data management, privacy and ownership are tackled as well.

Aerospace Predictive Maintenance: Fundamental Concepts covers additional 
technologies, such as the Industrial Internet of Things (IIOT) that will result in 
proliferation of cheap, wireless, ultra-low-power sensors, and will transform PdM 
into a more economical option. The book brings in the future possibilities of nano 
technology, which can be used for new sensors, micro-robotics for inspections 
and self-healing/repairing of systems which can be intergrated with PdM.  
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