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Preface
Financial data are typically characterised by a time-series dimension and a cross-
sectional dimension. For example, we may observe financial information on a group
of firms over a number of years, or we may observe returns of all stocks traded at the
NewYork Stock Exchange (NYSE) over a period of 120months. Accordingly, economet-
ricmodelling in finance requires appropriate attention to these two– and occasionally
more than two – dimensions of the data. Panel data techniques are developed to do
exactly this. This book provides an overview of commonly applied panel methods for
financial applications, with a focus on cases where the cross-sectional dimension is
large (and the time-series dimension may be limited).

Campbell et al. (1997) is one of the first monographs focusing on the use of econo-
metrics in finance, mostly in the asset pricing area. A few years later, Gourieroux and
Jasiak (2001) provide a guide to “financial econometrics” at an advanced level with a
strong focus on time-series models (including continuous time models and high fre-
quency data). The textbook by Brooks (2019), with a first edition published in 2002,
deals with econometrics at an introductory level, targeted to finance students, em-
phasizing linear regression and time-series models (including event studies). More
recently, Linton (2019) provides an overview of econometric models and methods in
finance, again with a focus on financial markets and investments. Cochrane (2005)
presents a systematic overview of the asset pricing literature, with an emphasis on
empirical methodology. Econometric textbooks with a clear relevance for financial
work, particularly in the corporate finance area, are Cameron and Trivedi (2005) and
Wooldridge (2010), both paying elaborate attention to microeconometric issues and
panel data. For causal inference, the monographs of Angrist and Pischke (2009) and
Angrist and Pischke (2015) provide attractive sources for many scholars.

Dedicated textbooks on panel data are Arellano (2003), Baltagi (2013) and Hsiao
(2014), while Pesaran (2015) focusses both on time-series and panel data economet-
rics. Despite these resources, there is not yet a systematic treatment of econometric
techniques based on panel data in empirical finance. To some extent, this gap is filled
with comprehensive papers focussing on specific issues, for example, Petersen (2009)
on the estimation of standard errors in panel data sets, Roberts and Whited (2013) on
endogeneityproblems in corporatefinance, andGormley andMatsa (2014) andGrieser
and Hadlock (2019) on the estimation of models with fixed effects (FE).

My goal with this monograph was to provide an intuitive and relatively non-
technical overview of econometric approaches exploiting panel data. Key topics are
alternative assumptions regarding exogeneity on explanatory variables and their
consequences for model estimation, the inclusion of a variety of fixed effects to con-
trol for unobservable differences across units, the incidental parameters problem in
nonlinear models, the use of clustered-standard errors as a means of making stan-
dard (cross-sectional) estimation methods “panel robust”, the problem of having
a lagged dependent variable, and the estimation of – potentially heterogeneous –

https://doi.org/10.1515/9783110660739-201
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VIII | Preface

treatment effects. Further attention is given to outliers, measurement error, missing
data and other data problems. Along the way, references are given to a variety of
empirical papers in finance as an illustration of the employed methods. In terms of
methods, I discuss pooled Ordinary Least Squares (OLS), within and between esti-
mators, feasible Generalised Least Squares (GLS), Fama-MacBeth regressions, robust
and clustered standard errors, instrumental variables (IV), the generalised method
of moments (GMM), (conditional) maximum likelihood (ML), regression discontinu-
ity design (RDD), difference-in-differences methods (DiD), matching and weighting.
Apart from linear models with or without dynamics, I discuss models for binary de-
pendent variables, such as logit and probit, models with censoring or truncation,
duration models and count models.

Given the length and scope of this book, I had tomakemany choices ofwhat to dis-
cuss. To compensate this, I have included a wide range of references to other sources
that go deeper into certain methods or issues. This is particularly true for the area of
the estimation of treatment effects, where new papers are coming out almost every
day. I hope the readers appreciate the attempt to collect and discuss a wide variety
of methods and approaches, at a reasonable intuitive level and as much as possible
in uniform notation. Almost all methods discussed in this text are readily available
in Stata, occasionally after installation of user-written routines. For convenience, spe-
cific details on relevant Stata functions are provided when appropriate. A very useful
and detailed guide to microeconometrics with Stata is Cameron and Trivedi (2021).

Rotterdam, The Netherlands Marno Verbeek

July 27, 2021
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1 Introduction
Financial data are often characterised by two or more dimensions. Think of monthly
returns on a group of stocks, annual reporting data for a cross-section of firms, or
monthly money flows to mutual funds. Additional dimensions arise when, for exam-
ple, industry or country dimensions are added, or when stock holdings of mutual
funds are tracked over a number of quarters. Econometric models can help to un-
derstand and explain the variation across multiple dimensions. Modelling of cross-
section time-series data in finance – or simply panel data – introduces a number of is-
sues related to heterogeneity, cross-correlations, and the specification of control vari-
ables. For example, intercept terms or slope coefficients in amodelmay vary over time
or over cross-sectional units, and unobservable factors in an equation may correlate
over time or across firms. In many cases, this involves specific challenges in models
with explanatory variables that are not strictly exogenous, dynamic models and non-
linear models.

1.1 Some illustrative examples

In finance we encounter a large variety of econometric models that exploit both the
time-series and cross-sectional dimensions of the data. I review a number of illustra-
tive examples here, providing a first inventory of some of the econometric issues that
could possibly arise. All methods and techniques are discussed in more detail later.

1.1.1 Predicting the cross-section of stock returns

Asset pricingmodels, like the Capital Asset PricingModel (CAPM), impose restrictions
on the joint distribution of asset returns. This has implications for both the time-series
as well as the cross-sectional properties of returns. One approach, explored in, for
example, Brennan et al. (1998) and Lewellen (2015), is to relate stock returns inmonth
t to characteristics of those stocks dated t − 1 or before, such as firm size and previous
return. A simple version of such model is given by

Rit = μt + β1logsizei,t−1 + β2 log B/Mi,t−1 + β3returni,t−2,−12 + εit , (1.1)
t = 1, . . . ,T ; i = 1, . . . ,Nt ,

where Rit denotes the return on stock i in month t, logsizei,t−1 denotes the log of the
market value of equity at the end of month t − 1, log B/Mi,t−1 denotes the log of the
book value of equity minus the log of the market value of equity, and returni,t−2,−12 is
the stock return frommonth t − 12 to t − 2, to capture the momentum effect. The terms
μt denote time-specific intercepts. The number of stocks in period t is denoted by Nt,
and we denote the total number of unique stocks as N .

https://doi.org/10.1515/9783110660739-001
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In many cases, a model like (1.1) is estimated using so-called Fama and MacBeth
(1973) regressions,where themodel coefficients are first estimated for each t, using the
relevant cross-section of stocks, after which inference is based on the sampling varia-
tion in the T different estimates. Alternatively, themodel can be estimated as a pooled
regressionusing ordinary least squares (OLS) on all observations. Apart from theusual
discussion about which explanatory variables should be included on the right-hand
side, and perhaps the functional form, the main issue with regressions like this one
relates to the cross-correlations between different error terms εit . Most importantly, it
can be expected that error terms for different stocks in the same month are correlated
due to broad market developments that affect all stocks, although not necessarily to
the same extent. Accordingly, such effects are not fully captured by the overall time
effects in μt . In addition, it is possible that εit exhibits some degree of serial correla-
tion (for a given stock), although this can be expected to be small. Thismeans that any
statistical inference should carefully take such correlations into account. Because the
predictor variables on the right-hand side are dated t − 1 or before, they can reliably
be assumed to be uncorrelated with the error term dated t. That is, the regressors in
the equation can safely be assumed to be exogenous.

When a factor-based asset pricing models is imposed, regressions like (1.1) would
include factor exposures as explanatory variables. A factor exposure measures the
sensitivity of a stock to an overall risk factor. The CAPM, for example, implies that the
market return is the only relevant risk factor, and the exposure to this factor, popu-
larly referred to as the market beta, would be the only predictor in a cross-sectional
regression. Fama and French (1992) and many others use this to test the validity of
the CAPMby expanding the set of regressors including additional variables, similar to
those listed above. An additional problemwith this is that the factor exposures are not
observed and need to be estimated first. This introduces an errors-in-variables prob-
lem.Different approaches exist to address this additional problem. FamaandMacBeth
(1973) and Fama and French (1992) use estimates based on portfolios of stocks so as
to minimise the errors-in-variables problem, Shanken (1992) proposes to adjust the
standard errors to correct for the corresponding biases.

1.1.2 Explaining flows to mutual funds

A substantive literature investigatesmoney flows into and out of investment funds, for
example, to understand how investors interpret information about fund performance.
This also connects to fund managers’ incentives as their compensation is typically
closely tied to assets under management. Sirri and Tufano (1998) estimate a model re-
lating fund flows to fund performance, expenses, fund size and other characteristics.
A simple specification is given by

flowsit = β1 + β2ranki,t−1 + β2 log fundsizei,t−1 + β3feesi,t−1 + ⋅ ⋅ ⋅ + εit , (1.2)
t = 1, . . . ,T ; i = 1, . . . ,Nt ,
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1.1 Some illustrative examples | 3

where flowsit denotes the net percentage growth in fund i in year t, and ranki,t−1 de-
notes the performance rank of a mutual fund in year t − 1.1 Models like (1.2) can be
estimated using the Fama and MacBeth (1973) methodology, as done in Sirri and Tu-
fano (1998) or Spiegel and Zhang (2013), or by means of a pooled panel regression,
as done in Barber et al. (2016). Whereas the equation is similar to (1.1), the economet-
ric issues are somewhat different. Most importantly, the error terms in (1.2) are likely
to exhibit serial correlation for the same fund. This is because fund flows tend to be
persistent, for example, due to investors reallocating their investments with a delay.
There are different ways to alleviate such problems. For example Spiegel and Zhang
(2013) and Barber et al. (2016), include lagged flows in the equation. Alternatively, a
static model can be used where the standard errors are adjusted for within-fund and
within-period correlations. As we shall discuss in Chapter 2, the standard Fama and
MacBeth (1973) methodology does not allow for serial correlation in the error terms.

1.1.3 The impact of CEO compensation or board structure on firm value

An interesting question in corporate finance is to what extent firm value is affected by
characteristics of the firm’s governance (e. g., Gompers et al., 2003), the compensation
contract of the Chief Executive Officer (CEO) (e. g., Palia, 2001), or other choices made
by the firm. A typical model for this would relate a measure of firm value (often To-
bin’sQ or themarket-to-book ratio) to the characteristic of interest and a set of control
variables. We can write this as

firmvalueit = β1 + β2compit + controls + αi + uit , (1.3)

where αi captures unobserved time-invariant heterogeneity across firms, and where
we have included compit, a variable describing the compensation contract of the CEO,
as our key variable of interest. A particularly interesting characteristic is the pay-to-
performance sensitivity, often defined as the change in the dollar value of the execu-
tive’s wealth for a one-percentage-point change in stock price (delta, see Coles et al.,
2006). Delta can be interpreted as a measure of alignment of incentives of managers
with the interests of shareholders. A higher delta means that managers will deliver
more effort because they share gains and losses with shareholders. However, the com-
pensation contract of the CEO is not exogenous. Unobservable characteristics of the
firm, such a firm culture, are likely to correlate with both firm value and the incen-
tive scheme of the CEO. The inclusion of αi as a fixed firm effect can control for these
unobservable differences, as long as they are time-invariant.

1 Actually, Sirri and Tufano (1998) employ a piecewise linear specification in ranki,t−1; for the sake of
brevity we ignore this here.
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4 | 1 Introduction

Equation (1.3) can be estimated under the “fixed effects” assumption, which es-
sentially eliminates αi by a transformation, for example, by subtracting averages per
firm over time (the within transformation) or by first-differencing. The impact of the
compensation contract upon firm value is then identified from its variation over time
only, within each firm. This makes the fixed effects estimator a popular choice in em-
pirical work. Unfortunately, when the number of time periods is small, one needs to
assume strict exogeneity of compit (Grieser and Hadlock, 2019), which requires that
compensation contracts do not depend upon previous firm values, conditional upon
the included control variables and the fixed firm effect.

1.1.4 Explaining capital structure choice

Explaining the capital structure of firms is one of the key questions in corporate fi-
nance. In their seminal paper, Modigliani and Miller (1958) show that in a frictionless
world with efficient capital markets a firm’s capital structure is irrelevant for its value.
In reality, however, market imperfections, like taxes and bankruptcy costs, may make
firm value depend on capital structure, and it can be argued that firms select optimal
target debt ratios on the basis of a trade-off between the costs and benefits of debt.
For example, firms would make a trade-off between the tax benefits of debt financing
and the costs of financial distress when they have borrowed too much. Alternatively,
the pecking order theory (Myers, 1984) argues that, due to asymmetric information,
firms adopt a hierarchical order of financing preferences so that internal financing is
preferred over external financing. If external financing is needed, firms first seek debt
funding. Equity is only issued as a last resort.

Lemmon et al. (2008) specify alternative equations to explain a firm’s leverage
ratio, defined as the amount of debt relative to the market or book value of the firm.
One of their specifications is given by

leverageit = x
′
i,t−1β + μt + αi + uit , (1.4)

where leverageit denotes leverage of firm i in year t, and xi,t−1 is a vector of explanatory
variables, including log(sales) and measures profitability and tangibility, observed in
the previous year. Further, μt is an overall time effect, and αi is a firm-specific time-
invariant effect. Because leverage is highly persistent, the firm-specific effects in αi
have the purpose of capturing firm-level heterogeneity. Lemmon et al. (2008) argue
that this time-invariant unobserved component of a firm’s leverage ratio is likely to
be correlated with the traditional right-hand side variables. Thus, treating αi + uit as
a random error term, uncorrelated with the regressors, is inappropriate, and tends to
lead to biased and inconsistent estimators. Instead, fixed effects or other approaches
are required to control for this endogeneity problem. In addition to the presence of αi,
there is a year-specific intercept term to capture correlation between different firms’
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1.1 Some illustrative examples | 5

leverage ratios within the same year. Fama and French (2002) argue that this corre-
lation is important. In addition, serial correlation in uit may be present. All of these
problems have an impact on the question what is the appropriate estimator for (1.4)
andwhat is the appropriate way to calculate correct standard errors. Different authors
make different choices here.

It is also possible, and quite common, to extend the previous model with the
lagged leverage ratio, that is,

leverageit = x
′
i,t−1β + γleveragei,t−1 + μt + αi + uit , (1.5)

as is done in, for example, Flannery and Rangan (2006). This creates an additional
problem in the sense that the laggeddependent variable is correlatedwith αi and ui,t−1.
This makes standard fixed effects approaches inconsistent and more general instru-
mental variables or generalised method of moments (GMM) estimators may be used
(e. g., Lemmon et al., 2008).

1.1.5 Governance and firm value

An often posed question is whether, and to what extent, corporate governance has a
causal impact on firm value (or some other measure of performance). A linear model
based on panel data can be written as

firmvalueit = β1 + β2govit + controls + εit , (1.6)

where govit is some measure of firm governance, for example, board characteristics
(Fich and Shivdasani, 2006). The problem is that governance is not exogenous. For
example, it is possible that an omitted variable (or unobserved heterogeneity) affects
both firm value and governance, and not controlling for this would lead to biased es-
timates of β2. To the extent that such omitted variable is time-invariant, a fixed effects
approach would be able to alleviate this concern, provided govit is strictly exogenous.
One problem with this could be low power, if govit varies only little over time in the
sample. In addition to an omitted variable bias problem, other issues could hamper
this model. For example, governance and firm value could be simultaneously deter-
mined, or the impact of governance on firm value could be heterogeneous and vary
over firms, depending upon observed and unobserved characteristics.

An important line of literature tries to exploit the impact of a credibly exogenous
shock, such as new regulation that impacts governance (e. g., the Sarbanes-Oxley Act
(SOX), or the adoption of antitakeover laws) to estimate the causal impact of (changes
in) corporate governance; see Atanasov and Black (2016). If such a shock affects one
group of firms, but not another group of similar firms, the impact of a change in gover-
nance can be determined by means of a difference-in-differences approach. One com-
pares the outcome before and after the shock, and then compares the differences be-
tween the firms that are affected and those that are not. This requires assumptions. For
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example, the affected firms should be similar to the unaffected firms, such that the dif-
ference can be attributed to the shock and not to other factors. Other approaches that
are used in this contexts are, for example, instrumental variables approaches (e. g.,
Bhagat and Bolton, 2008) and, in selected cases, a regression discontinuity design
(e. g., Cuñat et al., 2012).

1.1.6 Dividend policy

In a world without taxes and transaction costs, Miller and Modigliani (1961) have
shown that the dividend policy of a firm is irrelevant for its value. The question why
some firms pay dividends and others do not has puzzled finance scholars, and several
alternative explanations and theories have been put forward. Empirically, it appears
to be that larger firms, firms with higher profitability, and firms with fewer growth op-
portunities aremore likely to paydividends (FamaandFrench, 2001).Whenmodelling
dividend policy, the dependent variable is binary: divit = 1 if firm i pays dividends in
year t and divit = 0 otherwise.

Accordingly, econometric models explaining dividend payments are binary
choice models explaining the probability that a firm issues dividends from firm char-
acteristics, such as fund size, earnings, asset growth or book-to-market ratio. A logit
regression specifies this probability as

Pr(divit = 1) =
exp(x′itβ)

1 + exp(x′itβ) , (1.7)

where xit is a vector of firm characteristics. To capture the decreasing trend in the like-
lihood that firms pay dividends, the inclusion of a fixed time effect in the specification
appears appropriate (replacing x′itβ in (1.7) byμt+x′itβ). This implies that the logit equa-
tion has a year-specific intercept term. Specified as in (1.7), the probability of a firm to
pay dividends is modelled independently of the history of the firm. Empirically, this
may be unsatisfactory as most firms either never pay dividends or pay dividends each
year (Fama and French, 2001). It can therefore be expected that there is a substantial
dependence between the decision of any given firm to pay dividends in year t and that
in year t − 1.

This persistence may be captured by the inclusion of firm-specific heterogeneity
in (1.7), or the inclusion of a lagged dependent variable, but in applications this is
often ignored. Many papers in this literature (e. g., Fama and French, 2001; DeAngelo
et al., 2006; Denis and Osobov, 2008) estimate the logit regression year-by-year, and
then present average coefficients in the spirit of Fama and MacBeth (1973). While this
may seem appealing, obtaining valid standard errors is challenging, particularly in
the presence of a very persistent or fixed firm effect (Petersen, 2009). The inclusion of
a firm fixed effect in (1.7) suffers from an incidental parameters problem, and requires
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nonstandard estimation techniques (such as conditional maximum likelihood); see,
for example, Ma (2019).

Alternatively, one could attempt to model the amount of dividend paid by a firm
(appropriately scaled), which would be zero for a substantial part of the sample. This
leads to a dependent variable that is observed over a limited range, with many zero
outcomes. Tobitmodels are developed to dealwith this (see, e. g., BrockmanandUnlu,
2009). Again, modelling the persistence may be challenging.

1.2 The structure of this text

Clearly, empirical work in both corporate finance and investments heavily use panel
data techniques to model financial phenomena. Despite the popularity, it seems that
not all issues are sufficiently well understood. Certain techniques have become very
popular, despite the fact that they are not necessarily appropriate. For example, there
is an abundance of studies using cross-sectional estimation methods in panel data
contexts, with or without combining this with standard errors clustered along one or
more dimensions, and with or without the inclusion of one or more variations of fixed
effects (e. g., firm fixed effects, year fixed effects or year × industry fixed effects). This
occurs both in linear and nonlinear models. Critical assumptions regarding consis-
tency of the estimators, or the validity of the standard errors are often overlooked.
Similarly, many studies use estimation methods based on estimating the parameters
across subsets of the data and then averaging the estimation results (as in, e. g., Fama
andMacBeth, 1973). Studies may include dynamics in the form of a lagged dependent
variable, also in cases where this is inappropriate or crucial additional assumptions
are required (e. g., the absence of serial correlation in the error terms). Crucial assump-
tions are often not tested, as if – for example – using clustered standard errors solves
all misspecification issues.

The examples from the previous subsections illustrate a variety of issues that play
a role with estimating econometric models using panel data in finance. In this text we
will systematically review these issues, including assumptions for consistency, deal-
ing with heterogeneity and cross-correlations, small sample biases, obtaining appro-
priate standard errors, and identifying genuine causal effects.

The next chapter starts with a refresher of the linear regression model, the
workhorse of many models in finance, and then extends this to the panel data case
to present and discuss a range of basic estimators: pooled OLS, fixed effects (FE) and
random effects (RE) estimators, and the Fama and MacBeth (1973) approach. Chap-
ter 3 discusses a variety of topics related to the inclusion of fixed effects in the model,
the use of instrumental variables estimators, or – more generally – the generalised
method of moments (GMM). It also focusses on critical assumptions, such as strict ex-
ogeneity. Chapter 4 collects a number of issues and problems related to the available
data. This includes outliers, missing values, panel attrition and measurement errors.
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8 | 1 Introduction

The possibility to estimate dynamicmodels at the level of the individual firm is a great
advantage of panel data, and Chapter 5 focusses on models with lagged dependent
variables. The estimation of models with binary dependent variables, or limited de-
pendent variables, in the presence of panel data is oftenmore challenging thanwith a
single cross-section. Chapter 6 discusses how suchmodels can be estimated. The final
chapter elaborates upon causal inference in the context of heterogeneous treatment
effects. It introduces the potential outcomes framework, and discusses alternative
approaches to estimate average treatment effects, such as regression-adjustment,
weighting, regression discontinuity, and difference-in-differences (DiD) methods.
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2 Linear static models

This chapter startswith a refresher of the linear regressionmodel, its assumptions and
how it can be estimated, in the contexts of cross-sectional, time-series and panel data.
In case of panel data, models often include fixed effects or random effects. Fixed ef-
fects, random effects and pooled approaches, differ importantly in their assumptions
about the exogeneity of the explanatory variables, and can yield significantly different
results. We review this in Sections 2.4, 2.6 and 2.7. Standard estimators, such as OLS
or the within estimator, are often combined with clustered standard errors to allow
for correlations of the error terms within clusters (e. g., within a given firm) as well as
heteroskedasticity. We elaborate upon this in Sections 2.5 and 2.8. Estimation in first-
differences is discussed in Section 2.9, while Section 2.12 pays attention to the Fama
and MacBeth (1973) estimator. Tests for heteroskedasticity and serial correlation are
discussed in Section 2.10. The chapter concludes with a short discussion of goodness-
of-fit measures.

2.1 The linear regression model with cross-sectional data

The linear regression model is one of the important building blocks in empirical fi-
nance. In general, a linear regression model relates one variable, typically denoted
by y, to a set of explanatory variables, say x2, . . . , xK . A population model can then be
written as

y = β1 + β2x2 + ⋅ ⋅ ⋅ βKxK + ε, (2.1)

where the coefficients β1, . . . , βK are unknown population parameters, and typically
our interest is focused on them, andwhere ε denotes an unobserved disturbance term
(or error term). As examples, we can think of (2.1) as describing the relationship be-
tween firm value and firm characteristics or between stock returns and stock charac-
teristics. The error term ε then includes the role of all other aspects that are not in-
cluded in themodel. A relationship like (2.1) may follow from economic theory or may
simply be an empirical approximation to someunderlying relationship ormechanism.
The interpretation of the model, and its coefficients, depends upon the application
and the assumptions that are made. In general, it is assumed that (2.1) describes a
large population of (potential) observations.

2.1.1 The linear model and ordinary least squares

Before moving to the panel data case, we start by considering the case where the re-
gression model describes a cross-sectional relationship, and the available sample is

https://doi.org/10.1515/9783110660739-002
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10 | 2 Linear static models

a cross-section of, for example, firms, assets or mutual funds. Assuming a random
sample of observations, indexed i = 1, 2, . . . ,N, we can write the model as

yi = β1 + β2x2i + ⋅ ⋅ ⋅ βKxKi + εi, i = 1, . . . ,N , (2.2)

where N denotes the total number of observations. It is convenient to introduce some
shorthand notation for the elements in this model by collecting all parameters in
a K-dimensional vector β = (β1, . . . , βK)′, and all explanatory variables in a vector
xi = (1, x2i, . . . , xKi)′. The first element in this vector corresponds to the intercept term
(x1i ≡ 1). Later we shall also consider models where the intercept term is excluded
from the vector xi. This allows us to write the linear regression model as

yi = x
′
iβ + εi, i = 1, . . . ,N . (2.3)

Typically, the linear model is complemented by a set of assumptions related to the er-
ror term εi, its distribution, and how it is allowed to relate to the explanatory variables
in xi.

Ordinary least squares (OLS) is an estimationmethodwhere themodel coefficients
are estimated by minimising the residual sum of squares (RSS). That is, the OLS esti-
mator for β is obtained from minimising

RSS(β) =
N
∑
i=1(yi − x′iβ)2. (2.4)

The first-order conditions of this problem easily show that the solution is given by

β̂ = (
N
∑
i=1 xix′i)

−1 N
∑
i=1 xiyi. (2.5)

A requirement for this solution to exist is that the matrix

N
∑
i=1 xix′i (2.6)

can be inverted, that is, is nonsingular. This matrix contains sums of squares and
cross-products of the regressors xi. If it cannot be inverted, this means that one ex-
planatory variable can be written as an exact linear combination of the other ones.
This case is referred to as (exact)multicollinearity: the minimisation problem does
not have a unique solution, and the OLS estimator does not exist. A typical situation
where this arises is when the data consist of D mutually exclusive categories and a
dummy variable is included corresponding to each category. A simple solution is to
exclude one of the dummy variables, which makes the omitted category act as a ref-
erence group in the interpretation. For example, when we have data of firms from 12
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2.1 The linear regression model with cross-sectional data | 11

industries, the inclusion of 11 dummy variables is sufficient to capture the differences
between industries. The coefficients for each dummy reflect the differences with the
omitted industry.

Irrespective of the assumptions that are imposed upon the population model in
(2.3), theOLSestimator in (2.5) provides thebest linear approximationof yi basedupon
xi. That is, the linear combination

ŷi = x
′
i β̂

provides the best linear approximation of yi, within the current sample, in the sense
that the sumof squared approximation errors∑i(yi−ŷi)

2 is as small as possible (among
all possible choices for β̂). This is true irrespective of the true values of β or the inter-
pretation of the model. This result highlights the importance of OLS as an algebraic
tool, even in cases where there is no clear population model of interest; see Davidson
and MacKinnon (2004, Chapter 2) for an excellent discussion of the geometry of least
squares.

The first-order conditions of the minimisation problem in (2.4) imply that

N
∑
i=1 xi(yi − x′i β̂) = 0,

or, defining the OLS residual as

ε̂i = yi − ŷi = yi − x
′
i β̂,

that

N
∑
i=1 xiε̂i = 0.

This means that, by construction, the residuals are mean zero and uncorrelated with
each of the explanatory variables. This result allows us to write

yi = x
′
i β̂ + ε̂i, (2.7)

which decomposes, within the sample, the observed values yi into a part that is corre-
lated with xi (the fitted values ŷi) and a part that is orthogonal to xi (the residuals ε̂i). It
is important to understand the differences between this equation and the population
regression model in (2.3). The latter describes a relationship that has an economic in-
terpretation and characterises a large population of interest, in which β is a vector of
unknown population parameters, and εi is not observed. In contrast, (2.7) is a decom-
position that holds within the sample, β̂ and ε̂i being functions of the observed data
(and varying from one sample to the other). Ideally, we would like that β̂ is a “good”
estimator for β and we now move to this question.
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12 | 2 Linear static models

We start with discussing assumptions in the context of a cross-sectional data set.
With {yi, xi, i =, 1, . . . ,N} being a random sample (taken from a large population of in-
terest), the OLS estimator β̂ is a random variable, and its properties will depend upon
the assumptions we are willing to make. For each sample, the actual estimate will be
different, and the sampling distribution of the different outcomes is used to evaluate
the properties of the OLS estimator. To continue, let us write

β̂ = β + (
N
∑
i=1 xix′i)

−1 N
∑
i=1 xiεi, (2.8)

which shows that the OLS estimator can be written as the sum of the true value of
the population parameter vector β and an estimation error. The properties of this es-
timation error drive the properties of the OLS estimator. The decomposition in (2.8)
illustrates that the key assumptions relate to εi and its relationship with xi.

An estimator is unbiased if its expected value equals the true population coeffi-
cient. The expected value here refers to the sampling distribution of β̂ reflecting the
different realisations of the estimator across different random samples of sizeN . Math-
ematically, thismeans that E(β̂) = β, where E(.) is the expectation operator. Obviously,
this requires that the estimation error in (2.8) has an expected value of zero. A suffi-
cient condition for this is

Assumption EXO1 (ols-cs) : E(εi | x1, . . . , xN ) = 0. (2.9)

The notation E(⋅ | c) gives the expected value conditional upon the information in c.
Assumptions labelled EXO (exogeneity) refer to assumptions involving alternative re-
strictions regarding independence or absence of correlation between the explanatory
variables and the equation’s error term. Assumption EXO1 (ols-cs) says that the ex-
pected value of the error term in (2.3) is zero, irrespective of the values of all xi, in other
words, εi is conditionally mean independent of x1, . . . , xN . Intuitively, this means
that knowing all values of the explanatory variables does not provide any informa-
tion on the expected value of the equation’s error term. With a random sample, the
error term of firm i is automatically unrelated to the explanatory variables of firm j
and Assumption EXO1 reduces to

Assumption EXO2 (ols-cs) : E(εi | xi) = 0, (2.10)

which says that εi is conditionallymean independent of xi. Intuitively, this means that
knowing the values of the explanatory variables for firm i does not tell us anything
about the expected value of the unobservables of that firm. An implication of this as-
sumption is that the linear model in (2.3) describes the conditional expectation of yi
given xi, that is,

E(yi | xi) = x
′
iβ. (2.11)
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2.1 The linear regression model with cross-sectional data | 13

An estimator is consistent if it converges to the true population coefficient when
the sample size increases. More formally, it means that the probability limit of the
estimator (forN →∞) equals the true value,mathematically denoted as plimN→∞ β̂ =
β, or – when the limit is clear – simply as plim β̂ = β. A necessary condition for this is

Assumption EXO3 (ols-cs) : E(xiεi) = 0, (2.12)

which says that the error term is mean zero and uncorrelated with the explanatory
variables in xi. An explanatory variable that violates (2.12) is referred to as being en-
dogenous. Assumption EXO3 (ols-cs) is substantially weaker than Assumption EXO1
(ols-cs), and slightly weaker than Assumption EXO2 (ols-cs). To ensure consistency,
we also need to impose a regularity condition, which can be written as

Assumption R1 (ols-cs) : plim
N→∞ 1

N

N
∑
i=1 xix′i = E(xix′i ) = Σxx has rank K. (2.13)

Assumptions labelled R present regularity conditions. The current assumption says
that the symmetric K × K matrix of cross-products of regressors in (2.5), scaled by the
sample sizeN, converges to a (invertible) positive definitematrix. It requires that there
are no exact linear relationships among the explanatory variables (in the population),
and it is the population version of the no-multicollinearity condition discussed be-
fore.1

If an estimator is consistent it means that, if we obtain more and more observa-
tions, theprobability that our estimator differs from the trueparameter vector becomes
smaller and smaller. Accordingly, values that β̂ may take that are not close to β be-
come increasingly unlikely with larger samples. In many relevant cases in empirical
finance, unbiased estimators are not available and we focus attention on consistent
estimators. Inconsistent estimators are typically considered poor and unattractive, as
theymayprovidemisleading conclusions even in very large samples. An estimator can
be inconsistent in two ways. The first is that, as the sample size grows, the estimator
converges to some nonstochastic limit, but the wrong one. The second is that the esti-
mator does not tend to any nonstochastic limit, and remains a randomvariable. In this
case, the estimator could still be unbiased, also forN →∞. Often, empirical papers in
finance use the term “unbiased” to mean consistent or asymptotically unbiased and
thus are thinking about large sample properties.2

1 A subtle case where this assumption is violated is one where the value of a particular explanatory
variable is equal to 1 for only a very small (and fixed) number of observations and zero for the rest.
2 Although in many cases the two concepts are equivalent, a consistent estimator is not necessar-
ily asymptotically unbiased, and an asymptotically unbiased estimator is not necessarily consistent.
Consistency means that in large samples, the estimates will be close to the true value; asymptotically
unbiased means that in large samples, the expected value of the estimator equals the true value.
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In addition to the desire that an estimator is consistent or unbiased, we also care
about the precision of an estimator. This is determined by the covariancematrix of the
estimator, or – in theunivariate case– the variance. Estimatorswith lower variance are
more precise and are referred to as being more efficient. This means that, in repeated
sampling, estimates tend to be closer to the true value. Loosely speaking, an estimator
is referred to as efficient if it has the smallest covariance matrix among all consistent
estimators, under a given set of assumptions. In most cases, this argument will be
based upon asymptotic theory, and the statement is about asymptotic efficiency. In
general, many choices about estimating a model will be characterised by a trade-off
between efficiency and robustness. With stronger assumptions, it is often possible to
derive amore accurate estimator, but this estimatormay no longer be consistent if one
of the assumptions is violated. Instead, it may be preferred to focus on an estimator
that has a larger variance, but is robust against violations of certain assumptions. Par-
ticularly with large samples, as is common in most financial applications, robustness
of an estimator is often considered more important than precision.

The asymptotic distribution of the OLS estimator is obtained by writing

√N(β̂ − β) = ( 1
N

N
∑
i=1 xix′i)

−1
(

1
√N

N
∑
i=1 xiεi). (2.14)

Assuming that the equation’s error terms εi are independently and identically dis-
tributed with mean zero and variance σ2, it can be shown that the asymptotic dis-
tribution of the OLS estimator, under weak regularity conditions, is given by

√N(β̂ − β)→ N(0, σ2Σ−1xx), (2.15)

where→means “is asymptotically distributed as”. This says that, scaled by the square
root of the sample size N, the OLS estimator for βminus the true value has an asymp-
totic normal distribution with mean zero and covariance matrix σ2Σ−1xx . More formally,
in addition to Assumptions EXO2 and R1 (ols-cs), the two key assumptions for this are

Assumption ED1 (ols-cs) : E(εiεj | x1, . . . , xN ) = 0 for i ̸= j, (2.16)

Assumption ED2 (ols-cs) : E(ε2i | x1, . . . , xN) = σ
2 <∞. (2.17)

Assumptions labelled ED impose restrictions on the error distribution and typically
relate to (the absence of) serial correlation and (the absence of) heteroskedasticity.
Assumption ED2 imposes homoskedasticity and says that the variance of the equa-
tion’s error term is finite and does not depend upon any of the explanatory variables.
Homoskedasticity is a strong assumption, which is often violated in financial applica-
tions.Wediscuss the problemof heteroskedasticity,whenAssumptionED2 is violated,
in the next subsection. Assumption ED1 (no cross-correlations) effectively requires
that there are no common components in the error terms. Oftentimes these two as-
sumptions are formulated with the conditioning set omitted, which makes them eas-
ier to interpret. Assumption ED1 then simply says that two different error terms should
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2.1 The linear regression model with cross-sectional data | 15

not be correlated. With cross-sectional data, Assumption ED1 is often satisfied. An ex-
ception is when there are common components in the error term of the equation that
affect groups of observations similarly, for example, firms in the same industry in com-
bination with unobservable industry-specific effects (that are not controlled for in xi).
Another exception is the existence of spatial correlation, where firms located close to
each other are subject to correlated shocks.

The result in (2.15) implies that, in finite samples, the OLS estimator β̂ approx-
imately has a normal distribution (where the approximation error becomes smaller
when the sample size increases) with mean β. Its variance-covariance matrix can be
estimated as

V̂(β̂) = σ̂2(
N
∑
i=1 xix′i)

−1
, (2.18)

where σ̂2 is a consistent estimator for σ2 given by

σ̂2 = 1
N

N
∑
i=1 ε̂2i , (2.19)

and where ε̂i is the OLS residual, as before. Alternatively, σ2 can be estimated by the
sum of squared residuals scaled by the number of observations minus the number of
parameters. That is,

s2 = 1
N − K

N
∑
i=1 ε̂2i (2.20)

This provides an unbiased estimator of σ2 under relatively weak assumptions. The
square root of the diagonal elements in the estimated covariance matrix provide the
standard errors for β̂, which are important for hypothesis testing and, more broadly,
to judge the precision of the estimator. Where needed, we shall denote the standard
error of the estimator β̂k by se(β̂k).

2.1.2 Heteroskedasticity

Heteroskedasticity is a common problem inmodels using financial data. It means that
the variance of the disturbance term εi is not constant across all observations (and de-
pends upon xi). For example, it is very common that large firms have more variation
in their characteristics than do small firms and therefore also have a larger error vari-
ance. In this case, the variance of εi depends upon firm size (and potentially some
other firm characteristics). Similarly, the variation of the unexplained component in
financial returns (idiosyncratic volatility) may vary across assets. The presence of het-
eroskedasticity in a linear model does not affect unbiasedness or consistency of the
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OLS estimator, as long as Assumption EXO1 or EXO3 are satisfied. It does, however,
invalidate the routinely estimated covariancematrix of β̂ in (2.18), including routinely
provided standard errors. It also means that a more efficient estimator for β could ex-
ist, for example, a weighted least squares (WLS) estimator.

The appropriate covariance matrix for the OLS estimator in case of heteroskedas-
ticity can be derived from (2.14). Following White (1980), it can be estimated as

V̂(β̂) = (
N
∑
i=1 xix′i)

−1
(

N
∑
i=1 ε̂2i xix′i)( N

∑
i=1 xix′i)

−1
, (2.21)

which provides a consistent estimator for theOLS covariancematrix in the presence of
arbitrary forms of heteroskedasticity. Standard errors based on (2.21) are referred to as
heteroskedasticity-consistent standard errors (HCSE), or simply White standard
errors, and are readily available in modern regression software. Although they could
also just be referred to as “robust standard errors” it is recommended to be explicit
about what they are robust against. The expression in (2.21) is a special case of a so-
called sandwich estimator, where thematrix in themiddle is sandwiched between the
inverse of two identicalmatrices. Their use is very common, because they also provide
appropriate (asymptotic) standard errors in the presence of little or no heteroskedas-
ticity, and there is little reason to not use them (unless the sample is very small and
heteroskedasticity is likely to be weak). In the vast majority of cases, the HCSE are
larger than the routinely calculated ones.

Similar to the fact that, in small samples, σ̂2 tends to underestimate σ2 in the ho-
moskedastic case, the White covariance matrix estimator (HC0) tends to underesti-
mate the true covariance matrix in finite samples. Several small sample adjustments
to (2.21) have been proposed that are suggested to have better small sample properties
(see Davidson andMacKinnon, 2004, Section 5.5, or Angrist and Pischke, 2009, Chap-
ter 8). A popular one (HC1), which is the default in Stata, involves a simple degrees of
freedom correction and multiplies the expression in (2.21) by N/(N − K). Despite this
adjustment, the calculation of HCSE relies on asymptotic properties, and their perfor-
mance in very small samples may not be very accurate (see MacKinnon and White,
1985). In financial applications, this is rarely an issue.

White (1980) also provides a specification test based on a comparison of the es-
timated covariance matrices with and without allowing for heteroskedasticity. When
(2.18) and (2.21) are very different, this indicates the presence of heteroskedasticity or
some other form of model misspecification (see, e. g., Wooldridge, 2010, Chapter 6, or
Verbeek, 2017, Chapter 4).
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2.1.3 Hypothesis testing

To test a set of linear restrictions on themodel coefficients, themost commonapproach
is to use a Wald test. We write the set of q linearly independent restrictions as

H0 : Rβ = r

with the alternative that at least one restriction is violated. Here, R denotes a q × K
matrix of constants, and r a q-dimensional vector of constants. For example, if we
wish to test that β2 = 0 and β3 = 0, we have

R = (0 1 0 . . .
0 0 1 . . .

)

and r = (0,0)′. The Wald test statistic is given by a quadratic form in Rβ̂ − r, weighted
by the inverse of the corresponding estimated covariance matrix. That is,

ξW = (Rβ̂ − r)
′[RV̂(β̂)R′]−1(Rβ̂ − r). (2.22)

Under the null hypothesis, ξW has an asymptotic Chi-square distribution with q de-
grees of freedom. Thus, large values of ξW lead to rejection of the null hypothesis.

In empirical work we often see the F-test for testing linear restrictions. Its test
statistic is simply

F = ξW /q,

and its distribution, under the null hypothesis, is an F-distribution with q and N −
K degrees of freedom. This distributional result is exact in finite samples under the
strong set of assumptions EXO1, ED1, ED2, and the additional assumption that the
error terms in the model are normal, that is,

Assumption ED3 (ols-cs) : εi has a normal distribution. (2.23)

This requires the use of the covariance matrix in (2.18) in combination with the
estimate s2 for σ2 in (2.20). Under more general conditions, it is possible that the
F-distribution provides a better approximation to the small sample distribution of
the test statistic than the Chi-square distribution. The expression in (2.22) is generally
valid, the asymptotic distribution under the null hypothesis being Chi-square, on the
condition that the covariance matrix is estimated consistently.

If attention is focused on one linear restriction, it is more common to consider the
t-statistic. For the simple restriction βk = r, it is given by

t = β̂k − r
se(β̂k)
, (2.24)
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where se(β̂k) is the relevant standard error, obtained as the square root of the (k, k)-
element in the appropriately estimated covariance matrix. Under the null hypothesis,
the test statistic has an asymptotic standard normal distribution, provided the stan-
dard error is estimated consistently. Under the strong set of assumptions EXO1, ED1,
ED2 and ED3, the test statistic t follows an exact t-distribution with N − K degrees of
freedom. For largeN, this distribution collapses to a standard normal one. For realistic
sample sizes, the differences between the normal and t-distributions are small. As a
rule of thumb, at the 95% confidence level, the null hypothesis is rejected if |t| > 1.96
(based on the standard normal approximation) or |t| > 2 (formally corresponding to a
t-distribution with around 60 degrees of freedom, but often used as a simple approx-
imation for any sample size).

p-values and p-hacking
Most modern software provides p-values with any test that is done. A p-value denotes
the probability, under the null hypothesis, to find the reported value of the test statis-
tic or a more extreme one. If the p-value is smaller than the significance level (e. g.,
5%), the null hypothesis is rejected. Checking p-values allows researchers to draw
their conclusions without consulting the appropriate critical values, making them a
convenient piece of information. It also shows the sensitivity of the decision to reject
the null hypothesis with respect to the choice of significance level. However, p-values
are oftenmisinterpreted ormisused, as stressed by a recent statement of the American
Statistical Association (Wasserstein and Lazar, 2016). For example, it is inappropriate
(though a common mistake) to interpret a p-value as giving the probability that the
null hypothesis is true.

Unfortunately, in empirical work some researchers are overly obsessed with ob-
taining “significant” results and finding p-values smaller than 0.05 (and this also ex-
tends to journal editors). If publicationdecisionsdependon the statistical significance
of research findings, the literature as a whole will overstate the size of the true effect.
This is referred to as publication bias (or “file drawer” bias). For example, investi-
gating more than 50,000 tests published in three leading economic journals, Brodeur
et al. (2016) conclude that the distribution of p-values indicates both selection by jour-
nals as well as a tendency of researchers to inflate the value of almost-rejected tests
by choosing slightly more “significant” specifications. Their analysis is extended in
Brodeur et al. (2020), with a focus on inference methods used in causal analysis.

The problem of publication bias relates to the broader problem of p-hacking. Even
if the null hypothesis is correct, there is always a small probability of rejecting it (cor-
responding to the size of the test). Such type I errors are rather likely to happen if we
use a sequence of many tests to select the regressors to include in the model. This
process is referred to as data snooping, data mining or p-hacking (see Leamer, 1978;
Lovell, 1983). As a result, an extensive specification search may pick up accidental
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patterns in the data and deliver a seemingly “significant” result with no genuine in-
terpretation or meaning. This problem is potentially a serious issue in empirical fi-
nance, where many scholars are using the same databases (such as the Center for
Research in Security Prices (CRSP) and Compustat). For example, Lo and MacKinlay
(1990) analyse data snooping biases in tests of financial asset pricing models, while
Sullivan et al. (2001) analyse the extent to which the presence of calendar effects in
stock returns can be attributed to data snooping. Harvey et al. (2016) provide a crit-
ical account of the literature on factor models explaining the cross-section of asset
returns. To accommodate for the inherent data mining, they suggest that a new factor
needs to clear a much higher hurdle, with a t-statistic greater than 3.0. However, as
argued by Harvey (2017), simply raising the threshold for significance is insufficient,
and may unintendedly increase the amount of data mining and, in turn, publication
bias. Recently, Mitton (2021) documents large variation in empirical methodology in
corporate finance regressions in top finance journals, enabling selective reporting that
results from p-hacking and publication bias.

2.2 The linear regression model with time-series data

With time-series data it is common to index the observations by a suffix t, denoting a
time period (or a moment in time), and to consider a sample for 1, . . . ,T. In compari-
son with cross-sectional data there are two important differences. First, the observa-
tions have a natural ordering in the sense that period 1 comes before period 2. Second,
strictly speaking it hard to think of a time-series being a random sample from a large
population of time periods. Instead, we think of the sample as one possible realisation
of the process that generates the data. This is a subtle difference. A key implication of
this is that we need to think carefully about asymptotic theory. With time-series data,
asymptotic theory asks the questionwhat happens–hypothetically – to the properties
of our available data if we continue expanding the sample into the future (or into the
past). Depending upon how the data are generated, their long-run properties could be
quite different from their short-run ones. For example, if xt = t it is clear that its sam-
ple average increases with every additional observation and that there is no long-run
mean around which the data fluctuate.

The linear regression model with time-series data can be written as

yt = x
′
tβ + εt , t = 1, . . . ,T . (2.25)

Building upon the results of the cross-sectional case, unbiasedness of the OLS estima-
tor requires

Assumption EXO1 (ols-ts) : E(εt | x1, . . . , xT ) = 0. (2.26)

This says that the expected value of the error term, conditional upon the value of the
explanatory variables of all periods, is equal to zero. If this is satisfied we call the
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explanatory variables strictly exogenous. Compared to cross-sectional data, this as-
sumption is much more a concern with time-series data. For example, if lagged reali-
sations of yt affect the value of one or more of the regressors in xt, Assumption EXO1
(ols-ts) will be violated. An important situation where this occurs is when the model
contains a lagged dependent variable yt−1 on the right-hand side.

The weaker assumption that εt is conditionally mean independent of xt, is given
by

Assumption EXO2 (ols-ts) : E(εt | xt) = 0 (2.27)

and is actually substantially weaker than EXO1 in the context of time-series data. It
only requires that the explanatory variables are contemporaneously exogenous. In-
cluding a lagged dependent variable in xt may still satisfy Assumption EXO2 (ols-ts)
and lead to a consistent estimator. Unfortunately, Assumption EXO2 (ols-ts) is insuffi-
cient to guarantee that the OLS estimator for β is unbiased. Similar to our conditions
before, consistency of the OLS estimator requires

Assumption EXO3 (ols-ts) : E(xtεt) = 0, (2.28)

which says that the error terms are mean zero (assuming xt includes an intercept) and
contemporaneously uncorrelated with the explanatory variables. The additional reg-
ularity condition in Assumption R1 is now written as

Assumption R1 (ols-ts) : plim
T→∞ 1

T

T
∑
t=1 xtx′t = E(xtx′t) = Σxx has rank K. (2.29)

Again, this is less trivial than in the cross-sectional case, because it essentially requires
that the data are (weakly) stationary. A time-series variable is weakly stationary if the
first and secondmoments of its distribution (mean, variances andautocovariances) do
not depend upon time. Additional regularity conditions are typically required, mostly
related to the degree of dependence that is allowed between different observations
(see, e. g., Hamilton, 1994; Pesaran, 2015). Loosely speaking, this requires that any
dependence between εt and εt−h disappears if h becomes very large, that is, if obser-
vations are increasingly far from each other.

The key assumptions to derive the (asymptotic) covariancematrix and asymptotic
distribution of theOLS estimator β̂ are similar to those in the cross-sectional case. That
is,

Assumption ED1 (ols-ts) : E(εtεs | x1, . . . , xT ) = 0 for t ̸= s, (2.30)

and

Assumption ED2 (ols-ts) : E(ε2t | x1, . . . , xT) = σ
2 <∞. (2.31)
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Assumption ED1 (ols-ts) implies that E(εtεs) = 0 for t ̸= s and requires that there
is no serial correlation (or autocorrelation) in the equation’s error term. With time-
series data, this assumption is often violated. It imposes, among other things, that
the unobservables that affect the outcome in period t are uncorrelated with the unob-
servables that affect the outcome one period later. Oftentimes, autocorrelation arises
due to model misspecification, for example, omitted variables, incomplete dynamics
or the wrong functional form (see, e. g., Verbeek, 2017, Chapter 4). Testing for autocor-
relation is standard practice in most time-series models.

Under Assumption EXO3, ED1 and ED2, and several regularity conditions, includ-
ing R1, the asymptotic distribution of β̂ is again normal with a covariance matrix that
can be estimated similarly to (2.18). With Assumption ED2 dropped, we allow for het-
eroskedasticity and the appropriate covariance matrix can be estimated as in (2.21). It
is also possible to relax assumption ED1 to allow for limited forms of autocorrelation
in εt when estimating the covariance matrix of the OLS estimator. If we can assume
that the autocorrelation is restricted to L periods, that is, if E(εtεt−h) = 0 if h > L, the
covariance matrix of the OLS estimator can be estimated as

V̂{β̂} = (
T
∑
t=1 xtx′t)

−1
B(

T
∑
t=1 xtx′t)

−1
, (2.32)

where B is a K × K matrix given by

B =
T
∑
t=1 ε̂2t xtx′t + L

∑
j=1wj

T
∑
s=j+1 ε̂sε̂s−j(xsx′s−j + xs−jx′s), (2.33)

where wj are known weights, often referred to as the kernel or lag window. Hansen
and Hodrick (1980) propose to estimate the covariance matrix with a uniform kernel
(wj = 1), which is appropriate if L is small relative to the sample size and the error
terms follow amoving average structure of known order. In general, however, there is
no guarantee that the estimated covariancematrix is positive definite. To prevent this,
it is common to use Bartlett weights (Newey and West, 1987) which decrease linearly
with j according to

wj = 1 − j/(L + 1).

The use of suchweights is compatible with the idea that the impact of the autocorrela-
tion of order j diminishes with |j|. Clearly, if all wj = 0 we obtain the White covariance
matrix in (2.21).

The covariance matrix in (2.32) allows researchers to determine heteroskedasti-
city-and-autocorrelation consistent standard errors (HAC standard errors) for the
OLS estimator that allow for heteroskedasticity of unknown form as well as serial cor-
relation up to a limited lag length. This is available in Stata in newey with the option
lag(L). The choice of L, often referred to as the bandwidth (or window size), can be
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donemanually if the maximum lag length over which autocorrelation is likely to exist
is more or less known (e. g., in the case of overlapping data withmoving average error
terms, see Hansen and Hodrick, 1980 or Fama and French, 1988), or can be chosen as
a function of the sample size (theoretically allowing L to grow with T as the sample
size increases). Common choices are to set L equal to the smallest integer larger than
or equal to T1/3 or T1/4, but there are also automatic bandwidth selection procedures
(e. g., Newey and West, 1994; Sun et al., 2008).

2.3 Introducing panel data

With panel data, our base data have two different dimensions. For example, we may
have quarterly accounting data of publicly listed firms, or monthly returns on all
stocks traded at the New York Stock Exchange (NYSE). As before, we index the cross-
sectional units by i = 1, . . . ,N, and the time periods by t = 1, . . . ,T. The econometrics
literature on panel data has broadly developed into different streams depending upon
the relative sizes of these two dimensions. The casewhereN is small and T is large has
much of its roots in the time-series literature, and an excellent treatment is provided
in Pesaran (2015). In contrast, the literature with large N and (relatively) small T is
strongly rooted in the micro-econometrics literature analysing, for example, house-
hold or firmbehaviour. Cameron and Trivedi (2005) andWooldridge (2010) are leading
textbooks in this area. In comparison with cross-sectional data sets, the availability
of panel data has several advantages in this setting (Hsiao, 2014, Chapter 1). First of
all, panel data sets typically have larger samples and exploit variation across both
individual units and time. This improves efficiency of estimators and eases identifica-
tion. For example, when modelling we can make comparisons along one dimension
(e. g., time) keeping the other dimension fixed. This allows us to model dynamics
at the firm level or to control for time-invariant unobservables in the model. At the
same time, the availability of panel data introduces some important issues to worry
about, most notably cross-correlations and parameter heterogeneity, both of which
can have important consequences for the properties of our estimators, particularly so
in dynamic models and nonlinear models.

While standard panel models involve two dimensions, it is increasingly the case
that finance scholars employ models where the data have even more dimensions. For
example, one may wish to analyse quarterly stock holdings data for mutual funds
across multiple countries (e. g., Dyakov et al., 2020), or the characteristics of mul-
tiple loans per firm per year (e. g., Lou and Otto, 2020). Examples with four of five
different dimensions are given in Bertrand and Mullainathan (2003), who investigate
plant-level andfirm-level data over time across different states of location and states of
incorporation, and Gormley andMatsa (2016), whomatch information on target firms
and acquiring firms and distinguish states of location, states of incorporation, as well
as industries. In an asset pricing context, aggregating individual assets into portfolios

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.3 Introducing panel data | 23

is a way to reduce noise and to reduce one of the dimensions in the data. We illustrate
this in Subsection 2.3.2.

2.3.1 Parameter heterogeneity

If the number of time-series observations per unit is sufficiently large, it is possible
to specify and estimate a linear regression model for each unit separately. This corre-
sponds to a linear model of the form

yit = x
′
itβi + εit , i = 1, . . . ,N ; t = 1, . . . ,T , (2.34)

where βi is aK-dimensional vector of unknown coefficients that it is specific to unit i. If
no further restrictions are imposed upon βi, the model in (2.34) can be estimated sep-
arately for each i, using observations over t = 1, . . . ,T. For small N, it is also possible
to estimate the model as a system of seemingly unrelated regressions (SUR).

In the SUR model, the N different equations are estimated as a system allowing
the error terms to be correlated across equations. In this case, this means that εit may
be correlated within periods across units. The N × N covariance matrix of the stacked
vector of error terms (ε1t , . . . , εNt)′ is given by Ω, where the (i, j)-th element is given by

cov(εit , εjt) = ωij.

This assumes homoskedasticity over time and no serial correlation. The estimator is a
feasible generalised least squares (FGLS) estimator,where the covariancematrix of the
N different error terms is estimated in a first step from the per-equation OLS residuals
as

ω̂ij =
1

T − K

T
∑
t=1 ε̂it ε̂jt ,

noting that different choices can bemade regarding the degrees of freedomcorrection.
In the second step, feasible GLS is applied to the entire system using the estimated co-
variance matrix. Under the above assumptions, the SUR estimator is more efficient
than OLS, but it can be shown to be identical to the equation-by-equation OLS estima-
tor if either all correlations across equations are zero, or if the explanatory variables
are identical across equations, that is, if xit = xt . Estimation as a systemhas the advan-
tage that one can directly test restrictions on the coefficients across the different equa-
tions. A special case of this arises when one wishes to test whether the intercept term
in each of the equations is equal to zero, which is relevant in testing (factor-based)
asset pricing models. In Stata, the SUR estimator is implemented in sureg. An alter-
native is to use suest, which provides a covariance matrix that is robust to arbitrary
cross-equation correlation, after each equation is estimated separately.
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A restricted model arises if we impose homogenous coefficients, that is, βi = β
for each i. This restriction can be tested using an F-test or Chi-square test. In the sim-
plest case where the error terms are uncorrelated across equations, this is a generali-
sation of the Chow test for structural change. Baltagi (2013, Chapter 4) provides more
discussion and a more general version of this test for poolability (allowing for a non-
diagonal Ω).

Rather than estimating a separate set of coefficients for each unit, it is also possi-
ble to impose a so-called random coefficients assumption. In this case, it is assumed
that the coefficients βi are drawn from a distributionwithmean vector β. Denoting this
as

βi = β + vi,

where vi is a zero-mean random vector, we can write the model as

yit = x
′
itβ + (x

′
itvi + εit), i = 1, . . . ,N ; t = 1, . . . ,T . (2.35)

As long as vi (and εit) are independent of xit, this can be estimated using a pooled
OLS estimator, which will provide a consistent estimator for the (average) coefficient
vector β. Feasible GLS can exploit the specific structure of the covariance matrix of
x′itvi + εit; see Cameron and Trivedi (2005, Chapter 22) for more details and variations
within the class of mixed linear models. Hsiao (2014, Chapter 6) provides an extensive
discussion of variable coefficient models. In Section 2.6 wewill discuss a special case,
where all coefficients, except the intercept term, are assumed to be identical across
units. This is known as the random effects model.

2.3.2 Illustration: testing an asset pricing model

Empirical asset pricingmodels are often formulatedas factormodels,where the excess
returns to an asset are related to the excess returns on one or more factors (Cochrane,
2005). The CAPM implies that there is one factor driving asset returns, namely the
return on the market portfolio. In equilibrium, assets that covary strongly with the
market should provide higher returns, on average. The three-factor model of Fama
and French (1993) adds a size factor and a value factor to the CAPM and has been very
influential in empirical work, often complemented with a momentum factor. A wide
variety of empirical factor-based models have been proposed since. In general terms,
a factor asset pricing model can be written as

yit = βi1 + βi2x2t + ⋅ ⋅ ⋅ + βiKxKt + εit = x
′
tβi + εit , (2.36)

where yit denotes the excess return in period t on asset i, xkt denotes the excess return
on a factor-mimicking portfolio (k = 2, . . . ,K), and βi is a K-dimensional vector of co-
efficients. In this context, the intercept term is typically denoted as “alpha” (αi) rather
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than “beta”, but we will not follow this convention here. The factor model provides
a valid asset pricing model if the intercept term is zero for every individual asset or
investable portfolio i.

Estimation of the parameters in (2.36) can be done by OLS, separately for each
asset i. Because the dependent variable is an excess return, which exhibits little or no
autocorrelation, a typical assumption is that εit is not correlated over time for a given i
(Assumption ED1 (ols-ts)). The variance of εit can be assumed to be constant over time
(but potentially different for each asset i), or can be allowed to be heteroskedastic. The
latter is more important when analysing returns at higher frequencies, for example,
daily returns. To test the validity of the asset pricing model we need to test whether
βi1 = 0. For a single i this can be based upon the t-statistic, given by

ti =
β̂i1

se(β̂i1)
, (2.37)

where se(β̂i1) denotes the standard error of β̂i1 based on (2.18), or – allowing for het-
eroskedasticity – on (2.21).

Typically, asset pricing tests like this are not performed on individual assets but
on cleverly constructed portfolios. For example, Gibbons et al. (1989) use stock port-
folios sorted on size, industry and stock-level beta, and Fama and French (1993) use
portfolios based on firm size and book-to-market ratios. In case of N portfolios of as-
sets, the null hypothesis corresponds to β11 = ⋅ ⋅ ⋅ = βN1 = 0, which involves the N
intercept terms of the portfolio regressions. Instead of estimating the N equations in
(2.36) equation by equation by means of OLS, we can also treat them as a system of
equations and estimate them as a SUR model, which takes into account the cross-
correlations between εit and εjt . Due to such correlations between different assets, the
estimators for the intercept terms β̂i1 are not independent and the joint test should take
this into account. Because the regressors are identical across equations, the SUR esti-
mator for each vector βi is identical to those obtained by applying the OLS estimator
per equation. Nevertheless, the cross-correlations matter for the joint test. Gibbons
et al. (1989) show how the standard F-test for β11 = ⋅ ⋅ ⋅ = βN1 = 0 can be rewritten
and interpreted graphically. This test, typically referred to as the Gibbons, Ross and
Shanken or GRS test, assumes normal error terms and is commonly used to test the
validity of a factor-based asset pricingmodel on the basis of a set of time-series regres-
sions like (2.36). An alternative Chi-square version does not impose normality, but is
only asymptotically valid. The Stata routine grstest2 provides a quick way to obtain
the GRS test and some related statistics.

Although the example of the asset pricingmodel is based on a set ofN time-series
regressions, it illustrates the potential richness of panel data and having two dimen-
sions of data. Writing amodel as a set of equations allows all coefficients in themodel
to vary per asset i, and the estimation is done using a relatively long time-series. Asset
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pricing models are also put to test based on “cross-sectional regressions”, where ei-
ther factor exposures (βi) or asset characteristics (e. g., size, book-to-market ratio) are
used as explanatory variables to explain asset returns. We discuss this in Section 2.12.

2.4 The linear regression model with panel data

In the asset pricing example above, it obviously does not make sense to impose that
all model coefficients in βi are identical across i. In many other contexts, it can be
perfectly fine to impose that βi = β for each i. In this case we can write a standard
linear regression model for panel data as

yit = β1 + β2x2,it + ⋅ ⋅ ⋅ βKxK,it + εit , (2.38)

where yit denotes the value of the dependent variable for firm i in period t, and where
εit denotes the disturbance term. Some explanatory variables may be constant over
time and vary only between cross-sectional units (e. g., the industry a firm operates
in), while others may vary only over time (e. g., variables reflecting macro-economic
conditions). When relevant, we will stress this in the notation by dropping the irrele-
vant suffix. Compared to the illustration above we now impose that all model coeffi-
cients are identical across units.

This linear regression model can be written as

yit = x
′
itβ + εit , i = 1, . . . ,N ; t = 1, . . . ,T , (2.39)

where T denotes the number of time periods, and N denotes the number of firms. For
notational simplicity we shall typically assume our panel is balanced, in the sense
that all variables are observed for each firm i in each period t. Extensions to the more
relevant case of unbalanced data are often straightforward, albeit that the notation is
more cumbersome.3 The OLS estimator for β in this case is given by

β̂ = (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 T
∑
t=1 xityit . (2.40)

This estimator, often referred to as thepooledOLS estimator is simply based on pool-
ing all observations and applying a standard least squares approach. It does not ex-
ploit the panel nature of the data, and standard errors would typically have to be ad-
justed to allow for cross-correlations or heteroskedasticity in εit . As before, we can
write the OLS estimator as

β̂ = β + (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 T
∑
t=1 xitεit . (2.41)

3 An exception is the case with non-randomly missing data. We discuss this issue in Section 4.3.
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That is, theOLSestimator equals the true valueplus an estimation error. Unbiasedness
of the OLS estimator, that is, E(β̂) = β, requires that the expected value of the second
term on the righthand side is equal to zero. This is obtained if

Assumption EXO1 (ols-p) : E(εit | xjs, j = 1, . . . ,N , s = 1, . . . ,T) = 0. (2.42)

This says that the equation error termhas a zero conditionalmean,wherewe condition
upon all explanatory variables across the entire sample. This assumption obviously
excludes the inclusion of a lagged dependent variable in the model or any other type
of feedback relationship between xit and εi,t−j, for example, a situation where the pre-
vious value yi,t−1, say firmperformance in year t−1, affects some firm characteristics in
the explanatory variables in year t (e. g., the CEO’s compensation contract). To allow
for the presence of a lagged dependent variable on the right-hand side of the equation,
we can relax assumption EXO1 (ols-p) to

Assumption EXO2 (ols-p) : E(εit | xit) = 0, (2.43)

which is similar to EXO2 (ols-cs) and EXO2 (ols-ts). This does not lead to an unbiased
estimator.

When we investigate asymptotic properties, we need to realise that with panel
data there are at least two dimensions of the data: the number of firms N and the
number of periods T. Unless indicated otherwise, we focus on the case where N is
large relative to T and we employ asymptotic theory for N → ∞. This is the most
common situation in corporate finance applications. To appreciate this, let us rewrite
(2.41) as

β̂ = β + ( 1
NT

N
∑
i=1 T
∑
t=1 xitx′it)

−1
1
NT

N
∑
i=1 T
∑
t=1 xitεit . (2.44)

Under the assumption that

plim
N→∞( 1

NT

N
∑
i=1 T
∑
t=1 xitx′it) (2.45)

is finite and invertible, the OLS estimator β̂ is consistent if

plim
N→∞ 1

NT

N
∑
i=1 T
∑
t=1 xitεit = 1

T

T
∑
t=1E(xitεit) = 0. (2.46)

This requires that the equation’s error term is mean zero and uncorrelated with each
of the regressors in each period t (or, on average, across all periods). For later use, let
us summarise the assumption explicitly.

Assumption EXO3 (ols-p) : E(xitεit) = 0, t = 1, . . . ,T . (2.47)
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Even though this exogeneity assumption ismuchweaker thanEXO1 andEXO2, it is still
a strong assumption and in many applications it is likely to be violated. For example,
unobservable firm-specific characteristics may affect both the dependent variable as
well as one or more of the explanatory variables. We return to such cases below.

Under weak regularity conditions, the OLS estimator has an asymptotic normal
distribution, as before. To determine the appropriate covariancematrix we again need
to make assumptions about the error terms relating to the presence or absence of het-
eroskedasticity and autocorrelation. Imposing

Assumption ED1 (ols-p) : E(εitεjs | xi1, . . . , xNT ) = 0 for t ̸= s, i ̸= j (2.48)

allows for heteroskedasticity of unknown form, but does not allow for any correlation
between the disturbance terms across firms or periods. Under this assumption, the
covariance matrix can be estimated following White (1980), as before

V̂{β̂} = (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 T
∑
t=1 ε̂2itxitx′it( N

∑
i=1 T
∑
t=1 xitx′it)

−1
, (2.49)

again with the possibility of applying small sample corrections. Given the nature of fi-
nancial panel data it is highly unlikely that Assumption ED1 is satisfied. For example,
it is quite likely that unobservables affecting a firm’s capital structure or dividend pol-
icy are persistent over time. Similarly, returns on different stocks tend to be correlated
cross-sectionally, due to, for example, overall market movements or industry-specific
effects. This invalidates heteroskedasticity-robust standard errors. As a result, stan-
dard errors for panel data estimators typically need to account for the panel nature
of the data. Depending upon assumptions, this can lead to a variety of different stan-
dard errors (Petersen, 2009). A common choice is to employ panel-robust standard
errors, where the errors terms are allowed to be correlated within a firm, in combina-
tion with arbitrary forms of heteroskedasticity. That is, we impose

Assumption ED2 (ols-p) : E(εitεjs | xi1, . . . , xNT ) = 0 for i ̸= j, (2.50)

while allowing εit and εis to have a nonzero correlation. We also do not impose ho-
moskedasticity across firms or time. Under these assumptions, the covariance matrix
of the OLS estimator can be estimated as

V̂{β̂} = (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 T
∑
t=1 T
∑
s=1 ε̂it ε̂isxitx′is( N

∑
i=1 T
∑
t=1 xitx′it)

−1
, (2.51)

where, as before, ε̂it denotes the OLS residual. This estimator is similar to the HAC co-
variance matrix in (2.32); the use of Bartlett weights is unnecessary, given the fixed
number of time periods T. This covariance matrix allows for arbitrary forms of het-
eroskedasticity as well as arbitrary autocorrelation within each firm i. Hansen (2007)
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shows that the robust covariance matrix estimator in (2.51) is also consistent when
both N and T go to infinity. However, when N is fixed and T goes to infinity, the esti-
mator is inconsistent, as it converges to a random variable.

Another variant to accommodate serial correlation in the error terms of the same
firm is to generalise the Newey-West approach in (2.33) to panel data (Petersen, 2009).
Themaximum lag length in this case is one less than themaximumnumber of periods
for a firm. Fixing the maximum lag at L, the central matrix in the covariance matrix
becomes (Vogelsang, 2012)

B =
N
∑
i=1 T
∑
t=1 T
∑
s=1wtsε̂it ε̂isxitx

′
is, (2.52)

where

wts = 1 −
|s − t|
L + 1

if |s − t| ≤ L, 0 otherwise.

Compared to the clustered case in (2.51), this approach attaches aweight to the covari-
ances that diminishes with the distance between two observations. Whereas this is a
necessary step in the pure time-series case (so as to obtain a positive definite covari-
ance matrix), it is not necessary in the panel case (with a sufficiently large number of
firms/clusters). Petersen (2009) shows that the resulting Newey-West standard error
estimates do not perform very well when the serial correlation in εit does not die out
quickly at larger lags, for example, in the presence of a time-invariance firm-specific
component in εit .

Asmentioned before, covariancematrix estimators based on (2.49), (2.51) or (2.52)
are often referred to as sandwichestimators: there are two identical pieces of “bread”
on the outside and a “filling” in the middle (MacKinnon, 2019). Recently, a wide va-
riety of covariance estimators have been proposed, based on different assumptions
about the cross-correlations between different error terms and leading to a different
filling. We discuss several of these in the next section.

2.5 Clustered standard errors

The panel-robust standard errors are a special case of cluster robust standard er-
rors (CRSE) or clustered standard errors, which allow for arbitrary correlation within
a given cluster of observations as well as heteroskedasticity of arbitrary form. Cluster-
ing standard errors has become very popular in applicationswhere the data havemore
than one dimension, and panel data provide a natural situation where clustering can
be very useful, so as to accommodate for correlation of error terms within the same
firm or the same time period. Clustering standard errors can also be more involved,
for example, when other dimensions play a role, for example, industries or countries,
or whenmore than two dimensions characterise the data (e. g., mutual fund holdings
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datawith stock level information, or target firms and potential acquirers followed over
time).

As stressed by Cameron and Miller (2015) and others, ignoring to control for
within-cluster correlation in the error terms can lead to standard errors that are
several times smaller than those that do. For example, Bae and Goyal (2009, Ap-
pendix), estimating a model explaining loan spreads for a sample of loan tranches
across 48 countries, show that White standard errors for pooled OLS are greatly un-
derstated compared to standard errors clustered by country. In the general case of
one-dimensional clustering, we can write the covariance matrix estimate as

V̂{β̂} = (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 N
∑
j=1 T
∑
t=1 T
∑
s=1 Iit,jsε̂it ε̂jsxitx′js( N

∑
i=1 T
∑
t=1 xitx′it)

−1
, (2.53)

where Iit,js denotes an indicator variable, equal to one if two observations (firm i in
period t and firm j in period s) belong to the same cluster and zero otherwise (with
Iit,it = 1).4 Given a choice of clustering, standard errors based on (2.53) are referred
to as cluster robust standard errors (CRSE), or – more precisely – cluster- and
heteroskedasticity-robust standard errors. It is good practice to clearly indicate the
chosen clustering. Because it is often the case that both the unobservables in the error
term as well as the explanatory variables are positively correlated across observations
within a cluster, the additional terms in the summation in (2.53) lead to an increase
in the covariance matrix, compared to the case where the within-cluster correlation is
ignored in (2.49). In general, the bias in routinely provided standard errors increases
with thewithin-cluster correlation of the regressors, thewithin-cluster variation of the
error terms and the number of observations in each cluster. If explanatory variables do
not vary within a cluster (so their within correlation is 1), even a small correlation in
the unobservables within a cluster can lead to cluster-robust standard errors that are
very different from the default ones (Moulton, 1986). Occasionally, clustering could
lead to lower standard errors, but this seems exceptional in most finance cases where
either within-firm correlation can be expected (e. g., capital structure of firms, or their
investment behaviour) or within-period correlation can be expected (e. g., aggregate
shocks to asset returns), or both.

Choosing an appropriate level of clustering serves the purpose of restricting the
correlation patterns that are allowed among the many error terms. Implicitly, cluster-
ing assumes that E(εitεjs | xi1, . . . , xNT ) = 0 unless observations it and js are in the
same cluster. That is, any two observations that are not in the same cluster, are as-
sumed to have zero correlation. Having completely unrestricted correlations, that is,
having Iit,js = 1 for all it, js (assuming that all observations belong to one big clus-
ter) is infeasible. In fact, it may not even be possible to consistently estimate β in this

4 In some versions, the indicators may be combined with weights (e. g., Newey and West, 1987).
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case because the noise in the disturbance termsmay not cancel out in estimation (see
MacKinnon, 2019). An important requirement for the validity of clustered standard er-
rors is that, asymptotically, the number of clusters, G, say, increases with the sample
size. Effectively, this means that the number of clusters needs to be large relative to
the sample size. When standard errors are clustered at the firm-level, as in (2.51), G is
equal to the number of firmsN and this requirement is satisfiedwith the usual asymp-
totics ofN going to infinity. Effectively, whenwe estimate the covariancematrix based
on clustering, we are taking an average across clusters. If the number of clusters is
small, estimation error will be larger, and the small sample performance of clustered
standard errors will be poor. In panel data with large N, most would recommend to
have at least 20 to 40 clusters.

Alternatively, it is also possible to cluster standard errors by time rather than by
firm. This allows for common shocks that affect all firms in the sample,while imposing
independence over time. The expression for the covariance matrix is similar to (2.51),
but with the roles of the cross-sectional and time dimensions switched. That is,

V̂{β̂} = (
N
∑
i=1 T
∑
t=1 xitx′it)

−1 N
∑
i=1 N
∑
j=1 T
∑
t=1 ε̂it ε̂jtxitx′jt( N

∑
i=1 T
∑
t=1 xitx′it)

−1
. (2.54)

Petersen (2009) shows that clustering over time leads to biased standard errors if the
number of periods is small, for example, 10 or less. This is consistent with the general
requirement that the number of clusters, in any setting, should be sufficiently large
(and, asymptotically, grow with the sample size).

Double clustering
As shown by Thompson (2011) and Cameron et al. (2011), it is possible to calcu-
late standard errors that cluster by both firm and time. The relevant estimator for
the covariance matrix can be determined as the sum of (2.51) and (2.54), minus the
heteroskedasticity-consistent estimator from (2.49). The latter matrix is subtracted
because otherwise the diagonal elements would be counted twice in the final result.
Such standard errors allow for the presence of firm effects, meaning that error terms
may have arbitrary correlation across time for any given firm, as well as time effects,
meaning that error terms have arbitrary correlation across firms in any given period.
They do not allow for correlations across different firms across different periods, for
example, persistent common shocks. Conley et al. (2018) argue that this is restrictive
and find it implausible in firm-level panels that there are non-negligible correlations
across firms at a point in time, within each firm over time, but no correlations between
these same firms at distinct but close points in time.

Clustering standard errors by firms and time is an example of double or two-way
clustering (Cameron et al., 2011). In this case, observations belong to two clusters that
intersect. As a general recommendation, the number of clusters in either dimension
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should be sufficiently large for the double clustered standard errors to have goodprop-
erties. The theoretical properties of multiway clustering are derived in MacKinnon
et al. (2021b), who also propose bootstrap methods for multiway clustered data. In
Stata, standard errors based on double or multiway clustering can be obtained with
the function vcemway.

In the standard panel data case, there are twodimensions and clustering standard
errors is typically either at the period level, firm level or both. However, it is possible
that additional dimensions matter. For example, firms could be located in different
countries, or mutual funds could be holding large numbers of stocks over multiple
periods. In such cases, other levels of clustering can be chosen. It is possible that dif-
ferent clusters are defined in a nested or hierarchical way. For example, firms and in-
dustries or mutual funds and fund families. In such cases, the clustering should be
done at the highest level of aggregation. For example, clustering by industries allows
all observationswithin an industry to be correlatedwith each other. Given the require-
ment that the number of clusters should be sufficiently large, one should be careful
to define clusters too widely. With too few clusters, the cluster-robust standard errors
may not work very well.

Double clustering has become reasonably popular in recent years. For example,
Diether et al. (2009b) regress individual stock short sales during day t on past returns,
and estimate standard errors that cluster by both stock and calendar date, andMenzly
andOzbas (2010) estimate amodel explaining annual returnonassets (ROA) fromcon-
temporaneous market-wide ROA and ROA in related industries, employing standard
errors double clustered by stock and year, or by industry and year. Other examples
can be found in Barber et al. (2016), who estimate a model explaining flows to mutual
funds, clustering standard errors over both funds and periods, and in Lei et al. (2018)
who use firm-level data covering 24 years and 45 countries, employing standard er-
rors clustered at the firm and period level, in amodel explaining cash holdings. Often,
such applications also include one or more types of fixed effects, an issue we return
to below.

Another variant is to cluster on the interaction of two variables, for example, in-
dustries and periods. This would allow for uncorrelated common shocks across all
firmswithin an industry. Note that clustering on the intersection of two variables leads
to small clusters and therefore allows for a limited number of nonzero correlations.
Also note that clustering standard errors on industries × periods is different than two-
way clustering on both industries and periods. Similarly, clustering standard errors on
the intersection of firms and periods, in a standard firm-level panel, would result in
each observation being its own cluster. Effectively, thismeans that the standard errors
only adjust for heteroskedasticity.

Although double clustering allows for correlation over timewithin any given firm,
and correlation over firms within any given period, it does not allow for correlation
over time across different firms. Driscoll and Kraay (1998) have proposed a covariance
matrix estimator that allows for autocorrelation at the level of the firm and arbitrary
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cross-sectional correlations. In this case, the filling of the sandwich estimator is given
by

B =
N
∑
i=1 N
∑
j=1 T
∑
t=1 T
∑
s=1wtsε̂it ε̂jsxitx

′
js, (2.55)

where the maximum lag length is L and, as before,

wts = 1 −
|s − t|
L + 1

if |s − t| ≤ L, 0 otherwise.

This approach requires large T, because it is based on asymptotics with T → ∞. The
resulting covariance matrix estimator (also referred to as spatial correlation consis-
tent), is robust to general forms of cross-sectional dependence, as well as correla-
tion over time up to lag L. For unbalanced panels some adjustments are required, see
Hoechle (2007), who provides an implementation of this estimator in Stata (available
in xtscc). The choice of the maximum lag L is, in principle, up to the researcher. If
the error terms are known to have a moving average autocorrelation structure (for ex-
ample, in case of overlapping samples), L should reflect this. Alternatively, and more
commonly, the lag length L is chosen as a function of the sample size T.

Driscoll and Kraay (1998) standard errors are not recommended when T is small
or when the cross-sectional dependence is absent.5 An example of their use in finance
is provided in Kang and Pflueger (2015), who regress international corporate yield
spreads against inflation volatility, the inflation-stock correlation, and a range of con-
trol variables, using standard errors accounting for cross-country correlation and se-
rial correlation up to L = 16 lags (based on a quarterly sample of at least T = 160
periods).

Small sample issues
There are two important problems when the number of clusters is small (Cameron
andMiller, 2015; Conley et al., 2018). The first problem is that OLS leads to overfitting,
with the estimated residuals systematically too close to zero compared to the true error
terms. This leads to a downward bias in the cluster-robust covariance matrix, similar
to the downward bias in σ̂2 in (2.19). Fortunately, this bias is relatively easy to fix. The
simplest correction requires multiplying the covariance matrix estimate by a factor
G/(G − 1), where G is the number of clusters, or by

G
G − 1

NT
NT − K
,

where K is the number of variables in xit . The additional adjustment in the latter fix
tends to be negligible in most cases. Cameron et al. (2011) and Imbens and Kolesár

5 See Vogelsang (2012) for more theoretical considerations.
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(2016) discuss a number of other finite-cluster corrections, but there is no clear uni-
formly best approach.

The second problem is due to the fact that the number of nonzero terms in the
middle part of (2.53) is very large if the number of clusters is small. For example, with
a panel of 5000 firms over five years, clustering standard errors by time leads to no
less than 50002 − 5000, or almost 2.5 million covariance terms. Even if each of these
terms is small, taken together they contribute importantly to the estimated covariance
matrix and thusmake resulting standard errors noisy. As a result of this, standard dis-
tributional results, for example, based on the usual t-statistic, tend to be inaccurate.
This may lead to finding statistical significance, even when it does not exist (Thomp-
son, 2011). A potential solution for this is to use other distributional approximations
(rather than the standard normal one). For example, Bester et al. (2011) propose to use
a t-distributionwithG−1 degrees of freedom (after applying the first adjustment factor
given above); see Conley et al. (2018) for more discussion and alternative approaches.
Practically, as argued by MacKinnon (2019), the rank of the estimated covariance ma-
trix cannot be larger than G, the number of groups. This makes it impossible or very
unreliable to test q restrictions when q is not much smaller than G.

The small sample properties of clustered standard errors may also be poor if there
is a large degree of heterogeneity in cluster sizes (MacKinnon et al., 2021a). An ex-
ample of this is when half of the sample is one large cluster, and all other clusters
are small. This extreme case is potentially relevant with firm-level data, becausemore
than half of all publicly traded US corporations are incorporated in Delaware. Conse-
quently, inference based on clustering at the state level may have poor finite sample
performance (Hu and Spamann, 2020).

The choice of clusters
The choice of the appropriate level of clustering is often ambiguous. In general, clus-
ters should be defined sufficiently broad so that correlations between error terms from
observations in different clusters are zero, or negligibly small. This condition becomes
more plausible when there are more observations within each cluster. However, if
we choose too few clusters, our standard errors may become very inaccurate. On the
other hand, if we choose too many clusters and therefore allow for insufficient cor-
relations among observations, standard errors will be biased. This is the usual bias-
variance trade off that characterises many approaches in econometrics. Standard er-
rors can thus be very different depending on whether and how observations are clus-
tered (MacKinnon, 2019). With this in mind, Thompson (2011) argues that double-
clustering across time and firms can do more harm than good if either T or N is small.
In particular, he advises to have at least 25 firms and 25 periods. Cameron and Miller
(2015) essentially advice to cluster within any group if there is reason to believe that
there is some correlation within these groups. “The consensus is to be conservative
and avoid bias and to use bigger and more aggregate clusters when possible”. They
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also suggest to compare the cluster-robust standard errors with the default standard
errors (or with clustered standard errors based on a lower level of aggregation), in
the spirit of the White (1980) test. If there is a large difference, the first standard er-
rors should be chosen. However, Abadie et al. (2017) demonstrate that clustering can
substantially affect standard errors even in cases where correlations are essentially
zero. They argue that “a researcher should decide whether to cluster the standard er-
rors based on substantive information, not solely based on whether it makes a dif-
ference”. They advocate that the number of clusters in the sample should be small,
relative to the number of clusters in the population, a condition that is hard to sat-
isfy in many finance applications (using, for example, clustering across industries
or countries). Along these lines, Conley et al. (2018) recommend the use of a limited
number of clusters consisting of many observations, so as to accommodate the rich
types of dependence encountered in real-world finance data. Ideally, this is combined
with modifications to improve the small sample performance. Recently, some litera-
ture has developed deriving statistical tests to determine the optimal level of cluster-
ing. For example, Ibragimov and Müller (2016) develop a test for one-way clustering
against no clustering (or a low level of clustering).More recent results are developed in
MacKinnon et al. (2020).

Correlation structures
To better appreciate the alternative ways of clustering, let us consider some specific
examples of cross-correlations among the error terms. First, consider the case where
the correlationwith a cluster, say afirm, is attributable to a time-invariant firm-specific
effect, that is,

εit = αi + uit , (2.56)

where uit is not correlated over time. Both αi and uit are allowed to be heteroskedas-
tic. In this case, clustering standard errors across firms adjusts for the correlation over
time due to αi. Standard errors will typically increase, because an additional obser-
vation on firm i does not provide completely new independent information. However,
the clustering across firms allows for more general forms or correlation, for example,
we could have

uit = ρuit + vit , (2.57)

with ρ ̸= 0and vit uncorrelated over time. In this case, the errors are not only correlated
over time due to a time-invariant component αi but – decaying over time – also due to
the autoregressive structure in (2.57).

The above structure is still quite restrictive. Clustering standard errors across firms
allows for arbitrary correlations over time. However, a key assumption is that both
αi and uit are not correlated cross-sectionally. This means that, conditional upon the
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explanatory variables in the model, there are no common shocks that affect all firms.
This is potentially restrictive, as, for example, exchange rate shocks may jointly affect
firms that have similar exposure to exchange rate risk. Thompson (2011) considers the
following specification

εit = θ
′
i ft + uit + ξit (2.58)

uit = ρuit + vit , (2.59)

where ft is a vector of random factors common to all firms, and θi is a vector of fac-
tor loadings for firm i. Both ξit and vit capture firm-specific shocks, specific to firm i
in period t. The interactive component θ′i ft generates both time effects and persistent
common shocks. If ft is uncorrelated over time, there are time effects in the sense that
observations on different firms are correlated within the same period due to the fact
that they are subject to the same common factor shocks, albeit with different sensi-
tivities. Such a structure is potentially relevant when modelling stock returns. Impor-
tantly, in the absence of serial correlation in ft there are no persistent common shocks.
Different firms are uncorrelated at different points in time. Nevertheless, unless ρ = 0,
there are still firm-specific persistent shocks, generating correlation over time for a
given firm. This is a case where, apart from small sample concerns, double-clustering
across firms and periods is appropriate. With persistent common shocks, Thompson
(2011) showshow theprevious formulas canbe extended to capture this, provided that
the autocorrelation in ft decays sufficiently fast over time (in the spirit of the Newey
and West, 1987, approach).

It is important to understand that the impact of clustering is not solely driven by
the correlations among the error termsbut alsodependsupon the correlation structure
of the explanatory variables. To be precise, what matters is the correlation between
εitxit and εjsxjs. In principle it is possible that within-firm correlation of εit matters
vary little if xit has little or no correlation over time. For many applications, this seems
to be an unrealistic setting.

Towards panel methods
If we are willing to make specific assumptions about how the unobservables in the
equation correlate with each other, there are alternative ways to adjust for it. For ex-
ample, if the within-firm correlation is due solely to the presence of a firm-specific
time-invariant component, its process can be exploited in the estimation of β using a
feasible generalised least squares approach. An example of this is the random effects
estimator discussed in the next section. Alternatively, it is possible to add firm-specific
dummy variables to the equation, capturing time-invariant firm-specific fixed effects.
This has additional advantages, but also some drawbacks, and we discuss this in Sec-
tion 2.7. Further, it is possible to use sample-splitting approaches. In this case, the
standard error of an estimator for β is obtained from the sampling variation across
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estimates over different subsamples. A special case of this is the Fama and MacBeth
(1973) approach, which we discuss in Section 2.12. This allows the error terms to be ar-
bitrarily correlated within each subsample. Another reason to impose more structure
on the correlations between the different error terms is because they are of interest
themselves, for example, when modelling asset returns with a common factor struc-
ture, as in Ross (1976). Sarafidis and Wansbeek (2012) provide a survey of panel esti-
mation allowing for cross-sectional dependence, using a spatial correlation or factor
structure approach.

Bootstrapped standard errors
Instead of deriving standard errors (orp-values) using analytical expressions based on
asymptotic theory under an appropriate set of assumptions, it is also possible to use
bootstrapping. The bootstrap is a resampling method, where new samples are drawn
repeatedly from the existing sample (with replacement) to determine the sampling
variation in estimators or test statistics; see Cameron and Trivedi (2005, Chapter 11) for
a good introduction. In the simplest setting, a total ofM random samples of sizeN are
drawn from the existing sample ofN observations. Let us denote the relevant estimate
from samplem as β̂m, so that the bootstrapped standard error for β̂ is obtained as

se(β̂) = √ 1
M − 1

M
∑
m=1(β̂m − β̄)2, (2.60)

where β̄ is the average of theM bootstrap estimates. This provides an appropriate stan-
dard error under the assumption that the N observations are independent, provided
M is reasonably large (e. g., 200 or more).

Whenobservations arenot independent, as is likely to be the casewithpanel data,
bootstrapping should take this into account. The standard way of implementing the
bootstrap with panel data is to resample units rather than individual observations,
which allows for within-firm correlation. This is similar to using parametric standard
errors clustered at the firm level. More generally, if observations are correlated within
clusters, one can resample clusters rather than observations. Bootstrapping is partic-
ularly attractive in cases where the number of clusters is small, or where clusters are
very different in size (unbalanced cluster sizes), although this will depend on how the
bootstrapping is implemented. The bootstrap command in Stata is based on resam-
pling clusters of observations on (yit , xit), and is often called the “pairs bootstrap”.

In practice, the implementation of the bootstrap is often a bit more sophisticated
than described above. First, it is recommended to use the bootstrap to approximate
the distribution of a test statistic one is interested in, for example, a t-ratio, rather
than relying upon the estimator having an approximate normal distribution with the
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bootstrapped standard error.6 Second, in a regression context it is appropriate to re-
sample from the residuals, and use these to construct new values for the outcome vari-
able. The “residual cluster bootstrap” uses the same values for the covariates across
all bootstrap samples, and new values for yit are obtained by drawing from the residu-
als. The “wild cluster bootstrap” multiplies the residuals by +1 or −1 (with probability
50%) first. Finally, it may be better, if one is interested in testing a certain null hypoth-
esis, to impose the null when generating the bootstrapped samples, leading to the so-
called “restricted wild cluster bootstrap”. Often, this is the most attractive option (see
MacKinnon, 2019). Cameron et al. (2008) provide an overview of the different meth-
ods of bootstrapping to test a restriction on β, as well as simulation evidence of their
performance. Roodman et al. (2019) describes the Stata routine boottest, developed to
perform tests based on the wild cluster bootstrap.

2.6 Random effects estimators

The pooled OLS estimator provides an easy and attractive estimator in case of exoge-
nous explanatory variables, and, as discussed above, its covariance matrix can be es-
timated allowing for different types of correlations between the error terms as well as
heteroskedasticity. In some cases we may wish to impose more structure on the cor-
relation structure, so as to exploit this in estimation, or to investigate its magnitude.
A common approach with individual or firm-level data is to allow for a time-invariant
unobserved component in the equation. This component captures unobserved unit-
specific heterogeneity that does not vary over time. Dependent variables in finance
often exhibit substantial persistence that may be attributable to, for example, com-
pany culture, ethical standards, efficiency of operations, or management quality that
varies little over time. Therefore, when explaining variables like capital structure, in-
vestments, or firm performance, such unobserved components tend to be important.
In contrast, when explaining returns on stock portfolios, correlation over time in the
unobservable components is not very likely. Instead, within-period correlation may
arise, corresponding to commonalities in market-wide shocks.

A common starting point for models with firm-level unobserved heterogeneity is
the random effectsmodel. In this case, the equation’s error term is decomposed into
a time-invariant component αi and a time-varying component uit, both of which are
assumed to be uncorrelated with the explanatory variables in the model. Mathemati-
cally, we write the random effects model as

yit = x
′
itβ + αi + uit , i = 1, . . . ,N ; t = 1, . . . ,T , (2.61)

6 In general, the statistic that is bootstrapped should be “asymptotically pivotal”, which means that
its distribution should not depend upon unknown parameters. In such cases, bootstrappingmay pro-
vide “asymptotic refinement”, whichmeans that the bootstrap distribution approaches the actual dis-
tribution faster than does the asymptotic distribution; see Cameron and Trivedi (2005, Chapter 11).
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with x1,it = 1, corresponding to an overall intercept term. This model is also known as
a (one-way) error components model. Compared to (2.39), it decomposes the overall
error term εit into a time-invariant component αi and a time-varying component uit,
which is assumed to exhibit no correlation over time. The standard assumptions for
this model impose

Assumption EXO1 (re) : E(αi | xi1, . . . , xiT ) = 0, (2.62)

and

Assumption EXO2 (re) : E(uit | xi1, . . . , xiT ) = 0, (2.63)

which is similar to, but stronger than Assumption EXO2 (ols-p): all explanatory vari-
ables in the model should be uncorrelated with the unobservables in the model. In
fact, assumption EXO2 (re) requires strict exogeneity of the regressors. This not only
requires xit to be uncorrelated with uit, but also to be uncorrelated with leads and lags
of uit . Among other things, this excludes any model where there is feedback from the
dependent variable to future regressors.

Usually the random effects model makes additional, quite strong, assumptions
about the distribution of the two components in the error term. In particular, it im-
poses

Assumption ED1 (re) : E(α2i | xi1, . . . , xiT) = E(α
2
i ) = σ

2
α (2.64)

Assumption ED2 (re) : E(uituis | xi1, . . . , xiT ) = σ
2
u if s = t, 0 otherwise. (2.65)

This imposeshomoskedasticity uponboth error componentsαi anduit, and it excludes
serial correlation in uit . Note, however, that assumption ED1 (ols-p) does not allow for
serial correlation in εit and thus imposes that σ2α = 0. Under the above assumptions,
the coefficients β can be estimated by means of feasible generalised least squares
(FGLS). This exploits the error components structure of the equation’s error term in
estimation. The FGLS estimator can be written as

β̂RE = (
N
∑
i=1 T
∑
t=1(xit − θ̂x̄i)(xit − θ̂x̄i)′)

−1 N
∑
i=1 T
∑
t=1(xit − θ̂x̄i)(yit − θ̂ȳi), (2.66)

where x̄i = T−1∑t xit denotes the firm-specific average of xit (and similar for ȳi), and
where θ̂ is a consistent estimator of

θ = 1 −√
σ2u

σ2u + Tσ2α
,

which depends upon the relative importance of the two components of the error term.
If θ is known the above estimator is a generalised least squares (GLS) estimator. In
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practice, the variances σ2α and σ
2
u are typically unknown and can be estimated using

the residuals from two simpler estimators, the within estimator and the between es-
timator, which we will discuss below. The FGLS estimator is therefore a two-step es-
timator, where the unknown coefficients characterising the covariance matrix of the
equation’s error term are estimated first, after which an asymptotically efficient esti-
mator is determined using (2.66).

The within and between estimators are based on an orthogonal decomposition of
the variation in the data into variation around the firm-specific means and variation
of the firm-specific means around the overall mean. To see this, first write

yit − ȳ = (yit − ȳi) + (ȳi − ȳ).

The first component captures variation over time, while the second component cap-
tures variation between individual units, but not over time. We can use the corre-
sponding transformations to transform the equation of interest. This leads to the
within equation,

yit − ȳi = (xit − x̄i)
′β + uit − ūi (2.67)

(with all time-invariant variables eliminated) and the between equation,

ȳi = x̄
′
iβ + αi + ūi. (2.68)

The between estimator β̂B for β is given by the OLS estimator in (2.68). Effectively,
it discards the time-series information in the data set. It is available in Stata in xtreg,
be. Similarly, the within estimator β̂within is given by the OLS estimator in (2.67). These
two estimators provide two independent sources of information about β. The between
estimator is not frequently reported in empirical work because its assumptions are no
weaker than those of the random effects or pooled OLS estimator (although it may be
less sensitive to measurement error), whereas the latter estimators tend to be more
efficient. An exception is provided in Murphy (1985), who also reports the between
estimator based on relating average compensation of executives to their average per-
formance. As shown by Hsiao (2014, Section 3.3), the random effects estimator is a
matrix-weighted average of the between estimator and thewithin estimator, where the
weights depend upon the relative variances of the two estimators, the more accurate
one getting the higher weight. The GLS estimator, under the current assumptions, is
the optimal combination of the within estimator and the between estimator.

To estimate σ2α and σ2u, one can use the residuals from the within and between
regressions above. Denoting

ûit = yit − ȳi − (xit − x̄i)
′β̂within

we estimate σ2u as

σ̂2u =
1

N(T − 1)

N
∑
i=1 T
∑
t=1 û2it , (2.69)
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where we divide by N(T − 1) because the within transformation effectively eliminates
one period. The combined error term in the between regression (2.68) has variance

σ2B = σ
2
α +

1
T
σ2u,

which we can estimate consistently as

σ̂2B =
1
N

N
∑
i=1(ȳi − x̄′i β̂B)2. (2.70)

From this, a consistent estimator for σ2α is obtained as

σ̂2α = σ̂
2
B −

1
T
σ̂2u. (2.71)

These estimates can be used to obtain an estimated value of θ. The resulting FGLS
estimator is popularly referred to as the random effect estimator and is also known
as the Balestra-Nerlove estimator (Balestra and Nerlove, 1966). If it is assumed that
the two error components have a normal distribution, the random effects model can
also be estimated bymaximum likelihood,which is asymptotically equivalent to FGLS
under the current assumptions.Wepostpone the discussion of this to Subsection 6.1.2.

Under the above assumptions, the pooled OLS and random effects estimators are
both consistent for β. The random effects estimator is more efficient, as it exploits the
error components structure in estimation, rather than – ideally – just allowing for it
when calculating standard errors (in the clustered version). The efficiency gain can be
expected to be substantial if the unobserved heterogeneity is important, that is, if σ2α is
relatively large. When σ̂2α = 0, θ̂ = 0 and the FGLS estimator is identical to the pooled
OLS estimator.

It is possible to test whether or not there is an unobserved effect in the equation’s
error term, that is, whether or not σ2α = 0. Breusch and Pagan (1980) derive a Lagrange
multiplier test for this null hypothesis, which can be obtained in Stata with the com-
mand xttest0 after xtreg, re. Except in cases where serial correlation tends to be close
to zero, for example, in time-series of stock returns, it is exceptional for this test to not
reject the null hypothesis.

Under the previous assumptions (homoskedasticity, no serial correlation in uit),
the covariance matrix of the FGLS estimator can be estimated as

V̂{β̂RE} = σ̂
2
u(

N
∑
i=1 T
∑
t=1(xit − θ̂x̄i)(xit − θ̂x̄i)′)

−1
, (2.72)

where σ̂2u is a consistent estimator for σ2u. Because consistency of the FGLS estimator
in (2.66) does not rely upon assumptions ED1 (re) and ED2 (re), it is possible to com-
bine the random effects estimator with robust standard errors, similar to the pooled
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OLS estimator. In this case, the random effects estimator may be more efficient than
the OLS one, but it is no longer optimal in any sense. Because homoskedasticity and
absence of serial correlation in uit are very strong assumptions in most applications,
using standard errors that allow for serial correlation and heteroskedasticity may be
recommended in caseswhere a randomeffects estimator is applied (Wooldridge, 2010,
Chapter 10). In fact, this may be quite an attractive approach, as it combines some of
the efficiency gains of exploiting some form of correlation in the error terms with the
robustness of using clustered standard errors. That is, the resulting estimator may be
more efficient than pooled OLS, and still allow for arbitrary forms of heteroskedastic-
ity and within-cluster correlation when making inferences. The random effects esti-
mator is available in Stata in xtreg, re, where the covariance matrix can be standard,
vce(robust), to allow for heteroskedasticity, or vce(cluster cvar), to allow for both het-
eroskedasticity and within-cluster variation (where cvar is the cluster variable).

In the empirical finance literature, use of the standard random effects estimator
is somewhat uncommon relative to pooled OLS or other approaches. An application
is provided in Barclay et al. (1993), who estimate the effect of friendly block holdings
on the value of closed-end funds using the random effect estimator. Maksimovic and
Phillips (2002) use a random effects approach to test the effects of plant-level pro-
ductivity and industry-level demand on firm industry segment sales growth. Another
example is Anderson and Reeb (2003), who relate firm performance to an indicator
for family firms and several control variables, using pooled OLS, and compare this to
a random effects approach yielding qualitatively and quantitatively similar results.

A particularly strong assumption in the random effects approach (and also in the
pooled OLS approach) is assumption EXO1 (re) which says that αi is conditionally
mean independent of the explanatory variables in xi1, . . . , xiT . This imposes that the
unobserved heterogeneity that is captured by the error component αi only affects the
dependent variable but is not correlated with any of the explanatory variables in the
model. In many cases where firm-level variables are explained, such as leverage or
firm value, it can be expected that there are unobservables in the model that also cor-
relate with one or more of the explanatory variables, for example, company sales or
cash flows. In such cases, the random effects approach, as well as pooled OLS, are
inconsistent, and a fixed effects approach may be more appropriate.

2.7 Fixed effects estimators

The pooled OLS estimator assumes that all coefficients in the model are the same
across all firms and periods. An obvious way to relax this restriction is to allow the
intercept term in the model to differ across firms. This leads to the so-called fixed ef-
fects model. Formally, it can be written as

yit = αi + x
′
itβ + uit , (2.73)
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where the αi are firm-specific intercept terms, treated as fixed unknown parameters,
and where the overall intercept term is eliminated from the vector xit . We can write
this in the usual regression framework as

yit =
N
∑
j=1 αjdij + x′itβ + uit , (2.74)

where dij = 1 if i = j and 0 otherwise. Thus, the equation contains a set of N dummy
variables as regressors in addition to xit . The OLS estimator for β based on (2.74) is
referred to as the Least Squares Dummy Variable estimator (LSDV estimator). This
estimator is identical to an OLS estimator applied to an equation where all variables
are transformed into deviations from their individual-specific means. Denoting ȳi =
T−1∑t yit, and similarly for x̄i, this transformed equation can be written as

yit − ȳi = (xit − x̄i)
′β + (uit − ūi), (2.75)

corresponding to the within equation presented above. This is a regression model in
deviations from individual-specific means. The transformation producing this is re-
ferred to as thewithin transformation. The OLS estimator based on estimating (2.75)
is given by

β̂FE = (
N
∑
i=1 T
∑
t=1(xit − x̄i)(xit − x̄i)′)

−1 N
∑
i=1 T
∑
t=1(xit − x̄i)(yit − ȳi). (2.76)

This estimator is often called the within estimator or simply the fixed effects esti-
mator for β. The firm-specific intercepts can be estimated as

α̂i = ȳi − x̄
′
i β̂FE , i = 1, . . . ,N .

In most applications, these estimates are not presented. When the number of time
periods T is fixed, and only N → ∞, it is not possible to consistently estimate αi, as
their number grows with the sample size N . With fixed T, the firm-specific averages ȳi
and x̄i do not converge to anything if the number of firms increases, and neither does
α̂i. Fortunately, this is typically not a problem, at least in linear models, because our
main interest is in estimating β.

The conditions for β̂FE to be consistent (for N →∞) are both weaker and stronger
than those for the pooled OLS estimator in (2.44). On the one hand, the conditions are
substantially weaker because the explanatory variables are allowed to be correlated
with unobserved components in the error term that are time-invariant. That is, cor-
relation between the time-invariant unobserved heterogeneity in αi and the observed
explanatory variables in xit is not a problem. On the other hand, for fixed T the condi-
tions are somewhat stronger because it is no longer allowed that explanatory variables
in period t are correlated with uis, s ̸= t.
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For consistency of β̂FE we need to assume that

E((xit − x̄i)uit) = 0, t = 1, . . . ,T . (2.77)

Sufficient for this is that xit is uncorrelated with uis, that is,

E(xituis) = 0, t = 1, . . . ,T , s = 1, . . . ,T . (2.78)

Following Wooldridge (2010, Chapter 10) and others we reformulate these conditions
in terms of conditional expectations, which are slightly stronger. The key assumption
is that

Assumption EXO3 (fe) : E(uit | xi1, . . . , xiT , αi) = 0. (2.79)

This assumption states that the explanatory variables in xit are strictly exogenous,
conditional upon the unobserved effect αi. This not only requires xit to be uncorre-
lated with uit, but also to be uncorrelated with leads and lags of uit . This is restrictive.
It clearly excludes the inclusion of a lagged dependent variable in the model, because
yi,t−1 is obviously correlated with the error term from the previous period. More gen-
erally, it excludes any model where there is feedback from the dependent variable to
future regressors. For example, Pastor et al. (2015) relate mutual fund performance yit
to the logarithm of the size of the fund, so as to identify the existence of decreasing re-
turns to scale in the mutual fund industry. Their model includes a fixed fund effect to
capturemanagerial skill. However, because fund size is partly driven by past fund per-
formance, size cannot be treated as strictly exogenous and the standard fixed effects
approach yields an inconsistent estimator.

Relative to the random effects approach, the fixed effects approach has the advan-
tage that it does not make any assumptions about αi and how it is allowed to depend
upon the explanatory variables in the model. This makes the fixed effects approach
much more robust to the presence of unobserved firm-specific heterogeneity that is
potentially correlated with the observed explanatory variables in the model.

Whereas the contemporaneous exogeneity E(uit | xit , αi) = 0 is testable only in
very restrictive cases, the additional requirements of strict exogeneity, E(uit | xis, αi) =
0, s ̸= t canbe tested relatively easily (seeWooldridge, 2010, Chapter 10). Nevertheless,
according to Grieser and Hadlock (2019) the strict exogeneity issue is almost entirely
overlooked in the empirical finance literature, except in cases where the model of in-
terest contains a lagged dependent variable. We return to these issues in Chapter 3.

In addition to the strict exogeneity of xit, the standard assumptions of the fixed
effects approach impose homoskedasticitiy of uit and the absence of serial correlation
in uit . Under these assumptions, the covariance matrix of the fixed effects estimator
is easily obtained by applying the standard least squares formulas for the LSDV for-
mulation. It is important, though, to take into account that the number of coefficients
that is estimated in this setting is N + K, so increasing with the sample size N . The
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standard covariance matrix can be estimated based on (2.75), assuming that uit is ho-
moskedastic and not correlated across firms and time, and is given by

V̂{β̂FE} = σ̂
2
u(

N
∑
i=1 T
∑
t=1(xit − x̄i)(xit − x̄i)′)

−1
, (2.80)

where σ̂2u is a consistent estimator for the error variance based on the residuals

σ̂2u =
1

N(T − 1)

N
∑
i=1 T
∑
t=1 û2it , (2.81)

where

ûit = (yit − ȳi) − (xit − x̄i)
′β̂FE = yit − α̂i − x′it β̂FE

denotes the residual from the within or LSDV regression. This estimator is different
from the routinely provided one after applying OLS to (2.75), because the variance of
the within-transformed error is smaller than that of uit . As in the case of pooled OLS,
it is possible to calculate standard errors under weaker assumptions; we discuss this
in Section 2.8. In Stata, the fixed effects estimator is implemented in xtreg, fe. In the
absence of heteroskedasticity and within-unit correlation in uit, the fixed effects esti-
mator is efficient in the class of estimators that treats αi as fixed unknown parameters
(Verbeek, 1995). If these assumptions are not satisfied, the FE estimator is inefficient
and a more efficient alternative can be derived (see Wooldridge, 2010, Section 10.5.5,
for a GLS version of the fixed effects estimator).

Essentially, the fixed effects model concentrates on differences “within” firms.
That is, it is explaining to what extent yit differs from ȳi but does not explain why
ȳi is different from ȳj. On average, firm i could have much higher levels of the depen-
dent variable than firm j, but this is all captured in the fixed firm effects. The variation
around the firm-specific average levels is what matters. The extreme implication of
this is that any variable that is time-invariant cannot be included in the fixed effects
model. It is simply eliminated by the within transformation (and its effect subsumed
by the firm-level fixed effects). As a result of this, the fixed effects estimator tends to
have a relatively high variance, as it is exploiting only a limited part of the variation
in the data.

The big advantage of the fixed effects estimator is that it controls for time-invariant
unobserved heterogeneity between firms. Compared to the random effects and pooled
OLSapproaches, the fixed effects estimator does not impose thatE(αi | xi1, . . . , xiT ) = 0.
This is an important advantage. Inmany cases it can be expected that firms have time-
invariant unobserved characteristics, related to, for example, managerial quality, or
company culture, that affect both the outcome variable yit aswell as one ormore of the
explanatory variables. A classic example of this is the estimation of production func-
tions (Mundlak, 1961). In many cases, especially in the case of small firms, it is desir-
able to includemanagement quality as an input in theproduction function. In general,
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however, management quality is unobservable. Assuming management quality does
not vary over time, this leads to a time-invariant component in αi that positively affects
output yit but negatively correlates with one or more inputs in xit .

A good example of this in the financial literature is given in Murphy (1985), inves-
tigating the relationship between corporate performance and managerial renumera-
tion. Within any given firm there may be a positive time-series relationship between
executive pay and firm performance, but a pooled estimator can even produce a neg-
ative relation if, in the cross-section, there are unobservables determining compen-
sation levels in a given firm (e. g., related to firm size) that are negatively related to
average stock performance. A similar point is made in Wintoki et al. (2012) in the con-
text of estimating the relationship between board structure and firmperformance. Un-
observed heterogeneity includes managerial quality and it can be argued that high-
ability managers will monitor less and thus, will have less independent boards. As a
result, a standard regression of performance on board structure ignoring this unob-
servable heterogeneitymay find a negative relation between board independence and
performance.

An illustration of potential differences between fixed effects and pooled estimates
is given in Figure 2.1, where αi and xit are negatively correlated. For each firm, the re-
lationship between yit and xit is upward sloping (the solid lines). When pooling the
data (and estimating by pooled OLS), a very different slope is found (the dashed line).
Similarly, the random effects estimator will be severely biased. This is because the
combined error term αi + uit in the latter two approaches is correlated with the regres-
sors.

Figure 2.1: Fixed effects versus pooled OLS.
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Lemmon et al. (2008) stress that leverage ratios are highly persistent over time, and
argue that, when modelling capital structure decisions, firm fixed effects are needed
to control for unobservable, time-invariant features of the firm. Yermack (1996) uses
both pooled OLS and a fixed effects approach to estimate the impact of board size on
firm valuation (Tobin’sQ). Firms with larger boardsmay differ from firmswith smaller
boards inmanyways, and to properly estimate the role of board size one needs to con-
trol for these differences as much as possible. Part of these differences is captured by
observed variables, such as firm size, but there are also differences between firms that
are not directly observable. If these unobservable differences do not vary over time
the inclusion of fixed firm effects in themodel controls for time-invariant firm-specific
heterogeneity. Himmelberg et al. (1999) advocate a fixed effects approach to control for
time-invariant firm-specific heterogeneity in models explaining equity ownership by
top managers. Palia (2001) compares pooled OLS, random effects and fixed effects es-
timators in a model relating firm performance to the structure of managerial compen-
sation and concludes that the latter approach dominates the other two, as it controls
for unobserved firm-specific heterogeneity, for example, relating to intangible assets
or a firm’s contracting environment. Bertrand and Schoar (2003) use a manager-firm
matched panel data set to determine the role of manager fixed effects in a wide range
of corporate decisions, such as diversification and dividend payments. Manager fixed
effects appear to be correlated with several firm characteristics, like research and de-
velopment (R&D) expenditures. Fich and Shivdasani (2006) estimate the relationship
between firm value and board characteristics using a sample of 508 industrial compa-
nies across seven years. They prefer the fixed effects approach, because it “is robust to
the presence of omitted firm-specific variables that would lead to biased estimates in
an OLS framework. Given the high correlation between the market-to-book ratio and
corporate governance variableswith numerous other company attributes, we view the
fixed effects framework as offering significantly more reliable estimates than OLS re-
gressions”.

The Hausman test
The restriction that αi is uncorrelated to the explanatory variables can easily be tested.
The most common way to do so is by means of a Hausman test (Hausman, 1978). In
general, aHausman test is based on comparing twodifferent estimators for the param-
eters of interest: one that is consistent under both the null and alternative hypothe-
ses and one that is consistent (and typically efficient) under the null hypothesis only.
A significant difference between the two estimators indicates that the null hypothesis
is unlikely to hold. In the current setting, the Hausman test simply compares the ran-
dom effects and fixed effects estimators for β (excluding the coefficients of any time-
invariant regressors). Under the assumptions of the random effects model, β̂RE is con-
sistent and asymptotically efficient, whereas the fixed effects estimator is consistent
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but inefficient. If Assumption EXO1 (re) holds the random effects estimator is incon-
sistent, but the fixed effects estimator remains consistent. Under the null hypothesis
the difference β̂FE − β̂RE is asymptotically normally distributed with covariance matrix

V{β̂FE − β̂RE} = V{β̂FE} − V{β̂RE}. (2.82)

This simple result is due to the efficiency of the random effects estimator. As a result,
the Hausman test statistic can be calculated as

ξHausman = (β̂FE − β̂RE)
′[V̂{β̂FE} − V̂{β̂RE}]−1(β̂FE − β̂RE), (2.83)

where the V̂s denote estimates of the covariance matrices of the respective estima-
tors, assuming homoskedasticity and absence of serial correlation in uit . Under the
null hypothesis, the test statistic has an asymptotic Chi-square distribution, where
the degrees of freedom equal the number of relevant elements in β that are used in the
test. The Stata command hausman fe re implements this test, where fe and re are the
names of the fixed and random effects estimation results stored from xtreg. (Note that
the order of the two estimates should not be changed.)

The Hausman test thus tests whether the fixed effects and random effects esti-
mators are significantly different. Computationally, this is relatively easy because the
covariance matrix satisfies (2.82). A practical problem when computing (2.83) is that
the covariancematrix in square bracketsmay not be positive definite in finite samples,
such that its inverse cannot be computed. As an alternative, it is possible to test for a
subset of the elements in β. In addition, the test does not apply if uit is heteroskedastic
or exhibits serial correlation. This is because the random effects estimator is no longer
efficient in this more general setting and (2.82) is no longer valid. As an alternative,
Pesaran (2015, Section 26.9) presents a test based on comparing the pooled OLS esti-
mator and the fixed effects estimator for β. Wooldridge (2010, Section 10.7) proposes a
variant of the Hausman test that can also be applied in this more general case, which
we discuss below.

Bae and Goyal (2009) examine towhat extent differences in legal protection affect
the size, maturity, and interest rate spread on loans. They use an extensive sample of
loan tranches to borrowers in 48 countries, and include country random effects in
their main specification, even though the Hausman test rejects the null hypothesis.
They do so because their key variables are the property rights index and the creditor
rights index, measured at the country level, and show relatively little variation within
countries andmuch larger variation between countries. Barclay et al. (1993)model the
premium to net asset value (NAV) of closed end funds, as a function of block owner-
ship, and report several Hausman tests to defend their choice for the random effects
estimator.

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.7 Fixed effects estimators | 49

Testing for fixed effects
In many cases, the fixed effects are simply added as a set of additional controls in
the model, so as to improve robustness of the estimator. With the within transforma-
tion, explicit estimation of the firm-specific intercept terms is redundant, and esti-
mated fixed effects are not reported. In some cases, though, the fixed effects, or their
impact on the explanatory power of the model, are of economic interest. For exam-
ple, Bertrand and Schoar (2003) are interested in the role of manager fixed effects in
corporate decisions. Matching firm-level data with manager-level data, they can track
individual topmanagers across different firms over time, and are able to separateman-
ager fixed effects from firm fixed effects (focusing on the subsample of managers who
change firms during the sample period).7

The null hypothesis that fixed effects are irrelevant corresponds to H0 : αi = α
for all i, which is a total of N − 1 restrictions. This hypothesis can be tested by means
of a standard F-test in the LSDV approach when uit is assumed to be homoskedastic.
Many software packages routinely provide this test. The general expression for the test
statistic is

F = (Rα̂)
′[RV̂(α̂)R′]−1Rα̂

N − 1
, (2.84)

where α̂ denotes the N-dimensional vector of estimated firm-specific intercept terms,
and Rα = 0 summarises the N − 1 restrictions under test. That is, R is a (N − 1) × N
matrix of rank N − 1, the columns of which add up to zero. The test does not depend
upon the particular way the restrictions are formulated, and a convenient choice is

R =((

(

1 −1 0 ⋅ ⋅ ⋅ 0
0 1 −1 0
...

. . .
...

0 1 −1 0
0 ⋅ ⋅ ⋅ 0 1 −1

))

)

.

The matrix V̂(α̂) denotes the estimated covariance matrix under the standard fixed
effects assumptions. Under the null hypothesis, the test statistic has an (approximate)
F-distributionwith degrees of freedomequal to the total number of restrictionsN−1 in
the numerator, and the total number of observations (NT in the balanced panel case)
minus the total number of parameters (N + K) in the denominator.

Recall that with large N and fixed T, the estimators for the unit-specific intercept
terms, α̂i, are unbiased but not consistent (under the previously listed assumptions).
In addition, the number of restrictions under test is N − 1. As a result, it is inappro-
priate to use asymptotic theory (based on N → ∞), for example, to allow for either

7 In amore recent study, Fee et al. (2013) revisit this question, arguing that – inmany cases –manager
changes in a firm are likely to be endogenous.
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heteroskedasticity or within-cluster correlation in the F-test.8 This problem is high-
lighted in Fee et al. (2013) in the context of manager fixed effects. They conclude that
the traditional F-tests on the joint significance of fixed-effects dummy variables are
highly suspect in many settings typically encountered in corporate finance (e. g., in
the presence of serial correlation in uit). “In many cases, there will be no information
content in these tests, even when reported p-values are well below 0.001”.

An alternative way of examining the explanatory power of the firm fixed effects is
to investigate their impact on the model’s adjusted R2 or explained sums of squares.
BertrandandSchoar (2003) focus on the increase in the adjustedR2 comparingmodels
with andwithoutmanager fixed effects. Alternatively, Lemmonet al. (2008) use amore
elaborate analysis of covariance framework to determine the contribution of firmfixed
effects to the explained sumsof squares inmodels explainingafirm’s capital structure.

2.8 Clustered standard errors with fixed effects

As with the pooled OLS and random effects estimators, it is possible to calculate stan-
dard errors for the fixed effects estimator for β under weaker assumptions than ho-
moskedasticity and absence of serial correlation in uit . Because the fixed effects esti-
mator is a least squares estimator in a transformed model, its covariance matrix, in
general, has the typical sandwich shape, now given by

V̂{β̂FE} = (
N
∑
i=1 T
∑
t=1 x̃it x̃′it)

−1
B(

N
∑
i=1 T
∑
t=1 x̃it x̃′it)

−1
, (2.85)

where x̃it = xit − x̄i denotes within-transformed explanatory variables, and where the
underlying assumptions determine the form of the “filling” matrix B. Many authors
assume that the inclusion of fixed firm effects captures all within-firm correlation over
time, so that uit has no serial correlation.9 One might think that allowing uit to be
heteroskedastic only would result in a covariance matrix that is a variant of theWhite
(1980) covariance matrix, where B has the structure

B = T
T − 1

T
∑
t=1 N
∑
i=1 û2it x̃′it x̃′it ,

where ûit = ỹit − x̃′it β̂FE is the within residual (see Kézdi, 2004) and the adjustment fac-
torT/(T−1)has a similar origin as the devision byT−1 rather thanT in (2.81). However,

8 Accordingly, Stata only reports the F-test when homoskedasticity and no serial correlation are im-
posed.
9 Note that the within-transformed error term uit − ūi is serially correlated (for fixed T) if uit has no
serial correlation.
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Stock andWatson (2008) show that this covariancematrix estimate is inconsistent for
fixedT andT > 2. The bias arises because the unit-specificmeans (hidden in the trans-
formed variables) are not estimated consistently for fixed T, making the usual step of
replacing estimated regression coefficients with their probability limits inapplicable.

In general, the inclusion of firm fixed effects in the model does not eliminate all
sources of within-firm correlation. Put differently, even with firm-fixed effects, cor-
rections for serial correlation in uit may be required, and ignoring this may lead to
standard errors that are seriously misleading. An easy way to accommodate both het-
eroskedasticity and serial correlation within uit, is by using cluster robust standard
errors (CRSE) for the within estimator, where the cluster is the individual firm. This
is similar to (2.51), replacing the regressors by their within-transformed counterparts
and the OLS residuals by the residuals from the within regression (Arellano, 1987).
That is,

V̂{β̂FE} = (
N
∑
i=1 T
∑
t=1 x̃it x̃′it)

−1 N
∑
i=1 T
∑
t=1 T
∑
s=1 ûit ûisx̃it x̃′is( N

∑
i=1 T
∑
t=1 x̃it x̃′it)

−1
. (2.86)

This covariance matrix estimator is also recommended in cases where only het-
eroskedasticity is present. In Stata, standard errors based on (2.86) are obtained if
the option robust is used with xtreg, fe.

An alternative version imposes homoskedasticity across individuals but allows an
unrestricted covariancematrix of ui1, . . . , uiT andwas proposed by Kiefer (1980). Kézdi
(2004) provides a Monte Carlo study analysing the properties of these covariance esti-
mators for different N and T and shows that they have reasonably good behaviour in
small samples, particularly when T is small and N is large, if the assumptions about
homoskedasticity and serial correlation are correct. Importantly, the clustered estima-
tor in (2.86) also works well for large T (when the number of nonzero correlations is
high), evenwith small ormoderateN . Pustejovsky andTipton (2018) analyse anumber
of small-sample corrections that improve the performance of the above cluster-robust
covariance matrix estimates in cases where the number of clusters is small.

A robust Hausman test
In case of heteroskedasticity (of either αi or uit) or serial correlation in uit, the stan-
dard Hausman test comparing the fixed effects and random effects estimators based
on (2.83) is no longer appropriate, because these problems invalidate the covariance
matrix estimator that is used. Wooldridge (2010, p. 332) has proposed a variant of the
Hausman test that can also be applied in the more general case. It is based on the
approximation, proposed by Mundlak (1978), that

αi = β0 + x̄
′
i γ + vi, (2.87)

where β0 is an overall intercept term, and vi a random error term, uncorrelated to x̄i.
When xit contains time-invariant variables, these are excluded from the average x̄i.
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This assumes that the correlation between the unobserved heterogeneity in αi and the
explanatory variables in the model is fully captured by a linear approximation in x̄i. If
we substitute this into our equation of interest, we obtain

yit = β0 + x
′
itβ + x̄

′
i γ + εit , (2.88)

where vi is embedded in the overall error term (and xit does not include an intercept
term). Mundlak (1978) has shown that, estimating this extendedmodel using the ran-
dom effects approach leads to the within estimator for β. In addition, the estimator for
β + γ corresponds to the between estimator for β. Accordingly, a Wald test for γ = 0
is equivalent to comparing the within and between estimators and thus provides an
alternative way to conduct the Hausman test above. This test can easily be extended
to incorporate a more general covariance matrix estimator. If the test rejects the null
hypothesis, the fixed effects estimator should be preferred above the random effects
and pooled OLS estimators.

Imposing assumption (2.87) and estimating equation (2.88) is sometimes referred
to as the correlated randomeffects (CRE) approach (see, e. g.,Wooldridge, 2010, Sec-
tion 10.2). For the linear model, the equivalence of the CRE approach with the fixed
effects approach (for β) relies upon linear projections. In dynamicmodels and nonlin-
ear models, the two approaches are not equivalent, and the correlated random effects
approachmay provide some leewaywhen estimationwith fixed effects is problematic.
See Subsections 6.1.6 and 6.3.3 for examples.

2.9 First-difference estimators

Instead of using the within transformation, the individual effects αi can also be elim-
inated by first-differencing (2.74). This results in

yit − yi,t−1 = (xit − xi,t−1)′β + (uit − ui,t−1)
or

Δyit = Δx
′
itβ + Δuit , (2.89)

where Δ is the first-difference (FD) operator, such that Δyit = yit − yi,t−1. Applying OLS
to this equation yields the first-difference estimator for β. It is given by

β̂FD = (
N
∑
i=1 T
∑
t=2ΔxitΔx′it)

−1 N
∑
i=1 T
∑
t=2ΔxitΔyit . (2.90)

The FD estimator is consistent (forN →∞) under the previous assumption of strict ex-
ogeneity of xit . However, it does not require that uit is uncorrelatedwith xi,t+2, xi,t+3, . . . .
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This advantage seems mostly of theoretical interest, although there may be empiri-
cally relevant cases where there is feedback from yit to one or more of the explanatory
variables but with a delay of more than one period. To implement the estimator in
Stata, one can use the regress command with first-differenced variables and omitting
the intercept term. Alternatively, one can use xtivreg, fd and ignore the instrumental
variables.

Whereas the conditions for consistency of the FD estimator are slightly weaker
than those for thewithin estimator, it is, in general, somewhat less efficient. For T = 2,
both estimators are identical. If strict exogeneity is violated, the FE and FD estimators
are both inconsistent. If the two estimators provide very different results, thismay thus
indicate violation of the strict exogeneity assumption (that affects both estimators dif-
ferently) or some other form of model misspecification. Grieser and Hadlock (2019),
investigating strict exogeneity in the empirical finance literature, find that the differ-
ences between FE and FD estimators are often quite large, often differing by a factor
of more than 50%, and recommend a comparison of these two approaches as a simple
diagnostic. For models with a lagged dependent variable, in which the strict exogene-
ity assumption is obviously violated, the FE and FD estimator tend to produce very
different results (both of them being inconsistent), see, for example, Verbeek (2017,
Section 10.5). We elaborate upon the strict exogeneity assumption in Section 3.6, and
we investigate dynamic models in Chapter 5.

The FD estimator is used in Jensen and Murphy (1990), who estimate the relation
between CEO cash compensation and firm performance, while including an intercept
term in the first-differenced model. This corresponds to the presence of a linear time
trend in the model in levels. Another example is Hayes et al. (2012), who use a first-
differencing approach to eliminate time-invariant firm-specific heterogeneity in mod-
els explaining compensation or incentives of CEOs.

In empiricalwork, the FE estimator (within estimator) ismuchmore common than
the FD estimator. However, first-differencing is often a first step with the use of instru-
mental variables or the generalised method of moments, for example, in a dynamic
model. First-differencing is also popular for the estimation of treatment effects. Con-
sider a situation where we wish to investigate the impact of a certain policy or treat-
ment upon firms. The sample consists of a treatment group, firms which are subject
to the treatment in period t = 2, and a control group of firms which are not. We also
observe the same firms at t = 1 before treatment takes place. Denoting treatment by
an indicator rit, equal to 1 if the firm was subject to treatment and 0 otherwise, the
first-differenced model can be written as

Δyit = μ + γrit + Δx
′
itβ + Δuit , t = 2 (2.91)

where μ is an overall intercept term (arising from a time dummy in the original model
in levels). The intercept captures the population-wide shift in yit from period 1 to 2, ir-
respective of the treatment (and other variables in xit). This equation can be estimated
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consistently by OLS, leading to a first-difference estimator, provided both rit and xit
are strictly exogenous. Because the first-differencing eliminates any time-invariant el-
ement, it is allowed for treatment to be correlated to time-invariant unobserved het-
erogeneity αi. When Δxit is not included in the model, the OLS estimator for γ in (2.91)
corresponds to the sample average of yi2 − yi1 for the treated minus the average for the
non-treated. Defining Δȳtreatedi2 as the average for the treated and Δȳnon−treatedi2 as the
average for the non-treated, the OLS estimate is simply

γ̂ = Δȳtreatedi2 − Δȳnontreatedi2 .

This estimator is called the difference-in-differences (DiD) estimator, because one es-
timates the time difference for the treated and untreated groups and then takes the dif-
ference between the two. The first-differencing takes care of unobservable fixed effects
and controls for unobservable (time-invariant) differences between firms (e. g., in-
dustry, management quality). The second difference compares treated with untreated
firms. For example, Derrien andKecskés (2013) examine the effect of a decrease in ana-
lyst coverage on corporate policies, like capital expenditures or share repurchases, by
computing the average changes from year −1 to year +1 for treatment firms (which lost
an analyst) and control firms (which did not) and the differences between them. The
Stata routine diff provides treatment effects estimates including their building blocks.

The difference-in-differences approach is commonly used to evaluate the impact
of a natural experiment, like an exogenous policy change that affects some firms but
not all. For example, Gilje and Taillard (2017) investigate the impact of an exogenous
change in basis risk in the oil and gas industry in 2012, which affected Canadian light
oil producers but not otherwise similar US oil producers. Gropp et al. (2014) use the
fact that government guarantees for savings banks were removed in Germany in 2001,
following a law suit, to examine the effect of such guarantees on bank risk-taking. The
control group consists of German banks to which the guarantee was not applicable.
Agarwal et al. (2018) use a regulatory change in the frequency of mandated portfolio
disclosure for mutual funds, to investigate the influence of portfolio transparency on
corporate myopia. Treatment firms are those with high ownership by funds affected
by the regulation.

In the simplest setting, the effect of the experiment is simply reflected in the aver-
age change in yit in the affected subsample (with ri2 = 1) minus the average change in
the control sample. Important for this is that there are no time effects that affect the
two subsamples differently. That is, the average change in the control sample should
be a good proxy for the average change that would have happened in the treatment
group had there be no treatment. This important assumption is typically referred to as
the parallel trends assumption. We come back to this assumption in Chapter 7, which
deals with difference-in-differences and other approaches to the estimation of (het-
erogeneous) treatment effects.
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2.10 Testing for heteroskedasticity and autocorrelation

In the typical finance application with panel data the presence of heteroskedasticity
is taken for granted, and the use ofWhite standard errors or clustered standard errors,
which allow for heteroskedasticity, has become the default. Nevertheless, it is possible
to test the null hypothesis of homoskedasticity using a variant of the Lagrange Multi-
plier test of Breusch and Pagan (1980). To test the null hypothesis V(uit) = σ2u against
the alternative

V(uit) = σ
2
uh(z
′
itγ),

where h is a continuously differentiable function with h(0) = 1, and zit is a J-
dimensional vector of conditioning variables (often a subset of xit), one can use the
fixed effects residuals ûit and perform an auxiliary regression of the squared within
residuals û2it upon a constant and upon the variables zit that are suspected to affect
the error variance. A test for the null hypothesis of homoskedasticity corresponds to
a test for γ = 0 and a test statistic can be computed as N(T − 1) times the R2 of the
auxiliary regression. Under the null hypothesis, the test statistic has an asymptotic
Chi-square distribution with J degrees of freedom.

It is also possible to test for serial correlation in the fixed effects model, using a
variant of the Durbin-Watson test proposed by Bhargava et al. (1982). The alternative
hypothesis is that

uit = ρui,t−1 + vit ,
where vit is not serially correlated. This allows for autocorrelation over time with the
restriction that each firmhas the same autocorrelation coefficient. The null hypothesis
that ρ = 0 is typically tested against the one-sided alternative of positive serial correla-
tion, ρ > 0. The test statistic is also based on the residuals from the within regression
(or LSDV regression) and is given by

dwp =
∑Ni=1∑Tt=2(ûit − ûi,t−1)2
∑Ni=1∑Tt=1 û2it .

Using similar derivations as Durbin and Watson, Bhargava et al. (1982) derive lower
and upper bounds on the true critical values that depend upon N, T and K only.
Unlike the true time-series case, the inconclusive region for the panel data Durbin–
Watson test is very small, particularly when the number of firms in the panel is
large. Unfortunately, there are no critical values available for unbalanced panels.
The test can be obtained in Stata with the xtregar command. An alternative test for
serial correlation can be derived from the residuals from the FD estimator. If uit is
homoskedastic and exhibits no serial correlation, the correlation between Δuit and
Δui,t−1 is −0.5. Accordingly, a simple test for serial correlation is obtained by regressing
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the residuals from (2.89) upon their lagged values, and testing whether the coefficient
on the lagged residual equals −0.5 using a t-test based on clustered standard errors
(see Wooldridge, 2010, Subsection 10.6.3). This test is implemented in Stata in the
function xtserial (where the option output provides the estimation results for the first-
differencedmodel). Despite the clustered standard errors, the test is not robust against
time-varying heteroskedasticity (because in this case the correlation between Δuit and
Δui,t−1 does not equal 0.5 if uit and ui,t−1 are uncorrelated.) Several alternative tests for
serial correlation in the fixed effects model are discussed in Born and Breitung (2016).

Tests for heteroskedasticity and autocorrelation can be useful to obtain some idea
about the structure of these two problems. For example, rather than allowing the error
variance to vary across all observations, it may be appropriate to impose homoskedas-
ticity along the firm dimension, but allow heteroskedasticity over time (or vice versa).
Imposing more structure on the error covariance matrix of either εit (in the random
effects setting) or uit (in the fixed effects case), can be helpful to determine more ef-
ficient estimators. Although using clustered standard errors makes sure inference is
robust against heteroskedasticity and within-cluster correlation, this does not affect
the precision of the estimator itself.

If one is willing to make specific assumptions about the form of heteroskedastic-
ity or autocorrelation, it is possible to improve upon the efficiency of the OLS, random
effects or fixed effects estimators by exploiting the structure of the error covariance
matrix using feasible GLS. An overview of a number of such estimators is provided
in Baltagi (2013, Chapter 5). Feasible GLS estimators for models where uit is subject
to first-order serial correlation (and all other assumptions are maintained) are imple-
mented in Stata in xtregar. Kmenta (1986) suggests a relatively simple feasible GLS
estimator that allows for first-order autocorrelation in εit combined with unit-specific
heteroskedasticity. Unfortunately, it requires N to be small, relative to T, and it does
not allow for a time-invariant component in εit . Kiefer (1980) proposes a GLS estima-
tor for the fixed effects model that allows for arbitrary covariances between uit and
uis; seeHsiao (2014, Section 3.8) formore details.Wooldridge (2010, Subsection 10.4.3)
describes a feasible GLS estimator where the T × T covariance matrix of εi1, . . . , εiT is
estimated unrestrictedly from the pooled OLS residuals. Consistency of this estimator
basically requires the same conditions as required by the random effects estimator,
but it does not impose the error components structure. When N is sufficiently large
relative to T, this feasible GLS estimator may provide an attractive alternative to the
random effects approach.10

10 A very similar estimator is available in Stata via xtgee, corr(uns).
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2.11 Models with fixed time effects

Instead of, or in addition to, the inclusion of firm-specific intercept terms, it is also
possible to incorporate fixed time effects. In the simplest case this leads to the model

yit = αt + x
′
itβ + εit , (2.92)

where αt denote fixedunknownparameters (to be implemented bymeans of including
T time dummies and omitting an overall intercept). The OLS estimator for β in this
model, can be written as

β̂FET = (
N
∑
i=1 T
∑
t=1(xit − x̄t)(xit − x̄t)′)

−1 N
∑
i=1 T
∑
t=1(xit − x̄t)(yit − ȳt), (2.93)

where x̄t = N−1t ∑i xit is the average value of xit over the entire cross-section of firms
in period t (and where Nt denotes the number of firms in period t). This is analogous
to the standard fixed effects estimator but with the dimensions i and t switched. The
inclusion of fixed time effects in (2.92) is equivalent to transforming all variables in de-
viations from the period-specific means. This way the analysis controls for aggregate
developments in each of the variables and focusses on how individual firms deviate
from the period-specific average.

The inclusion of fixed time effects is commonly applied when it is suspected that
different observations at the same time are not independent, when the number of time
periods is relatively small or when one wishes to control for the impact of aggregate
economic developments but is unsure about exactly which factors play a role. The in-
clusion of fixed time effects eliminates all variables from the model that do not vary
across firms. With N →∞ the time-specific intercepts terms can be estimated consis-
tently as

α̂t = ȳt − x̄
′
t β̂FET .

Because the cross-section of firms grows asymptotically, the number of observations
to estimate αt grows with the sample size and consistent estimation is possible. When
only T → ∞ we cannot estimate αt consistently, although an unbiased estimator is
possible under strict assumptions.

The easiest way in Stata to estimate a model with time fixed effects is to add i.pe-
riod to the equation, where period denotes the period identifier. This can be done in
the reg command, to get a model with fixed time effects only. It can also be done in
xtreg, re to estimate a random effects model with fixed time effects, or in xtreg, fe to
estimate a model with both firm and time fixed effects. The function areg allows esti-
mation with many dummy variables and suppresses their coefficients in the results.
This also allows for other types of group fixed effects. We discuss this in more detail
in Section 3.2.
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2.12 The Fama-MacBeth approach

An alternative approach to deal with large panel data sets is a two-step cross-section
regression approach, or two-pass regression approach, typically referred to as Fama-
MacBeth regressions (Fama and MacBeth, 1973). It is commonly used in the empirical
finance literature. For example, Fama and French (1992) use this approach to show
that the CAPM does a poor job in explaining the cross-section of expected stock re-
turns, Sirri and Tufano (1998) use it to estimate the relationship betweenmutual fund
flows and fund performance, while Fama and French (2002) employ it to model firm
leverage, so as to test the implications of the trade-off and pecking order theories ex-
plaining capital structure.

The Fama-MacBeth approach is a special case of a “sample splitting” approach,
where the parameters of interest are estimated over different subsamples, with the
average as the final estimate, while the variation across subsamples is used to derive
a standard error (see Ibragimov and Müller, 2010). A key assumption, for the latter
aspect, is that the different subsamples are independent of other.

2.12.1 Cross-sectional regressions

In the asset pricing literature, the dependent variable typically corresponds to the re-
turn (or excess return) on asset i in period t and the explanatory variables are char-
acteristics of stocks (observed before the start of period t) or (estimated) exposures
to risk factors. Ignoring estimation error in the latter, let us write the corresponding
model as

yit = αt + x
′
itβt + εit , t = 1, . . . ,T , (2.94)

where αt and βt are unknown coefficients, possibly different across periods. Typically
the panel is unbalanced in the sense that the number of assets per period, Nt, varies
over time. Because variances of rates of return differ and because asset returns tend to
be correlated with each other even after controlling for a common time effect it can
typically be expected that εit is heteroskedastic across assets and correlated cross-
sectionally. As a result of this, applying OLS to (2.94) for each period t separately, is
inefficient and potentially inconsistent for Nt → ∞. The inconsistency arises if the
cross-sectional correlation in εit is due to one or more common factors which do not
“average out” when the OLS estimator is calculated. In addition, the estimation of a
sensible standard error for the OLS estimator is hampered by the fact that the covari-
ance matrix of the error terms cannot be estimated with a single cross-section.
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Assuming that βt = β for each t, we obtain an estimator for β as the simple average
of the T least squares estimates, that is,

β̂FM =
1
T

T
∑
t=1 β̂t , (2.95)

where β̂t is the OLS estimator based on cross-section t only. A standard error for β̂FM
is based on the sample variation of β̂t across the T subsamples and is obtained from
the estimated covariance matrix

V̂{β̂FM} =
1
T

1
T − 1

T
∑
t=1(β̂t − β̂FM)(β̂t − β̂FM)′, (2.96)

where the additional 1/T arises because we estimate an average over T observations.
The standard errors calculated as the square roots of the diagonal elements in this
expression assume that the estimates β̂t are mutually independent, but allow for ar-
bitrary cross-sectional correlation and heteroskedasticity in εit . This result may seem
surprising, as it does not use any of the distributional results of the estimators that are
used in calculating β̂FM . However, it is an intuitively appealing procedure. We simply
infer the sample variance of β̂FM from how the estimates β̂t vary over different sub-
samples (one for each t). The asymptotic properties of the Fama–MacBeth procedure
were first documented in Shanken (1992), almost 20 years after its first use, and later
extended in Jagannathan and Wang (1998).

To see that the sample splitting approach produces correct standard errors under
relatively weak assumptions, the first step is to write

TV̂{β̂FM} =
1

T − 1

T
∑
t=1(β̂t − β)(β̂t − β)′ − T

T − 1
(β̂FM − β)(β̂FM − β)

′, (2.97)

noting that the expected value of the latter term is exactly equal to the variance we
wish to estimate, multiplied by T/(T − 1). Accordingly, we need to show that

V̂∗ = 1
T

T
∑
t=1(β̂t − β)(β̂t − β)′

is a reliable estimator for TV{β̂FM}. Using the definition of the OLS estimator, we can
write

β̂t − β = (
Nt

∑
i=1(xit − x̄t)(xit − x̄t)′)

−1 Nt

∑
i=1(xit − x̄t)εit , (2.98)

where x̄t, as before, denotes the cross-sectional average of xit . Denoting

Wt =
Nt

∑
i=1(xit − x̄t)(xit − x̄t)′ (2.99)
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V̂∗ can be rewritten as
V̂∗ = 1

T

T
∑
t=1[W−1t (Nt

∑
i=1 Nt

∑
j=1 εitεjt(xit − x̄t)(xjt − x̄t))W−1t ],

which is the average of a typical sandwich formula for the covariancematrix of anOLS
estimator. Accordingly, the Fama-MacBeth covariance matrix can be expected to pro-
vide a consistent estimator for the covariancematrix of β̂FM in case of heteroskedastic-
ity of arbitrary form, as well as within-period correlation of εit . Importantly, though,
the error terms in (2.94) are not allowed to exhibit serial correlation. As stressed by
Conley et al. (2018), the sample splitting approach behind the Fama-MacBeth regres-
sions makes similar assumptions about cross-correlations between the error terms as
the clustering approach, with the subsamples playing the role of clusters. Thus, the
standard Fama-MacBeth regressions allow for arbitrary correlation within each pe-
riod, as well as heteroskedasticity of unknown form, but do not allow for correlation
across periods. The Fama-MacBeth estimator is available in Stata in xtfmb and in as-
reg, with the option fmb.

2.12.2 Serial correlation and firm effects

What is required for the validity of (2.96) is that the estimation error in β̂t is not corre-
lated across t. From (2.98), we see that we need ∑i(xit − x̄t)εit to be uncorrelated over
time (Petersen, 2009). Given that in a typical application it is very unlikely that xit
has no serial correlation, this effectively requires the absence of serial correlation in
εit . Importantly, this excludes the presence of a firm effect in εit . Instead, the Fama-
MacBeth approach allows for time effects in the unobservables, as captured by the
time-varying intercepts αt . More generally, the error terms εit and εjt can be arbitrar-
ily correlated, accommodating commonality in shocks to the dependent variables in
the sameperiod. Effectively, thismakes the Fama-MacBeth approachwell-suited to ex-
plain asset returns, where – conditional upon observable explanatory variables – the
degree of serial correlation is very small, but less suited for corporate finance applica-
tions where the dependent variable is, for example, dividend policy, capital structure
or firm value. Each of these tend to be characterised by high levels of persistence and
a likely presence of a firm effect in the unobservables.

As stressed by Petersen (2009), the fact that the Fama-MacBeth approach does not
allow for the presence of serial correlation in the unobservables is often overlooked, or
misunderstood (see, e. g., Wu, 2004; Choe et al., 2005). The presence of a firm-specific
fixed effect in εit will make the different estimates for β positively correlated, and, as
a result, tends to produce too optimistic standard errors for β̂FM . Several authors, for
example, Christopherson et al. (1998), employ a Newey-West correction to (2.96) to
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account for the serial correlation in the error term. This way, the covariance matrix
estimate for β̂FM is extended to

V̂{β̂FM} =
1
T

1
T − 1

T
∑
t=1(β̂t − β̂FM)(β̂t − β̂FM)′ (2.100)

+
1
T

1
T − 1

H
∑
j=1 T
∑
s=j+1wj[(β̂s − β̂FM)(β̂s−j − β̂FM)′ + (β̂s−j − β̂FM)(β̂s − β̂FM)′]

with wj = 1 − j/(L + 1) denoting the Bartlett weights, as before, and where L is the
maximum lag length over which correlation is allowed. Clearly, when consecutive es-
timates are positively correlated, this adjustment will increase the estimated variance
of the Fama-MacBeth estimator. One way to implement this is by performing a simple
regression of each element from β̂t upon an intercept term only, and using a (Newey-
West) autocorrelation-consistent standard error on the intercept term as the corrected
standard error. A variation of this is employed in Pontiff (1996), who models the error
terms in the regression of β̂t as a sixth-order autoregressive process (after some initial
testing) and determines standard errors accordingly.

As an alternative, Fama and French (2002) and Chakravarty et al. (2004) have pro-
posed a somewhat simpler adjustment based on the estimated serial correlation in β̂t .
Denoting the first-order serial correlation coefficient in β̂tj, the j-th element of β̂t, by ρ,
these authors propose tomultiply the standard error of the average derived from (2.96)
by a factor11

√ 1 + ρ̂
1 − ρ̂
.

This is based on the fact that, under homoskedasticity (of β̂tj), the relevant term in
square brackets in (2.100) reduces to 2ρjV{β̂tj}. Assuming that T is sufficiently large
and using that ρ + ρ2 + ρ3 + ⋅ ⋅ ⋅ = 1/(1 − ρ) leads to the above correction factor (see
Fama and French, 2002, footnote 1). This pragmatic approach leads to an inflation of
the standard errors in the analysis of Fama and French (2002) by a factor of 2.5, thus
requiring regular t-statistics around 5.0, rather than the usual, to claim significance.
It should work reasonably well if T is not too small, if the serial correlation in ̂βt is well
described by a first-order autoregressive process and, moreover, if ρ can be estimated
with a reasonable degree of precision.

These are critical conditions. In two important cases we can typically not expect
this correction to work well. The first one is where T is small and the estimated ρ is im-
precise. For example, Petersen (2009) documents poor performance of the correction
for T = 10, where the confidence interval on the estimated autocorrelation coefficient

11 Note that ρ denotes the serial correlation in β̂t , not in εit .
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ρ̂ is wide. In most cases though, the corrected standard errors are less biased than the
uncorrected ones. With a larger number of time periods the adjusted Fama-MacBeth
standard errors work quite well. The second case where the correction does not work
well is the case where the serial correlation in εit is characterised by the presence of a
firm-specific time-invariant component, a firmfixed effect. In this case the correlations
in the unobservables do not die out when they become further apart in time. This is
mostly problematic in corporate finance applications, where the dependent variable
is characterised by ahighdegree of persistence. Examples are firm leverage, dividends
(Fama and French, 2002) or market-to-book ratios (Pastor and Veronesi, 2003).

Petersen (2009) explains why this is the case. The adjustment, whether based on
the pragmatic adjustment factor based on the estimated first-order serial correlation
coefficient, or the more elaborate Newey-West correction in (2.100), corrects the esti-
mation of the variance in β̂t around its sample average β̂FM . However, the true standard
error should reflect the variation around the true population parameter β. With a fixed
firm effect, the estimated slope coefficient in period t tends to be positively correlated
to those in other periods. In other words, the firm effect not only affects all estimated
β̂ts in the samedirection, it also affects the average of the β̂ts in a similarway. Thus, the
variation around the sample average tends to underestimate the true variation around
the population mean β.

2.12.3 Pooled OLS versus Fama-MacBeth

The Fama-MacBeth approach splits the sample into T cross-sections, and estimates
the parameters of interest from the average OLS estimates. Its standard errors, based
on the variation of the T estimates, allow for within-period correlation in the equa-
tion’s error term. As an alternative, we could use a pooled OLS estimator, pooling all
cross-sections, and adjust the standard errors for within-period clustering. To see how
these two estimators are related, let us write the pooled OLS estimator for β, in the
model with fixed time effects, as

β̂OLS = (
T
∑
t=1 Nt

∑
i=1(xit − x̄t)(xit − x̄t)′)

−1 T
∑
t=1 Nt

∑
i=1(xit − x̄t)yit , (2.101)

where we allow the number of units to differ over time. Note that the subtraction of
the cross-sectional averages ȳt in the final term is redundant, as it cancels out. Using
the definition ofWt from (2.99) we can write this as

β̂OLS =
1
T

T
∑
t=1( 1T T
∑
s=1Ws)

−1 Nt

∑
i=1(xit − x̄t)yit ,
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or

β̂OLS =
1
T

T
∑
t=1( 1T T
∑
s=1Ws)

−1
Wt β̂t .

This shows that the pooled OLS estimator is amatrix-weighted average of the OLS esti-
mators for each period, where the weights are proportional toWt, a matrix summaris-
ing the cross-sectional variation in the regressors. In the special case whereWt does
not vary over time (Wt = W), the pooled OLS estimator reduces to the Fama-MacBeth
estimator. A sufficient condition for this is that both xit does not vary over time and
the number of observations per cross-sectionNt is the same across periods (Cochrane,
2005, Section 12.3).

When the cross-sectional variation in the explanatory variables is roughly similar
across periods, the main difference between β̂OLS and β̂FM relates to how information
from different periods is weighted. With the Fama-MacBeth procedure, each period
gets the same weight, irrespective of whether 100 or 10,000 observations are in the
cross-section. With pooled OLS, each observation gets the same weight, irrespective
of whether it comes from period 1 or period 50. Particularly in cases where there are
cross-sections with only a relatively small number of cross-sectional units, or when
the number of units differs widely over the different periods, it may be more appro-
priate to use a pooled OLS estimator (with time fixed effects), in combination with
standard errors clustered by period, rather than the simple average derived from the
Fama-MacBeth approach. Apart from the fact that the average in β̂FM maybe quite sen-
sitive to one or a few extreme estimates, the general logic here is one of efficiency. The
more efficient estimator will give more weight to those β̂ts that are more accurately
estimated. The OLS estimator does so, to the extent that the accuracy of β̂t is affected
by the sample size Nt and the cross-sectional variation in the regressors. In addition,
the variance of εit and its within-period correlation structure will play a role.

There are some variants of the Fama-MacBeth approach where the first-step re-
gressions are based on weighted least squares (e. g., using a stock’s market capitali-
sation as weight) or generalised least squares (see Skoulakis, 2008; Lewellen et al.,
2010; Yoon and Lee, 2019; Hou et al., 2020, for some examples). The generalised least
squares approach requires an estimated covariance matrix for the vector ε1t , . . . , εNt t,
which – even in cases where this can be assumed to be time-invariant – is challenging
when Nt is large (see Cochrane, 2005, Chapter 12).

Effectively, the conditions for consistency of β̂OLS and β̂FM are similar and require
that xit is uncorrelated to εit for each t. This requires the explanatory variables to be
exogenous in any given period, a requirement that is not always trivial. In the case
of a firm-specific effect, where εit = αi + uit, this obviously excludes the inclusion
of yi,t−1 among the explanatory variables. That is, in the presence of time-invariant
unobserved heterogeneity, dynamic models cannot be estimated consistently with
the Fama-MacBeth approach, nor with any of the other estimationmethods discussed
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so far. Only if there is no serial correlation in εit, it may be appropriate to assume
that yi,t−1 is cross-sectionally uncorrelated to εit . The problem with lagged depen-
dent variables in the Fama-MacBeth approach is also often overlooked. For example,
Fama and French (2002) estimate a dynamic model of dividends using standard
Fama and MacBeth (1973) methodology (assuming absence of any serial correlation),
and Spiegel and Zhang (2013) include lagged flows in a linear model explaining fund
flows, and combine this with a Newey-West correction on the standard errors.

Variations and extensions
Asmentioned above, the Fama-MacBeth approach is an example of a sample splitting
approach: the parameters of interest are estimated over different subsamples, and in-
ference is based on the variation across the different subsamples. The subsamples
need not be defined by the time period, as is typically done. For example, Coval and
Shumway (2005) employ a variant of the Fama-MacBeth approach in amodel explain-
ing afternoon risk-taking by traders from their morning profits using daily data. They
conduct trader-by-trader regressions, and then average across traders, as well as day-
by-day regressions, and then average across days.

2.12.4 The errors-in-variables problem

In asset pricing tests, some or all of the explanatory variables in (2.94) are often ex-
posures to risk factors, which have to be estimated first. This, effectively, makes the
Fama-MacBethmethod a three step approach, where in the first step exposures to one
or more risk factors (“betas”) are estimated from a time-series regression of asset ex-
cess returns upon factor excess returns (e. g., the excess return on themarket portfolio
and the size and value factors, SMB and HML). Chen et al. (1986) use unanticipated
changes in a set of macroeconomic variables in the first-step regressions. Several vari-
ations on this first-step have been implemented, for example, using a rolling window
estimate, or a full-sample one, using OLS or weighted least squares, or using univari-
ate betas (where one factor is included at a time) or multivariate betas (where all fac-
tors are included simultaneously). Because a true asset pricing model, where the fac-
tors are portfolio excess returns, implies zero intercepts in the time-series regressions,
the intercept in the first-stage is often omitted (as recommended by Lewellen et al.,
2010, and others).

Given the estimated factor loadings, the second-step involves the estimation of a
cross-sectional regression explaining asset returns in period t from the factor load-
ings. This corresponds to the Fama-MacBeth procedure discussed above. If the factor
loadings correspond to the true factor loadings, and the set of factors correctly charac-
terises the asset pricingmodel, the slope coefficients in the cross-sectional regressions
correspond to factor risk premia, and the intercept is the zero-beta return (often the
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riskfree rate). The cross-sectional regressions can also be done in terms of excess re-
turns, in which case the asset pricing restriction leads to a zero intercept. In reality,
however, the estimated factor loadings do not correspond to the true ones. This leads
to an errors-in-variables problem in the second step. The errors-in-variables problem
has two aspects. First, it leads to a bias in the second-step estimator. As in the standard
textbook case of measurement errors in a linear regression model (see Chapter 4), the
estimator is typically biased towards zero. This is intuitively obvious. If the regressors
in a model are mostly driven by noise, the estimated impact of the regressors tends to
be smaller than in reality.

A second problem is due to the noise in the estimated factor loadings itself. Be-
cause the regressors in the second-step are not observed, we have a “generated regres-
sor” problem. As a result, standard errors based on the Fama-MacBeth approach tend
to be too optimistic. For this latter problem, the correction proposed by Shanken (1992)
is commonly employed, which is derived under conditional homoskedasticity.

Fama and French (1992) address this concern by allocating portfolio factor expo-
sures (“betas”) to individual stocks. In their words: “we judge that the precision of the
full period post-ranking betas, relative to the imprecise beta estimates that would be
obtained for individual stocks, more than makes up for the fact that the true betas are
not the same for all stocks in a portfolio.” (Fama and French, 1992, p. 432). Many re-
cent studies change the level of analysis by aggregating the cross-section of stocks into
portfolios in both steps, thus reducing the importance of noise and estimation error.
In this case, the cross-sectional units i refer to (cleverly chosen) portfolios of stocks,
rather than individual stocks. Diversification reduces the errors-in-variables problem
in the estimated factor loadings. However, as stressed by Ang et al. (2020) there is a
cost to this: in the cross-sectional regressions the variation in factor betas tends to
be smaller, and this reduces precision in the estimated coefficients. The use of more
precise factor loadings leads to less precise estimates of the factor risk premia. An al-
ternative solution to the errors-in-variables problem is proposed by Jegadeesh et al.
(2019), who use an instrumental variables approach allowing the use of individual
assets as test assets.

The small sample properties of the Fama–MacBeth procedure and some alter-
native approaches (maximum likelihood, GMM) are discussed in Shanken and Zhou
(2007); see also Ang et al. (2020, Appendix). The formal derivations in Jagannathan
andWang (1998) support the use of firm characteristics in cross-sectional regressions
for detecting factor model misspecifications.

2.13 Goodness-of-fit

In panel data applications it is not routine to report goodness-of-fit measures. There
are a few reasons for this. First, the usual R2, or the adjusted R2, is only appropriate
if the model is estimated by OLS and includes an intercept term. Estimating a model
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based on transformed data or using any other method than OLS affects the way the R2

is calculated and may make it inappropriate. Second, because panel data vary over at
least two dimensions, say firms and periods, one may attach differential importance
to the model’s ability to explain variation in yit across these dimensions.

In addition to the above issues, it is important to stress that the R2 is often not the
most important metric or aspect of an econometric model. The value of the R2 tells
us how well the model fits the data, on a scale from 0 to 1. This is often useful. For
example, in the context of a time-series factor regression (e. g., Gibbons et al., 1989)
the R2 has an economic interpretation as measuring the proportion of unexplained
volatility (idiosyncratic risk) in an asset’s return; see Roll (1988). In statistical terms,
however, the R2 does not tell us whether the estimator employed is appropriate or
whether any of the assumptions made are correct.

There are alternative mathematical expressions to define the R2 of a regression
model, all of which lead to the same numerical outcome if the model has an inter-
cept term and is estimated by OLS. To introduce goodness-of-fit measures in a panel
context, we start from the definition of theR2 as the squared correlation coefficient be-
tween the observed values yit and the fitted values from themodel ŷit . Inmathematical
terms

R2 = corr2{yit , ŷit}, (2.102)

where corr2 denotes the squared (sample) correlation coefficient. The advantage of
this definition is that it is easily adjusted when the model is not estimated by OLS
(which corresponds to alternative fitted values), can also be used on transformeddata,
and always leads to an outcome between 0 and 1, where 1 corresponds to a perfect fit.
This allows us to define alternative versions of an R2 measure, depending upon the
dimension of the data that we are interested in, and using any estimator for themodel
coefficients.

For example, the fixed effects estimator β̂FE is the OLS estimator in the within-
transformed equation. Thismeans, it explains thewithin variation aswell as possible.
Accordingly, we can define the within-R2 as

R2within(β̂FE) = corr
2{ŷFEit − ŷ

FE
i , yit − ȳi}, (2.103)

where ŷFEit − ŷ
FE
i = (xit − x̄i)

′β̂FE denotes the fitted value in the within-transformed
model, based on the fixed effects estimator. We can determine the within-R2 for any
other estimator for β, simply by replacing the fixed effects estimator by an alternative.
Because the fixed effects estimator is chosen to maximise the within-R2, other esti-
mators (e. g., the random effects estimator or first-difference estimator) will produce
lower within-R2s.

The between estimator is usually not reported in empirical work. It is based on
OLS applied to the between-transformed model. It thus maximises the between-R2,
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which is defined as

R2between(β̂B) = corr
2{ŷBi , ȳi}, (2.104)

where ŷBi = x̄′i β̂B denotes the fitted value (with the irrelevant intercept term sup-
pressed). The measure captures how well the model explains the variation across
units, when all time-variation is averaged out. Again, it can be defined using alterna-
tive estimators. Note that, for the fixed effects estimator, fitted values are constructed
without the estimated fixed effects.

The above three goodness-of-fit measures are routinely provided by Stata when
panel data estimators are chosen. The results will show that the highest within-R2 is
obtained with the fixed effects estimator, the highest between-R2 by the between es-
timator, and the highest overall R2 by the (pooled) OLS estimator. This means that
alternative estimators for β, including the random effects estimator, the FD estima-
tor, and the Fama-MacBeth estimator, do not maximise any of these measures. This
stresses that goodness-of-fit measures are not adequate to choose between alternative
estimators. Instead, they may provide possible criteria for choosing between alterna-
tive (potentially non-nested) specifications of a model.

For the Fama-MacBeth estimator it is relatively common to report the average R2

from the T cross-sectional regressions as a goodness-of-fit measure. This measure is
not directly comparablewith the threemeasures above, although, intuitively, it is clos-
est to the between-R2 in the sense that it reflects the cross-sectional fit. It can be in-
terpreted as the average value of a period-specific overall R2, but has no easy direct
interpretation.
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3 Dealing with heterogeneity and endogeneity: fixed
effects, IV and GMM

The inclusion of fixed effects in a model is an attractive way to control for unobserved
heterogeneity. In this chapter we expand our discussion on fixed effects estimators.
In addition, we cover instrumental variables (IV) estimation, extend this to the gener-
alised method of moments (GMM), and we relate this to fixed effects and other panel
estimators. We discuss alternative exogeneity assumptions that can be imposed upon
a model’s explanatory variables, so that consistent estimators can be obtained by ap-
propriately transforming themodel andusing transformationof explanatory variables
as instruments.Wepay particular attention to the assumption of strict exogeneity, and
how it can be tested, and to the questionwhy it is typically inappropriate to control for
unobserved heterogeneity by taking differences from, for example, industry averages,
instead of including industry fixed effects.

3.1 Fixed effects and instrumental variables

In many applications, it is hard to impose that the explanatory variables in xit are ex-
ogenous. Unobservedheterogeneity is likely to exist that is correlatedwith both xit and
yit, in which case a standard pooled OLS or random effects estimator is inconsistent.
Consider the linear model

yit = x
′
itβ + εit , (3.1)

where we no longer impose assumption EXO (ols-p) that E(xitεit) = 0. As an example,
think of yit as ameasure of firm performance, and one of the elements in xit denoting a
measure of corporate governance. Firmswith good governance are likely to differ from
firmswith poor governance onmany aspects, and this also results in yit being different
(in a way that has nothing to do with governance per se). The traditional approach of
dealing with the problem that an explanatory variable in xit may be correlated with
the error term εit is the use of instrumental variables.

For this, we need to assume that a vector zit exists that is correlatedwith xit but not
correlated with εit . Elements in xit that are exogenous can be copied into the vector zit,
whereas for any element in xit that is correlated with εit we need to find a new variable
that satisfies these two conditions. For the moment, we assume that such variables
can be found, and we also assume that the dimensions of xit and zit are identical. In
this case, the instrumental variables estimator for β can be written as

β̂IV = (
N
∑
i=1 T
∑
t=1 zitx′it)

−1 N
∑
i=1 T
∑
t=1 zityit . (3.2)

https://doi.org/10.1515/9783110660739-003
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Writing

β̂IV = β + (
1
NT

N
∑
i=1 T
∑
t=1 zitx′it)

−1
1
NT

N
∑
i=1 T
∑
t=1 zitεit

shows that this instrumental variables (IV) estimator provides a consistent estimator
for β if the following two assumptions are satisfied:

Assumption EXO1 (iv-p) : E(zitεit) = 0 (3.3)

and

Assumption RE1 (iv-p) : E(zitx
′
it) = Σzx is of full rank K. (3.4)

The first of these two conditions says that the instruments should be exogenous, while
the second condition requires that the instruments are relevant. A typical requirement
for relevance is that an instrument is correlated with the variable in xit it is trying to
instrument. If an instrument satisfies both conditions (exogeneity and relevance), we
refer to it as a valid instrument.

In Section 3.4, we discuss more general versions of the instrumental variables es-
timator, including its asymptotic covariance matrix under alternative assumptions.
At this stage, we only note that finding valid instruments is often challenging. In the
above example,wewouldneed tofindavariable that is correlatedwith the governance
measure, but not with firm performance directly. That is, the instrument should only
affect firm performance through governance (and potentially one or more of the other
regressors), but not directly. When panel data are available, things may be a little bit
better because it is possible to use lags or other transformations of the explanatory
variables in xit as instruments, and we do not have to find external instruments. The
price for this is that we need to impose some restrictions on the relationships between
the error term and the explanatory variables. A first example of this is the fixed effects
estimator, which can also be interpreted as an instrumental variables estimator, the
instruments being within-transformed variables from the original model. This can be
seen by writing

β̂FE = (
N
∑
i=1 T
∑
t=1(xit − x̄i)(xit − x̄i)′)

−1 N
∑
i=1 T
∑
t=1(xit − x̄i)(yit − ȳi)

= (
N
∑
i=1 T
∑
t=1(xit − x̄i)x′it)

−1 N
∑
i=1 T
∑
t=1(xit − x̄i)yit , (3.5)

which has the same structure as the instrumental variables estimator in (3.2) with zit =
xit − x̄i acting as instruments for xit .
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To seewhy this interpretationmakes sense, let us start with the equation in levels1

yit + x
′
itβ + αi + uit , (3.6)

where there is an endogeneity problem in the sense that xit and αi are correlated. This
was an important reason to opt for the fixed effects estimator. Now, consider the trans-
formation xit − x̄i. It is obvious that

T
∑
t=1(xit − x̄i)αi = 0

by construction. Assuming that xit − x̄i is also uncorrelated with uit (as implied by
the strict exogeneity of xit), this suggests that the within-transformed regressors can
act as instruments for xit . The relevance condition requires that these instruments are
correlated with the untransformed counterparts, which is trivially satisfied, unless xit
has no time-variation.

Indeed, time-invariant variables are eliminated in the fixed effects approach, and
the instrumental variables interpretation does not solve this. This is unfortunate, as
we may be interested in the effect of time-invariant variables (like gender on the com-
pensation of a CEO). While the pooled OLS and random effects estimators allow for
time-invariant explanatory variables, they impose that αi and xit are uncorrelated,
which is a huge drawback. Fortunately, it is possible to derive instrumental variables
estimators that can be considered to be in-between a fixed and random effects ap-
proach. A simple variant would assume that some elements of xit are exogenous and
uncorrelated with αi. In this case, there is no need to instrument them, or – equiva-
lently – they can be instrumented by themselves. Extending this logic allows us to also
estimate the impact of time-invariant variables, even if some variables in xit are corre-
latedwith the firm-specific effects αi, providedwe arewilling tomake some additional
assumptions.

The Hausman-Taylor estimator
To extend the fixed and random effects framework, Hausman and Taylor (1981) have
proposed an instrumental variables estimator that exploits the panel nature of the
data. Consider a general model, where we divide the explanatory variables into four
groups

yit = x
′
1,itβ1 + x′2,itβ2 + w′1iγ1 + w′2iγ2 + αi + uit , (3.7)

where the x variables are time-varying and the w variables are time-invariant. The
variables with suffix 1 are assumed to be uncorrelated with both αi and uis, whereas

1 An overall intercept term is omitted, or incorporated in αi.
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the variables x2,it and w2i are correlated with αi but not with any uis. Under these as-
sumptions, the fixed effects estimator would be consistent for β1 and β2, but would
not estimate the coefficients for the time-invariant variables. Moreover, it is inefficient
because x1,it is instrumented unnecessarily. Hausman and Taylor (1981) suggest that
(3.7) be estimated by instrumental variables using x2,it − x̄2,i as instruments for x2,it
and x̄1,i as instruments for w2i. The innovative element here is to use the individual-
specific averages of the time-varying exogenous regressors (x̄1,i) as instruments for the
endogenous time-invariant regressors (w2i). Obviously, identification requires that the
number of variables in x1,it is at least as large as that in w2i. Further, to prevent weak
instrument issues (Bound et al., 1995), the correlation of x̄1,i with w2i should be suffi-
ciently large (after controlling for the other instruments and exogenous regressors).2

The standard Hausman-Taylor approach exploits the error components structure in
(3.7) and thus makes strong assumptions about homoskedasticity of αi and uit, and
absence of serial correlation in uit, similarly to the random effects estimator discussed
in Section 2.6. The estimator is available in Stata as xthtaylor, which includes the op-
tion to combine the random effects assumption exploited in estimation with a robust
covariance matrix.

Even though the Hausman-Taylor estimator is not commonly used in applied
work, it illustrates one of the advantages of panel data. It is possible to achieve
identification in an instrumental variables setting via instruments that are based
on transformations of explanatory variables that are already included in the model,
like the within transformation. Below, when discussing models with regressors that
are not strictly exogenous or models with lagged dependent variables we shall see
more examples of this general idea. Before doing so, we delve more into the use of
different types of fixed effects to control for group-specific heterogeneity.

3.2 Two-way and interactive fixed effects

Provided the explanatory variables are strictly exogenous, conditional upon the time-
invariant heterogeneity αi, that is, provided

E(uit | xi1, . . . , xiT , αi) = 0,

(see assumption EXO3 (fe)), the inclusion of fixed firm effects controls for the endo-
geneity of one ormore of the explanatory variables that is due to a time-invariant com-
ponent in the error term. In the presence of a time-varying shock that affects all firms
equally, potentially correlated with one or more of the explanatory variables, this can
be accommodated by extending the standard fixed effects model by also including

2 More on weak instruments in Subsection 3.4.2.

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



72 | 3 Dealing with heterogeneity and endogeneity: fixed effects, IV and GMM

fixed time effects. This results in

yit = x
′
itβ + αi + αt + uit . (3.8)

This is referred to as a two-way fixed effects model (TFE). In principle, it can be
estimated using the least squares dummy variable approach where a wide range of
dummyvariables are included for each firmand time period (with sufficient categories
omitted to avoid exactmulticollinearity). It is also possible to obtain the TFE estimator
for β by applying least squares on transformed data, that is,

β̂TFE = (
N
∑
i=1 T
∑
t=1 ≈xit ≈x′it)

−1 N
∑
i=1 T
∑
t=1 ≈xit ≈yit , (3.9)

where

≈xit = xit − x̄i − x̄t + x̄,
with x̄t = N−1∑i xit, and x̄ = N−1T−1∑i ∑t xit . Although this transformation is useful
when the number of time periods is large, it cannot directly be used in the typical case
where the panel is unbalanced (seeWansbeek andKapteyn, 1989, for themore general
expressions). Instead, for small to moderate T it is typically more attractive to include
time dummies in the model and apply a standard (firm-level) fixed effects estimator.

Group fixed effects
Because the inclusion of firm fixed effects eliminates all variables that do not vary
within firms, some scholars prefer to include fixed effects for wider groups of obser-
vations, for example, industries of firms, investment styles of mutual funds, or states
where a company is headquartered. This eliminates variables from the model that do
not vary within these larger groups, but allows the inclusion of time-invariant vari-
ables, as long as they vary within groups.

To illustrate this, suppose we estimate a model with industry fixed effects only.
The model is given by

yit = x
′
itβ + fg + uit , (3.10)

where g denotes the industry of firm i (for simplicity treated as time-invariant), and fg
is a time-invariant industry effect. Along the lines of the standard fixed effects estima-
tor, the resulting estimator can be written as

β̂FEG = (∑
i
∑
t
(xit − x̄g)(xit − x̄g)

′)−1∑
i
∑
t
(xit − x̄g)(yit − ȳg), (3.11)
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where x̄g denotes the average of all observations in industry g, averaged across all
firms and periods. (Note that the definition of g depends upon i.) Consistency of this
estimator requires that

E((xit − x̄g)uit) = 0,

which requires that, conditional upon the industry effect, there is no firm-specific het-
erogeneity left that is correlated with xit . Effectively, the inclusion of industry fixed
effects allows for industry-specific time-invariant differences in yit between firms, po-
tentially correlated with one or more of the explanatory variables. Similarly, state or
country fixed effects can be added. If the inclusion of such group fixed effects con-
trols for the endogeneity problem, the impact of both time-varying and time-invariant
unit-specific variables in xit can be estimated consistently.

The model in (3.10) can easily be extended into a two-way fixed effects model by
also including time fixed effects. That is,

yit = x
′
itβ + fg + αt + uit , (3.12)

which allows fg and αt to be correlated with the explanatory variables in xit, but main-
tains the assumption that xit is uncorrelated with the idiosyncratic component uit .
That is, it allows for industry-specific time-invariant differences between firms, and
for period-specific shocks that are common to all industries and all firms, but not for
industry-specific shocks. This assumes that all firms within a given industry respond
homogeneously to the same time-varying shock αt .

Groups can be defined onmore than one dimension simultaneously. For example,
a common choice is to include industry × period fixed effects, sometimes referred to
as interactive fixed effects (IFE). This allows for industry-specific shocks to yit, poten-
tially correlated with xit . Think of changes in the regulatory environment, which may
differentially affect different industries. This is more flexible than having both indus-
try and period dummies. The correspondingmodel ismore general than (3.12) and can
be written as

yit = x
′
itβ + fgt + uit . (3.13)

An advantage of the use of interactive fixed effects is that one can allow for time-
variation in the unobserved heterogeneity, which is not the case with firm fixed effects
in (3.8). A disadvantage is that one can only control for heterogeneity at a higher level
of aggregation, such as industries. If the heterogeneity in the model captures aspects
likemanagerial quality or investment opportunities, thismay be problematic, as these
are likely to vary across firms within the same industry, and may also vary over time.

In general, when the model of interest contains fixed effects defined on the basis
of two group indicators (TFE), with G1 and G2 different outcomes, the model of inter-
est contains up to G1 + G2 + K − 1 explanatory variables. As stressed by Gormley and
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Matsa (2014) this may be computationally challenging if the panel is unbalanced and
the group dummies cannot be wiped out by a simple transformation. In such cases,
one typically includes explicit dummy variables for the group with the fewest indica-
tors, and applies a within transformation to the equation to eliminate the other group
effects, the typical example being the inclusion of time dummies in amodel with firm-
fixed effects. Even with such partial transformation, estimation may be challenging if
both group effects are of high dimension, for example, when one group is defined at
the firm level (G1 = N) and the second group is also high-dimensional (e. g., industry×
periods); see Gormley andMatsa (2014) for more discussion. An efficient estimator for
models with high-dimensional fixed effects is developed in Guimaraes and Portugal
(2010) and Correia (2016) and available in Stata’s reghdfe procedure.

Interestingly, when two groups are interacted (IFE), the number of variables in the
regression (when the dummyvariables are explicitly included) canbeup toG1×G2+K−
1, which is much larger. However, because this is effectively a one-dimensional set of
fixed effects, estimation is feasible by subtracting the group-by-group specific means
from the equation of interest. With one of the groups denoting time, this extends (3.11)
into

β̂FEGT = (∑
i
∑
t
(xit − x̄gt)(xit − x̄gt)

′)−1∑
i
∑
t
(xit − x̄gt)(yit − ȳgt), (3.14)

where x̄gt denotes the average across all observations in group g in period t.
Fixed effects can be defined over more than two dimensions. An interesting appli-

cation of amodel with three-way fixed effects is given in Graham et al. (2012), who use
a manager-firm matched panel data set from 1992 to 2006, in which the same man-
ager can work at multiple firms (at different points in time). Their main specification
includes firm-specific fixed effects, manager fixed effects and year fixed effects. The
authors not only wish to control for firm and manager fixed effects in their analysis of
the manager’s compensation, but they also wish to estimate the magnitudes of each
fixed effect separately. Empirically, the separation of manager fixed effects from firm
fixed effects is only possible when the firm has at least one manager who switches
companies. Another example is provided in Gormley and Matsa (2016), who examine
the effect of business combination laws (adopted at different points in time across US
states) on risk-taking behaviour, and include firm fixed effects, state-by-year fixed ef-
fects and industry-by-year fixed effects. Engelberg and Parsons (2011) investigate the
effect of media reporting on the trading volume of stocks trading at 19 different loca-
tions, exploring the cross-sectional variation inmedia coverage. Several of their spec-
ifications include industry, newspaper, city and date fixed effects. Alternative specifi-
cations include firm × date fixed effects, firm × city fixed effects and city × date fixed
effects.
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Some concerns and drawbacks
Although the possibility to have multiple and interactive group fixed effects is attrac-
tive to achieve robustness against unobserved heterogeneity that biases standard esti-
mators, an important drawback is that the fixed effects remove much of the variation
in the data, and may therefore lead to unreliable estimation results. Moreover, it is
not possible to estimate the impact of explanatory variables that exhibit no variation
within the group structure. An extreme example of this is the inclusion of firm×period
fixed effects with firm-level data over time, because there is effectively no variation left
after the firm-period fixed effects have been removed. With industry × period fixed ef-
fects, the only variation left is within-industry within-period variation, which is what
is exploited in (3.14). Another problem is that the impact of measurement errors on
the estimates is typically amplified when fixed effects are included. While the trans-
formation to wipe out the fixed effects eliminatesmuch of the genuine variation in the
data, it tends to make any noise in the data, due to imprecision and randommeasure-
ment error, relatively more important; see Gormley and Matsa (2014) and Section 4.4
for more discussion.

Another problem with group × period fixed effects is that it assumes that the
groups are defined in such a way that they capture all relevant heterogeneity. That is,
conditional on fgt there is no firm-specific time-varying heterogeneity left that is corre-
lated with one or more the explanatory variables. As stressed by Sojli et al. (2021) this
is potentially problematic. For example, in many corporate finance applications, the
heterogeneitymay correspond to the presence of financial constraints, investment op-
portunities ormanagerial quality, and it is likely that these affect the outcome variable
yit in a time-varying way and heterogeneously across standard groups, such as indus-
tries or geographical locations. Put differently, allocating firms in groups based on
their industry classification and assuming that all firms within each industry respond
in the same way to aggregate shocks is quite arbitrary. Sojli et al. (2021) document
how two-way fixed effects and interactive fixed effects estimators may lead to biased
results in cases where the true group structure differs from the one employed. They
propose an alternative approachwhere the groups are not pre-specified on the basis of
one or more observed variables, but are determined endogenously. Loosely speaking,
firms in the same group share similar time paths of residuals. This builds upon Bon-
homme and Manresa (2015) who propose a formal “grouped fixed effects” estimator
that minimises a least squares criterion with respect to all possible groupings of the
cross-sectional units. Recent advances in the clustering literature allow for fast and
efficient computation.

A related problem is that the grouping variable could be subject to error. For
example, standard industry classifications, such as those based on Standard Indus-
trial Classification (SIC) codes, or the North American Industry Classification System
(NAICS) codes may be arbitrary or inappropriate if they are based on incomplete in-
formation about a firm. Hoberg and Phillips (2016) argue that fixed classifications like
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SIC and NAICS have several shortcomings: they only rarely re-classify firms that move
into different industries, they do not allow for the industries themselves to evolve
over time, and they impose transitivity even though two firms that are rivals to a third
firm may not compete against each other. To remedy this, they propose two new in-
dustry text-based classification systems using product similarities in the firms’ 10-K
descriptions, which are shown tomore accurately identify a firm’s actual competitors.
Accordingly, fixed effects based on industry or industry interacted with time can be
based on alternative classification schemes, with potentially different results. The
approach of Sojli et al. (2021) may be able to solve this.

Clustered standard errors
It is important to realise that the inclusion of dummy variables for one or more groups
has a different role than clustering the standard errors within clusters. The main pur-
pose of a fixed effects approach is to control for unobservable differences between
the outcome variable yit that are constant within groups (or within groups interacted
with periods) and that are potentially correlated with one or more of the explanatory
variables. For example, rather than including a set of industry-specific variables (e. g.,
industry concentration), country-specific variables (e. g., GDP growth, inflation), one
simply includes a set of industry or country dummies, potentially interactedwith time,
to capture all such variables in a simple way. Typically, this results in a more robust
estimator than without the inclusion of such fixed effects. If, within each group, there
is no further correlation among the equation’s error terms, the use of group fixed ef-
fects, in combination with standard OLS, is sufficient to obtain valid inferences. In all
cases, the residual error term uit is not allowed to be correlated with xit .

However, if the error terms are correlated within groups, even after controlling for
group fixed effects, it is important to adjust the standard errors to reflect this. This can
be achieved by combining the fixed effects approach with clustered standard errors
where the cluster variable is the same as the group variable. This way, one allows for
group-specific heterogeneity that may be correlated with the explanatory variables
in the model, and for within group correlation in the error term. This is similar to
the cluster-robust covariance matrix for the fixed effects estimator presented in Sec-
tion 2.8.

Clustering standard errors can be done at other levels than the group level corre-
sponding to the fixed effects in the model. In principle, it is perfectly fine to include
industry dummies in the model and to cluster standard errors at the firm level. In this
case, one allows the error termsof the samefirm tobe correlated over time (conditional
upon the industry fixed effect), and one allows for industry-specific (time-invariant)
heterogeneity correlatedwith the regressors. However, error terms of firms in the same
industry are not allowed to be correlated, and the industry-fixed effects are assumed to
capture all commonalities within the industries. Instead, it is more common to have
firm-fixed effects while clustering standard errors at the industry level. This allows
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correlations within and across firms in the same industry. Note that, as stressed in
Section 2.5, the number of clusters should be sufficiently large.

When calculating standard errors for a model where a large number of fixed ef-
fects are present, the impact of a degrees of freedom correction can be substantial.
When combining fixed effects with clustered standard errors defined over the same
dimension, or a broader one, adjusting degrees of freedom for the number of fixed
effects is not necessary, similar to (2.86). This is because the mechanical correlations
that arise in the residuals when the fixed effects are included (or wiped out by awithin
transformation) are automatically accounted for in the clustering. For example, when
estimating a model with firm fixed effects, clustering standard errors at the firm level
does not require a large N degrees of freedom adjustment. However, when the fixed
effects are not nested within the clusters, this no longer applies and a degrees of free-
dom correction is appropriate. For example, when industry × year fixed effects are
included, and standard errors are clustered at the firm level, it is appropriate to adjust
the degrees of freedom downward, to account for the estimation of a large number of
fixed effects; see Gormley andMatsa (2014). With this inmind, it appears recommend-
able to choose a level of clustering that nests the groups of fixed effects in the model.
For example, with industry × year fixed effects it appears appropriate to cluster stan-
dard errors at the industry level. In Stata, xtreg, fe provides the fixed effects estimator
(with unit-specific fixed effects) and standard errors can be clustered at the firm level
or a broader one (e. g., industries). Alternatively, the areg command allows a flexible
choice of fixed effects and level of clustering, but routinely adjusts the degrees of free-
dom in the clustered standard errors downwards. Thismay lead to standard errors that
are too high if the fixed effects are nested within clusters (e. g., industry × year fixed
effects with clustering at the industry level).

Singletons
Singletons are fixed effects or combinations of fixed effects that appear in only one
observation. Effectively, such observations are not providing any information about
the parameters of interest, as their outcome is perfectly predicted, in-sample, by the
fixed effects. When combining one or more dimensions of fixed effects with clustered
standard errors, including singletons may underestimate the standard errors when
the fixed effects are nested within clusters, because the degrees of freedom are not
adjusted. For example, in matched CEO-firm regressions many individuals and firms
maybe short-lived enough in the sample so that singletons abound. It is recommended
to eliminate singletons from the estimation sample (in cases where there are many),
so as to avoid large biases in clustered standard errors (see Correia, 2015).

Fixed effects that are not fixed
In much of the early panel literature, the time-invariant unobserved heterogeneity is
individual-specific and has the connotation of innate ability, intelligence or other per-
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sonal characteristics that are arguably constant over longer time periods. When the
individual units are firms, the unobserved heterogeneity captures unobservable as-
pects such as firm culture, managerial quality or investment opportunities, which are
less likely to remain constant over time. For example, a firm’s management teammay
change over time, a firmmay change its main line of business, or a regulatory change
may cause a shift in firm-specific time-invariant heterogeneity. In line with the above,
it is possible to allow the fixed firm-specific effects to vary across subperiods in the
panel. This possibility is particularly relevantwhen thenumber of timeperiods is large
(or, to be more precise, when the time span over which observations are available is
large), or when there are economic reasons to suspect the fixed effects to vary across
subperiods (e. g., a regulatory change). Grieser and Hadlock (2019) stress that impos-
ing that firm-level unobserved heterogeneity is constant over time is restrictive, and
show how much fixed effects estimates vary when estimated over subperiods of 5 or
10 years for typical models estimated in corporate finance.

Investigating the sensitivity of investments to cash flows using firm-level Compu-
stat data from 1967 to 2006, Chen and Chen (2012) allow the fixed effects (as well as
the investment-cash flow sensitivity) – somewhat arbitrarily – to vary across subperi-
ods of five years. Hoechle et al. (2012) analyse the diversification discount by relating
excess value to diversification and governance variables over the period 1996–2005.
They estimate three alternative specifications allowing firm fixed effects to be time-
varying. In the first specification, they allow the fixed effects to change before and
after 1997, when reporting rules for industry segments changed. In two alternatives,
the fixed effects vary between years with positive and negative stock market returns,
and between boom and recession periods. Technically, such time-varying fixed effects
are easily incorporated by interacting the firm-specific indicators with one or more
indicators for the different subperiods.

Another way to alleviate some of the concerns with unit-specific unobserved het-
erogeneity not being stable over longer time windows, is to include fixed effects over
shorter periods corresponding, for example, with the period a CEO or fund manager
was in office. For example, Bennedsen et al. (2020), investigating the effect of CEO
hospitalisation onfirmperformance, estimate specificationswith firmfixed effects but
also with firm-CEO fixed effects. This boils down to the inclusion of fixed effects that
are fixed, but over shorter time spans.

3.3 How not to control for unobserved heterogeneity

In this section we discuss two alternative approaches that are commonly employed
in the empirical finance literature, particularly when the group is defined broader
then the individual unit. For example, in corporate finance studies it is quite com-
mon to industry-adjust the dependent variable. In this case, the dependent variable
is changed from yit to yit − ȳgt, where ȳgt denotes the average value of yit for all firms
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in industry g. Another approach is to include the industry-specific average as an ad-
ditional control in the model. Gormley and Matsa (2014) critically review these alter-
native approaches and show that they rarely provide consistent estimators. Instead,
they recommend the use of fixed effects (i. e., the inclusion of industry dummies or
industry × period dummies in the model).

Given the abundance of studies using these alternative approaches it is worth-
while to explore further why they are likely to lead to inconsistent estimators. Let us
start considering a simple model. Assume the model of interest can be written as

yit = x
′
itβ + fgt + uit , (3.15)

where g denotes an unobserved group effect (g = 1, . . . ,G), and where each observa-
tion i, in any given period t, belongs to one and only one group g. As an example, we
can think of i as firms and g denoting the industry of the firm. The industry-specific
unobservable component fgt affects all firms in industry g in period t in the same way.
If we assume that the observables in xit are conditionallymean independent of both fgt
and uit we could estimate (3.15) by means of pooled OLS, with standard errors appro-
priately clustered. Alternatively, one could explore a feasible generalised least squares
approach, making distributional assumptions on the error components. For the mo-
ment, we assume that uit and xit are uncorrelated, but we allow correlation between
the group-specific component fgt and the explanatory variables. This makes both OLS
and GLS inconsistent, and an alternative approach to control for industry-specific het-
erogeneity is needed.

Group-adjusting the dependent variable
Industry-adjustment implies that we subtract the average of yit within the relevant in-
dustry from the dependent variable. For example, the dependent variable could be a
firm’s leverage ratio in deviation from the average leverage ratio in the firm’s indus-
try, typically referred to as industry-adjusted leverage. Defining the group averages (or
industry-specific averages) as

ȳgt =
1
Ng
∑
j
yjt ,

where the summation is taken over all observations j in industry g (to which firm i
belongs) in period t, and Ng denotes the number of observations in this group (poten-
tially time-varying), we can write a model for the industry-specific average as

ȳgt = x̄
′
gtβ + fgt + ūgt . (3.16)

Subtracting this from yit results in

yadjit = x
adj′
it β + uadjit , (3.17)

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



80 | 3 Dealing with heterogeneity and endogeneity: fixed effects, IV and GMM

where yadjit = yit − ȳgt denotes the industry-adjusted value for yit, and similar for the
other variables. Estimating this equation by OLS is fine (and equivalent to estimating
(3.15) with dummy variables for each industry in each period) as long as the trans-
formed regressors can be assumed to be uncorrelated with the transformed uit .

However, if we only industry-adjust the dependent variable, we are actually esti-
mating

yadjit = x
′
itβ + vit , (3.18)

where vit is an error term. This equationmisses the group average of xit . Because it can
be expected that the group averages correlate with the observed values of xit in the
group, this leads to an inconsistent estimator for β. This also holds for variants where
firm i is excluded from the group average. Why does this happen? As an example,
assume that all xit within an industry change due to a common shock. In the absence
of any other changes, this will lead to a change in yit but not in y

adj
it . As a result, there is

a change in the explanatory variables of (3.18) but not the dependent variable. In the
correct specification (3.17), both the dependent and independent variables change.

Essentially, the bias in the industry-adjusted estimator is due to an omitted vari-
able. The fact that the model does not control for the industry-specific averages in the
explanatory variables leads to abiasedand inconsistent estimator. Gormley andMatsa
(2014) show that predicting the sign andmagnitude of the bias is not straightforward,
particularly in cases with multiple variables in xit . In general however, biases can be
substantial and it is even possible that the sign of an estimate – even in large samples
– differs from the sign of the true coefficient. It is important to note that the bias is not
due to a small sample problem and also occurs with a large number of observations.

Adding group-specific averages as control variables
A similar problem arises if we keep yit as the dependent variable, but include the
industry-specific average as an additional control. This is quite common. For exam-
ple, models of capital structure often include the industry average (or median) to con-
trol for industry characteristics not captured by other explanatory variables (see, e. g.,
Flannery and Rangan, 2006). Models of mutual fund flows often include category
flows or style flows as an additional control (e. g., Sirri and Tufano, 1998). Let us write
the resulting model as

yit = x
′
itβ + λȳgt + vit , (3.19)

where – again – vit denotes an error term. The belief is that, once we control for ȳgt,
the correlation between xit and the group-specific component in the error term dis-
appears, or even that the entire group-specific component becomes irrelevant. This,
however, is unwarranted. The reason is that the group-specific averages

ȳgt = x̄
′
gtβ + fgt + ūgt
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differ from the unobserved group components fgt due to the measurement error

−x̄′gtβ − ūgt .
The measurement error typically covaries with fgt and also with the variables in xit .
This results in a nonstandard errors-in-variables problem. Determining the sign and
magnitude of the bias in the OLS estimator based on (3.19) is again non-trivial. Gorm-
ley and Matsa (2014) argue that the estimator is inconsistent in most applications.
They also show that the bias in estimators based on (3.18) or (3.19), that is, industry-
adjusting the dependent variable or including the industry-average as an additional
control, can be either smaller or larger than the bias in the pooledOLS estimator ignor-
ing the industry effect. As can be expected, the correlation between the group-specific
unobserved heterogeneity and the independent variables in xit has a large impact on
the relative performance of these estimators. Obviously, if this correlation is zero, the
OLS estimator has no bias, whereas the other two estimators do. This illustrates that
incorrect attempts to control for unobservedheterogeneity can lead toworse outcomes
than simply ignoring it.

Group fixed effects
The solution to these problems is obvious and requires the use of fixed effects esti-
mators. In the example above this means that group-specific dummy variables are
included for each group in each period (assuming that the group effects are time-
varying). If the group effects are assumed to be time-invariant, we can just include
group dummies. As shown in the standard fixed effects case, this is equivalent to run-
ning the regression in deviation from group-specific averages. That is,

yit − ȳgt = (xit − x̄gt)
′β + εit − ε̄gt , (3.20)

where the resulting estimator is given in (3.14). Compared to the alternative ap-
proaches above, in this approach both the dependent variable and the explanatory
variables are group-adjusted.

When we estimate a model like (3.20) the standard errors are typically adjusted to
account for the reduced degrees of freedom (see the previous section). As discussed
above,when estimating cluster-robust standard errors, however, the adjustment is not
required as long as the fixed effects are nestedwithin the clusters (Gormley andMatsa,
2014; Cameron andMiller, 2015). In Stata, the command xtreg restricts attention to the
latter types of clustering, while areg allows for more general forms of clustering (but
reduces the degrees of freedomwith the number of fixed effects). Thismeans that areg
may produce inappropriate standard errors when the group fixed effects are nested
within the clusters (e. g., firm fixed effects with standard errors clustered at the firm or
industry level).
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3.4 More on instrumental variables

The simple instrumental variables estimator discussed in Section 3.1 is based on the
model in levels, and assumes that the number of instruments in zit is equal to the num-
ber of explanatory variables in xit . In this section we discuss a number of extensions,
starting with the case where there are more instruments in zit than variables in xit, in
combination with the two-stage least squares (2SLS) interpretation.

3.4.1 Two-stage least squares

The general model of interest is given by

yit = x
′
itβ + εit , (3.21)

where there are reasons to believe that one of more of the K variables in xit are cor-
related with εit, potentially due to time-invariant unobserved heterogeneity. Assume
there is an R-dimensional vector of instruments zit, partly overlapping with xit . Exo-
geneity of the instruments requiresE(zitεit) = 0as requiredbyAssumptionEXO1 (iv-p),
but now the dimension of zit may be larger than that of xit . That is, R ≥ K. In this case,
the simple instrumental variables estimator in (3.2) cannot be calculated unlessR = K.

A more general instrumental variables estimator, or 2SLS estimator, can be ob-
tained in two steps. In the first step, each of the regressors in xit is regressed upon
the instruments in zit (which will typically contain an intercept) using standard OLS.
These regression equations are called reduced form equations, and can be written as

xk,it = z′itπk + ηk,it , k = 1, . . . ,K. (3.22)

These reduced forms have the interpretation of linear projections of the set of explana-
tory variable upon the vector of instruments. If xk,it is exogenous and included in zit,
the projection is trivial. For the elements of xit that are not exogenous, these reduced
forms provide a decomposition in a part that is linearly related to zit and an orthogo-
nal residual. We are particularly interested in the fitted values of these reduced form
regressions. They capture exogenous variation in xit . Using the fact that

π̂k = (∑
i,t zitz′it)

−1
∑
i,t zitxk,it ,

the fitted values can be written as

x̂k,it = z′it(∑
i,t zitz′it)

−1
∑
i,t zitxk,it .
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The 2SLS estimator for β in (3.21) is obtained by applying OLS to the equation with xit
replaced by x̂it . That is,

β̂2SLS = (∑
i,t x̂it x̂′it)

−1
∑
i,t x̂ityit . (3.23)

Even though we introduced this estimator as a two-stages estimator, it is normally
directly computed from (3.23). In Stata, the 2SLS estimator is obtained with the com-
mand ivregress 2sls. Interestingly, one can also rewrite (3.23) as

β̂2SLS = (∑
i,t x̂itx′it)

−1
∑
i,t x̂ity,it , (3.24)

so that it also possible to give x̂it the interpretation of instruments, in the context of
(3.2).

The 2SLS estimator is consistent for β provided the instruments are valid. This
means they are exogenous, as specified in Assumption EXO1 (iv-p), aswell as relevant.
Technically, relevance requires that the R × K matrix

plim 1
NT
∑
i
∑
t
zitx
′
it has rank K. (3.25)

This is the so-called rank condition for identification. It requires that the instruments
zit are sufficiently related to xit . In the special case where only one element of xit is in-
strumented, say xk,it, it requires that the instrument is sufficiently correlatedwith xk,it,
once the other regressors are controlled for. This means that the instrument should
add sufficient explanatory power to the reduced form in (3.22). Under weak regularity
conditions, the 2SLS estimator has an asymptotic normal distribution, and its covari-
ance matrix can be obtained depending upon assumptions about heteroskedasticity
and serial correlation in εit; we discuss this in Subsection 3.4.3.

Before continuing with our derivations, let us reflect a bit on why this may work.
Consider a key variable that we think is endogenous, that is, correlated with εit . The
problem is that any variation in this variable may correspond with variation in the
unobservables and as a result, a standard estimator is unable to estimate the causal
impact of this key variable. For example, firms with good governance differ from firms
with poor governance in many unobservable aspects, and standard estimators will
have a hard time estimating the causal impact of governance quality upon firm perfor-
mance.3 The search for valid instruments requires finding one or more other variables
that explain variation in governance quality but are unrelated to the unobservables af-
fecting firm performance. The fitted value from the reduced only captures exogenous

3 An additional problem is the measurement of governance quality per se; see Section 4.4.
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variation. As a result, relating yit to the fitted values is not subject to the endogeneity
bias or omitted variable bias, and the 2SLS estimator can be argued to provide a con-
sistent estimator. In addition to the exogeneity of zit, consistent estimation requires
that x̂it exhibits sufficient variation and is not collinear. This, in turn, requires that
the instruments are “sufficiently important” in the reduced form. (We return to this
below.)

Concerns with instrumental variables
The problem for the practitioner is that it is often far from obvious to find variables
that could serve as valid instruments, or to establish whether a chosen instrument is
indeed exogenous. The requirement that an instrument is relevant is relatively easy.
It requires that the instrument is correlated with the endogenous regressor, condi-
tional upon theother regressors in the equation. This correlation shouldbe sufficiently
strong to increase statistical power and to avoid a so-called weak instruments prob-
lem. If the instrument is only weakly correlated with the endogenous regressor, this
means that the R2 of the reduced form increases only marginally when the instrument
is added and the instrumental variables estimator has poor properties.We discuss this
in more detail in Subsection 3.4.2.

The requirement that an instrumental variable is exogenous is more complicated.
As stressed by Angrist and Pischke (2009, Chapter 4) this actually requires two things.
One is that the instrument is as good as randomly assigned and cannot be influenced
by the dependent variable yit (conditional upon the other regressors). Second is an
“only through” condition and requires that the instrument predicts the dependent
variable yit only though the instrumented variable, conditional upon the other regres-
sors, not directly or through a third unobserved variable. This is often called “an ex-
clusion restriction”, and it requires that the instrument itself is appropriately excluded
from the equation of interest. That is, any variable in zit that is not included in xit must
be validly excluded from (3.21).

Unlike the relevance condition, the exclusion or exogeneity condition cannot be
tested if R = K. This is because εit is unobserved. Essentially, when using instrumen-
tal variables we are replacing one untestable assumption E(zitεit) = 0 with another
untestable assumption E(xitεit) = 0. When R > K, we have more instruments than
required for identification andwe can test the so-called overidentifying restrictions in
E(zitεit) = 0,without, however, being able to specifywhichof the instruments is violat-
ing the exogeneity condition (see Subsection 3.5.3). The fact that the scope for testing
the validity of instruments is very limited indicates that researchers should carefully
justify their choice of instruments, paying attention to theoretical arguments or insti-
tutional background. The reliability of an instrument relies on argumentation, not on
empirical testing.

Because of this concern, instrumental variables approaches are oftendebated. For
example, Larcker and Rusticus (2010) are very critical on the use of instrumental vari-
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ables in accounting research. After inspecting a number of recently published studies,
they conclude that the variables selectedas instruments seem largely arbitrary andnot
justified by any rigorous theoretical discussion. According to them, many IV applica-
tions in accounting are likely to produce highly misleading parameter estimates and
test statistics. In a similar vein, Roberts andWhited (2013) argue that truly exogenous
instruments are extremely difficult to find in corporate finance research and conclude
that “many papers in corporate finance discuss only the relevance of the instrument
and ignore any exclusion restrictions”. Gallen and Raymond (2020) discuss that when
instruments sharing significant sources of variation (e. g., weather-related variables)
are used to instrument many different explanatory variables across the literature, this
increases the likelihood that the exclusion restriction is violated. Atanasov and Black
(2016) focus on shock-based instrumental variables in corporate finance and account-
ing, which rely on an external shock as the basis for causal inference, for example, a
change of governance rules imposed by governments. They conclude that only a small
minority of the studies they investigated have convincing causal inference strategies.
Reiss (2016) stresses the sensitivity of IV estimates to the functional form of the instru-
ment, and document that it can matter much for the resulting estimate whether, for
example, levels or logs of an instrumental variable are used.

Another drawback of instrumental variables estimation is that the standard errors
of an IV estimator are typically quite high compared to those of the OLS estimator.
The most important cause of this is that instrument and regressor have a low corre-
lation; see Wooldridge (2010, Subsection 5.2.6). Jiang (2017) documents that, among
published papers in empirical finance, the IV estimates are almost alwaysmuch larger
than the OLS ones, irrespective of the ex ante nature of the endogeneity bias. Because
of their lower precision, she suspects that published instrumental variables estimates
tend to be larger, in absolute size, than theOLS ones, because larger values are needed
to achieve statistical significance. This arises due to the specification search by empir-
ical scholars, and leads to a “publication bias” in published IV results.4

Due to the concerns above, some authors argue that under poor conditions in-
strumental variable estimates are more likely to provide the wrong statistical infer-
ence than simple OLS estimates that make no correction for endogeneity (Larcker and
Rusticus, 2010).

Finding instruments
The selection and use of instrumental variables estimators requires a careful analy-
sis of the problem at hand. As recommended by Larcker and Rusticus (2010), a good
startingpoint is to describe the economic theories the researchquestions are basedon.

4 A recent study byBrodeur et al. (2020) appears to support this. They find that instrumental variables
methods are particularly problematic with respect to p-hacking and publication bias. Moreover, they
find some evidence of relatively more p-hacking in finance.
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For example, the endogeneity problem could be due to an important control variable
that is not available (a confounding variable), the regressor of interest could be the
outcome of a choice that individuals or firms are making, partly based upon the costs
and benefits of such a choice, the direction of causality could be unclear, or theremay
be good reason to suspectmeasurement errors.With amore detailed description of the
endogeneity problem, its background and potential alternative theories, a researcher
is better equipped to select an empirical approach, and readers aremore able to evalu-
ate whether the approach is appropriate. As stated by Roberts and Whited (2013), the
only way to find a good instrument is to understand the economics of the question
at hand, including the institutional setting, economic mechanisms and restrictions
implied by economic theory. An example of this is provided in Nash and Patel (2019),
who review instrumental variables used to study the relation betweennational culture
and finance.

It is recommended to investigate and discuss why chosen instruments would be
valid,most importantlywhy theywould satisfy the exogeneity requirement. It is rarely
the case that instruments are entirely convincing, in the sense that all potential re-
viewers and discussants would accept them, but that does not imply that one should
not try to give convincing arguments. It is also advisable to anticipate the potential
reasons why the instrument is not exogenous and demonstrate that these effects are
either very small or controlled for by inclusion of other variables in themodel (see Lar-
cker and Rusticus, 2010). Occasionally, a reasonably convincing instrument may be
available. For example, using a unique data set, Bennedsen et al. (2007) estimate the
effect of family succession. As instrument they exploit the fact that family succession
is more likely in firms where the first-born is male, which is obviously exogenous. To
identify whether a reduction in leverage leads to a subsequent improvement in oper-
ating performance of Austrian ski hotels, Giroud et al. (2012) use unexpected snowfall
to instrument changes in leverage. More recently, Bernstein et al. (2019) explore the
spillover effects of reorganisation and liquidation on geographically proximate firms,
addressing the concern that the decision to liquidate (vs. to reorganise) is not exoge-
nous. They exploit the fact that assignment of bankruptcy judges to cases is based
on a blind rotation system (and thus random), and instrument liquidation by the het-
erogeneity in the judge-specific shares of previous cases converted from Chapter 11
reorganisation to Chapter 7 liquidation.

In each of these examples, some kind of randomness is present (first-born gender,
snowfall, assignment of a judge), which helps to argue (but not necessarily guaran-
tees) that the instrument is exogenous.5 Relevance is checked via the reduced forms.
Alternatively, instruments can be based on something observed in the distant past,
with little or no direct influence on today’s outcomes (yit), but still provide exogenous
variation in the explanatory variable of interest. A good example of this is Acemoglu

5 See Kahn andWhited (2017) for a critical discussion of the assumptions in Bennedsen et al. (2007).
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et al. (2001), who estimate the causal impact of institutions upon country GDP and use
mortality rates faced by settlers more than 100 years ago, to instrument for the quality
of institutions.

In addition to reporting the first-stage regression results, including the F-statistic
on the instruments, it is also useful to report results based on OLS or other standard
methods ignoring the endogeneity problem. This provides a benchmark and allows
comparison, for example, to see whether the difference between the results is con-
sistent with the underlying theory and the hypothesised source of endogeneity. It is
typically a bad idea to immediately jump to instrumental variables estimationwithout
having looked at OLS results. For example, Jiang (2017) advocates a comparison of OLS
and IV estimates and a discussion of what their relative magnitude says about the na-
ture of the endogeneity or the sign of the correlation between the potentially endoge-
nous regressor and the error term. See also Atanasov and Black (2021). Finding that
OLS and IV estimates are very similar does not necessarily indicate that there are no
endogeneity concerns. It could also be that the IV approach is done inappropriately,
for example, by using an instrument that is highly correlated with the endogenous
regressor and is endogenous itself.

The opposite of a weak instrument is a strong instrument. A strong instrument is
one that is relatively highly correlated with the variable it is supposed to instrument.
Having a strong instrument results in a relatively accurate IV estimator (although hav-
ing higher standard errors than OLS). Unfortunately, it is often the case that a strong
instrument, being highly correlated with the endogenous regressors, is less likely to
be entirely exogenous itself. Fortunately, even with a small violation of the exclusion
restrictions, the 2SLS estimator often produces estimates that are reasonably close to
the true parameter values if the instruments are sufficiently strong (see Conley et al.,
2012). Effectively, one may be better off with an estimator that has a lower standard
error, but a small bias, than an unbiased one with a large standard error. This is ex-
ploited in, for example, Karpoff et al. (2017), who estimate the impact of antitakeover
provisions on the likelihood of takeover, and argue that the strength of their instru-
ments mitigates concerns about the exclusion conditions. This argument should not
be used lightly, and a careful discussion of the underlying mechanisms is warranted.
Conley et al. (2012) present several alternativemethods for performing inferencewhile
relaxing the exclusion restriction.

Using lagged variables to avoid simultaneity bias
In several applications it is reasonably obvious that the dependent variable and one or
more of the explanatory variables are jointly determined, so that the regressors are not
exogenous and standard estimators are inconsistent due to a simultaneity bias. This is
true even in the absence of time-invariant heterogeneity in εit . That is, there is a clear
case of E(xitεit) ̸= 0. Quite frequently, authors try to avoid the simultaneity bias by
including the lagged values of the regressors, rather than the contemporaneous ones,
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in the regression model. For example, the seminal paper of Dittmar and Mahrt-Smith
(2007), on the impact of corporate governance on firm value, in several specifications
uses governance in the initial year of observation, rather than the current value. This,
of course, is not an instrumental variables approach and doing so will typically not
consistently estimate the direct effect of xit on yit (unless strong conditions are satis-
fied, see Reed, 2015 or Bellemare et al., 2017 for more discussion). In the presence of
serial correlation in εit (e. g., due to an unobserved time-invariant component), lagged
values of xit will usually not provide valid instruments either.

Testing for endogeneity
Because instrumental variables estimators tend to be relatively inaccurate compared
to standard estimators like OLS, one may be interested in the question whether the
instrumentationwasnecessary in the first place. Using instruments in caseswhere it is
not needed leads to estimators that areunnecessarily imprecise. It is possible to test for
endogeneity of the instrumented regressors, under the important conditions that the
set of employed instruments is relevant and exogenous. If we can estimate the model
coefficients consistently using an IV estimator, irrespective of the question whether
the instrumented regressors are endogenous, we can use that to test endogeneity.

Effectively, the test for endogeneity is a Hausman test (Hausman, 1978), which
compares the OLS and IV estimators for the same parameters, and tests whether they
are significantly different. Under thenull hypothesis of exogenous regressors, both the
OLS and IV estimators are consistent, where the first is more efficient. In this case, the
two estimators should differ by sampling error only. Under the alternative hypothesis,
only the IV estimator is consistent. An illustration of the Hausman test is given in,
for example, Giroud et al. (2012), who even find different signs for the OLS and IV
estimates of their parameter of interest.

The general test statistic is based on a quadratic form, exploiting the differences
between the OLS and IV estimators, similar to the one comparing random effects and
fixed effects estimators in (2.83). A computationally attractive version of the Haus-
man test for endogeneity (often referred to as theDurbin–Wu–Hausman test) can be
based upon a simple auxiliary regression. First, estimate the reduced form equations
and save the residuals. Next, add the residuals to the model of interest and estimate

yit = x
′
itβ + η̂

′
itγ + vit , (3.26)

where η̂it is the set of reduced form residuals for the endogenous regressors. Actually,
this procedure reproduces the 2SLS estimator for β, but it also produces an estimate
for γ. If γ = 0, the instrumented regressors are exogenous. Consequently, we can easily
test for endogeneity by performing a standard F-test on γ = 0 in the above regression.
This test can be easily made robust against heteroskedasticity and within-cluster cor-
relation by adjusting the covariance matrix in the latter step accordingly. Note that

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.4 More on instrumental variables | 89

the test assumes that the instruments are valid under both the null and alternative
hypothesis. If the instruments are relatively weak, the test may have limited power.

The control function approach
The above test regression illustrates an alternative approach to dealing with endo-
geneity, that appears particularly useful in nonlinear models and is referred to as the
control function approach. The approach involves the estimation of a reduced form
for the endogenous regressor(s), including all available instruments and exogenous
regressors, and adding the residuals from the reduced form to the main equation, as
illustrated in (3.26). Loosely speaking, the reduced form residuals capture the endoge-
nous components in the regressors and controlling for them, controls for the endo-
geneity in the equation (see Wooldridge, 2010, Section 6.2). In the linear model, we
can interpret η′itγ as the linear projection of the original error term in the equation (εit)
upon the error terms of the reduced form. Because now vit is uncorrelated with both
ηit and zit, it is also uncorrelated with the endogenous regressors in xit, and applying
pooled OLS to (3.26) provides a consistent estimator, with an adjustment in the calcu-
lation of the standard errors because η̂it are generated rather thanobserved regressors.
As mentioned, in the linear model this is equivalent to 2SLS. However, in nonlinear
models the control function approach is often more attractive than 2SLS, albeit that
some additional assumptions are needed (as one cannot rely upon linear projections);
see Vella and Verbeek (1999a) for more discussion. Subsections 6.1.9 and 6.3.4 provide
some examples.

3.4.2 Weak instruments

The problem of weak instruments in instrumental variables estimation has received
considerable attention recently; see Andrews et al. (2019) for an overview. The prob-
lem is that the properties of the IV estimator can be very poor, and the estimator can be
severely biased, if the instruments exhibit only weak correlationwith the endogenous
regressor(s). In these cases, the normal distribution provides a very poor approxima-
tion to the true distribution of the IV estimator, even if the sample size is large. As
a result, the standard IV estimator is biased, its standard errors are misleading and
hypothesis tests are unreliable.

To illustrate the problem, let us consider the IV estimator for the case of a single
regressor, where the overall mean has been eliminated. In this case, the IV estimator
can be written as

β̂IV =
∑i,t zityit
∑i,t zitxit .
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If the instrument is valid (and under weak regularity conditions), the estimator is con-
sistent and converges to

β = cov(zit , yit)
cov(zit , xit)

.

However, if the instrument is not correlatedwith the regressor, the denominator of this
expression is zero. In this case, the IV estimator is inconsistent and the asymptotic
distribution of β̂IV deviates substantially from a normal distribution.

The instrument is weak if there is some correlation between zit and xit, but not
enough to make the asymptotic normal distribution provide a good approximation
in finite (potentially very large) samples. For example, Bound et al. (1995) show that
part of the results of Angrist and Krueger (1991), who use quarter of birth to instru-
ment for schooling in a wage equation, suffer from the weak instruments problem.
Even with samples of more than 300,000 individuals, the IV estimator appeared to
be unreliable and misleading. To figure out whether you have weak instruments, it is
useful to examine the reduced-form regressions and evaluate the explanatory power
of the additional instruments that are not included in the equation of interest. The
usual rule of thumb is that an instrumental variable should have an F-statistic in the
reduced form larger than 10, corresponding to a t-ratio exceeding 3.16 (Stock andWat-
son, 2007, Chapter 12). This rule of thumb is based on Stock and Yogo (2005) and
relies upon homoskedasticity and absence of serial correlation. For cases with het-
eroskedasticity and within-cluster correlation, both likely to be present with panel
data, the “effective” F-statistic developed by Montiel Olea and Pflueger (2013) is at-
tractive, which is a scaled version of the nonrobust first-stage F-statistic. Testing for
weak instruments is also more complicated when there are multiple instruments (ex-
cluded from the regression of interest) and multiple regressors that are instrumented.
For example,when there are two endogenous regressors that require instrumentation,
and three instruments, there are six reduced form coefficients that determine the role
of the instruments in capturing the variation in the two regressors. In this case it is
insufficient that the reduced form coefficients are nonzero, but it should also be the
case that the instruments capture different variation in each of the regressors. More
technically, this requires that the 2 × 3 matrix of reduced form coefficients has rank 2.
If not, the rank condition for identification in (3.25) will be violated. Kleibergen and
Paap (2006) provide a Wald F-test to test for a reduced rank, which has become rea-
sonably popular in this context, typically referred to as a test for underidentification.
Stata’s ivreg2 command provides a range of tests for weak instruments.

Andrews et al. (2019) provide more details on tests for weak identification, par-
ticularly in the case with nonhomoskedastic error terms, and discuss several alterna-
tive procedures forweak-instrument-robust inference on β. The approachbyAnderson
and Rubin (1949) appears to have reasonable good properties in the presence of weak
identification in the case where there is a single endogenous regressor, and allows the
construction of confidence intervals for β that are robust to having aweak instrument.
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Bazzi and Clements (2013) document the problemof “blunt instruments” in the empir-
ical growth literature, that is, instruments that are invalid or weak, and discuss some
alternative approaches to weak-instrument-robust inference. In practice, however, it
would be better to try and find a strong instrument instead.

3.4.3 Standard errors

Even though it is possible to obtain the 2SLS estimator as the OLS estimator in amodel
where the endogenous regressors are replacedbyfitted values from the reduced forms,
routinely calculated standard errors will be inappropriate (see Maddala and Lahiri,
2009, Section 9.6, for details). This is because the error term in the second-stagemodel
deviates from the original error term in the equation. Instead, standard errors should
be calculated that exploit the residuals from (3.21) using the estimator in (3.23).

To derive the correct covariance matrix of the instrumental variables or 2SLS esti-
mator, we need to make assumptions about the error terms εit, in particular about the
presence of heteroskedasticity and within-cluster correlations, conditional upon the
instruments zit . Under the earlier assumptions, andweak regularity conditions, the IV
estimator is consistent and asymptotically normal, with a covariance matrix that has
the typical sandwich structure. In general, it can be written as

V(β̂2SLS) = (∑
i,t x̂it x̂′it)

−1
B(∑

i,t x̂it x̂′it)
−1
, (3.27)

where B is a matrix that is determined by the variance of ∑i,t x̂itεit, which depends
upon the assumptions about εit . If we make the standard assumption (unrealistic in
a panel context) that the error terms εit are independently and identically distributed
with mean zero and variance σ2ε , the middle term is given by

B = σ2ε∑
i,t x̂it x̂′it (3.28)

and the covariance matrix of β̂2SLS can be written as

V(β̂2SLS) = σ
2
ε(∑

i,t x̂it x̂′it)
−1
. (3.29)

Using the definition of x̂it, this can also be written as

V(β̂2SLS) = σ
2
ε((∑

i,t xitz′it)(∑i,t zitz′it)
−1
(∑
i,t zitxit))

−1
. (3.30)

The variance σ2ε can be estimated on the basis of the residuals, for example, as

σ̂2ε =
1
NT
∑
i,t ε̂2it ,
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where ε̂it = yit − x′it β̂2SLS. It is possible to apply a degrees of freedom correction to this
estimator. Note that, with zit = xit, the expression in (3.30) reduces to the standard
OLS covariance matrix.

A covariance matrix for β̂2SLS under more realistic assumptions is easily obtained
by adjusting theBmatrix appropriately. For example, in the presence of heteroskedas-
ticity, but no correlations between different error terms, we have

B =∑
i,t ε̂2it x̂it x̂′it . (3.31)

The covariance matrix given by (3.27) with (3.31) provides the White heteroskedasti-
city-robust covariance matrix for the IV estimator, and is available in Stata’s ivregress
with the robust option.

In the presence of both heteroskedasticity and correlation within units, the “fill-
ing” matrix can be estimated as

B = ∑
i,s,t ε̂it ε̂isx̂it x̂′is, (3.32)

which allows for within-unit clustering. This requires the appropriate cluster option
with ivregress. Obviously, alternative forms of clustering can be accommodated. This
is similar to the discussion in Section 2.5, and much of the concerns and recommen-
dations carry over to this case. For example, it is important that the number of clusters
G is sufficiently large (at least G > R), and asymptotically increases with the sample
size. Also, small sample corrections may be useful.

The combination of clustering and instrumental variables, which leads to inflated
standard errors anyway, can lead to standard errors that are very high, occasionally
making 2SLS estimators almost uninformative. That is, even though the estimator can
be argued to be consistent or asymptotically unbiased, its precision can be so low that
inference is economically not very meaningful. In the overidentified case, some effi-
ciency gain can be achieved by optimally weighting the different instruments. This
is most easily implemented in a generalised methods of moments framework (GMM),
which we discuss in Section 3.5.

3.4.4 IV estimators with panel data

A major advantage of the availability of panel data is that one can consider the use
of transformations of variables already in the model as instruments, rather than hav-
ing to resort to “external” instruments. A simple illustration of this is the fixed effects
estimator, which can be interpreted as an instrumental variables estimator where the
within-transformed regressors are used as instruments. This is appropriate if the en-
dogeneity is due to the time-invariant component of the error term only and if the
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regressors are strictly exogenous (i. e., xit is uncorrelated to uis for all s, t). Another ex-
ample is the Hausman and Taylor (1981) estimator discussed in Section 3.1. This idea
can be implemented more generally, by transforming the model of interest, for exam-
ple, by a first-difference or within transformation, and then find instruments for one
or more of the transformed regressors. This is often done in the context of dynamic
models, as discussed in Chapter 5, but can also be of use in static models.

For the panel case, there are several standard applications of instrumental vari-
ables, building upon the variety of estimators discussed in Chapter 2. The pooled IV
estimator discussed above is essentially a standard IV estimator, with the panel na-
ture of the data only playing a role in the calculation of the standard errors. In case of
a random effects structure of the error term, we have

yit = x
′
itβ + αi + uit ,

where xit contains an intercept term. If one or more elements of xit are correlated with
the time-invariant component αi, one can use a fixed effects approach to consistently
estimate β (for time-varying regressors). However, if xit is (also) correlated with uit this
is no longer appropriate, and an instrumental variables estimator may provide a con-
sistent estimator, on the condition that valid instruments can be found. These instru-
ments should be uncorrelated with both αi and uis. The random effects IV estimator
is obtained by applying the pseudo transformation to both the explanatory variables
and the instruments, leading to xit − θx̄i and zit − θ ̄zi, respectively, where θ is given by

θ = 1 −√
σ2u

σ2u + Tσ2α
,

as before. The expression for θ is a bitmore complicated in the unbalanced panel case,
and there are several ways to estimate of the underlying variance components. The
random effects IV estimator is more efficient than the pooled IV estimator if the error
components assumption is correct, but imposes strict exogeneity of both regressors
and instruments (in the sense that zit is uncorrelated to uis).

A more common approach to instrumental variables is based on a fixed effects
specification and starts with either the within or first-differenced equation. The trans-
formed equations can then be combinedwith instrumental variables in levels, within-
transformed, first-differenced or otherwise transformed. To illustrate this, consider a
model where xit and αi are likely to be correlated. In addition, it is likely that xk,it is
correlated with uit, but not with ui,t−j, j = 1, 2, . . . . In this case, one can transform the
model using the first-difference transformation

Δyit = Δx
′
itβ + Δuit ,

and use either the xk,i,t−2 or Δxk,i,t−2 as instrument for Δxk,it . When the within transfor-
mation is used, there is little scope of using internal instruments, because the instru-
ments need to be uncorrelated to ūi. For large T, however, this problem disappears
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and the within transformation may be more attractive than the first-difference one
(see Wooldridge, 2010, Chapter 11). The Stata command xtivreg offers the possibility
to apply instrumental variables to the random effects model, the fixed effects model
(based on the within transformation) and themodel in first-differences, where the op-
tion vce(robust) provides standard errors clustered at the unit level.

An application of fixed effects in combination with instrumental variables is
given in Pérez-González and Yun (2013), who investigate the causal effect of the use
of weather derivatives upon firm value. However, hedging decisions are likely to
be endogenous, relating, for example, to investment opportunities, and a standard
within estimator tends to be inconsistent. As instruments they use the introduction of
weather derivatives as an exogenous shock to firms’ ability to hedge weather risks, in
combination with ameasure on howweather-sensitive a firm’s cash flows were before
this introduction (in 1997).

Both the randomeffects andfixed effects IV estimators canbe combinedwith clus-
tered standard errors, tomake inference robust against heteroskedasticity andwithin-
firm correlation. Note that first-differenced error terms tend to be serially correlated by
construction. It is also possible to reformulate the estimators in a GMM setting, with
the use of an optimal weighting matrix. This is discussed in the next section.

3.5 Instrumental variables and GMM

The instrumental variables estimators discussedabove canbe formalised in the frame-
work of the generalised method of moments (GMM). The starting point of GMM is
that the model of interest implies a number of moment conditions. Moment condi-
tions state that the expected value of an expression, which depends upon observable
data and unknown parameters only, is equal to zero. These population moments can
be exploited in estimation by setting the corresponding sample averages to zero, and
solving for the unknown parameters, or, more generally, by trying to get the vector of
sample averages as close as possible to zero. In this section we introduce the GMM
approach starting from the linear regression model with instrumental variables.

3.5.1 Moment conditions

The model of interest is given by

yit = x
′
itβ + εit ,

where it is assumed that E(zitεit) = 0 for a given vector of instruments zit of dimension
R ≥ K, where K is the number of elements in β. We canwrite this as a set of population
moment conditions as

E(zit(yit − x
′
itβ)) = 0. (3.33)
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These R conditions can help us to estimate the K unknown parameters in β. The iden-
tifying assumption is that (3.33) is satisfied only for the true parameter values, and
nonzero otherwise. That is, if we would solve (3.33) for the unknown β, there would
be only one unique solution.

Of course, this procedure does not work in practice, because the expectations in
(3.33) are not observed. Instead, we work with sample averages. In the panel context,
where we have both a unit and a time dimension, expectations and sample averages
canbe takenover onedimensiononly or over both. In general, sample averages should
be taken over a dimension that is sufficiently large, because asymptotic theory relies
upon the sample averages converging to populationmeans. Taking averages over both
N and T, the vector of sample averages, or sample moments, is given by

1
NT
∑
i,t zit(yit − x′itβ), (3.34)

where – for convenience – we use the notation for the balanced data case. Note that
yit, zit and xit are observed variables, so that the only unknowns in (3.34) are the pa-
rameters β. The GMM estimator for β is obtained by minimising a quadratic form in
the sample averages. In particular, we solve

min
β
(

1
NT
∑
i,t zit(yit − x′itβ))

′
WNT(

1
NT
∑
i,t zit(yit − x′itβ)), (3.35)

whereWNT is an R×R positive definite weightingmatrix, whichmay depend upon the
observed sample. Under regularity conditions, this leads to a consistent and asymptot-
ically normal estimator for β, provided that the moment conditions in (3.33) are valid
and sufficient to uniquely identify β. The formal conditions and derivations of GMM,
in its most general form, are provided in Hansen (1982).

Let us first consider the exactly identified case where K = R, that is, the num-
ber of moment conditions equals the number of unknown parameters. In this case,
the minimisation of (3.35) does not depend upon the weighting matrix and reduces to
solving

1
NT
∑
i,t zit(yit − x′it β̂) = 0, (3.36)

with respect to β̂. The solution of this reproduces the IV estimator presented in (3.2),
and is given by

β̂IV = (
N
∑
i=1 T
∑
t=1 zitx′it)

−1 N
∑
i=1 T
∑
t=1 zityit . (3.37)

More interesting results emerge in the overidentified case, when R > K.
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3.5.2 The optimal weighting matrix

In the overidentified case, we have more moment conditions (i. e., more instruments)
than needed to estimate the unknown parameters. Rather than selecting a subset of
themoment conditions, we can use all of thembyminimising (3.35). In this case, there
exists a wide range of estimators for β, depending upon the choice for the weighting
matrix. As long as theweightingmatrix is (asymptotically) positive definite, the result-
ing estimators are all consistent for β. The idea behind the consistency result is that
we are minimising a quadratic loss function in a set of sample moments that asymp-
totically converge to the corresponding population moments, which are equal to zero
for the true parameter values. Different weightingmatrices lead to different consistent
estimators with typically different asymptotic covariance matrices. This allows us to
choose an optimal weighting matrix that leads to the most efficient instrumental vari-
ables estimator. It can be shown that the optimal weighting matrix is proportional to
the inverse of the covariance matrix of the sample moments. Intuitively, this means
that sample moments with a small variance, which consequently provide accurate in-
formation about the unknownparameters in β, getmoreweight in estimation than the
sample moments with a large variance.

The covariance matrix of the sample moments

1
NT
∑
i,t zit(yit − x′itβ) = 1

NT
∑
i,t zitεit (3.38)

depends upon the assumptions we impose upon the error distribution (and its rela-
tion with the instruments). In the case where εit is independently and identically dis-
tributed (IID), independent of the instruments, the asymptotic covariance matrix of
the sample moments is given by

σ2ε plim
1
NT
∑
i,t zitz′it .

Consequently, an empirical optimal weighting matrix is obtained as

Wopt
NT = (

1
NT
∑
i,t zitz′it)

−1
,

the proportionality factor σ2ε being irrelevant. As a result, the IV-GMM estimator is
given by

β̂2SLS = (∑
i,t x̂it x̂′it)

−1
∑
i,t x̂ityit , (3.39)

where the optimal weighting matrix is hidden in the definition of x̂it . As before

x̂it = z
′
it(∑

i,t zitz′it)
−1
∑
i,t zitxit .
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These results indicate that the 2SLS estimator is (asymptotically) the most efficient
estimator for β in the restrictive case where the error terms in the equation of interest
are homoskedastic and exhibit no autocorrelation or other cross-correlations. In cases
where the distribution of the error term is less restricted, one can adjust the standard
errors for β̂2SLS to accommodate for heteroskedasticity or within-cluster correlation, as
discussed above.

However, in the GMM framework it is potentially more attractive to adjust the
weighting matrix to obtain an asymptotically more efficient estimator. For example,
if the error term is heteroskedastic, but there is no correlation between different error
terms, an empirical optimal weighting matrix is given by

Wopt
NT = (

1
NT
∑
i,t ε̂2itzitz′it)

−1
, (3.40)

where ε̂it is the residual given by yit − x′it β̂1, and where β̂1 denotes an initial consistent
estimator for β, for example, the 2SLS estimator. This makes the optimal GMM estima-
tor a two-step estimator. In the first step, a consistent estimator for β is obtained,which
is used to calculate residuals and construct the (estimated) optimal weighting matrix.
In the second step, an asymptotically efficient estimator is obtained. From (3.35) and
(3.40), the optimal estimator can be written as

β̂GMM = [(∑
i,t xitz′it)(∑i,t ε̂2itzitz′it)

−1
(∑
i,t zitx′it)]

−1
× (∑

i,t xitz′it)(∑i,t ε̂2itzitz′it)
−1
∑
i,t zityit . (3.41)

A variant of this is the iterated GMM estimator. This estimator has the same asymp-
totic properties as the two-step one, but may have better small sample properties. It is
obtained by computing a new optimal weighting matrix using the two-step estimator,
and using this to obtain a new estimator β̂3, say, which in turn is used in a weighting
matrix to obtain β̂4. This procedure is repeateduntil convergence. These estimators are
implemented in Stata in the procedure ivregress gmm and ivregress igmm, respectively,
where the weighting matrix in (3.40) is the default.

In the panel data case, it is unlikely that all error terms are uncorrelated among
each other, and within-unit or within-period correlations are likely to be present, de-
pending upon the context. In this case, the optimal weighting matrix is more general
and needs to allow for correlation within clusters. As before, this requires that the
number of clusters is sufficiently large and increases with the sample size. In practice,
it may be recommended to impose more structure on the covariance matrix of (3.38),
for example, when the number of time periods is large and within-unit correlation
may be an issue; see Cochrane (2005, Chapter 11) for more discussion and recommen-
dations.
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Conditional upon having chosen the optimal weighting matrix, the asymptotic
covariance matrix of the two-step GMM estimator is given by

V̂(β̂GMM) = ((∑
i,t xitz′it)Wopt

NT (∑
i,t zitx′it))

−1
(provided the optimal weighting matrix is correctly scaled). It is also possible to per-
form GMM using a suboptimal weighting matrix (such as the use of 2SLS), and adjust
the standard errors for heteroskedasticity and within-cluster correlation. The expres-
sions for the covariance matrix in this more general case are somewhat more compli-
cated (though in principle straightforward). Importantly, the weighting matrix affects
the asymptotic efficiency of theGMMestimator,while the estimated covariancematrix
only affects our estimates of the standard errors, depending upon the assumptions we
are willing to make. One of the most important applications of this IV-GMM approach
in finance is the estimation of a model with a lagged dependent variable, that is, a
dynamic model where yi,t−1 is one of the variables on the right-hand side. We discuss
dynamic models in more detail in Chapter 5.

Weak identification
Unfortunately, there is considerable evidence that the asymptotic covariance matrix
for the two-step or iterated GMM estimator often provides a poor estimate of the co-
variancematrix in samples that are typical for empirical work (see, e. g., Hansen et al.,
1996). In many cases, the estimated covariance matrix is too optimistic, providing
standard errors that are too small. The problem of weak instruments discussed before
also extends to the generalisedmethod ofmoments. To explain the problemmore gen-
erally, consider the set ofmoment conditions in (3.33). The parameters of interest β are
identified under the assumption that

E(zit(yit − x
′
itβ0)) = 0,

where β0 is the true value of β, and that

E(zit(yit − x
′
itβ)) ̸= 0

for β ̸= β0. That is, the moment conditions are only satisfied for the true parameter
values. The latter condition states that the moment conditions are relevant, and is
necessary for identification (and consistency of the GMM estimator). It tells us that it
is not sufficient to have enoughmoment conditions (R ≥ K), but also that the moment
conditions should provide relevant information about the parameters of interest. If
E(zit(yit − x′itβ)) is nearly zero for β ̸= β0 then β can be thought of as being weakly
identified. As mentioned by Stock et al. (2002), an implication of weak identification
is that the GMM estimator can exhibit a variety of pathologies. For example, the two-
step estimator and the iterated GMM estimator may lead to quite different estimates
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and confidence intervals, the GMM estimator may be very sensitive to the addition of
one or more instruments, or to changes in the sample. All these features may indicate
a weak identification problem.

3.5.3 Tests for overidentifying restrictions

If themodel is exactly identified (R = K), the validity of themoment conditions, or the
validity of the instruments, cannot be tested. This is because all moment conditions
are needed to identify themodel. As a result, theK samplemoments (after estimation)
are equal to zero, regardless of whether or not the population moment conditions are
true. In case of overidentification (R > K), it is possible to test the overidentifying
restrictions. In this case, it is typically only possible to set K linear combinations of
the sample moments equal to zero. If the population moment conditions are correct,
one would expect that the R elements in

1
NT
∑
i,t zit(yit − x′it β̂GMM) (3.42)

are all sufficiently close to zero, as they should converge to zero asymptotically. This
provides the basis for the overidentifying restrictions test, often referred to as the Sar-
gan test or Sargan–Hansen test. The test statistic is given by the value of the optimand
in (3.35) with the optimal weighting matrix, scaled by the number of observations.
That is,

J = NT( 1
NT
∑
i,t zit(yit − x′it β̂GMM))

′
Wopt

NT (
1
NT
∑
i,t zit(yit − x′it β̂GMM)), (3.43)

where β̂GMM is the optimal GMM estimator. Under the null hypothesis that all moment
conditions are valid, the test statistic has an (approximate) Chi-square distribution
with R − K the degrees of freedom. Note that R − K is the number of overidentifying
restrictions, corresponding to the number of instruments that is not required to consis-
tently estimate β. Only R−K elements in (3.42) are free on account of the K restrictions
imposed by the first-order conditions.

If the Sargan test rejects, the specification of the model is rejected in the sense
that the sample evidence is inconsistent with the joint validity of all Rmoment condi-
tions. Without additional information it is not possible to determine which of the mo-
ments are valid, that is which instruments are exogenous. Roberts and Whited (2013)
are therefore critical on the usefulness of this test because it assumes that a sufficient
number of instruments are valid, yet which ones and why is left unspecified. More-
over, the test may lack power if many instruments are used that are uncorrelated with
εit but add little explanatory power to the reduced forms. In a similar spirit, Deaton
(2010) stresses that a satisfactory Sargan test does not tell us that all instruments are
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valid. “Such tests can tell us whether estimates change when we select different sub-
sets froma set of possible instruments.While the test is clearly useful and informative,
acceptance is consistent with all of the instruments being invalid, while failure is con-
sistentwith a subset being correct. Passing an overidentification test does not validate
instrumentation”. Only if one is willing to accept the validity of at leastK instruments,
the overidentifying restrictions test is consistent and optimal to test the validity of the
remaining R − K instruments (Newey, 1985).

If a subset of the instruments is known to satisfy themoment conditions, it is pos-
sible to test the validity of the remaining instruments or moments provided that the
model is identified on the basis of the nonsuspect instruments. Assume that R1 ≥ K
moment conditions are nonsuspect and we want to test the validity of the remaining
R − R1 moment conditions. To compute the test statistic, estimate the model using all
R instruments and compute the overidentifying restrictions test statistic J. Next, esti-
mate the model using only the R1 nonsuspect instruments. Typically, this will lead to
a lower value for the overidentifying restrictions test, J1, say. The test statistic to test
the suspect moment conditions is easily obtained as J − J1, which, under the null hy-
pothesis, has an approximate Chi-square distribution with R − R1 degrees of freedom.
In the special case that R1 = K, this test reduces to the overidentifying restrictions test
in (3.43), and the test statistic is independent of the choice of the R1 instruments that
are said to be nonsuspect.

3.5.4 Panel estimators

In a panel context, independence across observations is unlikely to be satisfied. As
a result, weighting matrices and/or covariance matrices should be used that allow
for heteroskedasticity and within-cluster correlation, with an appropriate definition
of clusters. In addition, the use of panel data introduces three other aspects that are
worthmentioning. First, aswehave seen several times already, the equationof interest
can be transformed to eliminate unobserved time-invariant heterogeneity, for exam-
ple, using the first-difference or within transformation. Second, instruments are not
necessarily external in the sense that they donot yet play a role in themodel somehow,
but can be transformations of explanatory variables that are already in the model, for
example, lagged values or laggedfirst-differences. Finally, themoment conditions that
were imposed above aggregating over both periods and units, can be imposed per pe-
riod taking expectations across units only.

To illustrate this, consider the following model

yit = x
′
1,itβ1 + x′2,itβ2 + αi + uit , (3.44)

where we have separated the set of explanatory variables in two subsets. Both x1,it
and x2,it are endogenous in the sense that they are potentially correlated with the
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time-invariant unobserved heterogeneity in αi. In addition, the variables in x2,it are
potentially correlated with the contemporaneous error term uit, but not with its pre-
vious values ui,t−1, ui,t−2, . . . , etcetera. This endogeneity could be due to the presence
of measurement error (see Chapter 4), simultaneity or reverse causality. To estimate
this model, a first step is to eliminate αi, which is most conveniently done by the first-
difference transformation. This leads to

Δyit = Δx
′
1,itβ1 + Δx′2,itβ2 + Δuit , (3.45)

If, conditional upon αi, x1,it is strictly exogenous, it is uncorrelated with the trans-
formed error Δuit so that no further problems arise. However, if x2,it is correlated with
uit, Δx2,it is likely to be correlated with Δuit and standard estimation of (3.45) will be
inconsistent. However, if x2,it is uncorrelated with ui,t−1, it is possible to use x2,i,t−2, or
Δx2,i,t−2, as instrument for Δx2,it . This will require that lagged values of x2,it correlate
sufficiently with its future values, so as to make the instruments relevant. Exogeneity
relies upon the assumption that x2,it is uncorrelated with lagged idiosyncratic error
terms. Whether or not this is appropriate depends upon the source of endogeneity of
x2,it, as well as on the dynamic properties of uit . The assumption that E(x2,itui,t−1) = 0
is a bit more challenging when both E(uitui,t−1) ̸= 0 and E(x2,ituit) ̸= 0.

Translating the above into moment conditions, we obtain

E((Δyit − Δx
′
1,itβ1 − Δx′2,itβ2)Δx1,it) = 0, (3.46)

E((Δyit − Δx
′
1,itβ1 − Δx′2,itβ2)Δx2,i,t−2) = 0. (3.47)

If we impose these two sets of moment conditions across all periods, we have an ex-
actly identifiedmodel and estimation can be done using a standard IV or 2SLS estima-
tor. However, following Arellano and Bond (1991), it is also possible to impose (3.47)
per period, and expand the set of instruments by using longer lags of x2,it as we move
later in the panel. That is,

E((Δyit − Δx
′
1,itβ1 − Δx′2,itβ2)x2,i,t−j) = 0, j = 2, 3, . . . , t, (3.48)

where it is assumed that the first available observation of the instrument is x2,i0, for
period 0. This way, we expand the number of moment conditions, and the number of
instruments. Theobservationsoverwhichwecanexploit themdiffers dependingupon
where we are in the panel. Note that the error terms in the first-differenced equation
are serially correlated by construction.

In addition to using instruments for the first-differenced equation, it is also possi-
ble to exploit moment conditions based on the levels equation in (3.44), as proposed
by Arellano and Bover (1995) and Blundell and Bond (1998). For example, Δx1,it, be-
ing uncorrelated with αi and uit (by assumption), can serve as an instrument and we
obtain moment conditions as

E((yit − β0 − x
′
1,itβ1 − x′2,itβ2)Δx1,it) = 0, (3.49)
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where β0 is an intercept term to accommodate the nonzero unconditional mean of αi.
Depending upon the dynamic properties of x1,it, this set of moment conditions may
provide additional information about the unknown coefficients. When the optimal
weighting matrix is used, the estimation procedure automatically adjusts for moment
conditions being highly correlated with each other and thus providing “overlapping”
information about β.

An application of this approach can be found in Beck et al. (2000), who estimate
a model explaining various measures of growth from a country’s financial develop-
ment, using a sample of 63 countries in a panel with T = 7 periods of five years. They
assume that xi,t−2, xi,t−3, . . . are uncorrelated with εi,t−1, so they can be used as instru-
ments in the first-differenced equation. In addition, they use lagged differences Δxi,t−1
as instruments for the levels equation. It is assumed that uit has no serial correlation,
and all regressors are allowed to be correlated with αi and uit (simultaneity).

3.6 Strict exogeneity

Many of the panel estimators discussed impose strict exogeneity of the explanatory
variables, conditional upon the time-invariant heterogeneity αi. For example, in the
linear model

yit = x
′
itβ + αi + uit ,

the standard within estimator imposes that

E(uit | xi1, . . . , xiT , αi) = 0.

This says that, conditional upon αi, the explanatory variables are not allowed to de-
pend upon current error terms, nor upon leads and lags of the error terms. The as-
sumption that E(uit | xit , αi) = 0 is a contemporaneous exogeneity assumption. Viola-
tions of strict exogeneity where E(uit | xis, αi) ̸= 0 for s > t are not unlikely in empirical
work, and are the focus of Grieser and Hadlock (2019). Think of a situation where yit
is a measure of firm performance. If firm performance is higher than expected due to
a good realisation of uit, this may have an impact on future values of one or more of
the explanatory variables in xit, for example, board structure (Wintoki et al., 2012).
Another example is where yit is ameasure of performance of amutual fund. Good per-
formance leads tomore investor flows and therefore increases a fund’s total net assets
(TNA) in later periods. At the same time, we may wish to include fund size (log TNA)
in xit to allow for decreasing returns to scale (Pastor et al., 2015). Mechanisms like this
are called dynamic feedback mechanisms, which are thus excluded in the standard
fixed effects approach. An alternative mechanism is where yit and xit respond to the
same underlying shock but with different lags. For example, an industry shock may
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immediately increase the volatility of a stock, but affect other variables, for example,
managerial ownership, with a delay.

When we employ the first-difference (FD) estimator, instead of the within estima-
tor, the exogeneity assumptions are weaker. In particular, the FD estimator requires
that E(uit | xit , αi) = 0, E(uit | xi,t−1, αi) = 0 and E(uit | xi,t+1, αi) = 0. Or, briefly,
E(Δuit | Δxit , αi) = 0. As a result, a violation of the strict exogeneity assumption is
likely to affect the fixed effects (within) and FD estimators in a different way. It may
be tempting to think that the FD estimator will suffer from less bias when strict exo-
geneity is violated, but this is not generally true. Because the within transformation
transforms the variables in deviation from averages over time, a violation of strict exo-
geneity is of the order 1/T anddisappearswith largeT whenoccurring in only one time
period. In the FD estimator there is no bias if there is correlation between uit and xi,t+2
or later. A simple diagnostic for potential violations of strict exogeneity is therefore a
comparison between the within and FD estimators. Recalling that both estimators are
numerically identical with T = 2, this comparison is only useful with T > 2. Grieser
and Hadlock (2019) show that the two estimates are often not only quite different but
frequently have opposite signs.

Wooldridge (2010, Chapter 10) proposes two simple tests for strict exogeneity (con-
ditional upon imposing contemporaneous exogeneity) that can be obtained from aux-
iliary regressions. The first test takes the fixed effects model and adds future values
of one of more explanatory variables from xit to the righthand side. (Note that it is
unlikely to have an economic model that implies that the future value of some char-
acteristic affects today’s outcome.) For example,

yit = x
′
itβ + w

′
i,t+1γ + αi + uit ,

where wi,t+1 is a subset of xi,t+1, corresponding to the subset of explanatory variables
that is suspected to be not strictly exogenous. Under strict exogeneity the additional
variables should be irrelevant and γ = 0, which can be tested employing a standard
(fixed effects) estimator. Alternatively, one starts form the first-differenced equation
and adds wit to the righthand side. That is,

Δyit = Δx
′
itβ + w

′
itγ + Δuit ,

where, again, γ = 0 is implied by strict exogeneity. The latter test also works for T = 2.
Grieser and Hadlock (2019) show that the strict exogeneity assumption is largely ig-
nored in empiricalwork in finance, and tests for strict exogeneity are rare, even though
it is a testable assumption.

If instrumental variables are used, strict exogeneity of the instruments may also
be required. For example, if we use zit as instruments in a first-differenced of within-
transformed equation it is not only required that zit is uncorrelated with both αi and
uit, but zit should also be uncorrelatedwith ui,t−1 for the FD version, andwith uis for the
within version. A test for strict exogeneity of zit can also be obtained from an auxiliary
regression, as discussed in Grieser and Hadlock (2019), who recommend its use.
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Long panels
In the case of thewithin transformation, the violation of the strict exogeneity assump-
tion is often of the order 1/T, for example, if there is correlation between xit and uis, for
one pair s, t only. As a result, the inconsistency in the within estimator tends to be of
the order 1/T as well (Nickell, 1981). Although this suggests that the within estimator
may work well with long panels, Grieser and Hadlock (2019) challenge this and stress
that this result depends upon the fixed effects αi being truly time-invariant over long
time periods. If the fixed effects capture aspects as managerial quality, firm culture,
investment opportunities, or the skill of a fund manager, this may be not be true. In
their words, “as panels get longer, any assumption of constant firm-level heterogene-
ity becomes highly questionable”. In such cases, both the first-difference and within
estimators tend to do poorly.

Predictive regressions
The biases discussed in the current section also play a role in predictive regressions
using the fixed effects estimator. In a predictive regression, the dependent variable is
dated t, whereas the explanatory variables, the predictors, are dated t − 1 or before.
The panel character arises when data on, for example, multiple countries are pooled
together and common slope coefficients are imposed (see, e. g., Hjalmarsson, 2010).
This can be written as

yit = x
′
i,t−1β + αi + εit , (3.50)

where it is assumed that εit is uncorrelatedwith xi,t−1 (but not necessarily uncorrelated
with xit). The typical example here is where yit is the stock return in country i, and xi,t−1
is a set of predictor variables, suchas thedividendyield. Thesepredictor variablesmay
be contemporaneously correlatedwith εit . In combinationwith the typical highdegree
of persistence in these predictor variables, this leads to a bias in the estimation of β
in the time-series case, as analysed by Stambaugh (1999). This problem carries over
to the fixed effects estimator because information after time t − 1 is used in the within
transformation. Even when T is reasonably large, the bias can be substantial if the
persistence in xit is high (see Hjalmarsson, 2008, who also proposes a bias correction
for the within estimator).

Estimation without strict exogeneity
As an illustration, consider the relation between the mutual fund performance and
fund size (Pastor et al., 2015), that is,

yit = αi + βxit + uit ,

where yit is a measure of fund performance (e. g., a benchmark-adjusted return) of
fund i during period t, and xit is (the logarithm of) a fund’s TNA (fund size) at the
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beginning of the period. The fund fixed effects αi capture variation in fund manager
skills, as long as skill is constant over time. The coefficient β is of particular interest
because it captures decreasing returns to scale (if negative), consistent with the Berk
and Green (2004)model. Fund size, however, is not strictly exogenous. First, there is a
mechanical relationship between fund size at the end of period t and returns in period
t (due to internal growth of the fund). Second, investors respond to past performance
when allocating their money, so that fund size depends upon past performance (and
past realisations of uit). The good news is that fund size is credibly uncorrelated with
future values of uit .

Under the assumption that xit is uncorrelated to ui,t+s, s = 0, 1, . . . , it is possible to
derive a consistent estimator (forN →∞withT fixed) using instrumental variables by
appropriately transforming the equation of interest aswell as the explanatory variable
that serves as an instrument. A simple version would start with first-differencing the
equation, that is,

Δyit = βΔxit + Δuit

and employ xi,t−1 or Δxi,t−1 as an instrument. This imposes that E(uit | xi,t−s, αi) = 0,
s = 1, 2, . . . . Pastor et al. (2015) employ an alternative instrumental variables estimator,
inspired by thework ofMoon andPhillips (2000). First, the fixed effects are eliminated
by forward-demeaning the equation of interest. The forward-demeaned version of a
variable xit is defined as

x̄it = xit −
1

Ti − t + 1

Ti
∑
s=t xis, t = 1, . . . ,Ti − 1, (3.51)

where Ti denotes the number of time periods for which fund i is observed. (This equa-
tion allows the panel to be unbalanced due to attrition or late entry, but does not
accommodate “gaps”). This transformation takes the average of all future values of
xit (including its current value) and subtracts this from the current value. Although
it does not eliminate the problem because the transformed regressor and the trans-
formed error will be correlated, it is now relatively easy to find valid instruments. Pas-
tor et al. (2015), inspiredbyMoonandPhillips (2000), suggest theuse of the backward-
demeaned version of xit . The backward-demeaned version of a variable is defined as

xit = xit −
1
t

t
∑
s=1 xis t = 2, 3, . . .T . (3.52)

Under the previous assumptions cov(ūit , xit) = 0, while cov(x̄it , xit) ̸= 0 (because both
are derived from xit), so that the corresponding instrumental variables estimator can
be argued to be consistent. Because the forward-demeaned error term is heteroskedas-
tic and serially correlated by construction, standard errors that allow for within-unit
correlation are needed.
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Pastor et al. (2015) determine the estimator using a 2SLS approach, where the fit-
ted values of the reduced form, estimated per individual fund, are included in the
model of interest. Neither the forward demeaned equation, nor the reduced form, con-
tain intercept terms. The resulting estimator is referred to as a recursive demeaning
(RD) estimator. An alternative estimator is used by Zhu (2018), who advocates the use
of xi,t−1 (fund size at the beginning of the period) as an instrument for the forward-
demeaned equation, as well as the inclusion of an intercept term in the reduced form.
Both estimators are expected to be consistent, their precision depending upon the rel-
evance of the employed instruments. Simulation results in Zhu (2018) suggest that her
estimator is more accurate than the one employed by Pastor et al. (2015). As noted by
Dyakov et al. (2020), given the availability ofmultiple instruments it is natural to com-
bine them into one estimator, which should be even more precise. Accordingly, they
consider a third estimator that includes both the backward-demeaned and the lagged
values of fund size as instruments.
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4 Outliers, missing values and other data issues

Available data are almost never perfect, and empirical work is hampered by data is-
sues, such as outliers, measurement errors and missing values. In this chapter, we
briefly cover these problems. Typically there is no generic or mechanical solution to
these challenges and careful inspection may be needed. This may also explain why
these issues, with some notable exceptions, receive relatively little attention in the
empirical literature.

A common problem in empirical data is the presence of outliers, for example, as
the result of large data errors. Outliers are often influential observations in the sense
that they have a disproportional or disturbing impact on standard estimates, such as
OLS. Section 4.1 discusses the problem of outliers inmore detail, including some com-
mon remedies, such as winsorisation and the use of more robust estimationmethods.
Section 4.2 discusses how to deal with missing values, and highlights some inappro-
priate ways of doing so. In almost all cases, existing panel data sets are unbalanced
in the sense that not all units are observed in all periods. Section 4.3 pays attention to
the issue how standard estimators are adjusted to deal with this, and reviews some of
the problems that arisewith nonrandomattrition. Finally, this chapter concludeswith
a discussion of measurement errors and their impact on different panel estimators in
Section 4.4.

4.1 Outliers and influential observations

Loosely speaking, an outlier is an observation that deviates markedly from the rest of
the sample. In the context of a linear regression, an outlier is an observation that is
far away from the (true) regression line. Outliers may be due to measurement errors
in the data, but can also occur by chance in any distribution, particularly if it has fat
tails. If outliers correspond tomeasurement errors, the preferred solution is to discard
the corresponding observation from the sample (or correct the measurement error if
the problem is obvious). If outliers are correct data points, it is less obvious what to
do. Variation in the explanatory variables is a key factor determining the precision of
an estimator, so that outlying observations may also be very valuable (and throwing
them away is not a good idea).

The problem with outliers is not so much that they deviate from the rest of the
sample, but rather that the outcomes of estimation methods, like OLS, can be very
sensitive to one or more outliers. In such cases, an outlier becomes an “influential
observation”. There is, however, no simple mathematical definition of what exactly
is an outlier. Nevertheless, it is highly advisable to compute summary statistics of all
relevant variables in a sample before performing any estimation. This also provides
a quick way to identify potential mistakes or problems in the data. For example, for
some units in the sample the value of a variable could be several orders of magnitude

https://doi.org/10.1515/9783110660739-004
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too large to be plausibly correct. Data items that by definition cannot be negative are
sometimes coded as negative. In addition, missing values may coded as −99 or −999.
As an example, Guthrie et al. (2012) inspect a histogram of changes in CEO pay, and
use this to identify two outlying firms in their sample. They investigate these outliers
in great detail, including the robustness of their key results.

4.1.1 Identifying and eliminating outliers

Outliers are frequently discussed – and somehow dealt with – in empirical finance
papers. For example, more than 25% of recent articles in top finance journals mention
outliers (Adams et al., 2019). In the context of a linear regression model or OLS, the
most common approach is to “winsorise” the data on one of more variables before
performing a regression. Winsorising means that the tails of the distribution of each
variable are adjusted. For example, a winsorisation at the 1% (and 99%) level would
set all data below the 1st percentile equal to the 1st percentile, and all data above
the 99th percentile to the 99th percentile. In essence this amounts to saying “I do not
believe the data are correct, but I know that the data exist. So instead of completely
ignoring the data item, I will replace it with something a bit more reasonable” (Frank
and Goyal, 2008). Estimation is done by standard methods, like OLS or fixed effects,
treating the winsorised observations as if they are genuine observations. Accordingly,
the authors of such papers make statements like “to avoid potential problems with
outliers all variables are winsorised”, and then continue ignoring the winsorisation.
In the context of panel data, it typically makes sense to apply the winsorisation per
period, so that one replaces, say, the 1% tails of the distribution in each period rather
than across the entire sample.

An alternative to winsorisation is “trimming” (also referred to as truncation). In
this case, the extreme values in the tails in the distribution of a variable are sim-
ply eliminated from the data set. For example, Ball and Shivakumar (2005) study a
trimmed sample that excludes 1% of the accounting variables at each extreme, mo-
tivated by the presence of data errors and scaling problems (in financial ratios), and
Lemmon and Roberts (2010) trim all financial ratios at 1% to “mitigate the effect of
outliers and eradicate errors in the data”. As a result, the effective number of obser-
vations for any analysis that requires observations for the variables involved will be
reduced. This loss of observations may increase if multiple variables are trimmed si-
multaneously. In Stata, both winsorisation and trimming can be done with the func-
tion winsor2, where the by option allows application per period.

Unfortunately, both winsorisation and trimming are only pragmatic solutions to
deal with outliers. There is no statistical argument to motivate their general use, let
alone to claim that these are optimal approaches to deal with outliers. The chosen
level of winsorisation or trimming, at which to replace or delete the tails of the distri-
butions, is arbitrary. While winsorisation is typically applied at the levels of 1% and

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Outliers and influential observations | 109

99%, existing studies also use 2.5%, or even 5%. In the latter case, a total of 10% of
the observations on a single variable is replaced or dropped from the sample. This
means that winsorisation or trimming can seriously affect the univariate distribution
of a variable, particular if applied too crudely. An additional problem is that standard
winsorisation and trimming approaches are based on the univariate distributions of
each variable. As a result, there is no guarantee that influential observations, for ex-
ample, highly unusual combinations of yit and one or more variables in xit, are elim-
inated.1 In a regression context, such observations tend to be very influential. Mitton
(2021) investigates the sensitivity of regression results in corporate finance with re-
spect to methodological choices and documents that key results can be highly depen-
dent on how outliers are dealt with. Kothari et al. (2005) illustrate that inappropriate
data trimming, especially in skewed distributions, can leads to spurious findings.

Ideally, the treatment of outliers involves identifying observations that have an
“extreme” impact on the estimation results. This means that the key estimation re-
sults will be very different once such outliers have been removed. For example, Adams
et al. (2018) find that outliers caused by data errors and comprising less than 2%of the
original sample are responsible for the finding of mutual fund diseconomies of scale
in Chen et al. (2004). They also document that the negative relation between industry
size and mutual fund performance documented in Pastor et al. (2015) is attributable
to extreme observations that comprise less than 0.05% of the sample. Even if the out-
lying observation is not a data error, but a genuine observation, one would not want
the signs and significance of model coefficients to be almost entire driven by only a
few observations.2 If the main findings are due to only a small proportion of extreme
observations, further inspection of such influential observations can be insightful too.
For example, Knez and Ready (1997) show that the risk premium on size that was esti-
mated by Fama and French (1992) completely disappears when the 1% most extreme
observations are trimmed each month. This does not mean that these extreme obser-
vations shouldbe ignored in the empirical analysis, but understanding their role helps
to better understand the cause of the relation being tested; see Kraft et al. (2006) for a
related discussion on the mispricing of accruals and accrual components.

1 Adams et al. (2019) give the following example. Consider a panel of employees containing informa-
tion on natural hair colour, height, weight, eye color, and ethnicity. In this sample, neither a person of
160 centimetre nor an employeewith blue eyes or an employeewith blond hair would likely register as
univariate outliers. Similarly, neither an observation regarding a Chinese male employee nor an em-
ployee weighing 100 kilos would appear as outliers. However, if all of these characteristics describe a
single employee, then we might suspect this observation is an outlier.
2 Except in cases where one is particularly interested in the effect of rare events, for example, Barro
(2006).
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The problemwith estimationmethods like OLS is that they are based onminimis-
ing the sum of squared residuals

RSS(β) =
N
∑
i=1
(yi − x

′
iβ)

2
. (4.1)

Due to the fact that squares are taken, large residuals are penalisedmore than propor-
tionally. Accordingly, OLS tries to prevent very large residuals. As a result, a few out-
liers can substantially affect the estimated regression line, and this maymake the cor-
responding residuals look “reasonable” (e. g., within three standard deviation bounds
from zero).

It is therefore a better option to investigate the residual of a given observation
when the model coefficients are estimated using only the rest of the sample. Denoting
the full sample OLS estimate for β by β̂, the OLS estimate after excluding observation
j from the model can be denoted as β̂(j). An easy way to calculate β̂(j) is to augment the
original model with a dummy variable that is equal to one for observation j only and
0 otherwise. This effectively discards observation j. The resulting model is given by

yi = x
′
iβ + γdij + εi,

where dij = 1 if i = j and 0 otherwise. The OLS estimate for β from this regression
corresponds to the OLS estimate in the original model when observation j is dropped.
The estimated value of γ corresponds to the residual yi − x′i β̂

(j) when the model is es-
timated excluding observation j. The routinely calculated t-ratio of γ is referred to as
the studentised residual. The studentised residuals are approximately standard nor-
mally distributed (under the null hypothesis that γ = 0) and can be used to judge
whether an observation is an outlier. Rather than using conventional significance lev-
els (and a critical value of 1.96), one should pay attention to large outliers (t-ratios
much larger than 2) and try to understand the cause of them. Are the outliers correctly
reported and, if yes, can they be explained by one or more additional explanatory
variables? Davidson and MacKinnon (1993, Section 1.6) provide more discussion and
background.

Adams et al. (2019) advocate the use of amore advancedmultivariate outlier iden-
tification approach. A first step is to compare the estimates of robust estimationmeth-
ods (which are less sensitive to outliers) with those of standard methods (e. g., OLS),
in the spirit of a Hausman (1978) test. The next step is to identify potentialmultivariate
outliers, using an “outlier detection plot”, to be followed by further inspection of their
nature and origin. For example, it is useful to inspect the incidence of outliers across
months in a panel, and to inspect the original data for data entry errors and other
mistakes (e. g., having an inappropriate sample). After correcting any mistakes, they
recommend to examine and discuss the remaining influential outliers, and, when ap-
propriate, the use of an outlier-robust estimation technique to mitigate the influence
of outliers. Applications of this are given in Adams et al. (2018, 2019). In contrast to
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winsorising or trimming, which is quite mechanical, their approach entails a more
careful investigation of the outlier problem, requiring consideration of the research
question, economic theory, sampling issues and, potentially, some manual inspec-
tion of themost influential outliers. The approach of Adams et al. (2019) also provides
outlier-robust clustered standard errors and is able to handle large numbers of fixed
effects encountered in panel data models.

4.1.2 Robust estimation methods

Asmentioned above, OLS can be very sensitive to the presence of one ormore extreme
observations. This is due to the fact that it is based on minimising the sum of squared
residuals, where each observation is weighted equally. As a first step, modelling logs
rather than levels often helps to reduce the sensitivity of the estimation results to ex-
treme values. For example, variables like firm size are typically included in natural
logarithms in firm-level regression models. Alternatively, empirical models are typi-
cally estimated in terms of ratios, such as sales to total assets, leverage, or Tobin’s Q.

Alternative estimation methods are available that are less sensitive to outliers.
A relatively popular approach is called least absolute deviations (LAD). Its objective
function is given by

SLAD(β) =
N
∑
i=1

yi − x
′
iβ
, (4.2)

which replaces the squared terms by their absolute values. There is no closed-form
solution to minimising (4.2) and the LAD estimator for βwould have to be determined
using numerical optimisation. This is a special case of a so-called quantile regression
and procedures are readily available, for example, in qreg in Stata. In fact, LAD is de-
signed to estimate the conditional median (of yi given xi) rather than the conditional
mean, andweknowmedians are less sensitive to outliers than are averages. The statis-
tical properties of the LAD estimator are only available for large samples (see Koenker,
2005, for a comprehensive treatment).

Although the standard LAD estimator can be applied to panel data, the inclusion
of either randomeffects or fixed effects is less straightforward and typically someaddi-
tional assumptions are required. Some approaches exploit a correlated randomeffects
assumption,which allowsαi to dependuponobserved variables in a pre-specifiedway
(see Section 2.8). The inclusion of firm fixed effects is problematic (for short panels)
because of the incidental parameters problem (see Section 6.1), and several alterna-
tive ways of dealing with this are available; see, for example, Koenker (2004), Canay
(2011) and Arellano and Bonhomme (2016). A recent application of the LAD approach
in finance is provided in Lee et al. (2019), who explain risk-taking of mutual funds
from their performance in the first half of the year, using both pooled OLS with win-
sorised data, and quantile regression at the median. Given the extreme robustness to
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outliers of the latter approach, the authors consider the quantile regression results
more reliable.

Another alternative is the use of trimmed least squares (TLS). This corresponds
to minimising the residual sum of squares, but with the most extreme observations
– in terms of their residuals – omitted. More formally, denote the squared residuals
as [ε̂2](i) in order of increasing magnitude. That is, [ε̂2](i) ≤ [ε̂2](j) for j > i. Then the
objective function is given by

STLS(β̂) =
q
∑
i=1
[ε̂2](i), (4.3)

where q is a trimming constant, to be chosen, with N/2 < q ≤ N . Effectively, this
means that the TLS estimator fits q observations very well, but ignores the rest (those
with the largest squared residuals). Because the values of the residuals depend upon
the estimated coefficients, the objective function is no longer a quadratic function of β
and the estimator should be determinednumerically; see RousseeuwandLeroy (2003,
Chapter 3). Note that, unlike standard trimming or winsorising, trimmed least squares
will generally not trim the same number of observations from the upper and lower
tails of the distribution. It may be sensible to employ TLS for a range of values for h
to see how the estimates are affected by the trimming. An application of TLS is pro-
vided in Knez and Ready (1997) who investigate the sensitivity of Fama and MacBeth
(1973) regressions to extreme observations for the estimation of risk-factor premia, as
in Fama and French (1992). Knez and Ready (1997) use TLS to obtain a time series of
robust slope coefficients. Rather than discarding them, they argue that the influential
observations help shedding light on the question of where risk premia come from. In
particular, they relate the differences between TLS and OLS to positive skewness in
the return distributions for small young firms. Investors who hold small firms antici-
pate a fewmajor successes andmanyminor disappointments. Accordingly, such firms
should carry a risk premium.

More advanced robust estimation techniques are available, such asM-estimators,
S-estimators and MM-estimators; see Adams et al. (2019) and the references therein.
A Stata package including MM-estimators and outlier diagnostics is available by typ-
ing “net from http://homepages.ulb.ac.be/~vverardi/stata” from within Stata. In the
context of panel data, Baltagi and Bresson (2015) present several robust estimators for
static and dynamic panel data models, as well as methods to detect influential obser-
vations and outliers.

4.2 Missing values

A frequently encountered problem in empirical work, particularly with micro-level
data, is that of missing observations. For example, R&D expenditures are often un-
observed for a substantial number of firms (see, e. g., Koh et al., 2021). Abrevaya and
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Donald (2017) report that nearly 40% of all papers recently published in four top em-
pirical economics journals have data missingness. In such cases, a first requirement
is to make sure that the missing data are properly indicated in the data set. It is not
uncommon to have missing values being coded as a large (negative) number, for ex-
ample, −999, or simply as zero. Obviously, it is incorrect to treat these “numbers” as if
they are actual observations. When missing data are properly indicated, most regres-
sion software will automatically calculate the required estimators using the complete
cases only. Although this involves a loss of efficiency compared to the hypothetical
case when there are no missing observations, it is often the best one can do.

Whether or not missing observations are problematic in the sense of causing bi-
ased inference, depends upon the question towhat extent datamissingness is allowed
to depend upon observable and unobservable variables. Ideally,missing observations
aremissing completely at random (MCAR). In this case, the causes of themissing data
are completely unrelated to the data (Rubin, 1976). A more realistic situation is where
themissing observations aremissing at random (MAR). In this case, the probability of
a missing observation may depend upon observables (e. g., explanatory variables in
the model). This case is also referred to as selection on observables. If the data are not
missing at random, standard estimators, like OLS, may be subject to a sample selec-
tion bias. This is driven by the fact that the probability of an observation to end up in
the sample is correlated to the unobservable error term in the model.

To discuss this more formally, let rit be a dummy variable indicating whether unit
i has observations for all relevant variables in period t and is thus part of the effective
sample available for estimation. Then the key condition for not having a bias in esti-
mating the regressionmodel explaining yit from xit is that the conditional expectation
of yit is not affected by conditioning upon the requirement that rit = 1. Thismeans that

E(yit | xit , rit = 1) = E(yit | xit). (4.4)

What we can estimate from the available sample is the left-hand side of (4.4), whereas
we are interested in the right-hand side, and therefore we want the two terms to co-
incide. The condition in (4.4) is satisfied if the probability distribution of rit given xit
doesnot dependupon yit . Thismeans that selection in the sample is allowed todepend
upon the explanatory variables in xit, but not upon the unobservables εit in the regres-
sionmodel (MAR). Accordingly, for the purpose of estimating a regressionmodel with
R&Dexpenditures as a regressor,missing values for R&Dare not a problem if the prob-
ability of observing it depend upon observable variables included in the model (but
not upon the unobservables). If we estimate amodel with fixed effects, the above con-
dition should hold conditional upon αi. This means that selection bias does not arise
in the fixed effects estimator for β if selection depends upon xit or αi, but not upon uit .
See the next section for more discussion.

Supposewe have a sample of 1000 hedge funds, observing their net returns, man-
agement and incentive fees and some other characteristics.We also observe the funds’
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TNA, but this information is missing for half of the sample. This means that we can
estimate a model relating fund performance to the sizes of the incentive and manage-
ment fees using 1000 observations, but if we wish to control for fund size (TNA) the
effective sample reduces to 500. In this case we have to make a trade-off between the
ability to control for fund size in the model and the efficiency gain of using twice as
many observations (but potentially suffering from an omitted variable bias). In such
cases, it is not uncommon to report estimation results for both model specifications
using the largest possible sample. The estimation results for the two specifications
will be different not only because they are based on a different set of regressor vari-
ables, but also because the samples used in estimating them are different. In the ideal
case, the difference in estimation samples has no systematic impact. To check this, it
makes sense to also estimate the different specifications using the same data sample.
This sample will contain the cases that are common across the different subsamples
(in this case 500 observations). If the results for the same model are significantly dif-
ferent between the samples of 500 and 1000 funds, this suggests that condition (4.4)
is violated, and further investigation into the missing data problem is warranted. The
above arguments are even more important when there are missing data for several of
the explanatory variables for different subsets of the original sample.

Apragmatic, but inappropriate, solution to dealwithmissingdata is to replace the
missing data by some number, for example, zero or the sample average, and augment
the regression model with a missing data indicator, equal to one if the original data
was missing and zero otherwise. For example, Flannery and Rangan (2006) set R&D
expenditures to zero when it is missing, and augment their capital structure model
with a dummy variable indicating whether information on R&D expenditures is miss-
ing. This pragmatic approach is simple and attractive, as the complete sample of firms
can be used. In general, however, it can be shown to produce biased estimates, even
if the data are missing at random (Jones, 1996).

Imputation means that missing values are replaced by one or more imputed val-
ues. Sometimes, an assumption can be made that may make economic sense. For ex-
ample, Dittmar (2004) assumes that any firm that does not report R&D expenditures
has no R&D expenditures, and replaces missing values with zero. However, Koh et al.
(2018) document that firms with confident CEOs are more likely to report their R&D
expenditures relative to firms with cautious CEOs, which contradicts the assumption
that missing R&D expenditures are effectively zero. In general, simple ad hoc imputa-
tion methods are typically not recommended. For example, replacing missing values
by the sample average of the available cases will clearly distort the marginal distri-
bution of the variable of interest as well as its covariances with other variables. Hot
deck imputation, which means that missing values are replaced by random draws
from the available observed values, also destroys the relationships with other vari-
ables. Cameron and Trivedi (2005, Chapter 27) provide more discussion of missing
data and imputation in a regression context. Koh et al. (2021) compare different im-
putation techniques to impute R&D expenditures. In general, any statistical analysis
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that follows after missing data are imputed should take into account the approxima-
tion errors made in the imputation process. That is, imputed data cannot be treated
simply as if they are genuinely observed data (although this is commonly what hap-
pens, particularly if the proportion of imputed values is small). Dardanoni et al. (2011)
provide an insightful analysis of this problem.

Nevertheless, when panel data are available, and missing values occur occasion-
ally in the panel, it can make sense to replace the missing values by the most recently
available values in the panel. For example, if the TNA of a hedge fund is not observed
in quarter t, but it is observed in quarter t − 1, one may replace the missing value by
the value from quarter t − 1. This, again, will induce some bias, but scholars may pre-
fer such small biases while gaining much in terms of the effective sample size. Such
imputation is not recommended when TNA is a key variable of interest and one is par-
ticularly interested in modelling its dynamics. In some cases, one can assume that
economic agents – if a value is missing – respond to themost recently available value,
which would give economic content to this simple imputation procedure.

4.3 Incomplete panels

In empirical finance almost all panel data sets are unbalanced in the sense that not
all units are observed in all periods. New stocks are listed at exchanges, while others
get delisted. New firms emerge, or disappear due to bankruptcy or mergers and ac-
quisitions (M&A), newmutual funds are started, while others are liquidated, etcetera.
A consequence is that the resulting panel data set is no longer rectangular. If the total
number of units is equal to N, and the number of time periods is T, the total number
of observations is substantially smaller than NT. Below, we denote the number of pe-
riods unit i is observed by Ti and the number of units in period t by Nt, so that the
total number of observations is∑i Ti = ∑t Nt . In case themodel involves lagged values
or changes of variables, the effective number of observations available for estimation
may be even less.

A first consequence of working with an incomplete panel is a computational one.
Most of the expressions for the estimators in this text are no longer appropriate if ob-
servations are missing. A simple “solution” is to discard any unit from the panel that
has incomplete information and to work with the completely observed units only. In
this approach, estimation uses the balanced subpanel only. This is computationally
attractive but potentially highly inefficient: a substantial amount of information may
be “thrown away”. This loss in efficiency can be prevented by using all observations
including those on units that are not observed in all T periods. This way, one uses the
unbalanced panel. In principle this is straightforward, but computationally it requires
some adjustments to the formulae in the previous sections. We shall discuss some of
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these adjustments below. Fortunately, most software that can handle panel data also
allows for unbalanced data.3

Another potential and even more serious consequence of using incomplete panel
data is the danger of selection bias. If units are incompletely observed for an endoge-
nous reason, the use of either the balanced subpanel or the unbalanced panel may
lead to biased estimators and misleading tests, again due to selection bias. To elabo-
rate upon this, suppose that the model of interest is given by

yit = x
′
itβ + αi + uit . (4.5)

Furthermore, define the indicator variable rit as rit = 1 if (xit , yit) is observed and 0 oth-
erwise. The observations on (xit , yit) are missing at random (MAR) if rit is independent
of αi and uit . This means that conditioning upon the outcome of the selection process
does not affect the conditional distribution of yit given xit . If we want to concentrate
upon the balanced subpanel, the conditioning is upon ri1 = ⋅ ⋅ ⋅ = riT = 1 and we re-
quire that rit is independent of αi and ui1, . . . , uiT . In these cases, the usual consistency
properties of the estimators are not affected if we restrict attention to the available or
complete observations only. If observations are not MAR and selection depends upon
the equations’ error terms, the OLS, random effects and fixed effects estimators may
suffer from selection bias.

4.3.1 Estimation with randomly missing data

The expressions for the (one-way) fixed and random effects estimators are easily ex-
tended to the case of unbalanced panel data. The fixed effects estimator can be de-
termined as the least squares dummy variable estimator, as before, where each unit
has its own intercept term. Alternatively, it can be determined as OLS in a within-
transformed model, where now all variables are in deviation from averages over the
available observations for the corresponding unit. As a result, units that are observed
only once provide no information about β and should be dropped.

Formally, we define “available means” as

ȳi =
1
Ti

T
∑
t=1

rityit ; x̄i =
1
Ti

T
∑
t=1

ritxit ,

where Ti = ∑t rit . With this, the fixed effects estimator can be written as

β̂FE = (
N
∑
i=1

T
∑
t=1

rit(xit − x̄i)(xit − x̄i)
′)

−1 N
∑
i=1

T
∑
t=1

rit(xit − x̄i)(yit − ȳi), (4.6)

3 Occasionally, some routines only work in the absence of “gaps” in the data, for example, when a
firm leaves the panel and enters again a few periods later.
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which is a straightforward generalisation of (2.76), where all sums and averages are
now taken over available observations only. For the two-way fixed effects model, with
both firm and period fixed effects, the implied transformation is less straightforward
and there is no easy generalisation of (3.9). Typically, this is not so much of a problem
because the period dummies can be included in the vector xit if their number is not
too large, and the estimator in (4.6) can be used.

Clustered standard errors are also easily generalised to the unbalanced panel
case. There is some concern, though, that the small sample properties of the clustered
covariance matrix may be negatively affected if the number of clusters is relatively
small and multiple clusters only have a small number of observations. Recall that,
in general, clustered standard errors rely on the number of clusters being sufficiently
large.With unbalanced data, the lower bound forwhat is sufficient (even though there
is no clear-cut definition) is likely to be larger (Cameron and Miller, 2015). With typ-
ical sample sizes in finance, this does not appear to be a major issue when standard
errors are clustered over firms or assets, but when clustering is done at broader levels
(e. g., states or industries) thismay be of concern in some contexts. Adjustments to the
degrees of freedom correction may be appropriate to accommodate the unbalanced
nature of the clusters.

For the random effects estimator, the extensions to the unbalanced panel case are
also reasonably straightforward. The FGLS estimator, exploiting the error covariance
structure, can be written as

β̂RE = (
N
∑
i=1

T
∑
t=1

rit(xit − θ̂ix̄i)(xit − ̂θix̄i)
′)

−1 N
∑
i=1

T
∑
t=1

rit(xit − θ̂ix̄i)(yit − θ̂iȳi), (4.7)

where θ̂i is a consistent estimator for

θi = 1 −√
σ2α

σ2u + Tiσ2α
.

Note that the transformation applied here is firm-specific and depends upon the num-
ber of observations for firm i. Consistent estimators for σ2α and σ

2
u are given by

σ̂2u =
1

∑Ni=1 Ti − N

N
∑
i=1

T
∑
t=1

rit(yit − ȳi − (xit − x̄i)
′β̂FE)

2

and

σ̂2α =
1
N

N
∑
i=1
[(ȳi − β̂0B − x̄

′
i β̂B)

2
−

1
Ti
σ̂2u],

where β̂B is the between estimator for β, and β̂0B is the between estimator for the in-
tercept (both based on a regression of averages over periods).
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For the pooledOLS andFama-MacBeth approaches, the adjustments to accommo-
date unbalanced panels are trivial. In the Fama-MacBeth approach the unbalanced
panel nature implies that the number of observations per period (Nt) varies over time.
Because the standard Fama-MacBeth estimator is an equally weighted average across
all periods, thismay imply that some relatively inaccurate estimates, corresponding to
periods with a small number of units, end up getting a relatively high weight in the fi-
nal estimate. This canbe alleviated byusing aweighed least squares approach,where,
for example, a weighted average is taken of the period-by-period estimates, where the
weights depend upon the number of observations in each period, or upon some other
measure of the precision of the individual estimates (see Yoon and Lee, 2019, for an
example).

4.3.2 Selection bias and some simple tests

In addition to the usual conditions for consistency, it is assumed above that the data
aremissingat random(MAR), so that the response indicator variable rit is independent
of all unobservables in the model. This assumption may be unrealistic. For example,
explaining the performance of hedge funds may suffer from the fact that funds with a
bad performance are less likely to survive (Baquero et al., 2005). In the context of mu-
tual funds and hedge funds, the term “survivorship bias free” is often used to stress
that performance data of the funds are included in the databases, even though funds
no longer exist. Nevertheless, this does not guarantee that the effective sample avail-
able for estimation does not suffer from selection bias, for example, if performance
data over multiple consecutive periods are required.

If rit depends upon αi or uit, selection bias may arise in the standard estimators.
Thismeans that the distribution of yit given xit and conditional upon selection into the
sample is different from the distribution of yit given xit (which iswhatwe are interested
in). For consistency of the fixed effects estimator it is now required that

E(uit | xi1, . . . , xit , ri1, . . . , rit , αi) = 0,

which replaces Assumption EXO3 (fe). This means that selection into the sample is
allowed to depend upon xit and αi without affecting consistency of the fixed effects
estimator, but it is not allowed to depend upon uit (see Verbeek and Nijman, 1992).

For the random effects estimator, as well as for pooled OLS, the additional as-
sumptions are more severe. For pooled OLS, we need to strengthen Assumption EXO3
(ols-p) to

E(xitεit | rit) = 0,

or (somewhat stronger)

E(εit | xit , rit) = 0,
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which says that selection in the sample should not depend upon the unobservables in
εit, conditional upon the explanatory variables. For the random effects estimator we
need that neither αi nor uit depend upon any of the selection indicators ri1, . . . , riT . If
units with certain values for αi are less likely to be included in some periods, this will
typically bias both the OLS and the random effects estimators. Similarly, if units with
certain shocks uit are more likely to leave the panel, the random effects estimator is
inconsistent. Note that, because the fixed effects estimator allows selection to depend
upon αi and upon uit in a time-invariant fashion, it tends to be more robust against
selection bias than the random effects estimator. Another important observation is
that estimators from theunbalancedpanel donot necessarily suffer less fromselection
bias than those from the balanced subpanel. In general, the selection biases in the
estimators from the unbalanced and balanced samples need not be the same, and
their relative magnitude is not known a priori (Verbeek and Nijman, 1992).

Verbeek and Nijman (1992) suggest a number of simple tests for selection bias
based upon the above observations. First, as the conditions for consistency state that
the error terms should – in one sense or another – not depend upon the selection
indicators, one can test this by simply including some function of ri1, . . . , riT in the
model and checking its significance. The relevant null hypothesis states that whether
a unit was observed in any of the periods 1 to T should not give us any information
about its unobservables in the model. For example, the inclusion of ci = ∏t rit or
Ti = ∑t rit may provide a reasonable procedure to check for the presence of selection
bias when there are no fixed effects in themodel. With fixed effects, one could include
ri,t−1, Tit = ∑

t
s=1 ris or ∑

T
s ̸=t ris (Wooldridge, 1995). Under the null hypothesis of no se-

lection bias, any of these simple functions should not matter. Admittedly, the power
of the tests may be low, but their simplicity is attractive so as to provide a quick check
against possible selection bias in the panel. Another group of tests is based upon the
idea that the four different estimators, random effects and fixed effects, using either
the balanced subpanel or unbalanced panel, usually all suffer differently from selec-
tion bias. A comparison of these estimators may therefore give an indication for the
likelihood of selection bias.

Seru et al. (2010) investigate the investment performance of individual investors,
and their learning experience, and are concerned that investorsmay stop trading (and
thus leave their sample) endogenously. They apply the Verbeek andNijman (1992) test
by including ri,t−1 in their fixed effects regression model and conclude that attrition
from the panel is nonrandom. They continue their analysis with a variant of the Heck-
man (1979) procedure. This procedure, along with some of its extensions, will be dis-
cussed in Chapter 6. Unfortunately, the problem of nonrandom sample selection or
nonrandom attrition from the panel introduces an identification problem, so that any
solution will require additional assumptions (see Verbeek and Nijman, 1996, for an
extensive treatment).
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4.4 Measurement errors

The final data issue we cover in this chapter is that of measurement errors, also re-
ferred to as errors-in-variables. Of course,measurement errors could be theunderlying
cause of outliers and influential observations. In this section, we focus on measure-
ment errors that are seemingly random, either because the reporting on a variable is
imprecise and noisy (e. g., TNA of hedge funds), or because the true variables of inter-
est correspond to underlying concepts that are inherently difficult to measure (e. g.,
investment opportunities, quality of governance, tax advantages of debt, or the prob-
ability of default). To motivate the discussion, let us start with the standard model,
where the explanatory variable suffers from measurement error. To simplify the pre-
sentation, we focus on the model with one explanatory variable. In panel notation,
the model of interest is given by

yit = β0 + β1x
∗
it + εit , (4.8)

where x∗it is a scalar explanatory variable. Initially, we assume that x∗it and εit are un-
correlated. Instead of observing x∗it , we observe a variable xit, where

xit = x
∗
it + vit . (4.9)

In this equation, vit corresponds to the measurement error, typically assumed to have
meanzero. If one estimates apooled regressionmodel explaining yit from theobserved
regressor variable xit and a constant, one is estimating

yit = β0 + β1xit + (εit − β1vit). (4.10)

The error term in this regression includes an additional part related to the measure-
ment error in the regressor. If it canbeassumed that the composite error term (εit−β1vit)
is uncorrelated with the regressor xit, the estimation of (4.10) by standard methods,
like OLS, is consistent for β, under the usual regularity conditions. This assumption,
however, is uncommon. A key issue is what is appropriate to assume about the mea-
surement error vit and its correlations with xit, the observed variable, and x∗it , the true
variable.

Classical measurement error
The “classical measurement error” model arises by assuming that the measurement
error vit is random and uncorrelated with the true unobserved variable x∗it . The auto-
matic consequence of this is that vit is correlatedwith the observed regressor, resulting
in a correlation between regressor and error term in (4.10). As a result, the OLS esti-
mator for β1 is biased towards zero. To illustrate this, suppose that β1 > 0. When the
measurement error in an observation is positive, two things happen: xit has a positive
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component vit and the equation’s error term has a negative component −β1vit . Conse-
quently, xit and the error term in (4.10) are negatively correlated, and theOLS estimator
is biased and inconsistent. If β1 < 0, a negative correlation arises and again the OLS
estimator is biased. Denoting the variance of vit by σ2v and the variance of x∗it by σ

2
x∗

(assuming homoskedasticity for simplicity), it can be shown that

plim β̂1 = β1(1 −
σ2v

σ2x∗ + σ2v
) = β1(1 −

σ2v
V(xit)
) (4.11)

under the assumption that vit is uncorrelatedwith both εit and x∗it . Thismeans that the
OLS estimator is biased towards zero, with a larger attenuation bias if the measure-
ment error is large relative to the variance in the true variable x∗it . The ratio σ

2
v/σ

2
x∗ is

referred to as a noise-to-signal ratio because it gives the variance of the measurement
error (the noise) in relation to the variance of the true values (the signal). If this ratio
is small, we have a small bias, if it is large, the bias is also large. The term in paren-
theses in (4.11) is referred to as the attenuation factor. In general, the OLS estimator
underestimates the effect of the true regressor variable if it is subject to measurement
error that is unrelated to the true level.

If the slope coefficient of the model is underestimated, the estimator for the in-
tercept term will also be biased (typically overestimated). More generally, when the
model of interest contains more than one explanatory variable, the attenuation bias
carries over to the other coefficients too, the exact impact depending upon the cor-
relations between the explanatory variables (Roberts and Whited, 2013). If multiple
explanatory variables are subject to measurement error, the combined impact is less
clear. In most cases, though, a noisy measure of an explanatory variable will imply
that its impact is underestimated. In contrast, when the dependent variable yit is sub-
ject to random measurement error, the only consequence is an increase in the error
variance, and thus less precision of the estimator. However, if the measurement error
in yit is not entirely random and correlatedwith one ormore variables in xit, a bias will
emerge.

Fixed effects
Now suppose that the model of interest also contains a time-invariant component αi
that is correlated with xit . As before, we may wish to eliminate this heterogeneity by
using the first-difference (FD) or within estimator. Following Griliches and Hausman
(1986), it can be shown for the FD estimator that

plim β̂1,FD = β1(1 −
V(Δvit)
V(Δxit)
). (4.12)

Under the typical assumption that the measurement error is random and not serially
correlated, V(Δvit) = 2σ2v . Because it is commonly the case in economics and finance
that explanatory variables exhibit positive serial correlation, V(Δxit) will usually be
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smaller than twice the variance, and, as a result, the attenuation bias of the FD esti-
mator is larger than for OLS. In this case, the first-difference transformationmagnifies
the measurement error and reduces the variation in the signal. Put differently, in first-
differenced data there will be more noise and less signal.

There are, however, possible exceptions to this general rule. For example, let us
assume that vit is homoskedastic with serial correlation coefficient ρv. At the same
time, assume x∗it is homoskedastic with variance σ2x∗ and first-order serial correlation
coefficient ρx∗ . Again assuming independence of the measurement error and the true
regressor, we can now rewrite the previous expression as

plim β̂1,FD = β1(1 −
2σ2v(1 − ρv)

2σ2x∗ (1 − ρx∗ ) + 2σ2v(1 − ρv)
). (4.13)

If the serial correlation in the true explanatory variable is larger than that in the mea-
surement error, the attenuation bias is larger in the first-differencing approach. In the
exceptional case where the measurement error is time-invariant (vit = vis for all s, t)
the measurement error is eliminated by the first-difference transformation, and the
fixed effects approach solves the measurement error problem. In most cases, though,
estimation in first-differenceswill suffermore frommeasurement error than does OLS,
because ρx∗ is much larger than ρv.

As noted by Griliches and Hausman (1986), the within estimator typically suffers
from a different attenuation bias than does the FD estimator. In general, we can write

plim β̂1,FE = β1(1 −
V(ṽit)
V(x̃it)
), (4.14)

where ṽit = vit − v̄i, corresponding to the within transformation. In case of serially
uncorrelated measurement error (ρv = 0), this reduces to

plim β̂1,FE = β1(1 −
T − 1
T

σ2v
V(x̃it)
). (4.15)

For the typical case where x∗it is positively correlated over time (with decreasing cor-
relogram), the attenuation bias in the within estimator will be smaller than that in the
first-difference estimator when T > 2. (For T = 2, the two estimators are identical.)
Griliches and Hausman (1986) exploit this finding to construct an unbiased estimator
by combining two biased ones. The use of this approach has not become very com-
mon, probably because there may be multiple other reasons why the FD and within
estimators produce different results, for example, in cases where the regressors are
not strictly exogenous (see Section 3.6). Nevertheless, estimating a model using alter-
native transformations to eliminate the fixed effects could provide more information
on the presence of measurement errors.
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Non-classical measurement error
The above results apply to the standard classical measurement error case, where the
measurement error is uncorrelated with the true regressor x∗it . If, instead, vit is cor-
related with x∗it , the key determinant of the bias is the correlation between xit and
εit − β1vit in (4.10), or – when εit and xit are uncorrelated – the correlation between
xit and vit . A special case of this arises when the explanatory variable is the optimal
predictor, conditional upon some information set. In this case xit = E(x∗it | zit), where
zit are the variables characterising the information set. In this case,we can decompose
the true value into two orthogonal components

x∗it = xit − vit ,

where vit is the prediction error. By construction, the prediction error, or measure-
ment error, is uncorrelated with the observed xit . This implies that the measurement
error, by construction, is correlated with the true unobserved value. Hyslop and Im-
bens (2001) refer to this case as the “optimal prediction error” model. As long as zit is
exogenous, the OLS estimator in this case is unbiased.

In practice it is also possible to have a combination of cases, and a measurement
error that is correlated with both xit and x∗it . An example of this arises with a binary
explanatory variable. In this case themeasurement error cannot be uncorrelated with
the true value, nor with the observed value. If the dummy is zero, measurement error
can only be positive, and if the dummy is one, it can only be negative. Under realistic
assumption, the OLS estimator for β1 when xit is a mismeasured binary regressor is
again biased towards zero (Bollinger, 1996). In the panel data case, it is even more
obvious that thismay seriously bias the estimators towards zero. For example, a single
measurement error in a series of T binary outcomes, will correspond to two incorrect
transitions, amongT−1 first-differences. Again, the desire to control for a bias by using
a fixed effects approach magnifies the bias due to measurement error.

Potential solutions
From (4.10), the inconsistency of standard estimators is due to the correlation between
theobserved regressor xit and the composite error term.A standard solution to obtain a
consistent estimator is the use of instrumental variables. If one can find an instrument
uncorrelatedwith the unobservables but correlatedwith xit, an instrumental variables
estimator can provide a consistent estimator (assuming other potential sources of bias
are adequately dealt with). Alternatively, it may be possible to identify the parameters
of interest once sufficient restrictions are imposed upon the measurement error pro-
cess, particularly in the case of panel data. For example, the approach of Griliches and
Hausman (1986) assumes that the measurement error is not serially correlated. Ap-
proaches like these have received much attention in the labour economics literature
(see, e. g., Black et al., 2000). It also allows for cases of non-classical measurement
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error (where themeasurement error is correlated over time, or correlated with the true
unobserved regressor).

A simple instrumental variables estimator in the panel context is obtained by us-
ing the lagged value of xit as instrument for xi,t−1. In the absence of a fixed effect, this
estimator is given by

β̂1,IV =
∑i ∑t xi,t−1(xit − x̄)
∑i ∑t xi,t−1(yit − ȳ)

, (4.16)

where x̄ denotes the overall sample average. An illustration is this approach (to ad-
dress the problem of measurement error in beta proxies of firms) is given in Acharya
et al. (2013). This estimator is consistent for β1 if the instrument xi,t−1 is uncorrelated
with both εit and vit (the measurement error). The first is a reasonable standard exo-
geneity assumption. The second condition is satisfied if themeasurement error in xit is
serially uncorrelated. This shows, again, how internal instruments can help in a panel
context, making external instruments unnecessary. This requires, obviously, assump-
tions. If the measurement error is serially correlated, xi,t−1 is likely to correlate with
vit and is no longer a valid instrument. In such cases, using longer lags, for example
xi,t−2, could provide a valid instrument (assuming the autocorrelation in the measure-
ment error is limited to the first lag only). Note that the optimal prediction error case
is likely to suffer from positive serial correlation in themeasurement error, illustrating
that the assumption of no serial correlation in vit may be nontrivial.

In the presence of fixed effects in the equation, they can be eliminated first by a
first-difference transformation. The resulting model becomes

Δyit = β1Δxit + (Δuit − β1Δvit).

If the measurement error vit is serially uncorrelated, while xit is correlated over time,
then xi,t−2, xi,t−3 or Δxi,t−2 are valid as instruments for Δxit . An alternative strategy is to
keep the equation in levels, but use first-differenced instruments only. Biørn (2000)
provides a general exposition of these approaches and potential extensions (com-
bining levels and differences). A further step is to use as many relevant instruments
as possible, similar to the dynamic panel data GMM estimator of Arellano and Bond
(1991), which we discuss in more detail in the next chapter. This is essentially an in-
strumental variables estimator based on the first-differenced equation, using asmany
lags as possible to instrument the mismeasured regressor, and weighting them opti-
mally in a GMM context; see Blundell et al. (1992) for an illustration.

An alternative approach is based on the derivation of moment conditions that
provide valid restrictions on the data generating process. Under appropriate condi-
tions, this allows identification of the parameters of interest, as well as (parts of)
the measurement error process. Erickson and Whited (2000) apply such an approach
to estimate the relationship between investment of a firm and “marginal Q”, which
corresponds to the expected marginal contribution of new capital goods to future
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profit. The latter is typically approximated by Tobin’s Q, which may be a poor proxy
formarginalQ. The authors carefully investigate potential sources ofmeasurement er-
ror to defend their “measurement error–consistent” generalised method of moments
estimators, which are based on exploiting higher-order moments. Both Almeida et al.
(2010) and Erickson and Whited (2012) compare the performance of this estimator
with the more traditional approaches: instrumental variables and dynamic panel
data GMM, both or which employ lagged mismeasured regressors as instruments.
The three estimators differ in their identifying assumptions, related to, among other
things, the correlation between the measurement error and the regressor, and the
presence or absence of serial correlation and heteroskedasticity. Not surprisingly,
estimators using lagged instruments are not robust to serial correlation of the mea-
surement error. Erickson et al. (2014) elaborate upon the framework of Erickson and
Whited (2000) and propose a higher-order cumulant estimator, which has better
finite-sample properties and a closed-form solution.
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5 Linear dynamic models
An important strength of panel data is the ability to model dynamics at the individual
level. However, the inclusion of a lagged dependent variable in a model, in combina-
tion with unobserved heterogeneity, creates challenges for consistent estimation and
testing, particularly so for short T. In the presence of time-invariant unobserved het-
erogeneity, standard estimators, such as pooled OLS, the Fama and MacBeth (1973)
method, as well as fixed effects estimators, are inconsistent for N → ∞. Alternative
approaches, relying on instrumental variables or the generalised method of moments
are available. Unfortunately, these estimators impose strong conditions, for example,
the absence of serial correlation in the idiosyncratic error terms, and often do not per-
form very well in samples and models typically encountered in empirical finance. In
this chapter, we elaborate on the estimation of linear dynamic models, with a par-
ticular focus on the linear model with a lagged dependent variable. A discussion of
estimation and inference in nonlinear dynamic models is provided in Bazdresch et al.
(2018).

5.1 The problem of unobserved heterogeneity

A linear dynamicmodel can be used to test the predictability of, for example, stock re-
turns (Jegadeesh, 1990) ormutual fund performance (Hendricks et al., 1993). A simple
specification is given by

yit = αt + γyi,t−1 + εit , (5.1)

where the autoregressive coefficient γ is assumed to be invariant over units and time,
and where yit is the relevant measure to predict. The intercept term αt may or may not
vary over time. When this equation is estimated using pooled OLS or using the Fama
and MacBeth (1973) estimator, a bias may arise if there is cross-sectional dispersion
in the expected values of yit . For example, when yit denotes the return on a stock,
equation (5.1) checks for autocorrelation in returns imposing they are drawings from a
distribution with a common (potentially time-varying) mean. That is, it does not only
impose that the predictability pattern is the same for all stocks, but also that the ex-
pected return on each of the stocks is the same. As argued by Jegadeesh (1990), this
may lead to biased estimates for the persistence coefficient, because, relative to the
common mean, stock returns do exhibit correlation over time, even if γ is zero. Intu-
itively, stocks with a high average return are simply more likely to have high returns
(relative to the commonmean) in all periods. Given that there is variation in expected
returns across stocks, estimation by pooled OLS or the Fama-MacBeth estimator will
find spurious correlations over time between current and past returns. In general, the
estimator for γ tends to overestimate the true predictability, that is, there is a positive
bias, which does not disappear for large T.

https://doi.org/10.1515/9783110660739-005
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To remedy this problem, it is common to adjust the dependent variable for the
cross-sectional variation in expected values. For example, Hendricks et al. (1993),
when estimating short-run persistence in mutual fund performance, subtract an es-
timate for the market equilibrium return from the dependent variable (not from the
lagged dependent variable), such as the historical average return over period 1 to T,
or the predicted return from a factor model, estimated of the same sample period. The
first option replaces the dependent variable in (5.1) by yit − ȳi, where ȳi is the average
of yit over period 1 to T, and estimates

yit − ȳi = αt + γyi,t−1 + εit , (5.2)

However, as argued by Ter Horst and Verbeek (2000), ȳi is correlated with yi,t−1, even
if γ = 0. This causes a bias, typically of the order 1/T, which is negative. Although this
biasmay be small if T is reasonably large, given that the true value of γ is often close to
zero (corresponding to no predictability), it may still be of concern with a sample size
of 50 to 60 periods, as in Hendricks et al. (1993). A better solution is used by Jegadeesh
(1990), when investigating the predictability of security returns, and requires the sub-
traction of the average return over periods t + 1 to t + S. (In his case, S is 60 months.)
Because these averages are based on future returns they can be argued to be uncor-
related with εit . Unfortunately, the use of future returns limits the sample over which
the model can be estimated.

The key problemwith estimating a dynamicmodel, such as (5.1), is that the lagged
dependent variable tends to be correlated with the error term if there is a common
component related todifferences in the cross-sectionalmeans. This is a cross-sectional
correlation, not a time-series correlation. In standard language, this means there is
some time-invariant heterogeneity (αi) in the error term: εit = αi + uit . Because αi is
positively correlated with both current and lagged values of yit, standard estimators
tend to be biased and inconsistent. Even if there is no time-invariant component in
εit, correlation between yi,t−1 and εit may arise if there is serial correlation in εit . As
a result, consistent estimation of dynamic models with panel data is often relatively
complicated when T is finite.

The problem of correlation between a lagged dependent variable and the error
termalso ariseswhenadditional explanatory variables are included. Consider the gen-
eral model with a lagged dependent variable, given by

yit = x
′
itβ + γyi,t−1 + εit , t = 1, . . . ,T . (5.3)

Abstracting from potential problems with the explanatory variables in xit, a key is-
sue regarding consistent estimation is whether or not yi,t−1 can be assumed to be un-
correlated with εit . If E(yi,t−1εit) = 0, as well as E(xitεit) = 0, for a given t, consis-
tent estimation of (5.3) is possible by pooled OLS or by the Fama and MacBeth (1973)
method. However, as illustrated above, the assumption that, in the cross-section, εit
and yi,t−1 are uncorrelated is a strong one. Effectively, it requires that, conditional
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upon the lagged dependent variable (and additional regressors), there is no persis-
tence left in the dependent variable. A clear violation arises if there is an unobserved
time-invariant component (αi) that affects yit in each period, but almost any serial cor-
relation in εit will cause a nonzero correlation between yi,t−1 and εit, as soon as both
are correlated with εi,t−1.

Despite these concerns, Fama-MacBeth and pooled OLS estimators are commonly
used in empirical work. For example, Spiegel and Zhang (2013) estimate a model ex-
plaining flows to mutual funds, one of the explanatory variables being lagged flows,
using the Fama-MacBeth approach. This can be justified in the absence of serial corre-
lation in the equation’s error termonly. Adjusting standard errors using theNewey and
West (1987) covariancematrix does not remedy this problem, and is inappropriate any-
way; see Petersen (2009) and the discussion in Section 2.12. Fama and French (2002)
estimate a dynamicmodel explaining the change in dividends from lagged dividends,
and a dynamic model explaining leverage, both by means of the Fama-MacBeth es-
timator. While this estimator has the advantage of controlling for correlation of the
error terms across firms, neither serial correlation in εit nor unobserved heterogeneity
is allowed.

Another application is Brennan et al. (1998),who report several Fama-MacBeth re-
gressions relating (excess or risk-adjusted) stock returns to firm characteristics, such
as size and the book-to-market ratio, while also including lagged returns over 2 to 3, 4
to 6 or 7 to 12 months prior to the current month. Similarly, Lewellen (2015), includes
lagged returns overmonths −12 to −2 in Fama-MacBeth regressions explaining current
stock returns. In these cases, the bias in the Fama-MacBeth estimator is potentially
small, among other reasons because stock returns exhibit very little serial correlation.
However, in corporate finance, when the dependent variable is a firm characteristic,
such as leverage or Tobin’s Q, the assumption of no serial correlation in εit (and thus
no unobserved heterogeneity) is unlikely to be satisfied, and biases can be more sub-
stantial. This is particularly worrisome if the dynamics in the model are of particular
economic interest (e. g., in the partial adjustment model towards target capital struc-
ture of Flannery and Rangan, 2006).

Other studies use pooledOLS, despite the presence of dynamics. For example, Tet-
lock et al. (2008) estimate a model to predict quarterly firm earnings from the fraction
of negative words in firm-specific news stories, controlling for lagged earnings and
other firm characteristics. Their defence is that the dependent variable is standardised
and therefore has no firm effect. A time effect is important, because firms’ earnings are
correlated within calendar quarters, and this is reflected in the use of standard errors
clustered over time. Because the standardisation of the earningsmeasures is based on
historical data (in most cases the previous 20 quarters), there is no guarantee that a
negative bias, similar to the one in (5.2), does not emerge.
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5.2 The problem with the fixed effects estimator

Given the discussion in the previous section, it appears to make sense to explicitly
incorporate time-invariant unobserved heterogeneity in themodel. To do so, consider
a linear model with a lagged dependent variable as well as firm-specific heterogeneity
αi, given by

yit = x
′
itβ + γyi,t−1 + αi + uit , t = 1, . . . ,T . (5.4)

If this model is estimated by pooled OLS, the Fama and MacBeth (1973) method, or
the random effects estimator, we treat αi + uit as an error term consisting of two com-
ponents: a time-invariant one αi and a time-varying one uit (although estimation may
ignore this). Even in the absence of serial correlation inuit this creates aproblemdue to
the fact that, by construction, yi,t−1 is correlated with αi. This is the problem discussed
in the previous section. When the true value of γ is positive, the OLS and random ef-
fects estimators tend to overestimate it (due to the fact that yi,t−1 and αi are positively
correlated).

In the linear static model, with strictly exogenous regressors, treating time-
invariant heterogeneity as fixed firm effects was able to solve the problem of correla-
tion between unobservables in the equation and the explanatory variables. Therefore,
it seems natural in this case to also continue along the fixed effects path. As we know,
the fixed effects estimator for β and γ is equivalent to an OLS estimator where all
variables are expressed in deviations from their firm-specific averages. This can be
written as

yit − ȳi = (xit − x̄i)
′β + γ(yi,t−1 − ȳi,−1) + uit − ūi, (5.5)

where ȳi = T−1∑Tt=1 yit and ȳi,−1 = T−1∑Tt=1 yi,t−1 (assuming we observe yi0), and sim-
ilarly for the other variables in the model. Consistent estimation of β and γ requires
that the within-transformed error terms uit − ūi are uncorrelated with both the within-
transformed regressors in xit and the within-transformed lagged dependent variable
yi,t−1 − ȳi,−1. The first of these is implied by assuming strict exogeneity of xit (see Sec-
tion 3.6). However, because yi,t−1 and ūi are negatively correlated by construction (due
to ui,t−1), OLS applied to (5.4) is asymptotically biased and inconsistent (see Nickell,
1981). Typically, the correlation between yi,t−1− ȳi,−1 and uit − ūi is of the order 1/T. This
implies that the correlation goes to zero when the number of time periods increases.
As a result, the inconsistency in the fixed effects estimator may be small is T is suf-
ficiently large. When γ is positive, the fixed effects estimator tends to underestimate
it. Nickell (1981) shows that for a model without exogenous variables the asymptotic
bias in the fixed effects estimators is still substantial with T = 10. For example, when
the true value of γ equals 0.5, the fixed effects estimators converges to 0.33 forN →∞.
This bias in the fixed effects estimator when a lagged dependent variable is present is
popularly referred to as the “Nickell bias”.
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When T is sufficiently large (e. g., T > 20), the Nickell bias may be negligible and
standard fixed effects estimators are appropriate. For example, Siriwardane (2019) ex-
plains credit default swap (CDS) spreads of firms from capital shocks and other vari-
ables, including the lagged change in CDS spread, using weekly data over about 6.5
years. The data are filtered such that eachfirmhas at least 162 observations. Themodel
includes firm fixed effects and industry × period fixed effects, but given the large num-
ber of periods theNickell bias can be ignored. A similar argument ismade in Loutskina
(2011), who uses data of banks over 112 quarters, with a minimum of 20 quarters per
institution.

Note that, when evaluating the severity of this bias in a given application, one
should realise that the typical panel in financial applications is unbalanced. What is
relevant for the bias is not the length of the total sample period, but the number of
observations that is available to take firm-specific averages. Thus, even with a panel
with T = 25 years of data, the bias in the fixed effects estimator can still be substantial
if the average firm is observed for only 5 or 10 years.

Because the OLS estimator in (5.4) tends to overestimate γ, whereas the within
estimator tends to underestimate it, one can argue that these two estimators provide
upper and lower bounds to the true autoregressive coefficient, respectively (see Bond,
2002). Flannery and Rangan (2006), estimating a dynamic model for a firm’s capital
structure, use this argument to discard several estimates that appear to produce un-
realistic results.

5.3 Instrumental variables

Eliminating the bias is, in theory, relatively simple, and consists of starting with a
first-difference transformation to eliminate the fixed firm effects followed by the use
of instrumental variables. Practically, however, this appears quite sensitive and fragile
in many cases. The first-difference transformation results in the following equation

yit − yi,t−1 = (xit − xi,t−1)′β + γ(yi,t−1 − yi,t−2) + uit − ui,t−1, t = 2, . . . ,T , (5.6)

which we can briefly write as

Δyit = Δx
′
itβ + γΔyi,t−1 + Δuit , t = 2, . . . ,T , (5.7)

where Δ is the first-difference operator. Estimating this equation by OLS does not pro-
vide a consistent estimator because Δyi,t−1 and Δuit are negatively correlated (due to
ui,t−1). The asymptotic bias is quite large anddoesnot disappear for sufficiently largeT.
Thus, we seem to havemade the problemworse by choosing the first-difference trans-
formation rather than the within transformation to eliminate the firm fixed effects. In
fact, the first-difference estimator is usually severely biased, even when T is large and
even when αi is relatively unimportant.
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It is possible to obtain a consistent estimator for β and γ (for fixed T) provided we
can find one or more instruments that are uncorrelated with the first-differenced error
term Δuit, but correlated with the explanatory variables in Δxit and Δyi,t−1. Assuming
that Δxit is uncorrelated to Δuit (as implied by strict exogeneity), Anderson and Hsiao
(1981) propose two alternative instruments that are both valid if uit exhibits no serial
correlation. The first is yi,t−2, which is likely to be correlated with Δyi,t−1 = yi,t−1 − yi,t−2.
The second is Δyi,t−2. Both of these instruments are uncorrelated with Δuit – in the ab-
sence or serial correlation – even though they correlate with ui,t−2 and/or ui,t−3. These
instruments lead to two alternative versions of the Anderson-Hsiao estimator for dy-
namic panel data: one using the level of the dependent variable, lagged twice, as an
instrument, the other using the change in the dependent variable, lagged twice.

To illustrate these estimators, consider the dynamic model without exogenous
variables, given by

yit = γyi,t−1 + αi + uit , t = 1, . . . ,T , (5.8)

where the overall intercept term is subsumed in αi. In this simplified model, the first
Anderson-Hsiao estimator for γ is given by

γ̂(1)IV = ∑Ni=1∑Tt=2 yi,t−2(yit − yi,t−1)∑Ni=1∑Tt=2 yi,t−2(yi,t−1 − yi,t−2) , (5.9)

where the first available observation is yi0. Consistency of this estimator requires that

E((uit − ui,t−1)yi,t−2) = 0, (5.10)

which says that the instrument is exogenous, and that yi,t−2 is “sufficiently” correlated
with yit − yi,t−1, which says it is relevant. In the absence of serial correlation in uit,
there is no reason why yi,t−2 would correlate with ui,t−1 or later values, and exogeneity
is warranted. Ter Horst and Verbeek (2000) use this estimator to estimate short-run
persistence in mutual fund performance. The second estimator of Anderson-Hsiao is
given by

γ̂(2)IV = ∑Ni=1∑Tt=3(yi,t−2 − yi,t−3)(yit − yi,t−1)∑Ni=1∑Tt=3(yi,t−2 − yi,t−3)(yi,t−1 − yi,t−2) . (5.11)

Note that the time-series summation operator starts at t = 3. Consistency of this esti-
mator requires that

E((uit − ui,t−1)(yi,t−2 − yi,t−3)) = 0, (5.12)

which is again implied by the absence of serial correlation in uit . Both versions of the
Anderson-Hsiao estimator are reported in Flannery and Rangan (2006, Appendix).
They can be obtained in Stata using the xtivreg, fd command.
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In general, it is not clear whether yi,t−2 or Δyi,t−2 is the better instrument. Both
are exogenous under similar assumptions, but their relevance is questionable. In ad-
dition, the second instrument can be exploited over a shorter sample, because the
change lagged twice requires another lag of the dependent variable. Effectively, this
means that only firms with four consecutive observations on yit can contribute to the
estimation of the model coefficients. Depending upon the persistence in yit (i. e., the
value of γ), the correlation between the instrument and Δyi,t−1may be small. It is there-
fore recommended to test the relevance of the instruments by inspecting the reduced
form (see Subsection 3.4.2).

Extending the Anderson-Hsiao estimators to the model with additional explana-
tory variables in (5.4) is straightforward if the variables in xit can be assumed to be
strictly exogenous (i. e., uncorrelated with all uis at all leads and lags). If not, we also
need to find instruments for Δxit in (5.7). If xit is endogenous (e. g., due to reverse
causality or simultaneity) and therefore correlated with uit, lagged regressors xi,t−2 or
Δxi,t−2 can serve as instruments, provided that xit is predetermined (uncorrelated with
ui,t+1 and later).

Arellano (1989) has shown that the estimator that uses the first-differenced instru-
ment, when exogenous variables are added to the model, suffers from large variances
over a wide range of values for γ. In addition, Monte Carlo evidence by Arellano and
Bover (1995) shows that the levels version of the Anderson–Hsiao estimator can have
large biases and large standard errors, particularly when γ is close to one. A popular
alternative builds upon the Anderson-Hsiao approach and tries to exploit as many in-
struments as possible, while eliminating the disadvantages of reduced sample sizes,
using GMM. This is discussed in the next section.

5.4 The Arellano-Bond estimator

A more general estimator starts from the notion that both (5.10) and (5.12) provide a
moment condition that is exploited in estimation. It is well known that imposingmore
moment conditions increases the asymptotic efficiency of the estimators (provided
the additional conditions are valid). Holtz-Eakin et al. (1988) and Arellano and Bond
(1991) propose to extend the list of instruments by exploiting additional moment con-
ditions and letting their number vary with t, keeping the number of time periods T
fixed.

5.4.1 Moment conditions

To introduce the additionalmoment conditions, consider the casewhere T = 4. In this
case, one can impose

E((ui2 − ui1)yi0) = 0
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as the moment condition for t = 2. For t = 3, there are two moment conditions

E((ui3 − ui2)yi1) = 0

and

E((ui3 − ui2)yi0) = 0.

Finally, for t = 4, there are three moment conditions, given by

E((ui4 − ui3)yi0) = 0
E((ui4 − ui3)yi1) = 0
E((ui4 − ui3)yi2) = 0.

All these moment conditions can be exploited in a GMM framework. To introduce the
GMM estimator, for a given sample size T define the vector of transformed error terms

Δui =(
ui2 − ui1
⋅ ⋅ ⋅

ui,T − ui,T−1) (5.13)

and the matrix of instruments

Zi =(

[yi0] 0 . . . 0
0 [yi0, yi1] 0
...

. . . 0
0 ⋅ ⋅ ⋅ 0 [yi0, . . . , yi,T−2]

) . (5.14)

Each row in the matrix Zi contains the instruments that are valid for a given period.
Consequently, the set of all moment conditions can be written concisely as

E(Z′i Δui) = 0,
which comprises a total of 1+ 2+ 3+ ⋅ ⋅ ⋅+T − 1. To derive the GMM estimator, write this
as

E(Z′i (Δyi − γΔyi,−1)) = 0. (5.15)

Because the number of moment conditions exceeds the number of unknown coeffi-
cients,we estimate γ byminimising a quadratic expression in terms of the correspond-
ing sample moments (see Section 3.5). That is,

min
γ
[
1
N

N
∑
i=1 Z′i (Δyi − γΔyi,−1)]

′
WN[

1
N

N
∑
i=1 Z′i (Δyi − γΔyi,−1)], (5.16)
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whereWN is a symmetric positive definite weighting matrix, which may depend upon
the sample size N . The GMM estimator for γ, with general weighting matrix, is then
given by

γ̂GMM = ((
N
∑
i=1 Δy′i,−1Zi)WN(

N
∑
i=1 Z′i Δyi,−1))

−1
× (

N
∑
i=1 Δy′i,−1Zi)WN(

N
∑
i=1 Z′i Δyi). (5.17)

This estimator is referred to as the first-difference GMM (FD-GMM) estimator and is
consistent for γ, as long as the weighting matrix is positive definite, under the general
conditions that the imposedmoment conditions are valid. The asymptotic covariance
matrix depends upon the weighting matrix that is chosen.

Weighting matrices
The optimalweightingmatrix is the one that provides themost efficient estimator for γ
and is (asymptotically) proportional to the inverse of the covariancematrix of the sam-
plemoments. Accordingly, (in the absence of cross-sectional correlations) the optimal
weighting matrix should satisfy

plim
N→∞WN = V(Z

′
i Δui)
−1
= E(Z′i ΔuiΔu′iZi)−1. (5.18)

If we do not impose any restrictions on the covariance matrix of the vector ui, except
that there is no correlation across firms, an empirical optimal weightingmatrix can be
estimated by replacing the expectations operatorwith a sample average and replacing
the unobserved uit with the residuals ûit from an initial consistent estimator for γ. That
is,

Ŵopt
N = (

1
N

N
∑
i=1 Z′i ΔûiΔû′iZi)

−1
. (5.19)

If, instead, one would impose that the error terms uit are homoskedastic and uncorre-
lated over time, the optimal weighting matrix is much simpler. Note that the absence
of serial correlation is required to guarantee the validity of the moment conditions.
Under these assumptions, it holds for the (T − 1)-dimensional covariance matrix of
Δui that

E{ΔuiΔu
′
i } = σ

2
uG = σ

2
u
(

(

2 −1 0 ⋅ ⋅ ⋅

−1 2
. . . 0

0
. . . . . . −1

... 0 −1 2

)

)

. (5.20)
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As a result, the optimal weighting matrix is given by

Wopt
N = (

1
N

N
∑
i=1 Z′iGZi)

−1
, (5.21)

noting that the proportionality factor σ2u is irrelevant. This weighting matrix does
not depend upon unknown parameters and is typically used to obtain a consistent
first-step GMM estimator. It is optimal under the restrictive condition that uit is ho-
moskedastic across firms and periods.

Properties
Under weak regularity conditions, the FD-GMM estimator for γ, based on the optimal
weighting matrix, is consistent and asymptotically normal for N →∞ and fixed T. Its
covariance matrix can be estimated as

V̂(γ̂GMM) =
1
N
((

1
N

N
∑
i=1 Δy′i,−1Zi)Ŵopt

N (
1
N

N
∑
i=1 Z′i Δyi,−1))

−1
. (5.22)

Because σ2u is not included in the optimal weighting matrix in (5.21), an estimate of it
needs to be added to (5.22) based upon the residuals. For an arbitrary weighting ma-
trix, the estimator is still consistent and asymptotically normal, but the expression for
the covariance matrix is more complicated. Alvarez and Arellano (2003) show that, in
general, the FD-GMM estimator is also consistent when both N and T tend to infinity,
despite the fact that the number of moment conditions tends to infinity with the sam-
ple size. For large T, however, the FD-GMM estimator will be close to the fixed effects
estimator, which provides a more attractive alternative.

Despite its theoretical appeal, the empirical implementation of the FD-GMM es-
timator quite often suffers from poor small sample properties, mostly attributable to
the large number of, potentially weak, instruments. In Subsection 5.4.6 we discuss
this issue in more detail, including some ways to control the problem of instrument
proliferation.

5.4.2 Models with exogenous variables

TheGMMapproach extends quite straightforwardly to themodel with exogenous vari-
ables in (5.4). Depending upon the assumptions made about xit, alternative sets of ad-
ditional instruments can be chosen and corresponding moment conditions added to
the optimisation problem. If xit is strictly exogenous it also holds that

E(ΔxitΔuit) = 0 for each t.
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Accordingly, we can write the full matrix of instruments as

Zi =(

[yi0,Δx′i2] 0 ⋅ ⋅ ⋅ 0
0 [yi0, yi1,Δx′i3] 0
...

. . . 0
0 ⋅ ⋅ ⋅ 0 [yi0, . . . , yi,T−2,Δx′iT ]

) . (5.23)

If the variables in xit are not strictly exogenous but predetermined, in which case cur-
rent and lagged xits are uncorrelated with current error terms, we only have E(xituis) =
0 for s ≥ t. In this case, only xi,t−1, . . . , xi1 are valid instruments for the first-differenced
equation in period t. Thus, the moment conditions that can be imposed are

E(xi,t−jΔuit) = 0 j = 1, . . . , t − 1, for each t.

In practice, a combination of strictly exogenous and predetermined explanatory vari-
ablesmay occur rather than one of these two extreme cases. Thematrix Zi should then
be adjusted accordingly. Baltagi (2013, Chapter 8) provides additional discussion and
examples.

5.4.3 System GMM

Arellano and Bover (1995) provide a framework to integrate the above approach with
the instrumental variables estimators of Hausman and Taylor (1981) and others. Most
importantly, they discuss how information in levels can also be exploited in estima-
tion. That is, in addition to themoment conditions presented above, it is also possible
to exploit the presence of valid instruments for the levels equation (5.4), or their av-
erages over time (the between regression). This is of particular importance when the
individual series are highly persistent and γ is close to one. In this case, the FD-GMM
estimator may suffer from severe finite sample biases because the instruments are
weak; see Blundell and Bond (1998), and Arellano (2003, Section 6.6). Under certain
assumptions, suitably lagged differences of yit can be used to instrument the equation
in levels, in addition to the instruments for the first-differenced equation. For exam-
ple, if E(Δyi,t−1αi) = 0, Δyi,t−1 can be used as instrument for (5.4) or (5.8) in the absence
of serial correlation in uit .

Combining instruments for the first-differenced equationwith instruments for the
levels equation is referred to as system GMM. Lemmon et al. (2008) use both pooled
OLS, the fixed effects estimator (based on the within transformation) and the system
GMMestimator of Blundell and Bond (1998) to estimate the speed of adjustment (SOA)
of a firm towards its target leverage. As expected, the GMM estimate for γ is within
those obtained from pooled OLS (which would overestimate the true γ) and the fixed
effects approach (whichwould underestimate it). The validity of the additional instru-
ments in the system GMM approach depends upon the assumption that changes in yit
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are uncorrelated with the fixed effects. This requires firms to be in some kind of steady
state, in the sense that deviations from long-term values, conditional upon the exoge-
nous variables, are not systematically related to αi. Unfortunately, when γ is close to
one this assumption is the least likely to be satisfied, given that it takes many periods
for deviations from the steady state to decay away. As stressed by Roodman (2009a),
in situations where system GMM offers the most hope, it may offer the least help. See
also Bun and Windmeijer (2010), who document weak instrument problems for the
system GMM estimator.

5.4.4 Specification tests

For both the first-difference and system GMM estimators, an important requirement
is the absence of serial correlation in uit . If uit is correlated with ui,t−1, a correlation
will arise between yi,t−2 and Δuit, invalidating its use as an instrument for the first-
differenced equation. If uit is correlatedwith ui,t−2, this invalidates yi,t−3 as instrument.
Accordingly, it is good practice to perform and report a test for second-order serial
correlation in Δuit, when either the instrumental variables estimator of Anderson and
Hsiao (1981) or a dynamic GMMestimator is used. Such tests are developed inArellano
and Bond (1991) and are based on the standardised average covariances of the resid-
uals. Under the null hypothesis of no autocorrelation, the test statistics are asymptot-
ically standard normally distributed. If the test rejects, longer lags, for example, yi,t−3
may provide a valid instrument as long as there is no third-order serial correlation in
Δuit (which, of course, can be tested as well).

Even if the test for serial correlation in uit does not reject the null hypothesis, this
does notmean that themodel is correctly specified and that allmoment conditions are
appropriate. As before, one can test for overidentifying restrictions using the Sargan-
Hansen J-test, similar to the one discussed in Subsection 3.5.3. As stressed byWintoki
et al. (2012), these two tests are not specification tests of the empirical specification,
but rather tests of the set of instruments under the assumption that the model is cor-
rectly specified. If the model is misspecified, for example, due to the presence of an
unobserved time-varying variable affecting both the dependent variable and the en-
dogenous explanatory variable, the GMM estimator will be biased. Nevertheless, it is
possible that the test for serial correlation and the Sargan-Hansen test “pass” at con-
ventional levels. For example, the Sargan-Hansen test will have low power when the
instruments are weak.

5.4.5 When γ is close to one

Importantly, the IV and FD-GMM estimators discussed above break down when γ = 1,
a case referred to as a “unit root”. This is because the instruments yi,t−2, yi,t−3, . . . are no
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longer correlatedwith the first-differenced regressor Δyi,t−1. In this case, the estimators
are inconsistent and have a nonstandard asymptotic distribution. In the case where
γ is close to one, the lagged values yi,t−j, j = 2, 3, . . . are weak instruments, and the
estimator will perform poorly. The system GMM estimator may work better in these
circumstances (Blundell and Bond, 1998).

Hahn et al. (2007) propose an alternative estimator based on “long differences”
that appears to perform well when γ is close to one. The implementation of this es-
timator is most easily done when the panel is balanced. Starting point is to not take
the first-difference transformation but to take the difference between two observations
that are as far as possible apart. In the balanced case, this means

yiT − yi1 = γ(yi,T−1 − yi0) + uiT − ui1,
omitting exogenous variables for convenience. Estimation of this equation byOLSwill
not be consistent for fixed T, because yi,T−1 will depend upon the accumulated his-
tory of innovations in ui,T−1, ui,T−2, . . . . However, it can be estimated if one can find
instruments not correlated with the long-differenced error terms uiT − ui1. Hahn et al.
(2007) propose the use of yi0, yi,T−1 − γyi,T−2, . . . , yi2 − γyi1 as instruments. The latter in-
struments are exogenous because they only depend upon ui,T−1, . . . , ui2, respectively.
These instruments require knowledge of γ. An initial consistent estimator for γ can be
obtained by using only yi0 as instrument, after which the remaining instruments can
be constructed using an estimated version of γ. This process can be made iterative. It
is also possible to import all instruments into a set of moment conditions, which are
now nonlinear in γ.

Unfortunately, the long-difference estimator has somedrawbacks. First, including
explanatory variables in the equation that are not exogenous complicates estimation.
Second, its implementation requires taking differences over longer windows, which is
more challenging in unbalanced panels. Therefore, most authors implement the long-
difference estimator using a difference of, for example, four or five years, so as not to
lose too many firms in estimation. Flannery and Hankins (2013) implement an alter-
native where for each firm the longest possible difference is taken. A simulation study
in Huang and Ritter (2009) shows that, when estimating the speed of adjustment in a
dynamic capital structure model, the long-difference estimator has better properties
thanOLSand the standardfixed effects estimators. Flannery andHankins (2013), how-
ever, find that the long-difference estimator (based on a four-year difference) performs
remarkably poorly when the dependent variable is highly persistent (γ = 0.8).

5.4.6 Too many instruments

When instruments are weak they provide only very little information about the pa-
rameters of interest, which leads to poor small sample properties of the GMM estima-
tor. A related problem arises when the number of instruments (moment conditions)
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is too large relative to the sample size. The estimation of dynamic panel data mod-
els is a situation that can easily suffer from having too many instruments. Note, for
example, that for both the FD-GMM and system GMM estimators, the number of in-
struments increases quadratically with T. The consequence is that the GMM estimator
has very poor small sample properties, and traditional misspecification tests, like the
test for overidentifying restrictions, tend to be misleading. This may be particularly
the case for the two-step estimator, which relies upon the estimation of a potentially
high-dimensional optimal weighting matrix.

Roodman (2009a) discusses the two main symptoms of instrument proliferation.
The first one, which applies to instrumental variable estimators in general, is that nu-
merous instruments can overfit endogenous variables. In finite samples, instruments
never have exactly zero correlation with the endogenous components of the instru-
mentedvariables, because of sampling variability.Havingmany instruments therefore
results in a small sample bias in the direction of OLS. To illustrate this, consider the
extreme case where the number of instruments equals the number of observations. In
this case, the first-stage (reduced form) regressions will produce an R2 of 1, and the
instrumental variables estimator reduces to OLS. Accordingly, it is recommendable to
reduce the number of instruments, even if they are all theoretically valid and rele-
vant, to reduce the small sample bias in the GMM estimator (see, e. g., Windmeijer,
2005).

The second problem is specific for the two-step GMM estimator that employs an
optimal weighting matrix, which needs to be estimated. The number of elements in
this matrix is quadratic in the number of instruments, and therefore extremely large
when the number of instruments is large. As a result, estimates for the optimal weight-
ing matrix tend to be very imprecise when there are many instruments (Roodman,
2009a). This has two consequences. First, the standard errors for two-step GMM esti-
mators tend to be severely downward biased. Second, the overidentifying restrictions
test, as discussed in Subsection 3.5.3, is far too optimistic in the sense that it rejects
the null hypothesis in far too few cases. When the number of instruments is large, the
overidentifying restrictions test may therefore fail to indicate any misspecification or
invalid instrumentation. Windmeijer (2005) derives a correction to improve the esti-
mator for the GMM covariance matrix.

From this it follows that it is recommendable to reduce the instrument count in
the estimation of dynamic panel data models. An obvious way of doing so is to use
only certain lags instead of all available lags of the instruments. This way the num-
ber of columns in (5.14) can be substantially reduced. An alternative approach is pre-
sented in Roodman (2009a), who suggests to combine instruments through addition
into smaller sets. This has the potential advantage of retaining more information, as
no instruments are dropped. Instead of imposing

E((uit − ui,t−1)yi,t−s) = 0, t = 2, 3, . . . ,T , s = 2, 3, . . .
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we impose

E((uit − ui,t−1)yi,t−s) = 0, s = 2, 3, . . .

The new moment conditions embody the same belief about the orthogonality of uit −
ui,t−1 and yi,t−s, but we do not separate the sample moments for each time period. The
matrix of instruments then collapses to

Z∗i =((
(

yi0 0 0 ⋅ ⋅ ⋅ 0
yi0 yi1 0 ⋅ ⋅ ⋅ 0
yi0 yi1 yi2 ⋅ ⋅ ⋅ 0
...

...
...

. . .
...

yi0 yi1 ⋅ ⋅ ⋅ yi,T−3 yi,T−2
))

)

(5.24)

These ways of reducing the number of instruments provide some relevant robustness
checks for the coefficient estimates, standard errors and misspecification tests. Rood-
man (2009a) presents Monte Carlo evidence showing that reducing and/or collapsing
instruments helps to reduce the bias in first-difference and system GMM estimators
and to increase the ability of the overidentifying restrictions tests to detect misspec-
ification. In general, he recommends that “results should be aggressively tested for
sensitivity to reductions in the number of instruments”.

Stata has a number of routines to obtain the Arellano-Bond and system GMM es-
timators in dynamic panel models. The easiest one to use is xtabond2 (an improved
version of the built-in xtabond), which provides the Arellano and Bond (1991) estima-
tor and the system GMM estimators of Arellano and Bover (1995) and Blundell and
Bond (1998). Related routines are xtdpd and xtdpdsys. Implementation of these esti-
mators is relatively complicated and can easily generate invalid estimates. A useful
guide to the use of these commands is given in Roodman (2009b).

5.5 Applications

As stressed at several places already, the estimation of a dynamic panel model with
short T tends to be challenging, and the performance of the more advanced estima-
tors, like FD-GMM, system GMM or the long-differencing estimator, depends crucially
upon some assumptions and their performance may differ substantially across ap-
plications. A particular application that has received much attention in the financial
literature is the estimation of a dynamicmodel for a firm’s capital structure (e. g., Flan-
nery and Rangan, 2006). The model assumes that firms adjust their leverage towards
some target, optimal level. The target leverage of firm i in period i is denoted by y∗it and
is assumed to depend upon firm characteristics, known at time t − 1 and related to the
costs and benefits of operating with various leverage ratios. These characteristics are
collected in a vector xit (where, for simplicity, we keep the time suffix t, even though
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variables may actually refer to earlier periods). Accordingly, the target debt ratio is
assumed to satisfy

y∗it = x′itδ + ηit ,
where ηit is a mean zero error term accounting for unobserved heterogeneity.

Adjustment costs may prevent firms from choosing their target leverage at each
point in time. To accommodate this, we specify a target adjustment model as

yit − yi,t−1 = (1 − γ)(y∗it − yi,t−1),
where 1 − γ (0 ≤ γ ≤ 1) measures the speed of adjustment (SOA), which is assumed
to be identical across firms. If γ = 0, firms adjust immediately and completely to their
target debt ratio (SOA = 100%). Combining the previous two equations, we can write

yit = x
′
itβ + γyi,t−1 + αi + uit ,

where we have introduced time-invariant unobserved heterogeneity (αi), and where
β = δ(1 − γ). The financial literature has presented a variety of estimates for the speed
of adjustment (see, for example, Huang and Ritter, 2009), with estimated γ’s vary-
ing between 0.9 and 0.65, depending upon the econometric method, the sample, and
whether book leverage or market leverage is used. The half-life is the number of years
it takes for a firm to move halfway toward its target leverage, and can be calculated as
ln(0.5)/ ln(γ). It is particularly sensitive to γ for values of γ close to one.

Flannery andRangan (2006) report a variety of estimates for γ and the othermodel
coefficients, where yit is a firm’s market debt ratio (MDR). The pooled OLS and Fama-
MacBeth estimator ignore the presence of unobserved heterogeneity (αi) in the equa-
tion, are biased in the same direction, and produce quite similar results, with an esti-
mated γ of around 0.86 (SOA = 14%). The fixed effects estimator eliminates αi through
the within transformation, and is biased towards zero, with an estimated γ of 0.62
(SOA = 38%). The Anderson and Hsiao (1981) estimator (using yi,t−2 as an instrument
for Δyi,t−1) produces an estimate for γ that is even smaller than the fixed effects esti-
mate, which is not what one would expect. As mentioned above, the validity of these
instrumental variables estimators relies on the absence of first-order serial correla-
tion in uit (which implies no second-order serial correlation in the first-differenced
error Δuit). Zero serial correlation of uit is rejected, casting serious doubts on the va-
lidity of the instruments. This problem also extends to the Arellano and Bond (1991)
estimator, which also produces an estimated γ that is suspiciously low (implying a
very high SOA), and outside the boundaries implied by the OLS and FE estimates. Be-
cause the Sargan test of overidentifying restrictions also rejects, the authors decide
to discard this estimator, despite its theoretical appeal, from their main set of results.
For their preferred specification, they resort to the use of an external instrument for
yi,t−1 (lagged book leverage), resulting in an estimated γ that is slightly higher than the
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FE one. Because book leverage and market leverage are correlated by construction, it
is not obvious that this instrument satisfies the exogeneity condition. As argued by
Huang and Ritter (2009), at least some shocks are likely to affect both book leverage
and market leverage.

Several alternative estimators have been used in this context. For example, Lem-
mon et al. (2008) use a system GMM estimator, and Huang and Ritter (2009) use the
long-differencing estimator of Hahn et al. (2007). Elsas and Florysiak (2015) stress
that leverage is a fractional variable, bounded by 0 and 1, and propose an alternative
estimator taking this into account. Their proposed maximum likelihood estimator is
based on an extension of the dynamic random effects tobit model, which we discuss
in Chapter 6. Because in many cases, the fixed effects estimator appears to perform
reasonably well, despite being biased for fixed T, another alternative is to approxi-
mate the bias in this estimator and apply a bias-adjusted version of the fixed effects
estimator, based on the work of Kiviet (1995) and Bruno (2005). Zhou et al. (2014) pro-
vide a further investigation into bias-correction methods in dynamic models for cap-
ital structure, and propose a bias-corrected global minimum variance combined es-
timation procedure. Recent theoretical developments in this area are summarised in
Bun and Sarafidis (2015).

Flannery and Hankins (2013) provide an evaluation of the performance of a wide
range of alternative estimators under conditions that are likely to apply to corporate
finance, with particular attention to a firm’s capital structure choice. They note that
complications, like second-order serial correlation or endogenous regressors in xit,
can seriously compromise many of the estimation methodologies, consistent with the
theoretical literature. “Perhaps surprisingly, these complications can be large enough
that there are occasions when the much maligned fixed effects estimator performs
best”. A similar study is Dang et al. (2015), who spendmore attention to bias-corrected
estimators and estimators taking into account the fractional nature of the dependent
variable. They caution against the use of system GMM and IV/GMM estimators, es-
pecially in the presence of autocorrelation, and recommend the more robust bias-
corrected estimators.

Another area in corporate finance where the GMM estimator is used is in models
explaining the diversification discount, as in Hoechle et al. (2012). Among other spec-
ifications, they estimate a dynamicmodel explaining excess firm value based on sales
from a dummy variable for whether the firm is diversified, excess firm value with one
and two lags, and a set of controls related to firm governance. The estimation results,
based on the system GMM estimator as proposed by Arellano and Bover (1995) and
Blundell and Bond (1998), show economically and statistically significant persistence
in the dependent variable. In estimation, they donot impose that the explanatory vari-
ables are strictly exogenous, and employ the governance variables with three or more
lags as instruments. Importantly, the test for second order collection (in Δuit) does not
reject, nor does the Sargan overidentifying restrictions test. This way, the estimation
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accounts for the dynamic endogeneity, unobservable heterogeneity, as well as the si-
multaneity.

Similar to the previous study,Wintoki et al. (2012) use the dynamicGMMestimator
to estimate the effect of board structure on firm performance. Unobserved heterogene-
ity is important here as it captures, among other aspects, managerial quality, which is
likely to correlate with both firm performance and board structure. Their equation of
interest can be written as

yit = x
′
itβ + γ1yi,t−1 + γ2yi,t−2 + αi + uit , (5.25)

where yit is a measure of fund performance, in their case either return on assets (ROA)
or return on sales (ROS), and xit includes three board structure variables: board size,
board composition, and board leadership. An important reason to include two lags of
firm performance in the model is to make the equation dynamically complete, in the
sense that any residual serial correlation in uit is controlled for. Control variables in-
clude the firm’s market-to-book ratio, firm age, and the standard deviation of its stock
returns (over the previous 12months). In their empirical application, the authors sam-
ple at two-year intervals instead of every year, using governance data from 1991, 1993,
. . . , 2013 (so thatT is effectively very small). As a result, t−1 refers to anobservation two
years before t. On the one hand, this is because board structure is highly persistent.
On the other hand, this alleviates the concerns with second order serial correlation in
the equation’s idiosyncratic error term, as required for the dynamic panel GMM esti-
mators.

For the first-differenced equation, lagged values yi,t−p and xi,t−p are used as instru-
ments, where p > 2 (because of the second lag in the equation). For these instruments
to be valid they must be relevant, that is, capture variation in current governance, as
well as exogenous. This means they should be uncorrelated to uit . According to Win-
toki et al. (2012), theory provides a motivation for this. If the board structure today
is one that trades off the expected costs and benefits of alternative board structures,
then current shocks to performance must have been unanticipated when the boards
were chosen. The inclusion of two lags of firm performance helps to achieve this. The
final estimator uses the system GMM estimator employing (appropriately) lagged lev-
els as instruments for the first-differenced equation and using lagged differences as
instruments for the levels equation. The maintained assumption is that there is no se-
rial correlation in uit, and thus no second order serial correlation in Δuit . Wintoki et al.
(2012) provide an elaborate discussion of considerations, concerns and caveats with
the implication of the system GMM estimator, including a Monte Carlo study to show
how powerful the test for no serial correlation and the overidentifying restrictions test
are to detect misspecification. They also explain why other commonly used estima-
tors that ignore the dynamic relationship between current governance and past firm
performance may be biased.
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Another interesting application is provided inMassa (2003),who investigates how
product differentiation bymutual fund families affects performance and fund prolifer-
ation. Most models not only contain a lagged dependent variable, but also suffer from
simultaneity or reverse causality in the sense that xit may be correlated with uit . In ad-
dition to the first-difference transformation, he also employ an orthogonal deviations
transformation. It constructs, for each observation, the deviation from the average of
all future observations of the same unit (Arellano and Bover, 1995). That is,

x∗it = (xit − xi,t+1 + ⋅ ⋅ ⋅ + xi,TT − t
)(

T − t
T − t − 1

)
1/2
, (5.26)

where the second term in parentheses serves the purpose to produce homoskedastic
errors u∗it, in the situation where uit is homoskedastic. Unlike first differencing, which
introduces a moving average structure in the error term, orthogonal deviations pre-
serve lack of correlation among the transformed errors if the original ones are not
autocorrelated. The advantage of this transformation is that u∗it is uncorrelated with
lagged values of xit if the explanatory variables are predetermined, so that they can
serve as instruments. Apart from some minor details, this approach is similar to the
recursive demeaning approach discussed in Section 3.6 (fixed effects without strict
exogeneity). The empirical results in Massa (2003) based on first-difference GMM or
orthogonal deviations GMM are surprisingly similar.

As a final example, we discuss Ellul and Yerramilli (2013). Among other models,
they estimate a dynamicmodel as specified in equation (5.25),where yit is ameasure of
tail risk, and the key variable of interest in xit is a risk management index (RMI). Their
sample contains data of 72 bank holding companies (BHCs) over the period 1994-2009,
and is unbalanced. The model is estimated using the FD-GMM estimator of Arellano
and Bond (1991). Given the presence of two lags of the dependent variable, the vari-
ables in xit are lagged three periods or more for use as instruments. The Sargan test
for overidentifying restrictions does not reject, but a test for serial correlation is not
presented.
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6 Models with limited dependent variables
In practical applications it occurs quite frequently that the phenomena of interest are
of a discrete or mixed discrete-continuous nature. For example, one could be inter-
ested in the question whether or not a firm pays dividends, whether or not a firm
hedges its currency risks, or what the share of risky assets is in a household’s port-
folio. If these type of variables are modelled, a linear regression model is generally
inappropriate (although it may provide reasonable approximations in some cases). In
this chapter we consider alternative models that are developed to explain discrete or
discrete/continuous variables. This includes, among others, logit and probit models,
tobit models and models with sample selection.

Other situations thatmay require specialmodels are counts, where the dependent
variable is a discrete number, for example, the number of takeover bids received by a
target firm, duration data, where the dependent variable is a duration, for example,
the duration of a firm-bank relationship, or models with qualitative outcomes, for ex-
ample, the credit rating of a bond. In all such cases, it is common to employ nonlinear
models to accommodate the specific nature of the dependent variable.

In empirical finance, many authors tend tomore or less ignore the panel nature of
the data and specify a standard cross-sectionalmodel, where the panel nature is taken
care of by allowing clustering over one ormore dimensionswhen calculating standard
errors. This is often appropriate, but it imposes some important restrictions. Fully ex-
ploiting the panel nature of the data is oftenmore challenging, for example, because it
requires making assumptions about the joint distribution of a series of outcomes (and
their interdependence). This may be overly restrictive or make model estimation diffi-
cult. Nevertheless, fully specified panel datamodels with limited dependent variables
can provide more insight, for example, into the dynamics of a process.

Most of the models in this chapter are highly parametric in the sense that specific
distributional assumptions, such as normality and homoskedasticity, are imposed,
which are often necessary for consistent estimation. Unfortunately, empirical results
tend to be more sensitive to violations of these assumptions than in linear models.
A common issue is that the inclusionof firmfixed effects, to control for a time-invariant
source of endogeneity, is nontrivial. To be precise, the firm fixed effects often cannot
be eliminated and leaving them in the model as in the least squares dummy variable
approach suffers from an incidental parameters problem: the number of coefficients
increases with the sample size N and consistent estimation for fixed T is not possible.
Only in specific cases this can be solved. Another issue is that the inclusion of a lagged
dependent variable creates estimation problems in the presence of serial dependence
or time-invariant firm-specific heterogeneity in the unobservables. This is reflected in
an initial conditions problem (which disappears with large T).

In this chapter we provide an overview of different models with limited depen-
dent variables, count data and duration data, and their use in finance. Section 6.1
starts with a discussion of binary choice models, including the random effects probit
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model and the fixed effects logit model. Subsection 6.1.2 elaborates on the methods of
maximum likelihood and quasi-maximum likelihood, which are typically employed
for the models in this chapter. Models for multiple discrete outcomes, for example,
a credit rating, are discussed in Section 6.2. Models with censoring or truncation are
typically referred to as tobit models and are presented in Section 6.3. Section 6.4 dis-
cusses the estimation of dynamic models and introduces the problem of initial con-
ditions. Count data models are covered in Section 6.5. The chapter concludes with a
discussion of duration models in Section 6.6. More information on the models in this
chapter is provided in Maddala (1983), Cameron and Trivedi (2005) and Wooldridge
(2010). Maddala (1987) provides an excellent overview of limited dependent variable
models using panel data. Regressionmodels for count data are covered extensively in
Cameron and Trivedi (2013, 2015).

6.1 Binary choice models

In many applications the dependent variable is not continuous, but of a discrete na-
ture. For example, we may wish to have a model to predict bankruptcy of a firm (e. g.,
Ohlson, 1980), to predict a firm going public (e. g., Pagano et al., 1998) or to explain
whether or not a firm issues dividends (e. g., Fama and French, 2001). In this situa-
tion, the dependent variable is binary, where it is the convention to label a positive
outcome by 1 and a negative outcome by 0. Thus, the dependent variable can be de-
noted as yit = 1 or yit = 0. Essentially, a binary choice model describes the probability
that yit = 1 as a function of a set of variables collected in xit . In general, we can write
this as Pr(yit = 1) = F(x′itβ), where F(⋅) is a monotonically increasing function over
the interval [0, 1]. This imposes the “single index” assumptionmeaning that the prob-
ability of observing yit equal to 1 depends upon the explanatory variables in xit only
through the single index x′itβ. Of course, this may contain nonlinear functions of ex-
planatory variables as well as interaction terms.

With panel data the different outcomes of the same firm are often not indepen-
dent and we may wish to consider the joint probability of observing a range of out-
comes yi1, yi2, . . . , yiT . Alternatively, we may be interested in the probability of yit = 1
conditional upon the previous value yi,t−1. These aspects require modelling the joint
distribution of multiple outcomes and a more complex (and complete) econometric
specification is required. A similar remark holds if we wish to take into account that
the probabilities of yit = 1, for example, the probabilities of bankruptcy, are not inde-
pendent across firms in the same period.

In this sectionwe discuss the estimation of binary choicemodels when panel data
are available. We will start with simple pooled estimation where the panel nature of
the data only plays a role when estimating standard errors. Accordingly, estimation is
similar to that in cross-sectional contexts.
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6.1.1 Specification and interpretation

Before moving to nonlinear models, let us consider the case where we would employ
a standard regression model to explain a binary variable. That is, we specify and esti-
mate

yit = x
′
itβ + εit , (6.1)

where yit = 0, 1. Imposing the assumption that the error term is conditionally mean
independent of the explanatory variables in xit, this implies that

E(yit | xit) = x
′
itβ.

However, at the same time

E(yit | xit) = Pr(yit = 1 | xit)

due to the discrete (0, 1) nature of yit . Accordingly, the linear model imposes that

Pr(yit = 1 | xit) = x
′
itβ, (6.2)

which says that the probability of observing yit = 1 is a linear function of the set of
variables collected in xit . This result is problematic for several reasons. First, it does
not restrict probabilities to lie in the [0, 1] interval. Second, and related to the previ-
ous, it imposes that themarginal effect of a change in one of the explanatory variables
in xit is constant, irrespective of the characteristics of the firm. This means that, with
every increase in xit, the implied probability increases proportionally. For example, if
β2 = 0.1 the probability of observing yit = 1 increases by 10 percentage points with
every unit increase in the corresponding variable x2,it (other things equal). This is un-
desirable when the probability is already close to 100% (and logically cannot increase
much further). Another issue with the linear model is that, conditional upon xit, the
error term εit can only have two outcomes (depending onwhether yit = 0 or yit = 1), the
probabilities of which depend upon x′itβ. This means that, even if we ignore the first
two problems, the error term in (6.1) is heteroskedastic, and standard errors should
take this into account.

Even though the linear model is not logically correct when the dependent vari-
able is binary, it is still surprisingly popular in finance. The model, referred to as the
linear probability model, is attractive because it avoids much of the complications
that arise with nonlinear binary choice models, as we shall see below. For example,
Brown et al. (2007) use a linear model explaining whether a firm increases dividends
after a dividend tax cut, and Ouimet and Tate (2020) use the linear probability model
to explain whether an employee participates in an employee stock purchase plan, in-
cluding both firm-month and location-month fixed effects.
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To overcome the problems with the linear model, binary choice models are de-
signed to explain discrete outcomes. A standard binary choice model imposes that

Pr(yit = 1 | xit) = F(x
′
itβ),

where F(⋅) is a known function (without unknown parameters). A natural choice is to
choose F to be a distribution function (cumulative density function), such that it is
monotonically increasing and bounded between 0 and 1. Two choices are very com-
mon. The first is to choose F to be the standard logistic distribution function, given
by

F(w) = Λ(w) = ew

1 + ew
. (6.3)

This allows us to write the probability of observing yit = 1 as

Pr(yit = 1 | xit) = Λ(x
′
itβ) =

exp(x′itβ)
1 + exp(x′itβ) . (6.4)

This model is referred to as the logit model or logistic regression model. It is easily
seen that the probability that yit = 1 is bounded between 0 and 1 and monotonically
increases with x′itβ.

An alternative choice is to let F be the standard normal distribution function, that
is,

F(w) = Φ(w) =
w

∫−∞ 1
√2π

exp(− 1
2
t2)dt, (6.5)

which results in the probit model. For the latter distribution function no closed-form
expression exists. We will typically write this as

Pr(yit = 1 | xit) = Φ(x
′
itβ), (6.6)

with Φ defined in (6.5).
In fact, the functionsΦ andΛ are reasonably similar in shape, although their scal-

ing is different. In both cases F(0) = 0.5, indicating that yit = 1 is more likely than
yit = 0 if x′itβ > 0 in both the logit and probit model. Because the logistic distribu-
tion has a variance of π2/3 whereas the standard normal distribution has variance of
1, the absolute size of the slope coefficients in β is larger in the logit model. The differ-
ence between the logit and probit specifications is somewhat larger in the tails, that is,
when probabilities get close to zero or one. Nevertheless, the probit and logit models
typically produce quite similar results in empirical work. Despite its limitations, the
linear probability model also tends to produce reasonably similar results, particularly
when the implied probabilities are reasonably close to 0.5.
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Figure 6.1: Logit and probit functions, linear model.

The differences between the functional form assumptions of the logit and probit mod-
els, as well as the linear probability model, are visualised in Figure 6.1. The horizontal
axis depicts values of the single index x′itβ (appropriately scaled), while the vertical
axis reflects the probability that yit = 1 as a function of the single index. The logit and
probit functions transform the linear index nonlinearly, to guarantee probabilities be-
tween 0 and 1, and imply smaller marginal effects when the probabilities get further
away from 0.5. The linear probability model does not do this, and leads to (logically
impossible) probabilities less than 0 or larger than 1 for small or large values of the
single index. For many values of x′itβ, the slopes of the three curves are reasonably
similar.

The choice between alternative models is typically based on the convention in
a particular segment of the literature, or on personal preferences.1 For example, the
logit model is very popular in the literature predicting bankruptcy or financial failure
(Ohlson, 1980). The probit specification is more common in multivariate contexts, for
example,when twooutcomes are jointlymodelled, orwhen the binary choicemodel is
part of a larger set of equations. This is because the use of amultivariate normal distri-
bution is attractive and flexible (unlike amultivariate logistic distribution). The linear
probability model is often used when one or more high-dimensional fixed effects are
included, when instrumental variables estimation is required, or simply because of its
simplicity.

In a binary choice model, a positive coefficient, βk > 0, say, implies that the prob-
ability that yit = 1 increases if xk,it increases, keeping the other variables in xit fixed.
Because the function F is nonlinear, the exact size of the effect is not constant and

1 One advantage of a logit specification is that F has a closed-form expression.
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depends upon the shape of F and the values of all explanatory variables. This is re-
flected in Figure 6.1 by a slope that varies with x′itβ. To help interpretation of binary
choicemodels, it is possible to calculate so-calledmarginal effects. For a continuous
explanatory variable, the marginal effect is the partial derivative of P(yit = 1 | xit) =
F(x′itβ) with respect to xk,it . That is,

𝜕Pr(yit = 1 | xit)
𝜕xk,it = F′(x′itβ)βk , (6.7)

whereF′(w) = 𝜕F(w)/𝜕w = f (w)denotes thederivative ofF(w).2 Thesemarginal effects
not only depend upon the choice for the function F but, importantly, also upon the
values of the explanatory variables in xit . The means that marginal effects vary across
the sample. In contrast, marginal effects in the linear probability model are constant
and equal to the model coefficients.3

For logit and probit models, marginal effects can either be computed for the aver-
age observation in the sample, replacing xit by a sample average, or as the average of
all individualmarginal effects, as calculated for each observation in the sample. These
alternatives are often referred to as the marginal effect at the mean (MEM) and the
average marginal effect (AME), respectively. The latter metric avoids calculating the
marginal effect for a hypothetical average firm with, say, a 0.8 male CEO and a board
size of 6.31. Greene (2011, Section 17.3) provides a discussion on the difference between
the averagemarginal effect and themarginal effects at the average, and on how to cal-
culate standard errors for marginal effects. In Stata, marginal effects for binary choice
models can easily be obtained after estimation using the command margins, dydx(x2
x3), where x2 and x3 denote the explanatory variables of interest. The default is that
averagemarginal effects are estimated; to determine themarginal effect at the average
one should add the option atmeans.4 Because F′(x′itβ) > 0, the sign of themarginal ef-
fect corresponds to the sign of βk, so one can quickly infer the sign of amarginal effect
from the corresponding coefficient. For a discrete explanatory variable, for example,
an (0, 1)-indicator, it is common to determine the “marginal” effect as the change in
predicted probability from xk,it = 0 to xk,it = 1, again keeping all other variables in xit
fixed.

Using (6.4), we can write for the logit model that

p
1 − p
= exp(x′itβ),

2 When F(⋅) is the standard normal distribution function, f (⋅) is the standard normal density, denoted
ϕ(⋅).
3 Of course, these marginal effects loose their interpretation if the probabilities are not within the[0, 1] interval.
4 Themargins command is very flexible and a wide range of other options is available.
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or

ln p
1 − p
= x′itβ, (6.8)

where p = Pr(yit = 1 | xit) is the probability of observing yit = 1, conditional on xit .
The lefthand side of (6.8) is referred to as the log odds ratio and for the logit model
it is linear in the coefficients. An odds ratio of 2 means that the odds of yi = 1 are
twice those of yi = 0. Using this expression, the model coefficients can be interpreted
as describing the effect on (the natural logarithm of) the odds ratio. For example, if
βk = 0.05, a one-unit increase in xk,it increase the odds ratio by about 5% (keeping all
other variables fixed). For larger coefficients, for example, βk = 0.5, the difference in
the odds ratio is exp(0.5) − 1 = 0.65 or 65%. Thus we can write that the odds of yit = 1
for a firm with xk,it = 1 are 65% of the corresponding odds for a firm with xk,it = 0.
Several papers interpret the estimation results of logit models in terms of odds ratios
rather than marginal effects (and rather than model coefficients); see, for example,
Dittmar and Thakor (2007), who model the decision of a firm to issue equity (yit = 1)
or debt (yit = 0).

Marginal effects and interaction terms
The condition to keepall other variables in xit fixed is not realistic if themodel contains
additional functions of the relevant variable, for example, a square or an interaction
term. When the model of interest contains interaction terms, a subtle issue emerges.
To illustrate this, consider the casewhere themodel contains β2x2,it+β3x3,it+β4x2,itx3,it .
When both β2 and β4 are positive, this seems to suggest that P(yit = 1 | xit) increases
with x2,it, the marginal effect being larger when x3,it is bigger. This latter conclusion is
not necessarily correct. To see this, note that the marginal effect of a change in x2,it is
now given by

𝜕F(x′itβ)
𝜕xk,it = f (x′itβ)(β2 + β4x3,it), (6.9)

where f (⋅) denotes the derivative of F(⋅). Because x3,it is correlated with f (x′itβ), it is
possible for the marginal effect to decrease if x3,it gets larger, also when β4 > 0 (see Ai
and Norton, 2003). In general, evaluating the sign and significance of the coefficient
β4 of the interaction term is inappropriate to argue that the likelihood that yit = 1 is
more sensitive to x2,it when x3,it is either larger or smaller. The true interaction effect
equals the cross derivative of the conditional probability that yit = 1 with respect to
x2,it and x3,it . That is,

𝜕2F(x′itβ)
𝜕x2,it𝜕x3,it = f (x′itβ)β4 + f ′(x′itβ)(β3 + β4x2,it)(β2 + β4x3,it),
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where f ′(⋅) denotes the derivative of f (⋅). In general, the sign of this interaction effect
may differ from the sign of β4, and its magnitude and sign will depend upon xit . More-
over, the statistical significance of the interaction effect does not equal the statistical
significance of β4.

An illustration of the above issue is given by Powers (2005) in the context of the
management turnover literature. Here, the dependent variable yit denotesmanagerial
turnover (the departure of a key executive), with yit = 1 indicating that a manager
departs, and yit = 0 if the manager remains with the firm during year t. Logit mod-
els are commonly applied when trying to show that the likelihood of turnover is more
sensitive to changes in performance for one type of firm than for another. In the previ-
ous notation, this means that x2,it is a measure of firm performance (e. g., an industry-
adjusted return), and x3,it is an indicator defining the type of firm (e. g., whether the
firm is foreign-owned, or whether the CEO is the founder of the firm). Many earlier
studies appear to ignore this problem with marginal effects in nonlinear models with
interaction terms, although it is by now well understood. The preferred solution is
to calculate the estimated magnitude of the interaction effect for given values of the
explanatory variables, similar to the calculation of (average) marginal effects. Ai and
Norton (2003) describe how standard errors should be calculated in this case; see Lel
andMiller (2008) for amore recent application onmanagement turnover. Themargins
command in Stata will calculate correct marginal effects provided the factor variables
and interactions are properly defined.

A latent variable framework
Economists often formulate a binary choice model in terms of an underlying latent
variable model. In this case, the starting point is a linear model, similar to a standard
linear regression model, with the exception that the dependent variable is not fully
observed. In the binary case, we only observe the sign of the dependent variable. More
formally, we write

y∗it = x′itβ + εit , (6.10)

where y∗it is a latent, unobserved, variable. Instead, we observe
yit = 1 if y

∗
it > 0

= 0 otherwise.

Occasionally, the latent variable is given a more formal interpretation, for example,
the utility difference between alternative 1 and 0, or the willingness or propensity to
choose option 1 rather than 0. For example, Billett and Xue (2007) and Edmans et al.
(2012) define a latent variable to describe the takeover process of a firm, with the bi-
nary outcome yit reflecting whether firm i receives a bid in year t or not; Barber et al.
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(2021) interpret the latent variable as the utility of an investor investing in a particu-
lar venture capital fund. The model coefficients β describe the impact of a change in
one of the explanatory variables (ceteris paribus) upon the latent variable y∗it . Starting
from (6.10) the probability of observing yit = 1, conditional upon xit, is given by5

Pr(yit = 1) = Pr(y
∗
it > 0) = Pr(−εit < x

′
itβ) = F(x

′
itβ), (6.11)

where F(⋅) denotes the distribution function of −εit, or, in the common case of a sym-
metric distribution, the distribution function of εit . The functional form assumption
about F(⋅) in the binary choicemodels leading to logit or probit, is now an assumption
about the error term in a latent variable equation.6

Because the scale of the latent variable is not identified, a normalisation on the
distribution of εit is required, for example, imposing a standard normal distribution
with a variance of one. Similarly, the location of the latent variable is fixed by setting
the mean of the error distribution to zero. A standard probit model is obtained if we
complement the above model with the assumption that εit is IID standard normal, in-
dependent of xit . A logit model is obtainedwhen imposing a logistic distribution upon
εit . To illustrate the normalisation issue, suppose we assume that εit has a normal dis-
tribution with mean zero and variance σ2. In that case,

Pr(yit = 1) = Pr(y
∗
it > 0) = Pr(−

εit
σ
<
x′itβ
σ
) = Φ(

x′itβ
σ
).

This shows that, empirically, only the ratio β/σ is identified, and there is no harm in
imposing that σ2 = 1.

The latent variable framework is not necessary for a standard binary choice
model, but it helps to interpret specification issues in terms of assumptions about
the error term εit (e. g., heteroskedasticity, or exogeneity of xit). A more important
advantage of the latent variable framework, typically in combination with the nor-
mal distribution, is that it is easily extended to other forms of censoring (e. g., y∗it
being observed only if it is positive), to models withmultinomial outcomes, and, most
importantly, to multivariate frameworks where multiple outcomes are investigated
simultaneously. The latter is important in the context of panel data, for example, if
we wish to model the probability of a sequence of outcomes yi1, yi2, . . . , yiT .

5 For notational convenience, we drop the conditioning set from the probabilities.
6 Occasionally, articles (even in top journals) inappropriately mix up notations and present yit =
x′itβ + εit as representing a probit or logit model. This is incorrect. Some authors include εit within
the function F and write Pr(yit = 1) = F(x′itβ + εit). This is also incorrect.
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6.1.2 Estimation: maximum likelihood

Nonlinear models, such as probit and logit, are usually estimated using maximum
likelihood. This section briefly discuss some theoretical results on this method, in a
general notation. We illustrate this with the linear model, and then move to binary
choice models in Subsection 6.1.3.

Maximum likelihood estimation is based on maximising the (log) likelihood
function with respect to the unknown parameters. Let us, in general, denote the
K-dimensional unknown parameter vector by θ, and let the probability mass function
or density function of yi, conditional on Xi, be denoted as f (yi | Xi; θ), where yi could
be a multidimensional vector. If the observations in the sample are independent over
i, the loglikelihood function is given by

ln L(θ) =
N
∑
i=1 ln Li(θ) = N

∑
i=1 ln f (yi | Xi; θ). (6.12)

The term ln Li(θ) is referred to as the loglikelihood contribution of observation i. The
maximum likelihood estimator θ̂ML maximises (6.12) and is the solution to the first-
order conditions

𝜕 ln L(θ)
𝜕θ
=

N
∑
i=1 𝜕 ln Li(θ)𝜕θ = 0. (6.13)

If the loglikelihood function is globally concave, there is a unique global maximum,
and the maximum likelihood estimator is uniquely defined by the first-order condi-
tions. For many standard models efficient algorithms are available to numerically op-
timise (6.12).

Provided that the likelihood function is correctly specified, it can be shown under
weak regularity conditions that the ML estimator θ̂ML is consistent for θ, asymptoti-
cally efficient and asymptotically normally distributed. The covariance matrix is de-
termined by the shape of the loglikelihood function. To describe it in the general case,
define the information in observation i as

Ii(θ) = E{
𝜕2 ln Li(θ)
𝜕θ𝜕θ′ },

which is a symmetric K × K matrix. Loosely speaking, this matrix summarises the ex-
pected amount of information about θ contained in observation i. The average infor-
mation matrix (IM) for a sample of size N is defined as

̄IN (θ) ≡
1
N

N
∑
i=1 Ii(θ) = −E{ 1N 𝜕2 ln L(θ)𝜕θ𝜕θ′ }, (6.14)

while the limiting informationmatrix is defined as I(θ) = limN→∞ IN (θ). In the special
case where the observations are independently and identically distributed, it follows
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that

Ii(θ) = ̄IN (θ) = I(θ).

Under appropriate regularity conditions, the asymptotic covariancematrix of themax-
imum likelihood estimator can be shown to equal the inverse of the information ma-
trix, that is,

√N(θ̂ML − θ)→ N(0,V), (6.15)

where V = I(θ)−1.
The term on the right-hand side of (6.14) is the expected value of the matrix of

second-order derivatives, scaled by the number of observations and reflects the curva-
ture of the loglikelihood function. Clearly, if the loglikelihood function is highly curved
around itsmaximum, the second derivative is large, the variance is small and themax-
imum likelihood estimator is relatively accurate. If the function is less curved, the vari-
ancewill be larger. Given the asymptotic efficiency of themaximum likelihood estima-
tor, the inverse of the informationmatrix I(θ)−1 provides a lower bound on the asymp-
totic covariance matrix for any consistent asymptotically normal estimator for θ. The
ML estimator is asymptotically efficient because it attains this bound, often referred
to as the Cramèr–Rao lower bound.

To estimate the asymptotic covariance matrix of the maximum likelihood estima-
tor in (6.15), different choices can be made. The standard approach is to start from
(6.14) and replace the expectations operator by a sample average and the unknown
coefficients by their maximum likelihood estimates. This leads to

V̂H = (−
1
N

N
∑
i=1 𝜕2 ln Li(θ)𝜕θ𝜕θ′ θ̂ML

)

−1
, (6.16)

where the derivatives are evaluated at the point θ = θ̂ML. The suffix H refers to the
fact that this estimator for V is based on the Hessian matrix, the matrix of second
derivatives.

An alternative expression for the information matrix can be obtained from the
result that the matrix

Ji(θ) ≡ E{si(θ)si(θ)
′}, (6.17)

is identical to Ii(θ), provided that the likelihood function is correctly specified, where

si(θ) =
𝜕 ln Li(θ)
𝜕θ

(6.18)

is the vector of first derivatives of the loglikelihood contribution, also known as the
score contribution. This indicates that V can also be estimated from the first-order
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derivatives of the loglikelihood function as

V̂G = (
1
N

N
∑
i=1 si(θ̂ML)si(θ̂ML)

′)−1, (6.19)

where the suffix G reflects that the estimator employs the outer product of the gradi-
ents (first derivatives). This estimator for V was suggested by Berndt et al. (1974) and
is sometimes referred to as the BHHH estimator. Computation of V̂G is simpler than V̂H
because only first-order derivatives are needed.

In general, consistency of the maximum likelihood estimator requires that the
likelihood is correctly specified. This requires that the joint density or probabilitymass
function of the observed data is correctly chosen. This is, obviously, a fairly strong re-
quirement, partly responsible for the shift away from maximum likelihood in favour
of more robust alternatives in empirical work. Alternative estimators are not available
for all relevant situations. Fortunately, there are cases where themaximum likelihood
estimator is still consistent even when the likelihood function is misspecified. Intu-
itively, this means that the chosen loglikelihood has, asymptotically, the same maxi-
mum as the true loglikelihood. When the likelihood function is misspecified, the re-
sulting estimator is referred to as a quasi-maximum likelihood (QML) estimator.

An alternative starting point to argue that aQML estimator can be consistent, even
with a misspecified likelihood, is that the true model satisfies the following set of,
potentially nonlinear, moment conditions

E(si(θ)) = 0, (6.20)

with si defined in (6.18). This is naturally satisfied for a correct likelihood, but can be
more generally valid. The QML estimator satisfies the sample equivalent of this given
by

1
N

N
∑
I=1 si(θ) = 0,

which corresponds to the first-order conditions given in (6.13). Let us, in general, de-
note the resulting estimator as θ̂QML. Even in cases where this estimator is consistent
for θ, its asymptotic distribution will differ from that of the true maximum likelihood
estimator. Fortunately, the appropriate asymptotic covariancematrix can easily be de-
rived. In general, it holds that

√N(θ̂QML − θ)→ N(0,V), (6.21)

where

V = I(θ)−1J(θ)I(θ)−1, (6.22)
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with

I(θ) ≡ lim
N→∞ 1

N

N
∑
i=1 Ii(θ)

and

J(θ) ≡ lim
N→∞ 1

N

N
∑
i=1 Ji(θ),

with Ii(θ) and Ji(θ) defined above. This covariance matrix generalises the one in (6.15)
and its expression resembles the typical “sandwich formula”.Many software packages
have the option to estimate robust standard errors based on the sandwich formula for
estimators based on maximising a quasi-loglikelihood function. In Stata, these are
typically obtained with the option vce(robust). Importantly, whereas such standard
errors do allow for some misspecification in the assumed model, for consistency it
remains necessary that (6.20) is satisfied for the true parameter vector θ.

The information matrix test (IM test) suggested by White (1982) tests the equality
of the two K × K matrices I(θ) and J(θ) by comparing their sample counterparts. Be-
cause of the symmetry, amaximumofK(K+1)/2 elements have to be compared, so that
the number of degrees of freedom for the IM test is potentially very large. Depending
on the shape of the likelihood function, the IM test checks for misspecification in a
number of directions simultaneously (like functional form, heteroskedasticity, skew-
ness and kurtosis). For additional discussion and computational issues, see Davidson
and MacKinnon (2004, Section 15.2).

Panel data
The previous approach can be applied to panel data in different ways. The first and
simplest way is to assume that, despite the panel nature of the data, the sample is
independent over both i and t. In this case, the loglikelihood function becomes

ln L(θ) =
N
∑
i=1 T
∑
t=1 ln f (yit | xi1, . . . , xiT ; θ), (6.23)

and estimation proceeds as in the cross-sectional case in (6.12), where all summations
are over both firms and periods, and no new issues arise. However, independence of
the observations across both the cross-section as well as the time-series is quite re-
strictive and in many applications unlikely to be satisfied. As an alternative, one can
opt for a quasi-maximum likelihood approach and maximise the quasi-loglikelihood
function in (6.23) assuming that the first-order conditions lead to a consistent estima-
tor for θ, and estimate its covariance matrix using the more general sandwich expres-
sion in (6.22). This is similar to using pooled OLS in a linear model, and using het-
eroskedasticity or cluster-robust standard errors. We illustrate this pooled approach
for binary choice models in Subsection 6.1.3.
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A third way to build upon the previous formulae is to choose a full maximum like-
lihood approach and extend the definition of yi to aT-dimensional vector (yi1, . . . , yiT )′.
In this case f (⋅) refers to the joint density or probability mass function. In case of in-
dependence across i, we can use the previous expressions provided N is sufficiently
large to justify the use of asymptotic approximations forN →∞. Unfortunately, spec-
ifying the joint distribution of yi1, . . . , yiT (conditional upon the explanatory variables)
is typically more challenging than to specify the distribution of a single yit . Most im-
portantly, it requires us to specify the dependence across different observations for the
same firm. A variant of this is to combine the multivariate likelihood approach with
a robust covariance matrix, assuming that conditions for consistency are still satis-
fied.We illustrate these latter two approaches with the linear model with random firm
effects from Section 2.6.

The linear model with random effects
Consider the linear random effects model given by

yit = x
′
itβ + αi + uit .

To be able to derive the likelihood function we need to impose distributional assump-
tions upon αi and uit, in addition to the usual random effects assumptions. Assuming
normality, we impose that

αi ∼ NID(0, σ
2
α)

and

uit ∼ NID(0, σ
2
u),

both independent of all explanatory variables in xit . Under these assumptions, the
vector of error terms εi, with typical element εit = αi + uit, is normally distributed with
mean zero and covariance matrix

Σε = σ
2
uIT + σ

2
αιT ι
′
T ,

where ιT is a T-dimensional vector of ones, and IT is the T ×T identity matrix. Accord-
ingly, the loglikelihood function under cross-sectional independence can be written
as

ln L(β, σ2u, σ
2
α) = −

TN
2

ln(2π) − N
2
ln |Σε| −

1
2σ2u

N
∑
i=1(yi − X′i β)′Σ−1ε (yi − X′i β), (6.24)

where σ2ε = σ
2
u + σ

2
α denotes the total error variance, and where |Σε| denotes the deter-

minant of the covariancematrix of the vector εi. The random effects assumptions lead
to

|Σε| = σ
2(T−1)
u (σ2u + Tσ

2
α).
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The error components structure simplifies the loglikelihood function, as Σ−1ε can de de-
termined analytically, and the first-order conditions can also be written in analytical
form (see Hsiao, 2014, Chapter 3). The resulting expression for theML estimator β̂ML is
similar to (2.66). The difference is that the loglikelihood function is optimised simulta-
neouslywith respect to β and the two variance components σ2u and σ

2
α. Thismeans that

the ML estimator for β and the RE (FGLS) estimator of Section 2.6 are asymptotically
equivalent, irrespective of whether the error components have a normal distribution.
In Stata, the ML version of the random effects estimator is obtained with xtreg, mle,
which can be combined with cluster-robust standard errors.

It is possible to specify more general forms of Σε, for example, to allow for het-
eroskedasticity or arbitrary correlationsover timewithin agivenfirm, at the expenseof
complicating the likelihood function and making numerical optimisation more chal-
lenging. For example, it may occur that the loglikelihood function is not globally con-
cave. The additional drawback of these approaches is that any misspecification in Σε
may also lead to an inconsistent estimator for β. In practice, researchers therefore tend
to prefer more standard estimators (in this context: quasi-maximum likelihood esti-
mators) in combinationwith standard errors that allow for clustering or heteroskedas-
ticity. While this is relatively straightforward in linear models, this may not always
work in nonlinear ones.

6.1.3 Pooled estimation approaches

In a standard cross-sectional case, a logit or probit model is typically estimated by
maximum likelihood, assuming that the sample is IID. As a first step, we can extend
this to the panel data case, by assuming independence over i and t (even though this
is often unrealistic). The probability of observing a given outcome yit is given by

f (yit | xit) = F(x
′
itβ)

yit (1 − F(x′itβ))1−yit ,
where f (⋅) is generic notation for a probability mass function. Accordingly, the loglike-
lihood function can be written as

ln L(β) =∑
i
∑
t
[yit ln F(x

′
itβ) + (1 − yit)(1 − F(x

′
itβ))], (6.25)

where the double summation follows from the independence assumption. The maxi-
mum likelihood estimator for β is obtained bymaximising this expressionwith respect
to β, after an appropriate choice for F is made. The first-order conditions of this prob-
lem are given by

𝜕 ln L(β)
𝜕β
=∑

i
∑
t
[

yit − F(x′itβ)
F(x′itβ)(1 − F(x′itβ)) f (x′iβ)]xit = 0, (6.26)
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where f denotes the derivative of F. The term in square brackets is often referred to
as the generalised residual of the binary choice model (Gourieroux et al., 1987), so
that the first-order conditions state that the regressors should be orthogonal to the
generalised residuals, within the sample.

Thefirst-order conditions arenonlinear in β and cannot be solvedanalytically. The
maximum likelihood estimator for β is therefore determined by numerically maximis-
ing the loglikelihood function, for which efficient algorithms are available. In Stata,
one can estimate these models with the probit or logit command. The asymptotic dis-
tribution of the resulting estimator β̂ML is derived from the general theory ofmaximum
likelihood. When F is the logistic distribution function, we can rewrite the first-order
conditions as

𝜕 ln L(β)
𝜕β
=∑

i
∑
t
[yit −

exp(x′itβ)
1 + exp(x′itβ)]xit = 0 (6.27)

or

𝜕 ln L(β)
𝜕β
=∑

i
∑
t
[yit − Λ(x

′
itβ)]xit = 0.

It can be shown that the maximum likelihood estimator for the binary choice
model are consistent even in cases where there is dependence across i or t (Robinson,
1982). This is a special case of the quasi-maximum likelihood approach discussed be-
fore. As result, it is quite common in panel data applications of binary choice models
in finance to more or less ignore the panel nature of the data by applying a standard
probit or logit estimator, but combining this with clustered standard errors to allow
for correlations within a cluster (either firms or periods). Importantly, though, this is
only appropriate if the error terms in the latent variable equation are homoskedastic.
The presence of heteroskedasticity in the latent variable equation affects the scaling
and functional form of themodel probabilities and this cannot be fixed by calculating
clustered standard errors.

A probit model with heteroskedasticity
To illustrate the problem of heteroskedasticity in a probit model, assume that

y∗it = x′itβ + εit ,
where εit is assumed to follow a normal distribution with variance

σ2it = (exp{z
′
itα})

2
, (6.28)

where zit is a vector of covariates, excluding an intercept, which may overlap with
xit . For α = 0, this reduces to the standard case with σ2it = 1. Now, the probability of
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observing yit = 1, conditional upon xit and zit, is given by

Pr(yit = 1) = Φ(
x′itβ

exp{z′itα}). (6.29)

If this is the correct model specification, the standard probabilities given in (6.6) are
misspecified and estimation of a standard probit model using QML will be inconsis-
tent. Effectively, introducing heteroskedasticity changes the functional form of the
model probabilities. This also affects the marginal effects, particularly so in cases
where elements of xit are included in zit . In Stata, the command hetprobit estimates
this model, where the user has to specify both the variables in xit and zit . Conver-
gence of the numerical optimisation routine may be slow or problematic. A test for
heteroskedasticity of the form in (6.28) against homoskedasticity (α = 0) can be ob-
tained using a likelihood ratio test.

6.1.4 Clustered standard errors

Even when there is dependence across i or t, it is possible to obtain consistent estima-
tors for β by maximising the pooled loglikelihood function in (6.25), ignoring the de-
pendence,which corresponds to quasi-maximum likelihood.Wooldridge (2010, Chap-
ter 13) refers to this as pooled maximum likelihood or partial maximum likelihood.
Cameron et al. (2011) refer to this as anm-estimator because the estimator is obtained
by optimising a function that is not necessarily the full likelihood function.

The key in this approach is that, in expectation, the maximum of the pooled like-
lihood function is the same as that of the full likelihood function. An intuitive way to
understand this, is to see that the first-order conditions of the pooled maximum like-
lihood approach also correspond to moment conditions that are valid in the presence
of dependence over i or t. For example, the first-order conditions for the pooled binary
choice model follow from E(yit | xit) = F(x′itβ) or

E(yit − F(x
′
itβ) | xit) = 0. (6.30)

This is a conditional moment condition, which implies unconditional moment condi-
tions of the form

E([yit − F(x
′
itβ)]w(xit)) = 0,

where w is a function of the explanatory variables in the conditioning set. For the
logit model, we obtain the population version of the first-order conditions in (6.27) for
w(xit) = xit (and F = Λ). For the probit model, we need

w(xit) = [
ϕ(x′itβ)

Φ(x′itβ)(1 −Φ(x′itβ))]xit .
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Even though this expression is a bit more complex than the one for the logit case, the
term in square brackets only affects the efficiency of the resulting GMM estimator, not
its consistency. With w(xit) being of dimension K, the number of parameters in β, the
GMM estimator is based on a set of exactly identified moment conditions. As long as
(6.30) is valid, setting the unconditional sample moments to zero, as in (6.26), will,
under regularity conditions, provide a consistent estimator for β.

For the pooled estimation approaches towork there are two important conditions.
First, the conditional mean of the binary indicator, F(x′itβ), should be correctly spec-
ified. Second, the dependence over i and t is somehow limited (see Robinson, 1982).
In these cases we can consistently estimate β from a pooled maximum likelihood ap-
proach and employ standard errors that are clustered along one or more dimensions
to account for the dependence. As with the linear model, we require the number of
clusters to grow with the sample size, which limits the dependence structure.

To see how this works, let us denote the moment conditions (or first-order condi-
tions) as

1
NT
∑
i
∑
t
sit(θ) = 0, (6.31)

where we denote the parameter vector as θ, to stress generality. For notational conve-
nience, the panel is assumed to be balanced, extensions to the unbalanced case being
reasonably straightforward. The pooled estimator is the solution to this set of restric-
tions and denoted by θ̂. Following Cameron et al. (2011), θ̂ is asymptotically normal
under standard regularity conditions, and the asymptotic covariance matrix of θ̂ can
be estimated as

V̂(θ̂) = Â−1B̂Â′−1,
where

Â =∑
i
∑
t

𝜕sit(θ)
𝜕θ′ θ̂ ,

and where B̂ is an estimate for

V(∑
i
∑
t
sit(θ)).

The covariance matrix thus has the usual sandwich structure, where the matrix B̂ in
the middle depends upon the clustering chosen. How we estimate this depends upon
the correlationswe allow between the different sits. In the case of clustering over firms
only, we can use

B̂ =∑
i
(∑

t
sit(θ̂))(∑

t
sit(θ̂))

′
.
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For clustering over time we reverse the role of i and t in the above expression. It is also
possible to cluster over both firms and time; see Cameron et al. (2011) for the general
expressions. Clustering over firms and time allows observations for the same firm to
be correlated over time, and allows observations in the same period to be correlated as
well. Importantly, themoment conditions in (6.31) need to remainvalid in thepresence
of clustering.

Pooled probit and pooled logit approaches, in combination with clustered stan-
dard errors, have become quite common in empirical work in finance. Often standard
errors are clustered at the firm-level, and fixed time effects are included in themodel to
accommodate aggregate shifts in the probabilities over time. Unfortunately, it seems
that much of the older literature employs pooled probit or logit (referred to as “maxi-
mum likelihood”) and simply ignores the possibility of dependence over time, or – if
not – does not mention anything on this issue in the text (see, for example, Pagano
et al., 1998). This has changed since the publication of Petersen (2009). For example,
Offenberg and Pirinsky (2015) use a pooled probit model to explain the probability
for a takeover deal to be structured as a tender offer, with standard errors clustered
at the year and industry level; Sun and Teo (2019) estimate pooled probit regressions
to model the probability of launching new funds for listed and unlisted hedge fund
management companies, with standard errors clustered at the firm level, and Boyson
et al. (2017) use a pooled logit model, with standard errors clustered by year and firm,
to explain the probability of receiving a takeover bid.

Note that, even though the clustered standard errors adjust for correlation within
a cluster, they do not address the problem of heteroskedasticity. Heteroskedasticity
in a binary choice model, in the sense that εit in (6.10) does not have constant vari-
ance, implies that the conditional expectation of yit is misspecified, and thus makes
the pooledmaximum likelihood estimator inconsistent. Accordingly, it does notmake
sense towrite that probit or logit standard errors are robust against heteroskedasticity.

6.1.5 Fama-MacBeth estimation

An alternative approach that attempts to control for the panel nature of the data is
inspired by the cross-sectional regression approach of Fama and MacBeth (1973), as
discussed in Section 2.12. In this case, a standard binary choice model is estimated
across different subsets of the sample, after which the estimates of interest are deter-
mined as the average over all subsamples,with a standard error based on the variation
across the subsamples. The typical approach in finance is to estimate a cross-sectional
logit or probit model for each period in the panel, and then to average the estimates
over the periods. For example, Fama and French (2001) and DeAngelo et al. (2006) es-
timate logit regressions explaining which firms pay dividend, separately for each year
in their sample, and use the time-series standard deviations of the annual coefficient
estimates to derive standard errors for the average coefficients.
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This approach is potentially attractive. As in the linear case, the Fama and Mac-
Beth (1973) approach accommodates within-period correlations across all firms. Im-
portantly, it does not allow for serial dependence, for example, attributable to firm-
specific time-invariant heterogeneity. Standard errors basedonNeweyandWest (1987)
or similar corrections based on the serial correlation in the estimated coefficients do
not help here either (see Petersen, 2009, formore discussion). An important condition
for the Fama-MacBeth approach to deliver a consistent estimator in nonlinear models
is that the estimation error in each period averages out when taking averages across
periods.

6.1.6 Binary choice models with random effects

The pooled probit approach may be able to consistently estimate the probability that
yit is equal to one, as a function of a set of characteristics xit, but it does not provide
information onhow the binary outcomes yit evolve dynamically or how the probability
that yi2 = 1 depends upon, for example, yi1. Whereas the use of clustered standard
errors allows for dependence across observations (within clusters), this dependence
is not modelled explicitly, because the likelihood function does not specify the joint
distribution of all outcomes. A random effects specification may remedy this.

Let us start considering the joint distribution of a set of binary outcomes for a
given firm, that is, yi1, . . . , yiT . In general, it is nontrivial to specify an attractive and
flexible form of dependence across a sequence of binary outcomes. To see this, let us
start from the latent variable specification

y∗it = x′itβ + εit ,
with, as before, yit = 1 if y∗it > 0 and 0 otherwise. Assuming independence over i,
the joint distribution of yi1, . . . , yiT is determined by the joint distribution of the set of
disturbances εi1, . . . , εiT . Because the logistic distribution has no flexible multivariate
form, it is common to impose a joint normal distribution upon the disturbances. To
determine the joint probability of a sequence yi1, . . . , yiT , we need to integrate the joint
density of y∗i1, . . . , y∗iT over the appropriate regions. Unfortunately, this is only feasible
if either the number of time periods is very small, or if a specific structure is imposed
upon the covariance matrix of εi1, . . . , εiT .

To illustrate this, let us consider the case of T = 3, and we impose that

(
εi1
εi2
εi3
) ∼ NID((

0
0
0
) ,(

1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1

)) ,

independent of all explanatory variables, where ρts = ρst denotes the correlation co-
efficient between εis and εit . From this, the joint probability of observing a sequence,
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say, yi1 = 1, yi2 = 0, yi3 = 1 is given by∞
∫
0

0

∫−∞
∞
∫
0

f (y∗i1, y∗i2, y∗i3)dy∗i1dy∗i2dy∗i3,
where f (⋅) denotes the joint density of the latent variables, conditional upon the ex-
planatory variables. This can be written as

∞
∫−x′i1β
−x′i2β
∫−∞
∞
∫−x′i3β f (εi1, εi2, εi3)dεi1dεi2dεi3,

which tells us that the probability to observe a sequence of binary outcomes is given
by the joint density of εi1, εi2, εi3 integrated over the relevant segments along three di-
mensions. Unfortunately, this three-dimensional integral cannot be simplified or de-
termined analytically. With T = 3 numerical integration is feasible, but with T = 4
or more, calculation of these joint probabilities, and thus estimation based on the
full likelihood function, becomes unfeasible due to the “curse of dimensionality”. Al-
though it is possible to circumvent this problemusing estimators based on simulation,
see, for example, Keane (1993) or Liesenfeld and Richard (2010), this has not become
very popular in finance.

Rather than ignoring any potential dependence (and work with a pooled probit
approach), it is possible to impose some structure on the covariance matrix of the dis-
turbances in the latent variable equation. An obvious choice to do so is to specify the
typical error components structure,

εit = αi + uit .

With this restriction, the probabilities of observing the outcomes yit are independent
conditional upon αi. The joint probability of observing a sequence yi1 = 1, yi2 = 0,
yi3 = 1 can then be written as∞

∫−∞[F(x′i1β + αi)[1 − F(x′i2β + αi)]F(x′i3β + αi)]f (αi)dαi, (6.32)

where f (αi) denotes the marginal distribution of αi, and where F(⋅) is the cumulative
distribution function of −uit . The three terms involving F(⋅) denote the marginal prob-
abilities of observing either yit = 0 or yit = 1, conditional upon the firm-specific time-
invariant heterogeneity in αi. The integral over the density of αi will have to be deter-
mined numerically (for which efficient algorithms are available).

The error components assumption allows dependence between the different out-
comes for the same firm, but only in a restricted way. All outcomes are driven by the
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same unobserved firm-specific heterogeneity, and conditional upon this element and
the explanatory variables, different outcomes are assumed to be independent. In prin-
ciple, arbitrary assumptions can bemade about the parametric distributions of uit and
αi (which determine the form of the functions F and f in (6.32)). A standard random
effects probit model is obtained if it is assumed that uit ∼ NID(0, 1), that is, standard
normal, and αi also has a normal distribution (with mean 0 and variance σ2α). This
is consistent with εit having a normal distribution with mean 0 and variance 1 + σ2α.
Accordingly, the full loglikelihood function for the random effects probit model for
arbitrary T is given by

ln L(β, σ2α) =
N
∑
i=1 ln

∞
∫−∞[

T
∏
t=1 Φ(x′itβ + αi)yit [1 −Φ(x′itβ + αi)](1−yit)]f (αi)dαi, (6.33)

where Φ denotes the standard normal cumulative density function, and f denotes the
normal density of αi, given by

f (αi) =
1
√2πσ2α

exp{− 1
2
α2i
σ2α
}. (6.34)

Importantly, the distribution of αi is assumed to be independent of any of the vari-
ables in xit . As always in binary choicemodels, a normalisation constraint needs to be
imposed upon the distribution of the unobservable error terms in the latent variable
equation. In this case, the normalisation chosen is that the variance of uit is equal to
one, so thatσ2α becomes a free parameter to estimate. It is also quite common to impose
that the variance of εit is 1. This is irrelevant for the implied probabilities, as well as
the marginal effects, but it does affect the scaling of the β coefficients in the model. In
Stata, the random effects probit model can be estimated with the command xtprobit,
re.

To illustrate the role of the scaling issue, note that the randomeffects probitmodel
implies that

Pr(yit = 1) = Pr(−εit < x
′
itβ) = F(x

′
itβ/√1 + σ2α),

which is different from the expression estimated with a pooled probit approach. Ac-
cordingly, depending upon the normalisation chosen, a random effects probit model
will yield different coefficient estimates for β than a pooled probit model, owing to the
difference in the scaling of the latent variable distribution.

Strictly speaking, a random effects logit model is not feasible. This is because
there is no multivariate logistic distribution for εi1, . . . , εiT that allows an arbitrary cor-
relation between the different time periods. Assuming that both αi and uit have a logis-
tic distribution does not imply that εit also has a logistic distribution. An alternative,
often referred to as a random effects logit model is to assume that uit has a logistic dis-
tribution, whereas αi has a normal distribution (with free variance). The loglikelihood
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function is similar to the one for the random effects probit, except that the functional
form of F is different. It should be noted, though that these assumptions are inconsis-
tent with a cross-sectional logit function, so that pooled estimation will not provide a
consistent estimator under the same assumptions. This random effects logit model is
estimated in Stata with the command xtlogit, re.

Similar to the fact that generalised least squares is more efficient that OLS (un-
der assumptions), so will random effects maximum likelihood estimation of the pro-
bit model, when properly specified, be more efficient than a pooled probit approach.
This is because the first exploits the dependence among the observations in estima-
tion. In addition, the random effects probit model provides explicit insight in the per-
sistence of the process determining the discrete outcomes yit . The variance of σ2α, or
rescaled to a correlation coefficient, ρ = σ2α/(1 + σ

2
α), is an additional parameter of in-

terest estimated in the random effects model. It tells us how important time-invariant
unobserved heterogeneity is to describe the randomness in the binary outcomes.

Malmendier and Tate (2005) use a randomeffects probitmodel to explainwhether
a CEO exercises a five-year old option that reaches at least 67% in-the-money;
Hertzberg et al. (2010) use it to model the probability of firm i entering default in
one year. A logit model with random firm effects, in combination with standard er-
rors clustered at the industry-year level, is employed in Maksimovic et al. (2013), who
model the probabilities that a firm buys (or sells) a plant in the next period. Unfor-
tunately, it is rarely the case that published papers present information about the
magnitude of the random effects, for example, by presenting the estimated value of
σ2α or the implied correlation coefficient. An exception is Christiansen et al. (2007)
who model the probability of stock market participation of individual investors.

Marginal effects
When determining the marginal effects, the firm-specific random component αi
should not be ignored. If you would set αi = 0 and then calculate the marginal ef-
fects, they would be over- or underestimated, because the firm-specific heterogeneity,
unrelated to the explanatory variables, is ignored. To be more precise, if we set αi = 0
we effectively estimate the median marginal effect. The appropriate approach is to
integrate αi out, in which case we estimate the average marginal effect. Because the
probabilities are nonlinear functions of xit and αi, the mean and median can be quite
different (depending upon the variance of αi); see Bland and Cook (2019) for more
details and discussion.

For a continuous variable, the mean marginal effect, for a given firm i and period
t, is given by

𝜕Pr(yit = 1 | xit)
𝜕xk,it =

∞
∫−∞ F′(x′itβ + αi)βkf (αi)dαi.
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In the random effects probit case, with F = Φ the standard normal distribution func-
tion, this can be simplified to

𝜕Pr(yit = 1 | xit)
𝜕xk,it =

βk
√1 + σ2α

ϕ(
x′itβ
√1 + σ2α

). (6.35)

This reduces to the standard expression if σ2α = 0. For a random effects logit specifica-
tion, such simplification does not exist.

Correlated random effects
Even though the random effects binary choice models allow for unobserved hetero-
geneity αi in the latent variable equation, an important assumption is that this het-
erogeneity does not depend upon the explanatory variables in xit . This is similar to
the linear random effects model. To allow αi to depend upon xit, two routes can be
chosen. One is to explicitly model the dependence and extend the model to incorpo-
rate this. For example, if we assume that

αi = β0 + x̄
′
i γ + vi,

we can include x̄i (and an overal intercept term) in the probit equation, and include vi
as a new unobserved component in the disturbances, independent of the explanatory
variables. This approach is chosen by Chamberlain (1980). In empirical work it is not
used very commonly. One reason is that, in financial data sets, the panel is typically
unbalanced so that the number of observations that can be used to calculate the aver-
age x̄i varies across firms.When determiningmarginal effects, it is appropriate to keep
the part relating to x̄i fixed, because this is only meant to control for the endogeneity
of xit that is attributable to αi. That is, when we interpret the model, a change in xit
is assumed to not affect αi. Wooldridge (2010, Section 15.8) provides more details and
conditions under which quantities of interest, such as average marginal effects, can
be identified. Extensions to unbalanced panels are discussed in Wooldridge (2019).

Alternatively, in some special cases it is possible to treat αi as fixed firm-specific
parameters and work with a fixed effects binary choice model. We discuss this in the
next subsection.

6.1.7 Binary choice models with fixed effects

When the termsαi are treated as fixedunknownparameters, there is noneed to impose
any distributional assumption upon them. More importantly, it allows αi to vary over
the cross-section in a way related to the observables in xit . To introduce the binary
choice model in this case, consider the latent variable equation

y∗it = αi + x′itβ + uit ,
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wherewe havemoved αi to the front to stress that it is a firm-specific intercept term. An
overall intercept is omitted from xit . Assuming that the idiosyncratic error term uit has
a symmetric distribution with distribution function F, IID across both firms and time,
independent of the explanatory variables in xit, the loglikelihood function is given by

ln L(β, α1, . . . , αN ) =∑
i
∑
t
yit ln F(αi + x

′
itβ)

+∑
i
∑
t
ln[1 − F(αi + x

′
itβ)]. (6.36)

Unfortunately, maximising this function with respect to β and αi (i = 1, . . . ,N), does
not result in a consistent estimator for either β or αi for fixed T and N → ∞. This is
caused by the fact that the number of parameters we are estimating increases with the
sample size, a problem known as the incidental parameters problem (Lancaster,
2000). With every new firm, there is a new intercept to estimate, and with fixed T we
only have a limited number of observations to estimate each of these intercept terms.
Because of the nonlinear nature of the model, the inconsistency carries over to the es-
timator for β. Greene (2004b) provides a Monte Carlo study examining the small sam-
ple properties of fixed effectsmaximum likelihood estimators in a variety of nonlinear
models and shows that the bias in estimating β is often quite substantial. In addition
to the bias in estimating the parameters of interest, the numerical optimisation of the
loglikelihood function above may be challenging if the number of firms, and thus the
number of parameters, is large (e. g., several thousands).

In the linear model with fixed effects discussed in Chapter 2, it is also impossible
to consistently estimate αi for fixed T. However, there the problem does not carry over
to the estimation of β. This canbeunderstoodbynoting that thewithin transformation
eliminates αi from the model, but leaves enough variation in the data to estimate the
slope coefficients (at least for the time-varying variables). In nonlinear models, such
as binary choice models, this trick does not work.

A feasible solution, at least in some cases, is to work with a conditional maxi-
mum likelihood approach (Chamberlain, 1980). Instead of working with the usual
likelihood function, this requires us to specify the conditional likelihood of observing
yi1, . . . , yiT , conditional upon a “sufficient statistic” ti. The trick is that, once we condi-
tion upon ti, in some specific cases the incidental parameters αi drop out. As a result,
we can maximise the conditional likelihood function with respect to β only, and this
provides a consistent estimator. For the binary choice case, the question whether or
not such a sufficient statistic ti exists, depends upon the functionwe choose for F. This
allows us to estimate a fixed effects logit model, but not a fixed effects probit model.

The fixed effects logit model is estimated using ti = ȳi as a sufficient statistic.
To derive the conditional likelihood function, one needs to derive the probability of
a sequence yi1, . . . , yiT (as a function of αi and x′itβ), conditional upon the average ȳi.
In general, this is cumbersome to do (although reasonably straightforward). Let us
consider the simplest casewithT = 2. First, note that conditional upon ȳi = 0, the only
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possible outcomes are yi1 = 0 and yi2 = 0, so that these observations do not help in
estimating β. Similarly, conditional upon ȳi = 1, the only possible outcomes are yi1 = 1
and yi2 = 1. Again, these observations do not contribute anything to the conditional
likelihood function. This implies that, similar to the linear fixed effects model, time-
variation is essential to identify the role of explanatory variables. Another way to see
this is to note that, if a firm does not change status over the sample period, we can
estimate αi as being plus or minus infinity, leaving no role for x′itβ. Identification in
the fixed effects logit model rests upon firms that change status over time within the
sample period. This requirement may substantially reduce the effective sample size in
applications.

Given that the only relevant observations are those that change over time, we fo-
cus on ȳi = 1/2 and T = 2. Conditional upon ȳi = 1/2, the only possible sequences
of outcomes are (0, 1) and (1,0). The conditional probability of observing a sequence
(0, 1) is given by

Pr(yi1 = 0, yi2 = 1 | ȳi = 1/2) =
Pr(yi1 = 0, yi2 = 1)

Pr(yi1 = 0, yi2 = 1) + Pr(yi1 = 1, yi2 = 0)
.

The bivariate probabilities in the expression are given by the standard logit expres-
sions, noting that (conditional on the fixed effects αi) the two outcomes are indepen-
dent. That is,

Pr(yi1 = 0, yi2 = 1) = Pr(yi1 = 0)Pr(yi2 = 1)

with

Pr(yi2 = 0) =
1

1 + exp(αi + x′i1β)
and

Pr(yi2 = 1) =
exp(αi + x′i2β)

1 + exp(αi + x′i2β) .
Combining all this, and after some rewriting, it follows that

Pr(yi1 = 0, yi2 = 1 | ȳi = 1/2) =
exp((xi2 − xi1)′β)

1 + exp((xi2 − xi1)′β) . (6.37)

The important finding here is that the resulting expression does not depend upon αi
anymore, as they cancel out in the derivations. Unfortunately, this result is specific
to the logit model; if we replace the distributional assumption by a normal one (i. e.,
F = Φ), αi does not cancel out and ȳi cannot play the role of a sufficient statistic.

According to the above results, we can estimate a fixed effects logit model using
the conditional maximum likelihood approach. For T = 2 this reduces to modelling
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the event of observing (0, 1) versus that of observing (1,0) and the explanatory vari-
ables correspond to the change in xit from period 1 to 2. In this sense, conditioning
upon ȳi has the same effect as first-differencing or within transforming the data in a
linearmodel. Clearly, time-invariant variableswill be dropped from themodel (as their
role cannot be separated from αi). For the case with larger T, it is quite cumbersome to
derive all relevant conditional probabilities, but it in principe it is a straightforward ex-
tension of the above case (see Chamberlain, 1980; Maddala, 1987). Interestingly, this
way of estimating a fixed effects logit model is not equivalent to maximising the log-
likehood function for the logit model with N intercepts in (6.36). The latter approach
remains inconsistent (see Hsiao, 2014, Section 7.3.1, for an example with T = 2, where
plim β̂ = 2β).

To determine the asymptotic covariance matrix of the conditional maximum like-
lihood estimator, we can simply use the general theory for estimation by maximum
likelihood, while replacing the likelihood contributions with conditional likelihood
contributions in all expressions. Put differently, we can ignore the fact that we work
with a conditional likelihood function. The inclusion of fixed time effects is not prob-
lematic as long as the cross-section is sufficiently large. Accordingly, the inclusion of
time dummies does not cause any problems and captures the role of aggregatemarket-
wide changes in the average probability of observing yit = 1. The fixed effects logit
model, estimated by conditional maximum likelihood, is available in Stata with the
xtlogit, fe command. Clearly, xtprobit, fe is not supported.

An example of the fixed effects logit model in finance is given in Hsu (2004), who
estimates the probability that an offer from a venture capitalist is accepted by a start-
up. Inhis case, thepanel nature is obtainedby consideringmultiple offers for the same
start-ups (so that the offer is the unit of analysis). His model is estimated using the
conditional maximum likelihood approach including start-up fixed effects. This way,
it is possible to control for unobservable differences in start-ups (most importantly
their quality) that may also correlate with offer characteristics. Another example is
Ma (2019), who models the probability of simultaneous issuance and repurchases by
firms (e. g., issuing additional debt, while also repurchasing equity) as a function of
variables reflecting the costs of debt and equity. Controlling for firm fixed effects al-
lows the author to focus on how a given firm’s action changes over time in light of the
relative pricing of its debt and equity.

An extension to three-dimensional data is provided in Granja et al. (2017), who
model the probability that a potential acquirer j acquires a failed bank i in quarter t,
as a function of the financial and asset characteristics of the potential acquirer (adding
up to more than 3 million observations). They estimate alternative logit models with
quarter fixed effects, with failed bank fixed effects, potential acquirer fixed effects or
potential acquirer-quarter fixed effects. Several of these specifications are estimated
using the conditional maximum likelihood approach discussed above (with substan-
tial reductions in the number of observations). In all cases, standard errors are clus-
tered at the failed bank’s state headquarters. This implies that the number of clusters
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is relatively small (in relation to the sample size), and it allows for many potential
cross-correlations. The small-sample performance of such clustered standard errors
may be suboptimal (see the discussion in Section 2.5 and Cameron and Miller, 2015).

A drawback of the fixed effects logit model is that, in the absence of knowledge
about αi, it does not specify the full distribution of the outcomes. Accordingly, inter-
pretation of the resulting estimates in terms of marginal effects is not possible. The
fixed effects model simply does not allow calculation of probabilities for yit = 1 in
the absence of knowledge of αi. Unfortunately, the magnitude of the marginal effects
depends upon αi. This is intuitive: a firm with a very large value for αi will have prob-
abilities of observing yit = 1 very close to one, so that the marginal effect of a change
in one of the explanatory variables can only be very small. It is possible, however, to
calculate marginal effects for the probability of a change from, for example, yi1 = 0
to yi2 = 1, similar to the conditional probabilities derived above. Another approach is
to interpret the model in terms of the log odds ratio, which is not affected by the in-
cidental parameters. Many papers also report estimates for a linear probability model
with fixed effects, in companion with a fixed effects logit, to ease the interpretation
in terms of marginal effects; see, for example, Marin and Olivier (2008), who predict
the probability of a crash for stock i in period t, as a function of measures of insider
trading.

6.1.8 Goodness-of-fit

A goodness-of-fit measure is a summary statistic indicating the accuracy with which
a model approximates the observed data, like the R2 measure in the linear regression
model. When the dependent variable is qualitative, there is no single measure for the
goodness-of-fit and a variety of measures exists; see Cameron and Trivedi (2005, Sec-
tion 8.7) for a general discussion of alternative goodness-of-fit measures in nonlinear
models. In a linear model, the R2 has multiple interpretations. First, it is the squared
correlation coefficient between fitted values and observed values, second, it is the ex-
plained variance in the dependent variable as a proportion of the total variance, and
third, it measures the increase in fit (in terms of sums of squares) of the model relative
to a model without any explanatory variables.

The most popular approach in limited dependent variable models is based on the
latter idea and compares the estimated model with a simpler version that only in-
cludes an intercept term. To formalise this, let ln L1 denote themaximum loglikelihood
value of the model of interest and let ln L0 denote the maximum value of the loglikeli-
hood functionwhen all parameters, except the intercept, are set to zero. The larger the
difference between the two loglikelihood values, the more the extended model adds
to the very restrictive model. The most popular measure based on this comparison is
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proposed by McFadden (1974) and is given by

pseudo-R2 = 1 − ln L1
ln L0
. (6.38)

Because the loglikelihood is the sum of log probabilities, it follows that ln L0 ≤ ln L1 <
0, so that the pseudo-R2 takes on values in the [0, 1] interval only. The upper bound of 1
is only attained if all estimated probabilities in the loglikelihood function are equal to
1, which is unrealistic. In practice, goodness-of-fit measures in binary choice models
are usually well below unity.

The above goodness-of-fit measure can be reported in case themodel is estimated
using a pooled maximum likelihood approach, although it completely ignores poten-
tial serial correlation, or – more generally – within-cluster correlation. It can also be
reported as the average goodness-of-fit measure over all periods in a Fama-MacBeth
version of the estimator. In either case, interpretation is relatively loose and, at best,
the goodness-of-fit is used to compare alternative specifications of the model (based
on the same estimation method), not as an absolute measure of the quality of the
model. In principle, the abovemeasure can also be used to calculate a pseudo-R2 for a
randomeffects probitmodel, using the appropriate loglikelihood function. Note that a
perfect fit in a random effects model also needs the random effects to be zero, so an R2

of one becomes evenmore unrealistic. In practice, goodness-of-fit measures for panel
binary choice models are rarely reported.

Another perspective on goodness-of-fit is provided by comparing observed out-
comes, yit, with predicted outcomes, ŷit, say. One can generate predictions by translat-
ing the estimated probabilities implied by the model into a 0-1 outcome. For example,
in the pooled case, the probability of observing yit = 1 is estimated as F(x′it β̂), with the
appropriate choice for F. A natural prediction is then ŷit = 1 if F(x′it β̂) > 0.5 or x′it β̂ > 0,
and 0 otherwise. Based on a cross-tabulation of actual and predicted outcomes, sev-
eral goodness-of-fit measures can be developed. For example, Henricksson and Mer-
ton (1981) focus on the proportions of correctly predicted 0’s and correctly predicted
1’s and show that their sum should exceed 1 for a goodmodel. This approach can also
be applied to the panel case, provided we can determine univariate probabilities. For
the random effects models, this requires integrating out the random effects. Whereas
this does not directly lead to ameasure in the interval [0, 1], it provides an easy way to
compare acrossmodels. Lahiri and Yang (2013) provide a survey on forecasting binary
outcomes and how to evaluate them, and also discuss extensions to panel data.

6.1.9 Binary choice models and instrumental variables

The standard binary choice model assumes that the explanatory variables are exoge-
nous, and one estimates the conditional probability that yit = 1 given xit . These prob-
abilities do not reflect causal effects if an explanatory variable is endogenous. For ex-
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ample, Edmans et al. (2012) are interested in estimating effect of a firm’s discount on
the likelihood of a takeover bid. Discount is the discount at which a firm trades rela-
tive to itsmaximumpotential value absentmanagerial inefficiency andmispricing, for
example, the difference between the net asset value (NAV) of a closed-end fund and
its market price. The magnitude of the discount is likely to depend upon the extent to
which themarket anticipates the probability of takeover, and is therefore endogenous.
A low discount is more likely when the market anticipates a takeover. It is possible to
address this concern using an instrumental variable approach, although it requires a
few more assumptions than in the linear case.

To see how this works, consider the latent variable specification,

y∗1,it = x′itβ1 + β2y2,it + εit , (6.39)

where y2,it is the endogenous explanatory variable, and we observe y1,it = 1 if y∗1,it > 0
and 0 otherwise. We complement this with a reduced form equation for y2,it as

y2,it = x′itγ1 + z′itγ2 + ηit , (6.40)

where zit is a vector of one or more instruments. The two error terms, εit and ηit, are
assumed to be jointly normally distributed with zeromean, independent of xit and zit,
and covariance matrix

Σ = (
1 σεη
σεη σ2η

) ,

where the variance of εit is normalised to 1, as is usual for a probit model. The variable
y2,it is endogenous in equation (6.39) if the covariance between the two error terms,
σεη, is nonzero. If σεη = 0, (6.39) can be estimated with standard probit methods.

The model in equations (6.39)–(6.40) can be estimated by pooled maximum like-
lihood, where – as usual – the panel nature is ignored except in the calculation of
the standard errors. The expression of the pooled loglikelihood function is reason-
ably straightforward. This is employed in Edmans et al. (2012), using mutual fund in-
vestor flows as an instrument in zit, assuming this is sufficiently exogenous. Despite
the fact that their standard errors are adjusted for heteroskedasticity and correlation
clustered at the firm level, heteroskedasticity will typically lead to an inconsistent es-
timator here. The validity of the instrument in Edmans et al. (2012) (and many related
studies) is recently challenged (e. g., Wardlaw, 2020), because it would not properly
identify liquidity needs of mutual fund investors that are truly exogenous to firm fun-
damentals.

As an alternative to the bivariate maximum likelihood approach, the model can
be estimated with a two-step estimator, also known as the control function approach
(Rivers and Vuong, 1988). In this approach, equation (6.40) is estimated by pooled
OLS and the residuals of this equation are added to the equation of interest in (6.39).
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This is appropriate, because the conditional distribution of εit, given y2,it (and xit and
zit) is also normal, with a nonzero mean given by

E(εit | y2,it , xit , zit) = σεησ2η ηit .
This allows us to rewrite (6.39) as

y∗1,it = x′itβ1 + β2y2,it + β3ηit + ε∗it , (6.41)

where β3 = σεη/σ2η, and ε
∗
it is a mean zero normal error term with variance

1 − ρ2εη,

where ρεη = σεη/ση, the correlation coefficient between εit and ηit . These expressions
follow from those of a conditional normal distribution. Estimation can be done by
applying standard probit ML to (6.41), replacing the unobserved error term ηit by the
residual η̂it . Taking into account the different normalisation constraints, this provides
consistent estimators for the parameters in (6.39), while controlling for the endogene-
ity of y2,it . A test for β3 = 0 is a test for endogeneity. Identification requires that γ2 ̸= 0,
so that the instruments are relevant. Because of the normality assumption, this ap-
proach only makes sense if the endogenous explanatory variable y2,it is continuous.
An application of this can be found in Bradley et al. (2010), where y1,it indicates an
attempt to open-end a closed-end fund, y2,it is the discount, and zit includes three dif-
ferent instruments.

The maximum likelihood estimator is typically more efficient in large samples
than the two-step approach, but computationally more demanding. For the two-step
approach, the standard errors in the second step need to be adjusted to take into ac-
count the fact that ηit is estimated rather than observed. Both themaximum likelihood
estimator and the two-step estimator are available in Stata using ivprobit. Extensions
of the two-step approach to panel data, with random effects in both equations, are
presented in Vella and Verbeek (1999b).

In case the endogenous explanatory variable y2,it is binary (e. g., Sun and Teo,
2019), the two-step approach typically does not lead to consistent estimators, even if
the first-stepmodel is replaced by probit, and the residual by a generalised residual. In
these cases, a bivariate probit model would make more sense; see Wooldridge (2010,
Section 17.7.3).

6.2 Multiple outcomes

As the name indicates, binary response models are developed to explain a binary out-
comeonly. Several extensions are available to explainmultiple different outcomes. For
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example, we may be interested in explaining the credit rating of a bond (Blume et al.,
1998), or the likelihood of a firm using different types of currency derivatives (or non
at all) (Gézky et al., 1997). An important distinction exists between ordered response
models andunorderedmodels. Anordered responsemodel is generallymore parsimo-
nious but is only appropriate if there exists a logical ordering of the alternatives. The
reason is that it assumes there is one underlying latent variable that drives the choice
between the alternatives. Consequently, empirical results will be sensitive to the or-
dering of the alternatives. Unordered models are insensitive to the way in which the
alternatives are numbered. In either case, the ambition is to model the probabilities
of each of the different outcomes in a relatively parsimonious way, as well as logically
consistent. For example, all probabilities should be in the [0, 1] interval and add up to
one across all alternatives.

6.2.1 Ordered probit and ordered logit

Let us consider a situation withM different outcomes, numbered from 1 toM. For ex-
ample, Blume et al. (1998) explain the bond rating of a panel of firms where the de-
pendent variable is assigned the value of 4 if bond i at time t has a rating by S&P
of AAA, 3 if AA, 2 if A, and 1 if BBB. Similarly, Ashbaugh-Skaife et al. (2006) explain
a firm’s credit rating in seven categories. Because there is a natural ordering in these
outcomes, an ordered responsemodel canbeused. Themodel is based on the assump-
tion of a single underlying latent variable, with a mapping from the latent variable y∗it
to the observable outcomes yit . In particular, it is as assumed that

y∗it = x′itβ + εit (6.42)
yit = j if γj−1 < y∗it ≤ γj,

for unknown γj, with γ0 = −∞, γ1 = 0 and γM = ∞. Consequently, the probability
that outcome j is observed is the probability that the latent variable y∗it is between the
two boundaries γj−1 and γj. Assuming that εit is IID standard normally distributed,
independent of the explanatory variables in xit, leads to the ordered probit model, im-
posing a logistic distribution produces the ordered logit model. When there are only
two alternatives (M = 2), we obtain the binary choicemodel. One of the earliest imple-
mentations in finance of the orderedprobitmodel is provided inHausman et al. (1992),
who use it to model the conditional distribution of trade-to-trade price changes.

The pooled loglikelihood function is determined by the probabilities of observing
each of the outcomes 1, 2, . . . ,M. These probabilities are also important ingredients for
the interpretation of the model and its coefficients. If, as an example, we focus on the
model with four alternatives, there are two unknown boundaries γ1 and γ2 that need
to be estimated, along with β. The relevant probabilities are

Pr(yit = 1 | xit) = Pr(y
∗
it ≤ 0 | xit) = F(−x

′
itβ)
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Pr(yit = 2 | xit) = Pr(0 < y
∗
it ≤ γ1 | xit) = F(γ1 − x

′
itβ) − F(−x

′
itβ)

Pr(yit = 3 | xit) = Pr(γ1 < y
∗
it ≤ γ2 | xit) = F(γ2 − x

′
itβ) − F(γ1 − x

′
itβ)

Pr(yit = 4 | xit) = Pr(y
∗
it > γ2 | xit) = 1 − F(γ2 − x

′
itβ),

where F is the appropriate distribution function. The interpretation of the coefficients
in β is readily done in the latent variable framework. With a positive coefficient, we
can interpret the corresponding explanatory variable as increasing the expected la-
tent outcome, other things equal. The precise impact on the different probabilities is a
bit more subtle. If βk > 0, an increase in xk,it increases the probability of j = 4, and de-
creases the probability of j = 1. However, the effect for the intermediate probabilities
(for j = 2 and j = 3) may be either positive or negative. If the focus is on Pr(yit ≤ m | xit)
for a givenm, the signs of themarginal effects are unambiguously determinedby those
of β. (This is because these are effectively binary probit or logit expressions.) In gen-
eral, marginal effects can be estimated in a straightforward way following the logic
discussed for binary models.

For the case with M = 4 alternatives, Figure 6.2 shows the (normal) distribution
of the latent variable y∗it , with a mean of x′itβ and a variance of 1. A shift in the single
index x′itβ moves the curve to the left or the right, while the boundaries 0, γ1 and γ2
stay fixed. The probability mass within two boundaries determines the probability of
observing a given outcome yit . With the curve shifting horizontally, the probabilities
of the two intermediate outcomes may either increase or decrease, depending upon
its initial position.

Figure 6.2: The ordered probit model.
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Much of the discussion for the standard probit and logit models extends to the cur-
rent case. The estimation by a pooled maximum likelihood approach is reasonably
straightforward, where the probabilities listed above enter the loglikelihood function.
The unknown boundaries γ1 and γ2 are estimated simultaneously with β. It is possible
to include fixed time effects (provided T is small relative to N) and to use standard er-
rors clusters over firms and/or time. Blume et al. (1998) employ standard errors based
on the Newey-West approach to accommodate serial correlation in the unobservables
in εit . The ordered probit model can be estimated in Stata with the oprobit command,
albeit that it imposes a different normalisation constraint. Rather than setting the
boundary γ1 to zero, it excludes the intercept term from xit . This is entirely equivalent,
and the model probabilities (and estimated β coefficients) are not affected.

As in the binary case, heteroskedasticity of εit violates the functional forms of
the probabilities and therefore cannot be addressed using clustered standard errors.
Blume et al. (1998) extend the model above by allowing the variance of εit to depend
upon an explanatory variable as7

σ2it = V(εit) = [exp(z
′
itα)]

2
,

similar to the heteroskedastic probit model discussed in Subsection 6.1.3. Its incorpo-
ration requires a straightforward adjustment of the model probabilities and the pa-
rameters in α can be estimated jointly with the other parameters.8 For example, Go-
ergen et al. (2005) use an ordered probit model to explain whether firms decide to
cut, maintain, or increase their dividends, allowing for heteroskedasticity. However,
the marginal effects will be affected, particularly if the variables in zit are functions of
those in xit . To illustrate this, note that the probability of observing yit = 1, conditional
upon xit and zit, is given by

Pr(yit = 1 | xit , zit) = Pr(y
∗
it ≤ 0 | xit , zit) = F(−

x′itβ
exp(z′itα)).

When zit = xit, or if some elements overlap, it is clear that a change in one of the
explanatory variables affects the probability through x′itβ and z′itα. This makes the
marginal effects different from the standard expressions. Further, it does not make
sense to present estimates for β without reporting those for α. This is because the β
vector cannot be interpreted in isolation. The heteroskedastic ordered probit model
can be estimated by pooledmaximum likelihood, available in the Stata command het-
oprobit.

7 To allow this, the conditioning set of the model must include zit .
8 As a normalisation constraint, Blume et al. (1998) set the intercept term in the latent variable equa-
tion (in one period) to zero; this allows them to estimate αwithout restrictions. If not, a normalisation
constraint has to be imposed upon α.
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It is also possible to specify a random effects ordered probit model. This allows
the presence of serial correlation in εit driven by a time-invariant unit specific compo-
nent, which is exploited in estimation. For example, Afonso et al. (2009) use a random
effects ordered probit model to estimate the determinants of sovereign credit ratings,
in 17 different levels. It is possible to combine the random effects probit approachwith
cluster-robust standard errors, provided the panel variable is nestedwithin the cluster
variable. This is available in the Stata command xtoprobit.

6.2.2 Multinomial models

In several cases, there is no natural ordering in the alternatives, and it is not realistic to
assume that there is amonotonic relationship between one underlying latent variable
and the observed outcomes. Suppose, as before, that there areM alternatives, denoted
j = 1, 2, . . . ,M. Different from the models above, the order and numbering of the alter-
natives is arbitrary. For example, to test the pecking order theory, Helwege and Liang
(1996) try to explain whether a firm issues public bonds, private debt or public equity,
given that the firm has chosen to obtain external financing.

In the absence of a natural ordering, it is not possible to define the probabilities of
each of the outcomes, conditional upon a set of explanatory variables, as a function
of a single latent variable. Instead, we start with defining a set of M latent variables,
and assume that

y∗j,it = x′j,itβ + εj,it , j = 1, 2, . . . ,M,

where xj,it is a set of characteristics that depend upon the alternative. We can loosely
interpret y∗j,it as the utility of firm i in period t of choosing alternative j. The terms εj,it
contain factors, unobservable to the econometrician, affecting these utility levels, and
are assumed to be random. Firms are assumed to choose the alternative providing the
highest utility level. Under appropriate distributional assumptions about the unob-
servables, this structure implies that

Pr(yit = j) =
exp(x′j,itβ)
∑Mh=1 exp(x′h,itβ) , (6.43)

where, for notational convenience, the explanatory variables are omitted from the
conditioning set. It is easily seen that theseM probabilities add up to one by construc-
tion. Moreover, all probabilities are necessarily bounded between 0 and 1. Because
utility levels are not observed, it is common to normalise the deterministic part for
one of the alternatives to zero, for example, by setting x′1,itβ = 0. Equivalently, one can
rewrite (6.43) by dividing both numerator and denominator by exp(x′1,itβ). This effec-
tivelymeans that the alternative-specific characteristics aremeasured relative to those
of the first alternative (j = 1).
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The above model is known as the conditional logit model, attributable to
McFadden (1974). A positive coefficient means that the utility of an alternative im-
proves if the corresponding characteristic increases, other things equal. It is possible
to derive the marginal effects, quite similar to a standard binary logit model. These
marginal effects are specific to each alternative, so they assume that the characteris-
tics of the other alternatives are fixed.

A closely related model is the multinomial logit model. The difference is that
in this model the explanatory variables do not vary across alternatives, but only over
firms and periods. Instead, the coefficients are alternative-specific. We can write the
relevant probabilities as

Pr(yit = j | xit) =
exp(x′itβj)

1 +∑Mh=2 exp(x′itβh) , j = 2, . . . ,M, (6.44)

wherewehave chosenalternative 1 as thebase case (i. e.,wehave imposed thatβ1 = 0).
The model coefficients are therefore relative to the omitted outcome (which has no
coefficients to report). In the multinomial logit model we thus estimate a set of slope
coefficients and an intercept for each of theM−1 alternatives. It is possible to combine
firm-specific and alternative-specific variables in the model, leading to a mixed logit
model. All thesemodels can be estimated in Stata, using pooledmaximum likelihood,
with the cmclogit command.

Despite the attractiveness of the analytical expressions given in (6.43) and (6.44),
these models have one big drawback, which is most easily seen from the odds ratio
between two alternatives. For example, the conditional logit model implies

Pr(yit = 2)
Pr(yit = 1)

= exp(x′2,itβ),
irrespective of the number of other alternatives or their nature. This means that the
relative odds of alternative 2 versus alternative 1 do not depend upon any of the other
alternatives. This is particularly problematic if two alternatives are similar in nature.
McFadden (1974) calls this the assumption of independence of irrelevant alterna-
tives (IIA), with an illustrative example of choosing amode of transportation, and two
of the alternatives being “blue bus” and “red bus” (rather than “bus”). The crucial
reason for this restriction is that, in the random utility framework, the different εj,its
are assumed to be independent across alternatives. Hausman and McFadden (1984)
propose a test for the IIA restriction based on the result that the model parameters
can be estimated consistently by applying a multinomial logit model to any subset
of alternatives. The test compares the estimates from the model with all alternatives
to estimates using a subset of alternatives. This way, the IIA property can also be ex-
ploited and become an advantage, in the sense that part of themodel can be estimated
without specifying (and observing) detailed alternatives (see Ljungqvist andWilhelm,
2005, for an example explaining the choice of the SEO lead manager).
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As an alternative, it is possible to impose a multivariate normal distribution upon
the εj,its, leading to a multinomial probit model (or conditional probit model), see
Hausman and Wise (1978). This model is not very popular among empirical schol-
ars, partly because its estimation involves a difficult maximum likelihood optimisa-
tion problem that sometimes fails to converge, even with cross-sectional data.

With panel data, the conditional logit model and themultinomial logit model can
be estimated by a pooled maximum likelihood approach, where the probabilities of
the observed outcomes enter the loglikelihood function. As with other models, it is
possible to allow for some dependence across observations by clustering the standard
errors. For example, Puri and Zarutskie (2012) track firms from their year of entry and
model the probability of an IPO, acquisition or shut down, relative to the probability
of no exit, to investigate the role of financing by venture capitalists, and estimate a
multinomial logit model with standard errors clustered at the firm-level. Controlling
for heteroskedasticity does not appear to makemuch sense here. If the unobservables
in the latent variable equations are heteroskedastic, this means that the scaling of the
latent variables is different across observations (or across alternatives), and themodel
probabilities no longer correspond to the attractive expressions given above.

To some extent, it is also possible to add random effects to themodel. In themulti-
nomial case, this would involve the inclusion of a firm-specific time-invariant compo-
nent for each of the alternatives, except the base one, and impose distributional as-
sumptions upon them, for example, normality. The probabilities are first determined
conditional upon the random effects, which are subsequently integrated out. This is
similar to the random effects binary logit model. Because the integration over the ran-
dom effects has to be done numerically, estimation may take a bit more time and the
number of alternatives should be limited. Implementation in Stata would require the
gsem command. It is also possible to estimate a fixed effects multinomial logit model,
using a variant of the conditional maximum likelihood approach discussed for the bi-
nary case (Chamberlain, 1980). Neither of these twoapproaches appears very common
in financial applications.

6.3 Tobit models

6.3.1 Introduction to censoring

Occasionally, we wish to explain variables that are a mixture of a discrete outcome
and a wide range of continuous outcomes. For example, yit may denote the amount of
share repurchases of a firm (e. g., Dittmar, 2000), the fraction of a household’s wealth
invested in risky assets (e. g., Angerer and Lam, 2009), or the proportion of foreign
sales that a firm hedges against currency risk (e. g., Huang et al., 2019). In each of
these cases, the variable of interest is likely to have a substantial proportion of obser-
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vations equal to zero. An appropriate model for such variable should explicitly take
into account the probability mass at zero.

It is useful to think of the outcomes yit as potentially the result of two different de-
cisions. First, the participationdecision,whichdescribeswhetherweobserve a zero or
not. Second, the outcome decision resulting in a wide range of non-zero values for yit .
These two decisions may be captured by the same process, for example, if the optimal
or desired outcome for a firmwould be negative, the actual outcome being censored at
zero. The two decisions should be modelled separately (but not independently) if the
decision to participate is affected by other factors than the (potential) outcomes. There
is a variety of tobit or censored regression models that can be used in these cases.

A first approach is to use a censored regression model, typically referred to as a
tobit model (Tobin, 1958). It consists of a latent variable equation and an observation
rule that tells us when the latent variable is observed, and when a discrete outcome is
observed. The standard model, in panel notation, is given by

y∗it = x′itβ + εit , (6.45)

where we observe

yit = y
∗
it if y∗it > 0,

yit = 0 otherwise.

The usual assumption, consistent with the cross-sectional case, is that εit is indepen-
dently and identically normally distributed with mean zero and variance σ2ε , inde-
pendent of the explanatory variables in xit . Note that this model is similar to a pro-
bit model, except that the latent variable is partially observed (as a result of which
no normalisation constraint is required). Figure 6.3 depicts the regression line corre-
sponding to the latent variable equation (in the bivariate case), where all values for y∗it
below 0 are set to zero. Clearly, fitting a straight line to all observations yit and xit, as
done by OLS ignoring the censoring, results in a biased estimator for the intercept and
slope of the model. The model in (6.45) is a censored regression model: it is a linear
regression model where the dependent variable is censored at zero. That is, negative
values are mapped to zeros. Often, we can interpret yit = 0 as a corner solution.

A tobit model thus describes two elements of the distribution of yit . First, it gives
the probability of observing a zero outcome, similar to that of a binary choice model.
In this case

Pr(yit = 0 | xit) = Pr(y
∗
it < 0 | xit) = Pr(

εit
σε
≤ −

x′itβ
σε
) = 1 −Φ(

x′itβ
σε
), (6.46)

whereΦ, as before, denotes the standard normal distribution function. Second, it pro-
vides the distribution of yit, conditional on being positive. This is a truncated normal
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Figure 6.3: The tobit model with censoring at 0.

distribution with expectation

E(yit | xit , yit > 0) = x
′
itβ + E(εi | εit > −x

′
itβ) = x

′
itβ + σε

ϕ(x′itβ/σε)
Φ(x′itβ/σε) , (6.47)

where ϕ is the standard normal density. The last term in this expression is positive
anddenotes the conditional expectation of amean-zero normally distributed variable,
conditional on the fact that it exceeds −x′itβ. The result in (6.47) explains why it is in-
appropriate to restrict attention to the positive observations only and estimate a linear
model from this subsample: the conditional expectation of yit differs from x′itβ and is
actually nonlinear in xit .

Marginal effects
The coefficients in the tobitmodel canbe interpreted in several differentways, depend-
ing onwhat is the question of interest. Similarly, several differentmarginal effects can
be distinguished. In case the latent variable has a relevant economic interpretation
(e. g., desired level of the outcome variable), we can interpret the β coefficients as de-
scribing themarginal effects on the expected value of y∗it . Typically, we would bemore
interested in the marginal effect of a variable on the probability of having a zero out-
come, in the marginal effect on yit for the subpopulation for which yit is nonzero, or
in the marginal effect on the expected value of yit . While these marginal effects are
all determined by the same equation with the same coefficients, their magnitudes are
different. Importantly, the key parameter in the marginal effect is βk and, in general,
the sign of the marginal effect of xk,it, on both the probability of observing a non-zero
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value and the level of yit, will correspond to the sign of βk . This is an important restric-
tion of the standard tobit model: a variable that has a positive impact on participation
(say, the decision of a household to hold risky assets) well also have a positive impact
on the expected value of the outcome (say, the fraction of household wealth invested
in risky assets). Extensions discussed below are able to relax this.

The marginal effect of a change in xk,it on the probability of observing a zero out-
come is derived along the same lines as in the probit model. From (6.47) it follows that
the expected value of yit is given by

E(yit | xit) = x
′
itβΦ(x

′
itβ/σε) + σεϕ(x

′
itβ/σε),

from which it follows that the marginal effect of a change in xk,it, other things equal,
is given by (Greene, 2011, Section 19.9)

𝜕E(yit | xit)
𝜕xk,it = βkΦ(x′itβ/σε)

(where several terms cancel out). Thus, the marginal effect of a change in an explana-
tory variable upon the expected outcome yit is equal to the variable’s coefficient βk,
multiplied by the probability of having a positive outcome. If this probability is close
to one for a particular unit, the marginal effect is very close to βk, as in the linear
model. Themarginal effect onE(yit | xit , yit > 0) can be derived from (6.47). In all cases,
the marginal effects vary within the sample and depend upon xit . An appropriate ap-
proach is to calculate the average marginal effects, averaged across all observations
in the panel (or subsamples of interest).

After estimation, the margins command in Stata produces marginal effects for
the probability of a positive observation with the options dydx(*) predict(p(0,.)). The
marginal effects on y∗it are obtained with dydx(*) and reproduce the slope coefficients
(in the absence of interaction terms). The marginal effects on E(yit | xit , yit > 0) are
obtained with dydx(*) predict(e(0,.)). Finally, the marginal effects on E(yit | xit) are
obtained with the options dydx(*) predict(ystar(0,.)). In each case, it is assumed that
the censoring is from below at 0.

Empirical studies often simply state that “marginal effects” are reported, without
being explicit which alternative version of the marginal effects is meant. Because the
numbers canbequite different, particularly if there aremany zeroes in the sample, this
is not recommended. The marginal effect on E(yit | xit) is most commonly reported,
even though it is probably not the most interesting one. This is because it effectively
discards the additional insights one could get from a tobit model. For example, if we
increase xk,it what is the expected increase in the proportion of firms reporting a pos-
itive value for yit? And second, by how much does the expected value of yit increase
for those firms that already report a positive value?
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The truncated regression model
In some cases observations are completely missing if y∗it ≤ 0. For example, our sample
may be restricted to firms that do hedge against currency risk. In this case, we only
have positive observations on the proportion of foreign sales hedged against currency
risk, and no information on firms that do not hedge. The difference with the previ-
ous case is that we do not know exactly how many cases there are with non-positive
outcomes and what their characteristics are. In this case, we can still assume that
the same underlying latent variable structure applies, but with a different observation
rule. This leads to a so-called truncated regression model, given by

y∗it = x′itβ + εit , (6.48)

where we observe

yit = y
∗
it if y∗it > 0,

(yit , xit) not observed, otherwise.

As before, the typical assumption is that εit is normally distributed with mean 0 and
variance σ2ε , independent of xit . In this case, the sample we observe is no longer a
random sample, because the probability of observing yit depends upon the drivers of
y∗it and is therefore endogenous. The truncated regression model makes the simple,
but restrictive, assumption that observations on yit are solely missing because y∗it ≤ 0.
Alternative forms of censoring
The standard tobit model assumes that observations are censored from below at zero.
The model is easily adjusted to allow for censoring at any other given value. In fact,
it is even possible to allow the censoring points to differ across observations (as long
as they are known). Similarly, one can allow for censoring from above, for example, if
a non-ignorable proportion of the data is unavailable when the underlying true value
exceeds a certain limit. A two-sided tobit is obtained if there is censoring from both
belowandabove, for example,when thedependent variable is a proportionwithprob-
ability masses at 0 and 100. For example, Chen et al. (2008) model the proportion of
directors in a mutual fund family that hold more than $100,000 in total in the family,
which is bounded to be between 0% and 100%. Adjustments to the model (and re-
sulting likelihood function) to accommodate these alternative forms of censoring are
reasonably straightforward.

6.3.2 Pooled estimation

The tobit model fully specifies the distribution of yit as a function of xit . As a result, we
can estimate theunknownparameters bymaximum likelihood. The contribution of an
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observation to the likelihood function is either the probability mass (at the observed
point yit = 0), or the conditional density of yit, given that it is positive, multiplied
by the probability of observing yit > 0. Accordingly, the loglikelihood function, in
general, can be written as

ln L(β, σ2ε) = ∑
i,t∈I0 lnPr(yit = 0 | xit) (6.49)

+ ∑
i,t∈I1[ln f (yit | xit , yit > 0) + lnPr(yit > 0 | xit)],

where f (⋅) is generic notation for a density function, andwhere I0 and I1 are defined as
the sets of indices corresponding to the zero and positive observations, respectively.
For example, I0 = {(i, t); yit = 0}. Using the appropriate expressions for a normal dis-
tribution, we can write the loglikelihood function as

ln L(β, σ2ε) = ∑
i,t∈I0 ln[1 −Φ(x

′
itβ
σε
)] (6.50)

+ ∑
i,t∈I1 ln[ 1

√2πσ2ε
exp{− 1

2
(yit − x′itβ)2

σ2ε
}].

If the loglikelihood function is correctly specified, maximising it with respect to the
unknown parameters provides consistent estimators for β and σ2ε under mild regular-
ity conditions. Note, however, that some crucial assumptions were made. First, it is
assumed that the error terms have a normal distribution. This is less innocent than in
a linearmodel because the normality assumption affects the expected value of the ob-
served outcomes (as in (6.47)). Second, the error term is assumed to be homoskedastic.
Again, this is less innocent than in a linear model because heteroskedasticity affects
the functional form of the probabilities and conditional expectations too. The results
in Hurd (1979) suggest that the asymptotic bias can be considerable if the errors in a
tobit model are not homoskedastic. Because these two assumptions are problematic,
Billett and Xue (2007) discard the tobit model to explain open market repurchases.
Third, the loglikelihood function in (6.50) also assumes independence of the error
terms across i and t, which is highly restrictive in the panel data case.

Fortunately, it is again possible to address the latter concern using a pooled max-
imum likelihood approach in combination with clustered standard errors (Cameron
andMiller, 2015). That is, we can apply a pooled tobit estimation and cluster the stan-
dard errors within firms, within periods or both. For example, Colla et al. (2013) use
pooled probit and tobit approaches, clustering their standard errors at the firm level,
to explain to what extent firms specialise in their debt structure. Similarly, Brockman
and Unlu (2009) use a pooled tobit model, with year and industry fixed effects, to re-
late the amount of dividends paid by a firm (scaled by sales) to creditor rights and
other firm-level variables.
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The tobit model, with flexible censoring thresholds, can be estimated (using
pooledmaximum likelihood) in Stata using the tobit command. The truncated regres-
sion model, which has a different loglikelihood function, is estimated using truncreg.
With panel data, standard errors would typically be clustered at the firm level. As in
the probit case, the use of clustered standard errors does not solve the problem of het-
eroskedasticity. This is because the pooled tobit model is misspecified, andmaximum
likelihood based on (6.50) becomes inconsistent if the variance of εit is not constant.

To illustrate this problem, assume that we have two periods where the variance of
εit in period 2 is twice as large as the one in period 1. Due to the bigger dispersion, the
censoring affects the outcomes differently, and the probabilities of observing a non-
zero outcome in period 2 are different from those in period 1. This is because a bigger
segment of the distribution is affected by the censoring if the dispersion in the latent
variable increases.

Allowing for heteroskedasticity in the tobit model is possible if we are willing to
impose a specific parametric form on the error variance. It requires to specify how
V(εit)varies over theobservations. If the error variance varies over timeonly, one could
easily let V(εit) = σ2t and estimate a separate variance for each period. More generally,
it can be assumed that

V(εit) = σ
2
it = [exp(z

′
itα)]

2
,

where zit is a set of observed variables (including an intercept), potentially identical
to xit, and α is a vector of unknown coefficients. Replacing σ2ε by this expression in
the loglikelihood function would result in a tobit model with heteroskedasticity. This
approach can also be used to test for homoskedasticity, against a specific alternative,
by testing whether all elements in α, except the intercept term, are equal to zero.

6.3.3 A tobit model with random effects

As in thebinary case, allowingarbitrary formsof serial correlation in εit is challenging,
because the full likelihood function will require numerical integration over T dimen-
sions. Even a simple first-order serial correlation structure, such as εit = ρεi,t−1 + vit, is
hard to accommodate explicitly. A popular approach is to allow the serial correlation
in the unobservables to be driven by the existence of a time-invariant firm-specific
component. Accordingly, we specify a latent variable equation with the usual error
components structure

y∗it = x′itβ + αi + uit ,
and the same observation rule as before. The terms αi and uit are assumed to be IID
normally distributed with zero means and variances σ2α and σ

2
u, respectively, indepen-

dent of xi1, . . . , xiT . The loglikelihood function for this model has a similar structure as
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the one for the random effects probit model, and involves a numerical integral over
the distribution of αi. We can write it as

ln L(β, σ2α, σ
2
u) =

N
∑
i=1 ln

∞
∫−∞∏t f (yit | xit , αi)f (αi)dαi,

where f (⋅) is generic notation for a density or probability mass function. Because con-
ditional upon αi, observations are independent over time, the numerical challenge
is limited to a one dimensional integral. The terms in the loglikelihood function are
given by

f (yit | xit , αi) =
1
√2πσ2u

exp{− 1
2
(yit − x′itβ − αi)2

σ2u
} if yit > 0

= 1 −Φ(
x′itβ + αi

σu
) if yit = 0, (6.51)

andwhere f (αi) is given in (6.34). Thismaximum likelihood estimator can be obtained
in Stata using xttobit, which also provides a test for σ2α = 0.

A random effects tobit model is employed in Angerer and Lam (2009), who esti-
mate a model explaining the risky asset share of a panel of households over six dif-
ferent years. The latent variable is interpreted as the desired risky asset share, but –
because a household cannot go short on risky assets – the observed risky asset share
is nonnegative. More than 60% of their observations correspond to yit = 0. Similarly,
Love (2010) uses a random effects tobit to investigate the role of marital transitions on
a household’s risky asset share.

Importantly, the random effects model assumes that the time-invariant indivi-
dual-specific heterogeneityαi is not correlatedwith any of the observed characteristics
in xit . This is a key assumption, which is also implicit in the pooled tobit approaches.
Unfortunately, a tobit model with fixed effects is nontrivial, due to the incidental pa-
rameters problem discussed before. Greene (2004a), using a Monte Carlo study, docu-
ments that the bias in estimating β due to the incidental parameters problem tends to
be fairly limited, although the estimation of the error variance is heavily biased. This
has its impact on the estimation ofmarginal effects. Clearly, the problemdoes not arise
when the number of fixed effects is limited and not increasing with the sample size,
for example, when including fixed time effects and using asymptotics for N →∞.

An alternative to the fixed effects approach is to allow the random effects to be
correlated with x̄i in a parametric way, as discussed in Subsection 6.1.6 for the probit
model. This correlated random effects approach imposes that

αi = β0 + x̄
′
i γ + vi,

where vi is assumed to follow a normal distribution with mean 0 and constant vari-
ance, independent of the explanatory variables. Estimation is then simply donewith a
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pooledor randomeffects tobit procedure, including the averages of xit as additional re-
gressors. (The intercept term appears only once.) See Wooldridge (2010, Section 17.8)
for more discussion and the estimation of marginal effects. Estimation with unbal-
anced panels is a bit more complicated (Wooldridge, 2019).

Semiparametric alternatives
The binary choice and censored regression models discussed above suffer from two
important drawbacks. First, the distribution of uit conditional upon xit and αit needs
to be specified, and second, with the exception of the fixed effects logit model, there is
no simpleway to estimate themodels treatingαi asfixedunknownparameters. Several
semiparametric approaches have been suggested for these models that do not impose
strongdistributional assumptions onuit and somehowallowαi to be eliminatedbefore
estimation. In the binary choicemodel, it is possible to obtain semi-parametric estima-
tors for β that are consistent up to a scaling factor whether or not αi is treated as fixed
or random. For example, Manski (1987) suggests a maximum score estimator, while
Lee (1999) provides root N-consistent estimator for the static binary choice model;
see Hsiao (2014, Section 7.4) for more details. A tobit model as well as a truncated
regression model with fixed effects can be estimated consistently using the trimmed
least absolute deviations or trimmed least squares estimators in Honoré (1992). The
essential trick of these estimators is that a first-difference transformation, for appro-
priate subsets of the observations, no longer involves the incidental parameters αi;
see Hsiao (2014, Section 8.4) for more discussion. The censored least absolute devia-
tion estimator of Powell (1984) and censored least squares estimator of Powell (1986)
do not incorporate fixed effects, but allow for nonnormality and heteroskedasticity,
while assuming symmetry. Applications of these estimators are provided in Falken-
stein (1996), who explains ownership of stock outstanding held bymutual funds, and
Billett and Xue (2007), who model open market repurchases.

6.3.4 Extensions

The standard tobit model imposes a structure that is often too restrictive: exactly
the same variables affecting the probability of a nonzero observation determine the
level of a positive observation and, moreover, with the same sign. This is reflected
in the fact that all different marginal effects in the tobit model discussed above tend
to have the same sign and are determined by the same coefficients and characteris-
tics. This imposes, for example, that households with characteristics that make them
more likely to own stocks are also those who tend to hold more stocks relative to their
total wealth. A different way to formulate this is to state that the zero observations
correspond corner solutions. In this section, we shall discussmodels that relax this re-
striction. This allows the decision to participate to be different from the decision how
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large the outcome variable is. The resulting model is referred to as the tobit II model
(Amemiya, 1984) or the sample selection model (Heckman, 1979), and popularly
coined “heckit” or the “Heckman model”.9

Assume we wish to explain what the share of stocks is in a household’s portfolio.
Typically, only a limited number of households participate in the stock market (e. g.,
Bonaparte et al., 2014).We assume that the share of stocks can be described by a linear
latent variable equation

y∗it = x′itβ1 + ε1,it , (6.52)

where the observed share yit is zero for households that do not participate in the stock
market, and yit = y∗it for those that do. The decision of the household to participate or
not is indicated by dit = 1 versus dit = 0, and is explained by a second equation, given
by

d∗it = z′itβ2 + ε2,it , (6.53)

with dit = 1 if d∗it > 0 and zero otherwise. (The standard tobit model imposes that these
two equations are identical.) The vectors zit and xit typically overlap to a large extent,
where it is recommended to have at least one variable in zit that is not included in xit .
We return to this below.

The model is complemented with distributional assumptions on the two error
terms. The standard assumption is that (ε1,it , ε2,it) are independent of all variables in xit
and zit, and follow a bivariate normal distribution with expectations zero, variances
σ21 and 1, respectively, and covariance σ12. As a result, the model in (6.53) is a stan-
dard probit model, describing the choice between participation or not. Therefore, a
normalisation restriction is required, and the variance of ε2,it is set to one.

The expected share of stocks of a household, given that it participates in the stock
market, is given by

E(yit | dit = 1) = x
′
itβ1 + E(ε1,it | ε2,it > −z′itβ2)
= x′itβ1 + σ12E(ε2,it | ε2,it > −z′itβ2)
= x′itβ1 + σ12 ϕ(z′itβ2)Φ(z′itβ2) , (6.54)

where the last equality uses the expression for the expectation of a truncated stan-
dard normal distribution, similar to the one in (6.47). This expression shows that the
expected value of yit given that it is positive differs from x′itβ1 unless the error terms in
the two equations are uncorrelated (σ12 = 0). The term ϕ(z′itβ2)/Φ(z′itβ2) is known as

9 It appears inappropriate to narrow down the very many contributions to econometrics by James J.
Heckman to this popular model or the associated estimation method.
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the inverse Mills ratio (IMR). Because it is denoted λ(z′itβ2) by Heckman (1979) it is also
referred to as Heckman’s lambda.

In the empirical banking and corporate finance literature, tobit models are often
used to identify the presence of private information, corresponding to σ12 ̸= 0 (see Li
and Prabhala, 2007). As an example, consider a sample of bank loans and assume
that yit denotes the interest rate that a bank charges for a loan.We only observe the in-
terest rate paid on a loan for individuals who are granted a loan, not for those whose
loan application is denied. The decision to grant a loan (dit = 1) is taken by a bank
on the basis of observable information about the applicant (zit), but also on the basis
of private information that is not observed by the econometrician. When private in-
formation is related to the creditworthiness of an individual, it is likely to affect both
the probability that a loan is granted and the interest rate charged on the loan. In this
case, σ12 ̸= 0 is an indication of the presence of such private information.

If σ12 = 0, the error terms in the two equations are uncorrelated andwe can consis-
tently estimate (6.52) by OLS (with clustered standard errors to accommodate for the
panel nature of the data). Ignoring any potential complications from the panel nature,
we can estimate (6.53) by a standard probit maximum likelihood approach. If σ12 ̸= 0,
the probability of observing (a positive) yit depends upon the unobservables in the
equation and OLS in (6.52) suffers from a sample selection bias.

Estimation
The tobit II model can be estimated by pooled maximum likelihood, similar to pooled
probit or pooled tobit, with the use of clustered standard errors. This requires to write
down the joint distribution of yit and dit, conditional upon both xit and zit (assuming
independence across observations). The pooled loglikelihood function can be written
as

ln L(β1, β2, σ
2
1 , σ12) = ∑

i,t∈I0 ln[1 −Φ(z′itβ2)]
+ ∑
i,t∈I1[ln 1

√2πσ21
exp{− 1

2
(yit − x′itβ1)2

σ21
} + lnΦ(

z′itβ2 + (σ12/σ21 )(yit − x′itβ1)
√1 − σ212/σ

2
1

)],

where I0 denotes the set of observations with dit = 0, and I1 the set with dit = 1. The
second term within square brackets is the probability of dit = 1, conditional upon
yit (and the exogenous variables). Consistency of the pooled ML estimator requires
that the distributional assumptions imposed upon (ε1,it , ε2,it), such as normality and
homoskedasticity, are correct. It also requires that the disturbance terms are indepen-
dent of the explanatory variables in both xit and zit .

In empirical work, the sample selection model is often estimated in a two-step
way. This is computationally simpler, and it will also provide good starting values for
themaximum likelihood procedure. The two-step procedure is due to Heckman (1979)
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and exploits the conditional expectation in equation (6.54) to estimate

yit = x
′
itβ1 + σ12λit + ηit , (6.55)

over the subsample with dit = 1, where

λit =
ϕ(z′itβ2)
Φ(z′itβ2) .

This means that one can estimate β1 and σ12 by running a least squares regression of
yit upon the original regressors xit and the inverse Mills ratio λit . The fact that λit is not
observed is not a real problem because the only unknown element in λit is β2, which
can be estimated consistently by a pooled probit maximum likelihood applied to the
participation equation. This means that in the regression (6.55) we replace λit with its
estimate λ̂it andOLSwill still produce consistent estimators of β1 andσ12. This two-step
estimator will not be efficient, but it is computationally simple and consistent.

Aminor problemwith the two-step estimator is that routinely computedOLS stan-
dard errors are incorrect, unless σ12 = 0. This problem is often ignored because it is
still possible to validly test the null hypothesis of no sample selection bias using a
standard t-test on σ12 = 0. In general, however, standard errors will have to be ad-
justed because ηit (6.55) is heteroskedastic and because λit is estimated. In Stata, both
the pooledmaximum likelihood estimator and the two-step estimator can be obtained
with the heckman command, which also allows standard errors to be clustered over
units (or time).

Some words of warning
Although the two-step estimator is frequently used in empiricalwork,10 its validity can
often be challenged. There appears to be a strong belief that the inclusion of the IMR
in a model eliminates all problems of selection bias. This is not generally true, and
the sample selection model should be employed with extreme care. The presence of
nonrandom selection induces a fundamental identification problem (Manski, 1989),
and consequently the validity of any solution will depend upon the validity of the as-
sumptions that aremade,which can only be partly tested.Much of the concerns raised
with instrumental variables estimation (see Chapter 3) translate directly to the sample
selectionmodel. If there are no exclusion restrictions in xit, that is, if all variables in zit
from the participation equation are included in the equation of interest, the two-step
estimator is solely identified through the joint normality assumption (leading to the
particular functional form of the IMR λit). Even if this assumption would be correct,
the two-step estimator is very likely to suffer frommulticollinearity. This is the subject

10 Heckman (1979) is one of the most highly cited papers in econometrics.
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of many Monte Carlo studies; see Puhani (2000) for a short overview. One implica-
tion of this is that insignificance of the IMR is not a reliable guide as to the absence
of selection bias. It is therefore highly recommended to include additional exogenous
variables in zit that do not appear in xit . This requires a valid exclusion restriction, just
as in the case of instrumental variables.

The importance of this is often neglected, frequently resulting in studies that ei-
ther have no exclusion restrictions, or where the specification of the first stage is not
reported and thus unclear; see Lennox et al. (2012) for a critical survey on theuse of the
Heckman two-step procedure in the accounting literature. Because identification rests
critically upon the exclusion restriction(s), estimation results tend to be very sensitiv-
ity to the choices made, and a small difference in the specification of (6.53) can yield
wildly different estimates for (6.52). Therefore, exclusion restrictions should be well
documented and well motivated, similar to the argumentation required for choosing
instrumental variables (see Section 3.4). Moreover, a careful sensitivity analysis with
respect to robustness andmulticollinearity is desirable. Because the sample selection
model easily suffers frommisspecification problems, a simple first check is to investi-
gate the implied correlated coefficient from the estimate for σ12 = ρ12σ1 to see whether
it is within the [−1, 1] interval.

Applications in finance
The sample selection model is commonly used in financial applications. An example
is given in Ramadorai (2012), who explains the premium (in excess of NAV) at which a
hedge fund is traded on Hedgebay from its past performance, liquidity and a number
of other variables. Because being traded on Hedgebay is not exogenous, a selection
bias arises. This bias is dealt with using the Heckman two-step approach, where the
first stage is a probit model explaining if a trade occurs on Hedgebay. An offshore in-
dicator is included in the first-stage, but excluded from themain stage. This exclusion
restriction is motivated from the assumption that the domicile of a fund affects the
propensity of a fund to be traded on Hedgebay, but does not affect the premium at
which the fund changes hands. Estimation in the second stage is done by pooled OLS,
including the IMR, while adjusting standard errors for (some forms of) heteroskedas-
ticity and cross-correlations.

Dass andMassa (2011), among other things, investigate the impact of the strength
of a bank-firm relationship on the liquidity of a stock. Because the decision of a firm
to borrow from a bank is potentially endogenous, they control for selection bias us-
ing the model outlined above, where dit = 1 indicates that firm i initiates a loan in
year t and yit is a measure of stock illiquidity or information asymmetry. In both steps
of the analysis, standard errors are clustered at the firm level. At the same time, the
second stage regressions include a lagged dependent variable, which does not allow
for the presence of firm-specific heterogeneity. Interestingly, in their implementation
yit is observed irrespective of dit, but the key explanatory variable (the strength of the

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



194 | 6 Models with limited dependent variables

borrower-lender relationship) is not available when dit = 0. Accordingly, the second
stage can only be estimated over a subsample, and a selection bias arises.

Zmijewski (1984) stresses the potential of sample selection bias when estimating
the probability of bankruptcy of firms. Complete data for financially distressed firms
are often not available. When the bankruptcy prediction model is only estimated over
firms with complete data, a bias may arise. The sample selection model discussed
above can be extended to cover the case where the variable of interest yit is binary
(in which case (6.52) corresponds to the latent variable equation of a probit model). In
this case, the complete model corresponds to a bivariate probit model. The two-step
approach of Heckman (1979) would be inappropriate because the distribution of ε1,it,
conditional upon selection, is no longer normal. This issue is often neglected in the ex-
pectation that a probit model with λit included provides a reasonable approximation.
Estimation based on the full likelihood function does not suffer from this problem and
is recommended.

Further extensions
Early applications of tobit II models in finance (in a panel context) are provided in
Acharya (1988, 1993). In one of his models, the indicator dit = 1 indicates the obser-
vation of a specific event (e. g., the announcement of a takeover bid). The decision
process leading to such an eventmay be based on information that is not widely avail-
able to the market, making the event potentially endogenous. (In this case, the latent
variable d∗it may be interpreted as the net present value of the firm i announcing the
event minus the net present value of not doing so, at time t.) In a second stage, one
can analyse the abnormal returns conditional upon the event taking place. The author
relates σ12 to the quality of the relevant information released by the event.

An extension is to also consider the outcomes in case the event announcement is
skipped (dit = 0). Conditional upon this, the expected outcome yit is given by

E(yit | dit = 0) = x
′
itβ1 − σ12

ϕ(z′itβ2)
1 −Φ(z′itβ2) .

Acharya (1988) uses sucha structure to investigate the response to twopossible signals
a firm can decide to give (dit = 1 vs. dit = 0). In the empirical illustration, dit denotes
whether the firms calls or does not call (postpones) an outstanding convertible bond
in period t, and yit is a measure of the stock performance of the firm.

A further extension allows estimating the impact of an endogenous dummy vari-
able in the model, or, more generally, the estimation of treatment effects based upon
two potential outcomes. We discuss this in Chapter 7.

Incorporating the panel nature
The tobit II model and its extensions can be estimated by either pooled maximum
likelihood methods or pooled two-step methods, and standard errors can be adjusted
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to allow for clustering within firms or within periods. Note that the presence of het-
eroskedasticity invalidates the expressions used in estimation, just as in the pooled
probit case. Thus, heteroskedasticity results in a misspecified model and standard es-
timation approaches tend to be inconsistent. In the two-step approach, one can allow
for heteroskedasticity in ηit, provided σ12 is constant, in which case (6.55) is correctly
specified.

None of these approaches allows for the presence of a lagged dependent variable
in one of the equations, in combination with serial correlation. More generally, the
panel nature is not exploited in estimation. It is possible to consider a random effects
version of the tobit IImodel. In this case, both error terms in the participation equation
and the outcome equation are decomposed into a firm-specific time-invariant compo-
nent and a remainder term that is not correlated over time. We can write this as

y∗it = x′itβ1 + α1i + u1,it , (6.56)
d∗it = z′itβ2 + α2i + u2,it , (6.57)

with dit = 1 and yit = y∗it if d∗it > 0, and dit = 0 otherwise. (If dit = 0, the outcome
yit may either zero (or some other fixed number), or unobserved.) If we assume that
all error components have a joint normal distribution, independent of all explanatory
variables, with nonzero covariances between α1i and α2i and between u1,it and u2,it,
the full loglikelihood function can be derived. Estimation is somewhat cumbersome,
because it requires numerical integration over two dimensions to integrate out the two
firm-specific effects). It is available in Stata in xtheckman.

An attractive two-step approach, building upon Heckman (1979), is presented in
Verbeek and Nijman (1992). Interestingly, the required additional terms are time-
invariant if u1,it and u2,it are uncorrelated, or if z′itβ2 = 0 is time-invariant. This
restrictive case provides an attractive opportunity to estimate (6.56) using the sub-
sample with dit = 1, while including firm-level fixed effects to (also) control for a
time-invariant selection effect. The decision to participate or not (dit = 0, 1) in this
case solely affects the time-invariant part of the outcome equation, and its effects can
be wiped out by using a fixed effects estimator (Campa and Kedia, 2002; Li and Prab-
hala, 2007). Of course, the estimated fixed effects, when of interest, will be affected
by the selection bias. Several alternative approaches, based on conditional mean in-
dependence assumptions, are proposed in Wooldridge (1995); see Seru et al. (2010)
for an application.

Campa and Kedia (2002) and Hoechle et al. (2012) use the Heckman selection
model with panel data to control for the endogeneity of the decision of a firm to di-
versify. The key outcome variable is a measure of relative firm value, and the decision
to diversify or not is modelled by means of a probit model. Sun et al. (2012) employ a
“Heckman correction” to control for the fact that their sample of survivinghedge funds
may be nonrandom, where the first stage is a probit modelling fund survival over the
next 12 months. An alternative specification is the two-part model, as employed in
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Chen et al. (2008). In this case, the first stage remains a probit equation, while the sec-
ond stage involves a standard regressionmodel, which is assumed to apply to the pos-
itive observations only. This allows the same regressors to appear in both equations.
The two-part model allows selection only to depend upon the observables in zit and is
otherwise random, while the Heckman sample selection model permits selection on
both observables and unobservables; see Cameron and Trivedi (2005, Chapter 16) for
more discussion.

6.4 Dynamic models

An important advantage of panel data is that unit-specific histories are available and
can be exploited in a model. A typical case of this is the inclusion of a lagged depen-
dent variable in amodel. Unfortunately, when the number of time periods is relatively
short, themodellingof individual dynamics is notwithout challenges. InChapter 5,we
discussed the estimation of linear dynamic models for short T, and noted that many
standard estimators, like pooled OLS and fixed effects estimators, are biased and in-
consistent. In this section we discuss dynamic models with limited dependent vari-
ables.

6.4.1 State dependence versus unobserved heterogeneity

We start with the binary choice model, so we observe yit = 0 or yit = 1. Before dis-
cussing a dynamicmodel in this context, it is instructive to consider a simple example,
which will allow us to understand the subtleties, or complexities, when estimating
dynamics. First, consider a situation where we have two types of firms: firms that are
likely to pay dividends in any given year and those that are unlikely to do so. Assume
that likely firms have a probability of 75% of paying dividends, while unlikely firms do
sowith a probability of 25%.Although part of this differencemay be attributable to ob-
servable characteristics, suchas industry, another part is assumed tobe attributable to
unobservedheterogeneity. If, in this case,we estimate a dynamic binary choicemodel,
and relate yi,t to yi,t−1 we can expect to find a positive relationship, even though the
lagged status of the firm is not directly relevant, and differences in the probability of
paying dividends are completely attributable to time-invariant firm-specific hetero-
geneity. Heckman (1978b) refers to this as spurious state dependence.

Now, consider an alternative data generating process. In some initial period,
which may be before the start of our sample period, firms make a random choice to
either pay dividends or not. After this, a firm that pays dividend in year t − 1 will also
pay dividends in year t with a probability of, say 75%, whereas firms that do not will
continue to do so with a probability of 75%. This is a simple first-order Markov chain.
An interpretation of this may be that firms do not want to deviate from their previous
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choice, due to a signalling effect. When we relate yi,t to yi,t−1 we can also expect to find
a positive relationship, which reflects true state dependence.

In reality a mixture of these two processes may apply, where both unobserved
heterogeneity and a lagged dependent variable matter. Empirically, it is challenging
to separate the two. At the same time, their implications may differ. In the case of true
state dependence, there is a causal effect of a firm experiencing yit = 1 that alters, for
example, preferences, costs, or constraints relevant to future choices. In this case, past
choices have a genuine behavioural effect: otherwise identical firms that did not pay
dividends would behave differently in the future relative to those who did. Potential
explanations are habit persistence, adjustment costs or slow adjustment towards a de-
sired or optimal outcome (see, e. g., the discussion in the capital structure literature in
Lemmon et al., 2008). The alternative explanation, unobserved heterogeneity, states
that there are firms that have a preference for paying dividends, while others do not.
Previous choices seem to affect current choices, leading to spurious state dependence,
because they proxy for heterogeneity that is not properly controlled for.

6.4.2 A dynamic probit model with unobserved heterogeneity

Weconsider the randomeffects probitmodelwith a laggeddependent variable, noting
that the discussion for a random effects tobit model is very similar. The latent variable
equation is now given by

y∗it = x′itβ + γyi,t−1 + αi + uit , (6.58)

where we observe yit = 1 if y∗it > 0 and 0 otherwise, and where we assume that uit
has an IID standard normal distribution, independent of xit and yi,t−1. In this model,
γ > 0 indicates positive state dependence: ceteris paribus the probability of observing
yit = 1 is larger if yi,t−1 = 1. Effectively, this model implies that

Pr(yit = 1 | xit , yi,t−1, αi) = Φ(x′itβ + γyi,t−1 + αi).
To estimate it, we can follow the estimation approach of a static randomeffectsmodel,
with some adjustments. The full loglikelihood function for the dynamicmodel is given
by

ln L(β, γ, σ2α) =
N
∑
i=1 ln

∞
∫−∞[

T
∏
t=2 Φ(x′itβ + γyi,t−1 + αi)yit [1 −Φ(x′itβ + γyi,t−1 + αi)](1−yit)

× Pr(yi1 = 1 | xi1, αi)
yi1[1 − Pr(yi1 = 1 | xi1, αi)]

(1−yi1)]f (αi)dαi,
where f denotes the normal density of αi as given in (6.34), which is assumed to be
independent of xi1, . . . , xiT (justifying the choice for random effects rather than fixed
effects).
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The term Pr(yi1 = 1 | xi1, αi) in the loglikelihood function is left unspecified. It de-
scribes the probability of observing yit = 1 in the first year of observation for firm i,
conditional upon the explanatory variables xi1 and – importantly – conditional upon
the unobserved heterogeneity αi. It is not conditional upon a lagged value of yit be-
cause this is not available. The specification of this initial probability is problematic
and it does not follow from the specified model. What makes it complicated is that it
depends upon αi and is therefore placed inside the integral.

If the initial value is exogenous in the sense that its distribution does not depend
upon αi, we can put the terms involving Pr(yi1 = 1 | xi1, αi) = Pr(yi1 = 1 | xi1) outside the
integral. In this case, we can simply consider the likelihood function conditional upon
yi1 and ignore the term related to yi1 in estimation. This approachwould be appropriate
if the initial state is the same for all firms or if it is randomly assigned to firms.

However, it may be hard to argue in many applications that the initial value yi1 is
exogenous anddoes not dependupon afirm’s unobservedheterogeneity. After all, any
of the other yits depend upon αi by construction. In such a casewe need an expression
for Pr(yi1 = 1 | xi1, αi) and this is problematic. If the process we are estimating has been
going on for a number of periods before the current sample period, Pr(yi1 = 1 | xi1, αi)
is a complicated function that depends upon firm i’s unobserved history. This means
that it is typically impossible to derive an expression for the marginal probability that
is consistent with the rest of the model. Heckman (1981) suggests an approximate so-
lution to this initial conditions problem that appears to work reasonably well in prac-
tice. It requires an approximation for the marginal probability of the initial state by a
probit function, using as much pre-sample information as available, without impos-
ing restrictions between its coefficients and the structural β and γ. Wooldridge (2005)
proposes an alternative approach where the likelihood contributions are employed
conditional upon yi1. This implies that the expressions Pr(yi1 = 1 | xi1, αi) disappear
from the likelihood function, but instead that the density of αi is made conditional
upon yi1 and other explanatory variables. This estimator is available in Stata in the
(user-written) procedure xtpdyn. Christiansen et al. (2007) employ this approach in a
model to explain stock market participation of individual investors. The impact of the
initial conditions diminishes if the number of sample periods T increases, so onemay
decide to ignore the problem when T is fairly large; see Hsiao (2014, Subsection 7.5.2)
for more discussion.

Pooled approaches
Without fully specifying the role of unobserved heterogeneity and the lagged depen-
dent variable, it is nontrivial to separate the causal role of the lagged dependent vari-
able from time-invariant unobserved components. One may be tempted to specify a
dynamic binary model of the form

Pr(yit = 1 | xit , yi,t−1) = Φ(x′itβ + γyi,t−1).
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This expression does not follow from the dynamic probit model discussed above
(except in the trivial case where αi = 0). Although we can interpret this as (an
approximation of) the conditional probability of yit given both xit and yi,t−1, the
role of the lagged dependent variable will be determined via the two channels dis-
cussed above. Estimating this expression using a pooled likelihood approach or the
Fama and MacBeth (1973) sample splitting approach does not provide consistent es-
timators for the coefficients in (6.58), except when there is no serial correlation in εit
(and thus also αi = 0).

Fixed effects
The conditional maximum likelihood approach to estimate a logit model with fixed
effects, unfortunately, does not remain valid in the presence of a lagged dependent
variable. This is because ȳi no longer works as a sufficient statistic in this case. See
Honoré andWeidner (2020) for a recent discussion of this problem and some potential
solutions. Somepragmatic scholarsmayprefer to revert to the linear probabilitymodel
with fixed effects in these cases, in combination with instrumental variables or GMM
to address the Nickell (1981) bias for small T.

6.5 Count data

In some applications we would like to explain the number of times a given event oc-
curs, for example, the number of patents obtained by a given firm (e. g., Bena et al.,
2017) or the number of takeover bids received by a target firm (e. g., Jaggia and Thosar,
1993). In these cases, the outcome variable yit is a count, and can take the values
0, 1, 2, . . . Count data models are developed to explain the distribution of yit, or the
expected value of yit, given a set of characteristics xit .

A common assumption with count data is that the expected value of yit given xit
can be written as

E(yit | xit) = exp(x
′
itβ), (6.59)

where β is a vector of unknown parameters. This specification guarantees that the
conditional mean is nonnegative. It is also monotonically increasing in x′itβ. Although
it is useful to know how the conditional mean varies across observations, this is in-
sufficient to determine the probability of any given outcome. For example, we may be
interested in the probability that yit is two or more, as a function of xit . To derive this,
we need to specify the full distribution.

A distributional assumption in count data models consistent with (6.59), is that,
for given xit, the count variable yit has a Poisson distribution with expectation λit =
exp(x′itβ). This implies that the probability mass function of yit conditional upon xit is
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given by

Pr(yit = y | xit) =
exp(−λit)λ

y
it

y!
, y = 0, 1, 2, 3, . . . , (6.60)

where y! is short-hand notation for y × (y − 1) × ⋅ ⋅ ⋅ × 2 × 1 (referred to as “y factorial”),
with 0! = 1. Substituting the appropriate functional form for λit produces expressions
for the probabilities that can be used to construct the loglikelihood function for this
model, referred to as the Poisson regressionmodel. Assuming that observations are
independent across i and t, estimation of β bymeans of maximum likelihood is there-
fore reasonably simple: the loglikelihood function is the sum of the appropriate log
probabilities, interpreted as a function of β. An application of the Poisson model us-
ing a panel of firms is found in Yermack (1996), who explains the number of directors
leaving a company’s board, and thenumber of directors joining, fromcompanyperfor-
mance and several other variables. Standard errors are “robust”, but appear to ignore
the panel nature of the data.

An important drawback of the Poisson distribution is that it automatically implies
that the conditional variance of yit is also equal to λit . That is, in addition to (6.59), the
assumption in (6.60) implies that

V(yit | xit) = exp(x
′
itβ).

This condition is referred to as equidispersion and illustrates the restrictive nature of
the Poisson distribution. In many applications, the equality of the conditional mean
and variance of the distribution has been rejected. A typical finding is overdispersion,
meaning that the conditional variance is larger than implied by the Poisson distribu-
tion. A wide range of alternative count distributions have been proposed that do not
impose (6.60). A popular group of models is based on the negative binomial distribu-
tion; see Cameron and Trivedi (2013) for an overview. Occasionally, or as a robustness
check, authors estimate a linear model explaining ln yit (while dropping the zeroes)
or ln(1 + yit) from xit; see, for example, Aghion et al. (2013), who explain the number
of patents of a firm.

There are, however, good reasons to prefer the Poisson regression model. This is
because the (quasi) maximum likelihood estimator is consistent as long as the con-
ditional mean is correctly specified. This can be seen from the first-order conditions,
which are given by

∑
i
∑
t
[yit − exp(x

′
itβ)]xit = 0. (6.61)

By using the robust sandwich formula for the covariancematrix, we obtain valid stan-
dard errors even if the Poisson distribution is invalid. From this, we can easily extend
to the panel data case by clustering the standard errors over firms and/or periods.
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These clustered standard errors not only allow for arbitrary correlations within a clus-
ter, but also adjust for a misspecified conditional variance. In Stata, the poisson com-
mand estimates the Poisson regression model. The option vce(robust) produces the
quasi-maximum likelihood estimator assuming independence across observations.
The option vce(cluster firmid) produces the pooled quasi-maximum likelihood esti-
mator for panel data allowing for within-firm correlation.

Random effects and fixed effects models
The Poisson model can be extended to include fixed or random firm-specific effects,
often written as

E(yit | xit , αi) = exp(x
′
itβ + αi) = exp(αi) exp(x

′
itβ). (6.62)

The typical random effects assumption is that αi is independent of xit and
E(exp(αi)) = 1. In this case, (6.62) implies (6.59), after averaging out the firm-specific
effects, which shows that a Poisson regression model with random effects can be es-
timated consistently using the pooled maximum likelihood approach. More efficient
estimation is possible by exploiting the random effects structure. This leads to a like-
lihood function where the random effects have to be integrated out numerically, as
in the random effects probit case. The Stata command xtpoisson estimates this model
assuming either that exp(αi) has a gammadistributionwithmean 1, or αi has a normal
distribution with mean 0.

To allow the firm-specific heterogeneity αi to depend upon the explanatory vari-
ables in xit, one can treat αi as fixed unknown parameters, resulting in a fixed ef-
fects Poisson regression model. In this model it is possible to eliminate αi by quasi-
differencing, which results in a set of moment conditions that can be exploited to esti-
mate β. This appears equivalent to maximising the Poisson loglikelihood with respect
to both β and all αi, showing that the fixed effects Poisson model does not suffer from
the incidental parameters problem discussed above. Themodel with firm fixed effects
can be combined with robust standard errors clustered at the firm level. An example
of this is provided by Aghion et al. (2013) who employ a fixed effects Poisson regres-
sionmodel to relate the number of patents, as ameasure of innovation, to institutional
ownership of a firm.More details onmodels for count data in a panel context are given
in Cameron and Trivedi (2015), who also discuss some extensions to dynamic models.

6.6 Duration models

In some applications we are interested in the duration of a certain event. For exam-
ple, we may be interested in the duration of a firm’s bank relationships (Ongena and
Smith, 2001), the time it takes for an open-ending attempt in a closed-end fund to be
successful (Bradley et al., 2010), or the time it takes for a loan to default (Ioannidou
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et al., 2015). The data we have contain duration spells, that is, we observe the time
elapsed until a certain event occurs. Usually, duration data are censored in the sense
that, at the time the data are analysed, the event of interest has not occurred for a num-
ber of units in the sample. Detailed discussions of duration models are provided in
Lancaster (1990), Cameron and Trivedi (2005, Chapters 17–19) and Wooldridge (2010,
Chapter 22).

6.6.1 Hazard rates and survival functions

Before describing empirical models that can explain a duration, we first discuss some
general concepts and formulas. Let y denote the time spent in the initial state, for
example, the number of months before a loan is downgraded to the default status.
It is most convenient to treat y as a continuous variable, although is also possible to
formulate all concepts in discrete time (see, e. g., Shumway, 2001, who advocates the
use of hazard models to predict bankruptcy). The distribution of y is characterised by
the cumulative density function

F(t) = Pr(y ≤ t),

which denotes the probability that the event has occurred by time t. Conversely, S(t) =
1−F(t), the survivor function, denotes the probability of surviving past t, for example,
the probability that a loan has not defaulted after t months. Effectively, a duration
model provides a convenient way to characterise the distribution of y as a function of
characteristics of the units of interest. We assume that the distribution function F(t)
is differentiable, so that the density of y can be written as f (t) = F′(t).

The conditional probability of leaving the initial state within the time interval t
until t + h, given survival up to time t, can be written as

Pr(t ≤ y < t + h | y ≥ t).

Dividing this probability by h (the length of the interval), we obtain the average proba-
bility of leaving per unit time period over the interval t until t+h. Thehazard function
is formally defined as

λ(t) = lim
h↓0 Pr(t ≤ y < t + h | y ≥ t)

h
. (6.63)

At each time t, the hazard function is the instantaneous rate of leaving the initial state
per unit of time. For example, if y is the number ofmonths it takes for a loan to default,
λ(10) is roughly the probability that the loan defaults in month 11, conditional on not
having defaulted in the first 10 months. The hazard function can be expressed as a
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functionof the (cumulative) density functionof y, andvice versa. Inparticular, it holds
that

F(t) = 1 − exp(−
t

∫
0

λ(s)ds).

Most duration models start with a specification for the hazard function, the cumula-
tive density function being important for constructing the likelihood function of the
model.

A constant hazard rate, that is, λ(t) = λ, implies that the probability of leaving
during the next time interval does not depend upon the duration spent in the initial
state. In this case, F(t) simplifies to

F(t) = 1 − exp(−λt),

corresponding to the exponential distribution. In most cases, researchers work with a
convenient, more flexible, specification for the hazard function, for example, one that
leads to closed-form expressions for F(t). Moreover, the hazard function is typically al-
lowed to depend upon unit-specific characteristics, xi, say. Let us, in general, denote
the hazard function for unit i with characteristics xi as λ(t, xi). For the moment, we
assume that these characteristics do not vary with survival or calendar time. A popu-
lar class of models are the so-called proportional hazard models (Cox, 1972), in which
the hazard function can be written as the product of a baseline hazard function inde-
pendent of xi and a unit-specific nonnegative function that describes the effect of the
characteristics xi. In particular,

λ(t, xi) = λ0(t) exp(x
′
iβ). (6.64)

In this model, λ0(t) is a baseline hazard function that describes the risk of leaving the
initial state for (hypothetical) units with xi = 0, which serve as a reference group,
and exp(x′iβ) is an adjustment factor that depends upon xi. Note that the adjustment
is the same at all durations t. To identify the baseline hazard, xi should not include
an intercept term. If λ0(t) is not constant, the model exhibits duration dependence.
There is positive duration dependence if the hazard rate increases with the duration.
In this case, the probability of leaving the initial state increases (ceteris paribus) the
longer a unit is in the initial state.

There are roughly three different approaches to estimating a proportional hazard
model. The first is to assume a specific functional form for the baseline hazard λ0(t).
This is reasonably straightforward, and one can use maximum likelihood to estimate
the model. The second is to approximate λ0(t) in a flexible way, for example, by a step
function. The final approach is to focus on the estimation of β and make no assump-
tions about the baseline hazard. This builds upon the partial likelihood function, as
discussed in Cox (1972), and is implemented in Stata in the stcox command.
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A wide range of possible functional forms can be chosen for the baseline hazard
λ0(t). Some of them impose either positive or negative duration dependence at all du-
rations, whereas others allow the baseline hazard to increase for short durations and
to decrease for longer durations. A relatively simple specification is theWeibullmodel,
which states that

λ0(t) = γαt
α−1,

where α > 0 and γ > 0 are unknown parameters. For α = 1, this simplifies to the expo-
nential distribution. If α > 1, the hazard rate is monotonically increasing, whereas for
α < 1 it is monotonically decreasing. The log-logistic hazard function is given by

λ0(t) =
γαtα−1
1 + γtα
.

When α ≤ 1, the hazard rate ismonotonically decreasing to zero as t increases. If α > 1,
the hazard is increasing until t = [(α − 1)/γ]1−α and then it decreases to zero. With a
log-logistic hazard function, it can be shown that the log duration, ln(y), has a logistic
distribution.

6.6.2 Estimation

Duration data are typically obtained from longitudinal data, where the same units are
tracked over a longer timewindow. Two types of samplesmay be available.With stock
sampling, we consider all units who are in the initial state at a given time t0. For ex-
ample, we collect information on all loans that have not defaulted on 1 January 2010.
We then analyse how long it takes for these loans to default. With flow sampling, we
collect information on all units that enter the initial state between 0 and time t0. For
example, we collect information on all bank-firm relationships that started in the pe-
riod 2008-2010. In both cases, we record the length of time each unit is in the initial
state. Because after a certain amount of time we stop following units in the sample
(and start analysing our data), both types of data are typically right-censored. That is,
for those units who are still in the initial state we only know that the duration lasted
at least as long as the tracking period. With stock sampling, the data may also be left-
censored if some or all of the starting times in the initial state are not observed. More-
over, stock sampling introduces a sample selection problem. Both censoring and the
sample selection problem require adjustments in the likelihood function.

Let our sample be given by a set of durations yi, i = 1, 2, . . . ,N, where we observe
a single duration per unit. Assume we have a random sample of loans that are issued
between time 0 and t0. Denote the time at which loan i is issued by ai, and the total
duration until default by y∗i . For many loans y∗i is not directly observed because of
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right-censoring: the loan has not defaulted yet, or the loan has reached maturity. If ci
denotes the censoring time of loan i, we observe

yi = min{y∗i , ci}.
That is, for some loans we observe the exact time to default, whereas for others we
only know it exceeds ci.

The contribution to the likelihood function of unit i is given by the conditional
density of yi if the observation is not censored, or the conditional probability that
y∗i > ci (i. e., yi = ci) in the case of censoring, both conditional upon the observed
characteristics xi. We make the (strong) assumption that the distribution of yi, given
xi, does not depend upon the starting time ai. This implies, for example, that loans
issued in January 2010 have the same expected time to default as those that are is-
sued in January 2011. If there are seasonal effects, we may capture them by including
calendar dummies in xi corresponding to different values of ai (see Wooldridge, 2010,
Chapter 22). Thus, the likelihood contribution of unit i is given by

f (yi | xi; θ), (6.65)

if the duration is uncensored, where θ denotes the vector of unknown parameters that
characterise the distribution. For right-censored observations, the likelihood contri-
bution is

Pr(yi = ci | xi; θ) = P{y
∗
i > ci | xi; θ} = 1 − F(ci | xi; θ). (6.66)

The likelihood function is easily constructed from these expressions, after substituting
the appropriate functional forms for f and F.

With stock sampling, the loglikelihood function is slightly more complicated be-
cause of the sample selection problem. Suppose we are interested in defaults of loans
issued in 2009, but we only have a sample of loans still outstanding on 1 January 2010.
In this case, any loans that have defaulted before the end of 2009 will not be included
in the sample. This sample selection problem is similar to the one in the truncated re-
gressionmodel that was discussed in Section 6.3, and we can correct for it in a similar
fashion. The likelihood contribution for unit i in the absence of censoring is changed
into

f (yi | xi, yi ≥ t0 − ai; θ) =
f (yi | xi; θ)

1 − F(t0 − ai | xi; θ)
, (6.67)

where t0 corresponds to 1 January 2010.With right-censoring, the likelihood contribu-
tion is the conditional probability that y∗i exceeds ci, given by

Pr(y∗i > ci | xi, yi ≥ t0 − ai; θ) = 1 − F(ci | xi; θ)
1 − F(t0 − ai | xi; θ)

. (6.68)
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Unlike in the case of flow sampling, both the starting dates ai and the length of the
interval t0 − ai appear in the likelihood contributions. The exact functional form of
the loglikelihood function depends upon the assumptions that we are making about
the distribution of the duration variable. As mentioned earlier, these assumptions are
typically stated by specifying a functional form for the hazard function.

When the explanatory variables are time-varying, things are a bit more compli-
cated, because it does not make sense to study the distribution of a duration condi-
tional upon the values of the explanatory variables at one point in time. This leads
to

λ(t, xit) = λ0(t) exp(x
′
itβ). (6.69)

Because both the baseline hazard and the variables in xit can vary with the duration,
separating the effects of time and the covariates is challenging. Another extension is
the inclusion of unobserved heterogeneity in themodel, because the explanatory vari-
ables that are included in the model may be insufficient to capture all heterogeneity
across individuals. In the proportional hazards model, this implies that the specifica-
tion for the hazard rate is extended to (Meyer, 1990)

λ(t, xi, vi) = αiλ0(t) exp(x
′
itβ), (6.70)

where αi is an unobservable positive randomvariablewithE(αi) = 1. The expression in
(6.70) describes the hazard rate given the characteristics xit and given the unobserved
heterogeneity αi. The latter is integrated out of the likelihood function after imposing
an appropriate parametric distribution, similar to the random effects probit model.
SeeWooldridge (2010, Chapter 22) formore details on these extensions. Stata provides
several routines to estimate duration models. The command streg estimates a variety
of parametric duration models (after the data are appropriate defined using stset).
A useful introduction to duration analysis with Stata is Cleves et al. (2016).

Using hazard models has become a preferred approach for the prediction of
bankruptcies. One advantage is that duration models take into account each firm’s
period at risk, as well the potential unfavourable indicators a firm may have had
during multiple periods before going into bankruptcy (Shumway, 2001). In compari-
son with the traditional logit model, the hazard model is based on information from
bankrupt and non-bankrupt firms for years prior to the final year before bankruptcy
(see also Beaver et al., 2005, who explore the stability of the model coefficients over
time for the prediction of bankruptcy). Both of these papers allow for time-varying co-
variates in xit, and assume all firm-specific heterogeneity is captured by the covariates
(so that αi = 1 for all i).

Another example of duration analysis in finance is provided in Ongena and Smith
(2001), who examine the duration of firm-bank relationships and investigate the pres-
ence of positive or negative durationdependence. They also relate theduration tofirm-
specific characteristics, such as age, size and Tobin’s Q. They estimate their model
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assuming either an exponential or Weibull baseline hazard function, accounting for
right-censoring.Whited (2006) uses a hazardmodel to study the frequency of large in-
vestments (spikes), and the spells between spikes. She estimates the baseline hazard
semi-nonparametrically using a step function of discrete spell lengths, based on the
techniques of Meyer (1990).

An extension of the standard hazard rate function is provided in a competing risks
model. In this case, there aremultiple hazard rates corresponding to different exit rea-
sons, where the observed duration corresponds to the shortest one (whichever hap-
pens first). For example, Hollifield et al. (2006) use this to model the time an order
remains in the limit-order book, with cancellation and execution as two crucially dif-
ferent reasons. More technical details of duration models can be found in Lancaster
(1990, Chapter 5) and Van den Berg (2001).
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7 Estimating average treatment effects
A substantial part of the empirical literature attempts to identify causal effects, and
the topic of causal inference has been receiving increasing amounts of attention in re-
cent years. Much of this literature is framed as the estimation of treatment effects (or
as “programme evaluation”). A treatment effect refers to the causal impact of a cer-
tain treatment (policy, event, decision) upon a given outcome. Because the effect of
a treatment may differ across firms and selection into treatment may be nonrandom,
the estimation of treatment effects is nontrivial. In the simplest case, the treatment
effect is simply the coefficient for a treatment indicator in a linear regression model.
Becausewe are interested in the causal effect of treatment, we need toworry about en-
dogeneity of the treatment dummy. That is, we need to worry about the question how
units are selected, or select themselves, into treatment. When the effect of a treatment
differs across units, additional issues emerge, including the question which (average)
treatment effect we wish to estimate.

In this chapter, we provide a brief review of the literature on the estimation of
average treatment effects, with particular attention to its use in finance. The advan-
tage of having panel data is that multiple observations on the same units are avail-
able, which ideally include observations before and after treatment has occurred. This
way, a comparison before and after can be combined with a comparison with firms
that are not treated (the control group). Such difference-in-differences approaches are
very popular in empirical work. Section 7.1 discusses the potential outcomes frame-
work, which underlies much of the recent literature. It provides a convenient way
to illustrate the identification challenge (the fact that counterfactual outcomes are
not observed), and helps introducing several solutions. Section 7.2 considers possi-
ble solutions if it can be assumed that treatment is independent of the potential out-
comes, conditional upon a set of covariates. This includes inverse probability weight-
ing (IPW), regression-adjustment andmatching. Section 7.3 introduces regression dis-
continuity design (RDD). We then move to more challenging cases where treatment is
potentially endogenous, conditional upon a set of covariates. Section 7.4 relates the al-
ternative outcomes framework to the more traditional switching regression model. In
Section 7.5, we come back to the role of instrumental variables estimation in the pres-
ence of heterogeneous treatment effects, and discuss the concept of a local average
treatment effect (LATE).

All approaches are implicitly or explicitly based on a comparison of outcomes for
units that treated with those of one or more (potentially hypothetical) units that are
not treated. The panel nature of the data is reflected in the calculation of the cor-
responding standard errors, or in the use of lagged variables as conditioning vari-
ables or instruments. In Section 7.6, we conclude this chapter with a discussion of the
difference-in-differences approach, which compares outcomes before and after treat-
ment, and between groups of units that receive treatment and does that do not. This
can be combined with some of the earlier approaches, such as matching. However,

https://doi.org/10.1515/9783110660739-007
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the panel nature of the data may also complicate the identification and estimation
of treatment effects, for example, when treatment can take place a different points in
time and the effect of treatment varies across periods. We also discuss some of these
concerns in Section 7.6.

The literature on causal inference is extensive and expanding rapidly. More de-
tailed coverage is provided in Lee (2005), Angrist and Pischke (2009), Angrist and
Pischke (2015), Cerulli (2015), Imbens and Rubin (2015), Abadie and Cattaneo (2018),
Hernán and Robins (2020) and Cunningham (2021). The problem of endogeneity in
corporate finance, with a discussion of potential solutions, is covered very well in
Roberts andWhited (2013). An account of the diffusion of techniques to identify causal
relationships in corporate finance research since the mid-1990s is provided in Bowen
et al. (2017).

7.1 Potential outcomes

A common starting point is to define two potential outcomes for a given firm, denoted
y0i and y1i, where – for simplicity – we ignore any time variation in these outcomes
(Rubin, 1974). The outcome y0i denotes the outcome in a situation without treatment,
whereas y1i is the outcome with treatment. The firm-specific gains to treatment are
given by δi = y1i − y0i, which is the difference between an actual outcome and a coun-
terfactual one. Only one of these outcomes is observed, depending upon the decision
of the firm, or some other allocation mechanism, to participate in treatment. In gen-
eral, we are interested in making statements about the expected or average gains of
treatment for particular subsets of the population, or the entire population of firms.
Let us denote treatment by the indicator ri. That is, ri = 1 denotes that a firm is subject
to treatment, and ri = 0 otherwise. This means that we observe

yi = riy1i + (1 − ri)y0i,

but never both y0i and y1i.
The term “treatment effect” originates from the medical literature, where schol-

ars investigate, for example, the effect on patients of being treated by a new drug.
Here, we use it denote any (binary) variable that we wish to estimate the causal im-
pact of. There are many examples in corporate finance and corporate governance that
involve the identification and estimation of the effects of a binary outcome. For ex-
ample, Bertrand and Mullainathan (2003) investigate the impact of the passing of an
antitakeover law at the state level upon outcomes such as production worker wages
and capital expenditures at the plant level, Adams et al. (2005) investigate the impact
of powerful CEOs (proxied by several alternative indicators) on firm performance, and
Bennedsen et al. (2007) compare the changes in the operating performance of firms
that choose a family member as the new CEO to that of firms that appoint an external
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CEO. From these examples it is clear that treatment can refer to something that is ex-
ternally imposed, such as the passage of a law or a new regulation, or some (more or
less voluntary) choice made by a firm or an individual. A key issue is to what extent
firms receiving treatment are otherwise similar to those that do not.

7.1.1 Average treatment effects

In many cases we can expect that the gains to treatment vary across firms or individ-
uals. For example, if treatment refers to a financial literacy training, it can be argued
that this may have greater effects on individuals who are less educated and less finan-
cially literate (see, e. g., Cole et al., 2011). Several alternative population parameters
exist to summarise the effect of treatment for a particular group of units. The average
treatment effect (ATE) is defined as

ATE = E(y1i − y0i), (7.1)

which describes the expected effect of treatment for an arbitrary firm or individual.
That is, it measures the effect of randomly assigning a unit in the population to receive
treatment. An important alternative measure is the average treatment effect on the
treated (ATT), defined as

ATT = E(y1i − y0i | ri = 1), (7.2)

also denoted as ATET. Thismeasures themean effect of treatment for those firms or in-
dividuals that are in the treatment group.As arguedby Imbens andWooldridge (2009),
inmany cases ATT is themore interesting estimand than the overall average effect. For
example, it does not appear very interesting to determine the effect of a financial lit-
erary training for finance professors. Note that we can write ATT as

ATT = E(y1i | ri = 1) − E(y0i | ri = 1). (7.3)

The first term is potentially observed and denotes the average outcome, conditional
upon treatment, for those units that are treated. The second term is the counterfactual
one and denotes the outcomes for treated units, had they not chosen treatment. Be-
cause counterfactual outcomes are not observed, identification of measures of causal
treatment effects, like ATE and ATT, is only possible if some identifying – and partly
untestable – assumptions are imposed.

One can also define the average treatment effect for the untreated as

ATU = E(y1i − y0i | ri = 0). (7.4)

Untreated units are also known as control units, or the control group. ATU measures
the expected gains from treatment for units in the control group, in the counterfactual
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situation where they would have chosen treatment (or would have been assigned to
treatment). It is easily verified that

ATE = Pr(ri = 1)ATT + Pr(ri = 0)ATU,

that is, the average treatment effect in the population is the weighted average of the
average treatment effects on the treated and untreated units, where the weights corre-
spond to the probability of treatment (or no treatment). The three concepts are iden-
tical if there is no heterogeneity in the treatment effect (δi = δ). With heterogeneous
treatment effects, the potential estimands, ATE, ATT and ATU are typically different.
In general, it can be thought that firms or households that would benefit most from
treatment, other things equal, are more likely to choose treatment.

7.1.2 Randomised experiments

In the ideal situation, firms are randomly selected for treatment, that is, the decision
for treatment is exogenous. This is referred to as a randomised experiment or a ran-
domised clinical trial (RCT). For example, in 2004 the Securities and Exchange Com-
mission (SEC) initiated a controlled experiment in which one-third of the stocks in the
Russell 3000 index were arbitrarily chosen as pilot stocks and exempted from short-
sale price tests (see Fang et al., 2016, for an illustration). In some cases, randomised
field experiments are used to identify the impact of an intervention. For example, Du-
flo and Saez (2003) sent letters to a random selection of university employees, encour-
aging them to attend an employee benefits fair, so as to try to increase the enrolment in
retirement plans. Cole et al. (2011) conduct a field experiment in Indonesia offering a
financial education programme on bank accounts to a random selection of unbanked
households.

If selection into treatment is completely random, it is independent of the potential
outcomes. This is summarised in

Assumption (random assignment) : ri is independent of y1i, y0i.

Under random assignment, there is no difference between ATE, ATT and ATU and an
obvious estimator is the difference of the sample averages of y1i and y0i, that is,

δ̂ATE = ȳ1 − ȳ0 =
1
N1
∑ riy1i −

1
N0
∑(1 − ri)y0i, (7.5)

where N1 = ∑i ri and N0 = ∑(1 − ri) denote the number of treated and untreated firms,
respectively. In general, this estimator is a consistent estimator for

E(y1i | ri = 1) − E(y0i | ri = 0), (7.6)
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which coincides with any of the average treatment effects under random assignment.
Biases may arise when information correlated with the potential outcomes is used to
assign treatment or when firms self-select into treatment based on a trade-off between
potential gains and losses. This makes identification and estimation more challeng-
ing.

Natural experiments
In a natural experiment, history (or nature) provides random assignment of treat-
ment. In finance, this typicallymeans that some policy or regulatorymeasure is taken,
affecting a subset of units in the population, leaving another group unaffected. Be-
cause most “experiments” in finance are not natural, Atanasov and Black (2016) refer
to these cases as “shocks”. If assignment is truly random, the treatment and control
groups should not be systematically different, and a comparison of outcomes provides
an easy estimate of the average treatment effect. Experiments in which firms are ran-
domly selected into treatment are rare. Often, natural experiments imply that some
policy or measure is imposed upon a group of firms in a particular region, whereas
firms in another region are not affected, or are subject to a similar policy at a later point
in time. For example, Becker and Strömberg (2012) examine the effect of managerial
fiduciary duties on equity-debt conflicts, using a legal rulingwhich only affecteddirec-
tors of Delaware corporations, but not of firms incorporated elsewhere. Bertrand and
Mullainathan (2003) investigate the impact of antitakeover laws, which are passed by
many US states at different points in time. This way, the control group of firms evolves
over time, consisting of the firms in states where the antitakeover law has not (yet)
been passed.

7.1.3 Biases

In most cases, treated firms and control firms tend to differ in observable and unob-
servable characteristics, owing to the selection process into treatment. As a result of
this, the naive estimator in (7.5), comparing the average outcome of the treated group
with the average outcome for the control group, tends to be a biased estimator for both
ATE and ATT. This is due to selection bias (i. e., the endogeneity of the treatment de-
cision). For example, firms with particular characteristics of their governance (e. g.,
board composition) may differ in many ways from those with other characteristics. As
a result, relating firm performance to governance may capture unobservable differ-
ences between firms with different governance, rather than the causal effect of having
certain governance characteristics (see, e. g., Adams et al., 2010). This problem arises
even if there is no heterogeneity in treatment effects.
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In general, the naive estimator δ̂ATE = ȳ1 − ȳ0 is estimating (Cunningham, 2021,
Chapter 4)

E(y1i | ri = 1) − E(y0i | ri = 0) = ATE
+ [E(y0i | ri = 1) − E(y0i | ri = 0)]
+ [1 − Pr(ri = 1)](ATT − ATU). (7.7)

The term in the second line of this equation corresponds to the selection bias. It
reflects the (unobserved) differences between the treatment and the control groups,
even in the absence of treatment. The final term is the heterogeneous treatment ef-
fect bias. It captures the average difference in the treatment effects on the treated and
untreated groups, multiplied by the proportion of firms that do not receive treatment.
If the treatment effect is homogenous (i. e., y1i − y0i does not vary with i), ATT = ATU,
and the final term disappears, but the selection bias term remains. For example, even
if the gains to treatment are identical, if firms with low values of yi0 are more likely to
choose treatment, comparing the average outcomes of treated and untreated groups
mayunderestimate the average treatment effect due to selectionbias. It is also possible
to rewrite (7.7) as (Angrist and Pischke, 2009)

E(y1i | ri = 1) − E(y0i | ri = 0) = ATT
+ [E(y0i | ri = 1) − E(y0i | ri = 0)],

leaving only the selection bias term if one is interested in the average treatment effect
on the treated. Because of this, the estimation of ATT is often somewhat less challeng-
ing than that of ATE.

Independence of ri fromboth y1i and y0i (randomassignment) is sufficient to elim-
inate these biases. Unfortunately, in many cases this is unlikely to hold. If the effect of
treatment varies and firms have some freedom to choose whether or not to go for treat-
ment they are likely to optimise their decisions taking into account the potential costs
and benefits of treatment. As a result, ri is likely to depend upon the potential out-
comes y0i and y1i. This makes the identification of the different treatment parameters
much more challenging.

SUTVA
In addition to the independence assumption, there is one additional assumption that
needs to be imposed, although it is often ignored in empirical work. This is the stable
unit treatment value assumption (SUTVA). It requires that the assignment of a firm
to treatment does not affect the treatment effects or potential outcomes of any other
firm. In general terms, Hernán and Robins (2020) refer to this as the absence of inter-
ference. In certain contexts this may be violated. For example, if firms are competing
in the same market, a treatment that benefits one firm may also have an impact on
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other firms. In addition to such competition effects, there may be spillover effects: if
some firms are choosing treatment, other firmsmay benefit or suffer from it, for exam-
ple, firms in the supply chain of the treated firms. Third, there may be agglomeration
effects or spatial spillovers. Firms in the same area may suffer or benefit from each
other’s treatment. This also relates to the issue of general equilibrium. For example,
if many firms choose to appoint a female CEO, this may affect the renumeration of fe-
male CEOs and thus affect the supply and demand of female CEO candidates. Even
with random treatment assignment, spillovers lead to a bias in estimating treatment
effects.

Atanasov andBlack (2016) discusswhy it is important toworry about SUTVA in the
context of estimating the impact of corporate governance on firmperformance. For ex-
ample, consider the case where the dependent variable is profitability. If an improve-
ment in corporate governance leads to an increase in efficiency, thismay increase prof-
itability of the firm. However, if many firms experience a similar improvement, these
additional profits tend to be competed away. As another example, suppose that some
regulation makes firms improve their disclosure. This may have a negative impact on
other firms that do not do so, because of a signalling effect. The literature on how
to deal with violations of the SUTVA assumption in economics and finance is slowly
emerging; see Berg et al. (2021) for a recent contribution. In general, there are no easy
solutions here, and further modelling of the spillover effects is required, often in the
context of a structural model that helps understanding the interactions between eco-
nomic agents. Below, we shall assume that SUTVA is satisfied.

About identification
Because the estimation of treatment effects relies upon a comparison of actual and
counterfactual outcomes, consistent estimation of the different average treatment ef-
fects relies upon imposing identifying assumptions, which – by definition – are par-
tially not testable. This means we cannot rely on statistical techniques only, and need
to investigate and discuss the economic mechanisms underlying the problem of in-
terest. We made this point before in the context of the use of instrumental variables
(see Chapter 3), but it applies more generally to any identification strategy to estimate
causal effects.

Kahn and Whited (2017) stress the difference between identification and estab-
lishing causality. Identification is, in principle, an econometric condition to make
sure that we can consistently estimate some unknown parameter from observed data.
There are many interesting and important papers in finance that do not establish
causality. In the words of Kahn and Whited (2017), “not all interesting questions are
causal in nature, and not all identification issues revolve around establishing causal-
ity”. Some papers that establish causality, even those that do so convincingly, may
not estimate something that is economically of great interest (but just happen to
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estimate a causal effect that is well identified). Structural models, which carefully ar-
ticulate economic behaviour, can provide an attractive alternative; see, for example,
Keane (2010), Heckman and Urzúa (2010) or Strebulaev and Whited (2011) for more
discussion.

7.2 Conditional independence

A common assumption in the estimation of treatment effects is the conditional inde-
pendence assumption (CIA):

Assumption (conditional independence) : ri is independent of
y0i, y1i, conditional upon xi,

It says that, conditional upon xi, ri is independent of the potential outcomes (y0i, y1i).
This assumption is also referred to as (conditional) unconfoundedness or “selection
on observables”. It requires that a sufficient number of predictors for the treatment
indicator is available, such that, conditional upon these predictors in xi, allocation to
treatment is random. This condition is importantly weaker than complete randomisa-
tion because it allows the treatment allocation to depend upon observed characteris-
tics in xi. For example, it allows that firms in certain industries are more likely to be
treated than in other industries, as long as, within an industry, treatment is random.

Under conditional independence, it holds that E(y0i | xi, ri) = E(y0i | xi) and
E(y1i | xi, ri) = E(y1i | xi). Let μ0(xi) = E(y0i | xi) and μ1(xi) = E(y0i | xi), denote the
expected potential outcomes conditional upon the covariates in xi. With this we can
write

y0i = μ0(xi) + ε0i
y1i = μ1(xi) + ε1i,

where conditional independence implies that ri is independent of the unobservables
in ε0i and ε1i. The conditional probability of assignment to treatment given a vector of
variables xi is formally written as

p(xi) = Pr(ri = 1 | xi), (7.8)

where it is assumed that

Assumption (overlap) : 0 < p(xi) < 1 for all xi.

This condition, typically referred to as the overlap assumption (or common support
assumption), ensures that for each value of xi there is a positive probability to observe
units in both the treatment and the control group. If, for example, there is no chance
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of observing a firm in the treatment group with negative earnings, we will never be
able to estimate the average treatment effect over the population that also includes
firms with negative earnings. The probability p(xi) is known as the propensity score
(Rosenbaum and Rubin, 1983). It can be estimated parametrically using one of the
binary choice models from Section 6.1, but it is also possible to use semi-parametric
alternatives.

An important result is that, under conditional independence, ri is independent of
y0i and y1i conditional upon the propensity score p(xi) (Rosenbaum and Rubin, 1983).
This implies, for example, that

E(yi | ri = 1, p(xi)) = E(y1i | p(xi)).

Conditioning upon the propensity score is thus sufficient to make ri exogenous.
Under conditional independence, several alternative approaches are available to

estimate ATE and ATT.

7.2.1 Weighting

Assuming conditional independence, consistent estimators for ATE and ATT can be
derived based uponweighting using the propensity score. To see how this works, con-
sider

E{ riyi
p(xi)
} = E{ riy1i

p(xi)
} = E{E{ riy1i

p(xi)
| xi}} = E{

p(xi)E{y1i | xi}
p(xi)

} = E{y1i},

which is the unconditional expected outcome under treatment. The third equality
holds by virtue of the conditional independence assumption. Similarly, it can be
shown that

E{ (1 − ri)yi
1 − p(xi)

} = E{y0i}.

Combined, these two expressions suggest an obvious estimator for ATE as

δ̂ATE,ipw =
1
N

N
∑
i=1
(
riyi
p̂(xi)
−
(1 − ri)yi
1 − p̂(xi)

), (7.9)

where p̂(xi) is the estimated propensity score. This estimator is known as the inverse
probability weighting (IPW) estimator. To estimate ATT, the estimator is changed into

δ̂ATT,ipw =
1
N1

N
∑
i=1
(riyi −

p̂(xi)(1 − ri)yi
1 − p̂(xi)

), (7.10)

where N1 is the number of treated units, N1 = ∑i ri. In this case, the weights only
adjust the average for the control group. The key input for the calculation of these
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estimators is the estimated propensity score, and alternative approaches have been
proposed for its specification and estimation. Rosenbaum and Rubin (1983) suggest
that the propensity score be estimated using a flexible logit model, where squares and
interactions of xi are included. An implementation of the IPW estimator, based on a
logit model, is given in Black et al. (2017). In Stata, teffects ipw can estimate ATE and
ATT using propensity scores based on logit, probit or heteroskedastic probit models.
Hirano et al. (2003) improve upon the efficiency of the estimator using a more flexible
logit model where the number of functions of the covariates increases with the sam-
ple size. If the estimated propensity scores are very close to zero or one, the weighting
estimators for ATE may not be very accurate (and this will be reflected in their stan-
dard errors). This is because some observations will end up having an extremely high
weight. For ATT, we need to make sure that p̂(xi) is not too close to 1.

7.2.2 Regression-adjustment

An alternative approach is to use regression-adjustment, making assumptions about
the functional formofμ0(xi) andμ1(x1). Assuming that the conditionalmean functions
are linear in xi, we can write

y0i = α0 + x
′
iβ0 + ε0i (7.11)

y1i = α1 + x
′
iβ1 + ε1i, (7.12)

where the regressor vector xi does not contain an intercept, and where ε0i and ε1i are
zero mean error terms, satisfying

E(ε0i | xi) = 0, E(ε1i | xi) = 0.

The assumption of linearity in xi is not crucial, and some exclusion restrictionsmay be
imposed upon the covariate vectors in the two equations. In fact, both (7.11) and (7.12)
are pretty standard regressionmodels, describing conditional expectations, except for
the fact that the dependent variables are not observed for all i.

As before, we observe y1i if ri = 1 and y0i otherwise. Accordingly, the observed
outcome is given by

yi = α0 + x
′
iβ0 + ri[(α1 − α0) + x

′
i (β1 − β0) + (ε1i − ε0i)], (7.13)

where the term in square brackets denotes the gain from treatment, that is, the treat-
ment effect for unit i. The unit-specific gain from treatment consists of three compo-
nents: a constant, a component related to observable characteristics and an idiosyn-
cratic component related to unobservables, that is,

δi = y1i − y0i = (α1 − α0) + x
′
i (β1 − β0) + (ε1i − ε0i). (7.14)
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To determine average treatment effects, possibly for subgroups defined by xi, the final
term in this expression is irrelevant in two important cases. The first arises if there are
no unobservable components in the gain from treatment, that is, if ε1i = εi0. The sec-
ond case arises if the allocation to treatment doesnot dependupon theunobservables,
which is implied by conditional independence.

It is possible to rewrite (7.13) as

yi = α0 + x
′
iβ0 + δri + rix

′
i γ + εi, (7.15)

where δ = α1 −α0, γ = β1 −β0 and εi = ε1i − εi0. This is a regressionmodel that includes
the covariates xi, the treatment indicator ri and their interactions. Under conditional
independence, the average treatment effect for a firm with characteristics xi is given
by

CATE(xi) = δ + x
′
i γ,

If the treatment effect depends upon one or more characteristics in xi, the conditional
average treatment effect (CATE) will vary across subgroups with different values of xi,
and will thus not equal ATE or ATT. To obtain the unconditional average treatment
effect, one would need to take expectations over xi across the relevant population. To
obtain estimates for ATE and ATT, we can exploit that fact that – under conditional
independence – equations (7.11) and (7.12) can be estimated consistently by OLS over
the relevant subsamples. This way, we can easily predict actual and counterfactual
outcomes.

Writing

ŷ0i = α̂0 + x
′
i β̂0, (7.16)

and

ŷ1i = α̂1 + x
′
i β̂1 (7.17)

where α̂0, β̂0 are the OLS estimates from (7.11) using the control sample, and α̂1, β̂1 are
those from (7.12) using the treatment sample, we can estimate ATE as

δ̂ATE,ra =
1
N

N
∑
i=1
(ŷ1i − ŷ0i), (7.18)

where the average is taken over the entire sample. Using the definition of the OLS
estimator for the intercept, this can be written as

δ̂ATE,ra = ȳ1 − ȳ0 − (x̄1 − x̄0)
′(
N0
N
β̂1 +

N1
N
β̂0). (7.19)

To adjust for the differences in covariates, the simple difference in average outcomes
in (7.5) is adjusted by the difference in average covariates multiplied by the weighted
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average of the regression coefficients. If the average values of the covariates are very
different across the subsamples, the adjustment to the sample mean is typically large.
Similar to (7.18) and (7.19), ATT can be estimated as

δ̂ATT,ra =
1
N1

N
∑
i=1

ri(ŷ1i − ŷ0i) = ȳ1 − ȳ0 − (x̄1 − x̄0)
′β̂0. (7.20)

Both ATE and ATT using this regression-adjustment can directly be obtained in Stata
using teffects ra.

It is important to note that the adjustment strongly depends upon the linear re-
gressionmodels being accurate over the entire range of covariate values. If themodels
are used to predict outcomes far away fromwhere the regression parameterswere esti-
mated, the results can be quite sensitive tominor changes in the specification (Imbens
and Wooldridge, 2009). To be more precise, we need to assume that the regression
functions provide a good approximation to the counterfactual outcomes, even though
the control and treatment groupsmay have quite different values of xi. For ATT, the re-
quirement is a bit weaker, because we only need to predict yi0 for the treatment group.
Because regression methods are fundamentally not robust to substantial differences
between the treatment and control groups (see Imbens, 2015), recent empirical work
on the estimation of treatment effects has moved away from pure regression-based
approaches.

Nevertheless, the possibility to include covariates in the two regression equations
is an attractive option to attempt to control for the endogeneity of the treatment indi-
cator. This is because the conditional independence assumption tends to get weaker
once more controls are added, that is, when xi contains more variables. However, it
is inappropriate to assume that adding more controls in all cases increases the likeli-
hood of the regression estimates having a causal interpretation. In general, it is rec-
ommended to control for the pre-treatment covariates, variables that matter for yi and
ri, but are not affected by ri. Some variables youmaywish to include are so-called bad
controls (Angrist and Pischke, 2009, Section 3.2). These are variables that are likely to
be affected by the treatment. A typical example is firm size in a regression explaining
firm performance (e. g., Tobin’s Q), because firm size may itself also be an outcome
of a particular treatment chosen by a firm. With panel data, this issue requires even
more attention because the controls can correspond to different points in time. Firm
size before the decision of treatment is taken, would be a good control, whereas firm
size after the decision is taken might be a bad control. In general, good controls are
variables that can be interpreted as fixed when the treatment was chosen (whether by
the firmor someone else). As an example, Ahern andDittmar (2012) estimate the effect
of gender quota on firm value in Norway, and exclude R&D expenditures and several
other firm characteristics as controls, because R&D expenditures may also change as
a result of the quota. Their most parsimonious specification only includes firm fixed
effects as controls.

 EBSCOhost - printed on 2/8/2023 2:27 PM via . All use subject to https://www.ebsco.com/terms-of-use



220 | 7 Estimating average treatment effects

Lee (2005, Chapter 3) provides a more detailed discussion regarding the choice of
variables to control for. For example, a variable that only affects the outcomes y0i, y1i,
but not ri, is not necessarily included in xi. Similarly, a variable that only affects ri,
but not the outcomes, is not necessarily included in xi. Having too many variables in
xi may lead to a dimension problem, where conditioning on a given value for xi can
result in too few observations for each subpopulation characterised by xi. Moreover,
there may be a support problem (or overlap problem): the values of xi observed for
the treatment groupmay not overlap much with those observed for the control group.
On the other hand, having too few variables in xi (or the wrong ones), may violate the
conditional independence assumption.

7.2.3 Regression with a treatment indicator

If conditional independence holds and the slope coefficients do not depend upon
treatment (β0 = β1 = β), the average treatment effect reduces to a constant and can
be estimated from OLS in

yi = α0 + x
′
iβ + δri + εi, (7.21)

where δ denotes the average treatment effect. This error term satisfies E(εi | xi, ri) = 0
by virtue of the conditional independence assumption. In fact, the conditional inde-
pendence assumption guarantees that the regression equation can be interpreted as
a conditional expectation, or a linear projection, and we do not have to worry about
possible correlation between xi and the error term εi. In a sense, (7.21) is a reduced
form, where the only purpose of xi is to adjust the estimate for δ to make it reflect a
causal effect. This is an important result and tells us that we can estimate the causal
effect of a treatment by choosing a set of controls xi that makes the conditional inde-
pendence assumption valid. For example, in their investigation of the causal effect of
media reporting on trading volume (across stocks traded at 19 cities), Engelberg and
Parsons (2011) include a wide set of control variables in an attempt to control for any
simultaneous determinants of local media coverage and local trading. Effectively, this
assumes that “after the inclusion of these controls, a media’s decision to report an
earnings announcement is unrelated to local trading”.

The linearity assumption of the regression model in (7.21) is for convenience and
can easily be relaxed (e. g., by including polynomials of xi, or sets of dummies corre-
sponding to different ranges of the control variables, etcetera). If we put in some con-
trol variables that are uncorrelated to ri, they can still serve the purpose of reducing
the residual variance and improving the precision of our estimate for δ.

However, if the treatment effect is heterogeneous, the OLS estimator in (7.21) can
be severely biased for estimating ATE or ATT. Recently, Słoczyński (2021) shows that,
under certain conditions, the OLS estimand is a convex combination of ATT and ATU
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where the weights – surprisingly – are inversely related to the proportion of observa-
tions in each group. To estimate ATE, this is particularly problematic if the proportion
of treated cases is very different from 50%. On the other hand, to accurately estimate
ATT, the proportion of treated units needs to be small. If conditional independence is
satisfied, but β0 ̸= β1, one can estimate the treatment effects from a single regression
as in (7.15), that is, by including interactions between the treatment indicator and the
control variables.

7.2.4 Matching

With matching, the counterfactual outcomes are taken to be the actual outcomes of
a matched unit of the other group. For example, to estimate the average treatment
effect on the treated (ATT), each member of the treatment group is matched with a
“similar” counterfactualmember of the control group, or the average over a number of
members of the control group. The idea is that, by choosing a control firmwith similar
characteristics xi, one can find a sensible counterfactual outcome for any given firm
in the treatment group. As a result, a matching estimator for ATT can be written as

δ̂ATT,m =
1
N1

N
∑
i=1
(riyi −

N
∑
j=1

ωij(1 − rj)yj),

where ωij represents a set of scaled weights that measure the distance between each
control case j and the target treatment case i. Typically,∑i ωij(1−rj) = 1 for each i. Under
the assumptions of conditional independence and overlap, we can use the matched
observation as a sensible counterfactual observation. Averaging across all treated ob-
servations, and their correspondingmatched counterfactuals, provides an estimate of
ATT. The overlap assumption makes sure that there are no values for xi for which, in
the population, no counterfactual firm can be found. That is, one needs to be able to
find counterfactual units with similar characteristics at any value of xi observed in the
treatment group. For example, if the treatment firm is in a given industry, there need
to be control firms in the same industry that can be used as a match. Accordingly, a
matching estimator for ATT can work well if there is a sufficiently large reservoir of
control firms to select a match from. When estimating ATE, both the treatment and
control groups are matched with members from the alternative group (see Imbens,
2004, Roberts and Whited, 2013, and Imbens, 2015 for more details).

Discrete covariates in xi with a small number of support points (e. g., industry
indicators of firms, investment styles of mutual funds), can be easily dealt with by
matching on the basis of their exact values. When the covariates in xi are continu-
ous (or when the sample is small relative to the number of discrete outcomes), exact
matching is typically not possible. Instead, matching can be based on choosing a firm
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from the control sample with values of each element in xj that are “as close as possi-
ble” to the observed values xi of the treatment firm i. It is also possible to match using
an average of M counterfactuals that are close. In this case, the M nearest matches
have ωij = 1/M (and 0 otherwise). A first approach is to base the matching upon the
Euclidian distance between xi (in the treatment group) and xj (in the control group),
defined as

‖xi − xj‖ = √(xi − xj)′(xi − xj).

Alternatively, the norm ‖ ⋅ ‖ can be generalised to include a positive definite weighting
matrix (e. g., based on inverse of the covariance matrix of xi). This makes sense, as it
adjust for the scaling and variation in the covariates. The most popular variant of this
corresponds to the Mahalanobis distance and is given by

‖xi − xj‖ = √(xi − xj)′Σ−1x (xi − xj),

where Σx is the variance-covariancematrix of xi. An alternative uses only the diagonal
elements of Σx (leading to the normalised Euclidian distance). Below, we use ‖ ⋅ ‖ to
denote either of these norms.

Let jm(i) denote the index j that solves rj = 1 − ri and

∑
{ℓ:rℓ=1−ri}

I(‖xi − xj‖ ≤ ‖xi − xℓ)‖) = m, (7.22)

where I(⋅) is the indicator function. In other words, jm(i) is the index of the unit in the
control group that is the mth closest to unit i in the treatment group (Imbens, 2004;
Abadie and Imbens, 2006),where closest is defined in termsof thenorm ‖ ⋅ ‖.Matching
can be done without replacement, which means that each unit is used as a match at
most once.1 To improve the quality of the matching process, matching is often done
with replacement, allowingunits to serve as amatchmore thanonce. The set of indices
corresponding to the firstM matches is denoted as JM(i), and contains theM nearest
neighbours (in terms of the distance metric chosen). The matched counterfactual for
treatment observation i is simply

ŷ0i =
1
M
∑

j∈JM (i)
yj.

so that the estimator for ATT can be written as

δ̂ATT,m =
1
N1

N
∑
i=1

ri(yi − ŷ0i).

1 When matching without replacement, the order in which you match can affect the estimates, be-
cause a unit that is used as amatch is not available as a potentialmatch for later observations (Roberts
and Whited, 2013).
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It is not a priori clear what the best choice forM is. For example, ifM = 1, the counter-
factual is based on the single best match, and will be least biased. However, the esti-
mator tends to be less precise compared to the case where multiple matches are used.
However, largerM tends to increase the bias in the matching process. In other words,
there is a trade-offbetweenbias andprecision.Asymptotic properties ofmatching esti-
mators are somewhat complicated. In particular, Abadie and Imbens (2006) show that
the matching estimators are not root-N-consistent, but converge to the true treatment
effects at a lower rate than usual, among other things depending upon the number
of covariates used in the matching process. A bias-correction is proposed in Abadie
and Imbens (2011), which exploits the quality of the matches; see Cunningham (2021,
Chapter 5) for an intuitive discussion.

Propensity scorematching (Rosenbaum and Rubin, 1983) is a common alternative
to matching upon the full vector of covariates (see also Dehejia and Wahba, 2002). It
reduces the dimensionality of the matching problem, and avoids the need of a bias
correction. It can be defended by the earlier result that ri is independent of the po-
tential outcomes, conditional upon the propensity score p(xi). Units for the treatment
group are now matched with one or more units from the control group with a similar
propensity score, that is, with a similar conditional probability of treatment (but not
having been exposed to treatment). In this case, the matching is based on jm(i), the
index j that solves rj = 1 − ri and

∑
{ℓ:rℓ=1−ri}

I(p̂(xi) − p̂(xj)
 ≤
p̂(xi) − p̂(xℓ)

) = m, (7.23)

where p̂(xi) is an estimate for p(xi). This facilitates thematching process because units
withdissimilar covariate valuesmaynevertheless have similar values for their propen-
sity score. The rest of the implementation follows the previous steps.

Matching adjusts for the potential endogeneity of the treatment only to the ex-
tent that treatment depends upon the covariates. This is implied by the assumption
of conditional independence (unconfoundedness). In the same spirit, adding control
variables in a regression model adjusts for omitted variable bias that may drive the
endogeneity of the treatment indicator (Imbens, 2004). Matching is often combined
with other approaches, such asweighting or the difference-in-differences analysis dis-
cussed below (see Gormley and Matsa, 2016, for an example). Matching will never be
able to fix an endogeneity problem that is due to unobserved variables (because you
cannot match on something that is not observed). It also does not solve problems of
simultaneity bias (where ri and yi are jointly determined) or bias due to measurement
error (in ri).

One drawback of propensity scorematching approach is that the propensity score
needs to be estimated. This is typically done by means of a standard logit or probit
function, occasionally by a linear regression. Hirano et al. (2003) propose to use a
nonparametric series estimator. Results may be sensitive to the choice of model in
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this step. Similarly, results may be sensitive to the choice of covariates and the choice
of matching method. Importantly, the covariates should be exogenous and not be af-
fected by the treatment. For example, Smith and Todd (2005) stress that selecting too
many variables in xi may violate the conditional independence assumption, and may
also challenge the common support condition. In general, it is recommended to per-
form some robustness checks making alternative choices.

An implementation of thematching estimator based on theMahalanobis distance
(withM = 1) is given in Almeida et al. (2017). Their treatment group has only 73 firm-
year observations, with a group of more than 21,000 firm-years acting as a pool of
candidate matches, where matching is based upon about a dozen covariates. Simi-
lar to many studies using matching, they provide a comparison of descriptive statis-
tics of the covariates across treated observations and matched control observations.
Comparing the distribution of covariates between the treatment group and control
group sheds some light on the assumption of overlap. An example of matching on the
propensity score is provided in Cooper et al. (2005), who investigate the effect of mu-
tual fund name changes on inflows to the funds. They create a control sample of funds
to calculate the “abnormal flows” to funds that change their name (typically toward a
hot style). The control sample (based onM = 1) is taken from the larger pool of funds
that do not change their name and is chosen on the basis of their estimated probability
to change their name, as a function of characteristics as past returns, past flows and
fees. This is estimated using a logit model for each event date, where the dependent
variable is an indicator equal to 1 for a name-change fund, and 0 for all other funds
in the sample. Another example of matching on the propensity score is Malmendier
and Tate (2009), who evaluate the impact of CEOs achieving superstar status on firm
performance, where superstar status refers to being conferred a prestigious business
award by a major media organisation. They estimate a logit model to explain that the
CEO of a firm was given an award, and use the propensity score from this model to
match, in each award month, a winning CEO to a nonwinning CEO with the closest
propensity score. They also employ the bias-correction of Abadie and Imbens (2011).
Lemmon and Roberts (2010) employ propensity score matching withM = 4 matches,
because their control group is more than 14 times larger than the treatment group.

Stata offers the command teffects nnmatch to estimate ATE and ATT using nearest
neighbour matching. The covariates on which to match should be listed, the number
of matches can be larger than one (M ≥ 1) and alternative distance measures can be
chosen. For categorical variables, exact matching can be required (e. g., a treatment
firm should only be matched with a control firm in the same industry). Alternatively,
teffects psmatch implementsmatching based on the propensity score. Aswith the IPW
estimator, different parametricmodels can be chosen to estimate the propensity score.
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Synthetic controls
A related approach is the synthetic control method; see Abadie (2021) for an overview.
Originally developed for comparative case studies where one aggregate unit is ex-
posed to treatment (e. g., a state), treatments effects are estimated as the differences
between the outcome for the treated unit and that of a synthetic control unit, which is
a weighted average of units from the donor pool of untreated units. This counterfac-
tual is assumed to capture what would have happened to the treated unit in case the
treatment had never occurred. The matching process in this case is not solely based
on covariates but also on pre-treatment values of the outcome variable. This controls
for the effect of unobservable factors that have an impact on the common time trend
in the treatment and control groups (Abadie et al., 2010). To enable this, implementa-
tion of the synthetic control approach requires information for a large pre-treatment
window. The user-written Stata package synth implements this method.

An application of synthetic controls in finance is given in Acemoglu et al. (2016),
who extend the application to caseswhere there aremultiple treated firms. They inves-
tigate the role of political connections in relation to the stock market response to the
announcement of Timothy Geithner as nominee for Treasury Secretary in November
2008.

7.3 Regression discontinuity

In recent years, a growing number of studies in economics and finance have relied on
regression discontinuity designs (RDD) to estimate the causal impact of a treatment;
see Imbens and Lemieux (2008), Lee and Lemieux (2010) and Cattaneo et al. (2020) for
detailed overviews and guidelines for practitioners; see Cook (2008) for an interesting
account of the history of regression discontinuity. RDD does not rely upon the avail-
ability of panel data, although applications often use multidimensional data (e. g.,
covenant violations of firms over a period of 10 years, as in Chava and Roberts, 2008,
or loan applications over a period of 3.5 years, as in Berg, 2015). The crucial starting
point of RDD is that the assignment of treatment is related to an observable continu-
ous variable xi, say, with a discontinuity at a known value, c, say. Following Roberts
andWhited (2013), we refer to xi as the forcing variable (also known to as the running
variable), and c as the threshold (also known as the cutoff). The threshold will often
be constant, but it is allowed to vary over the observations, as long as it is known (ex
ante) and observed. The relationship between the outcome variable yi and the forc-
ing variable xi is assumed to be continuous (for both the treated and untreated units).
Because the treatment and control group in this case are characterised by different
values of xi, propensity score weighting cannot be used (the no overlap assumption
is violated). Similarly, regression adjustment is not attractive because the regression
functions would need to be extrapolated substantially.
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7.3.1 Sharp RDD

In the sharp regression discontinuity design, the treatment indicator ri is simply
based on whether xi is above or below the threshold c. That is,

ri = I(xi ≥ c), (7.24)

where I is the indicator function, equal to 1 if its argument is true (and 0 otherwise). In
this case, the assignment to treatment is completely determined by xi being on either
side of a known threshold, c. The outcome variable yi is assumed to be continuously
related to xi, and an estimate of the treatment effect is the difference in expected values
of yi just below and just above the threshold. A graphical illustration of this is given
in Figure 7.1. There are observations of xi on both side of the threshold c. The straight
lines give the theoretical relationships around which the observations are scattered.
The jump at xi = c is the discontinuity and its height is the treatment effect.

Figure 7.1: Regression discontinuity design.

As an example, suppose we are interested in determining how institutional owner-
ship of a stock is affected if it is included in the Russell 1000 index, rather than the
Russell 2000 index (Appel et al., 2021). The Russell 1000 is a value-weighted index of
the largest 1000 US listed firms; the Russell 2000, very popular as a benchmark for
fund managers, contains the next 2000 firms. Average institutional ownership will
vary across stocks in these two indices, because firm sizes differ considerably. How-
ever, inclusion in either index can alsomatter, because institutional investors have in-
centives tominimise tracking error relative to their benchmark, and the relativeweight
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of a stock in an index varies significantly depending on the index. For example, a firm
that justmade it into theRussell 1000 (e. g., a firmwith rank995)will havea lowweight
in that index, while a firm that just made it into the Russell 2000 (e. g., firm with rank
1005) will have a very high weight. Institutional investors who wish to mimic an in-
dex, tend to not hold the firms with very little weight (Boone and White, 2015). As a
result, institutional ownership may increase considerably if the marginal firm moves
from the Russell 1000 to the Russell 2000 index. This creates a discontinuity around
the 1000/2000 threshold.

Assume the relevant total market cap rankings in year t used by Russell are ob-
served, and denote these by xit . Then a firm is included in the Russell 1000 index if
xit ≤ 1000, which defines the treatment indicator rit . The treatment effect we are inter-
ested in is the change in institutional ownership yit . Because firms in the Russell 1000
index are substantially larger than those in the Russell 2000 index, a simple compari-
son of average institutional ownership between the two groups of firmswould not give
an accurate representation of the treatment effect. Regression discontinuity exploits
the discontinuity at the threshold and assumes that firms just above and just below
the threshold are roughly the same. Accordingly, the treatment effect is estimated by
comparing the outcomes yit of firms with xit just below and just above the threshold.
This is then the estimated treatment effect for the firms at themargin of receiving treat-
ment (xit close to c). That is, it estimates E(y1it − y0it | xit = c). A simple estimator is
the difference between the average outcome yit for firms just below the threshold and
those just above. For example, Boone andWhite (2015) compare average institutional
ownership during the period 1996-2006 using a set of three fixed bandwidths, where
bandwidth is the number of firms on either side of Russell 1000/2000 threshold.

In the application of Chava and Roberts (2008) treatment refers to the violation
of a debt covenant by a firm, which arises if either the current ratio or the net worth
falls below the corresponding threshold value specified in the covenant. Accordingly,
xi denotes a firm’s observed current ratio, or net worth, and c is the threshold, which
will be contract-specific.2 The outcome variable is investments of the firm, and the
challenge in the estimation of the treatment effect is that we wish to compare yi for
firms with and without treatment (covenant violation) that are as similar as possible.
This allows one to isolate the effect of treatment from other effects.

Comparing average outcomes in a small range around the threshold may be
problematic because the number of effective observations is small, and increasing
the bandwidth challenges the requirement that firms on both sides are as similar as
possible. Therefore, it is more common to exploit a wider sample in estimation and
mitigate the bias by the inclusion of functions of the forcing variable. To illustrate
this, assume that both actual and counterfactual outcomes are linearly related to xi,

2 The sign of the inequality in (7.24) is arbitrary.
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that is,

y0i = α0 + β0(xi − c) + ε0i,

and

y1i = α1 + β1(xi − c) + ε1i.

The linearity assumption is made for convenience and can easily be relaxed, as long
as the relation between yji and xi is continuous (in the neighbourhood of c). The treat-
ment effect is simply the difference between the two intercepts α1 and α0. We canwrite
this in one equation as

yi = α0 + δri + β0(xi − c) + (β1 − β0)ri(xi − c) + εi, (7.25)

where δ = α1 − α0, and εi = riε1i + (1 − ri)ε0i. Because, conditional upon xi, ri is de-
terministic, the unconfoundedness requirement is trivially satisfied. The estimate of
the treatment effect δ is just the jump in the linear function around c. If we are con-
vinced that the functional formassumption is correct (over the entire support of xi),we
can easily estimate this by standard methods, such as (pooled) OLS using the entire
sample. Allowing the slope coefficients β0 and β1 to differ across the two sides of the
threshold is a useful flexibility, although authors often impose the functional forms to
be the same.

Effectively, (7.25) is an illustration of “selection upon observables”. Conditional
upon the observables (in this case xi), assignment to treatment does not depend upon
unobservables, such as εi. This makes RDD a local randomised experiment.3 Because
ri is a deterministic function of xi, identification of the treatment effect relies on the
ability to separate the discontinuous function, I(xi ≥ c), from the smooth (and in this
case linear) functions of xi. The key identifying assumption of regressiondiscontinuity
is

Assumption (continuity) : E(y1i | xi = c) and E(y0i | xi = c) are continuous
in xi in the neighbourhood of c.

Absence the treatment, the expected potential outcomeswould not jump around c. An
alternativeway of formulating this is that E(εi | xi) is continuous in xi at c. If there is an
omitted variable that would make the outcome jump at c, even if there was no treat-
ment at all, the continuity assumption is violated and identification via RDD would
fail. The continuity assumption is required because the no overlap assumption fails
in this case.

3 An additional assumption that is required is that units are not able to perfectly manipulate their xi
to make them end up at the desired side of the threshold; see Subsection 7.3.2.
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A regression like (7.25) is used in several papers using the Russell 1000/2000 index
assignments (e. g., Crane et al., 2014). Recently, these approaches are criticised, one
of the key issues being that the exact market cap rankings used by Russell (i. e., the
true xi) are not observed; see Appel et al. (2021) andWei and Young (2021) for different
perspectives on this issue.

Whereas (7.25) imposes linearity in xi, this may provide a poor approximation to
the true conditionalmeans just above and below the threshold. Therefore, researchers
often include polynomial functions of xi in the equation, up to orders as large as 5 or 6.
However, as explained by Gelman and Imbens (2019) this is not recommended. Effec-
tively – as with all estimators for average treatment effects – the estimated treatment
effect is the difference between two weighted averages, one for the treated units and
one for the control units. Using higher order polynomials implicitly leads to weights
in these averages that are very noisy, which in turn produces noisy estimates. By ex-
trapolating the polynomials, such polynomial regression models use data relatively
far away from the threshold to predict the value of yi at the threshold, and this is not
very appealing. Estimates are very sensitive to the degree of the polynomial, while
confidence intervals are often misleading. Therefore, Gelman and Imbens (2019) rec-
ommend to not use higher-order polynomials, but instead to control for local linear
or quadratic polynomials, or other smooth functions, and focus on a smaller band-
width of observations around the threshold. In this case, researchers do not use data
on units that aremore than some bandwidth h away from the threshold, that is, obser-
vations with |xi−c| > h are discarded. Procedures to choose an optimal bandwidth are
available (Imbens and Kalyanaraman, 2012; Calonico et al., 2014), which are based on
a trade-off between bias, due to errors in the linear approximation, and variance, due
to the number of observations that is used. This approach can be combined with the
use of kernelweights, to give higherweights to observationswhere the forcing variable
xi is close to the threshold c; see Lee and Lemieux (2010) for more discussion.

The model in Chava and Roberts (2008), relating firm investments to debt
covenant violations, is estimated using the complete sample aswell as a subsample of
firm-quarter observations that are close to the point of discontinuity (which reduces
their sample by more than 60%). Boone and White (2015) examine the sensitivity of
the selected bandwidth by re-estimating the treatment effect for different bandwidths
around the threshold. Another robustness check is to include additional covariates
or fixed effects in the equation. If the regression discontinuity design is valid, these
controls are not needed to obtain a consistent estimator of the treatment effect, and
they effectively serve the purpose of reducing noise in the outcome variable, that is,
of improving precision.

Cuñat et al. (2012) use the discontinuity that arises around the outcomes of
shareholder-sponsored governance proposals in annual meetings. Their analysis
compares the stock market’s reaction to proposals that pass by a small margin to
those that fail by a small margin. Intuitively, the average characteristics of firms on
both sides of the 50/50 threshold can be expected to be very similar. However, a
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small difference in the vote share, around the threshold, leads to a discrete change
in the probability of implementing a proposal, and a discontinuity in abnormal re-
turns around the election. Flammer (2015) uses a similar design to study the effect of
corporate social responsibility (CSR) on financial performance.4

Another illustration of the use of RDD is given in Berg (2015), who investigates
the role of risk-management involvement on the default rates of mortgage loans. In
most cases, mortgage loans are approved by loan officers of the bank, but applica-
tions exceeding specified risk thresholds must be evaluated by the risk department.
These thresholds are derived from a personal credit score (based on income and credit
history) and a loan-to-value (LTV) percentage. It is clear that loan applications with
andwithout riskmanagement approval are not directly comparable: applications that
do not require risk-management approval have better ratings and lower LTVs. The re-
gression discontinuity estimator is derived from a specification that extends (7.25) by
including polynomials in the difference to cutoff, xi − c, and adding a set of controls.
such as loan and customer characteristics.

The Stata package rdrobust of Calonico et al. (2017) provides a wide array of es-
timation, inference, and falsification methods for the analysis and interpretation of
regression-discontinuity designs.

7.3.2 Challenges to identification

The use of RDD is limited to cases where there is a clear, clean and observed threshold
xi. If xi is not observed, the regression discontinuity design simply does not apply (Lee
and Lemieux, 2010). A clean threshold requires that there are no other programmes
that use the same threshold that may interfere with the one under investigation. That
is, the threshold must be exogenous. As mentioned above, the most important as-
sumption underlying identification is that E(y1i | xi = c) and E(y0i | xi = c) are contin-
uous in xi in the neighbourhood of c. If units canmanipulate their value of the forcing
variable xi, or if the agents who allocate units to treatment can manipulate xi or its
threshold c, the continuity assumption may be violated (Roberts and Whited, 2013).
Some manipulation is allowed, as long as agents are not able to preciselymanipulate
the forcing variable to push them over the threshold. This requires an inspection of
the institutional settings, the ability of agents to manipulate, and their incentives to
do so.

Berg (2015) carefully discusses the two key assumptions underlying the RDD de-
sign. First, there should be no “contaminating” thresholds, which means that loans

4 A recent paper by Bach andMetzger (2019) documents that close votes on shareholder proposals are
disproportionately more likely to be won by management than by shareholder activists, challenging
the internal validity of RDD approaches that exploit this discontinuity.
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just belowandabove the threshold are treateddifferently, apart from riskmanagement
involvement.Whether or not this assumption is reasonable dependsupon the context,
and in this case relies upon information provided by the bank. Second, the continuity
assumption requires that loan applications just belowand just above the threshold are
otherwise comparable. Because there is some evidence that the final rating and final
LTVaremanipulated (e. g., customersmaybe incentivised tobring inmore equity so as
to reduce their LTV and avoid the involvement of the risk-management department),
the author uses the initial rating and initial LTV (available from the bank’s internal
systems) as instruments. Similarly, Chava and Roberts (2008) go to great lengths to
discuss the validity of the key assumptions in their context. Institutional knowledge
is required to evaluate to what extent borrowers and administrators are able to ma-
nipulate either the forcing variable or the threshold.

A manipulation test is a statistical test that tries to determine whether there is
evidence of a discontinuity in the density of the forcing variable around the threshold.
Essentially, such tests are based on estimating the density of xi and testing a discon-
tinuity at xi = c. Because the tests typically test for a discontinuity at a fixed value, it
makes sense to transform the key variable into xi − c and test for a discontinuity at 0.
A simple version is proposed byMcCrary (2008), often called theMcCrary density test.
In the first step, the forcing variable is partitioned into equally spaced bins and the
numbers of observations within each bin are counted (where no bin contains points
on both side of the threshold). In the second step, the frequency counts are used as the
dependent variable in two local linear regressions with xi − c as the regressor. The test
is based on the difference between the estimated intercepts. Several other tests forma-
nipulation are available, including graphical procedures; see Cattaneo et al. (2018) for
more details (and the accompanying Stata package rddensity). As stressed by Roberts
and Whited (2013), even if a test does not reveal any clear discontinuity, a solid un-
derstanding and discussion of the relevant institutional details and incentives is still
required. Recently, Gerard et al. (2020) have proposed an approach to derive bounds
on the causal treatment effect in the presence of manipulation of the running vari-
able. Their method exploits the McCrary test to estimate the share of cases just below
the threshold that is not randomly assigned, and then considers two extreme scenar-
ios (with these cases having either the highest or the lowest outcomes); see Bach and
Metzger (2019) for an application of this method to RDD based on shareholder votes.

The local continuity assumption also requires that units close to either side of the
threshold are comparable in terms of observable and unobservable characteristics.
For example, should an observed characteristic of a firm display a jump in its values
around the threshold, any difference in yi at the threshold could be attributable to this
(pre-assignment) characteristic, rather than the treatment itself. It therefore makes
sense to test for similarities in the observable characteristics. One way to test this is
to redo the RDD analysis but replace the initial outcome variable yi by an observed
characteristic. Alternatively, one can do a test similar to McCrary (2008)’s and deter-
mine averages for the characteristic within bins based on the forcing variable. These
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averages should not display a discontinuity and thus be similar on both sides of the
threshold. This is a placebo test, in the sense that one is looking for a discontinuity
where there should not be one. For example, Boone and White (2015) check that firm
characteristics prior to the reconstitution of the Russell indices are similar on each
side of the threshold.

Another robustness check (Roberts and Whited, 2013) is to include observed co-
variates in (7.25). If continuity is satisfied, the inclusionof additional covariates should
not systematically influence the estimated treatment effect. For example, Chava and
Roberts (2008) include a wide range of controls in the equation, including firm fixed
effects and year-quarter fixed effects, and estimate the model using pooled OLS with
standard errors clustered at the firm level. Their estimated treatment effects are largely
unaffected by the inclusion of the additional control variables. Finally, one can also
perform a placebo test using alternative values for the threshold for which no discon-
tinuity should be present (Imbens and Lemieux, 2008).

As stressed by Imbens and Lemieux (2008), the regression discontinuity design,
at best, provides estimates for a subpopulation only (firms with xi very close to the
threshold), which can only be extrapolated under strong assumptions (e. g., homo-
geneity of the treatment effect). Accordingly, regression discontinuity methods do not
necessarily identify causal effects for larger and perhaps more representative groups
of subjects.

7.3.3 Extensions and variations

In the fuzzy regression discontinuity design, it is assumed that there is a discrete
jump in the probability of receiving treatment, again at the point xi = c. That is,

Pr(ri = 1 | xi) = g1(xi) if xi ≥ c, g0(xi) otherwise, (7.26)

where the continuous functions g0 and g1 must differ discretely at xi = c. In this sit-
uation, the estimation approaches discussed above are inappropriate. The problem
is that ri and εi in (7.25) are likely to be correlated, unless assignment to treatment is
random, conditional upon xi. The good news is that one can estimate the parameters
of interest using an instrumental variables approach (estimated in a small neighbour-
hood around the discontinuity), using di = I(xi ≥ c), possibly interacted with powers
of xi, as instruments; see Angrist and Pischke (2009, Chapter 6).

Under the assumption of linearity, we can write

E(ri | xi) = γ0 + γ1di + γ2(xi − c),

or

ri = γ0 + γ1di + γ2(xi − c) + vi, (7.27)
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where vi is a mean zero error term, with E(vi | xi) = 0. Note that, for a given threshold,
di is a deterministic function of xi. We combine this with the equation of interest

yi = α0 + δri + β(xi − c) + εi, (7.28)

which is a variant of (7.25). Estimation of (7.28) by least squares requires that treatment
ri is exogenous, which is unlikely to be true. However, we can estimate the two equa-
tions by means of 2SLS, where we instrument ri in the outcome equation on the basis
of (7.27). This leads to

yi = α0 + δ ̂ri + β(xi − c) + εi, (7.29)

where ̂ri is the fitted value from (7.27). Identification is achieved because di is only
relevant for the outcome yi via its effect on ri. Thus, di should not appear in (7.28).

Estimation of the system is usually done using a selected bandwidth of observa-
tions for each equation, allowing flexible polynomials in xi − c to improve the approx-
imation to the unknown functional forms. As in the case of sharp RDD, one can allow
the polynomials to differ on both sides of the threshold. Usually, these are chosen the
same for the two equations. The relevance of the instrument can be tested in the usual
way by exploring the role of di in (7.27); see the weak instruments test in Section 3.4.2.

This approach easily extends to cases where the treatment variable is continuous,
and this is perhaps the most common variant in empirical work. Scholars are inter-
ested in the causal effect of a variable,wit, say, upon the outcome yit and they identify
a discontinuity in the distribution of wit around a well-defined threshold, driven by
an underlying forcing variable xit . This discontinuity is exploited to create exogenous
variation in wit . In panel notation, the system of equations is given by

wit = γ0 + γ1dit + γ2(xit − c) + vit , (7.30)
yit = α0 + δwit + β(xit − c) + εit , (7.31)

where the threshold c is assumed to be time-invariant. For example, Boone andWhite
(2015) estimate a variant of (7.30) explaining institutional ownership (wit), exploiting
the discontinuity around the Russell index assignment. In the second stage, where
they explainproxies for afirm’s information environment (yit), theyuse thefitted value
from (7.30), estimated using a subset of firms close to the threshold, to replace ob-
served institutional ownership in equation (7.31), following the usual 2SLS logic. Note
that the validity of the fuzzy regression discontinuity approach requires that the first
step is a “proper” sharp regression discontinuity; see Appel et al. (2021) for a critical
discussion of the use of Russell 1000/2000 index assignments in this context. Other
applications of the fuzzy RDD approach in financial economics are widespread; see
Kerr et al. (2014), Malenko and Shen (2016), Almeida et al. (2016) or Meling (2021) for
some examples.
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7.4 A switching regression model

We now return to the alternative outcomes framework, where each of the potential
outcomes can be described by a linear model. That is,

y0i = α0 + x
′
iβ0 + ε0i (7.32)

y1i = α1 + x
′
iβ1 + ε1i, (7.33)

but we no longer assume conditional independence. The traditional econometric lit-
erature has treated this as a switching regression model (e. g., Heckman, 1976), which
is complemented by a model that explains the decision to take treatment. The most
common choice is to specify a probit model, as

r∗i = x
′
iβ2 + ηi, (7.34)

with ri = 1 if r∗i > 0 and 0 otherwise, and where ηi has a standard normal distribu-
tion, independent of xi. For notational convenience, the intercept term in (7.34) is not
included explicitly. As before, we observe y1i if ri = 1 and y0i if ri = 0. Exclusion restric-
tions are typically present.

In this framework, conditional independence implies that ηi is independent of ε0i
and ε1i. Instead, we now assume that both ε0i and ε1i have a normal distribution, with
variances σ20 and σ

2
1 , and covariances σ02 and σ12 with ηi, respectively. This is a special

case ofwhat is referred to as “selectionuponunobservables”.With these assumptions,
we can write

E{ε0i | xi, ri = 0} = σ02E{ηi | xi, ηi ≤ −x
′
iβ2} = σ02λi(x

′
iβ2) (7.35)

E{ε1i | xi, ri = 1} = σ12E{ηi | xi, ηi > −x
′
iβ2} = σ12λi(x

′
iβ2), (7.36)

where

λi(x
′
iβ2) = E{ηi | xi, ri} =

ri −Φ(x′iβ2)
Φ(x′iβ2)(1 −Φ(x

′
iβ2))

ϕ(x′iβ2) (7.37)

denotes the generalised residual of the probit model, and where ϕ and Φ denote the
standard normal density and distribution function, respectively. It extends the defini-
tion of the inverse Mills ratio of Subsection 6.3.4 to cases with ri = 0. Note that λ(⋅) < 0
if ri = 0 and λ(⋅) > 0 if ri = 1. In the general case where σ02 and σ12 may be nonzero,
these results indicate that the parameters in (7.11) and (7.12) can be estimated consis-
tently by full maximum likelihood or by using a variant of the two-step control func-
tion approach discussed for the sample selection model, including the inverse Mills
ratio as additional variable in each of the two equations.5 See Li and Prabhala (2007)
for more discussion.

5 Switching regression models can also be used in cases where the regime ri is not observed. In this
case, estimation by full maximum likelihood is required; see Hovakimian and Titman (2006) and
Almeida and Campello (2007) for examples (with panel data).
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An example of the above model is given in Madhavan and Cheng (1997), who in-
vestigate the price impact of a block trade, where traders choose between two market
mechanisms based on a comparison of the (expected) execution costs. As a result, the
trading venue is endogenous, and the price-impact equations are estimated control-
ling for the endogenous choice of the venue as described above. Another example is
Fang (2005), where ri denotes whether if a bond issue is underwritten by a reputable
bank, and y1i and y0i denote the yield for reputable and less-reputable banks, respec-
tively. The switching regression model takes into account the endogenous nature of
the matching between issuers and underwriters.

If the slope coefficients in the two equations are identical, we can simplify the
model to

E{yi | xi, ri} = α0 + x
′
iβ + δri + E{εi | xi, ri}

= α0 + x
′
iβ + δri + σ12riλi(x

′
iβ2) + σ02(1 − ri)λi(x

′
iβ2),

which extends themodel in (7.21) by allowing selection into treatment to depend upon
the unobservables in a particular way. The treatment parameter δ can be estimated
from a single regression provided we include the generalised residual of the probit
model explaining the probability of treatment interactedwith the treatment indicator.
If σ12 > 0, this means that firms that choose treatment have higher expected outcomes
for y1i than a randomfirmwould have had. If σ02 < 0, thismeans that firms that do not
choose treatment, have higher expected outcomes for y0i than a random firm would
have had. If σ12 = σ02 < 0, firms with higher values of yi are relatively less likely to
choose treatment.

Note that identification strongly rests upon distributional and functional form as-
sumptions and it is strongly advisable to have exclusion restrictions in (7.11) and (7.12).
If not, the model is identified only through the nonlinearity of the function λi. Effec-
tively this means that one needs to be able to find one or more instruments that affect
the decision for treatment, but are not related to the potential outcomes.

If it can be assumed that σ02 = σ12, simpler alternative estimation techniques are
available. For example, the two-step approach reduces to the standard approach de-
scribed in Subsection 6.3.4, provided we extend the definition of λi to the ri = 0 cases.
This is the dummy endogenous variable model of Heckman (1978a). Alternatively, the
model parameters can also be estimated consistently by instrumental variables tech-
niques, as discussed in Chapter 3 and the next section, provided there is a valid ex-
clusion restriction in (7.21). In this case, the omitted variable in (7.21) serves as an in-
strument, and a standard instrumental variables estimator can be applied. Heckman
(1997) and Vella and Verbeek (1999a), among others, stress the behavioural assump-
tions that are implicitly made in an instrumental variables context.

The pooled maximum likelihood estimator and two-step estimator are available
in Stata using the etregress command, which allows the inclusion of interactions be-
tween the treatment indicator and one ormore variables in xi. Two separate equations
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can be estimated with the user-written routinemovestay, or ivtreatreg with the option
heckit (see Cerulli, 2014).6

An example of this model, with panel data, is given in Campa and Kedia (2002).
In their model, rit denotes the decision of a firm to diversify and yit is a measure of
relative firm value. Because firms that choose to diversify are not a random sample of
firms, rit is endogenous, and potentially correlatedwith unobservables that also affect
firm value. To estimate the magnitude of the diversification discount, they estimate
the model using several alternative approaches, including a standard fixed effects es-
timator (which assumes that any selection effects are time-invariant), an instrumental
variables approach, and the two-step approach described above, assuming σ02 = σ12
(referred to as the “self-selection model”).

7.5 Instrumental variables

In Chapter 3, we covered the use of instrumental variables to estimate the effect of
one or more explanatory variables that were correlated with the unobservables in
the outcome equation. Finding instruments that are both exogenous and relevant is
often challenging (see, e. g., Larcker and Rusticus, 2010; Roberts and Whited, 2013;
Atanasov and Black, 2016, for more discussion). Many of the instruments in the lit-
erature are poorly motivated. Even in cases where the authors carefully discuss the
identification conditions of one or more instruments, the validity of instruments is
often debated. Papers like Deaton (2010) and Heckman and Urzúa (2010) question
the increased use of instrumental variables. Nevertheless, instrumental variables es-
timators are an important technique in empirical finance. In this section, we briefly
return to the instrumental variables estimator, but now with the alternative outcomes
framework in mind. In particular, we discuss the role of instrumental variables when
unconfoundedness is violated and the treatment effect is heterogeneous. If so, what
is an instrumental variables estimator actually estimating?

Starting from the alternative outcomes framework, the treatment effect of a given
unit is theoretically defined as δi = y1i − y0i. As before, treatment is indicated by ri = 1.
Because treatment is not assumed to be independent of the potential outcomes, y1i
and y0i, let us explore the use of instrumental variables. In the simplest case, the in-
strument is a binary indicator zi. Loosely speaking, the instrument should affect the
probability of treatment, but not the potential outcomes directly. Sometimes, zi is re-
ferred to as “treatment assignment”. Atanasov and Black (2016) refer to this as shock-
based instrumental variables, where a shock is a discrete, external event that causes
some firms to be treated. Shocks are often of a legal nature, such as the adoption of the

6 A different control function estimator is available in eteffects, where the difference ri − Φ(x′i β̂2) is
included to control for the endogeneity of treatment instead of the probit generalised residual. This
makes slightly different assumptions (see Wooldridge, 2014).
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Sarbanes-OxleyAct (SOX), new reporting requirements by the SEC, or the introduction
of antitakeover laws, but can also refer to other outcomes, such as the sudden death
of a CEO or an election outcome. If a firm is assigned to treatment, it may or may not
choose to go for treatment, depending upon the particular setting. What is important
is that assignment to treatment affects the likelihood of a firm to choose treatment.

To introduce the local average treatment effect (LATE), as defined by Imbens and
Angrist (1994), we need one more additional concept, which is the actual and coun-
terfactual treatment indicators. That is, we define r1i the treatment indicator of unit i
if it would have zi = 1 and r0i the treatment indicator if zi = 0. We thus observe

ri = zir1i + (1 − zi)r0i = r0i + zi(r1i − r0i). (7.38)

Combining this with the observed outcome, we can write

yi = y0i + ri(y1i − y0i) = y0i + r0i(y1i − y0i) + zi(r1i − r0i)(y1i − y0i). (7.39)

The independence assumption requires that the instrument zi is independent of the
potential outcomes and the potential treatment indicators. That is,

Assumption (independence) : zi is independent of (y1i, y0i, r1i, r0i). (7.40)

This is similar to the exogeneity assumption in Chapter 3, combined with the assump-
tion that the instrument is as good as randomised. Note that zi determines whether we
observe r1i, or r0i, but it must not contain information about the distribution of either.

Under this assumption, consider the expected outcomes based on (7.39), condi-
tional upon the instrument

E(yi | zi = 1) = E(y0i) + E(r0i(y1i − y0i)) + E((r1i − r0i)(y1i − y0i))

and

E(yi | zi = 0) = E(y0i) + E(r0i(y1i − y0i)),

so that the difference between these two expected outcomes is given by

E(yi | zi = 1) − E(yi | zi = 0) = E((r1i − r0i)(y1i − y0i)). (7.41)

Because r0i and r1i are binary, r1i − r0i can take three different outcomes: −1, 0, 1. With
this, we can write the previous term as

E(y1i − y0i | r1i − r0i = 1)Pr(r1i − r0i = 1)
− E(y1i − y0i | r1i − r0i = −1)Pr(r1i − r0i = −1), (7.42)

the termwith r1i − r0i = 0 being irrelevant. To eliminate the second term in this expres-
sion, we need an important additional assumption, which is

Assumption (monotonicity) : r1i ≥ r0i for all i.
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This requires that the instrument operates in the same direction for all units.7 Any firm
that would be up for treatment in the case of zi = 0 would also be up for treatment if
zi = 1. For example, a firm that would adopt an audit committee in the absence of
some regulation, would also do so in case such regulation were imposed. A firm that
would not adopt an audit committee in the absence of a regulation, but would do it
in case regulation imposed it, a called a complier (Imbens and Angrist, 1994). A firm
that would adopt an audit committee in the absence of regulation, but would not do it
in case regulation was implemented, is called a defier. The monotonicity assumption
states that there are no defiers, which is often a reasonable assumption. Typically, not
all firms are compliers, and not all firms are sensitive to the instrument. Some firms
may be “never-takers” andwill never take the treatment, regardless of the instrument;
other firms may be “always-takers” and will always take the treatment, regardless of
zi.

Under the monotonicity assumption, the latter term in (7.42) disappears, and we
obtain

E(yi | zi = 1) − E(yi | zi = 0) = E(y1i − y0i | r1i − r0i = 1)Pr(r1i − r0i = 1). (7.43)

Now, the local average treatment effect is defined as

LATE(z) = E(y1i − y0i | r1i − r0i = 1), (7.44)

which is the average causal effect for those firms that would be induced to go for treat-
ment if the instrument (zi) changes from 0 to 1. Importantly, it depends upon the cho-
sen instrument. If we use a different instrument, the definition of LATE changes. Ac-
cordingly, a local average treatment effect can only be definedwith reference to a given
instrument, although in special cases it coincides with other concepts such as ATT or
ATU. For example, if r0i = 0 for every firm, there are no always-takers (because the
control group does not have access to the treatment), and LATE coincides with ATT.
To stress the dependence on the instrument, z is included in the expression on the
lefthand side of (7.44).

To estimate LATE, we divide an estimate of (7.43) by an estimate of Pr(r1i − r0i = 1),
the estimated probability that a unit is a complier. Both E(yi | zi = 1) and E(yi | zi = 0)
are easily estimated using a random sample of observations on yi and zi. These are
simply the average yi in the sample for firms with zi = 1, and the average yi for firms
with zi = 0. Further, we need to estimate Pr(r1i − r0i = 1). Recall, that we only observe
ri, not both r1i and r0i. We again need the instrument to estimate it. To do so, we write

Pr(r1i − r0i = 1) = E(r1i − r0i) = E(ri | zi = 1) − E(ri | zi = 0), (7.45)

7 The inequality sign canbe reversed to obtain r1i ≤ r0i, inwhich case thefirst term in (7.42) disappears.
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which is the difference in probabilities of treatment between firms with zi = 1 and
those with zi = 0. Empirically, we can estimate (7.45) as the sample average of ri for
firms with zi = 1 minus the average of ri for firms with zi = 0. The resulting estimator
is sometimes called aWald estimator, because it appeared in an early paper on errors-
in-variables (Wald, 1940). It is actually identical to the instrumental variables (2SLS)
estimator for δ in a model that relates yi to ri, where zi is a binary instrument.

Importantly, in order to be able to identify LATE, we need to impose that (7.45) is
positive, that is,

Assumption (first-stage) : E(r1i − r0i) > 0.

This condition reflects the relevance of the instrument zi, and is often formulated as
“the existence of a first-stage”. It requires the instrument zi to have some effect on the
probability of treatment.8

The local average treatment effect is the average treatment effect for those whose
behaviour is affected by the instrument. Each instrumental variables estimator of a
treatment effect estimates the average effect for a different subgroup of the popula-
tion, namely for those who change treatment status because they comply with the
assignment-to-treatment mechanism implied by the instrument. A critical discussion
of what question LATE is answering is given in Heckman (2010). For example, there is
no reason to believe that the estimated LATE is capturing a relevant policy effect, un-
less the policy affects the instrument in exactly the sameway as is used in constructing
the estimate itself. As stressed by Cunningham (2021, Chapter 7), as soon as treatment
effects are heterogeneous, the concepts of internal validity and external validity start
to diverge. It may be possible to perfectly estimate the causal impact within a given
sample, for example, via LATE, but this does not necessarily mean that one is also
estimating a concept relevant for the larger population (external validity). For policy
purposes, we may be interested in how a particular treatment or intervention affects
the population of interest, and this is not necessarily what LATE is estimating.

The fact that the meaning of a local average treatment effect varies depending
upon the instrument that is used, when treatment effects are heterogeneous, allows
scholars to obtain a variety of estimates for parameters that are meant to measure a
structural response to a particular treatment, and to potentially reconcile these across
different studies. That is, an IV estimate can be unexpectedly large if the group of com-
pliers as determined by the instrument is different – in oneway or the other – from the
larger population of firms. Often, however, the LATE interpretation of an instrumental
variables estimator is used as a potential disclaimer to the results, in the sense that
it is mentioned that, under heterogeneity of the treatment effect, the IV estimators is

8 Similar to our discussion about weak instruments in Subsection 3.4.2, the first stage in (7.45) should
not be “too close to zero” to obtain valid statistical inference.
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estimating the local average treatment effect for those that are affected by the instru-
ment. For example, Bernstein et al. (2019) write “the instrumental variables estimates
only capture the local average treatment effect on the sensitive firms and should be
interpreted as such”.

Extensions
So far,we discussed the case of a single binary instrument, a binary treatment variable
and no control variables. All of this can be relaxed. According to Angrist and Pischke
(2009), the “econometric tool remains 2SLS and the interpretation remains fundamen-
tally similar to the basic LATE result, with a few bells and whistles”.

If we have two alternative binary instruments, one can estimate two different
LATEs, or combine the instruments in a two-stage least squares approach, where
the fitted value from the reduced form (explaining treatment from the two instru-
ments) is used as an instrument. In this case, 2SLS provides a weighted average of
the instrument-specific LATEs, weighted by the strengths of the instruments. In the
general case of 2SLS with multiple instruments for a single treatment, the causal in-
terpretation as a weighted average of local average treatment effects is justified only
under a monotonicity condition, which is less trivial with multiple instruments (see
Mogstad et al., 2021).

When the instrument zi is continuous, things are a bit more complicated. To illus-
trate this, consider the casewhere zi can only take on three different values, say zi = 0,
zi = 1 and zi = 2. Now one can determine the local average treatment effect for any pair
of values by exploiting a binary instrument. These can be combined into a weighted
average and the monotonicity condition is more complicated.

It is possible to allow treatment to be non-binary, so as to accommodate variable
treatment intensity (see Angrist and Imbens, 1995). In a linear model, it is straightfor-
ward to include covariates (control variables) in the analysis. In this case, all assump-
tions become conditional upon the vector of control variables xi, and this may help to
defend the exogeneity of the instrument zi. See Angrist and Krueger (2001) for details
and additional references. Deuchert and Huber (2017) critically evaluate the strategy
of including control variables to justify conditional independence of the instrument
and the potential outcomes, and warn for biases when using post-instrument vari-
ables.

Shock-based instruments
In the presence of panel data, instruments often rely on shocks,which are arguably ex-
ogenous. For example, Duchin et al. (2010) exploit the fact that some firmswere forced
to increase the number of outsiders on their boards in response to regulations adopted
between 1999 and 2003. Their key model of interest relates changes in firm value (or
profitability) to change in board independence, where the letter is instrumented by
an indicator whether or not the firm complied with the requirement to have a fully
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independent audit committee (prior to it being mandated by the Sarbanes-Oxley Act
of 2002). Giannetti and Laeven (2009) analyse the causal effects of institutional own-
ership on firm performance and corporate governance, by exploiting an exogenous
shock to institutional ownership caused by the Swedish pension reform in 2000.

Atanasov and Black (2016, 2021) provide a critical discussion of the use of shock-
based instrumental variables infinance.Akeyproblem, oftenoverlooked, is that of co-
variate imbalance. This connects to the assumption of independence. Independence
requires that the instrument is as good as randomly assigned and that the instrument
affects the outcome only through ri. The latter also implies there are no other shocks
at the same time that affect firm characteristics. If the pre-treatment outcomes (of yit)
differ widely between the control and treatment groups, or the values of other firm
characteristics, this challenges the assumption that the two groups should be similar.
Among other things, Atanasov and Black advocate the use of extensive covariates to
assess common support and improve pretreatment balance. If the inclusion of addi-
tional covariates greatly affects the estimates, this challenges the assumption that the
shock is truly clean.

Another critical discussion of instrumental variables estimates and the role of lo-
cal average treatment effects is given in Jiang (2017). Although an exogenous shock
may substantially affect the probability of treatment, it is typically not assigned com-
pletely randomly. Whether or not a firm responds to the shock is, to some extent, up
to the firm. Firms that gainmost from treatment, or whose constraints to participation
were most relaxed by the shock, are more likely to choose treatment. As a result, the
estimated LATE tends to be relatively high, because it is based on the compliers (which
may be quite different from the larger population of interest).

7.6 Difference-in-differences

In the standard difference-in-differences (DiD) set-up there are two groups of units and
two time periods (see, e. g., Card and Krueger, 1994). One group of firms receives treat-
ment in the second period (e. g., is subject to a regulatory change), whereas the other
group receives no treatment. Such cases are frequently investigated in the financial
literature. For example, Gilje and Taillard (2017) exploit an exogenous change in basis
risk in the oil and gas industry in 2012 that affected Canadian oil producers (treatment
firms) but not US oil producers (control group). Dimmock and Gerken (2016) inves-
tigate the impact of a (temporary) change in 2004 in hedge fund registration upon
misreporting by comparing newly regulated funds (treatment group) with those that
were not affected by the SEC rule change (control group). Diether et al. (2009a) and
Fang et al. (2016), among others, investigate the effects of a pilot programme of the
SEC in 2004 in which one-third of the Russell 3000 indexwere arbitrarily chosen to be
exempted from short-sale price tests. The sample in this experiment consists of about
1000 pilot stocks (treatment group) – which started trading without short-sale price
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tests – and about 2000 control stocks. Importantly, stocks were randomly selected to
be in the pilot.

7.6.1 The basic difference-in-differences approach

Denoting the outcome of interest as yit, and the control group by C and the treatment
group by T, the standard DiD estimator can be obtained from a simple regressionwith
three dummy explanatory variables

yit = β0 + β1d1i + γdpost,t + δd1idpost,t + uit , t = 1, 2, (7.46)

where d1i = 1 if firm i ismember of the treatment group T (and 0 otherwise), andwhere
dpost,t indicates the post treatment period (i. e., t = 2). Assuming that E(uit | d1i) = 0
for both t = 1 and t = 2, this structure implies that

E(yit | d1i = 0, dpost,t = 0) = β0,
E(yit | d1i = 0, dpost,t = 1) = β0 + γ,
E(yit | d1i = 1, dpost,t = 0) = β0 + β1,
E(yit | d1i = 1, dpost,t = 1) = β0 + β1 + γ + δ.

The parameter of interest is the treatment effect, δ, which corresponds to the average
treatment effect on the treated (ATT) (seeAthey and Imbens, 2006).We can summarise
the above parameters in the following table, which highlights the interpretation of δ
as a difference-in-differences.

post pre difference

treatment (T) β0 + β1 + γ + δ β0 + β1 γ + δ
control (C) β0 + γ β0 γ

difference β1 + δ β1 δ

The advantage of being able to compare a firm before and after treatment in combina-
tion with a control group observed in the same periods is obvious. If we would simply
compare the treatment group before and after treatment, the expected difference is
γ+δ, which captures the true treatment effect only if there is no trend in yit between the
pre- and post-treatment periods (γ = 0). Thismeans that, on average, all changes in yit
in group 1 are attributed to the treatment, which is correct if there is no systematic dif-
ference across periods (i. e., there is no trend in yit). Alternatively, if we only compare
cross-sectionally, and focus on the cross-sectional difference between the treatment
and control groups in period 2, the expected difference is β1 + δ, which corresponds
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to the true treatment effect if there is no systematic difference between the treatment
and control groups (β1 = 0). The DiD approach eliminates these two potential prob-
lems, and isolates δ by differencing away any systematic differences between the two
groups and by differencing away any common trend affecting both groups.

The OLS estimator for δ in (7.46) produces the difference-in-differences estima-
tor. Straightforward algebra shows that it can be written as

δ̂ = (ȳT2 − ȳ
T
1 ) − (ȳ

C
2 − ȳ

C
1 ) = Δȳ

T
2 − Δȳ

C
2 , (7.47)

where ȳgt denotes the sample average in group g in period t (g = C,T). This expression
corresponds to the average change in the outcome variable yit for the treatment group
minus that for the control group.9 With panel data, this estimator can be obtained by
applying OLS to

Δyit = β0 + δΔrit + Δuit , t = 2, (7.48)

where β0 denotes an overall intercept and rit is a treatment indicator, equal tod1idpost,t .
In the current case, Δrit = rit for t = 2 because ri1 = 0 for all firms. This first-differenced
equation can also be derived from a model in levels given by

yit = μt + δrit + αi + uit , t = 1, 2, (7.49)

where μt captures aggregate time effects and αi captures time-invariant firm-specific
heterogeneity, both considered as fixed effects. In the two-period case, the fixed effects
estimator applied to this equation (with time dummies) reproduces the DiD estima-
tor.10 This equation shows that the average level of yit of any firm can depend upon
a time-invariant unobservable firm-specific component, which is eliminated by the
first-difference orwithin transformation. This allows treatment rit to correlatewith un-
observed firm-specific heterogeneity, as long as the heterogeneity does not vary over
time. This is an attractive property. It allows that selection into treatment depends
upon (observed and unobserved) time-invariant firm characteristics.

Note that, in comparison to the richer econometric models we have seen earlier
in this text, the specification in (7.49) may seemmisspecified, as it excludes any time-
varying variables that may affect the outcome yit . For the purpose of estimating the

9 This estimator, or the OLS estimator in (7.46), can also be calculated in the case of repeated cross-
sections, that is,when the samefirmsarenot observed twice. This imposes stronger conditions.Among
other things it should already be clear in the pre-treatment period whether any given firm belongs to
group C or T, even though it is not observed in period 2. Below, we focus on the panel data case.
Attrition from the panel may also affect the availability of post-treatment observations for all firms
(see, e. g., Hausman and Wise, 1979).
10 Note that, in general, the fixed effects (within) estimator and the first-difference estimator are dif-
ferent for T > 2. See also Chapter 2.
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treatment effect, this issue does not matter. Estimating (7.49) with fixed firm effects
simply reproduces the DiD estimator given in (7.47). The regression specification may
be helpful to appreciate some of the assumption underlying its estimation, particu-
larly so when there are multiple periods and treatment takes place at different points
in time for different groups. For example, the usual requirement that the explanatory
variables should be strictly exogenous in a fixed effects model (see Section 3.6) re-
quires that rit is uncorrelated with uis for any s. For the purpose of estimating δ, the
inclusion of firm fixed effects is not essential. Including a group fixed effect, for the
treatment and control groups, leads to exactly the same estimator (and this is often
how the regression is written; see, for example, Bertrand et al., 2004). This is because
the explanatory variables in (7.49) do not vary across firms, only across groups.11 An-
other advantage of the regression framework is that it provides a convenient way to
obtain standard errors.

The key assumption behind the difference-in-differences approach is that, in the
absence of treatment, the average change in yit would have been the same for both the
treated and untreated firms. This is referred to as the parallel trends assumption,
which is a variation of the unconfoundedness assumption discussed earlier. It says
that the trends in yit are similar across both groups. In the language of the alternative
outcomes framework, we can formulate this as

Assumption (parallel trends) : E(Δy0,it | d1i = 1) = E(Δy0,it | d1i = 0).

This states that the average outcomes for treated and controls would have followed
parallel trends in the absence of treatment. In the context of the regression model
(7.49), the parallel trends assumption implies that uis is uncorrelated with rit . That
is, treatment is not allowed to depend upon unobservable time-varying characteris-
tics (affecting the outcomes yis). Importantly, the treatment indicator rit may be cor-
related with time-invariant characteristics in αi, because these are eliminated in the
first-differencing. It is also allowed that an overall time shift affects yit, as long as it is
invariant across groups, because these differences are eliminated in the second differ-
encing (captured by the fixed time effects in the regression).

Challenges to validity: the parallel trends assumption
The presence of parallel trends in the treatment and control groups is highlighted in
Figure 7.2. Parallel trends simply says that, in the absence of treatment, the aggregate
development of the outcome variable follows a common time trend across both the
treatment and control groups. In the figure, thismeans that the difference between the
aggregate line of the control group and the counterfactual line of the treatment group
is constant over time. Although the assumption only relates to the two time periods

11 Angrist and Pischke (2009) refer to this as a saturated model.
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Figure 7.2: Parallel trends.

used to estimate the treatment effect, its validity if often investigated by expanding
the time window, as is done in Figure 7.2. The important aspect here is not that the
time trend is linear; there is no reason to impose linearity. The important aspect is
that the trend is additive. That is, the time effects μt in (7.49), in both the treatment
and control groups, shift aggregate outcomes by the same amount. This makes the
assumption sensitive to the functional form chosen for the dependent variable. For
example, it often matters whether the level or the log of a variable is used. Athey and
Imbens (2006) have developed a model that is immune to this critique.

To illustrate this, assume there is no genuine effect of treatment. However, treat-
ment is allocated relatively more to larger firms. If the outcome variable is, for exam-
ple, company sales, and sales exhibit a constant growth rate across both treated and
control firms, the growth in sales in $will be larger for the treatment group than for the
control group, simply because treatment is not allocated randomly. (For example, the
probability of treatment depends upon αi.) As a result, a difference-in-difference anal-
ysis will mistakenly interpret the higher growth (in $) in the treatment group as the
result of the treatment. It therefore makes sense to think about possible differences in
composition between the treatment and control groups, and, in relation to this, how
the outcome variable would change over time if there was no treatment.

The parallel trends assumption is violated in case there are non-parallel dynam-
ics across the treatment and control groups, andwhen treatment is not allocated com-
pletely randomly. There are many cases where this may arise. For example, treatment
may relate to time-varying (observed or unobserved) variables affecting the outcome
yit . This can occur if treatment is the outcome of a decision process by the firm (or in-
dividual), as this may lead to a selection bias. For example, in labour economics, it
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has been documented that participants in training programmes experience a decline
in earnings prior to the training period (Ashenfelter, 1978), popularly referred to as
Ashenfelter’s dip. Note that, in the context of the two-way fixed effects model, this is
a violation of the strict exogeneity of rit . Alternatively, a selection bias may arise if the
treatment is endogenous because it targets a group of firms that have experienced un-
usual values of yit in the pre-treatment period, or a group of firms that is likely to ben-
efit most from treatment. For example, a state may introduce a law to support firms,
after firms in this state have done unusually poorly (relative to other states).

To check the validity of the parallel trends assumption, we do not observe the
counterfactual outcomes. Thus, we cannot really determine whether there are paral-
lel trends exactly at the point where it matters: just before and after the treatment.
Therefore, it is not possible to test the parallel trends assumptions. This, of course, is
characteristic of any fundamental endogeneity problem. Instead, scholars rely upon
arguments to defend the parallel trends assumption. Such arguments can relate to
the way the treatment is allocated to firms, or to the way in which states have imple-
mented regulatory changes. In addition, there are several tests one could do to give
more credibility to the parallel trends assumption, or –more generally – to the design
of the difference-in-differences set-up. Roberts andWhited (2013) advocate the use of a
falsification test by investigating the existence of parallel trends before the treatment
takes place. This requires the availability of multiple pre-treatment periods of data, so
that one can compare the time trends in yit in the treatment and control groups, well
before a treatment actually takes place. This comparison can be based upon a visual
inspection, or by means of a formal test. An easy way to do this is by including leads
of the treatment indicator in the model; see Heider and Ljungqvist (2015) for an ex-
ample. This is similar to the test for strict exogeneity (in this case of rit) discussed in
Section 3.6. Tests like these are often referred to as Granger causality tests (Granger,
1969). Unfortunately, while similar pre-treatment trends are comforting, they are not
sufficient to ensure that the endogeneity problem is solved. It is also possible to do a
placebo test by means of a difference-in-difference analysis using only pre-event pe-
riods (where no effect of the treatment should be present) or using otherwise placebo
outcomes that are not supposed to be affected by the treatment. If these placebo tests
indicate a nonzero treatment effect, the original DiD estimate is likely to be biased.

The treatment and control groups should be reasonable similar, which would be
guaranteed if assignment to treatment is completely random. An example of this is
given in Diether et al. (2009a) and other studies, where stocks were randomly selected
for a pilot to tradewithout short-sale price tests. However, inmany cases it is likely that
some differences exist between the two groups. For example, if the treatment is some
law being passed at the state level, firms in the treatment statemay have a different in-
dustry composition, size distribution, etcetera, compared to firms in the control state.
Although one can, to some extent, control for this by including control variables in the
difference-in-differences regression, the concern is that any significant differences in
observed firm characteristics is also present in unobserved characteristics that affect
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the outcome variable. Atanasov and Black (2021) stress the need for pre-treatment
balance between treated and control firms, and challenge the validity of the results
in some recent papers. Abadie (2005) proposes a semi-parametric alternative that al-
lows for a common trend, conditional upon one or more covariates.

Inference
Because the difference-in-differences approach is effectively based on a reasonably
standard panel regression, much of the discussion on obtaining valid standard errors
in Chapter 2 translates to the current setting. For example, adjusting standard errors
for heteroskedasticity is easy and often important (see Siegel and Choudhury, 2012,
for an example). In addition, it is important to allow for serial correlation in the error
term of the equation. This is because the typical outcome variable tends to be quite
highly correlated over time, in combination with the fact that the explanatory vari-
ables in the model change very little over time (Bertrand et al., 2004). To address the
serial correlation problem, one attractive approach, in amulti-period setting, is to col-
lapse the data into two effective periods: before and after. This effectively ignores the
time-series variation in the data and analyses averages over all periods before, and all
periods after treatment.

Finally, it may be important to allow for some cross-sectional correlation in the
error terms. For example, there could be group effects in uit . An obvious choice seems
to be to apply clustered standard errors, where clustering is done at the group level,
where the group is either the treatment group or the control group. However, this is
problematic, because the number of clusters is very small, whereas the validity of clus-
tered standard errors relies upon the number of clusters going to infinity. Donald and
Lang (2007) and MacKinnon (2019) elaborate upon this point in the context of DiD es-
timators. It may be better to impose a more restrictive structure by defining a larger
number of clusters, and assuming zero correlation between clusters. In this case, the
number of clusters may be sufficiently large (say, 50 or more), but the price one pays
is that many cross-sectional correlations are restricted to be zero. See Cameron and
Miller (2015) and MacKinnon (2019) for more discussion and alternative approaches.

Including controls
There are several potential reasons why one would include additional controls in the
equation to estimate the treatment effect in a difference-in-differences setup. The first
is that the inclusion of controls helps to eliminate some of the noise in the equation,
and thus leads to a more accurate estimate of the treatment effect. For example, in a
model explaining firm leverage from state-level tax changes, it makes sense to con-
trol for the usual variables that are found to affect leverage (Heider and Ljungqvist,
2015). If this is the purpose of including control variables, one should not expect the
estimated treatment effect to changematerially. A second reason is that there are con-
cerns that the assignment to treatment is not sufficiently random. If there are com-
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positional changes in the treatment and control groups, adding (strictly exogenous)
control variables can help to alleviate this concern. In this case, the parallel trends
becomes a conditional parallel trends assumption. It states that, conditional on the
firm characteristics xit, the average outcomes for treated and untreated groups would
have followed parallel paths in the absence of treatment. For example, Heider and
Ljungqvist (2015) include industry × year fixed effects, to control for unobserved time-
varying industry shocks in leverage. Third, it is possible that the treatment effect is
not constant but varies with one or more covariates. This can be accommodated by
including interaction terms between the treatment indicator and the relevant covari-
ates.

Note that one should be careful including additional explanatory variables in the
model as they may potentially be endogenous and affected by the treatment them-
selves. Thus, the inclusion of time-varying covariates should be done with care.

7.6.2 Extensions

The double difference-in-difference approach can be extended in a variety of ways.
This includes treatments over multiple periods, where treatment may be staggered
(e. g., if a particular regulation is imposed sequentially across different locations). The
regression framework is also convenient for cases where treatment is not binary, and
treatment intensity can vary (as long as the assumption of linearity is appropriate).

It is also possible to perform a triple difference analysis. With multi-period exten-
sions, the assumptions of parallel trends and treatment effects being constant become
more challenging. For example, Figure 7.2 illustrates a case where the effect of a treat-
ment gradually increases as time since treatment passes. (Of course, it is also possible
that the effect of treatment declines in later periods.) In the absence of counterfactual
observations, it becomes more challenging to argue that the time trend of the treat-
ment group is parallel to that of the control group over multiple post-treatment peri-
ods. When there are multiple groups receiving treatment at different points in time,
which may also experience a different magnitude of the treatment effect, things be-
come even more complex.

Multiple periods and staggered treatments
Whenmultiple periods of data are available, equation (7.49) is extended over multiple
periods t = 1, 2, . . . ,T, and treatment can take place at different points in time for dif-
ferent groups. A policy change may be effective at different dates across states in the
United States, or an exogenous shock may affect firms at different points in time. For
example, Derrien andKecskés (2013) investigate the causal impact of analyst coverage
on corporate investment and financing by focusing on firms that lose analyst cover-
age due to broker closures andmergers between 1994 and 2008. Heider and Ljungqvist
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(2015) use a staggered corporate income tax change to investigate how a firm’s lever-
age is affected by tax increases or decreases; Karpoff and Wittry (2018) explore the
effects of state-level antitakeover laws, and argue that a firm’s institutional and legal
context matter for a correct specification and interpretation.

The above approach then results in a standard two-way fixed effects regression
model, that is,

yit = μt + δrit + αi + uit , t = 1, . . . ,T . (7.50)

It is typically chosen to set rit = 1 as long as a particular treatment is “active” for
firm i.12 That is, treatment, for example, a regulatory change, is expected to have a
permanent effect of the same magnitude on treated firms. Alternatively, it is possible
that the treatment indicator is equal to one only in the treatment period, for example,
when a policy is being announced, and zero afterwards. This means that treatment
only has a temporary impact on the dependent variable. In this multiple periods set-
ting, it is no longer the case that Δrit = rit . If the treatment indicator rit starts at 0 for
all firms, and then changes to 1 at some later time (and remains 1 afterwards), Δrit = 1
only for the period when the change happens and 0 otherwise. This means that, in
the first-difference equation, the relevant indicator is 1 in only one period. For exam-
ple, Heider and Ljungqvist (2015) estimate this model for leverage in first differences,
including two separate indicators for tax increases and decreases, respectively, or a
more general set of variables characterising the tax change. The indicators correspond
to whether there was a tax increase (or decrease) in year t − 1 and 0 otherwise.

Essentially (7.50) is a standard (two-way) fixed effects model with only one ex-
planatory variable, the treatment indicator. Accordingly, for a fixed number of time
periods T, the treatment effect δ can be estimated consistently under the condition
that rit is strictly exogenous. This is restrictive. In the 2×2 case (T = 2), where treatment
only takes place in period 2, strict exogeneity requires that the treatment indicator is
uncorrelated with current and past unobservables in uit . However, with multiple peri-
ods available, strict exogeneity also requires that rit is uncorrelated with future values
of uit . These requirements also apply if treatment takes place at different points in
time across the panel. Consider a policy or regulatory change that is implemented at
the state level. It could be that states change their regulations in response to changes
in the outcome variable of interest (of the firms in their state), or it could be that firms
change their behaviour if they expect that a regulatory change is coming. It may also
occur that interested parties are lobbying or otherwise trying to influence legislation
if they anticipate to suffer or benefitmuch from a regulatory change,making the legis-
lation process potentially endogenous. For example, based upon earlier studies, Kar-
poff and Wittry (2018) provide an overview of state-level antitakeover laws that were

12 This makes being treated an absorbing state.
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passed in part because they were promoted by particular firms. In most cases, a firm
that was a target of an actual or rumoured takeover bid, lobbied so as to get the an-
titakeover law approved quickly. For these firms, the enactment of state antitakeover
laws is clearly endogenous.

When there is variation in treatment timing, the simple division of the sample into
treatment sample and control sample is lost. For example, if group A is not treated,
group B experiences treatment in period 2, and group C experiences treatment in pe-
riod 3, there are three groups of firms (untreated, early treatment, and late treatment)
and there are four 2×2 difference-in-differences one could consider (Goodman-Bacon,
2021). For firms that experience early treatment (t = 2), the late treatment group also
acts as a control group because their treatment status does not vary until t = 3. Simi-
larly, firms that are already treated act as controls for firms that experience later treat-
ment. As long as the treatment effect is homogeneous among the different groups, and
the parallel trends assumption (which is now somewhat more complicated) is satis-
fied, this is not a problem. However, with heterogeneous treatment effects, it is not
necessarily the case that the two-way fixed effects estimator estimates a sensible aver-
age of the individual treatment effects.

For thismore general case, thewithin estimator for δbasedon (7.50) canbewritten
as

δ̂FE = (∑
i,t

̃̃r2it)
−1
(∑
i,t

̃̃rit ̃ỹit), (7.51)

where ̃̃rit = (rit − ̄ri) − ( ̄rt − ̄r) denotes the treatment indicator after the fixed effects
have been removed, ̄rt = N−1t ∑i rit denotes the period-specific average, and ̄r denotes
the overall sample average.While this estimator is easily obtained as a standard panel
estimator, it does not easily match to the group means of the different groups that ex-
perience treatment at different points in time. Goodman-Bacon (2021) and De Chaise-
martin and D’Haultfoeuille (2020) show that the fixed effects estimator in (7.51) is a
weighted average of all possible 2 × 2 difference-in-differences estimators. When the
treatment effects vary over groups and time, such weights can become negative. De
Chaisemartin and D’Haultfoeuille (2020) show that in exceptional cases, the linear
regression coefficient may even be negative while all the ATEs are positive, and pro-
pose an alternative estimator that solves this issue. This problem also extends to cases
where the model is estimated in first-differences.13

A simple example of this is the pattern in Table 7.1, based on De Chaisemartin
and D’Haultfoeuille (2020). Treatment is non-stochastic, so there is no selection bias.
Group 1 is untreated in period 1 and treated in both periods 2 and 3, while group 2 is

13 The twowayfeweights package in Stata provides information on the proportion of postive and neg-
ative weights, and their averages.
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Table 7.1: Staggered treatment with heterogeneous effects.

group t = 1 t = 2 t = 3
treatment (T1) 0 δ12 δ13
treatment (T2) 0 0 δ23

only treated in period 3. If the three group-specific treatment effects δjt are not identi-
cal, the two-way fixed effects estimator in (7.51) estimates a weighted average, where
the weights are different from the proportion that each cell accounts for in the popu-
lation of treated observations. As a result, δ̂FE tends to be biased for the overall aver-
age treatment effect. Even worse, the weights may become negative. In this example
this arises because treated observations of group 1 are used as controls for group 2
in period 3. As stressed by Goodman-Bacon (2021), this “does not imply failure of the
design, but it does caution against summarising time-varying effects with a single co-
efficient”. In case of staggered treatment, if the treatment effects vary across units,
but not over time (i. e., δ12 = δ13), δ̂FE provides a variance-weighted average treatment
effect. Groups of firms treated in the middle of the sample period receive relatively
higher weights compared to groups treated near the beginning or end of the period
(Goodman-Bacon, 2021).

Baker et al. (2021) investigate the problem of staggered treatments with treatment
effect heterogeneity in the context of finance and accounting applications. Their em-
pirical analysis shows that the problems associated with staggered DiD designs are
not just of a theoretical nature, but can have a disturbing impact on the inferences.
They also discuss several remedies to eliminate these biases. Most importantly, alter-
native approaches avoid the use of already treated units as controls for units that are
treated later.

Time-varying treatment effects and event studies
Inmany applications, the impact of a treatmentmay depend upon howmuch time has
passed since the treatment was experienced. This can be captured by extending the
regression model in (7.50) to include lagged values of the treatment indicator. That is,

yit = μt + δ0rit + δ1ri,t−1 + ⋅ ⋅ ⋅ + δSri,t−S + αi + uit , (7.52)

where ri,t−k is an indicator for the treatment groupwhere treatment occurred k periods
ago (typically with ris = 0 for all s < 0). In this case, δ0 captures the immediate policy
effect, and δs captures the additional effect s periods after treatment. For this interpre-
tation, it is assumed that the treatment is absorbing so that rit remains 1 in each period
after treatment. If δ0 > 0 and δ1 < 0, the effect of treatment diminishes after the first
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period. This model is equivalent to

yit = μt +
S
∑
k=0

γkI(k = t − Ei) + αi + uit , (7.53)

where Ei denotes the time when unit i initially receives the absorbing treatment, and
where γk = δ0 + ⋅ ⋅ ⋅ + δk . The indicator functions I(k = t − Ei) indicate that a unit is k
periods from the start of treatment (with k = 0 corresponding to the treatment period).

Table 7.2 presents the treatment effect parameters from equation (7.53), where time
and group fixed effects have been removed. It shows that the treatment effects are ho-
mogenous across units and calendar time periods, and depend only on k. Note that,
at each point in time one can compare the group that is treated with the group that
is never treated (control group C), or with all groups that are not yet treated. (In some
applications, the control group C may be empty, as all units are eventually treated.)
An important restriction in Table 7.2 is that γk does not depend upon the timing of the
first treatment. This requires that each cohort experiences the same path of treatment
effects. Sun and Abraham (2021) stress that this is a strong assumption, which can be
violated for several reasons. For example, units that benefit most from treatment may
select their initial treatment earlier in time. Heterogeneity may also be due to cohorts
havingdifferent characteristics, or because of calendar time effects (suchasmacroeco-
nomic conditions or stock market sentiment). Callaway and Sant’Anna (2021) provide
a more general framework where average treatment effects may vary per cohort and
time period, including a discussion of the different treatment effects one could iden-
tify, and how these could be summarised in one aggregate ATT (e. g., by calendar time,
relative event time, or by the length of the exposure to treatment).

Table 7.2: Staggered treatment with dynamic effects.

group t = 1 t = 2 t = 3 t = 4 t = 5
control (C) 0 0 0 0 0
treatment (T1) 0 γ0 γ1 γ2 γ3
treatment (T2) 0 0 γ0 γ1 γ2
treatment (T3) 0 0 0 γ0 γ1

The specification in (7.52) can also be extended to incorporate anticipation effects by
including leads of rit in the model, for example, ri,t+1. As discussed above, leads of the
treatment indicator are also included to test for the existence of differential trends be-
fore treatment (to provide ammunition for the validity of the parallel trends assump-
tion). Even though the model is formulated in calendar time this can be thought of
as an event study. Borusyak et al. (2021) investigate the design of such event stud-
ies with dynamic treatment effects and pre-trends, and document some identification
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issues (if the specification is “too rich”). For example, when firm fixed effects are in-
cluded and there are no untreated firms, it is not possible to separate calendar time
from relative event time.

It is also possible to incorporate separate indicators for the announcement of a
regulatory change and the date it becomes effective (see, e,g., Diether et al., 2009a,
for an example). Another variant is where the treatment effect is immediate but its
magnitude depends upon calendar time. In this case themodel specification becomes

yit = μt + δtrit + αi + uit , t = 1, . . . ,T , (7.54)

which can be implemented by interacting the treatment indicator by calendar time
dummies. Alternatively and equivalently, the treatment effect could vary across the
groups being treated. For example, groups that are exposed later to treatment may
react differently than those that were exposed before. When the treatment effect δt in
(7.54) varies with t, the simple estimator in (7.50) is based on amisspecifiedmodel and
is therefore biased.

Triple differences
In a triple difference or difference-in-difference-in-differences (DDD)model,14 another
differencing step is added to the analysis. There are three reasons for doing this. First,
as a means of a robustness check to formally compare the results of the standard DiD
analysis with those of a situation where no effect should be present. Second, because
there may be a bias in the standard DiD approach, due to a violation of the paral-
lel trends assumption. If it can be argued that this bias is the same in the second
difference-in-differences step, doing a triple difference eliminates the bias. Third, be-
cause it is expected that the effect of the treatment is different between two subgroups
that are treated. On the negative side, triple differencing is likely to lead to increased
standard errors of the estimated treatment effect, so one should not use DDD when it
is not necessary.

To illustrate the latter, consider Gilje and Taillard (2017), who investigate a quasi-
natural experiment in which Canadian light oil producers experience a plausibly ex-
ogenous increase in basis risk relative to US light oil producers. Basis risk refers to
a hedging friction caused by the fact that the standardised asset used in a financial
derivatives contract does not correspond exactly to the underlying risk a firm is ex-
posed to. In early 2012, several events resulted in an unexpected shock in basis risk
that affected Canadian firms, but not US firms. The paper estimates a standard DiD
model to estimate how treated firms (based in Canada) respond relative to control
firms (based in the United States), once their ability to hedge effectively has been cur-
tailed. Because they hypothesise that a negative shock to the effectiveness of hedging

14 Sometimes also referred to as triple difference-in-differences.
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instruments affect firmswith higher ex ante leverage relativelymore, they also employ
a triple differencing approach by splitting both the treatment and control groups into
firms with high and low ex ante leverage. Extending (7.46), the full specification now
reads

yit = β0 + β1d1i + γ1dpost,t + δ1d1idpost,t + β2dHi
+ γ2dpost,tdHi + β3d1idHi + δ2d1idpost,tdHi + uit , t = 1, 2, (7.55)

where dHi is an indicator for being a high leverage firm, and d1i = 1 indicates a treat-
ment firm. The coefficient of interest is δ2, the coefficient on the triple interaction term.
It estimates whether the difference between the differential response of the ex ante
highly levered treated firms relative to their highly levered control group and the dif-
ferential response of the low leverage treated firms relative to their low leverage con-
trol group is significant after the basis risk shock. The equation in (7.55) is the standard
specification for a DDD analysis, where dHi can indicate any subgroup that is subject
to treatment. The resulting estimator for δ2 can be shown to equal the difference in
two standard DiD estimates; see Atanasov and Black (2016) for more discussion and
some concerns with triple differencing.

A recent applicationmaking extensive use of the triple difference design is Vuille-
mey (2020), who estimates the effect of the introduction of central clearing in 1882 on
coffee trade flows in Le Havre, France. The paper exploits the variation between Le
Havre and other European markets where clearing is not introduced as well as within
Le Havre, between coffee and other commodities. This makes the approach robust
against commodity-specific and harbour-specific demand and supply shocks.

Other extensions
The difference-in-differences approach can be combined with other techniques. In
cases where there are concerns about the parallel trends assumption, one could com-
bine the DiD regression with the use of instrumental variables, where the instruments
should affect treatment but not the group-specific trends. An illustration is Tsoutsoura
(2015), who employs DDD in combination with instrumental variables. It is also pos-
sible to combine the DiD methods with matching, so as to achieve a sample of treat-
ment and control units that are more similar in terms of covariates (see Lemmon and
Roberts, 2010 and Foucault et al., 2011 for some examples).

Finally, the logic of difference-in-differences can also be extended to nonlinear
models, such as those discussed in Chapter 6. For example, Jaud et al. (2018) employ
a DiD specification in a durationmodel, where the dependent variable corresponds to
an export spell of a particular product. The model is fully specified in the sense that a
complete set of explanatory variables is included.
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